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Part I

General context and framework
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At the end of the nineteenth century, classical physics, which includes among others,
electromagnetism, statistical mechanics, thermodynamics and classical mechanics, was able
to describe accurately many different physical systems, through, for example, Maxwell’s
equations and Newton’s classical laws of motion.
However, classical physics was lacking explanations for various phenomena, such as Mer-
cury’s perihelion, black-body radiation, internal structure of atoms and people were having
trouble finding the so-called aether, a postulated medium for the propagation of electromag-
netic waves.
In the twentieth century, a complete change of paradigm appeared, as new fundamental
theories emerged, which are the basis of what is known today as modern physics : relativity
and quantum mechanics. These theories were able to address many of the unanswered
questions from classical physics.
Based on that, two major fundamental physics theories arose, which respectively describe
the infinitely big and the infinitely small : general relativity (GR) and the Standard Model of
particle physics (SM). They are considered as the most rigorously and extensively confirmed
theories of all time through experiments. As imperfect physics theories, it still remains open
questions, one of which is the inability to reconcile the two theories into a single theory of

everything. Another major issue arising from these theories, and relevant for this thesis, is
the nature of dark matter, a hypothetical form of matter, abundantly present in the universe,
which we can only notice through its gravitational effect. In this opening part, we will first
introduce the theoretical framework, necessary for the understanding of the dark matter
puzzle. After reviewing the key concepts related to dark matter relevant for this thesis, we
will focus on one specific class of solutions as for the microscopic nature of dark matter, ultra-
light dark matter. Afterwards, we will discuss the main aspects that characterize ultralight
dark matter, which will work as a basis of the next chapters of this thesis.
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Chapter 1

Special relativity

Special relativity is a pillar of modern physics as it is the first theory of space and time,
as two parameters of a deeper mathematical object : a four-dimensional spacetime. The
theory, developed by Einstein in 1905 [1], addressed the inability to reconcile Maxwell’s
electromagnetism with classical mechanics. It is based on two postulates : the principle
of relativity and the invariance of the speed of light. The former states that the laws of
physics are the same in every inertial reference frame, i.e with zero net acceleration. The
latter states that the speed of light in vacuum is invariant and always equals 𝑐 in all global
inertial reference frames. From these two postulates, one can show that the speed of light 𝑐
is the maximum velocity allowed by special relativity, from the principle of causality.

The main idea behind this theory is that time is no longer an absolute parameter but
depends on the velocity of the reference frame. Before the development of special relativity,
if one wanted to transform time and space coordinate from one reference frame 𝑅 to another
frame 𝑅′ where the latter travels with constant velocity 𝑣 in the 𝑥 direction, compared to the
former, one used the non-relativistic Galilean transformations, i.e

𝑐𝑡′ = 𝑐𝑡 , 𝑥′ = 𝑥 − 𝑣𝑡 , 𝑦′ = 𝑦 , 𝑧′ = 𝑧 . (1.1)

Instead, Lorentz transformations transform the time coordinate as a linear combination of
initial time and space coordinates, i.e (for the same situation as before)

𝑐𝑡′ = 𝛾
(
𝑐𝑡 − 𝑣𝑥

𝑐

)
, 𝑥′ = 𝛾(𝑥 − 𝑣𝑡) , (1.2)

where the 𝑦 and 𝑧 coordinates are unchanged, and where 𝛾 = 1/
√

1 − (𝑣/𝑐)2 is the Lorentz
factor. The first equation transforms the quantity 𝑐𝑡, instead of time 𝑡 alone, to make sure
that all components have the same unit of length. One can see that Lorentz transformations
deviate notably from Galilean ones when 𝑣 approaches the speed of light 𝑐, in which case
effects of time dilation (moving clock ticks slower than resting one) and length contraction
(moving observer measures contracted length of objects in the direction of movement) appear.
The symmetry group of Lorentz transformations is the Lorentz group which includes space
rotations and boosts.

The comprehension of space and time as two sides of the same coin is the basis of the
existence of four-vectors 𝑋𝜇 = (𝑋0, ®𝑋), which is a four-dimensional generalization of usual
vectors in 3-space ®𝑋. The components of four-vectors transform in a specific way under

6



Chapter 1 Special relativity

Lorentz transformations. In a situation similar than previously, the component of a four-
vector 𝑋𝜈 in a given inertial frame transforms in 𝑋′𝜇 in another inertial frame, which moves
in the x-direction with velocity 𝑣 with respect to the first one, as

𝑋′𝜇 = Λ
𝜇
𝜈𝑋

𝜈 (1.3a)

where we introduce theΛmatrix of Lorentz group (the group of all Lorentz transformations)

Λ
𝜇
𝜈 =

©«
𝛾 −𝛾𝑣

𝑐 0 0
−𝛾𝑣

𝑐 𝛾 0 0
0 0 1 0
0 0 0 1

ª®®®¬ , (1.3b)

as the transformation matrix of Eq. (1.2). There exist four-vectors describe many properties
of objects, in particular the four-position 𝑥𝜇 = (𝑐𝑡, ®𝑥), the four-momentum 𝑝𝜇 = (𝐸/𝑐, ®𝑝),
where 𝐸 is the energy, or the electromagnetic four-potential 𝐴𝜇 = (𝜙/𝑐, ®𝐴), where 𝜙, ®𝐴 are
respectively the scalar and vector potentials.

In a (flat and cartesian) four dimensional spacetime (i.e with no energy or gravity in-
volved), distances are computed using the line element

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 ≡ 𝜂𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 , (1.4)

where 𝜂𝜇𝜈 is the Minkowski metric. This rank-2 tensor is central in special relativity and
general relativity (where it will be generalized to 𝑔𝜇𝜈 which in general differs from 𝜂𝜇𝜈 to
account for energy content of spacetime) as it is used to describe e.g. time, distances and
curvature.

The theory of special relativity has been confirmed experimentally many times in various
systems. In particular, it allowed to understand why one were able to detect cosmic muons
on Earth ground. Muons are unstable particles which can be produced in cosmic showers
when highly energetic particles enter the Earth atmosphere and recoil with atoms. They
are relativistic particles, i.e they travel at a speed close to 𝑐, but they are unstable and have
a lifetime of around 2.2 𝜇s, after which they decay to lighter particles. Considering their
lifetime and altitude at which they are produced, it is only through time dilation that their
detection on ground can be explained.

Special relativity is very important in various fields of physics, and in particular it is
a pillar of the two cornerstones of fundamental physics that will be discussed in the next
chapters : general relativity and the Standard Model of particle physics.
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Chapter 2

Quantum mechanics

Quantum mechanics is the theory that describes phenomena at very small scales (typically
at the level of atoms or small molecules, i.e 10−10 m, and below).

As its name suggests, it is based on the quantization of physical quantities. This has
mainly two consequences. The first one is the discovery of particles, as quanta of energies,
such as photons. This allows to explain many experimental results, like the photoelectric
effect or the Compton effect [2]. This is at the origin of the wave-particle duality, i.e the
fact that some systems, such as light or atoms, can be described by a wave or by a particle,
depending on the specific experiment considered. The second consequence is that the energy,
the momentum, the angular momentum or spin of quantum systems can only take discrete
values, while classical mechanics allow a continuum spectrum of numerical values for such
quantities.

When shining light through a material, some electrons of the material are ejected, because
the energy of light is larger than the binding energy of the electron in the atom. This is the
photoelectric effect. If one measures the energy of the electrons 𝐸 as function of the frequency
of the incident light 𝜔, one finds a linear dependence, whose slope is the so-called Planck
constant ℏ, i.e 𝐸 = ℏ𝜔. The Planck constant, also known as the quanta of action, is a
fundamental quantity of quantum mechanics, as it is at the basis of quantization. Similarly
to the speed of light 𝑐 in special relativity, quantum mechanical effects start to be relevant
when the action of the system is of order ℏ. This is the reason why, macroscopically, when
the system’s action is much greater than ℏ, quantum mechanics is negligible and classical
mechanics works well.

As a probabilistic theory, it is fundamentally different from classical mechanics which is
deterministic. Indeed, in the latter, if the initial position and velocity of an object is known,
then it is possible to compute the motion of such object at any point in time. Quantum
mechanics, however, describe the state of a particle with a wavefunction, usually denoted 𝜓,
a complex function of the state. By the Born rule, the square modulus of the wavefunction
|𝜓(𝑠)|2 gives the probability of finding the particle in a given eigenstate 𝑠.

Quantities that can be measured experimentally are known as observables, and are de-
scribed by hermitian operators, i.e matrices with real eigenvalues. As the eigenvectors of a
given observable 𝐴 form an orthonormal basis, a physical state 𝜓 can be expressed as the
superposition of eigenstates of 𝐴. This is what is known as the superposition principle [2].

Assuming we want to measure two quantities of a quantum state 𝜓 that are represented
by two observables that are canonically conjugate variables, such as the position 𝑋 and
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Chapter 2 Quantum mechanics

the momentum 𝑃, the dispersion of both operators around their expectation values obey
Δ𝑃Δ𝑋 ≥ ℏ/2 [2], which is known as the Heisenberg uncertainty principle. This means
that there exists a fundamental limit on the knowledge of both conjugate variables of a
system when measuring them simultaneously. This uncertainty exists between any pairs
of conjugate variables, for example time and energy, which are canonically related through
Schrödinger equation (see below).

The fundamental equation of quantum mechanics is the Schrödinger equation [2]

𝑖ℏ
𝑑𝜓

𝑑𝑡
= 𝐻𝜓 , (2.1)

which describes the evolution of a quantum state𝜓 using the Hamiltonian operator𝐻, which
describes the total energy of the system (kinetic and potential). In a sense, it is the quantum
generalization of Newton’s second law of motion.

9



Chapter 3

General relativity

10 years after its famous annus mirabilis, Einstein published in 1915 its first paper [3] on
general relativity (GR) which extends the laws of special relativity to gravitational fields.
GR is a theory of gravitation which revolutionized our view of gravity. At that time, New-
ton’s theory of gravitation was the leading framework, and despite explaining various phe-
nomena, lacked explanation of several effects, such as Mercury perihelion precession. In
Newton’s theory, gravity is a force that acts instantaneously from the emitter to the receiver,
which breaks causality and therefore special relativity. Instead, Einstein introduces the same
four-dimensional spacetime as special relativity, but which curves under the energy-matter
distribution of the manifold. In this sense, gravity is simply the curvature of spacetime,
affecting the motion of freely falling massive objects through the curvature of the geodesics
they follow. The effects of GR are visible when velocities are close to the speed of light and/or
when gravitational field becomes strong (when deviations from flat spacetime are non neg-
ligible). When these conditions are not fulfilled, GR is well approximated by Newtonian
mechanics.

This theory is one of the most successful theory ever created, as it was tested experimen-
tally in various situations for more than 100 years now, and has never been disproved.

3.1 Equivalence principle
In addition to special relativity, the second pillar of GR is known as the equivalence principle
(EP) between gravitation and acceleration. EP includes three different forms : the weak EP
(WEP), the Einstein EP (EEP) and the strong EP. Here, we will be interested in the EEP which
includes three different facets [4]. The first one is the WEP also known as the universality
of free fall (UFF) which states that all bodies fall with the same acceleration in the same
gravitational potential, no matter their composition. In other words, gravity is universal.
It is satisfied if the gravitational theory is metric (which is the case for GR), which means
that all matter fields are universally coupled to gravity. UFF implies that the gravitational
mass (which appears in Newton’s gravitational law) is equivalent to the inertial mass (which
appears in Newton’s second law). The second hypothesis is the Local Lorentz Invariance
(LLI) whose principle is that the results of any local experiment, where gravity effects are
excluded, do not depend on the position and velocity of the reference frame. The third
principle is the Local Position Invariance (LPI), stating that results of any experiment do not
depend on the spacetime position of the laboratory. This principle is closely related to the
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Chapter 3 General relativity

steadiness of fundamental constants of nature [4].

3.2 Einstein field equations
The central GR equations are 6 independent metric 𝑔𝜇𝜈 field equations, which are known as
the Einstein field equations (EFE) [3]

𝐺𝜇𝜈 =
8𝜋𝐺
𝑐4 𝑇𝜇𝜈 −Λ𝑔𝜇𝜈 (3.1)

The left-hand side contains only the Einstein tensor 𝐺𝜇𝜈 which contains second order deriva-
tives of the metric. It involves in particular the Ricci scalar, which describes the curvature of
spacetime. The right-hand side represents the matter-energy content. The tensor 𝑇𝜇𝜈 is the
stress-energy tensor of all matter and energy of spacetime. The constant 8𝜋𝐺/𝑐4, which in
the following will be denoted as 𝜅 is important on dimensional level (to relate 𝑇𝜇𝜈 compo-
nents in 𝐽/𝑚3 units with 𝐺𝜇𝜈 components in units of 𝑚−2), but it also indicates the entity of
the phenomena involves, i.e in that case gravitational physics (through 𝐺) with relativistic
effects (through 𝑐). In addition to these terms whose links were theoretically demonstrated
by Einstein in his original papers from GR’s first principles, Λ𝑔𝜇𝜈, where Λ stands for the
cosmological constant, was included to take into account the acceleration of the expansion
of the Universe. This constant can be interpreted as a perfect fluid with negative pressure
whose nature is not understood, and which is usually denoted as dark energy (see below).

John Archibald Wheeler said "Space tells matter how to move, matter tells space how to
curve" [5], which is a very simple statement to describe EFE and to show their non linearity.
The non linearity of Einstein field equations make them very complicated to solve, and
only partial solutions or solutions in very easy systems (such as the Schwartzschild solution
describing the vacuum solution of EFE outside a spherically symmetric body with no charge
or angular momentum) have been found. A whole branch of GR studies aims at solving EFE
in peculiar systems using numerical methods, known as numerical relativity.

Despite being non linear, EFE are very similar in their form to Maxwell’s equations of
electromagnetism (EM) where distribution of matter (charges and currents in EM) sources
curvature of spacetime (electromagnetic fields in EM).

3.3 Experimental successes
Overall, GR is a very successful theory as it predicted a large number of experimental results
or explained various misunderstood phenomena.

Most solar system gravitational physics can be accurately described by Newtonian physics
because the gravitational field is weak and the velocities are small (compared to speed of
light 𝑐). However, the precession of the orbit of Mercury does not exactly follow Newton’s
predictions [6]. Thanks to GR corrections, which are necessary since the Sun’s gravitational
potential on Mercury starts to be large, this discrepancy was solved.

Other effects from GR at Solar system scale were experimentally verified. Some of them
are the gravitational redshift [7] and Shapiro time delay [8], where both effects describe how
light frequency and geodesics, despite being massless particles, are also affected by massive
objects. The former states that two clocks located at different gravitational potential will
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Chapter 3 General relativity

not tick at the same rate, the one located in a weaker gravitational potential ticking faster.
Even though the effect is small, this correction is necessary to ensure the Global Navigation
Satellite System (GNSS) to work as expected. The latter, predicted by Irwin Shapiro [9],
describes how the propagation time for a light ray depends on the gravitational potential
encountered by photons, more precisely how a time delay appears in signal when light
travels close to a massive object. It was experimentally confirmed by the emission towards
bodies close to the Sun (Mercury or Venus) and measuring the light round trip time, affected
by the Sun’s gravitational potential [10].

At galactic scale, GR predicts gravitational lensing effects, which describe how light
geodesics are curved around galactic objects, such that the galaxy acts as a lens. As a
consequence, several effects can be observed such as the Einstein ring, where the same
astrophysical object is observed at all locations around the lens galaxy if source, lens and
observer are perfectly aligned, making a light ring around the galaxy.

A very important field of research resulting from GR is the standard model of cosmology.
This model aims at describing the evolution of the universe. In its simplest form, the universe
is assumed homogeneous and isotropic on large scales, such that the spacetime metric is
the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric 𝑔𝜇𝜈 = det(−1, 𝑎2(𝑡), 𝑎2(𝑡), 𝑎2(𝑡))
in our sign convention, where 𝑎(𝑡) is the dimensionless scale factor accounting for the
expansion of the Universe. This metric essentially describes a flat expanding universe.
The standard model of cosmology [11] provides good theoretical account for the Cosmic
Microwave Background (CMB), the large scale structures and the accelerating expansion of
the Universe. Based on measurements from e.g. [12], the energy content of the Universe is
5% of ordinary baryonic matter, around 25% of non-baryonic matter, more commonly known
as cold dark matter (CDM) (see Section 5.1) and about 70% of an unknown dark energy (Λ),
responsible for the expansion of the Universe. Following these observations, the standard
model of cosmology is referred to as ΛCDM-model.

Finally, the recent measurement of gravitational waves (GW) by the LIGO/VIRGO col-
laboration [13] is an important discovery, as it validates even more GR but it also provides
a new way of observing the Universe. GW are currently visible as emitted by extremely
massive objects such as black holes or neutron stars, therefore their detection allows to test
GR in strong gravitational field regimes. Moreover, the Universe being transparent to GW
(there exists no structure that can absorb them or reflect them) which is not the case for EM
waves, GW can be used to discover new regions of the Universe.

3.4 Limits
As described earlier, EFE Eq. (3.1) contains an heuristical term, related to the acceleration
of the expansion of the Universe, by some unknown energy. The simplest form of energy
is the cosmological constant, with constant energy density over whole spacetime, but other
models assumed e.g scalar fields as the cause of the acceleration of expansion. Some efforts
were made to explain dark energy by the vacuum energy of the Universe, but it leads to a
discrepancy between theory and observations of more than 120 orders of magnitude [14].
This leads to what is known as the cosmological constant problem.

As shown in EFE through the constant 𝜅 = 8𝜋𝐺/𝑐4, GR is a theory combining gravitation
and special relativity. However, it does not include quantum mechanical effects (which
are relevant when the action is close to ℏ). While GR describes accurately physics of the
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macroscopic scale, another theory is needed to predict physics of the microscopic scale,
namely quantum field theory, whose principles will be detailed in the next section. Running
backward in time in the cosmological evolution of the Universe, one should arrive at the
conclusion that there was a time in the history of the Universe, where its full energy content
was compressed into a very small spacetime region such that temperature, energy density,
etc.. were extremely high. In such a case, our current theories (GR and the Standard Model
of particle physics (SM), see next section) are not valid anymore because both gravitational
and quantum mechanical effects must be taken into account at the same time, which GR and
SM are individually not able to do. A new high energy theoretical framework, sometimes
referred to as quantum gravity, including both theories is therefore needed in order to
understand the physics of the early universe. In this sense, even though the current standard
model of cosmology assumes an initial Big Bang singularity as "birth" of the Universe and
then an inflationary epoch that stretched spacetime at an exponential rate, one does not have
any complete proof of their existence.

As stated in Section 3.1, the equivalence principle is very important in GR and is the
basis of metric theories, i.e an universal coupling between gravity and all types of matter.
However, this principle is only heuristical, i.e it is only supported by observations of test
masses which fall at the same rate. In particular, it is not based on an underlying symmetry
of the universe [15], in contrast of e.g gauge principle, as we shall see in the next section.
It is also very intriguing that gravitation does not rely on any internal charge, compared to
other well known fundamental interactions, such as electromagnetism. Therefore, in some
theoretical scenarios, EP is expected to be broken at some scale, see e.g. [16–18], which would
naturally invalidate GR, as a metric theory.

Last but not least, the problem of dark matter, which is the most relevant limit for this
thesis. Together with the Standard Model of particle physics (see Section 4), GR does not
predict the existence of dark matter, a new form of matter, different from baryonic matter
that we are able to describe microscopically (see Section 4), and which, in our current
understanding, only interact gravitationnally with visible matter. As we shall see in Section
5, its introduction allows one to explain various cosmological phenomena.
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The Standard Model of particle physics

The second cornerstone of fundamental physics, describing the interactions between ele-
mentary particles at the microscopic scale is the Standard Model of particle physics (SM). As
its name suggests, it is based on quantum mechanics. Many scientists consider SM as the
most successful theory ever created.

In the fourth century before J.-C., Democritus argued that atoms were the fundamental
bricks of matter, and therefore could not be cut. It is only in the nineteenth and twentieth
centuries that scientists such as Joseph Thomson and Ernest Rutherford discovered the
electron and the proton.

Later in the twentieth century and after the work of Werner Heisenberg, Max born
and others on the creation of quantum mechanics on one side and Albert Einstein with
its relativistic theory on the other side, the first attempts of quantizing the electromagnetic
field were made by Paul Dirac. This is the birth of quantum field theory (QFT) which
states that particles are not the most fundamental bricks of the universe, but are simply
quantum excitation of something more fundamental : quantum fields. This is the theoretical
framework at the basis of the SM.

4.1 Symmetries
As a relativistic quantum theory, QFT enjoys the symmetries of quantum mechanics, i.e
space rotations and translations, and time translations, and of special relativity, i.e Lorentz
symmetry. Space translations extend Lorentz symmetry to Poincaré symmetry. Another
important symmetry of particle interactions is what is known as gauge symmetry. The
various quantum fields introduced to describe the interactions between particles are not
observables, i.e they cannot be measured. Therefore, the observables do not depend on the
way we define those fields. The degree of freedom to shift or rotate the quantum fields is
gauge symmetry.

4.2 Gauge groups
The current version of SM is based on three different gauge groups, which form the three
fundamental interactions between particles that SM is able to describe accurately : electro-
magnetism described by quantum electrodynamics (QED), the strong interaction, described
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by the quantum chromodynamics (QCD) and the weak interaction.

4.2.1 QED
Quantum electrodynamics [19–21] is a quantum generalization of the classical Maxwell’s
equations for electromagnetism. It is based on a 𝑈(1) gauge symmetry. The gauge field
associated with this symmetry is the electromagnetic four-potential𝐴𝜇 and the gauge particle
(force carrier) is the photon. The gauge symmetry implies that the group transformation
is 𝑒 𝑖𝑞 , with 𝑞 the electric charge. This means that QED is an abelian theory in the sense
that the group operations are commutative. The consequence of that is the gauge boson of
the symmetry, the photon, must be neutral under the symmetry transformation. Therefore,
photons cannot self interact. These are the reason why the photon is electrically neutral
and that Maxwell’s equations (or their relativistic version) are linear. In addition, as gauge
bosons, photons must be massless.

4.2.2 Weak interaction
Weak interaction [22] is based on a 𝑆𝑈(2) symmetry, which stands for special unitary matrices
of dimension 2. There are three gauge fields associated with this symmetry : they are known
as the 𝑊± bosons, which are electrically charged and the 𝑍0 boson, which is neutral. All
fermions are affected by the weak interaction whose particular effect is to change the flavor
of such fermions, i.e their fundamental nature. Weak interaction is the only charge (𝐶) and
charge-parity (𝐶𝑃) symmetry breaking interactions (for example, a broken 𝐶𝑃 symmetry
means that a left handed fermion and right handed antifermion do not interact in the same
way under the weak interaction). In addition, while they are gauge bosons, 𝑊±, 𝑍0, are not
massless (their mass is ∼ 100 GeV/𝑐2 [23]), and this implies that weak interaction is a very
short-range interaction. The generation of mass for𝑊± and 𝑍0 bosons is known as the Higgs
mechanism and will be discussed in Section 4.3.

4.2.3 QCD
The strong force (also known as the quantum chromodynamics (QCD)) [22] describes the
interactions between gluons and quarks, which are the particles components of baryons, such
as protons or neutrons. The associated conserved charge of the symmetry is an additional
quantum number that only quarks and gluons possess, called the color charge, hence the
name of the theory. There exists six different color charges : red, blue, green, anti-red, anti-
blue and anti-green. The idea behind this formulation of color is that some combinations of
colorful states can be colorless, e.g a mixture of red - green - blue state or red - anti-red does
not carry color. Each quark carries one color, while gluons, the QCD force carriers carry
two different colors. There exists eight independent gluon color states, which represent the
generators of the 𝑆𝑈(3) gauge symmetry.

These bring two important consequences for the theory. The first one is that, contrary to
QED, gluons carry the conserved charge of the symmetry, therefore they can interact with
themselves, i.e QCD is a non-abelian gauge theory. The second one is the color confinement.
There exists no bound states which is colorful, i.e quarks cannot be isolated, and therefore
cannot be observed alone. Only colorless bound states composed of two (mesons, like pions)
or three (hadrons, like protons and neutrons) quarks can be observed.
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4.3 Higgs boson

At energies larger than what is known as the weak scale (𝐸 = 246 GeV), weak interaction and
electromagnetism are unified into a single interaction, known as the electroweak interaction
[22]. Gauge symmetry is required for any quantum theory to be valid, since it is related
to the fact that the definition of the field (up to shift and rotation) should not impact the
physical observables. Therefore, at this energy scale, in order for the electroweak theory to
be gauged, fermions and gauge bosons, including𝑊±, must be massless.

However, we know from various experimental results that fermions are not massless,
which means that one needs a mechanism to arise between this highly energetic state and
the lower energy state of the current experiments and of the world we are living in.

In order to address this issue, one can introduce a massive scalar field 𝜙 with a new
𝑈(1) gauge symmetry and a quartic potential. When the energy of the system gets below
the electroweak scale, the potential of the field changes and gets the form of a Mexican hat,
where the vacuum state is not aligned with the zero-particle state ⟨𝜙⟩ = 0. The vacuum
states are therefore degenerate, and in order to minimize the energy, the system must choose
one of its vacua with a given state ⟨𝜙min⟩ ≠ 0, which does not correspond to the zero-particle
state. One says that the 𝑈(1) symmetry has been spontaneously broken. The difference
between vacuum state and zero-particle state is known as the vacuum expectation value
(vev) of the field, therefore, by spontaneously breaking the symmetry, the field acquires a
non-zero vev. Since the vacuum state 𝜙min does not correspond to the zero-particle state,
it contains a non-zero number of particles. If we now assume that the SM fermionic and
bosonic fields, initially massless, interact with the field 𝜙 in its vacuum state 𝜙min, they
effectively get "weighed down" by those interactions, i.e they behave as massive particles. In
the SM, 𝜙 breaks three degrees of freedom (out of four) of the original electroweak symmetry
group 𝑆𝑈(2) ×𝑈(1), and therefore only three gauge bosons (out of four),𝑊±, 𝑍0, gain mass
after symmetry breaking. This is the reason why the photon remains massless.

This mechanism, i.e fields acquiring mass by interacting with another field that sponta-
neously break symmetries, is known as the Higgs mechanism. We call 𝜙 the Higgs field, and
its associated quantum is the Higgs boson. This idea was developed by three independent
groups [24–26], and Peter Higgs and François Englert received the Nobel Prize in 2013 for
this discovery.

4.4 Matter content

In addition to the Higgs boson and the interaction carriers described in the previous sections,
i.e the photon 𝛾, the two 𝑊± bosons, the 𝑍0 boson and the eight gluons 𝑔, one needs to
describe the matter content of the universe, i.e the fermions [22].

There exist three generations of fermions, : the first, second and third generations.
From one generation to another, fermions are quite similar, the only relevant parameter
to distinguish them is the rest mass increase (or equivalently the lifetime decrease because
decay to lighter particles is energetically favored) from generation 𝑁 to generation 𝑁 + 1.
All fermions are also distinguished by the interactions they are sensitive to, i.e if there are
charged over the gauge group associated to that interaction. First, we have the leptons,
which carry electric charge and weak charges (weak hypercharge, weak isospin), therefore
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Figure 4.1: All fundamental particles of the Standard Model (with the hypothetical graviton),
with their electric charge, color charge, mass and spin (Credit : CERN)

they can be involved in electromagnetic and weak interactions. Among the leptons, we find
the electron 𝑒− and the electron neutrino 𝜈𝑒 (first generation), the muon 𝜇− and the muon
neutrino 𝜈𝜇 (second generation), and the tau 𝜏− and the tau neutrino 𝜈𝜏 (third generation).
Second, we have the quarks which, in addition to electric and weak charges, carry color
charge, which allows them to be sensitive to the third fundamental interaction, the strong
force. There exist in total six different quarks. The first generation contains the up 𝑢 and
down 𝑑 quarks, the second generation contains the strange 𝑠 and charm 𝑐 quarks, and the
third generation contain the top 𝑡 and the bottom 𝑏 quarks.

Note that for each fermion, there exists an antifermion which has the same mass, but car-
ries opposite charges, implying that a given antifermion is sensitive to the same interactions
as its associated fermion.

The whole zoo of fundamental particles is summarized in Fig. 4.1, where electric charge,
color charge, spin and mass of each particle are provided.

4.5 Lagrangian

The action of the theory is a number and can be calculated by integration of the Lagrangian
ℒ over the four dimensional spacetime measure 𝑑4𝑥 on a given manifold. This implies that
the Lagrangian must be a scalar under Lorentz transformation, i.e a Lorentz scalar.

The full Lagrangian of SM being extremely lengthy, a reduced version can be used for
our practical purposes [27]

ℒ = −1
4𝐹

𝜇𝜈𝐹𝜇𝜈 + 𝑖Ψ̄ /𝐷Ψ +Ψ𝑖𝑦𝑖 𝑗Ψ𝑗𝜙 + h.c. + |𝐷𝜇𝜙 |2 −𝑉(𝜙) (4.1)

The first term, represented by the contraction of the interaction carriers fields strength
tensors 𝐹𝜇𝜈 with themselves (to construct a Lorentz scalar), gathers the kinetic energies of
all interaction carriers. Depending on the particle, this term allows self interaction (e.g for
gluons) or simply kinetic energy (e.g for photons).
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The second term includes the interaction between force carriers and the fermionic matter
fields (leptons and quarks), represented by the spinor Ψ, which is a mathematical object
used to describe half-integer spin particles, i.e fermions. The /𝐷 is the mathematical operator
of gauged covariant derivative, which is a generalization of the partial derivative 𝜕 to which
we incorporate the gauge fields to account for fermion-boson interactions.

The third (respectively fourth h.c. for hermitian conjugate) term account for the interaction
between fermionic (respectively antifermionic) matter fields and the Higgs field 𝜙, which
gives rise to the mass of the fermions. 𝑦𝑖 𝑗 represents the various components of the Yukawa
matrix and describes the coupling constant of a given fermion to the Higgs field.

The fifth term describes the interaction of the weak force bosons with the Higgs field,
such that they acquire mass.

Finally, the sixth term represents the potential energy of the Higgs field, which has the
form of the so-called "Mexican-hat". As mentioned before, this implies an infinite number
of different potential minima, leading to spontaneous symmetry breaking when the field
chooses a particular one. This idea is at the basis of the Higgs mechanism for the generation
of mass for many of the gauge and fermions fields.

4.6 Experimental successes and limits
After the theoretical completion of the SM, several particle accelerators were built, in par-
ticular at CERN, in Geneva, Switzerland, to test experimentally this theory. It consists of
beams of particles with large kinetic energy which collide in order to produce large mass
particles, to observe them through decay products. More than 40 years ago, the first particle
accelerator built at CERN was the Super-Proton-Antiproton-Synchrotron (𝑆𝑝𝑝𝑆), then came
the Large Electron-Positron Collider (LEP) and finally the Large Hadron Collider (LHC); and
the main difference between these accelerators (except the nature of particles colliding) is
the kinetic energies reached by the colliding particles, and therefore one is able to produce
particles with higher and higher masses.

Since their launch, they allowed scientists to observe the 𝑊 and 𝑍 bosons, gluons, the 𝜏
lepton and the top and bottom quarks. More recently, in 2012, the Higgs boson was found
[28] at LHC, which implied that all particles theoretically predicted by the SM have been
experimentally detected.

SM has still issues explaining various physical phenomena. First, as explained in the
previous chapter about GR, there is still no unification between QFT and GR, i.e no one has
shown how to quantize gravity, i.e explain gravitation interaction completely from quantum
fields and particles.

Additionally, some fine-tuned problems arise in SM, such as the strong CP problem.
In short, QCD is theoretically allowed to break the Charge-Parity symmetry, which would
be visible experimentally by measuring a non-zero electric dipole moment of the neutron.
However, this measurement is consistent with zero with high accuracy [29], leading us to
think that QCD preserve CP symmetry. This problem will be more deeply studied in Chapter
8.2 on axions. Finally, one of the major issues in fundamental physics is the microscopic
nature of dark matter, which is still unknown, and which is the main topic of this thesis.
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Dark matter

As quickly stated in Section 3, a non baryonic matter, more commonly known as dark
matter (DM) was first introduced to explain astrophysical observations at galactic scale,
as we shall see in the following. Then, it was added into the cosmological equations in
order to match various other observations, at the cosmological scale. In the first part of this
section, we review the various observations that led to the conjecture of DM, based on the
gravitational interaction between DM and the rest of the content of the Universe, and which
essentially implies that DM, as its name suggests, is massive. Then, in the second part, we
review the various possibilities as for the microscopic nature of DM, and in particular we
introduce ultralight dark matter (ULDM) candidates, which will as serve as a foundation for
the following chapters.

5.1 Some smoking guns of existence of dark matter
In this section, we will discuss some astrophysical and cosmological hints for the existence
of DM.

5.1.1 Galaxy rotation curves
The first historical hint of DM was made in the 1930s by Fritz Zwicky. He measured the
velocity 𝑣 of stars of the Coma galaxy clusters as function of their distance to the galactic
center 𝑅 and by using the virial theorem, he deduced the total mass 𝑀 of the galaxy cluster
[30]

𝑀𝑣2 ∝ 𝐺𝑀
2

𝑅
⇒ 𝑀 ∝ 𝑣

2𝑅

𝐺
. (5.1)

However, the total mass (∼ 3 × 1014 solar masses), deduced by the dynamics of the cluster is
much larger than the total luminous mass (∼ 8× 1011 solar masses), deduced by the number
of galaxies inside the cluster. DM was first introduced to account for this missing, non
luminous, mass.

Afterwards, several observations of different galaxy rotation curves, i.e the measurement
of the velocity of stars as function of their distance to the galactic center, indicate that non
luminous mass has to be added. As it can be seen from Fig. 5.1, the discrepancy between
the measurement of the mass from luminous objects and the measurement of mass through
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Figure 5.1: Velocity profile of the NGC 6503 galaxy (from [31]). The measured velocity are
shown with dots and corresponding error bars. The velocity curve that fits the amount
of luminous matter and gas do not fit the observations, and one needs to add a "halo"
component, which corresponds to dark matter.

stellar dynamics becomes significant at large distance to the galactic center, which implies
that DM would be spherically distributed, encompassing the whole galaxy.

5.1.2 Gravitational lensing
Gravitational lensing, another observation at galactic scale, reveals the presence of an invis-
ible mass. As detailed in Section 3, GR allows massive objects to curve the geodesics of
light such that they act as a lens. By detecting the deviated photons on Earth, one is able
to reconstruct the mass distribution of the massive object that bent their trajectories. Such
measurement was done using the bullet cluster as lens [32] in addition to the measurement
of the visible mass distribution inside the cluster. As it is shown in Fig. 5.2, the measurement
of the cluster mass reconstructed from gravitational lensing is shown in blue, while the X-ray
measurement, reveals in pink the location of the "visible" mass, which is mostly made of gas.
One can clearly see that both distributions do not coincide, which leads us to the conclusion
that most of the mass in the cluster is invisible, i.e is DM.

5.1.3 Cosmic microwave background
At cosmic scale, the measurement of the Cosmic Microwave Background (CMB) suggests
the existence of DM. In the Standard Model of Cosmology, about 300 000 years after the
presupposed Big-Bang, while the temperature of the universe fell down to∼ 3000K, electrons
and baryons were able to recombine and form atoms. This epoch, known as recombination,
also marks the time of decoupling between such neutral atoms and photons, such that the
latter were able to freely propagate through space, thus making the universe transparent. At
that moment, the whole universe was immersed in a 3000 K photon bath. With the expansion
of the universe, the wavelength of those photons were stretched such that their temperature
is roughly 2.7 K today, which corresponds to a microwave wavelength. This phenomena is
known as the CMB, and was first measured by Penzias and Wilson in 1964, which valued
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Figure 5.2: Composite image of the bullet cluster, where the blue area shows the gravita-
tional lensing measurement of the mass and the pink area is the X-ray measurement of the
visible mass in the cluster. X-ray: NASA/CXC/CfA/ M.Markevitch et al.; Lensing Map:
NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. Optical image: NASA/STScI;
Magellan/U.Arizona/D.Clowe et al.

them the Nobel prize in 1978. The Planck satellite measured with great accuracy the CMB
temperature map [33], and the collaboration was able to measure its power spectrum which
is with exceptional agreement with the presence of non baryonic matter, i.e DM, which
accounts for ∼ 26.5% of the total energy density of the universe [33]. In short, temperature
anisotropies of the CMB are linked to the density anisotropies at the time of recombination,
which depends on the densities of baryons, DM and photons and their interactions. As DM
mainly interact gravitationally with the rest, it collapsed and formed dense regions before
decoupling. Through gravitational redshift, photons imprinted those different gravitational
potentials and this is why we see temperature anisotropies of those photons in the CMB.

5.2 Dark matter candidates
Despite the current gravitational evidence of the presence of DM in the universe, through
the various observations, described in the previous section, we still have no clue on the
microscopic nature of DM, i.e the fundamental particle behind it, its intrinsic properties
and its interactions with SM fields. Our current understanding of the microscopic world, in
particular from QFT, requires the introduction of an underlying field, which will be denoted
in the following by the DM field.

In the Standard Model of Cosmology, the DM field decouples quickly from the rest
of the energy, i.e baryons and photons, during the early times of the Universe. Before
recombination, from the observation of the CMB, one can conclude that the energy density
is not exactly the same everywhere in space, i.e there are some underdense and overdense
regions. Overdense regions, containing more DM, baryonic matter and photons, attract more
mass, therefore the interaction between baryonic matter and photons increase locally, creating
pressure force. This creates sound waves propagating outwards from the overdensities.
At the time of recombination, baryons and photons decoupled, which led the photons to
propagate freely and which relieved the pressure away. At this point, the left behind DM
and baryons stopped propagating but they still formed an overdensed regions of matter,
which many believe is the seed of galaxies that we see today. The distance travelled by the
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Figure 5.3: Mass scale of DM candidates, from massive primordial black holes to the light
fields, from [36].

sound wave is known as the sound horizon and by measuring the two-point correlation
function of the distance between galaxies, we expect to see a bump in the distribution,
corresponding to the sound horizon (magnified by the expansion of the universe), what is
known as the Baryonic Acoustic Oscillations (BAO) peak.

In this process, DM and baryonic matter attract each other gravitationally to form the
galaxies we see today. We define the de Broglie wavelength of the field, as the typical
wavelength at which one can describe DM as a matter wave (see Section 5.2.3)

𝜆dB
DM =

2𝜋ℏ
𝑚DM𝑣DM

∼ 10−3
(

eV
𝑚DM𝑐2

)
m . (5.2)

This wavelength is associated to the momentum of the DM wave 𝑚DM𝑣DM = ℏ𝑘DM, where
𝑘DM is its wavenumber. Since DM allowed the formation of large scale structures, in particular
galaxies, we require the DM de Broglie wavelength to be at most of the typical size of dwarf
galaxies [34], corresponding to the primordial galaxies to form and which are roughly 1000
light years diameter long. This makes a lower bound on the DM mass to be 𝑚DM𝑐

2 ⪆ 10−22

eV [34].
There is no observational evidence for an higher bound on the DM mass candidate.

However, out of all the possible candidates, the most massive objects which could explain
DM would be primordial black holes (PBH) with maximum mass of about 102 solar masses
[35] (which is equivalent to ∼ 1035 g). This corresponds roughly to a mass of 1068 eV/c2, such
that, overall, the bounds on the mass of the DM candidates are

10−22 eV ≤ 𝑚DM𝑐
2 < 1068 eV . (5.3)

This means that the range of possible mass for the DM candidate covers 90 orders of magni-
tude, implying that its search constitutes an experimental challenge.

Multiple DM candidates exist, depending on the mass, and are summarized in Fig. 5.3.

5.2.1 Macroscopic mass scale

As stated previously, DM with very large mass, typically larger than 1016 g [35] (which
corresponds to ∼ 1050 eV/c2) would be constituted of PBH. This kind of black holes would
theoretically be generated by inflation [35].
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5.2.2 Particles mass scale

At lower mass, typically from 1 eV/𝑐2 to 1019 GeV/𝑐2 (which corresponds to the Planck
mass), DM would be made of fermionic particles. As shown in Fig. 5.3, several theoretical
models exist, such as sterile neutrinos, but the most studied ones are weakly interacting
massive particles (WIMPs), which arise in beyond the Standard Model scenarios. As their
name suggests, they are weakly interacting with SM particles and their mass is large, in
the GeV-TeV scale, therefore they can be detected in particle accelerators, such as at LHC.
Historically, WIMPs were thought to be the most promising DM candidates but lacking a
detection at LHC, other models arose, in particular with particles with lower mass.

5.2.3 Classical fields mass scale

In the 10−22 eV/c2 to 1 eV/𝑐2 mass range, we find DM candidates denoted as ultralight
dark matter (ULDM) candidates. At such low masses, by computing the number density,
i.e the average number of particles occupying a box with phase space volume (𝜆dB

DM)3 as
⟨𝑁⟩ = (𝜆dB/ℓ )3 where ℓ is the distance between particles, we find that

⟨𝑁⟩ = 𝜌DM(2𝜋ℏ𝑐2)3

(𝑚DM𝑐2)4𝑣3
DM
≃ 106

(
1eV

𝑚DM𝑐2

)4
, (5.4)

where we used the de Broglie wavelength of the field Eq. (5.2) and inserting DM parameters,
especially DM energy density in the Milky Way 𝜌DM = 0.4 GeV/cm3 [37] and galactic velocity
𝑣DM = 10−3 c. Eq. (5.4) means that for DM particles with masses lower than roughly 10 eV, the
average occupation number is much larger than 1, implying that the underlying particle is
necessarily a boson, due to the Pauli exclusion principle. For sub-eV masses, this occupation
number is so large, there is no need to study particles individually, and a standard classical
field theory is enough to describe the field.

An important requirement for the field to be a suitable DM candidate is that it behaves
as cold dark matter (CDM) at cosmological scales [38], i.e as pressureless matter (𝑃 ∼ 0) and
that its energy density redshiftes as 𝑎−3, with 𝑎 the cosmological scale factor. As we shall see
in Chapter 7, all ULDM models (i.e with mass between 10−22 to 1 eV.) fulfill this requirement
since the angular frequency of the field exceeds the Hubble constant today.

ULDM includes a large number of models, which depend on the nature of the field,
scalar, pseudo-scalar, vector and tensor, and each model has different couplings to SM fields,
leading to different observable phenomenology. As we shall see in Chapter 8, a various
number of ULDM models are studied in this thesis, namely scalar, pseudo-scalar and vector
fields, and their respective phenomenology is derived.

5.3 Ultralight dark matter intrinsic characteristics

In this section, we discuss some of the ULDM characteristics that are central for its detection.
In Table 5.1, we summarize the experimental values for those ULDM parameters.
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Table 5.1: ULDM intrinsic parameters

Parameters Symbol Numerical value Unit
Local energy density 𝜌DM 0.4 [37] GeV/cm3

Rest mass 𝑚DM [10−22 ; 1] eV/c2

Coherence time 𝜏( 𝑓DM) 106 𝑓 −1
DM s

DM mean velocity in heliocentric frame 𝑣DM 3 × 105 [39, 40] m/s
DM velocity dispersion 𝜎𝑣 1.5 × 105 [39] m/s

5.3.1 Rest mass
As it was mentioned in the last section, the mass of ULDM candidates is contained in

10−22 eV ≤ 𝑚DM𝑐
2 ⪅ 1 eV . (5.5)

5.3.2 Local energy density
Several methods exist to estimate the dark matter energy density, and this, at different
scales (e.g. galactic or local) [40]. Here, we are only interested in the DM energy density
in the vicinity of the Sun, as it is what experiments on Earth will be sensitive too. Such
density can be estimated by a parametric fit of the entire rotation curves of the galaxy (global
method) 𝜌DM(𝑟) as function of the distance 𝑟 to the galactic center. Recent determinations of
𝜌DM(𝑟 = 𝑟⊙) ≡ 𝜌DM points towards [40]

𝜌DM = 0.4 GeV/cm3 . (5.6)

Eq. (5.6) means that the total DM energy contained in a sphere of radius ∼ 30 astronomical
units (AU) (which corresponds approximately to the Sun-Neptune distance) is ∼ 10−13𝑀⊙.
This shows how DM is locally subdominant, and therefore, how its gravitational impact on
the orbit of the surrounding bodies is completely negligible [40].

5.3.3 Velocity distribution and coherence time
Galactic DM models assume that DM follows a spherical distribution around galaxies, mak-
ing the so-called DM halo, as explained in Section 5.1. During its formation, the DM halo
virialized, and therefore, acquired a non-zero velocity dispersion 𝜎𝑣 . More precisely, in
the heliocentric reference frame, we assume the galactic DM follows a Maxwellian velocity
distribution 𝔉(®𝑣) [41]

𝔉(®𝑣) = 1(
2𝜋𝜎2

𝑣

)3/2 𝑒
−(®𝑣−®𝑣⊙)

2

2𝜎2
𝑣 (5.7a)

where ®𝑣⊙ ≡ ®𝑣DM is the mean velocity of the Solar system in the galactic frame and 𝜎𝑣 is
the dispersion (virial) velocity. Eq. (5.7a) can be integrated over a full sphere to become a
distribution over the magnitude of the velocity, i.e [42]

𝔉(𝑣) =
√

2
𝜋

𝑣

𝜎𝑣𝑣DM
𝑒
−
𝑣2+𝑣2

DM
2𝜎2
𝑣 sinh

(
𝑣𝑣DM

𝜎2
𝑣

)
(5.7b)
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Since the DM frame moves compared to any laboratory frame on Earth with a velocity
following the distribution Eq. (5.7b), the DM field itself acquires a kinetic energy 𝐸𝑘 =

𝑚DM𝑣
2/2 in addition to its rest energy 𝐸 = 𝑚DM𝑐

2 such that the measured DM frequency
𝑓meas.
DM is in reality

𝑓meas.
DM (𝑣) = 𝑓DM

(
1 + 𝑣2

2𝑐2

)
, (5.8a)

where

𝑓DM =
𝑚DM𝑐

2

2𝜋ℏ , (5.8b)

is the intrinsic DM Compton frequency. In the following of this manuscript, when deriving
sensitivities of experiments to ULDM fields at a given frequency 𝑓DM, the kinetic energy
correction in Eq. (5.8a) will be neglected at leading order, such that we will consider the
observed DM frequency 𝑓meas

DM to be equal to the intrinsic DM frequency 𝑓DM.
Nonetheless, using Eqs. (5.7b) and (5.8a), we can now construct a frequency distribution

which reads [43]

𝔉( 𝑓meas.
DM ) =

√
2
𝜋

𝑐2

𝑓DM𝑣DM𝜎𝑣
𝑒

−𝑣2
DM+2𝑐2

(
1−

𝑓meas.
DM
𝑓DM

)
2𝜎2
𝑣 sinh ©«𝑣DM𝑐

𝜎2
𝑣

√
2
(
𝑓meas.
DM
𝑓DM

− 1
)ª®¬ . (5.9)

This equation essentially means that, a more rigorous modeling of galactic DM implies
that we cannot model the field as monochromatic : it is a stochastic sum of 𝑁 different fields
oscillating at different frequencies, which all follow the distribution Eq. (5.9) [44].

The frequency broadening Eq. (5.9) induces a characteristic coherence time of the field
𝜏(𝜔DM). For periods shorter than the coherence time, the field behaves as monochromatic
(i.e with only one amplitude and phase, but which are still stochastic), while for times longer
than the coherence time, the field is a superposition of plane waves with different frequencies.
One can compute the first (mean 𝜇 𝑓meas.

DM
) and second (standard deviation 𝛿 𝑓meas.

DM ) moments
of the frequency distribution by integration over its domain of definition ([ 𝑓DM,+∞[). They
are given by

𝜇 𝑓meas.
DM

= 𝑓DM

(
1 +

𝑣2
DM + 3𝜎2

𝑣

2𝑐2

)
≈ 𝑓DM (5.10a)

𝛿 𝑓meas.
DM =

𝑓DM

2𝑐2

√
𝑣4

DM + 10𝑣2
DM𝜎2

𝑣 + 15𝜎4
𝑣 (5.10b)

such that we can define the coherence time of the field as

𝜏( 𝑓DM) =
1

𝛿 𝑓meas.
DM

=
2𝑐2

𝑓DM

√
𝑣4

DM + 10𝑣2
DM𝜎2

𝑣 + 15𝜎4
𝑣

≈ 106

𝑓DM
, (5.11)

where we used 𝑣DM ∼ 2.33 × 105 m/s ≈ 10−3 𝑐 [39] and 𝜎𝑣 ∼ 𝑣DM/
√

2 ≈ 5 × 10−4 𝑐 [39]. Note
that for these calculations, we neglected the truncation of the velocity distribution Eq. (5.7a)
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Chapter 5 Dark matter

at the galactic escape velocity 𝑣esc ∼ 5.5 × 105 m/s as it was done in [39]. However, it can be
shown analytically that it would lead to a slight change in mean and standard deviation of
the frequency distribution (of less than 10%), i.e it will not alter significantly our estimates.

While, in the following of this manuscript, we will model DM as a single monochro-
matic field, and not as a superposition of fields oscillating at different frequencies following
Eq. (5.9), we will still take into account the coherence time of the field when deriving the
various sensitivities of experiments to DM, and we show here why. Let us assume a given
(linear) coupling 𝜁 between DM and any SM sector (electromagnetic, fermionic, etc..) which
induces a given signal 𝑠(𝑡) in our apparatus. Very generically, the signal searched for 𝑠(𝑡) is

𝑠(𝑡) = [𝑋𝑠] 𝜁 cos (2𝜋 𝑓DM𝑡 +Φ) , (5.12)

where we factorize the coupling 𝜁 from the rest of the amplitude of the signal [𝑋𝑠]. If the
total time of integration of the experiment 𝑇obs is much shorter than the coherence time, i.e
𝑇obs ≪ 𝜏( 𝑓DM), Eq. (5.12) is fully valid; i.e the signal is monochromatic, and the experiment
sensitivity on the coupling at frequency 𝑓DM is simply

𝜁( 𝑓DM) =
1
[𝑋𝑠]

√
𝑆𝑠( 𝑓DM)
𝑇obs

≡
√

SNR
[𝑋𝑠]

√
𝑆𝑛( 𝑓DM)
𝑇obs

, (5.13a)

where 𝑆𝑠 , 𝑆𝑛 are respectively the signal and noise power spectral densities (PSD) of the
experiment and the SNR (signal-to-noise ratio) is defined as the ratio of signal to noise PSD,
i.e 𝑆𝑠/𝑆𝑛 . The SNR is used an an estimator of the signal strength, and it is useful in data
analysis because it fixes a detection threshold in frequency domain, for possible discovery of
new physics, compared to statistical anomaly.

Note that in this regime, where 𝑇obs ≪ 𝜏( 𝑓DM), a correction factor to the sensitivity arises
due to the stochastic nature of the amplitude of the field [45]. In our case where we will
always consider a 68% detection threshold (i.e. SNR = 1), this correction factor induces a loss
in signal of ∼ 1.51.

On the other hand, when the integration time is much longer than the coherence time
of the field, i.e 𝑇obs ≫ 𝜏( 𝑓DM), this means that the signal searched for and parameterized
by Eq. (5.12) is no longer coherent, i.e. it should be modeled as a sum of several stochastic
harmonics, as we discussed it before. Another method to analyse the data is to cut the dataset
in fragments with duration smaller than 𝜏( 𝑓DM) and search for a coherent signal in each of
these blocks of data. In such a case, the experimental sensitivity to the coupling is reduced
and becomes [46]

𝜁( 𝑓DM) =
√

SNR
[𝑋𝑠]

√
𝑆𝑛( 𝑓DM)√
𝑇obs𝜏( 𝑓DM)

. (5.13b)

1As it is pointed out in [45], this correction factor depends on the nature of the signal, i.e if the apparatus
couples to the field itself or e.g. to its gradient. However, we will neglect this subtlety, because for gradient
coupling, the exact value of this correction factor highly depends on how the sensitive axis of the experiment
evolves with time, and therefore it must be calculated case by case [45].
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Chapter 6

Alternatives to dark matter

As we saw in Section 5.1, the various indicators of DM arise by using GR as our theory of
gravitation and Newtonian mechanics as its small velocity and weak field limit. Another
possibility to overcome the DM problem would be somehow to modify those theories of
gravitation, to match again theory with observations. The most famous alternative theory to
Newton’s second law is MOND (MOdified Newtonian Dynamics) introduced by Milgrom
in 1983 [47]. The main idea of MOND is to explain the galaxy rotation curves by introducing
an universal acceleration 𝑎0 ∼ 10−10 m/𝑠2 [47] in order to avoid smaller acceleration for stars
very far away from center of galaxies. For a body of mass m, Newton’s second law then
becomes

𝐹 = 𝑚𝜇

(
𝑔

𝑎0

)
𝑔 , (6.1a)

where 𝑔 is the gravitational field and 𝜇(𝑥) is an asymptotic function that tends to 1 for 𝑥 ≫ 1
and to 𝑥when 𝑥 ≪ 1. Therefore, in extreme weak acceleration environment such that 𝑔 ≪ 𝑎0,
Eq. (6.1a) becomes

𝐹 = 𝑚
𝑔2

𝑎0
. (6.1b)

A relativistic version of the MOND paradigm called TeVeS for Tensor-Vector-Scalar gravity
was developed in 2004 by Bekenstein [48].

While the MOND theory and its extensions suffered for a long time to explain various
phenomena, in particular in cluster of galaxies [49], and therefore would still require DM,
recent studies (see e.g. [50–52]) were able to solve these problems. Nonetheless, in this thesis,
we will be interested in solutions for dark matter involving new particles, and not through
modified gravity.
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Chapter 7

Cosmological evolution

7.1 Action

In this section, we will show how a light bosonic field can act as CDM at cosmological scales.
In the following of this manuscript, we will be interested in several types of light fields : a
scalar field 𝜙, a pseudo-scalar field 𝑎 and a vector field 𝜙𝜇.

The dynamics of such fields are encoded in their action which we define as

𝑆𝜙 =
1
𝑐

∫
𝑑4𝑥
√−𝑔

[
𝑅

2𝜅 −
1

2𝜅 𝑔
𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 −

𝑉(𝜙)
2𝜅 + ℒSM[Ψ𝑖] + ℒint[Ψ𝑖 , 𝜙]

]
(7.1a)

𝑆𝑎 =
1
𝑐

∫
𝑑4𝑥
√−𝑔

[
𝑅

2𝜅 −
1

2𝜅 𝑔
𝜇𝜈𝜕𝜇𝑎𝜕𝜈𝑎 −

𝑉(𝑎)
2𝜅 + ℒSM[Ψ𝑖] + ℒint[Ψ𝑖 , 𝑎]

]
(7.1b)

𝑆𝜙𝜇 =
1
𝑐

∫
𝑑4𝑥
√−𝑔

[
𝑅

2𝜅 −
1

4𝜇0
𝑔𝜇𝜈𝑔𝛼𝛽𝜙𝜇𝛼𝜙𝜈𝛽 −

𝑉(𝜙𝜇)
2𝜇0

+ ℒSM[Ψ𝑖] + ℒint[Ψ𝑖 , 𝜙
𝜇]

]
(7.1c)

for the scalar, pseudo-scalar and vector fields, where 𝜅 = 8𝜋𝐺/𝑐4 is the Einstein gravitational
constant, 𝜇0 is the vacuum permeability, 𝑔 = det(𝑔𝜇𝜈) and 𝜙𝜇𝜈 = 𝜕𝜇𝜙𝜈 − 𝜕𝜈𝜙𝜇 is the 𝜙𝜇 field
strength tensor. We choose a convention where the scalar 𝜙 and pseudo scalar 𝑎 fields are
dimensionless, while the vector field 𝜙𝜇 has units of V.s/m, as the usual EM potential. In
each expression, the first three terms represent the gravitational action which contains GR
(through the Ricci scalar 𝑅) in addition to the kinetic and potential energy of the new field,
while the last term represents the coupling of the new field with existing SM fields. In this
section, we will focus on the former while the latter will be considered further away as it is
responsible for the possible observed phenomenology for direct DM detection.

In Eq. (7.1), we choose a convention on the scalar field normalization factor in front of the
kinetic and potential terms, such that it matches the 1/4 normalization of the vector kinetic
term1. Other conventions exist with a different normalization factor, e.g in [1], which can be
recovered by a simple redefinition of the field 𝜙→

√
2𝜙.

In general, the potential for the various fields is a polynomial expansion of the field.

1For those respective normalization factors, one can show that integrating by parts the vector field La-
grangian leads to a term 𝜕𝜇𝜙𝜈𝜕𝜇𝜙𝜈/2, which is similar to the scalar field kinetic term.
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Chapter 7 Cosmological evolution

Without loss of generality, considering a scalar field 𝜙, it has the form

𝑉(𝜙) =
𝑚2

𝜙𝑐
2

ℏ2 𝜙2 + 𝜇𝜙3 + 𝜆𝜙4 + ... (7.2)

where the first term is the mass term with 𝑚𝜙 the mass of the field. The second and third
terms represent respectively cubic and quartic self interaction of the field with strength 𝜇,𝜆,
in units of [𝐿−2]. Higher order self interactions are not represented.

In all models of interest in this manuscript, self interactions will not be considered, such
that the potential of the field reduces to the mass term, with mass 𝑚𝜙 , 𝑚𝑎 , 𝑚𝑈 respectively
for the scalar, pseudo-scalar and vector fields. Therefore, the GR action is invariant under
{𝜙, 𝑎, 𝜙𝜇} → {−𝜙,−𝑎,−𝜙𝜇} parity transformation, such that both scalar and pseudo-scalar
fields have the exact same dynamics at the GR level (i.e neglecting their respective interactions
with SM fields). In addition, each vector field spatial component 𝜙𝑖 (which are the only
relevant degrees of freedom2) can be described by a scalar field𝜙𝑈 , which obeys the following
action

𝑆Grav.
𝜙𝑈

=
1
𝑐

∫
𝑑4𝑥
√−𝑔

[
− 1

2𝜇0
𝑔𝜇𝜈𝜕𝜇𝜙𝑈𝜕𝜈𝜙𝑈 −

𝑚2
𝑈
𝑐2

2𝜇0ℏ2 𝜙
2
𝑈

]
(7.3)

in the Coulomb gauge, up to a total derivative, and neglecting GR for practical purposes.
Eq. (7.3) has a very similar form of the action of a pure scalar field 𝜙, described in Eq. (7.1a)
(up to a constant due to the difference in units between scalar and vector fields). Therefore,
we will only derive the cosmological evolution of a pure scalar field, whose result will be
easily extended to pseudo-scalar and vector fields.

7.2 Klein Gordon equation in an expanding Universe
Let us first discuss scalar fields. As noted in the end of the last section, neglecting their
respective interactions with SM fields, both scalar and pseudo-scalar fields have the same
dynamics, such that we will only make the calculations in the case of a pure scalar field 𝜙.
From Eq. (7.1), the Lagrangian describing the kinetic and potential energies of the new scalar
field is

ℒ𝜙 = −
√−𝑔
2𝜅

(
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 +

𝑚2
𝜙𝑐

2

ℏ2 𝜙2

)
(7.4)

We represent the universe as flat, homogeneous and isotropic and described using the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric defined as

𝑔𝜇𝜈 = diag
(
−1, 𝑎2(𝑡), 𝑎2(𝑡), 𝑎2(𝑡)

)
(7.5)

2Solving the equations of motion for the vector field, one can show that there is no ¥𝜙0 term, therefore the
temporal component of the field is non dynamical. This naturally yields that its three degrees of freedom (the
mass and the two polarization states) can be described by its spatial components only.
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Chapter 7 Cosmological evolution

with 𝑎 the scale factor, such that √−𝑔 = 𝑎3(𝑡). Using the Euler-Lagrange equation, we obtain
the equation of motion of the field 𝜙

𝜕𝜇
(
−𝑎3(𝑡)𝜕𝜇𝜙

)
+
𝑚2

𝜙𝑐
2

ℏ2 𝑎3(𝑡)𝜙 = 0 (7.6a)

⇒ □𝜙 − 3𝐻(𝑡)
𝑐2
¤𝜙 −

𝑚2
𝜙𝑐

2

ℏ2 𝜙 = 0 (7.6b)

where□ = 𝜂𝜇𝜈𝜕𝜇𝜕𝜈 is the d’Alembertian operator, with 𝜂𝜇𝜈 = diag(−1, 1, 1, 1), the Minkowski
metric, the dot represents derivative with respect to time and where we defined 𝐻(𝑡) =
¤𝑎(𝑡)/𝑎(𝑡), the Hubble constant. As it can be seen from Eq. (7.6b), the unit of the field does not
impact the equation of motion, since it is a linear differential equation. Therefore, the vector
field will follow the exact same Klein-Gordon equation, despite its different unit.

Eq. (7.6b) describes a damped harmonic oscillator. At early times of the universe, when
𝐻 ≫ 𝑚𝜙𝑐

2/ℏ, the solution of this equation is a constant 𝜙 → 𝜙0, i.e the field is frozen at 𝜙0
and behaves effectively as massless with a flat potential. As soon as𝐻 ∼ 𝑚𝜙𝑐

2/ℏ, the potential
of the field gets curved by the mass, and as long as 𝜙0 does not exactly correspond to the
local minimum of the potential, the field rolls down the potential and gets massive. When
𝐻 ≪ 𝑚𝜙𝑐

2/ℏ, such that we can neglect the field friction, the solution of the Klein-Gordon
equation is an oscillating solution of the form

𝜙(𝑡 , ®𝑥) = 𝜙0 cos(𝜔𝜙𝑡 − ®𝑘𝜙 · ®𝑥 +Φ) (7.7a)
where 𝜙0,Φ are respectively the amplitude of oscillation and a phase and where

| ®𝑘𝜙 | =
√
𝜔2

𝜙/𝑐2 − 𝑚2
𝜙𝑐

2/ℏ2 (7.7b)

is the wavevector of the field. A vector field will oscillate in the exact same manner, but with
a vectorial amplitude, i.e

𝜙𝜇(𝑡 , ®𝑥) = 𝑌𝜇 cos(𝜔𝑈 𝑡 − ®𝑘𝑈 · ®𝑥 +Φ) (7.8)
This generation of field oscillation, with non-zero amplitude, which as we shall see in the
next section leads to a non-zero energy density for the field, is more commonly known as the
misalignment mechanism. Indeed, if by any chance, 𝜙0 corresponded to the exact potential
minimum, the field would not oscillate, and as a consequence would still be effectively
massless.

In the following of this manuscript, we require the field to oscillate, such that the necessary
condition 𝐻 ≪ 𝑚𝜙𝑐

2/ℏ equates to

𝑚𝜙 ≫ 10−33 eV/c2 (7.9)

with the current value of the Hubble constant 𝐻0 ∼ 10−18 s−1. Note that this condition is
looser than the bound of DM mass from observations Eq. (5.3).

7.3 Oscillating field as cold dark matter
We now focus on the energy density and pressure of such fields, and we show that they
behave at cosmological scale as cold dark matter, i.e pressureless matter with equation of
state 𝜔 = 𝑃/𝜌 ∼ 0.
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Chapter 7 Cosmological evolution

7.3.1 Scalar field
Still neglecting interaction, the stress-energy tensor of the scalar field 𝑇𝜇𝜈 can be defined
from the field Lagrangian Eq. (7.4), as

𝑇𝜇𝜈 =
2√−𝑔

𝛿(√−𝑔ℒ𝜙)
𝛿𝑔𝜇𝜈

(7.10a)

=
1√−𝑔𝜅𝛿𝑔𝜇𝜈

(
𝛿(√−𝑔)

(
−𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 −

𝑚2
𝜙𝑐

2

ℏ2 𝜙2

)
+ √−𝑔

(
−𝛿𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙

))
(7.10b)

where we only vary the metric parameters. Using Jacobi’s formula, we have

𝛿
√−𝑔 =

1
2
√−𝑔𝑔𝜇𝜈𝛿𝑔𝜇𝜈 (7.11a)

𝛿𝑔𝜇𝜈 = −𝑔𝜇𝛼𝑔𝜈𝛽𝛿𝑔𝛼𝛽 (7.11b)

which simplifies the stress-energy tensor expression to

𝑇𝜇𝜈 =

−𝑔𝜇𝜈
(

1
2𝜕𝛼𝜙𝜕

𝛼𝜙 +
𝑚2

𝜙𝑐
2

2ℏ2 𝜙2
)
+ 𝜕𝜇𝜙𝜕𝜈𝜙

𝜅
(7.12)

For simplicity, we assume the field behaves as a perfect fluid at cosmological scales, such
that its stress-energy tensor has the form

𝑇𝜇𝜈 =

(
𝜌 + 𝑃

𝑐2

)
𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 (7.13)

where 𝑃, 𝜌 are respectively the pressure and energy density of the fluid and 𝑢𝜇 its 4-velocity.
By identification with Eq. (7.12), we find the average pressure over several field oscillations
to be

⟨𝑃⟩ = − 1
𝜅

〈
1
2𝜕𝛼𝜙𝜕

𝛼𝜙 +
𝑚2

𝜙𝑐
2

2ℏ2 𝜙2

〉
≡ 0 (7.14a)

while the average energy density is defined as the 00 component of the stress-energy tensor,
i.e

⟨𝜌⟩ = ⟨𝑇00⟩ =
1
𝜅

〈
1
2𝜕𝛼𝜙𝜕

𝛼𝜙 +
𝑚2

𝜙𝑐
2

2ℏ2 𝜙2 +
(

1
𝑐

𝜕𝜙

𝜕𝑡

)2
〉
≡

𝜔2
𝜙𝜙

2
0

2𝜅𝑐2 (7.14b)

where we used Eqs.(7.7a), (7.7b), and ⟨𝐴 + 𝐵 cos(2𝜔𝑡 + Φ)⟩ = 𝐴. The observed equation of
state of the field is defined as

⟨𝑃⟩
⟨𝜌⟩ = 0 , (7.15)
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Therefore, the scalar field behaves cosmologically as a pressureless fluid, i.e cold dark matter
with energy density

⟨𝜌⟩ =
𝜔2

𝜙𝜙
2
0

2𝜅𝑐2 ≡ 𝜌DM (7.16)

where 𝜌DM is the local DM energy density, such that we define the amplitude of oscillation
of all scalar ULDM candidates to be

𝜙0 =

√
16𝜋𝐺𝜌DM

𝜔𝜙𝑐
(7.17)

In conventions where the scalar field Lagrangian Eq. (7.4) is multiplied by 2 compared to
ours (e.g in [1], with the redefinition of the field 𝜙→

√
2𝜙), the associated amplitude of the

scalar field is 𝜙0 =
√

8𝜋𝐺𝜌DM/𝜔𝜙𝑐. We shall see in Chapter 8 that the observables of interest
remain unchanged, as these fields redefinitions are unphysical, as expected.

7.3.2 Vector field
From Eq. (7.1c), we can define the vector field Lagrangian as

ℒ𝜙𝜇 = − √−𝑔
(

1
4𝜇0

𝑔𝜇𝜈𝑔𝛼𝛽𝜙𝜇𝛼𝜙𝜈𝛽 −
𝑚2
𝑈
𝑐2

2𝜇0ℏ2 𝑔
𝜇𝜈𝜙𝜇𝜙𝜈

)
, (7.18)

The vector field equation reads

𝜕𝜇𝜙
𝜇𝜈 −

𝑚2
𝑈
𝑐2

ℏ2 𝜙𝜈 = 0 , (7.19a)

where we assumed an expanding Universe, with𝐻 ≪ 𝑚𝑈 𝑐
2/ℏ, such that the Hubble constant

is neglected. Taking the divergence of Eq. (7.19a) and using the antisymmetric property of
𝜙𝜇𝜈, we find the continuity equation of 𝜙𝜇 i.e

𝜕𝜇𝜙
𝜇 = 0 . (7.19b)

While a similar equation can be found in electromagnetism by choosing the Lorenz gauge,
Eq. (7.19b) is genuinely a field equation, which means that we are still free to choose a gauge.
As in the scalar field case, the stress-energy tensor of the vector field is defined as

𝑇𝜇𝜈 =
2√−𝑔

𝛿(√−𝑔ℒ𝜙𝜇)
𝛿𝑔𝜇𝜈

=

−𝑔𝜇𝜈
(

1
4𝜙𝛼𝛽𝜙𝛼𝛽 + 𝑚2

𝑈
𝑐2

2ℏ2 𝜙𝛼𝜙𝛼
)
+ 𝜙𝛼𝜇𝜙 𝜈

𝛼 +
𝑚2
𝑈
𝑐2

ℏ2 𝜙𝜇𝜙𝜈

𝜇0
, (7.20)

where we used again the antisymmetricity property of 𝜙𝜇𝜈. We now assume an equivalent
form of the plane wave solution Eq. (7.8), 𝜙𝜇 = 𝑌𝜇ℛ[𝑒 𝑖𝑘𝜇𝑥𝜇] (forgetting about the irrelevant
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phase), such that each field term of Eq. (7.20) can be written as

𝜙𝛼𝛽𝜙
𝛼𝛽 = 2

[(
𝑖𝑘𝛼𝑌𝛽ℛ[𝑒 𝑖𝑘𝑎𝑥

𝑎 ]
) (
𝑖𝑘𝛼𝑌𝛽ℛ[𝑒 𝑖𝑘𝑎𝑥𝑎 ]

)
−

(
𝑖𝑘𝛽𝑌𝛼ℛ[𝑒 𝑖𝑘𝑎𝑥

𝑎 ]
) (
𝑖𝑘𝛼𝑌𝛽ℛ[𝑒 𝑖𝑘𝑎𝑥𝑎 ]

)]
(7.21a)

𝜙𝛼𝜙
𝛼 =

(
𝑌𝛼ℛ[𝑒 𝑖𝑘𝑎𝑥

𝑎 ]
) (
𝑌𝛼ℛ[𝑒 𝑖𝑘𝑎𝑥𝑎 ]

)
(7.21b)

𝜙𝛼𝜇𝜙 𝜈
𝛼 =

(
𝑖𝑘𝛼𝑌𝜇ℛ[𝑒 𝑖𝑘𝑎𝑥𝑎 ] − 𝑖𝑘𝜇𝑌𝛼ℛ[𝑒 𝑖𝑘𝑎𝑥𝑎 ]

) (
𝑖𝑘𝛼𝑌

𝜈ℛ[𝑒 𝑖𝑘𝑎𝑥𝑎 ] − 𝑖𝑘𝜈𝑌𝛼ℛ[𝑒 𝑖𝑘𝑎𝑥
𝑎 ]
)

(7.21c)

𝜙𝜇𝜙𝜈 =

(
𝑌𝜇ℛ[𝑒 𝑖𝑘𝑎𝑥𝑎 ]

) (
𝑌𝜈ℛ[𝑒 𝑖𝑘𝑎𝑥𝑎 ]

)
. (7.21d)

Considering

⟨ℛ[𝑎𝜇𝑒 𝑖𝑘𝑎𝑥𝑎 ]ℛ[𝑏𝜈𝑒 𝑖𝑘𝑎𝑥𝑎 ]⟩ = 1
2ℛ[𝑎

𝜇𝑏𝜈∗ ] (7.22)

where the star denotes the complex conjugate, the average over several oscillations of the
stress-energy tensor of the vector field can be written as

⟨𝑇𝜇𝜈⟩ =
−𝑔𝜇𝜈

(
1
4 𝑘𝛼𝑘

𝛼𝑌𝛽𝑌
𝛽 + 𝑚2

𝑈
𝑐2

4ℏ2 𝑌𝛼𝑌
𝛼
)
+ 1

2 𝑘𝛼𝑘
𝛼𝑌𝜇𝑌𝜈 + 1

2 𝑘
𝜇𝑘𝜈𝑌𝛼𝑌

𝛼 + 𝑚2
𝑈
𝑐2

2ℏ2 𝑌
𝜇𝑌𝜈

𝜇0
(7.23)

where we used 𝑘𝜇𝑌
𝜇 = 0 from Eq. (7.19b). Using the same identification with perfect fluid

as before, we find that the average pressure is

⟨𝑃⟩ = − 1
𝜇0

〈
1
4 𝑘𝛼𝑘

𝛼𝑌𝛽𝑌
𝛽 +

𝑚2
𝑈
𝑐2

4ℏ2 𝑌𝛼𝑌
𝛼

〉
≡ 0 (7.24a)

since 𝑘𝜇𝑘𝜇 = −(𝜔𝑈/𝑐)2 + |®𝑘𝑈 |2 and using Eq. (7.7b). The average energy density is

⟨𝜌⟩ = 1
𝜇0

〈
1
4 𝑘𝛼𝑘

𝛼𝑌𝛽𝑌
𝛽 +

𝑚2
𝑈
𝑐2

4ℏ2 𝑌𝛼𝑌
𝛼 + 1

2 𝑘𝛼𝑘
𝛼(𝑌0)2 +

1
2

(𝜔𝑈
𝑐

)2
𝑌𝛼𝑌

𝛼 +
𝑚2
𝑈
𝑐2

2ℏ2 (𝑌0)2
〉

≡
𝜔2
𝑈

2𝜇0𝑐2𝑌𝛼𝑌
𝛼 . (7.24b)

Then, the amplitude of the total vector field is simply

𝑌𝛼𝑌
𝛼 =

2𝜇0𝜌DM𝑐
2

𝜔2
𝑈

. (7.25a)

Due to the small galactic velocity in the DM halo, the temporal contribution of the dot
product in the previous equation can be neglected. Indeed, parametrizing𝑌𝜇 = (𝜙/𝑐, ®𝑌), we
have

𝑌𝛼𝑌
𝛼 = −

(
𝜙

𝑐

)2
+ | ®𝑌 |2 = −

(
𝑐

𝜔𝑈

)2 (
®𝑘𝑈 · ®𝑌

)2
+ | ®𝑌 |2 =

𝑣2
DM
𝑐2

(
𝑒𝑣 · ®𝑌

)2
+ | ®𝑌 |2 ≈ | ®𝑌 |2 , (7.25b)
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where we used the continuity equation 𝑘𝜇𝑌
𝜇 = 0 to set 𝜙/𝑐 = (®𝑘𝑈 · ®𝑌)𝑐/𝜔𝑈 and ®𝑘𝑈 =

−𝜔𝑈®𝑣DM/𝑐2 = −𝜔𝑈𝑣DM𝑒𝑣/𝑐2. This implies

| ®𝑌 | =
√

2𝜇0𝜌DM𝑐

𝜔𝑈
. (7.26)

Eq. (7.26) is a good approximation for experiments where the propagation of the field is
negligible, since we assume ®𝑘𝑈 = 0, such that 𝑌0 = 0 (from 𝑘𝜇𝑌

𝜇 = 0). Note that Eqs. (7.17)
and (7.26) are related by the change 𝜇0 → 𝜅, as expected from the respective Lagrangian
densities.

7.4 Expressing the dark matter field in various reference frames

7.4.1 Galactic frame
In the galactic frame, which is assumed to be the local DM rest frame3, the expression of the
(scalar) field Eq. (7.7a) reduces to

𝜙 = 𝜙0 cos(𝜔𝜙𝑡 +Φ) (7.27)

with ℏ𝜔𝜙 = 𝑚𝜙𝑐
2, since | ®𝑘𝜙 | = 0 on average in this frame. However, for experiments lasting

longer than the typical coherence time of the field Eq. (5.11), one must take into account
the velocity distribution introduced in Eq. (5.7a). In this case, the mean velocity of the
distribution is 𝑣⊙ → 𝑣RF

DM = 0, while the frequency dispersion is given by Eq. (5.10b) (with
𝑣DM = 0) 𝛿 𝑓 RF

𝜙 ∼ 5 × 10−7 𝑓𝜙.
The form of the field Eq. (7.27) will be used in our study of atom interferometry probes

of ULDM in Chapter (13). As mentioned previously, we will neglect the frequency broad-
ening due to the velocity distribution Eq. (5.7a), such that we will consider DM as a pure
monochromatic field.

7.4.2 Laboratory frame
Eq. (7.7a) is the exact solution of the ULDM field in any other reference frame, in particular
laboratory frames on Earth. In such cases, the field is propagating with velocity |®𝑣DM | ∼ 10−3𝑐
(see Table 5.1, and neglecting the Earth velocity around the Sun, |®𝑣Earth | ∼ 3×104 m/s, which
averages to 0 over the year.).

We would like to know if it is still possible to neglect the propagation term ®𝑘𝜙 · ®𝑥 for the
sensitivity estimates of the various experiments under consideration in the following of this
thesis. To answer this question, the first point is to know whether the experiment couples
to the field itself or to its gradient. In the latter case, it is clear that the full form of the field
Eq. (7.7a) must be used, otherwise its gradient becomes 0.

In the former case, in order to neglect the propagation, and therefore considering the
field as a pure standing wave, the main requirement is that the de Broglie wavelength of the

3Note that we can find a rest frame of DM because the field is massive, as opposed to the electromagnetic
field.
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field 𝜆dB
DM must be much larger than the length scale of the experiment ℓexp, i.e, in terms of

DM mass

ℓexp ≪ 10−3
(

1 eV
𝑚𝜙𝑐2

)
m . (7.28)

As we shall see in the corresponding chapters, this requirement is fulfilled for the experiments
detailed in Chapters 9, 10, 11 and 12, therefore we will assume the field to be homogeneous
over the full size of experiment with the form

𝜙 = 𝜙0 cos(𝜔𝜙𝑡 +Φ) (7.29a)

with

𝜔𝜙 =

√���®𝑘𝜙���2 𝑐2 +
𝑚2

𝜙𝑐
4

ℏ2 =
𝑚𝜙𝑐

2

ℏ

√
1 +

(𝑣DM
𝑐

)2
≈
𝑚𝜙𝑐

2

ℏ
(7.29b)

where we used
���®𝑘𝜙��� = 2𝜋/𝜆dB

DM and where we neglected the (𝑣DM/𝑐)2 ∼ 10−6 correction. One
can easily notice that this form is equivalent (up to (𝑣DM/𝑐)2 corrections) to the one in the
galactic frame Eq. (7.27).

In Chapter 15, we will be interested in the direct detection of ULDM fields by a space-
based experiment, LISA, which couples to the gradient of the field. and therefore, we will
consider the exact form of the field Eq. (7.7a).
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Chapter 8

Couplings to Standard Model fields

8.1 Scalar field

8.1.1 Theoretical motivations
A scalar particle is the simplest model of ULDM. Light scalar fields appear in various
theoretical models, such as dilaton and moduli fields in string theory [2], or the relaxion field
to understand the electroweak hierarchy problem, i.e the large energy difference between
the electroweak scale (set by the Higgs field vacuum expectation value 𝑣 ∼ 246 GeV) and
the gravity scale (set by the Planck mass 𝑀𝑃𝑐

2 ∼ 1019 GeV) [3]. As we shall see in the
following, a coupling between such scalar field with SM fields naturally leads to violation of
the equivalence principle, which is expected to happen at some scale, as discussed in Section
3.4.

8.1.2 Rest mass and transition frequency oscillations
We define the linear interaction Lagrangian of a dimensionless scalar field 𝜙 appearing in
Eq. (7.1a) as [1]

ℒint =
𝜙
√

2

(
𝑑𝑒

4𝜇0
𝐹𝜇𝜈𝐹

𝜇𝜈 −
𝑑𝑔𝛽3

2𝑔3
𝐺𝑎

𝜇𝜈𝐺
𝑎𝜇𝜈 −

∑
𝑖=𝑒 ,𝑢,𝑑

(𝑑𝑚𝑖 + 𝛾𝑚𝑖𝑑𝑔)𝑚𝑖�̄�𝑖𝜓𝑖

)
, (8.1)

where as stated previously, our convention in the scalar field normalization implies an
additional 1/

√
2 factor compared to [1, 4]. 𝐹𝜇𝜈 , 𝐺𝑎𝜇𝜈 represent the electromagnetic and

gluonic strength tensors respectively, 𝜇0 is the vacuum magnetic permeability, 𝑔3, 𝛽3 are the
dimensionless QCD coupling constant and QCD beta function for the running of 𝑔3, 𝑚𝑖

the mass of the fermions fields in units of energy, with spinors 𝜓𝑖 and 𝛾𝑚𝑖 the anomalous
dimension giving the energy running of the masses of the QCD coupled fermions. The 𝑑𝑖
represent the dimensionless coupling constants between the scalar dilaton and the different
matter fields.

Since the energy scale we are interested in is very low (compared to second generation
leptons’ masses), this low energy effective Lagrangian involves only the low mass fermions,
i.e the electron, up and down quarks, as can be noticed in the last term in Eq. (8.1).

These interactions between the SM particles and the dilaton lead to variation of several
fundamental constants of Nature in SM, namely the QCD energy scale ΛQCD, the EM fine
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Chapter 8 Couplings to Standard Model fields

structure constant 𝛼, the electron mass 𝑚𝑒 and the light quark masses 𝑚𝑖 , with 𝑖 = {𝑢, 𝑑}.
Specifically, assuming the usual EM kinetic term in addition to the coupling of the dilaton to
the EM sector (which is the first term of Eq. (8.1)), one has

ℒ ⊃ − 1
4𝜇0

(
1 −

𝑑𝑒𝜙√
2

)
𝐹𝜇𝜈𝐹

𝜇𝜈 ≈ − 1
4𝜇0(1 + 𝑑𝑒𝜙√

2
)
𝐹𝜇𝜈𝐹

𝜇𝜈 , (8.2)

where we used the Taylor expansion of the term in brackets as 𝑑𝑒𝜙 ≪ 1. Since 𝜇0 ∝ 𝛼, this
Lagrangian leads to a small dependency of the fine structure constant on the scalar field as

𝛼(𝜙) =
(
1 +

𝑑𝑒𝜙√
2

)
𝛼 , (8.3a)

where 𝛼 is the bare value of the fine structure constant, i.e without the dilaton-EM coupling.
The other constants of Nature evolve as [4]

Λ3(𝜙) =
(
1 +

𝑑𝑔𝜙√
2

)
Λ3 , (8.3b)

𝑚𝑒(𝜙) =
(
1 +

𝑑𝑚𝑒𝜙√
2

)
𝑚𝑒 , (8.3c)

𝑚𝑖(ΛQCD)(𝜙) =
(
1 +

𝑑𝑚𝑖𝜙√
2

)
𝑚𝑖(ΛQCD) . (8.3d)

If one of these couplings is non-zero, the corresponding variable would not be constant at
two different spacetime positions where the field 𝜙 takes different values, hence the violation
of the local position invariance, or more generally of the equivalence principle. Following
the work of [4], we introduce the mean light quark mass �̂� = (𝑚𝑢 +𝑚𝑑)/2 and the difference
of light quark masses 𝛿𝑚 = 𝑚𝑑 − 𝑚𝑢 . Following Eq. (8.3), the numerical value of these new
parameters will change as

�̂�(𝜙) =
(
1 +

𝑑�̂�𝜙√
2

)
�̂� , (8.3e)

𝛿𝑚(𝜙) =
(
1 +

𝑑𝛿𝑚𝜙√
2

)
𝛿𝑚 , (8.3f)

with

𝑑�̂� =
𝑚𝑢𝑑𝑚𝑢 + 𝑚𝑑𝑑𝑚𝑑

𝑚𝑢 + 𝑚𝑑
, (8.3g)

𝑑𝛿𝑚 =
𝑚𝑑𝑑𝑚𝑑

− 𝑚𝑢𝑑𝑚𝑢

𝑚𝑑 − 𝑚𝑢
. (8.3h)

Following [4], we can define dimensionless dilatonic mass and frequency charges for the
atom A respectively given by

[𝑄𝐴
𝑀]𝑑 =

𝜕 ln𝑚𝐴(𝜙)
𝜕𝜙

(
≡ 𝛼𝐴/

√
2
)
, (8.4a)

[𝑄𝐴
𝜔]𝑑 =

𝜕 ln 𝜔𝐴(𝜙)
𝜕𝜙

, (8.4b)
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Atomic 𝑄𝑀,𝑒 𝑄𝑀,𝑚𝑒 𝑄𝑀,�̂� 𝑄𝑀,𝛿𝑚 𝑄𝜔,𝑒 𝑄𝜔,�̂� 𝑄𝜔,𝛿𝑚

[×10−3] [×10−3] [×10−3] [×10−3] [×10−3] [×10−3]
195Pt [5] 4.278 0.220 85.25 0.340 − − −
48Ti [5] 2.282 0.253 82.58 0.138 − − −

87Rb 2.869 0.234 83.95 0.254 2.34 [6] -67 [6] -17.3 [6]
85Rb 2.961 0.239 83.98 0.220 − − −
40Ca 2.409 0.275 82.08 0 2.02 [7] 0.0007 0
44Ca 2.116 0.250 82.29 0.155 2.02 0.00065 𝒪(10−7)
86Sr 3.074 0.243 84.06 0.198 2.06 0.00030 𝒪(10−7)
87Sr 3.027 0.240 84.05 0.215 2.06 [8] 0.00030 𝒪(10−7)
88Sr 2.980 0.238 84.03 0.232 2.06 0.00030 𝒪(10−7)

171Yb 4.114 0.225 85.14 0.308 2.31 [9] 0.00015 𝒪(10−7)
176Yb 3.957 0.219 85.05 0.348 2.31 0.00020 𝒪(10−7)
196Hg 4.469 0.224 85.35 0.312 2.81 [7] 0.00013 𝒪(10−7)
202Hg 4.291 0.218 85.25 0.353 2.81 0.00010 𝒪(10−7)
SiO2 1.607 0.275 79.62 0.003 − − −

73%Au-27%Pt 2.204 0.432 85.27 0.337 − − −

Table 8.1: Dilatonic charges for some species of atoms. The transition is hyperfine for 87Rb
and optical for the rest. The charges are derived from Eqs. (8.4a), (8.8) and (8.9). The value
of 𝑄𝜔,𝑚𝑒 is universal for all atomic transitions, see Eqs. (8.8) and (8.9), so it is not provided.
As we shall see in Chapter 13 and Chapter 15, we will not consider the atomic transition of
195Pt, 48Ti, 87Rb, Au-Pt and SiO2, reason why their frequency charges are not provided.

which encode the spacetime variation of the mass and of the transition frequency of the
atom A. In Eq. (8.4a), we show in parenthesis the relation between our definition of the mass
charge with the previously defined coupling function in [1, 4]. In a general frame (i.e where
the gradient of the DM field is not neglected), using Eqs. (7.7a) and (8.4), the rest mass and
transition frequency of an atom A oscillate as

𝑚𝐴(𝑡 , ®𝑥) = 𝑚0
𝐴

(
1 +

√
16𝜋𝐺𝜌DM[𝑄𝐴

𝑀
]𝑑

𝜔𝜙𝑐
cos(𝜔𝜙𝑡 − ®𝑘𝜙 · ®𝑥 +Φ)

)
, (8.5a)

𝜔𝐴(𝑡 , ®𝑥) = 𝜔0
𝐴

(
1 +

√
16𝜋𝐺𝜌DM[𝑄𝐴

𝜔]𝑑
𝜔𝜙𝑐

cos(𝜔𝜙𝑡 − ®𝑘𝜙 · ®𝑥 +Φ)
)
, (8.5b)

where 𝑚0
𝐴
, 𝜔0

𝐴
are respectively the unperturbed rest mass and transition frequency of A.

The rest mass depending differently on all the varying constants of Nature, we can define
partial dilatonic mass charges 𝑄𝑀,𝑖 such that [4]

[𝑄atom
𝑀 ]𝑑 =

1√
2

(
𝑄atom
𝑀,𝑚𝑒
(𝑑𝑚𝑒 − 𝑑𝑔) +𝑄atom

𝑀,𝑒 𝑑𝑒 +𝑄
atom
𝑀,�̂�
(𝑑�̂� − 𝑑𝑔) +𝑄atom

𝑀,𝛿𝑚(𝑑𝛿𝑚 − 𝑑𝑔)
)
, (8.6a)
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with [4]

𝑄𝑀,�̂� = 0.093 − 0.036
𝐴1/3 − 0.02(𝐴 − 2𝑍)2

𝐴2 − 1.4 × 10−4𝑍(𝑍 − 1)
𝐴4/3 , (8.6b)

𝑄𝑀,𝛿𝑚 = 0.0017𝐴 − 2𝑍
𝐴

, (8.6c)

𝑄𝑀,𝑚𝑒 = 5.5 × 10−4𝑍

𝐴
, (8.6d)

𝑄𝑀,𝑒 =

(
−1.4 + 8.2𝑍

𝐴
+ 7.7𝑍(𝑍 − 1)

𝐴4/3

)
× 10−4 , (8.6e)

where A and Z are respectively the mass and charge numbers of the atom and where the
couplings 𝑑𝑖 are the ones defined in Eq. (8.3).

The frequency charge depends on dilatonic charges 𝑄𝜔,𝑋 and on the dilaton/matter
coupling coefficients 𝑑𝑋 (see e.g. [1])

[𝑄atom
𝜔 ]𝑑 =

1√
2

(
𝑄atom

𝜔,𝑚𝑒

(
𝑑𝑚𝑒 − 𝑑𝑔

)
+𝑄atom

𝜔,𝑒 𝑑𝑒 +𝑄atom
𝜔,�̂�

(
𝑑�̂� − 𝑑𝑔

)
+𝑄atom

𝜔,𝛿𝑚

(
𝑑𝛿𝑚 − 𝑑𝑔

) )
. (8.7)

In case of hyperfine transitions, we have 𝑓
hyp

atom ∝ 𝛼𝑘𝛼(𝑚𝑒/𝑚𝑝)(𝑚𝑞/ΛQCD)𝑘𝑞 [10], where 𝑘𝛼 , 𝑘𝑞
represent respectively the sensitivity coefficients of the hyperfine transition to the fine struc-
ture constant and to the ratio of the light quark masses𝑚𝑞 to the QCD mass scale ΛQCD ratio.
Subsequently, the corresponding dilatonic frequency charges are

𝑄
hyp
𝜔,𝑚𝑒

= 1 , (8.8a)

𝑄
hyp
𝜔,𝑒 = 𝑘𝛼 , (8.8b)

𝑄
hyp
𝜔,�̂� = −0.048 + 𝑘𝑞 , (8.8c)

𝑄
hyp
𝜔,𝛿𝑚 = 0.0017 + 𝑘𝑞 , (8.8d)

where we used the dependency of the proton mass to the light quark masses 𝜕 ln𝑚𝑝/𝜕 ln �̂� =

0.048, 𝜕 ln𝑚𝑝/𝜕 ln 𝛿𝑚 = −0.0017 [4].
The optical transition frequencies depend mainly on the electron mass and on the fine

structure constant 𝑓 opt
atom ∝ (𝑚𝑒𝑚𝑁 )𝛼2+𝜖atom/(𝑚𝑒 + 𝑚𝑁 ) [11, 12] (where 𝑚𝑁 is the total nu-

cleus mass and 𝜖atom accounts for the relativistic correction that determines the frequency
dependence on 𝛼). Therefore, the frequency dilatonic charges write

𝑄
opt
𝜔,𝑚𝑒

= 1 , (8.9a)

𝑄
opt
𝜔,𝑒 = 2 + 𝜖atom , (8.9b)

𝑄
opt
𝜔,�̂� ≈

2.6 × 10−5

𝐴
, (8.9c)

𝑄
opt
𝜔,𝛿𝑚 ≈ 9.0 × 10−7𝐴 − 2𝑍

𝐴2 , (8.9d)

where for the third charge 𝑄opt
𝜔,�̂� , we assumed 𝑚𝑛 = 𝑚𝑝 . In Table 8.1, we show the dila-

tonic mass and frequency charges, for some atoms and corresponding atomic transitions (in
particular, for each optical transition, we consider the intercombination line (ICL), i.e the
transition 1𝑆0 →3 𝑃1, see Table 8.2).
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Species Transition Frequency (rad/s)
88Sr 5𝑠2 1𝑆0 → 5𝑠5𝑝 3𝑃1 2.73 × 1015

40Ca 4𝑠4𝑠 1𝑆0 → 4𝑠4𝑝 3𝑃1 2.87 × 1015

171Yb 6𝑠2 1𝑆0 → 6𝑠6𝑝 3𝑃1 3.39 × 1015

196Hg 6𝑠2 1𝑆0 → 6𝑠6𝑝 3𝑃1 7.45 × 1015

Table 8.2: Some optical transition frequencies of interest.

8.1.3 UFF violating acceleration of a test mass
The point mass action [4]

𝑆mat[Ψ𝑖] = −
∑
𝐴

∫
𝐴

𝑑𝜏(𝑚𝐴(𝑡 , ®𝑥)𝑐2 + 𝐸int
𝐴 (𝑡 , ®𝑥)) , (8.10)

describes the motion of an ensemble of particles with rest mass energy 𝑚𝐴𝑐
2 and internal

energy 𝐸int = ℏ𝜔𝐴, with 𝜔𝐴 the transition frequency of the body under consideration1. Ψ𝑖

are the different SM fields, 𝑑𝜏 is the proper time interval defined as 𝑐2𝑑𝜏2 = −𝑔𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽,
where 𝑔𝜇𝜈 is the spacetime metric. The body A has its own composition therefore its own
coupling with the dilaton field. The equivalent Lagrangian description reads

ℒ𝐴 = −
(
𝑚𝐴(𝑡 , ®𝑥)𝑐 +

ℏ𝜔𝐴(𝑡 , ®𝑥)
𝑐

) √
−𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝑡

𝑑𝑥𝜈

𝑑𝑡
, (8.11a)

which, for non relativistic velocities and considering flat spacetime, i.e 𝜂𝜇𝜈 = diag(−1, 1, 1, 1),
can be approximated by

ℒ𝐴 = −
(
𝑚𝐴(𝑡 , ®𝑥)𝑐2 + ℏ𝜔𝐴(𝑡 , ®𝑥)

) (
1 −

𝑣2
𝐴

2𝑐2

)
, (8.11b)

to first order in (𝑣𝐴/𝑐)2 (where 𝑣𝐴 is the coordinate velocity of the atom). Using Eq. (8.5), a
simple Euler-Lagrange derivation of Eq. (8.11b) gives

®𝑎𝐴(𝑡 , ®𝑥) =
[
𝜔𝜙®𝑣𝐴 − ®𝑘𝜙𝑐2

] √
16𝜋𝐺𝜌DM

𝜔𝜙𝑐

(
[𝑄𝐴

𝑀]𝑑 + [𝑄
𝐴
𝜔]𝑑

ℏ𝜔0
𝐴

𝑚0
𝐴
𝑐2

)
sin(𝜔𝜙𝑡 − ®𝑘𝜙 · ®𝑥 +Φ) , (8.12)

at lowest order in 𝑣𝐴/𝑐, where the superscript 0 indicates the bare value of the quantity,
at zeroth order in the field 𝜙. In addition, we considered the lowest order expansion in
factors of ℏ𝜔0

𝐴
/𝑚0

𝐴
𝑐2, as in general 𝑚0

𝐴
𝑐2 ≫ ℏ𝜔0

𝐴
. As we have seen previously, the various

[𝑄𝐴
𝑀
]𝑑 , [𝑄𝐴

𝜔]𝑑 charges are atom-dependent, implying that the acceleration Eq. (8.12) leads to
a violation of the UFF.

1This contribution will only be relevant for atoms, see Chapter 13.
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8.2 Pseudo-scalar field

8.2.1 Theoretical motivations
The QCD Lagrangian in SM reads

ℒQCD = −1
4𝐺

𝑎
𝜇𝜈𝐺

𝑎,𝜇𝜈 + Ψ̄𝑞

(
𝑖 /𝐷 − 𝑚𝑞𝑒

𝑖𝜃𝑞
)
Ψ𝑞 , (8.13)

where the first term represents the kinetic energy of the non abelian gluon gauge field,
through the strength tensors 𝐺𝑎

𝜇𝜈 with
√
𝐽/𝑚3 units, the second term represents the inter-

action between gluons and quarks Ψ𝑞 ( /𝐷 = 𝛾𝜇𝐷𝜇, where 𝛾𝜇 are the dimensionless gamma
matrices2) and the third term is the quarks mass term. One could add to this Lagrangian a
total derivative term (which would not change the fields equations of motion) of the form

ℒ𝜃 = 𝜃
𝑔2

3
32𝜋2𝐺

𝑎
𝜇𝜈�̃�

𝑎,𝜇𝜈 , (8.14)

where �̃�𝑎,𝜇𝜈 = 𝜖𝜇𝜈𝜌𝜎𝐺𝑎
𝜌𝜎/2 is the dual gluon field strength tensor, with superscript 𝑎 running

over the 8 gluon fields. Despite leaving the equations of motion invariant, the Lagrangian
Eq. (8.14) breaks CP (Charge-Parity) symmetry if the 𝜃 parameter, being an angle, is different
from 0 or 𝜋 [13]. To test CP symmetry of QCD, one can measure the neutron electric dipole
moment 𝑑𝑛 whose best upper limit constraint is |𝑑𝑛 | < 3 × 10−26 e.cm (90% confidence level)
[14], which translates into an upper limit of the 𝜃 parameter to be 𝜃 < 10−10 [13]. This
extremely small value is puzzling because we should expect 𝜃 ∼ 𝒪(1)3, and makes the so-
called strong CP problem. In the 1970s, Peccei and Quinn [15] proposed a solution to solve
this problem : promote the previously fixed 𝜃 parameter to a dynamical massive field with a
potential with a zero minimum, such that 𝜃 relaxes naturally to 0 [16–18]. More precisely, a
new 𝑈(1)PQ symmetry is introduced which is spontaneously broken at a given energy scale
𝑓𝑎 . The QCD axion is the Goldstone boson of this broken symmetry, which acquires a mass𝑚𝑎

via its interaction with pions. See [19] for a complete review of the Peccei-Quinn mechanism.
One can show that the QCD axion mass is inversely proportional to 𝑓𝑎 , and that it also couples
to the photon, nucleon, electron fields and nucleon electric dipole moment with respective
couplings 𝑔𝑎𝛾 , 𝑔𝑎𝑁/𝑚𝑁 𝑐

2, 𝑔𝑎𝑒/𝑚𝑒 𝑐
2, 𝑔𝑑 (with 𝑚𝑁 , 𝑚𝑒 the nucleon and electron mass). All

these couplings are proportional to 1/ 𝑓𝑎 such that the first three have units of 1/energy
and the last coupling 𝑔𝑑 has units of 𝐶.𝑚/𝐽 (because it is also proportional to 𝑑𝑛)[20, 21].
Therefore, there is only one free parameter of the theory, which is the QCD axion mass.
One can define a more generic pseudo-scalar field, the Axion-Like-Particle (ALP) 𝑎 which
couples to the same fields and has the same mass as the QCD axion, but where the relation
of proportionality between all the parameters disappears, i.e all couplings and mass are free
parameters of the theory. Therefore, ALP does not solve the strong CP problem, but is still a

2The gamma matrices are a set of 4× 4 matrices which allow one to construct Lorentz scalar with fermionic
spinors. These are the 4-dimensional generalization of Pauli matrices.

3In reality, 𝜃 = 𝜃QCD + 𝜃𝑞 where 𝜃QCD is a contribution from QCD and where 𝜃𝑞 is a contribution from
electroweak sector (coming from the quark masses), which are two very different sectors, therefore one should
not expect those two contributions to cancel each other exactly.
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DM candidate, as shown in Section 7.3. The dimensionless ALP field is defined as

𝜃 =

√
ℏ𝑐5

8𝜋𝐺
𝑎

𝑓𝑎
, (8.15)

where
√
ℏ𝑐5/8𝜋𝐺 ∼ 2×1018 GeV ≡ 𝐸𝑃 is the reduced Planck energy (which is usually defined

in terms of the inverse of the 𝜅 parameter, reason for the 8𝜋 factor [4]) and its full interaction
Lagrangian can be written as [20]

ℒint = 𝐸𝑃

(
𝑔2

3
32𝜋2

𝑎

𝑓𝑎
𝐺𝑎

𝜇𝜈�̃�
𝑎,𝜇𝜈 −

𝑔𝑎𝛾

4𝜇0
𝑎𝐹𝜇𝜈 �̃�

𝜇𝜈 + 𝑔𝑎𝑁ℏ𝑐

2𝑚𝑁 𝑐2 𝜕𝜇𝑎Ψ̄𝑁𝛾
𝜇𝛾5Ψ𝑁+

𝑔𝑎𝑒ℏ𝑐

2𝑚𝑒 𝑐2 𝜕𝜇𝑎Ψ̄𝑒𝛾
𝜇𝛾5Ψ𝑒 +

𝑐

2𝑖 𝑔𝑑𝑎Ψ̄𝑁𝜎𝜇𝜈𝛾5Ψ𝑁𝐹
𝜇𝜈

)
, (8.16)

whereΨ𝑁 ,Ψ𝑒 are respectively the nucleon and electron fermion fields, where 𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3

the fifth gamma matrix and 𝜎𝜇𝜈 = [𝛾𝜇, 𝛾𝜈]/2.

8.2.2 Axion electrodynamics
Following Eqs. (7.1b) and (8.16) in flat spacetime (√−𝑔 = 1) and using space positive metric
𝑔𝜇𝜈 = det(−1, 1, 1, 1), we write the Lagrangian describing the interaction between the classical
dimensionless axion pseudo scalar field 𝑎 with mass 𝑚𝑎 and EM through the coupling 𝑔𝑎𝛾
[13]

ℒ = − 1
4𝜇0

𝐹𝜇𝜈𝐹
𝜇𝜈 + 𝑗𝜇𝐴𝜇 − 1

2𝜅𝜕𝜇𝑎𝜕
𝜇𝑎 − 1

2𝜅
𝑚2
𝑎 𝑐

2

ℏ2 𝑎2 − 𝐸𝑃
𝑔𝑎𝛾

4𝜇0
𝑎𝐹𝜇𝜈 �̃�

𝜇𝜈 , (8.17)

where the EM gauge field 𝐴𝛼 has usual units of V.s/m and where �̃�𝜇𝜈 is the dual electro-
magnetic strength tensor defined as

�̃�𝜇𝜈 =
1
2𝜖

𝜇𝜈𝜌𝜎𝐹𝜌𝜎 ≡ 𝜖𝜇𝜈𝜌𝜎𝜕𝜌𝐴𝜎 , (8.18a)

with 𝜖𝜇𝜈𝜌𝜎 the antisymmetric 4-dimensional Levi-Civita tensor, which has the following
properties

𝜖𝜇𝜈𝜌𝜎 = 𝑔𝜇𝛼𝑔𝜈𝛽𝑔𝜌𝛿𝑔𝜎𝛿𝜖𝛼𝛽𝛿𝛾 , (8.18b)
𝜖0𝑖 𝑗𝑘 = 𝜖𝑖 𝑗𝑘 , (8.18c)

where 𝜖𝑖 𝑗𝑘 is the usual 3-dimensional Levi-Civita tensor. Using these properties, one can
show that

𝐹𝜇𝜈 �̃�
𝜇𝜈 = 4

®𝐸 · ®𝐵
𝑐

, (8.19)

where we defined 𝜕𝜇 = (𝜕𝑡/𝑐, ®∇), 𝑗𝜇 = (𝜌𝑐, ®𝑗) and 𝐴𝜇 = (𝜙/𝑐, ®𝐴) with 𝜙, ®𝐴 respectively the
scalar and vector potentials and introduce the electric and magnetic fields defined as

®𝐸 = −®∇𝜙 − 𝜕𝑡 ®𝐴 , (8.20a)
®𝐵 = ®∇ × ®𝐴 . (8.20b)
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The equation of motion of the axion and photon fields are derived from the usual Euler-
Lagrange equations and reads [22, 23](

□ − 𝑚
2
𝑎 𝑐

2

ℏ2

)
𝑎 =

𝜅𝐸𝑃
𝜇0𝑐

𝑔𝑎𝛾 ®𝐸 · ®𝐵 , (8.21a)

for the axion field and
□𝐴𝜈 − 𝜕𝜈𝜕𝜇𝐴

𝜇 + 𝐸𝑃𝑔𝑎𝛾(𝜕𝜇𝑎)𝜖𝜇𝜈𝜌𝜎𝜕𝜌𝐴𝜎 = −𝜇0 𝑗
𝜈 , (8.21b)

for the photon field. We can treat separately the temporal and spatial part of Eq. (8.21b), i.e
□𝜙 + 𝜕𝑡𝜕𝜇𝐴

𝜇 + 𝑐𝐸𝑃𝑔𝑎𝛾𝜖𝑖 𝑗𝑘(𝜕𝑖𝑎)𝜕𝑗𝐴𝑘 = −𝜇0𝜌𝑐
2 , (8.22a)

□𝐴𝑖 − 𝜕𝑖𝜕𝜇𝐴
𝜇 + 𝐸𝑃𝑔𝑎𝛾𝜖𝜇𝑖𝜌𝜎(𝜕𝜇𝑎)𝜕𝜌𝐴𝜎 = −𝜇0 𝑗

𝑖 . (8.22b)
Using the temporal equation Eq. (8.22a), the definition of the electric and magnetic fields
Eq. (8.20) and the zero divergence of the magnetic field, we obtain

®∇ ·
(
®𝐸 − 𝑐𝐸𝑃𝑔𝑎𝛾𝑎 ®𝐵

)
=

𝜌

𝜖0
, (8.23)

which makes the modified Gauss’s law. From the spatial equation of motion, Eq. (8.22b), we
obtain

®∇ × ®𝐵 = 𝜇0

(
®𝑗 + 𝜖0

𝜕 ®𝐸
𝜕𝑡

)
− 𝐸𝑃

𝑐
𝑔𝑎𝛾( ¤𝑎 ®𝐵 + ®∇𝑎 × ®𝐸) , (8.24)

where the dot represents derivative with respect to time and which corresponds to the
modified Ampère’s law.

Eqs.(8.23) and (8.24) together with the two unchanged Maxwell’s equations form what is
more commonly known as axion electrodynamics [22, 23]

®∇ ·
(
®𝐸 − 𝑐𝐸𝑃𝑔𝑎𝛾𝑎 ®𝐵

)
=

𝜌

𝜖0
, (8.25a)

®∇ × ®𝐸 + 𝜕 ®𝐵
𝜕𝑡

= 0 , (8.25b)

𝜇0

(
®𝑗 + 𝜖0

𝜕 ®𝐸
𝜕𝑡

)
− 𝐸𝑃

𝑐
𝑔𝑎𝛾( ¤𝑎 ®𝐵 + ®∇𝑎 × ®𝐸) = ®∇ × ®𝐵 , (8.25c)

®∇. ®𝐵 = 0 . (8.25d)
The various new terms of Eq. (8.25) break the electric-magnetic duality which is present
in the usual Maxwell’s equations : in vacuum, these equations are not invariant under the
change ( ®𝐸, ®𝐵) → (𝑐 ®𝐵,−®𝐸/𝑐).

8.2.3 Vacuum birefringence and dichroism
We now focus on the spatial equation of motion of the EM field Eq. (8.22b). We assume
propagation in vacuum ®𝑗 = 0, both temporal and Coulomb gauges for the EM field 𝐴0 = 0
and ®∇ · ®𝐴 = 04 and the axion field is spatially homogeneous at the scale of the experiment5

4Out of the four degrees of freedom encoded in the 4-potential 𝐴𝜇, only 2, representing the photon polar-
ization states, are physical, reason why we can fix two gauges.

5As shown in Eq. (7.28), the constraint on the axion mass depends on the size of experiment considered.
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such that the form Eq. (7.29) is valid. Then, Eq. (8.22b) becomes [24]

¥𝐴𝑖 − 𝑐2∇2𝐴𝑖 + 𝑐𝐸𝑃𝑔𝑎𝛾 ¤𝑎𝜖𝑖 𝑗𝑘𝜕𝑗𝐴𝑘 = 0 . (8.26)

We can decompose 𝐴𝑖 into the left and right circular polarization modes of the photon
with wave number ®𝑘 as

𝐴𝑖(𝑡 , 𝑥) =
∫

𝑑3𝑘

(2𝜋)3
(
𝐴+
𝑘
(𝑡)𝑒+𝑖 + 𝐴

−
𝑘 (𝑡)𝑒

−
𝑖

)
𝑒 𝑖
®𝑘.®𝑥 . (8.27)

Without loss of generality, if we assume the propagation direction to be along the �̂� direction,
®𝑘 = (0, 0, 𝑘), the normalized right/left helicities of the photon can be expressed as 𝑒+ = 𝑒𝑅 =

(1,−𝑖 , 0)/
√

2 and 𝑒− = 𝑒𝐿 = (1, 𝑖 , 0)/
√

2 such that

𝜖𝑖 𝑗𝑘𝑘 𝑗𝑒
±
𝑘 = ±𝑖𝑘𝑒±𝑖 . (8.28)

Then, we can write two separate equations of motion for both polarization modes [24]

¥𝐴+
𝑖
+ 𝑘2𝑐2

(
1 + 𝐸𝑃

𝑐2

√
16𝜋𝐺𝜌DM𝑔𝑎𝛾

𝑘
sin(𝜔𝑎𝑡 +Φ)

)
𝐴+𝑖 = 0 (8.29a)

¥𝐴−
𝑖
+ 𝑘2𝑐2

(
1 − 𝐸𝑃

𝑐2

√
16𝜋𝐺𝜌DM𝑔𝑎𝛾

𝑘
sin(𝜔𝑎𝑡 +Φ)

)
𝐴−𝑖 = 0 , (8.29b)

where we used Eq. (7.17). Considering the plane wave ansatz 𝐴±
𝑖
(𝑡) = 𝜁±

𝑖
exp(−𝑖(𝜔±𝑡− ®𝑘 · ®𝑥)),

Eq. (8.29) leads to

𝜔± = 𝑘𝑐

√
1 ± 𝐸𝑃

𝑐2

√
16𝜋𝐺𝜌DM𝑔𝑎𝛾

𝑘
sin(𝜔𝑎𝑡 +Φ) , (8.30)

or in other words, the dispersion relation of the right/left circular polarizations is modified
such that they travel with different phase velocities 𝑐± = 𝜔±/𝑘, respectively

𝑐± = 𝑐

√
1 ± 𝐸𝑃

𝑐2

√
16𝜋𝐺𝜌DM𝑔𝑎𝛾

𝑘
sin(𝜔𝑎𝑡 +Φ) . (8.31)

Note that Eq. (8.30) leads also to a modification of the group velocity of the left and right
polarization of light

𝑣𝑔 =
𝜕𝜔±
𝜕𝑘
≈ 𝑐

(
1 +

16𝜋𝐺𝜌DM𝐸
2
𝑃
𝑔2
𝑎𝛾

8𝑘2𝑐4 sin2 (𝜔𝑎𝑡 +Φ)
)
+ 𝒪 ©«

(
𝐸𝑃

𝑐2

√
16𝜋𝐺𝜌DM𝑔𝑎𝛾

𝑘

)3ª®¬ . (8.32)

This modification of the group velocity does not break special relativity since we now assume
that light propagates inside a medium full of axions, which is not pure vacuum.

In other words, vacuum becomes birefringent in presence of an axion background. Exper-
iments such as DANCE [25], LIDA [26] or ADBC [27] attempt to detect axion-photon coupling
through this effect.
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We now study dichroism effects from axion-photon coupling. To do so, we focus specifi-
cally on the axion-photon interaction Lagrangian, written in terms of electric and magnetic
fields i.e

ℒ𝑎𝛾 = −𝐸𝑃
𝑔𝑎𝛾

𝜇0𝑐
𝑎 ®𝐸 · ®𝐵 . (8.33)

In a medium of permittivity 𝜖 and permeability 𝜇 and where external electric and magnetic
fields ®𝐸0 and ®𝐵0 are applied, the modified Maxwell’s equations Eqs. (8.23) and (8.24) show
that the axion field is a source of electric charge 𝜌𝑎 and current density ®𝑗𝑎 [13]

𝜌𝑎 = 𝜖𝑐𝐸𝑃𝑔𝑎𝛾 ®∇𝑎 · ®𝐵0 (8.34a)

®𝑗𝑎 =
𝜇𝐸𝑃
𝑐
𝑔𝑎𝛾

(
¤𝑎 ®𝐵0 + ®∇𝑎 × ®𝐸0

)
, (8.34b)

implying a conversion between axions and photons.
As derived in [13], if we assume light propagating in the 𝑧 direction whose polarization

lies in the 𝑥 − 𝑦 plane and a static and homogeneous magnetic field polarized along the 𝑥
axis ®𝐵0 ≡ 𝐵0𝑒𝑥 , with no electric field, the photon-axion conversion will happen in the same
direction as the B polarization direction. This means that the polarization component of
light along the 𝑥-direction is depleted, implying a rotation of the plane of polarization. This
is what is called dichroism. The conversion probability is given by [13]

𝑃(𝛾→ 𝑎, 𝐿) =
√

𝜇

𝜖

√
𝜖0
𝜇0

ℏ

𝜇0

𝑔2
𝑎𝛾𝐵

2
0

𝛽𝑎𝑞2 sin2
(
𝑞𝐿

2

)
, (8.35a)

where 𝐿 is the travelling distance, q is the difference in wavevector between axions and
photons, i.e 𝑞 = | ®𝑘𝑎 − ®𝑘𝛾 | and 𝛽𝑎 = | ®𝑘𝑎 |/𝜔𝑎 ≡ 𝑣𝑎/𝑐2 with 𝑣𝑎 the speed of incident axions.
Note that, by energy conservation, 𝜔𝑎 = 𝜔𝛾, since the static magnetic field does not transfer
energy.

In addition, the relative phase between the polarizations parallel and perpendicular to the
magnetic field changes, and light acquires ellipticity [13]. If we assume plane wave solutions
for axions and photons, one can show that the 𝛾 → 𝑎 conversion leads to a modification
of the dispersion relation of photons of 𝑥 polarization, which depends on the amplitude
of the magnetic field in this direction. This is equivalent to a relative phase added to the
𝑥-polarization compared to the 𝑦-one that reads [13]

𝜙(𝐿) = ℏ𝑐

𝜇0

𝑔2
𝑎𝛾𝐵

2
0

4𝑞2 (𝑞𝐿 − sin(𝑞𝐿)) . (8.35b)

8.2.4 UFF violation through the coupling with gluons
We now consider the coupling between the ALP and gluons which reads, from Eq. (8.16),

ℒint = 𝐸𝑃
𝑔2

3
32𝜋2

𝑎

𝑓𝑎
𝐺𝑎

𝜇𝜈�̃�
𝑎,𝜇𝜈 ≡

𝑔2
3

32𝜋2𝜃𝐺
𝑎
𝜇𝜈�̃�

𝑎,𝜇𝜈 . (8.36)
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In [12], it is shown that the interaction Lagrangian from Eq. (8.36) induces a dependency of
the mass of pions to the axion field, which implies a dependency of the mass of nucleons
and atomic binding energy on the axion field. More precisely,

𝜕 ln𝑚𝑁

𝜕 (𝜃2)
=

𝜕 ln𝑚𝑁

𝜕 ln
(
𝑚2

𝜋

) 𝜕 ln
(
𝑚2

𝜋

)
𝜕 (𝜃2)

, (8.37)

where 𝑚𝑁 is the rest mass of the nucleon N. As a consequence, the mass of any atom will
also depend on the axion field and its coupling strength with gluons. In this sense, we can
define the dimensionless axionic mass and frequency charges of an atom A as

[𝑄atom
𝑀 ]𝑎 =

𝜕 ln𝑚atom

𝜕 (𝜃2)
(8.38a)

[𝑄atom
𝜔 ]𝑎 =

𝜕 ln 𝜔atom

𝜕 (𝜃2)
, (8.38b)

in a similar way as in Eq. (8.4). Therefore, a similar oscillation on both rest mass and transition
frequency of an atom A arise

𝑚𝐴(𝑡 , ®𝑥) = 𝑚0
𝐴

(
1 +

8𝜋𝐺𝜌DM𝐸
2
𝑃
[𝑄𝐴

𝑀
]𝑎

𝑓 2
𝑎 𝜔

2
𝑎𝑐

2
cos(2(𝜔𝑎𝑡 − ®𝑘𝑎 · ®𝑥 +Φ))

)
, (8.39a)

𝜔𝐴(𝑡 , ®𝑥) = 𝜔0
𝐴

(
1 +

8𝜋𝐺𝜌DM𝐸
2
𝑃
[𝑄𝐴

𝜔]𝑎
𝑓 2
𝑎 𝜔

2
𝑎𝑐

2
cos(2(𝜔𝑎𝑡 − ®𝑘𝑎 · ®𝑥 +Φ))

)
. (8.39b)

We made a redefinition of the unperturbed mass as𝑚0
𝐴
→ 𝑚0

𝐴
(1+8𝜋𝐺𝜌DM𝐸

2
𝑃
[𝑄𝐴

𝜔]𝑎/ 𝑓 2
𝑎 𝜔

2
𝑎𝑐

2),
and similarly for the frequency. Then, the axion-gluon coupling would induce a UFF violat-
ing acceleration on the atom A of the form

®𝑎𝐴(𝑡 , ®𝑥) =
[
𝜔𝑎®𝑣𝐴 − ®𝑘𝑎𝑐2

] 16𝜋𝐺𝜌DM𝐸
2
𝑃

𝑓 2
𝑎 𝜔

2
𝑎𝑐

2

(
[𝑄𝐴

𝑀]𝑎 + [𝑄
𝐴
𝜔]𝑎

ℏ𝜔0
𝐴

𝑚0
𝐴
𝑐2

)
sin

(
2𝜔𝑎𝑡 − 2®𝑘𝑎 · ®𝑥 + 2Φ

)
,

(8.40)

where we did not include contributions from the axion spin-induced fifth force (see e.g. [28]),
because we are only interested in the oscillating solution. Now, we wish to get an analytical
expression for both axionic charges.

The rest mass of an atom, with charge number Z and neutron number N, can be parame-
terized as

𝑚atom𝑐
2 = 𝑚const.𝑐

2 + 𝐸bind ≡ 𝑍(𝑚𝑝 + 𝑚𝑒)𝑐2 + 𝑁𝑚𝑛𝑐
2 + 𝐸bind , (8.41)

where𝑚𝑝 , 𝑚𝑒 , 𝑚𝑛 are respectively the rest masses of the proton, the electron and the neutron,
and where 𝑚const. , 𝐸bind represent respectively the rest mass of the particle constituents of
the atom (proton, neutron, electron) and the nuclear binding energy.
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Nucleons rest mass

In [12], it is shown the pion mass is 𝜃 dependent and influence the nucleon mass𝑚N through

𝜕 ln𝑚𝑁

𝜕 ln𝑚2
𝜋

≈ 0.06 , (8.42a)

𝜕 ln𝑚2
𝜋

𝜕 (𝜃2)
= − 𝑚𝑢𝑚𝑑

2(𝑚𝑢 + 𝑚𝑑)2
= −0.109 (8.42b)

⇒ 𝜕 ln𝑚𝑁

𝜕 (𝜃2)
≈ −0.065 , (8.42c)

such that, for an atom made of (N+Z) nucleons, the contribution of the nucleons rest mass
to the atom rest mass to the axionic charge is given by

[𝑄atom
𝑀 ]𝑎

���
const.

=
𝜕 ln𝑚𝑁

𝜕 (𝜃2)
≈ −0.065 , (8.43)

meaning that it is independent of the number of nucleons inside the atom, or in other words
of the atomic species.

Binding energy of the nuclei

Let us now focus on the contribution of the binding energy of the nuclei to the axionic mass
charge and show that it is composition dependent.

As computed in [4], the binding energy of the nuclei depends to first order on the mass
of the pions and therefore, following Eq. (8.42), on the ALP. We will now use the results from
Section IV of [4] to infer the analytical expression of the dependency of the binding energy
to the ALP and to the mass number 𝐴 and the charge number 𝑍.

Four different interactions contribute to the binding energy [4]: the central force 𝐸central
coming from the isospin symmetric central nuclear force, the asymmetry energy 𝐸asym, i.e
the residual energy from the asymmetry between neutrons and protons inside the nucleus,
the Coulomb force 𝐸Coulomb depending on how tightly the nucleons are packed together and
the pairing energy 𝐸pairing leading to

𝐸bind = 𝐸central + 𝐸asym
(𝐴 − 2𝑍)2

𝐴
+ 𝐸Coulomb

𝑍(𝑍 − 1)
𝐴1/3 − 𝛿

𝐸pairing

𝐴1/2 , (8.44)

where 𝛿 = ±1 respectively for even-even and odd-odd number of protons-neutrons in the
nuclei, and 𝛿 = 0 otherwise.

Central force This interaction comes from the isospin symmetric central nuclear force,
which is the dominant contribution in the binding of heavy nuclei [4]. The dominant
interactions are an attractive scalar 𝜂𝑆 and a repulsive vector 𝜂𝑉 , and [4] shows that the
former is more sensitive to the pion mass, implying in our case

𝜕𝐸Central
𝜕(𝜃2) ≈

𝜕𝐸Central
𝜕𝜂𝑆

𝜕𝜂𝑆

𝜕 ln𝑚2
𝜋

𝜕 ln𝑚2
𝜋

𝜕(𝜃2) , (8.45a)
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with [4, 29]

𝐸Central ≈ −(120𝐴 − 97𝐴2/3)𝜂𝑆 , (8.45b)
𝜕𝜂𝑆

𝜕 ln𝑚2
𝜋

= −0.35 MeV . (8.45c)

Asymmetry energy The residual energy from the asymmetry between neutrons and pro-
tons inside the nucleus contains two components : 1) from the Pauli exclusion principle,
requiring that when there are more neutrons than protons, the extra neutrons are in the
higher energy states than the protons; and 2) from the nuclear force, which is more attractive
for a neutron and a proton than with a pair of neutrons or a pair of protons. The asymmetry
energy depends mainly on the scalar coupling strength between the nucleons𝐺𝑆 [4] implying

𝜕𝐸Asym

𝜕(𝜃2) =
𝜕𝐸Asym

𝜕𝐺𝑆

𝜕𝐺𝑆
𝜕 ln𝑚2

𝜋

𝜕 ln𝑚2
𝜋

𝜕(𝜃2) , (8.46a)

with [4, 29]

𝜕𝐸Asym

𝜕𝐺𝑆

𝜕𝐺𝑆
𝜕 ln𝑚2

𝜋

= −19 MeV . (8.46b)

Coulomb force The Coulomb energy has a dependency on the strong interaction coupling
terms since it depends on how tightly the nucleons are packed together. It can be shown that
this contribution depends on the same scalar coupling as the asymmetry energy, hence

𝜕𝐸Coulomb
𝜕(𝜃2) =

𝜕𝐸Coulomb
𝜕𝐺𝑆

𝜕𝐺𝑆
𝜕 ln𝑚2

𝜋

𝜕 ln𝑚2
𝜋

𝜕(𝜃2) , (8.47a)

with [4, 29]

𝜕𝐸Coulomb
𝜕𝐺𝑆

𝜕𝐺𝑆
𝜕 ln𝑚2

𝜋

= −0.13 MeV . (8.47b)

Pairing energy The pairing interaction contributes to binding energy and its numerical
value is [29]

𝐸Pairing = 12 MeV . (8.48)

[4] shows that this contribution is subdominant for all atoms, due to its dependency to mass
number A, compared to the other interactions, hence we will not consider the pairing energy
in the calculation of the axionic charges of atoms.

Adding all contributions together, we get the analytic expression for the axionic mass
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charge

[𝑄atom
𝑀 ]𝑎 =

1
𝑚atom

𝜕𝑚atom

𝜕(𝜃2)

=
1

𝑚atom𝑐2

(
𝜕(𝑚rest mass𝑐

2)
𝜕(𝜃2) + 𝜕𝐸bind

𝜕(𝜃2)

)
≈ −0.065𝑚rest mass

𝑚atom
+ 1 MeV
𝑚atom𝑐2

(
−4.578𝐴 + 3.701𝐴2/3 + 2.071(𝐴 − 2𝑍)2

𝐴
+ 0.014𝑍(𝑍 − 1)

𝐴1/3

)
≈ −0.065 + 𝐹𝐴

(
− 4.92 + 3.98

𝐴1/3 + 2.22(𝐴 − 2𝑍)2
𝐴2 + 1.50𝑍(𝑍 − 1)

𝐴4/3 × 10−2
)
× 10−3 . (8.49)

At the last line, we considered𝑚rest mass/𝑚atom ≈ 1+⟨𝐸bind⟩/𝑚amu𝑐
2 with ⟨𝐸bind⟩ ∼ 8 MeV, the

average binding energy per nucleon and 𝑚amu the atomic mass unit [4]. Also, we factorized
𝐹𝐴 = 𝐴𝑚amu/𝑚atom which is of order unity at first order for all species of atoms (the relative
error is 𝒪(10−3))[4].

Now, we focus on the axionic frequency charge. We will first consider hyperfine atomic
transitions (𝜔hyp

atom) which are impacted by the axion-gluon coupling from Eq. (8.36) as [12]

𝜕 ln 𝜔
hyp
atom

𝜕(𝜃)2 =

(
𝜕 ln 𝑔
𝜕 ln𝑚2

𝜋

−
𝜕 ln𝑚𝑝

𝜕 ln𝑚2
𝜋

)
𝜕 ln𝑚2

𝜋

𝜕(𝜃)2 , (8.50)

where 𝑔 is the nucleon g-factor whose dependence on pion mass is given by [12]

𝜕 ln 𝑔
𝜕 ln𝑚2

𝜋

= 𝐾𝑛
𝜕 ln 𝑔𝑛
𝜕 ln𝑚2

𝜋

+ 𝐾𝑝
𝜕 ln 𝑔𝑝
𝜕 ln𝑚2

𝜋

− 0.17𝐾𝑏 , (8.51a)

with
𝜕 ln 𝑔𝑛
𝜕 ln𝑚2

𝜋

≈ −0.25 , (8.51b)

𝜕 ln 𝑔𝑝
𝜕 ln𝑚2

𝜋

≈ −0.17 , (8.51c)

where 𝑔𝑛 (𝑔𝑝) respectively the neutron (proton) gyromagnetic factors and 𝐾𝑛 , 𝐾𝑝 and 𝐾𝑏 , co-
efficients computed from chiral perturbation theory (nuclear shell model). These coefficients
are not measurable, but they are related to observable parameters, namely, the sensitivity
coefficient of the nuclear magnetic moment to light quarks masses 𝜅𝑞 , to strange quarks
masses 𝜅𝑠 and to light quarks masses over QCD energy scale 𝜅 through [10]

𝜅𝑞 = −0.118𝐾𝑛 − 0.087𝐾𝑝 , (8.52a)
𝜅𝑠 = 0.0013𝐾𝑛 − 0.013𝐾𝑝 , (8.52b)
𝜅 = −0.12𝐾𝑛 − 0.10𝐾𝑝 − 0.11𝐾𝑏 . (8.52c)

Using Eqs. (8.42), (8.50), (8.51) and (8.52), we define the dimensionless axionic frequency
charge of the atom as

[𝑄atom
𝜔 ]𝑎 ≈

(
−16.8𝜅 − 5.69𝜅𝑞 + 25.1𝜅𝑠 + 0.65

)
× 10−2 . (8.53)
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In particular, Eq. (8.53) is relevant for 87Rb hyperfine transition, whose associated 𝜅 parame-
ters are 𝜅 = −0.016, 𝜅𝑞 = −0.046, 𝜅𝑠 = −0.010 [10].

Species 𝑄𝑀 [×10−3] 𝑄𝜔 [×10−3]
195Pt [5] -69.065 −
48Ti [5] -68.770 −

87Rb -68.920 9.30 [10]
85Rb -68.924 −
40Ca -68.715 -0.00188
44Ca -68.738 -0.182
86Sr -68.933 -0.554
87Sr -68.932 -0.552
88Sr -68.932 -0.00550

171Yb -69.054 -0.0121
176Yb -69.043 -0.0119
196Hg -69.077 -0.00684
202Hg -69.066 -0.00677
SiO2 -68.442 −

73%Au-27%Pt -69.067 −

Table 8.3: Axionic charges for some species
of atoms. The transition is hyperfine for 87Rb
and optical for the rest (as in Table 8.1, all
of the optical transition are the 1𝑆0 →3 𝑃1
ICL transition, see Table 8.2). The charges
are derived from Eqs. (8.49), (8.53), (8.54) and
(8.55). As we shall see in Chapters 13 and 15,
we will not consider the atomic transition of
195Pt, 48Ti, SiO2 and Au-Pt, reason why their
frequency charge is not provided.

Let us now consider optical transitions whose
frequency does depend neither on the nu-
cleon g-factor nor on the proton mass at low-
est order. This implies that the axionic fre-
quency charge at lowest order is 0. Higher
order contributions would lead to non-zero
axionic frequency charge, in particular if one
considers its dependence on the fine struc-
ture constant 𝛼 which arises at loop level [30],
or to the nuclear charge radius [31] and are
therefore highly suppressed. We now com-
pute the axionic optical frequency charge of
an atom A, considering both of these effects
for some atomic optical transition. Using the
dependence of optical transition on the fine
structure constant 𝛼, the gluon-photon cou-
pling at loop level leads to a charge

[𝑄𝐴
𝜔]𝑎 = 𝑐𝐹2

(2 + 𝜖𝐴)𝛼
4𝜋2 , (8.54a)

where 𝑐𝐹2 is the parameter encoding the
explicit symmetry-breaking, generating the
one-loop coupling. While for QCD axion,
this parameter is 𝒪(1), it is much smaller in
the case of ALP (due to the introduction of
an additional dark sector, e.g a dark photon,
see [30]). It is nevertheless possible to have
𝑐𝐹2 ∼ 10−2 [30]. Therefore, the corresponding
axionic charge is, e.g. for 171Yb,

[𝑄𝑌𝑏
𝜔 ]𝑎 ∼ 1.2 × 10−8 . (8.54b)

The second contribution, arising from the coupling of the ALP to the nuclear charge radius
has the form [31–33]

[𝑄𝐴
𝜔]𝑎 =

𝜕 ln 𝜔𝐴

𝜕 ln⟨𝑟2
𝑁
⟩
𝜕 ln⟨𝑟2

𝑁
⟩

𝜕 ln𝑚2
𝜋

𝜕 ln𝑚2
𝜋

𝜕(𝜃)2 =
𝛽𝐹

𝜔𝐴

𝜕 ln𝑚2
𝜋

𝜕(𝜃)2

(
⟨𝑟2
𝑁⟩ +

𝐶2
𝐶1
⟨𝑟4
𝑁⟩

)
, (8.55a)

where ⟨𝑟2
𝑁
⟩, ⟨𝑟4

𝑁
⟩ are respectively the mean squared and quartic charge nuclear radius, 𝐹 is the

difference in field shift factor between excited and ground state, 𝛽 = 𝜕 ln⟨𝑟2
𝑁
⟩/𝜕 ln𝑚2

𝜋 ≡ −0.2
[31] and 𝐶1, 𝐶2 are Seltzer coefficients, to account for higher order radial moments in the
computation of the field shift (which are relevant for heavy atoms) [33] . For 171Yb optical
transition, 𝐹 = −2𝜋 × 10.955 GHz/fm2 [34], 𝑟𝑁 = 5.2906 fm [35], 𝐶1 = 6.23 × 10−4 and
𝐶2 = −0.579 [32], which leads to

[𝑄𝑌𝑏
𝜔 ]𝑎 ∼ −1.21 × 10−5 . (8.55b)
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For other atomic transition, we will use the fact that the field shift 𝐹⟨𝑟2
𝑁
⟩ approximately scales

as 𝑍2/𝐴1/3 [33]. Note that, as expected, those two contributions are at least two orders of
magnitude smaller than the axionic charges of hyperfine transitions (see Table 8.3).

8.3 Vector field

8.3.1 Theoretical motivations

In addition to the current SM gauge group 𝑆𝑈(3) × 𝑆𝑈(2) × 𝑈(1), many theories predict
an additional gauge group which would resolve various particle physics and/or cosmology
problems, e.g. the 𝜈MSM model solves DM, neutrino masses and baryogenesis by incor-
porating three right-handed 𝑆𝑈(2)𝑅 ×𝑈(1) neutrinos [36]. The minimal gauged extension
would be an additional 𝑈(1) symmetry, carried by a new vector field, coupled to a local
gauge symmetry current, in particular a linear combination of the baryon number 𝐵, the
lepton number 𝐿 and the hypercharge 𝑌 [37, 38]. Supersymmetry predicts a coupling to the
𝐵−𝐿 current [37, 38]. This new vector field, sometimes referred as𝑈-boson, heavy photon or
dark photon (DP), would induce a new force, proportional to the current to which it couples.

8.3.2 Oscillating electric field through the coupling with photons
We now are interested with the interaction of the DP vector field 𝜙𝜇 of mass 𝑚𝑈 with EM.
Using Eq. (7.1c), the Lagrangian describing such interaction is given by [39]

ℒ = − 1
4𝜇0

𝐹𝜇𝜈𝐹𝜇𝜈 + 𝑗𝜇𝐴𝜇 −
1

4𝜇0
𝜙𝜇𝜈𝜙𝜇𝜈 −

𝑚2
𝑈
𝑐2

2𝜇0ℏ2 𝜙
𝜇𝜙𝜇 −

𝜒
2𝜇0

𝐹𝜇𝜈𝜙
𝜇𝜈 , (8.56)

where 𝜒 is the dimensionless kinetic mixing coupling parameter which characterizes the
coupling between the DP and the EM field.

In order to ease the calculations, we make a non-unitary transformation of the fields, i.e
[40]

�̄�𝜇 = 𝐴𝜇 + 𝜒𝜙𝜇 (8.57)

while 𝜙𝜇 remains unchanged at first order in 𝜒. This allows us to redefine the fields in terms
of mass eigenstates called massless and massive photons, which couples to the standard EM
current. Using this change of variable, Eq. (8.56) becomes, at first order in 𝜒,

ℒ = − 1
4𝜇0

�̄�𝜇𝜈 �̄�𝜇𝜈 + 𝑗𝜇
(
�̄�𝜇 − 𝜒𝜙𝜇

)
− 1

4𝜇0
𝜙𝜇𝜈𝜙𝜇𝜈 −

𝑚2
𝑈
𝑐2

2𝜇0ℏ2 𝜙
𝜇𝜙𝜇 , (8.58)

with 𝐹𝜇𝜈 = �̄�𝜇𝜈 − 𝜒𝜙𝜇𝜈. The field equations read

𝜕𝛼 �̄�
𝛽𝛼 = 𝜇0 𝑗

𝛽 , (8.59a)

𝜕𝛼𝜙
𝛽𝛼 = −𝜒𝜇0 𝑗

𝛽 −
𝑚2
𝑈
𝑐2

ℏ2 𝜙𝛽 . (8.59b)
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The antisymmetry of both strength tensors leads to the conservation of the electromagnetic
4-current 𝜕𝜇 𝑗𝜇 = 0, and the continuity equation for the DP field 𝜕𝜇𝜙𝜇 = 0, as shown in Section
7.3.2. Using the Lorenz gauge for EM, 𝜕𝜇�̄�𝜇 = 0, Eqs. (8.59) become

□�̄�𝛽 = −𝜇0 𝑗
𝛽 , (8.60a)

□𝜙𝛽 =
𝑚2
𝑈
𝑐2

ℏ2 𝜙𝛽 + 𝜒𝜇0 𝑗
𝛽 , (8.60b)

where □ = 𝜂𝜇𝜈𝜕𝜇𝜕𝜈 ≡ − 1
𝑐2 𝜕

2
𝑡 + ∇2. These equations admit two classes of solutions in vacuum

(where the current vanishes): a massless vector field (standard EM) and a massive one, the
latter being characterized by solutions :

𝜙𝛽 = 𝑌𝛽𝑒 𝑖𝑘𝜇𝑥
𝜇+Φ , (8.61a)

�̄�𝛼 = 0 , (8.61b)

where 𝑘𝜇𝑘𝜇 = −(𝜔𝑈/𝑐)2 +
���®𝑘𝑈 ���2 = −𝑚2

𝑈
𝑐2/ℏ2, as derived in Eq. (7.7b), and where Eq. (8.61a)

is equivalent to Eq. (7.8). As can be noticed from Eq. (8.57), this solution induces an ordinary
electromagnetic field in a vacuum (see also [39])

𝐴𝛽 = −𝜒𝑌𝛽𝑒 𝑖𝑘𝜇𝑥
𝜇+Φ . (8.62)

Due to the coupling between the DP and the EM field (coupling characterized by the mixing
parameter 𝜒), the DP field will induce a small electromagnetic field, whose strength is pro-
portional to 𝜒 and to the DP field amplitude, see Eq. (8.62). Then the induced electromagnetic
field consists in an oscillating electric and magnetic fields of the form [39]

𝐸
𝑗

DM = −𝜕𝐴
0

𝜕𝑥 𝑗
− 𝜕𝐴 𝑗

𝜕𝑡
= 𝜒

(
𝑘
𝑗

𝑈
𝑌0 − 𝜔𝑈𝑌

𝑗
)

sin
(
𝜔𝑈 𝑡 − ®𝑘𝑈 · ®𝑥 +Φ

)
(8.63a)

𝐵
𝑗

DM = 𝜖𝑖 𝑗𝑘𝜕
𝑗𝐴𝑘 = −𝜒𝜖𝑖 𝑗𝑘𝑘 𝑗𝑈𝑌

𝑘 sin
(
𝜔𝑈 𝑡 − ®𝑘𝑈 · ®𝑥 +Φ

)
, (8.63b)

The magnetic component is suppressed by a factor 𝑣DM/𝑐 ∼ 10−3, therefore only the electric
field component will be considered in Chapters 10 and 11. In addition, if one considers that
®𝑘𝑈 = 0, we have 𝑌0 = 0 using the continuity equation 𝑘𝜇𝑌

𝜇 = 0, and the electric field does
not propagate, i.e

𝐸
𝑗

DM = −𝜒𝜔𝑈𝑌 𝑗 sin (𝜔𝑈 𝑡 +Φ) (8.63c)

where its amplitude is directly related to the local DM density (from Eq. (7.26))��� ®𝐸DM

��� = 𝜒𝑐
√

2𝜇0𝜌DM . (8.63d)

The idea of several experiments searching for DP is to focus this small electromagnetic field
in order to enhance it and hopefully make it detectable [41–46].
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Chapter 8 Couplings to Standard Model fields

8.3.3 UFF violation through the coupling with the 𝐵 − 𝐿 current

We now study the interaction between the vector field and the 𝐵 − 𝐿 current 𝑗𝜇B−L through
the coupling 𝜖, which reads [47, 48]

ℒ = − 1
4𝜇0

𝜙𝜇𝜈𝜙𝜇𝜈 −
𝑚2
𝑈
𝑐2

2𝜇0ℏ2 𝜙
𝜇𝜙𝜇 + 𝜖𝑒 𝑗

𝜇
B−L𝜙𝜇 , (8.64)

where the coupling is parameterized with respect to the usual EM charge 𝑒. Varying Eq. (8.64)
with respect to 𝜙𝜇 leads to its field equation

𝜕𝜈𝜙
𝜇𝜈 = −

𝑚2
𝑈
𝑐2

ℏ2 𝜙𝜇 + 𝜇0𝜖𝑒 𝑗
𝜇
B−L . (8.65)

The conservation of the 𝐵−𝐿 current leads to the continuity equation of the DP field 𝜕𝜇𝜙𝜇 = 0.
Therefore, one can simplify the field equation to

□𝜙𝜇 =
𝑚2
𝑈
𝑐2

ℏ2 𝜙𝜇 − 𝜇0𝜖𝑒 𝑗
𝜇
B−L . (8.66)

Using Eq. (8.11b), one finds the equation of motion for a test particle A in vacuum of mass
𝑚𝐴, velocity ®𝑣𝐴 and acceleration ®𝑎𝐴

𝑚𝐴®𝑎𝐴 = 𝜖𝑒[𝑄𝐴
B−L]

(
®𝐸DP + ®𝑣𝐴 × ®𝐵DP

)
, (8.67a)

where we have defined the 𝐵 − 𝐿 current associated to A as 𝑗𝜇B−L = (𝑐, ®𝑣𝐴)[𝑄𝐴
B−L]𝛿(3)

(
®𝑥 − ®𝑥𝐴

)
,

with [𝑄𝐴
B−L], the 𝐵 − 𝐿 charge of A, and where

®𝐸DP = −
𝜕 ®𝜙
𝜕𝑡
− ®∇𝜙0 =

(
−®𝑘𝑈𝑌0 + 𝜔𝑈 ®𝑌

)
sin

(
𝜔𝑈 𝑡 − ®𝑘𝑈 · ®𝑥 +Φ

)
(8.67b)

®𝐵DP = ®∇ × ®𝜙 =

(
®𝑘𝑈 × ®𝑌

)
sin

(
𝜔𝑈 𝑡 − ®𝑘𝑈 · ®𝑥 +Φ

)
, (8.67c)

using Eqs. (8.61a) and (8.63a) ( ®𝐸DP, ®𝐵DP = ®𝐸DM/𝜒, ®𝐵DM/𝜒), as we are considering the vacuum
solution of Eq. (8.66). Note that a static solution of such equation exists and is associated
with a Yukawa-type force sourced by a massive body.

The small galactic velocity implies that 1) | ®𝑘𝑈 |𝑐 ≪ 𝜔𝑈 , and together with the continuity
equation, 2) ®𝑘𝑈𝑌0 ≪ 𝜔𝑈 ®𝑌, such that Eq. (8.67a) simplifies to [25, 49–51]

®𝑎𝐴(𝑡 , ®𝑥) = 𝜖𝑒𝜔𝑈 ®𝑌
[𝑄𝐴

B−L]
𝑚𝐴

sin(𝜔𝑈 𝑡 − ®𝑘𝑈 · ®𝑥𝐴 +Φ) , (8.68)

which, in the same way as Eq. (8.12), violates UFF.
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Chapter 9

Search for axions with an optical cavity
and an optical fiber

Usually, cavities can be used to search for axion-photon coupling 𝑔𝑎𝛾 through the axion-
photon conversion under a strong magnetic field. This is the case for ADMX [1–5] or CAPP

[6–8] experiments. In practice, these experiments aim at detecting photons sourced by this
strong magnetic field and the DM axion field through the inverse Primakoff effect. Then, the
photons would resonate inside the cavity in order to increase drastically the signal. In this
case, the frequency of the produced photons correspond to the axion mass, and therefore
these experiments are sensitive to a very narrow mass interval (which is essentially the width
of the resonant frequency of the cavity).

Cavities can also search for this 𝑔𝑎𝛾 coupling through the effect derived in Section 8.2.3, i.e
the phase velocity difference between the left and right polarization of light. In the following,
we will consider an optical cavity to compute the phase observable. Then, in Chapter 18,
we will make some estimation on the sensitivity of the optical cavity used in the DAMNED

experiment [9]. We will show that unfortunately, such experiments are not competitive for
the search of the axion-photon coupling.

9.1 Birefringence and oscillation of the length of the cavity
We consider a setup where two optical cavities are used : one in which a linear polarized
light is used, i.e the phase velocity is exactly the speed of light 𝑐, and another where we send
a right polarized light. This could be done, e.g, by inserting a quarter wave plate in front
of one of the cavities which would change a linear polarization to a circular one. Then, we
measure the phase difference between the output of the two cavities.

From Eq. (8.31), the left and right circular polarized light respectively evolve with phase
velocity

𝑐

(
1 − 𝐸𝑃

𝑐2

√
4𝜋𝐺𝜌DM𝑔𝑎𝛾

𝑘
sin(𝜔𝑎𝑡 +Φ)

)
≡ 𝑐 − 𝛿𝑐 sin(𝜔𝑎𝑡 +Φ) (9.1a)

𝑐

(
1 + 𝐸𝑃

𝑐2

√
4𝜋𝐺𝜌DM𝑔𝑎𝛾

𝑘
sin(𝜔𝑎𝑡 +Φ)

)
≡ 𝑐 + 𝛿𝑐 sin(𝜔𝑎𝑡 +Φ) , (9.1b)
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with 𝜔𝑎 the oscillation frequency of the axion field, 𝐸𝑃 the reduced Planck energy and

𝛿𝑐 =

√
4𝜋𝐺𝜌DM𝐸𝑃𝑔𝑎𝛾

𝜔0
, (9.1c)

with 𝜔0 = 𝑘𝑐, the unperturbed light angular frequency. In this model, the cavity length ℓ is
unchanged, but is directly related to the light travel time 𝜏↔(𝑡) inside the cavity as

2ℓ =
∫ 𝜏↔(𝑡)

0
𝑐(𝑡′)𝑑𝑡′ , (9.2)

where 𝑐(𝑡) is the time dependent phase velocity of light whose exact form depends on the
light polarization Eq. (8.31). Assuming a right handed photon starting its propagation at the
left mirror at time 𝑡 − 𝜏↔(𝑡), it will come back to the same spatial point at time t, where the
travel time is given by

𝜏↔(𝑡) =
2ℓ
𝑐
−

∫ 𝑡

𝑡−𝜏←

𝛿𝑐←(𝑡′)
𝑐

𝑑𝑡′ −
∫ 𝑡−𝜏←

𝑡−𝜏←−𝜏→

𝛿𝑐→(𝑡′)
𝑐

𝑑𝑡′ , (9.3a)

where 𝜏→ and 𝜏← are the time intervals the photon takes on the trip there and back respec-
tively and

𝛿𝑐→(𝑡) = +𝛿𝑐 sin(𝜔𝑎𝑡 +Φ) (9.3b)
𝛿𝑐←(𝑡) = −𝛿𝑐 sin(𝜔𝑎𝑡 +Φ) , (9.3c)

respectively for right and left handed polarizations, since the photon has opposite circular
polarization on the way there and back due to the mirror reflection. Indeed, the mirror
reverses one of the linear polarizations while keeping the other unchanged, which implies
that a circular polarization changes other (up to an irrelevant phase) We can then interpret
this oscillation of phase velocity of light as an oscillation of the cavity length itself, i.e we can
write

𝜏↔(𝑡) =
2(ℓ + 𝛿ℓ (𝑡))

𝑐
, (9.4a)

where

𝛿ℓ (𝑡) = 𝛿𝑐 𝑓 (𝑡) , (9.4b)

with

𝑓 (𝑡) = 1
2

[∫ 𝑡

𝑡−𝜏←
sin(𝜔𝑎𝑡

′ +Φ)𝑑𝑡′ −
∫ 𝑡−𝜏←

𝑡−𝜏←−𝜏→
sin(𝜔𝑎𝑡

′ +Φ)𝑑𝑡′
]
. (9.4c)

As we are interested in the first order solution of the phase shift in the perturbation 𝑔𝑎𝛾, and
since 𝛿𝑐 = 𝒪(𝑔𝑎𝛾), we can solve explicitly 𝑓 (𝑡) at zeroth order in the perturbation, i.e using
𝜏← = 𝜏→ = 𝜏0 ≡ ℓ/𝑐 in the integral bounds

𝑓 (𝑡) = 2
𝜔𝑎

sin2
(
𝜔𝑎ℓ

2𝑐

)
cos

(
𝜔𝑎

(
𝑡 − ℓ

𝑐

)
+Φ

)
. (9.5)

such that the variation of length of the cavity becomes

𝛿ℓ (𝑡) =
√

16𝜋𝐺𝜌DM𝐸𝑃𝑔𝑎𝛾

𝜔0𝜔𝑎
sin2

(
𝜔𝑎ℓ

2𝑐

)
cos

(
𝜔𝑎

(
𝑡 − ℓ

𝑐

)
+Φ

)
(9.6)
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9.2 Phase shift at the output of the cavity
In order to obtain the phase shift of the electric field resulting from the length oscillation
Eq. (9.6), we will sum over a large number 𝑁 of field contributions that are reflected back
and forth in the cavity (i.e 𝑁 →∞).

The calculation is explicitly presented in Appendix A.1. Here, we immediately show the
amplitude of the phase shift (oscillating at the axion frequency 𝜔𝑎) between the transmitted
field and the input field as

|Δ𝜙(𝑡)| ≈
2
√

16𝜋𝐺𝜌DM𝐸𝑃𝑔𝑎𝛾

𝜔𝑎𝑐

√
1 − 2𝑟2 cos

(
2𝜔𝑎ℓ
𝑐

)
+ 𝑟4

sin2
(
𝜔𝑎ℓ

2𝑐

)
, (9.7)

where 𝑟 is the mirror reflectivity of the cavity. This means the phase observable is indepen-
dent of the laser frequency. When the axion frequency corresponds to an even mode of the
cavity, 𝜔𝑎ℓ/𝑐 = (2𝑛 + 1)𝜋, and considering that 𝑟 = 1 − 𝜖, 𝜖 ≪ 1, the signal scales in 𝜖−1,
and therefore increases drastically. This phase shift expression has not been derived in the
literature explicitly, in the case of the axion-photon coupling. In Chapter 18, we will use it
to derive the sensitivity of DAMNED to 𝑔𝑎𝛾.

9.3 Phase shift along an optical fiber
We now consider a very simple experiment where we use two fibers of same length L, in
which we send a left polarized light A in the first one and a right polarized light B in the other
one. At the output, we measure the phase shift between both light signals. Mathematically,
this situation is equivalent to having only one single fiber and sending both signals in the
two opposite directions of the fiber. Both signals have the same angular frequency 𝜔0 (at
zeroth order in the perturbation), and after having traveled through the fiber, the electric
fields have the form

𝐸𝐴(𝑡) = 𝐸0
𝐴𝑒
−𝑖𝜔0(𝑡−𝑡→) (9.8a)

𝐸𝐵(𝑡) = 𝐸0
𝐵𝑒
−𝑖𝜔0(𝑡−𝑡←) (9.8b)

with 𝑡← and 𝑡→ being respectively the time for the left and right polarized signals to cross
the full fiber. At the output of the fiber, the phase shift between the two electric fields is just
given by

Δ𝜙(𝑡) = 𝜔0(𝑡← − 𝑡→) (9.9a)

where

𝑡← =
𝐿

𝑐
−

∫ 𝐿/𝑐

0

𝛿𝑐←
𝑐

sin(𝜔𝑎𝑡 +Φ) (9.9b)

𝑡→ =
𝐿

𝑐
−

∫ 𝐿/𝑐

0

𝛿𝑐→
𝑐

sin(𝜔𝑎𝑡 +Φ) , (9.9c)
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where the amplitudes 𝛿𝑐→ = −𝛿𝑐← are given in Eq. (9.1c). Then, it is straightforward to find
the amplitude of the phase shift as

|Δ𝜙(𝑡)| =
2
√

16𝜋𝐺𝜌DM𝐸𝑃𝑔𝑎𝛾

𝜔𝑎𝑐

����sin
(
𝜔𝑎𝐿

2𝑐

)���� . (9.10)

Similarly as in the previous section, we will use this result to derive the sensitivity of an
optical fiber to 𝑔𝑎𝛾 in Chapter 18.
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Chapter 10

Search for dark photons in a microwave
cavity with Rydberg atoms

As mentioned in Section 8.3.2, an oscillating DP coupled to the standard electromagnetic
field will induce a small oscillating electric field in a vacuum. One very peculiar feature of
this electric field is that it does not propagate, i.e. its wave-vector vanishes ®𝑘𝑈 = 0 (to first
order in 𝑣DM/𝑐). This is due to the fact that this electric field is induced by a massive vector
field and therefore its dispersion relation is given by Eq. (7.7b). In this chapter, we will show
how an electromagnetic cavity can be used to search for the electric field induced by a DP.
In addition, we will show how to use atoms as a tool to detect this electric field through the
Stark effect, i.e. the displacement of the energy levels of an atom under a perturbation by a
static electric field (or by an electric field whose frequency is much lower than the transition
frequency of the atom). This experimental proposal to search for DP using atoms inside a
microwave cavity is the object of a published article [10].

There are mainly two reasons to consider a cavity as an experiment to search for DP. First
of all, as for other DP experiments using resonators, the mirrors of the cavity will enhance the
electric field induced by the DP. Indeed, the electric field parallel to the surface of a perfect
conductor has to vanish. Therefore, because of the presence of the oscillating DP-induced
electric field, the mirror will generate a standard electromagnetic field that will propagate
perpendicularly to the mirror and whose amplitude is such that it will cancel the DP-induced
field parallel to the surface. Physically, the DP-induced electric field will induce an oscillation
of the electrons within the mirror which will create a standard electromagnetic field. Since a
cavity consists in two mirrors, this boundary condition can, under some conditions, produce
resonances that will significantly enhance the small DP-induced electric field.

The second reason to consider a cavity is related to the use of atoms to measure the
electric field inside the cavity through the Stark effect, which is sensitive to the square of
the electric field. If one applies a standard electromagnetic wave inside the cavity (whose
electric field will be denoted by ®𝐸𝐴) the DP contribution to the square of the electric field
inside the cavity is ∼ ®𝐸DM · ®𝐸𝐴 (to first order in 𝜒, the kinetic mixing between EM and DP),
which can also be enhanced by a resonant ®𝐸𝐴. In addition to enhancing the amplitude of the
signal to be measured, applying an external field is also important to produce a signal at low,
but non-zero, frequency, where the Stark effect can be realistically measured. More precisely,
for a cavity whose length is of the order of a few cm, we will be interested in searching for
DP oscillating at a frequency 𝑓𝑈 = 𝜔𝑈/2𝜋 of the order of a few GHz. The difficulty is that
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such a rapid oscillation of the atomic transition frequency will be very hard to measure as
the interrogation cycle of the atoms is much longer. But, if one applies en external field at a
angular frequency 𝜔𝐴 which is close to 𝜔𝑈 , then the cross term between the DP electric field
and the applied electric field will have a component oscillating at the low angular frequency
|𝜔𝑈 − 𝜔𝐴 |, which can be measured by the atoms.

As in the previous chapter, we will compute the expected signal, leaving the experimental
parameters free. Afterwards, in Chapter 17, we will discuss the sources of noise of such
experiment, and in Chapter 18, we will derive the expected sensitivity of the experiment to
the 𝜒 coupling, by considering specific experimental parameters.

10.1 Contributions from dark photons and applied electric
field inside the cavity

In this section, we derive the electric field induced by both the DP and the applied field at the
center of the cavity. We summarize the methodology, the derivation and discuss the main
results.

The finesse ℱ of a cavity is a measure of the narrowness of resonances 𝛿 𝑓 compared
to their frequency. More precisely, it is defined as the ratio between 𝛿 𝑓 and the frequency
separation of resonances Δ 𝑓

ℱ =
Δ 𝑓

𝛿 𝑓
, (10.1)

which is frequency independent. Considering a cavity consisting of two flat mirrors of
reflectivity 𝑟 separated by a distance 𝐿1, we can relate the reflectivity and the finesse of a
cavity through (ℱ ≫ 1)[11]

𝑟 ≈ 1 − 𝜋

2ℱ . (10.2)

While the finesse is usually associated to an optical cavity, it is the quality factor 𝑄 that is a
more common parameter for microwave cavities. The quality factor is usually defined as the
ratio between the energy stored inside the cavity with the energy dissipated. It then becomes
obvious that finesse and quality factor are two quantities profoundly connected. The quality
factor can also be defined as [11]

𝑄 =
𝑓

𝛿 𝑓
, (10.3)

Although being frequency dependent, one can notice that the quality factor of the first
resonance of the cavity corresponds exactly to the finesse. In the following of this chapter,
we will assume only the first resonances of our microwave cavity, such that ℱ ∼ 𝑄.

The principle of calculation is similar for both the DP and the applied electric fields and
has already been used in Chapter 9.2, inspired from [12]. The idea is to propagate the electric
field an infinite number of round trips inside the cavity and to sum these infinite number

1For simplicity, we assume that the transverse size of the mirrors is≫ 𝐿,𝜆, where 𝜆 is the wavelength of the
fields of interest.
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of contributions at a given location. To perform cavity round trips, the field is propagated
along one direction and when it reaches a mirror, its amplitude is multiplied by −𝑟 and its
wave-vector is flipped. For 𝑟 < 1, the infinite sum converges and can be calculated explicitly.

𝑥
𝑦

𝑥 = − !
"

𝐸!"

𝐸#

𝑧

𝐸!",||

𝑥 = !
"Rydberg 
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Applied EM 
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Figure 10.1: Experimental scheme that we propose for the search of the DP-photons coupling
: an external field (in blue) is applied at the cavity edge. The standing DP electric field (in
yellow) generates a propagating electric field inside the cavity (in orange). At the center of
the cavity, the transition frequency of Rydberg atoms is impacted by |𝐸 |2 through the Stark
effect (see text.).

First, let us apply this procedure to the applied external field. We assume that the external
electric field is applied on the left edge of the cavity, see Fig. 10.1. Ideally, the applied field
can be parameterized as ®𝐸𝐴 = ®𝑋𝐴ℜ

[
𝑒−𝑖(𝜔𝐴𝑡−𝑘𝐴(𝑥+ 𝐿2 )+𝜙𝐴)

]
, with its amplitude 𝑋𝐴, angular

frequency 𝜔𝐴 and phase 𝜙𝐴. Still assuming a transmission coefficient of the mirror
√

1 − 𝑟2,
the first contribution at the center of the cavity reads

®𝐸0
𝐴(𝑥 = 0, 𝑡) =ℜ

[√
1 − 𝑟2 ®𝑋𝐴𝑒−𝑖(𝜔𝐴𝑡−𝑘𝐴

𝐿
2+𝜙𝐴)

]
. (10.4)

This contribution propagates until the other cavity boundaries, gets reflected once with
coefficient −𝑟 such that boundary conditions are respected, then comes back to the center,
implying that the second contribution reads

®𝐸1
𝐴(𝑥 = 0, 𝑡) = −𝑟 ®𝐸0

𝐴

(
𝑥 = 0, 𝑡 + 𝐿

𝑐

)
=ℜ

[
−𝑟
√

1 − 𝑟2𝑒 𝑖𝑘𝐴𝐿 ®𝑋𝐴𝑒−𝑖(𝜔𝐴𝑡−𝑘𝐴
𝐿
2+𝜙𝐴)

]
, (10.5)

the additional phase 𝑒 𝑖𝑘𝐴𝐿 shows the time delay of 𝐸1 compared to 𝐸0 after half a round-trip.
This occurs several times and after an infinite number of round trips 𝑁 , the full contribution
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of the external applied field inside the cavity is

®𝐸tot
𝐴 (𝑥 = 0, 𝑡) =

𝑁=+∞∑
𝑛=0

®𝐸𝑛𝐴(𝑥 = 0, 𝑡) (10.6a)

=
√

1 − 𝑟2 ®𝑋𝐴ℜ
[
𝑒−𝑖(𝜔𝐴𝑡+𝜙𝐴)

𝑒 𝑖
𝑘𝐴𝐿

2

1 + 𝑟𝑒 𝑖𝑘𝐴𝐿

]
(10.6b)

≡ ®𝐴(𝜔𝐴) cos(𝜔𝐴𝑡 + 𝜙𝐴) + ®𝐵(𝜔𝐴) sin(𝜔𝐴𝑡 + 𝜙𝐴) , (10.6c)

where we assumed 𝑟 < 1 such that 𝑟𝑁 → 0 and with

®𝐴(𝜔𝐴) =
®𝑋𝐴 (1 + 𝑟)

√
1 − 𝑟2 cos

(
𝜔𝐴𝐿
2𝑐

)
1 + 2𝑟 cos(𝜔𝐴𝐿𝑐 ) + 𝑟2

, (10.7a)

®𝐵(𝜔𝐴) =
®𝑋𝐴 (1 − 𝑟)

√
1 − 𝑟2 sin

(
𝜔𝐴𝐿
2𝑐

)
1 + 2𝑟 cos(𝜔𝐴𝐿𝑐 ) + 𝑟2

. (10.7b)

One can notice a resonance at the center of the cavity for even modes of the cavity, as expected.
Let us now focus on the contribution from the DP field. From Eqs. (8.63c), one can,

without loss of generality, write the expression of the electric field related to the DP as
®𝐸DM = ®𝑋DMℜ

[
𝑒−𝑖𝜔𝑈 𝑡

]
= 𝑋DM𝑒DMℜ

[
𝑒−𝑖𝜔𝑈 𝑡

]
where 𝑒DM is a unit vector characterizing the

polarization of the DP field and 𝑋DM = 𝜒𝑐
√

2𝜇0𝜌DM (from Eq. (8.63d)), and where the
phase of the field Φ disappeared because it can be reabsorbed in 𝜙𝐴 when computing the
interference between the DP and applied fields. Because of this electric field, both mirrors
will generate a propagating standard electromagnetic field such that the total component of
the electric field parallel of the mirrors’ surface vanishes. The same procedure as above can
be realized to know the DM electric field amplitude at the center of the cavity. The subtleties
of this calculation are that : 1) the field is emitted by the mirrors towards the center of the
cavity, therefore the transmission coefficient

√
1 − 𝑟2 factor is not present ; 2) only the DM

polarization transverse to the mirror is re-emitted, noted ®𝑋DM,∥ ; and 3) there are two different
contributions, in phase, each being emitted from one of the edges of the cavity. The total DM
contribution at the center is then

®𝐸tot
DM(𝑥 = 0, 𝑡) =ℜ

[
®𝑋DM𝑒

−𝑖𝜔𝑈 𝑡 + 2 ®𝑋DM,∥𝑒
−𝑖(𝜔𝑈 𝑡− 𝑘𝐿2 ) 1

1 + 𝑟𝑒 𝑖𝑘𝐿

]
(10.8a)

≡ ®𝐶(𝜔𝑈) cos(𝜔𝑈 𝑡) + ®𝐷(𝜔𝑈) sin(𝜔𝑈 𝑡) , (10.8b)

with

®𝐶(𝜔𝑈) = ®𝑋DM +
2 ®𝑋DM,∥(1 + 𝑟) cos(𝜔𝑈𝐿2𝑐 )

1 + 2𝑟 cos(𝜔𝑈𝐿𝑐 ) + 𝑟2
, (10.9a)

®𝐷(𝜔𝑈) =
2 ®𝑋DM,∥(1 − 𝑟) sin(𝜔𝑈𝐿2𝑐 )

1 + 2𝑟 cos(𝜔𝑈𝐿𝑐 ) + 𝑟2
. (10.9b)

72



Chapter 10 Search for dark photons in a microwave cavity with Ryd . . .

The first term of Eq. (10.8a) corresponds to the background oscillating DM field at the center,
which is always present, even without the cavity. The second term is the DM contribution
from the cavity, which is almost equivalent, in its form, to the total contribution of the applied
field, with an additional factor two, due to the emission of a field from both edges of the
cavity (instead of only one for the applied field).

The calculations presented in this section have been carried out to leading order in 𝒪(𝜒).
In particular, at each interaction between the EM waves and the mirrors a small quantity of EM
energy will be transformed into DP. The amplitude of such a process is proportional to 𝜒 and
therefore neglected as it contributes terms of order 𝒪(𝜒2). Furthermore the corresponding
energy loss is much smaller than the one coming from the finite reflection coefficient 𝑟.

10.2 Total electric field squared

As mentioned in the beginning of this chapter, the main idea of the experiment proposed is
to detect the hypothetical electric field induced by the DP field by using atoms to measure it
through the quadratic Stark effect. The Stark effect consists in a shift in the energy levels of
an atom under the perturbation of a static (or slowly evolving2) electric field, and is given by
[13]

Δ𝜈 = −Δ𝛼2ℎ

��� ®𝐸���2 , (10.10)

at quadratic order in the electric field, thus the quadratic Stark effect, where ℎ is the Planck
constant, Δ𝜈 is the frequency shift induced by the slowly evolving electric field ®𝐸 and Δ𝛼 is
the differential polarizability of the atomic transition considered. Taking into account both
contributions from the applied electric field and the DP field computed previously, the total
electric field power at the center of the cavity is

| ®𝐸(𝜔𝑈 , 𝜔𝐴)|2 =

��� ®𝐸tot
𝐴 + ®𝐸

tot
DM

���2 =

(
®𝐴(𝜔𝐴) · ®𝐶(𝜔𝑈) + ®𝐵(𝜔𝐴) · ®𝐷(𝜔𝑈)

)
cos(Δ𝜔𝑡 + 𝜙𝐴)+ (10.11)(

®𝐵(𝜔𝐴) · ®𝐶(𝜔𝑈) − ®𝐴(𝜔𝐴) · ®𝐷(𝜔𝑈)
)

sin(Δ𝜔𝑡 + 𝜙𝐴) + constant and fast oscillating terms ,

with Δ𝜔 = 𝜔𝐴 − 𝜔𝑈 . In the following, we will not consider the constant terms. Indeed,
in the experimental scheme proposed here, we will be interested in the oscillatory behavior
of the atomic frequencies. Moreover, we discarded the fast oscillating terms whose angular
frequencies are 2𝜔𝐴, 2𝜔𝑈 or 𝜔𝐴 + 𝜔𝑈 , with periods (𝒪(10−9) s) much shorter than the atom
interrogation time, such that on average, their impact vanishes.

From Eq. (10.11), the signal amplitude can be written as (see Appendix A.2 for more
details)

√
1 − 𝑟2𝑋𝐴𝑋DM𝛽√

1 + 2𝑟 cos(𝜔𝐴𝐿𝑐 ) + 𝑟2

√√
1 + 4

1 + (1 + 𝑟) cos(𝜔𝑈𝐿2𝑐 )
1 + 2𝑟 cos(𝜔𝑈𝐿𝑐 ) + 𝑟2

≡ 𝜒𝑆(𝜔𝑈 , 𝜔𝐴; 𝜌DM, 𝑋𝐴; 𝐿, 𝑟) , (10.12a)

2As long as the angular frequency of oscillation is much smaller than the atomic transition angular frequency
from state k to i, Δ𝜔 ≪ 𝜔𝑖𝑘 .

73



Chapter 10 Search for dark photons in a microwave cavity with Ryd . . .

where

𝛽 = 𝑒DM ·
®𝑋𝐴
𝑋𝐴

, (10.12b)

and 𝑋DM ∝ 𝜒, following Eq. (8.63d).
If the polarization is fixed and does not change each coherence time, 𝛽 = cos𝜃, with 𝜃 the

angle between ®𝑋𝐴 and ®𝑋DM. If the DP field is isotropically distributed 𝛽 = 1/
√

3. To avoid
any orthogonality between the two polarizations, i.e 𝛽 = 0, one must run the experiment for
a significant time, i.e at least several days (see discussion in [14]). In Fig. 10.2 are shown 3D

Figure 10.2: Signal contribution Eq. (10.12a) (arb. units) as function of𝜔𝑈 , 𝜔𝐴, both presented
in units of 𝑐/𝐿. The resonance peaks appear clearly when both frequencies correspond to an
odd mode of the cavity.

plots of the signal contribution Eq. (10.12a) as function of the angular frequencies of the DM
field 𝜔𝑈 and the applied field 𝜔𝐴. One can notice the various resonance peaks when both
frequencies correspond to an odd mode of the cavity. In the experiment scheme presented
here, we require the two frequencies to be close, hence we are only interested in regions
where 𝜔𝑈 ∼ 𝜔𝐴. This corresponds to the diagonal of the plot seen from the top. However,
in other types of experiment where both frequencies could be separated by some hundreds
of MHz or more, other regions of this plot could be studied.

The amplitude of the signal is linear in 𝜒 and depends non-linearly on the local DM
density, on the amplitude and frequency of the applied external field and on the mass
(𝑚𝑈 𝑐2 = ℏ𝜔𝑈 ) of the DP field. It depends also on some geometric factor of order unity that
characterizes how the detector couples to the DP field polarization.

For DM and applied frequencies close to odd resonances of the cavity, i.e 𝜔𝑈𝐿/𝑐 ≈
𝜔𝐴𝐿/𝑐 ≈ 𝜋+2𝑛𝜋, with 𝑛 ∈ N, the amplitude Eq. (10.12a) becomes proportional to the quality
factor 𝑄, as expected. Additionally, as it is also proportional to the injected amplitude 𝑋𝐴,
we directly see the interesting feature of looking at the field squared amplitude, the applied
field acting as an amplification for the DM field.

Finally, the signal we are interested in consists in atomic frequency oscillations with
respect to an unperturbed reference

𝜈(𝑡) = 𝜈0 + Δ𝜈 cos
(
Δ𝜔𝑡 + 𝜙

)
, (10.13a)
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whose amplitude is given by

Δ𝜈 = −𝜒
Δ𝛼𝑆(𝜔𝑈 , 𝜔𝐴; 𝜌DM, 𝑋𝐴; 𝐿, 𝑟)

2ℎ , (10.13b)

which depends on both the applied external field and the DP field.

10.3 Measurement with atoms through the quadratic Stark
effect

10.3.1 Rydberg atoms
The transition frequency measurement can be performed using a regular atomic clock, which
allows very good uncertainty on the frequency measurement, but is not very sensitive to the
Stark effect e.g. for the 5𝑠2 1𝑆0 → 5𝑠5𝑝 3𝑃0 clock transition in Sr the differential polarizability
Δ𝛼/2ℎ ≈ 3.1 × 10−6 Hz/(V/m)2 [15], thus requiring a strong applied field.

To overcome this lack of sensitivity to 𝐸2, “regular” atoms can be replaced by Rydberg
atoms, which are in a quantum state with high principal quantum number 𝑛 [16]. The
electrons are much further from the nucleus thus the atom has much higher polarizability.
For large 𝑛 the corresponding polarizabilities in Sr can reach Δ𝛼/2ℎ ≈ 105 Hz/(V/m)2

(𝑛 > 60) [17].
Typically, 𝑆𝑟 Rydberg measurements use laser cooled 𝑆𝑟 atoms that are excited to Rydberg

states using two photon transitions [17, 18] and direct spectroscopy of e.g. the 5𝑠5𝑝 3𝑃1 →
5𝑠𝑛𝑠 3𝑆1 transition is performed, with 𝑛 up to 81 [17, 18]. We give a more explicit summary
of the measurement process done in [18]. The atoms are initially in a given atomic state |𝑖⟩
and they transition to a Rydberg state |𝑟⟩ using a UV beam whose frequency (of the order
of some hundreds of THz) is continuously controlled to match the transition frequency, that
can be perturbed by, e.g., environmental noise. More explicitly, this UV beam is locked
on a reference cavity, whose length is modified using a piezo-tuning. This spectroscopic
measurement allows one to determine the Rydberg transition frequency with or without the
effect of the DP-EM coupling. Now, let us add the effect of such coupling. The quadratic
electric field induces a Stark shift on the Rydberg state, implying that at a given time 𝑡, the
transition frequency corresponds to 𝜈(𝑡) from Eq. (10.13a). Therefore, in order to maximize
the transition probability, the UV light will continuously follow 𝜈(𝑡), and therefore it will
also slowly oscillate at Δ𝜔. Afterwards, when the electrons have transitioned to the Rydberg
state, another laser pulse is used to ionize them and a small electric field is used to drift the
ions to a metallic plate and count them. By counting the ions, one can infer the number of
atoms which made the transition to the Rydberg state and therefore measure their transition
frequency from the UV beam.

10.3.2 Bandwidth of detection
In order to see the oscillations at Δ𝜔 in the total field power Eq. (10.11), we require the DM
and the applied fields to have different frequencies. We also require the Nyquist frequency
of the apparatus to be higher than the angular frequency of the signal Δ𝜔 < 𝜋 𝑓𝑠 to be able to
detect any oscillatory behavior in the transition frequency of the atoms.
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For a given applied angular frequency𝜔𝐴, sampling frequency 𝑓𝑠 , Rydberg atoms perform
the measurements of the electric field squared during 𝑇obs at an angular frequency Δ𝜔 (more
precisely, 𝑇obs × 𝑓𝑠 measurements will be taken for each 𝜔𝐴). The time 𝑇obs is arbitrary; if
it is longer than the measurement process comprising excitation and ionisation, one has to
prepare again the atoms to their Rydberg state after de-excitation accordingly. As detailed
above, the experiment is sensitive to any Δ𝜔 such that 2𝜋/𝑇obs ≤ |Δ𝜔 | ≤ 𝜋 𝑓𝑠 , which, in terms
of DM angular frequency, is equivalent to

𝜔𝑈 ∈ [𝜔𝐴 − 𝜋 𝑓𝑠 ; 𝜔𝐴 −
2𝜋
𝑇obs
] ∪ [𝜔𝐴 +

2𝜋
𝑇obs

; 𝜔𝐴 + 𝜋 𝑓𝑠] . (10.14)

This consists in one measurement sequence which will probe the range of DP masses cor-
responding to Eq. (10.14). The logic of the experiment is then to shift the frequency of the
applied electric field to scan another part of the mass range. By applying this procedure for
various well chosen 𝜔𝐴, one can scan a large part of the DP mass range.

This scheme can be repeated N times, as much as time allows. At the end of this loop,
the total experimental time is simply 𝑇tot = 𝑁𝑇obs. The corresponding total DM frequencies
band scanned is 𝑓tot = 𝑁 𝑓𝑠 = 𝑇tot 𝑓𝑠/𝑇obs. The larger the total experimental time, the larger the
band of scanned DM frequencies. Additionally, the blind spots at exact 𝜔𝐴 can be avoided,
and sensitivity can be optimised (see below) by shifting 𝜔𝐴 by a little less than 2𝜋 𝑓𝑠 , at the
expense of increasing the overall experimental duration.

For DM frequencies in the GHz range, the coherence time of the DM field Eq. (5.11)
𝜏(𝜔𝑈/2𝜋) ∼ 10−3 s, i.e it will be considered much smaller than 𝑇obs, of the order of several
seconds.

Here, we have presented the experimental scheme of an experiment involving Rydberg
atoms inside a microwave cavity for the detection of the EM-DP coupling 𝜒. In Chapter
17, we will discuss the sources of noises of the apparatus, which will allow us to derive an
expected sensitivity of the experiment in Chapter 18.
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Chapter 11

Search for dark photons using dish
antennas

As a reminder, DP will induce an electric field everywhere in space due to its kinetic mixing
with EM. In Chapter 10, we focused on an experiment to enhance this electric field with a
cavity. In this chapter, we will focus on a different way to enhance this electric field, using a
spherical dish antenna. Indeed, one can use a dish antenna to focus the small electric field in
order to enhance it inside a detector located at the curvature center of the mirror [1–9]. One
of the main assumptions used in existing studies is that the power generated by the dish is
entirely focused on the curvature center, hence can be detectable by the detector [10].

In this chapter, we will show that this assumption is too optimistic and we will derive
an improved modeling for such experiments. More precisely, we will derive analytically the
EM field measured by the antenna detector which is highly dependent on the DP Compton
frequency. This is done in two steps: (i) we compute the electric field at the location of the
antenna and (ii) we determine how much of this electric power is measured by the antenna.
This study is the object of an article [11] published in Physical Review D.

11.1 Electromagnetic emission from the dish
For our analysis, we consider a dish of radius 𝑟 and curvature radius 𝑅, as depicted in
Fig. 11.1, which works as an EM reflector of the oscillating electric field Eq. (8.63c). Indeed,
boundary conditions ®𝐸tot,∥ = 0 at the edge of the dish requires the emission of a regular EM
wave, at every point of the dish, directed according to the normal vector of the dish, and
with same frequency as the background DM oscillating field, i.e it has the form

®𝐸𝐷(𝜃, 𝜑) = 𝑖𝜒𝜔𝑈 ®𝑌∥ ,𝐷(𝜃, 𝜑)𝑒−𝑖𝜔𝑈 𝑡 , (11.1)

with ®𝑌∥ ,𝐷(𝜃, 𝜑) the component of the DP polarization vector ®𝑌 defined in Eq. (8.61a), parallel
to the radial vector at cylindrical coordinates (𝜃, 𝜑) such that the electric field parallel to the
dish vanishes at the mirror’s surface. In addition, we choose a coordinate system whose
origin is at the curvature center of the dish.

In the literature (see e.g [10]), one of the main assumptions used in this kind of experiment
is that provided that the diameter of the dish 𝑑dish ≫ 𝜆, the wavelength of the emitted field
(i.e the Compton wavelength of the DP field), diffraction effects are negligible and the power
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𝑧

𝑦

𝑳𝑨𝟐 	→ ∞

𝑹𝑨𝟑 → ∞
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𝑨𝟐

𝑨𝟐

𝑳𝑨𝟐 	→ ∞

𝑨𝟏

𝑹
𝒓

Figure 11.1: The oscillating standing DP electric field ®𝐸DM is shown with red arrows. The
dish emitter in black, with curvature center shown in purple, acts as reflector and emits a
classic propagating electric field ®𝐸D in green. The Kirchhoff integral boundary surfaces 𝐴
considered for the computation of the electric field Eq. (11.6) are shown in blue (in addition
to the dish, surface 𝐴1). It consists of the junction of a semi-sphere centered on the curvature
center of the dish with infinite radius (surface 𝐴3), and one additional vertical infinite plane
surfaces to close the boundary surface (surface 𝐴2). This closed surface is chosen such that
the contributions from surface 𝐴2 and 𝐴3 are zero at the curvature center of the dish.

generated by the dish is entirely focused on the curvature center of the mirror [10]. If we
further assume that the field is homogeneous over the surface of the spherical mirror 𝐴dish
(i.e the DM field coherence length ℓDM = ℏ/𝑚DM𝑣DM ≫ 𝑑dish), this total power emitted is
[10]

𝑃emit = 𝐴dish⟨|𝐸𝐷(𝜃, 𝜙)|2⟩ = ⟨𝛽2⟩𝐴dish𝜒
2𝜌DM𝑐 (11.2)

where 𝛽 is the projection of the DP field on the surface of the dish, similarly defined as
in Eq. (10.12b) and ⟨⟩ represents the average value over the surface. Assuming random
polarization scenario, 𝛽 = 2/3, as we consider a planar emitter.

While all previous analysis were based on these assumptions, we will show in this chapter
that they are over-optimistic. Indeed, we will provide a more detailed modeling of such
experiments by deriving properly the propagation of this emitted field from the dish using
Kirchhoff integral. We will show that the amount of power received at the curvature center
does depend on a various number of parameters, mainly the Compton frequency of the DP
field, and that in some cases, reaches only a few percent of the emitted power, even when
the radius of the dish is larger than the wavelength by more than one order of magnitude,
i.e when diffraction effects appear negligible.
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11.2 Propagation of the field from the dish to an antenna
In this section, we will derive the expression of the total electric field induced by the reflection
of the DP field by the dish at a given location. In Sec. 11.2.1, we will give a brief overview of
the Kirchhoff method and show that it cannot be directly used to get an analytical expression
of the electric field. Instead, we will decompose the problem into two sub-problems. First,
we will propagate the field from the dish to the plane closing the dish (displayed in orange
in Fig. 11.2) using an approximation of the Kirchhoff method valid for thin optical element
as presented in Sec. 11.2.2. Subsequently, in Sec. 11.2.3, we will propagate the electric field
from the plane to the position of the detector using exactly the Kirchhoff method.

11.2.1 Kirchhoff integral
The Kirchhoff theorem allows one to solve the wave equation at a given position ®𝑥 by
computing an integral over a closed surface around ®𝑥 [12]. In practice, this means that one
can derive the electric field at position ®𝑥 as function of the field at all points on this closed
surface.

In this formalism, the temporal dependence of the field is separated from its spatial
dependence. Therefore, we decompose the emitted electric field at the dish’s surface as

®𝐸𝐷(®𝑥′, 𝑡) =ℜ[ ®𝑈𝐷(®𝑥′)𝑒−𝑖𝜔𝑡] , (11.3)

where the complex function ®𝑈𝐷(®𝑥′) denotes the spatial part of the field and ®𝑥′ is a point on
the dish’s surface.

We now consider a closed surface, denoted A, which encloses the point ®𝑥 where the value
of the field is calculated. From Kirchhoff integral theorem, the general expression of ®𝑈𝐷 is
[12],

®𝑈𝐷(®𝑥) =
∫
𝐴

dS′
(
®𝑈𝐷( ®𝑥′)(�̂�′ · ®∇𝐺(®𝑥, ®𝑥′)) − 𝐺(®𝑥, ®𝑥′)(�̂�′ · ®∇) ®𝑈𝐷( ®𝑥′)

)
, (11.4)

where �̂�′ is a unit vector normal to the surface A directed inwardly, the derivatives are with
respect to the emission coordinates 𝑥′ and 𝐺 is a Green function, appropriately defined for
the situation.

In the situation depicted in the previous section, from Eq. (11.1), we know exactly the
components of the electric field at the surface of the emitting dish. Therefore, an appropriate
Green function is the Dirichlet Green function 𝐺𝐷 [12]

𝐺𝐷(®𝑥, ®𝑥′) = 0 ∀ ®𝑥′ ∈ 𝐴 . (11.5)

Then, Eq. (11.4) becomes

®𝑈𝐷(®𝑥) =
∫
𝐴

dS
(
®𝑈𝐷( ®𝑥′)(®∇𝐺𝐷(®𝑥, ®𝑥′) · �̂�′)

)
. (11.6)

In the following of the chapter, unless otherwise specified, whenever we mention electric
fields, we refer to ®𝑈𝐷 , i.e its spatial part, following Eq. (11.6).
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Figure 11.2: To compute the electric field induced by the dish at a location 𝑃 at cylindrical
coordinates (𝜌, 𝜙, 𝑧), we first propagate the electric field emitted by the spherical dish (in
light grey) into the fictional plane (in orange) following Eq. (11.7). Then, we propagate this
electric field to the receiver using the Kirchhoff integral. This procedure is valid only for
a spherical dish with low curvature, i.e whose radius 𝑟 is much smaller than its curvature
radius 𝑅.

In the present situation, the closed surface A is appropriately defined by the junction of
the dish, a surface with radius 𝑅→∞ and one additional plane surface along (𝑥, 𝑦) plane to
close the surface, such that only the field emitted by the dish will contribute. The Kirchhoff
integral surface boundary is shown in blue in Fig. 11.1.

Our system is therefore composed of a spherical dish and Eq. (11.6) requires the derivation
of a Dirichlet Green function for a portion of sphere. However, no analytical expression has
been found for such geometry, which makes it impossible to find an exact analytical solution
for our problem. Instead, we will decompose the problem into two sub-problems: using an
approximation, we will propagate the electric field from the dish to the plane closing the
dish (see Fig. 11.2) and then, using the Kirchhoff integral, from the plane up to the detector.

11.2.2 Propagation of the electric field from the dish to the plane
This situation is depicted in Fig. 11.2, where the distance between the fictional plane (orange
on the figure) and the dish at coordinates 𝑥 = 𝑦 = 0 is noted 𝑎.

As mentioned above, it is not possible to find an analytical solution to Eq. (11.6) for this
particular geometry. Instead, we use the thin optical element approximation presented in
details in Sec. 2.2.7 from [13] which allows one to find an analytical expression for the field
®𝑈(®𝑥) of Eq. (11.6) on this fictional plane. This approximation is valid if the two following
conditions are fulfilled:

• The transverse propagation modes 𝑝, 𝑞 (which can be viewed as the coordinates of the
wavevector in the 𝑥 − 𝑦 plane [13]) need to be much smaller than the longitudinal one
𝑘. In our case, the transverse modes are determined by the spatial extent of the dish
antenna in the 𝑥 − 𝑦 plane Δ𝑥,Δ𝑦, with 𝑝 ∼ 𝑞 ∼ 1/Δ𝑥 ∼ 1 m−1 ≪ 𝜔𝑈/𝑐 = 𝑘 ∼ 103 m−1,
in the GHz range. In addition, the galactic velocity distribution in the DM halo induces
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a transverse contribution [14], of the order of 𝜔𝑈𝑣DM/𝑐2 ∼ 3 × 10−3 m−1 ≪ 𝜔𝑈/𝑐 ∼ 𝑘.
Therefore, this condition is fulfilled.

• The dish needs to have a low curvature, or in other words, the radius is much smaller
than the curvature radius 𝑟 ≪ 𝑅. Therefore, in the following, we will restrict ourselves
to low curvature dish emitter.

A straightforward but lengthy calculation presented in details in [13] shows that, under the
conditions detailed above, the Kirchhoff integral Eq. (11.6) simply reduces to

®𝑈𝑃

(
𝑥, 𝑦, 𝑧plane

)
= −𝑒 𝑖𝑘 𝑓 (𝑥,𝑦) ®𝑈𝐷 (𝑥, 𝑦, 𝑧dish (𝑥, 𝑦)) , (11.7)

where ®𝑈𝐷 is the electric field emitted by the dish and ®𝑈𝑃 is the electric field at the location
of the closing plane. Furthermore, the function 𝑓 (𝑥, 𝑦) = 𝑧dish (𝑥, 𝑦) − 𝑧plane is the surface
equation of the dish. In other words, within the approximation of thin optical element, the
curvature of the dish translates into simple phase factors determined by the distance between
the closing plane and the dish [13].

We now introduce a cylindrical coordinate system (𝜌, 𝜙, 𝑧), see Fig. 11.2. Because of the
cylindrical symmetry, the surface equation that writes

𝑓 (𝑥, 𝑦) = 𝑓 (𝜌) =
√
𝑅2 − 𝜌2 − 𝑅 + 𝑎 ≈

𝑟2 − 𝜌2

2𝑅 , (11.8)

depends only on the cylindrical coordinate 𝜌, where we used 𝑎 ≈ 𝑟2/2𝑅, since the dish is a
portion of sphere, with small curvature.

Inserting the spatial part of the field on the dish from Eq. (11.1) into Eq. (11.7), we can
now estimate the expression of the field in this fictional plane as

®𝑈𝑃(𝜌, 𝜙, 𝑧plane) = −𝑖𝜒𝜔𝑈 𝑒 𝑖𝑘 𝑓 (𝜌) ®𝑌∥ ,𝐷(𝜌, 𝜙, 𝑧plane + 𝑓 (𝜌)) , (11.9)

where 𝜌 ≤ 𝑟 and 𝑧plane = 𝑅 − 𝑎 is the 𝑧-coordinate of the plane. This expression is only valid
in the thin optical element approximation, whose conditions are detailed at the beginning of
this section.

11.2.3 Propagation of the electric field from the plane to the receiver
We can now focus on the propagation from an emitting plane, a subject that has been vastly
treated in the literature, e.g in [12, 13]. The idea is to use the Kirchhoff integral from Eq. (11.4)
using an appropriate Dirichlet Green function that vanishes on the plane. In the case of a
plane emitter located at 𝑧plane = 𝑅 − 𝑎, such a Dirichlet Green function is given by

𝐺𝐷(®𝑥, ®𝑥′) =
𝑒 𝑖𝑘𝐿

′

4𝜋𝐿′ −
𝑒 𝑖𝑘𝐿

′′

4𝜋𝐿′′ , (11.10)

where [12, 13]

𝐿′ = | ®𝑥 − ®𝑥′| =
√
𝜌2 + 𝜌′2 − 2𝜌𝜌′ cos(𝜙 − 𝜙′) + (𝑅 − 𝑎 + Δ𝑧 − 𝑧′)2 (11.11a)

𝐿′′ = | ®𝑥 − ®𝑥′′| =
√
𝜌2 + 𝜌′2 − 2𝜌𝜌′ cos(𝜙 − 𝜙′) + (𝑅 − 𝑎 − Δ𝑧 − 𝑧′)2 , (11.11b)
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with ®𝑥′′ the point symmetrical to ®𝑥′ with respect to the plane. In Eq. (11.11), we defined

Δ𝑧 = 𝑧 − (𝑅 − 𝑎) , (11.12)

the difference of 𝑧 coordinates between the receiving point 𝑧 < 𝑧′ and the emitter on the
plane. One can easily show that this property leads to 𝐿′ = 𝐿′′ if 𝑥′ is on the plane and
therefore the required condition 𝐺𝐷(®𝑥, ®𝑥plane) = 0 is satisfied. To compute Eq. (11.6), we use
the directional derivative since �̂�′ = �̂�′

®∇𝐺𝐷(®𝑥, ®𝑥′) · �̂�′ =
𝜕𝐺𝐷
𝜕𝑧′

(11.13a)

= −(𝑖𝑘𝐿
′ − 1)(𝑅 − 𝑎 + Δ𝑧 − 𝑧′)𝑒 𝑖𝑘𝐿′

4𝜋𝐿′3
+ (𝑖𝑘𝐿

′′ − 1)(𝑅 − 𝑎 − Δ𝑧 − 𝑧′)𝑒 𝑖𝑘𝐿′′

4𝜋𝐿′′3
. (11.13b)

Now, plugging 𝑧′ = 𝑧plane and considering reception at ®𝑥 = (𝜌, 𝜙, 𝑧), we get

𝜕𝐺𝐷
𝜕𝑧′

���
z′ ∈ plane

= −(𝑖𝑘𝐿 − 1)Δ𝑧
2𝜋𝐿3 𝑒 𝑖𝑘𝐿 , (11.14)

with 𝐿 =
√
𝜌2 + 𝜌′2 − 2𝜌𝜌′ cos(𝜙 − 𝜙′) + (Δ𝑧)2.

Then, the electric field on the fictional plane propagating towards 𝑧 < 𝑅 − 𝑎 reads

®𝑈dish(𝜌, 𝜙, 𝑧) ≈ −
𝑖𝜒𝜔𝑈Δ𝑧

2𝜋

∫ 𝑟

0
𝑑𝜌′𝜌′𝑒 𝑖𝑘 𝑓 (𝜌

′)
∫ 2𝜋

0
𝑑𝜙′

𝑖𝑘𝐿 − 1
𝐿3 𝑒 𝑖𝑘𝐿 ®𝑌∥ ,𝐷(𝜌′, 𝜙′, 𝑓 (𝜌′) + 𝑅 − 𝑎) ,

(11.15)

This result provides the expression of the electric field induced by the DP field reflected by
the dish anywhere in space under the approximation that the dish is a thin optical element. In
particular, this formula includes diffraction effects that were implicitly neglected in previous
studies [10]. This integral is generally not solvable analytically and some approximations
might be made to simplify it.

11.3 Detection of the electric field with a horn antenna

While the previous section was devoted to the emission and propagation of the electric field
induced by the dark photon and enhanced by the dish, we will now focus on the detection
of this electric field. In this section, we consider the detection system to be a horn antenna
of long side 𝐴 and small side 𝐵. At the output of the antenna is located a resistance 𝑅0 such
that when an oscillating electric field is applied to the horn antenna, it is translated into a
measurable voltage.

We will compare two different approaches to estimate this measurement: the first one is
based on an analytical calculation which computes the overlap integral between the electric
field at the location of the antenna and the antenna mode ; the second one consists in using
the antenna gain factor provided by the antenna’s manufacturer.
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11.3.1 Computation using the modes overlap
Let us first consider an antenna of internal resistance 𝑅0 as an emitter by applying an oscil-
lating voltage 𝑉(𝑡) = 𝑉0 cos(𝜔𝑈 𝑡) to its terminals. The reciprocity theorem ensures that this
will be equivalent to considering the antenna as a receiver. As a result, the antenna will emit
an electric field predominantly in the TE10 mode, i.e. polarized parallel to the small side of
the rectangular horn, which is the most widely used fundamental mode for pyramidal horn
antennas [15].
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ẑ

<latexit sha1_base64="oATpkG9wB3LYHGXWHq49FtEeKPQ="></latexit>

x̂

<latexit sha1_base64="oZIHohrItyNFt4G42dc+ZwEAcIQ="></latexit>

ŷ
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Figure 11.3: Rectangular horn antenna
and definition of its physical surface
aperture.

Therefore, in a coordinate system with the 𝑧-axis
perpendicular to the surface aperture of the an-
tenna, as shown in Fig. 11.3, the electric field gen-
erated by the antenna can be written as

®𝐸ant(𝑡 , 𝑥, 𝑦, 𝑧) =ℜ
[
𝑉ant ®𝑀ant(𝑥, 𝑦)𝑒 𝑖(𝑘𝑧−𝜔𝑈 𝑡+𝜙)

]
,

(11.16)

where 𝜙 is the phase of the electric field and 𝑉ant
characterizes the amplitude of this field (Energy
conservation implies that 𝑉2

0 /2𝑅0 = 𝑉2
ant/2𝑍0,

where 𝑍0 = 376.7 Ω is the vacuum impedance.).

In general, horn antennas make an axial detection of the field, i.e. only on one single axis,
the small axis of the rectangular horn, the �̂� axis. The real antenna mode can be written as

®𝑀ant(𝑥, 𝑦) = 𝑚𝑇𝐸10 �̂� cos
(
𝜋𝑥
𝐴eff

)
, (11.17a)

where 𝐴eff is the effective width and 𝑚𝑇𝐸10 (dimension L−1) is a normalisation factor that
ensures the mode is normalized

∫
𝑑𝑆eff | ®𝑀ant(𝑥, 𝑦)|2 = 1 on the effective aperture of the

antenna, i.e.

𝑚𝑇𝐸10 =

√
2
𝑆eff

. (11.17b)

The effective aperture of the antenna 𝑆eff depends on the frequency 𝑓𝑈 = 𝜔𝑈/2𝜋 of the field
and in general differs from the physical aperture of the antenna. Indeed, the effective area of
the horn, which can be expressed as the product of an effective width 𝐴eff with an effective
height 𝐵eff, depends on the frequency as [15]

𝑆eff(𝜔𝑈) = 𝐴eff(𝜔𝑈)𝐵eff(𝜔𝑈) =
𝑒𝑟𝜋𝐺(𝜔𝑈)𝑐2

𝜔2
𝑈

, (11.18)

where 𝑒𝑟 is the realistic efficiency of the antenna, which represents reflection losses inside
the antenna, and where 𝐺(𝜔) is the frequency dependent gain of the antenna [15]. Note
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that according to the IEEE Standards, the gain does not include reflection and polarization
losses [15], this is why we separate 𝑒𝑟 from 𝐺(𝜔). The time-averaged electromagnetic power
generated by the antenna is given by

𝑃out =
1

2𝑍0

∫
𝑑𝑆eff

��� ®𝐸ant

���2 =
𝑉2

ant
2𝑍0

. (11.19)

We will now invert this reasoning and consider the antenna as a receiver that will output a
voltage in response to an electric field

®𝐸(𝑡 , 𝑥, 𝑦, 𝑧) =ℜ[ ®𝑈(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑈 𝑡] =
��� ®𝑈 ��� 𝑒𝑈 cos(𝜔𝑈 𝑡 + 𝜑) , (11.20)

where 𝜑 is an irrelevant phase, 𝑒𝑈 is the unit polarization vector of ®𝑈 ,
��� ®𝑈 ��� = (

®𝑈 · ®𝑈†
)1/2

denotes the complex modulus. The antenna will measure electric fields that are propagating
into the �̂� direction and matching its mode ®𝑀ant(𝑥, 𝑦). More precisely, by taking the dot prod-
uct of Eq. (11.16) with ®𝑀ant, one gets𝑉ant cos

(
𝜔𝑡 − 𝑘𝑧 − 𝜙

)
=

∫
𝑑𝑆eff ®𝑀ant(𝑥, 𝑦)· ®𝐸ant(𝑡 , 𝑥, 𝑦, 𝑧).

Using the reciprocity properties of electromagnetism, one can replace ®𝐸ant by the electric field
we are trying to measure Eq. (11.20). This reasoning shows that the antenna will output a
voltage proportional to

𝑉ant(𝑧) cos(𝜔𝑈 𝑡 + 𝜙′(𝑧)) = cos(𝜔𝑈 𝑡 + 𝜑)
∫

𝑑𝑆eff(𝜔𝑈)
��� ®𝑈(𝑥, 𝑦, 𝑧)��� 𝑒𝑈 · ®𝑀ant(𝑥, 𝑦) , (11.21)

where 𝜙′(𝑧) = −𝑘𝑧−𝜙 and the 2D integral is carried out in the 𝑥− 𝑦 plane at the 𝑧-coordinate
of the antenna.

Let us factorize the electric field generated by the dish at the location of the antenna
provided by Eq. (11.15) in a voltage factor 𝑉dish, a real mode factor ®𝑀dish and a plane wave
factor, such that it takes the following form in the antenna aperture plane (𝑥, 𝑦)

®𝐸dish(𝑡 , 𝑥, 𝑦, 𝑧) = 𝑉dish ®𝑀dish(𝑥, 𝑦, 𝑧) cos(𝜔𝑡 + 𝜙′(𝑧)) ≡
��� ®𝑈dish(𝑥, 𝑦, 𝑧)

��� 𝑒𝑈 cos(𝜔𝑡 + 𝜑) ,
(11.22a)

where ®𝑀dish(𝑥, 𝑦, 𝑧) is normalized over the infinite surface of the antenna plane 𝑆∞ at 𝑧 = 𝑧ant
i.e ∫

𝑑𝑆∞ | ®𝑀dish(𝑥, 𝑦, 𝑧ant)|2 = 1 . (11.22b)

The constant amplitude 𝑉dish in Eq. (11.22a) can be computed through energy conservation:
the total energy generated by the dish should equal the energy received on the infinite
antenna plane 𝑆∞. Then, using Eqs. (11.2) and (11.22b), we have

𝑃dish =

∫
𝑑𝑆∞

��� ®𝑈dish

���2
2𝑍0

=
𝑉2

dish
2𝑍0

⇒ 𝑉dish =

√
4𝑍0𝐴dish𝜌DM𝑐

3 𝜒 . (11.23)
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Then, in our experimental scheme, the time averaged power generated by the horn
antenna is obtained by combining Eqs. (11.19), (11.21) and (11.22a) and is provided by

𝑃rec(𝑧ant, 𝜔𝑈) =
𝑉2

dish
2𝑍0

(∫
𝑑𝑆eff(𝜔𝑈) ®𝑀dish(𝑥, 𝑦, 𝑧ant) · ®𝑀ant(𝑥, 𝑦)

)2
, (11.24)

where ®𝑀dish depends explicitly on 𝑧ant and where the integral is performed at every position
(𝑥, 𝑦) on the effective surface of the horn antenna.

Then, the ratio between the time averaged power measured by the horn antenna and the
total power emitted by the dish is simply given by

𝛾(𝑧ant, 𝜔𝑈)Overlap =

(∫
𝑑𝑆eff(𝜔𝑈) ®𝑀dish(𝑥, 𝑦, 𝑧ant) · ®𝑀ant(𝑥, 𝑦)

)2
, (11.25)

where ®𝑀dish directly depends on the Kirchhoff integral Eq. (11.15).

11.3.2 Computation using the antenna factor
Another approach to estimate the output of the horn antenna is to consider the antenna
factor (AF), a characteristic of the antenna provided by the manufacturer.

The AF is defined by considering an incident plane wave, or in other words, an incoming
electromagnetic field whose mode is constant over the aperture of the antenna. It is defined
by (see e.g. [16])

AF(𝜔𝑈) =

��� ®𝑈dish(𝜔𝑈)
���

𝑉0
=
𝑉dish𝑀dish

𝑉0
, (11.26)

where𝑉0 is the generated tension, ®𝑈dish the amplitude of the incoming electric field, ®𝑀dish =

𝑀dish𝑒𝑈 from Eq. (11.22a), with 𝑀dish the value of the constant mode of the electric field
on the effective antenna area. The AF depends on the frequency of the incident field. It
is measured experimentally and therefore takes into account any loss inside the antenna,
represented by the 𝑒𝑟 parameter.

Using energy conservation, we immediately get the expression of time-averaged gener-
ated power of the antenna

𝑃rec(𝑧ant, 𝜔𝑈) =
𝑉2

0
2𝑅0

=
𝑉2

dish𝑀
2
dish(𝑧ant, 𝜔𝑈)

2𝑅0AF(𝜔𝑈)2
. (11.27)

However, the definition of the antenna factor assumes perfectly aligned polarization modes
[16], which is not necessarily true in our case. Indeed, we assume a antenna polarization
mode along the �̂� axis while the electric field emitted by the dish has its polarization lying
in the (𝑥, 𝑦) plane.

If we assume the DP polarization to be isotropically distributed, the polarization of the
electric field emitted by the dish has a cylindrical symmetry and a linearly polarized antenna
will be sensitive only to half of the power from the electric field. Taking into account this
additional factor, the ratio 𝛾 becomes

𝛾(𝑧ant, 𝜔𝑈)AF =
𝑍0𝑀

2
dish(𝑧ant, 𝜔𝑈)

2𝑅0AF(𝜔𝑈)2
. (11.28)
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From there, we have all the necessary ingredients to estimate the power received by the
antenna as function of its position, as long as 𝑧ant < 𝑧plane. Indeed, Eqs. (11.25) and (11.28)
give us what portion of the emitted power by the dish Eq. (11.2) is actually received in the
antenna wires. Therefore, from a given constraint of an experiment which assumes 100% of
power emitted is received by the antenna, one can infer how to correct this constraint using
this ratio. In particular, in Chapter 18, we will use these results to derive the expected power
received by the antenna in SHUKET [1], an experiment using a dish and a horn antennas
to detect the small electric field Eq. (11.1). In [1], it is assumed that 𝛾 = 1, i.e all the power
generated by the dish is transmitted to the antenna. Using Eqs. (11.25) and (11.28), we will
show that this is an over optimistic result and that the power received by the antenna is
multiple orders of magnitude lower.
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Chapter 12

Classical tests of the equivalence principle

12.1 Experiments testing the equivalence principle
As described in Section 3.1, EP is not a fundamental symmetry of the universe, and many
Beyond the Standard Model (BSM) theories predict its violation [1–6], in particular by the
spacetime variation of fundamental constants such as the fine structure constant 𝛼 or the
electron mass 𝑚𝑒 .

In order to quantify such violation, one can measure the acceleration of two test bodies
A and B in an external gravitational field and compare them through the so-called Eötvös
parameter defined as

𝜂 = 2(®𝑎𝐴 − ®𝑎𝐵)
|®𝑎𝐴 + ®𝑎𝐵 |

· 𝑒meas (12.1)

where 𝑒meas is the sensitive axis of the apparatus considered.

12.1.1 MICROSCOPE
The MICROSCOPE mission consists in a micro-satellite launched in circular orbit around
Earth at a 710 km altitude [7]. It is the first mission aiming at measuring a violation of
EP in space, taking advantage of a very quiet environment and long durations of free fall.
It was launched on 25 april 2016 for a total duration of 120 orbits of the satellite around
Earth [8], which as we shall see in Chapter 18 corresponds approximately to 8.1 × 106 s
integration time. The satellite measured the difference of acceleration between a Platinum
and a Titanium based test masses and it is sensitive to both Eqs. (8.12) and (8.40). Their final
constraint on 𝜂 is [9]

𝜂 = (−1.5 ± 2.8) × 10−15 , (12.2)

at a 1𝜎 confidence-level.

12.1.2 Eötvös torsion balances
Torsion balance is an apparatus able to measure very weak forces, once used by Cavendish to
measure the gravitational constant 𝐺, and now used for the measurement of the weak EP. In
usual torsion balances experiments, a bar is suspended by a thin fiber, which acts as a torsion
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spring. If a force is applied to one of the ends of the bar with direction perpendicular to it,
the bar rotates and twists the fiber. This way, the magnitude of this unknown force can be
derived by measuring the rotation angle of the bar. By setting two different test masses with
two different compositions at each end of the bar (but with the same mass), one can measure
the differential gravitational acceleration that act on them and therefore a violation of the
equivalence principle. The current best constraint on the Eötvös parameter from Torsion
balances experiments is [10]

𝜂 = (0.3 ± 1.8) × 10−13 , (12.3)

at a 1𝜎 confidence-level.

12.1.3 Lunar Laser Ranging
Thanks to retro-reflectors array installation on the surface of the Moon by several american
and russian space missions, starting from 1969, it is now possible to measure the Earth-Moon
distance by sending light signals to this array and measure the round trip time of photons.
This is what is called Lunar Laser Ranging (LLR).

Both the Earth and the Moon have different compositions and are in the solar gravitational
potential, a violation of the EP would imply the two systems fall at different rates towards
the Sun. This would distort the lunar orbit, which could be measuring using LLR [11].

Since it would be unsatisfactory to model planetary and stellar bodies as point-like
particles, we must include the self gravitation energy of each body, which is covered by the
strong EP. In other words, LLR measurements provide us a constrain on a combination of
strong and weak EP, but not on one of them individually.

12.2 Acceleration difference induced by oscillating rest mass
As derived in Sections 8.1 and 8.2.4, axion and dilaton fields can produce oscillations of the
rest mass and transition frequencies of atoms from their different couplings with SM fields.

We make the calculations in the laboratory frame, where the gradient of the DM field is
not neglected. The rest mass and transition frequency oscillations of an atom A are shown
in Eq. (8.5), which leads to an UFF violating acceleration Eq. (8.12)

®𝑎𝐴(𝑡 , ®𝑥) =
[
𝜔𝜙®𝑣𝐴 − ®𝑘𝜙𝑐2

] √
16𝜋𝐺𝜌DM[𝑄𝐴

𝑀
]𝑑

𝜔𝜙𝑐
sin(𝜔𝜙𝑡 − ®𝑘𝜙 · ®𝑥 +Φ) (12.4a)

≈
√

16𝜋𝐺𝜌DM®𝑣DM[𝑄𝐴
𝑀
]𝑑

𝑐
sin(𝜔𝜙𝑡 − ®𝑘𝜙 · ®𝑥 +Φ) (12.4b)

where, as explained below Eq. (8.12), we immediately got rid off the transition frequency
contribution to the acceleration, as it is suppressed by a factor ℏ𝜔0

𝐴
/𝑚0

𝐴
𝑐2 ∼ 10−10. At the

second line, we used the fact that −®𝑘𝜙𝑐2 = 𝜔𝜙®𝑣DM and 𝑣DM ≫ 𝑣𝐴. It follows a differential
acceleration between two macroscopic bodies of different composition 𝐴 and 𝐵 with the
same initial velocities and position given by

Δ®𝑎(𝑡 , ®𝑥)𝑑 ≈
√

16𝜋𝐺𝜌DM®𝑣DM

𝑐

(
[𝑄𝐴

𝑀]𝑑 − [𝑄
𝐵
𝑀]𝑑

)
sin(𝜔𝜙𝑡 − ®𝑘𝜙 · ®𝑥 +Φ) . (12.5a)
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Similarly, a differential acceleration between two bodies of different composition arises
through the axion-gluon coupling, as derived in Section 8.2.4 of the form

Δ®𝑎(𝑡 , ®𝑥)𝑎 ≈
16𝜋𝐺𝜌DM®𝑣DM𝐸

2
𝑃

𝑓 2
𝑎 𝜔𝑎𝑐2

(
[𝑄𝐴

𝑀]𝑎 − [𝑄
𝐵
𝑀]𝑎

)
sin

(
2𝜔𝑎𝑡 − 2®𝑘𝑎 · ®𝑥 + 2Φ

)
. (12.5b)

As we have derived it in Sections 8.1 and 8.2.4, the charges [𝑄𝑀]𝑑 , [𝑄𝑀]𝑎 are atom dependent,
as they depend on the mass and charge number of the atom. Therefore, the differential accel-
erations Eq. (12.5) are non zero, and lead to a violation of the UFF, i.e 𝜂 ≠ 0 in Eq. (12.1). The
various experiments listed in Sec. 12.1 are sensitive to such non-zero differential acceleration,
therefore they can put constraint on dilaton and axion couplings to SM fields. In Chapter 18,
we will derive such sensitivities for MICROSCOPE. In this case, the two test-masses are not
precisely at the same position but are approximately∼ 20 𝜇m apart [7], which sets the typical
length scale of the experiment. As we shall see in Chapter 17, MICROSCOPE is sensitive to
oscillations up to 0.3 Hz. Following Eq. (7.28), this means that the propagation term of the
plane wave in Eq. (12.5) can be neglected, and that we can approximate that both test-masses
are at the same position.

In the next chapter, we will be interested in atom interferometry, another experimental
tool which could detect such UFF violating accelerations.
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Chapter 13

Atom interferometry as a quantum test of
the equivalence principle

As derived in the previous chapter, the time-dependent mass and internal frequency pro-
duces a differential acceleration between two atoms. Standard UFF tests search for such
differential acceleration of macroscopic test masses. Atom interferometry (AI) constitutes
the quantum equivalent of such classical experiments. Therefore, as we shall see in this
chapter, AI experiments are also sensitive to oscillations from Eq. (12.5).

In this chapter, we will derive the observable signatures produced by oscillating atomic
rest mass and transition energy on various AI configurations. In the most generic case,
AI consists of generating interference between atomic wavepackets that are split and then
recombined using atom-laser interactions. We classify the various AI schemes into two
classes: (i) AI schemes using two photon transitions and (ii) AI schemes using single photon
transitions. In the former, the transition from a stable momentum state to another stable
momentum state is done using two photons, while in the latter, only one photon is needed
for such a transition. Those results are based on an article [12], published in Physical Review

D.

13.1 Two-photon transitions : 𝜋/2 − 𝜋 − 𝜋/2 setups

13.1.1 General principle
In this section, we present the basics of atom interferometry and we will focus on the most
common AI setups : two-photon transition interferometers.

The first interferometric scheme considered is known as two-photon transition Raman
interferometry. Its sequence is depicted in Fig. 13.1. In this setup, two-level free falling atoms
𝐴 enter the interferometer with an initial momentum ℏ𝑘 and in their internal energetic ground
state, noted |𝑔⟩ (i.e. their initial state is defined as |𝑔, ℏ𝑘⟩). After entering the interferometer,
they interact with a pair of laser waves 𝐿1 and 𝐿2 with respective frequencies 𝜔L1 , 𝜔L2 , whose
energy difference is resonant with the transition of the |𝑔⟩ → |𝑒⟩ where |𝑒⟩ is the excited
state of the two-levels atom, i.e 𝜔0

𝐴
= 𝜔L1 − 𝜔L2 . This means that the atom first absorbs

a photon from 𝐿1, which excites it to an intermediate state with energy ℏ𝜔𝑖 ≫ ℏ𝜔0
𝐴

, and
afterwards, the atom stimulately emits a photon in 𝐿2. This process splits the atoms into two
spatially distant wavepackets, which means the state of each atom becomes the superposition
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of the two internal states: (i) the ground state that remains unchanged |𝑔, ℏ𝑘⟩ and (ii) the
excited state that has changed its momentum because of its interaction with the two lasers
|𝑒 , ℏ(𝑘+𝑘eff)⟩, where ℏ®𝑘eff = ℏ(®𝑘L1−®𝑘L2)denotes the effective momentum transfer, considering
both lasers.

This whole experimental manoeuvre is called a 𝜋/2 laser pulse since the transition am-
plitude from ground state to excited state corresponds to a probability 1/2, i.e the state of
the atoms is now a half-half superposition of the two different states.

The atom freely propagates inside the interferometer and at time 𝑡 = 𝑇, both wavepackets
undergo a 𝜋 pulse, which will invert the state of all atoms. In other words, depending on the
internal state of the atom prior to the 𝜋 pulse, two state transitions happen : |𝑒 , ℏ(𝑘 + 𝑘eff)⟩ →
|𝑔, ℏ𝑘⟩ and |𝑔, ℏ𝑘⟩ → |𝑒 , ℏ(𝑘 + 𝑘eff)⟩.

A final laser-atom interaction happens at time 𝑡 = 2𝑇, where a second 𝜋/2 pulse divides
the two incoming wavepackets into four different ones: two of them are in the state |𝑔, ℏ𝑘⟩
and the remaining two are in the state |𝑒 , ℏ(𝑘 + 𝑘eff)⟩. The study of interference pattern
between the wavepackets in the same state allows one to measure a phase shift difference.
The full interferometric sequence is shown in Fig. 13.1.

The second two-photon transfer AI scheme considered is the two-photons transition
Bragg-type interferometer. This scheme is similar to the Raman interferometry presented
above except that the atoms remain in the same energy state during all the inteferometric
path, i.e, the laser pulses only change the external state of the atom (their momentum).

For both interferometers described above, the effective wavevector 𝑘eff depends on the
setup of the experiment. If counterpropagating lasers are used, the atom absorbs a photon in
one direction as a result of the interaction with the first laser, and emits another photon in the
opposite direction during the interaction with the second laser, implying 𝑘eff = 𝑘L1 + 𝑘L2 . In
general, this effective wave vector is multiple orders of magnitude larger than the transition
frequency of the atom, i.e 𝑘eff ≫ 𝜔0

𝐴
/𝑐, because both laser are usually operating at hundreds

of THz frequencies (this is why the intermediate state is much higher in energy, see previous
paragraphs and Fig. 13.1). On the opposite, if co-propagating laser waves are used in
the experimental setup, the absorption and emission directions are the same, implying
𝑘eff = 𝑘𝐿1 − 𝑘𝐿2 . In that case, 𝑘eff = 𝜔0

𝐴
/𝑐.

13.1.2 Phase contributions
As in the previous chapter, we will make the detailed calculations considering a coupling
between dilatons and SM fields, and we will generalize the main results to the axion case.

The calculation of the observable phase shift at the output of the interferometer follows
closely the ones presented in [13]. This method relies on Feynman path integrals and can
be used for Lagrangians which are at most quadratic in the position and velocity [13] and
considering atomic plane waves at initial time 𝑡 = 𝑡0. This suggests that the calculations of
the phase shift in our case can formally only be done in the galactic frame, where there is no
cos(𝜔𝑡 − ®𝑘 · ®𝑥) terms1. Therefore, we will make all calculations in the galactic frame, where
the field simply reads 𝜙 = 𝜙0 cos(𝜔𝜙𝑡 +Φ). In the next section, we will make a discussion on
the possibility of making the calculations in the laboratory frame. Therefore, we consider an

1As we shall see in the following, this framework can also work when the propagation is negligibly small,
i.e when 𝑘𝐿 ≪ 1, where 𝐿 is the typical scale of the experiment.
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Figure 13.1: On the left, scheme of the two photon Raman transition considered in the present
section. The atom starts in the ground state |𝑔⟩, absorbs a photon which makes it transition
to a high energetic state |𝑖⟩, then emits a photon to transition to the excited state of the
hyperfine transition |𝑒⟩. On the right, full Raman interferometric sequence, based on such
two-photon transitions. At each atom-laser interaction, the laser pulses change both internal
energy state and external momentum state of the wavepackets. The Bragg-type equivalent
has the same spacetime diagram, but the atom wavepackets do not change their internal
energy state. In black are shown the atomic paths without any perturbation, i.e straight lines
(the gravitational field is neglected here). In green is shown the perturbed motion of the
atoms induced by Eq. (13.6), with exaggerated amplitude of oscillation.

atom A whose nominal rest mass and transition frequency 𝑚0
𝐴
, 𝜔0

𝐴
are perturbed such that

they oscillate in phase as in Eq. (8.5) but without the propagation term ®𝑘𝜙 · ®𝑥 in the phase.

𝑚𝐴(𝑡) = 𝑚0
𝐴

(
1 +

√
16𝜋𝐺𝜌DM[𝑄𝐴

𝑀
]𝑑

𝜔𝜙𝑐
cos(𝜔𝜙𝑡 +Φ)

)
(13.1a)

𝜔𝐴(𝑡) = 𝜔0
𝐴

(
1 +

√
16𝜋𝐺𝜌DM[𝑄𝐴

𝜔]𝑑
𝜔𝜙𝑐

cos(𝜔𝜙𝑡 +Φ)
)
, (13.1b)

By the same procedure as in Section 8.1.3, the macroscopic Lagrangian is

ℒ𝐴 = −
(
𝑚𝐴(𝑡)𝑐2 + ℏ𝜔𝐴(𝑡)

) (
1 −

𝑣2
𝐴

2𝑐2

)
, (13.2a)

which induces an acceleration on the atom A

®𝑎𝐴(𝑡) =
√

16𝜋𝐺𝜌DM®𝑣𝐴[𝑄𝐴
𝑀
]𝑑

𝑐
sin(𝜔𝜙𝑡 +Φ) , (13.2b)
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Figure 13.2: The various phase contributions along the AI path : in orange are the propagation
phase shifts calculated along the wavepackets paths ; in blue are the laser phase shifts,
calculated at light-matter interaction vertices ; and in green is the separation phase shift,
calculated at the output of the interferometer.

where ®𝑣𝐴 is the velocity of the atom in the galactic frame, i.e ®𝑣𝐴 ≈ ®𝑣DM at leading order. One
can already notice the similarity with Eq. (12.5a). Indeed, for situations where the gradient
of the field is almost constant on the size of experiment 𝐿 considered, i.e 𝜆dB

DM ≫ 𝐿, one can
neglect the propagation term ®𝑘𝜙 · ®𝑥 in Eq. (12.5a) and the two accelerations are identical.

In practice, we will assume that the AI experiment is performed in a laboratory frame
which has a velocity ®𝑣DM with respect to the DM rest frame where the Lagrangian takes
the form given by Eqs. (13.1) and (13.2a), such that ®𝑣𝐴 = ®𝑣DM + ®̃𝑣0 where the second term
is the initial velocity of the atoms with respect to the laboratory reference frame. �̃�0 is the
velocity impacting systematic effects such as gravity gradients or second-order Doppler shift
of the atoms when interacting with light beams (see e.g [14] for a comprehensive list of such
effects).

As derived in e.g. [13, 15, 16], there are three independent contributions to the total phase
shift in an AI: (i) the separation phase noted Φu which corresponds to a spatial incoincidence
between the two output wavepackets, (ii) the laser phase Φℓ which gathers the additional
phase factors of the laser, due to displacement of the light-matter interaction vertices and
(iii) the propagation phase shift denoted Φs which is essentially the phase accumulated by
the atom wavepacket over the full interferometric path. All of these contributions must be
calculated accurately to predict the phase shift at the output of the interferometer. Those
contributions are summarized in Fig. 13.2.

Finally, we will make all calculations assuming a Raman interferometer, such that the
transition frequency of the atom is relevant. When relevant, we will show how the various
Bragg interferometer phases differ from the Raman AI. We also make all calculations at first
order in the perturbations.

We describe the quantum state of the different atom wavepackets by a wavefunction Ψ,
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which we break down into two different wavefunctionsΨI andΨII, where I,II respectively the
up/down paths in Fig. 13.1, depending on the classical path the atom followed. Considering
free particles at the input of the interferometer, the atomic plane waves have the form [13]

Ψinit(𝑡0, ®𝑥0) = Ψ0𝑒
𝑖Φ(𝑡0 ,®𝑥0) , (13.3)

with the amplitude of the wavefunctionΨ0,Φ(𝑡0, ®𝑥0) = ®𝑘 · ®𝑥0−𝜔𝑡0−𝜑 with 𝜔, ®𝑘, 𝜑 respectively
its angular frequency, wavevector and constant phase. At the output of the interferometer, at
a time 𝑇𝑓 ≥ 2𝑇, considering all the different phase contributions listed previously, the atomic
plane wave along the trajectory j read

Ψj(𝑇𝑓 , ®𝑥 𝑓 ) = Ψinit(𝑇𝑓 , ®𝑥 𝑓 ) × 𝑒 𝑖Φj , (13.4)

where Φj = Φsj+Φℓ j+Φuj represents the trajectory dependent phase factor. Then, at some de-
tection time 𝑇d ≥ 𝑇f, a detector measures by fluorescence the number of atoms on each quan-
tum state, which is essentially the measurement of the probability that the two wavepackets
are in the same quantum state, i.e∫ ���ΨI(𝑇d, ®𝑥d) +ΨII(𝑇d, ®𝑥d)

���2𝑑𝑆 , (13.5)

where the integral is taken over the detector area S. Note that for Raman schemes, two output
quantum states can differ by their internal energy and momentum state, while in Bragg, they
only differ by their momentum. Plugging Eq. (13.4) into Eq. (13.5) and neglecting loss of
contrast due to decoherence, we find that the measurement result is proportional to (1 +
cosΔΦ) where ΔΦ = ΦI − ΦII is the phase difference between the two wave functions at 𝑇d.
For simplicity, we consider 𝑇d ≡ 2𝑇, because any additional phase shifts cumulated during
𝑇𝑑 − 𝑇𝑓 is negligible (as in general 𝑇𝑑 − 𝑇𝑓 ≪ 2𝑇, and because the two wavefunctions on each
output port have almost the same position, momentum and energy.).

13.1.3 Calculation of the phase shift observable
We first derive the perturbed equations of motion of the atom following the perturbation to
the acceleration Eq. (13.2b), to get the motion followed by the different wavepackets along
the trajectories presented in Fig. 13.1. To simplify the reading of the next set of calculations,
we set

√
16𝜋𝐺𝜌DM/𝜔𝜙𝑐 ≡ 𝑋DM (which is dimensionless). These equations of motion read

®𝑣𝐴(𝑡 , 𝑡0) ≈ ®𝑣DM

(
1 − 𝑋DM[𝑄𝐴

𝑀]𝑑
(
cos(𝜔𝜙𝑡 +Φ) − cos(𝜔𝜙𝑡0 +Φ)

) )
, (13.6a)

®𝑥𝐴(𝑡 , 𝑡0) ≈ ®𝑥0 + ®𝑣DM(𝑡 − 𝑡0) −
𝑋DM®𝑣DM[𝑄𝐴

𝑀
]𝑑

𝜔𝜙

[
sin(𝜔𝜙𝑡 +Φ) − sin(𝜔𝜙𝑡0 +Φ) (13.6b)

−𝜔𝜙(𝑡 − 𝑡0) cos(𝜔𝜙𝑡0 +Φ)
]
,

at first order in the perturbation [𝑄𝐴
𝑀
]𝑑, with ®𝑥0 = ®𝑥(𝑡0) the initial position of the atom when

entering the interferometer. In the following, we set 𝑥0 = 𝑡0 = 0 and ®𝑣DM = 𝑣DM𝑒𝑣 . Note that
in Eq. (13.6), one of the terms arising in the position of the atom is ∝ 𝜔𝜙𝑡, which induces a
temporal linear drift of the position of the atom, due to its initial inertia.
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As already discussed in [17], the velocity kick experienced by the atom during its interac-
tion with the laser beams is perturbed by the effective mass of the atom at the time of the kick.
In addition to that effect, the beams being locked to a given frequency reference, their own
frequency oscillates as 𝜔𝐿(𝑡) = 𝜔0

𝐿
(1+

(√
16𝜋𝐺𝜌DM[𝑄𝐿

𝜔]𝑑/𝜔𝜙𝑐
)

cos(𝜔𝜙𝑡 +Φ)), neglecting the
additional phase coming from the propagation of photons to the atom2 . Therefore, if the
atom interacts with the laser beam at time 𝑡, still considering [𝑄𝐴

𝑀
]𝑑 , [𝑄𝐿

𝜔]𝑑 ≪ 1,

𝑣𝐴kick(𝑡) =
ℏ𝑘eff(𝑡)
𝑚𝐴(𝑡)

≈ ℏ𝑘eff

𝑚0
𝐴

(
1 + 𝑋DM([𝑄𝐿

𝜔]𝑑 − [𝑄𝐴
𝑀]𝑑) cos(𝜔𝜙𝑡 +Φ)

)
≡ 𝑣𝐴kick, 0 + 𝛿𝑣𝐴kick(𝑡) ,

(13.7)

where 𝑣𝐴kick, 0 = ℏ𝑘eff/𝑚0
𝐴

is the nominal kick velocity, i.e without perturbation, and 𝛿𝑣𝐴kick(𝑡)
is the perturbed contribution to the total velocity kick imparted to the atom. In Appendix B,
we compute explicitly the position and velocity of the wavepackets along the various interfer-
ometric paths, which will be useful for the computation of the various phase contributions.

Propagation phase contribution The first component of phase shift is the one coming
from the phase accumulated by atoms throughout the whole interferometric paths taking
into account modified equations of motion and perturbed kicks. In the special case of
quadratic Lagrangian in the position and velocity of the atom at maximum, this phase is by
the principle of least action the integral of the Lagrangian over the path from initial point 𝑖
to final point 𝑓 (𝑡𝑖 , 𝑥𝑖) → (𝑡 𝑓 , 𝑥 𝑓 )

Φs =
1
ℏ

∫ 𝑡 𝑓

𝑡𝑖

𝐿(𝑥, ¤𝑥)𝑑𝑡 , (13.8)

where the Lagrangian is defined in Eq. (8.11b). The internal energy term of the Lagrangian
being associated with the oscillation of the transition energy, it only contributes when the
atom is on the excited state, i.e on paths 2 and 3 in Fig. 13.1. Then, the phase accumulated
by the atoms on the path I of the interferometer is

ΦsI = −𝜔0
𝐴

∫ 𝑇

0
𝑑𝑡(1 + 𝑋DM[𝑄𝐴

𝜔]𝑑 cos(𝜔𝜙𝑡 +Φ))
(
1 −
|®𝑣(2)
𝐴
(𝑡)|2

2𝑐2

)
−

𝑚0
𝐴
𝑐2

ℏ

[∫ 𝑇

0
𝑑𝑡

(
1 + 𝑋DM[𝑄𝐴

𝑀]𝑑 cos(𝜔𝜙𝑡 +Φ)
) (

1 −
|®𝑣(2)
𝐴
(𝑡)|2

2𝑐2

)
+∫ 2𝑇

𝑇

𝑑𝑡
(
1 + [𝑄𝐴

𝑀]𝑑 cos(𝜔𝜙𝑡 +Φ)
) (

1 −
|®𝑣(4)
𝐴
(𝑡)|2

2𝑐2

)]
, (13.9a)

2In the following sections, the travelling distance of the photon to reach the freely falling atoms will be of
the order of 100 m maximum, which would induce a significant phase for oscillation frequencies 𝜔𝜙 ⪆ 105

rad/s, way above the DM frequencies of interest for this study, see Chapter 18.
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while the atom wavepacket on the path II accumulates a phase

ΦsII = −𝜔0
𝐴

∫ 2𝑇

𝑇

𝑑𝑡(1 + 𝑋DM[𝑄𝐴
𝜔]𝑑 cos(𝜔𝜙𝑡 +Φ))

(
1 −
|®𝑣(3)
𝐴
(𝑡)|2

2𝑐2

)
−

𝑚0
𝐴
𝑐2

ℏ

[∫ 𝑇

0
𝑑𝑡

(
1 + 𝑋DM[𝑄𝐴

𝑀]𝑑 cos(𝜔𝜙𝑡 +Φ)
) (

1 −
|®𝑣(1)
𝐴
(𝑡)|2

2𝑐2

)
+∫ 2𝑇

𝑇

𝑑𝑡
(
1 + 𝑋DM[𝑄𝐴

𝑀]𝑑 cos(𝜔𝜙𝑡 +Φ)
) (

1 −
|®𝑣(3)
𝐴
(𝑡)|2

2𝑐2

)]
, (13.9b)

where 𝑣(1), 𝑣(2), 𝑣(3), 𝑣(4) are respectively the atom velocities along portions 1, 2, 3 and 4 in
Fig. 13.1, which can all be recovered explicitly using the set of calculations described in
Appendix B.

Then, the propagation phase shift between the two perturbed trajectories is

Φs = ΦsI −ΦsII (13.10a)

= −4𝑋DM
𝜔𝜙

[
𝑘eff

(
𝑣DM𝑒𝑣 · 𝑒kick +

ℏ𝑘eff

2𝑚0
𝐴

)
[𝑄𝐴

𝑀]𝑑 + 𝜔0
𝐴[𝑄

𝐴
𝜔]𝑑

]
sin2

(
𝜔𝜙𝑇

2

)
sin(𝜔𝜙𝑇 +Φ)+

4𝑘eff𝑇𝑋DM[𝑄𝐿
𝜔]𝑑

(
𝑣DM𝑒𝑣 · 𝑒kick +

ℏ𝑘eff

2𝑚0
𝐴

)
sin

(
𝜔𝜙𝑇

2

)
sin

(
𝜔𝜙𝑇

2 +Φ
)
+ 𝒪

((𝑣DM
𝑐

)2
)
, (13.10b)

where we used 𝑚0
𝐴
𝑣kick = ℏ𝑘eff at zeroth order in the perturbation, following Eq. (13.7) and

where we defined ®𝑣kick = 𝑣kick𝑒kick. The terms ∝ (𝑣2
DM/𝑐2) arise from the small contribution

of the atoms velocity to the internal state kinetic energy. The Bragg propagation phase can
be simply recovered by remembering that in this configuration, one effectively manipulates
one-level atom, i.e 𝜔0

𝐴
= 0.

Laser phase contribution We now consider the phase from light-matter interaction be-
tween the laser and the atoms. In both Bragg and Raman schemes, we assume that the
atoms are freely falling inside a "vacuum tower" where the lasers are on ground, located
on a mount at initial position 𝑥𝐺(0) = 0, while a retro-reflective mirror at initial position
𝑥𝑀(0) = 𝐿 is used to reflect the beams in order to create the counter-propagating scheme. In
the Bragg case, only one laser beam is used and retro-reflected, while for the Raman case,
two beams 𝐿1, 𝐿2 with respective frequencies 𝜔𝐿1 , 𝜔𝐿2 (such that 𝜔𝐿1 − 𝜔𝐿2 = 𝜔0

𝐴
) are retro-

reflected and the atomic wavepackets interact only with 𝐿1 going up and 𝐿2 going down.
Considering that the whole tower on Earth is freely falling during the entire interferometric
process, its own mass composition is affected by the oscillating mass behavior Eq. (13.1), i.e
𝑚𝑀 = 𝑚0

𝑀

(
1 +𝑄𝑀

𝑀
cos(𝜔𝜙𝑡 +Φ)

)
, with𝑚0

𝑀
, 𝑄𝑀

𝑀
respectively its unperturbed mass and mass

charge, implying it follows the same perturbed equations of motion as the atom Eq.(13.6).
Therefore, both retro-reflective mirror and mount on which laser rest upon are oscillating
together3. At each spacetime points of light-matter interaction is associated a phase, which
contributes to the laser phase shift. These points are denoted𝐴, 𝐵, 𝐶, 𝐷2 in Fig. 13.1, since we

3At next-to-leading order, 𝐿 is also oscillating as the interatomic bonds oscillate too.
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assume the measurement of the interference pattern between the two wavepackets ending
up on the internal ground state |𝑔⟩.

Keeping in mind that Φ𝐿(𝑡 , ®𝑥) = ®𝑘𝐿 · ®𝑥 − 𝜔𝐿𝑡 − 𝜑, with 𝜔𝐿 , ®𝑘𝐿 the light angular frequency
and wavevector respectively, and that ®𝑘𝐿 · ®𝑥 − 𝜔𝐿𝑡 = 0 along a photon geodesic in a flat
spacetime (which is the case at the surface of the Earth, see [18]), the total light phase felt by
the atom along a path 𝑋 is given by

Φℓ𝑋 = −
𝑛∑
𝑗=0

𝜑j(𝑡𝑖) = −
𝑛∑
𝑗=0

𝑠 𝑗

(
𝜑j(𝑡down

𝑖 ) − 𝜑j(𝑡up
𝑖
)
)
, (13.11)

where we sum on the total number of interaction points of path X (occurring at times
{0, 𝑇, 2𝑇}), and where 𝑡𝑖 corresponds respectively to the time of laser at emission of the
photon (the superscripts 𝑢𝑝 and 𝑑𝑜𝑤𝑛 refer to a photon coming from the up or down laser).
At the second line, we took into account the fact that we have two-photon interactions, where
the atom takes a photon from one of the laser and emits in the second one, and the 𝑠 𝑗 = ±1
parameter depends on the transition of the wavepacket at interaction j (it is+1 for a |𝑔⟩ → |𝑒⟩
transition and −1 for a |𝑔⟩ → |𝑒⟩ transition). Therefore, only the initial phase of the laser
at the time of photon emission is needed. Since the laser frequency is locked on an atom
ensemble whose frequency oscillates through Eq. (13.1), the phase, as the integral of the
frequency, is also time dependent, i.e

𝜑j(𝑡) =
∫ 𝑡

0
𝑑𝑡′𝜔𝐿(𝑡′) ≡

∫ 𝑡

0
𝑑𝑡′𝜔0

𝐿

(
1 + 𝑋DM𝑄

𝐿
𝜔 cos(𝜔𝜙𝑡

′ +Φ)
)
. (13.12)
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Ground
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Figure 13.3: Simple scheme on the com-
putation of the time of emission of pho-
tons from both lasers.

To compute the laser phase, we need to know the
different times 𝑡𝑖 of emission of photons. For a
given interaction time 𝑡int, they are given by (see
Fig. 13.3).

𝑡𝑢 = 𝑡int −
2𝑥𝑀(𝑡int − 𝑡

′𝑢) − 𝑥At(𝑡int) − 𝑥𝐺(𝑡
′𝑢 − 𝑡𝑢)

𝑐
,

(13.13a)

𝑡𝑑 = 𝑡int −
𝑥At(𝑡int) − 𝑥𝐺(𝑡int − 𝑡𝑑)

𝑐
, (13.13b)

respectively for the beam retro-reflected (up) and
not retro-reflected (down), where 𝑥M is the mirror
coordinate, 𝑥G is the mount coordinate and 𝑥At is
the perturbed vertex of the atomic path. In order
to solve Eq. (13.13), the various 𝑡𝑢 , 𝑡′𝑢 , 𝑡𝑑 on the
right side are treated as unperturbed times.
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Then, for Raman AI, the total laser phase is

Φℓ = Φℓ I −Φℓ II (13.14a)

=
4𝑋DM
𝜔𝜙

(
𝑘eff𝑣DM

(
[𝑄𝐴

𝑀]𝑑 − [𝑄
𝑀
𝑀 ]𝑑

)
𝑒𝑣 · 𝑒kick +

ℏ𝑘2
eff

𝑚0
𝐴

[𝑄𝐴
𝑀]𝑑 + 𝜔0

𝐴[𝑄
𝐿
𝜔]𝑑

)
sin2

(
𝜔𝜙𝑇

2

)
sin(𝜔𝜙𝑇 +Φ)+

4[𝑄𝐿
𝜔]𝑑𝑋DM

(
𝐿

(
𝑘eff −

𝜔0
𝐴

𝑐

)
sin2

(
𝜔𝜙𝑇

2

)
cos(𝜔𝜙𝑇 +Φ) −

ℏ𝑘2
eff𝑇

2𝑚0
𝐴

sin
(
𝜔𝜙𝑇

2

)
sin

(
𝜔𝜙𝑇

2 +Φ
))
.

(13.14b)

The Bragg laser phase is obtained by setting 𝜔0
𝐴
= 0.

Separation phase contribution Following Eq. (13.5) and considering that, at the end of the
classical paths at 𝑡 = 𝑇𝑑, the wave packet of the path 𝑖={I,II} can be expressed as [16]

Ψ𝑖 = Ψ0𝑒
𝑖
(
Φ𝑠𝑖+Φℓ 𝑖+

®𝑝𝑖
ℏ
(®𝑥−®𝑥𝑖)

)
, (13.15)

where Φ𝑠 ,Φℓ are respectively the propagation and laser phase contributions and where ®𝑝𝑖 , ®𝑥𝑖
are respectively the momentum and position of the wavepacket just after the last 𝜋/2 pulse
at 𝑡 = 𝑇𝑑. Then, it can be shown easily that for small difference in momentum between the
two wavepackets Δ®𝑝 = ®𝑝I − ®𝑝II (i.e |Δ®𝑝 |𝐿det/ℏ ≪ 1, with 𝐿det, the size of the detector, which
we show in Appendix B), the separation phase shift can be expressed as

Φ𝑢 =
Δ®𝑝 · ®𝑥det.,COM(2𝑇)

ℏ
−
Δ(®𝑝 · ®𝑥)(2𝑇)

ℏ
, (13.16)

where we compute the difference of momenta ®𝑝 = ℏ®𝑘 and position ®𝑥 between the two
wavepackets in the same energy state, i.e |𝑔⟩ in our calculation. ®𝑥det.,COM represents the
detector center of mass position at time 𝑡 = 𝑇𝑑 = 2𝑇, i.e in our case it is simply ®𝑥det.,COM(2𝑇) =
2®𝑣DM𝑇, since its equation of motion reads ®𝑥det.,COM(𝑡) = ®𝑣DM𝑡 (its own oscillation would
induce a second order effect).

As we have shown in Appendix B, both positions and velocities of the wavepackets at
the end of paths 3 and 4 in Fig. 13.1 are different in our framework, therefore, the separation
phase is a function of both differences of positions and velocities at the end of the two paths

Δ®𝑥(2𝑇) = 4®𝑣kick𝑋DM

(
[𝑄𝐿

𝜔]𝑑𝑇 −
[𝑄𝐴

𝑀
]𝑑

𝜔𝜙
sin

(
𝜔𝜙𝑇

2

))
sin

(
𝜔𝜙𝑇

2

)
sin(𝜔𝜙𝑇 +Φ) (13.17a)

Δ®𝑣(2𝑇) = −4®𝑣kick𝑋DM[𝑄𝐿
𝜔]𝑑 sin2

(
𝜔𝜙𝑇

2

)
cos(𝜔𝜙𝑇 +Φ) , (13.17b)

implying that the difference in velocities is small (of order [𝑄𝐿
𝜔]𝑑), justifying the form of the
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separation phase Eq. (13.16). Then, the separation phase shift is

Φ𝑢 =
𝑚0
𝐴

ℏ

(
Δ®𝑣(2𝑇) · ®𝑥det.,COM(2𝑇) − Δ®𝑣(2𝑇) · ®𝑥(2𝑇) − ®𝑣(2𝑇) · Δ®𝑥(2𝑇)

)
(13.18a)

=
4𝑘eff𝑋DM

𝜔𝜙

(
𝑣DM𝑒𝑣 · 𝑒kick

[
[𝑄𝐴

𝑀]𝑑 sin
(
𝜔𝜙𝑇

2

)
sin(𝜔𝜙𝑇 +Φ) − 𝜔𝜙𝑇[𝑄𝐿

𝜔]𝑑 sin
(
𝜔𝜙𝑇

2 +Φ
)]
+

ℏ𝑘eff𝜔𝜙𝑇

𝑚0
𝐴

[𝑄𝐿
𝜔]𝑑 sin

(
𝜔𝜙𝑇

2

)
cos(𝜔𝜙𝑇 +Φ)

)
sin

(
𝜔𝜙𝑇

2

)
, (13.18b)

where ®𝑣(2𝑇), ®𝑥(2𝑇) respectively correspond to the unperturbed velocity and position of the
wavepackets at 𝑡 = 2𝑇.

13.1.4 Total phase shift

Adding all contributions of phase shift Eqs.(13.10b), (13.14a) and (13.18b), the total phase of
the Raman AI is

[ΦRaman
𝐴 ]𝑑 =

4
√

16𝜋𝐺𝜌DM

𝜔2
𝜙𝑐

[(
𝑘eff𝑣DMΔ[𝑄𝑀]𝑑𝑒𝑣 · 𝑒kick + 𝜔0

𝐴Δ[𝑄𝜔]𝑑
)

sin2
(
𝜔𝜙𝑇

2

)
sin(𝜔𝜙𝑇 +Φ) +(

ℏ𝑘2
eff[𝑄

𝐴
𝑀
]𝑑

2𝑚0
𝐴

sin(𝜔𝜙𝑇 +Φ) − 𝑘eff𝜔𝜙[𝑄𝐿
𝜔]𝑑

(
𝐿

(
1 −

𝜔0
𝐴

𝑘eff𝑐

)
+ ℏ𝑘eff𝑇

𝑚0
𝐴

)
cos

(
𝜔𝜙𝑇 +Φ

))
sin2

(
𝜔𝜙𝑇

2

)]
,

(13.19a)

where Δ[𝑄𝑀]𝑑 = [𝑄𝐴
𝑀
]𝑑 − [𝑄𝑀

𝑀
]𝑑 and Δ[𝑄𝜔]𝑑 = [𝑄𝐿

𝜔]𝑑 − [𝑄𝐴
𝜔]𝑑. For Bragg AI, one simply

needs to set 𝜔0
𝐴
= 0 and the phase reads

[ΦBragg
𝐴
]𝑑 =

4
√

16𝜋𝐺𝜌DM

𝜔2
𝜙𝑐

[
𝑘eff𝑣DMΔ[𝑄𝑀]𝑑𝑒𝑣 · 𝑒kick sin2

(
𝜔𝜙𝑇

2

)
sin(𝜔𝜙𝑇 +Φ)+ (13.19b)(

ℏ𝑘2
eff[𝑄

𝐴
𝑀
]𝑑

2𝑚0
𝐴

sin(𝜔𝜙𝑇 +Φ) − 𝑘eff𝜔𝜙[𝑄𝐿
𝜔]𝑑

(
𝐿 + ℏ𝑘eff𝑇

𝑚0
𝐴

)
cos

(
𝜔𝜙𝑇 +Φ

))
sin2

(
𝜔𝜙𝑇

2

)]
,

at lowest order in 𝑣DM/𝑐. Similarly, using Eq. (8.40), we find the expected signal resulting
from the axion-gluon coupling in a Raman AI, which reads

[ΦRaman
𝐴 ]𝑎 =

16𝜋𝐺𝜌DM𝐸
2
𝑃

𝑓 2
𝑎 𝜔

3
𝑎𝑐

2

[(
𝑘eff𝑣DMΔ[𝑄𝑀]𝑎𝑒𝑣 · 𝑒kick + 𝜔0

𝐴Δ[𝑄𝜔]𝑎
)

sin2 (𝜔𝑎𝑇) sin(2𝜔𝑎𝑇 +Φ)+(
ℏ𝑘2

eff[𝑄
𝐴
𝑀
]𝑎

2𝑚0
𝐴

sin(2𝜔𝑎𝑇 +Φ) − 𝑘eff𝜔𝑎[𝑄𝐿
𝜔]𝑎

(
𝐿

(
1 −

𝜔0
𝐴

𝑘eff𝑐

)
+ ℏ𝑘eff𝑇

𝑚0
𝐴

)
cos (2𝜔𝑎𝑇 +Φ)

)
sin2 (𝜔𝑎𝑇)

]
,

(13.20a)
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where Δ[𝑄𝑀]𝑎 = [𝑄𝐴
𝑀
]𝑎 − [𝑄𝑀

𝑀
]𝑎 and Δ[𝑄𝜔]𝑎 = [𝑄𝐿

𝜔]𝑎 − [𝑄𝐴
𝜔]𝑎 . Again, for Bragg AI, one

simply needs to set 𝜔0
𝐴
= 0 and the phase reads

[ΦBragg
𝐴
]𝑎 =

16𝜋𝐺𝜌DM𝐸
2
𝑃

𝑓 2
𝑎 𝜔

3
𝑎𝑐

2

[
𝑘eff𝑣DMΔ[𝑄𝑀]𝑎𝑒𝑣 · 𝑒kick sin2 (𝜔𝑎𝑇) sin(2𝜔𝑎𝑇 +Φ)+ (13.20b)(

ℏ𝑘2
eff[𝑄

𝐴
𝑀
]𝑎

2𝑚0
𝐴

sin(2𝜔𝑎𝑇 +Φ) − 𝑘eff𝜔𝑎[𝑄𝐿
𝜔]𝑎

(
𝐿 + ℏ𝑘eff𝑇

𝑚0
𝐴

)
cos (2𝜔𝑎𝑇 +Φ)

)
sin2 (𝜔𝑎𝑇)

]
.

As we derived it in Chapter 8, the mass and frequency charges in both dilaton and
axion models are composition-dependent, therefore the terms appearing in the first line in
Eqs. (13.19) and (13.20) are a signature of the violation of the Einstein EP. In the following, the
terms proportional to 𝑣DM, which are present in both Bragg and Raman configurations, will
be denoted as the mass terms, while the terms proportional to 𝜔0

𝐴
, only present in Raman

configuration will be denoted as the frequency terms. Depending on the setup, the 𝑄𝐿
𝜔 and

𝑄𝐴
𝜔 charges can be the same, cancelling this term completely.

All the terms appearing at the second lines of the same equations, i.e the terms quadratic
in the effective wavevector and respectively proportional to the mass charge of the atom A
and the frequency charge of the laser and the terms proportional to the mirror coordinate 𝐿
still remain, even in the universal charges case4. In fact, the terms quadratic in the effective
wavevector can be understood as a non-local measurement, whose macroscopic counterpart
would be to compare the free fall of two test masses with different velocities. In the following,
we will neglect these term, since 𝑣DM ∼ 105 m/s ≫ 10−2 m/s ∼ ℏ𝑘eff/𝑚0

𝐴
. The argument is

the same for the term ∝ 𝐿. We will also drop this term in the following, as it is also much
smaller than the leading order terms, in particular when computing a differential phase shift
(see next paragraph). Therefore, in the Bragg case, the mass term is the dominant term.

Two-photon transition AI are commonly operating using hyperfine transitions of alkaline-
Earth atoms (e.g the hyperfine transition of Rb, Cs, K atoms [19–21]). For both co-propagating
and counter-propagating configurations, the laser beams are locked onto the optical transi-
tion of an atomic ensemble of the same species as the atoms in free fall inside the interferom-
eter, and the frequency difference 𝜔L1−𝜔L2 = 𝜔0

𝐴
is provided by a radio-frequency source (in

the GHz range). Then𝑄𝐿
𝜔 is the charge of that source, which, depending on the experimental

configuration, may or may not be the same as𝑄𝐴
𝜔 the charge of the hyperfine transition of the

atoms in the AI. As discussed previously, in the case of co-propagating lasers, the effective
wavevector corresponds to the frequency transition of the atom, i.e 𝑘eff = 𝜔0

𝐴
/𝑐. Therefore,

the mass term in Eq. (13.19) and Eq. (13.20) is suppressed by a factor 𝑣DM/𝑐 compared to the
frequency term. For counter-propagating laser beams, the effective wavevector 𝑘eff ≫ 𝜔0

𝐴
/𝑐,

implying that the mass term in these equations is much bigger than in the co-propagating
case. In that case, both mass and frequency terms are relevant and need to be taken into
account. The mass term has already been derived in [17], in the case of oscillating mass com-
ing from a coupling between matter and a classical oscillating dark matter field. However,
the calculation in [17] was performed in the lab frame but only considering the velocity of

4At this point, the interpretation of such terms in terms of the Einstein Equivalence Principle starts to be
subject to interpretation. One can argue that these would be a sign of violation of the UFF as they would still
induce a non-zero phase shift when measuring a differential phase shift between two different atomic species.
Another interpretation would be a violation of the Lorentz Position Invariance as those terms appear due to
the variation of the laser phase, which now depends on the spacetime position of the interaction.
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the atoms in this frame, i.e 𝑣𝐴 ∼ 10 m/s, while we argue that another component, due to
the galactic velocity 𝑣DM ∼ 105 m/s ≫ 𝑣𝐴 should be taken into account, as we demonstrated
it in the beginning of this section. Adding this contribution would improve the expected
sensitivity to the charges 𝑄𝐴

𝑀
by several orders of magnitude. In addition, our calculations

take into account the contribution from Earth oscillation (through 𝑄𝑀
𝑀

) which was not the
case in [17].

Note that in double diffraction interferometers, i.e when two pairs of laser beams transfer
opposite momentum to the atom [22], such that the spatial separation between the two
coherent wavepackets is twice as large, the total phase shift is the same with the change
𝑘eff → 2𝑘eff, as expected. In addition, in our calculation, the retro-reflective mirror is used
to create the counter propagating waves, i.e we implicitely assumed a counter propagating
scheme. For the co-propagating situation, one simply needs to set 𝐿 = 0, as there is no mirror.

Dual atom interferometers using two atomic species 𝐴 and 𝐵 with different mass and
frequency charges will measure the difference of the interferometric phases, whose amplitude
is given by��ΔΦRaman

AB
��
𝑑
=

4
√

16𝜋𝐺𝜌DM

𝜔2
𝜙𝑐

(
𝑣DM𝑒𝑣 · 𝑒kick

(
𝑘𝐴eff([𝑄

𝐴
𝑀]𝑑 − [𝑄

𝑀
𝑀 ]𝑑) − 𝑘

𝐵
eff([𝑄

𝐵
𝑀]𝑑 − [𝑄

𝑀
𝑀 ]𝑑)

)
+

𝜔0
𝐴

(
[𝑄𝐿,𝐴

𝜔 ]𝑑 − [𝑄𝐴
𝜔]𝑑

)
− 𝜔0

𝐵

(
[𝑄𝐿,𝐵

𝜔 ]𝑑 − [𝑄𝐵
𝜔]𝑑

))
sin2

(
𝜔𝜙𝑇

2

)
(13.21a)��ΔΦRaman
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��
𝑎
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16𝜋𝐺𝜌DM𝐸
2
𝑃

𝑓 2
𝑎 𝜔

3
𝑎𝑐

2

(
𝑣DM𝑒𝑣 · 𝑒kick

(
𝑘𝐴eff([𝑄

𝐴
𝑀]𝑎 − [𝑄

𝑀
𝑀 ]𝑎) − 𝑘

𝐵
eff([𝑄

𝐵
𝑀]𝑎 − [𝑄

𝑀
𝑀 ]𝑎)

)
+

𝜔0
𝐴

(
[𝑄𝐿,𝐴

𝜔 ]𝑎 − [𝑄𝐴
𝜔]𝑎

)
− 𝜔0

𝐵

(
[𝑄𝐿,𝐵

𝜔 ]𝑎 − [𝑄𝐵
𝜔]𝑎

))
sin2 (𝜔𝑎𝑇) , (13.21b)

for Raman interferometers and���ΔΦBragg
AB

���
𝑑
=

4
√

16𝜋𝐺𝜌DM𝑣DM𝑒𝑣 · 𝑒kick

𝜔2
𝜙𝑐

(
𝑘𝐴eff([𝑄

𝐴
𝑀]𝑑 − [𝑄

𝑀
𝑀 ]𝑑) − 𝑘

𝐵
eff([𝑄

𝐵
𝑀]𝑑 − [𝑄

𝑀
𝑀 ]𝑑)

)
sin2

(
𝜔𝜙𝑇

2

)
(13.21c)���ΔΦBragg

AB

���
𝑎
=

16𝜋𝐺𝜌DM𝐸
2
𝑃
𝑣DM𝑒𝑣 · 𝑒kick

𝑓 2
𝑎 𝜔

3
𝑎𝑐

2

(
𝑘𝐴eff([𝑄

𝐴
𝑀]𝑎 − [𝑄

𝑀
𝑀 ]𝑎) − 𝑘

𝐵
eff([𝑄

𝐵
𝑀]𝑎 − [𝑄

𝑀
𝑀 ]𝑎)

)
sin2 (𝜔𝑎𝑇) ,

(13.21d)

for Bragg interferometers, where we used Eqs. (13.19) and (13.20), neglected the subdominant
terms ∝ 𝑘2

eff , 𝐿 and where 𝑄𝐿,𝐴
𝜔 , 𝑄𝐿,𝐵

𝜔 are respectively the frequency charge of the beams
used for the transition of the atomic species A and B in the Raman case. The mass terms of
Eq. (13.21) are the quantum equivalent of the classical calculation Eq. (12.5). Indeed, for small
𝜔𝜙𝑇, 𝜔𝑎𝑇 and assuming 𝑘𝐴eff = 𝑘𝐵eff ≡ 𝑘eff, the Taylor expansion of the mass terms of Eq. (13.21)
is related to Eq. (12.5) through |ΔΦAB | = 𝑘eff𝑇

2 |Δ®𝑎AB |, which is the usual relation between
phase shift and acceleration in atom interferometers [13]. The second terms of Eq. (13.21)
of Raman phase, proportional to the frequency charges 𝑄𝜔 have no classical counterpart.
Assuming mass and frequency charges of same order of magnitude, the frequency terms of
Eq. (13.21) will dominate in co-propagating laser Raman interferometers, while for counter-
propagating laser Raman interferometers, both terms contribute to the phase shift.
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13.2 Are the calculations doable in the laboratory frame ?
In the previous section, the observable phase shift is computed in the galactic reference frame
(the DM rest frame) where the perturbation to the rest mass/atomic frequency is proportional
to cos

(
𝜔𝜙𝑡 +Φ

)
(in the dilatonic case, but the argument is the same for the axion). As it

was shown in Chapter 7 (but this can be recovered by a simple Lorentz transformation), the
field (and by extension the perturbation to the rest mass or atomic frequency) is proportional
to cos(𝜔ℓ 𝑡ℓ − ®𝑘ℓ · ®𝑥ℓ + Φ) in a lab-centric frame, moving at velocity ®𝑣DM with respect to the
Galactocentric frame (see Eq. (13.22) for their explicit expression). The ℓ subscript denotes
quantities expressed in the lab-centric frame. The reason why we performed the calculations
in the galactocentric frame relies on the fact that the method presented in [13] is valid only
for Lagrangians at most quadratic in the position and velocity, which is the case in the
galactocentric case but not in the lab-centric one. For this reason, the quantities appearing in
Eqs. (13.19), (13.20) and (13.21) (and as we shall see in the next sections, this works also for
Eqs. (13.26) and (13.27)) are quantities evaluated in the galactocentric frame. The first goal
of this section is to justify why one can safely replace the values of 𝜔0

𝐴
, 𝑘eff and 𝐿 appearing

in these equations by their lab-centric counterpart. The result from Eqs. (13.19) and (13.20)
differs from the one obtained in [17] by the fact that in [17], the mass terms are proportional
to the lab-centric initial velocity of the atoms while in the previous section, it corresponds
to its galactic counterpart (i.e the galactic velocity, which is multiple orders of magnitude
larger).

To strengthen our point, we will explicitly derive the classical equations of motion of
the atoms in the lab-centric frame and show that the galactic velocity is indeed expected
to appear in the phase shift. Finally, we will explain how a solution can be derived in the
lab-centric frame (at first order in 𝑣DM/𝑐) using the formalism from [13] and show that this
is also consistent with Eqs. (13.19).

First, the two reference frames are related to each other by a Lorentz transformation. This
means that the angular frequency 𝜔 and wave vector ®𝑘 of the laser beam transform following

𝜔ℓ = 𝛾
(
𝜔 − ®𝑣DM · ®𝑘

)
= 𝜔

(
1 + 𝒪

(𝑣DM
𝑐

))
, (13.22a)

®𝑘ℓ = ®𝑘 +
1
𝑣2

DM
(𝛾 − 1)

(
®𝑣DM · ®𝑘

)
®𝑣DM −

1
𝑐2 𝛾𝜔®𝑣DM = ®𝑘

(
1 + 𝒪

(𝑣DM
𝑐

))
, (13.22b)

where 𝛾 = (1 − 𝑣2
DM/𝑐2)−1/2 and 𝑣DM/𝑐 ∼ 10−3. For this reason, although Eqs. (13.19) and

(13.20) are expressed in the galactocentric reference frame, one can safely replace ®𝑘eff, 𝜔0
𝐴

by their lab-centric counterpart. This would lead to a correction three orders of magnitude
smaller than the leading order term. A similar argument applies for the other quantities
such as 𝐿, 𝑇 the interrogation time, etc. This demonstrates that one can safely use lab-centric
quantities in Eqs. (13.19) and (13.20) (and this applies to all the equations following them,
including the ones derived in the next two sections).

Let us now convince ourselves that a derivation directly performed in the lab-centric
frame would also lead to a phase shift whose main term is also proportional to the lab
velocity with respect to the galactic reference frame, in agreement with Eqs. (13.19) and
(13.20). In Chapter 12, we derived the acceleration felt by an atom A in the laboratory frame
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Eq. (12.4b). Therefore, in the lab frame, the acceleration is proportional to the galactic velocity
𝑣DM, at leading order. In addition, the AI schemes considered in Eqs. (13.19) and (13.20) act
as accelerometers that provide, to first order, a phase shift ΔΦ = 𝑘eff𝑎𝑇

2 where 𝑎 is the local
acceleration. For this reason, as an output to the perturbative acceleration form Eq. (12.4b),
one expects that the leading order term for ΔΦ is ∝ 𝑘eff𝑣DM[𝑄𝐴

𝑀
]𝑑𝑇2, consistent for 𝜔𝑇 ≪ 1

with the first term from Eqs. (13.19) and (13.20). This reasoning provides an argument
showing that the velocity of the laboratory with respect to the galactocentric reference frame
also appears when reasoning directly in the lab frame.

Formally, the method from [13] cannot be used to compute the AI phase shift from the
lab frame Lagrangian provided by Eq. (8.11b) since it is not at most quadratic in the position.
Nevertheless, it is possible to perform an approximate calculation in the lab frame in the case
where the de Broglie wavelength of the DM field (which for demonstration we assume is the
dilaton field) is much larger than the typical size of the experiment, i.e. if ®𝑘𝜙 · ®𝑥ℓ ≪ 1 (which
is the case for the AI experiments considered in this thesis (see Chapter 17) characterized by
®𝑘𝜙 · ®𝑥ℓ ⪅ 5 × 10−8 ≪ 15). In such a case, an expansion of the Lagrangian Eq. (8.11b) leads to

ℒ𝐴 ≈ − 𝑚0
𝐴𝑐

2

(
1 −

𝑣2
𝐴,ℓ

2𝑐2

)
×

(
1 −

√
16𝜋𝐺𝜌DM[𝑄𝐴

𝑀
]𝑑

𝜔𝜙𝑐

(
cos(𝜔𝜙𝑡ℓ +Φ) + ®𝑘𝜙 · ®𝑥ℓ sin(𝜔𝜙𝑡ℓ +Φ)

))
.

(13.23)

From this Lagrangian, one can derive the UFF violating acceleration in the laboratory frame,
which reads

®𝑎𝐴 ≈
(
𝜔𝜙®𝑣𝐴,ℓ − ®𝑘𝜙𝑐2

) √
16𝜋𝐺𝜌DM[𝑄𝐴

𝑀
]𝑑

𝜔𝜙𝑐
sin(𝜔𝜙𝑡ℓ +Φ) (13.24a)

=

(
®𝑣𝐴,ℓ + ®𝑣DM

)
𝑐

√
16𝜋𝐺𝜌DM[𝑄𝐴

𝑀]𝑑 sin(𝜔𝜙𝑡ℓ +Φ) . (13.24b)

This Lagrangian is now linear in the position and can be used to compute the phase shift
using the method from [13]. Note that there is an important difference compared to the
calculation performed in [17] where the second term has implicitly been neglected.

The equations of motion deriving from this Lagrangian consists in the ones from Eq. (12.4b)
where one neglects the ®𝑘ℓ · ®𝑥ℓ within the sine function. The calculation of the phase shift
directly in the lab frame follows exactly the equations presented in the previous section.
There are mainly two differences in the derived equations. First, the perturbed trajectory
and velocity of the atom in the lab frame now read (taking 𝑡0 = 0 immediately and 𝑡ℓ → 𝑡)

®𝑣𝐴,ℓ (𝑡) ≈ ®𝑣ℓ ,0 −
(
®𝑣ℓ ,0 + ®𝑣DM

)
𝑋DM[𝑄𝐴

𝑀]𝑑
(
cos(𝜔𝜙𝑡 +Φ) − cos(Φ)

)
, (13.25a)

®𝑥𝐴,ℓ (𝑡) ≈ ®𝑥ℓ ,0 + ®𝑣ℓ ,0𝑡 −
®𝑣ℓ ,0 + ®𝑣DM

𝜔𝜙
𝑋DM[𝑄𝐴

𝑀]𝑑
(
sin(𝜔𝜙𝑡 +Φ) − sin(Φ) − 𝜔𝜙𝑡 cos(Φ)

)
,

(13.25b)

where 𝑣ℓ ,0 is the initial velocity of the atom in the lab frame, which corresponds to the launch
velocity. These equations replace Eqs. (13.6). Secondly, one needs to keep the ®𝑘𝜙 · ®𝑥ℓ term in

5We consider DM frequencies characterized by 𝑚𝜙𝑐
2 ≤ 10−13 eV and size of experiments 𝐿 ≤ 100 m).
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Figure 13.4: Spacetime diagram of a single photon transition, as proposed in [23] with
𝑛 = 2 (using the convention of [24], see text.) Two lasers are used, one located at 𝑥 = 0,
with emission (in red) towards the second laser located at 𝑥 = 𝐿 (with blue emission). The
frequencies of the lasers are selected carefully to interact only with the wavepacket of interest
(see text). The black dots indicate the location of matter-wave interactions.

the Lagrangian when computing the propagation phase using Eq. (13.8). The full calculation
following the method from the last section leads to a result that is consistent with Eqs. (13.19)
and (13.20) to first order in 𝑣DM/𝑐, in Bragg and Raman AI respectively, which demonstrates
the equivalence between the two frames.

13.3 Gradiometers
We will now focus on interferometric setup that involves single photon transitions. The first
setup considered is known as a gradiometer, i.e a setup where two atom interferometers are
stacked at different altitudes, for the study of e.g gravity gradients, and which has already
been studied in [18, 23].

We are interested in the setup initially proposed by [23] and then studied in e.g [18,
24]. Practically, we consider two ensembles of atoms 𝐴 (one for each interferometer) located
respectively at 𝑥1 and 𝑥2, all initially in the state |𝑔, ℏ®𝑘⟩ and two lasers, one at coordinate
𝑥 = 0 with wavevector ®𝑘1 and the other at coordinate 𝑥 = 𝐿 with wavevector ®𝑘2. In those
single photon interactions configurations, 𝑘1 ≈ 𝑘2 = 𝑘 = 𝜔0

𝐴
/𝑐.

At an initial time 𝑡0, the first laser sends a beam which interacts with both atom ensembles
and which corresponds to a𝜋/2 pulse. Then, the second laser beam sends a𝜋Doppler shifted
laser pulse in order to interact only with the excited state wavepackets, whose motion induces
a change in transition frequency, and to convert entirely this wavepacket to the ground state.
After this sequence, all wavepackets are in the ground state, however one of them has gained
momentum 2ℏ𝑘. Following the convention of [18, 24], at the end of the sequence, the fast
wavepackets have received a Large Momentum Transfer (LMT) photon kick of order 26. If

6Note that in the original proposal by [23], the LMT has a slightly different definition.
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Figure 13.5: Spacetime diagram of a gradiometer, where two interferometers as shown in
Fig. 13.4 are stacked at different altitudes. In this figure, trajectories of the atom in its ground
stat are represented by dashed lines, while full lines represent paths where the atom is in its
excited state.

another pair of 𝜋 pulses (with the first one from the bottom laser and the second one from
the top laser in the same way as before) is sent to the faster half of the atom, one makes a
large momentum transfer (LMT) beam splitter of order 4. More generally, if 𝑚 pairs of 𝜋
pulses are sent, the order of the LMT beam splitter is 2(𝑚 + 1) and the faster wavepacket has
gained total momentum 2(𝑚 + 1)ℏ𝑘. In other words, the order 𝑛 of the LMT is defined as
𝑛 = 2(𝑚 + 1).

Later at time 𝑡 = 𝑇, a sequence of state inversion similar to the one used in two-photon
transitions interferometers is performed, but this time, with three different 𝜋 pulses, the
first one coming from the bottom laser, the second one from the top laser and the last one
from the bottom laser again. However, in order to slow down the faster wavepacket, 𝑚
pairs of 𝜋 pulses are added before this sequence, such that it loses 2(𝑚 + 1)ℏ𝑘 momentum.
Symmetrically, 𝑚 other pairs of LMT pulses are added after the state inversion to accelerate
the other wavepacket, such that it gains 2(𝑚 + 1)ℏ𝑘 momentum.

Finally at time 𝑡 = 2𝑇, a sequence of pulses opposite to the one sent at the initial 𝑡 = 0 is
sent to the wavepackets, i.e 𝑚 LMT pairs of 𝜋 pulses are sent to the wavepackets before the
final 𝜋 − 𝜋/2 pulses used for recombination. This whole sequence is depicted in Fig. 13.4
with 𝑛 = 2 (i.e 𝑚 = 0) and only one interferometer.

In gradiometers, two such interferometers are stacked at different altitudes, separated
by a distance Δ𝑟, and the same laser beam is used for the laser-atom interaction in both
interferometers, which is depicted in Fig. 13.5. The main advantage of this setup is that laser
phase noise is entirely cancelled when measuring the differential phase shift between the
two interferometers.

Assuming 𝜔𝜙𝐿/𝑐, 𝜔𝑎𝐿/𝑐 ≪ 1 and 𝑛𝐿/𝑐 ≪ 𝑇 where the LMT kick is of order 𝑛, and
𝐿 is the baseline separation between the two lasers, which we assume for simplicity to be
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the distance between the two interferometers, the differential phase shift can be computed
following the exact same methodology as in Section 13.1.3 and reads

|ΔΦGrad
A |𝑑 ≈

4
√

16𝜋𝐺𝜌DM𝑛𝜔0
𝐴
Δ𝑟[𝑄𝐴

𝜔]𝑑
𝜔𝜙𝑐2 sin2

(
𝜔𝜙𝑇

2

)
(13.26a)

|ΔΦGrad
A |𝑎 ≈

32𝜋𝐺𝜌DM𝐸
2
𝑃
𝑛𝜔0

𝐴
Δ𝑟[𝑄𝐴

𝜔]𝑎
𝑓 2
𝑎 𝜔

2
𝑎𝑐

3
sin2 (𝜔𝑎𝑇) . (13.26b)

We recover the leading order phase shift amplitude already derived in [18, 23].

13.4 Single Photon Isotope Differential interferometer
We study another setup employing single photon transitions, that we name SPID in the
following, for Single Photon Isotope Differential AI, which is a variation of the interferometric
sequence presented in the previous section. We will show that this experimental setup is
more sensitive to oscillations in atom rest mass and transition frequency compared to regular
gradiometers. This type of setup has already been proposed, without any detail, for ULDM
detection in MAGIS-100 [25] (see end of this section for a discussion). The goal of this
section is to show the expected signals of such a setup, in order to compare it directly with
gradiometers, as the one expected to be used in AION-10 [18].

Contrary to usual gradiometers which only use one single species of atom, we consider
two different atom isotopes, each of them undergoing individually the interferometric path
described earlier in the previous section. The setup is presented in Fig. 13.6. The two
interferometers overlap at the same elevation, so the experiment will test the universality of
free fall between the two isotopes. This setup employs single photon transition (meaning
we will consider only optical transitions) and measures the differential acceleration between
two isotopes, so we will refer to this setup as Single Photon transition Isotope Differential
(SPID).

Typically, an optical transition has a frequency of the order of ∼1014 Hz while the typ-
ical frequency shift between two isotopes is of order ∼109 Hz (i.e. typically 5-6 orders of
magnitude smaller than the nominal transition frequency, see [26] for Sr). Then, a unique
laser source can be used in this setup and separated in two different beams: one which is
directly used in the laser-atom interactions inside the interferometer of the first isotope; and
the other one whose frequency is shifted, e.g. using an electro-optic modulator (EOM), in
order to interact with the second isotope.

The calculation of the differential phase shift for such a setup can be computed following
the exact same methodology as in Section 13.1.3. If we assume the optical transition frequen-
cies to be close, i.e 𝜔0

𝐴
≈ 𝜔0

𝐵
≡ 𝜔0 and the initial velocity (∝ 𝑣DM) to be much larger than the

velocity kick ℏ𝑘eff/𝑚0, the differential phase shift between the two interferometers reads

|ΔΦSPID
AB |𝑑 ≈

4
√

16𝜋𝐺𝜌DM𝑣DM𝑛𝜔0

𝜔2
𝜙𝑐

2

��([𝑄𝐴
𝑀]𝑑 − [𝑄

𝐵
𝑀]𝑑)𝑒𝑣 · 𝑒kick

�� sin2
(
𝜔𝜙𝑇

2

)
(13.27a)

|ΔΦSPID
AB |𝑎 ≈

16𝜋𝐺𝜌DM𝐸
2
𝑃
𝑣DM𝑛𝜔0

𝑓 2
𝑎 𝜔

3
𝑎𝑐

3

��([𝑄𝐴
𝑀]𝑎 − [𝑄

𝐵
𝑀]𝑎)𝑒𝑣 · 𝑒kick

�� sin2 (𝜔𝑎𝑇) , (13.27b)
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Figure 13.6: Simplified setup for the SPID experiment. For the sake of simplicity, we assume
two different isotopes with respective transition frequencies 𝑓1 = 𝑓tr = 1014 Hz, 𝑓2 = 𝑓tr +
𝑓EOM = (1 + 10−5) × 1014 Hz. The laser is locked on the transition frequency of isotope 1
and split in three: the first two outputs are used for the isotope 1 AI (in red). The third
output enters an electro-optic modulator (EOM) to shift its frequency by 𝑓EOM to account for
the isotope shift in order to be used with the second isotope. As for the other experimental
AI schemes, we do not show the various acousto-optic modulators (AOM) that shift the
frequency of one of the laser input of each interferometer, to account for the Doppler shift of
the freely falling atoms.

where we kept only lowest order terms in 𝜔𝐿/𝑐. In this result, we did not take into account
the effect of an oscillating EOM frequency through 𝑄EOM

𝜔 ≠ 0. Nonetheless, its effect is
suppressed by a factor 𝜔𝐿/𝑣DM ×Δ𝜔0/𝜔0 ≤ 10−7 compared to the leading term, where Δ𝜔0

is the isotope shift. In such a case (and similarly for 𝐿 = 0), we recover the leading order
Bragg phase shift derived in Eq. (13.21) with 𝑛𝜔0/𝑐 = 𝑘eff, as expected.

The advantage of this setup compared to usual gradiometers can be immediately visual-
ized by comparing Eq. (13.27) and Eq. (13.26): the SPID setup does not suffer from a small
factor 𝜔Δ𝑟/𝑣DM. More precisely, the ratio of amplitude of signals between this variation
and usual gradiometers is roughly 𝑣DM/(𝜔Δ𝑟) × (𝑄𝐴

𝑀
− 𝑄𝐵

𝑀
)/𝑄𝐴

𝜔 ∼
(
1 rad.s−1/𝜔

)
for the

following values: Δ𝑟 ∼ 5 m, 𝑣DM ∼ 10−3𝑐, 𝑒𝑣 · 𝑒kick ∼ 𝒪(1) and mass and frequency charges
presented in Tables 8.1 and 8.3.). This implies that, at low angular frequency (𝜔 < 1 rad/s),
the signal of the single photon transition isotope differential AI will be larger than the one
in a gradiometer. The simple reason for this difference in signal amplitudes is that the gra-
diometer leading order phase shift in Eq. (13.26) is proportional to the frequency charge 𝑄𝜔,
or in other words, it is proportional to the time in which the wavepackets are in their excited
state. As can be noticed from Fig. 13.4, this happens for a limited time, of the order of 𝑛𝐿/𝑐.
Conversely, the signal amplitude of the SPID variation is proportional to mass charges 𝑄𝑀

whose effect is imprinted in the phase shift, whatever the internal state, i.e for a time ∼ 𝑇.
As it was pointed out in the beginning of this section, MAGIS-100 [25] will operate a similar

mode as SPID for the search of ULDM and we want to derive the expected sensitivity of such
a large scale experiment to axion and dilaton signals. More specifically, MAGIS-100 will run
a Bragg interferometer (i.e with two photons transitions instead of single-photon transition,
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as in SPID). However, as mentioned in the text after Eq. (13.27), the leading order signal of
both setup is the same, provided that the beams are locked on the same optical transition
in both cases. The main difference between the two setup is that for SPID, the wavepackets
spend some time in their excited state (which they do not in Bragg configuration), but as
shown in Eq. (13.27), the additional phase shift is next-to-leading order, and thus negligible.
In addition, as we shall see in Chapter 18, the phase noise levels will be equivalent in both
setups. Therefore, the optimal choice between the two setup is a matter of practicality. In
particular, we will be deriving the sensitivity of such setup considering optical transitions
summarized in Table 8.2. In these choices of isotopes and transitions, we ignore the small
lifetime of the various excited states (of hundreds of 𝑛𝑠 to hundreds of 𝜇𝑠), which could limit
the number of atoms detected at the end of the sequence due to spontaneous emission7

7This limitation could be overcome for optical transitions due to the large Rabi frequency, implying a very
short 𝜋 pulse duration [27].
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Chapter 14

Gravitational waves and LISA

14.1 Gravitational waves physics basics
As quickly mentioned in the introduction of this thesis, one of the main prediction of GR is
the production of GW by massive objects. More precisely, only systems with time dependent
quadrupolar moment (or higher order moment) produce such waves.

GW are solutions of the linearized Einstein equations. Assuming a static Minkowski
background 𝜂𝜇𝜈 perturbed by ℎ𝜇𝜈 ≪ 𝜂𝜇𝜈 such that the spacetime metric is 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈,
around a system energy momentum tensor 𝑇𝜇𝜈, one can show that [1]

□ℎ̄𝜇𝜈 =
−16𝜋𝐺
𝑐4 𝑇𝜇𝜈 , (14.1a)

where □ ≡ 𝜂𝛼𝛽𝜕𝛼𝜕𝛽 and

ℎ̄𝜇𝜈 = ℎ𝜇𝜈 −
1
2𝜂𝜇𝜈ℎ

𝛼
𝛼 . (14.1b)

In presence of matter-energy, Eq. (14.1a) describes the emission of the GW sourced by
𝑇𝜇𝜈, while in vacuum where 𝑇𝜇𝜈 = 0, it describes the propagation of the GW. The energy-
momentum tensor being symmetric, it consists of 10 independent components, therefore
Eq. (14.1a) is a set of 10 independent equations. Imposing Lorenz gauge 𝜕𝜇 ℎ̄𝜇𝜈 = 0 and
the so-called 𝑇𝑇 (traceless-transverse) gauge ℎ̄𝜇𝜇 = 0, 𝜕𝑖 ℎ̄𝑖 𝑗 = 0 leaves only two independent
radiative degrees of freedom, which are the two GW polarizations. Therefore, in the 𝑇𝑇
gauge, we have ℎTT

𝜇𝜈 = ℎ̄TT
𝜇𝜈 . Assuming a GW wave with frequency 𝑓 = 𝜔/2𝜋 propagating

in the 𝑧-direction, we have ℎTT
𝜇𝜈 = ℜ[𝐴TT

𝜇𝜈 𝑒
−𝑖(𝜔𝑡−𝑘𝑧)] with 𝐴TT

11 = 𝐴+ and 𝐴TT
12 = 𝐴×, and the

amplitude of the wave is

𝐴TT
𝜇𝜈 =

©«
0 0 0 0
0 𝐴+ 𝐴× 0
0 𝐴× −𝐴+ 0
0 0 0 0

ª®®®¬ = 𝐴+
©«
0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

ª®®®¬ + 𝐴×
©«
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

ª®®®¬
≡ 𝐴+𝜖+𝜇𝜈 + 𝐴×𝜖×𝜇𝜈 (14.2)

The amplitudes 𝐴+, 𝐴× can be found by solving Eq. (14.1a). Using Green’s functions and
the conservation of the energy-momentum tensor 𝜕𝜇𝑇𝜇𝜈 = 0, one can show that the spatial
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solutions of Eq. (14.1a) is the perturbed spacetime at coordinates (𝑡 , ®𝑥) induced by a GW
emitted by a source located at spatial coordinates ®𝑦, and has the form [1]

ℎTT
𝑖 𝑗 (𝑡 , ®𝑥) =

2𝐺
𝑐4𝑅
𝒫𝑖 𝑗𝑎𝑏

𝜕2

𝜕𝑡2

∫
𝑑3 ®𝑦

(
𝑦𝑎𝑦𝑏 −

1
3𝛿𝑎𝑏 | ®𝑦 |

2
)
𝑇00

(
𝑡 −
| ®𝑥 − ®𝑦 |
𝑐

, ®𝑦
)
, (14.3a)

where the argument of the integral is the quadrupolar moment tensor of the source and
where we introduced the projection operators

𝒫𝑖 𝑗𝑎𝑏 = 𝒫𝑖𝑎𝒫𝑗𝑏 −
1
2𝒫𝑖 𝑗𝒫𝑎𝑏 (14.3b)

𝒫𝑖 𝑗 = 𝛿𝑖𝛿 𝑗 − 𝑘𝑖𝑘 𝑗 , (14.3c)

that ensures that ℎTT
𝑖 𝑗

is traceless and transverse to the propagation vector 𝑘. This result is
derived assuming that the distance | ®𝑥 − ®𝑦 | ≫ | ®𝑦 |, the size of the source.

The effect of the GW is the modification of physical distances between test masses in
the plane of polarization. Considering the same GW as above, assuming two freely falling
bodies located at 𝑧 = 0, separated on the 𝑥-axis by a coordinate distance 𝐿0. When the GW
passes by, this coordinate distance is unchanged, because the coordinates move with the GW
[1]. The relevant and physical quantity is the proper distance, as the distance measured by
a light signal and a clock, which is shown to change as [1]

𝐿(𝑡) =
∫ 𝐿0

0
𝑑𝑥
√
𝑔𝑥𝑥 ≈ 𝐿0

(
1 + 1

2 ℎ
𝑇𝑇
𝑥𝑥 (𝑡 , 𝑧 = 0)

)
. (14.4)

More generally, if we assume a ring of particles in the 𝑥 − 𝑦 plane, the + polarization of the
GW makes the ring oscillating in the 𝑥 − 𝑦 directions while the × polarization acts on the
ring along the 𝑥′ − 𝑦′ directions which are rotated by 45° with respect to 𝑥 − 𝑦 coordinates
(i.e 𝑒𝑥′ =

√
2(𝑒𝑥 + 𝑒𝑦)/2 and 𝑒𝑦′ =

√
2(−𝑒𝑥 + 𝑒𝑦)/2). This is the reason for the +,× polarization

names, as they respectively distort a circular ring of particles to make a + and × shape.
Since the GW strain (i.e the relative displacement (𝐿(𝑡) − 𝐿0)/𝐿0 ≡ 𝛿𝐿/𝐿0 in Eq. (14.4)) is

expected to be extremely small, of the order of 10−21 or less, one must use the most precise
method to measure distances, i.e optical interferometers. For example, the Earth-based GW
detectors LIGO/VIRGO are operating a Michelson optical interferometer in a 𝐿-shape in order
to maximize the effect of the GW, i.e stretch one arm and compress the other. In such a case,
a photon of wavelength 𝜆 that travels back and forth on the arm whose distance has changed
acquires a phase shift Δ𝜙. Note that even if light is stretched by the passage of the GW (i.e its
frequency changes), one can still use it as a "ruler" to detect any change in physical distance
between two freely falling objects. This is because light is not used as a ruler but as a clock,
i.e one does not measure the total number of crests that fits in a given distance (e.g. between
reflecting mirror and beam splitter in an usual GW detector) but rather measures the number
of crests of light that arrives at the beam splitter per unit of time. As the GW stretches (or
compresses light), the crests will arrive at the beam splitter with a time delay compared to
situations with no GW, and this creates an observable phase shift [2].
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Figure 14.1: LISA constellation heliocentric orbit (from [4]).

14.2 LISA, the first european space-based gravitational waves
detector

After the success of the ground-based GW detectors such as LIGO and VIRGO, one of the next
important mission aiming at detecting GW is LISA (Laser Interferometer Space Antenna), see
[3] for a complete review of the mission and its scientific goals. In this manuscript, we will
only describe the important features of the mission that will be needed for its understanding.
As pictured in Fig. 14.1, LISA will consist of a constellation of three spacecrafts, in the
following noted 1, 2, 3, which will follow Earth on an heliocentric orbit. In practice, LISA

will be able to detect GW of frequencies in the 10−4− 1 Hz range, which is complementary to
LIGO/VIRGO sensitivity bands (around 10 − 104 Hz). However, the mean spatial separation
between the spacecrafts being 𝐿 = 2.5×109 m, at frequencies 𝑓 > 𝑐/𝐿 ∼ 0.1 Hz, the sensitivity
decreases due to the arm length penalty [5], i.e the GW wavelength is shorter than the arm
length, which induces averaging of the signal. All spacecrafts will continuously produce two
local laser signals through two local oscillators and exchange it with the other spacecrafts, and
GW signals will be detected by interferometric measurement between those optical signals.
Indeed, at the passage of a GW, the distance between spacecrafts changes and therefore, the
observed phase of the laser signal that travelled in vacuum changes as well. More precisely,
inside one given spacecraft (e.g. 1), interferometric measurements will be made between
the local oscillator of 1 and the laser received from spacecraft 2 using a phasemeter. A very
specific optical bench inside the spacecrafts allows to recombine the two optical signals and
make the interference. A more precise description of such bench will be done in Chapter 16.
Overall, in order to make interferometric measurements between all the optical signals, each
spacecraft contains two optical benches. In addition, inside each of the spacecrafts is located
a freely-falling test mass surrounded by metallic shields in order to protect from any exterior
perturbations, e.g. radiation pressure from the Sun. This way, the test mass is insensitive to
non-gravitational forces which allows it to stay on its geodesic. By measuring the distance
between the test mass and the spacecraft around it, one knows when the spacecraft has left
its geodesic, due to perturbations, and can replace the spacecraft on its geodesy using mini-
rockets on board. Combining all these measurements in all spacecrafts, one can reconstruct
the distance between the test masses.

Finally, let us discuss sources of noise in the apparatus, in particular laser noise. It is
admitted that the laser noise amplitude spectral density (ASD) is

√
𝑆 𝑓 ∼ 30 Hz/

√
Hz [6],

which in terms of the nominal frequency of the laser 𝜈0 ∼ 2.82 × 1014 Hz [6], corresponds to
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𝑆 𝑓 /𝜈0 ∼ 10−13 Hz−1/2. In the same unit, the GW signal ASD is ∼ 10−21 Hz−1/2, i.e at this

level, the laser noise completely dominates the signal. Fortunately, there exists a method to
effectively lower drastically the laser noise by combining signals from the different spacecrafts
in such a way that the resulting observable is independent of laser noise, but still contains
the GW signal. This is called Time Delay Interferometry, or TDI and were first introduced in
[7–9]. The principle relies on the fact that each laser noise is measured several times.

It can be shown mathematically (for details, we refer to [6]) that some time retarded
signals combinations between the three different arms completely reduces the laser noise to
zero, thus the name of the method. Here, we will only present some of the TDI combinations
of interest.

First, we will label the optical benches with two indices 𝑖 𝑗, where the spacecraft 𝑖 receives
light signal (host optical bench) from emitting spacecraft 𝑗. Defining the laser phase of the
laser on spacecraft 𝑖 by Φ𝑖 , the beatnote phase between Φ𝑖 and Φ𝑗 at time of reception 𝑡𝑟 is

Φ𝑖 𝑗(𝑡𝑟) = Φ𝑗

(
𝑡𝑟 −

𝐿𝑖 𝑗(𝑡𝑟)
𝑐

)
−Φ𝑖(𝑡𝑟) , (14.5a)

where 𝐿𝑖 𝑗 is the arm length between the two spacecrafts and where we assume that the
measurements inside different spacecrafts are synchronized. We define the relative phase
fluctuation

𝛿Φ𝑖 𝑗(𝑡𝑟) = −
𝜔 𝑗𝛿𝐿𝑖 𝑗
𝑐
≡

𝜔 𝑗𝐿𝑖 𝑗𝛾𝑖 𝑗
𝑐

, (14.5b)

where 𝛿𝐿𝑖 𝑗 is the arm length fluctuation induced by the GW, 𝜔 𝑗 is the local frequency of
spacecraft 𝑗 and where the interferometric measurement is expressed in terms of relative
arm length fluctuation induced by the GW

𝛾𝑖 𝑗(𝑡𝑟) = −
𝛿𝐿𝑖 𝑗
𝐿𝑖 𝑗

. (14.5c)

One can also define relative frequency fluctuation signals (i.e Doppler shifts) as

𝑦𝑖 𝑗(𝑡𝑟) =
1
𝜔 𝑗

𝑑𝛿Φ𝑖 𝑗(𝑡𝑟)
𝑑𝑡𝑟

= −1
𝑐

𝑑𝛿𝐿𝑖 𝑗
𝑑𝑡

. (14.6)

Using the sign convention of [10], we define the first (and second) generation Michelson 𝑋1
(𝑋2) combination as [11]

𝑋1(𝑡) = 𝑦13 + 𝐷13𝑦31 + 𝐷131𝑦12 + 𝐷1312𝑦21 − (𝑦12 + 𝐷12𝑦21 + 𝐷121𝑦13 + 𝐷1213𝑦31) (14.7a)
𝑋2(𝑡) = (1 − 𝐷12131) (𝑦13 + 𝐷13𝑦31 + 𝐷131𝑦12 + 𝐷1312𝑦21) −

(1 − 𝐷13121) (𝑦12 + 𝐷12𝑦21 + 𝐷121𝑦13 + 𝐷1213𝑦31) , (14.7b)

where we used the compacted writing of TDI where𝐷𝑖 𝑗𝑦 𝑗𝑘(𝑡) = 𝑦 𝑗𝑘(𝑡−𝐿𝑖 𝑗/𝑐) and𝐷𝑖 𝑗𝑘𝑦𝑘𝑙(𝑡) =
𝑦𝑘𝑙(𝑡 − 𝐿𝑖 𝑗/𝑐 − 𝐿 𝑗𝑘(𝑡 − 𝐿𝑖 𝑗/𝑐)). It can be shown geometrically that the circulation of the laser
beams in that case is very similar to an usual optical Michelson interferometers, thus the name
of the combination. The first generation combinations are not sensitive to the laser noise
in the constant armlength approximation while the second generation takes into account
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effects of rotation of the detector (Sagnac effect) and of the time variation of armlengths.
The residuals of laser noise in the second generation TDI is proportional to the difference in
spacecraft velocities squared [12]. In the constant armlength approximation and considering
that the Doppler shifts are harmonic functions of the frequency 𝜔, the second generation
TDI X combination Eq. (14.7a) can be rewritten as

𝑋2 =

(
1 − 𝑒− 4𝑖𝜔𝐿

𝑐

) (
𝑦13 + 𝑒−

𝑖𝜔𝐿
𝑐 𝑦31 + 𝑒−

2𝑖𝜔𝐿
𝑐 𝑦12 + 𝑒−

3𝑖𝜔𝐿
𝑐 𝑦21

)
−(

1 − 𝑒− 4𝑖𝜔𝐿
𝑐

) (
𝑦12 + 𝑒−

𝑖𝜔𝐿
𝑐 𝑦21 + 𝑒−

2𝑖𝜔𝐿
𝑐 𝑦13 + 𝑒−

3𝑖𝜔𝐿
𝑐 𝑦31

)
(14.8a)

= −4 sin
(
𝜔𝐿
𝑐

)
sin

(
2𝜔𝐿
𝑐

) (
𝑒
−3𝑖𝜔𝐿
𝑐

(
𝑦13 − 𝑦12 + 𝑒

−𝑖𝜔𝐿
𝑐 (𝑦31 − 𝑦21)

))
, (14.8b)

where we used the fact that one delay operator corresponds to a factor exp(−𝑖𝜔𝐿/𝑐). The
other two Michelson 𝑌, 𝑍 combinations can be obtained from Eq. (14.7a) by a cyclic per-
mutation of the indices 1 → 2 → 3 → 1. Other important combinations are the 𝐴, 𝐸, 𝑇
combinations which are linear combinations of 𝑋,𝑌, 𝑍 [13]

𝐴(𝑡) = 1√
2
(𝑍(𝑡) − 𝑋(𝑡)) (14.9a)

𝐸(𝑡) = 1√
6
(𝑋(𝑡) − 2𝑌(𝑡) + 𝑍(𝑡)) (14.9b)

𝑇(𝑡) = 1√
3
(𝑋(𝑡) + 𝑌(𝑡) + 𝑍(𝑡)) , (14.9c)

which we will be using for the analysis. These combinations are useful because their cross
noise power spectral density are vanishing in the equal armlength approximation [11]. For
convenience, we also introduce the Sagnac combination 𝛼 defined as [14]

𝛼1(𝑡) = − (𝑦13 + 𝐷13𝑦32 + 𝐷132𝑦21 − (𝑦12 + 𝐷12𝑦23 + 𝐷123𝑦31)) (14.10a)
𝛼2(𝑡) = (1 − 𝐷1231) 𝛼1(𝑡) , (14.10b)

respectively for the first and second generations.

14.3 LISA’s expected performance
As mentioned in the previous section, the Earth-based GW detectors LIGO/VIRGO are sen-
sitive to GW in the ∼ 10 − 104 Hz frequency range. Out of the ∼ 90 various signals detected
by the collaboration, all of them are transients signals [15], which are GW signals that last for
a few seconds, and which correspond to the last periods of inspirals between the two bodies
and their merge into a new body.

On the contrary, LISA is expected to be sensitive to various different signals [6]. In
particular, it will be able to detect the inspiral phase of binary systems much before the merge.
In such cases, the two bodies rotate around each other at an almost constant frequency, up
to corrections (see below), for a time which exceeds largely the time of observation of the
mission. Therefore, GW emitted by such sources are quasi-monochromatic. As we shall see
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in the following, this is an important point as DM induces also a monochromatic oscillation
on the test masses.

In terms of noise, we will be interested in the single-link optical metrology noise and
single test mass acceleration noise which respectively read [5, 16]

𝑆oms =
(
1.5 × 10−11 m

)2
(
1 +

(
2 mHz
𝑓

)4
)

Hz−1 (14.11a)

𝑆acc =
(
3 × 10−15 m.s−2

)2
(
1 +

(
0.4 mHz

𝑓

)2
) (

1 +
(

𝑓

8 mHz

)4
)

Hz−1 , (14.11b)

corresponding to the instrument performance requirements [4].
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Search for oscillations of rest mass in LISA

Many of the various couplings that we have seen so far violate the UFF, by inducing an
oscillating acceleration on atoms that is element-dependent. Even though the different test
masses used in LISA have the same composition, those oscillations could still be seen in
gravitational waves detectors as a Doppler effect when photons are exchanged between one
spacecraft and another.

15.1 Signatures of dark matter and gravitational waves on
LISA arms

In this section, we derive the Doppler on photons exchanged on one arm of LISA induced by
both ULDM fields and GW1. We make the calculations in the barycentric reference frame,
where the spacecrafts positions are defined [6]. In this frame, the directions of DM wind and
GW sources are defined with the ecliptic latitude 𝛽 and longitude 𝜆.

15.1.1 Oscillating rest mass

One-arm Doppler shift through oscillating rest mass

In this section, we derive the Doppler shift on the LISA interferometric measurements in-
duced by the various ULDM candidates.

We start by the effects of scalar fields, i.e the UFF violating acceleration induced by the
oscillation of the rest mass of a test mass A. In this part, we first consider only interactions
between SM and a pure dilatonic field 𝜙, then the Doppler shift will be generalized to the
axion field as well. From Eq. (8.12), the acceleration of a test mass 𝐴 in a generic frame is

®𝑎𝐴(𝑡 , ®𝑥) =
[
𝜔𝜙®𝑣𝐴 − ®𝑘𝜙𝑐2

] √
16𝜋𝐺𝜌DM

𝜔𝜙𝑐
[𝑄𝐴

𝑀]𝑑 sin(𝜔𝜙𝑡 − ®𝑘𝜙 · ®𝑥 +Φ) , (15.1)

1As we shall see in the following, we discuss the Doppler induced by the dynamical motion of the test masses
induced by ULDM. As it is pointed out in [17], a change in the length of optical elements (like beam splitters)
arises also through the variation of fundamental constants of Nature. While this effect is dominant in ground-
based GW detectors (and was used for search for ULDM signals in LIGO, see e.g [18]), it is sub-dominant in
space-based GW detectors.
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where ®𝑣𝐴 is the velocity of the test mass, 𝜔𝜙 , ®𝑘𝜙 are respectively the Compton frequency
and the wavenumber of the DM field, and [𝑄𝐴

𝑀
]𝑑 is the mass charge of the test mass, i.e the

amplitude of oscillation of the rest mass of 𝐴. In the barycentric frame, the velocity of the
test mass is roughly the same as the Earth velocity around the Sun, i.e 𝑣𝐴 ∼ 3 × 104 m/s,
which is one order of magnitude smaller than the galactic velocity, therefore the second term
∝ −®𝑘𝜙𝑐2 = 𝜔𝜙𝑣DM dominates. One can treat the position ®𝑥(𝑡) in Eq. (15.1) as the unperturbed
position ®𝑥0(𝑡) at leading order and write it as ®𝑥(𝑡) = ®𝑥0(𝑡)+𝛿 ®𝑥𝐴(𝑡), where the latter is𝒪([𝑄𝐴

𝑀
]).

Considering that ®𝑥(𝑡) = ®𝑥AU cos(𝜔𝐸𝑡) at leading order, where | ®𝑥AU | ∼ 1.5 × 1011m is one
astronomical unit distance and 𝜔𝐸 is the Earth rotation frequency around the Sun, one can
integrate twice this expression, which leads to the oscillation of the position of the test mass2

𝛿 ®𝑥𝐴(𝑡 , 𝑡0, ®𝑥) =
®𝑘𝜙𝑐

√
16𝜋𝐺𝜌DM

𝜔3
𝜙

[𝑄𝐴
𝑀]𝑑

[
sin(𝜔𝜙𝑡 − ®𝑘𝜙 · ®𝑥AU cos(𝜔𝐸𝑡) +Φ)− (15.2)

sin(𝜔𝜙𝑡0 − ®𝑘𝜙 · ®𝑥AU cos(𝜔𝐸𝑡0) +Φ) − 𝜔𝜙(𝑡 − 𝑡0) cos
(
𝜔𝜙𝑡0 − ®𝑘𝜙 · ®𝑥AU cos(𝜔𝐸𝑡0) +Φ

)]
.

The three last terms are in general not taken into account in various analysis. Indeed, two of
them have no time dependence. However, note that one of them ∝ 𝜔𝜙𝑡 induces a temporal
drift of the test mass inside the spacecraft, which is due to its initial inertia. In the following,
we will drop those terms and only work with the time oscillating signal, because they are
outside the LISA band. In addition, we will not keep the explicit expression of ®𝑥(𝑡), but
we will come back to it later. The slow oscillation at 𝜔𝐸 will produce side bands in the
Fourier signal at frequencies 𝜔𝜙 ±𝜔𝐸. However, note that in the following, we will assume a
time of integration of one year 𝑇obs = 2𝜋/𝜔𝐸, such that the size of one Fourier bin is exactly
𝑓𝐸 = 𝜔𝐸/2𝜋. Therefore, these side bands might not be visible but will most likely enlarge the
signal at 𝜔𝜙.

Assuming that spacecraft 𝑒 (at position ®𝑥𝑒) sends a signal to spacecraft 𝑟 (at position ®𝑥𝑟 ,
the one-way Doppler shift of light associated to this rest mass oscillation is obtained by the
projection onto the corresponding LISA arm of the time derivative of the variation of the
position 𝛿 ®𝑥 i.e [19]

𝑦𝑟𝑒 = −
1
𝑐

(
�̂�𝑟𝑒 ·

𝑑𝛿 ®𝑥
𝑑𝑡

)
, (15.3a)

where �̂�re is a unit vector pointing from 𝑒 to 𝑟. We can now express the Doppler shift induced
by the dilaton-SM interaction Eq. (15.2), but also considering an axion-gluon interaction
which induces an acceleration Eq. (8.40). We respectively note 𝑦𝑑𝑟𝑒 and 𝑦𝑎𝑟𝑒 these one-way
Doppler shifts which read

𝑦𝑑𝑟𝑒 = (�̂�𝑟𝑒 · 𝑒𝑣)
√

16𝜋𝐺𝜌DM𝑣DM[𝑄𝑀]𝑑
𝜔𝜙𝑐2 ℜ

(
𝑒
𝑖
(
𝜔𝜙𝑡−®𝑘𝜙 · ®𝑥𝑟+Φ

)
− 𝑒

𝑖

(
𝜔𝜙𝑡−

𝜔𝜙𝐿

𝑐 −®𝑘𝜙 · ®𝑥𝑒+Φ
) )
, (15.3b)

𝑦𝑎𝑟𝑒 = (�̂�𝑟𝑒 · 𝑒𝑣)
8𝜋𝐺𝜌DM𝑣DM𝐸

2
𝑃
[𝑄𝑀]𝑎

𝑓 2
𝑎 𝜔

2
𝑎𝑐

3
ℜ

(
𝑒

2𝑖
(
𝜔𝑎 𝑡−®𝑘𝑎 · ®𝑥𝑟+Φ

)
− 𝑒2𝑖

(
𝜔𝑎 𝑡−𝜔𝑎𝐿

𝑐 −®𝑘𝑎 · ®𝑥𝑒+Φ
) )

, (15.3c)

2To make this integration, one needs to expand the sin(𝜔𝜙𝑡 − ®𝑘𝜙 · ®𝑥 +Φ) in power of ®𝑘𝜙 · ®𝑥AU cos(𝜔𝐸𝑡) ≪ 1,
integrate each term of the series and then reconstruct the sine. We also considered 𝜔𝐸 ≪ 𝜔𝜙.
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respectively for dilaton and axion interactions, (using Eq. (8.40)), where all the test masses
are made of same alloy, therefore they all share the same mass charge [𝑄𝑀]𝑑 (and similarly
for the axion mass charge), and ®𝑘DM = −𝜔DM𝑣DM𝑒𝑣/𝑐2 (𝑘 = −𝑒𝑣 , where 𝑒𝑣 is the unit vector
in the direction of the Sun velocity in the galactic halo).

As shown in Chapter 8.3, the light vector field induces an oscillating acceleration on
test masses by a small Lorentz force that acts on them. From Eq. (8.68), the leading order
contribution to the acceleration on the test mass A is

®𝑎𝐴(𝑡 , ®𝑥) = 𝜖𝑒𝜔𝑈 ®𝑌
[𝑄𝐴

B−L]
𝑚𝐴

sin(𝜔𝑈 𝑡 − ®𝑘𝑈 · ®𝑥 +Φ) . (15.4)

Using a similar approach as before with Eq. (7.26), we can derive the one-way Doppler shift
associated to this oscillation as [19]

𝑦𝑈𝑟𝑒 = − (�̂�𝑟𝑒 · 𝑒𝑌)
√

2𝜇0𝜌DM𝜖𝑒[𝑄B−L]
𝜔𝑈𝑚TM

ℜ
(
𝑒
𝑖
(
𝜔𝑈 𝑡−®𝑘𝑈 · ®𝑥𝑟+Φ

)
− 𝑒 𝑖

(
𝜔𝑈 𝑡−

𝜔𝑈𝐿
𝑐 −®𝑘𝑈 · ®𝑥𝑒+Φ

) )
, (15.5)

where we consider the test masses have all the same mass 𝑚TM, ®𝑌 = | ®𝑌 |𝑒𝑌 and, as in the
scalar cases, the test masses have the same 𝐵 − 𝐿 charge [𝑄B−L].

Transfer function of the second generation TDI

Following [19], the transfer function of the one-arm Doppler shift induced by the pure DM
scalar field is defined as the Fourier transform of 𝑦𝑟𝑒(𝑡) Eq. (15.3b) normalized by the constant
amplitude

𝒯 DM
𝑟𝑒 (𝜔) = (�̂�𝑟𝑒 · 𝑒𝑣)ℜ

(
𝑒
−𝑖

(
®𝑘· ®𝑥𝑟−Φ

)
− 𝑒−𝑖

(
𝜔𝐿
𝑐 +®𝑘· ®𝑥𝑒−Φ

) )
. (15.6)

Using Eq. (14.8b), we find the DM transfer function of the second generation X combination
in the constant arm length approximation as

𝒯 DM
𝑋 (𝜔) = −4 sin

(
𝜔𝐿
𝑐

)
sin

(
2𝜔𝐿
𝑐

)
ℜ

[
𝑒
−3𝑖𝜔𝐿
𝑐

(
𝒯 DM

13 − 𝒯 DM
12 + 𝑒 −𝑖𝜔𝐿𝑐

(
𝒯 DM

31 − 𝒯 DM
21

))]
(15.7a)

= −4 sin
(
𝜔𝐿
𝑐

)
sin

(
2𝜔𝐿
𝑐

)
ℜ

[
𝑒
−3𝑖𝜔𝐿
𝑐 𝑒−𝑖(

®𝑘· ®𝑥1−Φ)
(
1 + 𝑒 −2𝑖𝜔𝐿

𝑐

)
(�̂�13 − �̂�12) · 𝑒𝑣−

2𝑒
−4𝑖𝜔𝐿
𝑐

(
�̂�13 · 𝑒𝑣𝑒−𝑖(

®𝑘· ®𝑥3−Φ) − �̂�12 · 𝑒𝑣𝑒−𝑖(
®𝑘· ®𝑥2−Φ)

)]
(15.7b)

= −8 sin
(
𝜔𝐿
𝑐

)
sin

(
2𝜔𝐿
𝑐

)
ℜ

[
𝑒
−4𝑖𝜔𝐿
𝑐

(
(�̂�13 − �̂�12) · 𝑒𝑣 cos

(
𝜔𝐿
𝑐

)
𝑒−𝑖(
®𝑘· ®𝑥1−Φ)−(

�̂�13𝑒
−𝑖(®𝑘· ®𝑥3−Φ) − �̂�12𝑒

−𝑖(®𝑘· ®𝑥2−Φ)
)
· 𝑒𝑣

)]
(15.7c)

= −8 sin
(
𝜔𝐿
𝑐

)
sin

(
2𝜔𝐿
𝑐

)
ℜ

[
𝑒
−𝑖

(
4𝜔𝐿
𝑐 +®𝑘· ®𝑥1−Φ

) (
�̂�13 · 𝑒𝑣

(
cos

(
𝜔𝐿
𝑐

)
− 1 + 𝑖𝑘𝐿�̂�13 · 𝑒𝑣

)
−

�̂�12 · 𝑒𝑣
(
cos

(
𝜔𝐿
𝑐

)
− 1 + 𝑖𝑘𝐿�̂�12 · 𝑒𝑣

))]
, (15.7d)

127



Chapter 15 Search for oscillations of rest mass in LISA

where we used ®𝑥2 = ®𝑥1 − 𝐿�̂�12 and ®𝑥3 = ®𝑥1 − 𝐿�̂�13 and we took the first order expansion of
the exponent ∝ 𝑘𝐿 ≪ 1 for all frequencies of interest (for example, at 𝑓 = 1 Hz, which is the
maximum frequency of the LISA band, 𝑘𝐿 ∼ 0.05, with the galactic velocity 𝑣DM = 10−3 𝑐).
The amplitude of the transfer function is then��𝒯 DM

𝑋 (𝜔)
�� = 16 sin

(
𝜔𝐿
𝑐

)
sin

(
2𝜔𝐿
𝑐

)
×√

(�̂�23 · 𝑒𝑣)2 sin4
(
𝜔𝐿
2𝑐

)
+ ((�̂�13 · 𝑒𝑣)2 − (�̂�12 · 𝑒𝑣)2)2

(
𝜔𝐿|®𝑣DM |

2𝑐2

)2
, (15.8)

where we used �̂�13 − �̂�12 = �̂�23. As it can be noticed from Eq. (15.8), the first term dominates
as long as (𝜔𝐿/𝑐)2 > (|®𝑣DM |/𝑐)2 (and (�̂�23 · 𝑒𝑣)2 ≠ 0), i.e for all frequencies 𝑓 ≥ 5 × 10−5 Hz,
which fully contains the LISA band. Then, we can neglect the second term and the amplitude
of the transfer function becomes��𝒯 DM

𝑋 (𝜔)
�� ≈ 8

(
𝜔𝐿
𝑐

)4
|�̂�23 · 𝑒𝑣 | , (15.9)

i.e the transfer function scales as 𝑓 4. We do not recover the scaling of the transfer function of
[19], because Eq. (15.8) corresponds to the amplitude of the transfer function of the second
generation TDI, while [19] used the 1.5 generation for their calculation. However, using
Eq. (D.12c), one can show easily that the transfer function of the first generation TDI is��𝒯 DM
𝑋
(𝜔)

�� /2 sin(2𝜔𝐿/𝑐), which allows us to recover the results of [19]3.

15.1.2 Monochromatic gravitational waves
One arm Doppler shift

We first model the GW with frequency 𝑓GW = 𝜔GW/2𝜋 in the source frame propagating
along the 𝑘 direction as [20]

ℎ𝜇𝜈(𝜉) = 𝐴+ cos(𝜑(𝜉))𝜖+𝜇𝜈 + 𝐴× sin(𝜑(𝜉))𝜖×𝜇𝜈 , (15.10a)

where 𝜉 = 𝑡 − 𝑘 · ®𝑥/𝑐 represents the surfaces of constant phase and

𝜑(𝜉) = 𝜔GW𝜉 + 1
2 ¤𝜔GW𝜉2 +ΦGW , (15.10b)

where ΦGW is the initial phase of the wave and where we assume a non zero time derivative
of the frequency ¤𝜔GW. In the barycentric reference frame, we define the triad (�̂� , �̂� , 𝑘) from
the ecliptic latitude 𝛽 and ecliptic longitude 𝜆 as [6, 20]

�̂� =
©«

sin(𝜆)
− cos(𝜆)

0

ª®¬ , �̂� =
©«
− sin(𝛽) cos(𝜆)
− sin(𝛽) sin(𝜆)

cos(𝛽)
ª®¬ , 𝑘 = �̂� × �̂� = − ©«

cos(𝛽) cos(𝜆)
cos(𝛽) sin(𝜆)

sin(𝛽)
ª®¬ . (15.11)

3To compute the transfer function, we did not average over all possible DM wind directions 𝑘 as [19] did,
since it is fixed to a single direction when the field is a coherent superposition of plane waves.
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We can further define two functionals 𝜉+(�̂� , �̂� , �̂�) and 𝜉×(�̂� , �̂� , �̂�) [6]

𝜉+(�̂� , �̂� , �̂�) = (�̂� · �̂�)2 − (�̂� · �̂�)2 , (15.12a)
𝜉×(�̂� , �̂� , �̂�) = 2 (�̂� · �̂�) (�̂� · �̂�) , (15.12b)

such that, in the barycentric frame (superscript SSB), the one-arm Doppler shift induced by
the GW can be written as [6, 20, 21]

𝑦GW
re =

−𝒜
2
(
1 − �̂�𝑟𝑒 · 𝑘

)ℜ [(
ℎ̂SSB
+ 𝜉+(�̂� , �̂� , �̂�𝑟𝑒) + ℎ̂SSB

× 𝜉×(�̂� , �̂� , �̂�𝑟𝑒)
) (
𝑒 𝑖𝜑(𝜉𝑟) − 𝑒 𝑖𝜑(𝜉𝑒 )

)]
(15.13a)

≡ −𝒜�̂� 𝑖𝑟𝑒 �̂�
𝑗
𝑟𝑒

2
(
1 − �̂�re · 𝑘

)ℜ [
ℎ̂SSB
𝑖 𝑗

(
𝑒 𝑖𝜑(𝜉𝑟) − 𝑒 𝑖𝜑(𝜉𝑒 )

)]
, (15.13b)

where

ℎ̂SSB
+ = cos(2Ψ)

(
1 + cos2(𝚤)

)
+ 2𝑖 sin(2Ψ) cos(𝚤) , (15.14a)

ℎ̂SSB
× = − sin(2Ψ)

(
1 + cos2(𝚤)

)
+ 2𝑖 cos(2Ψ) cos(𝚤) , (15.14b)

ℎ̂SSB
𝑖 𝑗 = (𝑢𝑖𝑢𝑗 − 𝑣𝑖𝑣 𝑗)ℎ̂SSB

+ + (𝑢𝑖𝑣 𝑗 + 𝑢𝑗𝑣𝑖)ℎ̂SSB
× , (15.14c)

where Ψ is the polarization angle, 𝚤 is the inclination of the source and 𝒜 is the amplitude
of the wave which depends only on the source parameters, and defined in the barycentric
frame as

𝐴+ = −𝒜(1 + cos2(𝚤)) , 𝐴× = −2𝒜 cos(𝚤) . (15.15)

Transfer function of the second generation TDI

We now compute the transfer function for a GW (assuming ¤𝑓 = 0 for simplicity), which reads
(using Eqs. (15.13b) and (14.8b))

𝒯 GW
𝑋 (𝜔) = 2 sin

(
𝜔𝐿
𝑐

)
sin

(
2𝜔𝐿
𝑐

)
ℜ

[
ℎ̂SSB
𝑖 𝑗 𝑒

−𝑖
(

3𝜔𝐿
𝑐 +®𝑘· ®𝑥1−Φ

)
× (15.16a)

∑
ℓ=2,3

𝑤ℓ
�̂� 𝑖1ℓ �̂�

𝑗

1ℓ

1 −
(
�̂�1ℓ · 𝑘

)2

(
(1 + �̂�1ℓ · 𝑘)

(
1 − 𝑒−𝑖 𝜔𝐿𝑐 (1−�̂�1ℓ ·𝑘)

)
− 𝑒−𝑖 2𝜔𝐿

𝑐 (1 − �̂�1ℓ · 𝑘)
(
1 − 𝑒 𝑖 𝜔𝐿𝑐 (1+�̂�1ℓ ·𝑘)

))
= 2 sin

(
𝜔𝐿
𝑐

)
sin

(
2𝜔𝐿
𝑐

)
ℜ

[
ℎ̂SSB
𝑖 𝑗 𝑒

−𝑖
(

5𝜔𝐿
𝑐 +®𝑘· ®𝑥1−Φ

)
× (15.16b)

∑
ℓ=2,3

𝑤ℓ
�̂� 𝑖1ℓ �̂�

𝑗

1ℓ

1 −
(
�̂�1ℓ · 𝑘

)2

(
(�̂�1ℓ · 𝑘)

(
1 − 2𝑒

𝑖𝜔𝐿
𝑐 (1+�̂�1ℓ ·𝑘) + 𝑒 2𝑖𝜔𝐿

𝑐

)
+ 2𝑖𝑒

𝑖𝜔𝐿
𝑐 sin

(
𝜔𝐿
𝑐

)) ,
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Figure 15.1: Amplitude of transfer functions of TDI 𝑋 combinations for both scalar ULDM
(in blue) and GW (in orange) from Eqs. (15.8) and (15.16a) respectively. For this plot, we
neglected the impact of the geometric factors.

where 𝑤ℓ = ±1 respectively for ℓ = 3, 2. One can simplify this expression when 𝜔𝐿/𝑐 ≪ 2𝜋
to find the amplitude of the transfer function

|𝒯 GW
𝑋 (𝜔)| = 8

(
𝜔𝐿
𝑐

)3 ���ℎ̂SSB
𝑖 𝑗

(
�̂� 𝑖13�̂�

𝑗

13 − �̂�
𝑖
12�̂�

𝑗

12

)��� . (15.16c)

Therefore, at small 𝜔𝐿/𝑐, |𝒯 GW
𝑋
| ∝ 𝑓 3 which means that the DM signal will, on average (i.e

neglecting the geometric factor), be suppressed by a factor 𝜔𝐿/𝑐 compared to the GW signal,
as it can be noticed in Fig. 15.1.

As it can be noticed from Eqs. (15.9) and (15.16c) and in Fig. 15.1, at low frequency, the
DM and GW transfer function do not scale equally as function of the frequency, in particular
it exists a third order term in 𝜔𝐿/𝑐 in the GW transfer function and not in the DM one.
There are two reasons for this difference. The first one is that the GW travels at speed 𝑐,
while the DM field is non relativistic. Indeed, one can notice that assuming a "relativistic
DM" which travels at speed 𝑐 instead of 10−3 𝑐, the transfer function Eq. (15.7d) scales as
(𝜔𝐿/𝑐)3 at low frequency, as the GW transfer function. This suggests that for a dipolar
signal, the velocity of the wave impacts the scaling of the transfer function on frequency.
The second reason is that DM is dipolar while GW is quadrupolar. Indeed, assuming now
a non-relativistic GW (i.e neglecting terms ∝ 𝑘𝐿 ≪ 1), one can notice that the GW transfer
function Eq. (15.16a) also scales as (𝜔𝐿/𝑐)3 at low frequency, as the relativistic GW. This
suggests that for a quadrupolar signal, the velocity of the wave does not influence the scaling
of the transfer function on the frequency. Therefore, it is the fact that the DM produces a
non-relativistic and dipolar signal which makes a difference in transfer function compared
to the GW. Now, let us give a physical explanation. Assuming a low frequency and non-
relativistic wave (i.e 𝜔 ≪ 𝑐/𝐿 ≡ 1/𝜏, where 𝜏 is the light travel time between spacecrafts
; and with velocity 𝑣 ≪ 𝑐, such that the wavelength is much larger than the armlength
𝜆 ≫ 𝐿), the phase of the wave at the location of the emitting and receiving spacecrafts is
very close (i.e ΔΦ ≪ 2𝜋) and therefore, the one-way Doppler seen by the photon is small
as well (from Eq. (15.6), it is 𝒪(𝜔𝐿/𝑐)). If we now assume a full round trip emitter-receiver-
emitter, the wave has not propagated much and therefore, the outward effect is, at leading
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order, the same as the inward effect (up to a sign). Therefore, for DM, since we are essentially
looking at this inward-outward effect projected on a dipole, the signal decreases (for example,
𝒯 DM

13 + exp(−𝑖𝜔𝐿/𝑐)𝒯 DM
31 is 𝒪(𝜔𝐿/𝑐)2). For the quadrupolar GW, the outward effect is still

almost the same as the inward effect but they also share the same sign, therefore the signal
is still 𝒪(𝜔𝐿/𝑐). This is why the polarization makes a difference (for non relativistic waves).
Now, if we assume that both waves are relativistic, but the polarization still differs, the phase
of oscillation between the emitting and receiving spacecrafts will be different for both dipolar
and quadrupolar waves (even for low frequencies), and therefore, both effects are of the same
order of magnitude. This is why DM, as a non relativistic wave and with a dipolar effect on
LISA arm, has not the same transfer function as GW.

15.1.3 Summary of the expected one-arm signals
In summary, if we consider an ULDM or GW background that produces a Doppler shift at
angular frequency 𝜔 (i.e 𝜔 = 𝜔𝜙 = 2𝜔𝑎 = 𝜔𝑈 = 𝜔GW), one can write the one-link Doppler
shift in a very concise way, similarly as in [19]

𝑦𝑟𝑒 =ℜ
[
𝜇𝑟𝑒

(
𝑒 𝑖(𝜔𝑡−

®𝑘· ®𝑥𝑟+Φ) − 𝑒 𝑖(𝜔𝑡−𝜔𝐿
𝑐 −®𝑘· ®𝑥𝑒+Φ)

)]
, (15.17a)

where the wavevector ®𝑘 depends on the velocity of the wave i.e | ®𝑘 | = 𝜔/𝑐 for GW and
| ®𝑘 | = 𝜔𝑣DM/𝑐2 for DM, and with the unitless 𝜇re are given by

𝜇𝑟𝑒 =



(�̂�𝑟𝑒 · 𝑒𝑣)
√

16𝜋𝐺𝜌DM𝑣DM[𝑄𝑀]𝑑
𝜔𝑐2 for DM pure scalar field

(�̂�𝑟𝑒 · 𝑒𝑣)
32𝜋𝐺𝜌DM𝑣DM𝐸

2
𝑃
[𝑄𝑀]𝑎

𝑓 2
𝑎 𝜔𝑐3

for DM pseudo scalar field

− (�̂�𝑟𝑒 · 𝑒𝑌)
√

2𝜇0𝜌DM𝜖𝑒[𝑄B−L]
𝜔𝑚TM

for DM vector field

− ©«
�̂� 𝑖𝑟𝑒 �̂�

𝑗
𝑟𝑒 ℎ̂

SSB
𝑖 𝑗
(𝚤,Ψ)

2(1 − �̂�𝑟𝑒 · 𝑘)
ª®¬𝒜 for gravitational wave

(15.17b)

and where we neglected the frequency derivative in the case of the GW ¤𝑓 = 0, for simplicity
and concise equations purposes. These 𝜇𝑟𝑒 factor are the product of an amplitude and a
pure geometric factor which shows how the detector couples to DM or GW, and which
gives us indication on the nature of the wave. Indeed, ULDM signal being dipolar, the
LISA arm couples to a single direction (which corresponds to either the galactic velocity in
the scalar cases, or to the vector polarization direction in the vector case) while GW signal
being quadrupolar, the arm couples to the two orthogonal directions corresponding to the
quadrupolar GW polarization.

On one hand, among other signals, LISA will be sensitive to (almost) monochromatic GW,
i.e GW emitted from galactic binaries whose inspiral phase (with frequency which can be
approximated as a constant) lasts longer than the total mission duration [6]. On the other
hand, considering that the coherence time of the ULDM field exceeds the time of the mission,
which we will consider to be 1 year in the following4, the acceleration induced on the test

4Following Eq. (5.11), this implies that we need 𝑓 ≤ 10−2 Hz.
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masses would be monochromatic as well. This implies that both monochromatic signals
from ULDM and GW Eq. (15.17a) would lead to similar shapes in Fourier space (essentially
one Dirac at the wave frequency). This suggests that the two signals might resemble each
other, which could lead to degeneracy between them.

In addition, one can find simple detection setup where the quadrupolar nature of the
GW signal would be seen by the detector as a dipole, therefore where the ULDM and GW
signals would look similar and therefore be degenerate. For example, let us assume a simple
detection setup where the test mass 𝐴 is static and the test mass 𝐵 is located at a distance 𝐿
and is rotating counterclockwise around 𝐴 in the 𝑥 − 𝑦 plane with angular frequency 𝜔𝑅.
Both test masses are sending light signals to each other. We assume that the DM field is a pure
scalar field of frequency 𝜔 whose propagation direction is along the 𝑥-axis in this coordinate
system. Let us further assume a monochromatic GW of the same angular frequency 𝜔 which
propagates along the 𝑦-axis, and whose polarization is purely + in the 𝑥 − 𝑧 plane. One
can easily deduce that the GW polarization in the 𝑧 direction will not affect the light signals
emitted between the two test masses, only the 𝑥 polarization will be noticed. Therefore, the
GW will be seen as a dipole by the detector.

However, in the case of a more complex detector like LISA, we might wonder if this
difference in polarization would clearly lead to a different spectral shape of the signal.
In addition to this polarization difference, DM and GW propagates at different speed, i.e
| ®𝑘GW | = 𝜔GW/𝑐 while | ®𝑘DM | = 𝜔DM𝑣DM/𝑐2 ∼ 10−3𝜔DM/𝑐 in Eq. (15.17a), which might also
lead to a difference in the spectral signature for both signals. Note that such a difference
would not be visible for time scales much smaller than one year, where the geometric factor
would simply be constant.

Therefore, in the following, we will try to answer the following question : using realistic
orbits, would LISA be able to break the degeneracy between GW emitted from a galactic
binary and (scalar) ULDM fields ?

To do so, the first step is to simulate one signal induced by a galactic binary and one
signal induced by a (scalar) DM candidate. Then, we will model one galactic binary and
one scalar DM candidate using Bayesian analysis on each of these data sets. Finally we will
compare the efficiency of these models to see if, for each data set, one is preferred compared
to the other.

15.2 Bayesian inference to discriminate between dark matter
and gravitational waves

15.2.1 A short introduction on Bayesian inference
In this section, we will review how Bayesian inference works. It is based one Bayes’ theorem,
which for two random events𝐴 and𝐵, allows to write the probability of𝐴under the condition
𝐵 𝑃(𝐴|𝐵) as

𝑃(𝐴|𝐵) = 𝑃(𝐴)
𝑃(𝐵)𝑃(𝐵|𝐴) , (15.18)

where 𝑃(𝐵|𝐴) is the probability of 𝐵 under the condition 𝐴 and 𝑃(𝐴), 𝑃(𝐵) respectively the
probabilities of 𝐴 and 𝐵. When considering a vector of data points ®𝑑 depending on a vector
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of parameters ®𝑝, Eq. (15.18) becomes

𝒫
(
®𝑝 |®𝑑

)
=

ℒ
(
®𝑑 | ®𝑝

)
𝜋

(
®𝑝
)

𝒩
(
®𝑑
) . (15.19)

𝜋
(
®𝑝
)

is the prior distribution of the parameters ®𝑝. This represents what we know of the
parameters, prior to looking at the data ®𝑑. It can e.g. come from prior measurements on
another set of data. For example, the velocity distribution Eq. (5.7b) can be used as a prior
distribution for the galactic velocity (this is what will be done in the following). On the
contrary, if no information on the given parameter is available, one might use a flat uniform
prior distribution. Therefore, in the Bayesian framework, the parameters ®𝑝 are treated as
random variables and not as fixed constants.
ℒ

(
®𝑑 | ®𝑝

)
is the likelihood density function and represents the agreement between a given

set of parameters ®𝑝 with the data ®𝑑. In the most simple case, the data (of length 𝑗) has white
noise with variance 𝜎2, and we model the signal as 𝑠(®𝑝) such that the likelihood reduces to

logℒ
(
®𝑑 | ®𝑝

)
= −1

2

𝑗∑
𝑛=1

(
𝑑𝑛 − 𝑠𝑛(®𝑝)

)2

𝜎2 . (15.20)

Maximizing the likelihood means minimizing the sum, which is very similar to 𝜒2 method.
𝒫

(
®𝑝 |®𝑑

)
is the posterior probability density function and represents the updated condi-

tional probability of the parameters ®𝑝 after observing the data ®𝑑. For a given set of parameters
®𝑝𝑤 , 𝒫

(
®𝑝𝑤 |®𝑑

)
→ 0 means that ®𝑝𝑤 is not compatible with the data. As the Bayes’ theorem

suggests it, the posterior distribution is the product of the prior distribution and the like-
lihood (up to 𝒩(®𝑑), a normalization constant, independent of the parameters), i.e it is the
combination of our knowledge of the parameters before and after analyzing the data.

There exists two big classes of algorithms to reconstruct the full posterior probability
distribution of the parameters ®𝑝 given a dataset ®𝑑. The first one gathers Markov Chain
Monte Carlo (MCMC) algorithms. At each step 𝑖 of the algorithm, a random sample of
parameters ®𝑝𝑖 is generated from the sample ®𝑝𝑖−1 and the acceptance of this new sample
only depends on ®𝑝𝑖 and ®𝑝𝑖−1. The ratio of posteriors between parameters of 𝑖 − 1 and 𝑖

steps is computed in order to know if newly found parameters explain the data better than
the previous one. In general, the distance in parameter space between ®𝑝𝑖 and ®𝑝𝑖−1 is small
(compared to the parameter space volume), and therefore, the algorithm can be trapped in
a local maximum, which we want to avoid. The second method is called Nested sampling
[22] and is a way of avoiding being stuck in a local maximum likelihood. We first need to
introduce the prior mass𝑋 as the fraction of prior contained within an iso-likelihood contour.
Since we expect large likelihood to be contained in a small region of the parameter space,
the likelihood ℒ(𝑋) must be a decreasing function of 𝑋. The principle of nested sampling
is to choose a set of 𝑁 random points covering uniformly the parameter space, and which
have different likelihoods. At the iteration 𝑖, one deletes the point 𝑁𝑖 with lowest likelihood
ℒ(𝑋𝑖) and finds a new point in the parameter space 𝑁𝑖+1 such that ℒ(𝑋𝑖+1) > ℒ(𝑋𝑖). This
way, the remaining prior mass decreases and converges to the region with largest likelihood.
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Since one can store the value ofℒ(𝑋𝑖) at each iteration, one has access to the integral ofℒ(𝑋),
which corresponds to the model evidence. When comparing two models, one uses the Bayes
factor, which is the ratio of model evidence. More specifically, one can write Bayes’ rule in
terms of ®𝑝 which depends on ®𝑑 but also on a specific model 𝑀, i.e

𝒫(®𝑝 |®𝑑, 𝑀) = ℒ(
®𝑑 | ®𝑝, 𝑀)𝜋(®𝑝 |𝑀)
𝑝(®𝑑 |𝑀)

, (15.21)

where 𝑝(®𝑑 |𝑀) is known as the model evidence, which is the probability of the data ®𝑑 given𝑀.
This does not depend on the parameters ®𝑝, which have been integrated out (or marginalized
out). Considering two given models 𝑀1, 𝑀2, the Bayes factor

ℬ =
𝑝(®𝑑 |𝑀1)
𝑝(®𝑑 |𝑀2)

, (15.22)

indicates which model best explain the data. Therefore, nested sampling is very convenient
to compare different models on the same data. In the following, we will be using a nested
sampler algorithm, called Nessai [23] for the parameter estimation of both a galactic binary
and a scalar ULDM field.

15.2.2 Fast likelihood modeling
We now focus on the analysis of TDI dataset induced by a galactic binary (GB) on one
side and (scalar) ULDM on the other side. For a given model, we want to optimize the
computation of the likelihood, in particular to make it faster. To do so, we work in the
Fourier domain, because it is much more convenient for the signals that we are interested
in. Indeed, for (quasi) monochromatic signals, the idea is to separate the fast oscillation
(at the wave frequency) whose Fourier transform can be done analytically, from the slowly
oscillating part which can be Fourier transformed numerically [24]. This speeds up the
numerical integration necessary for the computation of the likelihood. As we shall see in the
following, the TDI combination are very simple to implement in Fourier space.

In Appendix D, we show explicitly how to express the slow oscillating part of TDI 𝑋2
combination for both scalar ULDM and GB signals. The two Python softwares that we use
which follow this idea, are FastGB and FastDM, respectively for the modeling of GB and
scalar DM.

15.2.3 Generation of signals and parameter space
We now explicitly describe the general process from the data simulation to the data modeling.

We first simulate a dataset which contains either GB or scalar DM signal. To do so,
we simulate in time domain the second generation TDI Eq. (14.7a) induced by either a GB
or a scalar ULDM signals through Doppler effects derived in the previous sections, see
Eqs. (15.3b) and (15.13b). The positions of the spacecrafts are obtained using LISAOrbits [25],
and we use Earth-trailing orbits for their orbits [26], which we simulate for one full year, i.e
𝑇obs = 365×86400 s. The positions of the spacecrafts are sampled with frequency 𝑓𝑠 = 0.1 Hz,
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i.e 𝑁 = 𝑇obs 𝑓𝑠 measurements are performed. For the generation of data, no noise is added i.e
these are "perfect" dataset5.

For the data modeling, we fit the TDI𝐴, 𝐸 data combinations expressed in Fourier domain.
More precisely, writing the TDI data in time domain 𝑑𝐴,𝐸(𝑡) as a vector (𝑑𝐴,𝐸0 , 𝑑𝐴,𝐸1 , ..., 𝑑𝐴,𝐸

𝑁−1)
where 𝑑𝐴,𝐸

𝑖
= 𝑑𝐴,𝐸(𝑖/ 𝑓𝑠) is the ith sampled element of 𝑑𝐴,𝐸(𝑡), we perform the discrete Fourier

transform (DFT) �̃�𝐴,𝐸 defined as

�̃�𝐴,𝐸
𝑘

=

𝑁−1∑
ℓ=0

𝑒−
2𝜋𝑖ℓ 𝑘
𝑁 𝑑𝐴,𝐸

ℓ
, (15.23)

and we fit a model �̃�𝐴,𝐸 to such dataset in Fourier space. We use a Gaussian likelihood
expressed in time domain as [27]

logℒ =
∑
𝑥=𝐴,𝐸

(
−1

2 log (det(2𝜋C𝑥)) − 1
2

(
®𝑑𝑥 − ®𝑚𝑥

)†
(C𝑥)−1

(
®𝑑𝑥 − ®𝑚𝑥

))
, (15.24a)

where ®𝑑, ®𝑚 represent respectively the time vector or data and model and where C𝑥 is the
noise covariance matrix of the 𝑥 TDI combination. Using the DFT of the data and model, the
likelihood can be written as [28]

logℒ =
∑
𝑥=𝐴,𝐸

©«−1
2 log

(
2𝜋Π𝑘 �̃�

𝑥
𝑘𝑘

)
−
𝑁/2∑
𝑗=0

|�̃�𝑥
𝑗
− �̃�𝑥

𝑗
|2

�̃�𝑥
𝑗 𝑗

ª®¬ , (15.24b)

where �̃�𝑥
𝑘𝑘

is the diagonal element at Fourier bin 𝑘 of the two-sided PSD matrix of the 𝑥 = 𝐴, 𝐸

TDI combinations defined as [28]

�̃�𝑥
𝑘𝑘

= 𝑁 𝑓𝑠𝛿𝑘𝑙𝑁𝑥( 𝑓𝑙) , (15.24c)

where 𝛿𝑘𝑙 is the Kronecker delta and therefore �̃�𝑥
𝑘𝑘

is diagonal because the noise is stationary
[27], and where the𝑁𝑥( 𝑓𝑘) is the noise PSD of the second TDI 𝐴, 𝐸 combinations at frequency
bin 𝑘, which are defined as [11]

𝑁𝐴,𝐸( 𝑓 ) = 32 sin2
(

2𝜋 𝑓 𝐿
𝑐

)
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) (
2
(
3 + 2 cos

(
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+ cos

(
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𝑐

))
𝑆acc( 𝑓 )+(

2 + cos
(

2𝜋 𝑓 𝐿
𝑐

))
𝑆oms( 𝑓 )

)
, (15.25)

assuming no correlation between noises, and which is obtained by extending the single-link
noise PSD Eq. (14.11) on the full TDI combination. Since the noise PSD are equivalent for
𝐴, 𝐸 combinations, we can rewrite Eq. (15.24b) as

logℒ = −1
2 log

(
(2𝜋)2 𝑓𝑠Π𝑘𝑁𝐴,𝐸( 𝑓𝑘)

)
−

∑
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©« 1
𝑁 𝑓𝑠

𝑁/2∑
𝑗=0

|�̃�𝑥
𝑗
− �̃�𝑥

𝑗
|2

𝑁𝑥( 𝑓𝑗)
ª®¬ . (15.26)

5Therefore, the results of the analysis, and its possible bias, will not depend on noise.
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The GB parameters that will be fitted (using Eqs. (D.6b), (D.6a) and (D.6c)) are the
amplitude 𝒜, the frequency 𝑓GW, the drift in frequency ¤𝑓GW, the sky localization (𝛽,𝜆), the
inclination 𝚤, the polarization angle Ψ and the phase ΦGW. There is no specific knowledge on
the physics of one particular GB, therefore we will use isotropic prior distributions for each
of those parameters.

The scalar DM parameters that will be fitted (using Eqs. (D.3), (D.5b) and (D.5c)) are the
mass charge6 [𝑄𝑀]𝑑 ≡ 𝜀, the frequency 𝑓𝜙, the direction of the DM ’wind’ (𝛽DM,𝜆DM), its
amplitude, which is given by the galactic velocity amplitude |®𝑣DM | and the phaseΦ. For most
of these parameters, we will use isotropic priors, except for the galactic velocity amplitude
prior that will be given by the amplitude of the galactic velocity distribution Eq. (5.7b). Even
though we are working on time scales lower than the coherence time of the field, such that
the DM wave is essentially monochromatic, the prior will help constraining the simulation
to consistent regions of the parameter space7. Note that, by choosing ®𝑣DM as a random
variable and not a fixed parameter, we will derive realistic sensitivity curves for ULDM of
LISA. By doing so, we simplify the system by considering that the velocity amplitude |®𝑣DM |
is uncorrelated with the DM wind direction, while it is in reality not true as both parameters
are constrained together by the same distribution Eq. (5.7a)8.

15.2.4 Model of galactic binary onto galactic binary signal

We first fit a dataset 𝑑GW from a galactic binary using FastGB whose parameters 𝐷GW are
shown on the left of Table 15.1, and check for efficiency of the model in reproducing data.
The 2D posterior distributions are shown in Fig. 15.2, with the joint posterior distribution for
all parameters. The yellow lines represent the true values of the parameters, i.e the values
injected in the simulation. One can notice strong correlations between the amplitude 𝒜
and the inclination 𝚤, and between the ecliptic latitude 𝛽 and the drift in frequency ¤𝑓 . One
can also notice that for the polarization angle Ψ and initial phase Φ parameters, two modes
exist which are respectively shifted by 𝜋/2 and 𝜋. From Eq. (15.13b), it is straightforward to
show that a change in polarization angle Ψ → Ψ + 𝜋/2 is equivalent to a change in phase
Φ→ Φ + 𝜋. Overall, the analysis recovers correctly the injected parameters.

6From Eq. (8.6a), we remind that [𝑄𝑀]𝑑 is a sum of partial dilatonic mass charges and dilatonic couplings.
7As we shall see in the following, for most frequencies under consideration, the phase shift induced by DM

propagation (through |®𝑣DM |) is small, and therefore hard to fit with accuracy.
8As mentioned above, we will use isotropic priors for both ecliptic latitude and longitude of the DM wind,

while the galactic velocity distribution Eq. (5.7a) provides prior information on such direction. First, we make
this choice because there is no analytical expression for the angular distributions only. Second, by doing the
numerical integration of Eq. (5.7a) over the velocity amplitude, one can show that the width of the angular
distributions are much larger than the posterior distributions of these parameters (see below, Section 15.2.5),
and therefore using isotropic prior will not impact the results.
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Figure 15.2: Results of the fit of a galactic binary signal by a galactic binary model. The
yellow lines indicate the true values of the parameters. The analysis recovers correctly the
injected parameters.
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The model best fit parameters 𝑀GW
GW , that we

define as the posterior with largest likelihood,
in addition to the mean and standard de-
viation of the distribution of posteriors are
shown in Table 15.1 (only the ∼ 10 000 last
iterations are taken into account by the algo-
rithm). Let us now analyze the result of the
fit, in particular, its efficiency. First, one can
compare the signal to noise levels (i.e com-
pute the signal-to-noise ratio (SNR)) for the
GW using [16]9

√
SNR =

√√√
4ℜ

(∫
𝑑𝑓
�̃�GW�̃�

†
GW

𝑁( 𝑓 )

)
, (15.27)

where �̃�†GW is the conjugate transpose of �̃�GW,
the GW data in Fourier domain, and 𝑁( 𝑓 ) is
the noise PSD. For the GW data from Table
15.1, one finds√

SNRGW
𝐴 ≈ 632 (15.28a)√

SNRGW
𝐸 ≈ 679 , (15.28b)

for both 𝐴 and 𝐸 TDI combinations. The sig-
nal power is well above the noise, as it can be
noticed in Fig. 15.3.

𝐷GW 𝑀GW
GW Mean ± 1 𝜎

𝒜 (10−21) 1.397 1.398 1.397 ± 0.003
𝑓 (mHz) 4.215 4.215 4.215 ± 0.000
¤𝑓 (aHz/s) 55.91 56.26 57.36 ± 18.20
𝛽 (rad) 0.817 0.8164 0.8165 ± 0.0005
𝜆 (rad) 5.149 5.1485 5.1485 ± 0.0004
𝚤 (rad) 1.047 1.048 1.047 ± 0.002

Ψ (rad)
0.785 0.785 0.785 ± 0.002

2.356 ± 0.002

Φ (rad)
4.890 4.888 4.889 ± 0.007

1.748 ± 0.007

Table 15.1: On the left column, we show the
GW injected parameters in the simulation.
On the middle, we show the GW model best
fit, i.e the posterior with the largest likeli-
hood. The model correctly recovers the in-
jected parameters with less than 1% devia-
tion. On the right column, we present the
mean and standard deviation of the full dis-
tribution of posteriors.

In a second step, in order to estimate the accuracy of the model, we simulate the TDI
time series of a galactic binary with parameters given by 𝑀GW

GW , which we call 𝑚GW
GW and we

construct the residuals (in time domain)

𝑟GW,GW = 𝑑GW − 𝑚GW
GW , (15.29)

which we compare with the LISA noise PSD. In Fig. 15.3, we compare the residuals to LISA
noise in Fourier space. One can notice that the residuals are well below the noise, indicating
that the model extracted all the necessary information out of the data10. We now compute
the residuals-to-noise ratio (RNR) between the residual in Fourier domain 𝑟GW,GW given by
[16]

√
RNR =

√
4ℜ

(∫
𝑑𝑓

𝑟𝑟†

𝑁( 𝑓 )

)
, (15.30)

9The definition of SNR is slightly changed compared to [16], in order to be consistent with its previous
definition of ratio of signal to noise power.

10Despite its efficiency, the residuals still present a peak at the GW frequency. This is due to the approxima-
tions done in FastGB (e.g. neglecting the spacecraft velocity during light travel time).
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where 𝑟† is the conjugate transpose of 𝑟. For the GW model on GW data, one finds

√
RNRGW,GW

𝐴
≈ 0.54 (15.31a)√

RNRGW,GW
𝐸

≈ 0.41 . (15.31b)

The RNR are well below unity and the SNR values, indicating that the model extracts all the
necessary information out of the data, as expected from what is shown in Fig. 15.3.
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Figure 15.3: GW signal PSD (in lime) com-
pared to LISA noise PSD of the TDI 𝐴 combi-
nation (in red) in Fourier domain. The signal
is well above the noise. We also show the
𝑟GW,GW residuals power in grey, which are
below the noise.
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Figure 15.4: DM signal PSD (in lime) com-
pared to LISA noise PSD of TDI 𝐴 combina-
tion (in red) in Fourier domain. The signal
is above the noise. We also show the 𝑟DM,DM
residuals power in grey, which are below the
noise.

15.2.5 Model of scalar dark matter onto a scalar dark matter signal

Using FastDM, we now turn to the analysis of DM signal. For consistency with the galactic
binary that was analyzed in the previous section, we consider a DM signal with the same
frequency (in order to compare to the same noise level) and intrinsic amplitude of oscillation
on the test masses. From Eq. (15.17b), this means that we choose the coupling 𝜀 such that

𝜀 = 𝒜
2𝜋 𝑓 𝑐2√

16𝜋𝐺𝜌DM𝑣DM
, (15.32)
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where 𝑓 ,𝒜 are given in Table 15.1.

In addition, we will use the
mean velocity direction and am-
plitude of the velocity distribution
Eq. (5.7a). The mean direction is
well known and it points towards
(𝛽DM,𝜆DM) = (59.91°, 24.67°) ∼
(1.046 rad, 0.431 rad)11. This is the
DM wind direction we will use. For
the amplitude, we use 𝑣DM = 3 × 105

m/s for the velocity of the wave, i.e
the mean of the galactic velocity dis-
tribution Eq. (5.7a). The result of the
fit of a DM model onto a DM signal
is presented in Fig. 15.5

𝐷DM 𝑀DM
DM Mean ± 1 𝜎

𝜀 (10−5) 2.396 2.785 2.430 ± 0.855
𝑓 (mHz) 4.215 4.215 4.215 ± 0.000
𝛽 (rad) 1.046 1.048 1.045 ± 0.010
𝜆 (rad) 0.431 0.435 0.430 ± 0.021

𝑣DM (105) (m/s) 2.998 2.580 3.305 ± 1.079
Φ (rad) 3.444 3.444 3.444 ± 0.010

Table 15.2: On the left column, we show the DM
injected parameters in the simulation. On the mid-
dle, we show the DM model best fit, i.e the posterior
with the largest likelihood. On the right column,
we present the mean and standard deviation of the
full distribution of posteriors.

One can notice that there exists a strong correlation between the coupling 𝜀 and the galactic
velocity parameters 𝑣DM, as expected from the amplitude of the Doppler Eq. (15.3b), which is
proportional to both parameters. One can notice from Table 15.2, that the analysis correctly
retrieve the correct value of the true parameter (at the 1% error level), except for the coupling
𝜀 and galactic velocity 𝑣DM, whose best fit values differ from the true value of ∼ 15%,
and whose posterior distribution width is much larger than for the rest of the parameters
(𝜎𝑣DM/𝑣DM ∼ 𝜎𝜀/𝜀 ∼ 1 while for the rest of the parameters 𝜎𝑝/𝑝 ≪ 1). The reason is that at
this frequency, LISA cannot probe accurately the DM wind velocity, since it produces a phase
in the Doppler Eq. (15.3b) which is too small to be seen. As a consequence, we have a large
uncertainty on this parameter, which is translated to the coupling due to the large correlation
between the two parameters. Indeed, one can notice from Table 15.2 that the typical width
of the phase Φ is 𝜎Φ = 10−2 rad. As we have used an uniform prior on Φ, the width of the
posterior is essentially the width on the likelihood ℒ(𝑑DM |Φ), which is directly related to the
noise PSD. At 𝑓 ∼ 4× 10−3 Hz, the amplitude of the phase induced by the propagation of the
field is ∼ 𝜔𝑣DM | ®𝑥 | cos(𝛽)/𝑐2 ∼ 6× 10−3 < 𝜎Φ (where 𝛽 is the ecliptic latitude of the DM wind
direction, considering | ®𝑥 | ∼ 1.5 × 1011 m ≡ 1 AU, as mentioned previously and that the orbit
of the spacecrafts are close to the ecliptic plane). In Section 15.3, we will analytically derive
the typical width of the coupling 𝜀 parameter to be able to predict its value at any frequency
in the LISA band.

For now, let us compute the SNR of such DM data√
SNRDM

𝐴 ≈ 77 (15.33a)√
SNRDM

𝐸 ≈ 65 , (15.33b)

i.e the signal is still higher than the noise, but the SNR is smaller than in the case of the

11The Sun velocity in the galactic halo points towards 𝛼Cygni, the biggest star of the Cygnus constellation [29],
which corresponds to a right ascension 𝛼DM = 310.36°E and declination 𝛿DM = 45.28°N [30], in the equatorial
frame. By transforming it to the ecliptic coordinate system [31], we find (𝛽DM ,𝜆DM) = (59.91°, 24.67°).

140



Chapter 15 Search for oscillations of rest mass in LISA

GW data. This difference in
√

SNR between DM and GW of a factor ∼ 10 comes from the
difference in transfer functions at low frequency Eqs. (15.9) and (15.16c)12.

Eq. (15.33) is consistent with what is shown in Fig. 15.4, where we notice that the DM
signal PSD is well above LISA noise13. Calling 𝑚DM

DM the TDI time series of the model with
parameters 𝑀DM

DM , we can define the residuals as

𝑟DM,DM = 𝑑DM − 𝑚DM
DM , (15.34)

and compare them to the noise level. The RNR of the DM model on the DM data gives

√
RNRDM,DM

𝐴
≈ 0.35 (15.35a)√

RNRDM,DM
𝐸

≈ 0.18 , (15.35b)

smaller than 1 and the SNR values Eq. (15.33). As in the GW case above, this suggests, that
the model extracts all the information out of the data. We can also check the residuals power
in Fourier space Fig. 15.4, and we notice that it is below the noise, as expected.

12From those equations and Eq. (14.9), one can easily obtain the low frequency transfer functions of e.g. the
TDI 𝐴 combination. Then, using the true value of DM and GW parameters (i.e 𝑓 , 𝑒𝑣 for DM and 𝑓 ,Ψ, 𝚤, 𝑘 for
GW), one can compute numerically the various geometric factors �̂� · 𝑒𝑣 and ℎ̂SSB

𝑖 𝑗
�̂� 𝑖 �̂� 𝑗 from the spacecrafts orbits.

We find 𝒯 GW
𝐴
/𝒯 DM

𝐴
∼ 8.3 while the ratio of Eqs. (15.28) and (15.33) gives ∼ 8.2 for TDI 𝐴 combination. Note

that from Fig. 15.1, the ratio of the two 𝑋 transfer functions is ∼ 3 at 𝑓 ∼ 4.215 mHz, but this is because we did
not take into account the geometric factors for this plot.

13The Fourier peak is narrower compared to the GW case, because the DM signal is completely monochro-
matic (up to small deviations from the orbit), while we implemented a small frequency drift for the GW.
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Figure 15.5: Results of the fit of the DM signal by a DM model. The yellow lines indicate
the true values of the parameters. One can notice strong correlations between the coupling
𝜀 and the velocity 𝑣DM.

142



Chapter 15 Search for oscillations of rest mass in LISA

15.2.6 Can scalar dark matter be misinterpreted as a galactic binary ?

As it was mentioned in the beginning of this
chapter, we now tackle one of the main goals
of this study, i.e we try to answer the follow-
ing question : can a real DM signal be misin-
terpreted as a GB ? To do so, we simulate the
same DM signal as previously (the parame-
ters are shown in Table 15.2) and we fit this
signal with a GB model using FastGB. The fit-
ted parameters are shown in Table 15.3. We
use the same procedure as before, i.e we com-
pute the residuals between the GW model
time series 𝑚GW

DM (from the model parameters
𝑀GW

DM , see Table 15.3) and the DM data 𝑑DM

𝑟GW,DM = 𝑑DM − 𝑚GW
DM , (15.36)

which allows us to compute the RNR√
RNRGW,DM

𝐴
≈ 51 (15.37a)√

RNRGW,DM
𝐸

≈ 52 . (15.37b)

Those values must be compared with the SNR
values of DM data Eq. (15.33).

𝐷DM 𝑀GW
DM Mean ± 1 𝜎

𝒜 (10−21) 1.397 0.129 0.128 ± 0.004
𝑓 (mHz) 4.215 4.215 4.215 ± 0.000
¤𝑓 (aHz/s) − −8.040 38.14 ± 208.6
𝛽 (rad) 1.046 −1.520 −1.522 ± 0.004
𝜆 (rad) 0.431 5.326 5.307 ± 0.021
𝚤 (rad) − 1.990 1.995 ± 0.024

Ψ (rad)
− 3.114 3.079 ± 0.046

1.571 ± 0.082
0.067 ± 0.053

Φ (rad)
3.444 4.740 4.740 ± 0.066

1.597 ± 0.069

Table 15.3: On the left, the GW parameters
injected in the simulation equivalent to the
DM parameters shown in Table 15.2 (see
Eq. (15.32)). On the middle and on the right,
the GW best fit and the mean and standard
deviation of the full distribution of posteriors.
One can notice different modes for Ψ and Φ

parameters.
One can notice that the SNR and RNR are of the same order of magnitude, and are larger than
1, meaning that the model does not fit the data (see Fig. 15.6). Now, we wonder if LISA will
be able to non ambiguously detect DM. To do so, we use Bayesian model selection criteria
which allow one to quantitatively compare the efficiency of the two different models, the GW
𝑚GW

DM and DM𝑚DM
DM models, on the same dataset 𝑑DM. More precisely, we use the Bayes factor

ℬ which gives the ratio of the probability of getting the dataset 𝑑DM under the condition of
one of the model, e.g. 𝑚DM

DM , to the probability of getting 𝑑DM under the condition of the
second model, 𝑚GW

DM . This is equivalent to the ratio of the evidences (see Eq. 15.22). For each
model, the sampler provides us the evidence of the given model. For the dataset and models
under consideration, the Bayes factor ℬ is

logℬ = log 𝑝(𝑑DM |𝑚DM
DM) − log 𝑝(𝑑DM |𝑚GW

DM) = 𝒪(103) ≫ 1 , (15.38)

i.e given the data that contains a simulated signal, the DM model 𝑚DM
DM is largely preferred

compared to the GW model. Therefore, a priori, LISA is able to make the difference between
one GB and scalar DM. This suggests that if a scalar DM field exists with coupling and
oscillation frequency in LISA range, LISA will be able to uncorrelate it from single galactic
binaries. In the following section, we try to answer the opposite question, namely if it is
possible that a galactic binary is seen as DM by LISA, i.e if both GW and DM models efficiently
fit a GB data.
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Figure 15.6: DM signal PSD (in lime) com-
pared to LISA noise PSD of TDI 𝐴 combina-
tion (in red) in Fourier domain (as in Fig. 15.4).
This time, the 𝑟GW,DM residuals power in grey
are close to the signal power and above the
noise. This indicates the model fits poorly
the data.
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Figure 15.7: GW signal PSD (in lime) com-
pared to LISA noise PSD of TDI 𝐴 combina-
tion (in red) in Fourier domain (as in Fig. 15.3).
This time, the 𝑟DM,GW residuals power in grey
are close to the signal power and above the
noise. This indicates the model fits poorly
the data.

15.2.7 Can a galactic binary be misinterpreted as scalar dark matter ?

We now focus on the opposite situation compared to the previous section, namely we use a
dataset from a GB which we fit with a DM model. For this situation, the results are shown
in Table 15.4. Here, the 𝑣 parameter denotes the velocity of the wave, for the GW data, it
corresponds to the speed of light, while the DM model is constrained by the DM velocity
distribution, so it is driven towards ∼ 10−3 𝑐.

Computing the RNR of the best fit DM model on GW data, one finds√
RNRDM,GW

𝐴
≈ 572 (15.39a)√

RNRDM,GW
𝐸

≈ 682 . (15.39b)

The RNR values are still much larger than 1, and of the same order of magnitude as the GW
data SNR Eq. (15.28), implying that the model is inefficient14. The Bayes factor in this case is

logℬ = log 𝑝(𝐷GW |𝑀GW
GW) − log 𝑝(𝐷DM |𝑀DM

GW) = 𝒪(105) ≫ 1 , (15.40)

which indicates that the GW model is by far preferred, given the GW dataset that we use.
Therefore, we can conclude that LISA is able to distinguish between scalar DM and one single
GB.

14Note that, here, we used the galactic velocity distribution as a prior, but for completeness, we can also
relax this velocity constraint, i.e use an uniform prior in [0, 𝑐]. In this case, the best fit presents a much higher
velocity (of order 107 m/s), but the resulting RNR is of the same order of magnitude as before ∼ 500.
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Table 15.4: On the left column, GW
injected parameters. On the middle
and right sides, we show respectively
the DM model best fit and the mean
and standard deviation of the full
distribution of posteriors.

𝐷GW 𝑀DM
GW Mean ± 1 𝜎

𝜀 (10−5) 2.396 1.989 2.006 ± 0.014
𝑓 (mHz) 4.215 4.215 4.215 ± 0.000
𝛽 (rad) 0.817 −0.101 −0.098 ± 0.004
𝜆 (rad) 5.149 0.806 0.804 ± 0.005

𝑣 (106) (m/s) 299.8 1.014 1.003 ± 0.010
Φ (rad) 4.890 5.521 5.521 ± 0.007
¤𝑓 (aHz/s) 55.91 − −
𝜄 (rad) 1.047 − −
Ψ (rad) 0.785 − −

15.2.8 What about two galactic binaries ?
In the beginning of this chapter, when discussing about the DM and GW transfer functions,
we mentioned that the two main differences between DM and GW are the polarization and
the velocity of the wave, i.e the former is effectively non propagating at the scale of TDI,
while the latter travels at speed 𝑐. These are the reasons why LISA can a priori make the
difference between both signals, as we have seen in the previous sections. We can wonder
if, by considering the signals emitted by multiple GB simultaneously, this could change the
story, i.e if LISA could be misled and interpret this effective signal as scalar DM.

It is not possible to construct a dipolar signal from one or multiple quadrupolar signals,
therefore the polarizations will still differ. However, one can imagine situations where two
GB with opposite sky localizations emit GW with same frequency and amplitude, which
therefore would create a standing GW. In such (hypothetical) situations, both scalar DM
wave and standing GW would not propagate at the time scale of one TDI combination (at
leading order).

Let us now derive the transfer function of such system. Assuming same GW frequency,
same amplitude𝒜, phase Φ and 𝚤 = ¤𝑓 = 0 for both binaries, but opposite source localization
𝑘, the transfer function of the two binaries combined is (following Eq. (15.16a))

𝒯 Double GW
𝑋 (𝜔) = 8 sin

(
𝜔𝐿
𝑐

)
sin

(
2𝜔𝐿
𝑐

)
ℜ

[
𝑖 ℎ̂SSB
𝑖 𝑗 𝑒−𝑖( 6𝜔𝐿

𝑐 −Φ)
∑
ℓ=2,3

𝑤ℓ
�̂� 𝑖1ℓ �̂�

𝑗

1ℓ

1 − (�̂�1ℓ · 𝑘)2
× (15.41a)(

cos(®𝑘 · ®𝑥1) sin
(
𝜔𝐿
𝑐

)
− (�̂�1ℓ · 𝑘)

(
sin(®𝑘 · ®𝑥1) cos

(
𝜔𝐿
𝑐

)
− sin

(
®𝑘 · ®𝑥1 −

𝜔𝐿�̂�1ℓ · 𝑘
𝑐

)))]
,

i.e a standing wave, as expected. When 𝜔𝐿/𝑐 ≪ 2𝜋, this reduces to

|𝒯 Double GW
𝑋 (𝜔)| ≈ 16

(
𝜔𝐿
𝑐

)3 ���ℎ̂SSB
𝑖 𝑗

(
�̂� 𝑖13�̂�

𝑗

13 − �̂�
𝑖
12�̂�

𝑗

12

)
cos(®𝑘 · ®𝑥1)

��� . (15.41b)

This transfer function is similar to the one of a single GW (up to a factor 2 as expected), and
with extinction positions when 𝑘 is orthogonal to �̂�1. Note that the standing wave wavelength
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does still correspond to 𝑘GW = 𝜔/𝑐, while in the case of DM, the de Broglie wavelength of
the fields is 103 larger (since 𝜆DM = 2𝜋/| ®𝑘DM | = 2𝜋𝑐2/𝜔𝑣DM ∼ 103𝜆GW). If we assume that
those GWs have the smallest frequency in LISA band, i.e 𝑓 = 10−4 Hz, 𝜆GW ≫ |®𝑥1 |, such that
the double GW are seen as an homogeneous standing wave by LISA, as the scalar DM field.
We artificially generate a signal from the su-
perposition of two GBs with opposite sky lo-
calizations. In Table 15.5, we show the pa-
rameters of only one of them, as well as the
scalar DM best fit. The SNR is√

SNR2 GW
𝐴 ≈ 251 (15.42a)√

SNR2 GW
𝐸 ≈ 120 , (15.42b)

while the RNR are√
RNRDM,2 GW

𝐴
≈ 243 (15.42c)√

RNRDM,2 GW
𝐸

≈ 119 . (15.42d)

Therefore, it seems the model does not fit cor-
rectly the data. As we have not implemented
multiple binaries fit, we cannot compare with
a model of two GBs.

𝐷2 GW 𝑀DM
2 GW

𝜀 (10−4) 7.106 9.446
𝑓 (mHz) 0.121 0.121
𝛽 (rad) 1.046 0.482
𝜆 (rad) 0.431 3.699
Φ (rad) 5.936 3.290

𝑣 (106) (m/s) 299.8 1.149
𝚤 (rad) 𝜋/2 −
Ψ (rad) 0 −
¤𝑓 (aHz/s) 0 −

Table 15.5: On the left column, we show the
GW injected parameters in the simulation for
the double GW fit. On the right, we show the
DM model best fit.

Therefore, even with such two GB, one should not expect degeneracy between DM and GW
signals as seen by LISA. This conclusion is also strengthen by the footnote 13, where we
stated that when trying to model GW data by scalar DM, even when relaxing the prior on
the velocity, i.e with a best fit velocity close to the speed of light, the DM model still poorly
reflects the GW data. This suggests that the main signature which allows one to make the
difference between DM and GW is the polarization. This is why combining several GW of
rank 2 polarization does not mimic the effect of a scalar DM with a rank 1 polarization.

15.3 Realistic limit on the sensitivity of LISA to ultralight
dark matter couplings

As mentioned in Section 15.2.5, the small velocity of the DM wave implies a large width
of the 𝜀 parameter posterior distribution. This broadening of the distribution due to this
correlation implies that for the specific realization of the data considered in Section 15.2.5,
the sensitivity of the detector to the coupling 𝜀 decreases compared to a situation where 𝜀
is decorrelated from the other parameters (i.e when 𝑣DM is fixed). In this section, we derive
analytically the width of the 𝜀 distribution, as function of the frequency, and we check for its
consistency for the specific realization of the data used in the simulation. Then, in Chapter
18, we will use this analytical result to infer the sensitivity of LISA to ULDM couplings for
any frequency in the LISA band, taking into account this correlation.
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15.3.1 Analytical likelihood
As it was discussed in Section 15.2.3, we use the TDI𝐴, 𝐸 combinations to fit a model onto our
dataset. As shown in Eq. (15.25), the two combinations have the same noise PSD, such that
only the signal will differ between the two. In the following, we will work using continuous
Fourier transforms (and not DFT), and we will express Fourier transform quantities with a
hat. We start by expressing the (complex) Fourier signal of the 𝐴 combination as a function
of parameters (𝜀𝐷 , 𝑓 𝐷 , 𝛽𝐷 ,𝜆𝐷 , 𝑣𝐷DM,Φ

𝐷) at frequency 𝜔𝐷
15
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(
𝜔𝐷𝐿

𝑐

)
sin

(
2𝜔𝐷𝐿

𝑐
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sin2

(
𝜔𝐷𝐿
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(15.43c)

𝑒
−𝑖

(
4𝜔𝐷𝐿
𝑐 −

𝜔𝐷𝑣D
DM | ®𝑥AU | cos(𝛽𝐷 )

𝑐2
−Φ𝐷

)

where we have used the transfer function of 𝑋 Eq. (15.8), which we also use for the 𝑍

combination by the simple �̂�23 → �̂�12 and ®𝑥1 → ®𝑥3 changes. At the last line, we approximated
®𝑘𝐷 · ®𝑥1 ≈ ®𝑘𝐷 · ®𝑥AU + 𝒪(𝑘𝐿) (as 𝑘𝐿 ≪ 1 for all DM frequencies of interest, as discussed
previously), where | ®𝑥AU | ≈ 1.5 × 1011 m is the mean Earth-Sun distance, and similarly for
®𝑘𝐷 · ®𝑥3. Therefore, both dot products are equal at leading order. In addition, we assume that
spacecrafts are close to the ecliptic plane such that the dot product 𝑘𝐷 · ®𝑥AU evolves with
time and can be approximated by ∼ −| ®𝑥AU | cos(𝛽𝐷) cos(𝜔𝐸𝑡−𝜆𝐷), where 𝜔𝐸 is Earth rotation
frequency around the Sun. As 𝜔𝐸 ≪ 𝜔 and in particular 𝜔𝐸 is outside of the LISA band, the
oscillation can be neglected because it will only produce a small broadening of the Fourier
peak at frequency 𝑓 = 𝜔/2𝜋, as mentioned previously. In a similar manner, the signal of the
𝐸 combination reads

�̂�DM
𝐸 (𝜔

𝐷) =
16

√
8𝜋𝐺𝜌DM𝑣

D
DM𝜀𝐷

𝜔𝐷𝑐2
3�̂�13 · 𝑒𝐷𝑣√

3
sin

(
𝜔𝐷𝐿

𝑐

)
sin

(
2𝜔𝐷𝐿

𝑐

)
sin2

(
𝜔𝐷𝐿

2𝑐

)
(15.43d)

𝑒
−𝑖

(
4𝜔𝐷𝐿
𝑐 −

𝜔𝐷𝑣D
DM | ®𝑥AU | cos(𝛽𝐷 )

𝑐2
−Φ𝐷

)
,

i.e it differs from Eq. (15.43c) just by the geometric factor, at leading order ((�̂�12 − �̂�23) ·
𝑒𝐷𝑣 )/
√

2→ 3(�̂�13 · 𝑒𝐷𝑣 )/
√

6. Similarly, in Fourier space, the model for both combinations reads

15The signal is purely monochromatic (up to a small correction, see next paragraph), and therefore we will
be interested at the likelihood at a unique Fourier bin, which for simplicity, we assume is exactly the same as
the data frequency 𝑓 𝐷 = 𝜔𝐷/2𝜋.
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�̂�DM
𝐴 (𝜔

𝑀) =
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√
8𝜋𝐺𝜌DM𝑣
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)
(15.44a)
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(
2𝜔𝑀𝐿

𝑐
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sin2

(
𝜔𝑀𝐿

2𝑐

)
𝑒
−𝑖

(
4𝜔𝑀𝐿
𝑐 −

𝜔𝑀𝑣𝑀DM | ®𝑥AU | cos(𝛽𝑀 )
𝑐2

−Φ𝑀

)
, (15.44b)

i.e they are the same as Eqs. (15.43c) and (15.43d), but where all quantities with𝑀 superscript
are the unknown parameters.

Finally, we define the standard deviation of the TDI combinations 𝐴, 𝐸 noise at frequency
𝑓 as

�̂�𝐴,𝐸( 𝑓 ) =

√√√∫ 𝑓+ 1
2𝑇obs

𝑓− 1
2𝑇obs

𝑑𝑓 𝑁𝐴,𝐸( 𝑓 ) ≈

√
𝑁𝐴,𝐸( 𝑓 )
𝑇obs

≡ �̂�( 𝑓 ) , (15.45)

where the 𝑁𝐴,𝐸 are given by Eq. (15.25)). At the second to the last equality, we assumed that
the noise level is constant over the frequency bandwidth of interest, which is 1/𝑇obs wide, for
a monochromatic signal.

Let us now write the (monochromatic) joint Gaussian likelihood in Fourier space as (from
Eq. (15.24a))

logℒ( 𝑓 ) = 𝜅 −

����̂�DM
𝐴
( 𝑓 ) − �̂�DM

𝐴
( 𝑓 )

���2 + ����̂�DM
𝐸
( 𝑓 ) − �̃�DM

𝐸
( 𝑓 )

���2
2�̂�2( 𝑓 ) , (15.46)

where 𝑓 denotes the Fourier frequency and 𝜅 is a normalization constant independent of
the model, and therefore will not play a role in the following analysis. In the following, we
will be interested in the joint likelihood of 𝜀 and 𝑣DM parameters. In practice, 1) we assume
that all the other parameters are individually uncorrelated with the rest (see Fig. 15.5, where
one can notice that the parameters that we want to marginalize over are not correlated
with any other parameter); and 2) we use a Laplace approximation, which approximates
the posterior distribution by a Gaussian around the best fit value, and we approximate the
best fit value by the injected value16. Therefore, the marginalization consists essentially in
taking ( 𝑓 𝑀 , 𝛽𝑀 ,𝜆𝑀 ,Φ𝑀) = ( 𝑓 𝐷 , 𝛽𝐷 ,𝜆𝐷 ,Φ𝐷), such that the velocity-coupling joint likelihood

16This is a valid approximation if the data contains no noise, which is the case. This approximation can also
be confirmed by Table 15.2.
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Figure 15.8: Joint likelihood ℒ(𝑣𝑀DM, 𝜀
𝑀) for the data parameters shown in Table 15.2.

becomes

logℒ(𝑣𝑀DM, 𝜀
𝑀) = −

����̂�DM
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���2
2�̂�2( 𝑓 ) (15.47a)
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(15.47b)((

𝑣𝐷DM𝜀𝐷
)2
+

(
𝑣𝑀DM𝜀𝑀

)2
− 2𝑣𝐷DM𝜀𝐷𝑣𝑀DM𝜀𝑀 cos

(
2𝜋 𝑓 | ®𝑥AU | cos(𝛽)
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,

with

𝜇DM = ((�̂�12 − �̂�23) · 𝑒𝑣)2 +
(√

3�̂�13 · 𝑒𝑣
)2
, (15.47c)

where we dropped the first term of Eq. (15.46) since it is a normalization factor, where
we consider a monochromatic signal at frequency 𝑓 and where we dropped the 𝐷 and 𝑀

superscripts for the marginalized parameters (i.e when 𝑝𝑀 = 𝑝𝐷). By using the true value
of parameters 𝜀𝐷 , 𝑓 , 𝛽, 𝑣𝐷DM from Table 15.2, one can obtain the joint likelihood as function
of 𝜀𝑀 , 𝑣M

DM. This is shown in Fig. 15.8, where we set numerically 𝜇DM ∼ 4.7017. We recover
the banana-shaped likelihood as in Fig. 15.5.

17This factor is time dependent and evolves with the orbit. Numerically, we can recover the time evolution
of the dot product between the DM wind direction and any LISA arm, and we find that (�̂�12 · 𝑒𝑣) − (�̂�23 · 𝑒𝑣) ∼
1.29+0.43 cos(𝜔𝐸𝑡+𝜑) and �̂�13 · 𝑒𝑣 ∼ 0.79−0.03 cos(𝜔𝐸𝑡+𝜑′), where 𝜔𝐸 , 𝜑, 𝜑′ are respectively the Earth rotation
frequency around the Sun and two irrelevant phases. As we are interested in frequencies 𝜔 ≫ 𝜔𝐸, we assume
that the second term is constant and therefore (�̂�12 · 𝑒𝑣) − (�̂�23 · 𝑒𝑣) ∼ 1.29 + 0.43 ∼ 1.72 and

√
3(�̂�13 · 𝑒𝑣) ∼ 1.32,

such that the sum of the squares is ∼ 4.70.
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15.3.2 Coupling posterior width
From this joint likelihood, we can compute the joint posterior distribution which reads

𝒫(𝑣𝑀DM, 𝜀
𝑀) =

ℒ(𝑣𝑀DM, 𝜀
𝑀)𝜋(𝑣𝑀DM)𝜋(𝜀𝑀)∫

𝑑𝑣𝑀DM𝑑𝜀
𝑀ℒ(𝑣𝑀DM, 𝜀

𝑀)𝜋(𝑣𝑀DM)𝜋(𝜀𝑀)
, (15.48)

where𝜋(𝑣𝑀DM),𝜋(𝜀𝑀) are respectively the prior distribution on the velocity, given by Eq. (5.7b)
and the prior on the coupling, which is uniform. The denominator ensures that the posterior
distribution integrates to 1 over the whole parameter space. Then, to obtain the posterior
distribution of the 𝜀 parameter, we marginalize over 𝑣𝑀DM i.e

𝒫(𝜀𝑀) =
∫
𝑑𝑣𝑀DMℒ(𝑣

𝑀
DM, 𝜀

𝑀)𝜋(𝑣𝑀DM)𝜋(𝜀𝑀)∫
𝑑𝑣𝑀DM𝑑𝜀

𝑀ℒ(𝑣𝑀DM, 𝜀
𝑀)𝜋(𝑣𝑀DM)𝜋(𝜀𝑀)

. (15.49)

From this, one can compute the mean 𝜇𝜀 and standard deviation 𝜎𝜀 of 𝒫(𝜀𝑀) by numerical
integration. For the parameters that are correctly fitted (i.e the frequency 𝑓 , the ecliptic
latitude 𝛽), we use the true values for both data and model parameters (we neglect the small
difference between the true values and the best fit values, see Table 15.2), and we do the same
for the velocity 𝑣𝐷DM and the coupling 𝜀𝐷 . In practice, using Mathematica, we numerically
integrate 𝒫(𝜀𝑀) over 𝜀𝑀 with a global adaptative method, where the region of integration is
cut in various sub regions in which the numerical integration is performed. The boundaries
of the integral correspond to the prior bounds used in the simulation ([10−6, 10−4]) and we
find

𝜇𝜀 =

∫
𝑑𝜀𝑀𝜀𝑀𝒫(𝜀𝑀) ∼ 2.69 × 10−5 , (15.50a)

𝜎𝜀 =

√∫
𝑑𝜀𝑀(𝜀𝑀 − 𝜇𝜀)2𝒫(𝜀𝑀) ∼ 1.17 × 10−5 . (15.50b)

As it can be noticed from Table 15.2, the relative error on the mean and standard deviation
is ∼ 10% and ∼ 36%, compared to what is found in the simulation. The main reason for this
discrepancy is that low DM velocities 0 ≤ 𝑣𝑀DM ≲ 1.5×105 m/s seem to be disfavoured by data
(see Fig. 15.5), while this velocity range is permitted by our prior. As a consequence, "large"
values of coupling 𝜀𝑀 are not allowed in the analysis using Nessai since one still requires
𝑣𝑀DM𝜀𝑀 ∼ 𝑣𝐷DM𝜀𝐷 for both amplitudes to match. Therefore, the mean and standard deviation
get shifted to smaller values than expected, as we have calculated it above. However, we
argue that this velocity cut-off is an artefact of the sampler and is inconsistent with the data
that is provided. First, the minimum value of velocities on the posterior distribution given by
the simulation depends on the prior that we use for the coupling 𝜀18. Second, there is, to our
knowledge, no physical reason why the low velocities would not be permitted by the data.
Indeed, as mentioned previously, the velocity is not well constrained by the data because
the phase induced by the propagation is too small to be detected, and therefore this induced
a cut-off of large velocities. However, any arbitrary small velocity 𝑣𝑠 should be allowed (as

18We always use a uniform prior distribution, but the minimum and maximum allowed values are somewhat
arbitrary.
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long as 𝜋(𝑣𝑠) ≠ 0 and that we can associate a "large" coupling 𝜀𝑙 such that 𝑣𝑠𝜀𝑙 ∼ 𝑣𝐷DM𝜀𝐷

again).
In Chapter 18, where we will derive LISA sensitivities to scalar ULDM fields, we will use

the previous simple semi-analytical method to derive 𝜎𝜀 for all frequencies in LISA range.

15.4 Conclusion
The conclusions of this chapter are two-fold. The first one is that we managed to answer
the question asked at the beginning of the chapter, namely, are GB and scalar ULDM signals
degenerate for LISA, i.e is it possible to model accurately a GW signal with scalar DM and
vice versa ? It seems that it is not the case, i.e through a heliocentric orbit of one year, LISA is
able to decorrelate the two signals. This is encouraging with regard to the possible detection
of DM by LISA. The second conclusion is that, as we have seen in Section 15.2.5, the fact
that the ULDM field is non relativistic makes it non propagating as seen by LISA, especially
at low frequency19. Therefore, the velocity of the DM wave is essentially invisible for LISA.
The amplitude of the signal being proportional to the DM-SM coupling, but also to the DM
velocity, this means that LISA is in reality sensitive to the product of the two parameters, but
not to one or the other individually. In other words, if one assumes that the velocity is not
fixed, but is a free parameter of the theory, the sensitivity of LISA to the coupling will decrease
due to its correlation with the velocity. In Chapter 18, we will derive two sensitivity curves
for LISA : a standard sensitivity curve where the coupling is assumed to be uncorrelated
with the rest of the parameters (i.e we assume the velocity is fixed at 𝑣DM ∼ 10−3 𝑐), and a
second one, where we take into account those correlations, i.e where we keep the velocity as
a free parameter. The former has already been derived for one given dilaton-SM coupling in
[19], but the latter, which is more realistic, has never been considered in the literature.

19As we shall see in Chapter 18, even at higher frequencies, when we consider a signal strength such that
SNR = 1, the velocity is still badly constrained by data.
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Search for vacuum birefringence and
dichroism in LISA
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Figure 16.1: Simplified optical benches in LISA spacecrafts. The two optical benches 𝐴 and
𝐵 are inside two different spacecrafts (shown as the light green cube) and exchange light
between each other. The optical elements are shown in blue, the light polarization in red and
the direction of propagation with black arrows. Inside each of these optical benches, an initial
"horizontal" linear polarization is produced by the laser and the association of the optical
elements inside each bench fulfill all the necessary requirements for the interferometers to
work (see text.).

As we discussed it in Chapter 8.2.3, the axion-photon coupling can be probed by its effect
on polarization of light. In this section, we study the sensitivity of LISA to such effects.

We first describe the light polarization in LISA optical benches. For our purposes, we
are interested in the polarization of light produced and detected inside the spacecrafts and
travelling in vacuum between the spacecrafts. The current (simplified) optical bench is
shown in Fig. 16.1, from [32], where we only take into account the interference between laser
beams of the local spacecraft with a distant one. We assume for simplicity that the light wave
is produced with "horizontal" linear polarization along the 𝑥-axis, is travelling along the 𝑧
direction and arrives on the detector with "vertical" polarization after passing through the
half-wave plate. In terms of light polarization, several requirements are necessary for the
detection of GW in LISA.

Each spacecraft contains two optical benches, as shown in Fig. 16.1. Inside one given
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optical bench (say 𝐴 in spacecraft 1), two beams are interfering : the one produced by
the local laser of the given optical bench and the one which has been produced by one of
the optical benches of another spacecraft (𝐵 in spacecraft 2) and which has been travelling
in free space. We require the two beams to have the same polarization, when they enter
the interferometer inside optical bench 𝐴 (or at least that they do not have opposite linear
polarizations), otherwise the interference between the two beams is zero.

As leaving one spacecraft, one small portion
of the local beam can be reflected on it, come
back inside and create an additional noise in
the interferometer. Assuming that the local
beam is at frequency 𝑓ℓ while the distant beam
(from the second spacecraft) has slightly differ-
ent frequency 𝑓ℓ +𝛿 𝑓 , due to standard Doppler
from S/C differential velocity, and frequency
planning, see [33], the reflected component of
the local beam of frequency 𝑓ℓ could interfere
with itself but only creating a DC component.
However, it could also interfere with the dis-
tant beam, and create a noise at 𝛿 𝑓 . In addi-
tion, the motion of the reflecting component
at the edge of the spacecraft would induce a
time dependent phase on the reflected beam,
which would mimic a Doppler effect induced
by the GW, and therefore, this would greatly
alter the measurement. To overcome this is-
sue, we require the outgoing polarization to
be different than the incoming one. Then, the
polarized beam splitter selects only the polar-
ization of interest, i.e the one of the incoming
beam. It can be shown easily that the current
optical benches in Fig. 16.1 fulfill those require-
ments. The LISA constellation is depicted in
Fig. 16.2. Two optical benches are present in
each spacecraft which permits six individual
interference measurements at each time. Fol-
lowing our arbitrary choice on light polariza-
tion in Fig. 16.1, one can see that two different
linear polarizations travel in space : vertical
polarization travels clockwise while horizon-
tal polarization travels counterclockwise.

B

B

B

A

A

A

1

2

3

Figure 16.2: LISA constellation involves
three spacecrafts, denoted 1, 2, 3, each
containing two optical benches as de-
scribed in Fig. 16.1 denoted by "A" and
"B". Six different light signals are sent be-
tween the different spacecrafts to form the
interferometer; three vertically polarized
beams are propagating clockwise and the
other three horizontally polarized beams
are propagating counterclockwise.
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16.1 Birefringence
We first study the possibility of LISA to detect axion-photon coupling through vacuum
birefringence as described in Eq. (8.31). In the last section, we presented the standard design
of LISA optical benches with linear polarized light travelling in free space. In this section, we
consider a non standard design of the optical benches to check if the search of axion-photon
coupling in LISA is possible.

16.1.1 Jones formalism
For this, in addition to the two previous requirements for LISA to work, we require the light
polarization to be circular in free space, i.e when travelling from one spacecraft to another,
in order to see any phase shift due to the long propagation between the spacecrafts. Indeed,
the axion field only impact the phase velocity of circularly polarized light and not linearly
polarized one. To do so, we will still consider an initial linear polarization but we will
introduce quarter-wave plates, or other optical elements, inside the original optical benches
shown in Fig. 16.1.

We can model the system using Jones formalism for polarization states of light and optical
elements which is very convenient when treating interference phenomena [34]. This formal-
ism discomposes the light polarization on a basis formed of the two linear polarizations. The
polarization state is modelled using a 2×1 matrix while the optical elements are represented
by 2 × 2 matrices.

As shown in Fig. 16.1, we assume the light beam to propagate along the 𝑧-axis with an
initial polarization along the 𝑥-axis, that we call "horizontal" polarization. Then, its Jones
representation is [34]

|𝐻⟩ =
(
1
0

)
. (16.1)

The other linear polarization along 𝑦-axis, that we will call "vertical" is represented as

|𝑉⟩ =
(
0
1

)
. (16.2)

A half-wave plate adds a phase 𝜙 = 𝜋 to the light polarization parallel to its slow axis1. Its
Jones matrix representation is [34]

�̂�2(𝜃) = 𝑒−𝑖
𝜋
2

(
cos2 𝜃 − sin2 𝜃 2 sin𝜃 cos𝜃

2 sin𝜃 cos𝜃 sin2 𝜃 − cos2 𝜃

)
≡

(
cos(2𝜃) sin(2𝜃)
sin(2𝜃) − cos(2𝜃)

)
, (16.3)

up to an irrelevant total phase, where 𝜃 is the angle between the horizontal axis (the 𝑥-axis)
and the fast axis of the plate. Similarly, a quarter-wave plate introduces a phase shift of 𝜋/2
between the two linear polarized states and can be represented as [34]

�̂�4(𝜃) =
(

cos2(𝜃) − 𝑖 sin2(𝜃) (1 + 𝑖) sin(𝜃) cos(𝜃)
(1 + 𝑖) sin(𝜃) cos(𝜃) sin2(𝜃) − 𝑖 cos2(𝜃)

)
, (16.4)

1The principle of a wave plate is that it presents two perpendicular directions with respective refractive
index 𝑛 𝑓 , 𝑛𝑠 with 𝑛 𝑓 < 𝑛𝑠 , that we call respectively fast and slow axis [35]. This leads to a phase shift between
the light polarization along the fast axis and the one along the slow axis.
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up to a total phase. Note that if the half or quarter wave plate is rotated such that its fast
or slow axis is along the initial linear horizontal or vertical polarization of light (i.e 𝜃 = 0
or 𝜃 = 𝜋/2), there is no effect, i.e the input and output polarization are the same (up to an
irrelevant phase). Note also that the determinant of these matrices is 1, i.e they preserve
energy, or in other words, they have no absorption. In the Jones formalism, right and left
circular polarizations are represented as [34]

|𝑅⟩ = 1√
2

(
1
𝑖

)
(16.5a)

|𝐿⟩ = 1√
2

(
1
−𝑖

)
. (16.5b)

We now introduce horizontal, vertical, left and right polarizers, which respectively transmit
only horizontal, vertical, left and right polarizations of the input, defined as [36]

�̂�𝐻 =

(
1 0
0 0

)
(16.6a)

�̂�𝑉 =

(
0 0
0 1

)
(16.6b)

�̂�𝐿 =
1
2

(
1 𝑖

−𝑖 1

)
(16.6c)

�̂�𝑅 =
1
2

(
1 −𝑖
𝑖 1

)
. (16.6d)

In practice, the right polarizer is made of the combination �̂�4(𝜋/4)�̂�𝐻�̂�4(−𝜋/4) (and for the
left polarizer, one replaces �̂�𝐻 by �̂�𝑉 or exchange the two quarter-wave plates). Finally, a
mirror reverses the direction of one of the two linear polarizations while letting the other
one unchanged. Its representation is [36]

�̂� =

(
−1 0
0 1

)
, (16.7)

therefore it is the "horizontal" polarization that gets flipped.
It can be shown easily that the quarter and half-wave plates commute, implying that a set

of optical elements containing 𝑛 half-wave plates, 𝑚 quarter-wave plates can be described as
the matrix multiplication �̂�𝑛2 �̂�

𝑚
4 . However, the mirror and polarizers do not commute with

the other optical elements.

16.1.2 Requirements for both gravitational waves and axion detection
Between the polarized beam splitter and the end of the optical bench, we will model the
set of optical elements of 𝑛 half-wave plates, 𝑚 quarter-wave plates and ℓ polarizers (of any
kind) that we add by �̂�(𝜃, 𝜃′), where 𝜃(𝜃′) is the angle between the fast axis of the half-wave
(quarter-wave) plates and the horizontal axis. We will denote this set of elements with
superscript 𝐴 or 𝐵 for the optical bench 𝐴 or 𝐵, which are respectively associated with angles
𝜃𝐴(𝜃𝐵), 𝜃′𝐴(𝜃

′
𝐵
), i.e we note �̂�(𝐴)(𝜃𝐴 , 𝜃′𝐴) and �̂�(𝐵)(𝜃𝐵 , 𝜃′𝐵).
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The first requirement (noted 𝑅1) is that the incoming polarization from space can interfere
with the local beam, and is not fully rejected by the polarized beam splitter. For an initial |𝐻⟩
polarization state for the beam on both spacecrafts, the polarization of the beam after leaving
the optical bench 𝐴 and 𝐵 is respectively �̂�(𝐴)(𝜃𝐴 , 𝜃′𝐴)|𝐻⟩ and �̂�(𝐵)(𝜃𝐵 , 𝜃′𝐵)|𝐻⟩. Then, after
travelling in free space, each light beam enters the other spacecraft and goes through the set
of optical elements but with opposite propagation direction. In such a case, light sees the
fast axis with opposite angle compared to horizontal plane such that the total polarization
of the beam becomes respectively

�̂�(𝐵)(−𝜃𝐵 ,−𝜃′𝐵)�̂�
(𝐴)(𝜃𝐴 , 𝜃′𝐴)|𝐻⟩ (16.8a)

�̂�(𝐴)(−𝜃𝐴 ,−𝜃′𝐴)�̂�
(𝐵)(𝜃𝐵 , 𝜃′𝐵)|𝐻⟩ . (16.8b)

𝑅1 implies that both polarizations Eq. (16.8a) are not a pure "horizontal" linear polarization
(see Fig. 16.1), i.e

𝑅1 ⇒
{
�̂�(𝐵)(−𝜃𝐵 ,−𝜃′𝐵)�̂�(𝐴)(𝜃𝐴 , 𝜃

′
𝐴
)|𝐻⟩ ≠ |𝐻⟩

�̂�(𝐴)(−𝜃𝐴 ,−𝜃′𝐴)�̂�(𝐵)(𝜃𝐵 , 𝜃
′
𝐵
)|𝐻⟩ ≠ |𝐻⟩ , (16.9)

up to a constant phase.
The second requirement (𝑅2) for the optical interferometer to work is that the reflected

component of light is the same as the initial one, such that it is rejected by the beam splitter,
i.e we require that after travelling inside the set �̂�(𝜃, 𝜃′), getting reflected on the mirror
and travelling back inside �̂�(𝜃, 𝜃′) (but with opposite propagation direction, as before), the
polarization is "horizontal". This means

𝑅2 ⇒
{
�̂�(𝐴)(−𝜃𝐴 ,−𝜃′𝐴)�̂�𝑆(𝐴)(𝜃𝐴 , 𝜃′𝐴)|𝐻⟩ = |𝐻⟩
�̂�(𝐵)(−𝜃𝐵 ,−𝜃′𝐵)�̂�𝑆(𝐵)(𝜃𝐵 , 𝜃′𝐵)|𝐻⟩ = |𝐻⟩ , (16.10)

still up to a constant phase.
Finally, the additional requirement (𝑅3) to be sensitive to the axion field is that at least

one of the two light polarizations in outer space has to be circularly polarized. Following
the constellation representation of Fig. 16.2, if we assume the light propagating clockwise is
right circularly polarized, then, the light propagating counterclockwise can be anything else,
i.e linearly polarized or left polarized state2. Mathematically,

𝑅3 ⇒
{
�̂�(𝐴)(𝜃𝐴 , 𝜃′𝐴)|𝐻⟩ = |𝑅⟩
�̂�(𝐵)(𝜃𝐵 , 𝜃′𝐵)|𝐻⟩ ≠ |𝑅⟩ , (16.11)

up to a constant phase.

16.1.3 Solution
One can show that a solution to all these requirements is

�̂�(𝐴) = �̂�𝑅 (16.12a)
�̂�(𝐵) = 12 , (16.12b)

2If it is linearly polarized or left polarized, the beatnote between the two beams will oscillate at the axion
frequency, but the amplitude will be twice as big in the second case.

156



Chapter 16 Search for vacuum birefringence and dichroism in LISA

where the latter is the identity matrix. The solution is therefore to replace the last �̂�2 in the
optical bench 𝐴 (see Fig. 16.1), by a �̂�4(𝜋/4)�̂�𝐻�̂�4(−𝜋/4) combination, i.e a first quarter-wave
plate oriented with 𝜃 = 𝜋/4, then a horizontal linear polarizer and then a second quarter
wave plate oriented with 𝜃 = −𝜋/4, as it is shown in Fig. 16.3. We show explicitly how it
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Figure 16.3: Modified optical bench inside LISA spacecraft, compared to the original one
presented in Fig. 16.1, in order to be sensitive to vacuum birefringence induced by the axion-
photon coupling. The half-wave plate at the end of the optical bench 𝐴 is now replaced with
a right polarizer which is a combination of a quarter-wave plate, a horizontal polarizer and
a second quarter-wave plate, which are oriented conveniently. This configuration produces
a right polarized light at the output of optical bench 𝐴, and fulfill all the requirements for
the light interferometer to work (see text).

resolves the various requirements. Starting with 𝑅3, we have

�̂�(𝐴) |𝐻⟩ = |𝑅⟩ (16.13a)
�̂�(𝐵) |𝐻⟩ = |𝐻⟩ ≠ |𝑅⟩ , (16.13b)

and therefore, in free space, one polarization is right circularly polarized and the other
linearly polarized such that the axion field impacts only one of the two beams (see Fig. 16.3).

Then, looking at 𝑅1, we have

�̂�(𝐵)�̂�(𝐴) |𝐻⟩ = |𝑅⟩ ≠ |𝐻⟩ (16.14a)
�̂�(𝐴)�̂�(𝐵) |𝐻⟩ = |𝑅⟩ ≠ |𝐻⟩ , (16.14b)

i.e the light coming from the optical bench 𝐴 can interfere in the interferometer in optical
bench 𝐵 and vice-versa. Indeed, the light leaving optical bench𝐴 is right circularly polarized,
arrives in optical bench 𝐵 and since a circular polarization is a linear superposition of the two
linear polarizations, the vertical component is reflected towards the interferometer, as shown
in Fig. 16.3. The other beam coming from optical bench 𝐵 is in the "horizontal" polarization
state in vacuum, arrives on the right polarizer of optical bench 𝐴, gets right circularly
polarized and similarly as above, its vertical component gets reflected by the polarized beam
splitter inside the interferometer (see Fig. 16.3).
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Finally, let us make sure that no parasitic component of light gets inside the interferom-
eters after getting reflected at the edge of the spacecraft (requirement 𝑅2). First, as we have
not modified anything in the optical bench 𝐵, we have

�̂�(𝐵)�̂��̂�(𝐵) |𝐻⟩ = |𝐻⟩ , (16.15)

i.e the reflected component is in the "horizontal" polarization state, and therefore transmitted
by the polarized beam splitter. Then, it is easy to show that

�̂�𝑅�̂��̂�𝑅 = 0 , (16.16a)

such that

�̂�(𝐴)�̂��̂�(𝐴) |𝐻⟩ = 0 , (16.16b)

i.e the entire power reflected at the edge of optical bench 𝐴 is absorbed by the right polarizer
and therefore does not jeopardize the functioning of the interferometer. This can be intu-
itively understood by the fact that after reflection, the right circularly polarization becomes
left circularly polarized and goes back inside the right polarizer, whose role is to extract and
transmit only the right polarization of the input. Therefore, nothing from the left polarized
parasitic light goes through.

In this section, we have shown that a simple modification of LISA optical benches can
make it sensitive to vacuum birefringence. Note that this modification leads to a decrease of
power of light that arrives at each interferometer by a factor 4. In the next section, we will
derive explicitly the signal induced in LISA TDI combinations, neglecting the reduction in
power.

Note that other non standard designs of the optical benches exist. Indeed, while we
only looked at the phase velocity difference between left and right circular polarizations of
light, this birefringence effect can also be seen as the oscillation of the direction of a linear
polarization around its nominal direction. Then, starting with a linear polarization (say
|𝐻⟩) and adding a polarized beam-splitted such that the small |𝑉⟩ component is separated
from the rest, one could detect such oscillation by photon-counting. This is essentially the
detection idea in e.g. [19, 37, 38]. However, in the case of LISA, the laser power arriving at
each interferometer from the distant spacecraft is small (of order of hundreds of picoWatt [6]),
and since the oscillation of direction of polarization is 𝒪(𝑔𝑎𝛾) ≪ 1, the number of photons
arriving on the detection port will be extremely suppressed.

16.1.4 Expected Doppler effect in LISA

In this section, we derive the Doppler effect in LISA induced by the axion-photon coupling.
As a reminder, this coupling modifies the phase velocity of left and right circularly polarized
light as derived in Eq. (8.31). As derived in Section 9.3 of Chapter 9, this leads to a phase shift
of a circularly polarized light travelling in vacuum for a length 𝐿 compared to an unaffected
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linearly polarized beam3 of the form4

Δ𝜙(𝑡) =
√

16𝜋𝐺𝜌DM𝐸𝑃𝑔𝑎𝛾

𝜔𝑎𝑐
sin

(
𝜔𝑎𝐿

2𝑐

)
sin

(
𝜔𝑎

(
𝑡 − 𝐿

2𝑐

)
+Φ

)
≡ Δ𝜙single link (16.17)

where 𝜔𝑎 is the axion frequency, 𝑔𝑎𝛾 is the axion-photon coupling and 𝐸𝑃 is the reduced
Planck energy. Therefore, following Fig. 16.4, we have

Δ𝜙12 = Δ𝜙23 = Δ𝜙31 = 0 (16.18a)
Δ𝜙13 = Δ𝜙32 = Δ𝜙21 = Δ𝜙single link , (16.18b)

where the 𝑖 𝑗 subscript denote the arm pointing from spacecraft 𝑗 to spacecraft 𝑖.

B
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A

A

1

2

3

Figure 16.4: LISA proposed modified
constellation for the search of vac-
uum birefringence, as a consequence
of Fig. 16.3. In this framework, only
the arms where light is circularly po-
larized are impacted by the axion
field, and get phase shifted (see text).

Then, using Eq. (14.6), we find the single-link
Doppler shifts as

𝑦12 = 𝑦23 = 𝑦31 = 0 (16.19a)

𝑦13(𝑡) = 𝑦32(𝑡) = 𝑦21(𝑡) =
√

16𝜋𝐺𝜌DM𝐸𝑃𝑔𝑎𝛾

2𝜋𝜈0𝑐
×

sin
(
𝜔𝑎𝐿

2𝑐

)
cos

(
𝜔𝑎

(
𝑡 − 𝐿

2𝑐

)
+Φ

)
, (16.19b)

where 𝜈0 is the laser frequency. Note that, through-
out this derivation, we neglect the propagation
phase of the field, and it should be a valid approxi-
mation, because as it was discussed in Chapter 15,
this would add a common phase to all spacecrafts
plus a small contribution ∝ 𝑘𝑎𝐿 ≪ 1, for all axion
frequencies of interest.

This configuration suggests that the optimized TDI combination to consider is the Sagnac
𝛼 one, which, in the constant and equal arm length approximation, reads (using Eq. (14.10))

𝛼2 = −
(
1 − 𝑒−

3𝑖𝜔𝑎𝐿
𝑐

) (
𝑦13 − 𝑦12 + 𝑒−

𝑖𝜔𝑎𝐿
𝑐 (𝑦32 − 𝑦23) + 𝑒−

2𝑖𝜔𝑎𝐿
𝑐 (𝑦21 − 𝑦31)

)
. (16.20)

The amplitude of the signal at Fourier frequency 𝜔 is then

|𝑠DM(𝜔)| =
2
√

16𝜋𝐺𝜌DM𝐸𝑃𝑔𝑎𝛾

2𝜋𝜈0𝑐
sin2

(
3𝜔𝐿
2𝑐

)
. (16.21)

In Chapter 18, we will use this signal to infer the sensitivity of LISA to 𝑔𝑎𝛾.

3In reality, this coupling affects the two linear polarization states, i.e a linear state slightly oscillates into the
other one and vice-versa. Using e.g. an initial pure "horizontal" polarization state, one could see such effect
using a vertical polarizer and counting the photons that go through due to the rotation of the polarization plane.
However, different dispersion relation between the two linear states arises at second order in the perturbation.

4The factor 2 difference with Eq. (9.10) comes from the fact that in Section 9.3, we assumed the amplitude
of the phase shift of e.g. the right circularly polarized compared to the left one, while here we compare one
circular polarization with a linear one.
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16.2 Dichroism
As discussed in Section 8.2.3, in presence of an external magnetic field, the polarisation
of light parallel to the magnetic field gets absorbed due to the photon-axion conversion in
this direction. This implies that for incoming linear polarized light, the polarization gets
elliptical in presence of magnetic field.

The LISA constellation orbiting around the Sun, it will be immersed in the solar magnetic
field, therefore we can wonder if one could see such dichroic effects using LISA.

As it was discussed in the previous section, each light beam is polarized linearly, and
depending on the direction of propagation, the polarization is either along the 𝑥 or 𝑦 axis
(see Fig. 16.2). Therefore, in the presence of axions and considering a constant magnetic field
in the 𝑥 − 𝑦 plane, both polarizations get affected, i.e both components in the direction of the
magnetic field get a relative phase shift compared to the other component (perpendicular
to the magnetic field). Therefore, comparing the two polarization states together, the phase
shift is twice as large compared to Eq. (8.35b), i.e

𝜙(𝐿) = ℏ𝑐

𝜇0

𝑔2
𝑎𝛾𝐵

2
0

2𝑞2 (𝑞𝐿 − sin(𝑞𝐿)) . (16.22)

For our estimates in Chapter 18, we will neglect the orbit of the constellation, and we will
simply make the optimistic assumption that the magnetic field orientation is the same along
the whole orbit. We will also make the assumption that the axion wind is parallel to the
photon propagation, i.e 𝑞 = | ®𝑘𝑎 − ®𝑘𝛾 | = |𝑘𝑎 − 𝑘𝛾 |.

16.3 Conclusion
In this chapter, we have seen how to search for the axion-photon coupling in LISA using
its effect on birefringence and dichroism. We have shown that a slight modification of the
current optical benches inside LISA spacecrafts would make LISA an axion-photon coupling
detector. In Chapter 18, we will show the expected sensitivity of LISA to this coupling is
very competitive with existing bounds.

In terms of dichroism, one can make estimate of the phase shift that light acquires when
moving in the solar magnetic field following Eq. (16.22), but as we shall see in Chapter 18,
such phase shift is a constant of time, and therefore it will be invisible.
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Chapter 17

Experimental considerations

In this chapter, we will review the various experimental parameters that impact the theoreti-
cal signals presented in the previous chapters, and that for all experiments under considera-
tion. In particular, for most of these experiments, we will estimate their main characteristics,
their noise levels and their integration time. Then, this will allow us to compute their ex-
pected sensitivity to a given coupling, as shown in Eq. (5.13), which we will do in the next
chapter (Chapter 18).

17.1 DAMNED and optical fibers
We first discuss the sensitivity of an already existing experiment, located at SYRTE, based
on an optical cavity, DArk Matter from Non Equal Delays (DAMNED) [1]. In the dilatonic
framework developed in Section 8.1, we have seen that the fine structure constant 𝛼 and the
electron mass 𝑚𝑒 oscillate at different space time locations, according to the phase value of
the dilatonic field. Those oscillations imply a variation of the Bohr radius 𝑎0 = ℏ/𝑐𝑚𝑒𝛼 and a
variation of length of objects accordingly. DAMNED aims at detecting those oscillations by
using an optical cavity and measuring the tiny variations of the length of the cavity through
an additional phase shift of the laser.

As an experiment aiming at measuring length variations of an optical cavity, DAMNED

could be sensitive to the vacuum birefringence effect from the axion-photon coupling on an
optical cavity presented in Chapter 9, whose corresponding signal is shown in Eq. (9.7). Its
sensitivity to such coupling will be obtained in Section 18.3.1.

For the experimental parameters of DAMNED, we follow [1]. An infrared laser of wave-
length 𝜆 = 1.542 𝜇m is sent inside an optical cavity of length ℓ = 15.42 cm1 and of finesse
ℱ = 8×105, such that 𝑟 ∼ 1−2×10−6. We assume the experimental noise to be white between
roughly 10 kHz and 1 MHz with phase noise PSD 𝑆𝜙( 𝑓 ) ∼ 10−8 rad2/Hz [2]. This implies
that the experiment will be sensitive at axion masses between approximately 4 × 10−11 and
4 × 10−9 eV. The experiment lasted twelve days [2]. For our estimates, we will assume that
the experiment runs for 1 year, i.e 𝑇obs ∼ 3.15 × 107 s.

For optical fibers, we will use measurements on a french 86 km urban link [3] whose phase
noise PSD is estimated at 𝑆𝜙 ∼ 10−4 rad2/Hz from 1 to 103 Hz. We will also assume multiple
measurements of the phase for a total integration time of one year. Similarly as DAMNED,

1such that the condition ℓ = 𝑛𝜆, 𝑛 ∈ N is fulfilled.
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optical fibers could detect the axion-photon coupling through vacuum birefringence effect,
as shown in Chapter 9, with its corresponding signal in Eq. (9.10). Its expected constraint
on such coupling will also be obtained in Section 18.3.1.

17.2 Rydberg atoms in a microwave cavity
We now turn to the experiment involving Rydberg atoms inside a microwave cavity for
the detection of DP-photon coupling 𝜒 presented in Chapter 10. We recall that in this
experiment, we aim at measuring the quadratic Stark effect, i.e the change in the transition
frequency of atoms Δ𝜈, which is proportional to the electric field squared 𝐸2. We first discuss
the main sources of noise in this experiment, and then the various numerical parameters
that will be used for the estimation of the sensitivity of the experiment.

17.2.1 Statistical measurement noise
The first source of noise limiting the sensitivity of the experiment is the statistical noise
related to the measurement of the frequency shift experienced by Rydberg atoms under the
perturbation from an external electric field. We denote the PSD measurement noise of 𝐸2 as
𝑆𝐸2 , which translates into a minimal detectable power of the total field inside the cavity of

𝐸2
min =

√
2𝑆𝐸2√

𝑇obs𝜏(𝜔𝑈)
, (17.1)

where 𝑇obs is the individual integration time and 𝜏(𝜔𝑈) is the coherence time of the field in
the case where 𝑇obs ≫ 𝜏(𝜔𝑈), as discussed in the end of Chapter 10.

This means, that for SNR = 1, the sensitivity on 𝜒 for a mass of the DP 𝑚𝑈 corresponding
to an angular frequency 𝜔𝑈 can be computed by equaling Eqs. (10.12a) and (17.1), which
leads to

[𝜒(𝜔𝑈)]stat =
𝐸2

min
𝑆(𝜔𝑈 , 𝜔𝐴; 𝜌DM, 𝑋𝐴; 𝐿, 𝑟) =

√
2𝑆𝐸2

(𝑇obs𝜏(𝜔𝑈))
1
4𝑆(𝜔𝑈 , 𝜔𝐴; 𝜌DM, 𝑋𝐴; 𝐿, 𝑟)

. (17.2)

17.2.2 Amplitude fluctuation of the applied field
The main systematic identified for this experiment comes from fluctuations of the amplitude
of the applied electromagnetic field. Indeed, the principle of the experiment consists in
measuring oscillations of the electric field intensity at the center of the cavity. Amplitude
fluctuations of the injected electromagnetic field will mimic such a signal and can jeopardize
the results of the experiment. In this section we assume that the main source of fluctuations
of the field inside the cavity are fluctuations of the power of the signal that is fed into the
cavity, i.e. relative intensity noise (RIN) of the signal generator.

We model the amplitude of the injected electric field by including a stochastic component,
i.e. replacing the previously considered constant ®𝑋𝐴 by

®𝑋𝐴 → ®𝑋𝐴
[
1 +

∫
𝑑𝜔0

Δ𝑋𝐴(𝜔0)
𝑋𝐴

cos(𝜔0𝑡 + 𝜙0)
]
. (17.3)
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In this expression, Δ𝑋𝐴 (𝜔0) is a stochastic contribution modeling the spectral amplitude of
the noise characterized by the RIN PSD denoted 𝑆RIN(𝜔𝑈). Since RIN is related to fluctuation
of power inside the cavity, we must relate its PSD to the intensity fluctuation Δ𝑋𝑎 . At first
order in the fluctuation Δ𝑋𝐴, the injected power 𝑃 inside the cavity is

𝑃(𝜔0) = (𝑋𝐴 + Δ𝑋𝐴(𝜔0))2 = 𝑋2
𝐴 + 2𝑋𝐴Δ𝑋𝐴(𝜔0) + 𝒪((Δ𝑋𝐴)2) ≡ 𝑃0 + Δ𝑃(𝜔0) , (17.4a)

and the RIN PSD is defined as

Δ𝑃(𝜔0)
𝑃0

∝
√

2𝑆RIN(𝜔0)
𝑇obs

→ Δ𝑋𝐴(𝜔0)
𝑋𝐴

=

√
𝑆RIN(𝜔0)

2𝑇obs
(17.4b)

Typically, the RIN of frequency generators in the microwave domain (GHz frequencies of
interest here) is characterized by a flicker noise, see e.g. [4], such that we can parametrize its
PSD as

𝑆RIN(𝜔) =
𝑃RIN
𝜔

, (17.4c)

where 𝑃RIN is dimensionless.
Let us now show how the Δ𝑋𝐴 fluctuations can produce an harmonic signal in

��� ®𝐸���2 of
angular frequency Δ𝜔 = 𝜔𝐴 − 𝜔𝑈 , i.e. mimic the searched signal of Eq. (10.13a).

We will work to leading order in Δ𝑋𝐴/𝑋𝐴 and in particular neglect terms that are

𝒪
((

Δ𝑋𝐴
𝑋𝐴

)2
)

and 𝒪
(
Δ𝑋𝐴
𝑋𝐴

𝑋DM
𝑋𝐴

)
. Considering the modification of applied field amplitude

Eq. (17.3), the fluctuation Δ𝑋𝐴 will only be considered at frequencies 𝜔0 producing a
noise in the electric field squared at angular frequency Δ𝜔. By simply computing the
electric field squared component ∝ 𝑋𝐴Δ𝑋𝐴, we find that these angular frequencies are
𝜔0 = {Δ𝜔; 2𝜔𝐴 − Δ𝜔}. Considering the RIN as a flicker noise characterized by a PSD of the
form Eq. (17.4c), the fluctuation amplitude at 𝜔0 = Δ𝜔 will be multiple order of magnitudes
larger than its amplitude at 𝜔0 = 2𝜔𝐴 − Δ𝜔 ∼ 2𝜔𝐴 (𝜔𝐴 ∼ GHz, while Δ𝜔 ≤ kHz). For this
reason, in the following, we will only consider the fluctuation at frequency |Δ𝑋𝐴(𝜔0 = Δ𝜔)|
such that the amplitude of the applied field Eq. (17.3) becomes(

®𝑋𝐴 + Δ ®𝑋𝐴(Δ𝜔) cos(Δ𝜔𝑡 + 𝜙0)
)

cos(𝜔𝐴𝑡 + 𝜙𝐴) . (17.5)

In Appendix A.3, we show how to derive the RIN contribution to the total electric field
oscillating at frequency Δ𝜔. This reads

[
𝐸2(𝜔𝑈 , 𝜔𝐴)

]
RIN =

√
𝑃RIN𝑁(𝜔𝑈 , 𝜔𝐴)

8𝑇obsΔ𝜔
cos(Δ𝜔𝑡 + 𝜑) , (17.6)

where
√
𝑁(𝜔𝑈 , 𝜔𝐴) corresponds to the noise amplification factor by the cavity, quadratic in

𝑋𝐴 and whose expression is also given in Appendix A.3.
The RIN contribution to 𝐸2 from Eq. (17.6) will limit the sensitivity of the experiment to

values of 𝜒 that makes the signal from Eq. (10.12a) larger than the systematic (i.e. larger than
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Eq. (17.6)). In other words, the RIN will limit the sensitivity of the experiment to values of 𝜒
that are larger than

[𝜒(𝜔𝑈)]RIN =

√
𝑃RIN𝑁(𝜔𝑈 ,𝜔𝐴)

8𝑇obsΔ𝜔

𝑆(𝜔𝑈 , 𝜔𝐴; 𝜌DM, 𝑋𝐴; 𝐿, 𝑟) , (17.7)

where the function 𝑆 is defined in Eq. (10.12a). Note that this limit is linear in 𝑋𝐴, the
amplitude of the applied electric field.

Let us discuss shot noise. For a general detector, light is received as a random flux of
photons whose probability density follows the Poisson distribution [5]. In our case, it can
also be viewed as an amplitude fluctuation of the electric field squared, as seen by Rydberg
atoms, thus is analogous to the RIN. Here, we compute an estimate of the shot noise PSD
and we show that it is negligible compared to the RIN PSD. Let us start with the typical
number of photons received by the atoms at interval 1/ 𝑓𝑠 as the ratio of laser energy and
photon energy

𝑁𝛾 =
𝐸laser
𝐸𝛾

=
1

ℏ𝜔𝐴

∫
𝑑𝑆laser

𝑋2
𝐴
𝜖0𝑐

2 𝑓𝑠
, (17.8a)

where we integrate over the laser waist, given by the mode radius 𝑟𝐿. The variance on the
number of photons received is also 𝑁𝛾 (from Poisson distribution) and therefore the shot
noise PSD normalized by the number of photons is

𝑆SN =

𝜎2
𝑁𝛾

𝑁2
𝛾 𝑓𝑠

=
1

𝑁𝛾 𝑓𝑠
=

2ℏ𝜔𝐴

𝑋2
𝐴
𝜖0𝑐𝜋𝑟2

𝐿

(17.8b)

Using experimental parameters that we will discuss in the following (with 𝑟𝐿 = 0.01 m), one
can show easily that 𝑆SN ≪ 𝑆RIN, therefore we will neglect this contribution.

17.2.3 Optimum choice for applied field amplitude 𝑋𝐴
While the signal Eq. (10.12a) is linear in applied field amplitude 𝑋𝐴, increasing 𝑋𝐴 would
also increase the systematic effect

√
𝑁(𝜔𝑈 , 𝜔𝐴), as it is quadratic in 𝑋𝐴, while leaving the

statistical effect unchanged. This suggests an optimum value of𝑋𝐴 at each applied frequency,
and this is what we want to find in this section.

The sensitivity of the experiment at a given angular frequency 𝜔𝑈 relies on the signal
amplitude Eq. (10.12a) but also on the limiting noise. Combining Eq. (17.2) and Eq. (17.7),
this is simply

[𝜒(𝜔𝑈)]limit =

√
2𝑆𝐸2√
𝜏(𝜔𝑈 )

+ 𝑃RIN𝑁(𝜔𝑈 ,𝜔𝐴)
8Δ𝜔
√
𝑇obs

𝑇
1
4

obs𝑆(𝜔𝑈 , 𝜔𝐴; 𝜌DM, 𝑋𝐴; 𝐿, 𝑟)
, (17.9)

where we used the usual quadratic sum of uncertainties since the two contributions are
uncorrelated.

The maximum angular frequency difference Δ𝜔 corresponds to, from Section 10.3.2, half
the sampling frequency (= 𝜋 𝑓𝑠). To better understand the sensitivity of the experiment,
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we will simplify the expressions of 𝑆(𝜔𝑈 , 𝜔𝐴; 𝜌DM, 𝑋𝐴; 𝐿, 𝑟) and 𝑁(𝜔𝑈 , 𝜔𝐴) in Eqs. (10.12a),
(17.6) and (A.17d), considering 𝑟 = 1 − 𝜖, 𝜖 ≪ 1 and 𝜔𝑈 ∼ 𝜔𝐴 2. In that case,

𝑁(𝜔𝑈) ≈
𝑋4
𝐴
𝜖2

cos4(𝜔𝑈𝐿2𝑐 )
, (17.10a)

𝑆(𝜔𝑈) ≈
𝛽𝑐𝑋𝐴

√
2𝜇0𝜌DM

√
𝜖

√
2 cos2(𝜔𝑈𝐿2𝑐 )

(
1 + cos

(
𝜔𝑈𝐿
2𝑐

))
, (17.10b)

at lowest order in 𝜖. As expected, we see from (17.10a) that the two uncertainties in the
numerator of (17.9)) depend differently on 𝑋𝐴 (the statistical uncertainty is independent of
𝑋𝐴, the RIN contribution is quadratic in 𝑋𝐴), while the signal strength in the denominator
is linear in 𝑋𝐴. This suggests an ’optimum’ value of 𝑋𝐴 such that Eq. (17.9) is minimum,

𝑑𝜒(𝜔𝑈)
𝑑𝑋𝐴

= 0 (17.11a)

⇒ 𝑋𝐴(𝜔𝑈) ≈
4

√
16𝑆𝐸2Δ𝜔

𝜖2𝑃RIN

√
𝑇obs
𝜏(𝜔𝑈)

����cos
(
𝜔𝑈𝐿
2𝑐

)���� ≈ 4

√
16𝜋 𝑓𝑠𝑆𝐸2

√
𝜔𝑈𝑇obs

103𝜖2𝑃RIN

����cos
(
𝜔𝑈𝐿
2𝑐

)���� ,
(17.11b)

where we used Eqs.(17.10a),(17.10b). We considered the maximum angular frequency shift
between the DM and applied frequencies Δ𝜔 = 𝜋 𝑓𝑠 , in order to have the best sensitivity on
𝜒(𝜔𝑈). Note that this equation to approximate the optimum value of 𝑋𝐴 is not valid for
angular frequencies 𝜔𝑈𝐿/𝑐 = 2𝜋+ 4𝑛𝜋, 𝑛 ∈ N and 𝜔𝑈𝐿/𝑐 = 𝜋+ 2𝑛𝜋, 𝑛 ∈ N. In the first case,
the signal decreases significantly (see Eq. (17.10b)) and the experiment becomes insensitive
to DM, while in the second case, Eq. (17.11b) would indicate to apply 𝑋𝐴 = 0, which would
automatically set the signal to 0, at first order in 𝜒. In this case, one must relax the constraint
𝜔𝑈 = 𝜔𝐴 and compute the exact value of 𝑋𝐴 with the exact expressions of noise and signals,
when 𝜔𝐴 corresponds to a mode of the cavity.

From Eq. (17.11b), we can express the sensitivity of the experiment 𝜒(𝜔𝑈) as

𝜒(𝜔𝑈) ≈

√
2
���cos

(
𝜔𝑈𝐿
2𝑐

)���
1 + cos

(
𝜔𝑈𝐿
2𝑐

) (
𝑃RIN𝑆𝐸2

103𝜋 𝑓𝑠

) 1
4

(
𝜔𝑈𝑇−3

obs

) 1
8

𝛽𝑐
√

2𝜇0𝜌DM
, (17.12)

for 𝜔𝑈𝐿
𝑐 ≠ 𝜋 + 2𝜋𝑛, 𝑛 ∈ N. This is a simplified expression that provides an approximate

evaluation of the optimal sensitivity of the experiment.
When we will evaluate the sensitivity of the experiment in Section 18.4.1, we will assume

that the applied field amplitude𝑋𝐴 is modified each time its angular frequency 𝜔𝐴 is shifted,
so that the condition Eq. (17.11b) is always fulfilled. However, we will use the full expressions
of 𝑆(𝜔𝑈 , 𝜔𝐴; 𝜌DM, 𝑋𝐴; 𝐿, 𝑟) and 𝑁(𝜔𝑈 , 𝜔𝐴) in Eqs. (10.12a) and (17.6).

2Even in the case where Δ𝜔 = 𝜋 𝑓𝑠 , we can assume 𝜔𝑈 ∼ 𝜔𝐴 for our estimates, as we have 𝑓𝑠 ⪅
𝜔𝑈
𝑄 ≈

𝜔𝑈 (1 − 𝑟) ≪ 𝜔𝑈 , for 𝑓𝑠 and 𝑄 that we will choose.
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17.2.4 Experimental parameters
Now, we discuss in details the numerical values of the various experimental parameters.
They are all summarized in Table 17.1.

First, we consider the random polarized case for the DP polarization direction, i.e 𝛽 =

1/
√

3 (see Eq. (10.12b)). Some already existing constraints come from experiments with this
assumption [6–13].

Let us remind that the observational scheme considered here consists in electric signals of
angular frequency 𝜔𝐴. For each injected electric field we perform a measurement of duration
𝑇obs and then shift the angular frequency of the applied field by 𝜋 𝑓𝑠 . Each measurement of
duration 𝑇obs provides constraints in the frequency range {𝜔𝐴 − 𝜋 𝑓𝑠 ; 𝜔𝐴 + 𝜋 𝑓𝑠} in steps of
2𝜋/𝑇obs. We will consider an individual measurement duration of 𝑇obs = 60 s. This duration
is arbitrary, but we list two important considerations for this choice. We require 𝑇obs to be
large for best sensitivity (see Eq. (17.9)), but short enough to allow scanning a large range of
DM frequencies in a reasonable amount of time (≤ 𝒪(month)).

Now, let us discuss the sampling frequency. In [14], the measurement of the transition
probability for a given frequency lasts about 300 𝜇s. At least three such measurements
are necessary to fully determine the resonance (amplitude, width and centre frequency),
which implies a maximum sampling rate of about 1 kHz, which is the maximum value
we will assume. In principle the process could be faster with higher laser power and/or
non-destructive techniques. In regular dispersive measurements, the photon scattering rate
per atom, i.e the rate at which an atom absorbs and re-emits incident photons, is high
implying that after a single detection, the atom is too hot, and no longer trapped for a
second detection. In that situation, the measurement is said to be destructive. An alternative
method is a non-destructive measurement, based on a low photon scattering rate, meaning
that a single atom can be used for multiple measurement. This non-destructive process has
already been experimentally tested, and is based on a differential dispersive measurement
[15]. As a consequence, it is not necessary to produce new Rydberg atoms for each frequency
measurement, implying that high (> 1 kHz) sampling frequency is feasible. We will thus
consider two scenarios for our order of magnitude estimates of the experimental sensitivity.
One with a “modest” sampling rate of 100 Hz and a second, more optimistic one, with higher
sampling at 𝑓𝑠 = 1 kHz. In both cases we will assume a single shot spectroscopic resolution
of ∼1 kHz for differential polarizabilities of Δ𝛼/2ℎ ≈ 105 Hz/(V/m)2, corresponding to
Rydberg states with principle quantum numbers 𝑛 ∼ 60 − 70 [16]3.

In terms of statistical noise, in [14] the reported resolution of the spectroscopy of 𝑛 = 56
Rydberg states in Sr is of the order of a few kHz, at a maximum possible sampling rate
of 1 kHz (see previous paragraph). Two different sampling rates will lead to different
measurement noise PSD and directly affect the sensitivity of the experiment (cf Eq. (17.12)).
To put some numbers, assuming a single shot spectroscopic resolution of ∼1 kHz [14] for

3While we are in the regime 𝑇obs ≫ 𝜏( 𝑓𝑈 ), note that we did not take into account the stochastic nature
of the field which would impact the sensitivity of the experiment. In particular, we are sampling a signal at
102 − 103 Hz, which roughly corresponds to the inverse of the coherence time of the field at GHz frequency
(see Eq. (5.11)). Expressing the field as a superposition of plane waves, see e.g. [17], and assuming an intrinsic
frequency 𝑓𝑈 = 109 Hz, a quick simulation reveals that this frequency broadening decreases the SNR by a factor
𝒪(1) for 𝑓𝑠 = 103 Hz, and 𝒪(10) for 𝑓𝑠 = 102 Hz. As expected, this suggests that one would need to increase the
sampling frequency of the apparatus, in order to be in the regime where 𝑓𝑠 > 1/𝜏( 𝑓𝑈 ), to avoid substantial loss
in sensitivity.
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differential polarizabilities of Δ𝛼/2ℎ ≈ 105 Hz/(V/m)2, leads to a noise PSD of the measured
electric field power of 𝑆𝐸2 ≈ 10−6 (V/m)4/Hz for 𝑓𝑠 = 100 Hz and 𝑆𝐸2 ≈ 10−7 (V/m)4/Hz for
𝑓𝑠 = 1 kHz.

Regarding the systematic effect, the amplitude of the flicker noise can be considered to
be 𝑃RIN = 10−13 (based on “off the shelf” components studied in [4] more than a decade ago)
in the modest case, and we assume an improved RIN control for the optimistic case, with
an amplitude of 𝑃RIN = 10−15. The level of the systematic effect PSD is also impacted by the
sampling rate, following Eq. (17.6). Moreover, as derived in Section 17.2.3, the approximate
sensitivity of the experiment Eq. (17.12) scales as (𝑃RIN𝑆𝐸2/ 𝑓𝑠)1/4, implying that the modest
and optimistic scenarii will differ in the sensitivity by a factor ∼10. The optimum value of
the amplitude of the applied field 𝑋𝐴 is then derived from Eqs. (17.9) (for the minimum
value4) and (17.11b) (for the maximum value, where we will consider DP frequencies until
∼ 2× 1010 Hz) and all other experimental parameters. Since it depends on the DM Compton
frequency, we provide the range of optimal 𝑋𝐴, for the modest case

18 V/m ≲ 𝑋𝐴 ≲ 2.4 × 105 V/m . (17.13)

It is independent of the sampling frequency since, from Eq. (17.11b), 𝑋𝐴(𝜔𝐴) ∝ ( 𝑓𝑠𝑆𝐸2)1/4
and 𝑆𝐸2 ∝ 𝑓 −1

𝑠 , but not of the systematic effect level 𝑃RIN. In Section 18.4.1, we will obtain the

Parameters Numerical values
Quality factor 𝑄 [18] 104

Mirrors reflectivity 𝑟 1 − 2 × 10−4

Cavity length 𝐿 7.5 cm
Injected field strength 𝑋𝐴(𝜔) [18, 7.6 × 105] V/m

Sampling frequency 𝑓𝑠 102 ; 103 Hz
Individual measurement time 𝑇obs 60 s

Range of 𝑓𝐴 = 𝜔𝐴/2𝜋 [0.5, 20.5] GHz
Range of Δ𝜔 [2𝜋/𝑇obs,𝜋 𝑓𝑠] rad/s

Statistical noise PSD 𝑆𝐸2 10−4/ 𝑓𝑠 (V/m)4/Hz
Systematic effect PSD 𝑆RIN(𝜔) 10−13/𝜔 ; 10−15/𝜔

Table 17.1: Assumed experimental parameters for the experiment involving Rydberg atoms
in a microwave cavity for the detection of the DP-photon coupling. Two different numerical
values for the same parameter means that one is used for the modest scenario while the other
is used for the optimistic one (see text).

expected sensitivity of this experiment to the DP-photon kinetic mixing coupling 𝜒, in both
modest and optimistic case, and using all the experimental parameters described above.

4The smallest value of 𝑋𝐴 corresponds to DM/applied frequencies close to odd modes, from Eq. (17.11b). In
this regime, both approximate amplitudes of noise Eq. (17.10a) and signal Eq. (17.10b) reach infinity, implying
that we must consider the real expression of 𝜒(𝜔) derived in Eq. (17.9) and check for which value of 𝑋𝐴, the
sensitivity on 𝜒 is the highest.
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17.3 SHUKET
We now turn to dish antenna experiments for the search of DP-photon 𝜒 coupling, as
described in Chapter 11. We will focus on a practical example to illustrate how the Kirchhoff
integral theorem and the overlap of modes affect the expected power received by an antenna
from a spherical dish emitter. We consider the setup of the SHUKET experiment [6], which
has been used to search for a DP in the frequency range 5 − 6.8 GHz using a spherical dish
and a horn antenna for the detection. In the analysis of this experiment, following [19], it
has been assumed that all the power emitted by the dish is received by the antenna. In this
section, we will present the experimental parameters, in particular we will assume the mean
DP frequency 𝑓𝑈 ∼ 6 GHz, and show that the calculations done in Chapter 11 are valid in
that case. Then, in the next chapter, Section 18.4.2, we will estimate the power received by
the antenna and estimate its implication on a more realistic sensitivity of the experiment on
𝜒.

The spherical dish used in [6] has a curvature radius of𝑅 = 32 m and an area of𝐴dish = 1.2
m2, implying a radius of 𝑟 ≈ 0.618 m (see Fig. 11.1). Then, 𝑅 ≫ 𝑟 (or equivalently the dish-
fictional plane distance 𝑎 ∼ 6 × 10−3 m, as shown in Fig. 11.2, in the case of SHUKET is way
smaller than 𝑟, i.e. 𝑎 ≪ 𝑟) which ensures that the low curvature approximation is valid. The
expression of the electric field emitted by the dish at its surface is given by Eq. (11.1) where
®𝑌∥ ,𝐷 has the form

®𝑌∥ ,𝐷(𝜃, 𝜙) = ®𝑌 −
(
®𝑌 · 𝑒𝑟

)
𝑒𝑟 ≈ ©«

𝑌𝑥
𝑌𝑦
0

ª®¬ + 𝒪(𝜃) , (17.14)

with 𝜃, 𝜙 corresponding to a spherical coordinate system centered in dish’s curvature center
and where we have used the notation ®𝑌 = (𝑌𝑥 , 𝑌𝑦 , 𝑌𝑧) in the cartesian coordinate system
depicted in Fig. 11.1 and where we used the low curvature approximation at the last step5.
This means that at leading order in 𝜃, the polarization of the emitted electric field does not
depend on the dish coordinate, and is only polarized in the 𝑥 − 𝑦 plane.

For this configuration, the power emitted by the dish is independent of the mass of the
DP and is given by Eq. (11.2)6

𝑃SHUKET
dish = 1.73 × 10−20

( 𝜒

10−12

)2
W . (17.15)

In Appendix E, we show how with these experimental parameters, the procedure using
the thin optical element approximation, described in Chapter 11 to compute the electric
field from the dish to the fictional plane is valid for SHUKET. Indeed, we find that this
approximation leads to a relative error on the electric field of order 10−4. Additionally, the
calculation in Appendix E shows that the small curvature approximation and Eq. (17.14)
are valid in our regime.

In the SHUKET experiment, the detection is made by the Schwarzbeck BBHA-9120-D

antenna, which is sensitive to electric field frequencies from 0.8 to 18 GHz. The datasheet
[20] contains several pieces of information that will be necessary for our calculations on the

5The relative error induced by the neglect of 𝒪(𝜃) is ∼ 1%.
6Note there is a factor 2 discrepancy with what [6] indicated, due to a calculation error.
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expected amount of power received by the antenna wires, namely the gain and the antenna
factor of the antenna as function of those various field frequencies. These quantities have
been measured experimentally by the manufacturer. The antenna consists in a rectangular
surface of area 𝑆phys = 0.25× 0.142 m2, with 𝐴 = 0.25 m the long length and 𝐵 = 0.142 m the
small length. This implies that for the fundamental mode of the antenna at frequency 𝜔𝑐 ,
the effective size of the antenna corresponds to its physical size (in other words 𝐴eff(𝜔𝑐) = 𝐴

and 𝐵eff(𝜔𝑐) = 𝐵) and therefore the ratio between the long and small sides of the antenna
is 𝑅AB(𝜔𝑐) = 𝐴/𝐵 ≈ 1.76. We will make the assumption that the ratio 𝑅𝐴𝐵 is independent
of the frequency, i.e 𝑅AB(𝜔𝑐) ≡ 𝑅AB = 𝐴eff(𝜔)/𝐵eff(𝜔), for any frequency 𝜔 > 𝜔𝑐 , such
that the effective surface of the antenna at frequency 𝜔 is simply 𝑆eff(𝜔) = 𝐴eff(𝜔)𝐵eff(𝜔) =
𝐴2

eff(𝜔)/𝑅AB. Then, using Eq. (11.18), the effective long and small lengths of the antenna at
the frequency 𝜔𝑈 are simply given by

𝐴2
eff(𝜔𝑈)
𝑅AB

=
𝑒𝑟𝜋𝐺(𝜔𝑈)𝑐2

𝜔2 ; 𝐵eff(𝜔𝑈) =
𝐴eff(𝜔𝑈)
𝑅AB

. (17.16)

These two dimensions define the effective surface area over which we need to integrate
Eq. (11.24) to estimate the output of the antenna.

Therefore, we will use the electric field at the surface of the fictional plane Eq. (11.15) to
compute the field power received by the antenna. This will be done in details in Chapter 18
on sensitivities.

17.4 MICROSCOPE
We now discuss the experimental parameters of MICROSCOPE for the detection of ULDM
candidates that produce a violation of the UFF, as discussed in Chapter 12. As mentioned
in Section 12.1, MICROSCOPE is a space mission that was launched to test the UFF in space
[21] with a final result on the 𝜂 parameter Eq. (12.2). The full MICROSCOPE dataset used to
constrain the UFF is made of 17 sessions [22]. The noise PSD of the differential acceleration
of the session 404 is given by [23]

𝑆𝑎( 𝑓 ) = 2.2 × 10−24 𝑓 −1 + 2.3 × 10−17 𝑓 4
(
m/s2

)2
/Hz , (17.17)

for frequencies between 10−5 Hz and 0.3 Hz. The 𝑓 −1 slope noise comes from thermal effects
of the gold wire connecting the test masses to the cage, while the high frequency noise in 𝑓 4

is the second derivative of the position measurement white noise [21].
The UFF signal is modulated by spinning the satellite at a frequency chosen to minimize

the noise, 𝑓EP ∼ 3 mHz. Note that 𝑓EP is in reality a linear combination of the spin frequency
𝑓spin and orbital frequency 𝑓orb, with 𝑓spin ≫ 𝑓orb ∼ 1.5 × 10−4 Hz [21] for session 404. Three
different spin frequencies exist depending on the session [24], such that one should take
both contributions into account for the determination of 𝑓EP for other sessions. The bucket
frequency of this acceleration noise corresponds approximately to 𝑓bucket ∼ 30 mHz [21, 23].

To take into account the contribution of the full experiment, i.e the 17 different sessions,
we make the hypothesis that all of them have the same level of acceleration noise Eq. (17.17)
while we consider the orbital period to be constant 𝑇single orbit ≈ 5946 s [22]. This hypothesis
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is sufficient for the rough sensitivity analysis we do here, but will have to be revisited when
doing a complete MICROSCOPE data analysis in search for DM candidates.

Using the total number of orbits of the experiment, i.e 𝑁orbits = 1362 [22], we find that the
total integration time is 𝑇int = 𝑇single orbit × 𝑁orbits ≡ 8.1 × 106 s (≈ 94 days).

As an experiment measuring the differential acceleration between two test masses, the
corresponding theoretical signal is given by Eq. (12.5) projected onto the sensitive axis of the
experiment (see Eq. (12.1)). In Appendix C, we compute the projection of the galactic velocity
onto the sensitive axis of MICROSCOPE, and we find that 𝑒𝑣 · 𝑒meas ≈ 0.85 cos(𝜔spin𝑡 + 𝜓),
where 𝜔spin = 2𝜋 𝑓spin and 𝜓 is an irrelevant phase.

17.5 Atom interferometers
Similarly as for MICROSCOPE, we have shown in Chapter 13 that the sensitivity of some
AI experiments to ULDM fields are proportional to the dot product between the laser pulse
direction and the galactic velocity (see e.g. Eqs. (13.21) and (13.27)). In Appendix C, we
derive the various projections of the galactic velocity onto the laser pulses directions of those
experiments, which depend on their location on Earth, but also on their integration time.
The AI experiments under consideration are located at Stanford, USA, Fermilab, USA and
Oxford, UK. In Appendix C, we find 𝑒𝑣 · 𝑒kick

���
Stanford

≈ 0.43, 𝑒𝑣 · 𝑒kick

���
Oxford

≈ 0.99 and

𝑒𝑣 · 𝑒kick

���
Fermilab

≈ 1.00.

17.5.1 Stanford Tower
The most stringent constraint on the Eötvös parameter 𝜂 obtained from atom interferometry
experiment is achieved using a Bragg atom interferometry experiment in the Stanford Tower.
In this experiment, the relative acceleration of freely falling clouds of two isotopes of Rubid-
ium (85Rb and 87Rb) is measured [25]. The differential interferometric phase measurement
between these two inteferometers leads to a constraint on 𝜂 given by [25]

𝜂 = (1.6 ± 5.2) × 10−12 . (17.18a)

Both atoms are launched upwards inside the Stanford Tower for an interferometric sequence
of total duration 2𝑇 = 1.91 s, corresponding to the total time for the atoms to fall back [25].

Double diffraction interferometry is performed using two lasers both resonant with the
|52𝑆1/2⟩ → |52𝑃3/2⟩ 87Rb transition, i.e. their wavevectors are 𝑘1 ≈ 𝑘2 ≈ 2𝜋/𝜆, with 𝜆 =

780 nm. Three different momentum splittings have been used: {4ℏ𝑘, 8ℏ𝑘, 12ℏ𝑘}. All are
in agreement with no EP violation [25]. In the following, we will consider the highest
momentum transfer since this will enhance the signal searched for, which corresponds to
using an effective wavevector 𝑘eff = 24𝜋/𝜆 in Eq. (13.21).

The resolution per shot on the differential acceleration is 𝜎Δ𝑎 = 1.4 × 10−11𝑔 [25], with
𝑔 = 9.81 m/𝑠2 the Earth gravitational acceleration on ground. We assume white noise (see
below) with a corresponding acceleration noise PSD

𝑆Δ𝑎 =
2𝜎2

Δ𝑎

𝑓𝑠
≈

(
7.7 × 10−11 𝑔

)2
Hz−1 , (17.18b)

174



Chapter 17 Experimental considerations

with 𝑓𝑠 the sampling frequency of the experiment, defined as 𝑓𝑠 = 1/𝑇cycle where 𝑇cycle = 15 s
is the duration of one interferometric sequence, including atom preparation, launch and free
fall [25]. The raw measurement in this experiment is actually a differential phase shift ΔΦ
which is related to the differential acceleration between the atoms Δ𝑎 through ΔΦ = 𝑘eff𝑇

2Δ𝑎
[26]. Therefore, we can infer the PSD of the phase shift using√

𝑆Φ = 𝑘eff𝑇
2
√
𝑆Δ𝑎 . (17.18c)

The final uncertainty of this differential acceleration measurement is mostly limited by
electromagnetic effects, coming from the Bragg lasers and non homogeneous magnetic field
[25]. Knowing the final uncertainty of the differential measurement (17.18a) we derive the
total “effective” experiment time 𝑇int under our white noise assumption i.e. assuming that
individual experimental cycles are uncorrelated. Then, the number of cycles 𝑁 can be
derived as

𝑁 =
1
𝑔2

(
𝜎Δ𝑎
𝜎𝜂

)2
≈ 77 , (17.18d)

and

𝑇int = 𝑁 × 𝑇cycle ≈ 1148 s . (17.18e)

As a Bragg differential AI, the Stanford experiment is sensitive to ULDM fields that
produce oscillations of rest mass and transition frequency of atoms, whose corresponding
signal is presented in Eq. (13.21).

17.5.2 AION-10
The Atom Interferometer Observatory and Network (AION) is an experimental program to
search for ULDM and gravitational waves in the 10−1−10 Hz range using atom interferometry
[27]. AION-10 is a 10 meter-long single-photon atom gradiometer instrument which will use
87Sr atoms and that will be built in Oxford [28]. Contrary to the other experiments previously
introduced, AION-10 will operate in a distant future, assuming a much better control on
noise than current experiments. As a gradiometer, AION-10 will be sensitive to the signal
presented in Eq. (13.26). Following [28], we will use the following experimental parameters
ultimately envisaged for AION-10:

𝑇int = 108 s , (17.19a)
𝑇 = 0.74 s , (17.19b)

𝑆AION
Φ
( 𝑓 ) = 10−8 rad2/Hz , (17.19c)
𝑛 = 1000 , (17.19d)

𝜔Sr = 2.697 × 1015 rad/s , (17.19e)
Δ𝑟 = 4.86 m , (17.19f)
𝐿 = 10 m , (17.19g)

respectively the interrogation time, the free evolution time, the gradiometer phase noise PSD,
the number of LMT kicks, the optical transition frequency used, the gradiometer separation,
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and the total size of the baseline. Note that, while a 10 m facility is used, which would imply
a free fall time of 2𝑇 =

√
8𝐿/𝑔 ∼ 2.86 s, i.e 𝑇 ∼ 1.43 s, [28] computed the optimum free

evolution time as function of the other experimental parameters, in particular considering a
non-zero separation between the two interferometers Δ𝑟 ≠ 0, reason for the difference.

17.5.3 SPID
We now focus on the SPID variation, which can also probe oscillations of rest mass and
transition frequency of atoms through the signal presented in Eq. (13.27) (Section 13.4).

We consider first the experimental parameters from one running mode of MAGIS-100.
They are listed in [29], see their Fig. 3. Their noise levels are much lower than current
experiments, similar to AION-10. MAGIS-100 will use two isotopes of Strontium (87Sr and
88Sr) in a 100-meter baseline. The transition under consideration in [29] is |51𝑆0⟩ → |53𝑃1⟩
with frequency 𝜔Sr = 2.73 × 1015 rad/s. In terms of acceleration noise level and order of
LMT, we consider the upgraded parameters, i.e√

𝑆MAGIS
𝑎 ( 𝑓 ) = 6 × 10−17g/

√
Hz , (17.20a)

𝑛 = 1000 . (17.20b)

In addition, for a 𝐿 = 100 m high tower, the free-fall time of atoms is given by 2𝑇 =
√

8𝐿/𝑔,
which implies 𝑇 ∼ 4.5 s. Following Eq. (17.18c), the phase noise PSD is

𝑆MAGIS
Φ

( 𝑓 ) =
(
𝑛𝜔Sr𝑇

2

𝑐

)2
𝑆𝑎( 𝑓 ) ∼ 10−8 rad2/Hz , (17.20c)

i.e a similar phase noise PSD as AION-10. Finally, the full integration time of the experiment
corresponds to 1 year of observation, 𝑇int ≈ 3.16 × 107 s.

Another reason why we consider the SPID setup is to directly compare the expected
sensitivity on axion and dilaton couplings of two experiments with the exact same exper-
imental parameters but operating a gradiometer on one hand and the SPID variation on
the other hand. For this matter, we will compare the sensitivity of the current version of
AION-10, i.e a gradiometer, with a SPID setup using the same noise levels. In this case, in
addition to the phase noise, we also include the EOM noise (which we show to be negligible
in the following), which is used to shift the frequency of the laser to account for the isotope
shift (∼ 1 GHz) as discussed in Sec. 13.4 and depicted in Fig. 13.6. An alternative scheme
would be to phase-lock two lasers with a ∼ 1 GHz frequency offset. In either case, this setup
generates an additional frequency fluctuation 𝜎 𝑓 (𝑡) in the second beam, which comes from
the EOM internal noise and from the phase noise of the GHz reference frequency. Whilst
the raw EOM phase noise PSD can be approximated as 𝑆GHz

Φ
( 𝑓 ) ≈ 10−13 ( 𝑓 /Hz)−2 rad2/Hz

[30–32], it enters only differentially in the SPID setup at times separated typically by 𝐿/𝑐.
The resulting PSD is altered by a factor 2 (1 − cos (2𝜋 𝑓 𝐿/𝑐)) ≈ (2𝜋 𝑓 𝐿/𝑐)2, since 2𝜋 𝑓 𝐿/𝑐 ≪ 1
for all frequencies 𝑓 of interest. Since this noise is uncorrelated with the gradiometer phase
noise, the total phase noise PSD of the SPID setup is simply

𝑆SPID
Φ
( 𝑓 ) = 𝑆GHz

Φ
( 𝑓 )

(
2𝜋 𝑓 𝐿
𝑐

)2
+ 𝑆AION

Φ
( 𝑓 ) ≈ 𝑆AION

Φ
( 𝑓 ) , (17.21)
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For the remaining experimental parameters, such as the total time of experiment, the flight
time of atoms and the number of LMT kicks, we will assume the same values as AION-10, see
Eq. (17.19). We will also consider the use of four different pairs of isotopes of alkaline-Earth
neutral atoms commonly used as optical clocks (see Table 8.2) and we will assess the impact
of the choice of the atoms on the ULDM sensitivity.

17.6 LISA
In Chapter 15, we already discussed most of the experimental parameters affecting LISA

sensitivity to DM fields. LISA one-link phase noise PSD is given in Eq. (14.11). The sensitivity
of a given TDI 𝑂 combination to a coupling 𝜀 at frequency 𝑓 is given by [33]

𝑆𝑂( 𝑓 ) =
𝑁𝑂( 𝑓 )
𝒯 2
𝑂
( 𝑓 )

. (17.22)

The amplitude of the transfer functions of TDI 𝑋2 combination is (at leading order in 𝑣DM/𝑐
and using Eq. (15.8))��𝒯 DM

𝑋 ( 𝑓 )
�� ≈ 16 sin

(
2𝜋 𝑓 𝐿
𝑐

)
sin

(
4𝜋 𝑓 𝐿
𝑐

)
(�̂�23 · 𝑒𝑣) sin2

(
𝜋 𝑓 𝐿

𝑐

)
. (17.23a)

From this, one can compute both 𝐴, 𝐸 transfer functions (using Eq. (14.9))��𝒯 DM
𝐴 ( 𝑓 )

�� ≈ 16√
2

����sin
(

2𝜋 𝑓 𝐿
𝑐

)
sin

(
4𝜋 𝑓 𝐿
𝑐

)
((�̂�12 − �̂�23) · 𝑒𝑣)

���� sin2
(
𝜋 𝑓 𝐿

𝑐

)
(17.23b)��𝒯 DM

𝐸 ( 𝑓 )
�� ≈ 48√

6

����sin
(

2𝜋 𝑓 𝐿
𝑐

)
sin

(
4𝜋 𝑓 𝐿
𝑐

)
(�̂�13 · 𝑒𝑣)

���� sin2
(
𝜋 𝑓 𝐿

𝑐

)
(17.23c)

��𝒯 DM
𝐴𝐸 ( 𝑓 )

�� ≈ 16√
2

����sin
(

2𝜋 𝑓 𝐿
𝑐

)
sin

(
4𝜋 𝑓 𝐿
𝑐

)����√((�̂�12 − �̂�23) · 𝑒𝑣)2 +
(√

3�̂�13 · 𝑒𝑣
)2

sin2
(
𝜋 𝑓 𝐿

𝑐

)
,

(17.23d)

where at the last line, we define the 𝐴, 𝐸 joint transfer function, which we used for our
analysis of the realistic limit on sensitivity of LISA, in Section 15.3. The noise transfer
functions of the 𝐴, 𝐸 combinations are defined in Eq. (15.25), and the Sagnac 𝛼 noise transfer
function is [34]7

𝑁𝛼( 𝑓 ) = 4 sin2
(

3𝜋 𝑓 𝐿
𝑐

) (
12𝑆oms( 𝑓 ) + 4

(
3 − 2 cos

(
2𝜋 𝑓 𝐿
𝑐

)
− cos

(
6𝜋 𝑓 𝐿
𝑐

))
𝑆acc( 𝑓 )

)
. (17.24)

7In [34], only the first generation noise transfer functions are presented, so in order to compute the second
generation noise transfer function for the Sagnac 𝛼 combination, one needs to add a factor (2 sin(3𝜔𝐿/2𝑐))2,
using Eq. (14.10). In addition, the modification of the optical benches of LISA that we propose to be able to be
sensitive to vacuum birefringence implies a decrease in the amplitude of light (or equivalently in the number
of photons 𝑁𝛾) that reaches each interferometer by a factor 2 because light gets partially absorbed by the right
polarizer, see Fig. 16.3. Since the OMS noise includes a contribution from shot noise whose PSD ∝ 1/𝑁𝛾, we
have conservatively added a factor 2 to the whole OMS contribution.
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In the following, we will make our estimates assuming a fixed arm length 𝐿 = 2.5×109 m,
and two different integration times. For the estimates related to Chapter 15 on searches for
time oscillating rest mass, we will be using the parameters used in the simulation : we will
use one year of observation time𝑇obs ∼ 3.15×107 s, and we will compute the sensitivity of the
𝐴, 𝐸 TDI combinations together, i.e we will be using the joint transfer function Eq. (17.23d)
(the noise transfer functions are the same for both combinations, see Eq. (15.25)). For the
estimates related to Chapter 16 on searches for vacuum birefringence, we will be assuming
four years of integration time, 𝑇obs ∼ 1.26 × 108 s, which is the expected mission duration
[35] and we will compute the sensitivity of the Sagnac combination, as it is the optimized
combination to use for this matter, as we discussed it in Chapter 16.
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Chapter 18

Sensitivity results on ultralight dark
matter couplings

In this chapter, we will present the main results of this thesis, i.e the sensitivity estimates
of the experiments presented in Chapters 9, 10, 11, 12, 13, 15 and 16 with the experimental
parameters and noises presented in Chapter 17.

18.1 Dilaton-SM couplings 𝑑′
𝑖
𝑠

In Fig. 18.1, we show the existing most stringent laboratory constraints on the dilatonic
couplings : Torsion balances [37] and MICROSCOPE1 [36], which are denoted as "Fifth force
exp.", and hyperfine and optical clocks [38, 39] denoted as "Lab-Atomic clocks".

18.1.1 MICROSCOPE
MICROSCOPE’s sensitivity to the oscillating dilaton field is given by the projection of the
differential acceleration Eq. (12.5a) to the sensitive axis of measurement, i.e

|Δ®𝑎(𝑡)| =
√

16𝜋𝐺𝜌DM𝑣DM

𝑐

����([𝑄Pt
𝑀]𝑑 − [𝑄

Ti
𝑀]𝑑

)
𝑒𝑣 · 𝑒meas.(𝑡)

���
𝜇SCOPE

���� . (18.1)

The dot product is computed in Appendix C and the mass charges [𝑄Pt
𝑀
]𝑑 , [𝑄Ti

𝑀
]𝑑 are defined

in Eq. (8.6a) and the various partial dilatonic charges are shown in Table 8.1. The sensitivity
is then computed using Eq. (5.13) and the experimental parameters of Section 17.4. The
associated sensitivity of MICROSCOPE to the various dilatonic couplings is shown in black
dotted line in Fig. 18.1 (denoted "MICROSCOPE (osc.)"). As mentioned above, this sensitivity
is not competitive with MICROSCOPE’s ability to detect a fifth force induced by the dilaton
field, as it is shown in black full line in Fig. 18.1.

18.1.2 Atom interferometers
For the various atom interferometric schemes, we use Eqs. (13.21), (13.26) and (13.27) and
we express respectively the amplitude of the phase shift between atomic species A and B in

1The best MICROSCOPE sensitivity comes from the static term of the field, i.e when considering a fifth force
generated by Earth on the test masses, while we only focused on the oscillatory term in this thesis.
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Figure 18.1: Current constraints on all the dilatonic couplings of interest in this thesis : 𝑑𝑒
(top left), 𝑑𝑚𝑒 − 𝑑𝑔 (bottom left), 𝑑𝛿�̂� − 𝑑𝑔 (top right), 𝑑�̂� − 𝑑𝑔 (bottom right) from [36–39], with
95% confidence level (shown in light grey background). All these existing constraints are
shown in solid lines. The expected sensitivity of all the experiments considered in this thesis
are shown in dashed lines (with 68% detection threshold). The sensitivity of MICROSCOPE

is shown in black, and denoted "MICROSCOPE (osc.)". The expected sensitivity of AION-10

is shown in orange dashed line while the expected sensitivity of AION-10 using the SPID

variation, noted "AION-10-SPID" are respectively shown in green, light blue, red and gold
dashed lines, depending on the isotope pair used. The expected sensitivity of MAGIS-100 is
shown in dark blue. Finally, the expected sensitivity of LISA is shown in pink and purple
respectively when the DM velocity is assumed as a fixed and free parameter (see text).

differential two-photon transition AI, gradiometers and the SPID setup, with respectively
AION-10 and MAGIS-100 experimental parameters. The experimental parameters of these
various experiments are discussed in Sections 17.5.1, 17.5.2, 17.5.3. Then, the different phase
shifts read

ΔΦStanford
87Rb,85Rb ≈

4
√

16𝜋𝐺𝜌DM𝑣DM𝑘eff

𝜔2
𝜙𝑐

��� ([𝑄87Rb
𝑀 ]𝑑 − [𝑄

85Rb
𝑀 ]𝑑

)
𝑒𝑣 · 𝑒kick

���
Stanford

��� sin2
(
𝜔𝜙𝑇

2

)
,

(18.2a)

ΔΦAION−10
87Sr ≈

4𝑛𝜔0
87SrΔ𝑟

√
16𝜋𝐺𝜌DM[𝑄

87Sr
𝜔 ]𝑑

𝜔𝜙𝑐
sin2

(
𝜔𝜙𝑇

2

)
, (18.2b)

ΔΦMAGIS−100
88Sr,87Sr ≈

4𝑛𝜔0
√

16𝜋𝐺𝜌DM𝑣DM

𝜔2
𝜙𝑐

2

���([𝑄88Sr
𝑀 ]𝑑 − [𝑄

87Sr
𝑀 ]𝑑

)
𝑒𝑣 · 𝑒kick

���
Fermilab

��� sin2
(
𝜔𝜙𝑇

2
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,

(18.2c)

ΔΦAION−10−SPID
AB ≈

4𝑛𝜔0
√

16𝜋𝐺𝜌DM𝑣DM

𝜔2
𝜙𝑐

2

���([𝑄𝐴
𝑀]𝑑 − [𝑄

𝐵
𝑀]𝑑

)
𝑒𝑣 · 𝑒kick

���
Oxford

��� sin2
(
𝜔𝜙𝑇

2

)
,

(18.2d)

where the [𝑄]𝑑 charges contain partial dilatonic mass and/or frequency charges defined in
Eqs. (8.6a) and (8.7). Note that for the SPID variation, we let the atomic species 𝐴, 𝐵 free
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Chapter 18 Sensitivity results on ultralight dark matter couplings

because we will derive expected sensitivities for various isotope pairs.
In Fig. 18.1, the sensitivity of the Stanford tower experiment to the various dilatonic

couplings is not visible, because it is less sensitive than the best existing constraints (for
example, it reaches 𝑑𝑒 ∼ 2×103 at best, around𝑚𝜙𝑐

2 ∼ 10−16 eV, almost 8 orders of magnitude
above the constraint from MICROSCOPE). As it was discussed in [28], AION-10 would
improve the current constraint on the 𝑑𝑚𝑒 − 𝑑𝑔 coupling, over a mass range approximately
between 7 × 10−16 eV and 4 × 10−15 eV.

With the same experimental parameters as AION-10, operating the SPID setup (denoted
"AION-10-SPID" in Fig. 18.1) would improve the current constraints on various dilatonic
couplings. By respectively using Ca and Hg isotopes pairs, the constraint on 𝑑𝑒 would
be improved by a factor ∼ 2 and 3 respectively, over a mass range covering four orders
of magnitude (approximately from 10−19 eV to 10−15 eV), compared to MICROSCOPE, the
current best constraint in this mass range. Regarding the 𝑑𝑚𝑒 − 𝑑𝑔 coupling, the use of
Ca and Hg isotopes respectively would improve the best constraints, by a factor 2.5 and 1.5
respectively over the same mass range. Finally, all pairs of isotopes presented would improve
the current best constraint on 𝑑𝛿𝑚 − 𝑑𝑔 by one order of magnitude, depending on the isotope
pair used, over a mass range covering more than 4 orders of magnitude (from 10−19 eV to
3 × 10−15 eV).

One can notice also that operating both gradiometers and SPID at AION-10 would give
complementary sensitivities for the search of the 𝑑𝑚𝑒 − 𝑑𝑔 coupling of the dilaton. Indeed,
while the gradiometer would improve the current constrain in the ∼ 7 × 10−16 − 3 × 10−15

eV/𝑐2 mass range, the sensitivity of the SPID setup at lower mass is better, as described in the
last paragraph. In addition, SPID would be more sensitive than AION-10 to the 𝑑𝑒 , 𝑑�̂� − 𝑑𝑔
and 𝑑𝛿𝑚 − 𝑑𝑔 couplings in the full range of masses of interest (i.e lower than 10−14 eV/𝑐2).

Regarding the sensitivity of MAGIS-100 operating the SPID setup, one can notice that it
would overall give the best constraint at low masses. One can notice that MAGIS-100 would
reach better sensitivity on most couplings, compared to the AION-10-SPID variation. The
reason is that for low masses, such that 𝜔𝜙𝑇 ≪ 1, the signal Eq. (18.2d) is quadratic in the
free fall time 𝑇, and MAGIS-100 using a much longer baseline than AION-10, the free fall
time is roughly 6 times longer for MAGIS-100 (as mentioned previously, the free fall time
in the case of AION-10 is smaller than what the facility size allows), resulting in increased
signal. However, note that we made the calculations assuming three years of integration
time for AION-10 (from [28]) and the SPID variation, but only one year for MAGIS-100 (from
[29]). This is why the difference in sensitivity is roughly one order of magnitude between
the two dual-Sr configurations, and not more. Note that compared to the sensitivity curves
on dilaton couplings presented in [29], but using the gradiometer setup of MAGIS-100, the
curve presented in this paper would constrain a larger DM mass range. Indeed, while the
former has a peak sensitivity around a mass 10−15 eV and quickly loses sensitivity for lower
masses, the SPID-like setup of MAGIS-100 would have a constant sensitivity of the same
order of magnitude for 3 orders of magnitude of mass (10−19 − 10−16 eV).

18.1.3 LISA
In Chapter 15, we have seen that despite the fact that LISA can probe dilaton-SM couplings
through oscillation of the rest mass of the freely falling test masses, the DM velocity cannot
be constrained accurately and this leads to large uncertainty on such couplings. Now, we
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Figure 18.2: On the left, we show the sensitivity of LISA to the general coupling 𝜀min when
the velocity is assumed fixed (blue curve) and when it is a free parameter (orange curve).
One can notice a deterioration of the sensitivity when the velocity is a free parameter of the
Bayesian analysis. On the right, we show the ratio of the orange to the blue curves. At low
frequency, the ratio is ∼ 2.5, and when the frequency becomes 𝑓 > 10−1 Hz, this ratio starts
decreasing because the argument of the cosine in Eq. (18.4) becomes important (see text.).

might wonder what would be the effect of such uncertainty in the regions of the parameter
space where LISA can probe the smallest couplings, i.e when SNR=1.

Following Eq. (15.17b), the sensitivity of the combination 𝐴, 𝐸 on the coupling 𝜀 without
correlation with other parameters is (at SNR=1)

𝜀min( 𝑓 ) =
1.5 × 2𝜋 𝑓 𝑐2√
16𝜋𝐺𝜌DM𝑣DM

√
𝑆𝐴,𝐸( 𝑓 )
𝑇obs

or 𝜀min( 𝑓 ) =
2𝜋 𝑓 𝑐2√

16𝜋𝐺𝜌DM𝑣DM

√
𝑆𝐴,𝐸( 𝑓 )√
𝑇obs𝜏( 𝑓 )

, (18.3)

depending on if 𝑇obs is smaller or larger than 𝜏( 𝑓 ) (see Eq. (5.13)). Now, we estimate the
sensitivity of the experiment, taking into account the correlation between the coupling and
the DM velocity (see Section 15.3). When SNR=1, the likelihood Eq. (15.47b) reduces to2

logℒ( 𝑓 , 𝜀𝑀) = −1
2
©«1 +

(
𝑣𝑀DM𝜀𝑀

𝑣𝐷DM𝜀min( 𝑓 )

)2

− 2
𝑣𝑀DM𝜀𝑀

𝑣𝐷DM𝜀min( 𝑓 )
cos

(
2𝜋 𝑓 | ®𝑥AU | cos(𝛽)

𝑐2

(
𝑣𝐷DM − 𝑣

𝑀
DM

))ª®¬ ,
(18.4)

where the parameters with superscript 𝐷 mean true values injected in the simulation, and
the ones with superscript 𝑀 mean model values. Similarly as what was done in Section
15.3, we will now compute numerically the standard deviation on the posterior distribution
of 𝜀𝑀 , in order to have a new sensitivity estimate of LISA.

In the following, we consider the same specific values of 𝛽𝐷 , 𝑣𝐷DM as in Chapter 15 (as
a reminder, we assume the mean values of velocity and sky localization from the velocity
distribution Eq. (5.7a), i.e (𝑣𝐷DM, 𝛽

𝐷) = (10−3𝑐, 1.046 rad)). In order to infer 𝜎𝜀min( 𝑓 ), the
uncertainty on the posterior distribution of 𝜀min at a given frequency 𝑓 , we numerically

2At frequencies where 𝑇obs < 𝜏( 𝑓 ), the noise in Eq. (15.47b) scales as
√
𝑁𝐴/

√
𝑇obs𝜏( 𝑓 ), and we will obtain the

same result.
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integrate the marginalized likelihood Eq. (18.4) over 𝑣𝑀DM, following Eq. (15.49) and using
an uniform prior on 𝜀𝑀 with (arbitrary) bounds [0, 100 𝜀min( 𝑓 )]. This gives us the posterior
distribution 𝒫(𝜀𝑀( 𝑓 ))which we again integrate over 𝜀𝑀 (as in Eq.(15.50)) to obtain 𝜎𝜀min( 𝑓 ).

In the left panel of Fig. 18.2, we show sensitivities of LISA to 𝜀 when 𝑣DM is fixed,
i.e from Eq. (18.3) and when 𝑣DM is a free parameter, i.e from the width of the posterior
distribution Eq. (15.49) (but with the likelihood given in Eq. (18.4)). One can notice that at
low masses, letting 𝑣DM free decreases the sensitivity by a factor ∼ 2.5 compared to the fixed
𝑣DM case (right panel of Fig. 18.2). This difference is entirely determined by the cosine term
in Eq. (18.4). Indeed, as mentioned in Chapter 15, it is the accuracy on the determination
of the velocity 𝑣𝑀DM which impacts the width of the coupling 𝜀𝑀 posterior distribution. In
particular, in order to maximize the likelihood, one needs to get the logℒ Eq. (18.4) as close
to 0 as possible, i.e one needs the cosine term to be close to 1. This means that the argument
of the cosine

2𝜋 𝑓 | ®𝑥AU | cos(𝛽)
𝑐2

(
𝑣𝐷DM − 𝑣

𝑀
DM

)
∼ 103Δ𝑣

𝑐

(
𝑓

1 Hz

)
, (18.5a)

must be close to 0, where Δ𝑣 = 𝑣𝐷DM− 𝑣
𝑀
DM. We can consider that the accuracy on the velocity

parameter starts to increase when Δ𝑣 ≤ 𝜎𝑣 , where 𝜎𝑣 is the width of the velocity prior
distribution. This implies that the accuracy on the coupling starts to increase for frequencies

103𝜎𝑣 𝑓

𝑐
/≪2𝜋⇒ 𝑓 /≪10 Hz , (18.5b)

i.e when 𝑓 ⪆ 0.1 Hz. This is what is shown on the right panel of Fig. 18.2.
Since 𝜀 = [𝑄TM

𝑀
]𝑑, and [𝑄TM

𝑀
]𝑑 =

∑
𝑖[𝑄TM

𝑀,𝑖
]𝑑 𝑑𝑖/

√
2 (from Eq. (8.6a)), the sensitivity of LISA

to the coupling 𝑑𝑖 reads

𝑑𝑖 =

√
2𝜎𝜀min

[𝑄TM
𝑀,𝑖
]𝑑
. (18.6)

Using Eq. (17.22) together with Eqs. (15.25) and (17.23d), we can now derive the sensitivity
curves. In Fig. 18.1, we show respectively in pink and purple the sensitivity of LISA to the
different dilatonic 𝑑𝑖 couplings when the velocity is assumed as a fixed or free parameter.
Similarly as for the 𝜀 coupling shown in Fig. 18.2, there is an approximate factor ∼ 2.5
difference. One can notice that LISA will be competitive with the other futuristic experiments
for all dilatonic couplings. In particular on the 𝑑𝑚𝑒 − 𝑑𝑔 , 𝑑�̂� − 𝑑𝑔 couplings, it will reach
unconstrained regions of the parameter space, improving respectively fifth force constraints
by a factor ∼ 10,∼ 5 over one order of magnitude of mass (∼ 10−17 eV − 10−16 eV), in
the case of fixed velocity. The reason it is much more sensitive to this coupling than AI
experiments comes from the fact that AI experiments mainly use isotopes 𝐼1, 𝐼2, while
LISA makes use of the finite light travel time with a single atomic species. Isotopes have
very close quark contribution to their rest mass, and therefore the differential mass charge
Δ[𝑄𝑀,�̂�]𝑑 = [𝑄I1

𝑀,�̂�
]𝑑 − [𝑄I2

𝑀,�̂�
]𝑑 is very small, and the corresponding sensitivity decreases

significantly.
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Figure 18.3: Current lab constraints on 1/ 𝑓𝑎 axion coupling [40–43] (from [44]) (the constraint
from [42] has been rescaled for consistent value of local DM energy density) (shown in solid
lines). The new sensitivity estimates resulting from this thesis are shown in dashed lines, i.e
from Stanford, AION-10 and MAGIS-100 atom interferometry experiments, EP classical test
from MICROSCOPE and LISA. The expected sensitivity of the AION-10-SPID-like experiment
is shown in four different colors, each using four different pairs of isotopes, denoted "AION-
10-SPID".

18.2 Axion-gluon coupling 𝑓 −1
𝑎

The current best laboratory constraints on the axion-gluon coupling are from [40–43] and are
shown in solid red in Fig. 18.3.

18.2.1 MICROSCOPE
Similarly as in the previous section, we can express the amplitude of the differential acceler-
ation between two test-masses A and B as (using Eqs. (12.5b))

|Δ®𝑎(𝑡)| =
16𝜋𝐺𝜌DM𝑣DM𝐸

2
𝑃

𝑓 2
𝑎 𝜔𝑎𝑐2

����([𝑄Pt
𝑀]𝑎 − [𝑄

Ti
𝑀]𝑎

)
𝑒𝑣 · 𝑒meas.(𝑡)

���
𝜇SCOPE

���� . (18.7)

The axionic mass charges [𝑄Pt
𝑀
]𝑎 and [𝑄Ti

𝑀
]𝑎 can be found in Table 8.3. Similarly as in the

previous section, the sensitivity to the axion-gluon coupling is then computed using Eq. (5.13)
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and the experimental parameters of Section 17.4. In Fig. 18.3, the expected sensitivity of
MICROSCOPE is shown by the orange full line. This curve presents two breaking point
frequencies. The first one 𝑓 ∼ 1 mHz corresponds to half of 𝑓spin ∼ 3 mHz. As discussed in
Appendix C, we consider two different frequency regimes, depending on whether the signal
frequency is higher or lower than 𝑓spin. In the axion case, the signal Eq. (12.5b) oscillates at
twice the axion field frequency, therefore the breaking point is 𝑓spin/2. The second breaking
point arising at 𝑓 ∼ 15 mHz corresponds to half of the bucket frequency of the acceleration
noise PSD, for the same reason as above. Note that there is no breaking point frequency
associated with the coherence time of the field because it would arise at a frequency larger
than the bandwidth of the noise PSD, at around 500 mHz. As it can be seen from this curve,
a complete re-analysis of MICROSCOPE’s data would enable to constrain a new region of the
parameter space, over approximately two orders of magnitude in mass, compared to existing
laboratory experiments.

18.2.2 Atom interferometers
For the atom interferometry experiments, we do the same procedure as in Section 18.1.2 and
we find

ΔΦStanford
87Rb,85Rb ≈

16𝜋𝐺𝜌DM𝐸
2
𝑃
𝑣DM𝑘eff

𝜔3
𝑎 𝑓

2
𝑎 𝑐

2

��� ([𝑄87Rb
𝑀 ]𝑎 − [𝑄

85Rb
𝑀 ]𝑎

)
𝑒𝑣 · 𝑒kick

���
Stanford

��� sin2(𝜔𝑎𝑇) , (18.8a)

ΔΦAION−10
87Sr ≈

32𝜋𝐺𝜌DM𝐸
2
𝑃
𝑛𝜔0

𝐴
Δ𝑟[𝑄87Sr

𝜔 ]𝑎
𝜔2
𝑎 𝑓

2
𝑎 𝑐

3
sin2(𝜔𝑎𝑇) , (18.8b)

ΔΦMAGIS−100
88Sr,87Sr ≈

16𝜋𝐺𝜌DM𝐸
2
𝑃
𝑛𝜔0𝑣DM

𝜔3
𝑎 𝑓

2
𝑎 𝑐

3

���([𝑄88Sr
𝑀 ]𝑎 − [𝑄

87Sr
𝑀 ]𝑎

)
𝑒𝑣 · 𝑒kick

���
Fermilab

��� sin2(𝜔𝑎𝑇) ,

(18.8c)

ΔΦAION−10−SPID
AB ≈

16𝜋𝐺𝜌DM𝐸
2
𝑃
𝑛𝜔0𝑣DM

𝜔3
𝑎 𝑓

2
𝑎 𝑐

3

���([𝑄𝐴
𝑀]𝑎 − [𝑄

𝐵
𝑀]𝑎

)
𝑒𝑣 · 𝑒kick

���
Oxford

��� sin2(𝜔𝑎𝑇) .

(18.8d)

In Fig. 18.3, we present the sensitivity of the Stanford Tower [25], AION-10 experiment [28],
MAGIS-100 experiment [29] and the SPID AI setup with AION-10 experimental parameters,
denoted “AION-10-SPID”.

One can notice that MICROSCOPE is approximately two to three orders of magnitude
more sensitive than Stanford. This is consistent considering that the signal is quadratic in
1/ 𝑓𝑎 , that MICROSCOPE constrains the Eötvös parameter 𝜂 three orders of magnitude better
than the Stanford experiment and that the difference in axionic mass charges of species used
in the experiments is 2 orders of magnitude larger for MICROSCOPE.

Contrary to the gradiometer setup of AION-10 which is almost insensitive to the axion-
gluon coupling (at leading order, the sensitivity is proportional to the axionic frequency
charge of the optical transition of Sr, which is 0), the SPID variation or AION-10 would have
the largest sensitivity to this coupling compared to existing laboratory experiments. Such an
experiment would improve the current lab constraint [40] by 2 orders of magnitude over a
mass range of 4 orders of magnitude (10−17 − 10−13 eV). In this mass range, the MAGIS-100
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experiment, which uses the same setup has also a very interesting sensitivity on the coupling,
which is comparable to the one of AION-10 in the SPID setup.

18.2.3 LISA
Similarly as for the dilatonic couplings, LISA will be able to probe the axion-gluon coupling
through Doppler effects Eq. (15.17b). In the same way as what we did for the dilatonic
couplings in Section 18.1.3, we will derive two sensitivity curves. The first one is computed
assuming no correlations between parameters, where the constraint on the dimensionless
coupling 𝐸𝑃/ 𝑓𝑎 is given by(

𝐸𝑃

𝑓𝑎

)2

min
( 𝑓 ) =

1.5 × (2𝜋 𝑓 )2𝑐3

8𝜋𝐺𝜌DM𝑣DM

√
𝑆𝐴,𝐸(2 𝑓 )
𝑇obs

or
(
𝐸𝑃

𝑓𝑎

)2

min
( 𝑓 ) =

(2𝜋 𝑓 )2𝑐3

8𝜋𝐺𝜌DM𝑣DM

√
𝑆𝐴,𝐸(2 𝑓 )√
𝑇obs𝜏( 𝑓 )

,

(18.9)

taking into account the fact that the signal has a different normalization amplitude (from
Eq. (15.3c)) and that it oscillates at twice the axion frequency. The second sensitivity curve
will take into account the correlations between parameters. The signal being quadratic in
1/ 𝑓𝑎 , the lack of precision on the galactic velocity induces an uncertainty

𝜎𝜀 ≡ 𝜎𝐸2
𝑃
/ 𝑓 2
𝑎
( 𝑓 ) . (18.10a)

Note that here, we choose a dimensionless random variable parameter (𝐸𝑃/ 𝑓𝑎)2, for consis-
tency with our analysis involving the dimensionless parameter 𝜀. As we are interested in the
uncertainty on 𝐸𝑃/ 𝑓𝑎 , we make the assumption that, at the frequency 𝑓 , the random variable
𝐸𝑃/ 𝑓𝑎( 𝑓 ) follows a normal distribution with zero mean3 and deviation 𝜎𝐸𝑃/ 𝑓𝑎 ( 𝑓 ) such that we
have

𝜎𝐸2
𝑃
/ 𝑓 2
𝑎
( 𝑓 ) =

√
2𝜎2

𝐸𝑃/ 𝑓𝑎 ( 𝑓 ) =
√

2𝐸2
𝑃𝜎

2
1/ 𝑓𝑎 ( 𝑓 ) (18.10b)

→ 𝜎1/ 𝑓𝑎 ( 𝑓 ) =
1

21/4

√
𝜎𝐸2

𝑃
/ 𝑓 2
𝑎
( 𝑓 )

𝐸𝑃
, (18.10c)

where we used the fact that 𝐸𝑃 is constant. To get a curve of 𝜎1/ 𝑓𝑎 ( 𝑓 ) as function of the
frequency, we perform the same iteration as with the dilatonic couplings, i.e we compute the
posterior distribution of the 𝜀min = (𝐸𝑃/ 𝑓𝑎)2min variable, where 𝜀min is computed following
(18.3).

In Fig. 18.3, we show the sensitivity of LISA to 1/ 𝑓𝑎 coupling when the DM velocity is
fixed at 𝑣DM (LISA, fixed 𝑣DM) and when the velocity is taken as a free parameter, i.e for 𝜎1/ 𝑓𝑎
as given by Eq. (18.10c) (LISA, free 𝑣DM). One can notice a slighter difference in sensitivity
between the two curves, compared to the dilaton case, and this is because the axion signal is
quadratic in the coupling while the dilaton signal is linear. At axion masses between 10−17

and 10−14 eV, LISA would be the most sensitive experiment to the axion-gluon coupling, in
particular around 10−16 eV, where the sensitivity is improved by a factor ∼ 3 compared to the
best AI experiments (MAGIS and AION-10-SPID).

3Here, we are interested in computing an upper limit on the coupling in case of no detection, therefore, we
can assume that the mean of the distribution of such coupling is 0.
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18.3 Axion-photon coupling 𝑔𝑎𝛾
In Fig. 18.4, we show in red the current best laboratory constraints on the axion-photon
coupling, from [45–80].
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Figure 18.4: Current laboratory constraints on the axion-photon coupling 𝑔𝑎𝛾 (from [44]).
The expected sensitivity of LISA through vacuum birefringence is shown in black.

18.3.1 DAMNED and optical fibers
The respective phase shift induced by the axion-photon coupling in DAMNED or the optical
fiber can be found in Eqs. (9.7) and (9.10) respectively. All the experimental parameters of
interest are described in Section 17.1. As for the other sensitivity curves, using Eq. (5.13), we
compute the corresponding sensitivity on the axion-photon coupling 𝑔𝑎𝛾 of DAMNED and
the optical fiber, which are respectively presented in red and blue in Fig. 18.5. As it can be
noticed, the smallest coupling that they can reach is 𝒪(10−1, 1) GeV−1 respectively, which is
very far away from the best existing constraints in this range (which reach ∼ 10−8 GeV−1, see
e.g. Fig. 18.4).
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Therefore, both experiments in their current form
are not competitive. For DAMNED, this is because
the signal resonances happen at modes of the cav-
ity, where 𝜔𝑎ℓ/𝑐 = 𝑛𝜋, 𝑛 ∈ N, which correspond to
GHz frequencies, while the apparatus is sensitive
to much lower frequencies, from 10 kHz to 1 MHz,
as we described in Chapter 17. One could over-
come this by modulating the signal with another
periodic signal of frequency comparable to the ax-
ion one, e.g. with a rotating waveplate. Note that
even in the case where the resonances of the cavity
would be visible, the associated sensitivity would
reach 𝑔𝑎𝛾 ∼ 10−5 GeV−1, which is still far from
the best existing constraints in this mass range (see
Fig. 18.4).
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Figure 18.5: Expected sensitivity
of DAMNED (red curve) and a 86
km long fiber (blue curve) to 𝑔𝑎𝛾.
Compared to already existing exper-
iments (see Fig. 18.4), they are not
competitive.

18.3.2 LISA
As mentioned in Chapter 16, LISA could be sensitive to vacuum birefringence induced by
the axion-photon coupling, by a slight modification of its optical benches. Here, we estimate
the sensitivity of LISA to such coupling using the signal of the Sagnac 𝛼 TDI combination
|𝑠DM( 𝑓 )| from Eq. (16.21). We first compute the signal one-sided PSD at frequency 𝑓

𝑆𝑠( 𝑓 ) =
(√

8𝜋𝐺𝜌DM𝐸𝑃𝑔𝑎𝛾

𝜋𝜈0𝑐

)2

sin4
(

3𝜋 𝑓 𝐿
𝑐

)
, (18.11)

bearing in mind that the signal is oscillating at frequency 𝑓 , such that the amplitude of the
signal power is |𝑠DM( 𝑓 )|2/2. Using the Sagnac 𝛼 noise transfer function defined in Eq. (17.24)
and Eq. (5.13), we can derive the expected sensitivity of the Sagnac combination to 𝑔𝑎𝛾. This
is what is shown in black in Fig. 18.4 with four years of data. One can notice that LISA would
improve the current laboratory constrain on 𝑔𝑎𝛾 for axion masses between ∼ 4 × 10−19 to
4 × 10−15 eV, by several orders of magnitude. In particular, between 10−17 and 10−16 eV, LISA

would reach 𝑔𝑎𝛾 ∼ 10−12 GeV−1, improving by more than 4 orders of magnitude the current
best laboratory constraint at these masses.
We now discuss quickly dichroism effects. As a reminder, in the case of LISA, the phase shift
(between the elliptical polarization and the initial linear one) induced by the axion-photon
coupling 𝑔a𝛾 depends on the travelled distance 𝐿 inside a constant magnetic field 𝐵0 as

𝜙(𝐿) = ℏ𝑐

𝜇0

𝑔2
𝑎𝛾𝐵

2
0

2𝑞2 (𝑞𝐿 − sin(𝑞𝐿)) . (18.12)

In LISA, the laser beams are operating with a wavelength 𝜆 = 1064 nm [81], which means
the photon energy is 𝐸𝛾 ≈ 1 eV. As it was discussed in Chapter 16, the axion and photon
have equal energy for the photon-axion conversion to work in a static magnetic field, i.e
𝐸𝛾 = ℏ𝑘𝛾𝑐 =

√
(𝑘𝑎𝑐)2 + (𝑚𝑎𝑐2/ℏ)2 = ℏ𝜔𝑎 . This means that if the axion field is DM, the mass

of the field is roughly equal to its Compton frequency (using Eq. (7.29b)), implying that LISA
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is essentially only sensitive to DM mass of 1 eV. In addition, the 𝑞 parameter reduces to

𝑞 = |𝑘𝑎 − 𝑘𝛾 | =
𝜔𝑎

𝑐

���𝑣DM
𝑐
− 1

��� ≈ 𝜔𝑎

𝑐
≡ 𝑚𝑎𝑐

ℏ
, (18.13)

i.e it corresponds to the wavevector of light, and we can approximate the phase shift by

𝜙(𝐿)DM ≈
ℏ𝑐

𝜇0

𝑔2
𝑎𝛾𝐵

2
0𝐿

2𝑞 ≈ 2.5 × 10−35
( 𝑔𝑎𝛾

10−10 GeV−1

)2
rad , (18.14)

since 𝑞𝐿 ≫ 1 and where we used a solar magnetic field of 𝐵0 ∼ 3.5 nT at 1 astronomical unit
[82]. For demonstration, let us relax the constraint that axion is DM, i.e we only permit the
existence of the axion-photon coupling. In that case, axion can be relativistic, which implies
that ℏ𝜔𝑎 ≫ 𝑚𝑎𝑐

2 (we are now sensitive to any axion mass much below 1 eV), and

𝑞 =

�����
√(𝜔𝑎

𝑐

)2
−

(𝑚𝑎𝑐

ℏ

)2
− 𝑘𝛾

����� ≈ (𝑚𝑎𝑐
2)2𝑘𝛾

2𝐸2
𝛾

, (18.15)

where we expanded the square root in small 𝑚𝑎𝑐
2/ℏ𝜔𝑎 . For comparison, assuming an axion

mass 𝑚𝑎𝑐
2 = 1 neV, such that 𝑞𝐿 ≪ 1, the phase shift becomes

𝜙(𝐿)DM ≈
ℏ𝑐

12𝜇0
𝑔2
𝑎𝛾𝐵

2
0𝑞𝐿

3 ≈ 3.4 × 10−22
( 𝑔𝑎𝛾

10−10 GeV−1

)2
rad . (18.16)

This phase shift does not oscillate with time, and therefore this effect will a priori not be
visible by LISA.

18.4 Dark photon-photon coupling 𝜒

18.4.1 Rydberg atoms in microwave cavity
The sensitivity of the experiment involving Rydberg atoms inside a microwave cavity for the
detection of the kinetic mixing coupling 𝜒, obtained considering all experimental parameters
described in Table 17.1 and respectively with { 𝑓𝑠 = 1 kHz, 𝑃RIN = 10−15} and { 𝑓𝑠 = 100 Hz,
𝑃RIN = 10−13} is presented by the blue and orange curves of Fig. 18.6. One can clearly see the
sensitivity peaks arising from the cavity’s odd resonances. At these frequencies, the applied
field amplitude 𝑋𝐴 takes the smallest value (see Eq. (17.13)), as shown in Eq. (17.11b), in
order to minimize Eq. (17.6). Eq. (17.11b) works well for frequencies far from odd resonances.
However, on those odd resonances, this approximate equation cannot be used as discussed
previously. Instead one should use the exact expressions of signal and noise to optimize
Eqs. (17.9). As an example, when the applied field frequency corresponds exactly to the first
odd resonance of the cavity, i.e 𝜔𝐴𝐿 = 𝜋𝑐 and 𝜔𝑈 = 𝜔𝐴+𝜋 𝑓𝑠 the optimum amplitude of𝑋𝐴 is
∼ 18 V/m, whose corresponding experimental sensitivity is 𝜒 ∼ 10−13 in the modest scenario,
as shown in Fig. 18.6. Additionally, one can notice the presence of specific frequencies where
this sensitivity decreases significantly, the experiment is almost insensitive to these DM
frequencies. As discussed in the previous chapter, from the approximate expression of the
signal contribution Eq. (17.10b), we have 𝑆(𝜔𝑈 , 𝑋𝐴) ≃ 0 for 𝜔𝑈𝐿

𝑐 = 4𝜋+2𝜋𝑛, 𝑛 ∈ N accounting
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Figure 18.6: Dark photons-photons kinetic mixing coupling 𝜒 parameter space, with cos-
mological constraints from CMB (from [44, 83]). The expected sensitivity of the experiment
involving Rydberg atoms in a microwave cavity, with "optimistic" parameters of the system
described in Table 17.1 is shown in blue, denoted "RYDBERG (optimistic)", while the sensi-
tivity with the "modest" parameters of Table 17.1 is shown in orange, denoted "RYDBERG
(modest)" (see text). In green is the original constraint on the kinetic mixing parameter
from the SHUKET experiment obtained in [6]. In red is shown the updated constraint us-
ing the same experimental parameters and data but considering a realistic modeling of the
experiment in the analysis, following Eq. (18.28). The sensitivity curve with optimized ex-
perimental parameters is shown in dashed orange.

for the loss of sensitivity. In both scenarii presented here (modest and optimistic), one can
see from Fig. 18.6 that the experiment setup proposed here would improve the current
constraint on the coupling 𝜒 compared to cosmological and astrophysical observations (light
grey curve, from CMB [84]).

If one decides to run this experiment aiming at unconstrained regions of the exclusion
plot, it would take approximately five days of data-taking to cover the mass range from 7
𝜇eV to 10 𝜇eV, while around 35 days would be needed to cover the mass range from 35 𝜇eV to
60 𝜇eV, assuming no dead time between the 𝑇obs = 60 s observation runs. More realistically,
reserving say 50% of the total experimental time for manipulation of the atoms and applied
field, the total duration increases by a factor two, which is still very reasonable.

With the appropriate set of parameters, in particular the applied field amplitude 𝑋𝐴 fol-
lowing Eq. (17.11b), both sources of noise, systematic and statistical, are equal in amplitude.
This means that, in the search for high sensitivity of the experiment, the optimum choice of
𝑋𝐴 is not to increase it as much as possible to maximise the signal. Even though the signal
is linear in 𝑋𝐴, the systematic uncertainty is quadratic in 𝑋𝐴, as stated at the end of Section
17.2.2, implying a loss of sensitivity if the experimenter decides to apply too much power
inside the cavity.

If the level of intensity fluctuations (RIN) of the applied field could be reduced e.g. by
stabilizing the power using low noise intensity measurements [85], the applied field and/or
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the quality factor of the cavity could be increased leading to an increase of the signal whilst
keeping the contribution from the RIN below that of the measurement noise in Eq. (17.9).
This way, the optimistic curve presented in Fig. 18.6 would be achievable.

18.4.2 SHUKET
In the previous chapter, we have shown that one can use the results of Chapter 11 for the
SHUKET experiment, in order to infer an updated sensitivity curve. This is what we do
in this section. We remind that the idea here is to model more accurately the experiment,
taking into account diffraction and mode-matching effects.

Propagation of the field from the fictional plane to the antenna

The electric field induced by the dish at the location of the antenna is provided by Eq. (11.15),
which is not solvable analytically. In order to simplify it and get an analytical expression, we
will make different approximations:

• The distance between the fictional plane and the antenna needs to be much larger than
the typical size of the dish, i.e. |Δ𝑧 | ≫ 𝜌′ ≤ 𝑟 (For SHUKET, |Δ𝑧 | = 𝑅 − 𝑎 ∼ 𝑅 = 32 m,
while 𝑟 ∼ 0.618 m).

• The distance between the fictional plane and the antenna needs to be much larger than
the typical size of the antenna, i.e. |Δ𝑧 | ≫ 𝜌 (For SHUKET, the largest dimension of
the antenna is 𝐴 = 0.25 m≪ 𝑅).

• The last approximation is known as the far field approximation (FFA). For the DM
Compton frequency under consideration, i.e 𝑓𝑈 = 6 GHz, 𝑘𝐿 ∼ 𝑘 |Δ𝑧 | ≫ 1 and we can
safely neglect the factor −1 in Eq. (11.15).

The first two approximations simplify the distance 𝐿 between any point on the fictional
plane (𝜌′, 𝜙′, 𝑅 − 𝑎) and any point on the antenna (whose center is located at the origin of
our coordinate system) (𝜌, 𝜙, 0) to

𝐿 ≈ |Δ𝑧 | +
𝜌2 + 𝜌′2 − 2𝜌𝜌′ cos(𝜙 − 𝜙′)

2|Δ𝑧 | . (18.17)

Using this expression of 𝐿 as well as the FFA, we can express Eq. (11.15) as

®𝑈SHUKET
dish (𝜌,Δ𝑧) ≈

𝜔2
𝑈
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©«
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0

ª®¬
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0
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′,Δ𝑧)𝐽0

(
𝑘𝜌𝜌′

|Δ𝑧 |

)
, (18.18a)

where 𝐽0 is the Bessel function of the first kind of order 0 and where the integral is performed
over the radius of the fictional plane which closes the dish, where the dependence on the
angle 𝜙 disappeared by spherical symmetry and with

𝜑(𝜌′,Δ𝑧) =
𝑘𝜌′2

2

(
1
𝑅
+ 1
Δ𝑧

)
(18.18b)

Φ(𝜌,Δ𝑧) = 𝑘

(
𝑟2

2𝑅 − Δ𝑧 −
𝜌2

2Δ𝑧

)
. (18.18c)
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One can find an analytical solution for the last integral in the case where 𝑧ant = 0. We expand
the exponential inside the integral of Eq. (18.18a), since the argument is much smaller than
1. Indeed, for the parameters of SHUKET, we have Δ𝑧 = −𝑅 + 𝑎 (i.e 𝑧ant = 0) and

𝑘𝜌′2

2

(
1
𝑅
+ 1
Δ𝑧

)
≈ 𝑘𝜌

′2𝑎

2𝑅2 <
𝑘𝑟2𝑎

2𝑅2 = 1.4 × 10−4 (18.19)

Then, the integrand of Eq. (18.18a) becomes

𝜌′(1 − 𝑖𝜖𝜌′2)𝐽0
(
𝑘𝜌𝜌′

|Δ𝑧 |

)
(18.20)

at first order in the small parameter 𝜖𝜌′2, where 𝜖 = 𝑘𝑎/2𝑅2. Then, the integral is analytically
calculable and the electric field reads

®𝑈SHUKET
dish (𝜌,Δ𝑧) ≈ 𝑟𝜔𝑈𝜒

𝜌
©«
𝑌𝑥
𝑌𝑦
0

ª®¬ 𝑒 𝑖Φ(𝜌)
(
𝐽1 (𝑥) − 𝑖

𝑎𝑟Δ𝑧

2𝜌𝑅2 (2𝐽2 (𝑥) − 𝑥𝐽3 (𝑥))
)
, (18.21a)

where 𝑥 = 𝑟𝑘𝜌/|Δ𝑧 |. One can verify easily that, with the set of parameters considered, the
second term in Eq. (18.21a) containing the Bessel functions of order 2 and 3 is smaller by a
factor ∼ 106 compared to the other term ∝ the Bessel function of order 1. Therefore, we can
simplify the expression of the field as

®𝑈SHUKET
dish (𝜌,Δ𝑧) ≈ 𝑟𝜔𝑈𝜒

𝜌
𝑒 𝑖Φ(𝜌)

©«
𝑌𝑥
𝑌𝑦
0

ª®¬ 𝐽1
(
𝑟𝑘𝜌

|Δ𝑧 |

)
, (18.21b)

with 𝐽1 the Bessel function of the first kind of order 1.
At the center of the curvature radius of the dish is located a polarized horn-antenna of

physical surface 𝑆phys = 0.25×0.142 m2. Numerical integration of the power from the electric
field from Eq. (18.21b) over the physical antenna surface leads to

𝑃int =

∫
𝑑𝑆phys

𝜖0 |𝑈SHUKET
dish (

√
𝑥2 + 𝑦2)|2𝑐

2 ≈ 2.85 × 10−22
( 𝜒

10−12

)2
W , (18.22)

where we assumed an emission from a plane surface in the random polarization scenario, as
in Eq. (17.15). The ratio of the power emitted by the dish that crosses physically the antenna
and the total power emitted by the dish in the SHUKET experiment (Eq. (17.15)) is

𝑄 =
𝑃int

𝑃SHUKET
dish

≈ 2.85 × 10−22

1.73 × 10−20 ≈ 1.6 % . (18.23)

Note that, in the geometrical optics approximation, i.e where diffraction effects are neglected,
one would obtain 𝑄 = 100 %. It is interesting to note that the ratio of the physical antenna’s
surface to the dish’s surface is ∼ 3%, meaning that there is actually no focus of the field
generated by the dish on the antenna.

This result means that, considering simply the propagation of the field from the dish to the
antenna using Kirchhoff integral, the majority of the electromagnetic power is lost through
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diffraction, and the antenna is only able to detect a small amount of energy emitted by the
dish. One can note that the usual criteria for diffraction effects to be negligible 𝑑dish = 2𝑟 ≫ 𝜆
is not fulfilled in this system, as the proportionality factor between the two parameters is ∼
25, which explains this lack of focus.

As a cross-check of our calculations, integrating Eq. (18.22) over the infinite antenna plane
gives

𝑃int,full ≈ 1.73 × 10−20
( 𝜒

10−12

)2
W, (18.24)

which corresponds to the full power emitted 𝑃SHUKET
dish from Eq. (17.15). This provides some

confidence in our set of approximations, made throughout the derivation.

Detection of the field using a horn antenna

In the previous section, we showed that most of the power emitted by the dish is already
lost through propagation of the field from the dish to the antenna. As described in Sec. 11.3,
there is still a second step to consider before predicting the exact amount of energy generated
by the antenna: overlap integral between incident and antenna modes.

Computation using the modes overlap As mentioned in Sec. 11.3, to predict the energy
generated by the horn antenna, i.e the overlap of modes, we need to consider the effective
surface of the antenna 𝑆eff at the frequency we are interested in ( 𝑓𝑈 = 6 GHz). Furthermore,
we also need to find an analytical expression for the mode of the field emitted by the dish
®𝑀dish(𝑥, 𝑦), such that it is possible to perform the mode overlap integral Eq. (11.24).

To be able to compute the integral overlap of modes, we need an analytic expression of
the field at coordinate (𝜌, 𝑧), which is provided by Eq. (18.21b). Then, from Eqs. (11.22a)
and (18.21b), we can separate the mode of the dish ®𝑀dish from the constant amplitude 𝑉dish
expressed in Eq. (11.23), such that the mode of the dish at coordinates (𝑥, 𝑦, 0) is

®𝑀dish(𝑥, 𝑦) =
√

3
2𝜋

1

𝜌
���®𝑌��� 𝐽1

(
𝑟𝑘𝜌

𝑅 − 𝑎

) ©«
𝑌𝑥
𝑌𝑦
0

ª®¬ , (18.25)

with 𝜌 =
√
𝑥2 + 𝑦2. Then, using Eqs. (11.17a), (11.25) and (18.25) and assuming the polar-

ization of the DP to be randomly distributed, the ratio of receiving to emitted powers is
simply

𝛾Overlap =

(∫
𝑑𝑆eff ®𝑀ant · ®𝑀dish

)2
≈ 5.8 × 10−4𝑒𝑟 , (18.26)

with 𝑚𝑇𝐸10 ≈ 25.6 m−1 has been estimated from Eqs. (11.17b) and (11.18) using the antenna
gain 𝐺( 𝑓𝑈) = 11.86 dBi at 𝑓𝑈 = 6 GHz provided in the antenna datasheet and which has
been measured experimentally by the manufacturer. For this numerical value of ratio, we
assumed an axial detection, with 𝑌𝑥 = 𝑌𝑦 in Eq. (18.25). Assuming 𝑒𝑟 = 1, i.e no loss inside
the antenna, this result means that only 0.06% of the emitted power is actually transmitted
to the antenna wires, and therefore detectable.
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Computation using the antenna factor As explained in Sec. 11.3.2, if the electric field
emitted by the dish is seen as a plane wave by the antenna or equivalently if the mode of this
electric field is approximately constant over the effective surface of the antenna, we can use
another method to derive the output of the experiment.

From Eq. (18.25), it can be shown that the dish polarization mode is approximately
constant over the effective long length of the antenna (∼ 7 cm) (with a deviation of ∼ 0.3%),
with a value of 𝑀𝑦

dish(𝑥, 𝑦 = 0) ≈ 0.48 m−1.
For a Horn antenna with internal 𝑅0 = 50 Ω resistance (which is typically the case for the

Schwarzbeck BBHA-9120-D antenna), the antenna factor at frequency 𝑓𝑈 is given by [86]

AF( 𝑓𝑈) =
9.73 𝑓𝑈

𝑐
√
𝐺( 𝑓𝑈)

= 49.7 m−1 , (18.27)

which is consistent with the value given in the antenna datasheet [20]4 Then, using Eq. (11.28),
one can compute the ratio of received to emitted powers as

𝛾AF ≈ 3.6 × 10−4 . (18.28)

Considering that 𝑒𝑟 = 1, Eqs. (18.26) and (18.28) disagree by a factor of approximately 1.5.
This means that our assumption of no loss inside the antenna is most likely wrong, and we
can artificially consider 𝑒𝑟 ∼ 0.62 such that both methods coincide. Therefore, the second
result, obtained using the antenna factor, Eq. (11.28) is probably more realistic, as the different
parameters have been experimentally measured.

Combining the results from Section 17.3, we can now reevaluate the constraints on 𝜒
obtained in the SHUKET experiment [6]. In Fig. 18.6, we show how both effects (diffraction
and mode overlap) affect the sensitivity of the SHUKET experiment. In green, denoted
"SHUKET (original)" is the original sensitivity curve presented in [6]. Since the power
received by the antenna wires is quadratic in 𝜒 coupling, the ratio Eq. (18.28) leads to a loss
in 𝜒 of an approximate factor 53. Making the assumption that this loss factor is roughly
the same over all DM frequencies to which SHUKET is sensitive, this leads to an updated
sensitivity curve, shown in red in Fig. 18.6, denoted "SHUKET (updated)".

18.4.3 Optimized run of SHUKET
Following the full derivation described above, it is possible to find some optimized ex-
perimental configuration such that the power received by the antenna is maximized. The
experimental parameters that can easily be modified are the emitter-detector distance 𝐿 and
the optimized DM frequency 𝑓𝑈 to search for with this setup5.

The frequency of the background DM field has several impacts on the power received by
the antenna. First, following Eq. (11.15), the electric field amplitude received at coordinates
(𝜌,Δ𝑧) (obtained using the Kirchhoff integral) depends highly on the frequency of the field.
It can be shown numerically from Eq. (18.18a) that the focusing of the electric field improves
with the DM frequency, which is a consequence of diffraction effects that become non negli-
gible for low frequency, i.e. when 𝑓𝑈𝑑dish/𝑐 = 2 𝑓𝑈 𝑟/𝑐 /≫1. In particular, as already discussed
in Chapter 11, for the size of dish and the frequency bandwidth of the horn antenna used in

4Since AF(dB)=20 log10(AF) [87].
5This requires an antenna appropriate for this frequency.
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SHUKET, diffraction effects are always non negligible (i.e. 𝑓𝑈𝑑dish/𝑐 /≫ 1). As a consequence,
the optimal location for the horn antenna is not the center of curvature of the dish and this
location becomes frequency dependent. In addition, the antenna factor (or equivalently the
antenna gain) is also highly dependent on the frequency of the measured electric field. As
it was shown in the previous section, the overlap integral of polarization modes contribute
almost equally to the total power loss than the one from the propagation of the field. There-
fore, the optimal distance 𝐿 between the dish emitter and the horn antenna detector where
the maximum field power is transmitted is non trivial and depends on the frequency.

The goal of this section is to explore the parameter space to find the optimal frequency 𝑓

and distance 𝐿 such that the efficiency coefficient 𝛾AF from Eq. (11.28) is maximized. To do
so, we use Eq. (18.18a) with unknown parameter Δ𝑧 6 and Eq. (11.23) to find the mode of the
field emitted by the dish.

We first consider only the value of the mode
at 𝜌 = 0, and then we show that for the op-
timized parameters, the mode is indeed con-
stant over the effective size of the antenna,
such that the method can be used. Addition-
ally, we interpolated the antenna datasheet
[20] to infer the value of the antenna factor
as function of the frequency AF( 𝑓 ). Then,
Eq. (11.28) is used to estimate numerically the
efficiency coefficient

𝛾( 𝑓 ,Δ𝑧)AF =
𝑍0𝑀

2
dish(𝜌 = 0,Δ𝑧, 𝑓 )
2𝑅0AF( 𝑓 )2 . (18.29)

The behavior of this efficiency coefficient as
a function of the DP frequency and of the
distance between the dish and the receiver is
shown in Fig. 18.7. One can notice the in-
crease of 𝛾 for small frequencies and short
distances, which is mainly driven by the be-
havior of the antenna factor. Indeed, even
though the loss through diffraction effects is
larger at lower frequencies, the 𝛾 parameter
also takes into account the mode matching of
the antenna, which is larger at those frequen-
cies.
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Figure 18.7: Efficiency coefficient 𝛾( 𝑓 ,Δ𝑧)AF
as function of the frequency 𝑓 and Δ𝑧, in
the frequency range 𝑓 ∈ [6, 18] GHz, of the
horn antenna [20] and for distances |Δ𝑧 | ≫ 𝑟.
The efficiency coefficient increases for low fre-
quencies and short distances and presents a
local maximum around ( 𝑓 ∼ 16.5 GHz,Δ𝑧 ∼
−15 m).

The expected output signal from the SHUKET experiment using the optimized experi-
mental parameters can be computed using the same procedure and approximations as the
ones presented in Sec. 18.4.2 at the exception of one approximation that is no longer valid.
Indeed, Eq. (18.21b) is obtained by assuming that Δ𝑧 ∼ 𝑅 = 32 m, which is no longer the
case for the optimized distances, as it is shown in Fig. 18.7. We now derive an analytic
expression of the electric field emitted by the dish in the case of such optimized distances.

6Note that in order to use this equation, we must restrict ourselves to dish-horn distance |Δ𝑧 | ≫ 𝑟.
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We will concentrate on one particular optimized frequency 𝑓𝑂 . We consider the optimized
parameters for DM frequency 𝑓𝑂 = 16.5 GHz and dish-antenna distance Δ𝑧𝑂 ≈ −14.8 m, the
exponent in the integrand of Eq. (18.18a) can be comparable to 1, therefore the same Taylor
expansion as previously is not possible. Instead, we expand the Bessel function as

𝐽0 (𝑥) =
∞∑
𝑚=0

(−1)𝑚𝑥2𝑚

𝑚!4𝑚Γ(𝑚 + 1) (18.30)

In our case, 𝑥 = |𝑘𝑂𝜌𝜌′/Δ𝑧𝑂 |, 𝑘𝑂 = 2𝜋 𝑓𝑂/𝑐. The maximum value of 𝜌 depends on the
effective size of the antenna at frequency 𝜔𝑂 = 2𝜋 𝑓𝑂 following Eq. (11.18). From the antenna
gain 𝐺(𝜔𝑂) = 16.87 dBi, the maximum value of 𝑥 is 𝑥max ≈ 0.30. In the range [0, 𝑥max], one
can easily show that the relative error on 𝐽0 by only taking the first two terms of the sum
Eq. (18.30) is very small∼ 10−4, which indicates that these two terms are sufficient to describe
the Bessel function in our system. Therefore, the integrand of Eq. (18.18a) becomes

𝜌′𝑒−𝑖𝜑(𝜌
′,Δ𝑧𝑂)

(
1 −

(
𝑘𝑂𝜌𝜌′

2Δ𝑧𝑂

)2
)
, (18.31a)

since
1∑

𝑚=0

(−1)𝑚𝑥2𝑚

𝑚!4𝑚Γ(𝑚 + 1) = 1 − 𝑥
2

4 . (18.31b)

Then, the analytic integration is doable and gives

®𝑈Opti
dish (𝜔𝑂 ,Δ𝑧𝑂) =
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𝑌𝑦
0

ª®¬
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(𝑘𝑂𝜌2𝑅 − 2𝑖Δ𝑧𝑂(𝑅 + Δ𝑧𝑂))−

𝑖𝑟2𝑘2
𝑂
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2

(
1 + 𝑅

Δ𝑧𝑂

))
, (18.32)

withΦ′ = 𝑘𝑂𝑟
2(𝑅+Δ𝑧𝑂)/2𝑅Δ𝑧𝑂 . Note that from this expression, by settingΔ𝑧𝑂 = −𝑅+𝑎, we

recover the first order expression of the field Eq. (18.21b), as expected. From this expression,
one can show that the mode associated to this electric field is roughly constant over the
effective size of the antenna (∼ 1% variation), therefore both methods presented in the
Sec. 11.3 can work to compute the relative power received by the antenna. We find

𝛾Ov. ≈ 5.1 × 10−3 (18.33a)
𝛾AF ≈ 3.2 × 10−3 . (18.33b)

Notice that in the same way as for SHUKET parameters, the two results differ by an approx-
imate factor 1.5 difference, as expected. Comparing both values with the ones presented in
Sec. 18.4.2, one finds an approximate factor 9 improvement in power received. Note that this
order of magnitude agrees with the one reached at the local maximum in Fig. 18.7. The effi-
ciency coefficient obtained for this optimized experimental setup is one order of magnitude
larger than the one obtained using the initial set of parameters, Eq. (18.28). Compared to
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the original 53 loss factor in 𝜒, this optimization leads to a loss of ∼ 17 on the coupling 𝜒
compared to the initial approximation of 𝑃rec = 𝑃dish.

We use the same procedure to obtain a curve of efficiency coefficient as function of
the frequency, where, for each frequency 𝑓 , we always assume the optimized dish-horn
distance Δ𝑧𝑂 such that 𝛾( 𝑓 ,Δ𝑧𝑂) is maximized. Then, we apply this frequency-dependent
efficiency coefficient to the original constrain on the mixing parameter 𝜒 set by SHUKET

[6], in order to obtain an estimate of the sensitivity of a new SHUKET-like experiment using
these optimized frequencies and distances. However, as can be seen in [6], the SHUKET

constraint on 𝜒 depends on the frequency, even though the assumed signal is frequency
independent. As explained in [6], this is due to the frequency dependent gain of the power
amplifier connecting the horn antenna to the spectrum analyzer. Since we can assume that
a new run of SHUKET would operate another amplifier with higher gain, we will consider
the highest constraint of the original experiment as a basis for our new estimate.

Such projection is shown by the magenta hashed curve in Fig. 18.6. One can notice that
over the 15.5 − 17.3 GHz DM frequency range, this new run with optimized parameters
would improve the current constraint on the kinetic mixing parameter 𝜒, compared to CMB,
shown in light grey.

18.4.4 New experimental run of SHUKET
Motivated by the optimization procedure presented in the previous section, a new run of the
experiment was performed at IRFU, CEA Saclay, with the same dish and horn antennas used
for the original measurement campaign [6]. In order to ease the data taking, it was decided
that the dish-horn distance would not be modified for each frequency, but would stay fixed.
In addition, the signal searched for is contained in the frequency range 𝑓 ∈ [8; 18] GHz,
which corresponds to the high frequency band of sensitivity of the horn antenna. Then, one
needs to find the optimized single distance Δ𝑧𝑂 such that for all frequencies 𝑓 ∈ [8; 18]GHz,∑

𝑓

𝛾( 𝑓 ,Δ𝑧𝑂) , (18.34)

is maximized. Numerically, we find Δ𝑧𝑂 ∼ 12.5 m. Keeping the distance fixed decreases a
little the maximum potential sensitivity of the experiment, but keeping in mind that the final
constraint on 𝜒 is∝

√
𝛾( 𝑓 ,Δ𝑧), this loss of sensitivity is marginal. However, this eases greatly

the experimental process, as the antenna should not be re calibrated at each measurement.
The full data acquisition covers 8−18 GHz frequency band, and is done following [83]. In

short, the setup is said to be "axial", i.e it is only sensitive to one polarization direction, which
corresponds to the antenna mode direction ®𝑀ant, which in practice is pointing towards the
Zenith. In order to maximize the signal in case of fixed polarization scenario7, it is found that

7In the random polarization scenario, the field has a random polarization at each coherence time, such that
for experiment lasting much longer, the average is simply 𝛽random = ⟨cos2(𝜃)⟩ over a sphere, where 𝜃 is the
angle between the polarization direction and the axis of measurement, as it was computed in e.g. Eq. (17.15)
from Eq. (11.2), with 𝛽random = 2/3. In the fixed polarization scenario, the polarization direction is unknown
but stays fixed at all times. In this case, it is the daily modulation of the signal due to Earth rotation that can
help increasing the signal. Indeed, for a very short experimental time, the experiment probes only one specific
direction and a conservative estimate yields 𝛽fixed ≪ 1 for most experimental setups [83]. However, if the
experimental time increases significantly (𝒪(1 day)), the experiment effectively averages over many different
polarizations and therefore 𝛽fixed → 𝛽random [83].
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the optimized data-taking for such experiment is to make 3 individual measurements and
wait for a third of a sidereal day between each measurement [83]. In practice, each acquisition
lasts for 𝑇 = 200s, and corresponds to a frequency window of 10 MHz. Then, the three
acquisitions are summed to be able to average over the polarization. Since the total frequency
interval is 10 GHz (from 8 to 18 GHz), the total acquisition time is 600 × 1000 = 6 × 105s.

Next, the background noise in the data is estimated using a Savitzky-Golay filter with a 1
MHz bandwidth (which is much larger than the expected width of the signal ∼ 10 kHz, from
Eq. (5.10b) and using the fact that we are looking at DP frequencies around tens of GHz.).
In short, this filter smooths out the data by using moving averages [88]. The ratio of the
original data (potential signal + background noise) with the noise, given by the filter, follows
a Gaussian distribution centered around 1. Then, each individual Fourier peak which is
above 5𝜎 in this distribution is identified and analyzed individually to see if it looks like
a DM signal. A preliminary analysis was done, where the DM signal is modelled with a
Gaussian distribution with a fixed width which is ∼ 106 smaller than the Fourier frequency
of the peak (still following Eq. (5.10b)), but with variable amplitude and offset. No DM signal
is found in the data, and therefore, the uncertainty on the amplitude is converted into an
upper limit on the power received from the hypothetical DP. Then, using Eqs. (17.15) and
(18.29), this is converted to an upper limit on the kinetic mixing coupling 𝜒. The preliminary
constraint on 𝜒 from this new run is shown in Fig. 18.8. The sensitivity estimate around 16
GHz corresponds quite accurately to the theoretical prediction shown in magenta in Fig. 18.6.
Over a large frequency band (∼ 10 − 18 GHz), this preliminary curve reaches unconstrained
regions of the parameter space, compared to CMB, see Fig. 18.6. One can notice some
modulation of the sensitivity in Fig. 18.8, which comes from the value of the gain amplifier
which depends on the frequency.

8 10 12 14 16 18
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Figure 18.8: Preliminary constraint (95% confidence level) of a second run of SHUKET to the
kinetic mixing coupling 𝜒.
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18.5 Discussion
In this chapter, we have derived the expected sensitivities of various experiments, both
already existing and futuristic, to various ULDM couplings to Standard Model fields. In par-
ticular, following this theoretical work, a new experimental run of SHUKET was performed,
with preliminary competitive results. We have shown that despite the existing strong con-
straints on those couplings, many experiments that will be conducted in the next few years
will be able to reach unconstrained regions of the parameter space, and therefore have a
chance to detect a positive signal, which will, without any doubt, be a major discovery.
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General relativity and the Standard Model of particle physics are regarded today as the
most successful theories in modern physics. Despite their incredible success, their inherent
formalism differences make their unification into a single theory, the theory of everything,
currently impossible. Many believe that these theories are therefore incomplete, and theorists
around the world are determined to find a quantum theory of gravity. This would certainly
provide answers to unresolved mysteries arising in both theories, such as the existence (or
not) of dark matter and its nature. Indeed, while dark matter was first revealed almost a
hundred years ago, its true microscopic nature is still unknown, making it one of the biggest
puzzles in modern physics. However, one must remember that it could still be an artifact of
an incomplete theory of gravitation.

Among many other candidates, ultralight fields present an undeniably elegant solution
to the dark matter problem. As discussed in Chapter 8, they induce various effects on mat-
ter, such as variation of constants of Nature, modification of classical Maxwell’s equations,
appearance of equivalence-principle violating accelerations, or production of electromag-
netic fields. This kind of phenomenology can be probed accurately with quantum precision
technologies, which, over the past ∼ thirty years, have reached unprecedented progress in
the control of matter and light. These quantum sensors include, for example, atomic clocks,
electromagnetic cavities, atom interferometers, and optical interferometers. We have seen in
different parts of this thesis how each of these probes can be used to detect ultralight dark
matter fields.

SYRTE, as one of the world’s leading laboratories in time metrology, possesses some of
the most accurate atomic clocks and atom interferometers (see e.g. [1–4]), and is therefore
greatly involved in ultralight dark matter searches [5, 6]. SYRTE also has significant expertise
in data analysis of dark matter and gravitational wave laboratory experiments. It is in this
environment that this thesis took place, making possible the investigation of many different
experiments for the search of ultralight dark matter.

In terms of phenomenology, the main focus of this thesis is on 1) the violation of the
equivalence principle induced by couplings between a (pseudo-)scalar dark matter field,
the dilaton and the axion, and various Standard Model sectors [7], 2) the modification of
Maxwell’s equations via the introduction of a pseudo-scalar field, the axion, coupled to
electromagnetism, and 3) the production of an electromagnetic field in vacuum from the
coupling of a vector dark matter candidate, the dark photon, to electromagnetism [8, 9].

The first phenomenological aspect is related to the spacetime variation of constants of
Nature, such as the fine structure constant or the electron mass, which, as a consequence,
induces an oscillation of intrinsic properties of bodies, such as their rest mass, and the transi-
tion frequency of atoms. The amplitude of such oscillations being atomic species-dependent,
two bodies of distinct composition would accelerate at different rates, leading to a violation
of the weak equivalence principle. We extensively studied how MICROSCOPE, as a classical
test of the equivalence principle, and atom interferometers, as its quantum equivalent, can
probe dark matter fields [7]. We found that MICROSCOPE could reach unprecedented sen-
sitivity to axion-gluon coupling compared to already existing laboratory experiments, which
warrants a corresponding detailed analysis of MICROSCOPE data to search for a potential
signal. Additionally, we showed that diverse atom interferometric setups, despite being
similar in terms of noise levels, have contrasting sensitivities to dark matter fields. In partic-
ular, we showed that dual-isotope interferometers, where both interferometers are spatially
overlapped, have much more potential than gradiometers, where the two interferometers
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are stacked at different altitudes. Even though it is natural to consider experiments involving
different atomic species to detect oscillations that are species-dependent, experiments using
a single species can still be competitive due to the finite speed of light. This is the case with
large space-based gravitational wave detectors, such as LISA. Indeed, the movement of test
masses caused by dark matter would generate Doppler shifts on light signals exchanged be-
tween the spacecrafts. We investigated the possibility of the degeneracy between this signal
and a monochromatic signal from a galactic binary, and if it is realistic to expect making the
distinction between the two, using a Bayesian approach and a full year of realistic orbits of
the spacecraft. We found that the detector will be able to distinguish signals from scalar dark
matter and monochromatic gravitational waves. Moreover, due to the non-relativistic nature
of the dark matter field, the detector cannot probe accurately its propagation velocity. As a
result, by allowing this velocity to be a free parameter in the Bayesian model, the sensitivity
of the experiment to dark matter couplings decreases due to correlations.

The second phenomenological aspect of interest in this thesis is vacuum birefringence
induced by the coupling between axions and photons. Considering an electromagnetic
plane wave, the axion field couples to the magnetic polarization of light and, by its inherent
oscillation, causes the light polarization to oscillate as well. If the light polarization is further
decomposed into the two circular polarization states, one finds that the two states have
different phase velocities, i.e., vacuum becomes birefringent. Considering an electromagnetic
cavity in which circularly polarized light is sent in, we showed that this change in phase
velocity of light is, mathematically speaking, equivalent to a change in the cavity’s length,
leading to a phase shift of light at the output of the cavity. We derived the sensitivity of an
optical cavity and a tens-of-kilometer-long fiber link to such an effect, and we showed it is
not competitive with current bounds. We then turned to LISA again. The current version of
LISA’s optical benches operates with linearly polarized light only. We showed that a slight
modification of these benches would 1) produce circularly polarized light and 2) be permitted
in the setup for the search of gravitational waves. We showed that such a modification would
make LISA the most sensitive laboratory experiment to the axion-photon coupling at low
masses, by five orders of magnitude.

Finally, we concentrated on laboratory probes of a small electromagnetic field induced
by the kinetic mixing coupling between dark photons, a vector dark matter candidate, and
photons. This electric field oscillates at the Compton frequency of the DM field, and we have
been interested in experiments probing the GHz frequency region. We first proposed an
innovative way of detecting this electric field by using Rydberg atoms inside a microwave
cavity. In short, the idea of the experiment is 1) to use the cavity as a resonator for this small
electric field; 2) to inject a strong electromagnetic field inside the cavity at a close frequency
from the DM Compton one, in order to produce a slowly oscillating beatnote between the two
fields; 3) to use Rydberg atoms to measure this slow component by the quadratic Stark effect
it produces on them. The innovative concept of this experiment is twofold: first, the signal
in our scheme is only linear in the small kinetic mixing coupling, while most experiments
aim at detecting the field power, which is quadratic in the coupling; second, instead of using
antennas for the measurement of the signal, we proposed to use atoms. We showed that such
an experiment would reach competitive constraints on the kinetic mixing coupling compared
to already existing experiments [8]. We also studied another kind of experiment to detect
this electric field, which involves a dish antenna, which reflects the small electric field and
focuses it onto a horn antenna located at the curvature center of the dish [10, 11]. On one
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hand, we investigated the effects of diffraction in this type of experiment from an analytical
standpoint, making use of the Kirchhoff integral theorem in the low-curvature dish limit.
On the other hand, we estimated the impact of mode-matching inside the horn antenna. We
showed that the expected signal intensity can be significantly reduced compared to usual
estimates. Our method was applied to the re-interpretation of the SHUKET experiment
data, the results of which were shown to be degraded by a factor of approximately fifty
due to both diffraction and mode-matching [9]. This analytical method allowed optimizing
some experimental parameters to gain sensitivity in future runs. In particular, following this
theoretical modeling, a second run of SHUKET was recently performed, with a competitive
constraint on the kinetic mixing coupling.

This thesis combines several studies that can be useful to the dark matter search com-
munity in the near future: proposals of innovative experimental schemes (Chapter 10),
improved modeling of already existing and future experiments (Chapters 11, 13, and 15),
and demonstration of the potential of existing and future experiments to probe unpredicted
couplings (Chapters 12 and 16). It focuses on the theoretical modeling of such experiments
and their corresponding sensitivity estimates, but not on the analysis of data produced by
such experiments. As a simplifying assumption, the ultralight dark matter fields are consid-
ered monochromatic, while in reality, they have a finite coherence time. In situations where
the time of observation of the experiment falls below this coherence time, they should be
modeled as a stochastic superposition of plane waves oscillating at slightly different frequen-
cies. We believe that this should not significantly change the various sensitivity estimates
made in this thesis, but as soon as data analysis is concerned, one should take this stochastic
effect into account.

The outlooks opened by this thesis are large and extend from the re-analysis of existing
data (such as MICROSCOPE or SHUKET), the proposal of new experiments to search for
ultralight dark matter, and the development of international and futuristic projects (AION-10,
MAGIS-100 and LISA) that will search for ultralight dark matter.
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Appendix A

Electric fields inside a cavity

A.1 Phase shift induced by vacuum birefringence
In this section, we explicitly derive Eq. (9.7), the phase of light measured at the output of
a cavity, in the framework of vacuum birefringence induced by the axion-photon coupling.
We follow closely the derivation of the phase explicited in [1]. We start by initializing the
input electric field

®𝜖(𝑡) = ®𝜖0𝑒
−𝑖𝜔0𝑡 , (A.1)

with amplitude ®𝜖0 and frequency 𝜔0. We assume this field enters the cavity by one of the
sides of the cavity. Note that in the following, all measurable electric fields are implicitly
given by the real part only. When entering the cavity, the field gets transmitted by the cavity
with a coefficient

√
1 − 𝑟2, where 𝑟 is the mirror reflectivity of the cavity and becomes

®𝐸0(𝑡) =
√

1 − 𝑟2®𝜖0𝑒
−𝑖𝜔0𝑡 . (A.2)

After two reflections on the mirrors’ surfaces, the electric field at the location of the first
mirror is

®𝐸1(𝑡) = 𝑟2 ®𝐸0(𝑡 − 𝜏↔) = 𝑟2 ®𝐸0(𝑡)𝑒2𝑖 𝜔0
𝑐 ℓ 𝑒2𝑖 𝜔0

𝑐 𝛿𝑙(𝑡− ℓ𝑐 ) , (A.3)

where we used Eq. (9.4a) to express the time variation of length of the cavity from the round
trip 𝜏↔. After 𝑛 round trips, the electric field inside the cavity can be written as

®𝐸𝑛(𝑡) = 𝑟2𝑛 ®𝐸0(𝑡)𝑒2𝑖𝑛 𝜔0
𝑐 ℓ 𝑒

2𝑖 𝜔0
𝑐

∑𝑛
𝑗=1 𝛿ℓ (𝑡−(2𝑗−1) ℓ𝑐 ) (A.4)

at first order in the perturbation 𝛿ℓ (𝑡). The total electric field transmitted outside the cavity
(by the cavity’s opposite wall, compared to where the input electric field enters) is then

®𝐸transmit
tot (𝑡) =

∞∑
𝑛=0

𝐸transmit
𝑛 (𝑡) =

√
1 − 𝑟2 ®𝐸0(𝑡)

𝑟2

∞∑
𝑛=1

𝑟2𝑛𝑒2𝑖𝑛 𝜔0
𝑐 ℓ 𝑒

2𝑖 𝜔0
𝑐

∑𝑛
𝑗=1 𝛿ℓ

(𝑗)
. (A.5)

Since we are interested in the field transmitted to the second mirror (not the one from which
the field initially enters the cavity), we explicitly add a factor

√
1 − 𝑟2 to account for the

transmission to the second mirror and we remove a factor 𝑟2, since in that case, the field is
not reflected on the second mirror and then on the first one on his way back. This is also
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why we sum over the fields from 𝑛 = 1. We also defined 𝛿ℓ (𝑗) = 𝛿ℓ (𝑡 − (2𝑗 − 1) ℓ𝑐 ). We now
use the fact that the parameter 𝛿ℓ (𝑗) is small (𝒪(𝑔𝑎𝛾)), allowing us to expand the exponential
at first order in 𝛿ℓ (𝑗), i.e

∞∑
𝑛=1

𝑟2𝑛𝑒2𝑖𝑛 𝜔0
𝑐 ℓ 𝑒

2𝑖 𝜔0
𝑐

∑𝑛
𝑗=1 𝛿ℓ

(𝑗)
=

∞∑
𝑛=1

𝑟2𝑛𝑒2𝑖𝑛𝑘0ℓ + 2𝑖𝑘0

∞∑
𝑛=1

𝑟2𝑛𝑒2𝑖𝑛𝑘0ℓ
𝑛∑
𝑗=1

𝛿ℓ (𝑗) (A.6a)

=

∞∑
𝑛=1

𝑟2𝑛𝑒2𝑖𝑛𝑘0ℓ + 2𝑖𝑘0

(
𝛿ℓ (1)

∞∑
𝑛=1

𝑟2𝑛𝑒2𝑖𝑛𝑘0ℓ + 𝛿ℓ (2)
∞∑
𝑛=2

𝑟2𝑛𝑒2𝑖𝑛𝑘0ℓ + ...
)

(A.6b)

=

(
𝑟2𝑒2𝑖𝑘0ℓ + 2𝑖𝑘0𝑟

2𝑒2𝑖𝑘0ℓ 𝛿ℓ (1) + 2𝑖𝑘0𝑟
4𝑒4𝑖𝑘0ℓ 𝛿ℓ (2) + ...

) ∞∑
𝑛=0

𝑟2𝑛𝑒2𝑖𝑛𝑘0ℓ (A.6c)

= 𝑟2𝑒2𝑖𝑘0ℓ

(
1 + 2𝑖𝑘0

𝑟2

∞∑
𝑛=1

𝛿ℓ (𝑛)𝑟2𝑛

) ∞∑
𝑛=0

𝑟2𝑛𝑒2𝑖𝑛𝑘0ℓ (A.6d)

=
𝑟2𝑒2𝑖𝑘0ℓ

1 − 𝑒2𝑖𝑘0ℓ 𝑟2 𝑒
2𝑖𝑘0
𝑟2

∑∞
𝑛=1 𝛿ℓ

(𝑛)𝑟2𝑛
(A.6e)

where 𝑘0 = 𝜔0/𝑐 and where at the last line, we inverted the Taylor expansion, such that the
total transmitted electric field becomes

®𝐸transmit
tot (𝑡) =

√
1 − 𝑟2 ®𝐸0(𝑡)𝑒2𝑖𝑘0ℓ

1 − 𝑒2𝑖𝑘0ℓ 𝑟2 𝑒
2𝑖𝑘0
𝑟2

∑∞
𝑛=1 𝛿ℓ

(𝑛)𝑟2𝑛
(A.7)

We recover the usual form of electromagnetic plane wave where the amplitude ®𝐴(𝑡) and
phase 𝜙(𝑡) are respectively given by

®𝐴(𝑡) = (1 − 𝑟
2)𝑒2𝑖𝑘0ℓ

1 − 𝑒2𝑖𝑘0ℓ 𝑟2 ®𝜖0 (A.8a)

𝜙(𝑡) = 𝜔0𝑡 −
2𝑘0

𝑟2

∞∑
𝑛=1

𝛿ℓ (𝑛)𝑟2𝑛 . (A.8b)

When the light source is locked on a mode of the cavity, i.e 𝑘0ℓ = 𝜋𝑚, 𝑚 ∈ N, the transmitted
amplitude is equal to the input amplitude. Using Eq. (9.6), the phase shift between the
transmitted field and the input oscillates at the axion frequency 𝜔𝑎 whose amplitude is

|Δ𝜙(𝑡)| =
�����2𝑘0

𝑟2

∞∑
𝑛=1

𝑟2𝑛𝛿ℓ (𝑛)

����� (A.9a)

=
2
√

16𝜋𝐺𝜌DM𝐸𝑃𝑔𝑎𝛾

𝜔𝑎𝑐
sin2

(
𝜔𝑎ℓ

2𝑐

) ���cos(𝜔𝑎𝑡 − 2𝜔𝑎ℓ
𝑐 +Φ) − 𝑟2 cos(𝜔𝑎𝑡 +Φ)

���
1 − 2𝑟2 cos

(
2𝜔𝑎ℓ
𝑐

)
+ 𝑟4

(A.9b)

≈
2
√

16𝜋𝐺𝜌DM𝐸𝑃𝑔𝑎𝛾

𝜔𝑎𝑐

√
1 − 2𝑟2 cos

(
2𝜔𝑎ℓ
𝑐

)
+ 𝑟4

sin2
(
𝜔𝑎ℓ

2𝑐

)
. (A.9c)
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A.2 Amplitude of the square of the total electric field inside
a cavity

In this appendix, we derive the amplitude of the electric field power inside a cavity Eq. (10.12a)
in the context of the experiment presented in Chapter 10. From Eq. (10.11), we can write the
signal amplitude as√(

®𝐴(𝜔𝐴) · ®𝐶(𝜔𝑈) + ®𝐵(𝜔𝐴) · ®𝐷(𝜔𝑈)
)2
+

(
®𝐵(𝜔𝐴) · ®𝐶(𝜔𝑈) − ®𝐴(𝜔𝐴) · ®𝐷(𝜔𝑈)

)2
(A.10a)

≡ 𝑋𝐴𝑋DM𝛽
√
(𝐴′(𝜔𝐴)2 + 𝐵′(𝜔𝐴)2) × (𝐶′(𝜔𝑈)2 + 𝐷′(𝜔𝑈)2) (A.10b)

where

𝛽 = 𝑒DM ·
®𝑋𝐴
𝑋𝐴

, (A.10c)

is the projection of the polarization of the DP field on the polarization of the injected electric
field, such that ®𝑋𝐴 · ®𝑋DM = ®𝑋𝐴 · ®𝑋DM,∥ = 𝑋𝐴𝑋DM𝛽 and where the prime quantities are defined
as

𝐴′(𝜔𝐴) ≡

√
1 − 𝑟2 (1 + 𝑟) cos

(
𝜔𝐴𝐿
2𝑐

)
1 + 2𝑟 cos(𝜔𝐴𝐿𝑐 ) + 𝑟2

, (A.11a)

𝐵′(𝜔𝐴) ≡

√
1 − 𝑟2 (1 − 𝑟) sin

(
𝜔𝐴𝐿
2𝑐

)
1 + 2𝑟 cos(𝜔𝐴𝐿𝑐 ) + 𝑟2

, (A.11b)

𝐶′(𝜔𝑈) ≡ 1 +
2(1 + 𝑟) cos(𝜔𝑈𝐿2𝑐 )

1 + 2𝑟 cos(𝜔𝑈𝐿𝑐 ) + 𝑟2
, (A.11c)

𝐷′(𝜔𝑈) ≡
2(1 − 𝑟) sin(𝜔𝑈𝐿2𝑐 )

1 + 2𝑟 cos(𝜔𝑈𝐿𝑐 ) + 𝑟2
, (A.11d)

i.e the polarizations are factorized from the amplitude functions { ®𝐴, ®𝐵, ®𝐶, ®𝐷}. The signal
amplitude can be easily simplified to

√
1 − 𝑟2𝑋𝐴𝑋DM𝛽√

1 + 2𝑟 cos(𝜔𝐴𝐿𝑐 ) + 𝑟2

√√
1 + 4

1 + (1 + 𝑟) cos(𝜔𝑈𝐿2𝑐 )
1 + 2𝑟 cos(𝜔𝑈𝐿𝑐 ) + 𝑟2

. (A.12)

A.3 Amplitude fluctuation inside a cavity

In this section, we show how to express the contribution in field power from the amplitude
fluctuation of the applied field Δ𝑋𝐴 Eq. (17.6).
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We use the same procedure as the one described in Section 10.2 to compute the RIN
contribution to the total electric field at the center of the cavity. Starting from its expression
in Eq. (17.5), the first contribution of noise reads[
®𝐸0
𝐴

]
RIN
(𝑥 = 0, 𝑡) =ℜ

[
√

1 − 𝑟2

(
Δ ®𝑋𝐴(Δ𝜔)

2

(
𝑒−𝑖(𝜔+𝑡−𝑘+

𝐿
2+𝜙+) + 𝑒−𝑖(𝜔−𝑡−𝑘− 𝐿2+𝜙−)

))]
, (A.13)

where we used the trigonometric identity 2 cos(𝐴) cos(𝐵) = cos(𝐴 + 𝐵) + cos(𝐴 − 𝐵). Here,
the only angular frequency noise we are interested in is 𝜔0 = Δ𝜔, hence 𝑘± = 𝑘𝐴 ± Δ𝑘,
Δ𝑘 = Δ𝜔/𝑐 and Δ ®𝑋𝐴 is evaluated at Δ𝜔. After getting reflected on the other boundary, the
second contribution is[
®𝐸1
𝐴

]
RIN
(𝑥 = 0, 𝑡) =ℜ

[
−
√

1 − 𝑟2𝑟𝑒 𝑖𝑘𝐴𝐿

(
Δ ®𝑋𝐴(Δ𝜔)

2

(
𝑒−𝑖(𝜔+𝑡−𝑘+

𝐿
2+𝜙+) + 𝑒−𝑖(𝜔−𝑡−𝑘− 𝐿2+𝜙−)

))]
,

(A.14)

and after an infinite number of round trips N, the full RIN contribution on the electric field
inside the cavity is[

®𝐸tot
𝐴

]
RIN
(𝑥 = 0, 𝑡) =

𝑁=+∞∑
𝑛=0

®𝐸𝑛RIN(𝑥 = 0, 𝑡) (A.15a)

=
√

1 − 𝑟2Δ ®𝑋𝐴(Δ𝜔)
(
ℜ

[
𝑒−𝑖(𝜔+𝑡+𝜙+)

𝑒 𝑖
𝑘+𝐿

2

1 + 𝑟𝑒 𝑖𝑘+𝐿
+ 𝑒−𝑖(𝜔−𝑡+𝜙−) 𝑒 𝑖

𝑘−𝐿
2

1 + 𝑟𝑒 𝑖𝑘−𝐿

])
(A.15b)

=
Δ𝑋𝐴(Δ𝜔)

2𝑋𝐴

∑
𝑖=±

(
®𝐴(𝜔𝑖) cos(𝜔𝑖𝑡 + 𝜙𝑖) + ®𝐵(𝜔𝑖) sin(𝜔𝑖𝑡 + 𝜙𝑖)

)
(A.15c)

=
Δ𝑋𝑎(Δ𝜔)

2𝑋𝐴

(
®𝐴(2𝜔𝐴 − 𝜔𝑈) cos([2𝜔𝐴 − 𝜔𝑈]𝑡 + 𝜙+) + ®𝐴(𝜔𝑈) cos(𝜔𝑈 𝑡 + 𝜙−)+

®𝐵(2𝜔𝐴 − 𝜔𝑈) sin([2𝜔𝐴 − 𝜔𝑈]𝑡 + 𝜙+) + ®𝐵(𝜔𝑈) sin(𝜔𝑈 𝑡 + 𝜙−)
)

(A.15d)

where the functions ®𝐴 and ®𝐵 have already been defined in Eqs. (10.7) and where we used
𝜔± = 𝜔𝐴 ± Δ𝜔 at the last line, and where 𝜙± = 𝜙𝐴 ± 𝜙0. This expression has to be directly
added to the noise-less contribution from Eq. (10.6c).

Then, the RIN contribution to the square of the total electric field at the center of the cavity
can be obtained by multiplying the last equation with Eq. (10.6c), as we work at first order in
Δ𝑋𝐴/𝑋𝐴. Keeping only the terms oscillating at angular frequency Δ𝜔, the RIN contribution
to 𝐸2 is given by[
𝐸2(𝜔𝑈 , 𝜔𝐴)

]
RIN =

Δ𝑋𝐴(Δ𝜔)
2𝑋𝐴

((𝐴(𝜔𝐴) [𝐴(2𝜔𝑎 − 𝜔𝑈) + 𝐴(𝜔𝑈)] + 𝐵(𝜔𝐴) [𝐵(2𝜔𝐴 − 𝜔𝑈) + 𝐵(𝜔𝑈)])

cos(Δ𝜔𝑡 + 𝜙0) + (𝐴(𝜔𝐴) [𝐵(2𝜔𝐴 − 𝜔𝑈) − 𝐵(𝜔𝑈)] + 𝐵(𝜔𝐴) [𝐴(𝜔𝑈) − 𝐴(2𝜔𝐴 − 𝜔𝑈)]) sin(Δ𝜔𝑡 + 𝜙0)
)

(A.16a)

=
Δ𝑋𝐴(Δ𝜔)

2𝑋𝐴

√
𝑁(𝜔𝑈 , 𝜔𝐴) cos(Δ𝜔𝑡 + 𝜑) =

√
𝑃RIN𝑁(𝜔𝑈 , 𝜔𝐴)

8𝑇obsΔ𝜔
cos(Δ𝜔𝑡 + 𝜑) , (A.16b)
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where we have used Eqs. (17.4b) and (17.4c). In this expression, the functions 𝐴 and 𝐵 are
the norm of ®𝐴 and ®𝐵 and 𝜑 is an irrelevant phase dependent on 𝐴 and 𝐵.

The function
√
𝑁(𝜔𝑈 , 𝜔𝐴) correspond to the noise amplification factor by the cavity,

quadratic in 𝑋𝐴 and whose expression is given by

N(𝜔𝑈 , 𝜔𝐴) ≡ N1(𝜔𝑈 , 𝜔𝐴) +N2(𝜔𝑈 , 𝜔𝐴) +N3(𝜔𝑈 , 𝜔𝐴) , (A.17a)

where

N1(𝜔𝑈 , 𝜔𝐴) ≡ 𝐴(𝜔𝐴)2
(
(𝐴(2𝜔𝐴 − 𝜔𝑈) + 𝐴(𝜔𝑈))2 + (𝐵(2𝜔𝐴 − 𝜔𝑈) − 𝐵(𝜔𝑈))2

)
, (A.17b)

N2(𝜔𝑈 , 𝜔𝐴) ≡ 𝐵(𝜔𝐴)2
(
(𝐴(2𝜔𝐴 − 𝜔𝑈) − 𝐴(𝜔))2 + (𝐵(2𝜔𝐴 − 𝜔𝑈) + 𝐵(𝜔𝑈))2

)
, (A.17c)

N3(𝜔𝑈 , 𝜔𝐴) ≡ 4𝐴(𝜔𝐴)𝐵(𝜔𝐴) (𝐴(2𝜔𝐴 − 𝜔𝑈)𝐵(𝜔𝑈) + 𝐵(2𝜔𝐴 − 𝜔𝑈)𝐴(𝜔𝑈)) . (A.17d)

217



Appendix B

Motion of atomic wavepackets inside an
atom interferometer

In this appendix, we compute rigorously the wavepackets position and velocity along the
𝜋/2 − 𝜋 − 𝜋/2 interferometer, which will be used for the computation of the phase shift
observable in Chapter 13.

We start by the calculation of the position and velocity of the atom at the end of the
trajectory portion 1 in Fig. 13.1. From Eq. (13.6), the atom does not undergo any kick
velocities from the laser pulses, hence after a time T, its equations of motion read

®𝑥(1)
𝐴
(𝑡 = 𝑇) = ®𝑣DM

(
𝑇 −
[𝑄𝐴

𝑀
]𝑑𝑋DM

𝜔𝜙
[sin(𝜔𝜙𝑇 +Φ) − sin(Φ) − 𝜔𝜙𝑇 cos(Φ)]

)
(B.1a)

®𝑣(1)
𝐴
(𝑡 = 𝑇) = ®𝑣DM

(
1 − [𝑄𝐴

𝑀]𝑑𝑋DM
[
cos(𝜔𝜙𝑇 +Φ) − cos(Φ)

] )
. (B.1b)

On the other hand, the wavepacket on portion 2 in Fig. 13.1 has undergone a kick velocity
with amplitude 𝑣kick,0 + 𝛿𝑣kick(𝑡 = 0), following Eq. (13.7), with

𝛿®𝑣kick(𝑡 = 0) = ®𝑣kick,0

(
[𝑄𝐿

𝜔]𝑑 − [𝑄𝐴
𝑀]𝑑

)
𝑋DM cos(Φ) , (B.2)

with ®𝑣kick,0 along an arbitrary direction �̂�, hence

®𝑥(2)
𝐴
(𝑡 = 𝑇) = (®𝑣DM + ®𝑣kick,0)𝑇 − 𝑋DM

(
2
[𝑄𝐴

𝑀
]𝑑

𝜔𝜙
sin

(
𝜔𝜙𝑇

2

)
cos

(
𝜔𝜙𝑇

2 +Φ
)
(®𝑣DM + ®𝑣kick,0)+

𝑇([𝑄𝐴
𝑀]𝑑®𝑣DM − [𝑄𝐿

𝜔]𝑑®𝑣kick,0) cos(Φ)
)
, (B.3a)

®𝑣(2)
𝐴
(𝑡 = 𝑇) = ®𝑣DM + ®𝑣kick,0 − 𝑋DM

(
[𝑄𝐴

𝑀]𝑑 cos(𝜔𝜙𝑇 +Φ)(®𝑣DM + ®𝑣kick,0)+(
[𝑄𝐴

𝑀]𝑑®𝑣DM + [𝑄𝐿
𝜔]𝑑®𝑣kick,0

)
cos(Φ)

)
, (B.3b)

At time T, both wavepackets undergo a kick velocity with opposite direction, such that their
momenta states are exchanged. Following Eq. (13.7), this means that at the end of portion 1,
the atom undergoes a kick velocity of amplitude 𝑣kick,0 + 𝛿𝑣kick(𝑡 = 𝑇), with

𝛿®𝑣kick(𝑡 = 𝑇) = ®𝑣kick,0

(
[𝑄𝐿

𝜔]𝑑 − [𝑄𝐴
𝑀]𝑑

)
𝑋DM cos(𝜔𝜙𝑇 +Φ) , (B.4)
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with same direction �̂�, hence, at the end of the portion 3, its coordinates read

®𝑥(3)
𝐴
(𝑡 = 2𝑇) = (2®𝑣DM + ®𝑣kick,0)𝑇 + 𝑋DM

(
[𝑄𝐴

𝑀
]𝑑

𝜔𝜙

(
®𝑣DM(sin(Φ) + 2𝜔𝜙𝑇 cos(Φ))+ (B.5a)

®𝑣kick,0 sin(𝜔𝜙𝑇 +Φ) − (®𝑣DM + ®𝑣kick,0) sin(2𝜔𝜙𝑇 +Φ)
)
+ [𝑄𝐿

𝜔]𝑑®𝑣kick,0𝑇 cos(𝜔𝜙𝑇 +Φ)
)
,

®𝑣(3)
𝐴
(𝑡 = 2𝑇) = ®𝑣DM + ®𝑣kick,0 − 𝑋DM

(
[𝑄𝐴

𝑀]𝑑
(
(®𝑣DM + ®𝑣kick,0) cos(2𝜔𝜙𝑇 +Φ) − ®𝑣DM cos(Φ)

)
+

[𝑄𝐿
𝜔]𝑑®𝑣kick,0 cos(𝜔𝜙𝑇 +Φ)

)
. (B.5b)

The atom at the end of the portion 2 undergoes a kick velocity in the other direction, i.e of
amplitude 𝑣kick,0 + 𝛿𝑣kick(𝑡 = 𝑇), but with opposite direction (-�̂�), compared to the previous
laser kicks, hence

®𝑥(4)
𝐴
(𝑡 = 2𝑇) = (2®𝑣DM + ®𝑣kick,0)𝑇 − 𝑋DM

(
[𝑄𝐴

𝑀
]𝑑

𝜔𝜙

(
®𝑣kick,0 sin(𝜔𝜙𝑇 +Φ) + ®𝑣DM sin(2𝜔𝜙𝑇 +Φ)−

(®𝑣DM + ®𝑣kick,0) sin(Φ) − 2®𝑣DM𝜔𝜙𝑇 cos(Φ)
)
− [𝑄𝐿

𝜔]𝑑®𝑣kick,0𝑇
(
cos(𝜔𝜙𝑇 +Φ) − 2 cos(Φ)

) )
,

(B.6a)

®𝑣(4)
𝐴
(𝑡 = 2𝑇) = ®𝑣DM

(
1 + 2𝑋DM[𝑄𝐴

𝑀]𝑑 sin(𝜔𝜙𝑇)
)

sin(𝜔𝜙𝑇 +Φ) + 2𝑋DM[𝑄𝐿
𝜔]𝑑®𝑣kick,0 sin

(
𝜔𝜙𝑇

2

)
sin

(
𝜔𝜙𝑇

2 +Φ
)
, (B.6b)

at the end of portion 4.
Since at the end of portion 3, the wavepacket is in the excited state, we must take into

account an additional kick at time 𝑡 = 2𝑇 of amplitude 𝑣kick,0+𝛿𝑣kick(𝑡 = 2𝑇) and direction -�̂�
to this wavepacket, in order to put it back to the ground state. Since, we assume the detection
to be immediately after the kick, the position of the wavepacket will not be impacted by this
additional kick. The final velocity of this wavepacket read

®𝑣(4
′)

𝐴
(2𝑇) = ®𝑣DM

(
(1 − 𝑋DM[𝑄𝐴

𝑀]𝑑
(
cos(2𝜔𝜙𝑇 +Φ) − cos(Φ)

) )
−

𝑋DM[𝑄𝐿
𝜔]𝑑®𝑣kick,0

(
cos(2𝜔𝜙𝑇 +Φ) − cos(𝜔𝜙𝑇 +Φ)

)
, (B.7)

resulting in a different velocity compared to the other wavepacket (®𝑣(4)
𝐴
(2𝑇)).
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Appendix C

Projection of galactic velocity onto
sensitive axes of various experiments

In this appendix, we will compute the factors that are orientation dependent in the various
acceleration or phase shifts observables, presented in Chapters 12 and 13.

The observable signatures depend on the orientation of the experimental setup with
respect to the initial velocity of the atoms or tests masses, which corresponds at leading order
to the galactic velocity 𝑣DM. Indeed, for classical tests of the universality of free fall between
two macroscopic bodies, one measures Δ®𝑎 ∝ ®𝑣DM (see Eq.(12.5)) projected onto the sensitive
axis of the instrument. Therefore, the signal depends on the projection of the velocity of the
bodies in the galactocentric frame with the sensitive axis of the experiment. Similarly, all
the AI experiments depend on the scalar product between the initial galactocentric velocity
of the atomic clouds and the direction of the velocity kick undergone in the interferometric
schemes, i.e. on 𝑒𝑣 · 𝑒kick, see Eqs. (13.21) and (13.27).

As mentioned in Chapter 15, the direction of the DM velocity in the galactic halo points
towards 𝛼DM, 𝛿DM = 310.36°E, 45.28°N [2] in the equatorial frame.

C.1 Atom interferometers
All the AI-based experiments operate at constant location, loc, on Earth with longitude 𝜆loc
and latitude 𝜙loc. We assume the velocity kick to be directed vertically, i.e. in the Earth’s
reference frame 𝑒kick =

(
cos(𝜆loc) cos(𝜙loc), sin(𝜆loc) cos(𝜙loc), sin(𝜙loc)

)
. As first approxima-

tion, we consider the declination as equivalent to the terrestrial latitude, i.e 𝛿DM ≈ 𝜙DM,
such that the dot product 𝑒𝑣 · 𝑒kick is simply given by cos(𝜙loc) cos(𝜙DM) cos(𝜆loc − 𝜆DM(𝑡)) +
sin(𝜙loc) sin(𝜙DM). 𝜆DM(𝑡) is the longitude of 𝛼 Cygni at the time 𝑡 of the experiment. Indeed,
while 𝛼DM is fixed, the former follows the Earth rotation with frequency 𝜔𝐸 ∼ 7 × 10−5 Hz
and is therefore time dependent

𝜆DM(𝑡) = 𝜔𝐸𝑡 + 𝜑 , (C.1a)

where the phase 𝜑 corresponds to the longitude of 𝛼 Cygni at the origin of time reference
considered. For short experiments with an experimental time much smaller than a day (i.e.
relevant for Stanford’s experiment, see Sec 17.5.1), the dot product is roughly constant and
depends therefore on the exact time of the day when the experiment was conducted. In
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order to infer a sensitivity estimate, we will only consider the mean value of the dot product
which is given by sin(𝜙loc) sin(𝜙DM), i.e

𝑒𝑣 · 𝑒kick

���
Stanford

≈ 0.43 . (C.1b)

For longer time experiments, like the SPID variation, the dot product evolves with time, such
that the signal evolves as

𝑠(𝑡) ∝ 𝑒𝑣 · 𝑒kick cos(𝜔DM𝑡 +Φ) = [cos(𝜙loc) cos(𝜙DM) cos(𝜔𝐸𝑡 + 𝜑)+
sin(𝜙loc) sin(𝜙DM)] cos(𝜔DM𝑡 +Φ), (C.1c)

i.e the Earth rotation modulates the signal at frequency 𝑓𝐸 = 𝜔𝐸/2𝜋. We will make two
approximations for our estimates. For all the DM frequencies of interest 𝜔DM, the Earth
rotation is a slowly varying function, because 𝜔𝐸 < 𝜔DM. Therefore, we will assume that the
signal will manifest itself by a single peak at frequency 𝑓DM = 𝜔DM/2𝜋 in Fourier space. In
addition, we will be interested only by the maximum value of the dot product, which is only
a function of the different latitudes.

𝑒𝑣 · 𝑒kick = Max
(
| cos(𝜙loc ± 𝜙DM)|

)
. (C.1d)

For the various locations under consideration in this thesis, we have

𝑒𝑣 · 𝑒kick

���
Oxford

≈ 0.99 , (C.1e)

𝑒𝑣 · 𝑒kick

���
Fermilab

≈ 1.00 , (C.1f)

where we assume the SPID variation operates at the same location as AION-10, i.e Oxford
[3] for consistent comparison.

C.2 MICROSCOPE
For MICROSCOPE, the axis of measurement is alongside the test masses cylinders’ longitu-
dinal symmetry axis [4]. The orbital motion of the satellite around Earth is sun-synchronous,
which means that the orientation of the orbital plane evolves with time with an annual pe-
riod. As it was mentioned in Section 17.4, the measurements are distributed on 17 different
sessions, each of them lasting 𝑇int/17 ∼ 5 days on average. For such duration, we can assume
the orbital plane to be fixed during each session. In addition, the satellite spins around an
axis that is orthogonal to the axis of measurement with angular frequency 𝜔spin. In total,
this means the dot product can be written as

𝑒𝑣 · 𝑒meas.(𝑡)
���
𝜇SCOPE

= 𝐴(𝑡) cos(𝜔spin𝑡 + 𝜓) , (C.1g)

where 𝐴(𝑡) depends on the orientation of the orbital plane, i.e is fixed for one session but
changes from one session to another, and with 𝜓 an irrelevant phase. Using MICROSCOPE’s
publicly available data, we estimated numerically the coefficient 𝐴(𝑡) for every session and
we find that its value oscillates between 0.71 and 1. For our estimates, we will consider
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its mean value, i.e |𝑒𝑣 · 𝑒meas. | ≈ 0.85. In conclusion, the signal presented in Eq. (12.5) is
modulated by the factor

𝑒𝑣 · 𝑒meas.(𝑡)
���
𝜇SCOPE

≈ 0.85 cos(𝜔spin𝑡 + 𝜓) . (C.1h)

Thus, the observable signal in the MICROSCOPE experiment is oscillating at the combination
of the DM frequency and the spin frequency, i.e. has harmonics at the two frequencies
𝜔DM ± 𝜔spin. Therefore, for DM frequencies in Eq. (12.5) such that 𝜔DM ≪ 𝜔spin, we will
consider that the signal in MICROSCOPE oscillates at 𝜔spin, whereas if 𝜔DM ≫ 𝜔spin, we will
make our estimate with the signal oscillating at 𝜔DM. As explained in Section 17.4, 𝜔spin
depends on the measurement session since three different spinning frequencies have been
used during the full mission. They differ by a factor 5 roughly [5]. For our rough sensitivity
estimates, we use the data from session 404 as a basis, therefore we will assume a constant
𝜔spin ∼ 18.4 mrad/s.
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Appendix D

Fast likelihood for scalar ultralight dark
matter

In this appendix, we derive (in time domain) the slowly oscillating component of TDI 𝑋
combination of a scalar ULDM signal, that will be used for the DM model in FastDM in
Section 15.2.

We will make the detailed calculations for a (pure scalar) DM signal, and then we gen-
eralize to GW. Let us start again with the one-link response function induced by scalar DM
Eq. (15.3b) at time of reception of the photon of the receiver 𝑟 𝑡𝑟 , when it is emitted at time
𝑡𝑒 = 𝑡𝑟 − 𝐿/𝑐 by emitter 𝑒

𝑦DM
𝑟𝑒 (𝑡𝑟) = (�̂�𝑟𝑒 · 𝑒𝑣)

√
16𝜋𝐺𝜌DM𝑣DM[𝑄𝑀]𝑑

𝜔𝜙𝑐2 ℜ
[
𝑒 𝑖𝜙𝑟 − 𝑒 𝑖𝜙𝑒

]
(D.1a)

= (�̂�𝑟𝑒 · 𝑒𝑣)
√

16𝜋𝐺𝜌DM𝑣DM[𝑄𝑀]𝑑
𝜔𝜙𝑐2 ℜ

[
𝑒 𝑖𝜙𝑟

(
1 − 𝑒−2𝑖𝛼DM

𝑟𝑒

)]
(D.1b)

= 2 (�̂�𝑟𝑒 · 𝑒𝑣)
√

16𝜋𝐺𝜌DM𝑣DM[𝑄𝑀]𝑑
𝜔𝜙𝑐2 sin(𝛼DM

𝑟𝑒 )ℜ
[
𝑖𝑒 𝑖𝜙𝑟 𝑒−𝑖𝛼

DM
𝑟𝑒

]
(D.1c)

≡ 𝑌𝑟𝑒(𝑡𝑟)𝑒 𝑖𝜙𝑟 , (D.1d)
where

𝜙𝑟 = 𝜔𝜙𝑡𝑟 − ®𝑘𝜙 · ®𝑥𝑟(𝑡𝑟) +Φ (D.2a)

𝜙𝑒 = 𝜔𝜙𝑡𝑒 − ®𝑘𝜙 · ®𝑥𝑒(𝑡𝑒) +Φ , (D.2b)
and therefore

2𝛼DM
𝑟𝑒 (𝑡𝑟) = 𝜙𝑟 − 𝜙𝑒 = 𝜔𝜙

(
(𝑡𝑟 − 𝑡𝑒) −

𝑘 · �̂�𝑟𝑒 |®𝑣DM |
𝑐2

��®𝑥𝑟(𝑡𝑟) − ®𝑥𝑒(𝑡𝑒)��) (D.2c)

=
𝜔𝜙

��®𝑥𝑟(𝑡𝑟) − ®𝑥𝑒(𝑡𝑒)��
𝑐

(
1 − 𝑘 · �̂�𝑟𝑒 |®𝑣DM |

𝑐

)
+ 𝒪(Shapiro) , (D.2d)

where we neglect the impact of the Shapiro delay on the signal. The expression of 𝛼DM
𝑟𝑒 is

therefore given by

𝛼DM
𝑟𝑒 (𝑡𝑟) =

𝜔𝜙

��®𝑥𝑟(𝑡𝑟) − ®𝑥𝑒(𝑡𝑒)��
2𝑐

(
1 − 𝑘 · �̂�𝑟𝑒 |®𝑣DM |

𝑐

)
. (D.3)
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Let us now decompose the one-link response function into a slowly evolving part and
a fast oscillating part. Let us consider the observation time baseline 𝑇obs such that the
corresponding Fourier frequencies are given by integer times 1/𝑇obs. Let us consider the
Fourier frequency 𝑞0 which is the closest to 𝑓𝜙, i.e.

𝑞0 = round
[
𝑓𝜙𝑇obs

]
/𝑇obs (D.4)

where round [𝑥] provides the closest integer to 𝑥. One can rewrite Eq. (D.1) as

𝑦DM
𝑟𝑒 (𝑡𝑟) =ℜ

[
𝒴DM
𝑟𝑒 (𝑡𝑟)𝑒2𝜋𝑖𝑞0𝑡𝑟

]
, (D.5a)

where

𝒴DM
𝑟𝑒 = 2𝑖 (�̂�𝑟𝑒 · 𝑒𝑣)

√
16𝜋𝐺𝜌DM𝑣DM[𝑄𝑀]𝑑

𝜔𝜙𝑐2 sin(𝛼DM
𝑟𝑒 )𝑒−𝑖𝛽

DM
𝑟𝑒 , (D.5b)

with

𝛽DM
𝑟𝑒 = 𝛼DM

𝑟𝑒 + 2𝜋𝑞0𝑡𝑟 − 𝜙𝑟

= 𝛼DM
𝑟𝑒 −Φ + 2𝜋(𝑞0 − 𝑓𝜙)𝑡𝑟 +

2𝜋 𝑓𝜙
𝑐

|®𝑣DM |
𝑐

𝑘 · ®𝑥𝑟(𝑡𝑟) . (D.5c)

One can do the exact same job for the GW signals starting from Eq. (15.13b) to find

𝒴GW
𝑟𝑒 =

𝒜
2
(
1 − �̂�𝑟𝑒 · 𝑘GW

) sin(𝛼GW
𝑟𝑒 )ℜ

[
𝑖 ℎ̂SSB
𝑖 𝑗 (𝚤,Ψ)�̂�

𝑖
𝑟𝑒 �̂�

𝑗
𝑟𝑒 𝑒
−𝑖𝛽GW

𝑟𝑒

]
(D.6a)

𝛼GW
𝑟𝑒 = 𝜋

(
𝑓GW + ¤𝑓GW𝜉𝑟

)
| ®𝑥𝑟(𝑡𝑟) − ®𝑥𝑒(𝑡𝑒)|

(
1 − 𝑘 · �̂�𝑟𝑒(𝑡𝑟)

)
(D.6b)

𝛽GW
𝑟𝑒 = 𝛼GW

𝑟𝑒 +ΦGW + 2𝜋(𝑞0 − 𝑓GW)𝑡𝑟 +
2𝜋 𝑓GW

𝑐
𝑘 · ®𝑥𝑟(𝑡𝑟) − 𝜋 ¤𝑓GW𝜉2

𝑟 , (D.6c)

where 𝜉𝑟 = 𝑡𝑟 − 𝑘 · ®𝑥𝑟/𝑐.
We now quickly show how to express TDI combinations in this framework. We will focus

on the case of constant and equal arm-length 𝐿. In TDI, we encounter quantities such as

𝑦𝑖 𝑗

(
𝑡 − 𝐿

𝑐

)
=𝑌𝑖 𝑗

(
𝑡 − 𝐿

𝑐

)
𝑒 𝑖𝜙𝑖(𝑡− 𝐿𝑐 ) . (D.7)

The quantity 𝑌𝑖 𝑗 are slowly evolving with time such that 𝑌𝑖 𝑗(𝑡 − 𝐿/𝑐) ≈ 𝑌𝑖 𝑗(𝑡). For GW, this
assumption holds if the GW amplitude slowly evolves with time, if the frequency drift of
the GW is small and if the spacecraft velocity is small compared to the speed of light. For
DM, this assumption holds for the same reasons, in particular, the amplitude of the wave is
constant (in the approximation where the time of integration is smaller than the coherence
time), and 𝑌𝑖 𝑗 depends on the spacecraft velocity, which is small compared to 𝑐. Taking DM
as an example, we can write

𝜙𝑖

(
𝑡 − 𝐿

𝑐

)
= 𝜔𝜙𝑡 −

𝜔𝜙𝐿

𝑐
− ®𝑘𝜙 · ®𝑥𝑖

(
𝑡 − 𝐿

𝑐

)
+Φ (D.8a)

= 𝜔𝜙𝑡 −
𝜔𝜙𝐿

𝑐
− ®𝑘𝜙 · ®𝑥𝑖(𝑡) +Φ + 𝒪(𝑣 𝑗/𝑐 × 𝐿/𝑥𝑖) (D.8b)

≈ 𝜙𝑖(𝑡) −
𝜔𝜙𝐿

𝑐
, (D.8c)
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where 𝑣 𝑗 is the velocity of the emitting spacecraft. This leads to

𝑦DM
𝑖 𝑗

(
𝑡 − 𝐿

𝑐

)
≈ ℜ

[
𝑌DM
𝑖 𝑗 (𝑡)𝑒

𝑖𝜙𝑖(𝑡)𝑒−
𝑖𝜔𝜙𝐿

𝑐

]
=ℜ

[
𝒴DM
𝑖 𝑗 (𝑡)𝑒

−
𝑖𝜔𝜙𝐿

𝑐 𝑒2𝜋𝑖𝑞0𝑡

]
. (D.9)

Applying recursively this relationship leads to

𝐷𝑖 𝑗𝑘𝑦
DM
𝑘𝑙
(𝑡) =ℜ

[
𝒴DM
𝑘𝑙
(𝑡)𝑒−

2𝑖𝜔𝜙𝐿

𝑐 𝑒2𝜋𝑖𝑞0𝑡

]
, (D.10)

and so on. Using this result, the first generation TDI combination can be written as

𝑋DM
1 (𝑡) =ℜ

[
𝒳DM

1 (𝑡)𝑒2𝜋𝑖𝑞0𝑡
]
, (D.11a)

and 𝒳DM
1 is slowly evolving with time and is given by (using Eq. (14.7a))

𝒳DM
1 =

(
1 − 𝑒

−2𝑖𝜔𝜙𝐿

𝑐

) [
𝒴DM

13 −𝒴
DM

12 + 𝑒
−𝑖𝜔𝜙𝐿

𝑐

(
𝒴DM

31 −𝒴
DM

21

)]
= 2𝑖 sin

(
𝜔𝜙𝐿

𝑐

)
𝑒
−𝑖𝜔𝜙𝐿

𝑐

[
𝒴DM

13 −𝒴
DM

12 + 𝑒
−𝑖𝜔𝜙𝐿

𝑐

(
𝒴DM

31 −𝒴
DM

21

)]
. (D.11b)

Similarly the second generation TDI can be written as

𝑋DM
2 (𝑡) =ℜ

[
𝒳DM

2 (𝑡)𝑒2𝜋𝑖𝑞0𝑡
]
, (D.12a)

with the slowly evolving part

𝒳DM
2 =

(
1 − 𝑒

−2𝑖𝜔𝜙𝐿

𝑐 − 𝑒
−4𝑖𝜔𝜙𝐿

𝑐 + 𝑒
−6𝑖𝜔𝜙𝐿

𝑐

) [
𝒴DM

13 −𝒴
DM

12 + 𝑒
−𝑖𝜔𝜙𝐿

𝑐

(
𝒴DM

31 −𝒴
DM

21

)]
. (D.12b)

Since 1 − 𝑥 − 𝑥2 + 𝑥3 = (1 + 𝑥)(1 − 𝑥)2, the previous expression becomes simply

𝒳DM
2 =

(
1 + 𝑒

−2𝑖𝜔𝜙𝐿

𝑐

) (
1 − 𝑒

−2𝑖𝜔𝜙𝐿

𝑐

)2 [
𝒴DM

13 −𝒴
DM

12 + 𝑒
−𝑖𝜔𝜙𝐿

𝑐

(
𝒴DM

31 −𝒴
DM

21

)]
=

(
1 + 𝑒

−2𝑖𝜔𝜙𝐿

𝑐

) (
1 − 𝑒

−2𝑖𝜔𝜙𝐿

𝑐

)
𝒳DM

1 = 2𝑖 sin
(2𝜔𝜙𝐿

𝑐

)
𝑒
−2𝑖𝜔𝜙𝐿

𝑐 𝒳DM
1 . (D.12c)

We have now expressed the second generation TDI combination in time domain induced
by scalar DM as function of a slowly evolving part (the 𝒳 factors) and a fast oscillating
part, oscillating at the closest Fourier bin to the wave Compton frequency. As mentioned
previously, this formulation is very convenient because in Fourier domain, the signal is
simply the product of the Fourier transform of 𝒳, which is numerically fast to obtain, and
the Fourier transform of the exp(2𝜋𝑖𝑞0𝑡), which has an analytical solution (see [6]). These
expressions are directly implemented in FastGB and FastDM softwares for the fit of both GB
and scalar ULDM data.
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Appendix E

Propagation of the electric field from the
dish to the fictional plane in SHUKET

The calculation presented in Section 11.2 is based on the thin optical element approximation,
which is valid only for low curvature dish 𝑅 ≫ 𝑟, see the discussion in Section 11.2.2. In this
appendix, we want to check if Eq. (11.7) is valid in the SHUKET setup, in the case of emission
from standing DP electric field. To do so, we propose the following "reverse engineering-like"
method :

1. Consider the field on the dish using boundary conditions Eq. (11.1), i.e ®𝑈𝐷(®𝑥) =

𝑖𝜒𝜔𝑈 ®𝑌∥ ,𝐷(®𝑥),

2. Compute the field at each point ®𝑥′ on the plane closing the dish ®𝑈𝑃(®𝑥′) from Eq. (11.7),

3. Compute numerically the field on the dish ®𝑈 test
𝐷
(®𝑥) from ®𝑈𝑃(®𝑥′) using Kirchhoff integral

theorem Eq. (11.6),

4. Compute the relative error between ®𝑈𝐷(®𝑥) and ®𝑈 test
𝐷
(®𝑥).

We consider the plane located at 𝑧′ = 𝑅 − 𝑎, then the field at a point (𝜌′, 𝜙′, 𝑧′) on the
plane going towards the dish, located at 𝑧 ≥ 𝑧′, is given by

®𝑈P→D(𝜌′, 𝜙′, 𝑧′) = 𝑖𝜒𝜔𝑈 𝑒
−𝑖𝑘 𝑓 (𝜌′) ®𝑌∥ ,𝐷(𝜌′, 𝜙′, 𝑓 (𝜌′) + 𝑧′) . (E.1)

Notice the change of sign on the wavevector 𝑘, compared to Eq. (11.7) as we are now
considering emission towards the dish (positive 𝑧 axis). In addition, we aim at computing the
field reflected by the dish, while Eq. (11.7) gives the incident field. By boundary conditions,
we assume that both incident and reflected are equal, up to a sign, hence the positive sign in
front of Eq.(E.1).

Using Eqs. (11.6), (11.14) and (E.1), the field in a point on the receiving surface, i.e, the
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dish, of coordinates (𝜌, 𝜙, 𝑧) is given by

®𝑈 test
𝐷 (𝜌, 𝜙, 𝑓 (𝜌) + 𝑧

′) = −
𝑖𝜒𝜔𝑈 𝑓 (𝜌)

2𝜋

∫ 𝑟

0
𝑑𝜌′𝜌′𝑒−𝑖𝑘 𝑓 (𝜌

′)
∫ 2𝜋

0
𝑑𝜙′

𝑖𝑘𝐿 − 1
𝐿3 𝑒 𝑖𝑘𝐿 ®𝑌∥ ,𝐷(𝜌′, 𝜙′, 𝑓 (𝜌′) + 𝑧′)

(E.2a)

≈ −
𝑖𝜒𝜔𝑈 𝑓 (𝜌)

2𝜋
©«
𝑌𝑥
𝑌𝑦
0

ª®¬
∫ 𝑟

0
𝑑𝜌′𝜌′𝑒−𝑖𝑘 𝑓 (𝜌

′)
∫ 2𝜋

0
𝑑𝜙′

𝑖𝑘𝐿 − 1
𝐿3 𝑒 𝑖𝑘𝐿 , (E.2b)

where the difference of 𝑧 positionsΔ𝑧 between the fictional plane and the dish from Eq. (11.14)
is now positive and corresponds exactly to 𝑓 (𝜌), Δ𝑧 = 𝑓 (𝜌) = (𝑟2 − 𝜌2)/2𝑅 > 0. Then, the
relative error between ®𝑈 test

𝐷
and ®𝑈𝐷 ≈ 𝑖𝜒𝜔𝑈

(
𝑌𝑥 , 𝑌𝑦 , 0

)𝑇 (from Eq. (17.14)) is

𝜖(𝜌, 𝜙) ≈
����� ®𝑈 test

𝐷
− ®𝑈𝐷

®𝑈𝐷

����� ≈ ����− 𝑓 (𝜌)2𝜋

(∫ 𝑟

0
𝑑𝜌′𝜌′𝑒−𝑖𝑘 𝑓 (𝜌

′)
∫ 2𝜋

0
𝑑𝜙′

𝑖𝑘𝐿 − 1
𝐿3 𝑒 𝑖𝑘𝐿

)
− 1

���� . (E.3a)

Fig. E.1 shows the numerical computation of this relative error as function of the position
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Figure E.1: Numerical com-
putation of 𝜖(𝜌, 𝜙) from
Eq. (E.3a) for various dish po-
sitions (𝜌, 𝜙). Over the full
surface, it is of the order of
the ‰. The dish antenna is lo-
cated inside the non-radiative
near field region of the fic-
tional plane (i.e the distance
𝐿 < 0.62

√
(2𝑟)3/𝜆). One can

notice the interference pat-
tern with a typical period ∼
0.05 m, which corresponds to
the wavelength of emission.

(𝜌, 𝜙) on the dish. One can notice that the error is less than 1%, implying that Eq. (11.7) can
be safely used for the propagation of the electric field from the dish in the SHUKET system,
with negligible error. Note that the error 𝜖(𝜌, 𝜙) is computed only for points on the dish
with radial coordinates 𝜌 < 𝑟, as the circle of points belonging to the dish with coordinates
(𝑟, 𝜙, 𝑧plane), 𝜙 ∈ [0, 2𝜋[ belongs to the fictional plane as well, and Kirchhoff integral is
only valid for the computation of the field at reception points outside the emission surface.
Therefore, one can deduce that the calculations presented in [7] are valid for SHUKET.
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MOTS CLÉS

Matière noire ultralégère, axion, dilaton, photon noir, capteur quantiques, horloge atomique, interferométrie (atomique,
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RÉSUMÉ

La matière noire ultralégère (avec pour acronyme anglais ULDM), classe de candidats de matière noire de faible masse (<
1 eV), constitue une alternative pertinente aux modèles historiquement dominants, tels que les WIMPs, et a récemment
fortement attiré l’attention de la communauté scientifique. Dans cette thèse, nous étudions de nombreuses stratégies
expérimentales pour la détection directe d’ULDM, au sol et dans l’espace. Plus précisément, nous proposons une mod-
élisation théorique d’expériences actuelles et futures, et nous dérivons une estimation de leurs sensibilités respectives.
Nous nous concentrons principalement sur trois types de phénoménologies. La première consiste en une interaction en-
tre un candidat de matière noire vectoriel, plus communément appelé photon noir (DP), et l’électromagnétisme, qui induit
un faible champ électrique oscillant à la fréquence de Compton du DP. Nous proposons d’abord une méthode innovante
pour détecter ce petit champ électrique, qui consiste à mesurer l’effet Stark quadratique sur des atomes de Rydberg,
piégés au centre d’une cavité micro-onde. Nous montrons qu’une telle expérience aurait une sensibilité lui permettant
d’être compétitive avec les expériences de laboratoire existantes. Une autre façon de détecter ce champ électrique con-
siste en l’utilisation d’une antenne parabolique qui le réfléchit et concentre ainsi la puissance électromagnétique en son
centre de courbure, où l’on place une antenne cornet (par exemple, l’expérience SHUKET au CEA Saclay). Nous inves-
tiguons analytiquement les effets de diffraction et de couplage de mode dans ce type de configuration, et nous montrons
que l’intensité du signal attendu peut être significativement réduite comparativement aux estimations habituelles. Dans
cette étude, nous proposons aussi une optimisation des paramètres expérimentaux pour augmenter le signal. La sec-
onde phénoménologie d’intérêt pour cette thèse est l’oscillation de la masse et de la fréquence de transition d’atomes
ou de masses tests. Ces oscillations pourraient être produites par le couplage non universel entre les particules du
Modèle Standard et un candidat scalaire de matière noire, comme le dilaton ou l’axion. Nous étudions en détail l’impact
de ces oscillations sur plusieurs variations d’interféromètres atomiques et sur des expériences de tests classiques de
l’universalité de la chute libre, et nous démontrons comment ces différentes expériences pourraient sonder des régions
inexplorées de l’espace des paramètres. Ces oscillations de masse au repos pourraient aussi être observées à l’aide de
détecteurs spatiaux d’ondes gravitationnelles, comme LISA, et nous investiguons la possibilité d’une telle détection en
utilisant des orbites réalistes pour le détecteur. En particulier, en utilisant des méthodes bayésiennes, nous montrons que
LISA pourra en effet séparer un signal de matière noire d’un signal d’ondes gravitationnelles. Nous montrons aussi que
la faible vitesse de l’onde de matière noire n’est pas résoluble sur la majorité de la bande de fréquences de LISA, ce qui
induit une diminution de la sensibilité de l’expérience aux constantes de couplage de la matière noire scalaire par rapport
aux estimations précédentes.Enfin, nous étudions la biréfringence du vide induite par l’interaction entre les photons et les
axions, et nous nous intéressons à sa possible détection à l’aide de cavités optiques, de fibres optiques et de LISA. En
particulier, nous montrons qu’une légère modification des bancs optiques de LISA lui permettrait de devenir l’expérience
la plus sensible à ce couplage à faibles masses.

ABSTRACT

Ultralight dark matter (ULDM), as a class of low mass (< 1 eV) dark matter (DM) candidates, is a compelling alternative
to historically dominant models such as WIMPs and has recently gained significant attention in the scientific community.
In this thesis, we study various experimental schemes for the direct detection of ULDM, both on ground and in space.
More precisely, we propose a theoretical modeling of current and futuristic experiments, and we derive an estimation
of their respective sensitivity. We mainly concentrate on three distinct phenomenologies. The first one is the coupling
between a DM 𝑈(1) field, known as the dark photon (DP), and electromagnetism, which induces a small electric field
oscillating at the DP Compton frequency. We first propose an innovative way of detecting this small electric field by
measuring the quadratic Stark shift of Rydberg atoms inside a microwave cavity, and we show that such an experiment
could reach competitive constraints compared to existing laboratory experiments. Another possibility of detecting this
electric field is to use a spherical mirror, which reflects it and focuses the electromagnetic power at its center of curvature,
where a horn antenna is located (e.g. SHUKET experiment at CEA Saclay). We analytically investigate the effects
of diffraction and mode matching in this type of experiment, and we show that the expected signal intensity can be
significantly reduced compared to usual estimates. In this study, we also propose an optimization of the experimental
parameters in order to increase the signal. The second main phenomenology considered in this thesis is the oscillation
of rest mass and transition frequencies of atoms and test masses. These oscillations could be produced by the non-
universal coupling of standard matter with a scalar ULDM candidate (dilaton or axion-like particle). We extensively study
the impact of such oscillations on various atom interferometer schemes and classical tests of the universality of free fall,
and we demonstrate how these different experiments could probe unconstrained regions of the parameter space. The
oscillation of rest mass could also be observed in space-based gravitational wave (GW) detectors, such as LISA, and
we investigate the possibility of such detection using more realistic orbits of spacecraft compared to previous studies.
In particular, using Bayesian methods, we show that LISA could disentangle scalar ULDM signals from monochromatic
GWs. We also show that the small velocity of the DM wave is not resolvable for most frequencies in the LISA band,
which induces a decrease in sensitivity to scalar ULDM couplings, with respect to previous studies. Finally, we study the
effect of vacuum birefringence and dichroism induced by the coupling between axions and photons, and how it could be
detected with optical cavities, fibers, and LISA. In particular, we show that a slight modification of LISA’s optical benches
would make LISA the most sensitive experiment to the axion-photon coupling at low axion masses.
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equivalence principle, fundamental physics


	I General context and framework
	Special relativity
	Quantum mechanics
	General relativity
	Equivalence principle
	Einstein field equations
	Experimental successes
	Limits

	The Standard Model of particle physics
	Symmetries
	Gauge groups
	Higgs boson
	Matter content
	Lagrangian
	Experimental successes and limits

	Dark matter
	Some smoking guns of existence of dark matter
	Dark matter candidates
	Ultralight dark matter intrinsic characteristics

	Alternatives to dark matter

	II Phenomenology of some ultralight dark matter candidates
	Cosmological evolution
	Action
	Klein Gordon equation in an expanding Universe
	Oscillating field as cold dark matter
	Expressing the dark matter field in various reference frames

	Couplings to Standard Model fields
	Scalar field
	Pseudo-scalar field
	Vector field


	III Electromagnetic cavities probes
	Search for axions with an optical cavity and an optical fiber
	Birefringence and oscillation of the length of the cavity
	Phase shift at the output of the cavity
	Phase shift along an optical fiber

	Search for dark photons in a microwave cavity with Rydberg atoms
	Contributions from dark photons and applied electric field inside the cavity
	Total electric field squared
	Measurement with atoms through the quadratic Stark effect


	IV Dish antennas detectors
	Search for dark photons using dish antennas
	Electromagnetic emission from the dish
	Propagation of the field from the dish to an antenna
	Detection of the electric field with a horn antenna


	V Search through tests of the equivalence principle
	Classical tests of the equivalence principle
	Experiments testing the equivalence principle
	Acceleration difference induced by oscillating rest mass

	Atom interferometry as a quantum test of the equivalence principle
	Two-photon transitions : /2–/2 setups
	Are the calculations doable in the laboratory frame ?
	Gradiometers
	Single Photon Isotope Differential interferometer


	VI Effects on gravitational waves detectors
	Gravitational waves and LISA
	Gravitational waves physics basics
	LISA, the first european space-based gravitational waves detector
	LISA's expected performance

	Search for oscillations of rest mass in LISA
	Signatures of dark matter and gravitational waves on LISA arms
	Bayesian inference to discriminate between dark matter and gravitational waves
	Realistic limit on the sensitivity of LISA to ultralight dark matter couplings
	Conclusion

	Search for vacuum birefringence and dichroism in LISA
	Birefringence
	Dichroism
	Conclusion


	VII Sensitivity estimates
	Experimental considerations
	DAMNED and optical fibers
	Rydberg atoms in a microwave cavity
	SHUKET
	MICROSCOPE
	Atom interferometers
	LISA

	Sensitivity results on ultralight dark matter couplings
	Dilaton-SM couplings di's
	Axion-gluon coupling f-1a
	Axion-photon coupling ga
	Dark photon-photon coupling 
	Discussion


	VIII Conclusion
	IX Appendix
	Electric fields inside a cavity
	Phase shift induced by vacuum birefringence
	Amplitude of the square of the total electric field inside a cavity
	Amplitude fluctuation inside a cavity

	Motion of atomic wavepackets inside an atom interferometer
	Projection of galactic velocity onto sensitive axes of various experiments
	Atom interferometers
	MICROSCOPE

	Fast likelihood for scalar ultralight dark matter
	Propagation of the electric field from the dish to the fictional plane in SHUKET


