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1 Introduction

This thesis delves into the intricate dynamics of mineral deformation, with a particular focus
on the role of dislocations under various environmental conditions, such as high temperatures
and low strain rates. Dislocations, or linear defects within a crystal lattice, are pivotal in
understanding the mechanisms behind plastic deformation in materials. These defects are
characterized by specific properties such as Burgers vectors, line vectors, and habit planes,
encompassing both slip and climb planes. The movement of these dislocations, promoted by
applied stress, enables materials to deform plastically without necessitating the breaking of
atomic bonds across the entire lattice plane. This fundamental process not only responds
to applied stress but also dictates the material’s capacity for strain and, consequently, its
mechanical properties. Central to our study is the differentiation between glide and climb
movements of dislocations. Glide refers to the conservative dislocation movement along dense
crystallographic planes, whereas climb is driven by atomic diffusion, permitting dislocations to
move perpendicular to their glide planes. This distinction is crucial for a comprehensive anal-
ysis of how materials undergo deformation. To observe these phenomena at the microscopic
scale, Transmission Electron Microscopy (TEM) has been instrumental, despite its limitation
to projected images, which can sometimes lead to interpretative errors.

To overcome these limitations and advance our understanding of dislocation microstructures,
Dislocation Electron Tomography (DET) has been employed. The third dimension facilitates
the observation of dislocation structures, offering a more precise interpretation of their config-
urations. My thesis work has significantly contributed to enhancing DET technology. By going
beyond reconstruction, we have performed quantitative analyses and applied this information
to other fields. Among the mechanisms of dislocation movement, mixed climb—representing
a complex configuration between glide and climb—has emerged as a focal point of our re-
search. This mechanism suggests a balance in the mobility of dislocations across both glide
and climb, a phenomenon especially noticeable in microstructures with high lattice friction at
elevated temperatures. In general, the importance of climb stands out significantly. A simpli-
fied dislocation dynamics (DD) approach to to study the deformation of the lower mantle has
seen the importance of climb, both as a mechanism for controlling the rate of deformation
and as a mechanism for producing deformation.
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1 Introduction

By utilizing DET, we have characterized the 3D microstructures of dislocations in natural
samples of quartz and olivine, uncovering the presence of the mixed climb mechanism. This
finding not only adds a new dimension to our understanding of dislocation behavior but also
challenges previous notions of material deformation. Building upon DET’s capabilities, my
research has explored the integration of tomography with continuum mechanics. We have
estimated the strain tensor of a grain in a natural quartz sample, taking into account the
lengths of dislocation segments and their orientations. We found that a significant portion of
dislocation lengths was in mixed climb configuration. This observation, coupled with the hy-
pothesis that mixed glide and climb activation could involve the contribution of unusual glide
planes, necessitates further empirical and theoretical investigation. We’ve demonstrated that
glide alone can account for the observed strain, meeting the von Mises-Taylor criterion, yet
climb’s contribution is substantial, challenging the exclusive reliance on glide for deformation
analysis.
To further extend the scope of our study we incorporated DET-derived microstructures with
continuum mechanics by using a field dislocation mechanics (FDM) approach, bridging the
gap between localized dislocation behavior and the broader framework of material deforma-
tion, unveiling significant local variations in stress fields and Resolved Shear Stresses (RSSs)
in olivine. This approach has not only advanced our understanding of plastic anisotropy
and dislocation slip system activation but also facilitated the exploration of phenomena like
kinematic hardening at the nanoscale. Additionally, we integrated a DET microstructure
into Dislocation Dynamics (DD) simulations for dynamic modeling. This approach, facil-
itated by the NUMODIS nodal DD software, developed at CEA Saclay has allowed us to
simulate dislocation behavior based on actual microstructures instead of relying on virtual
dislocations. While still in the proof-of-concept stage and requiring further development, this
approach should allow us at some point to simulate complex dislocation interactions under
stress This comprehensive study bridges macroscopic geophysical processes and nanometer-
scale observations, illuminating the complexities of material deformation. Through advanced
imaging techniques, detailed microstructural analysis, and theoretical modeling, this work
offers valuable insights to the geosciences and materials science communities, enhancing our
understanding of the fundamental processes governing material deformation.

In the sections to come, I will embark on a detailed exploration of dislocations, beginning
with their conceptualization within the framework of continuum mechanics.

Subsequently, I will delve into the visualization and analysis of dislocations through Transmis-
sion Electron Microscopy (TEM), and then go into more detail on dynamics of dislocation and
their interactions. Next follows a description of all the relevant methods needed to achieve

2



this work. The core of this thesis presents the findings from various studies. Starting with
direct application of DET to different minerals and unveiling the occurrence of mixed climb
in them. Then I move over to association to other models, illustrating how integrating DET
data with FDM enhances our understanding of stress and strain fields at the dislocation level.
Followed by a work that explores how combining DET with DDD simulations provides access
to interactions and evolution over time, with a real dislocation microstructure. In the last
part I will write about a 2.5D DD approach that helped us study the deformation in the
lower earth’s mantle. Each study will be presented with its respective results, followed by a
discussion and conclusion, offering a thorough examination of the findings within the context
of the broader scientific discourse. The thesis will culminate in a general discussion that
synthesizes all the findings, drawing connections between the individual studies. Finally, I will
conclude with a summary that encapsulates the key discoveries and insights derived from this
research, while also outlining future prospects and potential areas for further exploration.
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2 State of the Art - Plasticity - Dislocations

2.1 Dislocations in Continuum Mechanics

The topic of dislocations had its origins in the early 20th century. The start for this field
was laid with the groundbreaking work on the theory of elasticity by Volterra (1907). Ini-
tially, Volterra’s work was not directly connected to dislocations but served as a conceptual
mathematical framework within continuum mechanics. His work described different types of
deformations in cut-open, homogeneous, and isotropic cylinders (see Figure 3).
The connection between this theoretical framework and the physical phenomenon of dis-
locations began to emerge with the work of Frenkel (1926). Frenkel observed a significant
discrepancy between theoretical predicted shear strength and shear strength of measurements.
He proposed a model for the shear-stress-shear-displacement relation, which assumed that a
crystal undergoing plastic shearing on a plane would pass through configurations of equiva-
lent energies at intervals defined by the magnitude of a simple lattice-translation vector, b.
This model, however, overlooked the minor end effects arising from the formation of surface
steps due to shear. Despite the elegance of this model, the experimentally observed values
for the maximum resolved shear stress necessary to initiate plastic flow in metals were orders
of magnitude lower than Frenkel’s predictions. This disparity could only be resolved through
the introduction of dislocations into the theoretical framework. In 1934, Orowan, Polanyi and
Taylor (Orowan 1934; Polanyi 1934; Taylor 1934) independently postulated the existence of
edge dislocations as sources of plastic deformation.
Their collective insight laid the foundation for comprehending the role of dislocations in the
mechanical behavior of crystalline materials.

2.1.1 Burgers Circuit and Burgers Vector

Following the foundational insights by Orowan, Polanyi, and Taylor on the existence of dislo-
cations as the primary sources of plastic deformation, a deeper understanding of dislocation
mechanics is facilitated by the concept of the Burgers vector. If we look at an edge dislo-
cation inside a crystal lattice, it is characterized by a disruption of the regular lattice along
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2 State of the Art - Plasticity - Dislocations

Figure 1: Burgers circuit : On the left, one can see a closed path around an undistorted enclosing
of the lattice. On the right, one can see the same path around the region close to the
dislocation. The purple vector indicating the missing displacement by the Burgers vector b.
The dislocation line t is also indicated in purple and is pointing towards us. The glide plane
containing b and t is indicated by the dotted line.

a line t. This disruption can be introduced by looking at a closed loop in an undistorted
region of a crystal. If we form the same loop around the edge dislocation the loop can only
be closed by an additional vector, which is the Burgers vector b (see Figure 1). The Burgers
vector characterizes both the magnitude and direction of the lattice distortion created by the
dislocation. The line direction is not always edge on, but itself can be described by a vector
t, called the line vector and can be in an arbitrary angle to the Burgers vector.
If the line vector and the Burgers vector are normal to each other as in Figure 1, the disloca-
tion is called edge, if they are parallel, it is called a screw dislocation, any other configuration
is called a mixed dislocation.

Since a dislocation line is the boundary of an area over which slip displacement has occurred,
a dislocation line cannot terminate within the body, it ends either at another dislocation, or
in itself by forming a loop or at a crystal boundary. Those boundaries can be the surface of a
crystal or grain boundaries. When dislocations end at another dislocation, this intersection is
called a dislocation node. At a node, the sum of all Burgers vectors remains zero to conserve
the Burgers vector, providing a critical constraint that governs their behavior.

6



2.1 Dislocations in Continuum Mechanics

2.1.2 Nye Tensor

Figure 2: Nye tensor calculation: (a) A single dislocation colored in blue, that is cut by a surface S,
on which we define our displacement field ue. The orientation of the components tj of
the dislocation lines is given by the blue lines with arrows. The black circle indicated the
integration path to get the Nye tensor. (b) Identical sketch for a dislocation network.

To enhance our understanding of the lattice distortion caused by dislocations within the
framework of continuum mechanics, we introduce the concept of the Nye tensor. Revisiting
the Burgers circuit allows us to directly link the distortion to the Burgers vector by integrating
along such a closed path (Figure 2(a)):

b =
∮
C

Uedr (2.1)

Here Ue is the elastic distortion induced by the dislocation and dr represents the differential
path length along the closed loop. The Nye tensor α, introduced by Nye (1953) incorporates
both the line direction and the magnitude and direction of the Burgers vector, and it is
associated with incompatible elastic distortions. The Nye tensor, as shown below, shows that
the presence of dislocations alters the local structure of the crystal lattice and induces elastic
distortions. It can be setup component wise as follows:

αij = bi

∆S
tj (2.2)

Where ∆S represents the area enclosed by our path integral. The components of the Nye
tensor αij can be related to the dislocations with total Burgers vector length along direction i
per unit surface ∆S, with line vector along direction j. When analyzing multiple dislocations
intersecting our surface (Figure 2(b)), the Nye tensor portrays the cumulative distortion
from all dislocations within this area. Components from dislocations of opposite signs or
line directions, for example, may neutralize each other, while similar distortions add up, we

7



2 State of the Art - Plasticity - Dislocations

speak of geometrically necessary dislocations. Utilizing Stokes’ theorem, we can now directly
connect the line integral of the Burgers vector to the Nye tensor:

b =
∫∫
S

∇ × Ue · n dS =
∫∫
S

α · n dS (2.3)

In the above equation, one can skip the surface integrals and directly relate the Nye tensor to
the curl of the elastic distortion. Thus, the Nye tensor effectively maps how the presence of
dislocations alters the local structure of the crystal lattice, causing elastic distortions. This
tensor is crucial to link the gradient of displacement and the strain fields around a dislocation
(see Section 3.2), making it easier to understand the effects of dislocations on the material.

2.1.3 Strain Energy in Linear Elastic Theory

After discussing the Nye tensor, we now turn to linear elastic theory to understand the impact
of dislocations on strain energy, using the Volterra framework as our guide. For a broader
perspective, we will also touch upon the analysis of dislocation networks, which is covered in
Section 3.2.
In the Volterra dislocation concept, a cylinder contains a dislocation line parallel to its axis.
The dislocation induces elastic distortions inside the cylinder. To remove the elastic distor-
tions, a cut is made along the cylinder, parallel to its axis. The two created surfaces are then
allowed to move with respect to each other, to relax the elastic distortion within the cylinder.
The way the surfaces move with respect to each defines the nature of the dislocation Burgers
vector and as such of the nature of the dislocation. If the two surfaces show a jump of
displacement parallel to the dislocation line, it is a screw dislocation. If it is perpendicular,
it is an edge dislocation. Such a concept was also used for defining disclinations. Hence, the
nature of the displacement and distortion fields around these dislocations characterizes the
stress state of the material and its mechanical response to applied forces. The displacement
vector u represents the displacement of points in the material from their original, undeformed
positions, to their new positions in the deformed state. It is a vector field that varies from
point to point in the strained material, indicating both the direction and magnitude of the
displacement. The strain itself is the change or derivative of the displacement and is linearly
approximated as:

ϵ = 1
2
(
(∇u)T + ∇u

)
(2.4)
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2.1 Dislocations in Continuum Mechanics

The resulting stress, denoted as σ and is governed by Hooke’s law:

σ = C : ϵ (2.5)

Here, : represents the inner product, C is the elastic stiffness tensor, which depends on
material properties and can be composed of up to 21 independent components. The symmetry
of a structure can reduce the amount of components. Olivine as example has an orthorhombic
structure, which reduces the amount of independent components to 9. In the assumption of
an isotropic medium, we are left which two components, called elastic moduli, for instance
the two Lame constants, λ and µ (with µ also known as the shear modulus).
The increase in internal energy of a strained material is associated with strain energy, which
can be calculated as:

dEe

dV
= 1

2σϵ (2.6)

Figure 3: Volterra distortion cylinders (for calculating the elastic strain energy): (a) screw dislocation;
(b) edge dislocation

The total strain per unit length (Etotal) contains both the energy contained in the elastic field
Ee and the core energy Ecore. In the Volterra’s description, the abrupt transition from zero
displacement to the Burgers vector upon crossing the dislocation line results in a singularity
along the line, causing the associated fields to diverge. In the context of linear elasticity,
we circumvent this, by excluding a cylindrical region around the dislocation line. From there
we can calculate the elastic strain of a straight screw dislocation. Utilizing the concepts
introduced earlier and applying it to the displaced cylinder (Figure 3(a)), we derive the
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2 State of the Art - Plasticity - Dislocations

elastic strain energy for a screw dislocation as follows:

Ee(screw) = µ b2

4 π

∫ R

r0
∇ × dr

r
= µ b2

4 π
ln

(
R

r0

)
(2.7)

Here r0 is the cut-off core radius (below which classical elasticity is not valid anymore) and
R the outer radius for integration. The term µ b2 is related to the product of the stress and
strain components. For an edge dislocation, we obtain (Figure 3(b)):

Ee(edge) = µ b2

4 π(1 − ν)

∫ R

r0
∇ × dr

r
= µ b2

4 π(1 − ν) ln

(
R

r0

)
(2.8)

Here ν is the Poisson ratio. To calculate the strain energy of a mixed dislocation, we super-
impose the cases for screw and edge dislocations since, as demonstrated in the Nye section,
it involves a composite of both elements:

Ee(mixed) = µ b2 (1 − ν cos2θ
)

4 π(1 − ν) ln
(

R

r0

)
∝ µ b2 (2.9)

Where θ is the angle between edge and screw. This demonstrates that the elastic energy
associated with any type of dislocation scales with the square of the Burgers vector b, making
smaller lattice translation vectors favorable.

Figure 4: Sketch of a pinned dislocation segment that bow out under applied resolved shear stress τ .
Pinning points are indicated in green.

The total elastic energy of a dislocation U , is the elastic strain energy over the dislocation’s
length L. The dislocation length is therefore minimized to reduce energy, which result in
dislocations tend to have the shortest possible length and align as straight as possible. When
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2.1 Dislocations in Continuum Mechanics

we consider the curvature of a dislocation, it reflects a balance between the elastic energy,
striving to keep the dislocation as short as possible, and the force (F = τb) associated with
the applied stress (τ) on the dislocation. This can be approximated as (Friedel 1964):

R = µb
τ

(2.10)

Here, R represents the radius of curvature. This relationship is visualized in Figure 4. Another
important consequence of the high energy associated with a dislocation is that knots with
more than three dislocations are prone to splitting into two knots with three dislocations and
an intermediate dislocation to reduce line tension.

2.1.4 Core Models

To describe the mobility of a dislocation, it’s crucial to consider the core region, which was
previously simplified by excluding it. The Peierls-Nabarro (PN) model, proposed by Peierls
(1940), offers a more regularized understanding of the dislocation core. It considers the
balance between elastic forces and inelastic forces arising from atomic misfit within the core
region. As a result, the shear profile associated with the dislocation spreads within the core
(see Figure 5 (b)). However, the PN model primarily addresses dislocations spreading along
a single plane, making it suitable for analyzing planar core structures but less effective for
complex core configurations.
To capture the complexities of dislocation cores more accurately, further models have been

Figure 5: Stress (red) and strain (green) profiles around a dislocation line for different core models:
(a) Volterra/Linear elasticy, abrupt jump at the dislocation line results in a divergent stress
field; (b) PN model spreads the strain field around the core, resulting a smoother stress field.
Blue region indicate the core region, define by a cut-off core radius r0; (c) PNG model for a
non-collinear core , showing a different strain field in x-direction (Sx) and y-direction (Sy)
(example shows a camel-hump potential in the presented plane, could be a different shape
in a different plane).

developed. The Generalized Stacking Fault (GSF) model, demonstrated by Vitek (1968),
introduces the concept of shearing along a plane with the restoring force being the gradient
of the GSF energy. This approach provides insights into whether a dislocation core will
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2 State of the Art - Plasticity - Dislocations

exhibit simple behavior or undergo dissociation, like it can be seen in olivine (Durinck et
al. 2007a), where the dislocation transforms into partial dislocations, each characterized by
Burgers vectors smaller than any lattice repetition. These partial dislocations are separated
by a stacking fault.

A more generalized approach is found in the Peierls-Nabarro-Galerkin (PNG) model, which
accommodates multiple glide planes and complex core structures, including non-collinear
(see Figure 5(c)) and three-dimensional cores. The PNG model uses a three-dimensional
displacement field u(r) for continuous deformation around the core and a two-dimensional
displacement discontinuity field f(r) for displacement jumps across planes. This dual-field
approach allows for a detailed examination of the core structure by minimizing elastic energy
and interplanar potential.

12



2.2 Visualization of Dislocations in TEM

2.2 Visualization of Dislocations in TEM

Until the 1950s, dislocations remained hypothetical entities, based on theoretical concepts. It
was only through the TEM experiments conducted by Hirsch et al. (1956) that dislocations
were first directly visualized. Hirsch employed a diffraction contrast method to visualize
dislocations, a technique we will also utilize in this work.

In diffraction contrast, we do not directly image the dislocations themselves but rather the
strain field that surrounds them. The bending of the crystal lattice around a dislocation core
creates lattice distortions and generates observable contrast.

Before delving into the specifics of diffraction contrast and its application to dislocation
visualization, let’s first explore the fundamental concepts of imaging in a TEM.

2.2.1 Image Contrast

Figure 6: Sketch of ray paths in TEM: (a) Diffraction condition; (b) Brightfield condition; (c) Darkfield
condition.

In a conventional TEM, the imaging process relies on a parallel and non coherent electron
beam that passes through a thin specimen, primarily undergoing forward scattering inter-
actions. To manipulate this electron beam for imaging, a series of electromagnetic lenses,
similar in function to those in a light microscope, are employed. These lenses include an
objective lens, an intermediate lens, and projector lenses.
TEM operation is typically divided into two primary modes: the diffraction mode and the
image mode.

13
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2.2.1.1 Diffraction Mode

In the diffraction mode, the electron beam’s interaction with the crystalline lattice of the spec-
imen reveals lattice periodicity through diffracted spots in reciprocal space. The diffracted
electron beams are brought into focus in the back focal plane of the objective lens, which
corresponds to the plane of the diffraction pattern. Subsequent lenses magnify this diffrac-
tion pattern and project it onto a phosphorescent screen or a CCD detector, yielding critical
insights into the crystallographic structure of the specimen.
A selected area aperture, placed before the intermediate lens, can be used to limit the obser-
vation to a specific region of interest within the specimen. A full schematic ray path for the
diffraction mode is illustrated in Figure 6(a)).

2.2.1.2 Image Mode

In the image mode, the goal is to obtain a magnified view of the specimen. The focus of the
intermediate lens is therefore adjusted to create an intermediate image of the image plane on
to the projection lens that then further magnifies the image on to the detector.
By default, in image mode, the image may exhibit a faint contrast due to multi-scattering
effects. To address this, specific electron beams can be selected and manipulated. For this
an objective aperture is inserted in the back focal plane of the objective lens.
When the direct beam is selected, the background appears bright, while strongly diffracted
regions, such as those near defects, appear dark. This mode is therefore referred as bright-

field imaging (BF), and the corresponding ray path is illustrated in Figure 6(b).
To isolate a diffracted beam, the electron beam can be shifted accordingly. This shift results
in a dark-field image, where specific diffraction events are highlighted and the undiffracted
parts appear dark. The ray path for dark-field imaging (DF) is illustrated in Figure 6(c).
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2.2 Visualization of Dislocations in TEM

2.2.2 Ewald’s Sphere

Figure 7: Ewald sphere construction in 2D. Indicating the incident wave vector kin and diffracted wave
vector kout in red and the diffraction vector g in green.

Diffraction contrast arises from the coherent elastic scattering of electrons at specific angles,
known as Bragg angles. To achieve robust diffraction contrast, the sample is typically tilted
in such a way that only one diffracted beam is excited, this condition is called “two-beam
condition”. This phenomenon can be understood through the Bragg-Laue condition (Laue
1913), which plays a central role in diffraction contrast:

kout − kin = ghkl (2.11)

Here, kout represents the wave vector of the diffracted electron beam, kin is the wave vector of
the incident beam, and ghkl denotes the reciprocal lattice vector associated with the crystal
lattice’s orientation, also known as the diffraction vector. This equation essentially states
that for diffraction to occur, the difference between the incident and diffracted wave vectors
must be equal to a reciprocal lattice vector. This concept can be visually grasped through the
Ewald sphere construction, where a sphere with a radius of 1/λ (where λ is the wavelength of
the incident electrons) represents all possible reflections. Where the Ewald sphere intersects
with reciprocal lattice nodes, the diffraction condition for constructive interference is satisfied.
A 2D representation of the Ewald construction can be seen in Figure 7. This construction
reveals that the magnitude of g is 2sinϑ/λ, where ϑ is the angle between incident and
diffracted beam. This aligns with Bragg’s law:
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λ = 2dhklsinϑ (2.12)

Here, dhkl represents the inter-planer spacing. When aligning a zone axis with the electron
beam, where "zone axis" denotes a high-symmetry orientation of a crystal with multiple lattice
rows parallel to a specific direction, the Laue condition theoretically predicts the absence of
diffracted spots for central region (in the zero order Laue zone). However, in practice we
can observe diffraction patterns with multiple diffracted spots at these orientations. This
inconsistency can be explained by the excitation error s. The reciprocal lattice nodes, which
are essentially sinc functions in cross-section, and extend in mainly in z direction (direction
of the electron beam) and are therefore called reciprocal lattice rods (relrods). The deviation
s from the ideal diffraction condition, then results in an adjusted Laue condition:

kout − kin = ghkl + s (2.13)

Which later will become relevant when talking about a refined contrast in weak beam dark
field (Section 2.2.4).

2.2.3 Extinction Distance

Figure 8: Illustration of the effect of the extinction distance ξg on wedge shaped specimens: (a) In-
tensity profile of diffracted and direct beam; (b) Sketch of a wedge in BF contrast indicating
the corresponding thickness fringes in dark blue; (c) Weak Beam Dark-Field (WBDF) mi-
crograph showing thickness fringes at the wedge.

Another effect that must be considered is linked with the phase of the electron beam. As
electrons cross the specimen, the direct and diffracted beams behave like a coupled pendulum,
oscillating back and forth in amplitude. The frequency at which the intensity changes can be
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described by the extinction distance ξg (see Williams and Carter 2009, p. 223):

ξg = πVc cos ϑB

λ · |Fg|
(2.14)

Here, Vc represents the unit cell volume, ϑB is the Bragg angle, and Fg is the structure factor.
This dynamic interaction manifests in various effects, one of which is occurrence of thickness
fringes in wedge-shaped samples (illustrated in Figure 8). It also creates an oscillating contrast
of inclined dislocation. The corresponding intensity of the diffracted beam Ig (see Williams
and Carter 2009, p. 228) is given by:

Ig = |Φg|2 =
(

πh

ξg

)2
sin2(πhseff )

(πhseff )2 (2.15)

Here, Φg is the amplitude of the diffracted beam, h is the specimen thickness, and seff rep-
resents the effective excitation error, relating to the extinction distance ξg and the excitation
error s:

seff =
√

s2 + 1
ξ2

g

(2.16)
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2.2.4 Weak Beam Dark-Field

Figure 9: WBDF imaging: Ewald sphere construction shows the intersection with the reciprocal lattice
rods and the resulting spot intensity for different diffraction vectors. (a) Bragg condition; (b)
Tilted specimen in WBDF condition, with maximal excitation of the 3G diffraction vector.
Weak intensity for selected diffraction vector circled in red. Red circle in the center shows
different s value condition; G inside Ewald sphere → s positive and G outside Ewald sphere
→ s negative.

Shifting focus from the intricacies of electron beam interaction, we will now describe the image
technique as Weak Beam Dark-Field (WBDF) imaging. WBDF imaging, was developed in
1969 by D.J.H. Cockayne, I.L.F. Ray, and Whelan (Cockayne et al. 1969). This technique
is used to significantly improve the spatial resolution of dislocation imaged in the TEM. It
starts by setting up a two-beam condition, then the specimen is delicately tilted away from
this state, causing a stronger excitation of a higher-order diffraction vectors. This is done till
most of the time the 3g diffraction vector is brought into Bragg condition (s=0). Due to
the deviation parameter, a narrow but weak signal persists for the 1g diffraction spot with a
high s value. This diffraction vector is then selected as the diffracted spot for the dark field
imaging (this process is illustrated in Figure 9). It results in a narrow signal for the dislocation
lines. However, the weakened signal necessitates longer exposure times to increase the signal
to noise ratio, which requires a high stage stability.
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2.2 Visualization of Dislocations in TEM

2.2.5 Dislocation contrast in TEM

Figure 10: Diffraction of electron beam on the crystal lattice surrounding a dislocation and the cor-
responding Ewald construction; blue area indicates region of contrast, red vectors indicate
diffracted electron beam: (a) Bragg condition and (b) WBDF condition.

Let’s consider a straight edge dislocation lying perpendicular to the optical axis. To image
the dislocation, a slight tilt away from the Bragg condition (see Figure 10(a)) is applied,
ensuring that only the distorted planes on the right side of the dislocation line will satisfy the
Bragg condition (see Figure 10(b)).
It is the WBDF technique, as described in the previous section. Contrast is derived solely
from the strongest strained part close to the dislocation core. Physically, this corresponds to
the diffraction of the planes which are bent just enough to bring them back into the extended
Bragg condition, which also shifts the signal closer to the core position.
Due to the high s value, this scenario can be described within the kinematic approximation
(s >> ξ−1

g ), where only the interaction between the direct and a single diffracted beam
gets considered, excluding any interferences with other diffractions. For dislocation contrast
this framework was introduced by Hirsch and Whelan (1960). In this approximation, the
amplitude Φg of the electron wave at a certain depth z is determined by integrating the
scattering from distorted region in a thin column parallel to the incoming beam direction.
The key assumption is that there is no dispersion of the beam outside this column (it is also
referred as column approximation). While the scattered wave crosses through the faulted
region (characterized by a displacement field u), it undergoes a phase change α = 2πg · u.
The amplitude Φ of the scattered wave at the bottom surface of the TEM specimen is then
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described by:
Φg =

∫
column

exp (i α) exp (i2πsz) dz (2.17)

The intensity Ig is therefore ∼ |g · b|2. The corresponding intensity profiles were initially
derived for perfect screw dislocations parallel to the TEM specimen surface by Hirsch and
Whelan (1960) and were later extended to pure edge dislocations by Gevers (1962). These
profiles are illustrated in Figure 11.

In the case of screw dislocations, the displacement of the peak from the exact dislocation
position is approximately the width of the image contrast. The intensity profiles are notably
influenced by the n = g · b factor. For n = 3 and 4, an additional maximum appears on
the side of the dislocation. Intensity profiles for edge dislocations exhibit a broader shape,
about twice as wide as those for corresponding screw dislocations. The displacement of the
image contrast of an edge dislocation is also approximately double that of the screw line.
It’s essential to note that the actual line profiles for edge dislocations are contingent on their
Poisson ratios. Gevers (1962) calculations presented in Figure 11 assume a Poisson ratio of
ν = 1/3.

Figure 11: Kinematic intensity profiles in DF imaging for screw (dotted lines) and edge (solid lines)
dislocations (Gevers 1962), which depend on: n = g ·b and β = 2πsx, with s representing
the excitation error and x indicating the distance to the dislocation core (the center of the
dislocation is positioned at x = 0). Illustrations for values of n ranging from 1 to 4 are
presented, each offset vertically for clearer distinction. Figure from Cordier 2013.
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2.2.6 Tomography in TEM

2.2.6.1 History

Figure 12: Sketch illustrating the main steps of electron tomography; (a) Image acquisition at different
angles; (b) forming a tilt series that has to be aligned; (c) of which a 3D volume of the
structure gets created by applying a reconstruction algorithm (WBP, see section 3.1.2.1).
Sketch from Liu et al. (2014, Figure 1)

TEM images are inherently limited to two-dimensional projections of thin three-dimensional
objects. Electron tomography represents a powerful technique capable of transcending this
inherent limitation. An overview of the main steps for an electron tomography are shown in
Figure 12.
The evolution of tomography in TEM has historical roots across various scientific domains.
Its inception traces back to the field of biology, with the pioneering work accomplished by
De Rosier and Klug (1968), relying on mass-thickness contrast. Over time, tomography ex-
tended its reach into the domain of material science, as demonstrated by Koster et al. (2000),
who successfully reconstructed a metal/zeolite crystal. Further exploration of this field can
be found in a comprehensive review by Friedrich et al. (2009).
In the context of dislocation microstructures, which is our focus, the concept of characteriza-
tion planes of dislocation traces back to early ideas based on stereo projection, an approach
initially proposed by Miller (1839). Practical application of these ideas emerged by Basinski
and Basinski (1964) who studied dislocation networks in plastically deformed single-crystal
copper. The first three-dimensional reconstruction was done using stereo pairs, employing
electron microscopy or X-ray topography (Lang 1959). In this method, two images are cap-
tured at the same reflection angle, while the sample underwent a slight tilt around an axis
parallel to the reflection. These paired images are then observed through a stereo viewer
to generate a basic 3D representation. Newer studies improved the stereo pair technique
and applied it to the TEM (Jácome et al. 2018), with further work done by Eftink et al.
(2017), and Oveisi et al. (2018). In the same time, X-ray stereo pair topography, developed
by Ludwig et al. (2001), evolved into X-ray topo-tomography. This technique recorded a tilt
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series while rotating the sample by 180° in the X-ray beam, maintaining a constant imaging
reflection, as initially proposed by Haruta (1965). The resulting reconstruction successfully
resolved dislocations with separations on the order of 100 µm in a diamond sample. The
implementation of tomography at the TEM for dislocation microstructure took until 2006
(Barnard et al. 2006), using the technique applied in our approach, known as Dislocation
Electron Tomography (DET). A more detailed exploration of DET will be provided in the
subsequent paragraph.

2.2.6.2 Dislocation Electron Tomography

DET is a powerful technique that relies on diffraction contrast, making it strongly orientation
dependent. This technique can reconstruct with high quality 3D dislocations microstructures.
It can extract numerous geometric parameters, including dislocation length, density, spacing
and radius of curvature. Additionally, it provides valuable crystallographic parameters such
as dislocation character, habit planes and line directions. The origins of DET can be traced
back to the pioneering work of Barnard et al. (2006). It is worth noting a considerable
time gap since the initial implementation of TEM tomography in 1968. This delay can be
attributed to the challenge of maintaining consistent diffraction conditions throughout the
extensive angular range required for tomography. This demands precise alignment of the tilt
axis, typically within a tenth of a degree. Since then, the technique has been applied to
various scenarios, including analyses near cracks (Tanaka et al. 2008 and Sharp et al. 2008),
investigations on subgrain boundaries (Kacher et al. 2011) and their interactions with grain
boundaries (Kacher and Robertson 2014), as well as DET studies on dislocation-precipitate
interactions (Liu and Robertson 2011).
DET has also found applications in the field of mineralogy, with the first on olivine by Mussi
et al. (2014), with subsequent studies done in 2015 (Mussi et al. 2015a,b). Those studies also
form the basis for the implementation into Dislocation Dynamics (DD), shown in this work.
Furthermore, DET has been extended to beam-sensitive materials, such as quartz, where
reconstruction is achieved using only a few projected images (Mussi et al. 2021c). Additional
insights and reviews on DET are provided in works by Hata et al. (2020b) and Feng et al.
(2020).
Recent advancements in DET have incorporated machine learning to facilitate the recon-
struction process. For example, Altingövde et al. (2022) combines neural network and stereo
pair in STEM mode to perform tilt-less DET, while Sills and Medlin (2022) employ a semi-
automated object-based approach, using the fact that dislocations are 1D objects. Moreover,
advancements have been made towards achieving 4D reconstructions, including the dimen-
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sion of time. Notably, a quasi-4D tomography, as demonstrated by Kacher and Robertson
(2012), in which dislocations are observed in real-time in 2D during in situ straining experi-
ments, followed by post-mortem tomography to retrieve 3D microstructural information; or
the first implementation of a real 4D tomography by Mussi et al. (2021b), where they utilizes
electron radiation to make dislocations climb. These developments showcase the versatility
and continuous innovation within the realm of DET.
In our study we take a different approach to examining the 4D evolution of microstructures.
This is accomplished by incorporating microstructural data from DET into Dislocation Dy-
namic Modeling (DDD). In the subsequent sections, I will provide a deeper exploration of the
dynamics of microstructures in a more general context.

2.3 Dislocation Dynamics

The motion of defects controls the transport of shear in solid material and therefore its plastic
deformation. Dislocations are the defects that mainly contributes to the strain, only in a high
temperature regime point defects take over.

2.3.1 Glide Mechanism

Figure 13: Movement of an edge dislocation via glide motion due to applied stress, courtesy A.
Goryaeva.

Under applied stress, dislocations are allowed to move via a conservative glide motion. The
motion of a dislocation occurs on a plane containing its dislocation line and its Burgers
vector. A glide process of an edge dislocation is shown in Figure 13. The stress needed to
activate a glide plane depends on the lattice friction. Due to the stress fields surrounding the
core (see Section 5), dislocations encounter an energy barrier known as the Peierls potential,
which must be overcome to enable glide. The stress required at absolute zero temperature to
overcome this barrier is the Peirls stress. The activation of glide systems typically prioritizes
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the densest atomic packing within the crystal lattice.
To connect this microscopic understanding to a macroscopic stress analysis, we introduce
the concept of resolved shear stress (RSS) using the Schmid tensor. The Schmid tensor S is
a representation of the slip system’s orientation, derived from the outer product of the slip
direction represented by the Burgers vector b and the slip plane normal vector n. This tensor
is essential in determining the RSS, which is the component of the applied stress tensor σapp

that acts along the slip direction on the slip plane:

S = b ⊗ n (2.18)

The resolved shear stress τRSS is then calculated by projecting the applied stress tensor onto
the slip system through the Schmid tensor:

τRSS = σapp : S (2.19)

In practice, the minimum stress required to surpass the Peierls potential and initiate glide
along a specific slip direction is termed the critical resolved shear stress (CRSS), denoted as
τCRSS . It is important to note, that this parameter remains constant for each unique slip
system within a given crystal structure and a given temperature.

2.3.2 Thermal Regimes

Up to this point, we only considered flow at absolute zero temperature. However, in practice
that is not the case. Therefore, in the following sections, we will delve into the evolution
of flow across a range of temperature regimes, as illustrated in Figure 14. This exploration
will provide a more comprehensive understanding of how material deformation varies under
different thermal conditions.

2.3.2.1 Low Temperature Regime

At absolute zero temperature, dislocations remain immobile unless the applied stress exceeds
the Peierls stress. However, at finite temperatures, thermal fluctuations allow dislocations
to move. This occurs through the localized thermal agitation of atoms, enabling specific
portions of the dislocation to overcome the motion energy barrier. As a result, kink pairs
are formed along the dislocation line, as depicted in Figure 15. Subsequently, these kinks
propagate within the Peierls valley until the entire dislocation line has transitioned into the
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Figure 14: Thermal glide regimes, where Ta denotes the athermal temperature and Tm is the melting
temperature; courtesy A. Goryaeva.

new valley. This cyclic process repeats itself. The velocity of dislocation motion in this
temperature regime can be described by Kocks’ law (Kocks et al. 1975):

v = ωDLb2

l2c
exp

(
−∆H(τ)

kBT

)
(2.20)

Here ωD is the Debye frequency, L is the length of the dislocation, b is the magnitude of the
Burgers vector, lc is the critical length of kink-pair nucleation, kB the Boltzmann constant
T the temperature and ∆H is the activation enthalpy.

Figure 15: A sketch of a kink pair that just over come the Peierls barrier to reach the next low energy
valley and now spreads.

2.3.2.2 Athermal Regime

As temperature increases, the likelihood of such events rises, resulting in an increase in
their average velocity. When a sufficiently high temperature is reached, we enter a regime
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where the previously mentioned kink-pair mechanism is no longer necessary. In this regime,
dislocations can move more freely, it is known as the athermal regime. Here, the gliding
velocity experiences a slowdown primarily due to interactions with the crystal lattice, which
is quantified by a drag coefficient B. The velocity can be expressed as follows:

vg = τeff µ

B

T

T0
(2.21)

Here T0 = 300K is the ambient temperature, T is the temperature of interest and τeff

denotes the effective stress. When we look not at the glide velocity but at the collective
velocity of a dislocation network, the velocity is controlled in this regime by dislocation
interactions, which hinders their motion and is linked with recovery mechanism that resolve
these interactions (see Section 2.3.4.1). This leads to a steady-state conditions, which is why
we see a plateau in Figure 14.

2.3.2.3 High Temperature Regime

At even higher temperatures, approaching the melting point, diffusion becomes active pro-
moting high temperature mechanisms, like climb, that can lead to recovery and possibly
recrystallization. More details on some of these recovery processes will be given in Section
2.3.4 in the context of climb.

2.3.3 Dislocation Interactions

Up to this point, we have considered individual dislocations, but to accurately describe con-
tinuous deformation, we must also account for their interactions with one another. When
analyzing the forces acting on dislocations, we need to consider not only the external forces
(applied stress) but also the stress that arises from dislocations interacting with each other.
The forces acting on each individual dislocation can be calculated using the Peach-Koehler
force equation:

FP K = b · (σapp + σint) × t (2.22)

Here, b represents the Burgers vector, t is the dislocation line, σapp denotes the applied
stress, and σint is the stress field induced by the dislocation microstructure. This implies that
the force acting on a dislocation is fully determined by the local stress on the dislocation,
allowing us to calculate stress as a linear superposition of all occurring stresses.
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We will now describe some of the interactions that dislocations can undergo when they
encounter one another. We’ll begin with the simplest interactions that occur between parallel
dislocation segments. When two such segments approach each other, they can either repel
or attract, depending on whether their Burgers vectors have the same or opposite signs.
Overcoming this interaction requires external stresses to be greater than the interaction
forces between them. When two dislocations in parallel planes, of opposite sign and identical
Burgers vector get close to each other, they can create a dipole, which can annihilate if they
are within a certain distance. This annihilation can occur via a climb mechanism, which we’ll
discuss further in the next section.
A special case has to be considered for pure screw dislocations. Since the Burgers vector
of pure screw dislocations is parallel to their line direction, the slip plane is not uniquely
defined. Consequently, pure screw dislocations can change their glide plane, a process known
as "cross-slip". Hence, pure screw dislocations will annihilate through cross-slip. They will
also cross-slip when encountering other obstacles.

Figure 16: Jog formation: Intersection of edge dislocations with perpendicular Burgers vectors and
planes.

One notable interaction between dislocations that cross paths through non-parallel gliding
planes is the formation of "jogs". Those occur when edge dislocations with different Burgers
vectors and perpendicular planes intersect, see Figure 16. A jog is a short section of the dis-
location line, typically a Burgers vector distance after a single dislocation interaction, which
lies outside the slip plane. Jogs affect dislocation mobility and contribute to work hardening,
since they are sessile. The movement of jogs can leave a trail of point defects, and if they
accumulate significantly, they can form dislocation loops.
Jogs can also arise through the absorption of point defects during dislocation climb, which
we will explore in more detail in the following section.
The interaction between two dislocations with collinear Burgers vectors gliding in intersect-
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Figure 17: Collinear interaction between two dislocation with black arrows indication b and the colored
lines are the dislocation lines. The nodes that remain with a reduced mobility, are indicated
by the green circles.

ing slip planes is called a collinear interaction and can be seen in Figure 17. It results in an
annihilated junction, corresponding to zero elastic energy. This interaction is the most sta-
ble of these reactions. They are among the strongest reactions between dislocations in face
centered cubic (fcc) (Madec et al. 2003). The nodes of the two dislocations with different
planes that remain have a reduced mobility.

Looking at an advanced state of deformation, more dislocation interaction will lead to more
obstacles in the microstructure, be through the formation of sessile junction, collinear in-
teractions, or the formation of jogs. Regions with such obstacles increase the likelihood of
new dislocations becoming immobilized. Over time, these immobile dislocations aggregate
and form clusters, a phenomenon known as "forest hardening". Sustaining deformation in
the presence of forest hardening hinges on the dislocations capacity to either transition to
alternative glide planes or undergo annihilation. For both processes climb plays a significant
role.

2.3.4 Climb Mechanism

So far, we only considered the conservative motion along the glide planes. However, when
glide becomes challenging or prohibited due to factors such as limited glide options or the
presence of sessile dislocation clusters, a non-conservative motion called "climb" becomes
significant if temperature is high enough to activate diffusion.
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2.3 Dislocation Dynamics

In climb, diffusion results in the absorption or emission of vacancies at an edge dislocation
line. This action causes a short segment of the dislocation line to move away from the glide
plane in a direction perpendicular to the Burgers vector, forming a jog (Mott 1951). The
process can be seen in Figure 18.
One noteworthy characteristic of climb is that the plane normal and the Burgers vector are
collinear. For an in-depth exploration of this subject, I recommend referring to the review
paper by Carrez et al. (2024).

(a)

(b)

Figure 18: Jog formation due to the absorption of point defects. Vacancies diffuse towards the dislo-
cation line and getting absorbed, creating jogs.

2.3.4.1 Climb as Recovery Mechanism

Figure 19: Sketch of a stuck dislocation which changes its glide plane via climb motion, courtesy A.
Goryaeva.
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Climb plays a crucial role in the recovery of materials subjected to plastic deformation. Such
deformation is described using creep models, where creep describes a permanent deformation
under a constant load over time at a fixed high temperature. There exist many creep models
in literature, but what they have in common is the description of a steady-state deformation,
where the material’s response to the applied stress reaches a balance between hardening
mechanisms and recovery processes, enabling continuous plastic deformation. The related
strain rate can then be described by the Bailey-Orowan equation:

ε̇s = r

h
(2.23)

where r and h represent the recovery and strain hardening rates, respectively.

One of these creep models is "dislocation creep" which is characterized by the movement
and multiplication of dislocations as the primary mechanism of plastic deformation. A key
recovery process in dislocation creep is dislocation climb, which is essential for relieving stress
concentrations and enabling dislocations to move out of their glide planes. It is requiring
the absorption or emission of vacancies for a dislocation to move perpendicular to its slip
plane (Figure 19). A model proposed by Weertman (1955) describe this behavior via the
creation of dipoles resulting from the elastic interactions of blocked edge segments. These
can then annihilate via climb, which then leads to further dislocation movement, creating a
steady-state behavior. A general flow law can describe this behavior (Weertman 1955):

ε̇ = ε̇0σn exp
(

− ∆H

kBT

)
(2.24)

In this equation, ε̇0 represents a mechanism-dependent constant, n denotes the stress ex-
ponent, and ∆H indicates the activation enthalpy. The velocity related to climb is covered
by the diffusion behavior. An expression for the climb velocity can be given as (Caillard and
Martin 2003):

vc = κ
Dsd

b

[
exp

(
τ cΩ
kBT

)
− c∞

c0

]
(2.25)

Here κ is a geometric factor depending on the geometry of the flux field, Dsd is the self-
diffusion coefficient and Ω is the corresponding atomic volume. Additionally, kB stands for
the Boltzmann constant, τ c denotes the effective stress resolved in the climb direction, c∞

signifies the vacancy concentration far from the dislocation lines, and c0 represents the in-
trinsic vacancy concentration.
Furthermore, climb recovery is associated with the formation of subgrain boundaries, which
i.e. is evidence for climb in minerals. The analysis of both, laboratory deformation mi-
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crostructures (e.g. quartz, Cordier et al. 1989; Tullis and Yund 1989) and natural samples
(e.g. quartz White 1977; olivine, Green 1976;-Kirby and Wegner 1978 ) has highlighted the
activation of dislocation climb, marked by well-organized subgrain boundaries. Here the anal-
ysis via TEM plays an important role. An example of such subgrain formation can be seen in
a study of olivine in Section 4.2. On a mesoscopic scale, recovery often results in patterning,
characterized by cells with fewer dislocations separated by dislocation walls. This patterning
encompasses the annihilation of dislocation pairs and the formation of subgrain boundaries.
Both, laboratory experiments and dislocation dynamics (DD) modeling have played a pivotal
role in validating the significance of climb in recovery mechanisms. Coupling DD simulations
with vacancy diffusion has effectively reproduced the characteristics of Weertman creep, un-
derscoring the necessity of climb for achieving steady-state deformation (Keralavarma et al.
2012, Boioli et al. 2015b). More details are given in Chapter 7, where we describe such a
study to simulate the deformation of periclase at lower mantle conditions. These simplified
models already reproduce the necessity of climb to reproduce a steady-state deformation.
Recent advanced 3D DD models, like the ones Kohnert and Capolungo (2022) can give even
further insights.

2.3.4.2 Climb as Strain producing Mechanism

In the recovery-controlled creep model, climb is generally not expected to make a significant
contribution to the total strain. However, it’s important to note that climb can also serve as
a mechanism for producing strain in certain scenarios.

2.3.4.2.1 Pure Climb In scenarios where glide is prohibited, an alternative mechanism
known as pure climb, proposed by Nabarro in his paper on steady-state diffusional creep
Nabarro 1967, comes into play. This mechanism operates independently of grain boundaries
and focuses on the role of dislocations as primary sources and sinks for vacancies.
The dislocation density increases through the operation of Bardeen-Herring sources and de-
creases as dislocations of opposite signs annihilate through climb motion. The strain rate
resulting from this process can be described by the following flow law (Nabarro 1967):

ϵ̇ = Dsdµb

πkBT

(
σ

µ

)3
/ ln

( 4µ

πσ

)
(2.26)

Here, Dsd represents the self-diffusion coefficient, µ stands for the shear modulus, b is the
Burgers vector, σ represents the applied stress, kB is the Boltzmann constant, and T denotes
the temperature in Kelvin.

31



2 State of the Art - Plasticity - Dislocations

An experimental example illustrating the pure climb mechanism can be found in the work of
Edelin and Poirier (1973), conducted on single crystals of magnesium at temperatures close
to the melting point.
For the lower mantle modelling by Boioli et al. (2017) and Reali et al. (2019a) showed that
pure climb creep is a very likely mechanism for the deformation of bridgmanite. This topic is
further elaborated in Chapter 7, where we explore the rheology of the lower mantle in greater
detail.

2.3.4.2.2 Mixed Climb Another relatively recently discovered strain-producing mechanism
is known as mixed climb, which occurs when climb and glide velocities are of similar orders
of magnitude. While many research groups have proposed a significant contribution of climb
to the total strains, or at least considered it as a viable option, quantifying its exact impact
remains challenging.

Figure 20: Geometry of a dislocation in mixed climb configuration, i.e., where the plane of movement
(identified by its normal n) is intermediate between the glide plane and the climb plane.
ng is the normal of the dislocation glide plane, nc is the normal of the dislocation climb
plane. b is the Burgers vector.

In a recent TEM in-situ deformation study on TiAl at a temperature of 790◦C, Galy et al.
(2023) revealed a similar velocities for both mechanisms. It is assumed that dislocations
moving simultaneously by glide and climb follow undefined planes whose orientation lies
intermediate between the glide plane and the pure climb plane (as depicted in Figure 20).
This concept was initially proposed by Malaplate et al. (2004) and later supported by studies
conducted by Couret (2010) and Voisin et al. (2016) on TiAl alloys. Mussi et al. (2021b)
observed mixed climb in MgO within a helical dislocation under electron irradiation. In such
cases, the glide velocity was reduced due to high lattice friction.
To precisely quantify this mechanism, advanced techniques are required to characterize the
corresponding planes accurately. Dislocation electron tomography emerges as an ideal method
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for studying mixed climb, as demonstrated in the examination of naturally deformed olivine
and quartz in Chapter 4.
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3 Methodology

In this chapter, I will provide a detailed description of the Dislocation Electron Tomogra-
phy (DET) method and its implementation into the framework of static Field Dislocation
Mechanics (FDM) and Discrete Dislocation Dynamics (DDD) modeling.

3.1 Dislocation Electron Tomography

This section will delve into the methodology of Dislocation Electron Tomography (DET) and
will explain how we can extract all the dislocation characteristics needed for our simulations.
The procedure outlined here is based on the work of (Mussi et al. 2017, 2014).

3.1.1 TEM Analysis

3.1.1.1 Sample holder

Figure 21: Sketch of a TEM sample holder indicating the three rotation axes.

To perform a tomography, we must choose a suitable sample holder. The sample stage is
characterized by up to three angles (see Figure 21). The primary tilt angle, denoted as α,
involves tilting along the principal axis of the sample holder. The second angle, Ω, corre-
sponds to a rotation along the z-axis, aligned with the electron beam direction, and β defines
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the remaining tilt axis perpendicular to the other two axes. Now we consider two optional
sample holders. A triple-axes tomography holder, also called HATA sample holder (Hata et al.
2011), enables tilting around all three axes. It is offering a high angular range for primary
tilt (±80◦), which is particularly advantageous when dealing with thin specimens and with a
high dislocation density, since at high angles the electron signal gets weaker. It makes also
precise orientation in Ω easier, since it is part of the system. The only downside is the low
angular range for β (±7.5◦), which makes it harder to find a good orientation, especially
in a single crystal specimens, where the orientation is fixed and therefore the orientation to
perform tomography can be out of the limit. In this case a classical double tilt holder can
be useful it has a high range in β (±30◦), but a smaller range for α (±60◦). It also has the
downside, that it requires manual specimen rotation to adjust Ω.

3.1.1.2 Tilt Series Acquisition

Our objective is to identify a region within the specimen that satisfies specific criteria. We seek
an area with an intermediate dislocation density, falling between 5.1012 m−2 and 5.1014 m−2.
Additionally, we aim for an optimal thickness that strikes a delicate balance—thin enough
to ensure electron transparency even at high angles and thick enough to reveal a more
pronounced 3D dislocation microstructure.

An adequate diffraction vector g for our tomography has to be selected. It is essential that this
vector possesses a high structure factor, to have a strong dislocation signal even at a high tilt
angle. Then we carefully orientate the principal axis of the sample holder along the diffraction
vector, a meticulous task requiring multiple extractions and insertions of the sample holder.
This precision is crucial to maintaining consistent dislocation contrast throughout the entire
tilt-series acquisition.

The next step involves acquiring a tilt-series under optimal WBDF conditions, capturing
images every 2◦ within an angular range between ±35◦ (totaling 70◦) and ±80◦ (totaling
160◦). We meticulously maintain a constant s parameter, avoiding any sign changes at all
costs (a change in sign would mirror the contrast of the dislocations to the opposite of the
dislocation line, making an accurate 3D reconstruction impossible).

Due to the limited angular range, there exists a region where no image can be obtained,
known as the "missing wedge." In this region, the reconstruction algorithm must extrapolate
the dislocation positions.
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3.1 Dislocation Electron Tomography

While acquiring the tilt- series along a diffraction vector, we move through several zone axes.
To later link the orientation of the tilt series to the specimen crystallographic orientation we
acquire diffraction patterns corresponding to those zone axis (see Figure 22). The diffraction
patterns are identified using the Electron-Diffraction software (Morniroli et al. 1994).

Figure 22: (a) - (e) Zone axis patterns along a tilt series taken with the 131 diffraction vector. (f)
Kikuchi map at 0◦ indication the different zone axes (red) from left (minus) to the right
(plus).

3.1.1.3 Precession

To enhance the quality of our analysis, we implement a gentle electron beam precession
(Vincent and Midgley 1994), typically set below 0.3◦. This controlled precession mitigates
multiple diffraction effects by oscillating the beam around the optical axis, resulting in a
reduction of phase-related contrasts such as thickness fringes and dislocation oscillating con-
trasts. A high precession also allows for a broader illumination range, enabling the visibility
of dislocations in areas with slightly different orientations. But, if the precession angle is too
high, the signal will be masked by the objective aperture. Thus, the chosen precession angle
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strikes a balance: it is sufficiently high to significantly diminish shadowing phase contrast
and low enough to prevent masking by the objective aperture. Our approach is rooted in the
methodology outlined by Rebled et al. (2011), where beam precession-assisted bright-field
electron tomography was employed to reconstruct a precipitate in 3D. We utilize the "Spin-

ning Star" precession module from the Nanomegas Company.

3.1.1.4 Postprocessing

Figure 23: Removal of the background intensity by application of the "rolling ball" algorithm (accessi-
ble in the ImageJ software), applied to a WBDF mircograph. The sketch shows the change
of an intensity profile before and after applying the algorithm.

3.1.1.4.1 Contrast refinement To further enhance dislocation contrast, we employ fil-
tering techniques like Median filtering and background removal, including a “rolling-ball”
algorithm of the ImageJ software package (Figure 23). In complex cases, manual redrawing
of dislocation contrast may be necessary.

3.1.1.4.2 Tilt axis alignment To implement a tomography algorithm, precise alignment
of the tilt-series to pixel accuracy is imperative. To eliminate translational shifts within the
tilt series, we superimpose the contrast of each image and perform alignment using stable
features that remain fixed, such as small loops or other stationary details (refer to Figure
24). To correctly reconstruct the volume, we need to know the angle between the tilt axis
of the tilt series and the micrograph. This is achieved by examining an image stack of the
tilt series sequentially, allowing for the observation of its rotation. Subsequently, we measure
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Figure 24: Three WBBF micrographs of a tilt series. Red circle indicates the alignment detail visible
in all micrographs.

the angular shift by tracking the consistent horizontal shift of image details, as illustrated in
Figure 25.

Figure 25: Superposition of all micrographs of a tilt series in WBDF condition. Highlighting in blue the
angle between the perpendicular with the tilt axis and the horizontal line of the micrograph.
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3.1.2 Reconstruction

3.1.2.1 Weighted Back Projection Algorithm (WBP)

For our reconstruction, we employ the Weighted Back Projection (WBP) algorithm (Herman
et al. 1976), which is conveniently available within ImageJ through the TomoJ plugin (Mes-
saoudiI et al. 2007).
There are different types of tomography algorithms, iterative or non-iterative. Iterative meth-
ods, such as the Algebraic Reconstruction Technique (ART) and the Simultaneous Iterative
Reconstruction Technique (SIRT), progressively refine images through iterations by leverag-
ing both measured and predicted data. ART models data acquisition in tomography as a set
of linear equations and is well-suited for sparse data, while SIRT simultaneously updates all
pixel values, making it particularly effective for noisy data, commonly used in applications like
computed tomography scan and positron emission tomography. The Discrete Algebraic Re-
construction Technique (DART) is tailored for objects with a few distinct compositions, each
associated with a constant grey value in the reconstruction, it is a segmented contrast. It uses
prior knowledge of gray values to enhance accuracy, especially in scenarios with limited data,
noisy projections, and errors in gray value estimation. The Compressed Sensing technique (a
signal processing method) aims to accurately reconstruct sparse or compressible signals from
a reduced set of measurements. It offers advantages in terms of data acquisition efficiency,
reduced sampling requirements, and enhanced robustness against noise and artifacts.
In comparison, the WBP algorithm (Herman et al. 1976) stands as a non-iterative approach.
The choice of this algorithm depends on the specific needs of the application. We have used
the WBP algorithm because it is a relatively simple, straightforward, and intuitive technique,
making it ideal for initial image reconstruction without the need for complex mathematical
modeling. WBP is computationally efficient, well-suited for real-time applications or situa-
tions requiring rapid results. It excels when object characteristics can be represented as sharp
edges or lines and in scenarios characterized by black-and-white contrast. It is therefore ide-
ally suited to reconstruct dislocations. A comparison of the algorithm to an iterative and a
simple back-projection approach, reconstructing a simple object can be seen in Figure 26.
The WBP algorithm operates as follows. At first it collects 1D projections (sinograms) of
the object from various angles, obtained through the Radon transform (Radon 1917). This
transform capturing information about how an object, or a signal, varies along a specific
direction, by integration of the signal along this direction.

The next step involves back projection onto an empty 2D grid dedicated to reconstructing the
final 3D image. Each projection is back-projected onto this grid, marking potential radiation
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origins based on angles (in our case the radiation is related to the transmitted electron beam).
To enhance accuracy, the algorithm assigns weights to each data point within the projection,
considering its distance from the grid points it contributes to. These weights are typically
determined by the imaging system’s geometry. Finally, the algorithm accumulates all the
back-projected projections, progressively constructing the final 3D image.

Figure 26: Comparison of tomography algorithms using a different number of projections, with (a) the
original image and (b) showing the different reconstruction. Images taken from (Midgley
and Weyland 2011)

3.1.2.2 Reconstructed Dislocation Improvement

As the reconstruction algorithm extrapolates dislocation positions in missing-wedges of the
tilt-series, the resulting thickness of the reconstructed dislocations becomes greater in these
angular regions. Consequently, the initial reconstructed dislocations manifest as ribbons (Fig-
ure 27 (a)), yet the distribution of intensity within these ribbons enables precise localization
of the line position. Utilizing the UCSF Chimera software (Pettersen et al. 2004), it becomes
possible to identify the highest gray value among the voxels where the dislocation core image
is still discernible (refer to Figure 27) and subsequently redraw each dislocation within the
raw reconstructed volumes . This process effectively restores the cylindrical geometries of the
dislocations.
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Figure 27: Contrast tracing of a dislocation using the Chimera software to improve the accuracy at
the missing wedge. (a)-(c) Raw reconstructed volume at 90◦ and at 0◦ with a low grey
level value indicated with the red arrow in (c). (d)-(f) Same reconstructed volume with
the maximum grey level showing a reduced thickness of the ribbon.

To ensure the accuracy of the reconstruction, an iterative refinement of the reconstruction
quality is followed by superimposing the reconstructed volume on top of the original tilt
series. If a visible deviation, larger than the thickness of the dislocation, is observed, the
reconstruction needs improvement. This refinement is particularly critical for high angles,
where the quality of the tomography is compromised due to the extrapolation of the volume
in the missing wedge. The final reconstruction is segmented, as markers are placed at fixed
nodes, allowing the extraction of 3D coordinates of the dislocation microstructure, utilizing
notes saved in ’pdb’ data types.

3.1.2.3 Characterization of habit planes

To characterize the habit planes of the dislocations, we search the projection angles where
each projection of dislocation segment becomes rectilinear while minimizing the number of
planes required. This is accomplished by subtly rotating the reconstructed volume along α

until the habit plane of the dislocation of interest is in an edge-on orientation, allowing for the
indexation of the corresponding plane. One fundamental criterion is that the orientation of the
trace of the habit plane must correspond to the orientation of the dislocation. This alignment
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is crucial in ensuring that the projection of the dislocation is linear for the given projection
angle α. In cases where dislocations exhibit a three-dimensional (3D) geometry, composed

Figure 28: Reconstructed 3D dislocation in Chimera at two different projection angles, showing the
different glide planes edge on. (a) Shows the blue and red dislocation segment where the
habit plane is adjoined at −66◦. (b) At 55◦ the green segment aligns with another habit
plane.

of multiple dislocation segments, a specialized approach is employed. While consistent with
the general method described above, it takes into account the plane where the dislocation
segment is longest. This strategy ensures that the habit plane selected best represents the
overall structure of the complex dislocation, ultimately aiming for accurate characterization
(illustrated for an example dislocation in Figure 28).

In the case of quartz, an additional method was employed to identify the length and orientation
of straight-line dislocations, which were initially excluded from the analysis due to a change
in research focus. This approach, is similar to a stereo pair method and is detailed in the
Appendix A.1.

3.1.3 Dislocation electron tomography for a beam sensitive material

When working with a beam-sensitive material like quartz, we consider procedure adjustments
to preserve the specimen. These adjustments are described from a previous study by Mussi
et al. (2021c).
First of all, we are using a small condenser aperture and a small spot size for TEM analyses
to minimize the electron dose. In addition, we enhance the signal-to-noise ratio in WBDF
micrographs, by binning the pixels four by four. Furthermore, we limit the number of projected
images by increasing the angular gap between each image (in one case using intervals of 10◦

instead of the standard 2◦) to reduce electron exposure. To compensate for the fewer images,
the dislocation contrast was redrawn manually for each image to enhance the black and white
contrast, which is known to produce higher-quality volumes compared to continuous grey-level
reconstructions. For the remaining analysis we follow the initial procedure.
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3.1.4 Burgers vector indexation - Ishida method

To comprehensively characterize dislocations, obtaining information about the Burgers vector
becomes crucial. The classical method for determining the Burgers vector involves the use
of invisibility criteria, expressed as:

g · b = 0 (3.1)

A zero dot product implies that the dislocation does not contribute to the diffraction intensity
along a specific diffraction vector, resulting in a vanishing dislocation contrast. However,
this technique requires at least three independent extinction conditions per Burgers vector.
These criteria necessitate a robust two-beam condition and encounter challenges at the Bragg
condition. Other problems emerge, particularly with residual contrast, in example when we
characterize substantial edge components (small bending contours occur due to distortion of
lattice planes). The impact of anisotropy further introduces complexities to the effectiveness
of the invisibility criteria.
Addressing these challenges, an alternative and more robust approach uses the Large Angle
Convergent Beam Electron Diffraction (LACBED) technique. This technique converges the
electron beam into a small probe below the specimen, creating a superposition of image
contrast and diffraction contrast, associated with a difference in z. In LACBED, dislocation
lines intersecting Bragg lines display characteristic distortions and splitting. The Bragg line
undergoes simultaneous rotation and separation into a system of fringes at the intersection
with the dislocation line. The exact relationship resulting from this technique can be expressed
by the Cherns and Preston rule (Cherns and Preston 1986):

g · b = n (3.2)

Here, n represents the number of subsidiary minima between the Bragg lines. Notably, this
technique allows for the determination of the Burgers vector (including its sign and mag-
nitude) without any a priori assumptions. An advantage of LACBED is, its suitability for
beam-sensitive materials, thanks to the defocused beam. However, for excessively thick crys-
tals, multiple scattering events become more pronounced, posing challenges in interpretation.
Therefore, we employ an alternative method based on the termination of thickness fringes,
a concept initially demonstrated by Ishida for x-ray analysis and subsequently extended to
bcc and fcc structures at high voltage with additional specimen considerations (Ishida et al.
1976; Ishida et al. 1980). The relationship is the same as for the LACBED method:

g · b = n
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Figure 29: WBDF micrographs of a [001] dislocation taken with different diffraction vectors showing
the terminating thickness fringes, to identify the dislocation with the Ishida method. (a)
1 thickness fringe terminates from the bottom at the the left end of the dislocation and
1 from top on the right end, resulting in n = −1. (b) 0 terminating thickness fringes,
resulting in n = 0. Dislocation is out of contrast, but bending of the fringes is still visible.
(c) 4 thickness fringes terminate each from top left and bottom right, resulting in n = 4.

But this time n signifies the count of terminating thickness fringes at the extremity of a
dislocation (an example characterization is depicted in Figure 29). Importantly, this method
requires any set of three independent conditions; zero is not a necessity. It necessitates the
use of Weak Beam Dark Field (WBDF) without precession to achieve a small spacing of
thickness fringes associated to a high s value.
This technique allows for the exact determination of both the magnitude and the sense of the
Burgers vector. The sign is attributed to the termination direction of the fringes regarding the
direction of the edge. The sign is positive, if top fringes, with respect to the edge, terminate
on the right side and bottom fringes on the left side (Miyajima and Walte 2009).
An alternative approach to get the sign is linked to the asymmetry of the contrast intensity
at dislocation extremities. This data can be cross-referenced with that acquired from the ori-
entations of terminating thickness fringes (see Figure 30). By considering all these indicators
collectively, we can successfully identify the signs of the majority of Burgers vectors.
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Figure 30: Association of the intensity of the dislocation extremities with the sign of the Burgers
vector: (a) Raw micrograph in WBDF conditions, obtained with the 222̄ diffraction vector
(with a projection angle of −28◦), where an intensity asymmetry of dislocation extremities
is clearly seen; (b) arrows added on the raw micrograph of figure 30 (a), the arrow is
oriented in the direction of the intense extremity of the dislocation; (c) raw micrograph
of the same domain with a projection angle of −42◦; (d) arrows and thickness fringes
added and redrawn on the raw micrograph of figure 30 (c), where the thickness fringes
are coloured in green when they are not terminated on the extremities of dislocations, in
red at the extremities of the dislocations represented with arrows oriented on the opposite
direction of the edge, and in blue at the extremities of the dislocation represented with
an arrow oriented on the direction of the edge; (e) cartoon extracted from Miyajima and
Walte (2009), where the method to get access to the g · b product is described, taking
into account the signs of the Burgers vectors, following Ishida et al. (1980), with the same
colour code and arrow direction code as figure 30 (d). A link between the intensity of the
dislocation extremities and the sign of the Burgers vector is noticeably evident. Reprinted
from Miyajima and Walte (2009), Copyright (2009), with permission from Elsevier.
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3.2 Field Dislocation Mechanics

The general idea here is to get the equilibrated stress field in our thin foil volume, as well
as the associated elastic displacements, strains, and rotations, based on the Nye tensor field
resulting from our dislocation network. It is based on a linear approximation of the Field
Dislocation Mechanics (FDM) model seen in Acharya (2001) and follows the work of Djaka
et al. (2017). For nonlinear solution see also Acharya (2001). This adaptation and the general
implementation are done in collaboration with V. Taupin (LEM3 Metz).

An application of the FDM model can be found in Ernould et al. (2022), where the stress
field near a nanopipe dislocation in GaN is characterized with HR-EBSD and then compared
to a modelling in elastic fields achieved using FDM. In this study we will apply FDM to a
network of dislocation, with data from DET. In the following we describe the fundamental
relationships regarding this work.

Let us consider an infinite isotropic body which is strained. This strain, is characterized by
an elastic distortion Ue of the body. The elastic distortion can then be expressed as gradient
of an elastic displacement vector ue, which relates each unstrained point, with its strained
counterpart. We now look at a cut of the body along an arbitrary surface S. If we now take
a closed integral over any possible path on that surface the integral will be equal to zero:

∮
C

Ue dr = 0 (3.3)

Due to the presence of dislocations we have discontinuities in the elastic displacement field.
Consequently, Equation 3.3 is no longer applicable.
To overcome this issue, we use an approach similar as in electrostatic (see Sokolnikoff 1966,
p. 408). We split the elastic distortion field Ue into a compatible part, which is our previous
gradient of the elastic displacement field and into an incompatible part, due to the dislocation
represented by a curl of a unique periodic tensor field χ:

Ue = U∥
e + U⊥

e = ∇ ue + ∇ × χ (3.4)

The former integral becomes now: ∮
C

Uedr = b
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Which is the Burger’s vector b, as defined in Eq. 2.1. Now we again use Stokes theorem to
transform this integral to:

b =
∫∫
S

∇ × U⊥
e · n dS =

∫∫
S

α · ndS

∇ × U∥
e vanishes since ∇ × ∇ f = 0. Which results in the incompatibility equation Kröner

1959:
∇ × Ue = α (3.5)

Here α is the Nye tensor as we defined in Section 2.1.2. This time we look at continuous
fields with a dislocation network, instead of a solution for straight single dislocation. We
therefore have to go a bit deeper to get to a general solution. Starting by applying the
identity ∇ × ∇ × U⊥

e = ∇∇ · U⊥
e − ∇ · ∇U⊥

e , which leads to a Poisson type equation, since
∇∇ · U⊥

e = ∇∇ · ∇ × χ = 0:
∆ U⊥

e = −∇ × α (3.6)

Which is again similar to electrostatics, where we have an electrostatic potential due to
electric point charges, we now get a distortion potential due to the discontinuities at the
dislocations. This is then solved for a given Nye tensor based on distribution of dislocation
density in the volume by a fast Fourier transform (FFT) algorithms for more details see Djaka
et al. 2017.
In the next step we look at the remaining compatible part that balance out the incompatibil-
ities. If we account that for any periodic stress field, there is an equilibrium given as:

∇ · σ = 0 (3.7)

And in addition we consider Hooke’s law:

σ = C : U e (3.8)

Where C is the elastic stiffness tensor, this leads us to:

∇ · (C : U e) = ∇ ·
(
C : U∥

e

)
+ ∇ ·

(
C : U⊥

e

)
= 0 (3.9)

Using the form of equation 3.4, this gives the expression:

∇ · (C : ∇ue) + ∇ ·
(
C : U⊥

e

)
= 0 (3.10)
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From which we obtain the elastic displacement field ue. It can be again solved using a
FFT solver (see Djaka et al. 2017). Once the elastic displacement is known, we calculate
the compatible elastic distortion by taking the gradient of the displacement field. The total
elastic distortion is then determined by combining it with the incompatible part. From this
we finally achieve the balanced anisotropic stress field σ by multiplying it with the elastic
stiffness tensor C.

3.2.1 Associate with Tomography - Transform tomography data

To transform our tomography data from Chimera to an input file that can be used for the
simulation, we developed a semi-automatic program written in C++.

In Chimera the dislocations are stored as interconnected nodes in a "pdb" format (see 3.1.2.2).
Each node is assigned with a dislocation position in the reconstructed volume. In addition,
the connectivity of the node to the connected nodes is stored. In the “pdb”-file the individual
nodes are ordered according to the placement order used during the reconstruction, which
is not linked with the line directions of the individual dislocations. In addition, we write a
separate file ("input.dat"), which contains the Burgers vector and the number of nodes for
each dislocation.

For the Nye’zation these nodes have to be divided into individual dislocations and then
reordered according to their line directions. This reordering and splitting of nodes in individual
dislocations is done using our program. Additionally, the code includes adjustments for
scale variations observed between TEM analysis, Chimera software, and simulations, achieved
through a scale factor. It also incorporates an option to accommodate orientation changes
between the Chimera reference frame and the sample reference frame. The program combined
the "pdb"-file of each dislocation with their Burgers vector file, and save the result (processed
nodal list) in a final file.

To align the crystallographic orientation of our sample with the simulation box’s reference
frame, we compute Bunge Euler angles using the MTEX software package integrated into
MATLAB (Bachmann et al. 2010).

To correlate the applied stress direction with the crystalline structure of our sample, we
compute the associated metric tensor.
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Figure 31: A 2D illustration of the method employed for assigning a Nye dislocation density to a voxel
denoted as xd based on a dislocation segment. Refer to the accompanying text for a
comprehensive explanation.

3.2.2 Nye’zation

In the final step we setup our Nye tensor field in a continuous form using the approach of
Bertin (2019).
To use the discrete dislocation line segments for the creation of a continuous field, it is crucial
to smooth them across multiple voxels within our FFT grid. This process of assigning a Nye
dislocation density to each voxel, we refer to as "Nye’zation" and the following description
of it draws upon our paper published in Modelling and Simulation in Materials Science and
Engineering1. In Figure 31, we illustrate a portion of a discrete dislocation line comprised of
three straight segments, highlighted in red. Although the figure presents a two-dimensional
representation for clarity, the calculations are conducted in three dimensions. Let’s focus
on the second (middle) dislocation segment, represented as a bold red line. This segment
is defined by its starting point, xa, and its ending point, xb, following the direction of the
segment’s line vector, t.
The thin dashed black lines mark off the grid voxels employed in the numerical algorithm
utilized to solve the FDM equations. These voxels have dimensions H1, H2, and H3 in
the x1, x2, and x3 directions. The position of the center of the voxel, denoted as d in
Figure 31, is described by its position vector, xd. The volume of this voxel is represented as
Ωd = H1 × H2 × H3 = H3, with H1 = H2 = H3 = H chosen as the voxel size.

1Weidner, T., V. Taupin, S. Demouchy, K. Gouriet, A. Guitton, P. Cordier, and A. Mussi (Nov. 2023). “From
electron tomography of dislocations to field dislocation mechanics: application to olivine”. In: Modelling
and Simulation in Materials Science and Engineering 32.1, p. 015004. DOI: 10.1088/1361-651X/ad0a42.
URL: https : //dx.doi.org/10.1088/1361-651X/ad0a42.

50



3.2 Field Dislocation Mechanics

For the voxel d, a surrounding box with dimensions 2H1 ×2H2 ×2H3 is centered at the point
xd, illustrated with purple solid lines in the figure. If any part of a given dislocation segment
falls within this box, a Nye dislocation density associated with that segment is assigned to
this voxel. Here’s how it is done:
If the start and/or end points, xa/xb, lie outside the box, the dislocation segment is adjusted
to new start and/or end points, xa

′/xb
′. If they are within the box, they remain unchanged.

Now, consider a point x along the dislocation segment. We define the vector Rd = xd − x,
which translates points x on the segment to the center of voxel xd. The unit vector t =

xb−xa

∥xb−xa∥ represents the segment’s tangent vector. The distance from the segment’s supporting
line to the point xd is denoted as d, which is the norm of the vector d = Rd − (Rd · t)t =

xd − x0. Here, x0 is the starting point of the vector d on the segment’s supporting line,
and it ends at xd. With this information, one can parameterize the position x along the
dislocation segment as x = x0 + st, where s is a scalar value within the interval [sa, sb].
The two bounds, sa and sb, shown in Figure 31 (or s′

a and s′
b if the segment is cropped) are

defined as sa = (xa − x0) · t and sb = (xb − x0) · t.
From these definitions, we can finally express the position vector Rd = xd − x as Rd =

d − st. The dislocation density at voxel d, attributed to a specific dislocation segment, can
be computed through the following line integral:

αij(xd) = bi tj

ωd

∫ xb

xa

S(xd − x) dL(x) = bi tj

ωd
I(xd) (3.11)

where the weight function S is taken to be a Cloud-In-Cell function defined by:

S(xd − x) =


3∏

i=1

(
1 − ∥xb

i − xi∥
Hi

)
if ∥xb

i − xi∥ < Hi

0 otherwise
(3.12)

This integral can then be numerically evaluated to give us, for each voxel d, an assigned
dislocation density, that then build up the simulation volume.
To assure stress balance inside the volume, a so called gas phase is used, with a 104 smaller
stiffness for relaxation to remove stresses outside the volume and so create zero-traction
boundary conditions. Consequently, the boundary between the thin foil and the gas phase is
a free surface. Which allows a convergence of the FDM-FFT algorithm. An overview of the
Nye’zation step for a vertical screw dislocation can be seen in Figure 32. For the visualization
of data we use Paraview (Ahrens et al. 2005).
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Figure 32: Numerical Approach for Modeling the Stress Field of Discrete Dislocation Lines Observed
by Tomography in a Thin Foil. (a) Depiction of a thin foil with a single vertical threading
screw dislocation line (represented by the black solid line, along with indications of the line
and Burgers vectors). (b) Visualization of the Nye tensor screw component α33 on the 3D
FFT grid (clipped). Bright voxels correspond to the thin foil, while dark voxels represent
the gas phase. (c) Presentation of the internal shear stress field σ23. (d) Illustration of the
elastic strain field ε12, generated in the vicinity of and on the free surfaces of the thin foil
to counteract the internal stresses σ13 and σ23 at the free surfaces. The coordinate system
used for figures (b), (c), and (d) is indicated at the center of the figure.
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3.3 Discrete Dislocation Dynamic simulations

Discrete dislocation dynamics (DDD) is a mesoscale simulation technique used to simulate the
behavior of dislocations (Bulatov and Cai 2006; Lepinoux and Kubin 1987). The general idea
is to discretize the dislocations along their dislocation lines piecewise into segments. These
segments are linked by nodes for which their velocities are calculated according external and
internal stresses. The corresponding motion is then used to update the nodal positions at
incremental time steps. So, it’s not only discrete in space but also in time. This is described
in more detail in Section 3.3.2.
A critical consideration in DDD is the choice between nodal and segment representations to
track dislocations. In the segment representation, dislocation movement is tracked through
the positions and orientations of line segments on the crystal lattice. While this representation
is only composed of screw and edge dislocation segments (see Figure 33 (a)), it proves
computationally efficient and easier to develop. In the nodal representation (see Figure 33
(b)), dislocation lines are depicted as a set of nodes connected by linear segments, with
each segment attributed a Burgers vector and a glide plane. Notably, the nodes in nodal
representation are free to move within the dislocation glide plane. The nodal representation
results in smoother dislocation lines, offering better representation of topological constraints
like curvature and core structure but at the cost of increased complexity and computational
demands.

Figure 33: Comparison of a segment representation (a) and a nodal representation (b). The fine red
line shows the actual dislocation line, the green points show the nodes, and the blue lines
represents the line segments.

The choice between nodal and segment-based approaches in dislocation simulation is primar-
ily dictated by the objectives and scales of the study. Nodal codes excel in capturing the exact
morphology of dislocations over extended distances, offering a more accurate representation
of dislocation shapes. This accuracy is particularly valuable when the continuous aspects
of dislocations are under scrutiny. However, it’s essential to note the challenges associated
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with segment codes at smaller scales. Despite their preference for detailed examination of
dislocation interactions in areas of high stress gradients, segment representations can strug-
gle to accurately depict small-scale phenomena. This limitation can lead to spurious effects,
especially in contexts involving climb where curvature representation at small scales is criti-
cal. Additionally, nodal codes have an advantage in implementing complex junction reactions
more straightforwardly, enhancing their utility for certain detailed analyses. Despite these
considerations, segment codes maintain a distinct advantage in terms of computational effi-
ciency, simplicity, and robustness, making them a faster and more straightforward option for
many applications. This efficiency is particularly notable on equivalent computing resources,
although nodal codes may offer more detailed and accurate representations under certain
conditions.

3.3.1 Historical development

The computational cost pave the way of history in DDD, a struggle between accuracy on the
one hand and complexity and computational power on the other hand.
The first implementation was done by Foreman and Makin (1966), it was nodal but in 2D and
looked at fcc metal to study the effect of hardening using random arrays of obstacles. It took
till 1987 to perform the first 2.5 D approach done by Lepinoux and Kubin (1987), a simplified
version where only straight edge segments are used and therefore line tension and other 3D
behavior are neglected. In addition, it needs the application of local rules to account for the
interaction between the dislocation as well as artificial multiplication. The authors showed
the formation of slip bands, a similar approach is used in this work to study rheology of MgO
with climb in the lower mantle which can be seen later. With fast increase in computing
power and easier accessibility of data centers in the 90s, the first 3D approaches were realized
by Devincre (1993) starting with fcc, and Moulin et al. (1997) who first implemented on a
simple cubic lattice. The first application to earth science in the form of forsterite was then
done by Durinck (2005) at Lille University were most of our study will be compared to.
This discussion leads us to the most recent developments in the field of Dislocation Dynamics
(DD), focusing on nodal codes initially developed by Kukta and Freundt (1998), particularly
ParaDis, developed at the Lawrence Livermore National Laboratory, and NUMODIS, devel-
oped in France at CEA (Saclay) which will be used in our study. These nodal codes have
been extensively applied in various studies. For instance, others have employed NUMODIS
to investigate loop interactions, as exemplified by Li et al. (2018). ParaDis has been for
example utilized in simulations of dislocation interactions with low-angle grain boundaries,
demonstrated by Liu et al. (2012). However, it’s worth noting that these nodal codes have
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certain limitations, such as the assumption of an infinite elastic field and the absence of
nucleation, although nucleation can be incorporated when coupled with other codes. Fur-
thermore, the contemporary trend in the field emphasizes the coupling of various codes to
leverage their respective advantages. Recent projects in the DD community have explored
areas like vacancy clusters using modified ParaDis, as seen in Wu et al. (2022), as well as the
investigation of dislocation-induced hardening, a topic explored by Madec et al. (2003). An
ongoing project called EL-NUMODIS involves the coupling of NUMODIS with FEM (Finite
Element Method) to accommodate surface stresses and Monte Carlo simulations for nucle-
ation, led by Gonzalez-Joa et al. (2023). Additionally, first studies delved into the mechanics
of dislocation climb, with work on diffusion climb loops conducted by Bakó et al. (2011) using
NUMODIS, or the coupling of climb mechanisms with ParaDis and Monte Carlo simulations
by McElfresh et al. (2022). Also first attempts to implement cross-slip in an fcc structure
were achieved by Longsworth and Fivel (2021) using NUMODIS. While these developments
are crucial, our primary focus lies in directly comparing our modeling results with experimental
data. NUMODIS was recently used to investigate the influence of irradiation-induced defects
in zirconium alloys with comparison to MD simulations and experimental data by Drouet et al.
(2014). In a study from Pollock and LeSar (2013), the authors compared data obtained from
DET studies by Hata et al. (2011) and DDD simulations. They highlighted the importance
of bridging the gap between these two fields, to provide a better validity from both sides. Our
goal is to establish a direct comparison between modeling and real microstructures, utilizing
the latter as input. However, this endeavor presents challenges, as experiments are inherently
non-idealized. Therefore, we start this work with a relatively simple microstructure whereas
many parameters as possible are known. Additionally, as a proof of concept, we limit ourselves
to an unmodified version of NUMODIS, which excludes cross-slip.

3.3.2 Discrete dislocation dynamics with NUMODIS

NUMODIS which stands for Numerical Modelling of Dislocation, is a nodal DDD code similar
to ParaDis, where a particular focus was given on node splitting. Node splitting allows physical
multi-arm nodes to split into multiple new nodes connected by new segments, which improves
the handling of junctions. It was developed in France at CEA (Saclay) in collaboration with
CNRS (Grenoble and Thiais) and INRIA (Bordeaux).

The choice of NUMODIS is supported by its nodal nature, which enables it to directly
trace dislocation lines, facilitating a seamless transition from tomography data to simula-
tion. Additionally, it has been adapted to accommodate orthorhombic structures, specifically
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Figure 34: Discretization in NUMODIS. Fine red line shows the actual dislocation line, the green
points show the nodes and the blue lines represents the line segments. In addition Burgers
vector b and the line direction t are indicated. The illustration on the right showcases the
evolution of the system after a certain duration and the corresponding remeshing. The
dotted blue line highlights the line segment between nodes A and B, which no longer
follows the dislocation line, therefore a new node has to be added. At the same time node
D becomes obsolete to and gets removed, since not C and D are enough to discretice the
line.

for forsterite simulations. This adaptation and the general implementation are done in col-
laboration with L. Dupuy (CEA Saclay), the leading developer of the code.

In the following, I will outline the general scheme of the code. The initial step involves the
discretization of dislocation lines into segments, which are interconnected by nodes (see figure
34). Each segment is assigned a Burgers vector and a glide plane normal.
Since NUMODIS assumes linear elasticity, the stress at each point x can be calculated by:

σ(x) = σapp(x) +
∑
seg

σseg(x) (3.13)

Here, σapp represents the applied stress from an external field, and σseg denotes the stress
arising from each segment and represents the stress created between the individual segments,
due to the microstructure. However, it’s worth noting that this method involves calculating
interactions not only with direct neighbors but with all segments in the system, resulting in
a scaling complexity of O(N2). That means the the running time of the algorithms scales
quadratic with the number of input elements N.

To account for the divergence of the stress field at the dislocation line we rely on a non-singular
continuum isotropic elasticity model by Cai et al. (2006). This method uses a spreading pa-
rameter, a0, to avoid infinite stress at the dislocation line, similar to the Peierls-Nabarro
model (see chapter 2.1.4).
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Nodal forces acting at each end of discrete dislocation segments arise from the long-range
elastic distortion field (stress) and from the dislocation core energy. The elastic forces are
computed using the Peach-Koehler formula, as defined in equation 2.22 using the analytic
expression from Arsenlis et al. (2007).

However, the non-singular model applies elasticity uniformly, necessitating an “energy correc-
tion term” (Ec

NS) to capture both the actual energy of a dislocation and ensure numerical
stability. This term acts similarly to core energy but is distinct in that it includes elastic
contributions within the core radius, underscoring its role as an energy correction rather than
merely a core energy substitute. This correction term is derived by the approach of DeWit
and Koehler (1959).

Moving on to the velocity calculation, where in the simplest scenario, a linear relationship is
assumed:

v = F el(x)
B

(3.14)

where B stands for a dragging coefficient, which reflects the viscosity/resistance of the lattice
plane and can be adjusted for individual slip systems. In the next step discrete events take
place such as junction formation, node splitting, or annihilation.
Finally, the process returns to the initial step, where the mesh is updated with new positions.
This step also allows for remeshing, which can involve coarsening certain parts of the mesh
by removing unnecessary nodes or refining it by adding nodes, as depicted in Figure 34.

The simulation box is set up to mimic the surfaces of the thin foil. With NUMODIS, we
employee free surface boundary conditions. When dislocations approach the surface, mirror
forces come into play, prompting us to extend the box for our final simulations, a topic
elaborated further in section 6.

3.3.3 Association with Tomography

After the initial transformation of the tomography data (see Section 3.2.1), our code un-
derwent specific adjustments tailored to meet the unique demands of Dislocation Dynamics
(DDD) datasets. Initially, all previously ordered data was converted into the structure and
format (XML) required for the NUMODIS input file. Additionally, the slip system planes were
previously obtained from tomography for each dislocation. Then, we manually completed the
information in a file, which is read by the program for comprehensive analysis. For dislo-
cations which are in multiple planes, the dislocation get divided into separate dislocations
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connected by one node, located at the intersection of the corresponding glide planes. The
program was then enhanced to enable a back transformation of the DDD dataset into Nye
input data, to analyse the stress field evolution. We have also created an option to extend
straight segments, to the surface of the simulation box. To get the mechanical response of
a bulk crystal instead of the thin foil.

3.3.4 2.5D-Dislocation Dynamics

Figure 35: Scheme of the reduction from a 3D DD simulation box to a 2.5D DD simulation box. (a)
3D microstructure with the indication of the cutting plane; (b) Intersection point of the
dislocation on the plane (2D); (c) edge on extension into the volume (2.5D). Courtesy F.
Boioli.

To model creep in periclase under mantle conditions, we employ a 2.5D Dislocation Dynam-
ics (DD) simulation approach, rather than opting for a full 3D approach. This approach has
already been benchmarked for periclase at ambient pressure (Reali et al. 2017). The reason
behind this simplification is to account for the climb mechanism. In the context of scales, it is
currently challenging to integrate both the climb and glide behaviors into a single simulation.
Climb mechanisms operate through the diffusion of single point defects, while glide occurs in
fixed planes. Additionally, another complicating factor is that the timescales associated with
these mechanisms can differ by multiple orders of magnitude. Given our objective of achieving
significant strains, employing a coupled approach, as seen in McElfresh et al. (2022), may
not be feasible.
The idea is to examine a cross-section of a 3D dislocation structure and represent each dislo-
cation as an edge dislocation that extends in a straight line throughout the 3D environment
(see Figure 35), which is why our approach is referred as 2.5D. This results in discrete sim-
ulation points rather than 2D objects embedded in a 3D space, inevitably leading to the
exclusion of certain effects related to 3D interactions, in example the limitation to a single
slip plane.
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To enable this simplification, it is essential to possess a comprehensive understanding of
the underlying elementary processes that occur within the material. To incorporate these
processes, we implement local rules (junction formation strengthening and dislocation mul-
tiplication). One of the primary considerations is accounting for the formation of junctions
and the subsequent increase in dislocation density.
During plastic flow, dislocations arrange themselves into great patterns of dislocation-rich and
dislocation-poor regions, creating cells which get denser when the stress is increased. This
phenomenon is called the "principle of similitude" (Gómez-Garcıa et al. 2006). The inter-
dislocation spacing diminishes with increasing stress, leading to an overall rise in dislocation
density. This increase in dislocation density is governed by the Taylor relation and remains
valid for strain rates below 10s−1 (Gómez-Garcıa et al. 1999). Since this study is focused on
the lower mantle where the strain rates are of the order 10−16s−1, where are far below that
threshold. It is given as follows (Sauzay and Kubin 2011):

ρ ∝
(

σ

bµ

)2
(3.15)

Another consequence of the "principle of similitude" is that the stress field that is usually
proportional to the inverse distance from the dislocation line, now concentrates within a spe-
cific cutoff distance corresponding to the mean inter-dislocation length. This means only
short range interactions are included and it is not accounted for dislocation interactions of
the whole network like it is done in DDD. To avoid the formation of artificial patterns from
the similitude principle, the cut off distance is allowed to vary a bit. 3D simulations done by
Devincre et al. (2011) reproduced those behaviors.
A consequence of this simplification is a significant reduction in the computational cost re-
quired for force calculations, shifting from an O(N2) complexity (as described in Devincre
et al. 2011) to a more efficient O(N) algorithm (as outlined in Gómez-Garcıa et al. 1999).
This computational optimization enables us to tackle larger scales with considerably less
computational effort. An additional point that has to be discussed is that, since we solely
account for edge dislocations, we omit screw dislocations that typically stabilize dislocation
tangles in 3D. An effect that can be ignored in 2D. However, screw dislocations also allow a
continuous movement of dislocations via cross-slip, which is accounted for in the annihilation
rules. Another consideration is the multiplication of dislocations via Frank-Read sources.
In a 2D dislocation structure, this multiplication is not possible, as it requires a 3D dislo-
cation structure. To address this, they are added artificially, with a multiplication rate of
m = 10−15 m−2, taken from 3D simulations in fcc crystals by Madec et al. (2002). Here m

is the rate at which the dislocation density increases with the plastic strain. However, adding
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dislocations at the same locations multiple times can lead to spurious annihilations due to
interactions with their replicas. To solve this, dislocations are randomly added to the simu-
lation box, providing that their effective stress is in the direction of the applied shear stress
as outlined in Gómez-Garcıa et al. (2006). In order to stabilize the stresses and dislocation
fluxes at the boundaries of each simulation box, we employ periodic boundary conditions.
Otherwise, the dislocations tend to accumulate in the center of the boxes. In addition to
validate the local rules, the simulation is tested at low and intermediate time scales against
results from three dimensional DD simulations and experiments (Amodeo et al. 2011; Appel
and Wielke 1985; Sato and Sumino 1980; Srinivasan and Stoebe 1974).

Figure 36: Strain ϵ evolution over time t, with glide only (red) and with glide and climb combined
(blue). Zoom shows the strain contribution of glide and climb in the the combined simu-
lation, indicating that glide mainly contributes to the strain.

To account for the timescale difference between glide and climb mechanism we separate these
two processes into individual regimes. Initially, we initiate the glide regime, which persists
until a quasi-equilibrium configuration is reached where dislocations cease to glide. This is
monitored by looking at the strain saturation, by calculating a floating average strain of the
last 400 simulation steps. When the difference in strain between the first 200 steps and
the second 200 steps becomes smaller than a certain value, in our case 10−23, we identify
this as reaching equilibrium. At this point, we switch to the climb regime, with significantly
longer time steps and employ a different velocity law (see equation 2.25). Once a displacement
equivalent to a full Burgers vector is achieved through climbing, we revert to the glide regime.
This cycle of switching between glide and climb is repeated iteratively throughout the entire
simulation to maintain a continuous deformation with a constant strain rate (see Figure 36).
Finally let’s briefly outline the simulation steps employed in this 2.5D approach. Initially, we
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calculate the forces acting on each dislocation using the Peach-Koehler force (equation 2.22).
Subsequently, dislocation velocities are computed using equation 2.21 in the glide regime and
equation 2.25 during the climb regime. Following this, the signals are time-integrated to
update the positions of the dislocations. In the subsequent step, all the contributions of
individual segments are summed to obtain the total strain. Finally, the local rules are applied,
and the simulation cycles back to the initial step.
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4 Results - General Applications of Dislocation

Electron Tomography

4.1 Quartz - Evidence of Mixed Climb

This section draws from a paper published to Journal of Geophysical Research1 In this project,
my primary role involved acquiring the DET data in collaboration with my PhD supervisor A.
Mussi. Subsequently, I conducted post-treatment on the data to facilitate its transformation
into a quantitative analysis. This entailed setting up statistical analyses and making adjust-
ments to enhance data interpretation. Additionally, I focused on improving data visualization
to ensure clarity. In this study, we apply DET to characterize 3D dislocation microstructures
in two highly sheared quartz mylonite specimens from the Moine and Main Central thrusts
which were deformed extensively by dislocation creep in the presence of water.

4.1.1 Introduction

Quartz is one of the major constituents, by volume, of the Earth’s crust. Above ca. 300◦C
(corresponding to depths beyond 10 km, Stipp et al. 2002b), quartz is ductile and it appears
to be one of the weaker minerals in naturally deformed rocks of the continental crust. The
plasticity of quartz is thus important to the description of the rheology of the lower crust.
Many studies over the last 60 years have been devoted to the plasticity of quartz. Still, the
plastic behaviour of this mineral is only partially understood, even in the laboratory. Our
understanding of the crystal plasticity of this mineral under natural conditions, and its con-
trol of crustal rheology, is far from resolved. The simple question of how quartz deforms by
glide of dislocations is not straightforward. In this trigonal mineral, glide of <a> disloca-
tions (1/3⟨21̄1̄0⟩) in the basal plane is expected (Baeta and Ashbee 1969). It was indeed
observed experimentally very early on and is complemented at higher temperatures by glide

1Weidner ,T., A. Mussi, O. Castelnau, A. Kronenberg, R. Law and P. Cordier. (2024)” Evidence
of Dislocation Mixed Climb in Quartz from the Moine and Main Central Thrusts: an Electron
Tomography Study”. In: Journal of Geophysical Research: Solid Earth, 129, e2024JB029083.
https://doi.org/10.1029/2024JB029083.
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of [c] ([0001]) dislocations in prismatic planes (Blacic 1975). However, these slip systems by
themselves are insufficient to satisfy the von Mises-Taylor criterion for general strains with
arbitrary non-zero components (Mises 1928; Taylor 1938;Ball and White 1978). Activating
<c+a> glide can potentially satisfy the remaining strain components (Baeta and Ashbee
1969; Trépied and Doukhan 1982): however, this mechanism seems to have been neglected
for several years. As far as deformation involving dislocation motion is concerned, conser-
vative glide is not the only process contributing to creep. Additional degrees of freedom to
deformation may be facilitated by dislocation climb as point defects become mobile through
diffusion. Strains may also be satisfied by cracking at low effective stresses or sliding at grain
boundaries (Behrmann and Mainprice 1987; Fliervoet et al. 1997; Fukuda et al. 2018; Rutter
and Brodie 2004; Tokle et al. 2019). Beyond the fundamental questions about intracrys-
talline deformation mechanisms that apply to all minerals (and crystalline solids in general),
dislocation creep of quartz and its mechanical properties depend on impurities, particularly
those derived from water (such as hydroxyls at structural sites of the crystalline structure and
dislocations). Owing to the three-dimensional network of strong Si-O bonds, dry quartz is
very strong, and almost undeformable by dislocation motions in the laboratory. In contrast,
quartz deformed at tectonic strain rates in the presence of water (at temperatures greater
than 300 ◦C) is ductile and appears to be one of the weakest minerals of quartzo-feldspathic
crustal rocks.

The phenomenon of water (or hydrolytic) weakening was discovered by Griggs and Blacic
(1965) and interpreted to result from hydrolysis of strong Si-O-Si bonds, to form weak
hydrogen-bonded SiOH groups at dislocation cores (Griggs 1967, 1974). Hydrous defects
were originally thought to be transported to dislocation cores by volume diffusion. However,
alternative water weakening models have since been proposed, including potential effects of
hydrogen impurities on other charged point defects that facilitate climb (Hobbs 1984; Hobbs
1981), and effects of hydrogen impurities on concentrations (and mobilities) of dislocation
kinks and jogs (Hirsch 1981). All of these models have been challenged, though, by the
discovery that solubilities of OH defects within the quartz structure are low (Cordier et al.
1989; Cordier and Doukhan 1991; Doukhan and Paterson 1986; Kronenberg et al. 1986),
limiting the predicted changes in point defect chemistry of crystalline quartz and the delivery
of OH to dislocations cores by radial volume diffusion to dislocation cores. Ab initio models of
hydrous molecular structures and dislocation kinks in quartz indicate that hydrous defects are
stable at dislocation cores, particularly at dislocation kinks (Heggie and Jones 1986; Heggie
et al. 1985). Hydrous defects are therefore thought to gain access to dislocation cores by pipe
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diffusion from grain boundaries or fluid inclusions (Bakker and Jansen 1990, 1994; Cordier
et al. 1989; Cordier et al. 1988; Cordier and Doukhan 1991; Heggie 1992).

Hydrolytic weakening has only been observed when measured OH concentrations are super-
saturated with respect to hydrous defect solubilities (Cordier et al. 1989; Kekulawala et al.
1978, 1981; Kirby and McCormick 1979). Initial transient creep rates of OH-supersaturated
quartz have been explained by mechanisms of dislocation nucleation at non-equilibrium water
clusters and fluid inclusions with further dislocation multiplication facilitated by pipe diffusion
of hydrous defects (Cordier et al. 1989; Gerretsen et al. 1989; McLaren et al. 1989). Most
relevant to the present study is the role of hydrous defects in facilitating dislocation climb
during plastic deformation of quartz.
Dislocation climb is usually regarded as a recovery mechanism rather than a strain-producing
mechanism (Tullis and Yund 1989). However, activation of the climb mechanism proposed by
Nabarro (1967) was suggested by Ball and White (1978) and Ball and Glover (1979) to apply
to quartz single crystals experimentally compressed along the [0001] direction. The activity
of dislocation climb in quartz also has implications for the onset of dynamic recrystallization
(Hirth and Tullis 1992). In the absence of significant contributions from dislocation climb at
low temperature, recrystallization involves strain-induced grain boundary migration (GBM),
or bulging. At higher temperature, when dislocation climb is enhanced, recrystallization may
occur by progressive subgrain rotation (Hirth and Tullis 1992).
In a recent study, an analytical method was applied to quartz using electron tomography of
dislocation microstructures to determine the components of the plastic strain tensor (Mussi
et al. 2021c) resulting from the displacement of these dislocations. This study revealed the
unexpected activation of <c+a> dislocation climb. The present study was undertaken to
learn whether climb of <c+a> dislocations is important to the plastic deformation of quartz
in natural shear zones. Quartz mylonite specimens were selected for electron tomography
from the Moine and Main Central thrusts, both of which deformed extensively by dislocation
creep in the presence of water. TEM tomography of dislocations presented in this study is
applied to determine the relative mobilities of dislocations by glide and climb.

4.1.2 Materials and Methods

4.1.2.1 Specimens

Two highly sheared quartz mylonite specimens have been selected for this study, exhibiting
optical microstructures and crystallographic preferred orientations indicative of dislocation
creep and dynamic recrystallization. Both mylonites come from major shear zones associated
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with collisional tectonic boundaries, one from the Main Central Thrust of Northwest India,
related to the southward-directed Oligocene-Miocene extrusion of the Greater Himalayan slab
(Hodges 2000), and the other from the Moine Thrust of Northwest Scotland, associated with
Caledonian shortening of the foreland continental margin during closure of the Iapetus Ocean
(Strachan et al. 2002). The Main Central Thrust mylonite specimen S-09-35a (hereafter
referred to as MCT) was taken from a quartz-rich horizon of Greater Himalayan orthogneisses
in the western part of the Sutlej Valley, at a structural distance of 71 meters above the Main
Central Thrust (Law et al. 2013). The Moine Thrust mylonite specimen SG-10 (hereafter
referred to as MT) was collected from Cambrian quartzites in the footwall at the Stack of
Glencoul, just 4.6 m below the thrust contact with overlying Neoproterozoic Moine schists
(Law et al. 1986, 2010).

The MCT specimen is made up of highly sheared quartz horizons within a sheared matrix of
mixed quartz and layer silicates (Figure 37). Almost all quartz horizons of this specimen have
been recrystallized, but the TEM observations made here are for larger residual quartz grains
whose deformation gives them the grain shapes of augen (Figure 37). These quartz augen
exhibit patchy undulatory extinction and well-developed subgrain walls. Fine recrystallized
quartz grains appear within the larger grains and at their margins, with microstructures
that indicate that recrystallization occurred predominantly by subgrain rotation (SGR) with
subordinate grain boundary migration (GBM) (Law et al. 2013; Stipp et al. 2002a). The
mean recrystallized grain size measured in quartz-rich layers is ∼ 45 µm (Francsis 2012).
Crystallographic c-axes of recrystallized quartz-rich horizons show distinctly asymmetric cross-
girdle patterns due to internal shear in the fault transport direction, with high c-axis densities
defining a great circle consistent with oblique grain shape alignments subparallel to lineation
and top-to-the SW (thrust) shear (Law et al. 2013).

Using the Faleiros et al. 2016 opening angle thermometer, the temperature of deformation
for MCT is estimated to be 515 ◦C, based on a measured c-axis fabric opening angle of 68◦

(Law et al. 2013). In contrast to the differences in crystal fabric and petrologically based
temperatures of Moine thrust specimens at the Stack of Glencoul, estimates of peak defor-
mation and metamorphic temperatures, based on c-axis patterns and coexisting garnet and
muscovite compositions of mylonites collected from the Sutlej Valley, are in close agreement.
Peak pressures estimated for mylonites ∼ 1100 m structurally above MCT are of the order
of 800 MPa (Supplementary file in Law et al. 2013). The differential stress estimated from
the mean recrystallized grain size of MCT and the modified Stipp et al. (2006) grain size
piezometer is ∼ 24 MPa (Francsis 2012; Law et al. 2013). The strain rate predicted by the
Hirth et al. (2001) flow law at these conditions is ∼ 10−12 s−1. Other than our own pre-
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Figure 37: Low magnification optical micrographs of specimen Main Central Thrust (MCT) (S-09-
35a) from hanging wall orthogneisses of the MCT, collected from the western part of the
Sutlej Valley, NW India (Law et al. 2013): (a) Plane light image of XZ section prepared
perpendicular to foliation (horizontal in this image) and parallel to lineation (in foliation),
nearly parallel to the fault transport direction (top to the left), with sheared quartz hori-
zons within a matrix of quartz and layer silicates. (b) Deformation and recrystallization
microstructures of quartz horizon in cross-polarized light.
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liminary TEM of MCT samples, we are not aware of any previous studies of dislocations by
electron microscopy of high strain rocks from the Sutlej Valley. Undulatory extinction and
subgrains of the MCT sample at the optical scale correspond to dislocations and subgrain
walls at the TEM observational scale. Infrared absorption measurements of OH bands reveal
large but variable OH contents of large augen quartz grains with mean molar OH contents of
3010 ± 2780 ppm (Kronenberg et al. 2017). These bands are due to intragranular molecular
water, and preliminary TEM shows that fine fluid inclusions routinely decorate dislocations.

The MT specimen consists of sheared ribbon (high aspect ratio) quartz grains with smooth
undulatory extinction observed in conventional thin sections, and well-developed subgrain
walls that are apparent in ultra-thin sections (∼5 µm) (Kronenberg et al. 2020), consistent
with optical microscopy of etched sections and TEM of nearby mylonitic Cambrian quartzites
(Ord and Christie 1984; Weathers et al. 1979). Ribbon quartz grains are recrystallized at
their margins, with microstructures due to grain boundary bulging (BLG) and subordinate
subgrain rotation (SGR) (Law 2014; Stipp et al. 2002a); over 70 % of this specimen consists of
recrystallized grains (with a 21 µm mean size; Kronenberg et al. 2020; Weathers et al. 1979)
but the new TEM observations of this study are from original ribbon quartz grains (Figure 38).
Crystallographic c-axes of ribbon and recrystallized quartz grains exhibit nearly symmetric
crossed-girdle patterns aligned with respect to grain shape foliation and lineation (Law et al.
2010), consistent with significant plane-strain foliation-normal shortening by glide on multiple
slip systems with Burgers vectors parallel to <a> and to [c] (and other crystallographic slip
vectors with components in a and c).

The temperature of deformation for the leading edge of the MT, based on crystallinity of white
micas, is relatively low, 300 − 350 ◦C (Johnson et al. 1985), while temperature estimates for
the MT specimen based on opening angles of quartz c-axis fabrics measured on ribbon detrital
quartz grains (53◦) and matrix recrystallized quartz grains (69◦) are as large as 415 ◦C and
525 ◦C respectively (Faleiros et al. 2016; Law et al. 2010 opening angle thermometer). Peak
lithostatic pressures during mylonitization have not been determined. The differential stress
estimated from the mean recrystallized grain size (21 µm) of MT and the modified Stipp
et al. (2006) recrystallized grain size piezometer (with the adjustment of Holyoke III and
Kronenberg 2010) is ∼ 44 MPa, and strain rates based on this stress, temperature estimates
of 350 − 400 ◦C, and the quartzite flow law of Hirth et al. (2001) are between 10−14 s−1 and
10−13 s−1.

Preliminary TEM observations of MT corroborate earlier observations of dislocation mi-
crostructures (Ord and Christie 1984; Weathers et al. 1979 and intimate dislocation-fluid
inclusion relationships suggest that hydrogen defects had direct access to the cores of dis-
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Figure 38: Optical micrographs of specimen Moine Thrust (MT) (SG-10) from footwall quartz my-
lonites of the MT collected at the Stack of Glencoul, NW Scotland (Christie et al. 1964;
Law 2014; Law et al. 1986, 2010): (a) Cross-polarized image of XZ section prepared per-
pendicular to foliation (horizontal in this image) and parallel to lineation (in foliation) and
fault transport direction (top to the left) shows highly sheared (high aspect ratio) ribbon
quartz grains and extensive dynamic recrystallization. (b) Larger ribbon quartz grains show
smoothly undulatory extinction with serrated grain boundaries at their margins, of similar
dimensions as recrystallized quartz grains.
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locations. Infrared absorption measurements of OH bands of original ribbon quartz grains
of MT are large, varying from one grain to another, with molar OH/Si concentrations of
2400 ± 700 ppm (H/106 Si) (Kronenberg et al. 2020).

While the inferred temperatures, pressures, differential stresses and strain rates of the two
mylonite specimens investigated in this study vary, the overall crystallographic fabrics are
remarkably similar. With their similar quartz cross-girdle c-axis fabrics and fabric opening
angles for the MT and MCT specimens (68◦ for recrystallized grains in MCT, and 53◦ and
69◦ measured for deformed detrital and recrystallized grains, respectively, in MT), we might
expect similar dislocation slip systems to be important with similar proportions of slip vector
components in the a and c directions.

Temperature estimates for these specimens correspond well with the temperature ranges
for dynamic recrystallization of quartz by BLG, SGR, and GBM mechanisms (Stipp et al.
2002a); subgrain rotation recrystallization appears to be important for both mylonites, with
the implication that dislocation climb is important in both tectonic settings and deformation
conditions. In addition to SGR recrystallization, the MCT specimen has grain boundaries
characteristic of some GBM recrystallization, while the MT specimen exhibits evidence for
BLG recrystallization as well as the SGR mechanism (Kronenberg et al. 2020, 2017).

4.1.2.2 Dislocation electron tomography

DET was employed to analyze the dislocation populations in specimens from the MCT of
the Himalayas (specimen S09) and the MT zone at the Stack of Glencoul (specimen SG10).
The high-structure factor 1122 and 1101 diffraction vectors were used for the MCT and MT
specimens, respectively. Considering the electron beam sensitivity of quartz, precautions were
taken into account based on the techniques described in chapter 3.1.3. To account for this
we used a condenser aperture with a diameter of 100 µm and a spot size of 11.3 nm.

For the MCT specimen, WBDF micrographs were acquired at 5◦ intervals, covering angles
from −55◦ to 70◦. This tilt-series comprised a total of 26 projected images. For the MT
specimen, Weak Beam Bright-Field (WBBF) micrographs were acquired every 10◦ from −50◦

to 50◦, and additionally from −45◦ to 35◦. These tilt-series consisted of 11 and 9 projected
images, respectively. The WBBF technique was used for the second sample due to phase
contrast issues.
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4.1.2.3 Plastic strain associated with dislocation segments

Most of the dislocation segments observed in this study lie out of their glide planes. This
configuration is discussed in section 4.1.4.2. These dislocation segments must be analysed,
recognizing that they must have moved by a combination of glide and climb, mixed climb.
In the following, we express the strain that can be generated by the displacement of the
dislocation segments present in the specimen, taking into account their movement plane. We
denote n the unit vector normal to the plane containing the dislocation line (referred to as
the movement plane), and ng the unit vector normal to the glide plane (index g stands for
’glide’). The Burgers vector b is thus perpendicular to ng (Figure 20). The unit line vector
of the dislocation, denoted t, is in the movement plane and is therefore perpendicular to n.
For the part of a segment that is edge oriented, the line vector, denoted te (index e stands
for ’edge’) is also perpendicular to the Burgers vector. Therefore, it can be expressed as:

te = b × n
∥b × n∥

(4.1)

where ‘×’ is the cross product. The normal ng of the dislocation glide plane is perpendicular
to both the line vector te and the Burgers vector b and can thus be written:

ng = te × b
∥te × b∥

(4.2)

The dislocation (edge or screw) gliding in that plane produces a plastic strain-rate proportional
to its Schmid tensor Sg, according to the Orowan equation:

ε̇g
ij = ρbvgSg

ij (4.3)

with Sg
ij = 1

2(ng
i b̂j + ng

j b̂i), where b̂ is the unit vector parallel to b, ρ is the density of mobile
dislocations and vg is their glide velocity. The inclination θ between the dislocation plane and
the glide plane (Figure 20) can be calculated from cos θ = ng · n. For non-zero values of θ,
climb must be involved. The kinematics of the climb of an edge dislocation is a little more
complicated as diffusion may not produce an isochoric strain (see Lebensohn et al. 2010 and
Yuan et al. 2018). However, considering geological time scales, we assume that the density of
point defects that affect climb achieve equilibrium concentrations (i.e., constant with time)
at a given temperature. Thus, no volume change is expected due to climb. The strain-rate
tensor produced by climb is proportional to the ‘climb Schmid tensor’ Sc (index c stands for
climb)

ε̇c
ij = ρbvcSc

ij (4) (4.4)
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where vc is the climb rate of the segment and Sc is given by Sc
ij = b̂ib̂j− 1

3 b̂k b̂kδij . As indicated
in Tables 4.1 and 4.2, several dislocation segments and movement planes have been identified
in the two grains investigated. Grain deformation can be investigated by summing-up the
contributions of glide and/or climb of one or more dislocation segments, and the number
of the associated independent deformation systems can be computed as explained in Cotton
et al. (1991) and Castelnau et al. (2020) for any crystal symmetry.

4.1.2.4 Estimation of the local loading conditions

Here we attempt to infer the local stress that acted in situ on the investigated grain to produce
the observed dislocation microstructure. We assume a power law constitutive relation for glide
and for climb to estimate the dislocation velocity for glide and climb. These velocities, which
depend on the local stress, are linked together by the angle θ shown in Figure 20.

4.1.2.4.1 Glide Mechanism We start with the Orowan equation (eq. 4.3), written for a
specific slip system and consider a standard power-law (Morales et al. 2011) to describe the
shear-rate at the slip system scale:

γ̇ = γ̇0

∣∣∣∣ τ

τ0

∣∣∣∣ng−1 τ

τ0
(4.5)

where γ̇0 is a reference strain-rate, τ0 is the corresponding reference stress, ng gives the stress
sensitivity for glide, and τ is the shear stress resolved on the glide plane given by:

τ = ng
i b̂jσ′

ij (4.6)

The dislocation glide velocity is thus given by:

vg = γ̇0
ρb

∣∣∣∣ τ

τ0

∣∣∣∣ng−1 τ

τ0
(4.7)

4.1.2.4.2 Climb Mechanism Here we use the Orowan equation (eq. 4.4) adapted to
climb, following Lebensohn et al. (2010). As for glide, we consider a standard power-law to
describe the longitudinal strain-rate:

ϵ̇ = γ̇0

∣∣∣∣ σ′

σ0

∣∣∣∣nc−1 σ′

σ0
(4.8)

where γ̇0 is a reference strain-rate (which can be taken as the same as for glide), σ0 is the
corresponding reference stress, nc gives the stress sensitivity for climb, and σ′ is the deviatoric
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stress given by:
σ′ = b̂I b̂jσ′

ij (4.9)

The dislocation climb velocity is thus given by:

vc = γ̇0
ρb

∣∣∣∣ σ′

σ0

∣∣∣∣nc−1 σ′

σ0
. (4.10)

4.1.2.4.3 Estimation of the Local Stress The velocities vc and vg are related by the
angle θ between the normal to the plane of movement and the normal to the glide plane.
This can be expressed as

(vgb̂ + vcng) · n = 0 (4.11)

where cos θ = ng ·n. To find a stress state compatible with the observed dislocation structure,
we must solve for a system of nonlinear equations formed by one condition (12) for each
observed dislocation segment. We adopt a minimization procedure in order to find the stress
tensor that best matches the observations. We construct the following objective function

∑
s

lks (θmod
s − θobs

s )2 (4.12)

where θmod is the θ angle computed from the above equations and θobs is the observed angle.
The difference in θ angles is weighted by the dislocation length l in order to force a better
match for longer dislocation segments (here, we used a value for k = 4). The objective
function is the sum over all observed dislocation segments s, minimized by the Nelder-Mead
method.

4.1.3 Results

The dislocation microstructures of the MCT and MT specimens are comparable. Dislocation
densities are 3 × 1012 m−2 and 4 × 1012 m−2 respectively (with densities measured directly
from the reconstructed volumes). Sub-grain boundaries due to recovery are observed in both
specimens (Figures 39 and 40).

In this section, the quantitative analysis of the microstructure is described, followed by a
detailed characterization of slip systems, and then climb systems for each specimen. From
these analyses, Schmid tensors and associated equivalent strain and stress tensors of each
specimen are estimated.
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Figure 39: Global microstructure of the specimen from the MCT: Micrograph in WBDF condition
obtained with the 1122 diffraction vector (the white rectangles are analysed in detail in this
study), where one sub-grain can be observed.
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Figure 40: Global microstructure of specimen from the MT: Micrograph in WBBF condition obtained
with the 1101 diffraction vector (the white rectangles are analyzed in detail in this study)
where two sub-grains can be observed. In the top left corner is the stress ellipsoid inferred
from the present analysis (see discussion, Figure 49).
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4.1.3.1 Quantitative analysis of the microstructure

The characterization of dislocation glide and/or climb relies on determination of the plane of
movement of dislocation, which can only be achieved for curved dislocations. In this study,
however, we have sought to take into account the contribution of rectilinear dislocations to
the microstructure. Lattice friction is high in quartz under the deformation conditions of
our specimens Doukhan and Trépied (1985). Consequently, it is highly likely that rectilinear
dislocations are in glide configurations. Following the characterization of direction lines of
rectilinear dislocations with known Burgers vectors, it is possible to infer their glide planes
(provided that they are not pure screw in character). In order to optimize the quantification
of the dislocation glide and climb contributions, we have only considered the dislocations
whose Burgers vectors could be unambiguously determined, keeping in mind that indexing of
Burgers vectors has previously been optimized. However, DET has been conducted for each
specimen with only one diffraction vector which does not allow identification of all dislocation
segments. More precisely, the DET study of the MCT specimen has been conducted with
the 1122 diffraction vector, where all dislocations (⟨a⟩, [c] and ⟨c + a⟩) are in contrast except
c + a3 dislocations. Our DET study of the MT specimen has been conducted with the 110̄1

diffraction vector where all dislocations are in contrast except a3, c + a2 and c − a1. A
complete list of the characterized dislocation segments of both specimen is given in Tables
4.1 and 4.2.

Table 4.1: List of dislocations where Burgers vector and habit planes have been characterized in the
MCT specimen (Figures 41 to 43). The last column reports the angle between the normal
of those planes and the Burgers vector b.

Dislocation (b) Segment no. Length (nm) Plane ∠(n, b)

1
3 [2110] 1 (no.1) 398

(
3140

)
44◦

1
3 [2110] 1 (no.2) 1409

(
3141

)
45◦

1
3 [2110] 1 (no.3) 1215

(
2 12 10 11

)
52◦

1
3 [2110] 1 (no.4) 527

(
2021

)
36◦

1
3 [1210] 2 (no.1) 1327

(
1010

)
90◦

1
3 [1210] 2 (no.2) 619

(
1320

)
11◦

Continued on next page
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Table 4.1 continued from previous page

Dislocation (b) Segment no. Length (nm) Plane ∠(n, b)

1
3 [1210] 2 (no.3) 943

(
1232

)
56◦

1
3 [1210] 3 (no.1) 1116

(
11 1 12 3

)
86◦

1
3 [1210] 3 (no.2) 430

(
1542

)
27◦

1
3 [1210] 3 (no.3) 987

(
3581

)
52◦

1
3 [1210] 4 1187

(
1010

)
90◦

1
3 [1210] 5 (no.1) 611

(
0110

)
30◦

1
3 [1210] 5 (no.2) 756

(
3140

)
76◦

1
3 [1210] 5 (no.3) 352

(
0223

)
56◦

1
3 [1210] 6 388

(
4261

)
71◦

1
3 [1210] 7 (no.1) 493

(
11 6 5 4

)
59◦

1
3 [1210] 7 (no.2) 542

(
4511

)
21◦

1
3 [1210] 7 (no.3) 334

(
2243

)
66◦

1
3 [1210] 8 1126

(
1011

)
90◦

1
3 [1210] 9 1069

(
1010

)
90◦

1
3 [1210] 10 1125

(
1010

)
90◦

1
3 [1210] 11 937

(
1010

)
90◦

1
3 [1210] 12 1141

(
1010

)
90◦

1
3 [1120] 13 878

(
3120

)
49◦

1
3 [1120] 14 (no.1) 297

(
4043

)
42◦

1
3 [1120] 14 (no.2) 656

(
1234

)
51◦

Continued on next page
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Table 4.1 continued from previous page

Dislocation (b) Segment no. Length (nm) Plane ∠(n, b)

1
3 [1120] 15 1141

(
3581

)
10◦

1
3 [1120] 18 274

(
1120

)
0◦

1
3 [1120] 19 438

(
5142

)
44◦

1
3 [1120] 20 (no.1) 370

(
0110

)
30◦

1
3 [1120] 20 (no.2) 619

(
2131

)
20◦

1
3 [1120] 21 (no.1) 551

(
1542

)
) 44◦

1
3 [1120] 21 (no.2) 716

(
7431

)
65◦

1
3 [1120] 21 (no.3) 375

(
2641

)
50◦

1
3 [1120] 22 (no.1) 759

(
6241

)
50◦

1
3 [1120] 22 (no.2) 1024

(
4151

)
21◦

1
3 [1120] 23 (no.1) 1486

(
2130

)
11◦

1
3 [1120] 23 (no.2) 696

(
1121

)
25◦

1
3 [1120] 23 (no.3) 683

(
1211

)
63◦

1
3 [1120] 23 (no.4) 1086

(
4511

)
79◦

1
3 [1120] 24 (no.1) 480

(
2021

)
36◦

1
3 [1120] 24 (no.2) 483

(
1102

)
90◦

1
3 [1120] 25 (no.2) 600

(
1672

)
26◦

1
3 [1120] 25 (no.3) 733

(
3140

)
16◦

1
3 [1120] 25 (no.4) 407

(
2110

)
60◦

1
3 [1120] 26 (no.1) 1146

(
5 9 14 6

)
23◦

Continued on next page
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Table 4.1 continued from previous page

Dislocation (b) Segment no. Length (nm) Plane ∠(n, b)

1
3 [1120] 26 (no.2) 409

(
4 14 10 1

)
46◦

1
3 [1120] 27 405

(
1010

)
30◦

1
3 [1120] 28 422

(
0223

)
56◦

1
3 [1120] 29 625

(
1100

)
90◦

1
3 [1120] 30 880

(
1101

)
90◦

1
3 [1120] 31 839

(
1100

)
90◦

1
3 [1120] 32 481

(
1100

)
90◦

1
3 [2113] 33 (no.1) 403

(
3142

)
42◦

1
3 [2113] 33 (no.2) 964

(
3144

)
83◦

1
3 [2113] 33 (no.3) 304

(
1010

)
54◦

1
3 [1213] 34 (no.1) 304

(
4221

)
81◦

1
3 [1213] 34 (no.2) 246

(
1010

)
90◦

1
3 [1213] 35 (no.1) 640

(
1010

)
90◦

1
3 [1213] 35 (no.2) 211

(
1012

)
51◦

1
3 [1213] 36 1430

(
5 12 7 1

)
44◦

1
3 [1213] 37 856

(
4511

)
60◦

1
3 [1213] 38 (no.1) 592

(
1 14 13 3

)
44◦

1
3 [1213] 38 (no.2) 772

(
1320

)
49◦

1
3 [1213] 39 (no.1) 234

(
2110

)
70◦

1
3 [1213] 39 (no.2) 803

(
1122

)
75◦

Continued on next page
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Table 4.1 continued from previous page

Dislocation (b) Segment no. Length (nm) Plane ∠(n, b)

1
3 [1213] 39 (no.3) 290

(
2110

)
70◦

[0001] 40 (no.1) 423
(
0221

)
68◦

[0001] 40 (no.2) 260
(
4041

)
79◦

[0001] 40 (no.3) 778
(
1213

)
36◦

[0001] 41 923
(
1453

)
63◦

Table 4.2: List of dislocations where Burgers vector and habit planes have been characterized in the
MT specimen (Figures 42 and 44). The last column reports the angle between the normal
of those planes and the Burgers vector b.

Dislocation (b) Segment no. Length (nm) Plane ∠(n, b)

1
3 [2110] 1 137

(
1013

)
71◦

1
3 [2110] 2 155

(
0111

)
90◦

1
3 [2110] 3 132

(
0112

)
90◦

1
3 [2110] 4 289

(
7251

)
16◦

1
3 [2110] 5 (no.1) 671

(
1212

)
68◦

1
3 [2110] 5 (no.2) 568

(
5321

)
12◦

1
3 [2110] 5 (no.3) 962

(
1325

)
80◦

1
3 [2110] 6 248

(
0112

)
90◦

1
3 [2110] 7 (no.1) 326

(
4311

)
20◦

1
3 [2110] 7 (no.2) 397

(
3211

)
20◦

1
3 [2110] 8 438

(
2110

)
0◦

1
3 [2110] 9 203

(
6513

)
31◦

Continued on next page
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Table 4.2 continued from previous page

Dislocation (b) Segment no. Length (nm) Plane ∠(n, b)

1
3 [2110] 10 388

(
5276

)
56◦

1
3 [1120] 11 266

(
5 6 1 11

)
60◦

1
3 [1210] 12 312

(
1011

)
90◦

1
3 [1210] 13 273

(
1320

)
11◦

1
3 [1210] 14 414

(
1563

)
44◦

1
3 [1210] 15 (no.1) 493

(
1101

)
47◦

1
3 [1210] 15 (no.2) 227

(
1233

)
61◦

1
3 [1210] 15 (no.3) 130

(
1342

)
49◦

1
3 [1210] 16 245

(
5721

)
16◦

1
3 [1210] 17 75

(
2021

)
90◦

1
3 [1210] 18 435

(
1011

)
90◦

1
3 [1210] 19 883

(
5832

)
15◦

1
3 [1120] 20 999

(
1101

)
90◦

1
3 [1120] 21 244

(
2201

)
90◦

1
3 [1120] 22 349

(
1102

)
90◦

1
3 [1120] 23 812

(
1101

)
90◦

1
3 [1120] 24 467

(
2201

)
90◦

1
3 [2113] 25 517

(
2310

)
64◦

1
3 [2113] 26 (no.1) 450

(
2243

)
74◦

1
3 [2113] 26 (no.2) 413

(
1343

)
52◦

Continued on next page
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Table 4.2 continued from previous page

Dislocation (b) Segment no. Length (nm) Plane ∠(n, b)

1
3 [2113] 26 (no.3) 240

(
2753

)
85◦

1
3 [2113] 26 (no.4) 826

(
1121

)
90◦

1
3 [1123] 27 (no.1) 504

(
1101

)
63◦

1
3 [1123] 27 (no.2) 876

(
4311

)
72◦

1
3 [1123] 28 345

(
1011

)
90◦

1
3 [1123] 29 286

(
4131

)
81◦

[0001] 30 249
(
3141

)
78◦

[0001] 31 1124
(
2110

)
90◦

[0001] 32 101
(
1100

)
90◦

4.1.3.2 Glide Mechanism

4.1.3.2.1 MCT specimen In this specimen, we found evidence of ⟨a⟩ and ⟨c + a⟩ glide in
prismatic {1100} planes, and also of ⟨a⟩ glide in pyramidal {1101} planes and in a (1102)

pyramidal plane. An example of tomographic reconstruction of a typical domain is shown
in Figure 41. The Burgers vector indexing shows the presence of dislocations with 1

3 [1210]

(or a2) and 1
3 [1213] (or c − a2) Burgers vectors, drawn in light and dark green, respectively.

The reconstructed dislocation volumes can be tilted to view the planes containing these
dislocations edge-on. Figures 41(a)-(c), show an a2 dislocation lying near the prismatic
(1010) plane. This demonstrates activation of the 1

3 [1210](1010) slip system. A slightly
more complex configuration is detailed in Figures 41(d)-(f). Part of this dislocation is in the
(1010) glide plane. Moreover, a collinear interaction (Madec et al. 2003; Mussi et al. 2015a)
with an a2 sessile dislocation loop can be clearly identified. The plane of this loop is edge-on
for a projection angle of −18◦ (Figure 41(f)). The 3D geometry of this dislocation is due to
this interaction. From Figures 41(g)-(i), we also characterize the 1

3 [1213](1010) slip system.

4.1.3.2.2 MT Specimen The MT specimen also shows dislocations in glide configurations.
We found evidence for glide of ⟨a⟩, [c] and ⟨c+a⟩ dislocations. In this specimen, no prismatic
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4.1 Quartz - Evidence of Mixed Climb

Figure 41: Slip system characterizations by dislocation electron tomography for the MCT specimen,
obtained with the 1122 diffraction vector: (a) Raw WBDF micrograph of an a2 dislocation
observed along a projection angle of −15◦; (b) reconstructed volume of this dislocation
(coloured in green) for a projection angle of 72◦ where the prismatic (1010) plane is edge-
on; (c) same reconstructed dislocation with a projected angle of −18◦; (d) raw WBDF
micrograph of two a2 dislocations (a dislocation loop and a complex 3D dislocation) ob-
served along a projection angle of −15◦; (e) reconstructed volume of these dislocations for
a projection angle of 72◦; (f) same reconstructed dislocations with a projected angle of
−18◦; (g) raw WBDF micrograph of 3D c − a2 dislocations observed along a projection
angle of −15◦; (h) reconstructed volume of these dislocations (coloured in dark green) for
a projection angle of 72◦; (i) same reconstructed dislocations with a projected angle of
−18◦. The 1

3 [1210](1010) and 1
3 [1213](1010) slip systems have been characterized in this

figure.
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glide has been observed for ⟨a⟩ and ⟨c + a⟩ dislocations; only [c] dislocations in (1100) and
(2110) glide planes have been characterized. ⟨a⟩ dislocations appear to glide predominantly
in {1101} pyramidal planes. We have also noted evidence for ⟨a⟩ glide in {1102} and
{2201}, and ⟨c+a⟩ glide in {1011}, {1121}, {1122} and {2131}. Glide in {1101} represents
approximately 3/7 of all glide in this specimen. An example of a slip system characterization
is shown in Figures 42(a)-(d). The pyramidal (1121) plane is edge-on with a projection angle
of 14◦. The direction of the trace of this plane corresponds to the direction of the dislocation
line with a projection that is rectilinear, as its movement plane is edge-on (Figure 42(b)). The
1
3 [2113](1121) slip system has been identified given that the Burgers vector of this dislocation
is c + a1. We have also identified the [0001](2110) slip system (Figures 42(e)-(h)).

Figure 42: Slip system characterizations revealed by dislocation electron tomography, obtained with
the 1101 diffraction vector, in the MT specimen: (a) Raw WBDF micrograph of a c + a1
dislocation observed along a projection angle of 0◦; (b) reconstructed volume of this dis-
location (colored in dark blue) for a projection angle of 14◦ where the pyramidal (1121)
plane is nearly edge-on; (c) same reconstructed dislocation with a projected angle of 26◦

(green plane shows the habit plane of the dislocation segment); (d) same reconstruction
with a projected angle of −76◦ (the normal to the pyramidal plane is edge-on); (e) raw
WBDF micrograph of a [c] dislocation observed along a projection angle of 10◦; (f) recon-
structed volume of this dislocation (colored in yellow) for a projection angle of 42◦ where
the prismatic (2110) plane is edge-on; (g) same reconstructed dislocations with a projected
angle of 36◦; (h) same reconstruction with a projected angle of −48◦ (the normal to the
prismatic plane is edge-on). The 1/3[2113](1121) and [0001](2110) slip systems have been
characterized in this figure.
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4.1.3.3 Climb Mechanism

4.1.3.3.1 MCT Specimen A significant proportion of the dislocation population cannot
be interpreted as resulting from glide (i.e., lying in a plane which contains the Burgers
vector). For instance, Figures 43(a)-(c) show a 1/3[1120] dislocation (a3) in a (1120) plane.
This corresponds to a prismatic loop in pure climb configuration. A complex 3D dislocation
(Figures 43(d)-(f)) has been analysed where one of its segments is practically in pure climb
configuration (Figure 43(f)) and three other segments are neither in pure climb nor in pure
glide configurations. In other words, the Burgers vector of this dislocation makes an angle
with the plane containing each segment under consideration with values between 0 and 90◦

(such as in Figure 20). These configurations are characterized as mixed climb, as kinematically
described in section 4.1.2.3. We also note that this dislocation shows colinear climb interaction
with a prismatic loop. Figures 43(g)-(i) show an example of mixed climb, which involves a
c − a2 dislocation. Of all dislocations analyzed in the MCT specimen, approximately 3/5 are
of mixed climb character (considering the lengths of the dislocation segments).

4.1.3.3.2 MT Specimen We find the same results for the MT specimen as for the MCT
specimen, with a significant proportion, around half of dislocations in mixed climb configu-
rations. (Figures 44(d)-(f) and 44(g)-(i)). An example of a small dislocation loop in a pure
climb configuration has also been found (Figures 44(a)-(c)).
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Figure 43: Climb characterizations revealed by dislocation electron tomography, obtained with the
1122 diffraction vector, for specimen MCT: (a) Raw WBDF micrograph of a a3 dislocation
observed along a projection angle of −15◦; (b) reconstructed volume of this dislocation
(colored in red) for a projection angle of 31◦ where the prismatic (1120) plane is edge-
on; (c) same reconstructed dislocation with a projected angle of 121◦; (d) raw WBDF
micrograph of another geometrically complex a3 dislocation observed along a projection
angle of 5◦; (e) reconstructed volume of this dislocation for a projection angle of −59◦

where the pyramidal (1211) plane is edge-on; (f) the same dislocation with a projected
angle of 31◦ where the pyramidal (1121) plane is edge-on; (g) raw WBDF micrograph
of a c − a2 dislocation observed along a projection angle of 30◦; (h) the reconstructed
volume of this dislocation (colored in dark green) for a projection angle of 72◦; (i) the
same reconstructed dislocation with a projected angle of −29◦ for which its plane is edge-
on. The 1/3[1120](1120) pure climb system and the 1/3[1120](1121) and 1/3[1120](1211)
mixed climb systems have been characterized in this figure.
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Figure 44: Characterizations of dislocation climb revealed by dislocation electron tomography, obtained
with the 1101 diffraction vector, for the MT specimen: (a) Raw WBDF micrograph of a
a1 dislocation observed along a projection angle of 0◦; (b) reconstructed volume of this
dislocation (colored in blue) for a projection angle of 42◦ for which the prismatic (2110)
plane is edge-on; (c) same reconstructed dislocation with a projected angle of 10◦; (d) raw
WBDF micrograph of a1, a2 and c dislocations observed along a projection angle of 0◦; (e)
reconstructed volume of these dislocations (colored in blue, green, and yellow respectively)
for a projection angle of 30◦ where the habit plane of the a1 dislocation loop is edge-on;
(f) same reconstructed dislocations with a projected angle of −36◦ where the prismatic
(1320) plane is edge-on (corresponding to the habit plane of the a2 dislocation loop); (g)
raw WBDF micrograph of a ⟨c − a2⟩ complex dislocation observed along a projection angle
of 0◦; (h) reconstructed volume of this dislocation for a projection angle of −73◦ where
the habit plane of a part of this dislocation is edge-on; (i) same reconstructed dislocation
with a projected angle of 42◦ where the last two parts of this dislocation are edge-on. The
1/3[2110](2110) pure climb system and the 1/3[1210](1320) mixed climb system have been
characterized in this figure.
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4.1.3.4 Strain analysis from electron tomography data

The plastic strain inferred for the motion of each dislocation segment has been calculated
based on the relations provided in section 4.1.2.3. We have considered, for each specimen,
(1) the segments that correspond to pure glide (θ = 0) only, (2) the segments in pure climb
configurations (θ = 90◦) only, (3) all glide components of the segments (i.e., including pure
glide segments and the glide contribution of segments in mixed climb configurations), and
(4) all climb components (i.e., pure climb segments and the climb contributions of segments
in mixed climb configurations). In all cases except in the case of pure climb, the set of
available dislocations is sufficient to provide five independent strain components at the grain
scale. Thus, the observed dislocation microstructure can accommodate any deformation.
The Schmid tensors, either for glide or for climb, are full matrices in which no specific
component dominates. As an illustrative example, we provide below the sum of all glide or
climb individual Schmid tensors weighted by their corresponding relative dislocation length.
This gives, expressed in crystal axes:

For SG10:

S̄g =


−0.061 −0.042 0.152

−0.042 0.067 0.090

0.152 0.090 −0.006



S̄c =


0.158 −0.067 0.014

−0.067 −0.052 −0.006

0.014 −0.006 −0.106


For S09:

S̄g =


−0.090 0.035 −0.007

0.035 0.044 0.010

−0.007 0.010 0.046



S̄c =


−0.058 0.113 −0.021

0.113 0.301 0.094

−0.021 0.094 −0.243


The associated equivalent Schmid tensors, S̄g

eq = (S̄g
ii)1/2 for all glide contributions and

S̄c
eq = (S̄c

ii)1/2 for all climb contributions, have similar values, about 0.2 for MT for both
glide and climb. Somewhat smaller values are obtained for glide (≈ 0.1) than for climb
(≈ 0.4) for the MCT specimen.
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4.1.4 Discussion

4.1.4.1 Slip systems

In our specimens, dislocations observed are mostly of the ⟨a⟩ and ⟨c + a⟩ types with only a
few [c] dislocations observed in the MT specimen. Active slip systems in quartz have been
constrained by many experimental studies (Baeta and Ashbee 1969; Hobbs 1968; Morrison-
Smith et al. 1976) and their activities have been shown to depend strongly on temperature.
Below 700◦C, ⟨a⟩ basal glide dominates. Above 700◦C, glide becomes progressively more
active in pyramidal {110n} with n = 0, 1, 2, 3, and then on prismatic planes. Above 750◦C,
⟨c + a⟩ dislocations are activated which glide in {1101} and {112n} with n = 1, 2 and then
[c] glide on prism planes. Under geological conditions of strain-rate and deviatoric stress, the
same sequence is assumed to be valid with the activation of [c] glide starting at 600-650◦C
(Mainprice et al. 1986; Okudaira et al. 1995). Mainprice et al. (1986) also point out that the
activation of [c] glide is favoured by wet conditions, which is the case in our specimens. Our
observations are thus consistent with this transition sequence where ⟨a⟩ basal glide is not
active, [c] glide is of marginal importance, and ⟨a⟩ slip occurs predominantly on pyramidal
and prismatic planes. The only remarkable observation is the widespread activation of ⟨c+a⟩

glide in the {1010}, {1011}, {112n} (n = 1, 2) and even {2131} (not previously reported)
planes. Glide along ⟨c + a⟩ is generally expected at high temperatures (Baeta and Ashbee
1969). However, while ⟨c+a⟩ glide is reported in the literature, it has been the subject of far
fewer detailed observational studies than ⟨a⟩ and [c] glide, particularly in natural specimens.
⟨c + a⟩ dislocations were previously observed in a Bohemian granulite (Mussi et al. 2021c).
Yet in many studies that depend on extracting geometrically necessary dislocation densities
from EBSD measurements (Wallis et al. 2019) or modelling crystal preferred orientations
(e.g., Keller and Stipp 2011; Morales et al. 2011), ⟨c + a⟩ glide has been neglected. General
strains can be explained by assuming activation of other systems, but such suppositions are
contrary to the results of this study.

4.1.4.2 Mixed climb

The most important observation of this study is the significant activation of climb over a wide
range of middle to deep crustal temperatures and tectonic strain rates. Besides some evidence
for dislocations in pure climb configuration, we found pervasive evidence of mixed climb
(Carrez et al. 2024) of ⟨a⟩ and ⟨c + a⟩ dislocations. The long-standing problem of achieving
general strains and satisfying the von Mises-Taylor criterion can be solved for quartz either by
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activation of ⟨c + a⟩ glide, or climb. We show here that both operate together with ⟨c + a⟩

dislocations that exhibit mixed climb geometries. Moreover, we show that the contribution
of glide produced by the observed microstructures is sufficient to accommodate any arbitrary
strain. Hence, activation of climb is not necessary to provide additional strain components.
However, we show that climb provides an additional contribution to strain comparable to that
of glide.

Activation of dislocation climb in quartz has been recognized for many decades (White 1977),
especially under wet conditions when internal water contents exceed the solubility limit of
water-related defects (Cordier et al. 1989; Kirby and McCormick 1979; McLaren et al. 1989).
Climb is generally inferred by the absence of apparent lattice friction (curved and entangled
dislocations) and by the presence of sub-grain boundaries (Baeta and Ashbee 1973; Ball and
Glover 1979), as found in our two specimens. It is always considered a recovery mechanism
(Tullis and Yund 1989). Indeed, dislocation creep is usually described within the framework
of Weertman (1968) creep where the strain is produced by dislocation glide whose resulting
hardening is counterbalanced by a recovery mechanism, generally involving dislocation climb.
It is implicit that dislocation glide produces most of the strain, while climb produces little
strain but controls the strain-rate. This means that the glide velocity is supposed to be much
greater (several orders of magnitude greater) than the climb velocity. On this basis, Boioli
et al. (2015a) modelled creep in olivine above 1400 K with a glide velocity more than a
thousand times faster than the climb velocity under low stress.

Our observation of pervasive mixed glide and climb with movement planes taking any orienta-
tion between pure glide and pure climb in quartz mylonites of the MCT and MT (Figure 45)
suggests that velocities of dislocation glide and climb were comparable. In this case, climb
and glide are both strain-producing mechanisms. Such mixed climb motions may be diffi-
cult to recognize without the characterization of both Burgers vectors and dislocation lines.
However, we may well wonder whether this mechanism can be inferred from less detailed
observations.

Early studies of deformation lamellae in quartz deformed in laboratory experiments (Blacic
1975; Christie et al. 1964; Hobbs 1968; Tullis et al. 1973) and under natural, crustal conditions
(e.g., McLaren and Hobbs 1972; Sylvester 1969) were taken as evidence of slip on basal and
prismatic planes. However, these planar optical features commonly occur at angles of up
to 15 − 30◦C from rational crystallographic planes perpendicular and parallel to c (Christie
and Ardell 1974; Heard and Carter 1968; Hobbs 1968; Tullis et al. 1973). Characterized
optically by their anomalous refractive index, deformation lamellae observed by TEM were
found to consist of lamellar zones of highly tangled dislocations rather than simple arrays of
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free dislocations in their anticipated slip planes (Christie and Ardell 1976). Detailed TEM
diffraction analysis of the tangled dislocations within these lamellae has not been possible.
Nevertheless, Vernooij (2005) posed the hypothesis that orientations of deformation lamellae,
like slip bands, reveal directions of dislocation motion, and therefore give relative velocities of
glide within basal and prism planes, and climb out of these planes. Heard and Carter (1968)
showed that non-basal deformation lamellae are favoured by high temperature (and low strain
rate), as may be expected for higher climb velocities at higher temperatures. Misorientations
of deformation lamellae may therefore result from some climb accompanying glide. Still, the
tangled nature of dislocations within lamellar regions of early experiments indicates that climb
was insufficient for significant recovery.

Much higher rates of dislocation climb and recovery are evident from the microstructures of
MT and MCT quartzites and the DET analyses of this study. Compiling our results for these
natural quartz shear zone specimens, Table 4.3 summarizes length-weighted proportions of
dislocations found in glide, pure climb, and mixed glide-climb orientations.

Table 4.3: Proportion of dislocation segments in glide, pure climb and mixed climb configuration for
each specimen.

MCT
specimen

MT
specimen

% Glide
(without straight dislocation segments) 9 16

% Pure Climb
(without straight dislocation segments) 1

91
3

84
% Mixed Climb

(without straight dislocation segments) 90 81

% Glide
(with straight dislocation segments) 38 51

% Pure Climb
(with straight dislocation segments) 1

62
2

49
% Mixed Climb

(with straight dislocation segments) 61 47

Glide-producing dislocation lines constitute approximately 38% of the total in the MCT spec-
imen and approximately 50% for the MT specimen. More than half of the total dislocation
line lengths analyzed involve some climb (pure or mixed) component in both specimens. Con-
sidering the length of each dislocation segment and measuring the angle between the Burgers
vector and normal vector to each plane of motion ( ˆ(n, b)), histograms can be plotted for all
dislocation segments to quantify the climb contribution for each kind of Burgers vector. The

ˆ(n, b) angle ranges from 0◦ for pure climb to 90◦ for glide configurations (see Figure 45).
Figures 45(a) and 45(c) describe the climb distribution of the MCT specimen without and
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with rectilinear dislocation segments, respectively. Similarly, Figures 45(b) and 45(d) show
the climb distributions for MT specimens without and with rectilinear dislocation segments,
respectively. These histograms show no significant difference between dislocation microstruc-
tures in specimens MCT and MT. ⟨a⟩ dislocations are found most often in climb or mixed
climb orientations.

Our calculations (section 4.1.3.4) for both MT and MCT specimens indicate that plastic
strains produced by climb are of the same order of magnitude (possibly larger for the MCT
specimen) as produced by glide. This is an important observation, as it bears on interpreta-
tions of Crystallographic Preferred Orientation (CPO) of rock deformed by dislocation creep.
In recent studies, deformation is taken to be due to glide on the ⟨a⟩ basal system, then ⟨a⟩

prismatic/pyramidal slip, and then [c] prismatic slip with increasing temperature (Keller and
Stipp 2011; Morales et al. 2014, 2011; Okudaira et al. 1995; Tokle et al. 2019). Changes in
proportions of different slip systems activated at different temperatures and strain rates are
presumably reflects in c-axis fabrics of quartz mylonites, with opening angle about the normal
to foliation for pure shear that constitute a balance between slip systems that rotate c-axes
towards the maximum compressive stress (normal to foliation) and those that rotate c-axes
towards foliation. Conceptual and numerical models of CPO development (e.g., Lister and
Hobbs 1980; Tullis et al. 1973; Wenk et al. 1989; Wenk et al. 2019) are based on varying
proportions of dislocation glide on ⟨a⟩ basal, ⟨a⟩ prism, ⟨a⟩ pyramidal, [c] prism, and ⟨c + a⟩

pyramidal systems, but we know of no models that incorporate ⟨c + a⟩ prism glide or climb
as a strain mechanism. Revisions in our interpretation of CPO will need to include the addi-
tional slip system with displacement vector ⟨c + a⟩. Kinematically, adding ⟨c + a⟩ glide will
alter the proportions of ⟨a⟩ and [c] glide. Moreover, if only glide is considered, we will miss
a significant fraction of strains during dislocation creep. Deformation thermometers such
as the quartz c-axis fabric opening angle thermometers of Kruhl (1996) and Faleiros et al.
(2016) do not explicitly take into account the separate potential influences of glide and climb
on fabric development. However, the interpretation of these empirically based thermometers
will depend on activation of slip systems at varying temperature, strain rate and action of
hydrous defects. Relations between glide-induced CPO and total strain will further depend
on how much strain is accomplished by glide and by climb.

4.1.4.3 Inferring stress loading

Sylvester (1969) suggested that deviations of deformation lamellae orientations from rationale
crystallographic planes tend towards planes of high shear stress, potentially offering a tool
to reconstruct internal stresses. Here, we explore this hypothesis further. To do this, we
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Figure 45: Histograms quantifying the climb contribution in quartz of ⟨c⟩, ⟨c+a⟩, and ⟨a⟩ dislocations:
(a) Histogram of the evolution of the angle between Burgers vectors and normal vectors
to habit planes ( ˆ(n, b)) normalized for dislocation segment lengths for the MCT specimen;
(b) histogram for the MT specimen; (c) MCT specimen: histogram where the lengths of
straight-line dislocation segments are included, considering these segments are in a glide
configuration; (d) MT specimen: histogram where the lengths of straight-line dislocation
segments are included. From these histograms, more than 50% of the dislocation length is
found in climb configurations.
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represent on Figure 46 the different systems (glide or climb) on a stereographic projection
for quartz with positive vertical [0001] (upper hemisphere). Figure 46(a) summarizes our
observations for the different types of dislocations, color-coding the contribution of climb.
From this stereographic projection (Figure 46(b)), we can see that the orientation of the
grain analysed in the MCT specimen strongly enhances activation of the 1

3 [1210](1010) glide
system. As a result, there is little climb of 1

3 [1210] dislocations. In contrast, glide of 1
3 [1120]

dislocations is less favourable (Figure 46(c)) increasing the tendency to climb. In Figure
46(d), we extract the glide components of the mixed climb planes of 1

3 [1210] dislocations
into the pure climbing plane normal (along the [1120] direction), but also on the glide plane
normal depicted in Figure 20.

This analysis reveals the strain contributions of two easy slip systems: 1
3 [1120](1100) and

1
3 [1210](1101) and, to a lesser extent, of 1

3 [1210](110n) as well as some other unexpected
planes. Such evidence of glide in planes that have not been reported for quartz raises ques-
tions. Dislocation motion in these planes does not correspond to pure glide, but is associated
with mixed climb. This observation is in line with the interpretation made by Malaplate
et al. (2004) of mixed climb in TiAl alloys. According to them, dislocation motion in mixed
climb planes may be facilitated by reduced lattice friction during pure glide (probably linked
to specific dislocation core structures). We hypothesize that activation of mixed glide and
climb may allow activation of glide on additional planes. This hypothesis, based as it is on
preliminary observations, requires further observational and theoretical investigation.

We have also applied the method described in section 4.1.2.4 to learn whether the stress
state that acted in situ can be inferred. Several minimization attempts have been carried
out, and slightly better results have been obtained when allowing different slip resistances τ0

for dislocations with ⟨a⟩, ⟨c + a⟩, and [c] Burgers vectors. Results (Figure 47 for MT) show
a good match between the observed and computed θ values. In the minimization procedure,
we had to optimize not only the stress state but also the rheological parameters. Best results
are obtained for a nearly linear behavior for both glide and climb (ng ≈ nc ≈ 1) and slip
resistance for ⟨c + a⟩ and [c] dislocations just half the slip resistance for ⟨a⟩ dislocations.

The stress state obtained in this way for the MT specimen (Figure 48) indicates that the
larger normal stress (promoting climb) was along directions close to ⟨c + a⟩ and that the
maximum shear stress (promoting glide) appeared to be on planes close to {1010} or to
(0002). Another graphical representation of the stress state inferred in the MT specimen
is the stress ellipsoid (Figure 49). It exhibits an oblate shape, two principal stresses having
similar absolute values (−4.4 and 5.2) while the third one is significantly smaller (0.8). The
stress ellipsoid, oriented along the TEM view direction, is represented in Figure 39.
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Figure 46: (0001) stereographic projection (upper hemisphere) of the normal to the habit planes of
dislocations characterized in the MCT specimen. The rainbow colour code is associated
with the angle between the habit plane normal and the Burgers vectors (0◦ in red for
pure climb and 90◦ in blue for glide) and the symbol sizes correspond to the lengths of
dislocations using a non-linear scale illustrated by three examples: 250, 1000 and 4000
nm. (a) All Burgers vectors are represented (⟨a⟩ dislocations are represented by circles,
⟨c + a⟩ by squares and [c] by diamond); (b) Projections of the habit plane normals for
a2 dislocations (a high proportion of dislocations found in the (1010) glide plane); (c)
Projections of habit plane normal for a3 dislocations (a few in glide planes and many in
mixed climb configurations); (d) Stereographic projection for a3 dislocations where the glide
components of the mixed climb planes are extracted and added. These glide components
are linked to their parent mixed climb plane by a solid line. (e) enlargement of the great
cirle of (d) showing glide planes normal to this plane. Labeled Miller indices of these planes
show the diversity of glide components involved.
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While this estimation of the local stress state acting in situ does not take into account changes
in stress during the plastic deformation history, it is, to our knowledge, the first estimation
of in situ stress state based on observed dislocation structures. Moreover, the rheological
coefficients thus obtained for MCT and MT shear zones correspond to in situ conditions and
extremely slow geological strain-rates.

Figure 47: Computed θmod angles vs. observed θobs angles after minimizing the objective function
(4.12) to find the stress state that is most consistent with the observations, for specimen
MT. Each symbol corresponds to a different dislocation segment, and their size is propor-
tional to the segment length.

4.1.4.4 Limitations

Detailed TEM characterization of a mineral as electron-beam sensitive as quartz necessarily
leads to a limited number of characterizations. Although statistical evaluation is difficult to
apply, the validity of the results can be discussed from several points of view. While the
analysis of the deformation microstructures of natural samples is of prime importance, it is
not without its difficulties. The first is that these samples are the product of a long and
complex history. We assume implicitly that the dislocations available for study at the end
of deformation are comparable to (potentially exactly the same systems as) dislocations that
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Figure 48: Stress state obtained for specimen MT after minimization of (4.12), plotted with respect
to the hexagonal crystal lattice. (a) Norm of the normal stress acting on specific crystallo-
graphic planes, for any possible plane orientation. (b) Norm of the shear stress acting on
those crystallographic planes. Stress values are relative, and adimensional, normalized by
the critical shear stress corresponding to ⟨a⟩ glide.

Figure 49: Stress ellipsoid for specimen with respect to crystallographic directions of the quartz grain of
the MT specimen. Among the three principal stresses, two have similar absolute values −4.4
and 5.2 while the third one is significantly smaller 0.8, resulting in an oblate shape. Stress
values are relative, and adimensional, normalized by the critical shear stress corresponding
to ⟨a⟩ glide. See also Supplementary movie.
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were present and mobile during peak metamorphic and deformation conditions. For simple
thermal histories, this assumption can be made as the exponential dependence of dislocation
creep leads to an effective temperature when dislocation mobilities slow down and dislocations
are left within the crystalline interior, much as the exponential dependence of diffusion can
lead to effective closure temperatures that govern geochemical age determinations. In the
case of this study, we do not seek to link microstructures or mechanisms to any particular
moment of the sample deformation histories.

The question remains as to whether the microstructure active during deformation was erased
by a late episode of recovery at low or negligible deviatoric stress, particularly since evidence
of recovery (subgrain boundaries) is present. With regard to the major results of this study,
specifically the widespread activation of ⟨c + a⟩ glide and the importance of mixed climb
to dislocation creep, our conclusions do not depend on demonstrating their activity at peak
metamorphic-tectonic conditions or the statistics of large numbers of observations. For ex-
ample, the development of a dislocation loop in a mixed plane can only be understood in
terms of simultaneous and equivalent glide and climb displacements. Such a microstructure
cannot be the result of two distinct and successive episodes of deformation and recovery.

A highly focussed study such as ours also raises the question of whether it samples a repre-
sentative volume element (RVE) which is the smallest volume over which a measurement can
be made that will yield a value representative of the whole. As our study is based on a very
small volume and a small number of dislocations, it is important to discuss the validity of our
observations without the support of statistical elements. With regard to the observation of
mixed climb, we emphasize that two grains from two distinct samples (to which we can add
the granulite sample of Mussi et al. 2021c) lead to the same observation. This suggests that
the crystalline defects of our studied volumes are not exceptional and that the conclusions
drawn from these limited observations are probably more general in their significance.

The other result is the completeness of the plastic strain tensor, which leads to the conclusion
that the von Mises criterion is satisfied. The volume sampled is surely not large enough to
provide a quantitative measure of the plastic strain tensor for either shear zone, but the scale
of study is sufficient to demonstrate that the necessary slip systems required to accommodate
any general plastic strain were indeed activated.

We have also tried to deduce, from dislocation microstructures, the mechanical loading con-
ditions acting at the crystal scale that may have generated the microstructures. Here, we
exploit the highly anisotropic nature of crystalline plasticity. In the case of the MCT sample,
we can see the difference in responses of dislocations a2 and a3 (Figure 46). The minimization
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of the objective function (eq. 4.12) gives the best results for the MT quartz grain, but it is
unclear that this problem is uniquely solved. The local stress may include contributions from
neighboring grains at the polycrystal scale, residual stresses of the dislocation network, and
thermally derived stresses. Greater statistics would be required to capture the heterogeneity
of stress in a polycrystalline rock over a much larger RVE.

4.1.5 Conclusion

Several important conclusions can be drawn from detailed 3D electron tomography of quartz
specimens from the MCT and the MT, both of which were deformed extensively by dislocation
creep in the presence of water. We show that ⟨a⟩ slip occurs predominantly on pyramidal and
prismatic planes, that ⟨a⟩ basal glide is not active, and that [c] glide is not significant under
those conditions. A remarkable observation is the widespread activation of ⟨c+a⟩ glide in the
{101̄0}, {101̄1}, {112̄n} (n = 1, 2) and even {213̄1} (not previously reported) planes. Even
more remarkable is the observation that more than approximately 60% of all dislocations
involve climb in their motion. This was only possible thanks to the characterization of
the three-dimensional microstructure of the dislocation lines by electron tomography. The
simultaneous motion of dislocations by glide and climb, known as mixed climb in materials
science, is apparently widespread in naturally deformed quartz shear zones. This mode of
deformation is characterized by displacement of dislocations in intermediate planes between
the glide and climb planes, with significant implications for relative glide velocity vg and
climb velocity vc; vg and vc must have comparable magnitudes under natural strain rates.
Our quantitative characterization of slip systems in these samples demonstrates that glide
of the observed dislocations can accommodate any arbitrary strain without strains due to
climb, grain boundary sliding or other intercrystalline mechanisms. On the other hand, the
magnitudes of strains achieved include significant contributions due to dislocation climb.
Plastic strains produced by climb are not subordinate to those of glide; rather, they are
of the same order of magnitude as strains due to glide (and possibly larger for the MCT
specimen than for the lower temperature MT specimen). Strain analysis based on the exclusive
activation of glide systems does not therefore provide a satisfactory description of quartz
deformation at natural strain rates.
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4.2 Olivine - Evidence of Mixed Climb

This describes parts of a larger study published in Physics of the Earth and Planetary In-
teriors2, where we investigated the microstructure of naturally deformed olivine, which had
reached chemical equilibrium at a temperature of 1000◦C, using conventional transmission
electron microscopy and electron tomography. The chosen peridotite sample, obtained from
Oman ophiolite, exhibited a mylonitic microstructure characterized by the presence of resid-
ual, heavily deformed millimetric porphyroclasts, coexisting with newly formed, smaller olivine
grains resulting from dynamic recrystallization.

Here I will focus on the tomography part, which constitutes my personal contribution to
this research. Our electron tomography investigations uncovered several glide planes, closely
resembling those observed in prior studies involving experimentally deformed polycrystalline
olivine (Demouchy 2021; Green 1976; Gueguen and Darot 1980). More significantly, electron
tomography allowed us to discern combinations of glide, climb, and mixed climb processes (as
elaborated in the chapter 2.3.4.2.2). This study broadens our understanding of the various
mechanisms responsible for the plastic deformation of olivine under lithospheric conditions.

4.2.1 Results

For the tomographic analysis, we chose the diffraction vector 131, ranked as the third most
intense structure factor within the olivine structure. This vector facilitated the visualization
of both [100] and [001] dislocations. Employing the technique described in Section 3.1, we
set a precession angle of 0.15◦. Tilt-series data was acquired at 2◦ intervals spanning from
−40◦ to 50◦ using a double-tilt sample holder.

In this particular study, we did not undertake an exhaustive characterization of all the habit
planes present in the 3D reconstructed volume. However, we did identify several noteworthy
configurations.

Our selection for tomographic analysis featured a representative sample volume, as depicted
in Figure 50, encompassing both [100] and [001] dislocations. The area was imaged in WBDF
mode (Figure 50(a)). Figures 50(b)-(g) present projections captured at various tilt angles.
Further insights into the habit planes of select dislocations are provided in Figures 50(d)-(g).
A comprehensive view of the reconstructed dislocation microstructure is presented in Figure
50(b).

2Demouchy, S., A. Mussi, T. Weidner, E. Gardés, and P. Cordier (2023a). “Dislocations in naturally deformed
olivine: Example of a mylonitic peridotite”. In: Physics of the Earth and Planetary Interiors, p. 107125
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Figure 50: Dislocation electron tomography characterization: (a) weak-beam dark field micrograph
taken with the 131 diffraction vector at a projection angle of 2◦, showing [100] and [001]
dislocations; (b) reconstructed tomographic volume viewed at 7◦ showing [100] disloca-
tions in red and [001] dislocations in blue as well as the [001] direction (black rectangles
indicate dislocations which habit planes are edge-one in the corresponding subfigures); (c)
reconstructed tomographic volume viewed with a projection angle of 80◦ showing the habit
plane of the subgrain boundary edge-on, i.e. the (100) plane; (f) a [001] dislocation in
(010) in the reconstructed volume oriented with a projection angle of 53◦; (g) a [100]
dislocation in a mixed climb plane (210) viewed with a projection angle of 72◦; (d) and (e)
characterization of a 3D [100] dislocation where the upper part is in the (010) glide plane
(seen at 53◦) and the lower part is in the subgrain boundary (here visualized at 80◦).

As observed in Figure 50(b), the quantity of [100] dislocations (depicted in red) substantially
surpasses that of [001] dislocations (in blue). Additionally, [100] dislocations appear to align
closely with the [001] direction. Short segments of both [100] and [001] dislocations (Figure
50(b) and (c)), gliding within the (010) plane (Figure 50(e) and (f)), bear witness to the
activation of the [100](010) and [001](010) slip systems. The sub-grain boundary within the
(100) plane (Figure 50(c)), positioned in the top left of Figure 50(a), is composed of [100]

dislocations. It’s worth noting that indexation of the sub-grain boundary plane (Figure 50(c))
was only possible through tomography, as a tilt of 80◦ is physically unattainable within the
TEM and can only be realized through a 3D reconstruction.

In Figure 50(d), a [100] dislocation is situated near the (100) plane, indicative of a pure climb
orientation. Figure 50(g) showcases a [100] dislocation within a plane closely resembling
(210), which neither conforms to a glide nor a climb plane but represents an intermediate
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orientation, thereby shedding light on a mixed climb configuration. The contribution of
dislocation climb is further elaborated upon in the subsequent discussion section.

4.2.2 Discussion

The dislocations commonly found in the studied peridotite are in perfect agreement with pre-
vious studies on mantle-derived and naturally deformed samples for lithospheric temperatures
(∼ 1000◦C) as well as with experimentally deformed olivines at similar transition homologous
temperatures (e.g., Demouchy et al. 2014, 2013; Green 1976; Phakey et al. 1972). Both [100]

and [001] dislocations coexist, but with little evidence of interaction between the dislocations
from the different slip systems. This observation was also reported in previous studies (e.g.,
Durham et al. 1985).

Our observations have provided several pieces of evidence for the activation of dislocation
climb under the natural deformation conditions experienced by this peridotite. The presence
of sub-grain boundaries (see Figure 50(b) and 50(c), and more can be seen in the full study)
is a common argument for recovery, and we recall that it requires the activation of climb.
Grain boundaries parallel to (001) are made of [001] dislocations. In addition climb loops
where found in other areas covered in the main study. Climb is also evidenced by the detailed
analysis of a three-dimensional [100] dislocation shown in Figures 50(d) and 50(e). One
segment of this dislocation is in a gliding configuration in (010) (Figure 50(e)), but the rest
of the dislocation lies in the sub-grain boundary plane, parallel to (100), and hence is in a
climb configuration (Figure 50(d)). It remains impossible to determine, however, whether it is
a [100] dislocation initially gliding in (010) and then being absorbed by climb into the subgrain
boundary, or whether it is a dislocation from the subgrain boundary being emitted by glide in
(010). More remarkable is the configuration in Figure 50(g), which shows a [100] dislocation
moving in an intermediate plane between the plane of glide plane and the plane of pure climb.
Moreover, in the quartz section and the general discussion on mixed climb, we propose that
under certain conditions, relevant to the lithospheric mantle, the dislocation glide and climb
velocities to be of the same order of magnitude. This closer match between glide and climb
velocities is probably a consequence of natural deformation conditions involving low stresses,
which reduce glide velocity, and very low strain rates, which favor climb.
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Association to Field Dislocation Mechanics

This section draws upon our paper published in Modelling and Simulation in Materials Science
and Engineering1.

Here I propose a new procedure to extract information from electron tomography and use
them as an input in a field dislocation mechanics. DET is an experimental technique that
provides three-dimensional (3D) information on dislocation lines and Burgers vectors within a
thin foil. The characterized 3D dislocation lines are used to construct the spatial distribution
of the equivalent Nye dislocation density tensor. The model dislocation lattice incompat-
ibility equation and stress balance equation are solved with a spectral code based on fast
Fourier transform algorithms. As an output of the model, one obtains the 3D distribution
of mechanical fields, such as strains, rotations, stresses, resolved shear stresses (RSSs) and
energy, inside the material. To assess the potential of the method, we consider two regions
from a previously compressed olivine sample. Our results reveal significant local variations
in local stress fields and RSSs in various slip systems, which can impact the strong plastic
anisotropy of olivine and the activation of different dislocation slip systems. It also evidences
the built-up of kinematic hardening down to the nanometer scale.

5.1 Materials and Deformation Experiments

This study was conducted on an olivine sample (PoEM9) experimentally deformed by De-
mouchy et al. (2013) which had previously undergone TEM microstructural investigations
(Mussi et al. 2015a,b). The axial compression experiments were performed on a cylinder
specimen (length 6.32 mm; diameter 4.19 mm) extracted from a large, gem-quality, single
crystal of San Carlos olivine ((Mg0.91Fe0.09Ni0.003)2SiO4). The sample PoEM9 (Demouchy

1Weidner, T., V. Taupin, S. Demouchy, K. Gouriet, A. Guitton, P. Cordier, and A. Mussi (Nov. 2023). “From
electron tomography of dislocations to field dislocation mechanics: application to olivine”. In: Modelling
and Simulation in Materials Science and Engineering 32.1, p. 015004. DOI: 10.1088/1361-651X/ad0a42.
URL: https : //dx.doi.org/10.1088/1361-651X/ad0a42.

103



5 Results - Dislocation Electron Tomography - An Association to Field Dislocation Mechanics

et al. 2013) was deformed along [502] (see Figure 57) in a high-resolution gas-medium high-
pressure apparatus (Paterson 1990) at 806◦C, with a constant strain rate of 5.1 × 10−5 s−1,
under a gaseous (Ar) confining pressure of 300 MPa (deformed cylinder and thin foil orien-
tation can be seen in Figure 57). The finite strain reached was εTotal = 10.1% (determined
post-mortem), and the maximum differential stress was 754 MPa.

5.2 Results and Discussion

5.2.1 Dislocation Microstructure

To obtain an overview of the dislocation microstructure of PoEM9, six tilt-series (obtained
with the 222̄ diffraction vector) were acquired at low magnification, covering an analyzed
total area of approximately 30 µm2 (Mussi et al. 2015b), with an average angular range from
-52◦ to 48◦.

Figure 51: WBDF micrograph obtained with the 004 diffraction vector: (a) global micrograph where
thickness fringes are clearly seen; (b) enlargement of a dislocation dipole pointed out by
an orange rectangle on figure 1(a); (c) enlargement of the dipole where the unterminated
thickness fringes are coloured in green, the terminated thickness fringes are coloured in
red at the extremities of the dislocations represented with arrows oriented on the opposite
direction of the wedge, and the terminated thickness fringes are coloured in blue at the
extremities of the dislocation represented with an arrow oriented on the direction of the
wedge (the directions of the arrows are linked with the signs of the Burgers vectors).

Burgers vector indexations were performed using the thickness fringes technique (see Section
3.1.4) with the 004 and 222̄ diffraction vectors (Figures 51 and 30 respectively). These in-
dexations revealed that the microstructures are predominantly composed of dislocations with
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[001] Burgers vectors, mostly exhibiting straight screw dislocation characters. An example of
the dislocation microstructure obtained in WBDF conditions with the 004 diffraction vector is
shown in Figure 51. Electron tomography revealed a predominance of {110} and (100) glide
planes, with few cross-slip configurations and collinear interactions (Mussi et al. 2015b). The
reconstructed volumes also facilitated access to (u, b) doublets for each dislocation segment,
aiding in the calculation of the Nye tensor and simulation of the continuous distribution of
stress field.
Two specimen domains of PoEM9 were studied in detail: zone 1 (Figures 52(a)-(d)) and zone
2 (Figures 52(e)-(h)). Tilt-series composed of 51 micrographs (acquired every 2◦ with a tilt
angle ranging from −48◦ to +52◦) and a second tilt-series of 54 micrographs (acquired every
2◦ with a tilt angle ranging from −56◦ to +50◦) were obtained in WBDF conditions with the
222̄ diffraction vector (zones 1 and 2 respectively). Micrographs from Figures 52(a) and (e)
are from these two tilt-series for a projection angle of 0◦. Electron tomography reconstruc-
tions facilitated the characterization of the (110),

(
11̄0

)
, and (100) slip systems, identified by

their colors: white, light grey, and black respectively, as in Mussi et al. (2015b). Neither the
slip systems of the pure screw straight dislocations (coral pink-colored) nor the habit plane
of the red sessile dislocation segment in Figure 52(f) could be indexed. Consequently, the
reconstructed volumes were projected along the [001] direction to orient the pure screw dislo-
cations in an edge-on position (Figures 52(c) and (g)), providing optimal viewing conditions
for studying the continuous stress distributions.

5.2.2 Simulation Results

The dislocation internal stresses in the thin foil are rotated to be presented in the olivine
crystal reference frame. The x1, x2, and x3 directions are now aligned with the a, b, and c

directions of the olivine orthorhombic unit cell, respectively. In addition to this internal stress,
we add the macroscopic stress applied experimentally during the compression test (754 MPa)
and also rotated in the crystal reference frame. This is possible since we know the angle
between the normal of the thin foil

[
17 5̄ 12

]
and the compression axis [502] (approximately

30◦). The total stress field at every voxel in the thin foil is then σij = σint
ij + Σij , where σint

ij

is the local internal stress field due to dislocations and Σij is the macroscopic stress. It is
then possible to project the total stress tensor at every voxel onto different slip systems using
the associated Schmid tensor expressed in the olivine orthorhombic reference frame. In the
following, we consider three slip systems, labeled 1, 2, and 3: [001] (100), [001] (110), and
[001]

(
11̄0

)
respectively. The resolved shear stress (RSS) for the three systems is denoted by
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Figure 52: Link between DET and FDM: (a) Raw micrograph in WBDF conditions, obtained with
the 222̄ diffraction vector (with a projection angle of 0◦) of zone 1; (b) Reconstructed
volume of the same domain with the same projected angle (the (110),

(
11̄0
)

and (100)
slip systems are respectively colored in white, light grey, and black as in Mussi et al.
(2015b)); (c) Reconstructed volume of the same domain along the [001] direction; (d)
Spatial distributions (3 slices) of RSS1 in series 1 obtained along the same orientation as
figure 52(c) located in the interaction between the two black dislocations in the middle
of the micrograph in figures 52(a) and (b) (dislocation lines are also shown and colored
with reference to their sign); (e) Raw micrograph in WBDF conditions, obtained with the
222̄ diffraction vector (with a projection angle of 0◦) of zone 2; (f) Reconstructed volume
of the same domain with the same projected angle (the

(
11̄0
)

and (100) slip systems
are respectively colored in light grey and black); (g) Reconstructed volume of the same
domain along the [001] direction; (h) Spatial distributions (3 slices) of RSS1 in series 5
obtained along the same orientation as figure 52(g) located in the red dislocation segment
(dislocation lines are also shown and colored with reference to their sign).
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RSS1, RSS2, and RSS3. They are equal to:

RSS1 = τ [001](100) = σ31

RSS2 = τ [001](110) = b√
a2 + b2

σ31 + a√
a2 + b2

σ32 ≈ 90.63%σ31 + 42.26%σ32

RSS3 = τ [001](11̄0) = b√
a2 + b2

σ31 − a√
a2 + b2

σ32 ≈ 90.63%σ31 − 42.26%σ32

with a and b the directions of the olivine orthorhombic unit cell.

The macroscopic stress Σ31 = 10acσ
(5a)2+(2c)2 ≈ 302.8 MPa (with a and c the directions of the

olivine orthorhombic unit cell and σ the applied stress) while Σ32 = 0. Figures 52 and 53
show the spatial distribution of the three RSSs on slices in the thin foil, for the two thin
foil series. Dislocation lines are shown in Figure 52. They are removed in Figure 53 for a
better comparison of RSS distributions in different slip systems. RSS1, RSS2, and RSS3 fields
look similar, with local rotations of RSS patterns (lobes) near dislocations observed among
the three RSS maps. The distribution of the internal elastic energy density 1

2 εe
ijCijklε

e
kl is

also shown in Figure 53, demonstrating elastic interactions between dislocations (interacting
elastic fields between dislocations).

The mean internal elastic energy within the thin foil volume is calculated to be 51.6 kJ m−3

for series 1 and 52.2 kJ m−3 for series 5. Histograms of the RSS distributions in the thin
foils are provided in Figures 54(a) and (b), showing a significant heterogeneity of the stress
field within the thin foils. Notably, the mean value of RSS1 (302.8 MPa) is slightly larger
than that of RSS2 and RSS3 (274.4 MPa), indicating preferential activation of system 1
due to the sample orientation. Strong variations in the stress values are observed, typically
±400 MPa around the mean values. Regions with local stresses reaching 1 GPa are also
observed, particularly nearby dislocation dipoles. Figure 54(c) shows cumulative distribution
functions (CDFs) for RSS1, RSS2, and RSS3, for the two thin foil series, with RSS values
extracted only at the dislocation lines (instead of taking values at all voxels in the thin foils).
In doing so, we only consider dislocation driving stresses in the single crystal. The CDFs are
centered about zero, with broad distributions and variations up to ±400 MPa clearly evident,
indicating significant local variations of the RSS values in the three systems considered due
to the complexity of the 3D stress state.
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Figure 53: Spatial distributions (3 slices) of RSS1 (a), (b), RSS2 (c), (d), RSS3 (e), (f) and elastic
energy density (g), (h) for series 1 (left column) and series 5 (right column).
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5.3 Discussion

The present coupled electron tomography/FDM analysis allows obtaining for the first time
a detailed, 3D, physical/mechanical description of dislocation networks in the studied thin
foils. A physical description of dislocations (Burgers vectors, 3D arrangement of dislocation
lines, junctions, dipoles, networks) is complemented by a mechanical description (strains,
rotations, stresses, energy). In the present study, we specifically discuss two points, (1) the
possible activation of different slip systems in olivine deformed at low temperature due to
the complexity of the 3D stress state, and (2), the history of dislocation dynamics and the
associated build-up of polarized internal stresses and kinematic hardening in single crystals
at the nanometer scale.

1. Activation of slip systems: The POEM-9 specimen, from which thin foils have been
extracted and analyzed here, was compressed along the [502] direction, to preferentially
activate the [001] (100) slip system (system 1 and RSS1). However, an uncertainty
between the possible activated slip systems was mentioned Demouchy et al. (2013).
Another system, [001] (110) was also proposed as a possible system. A third system
could also be activated, [001]

(
11̄0

)
. They correspond to system 2 and system 3 in

the present study. Our distributions of RSS values in the thin foil indeed suggest that
system 1 is only slightly favored as compared to systems 2 and 3, because the mean
value of RSS1 is only slightly larger (difference of less than 30 MPa). However, in a
recent work Mussi et al. (2015b), systems 2 and 3 are observed to be easier to activate
(lower CRSS) than system 1, system 1 being the second easiest system to activate
after system 2 and 3. As such it is not easy to say which one of system 1 or systems
(2, 3) was preferentially activated in our studied sample. The distributions of the
RSS values extracted only at dislocation lines are certainly more speaking. Indeed, the
distributions show very similar features for all series and slip systems. More precisely,
they are all broad and show significant local variations, ±400 MPa. As such, the slight
difference of the mean RSS between system 1 and systems (2, 3), less than 30 MPa,
becomes negligible as compared to possible large local values of RSS. From this, we
can conclude that, although POEM-9 was compressed in a way to favor slip system
1, the three systems can all be activated, because of the strong heterogeneity of the
internal stress field.

2. Internal stresses and kinematic hardening: The simulated fields of RSS show a signifi-
cant heterogeneity. Recently, an experimental work on deformed olivine single crystals
and polycrystals using high-resolution-EBSD (HR-EBSD) revealed a pronounced het-
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erogeneity in the in-plane elastic shear strains and shear stresses at the surface (Wallis
et al. 2020, 2021). Variations up to ±1 GPa around the mean value were reported in
both polycrystals and single crystals (at low temperatures) at the micron scale. Such
polarization and patterning of internal, intragranular and intergranular stresses, can be
related to the build-up of geometrically necessary dislocation densities. Strong hetero-
geneity of internal stresses is to be associated with kinematic hardening. In the present
study, we can look at the heterogeneity of internal stresses down to the scale of typical
HR-EBSD map pixels, i.e. at the nanometer scale. Our results also reveal a significant
heterogeneity of internal stresses at the nanometer scale in a single crystal containing
dislocation networks. Distributions of RSS show broad profiles, with variations up to
±400 MPa around the mean value. Interestingly, the histograms show a few negative
RSS values. The results thus suggest that kinematic hardening has been built-up and
is a signature of the past dynamics of dislocations observed.

The application of our electron tomography/FDM method brings valuable insights regarding
the complexity of plastic flow in olivine. In a simple single crystal subjected to simple com-
pression loading, it shows that plastic anisotropy and activation of dislocation slip systems
can be significantly altered by the large fluctuations of the local mechanical fields. Further-
more, it evidences the built-up of kinematic hardening. This plastic behavior observed at
the single crystal, nanometer scale, certainly has a strong impact on the rheology of olivine
polycrystals within the Earth’s mantle. More generally, our proposed analysis method can
also be employed to investigate other mechanisms and defects typically investigated in the
TEM for various crystals, such as subgrain boundaries, dislocation networks, dislocation grain
boundary interactions, dislocation reactions, interactions between dislocations and pores/pre-
cipitates etc. Furthermore, as shown in Figure 55, the method also provides elastic fields in
the vicinity of and at free surfaces, which allows making links between elastic fields measure-
ments using experimental techniques such as precession electron diffraction (Cooper et al.
2015), HR-EBSD (high-resolution electron backscatter diffraction), HR-TKD (high-resolution
transmission Kikuchi diffraction) (Ernould et al. 2022), ACOM (automated crystal orienta-
tion mapping) ASTAR®(Després and Veron 2023) and defects inside the material. It must
be emphasized that, in addition to provide 3D anisotropic elastic fields, our approach allows
a spatial resolution of 15 nm in routine use, extendable down to 5 nm. The method can also
be used to assess the accuracy of HR-TKD, or ACOM/ASTAR methods, when measuring
the elastic fields around dislocation structures.
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Figure 54: Distributions of RSS1, RSS2 and RSS3 for series 1 (zone 1) and series 5 (zone 2). (a)-(b)
All RSS values in the thin foils are used. (c) Only RSS values at dislocation lines are used.
All cumulative distribution functions (CDF) for the three slip systems and the two series
are superimposed on the same figure.

Figure 55: Elastic strain ε31 at the surface of the thin foil for series 1.
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5.4 Conclusion

In this contribution, we propose an original experimental and theoretical characterization
method for studying dislocation networks in crystalline materials. The method combines
DET, which provides a 3D characterization of dislocation lines and Burgers vectors, to a FDM
model, which provides the associated internal mechanical fields. To demonstrate the potential
of our method, we have considered single crystal thin foils extracted from a compressed olivine
single crystal. Our results have revealed significant local fluctuations in the local mechanical
fields, particularly the RSSs in different slip systems, which certainly play a role in the strong
anisotropy of olivine and the activation of different dislocation slip systems. Our first results
have also evidenced the built-up of kinematic hardening at the nanometer scale in a single
crystal. Our method has a considerable potential for studying various types of dislocation
microstructures and plastic deformation mechanisms in different crystals.
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Figure 56: Dislocation microstructure at 0◦, actual micrograph on the left and reconstructed mi-
crostructure in NUMODIS on the right.

This study works as a proof of concept by implementing real dislocation microstructure
extracted from DET into DDD, departing from the conventional use of artificially created
microstructures. Employing DDD simulations via the NUMODIS framework, we aim to
bridge the gap between experimental observation and computational modeling. This project
utilizes the same olivine specimen as for the FDM analysis of the previous chapter. Limited
to the microstructure of tilt series 5 within specimen PoEM9 (Demouchy et al. 2013). To
run our simulations we leverage the high-performance computing (HPC) resources at the
Mesocentre, equipped with a hybrid cluster boasting 340 Tflops and 244 nodes. An overview
of the microstructure and its implementation in NUMODIS can be seen in Figure 56.

6.1 Implementation

6.1.1 Time and length scales

In preparation for our simulation, we had to adjust the simulation parameters according to
the initial experiment. The sample, measuring 6.32 mm in length and 4.19 mm in diameter,
under-went deformation at a strain rate of ε̇ = 5.1 × 10−5 s−1 until reaching a total strain
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Experimental setup:

Figure 57: (a) High pressure assembly without iron jacket (b) Silver plug with a single crystal of olivine
inside (c) A post-deformation olivine crystal (d) Sketch of the compressed cylinder with
the compression direction and the orientation of the thin foil within the specimen (highly
enlarge to make it visible). Axis grid indicates the orientation in the simulation box. Figure
57(a)-(c) from Demouchy et al. (2013, Figure 1)

of εTotal = 10.1% and a maximum differential stress of 754 MPa. The principal axis of the
sample was oriented along [502]. An overview of the sample, including scales and orientations,
is shown in Figure 57. Considering the length of the cylinder and the strain rate, the resulting
average deformation velocity can be approximated as:

v = lε̇ ≈ 3 × 10−7 m/s = 3 × 10−6 Å/ns (6.1)

Using the unit set employed in NUMODIS, and considering that the length scale of our thin
foil is approximately 1µm with a desired total strain of at least 1%, the time duration we
have to simulate is given by:

t = x

v
= (0.01 × 1 × 10−6 m)

(3 × 10−7 m/s) ≈ 0.03 s (6.2)

With this context in mind, we adjusted the limiting simulation parameters, including the
timestep (∆t), maximum displacement (dmax), and minimum discretization length (lmin)
between two nodes. To maintain stability, dmax is constrained to not exceed 10% of lmin,
which we set to a maximum value of 100 Å(the thickness of dislocations in WBDF conditions),
thus restricting dmax to 10 Å. Furthermore, the relationship between dmax and the timestep
(∆t) was evaluated through the maximum displacement velocity. Incremental increases in
the timestep, from 0.5 ns to 50 ns, were examined to ensure consistent simulations, with an
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additional test focused on the interactions between two dislocations, utilizing a timestep of
5 ns. The resulting maximum velocity using the final time step ∆t = 50 ns is:

vmax = dmax
∆t

= 10 Å
50 ns = 0.2 Å/ns (6.3)

This approach appears reasonable, given that our average deformation velocity is five orders
of magnitude lower than the maximum displacement velocity. An effect we have to account
for is the non-uniform dislocation velocity in our specimen. As the tomography analysis
discussed in Mussi et al. (2014), the microstructure in this olivine specimen shows many
screw dislocation segments, which is linked to a high lattice friction for screw (due to the
core structure). Non-screw characters exhibit a higher intrinsic mobility. To overcome this
problem, a constant ratio is taken between the velocities of the both fast and slow segments.
All slip systems have the same ratio. This ratio between edge and screw is in the range
100-1000 according to Durinck et al. (2007b). Despite this, we are still at least two orders
of magnitude lower than the maximum velocity. Thus, even if we encounter velocity peaks
due to local stress concentrations, our approach should still yield meaningful results.

6.1.2 Simulation Parameters

Employing the code outlined in Section 3.3.2, we converted our tomography data into input
for the DD simulations. The microstructure orientation is converted via Bunge Euler angles,
from experiment to the simulation box reference frame. The applied stress in the simulation
was aligned with the experimental conditions. We applied the maximum differential stress of
754 MPa. This stress is oriented along [502], which corresponds to an a applied stress tensor:

σapp(MPa) =


−601.6 0 −302.8

0 0 0

−302.8 0 −152.4



The initial simulation box was set up to match the outline of our thin section. Subsequently,
we extended it to account for the effect of curvature as described in Section 2.1.3 where
the radius of curvature R is inversely proportional to the applied stress τ . Figure 58 shows
how strong this effect can be: an artificial edge dislocation is simulated with variation in
length, applied stress and the segmentation length. Due to the limitations imposed by the
thin foil’s thickness, approximately 500 nm, our dislocations are truncated to a certain length.
To address this limitation, we extended all large dislocations (to double their lengths) under
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Figure 58: Simulation of an edge dislocation changing different starting parameters: Small blue dislo-
cation with a minimum segment length lmin of 1 nm and a total length ltotal of 100 nm;
black dislocation with identical length, but with lmin = 10 nm , which is used for all the
others; green with ltotal = 300 nm the same for pink but with double the stress; red with
the same stress as green, but with ltotal = 600 nm.

the assumption of a consistent continuation into the bulk specimen, alongside enlarging
the simulation box size (refer to Figure 59). However, a few strongly curved segments
remain problematic and kept therefore in their original length. An additional reason to extend
dislocation segments is to reduce the effect of mirror forces on the simulation boundaries,
which is stronger the closer the dislocation segments are to the boundaries. A reason why
we pinned all dislocations at their extremities even at the surface of the simulation box.

Figure 59: Extension of the simulation box, with the initial dislocation microstructure in black inside
the thin foil (inner box), and the extension of the microstructure inside the larger volume.
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6.1.3 Velocity law

At the experimental temperature (806◦C) we are in a low temperature regime for olivine,
were a kink pair mechanism is active. At the current state, we try to implement a velocity
law for the thermally activated kink-pair mechanism (see eq. 2.20). However, we encounter
persistent stability challenges associated with the thermal approach, discussed further in
Section 6.4. For the mean time, we are employing a modified version of the athermal law
(see eq. 2.21), adjusted with distinct dragging coefficients for edge and screw dislocations to
accommodate their inherent differences, as previously noted:

B(θ) = Bedgesin2(θ) + Bscrewcos2(θ) (6.4)

Here, the dragging coefficient for edge Bedge is set lower than the dragging coefficient for
screw Bscrew (see Table 6.1). To align with experimental temperatures, we optimize Bscrew

using values derived from the kink-pair velocity study of Durinck et al. (2007b).

Table 6.1: Simulation parameters used in NUMODIS, dragging coefficients are adjusted based on
Durinck et al. (2007b)

Parameter Symbol Value
Time step ∆t 50 ns
Maximum displacement dmax 10 Å
Minimum discretization length lmin 100 Å
Maximum discretization length lmax 1000 Å
Edge dragging coefficient Bedge 5 × 104

Screw dragging coefficient Bscrew 2 × 107

6.1.4 Material

Olivine crystallizes in the orthorhombic system (space group, Pbnm), the corresponding lattice
parameters are given in Table 6.2. Even though olivine is anisotropic, NUMODIS only takes
isotropic elastic behaviour into account (see Section 3.3.2). Consequently, the elasticity of
olivine is estimated with Lame coefficients (Isaak et al. 1989). For our simulation we consider
three active slip systems: [001](100), [001](110) and [001](110) observed experimentally by
Mussi et al. (2015b). Based on a study of Tommasi et al. (2000), all three slip systems have
approximately the same CRSS, why we assume an identical activation behaviour.

To account for the distance at which it is considered that two dislocations collide, NUMODIS
defines a capture radius. In a first approximation, we adopted a preset value for the capture
radius in NUMODIS, set at 2 Å. However, this capture radius proved insufficient to initiate
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elastic dislocation interactions. To refine our estimation of the core radius, we referenced the
findings of Durinck et al. (2007a) and Mahendran et al. (2021). Their studies revealed that
screw dislocations along [001] are dissociated in (100) and {110} planes, with a separation
distance between the two partials of less than 15 Å. In (010) plane, [001] screw disloca-
tions are un-dissociated and presents a narrow core, with the half-width below 6 Å. Given
that dissociation is not experimentally observable for us due to resolution limitations of the
diffraction contrast in TEM, we used the half-width of the narrow core for each slip system.
Thus, for all simulations, we employed a core radius of c/2 (3Å). Nevertheless, we conducted
tests using various core radius values ranging from c/2 to c. Despite this variation, consistent
behavior and results were observed, validating the choice of c/2 as the core radius.

Table 6.2: Lattice parameters and Lame coefficients (isotropic assumption) of olivine at P =
300 MPa and T = 1079 K based on (Isaak et al. (1989))

a (Å) b (Å) c (Å) λ(GPa) µ(GPa)
4.7535 10.1843 5.9807 77.4 78

6.1.5 Refinements

Figure 60: Refinement of the dislocation microstructure: (a) Initial line direction in blue showed incor-
rect bending direction; red inverse line directions for the tiny dislocations indicated by the
arrow, agreed with bending visible in the thin foil; an effect of the change on the surround-
ing microstructure is also clearly visible. (b) Change of habit planes for two dislocations;
black line starting condition; blue line plane initially used, showing a strange interaction
behavior; dislocation with change plane in red, showing regular translation behavior similar
to the original microstructure.

In the examination of pure screw dislocations, all three active slip systems were tested and
then assigned to reflect the most stable configuration. Instances of instability were addressed
by adjusting the plane to achieve stability, as depicted in Figure 60 (b). For the a few
small dislocations the line direction was unclear. To put it in correct order, we tested every
permutation and chose the one that best represents the original microstructure (see Figure
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60 (a)). For part of dislocations that are in climb configuration we assigned a non-active
glide plane, to keep them immobile. The final refinement was to reduce the visible part of
the volume to the initial thin foil size.

6.2 Results

An overview of the final simulation at different time steps is presented in Figures 61 and 62.
The simulation represents a total simulated deformation time of 0.1 s.

Notably, the motion of screw dislocations appears slow, contrasting with the rapid velocities
observed for edge segments. Due to the simplicity of the microstructure, only one type of
interaction is observed throughout the simulation. A collinear annihilation takes place close
to 18 ms, illustrated in Figure 63, between two dislocations with opposite Burgers vectors.
One glides in [001](100) and the other in [001](110). Both dislocations are attracted to
each other along a large section before the annihilation. The annihilation occurs only locally,
when the dislocations are connected. The annihilation produces a recombination in two new
dislocations. One is retracting fast to surface, and for the other one the interaction produces
a tip (see Figure 63 (b)). After a few milliseconds this tip disconnects from the dislocation
and leaves a debris behind. It leaves a single segment behind which is an artifact from the
simulation, from the relaxation of the debris.

Towards the later stages of the simulation, at significantly high time steps (see Figure 62 (b)),
an anomalous phenomenon emerges: the screw segments undergo uncharacteristic bending.
This deviation is attributed to the pinning of dislocations at the surface of the extended box,
leading to this nonphysical behavior.
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(a)

(b)

Figure 61: Simulation of the microstructure at different time steps. The lines are colored according to
the velocity in Å/ns, in addition the Burgers vector directions are indicated with the colored
arrows. (a) Starting microstructure; (b) microstructure after 16 ms, black box indicates
interaction detailed in Figure 64.
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(a)

(b)

Figure 62: Simulation of the microstructure at different time steps. The lines are colored according
to the velocity in Å/ns, in addition the Burgers vector directions are indicated with the
colored arrows. (a) dislocation microstructure after 40 ms; (b) final microstructure after
100 ms, black box indicates the debris left behind from the annihilation shown in Figure
63.
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Figure 63: Observed collinear annihilation: The lines are colored according to the velocity in Å/ns.
(a) Shows dislocations and the surrounding microstructure directly before the annihilation
happens at the position indicated by the two arrows. (b) State after the annihilation,
with the top part retracting to the surface of the simulation box; the black box shows the
entangled segments, that later separate and form a debris as shown in Figure 62 (b).

6.3 Discussion

We had to cope with several challenges regarding the thin foil boundaries. It had influ-
ence regarding the curvature of dislocations and created mirror forces due to the boundary
conditions. We accounted this problem by artificially enlarging the simulation volume. But
therefore, we had to make the hypothesis to extrapolate of the dislocations as straight screw
segments. This assumption was grounded in the observation of the general microstructure,
which exhibited long, extended loops predominantly characterized by large screw segments,
attributed to high lattice friction. For the straight non screw dislocations, we assumed a
straight continuation as well, since their curvature seems to be negligibly small compared to
the increase in length. We pinned the surface nodes of dislocation to mitigate the influence
of mirror forces on the internal evolution of the structure. In the normal case these surface
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nodes are allowed to move freely. The pinning created back stresses at high strain due to the
resulting curvature. (see Figure 62 (b)).

The study also delved into the dynamics of dislocation movement, noting the velocity for
screw dislocations could be well adapted based on the work of Durinck et al. (2007b). The
general behavior which would rely on a thermal kink pair mechanism is still in development,
but even with our simple approach, we could recreate certain mechanism that would have
been expected in this specimen. Collinear interaction is observed during the simulation.

Figure 64: Interaction between two dislocation with collinear planes, (110) in red and (100) in blue;
(a) approaching dislocations; (b) dislocations after an exchange of arms, both dislocations
consists now with an upper part in one plane and a lower part in another plane.

Experimentally, collinear interaction has been observed in the same specimen but in different
area (Mussi et al. 2015a).

Notably, a non-physical interaction occurs after around 15 ms, which is further elucidated in
Figure 64. This interaction occurs between two dislocations with the same Burgers vector, but
in different planes: one screw configuration in [001](100) and another one mixed configuration
in [001](110). Close to 15 ms both dislocations start to interact repulsively (Figure 64
(a)). The mixed dislocation, which has the higher velocity, catches up to the one in screw
configuration and creates some oscillations, due to a problem of stability in the code. These
oscillations related to interplay with the repulsive forces create a state where two segments
are in opposite sign. This instability allows annihilation. Both dislocations glide afterwards
in two different planes (Figure 64 (b)). This artefact of the simulation has been difficult to
remove at this point.
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A crucial aspect of our analysis was the emphasis on the simplicity of our microstructure.
With most dislocation in simple screw glide configuration, it provided the clarity for a proof
of concept study. Especially since the involving orientations and loading conditions where
known. Despite its simplicity, the model facilitated direct comparisons with previous studies
on olivine, notably Durinck’s work, enhancing the relevance and applicability of our find-
ings. However, the study’s simplicity also introduced significant constraints, particularly in
capturing complex interactions and the diversity of interactions, which were limited by the
unique Burgers vector, screw dislocations, and glide mechanisms across only three predom-
inant slip systems. Notably, the model’s current iteration did not incorporate climb and
cross-slip mechanisms. Both are important to represent the full dynamic behavior in the
microstructure especially under conditions of high strain. Unfortunately, it’s a challenging
task to incorporate in DDD modeling.

6.4 Conclusion

Throughout this proof of concept study, we encountered numerous challenges in bridging the
gap between experimental results from tomography and simulation at mesoscale. We had
to extract the positions of the image of the dislocation cores from the DET and link them
precisely with the orientation and deformation conditions from the experiment to be able to
simulate them. Since, in this study, we worked with a real microstructure and not with virtual
dislocations. We had also to account for the velocity law in the regime of the experiment,
which is to this point only partly resolved, since the values are reasonable to alignment with
previous studies, but the actual mechanism is not yet incorporated. Then there where parts
of the microstructure that could not be transferred due to missing information from the re-
construction. One of the key hurdles we encountered involved managing dislocations in odd
or unknown configurations. For instance, identifying the habit planes or line directions for
certain dislocations within the microstructure was initially problematic. However, our simula-
tions ultimately provided clarity, helping to resolve these ambiguities. We are also still missing
some mechanisms, namely cross-slip and climb, which are at currently not incorporated in our
simulation, but would help to allow for more possible interactions inside the microstructure.
Still the findings we had, as the collinear interaction, demonstrated that complex interaction
need several no screw dislocations.

Looking ahead, we want to enhance the accuracy and robustness of our simulation framework.
To do this, we want to better reflect the velocity mechanism in our microstructure. We try to
incorporate an approach by Amodeo et al. (2011) in MicroMegas, which tries to reproduce a
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kink pair mechanism. We slightly adjusted the velocity law used for the screw dislocation to
be consistent with the work of Durinck et al. 2007b, with a velocity law (Kocks et al. 1975)
(as described in section 2.3.2.1). It is worth noting that this velocity law is non-local, since it
correlated with the entire length of the segment, that is in screw configuration. It therefore
requires some criteria to detect this length of the screw part of a dislocation. This special
implementation is so far unstable. We had particular problems in mitigating effects associated
with the thickness of thin foils in simulations, particular mirror forces. This could be overcome
with EL NUMODIS, a coupled code that integrates a finite element model with NUMODIS, as
recently developed (Gonzalez-Joa et al. 2023). Although more computationally demanding,
this approach promises significant advancements, handling the surface effects. In the near
future, we anticipate finalizing the conversion from DDD output files to FDM, which will
enable us to observe the evolution of various fields over the simulation’s timespan. It would
for example give the option to look at the stress and strain fields related to the interaction,
which then could be compared to the same kind of interactions from other experiments.

This work is critical for advancing our understanding of dislocation dynamics beyond the
limitations of simple modelling by comparing it with the experiment.
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7 Side Project - Modeling creep in periclase (MgO)

under lower mantle conditions

This is work finds its origin during my master program and continued over to the first year of
my PhD thesis, where the finalized simulations were performed, and the paper was constructed
and later published in Nature1. My personal contribution to this work correspond to the 2.5
D modelling of creep of periclase (MgO), which I worked on together with K. Gouriet.

Transport of heat from the interior of the Earth drives convection in the mantle, which
involves the deformation of solid rocks over billions of years. The lower mantle of the Earth is
mostly composed of iron-bearing bridgmanite and approximately 25% volume periclase (also
with some iron). It is commonly accepted that ferropericlase is weaker than bridgmanite
(Yamazaki and Karato 2001). Considerable progress has been made in recent years to study
assemblages representative of the lower mantle under the relevant pressure and temperature
conditions (Girard et al. 2016; Miyagi and Wenk 2016). However, the natural strain rates
are 8 to 10 orders of magnitude lower than in the laboratory, and are still inaccessible to
us. Once the deformation mechanisms of rocks and their constituent minerals have been
identified, it is possible to overcome this limitation thanks to multiscale numerical modelling,
and to determine rheological properties for inaccessible strain rates. In this work we use 2.5-
dimensional dislocation dynamics to model the low-stress creep of MgO periclase at lower
mantle pressures and temperatures.

7.1 Periclase deforms slower than bridgmanite at lower mantle

conditions

This work aims to model steady-state creep of periclase under lower mantle conditions, with
an emphasis on the role of extremely low strain rates. It is based on the extensive knowledge
we have of the deformation of this oxide following (1) the large number of experimental studies

1Cordier, P., K. Gouriet, T. Weidner, J. Van Orman, O. Castelnau, J. M. Jackson, and P. Carrez (2023).
“Periclase deforms more slowly than bridgmanite under mantle conditions”. In: Nature 613.7943, pp.
303–307.
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carried out on this ceramic since the 1970s, including the more recent mineral physics studies
taking into account the effect of pressure, and (2) the important modelling effort carried out
in recent years. At room pressure, periclase is easily deformed by glide of 1

2<110> dislocations
on {110} planes. The thermal activation of this mechanism can now be modelled from the
atomic scale (Amodeo et al. 2011), even at low strain rates (Cordier et al. 2012). Pressure
strongly affects this mechanism and induces a transition of glide towards the {100} planes
above 50 GPa (Amodeo et al. 2012; Girard et al. 2012; Immoor et al. 2018; Marquardt and
Miyagi 2015). At high temperature, dislocations glide without friction (athermal regime)
and the flow stress results from dislocation interactions, leading, at large strains and strain
rates to a pronounced hardening (Amodeo et al. 2014). At low strain rates, ionic diffusion
can enhance recovery mechanisms and allow steady-state creep (Reali et al. 2017). In this
study, we model the influence of mantle pressures on steady-state creep of periclase by
2.5-dimensional (2.5D) dislocation dynamics (DD). We focus on four pressures: 30, 60, 90
and 120 GPa, which, along the geotherm (Stacey and Davis 2004), correspond to 2,000,
2,300, 2,500 and 2,800 K respectively, at around depths of 800, 1,500, 2,100 and 2,700 km
respectively.

7.1.1 Diffusion coefficients

Dislocation climb in MgO is enabled by diffusion of Mg and O atoms, and the climb rate is
controlled by the slower diffusing species. Diffusion in MgO has been studied for decades,
and the mechanisms and rates of cation and anion diffusion are well established (Van Orman
and Crispin 2010). Mg and O diffuse using vacant sites on the cation and anion sublattices,
respectively. Because the concentration of cation vacancies is much higher than that of
anion vacancies, in both nominally pure synthetic and natural periclase samples, O diffusion
is orders of magnitude slower than Mg diffusion, and is the rate-limiting step in dislocation
climb. Whereas Mg diffusion is controlled by extrinsic vacancies, produced to charge-balance
trivalent (and tetravalent) cation impurities, O diffusion is intrinsic, enabled by thermally
produced Mg and O vacancy pairs (Schottky defects).

To calculate the oxygen self-diffusion coefficient, Dsd
Ox, over the full range of temperatures

and pressures relevant to Earth’s mantle, we use the expression presented by Ita and Cohen
(Ita and Cohen 1997), which is derived from their theoretical results on vacancy formation
and migration:

ln Dsd
Ox = ln α2νa + S0 + PS′

0
kB

− E0 + PV0 + P 2V ′
0

kBT
(7.1)
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Table 7.1: Oxygen self-diffusion parameters for MgO global fit as a function of pressure and temper-
ature (Ita and Cohen 1997)

Parameter Symbol Value
Attempt frequency νa 5.4 THz
Activation entropy at P = 0 S0 4 kB

S0 pressure derivative S′
0 0.02 kB GPa−1

Activation energy E0 0.4 ×10−19 J
Activation volume at P = 0 V0 16.7 Å3

V0 pressure derivative V ′
0 −0.038 Å3 GPa−1

where P and T are in GPa and K respectively, a is the lattice constant and kB is the
Boltzmann constant. The other parameters are listed in Table 7.1. The enthalpies are
obtained by inverting the Arrhenius equation of diffusion coefficient:

Dsd
Ox = D0 exp

(
−∆Hsd

kBT

)
(7.2)

where D0 = 7.2 × 10−4 m2 s−1 and ∆Hsd are, respectively, the exponential prefactor and
the activation enthalpy (Reali et al. 2017). The activation enthalpies for each set of pres-
sure/temperature and the diffusion coefficients are given in Table 7.2.

Table 7.2: Oxygen self-diffusion coefficients (m2s−1) from equation 7.1 and activation enthalpy (eV)
for MgO obtained from equation 7.2

P (GPa) T (K) Dsd
Ox ∆H

30 2000 6.61 × 10−27 9.15
60 2300 3.05 × 10−29 11.59
90 2500 3.46 × 10−31 13.56
120 2800 5.26 × 10−31 15.09

This expression produces values of Dsd
Ox that are in agreement with the most reliable experi-

mental results on intrinsic O diffusion from Yang and Flynn (1994) (see Figure 65). Higher
values of Dsd

Ox determined by Van Orman et al. (2003) at high pressure are considered to
reflect the contribution of dislocations (Dos Reis et al. 2022) and/or other extended defects,
as in most other studies of oxygen diffusion in MgO (Van Orman and Crispin 2010). The
results of Ita and Cohen (1997) are also similar to those presented in several later theoretical
studies (Ammann et al. 2010; Karki and Khanduja 2006; Runevall and Sandberg 2011).

7.1.2 Modelling dislocation creep of periclase

To model plasticity of periclase under mantle conditions, we use a 2.5D DD simulation ap-
proach (see section 3.3.4) already benchmarked for periclase at ambient pressure (Reali et
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Figure 65: Oxygen diffusion coefficients in periclase:The solid black line represents the diffusion co-
efficients of Yang and Flynn (1994). The black dashed line corresponds to the diffusion
coefficients of Ita and Cohen (1997) at 0 GPa. The other lines (blue, green, red, and ma-
genta) correspond to Equation 7.1 at 30, 60, 90, and 120 GPa respectively. The range of
temperatures considered in this study [2000 K : 2800 K] is shown with the grey shading.
The symbols (filled circles) correspond to the (P, T ) conditions along the geotherm con-
sidered in the present study (Stacey and Davis 2004) (Table 7.2).

al. 2017). Our creep results are presented in Figure 66(a), which shows the creep strain
rates obtained from the 2.5D DD simulations as a function of the creep stress for the four
(P, T ) conditions selected. A constant slope is found for all these strain rate–stress curves,
which gives the value of the power law stress exponent, n = 3.1. A strong pressure de-
pendence is found between (30 GPa, 2, 000 K) and (90 GPa, 2, 500 K), whereas creep rates at
(90 GPa, 2, 500 K) and (120 GPa, 2, 800 K) are very close due to very similar values for the
diffusion coefficients ( Figure 65 and Table 7.2). On Figure 66(a) we compare the creep
rates of periclase with those of bridgmanite at the same depths. For bridgmanite, we use
the results of Reali et al. (2019b) for pure climb creep (PCC) with a vacancy concentration
Xv = 1 × 10−5; these results were shown to be in good agreement with empirical geophys-
ical constraints on the viscosity profile of Earth’s lower mantle. Bridgmanite and periclase
exhibit similar stress exponents. However, we see that these calculations lead to bridgmanite
having higher creep rates than periclase at any depth. To better illustrate this difference, we
report, on Figure 66(b), the viscosity contrast between those two phases, taken as the ratio
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ηPer/ηBdm. We see that under lower mantle conditions, bridgmanite creep rates are 103 to
107 greater than periclase creep rates. This result reflects the fact that in the lower mantle,
anionic diffusion in periclase is much slower than cationic diffusion in bridgmanite (see Figure
67).

Figure 66: Creep rate modelling: (a) Creep strain rates as a function of applied stress of bridgmanite
(Bdm; solid line) and periclase (Per; symbols) at 30 GPa (blue), 60 GPa (green), 90 GPa
(red), and 120 GPa (magenta). (b) Viscosity contrast ηPer/ηBdm (calculated at 10 MPa)
between the two pure phases, periclase and bridgmanite, as a function of depth.

7.1.3 Laboratory versus nature

In this paragraph, we address the influence of strain rate on deformation mechanisms. Our
calculations showing that bridgmanite deforms faster than periclase under mantle conditions
seem to contradict the common intuition that the silicate is stronger than the oxide. Be-
yond general considerations (Yamazaki and Karato 2001) or studies of analogous compounds
(Kaercher et al. 2016; Wang et al. 2013), Girard et al. (2016) conducted experiments un-
der mantle conditions of pressure and temperature that show very clearly that ferropericlase
accommodates most of the strain compared to bridgmanite. We show here that there is no
fundamental opposition between modeling and experiments and that our models are able to
account equally for natural and experimental conditions. The experiments of Girard et al.
(2016) are conducted at a strain rate of 3 × 10−5 s−1 and under very high stresses. Under
these laboratory conditions, dislocation glide is expected as the dominant deformation mode.
For bridgmanite, dislocation glide is thermally activated under these conditions, and a model
based on the Orowan equation can be built (Orowan 1934). The stress values predicted by
this model are reported in Figure 68. They are close to the experimental values (slightly lower
as this model was constructed for single crystals and does not involve grain boundaries). At
30 GPa and 2, 000 K, dislocations in periclase glide in the athermal regime (Amodeo et al.
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Figure 67: Pressure dependence of ionic diffusion: The lines represent oxygen diffusion coefficients
in periclase (Per). We compare the data of Ita and Cohen (1997) (solid lines) to those
obtained from the pressure dependence of Ita and Cohen (1997) but anchored on data
from Yoo et al. (2002) (dotted lines). The symbols correspond to magnesium diffusion in
bridgmanite (Bdm) considering a range of vacancy concentrations from 103 to 106

2012). Several deformation experiments of periclase report that in the athermal regime, no
steady state is reached, and strain hardening occurs (Copley and Pask 1965; Hulse and Pask
1960; Routbort 1979) under the influence of dislocation–dislocation interactions. The origin
of this strain hardening has been studied and modeled by Amodeo et al. (2014). It is well
described by the Taylor mechanism, and the athermal stress τf required to overcome the
forest dislocation network is given by:

τf = µb
ln
(
1/b

√
βρf
)

ln
(
1/b

√
βρref

)√βρf (7.3)

where µ is the shear modulus, b the modulus of the Burgers vector, β is a forest strengthening
coefficient calibrated by Amodeo et al. (2014), ρf is the forest dislocation density, and ρref

is the reference dislocation density. Transmission electron microscopy observations (Nzogang
et al. 2018) on the specimens of Girard et al. (2016) confirm this view and show a very
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large dislocation density estimated at over 1015 m−2. Using this dislocation density and
Equation 7.3 leads to an excellent description of experimental values for the deformation of
ferropericlase under shallow lower mantle P, T conditions at laboratory strain rates (Figure
68). Our modeling approach allows us to reproduce very well the experimental data of
Girard et al. (2016) and confirm that, under laboratory conditions, bridgmanite is indeed
expected to be stronger than ferropericlase. It should be noted that the flow stress value for
ferropericlase corresponds to very high hardening, and that under more ’gentle’ laboratory
deformation conditions (that is, smaller strains or more recovery), the rheology contrast under
laboratory conditions should be even larger. At 30 GPa, oxygen diffusion is already slow, and
strain rates much lower than those obtainable in laboratory experiments would be required
for climb to become active and promote the recovery necessary for steady-state creep.

Figure 68: Influence of strain rate on deformation mechanisms: This figure corresponds to approxi-
mately 30 GPa, 2, 000 K, where the experimental (exp.) data of Girard et al. (2016) (sym-
bols) can be compared to numerical models (lines). At laboratory stresses and strain rates
numerical models based on dislocation glide are in fair agreement with experimental data
and show that bridgmanite (Bdm) is stronger than periclase (Per). At mantle strain rates,
creep (Weertman creep modeled by 2.5D DD in periclase (see text) and pure climb creep
(PCC) in bridgmanite) is controlled by ionic diffusion, which leads to an inversion of rhe-
ology, with periclase deforming more slowly than bridgmanite.
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8 General Discussion

8.1 Dislocation Electron Tomography

8.1.1 Analysis Possibilities

Up to this point, only a handful of laboratories have published work on dislocation electron
tomography. The first contribution was made by the group of Midgley in Cambridge (Barnard
et al. 2006). The most prolific laboratories are the group of Hata,in Japan which up to now
published 11 articles (e.g. Hata et al. 2020a) and in the US the group of Kacher with a
total of 9 articles (e.g. Kacher and Robertson 2014). The number of publications of this
specific scientific approach up to this day reached 63, it is a “niche”. Despite being in the
early stages of development, the potential applications of DET are significant, heralding a
promising future for in-depth dislocation analyses. However, it’s important to recognize that
much work remains to be done to fully realize its capabilities.

We have decided to develop DET, because it can help us access fundamental mechanisms of
plastic deformation. The slip systems are the first characterization needed. It can be accessed
with the Burgers vector and the line direction.

To retrieve the Burgers vector multiple techniques are known. The first method developed is
known as the extinction criteria, which is time consuming. Later the thickness fringes method
(Ishida et al. 1980) allow us to reduce the micrographs needed. The most efficient approach
to indexing Burgers vectors is through LACBED, where only a single pattern is required.
Consequently, the Burgers vector characterization has been optimized by the community.

The situation to access glide planes is more difficult. The usual way to characterize glide
planes is via stereographic projection, but it is laborious and limited by accessible orientations.
For that reason we have decided to extend the development of DET at Lille. DET analysis
expands the scope beyond slip system indexations, which will be discussed in the next section.
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8.1.2 Advanced characterization with DET

DET allowed us to characterize slip systems in various materials. In quartz we have char-
acterized <a> prismatic and <a> pyramidal as well as <c> prismatic, which have been
previously found in literature (Baeta and Ashbee 1969; Hobbs 1968; Mainprice et al. 1986;
Morrison-Smith et al. 1976). In addition we found less common systems like glide in <c+a>
prismatic and <c+a> pyramidal. For olivine we have characterized <a> in (010) and <c> in
(010) , {110} and (100) which have all been found previously (Durham et al. 1985; Miyajima
et al. 2009).

Tomography provides complete access to the 3D microstructure, which gives the possibility
to observe annihilation and collinear interaction (Stach et al. 2000). DET can also reveal
double cross slip, which leads to interactions that creates loops in sessile planes (Mussi et al.
2017).

Finally and above all, DET reveals dislocation motion in non-glissile planes, or in other
words climb planes. We could index dislocations in pure climb of <a> in (100) for olivine,
as well as <a> prismatic in quartz. Mixed climb, a newly recognized strain mechanism,
it occurs when climb and glide velocities are comparable, questions traditional dislocation
motion models. Despite its potential significance, accurately quantifying its impact remains
a challenge, requiring an advanced characterization technique like DET. The first mention of
this mechanism has been proposed by Malaplate et al. (2004) in a TiAl alloy. They propose a
mixed climb mechanism generated by high frictional forces in glide planes (probably linked to
specific dislocation core structures). In a later study (Galy et al. 2023) they then confirmed
similar velocities for both mechanisms in TiAl at a temperature of 790◦C. This could be
done by in-situ TEM deformation, with a direct measurement by stereographic projection.
In our study we could characterized a <a> (210) mixed climb configuration in a natural
deformed olivine specimen (see figure 50 in Section 4.2). The angle between mixed climb
and pure climb is of 13.12◦, which is closer to a pure climb configuration.

For natural deformed quartz specimens we even did quantitative studies, considering dislo-
cation length in two samples. The work on quartz showed a high amount of mixed climb
contribution, with over half of the dislocation length was in a mixed climb configuration, dis-
tributed in the whole angle range between, glide and pure climb. The actual glide velocities
are very hard to estimate in this case, in the absence of direct (e.g. in situ in the TEM)
measurements of dislocation mobility. To estimate the climb velocity we would need accurate
self-diffusion values which are also missing. However, these statistics suggest that disloca-
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tion climb might act as a deformation mechanism in its own right capable of contributing
significantly to the deformation of rocks, and not just as a recovery mechanism.

It is worth noting that the identification of mixed climb begins to spread thank to tomography.
The first study was published in 2004 on TiAl alloy, in minerals from 2017 to present and
very recently on UO2 (Onofri et al. 2024).

In summary, I am now able to conduct DET analyses on various materials, minerals and a
MAX-phase (in early progress). It can be done in conventional form or in fast way (tilt series
acquisition with few images). To go further we have decided to associated tomography with
continuum mechanics. We will discuss this association improving the resolution from spatial
scale to time scale.

8.2 Dislocation Electron Tomography: Association with

Continuum Mechanics and Dislocation Dynamics

8.2.1 Association of DET with Continuum Mechanics at the Grain Scale

To associate DET with strain tensor, we have extracted the habit plane normal of each
dislocation segment, each linked with a corresponding Burgers vector for quartz in natural
conditions. It is noteworthy that this study has been conducted both quantitatively and
accurately. It is the first analysis of its kind up to this day. The powerful tool of tomography
gives us the possibility to get access not only to strain tensor but also to stress tensor.

We have to emphasis that due to the plastic response of the material, the dimensionless stress
tensor is not simply obtained by a Hook’s law, but via a minimization method. Likewise, we
can obtain relative CRSS, which are very difficult to measure and even more in geological
conditions.

It has to be mentioned that the model is based on significant approximations (particular for
modeling climb) to facilitate the calculations. The study was a first attempt to test the limits
of this model, which must be refined. It showed success for one of the two grains but did not
give relevant results for the other one.

To achieve a truly quantitative analysis of strain tensor, it is essential to capture the full
dislocation microstructure of a whole grain. To characterize the complete 3D dislocation
microstructure, several diffraction vectors might be needed. But even worse the necessity to
characterize a whole grain from a thin foil is incompatible. Generally, TEM thin foils have a
thickness ranging from 50nm to 500nm. On the other hand, representative grain sizes have
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an order of magnitude of several micrometers. It could work in the case of materials with
very fine grain sizes, which makes it difficult to perform DET analysis.

Going from grain scale we will now go to spatial resolution of WBDF (few nanometers).

8.2.2 Association of DET with Continuum Mechanics at the Scale of
WBDF Resolution

As outlined in 3.1, we can extract the dislocation line direction from tomography analyses.
Associating these line directions with their respective Burgers vectors enables us to access
the local Nye tensor. This allows us to simulate the mechanical fields of the thin foil with
the resolution of the WBDF micrograph. To conduct such a study, we have to keep in mind
that it relies on obtaining the sign of the Burgers vectors, which is challenging. It can be
achieved using the LACBED technique, but it is difficult to identify each dislocation due to
shadow image problems and it gets impossible for thick specimens due to multi scattering
events. Therefore, we usually rely on the thickness fringes method, where the sign is linked
with the termination direction. However, if dislocations lie parallel to the thickness fringes
the termination direction is hard to access. In the case of a more or less flat specimen, the
thickness fringes are far from each other. This is generally the case far from the wedge. To
bring them close we need to increase the excitation error s, which exponentially decreases
the micrograph contrast.

The sign of the Burgers vector is linked with the asymmetry of the contrast intensity at
dislocation extremities, but it depends on the material. It could be linked with the structure
factor and the anisotropy of the crystal. In some material it is strongly visible, in others
no such signature can be seen. In conclusion, this represents the primary limitation of the
technique.

An advantage of this method is that we can resolve continuum mechanics at high spatial
resolution. A DET study has been performed on a TEM device with a X-FEG filament
(high brightness), which allows a high signal over noise ratio even at a high excitation error
(Mussi et al. 2021a). Consequently, high resolution WBDF could be achieved, resulting in a
reconstruction resolution of 4 nm.

It is possible to improve the resolution even further. A WBDF image by Douin (Morniroli
2001) shows a resolution below 1 nm (see Figure 69), therefore a reconstruction resolution
near 1 nm could be reached.
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Figure 69: WBDF micrography of a superdislocation [110] dissociated into two identical partials
1/2[110] in Ni3Al, showing a resolution below 1 nm (unpublished results from Douin,
Morniroli 2001).

A validation of our technique has to be done, by directly comparing it to elastic field maps
on the surface from direct analyses like HR-EBSD. This will be further discussed in the
conclusion.

The association of tomography gives the opportunity to locally anticipate fundamental mech-
anisms of plastic deformation: collinear interaction, cross slip, dislocation climb and more.

To go even further, we can investigate the evolution of the microstructure with time. To
accomplish this, we therefore naturally use DD to associate DET with time.

8.2.3 Association of DET with Time by Dislocation Dynamics

Generally DD uses virtual microstructures to study a specific behavior. In the present state
of knowledge, it is the first time, that a real microstructures is incorporated in a DD model.
The idea is to bring life back to real dislocation microstructure.

The results are a proof of concept and therefore the extend of the simulations are limited.
We needed a specimen with only few slip systems and minimal sessile configurations. It
is important to be able to trace back the orientation of applied stress to reactivate the
microstructure in the same experimental conditions. Of course, we need to consider all
experimental conditions as well (temperature, strain rate, etc.). From the point of view
of tomography, the access to the Burgers vector signs is necessary, we encounter the same
problem as previously. In all materials we studied, only one tilt series in PoEM9 fulfilled all
the required conditions for this proof of concept. First of all, the microstructure contains
only three slip systems with one Burgers vector and only few climb configurations. The
biggest advantage of this specimen is that most parameters relevant for dislocation dynamic
modelling are known (thermal kink pair mechanism parameters (Durinck et al. 2007b), core
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width (Mahendran et al. 2021), etc.). Finally, the dislocation microstructure contains mainly
straight screw segments. In this particular specimen we have high asymmetric contrast of
dislocation extremities, consequently we can easily get access to most of the Burgers vector
signs. However, this specimen possesses flaws that are intrinsic to its characteristics. As
much as the simplicity of the microstructure helps us to perform a proof of concept, it also
introduces some limitations.

The simplicity makes it impossible to obtain complex interactions. To increase the complexity,
it is necessary to rise the amount of active slip systems. The majority of the segments are
screw with the same Burgers vector which on their own can create dipoles or interactions
between [c] dislocations of opposite signs gliding in different family planes. Which such a
configuration, only collinear interactions can be observed. Moreover, to create entangled
zones, we need obstacles. Collinear interactions are the only obstacles created during DD
simulation, except sessile segments, coming from the initial microstructure. To accumulate
entangled zones, we need high strain (several dozen %), which it not reachable in DD (usually
up to several %).

In addition, we had to make hypotheses for the habit planes of the straight screw dislocations.
Tomography revealed three preferential slip systems. We have decided to address only those
three slip systems as possible gliding planes. Then, based on interaction behavior in the
relaxed condition, we have eliminated odd dislocation configurations (Figure 60). Finally, it
is possible to predict the supposed activated slip system.

Olivine has an orthorhombic structure. This crystallographic structure shows anisotropy in its
elastic behavior. Unfortunately, DDD codes rely on isotropic elasticity for interactions between
dislocation segments. The calculations of stress fields and displacements of dislocation in
anisotropic domains are still challenging and have high numerical calculation costs.

The main problem occurring in our simulation is linked with the boundaries of the thin
foil. Consequently, all hidden dislocation microstructures are not considered. Limiting the
simulation to the geometry of a thin foil is a large approximation, since the elastic fields of
dislocations occur at long distances. All dislocations near the surface are strongly affected
by mirror forces from the boundary of the thin foil. To avoid those forces, we extended the
simulation box and pined the end nodes of the emerging dislocations. For this reason, we had
to make an assumption on the shape of the extrapolated dislocations. We have decided to
make the hypothesis that extrapolation of the dislocations are straight screw segments. To
resolve these problems, a coupled code between a finite element model and NUMODIS has
been recently developed, El-NUMODIS (Gonzalez-Joa et al. 2023). It is more computational
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demanding and would go too far for a simple proof of concept study. But it is promising since
computational capability will increase in future and should be incorporated in a next study.

Another problem concerns the occurrence of cross-slip and climb. Both occurrences have
been observed in PoEM8 and PoEM9 respectively. Cross-slip and more precisely double
cross-slip mechanism has been identified in PoEM8 (see Figure 4 in Mussi et al. (2017)).
Climb mechanism has been observed in PoEM9 through the occurrence of string of small
loops. Indeed, it can be explained by the shrinkage of dislocation dipoles by climb. The
problem in NUMODIS is that cross-slip is not well adapted for this study and climb is not
included yet.
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9 Conclusion: Advancing Dislocation Analysis

through Electron Tomography

This work has highlighted the capabilities of dislocation electron tomography (DET) as a tool
to connect experimental data to modeling. In concluding this work, we have emphasized two
significant insights. First, the detection of mixed climb mechanisms in minerals via DET and
in general the importance of climb in geodynamics, undermined by the Dislocation Dynamics
(DD) the study on the rheology of the lower mantle. Second, the successful association of
DET with mechanics, enhanced by incorporating time evolution through DD.

9.1 On the Importance of Climb in Geodynamics

In the course of this thesis, several studies have helped to highlight the importance of the
climb mechanism in geodynamics, where we often deal with high temperature and low strain
rates.

At first, it appeared indirectly, in the study of periclase creep initiated during my Master’s
degree (Section 7). In this study, dislocation dynamics modeling of creep highlighted the
rate-controlling role played by climb. As anionic diffusion is virtually inhibited in MgO under
pressure, this mineral does not deform at mantle strain rates. Climb therefore played the
role traditionally considered as a recovery, rate-controlling mechanism. Indirectly, however,
my modelling has led to the proposition that it is bridgmanite, which deforms by pure climb,
that controls mantle rheology. In this way, I have helped to confirm Boioli et al. (2017) and
Reali et al. (2019b)’s proposal that dislocation climb plays the leading role in deep mantle
rheology. This work has highlighted the importance of climb, particularly at high temperature
and low strain rates. Starting by its role as a rate-controlling mechanism for periclase in the
lower mantle, revealed by 2.5D DD modeling. And when looking at the bigger picture, we
found that it deforms slower than bridgmanite under lower mantle condition, contrary to
previous suggestions. Within bridgmanite, climb is suggested to serve as a strain-producing
mechanism through pure climb.
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This study on periclase was purely numerical. My thesis project, essentially based on disloca-
tion tomography, contributed to shed light on the climb in an unexpected way. What stands
out in our study is the detailed characterization of dislocation microstructures in samples de-
formed in nature, something that is rarely done today. Compared with the previous project,
this has necessarily led to a shift of interest towards more superficial geodynamic contexts.
But natural samples are the only ones that retain traces of deformation that took place at
very low tectonic strain-rates.

The main study therefore focused on quartz, following the preliminary observation of mixed
climb in a Bohemian granulite (Mussi et al. 2021c).

Our investigation with DET of quartz from two highly sheared mylonites has revealed com-
plex dislocation configurations beyond the standard glide planes. It uncovered the pervasive
occurrence of climb in natural deformed samples. We have shown that the contribution of
glide to the strain produced by observed dislocations is sufficient to meet the von Mises-Taylor
criterion, indicating that while climb’s activation is not necessary for additional strain com-
ponents, it however significantly contributes to the magnitudes of strains observed. Indeed,
the plastic strains produced by climb are on par with, if not greater than, those produced by
glide. This demonstrates that relying solely on glide for the analysis of strain does not offer
a complete picture of quartz deformation at natural strain rates.

More interestingly, we showed that approximately half the dislocations length was in mixed
climb configuration. Such evidence explains why climb does not just play a role in recovery,
but also actively contributes to strain. Activation of mixed climb shows that glide and climb
mechanisms exhibit similar mobilities in natural conditions. The reason is that under low
stress and strain rate, glide (which is stress driven) is slowed down while climb (which is
diffusion controlled) has time to operate. The deformation mechanisms activated in nature
are thus probably, at least in quartz, very different than those activated in the laboratory.
This calls for care in extrapolation laboratory data to nature. In particular since most analyses
are based on crystal preferred orientations which only capture the kinematics resulting from
glide.

Furthermore, we hypothesize that the activation of mixed glide and climb could facilitate the
activation of glide on additional planes. This hypothesis, grounded in preliminary observa-
tions, calls for further empirical and theoretical exploration.

Following the work on quartz, we also report some preliminary observations of mixed climb
in an olivine from Oman ophiolite. This observation is too preliminary to draw general con-
clusions, but calls for further investigations to assess the potential importance of dislocation
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climb in the lithospheric or asthenospheric mantle. However, it is clear that the DET is and
will be the preferred tool for carrying out these investigations.

9.2 An Association with Continuum Mechanics and Dislocation

Dynamics

In the work on quartz, I contributed to associate DET with mechanics by looking at mechanical
field on grain scale resolution, but to get a better view of the intrinsic behavior between the
individual dislocations, we have to go beyond, involving local analysis.

To do so, I helped to linked DET, which provides a 3D reconstruction of dislocation lines, with
continuum mechanics to analyze stress and strain at the nanoscale. This was accomplished
by transforming the observed dislocation microstructure into a continuum field using FDM.
To achieve this, we computed local Nye tensors at the resolution provided by the dislocation
contrast of WBDF imaging, effectively bridging the gap between the localized, discrete nature
of dislocations and the continuous framework of material deformation. This integration
enhances our understanding of the mechanical fields within a thin foil, providing a richer view
of material behavior from the microstructural level to macroscopic properties.

This methodology allowed me to reveal significant local variations in stress fields and Resolved
Shear Stresses (RSSs) in various slip systems in olivine. These variations are critical for
understanding the pronounced plastic anisotropy of materials like olivine and for identifying
the activation mechanisms of different dislocation slip systems. Consequently, this analysis
allows us to explore processes such as kinematic hardening at the nanometer scale within a thin
foil, marking a significant progression in the nanoscale characterization of plastic deformation
mechanisms.

Moreover, by incorporating microstructure from DET into DDD simulations, I have introduced
a temporal dimension to our analysis, allowing us to observe how dislocation networks might
evolve over time. Incorporating real microstructures into DD models brings life back to our
microstructure, transforming static images into dynamic scenarios that reflect the complex
interactions and evolution of dislocations under various conditions. The incorporation of DET
into DD models represents a novel methodological advancement, allowing for the simulation
of dislocation behavior based on real dislocation microstructure instead of virtual.

Incorporating DET with continuum mechanics and DD simulations represents a frontier in
materials science, offering a powerful toolkit for unraveling the intricacies of plastic deforma-
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tion. From the point of view to connect DET to FDM and DDD, the access to the Burgers
vector signs is necessary, which might be still the biggest challenge.

Although this approach is in a proof of concept stage, with challenges related to incomplete
data from DET and the missing models for complex mechanisms especially in DD, it marks
a significant stride towards a deeper understanding of dislocation mechanics.

9.3 Perspectives

In the journey ahead, our research aims to deepen the understanding of mixed climb and climb
in general, by looking at other specimens with low deformation rate and at high temperatures,
which favors deformation by climb. Low strain rates in most natural deformed minerals, com-
bined with often high temperatures during their deformation makes them good candidates to
further explore. Applying FDM for more detailed strain tensor analysis in similar specimens,
potentially can help revealing new aspects of mixed climb and associated deformation mech-
anisms. Also looking at in situ tomography like it was performed by Mussi et al. (2021b),
should give insides into the mobility of the dislocations. For this DET with few projected
images is important to faster perform tomography. In this regard a comparison with other
techniques like stereo pair (e.g.Oveisi et al. 2018), which relies on only two micrographs,
has to be done to compare advantages and disadvantages of the techniques to others. A
even more reasoned approach by Niermann et al. (2024) based on 4D STEM, proposes a
reconstruction without tilting. This method analyzes changes in electron Bloch wave bands
resulting from scattering in the strain field of dislocations within the crystal. This approach
appears promising and deserves further comparison and development to be able to classify
its capabilities correctly.

Another point is the improvement of the reconstruction quality with the help of machine
learning, and a more automatic reconstruction.

Then a direct validation of association between tomography and FDM has to be performed
by techniques like HR-EBSD (Ernould et al. 2022). For a TEM experiment this could be
done with ASTAR. A first work conducted by Despres gave access to strain fields on Al
precipitates. This work has been presented in a conference in 2023 and another work on
MAX phases Cr2AlC on emerging edge dislocations, was presented at Plasticite 2023 and
CMJ 2023.

Regarding DD with NUMODIS, there is still the development to incorporate a more accurate
velocity law, and at some point, to incorporate additional mechanisms. One of the biggest
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issues when associated it with DET, is the aspect of the thin foil boundaries, which should
be improve with coupled codes like El-NUMODIS (Gonzalez-Joa et al. 2023).

After the proof of concept has been done, it should also be interesting to work with a less
anisotropic sample with a more interesting microstructure (e.g. a fcc multi-glide metallic
specimen), that primarily is in glide to use the full capabilities of the code. Even though
there seems to be first approaches to incorporate anisotropy in to DD (Forghani and Khaji
2022).

A final dream would be to study a specimen, where both 4D DET and DDD would be possible
to be performed under the same conditions, which would then allow to directly compare the
modeling with the experiment and afterwards to analyze the mechanical field, to see the
effect of interactions. As we look to the future, I think I can say that the association of
DET with other techniques opens new avenues in understanding and analyzing dislocation
microstructure, despite the challenges that still exist.
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A.1 Analysis on straight line dislocations

Figure 70: Sketch of a straight line dislocation represented with four projection angles
(α0, α1, α2, and α3) delimited by two points (M and N colored in green): (a)-(d) Ob-
servations along the electron beam axis. (e)-(h) Observations along the (0, y) axis. (i)-(l)
Observations along the axis that is perpendicular to the electron beam axis and to the
(0, y) axis.

Here I describe the manual reconstruction of straight line dislocations, that was applied in
in our study on quartz (see section 4.1). Let’s consider (0, x, y, z) the direct orthonormal
reference frame where the thin-foil is laid horizontally, and four projection angles:

• α0, where the dislocation is laid horizontally,

• α1, the angle of the micrograph obtained with the maximum negative angle, shown in
grey in Figure 69 (α is the angular difference between α1 and α0),

• α2, where the thin-foil is laid horizontally (α2 = 0◦),
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• α3, the angle of the micrograph obtained with the maximum positive angle, shown in
grey in Figure 69 (∆α is the angular difference between α3 and α1).

The tilt-axis is along the (0, y) axis and passes through a small detail (usually a small dislo-
cation loop, indicated by a red dot in Figure 69) used to align the tilt-series.

Note that:

• The ∆yi(= ∆y), ∆x1 and ∆x3 deviations can be obtained from micrographs acquired
at the two extreme angles of the tilt-series,

• The ∆z2 deviation is simply the thickness of the thin plate (∆z2 = t),

• The ∆x0, ∆y0 and ∆z0 deviations give us access to the line vector of the rectilinear
dislocation in the reference frame where the dislocation is laid horizontally (projection
angle α0), a simple change of reference frame allows us to find the dislocation in the
reference frame where the thin-foil is laid horizontally,

• The ∆x0, ∆y0 and ∆z0 deviations also give us access to the length of the straight line
segment: L =

√
∆x2

0 + ∆y2
0 + ∆z2

0 ,

• When the dislocation is laid horizontally, ∆z0 = 0, then L =
√

∆x2
0 + ∆y2,

• The aim is to find ∆x0.

Method for finding ∆x0:
∆x1
∆x0

= cos(α1 − α0) = cos(α) (A.1)

Similarly:
∆x3
∆x0

= cos(α3 − α0) (A.2)

This can also be written:
∆x3
∆x0

= cos(∆α + α) (A.3)

Therefore:
∆x3
∆x0

= cos[∆α + arccos(∆x1
∆x0

)] (A.4)

We deduce ∆x0:

∆x0 =
√

[1 + cot2(∆α)]∆x2
1 − 2 cot(∆α)∆x1∆x3

sin(∆α) + 1
sin2(∆α)

∆x2
3 (A.5)

We obtain the length of the straight line segment:

L = 1
sin(∆α)

√
∆x2

1 − 2 cos(∆α)∆x1∆x3 + ∆x2
3 + sin2(∆α)∆y2 (A.6)
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Knowing ∆x0, we deduce α0:

α0 = α1 − arccos(∆x1
∆x0

) (A.7)

To find the coordinates of the line vector t⃗, simply rotate the reference frame by an α2 − α0

angle along the (0, y) axis. We know t⃗ in the reference frame for the α0 projection angle:

t⃗ =


∆x0

∆y

0

 (A.8)

To obtain t⃗′ in the reference frame for the α2 projection angle, we simply need to change the
reference frame using the following rotation matrix:

Ry(α2 − α0) =


cos(α2 − α0) 0 sin(α2 − α0)

0 1 0

− sin(α2 − α0) 0 cos(α2 − α0)

 (A.9)

Thus:

t⃗′ =


∆x0 · cos(α0)

∆y

∆x0 · sin(α0)

 (A.10)

Finally:

t⃗′ =


∆x1 cos(α1) + sin(α1)

sin(∆α)

√
cos2(∆α)∆x2

1 − 2 cos(∆α)∆x1∆x3 + ∆x2
3

∆y

∆x1 sin(α1) − cos(α1)
sin(∆α)

√
cos2(∆α)∆x2

1 − 2 cos(∆α)∆x1∆x3 + ∆x2
3

 (A.11)
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Abstract: The study of dislocation microstructures (linear defects) enables us to identify the fundamental

mechanisms of plastic deformation in materials. These defects are defined by their Burgers vectors, line

vectors and habit planes (slip and climb planes). TEM is the most suitable tool for characterizing these

vectors and planes, but the main drawback of this technique is access to projected images, a source

of interpretation errors. Dislocation electron dislocations (DET) has been developed to observe these

microstructures in 3D, and thus better decipher them. As part of my thesis, I pursued the development of

DET. I improved 3D reconstruction techniques and carried out fast tomography (tomography with a low

number of projected images). This enabled me to characterize the 3D microstructures of dislocations in

natural quartz and olivine samples. DET revealed an original dislocation climb mechanism: mixed climb.

This mechanism, intermediate between pure climb and glide, is the signature of an equivalent balance

between the mobility of dislocations in glide and in climb. This mechanism, a priori singular, turns out to

be particularly common in high lattice friction microstructures loaded at high temperatures. In order to go

beyond simple characterizations by indexing the line directions and habit planes of dislocation segments,

we undertook an approach aimed at combining tomography with continuum mechanics. A first study

enabled us to obtain the strain tensor of a grain in a natural quartz sample from characterizations of the

Burgers vectors associated with the normals to the habit planes of dislocation segments reconstructed in

3D using DET. This quantitative study (the lengths of the dislocation segments were considered in the

calculations) enabled us to verify that the von Mises criterion was respected (the plastic deformation of

the quartz polycrystal occurred with more than five independent slip systems, which explains the absence

of damage). We were also able to access the stress tensor and the relative critical resolved shear stress.

The characterization of line vectors and Burgers vectors, identified using tomography, also enables us to

derive the Nye tensor for each dislocation segment. This tensor is obtained by the dyadic product of

the Burgers vectors and their line vectors. By applying the laws of continuum mechanics, we were able

to determine, in a second study, the strain tensor and stress tensor fields from a real 3D microstructure

of dislocations. We then linked DET to dislocation dynamics (DD). The NUMODIS nodal DD software,

developed at CEA Saclay, enables dislocation segments to be delimited by nodes in space. Its nodal nature

makes it ideal for use with DET. The principle is to bring dislocations back to life if modeling is carried

out under the same mechanical stress conditions as during mechanical testing. We looked for a sample

with perfectly known mechanical stress axes and the simplest possible dislocation microstructure: gliding

dislocations, a single type of Burgers vector, a majority of straight screw dislocations and few gliding

mechanisms. An olivine sample deformed in a Paterson press at 800°C, under a confining pressure of 300

MPa, satisfies all conditions. The DD simulations undertaken in this study are the first to be derived from

a real dislocation microstructure obtained by tomography. We were able to characterize annihilation and

collinear interaction mechanisms.



Résumé: L’étude des microstructures de dislocations (défauts linéaires) permet d’identifier les mécanismes fon-

damentaux de déformation plastique des matériaux. Ces défauts sont définis par leurs vecteurs de Burgers, leurs

vecteurs lignes et leurs plans d’habitat (plans de glissement et de montée). La MET est l’outil le plus adapté pour

caractériser ces vecteurs et ces plans, mais le principal inconvénient de cet instrument est l’accès à des images

projetées, sources d’erreurs d’interprétation. La tomographie électronique des dislocations (TED) a été développée

pour observer en 3D et donc mieux déchiffrer ces microstructures. Dans le cadre de ma thèse, j’ai poursuivi le

développement de la TED. J’ai amélioré les techniques de reconstruction 3D et effectué de la tomographie rapide

(tomographie à faible nombre d’images projetés). Les microstructures 3D de dislocations d’échantillons naturels

de quartz et d’olivine ont ainsi pu être caractérisées. La TED a permis de révéler un mécanisme de montée de

dislocations original : la montée mixte. Ce mécanisme, à l’intermédiaire entre la montée pure et le glissement,

est la signature d’une pondération équivalente entre la mobilité de dislocations en glissement et en montée. Ce

mécanisme, a priori singulier, se révèle particulièrement commun dans les microstructures à fortes frictions de

réseaux sollicitées à hautes températures. Pour dépasser les simples caractérisations par indexations de directions

de lignes et de plans d’habitat des segments de dislocations, nous avons entrepris une démarche visant à associer

la tomographie à la mécanique. Une première étude nous a permis d’obtenir le tenseur des déformations d’un grain

dans un échantillon naturel de quartz à partir des caractérisations des vecteurs de Burgers associés aux normales

aux plans d’habitat des segments de dislocations reconstruits en 3D grâce à la TED. Cette étude quantitative (les

longueurs des segments de dislocation ont été prise en compte dans les calculs) nous a permis de vérifier que le

critère de von Mises était respecté (la déformation plastique du polycristal de quartz s’est produit avec plus de

cinq systèmes de glissement indépendants qui explique l’absence d’endommagement). Nous avons également pu

accéder au tenseur des contraintes et au contraintes critiques résolues relatives. Les caractérisations des vecteurs

de lignes et des vecteurs de Burgers, identifiées grâce à la tomographie, permettent également d’obtenir le tenseur

de Nye pour chaque segment de dislocation. Ce tenseur s’obtient par le produit dyadique des vecteurs de Burgers

par leur vecteurs lignes. En appliquant les lois de la mécanique des milieux continus, nous avons pu déterminer,

dans une seconde étude, les champs de tenseurs de déformation et de tenseurs de contrainte à partir d’une mi-

crostructure réelle et 3D de dislocations. Nous avons, par la suite, associé la TED à la dynamique des dislocations

(DD). Le logiciel de DD nodal NUMODIS, mis au point au CEA à Saclay, permet de délimiter des segments de

dislocations par des nœuds dans l’espace. Son caractère nodal fait qu’il s’associe idéalement avec la TED. Le

principe consiste à redonner vie aux dislocations si la modélisation est effectuée dans les mêmes conditions de

sollicitations mécaniques qu’au cours de l’essai mécanique. Nous avons cherché un échantillon dont les axes de

sollicitations mécaniques sont parfaitement connus et avec la microstructure de dislocations la plus simple qui soit

: dislocations en glissement, un seul type de vecteur de Burgers, une majorité de dislocations vis rectilignes et peu

de mécanismes de glissement. Un échantillon d’olivine déformé sous presse Paterson à 800°C, sous une pression de

confinement de 300 MPa, cochait toutes les cases. Les simulations de DD, entreprises dans cette étude, sont les

premières tirées d’une microstructure réelle de dislocations obtenues par tomographie. Nous avons pu caractériser

des mécanismes d’annihilations et d’interactions colinéaires.
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