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École doctorale des Sciences de la Terre et de l’Environnement et Physique de

l’Univers - ED560

Laboratoire AstroParticules et Cosmologie (APC) - Groupe Cosmologie

Role of polarization in 21cm
surveys

Par Zheng ZHANG
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Directeur de thèse Martin BUCHER DR, CNRS



2



Abstract (français)

Titre: Le rôle de la polarisation dans les relevés à 21 cm

Résumé: La détection du signal à 21 cm est cependant difficile, car le signal ex-

tragalactique recherché est masqué par des avant-plans galactiques de trois à quatre

ordres de grandeur plus brillants. L’avant-plan galactique étant spectralement lisse,

il est théoriquement possible d’extraire le signal extragalactique recherché. Cepen-

dant, les systématiques instrumentales peuvent mélanger une partie de cet avant-plan

spectralement lisse avec les composantes variant rapidement avec la fréquence pour

qu’il soit confondu avec le signal extragalactique. La fuite de polarisation est l’un

des défis les plus difficiles à relever car l’avant-plan fortement polarisé subit une rota-

tion de Faraday lorsqu’il se propage dans le milieu interstellaire en présence du champ

magnétique galactique. Bien que le signal cosmologique souhaité soit non polarisé, les

observations radio étant basées sur la polarimétrie, une représentation inexacte des

mesures de polarisation entrâıne une fuite de l’avant-plan polarisé dans le signal. Les

avant-plans polarisés avec une structure spectrale complexe compliquent l’élimination

des avant-plans basée sur la régularité spectrale de l’avant-plan galactique.

Dans cette thèse, nous considérons plusieurs aspects du rôle de la polarisation dans

la cartographie d’intensité à 21 cm. Nous passons en revue les mesures de polarisa-

tion du ciel radio, nous formalisons la mesure du signal de tension en termes de la

figure du champ lointain de l’antenne, et nous présentons un modèle de mesures de

puissance polarisée. En utilisant l’approximation linéaire, nous décrivons le processus

de mesure et d’analyse des données. Nous définissons des opérateurs de projection de

données qui réalisent un compromis optimal entre plusieurs objectifs de réduction ou

d’extraction de données, y compris le rejet de la polarisation, la réduction du bruit et

la sélection et le masquaas de degrés de liberté spécifiques du faisceau. Nous proposons

également une stratégie optimale d’extraction des composante I de Stokes. En intro-

duisant des spectres de puissance a priori sur le ciel polarisé, nous montrons que trouver

les modes appropriés dominés par Stokes I est une question d’intégration de la polarisa-

tion. Enfin, nous développons une figure de mérite pour quantifier l’impact d’une car-

actérisation inexacte et imprécise du faisceau et de sa complexité sur l’extraction de la

carte d’intensité. En introduisant une description statistique des erreurs systématiques

du faisceau, nous modélisons l’impact de la fuite de polarisation et du mélange de

modes dans la reconstruction des composante I de Stokes. En utilisant des modèles

statistiques du ciel et du bruit, nous évaluons le rapport signal/bruit (SNR) de chaque

mode de Fourier avant et après la prise en compte de l’incertitude du faisceau. Une

figure de mérite (FoM) est ensuite définie pour établis un classement les antennes en

fonction du facteur par lequel le SNR total pour la détection d’un signal cosmologique

est réduit après la prise en compte de l’erreur d’incertitude du faisceau.

Mots clefs: radioastronomie, polarisation, cartographie d’intensité HI
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Abstract

Title: Role of polarization in 21cm surveys

Abstract: The last decade has seen a surge of interest in using 21cm intensity map-

ping (IM) as a probe of the large-scale structure of the Universe. Detection of the 21cm

signal is challenging, however, because the desired extragalactic signal is obscured by

three to four orders of magnitude brighter Galactic foregrounds. Because the galactic

foreground is spectrally smooth, it is theoretically possible to extract the desired ex-

tragalactic signal. However instrumental systematics can cause part of this spectrally

smooth foreground to leak into components varying rapidly with frequency and thus

be mistaken for an extragalactic signal. Polarization leakage is one of the most difficult

challenges because the highly polarized foreground undergoes Faraday rotation as it

propagates through the ISM in the presence of the galactic magnetic field. Although the

desired cosmological signal itself is assumed unpolarized, since radio observations are

based on polarimetry, an inaccurate representation of the polarization measurements

lead to a leakage of the polarized foreground into the signal. Polarized foregrounds

with a complex spectral structure would complicate foreground removal relying on the

spectral smoothness of the galactic foreground.

In this thesis we consider several aspects of the role of polarization in 21cm intensity

mapping. We review polarization measurements of the radio sky, formalize the mea-

surement of the voltage signal in terms of the antenna far-field pattern, and present a

model of polarized power measurements. Using the linear approximation, we describe

the measurement and data analysis process. We define data projection operators that

achieve the optimal compromise among multiple goals for data reduction or extraction,

including polarization rejection, noise reduction and selection and avoidance of specific

degrees of freedom of the beam. We also propose an optimal Stokes I extraction strat-

egy. By introducing a priori power spectra over the polarized sky, we show that finding

the appropriate Stokes I dominated modes is a matter of integrating out the polar-

ization. Finally, we develop a figure-of-merit to quantify the impact of inaccurate and

imprecise beam characterization and beam complexity on intensity map extraction.

By introducing a statistical description of the beam systematics, we model the impact

of polarization leakage and mode mixing in the Stokes I reconstruction. Using statis-

tical models of the sky and the noise, we evaluate the signal-to-noise ratio (SNR) of

each Fourier mode before and after accounting for beam uncertainty. A figure-of-merit

(FoM) is then defined to rank reflector-feed systems according to the factor by which

the total SNR for detecting a cosmological signal is reduced after accounting for beam

uncertainty error.

Keywords: radio astronomy, polarization, 21cm intensity mapping
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Preface

Part of the work in this thesis was collaborative, and here I state explicitly what is my

contribution and what is the contribution of my collaborators. This thesis will result

in the following publications:

1. Optimal Stokes-I Extraction for 21cm Intensity Mapping experiments (Zheng

Zhang and Martin Bucher)

2. Toward a Beam Quality Figure-of-Merit for Radio Intensity Mapping (Martin

Bucher, Carla Pieterse, Kavilan Moodley, Zheng Zhang, and Dirk de Villiers)

3. Polarization Rejection Beam Quality Figure-of-Merit for Radio Intensity Map-

ping (Zheng Zhang, Martin Bucher, Carla Pieterse, and Dirk de Villiers)

In Paper 1 (Zhang and Bucher, in prep.), the contribution of Martin Bucher was

proposing the idea on using sky priors to project out polarization. My contribution

was the formalism, analysis, and discussion. In Paper 2 (Bucher et al., in prep.), the

contribution of Martin Bucher was the idea and the initial formalism of the isolated

figure-of-merit (FoM) beam evaluation. Kavilan Moodley contributed the input power

spectra both for the signal and the foregrounds as well as the apodization in frequency

scheme. Carla Pieterse computed the Hirax beam data using CST and beam error

simulations. Prof Dirk de Villiers provided guidance on the antenna modelling aspects

of the project. My contribution was to improve of the formalism and the numerical

realisation of the analysis. In Paper 3 (Zhang et al., in prep.), the contribution of

Martin Bucher was the idea of generalizing FoM beam evaluation to fully polarized

measurement. Carla Pieterse assisted by Dirk de Villiers provided the Hirax beam data

and beam error simulations. My contribution was the polarized FoM formalism, input

power spectra of polarization, the numerical realisations, and analysis and discussion.

I have also contributed to the simulation and data analysis pipeline for HIRAX,

specifically a likelihood-based power spectrum estimator and an improved analytical

covariance model for the diffuse polarized foreground.

After defending this thesis, I intend to work with my advisor on finalizing and

submitting these papers. We will also work on a REACH paper applying the formalism

to clarifying the impact of polarization on global 21 cm measurements.
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the other two axes of the antenna, and θ̂e and ϕ̂e are spherical coordinate

basis vectors of the celestial system at the pointing center. {x̂a, ŷa, ẑa}
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Chapter 1

Cosmic expansion and acceleration

The fate of the universe is an ancient question, perhaps as old as human civilization.

One can imagine that the earliest humans came out of their caves on sentimental nights

and watched the twinkling stars decorating the sky in an unchanging pattern from year

to year, filling their minds with infinite curiosity and imagination. “Will the universe

continue like this? What was it like a long time ago? What will it be like in the distant

future?” If they needed a motive when they first created words like “eternity,” there

could be no more inspiring scenario than contemplating the fate of the universe.

After a long process of civilization, and especially with the development of mod-

ern science, the fate of the universe gradually changed from a purely philosophical

question into a scientific one that can be systematically discussed through theory and

observation. We now know that, among the fundamental interactions, gravity domi-

nates the dynamics of the universe on large scales because of its long-range nature and

its universality to all objects. However, after the first theory of gravity was developed

under Newton’s apple tree, mankind did not immediately embrace its first cosmologi-

cal model. It was not until 1917, two years after the publication of Einstein’s General

Relativity (GR), that the first cosmological model was proposed by Einstein. He was

probably motivated by the generalized Copernican principle1 that the universe should

be homogeneous not only in space but also in time. To allow for static (non-expanding)

solutions, Einstein modified his field equations by introducing a cosmological constant

Λ with units of inverse length squared so that

G− Λg = 8πκT, (1.1)

where κ ≡ GN/c
4 with GN the Newtonian gravitational constant. Although Einstein

himself did not interpret it this way, later cosmologists saw Λ more as a constant energy

density of the vacuum, or a matter with strong tension or, say, repulsive gravity. To

see this point, we could move Λg to the right side of the field equation and see that

the term would correspond to a matter with T µν = (Λ/8πκ)diag(1,−1,−1,−1). If Λ

1Also known as the perfect cosmological principle.
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Cosmic expansion and acceleration

is positive, this would be matter with positive energy density ρΛ = T 00/c2 but strong

negative pressure P = −ρΛc2.
However this static model was overturned soon after it was proposed. In the late

1920s, Edwin Hubble (Hubble, 1929) observed Cepheid variable stars far outside the

MilkyWay and found that the local universe is expanding. With this discovery, Einstein

lost the original motivation2 for introducing Λ and thus removed it from his field

equations. After removing this repulsive-gravity stuff, however, the question of the

fate of the universe became more concrete and even a little scary: will the expansion

of the universe slow down because gravity attracts all the stuff? Will it finally collapse

into a Big Crunch?

These daunting questions drove the rapid development of cosmic observations. In

the 1930s, supernova astronomers Walter Baade and Fritz Zwicky realized that the

superbrightness of supernovae (Baade, 1938) could be used to trace the expansion of

the universe in the past, and thus had the potential to reveal the future fate of the

universe. In principle, both the brightness and the color of a supernova can be used as

indicators of how far away it is. The farther away a supernova is from us, the earlier

the signal was emitted, the fainter the observed brightness, and the redder the color. If

we can observe enough supernovae, we can extend the “Hubble diagram” (magnitude

vs log(z)) to obtain the “deceleration” of the expansion of the universe. Although this

seemed like a good idea, supernovae were not good enough as standard candles at the

time, since the brightness of supernovae varies by a factor of two or three. Therefore,

the idea of using supernovae to measure the deceleration did not become a reality

immediately after it was proposed.

It wasn’t until the mid-1980s that the “Type Ia” subclass of the supernovae was

identified and was then considered as a good standard candle3. In 1987, Saul Perlmut-

ter and Carl Pennypacker came up with the idea of using the Type Ia supernovae to

revive Baade and Zwicky’s idea of measuring the deceleration of the expansion of the

Universe. This was not an easy task at the time and was fraught with uncertainty:

They were not sure if they could find enough supernovae. Even if they could, would

they be bright enough to confirm the subtype 4? How standard were these supernovae?

How to correct for the brightness of supernovae dimmed by dust? Fortunately, these

problems have been solved one by one. This history and more details of the story are

detailed in the Perlmutter et al. (2011). Observations then succeeded in accumulat-

ing a number of supernova measurements, and the history of cosmic expansion slowly

emerged. As a milestone, Perlmutter et al. (1998) provided the first evidence for a

2However, loss of motivation for it is not the same thing as rejection of the possibility.
3To be precise, the peak brightness of Type Ia supernovae was what astrophysicists knew to be

standard.
4A distant supernova was seen in the faint tail of the spectrum. They were concerned about the

uncertainties in the K correction used to compare the observed faint tail with a supernova seen at the
peak of the spectrum.
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Universe with a cosmological constant, using a very well measured supernova. (Note

that the “evidence” is based on the assumptions that (1) GR is correct on cosmological

scales, and (2) except for the possible cosmological constant, there are no unknown

forms of energy.) Soon after, two independent teams (Knop et al., 1999; Riess et al.,

1998) provided even stronger evidence for an accelerating universe and a cosmologi-

cal constant, respectively, using more supernovae. Today an accelerating universe has

been convincingly established by more precise cosmological measurements. In retro-

spect, the discovery of cosmic acceleration certainly came as a huge shock to supernova

astronomers, who had expected to measure the deceleration of the expanding universe.
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Chapter 2

More evidence of a low density universe

In the previous section we have reviewed observations of cosmic acceleration as direct

evidence for the existence of some energy form or gravity theory with uncertain details.

However, in the history of cosmology, supernova observations were only one of many

factors that led to the cosmological constant returning to the centre of cosmologists’

attention.

After the discovery of cosmic expansion, Einstein and de Sitter appealed to an

expanding, homogeneous and isotropic, spatially flat, matter-dominated universe, the

so-called Einstein-de Sitter model, which was the standard cosmological model until

the 1990s. By the mid-1990s, the Einstein-de Sitter model was showing numerous

cracks. There was an abundance of evidence in favour of a low-density universe. Below

we briefly present the “combined onslaught” on the model. A more detailed discussion

can be found in the conference proceedings (Turok, 1997).

2.1 Cluster baryon fraction

The discovery of the Hubble expansion at the time encouraged the hypothesis that

the universe could have evolved from a hot, dense fireball. Since temperatures in the

earliest moments may have been so high that nuclei could not exist, the hypothesis

predicts a period of nucleosynthesis during the expansion and cooling of the universe,

known as the Big Bang nucleosynthesis (BBN). The discussion of Big Bang nucleosyn-

thesis was initiated by Alpher, Herman, and Gamow (1948), and they believed that all

elements could be produced in the hot, dense state of the early universe. The short-

comings of this idea were soon recognized: on the one hand, the lack of stable nuclei

of mass number A = 5 and A = 8, and the Coulomb repulsion between highly charged

nuclei, prevent significant nucleosynthesis beyond Li7. On the other hand, many of the

details of the observed abundances of elements such as Tc were explained in terms of

stellar processes. However, the ‘stellar synthesis’ seems deficient to explain the high

He4 abundances observed in various primitive objects. Therefore, the possibility of a
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‘universal synthesis’ was revived to explain the origin of the abundant He4 (Hoyle and

Tayler, 1964).

Soon after the identification of the problem of the origin of helium and the discovery

of the cosmic background radiation by Penzias and Wilson in 1965, Peebles (1966)

and Wagoner et al. (1967) carried out detailed calculations of BBN. Their pioneering

work established a standard BBN model of the early universe in which only significant

amounts of D, He3, He4, and Li7 can be produced in the universal synthesis. The

standard BBN model has extraordinarily simple physics. It is characterized by a single

parameter, the ratio η (or η10 ≡ η/10−10) of the number of baryons to the number

of photons. Although this parameter has little effect on the evolution of the early

universe, it does determine the relative abundance of light nuclei, which is an important

observational relic of the early universe. Since the number of photons is derived from

the CMB temperature nγ = 411 cm−3, η gives the present-day baryon density:

Ωbh
2 =

ρb
ρc/h2

=
ηnγmN

ρc/h2
= 3.65× 10−3η10, (2.1)

where mN is the neutrino mass, H0 = 100h (km/s)/Mpc and ρc is the critical density

defined by equation (3.10).

Using numerical integration of reaction networks (Wagoner et al., 1967), the light

nuclei abundances are predicted. A useful fitting formula for the predicted mass fraction

of He4 is (Hogan, 1997; Sarkar, 1996)

YP (He
4) = 0.235 + 0.012 ln

(η10
2

)(η10
2

)−0.2

+ 0.011

[
1−

(η10
2

)−0.2
]
± 0.0006, (2.2)

where the subscript P denotes ‘primordial’. The abundances of other light elements

by number are given by (Sarkar, 1996)(
D

H

)
P

= 3.6× 10−5±0.06
(η10

5

)−1.6

(
He3

H

)
P

= 1.2× 10−5±0.06
(η10

5

)−0.63

(
Li7

H

)
P

= 1.2× 10−11±0.2

[(η10
5

)−2.38

+ 21.7
(η10

5

)2.38]
.

(2.3)

These predictions as functions of η are shown graphically in Figure 2.1.

Despite the beauty of the theory, the measurement of actual primordial abundances

has been a considerable challenge. Because D, He3, and Li7 are produced in such small

quantities, the establishment of their cosmic origin is more difficult and takes longer

time than that of He4. With a lot of work in the 1970s and 80s, it was found that

observations of He4 in extragalactic HII regions, D in quasar absorbers, and Li7 in old,

metal-poor halo stars (Spite and Spite, 1982) can be used to constrain the abundances
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Figure 2.1: Dependence of primordially synthesized light element abundances on the
baryon-photon fraction. τn is the lifetime of neutron. This figure is taken from Sarkar
(1996).
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of primordial light nuclei. In the 1990s, it was already possible to establish a concor-

dance between theory and observation. The concordance showed the consistency of the

predictions of the Standard Model and led to limits on the nucleon-to-photon ratio,

e.g., 2.5 < η10 < 6 calculated by Copi et al. (1995). Here we mention a recent analysis

from Riemer-Sørensen and Jenssen (2017); Cooke et al. (2018), which gives

5.8 < η10 < 6.5. (2.4)

Then the present-day baryon density defined by equation (2.1) is Ωbh
2 ≃ 0.022.

Since rich clusters of galaxies provide a ‘fair sample’ for studying the universal

baryon fraction, the cluster baryon fraction can be used to estimate the fraction of

the universal baryon density to the total matter density. The mass of the baryons in

clusters is made up of at least two parts: the hot intracluster gas and the luminous

parts of the galaxies. Thus, the cluster baryon fraction is characterized by

Ωb

Ωm

≳
(mass of gas + stars)

(cluster mass)
≃ 0.07h−1.5 + 0.05. (2.5)

The matter density of the universe is

Ωm ≲
Ωb

0.07h−1.5 + 0.05
≃ 0.3. (2.6)

Therefore, the baryon density given by the standard BBN model and the high baryon

content observed in clusters appeal to a low density universe with Ωm ≃ 0.3.

2.2 Age of universe

In the 1980s and early 90s, another controversy about the age of the universe was also

widely discussed. Independent determination techniques seemed to have conflicting

estimates. For some favored values of the Hubble constant at that time (e.g. H0 =

73± 7± 8 in Freedman and Feng (1999)), the cosmic age given by the dynamics of the

Einstein-de Sitter universe is found to be smaller than the lower bound of the age of

the oldest stars. Below is a brief summary of these cosmic age techniques.

• Dynamical argument

In the Einstein-de Sitter model, the scale factor a(t) can be expressed explicitly

as

a(t) =

(
t

t0

) 2
3

, (2.7)

where t0 is the present age of the universe. This implies that t0 can be
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determined by the Hubble constant

t0 =
2

3
H−1

0 . (2.8)

If we assume the modern observed Hubble constant valueH0 ≈ 70 (km/s)/Mpc,

the universe has an age of t0 ≈ 9 billion years in this model.

• Nuclear arguments

– Oldest stars (globular clusters)

The basic age of a globular cluster is determined by the time required

for low-mass stars to burn up their core hydrogen and leave the main

sequence.

It is shown in Schramm (1990) that the age of globular clusters gives

an age estimate of about 14 ± 2 ± 2 billion years. A firm lower bound

is ≳ 10 billion years.

– Radioactive dating (nucleocosmochronology)

Nucleocosmochronology is a technique that uses the abundances and pro-

duction ratios of radioactive nuclides, in conjunction with information

about the chemical evolution of the Galaxy, to derive information about

the time scales over which the elements of the Solar System were formed

(Schramm, 1990). Meyer and Schramm (1986) gave a typical estimate

for the age of the galaxies, which is of the order of 9.6 billion years.

As we later learned, the introduction of the Λ was the end of this controversy.

2.3 Large scale velocity flows

Because galaxies generally have peculiar velocities in the Hubble flow, the observed

redshift in the rest frame of the Local Group is

cz = H0r + r̂ · (v(r)− v(0)) (2.9)

where v(0) represents the peculiar velocity of the Local Group, and r̂ is the unit

vector toward the galaxy of interest. On large scales, since the gravitational instability

equations can be linearized, we have direct proportionality between late-time velocity

and density field divergence Peebles (1993):

∇ · v(r) = −Ω0.6δ(r), (2.10)
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which can be rewritten in Fourier coordinates as

ik · v(k) = −Ω0.6δ(k). (2.11)

Defining the velocity power spectrum Pv(k) ∼ ⟨v(k)2⟩, we have

Pv(k) = Ω1.2k−2P (k). (2.12)

Then the expected amplitude of the bulk flow on a scale R is given by (Strauss, 1997)

⟨v(R)2⟩ = Ω1.2

2π2

∫
dkP (k)W 2(kR). (2.13)

where W is the smoothing window in Fourier coordinates. If the phases of the Fourier

modes of the density field are random, then each component of the velocity field is

Gaussian distributed, which means that v(R) is Maxwellian distributed.

Bahcall et al. (1994); Bahcall and Oh (1996) investigated the distributions of the

velocities of rich clusters of galaxies for different cosmological models and compared

these model predictions with observations. As can be seen in Figure 2.2, the observed

cluster velocity function is most consistent with a low–mass-density, Ω ≃ 0.3, CDM

model. The absence of a high-velocity tail shows inconsistency with the Ω = 1 CDM.

2.4 Evolution of cluster abundance

White et al. (1993) showed how the rms linear fluctuation in the mass distribution

on scales of 8h−1 Mpc, denoted by σ8, can be constrained by mass and abundance

of clusters. By modelling clusters as “objects” above a mass threshold in a density

fluctuation field that was initially Gaussian, they used the cluster mass function to

constrain σ8Ω
0.6
m :

σ8Ω
0.6
m ≃ 0.5− 0.6. (2.14)

This result generally contradicts the high amplitude of σ8 inferred for a Ω = 1 cold

dark matter model. For example, one would expect to measure σ8 ∼ 1.1 for h = 5 if

the COBE anisotropies arise from primordial scale-invariant perturbations in an Ω = 1,

cold dark matter universe (Wright et al., 1992; Efstathiou et al., 1992). Therefore, if

COBE fluctuations was not overestimated, the standard CDM model at the time was

rejected at the 2.5σ confidence level (White et al., 1993).
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Figure 2.2: Observed vs model predicted cluster velocity functions (CVF). P (> v) is
the ratio of the number of clusters with velocities greater than v to the total number
of samples. This figure is taken from Bahcall and Oh (1996).
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Chapter 3

Dark energy or modified gravity?

Observations, in particular of the Cosmic Microwave Background and of large-scale

galaxy clustering, have shown that our Universe is very isotropic and homogeneous on

large spatial scales, which is also known as the cosmological principle. If one assumes

that GR is the correct description of gravity on cosmological scales, then the SNIa sur-

veys derive the cosmic acceleration as a natural consequence of any spatially isotropic

and homogeneous model of the Universe.

Although the supernova teams that first discovered the cosmic acceleration used the

cosmological constant to frame their analysis, which is probably the simplest mathe-

matical form for their goal, it is clear that Λ is not the only candidate to explain the

acceleration. If we drop the assumption that the vacuum energy density is constant, an

alternative explanation could be that the cosmic acceleration is driven by an unknown

form of energy, namely “dark energy,” with negative pressure. Instead of, or probably

in addition to, the introduction of new energy forms, there are also theories that ex-

plain the acceleration of the universe by modifying GR (see review articles, e.g., (Joyce

et al., 2015)). One possibility is to replace the Ricci scalar R by a function R+ f(R)

in the gravitational action (Carroll et al., 2004). Other options can be more radical.

For example, one could introduce extra dimensions and allow gravitons to “leak” from

the brane that represents the observable universe (Dvali et al., 2000).

The two handles for experimental tests of dark energy and modified gravity theories

are to measure the history of cosmic expansion and the history of matter clustering

with high precision over a wide range of redshifts. The equation (3.12) will show that

within GR, the present values for Ωm,0, Ωr,0 and H0 together with the measurement

of H(z) determine the equation of state of dark energy ω(z). In addition to Hubble

measurements, distance measurements [equations (3.20) and (3.16)] using standard

rulers or candles also constrain ω(z), though they require an integral over H(z) which

is itself an integral over ω(z). In the linear perturbation theory based on GR, H(z) and

G(z) are connected in a consistent way. The growth rate of gravitational clustering

may differ from the GR prediction in modified gravity models. Thus, comparing the
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history of cosmic structure growth with the history of cosmic expansion can provide

strong constraints on modified gravity theories.

3.1 Homogeneous expanding universe models

The cosmological principle allows us to characterize the overall geometry and evolution

of the Universe with two parameters: the universal scale factor a(τ) accounting for the

expansion (or contraction) and the spatial curvature constant. The general space-

time metric, known as the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, is

written in terms of these two parameters:

ds2 = −c2 dτ 2 + a2(τ)
[
dr2 + f 2(r)(dθ2 + sin2 θ dϕ2)

]
, (3.1)

where

f(r) =


R sin (r/R), for positive curvature,

r, for zero curvature,

R sinh (r/R), for negative curvature.

(3.2)

If we define the conformal distance, χ ≡ r/R, and absorb R into the scale factor, we

obtain the more convenient form for the FLRW metric

ds2 = −c2 dτ 2 + a2(τ)
[
dχ2 + Sk(χ)

2(dθ2 + sin2 θ dϕ2)
]

(3.3)

where k = 0, ±1 is the curvature constant and

Sk(χ) =


sinχ, for k = 1,

χ, for k = 0,

sinhχ, for k = −1.

(3.4)

Assuming the matter content of the Universe can be mimicked by an ideal fluid,

Alexander Friedmann (Friedmann, 1922) found the dynamical equations describing the

FLRW Universe. For a fundamental observer comoving with the cosmological fluid,

Einstein field equations lead to the Friedmann equations, which are the energy equation

ȧ2 =
8π

3
GNρa

2 − c2k, (3.5)

the acceleration equation

ä = −4π

3
GN(ρ+ 3P/c2)a, (3.6)

and the continuity equation

ρ̇ = −3
ȧ

a
(ρ+ P/c2). (3.7)
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The energy equation is commonly called the Friedmann equation. It has a simple

Newtonian analog where when comparing to the expansion of the dust shell in Newto-

nian gravity, we see that the term (8π/3)GNρa
2 can be interpreted as potential energy

competing with the kinetic energy term ȧ2.

These three equations about a(τ), ρ(τ) and P (τ) are not independent; each can be

obtained from the other two. To obtain solutions we still need an ‘equation of state’

(EoS) relating the pressure and energy density P = P (ρ). Pm = 0 for pressureless

matter,1 while for radiation Pr = ρc2/3. As for the dark energy, our ignorance about

its EoS is encapsulated in an unknown time dependent function

ω(τ) ≡ PDE(τ)/ρ(τ)c
2. (3.8)

3.1.1 Cosmological parameters

As a result of the Hubble expansion, a local observer detecting light from a distant

emitter sees a cosmological redshift, defined as

1 + z =
ν1
ν2

=
a(τ2)

a(τ1)
(3.9)

where ν1 and ν2 are the emitted and observed frequencies, respectively, and τ1 and τ2

are the corresponding cosmic times. In the following we use z instead of τ because it

is more convenient for discussing observations. It is also common to use the Hubble

parameter H ≡ ȧ/a and the critical density ρc defined by

ρc ≡
3H2

8πGN

, (3.10)

which effectively represents the the kinetic term about ȧ2 in the form of potential

energy.

Substituting the equations of state into equation (3.7), one obtains evolutions of

different energy components. For pressureless matter, ρm(z)/ρm(z = 0) = (1 + z)3,

while for radiation, ρr(z)/ρr(z = 0) = (1 + z)4. The evolution for dark energy is given

by
ρDE(z)

ρDE(z = 0)
= exp

[∫ z

0

dz
3(1 + ω)

1 + z

]
. (3.11)

If ω is constant, this reduces to ρDE(z)/ρDE(z = 0) = (1 + z)3(1+ω).

Putting the above results and conventions together, and using the subscript ‘0’

to denote quantities evaluated in the present universe, we can rewrite the Friedmann

1Here the pressure is the quantity that would be measured by the local co-moving observer. Note
that the dynamical pressure of a gas is included in ρ instead of the overall pressure P .
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equation as

H2(z) = H2
0

(
ρ

ρc,0

)
− c2

k

a2

= H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩDE,0 exp

(∫ z

0

dz
3(1 + ω)

1 + z

)]
− c2

k

a2
,

(3.12)

where Ωi,0 ≡ ρi,0/ρc,0 for i = m, r, DE. It is also common to define Ωk ≡ −c2k/H2
0 ,

although the curvature term should not be understood as an energy form.

Much effort in modern cosmology has been devoted to constraining ω(z). Equa-

tion (3.12) shows that if the present values of the fractional energy densities and the

measurement of H(z) pin down ω(z). Apart from measuring H(z), others measure the

distance-redshift relationship. In the next section, we briefly review distance measure-

ments in cosmology.

3.1.2 Distance measurements

The comoving distance between two objects in the Universe is the distance that would

be measured along a path defined between the two spatial points in the current Uni-

verse. Assuming a0 = 1, so that a(z) = (1 + z)−1, then the line-of-sight comoving

distance is given by

DC =

∫ τ0

τ(z)

c dτ ′

a
=

∫ 0

z

c dz′

aż′
=

∫ z

0

c dz′

H
. (3.13)

The transverse comoving distance DM is defined so that the comoving distance

between two events at the same cosmological redshift but separated on the sky by δθ

is DMδθ. The relation between the transverse and line-of-sight comoving distances is

given by (Hogg, 2000)

DM =


DH

1√
Ωk

sinh
[√

ΩkDC/DH

]
, for Ωk > 0,

DC , for Ωk = 0,

DH
1√
|Ωk|

sin
[√

|Ωk|DC/DH

]
, for Ωk < 0,

(3.14)

where DH ≡ c/H0 is the Hubble distance.

The foregoing comoving distances are calculated entirely from the cosmological

model. In actual observations, however, the key quantities are two apparent distances,

DA and DL. The angular diameter distance, DA, is calculated using the angular size

obtained by observing the standard ruler. The observed angular size δθ is related to
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δl, the proper transverse size of the object when the observed signal was emitted, by

(Comoving transverse size) = DMδθ ∼ (1 + z)δl. (3.15)

DA is then defined as the ratio of δl to δθ

DA ≡ δl

δθ
=

DM

1 + z
. (3.16)

Similarly, the luminosity distance DL is obtained from the apparent flux density Sν of

the standard candle with luminosity Lν . Physically, Sν and Lν are related to DM by

the conservation of photons, so that

(Number of photons) =
4πD2

MSν(νo) dνo dτo
hνo

∼ Lν (νe) dνe dτe
hνe

(3.17)

where νo is the observed frequency and νe = (1 + z)νo is the emission frequency. The

time scales for emitting and receiving the photons are estimated as dτe = ν−1
e and

dτo = ν−1
o . The conservation of photons gives

4πD2
MSν(νo) =

Lν (νe)

1 + z
. (3.18)

The luminosity distance is then defined as the apparent distance such that

4πD2
LSν(νo) dνo ≡ Lν (νe) dνe

= (1 + z)Lν (νe) dνo.
(3.19)

As a result, DL in terms of DM is

DL = (1 + z)DM . (3.20)

3.2 The inhomogeneous universe

In the conventional Big Bang model, the very early universe underwent a period of

accelerated expansion known as inflation. Inflationary cosmology was developed in a

series of papers in the 1980s, including Brout et al. (1978), Starobinsky (1980), Kazanas

(1980), Sato (1981), Guth and Pi (1982), Linde (1982) and Albrecht et al. (1982). A

brief story in which quantum fluctuations generate cosmological fluctuations can be

understood simply as follows: The inflationary field dominates the energy density of

the universe during inflation, which ends when the potential steepens. According to

the uncertainty principle, this field, as the clock of inflation, will have spatially varying

fluctuations. As a result, inflation will end at different times in different places. Because

of this local difference in inflation history, the amount of expansion varies from region
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Figure 3.1: A scalar field slowly rolling down a potential. This is taken from Dodelson
and Schmidt (2020).

to region, which inevitably causes the spatial variations in energy density. Thus it is

often said that the seeds of structure were planted during inflation. In other words, the

inflation provided the initial conditions for the formation and evolution of structure.

Most models of inflation are slow-roll models and the simplest candidate to drive

the accelerated expansion is the potential energy of a canonical scalar field ϕ(x, t),

which can have negative ρ+ 3P . The energy momentum tensor for ϕ is given by

Tαβ = gαµ
∂ϕ

∂xν
∂ϕ

∂xβ
− δαβ

[
1

2
gµν

∂ϕ

∂xµ
∂ϕ

∂xν
+ V (ϕ)

]
. (3.21)

For a homogeneous field, the energy density ρ and the pressure P are

ρ =
1

2
ϕ̇2 + V (ϕ), P =

1

2
ϕ̇2 − V (ϕ). (3.22)

A slowly rolling scalar field with little kinetic energy hence has negative pressure (see

Figure 3.1). The inflationary period comes to an end when the field has reached

the minimum of its potential. At this point, however, the field is no longer slowly

rolling, but oscillating around the minimum with significant kinetic energy. The kinetic

energy must then be transferred to the particles of the Standard Model, which is

still a speculative process called reheating. After this period with highly uncertain

details, the universe was in a hot and dense state. The interactions between the

Standard Model particles were so strong that thermal equilibrium was reached between

different species. As the universe expands and cools, the interaction rate of the particles

decreases. When the interaction rate of a species falls below the expansion rate, the

local thermal equilibrium of that species is no longer well maintained, and it therefore

decouples from the thermal equilibrium fluid. On the other hand, as the temperature

decreases, the net direction of some of the particle reactions is reversed, and even
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some lighter elements are allowed to appear: Shortly after the decoupling of neutrinos,

electron-positron annihilation occurred, and neutrons thermodynamically decoupled

from protons; three minutes after the end of the Big Bang, the so-called Big Bang

Nucleosynthesis (BBN) created the first light elements; and about 380,000 years after

the Big Bang, the temperature of the universe dropped to about 1eV, low enough for

free electrons and protons to form stable atomic hydrogen. This event is also known

as “recombination”; prior to recombination, the plasma of protons and electrons was

effectively coupled to photons by Thomson scattering. Since a large number of electrons

were trapped after the recombination, the photons decoupled from the baryons and

began to be a free stream, becoming what is now known as the cosmic microwave

background radiation.

The primordial inhomogeneities induced by inflation and the formation of new forms

of energy during the cooling of the Universe make today’s Universe full of fascinating

structures. In this chapter we present a schematic discussion of structure growth using

linear perturbation theory. The goal is to introduce the Baryon Acoustic Oscillations,

the frozen relics left over from the pre-decoupling universe, as a standard statistical

ruler used in HI intensity mapping.

3.2.1 Gravity and matter perturbations

The first order perturbation of the Einstein equation is

δGµ
ν = 8πGNδT

µ
ν , (3.23)

where δGµ
ν is the perturbed Einstein tensor. Using the scalar-vector-tensor (SVT)

decomposition, a general metric perturbation is represented by 4 + 4 + 2 SVT degrees

of freedom, that is, four scalar fields plus two divergence-less vector fields plus one

symmetric, divergence-less, trace-free tensor field.2 Since a general coordinate trans-

formation is parameterized by 2 + 2 + 0 SVT functions of space and time, the general

metric perturbation has only 2 + 2 + 2 physical SVT degrees of freedom. Here we

consider only the scalar perturbation in the Newtonian gauge

ds2 = a2(η)
[
−(1 + 2Ψ) dη2 + (1− 2Φ)δij dx

i dxj
]
, (3.24)

where Ψ(x, η) and Φ(x, η) are the two scalar degrees of freedom, and we have defined

a dimensionless time coordinate, the conformal time η, so that c dτ = a(τ) dη.

The stress-energy perturbations can be formulated in two ways. One is to perturb

the phase-space distribution function of each species to first order, which in turn pro-

duces the fully perturbed stress-energy tensor; the other is to represent and perturb the

stress-energy tensor using macroscopic physical parameters, including energy density,

2These are 3D spatial fields.

18



Dark energy or modified gravity? The inhomogeneous universe

pressure, bulk velocity, and shear stress. The latter additionally requires conservation

equations and equations of state to constrain these physical parameters. The former

approach, on the other hand, already implies these constraints since it is given from

first principles. In this schematic discussion, we follow the second path and expand

the matter stress energy tensor around the homogeneous background density ρ̄ and

pressure P̄ :

T 0
0 = −ρ̄(η)− δρ (3.25)

T i0 = −[ρ̄(η) + P̄ (η)](vi/c) (3.26)

T ij = [P̄ (η) + δP ]δi j +Πi
j (3.27)

where vi is the bulk velocity of the fluid and Πi
j is a symmetric, transverse and traceless

tensor describing the shear stress. For fluids with frequent collisions, as is the case for

the limited scope of the next section, the pressure is kept isotropic and Π = 0. It is

common to define the dimensionless density contrast δ ≡ δρ/ρ and the momentum

density qi = (ρ̄ + P̄ )vi/c for convenience. For scalar fluctuations, we can write the

Fourier modes of vi and Πi
j as (Mukhanov et al., 1992; Kodama and Sasaki, 1984;

Baumann, 2022)

vi = ik̂iv (3.28)

Πij = (ρ̄+ P̄ )k̂⟨ik̂j⟩σ (3.29)

where k̂⟨ik̂j⟩ ≡ k̂ik̂j − (1/3)δij stands for the longitudinal, traceless component. The

total stress energy tensor is the sum of those of different species, Tµν =
∑

s T
(s)
µν , which

implies

δρ =
∑
s

δρ(s), δP =
∑
s

δP(s), Πij =
∑
s

Πij
(s), qi =

∑
s

qi(s). (3.30)

The equations of motion of the perturbation parameters {δρ, δP, vi,Πij} follow the

conservation equations of the total stress-energy tensor, ∇µT
µ
ν = 0. For species that

do not transfer momentum and energy to other fluids, {δρ(s), δP(s), v
i,Πij

(s)} also satisfy

the conservation equations. For ν = 0 we find the continuity equation

δ′(s) = −
ρ̄(s) + P̄(s)

ρ̄(s)

(
∂iv

i
(s)

c
− 3Φ′

)
− 3H

(
δP(s)

ρ̄(s)
−
P̄(s)

ρ̄(s)
δ(s)

)
(3.31)

where ‘′’ denotes the derivative ∂/∂η and H ≡ a′/a. For ν = i we find the Euler

equation

qi′(s) = −4Hqi − (ρ̄(s) + P̄(s))∂
iΨ− ∂iδP − ∂jΠ

ij. (3.32)

To study the evolution of Ψ and Φ, we need two independent components of the
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Einstein’s equations. The first component we consider is the time-time component,

which in Fourier coordinates is given by

δG0
0 =

2

a2
(
−k2Φ + 3H2Ψ+ 3HΦ′) . (3.33)

As a result, the 00-component of the Einstein equation is

k2Φ− 3H(HΨ+ Φ′) = 4πGNa
2δρ. (3.34)

The second component is usually conveniently chosen as the longitudinal, traceless part

of the spatial part, Gi
j: (

k̂jk̂i −
1

3
δji

)
Gi

j =
2

3a2
k2 (Φ−Ψ) (3.35)

which should be equal to the traceless part of the stree-energy tensor(
k̂jk̂i −

1

3
δji

)
T ij =

(
k̂jk̂i −

1

3
δji

)
Πi

j =
2

3
(ρ̄+ P̄ )σ =

2

3

∑
s

(ρ̄(s) + P̄(s))σ(s). (3.36)

Then the second component of the Einstein equation is given by

k2(Φ−Ψ) = 8πGNa
2(ρ̄+ P̄ )σ. (3.37)

3.2.2 Primordial sound waves

During the hot and dense post-inflation period, inhomogeneity leads to overdensity

growth in the cosmic plasma. On large scales, gravity dominates, so the fluctuations

grow continuously. On small scales, however, the increase in energy density can cause

the pressure and its gradient to increase to the point where the pressure exceeds gravity,

triggering sound waves that travel outward. The characteristic length at which the

pressure is comparable to gravity is called the Jeans length.

In the primordial plasma before recombination, fluctuations of photons, electrons,

baryons and dark matter are coupled in a perturbed spacetime. Electrons are tightly

coupled to baryons by Coulomb scattering, and photons are coupled to electrons, and

hence to baryons, by Thomson scattering. We can thus consider a conserved, tight-

coupling photon-electron-baryon fuild, or in short baryon-photon fluid, which can be

constrained by the fluid equations ∇µ(T
(b)
µν +T

(γ)
µν ) = 0. This approximation works well

until the recombination. Since the cold dark matter behaves as a pressure-less perfect

fluid, we also have ∇µT
(c)
µν = 0. The baryon-photon fluid couples to the dark matter

fluid by gravity.

We assume that the pressure of the fluid is isotropic so that Πij = 0. From the
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equation (3.37) we see that the direct result of the assumption is

Ψ ≈ Φ. (3.38)

The combined momentum density is conserved

qi =
4

3
ρ̄γv

i + ρ̄bv
i =

4(1 +R)

3
ρ̄γvγ (3.39)

where R ≡ 3ρ̄b/(4ρ̄γ). This conservation is described by the Euler equation

[(1 +R)v]′ = −1

4
∇δ(γ) − (1 +R)∇Ψ. (3.40)

Since the total number of photons in the fluid can be considered conserved (ω(γ) = 1/3),

the continuity equation for photons holds

δ′(γ) = −4

3
∇ · v + 4Φ′. (3.41)

Combining the time derivative of the continuity equation and the spatial derivatives of

the Euler equation we get a second order equation only in δ(γ):

δ′′(γ) +
HR
1 +R

δ′(γ) + c2sk
2δ(γ) = −4

3
k2Φ + 4Φ′′ +

4R′

1 +R
Φ′ (3.42)

where the sound speed of the baryon-photon fluid is defined as

cs =

√
1

3(1 +R)
. (3.43)

The physical interpretations of these equations are straightforward. Qualitatively,

the coupling with baryons added energy and momentum to the fluid, but did not

increase its pressure. Since radiation dominates density and pressure in this period,

radiation pressure plays an important role in fluid dynamics. A gravitational over-

aggregation of baryonic photonic fluids leads to a significant radiation pressure gradient,

which triggers a spherical sound wave in the surrounding fluid medium. 3 The acoustic

wave propagates at the speed of sound cs until the baryons and photons are completely

decoupled after recombination. A spherical wave of baryons without ‘propellant’ thus

stops propagating. The longest possible journey of such a sound wave is from the end

of inflation to the end of decoupling, and this distance is defined as the sound horizon

at decoupling:

s =

∫ τdec

0

cs(τ)

a(τ)
dτ. (3.44)

3This simplified discussion of BAO considers a single initial overdensity. This is not the real
scenario, but illustrates the preferred scale set by the decoupling of photons and baryons.
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Figure 3.2: Large-scale
redshift-space correlation
function of the SDSS LRG
sample. The inset shows
a zoomed view with a lin-
ear vertical axis. Ωmh

2 =
0.12 (green line), 0.13
(red line) and 0.14 (blue
line), all with Ωbh

2 =
0.024 and ns = 0.98 (the
spectral index of the ini-
tial potential power spec-
trum, as defined in equa-
tion (3.52)). The magenta
line shows a pure CDM
model (Ωmh

2 = 0.105) in
which the acoustic peak is
not present. This figure
is taken from Eisenstein
et al. (2005).

The sound horizon is a characteristic clustering scale of baryons. It is imprinted

in the correlation function as a peak that appears in Fourier space as the harmonic

oscillations, also called Baryon Acoustic Oscillations (BAO) (Eisenstein and White,

2004; Eisenstein et al., 2005; Bassett and Hlozek, 2009; Chang et al., 2008; Villaescusa-

Navarro et al., 2017; Wyithe et al., 2008). This feature is weak, but very valuable

because the CMB observations (Aghanim et al., 2020b) predict its scale very well.

After the decoupling, the baryons cluster with the dark matter. The matter fluid

could be described by a pressureless non-relativistic fluid with the conservation equa-

tions given by

δ′(m) = −∇ · v(m) + 3Φ′

v′
(m) = −Hv(m) −∇Ψ

(3.45)

which derives the equation of motion for δ:

δ′′(m) +Hδ′(m) = ∇2Ψ+ 3(Φ′′ +HΦ′). (3.46)

On subhorizon scales with k ≫ H, we assume that the time derivatives {Φ′′,HΦ′} are

subdominant and can be dropped, i.e., k2ψ ≫ Φ′′+HΦ′. Then the above equation can

be rewritten as

δ′′(m) +Hδ′(m) + 4πGNa
2δρ ≈ 0 (3.47)

where we replaced ∇2Ψ using the 00 component of the Einstein’s field equation (eqn

(3.34)). δρ is the fluctuation of the total energy density. However, since the dark
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energy doesn’t contribute to the fluctuations, both in the matter-dominated era or at

late times we have

δρ ≈ ρ̄(m)δ(m). (3.48)

We can solve the equation of motion for δ(m) by separating the variables δ(m)(x, z) =

D(z)δin(x), where δin is the initial overdensity field. The time component D(z) can be

seen as a linear combination of the two modes, the growing mode and the decaying

mode. The growing mode is called the linear growth factor, denoted by D+(z), which

is in general an integral with H. The linear growth factor in the full ΛCDM universe

is given by (Peebles, 1980):

D+(z) =
5Ωm,0

2
H(z)

∫ ∞

z

dz′
1 + z′

H(z′)3
. (3.49)

In the linear perturbation theory, the evolution of the contrast density field is “self-

similar”: the overdense regions grow and the underdense regions decay. The small

density fluctuations evolve in this way until the perturbation becomes of order unity.

3.2.3 Matter power spectrum as probe of BAO

As a frozen relic left over from the decoupling era, the BAO is an ideal statistical

standard ruler in observational cosmology.

The advantage of the BAO as a standard ruler lies not only in the simplicity of

linear physics or the scales that are well predicted by the CMB, but more importantly,

the transverse and radial components of the BAO provide dA(z) and H(z), respectively

(Bassett and Hlozek, 2009):

s∥(z) =
c dz

H(z)
, s⊥(z) = (1 + z)DAδθ. (3.50)

One method to extract the statistical scale is to measure the 2-point correlation

function or the power spectrum Pm(k) of the contrast overdensity field. The matter

power spectrum is defined as

⟨δ(k1)δ
∗(k2)⟩ ≡ (2π)3δD(k1 + k2)Pm(k1). (3.51)

In section 3.2.2 we used the linear perturbation theory to study the evolution of an

overdensity field δ(k), from which the evolution equation of the matter power spectrum

is derived. To study the evolution history, we still need the initial condition of the

overdensity field.

Inflation theories predict a nearly scale-invariant potential power spectrum PΦ ∝
kns−4, where ns is the spectral index with a value close to 1.4 Since δ(k) ∝ k2Ψ, the

4The measurement from Planck 2018 (Aghanim et al., 2020b) is ns = 0.9649± 0.0042.

23



The inhomogeneous universe Dark energy or modified gravity?

Figure 3.3: Linear matter power spectrum (at z = 0) inferred from several cosmological
probes. This figure is taken from Aghanim et al. (2020a), where references to similar
maps can also be found.

initial matter power spectrum satisfies

P (init)
m (k) ∝ kns . (3.52)

As discussed in section 3.2.2, baryons and dark matter evolve together as a matter

fluid after the baryon-photon decoupling. Since the Hubble horizon (∼ H−1) grows

with time, a mode starts to grow as soon as it enters the horizon. Since different scales

enter the Hubble horizon at different times, the growth is scale dependent and the

effect is usually expressed as the transfer function T (k, z). The linear matter power

spectrum can be written as

Pm(k, z) ∝ D2
+(z)T

2(k, z)kns (3.53)

where D+(z) is the linear growth factor. As shown in Figure 3.3 is the linear matter

power spectrum at z = 0 inferred from several cosmological probes.
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Chapter 4

21cm cosmology and HI intensity mapping

In recent years, particularly over the past decade, there has been a heightened interest

in employing 21cm intensity mapping to investigate the large-scale structure of the

Universe (Bull et al., 2015; Chang et al., 2010; Villaescusa-Navarro et al., 2018). HI

intensity mapping is dedicated to “low redshift” or “late time” cosmology, probing the

latter stages of the universe. This technique leverages the optically thin 21cm spectral

line, which originates from the hyperfine transition of neutral atomic hydrogen (HI).

Notably, atomic hydrogen was pervasive in the universe subsequent to recombination.

While reionization in the later stages of the universe eradicated much of the neu-

tral hydrogen, within galaxies, overdense HI exhibits a recombination rate that is

proportional to n2. This rate is often sufficient to surpass the ionization rate, which

is proportional to n and arises due to the pervasive background of ionizing radiation.

(See e.g. Draine (2010) for detailed discussion.) Therefore, in the context of larger and

denser clouds, it becomes imperative to consider the shielding effects.

When the spin temperature exceeds the CMB temperature, the phenomenon of

overdense stimulated emission becomes dominant over absorption. This results in a

net 21cm emission, which can be detected as the discrepancy between the observed

temperature and the CMB temperature. By monitoring the redshifted 21cm emis-

sion line, one can trace the three-dimensional distribution of galaxies. This allows

researchers to study the clustering of collapsed halos over a wide range of redshifts and

spatial scales. Such observations are invaluable, providing a robust means to refine and

constrain cosmological models (Bull et al., 2015).

In this chapter we begin with a detailed exploration of the fundamental and obser-

vational facets of 21cm physics in section 4.1. Special emphasis is placed on the spin

statistics that drive the 21cm brightness temperature. We then discuss the utility of

the HI intensity as a biased tracer of matter on cosmological scales, accompanied by

a brief review of major advances in this field. Finally, section 4.3 serves as a general

introduction to the challenge of polarization and as an outline for the rest of the thesis.
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4.1 Basic 21cm physics

In this section, we will see how the physics of atomic hydrogen and the statistics of

abundant hydrogen atoms tell us part of the cosmic history. We will focus on one

macroscopic quantity, the ratio of the number densities ni of hydrogen atoms in the 1s

singlet F = 0 and 1s triplet F = 1 levels of a neutral hydrogen cloud. Here F = I + S

where I is the proton spin and S is the electron spin. (Throughout this part we denote

0 and 1 as singlet and triplet levels, respectively). As we will see in the following

sections, it is this ratio, characterized by the spin temperature TS defined in equation

(4.3), that determines the detectability of the 21 cm signal.

In general, two types of processes cause the hyperfine transitions of hydrogen atoms

and thus change the ratio n1/n0: collisional processes and radiative processes. We will

first discuss the collisional processes and introduce TS statistically. Then we will discuss

the radiative processes.

4.1.1 Spin statistics of thermal HI gas

Let’s first discuss an ideal neutral hydrogen cloud. It’s ideal for: 1. There is no

background radiation. 2. It’s in a state of equilibrium. We need to further restrict

what equilibrium means. Obviously it can’t be just the kinetic equilibrium, since

we’re talking about the statistics of the hyperfine states. Equilibrium here also means

“hyperfine state equilibrium”. The degrees of freedom involved are the kinetic degrees

of freedom and the hyperfine states deboted by 1 (aligned spins) and 0 (antiparallel

spins). Other hyperfine states beyond 0 and 1 are reasonably not considered.

Collision and decay (1 → 0) are two important regimes in this ideal HI cloud with

respect to the 21 cm transition. However, only collision is a statistical behavior, which

is the energy redistribution regime here in the ideal system, while decay is an atomic

behavior. If the efficiency of collisions is greater than that of decay, one can say that

this system would reach and then remain in a kinetic and hyperfine equilibrium state.

To be exact, we need to solve a Boltzmann equation that couples the spin and velocity

distributions (Hirata and Sigurdson, 2007). But here we just assume that a single ratio

of number densities of 1 and 0 can hold for the whole HI gas.

To characterize the ratio n1/n0, a macroscopic parameter, one has to choose an

appropriate statistical system. It’s not a simple choice between the Fermi system, the

Bose system, or the classical Boltzmann system. We have to start with the intrinsic sta-

tistical scheme of the detailed energy redistribution. In collision processes, the kinetic

degrees of freedom are responsible for energy exchange not only among themselves

but also with hyperfine degrees of freedom (via H-e− collisions and H-H collisions).

However, the hyperfine degrees of freedom could only exchange energy with the kinetic

degrees of freedom, not among themselves, which leads us to consider each hyperfine
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degree of freedom separately. For this reason, one can safely imagine the environment

of a hyperfine degree of freedom as: a single hyperfine degree of freedom contacting a

reservoir with kinetic temperature Tk. For any given hyperfine state, a single frozen

degree of freedom, the abundance of possible microstates of the reservoir gives the

statistical weight of the hyperfine state,

ni ∝ gie
−Ei/kBTk . (4.1)

So the ratio n1/n0 is
n1

n0

=
g1
g0
e−E10/kBTk . (4.2)

As we can see, the ratio is determined by the kinetic temperature in our ideal system.

In general, we can define a parameter, the spin temperature TS, to characterize n1/n0

in any system, even beyond hyperfine equilibrium:

n1

n0

=
g1
g0
e−E10/kBTS . (4.3)

Now we have the generalized definition of TS. In our toy model, TS is simply TK .

We might as well always keep this model in mind, where TS has both statistical and

thermal meaning.

Although we have extrapolated a statistical way to characterize the distribution

of hyperfine states in a HI cloud, we still need to learn about microscopic collisional

processes. Details of the atomic behavior allow us to discuss a real system where all

kinds of processes take place and one needs to figure out the contributions of each

source. Usually one mainly considers (i) H-H collisions; (ii) H-e− collisions; (iii) other

species. Let C10 and C01 be the de-excitation (1 → 0) and excitation (0 → 1) rates per

atom from collisions, respectively. For each type of collision, the rates are proportional

to the number of colliding particles times the cross-section, some function of the kinetic

temperature. Therefore, C10/C01, which determines the direction of the hyperfine

transition in collisional processes, is also a function of the kinetic temperature.

4.1.2 Spin statistics of HI gas in radiation fields

If we place our ideal hydrogen cloud in a radiation field, further considerations should

be made to determine the spin temperature. For astrophysical systems, the radiation

field is the CMB and ionized photons in the ISM or IGM. There are two main types

of photons involved in the hyperfine transitions between 0 and 1: the 21 cm photons

and the Lyα photons. The former are responsible for the direct transitions between

1 and 0, while the latter are responsible for Lyα scattering processes, some of which

significantly affect the spin temperature.

We will first describe a general radiative process and then characterize these two
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corresponding processes. In the following sections we use the specific intensity or

brightness Iν to describe the energy carried by rays passing through a given direction,

per unit area, per unit frequency, per unit solid angle, and per unit time.

Atomic emission and absorption

Before discussing radiation propagation in general, we should first characterize absorp-

tion and emission per atom. Einstein first discovered the relationship between the

atomic emission and absorption by proposing three processes: spontaneous emission,

stimulated emission, and absorption. They are respectively characterized by the Ein-

stein coefficients A21, B21, B12, where 1 and 2 generally denote two discrete energy

levels, E1 and E2. A transition from 1 to 2 (2 to 1) occurs by absorption (emission)

of a photon of energy hν0. Each Einstein coefficient (sec−1) describes the transition

probability per unit time for its corresponding process. In fact, there are processes,

such as the Doppler effect, that can cause the true energy difference between E1 and

E2 to differ from hν0. This spectral structure peaked at ν0 is described by a line profile

function ϕ(ν). We conventionally use the normalized line profile in our discussion∫ ∞

0

ϕ(ν)dν = 1. (4.4)

In general, ϕ(ν) includes natural, thermal, pressure broadening, etc (Furlanetto et al.,

2006; Rybicki and Lightman, 2008).

These Einstein coefficients are essentially atomic properties that don’t depend on

the macroscopic state of the system. But we can assume that local emission and absorp-

tion in a beam of radiation are in detailed balance, which is a reasonable assumption in

many interested systems, and this will provide us with an equation to constrain these

coefficients. Phenomenologically, the spontaneous emission is independent of bright-

ness Iν , but stimulated emission and absorption are proportional to Iν . Thus, the

detailed balance describes the equality of the number of transitions per unit time per

unit volume from and to state 1:

A21n2 +B21n2Iν −B12n1Iν = 0, (4.5)

which derives the brightness

Iν =
A21

B12(n1/n2)−B21

. (4.6)

For further discussion of the relations between the Einstein coefficients, we need the

distribution functions for ni, as well as the analytical form of Iν . The detailed balance

implies the hyperfine equilibrium, for which the kinetic equilibrium is a prerequisite.
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Substituting n1/n0 using equation (4.3) we get

Iν =
A21

B12(g1/g2)e−E12/kBT −B21

(4.7)

What’s more, in thermal equilibrium we also have that the intensity follows Plank’s

law, which is expressed as

Bν(T ) =
2hν3/c2

ehν/kBT − 1
. (4.8)

Rendering Iν = Bν(T ) gives the Einstein relations:

g1B12 = g2B21, A21 =
2hν3

c2
B21. (4.9)

Based on the atomic properties discussed above, we can now move on to the macro-

scopic absorption, emission, and other radiative transfer properties as a beam of radi-

ation travels through matter. We denote the emission coefficient and the absorption

coefficient as jν and αν respectively. To obtain jν , one needs to know the frequency

distribution of the emitted radiation during spontaneous decay. A simple assumption

is that the emission is distributed in accordance with the same line profile ϕ(ν) that

describes the absorption (Rybicki and Lightman, 2008).

Assuming that each spontaneous emission is statistically isotropic, the emission

coefficient, which describes the amount of energy emitted per unit volume, per unit

solid angle, per unit frequency, and per unit time, can be related to A21 by

jνdV dΩdνdt = (hν0/4π)ϕ(ν)n2A21dV dΩdνdt, (4.10)

from which we get

jν =
hν0
4π

n2A21ϕ(ν). (4.11)

Similarly, we can express αν , by definition dIν = −ανIνds, in terms of Einstein’s

coefficients

αν =
hν

4π
ϕ(ν)(n1B12 − n2B21). (4.12)

Note that the emission coefficient only takes into account spontaneous emission, while

stimulated emission is considered as negative absorption, which is included in the ab-

sorption coefficient, simply because these two processes both depend on the brightness

Iν .

The radiative transfer function in terms of emission and absorption coefficients is

given by
dIν
ds

= −ανIν + jν . (4.13)
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We may define the optical depth

τν(s) =

∫ s

s0

αs′ ds
′ =

∫
ds
hν

4π
ϕ(ν)(n1B12 − n2B21)

=

∫
ds

3c2A21

8πν221

(
n1
g2
g1

− n2

)
ϕ(ν) =

∫
ds σ21

(
n1
g2
g1

− n2

)
ϕ(ν),

(4.14)

where σ21 = 3c2A21/8πν
2
21 is the cross section of the atomic transition. The optical

depth is given by integrating the absorption coefficient along the path of a traveling

beam of radiation. τν > 1 corresponds to a so-called optically thick or opaque medium.

If τν < 1, the medium is optically thin. Then the radiative transfer equation in terms

of τν is
dIν
dτν

= −Iν + Sν , (4.15)

where Sν ≡ jν/αν is the rescaled source function. For a constant source function

Iν(τν) = Iν(0)e
−τν + Sν(1− e−τν ). (4.16)

Radiative transfer of the 21cm line in the CMB

We now look at the distortion of the CMB passing through a HI cloud as a consequence

of the 21cm transition. To characterize this radiative transfer, we need the values of

the Einstein coefficients. One can compute A10 and then use the Einstein relations to

get all these coefficients so that the radiative transfer of the 21 cm line is determined.

We assume that Iγ = ICMB, since almost all 21 cm photons come from the CMB.

J. P. Wild first calculated A10 in Wild (1952). The transition probability of the 21

cm line is A10 = 2.85× 10−15 sec−1. Therefore, the optical depth of the 21 cm line can

be calculated in terms of A10:

τν =

∫
dsσ10(1− e−E10/kBTS)ϕ(ν)n0 ≈ σ10

(
hν

kBTS

)(
NHI

4

)
ϕ(ν), (4.17)

where NHI is the column density of atomic hydrogen and the factor 1/4 accounts for

the fraction of atoms in the hyperfine 0 state, since all applications have TS ≫ E10/kB.

We can see τν ≪ 1, which implies the transparency of the 21 cm line for the transfer

in the neutral hydrogen cloud. This is undoubtedly a non-trivial merit. For a more

precise expression, we use a simple assumption, often a good one in astrophysics, that

the IGM gas expands uniformly with the Hubble flow. Then the velocity broadening

of a line segment s will be ∆V ∼ sH(z) and the line profile function will be ϕ(ν) ∼
c/[sH(z)ν] (Furlanetto et al., 2006). The column density along s can be written as

NHI = xHInH(z)s, where xHI is the neutral fraction of hydrogen. Then an exact
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expression for the 21 cm optical depth is

τν0 =
3

32π

hc3A10

kBTSν20

xHInH
(1 + z)(dv∥/dr∥)

≈ 0.0092(1 + δ)(1 + z)3/2
xHI
TS

[
H(z)/(1 + z)

dv∥/dr∥

]
.

(4.18)

Lyman lines and Wouthuysen-Field effect

In a HI cloud, not only the 21cm photons play an important role in the redistribution

of the hyperfine 0 and 1 states, but also the Lyman photons. A ground state atom

can absorb a Lyman photon and jump to a higher energy level. After a while, the

atom will leave the unstable state and emit a photon. These atoms can decay directly,

nP→1S, so that the atom goes back to the ground fine state and a Lyman photon

is produced, changing the hyperfine states if the initial and final hyperfine states are

different. This process is called Lyman resonance, UV scattering, or other combinations

of these words. Lyman excited atoms can also cascade through intermediate levels to

produce different photons.

A simple comparison between Lyα and higher Lyman-n levels tells us that only

Lyα lines have a large influence on the statistics of hyperfine states: The possibilities

of direct decay from higher Lyman-n levels to the ground state are PnP→1S ∼ 0.8, so

typically a Lyman-n photon can scatter 1/(1 − PnP→1S) ∼ 5 times before undergoing

a decay cascade (Loeb and Furlanetto, 2013). Lyα photons, on the other hand, can

typically scatter hundreds of thousands of times. Thus, higher Lyman-n coupling is

subdominant compared to Lyα scattering. Siegfried Wouthuysen and George Field

were the first to systematically study Lyα scattering. In their honor, the Wouthuysen-

Field effect, shown in Figure 4.1, describes how atoms can change hyperfine states

through a series of Lyα absorption and spontaneous reemission. Quantum selection

rules allow transitions of ∆F = 0,±1, except 0 → 0. An atomic hydrogen can jump

up and down between two fine levels, 1S and 2P, but the hyperfine levels it locates are

not unique. So some of this scattering contributes to the spin flip.

To understand the impact of the Wouthuysen-Field effect on the spin temperature,

we further discuss the radiative transfer properties of the Lyα photon. Atomic physics

tells us that the Lyα decay rate is Aα = 8π2e2fα/3mecλ
2
α = 6.25× 108 s−1, where fα =

0.4162 is the oscillator strength, and the frequency of the Lyα line is να = 2.47× 1015

Hz. It is safe to assume that the stimulated emission can be neglected. Therefore, we

can express the optical depth of Lyα photons as (Loeb and Furlanetto, 2013)

τα =

∫
drσαϕα(ν)nHI =

3Aαλ
3
α

8π

xHInH(z)

H(z)

≈ 1.6× 105xHI(1 + δ)

(
1 + z

4

)3/2

.

(4.19)
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Figure 4.1: Level diagram illustrating the Wouthuysen-Field effect. The solid lines
indicate transitions that cause spin flip, and the dashed lines indicate transitions that
are not associated with spin flip. This figure is courtesy of Furlanetto et al. (2006)

.

Qualitatively, we can conclude that the neutral hydrogen cloud is optically thick for

Lyα lines (τα ≫ 1). These properties help us to get a picture of the scattering processes:

Lyα photons traveling in the HI cloud - not a long trip, then it will be absorbed, but

soon after another Lyα photon will emerge. After another short trip, the same process

happens again. It can scatter in this way a large number of times, redistributing energy

frequently, which led Wouthuysen to propose the a thermal scenario in Wouthuysen

(1952): “You can take the gas in a large container with perfectly reflecting walls. Let

the gas be in equilibrium at temperature T , together with Planck radiation of the

same temperature. The scattering processes will not affect the radiation spectrum”,

and he further claimed that “after a finite but large number of scattering processes,

the photons will obtain a statistical distribution in the vicinity of the initial frequency,

proportional to the Planck radiation spectrum of temperature T”. This is innovative,

although a bit imprecise1. This phenomenological explanation is based on the fact that

the system is a black body in thermal equilibrium, regardless of whether there is gas in

the container, suggests that Tα ≈ TK ≈ TS in thermal equilibrium. In the next section

we give a more rigorous discussion of the coupling between these temperatures.

4.1.3 Spin temperature in Tug-of-War

As we have discussed, TS is determined by several competing processes, collisional

processes and radiative processes. Let’s use temperatures to characterize all these

1Either the specific intensity or the shape of the spectrum can be used to determine the temperature
of a blackbody radiation. So not ‘proportional’ but ‘equal’.
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forms of energy. Note that a temperature T is essentially a statistical description.

Thermal temperature can be transformed into another macroscopic parameter, β:

1/kBT = β(E) ≡ ∂ lnΩ

∂E
, (4.20)

where Ω is the number of possible microstates when the system has energy E. By the

principle of equal “a priori” probabilities,2 the β of two systems are equal (β1 = β2)

when the two systems are in thermal equilibrium. This is the direct result of maximizing

the likelihood, or say the entropy, or say the number of microstates of the combined

system. Two thermal temperatures are of interest: the kinetic temperature of the

baryons, TK , and the brightness temperature of the background 21cm photons, Tγ.

A peculiar notion of temperature, the temperature of Lyα photons Tα, is also

involved. This temperature is not a thermal temperature and is defined by atomic

absorption and emission behavior (see equation (4.31)). For later convenience, we also

define T∗ ≡ E10/kB.

In general, the steady state of hyperfine states when all three processes are involved

can be described as follows

n1(A10 +B10Iν + P10 + C10) = n0(B01Iν + P01 + C01), (4.21)

where Iν = Bν(Tγ) ≈ ICMB is the specific intensity of the background 21cm photons.

P10 and P01 are the rates of hyperfine transitions caused by scattering of UV photons,

in our case Lyα photons.

The coefficients in the equation (4.21) are not all independent, and the relation be-

tween any pair of coefficients that are inverse processes of each other can be determined.

From the equation (4.9) we get

B01

B10

= 3,
A10

B10

=
2hν3

c2
=

2kBν
2

c2
hν

kB
=
∂Bν(T )

∂T
T∗. (4.22)

where we have applied the Rayleigh Jeans limit in the last equality. The ratio C01/C10

can be obtained by considering a thermal equilibrium gas with only the collisional

processes. Since T∗ ≪ TK in the collisional regime, the equation (4.2) gives

C01

C10

≈ 3

(
1− T∗

TK

)
. (4.23)

The ratio of P01 and P10 is a bit more complicated. Labeling the 1S and 2P hyperfine

2This is not Bayesian statistics. However, the terminology is commonly used as the first postulate
of statistical mechanics.
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levels 0-5 from lowest to highest energy, we have

P01 ∝ B03Iν03
A31

A30 + A31

+B04Iν04
A41

A40 + A41

(4.24)

and

P10 ∝ B13Iν13
A30

A30 + A31

+B14Iν14
A40

A40 + A41

(4.25)

Using the relations between the Einstein coefficients, we have

B03Iν03 =
g3B30Iν03

g0
= A30

g3
g0

Tb(ν03)

T03
=
g3
g0
A30N (ν03), (4.26)

where T03 ≡ hν03/kB and Tb(ν03) is the brightness temperature of Iν03 in the Rayleigh-

Jeans limit. The statistical weight g = 2F + 1 for an nFJ state. The ratio N (ν03) ≡
Tb(ν03)/T03 can be understood as the photon occupation number at ν03. Similar results

can be found for B03, B13, and B14. Using a sum rule for hyperfine transitions, which

states that the sum of all transitions from given nFJ to a given n′J ′ but arbitrary F ′

is proportional to 2F + 1, we can get the ratios

A30 : A31 : A40 : A41 = 1 : 2 : 2 : 1. (4.27)

Then the ratio between P01 and P10 can be written as

P01

P10

=
N (ν03)

g3
g0

A30A31

A30+A31
+N (ν04)

g4
g0

A40A41

A40+A41

N (ν13)
g3
g1

A30A31

A30+A31
+N (ν14)

g4
g1

A40A41

A40+A41

= 3
N (ν03) +N (ν04)

N (ν13) +N (ν14)
.

(4.28)

Since ν0a = ν1a + ν01 and ν01 ≪ ν1a for a = {3, 4}, the above expression can be

expanded to the first order as

P01

P10

= 3
N (ν03) +N (ν04)

N (ν13) +N (ν14)

= 3

(
1 +

∂νN (ν13) + ∂νN (ν14)

N (ν13) +N (ν14)
ν01

) (4.29)

For later convenience we define the effective color temperature Tα so that

P01

P10

≡ 3

(
1− T∗

Tα

)
. (4.30)

The equation (4.29) gives the explicit expression for Tα:

Tα = − h

kB

N (ν13) +N (ν14)

∂νN (ν13) + ∂νN (ν14)
. (4.31)
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We are now ready to express the spin temperature more explicitly as a combination

of other temperatures. If the populations of the hyperfine states 0 and 1 do not change,

we have

3

(
1− T∗

TS

)
≈ n1

n0

=
B01Iν + P01 + C01

A10 +B10Iν + P10 + C10

, (4.32)

which gives

T−1
S ≈ A10T

−1
∗ + P10T

−1
α + C10T

−1
K

A10(Tγ/T∗) + P10 + C10

=
T−1
γ + xαT

−1
α + xcT

−1
k

1 + xα + xc
,

(4.33)

where

xc =
T∗
Tγ

C10

A10

, and xα =
T∗
Tγ

P10

A10

. (4.34)

Conventionally, we relate the scattering rate P01 to the total Lyα scattering rate Pα,

the total scattering rate per atom of Lyα photons (Furlanetto et al., 2006)

Pα = 4πχα

∫
dνJν(ν)ϕα(ν), (4.35)

where χα = 0.4162πe2/mec is the cross section, Jν(ν) is the angle-averaged specific

intensity of the radiation field, and ϕα(ν) is the Lyα line profile. The sum rule gives

P01 = 4Pα/27 if the radiation field is assumed to be constant (Meiksin, 2000). The

coupling coefficient can now be rewritten as (Furlanetto et al., 2006)

xα =
16π2T∗e

2fα
27A10Tγmec

SαJα, (4.36)

where Sα is a correction of order unity and Jα is the specific flux evaluated at Lyα

frequency.

4.1.4 21cm signal

We quantify Iν by the equivalent brightness temperature, Tb(ν), such that Iν = Bν(Tb).

In the Rayleigh-Jeans limit where

Iν =
2ν2

c2
kTb, (4.37)

the solution of the radiative transfer equation can now be written in terms of Tb(ν)

T ′
b(ν) = Tex(1− e−τν ) + T ′

R(ν)e
−τν , (4.38)
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Figure 4.2: Global history of the 21 cm signal. This is taken from Pritchard and Loeb
(2012).

where the excitation temperature Tex is just the spin temperature TS, and T
′
R = TCMB.

The desired 21cm signal is then

δTb =
TS − Tγ
1 + z

(1− e−τν ) ≈ TS − Tγ
1 + z

τν

≈ 27xHI(1 + δ)

(
Ωbh

2

0.023

)(
0.15

Ωmh2
1 + z

10

)1/2(
TS − Tγ
TS

)
,

(4.39)

where xHI is the neutral fraction of hydrogen, δ is the fractional overdensity in baryons

(Pritchard and Loeb, 2012).

History of 21cm signal

In this section we look at different epochs when different mechanisms dominate the

spin temperature. As shown in Figure 4.2, there are several important points in time.

They are at redshifts: z ≈ 200, when gas and photons are about to decouple; z ≈ 30,

the beginning of the Dark Ages; z⋆, when the first galaxies form; zα, when the gas is

everywhere strongly coupled to TK ; zh, when the heating is significant and TK is again

equal to Tγ; zT , the time when the 21 cm signal saturates; and zR, about the time when

reionization is complete. These epochs are not exactly determined, and even the order

of some events is not certain (see e.g. Pritchard and Loeb (2012) for a more detailed

discussion).

• When 200 ≲ z ≲ 1100, the Compton scattering dominates the thermal equi-

librium, setting TS = TK = Tγ. So there is no detectable 21 cm signal. After

that, photons and baryons decouple but the baryon fluid is still dense and the

collisional coupling dominates, so we still have TS ≈ TK .
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• Since the photons cool with the Hubble flow with Tγ ∝ (1 + z) and the baryons

cool with TK ∝ (1 + z)2, there is a time, about 40 ≲ z ≲ 200, when TK is less

than Tγ. This epoch has a global 21cm absorption signal.

• When z⋆ ≲ z ≲ 40, as the gas density decreases, the radiative coupling gradually

plays an more important role than the collisional coupling, which sets TS = Tγ.

Thus, there is no detectable 21 cm global signal in this epoch. z⋆ is an important

critical point when the first sources appear, emitting both Lyα photons and x-

rays.

• In regions around the first sources appeared at z = z⋆, the Wouthuysen-Field

effect becomes important and sets TS ≈ TK . The Lyα coupling may not be as

efficient as other couplings at the beginning. As more and more stars form, the

Lyα coupling becomes stronger until saturated. Thus, the spin temperature in

this epoch provides an absorption signal as T̄K ≲ T̄S ≲ Tγ. At the critical point,

z = zα, the Lyα coupling dominates and T̄S = T̄K .

• The absorption signal in the previous epoch exists until T̄K increases to be equal

to Tγ, which happens at z = zh due to the heating regime in the structure

formation. Immediately after zh, TS ∼ TK > Tγ and we can see emission signal.

The 21cm emission signal saturates and becomes independent of TS when TK ≫
Tγ. This can be seen from equation (4.39) in the limit (TS − Tγ)/TS → 1.

4.2 HI intensity mapping

4.2.1 21cm power spectrum

Radio intensity mapping, the focus of this thesis, which maps large-scale structure in

the redshifted 21 cm emission of atomic hydrogen without resolving individual galaxies,

offers a promising and economical way to measure BAO over large volumes (Bull et al.,

2015) . As a redshift survey, the observed HI power spectrum also suffers from the

redshift space distortion (RSD) (Kaiser, 1987) effect like traditional galaxy surveys.

The distortion can be empirically written as

PHI(k, z) ∝ (bHI + fµ2)2 exp
(
−k2µ2σ2

NL

)
D+

2(z)T 2(k, z)kns , (4.40)

where µ ≡ k∥/k is the cosine of the line-of-sight angle and bHI is the bias due to the use

of HI as a tracer of matter. The linear growth rate f is related to the linear growth

factor D+(z) by f = d lnD+/d ln a. The first term bHI + fµ2 is the linear regime

(Percival and White, 2009) of the RSD of the HI overdensity. While the exponential

term accounts for the ‘Fingers of God’ effect, where an uncorrelated velocity dispersion
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growing on small scales washes out the radial fluctuations beyond the cutoff set by the

nonlinear dispersion, σNL.

4.2.2 Evidence for HI in galaxies

As introduced at the chapter’s outset, galaxies can host overdense HI regions with

elevated spin temperatures, primarily due to shielding effects. In this section, we

provide a concise overview of the presence of HI regions within galaxies.

The space that separates the stars and fills the galaxies is diluted but far from

empty, called the interstellar medium (ISM), a mixture of gas, high energy particles

and dust grains. The gas is mainly hydrogen, which makes up about 70% of the mass,

followed by helium, which makes up 28% of the mass. The remaining 2% is made up

of heavier elements, commonly known as metals (Draine, 2010).

In the 1920s and 30s, the first evidence for a ubiquitous ISM came from observations

of absorption lines at visible wavelengths (Heger, 1922; Merrill, 1934). By the 1940s,

many visible resonance lines from ions and molecules had been discovered, including

NaI, CaII, TiII, CaI, KI, LiI, CH, NH, CN, CH+, and C2. More absorption lines were

found in UV observations, e.g., Copernicus, IUE and HST, because the typical exci-

tation energies of the ground state resonance transitions are a few eV. In addition to

UV and visible observations, longer wavelength millimetre and shorter X-ray bands

have been used to probe the ISM: millimetre observations reveal the presence of Gi-

ant Molecular Clouds at temperatures below 100 K, and X-ray observations reveal the

presence of gas at temperatures above 105K. The existence of the 21cm line of atomic

hydrogen was first predicted in Van de Hulst (1945) and, with the development of

radio astronomy, was later detected from our Galaxy (Ewen and Purcell, 1951) and

the Magellanic Clouds (Kerr et al., 1954). In general, all these observations at differ-

ent wavelengths show that the ISM is highly inhomogeneous and can be divided into

phases with different temperatures, densities and ionisation ratios (Draine, 2010). In

Table 4.1, we summarise a typical classification of different phases of interstellar gas.

The constituents of the ISM are inevitably present between galaxies, the so-called in-

tergalactic medium (IGM), since there is no well-defined boundary to a galaxy. The

classification of the interstellar gas is of course extended to the case of the intergalactic

medium.

21cm intensity observations provide information on the abundance and distribution

of HI, which is the dominant species in two neutral thermal phases in the ISM:

Warm Neutral Medium (WNM), composed of the diffuse, relatively low-density

(nH ∼ 0.6cm−3) atomic neutral hydrogen gas with a temperature T ∼ 8000K.

The WNM is thought to occupy ∼ 30 − 40% of the volume of the Galactic disc

and to carry a significant fraction of the total mass of neutral hydrogen.
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Figure 4.3: HI 21cm emission and absorption signals of 8 extragalactic radio sources
from Radhakrishnan et al. (1972). This figure is taken from Ryden and Pogge (2021).
The vertical axis is the contrast brightness temperature against the neighbourhood ra-
dio background. Dashed lines are fits to optically thin emission line components where
there is no corresponding absorption component. The velocity limits of the optically
thick absorption components are indicated by the vertical lines. The narrow absorption
lines correspond to discrete CNM regions. The broad, optically thin emission is diffuse
WNM.

Cold Neutral Medium (CNM), composed of the cold (T < 100K), dense (n =

20−60cm−3) clouds and filaments with a low filling factor (∼ 1−4%). It occupies

a very small percentage of the volume of the Galactic disc. However, it is so dense

that it accounts for 30−60% of the mass of the ISM. The dense molecular clouds

are a colder (T ∼ 10−20K) and denser (nH ∼ 103−106cm−3) environment within

the CNM, bounded by self-gravity. It provides a home for complex molecules, a

playground for dust chemistry, and a place for star formation.

The integrated 21cm emission and absorption of HI from CNM and WNM in galax-

ies was observed and studied in the 1970s. As an illustrative case, Figure 4.3 shows line

profiles of 21cm emission and absorption towards 8 extragalactic radio sources (Rad-

hakrishnan et al., 1972). The narrow absorption lines correspond to discrete CNM

regions, and the broad, optically thin emission is diffuse WNM (Ryden and Pogge,

2021).
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4.2.3 Experimental progress

In 2010, Chang et al. made the pioneering detection of the 21 cm signal within the

intensity mapping (IM) domain using the Green Bank Telescope (GBT). Their work

showcased a 3D 21 cm intensity field spanning redshifts z = 0.53 to 1.12, overlapping

with approximately 10,000 galaxies from the DEEP2 galaxy survey (Davis et al., 2003).

This crucial observation confirmed the 21 cm intensity field around z ≈ 1 as an apt

reflection of galaxy distribution.

Progressing on this foundation, Masui et al. (2013) identified a cross-power spec-

trum around z ≈ 0.8, bridging 21 cm IM with galaxies from the WiggleZ Dark Energy

Survey. Switzer et al. (2013) set a novel benchmark by identifying the upper limit

of the 21 cm auto-power spectrum. Additionally, Anderson et al. (2018) correlated a

cross-power spectrum between Parkes telescope’s 21 cm intensity maps and the 2dF

galaxy maps at z ≈ 0.08.

In a significant stride, Paul et al. (2023) reported the first direct detection of the

cosmological power spectrum using the 21-cm emission of neutral hydrogen (HI) with

the new MeerKAT radio telescope. This groundbreaking work, focused on intensity

mapping, has painted a vivid three-dimensional portrait of the universe’s matter dis-

tribution at radio frequencies. Remarkably, unlike previous efforts which relied on

cross-correlations with galaxy surveys, this study offers independent measurements of

the HI power spectrum at redshifts 0.32 and 0.44, boasting high statistical signifi-

cance (8.0σ and 11.5σ respectively). Their exploration also presents constraints on the

fluctuations of the HI distribution, further elucidating the parameters of the HI mass

function and HI halo model. Undoubtedly, this represents a monumental advancement

towards precision cosmology with HI intensity mapping using modern radio telescopes

(Paul et al., 2023).

Despite these strides, the full auto-correlated 21 cm power spectrum remains a tan-

talizing goal. Here we highlight several trailblazing experiments targeting the redshift

range 0 < z < 3: BINGO (Dickinson, 2014), FAST (Smoot and Debono, 2017), SKA

(Santos et al., 2015; Bacon et al., 2020), HIRAX (Newburgh et al., 2016), CHIME

(Amiri et al., 2022), Tianlai (Chen et al., 2015), and the aforementioned MeerKAT.

Collectively, these initiatives aim to elucidate the potential of low-redshift 21 cm IM

experiments in enhancing our grasp of cosmological parameters.

Although we have mentioned that HI intensity mapping is dedicated to “low red-

shift” or “late time” cosmology, probing the latter stages of the universe, specifically

within the 0 < z < 3 bracket, the expansive capabilities of the higher redshifts (e.g.,

the SKA Low Array) are recognized and hold the promise of extending 21cm IM studies

even beyond z = 3 (Barry et al., 2022).
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4.3 Polarization challenge

Detecting the 21 cm intensity (or Stokes I)3 presents a formidable challenge. The de-

sired extragalactic signal is consistently overshadowed by galactic foregrounds that are

three to four orders of magnitude brighter. However, the inherent spectral smoothness

of the total intensity of the Galactic foreground offers a glimmer of hope. Theoreti-

cally, this smoothness allows the extraction of the cosmological signal with its complex

spectral behavior. Depending on the specific analysis technique, one can either fit

the foreground with models of smooth spectral functions, or extract data at higher

wavenumbers.

Since the desired cosmological signal is inherently unpolarized, polarization should,

in theory, not affect unpolarized intensity measurements. But the reality of radio

observations, even unpolarized ones, is revealed by polarimetry. Given the nuanced

nature of the cosmological 21cm signal, imperfections are hard to avoid. Instrumental

systematics typically manifests itself in two dominant problems: mode mixing and

polarization leakage. The former, which has been studied in the context of beam

chromaticity in several papers (see, e.g., Thyagarajan et al. (2016)), which allows

some low wavenumber (conjugate to frequency, foreground-dominated) modes to leak

into components that vary rapidly with frequency. In part V of this paper, we will

see that general beam uncertainties can also cause the mixing of transverse spatial

modes. Polarization leakage, on the other hand, captures polarimetric imperfections,

whether due to misaligned feeds, dish manufacturing anomalies, or beam uncertainties.

All of these challenges can essentially be characterized as beam discrepancies in sky

coordinates.

The scenario becomes even more complicated when considering the spectral struc-

ture of polarized foregrounds. As these highly polarized foregrounds traverse the ISM

under the influence of the galactic magnetic field, they undergo Faraday rotation. This

interaction gives the polarized foreground a tangled spectral characteristic that con-

founds foreground mitigation efforts that are based on its spectral smoothness. Due to

these complexities, polarization leakage stands out as a significant obstacle in several

21cm experiments, including HI intensity mapping.

The goal of this thesis is to deconstruct the role of polarization in HI intensity

mapping and, more generally, in 21cm surveys. Our investigation will focus on

1. Understanding antenna measurements based on radio polarimetry (part II).

2. Understanding the polarization of the diffuse galactic foreground (part III).

3. Discussing the Stokes I extraction mechanism within polarization measurements

(part IV).

3See section 5.1.1 for a comprehensive discussion of polarization.
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4. Evaluating the effects of polarized beam uncertainties in intensity mapping ex-

periments (part V).
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Table 4.1: Phases of interstellar gas

Phase T (K) nH (cm−3) Observed by

hot ionized medium
(HIM)

≳ 105.5 ∼ 0.004
• UV and X-ray emission

• Radio synchrotron emission

HII gas 104 0.3− 104
• Optical line emission

• Thermal radio continuum

Warm HI (WNM) ∼ 5000 0.6

• HI 21cm emission, ab-
sorption

• Optical, UV absorption
lines

Cool HI (CNM) ∼ 100 30

• HI 21cm emission, ab-
sorption

• Optical, UV absorption
lines

Diffuse H2 ∼ 50 ∼ 100

• HI 21cm emission, absorp-
tion

• Optical, UV absorption
lines

• CO 2.6mm emission

Dense H2 10-50 103 − 106
• CO 2.6mm emission

• Dust FIR emission

Cool stellar outflows 50− 103 1− 106

• Optical, UV absorption
lines

• Dust IR emission

• HI, CO, OH radio emission

* nH is the density of hydrogen in the phase of gas.
* The information in this table is taken from Draine (2010).
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Polarization measurement for radio

cosmology
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Chapter 5

The polarized radio sky

In this Part II of this thesis, we introduce the foundational principles of polarization

measurements in radio cosmology. We begin by establishing the mechanisms that

describe the radio signal. The directional signal received by the antenna is simplified

as a time-varying electric field signal on the celestial sphere, and the portion of its radio

frequency band (from 3kHz to 3GHz) is referred to as the radio sky. In this chapter,

we provide an overview of the description of the polarization field in the radio sky.

5.1 Polarization of electromagnetic waves and Stokes

parameters

5.1.1 Monochromatic waves

Classical free electromagnetic waves can be described as a superposition of plane-wave

solutions of Maxwell equations. The time evolution of a single chromatic wave is given

by the temporal frequency ω, while the spatial configuration can be described by the

wave vector k, which characterizes the spatial frequency and the direction of the phase

advance, and the orientation of the EM vectors in the transverse directions. The latter

is called the polarization of the EM wave. We will discuss only the polarization of the

electric vector E, since the magnetic vector simply remains perpendicular to E.

The most general state of polarization for a single free monochromatic wave of given

k and ω can be described by a pair of orthogonal unit vectors, denoted as {ê1, ê2}, in
the plane perpendicular to k. Then the electric vector can be written as the real part

of

E = E1ê1 + E2ê2 = (A1e
iϕ1 ê1 +A2e

iϕ2 ê2)e
iωt. (5.1)

It is obvious that in order to determine the magnitude and orientation of E at a

given moment, we have to determine four quantities: the amplitudes A1 and A2 and

the absolute phases ϕ1 and ϕ2. However, the orientation of E at a given moment

may not be of primary interest to astrophysicists, who are typically interested in the
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local1 directional behavior of EM waves over time. In other words, the absolute values

of ϕ1 and ϕ2 are neither directly observable nor of interest in most radio astronomy

applications, but their relative phase (ϕ1 − ϕ2) is usually a desired quantity.

Therefore, to operationally define the polarization state of a monochromatic wave

at a given time t and location x, we can consider the local directional behavior of E

within a time period centered at (t − τ/2, t + τ/2), where τ ≫ 1/ω. This involves

determining three degrees of freedom within the time period: the amplitude A1, which

can be determined by ⟨E1E1∗⟩; the amplitude A2, which can be determined by ⟨E2E2∗⟩;
and the phase difference ϕ1 −ϕ2, which can be determined by ⟨E1E2∗⟩ once A1 and A2

are known. Here ⟨. . . ⟩ means averaging over the time period τ . Since the endpoint of

E traces out an ellipse, a monochromatic wave is said to be elliptically polarized. Thus,

the state of polarization can be described in terms of the parameters of the polarization

ellipse.

To facilitate later discussion, we introduce the polarization tensor P to characterize

the polarization of any electromagnetic wave:

P ≡ ⟨E⊗ E∗⟩ = êi ⊗ êj ⟨E iE j∗⟩. (5.2)

where the repeated indices are summed using the Einstein summation convention.

Since the tensor components ⟨E iE j∗⟩ are a 2 × 2 Hermitian matrix, P can always be

uniquely expanded in terms of conventional Pauli spin matrices as (see e.g. Tinbergen

(2005))

P = êi ⊗ êj

[
σIij I + σQij Q+ σUij U + σVij V

]
(5.3)

where σI = σ0, σ
Q = σ3, σ

U = σ1, and σ
V = σ2.

2 Equations (5.2) and (5.3) give

I ≡ ⟨E1E1∗⟩+ ⟨E2E2∗⟩, Q ≡ ⟨E1E1∗⟩ − ⟨E2E2∗⟩,

U ≡ ⟨E1E2∗⟩+ ⟨E2E1∗⟩, V ≡ −i(⟨E1E2∗⟩ − ⟨E2E1∗⟩).
(5.4)

An important observation from the above expressions is that I,Q, U, V correspond

exactly to the Stokes parameters, as defined based on the polarization ellipse. Since A1,

A2, ϕ1, and ϕ2 are constant, the relation I
2 = Q2+U2+V 2 holds for all monochromatic

waves.

A monochromatic wave with a given k and ω is in general purely elliptically polar-

ized. The polarization state is defined over a time interval and can be specified by the

polarization ellipse, which in turn can be described by the Stokes parameters. These

parameters can be determined operationally using ⟨E iE j∗⟩.

1By the term “local” the author refers specifically to the time-varying orientation of E at a given
position, rather than its orientation at a wavefront.

2Pauli spin matrices are σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.
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5.1.2 Quasi-monochromatic waves

In section 5.1.1, we discussed the directional behavior of the electric vector of freely

propagating monochromatic waves. This nonrandom behavior is assumed by forcing

constant values of A1,A2, ϕ1, and ϕ2 in equation (5.1). This assumption is based on

the coherent nature of radio emissions, which can be described as tco > τ ≫ 1/ω, where

tco is the coherent time of the EM wave. However, this assumption does not always

hold: some degree of incoherence in the observed signal is inevitable due to changes

in the physical conditions of the radiation source itself or the modifications of the EM

waves along the propagation path. In such cases, the incoherence must be taken into

account, and the electric vector components should be expressed as

E i(ω, t) = Ai(t)e
iϕi(t)eiωt (5.5)

where Ai, and ϕi are now time-dependent variables. Fortunately, most radio astro-

physical signals are coherent on time scales much larger than 1/ω, so we can easily find

an integration time τ over which Ai and ϕi are approximately constant.

Another problem is more important than the coherence of the radio source: In

practice, we always observe a superposition of many frequency components rather than

a single monochromatic component, each with its own polarization. Assuming that the

combination of the frequency components is described by a normalized narrow top-hat

filter, and that each component is coherent so that Ai and ϕi are considered constants

over the time period τ , the polarization components of the electric vector of this set of

“quasi-chromatic” waves can be expressed as (Rybicki and Lightman, 2008)

E i(ω, t) =
∫ ω+∆ω

2

ω−∆ω
2

dω′

∆ω
Ai(ω

′)eiϕi(ω
′)eiω

′t (5.6)

The corresponding correlation is given by

⟨E iE j∗⟩(ω, t) =
∫ t+ τ

2

t− τ
2

∫ ω+∆ω
2

ω−∆ω
2

∫ ω+∆ω
2

ω−∆ω
2

dt′

τ

dω′

∆ω

dω′′

∆ω
Ai(ω

′)A∗
j(ω

′′)ei[ϕi(ω
′)−ϕj(ω′′)]ei(ω

′−ω′′)t′

(5.7)

It is easy to see from the Cauchy-Schwarz inequality and equation (5.4) that

I2 ≥ Q2 + U2 + V 2. (5.8)

5.1.3 Polarization of the superposition of independent waves

Now let’s consider a superposition of different waves,

E =
∑
k

E(k), (5.9)
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each of which can be decomposed as

E(k) = E1,(k)ê1,(k) + E2,(k)ê2,(k). (5.10)

These different waves are assumed to be “independent”, which means that there are

no permanent phase relations between these waves so that

⟨E i,(k)E j,(l)⟩ = 0, if k ̸= l. (5.11)

Then the correlations in the definition of the Stokes parameters (Equation (5.4)) are

given by

⟨E iE j∗⟩ =
∑
k

∑
l

⟨E i,(k)E j,(l)∗⟩ =
∑
k

⟨E i,(k)E j,(k)∗⟩ (5.12)

It proves the superposition principle of the Stokes parameters that

I =
∑

I(k), Q =
∑

Q(k), U =
∑

U (k), V =
∑

V (k). (5.13)

The additivity also implies that an arbitrary set of Stokes parameters can be decom-

posed into a completely elliptically polarized wave of intensity Ipol =
√
Q2 + U2 + V 2

and a completely unpolarized wave of intensity I − Ipol. An extended concept is the

degree of polarization, which defines the ratio of the polarized intensity to the total

intensity

Π ≡ Ipol
I
. (5.14)

5.1.4 Polarization under rotation

We have just discussed two equivalent ways (Equations (5.2) and (5.3)) of character-

izing the polarization of monochromatic waves defined by equation (5.1), but these

descriptions are based on a chosen basis {ê1, ê2} of the polarization. Usually, the only

constraint on the polarization bases is that they must be perpendicular to k, although

one may also require that {ê1, ê2} and k to follow a particular chirality, such as the

right-hand convention. Therefore, our description of polarization usually has a rota-

tional degree of freedom about k. Since our discussion will involve the representation

of the same polarization state in different bases, we need to understand how the polar-

ization description based on the Stokes parameters changes with the basis.

We will use the rotation matrix R(ψ) to express the transformation of the polar-

ization basis so that(
ê′1

ê′2

)
= R(ψ)

(
ê1

ê2

)
=

(
cosψ − sinψ

sinψ cosψ

)(
ê1

ê2

)
, (5.15)
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then P could be rewritten with the new basis as

P ≡ êi ⊗ êj

[
σIij I + σQij Q+ σUij U + σVij V

]
= (RT )ia(RT )jbê

′
a ⊗ ê′b

[
σIij I + σQij Q+ σUij U + σVij V

]
= ê′a ⊗ ê′b

[
σIab I + σQab (cos (2ψ)Q− sin (2ψ)U) + σUab (sin (2ψ)Q+ cos (2ψ)U) + σVab V

]
≡ ê′a ⊗ ê′b

[
σIab I

′ + σQabQ
′ + σUab U

′ + σVab V
′
]

(5.16)

Thus, after the rotation of the basis vectors, Stokes I and V remain unchanged, while

Stokes Q and U are transformed such that

Q′ = cos (2ψ)Q − sin (2ψ)U

U ′ = sin (2ψ)Q + cos (2ψ)U (5.17)

An equivalent description using complex exponents is also useful:

Q′ + iU ′ = e2iψ(Q+ iU), (5.18)

or similarly,

Q′ − iU ′ = e−2iψ(Q+ iU). (5.19)

5.2 Polarization field of radio sky

In this section, we discuss the representations of polarization for the entire radio sky,

which refers to the radiation field observed by the telescope. Since the size of a telescope

receiver is negligible compared to its distances from astrophysical sources, the radiation

field can be approximated as a time-varying vector field on a 2-sphere manifold.3

To describe the polarization of the electric vector field, we define the polarization

tensor field on the sphere. This requires us to specify the choice of polarization basis

vectors at each point on the sphere. We use the natural choice of local spherical

coordinate basis vectors, with ê1 = θ̂ and ê2 = ϕ̂ for each point. The description of the

polarization is then given by a polarization tensor field using the spherical coordinate

basis vectors, expressed in terms of Stokes parameters as follows (See e.g. Smirnov

(2011)):

P(n̂) = êi(n̂)⊗ êj(n̂)
[
σIij I(n̂) + σQij Q(n̂) + σUij U(n̂) + σVij V (n̂)

]
(5.20)

Thus, given the coordinate basis vectors and the integration time, a complete descrip-

3By “manifold”, the author means that the linear space of the vector is the local tangent space of
the sphere.
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tion of the polarization of the radiation field corresponds to four real sky maps, each

corresponding to a Stokes parameter.

Going one step further, and continuing the previous discussion on the rotation of

the polarization basis vector, we can decompose the polarization tensor field, which

has four degrees of freedom, into two real scalar fields, Stokes I and V 4, and a complex

field with spin ±2, Q± iU .

5.2.1 Multipole expansion of the polarized radio sky

In this section, we look into the widespread use of multipole expansion in intensity

mapping. It proves invaluable not only for analyses related to the angular power

spectrum but also for interpolation and coordinate transformation tasks.

Spherical harmonic expansion of the scalar fields

Any squre-integrable scalar field T (n̂) on the unit sphere S2 can be expanded with the

Laplace spherical harmonics Ylm(θ, ϕ):

T (θ, ϕ) =
+∞∑
l=0

l∑
m=−l

almYlm(θ, ϕ), (5.21)

where

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ (5.22)

and

alm =

∫ 2π

0

dϕ

∫ 1

−1

d (cos θ) T (θ, ϕ)Y ∗
lm(θ, ϕ). (5.23)

Here Pm
l (cos θ) are the associated Legendre polynomials with the Condon-Shortley

phase.

When T is a real scalar field, such as the temperature field, the expansion coefficients

alm satisfy the reality condition,

a∗lm = (−1)mal,−m (5.24)

which is a direct consequence of

Ylm(θ, ϕ) = (−1)mY ∗
l,−m(θ, ϕ). (5.25)

Below we summarize some other useful properties of spherical harmonics, which

will be used later in our discussion:

4We do not consider parity inversion here. Otherwise, the parity odd Stokes V sky should be
considered as a pseudo-scalar field.
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• The completeness condition:

+∞∑
l=0

+l∑
m=−l

Y ∗
lm(θ, ϕ)Ylm(θ

′, ϕ′) = δ(ϕ− ϕ′)δ(cos θ − cos θ′) (5.26)

• The orthogonality relation:∫ 2π

0

dϕ

∫ 1

−1

d (cos θ) Y ∗
l′m′(θ, ϕ)Ylm(θ, ϕ) = δl′lδm′m. (5.27)

• Transformation under rotation R(α, β, γ), where α, β, γ are Euler angles in the

z − y − z right hand convention:

Ylm(Rn̂) =
+l∑

m′=−l

[D
(l)
mm′(R)]

∗Ylm′(n̂) (5.28)

where D
(l)
mm′ is the Wigner D-matrix.

One type of rotation of particular interest to ground observers is the ϕ rotation

of the azimuth.5 The rotation matrix then becomes R(ϕ, 0, 0) and the Wigner

D-matrix degenerates to

D
(l)
mm′(ϕ, 0, 0) = e−im

′ϕδm′m (5.29)

and the spherical harmonics transform as

Ylm(Rn̂) = Ylm(n̂)e
imϕ. (5.30)

This compelling property has inspired the use of m-mode analysis in several drift-

scan surveys within this domain (Shaw et al., 2014).

Expansion of the Stokes Q and U skies

There are also sets of basis functions that can be used to expand spin-s functions.

These are the so-called spin-s spherical harmonics, sYlm(θ, ϕ). In particular, the spin-

weighted spherical harmonics of s = 0 are simply the ordinary spherical harmonics,

0Ylm(θ, ϕ) = Ylm(θ, ϕ).

Given a field η with spin weight s,6 one can construct a spin-(s+ 1) field ðη where

ð is a covariant derivative operator in the sphere:

ðη ≡ −(sin θ)s
{
∂

∂θ
+

i

sin θ

∂

∂ϕ

}
[(sin θ)−sη]. (5.31)

5Say the sky srift caused by the Earth rotation.
6That means η′ = eisϕη under a conventional rotation with angle ϕ.
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Similarly, there is an operator ð̄ that can decrease the spin weight of the function acted

on by 1 (Torres del Castillo, 2007):

ð̄η ≡ −(sin θ)−s
{
∂

∂θ
− i

sin θ

∂

∂ϕ

}
[(sin θ)sη]. (5.32)

The spin-weighted spherical harmonics sYlm(θ, ϕ) are then related to the ordinary spher-

ical harmonics as

sYlm =


√

(l−s)!
(l+s)!

ðsYlm, 0 ≤ s ≤ l;√
(l+s)!
(l−s)! (−1)s ð̄−sYlm, −l ≤ s ≤ 0;

0, l < |s|.

(5.33)

Just like ordinary spherical harmonics, the spin-s spherical harmonics also satisfy

the completeness and orthogonality relations by simply replacing Ylm in equations

(5.26) and (5.27) with sYlm. The formalism for rotation transformations is somewhat

different. Under a rotation of the spherical coordinate system n̂ → Rn̂, the spin-s

spherical harmonics become

sYlm(Rn̂) = eisψ(R,n̂)
∑
m′

[D
(l)
mm′(R)]

∗
sYlm′(n̂) (5.34)

where ψ is the local rotation angle from the old local coordinate basis vectors to the

new ones. It’s easy to see that the spin-weighted harmonics satisfy

[sYlm(θ, ϕ)]
∗ = (−1)s+m −sYl,−m(θ, ϕ). (5.35)

To expand the Stokes Q and U sky, we define the complex polarized intensity fields

of the spin weights of ±2:

I±p (n̂) = (Q± iU)(n̂),

which can be expanded as

I±p (n̂) =
∑
lm

a±2,lm ±2Ylm(n̂) (5.36)

where the expansion coefficients a±2,lm are

a±2,lm =

∫ 2π

0

dϕ

∫ 1

−1

d cos θ I±p (θ, ϕ) ±2Y
∗
lm(θ, ϕ). (5.37)

Substituting equation (5.35) into the conjugate form of equation (5.37) we get

a∗−2,lm = (−1)ma2,l,−m (5.38)
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Since the basis functions ±2Ylm themselves contain the properties of the spin ±2, the

expansion coefficients have the advantage of being rotationally invariant.

5.2.2 Scalar representations with fixed polarization basis

In the previous discussion we expressed the polarization tensor field as two real scalar

fields plus a spin-weighted complex field. However, after a coordinate transformation,

we still need to locally correct for the extra phase of the spin-weighted field caused

by the rotation of the polarization basis. This will complicate the actual analysis,

e.g. if one wants to simulate time series measurements in an antenna static frame,

which is preferred by a beam simulation program. Therefore, we will want to make a

polarization convention that is independent of coordinate transformations.

A natural idea is to obtain an equivalent set of coefficients {aE/B,lm} via a one-to-

one and onto mapping of {a±2,lm}. These coefficients satisfy the reality condition and

thus define the equivalent real scalar fields. This idea is not difficult to implement:

observing equation (5.35), one can always find such a mapping that

aE,lm = −(a2,lm + a−2,lm)/2, aB,lm = i(a2,lm − a−2,lm)/2, (5.39)

and we get two real scalar fields

E(n̂) =
∑
lm

aE,lm Ylm(n̂), B(n̂) =
∑
lm

aB,lm Ylm(n̂). (5.40)

Here we briefly summarize this section to better understand the point that the E

and B fields are coordinate invariant descriptions of the Stokes Q and U fields. In

a coordinate system, O, one can conventionally define the Stokes Q and U fields us-

ing the coordinate basis vectors and obtain the corresponding spin-weighted spherical

harmonic coefficients, a±2,lm. We can obtain a linearly transformed set of these coef-

ficients, aE/B,lm, which satisfy the reality condition, i.e., equation (5.24), and which

equivalently describe the two spherical scalar fields, the E and B fields. If we consider

a new coordinate system, O′, then the fields E and B are invariant under coordinate

transformations, simply because they are defined associated with the coordinate system

O. In other words, changing the coordinates does not change the polarization basis.

Thus, from this point of view, the fields E and B are not scalar fields in the strict sense

of the word, they are just descriptions with a frozen convention of the polarization basis

vectors.

In section 18.1, we also present a scalar representation in the flat-sky approximation.
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Antenna measurement

In the previous chapter, we introduced and discussed the extensive properties of the

polarization field of a general radio sky. In this chapter, we formally present the theory

of polarization measurements. The objective of this section is straightforward: to equip

students, especially those working with antenna far fields such as CST simulations, with

the knowledge to represent general ground-based observations using the antenna far

field.

6.1 Antenna voltage signal

The reception pattern of an antenna is usually characterized by the far field that results

when the antenna is used as a transmitter. This is a consequence of the reciprocity

principle. Both the antenna far-field pattern and the instantaneous incoming signal

can be expressed as two-dimensional vector fields on a 2-sphere. Without introducing

a coordinate system, we can generally express such a vector field as a physical entity:

V (n̂) = V 1(n̂) e⃗1(n̂) + V 2(n̂) e⃗2(n̂) ≡ V µ e⃗µ (6.1)

where n̂ denotes the direction1 on the sphere, µ = 1, 2, and ϵ̂µ(n̂) are basis vectors of

the tangent space at n̂. We adopt the Einstein summation convention so that repeated

Greek indices are summed.

The far-field pattern, denoted byE(ν), is frequency dependent and usually assumed

to be constant over observation time. However, the sky electric field, E(νi, tj), is a

time-varying vector field. We used discrete coordinates νi, tj for two reasons: First,

according to the uncertainty principle, the radiation electric field cannot be arbitrarily

compact in both time and frequency, so one should bin the coordinates up to an

uncertainty. Second, in frequency observations based on sampling the signal in the

1Note that n̂ is a physical entity known as direction, and we have not introduced any coordinates
to represent n̂ until equation (6.7).
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time domain2, the component with frequency ν is extracted from the signal over a

time period (t− τ/2, t+ τ/2), where τ ≫ ν−1. Thus, the sky electric field E(νi, tj) can
be understood as the νi component of the time segment of E(t) centered at tj.

The voltage signal of frequency νi at the receiver, induced by E and observed at

time ti, can then be expressed as the spherical integral of the inner product of E(νi)

and E(νi, tj) (Evans, 1990):

V(νi, tj) ≡
∫∫

d2n̂E(n̂, νi) · E(n̂, νi, tj). (6.2)

Strictly speaking, one should also introduce a phase term in equation (6.2) to account

for the relative phase of the receiver’s far field, since the far field is usually defined

relative to a phase constant sphere around the antenna. However, this phase correc-

tion is actually trivial for data analysis. For autocorrelation of a receiver, the phase

information is removed. For cross-correlation, there is no need for phase correction

either, since the far fields of all receivers in the telescope or array usually follow the

same phase convention.

Ideally, equation (6.2) could simply be rewritten as V =
∫∫

d2n̂ E1E1 + E2E2 if

E and E are locally expressed with the same orthonormal linear basis. In practical

analysis, however, one tends to use different coordinate systems as well as linear bases

for E and E to maximize the ease of data analysis. For obvious reasons, the preferred

coordinate system is the antenna static coordinate system (denoted by O) for the

antenna far field E and the celestial coordinate system (denoted by O′) for the sky

signal E .

Using the coordinate basis as the linear basis of the vector space3, a general vector

field on the sphere can be expressed in either O or O′:

V = V αe⃗α = V β′
e⃗β′ = Λβ

′

αV
αe⃗β′ = Λαβ′V β′

e⃗α (6.3)

Here and below, the unprimed Greek indices correspond to the antenna coordinate

system O, while the primed Greek indices correspond to the sky coordinate system O′.

Λβ
′
α is the Jacobian matrix of the coordinate mapping

f : O → O′. (6.4)

Its inverse matrix, Λαβ′ , is the Jacobian of f−1. More often than not, we want to use

normalized coordinate bases {êα} and {êβ′}, in terms of which a general vector V reads

2In standard Nyquist sampling, τ gives the inverse of the frequency resolution and the sampling
frequency νsample satisfies νsample > 2νmax. Before the sampling, a low-pass filter (LPF) is usually
needed to avoid aliasing.

3While there are other widely used conventions introduced by Ludwig 1973, we have used the
coordinate basis vectors as references for polarization and cross polarization.
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as follows

V = V αêα =
|e⃗α|
|e⃗β′|

Λαβ′V β′
êα ≡ Λ̃αβ′V β′

êα

= V β′
êβ′ =

|e⃗β′ |
|e⃗α|

Λβ
′

αV
αêβ′ ≡ Λ̃β

′

αV
αêβ′

(6.5)

where we have defined the orthogonalized Jacobian matrix, Λ̃.

Expressing E and E in their preferred coordinate systems, we can rewrite equation

(6.2) as

V =

∫∫
d2n̂ EαEβ′

êα · êβ′ =

∫∫
d2n̂ Λ̃γβ′E

αEβ′
δαγ =

∫∫
d2n̂ Λ̃αβ′EαEβ

′
(6.6)

where in the second equality we have applied the orthonormality of the coordinate

basis. Otherwise, we have to use a non-trivial metric instead of δαγ.

Equation (6.6) only reads the field components. We also want to explicitly write

the fields in their respective preferred coordinates. Similarly, we denote the spherical

coordinates of a physical point n̂ on the sphere in O and O′ as unprimed nα and primed

nβ
′
, respectively. Then equation (6.6) can be rewritten as

V(νi, tj) =
∫∫

d2n̂ Λ̃αβ′(n̂)Eα(n̂, νi)Eβ
′
(n̂, νi, tj)

=

∫∫
d2n̂

|e⃗α|
|e⃗β′|

∂nα

∂nβ′Eα(n
α)Eβ′

(nβ
′
, νi, tj),

(6.7)

where nβ
′
= f(nα). A useful equivalent to the above equations is to express the

integrand as a linear algebra multiplication:

V =

∫∫
d2n̂ET Λ̃E , (6.8)

where E and E are two-dimensional column vectors, and Λ̃ is a 2-by-2 orthogonal

matrix. This expression has the merit of keeping us away from the Greek indices.

In the second identity of the equation (6.7), the integral is written in antenna

coordinates, while the sky field is expressed in celestial coordinates, which is a friendly

arrangement for data analysts. In the next section we will provide details on the

coordinate mapping f and the field transformation Λ̃αβ′ .

6.2 Mapping the sky on the ground: coordinate

conversions

As elaborated in Section 6.1, the instantaneous antenna reception can be expressed

as an integral over the celestial sphere. This reception process involves three coordi-
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Figure 6.1: Diagram of the Equatorial and Horizontal coordinate systems.

nate systems, one fixed to the telescope, another fixed to the local site where antenna

is deployed, and yet another fixed to the celestial sphere. In this section, we show

the transformation matrices between the various coordinate systems and how the an-

tenna signal is most conveniently represented in terms of equatorial coordinates. This

is standard material, but here we indicate explicitly our conventions for describing

polarization.

6.2.1 Convention

The antenna far-field pattern is usually expressed in the coordinate system where the

antenna is static, which is terminated as the antenna coordinate system. However, the

pointing direction of the telescope, or the beam direction, is static (and thus easily

expressed) relative to the horizontal coordinate system. Furthermore, the sky catalogs
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Figure 6.2: Conversions of coordinate basis vectors between antenna, horizontal and
equatorial coordinate systems. The equatorial spherical coordinates, {θe, ϕe}, are ba-
sically the same thing as the {RA,DEC} coordinates but with θe = π

2
− DEC and

ϕ = RA, where all the angle objects are in radians. The ISO convention implies
that the polar axis (θ = 0) aligns with the ẑ direction, x̂ orients to the direction of
θ = π/2 and ϕ = 0, and the y-axis can be given by the right hand convention. The
antenna Cartesian coordinates, (xa, ya, za), and the equatorial Cartesian coordinates,
(xe, ye, ze), are naturally defined with the spherical coordinates under ISO convention.
However, the horizontal (or local) Cartesian coordinates, (xh, yh, zh), are defined using
the Cardinal directions and the zenith of the antenna: it shares the same origin as
the antenna Cartesian system; ẑh ≡ Ẑ is the direction from the antenna to its zenith;
x̂h ≡ Ŝ is the direction of the true South of the antenna; ŷh ≡ Ê is the direction of the
true East of the antenna. The rotation matrix R is defined in equation (6.11).

are constant in celestial coordinate systems fixed to stars, so one might want to use

for example the equatorial coordinate system to map the sky. When it comes to a

cosmological analysis, one might also prefer to formulate the observations using ce-

lestial coordinates. For each coordinate system, we define both the spherical and the

Cartesian coordinates. By introducing Cartesian coordinates, one can the conveniently

characterize the relationship between coordinate systems in terms of linear transforma-

tions. The conversions between these coordinate systems are illustrated in Figure 6.2.

Our goal is to formulate the observation with each component given in its favoured

coordinates. To be exact, the problem can be defined within a rather practical obser-

vation scenario:

• The time and location of a measurement is given by the local sidereal time (LST,

in seconds) and the latitude (lat, in radians) of the antenna.

• The antenna far-field pattern is simulated or measured in antenna spherical co-

ordinates, θa and ϕa.

• The antenna alignment or orientation is specified by expressing the antenna axes,
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Figure 6.3: Diagram illustrating the spherical coordinate basis vectors, serving as polar-
ization reference vectors, within both the antenna and equatorial coordinate systems.

{x̂a, ŷa, ẑa}, in terms of horizontal coordinate basis, {x̂h, ŷh, ẑh}. One can define

the pointing matrix, P , such thatx̂aŷa
ẑa

 = P

Ŝ

Ê

Ẑ

 (6.9)

where Ŝ = x̂h, Ê = ŷh and Ẑ = ŷh align with the South, the East, and the Zenith

of the antenna respectively, as defined in the caption of Figure 6.2.

• The task is to formulate the antenna reception in equatorial spherical coordinates,

(θe, ϕe).

6.2.2 Coordinate mapping and field transformation

In this section, we shall formulate the transformations between the antenna, horizontal

and equatorial systems. The antenna and horizontal systems are both centred at the

antenna receiver, while the origin of the equatorial system is separated from the antenna

by a distance around the radius of the Earth. Since what we observe are astrophysical

sources, this difference in origin is considered negligible so that we shall assume the

three systems have the same origin. Therefore, we can simply formulate the coordinate
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Figure 6.4: Illustrating diagram for coordinate mapping and field transformation be-
tween antenna, horizontal and equatorial coordinate systems.

transformations in terms of rotation matrices.

The connection between the antenna and horizontal systems has been given by the

pointing matrix, P , as illustrated in equation (6.9). Similarly, one can get the trans-

formation between horizontal and equatorial Cartesian coordinates by realizing that

the basis of the horizontal spherical coordinate system just constitutes the spherical

coordinate basis of the zenith in the equatorial system,Ŝ

Ê

Ẑ

 =

θ̂eϕ̂e
r̂e


zenith

= R

x̂eŷe
ẑe

 (6.10)

where

R(lat,LST) =

cos θz cosϕz cos θz sinϕz − sin θz

− sinϕz cosϕz 0

sin θz cosϕz sin θz sinϕz cos θz

 (6.11)

and θz and ϕz are the equatorial spherical coordinates of the zenith (local to the

antenna), so they are functions of the LST (in seconds) and the latitude (in radians)

of the antenna:

θz =
π

2
− lat, ϕz =

LST

3600
× 15× π

180
. (6.12)

With the coordinate basis transformations between the antenna, horizontal, and

equatorial systems, we can easily map coordinates and transform field components

between antenna and equatorial spherical coordinates, which is illustrated in Figure 6.4.

The coordinate mapping at given lat and LST, f , is given by a composition:
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f : (θa, ϕa; lat,LST) → (θe, ϕe), f ≡ g−1 ◦R−1 ◦ P−1 ◦ g , (6.13)

f−1 : (θe, ϕe; lat,LST) → (θa, ϕa), f−1 ≡ g−1 ◦ P ◦R ◦ g , (6.14)

where g : (θ, ϕ)
r=1−−→ (x, y, z)T maps spherical coordinates to Cartesian coordinates and

g−1 denotes the inverse mapping. In matrix form, we have R−1 = RT and P−1 = P T .

The transformation of field components is then specified by the orthogonalized

Jocobian of the coordinate mapping,EreEθe

Eϕe

 = J (θe, ϕe)R
TP TJ T (θa, ϕa)

EraEθa

Eϕa

 (6.15)

where (θa, ϕa) = f−1(θe, ϕe) and J is defined as

J (θ, ϕ) =

sin θ cosϕ sin θ sinϕ cos θ

cos θ cosϕ cos θ sinϕ − sin θ

− sinϕ cosϕ 0

 . (6.16)

Since the radial field components are actually zero as we are considering tangent vector

fields on the sphere, we don’t really need the radial part of rotation matrix. Therefore,

we can discard the first row of J , and denote the residual 2× 3 matrix as J :

J(θ, ϕ) =

(
cos θ cosϕ cos θ sinϕ − sin θ

− sinϕ cosϕ 0

)
. (6.17)

Then the field transformation operators can be expressed as

for f : O → O′, Λ̃α
′

α = J(θe, ϕe)R
TP TJT (θa, ϕa) , (6.18)

for f−1 : O′ → O, Λ̃αα′ = J(θa, ϕa)PRJ
T (θe, ϕe) , (6.19)

where (θe, ϕe) = f(θa, ϕa).

6.2.3 A closer look

In the previous section, we obtained a specific form of coordinate mapping and vector

field transformation between the sky coordinate system and the ground-based antenna

coordinate system. Theoretically, one could compute coordinate mappings for each

position of the sphere to relate the far-field degrees of freedom of the antenna to

the vector-field degrees of freedom of the sky. However, this is tedious and seems

unnecessary considering the fact that as long as we specify the spatial orientation of

the telescope, all degrees of freedom are implicitly mapped onto the celestial sphere.

This means that we can formalize the vector field transformations in a form that
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depends only on the antenna orientation, which is jointly determined by the pointing

matrix (P ) and the zenith sky coordinates ((θz,ϕz) or equivalently (lat, LST)), as well

as the antenna coordinates (θa, ϕa). In this section we develop such a formalism by

making the transformation operator Λ̃ independent of the sky coordinates (θe, ϕe).

Recall the coordinate transformation from the antenna system to the sky system,

f : O → O′, where the mapping is represented as a function composition and the

transformation operator is

f ≡ g−1 ◦R−1 ◦ P−1 ◦ g Λ̃ = J(θe, ϕe)R
TP TJT (θa, ϕa) . (6.20)

As we will see, we can decompose these orthogonal matrices using two basic rotation

matrices, which makes it easy to distinguish the roles of the different variables. We

define

R2(∆) ≡

cos∆ 0 − sin∆

0 1 0

sin∆ 0 cos∆

 , R3(∆) ≡

cos∆ − sin∆ 0

sin∆ cos∆ 0

0 0 1

 , (6.21)

then the transformations, equations (6.11) and (6.17), can be rewritten as

R = R2(θz)R3(−ϕz), J =

(
1 0 0

0 1 0

)
R2(θ)R3(−ϕ). (6.22)

We can also decompose the spherical-to-cartesian coordinate mapping, g, as

g(θ, ϕ) =

sin θ cosϕ

sin θ sinϕ

cos θ

 = R3(ϕ)R2(−θ)

0

0

1

 . (6.23)

The function composition relates the antenna coordinate (θa, ϕa) and the sky coor-

dinate (θe, ϕe) by g(θe, ϕe) = RTP Tg(θa, ϕa), which can be expanded as

R3(ϕe)R2(−θe)

0

0

1

 = A

0

0

1

 (6.24)

where we have defined

A(ϕa, θa, ϕz, θz) ≡ RTP TR3(ϕa)R2(−θa)

= R3(ϕz)R2(−θz)P TR3(ϕa)R2(−θa).
(6.25)

J(θe, ϕe) is the only term in Λ̃ that depends on the sky coordinates. Using equations

(6.23) and (6.24), we can deduce that J(θe, ϕe) can be fully expressed in terms of A,
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as shown below:

J(θe, ϕe) =
1√

1− λ2


(
0 0 λ

0 0 0

)
AT +

(
0 0 0

0 0 1

)
AT

 0 1 0

−1 0 0

0 0 0

−

(
0 0 1

0 0 0

)
(6.26)

where λ = A33. Substituting equation (6.26) into Λ̃, we have

Λ̃ = λ′


(
0 0 0

0 0 1

)
AT

 0 1 0

−1 0 0

0 0 0

A−

(
0 0 1

0 0 0

)
A


1 0

0 1

0 0

 (6.27)

where λ′ = 1/
√

1− A2
33.

A useful observation is that Λ̃ is independent of ϕz or LST. The ϕz-dependence in

A is encapsulated in R3(ϕz), which is canceled in the first term of equation (6.27) as

RT
3 (ϕz)

 0 1 0

−1 0 0

0 0 0

R3(ϕz) =

 0 1 0

−1 0 0

0 0 0

 . (6.28)

While in the second term, we have(
0 0 1

0 0 0

)
R3(ϕz) =

(
0 0 1

0 0 0

)
(6.29)

so that R3(ϕz) is also canceled. Therefore, defining

Ã ≡ R3(−ϕz)A = R2(−θz)P TR3(ϕa)R2(−θa) , (6.30)

equation (6.27) can be rewritten as

Λ̃(θa, ϕa; lat, P ) = λ′′


(
0 0 0

0 0 1

)
ÃT

 0 1 0

−1 0 0

0 0 0

−

(
0 0 1

0 0 0

) Ã

1 0

0 1

0 0


(6.31)

where λ′′ = 1/
√

1− (Ã33)2.

In summary, in this section we have worked out a transformation formalism without

sky coordinates. One can do similar work to make the transformations in sky coor-

dinates only, without antenna coordinates. We found that this field transformation is

independent of the LST. This makes sense because the spherical coordinate system is

symmetric with respect to the azimuthal angle. In contrast, it is dependent on the

colatitude angle, or declination.
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Figure 6.5: Illustration of the geometric orientation of an antenna. Left panel: The
3D orientation can be determined by the direction of a given axis and the tangential
orientation on the plane perpendicular to the axis. A natural axis to be specified is the
direction of antenna beam center, which is usually also the direction of the antenna
Z-axis. x̂a and ŷa are the other two axes of the antenna, and θ̂e and ϕ̂e are spherical
coordinate basis vectors of the celestial system at the pointing center. {x̂a, ŷa, ẑa} and
{θ̂e, ϕ̂e, ẑa} can each form an orthonormal basis of the 3D Euclidean space. Obviously,
x̂a and ŷa can be transformed from θ̂e and ϕ̂e by a rotation matrix, as implied in the
right panel where the viewer’s line of sight overlaps the antenna Z-axis but is looking
from the sky towards the antenna. Two gray square planes both are perpendicular to
the pointing direction, and the grids on them illustrate coordinate lines for the two
coordinate systems respectively. The equatorial spherical coordinate lines (orange) are
drawn in the flat-sky limit and thus look Euclidean.

6.2.4 Spatial orientation of the antenna

Section 6.2.2 provides a formalism that deals with all degrees of freedom of vector

fields. This is often the application scenario required for simulation and data analysis.

Sometimes, if we only want to understand the spatial relationship between the sky and

the antenna during the measurement, we may only be interested in the 3D geometric

orientation of the antennas relative to the celestial sphere. (For example, if you want

to rotate the antenna during the observations.) In this case, we only need to specify

the direction of the beam center (or pointing center) as well as the 2D orientation in

the plane perpendicular to the pointing direction. They can be considered as the axial

and tangential components of the geometric orientation of the antenna, respectively.

In the usual convention, the direction of the beam center is actually the same

physical entity as the antenna Z-axis ẑa, while the tangential orientation of the antenna

can be characterized by the connection between the other two antenna axes and the

spherical coordinate basis vectors of the celestial system at the pointing center (see

Figure 6.5).
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Mathematically, the spatial orientation of the antenna can be specified by decom-

posing {x̂a, ŷa, ẑa} with {θ̂e, ϕ̂e, r̂e}x̂aŷa
ẑa

 = P

Ŝ

Ê

Ẑ

 = PR

x̂eŷe
ẑe

 = PRJ T (θce, ϕ
c
e)

 r̂eθ̂e
ϕ̂e

 (6.32)

where (θce, ϕ
c
e) is the equatorial spherical coordinates of the pointing center, which

satisfies

θce = arccos (r3), ϕce = sgn(r2) arccos
r1√
r21 + r22

(6.33)

and rj = P3iRij. Finally, it’s straightforward to find that the transformation in equation

(6.32) has the following form

PRJ T (θce, ϕ
c
e) ≡

0 R11 R12

0 R21 R22

1 0 0

 (6.34)

where the upper right block transforming θ̂e and ϕ̂e to x̂a and ŷa has the form of some

2×2 rotation matrix R(ξ), and we shall use ξ to characterize the tangential orientation

of the antenna.

In summary, the 3D geometric orientation of an antenna can be described by its

axial direction n̂c ≡ (θce, ϕ
c
e) and the tangential orientation ξ, which can be derived

from equation (6.34).

6.3 Power measurement

The time sequence of antenna voltage induced by the incident field is in the form

of rapidly fluctuating incoherent noise. Typically, radio astronomers use narrowband

bandpass filters to isolate a specific frequency range of interest from the broad range of

radio frequencies received. Although after the bandpass filter the voltage is correlated

in time from point to point 4, it is still a zero mean random variable in nature.

The simplest way to obtain continuous non-zero data is to correlate a pair of noise

voltages and average them over a period of time. In other words, instead of measuring

the voltage signal itself, we measure its power averaged over a time interval. As we

will see below, such a power measurement, or let us say correlation or visibility, can be

related to the power of the electric field of the sky, which is represented as a polarization

tensor field (see section 5.2). This is due to the stochastic nature of the radio sky: The

incoming sky electric field is generally incoherent in frequency and direction, and the

4This manifests as a low frequency modulation of the voltage envelope, estimated as the inverse of
the frequency channel width, 1/∆ν.
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two-point correlation of the field can be written as

⟨E∗
i (n̂, ν, t)Ej(n̂′, ν ′, t)⟩T = δ(ν − ν ′)δ2(n̂− n̂′)Pij(n̂, ν, t0), (6.35)

where the subscript T indicates that the average is taken over the time period (t0 −
T /2, t0 + T /2), and we have taken the continuous limit that the time and frequency

coordinates are approximately continuous variables. Since the sky power Pij is usually
assumed to be constant over the observation time, the time coordinate t0 is usually

omitted.

6.3.1 Autocorrelation

The simplest way to measure power is to average the square of the voltage over a long

period T , the integration time. This type of measurement is called autocorrelation.

Since T is so short (say 2 seconds) that the Earth’s rotation angle is negligible,

the mapping between antenna coordinates and sky coordinates, f , is typically approx-

imated as not changing with time. Correspondingly, Λ̃, the orthogonalized Jacobian of

f is also constant over time. Thus, in linear algebra notations (see equation (6.8)), an

autocorrelation data can be written as

d(νi) ≡ ⟨VV∗⟩T

=

∫∫
d2n̂

∫∫
d2n̂′ ET (n̂, νi)Λ̃(n̂)

〈
E(n̂, νi, t)E†(n̂′, νi, t)

〉
T Λ̃

T (n̂′)E∗(n̂′, νi)

=

∫∫
d2n̂ ET (n̂, νi)Λ̃(n̂)P(n̂, νi)Λ̃

T (n̂)E∗(n̂, νi)

(6.36)

where P is the sky polarization field, and we have assumed it to be constant over the

observation time. Otherwise, both P and d will pick up the time coordinate.

Equation (5.3) allows us to decompose P into by Pauli matrices and Stokes param-

eters, so the autocorrelation data can be rewritten as

d(νi) =
∑

S=I,Q,U,V

∫∫
d2n̂ TS(n̂, νi)E

T (n̂, νi)Λ̃(n̂)σSΛ̃T (n̂)E∗(n̂, νi). (6.37)

where TS = I,Q, U, V and σS are corresponding Pauli matrices. For convenience, we

define the polarized beams

BS(n̂, νi) ≡ ET (n̂, νi)Λ̃(n̂)σSΛ̃T (n̂)E∗(n̂, νi), (6.38)
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Then the autocorrelation can be rewritten as

d(νi) =
∑

S=I,Q,U,V

∫∫
d2n̂ BS(n̂, νi)TS(n̂, νi). (6.39)

Now let’s take a closer look at the Stokes beams. Since Λ̃ is an orthogonal matrix,

we have Λ̃σSΛ̃T = σS for S = I, V . Therefore, the Stokes I and V beams get rid of

the transformation matrix and reduce to scalar beams

BS(n̂, νi) = ET (n̂, νi)σ
SE∗(n̂, νi), for S = I, V . (6.40)

However, the Stokes Q and U beams depend on Λ̃ and thus on the spatial orientation

of the antenna, which is specified by the pointing matrix P , the local sidereal time,

LST, and the latitude of the antenna location, alt. As discussed in section 6.2.3, Λ̃

is independent of the galactic azimuths of the pointing center but dependent on the

declination. Therefore, given ‘lat’ and P , the Q and U beams can be written in the

antenna coordinates as

BS(nα, νi;P, lat) = ET (nα, νi)Λ̃(nα, P, lat)σSΛ̃T (nα, P, lat)E∗(nα, νi), for S = Q,U

(6.41)

where Λ̃ has been given by equation (6.31). For convenience, we define the transformed

antenna far field Ẽ = Λ̃TE and rewrite the above equation as

BS(nα, νi;P, lat) = ẼT (nα, νi;P, lat)σ
S Ẽ∗(nα, νi;P, lat) , (6.42)

for S = I,Q, U, V , although Ẽ is just E for Stokes I and V .

Since the integration time is finite, the averaged output power from the integrator

is only an estimate of the true value, with an associated uncertainty that contributes

as noise. In the Rayleigh-Jeans regime, both the average power and the fluctuations

in the integrator output are expressed in temperature, The RMS fluctuation or “noise

scale” is given by the radiometer equation:

∆Trms =
Tsys√
∆νT

(6.43)

where Tsys is the system noise temperature and ∆ν is the frequency channel width.

6.3.2 Cross-correlation and radio interferometry

Most telescopes have multiple receivers. Therefore, power measurement via correlation

between voltage signals of two different receivers is possible. Such measurement is

termed as the cross-correlation and the data acquired consists of the cross-correlations

are known as visibilities.
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Summary Antenna measurement

For single-dish experiments, one can get a correlation measurement with pairs of

receivers centered at the same position. While for interferometric observations, cross-

correlation is more generally between two separate receivers and there is a constant

phase difference between the signals from the same direction and frequency. As we do

not consider the phased array, where time delay is introduced in integrator, the phase

difference is determined by the projection of the baseline vector b onto the direction of

the sky source n̂. Therefore, the visibility measured by cross-correlation of the receiver

p on dish I and the receiver q on dish J reads

dIp,Jq(νi) =
∑
S

∫∫
d2n̂ BS

IJ,pq(n̂, νi)TS(n̂, νi) exp
[
−i(2πνi/c)n̂ · b⃗IJ

]
. (6.44)

where S = I,Q, U, V and the Stokes beams in the antenna coordinates nα are given by

BS
IJ,pq(n

α, νi;P, lat) = ẼT
iA(n

α, νi;P, lat)σ
S Ẽ∗

jB(n
α, νi;P, lat) (6.45)

The RMS fluctuations in the amplitude of the integrator output become

∆Trms,IJ =

√
Tsys,ITsys,J
∆νT

. (6.46)

6.4 Summary

This section describes the antenna measurements in detail. In some cases, the equations

involve many parameters or indices, but space and readability did not allow a complete

presentation of all dependencies. To prevent the reader from being overwhelmed by

too many technical details and missing the forest for the trees, a short summary is

given here.

We begin by reviewing a few physical entities:

• The arena is a celestial sphere. Think of it as a 2-sphere manifold. Each point

on the surface of the sphere represents a physical direction, notated as n̂.

• Fields on the celestial sphere:

1. Sky electrical signal field, E(n̂, νi, tj).

– This is a 2-dimensional time-varying vector field.

– Its power defines the sky polarization field, P(n̂, νi) ≡ ⟨E ⊗E∗⟩. This
is an order 2 tensor field and is assumed to be constant over the obser-

vation.

2. Antenna far field, E(n̂, νi).

– As a physical entity, it is per se time-invariant.
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– However, as a vector field placed on the celestial sphere, it depends on

the relative spatial relationship between the antenna and the celestial

sphere. In this chapter we have used two ways of describing this spatial

relation:

(a) {P, lat,LST}.

P is the pointing matrix of the antenna, which describes the local

deployment of the antenna.

‘lat’ is the latitude of the antenna, and ‘LST’ is the local sidereal

time of the observation.

(b) {n̂c, ξ}.

n̂c is the point on the celestial sphere associated with the antenna’s

pointing center, which is the axial orientation of the antenna.

ξ is the tangent orientation. See section 6.2.4 for more details.

– Thus, if one considers observations pointed at multiple positions, it

might be better to explicitly specify the antenna far field with its spatial

orientations. We can write it as E(n̂, νi;P, lat,LST) or E(n̂, νi; n̂c, ξ).

But it would be even better to write it like this

E = E(n̂− n̂c, νi, ξ) (6.47)

so that one can easily read the intrinsic invariance of the field. ξ is

usually constant throughout the observations, so in most cases one can

drop this coordinate and simply write the field as E(n̂− n̂c, νi).

Considering the practical needs of radio data analysis, we discussed in detail the

representation of these physical entities in the antenna and celestial coordinate systems,

as well as the relationships between them. They are summarized as follows:

• Two systems: the antenna coordinate system (O) and the celestial coordinate

system (O′). We have

n̂
O−→ nα n̂

O′
−→ nα

′
f(nα) = nα

′

E
O−→ Eα E

O′
−→ Eα′

Eα′
= Λα

′

αEα

E
O−→ Eα E O′

−→ Eα′ Eα′
= Λα

′

αEα

where Λα
′
is the Jocobian or orthogonalized Jacobian depending on the conven-

tion of the linear basis. (See section 6.1.) While in this work, we use normalized

coordinate basis vectors so we should use the orthogonalized Jacobian, which is

denoted as Λ̃α
′
α. The specific forms of f and Λ̃ are discussed in section 6.2.

69



Summary Antenna measurement

• The voltage signal received by the antenna, in the form of matrix multiplication

(equation (6.8)):

V =

∫∫
d2n̂ET Λ̃E

=

∫∫
d2n̂ET (n̂− n̂c, νi, ξ)Λ̃(n̂, n̂c, ξ)E(n̂, νi, ti)

O−→ =

∫∫
d2n̂ET (nα, νi)Λ̃(nα;P, lat)E(f(nα), νi, ti)

=

∫∫
d2n̂ ẼT (nα, νi;P, lat)E(f(nα), νi, ti)

=

∫∫
d2n̂ ẼT (n̂− n̂c, νi;P, lat)E(n̂, νi, ti)

(6.48)

where Λ̃ is given by equation (6.31) and Ẽ = EΛ̃
T
.

• The power measurement of the antenna pair

dIp,Jq(νi) =
∑
S

∫∫
d2n̂ BS

IJ,pq(n̂−n̂c, νi;P, lat)TS(n̂, νi) exp
[
−i (2πνi/c) n̂ · b⃗IJ

]
,

(6.49)

where the Stokes beams BS
IJ,pq(n̂, νi)

O−→ BS
IJ,pq(n

α, νi;P, lat) is given by equation

(6.45). Actually, the Stokes I and V beams are scalars that are independent of

P and ‘lat’. For a narrow sky-strip survey, the change in the P may be small

so that we can ignore the change in the Stokes Q and U beams. Also, people

usually do not change the antenna latitude during the observation. Under these

assumptions, we can drop the variables P and ‘lat’ in BS
IJ,pq. For beams that are

independent of P and ‘lat’, we can express them as

BS
IJ,pq = BS

IJ,pq(n
α, νi) = BS

IJ,pq(n̂− n̂c, νi). (6.50)

In this case, the measurement equation reduces to

dIp,Jq(νi) =
∑
S

∫∫
d2n̂ BS

IJ,pq(n̂− n̂c, νi)TS(n̂, νi) exp
[
−i (2πνi/c) n̂ · b⃗IJ

]
,

(6.51)

which is the usual formula we are familiar with.
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Part III

Foregrounds
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Chapter 7

Overview

Detecting the redshifted 21 cm signal is challenging. One of the biggest challenges is

the extremely prominent foreground emission that obscures the cosmological signal.

The foreground emission is typically two to five orders of magnitude brighter than the

21cm signal, depending on whether global or specific fluctuating modes are of interest.

Although the foreground emission completely dominates the radio sky, we empirically

expect it to have different spectral properties than the cosmological signal: For 21cm

observations, we are only interested in the sky temperature, or Stokes I. While the

spectral behavior of the Stokes I foreground is often thought to be smooth enough that

most of its energy is concentrated in the low wavenumber modes in the Fourier space of

frequency, the 21cm signal, which has a complex spectral structure, has the potential

to dwarf the foreground in the higher wavenumber modes, making it deliverable to

observers.

But this is not the whole story. On the one hand, foreground challenges could

couple to instrumental systematics, which can lead to leakage of polarized emission

into Stokes I measurements. Polarized foregrounds generally have a complex spectral

structure due to Faraday rotation during propagation. This creates serious difficulties

for foreground mitigation strategies based on spectral smoothness. On the other hand,

21 cm experiments are generally high dynamic range, i.e. we are interested in con-

trasts much smaller than the mean intensity. However, the known smoothness of the

foreground spectrum, either as an extrapolation from the success of similar strategies

in CMB experiments or as a result of theoretical toy modeling, does not provide direct

evidence that the hypothesis would hold up to the dynamic range of 21 cm experi-

ments. Therefore, a detailed study of the foreground emission is essential for 21 cm

observations.

The diffuse low-frequency radio sky (see Figure 7.2) is dominated almost exclu-

sively by relativistic synchrotron radiation, the radiation from accelerated electrons

in the galactic magnetic field, and free-free emission, the radiation produced by the

accelerated electrons in the Coulomb potential of ions. Our discussion of the diffuse
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Overview

Figure 7.1: Decomposition of the total intensity of the radio sky. This figure is taken
from Peter Timbie’s slides.

Figure 7.2: The total intensity of each of the major galactic diffuse foreground com-
ponents. Synchrotron emission dominates at frequencies below ∼ 10 GHz. However,
free-free emission also plays an important role in the 21cm experiments. This figure is
taken from Chapman and Jelić (2019).
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Foreground instensity Overview

Figure 7.3: All sky maps of Galactic radio emission at 150 MHz (Landecker and
Wielebinski, 1970) and 408 MHz (Haslam et al., 1982).

foreground is mainly concerned with the physical and observational properties of these

two radiation processes.

In this overview chapter we briefly review the intensity (section 7.1) and polarization

(section 7.2) of diffuse foregrounds at radio frequencies. In the remainder of this part

III of the thesis we present physical analysis of the polarizatiobn of galactic synchron

and free-free processes and the propagation of the radiation. The power spectrum

description of the foreground intensity and polarization is dedicated in section 19.3 of

part V, so we will not tedious on that this part.

7.1 Foreground instensity

As shown in the figure, 7.3 is the all-sky map at two radio frequencies. In the frequency

range of interest for HI intensity mapping experiments, from 350 MHz to 1.4 GHz, the

radio sky (the map as the sum of all emissions at the relevant frequency) is dominated

by galactic synchrotron emission and galactic free-free emission. In this section we

briefly review the smooth spectral behavior of the two emissions.

Intensity of galactic free-free emission

Galactic free-free emission, also known as thermal bremsstrahlung, arises when free

electrons are scattered by ions without being captured. This process is devoid of

quantum transitions between discrete energy levels, resulting in a continuous spectrum.

At radio frequencies, free-free emission primarily operates in the optically thin regime

(see e.g. (Condon and Ransom, 2016)). In this context, the majority of emitted photons

escape without re-absorption. For this regime, the intensity of the radiation is given

by:

Iν ∝ ν−2.1

This is typical for HII regions. Due to this power-law dependence on frequency, we

can observe a nearly consistent spectral index over radio wavelengths (Mezger and
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Henderson, 1967; Churchwell et al., 2006). This consistency imparts the “smooth”

spectral characteristic of free-free emission in the radio bands, distinguishing it from

other spectral features associated with specific atomic or molecular transitions.

Intensity of galactic synchrotron emission

Relativistic electrons orbiting in magnetic fields are responsible for the radio emission

of galactic synchrotron radiation. Although we will give a first-principles discussion of

its power-law spectrum later in this part, here we qualitatively review several factors

that cause its smooth spectral nature.

First, the cosmic ray electrons exhibit a continuous power-law energy distribution,

which implies a non-preferential state for specific energy transitions as seen in atomic

or molecular lines. Instead, electrons contribute to the emission over a wide energy

range. This generally results in continuous synchrotron emission.

On the other hand, unlike the discrete spectral lines resulting from specific atomic

or molecular transitions, synchrotron emission results from a broader mechanism, re-

sulting in a broad and smooth spectrum. For a highly relativistic electron, the main

lobe of the synchrotron radiation beam is very narrow. One rotation period of the

electron leaves the observer with a smooth pulse, which in the time domain is much

narrower than the rotation period of the electron. Therefore, the emission in the fre-

quency domain has a broad, smooth structure with a cutoff frequency determined by

the rotation period of the electron.

The emitted synchrotron radiation typically follows a power-law spectrum as a

function of frequency, given by Iν ∝ να, where α is the spectral index (often negative).

In general, for many galactic regions the spectral index revolves around α ≈ −0.7, but

can show variability (Chapman and Jelić, 2019). The inherent power-law character

results in a smooth spectral decline with increasing frequency.

7.2 Foreground polarization

The polarizations of both physical processes can be precisely computed, allowing for

a theoretical discussion of their polarization. On a qualitative level, given that ions

in a plasma can manifest in any direction relative to the incident electron beam, it’s

reasonable to consider unpolarized free-free emission as a suitable approximation when

averaged over an ensemble.

Galactic synchrotron emission exhibits partial linear polarization. When we assume

an isotropic power-law distribution of cosmic ray electrons, the linear polarization

degree is described by equation (10.19). Typically, the Stokes V is approximated as

0, as detailed in section 10.3. In the vast regions of the Galactic magnetic field that

encompass HII regions, the Faraday rotation effect impacts linearly polarized waves,
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Foreground polarization Overview

Figure 7.4: All sky polarizations (E-vectors) observed at 1400 MHz overlaid on a total
intensity color map. This is taken from Wielebinski (2012).

leading to intricate spectral patterns in the linearly polarized foreground, as discussed

in section 9.3.
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Chapter 8

Radiation from moving charges

We are concisely review the necessary theoretical tools to analyze radiation emitted

by moving charges. The velocities and positions of all charges can be described by

f(x,p, t), the phase space distribution of the charges in the observer’s frame of ref-

erence. From f(x,p, t), we can derive the 4-current density, jα, and calculate the

electromagnetic 4-potential Aα (Section 8.1). It is straightforward to obtain the elec-

tromagnetic fields using the differentiations of the potentials (Section 8.2).

8.1 Liénard-Wiechert potentials

For particles of identical charge q, a useful expression for the 4-current density is in

terms of the distribution function in 6-dimensional phase space f(x,p, t), which is

described by the particles’ trajectories in the phase space, xP (t) and pP (t) :

f(x,p, t) =
∑
P

δ3(x− xP (t))δ
3(p− pP (t)) (8.1)

Then the 4-current density is

jα = q

∫
d3p ẋα(p, t)f(x,p, t) (8.2)

Calculating out the integral over the momentum space we have

jα = q
∑
P

ẋαP (t) δ
3(x− xP (t)) (8.3)
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The electromagnetic 4-potential then can be expressed as the 4-current convolved with

the Green’s function:

Aα =
4π

c
jα ∗G

=
4πq

c

∑
P

∫
d3x′

∫
dt′ ẋαP (t

′) δ3(x′ − xP (t
′))G(x− x′, t− t′)

=
4πq

c

∑
P

∫
dt′ ẋαP (t

′)G(x− xP (t
′), t− t′)

(8.4)

where G is the Green’s function of the d’Alembertian operator

G(x− x′, t− t′) =
δ(t− t′ − |x− x′|/c)

4π|x− x′|
, (8.5)

The delta function in the G is the Dirac delta function composed with a “retarded”

function and the integral in this formula basically means that the particle P ’s con-

tribution to the field at the point of observation at time t is determined by its state

of motion at the earlier time t′, for which the time of propagation from xP (t
′) to the

field point x just coincides with the difference t− t′. To distinguish, we shall call t the

observation time, and t′ the emission time, while t− t′ is named the retarded time. Let

RP (t
′) = x− xP (t

′) be the radius vector from the particle to the field point and

RP (t
′) ≡ |x− xP (t

′)| and nP (t
′) ≡ x− xP (t

′)

|x− xP (t′)|
, (8.6)

then the signal emitted by particle P at xP (t
′) at time t′ can be observed at x at time

t = FP (t
′) ≡ t′ +RP (t

′)/c. (8.7)

To calculate the integral in equation (8.4), we shall regard the Green’s function,

equation (8.5), as a composition with a function of t′. Breaking down the composition,

the Dirac delta function in the Green’s function becomes

δ(t− FP (t
′)) =

δ(F−1
P (t)− t′)

F ′
P (t

′)
, (8.8)

where F−1
P is the inverse function of FP and F ′

P (t
′) is the derivative of FP (t

′)

F ′
P (t

′) = 1− nP (t
′) · βP (t

′) (8.9)

where βP = ẋP /c.
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Substituting equation (8.8) into equation (8.4), we have

Aα(t,x) = q
∑
P

ẋαP (t
′
P )/c

RP (t′P )(1− nP (t′P ) · βP (t′P ))
(8.10)

where t′P ≡ F−1
P (t). Transforming to three-dimensional notation, we obtain the follow-

ing expressions:

ϕ = q
∑
P

1

RP (1− nP · βP )
, A = q

∑
P

βP

RP (1− nP · βP )
, (8.11)

where all the quantities on the right sides are evaluated at the emission time t′. These

potentials are known as the Liénard-Wiechert potentials.

8.2 EM fields of moving charges

Next we shall find the electromagnetic field. There are several ways to do this. One

is to find the fields in the instantaneous rest frame of the particle and to Lorentz-

transform to the observer’s frame. Another is to take derivatives of the integrals for the

potentials, equation (8.4), a procedure followed in Jackson’s Classical Electrodynamics.

Yet another is simply taking derivatives of the Liénard-Wiechert potentials, equation

(8.10) and (8.11), which is about to be employed here.

To calculate the field strengths of the electric and magnetic fields from Liénard-

Wiechert potentials, we must differentiate the electromagnetic 4-potential with respect

to the field coordinates x and the observation time t. However, the potentials are

expressed as functions of t′, while t′ itself can be regarded as a function t′(t,x). There-

fore, to calculate the desired derivatives, we should first calculate the derivatives with

respect to t′.

For a specific particle P , using the relation RP = c(t − t′P ) we can calculate the

differentiations
∂t′P
∂t

=
1

1− nP · βP

(8.12)

and
∂t′P
∂xi

= −1

c

∂RP

∂xi
= −1

c

[
−(nP · ẋP )

∂t′P
∂xi

+ nP

]
(8.13)

which implies
∂t′P
∂xi

= − nP

c(1− nP · βP )
. (8.14)

Now the fields E and B can be calculated with the aid of these differentiations

E(x, t) =
∑
P

EP =
∑
P

{
q

(
n− β

γ2κ3R2

)
+
q

c

[
n× [(n− β)× β̇]

κ3R

]}
P

(8.15)
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where κ = 1−n · β. For the sake of brevity, the lower index P that marks the particles

is omitted. However, we should keep in mind that all physical quantities on the right

side are evaluated at the t′ of the corresponding charged particle. The magnetic field

may be determined by

B(x, t) =
∑
P

{nP ×EP (x, t)} . (8.16)

The first term in equation (8.15) is called the velocity term as it doesn’t involve β̇;

in contrast the second term is called the acceleration term. If there is no acceleration

(β̇ = 0), then the second term vanishes while the first term falls off with distance as

1/r2, which does not give rise to a net flux of electromagnetic fields to infinity. If

β̇ ̸= 0, then the acceleration term is nontrivial and it falls off as 1/r giving rise to a

net flux, or in jargon radiation. It means that the charges emit radiations only if they

are accelerated.

8.3 Radiation from accelerated charge

Astrophysical synchrotron sources are distant enough so that we can take the limit of

large R. In this case, only the radiation terms of the fields are kept. The electric field

induced by a single particle becomes

E(x, t) =
q

c

[
n× [(n− β)× β̇]

κ3R

]
(8.17)

To study the angular distribution of the radiation, it is useful to decompose all the

vectors into parts parallel and perpendicular to β so that n = n⊥+n∥ and β̇ = β̇⊥+β̇∥.

The electric field written in terms of these components is

E(x, t) =
q

c

[
(n⊥ + n∥)× [(n∥ − β)× β̇⊥ + n⊥ × (β̇∥ + β̇⊥)]

κ3R

]
=

q

cκ3R

[
−β̇⊥(1− n · β) + (n− β)(n⊥ · β̇⊥)− β̇∥(n⊥ · n⊥) + n⊥(n∥ · β̇∥)

]
(8.18)

The right hand side of the above equation contains the four components of the elec-

tric field. They each represent the electric field components induced by the radial or

tangential particle acceleration.

The power per solid angle radiated by the moving charge is denoted by P ′(n, t′).

Correspondingly, P(n, t) is the observed power per solid angle. The radiated energy
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can be equivalently expressed by both P ′(n, t′) and P(n, t) so that

dW = P ′(n, t′) dΩdt′ = P(n, t) dΩdt = R2S · n dΩdt. (8.19)

By realizing that ∂t′/∂t = 1/κ which is implied by equation (8.12), the above equations

give
P ′

κ
= P = R2S · n (8.20)

where S(x, t) is the Poynting vector given by

S =
c

4π
E × B, (8.21)

which represents the directional energy flux of the electromagnetic fields. Since only the

radiation term is considered, we have n · E = n · B = 0 and B = n × E. Therefore,

the Poynting vector can be rewritten as

S =
c

4π
n|E|2. (8.22)

The observed intensity at time t depends upon the state of the particle at t′, and

the differential time elements are related by dt = (1−n · β)dt′. Thus, if one wants to

calculate the radiated power observed at field point x at time t, then they will have to

calculate the retardation. If a particle is impulsively accelerated for a time dt′, a pulse

of radiation will later appear at the observer of duration (1− n · β)dt′.

Here we calculate the total power instantaneously radiated by the moving particle,

which is given by

P ′
tot(t

′) =

∫
dΩP ′(n, t′) =

2q2γ6

3c
[β̇2 − (β × β̇)2] (8.23)

This is known as the relativistic generalization of the Larmor formula. Let the angle

between β and β̇ be θ0. Then the total power radiated can be expressed as

P ′
tot(t

′) =
2β̇2q2γ6

3c
(1− β2 sin2 θ0) (8.24)

=
2q2γ4

3c

(
β̇2
⊥ + γ2β̇2

∥

)
(8.25)

In addition to the power of the radiation field, another result that often needs to

be considered is the energy per unit frequency per unit solid angle. Using Parseval’s

theorem we have

dW

dΩ
≡ c

4π

∫
|RE(t)|2 dt = c

4π

∫ ∣∣∣∣∫ RE(t)e−iωt dt

∣∣∣∣2 dω2π , (8.26)
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then the spectrum is given by

dW

dω dΩ
=

c

8π2

∣∣∣∣∫ RE(t)e−iωt dt

∣∣∣∣2
=

q2

8π2c

∣∣∣∣∣
∫

n× [(n− β)× β̇]

κ3
e−iωt dt

∣∣∣∣∣
2 (8.27)

If the integration variable is replaced by retarded time, dt = κ dt′, and using the

approximation

t′ = t− R(t′)

c
≈ t− |x| − n · xP (t

′)

c
, (8.28)

which is valid for the coordinate systems satisfying |xP | ≪ |x|, we can rewrite the

above integral as

dW

dω dΩ
=

q2

8π2c

∣∣∣∣∣
∫

n× [(n− β)× β̇]

κ2
exp

[
−iω

(
t′ − n · xP (t

′)

c

)]
dt′

∣∣∣∣∣
2

. (8.29)

Integrating by parts, we have

dW

dω dΩ
=
q2ω2

8π2c

∣∣∣∣∫ n× (n× β) exp

[
−iω

(
t′ − n · xP (t

′)

c

)]
dt′
∣∣∣∣2 . (8.30)
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Chapter 9

Propagation in the ISM

A gas is composed of neutral particles, and the interactions between neutral particles

at large distances result from van der Waals forces, which are inversely proportional

to the seventh power of the distance between interacting particles. When the average

kinetic energy of the particles exceeds the ionization potential of the atoms, some

neutral particles are ionized, and the gas becomes an overall electrically neutral system

composed of positive ions, negative ions, and neutral particles. This state of matter is

called plasma.

In addition to van der Waals forces between neutral particles in a plasma, there

are also interactions between charged particles and interactions between neutral and

charged particles. The interaction between two charged particles is described by

Coulomb’s law, and the potential is inversely proportional to the distance. The inter-

action between a neutral particle and a charged particle is also essentially electrostatic;

the charged particle induces a dipole moment in the neutral particle that is propor-

tional to the electric field of the charged particle, i.e., proportional to the inverse square

of the distance. Since the potential of the interaction is proportional to the product of

the dipole moment and the electric field, it is inversely proportional to the fourth power

of the distance. If we compare the potentials of these three long-range interactions as

a function of distance,

neutral-neutral: Unn ∝ r−6

neutral-charged: Unc ∝ r−4

charged-charged: Ucc ∝ r−1

we can clearly see that the Coulomb interaction between charged particles has the

largest range. This explains why Coulomb interactions are more important than other

interactions in most cases.

In radio astronomy, almost all of the radio emission in the Milky Way comes from

HII regions. In the HII region, hydrogen atoms are highly ionized, and there are large
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numbers of free electrons and ions that maintain the electrical neutrality of the plasma.

However, because the mobility of the electrons far exceeds that of the ions, the electrons

dominate the propagation of radiation in the plasma.

Since the radiation field propagating in the plasma frequently interacts with the

charged particles, the radiation field can no longer be described as freely propagating

waves in a vacuum over long distances. Fortunately, however, just as ordinary plane

waves are fundamental solutions of homogeneous Maxwell’s equations, if we consider

the propagating radiation field as a perturbation of the charged particles, then we can

solve for the linear responses of the plasma EM fields to the small perturbations. Our

discussion in this chapter will illustrate this point. These linear responses are called

plasma waves, and the simplest waves have the form of

E = E0 exp i(k · r− ωt) (9.1)

B = B0 exp i(k · r− ωt) (9.2)

We will consider the cold plasma waves ; by “cold”, we mean that the phase velocity is

much greater than the thermal velocity of the particles in the plasma

ω

k
≫ vt, (9.3)

so that the particles with different velocities see approximately the same EM fields.

For cold plasma, a non-relativistic description is a good approximation.

9.1 Dispersion in cold and isotropic plasma

We begin by discussing the propagation of radiation in a cold, isotropic plasma. The

word ‘cold’ implies that the magnetic force on the electrons, which is of the order of

v/c, can be neglected in the perturbation of the electromagnetic radiation. ‘Isotropic’

means that there is no external magnetic field. Therefore, the dynamical equation of

the electrons is given by

mv̇ = −eE In Fourier space−−−−−−−−−−−→ v =
eE

imω
. (9.4)

The current density, defined as j = −nev, where n is the electron number density, is

given by

j = − ne2

imω
E. (9.5)

The charge density, ρ, is related to j by the charge conservation equation,

−iωρ+ ik · j = 0, (9.6)
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which in turn gives the charge density

ρ = ω−1k · j = − ne2

imω2
k · E. (9.7)

The EM fields sourced by ρ and j are characterized by Maxewell’s equations, which

in Fourier space read as below

ik ·E = 4πρ, → ik · ϵE = 0 (9.8)

ik ×E = i
ω

c
B, → ik ×E = i

ω

c
B, (9.9)

ik ·B = 0, → ik ·B = 0, (9.10)

ik ×B =
4π

c
j − i

ω

c
E, → ik ×B = −iω

c
ϵE (9.11)

where in the right column we have used the expressions of j and ρ in terms of EM

fields. And we have defined the

ϵ ≡ 1− 4πne2

mω2
. (9.12)

Since in the right column, Maxwell’s equations have been rendered in a “source free”

way, from which we get the homogeneous wave equations(
ϵ
ω2

c2
− k2

)
E = 0,

(
ϵ
ω2

c2
− k2

)
B = 0. (9.13)

Thus, we have the dispersion relation for both B and E waves:

c2k2 = ϵω2 = ω2 − ω2
p (9.14)

where

ωp =
√

4πne2/m (9.15)

is the so-called plasma frequency. We see that for ω < ωp, the wave exp i(k · r − ωt)

decreases exponentially. For ω > ωp, the electromagnetic radiation propagates with

the phase velocity

vp ≡
ω

k
=

c√
1− ω2

p/ω
2
, (9.16)

which is greater than c, and the group velocity is

vg ≡
∂ω

∂k
= c
√

1− ω2
p/ω

2, (9.17)

which is always less than c. The factor
√

1− ω2
p/ω

2 =
√
ϵ is defined as the index of

refraction.

85



Dispersion in anisotropic plasmas Propagation in the ISM

9.2 Dispersion in anisotropic plasmas

In the previous section, we examined the behavior of electromagnetic radiation in

isotropic plasma. However, in the interstellar medium (ISM) of the Milky Way galaxy,

there exist pervasive magnetic fields known as the galactic magnetic fields, which serve

as an exerted background magnetic field for the plasma.

The magnetic field in the ISM has both large-scale and small-scale components. The

large-scale magnetic field, often referred to as the mean or regular field, is characterized

by a coherent structure that can be described by a simple model Beck (2016). In the

Milky Way, the regular field has a spiral pattern, following the spiral arms of the galaxy,

with both azimuthal and radial components.

Small-scale irregular magnetic fields, also known as turbulent fields, are superim-

posed on the regular field. These turbulent fields are the result of various processes,

such as supernova explosions, stellar winds, and magneto-hydrodynamic (MHD) tur-

bulence, which inject energy into the ISM and cause fluctuations in the magnetic field

strength and direction Ferriere (2001). For more details, we refer readers to a dedi-

cated overview on the galactic magnetic fields, e.g. Beck (2004). In this section, we

assume a background magnetic field B0 constant in time and uniform in space. This

approximation works well for the background large-scale magnetic field.

When the background magnetic field, B0, is much stronger than the field strengths

of the propagating wave and is assumed to be constant in time, the equation of motion

for an electron in the plasma can be approximated as:

m
dv

dt
= −eE − e

c
v ×B0 (9.18)

where m is electron mass. In Fourier coordinates, this equation can be written as:

imωv +
e

c
B0 × v = eE

ωB≡eB0/mc−−−−−−−−−−−→ iωv + ωB × v =
e

m
E (9.19)

where we have defined the cyclotron frequency, ωB:

ωB =
eB0

mc
=

eB
0
1/mc

eB0
2/mc

eB0
3/mc

 . (9.20)

Equation (9.19) can be further expressed in the matrix form as following

Ω

v1v2
v3

 =
e

m

E1

E2

E3

 , (9.21)
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where the matrix Ω is given by

Ω ≡

 iω −ωB3 ωB1

ωB3 iω −ωB2

−ωB1 ωB2 iω

 , (9.22)

whose inverse matrix Ω−1 is

Ω−1 =
1

iω(ω2 − ω2
B)

 ω2 − ω2
B2

−ωB1ωB2 + iωωB3 −ωB2ωB3 − iωωB1

−ωB1ωB2 − iωωB3 ω2 − ω2
B1

−ωB1ωB3 + iωωB2

−ωB2ωB3 + iωωB1 −ωB1ωB3 − iωωB2 ω2 − ω2
B3


(9.23)

where ωB = |ωB| =
√
ω2
B1

+ ω2
B2

+ ω2
B3
. The velocity is solved for as follows

v =
e

m
Ω−1E. (9.24)

The current density defined as j = −nev is obtained by substituting in the expression

for v:

j = −(ne2/m)Ω−1E (9.25)

The charge density, ρ, can be derived using the charge conservation equation:

ρ = ω−1k · j = −ne
2

mω
k· Ω−1E (9.26)

Using these expressions for j and ρ, Maxwell’s equations can be equivalently written

in a ‘source-free’ way:

ik · ϵE = 0, ik · B = 0, (9.27)

ik × E = i
ω

c
B, ik × B = −iω

c
ϵE, (9.28)

where ϵ is the di-electric tensor given by

ϵ ≡ I − i
4πne2

mω
Ω−1 = I − i

ω2
p

ω
Ω−1, (9.29)

where ωp is the plasma frequency given by equation (9.15). Define ωB = |ωB| =√
ω2
B1

+ ω2
B2

+ ω2
B3
, then ϵ can be written as

ϵ = I −
ω2
p

ω2(ω2 − ω2
B)

 ω2 − ω2
B2

−ωB1ωB2 + iωωB3 −ωB2ωB3 − iωωB1

−ωB1ωB2 − iωωB3 ω2 − ω2
B1

−ωB1ωB3 + iωωB2

−ωB2ωB3 + iωωB1 −ωB1ωB3 − iωωB2 ω2 − ω2
B3

 .

(9.30)
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Combining equations (9.28), we obtain:

k × (k × E)+
ω2

c2
ϵE = 0, (9.31)

which can be rewritten in terms of matrices−k22 − k23 k1k2 k1k3

k1k2 −k21 − k23 k2k3

k1k3 k2k3 −k21 − k22

E = −ω
2

c2
ϵE (9.32)

or more conveniently (
εiabεbcjk

akc +
ω2

c2
ϵij

)
Ej = 0 (9.33)

where εijk is the Levi-Civita symbol.

9.3 Faraday rotation

In the previous section we obtained the wave equation for an anisotropic cold plasma,

equation (9.33), which can be seen as a linear system of equations. We can see that, for

a given propagating wave vector k, these equations allow us to study the polarization

of the E field; or, for a given oscillating mode E, one can solve for the corresponding

dispersion relations. Note that not all k (E) have nontrivial solutions E (k). The

observation is that the linear equation system has nonzero solutions if and only if∣∣∣∣K +
ω2

c2
ϵ

∣∣∣∣ = 0, (9.34)

where

K ≡

−k22 − k23 k1k2 k1k3

k1k2 −k21 − k23 k2k3

k1k3 k2k3 −k21 − k22

 . (9.35)

Here we will not brute-force solve for the general solutions of E and the correspond-

ing dispersion relations. We will only discuss a special case whereB1 = B2 = 0, B3 = B.

The di-electric tensor then reduces to

ϵ = I −
ω2
p

ω2(ω2 − ω2
B)

 ω2 iωωB 0

−iωωB ω2 0

0 0 ω2 − ω2
B

 . (9.36)

From Rybicki and Lightman (2008) we found that the circularly polarized waves,

EL(R)(ω,k) = Eê1 ± iEê2 (9.37)
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Figure 9.1: Synchrotron
emission and Faraday ro-
tation. This is taken from
Beck (2016). However,
a special clarification is
needed here: the linear
polarization is a “arrow-
less vector” and we should
not be misled by the ar-
rows in the figure.

where ‘+’ corresponds to left circular polarization and ‘−’ corresponds to right circular

polarization, are stable solutions of this special case.

Substituting EL(R)(k, ω) into equation (9.33), we obtain the dispersion relations for

the circularly polarized waves:

c2k2 = ω2 −
ω2
p

ω2 − ω2
B

(
ω2 ± iωωB

)
. (9.38)

In the limit of ω ≫ ωB and ω ≫ ωp, we have

c

ω
kL,R ≈ 1− 1

2

ω2
p

ω2

(
1± ωB

ω

)
. (9.39)

This equation implies that left and right circularly polarized waves propagate at

different speeds. Thus, as a linear superposition of left and right circularly polarized

waves, a linearly polarized electromagnetic wave no longer maintains a fixed plane of

polarization; it will rotate as it propagates. This is known as Faraday rotation (see

Figure 9.1). The phase ϕ of a wave can be calculated as the integral of the spatial

frequency k:

ϕL,R =

∫ d

0

kL,R ds, (9.40)

where s = 0 is the zero phase reference point. The phase difference between the left

and right circularly polarized waves is

∆ϕ = ϕR − ϕL ≈
∫ d

0

ωB
c

ω2
p

ω2
ds. (9.41)

The rotation angle of the plane of polarization is given by

∆θ =
1

2
∆ϕ =

2πe3

m2c2ω2

∫ d

0

nB ds. (9.42)

where we have replaced ωB and ωp in the second equality.
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Galactic synchrotron emission

10.1 Synchrotron radiation field

We assume a uniform magnetic field and an unprimed reference frame O that is static

to it, and the x1-axis is aligned with the direction of the magnetic field. Then, the

Faraday tensor of this environment magnetic field is constant:

Fµν =


0 0 0 0

0 0 0 0

0 0 0 −B
0 0 B 0

 γ̇=0−−→

v̇1v̇2
v̇3

 =
−eB
γmc

0 0 0

0 0 1

0 −1 0


v1v2
v3

 (10.1)

where the assumption of γ̇ = 0 holds only if the radiation reaction effect is negligible,

and we have applied the Lorentz force law and the work equation in terms of the

Faraday tensor:
dpν
dt

= q
ẋµ

c
Fµν . (10.2)

Equation (10.1) is a simple linear system of ordinary differential equations, whose

solutions are easily found as

v1(t) = v01 x1(t) = v01t (10.3)

v2(t) = cos (ωBt) v
0
2 − sin (ωBt) v

0
3 x2(t) =

sin (ωBt)

ωB
v02 −

1− cos (ωBt)

ωB
v03 (10.4)

v3(t) = sin (ωBt) v
0
2 + cos (ωBt) v

0
3 x3(t) =

1− cos (ωBt)

ωB
v02 +

sin (ωBt)

ωB
v03 (10.5)

where v(t = 0) = (v01, v
0
2, v

0
3) is the initial velocity, and the right column gives the world

line of the particle. ωB is the relativistic cyclotron frequency defined by

ωB ≡ eB

γmc
. (10.6)
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Figure 10.1: Diagram of
an electron in synchrotron
motion. This is used
to help the reader un-
derstand the variables in
equation (10.7): The ori-
gin is the electron, β is the
velocity vector of the par-
ticle, and β̇ is the acceler-
ation vector of the parti-
cle. n is the direction vec-
tor of the field point with
respect to the particle.

Using equation (8.18), we get the radiation field as follows

E(x, t) =
eβ̇

cR

[
cosϕ(β − cos θ)θ̂ + sinϕ(1− β cos θ)φ̂

(1− β cos θ)3

]
(10.7)

where the angular variables are illustrated in Figure 10.1.

A closer look at the square of the magnitude of the directional radiation field,

|E|2 = e2β̇2

c2R2
·
[
cos2ϕ (β2 + cos2θ − β2 cos2θ − 1) + (1− β cos θ)2

(1− β cos θ)6

]
, (10.8)

suggests that the radiation is strongly peaked in the forward direction (θ = 0, i.e.,

parallel to the velocity and perpendicular to the acceleration), with an opening angle

of about 1/γ.

The total radiated power is given by the relativistic Lamor formula, given by equa-

tion (8.25). Since the acceleration has only a transverse component, we have

P ′
tot(t

′) =
2β̇2e2γ4

3c
. (10.9)

From equation (10.1), β̇2 can be obtained:

β̇2 = ω2
B

(
v22 + v23

)
= ω2

Bβ
2
⊥. (10.10)

Substituting the above equation into equation (10.9), we get the total emitted radiation

as follows

P ′
tot(t

′) =
2e4B2β2

⊥γ
2

3m2c3
. (10.11)

Rybicki and Lightman (2008) provides a detailed discussion on the spectrum of

synchrotron radiation, where for the highly relativistic electron, the power per unit
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frequency emitted by the electron is decomposed into two polarization states

P⊥(ω) =

√
3

4π

e3B sinα

mc2

[
F

(
ω

ωc

)
+G

(
ω

ωc

)]
P∥(ω) =

√
3

4π

e3B sinα

mc2

[
F

(
ω

ωc

)
−G

(
ω

ωc

)]
P (ω) =

√
3

2π

e3B sinα

mc2
F

(
ω

ωc

) (10.12)

where ⊥ and ∥ denote the directions parallel and perpendicular to the projection of

the magnetic field on the sky plane, respectively. α is the pitch angle between the field

and velocity, and ωc is the critical frequency that characterizes the cutoff of the broad

feature in the spectrum:

ωc ≡
3

2
γ3ωB sinα. (10.13)

The function F (x) and G(x) are given in an asymptotic form as follows (Rybicki and

Lightman, 2008)

G(x) ∼ Γ

(
2

3

)(x
2

)1/3
, F (x) ∼ 4π√

3Γ
(
1
3

) (x
2

)1/3
, x≪ 1. (10.14)

10.2 Synchrotron radiation from cosmic ray elec-

trons

In the previous section we discussed the synchrotron radiation from a single electron.

However, the diffuse galactic synchrotron radiation we observe in astrophysical surveys

is the sum of a large number of cosmic ray electrons passing through the interstellar

medium (ISM) of the Milky Way Galaxy.

These electrons are one component of the larger population of cosmic rays, which

also includes protons, helium nuclei, and other charged particles. A variety of sources,

including supernova explosions and other astrophysical phenomena, are thought to

produce cosmic ray electrons. These sources accelerate charged particles to very high

energies, creating a population of cosmic ray electrons that are injected into the ISM.

One of the most striking features of cosmic ray electrons is their energy spectrum,

which follows a power-law distribution:

nCR(E)dE ∝ E−pdE, (10.15)

where p is a constant that characterizes the slope of the distribution. The power law

distribution of cosmic ray electrons has been observed to extend over a wide energy

range, from MeV to TeV. A typical value of p is 2.4 (Strong et al., 2007).

For a cosmic ray electron ensemble described by the power law distribution, equation
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(10.15), we can integrate the equation (10.12) and obtain the ensemble average, which

is in a power law over frequency (Rybicki and Lightman, 2008)

Ptot(ω) ∝
( mωc

3eB sinα

)−(p−1)/2

. (10.16)

10.3 Polarization of synchrotron radiation

In this section we simply review the polarization of synchrotron radiation. There are

a few points of emphasis in this regard:

1. The radiation from a single charge is elliptically polarized.

As discussed in section 5.1.1, monochromatic waves are by definition fully po-

larized. Since equation (10.12) tells us that single-electron synchrotron ra-

diation in general has a non-zero power spectral density in both polarization

directions, the monochromatic wave of single-electron synchrotron radiation

is elliptically polarized.

2. Single-electron synchrotron radiation field is symmetric with respect to the ββ̇

plane, or the xz plane in Figure 10.1.

Observing the radiation field equation, equation (10.7), we compare the electric

fields at two directions:

n = (θ0, ϕ0)

E(n) = Eθθ̂(n) + Eϕϕ̂(n)
−→

n′ = (θ0,−ϕ0)

E(n′) = Eθθ̂(n
′)− Eϕϕ̂(n

′)
(10.17)

These spherical coordinate basis vectors satisfy that

• θ̂(θ0, ϕ0) and θ̂(θ0,−ϕ0) are symmetric about the xz plane.

• ϕ̂(θ0, ϕ0) and −ϕ̂(θ0,−ϕ0) are also symmetric with respect to the xz

plane.

Thus, E(n) and E(n′) are symmetric with respect to the xz plane. In other

words, using the xz plane as a mirror, the electric fields on either side of the

xz plane are mirror images of each other.

3. Ideally, circular polarizations could be canceled out.

The field symmetry illustrated in the previous point suggests that two observers

on opposite sides of the xz plane can observe opposite circular polarizations.

A similar scenario is when an observer receives radiation beams from many pitch

angles at the same time. For some of the radiation, the observer is on the

side containing only the left circular polarization, while for the rest, the
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observer is on the side containing only the right circular polarization. An

ideal situation is one in which all of the left and right circular polarizations

cancel each other out. In this case, the observer receives only partially

linearly polarized radiation.

4. If the circular polarization is trivial, then the degree of linear polarization can be

obtained from equation (10.12):

Π(ω) =
P⊥(ω)− P∥(ω)

P⊥(ω) + P∥(ω)
. (10.18)

5. For a power law cosmic ray electron ensemble, equation (10.15), we have

Π =
p+ 1

p+ 7
3

. (10.19)
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Chapter 11

Galactic free-free emission

Free-free emission, also known as thermal bremsstrahlung radiation, is another diffuse

Galactic emission in the frequency range of significant interest for 21cm statistical and

global measurements. In the context of astrophysics, free-free emission occurs when

free and thermally hot electrons are accelerated by the Coulomb force of nearby ions,

causing them to emit radiation in a wide range of frequencies. Free-free is so named

because the initial and final states of the electron are both unbound (Smoot, 1998).

We consider collisions between electrons and ions with charge Ze. In general, in

a coordinate system where the plasma is static as a whole, the electrons move much

faster than the ions. However, in the electron rest frame, the collision will be viewed as

an ion moving at high speed running into an electron. As we will see in the following

discussion, since the Coulomb field of a highly relativistic ion can be approximated as

a radiation impulse, the free-free process appears to be the scattering of the radiation

field off the electron, which is also known as Compton scattering. Therefore, the well

studied Compton scattering mechanism can be used to frame the free-free emission of

extremely relativistic electrons.

11.1 ‘Impulse radiation’ of uniformly moving ions

The velocity term in equation (8.15) gives us the electric field of a uniformly moving

charge:

E(x, t) = q

(
n− β

γ2κ3R2

)
. (11.1)

Without loss of generality, we assume that the charge propagates in the positive di-

rection along the x axis. Then the electromagnetic fields at a distance b from the ion

trajectory are are given by equation (11.1) evaluated at

tret =
t−
√
β2t2 + (1− β2)(b2/c2)

1− β2
(11.2)
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Then the EM fields are

Ex = − qvγt

(γ2v2t2 + b2)3/2
Bx = 0 (11.3)

Ey =
qγb

(γ2v2t2 + b2)3/2
By = 0 (11.4)

Ez = 0 Bz = βEy (11.5)

We see that for a highly relativistic charge, β ≈ 1, we have E ≈ Eyêy andB ≈ Eyêz.

Thus, the electromagnetic field of the moving charge can be treated as if it were a

radiation pulse, whose direction of propagation is parallel to the motion of the charge,

and the field is confined in the transverse plane of the trajectory.

The electric field in the frequency domain is given by

E(ω) =

∫
Ey(t)e

−iωt dt =
2q

bv

bω

γv
K1

(
bω

γv

)
(11.6)

The spectrum of the pulse electromagnetic radiation is (Rybicki and Lightman, 2008)

dW

dA dω
=

c

4π
|E(ω)|2 = q2c

πb2v2

(
bω

γv

)2

K2
1

(
bω

γv

)
(11.7)

11.2 Free-free processes as Compton scattering

In this section, we discuss the free-free processes in the framework of Compton scat-

tering, where the conservation of momentum and energy is expressed as

λ1 − λ = λc(1− cos θ) (11.8)

where λc is the Compton wavelength given by

λc ≡
h

mc
, (11.9)

which is 0.02426Å for electrons.

The differential cross section for unpolarized radiation is given by the Klein–Nishina

formula
dσ

dΩ
=
r20
2

λ2

λ21

(
λ1
λ

+
λ

λ1
− sin2θ

)
(11.10)

where r0 is the classical electron radius. Integrating this equation in all directions gives

the total cross section (Rybicki et al., 1986):

σ = σT · 3
4

[
1 + x

x3

{
2x(1 + x)

1 + 2x
− ln (1 + 2x)

}
+

1

2x
ln (1 + 2x)− 1 + 3x

(1 + 2x)2

]
(11.11)
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where x ≡ hν/mc2 and σT = (8π/3)r20 is the Thomson cross section.

The spectrum of the scattered radiation is given by

dW1

dω
= σ

dW

dA dω
(11.12)

In the lab frame, ω′ = γω(1 + β cos θ), which reduces to ω′ = γω when averaged over

directions. Since the energy-to-frequency ratio is Lorentz invariant, the power spectral

density observed in the lab frame is

dW ′
1

dω′ =
dW1

dω

∣∣∣∣
ω=ω′/γ

(11.13)

The total spectrum for a medium with ion density ni and electron density ne at a

fixed electron velocity v

dWmedium

dω′ dV dt
=

∫ ∞

bmin

(nev)

(
ni
dW ′

1

dω′

)
2πb db (11.14)

where bmin = h/mv is evaluated using the uncertainty principle ∆x∆p ≥ ℏ and taking

∆p ∼ mv.
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Optimal Stokes-I Extraction for

Intensity Mapping
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Chapter 12

Introduction

For 21cm intensity mapping the Stokes-I signal is what is of interest for doing cosmol-

ogy (i.e., BAO science (Chang et al., 2008; Villaescusa-Navarro et al., 2017; Wyithe

et al., 2008)), whereas the Stokes linearly polarized Q and U components arise from

galactic synchrotron emission, which is highly polarized and unfortunately has a com-

plex structure owing to Faraday rotation. So the cosmologists would like to detect

solely the 21cm intensity without bothering themselves with looking into messy details

of the polarized foregrounds. However, on the technical side, it is hard to construct

a feed sensitive to total intensity. Thus, current intensity mapping experiments (Ban-

dura et al. (2014); Newburgh et al. (2016); Chen et al. (2015), etc) are generally using

pairs of polarimeters; usually each telescope element uses a pair of feeds sensitive to

orthogonal circular or linear polarizations. In other words, polarization measurements

have to be made even though only the intensity measurement is desired.

This technical dilemma brings about the challenges in the complex analysis of the

galactic polarized emissions. A lot of effort (e.g., Cunnington et al. (2021)) has been

devoted to understanding the impact of polarization leakage, while a parallel effort of

great interest is to remove polarization from the data to the maximum extent possible.

This methodology coincides with possible practical demand in data reduction: for most

experiments, especially the interferometers, there are a large number of unnecessary

degrees of freedom in the data array which makes the analysis hard to be performed. So

an optimal technical route then becomes obvious: one wants to extract the cosmological

information in Stokes-I with high fidelity and little contamination from the polarized

components.

To achieve such a goal, one might perform data projections as discussed in section

14.2 based on SVD methods, where a linear mapping is decomposed into the product of

an orthogonal matrix, a diagonal rectangular matrix, and another orthogonal matrix.

Such a technique has been employed in (Shaw et al., 2014), although they only defined

the inner product structure in the data space while a discussion of the appropriate
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choice of metric on the linear space of sky signals is lacking.1

In this chapter, we suggest that what one wants to do is more complicated than

a simple projection. One must rather balance two conflicting objectives. On the one

hand, one wants to completely remove any admixture of the polarization by excluding

linear combinations of data that include polarization. On the other hand, one wants to

combine many measurements in order to minimize the total noise in the final temper-

ature sky map—or here temperature dominated sky modes, in terms of the formalism

used in the Shaw papers (Shaw et al., 2014, 2015).

In order to analyze how to achieve this balance optimally, additional information

is needed. More specifically, one needs to know what is the expectation, or prior, on

the Stokes I sky and the Stokes Q/U sky. These are expressed in terms of a priori

power spectra. In this part, we sketch how to find the appropriate temperature, or

Stokes-I, dominated modes. We demonstrate that this is a matter of integrating out

the polarization.

1Or say, the implied prior is a white noise prior of the same amplitude for the temperature and
polarization sky signals.
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Chapter 13

Linear measurements

13.1 Linear map between linear spaces

In the previous chapter, we have formalised the measurement equation as an integral

over a sphere, or as the sum of infinite-dimensional sequences over a set of basis func-

tions. While in practical data analysis, at the resolution limit of the instrument, we can

coarse-grain the integral over the continuous directional variable to obtain a discrete

measurement equation over a finite number of pixels. As to a measurement equation

expressed with a set of basis functions, the instrumental resolution works as a cutoff,

which also makes the measurement equation a summation of finite terms. Therefore,

in the absence of noise or measurement error, a single measurement can be formulated

as the following discrete measurement equation:

d(ν) =
Ns∑
i=1

Bi(ν)si(ν) (13.1)

where d is the single measurement result at frequency ν. B and s are respectively

the discretized antenna beam and the discretized sky, with i indexing all the “degrees

of freedom” (DoF). As an example, if one uses the Healpix scheme for discretization,

then a sky DoF represents the sky intensity for a specific polarization and pixel; the

total number of Dof of the radio sky s(ν) is therefore Ns = Npix × 4; Correspondingly,

the antenna beam for this measurement also has Ns DoF. A single measurement can

therefore be understood as the sum over all sky degrees of freedom, each weighted by

the corresponding beam degrees of freedom. For convenience, we call a tuple of all

sky degrees of freedom a sky vector. Similarly, a beam vector is naturally defined in a

measurement.

If we assume that the measured polarized radio sky is the same throughout the

data set, i.e. the sky vector remains constant in the observation, then we can obtain a

system of linear equations by listing the measurement equations for all measurements
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under the same discretization regime:

d(Nd) = B(Nd×Ns)s(Ns). (13.2)

Here, the data set of Nd measurements is represented as an Nd-dimensional (column)

vector; because each measurement has its own beam vector, the antenna responses of

all measurements are grouped as a beam matrix of Nd rows, where each row vector is

the Ns-dimensional beam vector for the corresponding measurement. Equation(13.2)

suggests the data vector can be written as the multiplication between the beam matrix

and the sky vector.

In abstract terms, the discretized measurement equations we established above can

be viewed as a linear mapping from one linear space to another. Specifically, we may

define the Ns-dimensional linear space where the sky vector resides as the sky space,

which is denoted by S. Similarly, we define D as the data space (or sometimes called

the telescope space or visibility space), from which the data vector is drawn. Then, the

linear mapping formalism of the measurements reads

B : S → D, (13.3)

which provides an equivalent description of equation (13.2).

In intensity mapping, it is customary to partition the sky degrees of freedom into

its Stokes I and polarization components. Consequently, the measurement can be

conceptualized as the aggregate of two linear mappings. Differentiating between the

temperature of the sky and its polarization, the data can be represented by the rela-

tionship:

d = Ai+Bp+ n (13.4)

Here, i and p denote sky vectors of unpolarized and polarized degrees of freedom,

respectively. The matrices A and B correspond to the respective beam matrices.

13.2 SVD

13.2.1 Singular Value Decomposition

A vector in a linear space can be decomposed on any complete orthonormal basis of

the linear space. Assuming that we have found such a set of basis in the sky space S,
which consists of Ns orthonormal vectors, denoted as {v̂1, . . . , v̂Ns}, then a sky vector

s can be expressed as

s = s1v̂1 + · · ·+ sNsv̂Ns (13.5)
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where si is the projection of s onto the basis vector, i.e., si = v̂Ti s. Such a decomposi-

tion can also be expressed in a compact form,

s =
(
v̂1 . . . v̂Ns

)
v̂T1 s
...

v̂TNss

 = VVTs (13.6)

where the whole basis set is represented by an Ns by Ns square orthogonal matrix, V,

whose i-th column vector is defined to be the basis vector v̂i.

Similarly, the data vector d in the data space D can also be linearly decomposed

into

d = UUTd (13.7)

where U is an Nd by Nd orthogonal matrix, and its column vectors {û1, . . . , ûNd} can

form a complete orthonormal basis for the data space D.

The selections of the bases of the linear spaces S and D are arbitrary, or in other

words, one could have infinite choices to construct the orthogonal matrices, V and U.

However, for the linear map B(s) characterized by the matrix B, there is one special

pair of V and U, which satisfies that

Bv̂1 = σ1û1 · · · Bv̂r = σrûr Bv̂r+1 = 0 · · · Bv̂Ns = 0 (13.8)

where the v̂’s are named as the right singular vectors and the û’s are the left singular

vectors. The number r is the rank of B, and the r numbers, σ’s, are the so called

singular values, which are usually arranged as positive numbers in descending order

σ1 ≥ σ2 ≥ · · · ≥ σr > 0. These singular vectors and singular values are defined from

the Singular Value Decomposition (SVD) of the beam matrix B,

B = UΣVT = σ1û1v̂
T
1 + · · ·+ σrûrv̂

T
r . (13.9)

where Σ is an Nd by Ns matrix

Σ ≡


σ1

. . .

σr

0

0 0

 . (13.10)
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Figure 13.1: Four fundamental subspaces of the linear map.

13.2.2 SVD viewpoint of the linear map

Now we can use the SVD of B to understand the linear map in equation (13.3). It

provides with us an intuitive understanding of the measurement equation:

Bs = B(s1v̂1 + · · ·+ srv̂r + sr+1v̂r+1 + · · · sNsv̂Ns)

= σ1s1û1 + · · ·+ σrsrûr
(13.11)

where you can see that the sky vector s is projected in Ns linearly independent di-

rections. For i ≤ r, B maps the S space direction, v̂i, to the D space direction, ûi,

with the component value being scaled by the factor σi. The sky components in the

remaining Ns − r directions contribute nothing to the measurement, or linear map.

In summary, the mapping of the sky vector is effectively the sum of the mappings

of all the sky components. The sensitivity or “gain” of the measurement process to the

sky component at v̂i is characterized by σi. For i > r, the gains are simply zero.

13.2.3 Four fundamental subspaces

For a better grasp of the properties of the linear map, we define the four fundamental

subspaces (see Figure 13.1), namely, image, kernel, cockernel and coimage, where kernel

and coimage are subspaces of S and image and cokernel are subspaces ofD. Specifically,

the image of the map is defined as the set {B(s)|s ∈ S}, which is denoted as Im(B).
We define the kernel (or null space) of B, Ker(B), as the set {s ∈ S|B(s) = 0}.

In the data space, it would also be useful to look at the linear subspace orthogonal
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to the image, which is called the cokernel denoted as Coker(B). A direct understanding

of the cokernel is that, without considering any system noise or random error of the

instrument, the sky does not have any mapping into the cokernel. In the sky space,

we define the linear subspace orthogonal to the kernel as the coimgage, denoted as

Coim(B). It can be seen that the sky vector can be divided into two parts, each

residing in two linear subspaces of S, kernel and coim. Among them, the contribution

of the sky components in the kernel to the mapping (or measurement results) is 0, while

the sky components in the coim have a non-trivial contribution to the measurement.

More intuitively, the four fundamental subspaces can be spanned by the singular

vectors of B:

Ker(B) = span{v̂r+1, · · · , v̂Ns}

Im(B) = span{û1, · · · , ûr}

Coker(B) = span{ûr+1, · · · , ûNd}

Coim(B) = span{v̂1, · · · , v̂r}

In addition to the above representations, it is easy to see that Im(B) can also be

expressed as the space spanned by the columns of B, i.e., Im(B) = C(B). Also, the

Coim(B) can be spanned by the row vectors of B, which means Coim(B) = C(BT ).

13.3 Linear map between inner product spaces

In the context of statistical measurements, the radio sky can be viewed as an instance

drawn from a random field. Different components of the sky might be characterized by

different statistical models: the foreground components are usually given by empirical

models whose parameters are to be calibrated by observation, while the cosmological

component may come from theoretical models.

Taking the statistical models of the radio sky as the presumptions, we can predict

the 2pt correlation between any pair of sky degrees of freedom. A complete prediction

about the whole discrete radio sky is established by calculating the correlations of

all pairs of sky degrees of freedom, which can be organized as a covariance matrix,

C = ⟨ssT ⟩, so that Cij represents the correlation between the i-th and j-th sky degrees

of freedom. A bit of jargon in statistics: we shall also call C the prior of the radio sky.

With the prior of the sky in hand, what can we do in data analysis? First of all,

continuing our linear map theory, we can try to characterize the “signal strength” of

the sky vector in different directions for this prior. We can characterize the expectation

value of the projection of the sky vector into a certain direction in S, say v̂, then the
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square of the magnitude of s in this direction is 1:

⟨(v̂Ts)2⟩ = ⟨v̂TssT v̂⟩ = v̂T ⟨ssT ⟩v̂ = v̂TCv̂ = Cijv
ivj (13.12)

The above equations can be effectively understood as the definition of the inner product

structure for the sky space S, with the metric being Cij. For example, the squared

vector modulus

C(v,v) ≡ Cijv
ivj (13.13)

Then the squared vector modulus defined with Cij, denoted as C(v,v), characterizes

the prior signal strength in the direction along v.

On the other hand, the instrumental noise is unavoidable for any practical mea-

surement. Taking noise terms into account, the discrete measurement equation, i.e.,

equation (13.2), can be rewritten as

d(Nd) = B(Nd×Ns)s(Ns) + n(Nd), (13.14)

where n is the noise vector grouping the noise terms for all measurements. N ≡ ⟨nnT ⟩
is defined as the covariance matrix of n. Just like the role of C in S, N also defines an

inner product structure for the data space D so that the total noise scale of the data

set in the direction, û, can be defined as

⟨(ûTn)2⟩ = ⟨ûTnnT û⟩ = ûT ⟨nnT ⟩û = ûTNû = Niju
iuj (13.15)

With the definitions of metrics Cij and Nij, now both linear spaces S and D are

endowed with the inner product structure. In this scenario, the discrete measurement

equation can be expressed as a map of two inner product spaces:

B : (S, Cij) → (D, Nij) (13.16)

Taking the SVD viewpoint discussed in Section 13.2.2, we can build a fuller understand-

ing of the linear map. Having decomposed the sky vector s using the right singular

vectors, for each component we have:

1. The sky component along v̂i has a priori signal strength of C(v̂i, v̂i).

2. The measurement process amplifies the signal by σi and it becomes the ûi data

component in the data space. (For directions with i > r, σi is 0.)

3. However, the random noise also contributes to the data in the ûi direction; the

total noise power can be described as N(ûi, ûi)

1Here we use the vector multiplication of general linear algebra to calculate the projection, that is,
the ordinary metric is used by default.
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Hence, We can roughly establish a definition of signal-to-noise ratio for the mapping

at each single direction

SNR[i] =
σiC(v̂i, v̂i)

N(ûi, ûi)
(13.17)

It should be noted that, in order to establish the theoretical framework, we simply

regarded all components of the radio sky as “signals” and only the instrumental noise

as “noise”. However, the definition of “signal” and “noise” depends on the specific

scientific goals. For example, you may want to extract cosmological signals and the

foreground should be part of the noise, for which the signal-to-noise radio might be

defined as

SNR[i] =
σiCcos(v̂i, v̂i)

N(ûi, ûi) + σiCfg(v̂i, v̂i)
. (13.18)
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Linear data projections

In Chapter 13, we established a formalism for measurement. We discussed how to de-

compose the linear map within the SVD. Furthermore, we defined the four fundamental

subspaces, each spanned by a set of singular vectors. We also proposed that, after in-

troducing the prior of the sky and the noise power spectrum, one can characterize the

signal strength and the noise scale for each “submap.”

Given the linear formalism of the measurement, we naturally want to apply it to

data projection, that is, to obtain the part of the data vector in some linear subspace of

D. From the perspective of expected effects, our goals can be divided into the following

two types:

• Data reduction Ordinarily, there are more data points than sky degrees of free-

dom. From the perspective of discrete linear measurement process, the number

of measurements must be greater than the number of sky DoF after discretiza-

tion, and the number of sky DoF must also be greater than the needs of scientific

extraction. As a result, raw data sets are often large, contain many redundant

data points, and are dominated by instrument noise. Occasionally, managing the

entire dataset is straightforward. However, there are instances when the volume

of data becomes overwhelming. In such cases, an ideal solution would be to com-

press the raw data without losing any information—this is what we refer to as

“data reduction.” In Section 14.1, we look at achieving this by using linear data

projectors.

• Selection or avoidance of data components

Sometimes we want to eliminate some data components because their complex

properties pose challenges for science extraction. For example, there might be

some beam sidelobes which are intractable, or certain sky DoF (pixels, multipoles,

or polarizations) which are incomprehensible. When we judge that removing

them will do more good than harm, we might choose to remove (or at least

down-weight) these components. This strategy is essentially different from the
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lossless data reduction discussed above, as it really discards some sky information.

So the signal-to-noise ratio in the overall data set is not guaranteed to rise or fall.

Data projection for this purpose is discussed in Section 14.2, where we also give

a toy model to the increased noise if one rejects all polarizations.

14.1 Data reduction

14.1.1 Noisy data reduction

In the previous discussion, we decomposed the sky vector in Ns directions with the

help of the SVD of the beam matrix. Among all the components of the sky, only the

components at r directions, which are v̂1, . . . , v̂r, can have non-trivial mappings, which

reside in the subspace of D, Im(B), and can be completely described by the components

at directions û1, . . . , ûr in D.

However, in addition to the mappings of the sky vector, the real data also includes

the contribution of instrumental noise. Because of the random nature of the instu-

mental noise, the noise vector may have nontrivial components in all Nd directions

in D. In other words, the data vector d with noise may appear in all the directions;

d-components in Im(B) may contain both sky and noise, while the components at the

remaining (Nd − r) directions are completely from the noise.

Therefore, a lossless data compression scheme is obviously at hand. By projecting

the data vector onto Im(B) (Shaw et al., 2015), all the sky information is preserved,

while what is lost is purely noise. This can be done mathematically by a projection

operation

d′ = UTd (14.1)

where U is the data projection matrix, whose columns are the left singular vectors,

û1, . . . , ûr.

This is a rather direct way of reducing a larger data set to a smaller, more man-

ageable size. It can be understood as a number of linear recombinations of the raw

data, and one can find the projector simply by writing out the column vectors of the

beam matrix and computing all the vectors perpendicular to the column vectors. This

method has nothing to do with the sky or noise modelling, but its losslessness depends

on the accuracy of the beam matrix.

14.1.2 Noisy data reduction with priors

The data compression method discussed in the previous section only involves the con-

cept of fundamental linear subspace. However, our linear mapping toolbox allows us

to reduce the data set even more, if one needs so.
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First, we can make use of the singular values, σi’s. Because σi describes the mea-

surement gain of the sky component in the v̂i direction, we can set a threshold for the

singular values to filter out those components whose measurement gains are numerically

zero.

Beyond the use of singular values as measurement gains, an example of a more

accurate signal-to-noise description is given in equation (13.17). By introducing the

covariance matrices of sky and noise, we can calculate the SNR in all r directions in

Im(B) and abandon the components with way too low SNRs.

A similar idea has been used in Shaw et al. (2014, 2015). Specifically, they first

whiten the data space with the noise power spectrum

d′ = N− 1
2d, (14.2)

which also gives a new beam matrix, B′ = N− 1
2B. Then the data is compressed

by projecting d′ onto Im(B′). Within the linear map framework, this data projection

scheme could be regarded as a special case of the data projection, with an inner product

structure allocated to the data space while assuming a trivial metric for the sky space.

14.2 Selection or avoidance of data components

Sometimes, we may only wish to use only a part of the sky or instrument DOF, or

try to avoid some incomprehensible DOF. Depending on the specific needs, we might

want to divide all the column vectors of the beam matrix, B, into two parts, the part

that is needed, denoted as Bg, and the part that needs to be avoided, denoted as Bb.

Corresponding to the column vectors, the sky degrees of freedom are also grouped into

two vectors, sg and sb. Then the measurement process reads

d = Bgsg +Bbsb. (14.3)

In abstract terms, the linear map is decomposed such that B = Bg + Bb, where

Bg : Sg → D (14.4)

Bb : Sb → D (14.5)

Below we discuss two hypothetical situations to explain possible usage scenarios:

• Case 1: Polarization Rejection

Some beam or sky DoF may have too complex behaviors that might introduce

difficulties in specific data analysis. For example, one may want to avoid

components from the complex polarization foreground in the data, so these

unwanted sky DoF are grouped as sb. Then sg,Bb, andBg are also specified
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at the same time. The data operation that can reject the polarization is to

project data onto the subspace, Im(Bg)
⋂
Coker(Bb).

• Case 2: De-risking Problematic Beam Modes

One may have a high uncertainty in the simulation or measurement of specific

beam components, which can be understood as that some column vectors of

the beam matrix are simulated or measured with a large uncertainty, which

defines the Bb. In this situation, it is no longer suitable for us to project

data into the cokernel of Bb, since it could deviate from the real beam a lot.

But instead, one can project the data onto the image of Bg, which keeps the

whole mappings of Bg but somewhat down-weights the mappings of Bb too.

We should note the essential difference between the two situations. In case one, we

rely on the beam matrix to remove some DoF to the greatest extent. However, in case

2, some modes of the beam matrix themselves might have large uncertainties, and we

hope to down-weight the data components from these uncertain beam modes.

14.3 Estimator Noise: A Worked Example

In the previous discussion we explained how to use data projection to circumvent or

down weight some data modes. But there are trade-offs to doing so. Whether it is

necessary to completely remove certain degrees of freedom requires a specific pros and

cons analysis, and there is no unified answer. In this section, we discuss a simple toy

model to illustrate the effect that polarization rejection may have on the noise level of

the sky map estimator.

Rejecting polarization does free the cosmologists from analyzing complex structures

of the galactic polarized emissions. However it also comes at the cost of throwing away

relevant information that would allow for a better reconstruction of the temperature

sky.

In this section, we give an example, for which we calculate the variance of the tem-

perature determination using the data that remains after projection onto Coker(BP).

In this example we see that the resulting temperature determination has increased

variance. The relative increase is determined by the expected ratio of the polarization

signal to the expected instrumental noise. This example is contrived to be simple and

illustrate certain points and do not address how the comparison would work for the

actual data.
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Suppose that

B4×4 =
(

BT BP

)
=


t0 0 0 0

t1 ϵp1 0 0

t2 0 ϵp2 0

t3 0 0 ϵp3

 (14.6)

and s = ( sT sP )T = ( st sp1, sp2, sp3 )T. The measurement then reads

v =


t0 0 0 0

t1 ϵp1 0 0

t2 0 ϵp2 0

t3 0 0 ϵp3




st

sp1

sp2

sp3

+


n0

n1

n2

n3


We assume that the noise has been whitened. The three columns of BP are orthogonal

and thus form a natural orthonormal basis for range(BP ), i.e. the column space of

BP . As the space orthogonal to range(BP ), cokernel(BP ) is spanned by the only left

natural basis vector for R4, i.e., span{(1, 0, 0, 0)T}. The projection operator (on the

linear space of visibilities) is PP−free = diag(1, 0, 0, 0).

After the cokernel(BP ) projection, we are left with only the one equation

v1 = t0st + n0. (14.7)

The minimum variance estimation ŝt and the corresponding variance for this equation

is

ŝP−free
t =

v1
t0
, σ2,P−free =

1

t20
. (14.8)

If we do not project onto the cokernel, we have the following equations
t0st + n0

t1st + ϵp1sp1 + n1

t2st + ϵp2sp2 + n2

t3st + ϵp3sp3 + n3

 =


v1

v2

v3

v4

 . (14.9)

For this simple example, we obtain

1

σ2(ŝti)
=

t2i
ϵ2pi
〈
s2p
〉
+ 1

.

Since (by construction) the polarization and other noise of the estimators ŝti are sta-

tistically independent, the minimum variance unbiased estimator constructed from a
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linear combination of these has a variance obeying

1

σ2(ŝp)
=
∑
i

t2i
ϵ2pi
〈
s2p
〉
+ 1

showing that in certain situations a much better estimator can be obtained by allowing

for some polarization leakage.
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Chapter 15

Optimal Stokes-I extraction for 21 cm inten-

sity mapping

In this chapter, we present an optimal method for Stokes-I data extraction in the

presence of polarization. Separating the temperature sky and the polarized sky, the

data can be expressed as the process

d = Ai+Bp+ n (15.1)

where i and p are respectively the sky vectors composed of unpolarized and polarized

degrees of freedom, and A and B are corresponding beam matrices. n denotes the

instrumental noise, whose power spectrum is given as N. We shall assume negligible

correlations between polarized and non-polarized degrees of freedom so that a block

diagonal covariance matrix for the sky is implied as

CS = diag(CI ,CP ). (15.2)

We further postulate a Gaussian prior of the form

pprior ∼ exp

[
−1

2
pTC−1

P p− 1

2
iTC−1

I i

]
. (15.3)

The posterior, with both the temperature and polarization prior included, is of the

form

pposterior ∼ exp

[
−1

2
χ2(i, p;d)

]
(15.4)

where

χ2 = (d−Ai−Bp)TN−1(d−Ai−Bp) + pTC−1
P p+ iTC−1

I i. (15.5)

To integrate out the polarization p, which is not of interest for our purpose, we
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collect all the terms linear or quadratic in p in the above, obtaining

pT (BTN−1B+C−1
P )p− (d−Ai)TN−1Bp− pTBTN−1(d−Ai), (15.6)

which has the form

pTAp+ qTp+ pTq = (p+A−1q)TA(p+A−1q)− qTA−1q. (15.7)

Upon integrating over p, the first term becomes a constant factor with no dependence

on i, leaving a factor proportional to

−qTA−1q (15.8)

which we may expand into

−(d−Ai)TN−1B(BTN−1B+C−1
P )−1BTN−1(d−Ai) (15.9)

and then into terms quadratic and linear in i, obtaining

iT
[
−ATN−1B(BTN−1B+C−1

P )−1BTN−1A
]
i

+ dT
[
N−1B(BTN−1B+C−1

P )−1BTN−1A
]
i

+ iT
[
ATN−1B(BTN−1B+C−1

P )−1BTN−1
]
d

(15.10)

Combining the above term the remaining terms in equation (15.5), we obtain

iT
[
C−1
I +ATN−1A−ATN−1B(BTN−1B+C−1

P )−1BTN−1A
]
i

+ dT
[
N−1B(BTN−1B+C−1

P )−1BTN−1A−N−1A
]
i

+ iT
[
ATN−1B(BTN−1B+C−1

P )−1BTN−1 −ATN−1
]
d

(15.11)

The maximum likelihood intensity map is obtained by solving

[
C−1
I +ATN−1A−ATN−1B(BTN−1B+C−1

P )−1BTN−1A
]
iML

=
[
ATN−1 −ATN−1B(BTN−1B+C−1

P )−1BTN−1
]
d (15.12)

Consequently, the posterior reads

pposterior ∼ exp

[
−1

2
(i− iML)

TC−1
ii (i− iML)

]
(15.13)

where

C−1
ii ≡ C−1

I +ATN−1A−ATN−1B(BTN−1B+C−1
P )−1BTN−1A. (15.14)
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The right-hand side of equation (15.12) defines a data projection operator

U ≡ ATN−1 −ATN−1B(BTN−1B+C−1
P )−1BTN−1 (15.15)

so that

iML = CiiUd (15.16)

optimally extracts Stokes I from the data with the polarization prior included.
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Chapter 16

Discussion

In our earlier discussions, we presented an optimal Stokes-I extraction strategy by in-

corporating a prior for the sky. In this section, we expand on the topic, exploring

Stokes-I extraction from various polarization viewpoints. Additionally, through a sim-

ple numerical example, we will compare the variance among these Stokes-I estimators.

16.1 Stokes I Strategies Across Polarization Views

We can treat polarization using four different approaches.

1. View polarization and Stokes I together as sky degrees of freedom to be solved.

2. Consider only Stokes I as the sky degree of freedom to be solved and remove all

polarization components from the measurement.

3. Consider only Stokes I as the sky degree of freedom to be solved, but retain the

polarization components in the measurement treating them as noise with a power

spectrum Cp.

4. Solve for Stokes I with prior information on both polarization and Stokes I. (As

in section 15.)

More specifically, starting with initial linear measurements again, we separate the

sky Stokes I degree of freedom, denoted as i, from the polarization degree of freedom,

p. Thus the measurement can be expressed as

d = M s+ n = Ai+Bp+ n (16.1)

where A represents the Stokes I beam and B denotes the polarized beam components.

If we use the least-squares estimation method, under the first of the approaches

previously mentioned, we can derive the Maximum Likelihood Estimate (MLE) for the
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entire sky s

ŝ=

(
i

p

)
= K1 d, (16.2)

where

K1 = (M†N−1M)−1M†N−1, (16.3)

and the Stokes I sky î is part of ŝ.

To implement the second approach, we can use linear data projection with SVD, as

discussed earlier. However, a faster approach might be to integrate out ‘p’ in the like-

lihood, similar to how in the previous section we marginalized over p in the posterior.

Without going into repetitive computations, we find that î = K2d where

K2 =
[
ATN−1A−ATN−1B(BTN−1B)−1BTN−1A

]−1[
ATN−1 −ATN−1B(BTN−1B)−1BTN−1

]
. (16.4)

The third approach is straightforward to implement. The estimator is given by

î = K3d where

K3 =
[
A†(BCPB† +N

)−1
A
]−1

A†(BCPB† +N
)−1

. (16.5)

The fourth approach mentioned corresponds to the ‘optimal’ estimator defined in

section 15. The associated operator, represented as K4, is given by

K4 = CiiU, (16.6)

which is defined in equation (15.16).

16.2 Numerical variance analysis

In this section, we introduce a basic numerical example to compare the variance among

different Stokes I estimators.

Simulation Scenario

We consider a single HIRAX prime focus reflector equipped with a single feed, situated

on the Earth’s equator and operated in drift-scan mode. We focus on the m = 140

mode of the measurement.

The antenna is directed towards galactic latitudes, incrementing by 0.5◦ from 75◦S

to 75◦N. Figure 16.1 displays the Stokes beam of the antenna at three distinct pointings,

with galactic latitudes of 65◦N, 32.5◦N, and 0◦.
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Figure 16.1: Beam Stokes parameters for three different pointing directions.The HI-
RAX beam data (Crichton et al., 2022) used here are from CST simulations by Carla
Pieterse. Here we have assumed that the Stokes V sky signal is negligible.

Settings and Variance Analysis

For our m-mode settings, we have m = 140 and lmax = 191. This configuration results

in an overdetermined system, aiming to solve for sky modes where m ≤ l ≤ lmax and

m = 140.

The variance comparisons for the four distinct estimators are illustrated in Figure

16.2. Under the assumption that both input noise and the sky power spectra closely

approximate the real power spectra, our illustrative example indicates that the optimal

Stokes I extraction exhibits the lowest variance among the considered estimators.
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Numerical variance analysis Discussion

Figure 16.2: Variance comparison among various Stokes-I estimators. The blue line
represents the MLE estimator using K1. The yellow-dashed line corresponds to the
MLE estimator with K2, which projects out polarization. The green line depicts the
MLE estimator with K3, accounting for polarization as noise. Lastly, the red line
showcases the maximum posterior estimator using K4, identified as the optimal Stokes
I estimator.
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Chapter 17

Introduction

The last decade has seen a surge of interest in using the 21cm intensity mapping (IM)

as a probe of large scale structure. This idea takes advantage of the optically thin

21cm spectral line arising from the hyperfine transition of neutral atomic hydrogen

(HI), which has pervaded the universe after recombination. Although in the late uni-

verse reionization has destroyed most of the neutral hydrogen, in galaxies the overdense

HI has a recombination rate, proportional to n2, which is able to overcome the ioniza-

tion rate, proportional to n, due to the background of ionizing radiation. Moreover,

for larger, dense clouds, shielding needs to be taken into account. When the spin

temperature is higher than the cosmic microwave background (CMB) temperature,

overdense stimulated emission dominates over absorption, which leads to net 21cm

emission and can be observed as the difference between the observed temperature and

the CMB temperature. Observing the redshifted 21cm emission line traces the three-

dimensional galaxy distribution, we can study the clustering of collapsed halos over

a wide range of redshifts and spatial scales. Such data provides a powerful way to

constrain cosmological models.

The detection of 21cm signal is challenging because this signal is contaminated

by astrophysical foregrounds and their coupling with the instrument. Since the fore-

grounds are orders of magnitude stronger, any inaccuracy of our knowledge about the

instrument, for example an imprecise beam characterization, can lead to non-trivial

contamination to the cosmological signal.

In work with Bucher, Moodley, Pieterse, Zhang and de Villiers (Bucher et al., in

prep.), we developed a figure-of-merit (FoM) that estimates the impact of imprecise

beam characterization and beam complexity on intensity mapping science extraction.1

Compared to complete end-to-end simulations, this technique provides a simple and

1In this paper, the contribution of Martin Bucher was the idea and the initial formalism of the
isolated FoM beam evaluation. Kavilan Moodley contributed the input power spectra both for the
signal and the foregrounds as well as the apodization in frequency scheme. Carla Pieterse computed
the Hirax beam data using CST and beam error simulations. Prof Dirk de Villiers provided guidance
on the antenna modelling aspects of the project. My contribution was the improve of the formalism
and the numerical realisation of the analysis.
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quick way to isolate the effect of beam systematics from other aspects of the mea-

surement process. Specifically, we formulated the contribution of the beam error or

uncertainty to the reconstructed sky. This beam uncertainty power spectrum, together

with the instrumental noise and galactic foreground power spectra, are combined to

yield the total noise power spectrum. Correspondingly, we define the signal-to-noise

ratio (SNR) in Fourier space. The SNRs of all modes combine to give a figure of merit.

In a more concrete context, consider the example of a single dish experiment as

discussed in Bucher et al. (in prep.). In this work, the transfer matrix, also referred

to as the beam matrix and denoted as M, is subject to perturbations represented by

the stochastic variable δM. This uncertainty is integral when assessing the error in

reconstructing the cosmological signal, leading to the modified equation:

d = (M+ δM) s+ n. (17.1)

Assumptions about δM posit it as stemming from a Gaussian stochastic process with

a mean of zero. Its probability distribution is solely defined by its covariance matrix

Cov(δM). A representation for the contribution of δM to the error in sky reconstruc-

tion is given by:

⟨δsδM δsδM⟩ = M−1δMssT δMTM−1T . (17.2)

Of particular importance are the off-diagonal components of δM. These elements can

introduce significant noise by merging various galactic emission modes. The covariance

associated with the sky map is described by:

Cov(δsδM) = M−1δMPgal δM
TM−1T . (17.3)

Zooming into the specifics, the operatorM under the flat-sky approximation is diagonal

in k⊥. This leads to the equation:

d(k⊥, ν) = M(k⊥, ν) s(k⊥, ν). (17.4)

Yet, transforming from this space yields a more complex equation:

d(k⊥, k∥) =

∫
dk′∥ M(k⊥, k

′
∥) s(k⊥, k∥ − k′∥). (17.5)

Such convolution potentially causes a mixture of modes, especially when the beam

pattern’s frequency dependency is taken into account.

However, the techniques presented there ignored polarization, which ignores the

details of the Stokes-I extraction and the uncertainty of the polarized Stokes beam: it

was assumed that the sky is unpolarized, or that the reception system is sensitive only

to intensity. Another case getting rid of polarization is to fully reject the polarized
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components using the “full” knowledge, which is an ideal assumption, of the polarized

response of the primary beam as discussed in Section 14.2. These ideal assumptions

could be broken down or at least come under close scrutiny when considering the

complexities of real observations. On the one hand, the Galactic synchrotron emission

is highly polarized and suffers from Faraday rotation effects as it propagates through the

galactic magnetic field. As a result, the observed polarized foregrounds have a complex

spectral structure, which makes it difficult for a foreground removal strategy based on

the spectral smoothness of the galactic foregrounds (though this strategy works very

well for the galactic Stokes I foreground). On the other hand, almost all 21cm intensity

mapping experiments are constructed with orthogonal feed polarizations, generally

in the form of co-located orthogonally oriented dipoles. Any imperfectness of the

practical polarimetry implementation can lead to an entanglement of different polarized

components in the data, which is termed “polarization leakage” (see Liu and Shaw 2020

for a further introduction). Although we are only interested in the 21cm intensity, the

contamination from galactic polarization emission in the instrumental Stokes I data

hinders the correct estimation of the cosmological signal. Thus, we inevitably need to

address the problem of polarization for beam evaluations.

In this Part we further develop the figure-of-merit formalism for beam evaluation,

with particular emphasis on the role of beam uncertainty in the 21cm power spectrum

extracted from polarization measurements. One should note that the actual beam error

propagation depends on the actual realizations of the Stokes-I extraction and power

spectrum estimation. For our purpose, it suffices to discuss in a certain scenario using

the maximum-likelihood estimator and the common unpolarized measurement strategy

(XX+Y Y ). The discussion here can be generalized to other linear strategies like the

optimal Stokes-I extraction and the polarization rejection strategy introduced in Part

IV of this thesis.

The group of chapters is organized as follows. After formulating the general polar-

ization measurement in a scalar way and establishing the figure-of-merit formalism in

Chapter 18, we model the input power spectra of the cosmological signal and various

contaminants in Chapter 19. In Chapter 20, we summarize the work and present our

conclusions.
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Chapter 18

Analysis Formalism

18.1 Scalar formalism of polarization measurements

Polarized signals are typically measured using a pair of feeds that are sensitive to

orthogonal linear polarizations at long wavelengths, or a single horn feed that separates

the orthogonal circular or linear polarizations at shorter wavelengths. In this work we

consider antennas with linearly polarized feeds, since that is what is most commonly

used for most 21cm intensity mapping experiments. But the discussion should be easily

generalized to circular polarization analysis.

The correlation between a pair of feeds has been given by equation (6.51), which

can be rewritten as

VIp,Jq =
∑

S=I,Q,U,V

∫
d2n̂Eα∗

Ip (n̂− n̂c)E
β
Jq(n̂− n̂c)σ

S
αβ exp

(
−2πi

n̂ · bIJ
λ

)
TS(n̂) + n

(18.1)

where I and J are indices of antennas, and p, q = X, Y refer to the linear polarized

feeds on the antennas. The repeated Greek indices, α and β, representing the polar-

ization basis on the sky sphere1, are summed over by convention. Eα
Ip represents the

α-component of EIp, the far field of the p-polarized feed of antenna I. The baseline vec-

tor bIJ describes the relative position of the feed pair. The degenerate case of equation

(18.1) with I = J and p = q is called the auto-correlation of the feed. In general, one

should also consider the pointing dependence of the Stokes Q(U) beams, as discussed

in Section 6.3, but here we assume a narrow sky strip survey so that the Stokes Q(U)

beams are assumed to be invariant over the survey area.

Although equation (18.1) directly relates the far fields of the antennas to the corre-

lation measurements, the Stokes Q and U sky maps and antenna beams are not scalar

fields we can instead use the E and B maps. For more details on a general scalar

description of a polarization field, see section 5.2.2).

1We shall just use the celestial coordinate basis vectors, êθ and êϕ.
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We now proceed to define the E and B beams and introduce the flat-sky limit

together. Neglecting the noise and the constant phase shift term caused by the part

of the baseline along the antenna pointing direction, the measurement in the flat-sky

approximation is given by

VIp,Jq =
∑

S=I,Q,U,V

∫∫
d2xBS

pq(x)TS(x0 − x) exp

(
−2πi

x · bIJ,⊥
λ

)
(18.2)

where x is the Cartesian beam coordinates, and x0 is the beam coordinates of the

origin of the sky coordinate system. b⊥ is the part of b perpendicular to the pointing

direction. BS
pq = Eα∗

IpE
β
Jqσ

S
αβ is the primary beam of the cross-correlation, where the

antenna indices have been dropped as we assume identical feeds and dishes for all

baselines. Equation (18.2) can be rewritten in Fourier conjugate coordinates of x,

which is denoted by q:

VIp,Jq =
∑

S=I,Q,U,V

∫∫
d2q

(2π)2
BS
pq

(
q+

2πbIJ,⊥
λ

)
TS(q) e

iq·x0 (18.3)

where TS(q) is the Fourier q mode in the sky coordinate system, while the extra phase

eiq·x0 shifts it to the beam coordinate system.

In Fourier space, Stokes Q and U fields are related to the E and B modes by

(Dodelson and Schmidt, 2020)

TQ(q) = cos (2ϕ(q))TE(q)− sin (2ϕ(q))TB(q)

TU(q) = sin (2ϕ(q))TE(q) + cos (2ϕ(q))TB(q) (18.4)

where ϕ(q) is the azimuthal angle of the 2D wavevector, which satisfies q = (qx, qy) =

(cosϕ(q), sinϕ(q))|q|. Substituting TQ(U) by TE(B), equation (18.3) can be rewritten

in terms of E and B modes

VIp,Jq =
∑

S′=I,E,B,V

∫∫
d2q

(2π)2
BS′

pq,bIJ

(
q+

2πbIJ,⊥
λ

)
TS′(q) eiq·x0 (18.5)

where B
E(B)
pq,bIJ

are the effective beams defined by


BE
pq,bIJ

(
q+

2πbIJ,⊥
λ

)
BB
pq,bIJ

(
q+

2πbIJ,⊥
λ

)
 =

 cos (2ϕ(q)) sin (2ϕ(q))

− sin (2ϕ(q)) cos (2ϕ(q))



BQ
pq

(
q+

2πbIJ,⊥
λ

)
BU
pq

(
q+

2πbIJ,⊥
λ

)

(18.6)

Rewritten in the real space, equation (18.5) is in the form of the sum of four convolu-
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tions of scalar fields:

VIp,Jq(x0) =
∑

S′=I,E,B,V

∫
d2xBS′

pq,bIJ
(x)TS′(x0 − x) exp

(
−2πi

x · bIJ,⊥
λ

)
. (18.7)

18.2 Unpolarized measurement and beam uncer-

tainty

In single-dish experiments, the two feeds are both auto-correlated and cross-correlated if

polarization measurements are desired. However, for total intensity measurements, it is

most commonly just taking the sum of two auto-correlations, which takes advantage of

the opposite sign responses of XX and Y Y to the linear polarizations and no responses

to Stokes V. Similarly for interferometers, two cross-correlations of parallel feeds on a

baseline are combined as a total intensity measurement. Therefore, a usual unpolarized

measurement can be generally represented as dIJ = VIx,Jx + VIy,Jy.

Rendering all the unpolarized measurements into a data vector, we get the linear

measurement equation

d = MI TI + n. (18.8)

Generally there are more equations than unknowns and because of noise and imper-

fections in determining M, these equation as is are inconsistent and formally have no

solution. The standard solution is to use least squares or generalized least squares to

find a best compromise solution, informed by the noise covariance matrix N. Usually

we take the Gaussian approximation to the noise statistics. Then an estimator of the

intensity sky is chosen to minimize the negative log-likelihood

χ2 =
1

2
(d−MI TI)

T N−1 (d−MI TI) , (18.9)

where N is the noise covariance matrix
〈
nn†〉. The maximum likelihood (ML) estima-

tor of sky map is therefore given by

Test = Kd, (18.10)

where

K = (MI
TN−1MI)

−1MI
TN−1. (18.11)

For single-dish measurements, MI might be square and non-degenerate, in which case

K reduces to MI
−1.

However, in practice the beam matrix obtained from measurements or simulations

includes an error. On the one hand, defects in the manufacturing process or acquired

beam errors caused by deformations are problematic. On the other hand, due to the
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change of environmental conditions with the observation time, factors like temperature

and winds, or some other perturbations, may introduce uncertainties in the actual

beam response. Furthermore, even if the beam is perfect and immune to all defects

and deformations, the intrinsic errors in the simulation and measurement of the an

antenna beam can also play a role.

In the absence of a perfect absolute description of beams, one can seek for adequate

statistical descriptions of beam errors in addition to measurements or simulations.

According to the time-varying nature of beam errors, we can roughly divide them into

two categories: stochastic beam errors and time varying beam errors. Stochastic beam

errors refer to errors that do not change over observation, and thus can be viewed

as an instance drawn from some statistical model. In data analysis based on the

convolution of the beam and the sky, the stochastic beam error will be block diagonal in

coordinates of tangential wave number after the deconvolution, just as what a primary

beam does. While time varying beam errors are defined as beam errors changing during

the scanning of the sky, which might lead to the mode mixing or “aliasing” of tangential

Fourier modes.

18.3 General figure-of-merit formalism

In this section, we propose a figure-of-merit beam characterization in the context of

21cm intensity mapping with full treatment of polarization. This scheme is designed to

characterize the bias and variance of the error power spectrum (PS) of the reconstructed

sky caused by beam uncertainties. In particular, we emphasize the mode mixing effect,

especially the leakage from Galactic dominated modes into high SNR modes for the

cosmological signal as well as the leakage from polarized radio sky.

Less abstractly, we assume that the true feed response EJp differs from the evaluated

far field pattern Ep by δEJp:
2

EJp → Ep + δEJp. (18.12)

As a result, the beam matrix of an unpolarized measurement to the Stokes I sky is

correspondingly perturbed, which can be expressed as

MI → MI + δMI. (18.13)

Also, differences in the linear polarization responses of two identical but crossed feeds

lead to nonzero polarized beams, which are written as

MS′ → 0 + δMS′ (18.14)

2Here we used the antenna index J . This is because uncertainties of different feeds can be under-
stood as different instances of statistical beam error models.
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for S ′ ∈ {E,B,V}. We leave the specific form of the beam matrices to later sections.

In this section, we focus on defining a general form for beam characterization.

An unpolarized measurement can be decomposed into the estimated beams and the

beam errors

d = MI TI +
∑
S′

δMS′ TS′ + n. (18.15)

The estimator of the sky intensity is then given by

Test = TI + δT+Kn, (18.16)

where

δT =
∑

S′=I,E,B,V

K δMS′ TS′ (18.17)

is the error in the reconstructed sky due to the beam error. The power spectrum of the

reconstructed Stokes I sky can be divided into several components, as shown below:

〈
TestT

†
est

〉
=
〈
TITI

†〉 +
〈
δTTI

†〉+ 〈TIδT
†〉+ 〈δTδT†〉 + K

〈
nn†〉K† (18.18)

PS of the reconstructed sky

Psky: Foreground + 21cm Signal

PδM: Beam Uncertainty PS

Pn: Noise PS

More explicitly, assuming that the polarized emission is uncorrelated, the error

power spectrum caused by the beam uncertainty is given by

PδM =
∑

S′=I,E,B,V

K δMS′ PS′

sky δM
†
S′ K

† +K δMI P
I
sky +PI

sky δMI
† K† (18.19)

Note that the beam matrices δMS′ in equation (18.19) are actual beam errors. A

statistical description of PδM is possible, as long as we consider an ensemble of δMS′ ,

whose elements are described by a set of independent statistical variables. Usually,

one can take the ensemble average, E(PδM) = ⟨PδM⟩, as the bias, or take its standard
deviation σ(PδM) = ⟨|PδM − E(PδM)|⟩ as a characterization of the ‘noise’, or take the

root of mean squared PδM as its statistical characterization, which is given by√
E (P2

δM) ≡
√
E2(PδM) + σ2(PδM). (18.20)

In this work, we will take the expectation value of the quadratic term as well as the
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standard deviation of the first order term so that

PδM ≡ E

( ∑
S′=I,E,B,V

K δMS′ PS′

sky δM
†
S′ K

†

)
+ σ

(
K δMI P

I
sky +PI

sky δMI
† K†)

=
∑

S′=I,E,B,V

K δMS′ PS′

sky δM
†
S′ K† +K δMI P

I
sky +PI

sky δM
†
I K

†

(18.21)

where δMS′ = σ(δMS′) is the beam error matrix whose entries are the standard de-

viation of the stochastic beam uncertainty of the corresponding beam element. The

expectation of the quadratic term is conveniently given by the standard deviation of

the random variable. However, if we take the expectation of the entire error power

spectrum, E(PδM), we will lose the error information from the linear term if we as-

sume a mean zero stochastic beam error. Since the real world measurement is made

only once, the linear term perturbation exists and we want to preserve some of the

effect when estimating the power spectrum error. Taking the standard deviation of the

linear perturbation term is a reasonable choice.

To better characterize the contamination of the beam uncertainty on the 21 cm

PS, it is necessary to compute the data components in 3-dimensional Fourier space.

Theoretically, we should formulate the statistical measurements in the comoving coor-

dinates. However, since the mathematical form appears much simpler in observational

coordinates (n̂, ν), and also considering that the 3D survey regions of these experi-

ments can usually be regarded as thin redshift shells. Therefore, it is sufficient to

use the Fourier conjugate of the observational coordinates, the transverse and radial

wavenumbers, for a general characterization of the contamination.

However, a continuous Fourier transform with respect to ν could lead to a rather

complicated expression with non-negligible finite integration limits and boundary ef-

fects. Therefore, we use the discrete cosine transform (DCT) instead. A power spec-

trum is transformed from frequency coordinates to DCT modes as3

Pab(q) =

∫
dν

∫
dν ′ fa(ν)fb(ν

′)P(q, ν, ν ′) (18.22)

where the sky component in P, Psky(q, ν, ν
′) approximates the angular power spectrum

in the flat-sky approximation:

Psky(q, ν, ν
′) ≈ Cl=|q|(ν, ν

′), (18.23)

which are discussed in detail in Chapter 19.

3Note the difference between q and k⊥. q is the transverse component of the wavevector in
“observational” coordinates, whereas scaling down q with the comoving distance at the observed
redshift gives k⊥ = q/χ, the transverse wavevector in “cosmological” coordinates.
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Putting all the previous results together, we now define a single Figure-of-Merit

(FoM) allowing us to rank reflector-feed systems according to the factor by which the

total SNR for detecting a cosmological signal is decreased after beam uncertaity error

has been included. The total SNR for detecting a cosmological signal may be defined

as a sum of SNR over all Fourier modes4

(SNR)tot =
∑
q,a

SNR(q, a) (18.24)

In the absence of beam uncertainty, the per mode SNR is given by

SNR(q, a) =
P21cm,aa(q)

Pfg,aa(q) +Pn,aa(q)
(18.25)

When beam uncertainty comes into consideration, this becomes modified to

SNR(q, a) =
P21cm,aa(q)

Pfg,aa(q) +Pn,aa(q) +PδM,aa(q)
(18.26)

Then the FoM is obtained as

F.o.M. =

∑
q,a SNR(q, a)∑
q,a SNR(q, a)

. (18.27)

18.4 Single-dish analysis

Most 21cm experiments of interest are interferometric, largely owing to the long wave-

lengths involved. However, because of the less complicated data path from collection

to map making, single dish experiments (e.g., FAST) and the single-dish mode of an

array (e.g., MeerKAT) are also considered means for HI intensity mapping.

Dropping the indices, the polarized beam patterns of the auto-correlation can be

associated to the far fields in the form of matrix multiplications,

BS
pp(n̂) = E†

p(n̂)σ
SEp(n̂) (18.28)

where S = I,Q,U,V and the far-field vector reads Ex(n̂) = (Eθ
x(n̂), E

ϕ
x (n̂))

T . Equa-

tion (18.6) allows us to get E/B beams out of Q/U beams. Then the beam matrices

for the unpolarized measurement are given by

MS′ = BS′

xx +BS′

yy, (18.29)

4In a more complete analysis, one may instead want to look at the ability to measure certain
cosmological parameters, which is effectively a reweighting of the modes in the definition of total
SNR.
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for S ′ = I,E,B,V. Ideally, E, B and V beams would vanish. Adopting a continuous

notation, we may write a single-dish measurement explicitly as

d(n̂′, ν) =

∫
d2n̂MI(n̂− n̂′, ν)TI(n̂, ν) + n(n̂′, ν). (18.30)

In the flat-sky approximation, the above equation can be regarded as the convolution

of the Stokes-I sky and the beam profile on the 2D plane. As the consequence of

convolution theorem, the above equation can be deconvolved into the Fourier conjugate

coordinates of ∆n̂, i.e., the tangential wavenumbers q:

d(q, ν) = MI(q, ν)TI(q, ν) + n(q, ν), (18.31)

which is seen in the discrete linear system of measurement equations as MI being block

diagonal in q. The Stokes I sky estimator in q coordinates then becomes

Test(q, ν) = [MI(q, ν)]
−1d(q, ν). (18.32)

Now if we consider a general uncertainty term δEp in the feed far-field pattern, the

primary beam uncertainty can be expressed as

δBS
pp = (δEp)

†σSEp + E†
pσ

S(δEp) + (δEp)
†σS(δEp), (18.33)

which also determines the form of δMS′ .

The reconstructed sky is shifted by the beam errors according to

δT =
∑
S′

MI
−1δMS′TS′ (18.34)

For any “stochastic beam error,” we have δMS′ = δMS′(n̂ − n̂′) so that δMS′ is also

diagonal in q. Equation (18.34) in q coordinate then reads

δT(q, ν) =
∑
S′

δMS′(q, ν)

MI(q, ν)
TS′(q, ν). (18.35)

However, for the time varying beam errors, the error propagation appears more com-

plicated; because of the dependence on the absolute position of the beam center, δMS′

is not diagonal in q and results in a mixing of modes. In this case, the induced error

in the estimator is given by

δT(q, ν) =
∑
S′

∑
q′

δMS′(q,q′, ν)

MI(q, ν)
TS′(q′, ν) (18.36)
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18.5 Interferometric analysis

In traditional radio astronomy, interferometric measurements are more used in the

“tracking” mode, where an antenna array is pointed to a specific patch of the sky and

the Earth rotation continuously rotates the antenna baselines used for synthesis imag-

ing. The entire observation can be understood as a set of varying baselines measuring

different modes of the sky brightness constant.

However, many interferometric experiments nowadays drift scan the sky. All dishes

are pointed at the meridian at a given declination, and the sky overhead moves as

the Earth rotates. Since BAO measurements usually require a large survey area, drift

scan observations are favored by HI intensity mapping experiments over the traditional

tracking mode which requires more costly hardware. For this reason, we consider only

drift scan interferometric arrays.

Drift-scan interferometric observations are more closely related to single-dish ex-

periments in that the sky is convolved with a beam in both cases. In the flat-sky

approximation, the beam of a baseline may be considered the primary beam modu-

lated by exp
(
−2πi∆n̂·b⊥

λ

)
. In a drift-scan survey, b⊥ does not change with the rotation

of the Earth. However, b⊥, and therefore the modulated beam, will change when dish

is pointed from one declination to another. A drift-scan survey only convolves the

constant beam with the sky along the east-west direction. This is different from the

two-dimensional convolution in the single-dish mode. Only when the various pointings

are limited in a narrow range of declination can we approximate a drift-scan survey as

a 2D convolution along the longitude and latitude of the celestial sphere.

18.5.1 2D convolution scenario

Let us first consider a survey strategy for which the 2D convolution viewpoint is a

good approximation. By Fourier transforming equation (18.7) with respect to x0, we

deconvolve a single measurement as

VIp,Jq(q) =
∑

S′=I,E,B,V

BS′

pq,bIJ

(
q+ 2π

bIJ,⊥
λ

)
TS′(q). (18.37)

The perturbed primary beams for S = I,Q,U,V are given by

δBS
pq,bIJ

= (δEIp)
†σSEq + E†

pσ
S(δEJq) + (δEIp)

†σS(δEJq), (18.38)

from which the uncertainty primary beams δBS′

pp,bIJ
in E/B mode can be derived. In

the real space, the estimated beam matrix of the unpolarized measurement is given by

MS′,bIJ (x) =
[
BS′

xx,bIJ
(x) +BS′

yy,bIJ
(x)
]
exp

(
−2πi

x · bIJ,⊥
λ

)
, (18.39)
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which as pointed out before is diagonal in q coordinates, so that

MS′,bIJ (q) = BS′

xx,bIJ

(
q+ 2π

bIJ,⊥
λ

)
+BS′

yy,bIJ

(
q+ 2π

bIJ,⊥
λ

)
. (18.40)

The perturbed beam is of a similar diagonal form only in cases of “stochastic beam

errors”

δMS′,bIJ (q) = δBS′

xx,bIJ

(
q+ 2π

bIJ,⊥
λ

)
+ δBS′

yy,bIJ

(
q+ 2π

bIJ,⊥
λ

)
. (18.41)

Otherwise it would become some general non-diagonal mixing matrix, δMS′,bIJ (q,q
′).

An important observation is that all the matrices in equation (18.11) are block

diagonal in baseline b, wavenumber q and frequency ν, which brings about a significant

simplification in calculating the sky estimator:

Test(q, ν) =

[∑
b

|MI,b(q, ν)|2

nb(q, ν)

]−1(∑
b′

MI,b′(q, ν)db′(q, ν)

nb′(q, ν)

)
. (18.42)

where nb is the noise power scale. Considering that the different measurements are

independent and the sky measurement points are uniformly distributed, we can ignore

the dependence of the noise on the q coordinate. In addition, since we assume that all

feeds have similar noise power, nb is actually inversely proportional to the redundancy

of the baseline, or the actual number of antenna pairs with the same spatial separation.

The actual noise scale of an individual feed is unimportant, since it appears in both

the numerator and denominator and thus cancels out. For these reasons, we define a

function, N (b), which gives the number of redundant baselines of b in an array. Then

the equation (18.42) can be rewritten as

Test(q, ν) =

∑
b′ N (b′)MI,b′(q, ν)db′(q, ν)∑

bN (b)|MI,b(q, ν)|2
. (18.43)

For an instance beam, we have

db′(q, ν) = MI,b′(q, ν)TI(q, ν) +
∑
S′

δMS′,b′(q, ν)TS′(q, ν) (18.44)

so the error map caused by the stochastic beam error is

δTest(q, ν) =

∑
S′
∑

b′ N (b′)MI,b′(q, ν)δMS′,b′(q, ν)TS′(q, ν)∑
bN (b)|MI,b(q, ν)|2

. (18.45)

For time varying beam errors,

db′(q, ν) = MI,b′(q, ν)TI(q, ν) +
∑
q′

∑
S′

δMS′,b′(q,q′, ν)TS′(q′, ν) (18.46)
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and the aliasing effect emerges:

δTest(q, ν) =

∑
S′
∑

b′
∑

q′ N (b′)MI,b′(q, ν)δMS′,b′(q,q′, ν)TS′(q′, ν)∑
bN (b)|MI,b(q, ν)|2

. (18.47)

18.5.2 1D convolution scenario

In situations where the 2D planar convolution isn’t suited for a survey strategy, a

one-dimensional convolution, analogous to m-mode analysis (Shaw et al., 2014), might

be more applicable. This approach analyzes each declination observation separately.

Using the flat-sky approximation, the deconvolution of an unpolarized measurement

for a given declination is given by:

db(xθ0 , qϕ) =

∫
dqθ
2π

MI,b(qθ, qϕ)TI(qθ, qϕ) exp (iqθxθ0) + nb(qϕ), (18.48)

where xθ0 denotes the reference point inclination under the flat sky approximation,

reflecting the declination of the pointing center. Unlike the 2D convolution case, this

representation is not significantly simplified computationally, requiring matrix opera-

tions for error computation, as detailed in Section 18.3.
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Input power spectra

In this section, we describe the statistical models used for simulating the radio sky. We

generate the angular power spectrum of the 21cm signal and the unpolarized component

of the galactic foreground using cora (Shaw et al., 2020). However, lacking better

motivated physical model, we derive an analytical covariance model for the polarized

foregrounds based on a synchrotron emission model with specific statistical properties

explored by Alonso et al. (2014) and Shaw et al. (2015). Below we briefly describe these

input power spectrum models of the cosmological signal, unpolarized and polarized

galactic foregrounds and the instrumental noise.

19.1 The 21cm signal

The HI brightness temperature field can be factored into a homogeneous temperature

field and an overdensity field, Tb = T b+δTb = T b(1+δHI), where T b(z) can be estimated

using Chang et al. (2008), which is about 300µK, and δHI is expected to be a biased

tracer of the dark matter distribution such that

δHI(k, z) = F(µ, z)D+(z)δM(k). (19.1)

where F(µ, z) = bHI + fµ2 is introduced to account for effects including the bias of the

tracer and the redshift space distortion (Kaiser, 1987) on large linear scales; we have

ignored the “Fingers of God” effect as it is trivial on large scales. µ = k∥/k is the

cosine of the angle between the line of sight and k, and D+(z) describing the growth

of the perturbations is given by

D+(z) =
5Ωm0H

2
0H(a(z))

2

∫ a(z)

0

da′[a′H(a′)]−3 (19.2)

which is normalised such that D+(0) = 1. The linear growth rate f(z) is related to

the growth function by f = d lnD+/d ln a. δM is the current total matter density
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perturbation field in the universe, and it defines the matter power spectrum

⟨δM(k)δ∗M(k′)⟩ ≡ (2π)3δ3(k− k′)PM(k). (19.3)

We shall establish the FoM formalism in observational coordinates, including fre-

quency (ν), 2D angular direction (n̂) and its Fourier dual (q) in the flat-sky limit,

which approximates the multipole l ≈ |q|. The quantity of interest is the angular

power spectrum of the 21 cm brightness temperature in frequency coordinates, which

can be calculated in a computationally efficient way in the flat-sky approximation

(Datta et al., 2007)

Cl(ν, ν
′) =

T b(z)T b(z
′)D+(z)D+(z

′)

πχχ′

∫ ∞

0

dk∥ cos (k∥∆χ)F(µ, z)F(µ, z
′)PM(k) (19.4)

where redshift z and z′ correspond to the 21cm redshifted frequency ν and ν ′; χ and χ′

are the correponding comoving distances and ∆χ = χ− χ′. The angular wavenumber

l is related to the wavevector component by l = χ|k⊥| and χ is the mean of χ and χ′.

19.2 Unpolarized galactic foregrounds

Our statistical model for the unpolarized galactic foregrounds is based on Santos et al.

(2005) and Shaw et al. (2015), while we shall only include the dominant galactic syn-

chrotron emission. The angular power spectrum at a given frequency is

C fg,I
l (ν) = A

(
l

100

)−α(
ν

ν0

)−2β

. (19.5)

The covariance across two different frequencies ν and ν ′ is assumed to follow a smooth

cut-off,

C fg,I
l (ν, ν ′) = e

− ln2 (ν/ν′)
2ξ2

√
Cl(ν, ν)Cl(ν ′, ν ′), (19.6)

so that

C fg,I
l (ν, ν ′) = A

(
l

100

)−α(
νν ′

ν20

)−β

e
− ln2(ν/ν′)

2ξ2 . (19.7)

Shaw et al. (2015) calibrated the parameter values for low frequencies and high galactic

latitudes, A = 6.6 × 10−3K2, β = 2.8, α = 2.8, and ξ = 4.0.

19.3 Polarized galactic foregrounds

As the synchrotron emissions are highly polarized and undergo Faraday rotations in

propagation, the observed polarization angle of the signal emitted by the source at

distance s is different from its initial polarization angle ϕ0 by ∆ϕ = ψ(s, n̂)(c/ν)2,
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where ψ is the Faraday rotation measure, given as

ψ(s, n̂) =
e3

2π(mec2)2

∫ s

0

ne(s
′, n̂)B∥(s

′, n̂) ds′. (19.8)

Thus, the linear polarized synchrotron intensity written in the form of complex intensity

(Ip = |IP |ei2ϕ = Q+ iU) is:

Ip(ν, n̂) = Π0

∫ ∞

0

jI(s, n̂, ν)e
2iϕ0(s,n̂)eiψ(s,n̂)xν ds, (19.9)

where xν = 2(c/ν)2. jI(s, n̂, ν) is the emission coefficient and Π0 is the degree of linear

polarization (Rybicki et al., 1986).

Using the Faraday depth ψ(s, n̂) as the line-of-sight (LOS) coordinate, equation

(19.9) can be rewritten as

Ip(ν, n̂) =

∫
k(ψ, n̂, ν)eiψxν dψ, (19.10)

where k(ψ0) =
∫
δD(ψ(s) − ψ0)jI(s)e

2iϕ0(s) ds is the collective emission from regions

with Faraday depth ψ, and δD is Dirac delta function.

The model we shall use is based on Alonso et al. 2014, where the collective emission

k(ψ, n̂, ν) is assumed to be proportional to the number of regions with the Faraday

depth ψ; and we also assume the Faraday depths of regions along a LOS are normally

distributed with zero mean and some variance σ2(n̂). This variance is estimated from an

improved map of ψ∞(n̂), the Faraday depth to the edge of the Milky Way (Oppermann

et al. (2012)), by smoothing ψ2
∞ on a large angular scale. This model also requires that

the power-law spectral dependence in any direction be independent of Faraday depth.

Then, the model of k(ψ, n̂, ν) follows

k(ψ, n̂, ν) ∝
(
ν

νref

)α(n̂)
e
− ψ2

2σ2(n̂)µ(ψ, n̂), (19.11)

where α(n̂) is the spectral index, which can be estimated from the Planck Sky Model

(Delabrouille et al. (2013)), and νref is the reference frequency we shall use for nor-

malization; the angular structure term µ(ψ, n̂) is assumed to have the same angular

structure as the unpolarized emission and it’s correlated in Faraday space on scales

smaller than some correlation length ξψ:

⟨µlm(ψ)µ∗
l′m′(ψ′)⟩ ∝ δll′δmm′l−βe

− 1
2

(
ψ−ψ′
ξψ

)2

, (19.12)

where δ is Kronecker delta function.

A useful observation is that the Fourier transform µ̃(x) ≡
∫
µ(ψ)e−iψxdψ is uncor-
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related for different values of x and thus the covariance is diagonal

⟨µ̃lm(x)µ̃∗
l′m′(x′)⟩ ∝ δll′δmm′δD(x− x′)l−βe−

x2ξψ
2

2 . (19.13)

The intensity of linear polarization now can be written in terms of µ̃(x)

Ip(ν, n̂) ∝ σ(n̂)

(
ν

νref

)α(n̂) ∫
µ̃(x, n̂)e

− (xν−x)2

2σ−2(n̂)dx. (19.14)

Next we shall derive the angular power spectrum of this model. Because the spectral

index map and the Faraday depth map are homogeneous on the scales of interest, we

shall factor out the corresponding smooth components for the simple estimates. In

other words, we assume statistically homogeneous random field for a limited patch in

the sky whose amplitude depends on the spectral index and the Faraday width at the

position of the observed patch in the sky. The spherical harmonic coefficients of the

polarized intensity are then estimated as

Iplm(n̂, ν) ≈ σ(n̂)

(
ν

νref

)α(n̂) ∫
µ̃lm(x)e

− (xν−x)2

2σ−2(n̂) dx. (19.15)

Using equation (19.13), we can calculate the power spectrum of polarized intensity for

a patch of the sky centred at n̂:

CIp
l (ν1, ν2; n̂) ∝ σ(n̂)2

(
ν1ν2
ν2ref

)α(n̂)
l−β
∫

exp

[
−x

2ξψ
2

2
− (xν1 − x)2

2σ−2(n̂)
− (xν2 − x)2

2σ−2(n̂)

]
dx.

(19.16)

Note that k(ψ, n̂, ν) is a complex intensity field with the real and imaginary components

corresponding to Stokes Q and U of galactic emissions. We shall further decompose the

foreground covariance into coordinate-invariant B-modes and E-modes by assuming

CEE
l (ν1, ν2) = CBB

l (ν1, ν2) =
1

2
CIp
l (ν1, ν2) (19.17)

and CBE
l (ν1, ν2) = CTE

l (ν1, ν2) = CTB
l (ν1, ν2) = 0.

Finally, we have

CPP
l (ν1, ν2; n̂) ∝ l−βσ2

(
ν1ν2
ν2ref

)α
exp

[
−σ

4((c/ν1)
2 + (c/ν2)

2)2(
ξ2ψ/2 + σ2

)2 − σ2

(
c

ν1

)2

− σ2

(
c

ν2

)2
]

(19.18)

where P = E,B, and remember that the Faraday width σ and the spectral index α

are dependent on the specific patch of the sky. A direct observation from the above

expression is that the galactic synchrotron emissions at low frequencies are stronger,

as shown by the power law term, but also suffering larger Faraday rotation effects

which reduces the correlation strength between low frequencies, which is implied by
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the exponential term. This general property is consistent with our empirical knowledge.

The proportionality constant in equation (19.18) is still to be determined. Assuming

a statistical polarized fraction fpol of the unpolarized emission, the normalization can

be found by solving CEE
l (νref, νref) = 1

2
f 2
polC

TT
l (νref, νref). The value of fpol can be

finely calibrated using measured average polarized fraction at particular frequency and

galactic latitude, for example using Kogut et al. (2007). However, for our purpose of

formalizing the F.o.M formalism, it suffices to assume a fiducial polarization fraction

fpol = 0.5.

19.4 Instrumental noise

The time series of antenna voltages induced by incident radiation field initially has

the form of incoherent noise with rapid fluctuations. Although after the bandpass

filter the voltage becomes temporally correlated from point to point,1 it is still a ran-

dom variable with zero mean in nature. One usual way to measure the power in the

fluctuating signal is to average the square of the voltage for a long period T , which

is termed integration time. Measurement of this kind is called auto-correlation. Since

the integration time is finite, the averaged output power from the integrator is only an

estimate of the true value, with an associated uncertainty, which contributes as noise.

In the Rayleigh-Jeans regime the rms fluctuations, or noise scale, in the output from

the integrator is expressed in temperature by the radiometer equation:

∆Trms =
Tsys√
∆νT

(19.19)

where Tsys is the system noise temperature and ∆ν is the frequency channel width.

While for visibility measurements, one considers the cross-correlation between dif-

ferent feeds by digitizing the voltage signals of each feed and then integrating the prod-

uct of the digital signals over time. The mean squared fluctuations in the amplitude

of the integrator output are

∆T 2
rms,ij =

Tsys,iTsys,j
∆νT

(19.20)

where i, j represent the two elements of the antenna pair. Since the noise at each feed

and each frequency channel is independent, the noise between different baseline pairs

or different frequencies is uncorrelated. Just like what we have worked out for sky

sources, we define the noise power spectrum in visibility correlation:

Nij(ν, ν
′) = δνν′

Tsys,i(ν)Tsys,j(ν
′)

ttot∆ν
(19.21)

1This is manifested as a low frequency modulation of the voltage envelope whose time scale is
estimated as the inverse of the frequency channel width, 1/∆ν.

140



Input power spectra Instrumental noise

where δ is Kronecker delta function and ttot is the total integration time for a baseline

measurement, which is dependent on the particular survey strategy.

141



Chapter 20

Discussion

20.1 Generalizing Stokes I Strategies

In this polarized FoM formalism we use the most common Stokes I extraction strategy,

i.e. XX + Y Y . This should be easily generalized to other linear Stokes I extraction

strategies, such as those discussed in Part IV.

20.2 The aliasing effects

In the previous discussion we categorized general beam uncertainties into ‘stochastic

beam errors’ (constant) and ‘time varying beam errors.’ The former leads to leakage

of the same spatial (transverse) mode polarizations into the Stokes I signal, as shown

in equation (18.45). The latter induces not only such polarization leakage, but also

leakage of other modes, especially the galactic dominated modes of all polarizations, as

shown in equation (18.47). This mode-mixing effect coupled with polarization leakage

can be generally referred to as the aliasing effects in mode analysis.

20.2.1 Numerical example

This section provides a numerical example that demonstrates the mixing of transverse

modes and the effect of polarization leakage due to beam simulation error.

Toy model of beam error

In our model, we propose that the beam error has separable time and beam angle

dependence, such that

δEIp(x,x0) = Ep(x)∆Ip(x0). (20.1)

Consequently, the resulting Stokes beam error is given by

BS
pq,bIJ

(x,x0) = [1 + fIp,Jq(x0)]B
S
pq(x), (20.2)
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with

fIp,Jq(x0) = ∆∗
Ip(x0) + ∆Jq(x0) + ∆∗

Ip(x0)∆Jq(x0). (20.3)

We further assume that ∆(x0) is a Gaussian function with a diameter of approximately

25◦. This represents the duration when the beam error is notably substantial during

drift scanning.

Measurement Equation in Fourier Coordinate

Assuming a sufficiently large survey area, such that we can neglect the windowing

effect, the Fourier-coordinate measurement equation with beam error becomes:

VIp,Jq(q0) =
∑

S′=I,E,B,V

BS′
(
q0 + 2π

bIJ,⊥
λ

)
TS′(q0)

+

∫
d2qf(q0 − q)BS′

(
q+ 2π

bIJ,⊥
λ

)
TS′(q). (20.4)

Impact of Beam Uncertainties

We consider an array of four identical HIRAX prime focus reflectors (as shown in

Figure 20.1), each equipped with a single feed. Figure 20.2 shows the error in the

angular power spectrum of the reconstructed Stokes I sky at 400 MHz due to beam

uncertainties. This is illustrated by the equation (18.19). The results reveal a mix of

different transverse modes, or ℓ modes, of Stokes I. Moreover, a significant leakage

from various polarization modes to the reconstructed Stokes I is evident.

20.3 The convolution approximation

Our discussion, both single-dish analysis and interferometric analysis, are rooted in

the convolutional view of measurement, which greatly simplifies the formalism of FoM.

This view has limitations. For Stokes I and V (primary) beams, which are invariant

as the beams drift in any direction, the idea of a constant scalar field convolving a sky

field applies. On the other hand, the primary beams for Stokes Q and U could change

from pointing to pointing due the the curvature of the sperical coordinates system.

The idea of two-dimensional convolution can only be used if it is assumed that such

changes are negligible. The assumption works well under the flat sky approximation,

where the observed sky patch is treated as a two-dimensional plane (see Figure 6.5).

This ensures a consistent relationship between antenna and celestial sphere coordinates

across the survey area. Thus, if the flat-sky approximation is valid, our 2D convolution

scenario of the primary beam remains applicable. Conversely, if the beam is not narrow

enough, the 2D convolution scenario is limited to a narrow strip.
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The convolution approximation Discussion

Figure 20.1: Antenna baselines and Stokes beams. Top left: Antenna Array. Top right:
Stokes I beam. Bottom left: Stokes Q beam. Bottom right: Stokes U beam. X and
Y are beam coordinates projected on the flat sky plane.
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Discussion The convolution approximation

Figure 20.2: Angular power spectrum error of the reconstructed Stokes I sky due to
beam uncertainties, as detailed in equation (18.19). Top Left: Simulated Stokes I sky
angular power spectrum. Top Right: Total error in the angular power spectrum caused
by beam error. Bottom Left: Error contribution from other Stokes I modes. Bottom
Right: Error contribution from other polarizations.
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Importance of beam error data Discussion

However, the modulated beam in radio interferometric analysis is a different story.

Reorienting the antenna at a different pointing or declination results in a change in

the sine or cosine modulation function. In this case, the 2D convolutional view is only

applicable to a narrow strip survey. Near the zenith this effect slows down. However,

we can also perform the convolution along only one direction, as discussed in section

18.5.2.

20.4 Importance of beam error data

Mitigating or avoiding the effects discussed in this work is critical for 21cm intensity

mapping experiments. The FoM formalism is one such beam evaluation strategy, based

on the statistical models of stochastic beam uncertainties, that can be used to diagnose

and thus minimize the polarization leakage and aliasing effects caused by beam uncer-

tainties. Ideally, there would be a wealth of data on these issues that could be used

as inputs to the construction of the FoM. However, such data are currently lacking.

We would expect to see more data and simulations on these issues in the future, since

the basic strategy for precision observations is that even if we do not have absolute

knowledge of the systematics, we at least establish an accurate statistical description

of it, which is essential for understanding the confidence in the experimental results.
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Part VI

Conclusion
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This thesis has examined the role of polarization in 21-cm intensity mapping exper-

iments from several perspectives. We began by reviewing the formalism of polarization

measurements and the properties of polarized foregrounds. These discussions set the

stage for our primary original work discussed in part IV and part V of this thesis.

Specifically, in part II, we formalized the polarization measurements. Traditional ap-

proaches employ Jones matrices to link field points of the Stokes sky and the feed far

field (refer to Thompson et al. (2017) for details). However, our method in part II

provides an analytical function based on the antenna coordinates and pointing. This

function can handle the transformation of any field degree of freedom.

In the discussion of polarization foregrounds, we qualitatively describe the polariza-

tion and spectral properties of diffuse foregrounds. This provides an understanding of

foreground mitigation strategies in 21-centimeter detections based on Stokes I spectral

properties, as well as an understanding of why polarization foregrounds can be prob-

lematic. Specifically, we provide an analytical angular power spectrum of polarization

derived entirely from the polarized foreground model presented in Alonso et al. (2014)

(see section 19.3). This provides a convenient choice for related fast simulations.

With this groundwork laid out, our original contributions in part IV and part

V deal with the optimal extraction of the Stokes I signal from radio measurements

(in part IV) and the quantification of the impact of beam uncertainty on intensity

mapping experiments (in part V). In the following sections, we will summarize the role

of polarization in each of these topics.

Optimal Stokes I extraction

When considering the Stokes I extraction approach, we frame the measurement within

a linear formalism wherein Stokes I extraction involves identifying the right linear

combinations of data (or ‘data projection’ in technical terms). This is typical for

many Stokes I measurements. For example, the XX + Y Y strategy commonly used

is essentially a special linear combination of all independent measurements. A more

general application can be seen in e.g. Shaw et al. (2015), where data is projected onto

the cokernel of the beam of polarizations.

In part IV of this thesis, we argue that the desired procedure is more complicated

than a simple projection. Theoretically, we have the flexibility to adjust the role

of polarization and set up Stokes I extraction strategies under different polarization

scenarios. For example, we can map both the Stokes I and the polarizations using

flat priors. We can also choose linear combinations so that there is no polarization

leakage, provided the beam matrix is perfectly known. To further reduce variance of

Stokes I, additional information is essential. We can use polarization leakage to reduce

the variance. This requires knowledge of CPP, the a priori power spectrum of the

polarizations.
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However, to effectively achieve minimal variance in Stokes I extraction, one must

understand the expected, or prior, values for both the Stokes I and Stokes Q/U sky. We

have shown how to find Stokes I dominated modes by integrating out the polarization,

which is also known as a Wiener filtered map. This is biased but in a way that is

completely understood.

Beam figure-of-merit

The polarized FoM formalism characterizes, in a broader sense, the mode mixing and

polarization leakage caused by the stochastic time-varying beam uncertainty, as well as

the coupling between these two effects, and their impact on intensity mapping experi-

ments. The concepts of ‘mode mixing’ and ‘polarization leakage’ are well recognized in

the field of 21-cm cosmology, although their interpretations vary between different stud-

ies. As an example, Hazelton et al. (2013) discusses a type of mode mixing that occurs

when measurements from non-identical baselines are combined. Some other work, e.g.

Thyagarajan et al. (2016), studies the mode mixing effects in the context of antenna

beam chromaticity. On the other hand, polarization leakage is mostly discussed in the

context of a certain but unknown error due to construction tolerances of polarime-

ters, which could be understood as the polarization mismatch error in interferometry

(Thompson et al., 2017). The effect of polarization leakage has been widely studied

in EoR tomography (e.g. Jelić et al. (2010); Nunhokee et al. (2017); Martinot et al.

(2018)). In the context of the 21-cm global signal, the effect of polarized foreground

leakage is studied in Spinelli et al. (2019).

In the polarized FoM framework, we have addressed a more general characterization

of instrument errors by perturbing the far-field of the antenna. By describing the beam

uncertainty as either a stochastic beam error or a time-varying error, the formalism

encapsulates the dependence of the instrument systematics on direction, polarization,

frequency, and time (or pointing). By evaluating the intensity map error and the

associated power spectrum error due to the beam uncertainty, the formalism calculates

the ratio of the cosmic signal to the combined “noise + error” for each Fourier mode.

Aggregation of the signal-to-noise ratios for all modes yields a single figure-of-merit.

This approach provides an isolated assessment of the beam effectiveness in achieving

scientific goals.
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Résumé

Au cours de la dernière décennie, on a assisté à un regain d’intérêt pour l’utilisation

de la cartographie d’intensité (IM) à 21 cm comme sonde de la structure à grande

échelle. Cette idée tire parti de la raie spectrale optiquement mince de 21 cm qui

provient de la transition hyperfine de l’hydrogène atomique neutre (HI), qui a envahi

l’univers après la recombinaison. Bien que dans l’univers tardif la réionisation ait

détruit la plus grande partie de l’hydrogène neutre, dans les galaxies le HI surdense a

un taux de recombinaison, proportionnel à n2, qui est suffisant pour surmonter le taux

d’ionisation, proportionnel à n, dû au rayonnement ionisant de fond. De plus, pour

les nuages denses et de grande taille, le blindage doit être pris en compte. Lorsque

la température de spin est supérieure à la température du fond diffus cosmologique

(CMB), l’émission stimulée surdense domine l’absorption, ce qui conduit à l’émission

nette de 21 cm et peut être observé comme la différence entre la température ob-

servée et la température du CMB. L’observation de la raie d’émission 21cm décalée

vers le rouge trace la distribution tridimensionnelle des galaxies et permet d’étudier

le regroupement des halos effondrés sur une large gamme de décalages vers le rouge

et d’échelles spatiales. Ces données constituent un moyen puissant de contraindre les

modèles cosmologiques.

Comme l’avant-plan galactique est spectralement lisse, il est théoriquement possible

d’extraire le signal extragalactique désiré. Cependant, les systématiques instrumentales

peuvent entrâıner une fuite d’une partie de cet avant-plan spectralement lisse vers des

composantes variant rapidement avec la fréquence et ainsi être confondues avec un

signal extragalactique. La fuite de polarisation est l’un des défis les plus difficiles à

relever car l’avant-plan fortement polarisé subit une rotation de Faraday lorsqu’il se

propage dans le MIS en présence du champ magnétique galactique. Bien que le signal

cosmologique souhaité soit supposé non polarisé, les observations radio étant basées

sur la polarimétrie, une représentation inexacte des mesures de polarisation conduit à

une fuite de l’avant-plan polarisé dans le signal. Les avant-plans polarisés ayant une

structure spectrale complexe compliqueraient l’élimination des avant-plans qui repose

sur la régularité spectrale de l’avant-plan galactique.

Dans cette thèse, nous examinons plusieurs aspects du rôle de la polarisation dans la

cartographie de l’intensité à 21 cm. Nous passons en revue les mesures de polarisation

du ciel radio, nous formalisons la mesure du signal de tension en termes de diagramme

de champ lointain de l’antenne, et nous présentons un modèle de mesures de puissance

polarisée.

Nous examinons également la polarisation de l’avant-plan galactique. Les expériences

à 21 cm tirent parti de la régularité spectrale du signal de l’avant-plan galactique. Mais

ce n’est pas tout. D’une part, les défis liés à l’avant-plan peuvent être couplés à des

systématiques instrumentales, ce qui peut conduire à des fuites d’émission polarisée
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dans les mesures de Stokes I. Les avant-plans polarisés ont généralement une struc-

ture spectrale complexe due à la rotation de Faraday pendant la propagation. Cela

crée de sérieuses difficultés pour les stratégies d’atténuation des avant-plans basées sur

la régularité spectrale. D’autre part, les expériences à 21 cm ont généralement une

gamme dynamique élevée, c’est-à-dire que nous nous intéressons à des contrastes beau-

coup plus faibles que l’intensité moyenne. Cependant, la douceur connue du spectre de

l’avant-plan, soit par extrapolation à partir du succès de stratégies similaires dans les

expériences CMB, soit par suite d’une modélisation théorique, ne fournit pas de preuve

directe que l’hypothèse s’appliquerait à la gamme dynamique des expériences à 21 cm.

Par conséquent, une étude détaillée de l’émission d’avant-plan est essentielle pour les

observations à 21 cm. Le ciel radio diffus à basse fréquence est dominé presque ex-

clusivement par le rayonnement synchrotron relativiste, le rayonnement des électrons

accélérés dans le champ magnétique galactique, et l’émission libre, le rayonnement

produit par les électrons accélérés dans le potentiel de Coulomb des ions. Les deux

processus physiques sont rigoureusement calculés. Comme les ions dans un plasma

peuvent apparâıtre dans n’importe quelle direction du faisceau d’électrons incident,

la polarisation zéro est une bonne approximation pour l’émission libre dans le cadre

d’une moyenne d’ensemble. La polarisation du rayonnement synchrotron relativiste

est plus complexe. Les ondes monochromatiques sont par définition entièrement po-

larisées. Nous voyons que le rayonnement synchrotron à un seul électron a en général

une densité spectrale de puissance non nulle dans les deux directions de polarisation,

de sorte que l’onde monochromatique du rayonnement synchrotron à un seul électron

est polarisée elliptiquement. Le champ de rayonnement synchrotron à un seul électron

est symétrique par rapport au plan de vitesse et d’accélération. Cela indique que deux

observateurs situés de part et d’autre du plan observent des polarisations circulaires

opposées. Cela suggère que les polarisations circulaires observées pourraient être an-

nulées dans une certaine mesure. La situation idéale est celle où toutes les polarisations

circulaires de gauche et de droite s’annulent. Dans ce cas, l’observateur ne reçoit qu’un

rayonnement partiellement polarisé linéairement. Nous abordons également les effets

de la propagation des ondes électromagnétiques dans la région HII. Dans le milieu inter-

stellaire (MIS) de la Voie lactée, il existe des champs magnétiques omniprésents, connus

sous le nom de champs magnétiques galactiques, qui servent de champ magnétique de

fond exercé pour le plasma. En raison de l’effet de rotation de Faraday, les ondes

à polarisation linéaire sont sujettes à une rotation du plan de polarisation dans les

régions HII fermées par le champ magnétique galactique à grande échelle. Nous con-

struisons également un spectre de puissance angulaire pour le ciel polarisé basé sur

un modèle du ciel radio polarisé. Dans ce modèle, l’émission collective est supposée

être proportionnelle au nombre de régions ayant la profondeur de Faraday ψ ; et nous

supposons également que les profondeurs de Faraday des régions le long d’une LOS

sont normalement distribuées avec une moyenne nulle et une certaine variance σ2(n̂).
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Cette variance est estimée à partir d’une carte améliorée de ψ∞(n̂), la profondeur de

Faraday jusqu’au bord de la Voie Lactée, en lissant ψ2
∞ sur une grande échelle angu-

laire. Comme la carte de l’indice spectral et la carte de la profondeur de Faraday sont

homogènes sur les échelles d’intérêt, nous factorisons simplement les composantes lisses

correspondantes pour les estimations simples et nous obtenons un modèle de spectre

de puissance angulaire dépendant de la direction.

En utilisant l’approximation linéaire, nous décrivons le processus de mesure et

d’analyse des données. Nous définissons les quatre sous-espaces fondamentaux, chacun

pouvant être couvert par un ensemble de vecteurs singuliers. Nous montrons qu’après

avoir introduit l’a priori du ciel et le spectre de puissance du bruit, on peut caractériser

l’intensité du signal et l’échelle du bruit pour chaque ”sous-espace”. Étant donné le

formalisme linéaire de la mesure, nous pouvons l’appliquer à la projection des données,

c’est-à-dire obtenir la partie du vecteur de données dans un sous-espace linéaire de

l’espace des données. Nous définissons des opérateurs de projection de données qui

réalisent un compromis optimal entre plusieurs objectifs de réduction ou d’extraction

de données, y compris le rejet de la polarisation, la réduction du bruit et la sélection et

l’évitement de degrés de liberté spécifiques du faisceau. Nous proposons également une

stratégie optimale d’extraction de Stokes I. En introduisant des spectres de puissance

a priori sur le ciel polarisé, nous montrons que trouver les modes dominants de Stokes

I appropriés est une question d’intégration de la polarisation.

Enfin, nous développons une figure de mérite pour quantifier l’impact d’une car-

actérisation inexacte et imprécise du faisceau et de sa complexité sur l’extraction de la

carte d’intensité. Il existe plusieurs sources d’erreurs d’estimation du faisceau, telles

que les erreurs ou incertitudes dans les simulations CEM, les variations des facteurs en-

vironnementaux, etc. En général, nous définissons deux types différents d’incertitudes

sur les faisceaux, les ”erreurs stochastiques sur les faisceaux” ou les ”erreurs sur les

faisceaux variables dans le temps”, qui se distinguent par le fait qu’elles varient ou non

dans le temps. Pour le type constant, à savoir les erreurs stochastiques du faisceau, les

ciels polarisés avec tous les paramètres de Stokes des mêmes modes de nombres d’ondes

transversales s’infiltreront dans le signal cosmologique. Pour le type variable dans le

temps, appelé erreurs de faisceau variables dans le temps, quelque chose d’encore plus

grave se produit en plus de la fuite de polarisation : les effets de repliement peu-

vent provoquer un mélange dans les modes de nombre d’ondes transversales, ce qui

peut conduire à une fuite des modes dominés par la galaxie de toutes les polarisations

dans les modes à haut RSB pour le signal cosmologique. Il est essentiel d’atténuer ou

d’éviter les effets décrits ci-dessus pour les expériences de cartographie de l’intensité à

21 cm. En introduisant une description statistique des systématiques du faisceau, nous

modélisons l’impact des fuites de polarisation, nous modélisons l’impact de la fuite

de polarisation et du mélange de modes dans la reconstruction I de Stokes. En util-

isant des modèles statistiques du ciel et du bruit, nous évaluons le rapport signal/bruit
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(RSB) de chaque mode de Fourier avant et après la prise en compte de l’incertitude

du faisceau. Une figure de mérite (FoM) est ensuite définie pour classer les systèmes

d’alimentation par réflecteur en fonction du facteur par lequel le rapport signal/bruit

total pour la détection d’un signal cosmologique est réduit après prise en compte de

l’erreur d’incertitude du faisceau. Le formalisme du FoM peut être utilisé pour diagnos-

tiquer et donc minimiser les fuites de polarisation et les effets de repliement causés par

les incertitudes du faisceau. Notre discussion, à la fois l’analyse d’une seule coupelle et

l’analyse interférométrique, est ancrée dans la vision convolutionnelle de la mesure, ce

qui simplifie grandement le formalisme du FoM. Mais comme nous l’avons précisé au

début, ce point de vue a des limites. Pour les faisceaux de Stokes I et V (primaires),

qui sont invariants lorsque les faisceaux dérivent dans n’importe quelle direction, l’idée

d’un champ scalaire constant convoluant un champ du ciel s’applique. En revanche,

les faisceaux primaires de Stokes Q et U , et donc E et B, restent constants lorsque

les faisceaux sont balayés le long d’une ligne de déclinaison, mais changent lorsque la

déclinaison change, dans le système de coordonnées sphériques équatoriales. L’idée de

convolution bidimensionnelle ne peut être utilisée que si l’on suppose que ces change-

ments sont négligeables. Mais heureusement, cette hypothèse n’est pas plus forte que

l’approximation du ciel plat. Les vecteurs de base des coordonnées de l’antenne à

toutes les positions sur ce plan sont liés aux vecteurs de base des coordonnées de la

sphère céleste de la même manière linéaire qu’au centre du faisceau. Le balayage du

faisceau le long de thêta (colatitude) ou de phi (ascension droite) ne modifie pas l’angle

entre la base de l’antenne et la base céleste au centre du faisceau, tant que l’antenne ne

tourne pas autour de son propre axe. Ainsi, si l’approximation du ciel plat fonctionne

bien, notre vue convolutionnelle bidimensionnelle du faisceau primaire peut toujours

être utilisée. Cependant, si le faisceau primaire n’est pas si étroit que l’approximation

du ciel plat échoue, nous ne pouvons utiliser la vue convolutionnelle en 2D que pour

une bande d’observation très étroite avec une faible largeur en déclinaison. Le faisceau

modulé dans l’analyse interférométrique radio est une autre histoire. La réorientation

de l’antenne vers un autre pointage ou une autre déclinaison entrâıne une modification

de la fonction de modulation sinusöıdale ou cosinusöıdale. Dans ce cas, la vue convo-

lutionnelle en 2D n’est applicable qu’à une bande étroite. Au voisinage du zénith, cet

effet ralentit. Cependant, nous pouvons également effectuer la convolution dans une

seule direction. L’idéal serait de disposer d’une multitude de données sur ces questions

d’erreur de faisceau, qui pourraient être utilisées pour la construction du FoM. Toute-

fois, ces données font actuellement défaut. Nous espérons voir davantage de données

et de simulations sur ces questions à l’avenir, car la stratégie de base pour les obser-

vations de précision est que même si nous n’avons pas une connaissance absolue des

systématiques, nous établissons au moins une description statistique précise de celles-ci,

ce qui est essentiel pour comprendre la confiance dans les résultats expérimentaux.
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