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RÉSUMÉ

UNIVERSITÉ CLAUDE BERNARD LYON 1
THÈSE DE DOCTORAT

COSMOLOGIE AVEC LES SIRÈNES SOMBRES ET POPULATIONS
DE BINAIRES DE TROUS NOIR AVEC LES ONDES
GRAVITATIONNELLES DE LIGO-VIRGO-KAGRA

par Grégoire PIERRA

Les ondes gravitationnelles constituent une nouvelle sonde pour explorer l’Univers
et étudier des phénomènes cosmiques jusque-là inaccessibles. Cette thèse se base
sur des données d’ondes gravitationnelles récoltées par les détecteurs de la collab-
oration scientifique LIGO-Virgo-KAGRA. La première partie de ce travail porte sur
la cosmologie avec les sirènes sombres, une méthode qui utilise les fusions de trous
noirs pour mesurer les distances cosmologiques et inférer la valeur de la constante de
Hubble, sans nécessiter de contrepartie électromagnétique. Elle présente également
ICAROGW, un code d’inférence bayésienne hiérarchique, utilisant les données d’ondes
gravitationnelles et des modèles décrivant les propriétés astrophysiques des trous
noirs, comme leurs masses, leurs distances ou encore leurs spins, pour mesurer la
constante de Hubble. La deuxième partie de cette étude teste particulièrement la ro-
bustesse des sirènes sombres pour la cosmologie. Elle explore l’impact des modèles
de population de trous noirs sur l’estimation de la constante de Hubble, tout par-
ticulièrement lorsque certains processus astrophysiques ne sont pas modélisés. La
troisième partie s’attache à la recherche et à l’identification de sous-populations de
binaires de trous noirs dans l’univers. Elle examine la manière dont différents canaux
de formation peuvent influencer les caractéristiques intrinsèques de ces objets com-
pacts, notamment à travers les corrélations potentielles entre leur masse et leur spin.
L’existence de ces corrélations serait révélatrice de la présence de sous-populations
de trous noirs, comme les trous noirs hiérarchiques issus de coalescences précédentes.
Enfin, le manuscrit se termine par une étude sur l’utilisation de méthodes de machine
learning pour améliorer la qualité des données de l’interféromètre Virgo et détecter
la présence de bruits non-gaussiens. Ces travaux explorent également l’intégration
potentielle des résultats d’iDQ dans les algorithmes de détection des signaux d’ondes
gravitationnelles, visant ainsi à renforcer le niveau de confiance dans ces détections.
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ABSTRACT

UNIVERSITÉ CLAUDE BERNARD LYON 1
DOCTOR OF PHILOSOPHY

DARK SIREN COSMOLOGY AND BINARY BLACK HOLE
POPULATIONS WITH LIGO-VIRGO-KAGRA GRAVITATIONAL

WAVES
by Grégoire PIERRA

Gravitational waves constitute a new probe for exploring the Universe and studying
cosmic phenomena that were previously inaccessible. This thesis is based on grav-
itational wave data collected by the LIGO-Virgo-KAGRA scientific collaboration de-
tectors. The first part of this work focuses on cosmology with dark sirens, a method
that uses binary black hole mergers to measure cosmological distances and infer the
value of the Hubble constant, without requiring an electromagnetic counterpart. It
also presents ICAROGW, a hierarchical Bayesian inference code that uses gravitational
wave data and models describing the astrophysical properties of black holes, such as
their masses, distances, and spins, to estimate the Hubble constant. The second part
of this study tests in particular the robustness of the dark siren method for cosmology.
It explores the impact of binary black hole population parameterization on the estima-
tion of the Hubble constant, especially when certain astrophysical processes are not
modelled. The third part focuses on the search and identification of subpopulations of
binary black holes in the universe. It examines how different formation channels can
influence the intrinsic characteristics of these compact objects, particularly through po-
tential correlations between their mass and spin. The existence of these correlations
would be indicative of the presence of subpopulations of black holes, such as hierarchi-
cal black holes, resulting from previous mergers. Finally, the manuscript concludes
with a study on the use of machine learning methods to improve the quality of the
Virgo interferometer data and detect the presence of non-Gaussian noises. This work
also explores the potential integration of inferential data quality (iDQ) results into
gravitational wave signal detection algorithms, thereby aiming to strengthen the con-
fidence level in these detections.
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INTRODUCTION

The history of gravitational wave physics is a lengthy and intricate one, beginning over
a century ago with the groundbreaking work of one of the greatest scientists who ever
lived, Albert Einstein. The year 1915 not only marks the publication of his theory of
General Relativity but also a profound shift in our understanding of gravity. Until
then, gravity was considered as one of the fundamental forces of the Universe, de-
scribed as an invisible force acting between massive objects. Within the formalism of
General Relativity, however, gravity is no longer a force but rather a consequence of a
deeper and more general description of the Universe’s fabric. In this framework, the
fundamental structure of the Universe—spacetime—is a dynamic fabric whose geom-
etry is affected by the presence of mass and energy. Gravity is perceived as the natural
path that objects followwhen the geometry of spacetime around them is curved. This
theory, besides being one of the most important breakthroughs in modern physics,
also predicted the existence of previously unforeseen astrophysical phenomena, such
as black holes and gravitationalwaves. For decades, both black holes and gravitational
waves remained purely theoretical constructs, born from a deeper comprehension of
the Universe’s structure, awaiting the technological advancements necessary for their
observation. Nevertheless, evenwithout direct detection, scientists recognized the un-
precedented potential of these objects, as they promised to open a new window into
the understanding of the Universe and the extraordinarily powerful astrophysical phe-
nomena within it.

Black holes are cosmic entities that have continuously intrigued scientists. From the
perspective of General Relativity, they are referred to as singularities, corresponding
to regions of spacetime where the gravitational field is so intense that the geometry
of spacetime is curved to infinity. These gravitational giants, primarily formed from
the collapse of dying stars in powerful explosions known as supernovae, possess such
gravitational field that even light particles cannot escape their grasp. Various kinds of
black holes exist in the Universe, ranging from supermassive black holes often located
at the centers of galaxies, to stellar-mass black holes, remnants of collapsed stars, and
even hypothetical primordial black holes. The intrinsic properties of black holes, such
as theirmasses and spins, depend entirely on the astrophysical processes they have un-
dergone during their formation. Together, they constitute a “bestiary” of black holes,
relics of past astrophysical phenomena. Occasionally, two black holes can form a grav-
itationally bound system known as a binary black hole, which is destined tomerge in a
highly energetic explosion after a long period of unstoppable spiraling. Due to the ex-
treme gravitational fields and masses involved in such events, these systems are ideal
sources of gravitational waves. These waves, intrinsic to the structure of spacetime,
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provide further evidence of the dynamic nature of the Universe’s geometry. The coa-
lescence of binary black holes produces distinctive gravitational wave signatures that
travel across the Universe at the speed of light, awaiting detection.

The quest to detect the first gravitational wave signal began in the 1960s with the in-
novative work of Joseph Weber. Ahead of his time, Weber developed an apparatus
dedicated to the detection of gravitational waves, using resonant metallic bars. While
he aimed tomake the first direct detection of these tiny oscillations of spacetime, his ex-
periments led to controversial results rather than unequivocal detection. Despite the
significant skepticism from the scientific community regardingWeber’s work, these pi-
oneering efforts greatly stimulated the research field. In the early 1990s, the American
project known as the Laser Interferometer Gravitational-Wave Observatory (LIGO)
was approved, led by Kip Thorne, RainerWeiss, and Ronald Drever. Alongside LIGO,
the French-Italian Virgo project, spearheaded by Adalberto Giazotto and Alain Bril-
let, also moved forward. These large-scale Michelson interferometers, with kilometer-
long arms, were designed to detect the tiniest variations in space caused by the passage
of a gravitational wave. After more than twenty years of instrumental improvements,
on September 14, 2015, the LIGO interferometers made history by detecting the very
first confirmed gravitational wave signal, GW150914. This event, which later earned
a Nobel Prize for the American team, is considered one of the greatest discoveries of
the century. It was produced by the merger of two massive black holes 440 𝑀𝑝𝑐 away
fromEarth, duringwhich the equivalent of three solarmasses of energywere radiated
in the form of gravitational waves. The detection of GW150914 confirmed Einstein’s
predictions about the existence of black holes and gravitational waves in the Universe.
In the following years, the field of gravitational wave astronomy rapidly expanded.
The LIGO and Virgo Collaborations managed to detect more than 90 confirmed gravi-
tational wave signals, with some of them originating from new sources such as binary
neutron stars and neutron star-black hole binaries. Beyond the significant achieve-
ment of detecting gravitational wave signals, the scientific community began using
this data to explore the physics of the Universe through a completely new lens. This
new observational method provided insights into the astrophysics of black holes, the
origins of gravitational waves, cosmology and more.

The word cosmology comes from the ancient Greek roots, kósmos” meaning world or
order and “logía” meaning treating of, cosmology is then the study of the Universe as a
whole, from its origin, its evolution, its dynamics, to its fundamental properties today.
This field of physics attempts to describe our entire Universe as a single volume with
all its structures at large and small scales. In a very general sense, cosmology is the
science that tries to answer questions like: “What is the beginning of the Universe?”,
“Was there a beginning?”, “How did it evolve in order to explain what we observe
today?”, and “What will be the future of the Universe?”. Modern cosmology, as we
know it today, is primarily based on observations, utilizing giant terrestrial antennas
and telescopes or satellites that can probe regions of the Universe invisible from Earth.
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From these various observations, scientists have been able to test and invalidate numer-
ous models and theories, leading to what we now refer to as the “standard model of
cosmology”. In this standardmodel, the Universe has evolved from a hot Big Bang ap-
proximately 13.7 billion years ago, a stage when the temperature and density were so
high that all the ordinary and non-ordinary matter, radiations, and other components
were bound to one another. The Universe then entered a new stage of rapid expan-
sion known as inflation. This period, which lasted a fraction of a second, allowed the
entire Universe to cool down even more, and the flow of matter and radiation began
to populate the cosmos. As the Universe expanded, its temperature continued to cool,
and part of the radiation and matter started to free themselves. Over a long period,
through physical interactions (nucleosynthesis) and gravitational attraction, entities
and structures started forming, resulting in what we can observe today such as stars,
planets, nebulae, black holes, neutron stars, galaxies. Even though the standardmodel
of cosmology is highly effective in explaining and predicting the history and future of
the Universe, several incompatibilities with observations remain. These discrepancies
can be grouped into two broad categories: those affecting the “large scales”, i.e. the
determination of cosmological parameters like the Hubble constant, and those affect-
ing the “small scales” like the overabundance of predicted cold dark matter sub-halos
compared to satellite galaxies known to exist in the local group.

In light of this introduction, this manuscript aims to provide a clear and pedagogical
exploration of several aspects of gravitational wave physics. These include advances
in statistical techniques for estimating parameters such as the Hubble constant and
characteristics of black hole populations, investigations of systematics in gravitational
wave Standard Siren cosmology, the application of machine learning methods to en-
hance gravitational wave interferometer data quality, and the exploration of binary
black hole subpopulations and hierarchical mergers.
This manuscript is structured as follows:

Chapter I serves as an introduction to the foundational concepts underpinning this
manuscript. It covers a range of topics, startingwith the physics of gravitational waves
and their formalism inherited from the theory of General Relativity. It then explores
the astrophysics of binary black holes, including their formation and properties as
dense astrophysical entities. Finally, chapter I delves into the standard model of cos-
mology and its current problematics.

Chapter II offers an overview of the various methodologies for gravitational wave cos-
mology. It details the cosmological pipeline ICAROGW, a hierarchical Bayesian frame-
work designed for inferring population and cosmological parameters from gravita-
tional wave data. Furthermore, this chapter presents the incorporation of spin popu-
lation models within ICAROGW, novel addition to the Standard Siren method for cos-
mological and population inference.
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Chapter III conducts a comprehensive study of the systematic errors and biases in-
volved in Standard Siren inference. It explores the complex relationship between the
models used to parameterize the binary black hole population and the inferred cosmo-
logical parameters. This chapter aims to clarify the primary sources of biases impact-
ing theHubble constant, such as unmodelledmass features or unknown astrophysical
effects.

Chapter IV introduces a study on binary black hole populations, aiming to unravel the
relationship between spin andmass parameters. Employing novel populationmodels
sensitive to spin-mass correlations, this chapter explores the influence of binary black
hole formation channels. It also seeks for evidence of the existence of subpopulation,
through the presence of variations in the spin distributions of black holes.

Chapter V exposes an exploratory study focused on enhancing the data quality of
the Virgo interferometer by identifying non-Gaussian noise (glitches). It explores
the application of iDQ, a machine learning-based algorithm that detects glitches by
establishing high-dimensional correlations between the gravitational wave-sensitive
channel and safe auxiliary channels of the detector.
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1.1 INTRODuCTION
Gravitational waves (GWs), predicted by Albert Einstein’s general theory of relativity
(GR) introduced in 1916, emerge as a testament to the dynamic nature of the cosmos
[1]. These gravitational ripples offer a unique window into the Universe’s most cata-
clysmic events, such as the violent collisions of black holes (BBH) and the merger of
neutron star binary (BNS) systems. GWs carry the signatures of astrophysical phe-
nomena that transcend traditional astronomical observations, serving as a direct con-
firmation of GR’s predictions and opening new avenues for exploring the Universe’s
gravitational landscape.

Cosmology, the systematic study of the universe’s origin, evolution, and fundamen-
tal properties, has continually evolved, from ancient Greek models to the advance-
ments of Sir Isaac Newton’s Principia Mathematica [2]. The true modernization of
cosmology began with the theory of GR, providing a framework for understanding
the universe’s large-scale structure and dynamics. Central to contemporary cosmol-
ogy is the Hubble tension, a discrepancy in measurements of the Hubble constant
(𝐻0), which describes the rate of cosmic expansion [3]. GWs offer a promising av-
enue for resolving this tension by providing independent probes of cosmic distances
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and the expansion rate of the Universe, potentially refining our understanding of 𝐻0
[4].

Black holes, enigmatic compact objects predicted by the theory of GR, also occupy
a central role in the study of both cosmology and GWs. These gravitational giants,
formed from the collapse of massive stars, possess such intense gravitational fields
that even light cannot escape from them [5]. As cosmic laboratories of extreme grav-
ity, BHs represent ideal sources for generating detectable GWs [6]. The merger of
two BHs, accompanied by the violent release of gravitational energy, produces the
distinctive GW signatures observed by detectors such as LIGO, Virgo, and KAGRA
(LVK) [7–11]. The shape of the GWs emitted during a coalescence is governed by the
astrophysical properties of themerging black holes; their masses and spins impact the
amplitude, frequency, and phase of the wave.

This chapter aims to discuss all the fundamentals needed to understand the field
of GW physics, the astrophysics of spinning BHs and modern cosmology. It is con-
structed as follows. In Sec. 1.2, we provide an introduction to GWs physics, covering
everything from the fundamental properties of GWs, the violent phenomena at their
origin, to the current detector network used to detect them. In Sec. 1.3, we present
an introduction to the astrophysics of stellar-mass BHs, starting from their formation
as dying stars to the special case of spinning BHs and the complex processes leading
to the formation of BBH systems. Sec. 1.4 introduces the foundations and basic prin-
ciples of modern cosmology, particularly focusing on how contemporary cosmology
describes the Universe mathematically. It delves into a fundamental issue often re-
ferred to as the Hubble tension, emphasizing its critical importance in understanding
the intricacies of the Universe. In Sec. 1.5, we establish the connection between cos-
mology and GW physics, underscoring the significance of GWs as a powerful tool for
probing cosmological phenomena. This section also gives an overview of the most
recent results obtained in GW cosmology. Finally, Sec. 1.6 concludes.

1.2 GRAvITATIONAL wAvES
This section presents the current theoretical framework, obtained from the theory of
GR, to describe GW as ripples of the space-time geometry. Starting from the Einstein
field equations, we derive the GWs’ equations. Moreover, we introduce the current
GW detector network, known as LIGO-Virgo-KAGRA. In particular the final product
that the collaboration produces, namely the GW transient catalogs (GWTCs).

1.2.1 Gravitational waves in a nutshell

In 1916, one year after the publication of his GR theory [12], Albert Einstein theoreti-
cally predicted the existence of GWs [13]. According to the GR theory, the structure
of our Universe can be described by four dimensions, three of space and one of time,
this space is often referred to as space-time. In the presence of energy or mass, space-
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time can be distorted, and so Einstein predicted that accelerating masses can create
waves of space-time, that propagates at the speed of light. These waves of space-time,
seen as ripples of the structure of the Universe, were later called GWs. This prediction
was not accepted by the scientific community up until the 1950s, when Pirani showed
that such GWs could be seen as gravitational radiation within the Riemann tensor
formalism [14].

Although indirect evidence for GWs was identified as early as the 1980s through
the study of binary pulsar orbital decays [15, 16], so another thirty years after Pinari’s
work, the first detection of GWs occurred in 2015-almost a century after Einstein’s
initial prediction [6]. This historic observation was made by the advanced LIGO de-
tectors (Laser Interferometers GW Observatory) situated in Hanford and Livingston
in the United States of America [7]. The source that emitted the observed signal on
Earth came from a pair of coalescing BHs, approximately 440 𝑀𝑝𝑐 away, that were spi-
raling around each other before finally merging into a newborn BH. One important
aspect of the GW signal emitted by a compact binary coalescence (CBC) is its abil-
ity to provide an estimation of the astrophysical properties of the source itself, and
in particular the masses, the spins and the luminosity distance between the source
and the observer. This feature makes GWs particularly valuable for astrophysical and
cosmological studies. Measuring cosmological distances has always been challenging,
but GWs offer a novel and independent method for obtaining direct distancemeasure-
ments independent of the cosmic distance ladder used for cosmology with the type Ia
supernovae. The rest of the manuscript will assume from now on that the discussed
GW signals are emitted by CBC sources.

In the following, we present how the expressions of the GW signal (GWwaveform)
can be derived starting from the linearized Einstein field equations. From the GR
theory, the Einstein field equations formalize how the geometry of space-time changes
in the presence of matter and energy. Following [17], these equations can be written
under the form

𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 = 8𝜋𝐺

𝑐4 𝑇𝜇𝜈, (1.1)

where 𝑅𝜇𝜈 is the Ricci tensor representing the local curvature of space-time, 𝑅 is the
scalar curvature defined as 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈,𝑇𝜇𝜈 is the stress-energy tensor and 𝑔𝜇𝜈 is the
metric tensor. In the linearized theory of gravity, which is a particular case of GR in
the presence of a weak gravitational field, the metric tensor can be expressed as the
metric of a flat space-time 𝜂𝜇𝜈 = diag(−1, 1, 1, 1) plus a small perturbation of the weak
gravitational field ℎ𝜇𝜈, such that

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 , |ℎ𝜇𝜈 | ≪ 1. (1.2)

Assuming that the gravitational field is weak, i.e. the metric tensor is close to being
flat, and by choosing a harmonic gauge such that 𝜕𝜈ℎ

𝜇𝜈
= 0, where ℎ

𝜇𝜈
= ℎ𝜇𝜈 − 1

2𝜂𝜇𝜈ℎ,
the Einstein field equations can be written as

2ℎ𝜇𝜈 = −16𝜋𝐺
𝑐4 𝑇𝜇𝜈, (1.3)
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where 𝑇𝜇𝜈 is the stress-energy tensor of a region in space-time, and 2 = 𝜂𝜇𝜈𝜕𝜇𝜕𝜈 is
the d’Alambertian operator. Eq. 1.3 has the typical form of a wave equation emitted
by a source, here represented by the term on the right hand-side of the equation. In
vacuum, the expression of the wave equation can be simplified in

2ℎ𝜇𝜈 = 0. (1.4)

One possible solution to the wave equation (Eq. 1.4), directly inspired from the theory
of electromagnetism, can be derived such that

ℎ𝜇𝜈 = 𝐴𝜇𝜈𝑒𝑖𝑘𝛼𝑥𝛼 . (1.5)

This peculiar solution, also called the plane wave solution, 𝐴𝜇𝜈 is the polarization ten-
sor that contains information about the respective amplitudes and polarizations of the
GW, and 𝑘𝛼 is the wave quadri-vector. The GW has the physical property of being uni-
form in all directions and travelingwith a certain frequency and amplitude. Following
a specific choice of gauge, the transverse-traceless gauge, the number of independent
components of the metric perturbation ℎ𝜇𝜈 can be reduced to only two, correspond-
ing to two polarizations named “plus” and “cross”. With the specific choice of coor-
dinates, the plane wave is transverse, and the solution to the wave equation found in
Eq. 1.5 can only be described by two possible functions, one for each polarization.

GWs cause distortions in the space-time structure through which they travel, per-
pendicular to their direction ofmovement, resulting in a phenomenon known as strain.
The strain corresponds to the physical deformation of space-time, under the passage
of a GW. In simpler terms, if two test masses in free fall were placed some distance
apart, a passing GW would alter the distance between them. This is the fundamental
principle behind the detection of GW signals by laser interferometers. Similar to how
light can be polarized, with its orientation expressed as a combination of two orthog-
onal polarizations, GWs also exhibit polarizations. The strain caused by the passing
GW can be divided into two components, as shown by the mathematical formalism
above: the plus-polarized component ℎ+ and the cross-component ℎ×, as illustrated in
Fig. 1.1

Up to now, most direct detections of gravitational waves have been made using the
terrestrial laser interferometer network LIGO-Virgo-KAGRA. However, another detec-
tion technique called Pulsar Timing Array, has also likely detected GW signals at low
frequencies. The sensitivity of these detectors is not absolute nor isotropic. It implies
that the strain of a GW signal in the detector will depend on the astrophysical prop-
erties of the source such as the masses of the merging objects, their distances to the
detectors, their orientations, but also on the detector response. The response of a GW
detector directly depends on the direction of propagation of the waves, in particular,
its sensitivity is maximum when the wave crosses the detector plane perpendicularly.
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Figure 1.1: Effect of a GW on a free-falling ring of masses located in the x-y plane. The green
plain line and the blue dashed lines correspond to the modified shapes of the ring of masses,
at the maximum and minimum of the wave. Left: Effect of the plus polarization on a free-
falling ring of masses. Right: Effect of the plus polarization on a free-falling ring of masses.
The wave propagates along the z direction, and the unperturbed ring is represented as the
thin dotted line. Figure taken from [18].

In the case of a single laser interferometer detector, the response function for each
polarization are written as in [19]

𝐹+(𝜃, 𝜙, 𝜓) = 1
2(1 + 𝑐𝑜𝑠2𝜃)𝑐𝑜𝑠2𝜙𝑐𝑜𝑠2𝜓 − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛2𝜙𝑠𝑖𝑛2𝜓,

𝐹×(𝜃, 𝜙, 𝜓) = 1
2(1 + 𝑐𝑜𝑠2𝜃)𝑐𝑜𝑠2𝜙𝑐𝑜𝑠2𝜓 + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛2𝜙𝑠𝑖𝑛2𝜓, (1.6)

where (𝜃, 𝜙) are the sky position angles, 𝜓 is the polarization angle, and 𝐹+ and 𝐹×
the respective detector response functions for each polarization of the GW. Finally, the
GW strain induced in the detector as a function of time ℎ(𝑡) can be written following
[20], as a linear combination of the two polarizations of the waves combined with the
detector response functions such that

ℎ(𝑡) = 𝐹+ℎ+(𝑡) + 𝐹×ℎ×(𝑡). (1.7)

The strain, for each polarization can be expressed in a more detailed way, in order to
have an explicit dependency on the astrophysical properties of theGWsource. Assum-
ing the quadrupole approximation [20], the plus-polarized strain takes the following
form

ℎ+(𝑡) = 2M𝑐𝐺
𝑑𝐿𝑐2 (1 + 𝑐𝑜𝑠2𝜈)( 5𝐺

256𝑐3
M𝑐

𝑇 − 𝑡)
1/4

𝑐𝑜𝑠( − 2((𝑇 − 𝑡)𝑐3

5M𝑐𝐺
)

5/8
+ Ψ), (1.8)

where 𝑑𝐿 is the luminosity distance of the source to the observer (here the detector),
𝜈 is the inclination of the source w.r.t the observer, 𝑇 is the time of coalescence, 𝑓 is the
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time-dependent frequency of the GW, Ψ is the phase of the system at 𝑡 = 𝑇. Finally,
M𝑐 is the redshifted chirp mass expressed as

M𝑐 = (𝑚1𝑚2)3/5

(𝑚1 + 𝑚2)1/5 (1 + 𝑧), (1.9)

with 𝑚1 and 𝑚2 being the source frame masses of the two compact objects coalescing,
and z the redshift of the source. The concept of redshift is detailed later in Sec. 1.4.1.
The redshifted chirp mass encodes the mass dependency of the GW signal. The cross-
polarized strain is similarly expressed such that

ℎ×(𝑡) = 4M𝑐𝐺
𝑑𝐿𝑐2 𝑐𝑜𝑠𝜈( 5𝐺

256𝑐3
M𝑐

𝑇 − 𝑡)
1/4

𝑠𝑖𝑛( − 2((𝑇 − 𝑡)𝑐3

5M𝑐𝐺
)

5/8
+ Ψ). (1.10)

After the detection process, where the GW signal’s strain is extracted from the detec-
tor noise, various physical properties specific to GWs can be inferred from the wave-
form. The amplitude of a GW, as described by Eq. 1.8 and Eq. 1.10, is directly pro-
portional to the system’s redshifted chirp mass and inversely proportional to its lu-
minosity distance. Unlike electromagnetic waves, for which intensity decreases with
distance squared, the amplitude of a GW decreases inversely with the luminosity dis-
tance. Accurately estimating the luminosity distance is challenging due to its partial
degeneracy with the inclination angle 𝜈 of the binary system. However, observations
from multiple detectors can help break this degeneracy, allowing for more precise lu-
minosity distance estimates. Conversely, the redshifted chirp mass of the source can
be estimated due to its dual degeneracy with the luminosity distance, as well as with
the phase and phase evolution of the waveform.

The derivation of the strain of a GW seen by a laser interferometer, as shown ear-
lier, was for the case of a single detector detection. However, the current detector
network consists of four instruments, LIGO Hanford and Livingston, Virgo and KA-
GRA. When the same GW signal is observed by multiple detectors, the precision in
measuring the intrinsic parameters of the source increases significantly [21]. Some de-
generacies can be better resolved, leading to smaller uncertainties on parameters such
as the luminosity distance as discussed above. A multi-detector detection also allows
for triangulation of the signal’s origin, providing an estimation of the sky localization
of the source, Ω. In addition to the redshifted chirp mass, luminosity distance, and
inclination of the source, a process called “parameter estimation” allow us to infer sev-
eral extra astrophysical properties of the binary system from the detected GW signal
[22]. These include the primary and secondary masses and the spins of the compact
objects. Parameter estimation in GW physics involves extracting key properties of the
source from the detected waveform. This is typically done using Bayesian inference,
which compares the observed data to theoretical models to determine the most likely
values of these parameters, along with their uncertainties.

As we will see later in the context of GW cosmology, in addition to the masses,
distance, spins, and inclination of the source, the redshift must also be determined.
However, even if the redshift information is embedded within the GW signal, it is
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degenerated with the source-frame masses through the chirp mass term, M𝑐. This
interdependence leads to a degeneracy that blurs precise redshift determination from
the GW signal alone. To effectively use GW for cosmological measurements, it is es-
sential to find methods to break this redshift degeneracy. This can involve either dis-
entangling the redshift from the source-frame mass in the GW data or independently
determining the source’s redshift through alternative methods. Such methods may
include observing electromagnetic counterparts or identifying the host galaxy of the
GW source.

1.2.2 The LIGO-Virgo-Kagra detector network

The international GWdetector network, LVK, is currently composed of three terrestrial
Michelson interferometers. Two of them are located in the United States of America
(LIGO Hanford and Livingston), one French-Italian in Italy (Virgo) and the latest
in Japan (KAGRA). In 2015 started the first observation run (O1) led by the LIGO
detectors, who detected the first GW signal from a merging BBH (GW150914). In
2017, Virgo joined for the final months of the second observing run (O2), helping the
other two LIGOs for several detections, which then led to the detection of the first
BNS merger. The third observing run O3 lasted 11 months, between 2019 and 2020,
and was the longest data taking period for the LIGO and Virgo detectors. Currently,
we are in the middle of the fourth observing run (O4), for which the KAGRA detector
joined. At the end of O3, we, as the LVK Scientific Collaboration, have detected 90
confident GW signals coming for the large majority from BBHs, but also some from
neutron star black hole (NSBH) and BNSs.

Following each observing run, we collect the GW signals and summarize all rele-
vant information about them in the so-called GW transient catalogs (GWTC) [24–27].
The main result of these catalogs is a list of these events and the estimated population
parameters of their sources (masses, spins, distances, sky localizations, ...). From a
data analysis point of view, these catalogs are the starting point of numerous kinds
of studies, ranging from astrophysical studies of the sources, GW signal exploration,
cosmological analyses, tests of GR theory, or even modification of gravity. In other
words, GW detections are crucial probes for all kinds of field in physics. However,
certain studies are limited by the incompleteness of the detections with the actual de-
tectors, often referred to as selection effects. GWs are also characterized by their time
varying frequencies, which are typically in the [10 − 1000] 𝐻𝑧 range for a vanilla BBH
merger coming from stellar origin. Fig. 1.2 shows the frequency sensitivity curves
of the advanced LIGO and Virgo detectors, compared to the frequency ranges of po-
tential GW sources. From this figure, it is clear that the actual detectors are fitted to
detect CBCmergers, which makes the network highly important for any study related
to compact objects.

In particular, [10 − 1000] 𝐻𝑧 corresponds to the typical frequency range of merging
stellar-mass BHs. Although, the entire population can not yet be seen, since far away
or light systems produced GWs still too faint in amplitude. This manuscript, with the
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Figure 1.2: The sensitivity curve plot presents different type of potential GW sources, produc-
ingGWs from 10−10 𝐻𝑧 with the stochastic GWbackground up to 103 𝐻𝑧 with CBCs. The two
dark lines shows the sensitivity curves of the advanced Virgo and Advanced LIGO detectors,
meaning every strains that fall above these lines can be detected. Figure based on [23]

help of sophisticated statistical inference methods, explores the populations of stellar-
mass BHs, from an astrophysical point of view as well as from a cosmological one.

1.3 ASTROpHySICS BLACk HOLES
In this section, we introduce the astrophysics of BHs. We give an overview of how
stellar-mass BHs form in the Universe and how their formation channels can affect
their astrophysical properties, such as their masses and spins. A focus is given to
spinning BHs, which are described within the GR theory by the Kerr metric. And we
conclude with a discussion about the impact of spin when considering a BBH system.

1.3.1 Black hole formation

Before discussing the different ways BBH systems can form, it is important to under-
stand the origin of single BHs, andmore especially stellar-mass BHswhich correspond
to the typical sources of GWs detected by the LVK network. A stellar-mass BH is a BH
formed after the gravitational collapse of a star [28]. Although, not all dying stars
will create a BH at the end of their life. For instance, the remnant of a dying star can
also be a white dwarf or a neutron star, if its original mass was too light to overcome
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the degeneracy pressure of electrons or neutrons in order to self-collapse into a BH
[29]. For stars massive enough, the helium core of the star will collapse under its own
gravity, overcoming the neutron and electron degeneracy pressures, and form a BH.
This process is referred to as core-collapse supernovae [30]. However, it is important
to note that core-collapse events can result in various outcomes: they may produce
remnants such as black holes, neutron stars, or white dwarfs, but in some cases, they
may also leave no remnant at all. The current astrophysical models and observational
data show that stellar-mass BHs are expected to have masses ranging from a few solar
masses to approximately O ∼ 100 𝑀⊙ [31].

A BH has three intrinsic properties that are defined by the No-hair theorem, this
theorem states that these objects can be entirely described by their mass, their electric
charge and their angular momentum (also called spin) [32]. The stellar-mass BHs
are generally neutral objects (𝑄 = 0). The spin, is highly dependent on the angular
momentum of the star from which it was formed and BHs with various spin values
exist in the Universe. For single BH, we often refer to as the spin magnitude (speed
of rotation). The range of mass for stellar-mass BHs is still very uncertain since the
latter is probably affected by several astrophysical processes that are currently notwell
understood [33].

Significant uncertainties exist regarding the relationship between a BH’s mass and
the properties of its parent star. One of themostwidely accepted astrophysical process
which is expected to influence the mass distribution of BHs is the “Pair Instability gap
of SuperNovae” (PISN) [34–36]. When the star is about to explode as a supernova,
depending on themass of its helium core𝑚𝐻𝑒, it can collapse into a BHor be totally dis-
rupted, hence leaving no compact remnant. Typically, stars having helium cores with
a mass in the range of 64 < 𝑚𝐻𝑒 < 135 𝑀⊙ can not form a stellar-mass BH, this trans-
lates into a depletion in the BH spectrum between ∼ 50+20

−10 𝑀⊙ and ∼ 120 𝑀⊙. Pair
instability supernovae happens when the pair production of electrons and positrons
temporarily decreases the radiation pressure of the stars core, pressure which fight
against the gravitational collapse. The large uncertainties on the lower edge of the
gap are due to a lack of understanding of the physical processes ruling the end of life
of a star. Other phenomena like stellar winds, mass transfer, and the core-collapse
supernovae also influence the global mass spectrum of single BHs [37, 38].

The origins of a BH’s spin are also unclear, and not as well measured as the mass.
It is reasonable to assume that a compact object inherits the totality of the angular mo-
mentum of its parent star if the star collapses directly into a BH without a supernova
explosion (direct collapse) [39, 40]. In contrast, when the star goes through several
astrophysical processes, effects like mass ejection during the supernova explosion can
significantly reduce the parent star’s final spin. If the parent star’s final spin is large,
we expect large birth spins for the most massive BHs, which form from direct collapse,
and low birth spins for less massive BHs, which form from successful supernova ex-
plosions.
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1.3.2 Binary black hole formation

The straightforward question that arises, in the context of GWs, is how BBH systems
form in the Universe ? Two massive stars are in a binary system, they eventually col-
lapse both into BHs, forming a BBH system ? This ideal scenario can only be true if
the system is large enough, i.e. the distance between the two objects is large enough
so that its evolution is not affected by external interaction. In the case of CBCs, which
lose angularmomentum andmerge through the emission of GWs, the typical distance
between the two object is too small to avoid such processes, we talk about tight sys-
tems [41]. Currently, there are two main families of formation channel for BBHs with
stellar-mass BHs: the isolated formation and the dynamical formation [33, 42].

Figure 1.3: Left: Schematic view of the isolated formation channel through common envelope
phase, starting from a binary system ofmassive stars to a BBH system. Right: Schematic view
of the dynamical formation channel of a BBH system in a dense stellar cluster. Figure taken
from [42].

The isolated formation channel of BBHs involves astrophysical processes such as
mass transfer and common envelope phases, which significantly impact the evolution
of tight binary stars. During these phases, a massive star can transfer mass to its com-
panion or undergo a common envelope stage, which leads to the reduction in orbital
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separation. This results in the formation of BBHs with short orbital periods, essential
for merging within a Hubble time under GW emission, as depicted in Fig. 1.3. The
typical masses in this channel range from approximately 3𝑀⊙ to 45𝑀⊙, with mass
ratio close to unity. Additionally, the spins of these BHs tend to be aligned, and the
systems exhibit near-zero eccentricity. Large uncertainties of the understanding of the
common envelope dynamics and its impact of the BBH population are still at play.

The dynamical formation channel of BBHs mainly happens in high-density stellar
clusters, where dynamical exchanges and three-body encounters rule the formation
processes. In this environment, massive objects like BHs are efficient in forming new
binaries through exchanges. Three-body encounters, particularly with tight binaries,
can lead to dynamical hardening processes, accelerating the merger by reducing the
distance between the two objects (see Fig. 1.3). The hardening of the binary system
gravitationally locks the two BHs together, under the effect of a third party. Dynami-
cally formed BBHs can extend to higher masses than the ones formed in isolated envi-
ronments, and potentially populate the PISN gap and/or the intermediate mass range
[102 − 105] 𝑀⊙. Unlike the isolated BBHs, their spin distributions tend to be more
isotropic due to the dynamical exchanges, and can exhibit non-zero eccentricity. A
special formation channel considered “dynamical” is the hierarchical merger channel,
where BBH systems are formed with BHs born from previous BBHmergers. The rem-
nant BH formed after a BBH merger is expected to have a specific value of spin mag-
nitude peaking around 0.7 [43–45]. These astrophysical characteristics offer unique
signatures for distinguishing between the dynamical and isolated formation channels
of BBHs, crucial for understanding their demographics and evolution. The later will
be further investigated in Sec. 4.

1.3.3 The Kerr black hole

To address the question of spinning BHs in a more elaborate manner, it is crucial to
introduce the notion of “metric”. Formally, a metric is a distance function for a general
space, that describes the separation of two events happening in that space. Usually,
we consider two events that are infinitesimally close to one another so that the metric
is true for every geometry of spaces, curved or flat. As the geometry of space-time
around a non-spinning BH is given by the Schwarzschild metric, the mathematical
description of a single spinning BH within the GR framework is done through the
Kerr metric [46, 47]. The Kerr metric encapsulates how the geometry of space-time
around a spinning and uncharged BH is changing. It is an exact solution of the EFEs
of GR, discussed in Sec. 1.2.2. The Kerr metric is a generalized version to spinning
object of the Schwarzschildmetric for neutral, spherical andnon-spinningBHs. One of
the main prediction from GR about a Kerr body is called frame-dragging [48], which
states that objects getting close to a spinning mass like a Kerr BH will start to rotate
around it due to the swirling curvature of space-time created by the rotating BH. This
region where objects (light particles included) start rotating due to the geometry of
space-time is called the ergosphere of the spinning BH. The geometry of space-time
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around aKerr BH, given by theKerrmetric is completely characterized by the BHmass
and its angular momentum. Typically, one can write the following line element of the

Figure 1.4: Simulation of a merging BBH system with two rapidly spinning stellar-mass BHs.
This simulation includes derivation of the accretion disks and gravitational lensing effects of
their respective horizons. This image has been created with a GR simulation of Kerr black-
holes, by Alessandro Roussel in 2024. The mass ratio between the two BHs is 𝑞 = 0.55 and
the spin magnitudes are chosen to be 𝜒 ∼ 0.9.
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Kerr metric using the Boyer-Lindquist coordinates where 𝑥𝛼 = (𝑐𝑡, 𝑟, 𝜃, 𝜙), (extension
of polar coordinates [49]) as

𝑑𝑠2 = −(1 − 2𝐺𝑚𝑟
𝑐2𝜌2 )𝑐2𝑑𝑡2 − 4𝑚𝑎𝐺𝑟𝑠𝑖𝑛2𝜃

𝑐2𝜌2 𝑐𝑑𝑡𝑑𝜙 + 𝜌2

Δ 𝑑𝑟2

+ 𝜌2𝑑𝜃2 + (𝑟2 + 𝑎2 + 2𝑚𝑎2𝐺𝑟𝑠𝑖𝑛2𝜃
𝑐2𝜌2 )𝑠𝑖𝑛2𝜃𝑑𝜙2, (1.11)

where Δ = 𝑟2 − 2𝐺𝑚
𝑐2 + 𝑎2 and 𝜌 = 𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃 and 𝑎, the Kerr parameter, is a term that

relates the mass 𝑚 of the BH and its angular momentum 𝐽 such that

𝑎 = 𝐽
𝑐𝑚. (1.12)

The Kerr parameter can be redefined as ̄𝑎, a dimensionless parameter. This dimension-
less Kerr parameter is typically expressed such as

̄𝑎 = 𝑐2

𝐺
𝑎
𝑚 = 𝑐

𝐺
𝐽

𝑚2 . (1.13)

In terms of physical interpretation, there is a spot at the center of the Kerr BHwhere
the space-time curvature diverges, also called singularity. In order to avoid a “naked”
singularity, i.e. a BH with no event horizon, the dimensionless Kerr parameter ̄𝑎 has
to be bounded such that | ̄𝑎| ≤ 1. The dimensionless Kerr parameter of the BH impacts
the size of the radius of the event horizon such that:

𝑟ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = (1 + √1 − ̄𝑎2)𝐺𝑚
𝑐2 . (1.14)

We note that the event horizon of a Kerr BH is directly influenced by its dimensionless
Kerr parameter ̄𝑎, and just like for a Schwarzschild BH, this radius marks the distance
below which anything will be dragged into the singularity. If the dimensionless Kerr
parameter ̄𝑎 was allowed to go above unity, the event horizon of the Kerr BHwould not
exist, and the singularity would be naked. The upper limit on the dimensionless Kerr
parameter is called the Kerr-bound. There exists other physical properties related to
the geometry of space-time around a spinning BH, but the later will not be discussed
here, we encourage the reader to check [50] for more detailed explanations.

1.3.4 Binary systems of spinning black holes

So far, we have explored how BHs and BBHs systems can form in the Universe, as well
as the physics of spinning BHs, but in the context of this manuscript and of GW anal-
ysis, we must consider the case of spinning BBHs. Fig. 1.4 illustrates a GR simulation
of what one could observe looking at a coalescence of two spinning BHs. As GR is a
non-linear theory, it is not correct to superpose two Kerr solutions to the EFEs in or-
der to have a spinning BBH solution. Generally, the physical properties of the emitted
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GWs for such system are derived numerically, at least for the inspiral and the merger
phase. An analytical approach, called Post-Newtonian approximation, also permits
to model the inspiral phase of the GW emitted by binary merger. The observation of
such systems by GW astronomy is truly a new lens through which Kerr BHs can be
studied, even if the current constraints on the spin parameters of BBHs derived from
GW detections are still limited by the detector sensitivities [31].

At the moment, the constraints on the BH spin parameters are essentially from the
inspiral signal of the GW detection. The waveform generated by spinning BBHs is
affected by the primary and secondary spins, through the dimensionless Kerr param-
eter, combined to the individual orientations of the spins w.r.t the orbital angular mo-
mentum of the system. From the post-Newtonian (PN) development of the inspiral
waveform of GWs, one can demonstrate that the first dominant term of the expansion
which includes spin parameters appears in the phase of the waveform and is a combi-
nation of each BH mass and spin. We often refer to as the “effective” spin parameter

𝜒𝑒𝑓 𝑓 = 𝑐
𝐺(

⃗𝑆1
𝑚 1

+
⃗𝑆2

𝑚2
). 𝐿̂

𝑀𝑡𝑜𝑡
, (1.15)

where 𝐿̂ is the normalized orbital angular momentum of the system, 𝑀𝑡𝑜𝑡 is the total
mass, and ⃗𝑆𝑖 are the spin vectors of each black hole. We can also define a new spin
parameter, the dimensionless spin magnitude 𝜒𝑖 following [51], such that

𝜒𝑖 = 𝑐
𝐺

𝑆𝑖
𝑚2

𝑖
, (1.16)

where 𝑆𝑖 = || ⃗𝑆𝑖|| is the norm of the spin vector of each black hole. Using Eq. 1.16, we
can rewrite the effective spin parameter in an equivalent form as

𝜒𝑒𝑓 𝑓 = 𝑚1𝜒1𝑐𝑜𝑠𝜃1 + 𝑚2𝜒2𝑐𝑜𝑠𝜃2
𝑚1 + 𝑚2

, (1.17)

where 𝜒𝑖 are the dimensionless spin for each component of the binary, each bounded
between [0, 1] and 𝑐𝑜𝑠𝜃𝑖 = 𝐿̂. ⃗𝑆𝑖 is the cosine of the tilt angle between the spin ⃗𝑆𝑖 and
the orbital angular momentum 𝐿̂ bounded in [−1, 1].

Beside the projection of the spins onto the orbital angular momentum, one can also
project the individual spins onto the orbital plane of the system. The amount of spin
in the plane causes the binary system to precess. Similarly, as for 𝜒𝑒𝑓 𝑓 , the dominant
term arising from the PN expansion of the waveform that encapsulates precession
effects of the orbital plane is another combination of mass and spin and is called 𝜒𝑝,
the precession spin, defined as

𝜒𝑝 = 𝑚𝑎𝑥[𝜒1𝑠𝑖𝑛𝜃1; 4𝑞 + 3
3𝑞 + 4𝑞𝜒2𝑠𝑖𝑛𝜃2], (1.18)

where 𝑞 = 𝑚2/𝑚1 is the mass ratio of the binary. Fig. 1.5 shows a summary of all spin
parameters at play when considering a BBH system.
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Figure 1.5: Scheme of a binary system, with spin components. The black vector is the orbital
angularmomentum 𝐿⃗, the blue vector is the total angularmomentum ⃗𝐽, the red vectors are the
spin vectors ⃗𝑆1 and ⃗𝑆2, the green arrow the precession spin parameter 𝜒𝑝 and the purple arrow
is the effective spin parameter 𝜒𝑒𝑓 𝑓 . The two angles 𝜃1 and 𝜃2 are the tilt angles of the system,
defined by the angle between the orbital angular momentum and the spin magnitudes of
each object.

The effect of the spin on the GW signal emitted by the merging system can dramat-
ically vary. As discussed above, the spin can have some impact on the phase of the
GW, but this is not all. According to [52, 53], the alignment of the spin with respect to
the angular orbital momentum is crucial too and plays an important role in the total
energy radiated by the BBH merger. This increase of energy radiated (under the form
of GWs) in directly linked to the duration of the inspiral phase of the merger. The
duration of the merger, and the number of orbits that the two BHs go through are
correlated with the spin configuration, such that if both spins are aligned with respect
to the orbital angular momentum, the time before merger will be delayed, resulting
in a greater energy radiation under GWs, respectively the anti-aligned spin configura-
tion will make the merger happen quicker hence less energy are radiated [54, 55]. As
explained in Sec. 2, which details the population models for the spins in the case of a
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binary system, the total spin configuration can be deduced from the measurement of
the effective and precession spin parameters.

1.4 THE STANDARD MODEL OF COSMOLOGy
This section sets the fundamentals of modern cosmology, from the cosmological prin-
ciple, the Hubble-Lemaître law and the widely accepted Λ𝐶𝐷𝑀 model. We introduce
the concepts andmathematical tools needed to describe the Universe through the lens
of the GR, leading to the vastly accepted Big-Bangmodel and the current cosmology’s
state-of-the-art. Finally, we discuss one of the main problem that the standard model
of cosmology can not reconcile so far, the Hubble tension.

1.4.1 Fundamental principles of modern cosmology

Modern cosmology relies on a concept known as the cosmological principle, which
holds important implications for our understanding of the Universe. This principle
is composed of two fundamental axioms. The first axiom states that our Universe
is homogeneous, meaning that every region of the Universe exhibits the same physi-
cal properties and, is uniform. In a homogeneous Universe, no point in space holds
a special place- each point is considered equivalent. The second axiom implies that
our Universe is isotropic, indicating that there is no preferred direction in space. In
other words, the Universe appears the same in all directions. Initially, the notion of
homogeneity may seem wrong considering our observations, especially when consid-
ering the heterogeneous distribution of matter, such as galaxies and galaxy clusters,
at smaller scales. However, the homogeneity hypothesis becomes relevant when ex-
amined on a sufficiently large scale (O ∼ 250𝑀𝑝𝑐), far beyond the scope of individual
galaxy clusters. At these larger scales, the Universe indeed appears uniform, with
matter distributed evenly across space.

On top of the large scale homogeneity and isotropy, observations across the Uni-
verse suggest the Universe is expanding uniformly. In particular, galaxies seems to
be moving away from Earth. This stands as one of the cornerstones of observational
cosmology, at greater distances galaxies recede at faster rates. These observations
can only be true, considering the cosmological principle, if the Universe itself is ex-
panding uniformly in all directions. This expansion, which maintains homogeneity,
implies that themean rate of change in separation of pairs of objects like galaxies, with
a separation 𝑑, is directly proportional to their receding velocities. Regardless of an
observer’s locationwithin theUniverse, theywould perceive a similar pattern of galax-
ies moving away from them. Hubble and Lemaître, looking at the proper velocity of
galaxies, formalized this idea through the renowned Hubble-Lemaître law [56–59]

𝑣 = 𝐻0𝑑, (1.19)
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where d is the physical distance between any object and its observer, often given in
𝑀𝑝𝑐. The receding velocity of the observed object is given by 𝑣, usually measured
in 𝑘𝑚.𝑠−1, and 𝐻0 is the Hubble constant, evaluated today. The typical unit for the
Hubble constant is 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1. The relation in Eq. 1.19 between the recession ve-
locity of an object and its distance to the observer was found by Hubble in 1929 using
a set of twenty-two galaxies. Nowadays, a significant number of new measurements
have been added to the original Hubble diagram, as shown in Fig. 1.6. Observational

Figure 1.6: Hubble diagram obtained with the Pantheon sample of 1048 type Ia supernovae
(2018). Top: Distance modulus for all the supernovae as function of the redshift. Bottom:
Hubble residuals to the best fit cosmology. The supernovae displayed in the diagram are
a collection from different surveys like Pan-STARRS (PS), Sloan Digital Sky Survey (SDSS),
Supernovae Legacy Survey (SNLS) and theCarnegie Supernovae Project (CSP). Figure taken
from [60].

evidence of the Universe’s expansion indicates that it was much smaller in the past
compared to its current size. This concept of a smaller, denser Universe serves as a
foundational principle of the Big Bang Theory, which emerged in the late 1940s [61].
According to this theory, the expansion of the Universe implies that galaxies were
much closer together in the past, leading to significantly higher densities and temper-
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atures. The Big Bang model suggests that the Universe originated from an energetic
explosion at a theoretical time point, and has since evolved into its present state. The
prevailing cosmological model, known as the Λ-Cold-Dark-Matter (ΛCDM) model,
begins with the Big Bang and describes the Universe as predominantly composed
of cold (non-relativistic) dark matter, along with ordinary matter (baryonic matter).
The inclusion of the cosmological constant, denoted by Λ, is essential in the Λ𝐶𝐷𝑀
model to account for observational data [62]. This cosmological constant represents
the presence of dark energy, which seems to act as an “anti-gravitational” force, accel-
erating the expansion of the Universe. The Λ𝐶𝐷𝑀 model thus provides a framework
that aligns with most of our observations and understanding of the Universe’s evolu-
tion.

The ΛCDM model traces the history of the Universe from its early ages, approxi-
mately 13.7 billion years ago. The universe emerged from a singularity in an energetic
event known as the Big Bang. Initially, the Universe was made of a hot, dense plasma
filledwithmatter andphotons. Within this primordial soup, small perturbations prop-
agated as sound waves, creating regions of over- and under-densities known as Bary-
onic Acoustic Oscillations (BAO) [63]. As the universe expanded and cooled, atoms
formed, marking the epoch of recombination. During this period, matter and light
decoupled, allowing photons to travel freely through space. These ancient photons,
remnants of the Universe’s early stages, are detectable today as the cosmic microwave
background (CMB) [64]. The fluctuations imprinted in the primordial plasma per-
sisted as tiny temperature variations in the CMB. Over time, gravity acted upon the
uneven distribution of matter, causing over-dense regions to contract and the gas to
cool down. Within these denser regions of cold gas, stars and then galaxies eventually
formed, giving rise to the cosmic structures we observe today. The universe evolved
into a complex web of matter, characterized by clusters of galaxies interconnected by
filaments. Remarkably, this large-scale structure retains the imprint of the BAO, pro-
viding a window into the Universe’s early history. Despite the gravitational pull of
matter, the expansion of the Universe continues unstopped. As time goes, the influ-
ence of dark energy becomes increasingly prominent. In the Λ𝐶𝐷𝑀 model, the dark
energy acts as an unknown force, driving the acceleration of the Universe’s expansion.

In summary, the Λ𝐶𝐷𝑀 model give a good representation of the current obser-
vations: the web of galaxies, galaxy clusters, and cosmic voids that form the struc-
ture of the Universe. Thanks to the gravitational interaction between dark matter
and ordinary matter, the model manages to elucidate the formation and evolution
of these cosmic structures. Observational studies and simulations support this ex-
planation, highlighting excellent agreement between predicted and observed galaxy
clustering models. Furthermore, the Λ𝐶𝐷𝑀 model responds in a relevant way to
the observed abundances of primordial light elements, such as hydrogen, helium and
lithium. By integrating information from primordial nucleosynthesis and studies of
the interstellar medium, the model provides a robust framework for understanding
the production and distribution of these building blocks. Observations of primordial
abundances closely match the model’s predictions, thus reaffirming its explanatory
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prowess. Based on observational evidences, and in particular from the statistical tem-

Figure 1.7: 68.3%, 95.4% and 99.7% confidence regions of the (Ω𝑚, ΩΛ) plane, from the super-
novae type Ia (blue), CMB (orange) and BAO (green). This result includes both statistical
and systematics errors estimations. The gray region is the middle is the overlapping contour
between the three probes. Figure taken from [65].

perature fluctuations of the CMB, the BAO and the supernovae type Ia (see Fig. 1.7),
the proportion of dark matter, baryonic matter and dark energy in the Universe to-
day can be estimated. Results published in 2018 from the Planck collaboration shows
that the actual Universe is made of ∼ 69.2% of dark energy, ∼ 25.8% of dark matter,
∼ 4.84% of baryonic matter and close to ∼ 0% of radiation [61]. Based on these re-
sults, the current state of the Universe is thought to be dominated by the dark energy,
causing it to be in an accelerated expansion.

1.4.2 One metric to describe them all

Just like we used a metric to describe the geometry of space-time around a Kerr BH,
we also need a metric to understand the question of an expanding Universe. In the
case of a Universe, where the cosmological principle is verified, this peculiar metric
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is named the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, after the physi-
cists that found this solution in the late 1920s [56, 66–68]. The FLRWmetric is an exact
solution of the EFEs of GR. The EFEs describe how the space-time geometry relates to
the distribution of mass and energy in that space-time, the FLRW exact solution tells
us how space-time is curved in the presence of matter and energy[69]. The cosmo-
logical principle implies that, for any Universe’s geometry, the metric of the universe
must be of the form

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑎2(𝑡)𝑑𝑠2
3, (1.20)

where 𝑑𝑠2 is the distance, in terms of space-time interval, between two events. The
second term in Eq. 1.20, −𝑐2𝑑𝑡2, corresponds to the “time” separation between these
events, and the last term 𝑎2(𝑡)𝑑𝑠2

3 to the “space” separation. The space separation is
highly dependent of the geometry of the Universe, so that 𝑑𝑠2

3 exact expression will
change depending on whether we consider a flat, spherical or hyperbolic geometry.
The latter will be discussed in the following sections.

𝑎(𝑡) is usually called the scale factor or the expansion factor, this parameter is of a
high importance because it relates the proper (physical) distance and the comoving
distance. The comoving distance is the distance defined in the set of coordinates called
comoving coordinates. The comoving coordinates evolve as the Universe is expand-
ing, leaving the objects with a set of fixed coordinates. Even when stationary, two
events in space will experience a change in physical distance between them as time
progresses, owing to the expansion of the universe. This expansion is quantified us-
ing the scale factor 𝑎(𝑡), which is conventionally set to one at the present time 𝑎(𝑡0) = 1,
serving as a reference point for measuring the evolving distance between the events.
𝑎(𝑡) determines how large-scale distances in space change with time.

From the FLRW metric, the relation between the proper distance d(t) at any time t,
the scale factor, and the proper distance today 𝑑(𝑡0) is given by

𝑑(𝑡) = 𝑎(𝑡)
𝑎(𝑡0)𝑑(𝑡0). (1.21)

Because the scale factor is defined to be one at the present day, Eq. 1.21 simplifies in

𝑑(𝑡) = 𝑎(𝑡)𝑑(𝑡0), (1.22)

and this form directly tells us that the proper distance between 𝑑(𝑡) to events in space-
time at any time t, is equal to their proper distance today 𝑑(𝑡0) (also referred to as
comoving distance), multiplied by the scale factor. From Eq. 1.22, one can take the
time derivative of it, giving

̇𝑑(𝑡) = ̇𝑎(𝑡)𝑑(𝑡0). (1.23)
And by injecting the expression of 𝑑(𝑡0) from Eq. 1.22 inside Eq. 1.23, one can derive
the Hubble-Lemaître law seen in Sec. 1.2.1, such that:

̇𝑑(𝑡) = ̇𝑎(𝑡)
𝑎(𝑡)𝑑(𝑡) = 𝐻(𝑡)𝑑(𝑡), (1.24)
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where ̇𝑎(𝑡)/𝑎(𝑡) is the Hubble parameter 𝐻(𝑡), 𝑑(𝑡) is again the proper distance and
̇𝑑(𝑡) is the velocity of an object. Eq. 1.24 holds significant importance as it establishes

a connection between the empirical parameter 𝐻(𝑡), as discovered by Hubble, and the
expansion parameter within the Friedmann equation. The Hubble term in Eq. 1.24 is
denoted 𝐻(𝑡) instead of 𝐻0, signifying that this relationship between Hubble’s param-
eter and the scale factor 𝑎(𝑡) remains valid not only at the present moment but at any
given time.

As mentioned above, the FLRW metric is a solution of the EFEs, so by using the
FLRW solution inside the EFEs, one can obtain the so-called Friedmann equations [66,
67]. These are two differential equations describing how the scale factor 𝑎(𝑡) evolves
with time, they can be written as

( ̇𝑎(𝑡)
𝑎(𝑡))

2
= 8𝜋𝐺

3 𝜌 − 𝑘𝑐2

𝑎2(𝑡) + Λ𝑐2

3 , (1.25)

and
̈𝑎(𝑡)

𝑎(𝑡) = −4𝜋𝐺
3 (𝜌 + 3𝑝

𝑐2 ) + Λ𝑐2

3 . (1.26)

In Eq. 1.25 and Eq. 1.26, 𝜌 = 𝜌(𝑡) is the density and 𝑝 = 𝑝(𝑡) the pressure of the
Universe. The Universe’s curvature is denoted by 𝑘, 𝐺 is the gravitational constant
and Λ is the cosmological constant. In the above equation, 𝑎, 𝑝 and 𝜌 depends on
the time, but the spatial curvature of the Universe 𝑘 does not, in fact it can take three
different values, that give rise to three distinct geometries

𝑘 =
⎧{{
⎨{{⎩

+1 Spherical Universe
0 Flat Universe

−1 Hyperbolic Universe.
(1.27)

These three possible values for the curvature govern the shape of the Universe at very
large scale, as shown in Fig. 1.8. The spherical universe is often called the “closed”
universe, in opposition to the “open” geometry of the hyperbolic Universe.

The cosmological constant in the Friedmann equations acts as a form of energywith
a negative pressure that drives the expansion of the Universe. The pressure 𝑝(𝑡) is
created by thematter content in theUniverse and 𝜌(𝑡) can be seen as the energy density
of the Universe.

Before introducing the next section, it is important to discuss a few parameters that
frequently appear in the Friedmann equations, starting with the previously derived
Hubble parameter 𝐻(𝑡). In Eq. 1.25, the Hubble parameter is defined as

𝐻(𝑡) = ̇𝑎(𝑡)
𝑎(𝑡) , (1.28)

for any time t, but usually most of the measurements are happening at the present
time 𝑡0, all parameters estimated at this time will be given the subscript 0. In the same
manner, we define the Hubble parameter at 𝑡0, called the Hubble constant:

𝐻0 = 𝐻(𝑡0) = ̇𝑎(𝑡0)
𝑎(𝑡0) = ̇𝑎0

𝑎0
. (1.29)
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Figure 1.8: Illustration of the three possible geometry of the Universe at very large scale, rep-
resented for a 2D space, given for 𝑘 = +1 (top), 𝑘 = −1 (middle) and 𝑘 = 0 (bottom). The
red line is a schematic figure of a triangle seen on a spherical, hyperbolic and flat space-time.
Credit: NASA / WMAP Science Team

The Hubble constant is not actually a constant, as its value changes over time since
our present time is continuously evolving. However, it can be considered effectively
constant on cosmological scales. For the sake of cosmological inference with GWdata,
which is one of the main topic of this manuscript, it is important to derive an equa-
tion where the Hubble constant, the redshift (z) and the luminosity distance (𝑑𝐿) are
linked to one another [70, 71]. To obtain a relationship of 𝐻0, 𝑧 and 𝑑𝐿, we can mod-
ify the Friedmann equations and introduce the density parameters. Eq. 1.25 can be
written such as

𝐻2(𝑡) = 8𝜋𝐺
3 𝜌 − 𝑘𝑐2

𝑎2(𝑡) + Λ𝑐2

3 , (1.30)

and dividing both sides by 𝐻2(𝑡), we obtain

1 = 8𝜋𝐺
3𝐻2(𝑡)𝜌 − 𝑘𝑐2

𝑎2(𝑡)𝐻2(𝑡) + Λ𝑐2

3𝐻2(𝑡) . (1.31)

In Eq. 1.31, three density parameters can be identified, namely the curvature density
parameter Ω𝑘, the matter density parameter Ω𝑚 and the dark energy density param-
eter ΩΛ. The matter density Ω𝑚 is defined as the density of the Universe 𝜌, over the
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critical density 𝜌𝑐 that theUniverse should have in order to be flat (𝑘 = 0) anddeprived
of dark energy (Λ = 0). Hence, looking at Eq. 1.31, the matter density parameter can
be expressed as

Ω𝑚 = 8𝜋𝐺
3𝐻2(𝑡)𝜌 = 𝜌

𝜌𝑐
, (1.32)

where the critical density is

𝜌𝑐 = 3𝐻2(𝑡)
8𝜋𝐺 . (1.33)

Similarly, the curvature density and the dark energy density are defined as

Ω𝑘 = −𝑘𝑐2

𝑎2𝐻2(𝑡) , (1.34)

and
ΩΛ = Λ𝑐2

3𝐻2(𝑡) . (1.35)

Finally, replacing all density parameters inside Eq. 1.31 lead to the following equation

1 = Ω𝑚 + Ω𝑘 + ΩΛ. (1.36)

These densities have a direct dependency on the Hubble parameter, therefore their
values are changing with time. A similar description of Eq. 1.31 can be written, when
considering the values of the density parameter at the time 𝑡0, time atwhich𝐻(𝑡) = 𝐻0

𝐻2

𝐻2
0

= 𝜌
𝜌0

Ω𝑚,0 + 1
𝑎2(𝑡)Ω𝑘,0 + ΩΛ,0, (1.37)

where today’s density parameters are equal to:

Ω𝑚,0 = 8𝜋𝐺
3𝐻2

0
𝜌0, Ω𝑘,0 = −𝑘𝑐2

𝐻2
0

, ΩΛ,0 = Λ𝑐2

3𝐻2
0

. (1.38)

Now that the density parameters as well as the Hubble constant are properly intro-
duced, within the context of the standard model of cosmology and the Friedmann
equations. We can relate them to the quantities of interest for GW cosmology, namely
the Hubble constant, the cosmological redshift and the luminosity distance. To clarify,
the cosmological redshift 𝑧 is the redshift which originates only from the expansion of
the Universe, and not the peculiar velocity of the object. A signal redshifted by the cos-
mological expansion of the Universe will see its wavelength stretched as it propagates,
the further the signal emission from an observer, the more the signal’s frequency will
change. One can show that the cosmological redshift relates to the scale factor such
that 𝑎(𝑡𝑜)

𝑎(𝑡𝑒)
= 1 + 𝑧, (1.39)
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where the scale factors are taken when the light from the source is emitted (𝑎(𝑡𝑒)) and
when the light is observed (𝑎(𝑡𝑜)). Usually, the observation time 𝑡𝑜 corresponds to the
present day, hence Eq. 1.39 can be simplified, since by definition 𝑎(𝑡0) = 1:

𝑎(𝑡) = (1 + 𝑧)−1. (1.40)

In amatter dominated universe, the ratio of the universe’s density over the present day
density is proportional to 𝜌/𝜌0 ∝ 𝑎(𝑡)−3. Under this assumption and by substituting
Eq. 1.40 inside Eq. 1.37, a new quantity called the dimensionless Hubble parameter,
𝐸(𝑧), can be expressed as

𝐸(𝑧) = 𝐻(𝑧)
𝐻0

= √Ω𝑚,0(1 + 𝑧)3 + Ω𝑘,0(1 + 𝑧)2 + ΩΛ,0, (1.41)

which directly relates the Hubble constant to the cosmological redshift. In order to
connect it to the luminosity distance 𝑑𝐿, it is easier to assume a geometrically flat Uni-
verse such that Ω𝑘,0 ∼ 0, this assumption stays reasonable since the state-of-the-art
measurement of the density parameters support such value. For a flat Universe, the
luminosity distance directly relates to the comoving distance 𝐷𝑐 such that

𝑑𝐿 = (1 + 𝑧)𝐷𝑐 = (1 + 𝑧) 𝑐
𝐻0

∫
𝑧

0
𝑑𝑧′

𝐸(𝑧′). (1.42)

Eq. 1.42 connects the luminosity distance of a source, to the Hubble constant, the
density parameters of the Universe and the cosmological redshift. The comoving dis-
tance 𝐷𝑐 by definition is the distance that factors out the effect of the expansion of
the Universe, hence defining a distance that does not change across time under the
Hubble flow [71]. Alongside the comoving distance, we define the so-called comov-
ing volume 𝑉𝑐, which corresponds to the volume in which the number densities of
non-evolving objects locked in the Hubble flow are constant with redshift- it corre-
sponds to the volume in comoving coordinates in which the density of objects are the
same regardless of how far away we look. Following the cosmological principle stat-
ing that the Universe is isotropic and homogeneous, the distribution of matter should
be uniform when looked at large enough scales, this leads to the expression of the
differential of the comoving volume w.r.t the cosmological redshift for a uniform in
comoving volume matter distribution:

𝑑𝑉𝑐
𝑑𝑧 = 𝑐3

𝐻3
0

( ∫
𝑧

0
𝑑𝑧′

𝐸(𝑧′))
2
. (1.43)

For GW cosmology purposes, Eq. 1.42 is central, as we will see in the following
Sec. 1.5, the luminosity distance of a GW source can be directly inferred from the de-
tected signal and the redshift from direct or statistical methods, leading to a measure-
ment of the Hubble constant 𝐻0. But before diving into the intricacies of GW cosmol-
ogy, Sec. 1.4.3 will present the current state-of-the-art of 𝐻0 measurements.
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1.4.3 A cosmological problem: The Hubble tension

In this section we present the most recent measurements of the Hubble constant 𝐻0,
coming from diverse experiments, but especially comparing the early and late Uni-
verse measurements [3, 72]. We discuss the different cosmological probes, and their
results. We insist in particular on an actual cosmological problem, also known as the
Hubble tension. This tension emerges from independent measurements of the local
value of the Hubble parameter, that show a strong disagreement.

Currently, the Λ𝐶𝐷𝑀 cosmological model constitutes the standard framework for
understanding the large-scale structure and evolution of the universe. Its success lies
in its ability to reconcile theoretical predictions with a large amount of observational
data at various cosmic epochs. The main achievement of the Λ𝐶𝐷𝑀 model is its pre-
cise agreement with observations of the CMB, the relic radiation, emitted approxi-
mately 380000 years after the Big Bang. Experiments such as those carried out by the
Planck satellite have carefully measured temperature fluctuations in the CMB. These
observations align impeccably with the model’s predictions, affirming its fidelity in
describing the beginnings of the universe.

Gravitational lensing, a phenomenon predicted in Einstein’s theory of GR, provides
additional evidence in favor of the Λ𝐶𝐷𝑀 model. Strong and weak gravitational lens-
ing phenomena, resulting from the bending of light by massive structures, agree per-
fectlywith themodel predictions. Lensing observations, particularly of galaxy clusters
and large-scale structures, reflect the expected gravitational signatures, thus consoli-
dating the model’s position. In summary, the Λ𝐶𝐷𝑀 cosmological model appears to
be a robust and complete framework, harmonizing theoretical predictionswith a large
amount of observational data.

However, despite some agreement with the current observations, the measured val-
ues of the Hubble constant 𝐻0 are in strong tension. As depicted in Fig. 1.9, the mea-
surements of 𝐻0 are often categorized into “early” and “late” measurements. The
early measurements refer to high redshift epochs, estimating the Hubble constant at a
different time and recovering the local value through the Λ𝐶𝐷𝑀 model. The late ones
correspond to small redshifts measurements, directly inferring the local value of the
Hubble parameter. The leading result from the early Universe has been obtained with
the Planck satellite, with a method based on the anisotropies in the CMB. The Planck
satellite measured the Hubble constant by analyzing the CMB radiation. In a perfectly
homogeneous and isotropic Universe (cosmological principle), the CMB would be
uniform. However, some small quantum fluctuations in the early Universe’s plasma
density occurred. When the Universe cooled and the recombination happened, these
fluctuations were imprinted on the CMB. The Planck satellite observed these fluctua-
tions and their angular dependencies on the sky. By precisely estimating the size of
the anisotropies in the CMB, Planck provided data on the Universe’s composition and
expansion. The scale of these variations allowed the Planck collaboration to estimate
the Hubble constant at 𝐻0 = 67.27 ± 0.60 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1 in 2018 [61].

The leading late Universe measurement of the Hubble constant has been and still is
obtained from the observation of type Ia supernovae. These objects have the intrinsic
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Figure 1.9: Graphic taken from [73, 74], illustrating the most recent different values of the
Hubble constant from various experiments listed on the left side of the figure. The upper
half are characterized as “indirect” (early universe) and the bottom half as “direct” (late
universe). The two vertical bands are the best estimation of the Hubble constant in both
families, having a 4.5𝜎 disagreement.

properties of being “standardizable” candles, i.e. they have a known absolute magni-
tude, which combined to an estimate of their apparent magnitude, lead to a measure
of their distances. Usually, type Ia supernovae are calibrated using Cepheid variable
stars, which give them the name of “standardizable” candles. The redshift of the type
Ia is obtained by localizing the host galaxy of the source. In 2020, the Equation of
State of Dark Energy (SHOES) collaboration estimated the local value of the Hubble
constant at 𝐻0 = 73.2 ± 1.3 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1 [75]. SHOES used an expanded sample of
75 Cepheid stars to recalibrate the extragalactic distance ladder, and their best 𝐻0 es-
timation is found with a 4.2𝜎 tension respectively to the Planck 2018 value discussed
above. In a similar fashion, other experiments, both looking at the early and late Uni-
verse managed to measure the Hubble constant, as shown in Fig. 1.9.

From the state-of-the-art results shown in Fig. 1.9, there is a clear discrepancy in
different values of 𝐻0, often referred as the Hubble tension, highlighting the 4.2𝜎 de-
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viation between Planck and SHOES [3]. While this tension is not new and keeps get-
ting stronger and stronger over the years, there seems to be no obvious explanation to
it. So far, the literature seems to agree on two possibilities, the presence of unknown
systematics, or a proof that the Λ𝐶𝐷𝑀 model is incomplete. For the early Universe
measurement, it is likely that systematics errors are not predominant, but the model
dependency of the method makes it sensitive to the Λ𝐶𝐷𝑀 hypothesis. For the late
Universe case, the method is more prone to be affected by systematic errors, since sev-
eral measured quantities with imperfect astrophysical models have to be combined
to obtain 𝐻0. But the current attempts to modify the Λ𝐶𝐷𝑀 model to solve the Hub-
ble tension such as the modified gravity models, the early dark energy models or the
extra radiation models do not seem to provide an answer without introducing other
problems. So the question remains, is the Λ𝐶𝐷𝑀 model the correct description of the
Universe ?

1.5 GRAvITATIONAL wAvE COSMOLOGy
Previously, we briefly mentioned that GW cosmology analysis can only be performed
if the redshift of the GW source is somehow determined. In 1986, Schutz mentioned
for the first time the use of GWs as “Standard Sirens” for cosmology, proposing two
methods based on BNS mergers [70]. GWs are called Standard Sirens, as a reference
to the supernovae type Ia (standard candles) used as a tool to measure distances in
cosmology, we make a distinction in the name because supernovae type Ia are “seen”
while GWs are “heard”. In the case where the BNS merger is perfectly localized and
its electromagnetic counterpart (EMC) is detected, the Hubble constant 𝐻0 could be
estimated through the identification of the host galaxy and its redshift. If the EMC is
not detected, all galaxies within the localization volume are considered, and the true
redshift of the source can be statistically inferred from the redshifts of these galax-
ies. By stacking redshift information and 𝐻0 estimates, the true value of the Hubble
constant would emerge. More than two decades later, Del Pozzo developed a method
based on Schutz’s idea, using Bayesian inference to estimate 𝐻0, regardless of whether
an EMC of a BNS is detected [76]. Following this, several new methods emerged for
determining the redshift associated with the GW source. These include using galaxy
catalogs, which do not require an EMC, or methods based solely on GW data where
the redshift is inferred by breaking the degeneracy between the source-frame masses
and the detector-frame masses [77–81]. Today, new methods based on BNS, BBH, or
neutron star-BH (NSBH) mergers can infer the Hubble constant. In this section, we
present a review of the three main GW-based methods for cosmology: the EMC, the
galaxy catalog, and the dark siren.

The EMC method, also called “bright siren”, in analogy with the light emitted at the
moment of the merger has been the first one able to give a precise measurement of the
Hubble constant, based on a GW detection [82–84]. The BNSmerger GW170817, seen
by the Advanced LIGO and Virgo detectors on the 17th of August 2017 was simul-
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taneously observed in the X-rays by the Fermi satellite [85–87]. During the neutron
star merger, part of the energy was dissipated under the form of GWs, but also as EM
emission that is usually called a kilonovae. The GW source, was estimated to be at
around 40 𝑀𝑝𝑐 from Earth and well localized by the LIGO-Virgo network, and 1.7s
after the GW detection, a prompt gamma-ray-burst, also emitted by the BNS merger,
was detected and led to the precise identification of the host galaxy NGC4993. The
first ever value of the Hubble constant, from the combined detection of a GW and an
EMC, was estimated at 𝐻0 = 70+12

−8 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1, in agreement with both main mea-
surement defining the Hubble tension (see Fig. 1.10) [88, 89]. The uncertainties of
this first cosmological measurement are mainly driven by the estimation of the lumi-
nosity distance from the GW signal, since 𝑑𝐿 presents a strong degeneracy with the
orbital inclination angle of the system, whereas the redshift of the galaxy NGC4993 is
precisely estimated after correction for peculiar velocities effects. After this date, the
excitement about future BNS detections for cosmology became stronger and stronger,
and some forecast studies showed that a 1% estimation of the Hubble constant could
be reached with less than one hundred GW events like GW170817 [90–92]. Such pre-
cision, with similar order of magnitude as the ones obtained with the supernovae or
the CMB, would resolve the Hubble tension puzzle. Up to now, after first three ob-
serving runs of the LVK scientific collaboration (O1, O2, O3), GW170817 remains the
only merger seen through both GWs and EMC. Improving the chance to detect such
incredible GW event has been at the heart of recent GW detector upgrades.

Out of the O ∼ 100 GW events detected since the start of O1 in 2015, only a few of
them (including GW170817) contained at least one neutron star among their compo-
nents, making the EMC-based method less applicable [24–27]. And binary mergers
of two BHs or mixed systems with a BH and a NS are not expected to produce any
strong EM emission. As a result, we have increasingly focused on other GW cosmol-
ogy methods where an EMC is not needed, and the redshift of the source is estimated
differently. As Schutz suggested, one can use external catalogs of galaxies with pre-
measured redshifts, covering large portions of the sky. The GW detection provides a
measurement of the luminosity distance and a sky localization volume, and all galax-
ies within this volume are considered as potential hosts. This type of method can be
very convenient since it can be applied to all kinds of mergers (BBHs, NSBHs, BNSs),
but it also has pitfalls. The first is that current galaxy surveys are not complete at high
redshift, meaning some GW sky localizations could fall in regions where not all galax-
ies have been observed. The second issue is the inverse situation, where too many
galaxies fall into the detection volume, making the statistical inference of the true red-
shift less precise. Recently, several studies have used the galaxy catalog method to
infer 𝐻0 from the GW catalogs [79, 93]. The galaxy catalog method has been utilized
with GW events observed across all three runs of the LIGO, Virgo and KAGRA ob-
serving runs [4], using 47 CBC mergers and the GLADE+ galaxy catalog. The value
of 𝐻0 = 67+13

−12 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1 was estimated from the 47 events, and combined to the
𝐻0 measurement obtained with GW170817, this led to the best estimation of the Hub-
ble constant from GW observations 𝐻0 = 68+8

−6 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1, as shown in Fig. 1.10.
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Figure 1.10: Figure taken from [4], of the Hubble constant posteriors obtained from sev-
eral methods. The orange dotted line: 𝐻0 posterior using the galaxy catalog method with
GLADE+ in the K-band, with 47 GW detections and a fixed population model. The black
line: 𝐻0 posterior obtained with the EMC method one GW170817. The gray dotted line: 𝐻0
posteriors from the dark sirens analysis with no information from galaxy catalog. The blue
line: combined posterior between the galaxy and EMCmethods. The green and pink vertical
lines are the value of theHubble constant obtainedwith the supernovae type 1a and the CMB
respectively.

The use of the two combined methods showed a 40% improvements compared to the
EMC method alone with one event. As explained in Sec. 2 and in the following para-
graph, the mass spectrum parameterization of the mergers plays a crucial role during
the inference process of 𝐻0, as well as the merger rate. We note here that the result
called “empty catalog” in Fig. 1.10 is solely driven by the population assumptions, i.e.
the fixed values of the parameters used to describe the mass spectrum and merger
rate of the GW mergers. This choice can have a strong effect on the Hubble constant
estimation, which is discussed in [4, 94], and explore more generally in Sec. 3. Recent
developments have shown that the 𝐻0 inference using GW data without EMC must
also jointly infer the population parameters in order to reduce the effect of systematics
[79, 93].

The previous two methods, namely the EMC and the galaxy catalog, have proven
to be efficient to estimate the Hubble constant, but both have also shown pitfalls. The
first one is precise, but the rarity of GW event with a detectable EMCmakes it difficult
to use, and the second one highly depends on the completeness of the galaxy catalog.
As seen before, the redshift of the source is the key to GW cosmology, but can not be
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Figure 1.11: Figure taken from [4], of the Hubble constant posteriors obtained from a popu-
lation only analysis of 42 BBHs using three different mass parameterizations and combined
with the result of the EMC method on GW170817. The green and pink vertical lines are the
value of theHubble constant obtainedwith the supernovae type 1a and the CMB respectively.

obtained directly from the GW signal if no EMC or galaxy catalog is used. However,
while GW detections do not provide direct information on the redshift of the source,
the signal is directly proportional to the redshifted masses, as seen from Eq. 1.8 and
Eq. 1.10. The detector frame masses 𝑚det are fully degenerate with the redshift and
the source frame masses 𝑚𝑠 such that

𝑚det = (1 + 𝑧)𝑚𝑠, (1.44)

which means that the redshift of the source can be derived if the source frame masses
are somehow determined. In order to break the mass-redshift degeneracy, paramet-
ric model describing the source frame mass spectrum and the merger rate of CBCs
have to be passed to the analysis. In particular, some studies have demonstrated that
it is possible to jointly infer the Hubble constant alongside the population parame-
ters for the mass and the merger rate [95]. This method is often referred to as the
population-only inference, or the dark siren analysis. The dark siren inference is cru-
cial for GW cosmology, since no external data are needed, but one has to be aware
that the choice of the parameterization of the astrophysical population can have an
impact on the inferred 𝐻0. In the latest cosmology paper from the LVK collaboration
[4], 42 BBHs from the third transient catalog are analyzed to jointly infer the Hubble
constant and the population parameters. In this work, three different mass models
were tested: a power-law, a broken power-law and a more complex model made of a



1.6 CONCLuSIONS 35

power-law plus a Gaussian peak. More details about these models and their effects on
the inferred 𝐻0 will be given later in Sec. 3. Additionally, we found out that a simple
power-law was highly disfavored as the correct mass population model. The Hubble
constant was estimated at 𝐻0 = 44+52

−24 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1 using the broken power-law and
𝐻0 = 50+37

−30 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1 with the power-law plus peak. Combining this result with
the BNS GW170817 led to the value of 𝐻0 = 68+12

−8 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1, which is close to
17% better than the previous results based on GW events from the second observing
run. The dark sirens analysis’s constraining power on 𝐻0, is closely linked to the mass
spectrum structures, in fact it was shown that the current values obtained in [4] were
mainly driven by the reconstructed peak around 35 𝑀⊙, that was told to “set a scale”
for the redshift distribution of BBHs.

Additionally, for binary systems where at least one of the two object is a neutron
star, the mass-redshift degeneracy can be resolved with the use of the neutron star
equation of state via the tidal deformability parameter that is degenerated with the
Hubble constant [96].

The GWs-only method discussed above provide a new approach for cosmology
studies, which does not need extra information other than the GW detections. But as
we will demonstrate in Sec. 3, this method is susceptible to systematics errors induced
by the population models. Just like the presence of features in the mass spectrum of
BBHs are the origin of the constraining power of such method, they can also be the
source of biases, if not accounted properly in during the inference.

1.6 CONCLuSIONS
Exploring the cosmos, from the vast structure of the universe to the subtle vibrations of
GWs and their sources, is a profound journey towards understanding the fundamental
physics of our Universe. This introductory chapter combines basics of cosmology, GW
physics, and BH astrophysics, to provide a coherent picture of our universe.

GWs, vibrations of space-time predicted by Einstein’s general theory of relativity,
are a revolutionary tool in this search. They provide a unique window into the most
violent and energetic events in the Universe, such as BH mergers and neutron star
collisions. The discovery and analysis of these waves not only confirm theoretical pre-
dictions, but also give new insights into the behavior of matter and energy in extreme
conditions, as well as a new probe to test the standard model of cosmology.

The study of BH mergers, particularly the complex dynamics of rotating Kerr BHs,
enriches our understanding of the universe. These compact objects, with their intense
gravitational fields, are the primary sources of known gravitational wave emissions.
The physics governing their formation, evolution, and interaction in binary systems
sheds light on fundamental forces in the universe, although it is not entirely under-
stood.

Modern cosmology is based on a standard model that describes the expansion of
the Universe from the Big Bang to its present state. Built on principles such as the
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cosmological principle and the dynamics embodied in the Friedman equations, this
model provides a basis for understanding the large-scale structure and evolution of the
cosmos. Nevertheless, ongoing challenges such as the Hubble tension emphasize the
need for innovative observation methods to improve our measurements and theories.

Together, these elements form an integrated approach to our Universe understand-
ing. The intersection of cosmology, GW astronomy and BH physics not only solves
existing issues, but also opens up new paths for discoveries. As observational meth-
ods advance and theoretical models evolve, we are approaching the discovery of the
deepest secrets of the Universe, from its origin to its final destination.
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2.1 INTRODuCTION
In this chapter, we introduce the hierarchical Bayesian inference scheme and method-
ologies used to infer the astrophysical properties of BBH populations alongside with
the cosmological parameters, based on gravitational waves data from compact binary
mergers. Such analysis is required for population inference since the number of ob-
servations is limited and has to be corrected for a selection bias. The selection bias,
also referred as theMalmquist bias [97], obstructs the observation of the entire binary
black holemerger population, hence biases our sample if not accounted in our analysis.
Moreover, GW data used for population inference studies often exhibit measurement
uncertainties of their source parameters due to the fact that such signals are found
deep inside instrumental noise of the detectors, making it significantly more difficult
to extract accurate information on the source population. As a result, the inference of
BBHpopulation properties and of cosmological parameters requires to have advanced
numerical and statistical techniques in order to handle incomplete and noisy data.

This chapter is organized as follows. Sec. 2.2 gives an introduction to the basic prin-
ciples of Bayesian inference and in particular hierarchical Bayesian inference in the
context of GWs. In Sec. 2.3, we present ICAROGW, a python package for inference of
astrophysical population properties of noisy and incomplete observations. In Sec. 2.4,
we go over the differentmethodologies to perform such analysis, using solely the grav-
itational wave data (Spectral Siren), adding extra information from galaxy catalogs,
or combining the gravitational wave result with its electromagnetic counterpart. In
Sec. 2.5, we introduce a new addition to the Bayesian inference, allowing for the estima-
tion of spin parameters of binary black holes, via two distinct spin models. We bring
forth the new parameterization for the hierarchical inference, as well as a discussion
on the potential impact of spins for cosmology inference. Finally, Sec. 2.7 concludes,
and summarize the possibilities of such analysis for GW cosmology purposes.

2.2 BAyESIAN INFERENCE OF pOpuLATION pROpERTIES
wITH GRAvITATIONAL wAvE DATA

2.2.1 Bayesian inference

Following the detection of a GW passing through our detectors, we start studying the
individual properties of this peculiar source, such as its astrophysical properties or
its origin, these make each signal unique. But as the number of detections increases
with the observing time and the enhanced sensitivity of the detectors, it becomes in-
teresting to switch our way of looking. Instead of exploring the physics of individual
GW sources, it can be crucial to look at them as an ensemble, a population of sources.
Studying the entire population, as a whole, may help us understand what are their
common characteristics, what are their differences, and even allow us to perform com-
plex studies as GW cosmology. However, one have to be careful while trying to infer
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common properties of a population based on detected data only, because of the lim-
ited sensitivity of the detectors. In fact, all sources are not equally detectable and for
various reasons. As discussed in Sec. 1.2.2, this induces selection effects that have to
be taken care of during the analysis, in order to get unbiased results. The purpose of
Bayesian and hierarchical Bayesian inference is to infer the population properties of
the entire population of sources, while deconvolving the selection effects.

More formally, in the context of GWs, the Bayesian inference concept can be ex-
plained like that. An experiment or a detector gives us access to a set of data {𝑥},
representing information on the individual sources of the detected GWs. We want to
use these data, to extract new information about the overall population of GW sources.
Usually, the data {𝑥} are explained via model 𝑀 which is governed by a set of model
parameters 𝜃. This model, if correct, should be able to make scientific predictions.
Based on the data {𝑥}, the model 𝑀 and its intrinsic parameters 𝜃, we can construct
the likelihood probability

𝑃({𝑥}|𝜃, 𝑀), (2.1)
that tell us what is the probability of observing the data {𝑥}, given the model 𝑀 and
a specific set of values for the parameters 𝜃. The value of this probability changes
for different values of the parameters 𝜃, and this give us insights on which choice of
parameters would be best to explain the data {𝑥}. In the context of GW analysis, we
already “know” the data {𝑥}, we are rather interested in the opposite of Eq. 2.1

𝑃(𝜃|{𝑥}, 𝑀), (2.2)

which tell us the probability of having certain values for our set of parameter 𝜃, given
a model 𝑀 and some data {𝑥}. Using probability laws, one can relate the so-called
likelihood 𝑃({𝑥}|𝜃, 𝑀) and the probability 𝑃(𝜃|{𝑥}, 𝑀) such that

𝑃(𝜃|{𝑥}, 𝑀)𝑃({𝑥}|𝑀) = 𝑃(𝜃, {𝑥}|𝑀) = 𝑃({𝑥}|𝜃, 𝑀)𝑃(𝜃|𝑀). (2.3)

By flipping Eq. 2.3, we obtain a new form that is referred to as the Bayes’ Theorem [98]

𝑃(𝜃|{𝑥}, 𝑀) = 𝑃({𝑥}|𝜃, 𝑀)𝑃(𝜃|𝑀)
𝑃({𝑥}|𝑀) . (2.4)

The likelihood probability 𝑃({𝑥}|𝜃, 𝑀) is often written as L({𝑥}|𝜃, 𝑀), so we will keep
this notation for the rest of the manuscript. The term 𝑃(𝜃|𝑀) is called the prior proba-
bility, the prior corresponds to the prior knowledgewe have about the choice of param-
eter 𝜃, before any new detections. The prior probability of the parameters can take any
form, but is often chosen uniform in order to keep the analysis as agnostic as possible.
The denominator 𝑃({𝑥}|𝑀) is named the evidence, sometimes notedZ , it corresponds
to the likelihood probability marginalized over all the parameters 𝜃. The evidence
is used to understand how well a model is able to fit the data, after integrating over
all combinations of 𝜃, or perform model comparison with the Bayes factor between
the derived evidences of two different models on the same set of data. 𝑃(𝜃|{𝑥}, 𝑀) is
called the posterior probability, this term gives us the probability of having certain
value given the data and the model.
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Figure 2.1: Schematic view of the density probabilities at play in the Bayes theorem. In blue is
the prior probability 𝑃(𝜃|𝑀) drawn from a Beta distribution 𝛽(10, 10), in red is the likelihood
probability 𝑃({𝑥}|𝜃, 𝑀) and in purple is the resulting posterior distribution 𝑃(𝜃|{𝑥}, 𝑀), that
is the combination of the two. The evidence here is not represented. The model used is
governed by only one parameter 𝜃 in [0, 1]. Figure taken from 𝑚 − 𝑐𝑙𝑎𝑟𝑘.

Fig. 2.1 and Fig. 2.2 illustrates how the prior distribution impacts the resulting poste-
rior distribution, for the same likelihood distribution. A more peaked prior will have
a greater influence of the resulting posterior than a rather flat prior.

The estimation of the posterior distribution is usually done to either compare mod-
els or make scientific predictions, by inferring constraints on the population parame-
ters 𝜃. In most cases, the model does not depend on a single parameter 𝜃, but a set
of several parameters {𝜃𝑖}. Out of all parameters, some are considered as noise and
other as parameters of interest, the noisy one should be marginalized over. If the total
posterior is “known”, the marginalization can be done such that

𝑃(𝜃𝑖𝑛𝑡|{𝑥}, 𝑀) = ∫ 𝑃({𝜃}|{𝑥}, 𝑀)𝑑𝜃𝑛𝑜𝑖𝑠𝑒, (2.5)

where 𝜃𝑖𝑛𝑡 are the parameters of interest to be constrained from the posterior, and 𝜃𝑛𝑜𝑖𝑠𝑒
are the set of non-interesting parameters to be marginalized over. In the end, the cru-
cial quantities in Bayesian inference are not the full posterior distribution, but rather
integrals of this distribution. In the specific case of ICAROGW, the Bayesian framework
introduced in Sec. 2.4, the posterior is approximated usingMarkov-chain-Monte-Carlo
methods [99].

https://m-clark.github.io/bayesian-basics/example.html
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Figure 2.2: Schematic view of the density probabilities at play in the Bayes theorem. In blue
is the prior probability 𝑃(𝜃|𝑀) drawn from a Beta distribution 𝛽(2, 2), in red is the likelihood
probability 𝑃({𝑥}|𝜃, 𝑀) and in purple is the resulting posterior distribution 𝑃(𝜃|{𝑥}, 𝑀), that
is the combination of the two. The evidence here is not represented. The model used is
governed by only one parameter 𝜃 in [0, 1]. Figure taken from 𝑚 − 𝑐𝑙𝑎𝑟𝑘.

2.2.2 Hierarchy and selection effects

In GW population or cosmology studies, we often refer to Bayesian inference as be-
ing hierarchical, meaning that the parameters at plays can be organized in a “cas-
cading” manner. We have a set of intrinsic parameters for each GW source (𝜃 =
{masses, spins, ...}), they are the population-level parameters. And we have the com-
mon parameters which governs the shape of the distributions of the population-level
parameters. For example, the distribution of the mass could be chosen to be a Gaus-
sian with two parameters, in this case the population parameter would be the mass,
and the mean and standard deviation of the Gaussian the second level of parameter.
The combination of the population-level parameters with the parameters that governs
the shape of the distributions are called the hyperparameters Λ, to which we add the
cosmological parameters (𝐻0, Ω𝑚,...). The term hierarchical is used here to highlight
the fact that we use a set of detections from a population to infer the hyperparameters
Λ, in which we have two levels of inference. We estimate the parameter 𝜃 for each of
the sources, and then use them to infer the parameters on the population level.

As mentioned before, the detected GW signals represent only a subset of the entire
population of sources, and this effect can be an important source of bias. In the hierar-
chical Bayesian framework, this is formulated with a question: for a set of population
parameters 𝜃, is the source detectablewith the current GWdetector network and sensi-
tivity ? And because a detector is not stationary, meaning that its noise and sensitivity

https://m-clark.github.io/bayesian-basics/example.html
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are not the same over time, the probability of detecting the same source evolves over
time. So far, this effect is mitigated by computing the detection probability of a source
with parameters 𝜃, for multiple noise realizations, through a ranking statistic like the
signal-to-noise ratio (SNR). We manage to compute such probability over the entire
parameter space by injecting simulated GW signals with all combination of parame-
ters 𝜃 into real realizations of the detector noise, and using analysis pipeline searches
to rank them as detectable or not. This entire process is called “injection search”, and
allows us to estimate the detection probability of GW signals.

2.3 ICAROGw: INFERRING COSMOLOGy AND ASTROpHySICS
wITH OBSERvATIONS OF GRAvITATIONAL wAvES

This section presents the foundations of ICAROGW [77], a python based code developed
for the inference of population and cosmological properties of compact binary coales-
cence via gravitational wave data. ICAROGW is one of the two official pipelines of the
LIGO-Virgo-KAGRA (LVK) Collaboration for cosmology studies, and has been used
during the previous observing runs; its development is still ongoing today [4].

2.3.1 A hierarchical Bayesian inference framework

The purpose of this Bayesian framework is to infer the cosmological and population
parameters, Λ, that governs the CBC rate as a function of the intrinsic GW parameters
𝜃. This CBC rate is usually denoted

𝑑𝑁𝐶𝐵𝐶
𝑑𝑡𝑠𝑑𝜃 (Λ). (2.6)

For cosmology purposes, the GW parameters 𝜃 are usually the sources frame masses
of both black holes, and their redshift denoted (𝑚𝑠

1, 𝑚𝑠
2,z), but the intrinsic spin pa-

rameters can also be at play here. For instance, in Sec. 2.4.3, the implementation of
spin models is discussed. For simplicity, a summary table of all parameters stated in
this section is shown in Table. 2.1.

The detection of GW events can be described as an inhomogeneous Poisson process
in the presence of selection biases [100, 101]. For a set of 𝑁𝑜𝑏𝑠 GW signals detected,
over an observation time 𝑇𝑜𝑏𝑠, the probability of having a specificGWdataset {𝑥} given
some population hyperparameters Λ and described by their source parameters 𝜃 can
be written under the form of the following hierarchical likelihood:

L({𝑥}|Λ) ∝ 𝑒−𝑁𝑒𝑥𝑝(Λ)
𝑁𝑜𝑏𝑠
∏

𝑖
𝑇𝑜𝑏𝑠 ∫ 𝑑𝜃 × L𝐺𝑊(𝑥𝑖|𝜃, Λ) 1

1 + 𝑧
𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑑𝑡𝑠

(Λ). (2.7)

The hyperparameters Λ describe the BBH population, but also include the cosmologi-
cal parameters. For a chosen flat Λ𝐶𝐷𝑀 cosmology, the cosmological parameters are
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Parameter Description
𝐻0 Hubble constant, i.e. the local expansion rate of the Universe today.

𝑁𝐶𝐵𝐶 Compact binary coalescence merger rate
𝑁𝑜𝑏𝑠 Number of detected (observed) real gravitational wave signals.
𝑁𝑑𝑒𝑡 Number of detected signal out of the total number of generated injec-

tions.
𝑁𝑒𝑥𝑝 Expected number of gravitational wave events.
{x} Gravitational wave data set.
𝜃 Intrinsic gravitational wave parameters of the source.
Λ Hyperparameters of the binary black hole population.

𝑡𝑠, 𝑡𝑑 Source frame time and the detector frame time.
𝑅0 Local value of the compact binarymerger rate density, per giga parsecs

cube, per year.
𝑝𝑑𝑒𝑡 Detection probability of GW events.

𝑁𝑒𝑓 𝑓 ,𝑖 Effective number of posterior samples per GW event.
𝑁𝑒𝑓 𝑓 ,𝑖𝑛𝑗 Effective number of injections.

(𝑚𝑠
1, 𝑚𝑠

2) Primary and secondary masses of the compact binary merger in the
source frame.

𝑧 Cosmological redshift of the CBC source.
⃗𝜒 Vector of the normalized spin parameters of the CBC source.

𝑤𝑖,𝑗 Weight representing the number of CBC mergers per unit of time (see
Sec. 2.3.2).

𝑠𝑗 Weight proportional to the number of CBCmergers detected per detec-
tor frame time (see Sec. 2.3.2).

Table 2.1: Summary table of the parameters and quantities used in the Bayesian framework
of ICAROGW.

the Hubble constant 𝐻0 and the fraction of matter density today Ω𝑚,0. All other pa-
rameters are population parameters governing the shape of the BBH mass spectrum,
as well as the spin spectrum or the merger rate spectrum (see Sec. 2.4.3 and Sec. 3.3.1).
In Eq. 2.7, the term 1

1+𝑧 accounts for the time dilatation between the source frame time
and the detector frame time. An alternative form for Eq. 2.7, that allows to suppress
the information about the rate of mergers can be derived by assuming a “scale-free”
prior 𝜋(𝑁𝑒𝑥𝑝) ∝ 1/𝑁𝑒𝑥𝑝 on the expected number of detection [102, 103]. The equiva-
lent form of Eq. 2.7 with a “scale-free” prior can be expressed as

L({𝑥}|Λ) ∝
𝑁𝑜𝑏𝑠
∏
𝑖=1

∫L𝐺𝑊(𝑥𝑖|𝜃, Λ)𝑑𝑁𝐶𝐵𝐶
𝑑𝑡𝑠𝑑𝜃 (Λ)𝑑𝜃

∫ 𝑝𝑑𝑒𝑡(𝜃, Λ)𝑑𝑁𝐶𝐵𝐶
𝑑𝑡𝑠𝑑𝜃 (Λ)𝑑𝜃

. (2.8)
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Assuming a scale-free prior can be highly useful, especially while doing inference on
simulated data, it allows us to forget about the local CBC merger rate density 𝑅0 in
the inference, without putting to risk the overall result. In section. 3, all the results
are obtained with a scale-free prior. In Eq. 2.7 and Eq. 2.8, several important terms are
at play, such as the individual likelihood L𝐺𝑊(𝑥𝑖|𝜃, Λ) of each GW event, that gauges
the error on the estimation of intrinsic parameters 𝜃 for a specific GW event {𝑥𝑖}, or
the detection probability 𝑝𝑑𝑒𝑡(𝜃, Λ) which determines the probability of detecting a
certain CBC at a redshift 𝑧, characterized by its parameters 𝜃 and Λ.

2.3.2 Monte-Carlo integration and numerical stability estimators

As shown above, the first term that requires a numerical evaluation is the single event
likelihood L𝐺𝑊(𝑥𝑖|𝜃, Λ), which is related to the measurement error of the GW param-
eters 𝜃. When dealing with detected GW signals, the single event likelihood is not
directly given by these data, but by a set of posterior samples (PEs), defined by

𝑝(𝜃|𝑥𝑖, Λ) ∝ L𝐺𝑊(𝑥𝑖|𝜃, Λ)𝜋𝑃𝐸(𝜃|Λ). (2.9)

The PEs are obtained after the detection of each single event. The quantity 𝜋𝑃𝐸(𝜃|Λ)
is the prior with which the posterior samples were drawn. Hence, 𝑝(𝜃|𝑥𝑖, Λ) are the
PEs of the source frame parameters for each detected GW event {𝑥𝑖}. Within ICAROGW,
the integral of the individual likelihood in Eq. 2.7 and the integral of the probability of
detection in Eq. 2.8 are approximated using numerical Monte-Carlo integral methods,
summing over the PEs [104]. Taking the single likelihood for example, it is possible
to re-write it such as:

∫L𝐺𝑊(𝑥𝑖|𝜃, Λ)𝑑𝑁𝐶𝐵𝐶
𝑑𝑡𝑠𝑑𝜃 (Λ)𝑑𝜃 ≈ 1

𝑁𝑠,𝑖

𝑁𝑠,𝑖

∑
𝑗=1

1
𝜋𝑃𝐸(𝜃𝑖,𝑗|Λ)

𝑑𝑁𝐶𝐵𝐶
𝑑𝑡𝑠𝑑𝜃 (Λ)∣

𝑖,𝑗
(2.10)

≈ 1
𝑁𝑠,𝑖

𝑁𝑠,𝑖

∑
𝑗=1

𝑤𝑖,𝑗. (2.11)

The indices 𝑖 and 𝑗 point respectively to the event and the posterior samples. The
quantity 𝑤𝑖,𝑗 can be seen as a weight in Eq. 2.11, representing the number of CBC
mergers per unit of time. As the integral of the single likelihood is approached via a
sum over a finite number of posterior samples 𝑗 per GW event 𝑖, numerical instabilities
could arise if the number of effective posterior samples used to evaluate the integral
is too small. As proposed in [105],

𝑁𝑒𝑓 𝑓 ,𝑖 =
(∑𝑁𝑠,𝑖

𝑗 𝑤𝑖,𝑗)2

∑𝑁𝑠,𝑖
𝑗 (𝑤𝑖,𝑗)2

, (2.12)

is a new quantity used to monitor how many samples per event are truly helping the
Monte-Carlo integration. Before running a joint cosmological and population analysis,
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a threshold value is chosen, if for a specific GW event and population model, this
condition is not fulfilled, the value of associated likelihood will automatically be put
to zero. In general, for cosmological and population study, the value of 𝑁𝑒𝑓 𝑓 is chosen
around 10, in order to have at least 10 posterior samples per event per model. The
effective number of posterior samples, 𝑁𝑒𝑓 𝑓 , plays a crucial role in determining the
numerical stability of the likelihood during inference. If 𝑁𝑒𝑓 𝑓 is too low, the inference
process can overly rely on a small subset of samples, leading to an unstable likelihood
estimation and unreliable final results. Currently, there is no universally accepted
rule for selecting the optimal value of 𝑁𝑒𝑓 𝑓 ; instead, it is typically determined through
empirical testing and experience gained from previous inferences.

Beside the single event likelihood discussed above, the expected number of detec-
tion 𝑁𝑒𝑥𝑝(Λ) also needs Monte-Carlo integration. This term can be expressed as a
function of the probability of detection 𝑝𝑑𝑒𝑡(𝜃, Λ) following Eq. 2.13 below:

𝑁𝑒𝑥𝑝(Λ) = 𝑇𝑜𝑏𝑠 ∫ 𝑝𝑑𝑒𝑡(𝜃, Λ)𝑑𝑁𝐶𝐵𝐶
𝑑𝑡𝑑𝑑𝜃 𝑑𝜃. (2.13)

𝑁𝑒𝑥𝑝(Λ) is directly related to the estimation of the selections biaseswithin the Bayesian
framework. Moreover, the expected number of detections can further be derived, by
developing the probability of detection in the integral such that

𝑝𝑑𝑒𝑡(𝜃, Λ) = ∫
𝑥∈𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒

L(𝑥𝑖|𝜃, Λ)𝑑𝑥, (2.14)

where the probability of detection is the integral over all individual GW data {𝑥𝑖},
of each single event likelihoods. Nevertheless, from the GW data alone, there is no
easy way to get an analytical form for the probability of detection. To address this
matter, Monte-Carlo simulations are themostwidely acceptedway for selection biases
computation. In the field of GWanalysis, it is often referred to as “injections”, to speak
about simulated GW events. The simulated events are injected in the real noise of the
detectors, and detected as real signals in order to estimate the detectable parameter
space volume. Said differently, an intrinsic property of detectors is their limitation
to detect all signals, in fact, there exists a volume in the parameter space (defined
by all hyperparameters in Λ), where signals can not be detected, but still exist in the
Universe. Using injections is how the Bayesian framework manages to correct for this
selection bias. The frequency of detected injections, which varies proportionally with
𝑝𝑑𝑒𝑡(𝜃, Λ), along with the population models employed for their generation, can serve
as criteria for assessing selection bias.

To evaluate the selection bias via Monte-Carlo simulations, from a set of 𝑁𝑔𝑒𝑛 simu-
lated GW signals drawn from a prior 𝜋𝑖𝑛𝑗(𝜃), only the subset of detected GW signals
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𝑁𝑑𝑒𝑡 is given to ICAROGW. Similarly, as in Eq. 2.11, it follows that Eq. 2.13 can be com-
puted with a Monte-Carlo integration as:

𝑁𝑒𝑥𝑝(Λ) = 𝑇𝑜𝑏𝑠 ∫ 𝑝𝑑𝑒𝑡(𝜃, Λ)𝑑𝑁𝐶𝐵𝐶
𝑑𝑡𝑑𝑑𝜃 𝑑𝜃 (2.15)

≈ 𝑇𝑜𝑏𝑠
𝑁𝑔𝑒𝑛

𝑁𝑑𝑒𝑡
∑
𝑗=1

1
𝜋𝑖𝑛𝑗(𝜃𝑗)

𝑑𝑁𝐶𝐵𝐶
𝑑𝑡𝑑𝑑𝜃 ∣

𝑗
(2.16)

≡ 𝑇𝑜𝑏𝑠
𝑁𝑔𝑒𝑛

𝑁𝑑𝑒𝑡
∑
𝑗=1

𝑠𝑗. (2.17)

The new weight 𝑠𝑗 occurring in Eq. 2.17 is directly proportional to the number of CBC
mergers per detector frame time. The prior 𝜋𝑖𝑛𝑗(𝜃) used to draw the injections must
be correctly normalized (its integral being equal to unity) in order to compute an
acceptable value of expected detections. A wrong normalization of the prior would
result in a wrong number of expected detections, which would influence the final
correction of the selection effects. As for the effective number of posterior samples,
it is possible to define an effective number of injections threshold, below which the
likelihood would automatically drop to zero, in order to avoid numerical instabilities.
In agreement with [106], the effective number of injections can be defined as

𝑁𝑒𝑓 𝑓 ,𝑖𝑛𝑗 =
( ∑𝑁𝑑𝑒𝑡

𝑗 𝑠𝑗)
2

( ∑𝑁𝑑𝑒𝑡
𝑗 𝑠2

𝑗 − 𝑁−1𝑔𝑒𝑛(∑𝑁𝑑𝑒𝑡
𝑗 𝑠𝑗)2)

. (2.18)

In [106], they show that there exists a criterion linking the effective number of injec-
tion and the number of observed GW events used in the analysis. They found that a
conservative value for 𝑁𝑒𝑓 𝑓 ,𝑖𝑛𝑗 is given by:

𝑁𝑒𝑓 𝑓 ,𝑖𝑛𝑗 > 4𝑁𝑜𝑏𝑠. (2.19)

Finally, it is possible to re-write the complete hierarchical likelihood defined in Eq. 2.7,
using the results of Eq. 2.11 and Eq. 2.17, derived with the Monte-Carlo integrations.
The logarithm of Eq. 2.7 takes the following form:

𝑙𝑛(L({𝑥}|Λ)) ≃ − 𝑇𝑜𝑏𝑠
𝑁𝑔𝑒𝑛

𝑁𝑑𝑒𝑡
∑
𝑗=1

𝑠𝑗 +
𝑁𝑜𝑏𝑠
∑

𝑖
𝑙𝑛(𝑇𝑜𝑏𝑠

𝑁𝑠,𝑖

𝑁𝑠,𝑖

∑
𝑗=1

𝑤𝑖,𝑗). (2.20)

The final form of the hierarchical likelihood written in Eq. 2.20 is the one evaluated by
ICAROGW, from a set of detected GW data and a set of simulated injections.

2.3.3 Overall architecture of ICAROGw

The Bayesian framework of ICAROGW relies on several “modules”, important for the
joint population and cosmological inference. This section aims to clarify how the
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Figure 2.3: Scheme of the simplified workflow of ICAROGW. The blue boxes are the modules
used for handling the injection sets, the GW posterior samples, and building the hierarchical
likelihood derived in Eq. 2.20. The two yellow boxes on the other hand correspond to the
evaluation of the weights shown in Eq. 2.12 and Eq. 2.19.

different modules work together and what is the role of each one of them. Fig. 2.3
presents a simplified scheme of the different modules that make the core of ICAROGW.
Two distinct modules are responsible for the processing of the GW posterior samples
and the injections, and once given to ICAROGW, they will both be used to construct the
CBC ratemodels. The CBC ratemodels are the central entities of the code, more specif-
ically they are classes (to be understood as python objects) used to build the merger
rates defined in Eq. 2.6. Here we talk about merger rates, plural, due to the different
methodologies available for the population inference. These methodologies are fur-
ther explained in the Sec. 2.4. Each rate model has different intrinsic parameters 𝜃 and
different hyperparameters Λ.

An important point to be aware of in ICAROGW is the frame in which lies the GW
parameters 𝜃, when going through the workflow presented in Fig. 2.3. As a matter
of fact, the GW parameters 𝜃 that are provided as entries to the code lie in the detec-
tor frame, i.e. 𝜃𝑑, but the GW parameters used to compute the weights 𝑤𝑖,𝑗 and 𝑠𝑗 are
in the source frame (𝜃𝑠). The source frame corresponds to the “true” parameters of
the source of GWs, and the detector frame parameters are the parameters obtained
on Earth. These two sets of parameters 𝜃𝑠 and 𝜃𝑑 do not have to be equal, the fact
that the GW travels through the Universe while it being in expansion introduces a
relation between the two, that depends on the cosmology. The conversion from de-
tector frame to the source frame of these quantities is handled by the CBC rate classes
and the hierarchical likelihood so that the weights can be computed. The final step of
the inference, i.e. the computation of the hierarchical likelihood and the Monte-Carlo
process is taken care by a widely used python package for Bayesian inference: BILBY
[107–109].
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2.4 THREE METHODOLOGIES, THREE CBC MERGER RATES
In the context of cosmological and population inference from GW data, ICAROGW is
able to perform the joint estimation of these properties with three methodologies. In
this section, we present in Sec. 2.4.1 the method based on BBH merger solely, called
the Spectral Siren method. The galaxy catalog approach is developed in Sec. 2.4.2 and
finally, Sec. 2.4.3 highlights the electromagnetic counterpart method.

From the detected GW signals alone, we saw in Sec. 1.2 that the primary and sec-
ondary detector frame masses (𝑚1

𝑑, 𝑚2
𝑑) can be estimated, as well as the luminosity

distance of the source 𝑑𝐿. In reality, more parameters related to the source of GWs
are inferred: an estimate of the sky position Ω along with the spin parameters ⃗𝜒 of
both objects are measured. We denote the normalized spin parameters of the binary
system by the vector ⃗𝜒 = (𝜒1, 𝜒2), as introduced in Sec. 1.3. Consequently, the CBC
rate as defined in Eq. 2.6, can be expanded by developing all the dependencies of 𝜃𝑑.
This form of the rate is now a function of the masses, the spins, the sky localization
and the luminosity distance of the source, written as:

𝑑𝑁𝐶𝐵𝐶
𝑑𝑑𝐿𝑑Ω𝑑𝑚𝑑

1𝑑𝑚𝑑
2𝑑 ⃗𝜒1𝑑 ⃗𝜒2𝑑𝑡𝑑

. (2.21)

Note here that the CBC merger rate written in Eq. 2.21 is in the detector frame, and
is consequently independent of the cosmological parameters, and in particular inde-
pendent of the expansion rate of the Universe 𝐻0. The actual dependency on the cos-
mological model appears when this rate in converted into the source frame merger
rate, where some of its parameters such as the masses and the luminosity distance are
changed. For the masses, there exists a simple relation between the detector frame
and the source frame parameters, this relation as seen in Sec. 1.2 is written such that:

𝑚𝑑
1,2 = (1 + 𝑧)𝑚𝑠

1,2, (2.22)

where 𝑧 is the redshift of the source. The luminosity distance of the source is also
related to the redshift, but through the cosmological model and parameters values as
in shown in Sec. 1.4.

Expressing the relation between the detector CBCmerger rate and the source frame
CBC merger rate allows us to put in evidence the cosmological model dependency.
Using a change of variable, the detector frame merger rate can be expressed as:

𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑑𝑑𝑡𝑑

= 𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑠𝑑𝑡𝑠

𝑑𝑡𝑠
𝑑𝑡𝑑

1
𝑑𝑒𝑡𝐽𝑑→𝑠

(2.23)

= 𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑠𝑑𝑡𝑠

1
1 + 𝑧

1
𝑑𝑒𝑡𝐽𝑑→𝑠

, (2.24)

where the differential of the source frame time with respect to the detector frame time
is expressed as 1/(1 + 𝑧). In Eq. 2.24, the change of variable is contained within the
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Jacobian of the transformation. Since only the luminosity distance and the masses are
affected by this change of frame, the Jacobian is equal to:

1
𝑑𝑒𝑡𝐽𝑑→𝑠

= 𝜕𝑑𝐿
𝜕𝑧 (1 + 𝑧)2. (2.25)

The remaining term in Eq. 2.25 is the differential of the luminosity distance w.r.t cos-
mological redshift. This term highly depends on the choice of the cosmological model.
Following Sec. 1.4, the luminosity distance of a source is related to the redshift via the
relation:

𝑑𝐿 = 𝑐(1 + 𝑧)
𝐻0

∫
𝑧

0
𝑑𝑧′

𝐸(𝑧′), (2.26)

where 𝑐 is the speed of light in vacuum, and 𝐸(𝑧) is the dimensionless Hubble func-
tion. Combining Eq. 2.26 and Eq. 2.25, we can write the differential of the luminosity
distance:

𝜕𝑑𝐿
𝜕𝑧 = 𝑑𝐿(𝑧)

1 + 𝑧 + 𝑐(1 + 𝑧)
𝐻0

1
𝐸(𝑧). (2.27)

Given a certain cosmological model, it is then possible to fully express the CBCmerger
rate in the source frame, as a function of the source framemasses, spins, redshift. From
this point, three methodologies of population inference are available, depending on
the type of analysis wanted. For each analysis depicted below, the source frame CBC
merger rate will change its parameterization, adding or suppressing population pa-
rameters depending on the type of data needed/available.

2.4.1 The Spectral sirens case

The first parameterization of the source frame CBCmerger rate is for the Spectral siren
method. This method is the simplest, in terms of types of data involved, since is solely
based on the GW data detected. One of the first realization of Spectral siren analy-
sis was performed in [80, 110], where they managed to jointly infer the cosmologi-
cal parameters and the population properties of the CBC merger rate. For the Spec-
tral Siren analysis, the set of detector frame parameters 𝜃𝑑 governing the CBC rate is
𝜃𝑑 = (𝑚𝑑

1, 𝑚𝑑
2, 𝑑𝐿, ⃗𝜒1, ⃗𝜒2) and in source frame 𝜃𝑠 = (𝑚𝑠

1, 𝑚𝑠
2, 𝑧, ⃗𝜒1, ⃗𝜒2). Note here that the

spin parameters of the compact objects are not affected by the change of frame, in fact
they are equal in both the source and detector frame. The Spectral siren CBC merger
rate is then parameterized as

𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑑𝑑𝑡𝑑

= 𝑑𝑁𝐶𝐵𝐶
𝑑𝑑𝐿𝑑𝑡𝑑𝑑 ⃗𝜒𝑑𝑚𝑑

1𝑑𝑚𝑑
2

(2.28)

= 𝑑𝑁𝐶𝐵𝐶
𝑑𝑧𝑑𝑡𝑠𝑑 ⃗𝜒𝑑𝑚𝑠

1𝑑𝑚𝑠
2

1
1 + 𝑧

1
𝑑𝑒𝑡𝐽𝑑→𝑠

(2.29)

= 𝑑𝑁𝐶𝐵𝐶
𝑑𝑉𝑐𝑑𝑡𝑠𝑑 ⃗𝜒𝑑𝑚𝑠

1𝑑𝑚𝑠
2

𝑑𝑉𝑐
𝑑𝑧

1
1 + 𝑧

1
𝑑𝑒𝑡𝐽𝑑→𝑠

, (2.30)
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where the last term in Eq. 2.30 is the differential of the comoving volumew.r.t redshift.
This term depends on the cosmological model chosen through the following relation:

𝑑𝑉𝑐
𝑑𝑧 = ( 𝑐

𝐻0
)

3
( ∫

𝑧

0
𝑑𝑧′

𝐸(𝑧′))
2
. (2.31)

From Eq. 2.30, it is now possible to explicitly write the dependency of the CBCmerger
rate as a function of all population models describing the masses, the spins, and the
redshift. The final form of the Spectral siren CBC merger rate is:

𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑑𝑑𝑡𝑑

= 𝑅0𝜓(𝑧; Λ)𝑝𝑝𝑜𝑝(𝑚𝑠
1, 𝑚𝑠

2|Λ)𝑝𝑝𝑜𝑝( ⃗𝜒|Λ)𝑑𝑉𝑐
𝑑𝑧

1
1 + 𝑧

1
𝑑𝑒𝑡𝐽𝑑→𝑠

. (2.32)

In Eq. 2.32, 𝑅0 is the local CBC merger rate density per time per comoving volume,
the unit commonly used for this parameter is [𝐺𝑝𝑐−3𝑦𝑟−1] (local here means at 𝑧 = 0).
𝜓(𝑧; Λ) is a phenomenological function that models the evolution of the rate in red-
shift, based on the shape of the star formation rate. 𝑝𝑝𝑜𝑝(𝑚𝑠

1, 𝑚𝑠
2|Λ) is the probability

density function (PDF) of the phenomenological model used for the source frame
masses, it is the model of the joint distribution of BBH primary and secondary masses.
𝑝𝑝𝑜𝑝( ⃗𝜒|Λ) is also a PDF, that governs the spin distribution, for a given spin model.
Within ICAROGW, there exist several mass, spin and redshift models, that can be com-
bined to construct the Spectral siren CBCmerger rate and used for population analysis.
The combined set of parameters that governs the shape of the distributions for 𝜃𝑠 are
the one inferred during the Spectral siren analysis, jointly with the parameters of the
cosmological model. In Eq. 2.32, we assume that the merger rate of CBCs can be fac-
torized into the product of three independent terms, describing the mass, rate, and
spin of the CBCs. However, more complex parameterization can be constructed, de-
pending on the population models used for these parameters. For instance, in Sec. 4,
we investigate models that account for correlations between BH spin magnitudes and
masses. Additionally, recent studies have suggested a potential redshift evolution in
the mass spectrum of BBHs, which could be modeled in Eq. 2.32 through a joint dis-
tribution between the merger rate and mass terms.

2.4.2 The galaxy catalog case

The galaxy catalog method can be seen as an extension of the spectral siren analy-
sis, since the parameterization of the CBC merger rate is constructed similarly. In the
galaxy catalog approach, extra information on the redshift of the source is added to
the analysis. This information, on the potential redshift of the source, is statistically
estimated from the support of external galaxy catalogs [70, 81, 111, 112]. Likewise,
the galaxy catalog approach aims to infer the parameters of the populations models
and cosmological model used to construct the source frame CBC merger rate. For the
galaxy catalog method, the detector frame set of parameter 𝜃𝑑 and source frame 𝜃𝑠
are composed of the masses, the luminosity distance of the source (or the redshift),
the spins, and an extra parameter Ω denoting the sky localization of the GW event
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(in squared radian). Hence, the new sets of parameters are 𝜃𝑑 = (𝑚𝑑
1, 𝑚𝑑

2, 𝑑𝐿, ⃗𝜒, Ω)
and 𝜃𝑠 = (𝑚𝑠

1, 𝑚𝑠
2, 𝑧, ⃗𝜒, Ω). Since this method for GW cosmology and population infer-

ence is not the main subject of this manuscript, fewer details about the derivation of
this specific CBC rate will be given here, instead we refer the reader to [78, 79] for a
complete description of the galaxy catalog approach.

Two major assumptions are made in order to derive the new CBC merger rate, the
first one is that all CBCmergers happen inside galaxies, and the second one is that the
number of these mergers per galaxy is proportional to the absolute magnitude 𝑀 and
redshift 𝑧 of the galaxy. The absolute magnitude of a galaxy can be understood as its
luminosity. Instead of the comoving volume, the CBCmerger rate is parameterized in
terms of the merger per galaxy, such that:

𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑠𝑑𝑡𝑠𝑑𝑧𝑑𝑚⃗𝑠𝑑Ω = ∫ 𝑑𝑀 𝑑𝑁𝐶𝐵𝐶

𝑑𝜃𝑠𝑑𝑡𝑠𝑑𝑧𝑑𝑚⃗𝑠𝑑Ω𝑑𝑀 (2.33)

= ∫ 𝑑𝑀 𝑑𝑁𝐶𝐵𝐶
𝑑𝑁𝑔𝑎𝑙𝑑𝜃𝑠𝑑𝑚⃗𝑠𝑑𝑡𝑠

𝑑𝑁𝑔𝑎𝑙
𝑑𝑧𝑑Ω𝑑𝑀, (2.34)

where 𝑁𝑔𝑎𝑙 is the number of CBCmergers per galaxy. From Eq. 2.34, it is assumed that
𝑁𝑔𝑎𝑙 is only a function of the redshift, the absolute magnitude and the sky localization.
The first part of Eq. 2.34 is very similar to the Spectral siren CBC merger rate, in fact it
can be expressed correspondingly such that:

𝑑𝑁𝐶𝐵𝐶
𝑑𝑁𝑔𝑎𝑙𝑑𝜃𝑠𝑑𝑚⃗𝑠𝑑𝑡𝑠

= 𝑅∗
𝑔𝑎𝑙,0Ψ(𝑧, 𝑀; Λ)𝑝𝑝𝑜𝑝(𝑚𝑠

1, 𝑚𝑠
2|𝑧, 𝑀; Λ)𝑝𝑝𝑜𝑝(𝜃𝑠|𝑧, 𝑀; Λ), (2.35)

where similar terms are at play: 𝑅∗
𝑔𝑎𝑙,0 is the local CBC merger rate density per galaxy

per year, Ψ(𝑧, 𝑀; Λ) is the function parameterizing the evolution of the number of
CBC mergers per galaxy and the last terms are the population models for the masses
and potential other population parameters like the spins. For more details on the
parameterization of the evolution function, we refer the reader to [78, 79].

For the second part of Eq. 2.34, namely the number density of galaxies, we have
to take into account the fact that the current galaxy catalogs do not contain all the
galaxies in the Universe, hence galaxy density has to be the sum of two terms: the
galaxy density from the catalog and the galaxy densitywhich is not in the catalog. This
second term is usually called the “completeness correction”. Therefore, the galaxy
density rate of Eq. 2.34 is given by

𝑑𝑁𝑔𝑎𝑙
𝑑𝑧𝑑Ω𝑑𝑀 =

𝑑𝑁𝑔𝑎𝑙,𝑐𝑎𝑡
𝑑𝑧𝑑Ω𝑑𝑀 +

𝑑𝑁𝑔𝑎𝑙,𝑜𝑢𝑡
𝑑𝑧𝑑Ω𝑑𝑀, (2.36)

where 𝑁𝑔𝑎𝑙,𝑐𝑎𝑡 and 𝑁𝑔𝑎𝑙,𝑜𝑢𝑡 are respectively the number of galaxy inside the catalog
and the number of galaxy outside the catalog. For a detailed explanation of how the
completeness corrections are computed, see [79].
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Finally, by plugging Eq. 2.35 and Eq. 2.36 into Eq. 2.34, the source frameCBCmerger
rate inside ICAROGW is given by:

𝑑𝑁𝐶𝐵𝐶
𝑑𝑧𝑑𝑡𝑠𝑑 ⃗𝜒𝑑𝑚𝑠

1𝑑𝑚𝑠
2𝑑Ω = ∫ 𝑑𝑀[𝑅∗

𝑔𝑎𝑙,0Ψ(𝑧, 𝑀; Λ)𝑝𝑝𝑜𝑝(𝑚𝑠
1, 𝑚𝑠

2|𝑧, 𝑀; Λ)𝑝𝑝𝑜𝑝(𝜃𝑠|𝑧, 𝑀; Λ) ×

× (
𝑑𝑁𝑔𝑎𝑙,𝑐𝑎𝑡
𝑑𝑧𝑑Ω𝑑𝑀 +

𝑑𝑁𝑔𝑎𝑙,𝑜𝑢𝑡
𝑑𝑧𝑑Ω𝑑𝑀)] (2.37)

The main limitation of this method is the completeness of the catalogs, especially at
high redshift. For distant GW events, with poor sky localizations, it can become very
difficult to assign any galaxy as potential host, and this brings a poor estimation of the
redshift. In this situation, where the galaxy catalog does not give enough information,
the population assumptions (Spectral siren method) kicks in and the results of the
inference are driven by the previous method.

2.4.3 The electromagnetic counterpart case

Finally, the last method, and currently themost precise one to performGW cosmology
is the electromagnetic counterpart (E.M.C.) analysis. Just like with galaxy catalogs,
the CBC merger rate takes extra information on the sky position of the source, but
this time from the associated E.M.C emitted during the merger of the compact objects.
Just like for the galaxy catalog approach, the information of the redshift of the GW
source is given by the redshift of its host, through its sky position. As emphasized in
Sec. 1.5, this way of computing the redshift of the source is highly accurate since the
host galaxy redshift is found with great precision, making this method competitive
for GW cosmology.

The posterior samples obtained from the GW detection give estimates of the sky lo-
calization, themasses and the luminosity distance of the source, while the E.M.C gives
an independent (w.r.t the GW data) and more accurate sky localization and redshift
estimates of the same source. Assuming that both measurements are independent, a
new likelihood described by the GW and E.M.C data has to be constructed such as
L𝐺𝑊+𝐸𝑀𝐶(𝑥𝑖|𝑧, Ω, 𝑚𝑠

1, 𝑚𝑠
2, ⃗𝜒). And since we assume that the two measurements are

independent, the likelihood can be decomposed as

L𝐺𝑊+𝐸𝑀𝐶(𝑥𝑖|𝑧, Ω, 𝑚𝑠
1, 𝑚𝑠

2, ⃗𝜒) ∝ L𝐸𝑀𝐶(𝑥𝑖|𝑧, Ω)L𝐺𝑊(𝑥𝑖|𝑧, Ω, 𝑚⃗𝑠, ⃗𝜒). (2.38)

The E.M.C and the GW data do not carry the same amount of information about the
GW source, but they both help for the estimation of the sky localization Ω and the
redshift 𝑧. Consequently, the hierarchical likelihood used to perform the cosmologi-
cal and population inference shown in Eq. 2.8 changes, such that the integral at the
numerator becomes

𝐼 = ∫L𝐸𝑀𝐶(𝑥𝑖|𝑧, Ω)L𝐺𝑊(𝑥𝑖|𝑧, Ω, 𝑚⃗𝑠, ⃗𝜒) ×

× 𝑑𝑁𝐶𝐵𝐶
𝑑𝑧𝑑Ω𝑑𝑚⃗𝑠𝑑 ⃗𝜒𝑑𝑡𝑠

1
1 + 𝑧𝑑 ⃗𝜒𝑑𝑚⃗𝑠𝑑𝑧𝑑Ω. (2.39)
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Moreover, the integral at denominator of Eq. 2.8 has to change too. This term, ac-
counting for the selection bias within the ICAROGW analysis, has to be corrected with
the new selection effects related to the E.M.C. Following [79, 93], it is assumed that
the probability of detection for an E.M.C is always one, meaning that if there is an
associated emission of light to the GW production, and that the GWs are detected, the
E.M.C will always be detected too. That hypothesis permits us to avoid using a new
parameterization that could model the detection probability of the E.M.C. Therefore,
the denominator of Eq. 2.8, even when using the E.M.C counterpart method, only con-
sider the GW detection for its selection effects. That way of handling the selection
bias related to the E.M.C. stays valid as long as the GW detector sensitivity range is
strictly lower than the one of E.M. telescopes and observatories. This assumption will
probably have to be updated in the near future with the increasing sensitivity of GW
detectors, as a wrong calculation of the selection effects can result in a biased value of
the population parameters and also the Hubble constant [113].

2.5 THE pHENOMENOLOGICAL MASS MODELS FOR CBCS
In this section, we dive in further details into the phenomenological massmodels used
to describe the population of BBHs in terms of source frame masses. As explained in
Sec. 1.5, the mass models play a key role in the Bayesian inference with Spectral Siren,
or galaxy catalogs, they are the cornerstone to the estimation of the redshift of the
GW sources. This section aims to present the different source mass models currently
used in ICAROGW and more generally in recent GW cosmology analysis. Currently,
Dark Siren based methods that use parametric mass models incorporate simple and
flexible parameterizations to assess the distribution of source frame masses of CBCs,
as in [4]. In the following subsections, the main mass models used for population
inference are discussed, namely the BROKEN POWER LAW (BPL), the POWERLAW PLUS PEAK
(PLP) and the MULTIPEAK (MLTP). First, the origin of each model is presented, as well
as some astrophysical motivations to such models. Then we provide details about the
probability density function for each one of them.

2.5.1 The Broken Powerlaw

The BROKEN POWER LAW (BPL), introduced in [114], is one of the simplest available
model inside ICAROGW, and offers a basic approach to understanding various phenom-
ena within astrophysical contexts. The left plot in Fig. 2.4 displays a schematic view
of the typical PDF obtained with the BPL mass model. At its core, the BPL model
comprises a power law, characterized by a smooth tapering at the lower mass edge,
coupledwith a distinctive break occurring at a critical mass point, denoted 𝑏. The high
mass smoothing is introduced to incorporate the effect of stellar progenitor metallic-
ity [114], which plays a crucial role in shaping the dynamics of black hole formation,
hence the mass distribution of black holes in the Universe. By introducing a smooth-
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Figure 2.4: Schematic view of the main three phenomenological source mass models incorpo-
rated in ICAROGW: the broken power law (left), the powerlaw plus peak (middle) and the multi
peak (right). The set of parameter chosen to construct these distributions are not displayed,
these schemes only highlight the mass structures of each model.

ing effect, the model should capture the interplay between metallicity and black hole
production.

The break in the power law serves to mirror the left boundary of the PISN gap
[115]. This break reflects the different production rate of certain BBHs at peculiar
source frame masses. Furthermore, the introduction of a second power law, after the
breaking point, aims tomimic the existence of a secondary population of BBHswithin
the pair-instability supernovae gap, possibly arising from dynamically formed BBHs.
This dual power law model presents the compelling aspect of being motivated by as-
trophysical processes that rule the BBH formation and evolution, in different astro-
physical environments.

As explained above, the two power laws are attached at a breaking point 𝑏 defined
as

𝑏 = 𝑚𝑚𝑖𝑛 + (𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛)𝑓 , (2.40)
where 𝑓 is a scalar that belongs to [0, 1]. When 𝑓 = 0, the breaking point 𝑏 is equal to
the minimum mass, and respectively equal to the maximum mass when 𝑓 = 1. The
PDF for the primary source frame mass 𝑚𝑠

1 is defined as:

𝜋(𝑚𝑠
1|𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥, 𝛼) = 1

𝑁 [P(𝑚𝑠
1|𝑚𝑚𝑖𝑛, 𝑏, −𝛼1)+P(𝑏|𝑚𝑚𝑖𝑛, 𝑏, −𝛼1)

P(𝑏|𝑏, 𝑚𝑚𝑎𝑥, −𝛼2)P(𝑚𝑠
1|𝑚𝑚𝑎𝑥, 𝑏, −𝛼2)],

(2.41)
where P is a truncated power law constructed as

P(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛼) =
⎧{
⎨{⎩

1
𝑁𝑃𝐿

𝑥𝛼, (𝑥𝑚𝑖𝑛 ⩽ 𝑥 ⩽ 𝑥𝑚𝑎𝑥) ,
0, otherwise,

(2.42)

where 𝑁𝑃𝐿 is the normalization factor defined as :

𝑁𝑃𝐿 =
⎧{
⎨{⎩

𝑙𝑛(𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

), (𝑖𝑓 𝛼 = −1) ,
1

𝛼+1(𝑥𝛼+1𝑚𝑎𝑥 − 𝑥𝛼+1
𝑚𝑖𝑛 ), otherwise.

(2.43)
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The normalization factor of the BROKEN POWER LAW 𝑁 is defined by

𝑁 = 1 + P(𝑏|𝑚𝑚𝑖𝑛, 𝑏, −𝛼1)
P(𝑏|𝑏, 𝑚𝑚𝑎𝑥, −𝛼2). (2.44)

The secondary mass distribution is parameterized as a function of the primary mass.
It ensures that the secondary mass is smaller than 𝑚𝑠

1. The secondary mass is then
given by

𝜋(𝑚𝑠
2|𝑚𝑚𝑖𝑛, 𝑚𝑠

1, 𝛽) = P(𝑚𝑠
2|𝑚𝑚𝑖𝑛, 𝑚𝑠

1, 𝛽). (2.45)
A more detailed explanation of each of the parameter used in the PLP mass model is
given in App. A.1.1.

2.5.2 The Powerlaw plus peak

The POWER LAW PLUS PEAK (PLP) mass model, initially introduced in [116], has gained
popularity in various population and cosmological analysis related to GWs. Notably,
it has emerged as the preferred sourcemassmodel according to the LVKCollaboration,
as indicated by our recentwork [4], characterizing the entire BBHpopulation based on
theGWTC-3 catalog [27]. Thismodel integrates a power law componentwith a similar
low mass smoothing as the BPL model, while additionally incorporating a Gaussian
peak, as depicted on themiddle plot in Fig. 2.4. The inclusion of this peak is motivated
by the potential accumulation of BBHs just preceding the PISN gap [116]. What sets
the PLPmassmodel apart is its enhanced flexibility: both the position (mean) and the
width (standard deviation) of the Gaussian peak can vary independently of the rest of
the model. This feature allows the PLP to capture high mass events or sub-structures
in the mass spectrum, without altering the lower mass range of the spectrum. The
parameter 𝜆𝑝𝑒𝑎𝑘 governs the fraction of GW events that fall within the Gaussian peak.

The probability density functions that parameterize the distributions of 𝑚𝑠
1 and 𝑚𝑠

2
are given by

𝜋(𝑚𝑠
1|𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥, 𝛼) = (1 − 𝜆𝑝𝑒𝑎𝑘)P(𝑚𝑠

1|𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥, −𝛼) +
+ 𝜆𝑝𝑒𝑎𝑘G(𝑚𝑠

1|𝜇𝑔, 𝜎𝑔), (2.46)

with 0 ≤ 𝜆𝑝𝑒𝑎𝑘 ≤ 1, and

𝜋(𝑚𝑠
2|𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥, 𝛽) = P(𝑚𝑠

2|𝑚𝑚𝑖𝑛, 𝛽, 𝑚𝑠
1). (2.47)

As for the BPLmassmodel, the secondarymass is also definedwith a power law condi-
tioned on the primary mass. In Eq. 2.46, the Gaussian peak G(𝑚𝑠

1|𝜇𝑔, 𝜎𝑔) is expressed
as

G[𝑎,𝑏](𝑥|𝜇𝑔, 𝜎𝑔) =
⎧{{
⎨{{⎩

1
𝑁𝐺

1
𝜎𝑔√2𝜋

exp [− (𝑥−𝜇𝑔)2

2𝜎2𝑔
], 𝑎 ⩽ 𝑥 ⩽ 𝑏,

0, otherwise,
(2.48)
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where 𝑁𝐺 is also the normalization factor given by

𝑁𝐺 = ∫
𝑎

𝑏
1

𝜎𝑔√2𝜋
𝑒
− (𝑥−𝜇𝑔)2

2𝜎2𝑔 𝑑𝑥. (2.49)

A more detailed explanation of each of the parameter used in the PLP mass model is
give in App. A.1.2

2.5.3 The Multi peak

The Multi peak (MLTP) mass model, is an extension of the PLP model, used for the
first time in [114]. It incorporates the same low mass smoothing, and is also built
around a power law. The particularity of this mass model is the second Gaussian peak
available for higher masses. The MLTPmass model is the combination of a power law
plus two Gaussian peaks, as shown in the right plot of Fig. 2.4. The motivations for
suchmodel are BBHs systems that could arise from second-generationmergers, called
hierarchical mergers. These binary systems, formed in dynamical environments are
born from already merged black holes, hence could reach higher masses compared
to first generation BBHs. The MLTP mass model is then a more flexible than the PLP
model, but can also reduce into a PLP distribution if there is no support found in the
data for a second Gaussian peak.

The parameterization of the MLTP mass model is the direct extension to the PLP
parameterization, where the primary mass is defined as

𝜋(𝑚𝑠
1|𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥, 𝛼) = (1 − 𝜆)P(𝑚𝑠

1|𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥, −𝛼) +
+ 𝜆𝜆𝑙𝑜𝑤G(𝑚𝑠

1|𝜇𝑙𝑜𝑤𝑔 , 𝜎 𝑙𝑜𝑤𝑔 ) +
+ 𝜆(1 − 𝜆𝑙𝑜𝑤)G(𝑚𝑠

1|𝜇ℎ𝑖𝑔ℎ
𝑔 , 𝜎ℎ𝑖𝑔ℎ

𝑔 ), (2.50)

and the secondary mass 𝑚𝑠
2 is one more time defined as a conditional power law on

the primary mass

𝜋(𝑚𝑠
2|𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥, 𝛽) = P(𝑚𝑠

2|𝑚𝑚𝑖𝑛, 𝛽, 𝑚𝑠
1). (2.51)

A more detailed explanation of each of the parameter used in the PLP mass model is
give in App. A.1.3

2.6 THE ADDIT ION OF CBC BINARy BLACk HOLE SpINS
In this section, we bring the attention on the addition on two phenomenological spin
models within the cosmological and population inference of ICAROGW, namely the DE-
FAULT spin model (see Sec. 2.6.2) and the GAUSSIAN spin model (see Sec. 2.6.3) as intro-
duced in [117, 118] and used in [119]. This addition to the code allowed us to produce
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the first ever results of the joint inference between theHubble constant 𝐻0 and the spin
parameters of the GW sources.

Prior to this work, the spin parameters of the BBHs were not used at all in GW cos-
mology analysis and only the source frame masses, the redshift and the cosmological
parameters were of interest. The reason being that the Spectral Siren analysis is based
on the degeneracy between the source frame masses and the redshift as explained in
Sec. 1.5, making these parameters crucial for the joint inference. The addition of spins
inside the framework of ICAROGW could allow us to look for correlations between the
spin parameters and the cosmological ones. In particular, if the spins of CBC corre-
late with themass of the BBHs, or themerger rate, this could enhance the constraining
power of the GW based methods looking at measuring the Hubble constant.

2.6.1 The spin of binary systems

Referring to Fig. 2.5, belowwe discuss the main spin parameters at play when dealing
with binary system of compact objects for GW analysis. By definition, the 𝑧 axis (nor-
mal vector to the plan of the binary) is aligned with the orbital angular momentum 𝐿⃗.
The spin properties of a binary system of compact objects can be completely charac-
terized by 6 degrees of freedom (3 for each object): two normalized spin magnitudes
(𝜒1, 𝜒2), two tilt angles (𝜃1, 𝜃2) and two azimuthal angles (𝜙1, 𝜙2). The dimensionless
spin magnitude 𝜒1,2 encode how fast each object are spinning, and they are defined
from the normalized Cartesian components of the spin vectors in Fig. 2.5 such that:

𝜒1 = √𝑠2
1,𝑥 + 𝑠2

1,𝑦 + 𝑠2
1,𝑧 , (2.52)

𝜒2 = √𝑠2
2,𝑥 + 𝑠2

2,𝑦 + 𝑠2
2,𝑧. (2.53)

The tilt angles 𝜃1 and 𝜃2, are given by the angle between 𝐿⃗ and the spin magnitude
vectors projected along the 𝑧 axis. Often, we refer to them as the cosine of the tilt
angle, since they are defined as

cos 𝜃1 = 𝑠1,𝑧
𝜒1

, (2.54)

cos 𝜃2 = 𝑠2,𝑧
𝜒2

, (2.55)

where 𝑠1,𝑧 and 𝑠2,𝑧 are the components along the 𝑧 axis of the spin magnitudes vectors.
The azimuthal angles 𝜙1,2 are not depicted on Fig. 2.5, we will assume that these two
angles have a uniform distribution.

Finally, we define the effective spin parameter 𝜒𝑒𝑓 𝑓 and the precession spin param-
eter 𝜒𝑝. Using only these two parameters, four of the six spin degrees of freedom are
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Figure 2.5: Scheme of a binary system, with spin components. The black vector is the orbital
angularmomentum 𝐿⃗, the blue vector is the total angularmomentum ⃗𝐽, the red vectors are the
spin vectors ⃗𝑆1 and ⃗𝑆2, the green arrow the precession spin parameter 𝜒𝑝 and the purple arrow
is the effective spin parameter 𝜒𝑒𝑓 𝑓 . The two angles 𝜃1 and 𝜃2 are the tilt angles of the system,
defined by the angle between the orbital angular momentum and the spin magnitudes of
each object.

characterized, because both 𝜒𝑒𝑓 𝑓 and 𝜒𝑝 are combinations of the original spin parame-
ters introduced above. Following Sec. 1.3, the two parameters are defined by:

𝜒𝑒𝑓 𝑓 = 𝜒1 cos 𝜃1 + 𝑞𝜒2 cos 𝜃2
1 + 𝑞 = 𝑠1,𝑧 + 𝑞𝑠2,𝑧

1 + 𝑞 , (2.56)

𝜒𝑝 = 𝑚𝑎𝑥 [𝜒1 sin 𝜃1; (4𝑞 + 3
3𝑞 + 4) 𝑞𝜒2 sin 𝜃2] . (2.57)

In Eq. 2.57, the letter 𝑞 refers to the mass ratio of the binary and is taken equal to
𝑚2/𝑚1, where 𝑚1 is the primary mass assumed to be greater than 𝑚2. From their
expressions in Eq. 2.57, the effective spin parameter 𝜒𝑒𝑓 𝑓 is bounded between [−1, 1]
and the precession spin parameter between [0, 1].

The origin of these two parameters comes from the approximate analytical methods
used to describe mathematically the inspiral phase of a CBC merger, i.e. PN formal-
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ism [120]. For the effective spin, it first appears at the 2.5 PN order in the equation
of 𝐿̇, which indicates that the phase of the GW waveform is influenced by the com-
bined effect of the BHs spins, specifically their average spin weighted by the mass and
projected onto the direction of the orbital angular momentum. These parameters are
referred to as the effective and precession spins discussed above. For a random config-
uration of the spin parameters (𝜒1,2, 𝜃1,2, 𝜙1,2), the dominant signature of the spin on
the waveform is hence associated with the effective spin and the precession spin. But
since these two parameters are combinations of the individual spin parameters, they
do not constraint the individual objects.

For instance, if we were to observe |𝜒𝑒𝑓 𝑓 | << 1, this scenario could arise from two
distinct configurations of the spins: both black holes beingminimally spinning (𝜒1 <<
1 and 𝜒2 << 1) but aligned or anti-aligned with the direction of the orbital angular
momentum, or this could result froma binary systemwith significantly spinning black
holes, but both spins being inside the orbital plane of the system. For values close to
±1, the situation is different, it means that the black holes are highly spinning and
aligned with 𝐿⃗ if 𝜒𝑒𝑓 𝑓 = 1 or anti-aligned if 𝜒𝑒𝑓 𝑓 = −1. The precession spin 𝜒𝑝, on
the contrary, tells how much spin is contained inside the orbital plane, causing the
binary system to precess. Values close to 1 mean that the system is highly precessing
and respectively slowly precessing for values reaching 0. Compared to the effective
spin, the effect on the GW waveform of the precession spin is sub-dominant, since it
appears at higher PN order [121].

2.6.2 The DEFAuLT spin model

The DEFAULT spin model was originally used for population only studies in [119], but
was proposed two years prior by [117, 118]. This model is based on the original spin
parameters, namely the two dimensionless spin magnitudes 𝜒1,2 and the two cosine
of the tilt angle 𝑐𝑜𝑠𝜃1,2. The two azimuthal angles are assumed flat, and are not con-
sidered in the DEFAULT spin model. In this model, the prior of the individual spin
magnitudes of both black holes are given by:

𝜋(𝜒1) = 𝐵(𝜒1|𝛼, 𝛽) , (2.58)
𝜋(𝜒2) = 𝐵(𝜒2|𝛼, 𝛽), (2.59)

where 𝐵 refers to the beta distribution [122]. The two merging objects are assumed
to be described by the same two parameters 𝛼 and 𝛽. There exists a relation linking
the parameters of the beta distribution to the mean and standard deviation of 𝜋(𝜒1,2),
this second parameterization of the DEFAULT spin model is expressed as:

𝛼 = ⎛⎜
⎝

1 − 𝜇𝜒
𝜎2𝜒

− 1
𝜇𝜒

⎞⎟
⎠

𝜇2𝜒 ≥ 1 , (2.60)

𝛽 = 𝛼 ( 1
𝜇𝜒

− 1) ≥ 1. (2.61)
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The condition (𝛼, 𝛽) ≥ 1 is imposed by the model, this suppresses any non-singular
asymptotic behavior around 0 or 1 for the beta distribution, behaviors that would be
nonphysical. The choice of the beta distribution tomodel the spinmagnitude is linked
to its flexibility, the beta distribution can takemultiple different shapes and is bounded
between 0 and 1, with only two parameters.

On the other hand, the cosine of the tilt angles 𝑐𝑜𝑠𝜃1,2 are drawn from a mixture
model between a Gaussian centered around 1 and truncated on [−1, 1], and a uniform
distribution over [−1, 1], following [31]:

𝜋(cos 𝜃1|𝜁 , 𝜎𝑡) = 𝜉G[−1,1](cos 𝜃1|1, 𝜎𝑡) + 1 − 𝜉
2 , (2.62)

𝜋(cos 𝜃2|𝜁 , 𝜎𝑡) = 𝜉G[−1,1](cos 𝜃2|1, 𝜎𝑡) + 1 − 𝜉
2 . (2.63)

In Eq. 2.63, G[−1,1] is the truncated Gaussian. The two parameters governing the
shape of the distribution for the tilt angles are 𝜎𝑡 and 𝜉 . 𝜎𝑡 is the standard deviation of
the truncated Gaussian and 𝜉 is the mixing fraction between the Gaussian and the uni-
form distribution. The use of a mixing parameter for the tilt angle between the orbital
angular momentum and the spin magnitude directions allows to monitor the propor-
tion of binary system having isotropically oriented spins (if the uniform distribution
is dominant) against aligned spins (if 𝑐𝑜𝑠𝜃1,2 is centered around 1). This proportion
can have a huge impact on our understanding of the formation channels of BBH sys-
tems, and this matter will be further explained in Sec. 4. From Eq. 2.59 and Eq. 2.63,
the total population prior distribution of the Default spin model is written as:

𝜋(𝜒1, 𝜒2, cos 𝜃1, cos 𝜃2) = 𝐵𝑒𝑡𝑎(𝜒1|𝛼, 𝛽)𝜋(cos 𝜃1, cos 𝜃2|𝜉 , 𝜎𝑡) ×
𝐵𝑒𝑡𝑎(𝜒2|𝛼, 𝛽). (2.64)

The overall distribution for the spin parameters of the DEFAULT spin model, defined in
Eq. 2.64 is truly the spin population 𝑝𝑝𝑜𝑝(𝜒|Λ) of the CBC merger rate, seen in Sec. 2.5.
Fig. 2.6 presents a corner plot of the marginal distribution for each parameter drawn
from a generic population using ICAROGW.

2.6.3 The GAuSSIAN spin model

The second spin model implemented inside ICAROGW is the so-called GAUSSIAN spin
model. This parameterization aims to measure the joint distribution of the effective
and precession spin parameters 𝜒𝑒𝑓 𝑓 and 𝜒𝑝. This model was first introduced in [123],
and then re-used by the LIGO-Virgo-KAGRA Collaboration as one of the main spin
model for population study of CBC mergers. As mentioned in Sec. 2.6.1, the effective
and precession are the best measured spin parameters. They result from combined
spin effects, such as the overall alignment of each spins with the orbital angular mo-
mentum or the amount of spin contained in the orbital plan of the binary. The model
parameterizes the joint distribution of (𝜒𝑒𝑓 𝑓 , 𝜒𝑝) with a two-dimensional multivariate



2.6 THE ADDIT ION OF CBC BINARy BLACk HOLE SpINS 61

 

0.2
0.4
0.6
0.8

χ
2
 

0.5
0.0
0.5

co
s
θ 1

 

0.2 0.4 0.6 0.8
χ1 

0.5
0.0
0.5

co
s
θ 2

 

0.2 0.4 0.6 0.8
χ2 

0.5 0.0 0.5

cos θ1 
0.5 0.0 0.5

cos θ2 

Figure 2.6: Corner plot of the joint and marginal distributions of 𝜒1,2 and 𝜃1,2, using the DE-
FAULT spin model of ICAROGW. These distributions have been drawn from the following set of
parameters: 𝛼 = 3, 𝛽 = 5, 𝜎𝑡 = 0.3 and 𝜉 = 0.5. The colored contours correspond to the 90%
confidence level (C.L.).

truncated Gaussian with five parameters: 𝜇𝜒𝑒𝑓 𝑓 , 𝜎𝜒𝑒𝑓 𝑓 , 𝜇𝜒𝑝 , 𝜎𝜒𝑝 , 𝜌. The covariance of
that Gaussian is defined as:

𝑐𝑜𝑣[𝜒𝑒𝑓 𝑓 ,𝜒𝑝](𝜎𝜒𝑒𝑓 𝑓 , 𝜎𝜒𝑝 , 𝜌) = 𝜌𝜎𝜒𝑒𝑓 𝑓 𝜎𝜒𝑝 . (2.65)

The multivariate Gaussian distribution, truncated on [−1, 1] for the 𝜒𝑒𝑓 𝑓 dimension
and on [0, 1] for the 𝜒𝑝 dimension, can be written such as:

𝜋(𝜒𝑒𝑓 𝑓 , 𝜒𝑝|𝜇𝜒𝑒𝑓 𝑓 , 𝜎𝜒𝑒𝑓 𝑓 , 𝜇𝜒𝑝 , 𝜎𝜒𝑝 , 𝜌) = G2𝐷
[−1,1],[0,1](𝜒𝑒𝑓 𝑓 , 𝜒𝑝|𝜇, Σ), (2.66)
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where 𝜇 and Σ are the mean and the covariance matrix of the joint distribution ex-
pressed as

𝜇 = (𝜇𝜒𝑒𝑓 𝑓 , 𝜇𝜒𝑝) , (2.67)

Σ = ⎛⎜⎜
⎝

𝜎2
𝑒𝑓 𝑓 𝑐𝑜𝑣[𝜒𝑒𝑓 𝑓 ,𝜒𝑝]

𝑐𝑜𝑣[𝜒𝑒𝑓 𝑓 ,𝜒𝑝] 𝜎2𝑝

⎞⎟⎟
⎠

. (2.68)

Although, the implemented distribution inside ICAROGW is slightly different from
Eq. 2.66, since the previous parameterization of the multidimensional distribution is
computationally demanding. We then choose the following equivalent factorization
for the multidimensional Gaussian of the GAUSSIAN spin model:

𝜋(𝜒𝑒𝑓 𝑓 , 𝜒𝑝 | 𝜇𝜒𝑒𝑓 𝑓 , 𝜎𝜒𝑒𝑓 𝑓 , 𝜇𝜒𝑝 , 𝜎𝜒𝑝 , 𝜌) =
G[−1,1](𝜒𝑒𝑓 𝑓 |𝜇𝜒𝑒𝑓 𝑓 , 𝜎𝜒𝑒𝑓 𝑓 )G[0,1](𝜒𝑝|𝜇∗, 𝜎∗), (2.69)

where the two parameters 𝜇∗ and 𝜎∗ are defined as

𝜇∗ = 𝜇𝜒𝑝 +
𝑐𝑜𝑣[𝜒𝑒𝑓 𝑓 ,𝜒𝑝]

𝜎2𝜒𝑒𝑓 𝑓

(𝜒𝑒𝑓 𝑓 − 𝜇𝜒𝑒𝑓 𝑓 ) , (2.70)

𝜎∗ =
𝜎𝜒𝑝𝑐𝑜𝑣[𝜒𝑒𝑓 𝑓 ,𝜒𝑝]

𝜎2𝜒𝑒𝑓 𝑓

. (2.71)

Fig. 2.7 shows the joint 2D distribution of the Gaussian spin model, for a generic set
of parameters. The central plot depicts the joint distribution, while the two densities
are the marginalized probability density functions for each parameter.

2.6.4 Spin for gravitational wave population and cosmology

The implementation of the DEFAULT and GAUSSIAN spin models within ICAROGW marks
an advancement in GW-based cosmology analysis. This addition may enable an im-
proved inference of the cosmological parameters of our Universe and the mass spec-
trum of BBHs. Both the Spectral Siren method and the galaxy catalog method can uti-
lize these new population models, as seen in Sec. 2.5, enhancing the flexibility of the
analysis. By integrating spin parameters into ICAROGW cosmological and population
inference, we can now explore potential correlations between various astrophysical
properties, such as the mass and spin of BBHs, cosmology and merger rate. Neglect-
ing such correlations could lead to biased estimations of parameters like the Hubble
constant 𝐻0. Therefore, incorporating spin properties may be imperative for achiev-
ing more robust estimations of the cosmological parameters. Note that the use of spin
population models for the analysis is not mandatory, one can perform a full popula-
tion inference with only the mass and merger rate population models.

Furthermore, the inclusion of spin parameters in the inference framework could
serve to constrain cosmology further, and enhance the population inference. Notably,
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Figure 2.7: Corner plot of the joint and marginal distributions of 𝜒𝑒𝑓 𝑓 and 𝜒𝑝, using the GAUS-
SIAN spin model of ICAROGW. This distribution has been drawn from the following set of
parameters: 𝜇𝜒𝑒𝑓 𝑓 = 0.06, 𝜎𝜒𝑒𝑓 𝑓 = 0.12, 𝜇𝜒𝑝 = 0.5,𝜎𝜒𝑝 = 0.05 and 𝜌 = 0.5. The colored contours
correspond to the 90% confidence level (C.L.).

non-uniform distribution of BBH spins across the mass spectrummay help in estimat-
ing the mass model and thereby enhance constraints on the Hubble constant. Addi-
tionally, adding spin population models within the Bayesian inference of ICAROGW is
crucial in understanding the formation channels of BBHs. Spins serve as significant
signatures of the formation channels, influenced by factors such as isolated or dynam-
ical formation([124, 125]). The latter is explored in Sec. 4.

In conclusion, with the incorporation of population spin models, ICAROGW becomes
the first code capable of jointly inferring cosmological parameters and the spin proper-
ties of BBHs. Sec. 4 presents multiple analyses regarding spins, including extensions
of the DEFAULT and GAUSSIAN spin models for population purposes.
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2.7 CONCLuSION
This chapter presents the hierarchical Bayesian framework of ICAROGW, which utilizes
detected GW signals from CBC mergers in our Universe, in order to estimate the pop-
ulation properties of the sources, jointly with the cosmological parameters. Three
methodologies are highlighted, the Spectral Siren analysis, based solely on GW sig-
nals, the galaxy catalog method that incorporates extra information from galaxy sur-
veys in order to statistically estimates the redshift of the host galaxy of the source and
finally the E.M.C method based on the joint detection of a GW signal and its electro-
magnetic counterpart.

Sec. 2.3 introduces the main ingredients of the Bayesian analysis, as the hierarchical
likelihood constructed for a set of GW signals detected over a certain observation time,
in presence of selection bias. This term shown in Eq. 2.7, incorporates another crucial
quantity referred as the CBC merger rate, that encapsulate all the population models
for themasses, the spins and the redshift distributions of CBCs. Sec. 2.3 also discussed
how the computation of certain integrals in the Bayesian framework are handled nu-
merically within ICAROGW, as well as some estimators needed to monitor the stability
of the inference.

In Sec. 2.4, we explore the details of the three main methodologies of the GW-based
methods for cosmology and population inference. The CBC merger rate of each of
them is derived, as well as the underlying astrophysical assumptions necessary for the
analysis. In this chapter, we propose an in-depth look at the parametric population
models used in ICAROGW, Sec. 2.5 presents three models used to describe the primary
and secondary masses of CBCs, as well as their astrophysical origin and motivations.
In particular, we highlight the importance of certain population parameters, that will
have a critical role in the following chapters.

Finally, Sec. 2.6 introduces the addition of phenomenological spin population mod-
els, the DEFAULT and GAUSSIAN spin models. It details the specifics of each model and
how they are incorporated in ICAROGW’s framework. This section also discusses the im-
portance of including spin parameters to themethod, alongside the newopportunities
in terms of physics that are now achievable with the help of the spins.

Suchmethod to estimate theHubble constant with GWdata is very new, and a lot of
tests have to be done in order to assess its robustness. In particular, since the method
is highly dependent on the choice of the models for describing the mass population
of CBCs, it is of crucial importance to understand if such models can introduce sys-
tematic errors that could lead to a bias measurement of the Hubble constant. This
leads directly to the next chapter of this manuscript, that will answer the following
question: What are the main systematic related to population models that can influ-
ence the Hubble constant estimate with Spectral Siren, and in particular systematics
related to the mass spectrum parameterization ?
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The majority of this chapter is based on the work of a published paper, in which I am
the first author [94]. This paper presents a detailed analysis on the systematics errors
that can impact the estimation of theHubble constant when using GWs Spectral sirens
methods. This chapter follows the same overview of the paper, from the methods
we employ to do the analysis, to the sanity checks for the framework validation and
finally the results. The subsections on the hierarchical analysis and phenomenological
mass models have been removed because already discussed in Sec. 2. Moreover, the
Sec. 3.2.2 and Sec. 3.2.3 have been added, these two sections are based on another
project of mine. Most of the context of the paper has be re-written in order to better
fit the overall manuscript.

3.1 INTRODuCTION
Since 2015, more than 90 confident detections of GW signals have been made by the
LVK collaboration, over three observing runs (O1, O2 and O3) [25–27]. These de-

65
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tected GW signals, as explained in Sec. 1.5, enable us to directly measure the luminos-
ity distance 𝑑𝐿 of the sources without making any assumption on the cosmological
model, nor using the distance ladder. However, unless an electromagnetic counter-
part (EMC) emitted by the same GW source is observed, the GW signals do not di-
rectly provide an estimate of the redshift of the source. The combined measurement
of the redshift and the luminosity distance are necessary in order to estimate the Uni-
verse’s expansion rate 𝐻0. Because of the current status on the measurement of the
Hubble constant, also known as the Hubble tension, GWs independent methods offer
an interesting prospect for a new approach to assess the value of the local expansion
rate of the Universe [126]. With the increasing number of GW detections by the LVK
collaboration, a new era called “GW cosmology” has begun, and a totally new field of
physics is unveiled.

To exploit the tens of GW sources observed without an EMC, complex statistical
methods have been developed in order to get an estimate of the source redshift. In this
chapter, one particular method is discussed, this method called “Spectral Siren” [80] is
based solely on GW data, a more detailed description can be found in Sec. 1.5, Sec. 2.3
and Sec. 2.4. The Spectral siren method relies on the intrinsic degeneracy between the
redshift 𝑧 of a GW source and its detector frame mass 𝑚𝑑𝑒𝑡 and source frame mass 𝑚𝑠,
through 𝑚𝑑𝑒𝑡 = (1 + 𝑧)𝑚𝑠.

The redshift of the sources is implicitly estimated bymeasuring the detector masses
and jointly fitting the source mass distribution, CBC merger rate and cosmological
model [77, 79, 127]. The Spectral siren method deeply relies on the choice of the phe-
nomenological population models for the BBH source mass distribution and their ca-
pacity to describe the true underlying BBH population [78, 80, 81, 95, 103, 127–132].
The galaxy catalog method, described in Sec. 2.4.2, that incorporates extra informa-
tion on the redshift of the source via the help of galaxy surveys data, also relies on the
population models assumptions. This is true when the galaxy catalog is not complete
enough to statistically estimate the redshift, and in this scenario, the Spectral siren
method take over [70, 78, 81, 103]. In this chapter, we explore how the phenomeno-
logical population models, in particular source mass models, are able to fit complex
and astrophysically motivated BBH populations in the context of the Spectral siren
analysis. The goal is to understand how an inaccurate reconstruction of the source
mass distribution could translate in a biased estimation of the Hubble constant, and
to assess how robust or subject to systematic errors GWbased cosmologymethods are
when facing modelled effects in the source mass distribution of BBHs. To make this
study, we start with simulated GW data in order to validate our framework and then
move on a BBH population generated synthetically through the modelling of crucial
astrophysical processes responsible for the BBH population properties. We then per-
form the complete hierarchical Bayesian inference scheme developed in Sec. 2 to mea-
sure the Hubble parameter 𝐻0 jointly with the population distribution of the source
masses and CBC merger rate.

This chapter is organized as follows, in Sec. 3.2 we describe in details how the GW
detections are simulated and the specific framework developed to do so. In Sec. 3.3,



3.2 SIMuLATION OF GRAvITATIONAL wAvE OBSERvATIONS 67

we present an extensive set of sanity checks to test the validity of the inference and
simulation of the GW events. At the same time, we investigate the robustness of the
Spectral sirens’ methodwhen a wrongmass model is used for the inference andwhen
the source mass spectrum incorporates modelled mass feature or even a redshift evo-
lution. In Sec. 3.4, we perform the population and cosmological inference using a
realistic catalog of BBH mergers. In this section we also investigate and discuss the
potential sources of the biases, and peculiarly the effect of redshift evolution of the
mass spectrum when inferring the cosmological parameters. Conclusions are drawn
in Sec. 3.5.

3.2 SIMuLATION OF GRAvITATIONAL wAvE OBSERvATIONS
This section introduces our simulation procedure and framework used to generate
GW observations from BBH mergers. The detection criteria for a GW signal are based
on the signal-to-noise ration (SNR) and the maximum frequency detectable by the
current interferometers.

3.2.1 A fast generator of GW observations

Simulating realistic GWdetection data is a complex task, typically involving the gener-
ation of authentic GW waveforms and their injection into noise detector realizations.
Specialized algorithms, known as “search pipelines”, are then employed to identify
potential detections of these waveforms [133–135]. Subsequently, a crucial step called
parameter estimation (PE) becomes necessary, aiming to estimate the population pa-
rameters of the GW sources from the extractedwaveforms amidst detector noise [136].
However, for certain analyses, such as the investigation of systematic errors in Spec-
tral Sirens analysis, utilizing the complete process of waveform generation, detection,
and parameter estimation proves itself impractical and time-consuming. To address
this, we present a Python framework capable of rapidly generating GW observations.
These observations differ from real simulated GW events, as they do not involve GW
waveforms, search pipelines, or parameter estimation to determine the population pa-
rameters of the GW source. In the following sections of this chapter, we will call a
GW observation, a set of three parameters describing a detected GW source, namely
the two detected detector frame masses (𝑚𝑑𝑒𝑡

1 , 𝑚𝑑𝑒𝑡
2 ) and the luminosity distance 𝑑𝐿.

The workflow to efficiently generate these GW observations is the following: From a
population of BBH mergers, described by the two source frame masses and the red-
shift of the merger, we compute an approximate value of the optimal SNR. Instead
of computing the SNR of each event with the usual approach using a search pipeline
on the full GW waveform and performing a match filtering search [137]. This proxy
provides a realistic approximation that accounts for the primary sources of noise af-
fecting the SNR estimation in real GW events. It incorporates factors such as signal
recovery, multi-detector detections, parameter estimation uncertainties, and general
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selection effects. However, this approximation could be further refined by including
second-order effects that may influence the SNR. For instance, the influence of black
hole spins in BBH systems could be introduced as a second-order correction to the
SNR. We use Eq. 3.1 as the proxy for the optimal SNR [102, 127]

𝜌 = 𝛿 × 𝜌∗[M𝑐
M∗

𝑐
]

5
6
[𝑑∗

𝐿
𝑑𝐿

], (3.1)

whereM𝑐 is the binary detector chirp mass, computed from a combination of the two
detector frame masses as

M𝑐 = (𝑚1𝑚2)3/5

(𝑚1 + 𝑚2)1/5 (1 + 𝑧). (3.2)

In Eq. 3.1, 𝛿 is a projection factor and 𝜌 is the optimal SNR, i.e. the SNR obtained if
the binary system was optimally oriented with respect to the detectors. The proxy in
Eq. 3.1 is known to produce a good estimate of the optimal SNR 𝜌, with a slight un-
derestimation of GW events for chirp masses above 30𝑀⊙, but it is enough to generate
a good estimation of detected GW events. The luminosity distance and the detector
chirp mass are computed assuming a flat Λ𝐶𝐷𝑀 cosmological parameterization with
the cosmological parameters fixed to the Planck 15 values measured from the CMB,
namely 𝐻0 = 67.8 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1 and Ω𝑚,0 = 0.308 [138]. The detection sensitivity
of the interferometer network is modelled by the star parameters with the superscript
∗, i.e. a GW signal with a projection factor 𝛿 = 1, localized at a luminosity distance
𝑑∗

𝐿, with a chirp mass of M∗
𝑐 would produce an optimal SNR of 𝜌∗. To mimic an 𝑂4

like sensitivity for a network made of three terrestrial interferometers, we set the star
parameters to be 𝑑∗

𝐿 = 1.5 𝐺𝑝𝑐, M∗
𝑐 = 25 𝑀⊙ and 𝜌∗ = 9 [7]. The projection factor 𝛿

in Eq. 3.1 encodes multiple detections effects that can make the optimal SNR vary, it
combines the effects of the GW polarization and the sky localization obtained with a
three detector network. For one GWobservation, its value is drawn from a cumulative
density function introduced in [139].

Furthermore, to mimic the presence of noise in the detector, the optimal SNR is cor-
rected into a “detected” SNR 𝜌𝑑𝑒𝑡. This detected SNR is drawn from a 𝜒2 distribution
with six degrees of freedom, two for each detector contained in the network. The new
SNR is then defined such as

𝜌𝑑𝑒𝑡 ∝ L𝜒2(𝜌, 𝑛 = 6), (3.3)

where 𝑛 in Eq. 3.3 is the number of the degrees of freedomof the 𝜒2 distribution. In our
simulation framework, a GW event is said to be detected if its associated 𝜌𝑑𝑒𝑡 is greater
than a detection threshold of 12. To further push the detection simulation process
close to a realistic one, a frequency cut is also applied to each GW event. This cut is
placed on the maximum GW frequency of each GW, defined as twice the frequency
corresponding to the innermost stable circular orbit (ISCO)

𝑓 𝑚𝑎𝑥
𝐺𝑊 = 2𝑓𝐼𝑆𝐶𝑂, (3.4)
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where 𝑓𝐼𝑆𝐶𝑂 is approximated following [140]

𝑓𝐼𝑆𝐶𝑂 = 1
2𝜋

1
63/2

𝑐3

𝐺 (1𝑀⊙
𝑀𝑑

𝑡𝑜𝑡
)103 𝐻𝑧. (3.5)

In Eq. 3.5, 𝐺 is the gravitational constant, 𝑐 is the velocity of light in vacuum and 𝑀𝑑
𝑡𝑜𝑡

is the total mass of the binary in detector frame, computed as the sum of the primary
and secondarymass. The threshold for a valid detection is chosen to be 𝑓 𝑚𝑎𝑥

𝐺𝑊 ≥ 15 𝐻𝑧,
where every GW event having a maximumGW frequency below this selection criteria
are flagged as “non-detected”, even if their detected SNR is above twelve. Adding a
cut on the GW frequency has two beneficial effects, the first one being that real GW
detectors have a frequency band, generally around [10, 1000]𝐻𝑧 in which they are sen-
sitive to GW signals, and outside which even massive and close by events can not be
seen [10, 141, 142]. This cut eliminates non-physical detections that could negatively
impact our analysis, specifically removing GW events from extremely distant sources
with masses on the order of thousands of solar masses. Such outlier events should
not be detectable with the O4-like sensitivity, even if their SNR exceeds the selected
threshold. This is because the frequencies of these mergers fall outside the detectable
range of the current GW detector network.

To summarize, the framework described above is able to generate the so-called GW
observations. From a catalog of triplets containing the source frame masses and red-
shift of simulated GW events, it simulates a detection process for a chosen sensitivity
and interferometer network, assigning to each of them a detected SNR based on the
chirpmass and the luminosity distance of the source, leaving uswith a subset of the en-
tire catalog containing only the detected GW events, described by (𝑚𝑑𝑒𝑡

1 , 𝑚𝑑𝑒𝑡
2 , 𝑑𝐿). The

original GW catalog in source frame, containing all GW events, detectable and non-
detectable is generally generated using the population mass models and CBC merger
rate models implemented inside ICAROGW and described in Sec. 2. This framework is
very efficient and is able to generate GW observations quickly, on the other hand no
errors are simulated for the detector framemasses and the luminosity distance of each
source, and that is the reason why we call them GW observations and not GW detec-
tions data. Although, it is possible to simulate errors in order to have PE-like data
for each GW detected merger, and this will be explained in the following Sec. 3.2.2.
Finally, we choose not to generate errors on the detector frame masses and luminosity
distance. In other word, we assume that they are perfectly detected by the network of
interferometers from the GW signal. We make this choice for two reasons. The first
one is that not generating errors greatly ease the computational load of the analysis,
and allow us to test a large variety of test cases with thousands of GW detections. The
second is that we want to understand the systematics of the Spectral siren analysis,
and not generating the errors will maximize the potential effects of the systematics
arising from the phenomenological models, systematics that could be hidden in the
error budget of the masses. Although we opted not to introduce errors in the follow-
ing analysis for the reasons listed above, the following subsections will explain how
to generate errors on the detector frame masses and luminosity distance for this type
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of simulation. Additionally, a simple mock data challenge is presented to test the sim-
ulation.

3.2.2 Simulation of the errors for the GW observations

In this section, we detailed the process to generate the errors on the masses and lumi-
nosity distance from the GW observations. The idea is to mimic the parameter estima-
tion usually done on real GW events in order to estimate the measured values of the
population parameters from the detected signal. This step is called the simulation of
the posterior samples, and is done for each of the detected GWobservations produced
with the framework of Sec. 3.2.1. This procedure has already been applied in several
analyses to quickly generate GW like posterior samples [95, 102, 127]. From the GW
observations of each event, the posteriors samples for the measured chirp mass in
detector frame M𝑑𝑒𝑡

𝑐 as well as for the measured mass ratio 𝑞𝑑𝑒𝑡 are drawn from two
Gaussian distributions such that

M𝑑𝑒𝑡
𝑐 ∝ N(M𝑐, 10−3M𝑐

10
𝜌𝑑𝑒𝑡 ), (3.6)

and
𝑞𝑑𝑒𝑡 ∝ N(𝑞, 0.25𝑞 10

𝜌𝑑𝑒𝑡 ). (3.7)

The specific parameterization of the mean and the standard deviations of the Gaus-
sian in Eq. 3.6 and Eq. 3.7 are chosen to approximate the typical errors the of a full
parameter estimation on a real GW signal [127]. So from the detector frame masses
of detected signals, posterior samples on the detector frame chirp mass and the mass
ratio are simulated from Eq. 3.6 and Eq. 3.7. In general, the posterior samples needed
for a GW cosmology analysis in ICAROGW are given in terms of primary and secondary
detector frame masses, hence the chirp mass and mass ratio a converted backward
using the following equations:

𝑚𝑑𝑒𝑡
1 = M𝑐

(1 + 𝑞)1/5

𝑞3/5 (3.8)

and
𝑚𝑑𝑒𝑡

2 = 𝑞𝑚𝑑𝑒𝑡
1 . (3.9)

This specific way to generate the posterior samples on the masses, drawing first the
chirp mass and mass-ratio and then (𝑚𝑑𝑒𝑡

1 , 𝑚𝑑𝑒𝑡
2 ), permits accounting for the degener-

acy during a real PE process between the two masses. Similarly, as for the measured
chirp mass and measured mass ratio, posterior samples of the measured projection
factor 𝛿𝑑𝑒𝑡 are drawn from the following normal distribution

𝛿𝑑𝑒𝑡 ∝ N (𝛿, 0.3 10
𝜌𝑑𝑒𝑡 ). (3.10)
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Following this methodology, the posterior samples on the luminosity distance are ob-
tained by inverting the Eq. 3.1 for 𝑑𝐿 and injected in the already produced posterior
samples on the chirp mass and the projection factor. This approach to generate pos-
terior samples on the primary and secondary masses as well as the luminosity dis-
tance enables the production of samples that are conformed to the selection effects
accounted for in the typical Spectral sirens analysis. As a result, characteristic uncer-
tainties for the luminosity distance and masses range from 40% to 60% and 20% to
50%, respectively, at the 90% confidence level.

3.2.3 Illustration of a mock catalog of binary black hole mergers

We make use of the simulation framework presented in Sec 3.2.1 and Sec 3.2.2 to gen-
erate a mock catalog of detected BBHs. We start from a set of source frame masses
and redshifts of potential detectable sources, to finish with the full cosmological and
population inference on the simulated GW events. Here, in addition to the detection
process via the SNR proxy and the frequency cutoff, the errors budget (posterior sam-
ples) for the masses and the luminosity distance are also generated.

First, we choose a flat ΛCDM cosmological model with 𝐻0 = 67.7 km s−1Mpc−1

and Ωm,0 = 0.307. The primary and secondary source frame masses of the entire sim-
ulated BBH population are generated using the PLP mass model (see Sec 2.5.2), and
the values of the parameters used to construct the PLP are listed in Table 3.1. The red-

Parameter name Description Value

𝛼 Index of the primary power law. 3.5
𝛽 Index of the secondary power law. 1
𝛿m Smoothing parameter. 6
𝜇g Mean of the Gaussian peak. 31 𝑀⊙

𝜎g Standard deviation of the Gaussian peak. 4 𝑀⊙

𝜆peak Fraction of events in the Gaussian peak. 0.2
mmin Minimum mass. 5 𝑀⊙

mmax Maximum mass. 130 𝑀⊙

Table 3.1: Table listing the population parameters governing the power law plus peak mass
model, used to generate the primary and secondary masses of the entire BBH population for
the mock catalog. The name, description, and chosen value for each parameter are shown in
the table.

shifts assigned to each merger are drawn from the so-called Madau & Dickinson-like
CBC merger rate model, with 𝜅 = 3, 𝛾 = 3, and 𝑧𝑝 = 2 [143]. This parameterization
of the CBC merger rate is the standard (or “vanilla”) model in GW analysis when de-
scribing the merger rate in the Universe, assuming that it follows the star formation
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rate (SFR) model of Madau & Dickinson. Using the source frame mass model and
the CBC merger rate model, we draw 200000 GW events, each composed of the triplet
(ms

1,ms
2, 𝑧). The number of simulated GW events is not intended to be astrophysically

motivated and does not correspond to a physical CBC rate. Instead, it is chosen to en-
sure a reasonable number of detections for illustrating the simulation of errors. Of the
200000 simulated GW events, only 102 were flagged as “detected” by our framework,
which assumes O4-like sensitivity and a three-detector GW network. This detection
process uses an optimal SNR threshold of 12 and a frequency cutoff of 15Hz. The
set of 102 detected GW events correspond to the so-called GW observations. From
the GW observations, we simulate the error budget for the masses and the luminosity
distance of each event (see Sec 3.2.2), and an example of the posterior samples simu-
lated is given in Fig. 3.1. From Fig. 3.1, we can see that the true values of the masses

ms
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33
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m
s 2

ms
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Figure 3.1: In source frame: Corner plot of the primarymass, the secondarymass, and the red-
shift for one of the detected GW observations for which the error budget has been simulated.
The blue points and lines represent the true values of the masses and redshift fromwhich the
error budget has been generated. The red histograms are the simulated posterior samples,
and the red contours are the 2D plot highlighting potential correlations between parameters.
The red dotted lines represent the 1𝜎 errors.

and the redshift are well within the simulated error budget. Moreover, the posterior
distributions, i.e., the histograms of the 4000 samples generated for the primary mass,
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secondary mass, and redshift, exhibit a close-to-Gaussian behavior. This feature is
crucial as spiky posterior distributions would not be physically correct.

Using the BBH catalog composed of 100 simulated GW events, we validate this
framework through a full population and cosmological inference with ICAROGW Spec-
tral sirens analysis. We perform the inference using the same mass model and the
same CBC merger rate from which the GW events have been simulated, placing us
in the best case scenario where the correct population is known. The matter density
parameter is not inferred here, since this kind of analysis struggles to put constraints
on it [4]. The true value of all mass and CBC merger rate population parameters are
recovered by the Spectral siren inference within the 90% C.L., in particular the Hubble
constant is found at 𝐻0 = 64+15.0

−14.9𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1. Fig. 3.2 shows the corner plot of some
populationparameters of interest for this inference. FromFig. 3.2, wedemonstrate that
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Figure 3.2: Corner plot of the inferred population and cosmological parameters estimated
from the 100 mock GW data generated with our framework. From left to right, the Hubble
constant, the mean of the Gaussian peak, the standard deviation of the Gaussian peak and
the maximum mass. The true values used to simulate the GW data are shown with the black
dots.

the framework developed to simulate GW data as well as the Spectral siren method to
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infer population and cosmological parameters is validated. Moreover, since that kind
of analysis is actually inferring the parameters on a hyper-posterior, the corner plot
is a very nice tool to study correlations between parameters. For instance, the posi-
tion of the Gaussian peak in the mass distribution is strongly correlated to the Hubble
constant. This feature will play a key role in the following section.

3.3 AppLICATION TO ANALyTICAL BINARy BLACk HOLE
pOpuLATION

This section considers several scenarios and populations of BBHs generated from the
phenomenological models presented in Sec. 2.6, to study how the PLP, the BPL and
the MLTP mass models are able to infer 𝐻0. The spin parameters of the BBHs will not
be considered in this section, and we will only work with GW observations (i.e. no
error are simulated). In Sec. 3.3.1, the generation of the GW observations as well as
the population inference are performed using the samemass models. In Sec. 3.3.2, the
GW observations are again generated from one of the three mass models, but the in-
ference using the Spectral siren analysis is done using the other two. And in Sec. 3.3.3,
we simulate the GW events with a more complex version of the PLP mass model that
incorporates a redshift evolution of its Gaussian peak. This allows us to test the re-
sponse of the Spectral siren analysis to mass distributions evolving with the redshift,
in the context where the mass model used for the inference does not account for such
evolution. The main purpose of it being the study of the 𝐻0 bias. In the remaining
sections of this chapter, the 𝐻0 bias will be quantified according to what confidence
interval (C.I.) the true value of 𝐻0 is found from the inferred posterior. Generally, bi-
ases are quantified using the so-called parameter-parameter (PP) plots that indicate
what is the fraction of time that the true value of 𝐻0 is found in a given C.I. for the
posterior. For reference, if 𝐻0 is inferred without any bias, it would be found in 50%
of the C.I. for 50% of the case and so on, which would result in a diagonal curve on
the PP plot. In this chapter, we will consider that an analysis biased following two key
points, first if the true value of the Hubble constant is excluded at 2𝜎 or more from the
posterior of the estimated 𝐻0. Second from the resulting PP plots generated for each
analysis.

In order to better visualize the result from the Spectral siren population inference,
we will use the posterior predictive checks (PPCs) to assess how well the PLP, BPL
and MLTP models are able to fit the mass spectrum. The reconstructed distributions
can be understood in source frame (astrophysical posterior predictive distribution) or
in detector framewith the selection effects (detected posterior predictive distribution).
The astrophysical posterior predictive distribution, given the redshift and the source
frame masses is given by

𝑝𝑝𝑜𝑝(𝑧,m𝑠
1,m𝑠

2|{𝑥}) = ∫ 𝑑Λ 𝑝𝑝𝑜𝑝(𝑧,m𝑠
1,m𝑠

2|Λ)𝑝(Λ|{𝑥}), (3.11)



3.3 AppLICATION TO ANALyTICAL BINARy BLACk HOLE pOpuLATION 75

and the detected posterior predictive distributions are defined as

𝑝𝑜𝑏𝑠(𝑑𝐿,m𝑑
1,m𝑑

2|{𝑥}) = ∫ 𝑑Λ 𝑝𝑝𝑜𝑝(𝑑𝐿,m𝑑
1,m𝑑

2|Λ) ×
𝑝(Λ|{𝑥})𝑃𝑑𝑒𝑡(𝑑𝐿,m𝑑

1,m𝑑
2). (3.12)

3.3.1 Using the same mass model

We simulate three populations of BBHmergers, with the three sourcemassmodels de-
scribed above and theMadau&Dickinson CBCmerger rate for all of them. The precise
values of the parameters used to draw these populations are summarized in App. B.1,
in tables B.1 to B.3. From the three BBH populations, we use the GW observation
framework to simulated 2000 detected GW events that will be used for the Spectral
siren analysis. Typically, around O ∼ 103 GW detections are needed so that the pos-
terior of the Hubble constant is truly data-informed within the chosen prior range
[20 − 140]𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1. Finally, for these three sets of detected GW observations, a
full hierarchical Bayesian inference is done on the mass, CBC merger rate and cosmo-
logical parameter 𝐻0. Fig. 3.3 presents the marginalized posterior distributions of 𝐻0
estimated with the Spectral siren analysis using each of the three source mass models,
and for all analyses, the true value of 𝐻0 is recovered within the 90% C.I. Alongside
with the Hubble constant, we also found that all other population parameters inferred
contain their true value within the 90% C.I. From Fig. 3.3, it is shown that the posterior
of 𝐻0 tends to bemore constrainedwhen the PLP and theMLTPmodels are used. This
effect is due to the fact that the PLP andMLTPmodels are built with sharper mass fea-
tures in their source frame spectrum. In opposition, the BPL model gives a smoother
posterior of 𝐻0. Fig. 3.4 displays the PPCs for the three inferences over the three simu-
lated BBH populations. This result shows that all the structures in the primary mass,
secondary mass and CBC merger rate spectrum are perfectly reconstructed through
the Spectral siren analysis. The sharp features of the mass spectra, produced by the
Gaussian peak and also the maximum and minimum masses, are correctly inferred,
both in the astrophysical frame and the detected frame. In summary, from this first set
of tests, when using the correct massmodel for the population inference, both the true
cosmological and true population parameters are found unbiased. Moreover, this test
illustrates the importance of mass features to constraint the Hubble constant.

Results consistent with Figure 3.3 have been replicated across approximately 20 in-
dependent population realizations. However, while these results provide initial val-
idation, a more stringent assessment of bias in parameter inference requires the use
of Probability-Probability (PP) plots, as introduced in Sec 3.3. Generating accurate
PP plots presents challenges. Ideally, population models should be drawn from the
hyper-priors utilized in the inference process. This approach ensures that the popu-
lation realizations covers the full range of parameter space. Unfortunately, this is not
always feasible, especially when dealing with pre-simulated catalogs. In cases where
drawing from hyper-priors is restricted, such as with parameters intrinsic to the ob-
served catalog, alternative strategies must be employed. While achieving diagonal PP
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Figure 3.3: Marginalized posterior of the Hubble constant obtained from the Spectral siren
analysis of 2000 detected GW observations using the PLP, BPL and MLTP mass models.
The red line is the true value injected in the simulation, fixed to the Planck15 of 𝐻0 =
67.7𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1.

plots without drawing from hyper-priors is possible, it necessitates stringent condi-
tions. Specifically, all inferred posteriors must be gaussianized and entirely contained
within their prior ranges, which may not always be achievable. Fig. 3.5 depicts the
PP plot for the Spectral sirens inferences of 2000 GW observations simulated with the
MLTPmassmodel and estimatedwith the samemodel (identical scenario as the green
histogram in Fig. 3.3). From the several realizations with the same analysis set up, it
is clear that the inference of the Hubble constant stays unbiased. The remaining two
PP plots can be found in App. B.2.1.

3.3.2 Using different mass models

As an extension of the tests shown in Sec. 3.3.1, we generate three BBH catalogs with
2000 GW observations using the BPL, PLP and MLTP mass models. With these three
populations of CBCs, we infer the population and cosmological parameter via the
Spectral siren analysis, with the two other mass models that were not used for the
simulation of each population. Fig. 3.6 presents all six marginalized posterior distri-
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Figure 3.4: Posterior predictive checks obtained from the Spectral siren analysis of three BBH
populations with 2000 detected GW events simulated with the PLP (in light blue), BPL (in
blue) and MLTP (in green) mass models. The left column is the source frame population,
from top to bottom 𝑚𝑠

1,𝑚𝑠
2 and 𝑧. The right column is the detector frame population, from

top to bottom 𝑚𝑑𝑒𝑡
1 ,𝑚𝑑𝑒𝑡

2 and 𝑑𝐿. The inferred population from the analysis is shown with the
colored contours, as the 90% confidence level spectrum. And the injected populations are
the colored histograms.

butions of the Hubble constant obtained from this analysis. We observe that when the
GW observations are simulated using the BPL model, and the estimation of the pop-
ulation and cosmological parameters is done with the PLP or the MLTP models, the
injected 𝐻0 value is included in the 68% C.I. level despite having the incorrect source
mass model in the Spectral siren analysis. Whereas when the GW events are gener-
ated with both the MLTP and the PLP models, and inferred with the BPL model, we
observe that the true value of 𝐻0 is excluded at 98.7% C.I. level. We interpret this bias
as being the product of wrong reconstruction of the mass spectrum by the BPLmodel,
the sharp mass features contained in the PLP and the MLTP models are missed by
the BPL model. The mismatching of the source mass features results in a systematic
mismatch of the redshifts of the GW sources which is inducing the bias on the Hubble
constant.
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Figure 3.5: PP plot obtained from 20 independent population realization simulated with the
MLTP mass model, and inferred with the MLTP model too. The gray contours are the 99.7%,
95.0% and 68.0% C.I. respectively from lighter to darker, showing the expected fluctuations
due to the finite size of realizations.

As in Sec. 3.3.1, the detailed understanding of the cosmological results has to be in-
terpreted from the PPC plot. Fig. 3.7 shows the PPC obtained from the Spectral anal-
ysis of a BBH population simulated using the MLTP mass model and inferred with
the PLP and BPL models. Based on the reconstructed source frame spectrum for 𝑚𝑠

1
and 𝑚𝑠

2, it is clear that with the PLP model, the inference is able to reconstruct a peak
located around 50𝑀⊙. While with the BPL model, the same mass feature, important
for the cosmology inference, is missed and underestimated. The observed deviation
in 𝐻0 can be interpreted as follows: when 𝐻0 is decreased, GWs events tend to be as-
signed lower redshifts, resulting in higher masses in the source frame. By reducing
the value of 𝐻0, the BPL model attempts to accommodate the clustering of high-mass
events generated by theMLTPmodel. In terms of the simulations employing the most
intricate model, the MLTP, it is evident that both the PLP and BPL models struggle
to accurately reproduce the lower end of the mass distribution. Nonetheless, this dis-
crepancy does not reach a level where it induces a bias in 𝐻0 during the reconstruction
with the PLP. Remarkably, the CBC merger rate across redshifts is consistently recon-
structed across all scenarios. In essence, the more pronounced mass feature within
the BBH mass distribution can induce a substantial bias in the estimation of 𝐻0.

As for the previous test case, this analysis has been repeated ∼ 50 times on indepen-
dent population realizations to ensure stability in our findings, and not just a statistical
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Figure 3.6: Left: Marginal distribution of𝐻0 inferredwith the PLP and theMLTPmassmodels,
on a BBH population simulated with the BPL model. Middle: Marginal distribution of 𝐻0
inferred with the BPL and the MLTP mass models, on a BBH population simulated with the
PLP model. Right: Marginal distribution of 𝐻0 inferred with the BPL and the PLP mass
models, on a BBH population simulated with the MLTP model. On all three plots, the true
value of the Hubble constant is indicated by the red vertical line and is equal to the Planck15
value.

fluctuation. Fig. 3.8 presents the PP plot corresponding to the middle plot of Fig. 3.6,
where the GW observations are simulated with the PLP mass model and the Spectral
siren analysis is performed with the BPL model. From the PP plot behavior, laying
below the diagonal line, there is undoubtable support for bias on the inference of the
Hubble constant. The PP plot for 𝐻0, being below the diagonal shows that most of
the time, the true value of the Hubble constant is being underestimated, as shown on
Fig. 3.6. All other PP plots are shown in App. B.2.2.

3.3.3 Impact of a redshift evolution of the mass spectrum

Sec. 3.3.3 aims to examine the robustness of redshift independentmassmodels to a pos-
sible evolution of the mass spectrum in redshift. For instance, the PLP, BPL andMLTP
models are populationmodels that are fixed in redshift, and currently used to perform-
ing GW cosmology studies within the LVK collaboration and external groups. To test
this assumption, we assume a linear evolution of the features of the mass spectrum
with respect to the cosmological redshift. In this section, we modify the PLP source
mass model such that its Gaussian peak is able to evolve linearly with the redshift. In
particular, the evolution is encoded in the position of the Gaussian peak, while its stan-
dard deviation remains the same. This pattern of evolution might emerge from a com-
bination of factors, including the PISNmass threshold and the time intervals between
the formation and merging of binary systems, as indicated in references [131, 144].
These factors notably constrain the mass distribution above the PISN threshold (the
peak in the Gaussian).
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Figure 3.7: Posterior predictive checks when the wrong mass model is used for the inference,
it corresponds to the right plot on Fig. 3.6. The blue histogram is the injected BBH population,
that has been generated from the MLTP mass mode, using the same population parameters
as for Sec. 3.3.1. The two colored contours are the 90% C.L. inferred from the Spectral analysis,
using in green the BPL mass model and in light blue the PLP mass model.

Here instead, we do not suppress themass spectrum above the PLPmodel Gaussian
peak, but we assume a linear dependency,

𝜇𝑔(𝑧) = 𝜇0𝑔 + 𝑧 (𝜇1𝑔 − 𝜇0𝑔) , (3.13)

where 𝜇0𝑔 = 𝜇𝑔(𝑧 = 0) and 𝜇1𝑔 = 𝜇𝑔(𝑧 = 1) are the positions of the Gaussian peak at
𝑧 = 0 and 𝑧 = 1. We fix 𝜇0𝑔 = 30 𝑀⊙, and we considered seven different values for 𝜇1𝑔
from 25𝑀⊙ to 35 𝑀⊙. The specific point of 𝜇1𝑔 = 30 𝑀⊙ corresponds to zero evolution
of the position of the peak. The primarymotivation for shifting only theGaussian peak
of the mass distribution is that most of the constraining power on the Hubble constant
comes from accurately reconstructing this mass feature, and because this constraining
power is tied to the peak, potential biases could arise from its incorrect reconstruction
if the peak of the true mass distribution evolves with redshift. This parameterization
also represents the simplest modification of the model and some hints of such evolu-
tion have been observed in non-parametric study [145]. Future work could explore
more complex models with additional mass features evolving with redshift, i.e. the
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Figure 3.8: PP plot obtained from 50 independent population realizations simulated with the
PLP mass model, and inferred with the BPL model too. The gray contours are the 99.7%,
95.0% and 68.0% C.I. respectively from lighter to darker, showing the expected fluctuations
due to the finite size of realizations.

minimum and maximum mass or the slope of the power law. However, from an as-
trophysical perspective, it remains unclear how the true BBH mass spectrum varies
across different redshift ranges.

We simulated seven scenarios of BBH populations with the modified PLP model,
with redshift evolution shifts ranging from −5 𝑀⊙ to +5 𝑀⊙, and for each one of them,
sets of 2000 GW observations are generated and then pass down to ICAROGW for a full
Spectral siren analysis. For the Bayesian inference, we use the non-evolving PLP mass
model. The estimation of 𝐻0 with a 68.3% confidence interval is presented in Fig. 3.9.
This figure illustrates how the inferred value of 𝐻0 changes in relation to the value of
𝜇1𝑔. To illustrate, if the Gaussian peak shifts by approximately five solar masses from
redshift 0 to redshift 1, the estimated value of 𝐻0 falls outside the 99.7% confidence
interval. Fig. 3.9 demonstrates how the evolution of structures in the mass spectrum
with redshift can lead to a bias in the inferred Hubble constant. Even a modest evolu-
tion of themass spectrum across redshifts results in a noteworthy bias in the estimated
𝐻0. Additionally, it’s worth noting that the systematic bias observed in 𝐻0 is directly
proportional to the extent of the redshift-dependent evolution in the mass spectrum
feature. This bias arises from inaccuracies in reconstructing the source frame mass
spectrum, as elaborated in the following paragraph.
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Figure 3.9: Scatter plot showing the evolution of the inferred 𝐻0 value with respect to the
position of the Gaussian peak of the PLP mass model used for the simulation of the GW
observations at 𝑧 = 1. The blue points correspond to the median of the 𝐻0 posteriors, for
each of the seven Spectral sirens analysis. The point of reference (no redshift evolution) is
𝜇1

𝑔 = 30 𝑀⊙. The blue errors bars are the estimated 1 𝜎 intervals of the Hubble constant
posteriors and the green line is the best linear fit to fit all the points.

Fig. 3.10 provides a summary of the PPCs for this specific test scenario. In the right
column, the detectedmass distributions from three out of the seven simulations are de-
picted. In the detector frame, these three simulated populations exhibit similar distri-
butions for the masses and luminosity distance of the detected GW events. These dis-
tributions alignwith those assumed by the non-evolving PLPmodels. However, when
observed in the source frame, these simulations demonstrate markedly different mass
spectra, attributed to redshift evolution of the Gaussian peak. The PLP model fails to
capture this evolution, resulting in an inaccurate reconstruction of the true mass spec-
trum. Notably, the non-evolving PLP model consistently reconstructs a peak located
at 30 𝑀⊙. This outcome stems from the fact that approximately 80% of the GW detec-
tions occur at low redshifts (𝑧 < 0.3), where even in models with redshift evolution,
the peak of the Gaussian component typically resides around 𝜇0𝑔 = 30 𝑀⊙.
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Figure 3.10: Posterior predictive checks when the wrongmass model is used for the inference,
it corresponds to the right plot on Fig. 3.6. The blue histogram is the injected BBH population,
that has been generated from the MLTP mass mode, using the same population parameters
as for Sec. 3.3.1. The two colored contours are the 90% C.L. inferred from the Spectral analysis,
using in green the BPL mass model and in light blue the PLP mass model.

The emergence of an 𝐻0 bias stems from the misalignment of the Gaussian compo-
nent for events occurring at higher redshifts. When 𝜇1𝑔 > 𝜇0𝑔 and the PLP model fails
to adequately fit this discrepancy, we observe an 𝐻0 bias towards higher values. This
bias arises because, at higher 𝐻0 values, GW events are situated at higher redshifts,
resulting in lower source masses. By assigning these events at lower source masses,
the PLPmodel can encompass themwithin the peak typically centered around 30 𝑀⊙
in the source frame. Conversely, when 𝜇1𝑔 < 𝜇0𝑔, we note a bias towards lower values
of 𝐻0. In this scenario, the GW events are placed at lower redshifts, thereby possess-
ing higher source masses that align with the peak at 30 𝑀⊙. This simplified test case
underscores the potential for redshift evolution of a feature in the mass spectrum to
introduce significant bias in the estimation of 𝐻0 based on GWs.

Consistency in results is confirmed by conducting several independent simulation
runs for each data point, underscoring the reliability of the findings depicted in Fig. 3.9.
Fig. 3.11, from these independent realizations, shows the PP plot for inference of 𝐻0,
when the Gaussian peak is moving to 35 𝑀⊙ at 𝑧 = 1. The pink histogram railing to
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Figure 3.11: PP plot obtained from ∼ 20 independent population realizations simulated with
the modified PLP model, when the Gaussian peak is evolving from 30 𝑀⊙ at 𝑧 = 0 up to
35 𝑀⊙ when 𝑧 = 1. The spectral siren inference is done with the regular non evolving PLP
mass model. The gray contours are the 99.7%, 95.0% and 68.0% C.I. respectively from lighter
to darker, showing the expected fluctuations due to the finite size of realizations.

the edge of the canvas, above the diagonal line, is a strong evidence that the Hubble
constant measurement is biased toward higher values, as shown above. Respectively,
PP plots railing below the diagonal have been found when in the simulated GW ob-
servations, the Gaussian peak is moving at lower masses when the redshift increases
(see App. B.2.3).

3.3.4 Discussion and conclusions

In essence, the bias observed in the estimation of 𝐻0 is intricately linked to themodel’s
capacity to accurately capture and reconstruct the intricate features inherent in the
CBCs mass spectrum. This bias can be influenced by a multitude of factors, each play-
ing a crucial role in shaping the final inferred value of Hubble constant. Our analysis
reveals that when the true underlying population of CBCs exhibits sharp, distinctive
mass features that diverge from the assumptions of the reconstruction model, a sub-
stantial bias in 𝐻0 emerges. This discrepancy underscores the importance of ensuring
that the model accounts for the full complexity of the underlying mass distribution to
avoid introducing systematic errors in the estimation process. Moreover, our investi-
gations highlight the significance of considering redshift-dependent evolutions in the



3.4 AppLICATION TO A COMpLEx BINARy BLACk HOLE pOpuLATION 85

mass spectrum’s features. Even subtle shifts in these features, on the order of a few so-
lar masses, can lead to the introduction of bias in the estimation of 𝐻0. This sensitivity
underscores the need for rigorous examination and refinement of models to account
for any evolving dynamics in the mass spectrum across different redshifts.

It is important to note that the choice of 2000 detected events for this study case,
while useful for generating informative and nearly Gaussian-like posteriors for 𝐻0, is
not entirely realistic for O4 sensitivity. This number roughly corresponds to about
10 years of data taking, beyond what is expected for the O4 observation run. How-
ever, this large sample size allows us to clearly illustrate the impact of biases in the re-
construction model. Looking ahead, as GW detections continue to accumulate, these
results highlight a critical challenge for future cosmological analyses. If the mass spec-
trum indeed evolves with redshift, such biases could have a significant effect on 𝐻0
estimates. Even in scenarios where the number of detected events is smaller, and the
𝐻0 posterior is less informative, these biases could still persist, only masked by the
broader error budget. As the precision on 𝐻0 improves, these biases will become in-
creasingly visible and impactful. This scenario is likely to emerge during O5, and
even more so with next-generation detectors that will yield thousands of GW detec-
tions. Thus, addressing the evolving dynamics of the mass spectrum is essential to
mitigate these biases and ensure accurate cosmological measurements.

In summary, our findings emphasize the intricate interplay between the underlying
population characteristics of CBCs, the reconstruction model’s capacity in capturing
these features, and the potential impact of redshift evolution on biasing the estima-
tion of 𝐻0. Addressing these complexities is crucial for ensuring the accuracy and
reliability of 𝐻0 estimates derived from GW observations.

3.4 AppLICATION TO A COMpLEx BINARy BLACk HOLE
pOpuLATION

In this section, we delve into an examination of how the BPL, PLP and MLTP source
mass models interact with a population of BBHsmergers generated through synthetic
astrophysical simulations. Our analysis utilizes a BBH catalog named “A03,” compris-
ing BBHmergers originating fromdiverse formation channels as detailed in [124, 125].
Subsequently, we present the results of our hierarchical Bayesian analysis conducted
with these mass models in Sec. 3.4.2. Finally, in Sec. 3.4.3, we investigate potential
sources of bias affecting the estimation of the Hubble constant.

3.4.1 General description of the 𝐴03 synthetic catalog

For this investigation, we utilize the A03 catalog from [125], comprising four dis-
tinct channels: isolated binary evolution and the dynamical assembly of BBHs within
young stellar clusters, globular stellar clusters, and nuclear star clusters. These chan-
nels are combined based on their respective redshift-dependent rates as outlined in
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[125]. The dynamical formation channels are characterized by an initial BHmass func-
tion derived from the MOBSE population synthesis code [146]. In model A03, they
adopt the delayed model proposed in [38] for core-collapse supernovae, incorporate
the pair-instability supernova formalism from [40], and account for the influence of
progenitor starmetallicity on the BHmass function, as detailed in [146]. Subsequently,
BHs dynamically pair with others and undergo hardening due to interactions within
their host star clusters [124], while hierarchical mergers of BBHs are also permitted, as
described in [125]. The isolated binary evolution channel comprises systems evolved
using the MOBSE binary population synthesis code, which considers the evolution of
binary stars [146]. These simulations incorporate mechanisms such as mass transfer,
common envelope, tidal evolution, natal kicks, and GW decay as outlined in [146].
A comprehensive discussion of the astrophysical processes embedded within model
A03 and their associated uncertainties falls outside the scope of this study. Here, we
aim to investigate the potential for nontrivial structures within the BBH mass distri-
bution to introduce bias into the estimation of 𝐻0. Fig. 3.12 illustrates the distribution
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Figure 3.12: Mass spectrum of the primary masses in source frame from the 𝐴03 BBH catalog
as a function of the redshift. Each plot corresponds to a slice in redshift, going from 𝑧 = 0 up
to 𝑧 = 7. This figure shows several important features regarding the mass spectrum of BBHs
inside the 𝐴03 catalog: redshift evolution, appearance of peaks, shifts of peaks.

of primary masses 𝑚𝑠
1 across various redshift bins. The BBH mass spectrum reveals

distinct features: progressing from lower to higher masses, there is a feature around
10𝑀⊙, a “valley” spanning from 13𝑀⊙ to 15𝑀⊙, and a subsequent prominent peak at
16𝑀⊙. Additionally, in the higher mass regime of the spectrum, a localized overabun-
dance of BBHs is evident around 25𝑀⊙, along with several less pronounced peaks
extending up to 90𝑀⊙. These structural characteristics are also discernible in the dis-
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tribution of secondary masses 𝑚𝑠
2. Furthermore, the 𝐴03 catalog exhibits a significant

redshift-dependent evolution in both primary and secondary source framemasses. As
depicted in Fig. 3.12, it’s evident that the features within the mass spectrum evolve as
redshift increases. Notably, the feature at 20𝑀⊙ is absent for mergers below a redshift
of approximately 2, gradually emerging while transitioning to lower masses in higher
redshift bins.
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Figure 3.13: Low redshift mass spectrum of the primary masses in source frame from the 𝐴03
BBH catalog as a function of the redshift. Each plot corresponds to a slice in redshift, going
from 𝑧 = 0 up to 𝑧 = 1.75. This figure shows several important features regarding the mass
spectrum of BBHs inside the 𝐴03 catalog: redshift evolution, appearance of peaks, shifts of
peaks.

Fig. 3.13 showcases the BBH mass spectrum within a redshift range of 0 < 𝑧 < 1.75,
corresponding to the typical detection range of our simulations of BBH mergers. The
evolution of the BBH mass spectrum at low redshifts appears more subdued com-
pared to higher redshifts. Nevertheless, peaks around 11𝑀⊙ emerge while transition-
ing to higher masses, while the structure around 25𝑀⊙ shifts towards lower masses.
Although real GWs events at high redshifts (𝑧 > 1) are challenging to detect in net-
works akin to the O4 observing run sensitivity, this effect was considered to have a
subdominant impact on population and cosmological as proposed in [147]. However,
if these structural changes are indeed evolvingwith redshift, as discussed in [148–152],
it’s plausible that mismatches between the mass models and these evolving features
could introduce bias in the estimation of 𝐻0, as detailed in Sec. 3.4.3.
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3.4.2 Vanilla analysis of the 𝐴03 catalog

Utilizing the A03 catalog of BBHs and the framework outlined in Sec. 3.2, we simu-
late our own GW catalogs comprising 2000 detected GW events. Subsequently, for
each of these catalogs, we undertake a comprehensive hierarchical Bayesian infer-
ence, yielding posterior distributions for 𝐻0, alongside other population parameters
such as the CBC merger rate and the three redshift-independent BBH mass mod-
els. The prior ranges employed for the Bayesian inference are detailed in tables A.1
to A.3. Fig. 3.14 illustrates the marginal posterior distributions of the estimated Hub-
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Figure 3.14: Marginal posteriors of the inferred Hubble constant 𝐻0 resulting from the Spec-
tral siren analysis of 2000 GW observations simulated from the 𝐴03 BBH catalog. In blue
using the BPLmodel, in light blue with the PLP and the in green with the MLTPmass model.
The red vertical line is the true value of 𝐻0 in the catalog, fixed at 𝐻0 = 67.7 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1.

ble constant 𝐻0. Notably, when employing the PLP and MLTP mass models, we
observe a bias towards higher values of 𝐻0. Specifically, for the PLP model, we es-
timate 𝐻0 = 103+11

−10 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1 and for the MLTP model, 𝐻0 is estimated to be
𝐻0 = 87+9

−8 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1 at a 68.3% confidence interval. The true value of 𝐻0 falls
outside the 99.7% confidence interval for the PLP model and the 95% confidence in-
terval for the MLTP model. Furthermore, it’s discernible from Fig. 3.14 that the BPL
mass model yields an uninformative posterior distribution for 𝐻0. We obtain a value
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of 𝐻0 = 82+20
−19 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1, which encompasses the injected 𝐻0 within the 68% confi-

dence interval. As we will discuss further, the BPL model retrieves a less informative
posterior on 𝐻0, attributed to the absence of strong mass features. It is worth noting
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Figure 3.15: Posterior predictive checks of the Spectral siren analysis on all population and
cosmological parameters performed on 2000 GW observations simulated from the 𝐴03 BBH
catalog. The plain black histograms are the true population contained in the A03 catalog,
in the source frame (left) and in the detector frame (right). The light blue contours are the
inferred population with the PLP model, in darker blue with the BPL model and in green
with the MLTP model. These contours are the 90% C.L.

that while the BPLmodel does not exhibit an 𝐻0 bias for 2000 GWevents, it may poten-
tially manifest as more GW detections are used. Importantly, we made sure that this
bias is not introduced by any of the other population parameters exceeding their prior
ranges, behavior usually called “railing”. In fact, we have verified that all parameters
are well constrained within their respective prior ranges.

The PPC plot depicted in Fig. 3.15 provides valuable insights into the origins of the
𝐻0 bias. While the reconstructed distributions of detector frame masses and luminos-
ity distance exhibit no significant deviations between the injected population and the
recovered one, noticeable differences emerge in the reconstructed source population.
Specifically, in the source frame, the BPLmodel correctly reconstructs the CBCmerger
rate within the 90%C.L. Conversely, the PLP andMLTPmodels notably underestimate
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the presence of BBHs within the mass range of 40𝑀⊙ to 80𝑀⊙. Consequently, based
on the observed data, the PLP and MLTP models predict a considerably higher num-
ber of BBHs at lower source masses. This discrepancy is addressed by adjusting the
value of the Hubble constant to higher values, thereby positioning events at higher
redshifts with, on average, lower source frame masses. Another corroborating indi-
cator supporting this conclusion is the reconstruction of the CBC merger rate across
redshifts. As depicted in the bottom-left plot of Fig. 3.15, the PLP and MLTP models
reconstruct a biased merger rate, favoring higher values of redshifts for BBH mergers.
In contrast, the inference provided by the BPL model accurately captures the overall
trend of the 𝐴03 source frame population. Specifically, the BPL model achieves supe-
rior reconstruction of source frame masses within the range of 40𝑀⊙ to 80𝑀⊙.

Figure 3.16: Posterior predictive check for the Spectral siren analysis of 2000 GW observations
simulated from the 𝐴03 BBH catalog. This figure shows similar results as Fig. 3.15, except
that only the primary source frame mass and the true population is displayed, and has been
decomposed into several redshift bins (colored histograms) from 𝑧 = 0 to 𝑧 = 2. Similarly,
the colored contours are the 90% C.L. reconstructed from the Bayesian inference.

Despite having sufficient degrees of freedom to approximate a smooth distribution
of masses akin to those present in the 𝐴03 catalog, both the PLP and MLTP models
still fall short in accurately reconstructing the mass spectrum. Understanding why
these models fail to correctly capture the mass spectrum of the 𝐴03 catalog and conse-
quently introduce bias in 𝐻0 estimation is not straightforward. Initially, one hypoth-
esis suggested that the PLP and MLTP models might be capturing local peaks in the
mass spectrum at a fixed redshift that evolve with redshift. Indeed, from the pos-
terior distributions, it was observed that these models identified local peaks at low
masses (approximately 17𝑀⊙) with a large standard deviation, along with a higher
peak around 30𝑀⊙. To explore this hypothesis, a PPC was constructed, as depicted in
Fig. 3.16, by dividing the true population into redshift bins. Unfortunately, the PPC
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does not clearly indicate any discrepancy between the population reconstruction and
any of the mass spectra for the respective redshift bins. Given the inconclusive nature
of this test in elucidating the origin of the 𝐻0 bias, we investigated additional studies,
which are further discussed below.

Consistent results have been replicated across approximately ∼ 15 distinct simu-
lation realizations for each of the three posterior distributions depicted in Fig. 3.14.
Fig. 3.17 presents the PP plot for one of the three inferences of the Hubble constant
from the A03 BBH catalog, using the PLP mass model. From the PP plot, again there
is a strong support for a biased estimation of the Hubble constant, since the histogram
goesway above the expected fluctuations intervals for the Spectral siren analysis. And
in agreement with the posterior found in Fig. 3.14, the Hubble constant measurement
with the PLP mass model is overestimated. The remaining two PP plots, based on the
BPL and MLTP mass models are displayed in the App. B.2.4.
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Figure 3.17: PP plot obtained from ∼ 15 independent population realizations simulated from
the A03 BBH catalog. The spectral siren inference is donewith the PLPmassmodel. The gray
contours are the 99.7%, 95.0% and 68.0% C.I. respectively from lighter to darker, showing the
expected fluctuations due to the finite size of realizations.

3.4.3 Investigating the sources of the 𝐻0 bias: Blinding the mass-redshift relation

To explore the potential impact of redshift evolution of the mass spectrum on the in-
troduction of an 𝐻0 bias, we conducted a simulation aimed at isolating the effects of
redshift on the mass spectrum. In this simulation, we “blinded” the mass spectra of
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Figure 3.18: Marginal posteriors of the inferred Hubble constant 𝐻0 resulting from the Spec-
tral siren analysis of 2000 GW observations simulated from the 𝐴03 BBH catalog. In blue
using the BPLmodel, in light blue with the PLP and the in green with the MLTPmass model.
The red vertical line is the true value of 𝐻0 in the catalog, fixed at 𝐻0 = 67.7 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1.

the 𝐴03 catalog to redshift evolution. This was achieved by randomly shuffling the
pairs of BBH merger redshifts and masses. By doing so, we artificially eliminated the
redshift dependency of the mass spectrum while preserving its inherent shape and
complexity. For the Bayesian inference process, we focused solely on PLP and MLTP
mass models, as these models exhibited a notable bias in 𝐻0. This selective approach
allowed us to concentrate on the models demonstrating significant deviations and ex-
plore the effects of redshift evolution in a controlled setting.

The result of the joint inferences conducted with the PLP and MTLP mass model
is depicted in Fig. 3.18. For the PLP model, we ascertain Hubble constant to be 𝐻0 =
67+9

−8 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1, whilewith theMLTPmodel, yields𝐻0 to be𝐻0 = 75+7
−8 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1,

with the true value of 𝐻0 falling within the 68.3% confidence interval of the posterior
distribution. Fig. 3.19 displays the PPC plot for this test. The plot overlays the re-
constructions for the original 𝐴03 catalog and the catalog after the redshift-blinding
procedure. From the perspective of the detector frame, the two reconstructed distri-
butions exhibit no significant disparities. However, when viewed from the source
frame standpoint, the PLP model, when applied to the redshift-blinded 𝐴03 catalog,
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Figure 3.19: Posterior predictive check for the Spectral siren analysis of 2000 GW observations
simulated from the 𝐴03 BBH catalog. This figure shows the same results as Fig. 3.15, except
for the true population of source frame masses, that have been decomposed into several red-
shift bins (colored histograms) from 𝑧 = 0 to 𝑧 = 2. Similarly, the colored contours are the
90% C.L. reconstructed from the Bayesian inference.

demonstrates improved reconstruction of BBH masses within the range of 30𝑀⊙ to
60𝑀⊙. Though the reconstruction of the mass spectrum above 60𝑀⊙ remains subpar,
the PLP model for the non-redshift evolving 𝐴03 catalog manages to encompass the
true value of 𝐻0. Consequently, the reconstruction of the BBH CBC merger rate as
a function of redshift exhibits slight enhancement, resulting in an underestimation
of approximately 20% to 30% of the true CBC merger rate. Similar results have been
obtained for the MLTP model as well.

It is crucial to highlight that even after neutralizing the redshift evolution of the
𝐴03 mass spectrum, the PLP andMLTPmodels remain unable to fully reconstruct the
source frame distributions. Consequently, we anticipate the persistence of a system-
atic bias on 𝐻0, even though concealed by the large statistical uncertainties evident in
fig. 3.18. Identifying the root cause of these systematic biases is a complex endeavor.
However, based on the tests conducted, we can reasonably infer that the redshift evo-
lution of the mass spectrum likely serves as the predominant source of the bias in 𝐻0.
Despite our efforts to mitigate its influence, the residual impact of this evolutionary
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aspect underscores the intricate challenges involved in accurately estimating funda-
mental cosmological parameters from GW observations.
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Figure 3.20: PP plot obtained from ∼ 20 independent population realizations simulated from
the A03 BBH catalog, where the redshift evolution of the mass spectrum has been artificially
removed. The spectral siren inference is done with the PLP mass model. The gray contours
are the 99.7%, 95.0% and 68.0% C.I. respectively from lighter to darker, showing the expected
fluctuations due to the finite size of realizations.

Through simulations conducted with 20 different population realizations, it has
been verified that the value of 𝐻0 obtained by the PLP and MLTP models from the
redshift-blinded 𝐴03 catalog consistently remains unbiased. Fig. 3.20 shows the PP
plot of these repeated analysis with the PLP mass model. In contrast with Fig. 3.17,
where the PP plotwas showing a clear deviation from the diagonal, now the histogram
stays close to it and most of the curve is contained in the statistical fluctuations con-
tours. The behavior of the histogramon this PP plot is the one of an unbiased inference,
but where the final posterior is not fully constrained in the prior range (which is the
case for the Hubble constant). The PP plot for the analysis with theMLTPmassmodel
can be found in App. B.2.5.

3.5 CONCLuSION
In this chapter, we have delved into the intricate relationship between systematic bi-
ases affecting the estimation of the Hubble constant (𝐻0) and the reconstruction of
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the BBH mass spectrum within the framework of Spectral Siren Cosmology. Through
a series of simulations utilizing BBH merger catalogs generated with three prevalent
mass models from the literature, alongside a synthetically simulated BBH catalog, we
have explored various factors contributing to potential biases in 𝐻0 estimation.

In Sec. 3.2, we demonstrated the efficiency of our python framework to quickly gen-
erate GW observations from a set of source frame masses and redshift. From these
GW observations, we validated the framework simulating error budgets for each of
the parameters and passing them through the Spectral siren inference of ICAROGW. We
successfully recovered all population parameters from this inference, as well as the
Hubble constant.

In Sec. 3.3, our investigations unveiled that simple phenomenological models de-
void of sharp features could introduce biases on 𝐻0, particularly if the true BBH pop-
ulation includes local overdensities of sources. Furthermore, we elucidated how the
redshift evolution of source frame mass features can induce biases in 𝐻0 estimation if
not adequately accounted for in the mass models. Specifically, we demonstrated that
the Hubble constant acts as a compensatory parameter, shifting to higher values if the
true source mass spectrum is underestimated, and vice versa if overestimated.

Moving to Sec. 3.4, utilizing the 𝐴03 BBH catalog, we showcased that evenwhen the
detector frame is well-reconstructed by the inference, a biased value of 𝐻0 may still
occur. Notably, deviations of up to 2𝜎 and 3𝜎 from the injected value were observed
for the MLTP and PLP model inferences, respectively. The discrepancy between the
inferred populations in the source frame among different models was found to be
related to their unique responses to GWevents, prompting adjustments in the inferred
populations aligned with observed data. Moreover, we demonstrated that the 𝐻0 bias
obtained with the PLP and MLTP mass models vanishes when the redshift evolution
of the source mass spectrum is removed from the population.

Our findings demonstrate the limitations of commonly used mass models, namely
the PLP, BPL, and MLTP models, in conjunction with the spectral siren analysis for
GW cosmology, especially in scenarios where the BBH population exhibits even slight
redshift evolution of its mass spectrum. Additionally, we highlight the potential for
biased 𝐻0 estimation arising from mismatches in the BBH mass distribution’s sharp
structures. These insights caution against the indiscriminate use of non-evolving para-
metric mass models, emphasizing the importance of incorporating models capable of
absorbing effects such as redshift evolution and possessing adequate flexibility to ac-
commodate unforeseen mass features. Looking ahead, future GW cosmology studies
employing the spectral sirenmethod should adopt sourcemassmodelswith enhanced
capabilities to mitigate biases. This entails accounting for redshift evolution effects
and possessing sufficient degrees of freedom to adapt to variations in the true distri-
bution of BBHs in the Universe. Failure to address these considerations may compro-
mise the accuracy of future Hubble constant measurements, particularly in scenarios
involving numerous detected GW events.
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This chapter is based on the work of a published article, in which I am the first author
[36]. The chapter follows a similar overview as the original article. In this paper,
we explore the relation between the spin magnitude and the mass of binary black
holes using gravitational wave data from the third observing run of the LVK scientific
collaboration. We developed new population models, that allow for different type of
evolution of the spin parameters with respect to the source frame masses. We looked
at the possibility of a linear evolution of the dimensionless spin magnitude with the
mass, a mass transition between two distinct spin distributions and the superposition
of two completely independent subpopulations, with different spin distributions.
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4.1 INTRODuCTION
The astrophysical mechanisms governing the formation of stellar-mass binary black
holes are still very uncertain, and numerous models and theories are still under de-
bate today. As discussed in Sec. 1.3, BBHs are believed to emerge from three main
formation channels: the isolated evolution of stellar binaries, the dynamical assembly,
or the hierarchical merger [33, 41, 42, 153–156]. These channels can significantly influ-
ence the various intrinsic properties of BBH systems such as their masses, their spins
magnitudes, orientations, and eccentricity. The impact of formation channels on the
properties of BBHs can be so important that the presence of correlation between the
spin and the mass of BBHs has been proposed as a smoking gun for the existence of
such subpopulations of black holes. These subpopulations could originate from the
distinct formation channels mentioned above. As an illustration, 1𝑠𝑡-generation BHs
formed from isolated stellar binaries are expected to have masses ≤ 50 𝑀⊙, so before
the PISN gap [115], and relatively small spins aligned to their orbital angular momen-
tum. However, 𝑛𝑡ℎ-generation BHs born from previous mergers and binaries formed
in dense stellar environments, are expected to have misaligned and higher spin mag-
nitudes (𝜒 ∼ 0.7) [157], induced by the pre-merger orbital angular momentum.

Since the first detection of GWs in 2015, emitted by the merger of two stellar-mass
BHs [6], we have gained a new powerful probe to study these systems in great details.
GWs have emerged as an invaluable means to directly examine and understand the
astrophysical characteristics of BBHpopulations and the intricate influence of their en-
vironments on formation processes. The release of the largest catalogs of GWevents to
date, GWTC-2.1 and GWTC-3, in 2021 by the LVK collaboration has helped us further
advanced our understanding of BBH populations [7, 27]. The latest catalog includes
almost 90 detected coalescences, with a large majority of them being BBH events. The
large amount of GW detection led to several recent population studies, utilizing both
parametric and non-parametric Bayesian inferences [101, 136, 147, 158–161]. The latest
population results using data from the GWTC-3 catalog find that: (i) The dimension-
less spin magnitude distribution of BBHs favors lower values 𝜒 ≤ 0.4 [147]. (ii) There
is no compelling evidence for the existence of a subpopulation of BBHswith zero spins
[162–166]. (iii) The BBH spin component aligned to the orbital angular momentum
does not significantly evolve with the mass of the compact object [147]. (iv) Higher
spin seems to correlate with asymmetric mass binaries [167–169].

In this chapter, we focus on the potential correlations between the spin magnitude
of BBHs and their masses, and the implications such correlations would mean for the
formation channels of these systems. We study GW data from the third observing
run, in particular the GWTC-2.1 and GWTC-3 catalogs, with new parametric models
developed to explore the possibility of spin-mass correlation. The chapter is struc-
tured as follows. In Sec. 4.2, we present hints from the GWTC-3 catalog that may indi-
cate the presence of a correlation between the spin and the mass of binary black holes.
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We introduce in Sec. 4.3, three families of new phenomenological parametric mod-
els developed for population studies within a Bayesian inference framework. Sec. 4.4
presents the reconstructed spin distributions inferredwith the population parameters.
In Sec. 4.5, we validate our study through two additional analyses, a mock data chal-
lenge in which we simulate fake GW signals and an inference on real but modified
GW signals. We conclude in Sec. 4.8.

4.2 FIRST HINTS FROM THE GwTC-3 CATALOG
For this analysis, we select a subset of 59 confident GW events from the third observ-
ing run, having a false alarm rate (IFAR) 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟. These events have been picked
from the official catalog GWTC-2.1 and GWTC-3, released publicly in 2021 1. The es-
timated values of the spin magnitudes and source frame masses of these GW events
are depicted in Fig. 4.1, with their respective errors obtained from the parameter esti-
mation samples, provided by [27]. From Fig. 4.1, the data from the third observing
run suggest the presence of a correlation between the dimensionless spin magnitude
and the source mass of the BBHs selected. The correlation seems to indicate that low
mass events are more susceptible to have low spin magnitudes, while more massive
events have higher spin magnitudes. However, based only on this figure, this hint of
the existence of a correlation in the data might not be real nor physical. Since the spin
magnitudes and masses in Fig. 4.1 correspond to the ones of the detected GW events,
this correlation may be induced solely by selection effects. For example, the current
detectors could be less sensitive to systems having massive BHs and low spins, hence
the lack of GW events in this part of the parameter space.

In this picture, we choose to explore the use of new phenomenological parametric
population models (introduced in the following section), in order to model this corre-
lation while also doing the deconvolution of the possible presence of selection biases.
We estimate the parameters governing the population properties of BBHs, including
their masses, CBC merger rate and spins, based on this set of 59 detected GW events.
This analysis is conducted within the hierarchical Bayesian inference framework of
ICAROGW. To estimate the selection effects within the hierarchical Bayesian inference,
we utilize the public LVK set of detected injections 2, covering the entire parameter
space of interest [147, 170]. Even if the analysis framework is the same as in Sec. 3,
since we here focus on the interplay between population parameters and not the cos-
mology, we fix the cosmological parameters to the Planck 2015 measurements [138].

1 The C01:mixed samples we used can be found at https://zenodo.org/records/5546676.
2 The injection set we used can be found at https://doi.org/10.5281/zenodo.7890398.
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Figure 4.1: Scatter plot of the GW events used in the analysis. They correspond to the BBH
GW events from GWTC-2.1 and GWTC-3 catalogs, selected with an 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟. The x-axis
shows the source framemasses 𝑚𝑠 and the y-axis displays the dimensionless spin magnitude
𝜒. The error bars are the 1𝜎 uncertainties of the official LVKparameter estimations C01:mixed
samples. The blues crosses indicate the primary mass and spin parameters, while the red
ones are for the secondary component.

4.3 NEw pHENOMENOLOGICAL MODELS FOR BBH SuB-
pOpuLATIONS SEARCH

To characterize the interplay between mass and spin, we construct three families of
parametric models that will be used within the hierarchical Bayesian inference frame-
work of ICAROGW. The three families are namely, the EVOLVING models, the TRANSITION
models and the MIXTURE models. The three classes of models have a singular way to in-
clude correlation between the spin and mass parameters, either via a direct evolution,
a mass transition or the existence of two independent populations. Hence, each class
of model has a specific parameterization for the BBH merger rate, from which the hi-
erarchical likelihood is constructed. The following sections present the characteristics
of each class of model, as implemented in our analysis pipeline.
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4.3.1 The vanilla model

In order to assess the capabilities of the new phenomenological models, it is crucial to
have a reference setup. The VANILLA model does not incorporate any sort of spin-mass
correlation, and is built from the currently used parametric model within the LVK
collaboration. This model will help us understand what a regular inference would
produce, and also set a baseline result to performmodel selection study through Bayes
factor estimation.

For the VANILLA model, the BBH merger rate function is parameterized as

𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑑𝑧𝑑𝑡𝑠

(Λ) = 𝑅(𝑧; Λ)𝑑𝑉𝑐
𝑑𝑧 𝑝𝑝𝑜𝑝(𝑚⃗𝑠|Λ)𝜋( ⃗𝜒, cos ⃗𝜃|Λ), (4.1)

where the vectors indicate each component of the two binarymasses, spinmagnitudes
and tilt angles. This parameterization is identical to the regular “spectral siren” setup
presented in Sec. 2.5. The sets of priors are listed in table. C.1. The rate functionR(𝑧; Λ)
is modelled after the Madau&Dickinson star formation rate, following [143]

𝑅(𝑧; Λ) = 𝑅0[1 + (1 + 𝑧𝑝)−𝛾−𝑘] (1 + 𝑧)𝛾

1 + ( 1+𝑧
1+𝑧𝑝

)
𝛾+𝑘 , (4.2)

and the mass distribution is parameterized with the preferred GWTC-3 mass model,
the POWER LAW + PEAK model such that

𝜋(𝑚1,𝑠|𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥, 𝛼) = (1 − 𝜆)P(𝑚1,𝑠|𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥, −𝛼) +
𝜆G(𝑚1,𝑠|𝜇𝑔, 𝜎) , (0 ≤ 𝜆 ≤ 1) (4.3)

𝜋(𝑚2,𝑠|𝑚𝑚𝑖𝑛, 𝑚1,𝑠, 𝛽) = P(𝑚2,𝑠|𝑚𝑚𝑖𝑛, 𝑚1,𝑠, 𝛽) , (4.4)

where P is the truncated powerlaw and G the extra Gaussian component. Finally, the
spin distribution is chosen to be a DEFAULT spin model following Sec. 2.6:

𝜋( ⃗𝜒, cos ⃗𝜃|Λ) = 𝐵𝑒𝑡𝑎(𝜒1|𝛼, 𝛽)𝐵𝑒𝑡𝑎(𝜒2|𝛼, 𝛽) ×
𝜋(cos ⃗𝜃|𝜉 , 𝜎𝑡), (4.5)

with
𝜋(cos 𝜃1,2|𝜁 , 𝜎𝑡) = 𝜉G[−1,1](cos 𝜃1,2|1, 𝜎𝑡) + 1 − 𝜉

2 , (4.6)

where G[−1,1](cos 𝜃𝑖|1, 𝜎𝑡) is a truncated Gaussian between −1 and 1.
With this parameterization, any correlation between the spin and the mass param-

eter if it exists, is not taken into account by the model. The mass, spin and redshift
distributions are independent of one another, hence they would not be sensitive to
correlations between them if present in the data.
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4.3.2 The evolving model

Our first new class of models is called EVOLVING model, which looks for the existence
of a linear correlation between the spin magnitude and the mass of the primary and
secondary components in a binary. It describes the spin magnitude as a truncated
Gaussian distribution between 0 and 1, with its mean and variance that evolve linearly
with the value of the source frame mass. The distribution of the tilt angles follows
the DEFAULT spin model as introduced in Sec. 2.6, where a fraction of the population
has nearly aligned spins with the orbital angular momentum and the other fraction is
isotropic. The new BBH merger rate function is given by

𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑑𝑧𝑑𝑡𝑠

(Λ) = 𝑅(𝑧; Λ)𝑑𝑉𝑐
𝑑𝑧 𝑝𝑝𝑜𝑝(𝑚⃗𝑠|Λ)𝜋( ⃗𝜒, cos ⃗𝜃|𝑚⃗, Λ), (4.7)

The difference with the VANILLA model is hidden in the spin distribution, which is
now conditioned on the value of the source mass. The total spin distribution is here
factorized as

𝜋( ⃗𝜒, cos ⃗𝜃|𝑚⃗, Λ) = 𝜋( ⃗𝜒|𝑚⃗, Λ)𝜋(cos ⃗𝜃|, Λ). (4.8)
The spin magnitude 𝜋( ⃗𝜒|𝑚⃗, Λ) has a direct dependency on the source mass, while the
angular distribution 𝜋(cos ⃗𝜃|, Λ) is chosen independent as in the DEFAULT spin model.
In addition, we assume that the two components for the spin magnitudes can be fac-
torized such that

𝜋( ⃗𝜒|𝑚⃗, Λ) = 𝜋(𝜒1|𝑚1, Λ)𝜋(𝜒2|𝑚2, Λ). (4.9)
The spin magnitude for this class of models is written as

𝜋(𝜒|𝑚, Λ) = G[0,1](𝜒|𝜇(𝑚), 𝜎(𝑚)), (4.10)

whereG[0,1] is the truncatedGaussiandistribution, 𝜒 the spinmagnitude and (𝜇(𝑚), 𝜎(𝑚))
are the mean and variance approximated with a linear first order Taylor’s expansion
such that:

𝜇(𝑚) = 𝜇0 + 𝜇̇𝑚 (4.11)
𝜎(𝑚) = 𝜎0 + 𝜎̇𝑚. (4.12)

For this model, the additional population parameters inferred are: 𝜇0, 𝜎0, 𝜇̇ and 𝜎̇ .
The rate R(𝑧; Λ) and mass 𝑝𝑝𝑜𝑝(𝑚⃗𝑠|Λ) models for the EVOLVING class are kept to be a
Madau&Dickinson and a POWER LAW + PEAK as in the VANILLA parameterization. The
prior ranges are summarized in table. C.4, table. C.8 and table. C.6. The EVOLVING
model is an extension of the VANILLA model, most of the intrinsic properties are mod-
eled with the same distributions, except the dimensionless spin magnitude.

4.3.3 The transition model

The second class is named TRANSITION model. They incorporate a mass transition be-
tween two distinct populations with separate spin magnitude distributions. Within
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this class, we construct two different models, the BETA TO BETA and the BETA TO GAUS-
SIAN. In the first case the two spin magnitude distributions are modeled by two Beta
distributions, while the second by a Beta distribution to a Gaussian distribution. The
transition between the two distribution is handled using a logistic function (window),
whose midpoint and steepness are described by new parameters, added to the infer-
ence. The BBH merger rate function, mass distribution and merger function are, for
both TRANSITION models, the same used for the EVOLVING model. However, the dimen-
sionless spin magnitude is built differently.

The BETA TO GAUSSIAN model parameterizes the spin magnitude as a mass transi-
tion between a distribution described by a 𝐵𝑒𝑡𝑎(𝜒|𝛼, 𝛽), into a truncated Gaussian
G[0,1](𝜒|𝜇, 𝜎). The total spin magnitude distribution is given by

𝜋(𝜒|𝑚, Λ) = 𝑊(𝑚; 𝑚𝑡, 𝛿𝑚𝑡)𝐵(𝜒|𝛼, 𝛽)
+(1 − 𝑊(𝑚; 𝑚𝑡, 𝛿𝑚𝑡))G[0,1](𝜒|𝜇, 𝜎), (4.13)

where 𝑊(𝑚; 𝑚𝑡, 𝛿𝑚𝑡) is the logistic function which smoothly transitions from 1 to 0
as the source mass increases. The parameter 𝑚𝑡 indicates the value in source mass at
which the transition between the spin distributions happens, and 𝛿𝑚𝑡 is the steepness
of this mass-transition. This function is defined as a regular window function such
that

𝑊(𝑚; 𝑚𝑡, 𝛿𝑚𝑡) = 1

1 + 𝑒
𝑚−𝑚𝑡

𝛿𝑚𝑡

. (4.14)

The BETA TO BETA is very similar to the BETA TO GAUSSIAN, the only difference is the
second spin magnitude distribution in which the model transitions to, modeled as

𝜋(𝜒|𝑚, Λ) = 𝑊(𝑚; 𝑚𝑡, 𝛿𝑚𝑡)𝐵(𝜒|𝛼1, 𝛽1)
+(1 − 𝑊(𝑚; 𝑚𝑡, 𝛿𝑚𝑡))𝐵(𝜒|𝛼2, 𝛽2), (4.15)

where the logistic function is the same as in Eq. 4.14. The prior ranges chosen for the
Bayesian inference are listed in table. C.4, table. C.9, table. C.10 and table. C.6. This
family of models aims to evaluate the presence of two formation channels populating
the overall BBH spectrum.

4.3.4 The mixture model

The last family of models is called MIXTURE models. These models parameterize the
overall population as the sum of two independent subpopulations [171, 172]. The
two subpopulations, population 1 (Pop1) and population 2 (Pop2), are combined us-
ing a mixing fraction parameter. The CBC merger rate of the MIXTURE family is hence
described by a superposition of two distinct CBC merger rates, one for each popula-
tion:

𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑑𝑧𝑑𝑡𝑠

= 𝜆𝑝𝑜𝑝
𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑑𝑧𝑑𝑡𝑠

(Λ𝑃𝑜𝑝1) + (1 − 𝜆𝑝𝑜𝑝) 𝑑𝑁𝐶𝐵𝐶
𝑑𝜃𝑑𝑧𝑑𝑡𝑠

(Λ𝑃𝑜𝑝2), (4.16)
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where 𝜆𝑝𝑜𝑝 is the mixture fraction between the two subpopulations. The parameters
Λ𝑃𝑜𝑝1 and Λ𝑃𝑜𝑝2 represent the hyperparameters for each subpopulation respectively,
they are independent of one another. Each population has uncorrelated mass, spin
and redshift distributions, in opposition to the EVOLVING and TRANSITION families. All
models from the MIXTURE family have their CBC merger rate functions that follow
theMadau&Dickinson parameterization and their spin distributions the DEFAULT spin
model. Within the MIXTURE family, we construct three population models: the MIXTURE
VANILLA, the MIXTURE PAIRED and the MIXTURE PEAK. The prior ranges for all three flavors
of the MIXTURE are summarized in table. C.2 table. C.3, table. C.7 and table. C.5.

MIXTURE VANILLA: The population 1 of the MIXTURE VANILLA model is constructed
with a POWER LAW + PEAK for the masses, a DEFAULT spin model for both the spin mag-
nitudes and tilt angles, and Madau&Dickinson rate for the redshift distribution. The
population 2, on the other hand, incorporates a simple truncated POWER LAW for the
masses. The spin and rate distributions have the same parameterization as the popu-
lation 1.

MIXTURE PEAK: For the MIXTURE PEAKmodel, the population 1 is modeled similarly as
the population 1 of the MIXTURE VANILLA, with a DEFAULT spin model and the Madau &
Dickinson rate. However, the primary and secondary masses of the population 1 are
now given by a POWER LAW. For the population 2, the masses are parameterized with
a Gaussian distribution of mean 𝜇𝑔 and standard deviation 𝜎𝑔. We also add an extra
constraint to ensure that the primary and secondary masses respect the restriction
𝑚1 > 𝑚2, as in the POWER LAW + PEAK model. The spins and redshift distributions are
modeled with the same distribution as the population 1. The MIXTURE PEAK is built
especially to look for a different spin distribution within the main feature of the mass
spectrum. A recent study based on non-parametric inference, has found light support
for the existence of a different spin distribution, located in this mass feature around
35 𝑀⊙, with a slightly different effective spin distribution [173]. With the MIXTURE PEAK,
we aim to test this result.

MIXTURE PAIRED: The MIXTURE PAIRED is a variation of the MIXTURE VANILLAmodel. The
distributions of the spins, redshift and primary masses of the two subpopulations are
still parameterized as in the MIXTURE VANILLA, with the difference that the secondary
masses are now forced to have the same distribution as the primary masses. Hence,
if we model the distribution of the primary masses with a POWER LAW + PEAK, the sec-
ondary masses will also be distributed with a POWER LAW + PEAK. Mathematically, the
mass distribution is generalized such that:

𝑝𝑝𝑜𝑝(𝑚1, 𝑚2|Λ) ∝ 𝑝𝑝𝑜𝑝(𝑚1|Λ)𝑝𝑝𝑜𝑝(𝑚2|Λ) [𝑚2
𝑚1

]
𝛽

Θ(𝑚1 − 𝑚2), (4.17)

where Θ(𝑚1−𝑚2) is theHeaviside step function forcing 𝑚1 > 𝑚2, and an extra weight
which depends on the two masses is included. The secondary masses are no longer
conditioned as a simple POWER LAW on the primary mass.
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4.4 THE SpIN MAGNITuDE OF BLACk HOLES EvOLvES
wITH THEIR MASSES

In this section, we use the new parametric population models described in Sec. 4.3 to
infer the population properties of 59 GWeventswith 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟, taken from the third
observing run of the LVK detector network and presented in Fig. 4.1.

4.4.1 Models selection

Table. 4.1 reports the Bayes factors and themaximumof log-likelihood ratios estimated
between the baseline analysis (VANILLA model) for which the spins are not correlated
to the masses and the new parametric population models presented in Sec. 4.3. We

Model log10 B log10 L𝑚𝑎𝑥

EVOLVING GAUSSIAN -0.48 2.94
BETA TO GAUSSIAN 2.36 3.77
BETA TO BETA 2.55 3.91
MIXTURE VANILLA 2.78 4.66
MIXTURE PEAK 1.64 1.25
MIXTURE PAIRED 3.78 5.99

Table 4.1: Base 10 logarithm of the Bayes factors (second column) and the logarithm of the
maximum likelihood ratio (third column), for the six models discussed in the section above,
compared to the reference model. The reference model is the vanilla non evolving analysis.

recall that the baseline analysis inference has been done using a POWER LAW + PEAK
mass model, a DEFAULT spin model and the Madau & Dickinson rate model, following
state-of-the-art literature [147].

The 𝑙𝑜𝑔10 Bayes factors reveal that all the models that incorporate some spin-mass
correlation, either as a mass transition between two subpopulations or via superpo-
sition of two subpopulations are strongly preferred against the non-evolving model,
and this preference is still true despite the increased dimensionality of the fit. The new
models that parameterized a spin-mass correlation have a significantly higher num-
ber of population parameters than the non-evolving one. The value of the Bayes fac-
tors hence highlight that our models are truly favored by the data, the maximum log-
likelihood ratios also support this finding. For the EVOLVING GAUSSIAN model, which
parameterize the spin-mass interplay as a continuous and linear evolution, the close
to zero Bayes factor indicated that thismodel is not preferred nor excluded, the current
GW data at our disposable are not sufficient to decide.

To understand if the values for the Bayes factor can be trusted, we performed sev-
eral tests which are discussed in more details in Sec. 4.5. First, we made sure that the
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values of the Bayes factor are actually driven by the inclusion of a spin-mass relation
in our models, we found that analysis performed with only the mass information in-
duce Bayes factor values that can not discriminate between the models. Secondly, we
verified that our spin-mass models can be confidently excluded compared to the base-
line analysis if the GWdata present no spin-mass correlation. To do so we simulated a
population of BBHs without any spin-mass correlation (see Sec. 4.5.1). Lastly, we also
found that the Bayes factor become inconclusive when blinding real data to possible
spin-mass correlation (see Sec. 4.5.2).

4.4.2 Evolution as a transition in mass between subpopulations

We divide the analysis in twomain sections, the first one being the results of the EVOLV-
ING and TRANSITION models, and the second one the results from the MIXTURE models.
Fig. 4.2 shows the reconstructed dimensionless spin magnitude distributions for the
EVOLVING GAUSSIAN, BETA TO GAUSSIAN and BETA TO BETA models. The median values of
the distributions are displayed with plain lines and the 90% and 98% C.L. with the
colored contours. We binned the reconstruction of the spin magnitude in ten source
mass slices, ranging from 10 𝑀⊙ to 100 𝑀⊙, in order to visualize the presence of any
form of evolution. We find that all the models reconstruct a transition from a popu-
lation described by a low-spin magnitude distribution to a population described by a
higher andwider spinmagnitude distribution. All threemodels infer a lowly spinning
population (around 𝜒 ∼ 0.2) of compact objects at low masses transitioning around
40 − 50𝑀⊙ to another population for which the spin magnitude is surely higher than
𝜒 = 0.5. We also note that the high mass distribution of the spin magnitude is less
constrained than the low mass part, this is due to the lack of GW events in this mass
range. However, even if the distribution presents larger uncertainties, the evolution
of the spin magnitude is still significant.

Fig. 4.3 displays the corner plot of the population parameters governing the evo-
lution of the spin magnitude for this model. Either the mean of the Gaussian peak
does not evolve with the mass, but the width of the distribution increases. This situ-
ation is given by values of 𝜇̇ close to zero and non-zero value of 𝜎̇ . Or the mean of
the Gaussian is shifting as the mass increases (𝜇̇ > 0), and its width stays nearly fixed
with 𝜎̇ ∼ 0. The EVOLVING GAUSSIAN model describes the mass-spin evolution in two
possible ways that can not be truly disentangled from the current data. The important
result is that, either way, the distribution of the spin magnitude is changing as the
mass range increases.

The results from the BETA TO GAUSSIAN and BETA TO BETA models that parameterize
a transition between two subpopulations (middle and right column of Fig. 4.2) indi-
cate the existence of a transition between two distinct spin distributions, happening
around 40 − 50 𝑀⊙. Fig. 4.4 shows the corner plot of the two estimated population
parameters sensitive to the mass transition for the BETA TO BETA and BETA TO GAUSSIAN
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Figure 4.2: Joy plot of the probability density functions of the dimensionless spin magnitudes
𝜒, reconstructed from the population inference on the 59 BBHs with 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟 from the
GWTC-2.1 and GWTC-3 catalogs. The dimensionless spin magnitudes were reconstructed
using the EVOLVING GAUSSIAN model (left column), the BETA TO GAUSSIAN model (middle col-
umn) and the BETA TO BETA model (right column). Each row corresponds to a slice in source
frame mass, from 10 𝑀⊙ to 100 𝑀⊙, in order to highlight the spin magnitude evolution and
transitions across different mass ranges. The plain lines are the median value of the spin
magnitudes and the colored contours are the 90% and 98% C.L.

models. The density of the contours for both models tends to be more concentrated
at low 𝑚𝑡 and low 𝛿𝑚𝑡. The reconstruction of the logistic function 𝑊(𝑚; 𝑚𝑡, 𝛿𝑚𝑡) in
Fig. 4.5 also support this fast and steep transition between the two spin magnitude
distributions for both models. From the 59 GW events used in the Bayesian analy-
sis, there is a preference for a steep transition around 40 𝑀⊙, rather than a smoother
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Figure 4.3: Corner plot of the population parameters 𝜇̇ and 𝜎̇ of the EVOLVING GAUSSIAN model,
which represent the slope parameters of the evolving spin distribution of 𝜇 and 𝜎 . They are
obtained from the population inference of 59 GW events from the GWTC-2.1 and GWTC-3
catalogs. The contours are the 90% C.L.

and wider transition at higher masses ∼ 55 𝑀⊙. Even if the other transition scenario
can not be completely ruled out, both models indicate a transition in spin magnitudes
around 40 − 55 𝑀⊙ from slower to more rapidly spinning objects.

Beside the population parameter governing the spin magnitude distribution, we
also estimate all the other population parameters, for the masses, the CBC merger
rate and the tilt angles of the spins. We do that for the following reason, from Sec. 3
we saw that Bayesian inferencewith parametricmodels can be subject to biases if some
parameters are wrongly estimated. The spin-mass correlation that we find in Fig. 4.2
may be induced by awrong reconstruction of the BBHmass spectrumwith ourmodels
for example. With all three models, we reconstruct a mass distribution in excellent
agreement with our baseline analysis and with the one inferred in [147], that uses
uncorrelated spin-mass models. The reconstructed mass spectrum with the different
analysis is shown in Fig. C.2 of App. C.1. In addition, the reconstructed CBC merger
rate and angular spin distribution of the tilt angle, for all three models, are also found
to be in good agreement with our baseline analysis.
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Figure 4.4: Corner plot of the mass transition point 𝑚𝑡 and the transition steepness 𝛿𝑚𝑡 popu-
lation parameters from the BETA TO BETA model in purple and BETA TO GAUSSIAN model in blue.
These results have been obtained from the population inference of 59 GW events from the
GWTC-2.1 and GWTC-3 catalogs.

In summary, both the EVOLVING and TRANSITION models used in the Bayesian infer-
ence found significant support for an evolution of the spin magnitude distribution.
Since the TRANSITION models are strongly preferred by the Bayes factor, we rather de-
scribe this spin-mass correlation as a transition between two spin distributions: one at
low masses with low spin magnitudes and a second at higher masses with spin mag-
nitude higher than 0.5. We find evidence that the transition should happen quickly,
around 45 𝑀⊙.

4.4.3 Evolution as the mixing of two independent subpopulations

The results from the previous section support a spin-mass interplay induced by a tran-
sition happening around 40−55 𝑀⊙ between two populationswith different spinmag-
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Figure 4.5: Reconstruction of the window function 𝑊(𝑚; 𝑚𝑡, 𝛿𝑚𝑡) as a function of the source
mass, obtained from the population inference of 59 GW events with 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟 from the
GWTC-2.1 and GWTC-3 catalogs with the BETA TO BETA (pink) and BETA TO GAUSSIAN (blue)
models. The light pink denotes is the prior used for the inference.

nitude distributions. From the Bayesian inference with the MIXTURE models, we want
to understand if this evolution could be consistent with the overlap of two indepen-
dent subpopulations of BBHswith separate and uncorrelatedmass, spins and redshift
distributions. These subpopulations could bring new evidence of the existence and
impact of several formation channels for BBHs systems.

Fig. 4.6 depicts the reconstructed spin magnitude and inclination angles inferred
from the three flavors of the MIXTURE models. We show the individual distribution
estimated for the population 1 and 2, as well as the combined population. For the MIX-
TURE VANILLA and MIXTURE PAIRED inferences, we set the primary population to describe
the BBHs with masses ≤ 40 − 60 𝑀⊙, based on the results obtained the EVOLVING and
TRANSITIONmodels. For the MIXTURE PEAK on the other hand, the secondary population
is set to be a Gaussian in the 20 − 50 𝑀⊙ region, as motivated by [173].

The common result we find among all MIXTURE models is that we recover a primary
population of BBHs (Pop1), characterized by low masses and small values of spin
magnitude, peaking around 𝜒 ∼ 0.1. This population 1 represents a large fraction of
the total population. The second population (Pop2) is found at higher masses and
supports distributions of the dimensionless spin magnitude peaking around 𝜒 ∼ 0.7.
As shown in Fig. 4.7, for all three MIXTURE models the data indicate that the population
1 accounts for almost 98% of the entire population. In terms of model selection, the
MIXTURE PAIRED and the MIXTURE VANILLA seems to be favored according compared to the
MIXTURE PEAK to the Bayes factor. In other words, the distributions of the GW data are
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Figure 4.6: Reconstructed spectra of the spin magnitude distributions 𝜒 and the cosine of the
tilt angle 𝑐𝑜𝑠𝑡 obtained with all three flavors of the MIXTURE models, namely MIXTURE VANILLA
(top row), MIXTURE PEAK (middle row) and MIXTURE PEAK (bottom row). The population infer-
ence has been done on the 59 GW events with 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟 from the GWTC-2.1 and GWTC-3
catalogs. The red curves (Pop1) and blue curves (Pop2) are the estimated distributions for
each population. The light blue curve (Total) shows the combined population when Pop1
and Pop2 are summed using the mixing fraction parameter 𝜆𝑝𝑜𝑝. The colored contours are
the 90% and 98% C.L.

better explainedwith a secondary population with a different spinmagnitude located
above 40 𝑀⊙, rather than solely in the excess of BBHs around 35 𝑀⊙.

For each flavor of the MIXTURE model family, we also reconstruct the spin’s tilt angle
distribution with respect to the orbital angular momentum. We find that the inferred
distributions for the population 1 (low-mass) weakly prefer spins aligned with the
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Figure 4.7: Histograms of the estimated posterior distribution of the mixing parameter 𝜆𝑝𝑜𝑝
for the three flavors of the MIXTURE model family. The inferred value is obtained on 59 GW
events from the GWTC-2.1 and GWTC-3 catalogs. The MIXTURE PAIRED is in blue, the MIXTURE
VANILLA in red and the MIXTURE PEAK in light blue.

orbital angular momentum (𝑐𝑜𝑠𝜃 ∼ 1), while the population 2(high-mass) weakly
prefers a more isotropic distribution of the tilt angles. However, the uncertainties of
the spin’s tilt angles are for now still very uncertain to draw any robust conclusion
about their distributions.

The mixing parameter 𝜆𝑝𝑜𝑝, which denotes the proportion of the population 1 with
respect to the population 2, can exhibit a slight bi-modalitywith theminimummass of
the population 2 𝑚𝑝𝑜𝑝2

𝑚𝑖𝑛 , in particular when the second population is allowed to arrive
down to 2 𝑀⊙. Fig. 4.8 shows the inferred posterior for these two parameters and their
2D correlations. This bi-modality, only visible with the MIXTURE VANILLA model, sug-
gests that there is some support for a lower value of the mixing parameter combined
with a minimum mass for the second population close to 3 − 4 𝑀⊙. This minimum
mass corresponds to the one of the reconstructed first population. Nonetheless, the
mode described by 𝜆𝑝𝑜𝑝 ∼ 0.98 and 𝑚𝑝𝑜𝑝2

𝑚𝑖𝑛 ∼ 30𝑀⊙ is strongly preferred by the analy-
sis, hence favoring the hypothesis that a subpopulation of BBHs with a different spin
distribution could arise after 30 − 35 𝑀⊙.

In a similar fashion as for the EVOLVING and TRANSITION analysis, we also reconstruct
the mass and CBC merger rate spectra. We find that they are in perfect agreement
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Figure 4.8: Corner plot of the mixing parameter 𝜆𝑝𝑜𝑝 and the minimum mass of the second
population 𝑚𝑝𝑜𝑝2

𝑚𝑖𝑛 , inferred with the MIXTURE VANILLA (red) and MIXTURE PAIRED (blue) models
from the population inference of 59 GW events with 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟 from the GWTC-2.1 and
GWTC-3 catalogs. The colored contours are the 90% C.L. inferred.

with the reconstruction of the baseline analysis, with the distributions obtained with
the EVOLVING and TRANSITION models, and with other independent non-evolving pop-
ulation inferences. The reconstructed mass spectra are shown in Fig. C.2 in App. C.1.
Fig. 4.9 displays the estimated posterior distributions of 𝛾, a CBC merger rate popu-
lation parameter. All the marginalized posteriors of 𝛾 seem to have a similar trend,
when comparing between the population 1 and population 2, but also comparingwith
the baseline analysis. In other words, if the two subpopulations corresponds to dis-
tinct formation channels of BBHs, then their time-delay distributions between the BBH
formation and merger should be similar.

As an extra validation step of our results with the MIXTURE models, we run the same
population inference, but removing the spin distributions from the analysis (estimat-
ing the masses and CBC merger rate only). The new Bayes factors between the base-
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line analysis and the three MIXTURE models without spin are now close to 1- this shows
the importance of the inclusion of spin populations models to disentangle between
the two populations. The sole inference of the mass and rate spectra does not bring
enough constraining power to the analysis to separate twomixing population of BBHs.
Moreover, when removing the spin parameters from the MIXTURE population inference,
the mixing parameter 𝜆𝑝𝑜𝑝 is also less constrained and now in agreement with 1; i.e.
only one population is supported by the data.

In short, the MIXTURE model inferences are strongly favored compared to canonical
non-evolving analysis. With these models, we find evidence of the presence of two
BBHs subpopulations in the GW data: one at low masses, characterized by a spin
magnitude peaking at 𝜒 ∼ 0.1 and a second one at higher masses ≥ 35 𝑀⊙ with a spin
magnitude distribution significantly larger (𝜒 ∼ 0.7). The second population of BBHs,
may originate fromadifferent formation channel than the first one, and represent close
to 2% of the total population.

4.4.4 Discussion

This analysis reveals novel compelling evidences for the existence of a correlation be-
tween the BBHs spinmagnitudes and theirmass. This trend persists across all our phe-
nomenological populationmodels and can either be understood as a mass-dependent
transition between two spin distributions or as an overlap of two independent BBHs
subpopulations with uncorrelated spins, masses and redshift distribution. Moreover,
all models infer a lowly spinning population of BBHs at low masses and another pop-
ulation of BBHs at higher masses, with a different spin magnitude distribution char-
acterized with more rapidly spinning objects.

Previous studies have already tried to inspect a possible spin-mass relation at the
population level of BBHs using GW detections [147, 167, 174–178]. In [147, 178], it is
argued that the absolute value of the spin projection |𝑠𝑧| over the orbital angular mo-
mentum does not significantly evolve with the chirp mass M𝑐 of the system. This re-
sult is not in contrastwith our findings about the spinmagnitude evolution, as the spin
tilt angles are poorly constrained in terms of masses. Therefore, the spin projection
over the orbital angular momentum shows no particular correlation with the mass,
although the spin magnitude can display a significant correlation. Fig. 4.10 shows
the reconstructed distribution of the spin magnitudes aligned with the orbital angu-
lar momentum |𝑠𝑧|, as a function of the detector chirp mass. We display the 50% and
90% credible upper bounds for |𝑠𝑧|. We find that the upper bounds seem to evolve to
a more rapidly regime for the BBHs, above 40 𝑀⊙, evolution which is consistent with
our previous results that support a change in the spin distribution around the same
mass range. The main difference between our result and [147] is that while they ex-
plain it as being due to a weak constraint on the spin for massive BHs, here we obtain
this correlation as a consequence of a spin-mass interplay. In fact, we do not observed
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Figure 4.9: Histograms of the inferred posterior distributions of the CBC merger rate param-
eter 𝛾, estimated with four different inferences on 59 GW events with 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟 from the
GWTC-2.1 andGWTC-3 catalogs. Top panel: VANILLA analysis with amono and non-evolving
population model. Middle panel: Posteriors of 𝛾 for the population 1 CBC merger rate with
three flavors of the MIXTURE model. Bottom panel: Posteriors of 𝛾 for the population 2 CBC
merger rate with three flavors of the MIXTURE model.

such evolution of |𝑠𝑧| if we remove the spin mass-relation from the data. The later test
is presented in more details in Sec. 4.5.2.
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These results obtained with the MIXTURE PEAK model are consistent with the find-
ings of [173]. Unlike our work, which focuses on spin magnitude, they examined
the effective spin 𝜒𝑒𝑓 𝑓 and precession spin 𝜒𝑝 parameters. They employed a binned
non-parametric inference scheme on a similar set of GW detections and suggested the
existence of a subpopulation of BBHs with a different spin distribution in the mass
range 30 − 50, 𝑀⊙. Although our model is not the preferred one, our results provide
mild evidence supporting this scenario.
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Figure 4.10: Scatter plot of the evolution of the aligned component of the spin magnitude |𝑠𝑧|
with respect to the detector chirp mass M𝑐, obtained from the population inference of 59
GW events with 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟 from the GWTC-2.1 and GWTC-3 catalogs, with three different
population models. Top panel: EVOLVING GAUSSIAN model. Middle panel: BETA TO GAUSSIAN
model. Bottom panel: BETA TO BETA model.
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In [179], they argue that the BBHs present in GWTC-2 (second observing run) may
arise from a population composed of 1𝑠𝑡 − 1𝑠𝑡 generation (both being borne from star
collapse processes), 1𝑠𝑡 − 2𝑛𝑑 generation and 2𝑛𝑑 − 2𝑛𝑑 generation of BHs. The mass
and spin distributions of BBHs for the 1𝑠𝑡 − 1𝑠𝑡 generation of binaries are fitted using
phenomenological models like the ones employed in this analysis, while the 1𝑠𝑡 − 2𝑛𝑑

and 2𝑛𝑑 − 2𝑛𝑑 mass and spin distributions are estimated with transfer functions (de-
fined in [162]) from the 1𝑠𝑡 − 1𝑠𝑡 generation of binaries. In our study of BBHs spin
magnitude evolution, we go beyond the use of a transfer function calibrated on hier-
archical formation channel only, we demonstrate that there is a correlation between
spins and masses in BBH systems which is possibly introduced by the transition in
mass between two subpopulations described by different spin distributions. Never-
theless, the general results that we obtained do not go against the conclusions of [179]
that argues about the possible presence of 1𝑠𝑡 − 2𝑛𝑑 and 2𝑛𝑑 − 2𝑛𝑑 generations of bi-
naries. In fact, these types of mergers belong to the second population inferred by
our MIXTURE MODELS, which encompasses both 1𝑠𝑡 − 2𝑛𝑑 and 2𝑛𝑑 − 2𝑛𝑑 generations of
binaries.

4.4.5 Astrophysical implications

In the light of these findings, we discuss the astrophysical interpretation and implica-
tions of our results regarding the BBHs formation channels. One of the most accepted
theories for compact object’s formation is that BHs from isolated stellar binaries can
not be formed beyond [45 − 60] 𝑀⊙. This mass scale is identified as the lower edge
of the PISN gap [115, 152, 180, 181]. In this picture, the PISN mass scale would mark
a transition between a population of 1𝑠𝑡 generation BHs formed by their stellar pro-
genitors to a population of 𝑛𝑡ℎ generation BHs dynamically assembled into binaries
[33, 179] in dense stellar environments. The population of 1𝑠𝑡 generation BHs is pre-
dicted to have relatively small spins, alignedwith the orbital angular momentum, due
to the various astrophysical processes expected to happen during the stellar binary
evolution [33]. The population of 𝑛𝑡ℎ generation BHs, on the other hand, is expected
to have spins magnitude centered around 𝜒 = 0.7 (inherited from the pre-merger bi-
nary) and nearly isotropically distributed tilt angles [43–45, 182]. In addition, accord-
ing to the latest BBH synthesis simulations, 1𝑠𝑡 − 1𝑠𝑡 generation are expected to form
97.5%-98% of the total population of BBHs, while 𝑛𝑡ℎ generations the rest, all forma-
tion channels combined [124, 183]. In this study, we do not include the contributions
of BHs formed by population III stars [184], which are likely to be located at very high
redshifts (not accessible with the current detectors sensitivities) and compose a tiny
fraction of the overall astrophysical population.

These results bring evidences for this scenario. The transition between the subpop-
ulations of BBHs that we observe around 40 − 55 𝑀⊙ could be linked to the PISN
mass scale. The lower mass population displays a clear preference for low spin mag-
nitude (𝜒 ∼ 0.1) as expected for BHs formed in isolated stellar binaries. Although,
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the spin distributions for the higher mass population is not as strongly constrained
as the low mass one, we know that it is surely different from the spin distribution of
the lowmass population, and we find new evidence from the MIXTURE models that the
spin magnitude of this second population supports values around 𝜒 ∼ 0.7. Moreover,
the MIXTURE models infer that the high-mass (𝑛𝑡ℎ generation BHs) population should
compose only 2% of the astrophysical BBHs.

Another astrophysically relevant result highlighted by the MIXTURE model analysis
is that the BBH merger rate as a function of redshift increases in the same way for the
low and highmass subpopulations (see Fig. 4.9). If we identify the former population
as 1𝑠𝑡 generation BHs and the second as 𝑛𝑡ℎ generation BHs, this result would imply
that the time scales over which hierarchical mergers happen are cosmologically small.

The correlations we observe between the spin magnitudes and masses are evidence
of the existence of two subpopulations of BBHs, transitioning around 40 − 55 𝑀⊙ and
described by different spin distributions. These findings provide support for the exis-
tence of 𝑛𝑡ℎ generation BBH mergers originating from the hierarchical merger forma-
tion channel. However, a definitive evidence should be reached with a better recon-
struction of the spin tilt distributions that could be obtained with future GW observa-
tions.

4.5 A MOCk DATA CHALLENGE
As mentioned in the previous section, beside the main analysis on the 59 GW events
from the GWTC-2.1 and GWTC-3 catalogs, we additionally tested and validated our
new parametric population models and the population inference robustness. In par-
ticular, we performed two side analysis: a mock data challenge (MDC) on simulated
GW detections and a “blurred” inference on real GW events.

The aim of theMDC is to understand how our new populationmodels that incorpo-
rate spin-mass interplay react to a population of BBHs that does not actually include
any spin-mass correlation. At the same time, the MDC analysis allows us to compute
new Bayes factors and check that our models are correctly excluded with respect to
simpler models that are “sufficient” when no spin-mass correlation is present in the
data. We simulated sets of 50 detected GW events, characterized by their detector
frame masses, luminosity distances and spin parameters. The simulated populations
of BBHs are generated without spin-mass correlation. These events are drawn from
the injection set used to estimate the selection effects in the main analysis of this chap-
ter, and so they are representative of the sensitivity reached by the detector for the
GWTC-2.1 and GWTC-3 catalogs. In the same fashion as in Sec. 3, we assume that the
detector frame parameters of the sources are perfectly measured during the detection
process (masses, luminosity distances, spins), in order to maximize the precision on
the population parameters inferred with the different models.
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Mock Data Challenge

Model log10 B log10 L𝑚𝑎𝑥

EVOLVING GAUSSIAN -6.07 -1.46
BETA TO GAUSSIAN -0.61 1.86
BETA TO BETA -0.21 0.43
MIXTURE VANILLA -1.36 2.53
MIXTURE PEAK -3.69 -0.88
MIXTURE PAIRED -3.26 3.16

Table 4.2: Base 10 logarithm of the Bayes factors (second column) and the logarithm of the
maximum likelihood ratio (third column), for the six models discussed in this analysis, com-
pared to the baseline non-evolving population model.

4.5.1 Models selection

The set of detected GW events are simulated following a Madau & Dickinson BBH
rate model, a mass distribution based on a POWER LAW + PEAK model and a spin dis-
tribution with a preference for lowly spinning BBHs, nearly aligned with the orbital
angular momentum. All simulated distributions—masses, spins, and merger rates—
are represented by black dashed lines in the figures shown below.

Table. 4.2 report the summary of the Bayes factors and maximum likelihood ratios
obtained from the population inference on the simulated GW events with our six para-
metric models which incorporate spin-mass interplay. Again, the model assessment
is done comparing these models with a baseline analysis with a non-evolving pop-
ulation model. From the Bayes factors obtained for the MDC analysis, it is clear that
the canonical non-evolvingmodel is always strongly preferred for the MIXTURE and the
EVOLVINGmodels. With respect to the TRANSITIONmodels, the baselinemodel is slightly
preferred. This result demonstrates that the spin-mass correlation which is picked up
in the main analysis, is the one driving the model selection shown with the set of real
GW events. Moreover, this test shows that our models can confidently be excluded by
Bayes factor comparison, if the spin-mass correlation is not present in the data.

4.5.2 Considerations on EvOLvING and TRANSITION models

Fig. 4.11 shows the reconstruction of the spin magnitudes obtained with the popula-
tion inference using the EVOLVING GAUSSIAN, the BETA TO BETA and BETA TO GAUSSIANmod-
els on the simulated GW data, which is represented with the black dashed line. The
inference spin magnitude shows excellent agreement with the simulated population,
with all three models. The deviations from the injected population in the posterior
predictive checks above the mass slice of 70 𝑀⊙ are not to be worried about.
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Figure 4.11: Joy plot of the probability density functions of the dimensionless spin magni-
tudes 𝜒, reconstructed from the population inference on simulated GW data (MDC). The
dimensionless spin magnitudes were reconstructed using the EVOLVING GAUSSIAN model (left
column), the BETA TO GAUSSIAN model (middle column) and the BETA TO BETA model (right
column). Each row corresponds to a slice in source frame mass, from 10 𝑀⊙ to 100 𝑀⊙, in
order to highlight the spin magnitude evolution and transitions across different mass ranges.
The black dashed lines are the simulated population from the MDC. The plain lines are the
median value of the spin magnitudes and the colored contours are the 90% and 98% C.L.

They are in fact natural and due to the choice of prior ranges for the population
parameters that govern the mass transition. For the BETA TO BETA and BETA TO GAUSSIAN
inferences, the prior ranges on 𝑚𝑡 and 𝛿𝑚𝑡 in charge of the window function for the
mass transition are the limiting parameters from which the deviations arise. Since
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there is no transition between two spin distributions in the simulated GW events, the
inferred posterior of 𝑚𝑡 does not converge within its prior range, but rather rails on
its upper limit (100 𝑀⊙). The upper plot of Fig. 4.12 shows the posterior predictive
check for the reconstructedwindow function. As a consequence, the parameters of the
window function being forced to converge on the upper bound of the prior rangemake
the posterior predictive checks find “unwanted” support for a mass transition below
100 𝑀⊙. The behavior of the posterior predictive check with the EVOLVING GAUSSIAN
is similarly explained. Considering the deviations of the reconstruction of the spin
magnitude with respect to the simulated population, it is clear that this has no impact
of the results we found with the real GW events. The marginalized posteriors of the
population parameters of interest are correctly contained within their prior ranges,
which avoid any behavior that could be interpreted as an astrophysical result.
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Figure 4.12: Reconstructed window function for the MDC (top) and the blurred (bottom)
analysis, with the BETA TO GAUSSIAN and BETA TO BETA models. The colored contours are the
90% C.L. inferred spectra.

Beside the reconstruction of the spin magnitude, in analogy to the main analysis we
also replicated the results on the aligned spinmagnitude evolution with respect to the
chirp mass. Fig. C.3 in App. C.1 shows that when no spin-mass correlation is present
in the GW data, no evolutionary trend is recovered between these two parameters.
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Concerning the EVOLVING GAUSSIAN model, we also compared the inferred population
parameters that govern the evolution of the spin distribution as a function of the source
mass, Fig. 4.13 shows the corner plot of 𝜇̇ and 𝜎̇ for the MDC analysis. We observe
that, contrary to the main analysis, the model now correctly supports a non-evolution
of the spin distributionwith themass, the parameters 𝜇̇ and 𝜎̇ are pushed to very small
values, close to zero. Finally, the inferred mass spectrum with the EVOLVING GAUSSIAN
model and the two TRANSITION models are in excellent agreement with the simulated
population, as depicted in Fig. C.4 in App. C.1.
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Figure 4.13: Corner plot of the inferred population parameters governing the evolution of the
mean and width of the Gaussian distribution modelling the spin magnitude in the EVOLVING
GAUSSIAN model, namely 𝜇̇𝜒 and 𝜎̇𝜒 . These results have been obtained for the MDC analysis.
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4.5.3 Considerations on MIxTuRE models

For the population inferenceswhich use the MIXTUREmodels, Fig. 4.14 shows the recon-
structed posterior predictive checks of the spin magnitudes and tilt angles, in analogy
with the result of the main analysis. The simulated spin population is displayed with
the black dashed line. We find that the inferred spin magnitudes and tilt angles dis-
tribution, obtained with all three MIXTURE models are in perfect agreement with the
simulated BBH population. The total population reconstructed matches with the sim-
ulated one. This result is proof for the correct behavior of our MIXTURE models when
no spin-mass correlation is present in the data, they are all able to reduce to a single
spin population to reconstruct the true spin distributions.

As in the main analysis, we also looked at the inferred posterior distribution of the
mixing parameter 𝜆𝑝𝑜𝑝 and its correlation with the minimum mass of the second pop-
ulation 𝑚𝑝𝑜𝑝2

𝑚𝑖𝑛 . The top panel of Fig. 4.15 and Fig. 4.16 show the inferred marginalized
posterior of 𝜆𝑝𝑜𝑝 and the corner plot of this parameter with 𝑚𝑝𝑜𝑝2

𝑚𝑖𝑛 for the MDC anal-
ysis. We find that for the MIXTURE VANILLA and MIXTURE PAIRED analysis, the inference
is not able to disentangle the presence of two populations of BBHs as the posterior
of the mixing fraction are highly uninformative. Estimating a flat posterior for this
population parameter means that our model does not find evidence for the existence
of a second population with a different spin magnitude, which is the expected behav-
ior when no spin-mass correlation are simulated like in this MDC. For the MIXTURE
PEAK model, the mixture fraction is still constrained as the Gaussian peak for the spin
magnitude is used to fit the BBHs within the central mass feature of the POWER LAW
+ PEAK distribution used for the simulation. The mixture fraction only estimates the
fraction of BBH events in this contained in this mass feature, but still infer the same
spin magnitude distribution as in the rest of the population.

In addition to these results, the BBH mass spectrum and the CBC merger rate re-
constructed with the MIXTURE models are also nicely estimated with respect to the sim-
ulated population. The bottom half of Fig. C.4 present the inferred mass spectrum
obtained with the MIXTURE models, that are all in very good agreement with the pop-
ulation simulated with a POWER LAW + PEAK. For the CBC merger rate, Fig. C.1 shows
the inferred values of the population parameter 𝛾, for both subpopulations. We find
that they are all consistent with the injected value of 2.7.

Based on the results obtained for the MDC analysis, we can confidently say that
EVOLVING, TRANSITION and MIXTURE models present the expected behavior when faced
with data in which no spin-mass correlation or subpopulations are introduced. We
correctly inferred the spin distributions (both spinmagnitude and tilt angles) used for
the simulation of the GW data. The other population distributions such as the mass
spectrum and the CBCmerger ratewere also inferred properly and in good agreement
with the simulated population of BBHs.
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Figure 4.14: Reconstructed spectra of the spinmagnitude distributions 𝜒 and the cosine of the
tilt angle 𝑐𝑜𝑠𝑡 obtained with all three flavors of the MIXTURE models, namely MIXTURE VANILLA
(top row), MIXTURE PEAK (middle row) and MIXTURE PEAK (bottom row). The population infer-
ence has been done on 50 detectedGWevents simulated for theMDCanalysis. The red curves
(Pop1) and blue curves (Pop2) are the estimated distributions for each population. The light
blue curve (Total) shows the combined population when Pop1 and Pop2 are summed using
the mixing fraction parameter 𝜆𝑝𝑜𝑝. The colored contours are the 90% and 98% C.L.

4.6 A BLuRRED ANALySIS
In addition to the MDC analysis presented in the section above, we perform another
sanity check to ensure the robustness of our results. The idea is to repeat all of our pop-
ulation inference using our phenomenological models on a spin-mass blinded data set
of real GW detections, we named this sanity check the “blurred” analysis. We selected
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Figure 4.15: (Top panel) Posteriors distribution of the inferred 𝜆𝑝𝑜𝑝 from the MDC analysis
using the three flavors of the MIXTURE model. (Bottom panel) Posteriors distribution of the
inferred 𝜆𝑝𝑜𝑝 from the blurred analysis using the three flavors of the MIXTURE model.

the same set of 59 GWevents as in themain analysis, from theGWTC-2.1 andGWTC-3
catalogs, with 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟. But for the blurred analysis, we permute among them their
inferred spin values from the detection. Each GW events are then assigned random
values of for their spin parameters, picked from other GW detections in the same set
of data. In the limit that the determination of the other GW parameters, and the selec-
tion biases, are not strongly related to the spin magnitudes, this procedure artificially
blinds the dataset to any spin-mass correlation.

With only 59 GW detections used for the population inference, we are placed in a
low number of detections regime. In this regime, if there is really a spin-mass corre-
lation in the data, shuffling the inferred spin values might not blind the totality of the
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Figure 4.16: Overlapped corner plots of the mixing parameter 𝜆𝑝𝑜𝑝 and the minimum mass
of the secondary population 𝑚𝑝𝑜𝑝2

𝑚𝑖𝑛 , obtained from the MIXTURE VANILLA and MIXTURE PAIRED
models from the MDC and the blurred analysis.

data from a spin-mass correlation. The motivation is that low-mass events are more
numerous than high-mass, therefore there is a higher probability that the spin of a
low-mass event will be reassigned to a low-mass event, hence conserving the hidden
spin-mass relation. However, the shuffling of the spin values is expected for sure to
blind any spin-mass correlation that would be present at high masses since they are
fewer. We refer to this type of sanity check analysis as “blurred” analysis to indicate
thatwe are not able to ensure that 100% of the spin-mass correlation has been removed
from our 59 GW events. The new distributions of source frame masses and spin mag-
nitude for this set of events is shown in Fig. 4.17 with their estimated errors from the
parameter estimation process. In comparison to the scatter plot with the real 59 GW
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Figure 4.17: Scatter plot of the 59 BBH GW events from the GWTC-2.1 and GWTC-3 catalogs,
selected with an 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟, and used for the blurred analysis. The estimated values of
spins are shuffled between each event to blind the presence of any spin-mass correlation in
the data set. The x-axis shows the source frame masses 𝑚𝑠 and the y-axis displays the di-
mensionless spin magnitude 𝜒. The error bars are the 1𝜎 uncertainties of the official LVK
parameter estimations C01:mixed samples. The blues crosses indicate the primary mass and
spin parameters, while the red ones are for the secondary component.

events used in themain analysis, the blurred distribution of the spinmagnitude versus
the source frame masses clearly indicate no more visible evolution. The over density
of GW events around 30 𝑀⊙ is still present, but the associated spin magnitudes do not
seem to increase as the mass increases.

4.6.1 Models selections

In analogy with the MDC analysis of Sec. 4.5, we also want to ensure that the derived
Bayes factors between our models and the baseline analysis are consistent with our
expectations. Since the blurred set of GW events is supposed to have no spin-mass cor-
relation, our complex phenomenological population models should not be preferred
with respect to the more simple non-evolving population model.
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Blurred analysis

Model log10 B log10 L𝑚𝑎𝑥

EVOLVING GAUSSIAN -3.34 -0.23
BETA TO GAUSSIAN -0.28 0.18
BETA TO BETA -0.06 0.40
MIXTURE VANILLA 0.90 0.92
MIXTURE PEAK 0.76 0.40
MIXTURE PAIRED 1.11 2.24

Table 4.3: Base 10 logarithm of the Bayes factors (second column) and the logarithm of the
maximum likelihood ratio (third column) for the blurred analysis. The six populations mod-
els are discussed in the above section, and are compared to the baseline non-evolving popu-
lation model.

Table. 4.3 presents the logarithm in base 10 of the Bayes factors and the maximum
likelihood ratios between each of our models compared to the canonical analysis. All
EVOLVING, TRANSITION and MIXTURE populations models report inconclusive Bayes fac-
tors, meaning that no preference is found between our models and the baseline analy-
sis from the point of view of the inference. A similar interpretation can bemade about
the likelihood ratios, that shows no significant preference. These values correspond
to what one would expect using an overcomplicated population model, with multiple
degrees of freedom that are not useful and do not help the overall fit of the popula-
tion. Since our new models are complex extensions of the baseline population model,
uninformative Bayes factor like the ones in table. 4.3 are reasonable, especially when
compared to values obtained with the same set of GW events, unblurred.

4.6.2 Considerations on EvOLvING and TRANSITION models

We can now verify that the population distributions (spin, mass and CBCmerger rate)
inferred with ICAROGW for the blurred analysis are in agreement with a population of
BBHs that has no spin-mass correlation, nor subpopulations. Fig. 4.18 shows the pos-
terior predictive check of the spin magnitudes for the EVOLVING GAUSSIAN, BETA TO BETA
and BETA TO GAUSSIAN models. In comparison with the real analysis, we still observe
that in the low mass region, the analysis reconstructs a spin magnitude distribution
preferring low spin values ≤ 0.4. The spinmagnitude reconstruction at higher masses
is still consistent with slowly spinning BHs, but the overall uncertainties increase too.
This is due to the fact that low mass events are more numerous than high mass ones,
and that the spin-mass relation in the data is not completely blinded by the shuffling
of the spin values. However, the spin-mass relation is diluted enough for the Bayes
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Figure 4.18: Joy plot of the probability density functions of the dimensionless spinmagnitudes
𝜒, reconstructed from the population inference on the real GW for which we blurred the spin-
mass relation. The dimensionless spin magnitudes were reconstructed using the EVOLVING
GAUSSIAN model (left column), the BETA TO GAUSSIAN model (middle column) and the BETA
TO BETA model (right column). Each row corresponds to a slice in source frame mass, from
10 𝑀⊙ to 100 𝑀⊙, in order to highlight the spin magnitude evolution and transitions across
different mass ranges. The black dashed lines are the simulated population from the MDC.
The plain lines are the median value of the spin magnitudes and the colored contours are the
90% and 98% C.L.

factors on model selection to be inconclusive. Regarding the presence of an evolution
of the spin magnitude, the posterior predictive checks for all three models show no
support for a change in the distribution as the mass increases, as expected from the
blurred population of BBHs.
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Figure 4.19: Overlapped corner plots of the population parameters governing the spin transi-
tion as a function of the mass, namely 𝑚𝑡 and 𝛿𝑚𝑡 ; for the two TRANSITION models in the case
of the MDC and the blurred analysis.

Concerning the BETA TO BETA and BETA TO GAUSSIAN models, Fig. 4.12 (bottom panel)
and Fig. 4.19 display the posterior predictive check for the reconstructedwindow func-
tion and the population parameters posteriors that govern it. The results are both con-
sistent with no significant transition between two spin distributions. In opposition
with the real analysis, the reconstructed window function shows a light support for
a smoother transition at higher masses. The inferred population parameters that gov-
ern the window function are also consistent with no transition, as argued for theMDC
analysis.

However, the result is not as stringent as for the MDC, which is a hint of the fact
that the spin shuffling procedure to remove the spin-mass correlation has partially
worked. We also check the evolution of the aligned spin component of 𝜒 with respect
to the detector chirp mass. From Fig. C.5 in App. C.1, we find no evidence of any
sort of evolution of the aligned spin component |𝑠𝑧| with respect to the chirp mass, as
the one found in the real analysis. Regarding the EVOLVING GAUSSIAN analysis, again
we find that there no support for a continuous evolution of the distribution of the
spin magnitude with the source mass. Fig. 4.20 depicts the posterior distributions of
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Figure 4.20: Corner plot of the inferred population parameters governing the evolution of the
mean and width of the Gaussian distribution modelling the spin magnitude in the EVOLVING
GAUSSIANmodel, namely 𝜇̇𝜒 and 𝜎̇𝜒 for the blurred analysis. These results have been obtained
for the blurred analysis.

the parameters governing the evolution of the mean and standard deviation of the
Gaussian spin distribution, and both posteriors are peak around zero, meaning that
the spin distribution position and width are found fixed as the mass increases.

The reconstructed mass spectra obtained with the EVOLVING and TRANSITION models
for the blurred are also in good agreement with the ones of the real analysis. Fig. C.6
in App. C.1 shows the inferred spectrum for the primary and secondary masses.

4.6.3 Considerations on MIxTuRE models

We now finally examine the result obtained with the MIXTURE models for the blurred
analysis. Fig. 4.21 show the posterior predictive checks for the spin magnitude and
the tilt angle distributions reconstructed with the MIXTURE VANILLA, MIXTURE PAIRED and
MIXTURE PEAK models. In this scenario, where most of the spin-mass correlations are
removed, both subpopulations support low spin values, the spin magnitude distribu-
tions for the magnitude and the tilt angles are very similar. The second population,
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Figure 4.21: Reconstructed spectra of the spinmagnitude distributions 𝜒 and the cosine of the
tilt angle 𝑐𝑜𝑠𝑡 for the blurred analysis, obtained with all three flavors of the MIXTURE models,
namely MIXTURE VANILLA (top row), MIXTURE PEAK (middle row) and MIXTURE PEAK (bottom
row). The population inference has been done on 59 detectedGWevents fromGWTC-2.1 and
GWTC-3 catalogs, for the blurred analysis. The red curves (Pop1) and blue curves (Pop2)
are the estimated distributions for each population. The light blue curve (Total) shows the
combined population when Pop1 and Pop2 are summed using the mixing fraction parameter
𝜆𝑝𝑜𝑝. The colored contours are the 90% and 98% C.L.

for more massive binaries has slightly more uncertain spin reconstructions, due to the
lack of events in this part of the parameter space. Similar to the results of the MDC,
for the blurred analysis the mixing fraction 𝜆𝑝𝑜𝑝, shown in bottom half of Fig. 4.15, is
not able to pinpoint the presence of any subpopulation of BBHs as opposed to what
we observe with unblinded data.
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The reconstruction of the mass spectrum, displayed in Fig. C.6 of App. C.1, is still
in very good agreement with the distributions obtained in the real analysis, thus in-
dicating that the spin-mass relation is not an artifact created by the fit of the mass
spectrum. This point is crucial for the robustness of our results, since we have demon-
strated in Sec. 3 that a wrong reconstruction of some population parameters can lead
to significant biases. The mass spectra for all flavors of the MIXTURE models show also
perfect agreement with the distribution obtained with the non-evolving model. This
result also extend to the CBC merger rate presented in right column of Fig. C.1. The
estimated posterior distributions of the population parameter 𝛾 are all consistent with
the ones from the real analysis, as well as the value obtained from the baseline non-
evolving model in the blurred analysis.

In conclusion, when analyzing real GWdata devoid of spin-mass correlation, like in
our blurred analysis, the MIXTURE, EVOLVING and TRANSITION models successfully recon-
struct the correct mass, CBC merger rate and spin distributions, while indicating no
support for any spin evolution. Additionally, we verified that ourmodels are naturally
disfavored by the Bayes factor model selection, when a more simple parameterization
is sufficient. This second sanity check, the blurred analysis, allows us to further believe
the astrophysical results about the presence of a subpopulation in the entire BBH pop-
ulation. In comparison to the results of the real analysis, we identify a significantly
different behavior of our models regarding the spin distributions, while conserving
the same reconstructed mass and merger rate spectra. We argue that the evidences
for the presence of a subpopulation is then driven by the more detailed inference of
the spin distribution.

4.7 NuMERICAL STABIL ITy ANALySIS
The last non-physical possibility that could explain our results is problemof numerical
stability of the hierarchical Bayesian inference. As explained in Sec. 2.4, ICAROGW has
two stability estimators, that allows us to track the stability of the inference. These
two estimators are the effective number of injections 𝑁𝑖𝑛𝑗

𝑒𝑓 𝑓 and the effective number
of posterior samples 𝑁𝑃𝐸

𝑒𝑓 𝑓 . In the main analysis of this chapter, we applied cuts on
these two parameters, in order to set the hierarchical likelihood to zero if one of the
two conditions is not fulfilled at some point during the inference process. They were
chosen to be 𝑁𝑖𝑛𝑗

𝑒𝑓 𝑓 = 4𝑁𝐺𝑊 and 𝑁𝑃𝐸
𝑒𝑓 𝑓 = 10, meaning that four times the number of

used GW events were required for the effective injections and ten effective posterior
samples minimum.

We performed two more analysis, using the BETA TO BETA and MIXTURE VANILLA mod-
els, on the same 59 GW events with 𝐼𝐹𝐴𝑅 ≥ 1𝑦𝑟, but this time applying not cuts on
the two stability estimators. Fig. 4.22 and Fig. 4.23 present some inferred distributions
of key population parameters that drive the distributions of spins, alongside the es-
timated distributions of the two numerical stability for the BETA TO BETA and MIXTURE
VANILLA models respectively. First, we do not observe any significant correlation be-
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tween the population parameters and the stability estimators of ICAROGW, indicating
that the spin evolution part of the parameter space explore by the MCMC in not in-
fluenced or dependent on 𝑁𝑖𝑛𝑗

𝑒𝑓 𝑓 nor 𝑁𝑃𝐸
𝑒𝑓 𝑓 . Furthermore, removing these cuts did not

cause the hierarchical likelihood to shift to a different part of the parameter space,
as all posterior distributions remain very similar with and without applying cuts on
the stability estimators. Hence, we can safely conclude that the results obtained in the
main analysis are stablewith respect to numerical stability of the hierarchical Bayesian
inference.
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Figure 4.22: Corner plot of the population parameters (𝑚𝑡,𝛿𝑚𝑡) and the stability estimator
(𝑁𝑖𝑛𝑗

𝑒𝑓 𝑓 ,𝑁𝑃𝐸
𝑒𝑓 𝑓 ), obtainedwith the BETA TO BETA evolvingmodel on the 59GWeventswith 𝐼𝐹𝐴𝑅 ≥

1𝑦𝑟. The purple contours and histograms were estimated while putting the minimum value
of 𝑁𝑖𝑛𝑗

𝑒𝑓 𝑓 = 4𝑁𝐺𝑊 and 𝑁𝑃𝐸
𝑒𝑓 𝑓 = 10. The pink contours and histograms were estimated while

placing not cuts on these estimators.



4.8 CONCLuSION 135

λpop = 0.94+0.04
−0.41

16

24

32

40

m
po

p2
m

in

mpop2
min = 23.56+2.98

−18.60

40
00

80
00

12
00

016
00

0

N
in

j
ef

f

Ninj
eff = 5351.69+2419.49

−1894.98

0.7
2

0.8
0

0.8
8

0.9
6

λpop

20

40

60

80

N
PE ef

f

16 24 32 40

mpop2
min

40
00

80
00

12
00

0
16

00
0

Ninj
eff

20 40 60 80

NPE
eff

NPE
eff = 15.22+11.05

−7.66

With cuts
No cut

Figure 4.23: Corner plot of the population parameters (𝑚𝑡,𝛿𝑚𝑡) and the stability estimator
(𝑁𝑖𝑛𝑗
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4.8 CONCLuSION
The comprehensive analysis of BBH populations presented in this study has yielded
several significant findings. Through the application of three distinct families of para-
metric models - EVOLVING, TRANSITION, and MIXTURE models - within the hierarchical
Bayesian inference framework of ICAROGW, we have gained valuable insights into the
characteristics and potential correlations within the BBH population.
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Our investigation revealed strong evidence for the presence of a subpopulation
within the overall BBH population, primarily driven by the detailed inference of the
spin distribution. The MIXTURE models, particularly the MIXTURE VANILLA and MIXTURE
PAIRED variants, consistently indicated a preferredmodewith𝜆𝑝𝑜𝑝 ∼ 0.98 and𝑚𝑝𝑜𝑝2

𝑚𝑖𝑛∼30 𝑀⊙
.

This suggests the existence of a distinct subpopulation of BBHswith different spin dis-
tributions emerging above 30 − 35 𝑀⊙. The reconstructed mass and CBC merger rate
spectra across all models showed remarkable consistency with canonical reconstruc-
tions from baseline analysis and other non-evolving population inferences. This con-
sistency lends credibility to our findings and supports the robustness of our method-
ological approach.

A key observation from our analysis is the apparent evolution of black hole spin
magnitudes with their masses. The BETA TO BETA evolving model and the MIXTURE
models all pointed towards this conclusion, with the spin magnitude distributions
showing distinct characteristics for different mass ranges. To validate our results and
ensure they were not artifacts of our analysis methods, we conducted several sanity
checks. A blurred analysis, using GW data devoid of spin-mass correlation, demon-
strated that our models successfully reconstruct correct mass, CBC merger rate, and
spin distributions while indicating no support for spin evolution when it is absent.
This check reinforced the validity of our astrophysical results regarding the presence
of a subpopulation in the entire BBH population.

Furthermore, we performed a numerical stability analysis to rule out any potential
issues with the hierarchical Bayesian inference. By comparing results with and with-
out cuts on the stability estimators (𝑁𝑖𝑛𝑗

𝑒𝑓 𝑓 ,𝑁𝑃𝐸
𝑒𝑓 𝑓 ), we confirmed that our findings were

not influenced by numerical instabilities in the inference process. The Bayes factor
model selection consistently favored our more complex models over the simpler non-
evolving baseline model when analyzing real GW data. Conversely, when applied
to the blurred dataset without spin-mass correlation, the Bayes factors appropriately
disfavored the more complex models, aligning with our expectations.

In conclusion, this study provides compelling evidence for the existence of distinct
subpopulations within the BBH population, characterized by different spin distribu-
tions and potentially representing different formation channels. The observed correla-
tion between spin magnitudes and masses offers new insights into the formation and
evolution of binary black hole systems. These findings have significant implications
for the understanding of BBH populations and their astrophysical origins, paving the
way for further investigations and refinements in gravitational wave astronomy.
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This chapter is based on an exploratory study that I conductedwith the Detector Char-
acterization research group of the LIGO-Virgo-KAGRA Collaboration. My mission
was to implement and test the performances of iDQ for the Virgo interferometer, for
the O4 observing run of the LVK detector network.

5.1 INTRODuCTION
The journey to the detection of GWs began during the 1960s with the pioneering ef-
forts of Joseph Weber, who proposed the first experimental apparatus to make a di-
rect detection of GWs, predicted by the theory of general relativity [185]. He used an
aluminum bar equipped with piezoelectric crystals to measure its expansion and con-
traction, induced by the passage of GWs. Despite Weber’s claim to have discovered
GWs in 1969, subsequent attempts by other researchers failed to reproduce his results,
highlighting technical defects in his experiment. The fault was probably with Weber
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and his apparatus, not able to thoroughly quantify the noise background, especially
non-gaussian noises. However, Weber’s fundamental work stimulated further efforts.
In 1974, Russell Hulse and Joseph Taylor provided the first indirect evidence of the ex-
istence of GWs through the discovery of the binary pulsar PSR 1913+16. They found
that the pulsar orbital period was varying repetitively, meaning that it was in orbit
with a star. The evolution of the orbiting period was measured with high precision,
and showed a decreasing trend over time. This decreased time of the orbital period
was the sign that the binary systemwasmerging, loosing its angular momentum. The
analysis of the orbital period data confirmed the predictions of the GR theory for the
emission of GWs by accelerating bodies [186]. This discovery revived the search for a
direct detection, leading to the development of the first laser interferometer, originally
proposed by Gertsenshtein and Pustovoid in 1962 [187]. The first prototypes were
built in the early 1970s by Robert L. Forward and his colleagues at Hughes Research
Laboratories, Rainer Weiss at MIT, Heinz Billing in Germany, and Ronald Driver and
James Howe in Scotland [188–190].

In the early 2000s, the first generation of large-scale GWdetectors, known as “Initial
LIGO”, were put into operation in Hanford and Livingston. Although these detectors
did not report direct detections, they opened the way for future advances [8, 191, 192].
At the same time, in Europe, the Virgo detector was under construction in Cascina,
Italy, and became later operational in 2003 [9]. In 2015, the upgraded Advanced LIGO
detectors made significant progress in their sensitivities, allowing the achievement of
the first confident direct detection of aGWsignal from a black holemerger: GW150914
[6, 191, 193–206]. This milestone was achieved thanks to the common work between
the LIGO and Virgo scientific collaborations. More recently, a new terrestrial laser in-
terferometer, the Japanese KAGRA detector, designed to use new cryogenic technol-
ogy, joined the global detection network [11, 207]. Looking ahead, new generations
of detectors, such as Cosmic Explorer, LISA, and Einstein Telescope, aim to further
enhance the sensitivity of GWdetections, leading to a new era with significantly more
frequent detections [208–212]. Pushing the limits of the current sensitivity, these new
detectors, referred to as third generation (3G), aim to unveil new GW sources that
are at the moment only predicted by the theory and beyond the reach of the current
detectors [80, 213, 214].

These large scale detectors are designed to detect space distortions as small as O ∼
10−19 m. This incredible sensitivity, however, makes them highly susceptible to both
instrumental and natural noise. As a result, a considerable amount of effort has been
dedicated in developing advanced algorithms to clean the data before it can be used
for scientific analyses. A major challenge in this process is the presence of “glitches.”
Glitches are transient noises within the detector, that can closely resemble genuine
GW signals. Glitches introduce several issues in the search of GW detections, they
can mask the presence of a real GW signal if superimposed with it, they can bias the
parameter estimation results of the source properties, or lead to a wrong estimation of
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the detector sensitivity. These glitches can originate from various sources and might
correlate with the auxiliary channels—sensors placed throughout the detector that
monitor environmental and instrumental conditions. Given the large number of these
auxiliary channels, and the complexity of the relationships between these noises and
the GW data stream, classical algorithms struggle to process the data and identify
correlations between the auxiliary channels and the GW detection channel, ℎ(𝑡). To
address this, new techniques based on machine learning (ML) have been developed.
These advanced methods aim to enhance the data quality (DQ) of the interferome-
ter by accurately identifying and flagging glitches. ML algorithms can analyze large
datasetsmore efficiently and potentially identify patterns that classicalmethodsmight
miss. By doing so, they help in isolating genuine GW signals from noise, thereby im-
proving the reliability of detections and the overall performances of the detectors.

This chapter is constructed as follows: In Sec. 5.2 we present the detection principles
of GWs based on terrestrial laser interferometry techniques, from the basics of GW
detection, to the impact of instrumental noise on the sensitivity and the recording of
this noise. In Sec. 5.3 we review the different families of noise and the properties.
Sec. 5.4 presents an exploratory work using ML based strategy to improve the data
quality of the Virgo detector and its potential adaptation to the search algorithms for
GW signal extraction.

5.2 GRAvITATIONAL wAvE DETECTION pRINCIpLE
This section aims to present the laser interferometer instrument and its detection prin-
ciple. Without going too deep into the details, we discuss the optical layout of such
detector and give an overview of how noise can impact the detector sensitivity. Lastly,
we introduce Virgo’s auxiliary channels and sensors, that are the main input for the
ML analyses that we perform later with the iDQ algorithm.

5.2.1 Virgo laser interferometry

The fundamental detection principle of laser interferometry is based on the intrinsic
property of GWs to distort the structure of space-time itself. The current detectors of
GWs are large scale Michelson interferometers, that make use of this phenomenon to
detect passingGWs. AGW interferometer is characterized by two perpendicular arms
that are several kilometers long (O ∼ 1𝑘𝑚), inwhich a powerful laser beam, separated
at the crossing point of the two arms, travels along the arms back and forth. The laser,
reflected by large mirrors placed at the beginning and ending points of the arms, will
see its travel time along the arms modified by the change in separation of the mirrors
due to the passage of a GW. Fig. 5.1 shows the optical layout of the Advanced Virgo
interferometer [9]. The light source, typically a 1064𝑛𝑚 laser beam, enters the cavities
and is divided in two by the beam splitter mirror, separating the original laser into
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Figure 5.1: Optical layout of Advanced Virgo during the third observing run O3. This lay-
out includes several recent upgrades of the detectors like the power recycling mirror and
the signal recycling mirror, as well as the frequency dependent squeezing (quantum noise
reduction system). Credits: The Virgo Collaboration.

two beams with equal intensities. Each beam is sent into each arm and then reflected
by the west and north end mirrors of the detector. The lasers are then recombined
by the beam splitter, and observed via a detection photodiode. The arm’s lengths
are set in such a way that when no GW goes through the detector, the recombined
lasers are in opposition of phase, also called dark fringe. When a GW passes through
the detector, it impacts the time travel of the light between each mirror, and the arm
length variations induced by the GW can be written such that

Δ𝐿 = ℎ(𝑡)𝐿
2 , (5.1)

where 𝐿 is the arm length when no GW passes through, Δ𝐿 is the absolute length
variation of the arm, and ℎ(𝑡) is the strain of the GW. This variation causes a phase shift
of the two laser beams at the recombination point, creating light interferences, and the
end photodiode detects the change in intensity of the recombined laser. The mirrors
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of the interferometer are crucial components of the detector, in order to maximally
reduce the potential disruptions of the mirrors, they are isolated and suspended in
special columns called superattenuators, that reduce (by twelve order of magnitude)
the vibrations of the ground, making the mirrors behave as if they were in “free-fall”
with respect to the GWs, on the horizontal plane of the detector.

One important characteristic of the giant GW interferometer Virgo is the presence of
Fabry-Pérot cavities inside both arms [9]. These cavities, made out of an extra mirror
at the beginning of each arm (see Fig. 5.1), trap the laser beams, which go back and
forth in between those extra optics and the endmirrors. This setup induces an increase
of the laser power in the cavities, which increases the effect of even tiny phase shifts,
making the interferometermore sensitive toweakGW signals. The added Fabry-Pérot
cavities artificially lengthen the arms of the detector, hence the strain produced by a
GW. Thanks to this complex optical set up, GW detectors like Virgo, with 3𝑘𝑚 long
arms, are able to detect differential variations of the length of their arms of the order
of O ∼ 10−23.

Other innovative instrumental setups have been developed and added to the Virgo
detector since its creation, like the power recycling and signal recycling cavities, or
the frequency dependent squeezing of the laser. The power recycling cavities goal
is to increase the power of the laser traveling inside the arms of the interferometer:
since more power means larger amplitude of the signal, this results in an enhanced
sensitivity to GW signals. The signal recycling cavity is used to enlarge the sensitivity
band of the detector, making it sensible to potentially further sources or astrophysical
phenomena. Finally, the frequency dependent squeezing is used to reduce the noise
produced by the light particles of the laser when hitting the mirrors, called quantum
noise.

Due to the shape of the interferometer, and the physical properties of GWs seen in
Sec. 1.3, the sensitivity of such detector is not isotropic. They have specific responses
to GW signals, which depend on the direction of arrival of the GW with respect to the
orientation of the interferometer. As mentioned in Sec. 1.2, the detector sensitivity is
at its maximum when the GW signal arrives perpendicular to the plane of the inter-
ferometer, depending on which polarization of the GW we consider, the sensitivity
pattern will change too. Fig. 5.2 presents the antenna pattern response (see Eq. 1.6)
for an L shaped Michelson interferometer like Virgo.

5.2.2 Sensitivity and noise impact

The main output of current GW detectors is a time-series called ℎ(𝑡), which is the
combination of the pure GW strain denoted 𝑠(𝑡) and the instrumental noise 𝑛(𝑡) as

ℎ(𝑡) = 𝑠(𝑡) + 𝑛(𝑡). (5.2)

We call a GW detection when the strain 𝑠(𝑡) is successfully extracted from the noise
𝑛(𝑡). The later can be highly challenging when the amplitude of the GW strain is
very weak and/or when the noise is deeply covering the real signal. We quantify the
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Figure 5.2: Antenna response pattern of an L shaped Michelson interferometer, whose arms
are parallel to the x-y plane. The color shows the change in sensitivity, from blue (low) to
yellow (high). Left: Plus antenna response pattern 𝐹+. Right: Cross antenna response pat-
tern 𝐹×. Figure taken from [215].

amount of noise as a function of the frequency through a quantity known as the power
spectral density (PSD) denoted 𝑆𝑛(𝑓 ). The PSD, given in 𝐻𝑧−1, tells the amplitude of
the oscillations of a signal at a specific frequency. Whenwe talk about detector sensitiv-
ity, it is characterized by the PSD curves, which highlights the frequency boundaries
in which a GW with a certain strain can be detected. Following [216], in the Fourier
domain, if on average the noise time-serie is equal to zero, the PSD relates to the time
average of the noise 𝑛(𝑡) squared such that

< 𝑛2(𝑡) >= ∫
∞

0
𝑆𝑛(𝑓 )𝑑𝑓 , (5.3)

where 𝑆𝑛(𝑓 ) is the PSD and <> is a time average. When discussing noise detector,
we also often refer to the amplitude spectral density (ASD), which is defined as the
square root of the PSD

𝐴𝑛(𝑓 ) = √𝑆𝑛(𝑓 ). (5.4)
Fig. 5.3 displays the sensitivity curves of the LIGO Hanford, LIGO Livingston and
Virgo detectors, seen through the ASD during the second half of the third observ-
ing run (O3b). The frequency bandwidth in which the current detector is sensitive
is between [20 − 4000] 𝐻𝑧, but over this large frequency range, the sensitivity can be
affected by various noises. The specific noise sources are clearly visible on the ASD
curves, the spikes in Fig. 5.3, also called spectral lines, depict the loss in sensitivity of
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Figure 5.3: Amplitude spectral density (ASD) of the LIGO Hanford, Livingston and Virgo
interferometers during the second half of the third observing run. ASD estimated on the 4th
of January 2020 at 02:53:42 UTC for LIGO and on the 9th of February 2020 at 01:16:00 UTC
for Virgo. Figure taken from [27].

a detector at a certain frequency due to specific noises. Depending on the frequency
range considered, different type of noise will be dominant, affecting in various man-
ner the sensitivity of a detector. Noise can have different origins, and some of them
are very well characterized like the seismic noise or the electric power noise, but a
significant number of noises are still unknown or uncontrolled.

5.2.3 Auxiliary channels

Besides measuring the strain ℎ(𝑡), terrestrial interferometers such as LIGO or Virgo
record about O ∼ 105 other data time-series per detector. These other data channels
are called “auxiliary” channels. They aim tomeasure everything that could impact the
sensitivity of the detectors, from the internal state of the interferometer to the external
environment around it. The auxiliary channels are used to quantify the quality of
the data as a function of time during the observing periods. Beside the state of the
interferometer, they can also sense noises which could be present in the GW strain
channel, like scattered light on the mirrors or fluctuations of the laser power. Ideally,
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the main sources of noise which are witnessed by the auxiliary channels can then be
subtracted to the strain, if identified.

Often, the main auxiliary channels are used to give alerts or flag periods of time
when the interferometer strain channel is known to be affected by strong noise. This
procedure called “vetoing”, helps to identify times when the detector data can not be
trusted, allowing analysts to know when they should or should not use the produced
data. The auxiliary channels of an interferometer are classified into two categories:
the “safe” and “unsafe” channels. A channel is considered “safe” if it remains unaf-
fected by the passage of a GW through the detector, meaning it does not register or
sense the GW signal. Channels that might be sensitive to a GW signal are flagged as
“unsafe” to prevent any confusion between real GW events and instrumental noise.
During the vetoing process, only the “safe” auxiliary channels are used to rule out
noise artifacts. This ensures that genuine GW signals are not mistakenly vetoed due
to a misinterpretation of noise as a GW event.

5.3 A BESTIARy OF NOISE SOuRCES
Noise is the result of sources of no astrophysical origin that can produce in the de-
tector output an effect similar to a strain. These noises can have several origins that
can be divided into fundamental noises such as quantum noise or thermal noise and
environmental noises as the Newtonian noise or the seismic noise or technical noise.
In this section, we propose a review of the different sources of noise which impact the
sensitivity of the detector. In particular, we discuss glitches which are characteristic
by they short time duration and high statistic.

Fig. 5.4 presents the simplified noise budget of the Advanced LIGO Hanford inter-
ferometer ASD during the O3 run. The noise budget is a good way to quantify the
different noise contributions and sources, to the total noise of the detector.

5.3.1 Fundamental noise

Any physical effect that can impact the position or stability of the mirror can be a
source of noise. These noises, directly related to the physical principle of detection
with aMichelson interferometer are called fundamental noises. In the frequency range
in which GW are supposed to be, the main contributions to the fundamental noise are
the thermal noises and the quantum noises.

Thermal noise is a large class of noiseswhich is characterized by the random thermal
agitation of the atoms and molecules constituting any part of the detector, from the
mirrors themselves, to the suspensions or the cavities. The basic reasoning of thermal
fluctuations as being a source of noise is the following, the higher the temperature and
the greater the mechanical losses (internal friction), the greater is the agitation/noise.
Virgo, specifically, is operating at room temperature, which is not the obvious choice
when trying to reduce the thermal noise. The strategy so far has been to use only high
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Figure 5.4: ASD of the O3 LIGO Hanford interferometer simplified noise budget. The red
curve is themeasured sensitivity to GWs, the dashed black line is the Advanced LIGO design
sensitivity and all the other colored curves are the estimated noise contributions to the total
noise. Only the main known sources of noise are depicted in this plot. Figure taken from
[217].

quality materials, with very low internal friction. In Virgo, the main contribution to
the thermal noise is coming from the coating of the mirrors and their suspensions in
the arm cavities. This noise results in a random vibration of the mirrors surfaces, cru-
cial pieces of the detector. The coating Brownian thermal noise in particular, limits the
detector’s sensitivity over a large frequency range [40 − 200]𝐻𝑧, the noise originates
from the mechanical friction of the different layers making up the coating of the mir-
rors due to thermal fluctuations. The displacement of the coating layers impacts the
phase shift of the laser beam and then affects the GW detection efficiency. In addition
to the material with low internal friction, the laser beam is usually focused on a large
spot on the mirrors, so that the random fluctuations are spread out over a bigger area
and averaged away. On Fig. 5.4, the thermal noise contribution is given by the brown
curve.

The quantum noise, represented by the light blue and oranges curves on Fig. 5.4 is
one of the most important limits of the total sensitivity, and in particular at medium
and high frequency. The total quantum noise is the combination of two quantum
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mechanisms, the radiation pressure noise (amplitude fluctuations) at low frequencies
and the quantum shot noise (phase fluctuations) at high frequencies. Both of them
are the result of the intrinsic property of the light being made of discrete energy parti-
cles called photons. The photodetector which quantifies the light power counts these
photons, and these photons also hit the mirrors when the laser beam is reflected on
them. The radiation pressure noise emerges from the fluctuations of mirror position
due to the radiation pressure of the photons. The displacement of the mirror created
by this pressure induces a potential phase shift which is detected by the photodiode.
The shot noise on the other hand, is due to the variations of the arrival time of the
photon on the photo diode, arrival time that follows a Poisson process. The lower the
power of the laser, the higher is the effect of shot noise in the detector, but the higher
is the contribution of the radiation pressure noise. This relation is also called the stan-
dard quantum limit, understood as an effect of the Heisenberg uncertainty principle.
The perfect balance between the two quantum noises has to be found in order to max-
imize the sensitivity of the detector, at both low and high frequencies. For a specific
GW frequency, there exists a better configuration of the input laser power which min-
imize the combined contribution of both quantum noises. At the end of the day, the
quantum noise is the main limitation for all frequencies above ∼ 30 𝐻𝑧.

5.3.2 Environmental noise

On top of the fundamental noises arising from sources internal to the GW interferom-
eter, the natural environment in which the detector is located is also a source of noise
on its own. We talk about environmental noise sources, such a seismic motion, earth-
quakes, electromagnetic noise or even the change in the local gravitational field. As
an example, the Virgo site, located near the city of Pisa in Italy, is regularly shaken by
the motion of the ground on which it is constructed. Due to the extremely high sensi-
tivity of the detector, there is no need for high magnitude earthquakes for the detector
to be disturbed by the Earth motion. The slight, but constant vibration of the ground
impacts the steadiness of the suspended mirrors. To fight against the effect of seismic
noise, the mirrors are suspended in a tower by several pendulums. These columns
manage to reduce the effect of seismic noise by a factor 1012, for all frequencies above
10 𝐻𝑧, below this threshold value the suspensions are not able to reduce the seismic
disturbances. We call this limit the seismic wall, which prevent any detection of GWs
below 10 𝐻𝑧.

Extra contributions to the environmental noise can also be attributed to the weather
changes, like high velocity winds or sea activity like powerful tides that can create seis-
mic noises (sea microseisms). The sea microseisms contribute to the low frequency
range noise, they can also disturb the instrument components. The GW detectors are
also sensitive to lightning strikes and bad weather, these can affect the instrument via
electromagnetic interferences or pressure waves in the ground.

Finally, the Newtonian noise, present at low frequencies, is one additional noise
that can be classified as environmental. This noise is created by the local fluctuations
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over time of the gravitational field near the mirrors of the interferometer. These local
variations of the gravitational field induce a Newtonian interaction which can push
the mirrors hence reducing the sensitivity. These local variations of the gravitational
field can arise from atmospheric density fluctuations, pressure waves, temperature
variations or density changes due to seismic waves. The Newtonian noise is solely
affecting the 1 to 10 𝐻𝑧 region, but since it is a direct interaction of gravity, there is no
known shielding that can counterbalance this effect.

5.3.3 Technical noise

The technical noise, or technical “control” noise arises from all the control systems
and sensors that are used to keep the interferometer optical cavities on resonance (the
lock position). As shown in Fig. 5.4, this noise greatly impacts the total noise budget
of the interferometer at low frequencies, but also at high frequencies. Below 60 𝐻𝑧, the
technical noise is the dominant source [217]. The working state of an interferometer is
not a natural stable state, the optical layout has several degrees of freedom, longitudi-
nal and angular, that prevent the system to be on resonance mode on its own. These
complex control systems are used to reduce the real motion of the optics (displace-
ment noise) or even the proper noise of the output photodiode (sensor noise). The
sensor noise is hardly identifiable from the displacement noise, but dominates above
50 𝐻𝑧. The optimal resonance state of an interferometer is very unstable, andmultiple
controllers are employed to hold the optimal position in the most permanent way.

The control noise is predominant at low frequencies, the purple curve on Fig. 5.4
represents the sum of the noise produced to suppress the displacement noise and the
sensor noise.

5.3.4 Transient noise

Glitches is the name given to peculiar type of non-Gaussian noise characterized by its
short durations (transient), ranging from a few tens of a second up to several seconds.
They can mislead astrophysical searches by producing even high signal-to-noise ratio
(SNR) triggers [218–221]. The origin of such glitches can be various, but they are usu-
ally associated with environmental disturbances and control systems noises. These
short transient noises can affect directly the sensitivity of the detectors, limiting the
sensitivity at different frequency ranges. However, they also affect the ranking statis-
tics of the GW detections like the false alarm rate (FAR). The FAR corresponds to the
expected rate of signals/triggers that comes from background sources. As glitches can
resemble real GW events, the associated FAR of certain signals in the detector will be
affected by them.

As depicted in Fig. 5.5, glitches come in various types, usually they are categorized
in families (Blip, Tomte, Helix, ...) based on their shape seen in the time-frequency
domain, and their SNR. The presence of glitches in the GW data stream and their
suppression is a complicated task, which is typically done based on the data streams
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of the auxiliary channels of the detectors (see Sec. 5.2.3 for more details on auxiliary
channels) that monitor numerous control sensors, environmental sensors or instru-
mental sensors. The process of identifying glitches in the GW data stream is called
“noise-hunting”. If a glitch appears in the GW data stream channel, its origin could
be coupled to some other auxiliary channels of the detector. The auxiliary channel
that witnessed the glitch is then used to remove it from the GW strain. There exists
a wide range of techniques used to identify/remove glitches, like band-pass filters for
specific frequencies or data quality vetoes (“gating”) to remove chunks of data over
a time period polluted by noise and sets to zero the data [222]. All these techniques
are able to remove part of the glitches in the data stream, but they have several down-
sides. First, processes like gating or vetoes are conservatives methods, the time period
around a supposed glitch is removed from any analysis, which can slightly reduce
the total observation time. Second, the entire noise-hunting process for glitches can
be very tedious, with numerous steps and incremental vetoes to be run over the data
stream. Thirdly, glitches can overlap real GW signal. Lastly, not all the glitches are
found with these methods.

Since the advanced detector era, with the increase number of detections and sensi-
tivity of the detector, the number of triggers due to the presence of glitches has not
especially increased but is more likely to be superimposed with a real astrophysical
trigger andmultiple newmethods based onMLwere developed. The rest of this chap-
ter focuses on one of these methods for glitch identification, both as a tool for a new
data quality veto and its potential impact in the GW search pipelines.

5.4 MACHINE LEARNING ALGORITHM FOR DATA quALITy
In this section, wepresent an exploratory study based on amachine learning algorithm
(iDQ) to improve the data quality of the Virgo interferometer data stream [224]. This
algorithm has already been used in low latency at both LIGOHanford and Livingston
during the third observing run, but never for the Virgo interferometer. We propose
tests to quantify the efficiency of iDQ to identify glitches in the GW data stream, com-
paring its performances with methods currently used by the LIGO and Virgo collabo-
rations. Finally, we propose a method to include the data quality output of iDQ into
the GW search pipelines.

5.4.1 iDQ: A supervised learning algorithm

iDQ is a supervised learning algorithm that incorporates a framework for the statistical
inference of glitches. As mentioned in the previous sections, an interferometer has on
top of the main GW channel, several auxiliary channels (O ∼ 105), that record the
state of the interferometer at all time with a high frequency rate. These channels can
be the witnesses of numerous noise sources, noises that may also couple to the GW
data stream, creating problems for the GW searches analyses. Out of the total number
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Figure 5.5: Time-frequency visualization of 12 different type of glitches from various origins,
that can be observed in the GW data stream. The color gradient shows the associated signal-
to-noise ratio (SNR). Figure taken from [223].

of auxiliary channels, some of them are safe, i.e. they are not affected by the passage
of a real GW signal. This property makes them very suitable to do noise-hunting, by
looking at correlations between the safe auxiliary channels and the main one. Because
of the very large number of channels, and the complexity of the interplay between
these channels, classical algorithms can have a hard time disentangling the presence
of glitches. The goal of iDQ is to produce probabilistic quantities about the amount of
noise across time, in the interferometer data stream, quantities that could translate to
a probability of having a glitch at a certain time.

Before diving into how the iDQ framework is built, we clarify some nomenclature
and technical terms specific to this search, following [225]. First, we call the target
channel ℎ(𝑡), the channel supposed to contain both the real GW signals and the pollu-
tion due to the presence of non-gaussian noise that we aim to flag. The target channel
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can be any proxy of the GW data stream channel. Second, the safe auxiliary chan-
nels ⃗𝑎(𝑡), refers to the list of channels beside ℎ(𝑡) that are not sensitive to GW signal,
hence safe to use for flagging the presence of coupled noise between them and ℎ(𝑡).
The safe channels are determined through an injection campaign, power excess are
injected into the interferometer to simulate the effect of a GW signal and the channels
sensitive to these injections are categorized as unsafe. iDQ framework only uses safe
channels in its inference. From a more mathematical approach, iDQ assumes that the
target channel can be decomposed into three terms

ℎ(𝑡) = 𝑛(𝑡) + 𝑠(𝑡) + 𝑔(𝑡), (5.5)

where 𝑛(𝑡) is the typical Gaussian noise made out of all the noise sources presented
in Sec. 5.3, 𝑠(𝑡) are the real GW signal and 𝑔(𝑡) are the short transient non-Gaussian
noises. The goal of iDQ can be summarized in distinguish 𝑔(𝑡) from 𝑛(𝑡). The tar-
get channel is the only data stream that can really be monitored, the other can only
be modeled- the Gaussian noise is supposed stationary, meaning that it can be com-
pletely characterized by the ASD, but not 𝑠(𝑡) and 𝑔(𝑡). iDQ works with a two-class
classification, where 𝐺 defines all time samples with possible non-Gaussian noise and
𝐶 all clean sample times, such that

𝑝(𝐺) + 𝑝(𝐶) = 1∀𝑡. (5.6)

iDQ, based on a set of data, estimates the probability 𝑝𝐺(𝑡) which denotes the presence
of non-Gaussian noise in ℎ(𝑡), based on correlations with the safe auxiliary channels.
This probability can be expressed as:

𝑝𝐺(𝑡) = 𝑝(𝐺| ⃗𝑎(𝑡)) = 𝑝( ⃗𝑎(𝑡))𝑝(𝐺)
𝑝( ⃗𝑎(𝑡)|𝐺)𝑝(𝐺) + 𝑝( ⃗𝑎(𝑡)|𝐶)𝑝(𝐶), (5.7)

where 𝑝( ⃗𝑎(𝑡)|𝐺) and 𝑝( ⃗𝑎(𝑡)|𝐶) are inferred through the following supervised learning
process.

The data stream from the interferometer auxiliary channels are discretely sampled
time series, iDQ extracts from these time series a set of features from each channel,
typically O(105) per channel, and creates a high dimensional array based on those,
representing the auxiliary state of the interferometer. For the two-class classification of
iDQ, theNeyman-Pearson lemma [226] stipulates that an optimal classification should
be done based on the likelihood ratio

Λ𝐺
𝐶( ⃗𝑎(𝑡)) = 𝑝( ⃗𝑎(𝑡)|𝐺)

𝑝( ⃗𝑎(𝑡)|𝐶) . (5.8)

Unfortunately the analytical forms of these probability functions are not known and
the high dimensionality of the safe auxiliary channel array ⃗𝑎(𝑡) (O ∼ 104) makes the
estimation of likelihood ratio from the observed sampled complex. In this context,
the supervised learning algorithm is of great help since it can produce a map from a
high dimensional space to the one dimensional unit space [0, 1]. From this inference,
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elements of 𝐺 should be mapped close to 1 and elements of 𝐶 close to 0. Following
[225], the likelihood ratio in Eq. 5.8 transforms in a new one such that

𝑝𝐺(𝑡) = 𝑝(M( ⃗𝑎(𝑡))|𝐺)𝑝(𝐺)
𝑝(M( ⃗𝑎(𝑡))|𝐺)𝑝(𝐺) + 𝑝(M( ⃗𝑎(𝑡))|𝐶)𝑝(𝐶), (5.9)

where M( ⃗𝑎(𝑡)) is the mapping from high dimension to the unit space. The new prob-
abilities are then estimated from the labeled 𝐶 and 𝐺 samples. Beside the likelihood
ratio, iDQ is also able to produce other ranking statistics as a false alarm probability
(FAP) or efficiency.

5.4.2 iDQ’s supervised learning workflow

The workflow of iDQ inference can be decomposed into four stages, the training, the
evaluation, the calibration and the output production, and some of them happen si-
multaneously in order to communicate updated models. iDQ takes as input three
separate sets of data, Omicron triggers on the target channel ℎ(𝑡) from which poten-
tial times with non-Gaussian noises will be flagged, the list of safe auxiliary channels
for a specific interferometer and an external source of features giving the time local-
ization and SNR of non-Gaussian noises in channels. In our exploratory work, these
external features are taken to be Omicron triggers [227]. An Omicron trigger is a sig-
nal identified by the Omicron software after applying a signal-to-noise ratio threshold
to a spectrogram generated through a Q-transform of the time series data, indicating
a potential event or feature in the input signal. A pre-processing to flag important fea-
tures helps the iDQ classification, and allows for a first classification of time segments
in ℎ(𝑡) into “clean” and “noisy” segments. Each segments with labels 𝐶 or 𝐺 are then
used for training, and evaluation.

The second stage is the training phase, where iDQ trains the different classifiers
to distinguish 𝐶 and 𝐺 samples, the training is only made on the auxiliary channels.
iDQ can use different types of classifiers, in the following results, we choose to use the
already incorporated classifier OVL [228]. From the auxiliary channels, iDQmanages
to generate models, to be understood as different mapping from the high dimensional
array to a scalar ∈ [0, 1] called the rank. The trained models from the classifier also
save the information on the range of data used for the training, this information will
be used in the evaluation stage.

The evaluation phase quantifies the classifier performances. As said previously, the
different phases of iDQ’sworkflow can happen simultaneously (cross-evaluation), the
data are separated into several subsets, where one of themwill be sent for training and
the other for evaluation. In the iDQ setupweused to analyze theVirgo data stream,we
chose the “round-robin” method for subdivision. The data are divided into bins and
then segments, iDQwill then train on time segments in some bins, to generate models
which will evaluate the data in some other bins. This cross-validation is iterated, until
all bins are used.
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The last stage before the iDQ production of the final output is the calibration. The
calibration consists of the transition between ranks to probabilistic quantities about
the non-Gaussian noise content in the targeted channel. This is done by estimating
the conditioned probabilities seen in Eq. 5.9 for each model’s rank. The combination
of 𝑝(M|𝐺) and 𝑝(M|𝐶) are called calibration maps.

Finally, the iDQ workflow generates time series of probabilistic quantities from the
training and calibration phases. These probabilistic time series are the final product
of iDQ, and also the ones that should be incorporated into GW searches. Beside 𝑝𝐺(𝑡),
iDQ also estimates quantities such as the likelihood ratio Λ𝐺

𝐶 , the false alarm probabil-
ity, which are sampled at 128 𝐻𝑧. Physically, 𝑝𝐺(𝑡) is the probability of having a glitch
in the target channel, based on correlations with the auxiliary channels of the interfer-
ometer. Λ𝐺

𝐶 indicates the condition of the auxiliary channels of the interferometer for
both noisy and clean samples, large values of the ratio are more likely to be associated
with noisy times and small values with clean times. The false alarm probability, cumu-
lative integral of 𝑝( ⃗𝑎(𝑡)|𝐶), shows the probability of wrongly labeling clean times as
noisy times. Low FAP values indicate confident triggers, times with a high probability
of having no glitches in the target channel.

5.4.3 Machine learning versus classical methods

The main advantage of using ML methods instead of more “classical” approaches is
not merely their ability to handle large amounts of data or to do so more quickly with
respect to computational resources. The primary benefit of ML methods like iDQ lies
in their capacity to predict complex, non-linear relationships between the auxiliary
channels and the target channel, whereas classical algorithms are generally limited to
identifying linear or quadratic relationships [229].

The assertion thatMLmethods can handle large amounts of data ismainly a compu-
tational consideration, as bothML and classical algorithms can be designed to process
large volumes of data, either correctly or incorrectly. Moreover, from a computational
perspective, MLmethods employing neural networkswithmultiple layers and numer-
ous nodes—each performing regression statistical processes—are significantly more
complex than classical algorithms in terms of both calculation time and memory us-
age. The key issue is which method produces better results, specifically, in our case,
which one identify more glitches, with the best efficiency.

The fundamental advantage of ML algorithms over classical methods is their abil-
ity to identify and analyze complex patterns in the data, especially non-linear ones.
Non-Gaussian noises present in the auxiliary channels do not necessarily have a lin-
ear coupling to the targeted channel. Additionally, various combinations of small but
numerous glitches in the auxiliary channels can collectively create an effect visible in
the target channel. Conversely, loud glitches in one of the auxiliary channels might
have no impact on the target channel. Classical noise-hunting algorithms struggle to
handle such situations, but ML methods can address them effectively. A neural net-
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work provides enough versatility and flexibility to predict these cases by learning the
patterns and relationships between glitches in the auxiliary channels and the target
channel through training on known cases.

This is why the training phase in ML methods is critically important; the perfor-
mance of the algorithm directly depends on the quality of the training set. With GW
data from terrestrial interferometers like Virgo, we have numerous identified glitches
available for training. Through repetition, iDQ learns to predict glitches similar to the
tens of thousands it has previously seen and analyzed. A subtle aspect of working
with interferometers is that the total noise is considered non-stationary, meaning that
patterns change significantly over time as the state of the detector changes. Therefore,
it is not appropriate to train iDQ over very long periods but rather over short ones,
using it to make predictions while the detector’s state remains relatively unchanged.

In summary, the advantage of using ML methods to hunt non-Gaussian noises lies
in their ability to uncover complex relationships that classical approaches cannot de-
tect. The iterative training process of iDQ is crucial for its effectiveness in identifying
glitches in an interferometer’s data set, which changes constantly over time, rendering
simpler methods ineffective.

5.5 IMpROvING THE vIRGO DATA quALITy wITH IDq
During the third observing run of the LVK detector network, the Virgo interferome-
ter used several techniques to improve the data quality for analysis purposes. As we
mentioned previously, these gating techniques, also called vetoes, were introduced
in order to clean the data stream from most of the unwanted noise, by flagging time
segments as “unusable” for data analysis purposes. In Virgo, all these flagging tech-
niques are referred to as CAT1 vetoes. CAT1 veto labels are given to periods of time
when parts of the interferometer are not functioning properly. Although, CAT1 ve-
toes are not efficient against glitches, during the long period where the state of the
interferometer is in“science” mode, the detector can still be affected by the presence
of non-Gaussian noises coupling to the GW channel. In this section, we explore the
possibility of using iDQ, first in high latency (post-processing of the data), and as
an additional veto (CAT2) for the Virgo interferometer data quality. The supervised
learning method of iDQ could increase the confidence level of GW-events by flagging
periods of time with large non-Gaussian noise activity, and globally improve the data
quality and give insight for the commissioningwith its products on the auxiliary chan-
nels that may have witnessed the glitches.

5.5.1 Test on the Virgo O3 observing run

To assess the performance of iDQ, we ran an offline iDQ analysis, using the OVL clas-
sifier included in iDQ, over four weeks of data produced by the Virgo interferome-
ter. These four weeks, between April 1st and May 4th 2019, correspond to a period
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of time when Virgo witnessed numerous noise and transient signals, making it an
interesting period to test iDQ performances. These four weeks are defined between
𝐺𝑃𝑆𝑠𝑡𝑎𝑟𝑡 = 1238166016.000 and 𝐺𝑃𝑆𝑒𝑛𝑑 = 1241000000.000.

Up to now, iDQhas been solely utilized for the LIGO interferometers, sowe also had
to implement a new version designed for the Virgo interferometer, configured with its
specific set of safe auxiliary channels and data stream. We successfully implemented a
Virgo configuration of iDQ, first at the computing center of Cascina (at the Virgo site)
in Italy and then locally at the CCIN2P3 in Lyon, FRANCEwheremore auxiliary chan-
nel data streams are stored. We find that during the analyzed period, on average, close
to ∼1.5% of the time was identified by iDQ as “noisy” time, with a probability of hav-
ing a glitch in the proxy of the GW channel was greater than 𝑝(𝐺| ⃗𝑎(𝑡)) ≥ 0.9. This arbi-
trary threshold for the probability of 0.9 denotes the periods of time when iDQ finds a
high support for the presence of non-Gaussian noise in the detector. Fig. 5.6 shows the
report of the statistical time series sampled at 128 𝐻𝑧, produced over ∼2.3 days of data.
Each row corresponds to one of the probabilistic quantities of iDQ, namely 𝑝(𝐺| ⃗𝑎(𝑡)),

Figure 5.6: Report of the probabilistic quantities produced by iDQ inference over 2.3 days
of Virgo data, during the third observing run. The vertical gray area corresponds to a time
period when the interferometer was not in science mode (not taking data).

𝑙𝑛(Λ𝐺
𝐶), FAP and the rank. These quantities can then be used as extra information for

the GW searches.
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In addition to the ranking figures of merit discussed above, iDQ also generates a
“feature importance” summary. This summary ranks the different safe auxiliary chan-
nels that may have witnessed glitches from most likely to less likely. Fig. 5.7 displays
the feature importance summary for a subset of time analyzed in the third observing
run of Virgo. From this result, important information about the source of the transient
noises can be deduced. For instance, at a given time t, we can look at which auxiliary
channels seem to be themost correlatedwith the presence of non-Gaussian noise in the
target channel. In the example shown, the channel “𝑉1 ∶ 𝐸𝑁𝑉_𝑊𝐼_𝐴𝐶𝐶_𝑋” presents
significant correlation with the presence of a glitch. This channel corresponds to an
environmental sensor on the west input tower, measuring acceleration in the direc-
tion perpendicular to the laser beam of the detector. Two diagnosis are possible, ei-
ther there was already some evidence for the presence of a glitch at this time, and
the feature importance can help us track to possible origin of noise- or the trigger was
thought to be from astrophysical origin and iDQ can help us flag this period of time as
likely noisy. Therefore, this product of iDQmay be of interest as an additional tool for
commissioning and for noise-hunting purposes, but also to increase the confidence of
detected signal with a more in-depth analysis around the time of the trigger.

Beside looking at specific time periods for the presence of glitches in the target chan-
nel, it is also interesting to look at the feature importance plot aroundperiodswhen the
global sensitivity of the detector drops. Between the 28th and the 29th of April 2019,
Virgo’s BNS range was very unstable and an important decrease of the range was ob-
served around midnight (see Fig. 5.8), from ∼ 40𝑀𝑝𝑐 to ∼ 20𝑀𝑝𝑐. Based on iDQ’s
inference around the same time, we managed to track possible auxiliary channels of
the interferometer that show high probability for non-Gaussian noise correlating with
the ℎ(𝑡) channel, namely 𝑉1 ∶ 𝑆𝐷𝐵2_𝐵5_56𝑀𝐻𝑧_𝐼 and 𝑉1 ∶ 𝑆𝐷𝐵2_𝐵1𝑠2_𝐷𝐶. Even if
a more robust case could be made with a more detailed analysis, iDQ already shows
potential as a new tool for data quality and glitch hunting. As for this drop in the
BNS range, other algorithms also found evidence for an excess of non-Gaussian noise
perturbing the detector sensitivity.

5.5.2 Inclusion of iDQ for gravitational wave searches

Another prospect for the iDQ inference, is to incorporate some probabilistic quantities
about the data quality from iDQ, into the GW transient search algorithms. Up to now,
this type of analysis has been only partially studied in the literature [230]. In this sec-
tion, we explore the effect of a post-processing of the SNR assigned to single triggers
obtained with the PyCBC GW search pipeline [135, 231] on O3 data. Currently, data
quality inputs are either incorporated after a search pipeline has produced a list of
trigger candidates, or prior to the analysis. Periods of time labeled as noisy are typ-
ically excluded, and all triggers falling within these periods are then removed from
the analysis. Alternatively, before a search analysis, time segments labeled as unsafe
are “gated” and not analyzed by the GW searches at all. Hence, an important caveat
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Figure 5.7: Feature importance summary plot produced by iDQ. Each row corresponds to one
auxiliary channel, identified as the onemore likely to have witnessed the presence of the non-
Gaussian noise in the data. The color gradient shows the importance of each channel, from 1
being highly probable, to 0 highly unlikely.

of vetoes is its intrinsic binary formulation, if a time segment is not considered clean,
it is then flagged as noisy and thrown away.

We propose here to include a more continuous data quality estimation to a GW
search, using the likelihood ratio inferred by iDQ. The likelihood ratio Λ𝐺

𝐶 , as defined
in Eq. 5.8, will take large values when a time is considered noisy, and small ones when
the presence of a glitch has no support. In other terms, it gives an insight on the prob-
ability of having a glitch at a specific time. A GW search usually produces a list of GW
candidates with an associated ranking statistic which determines the confidence of
this candidate being from an astrophysical source. Generally, each trigger is given an
SNRvaluemeasurement frommatch filtering techniques [51]. Other ranking statistics
than the SNR are often derived, like the false alarm rate or 𝑝𝑎𝑠𝑡𝑟𝑜. In this exploratory
study, we only focus on the SNR of each candidate, we test the effect of re-weighting
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Figure 5.8: Binary neutron star range in Mpc of the Virgo interferometer on the 29th of April
2019. The blue curve shows the BNS range as a function of time and the yellow contours the
periods when the interferometer was lock locked. Credits: The Virgo scientific collaboration

the SNR of each candidate based on the data quality information that iDQ produces.
We apply the following relation to each trigger:

𝑆𝑁𝑅𝑤 = √𝑆𝑁𝑅2
𝑡 − 2𝑙𝑛(Λ𝐺

𝐶), (5.10)

where 𝑆𝑁𝑅𝑡 is the SNR of the trigger computed with the match filtering, Λ𝐺
𝐶 is the

likelihood ratio from iDQ and 𝑆𝑁𝑅𝑤 is the reweighed SNR. Because the likelihood
ratio is sampled at 128𝐻𝑧, we average its value around the time of the trigger. The data
quality information is applied a posteriori to the GW search, here we do not reject any
candidates, but rather increase or decrease the confidence we have about them being
real astrophysical signal or excess power induce by the presence of a glitch.

We performed a cross-comparison between real single trigger produced by the LVK
GW search pipeline PyCBC [135, 231], and injected fake signals recovered by another
GW search pipeline MBTA [133, 232]. Fig. 5.9 shows the SNR values of the recovered
single triggers from the PyCBC analysis with an SNR detection threshold of 5 (left)
and from MBTA on injected signals with an SNR detection threshold of 8 (right). For
both searches, the analysis was done on the chunk number four of the third observing
run, on approximately 700000 𝑠 of data. The sample of PyCBC triggers is very large
with almost ∼ 60000 candidates, andmost of them are supposed to be associated with
background noises (not real GW events). On the other hand, the MBTA triggers are
much less numerous (∼ 900) and correspond to fake GW signals randomly injected
in the instrumental noise from real data of the same chunk in O3. If iDQ is able to
correctly identify times when multiple transient signals polluted the data stream, the
reweighed SNRbased on the likelihood ratio should on average affectmore the PyCBC
triggers than theMBTA triggers. Since the PyCBC candidates arise from noise and the
MBTA are not injected at specific noisy-time.
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Figure 5.9: Histograms of the single trigger SNR for the chunk 4 of the third observing run.
Left: SNR of real triggers discovered by the PyCBC pipeline with an SNR cut of 5. Right:
SNR of injected signal recovered from the MBTA pipeline with an SNR cut of 8.

Fig. 5.10 shows the reweighted 𝑆𝑁𝑅𝑤 against the measurement 𝑆𝑁𝑅𝑡 of each trig-
ger for both PyCBC and MBTA. As expected, we observe that the new SNR of the
PyCBC triggers are significantly lower after weighting them with the likelihood ratio
of iDQ. This result supports the fact that a large proportion of these real triggers fall in
periods of time when the interferometer was highly affected by non-Gaussian noise.
Additionally, we observe the opposite behavior for the SNR ofMBTA’s triggers, which
are downgraded by an amount consistent with the hypothesis of no correlation with
iDQ. Similarly, it supports the idea that the MBTA triggers were injected at random
times, so some of them fell during noisy time, but the majority during clean time. To
further verify that the impact on the SNR is not a statistical effect, we tested the same
procedure, but this time randomly shifting in time the positions of the PyCBC and
MBTA triggers. We find that the effect on the PyCBC triggers is drastically reduced,
in agreement with the fact that these triggers were indeed associated with noisy time
before we shifted them. The result on the MBTA triggers did not change, this corrob-
orates the fact these triggers were already associated with random times.

From this analysis, we demonstrate that iDQ is correctly able to flag periods of time
when the interferometer is affected by the presence of glitches. Real noise triggers are
efficiently down ranked in terms of SNR, using the likelihood ratio produced as an out-
put by the supervised learning inference. It is important to note that some triggers are
also re ranked with a new SNR higher than the one estimated by the search pipeline,
meaning that iDQ can also label periods as clean, increasing the confidence of some
rare triggers. However, it is unclear if this up ranking is a desirable and robust effect.
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Figure 5.10: Scatter plot of the reweighted 𝑆𝑁𝑅𝑤 as a function of 𝑆𝑁𝑅𝑡, for the PyCBC single
triggers (left) and the MBTA single triggers (right). The blue line corresponds to the zone
where Δ𝑆𝑁𝑅 = 𝑆𝑁𝑅𝑤 − 𝑆𝑁𝑅𝑡 = 0.

5.5.3 Performances of iDQ

Beside the inclusion of iDQ statistical outputs into GW searches, we also tried to quan-
tify the performances of its inference (in terms of amount of glitches found over a cer-
tain time) in comparison to other types veto algorithms built for noise-hunting. Over
the chunk four of the third observing run, we compared iDQ to Use-percentage-veto
(UPV) algorithm (UPV), using the VetoPerf analysis tool [233, 234]. The VetoPerf
analysis is a tool used to compare the performances of a data quality vetoes, which
flags segment of time as noisy. VetoPerf will count the number of triggers in the tar-
get channel and compare it to the number of segments flagged by the noise-hunting
algorithm.

We ran both UPV and iDQ analysis between 𝐺𝑃𝑆𝑠𝑡𝑎𝑟𝑡 = 1240011371 and 𝐺𝑃𝑆𝑒𝑛𝑑 =
1240639381, using the same target channel. A time segment is considered as “noisy”
if the figure of merit of each algorithm is greater than 0.4. For iDQ, we choose to use
𝑝( ⃗𝑎(𝑡)|𝐺) as the statistical quantity to decide if a segment contains glitches. Fig. 5.11
shows the result of the iDQ analysis. We find that iDQ manages to consistently flag
∼ 25% of the glitches, for triggers with 𝑆𝑁𝑅 > 7, 𝑆𝑁𝑅 > 8 and 𝑆𝑁𝑅 > 10. Com-
pared to the fraction of veto clusters found by UPV, it corresponds to an increase of
+6.4%. In addition, we tested iDQ inference against two other types of veto streams,
one sensitive to light scattered glitches and the other to Schuman resonances (light-
ning glitches) [234]. Similarly, we also observe that iDQ is able to flag more glitches,
using the likelihood ratio or 𝑝( ⃗𝑎(𝑡)|𝐺) as a figure of merit.
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Figure 5.11: Scatter plot of the SNR associated with a trigger as a function of time. The black
circles correspond to the list of known trigger and the red crosses are the triggers recovered
by the iDQ inference.

5.6 CONCLuSION
In this chapter, we explored the use of a machine learning algorithm called iDQ to
improve the data quality of the Virgo interferometer for GW searches. Until now, the
data quality flags of the Virgo interferometer were mainly based on methods like gat-
ing, which can impact the overall quantity of data available for GW analysis. iDQ is a
specialized supervised learning algorithm that incorporates a framework for the sta-
tistical inference of non-Gaussian noises (glitches) in the interferometer data stream.
We used fourweeks of data from the third observing run of Virgo to test iDQ’s abilities
and noise-hunting performance. Of all types of noise, glitches have the highest impact
on the confidence level we assign to GW candidates because of their similarities with
real GW signals.

We found that iDQ can produce reliable probabilistic quantities about the amount
of noise over time in the interferometer data by efficiently searching for correlations
between a target channel sensitive to GW and numerous auxiliary channels monitor-
ing the state of the detector. These quantities can be used to flag periods when the
detector is affected by glitches. The main quantities are the probability of having a
glitch at time t, 𝑝( ⃗𝑎|𝐺), the likelihood ratio Λ𝐺

𝐶 or the false alarm probability.
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Wedemonstrated that applying iDQ’s data quality information about the likelihood
ratio to GW search pipelines can significantly lower the SNR of triggers associated
with noisy periods, while leaving triggers associated with clean periods unaffected.
This exploratory study also shows the potential impact of iDQ as a post-analysis tool
for GW searches, to increase or decrease the confidence level in GW candidates. Com-
pared to classical noise-hunting algorithms likeUPV, iDQ can consistently flag a larger
fraction of glitches, with an increase of 6.4% for triggers with 𝑆𝑁𝑅 > 7. Additionally,
promising results in flagging glitches associatedwith scattered light glitches and light-
ning noises were found.

Besides the probabilistic quantities provided by iDQ output products, we also high-
light the potential of feature importance summaries that give crucial insights into the
auxiliary channels most correlated with the presence of non-Gaussian noise in the tar-
get channel. This information can help diagnose the source of transient noises and
guide the interferometer commissioning process.

In conclusion, this study demonstrates the potential of using machine learning-
based algorithms like iDQ as a new tool to improve the data quality of the Virgo inter-
ferometer and possibly enhance the performance of GW searches. By incorporating
iDQ’s probabilistic outputs into the search pipelines and leveraging its feature impor-
tance analysis, we can increase confidence in GW event detections and gain valuable
insights into the interferometer’s noise sources. Based on the results of this study, the
products of iDQ will be produced in high latency for the current observing run of the
LVK collaboration, O4. The production will be organized at the CCIN2P3 comput-
ing center in FRANCE, where the Virgo data streams are stored. All products will be
available to the GW searches.





CONCLUSION

“What is the future of the Universe?”, “How did black holes originate?”, and “What
confidence do we have in our measurements?”, these are long-standing questions in-
troduced after the pioneering work of Albert Einstein and his theory of General Rela-
tivity, or Edwin Powell Hubble and Georges Henri Lemaître with their novel under-
standing of the Universe’s expansion. This manuscript contributes to the scientific ef-
forts to answer these questions, aided by the novel probe of gravitational waves. Grav-
itational waves present a revolutionary tool for fundamental physics, offering insights
into a vast array of phenomena. They provide a deeper understanding of the forma-
tion, evolution, and dynamics of astrophysical sources, such as black holes and neu-
tron stars. Moreover, they offer a unique perspective on cosmology, allowing us to ex-
plore the early and late moments of the Universe, and track its subsequent expansion.
Recent gravitational wave observations of binary black hole and neutron star mergers
have opened a newwindow into theUniverse, leading to significant discoveries. These
include direct evidence of black holes, insights into their astrophysical formation, evo-
lution, and intrinsic properties, as well as the discovery of the stochastic gravitational
wave background using pulsar timing arrays. Gravitational wave physics has also un-
veiled the production of short gamma-ray bursts during neutron star coalescence and
provided the ability to measure the Universe’s expansion rate. Through these diverse
applications, gravitational waves have the transformative potential to revolutionize
our comprehension of the Universe’s fundamental workings.

In addition to the review of fundamental physics concerning gravitational waves and
the standard model of cosmology presented in Chapter I, this manuscript details our
understanding of binary black hole astrophysics, their formation processes, and how
these systems can aid in measuring the dynamics of the Universe’s expansion. The
capability to estimate cosmological parameters, such as the Hubble constant, using
gravitational wave signals alone is innovative, as this probe is intrinsically indepen-
dent of other approaches like Type Ia supernovae or cosmic microwave background
methods. The Standard Sirenmethod introduced in Chapter II which uses binary black
hole mergers to measure cosmological distances and estimate the Hubble constant,
will become increasingly accurate as the number of detected events naturally grows
with the detectors’ advancements. This is especially true with the advent of projects
like the Laser Interferometer Space Antenna (LISA), the Einstein Telescope (ET), and
Cosmic Explorer (CE), which are expected to detect thousands of signals per week
from various astrophysical sources. The Standard Siren analysis for gravitational wave
cosmology shows good agreement with other approaches, indicating that our Uni-
verse is still rapidly expanding today, at a rate of 𝐻0 = 68+12

−8 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1 for the
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best estimate. However, this approach is not without flaws and can be subject to sig-
nificant systematic errors inherent to its methodology, as shown in Chapter III. We
have demonstrated that the effects stemming from unknown astrophysical processes
intrinsic to gravitational wave sources could introduce biases in our estimation of both
cosmological parameters and the binary black hole population. Confidence in the
measurements will require extensive studies of the systematics, particularly as we ap-
proach O(∼ 1%) precision for cosmological parameters. The Standard Siren inference
is affected by unmodeled astrophysical phenomena, such as the redshift evolution
of the binary black hole mass spectrum, which this method has demonstrated to be
highly sensitive to. Nonetheless, these unknown astrophysical processes also provide
opportunities for new discoveries. Chapter IV, which explores novel models describ-
ing the spin-mass interplay of binary black hole populations, investigates the effects of
black hole formation channels and uncovers evidence for the existence of hierarchical
mergers. Thesemergers exhibit distinct spin distributions, with their spinmagnitudes
close to 𝜒 ∼ 0.7. Compelling evidence suggests that a small fraction of black holes (ap-
proximately 2%) originate from previously merged binaries. These black holes are
characterized by higher source-frame masses and spin magnitudes compared to first-
generation black holes. In the future, a major limitation of such analyses will be the
purity of gravitational wave detections. Most methods assume that the data originate
from real astrophysical sources and not from complex noise sources that mimic them.
Therefore, exploring high-end machine learning techniques, as discussed in Chapter
V, to identify glitches and thereby increase the confidence in gravitational wave detec-
tions will become crucial. Concerning the advancements in data quality for the Virgo
interferometer, the machine learning work with iDQ shows promising results both for
glitch hunting and in managing the confidence level of our detections.

Prospects and hopes for new discoveries in the field of gravitational wave physics are
high, driven by both technological breakthroughs and fundamental explorations of
the Universe’s secrets. As the LIGO-Virgo-KAGRACollaboration completes its fourth
observing run with unprecedented sensitivity, preparations for the next generation of
detectors have already begun, ensuring that gravitational wave astronomy will play a
major role in physics in the coming decades. In the near future, the number of applica-
tions related to gravitational waves is destined to increase. Scientists eagerly await the
moment when post-merger signals from neutron star mergers become visible, which
will help constrain the equation of state of the densest astrophysical objects made of
ordinary matter. The cosmological prospects are even more promising: with more
precise localization and increased detections, constraints on thematter density param-
eter and theHubble constant could achieve sub-percent accuracy. Thiswould allowus
to compete with other measurements and potentially resolve the persistent problem
of the Hubble tension. Additionally, more exotic searches lie ahead for gravitational
wave astronomy, including deviations from the Λ𝐶𝐷𝑀 cosmological model, tests of
General Relativity, gravitational wave propagation friction, and the exploration of ex-
tra dimensions of space-time. Regarding the future of population studies, the advent
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of third-generation detectors will be highly valuable. LISA is anticipated to detect
gravitationalwaves fromnew sources such asmassive binaries and extrememass ratio
inspirals, which will enable us to explore the formation and astrophysical properties
of unseen objects. With CE and ET, we expect to resolve nearly the entire population of
stellar-mass black holes, which will provide a comprehensive understanding of their
mass and spin distributions. Consequently, it is essential for the gravitational wave
scientific community to continue pursuing these efforts. The future of the field will
heavily rely on the performance of new algorithms capable of fast and accurate pa-
rameter estimations of gravitational wave sources, the correct identification of noisy
periods in the detectors, the development of new waveform and population models
that can resolve a broad spectrum of new sources, and robust inference frameworks
suited to high statistical regimes. In this context, this manuscript represents one step
forward, contributing to the advancement of methods and understanding what will
underpin the next generation of discoveries in gravitational wave astronomy.
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A.1 SOuRCE FRAME pOpuLATION MASS MODELS
In this appendix, we present the supplementary material of Sec. 3. The summary
tables for each of the three source mass models used for the hierarchical Bayesian
framework in ICAROGW. These three mass models are called: the Broken Powerlaw, the
Powerlaw plus peak and the Multi peak mass models.

A.1.1 The BROkEN pOwERLAw model

Table. A.1 presents the parameters that control the BPL mass distribution, as well as
the prior ranges used to perform the joint inference on the cosmology and the BBH
populations.

Parameter Description Prior
𝛼1 Power Law index number 1 primary mass. U(−4, 10)
𝛼2 Power Law index number 2 primary mass. U(−4, 10)
𝛽 Power Law index secondary mass. U(−4, 10)

𝑚𝑚𝑖𝑛 Minimum value of the source mass [𝑀⊙]. U(1𝑀⊙, 10𝑀⊙)
𝑚𝑚𝑎𝑥 Maximum value of the source mass [𝑀⊙]. U(100𝑀⊙,

200𝑀⊙)
𝛿𝑚 Smoothing parameter [𝑀⊙]. U(0𝑀⊙, 10𝑀⊙)
𝑏 Breaking point [𝑀⊙]. U(0𝑀⊙, 1𝑀⊙)

Table A.1: Summary table of the population parameters governing the source BPLmassmodel,
alongside their description. On the right hand side of the table are reported the prior ranges
typically used for the Spectral sirens analysis.
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A.1.2 The pOwERLAw pLuS pEAk model

Table. A.2 presents the parameters that control the PLP mass distribution, as well as
the prior ranges used to perform the joint inference on the cosmology and the BBH
populations.

Parameter Description Prior
𝛼 Power Law index primary mass U(1, 10)
𝛽 Power Law index secondary mass U(−4, 10)

𝑚𝑚𝑖𝑛 Minimum minimum value of the source mass [𝑀⊙]. U(1𝑀⊙, 12𝑀⊙)
𝑚𝑚𝑎𝑥 Maximum value of the source mass [𝑀⊙]. U(50𝑀⊙,

200𝑀⊙)
𝜆𝑔 Fraction of the model in the Gaussian component. U(0, 1)
𝜇𝑔 Mean of the Gaussian peak [𝑀⊙]. U(10𝑀⊙,

40𝑀⊙)
𝜎𝑔 Standard deviation of the Gaussian peak [𝑀⊙]. U(6𝑀⊙, 17𝑀⊙)
𝛿𝑚 Range of mass tapering at the lower end of the mass

distribution [𝑀⊙].
U(0𝑀⊙, 12𝑀⊙)

Table A.2: Summary table of the population parameters governing the source PLPmassmodel,
alongside their description. On the right hand side of the table are reported the prior ranges
typically used for the Spectral sirens analysis.

A.1.3 The MuLTI pEAk model

Table. A.3 presents the parameters that control the MLTP mass distribution, as well
as the prior ranges used to perform the joint inference on the cosmology and the BBH
populations.
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Parameter Description Prior
𝛼 Power Law index primary mass. U(1, 10)
𝛽 Power Law index secondary mass. U(−4, 10)

𝑚𝑚𝑖𝑛 Minimum value of the source mass [𝑀⊙]. U(1𝑀⊙, 10𝑀⊙)
𝑚𝑚𝑎𝑥 Maximum value of the source mass [𝑀⊙]. U(50𝑀⊙,

200𝑀⊙)
𝛿𝑚 Smoothing parameter [𝑀⊙]. U(0𝑀⊙, 10𝑀⊙)

𝜇𝑙𝑜𝑤𝑔 Mean of the lower gaussian peak [𝑀⊙]. U(11𝑀⊙,
30𝑀⊙)

𝜇ℎ𝑖𝑔ℎ
𝑔 Mean of the higher gaussian peak [𝑀⊙]. U(40𝑀⊙,

80𝑀⊙)
𝜎 𝑙𝑜𝑤𝑔 Standard deviation of the higher gaussian peak [𝑀⊙]. U(6𝑀⊙, 17𝑀⊙)
𝜎ℎ𝑖𝑔ℎ

𝑔 Standard deviation of the higher gaussian peak [𝑀⊙]. U(6𝑀⊙, 17𝑀⊙)
𝜆𝑔 Proportion of events in the peaks. U(0, 1)

𝜆𝑙𝑜𝑤𝑔 Proportion of events in the lower peak. U(0, 1)

Table A.3: Summary table of the population parameters governing the source MLTP mass
model, alongside their description. On the right hand side of the table are reported the prior
ranges typically used for the Spectral sirens analysis.
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In this appendix, we present the supplementary material of Sec. 3.

B.1 INjECTED vALuES FOR THE pOpuLATION DISTRIBu-
TIONS

B.1.1 The BROkEN pOwERLAw model

Parameter Description Injected value
𝛼1 Power Law index number 1 primary mass. 1.5
𝛼2 Power Law index number 2 primary mass. 5.5
𝛽 Power Law index secondary mass. 1.4

𝑚𝑚𝑖𝑛 Minimum value of the source mass [𝑀⊙]. 5𝑀⊙
𝑚𝑚𝑎𝑥 Maximum value of the source mass [𝑀⊙]. 100𝑀⊙
𝛿𝑚 Smoothing parameter [𝑀⊙]. 5𝑀⊙
𝑏 Breaking point [𝑀⊙]. 0.4𝑀⊙

Table B.1: Summary of the values injected to construct the BPL mass distribution of the BBH
populations analyzed in Sec. 3.3.
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B.1.2 The pOwERLAw pLuS pEAk model

Parameter Description Injected value
𝛼 Spectral index for the PL of the primary mass distribu-

tion.
2

𝛽 Spectral index for the PL of themass ratio distribution. 1
𝑚𝑚𝑖𝑛 Minimum mass of the primary mass distribution

[𝑀⊙].
5𝑀⊙

𝑚𝑚𝑎𝑥 Maximum mass of the primary mass distribution
[𝑀⊙].

100𝑀⊙

𝜆𝑔 Fraction of the model in the Gaussian component. 0.1
𝜇𝑔 Mean of the Gaussian in the primarymass distribution

[𝑀⊙].
35𝑀⊙

𝜎𝑔 Width of the Gaussian in the primary mass distribu-
tion [𝑀⊙].

5𝑀⊙

𝛿𝑚 Range of mass tapering at the lower end of the mass
distribution [𝑀⊙].

5𝑀⊙

Table B.2: Summary of the values injected to construct the PLP mass distribution of the BBH
populations analyzed in Sec. 3.3.

B.1.3 The MuLTI pEAk model

Parameter Description Injected value
𝛼 Power Law index primary mass. 2
𝛽 Power Law index secondary mass. 1

𝑚𝑚𝑖𝑛 Minimum value of the source mass [𝑀⊙]. 5𝑀⊙
𝑚𝑚𝑎𝑥 Maximum value of the source mass [𝑀⊙]. 100𝑀⊙
𝛿𝑚 Smoothing parameter [𝑀⊙]. 5𝑀⊙

𝜇𝑙𝑜𝑤𝑔 Mean of the lower gaussian peak [𝑀⊙]. 16𝑀⊙
𝜇ℎ𝑖𝑔ℎ

𝑔 Mean of the higher gaussian peak [𝑀⊙]. 50𝑀⊙
𝜎 𝑙𝑜𝑤𝑔 S.t.d of the higher gaussian peak [𝑀⊙]. 8𝑀⊙
𝜎ℎ𝑖𝑔ℎ

𝑔 S.t.d of the higher gaussian peak [𝑀⊙]. 8𝑀⊙
𝜆ℎ𝑖𝑔ℎ

𝑔 Proportion of events in the peaks. 0.7
𝜆𝑙𝑜𝑤𝑔 Proportion of events in the lower peak. 0.8

Table B.3: Summary of the values injected to construct theMLTPmass distribution of the BBH
populations analyzed in Sec. 3.3.
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B.2 pERCENT-pERCENT pLOTS

B.2.1 Using the correct model
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Figure B.1: PP plot obtained from ∼ 20 independent population realizations simulated using
the PLPmassmodel. The Spectral Siren inference is donewith the PLPmassmodel. The gray
contours are the 99.7%, 95.0% and 68.0% C.I. respectively from lighter to darker, showing the
expected fluctuations due to the finite size of realizations.
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Figure B.2: PP plot obtained from ∼ 20 independent population realizations simulated using
the BPLmassmodel. The Spectral Siren inference is donewith the BPLmassmodel. The gray
contours are the 99.7%, 95.0% and 68.0% C.I. respectively from lighter to darker, showing the
expected fluctuations due to the finite size of realizations.
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B.2.2 Using the wrong model
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Figure B.3: PP plot obtained from ∼ 20 independent population realizations simulated using
the PLP mass model. The Spectral Siren inference is done with the MLTP mass model. The
gray contours are the 99.7%, 95.0% and 68.0%C.I. respectively from lighter to darker, showing
the expected fluctuations due to the finite size of realizations.
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Figure B.4: PP plot obtained from ∼ 20 independent population realizations simulated using
the MLTP mass model. The Spectral Siren inference is done with the PLP mass model. The
gray contours are the 99.7%, 95.0% and 68.0%C.I. respectively from lighter to darker, showing
the expected fluctuations due to the finite size of realizations.
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Figure B.5: PP plot obtained from ∼ 20 independent population realizations simulated using
the MLTP mass model. The Spectral Siren inference is done with the BPL mass model. The
gray contours are the 99.7%, 95.0% and 68.0%C.I. respectively from lighter to darker, showing
the expected fluctuations due to the finite size of realizations.
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Figure B.6: PP plot obtained from ∼ 20 independent population realizations simulated using
the BPLmassmodel. The Spectral Siren inference is donewith the PLPmassmodel. The gray
contours are the 99.7%, 95.0% and 68.0% C.I. respectively from lighter to darker, showing the
expected fluctuations due to the finite size of realizations.
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Figure B.7: PP plot obtained from ∼ 20 independent population realizations simulated using
the BPL mass model. The Spectral Siren inference is done with the MLTP mass model. The
gray contours are the 99.7%, 95.0% and 68.0%C.I. respectively from lighter to darker, showing
the expected fluctuations due to the finite size of realizations.



B.2 pERCENT-pERCENT pLOTS 179

B.2.3 Redshift evolution
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Figure B.8: PP plot obtained from ∼ 20 independent population realizations simulated with
the modified PLP model, when the Gaussian peak is evolving from 30 𝑀⊙ at 𝑧 = 0 up to
30 𝑀⊙ when 𝑧 = 1. The Spectral Siren inference is done with the regular non evolving PLP
mass model. The gray contours are the 99.7%, 95.0% and 68.0% C.I. respectively from lighter
to darker, showing the expected fluctuations due to the finite size of realizations.
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Figure B.9: PP plot obtained from ∼ 20 independent population realizations simulated with
the modified PLP model, when the Gaussian peak is evolving from 30 𝑀⊙ at 𝑧 = 0 up to
25 𝑀⊙ when 𝑧 = 1. The Spectral Siren inference is done with the regular non evolving PLP
mass model. The gray contours are the 99.7%, 95.0% and 68.0% C.I. respectively from lighter
to darker, showing the expected fluctuations due to the finite size of realizations.
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B.2.4 A03 vanilla

0.0 0.2 0.4 0.6 0.8 1.0
Credible interval [C.I.]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

ru
ns

 in
 C

.I.

H0

Figure B.10: PP plot obtained from ∼ 15 independent population realizations simulated from
theA03 BBH catalog. The Spectral Siren inference is donewith the BPLmassmodel. The gray
contours are the 99.7%, 95.0% and 68.0% C.I. respectively from lighter to darker, showing the
expected fluctuations due to the finite size of realizations.
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Figure B.11: PP plot obtained from ∼ 15 independent population realizations simulated from
the A03 BBH catalog. The Spectral Siren inference is done with the MLTP mass model. The
gray contours are the 99.7%, 95.0% and 68.0%C.I. respectively from lighter to darker, showing
the expected fluctuations due to the finite size of realizations.
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B.2.5 Blinded mass-redshift relation
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Figure B.12: PP plot obtained from ∼ 20 independent population realizations simulated from
the A03 BBH catalog, where the redshift evolution of the mass spectrum has been artificially
removed. The Spectral Siren inference is donewith theMLTPmassmodel. The gray contours
are the 99.7%, 95.0% and 68.0% C.I. respectively from lighter to darker, showing the expected
fluctuations due to the finite size of realizations.
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Figure C.1: Inferred posterior of the 𝛾 parameter from the CBCmerger rate population model.
Left plot: Estimated 𝛾 from the MDC with the non evolving canonical model (top), first
population with MIXTURE models (middle) and second population with the MIXTURE models
(bottom). Right plot: Estimated 𝛾 from the blurred analysis with the non evolving canonical
model (top), first population with MIXTURE models (middle) and second population with
the MIXTURE models (bottom).
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Figure C.2: Reconstructed mass spectra of the primary (left column) and secondary (right
column) masses obtained from population inference of the 59 GW events from GWTC-2.1
and GWTC-3, obtained with the MIXTURE VANILLA model (first row), MIXTURE PEAK (second
row), MIXTURE PAIRED (third row), EVOLVING GAUSSIAN (fourth row), BETA TO GAUSSIAN (fifth
row), BETA TO BETA (sixth row) and the canonical VANILLA model (seventh row). The dotted
lines are the median values and the colored contours the 90% C.L. inferred.
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Figure C.3: Scatter plot representing the evolution of the aligned component of the spin mag-
nitude 𝑠𝑧 with respect to the chirp mass M𝑐, obtained from the population inference of sim-
ulated GW data (MDC) using the EVOLVING GAUSSIAN (top), the BETA TO GAUSSIAN (middle)
and BETA TO BETA (bottom) models.
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Figure C.4: Reconstructed mass spectra of the primary (left column) and secondary (right
column) masses obtained from MDC population inference of the MDC with the MIXTURE
VANILLA model (first row), MIXTURE PEAK (second row), MIXTURE PAIRED (third row), EVOLV-
ING GAUSSIAN (fourth row), BETA TO GAUSSIAN (fifth row), BETA TO BETA (sixth row) and the
canonical VANILLA model (seventh row). The dotted lines are the median values and the col-
ored contours the 90% C.L. inferred.
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Figure C.5: Scatter plot representing the evolution of the aligned component of the spin mag-
nitude 𝑠𝑧 with respect to the chirp mass M𝑐, obtained from the population inference on the
blurred set of 59 GW event, using the EVOLVING GAUSSIAN (top), the BETA TO GAUSSIAN (mid-
dle) and BETA TO BETA (bottom) models. These results have been obtained for the blurred
analysis.
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Figure C.6: Reconstructed mass spectra of the primary (left column) and secondary (right
column) masses obtained from the blurred analysis with the MIXTURE VANILLA model (first
row), MIXTURE PEAK (second row), MIXTURE PAIRED (third row), EVOLVING GAUSSIAN (fourth
row), BETA TOGAUSSIAN (fifth row), BETA TOBETA (sixth row) and the canonical VANILLAmodel
(seventh row). The dotted lines are the median values and the colored contours the 90% C.L.
inferred.



C.2 pOpuLATION MODELS AND pRIOR RANGES 189

C.2 pOpuLATION MODELS AND pRIOR RANGES

Parameter Description Prior

Masses: Power Law plus Peak

𝛼 Spectral index for the PL of the primary mass distribu-
tion.

U(0, 8)

𝛽 Spectral index for the PL of themass ratio distribution. U(−1, 10)
𝑚𝑚𝑖𝑛 Minimum mass of the primary mass distribution

[𝑀⊙].
U(1𝑀⊙, 8𝑀⊙)

𝑚𝑚𝑎𝑥 Maximum mass of the primary mass distribution
[𝑀⊙].

U(70𝑀⊙,
130𝑀⊙)

𝜆𝑔 Fraction of the model in the Gaussian component. U(0, 1)
𝜇𝑔 Mean of the Gaussian in the primarymass distribution

[𝑀⊙].
U(20𝑀⊙,
50𝑀⊙)

𝜎𝑔 Width of the Gaussian in the primary mass distribu-
tion [𝑀⊙].

U(1𝑀⊙, 10𝑀⊙)

𝛿𝑚 Range of mass tapering at the lower end of the mass
distribution [𝑀⊙].

U(1𝑀⊙, 10𝑀⊙)

Spins: Default model

𝛼𝑝𝑜𝑝1
𝜒 First parameter of the Beta distribution for the spin

magnitude.
U(1, 10)

𝛽𝑝𝑜𝑝1
𝜒 Second parameter of the Beta distribution for the spin

magnitude.
U(1, 10)

𝜎𝑝𝑜𝑝1
𝑡 Standard deviation of the truncated gaussian for the

cosine tilt angle distribution.
U(0, 5)

𝜉𝑝𝑜𝑝1 Mixing parameter for the cosine of the tilt angle distri-
bution.

U(0, 1)

Rate: MD

𝛾 Slope of the power law regime before the point 𝑧𝑝. U(0, 8)
𝑘 Slope of the power law regime after the point 𝑧𝑝. U(0, 8)
𝑧𝑝 Redshift turning point between the power law

regimes.
U(0, 8)

R0 Local value of the CBC merger rate, at 𝑧 = 0. U(0,100)

Table C.1: Prior ranges and population parameters for the non evolving Vanilla analysis, con-
struct with a POWERLAW + PEAK for the masses, a Default spin model and a Madau & Dickin-
son CBC merger rate.
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Parameter Description Prior

Pop1: Power Law plus Peak

𝛼𝑝𝑜𝑝1 Spectral index for the PL of the primary mass distribu-
tion.

U(0, 8)

𝛽𝑝𝑜𝑝1 Spectral index for the PL of themass ratio distribution. U(−1, 8)
𝑚𝑝𝑜𝑝1

𝑚𝑖𝑛 Minimum mass of the primary mass distribution
[𝑀⊙].

U(1𝑀⊙, 8𝑀⊙)

𝑚𝑝𝑜𝑝1
𝑚𝑎𝑥 Maximum mass of the primary mass distribution

[𝑀⊙].
U(45𝑀⊙,
60𝑀⊙)

𝜆𝑝𝑜𝑝1
𝑔 Fraction of the model in the Gaussian component. U(0, 1)

𝜇𝑝𝑜𝑝1
𝑔 Mean of the Gaussian in the primarymass distribution

[𝑀⊙].
U(20𝑀⊙,
50𝑀⊙)

𝜎𝑝𝑜𝑝1
𝑔 Width of the Gaussian in the primary mass distribu-

tion [𝑀⊙].
U(1𝑀⊙, 10𝑀⊙)

𝛿𝑝𝑜𝑝1
𝑚 Range of mass tapering at the lower end of the mass

distribution [𝑀⊙].
U(1𝑀⊙, 10𝑀⊙)

Pop2: Power Law

𝛼𝑝𝑜𝑝2 Spectral index for the PL of the primary mass distribu-
tion.

U(0, 8)

𝛽𝑝𝑜𝑝2 Spectral index for the PL of themass ratio distribution. U(−1, 8)
𝑚𝑝𝑜𝑝2

𝑚𝑖𝑛 Minimum mass of the primary mass distribution
[𝑀⊙].

U(1𝑀⊙, 8𝑀⊙)

𝑚𝑝𝑜𝑝2
𝑚𝑎𝑥 Maximum mass of the primary mass distribution

[𝑀⊙].
U(80𝑀⊙,
130𝑀⊙)

𝛿𝑝𝑜𝑝2
𝑚 Range of mass tapering at the lower end of the mass

distribution [𝑀⊙].
U(1𝑀⊙, 10𝑀⊙)

Common parameters

𝜆𝑝𝑜𝑝 Fraction of the population 𝑝𝑜𝑝1 w.r.t to the overall pop-
ulation.

U(0,1)

Table C.2: Prior ranges used the mass distribution of the MIXTURE VANILLA and MIXTURE PAIRED
models.
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Parameter Description Prior

Pop1: Power Law plus Peak

𝛼𝑝𝑜𝑝1 Spectral index for the PL of the primary mass distribu-
tion.

U(0, 8)

𝛽𝑝𝑜𝑝1 Spectral index for the PL of themass ratio distribution. U(−1, 8)
𝑚𝑝𝑜𝑝1

𝑚𝑖𝑛 Minimum mass of the primary mass distribution
[𝑀⊙].

U(1𝑀⊙, 8𝑀⊙)

𝑚𝑝𝑜𝑝1
𝑚𝑎𝑥 Maximum mass of the primary mass distribution

[𝑀⊙].
U(80𝑀⊙,
130𝑀⊙)

𝛿𝑝𝑜𝑝1
𝑚 Range of mass tapering at the lower end of the mass

distribution [𝑀⊙].
U(1𝑀⊙, 10𝑀⊙)

Pop2: Power Law

𝜇𝑝𝑜𝑝2 Mean of the gaussian U(20𝑀⊙,50𝑀⊙)
𝜎𝑝𝑜𝑝2 Standard deviation of the gaussian U(2𝑀⊙,10𝑀⊙)

Common parameters

𝜆𝑝𝑜𝑝 Fraction of the population 𝑝𝑜𝑝1 w.r.t to the overall pop-
ulation.

U(0,1)

Table C.3: Prior ranges used for the mass distribution of the MIXTURE peak model.
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Parameter Description Prior

Power Law plus Peak

𝛼 Spectral index for the PL of the primary mass distribu-
tion.

U(0, 8)

𝛽 Spectral index for the PL of themass ratio distribution. U(−1, 10)
𝑚𝑚𝑖𝑛 Minimum mass of the primary mass distribution

[𝑀⊙].
U(1𝑀⊙, 8𝑀⊙)

𝑚𝑚𝑎𝑥 Maximum mass of the primary mass distribution
[𝑀⊙].

U(70𝑀⊙,
130𝑀⊙)

𝜆𝑔 Fraction of the model in the Gaussian component. U(0, 1)
𝜇𝑔 Mean of the Gaussian in the primarymass distribution

[𝑀⊙].
U(20𝑀⊙,
50𝑀⊙)

𝜎𝑔 Width of the Gaussian in the primary mass distribu-
tion [𝑀⊙].

U(1𝑀⊙, 10𝑀⊙)

𝛿𝑚 Range of mass tapering at the lower end of the mass
distribution [𝑀⊙].

U(1𝑀⊙, 10𝑀⊙)

Table C.4: Prior ranges used for themass distribution for the EVOLVING and TRANSITIONmodels.



C.2 pOpuLATION MODELS AND pRIOR RANGES 193

Parameter Description Prior

Pop1: Madau&Dickinson rate

𝛾𝑝𝑜𝑝1 Slope of the power law regime before the point 𝑧𝑝. U(0, 8)
𝑘𝑝𝑜𝑝1 Slope of the power law regime after the point 𝑧𝑝. U(0, 8)
𝑧𝑝𝑜𝑝1

𝑝 Redshift turning point between the power law
regimes.

U(0, 8)

Pop2: Madau&Dickinson rate

𝛾𝑝𝑜𝑝2 Slope of the power law regime before the point 𝑧𝑝. U(0, 8)
𝑘𝑝𝑜𝑝2 Slope of the power law regime after the point 𝑧𝑝. U(0, 8)
𝑧𝑝𝑜𝑝2

𝑝 Redshift turning point between the power law
regimes.

U(0, 8)

Common parameters

R0 Local value of the CBC merger rate, at 𝑧 = 0. U(0,100)

Table C.5: Prior ranges of the CBC merger rate models used for all the three flavors of the
MIXTURE models.

Parameter Description Prior

Madau&Dickinson rate

𝛾 Slope of the power law regime before the point 𝑧𝑝. U(0, 8)
𝑘 Slope of the power law regime after the point 𝑧𝑝. U(0, 8)
𝑧𝑝 Redshift turning point between the power law

regimes.
U(0, 8)

R0 Local value of the CBC merger rate, at 𝑧 = 0. U(0,100)

Table C.6: Prior ranges of CBC merger rate model used for the EVOLVING model and the TRAN-
SITION models.
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Parameter Description Prior

Pop1: Default spin

𝛼𝑝𝑜𝑝1
𝜒 First parameter of the Beta distribution for the spin

magnitude.
U(1, 10)

𝛽𝑝𝑜𝑝1
𝜒 Second parameter of the Beta distribution for the spin

magnitude.
U(1, 10)

𝜎𝑝𝑜𝑝1
𝑡 Standard deviation of the truncated gaussian for the

cosine tilt angle distribution.
U(0, 5)

𝜉𝑝𝑜𝑝1 Mixing parameter for the cosine of the tilt angle distri-
bution.

U(0, 1)

Pop2: Default spin

𝛼𝑝𝑜𝑝2
𝜒 First parameter of the Beta distribution for the spin

magnitude.
U(1, 10)

𝛽𝑝𝑜𝑝2
𝜒 Second parameter of the Beta distribution for the spin

magnitude.
U(1, 10)

𝜎𝑝𝑜𝑝2
𝑡 Standard deviation of the truncated gaussian for the

cosine tilt angle distribution.
U(0, 5)

𝜉𝑝𝑜𝑝2 Mixing parameter for the cosine of the tilt angle distri-
bution.

U(0, 1)

Table C.7: Prior ranges for the spinmodels used for all the three flavors of theMIXTUREmodels.

Parameter Description Prior

Evolving Gaussian

𝜇𝜒 Zero order parameter expansion of the mean of the
gaussian for the spin magnitude

U(0, 1)

𝜎𝜒 Zero order parameter expansion of the standard devi-
ation of the gaussian for the spin magnitude

U(10−3, 2)

𝜇̇𝜒 First order parameter expansion of the mean of the
gaussian for the spin magnitude.

U(0, 0.1)

𝜎̇𝜒 First order parameter expansion of the standard devi-
ation of the gaussian for the spin magnitude.

U(−0.1, 0.1)

𝜎𝑡 Standard deviation of the truncated gaussian for the
cosine tilt angle distribution.

U(0, 5)

𝜉 Mixing parameter for the cosine of the tilt angle distri-
bution.

U(0, 1)

Table C.8: Spin parameters and prior ranges for the EVOLVING model
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Parameter Description Prior

Beta to Gaussian

𝛼𝜒 First parameter of the Beta distribution for the spin
magnitude.

U(1, 10)

𝛽𝜒 Second parameter of the Beta distribution for the spin
magnitude.

U(1,10)

𝜇𝜒 Mean of the gaussian for the spin magnitude. U(0, 1)
𝜎𝜒 Standard deviation of the gaussian for the spin magni-

tude.
U(10−3, 2)

𝜎𝑡 Standard deviation of the truncated gaussian for the
cosine tilt angle distribution.

U(0, 5)

𝜉 Mixing parameter for the cosine of the tilt angle distri-
bution.

U(0, 1)

𝑚𝑡 Critical mass at which the window function is equal to
0.5 (transition point).

U(10𝑀⊙,
100𝑀⊙)

𝛿𝑚𝑡 Steepness of the window function. U(1, 20)
𝑓𝑚𝑖𝑥 Starting value of the window function. U(0, 1)

Table C.9: Spin parameters and prior ranges for the EVOLVING Beta to Gaussian

Parameter Description Prior

Beta to Beta

𝛼𝑙𝑜𝑤𝜒 First parameter of the Beta distribution for the spin
magnitude.

U(1, 10)

𝛽𝑙𝑜𝑤𝜒 Second parameter of the Beta distribution for the spin
magnitude.

U(1,10)

𝛼ℎ𝑖𝑔ℎ
𝜒 First parameter of the Beta distribution for the spin

magnitude.
U(1, 10)

𝛽ℎ𝑖𝑔ℎ
𝜒 Second parameter of the Beta distribution for the spin

magnitude.
U(1,10)

𝜎𝑡 Standard deviation of the truncated gaussian for the
cosine tilt angle distribution.

U(0, 5)

𝜉 Mixing parameter for the cosine of the tilt angle distri-
bution.

U(0, 1)

𝑚𝑡 Critical mass at which the window function is equal to
0.5 (transition point).

U(10𝑀⊙,
100𝑀⊙)

𝛿𝑚𝑡 Steepness of the window function. U(1, 20)
𝑓𝑚𝑖𝑥 Starting value of the window function. U(0, 1)

Table C.10: Spin parameters and prior ranges for the EVOLVING Beta to Beta
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