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Résumé : Les théories des types dépendants sont des
systèmes formels qui peuvent être utilisés à la fois
comme langages de programmation et pour la
formalisation des mathématiques, et constituent la
base de plusieurs assistants de preuve tels que Coq
et Agda. Afin d'unifier leur étude, les Logical
Frameworks (LFs) fournissent un méta-langage unifié
permettant de définir ces théories, dans lequel
diverses notions universelles sont intégrées par
défaut et où des méta-théorèmes génériques
peuvent être prouvés.

Cette thèse se concentre sur les LFs conçus pour être
implémentés, avec pour objectif de fournir des
type-checkers génériques. Notre principale
contribution est un nouveau LF permettant de
représenter les théories des types avec leurs syntaxes
non annotées habituelles. La clé pour permettre de
supprimer des annotations sans compromettre la
décidabilité du typage est l'intégration du typage
bidirectionnel, une discipline dans laquelle le
jugement de typage est décomposé en modes
d'inférence et de checking.

Si le typage bidirectionnel est déjà bien étudié dans
la littérature, l'une des contributions centrales de
notre travail est sa formulation dans un LF, ce qui
donne un traitement générique pour toutes les
théories définissables dans notre système. Notre
proposition a été implémentée dans le
type-checker générique BiTTs, permettant son
utilisation avec diverses théories.

En plus de notre contribution principale, nous
proposons des avancés dans l'étude de Dedukti, un
LF appartenant à la même famille que le système
que nous proposons. Tout d'abord, nous revisitons
le problème de la correction des encodages dans
Dedukti en proposant une méthodologie qui
permet de démontrer plus facilement la
conservativité. De plus, nous montrons comment
Dedukti peut être utilisé en pratique comme outil
de traduction de preuves, en proposant une
transformation pour partager des preuves avec des
systèmes prédicatifs. Cette transformation a permis
la traduction de preuves de Matita vers Agda,
aboutissant aux toutes premières preuves en Agda
du Petit Théorème de Fermat et du Postulat de
Bertrand.
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Abstract : Dependent type theories are formal
systems that can be used both as programming
languages and for the formalization of mathematics,
and constitute the foundation of popular proof
assistants such as Coq and Agda. In order to unify
their study, Logical Frameworks (LFs) provide a
unified meta-language for defining such theories in
which various universal notions are built in by default
and metatheorems can be proven in a
theory-independent way.

This thesis focuses on LFs designed with
implementation in mind, with the goal of providing
generic type-checkers. Our main contribution is a
new such LF which allows for representing type
theories with their usual non-annotated syntaxes. The
key to allowing the removal of annotations without
jeopardizing decidability of typing is the integration of
bidirectional typing, a discipline in which the typing
judgment is decomposed into inference and checking
modes.

While bidirectional typing has been well known in
the literature for quite some time, one of the central
contributions of our work is that, by formulating it in
an LF, we give it a generic treatment for all theories
fitting our framework. Our proposal has been
implemented in the generic type-checker BiTTs,
allowing it to be used in practice with various
theories.

In addition to our main contribution, we also
advance the study of Dedukti, a sibling LF of our
proposed framework. First, we revisit the problem
of showing that theories are correctly represented
in Dedukti by proposing a methodology for
encodings which allows for showing their
conservativity easily. Furthermore, we demonstrate
how Dedukti can be used in practice as a tool for
translating proofs by proposing a transformation for
sharing proofs with predicative systems. This
transformation has allowed for the translation of
proofs from Matita to Agda, yielding the first-ever
Agda proofs of Fermat's Little Theorem and
Bertrand's Postulate.
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Résumé en Français

Les théories des types dépendants sont des systèmes formels qui peuvent être utilisés à la
fois comme langages de programmation et pour la formalisation des mathématiques, et
constituent la base de plusieurs assistants de preuve tels que Coq, Agda, Lean et Matita.
Afin d’unifier leur étude, les logical frameworks (LF) fournissent un métalangage unifié
pour définir ces théories, dans lequel diverses notions universelles sont intégrées par
défaut, et des métathéorèmes peuvent être prouvés de manière générique.

L’objectif principal de cette thèse est de faire progresser l’étude des LFs en tant qu’outils
implémentables et pratiques, notamment dans le cadre du projet Dedukti. Pour cela, nous
proposons trois contributions principales, chacune étant le sujet d’une des parties de
cette thèse.1

Nous commençons dans la première partie par revisiter le problème consistant à mon-
trer que les théories des types sont correctement représentées dans le logical framework.
Plus précisément, la conservativité des théories définies dans les LFs par rapport à leurs
présentations habituelles est un problème récurrent dont la solution n’est pas toujours
évidente. Nous proposons une méthodologie révisée pour les encodages Dedukti qui
permet de démontrer facilement la conservativité, en interdisant les règles de réécriture
dites arrow-producing, qui ont historiquement été fortement utilisées dans la littérature
Dedukti. La pierre angulaire de notre proposition est un nouveau critère de normalisation
pour la 𝛽-réduction dans Dedukti qui, à condition qu’aucune règle arrow-producing ne
soit utilisée, permet de ne considérer que les formes 𝛽-normales lors de la preuve de
conservativité, qui peut alors être faite par une simple induction. Nous illustrons notre
méthodologie en proposant un nouvel encodage des Pure Type Systems (PTSs) fonctionnels
dans Dedukti dont la conservativité peut être démontrée facilement, contrairement à
l’encodage proposé précédemment.

Dans la deuxième partie, nous proposons un nouveau logical framework qui, comparé
à Dedukti, permet de représenter les théories des types avec leurs syntaxes habituelles
non annotées. En effet, un point indésirable des frameworks comme Dedukti est que les
théories des types ne peuvent être présentées qu’en utilisant une syntaxe fully annotated,
où tous les arguments sont explicitement donnés, ce qui impacte négativement l’expérience
utilisateur et la performance du type-checking. La clé pour permettre la suppression de
ces annotations sans compromettre la décidabilité du typage est l’intégration dans le
framework du typage bidirectionnel, une discipline dans laquelle le jugement de typage
est décomposé en modes d’inférence et de checking. Si le typage bidirectionnel est bien
étudié dans la littérature depuis un certain temps, l’une des contributions centrales de
ce travail est que, en le formulant dans un logical framework, nous lui donnons un
traitement générique pour toutes les théories des types compatibles avec notre framework.
Notre proposition a été implémentée dans le type-checker bidirectionnel générique BiTTs,

1Le titre de cette thèse fait spécifiquement référence à la deuxième partie, dont la contribution est la
plus substantielle.
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permettant son utilisation pratique avec diverses théories.
Enfin, nous démontrons dans la troisième partie comment Dedukti peut être utilisé

en pratique comme un outil de traduction de preuves, en proposant une transformation
pour le partage de preuves avec des systèmes prédicatifs. Notre proposition est basée sur
l’élaboration avec polymorphisme d’univers, et sa définition nous a amenés à étudier et
à proposer des algorithmes pour l’unification équationnelle dans la théorie des niveaux
d’univers prédicatifs. Cette transformation a notamment permis la traduction de preuves
de Matita vers Agda, deux assistants de preuve basés respectivement sur la théorie des
types impredicative et prédicative, donnant ainsi les premières preuves jamais réalisées
dans Agda du Petit Théorème de Fermat et du Postulat de Bertrand.
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Chapter 1

Introduction

From formal mathematics to mechanized proofs

The birth of modern mathematical logic in the turning of the 20th century is rooted in
the realization that, unlike the mathematical practice until then, mathematics should be
developed in a formal system, in which statements are derived from a fixed collection
of axioms and deduction rules. Central in this vision is that, unlike earlier attempts at
formalizing mathematics — such as that of Euclid — mathematical objects are treated
abstractly and striped of any intuitive meaning not implied by the axioms.

Yet, while mathematical rigor has improved, the modern practice has still remained
mostly informal. The reason for this is quite mundane: for most of the last century, no
method for building formal proofs was available other than manually writing them in
painstaking detail. An example of this can be found in the following well-known excerpt
from Whitehead and Russell’s Principia Mathematica, which illustrates the impracticality
of this method.

Fortunately, this situation changed in the second half of the 20th century with the
advent of computers, making formal mathematics practically possible, and starting a
fruitful collaboration between logic and computer science. Indeed, while verifying thou-
sands of applications of deduction rules would take considerable time and effort for a
mathematician, the same task can now be performed automatically by a machine.

1



2 CHAPTER 1. INTRODUCTION

Moreover, while no algorithm can prove by itself arbitrary statements in sufficiently
expressive logics, modern proof assistants can still provide help with the writing of proofs.
First, low-level proof steps may be grouped into more readable commands closer to
informal mathematical practice, called tactics. Second, tedious and uninteresting steps,
usually omitted from informal proofs, can sometimes be filled automatically with the use of
automatic provers, such as SMT solvers. Interestingly, the help provided by proof assistants
can even allow for proofs that would be infeasible to write by hand, such as that of the
Four Color Theorem, which requires the analysis of hundreds of configurations [G+08].
All in all, modern proof systems have allowed for the formalization of a significant corpus
of mathematical knowledge.

Type theories

While set theory is the most well-accepted foundation in informal mathematical practice,
the situation in the world of mechanized mathematics is quite different. Modern proof
systems are mostly based on type theories, formal systems in which objects are not treated
in a monolithic way, but classified according to their types. One notable example of such
theory, Church’s Simple Theory of Types (STT)1 [Chu40, BA24], is the basis of various
proof systems such as HOL-Light, HOL4 and Isabelle/HOL, the latter being among the
most popular proof assistants today.

Compared with set theory, an interesting aspect of Church’s STT is its uniform
treatment of propositions and objects as just _-terms of certain types. Yet, the concept of
proof is still given a second-class treatment, like in set theory. One of the key realizations
of the 1960s is that this is not necessary: proofs can be internalized as terms, in which
case the propositions they prove become themselves types. This propositions as types
correspondence, also known as the Curry-Howard isomorphism [SU06], is at the heart of a
second family of type theories, called dependent type theories [ML84, dB94, Hof97]. Indeed,
for sufficiently expressive logics, capable of talking about objects, the internalization of
propositions as types leads to dependent types, that is, types which depend on terms. For
instance, the proposition "𝑛 is prime" now becomes the dependent type whose terms
witness the primality of 𝑛. Dependent type theories are the foundation of various popular
proof assistants, such as Coq, Agda and Lean.

Constructivism and programming

An interesting aspect of dependent type theories is that some of them, referred to as
constructive, can also be seen as programming languages, providing a unified foundation
for both proving and programming. Indeed, just like programming languages, in such

1Not to be confused with Church’s simply typed _-calculus, the framework used to specify the syntax of
simple type theory, but which is devoid of any notion of provability. Church’s Simple Theory of Types is
sometimes also referred to as Higher-Order Logic (HOL).
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theories a term of boolean type always computes to a canonical value of boolean type,
namely either true or false, a property known as canonicity.

The rationale for calling such theories constructive dates back to the seminal work of
Martin-Löf [ML84, ML75] — who instead favored the equivalent terminology of intuition-
istic — and is justified by the fact that, through the propositions-as-types correspondence,
the canonicity property yields exactly the constructive understanding of propositions.
Indeed, differently from classical logic, in which propositions are thought of as truth
values, constructive logic promotes the idea that propositions should be determined by
their canonical proofs. For instance, constructive logic is designed in such a way that any
proof of𝐴1 ∨𝐴2 yields a canonical proof of𝐴1 ∨𝐴2, namely either a proof of𝐴1 or a proof
of 𝐴2. Crucial for this to work is the rejection of the law of excluded middle (LEM), stating
that 𝑃 ∨ ¬𝑃 holds for any 𝑃 .

Nevertheless, while constructivism is one of the main qualities sought by designers
of dependent type theories, it is worth noting that, when dropping this condition, type
theory becomes able to subsume many formal systems of interest. For instance, by
internalizing proofs as terms in Church’s STT, one roughly obtains an extension of the
Calculus of Constructions (CoC) [CH88] — the dependent type theory at the origin of the
Coq proof assistant — with non-constructive principles.2 These added principles disturb
the canonicity property of CoC, making the resulting theory non-constructive, but allow
us to see dependent type theories as a subsuming formalism for many formal systems.
For this reason, dependent type theories will be the main formal systems of interest in
this thesis. Accordingly, we will not consider constructivism as a necessary quality of
such theories, but rather one that should be sought whenever possible.

Logical Frameworks (LFs)

The full definition of dependent type theories usually requires one to deal with various
syntactic bureaucracies. Most frustratingly, a great deal of this work is dedicated to
establishing universal notions that ideally should be defined once and for all, such as
variable binding and substitution. A Logical Framework (LF) [HHP93, Pfe01b, Har21b]
addresses this fact by proposing a unified meta-language for defining theories, in which
such universal notions are built in by default. As such, when defining an object-theory3
in a logical framework, the mathematician is freed from most of the aforementioned
bureaucracies, and can concentrate on the logical aspects specific to the theory in question.

Moreover, by providing a setting in which universal notions are represented in a
common way, logical frameworks allow for establishing basic metatheorems, usually
shown in a case-by-case basis, once and for all, effectively allowing for a unified theory of

2The precise relationship is however a bit more subtle; the reader is referred to Geuvers [Geu95] for
more details.

3We refer to the theories defined inside an LF as object-theories or object-languages, as opposed to the
meta-language, which is the framework.
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type theories. For instance, most LFs are designed specifically for structural theories, and
so satisfy the weakening property, stating that judgment derivability is monotone with
respect to context extension. Any theory formulated in such frameworks thus satisfies
weakening automatically.

Finally, by providing a setting in which various theories can be defined uniformly, LFs
allow for comparing their logical features in a more direct way. Indeed, while theories
might differ in unessential ways when presented with distinct syntactic conventions —
such as using either single or simultaneous substitution, or defining variables either as
de Bruijn indices or using names — these differences vanish inside an LF, allowing only
logical aspects to be highlighted.

The Edinburgh Logical Framework

While the ideas that led to the invention of LFs can be traced back to de Bruijn’s Au-
tomath [dB94] and to Martin-Löf himself [ML84, NPS90], the first LF to be explicitly
named as such was the Edinburgh Logical Framework (ELF) [HHP93], constituting of a
minimalistic dependent type theory. In the ELF methodology [HL07, Pfe01a], one usually
starts by defining the raw syntax of the object-theory with the use ofHigher-Order Abstract
Syntax (HOAS) [PE88], a technique that has its roots in Church’s STT. For instance, the
following ELF declarations specify the raw syntax of a basic dependent type theory:

ty, tm : Type
Π : ty→ (tm→ ty) → ty
λ : (tm→ tm) → tm
@ : tm→ tm→ tm

While the type-level symbols ty and tm represent syntactic classes, the term-level
symbols Π, λ and@ represent syntactic constructors of the object-theory’s syntax. We
can for instance represent the object term (_𝑥.𝑡)𝑦 as the framework term@ (λ (𝑥 .⟦𝑡⟧)) 𝑦
of framework type tm — writing 𝑥 .𝑡 for the framework’s abstraction, and ⟦−⟧ for the
function mapping an object term to its representation in the framework. Two main
benefits of defining theories in ELF can already be seen. First, variables of the framework
are used to represent variables of the object-theory, which therefore never need to be
defined explicitly. Second, the framework’s function type is not only used to specify how
many arguments each symbol expects but also to specify variable binding, which is also a
primitive notion covered once and for all by the framework.

Judgments-as-types

With the raw syntax of a type theory defined, its judgments can then be represented with
the judgments-as-types principle. For instance, in dependent type theory one usually has
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four basic judgment forms: 𝐴 type and 𝐴 ≡ 𝐵 type and 𝑡 : 𝐴 and 𝑡 ≡ 𝑢 : 𝐴. These can be
represented in ELF by declaring the following type-level symbols.

Ty : ty→ Type

Ty≡ : ty→ ty→ Type

Tm : tm→ ty→ Type

Tm≡ : tm→ tm→ ty→ Type

Of course, the above basic judgment forms should be generalized to hypothetical
judgment forms, but once again this is covered automatically by the framework. For
instance, the judgment form 𝑡 : 𝐴 in an hypothetical object-context Γ = 𝑦 : 𝐵 is represented
as the framework type Tm ⟦𝑡⟧ ⟦𝐴⟧ in the framework context ⟦Γ⟧ = 𝑦 : tm, 𝑦′ : Tm 𝑦 ⟦𝐵⟧.

Object-theory derivation rules can then be represented in the framework using term-
level symbols. For instance, the rules

Γ ⊢ 𝐴 type Γ, 𝑥 : 𝐴 ⊢ 𝐵 type

Γ ⊢ 𝑡 : Π𝑥 : 𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ 𝑡 𝑢 : 𝐵 [𝑢/𝑥]

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐴 ≡ 𝐵 type

Γ ⊢ 𝑡 : 𝐵
Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴
Γ ⊢ 𝑢 ≡ 𝑡 : 𝐴

are represented in ELF by the following symbol declarations:4

Tm/@ : Ty A→ ((𝑥 : tm) → Tm 𝑥 A→ Ty (B 𝑥)) →
Tm t (Π A B) → Tm u A→ Tm (@ t u) (B u)

Tm/conv : Tm t A→ Ty≡ A B→ Tm t B

Tm≡/sym : Tm≡ t u A→ Tm≡ u t A

Note how the operation of substitution in the first rule is covered automatically by the
framework using the application B u. Indeed, when B and u are instantiated with terms
𝑥 .𝐵 and 𝑢 the result becomes convertible to 𝐵 [𝑢/𝑥] by the framework-level 𝛽-equality.
Note also that there is no need to declare a symbol to represent the variable rule, which is
handled by the framework’s own variable rule.

From derivations-as-terms to subjects-as-terms

By declaring term-level symbols to represent derivation rules, the derivations of a judg-
ment 𝑡 : 𝐴 are represented as framework terms of type Tm ⟦𝑡⟧ ⟦𝐴⟧ — because of this,
the motto judgments-as-types is often followed by derivations-as-terms. The framework
typing judgment 𝑢 : Tm ⟦𝑡⟧ ⟦𝐴⟧ then asserts that the term 𝑢 represents an object-theory
derivation of 𝑡 : 𝐴. This representation is however not accurate with respect to the

4Following ELF notational conventions, we omit from the types the arguments that can be inferred from
the rest.
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meaning of this object-theory judgment, which instead asserts that 𝑡 , the subject of the
judgment, is a term of type 𝐴. Indeed, not only the distinction between the subject and
the other constituents is dropped, but one also represents the judgment synthetically —
meaning requiring evidence — instead of analytically — meaning self-evident — as argued
by Harper [ML94, Har21b]. Moreover, as pointed out by Sterling [Ste22b], the semantics
of such presentations does not agree with the usual semantics of the represented type
theory: instead of a set of types and a type-indexed family of terms, one instead gets two
sets of raw terms and types along with families of derivations of their typing judgments.
For this reason, we say that the above methodology does not yield a direct definition of
the represented theory, but instead only of its deductive machinery.

In order to define type theories directlywe can apply a different principle, whichwe dub
judgment-as-types, subjects-as-terms.5 The reason for this name is that we now distinguish
the subject from other constituents of a judgment: types now represent judgments without
subjects, which are instead represented as their inhabitants. For instance, by declaring

Ty : Type
Tm : Ty→ Type

Π : (A : Ty) → (B : Tm A→ Ty) → Ty
λ : (t : (𝑥 : Tm A) → Tm (B 𝑥)) → Tm (Π A B)
@ : (t : Tm (Π A B)) → (u : Tm A) → Tm (B u)

we can represent the object-theory judgment 𝑡 : 𝐴 as the framework judgment ⟦𝑡⟧ :
Tm ⟦𝐴⟧, that now correctly captures the intended meaning.

In the above approach, it is also worth noting that no symbols need to be declared
to represent object-theory equality judgments, which are instead represented by the
framework’s own equality judgment: for instance, 𝑡 ≡ 𝑢 : 𝐴 is represented as just
⟦𝑡⟧ ≡ ⟦𝑢⟧ : Tm ⟦𝐴⟧. This also means that we do not need to declare any symbol
to represent the object-theory conversion rule, which is covered automatically by the
framework’s conversion rule.

From pure LFs to equational LFs

If we intended to define a type theory with dependent functions, the above declarations
are incomplete. Indeed, we still need to ensure that the terms6 @ (λ (𝑥 .𝑡)) 𝑢 and 𝑡 [𝑢/𝑥]
are convertible in order to correctly represent the object-theory 𝛽-equality. However, ELF
is an example of a pure LF, meaning it only allows for the declaration of generators (that

5Unfortunately, the literature uses the name judgments-as-types interchangeably to designate the two
principles. Because of this, we have chosen to name the second one with the subjects-as-terms suffix to
distinguish it from the first. The obtained presentations are also respectively called synthetic and analytic
by Harper [Har21b]. Finally, it is worth mentioning that hybrid approaches are also possible, and not all
encodings can be classified as applying only one of these two principles.

6Omitting the domain and co-domain annotations of @ and λ, for readability purposes.
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is, symbols) but no equations. Therefore, in ELF it is impossible to directly define type
theories whose definitional equality is non-trivial.

The aforementioned problem can be addressed by moving to an equational LF [Har21a,
Car86, NPS90, Uem21, Ada08], in which one is also allowed to constrain the terms of the
theory with equations. In this setting, we can finish the definition of the above theory by
declaring the equation (once again, omitting the domain and co-domain annotations).

@ (λ t) u ≡ t u

The above discussion might give the impression that the lack of support for equa-
tions in pure LFs is a deficiency. Actually, this is a careful design choice, for it ensures
that equality and typing are always decidable in such frameworks, enabling for instance
the implementation of ELF in tools like Twelf [GPS99] and Beluga [PD10]. Moreover,
because object-theory derivations can be represented as terms in the framework, such
implementations can be used for mechanizing the metatheory of type theories and pro-
gramming languages in a concise way [HL07, LCH07], without the need for formalizing
basic notions such as binding and substitution. On the other hand, for this same reason,
one does not obtain from such implementations a type-checker for the object-theory, but
rather for its typing derivations.

By moving to an equational LF, the above problem is apparently solved: now, an
object-theory judgment 𝑡 : 𝐴 can be directly represented as a framework judgment
⟦𝑡⟧ : Tm ⟦𝐴⟧, and so type-checking in the object-theory is reduced to type-checking
in the framework. However, because such frameworks allow users to pose arbitrary
equations, it is not true anymore that type-checking is always decidable, and one would
instead need to design specific equality-checking algorithms for each theory. For this
reason, while equational LFs have been around since Cartmell’s seminal work in the
1980s [Car86], their implementations have been comparatively much less studied than
those of pure LFs.

Dedukti: An implementable equational LF

If allowing arbitrary equations immediately breaks decidability of equality in the frame-
work, a possible solution to this is to instead restrict those which are supported. This is
exactly the approach taken by the Dedukti logical framework [CD07, Sai15, BDG+23], an
equational LF in which the only accepted equations are those generated by untyped rewrite
rules [BKdVT03]. This means that equations have a preferred direction of application and
are defined without making any reference to typing.7

While this restricts the class of theories one can define, it has the advantage of allowing
one to decide the equality theory in a uniform way. Indeed, computing normal forms and
comparing them is always a sound equality-checking procedure, which moreover becomes

7Therefore, unlike the LFs discussed before, equality in Dedukti is not a proper judgment but instead
an external relation defined on raw terms, henceforth called conversion.
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complete whenever the set of rewrite rules is sufficiently well behaved. The fact that
equality can be (semi-)decided in a uniform way is the key property which has allowed
for the implementation of Dedukti in tools like DkCheck [Sai15] and LambdaPi [HB20].

What are then the benefits of having an implementable equational LF? First, while rep-
resenting theories in ELF yielded a type-checker for derivations, representing theories in
Dedukti yields proper type-checkers for their terms. In order words, Dedukti provides a
generic type-checker, which can be used as an independent verifier for proofs coming from
proof assistants and automated provers, improving trust in their correctness. Moreover,
by representing multiple type theories in a common setting, Dedukti also strives to be a
unifying framework for defining proof transformations, enabling the sharing of proofs
between various proof systems — this point will be further discussed in the introduction
of Part III.

Finally, it is worth mentioning that while Dedukti was, for some time, the only
equational LF developed with practical applications in mind, this has recently changed
with the advent of the Andromeda project, implementing the framework of Finitary
Type Theories (FTTs) [HB23]. Compared with Dedukti, Andromeda allows for arbitrary
equations, and so it does not aspire to provide a provably complete equality-checking
algorithm. Instead, it relies mostly on a system of user-defined handlers which try to check
equality automatically. Moreover, for equations that can be classified as either computation
or extensionality rules, it also provides a built-in checker that, while not being provably
complete, is sound and works similarly to other algorithms used in practice [BK22].

This thesis

The overarching goal of this thesis is to advance the study of equational LFs as practical
tools, particularly in the context of the Dedukti project. For this, we propose three main
contributions, each being the subject of one of the parts of this thesis:8

1. We start in Part I by revisiting the problem of showing that object-theories are
correctly represented in the logical framework. More precisely, it is a recurring
problem in equational LFs that the conservativity of therein defined theories with
respect to their usual presentations is not always evident [Hof97]. We propose a re-
vised methodology for Dedukti encodings which allows for showing conservativity
easily, by banning so-called arrow-producing rewrite rules, which have historically
been heavily used in the Dedukti literature [BDG+23]. The cornerstone of our
proposal is a new normalization criterion for 𝛽-reduction in Dedukti that, provided
no arrow-producing rules are used, allows one to consider only 𝛽-normal forms
when proving conservativity, which can then be shown by a simple induction. We
illustrate our methodology by proposing a new encoding of functional Pure Type

8The title of this thesis refers specifically to the second part, as it is the longest and its contribution is
the most substantial.
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Systems in Dedukti that, unlike the previously proposed encoding [CD07], can
easily be shown conservative.

2. In Part II we contribute a new logical framework which, compared with Dedukti,
allows for representing type theories with their usual non-annotated syntaxes.
Indeed, a deficiency of frameworks like Dedukti is that theories are presented in a
fully annotated manner, in which all arguments are spelled out explicitly, worsening
the user experience and the performance of type-checking. The key to allowing
for the removal of these annotations without jeopardizing decidability of typing is
the integration of bidirectional typing, a discipline in which the typing judgment
is decomposed into inferring and checking modes. While bidirectional typing has
been well known in the literature for quite some time, one of the contributions of
our work is that, by formulating it in a logical framework, we are able to give it
a generic treatment for all theories fitting our framework. Our proposal has been
implemented in the generic type-checker BiTTs, allowing it to be used in practice
with various theories.

3. Finally, we demonstrate in Part III how Dedukti can be used in practice as a tool
for translating proofs, by proposing a proof transformation for sharing proofs
with predicative systems. This transformation has in particular allowed for the
translation of proofs from Matita to Agda, two proof assistants based respectively
on impredicative and predicative type theory, yielding the first ever proofs in Agda
of Fermat’s Little Theorem and of Bertrand’s Postulate. The definition of this
transformation also required us to study the theory of equational unification for
predicative universe levels, a subject that until now had been overlooked.

We describe the three contributions very succinctly because each of this thesis’ parts
starts with a high-level introduction, which the reader is invited to refer to for more details.

List of publications

We list the formal publications written during this thesis:

1. Adequate and Computational Encodings in the Logical Framework Dedukti.
Thiago Felicissimo. In proceedings of the 7th International Conference on Formal
Structures for Computation and Deduction (FSCD 2022).

2. Translating Proofs from an Impredicative Type System to a Predicative One.
Thiago Felicissimo, Frédéric Blanqui and Ashish Kumar Barnawal. In proceedings
of the 31st EACSL Annual Conference on Computer Science Logic (CSL 2023).

3. Generic Bidirectional Typing for Dependent Type Theories. Thiago Felicis-
simo. In proceedings of the 33rd European Symposium on Programming (ESOP 2024).
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4. Sharing Proofs with Predicative Theories Through Universe-Polymorphic
Elaboration. Thiago Felicissimo and Frédéric Blanqui. Logical Methods in Computer
Science (LMCS).

5. Impredicativity, Cumulativity and Product Covariance in the Logical Frame-
work Dedukti. Thiago Felicissimo and Théo Winterhalter. In proceedings of the
9th International Conference on Formal Structures for Computation and Deduction
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thesis.



Chapter 2

Preliminaries: Dedukti

In the introduction we have motivated and introduced the logical framework Dedukti
informally. This preliminary chapter now defines it formally, as it will be a central object of
study in this thesis. Because there are many other good introductions to Dedukti [Sai15,
BDG+23], in this chapter we will be rather concise when defining it — when presenting a
new logical framework in Part II we will explain it in a more gradual and detailed fashion.
Finally, because there are many variations on the definition of Dedukti in the literature,
we then conclude this chapter with a discussion about them.

2.1 Dedukti

Given a set of symbols F , whose elements we refer to by 𝑓 , 𝑔, . . . , and an infinite set of
variablesV , whose elements we refer to by 𝑥,𝑦, 𝑧, . . . or type-writer characters x, A, t, . . . ,
we define the raw syntax of Dedukti by the grammars of Figure 2.1. We adopt the
convention of writing symbol names in blue.

We call (𝑥 : 𝑇 ) → 𝑈 a dependent function type (also called dependent product), 𝑥 .𝑡 an
abstraction and 𝑡 𝑢 an application. The terms Type and Kind are often abbreviated using

𝑠 ::= Type | Kind
Tm ∋ 𝑡,𝑢, 𝑣,𝑇 ,𝑈 ::= 𝑥 | 𝑓 | 𝑠 | (𝑥 : 𝑇 ) → 𝑈 | 𝑥 .𝑡 | 𝑡 𝑢
Ctx ∋ Γ,Δ ::= · | Γ, 𝑥 : 𝑇
Thy ∋ T ::= · | T, 𝑓 : 𝑇 | T, 𝑙 ↦−→ 𝑟 with 𝑙 ↦−→ 𝑟 a rewrite rule

Figure 2.1: Raw syntax of Dedukti

11
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Γ ⊢

EmptyCtx

· ⊢

ExtCtx
Γ ⊢ 𝑇 : Type
Γ, 𝑥 : 𝑇 ⊢

Γ ⊢ 𝑡 : 𝑇

𝑥 : 𝑇 ∈ Γ

Var
Γ ⊢

Γ ⊢ 𝑥 : 𝑇
𝑓 : 𝑇 ∈ T

Sym
Γ ⊢

Γ ⊢ 𝑓 : 𝑇

Type
Γ ⊢

Γ ⊢ Type : Kind

𝑇 ≡ 𝑈

Conv
Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑈 : 𝑠

Γ ⊢ 𝑡 : 𝑈

Pi
Γ ⊢ 𝑇 : Type Γ, 𝑥 : 𝑇 ⊢ 𝑈 : 𝑠

Γ ⊢ (𝑥 : 𝑇 ) → 𝑈 : 𝑠

Abs
Γ ⊢ 𝑇 : Type Γ, 𝑥 : 𝑇 ⊢ 𝑈 : 𝑠 Γ, 𝑥 : 𝑇 ⊢ 𝑡 : 𝑈

Γ ⊢ 𝑥 .𝑡 : (𝑥 : 𝑇 ) → 𝑈

App
Γ ⊢ 𝑡 : (𝑥 : 𝑇 ) → 𝑈 Γ ⊢ 𝑢 : 𝑇

Γ ⊢ 𝑡 𝑢 : 𝑈 [𝑢/𝑥]

Figure 2.2: Typing rules of Dedukti

the letter 𝑠 and are used for typing the types of the framework.1
A substitution \ is a finite set of pairs 𝑡/𝑥 , and we write 𝑢 [\ ] or Γ [\ ] for its application

to a term 𝑢 or context Γ. We write fv(𝑡) for the free variables of 𝑡 , and dom(\ ) for the
domain of \ , defined by 𝑥 ∈ dom(\ ) iff 𝑡/𝑥 ∈ \ for some 𝑡 .2

A rewrite system R is a set of rewrite rules, which are pairs of the form 𝑡 ↦−→ 𝑢 with 𝑡
of the form 𝑓 𝑡1 . . . 𝑡𝑘 and fv(𝑢) ⊆ fv(𝑡). We then write −→R for the closure under context
and substitution of R, and −→𝛽R for −→𝛽 ∪ −→R where −→𝛽 is the usual 𝛽-reduction.
We write −→∗

𝛽R for the reflexive-transitive closure of −→𝛽R , and ≡𝛽R for its reflexive-
symmetric-transitive closure, usually called conversion or definitional equality. Most of the
time, R is clear from the context, allowing us to write just −→ for −→𝛽R and ≡ for ≡𝛽R .

A central notion in Dedukti is that of a theory T, which is defined in Figure 2.1. Given
a theory T, we define the typing rules of Dedukti as the ones of Figure 2.2. Here, the
conversion ≡ is the one generated by 𝛽RT, where RT is the underlying rewrite system of T.
Whenever the theory is not clear from the context, we write T⊲Γ ⊢ 𝑡 : 𝑇 instead of Γ ⊢ 𝑡 : 𝑇 .

1They are usually called sorts in the literature, though we will avoid this terminology to prevent a name
clash with another unrelated concept also called sort, introduced in Chapter 7.

2Some authors define dom(\ ) as the set of variables for which 𝑥 [\ ] ≠ 𝑥 , however this definition suffers
from the drawback of not being invariant under post-composition, a somewhat counter-intuitive property.
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T ⊢

· ⊢
T ⊢ T ⊲ · ⊢ 𝑇 : 𝑠

T, 𝑓 : 𝑇 ⊢
T ⊢

T, 𝑙 ↦−→ 𝑟 ⊢

Figure 2.3: Well-typed Dedukti theories

A Dedukti theory T is said to be well-typed when we can derive T ⊢ using the rules
of Figure 2.3. This condition imposes no constraints on the rewrite rules, so in most
situations we will also ask 𝛽RT to be confluent, meaning that 𝑡 ′ ∗←− 𝑡 −→∗ 𝑡 ′′ implies
𝑡 ′ −→∗ 𝑡 ′′′ ∗←− 𝑡 ′′ for some 𝑡 ′′′, and to satisfy subject reduction, meaning that T ⊲ Γ ⊢ 𝑡 : 𝑇
and 𝑡 −→ 𝑡 ′ imply T ⊲ Γ ⊢ 𝑡 ′ : 𝑇 .
Remark 2.1. One way to ensure subject reduction of well-typed theories would be to
require in Figure 2.3 that left- and right-hand sides of rewrite rules are well-typed with
the same type (see [Sai15, Definition 2.4.8] for the precise conditions). However, this
requirement is often too strong in practice, so we prefer not to impose it for all well-
typed theories. The precise reason is that very often it is necessary to linearize rules in
order to make proving confluence possible [Bla05, Section 3.1]. For instance, the rule
hd A (cons A t l) ↦−→ t satisfies the aforementioned condition, however it is non-left-
linear and, by adapting Klop’s counterexample [Klo80], we can show its union with 𝛽 to be
non-confluent on untyped terms. Instead, we can take the rule hd A′ (cons A t l) ↦−→ t,
whose left-hand side is ill-typed, but which still satisfies subject reduction and is confluent
with 𝛽 . Finally, note that linearization also positively impacts performance, as it eliminates
the need for equality checks when matching a rule left-hand side. □

We recall the following basic metaproperties of Dedukti.

Proposition 2.1 (Basic metaproperties). Let us write Γ ⊑ Γ′ when Γ is a subsequence of Γ′.

Weakening Suppose Γ ⊑ Γ′ and T ⊲ Γ′ ⊢. Then T ⊲ Γ ⊢ 𝑡 : 𝑇 implies T ⊲ Γ′ ⊢ 𝑡 : 𝑇 .

Substitution property If T ⊲ Γ, 𝑥 : 𝑈 , Γ′ ⊢ 𝑡 : 𝑇 and T ⊲ Γ ⊢ 𝑢 : 𝑈 then T ⊲ Γ, Γ′[𝑢/𝑥] ⊢
𝑡 [𝑢/𝑥] : 𝑇 [𝑢/𝑥].

Conversion in context If T ⊲ Γ, 𝑥 : 𝑈 , Γ′ ⊢ 𝑡 : 𝑇 and T ⊲ Γ ⊢ 𝑈 ′ : 𝑠 and 𝑈 ≡ 𝑈 ′ then
T ⊲ Γ, 𝑥 : 𝑈 ′, Γ′ ⊢ 𝑡 : 𝑇 .

In the following points, suppose that T is well-typed.

Validity If T ⊲ Γ ⊢ 𝑡 : 𝑇 then either 𝑇 = Kind or T ⊲ Γ ⊢ 𝑇 : 𝑠 for 𝑠 = Type or Kind.

We say that a rule 𝑙 ↦−→ 𝑟 preserves typing in T whenever T ⊲ Γ ⊢ 𝑙 [\ ] : 𝑇 implies
T ⊲ Γ ⊢ 𝑟 [\ ] : 𝑇 , for every \, Γ,𝑇 .
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Subject reduction for RT If every rule in RT preserves typing in T, then T ⊲ Γ ⊢ 𝑡 : 𝑇
and 𝑡 −→RT 𝑡 ′ implies T ⊲ Γ ⊢ 𝑡 ′ : 𝑇 .

In the following points, suppose that injectivity of dependent products holds in T, meaning
that (𝑥 : 𝑇 ) → 𝑈 ≡ (𝑥 : 𝑇 ′) → 𝑈 ′ implies 𝑇 ≡ 𝑇 ′ and𝑈 ≡ 𝑈 ′.

Subject reduction for 𝛽 If T ⊲ Γ ⊢ 𝑡 : 𝑇 and 𝑡 −→𝛽 𝑡
′ then T ⊲ Γ ⊢ 𝑡 ′ : 𝑇 .

Inversion of symbol applications If 𝑓 : (𝑥1 : 𝑇1) → · · · → (𝑥𝑘 : 𝑇𝑘) → 𝑈 ∈ T and
T ⊲ Γ ⊢ 𝑓 𝑡1 . . . 𝑡𝑘 : 𝑈 ′, then by defining \𝑖 := {𝑡 𝑗/𝑥 𝑗 } 𝑗<𝑖 we have 𝑈 ′ ≡ 𝑈 [\𝑘+1] and
T ⊲ Γ ⊢ 𝑡𝑖 : 𝑇𝑖 [\𝑖] for all 𝑖 = 1, . . . , 𝑘 .

Proof. We refer to Blanqui [Bla01] and Saillard [Sai15] for detailed proofs — even if there
the definition of the typing system is not exactly the same, the proofs for the variant used
here are straightforward adaptions of their proofs. ■

2.2 Variations on the definition

We conclude this chapter by discussing some possible variations in the definition of the
framework. For readers not very familiar with Dedukti, we suggest to skip this more
technical section in a first read.

Type annotations in abstractions

In this work we consider a definition of Dedukti with non-annotated abstractions 𝑥 .𝑡 ,
yet most variants in the literature consider domain-annotated abstractions 𝑥𝑇 .𝑡 [Fer21,
BDG+23, CD07]. The justification often given for this extra annotation is that type-
checking terms with redexes is undecidable without it [Dow93]. However, in this thesis
we only employ encodings in which the only terms of interest are 𝛽-normal, for which type-
checking becomes decidable without the extra annotations, rendering them superfluous.

Variables with a type in Kind

In rule ExtCtx allowing to extend a context with a variable 𝑥 : 𝑇 , we require𝑇 to be typed
by Type. However, most variants of Dedukti also allow for variables whose type 𝑇 is in
Kind, allowing for instance to type a context ΓNat = nat : Type, zero : nat. The reason
we consider a more restricted typing rule is that variables whose type are in Kind cannot
be abstracted and can never leave the context. Because of this, we consider that it makes
more sense declaring them as symbols instead of variables, given their global character.
So for instance, instead of considering ΓNat, we can declare the symbols Nat : Type and
0 : Nat as being part of the theory T.
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Stratification of raw terms

In Figure 2.1, we consider a grammar that specifies one single syntax of terms. However, as
we will see in Section 4.1, under some mild hypotheses, the typing judgments of Dedukti
impose a posteriori a syntactic classification into three syntactic classes, called objects, type
families and kinds. In the Edinburgh Logical Framework literature, it is usual to consider a
specification of the raw syntax in which this classification is built in [HHP93], so from the
start one has three grammars of terms instead of a single one. In the Dedukti literature,
this approach is notably taken by Saillard in his PhD thesis [Sai15].

The main benefits of this alternative approach is that it rules out from the start many
terms that would be ill-typed anyway, and it can sometimes allow for reducing the
hypotheses of some theorems. However, it also makes the definition of the framework
more verbose, and metatheorems such as those of Proposition 2.1 end up being duplicated
into three variants, one for each syntactic class. Moreover, most of the Dedukti literature
uses a variant with a single grammar, yet another reason for which we chose to stick
with this version. However, let us mention that in Chapter 14 we consider a variant of
Dedukti with undirected equations, in which a form of syntactic stratification called
confinement is used to make possible proving Church-Rosser — see Remark 14.1.

Theories and their typing

Throughout the many previous work on Dedukti, the notion of theory is maybe the one
which admits the most possible variations. A first minor choice is whether one separates
the symbol declarations from T into a (typed) signature Σ, yielding theories of the form
T = (Σ,R) [BDG+23], or keep them all together like we do here [Sai15]. Of course, these
two versions are essentially the same.

Then, there are many (non-equivalent) ways one can define what it means for a theory
to be well-typed. For instance, Saillard [Sai15] and Férey [Fer21] ask T ⊲ · ⊢ 𝑇 : 𝑠 for all
𝑓 : 𝑇 ∈ T, which has the effect of allowing for symbols whose typing requires themselves3,
a circularity that we prefer to forbid. Throughout his works, Blanqui [BDG+23, Bla20] also
requires the same condition, but his version of Sym requires one to provide a derivation
of · ⊢ 𝑇 : 𝑠 , imposing an implicit (partial) order on symbols that rules out circularities.
This is essentially the same as our definition of well-typed theories, except that this order
is explicit in our case. However, similarly to Saillard and Férey, we do not integrate in
the rule Sym the condition that the symbol’s type is well-typed, as we consider this an
external verification which should not appear when using a theory.

Finally, we have here followed most of the literature in requiring theories to be
finite [BDG+23, Sai15, Fer21], however it is a common abuse of the definition to sometimes

3For instance, the theory T = Tm : Tm U→ Type, U : Tm U is well-typed in their sense, but the typing
of each symbol requires to use rule Sym with both Tm and U.
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consider infinite theories.4 As an alternative to this, Blanqui considers in some of his
works a version of Dedukti that allows for infinite theories [Bla20], and because the
ordering for typing symbols is implicit in his case, no change to the definition of well-typed
theories is required. In our case, we could proceed as Haselwarter and Bauer [HB23],
who consider symbols with some well-founded order, and then require each symbol to
be well-typed over the theory obtained by considering only smaller symbols. However,
recall that Dedukti is developed specifically with the goal of being used in practice and
only finite theories can be specified in the implementation, which is why we prefer to not
consider infinite theories in this thesis.

Conversion rule with joinability

The conversion rule in our version of Dedukti allows us to deduce 𝑡 : 𝑈 from 𝑡 : 𝑇 as soon
as 𝑇 ≡ 𝑈 and 𝑈 is a well-typed type, a definition that follows most of the literature on
Dedukti [BDG+23, Sai15, Fer21, Bla20, CD07, HB21] and on rewriting-based dependent
type theories [Bar92, SU06]. However, in some of his works [BGH19, Bla05], Blanqui
considers a more restricted version of this rule in which ≡ is replaced with joinability,
defined as the relation −→∗ ◦ ∗←− (writing ◦ for the composition of relations). The main
benefit of this approach is that it can eliminate the need for confluence in some theorems
— see for instance Remark 4.2. However, as already mentioned, using ≡ in the conversion
rule is the standard approach in the literature, and it can be counter-intuitive to replace ≡
by a relation that is not necessarily transitive. Nevertheless, most theories used in practice
are confluent, in which case ≡ and −→∗ ◦ ∗←− become the same.

Rewriting modulo equations

The conversion of theories in Dedukti is specified only by rewrite rules, however some-
times we also require equations which cannot be oriented in a well-behaved manner, such
as the commutativity of an operator. To remedy this, some works consider extensions of
Dedukti with rewriting modulo equations, meaning that conversion is then generated not
only by rewrite rules but also by undirected equations [ADJL17, Gen20, Bla22, FBB23].
In Part III we consider one such extension, but which is tailored specifically for external
undirected equational theories, making it particularly well-suited for encoding Agda-style
universe-polymorphism (as show in Chapter 15). Nevertheless, for the first part of this
thesis rewriting modulo will not be needed, and so for now we stick with the simpler and
more traditional definition of Dedukti.

4For instance, Cosineau and Dowek [CD07] define theories as being finite, but then specify an encoding
of Pure Type Systems (PTSs) which is infinite as soon as the PTS specification also is.
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Chapter 3

Introduction to Part I

Correctness criteria for Dedukti encodings

As previously discussed, the goal of logical frameworks like Dedukti is to allow for the
definition of various type theories in a common setting. However, many times these
theories one defines are meant to encode other logical systems, usually defined outside of
any logical framework. In these situations, what correctness criteria one should employ
to ensure that such object-theories are correctly represented by their encodings in the
logical framework? In theDedukti literature, the twomain used criteria are soundness and
conservativity [CD07]. When the object-theory is a type theory, these assert that an object-
theory typing judgment 𝑡 : 𝐴 is derivable for some 𝑡 if and only if Tm ⟦𝐴⟧ is inhabited in
the encoding — writing ⟦−⟧ for the translation function from the object-theory syntax to
the one of the framework.

The problem with conservativity

Whereas soundness, which asserts the direct implication, can usually be easily shown
by induction on the object-theory derivation, the same cannot be said for conservativity,
which asserts the inverse implication. Indeed, the proof of conservativity has to address a
supplementary difficulty, namely that not all framework terms of type Tm ⟦𝐴⟧ correspond
directly to a valid object-theory term. Thankfully, a correspondence with object-theory
terms can in general be found when considering only framework terms that are 𝛽-normal.
In the case of the Edinburgh Logical Framework (ELF), this allowed for an easy strategy
to establish conservativity: because 𝛽-reduction is normalizing in ELF, when proving
conservativity one can, without loss of generality, suppose that the term witnessing the
inhabitation of a type is 𝛽-normal.

Unfortunately, conservativity for 𝛽-normal forms does not in general imply full conser-
vativity in the case of Dedukti. The reason is that extending the definitional equality with
rewrite rules can break the normalization of 𝛽 , even when the added rules are normalizing
by themselves, and also type-preserving and confluent with 𝛽 . To address this problem,
Dowek [Dow17] proposed a notion of model for Dedukti theories which can be used
to prove strong normalization of 𝛽 , and used it to prove normalization for encodings of

18
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Higher-Order Logic and the Calculus of Constructions. Unfortunately, the construction
of such models is fraught with technicalities and has to be done in a case-by-case basis
for each encoding. This turned out to be a major difficulty for proving conservativity,
and most works proposing Dedukti encodings have since left conservativity only as a
conjecture [Gen20, HB21, BM21, Fer21, Thi20].1

Breaking the normalization of 𝛽

We have mentioned that extending the definitional equality with rewrite rules can break
the normalization of 𝛽 , but why is this the case exactly? The reason can be illustrated
by looking at how object-theory dependent functions have been traditionally defined in
Dedukti, with the rewrite rule

Tm (Π A B) ↦−→ (𝑥 : Tm A) → Tm (B 𝑥) (□)

At first glance, rule (□) can appear reasonable: the symbols and equations one usually
declares for defining (strong) dependent functions specify exactly a definitional isomor-
phism Tm (Π 𝐴 𝐵) ≃ (𝑥 : Tm 𝐴) → Tm (𝐵 𝑥), and so quotienting it out can be seen
simply as a matter of eliminating administrative coercions.2 However, because this rule
"implements" the object-theory 𝛽-reduction by the 𝛽-reduction of the framework, the
crucial point is that the normalization of Dedukti now becomes dependent on that of the
encoded object-theory, and in particular can be broken when the latter is non-normalizing.
Worse, even when we know that the object-theory is normalizing, it is unclear how to
deduce from this the normalization of 𝛽-reduction in the framework.

This also clarifies why the construction of Dowek’s models is bound to be so technical
in this case: proving that 𝛽 normalizes in the encoding becomes at least as hard as proving
that 𝛽-reduction is normalizing in the encoded system, which is known to be a very
difficult task for expressive logical systems.

Our contribution

Our main technical contribution in this part is a new criterion for ensuring that the
normalization of 𝛽-reduction is preserved when extendingDedukti’s definitional equality
with rewrite rules. More precisely, our result ensures that this is the case as long as T is
well-typed, 𝛽RT is confluent and the rewrite rules of the theory are not arrow-producing,
meaning roughly that no function types should appear in right-hand sides. Under these
conditions, we will show that the classic proof method [HHP93, GN91, BFG97] of defining
a translation to the simply typed _-calculus can be extended to Dedukti. More explicitly,

1With the notable exception of Grienenberger’s encoding of ecumenical logic [Gri23], the only work
that has since applied Dowek’s technique for conservativity.

2Similarly to themove fromCoquand-style universes to Russell-style universes, which turns the definitional
isomorphism Tm U ≃ Ty into a definitional equality Tm U ≡ Ty [Ste19].
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we will show that the simply typed skeletons of Dedukti’s types are preserved by
conversion, which will allow us to define a type- and 𝛽-reduction-preserving translation
to the simply typed _-calculus, reducing the normalization of 𝛽-reduction in Dedukti to
its normalization in a system where it is known to hold.

Motivated by our new criterion, we propose a revision of the Dedukti methodology
for building encodings and proving conservativity: by adopting a ban of arrow-producing
rules in encodings, one can simply apply our criterion to reduce full conservativity to
conservativity of 𝛽-normal forms, without the need for technical normalization arguments.
While arrow-producing rules have been heavily used in previousDedukti encodings — see
for instance the theory proposed by Blanqui et al. [BDG+23] — they are not really necessary
and are even forbidden in logical frameworks such as Uemura’s SOGATs [Uem21] and
Harper’s Equational LF [Har21a].

In order to illustrate how arrow-producing rules can be avoided, we revisit the problem
of encoding Pure Type Systems (PTSs) in Dedukti. The previous encoding, proposed by
Cousineau and Dowek [CD07], employed a rule similar to (□) which prevented the authors
from showing full conservativity in their original publication3. In Chapter 5, we propose a
new encoding of functional Pure Type Systems inDedukti for which conservativity can be
easily shown using the aforementioned strategy. The main difference with Cousineau and
Dowek’s encoding is that we do not identify Tm (Π 𝐴 𝐵) and (𝑥 : Tm𝐴) → Tm (𝐵 𝑥), but
declare symbols@ and λ for going in both directions and a rewrite rule@ (λ t) u ↦−→ t u
for representing the object-language 𝛽-reduction. It is instructive then to see what happens
when encoding a non-normalizing PTS: in this case, 𝛽RT will be non-normalizing, but 𝛽
by itself will normalize, which is all that is needed to prove conservativity.

Related publication

The content of Part I is adapted from the paper "Adequate and Computational Encodings
in the Logical Framework Dedukti" [Fel22a], published in the proceedings of the 7th Inter-
national Conference on Formal Structures for Computation and Deduction (FSCD 2022).
Its name references the fact that the obtained PTS encoding is not only sound and con-
servative but also adequate [HHP93, HL07], meaning that one can exhibit a bijection
between PTS terms of type 𝐴 and Dedukti canonical forms of type Tm ⟦𝐴⟧, a property
that was not satisfied by Cousineau and Dowek’s original encoding. Here we put less
emphasis on this because we now realize that this criterion, first proposed in the context
of ELF, should be adapted for the case of equational LFs. Indeed, because theories in ELF
are pure, the right notion of equality is just the framework’s built-in equality, whose
equivalence classes are represented by the canonical forms. However, in an equational LF
one defines theories whose terms are considered modulo an additional set of equalities,

3This was later addressed by Assaf [Ass15], who showed the result using a logical relations technique.
As we will see, our methodology allows for a much simpler proof of conservativity without the need for
such complex techniques, and as such can be easily adapted to other object-theories.



21 CHAPTER 3. INTRODUCTION TO PART I

so adequacy should also take them into account: the right statement would then be a
bijection between quotiented PTS terms of type 𝐴 and quotiented well-typed Dedukti
terms of type Tm ⟦𝐴⟧. But in this case one can also show Cousineau and Dowek’s
original encoding of PTSs to be adequate, so we do not consider this to be a selling
point for our proposal anymore. We instead prefer to stress the fact that our strategy for
proving conservativity is much more straightforward, whereas the traditional approach
has proven to be problematic, with many recent work leaving conservativity only as a
conjecture [Gen20, HB21, BM21, Fer21, Thi20].



Chapter 4

A Simple Criterion for Strong

Normalization of 𝛽-reduction

In this chapter we propose a new criterion for establishing the strong normalization of
𝛽-reduction in Dedukti. Compared to most normalization criteria for rewriting with
dependent types [BGH19, BFG97, Bla05, BvR97], our objective here is to show the nor-
malization of only 𝛽 , even when its union with the other rewrite rules can be potentially
non-terminating. This goal is more similar to the the one of Barthe [Bar98], whose crite-
rion can show the normalization of 𝛽 on extensions of the Calculus of Constructions with
term-level rules. However, our criterion also allows for type-level rules, which will be
needed in Chapter 5.

As we have already mentioned, our proof works by defining a dependency-erasure
map from Dedukti to the simply typed _-calculus, mapping dependent types to their
simply typed skeletons. In order to define the translation, we will therefore need to
distinguish the case of Dedukti terms, which are to be mapped to _-terms, from the case
of Dedukti types, which need to be erased into simple types. However, at the level of
raw terms, there is not separation between terms and types in Dedukti. The syntactic
stratification theorem is a standard property of Dedukti allowing to separate them, and is
exactly what we need.

We start this chapter by revisiting the syntactic stratification theorem, and give a proof
of this result that, unlike other ones versions in the Dedukti literature [Bla01, Fer21],
does not depend on subject reduction but instead only in a purely syntactic condition.
Then we move to the definition of the translation functions and discuss what conditions
we need to impose on RT to prove our normalization criterion. Finally, we then conclude
this chapter by giving its proof.

4.1 Syntactic stratification

Fix an underlying theory T for the rest of the section. We call a symbol 𝑓 type-level if its
type in T is of the form ( ®𝑥 : ®𝑇 ) → Type, and define the syntactic objects 𝒪, syntactic type
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families ℱ, and syntactic kinds 𝒦 by the following grammars. The syntactic classification
theorem will then assert that, for every derivable typing judgment 𝑡 : 𝑇 in the theory T,
there are only three options: we have 𝑡 ∈𝒦 and𝑇 = Kind, or 𝑡 ∈ ℱ and𝑇 ∈𝒦, or 𝑡 ∈ 𝒪
and 𝑇 ∈ ℱ.

𝒦 ∋ 𝐾 ::= Type | (𝑥 : 𝐹 ) → 𝐾

ℱ ∋ 𝐹 ::= 𝑓 | 𝐹 𝑂 | 𝑥 .𝐹 | (𝑥 : 𝐹 ) → 𝐹 ′ where 𝑓 is type-level

𝒪 ∋ 𝑂 ::= 𝑥 | 𝑓 | 𝑂 𝑂′ | 𝑥 .𝑂 where 𝑓 is not type-level

The syntactic classes can be easily seen to be closed under substitution for terms in 𝒪:

Proposition 4.1 (Closure of𝒦, ℱ and 𝒪 under substitution). Let 𝑢 ∈ 𝒪.
• If 𝑂 ∈ 𝒪 then 𝑂 [𝑢/𝑥] ∈ 𝒪.

• If 𝐹 ∈ ℱ then 𝐹 [𝑢/𝑥] ∈ ℱ.

• If 𝐾 ∈𝒦 then 𝐾 [𝑢/𝑥] ∈𝒦.

Proof. By easy induction on the definitions of𝒦, ℱ and 𝒪. ■

It would be natural to also try to show closure under reduction, yet this cannot be
shown without imposing some restrictions on the rewrite rules1. The proofs of the
syntactic classification theorem that can be found in the Dedukti literature assume 𝛽RT
to satisfy subject reduction and confluence [Fer21, Bla01]. Inspired by a similar proof by
Barthe [Bar98], we avoid showing the closure of ℱ and𝒦 under reduction, and instead
define two extensions of these sets for which this property can be shown with weaker
hypotheses. In particular, this will enable us to replace subject reduction by a purely
syntactic condition in the syntactic classification theorem, which will also allow for our
strong-normalization criterion (Theorem 4.2) to rely on weaker hypotheses.

Let us define the auxiliary sets �̂� and ℱ̂ by the following grammar, where 𝑇 ranges
over the full set of Dedukti terms. Note that we have 𝒦 ⊂ �̂� and ℱ ⊂ ℱ̂ and
ℱ̂ ∩ �̂� = ∅.

�̂� ∋ 𝐾 ::= Type | (𝑥 : 𝐹 ) → 𝐾

ℱ̂ ∋ 𝐹 ::= 𝑓 | 𝐹 𝑇 | 𝑥 .𝐹 | (𝑥 : 𝐹 ) → 𝐹 ′ where 𝑓 is type-level

We say that a rewrite rule 𝑓 𝑡1 . . . 𝑡𝑘 ↦−→ 𝑟 is type-level if 𝑓 is a type-level symbol, and
that a type-level rule weakly preserves type families if 𝑟 ∈ ℱ̂. We then say that R weakly
preserves type families when this is the case for all type-level rules of R. It turns out that
this condition is all that is needed to ensure the closure of �̂� and ℱ̂ under rewriting:

1For instance, this property does not hold when taking the rule Nat ↦−→ Type with Nat : Type ∈ T.
Actually, the syntactic classification theorem itself also brakes in this case: we have 𝑥 : Nat ⊢ 𝑥 : Nat and
hence 𝑥 : Nat ⊢ 𝑥 : Type by the conversion rule, but the syntactic classification theorem would then imply
Type ∈ ℱ, which does not hold.
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Proposition 4.2 (Closure properties of ℱ̂ and �̂�). Suppose that RT weakly preserves type
families.

• 𝐾 ∈ �̂� implies 𝐾 [𝑢/𝑥] ∈ �̂�, and 𝐹 ∈ ℱ̂ implies 𝐹 [𝑢/𝑥] ∈ ℱ̂, for all 𝑥,𝑢.

• 𝐾 ∈ �̂� and 𝐾 −→ 𝐾′ implies 𝐾′ ∈ �̂�, and 𝐹 ∈ ℱ̂ and 𝐹 −→ 𝐹 ′ implies 𝐹 ′ ∈ ℱ̂.

Proof. The two points follow by induction on the definitions of �̂� and ℱ̂, and for the
second point we also do a case analysis on the rewriting position. If the reduction happens
at the head, the only possibility is that the applied rewrite rule 𝑓 𝑡1 . . . 𝑡𝑘 ↦−→ 𝑢 is type-
level, and thus (𝑓 𝑡1 . . . 𝑡𝑘) [\ ] ∈ ℱ̂ for some \ . We then have 𝑢 ∈ ℱ̂ by hypothesis, and
because ℱ̂ is closed under substitution, we conclude 𝑢 [\ ] ∈ ℱ̂. ■

Proposition 4.2 then allows us to show the following key lemma, covering the case of
the conversion rule in the proof of the syntactic classification theorem.

Lemma 4.1. Suppose that RT weakly preserves type families and 𝛽RT is confluent. If
𝑇 ∈ ℱ ∪𝒦 ∪ {Kind} and 𝑇 ≡ 𝑈 , then 𝑈 ∈ ℱ implies 𝑇 ∈ ℱ and𝑈 ∈𝒦 implies 𝑇 ∈𝒦.

Proof. Let us consider the case𝑈 ∈ ℱ, the case𝑈 ∈𝒦 being symmetric. Then we have
𝑈 ∈ ℱ̂, and by confluence we have𝑇 −→∗ 𝑉 ∗←− 𝑈 , so by stability of ℱ̂ under reduction
we get 𝑉 ∈ ℱ̂. Now, if 𝑇 ∈ 𝒦 this would imply 𝑇 ∈ �̂�, but by stability of �̂� under
reduction we would get 𝑉 ∈ �̂�, contradiction with the fact that �̂� and ℱ̂ are disjoint.
Moreover, if we had 𝑇 = Kind, then 𝑇 −→∗ 𝑉 would imply 𝑉 = Kind, contradiction with
the fact that Kind ∉ ℱ̂. Therefore, the only remaining possibility is 𝑇 ∈ ℱ. ■

We now have all the tools to show the syntactic classification theorem.

Theorem 4.1 (Syntactic classification). Suppose that T is well-typed, RT weakly preserves
type families and 𝛽RT is confluent. If Γ ⊢ 𝑡 : 𝑇 then exactly one of the following holds

1. 𝑡 ∈𝒦 and 𝑇 = Kind

2. 𝑡 ∈ ℱ and 𝑇 ∈𝒦

3. 𝑡 ∈ 𝒪 and 𝑇 ∈ ℱ

Proof. Because the sets {Kind} and𝒦 andℱ are clearly disjoint, it is clear that at most
one of the statements can hold, so it suffices to show that at least one of them holds.

Given two symbols 𝑓 , 𝑓 ′ from the theory, let us write 𝑓 ≺ 𝑓 ′ if 𝑓 occurs before than 𝑓 ′
in T. By mapping a type derivation of a judgment to the largest symbol for which rule
Sym is applied, we then extend this order to type derivations.

We now show that at least one of the above statements holds, by outer induction on ≺2
and inner structural induction on the derivation. In the following, whenever we say "by

2At first sight, this can seem like a poor man’s induction on the theory. However, even if T satisfies
confluence it might have prefixes which do not satisfy it, and so it is important that we stay in T throughout
the proof.
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induction hypothesis" we mean the inner one, and uses of the outer induction hypothesis
will be mentioned explicitly.

• Case Var.

𝑥 : 𝐴 ∈ Γ
Γ ⊢

Γ ⊢ 𝑥 : 𝐴

From Γ ⊢ we can extract a strictly smaller derivation of Γ′ ⊢ 𝐴 : Type for some Γ′,
so by i.h. the only possibility is 𝐴 ∈ ℱ.

• Case Sym.

𝑓 : 𝑇 ∈ T
Γ ⊢

Γ ⊢ 𝑓 : 𝑇

Because T is well-typed, we have a derivation of · ⊢ 𝑇 : 𝑠 in the prefix of T preceding
𝑓 : 𝑇 , and so it follows that this derivation is smaller for ≺ than the one for Γ ⊢ 𝑓 : 𝑇
we started with. Then, by a form of weakening for theories we obtain a derivation
for · ⊢ 𝑇 : 𝑠 in T which is still smaller for ≺ than the one for Γ ⊢ 𝑓 : 𝑇 . Therefore,
we can apply the outer induction hypothesis to · ⊢ 𝑇 : 𝑠 . Now, if 𝑓 is type-level then
𝑇 is of the form ( ®𝑥 : ®𝑈 ) → Type, so the only possibility is 𝑇 ∈ 𝒦 and 𝑠 = Kind.
Otherwise, if 𝑓 is not type-level, then 𝑇 is not of the form ( ®𝑥 : ®𝑈 ) → Type, so we
must have 𝑇 ∈ ℱ and 𝑠 = Type.

• Case Conv.

𝑇 ≡ 𝑈
Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑈 : 𝑠

Γ ⊢ 𝑡 : 𝑈

If 𝑠 = Type, then by the i.h. applied to the second premise we get 𝑈 ∈ ℱ, so by
applying the i.h. to the first premise, Lemma 4.1 ensures us that the only possible
case is 𝑡 ∈ 𝒪 and 𝑇 ∈ ℱ. A similar reasoning proves the case 𝑠 = Kind.

• Case App.

Γ ⊢ 𝑡 : (𝑥 : 𝑇 ) → 𝑈 Γ ⊢ 𝑢 : 𝑇
Γ ⊢ 𝑡 𝑢 : 𝑈 [𝑢/𝑥]

By the i.h. applied to the first premise we have two possibilities: either 𝑡 ∈ 𝒪

and (𝑥 : 𝑇 ) → 𝑈 ∈ ℱ, or 𝑡 ∈ ℱ and (𝑥 : 𝑇 ) → 𝑈 ∈ 𝒦. In all cases we have
𝑇 ∈ ℱ, so by the i.h. applied to the second premise we get 𝑢 ∈ 𝒪. Now, if 𝑡 ∈ 𝒪
and (𝑥 : 𝑇 ) → 𝑈 ∈ ℱ then 𝑈 ∈ ℱ and thus 𝑈 [𝑢/𝑥] ∈ ℱ by Proposition 4.1.
Similarly, if 𝑡 ∈ ℱ and (𝑥 : 𝑇 ) → 𝑈 ∈ 𝒦 then 𝑈 ∈ 𝒦 and thus 𝑈 [𝑢/𝑥] ∈ 𝒦 by
Proposition 4.1.
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• Case Abs.
Γ ⊢ 𝑇 : Type Γ, 𝑥 : 𝑇 ⊢ 𝑈 : 𝑠 Γ, 𝑥 : 𝑇 ⊢ 𝑡 : 𝑈

Γ ⊢ 𝑥 .𝑡 : (𝑥 : 𝑇 ) → 𝑈

By the i.h. applied to the first two premises we get𝑇 ∈ ℱ and𝑈 ∈ ℱ∪𝒦. Therefore,
by the i.h. applied to the third premise we have two possibilities: either 𝑡 ∈ 𝒪 and
𝑈 ∈ ℱ, in which case we have 𝑥 .𝑡 ∈ 𝒪 and (𝑥 : 𝑇 ) → 𝑈 ∈ ℱ, or 𝑡 ∈ ℱ and𝑈 ∈𝒦,
in which case we have 𝑥 .𝑡 ∈ ℱ and (𝑥 : 𝑇 ) → 𝑈 ∈𝒦.

• Case Pi.
Γ ⊢ 𝑇 : Type Γ, 𝑥 : 𝑇 ⊢ 𝑈 : 𝑠

Γ ⊢ (𝑥 : 𝑇 ) → 𝑈 : 𝑠

By the i.h. we have 𝑇 ∈ ℱ, and either 𝑈 ∈ ℱ for when 𝑠 = Type or 𝑈 ∈ 𝒦 for
when 𝑠 = Kind. Therefore, if 𝑠 = Type we have (𝑥 : 𝑇 ) → 𝑈 ∈ ℱ, and if 𝑠 = Kind

we have (𝑥 : 𝑇 ) → 𝑈 ∈𝒦. ■

Remark 4.1. Note that, by the counterexample of Footnote 1, Theorem 4.1 becomes
false when dropping the requirement that RT weakly preserves type families. Likewise,
confluence cannot be dropped: for instance, in a theory with 𝑓 t u ↦−→ t and 𝑓 t u ↦−→ u
with 𝑓 not type-level, we have Type ≡ Kind and thus · ⊢ Type : Type by rule Conv.
Finally, if the theory is not well-typed, we can have for instance 𝑓 : Kind → Kind ∈ T
and thus · ⊢ 𝑓 : Kind→ Kind by rule Sym, also breaking the theorem. □

4.2 The translation functions

Before defining the translation functions used in our proof of normalization, let us recall
the syntax of the simply typed _-calculus and of the simple types on a single base type:

Ty_ ∋ 𝜎 ::= ∗ | 𝜎 → 𝜎′

Tm_ ∋ 𝑡,𝑢 ::= 𝑥 | λ𝑥 .𝑡 | 𝑡 𝑢

Let us also define 𝛾dk as the simply typed context containing the declaration type : ∗
and, for each simple type 𝜎 , the declaration 𝜋𝜎 : ∗ → (𝜎 → ∗) → ∗. We can now define
the term-translation function | − | and the dependency-erasure function ∥−∥ by the clauses
of Figure 4.1.34 The syntactic stratification theorem will be essential later to show that

3Note that here we define ∥−∥ over ℱ̂ ∪ �̂� ∪ {Kind} instead ofℱ ∪𝒦 ∪ {Kind}, which would have
been the most natural option. This is because we will need its domain to be stable under reduction, which
in the case of ℱ̂ ∪ �̂� ∪ {Kind} is ensured by Proposition 4.2.

4Had we chosen to use a variant of Dedukti with domain-annotated abstractions, we could apply
Harper et al.’s [HHP93] trick of defining |𝑥𝑇 .𝑡 | as (λ𝑧𝑥 .|𝑡 |) |𝑇 | for some 𝑧 fresh — see the previous version
of our work where this is done [Fel22a].
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∥−∥ : ℱ̂ ∪ �̂� ∪ {Kind} → Ty_ ∥ 𝑓 ∥ := ∗
∥Kind∥ := ∗ ∥𝐹 𝑇 ∥ := ∥𝐹 ∥
∥Type∥ := ∗ ∥𝑥 .𝐹 ∥ := ∥𝐹 ∥
∥(𝑥 : 𝐹 ) → 𝐾 ∥ := ∥𝐹 ∥ → ∥𝐾 ∥ ∥(𝑥 : 𝐹 ) → 𝐹 ′∥ := ∥𝐹 ∥ → ∥𝐹 ′∥

| − | : 𝒪 ∪ℱ ∪𝒦 → Tm_ |𝑥 .𝐹 | := λ𝑥 .|𝐹 |
|Type| := type | (𝑥 : 𝐹 ) → 𝐹 ′| := 𝜋∥𝐹 ∥ |𝐹 | (λ𝑥 .|𝐹 ′|)
| (𝑥 : 𝐹 ) → 𝐾 | := 𝜋∥𝐹 ∥ |𝐹 | (λ𝑥 .|𝐾 |) |𝑥 | := 𝑥
|𝑓 | := 𝑓 |𝑂 𝑂′| := |𝑂 | |𝑂′|
|𝐹 𝑂 | := |𝐹 | |𝑂 | |𝑥 .𝑂 | := λ𝑥 .|𝑂 |

Figure 4.1: Term-translation and dependency-erasure functions

these functions are defined for all well-typed terms and types. We extend ∥−∥ naturally to
contexts and theories whose types are all in ℱ̂ ∪ �̂� ∪ {Kind}, by simply ignoring rewrite
rule declarations.

In order to show the normalization of 𝛽-reduction in Dedukti, we will first show that
the translation preserves typing and that | − | preserves 𝛽-reduction sequences, which will
then allow us to derive our result by appealing to the strong-normalization of the simply
typed _-calculus. The main difficulty is dealing with the conversion rule when showing
preservation of typing, which requires proving that convertible types are mapped by ∥−∥
into the same simple type. Whereas this can be easily seen to hold when 𝛽 is the only
rewrite rule, it is not very hard to find counterexamples when other rules are allowed.
Example 4.1. Let Tm be a type-level symbol, and consider the rule

Tm (Π A B) ↦−→ (𝑥 : Tm A) → Tm (B 𝑥)

traditionally used to encode dependent functions in Dedukti [CD07]. We then have

Tm (Π Nat (𝑥 .Nat)) ≡ Tm Nat→ Tm Nat

but ∥Tm (Π Nat (𝑥 .Nat))∥ = ∗ and ∥Tm Nat→ Tm Nat∥ = ∗ → ∗. □

The previous example motivates the following definition, which will allow us to avoid
situations of this kind. A type-level rule is said to be not arrow-producing if its right-hand
side is in the following grammar, where 𝑇 ranges over all Dedukti terms.

ℱ̃ ∋ 𝐹 ::= 𝑓 | 𝐹 𝑇 | 𝑥 .𝐹 where 𝑓 is type-level
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Note that this grammar is almost the same as the one defining ℱ̂, with the difference
that we forbid the use of arrow types. We then say that RT is not arrow-producing
when this is the case for all of its type-level rules — which implies in particular that RT
weakly preserves type families. As we will see, this condition, together with confluence
of 𝛽RT and well-typedness of T, will be sufficient to establish the strong normalization of
𝛽-reduction.

4.3 Proving the criterion

In order to show that the translation preserves typing, we will need the following lemma,
whose proof strongly relies on the assumption that RT is not arrow-producing.
Lemma 4.2 (Invariance of ∥−∥). Suppose that RT is not arrow-producing.

1. If 𝑇 ∈ ℱ̂ ∪ �̂� ∪ {Kind} then ∥𝑇 ∥ = ∥𝑇 [𝑡/𝑥] ∥ for all 𝑡 .

2. If 𝑇 ∈ ℱ̂ ∪ �̂� ∪ {Kind} and 𝑇 −→ 𝑇 ′ then ∥𝑇 ∥ = ∥𝑇 ′∥

3. If 𝛽RT is confluent and 𝑇,𝑈 ∈ ℱ̂ ∪ �̂� ∪ {Kind} and 𝑇 ≡ 𝑈 then ∥𝑇 ∥ = ∥𝑈 ∥.
Proof. First note that Proposition 4.2 ensures us, in the first two points, that 𝑇 [𝑡/𝑥] and
𝑇 ′ are indeed in the domain of ∥−∥.

1. By induction on the definition of ∥−∥.

2. By induction on the definition of ∥−∥ and case analysis on the rewrite position. The
only interesting case is when the reduction happens at the head. There are then two
possibilities. If 𝑇 = (𝑥 .𝑇1) 𝑇2 −→𝛽 𝑇1 [𝑇2/𝑥] we conclude ∥𝑇 ∥ = ∥𝑇1∥ = ∥𝑇1 [𝑇2/𝑥] ∥
using the first point. Otherwise we have 𝑇 = (𝑓 𝑡1 . . . 𝑡𝑘) [\ ] −→ 𝑟 [\ ] for some
type-level rule 𝑓 𝑡1 . . . 𝑡𝑘 ↦−→ 𝑟 , in which case we have ∥𝑇 ∥ = ∗. Then, because RT
is not arrow producing, we can show that ∥𝑟 ∥ = ∗ by induction on the definition of
ℱ̃, which then implies ∥𝑟 [\ ] ∥ = ∗ by the first point.

3. By confluence we have 𝑇 −→∗ 𝑉 ∗←− 𝑈 , so we conclude by iterating point 2. ■
Let us write 𝛾 ⊢_ 𝑡 : 𝜎 for the typing judgment of the simply typed _-calculus.

Proposition 4.3 (Translation preserves typing). Suppose that T is well-typed, RT is not
arrow-producing and 𝛽RT is confluent. Then Γ ⊢ 𝑡 : 𝑇 implies 𝛾dk, ∥T∥, ∥Γ∥ ⊢_ |𝑡 | : ∥𝑇 ∥.
Proof. First note that, by Theorem 4.1, whenever we have Γ ⊢ 𝑡 : 𝑇 then |𝑡 | and ∥𝑇 ∥ are
defined. Moreover, because Γ ⊢ 𝑡 : 𝑇 implies Γ ⊢, which implies Γ ⊢ 𝑈 : Type for all
𝑥 : 𝑈 ∈ Γ, then Theorem 4.1 also ensures that ∥Γ∥ is defined. Finally, because we suppose
that the theory is well-typed, for all 𝑓 : 𝑈 ∈ T we have · ⊢ 𝑈 : 𝑠 in some prefix of T. But
then by a form of weakening for theories, we obtain · ⊢ 𝑈 : 𝑠 in T, so by Theorem 4.1 we
conclude that ∥𝑈 ∥ is indeed well-defined.

We now show the result by induction on the derivation of Γ ⊢ 𝑡 : 𝑇 .
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• Case Type.

Γ ⊢
Γ ⊢ Type : Kind

We have (type : ∗) ∈ 𝛾dk, so we conclude 𝛾dk, ∥T∥, ∥Γ∥ ⊢ type : ∗.

• Case Var.

𝑥 : 𝑇 ∈ Γ
Γ ⊢

Γ ⊢ 𝑥 : 𝑇

We have 𝑥 : ∥𝑇 ∥ ∈ ∥Γ∥, so we conclude 𝛾dk, ∥T∥, ∥Γ∥ ⊢_ 𝑥 : ∥𝑇 ∥.

• Case Sym.

𝑓 : 𝑇 ∈ T
Γ ⊢

Γ ⊢ 𝑓 : 𝑇

We have 𝑓 : ∥𝑇 ∥ ∈ ∥T∥, so we conclude 𝛾dk, ∥T∥, ∥Γ∥ ⊢_ 𝑓 : ∥𝑇 ∥.

• Case Conv.

𝑇 ≡ 𝑈
Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑈 : 𝑠

Γ ⊢ 𝑡 : 𝑈

By i.h. we have 𝛾dk, ∥T∥, ∥Γ∥ ⊢_ |𝑡 | : ∥𝑇 ∥, and by Theorem 4.1 we also have 𝑈 ∈
ℱ ∪𝒦, so we conclude by applying Lemma 4.2 to get ∥𝑇 ∥ = ∥𝑈 ∥.

• Case App.

Γ ⊢ 𝑡 : (𝑥 : 𝑇 ) → 𝑈 Γ ⊢ 𝑢 : 𝑇
Γ ⊢ 𝑡 𝑢 : 𝑈 [𝑢/𝑥]

By i.h. we have 𝛾dk, ∥T∥, ∥Γ∥ ⊢_ |𝑡 | : ∥𝑇 ∥ → ∥𝑈 ∥ and 𝛾dk, ∥T∥, ∥Γ∥ ⊢_ |𝑢 | : ∥𝑈 ∥, so
we obtain 𝛾dk, ∥T∥, ∥Γ∥ ⊢_ |𝑡 | |𝑢 | : ∥𝑈 ∥, and we conclude by applying Lemma 4.2 to
get ∥𝑈 ∥ = ∥𝑈 [𝑢/𝑥] ∥.

• Case Abs.

Γ ⊢ 𝑇 : Type Γ, 𝑥 : 𝑇 ⊢ 𝑈 : 𝑠 Γ, 𝑥 : 𝑇 ⊢ 𝑡 : 𝑈
Γ ⊢ 𝑥 .𝑡 : (𝑥 : 𝑇 ) → 𝑈

By i.h. we have 𝛾dk, ∥T∥, ∥Γ∥, 𝑥 : ∥𝑇 ∥ ⊢_ |𝑡 | : ∥𝑈 ∥, so we conclude 𝛾dk, ∥T∥, ∥Γ∥ ⊢_
λ𝑥 .|𝑡 | : ∥𝑇 ∥ → ∥𝑈 ∥.
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• Case Pi.

Γ ⊢ 𝑇 : Type Γ, 𝑥 : 𝑇 ⊢ 𝑈 : 𝑠
Γ ⊢ (𝑥 : 𝑇 ) → 𝑈 : 𝑠

By i.h. we get 𝛾dk, ∥T∥, ∥Γ∥ ⊢_ |𝑇 | : ∗ and 𝛾dk, ∥T∥, ∥Γ∥, 𝑥 : ∥𝑇 ∥ ⊢_ |𝑈 | : ∗, so
we can show 𝛾dk, ∥T∥, ∥Γ∥ ⊢_ λ𝑥 .|𝑈 | : ∥𝑇 ∥ → ∗ and conclude 𝛾dk, ∥T∥, ∥Γ∥ ⊢_
𝜋∥𝑇 ∥ |𝑇 | (λ𝑥 .|𝑈 |) : ∗. ■

We now show the preservation of 𝛽-reduction by | − |.

Proposition 4.4 (| − | preserves 𝛽-reduction). Suppose that RT is not arrow-producing.
If 𝑡 −→𝛽 𝑡

′ and 𝑡 ∈𝒦 ∪ℱ ∪𝒪 then 𝑡 ′ ∈𝒦 ∪ℱ ∪𝒪 and |𝑡 | −→𝛽 |𝑡 ′|.

Proof. By induction on the definition of | − | and case analysis on the position of the
reduction. The most interesting case is a reduction at the head, for which we then need
to prove that 𝑢 ∈ ℱ ∪ 𝒪 and 𝑣 ∈ 𝒪 imply |𝑢 | [ |𝑣 |/𝑥] = |𝑢 [𝑣/𝑥] |, by induction on 𝑢
and using Lemma 4.2. The other cases mostly follow from the i.h., but for the case
(𝑥 : 𝑇 ) → 𝑈 −→ (𝑥 : 𝑇 ′) → 𝑈 with 𝑇 ∈ ℱ and𝑈 ∈ ℱ ∪𝒦 we also need Lemma 4.2 to
ensure 𝜋∥𝑇 ∥ = 𝜋∥𝑇 ′∥ . ■

Our criterion now follows as a simple corollary of Propositions 4.3 and 4.4 and the
strong normalization of 𝛽-reduction in the simply typed _-calculus [SU06, Theorem 3.5.5].

Theorem 4.2 (Strong-normalization of 𝛽-reduction). If T is well-typed, RT is not arrow-
producing and 𝛽RT is confluent, then 𝛽 is strongly normalizing for the well-typed terms of T.

Proof. Let 𝑡 be a term for which we have Γ ⊢ 𝑡 : 𝑇 and consider a reduction sequence
𝑡 −→𝛽 𝑡1 −→𝛽 𝑡2 −→𝛽 . . . starting at 𝑡 . By Proposition 4.3 we have 𝛾dk, ∥T∥, ∥Γ∥ ⊢_
|𝑡 | : ∥𝑇 ∥, so |𝑡 | is strongly normalizing for 𝛽-reduction. But by Proposition 4.4 we get
|𝑡 | −→𝛽 |𝑡1 | −→𝛽 |𝑡2 | −→𝛽 . . . , implying that this sequence is finite. ■

Remark 4.2. In Remark 4.1 we saw that the hypothesis of confluence cannot be dropped
in Theorem 4.1. By a similar argument, we can show the same for the above result: by
taking the rules 𝑓 t u ↦−→ t and 𝑓 t u ↦−→ u for some 𝑓 not type-level, and assuming
Nat : Type ∈ T, we can show Nat ≡ Nat → Nat, allowing us to encoded untyped _-
terms as Dedukti terms of type Nat. However, let us note that, by moving to a variant of
Dedukti in which ≡ is replaced by −→∗ ◦ ∗←− in rule Conv, the hypothesis of confluence
could be dropped in both Theorems 4.1 and 4.25. □

5The author thanks Frédéric Blanqui for pointing this out.



Chapter 5

EncodingPure Type Systems inDedukti

Among the many type formers one can find in type theories, two appear very recurrently:
dependent function types and universes. The class of type theories only featuring these
type formers was first identified by Berardi and Terlouw, and is nowadays known as Pure
Type Systems (or PTSs) [Bar91, Bar92]. Since their introduction, Pure Type Systems have
been thoroughly studied by many authors and have become a central object of study in
the type theory community. They have in particular provided a uniform framework for
studying various universe hierarchies, and isolating previously known universe paradoxes
from unimportant syntactic details [Coq86].

In this chapter, we illustrate our new methodology for Dedukti encodings with this
important class of type theories. We start by defining the variant of PTSs we consider
beforemoving to the definition of the encoding. This is followed by the proofs of soundness
and conservativity, the last one being the main contribution of this chapter.

5.1 Pure Type Systems

The definition of Pure Type Systems admits many variations in the literature: with typed
or untyped equality [Ada06, SH12], with more or less annotations [MW96, BS00], with
𝛽[-equality or just 𝛽-equality [Geu92], with or without explicit contexts [GKMW10], etc.
In this work, we mostly stick to the more well-established definition of PTSs [BDS13],
except that we employ a fully annotated syntax. If we recall that the dependent function
type Π𝑥 : 𝐴.𝐵 is a parametrized type, then we can notice that the usual notations for
abstraction λ𝑥 : 𝐴.𝑡 and application 𝑡 𝑢 omit either some or all of the parameters 𝐴 and 𝐵.
Moreover, because in PTSs the function type can be used across multiple universe levels,
in order to be fully explicit with the parameters, we would also need to annotate Π,
abstraction and application with levels. Therefore, our fully annotated version of PTSs
will make all of this information explicit. More precisely, given a set ℒ of universe levels1,

1Usually called sorts in the PTS literature.

31
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Γ ⊢
PTS

EmptyCtx

· ⊢
PTS

𝑙 ∈ ℒ

ExtCtx
Γ ⊢

PTS
𝐴 : U𝑙

Γ, 𝑥 : 𝐴 ⊢
PTS

Γ ⊢
PTS
𝑡 : 𝐴

𝑥 : 𝐴 ∈ Γ

Var
Γ ⊢

PTS

Γ ⊢
PTS
𝑥 : 𝐴

(𝑙, 𝑙′, 𝑙′′) ∈ ℛ

Pi
Γ ⊢

PTS
𝐴 : U𝑙 Γ, 𝑥 : 𝐴 ⊢

PTS
𝐵 : U𝑙 ′

Γ ⊢
PTS

Π𝑙,𝑙 ′𝑥 : 𝐴.𝐵 : U𝑙 ′′

(𝑙, 𝑙′) ∈ 𝒜

Univ
Γ ⊢

PTS

Γ ⊢
PTS

U𝑙 : U𝑙 ′
(𝑙, 𝑙′, 𝑙′′) ∈ ℛ

Abs
Γ ⊢

PTS
𝐴 : U𝑙 Γ, 𝑥 : 𝐴 ⊢

PTS
𝐵 : U𝑙 ′

Γ, 𝑥 : 𝐴 ⊢
PTS
𝑡 : 𝐵

Γ ⊢
PTS

λ𝑥 :𝐴.𝐵
𝑙,𝑙 ′ 𝑥 .𝑡 : Π𝑙,𝑙 ′𝑥 : 𝐴.𝐵

𝑙 ∈ ℒ
𝐴 ≡𝛽 𝐵

Conv
Γ ⊢

PTS
𝑡 : 𝐴 Γ ⊢

PTS
𝐵 : U𝑙

Γ ⊢
PTS
𝑡 : 𝐵

(𝑙, 𝑙′, 𝑙′′) ∈ ℛ

App
Γ ⊢

PTS
𝐴 : U𝑙 Γ, 𝑥 : 𝐴 ⊢

PTS
𝐵 : U𝑙 ′

Γ ⊢
PTS
𝑡 : Π𝑙,𝑙 ′𝑥 : 𝐴.𝐵 Γ ⊢

PTS
𝑢 : 𝐴

Γ ⊢
PTS
𝑡@𝑥 :𝐴.𝐵

𝑙,𝑙 ′ 𝑢 : 𝐵 [𝑢/𝑥]

Figure 5.1: Typing rules for fully annotated Pure Type Systems

we consider the following syntax of raw terms and contexts, where 𝑙 and 𝑙′ range over ℒ.

TmPTS ∋ 𝑡,𝑢, 𝐴, 𝐵 ::= 𝑥 | U𝑙 | Π𝑙,𝑙 ′𝑥 : 𝐴.𝐵 | λ𝑥 :𝐴.𝐵
𝑙,𝑙 ′ 𝑥 .𝑡 | 𝑡@𝑥 :𝐴.𝐵

𝑙,𝑙 ′ 𝑢

CtxPTS ∋ Γ,Δ ::= · | Γ, 𝑥 : 𝐴

In this setting, 𝛽-reduction is defined as the closure under context of the following
reduction rule. Note that we consider a linearized variant of the expected non-left-linear
rule, which would be non-confluent on untyped terms, whereas the following rule is
confluent by orthogonality [MN98].2

(λ𝑥 :𝐴′ .𝐵′
𝑙,𝑙 ′ 𝑥 .𝑡)@𝑥 :𝐴.𝐵

𝑙,𝑙 ′ 𝑢 −→𝛽 𝑡 [𝑢/𝑥]

Given two relations𝒜 ⊆ ℒ
2 andℛ ⊆ ℒ

3, we define typing by the rules in Figure 5.1.
The triple𝒮 = (ℒ,𝒜,ℛ) is called a PTS specification, which is said to be functional when

2The reader might complain that the rule is still non-left-linear, as 𝑙 and 𝑙 ′ occur twice. Because universe
levels do not partake in rewriting, the annotations 𝑙, 𝑙 ′ need not be seen as arguments but instead can be
seen as part of the names of abstraction and application, which thus become (possibly infinite) ℒ2-indexed
families of symbols, making 𝛽-reduction a ℒ2-indexed family of left-linear rules.
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𝒜 and ℛ are functional relations, when seeing ℛ as ℛ ⊆ ℒ
2 × ℒ. When defining

our encoding, we will only consider functional specifications, given that non-functional
specifications are generally of lesser interest and not much used in practice.

Our use of a fully annotated syntax will be necessary to define the translation function
of the encoding.3 We have already mentioned that other authors have already considered
some variants of PTSs with different amounts of annotations (such as Siles and Herbe-
lin [SH12], Mellies and Werner [MW96], and Barthe and Sørensen [BS00]), yet none of
these variants correspond exactly to the one we employ here. Therefore, we revisited the
basic metatheory of PTSs for this variant in a technical report [Fel22b], and have found
that all the usual PTSs metaproperties are preserved:

Proposition 5.1 (Basic PTS properties). The following hold for all PTS specifications 𝒮.4

Confluence Given 𝑡,𝑢 ∈ TmPTS, if 𝑡 ≡𝛽 𝑢 then 𝑡 −→∗
𝛽
𝑣 ∗
𝛽
←− 𝑢 for some 𝑣 ∈ TmPTS.

Weakening Suppose Γ ⊑ Γ′ and Γ′ ⊢
PTS
. Then Γ ⊢

PTS
𝑡 : 𝐴 implies Γ′ ⊢

PTS
𝑡 : 𝐴.

Substitution property If Γ, 𝑥 : 𝐵, Γ′ ⊢
PTS

𝑡 : 𝐴 and Γ ⊢
PTS

𝑢 : 𝐵 then Γ, Γ′[𝑢/𝑥] ⊢
PTS

𝑡 [𝑢/𝑥] : 𝐴[𝑢/𝑥].

Validity If Γ ⊢
PTS
𝑡 : 𝐴 then either 𝐴 = U𝑙 or Γ ⊢PTS 𝐴 : U𝑙 for some 𝑙 ∈ ℒ.

Uniqueness of types If 𝒮 is functional, then Γ ⊢
PTS
𝑡 : 𝐴 and Γ ⊢

PTS
𝑡 : 𝐵 imply 𝐴 ≡ 𝐵.

Subject reduction If Γ ⊢
PTS
𝑡 : 𝐴 and 𝑡 −→𝛽 𝑡

′ then Γ ⊢
PTS
𝑡 ′ : 𝐴.

Extended conversion Let us write Γ ⊢
PTS
𝐵 type when Γ ⊢

PTS
𝐵 : U𝑙 or 𝐵 = U𝑙 for some

𝑙 ∈ ℒ. Then Γ ⊢
PTS
𝑡 : 𝐴 and Γ ⊢

PTS
𝐵 type with 𝐴 ≡𝛽 𝐵 imply Γ ⊢

PTS
𝑡 : 𝐵.

We have also established the following equivalence, showing that the move to a fully
annotated syntax does not morally change the type system when the specification is
functional. Once again, we refer to the technical report for the proof [Fel22b].

Theorem 5.1 (Equivalence between fully annotated PTSs and regular PTSs). Let us write
| − | for the erasure function from the fully annotated syntax to the usual PTS syntax. For all
functional specifications, the judgment Γ ⊢

PTS
𝑡 : 𝐴 holds for the regular PTS definition [Bar92]

iff we have Γ′ ⊢
PTS
𝑡 ′ : 𝐴′ for some Γ′, 𝑡 ′, 𝐴′ with |Γ′| = Γ and |𝑡 ′| = 𝑡 and |𝐴′| = 𝐴.

3Switching to a more annotated syntax is also needed in some previous Dedukti encodings [HB21].
4Extended conversion is actually not proven in the technical report [Fel22b], however it is an easy

consequence of validity, confluence, subject reduction, and rule Conv.
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5.2 The encoding

In this section we define our encoding of functional Pure Type Systems. Therefore, from
now on all considered PTS specifications are functional.

We proceed in two steps: first we specify the underlying theory of the encoding, and
then we define the translation function from the PTS syntax to the one of the framework.

Judgment forms and universes

To define the theory of our encoding, first recall that the judgments-as-types principle
specifies that object-logic judgment forms are to be represented in the framework by
type-level symbols5, so that the subject of a judgment becomes then an inhabitant of its
representing type. In the case of PTSs, the only judgment form is □ : 𝐴, where we have
replaced the subject by □, which should thus be represented as Tm ⟦𝐴⟧ (writing ⟦𝐴⟧
for the representation of 𝐴) so that PTS terms for which 𝑡 : 𝐴 is derivable correspond
to inhabitants of Tm ⟦𝐴⟧. But what should then be the type of the symbol Tm? As a
simplifying step, let us first assume ℒ to be a singleton and 𝒜 = ℒ

2. Then the type 𝐴 in
𝑡 : 𝐴 is itself a term satisfying 𝐴 : U, and so its translation should inhabit Tm ⟦U⟧. If we
define the symbol U as the translation of U, then the above reasoning suggest that Tm
should have type Tm U→ Type, meaning that the type of Tm refers to Tm itself!

The aforementioned circularity is due to the fact that the usual syntactic presentations
of PTSs use Russell-style universes, in which a term of type U is automatically a type. This
strict identification has led some think that Russell-style universes cannot be expressed
in logical frameworks, and that the only way out is switching to Tarski-style universes.
This is in fact not the case, and the strategy to remove this circularity actually has already
been known for a while [Ste19]6: we start by introducing a new symbol Ty : Type as a
placeholder for Tm U, then we declare the symbols U : Ty and Tm : Ty → Type, and
we conclude by closing the loop with a rewrite rule Tm U ↦−→ Ty. A posteriori we then
indeed have Tm : Tm U→ Type, but crucially not by definition.

We now need to get rid of the assumption that ℒ is a singleton, which can easily be
done by replacing Ty and Tm by the symbols Ty𝑙 : Type and Tm𝑙 : Ty𝑙 → Type for 𝑙 ∈ ℒ,
and replacing U and Tm U ↦−→ Ty by the symbols U𝑙 : Ty𝑙 ′ and rules Tm𝑙 ′ U𝑙 ↦−→ Ty𝑙
for (𝑙, 𝑙′) ∈ 𝒜. The judgment □ : 𝐴 can then be represented by the type Tm𝑙 ⟦𝐴⟧ for 𝑙 the
universe level of 𝐴. This is almost correct, however we should take care to notice that 𝐴
might not have a level if 𝐴 = U𝑙 with 𝑙 a maximal level (meaning that there is no 𝑙′ with
(𝑙, 𝑙′) ∈ 𝒜). Fortunately, we can easily solve this by adding a top layer Ty⊤ : Type and
Tm⊤ : Ty⊤ → Type, and adding U𝑙 : Ty⊤ and Tm⊤ U𝑙 ↦−→ Ty𝑙 for all maximal levels 𝑙 .
Now, if 𝑙 is a maximal level, the PTS judgment □ : U𝑙 can be represented in the framework

5Except for any context or equality judgments, which are handled directly by the logical framework.
6And the method has recently been generalized by Altenkirch et al. [AKvV23], who have dubbed it "The

Münchhausen Method".
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by the type Tm⊤ U𝑙 .
If we defineℒ⊤ := ℒ ∪ {⊤}, and 𝑙+ as either ⊤ when 𝑙 is a maximal level or 𝑙′ when

(𝑙, 𝑙′) ∈ 𝒜 — which is unique because we assume the specification to be functional — then
the above declarations can be resumed as:

Ty𝑙⊤ : Type for 𝑙⊤ ∈ ℒ⊤
Tm𝑙⊤ : Ty𝑙⊤ → Type for 𝑙⊤ ∈ ℒ⊤
U𝑙 : Ty𝑙+ for 𝑙 ∈ ℒ
Tm𝑙+ U𝑙 ↦−→ Ty𝑙 for 𝑙 ∈ ℒ

Remark 5.1. If we were to apply the judgments-as-types principle backwards to the above
declarations, we would get a type system with two typing judgments Γ ⊢

PTS
𝑡 :𝑙⊤ 𝐴 and

Γ ⊢
PTS
𝐴 type𝑙⊤ for 𝑙⊤ ∈ ℒ⊤. If we consider these as the ground truth, we realize that the

usual definition of PTSs introduces two simplifications: first, it omits the annotation 𝑙⊤
in the term typing judgment by writing Γ ⊢

PTS
𝑡 : 𝐴 instead of Γ ⊢

PTS
𝑡 :𝑙⊤ 𝐴, and it uses

the fact that the judgments Γ ⊢
PTS
𝐴 :𝑙+ U𝑙 and Γ ⊢

PTS
𝐴 type𝑙 classify the same elements

(as specified by the rewrite rule Tm𝑙+ U𝑙 ↦−→ Ty𝑙 ) to replace all the occurrences of the
former by the latter. Note however that this last simplification cannot be performed for
judgments Γ ⊢

PTS
𝐴 type⊤, yet the usual definition of PTSs still scraps completely the

judgments Γ ⊢
PTS
𝐴 type𝑙⊤ even for 𝑙⊤ = ⊤. The result of this is a well-known oddity: if 𝑙

is a maximal level, then there can be terms 𝐴 for which Γ ⊢
PTS
𝐴 : U𝑙 is derivable, yet no

PTS judgment allows one to establish the well-formedness of U𝑙 itself.7 The encoding of
PTSs in a logical framework thus allows us to identify the cause of this problem as an
oversimplification in the usual definition of PTSs. □

Dependent functions

Up until this point we have encoded only universes in the theory, in a way that mostly
follows the original PTS encoding in Dedukti by Cousineau and Dowek [CD07]. We now
continue by defining dependent functions, and start by declaring a family of symbols

Π𝑙,𝑙 ′ : (A : Ty𝑙 ) → (B : Tm𝑙 A→ Ty𝑙 ′) → Ty𝑙 ′′ for (𝑙, 𝑙 ′, 𝑙 ′′) ∈ ℛ

to represent the type former Π. This is now the point in which we depart from the usual
Dedukti strategy introduced by Cousineau and Dowek: they would continue here by
adding the rewrite rules Tm𝑙 ′′ (Π𝑙,𝑙 ′ A B) ↦−→ (𝑥 : Tm𝑙 A) → Tm𝑙 ′ (B 𝑥) for (𝑙, 𝑙′, 𝑙′′) ∈ ℛ,
identifying framework terms of type of Tm𝑙 ′′ (Π𝑙,𝑙 ′ 𝐴 𝐵) with framework terms of type
(𝑥 : Tm𝑙 𝐴) → Tm𝑙 ′ (𝐵 𝑥).

This identification can at first appear reasonable: the typing rules for application
and abstraction, along with the 𝛽-rule, establish exactly a retraction of terms 𝑡 satisfying

7Note that Dedukti itself, which can be seen as a PTS modulo [Bla01], also suffers from this oddity.
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Γ ⊢
PTS
𝑡 : Π𝑙,𝑙 ′𝑥 : 𝐴.𝐵 onto terms 𝑡 satisfying Γ, 𝑥 : 𝐴 ⊢

PTS
𝑡 : 𝐵, which moreover becomes

an isomorphism when taking the [-rule. However, as discussed in Chapter 3, even if this
rewrite rule is semantically sensible, it can also break the normalization of 𝛽-reduction in
the framework, making the proof of conservativity of the encoding very hard. Instead,
our goal is to only use rewrite rules that are not arrow-producing, which will then allow
us to use Theorem 4.2 to ensure that 𝛽-reduction is still normalizing in the framework.

Our way to continue here will thus be the least creative one possible: we simply add
families of symbols λ𝑙,𝑙 ′ and @𝑙,𝑙 ′ for representing the PTS abstraction and application,
and a family of rewrite rules for representing the PTS 𝛽-reduction, yielding the following
declarations:

λ𝑙,𝑙 ′ : (A : Ty𝑙 ) → (B : Tm𝑙 A→ Ty𝑙 ′) →
((𝑥 : Tm𝑙 A) → Tm𝑙 ′ (B 𝑥)) → Tm𝑙 ′′ (Π𝑙,𝑙 ′ A B) for (𝑙, 𝑙 ′, 𝑙 ′′) ∈ ℛ

@𝑙,𝑙 ′ : (A : Ty𝑙 ) → (B : Tm𝑙 A→ Ty𝑙 ′) →
(t : Tm𝑙 ′′ (Π𝑙,𝑙 ′ A B)) → (u : Tm𝑙 A) → Tm𝑙 ′ (B u) for (𝑙, 𝑙 ′, 𝑙 ′′) ∈ ℛ

@𝑙,𝑙 ′ A B (λ𝑙,𝑙 ′ A′ B′ t) u ↦−→ t u for (𝑙, 𝑙 ′, 𝑙 ′′) ∈ ℛ

Remark 5.2. We stress that there is nothing novel going on: the above declarations are
just what one gets when mechanically translating the typing rules and equations defining
dependent functions into a logical framework. Indeed, this is the way dependent functions
have been defined in equational logical frameworks all along [Ste19, Har21a, Uem21,
Ste22b], except (surprisingly) in the Dedukti literature [CD07, BDG+23]. □

These declarations conclude the definition of the theory T𝒮 for a given finite and
functional specification 𝒮, which we resume in Figure 5.2 for ease of referencing.
Remark 5.3. Because in our definition of Dedukti we only consider finite theories, the
theory of Figure 5.2 is only well-defined when the specification 𝒮 = (ℒ,𝒜,ℛ) is finite,
that is, when the set of levels is finite.8 Nevertheless, for every term typed in an infinite
specification, it is always possible to find a finite fragment of the specification in which
this term is still well-typed. Therefore, in some situations it can be acceptable to abuse
the notations and write T𝒮 even when𝒮 is infinite, which then means T𝒮′ for some finite
fragment 𝒮′ ⊆ 𝒮 large enough for all terms under consideration. Alternatively, under
some hypotheses on the specification, one can obtain a finite theory by internalizing the
universe levels and indexing the symbols of Figure 5.2 inside of the framework [Ass15,
Ste19]. This approach will be further developed in Part III, in which we moreover consider
a form of universe polymorphism similar to the one of Agda. □

8This limitation is also present in the encoding of Cousineau and Dowek [CD07], whose definition
of Dedukti also forbids infinite theories, yet they actually never discuss it explicitly. Alternatively, as
discussed in Section 2.2, we could consider a definition of Dedukti allowing for infinite theories, as used in
some other works [Bla20, BGH19].
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Ty𝑙⊤ : Type for 𝑙⊤ ∈ ℒ⊤
Tm𝑙⊤ : Ty𝑙⊤ → Type for 𝑙⊤ ∈ ℒ⊤
U𝑙 : Ty𝑙+ for 𝑙 ∈ ℒ
Tm𝑙+ U𝑙 ↦−→ Ty𝑙 for 𝑙 ∈ ℒ
Π𝑙,𝑙 ′ : (A : Ty𝑙 ) → (B : Tm𝑙 A→ Ty𝑙 ′) → Ty𝑙 ′′ for (𝑙, 𝑙 ′, 𝑙 ′′) ∈ ℛ
λ𝑙,𝑙 ′ : (A : Ty𝑙 ) → (B : Tm𝑙 A→ Ty𝑙 ′) →
((𝑥 : Tm𝑙 A) → Tm𝑙 ′ (B 𝑥)) → Tm𝑙 ′′ (Π𝑙,𝑙 ′ 𝐴 𝐵) for (𝑙, 𝑙 ′, 𝑙 ′′) ∈ ℛ

@𝑙,𝑙 ′ : (A : Ty𝑙 ) → (B : Tm𝑙 A→ Ty𝑙 ′) →
(t : Tm𝑙 ′′ (Π𝑙,𝑙 ′ A B)) → (u : Tm𝑙 A) → Tm𝑙 ′ (B u) for (𝑙, 𝑙 ′, 𝑙 ′′) ∈ ℛ

@𝑙,𝑙 ′ A B (λ𝑙,𝑙 ′ A′ B′ t) u ↦−→ t u for (𝑙, 𝑙 ′, 𝑙 ′′) ∈ ℛ

Figure 5.2: Theory T𝒮 defined by a finite and functional specification 𝒮 = (ℒ,𝒜,ℛ)

The translation function

To conclude the specification of our encoding, we only need to specify its associated
translation function ⟦−⟧. From the above discussion, it should be clear how to define ⟦−⟧:
we just map each syntactic constructor of the PTS syntax to its corresponding symbol in
the framework, and map variables to variables.

⟦−⟧ : TmPTS → Tm

⟦𝑥⟧ := 𝑥
⟦U𝑙⟧ := U𝑙
⟦Π𝑙,𝑙 ′𝑥 : 𝐴.𝐵⟧ := Π𝑙,𝑙 ′ ⟦𝐴⟧ (𝑥 .⟦𝐵⟧)
⟦λ𝑥 :𝐴.𝐵

𝑙,𝑙 ′ 𝑥 .𝑡⟧ := λ𝑙,𝑙 ′ ⟦𝐴⟧ (𝑥 .⟦𝐵⟧) (𝑥 .⟦𝑡⟧)
⟦𝑡@𝑥 :𝐴.𝐵

𝑙,𝑙 ′ 𝑢⟧ := @𝑙,𝑙 ′ ⟦𝐴⟧ (𝑥 .⟦𝐵⟧) ⟦𝑡⟧ ⟦𝑢⟧

We can then easily extend the translation function to well-typed contexts: we use the
fact that, for Γ well-typed, 𝑥 : 𝐴 ∈ Γ implies Γ ⊢

PTS
𝐴 : U𝑙 for some 𝑙 ∈ ℒ (which is unique

because the PTS specification is functional) to translate each entry 𝑥 : 𝐴 as 𝑥 : Tm𝑙 ⟦𝐴⟧.

⟦−⟧ : (Γ ∈ CtxPTS) → Ctx such that Γ ⊢PTS
⟦·⟧ := ·
⟦Γ, 𝑥 : 𝐴⟧ := ⟦Γ⟧, 𝑥 : Tm𝑙 ⟦𝐴⟧ where Γ ⊢PTS 𝐴 : U𝑙

Remark 5.4. As one can see, the fact that we can define ⟦−⟧ directly crucially relies on
our use of fully annotated PTSs. Had we used the usual PTS syntax, we could follow
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Cousineau and Dowek and try to define the translation only for the well-typed terms,
which would allow us to recover the level annotations 𝑙, 𝑙′ when translating Π𝑥 : 𝐴.𝐵
and λ𝑥 : 𝐴.𝑡 and 𝑡 𝑢. But if we try to use the same trick to recover (for instance) 𝐵 when
translating λ𝑥 : 𝐴.𝑡 , we would have to define ⟦λ𝑥 : 𝐴.𝑡⟧ := λ𝑙,𝑙 ′ ⟦𝐴⟧ (𝑥 .⟦𝐵⟧) (𝑥 .⟦𝑡⟧) for 𝐵
satisfying Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵, yet 𝐵 is neither unique nor structurally smaller than _𝑥 : 𝐴.𝑡 , so
this would be ill-defined. In this case, instead of defining ⟦−⟧ by structural induction on
well-typed terms (which, as just explained, does not work), we could define it by induction
on their typing derivations, making it possible to apply a recursive call on 𝐵. Yet, because
a typing judgment can have multiple derivations, we would then have to show that these
are still mapped to convertible Dedukti terms. An alternative approach, taken recently by
the author in joint work with Winterhalter [FW24], would be instead to state and prove
soundness and conservativity in terms of an inverse translation function, which can be
easily defined by structural induction. The direct translation function, which would never
be defined explicitly, could then be extracted from the soundness proof. □

Basic properties of the theory

Finally, we conclude this section by showing some basic properties of the theory, which
will be essential when proving soundness and conservativity of the encoding.
Notation 5.1. Throughout the rest of this chapter, we write Γ ⊢ 𝑡 : 𝑇 for theDedukti typing
judgment in the theory T𝒮, where𝒮 is a fixed finite and functional PTS specification. The
corresponding PTS judgment in 𝒮 is then written Γ ⊢

PTS
𝑡 : 𝐴. □

Proposition 5.2 (Basic properties of T𝒮).

(i) Confluence: The rewrite system 𝛽RT𝒮 is confluent.

(ii) Well-typedness: The theory T𝒮 is well-typed.

(iii) Subject reduction of 𝛽 : If Γ ⊢ 𝑡 : 𝑇 and 𝑡 −→𝛽 𝑡
′ then Γ ⊢ 𝑡 ′ : 𝑇 .

(iv) Strong normalization of 𝛽 : If Γ ⊢ 𝑡 : 𝑇 then 𝑡 is strongly normalizing for 𝛽 .

Proof. Point (i) follows from the fact that the rewrite system is orthogonal and from Mayr
and Nipkow’s confluence criterion for orthogonal systems [MN98]9, (ii) can be checked
by a routine verification, (iii) follows from Proposition 2.1 and using confluence, and
finally (iv) follows from Theorem 4.2 using confluence, well-typedness of T𝒮 and the fact
that there are no arrow-producing rules. ■

Remark 5.5. We could also show subject reduction for RT𝒮 , however as we will see our
proof technique never needs to use this property. □

9Note that, although this criterion was shown for the specific rewrite formalism of Higher-order Rewrite
Systems (HRSs), following Saillard [Sai15, Definition 5.2] we can encode the formalism used in Dedukti
as a specific HRS, allowing us to use this result in our setting. Alternatively, we refer to Férey’s PhD
thesis [Fer21], which revisits classic confluence criteria in the rewrite formalism used in Dedukti.
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5.3 Soundness

Now that we have seen the definition of our encoding, let us show that it is indeed correct,
starting with soundness. First recall that, because we are in a dependently typed setting,
typing makes reference to definitional equality, and so the first step to show soundness
is to prove that ⟦−⟧ respects it. But because definitional equality is defined in terms of
rewriting, which in turn uses substitution in its definition, we first have to show that ⟦−⟧
also respects substitution and reduction.

Lemma 5.1 (Basic properties of ⟦−⟧). Let 𝑡,𝑢 ∈ TmPTS.

1. We have ⟦𝑡 [𝑢/𝑥]⟧ = ⟦𝑡⟧[⟦𝑢⟧/𝑥].

2. If 𝑡 −→𝛽 𝑢 then ⟦𝑡⟧ −→∗ ⟦𝑢⟧.

3. If 𝑡 ≡𝛽 𝑢 then ⟦𝑡⟧ ≡ ⟦𝑢⟧.

Proof. The first point follows by induction on 𝑡 , whereas the second follows by induction
on the rewrite position, using the first point for the base case. Finally, the third point
follows by induction on ≡ and uses the second point. ■

We can now move to the proof of soundness.

Theorem 5.2 (Soundness). If Γ ⊢
PTS
𝑡 : 𝐴 then ⟦Γ⟧ ⊢ ⟦𝑡⟧ : Tm𝑙⊤ ⟦𝐴⟧ for some 𝑙⊤ ∈ ℒ⊤.

Proof. In order for the proof to go through, we instead show the following:

• If Γ ⊢
PTS

then ⟦Γ⟧ ⊢.

• If Γ ⊢
PTS

𝑡 : 𝐴 then either ⟦Γ⟧ ⊢ ⟦𝑡⟧ : Tm𝑙 ⟦𝐴⟧ for some 𝑙 with Γ ⊢
PTS

𝐴 : U𝑙 , or
⟦Γ⟧ ⊢ ⟦𝑡⟧ : Tm⊤ ⟦𝐴⟧ and 𝐴 = U𝑙 for some maximal level 𝑙 .

Observe in the second point that, if𝐴 is of the formU𝑙 , then the conclusion is equivalent
to ⟦Γ⟧ ⊢ ⟦𝑡⟧ : Tm𝑙+ U𝑙 . Moreover, if we already know that Γ ⊢

PTS
𝐴 : U𝑙 then, by

uniqueness of levels in functional PTSs, the conclusion implies ⟦Γ⟧ ⊢ ⟦𝑡⟧ : Tm𝑙 ⟦𝐴⟧. We
implicitly use these facts in the proof, which is done by induction on the typing derivation.

• Case EmptyCtx.

· ⊢
PTS

Trivial.
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• Case ExtCtx.

𝑙 ∈ ℒ
Γ ⊢

PTS
𝐴 : U𝑙

Γ, 𝑥 : 𝐴 ⊢
PTS

By i.h., ⟦Γ⟧ ⊢ ⟦𝐴⟧ : Tm𝑙+ U𝑙 , so ⟦Γ⟧ ⊢ Tm𝑙 ⟦𝐴⟧ : Type and ⟦Γ⟧, 𝑥 : Tm𝑙 ⟦𝐴⟧ ⊢.

• Case Var.

𝑥 : 𝐴 ∈ Γ
Γ ⊢

PTS

Γ ⊢
PTS
𝑥 : 𝐴

By i.h. we have ⟦Γ⟧ ⊢, and moreover 𝑥 : 𝐴 ∈ Γ implies 𝑥 : Tm𝑙 ⟦𝐴⟧ ∈ ⟦Γ⟧ for
some 𝑙 and Γ′ ⊑ Γ with Γ′ ⊢

PTS
𝐴 : U𝑙 . By weakening for PTS we have Γ ⊢

PTS
𝐴 : U𝑙

and by the variable rule in Dedukti we get ⟦Γ⟧ ⊢ 𝑥 : Tm𝑙 ⟦𝐴⟧.

• Case Univ.

(𝑙1, 𝑙2) ∈ 𝒜
Γ ⊢

PTS

Γ ⊢
PTS

U𝑙1 : U𝑙2

By i.h. we have ⟦Γ⟧, so we have ⟦Γ⟧ ⊢ U𝑙1 : Ty𝑙2 and hence ⟦Γ⟧ ⊢ U𝑙1 : Tm𝑙+2
U𝑙2 by

the conversion rule.

• Case Pi.

(𝑙1, 𝑙2, 𝑙3) ∈ ℛ
Γ ⊢

PTS
𝐴 : U𝑙1 Γ, 𝑥 : 𝐴 ⊢

PTS
𝐵 : U𝑙2

Γ ⊢
PTS

Π𝑙1,𝑙2𝑥 : 𝐴.𝐵 : U𝑙3

By i.h. we have ⟦Γ⟧ ⊢ ⟦𝐴⟧ : Tm𝑙+1
U𝑙1 and ⟦Γ⟧, 𝑥 : Tm𝑙1 ⟦𝐴⟧ ⊢ ⟦𝐵⟧ : Tm𝑙+2

U𝑙2 ,
and thus ⟦Γ⟧ ⊢ ⟦𝐴⟧ : Ty𝑙1 and ⟦Γ⟧ ⊢ 𝑥 .⟦𝐵⟧ : Tm𝑙1 ⟦𝐴⟧ → Ty𝑙2 . Therefore, we
have ⟦Γ⟧ ⊢ Π𝑙1,𝑙2 ⟦𝐴⟧ (𝑥 .⟦𝐵⟧) : Ty𝑙3 , and we conclude by applying conversion with
Ty𝑙3 ≡ Tm𝑙+3

U𝑙3 .

• Case Abs.

(𝑙1, 𝑙2, 𝑙3) ∈ ℛ
Γ ⊢

PTS
𝐴 : U𝑙1 Γ, 𝑥 : 𝐴 ⊢

PTS
𝐵 : U𝑙2 Γ, 𝑥 : 𝐴 ⊢

PTS
𝑡 : 𝐵

Γ ⊢
PTS

λ𝑥 :𝐴.𝐵
𝑙1,𝑙2

𝑥 .𝑡 : Π𝑙1,𝑙2𝑥 : 𝐴.𝐵

By i.h. we have ⟦Γ⟧ ⊢ ⟦𝐴⟧ : Tm𝑙+1
U𝑙1 and ⟦Γ⟧, 𝑥 : Tm𝑙1 ⟦𝐴⟧ ⊢ ⟦𝐵⟧ : Tm𝑙+2

U𝑙2
and ⟦Γ⟧, 𝑥 : Tm𝑙1 ⟦𝐴⟧ ⊢ ⟦𝑡⟧ : Tm𝑙2 ⟦𝐵⟧. We conclude by deriving ⟦Γ⟧ ⊢
λ𝑙1,𝑙2 ⟦𝐴⟧ (𝑥 .⟦𝐵⟧) (𝑥 .⟦𝑡⟧) : Tm𝑙3 (Π𝑙1,𝑙2 ⟦𝐴⟧ (𝑥 .⟦𝐵⟧)), and we indeed have Γ ⊢

PTS

Π𝑙1,𝑙2𝑥 : 𝐴.𝐵 : U𝑙3 .
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• Case App.

(𝑙1, 𝑙2, 𝑙3) ∈ ℛ

Γ ⊢
PTS
𝐴 : U𝑙1 Γ, 𝑥 : 𝐴 ⊢

PTS
𝐵 : U𝑙2

Γ ⊢
PTS
𝑡 : Π𝑙1,𝑙2𝑥 : 𝐴.𝐵 Γ ⊢

PTS
𝑢 : 𝐴

Γ ⊢
PTS
𝑡@𝑥 :𝐴.𝐵

𝑙1,𝑙2
𝑢 : 𝐵 [𝑢/𝑥]

By i.h. we have ⟦Γ⟧ ⊢ ⟦𝐴⟧ : Tm𝑙+1
U𝑙1 and ⟦Γ⟧, 𝑥 : Tm𝑙1 ⟦𝐴⟧ ⊢ ⟦𝐵⟧ : Tm𝑙+2

U𝑙2 and
⟦Γ⟧ ⊢ ⟦𝑢⟧ : Tm𝑙1 ⟦𝐴⟧. Moreover, we can show Γ ⊢

PTS
Π𝑙1,𝑙2𝑥 : 𝐴.𝐵 : U𝑙3 , so by i.h.

we also have ⟦Γ⟧ ⊢ ⟦𝑡⟧ : Tm𝑙3 (Π𝑙1,𝑙2 ⟦𝐴⟧ (𝑥 .⟦𝐵⟧)). Therefore, we obtain ⟦Γ⟧ ⊢
@𝑙1,𝑙2 ⟦𝐴⟧ (𝑥 .⟦𝐵⟧) ⟦𝑡⟧ ⟦𝑢⟧ : Tm𝑙2 ((𝑥 .⟦𝐵⟧)⟦𝑢⟧), and by applying Lemma 5.1 we
get (𝑥 .⟦𝐵⟧)⟦𝑢⟧ ≡ ⟦𝐵⟧[⟦𝑢⟧/𝑥] = ⟦𝐵 [𝑢/𝑥]⟧. We conclude by applying conversion
and noting that, by the substitution property for PTSs, we have Γ ⊢

PTS
𝐵 [𝑢/𝑥] : U𝑙2 .

• Case Conv.

𝑙 ∈ ℒ
𝐴 ≡𝛽 𝐵

Γ ⊢
PTS
𝑡 : 𝐴 Γ ⊢

PTS
𝐵 : U𝑙

Γ ⊢
PTS
𝑡 : 𝐵

By i.h. we have ⟦Γ⟧ ⊢ ⟦𝐵⟧ : Tm𝑙+ U𝑙 and thus ⟦Γ⟧ ⊢ Tm𝑙 ⟦𝐵⟧ : Type. Moreover,
by tedious calculations with Proposition 5.1 we can show Γ ⊢

PTS
𝐴 : U𝑙 , so by the

i.h. again we get ⟦Γ⟧ ⊢ ⟦𝑡⟧ : Tm𝑙 ⟦𝐴⟧. Finally, by Lemma 5.1 we have ⟦𝐴⟧ ≡ ⟦𝐵⟧,
so we conclude by applying conversion to ⟦Γ⟧ ⊢ ⟦𝑡⟧ : Tm𝑙 ⟦𝐴⟧ with Tm𝑙 ⟦𝐴⟧ ≡
Tm𝑙 ⟦𝐵⟧. ■

5.4 Conservativity

We now move to the proof of conservativity. As anticipated in Chapter 3, our proof
works by taking a term 𝑡 witnessing ⟦Γ⟧ ⊢ 𝑡 : Tm𝑙 ⟦𝐴⟧, then 𝛽-normalizing it (which
we can, by Proposition 5.2) and translating it back to the object-language. However, we
oversimplified a bit when saying that all 𝛽-normal terms can be directly translated back,
as illustrated by the following example.
Example 5.1. Consider the functional PTS specification given byℒ = {0, 1, 2}, and with
𝒜 and ℛ being the graphs of the successor and max functions. Defining the aliases
𝑡 := λ1,1 U0 (𝑥 .U0) (𝑥 .𝑥) and𝑢 := @1,1 U0 (𝑥 .U0) 𝑡 , then in the Dedukti encoding we have
a derivation of · ⊢ Π1,0 U0 𝑢 : Tm2 U1, yet this term is not in the image of ⟦−⟧. Indeed, the
symbol @1,1 is only applied to three arguments, whereas all occurences of this symbol in
the image of ⟦−⟧ are followed by four arguments. □

The cause for the problem illustrated in this example is the fact that the term con-
sidered is not [-long. As explained by Harper et al. [HHP93], in logical frameworks, a
perfect correspondence with object-language terms can in general only be obtained when
considering 𝛽-normal [-long forms, also known as canonical forms. In frameworks like the
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|𝑥 | := 𝑥 |λ𝑙,𝑙 ′ 𝐴 𝐵 𝑡 | := λ𝑥
′:|𝐴|.|𝐵 𝑥 ′ |
𝑙,𝑙 ′ 𝑥′.|𝑡 𝑥′|

|U𝑙 | := U𝑙 |@𝑙,𝑙 ′ 𝐴 𝐵 𝑡 𝑢 | := |𝑡 |@𝑥 ′:|𝐴|.|𝐵 𝑥 ′ |
𝑙,𝑙 ′ |𝑢 |

|Π𝑙,𝑙 ′ 𝐴 𝐵 | := Π𝑙,𝑙 ′𝑥
′ : |𝐴|.|𝐵 𝑥′| | (𝑥 .𝑡)𝑢 | := |𝑡 | [ |𝑢 |/𝑥]

where the 𝑥 ′ are fresh

Figure 5.3: (Partial) back-translation function

Edinburgh Logical Framework this is not a problem, because there one includes [-equality
in the definition of the framework. This then allows one to show that every well-typed
term is 𝛽[-equal to a canonical form of the same type [HP05].

Unfortunately, in the case of Dedukti, [-equality is not included in the conversion
as it can behave badly with rewriting, and because of its absence it is not true anymore
that every term can be mapped to a canonical form of the same type. In order to address
this problem, Cousineau and Dowek [CD07] proposed to prove conservativity of 𝛽-
normal forms in two steps. First, they showed that every 𝛽-normal form 𝑡 witnessing
⟦Γ⟧ ⊢ 𝑡 : Tm𝑙 ⟦𝐴⟧ could be [-expanded while preserving typing, reducing conservativity
of 𝛽-normal forms to conservativity of canonical forms. They then proceed to show that
all canonical forms 𝑡 witnessing ⟦Γ⟧ ⊢ 𝑡 : Tm𝑙 ⟦𝐴⟧ could be translated back.

In this section, we propose an alternative which allows us to show conservativity more
directly. Our main insight is that terms can instead be [-expanded at (back-)translation
time: if we write | − | for the back-translation function, then |Π𝑙,𝑙 ′ 𝐴 𝐵 | should be the same
as |Π𝑙,𝑙 ′ 𝐴 (𝑥 .𝐵 𝑥) |, which should of course be defined as Π𝑙,𝑙 ′𝑥 : |𝐴|.|𝐵 𝑥 |. However, if 𝐵
was already an abstraction then by writing 𝐵 𝑥 we have just created a 𝛽-redex, and thus
the back-translation function must also reduce the created redexes at translation time.
Moreover, because 𝐵 𝑥 is not a strict subterm of Π𝑙,𝑙 ′ 𝐴 𝐵, we cannot simply define | − | by
induction on the term. We instead define the back-translation function by induction on
the number of symbols and abstractions, by the clauses of Figure 5.3.

As | − | is only partially defined, we call the Dedukti terms in its domain invertible.10
We extend | − | naturally to contexts Γ whose entries are of the form 𝑥 : Tm𝑙 𝐴 with
𝐴 invertible, in which case Γ is also said to be invertible. As one would expect, | − | is
a left-inverse of ⟦−⟧. However, because of the [-expansions and 𝛽-reductions in the
definition of | − |, the function | − | is only a right-inverse of ⟦−⟧ up to 𝛽[-equality.

Proposition 5.3.We have |⟦𝑡⟧| = 𝑡 for all 𝑡 ∈ TmPTS and ⟦|𝑡 |⟧ ≡𝛽[ 𝑡 for all 𝑡 invertible.

Proof. By induction on the definitions of ⟦−⟧ and | − |. ■

10An explicit description of invertible terms could be of course given, though we do not believe this
would be particularly insightful.
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Another key property of | − | is that it preserves reduction, and thus conversion. Note
that for proving this it is essential that | − | allows for regular 𝛽-redexes (𝑥 .𝑡)𝑢, even
though the back-translation can only introduce redexes of the form (𝑥 .𝑡)𝑦 — also called
𝛽0-redexes.

Lemma 5.2 (| − | preserves reduction and conversion).

1. If 𝑡 and 𝑢 are invertible then 𝑡 [𝑢/𝑥] is invertible and |𝑡 [𝑢/𝑥] | = |𝑡 | [ |𝑢 |/𝑥]

2. If 𝑡 is invertible and 𝑡 −→ 𝑡 ′ then 𝑡 ′ is invertible and either |𝑡 | −→ |𝑡 ′| or |𝑡 | = |𝑡 ′|.

3. If 𝑡 and 𝑢 are invertible and 𝑡 ≡ 𝑢 then |𝑡 | ≡ |𝑢 |.

Proof. The first two points are shown by induction on the definition of | − |, and the third
point follows from the second by using confluence (Proposition 5.2.(i)). ■

Finally, before showing conservativity we will also need some easy technical lemmas.
The following first lemma will enable us to show conservativity by induction on 𝛽-normal
forms, even though | − | might introduce redexes of the form (𝑦.𝑢)𝑥 . Indeed, among other
things, it also proves that such redexes can be reduced without changing the value of the
term with respect to | − |.

Lemma5.3. Given aDedukti term 𝑡 and variable𝑥′, define 𝑡 := if 𝑡 = 𝑥 .𝑢 then 𝑢 [𝑥′/𝑥] else 𝑡 𝑥′.

1. If 𝑡 is 𝛽-normal, then 𝑡 also is.

2. If 𝑡 is invertible, then 𝑡 𝑥′ also is and |𝑡 | = |𝑡 𝑥′|.

3. If Γ ⊢ 𝑡 : (𝑥 : 𝑇 ) → 𝑈 then Γ, 𝑥′ : 𝑇 ⊢ 𝑡 : 𝑈 [𝑥′/𝑥].

Proof. The first point is trivial. For the second point, if 𝑡 is not an abstraction, then 𝑡 = 𝑡 𝑥′
and the result is trivial, otherwise we have 𝑡 = 𝑥 .𝑢 and 𝑡 = 𝑢 [𝑥′/𝑥], in which case the result
easily follows by Lemma 5.2. Finally, the third point follows from tedious calculations,
using Proposition 2.1. ■

The following two lemmas then allow us to back-translate conversions from the
framework to the object-theory.

Lemma 5.4. If Tm𝑙⊤ 𝐴 ≡ Ty𝑙 ′⊤ with 𝑙⊤, 𝑙
′
⊤ ∈ ℒ⊤ and𝐴 invertible then 𝑙′⊤ ≠ ⊤ and |𝐴| ≡ U𝑙 ′⊤ .

Proof. By confluence we have Tm𝑙⊤ 𝐴 −→∗ Ty𝑙 ′⊤ and thus 𝐴 −→∗ U𝑙 ′⊤ , implying in
particular that 𝑙′⊤ ≠ ⊤. By Lemma 5.2 with 𝐴 ≡ U𝑙 ′⊤ we then conclude |𝐴| ≡ U𝑙 ′⊤ . ■

Lemma 5.5. If Tm𝑙⊤ 𝐴 ≡ Tm𝑙 ′⊤ 𝐴
′ with 𝑙⊤, 𝑙′⊤ ∈ ℒ⊤ and 𝐴,𝐴′ invertible then |𝐴| ≡ |𝐴′|.

Proof. By confluence we have Tm𝑙⊤ 𝐴 −→ 𝐵 ∗←− Tm𝑙 ′⊤ 𝐴
′. We then have either 𝐵 = Ty𝑙 ′′ ,

in which case we conclude by Lemma 5.4, or 𝐵 = Tm𝑙 ′′⊤ 𝐴
′′, in which case we must have

𝑙⊤ = 𝑙′⊤ = 𝑙′′⊤ and 𝐴 −→∗ 𝐴′′ ∗←− 𝐴′, implying |𝐴| ≡ |𝐴′| by Lemma 5.2. ■
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We are now ready to show conservativity.

Theorem 5.3 (Conservativity). If Γ ⊢
PTS
𝐴 type and ⟦Γ⟧ ⊢ 𝑡 : Tm𝑙⊤ ⟦𝐴⟧ for some 𝑙⊤ ∈ ℒ⊤,

then for some 𝑡 ′ ∈ TmPTS we have 𝑡 ≡𝛽[ ⟦𝑡 ′⟧ and Γ ⊢
PTS
𝑡 ′ : 𝐴.

Proof. By subject reduction and strong normalization of 𝛽-reduction (points (iii) and (iv)
of Proposition 5.2), it suffices to consider 𝑡 in 𝛽-normal form. We then show the following
stronger claim, which implies the result by Proposition 5.3.

Claim 5.1. Suppose |Γ | ⊢
PTS
|𝐶 | type and Γ ⊢ 𝑡 : Tm𝑙⊤ 𝐶 for some 𝑡 𝛽-normal. Then 𝑡 is

invertible and |Γ | ⊢
PTS
|𝑡 | : |𝐶 |

We prove the claim by induction on the number of symbols in 𝑡 . First note that cases
𝑡 = 𝑥 .𝑢 and 𝑡 = (𝑥 : 𝑇1) → 𝑇2 and 𝑡 = Type are all impossible, as by confluence we
cannot have Tm𝑙⊤ 𝐶 convertible to a function type or to Type or Kind. Therefore, the only
possible case is 𝑡 = ℎ ®𝑢 with ℎ a variable or symbol. Moreover, if ℎ is a symbol 𝑓 , because
Tm𝑙⊤ 𝐶 is not convertible to a function type, it follows that 𝑓 must be fully applied. It
is also easy to see that the only candidates for 𝑓 are U𝑙 , Π𝑙,𝑙 ′ , @𝑙,𝑙 ′ and λ𝑙,𝑙 ′ . Finally, if ℎ
is a variable, then we must have ®𝑢 empty because no variable in the context has a type
convertible to a function type.

From all these observations, it thus suffices to consider the following cases. Throughout
the rest of the proof, we implicitly use extended conversion from Proposition 5.1 and
inversion of symbol application from Proposition 2.1.

• Case 𝑡 = 𝑥 . By inversion on Γ ⊢ 𝑥 : Tm𝑙⊤ 𝐶 we get 𝑥 : Tm𝑙 ′ 𝐴 ∈ Γ with Tm𝑙⊤ 𝐶 ≡
Tm𝑙 ′ 𝐴, which by Lemma 5.5 implies |𝐴| ≡ |𝐶 |. From |Γ | ⊢

PTS
we get |Γ | ⊢

PTS
𝑥 : |𝐴|,

so we conclude |Γ | ⊢
PTS
𝑥 : |𝐶 | by applying conversion.

• Case 𝑡 = U𝑙1 . We have Tm𝑙⊤ 𝐶 ≡ Ty𝑙+1 , so by Lemma 5.4 we get 𝑙+1 ≠ ⊤ and |𝐶 | ≡ U𝑙+1
.

We can thus show |Γ | ⊢
PTS

U𝑙1 : U𝑙+1 and then |Γ | ⊢
PTS

U𝑙1 : |𝐶 | by using conversion.

• Case 𝑡 = Π𝑙1,𝑙2 𝐴 𝐵. We have (𝑙1, 𝑙2, 𝑙3) ∈ ℛ and Γ ⊢ 𝐴 : Ty𝑙1 and Γ ⊢ 𝐵 : Tm𝑙1 𝐴 →
Ty𝑙2 and Ty𝑙3 ≡ Tm𝑙⊤ 𝐶 . Therefore Γ ⊢ 𝐴 : Tm𝑙+1

U𝑙1 , so by i.h. we get |Γ | ⊢PTS |𝐴| : U𝑙1 ,
and thus |Γ |, 𝑥′ : |𝐴| ⊢

PTS
. Defining �̃� as in Lemma 5.3, we have Γ, 𝑥′ : Tm𝑙1 𝐴 ⊢ �̃� :

Tm𝑙+2
U𝑙2 . The term �̃� is 𝛽-normal and has less symbols than 𝑡 , so by i.h. we get

|Γ |, 𝑥′ : |𝐴| ⊢
PTS
|�̃� | : U𝑙2 , and by Lemma 5.3 we have |�̃� | = |𝐵 𝑥′|. We can now derive

|Γ | ⊢
PTS

Π𝑙1,𝑙2𝑥
′ : |𝐴|.|𝐵 𝑥′| : U𝑙3 . By applying Lemma 5.4 with Tm𝑙⊤ 𝐶 ≡ Ty𝑙3 we get

|𝐶 | ≡ U𝑙3 , so by conversion we conclude |Γ | ⊢
PTS

Π𝑙1,𝑙2𝑥
′ : |𝐴|.|𝐵 𝑥′| : |𝐶 |.

• Case 𝑡 = λ𝑙1,𝑙2 𝐴 𝐵 𝑢. We have (𝑙1, 𝑙2, 𝑙3) ∈ ℛ and Γ ⊢ 𝐴 : Ty𝑙1 and Γ ⊢ 𝐵 : Tm𝑙1 𝐴→
Ty𝑙2 and Γ ⊢ 𝑢 : (𝑥 : Tm𝑙1 𝐴) → Tm𝑙2 (𝐵 𝑥) and Tm𝑙⊤ 𝐶 ≡ Tm𝑙3 (Π𝑙1,𝑙2 𝐴 𝐵). By the
same reasoning as in case 𝑡 = Π𝑙1,𝑙2 𝐴 𝐵 we get |Γ | ⊢

PTS
|𝐴| : U𝑙1 and |Γ |, 𝑥′ : |𝐴| ⊢PTS

|𝐵 𝑥′| : U𝑙2 . Defining �̃� as in Lemma 5.3, we have Γ, 𝑥′ : Tm𝑙1 𝐴 ⊢ �̃� : Tm𝑙2 (𝐵 𝑥′),
so by i.h. we get |Γ |, 𝑥′ : |𝐴| ⊢

PTS
|�̃� | : |𝐵 𝑥′|, and we have |�̃� | = |𝑢 𝑥′|. We can now
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derive |Γ | ⊢
PTS

λ𝑥
′:|𝐴|.|𝐵 𝑥 ′ |
𝑙1,𝑙2

𝑥′.|𝑢 𝑥′| : (Π𝑙1,𝑙2𝑥′ : |𝐴|.|𝐵 𝑥′|). By applying Lemma 5.5
with Tm𝑙⊤ 𝐶 ≡ Tm𝑙3 (Π𝑙1,𝑙2 𝐴 𝐵) we get |𝐶 | ≡ Π𝑙1,𝑙2𝑥

′ : |𝐴|.|𝐵 𝑥′|, so we conclude
|Γ | ⊢

PTS
λ𝑥
′:|𝐴|.|𝐵 𝑥 ′ |
𝑙1,𝑙2

𝑥′.|𝑢 𝑥′| : |𝐶 | with conversion.

• Case 𝑡 = @𝑙1,𝑙2 𝐴 𝐵 𝑢 𝑣 . We have (𝑙1, 𝑙2, 𝑙3) ∈ ℛ and Γ ⊢ 𝐴 : U𝑙1 and Γ ⊢ 𝐵 : Tm𝑙1 𝐴→
Ty𝑙2 and Γ ⊢ 𝑢 : Tm𝑙3 (Π𝑙1,𝑙2 𝐴 𝐵) and Γ ⊢ 𝑣 : Tm𝑙1 𝐴 and Tm𝑙⊤ 𝐶 ≡ Tm𝑙2 (𝐵 𝑣). By
the same reasoning as in case 𝑡 = Π𝑙1,𝑙2 𝐴 𝐵, we get |Γ | ⊢

PTS
|𝐴| : U𝑙1 and |Γ |, 𝑥′ :

|𝐴| ⊢
PTS
|𝐵 𝑥′| : U𝑙2 . We can then derive |Γ | ⊢

PTS
Π𝑙1,𝑙2𝑥

′ : |𝐴|.|𝐵 𝑥′| : U𝑙3 , allowing us
to apply the i.h. to Γ ⊢ 𝑢 : Tm𝑙3 (Π𝑙1,𝑙2 𝐴 𝐵), yielding |Γ | ⊢PTS |𝑢 | : Π𝑙1,𝑙2𝑥′ : |𝐴|.|𝐵 𝑥′|.
Then by the i.h. applied to Γ ⊢ 𝑣 : Tm𝑙1 𝐴 we get |Γ | ⊢

PTS
|𝑣 | : |𝐴|, so we get |Γ | ⊢

PTS

|𝑢 |@𝑥 ′:|𝐴|.|𝐵 𝑥 ′ |
𝑙1,𝑙2

|𝑣 | : |𝐵 𝑥′| [ |𝑣 |/𝑥′]. Because 𝑥′ is fresh, we have |𝐵 𝑥′| [ |𝑣 |/𝑥′] = |𝐵 𝑣 |
by Lemma 5.2. Moreover, by Lemma 5.5 with Tm𝑙⊤ 𝐶 ≡ Tm𝑙2 (𝐵 𝑣) we get |𝐶 | ≡ |𝐵 𝑣 |,
so we can conclude |Γ | ⊢

PTS
|𝑢 |@𝑥 ′:|𝐴|.|𝐵 𝑥 ′ |

𝑙1,𝑙2
|𝑣 | : |𝐶 | by applying conversion. ■
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Chapter 6

Introduction to Part II

The problem of annotations

In the previous part, we have seen how proofs of conservativity can be made smoother by
avoiding arrow-producing rules and applying Theorem 4.2 to reduce general conservativity
to conservativity of 𝛽-normal forms. This allowed us to give a new encoding of Pure Type
Systems in Dedukti and to prove its conservativity in a fairly straightforward manner.

However, if we try to use our encoding to type-check terms in practice in Dedukti,
we notice a problem: while an application is most often written as just 𝑡 𝑢, in our encoding
it is represented in a fully annotated manner, as @𝑙,𝑙 ′ ⟦𝐴⟧ (𝑥 .⟦𝐵⟧) ⟦𝑡⟧ ⟦𝑢⟧. Because
Dedukti is developed specifically with the intent of being used in practice to type-check
large proof libraries, it is clear that this increase on the size of terms can be a problem.

The original PTS encoding in Dedukti avoided this problem by instead using the rule
Tm (Π A B) ↦−→ (𝑥 : Tm A) → Tm (B 𝑥) to represent the object language abstraction
and application by the ones of the framework, which are less annotated. However, this
technique for avoiding annotations is not at all general: for instance, to encode dependent
sums using this strategy, we would need the rule Tm (Σ A B) ↦−→ (𝑥 : Tm A) × Tm (B 𝑥),
which is of course not valid because Dedukti does not support dependent sums natively.
One could of course try to extend the framework with dependent sums to cover the
previous example, however this technique then breaks completely for encoding positive
types, such as lists, given that the rule Tm (List A) ↦−→ ListTm A would not yield the
correct implementation. Therefore, for defining full-fledged dependent type theories
that go beyond basic type formers, the proliferation of annotations is unfortunately
unavoidable in Dedukti.

Towards a framework supporting non-annotated syntaxes

The problem we have just described is actually not at all specific to Dedukti. In general,
seeing type theories as theories in a logical framework yields fully annotated syntactic
presentations, in which all arguments are explicitly spelled out: an application is written
as 𝑡@𝐴,𝑥 .𝐵𝑢, a dependent pair as ⟨𝑡,𝑢⟩𝐴,𝑥 .𝐵 , cons as 𝑡 ::𝐴 𝑙 , etc. If we chose to take
logical frameworks seriously as a specification of what type theories are, as many indeed
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do [AK16a, Ste22b, Gra23], we then see that the usual presentations of type theories are
the ones which deviate in being too economic. There are many reasons which suggest
that the fully annotated syntax is the most canonical one: for instance, one of its benefits
is that all the subjects of premises in typing rules get recorded in the syntax, as illustrated
in the following rule for dependent sums. In contrast, non-annotated syntaxes only chose
to record a subset of the subjects, which is arguably a less canonical choice than keeping
all of them.

Γ ⊢ 𝐴 type Γ, 𝑥 : 𝐴 ⊢ 𝐵 type Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐵 [𝑡/𝑥]
Γ ⊢ ⟨𝑡,𝑢⟩𝐴,𝑥 .𝐵 : Σ𝑥 : 𝐴.𝐵

However, fully annotated terms are not only much slower to type-check and reduce,
but it is also not reasonable to ask users of type theories to write all such annotations.
This is also why the syntactic presentations of type theory that we use in practice omit
the majority of these annotations, allowing one to write 𝑡 𝑢 for application,1 ⟨𝑡,𝑢⟩ for
a dependent pair, 𝑡 :: 𝑙 for cons, etc. Therefore, even if fully annotated syntaxes might
be the most canonical choice, they are just not the best choice for a framework like
Dedukti, which is developed with the specific intention of being used in practice as
a theory-independent type-checker. It is thus natural to wonder if one could modify
Dedukti to support the non-annotated syntaxes we know and love.

Type-checking non-annotated terms

If removing annotations can be very desirable, it is nevertheless important to note that it
has a cost: because knowing them is still important when typing terms, it becomes unclear
how to type terms algorithmically, even when the definitional equality of the theory is
decidable. For instance, if we omit the annotations in ⟨𝑡,𝑢⟩𝐴,𝑥 .𝐵 , then when building a
typing derivation for this term one has to guess 𝐴 and 𝐵:

Γ ⊢ ? type Γ, 𝑥 : ? ⊢ ? type Γ ⊢ 𝑡 : ? Γ ⊢ 𝑢 : ?
Γ ⊢ ⟨𝑡,𝑢⟩ : Σ𝑥 : ?. ?

We thus see that the problem of removing annotations is somewhat dual to the one of
type-checking terms. If a variant of Dedukti supporting non-annotated syntaxes is to
be implementable in practice, we need to strike a balance between these two points and
explain why omitting annotations does not jeopardize decidability of type-checking.

Bidirectional typing

The aforementioned problem is thankfully well known in the literature, and a solution
for it is provided by bidirectional typing [McB18, Coq96, DK21, DP04, PT00], a typing

1This non-annotated syntax is so common that many might not even realize that an omission is being
made!



49 CHAPTER 6. INTRODUCTION TO PART II

discipline in which the declarative typing judgment Γ ⊢ 𝑡 : 𝐴 is decomposed explicitly
into inference Γ ⊢ 𝑡 ⇒ 𝐴, where Γ and 𝑡 are inputs and 𝐴 is an output, and checking
Γ ⊢ 𝑡 ⇐ 𝐴, where Γ, 𝑡 and 𝐴 are all inputs. The important point is that, by using these
new judgments to control the flow of type information in typing rules, one can specify
algorithmically how these rules should be used. For instance, the following rule clarifies
how one should type ⟨𝑡,𝑢⟩: the types𝐴 and 𝐵 are not to be guessed, but instead recovered
from the type 𝐶 , which should be given as input.

𝐶 −→∗ Σ𝑥 : 𝐴.𝐵 Γ ⊢ 𝑡 ⇐ 𝐴 Γ ⊢ 𝑢 ⇐ 𝐵 [𝑡/𝑥]
Γ ⊢ ⟨𝑡,𝑢⟩ ⇐ 𝐶

In general, whenever a term starts by a constructor (that is, an introduction form),
bidirectional typing allows the recovery of annotations by asking its type to be given as
input. Dually to how constructors can be type-checked, bidirectional typing supports
type-inference of destructors (that is, of elimination forms) by recovering the missing
arguments from the type of its first argument, which gets inferred. This can be illustrated
with the bidirectional typing rule for application:

Γ ⊢ 𝑡 ⇒ 𝐶 𝐶 −→∗ Π𝑥 : 𝐴.𝐵 Γ ⊢ 𝑢 ⇐ 𝐴

Γ ⊢ 𝑡 𝑢 ⇒ 𝐵 [𝑢/𝑥]

We therefore see that bidirectional typing is the natural companion for an non-
annotated syntax, as it allows to algorithmically explain how the missing information can
be retrieved.

Our contribution

We start in Chapter 7 by proposing a new logical framework in the same family asDedukti,
where the definitional equality is specified by rewrite rules, but in which we can present
theories using the more compact non-annotated syntax we are used to. For instance, we
can define dependent functions in our framework by the following theory:2

Ty(·) sort, Tm(A : Ty) sort, Π(· ; A : Ty, B{𝑥 : Tm(A)} : Ty) : Ty,
λ(A : Ty, B{𝑥 : Tm(A)} : Ty ; t{𝑥 : Tm(A)} : Tm(B{𝑥})) : Tm(Π(A, 𝑥 .B{𝑥})),
@(A : Ty, B{𝑥 : Tm(A)} : Ty ; t : Tm(Π(A, 𝑥 .B{𝑥})), u : Tm(A)) : Tm(B{u}),
@(λ(𝑥 .t{𝑥}), u) ↦−→ t{u}

While we cannot fully explain this example at this point, we would like to highlight
how the arguments A and B are separated from the other ones by a separator ; in λ
and @, which indicates that they are erased. This means that an abstraction is then

2Slightly abusing the notations we present in Section 7.2.
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written as just λ(𝑥 .𝑡) and an application as just @(𝑡,𝑢), and so we indeed obtain the
syntax we wanted. Note the difference with implicit arguments [Nor07], which allow for
the omission of annotations in the user-level syntax, that are then elaborated through
unification when going to the real syntax: in our framework, the arguments A and B
are really not there! Therefore, unlike with implicit arguments, erased arguments are
computationally irrelevant, meaning that the result of a computation cannot depend on
them. Consequently, rewriting and equality-checking are performed without taking these
arguments into account, which can then be done much more efficiently compared to when
fully annotated terms are used.

However, as explained previously, omitting arguments from the syntax can jeopardize
the decidability of typing, as we are then led to guess the missing information. We solve
this in Chapter 8 by refining the definition of theories of Chapter 7 into bidirectional
theories. The main change with respect to regular theories is the separation of (term-level)
schematic rules as either constructor or destructor rules, motivated by the aforementioned
differences of their roles with regards to bidirectionality. For instance, the theory for
dependent functions presented just above fits the format for bidirectional theories by
seeing Π and λ as constructors and@ as a destructor.

Then, to formulate the bidirectional type system generated by a bidirectional theory,
we first address the well-known problem that some non-annotated terms cannot be algo-
rithmically typed — a limitation that is not at all specific to bidirectional typing [Dow93].
This is typically the case for redexes like@(λ(𝑥 .𝑡), 𝑢): because@ is a destructor, then we
require its first argument to be inferred, but because λ is a constructor, then this means
that λ(𝑥 .𝑡) can only be type-checked. To rule out this issue, we define our bidirectional
system over a syntax of inferable and checkable terms, in which an ascription 𝑡 :: 𝑇 must
be inserted whenever a destructor meets a constructor — similarly to bidirectional typing
à la McBride [McB18].

We then prove our main results, showing the correctness of the bidirectional type
system with respect to the regular one of Chapter 7 (which we sometimes refer to as
declarative). We first establish soundness, ensuring that any term typed by the bidirectional
system is also typable by the declarative one when forgetting about ascriptions. Dually, we
show annotability [DK21], ensuring that any (declaratively) typed term can be sufficiently
annotated with ascriptions to get a term typable by the bidirectional system. Finally, we
also show that the bidirectional system is decidable for strongly normalizing bidirectional
theories, allowing it to be used for typing terms algorithmically.

We would like to highlight that, while bidirectional typing has been fruitfully studied
in the setting of various specific theories [Coq96, LB21, GSB19, AA11, Nor07, AC05], its
general theory has nevertheless remainedmostly informal and not fully developed [McB18,
DK21, McB22]. Therefore, a key aspect of our contribution is that, by formulating bidirec-
tional typing in the setting of a logical framework, we give it a generic formal treatment
for the whole class of type theories that fit our definition of bidirectional theory, putting
its principles in solid ground.
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Revising Dedukti’s design choices

While the main aspects of our proposal are the removal of annotations and the incorpora-
tion of bidirectional typing, we also take this opportunity of building a framework from
scratch to revise some of Dedukti’s design choices. For instance, recall that showing
conservativity of our PTS encoding in Chapter 5 was made more difficult by the fact that
the non-canonical forms of Dedukti do not correspond directly to terms of the object-
language. As an example, the Dedukti term (𝑧𝑦.𝑧 ⟦𝐴⟧ (𝑥 .⟦𝐵⟧) 𝑦 ⟦𝑢⟧) @𝑙,𝑙 ′ ⟦𝑡⟧ is not in
the image of ⟦−⟧, and we first need to 𝛽-normalize it to obtain@𝑙,𝑙 ′ ⟦𝐴⟧ (𝑥 .⟦𝐵⟧) ⟦𝑡⟧ ⟦𝑢⟧,
which can now be identified as the translation of 𝑡@𝑥 :𝐴.𝐵

𝑙,𝑙 ′ 𝑢. In an ideal world, it would be
much better to not even have to consider terms like (𝑧𝑦.𝑧 ⟦𝐴⟧ (𝑥 .⟦𝐵⟧) 𝑦 ⟦𝑢⟧) @𝑙,𝑙 ′ ⟦𝑡⟧,
which would make conservativity proofs much more direct.

To address this inconvenience, our framework’s design also eliminates such bureau-
cratic terms by allowing only for canonical forms, an approach pioneered long ago by
Concurrent LF [WCPW03] and whose subsequent integration into ELF yielded Canoni-
cal LF [HL07]. However, while Concurrent and Canonical LF eliminated non-canonical
forms with the aim of reducing 𝛽[-equality-checking to syntactic equality-checking, our
goal in adopting this idea is more akin the goals of Haselwarter and Bauer [HB23], Ue-
mura [Uem21] and Adams [Ada08]. Like ours, their frameworks allow only for terms
that directly correspond to object-theory terms, with the objective of bringing closer
the presentation of theories in the framework with the usual presentations used in prac-
tice. Finally, removing terms like (𝑥𝑦.𝑥 ⟦𝐴⟧ (𝑥 .⟦𝐵⟧) 𝑦 ⟦𝑢⟧) @𝑙,𝑙 ′ ⟦𝑡⟧ also seems to be
a pre-requisite to support bidirectional typing, after all how can we specify that the
head ⟦𝑡⟧ of the application should be inferred to obtain ⟦𝐴⟧ and ⟦𝐵⟧ when @𝑙,𝑙 ′ can
appear partially applied?

Following Uemura [Uem21] and Haselwarter and Bauer [HB23] once again, we also
restrict our framework to only allow for second-order theories, departing from the ELF
and Dedukti tradition which allows for theories of arbitrary orders. Even though this
limits the theories one can define, as argued by Uemura [Uem21, Remark 3.2.12] most type
theories are of order at most two, as when a type theory supports function types these can
always be used to lower the order of higher-order symbols.3 This allows for a cleaner and
more straightforward definition of the framework: for instance, the definition of canonical-
form-preserving substitution (known as hereditary substitution [WCPW03, HL07]) is very
technical in a higher-order setting [HL07, Figure 5], whereas we consider our second-order
definition of substitution (Figure 7.1) to be much simpler.

Finally, in this part we are also more careful when defining the raw syntax of our
framework, by presenting it in an intrinsically scoped manner. This means that, instead of
talking about a set of terms, we talk about a family of them, indexed by scopes specifying
which variables can appear. This allows us to define operations such as substitution in a

3For instance, the eliminator of W types is almost always formulated using function types, which yields
a second-order formulation of a symbol which would otherwise be third-order.
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much more natural and mathematically rigorous way.

The implementation

The main goal of this part is therefore to allow for the removal of annotations while
keeping type-checking algorithmic, thanks to the decidability of the bidirectional system.
This decidability result allowed us to implement our framework in the theory-independent
type-checker BiTTs, discussed in Chapter 10 and publicly available at

https://github.com/thiagofelicissimo/BiTTs

This has allowed our proposal to be used in practice with multiple theories, from
variants of Martin-Löf Type Theory with various type formers and kinds of universes,
to Higher-Order Logic and more modern theories like Exceptional Type Theory and
Observational Type Theory. These examples are discussed in Chapter 9 and detailed in
the implementation.

Because of its support for non-annotated syntaxes, BiTTs can allow for better perfor-
mances when compared with Dedukti, which makes it a good candidate for cross-checking
large libraries of proofs coming from proof assistants. Finally, our implementation can
also be used to prototype with new type theories without having to implement a new
bidirectional algorithm from scratch, an important commodity given the large number of
new theories that are proposed each year.

Related version

A preliminary version of this work had first appeared in the proceedings of the 33rd
European Symposium on Programming (ESOP 2024) [Fel24a]. The framework given here
is instead closer to an extended version currently under submission for a journal. The
improvements are substantial, and contain in particular the following:

1. We have addressed the main deficiency of our preliminary work, which was its lack
of support for indexed types, such as vectors and, most importantly, the equality
type: our notion of theory has been updated with equational premises in order to
support such types.

2. We have extended the bidirectional syntax by adding support for ascriptions, allow-
ing to turn a checkable term 𝑡 into an inferable one 𝑡 :: 𝑇 . Accordingly, our notion
of completeness has been updated to annotability, as discussed in the introduction.
Our previous completeness result, here called ascription-free completeness, is now
shown as a simple corollary of annotability.

3. The requirement that term-level rules should be classified as constructor and de-
structor rules does not appear anymore in the definition of the framework, where

https://github.com/thiagofelicissimo/BiTTs
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this distinction was irrelevant and introduced duplication in some places. Instead,
this condition only appears when refining the notion of theory into bidirectional
theory, when introducing the bidirectional system in Chapter 8.

4. While our previous work required rewrite rules left-hand sides to be headed by
destructors, this restriction is dropped here, enabling the definition of theories whose
rules do not satisfied this condition (for instance, type theory with Russell-style
universes).

5. Our treatment of matching modulo has been simplified, in particular by removing
its reliance on the maximal-outermost strategy. This brings the theory closer to our
implementation, where we use a reduction strategy based on call-by-value.

6. The section on examples of theories covered by our framework has been considerably
extended, better illustrating the generality of our approach.

Let us however note that the extended version currently under review lags behind the
version presented here, in particular by not implementing the improvements discussed in
points 3 and 4 — these were only discovered after the submission was made, and will be
integrated to it in the next revision.



Chapter 7

A Logical Framework

with Erased Arguments

In this chapter we define a logical framework in the same family as Dedukti, but in
which we can specify theories with non-annotated syntaxes, by declaring some of their
arguments as erased. We start by defining the raw syntax of our framework, followed by
our definition of theories, which aremade of rewrite rules and schematic typing rules. These
rules then give rise to the type system of a type theory, which is defined subsequently.
This system is then used to define the valid theories, a refinement of our notion of theory
in which typing information is also taken into account. We then conclude the chapter by
showing that the type system of a theory satisfies desirable properties, such as weakening
and substitution.

7.1 Raw syntax

Intrinsically scoped syntax

When defining the syntax of a type theory, and like we did when defining the one of
Dedukti, one most usually defines a set Tm containing all terms. However, it is sometimes
useful to distinguish terms 𝑡 ∈ Tm according to the variables that can appear in 𝑡 — for
instance, when defining the application of a substitution, it is useful to know that it is
defined for all variables in 𝑡 . Therefore, we elect an intrinsically scoped presentation of
syntax, in which we define instead a family of terms, indexed by scopes specifying which
variables can appear.

Scopes and signatures

The basic ingredients of our raw expressions are actually not only variables 𝑥,𝑦, . . . ,
but also metavariables x, y, . . . and symbols 𝑓 , 𝑔, . . . , which are specified respectively by
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(variable) scopes, metavariable scopes and signatures.

Scope ∋ 𝛾, 𝛿 ::= · | 𝛾, 𝑥

MScope ∋ \, b ::= · | \, x{𝛿}

Sig ∋ Σ ::= · | Σ, 𝑓 (\ )

A scope 𝛾 is simply a list of variables, whereas a metavariable scope \ is a list of
metavariables accompanied by a variable scope 𝛿 , explaining the arguments each metavari-
able expects. For instance, x{𝑥,𝑦} ∈ \ specifies a metavariable x taking two arguments,
each one named by the variables 𝑥 or 𝑦. We have an obvious operation of concatenation
𝛾 .𝛿 and \ .b , for variable scopes and metavariable scopes respectively. A signature Σ is
then a list of symbols accompanied by a metavariable scope explaining its arguments: for
instance, 𝑓 (x{·}, y{𝑥}) ∈ Σ specifies a symbol 𝑓 taking two arguments and binding one
variable in its second argument. We allow ourselves to abbreviate x{·} as x, and 𝑓 (·) as 𝑓
when convenient.
Example 7.1. The following signature Σ_Π defines the raw syntax of a minimalistic Martin-
Löf Type Theory (MLTT) with only dependent functions.

Ty, Tm(A), Π(A, B{𝑥}), λ(t{𝑥}), @(t, u) (Σ_Π)

The symbols are the ones we would expect, except perhaps for Ty and Tm whose role will
become clear later. □

Remark 7.1. Here, variables 𝑥,𝑦, . . . correspond to Dedukti’s variables of order 0, while
metavariables t, u, . . . correspond to Dedukti’s variables of order 1, and symbols 𝑓 , 𝑔, . . .
correspond toDedukti’s symbols, which in our framework can be of order at most 2. Note
also that our signatures only store information about the raw syntax, and therefore are
unrelated to the signatures of the ELF literature, which also store typing information. □
Remark 7.2. When working with de Bruijn indices, a scope 𝛾 becomes just a natural
number and a metavariable scope \ becomes just a list of natural numbers. In this
setting, our definition of signatures corresponds exactly to the well-known binding-
signatures [Acz78, FPT99], where 𝑓 (x1{𝑥11, . . . , 𝑥1𝑘1}, . . . , x𝑛{𝑥

𝑛
1 , . . . , 𝑥

𝑛
𝑘𝑛
}) is represented by

(𝑘1, . . . , 𝑘𝑛). □

Terms and substitutions

Given a fixed signature Σ, we define terms, (variable) substitutions and metavariable
substitutions by the following grammars. Note that, as explained before, we do not define
a set of terms but instead a family Tm \ 𝛾 in which the indices \ and 𝛾 explain which
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metavariables and variables are in scope.

Tm \ 𝛾 ∋ 𝑡,𝑢,𝑇 ,𝑈 ::= | 𝑥 if 𝑥 ∈ 𝛾

| x{®𝑡 ∈ Sub \ 𝛾 𝛿} if x{𝛿} ∈ \
| 𝑓 (t ∈ MSub \ 𝛾 b) if 𝑓 (b) ∈ Σ

Sub \ 𝛾 𝛿 ∋ ®𝑡, ®𝑢, ®𝑠, ®𝑣 ::= | Y if 𝛿 = ·

| ®𝑢 ∈ Sub \ 𝛾 𝛿 ′, 𝑡 ∈ Tm \ 𝛾 if 𝛿 = 𝛿 ′, 𝑥

MSub \ 𝛾 b ∋ t,u, s, v ::= | Y if b = ·

| u ∈ MSub \ 𝛾 b ′, ®𝑥𝛿 .𝑡 ∈ Tm \ 𝛾 .𝛿 if b = b ′, x{𝛿}

A term is either a variable 𝑥 , a metavariable x applied to a substitution ®𝑡 , or a symbol 𝑓
applied to a metavariable substitution t. A (variable) substitution ®𝑡 ∈ Sub \ 𝛾 𝛿 is then
simply a list of terms, in which each term corresponds to one of the variables in 𝛿 . Similarly,
a metavariable substitution t ∈ MSub \ 𝛾 b is also a list of terms, with the difference that
each position x{𝛿} ∈ b extends the current scope 𝛾 with the variables in 𝛿 . We write this
variable binding as ®𝑥𝛿 .𝑡 , which can be seen in action in the cases of λ and Π in Example 7.1.
Finally, when convenient, we allow ourselves to abbreviate x{Y} as x and 𝑓 (Y) as 𝑓 .
Example 7.1. The terms defined by the signature Σ_Π are given by the following grammar,
where we omit the scope requirements for variables and metavariables.

𝑡,𝑢, 𝐴, 𝐵 ::= 𝑥 | x{®𝑡} | Ty | Tm(𝐴) | λ(𝑥 .𝑡) | Π(𝐴, 𝑥 .𝐵) | @(𝑡,𝑢) □

Given a metavariable substitution t ∈ MSub \ 𝛾 b and x{𝛿} ∈ b , we write tx ∈ Tm \ 𝛾 .𝛿

for the term in t at the position pointed by x. Similarly, given a substitution ®𝑡 ∈ Sub \ 𝛾 𝛿
and 𝑥 ∈ 𝛿 , we write 𝑡𝑥 ∈ Tm \ 𝛾 for the term in ®𝑡 at the position pointed by 𝑥 .

For each 𝛾 and \ we have the identity substitutions id𝛾 ∈ Sub (·) 𝛾 𝛾 and id\ ∈
MSub \ (·) \ , defined by id(·) := Y and id𝛾,𝑥 := id𝛾 , 𝑥 and id\,x{𝛾} := id\ , ®𝑥𝛾 .x{id𝛾 }.1
While the identity variable substitution id𝛾 is just the list of variables from 𝛾 , the iden-
tity metavariable substitution id\ needs to "eta-expand" each metavariable x{𝛿} ∈ \ to
®𝑥𝛿 .x{id𝛿 } in order for the result to be a valid metavariable substitution. Finally, we allow
ourselves to omit the index of id𝛾 or id\ when it can be inferred from the context.

Contexts

Given a fixed signature Σ, we define (variable) contexts and metavariable contexts by
the following grammars. These are defined simultaneously2 with two functions | − |
computing their underlying scopes |Γ | ∈ Scope and |Θ| ∈ MScope, given by | · | := · and

1Note that this definition uses implicit weakenings.
2Technically, these are defined by small induction-recursion [Dyb00].



57 CHAPTER 7. A LOGICAL FRAMEWORK WITH ERASED ARGUMENTS

|Γ, 𝑥 : 𝑇 | := |Γ |, 𝑥 and |Θ, x{Δ} : 𝑇 | := |Θ|, x{|Δ|}.
Ctx \ 𝛾 ∋ Γ,Δ ::= · | Γ ∈ Ctx \ 𝛾, 𝑥 : 𝑇 ∈ Tm \ 𝛾 .|Γ |

MCtx \ ∋ Θ,Ξ ::= · | Θ ∈ MCtx \, x{Γ ∈ Ctx \ .|Θ| (·)} : 𝑇 ∈ Tm \ .|Θ| |Γ |

A context Γ ∈ Ctx𝛾 \ is either empty, or composed by a context Γ′ ∈ Ctx𝛾 \ and a vari-
able 𝑥 with a term𝑇 ∈ Tm \ 𝛾 .|Γ′|. An important point to note is that the term𝑇 does not
live in scope 𝛾 , but in the extension of 𝛾 with the underlying scope of Γ′. This means that if
a context 𝑥1 : 𝑇1, . . . , 𝑥𝑘 : 𝑇𝑘 lives in some scope 𝛾 , then each term 𝑇𝑖 lives in 𝛾, 𝑥1, . . . , 𝑥𝑖−1
and thus also has access to the previously occurring variables. The case of a metavariable
context Θ ∈ MCtx \ is similar: we have either Θ empty or Θ = Θ′, x{Δ} : 𝑇 , where Δ has
access to metavariables in \ and Θ′, and 𝑇 has moreover access to the variables in Δ.

Given Γ ∈ Ctx \ 𝛾 and Δ ∈ Ctx \ 𝛾 .|Γ |, we write Γ.Δ ∈ Ctx \ 𝛾 for their concatenation,
defined by induction on Γ. Similarly, given Θ ∈ MCtx \ and Ξ ∈ MCtx \ .|Θ|, we write
Θ.Ξ ∈ MCtx \ for their concatenation, defined by induction on Ξ.3

Notation 7.2. We establish the following notations.
• We write 𝑒 ∈ Expr \ 𝛾 for either 𝑒 ∈ Tm \ 𝛾 , or 𝑒 ∈ Ctx \ 𝛾 , or 𝑒 ∈ Sub \ 𝛾 𝛿 for
some 𝛿 , or 𝑒 ∈ MSub \ 𝛾 b for some b .

• We write TmΣ, SubΣ,MSubΣ, CtxΣ andMCtxΣ when Σ is not clear from the context.

• We write Ctx \ for Ctx \ (·), and Ctx for Ctx (·) (·) andMCtx for MCtx (·). □

Remark 7.3. Wework with a nameful syntax, allowing us to implicitly weaken expressions:
if 𝑒 ∈ Expr \ 𝛾 and \ is a subsequence of \ ′ and 𝛾 is a subsequence of 𝛾 ′ then we also have
𝑒 ∈ Expr \ ′ 𝛾 ′. Nevertheless, we expect that our proofs can be formally carried out using
de Bruijn indices, by properly inserting weakenings whenever needed, and showing the
associated lemmata. □

Substitution application

We define in Figure 7.1 the application of a (variable or metavariable) substitution to
an expression.4 Given a variable substitution ®𝑣 ∈ Sub \ 𝛾1 𝛾2 its application to an ex-
pression 𝑒 ∈ Expr \ 𝛾2 gives 𝑒 [®𝑣] ∈ Expr \ 𝛾1, and given a metavariable substitution
v ∈ MSub \1 𝛿 \2 its application to an expression 𝑒 ∈ Expr \2 𝛾 gives 𝑒 [v] ∈ Expr \1 𝛿.𝛾 .

The main case of the definition is when we substitute v ∈ MSub \1 𝛿 \2 in the term
x{®𝑡} ∈ Tm \2 𝛾 , where x{𝛾x} ∈ \2. By first recursively substituting v in ®𝑡 ∈ Sub \2 𝛾 𝛾x
we get ®𝑡 [v] ∈ Sub \1 𝛿.𝛾 𝛾x. We moreover have vx ∈ Tm \1 𝛿.𝛾x, so by substituting the
variables in 𝛾x by ®𝑡 [v] and the ones in 𝛿 by themselves we get vx [id, ®𝑡 [v]] ∈ Tm \1 𝛿.𝛾 as
the final result.

3Technically, these must be defined simultaneously with proofs that |Γ.Δ| = |Γ |.|Δ| and |Θ.Ξ| = |Θ|.|Ξ|,
by recursion-recursion [Nor13].

4Similarly to concatenation, this definition is done by recursion-recursion with proofs that |Γ [®𝑣] | = |Γ |
and |Γ [v] | = |Γ |
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− [−] : Tm \ 𝛾2 → Sub \ 𝛾1 𝛾2 → Tm \ 𝛾1

𝑥 [®𝑣] := 𝑣𝑥
x{®𝑡}[®𝑣] := x{®𝑡 [®𝑣]}
𝑓 (t) [®𝑣] := 𝑓 (t[®𝑣])

− [−] : Sub \ 𝛾2 𝛿 → Sub \ 𝛾1 𝛾2 → Sub \ 𝛾1 𝛿

Y [®𝑣] := Y
(®𝑡,𝑢) [®𝑣] := ®𝑡 [®𝑣], 𝑢 [®𝑣]

− [−] : MSub \ 𝛾2 b → Sub \ 𝛾1 𝛾2 → MSub \ 𝛾1 b

Y [®𝑣] := Y
(t, ®𝑥𝛿 .𝑢) [®𝑣] := t[®𝑣], ®𝑥 .𝑢 [®𝑣, id𝛿 ]

− [−] : Ctx \ 𝛾2 → Sub \ 𝛾1 𝛾2 → Ctx \ 𝛾1

(·) [®𝑣] := ·
(Γ, 𝑥 : 𝑇 ) [®𝑣] := Γ [®𝑣], 𝑥 : 𝑇 [®𝑣, id |Γ |]

− [−] : Tm \2 𝛾 → MSub \1 𝛿 \2 → Tm \1 𝛿.𝛾

𝑥 [v] := 𝑥
x{®𝑡}[v] := vx [id𝛿 , ®𝑡 [v]]
𝑓 (t) [v] := 𝑓 (t[v])

− [−] : Sub \2 𝛾 𝛾0 → MSub \1 𝛿 \2 → Sub \1 𝛿.𝛾 𝛾0

Y [v] := Y
(®𝑡,𝑢) [v] := ®𝑡 [v], 𝑢 [v]

− [−] : MSub \2 𝛾 b → MSub \1 𝛿 \2 → MSub \1 𝛿.𝛾 b

Y [v] := Y
(t, ®𝑥 .𝑢) [v] := t[v], ®𝑥 .𝑢 [v]

− [−] : Ctx \2 𝛾 → MSub \1 𝛿 \2 → Ctx \1 𝛿.𝛾

(·) [v] := ·
(Γ, 𝑥 : 𝑇 ) [v] := Γ [v], 𝑥 : 𝑇 [v]

Figure 7.1: Application of a variable or metavariable substitution

Example 7.2. If 𝑡 ∈ Tm (·) (𝛾, 𝑥) and 𝑢 ∈ Tm (·) 𝛾 , then by applying the metavariable
substitution 𝑥 .𝑡,𝑢 ∈ MSub (·) 𝛾 (t{𝑥}, u) to the term@(λ(𝑥 .t{𝑥}), u) ∈ Tm (t{𝑥}, u) (·)
we get the term@(λ(𝑥 .𝑡), 𝑢) ∈ Tm (·) 𝛾 . □

Remark 7.4. Compared to frameworks derived from contextual modal type theory [NPP08],
our metavariable substitutions are not required to be closed and can introduce new
variables in the scope of the resulting term. For instance, in the previous example, while the
term@(λ(𝑥 .t{𝑥}), u) lives in an empty variable scope, the application of the metavariable
substitution yields @(λ(𝑥 .𝑡), 𝑢), which lives in the scope 𝛾 . Therefore, a metavariable
t{𝑥1, . . . , 𝑥𝑘} should not be seen as a placeholder for a term containing only 𝑥1, . . . , 𝑥𝑘 ,
but instead for a term in any scope extended by 𝑥1, . . . , 𝑥𝑘 . □

Substitution application satisfies the following basic laws.

Proposition 7.1 (Unit laws for id). We have 𝑒 [id𝛾 ] = 𝑒 and 𝑒 [id\ ] = 𝑒 for all 𝑒 ∈ Expr \ 𝛾 ,
and id𝛿 [®𝑡] = ®𝑡 for all ®𝑡 ∈ Sub \ 𝛾 𝛿 , and id\ [v] = v for all v ∈ MSub b 𝛾 \ .

Proof. We first show 𝑒 [id𝛾 ] = 𝑒 by induction on 𝑒 and id𝛿 [®𝑡] = ®𝑡 by induction on 𝛿 . We
then show 𝑒 [id\ ] = 𝑒 by induction on 𝑒 and id\ [v] = v by induction on \ . ■

The following two properties are shown simultaneously.
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Proposition 7.2 (Commutation lemmas). We have 𝑒 [u] [®𝑣, id𝛿 ] = 𝑒 [u[®𝑣]] ∈ Expr \1 𝛾1.𝛿
for all 𝑒 ∈ Expr \2 𝛿 and u ∈ MSub \1 𝛾2 \2 and ®𝑣 ∈ Sub \1 𝛾1 𝛾2. We have 𝑒 [®𝑢] [v] =
𝑒 [v] [id𝛿 , ®𝑢 [v]] ∈ Expr \1 𝛿.𝛾1 for all 𝑒 ∈ Expr \2 𝛾2 and ®𝑢 ∈ Sub \2 𝛾1 𝛾2 and v ∈
MSub \1 𝛿 \2.

Proposition 7.3 (Associativity of substitution). Let 𝑒 ∈ Expr \3 𝛾3. For all ®𝑣 ∈ Sub \3 𝛾2 𝛾3
and ®𝑢 ∈ Sub \3 𝛾1 𝛾2 we have 𝑒 [®𝑣] [®𝑢] = 𝑒 [®𝑣 [®𝑢]], and for all v ∈ MSub \2 𝛾3 \3 and
u ∈ MSub \1 𝛾3 \2 we have 𝑒 [v] [u] = 𝑒 [v[u]].

Proof. By induction on 𝑒 , on the following order: first 𝑒 [®𝑣] [®𝑢] = 𝑒 [®𝑣 [®𝑢]], then 𝑒 [u] [®𝑣, id𝛿 ] =
𝑒 [u[®𝑣]], then 𝑒 [®𝑢] [v] = 𝑒 [v] [id𝛿 , ®𝑢 [v]], then 𝑒 [v] [u] = 𝑒 [v[u]]. ■

Patterns

Given an underlying signature Σ, term patterns and metavariables substitution patterns are
defined by the following grammars.

Tm
P \ 𝛾 ∋ 𝑡,𝑢, 𝑣, 𝑠 ::= | x{id𝛾 } if \ = x{𝛾}

| 𝑓 (t ∈ MSub
P \ 𝛾 b) if 𝑓 (b) ∈ Σ

MSub
P \ 𝛾 b ∋ t,u, s, v ::= | Y if b = · and \ = ·

| t ∈ MSub
P \1 𝛾 b

′, ®𝑥𝛿 .𝑡 ∈ TmP \2 𝛾 .𝛿 if b = b ′, x{𝛿} and \ = \1.\2

Compared with the regular syntax, the pattern condition imposes that each metavari-
able x{𝛿} ∈ \ must occur precisely once, and moreover applied to all variables occurring
in the scope 𝛾 of its occurrence — in particular, imposing 𝛿 to be equal to 𝛾 . These restric-
tions ensure that, differently from regular terms, patterns support decidable and unitary
matching [Mil91].
Example 7.3. In Σ_Π, we can build the pattern @(λ(𝑥 .t{𝑥}), u) ∈ TmP (t{𝑥}, u) (·). □

Note that we have inclusions TmP \ 𝛾 ⊂ Tm \ 𝛾 and MSub
P \ 𝛾 b ⊂ MSub \ 𝛾 b ,

which we use to implicitly coerce patterns into regular expressions when needed.

Rewriting

Given an underlying signature Σ, the notion of pattern then allow us to define rewrite
rules, which are of the form

\ ⊩ 𝑙 ∈ TmP \ (·) ↦−→ 𝑟 ∈ Tm \ (·)

where 𝑙 is not a metavariable. Note that, because our patterns are linear, then our rewrite
rules are automatically left-linear.
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𝑡 −→ 𝑢 (𝑡 ∈ Tm \ 𝛾 ; 𝑢 ∈ Tm \ 𝛾)

®𝑡 −→ ®𝑡 ′

x{®𝑡} −→ x{®𝑡 ′}
v −→ v′

𝑓 (v) −→ 𝑓 (v′)

(\0 ⊩ 𝑙 ↦−→ 𝑟 ) ∈ R t ∈ MSub \ 𝛾 \0

𝑙 [t] −→ 𝑟 [t]

®𝑡 −→ ®𝑢 (®𝑡 ∈ Sub \ 𝛾 𝛿 ; ®𝑢 ∈ Sub \ 𝛾 𝛿)

®𝑡 −→ ®𝑡 ′

®𝑡,𝑢 −→ ®𝑡 ′, 𝑢
𝑢 −→ 𝑢′

®𝑡,𝑢 −→ ®𝑡,𝑢′

Γ −→ Δ (Γ ∈ Ctx \ 𝛾 ; Δ ∈ Ctx \ 𝛾)

Γ −→ Γ′

Γ, 𝑥 : 𝑇 −→ Γ′, 𝑥 : 𝑇

𝑇 −→ 𝑇 ′

Γ, 𝑥 : 𝑇 −→ Γ, 𝑥 : 𝑇 ′

v −→ u (v ∈ MSub \ 𝛾 b ; u ∈ MSub \ 𝛾 b)

v −→ v′

v, ®𝑥 .𝑢 −→ v′, ®𝑥 .𝑢
𝑢 −→ 𝑢′

v, ®𝑥 .𝑢 −→ t, ®𝑥 .𝑢′

Figure 7.2: Rewriting relation defined by rewrite system R

Example 7.4. In the signature Σ_Π, we can define the 𝛽-rule as

@(λ(𝑥 .t{𝑥}), u) ↦−→ t{u}

wherewe have omitted themetavariable scope, as it can be straightforwardly reconstructed
by inspecting the left-hand side. □

A rewrite system (over Σ) is then simply a set of rewrite rules (over Σ), and given
a rewrite system R we define the rewriting relation 𝑒 −→ 𝑒′ in Figure 7.2. In order
for it to be well-defined, this definition must be done simultaneously with a proof that
reduction preserves underlying scopes: we have |Γ | = |Γ′| whenever Γ −→ Γ′, by an easy
induction on Γ. The relations −→∗ and ≡ are then defined as usual, respectively as the
reflexive-transitive and reflexive-symmetric-transitive closures of −→. The relation ≡ is
called definitional equality (or conversion).

One of the key properties of rewriting is its stability under substitution:

Proposition 7.4 (Stability of rewriting under substitution). Let 𝑒 ∈ Expr \ 𝛾 with 𝑒 −→∗ 𝑒′.
If ®𝑣 ∈ Sub \ 𝛿 𝛾 and ®𝑣 −→∗ ®𝑣′ then 𝑒 [®𝑣] −→∗ 𝑒′[®𝑣′]. If v ∈ MSub b 𝛾 \ and v −→∗ v′ then
𝑒 [v] −→∗ 𝑒′[v′].

Proof. We first show that ®𝑣 −→∗ ®𝑣′ implies 𝑒 [®𝑣] −→∗ 𝑒 [®𝑣′], by induction on 𝑒 , and then
that 𝑒 −→ 𝑒′ implies 𝑒 [®𝑣] −→ 𝑒′[®𝑣], by induction on 𝑒 −→ 𝑒′. By iterating these two
statements, we then conclude that 𝑒 −→∗ 𝑒′ and ®𝑣 −→∗ ®𝑣′ imply 𝑒 [®𝑣] −→∗ 𝑒′[®𝑣′].

Then, we show that v −→∗ v′ implies 𝑒 [v] −→∗ 𝑒 [v′], by induction on 𝑒 , and then
that 𝑒 −→ 𝑒′ implies 𝑒 [v] −→ 𝑒′[v], by induction on 𝑒 −→ 𝑒′. By iterating these two
statements, we then conclude that 𝑒 −→∗ 𝑒′ and v −→∗ v′ imply 𝑒 [v] −→∗ 𝑒′[v′]. ■
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Thy ∋ T ::= | ·
| T, 𝑓 (Ξ ∈ MCtx |T |) sort
| T, 𝑓 (Ξ1 ∈ MCtx |T | ; Ξ2 ∈ MCtx |T | |Ξ1 | ;

®𝑡 ∈ Tm |T | |Ξ1.Ξ2 | 𝛾 ≡ ®𝑢 ∈ Tm |T | |Ξ1.Ξ2 | 𝛾) : 𝑇 ∈ Tm |T | |Ξ1.Ξ2 | (·)
| T, \ ⊩ 𝑙 ∈ TmP

|T | \ (·) ↦−→ 𝑟 ∈ Tm |T | \ (·) with 𝑙 not a metavariable

| − | : Thy→ Sig

| · | := · |T, 𝑓 (Ξ1 ; Ξ2 ; ®𝑢 ≡ ®𝑡) : 𝑈 | := |T|, 𝑓 ( |Ξ2 |)
|T, 𝑓 (Ξ) sort| := |T|, 𝑓 ( |Ξ|) |T, \ ⊩ 𝑙 ↦−→ 𝑟 | := |T|

Figure 7.3: Definition of theories

This implies in particular that conversion is stable under substitution.

Corollary 7.1 (Stability of conversion under substitution). Suppose 𝑒 ≡ 𝑒′. We have
𝑒 [®𝑣] ≡ 𝑒′[®𝑣′] for all ®𝑣 ≡ ®𝑣′ and 𝑒 [v] ≡ 𝑒′[v′] for all v ≡ v′.

Remark 7.5. Our notion of rewriting corresponds roughly to Hamana’s Second-Order
Computation Systems [Ham22], which are Second-Order Algebraic Theories (SOATs)
whose equations are all rewrite rules. Our rewrite systems can also be seen either as a
second-order restriction of Nipkow’s Higher-Order Rewrite Systems (HRSs) [MN98], or
as a simply typed version of Klop’s Combinatory Reduction Systems (CRSs) [Kvv93] over
a single base type. Importantly, this allows us to use in our framework confluence criteria
developed in these settings. □

7.2 Theories

We now come to a central definition of this chapter, that of a theory T, defined in Figure 7.3.
Note that, similarly to contexts and metavariable contexts, they are defined simultaneously
with a function | − |, this time computing the underlying signature |T| ∈ Sig of a theory T.
Apart from rewrite rules, theories are made of schematic typing rules, which can be either
sort rules or term rules. Let us now explain them in detail.
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Sort rules

In our framework, a sort 𝑇 is a term that can appear in the second position of the typing
judgment 𝑡 : 𝑇 , and they are used to represent the judgment forms of the theory.5 For
instance, vanilla Martin-Löf Type Theory features two judgment forms: 𝐴 type, for
asserting that 𝐴 is a type, and 𝑡 : 𝐴 for asserting that 𝑡 is a term of type 𝐴. In our
framework, these are materialized by the following sort rules.

Ty sort

A : Ty
Tm(A) sort

Formally, a sort rule is of the form

𝑓 (Ξ ∈ MCtx) sort

and the previously shown rules are just an informal notation for Ty(·) sort and Tm(A :
Ty) sort. More precisely, our notation represents metavariables x{Γ} : 𝑇 ∈ Ξ as premises
Γ ⊢ x : 𝑇 , or just x : 𝑇 when Γ is empty. In the following, we will make use of such
informal representations in order to enhance readability of schematic rules.

Term rules

As motivated in Chapter 6, we would like in our framework to allow for specifying
theories in which some of the arguments are omitted. In order to do this, we separate
the arguments of a term rule into a metavariable context Ξ1 of erased arguments and a
metavariable context Ξ2 of arguments present in the syntax. Moreover, for reasons that
will be clear in Chapter 8, we also consider equational hypotheses ®𝑡 ≡ ®𝑢 in our rules, which
need to be verified when applying the rule, leading to term rules of the form

𝑓 (Ξ1 ∈ MCtx ; Ξ2 ∈ MCtx |Ξ1 | ; ®𝑡 ∈ Tm |Ξ1 .Ξ2 | 𝛾 ≡ ®𝑢 ∈ Tm |Ξ1.Ξ2 | 𝛾) : 𝑇 ∈ Tm |Ξ1.Ξ2 | (·)

Note that, whereas Ξ1 is closed, Ξ2 is allowed to depend on the underlying scope
of Ξ1, so the sorts and contexts of the non-omitted arguments can depend on the missing
information, and ®𝑡 , ®𝑢 and 𝑇 are allowed to depend on the underlying scopes of both
Ξ1 and Ξ2. As expected, only the arguments from Ξ2 are kept when calculating the
underlying signature in Figure 7.3.

Three examples of rules fitting this definition are the following ones for Π, λ and@
— note however that the one for Π is slightly degenerate, given that we have Ξ1 = · and

5We depart from the Dedukti terminology by purposely avoiding calling them "types", in order to
prevent a name clash with the types of the theories we define. Still, we allow ourselves to say "𝑡 is typed by
sort 𝑇 " to mean 𝑡 : 𝑇 .
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thus no erased premises.

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
Π(A, 𝑥 .B{𝑥}) : Ty

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
𝑥 : Tm(A) ⊢ t : Tm(B{𝑥})

λ(𝑥 .t{𝑥}) : Tm(Π(A, 𝑥 .B{𝑥}))

A : Ty 𝑥 : Tm(A) ⊢ B : Ty t : Tm(Π(A, 𝑥 .B{𝑥})) u : Tm(A)
@(t, u) : Tm(B{u})

Once again, we have presented the rules using the informal notation, which can be
parsed into the formal one in the following manner:

Π(· ; A : Ty, B{𝑥 : Tm(A)} : Ty ; Y ≡ Y) : Ty
λ(A : Ty, B{𝑥 : Tm(A)} : Ty ; t{𝑥 : Tm(A)} : Tm(B{𝑥}) ; Y ≡ Y) : Tm(Π(A, 𝑥 .B{𝑥}))
@(A : Ty, B{𝑥 : Tm(A)} : Ty ; t : Tm(Π(A, 𝑥 .B{𝑥})), u : Tm(A) ; Y ≡ Y) : Tm(B{u})

Finally, to represent equation hypotheses ®𝑡 ≡ ®𝑢 with our informal notation, we let
®𝑡 = 𝑡1, . . . , 𝑡𝑘 and ®𝑢 = 𝑢1, . . . , 𝑢𝑘 and write a premise 𝑡𝑖 ≡ 𝑢𝑖 for each 𝑖 . For instance, we can
define the rule for the constructor refl for the equality type as6

A : Ty a : Tm(A) b : Tm(A) a ≡ b

refl : Tm(Eq(A, a, b))
which can be parsed into the formal notation as

refl(A : Ty, a : Tm(A), b : Tm(A) ; · ; a ≡ b) : Tm(Eq(A, a, b))

Example 7.5. By putting together some of the rules seen in this section, we get the
following theory T_Π defining a basic version of MLTT with only dependent functions.

Ty(·) sort, Tm(A : Ty) sort, Π(· ; A : Ty, B{𝑥 : Tm(A)} : Ty ; Y ≡ Y) : Ty, (T_Π)
λ(A : Ty, B{𝑥 : Tm(A)} : Ty ; t{𝑥 : Tm(A)} : Tm(B{𝑥}) ; Y ≡ Y) : Tm(Π(A, 𝑥 .B{𝑥})),
@(A : Ty, B{𝑥 : Tm(A)} : Ty ; t : Tm(Π(A, 𝑥 .B{𝑥})), u : Tm(A) ; Y ≡ Y) : Tm(B{u}),
@(λ(𝑥 .t{𝑥}), u) ↦−→ t{u}

When computing its underlying signature |T_Π | we get the signature Σ_Π. □

7.3 Typing rules

In the previous section, we have seen that a theory T is specified by rewrite rules and
schematic typing rules. These schematic rules can be instantiated into concrete typing

6Of course, it would be possible to eliminate the equational hypothesis and the argument b, and replace
the sort by Tm(Eq(A, a, a)), which would yield an equivalent rule. However, for the purposes of bidirectional
typing, we need the sort of this rule to be a pattern and hence linear, as we explain in Section 8.1.
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Θ ⊢ (Θ ∈ MCtx)

EmptyMCtx

· ⊢

ExtMCtx
Θ; Γ ⊢ 𝑇 sort

Θ, x{Γ} : 𝑇 ⊢

Θ; Γ ⊢ (Θ ∈ MCtx; Γ ∈ Ctx |Θ|)

EmptyCtx
Θ ⊢
Θ; · ⊢

ExtCtx
Θ; Γ ⊢ 𝑇 sort

Θ; Γ, 𝑥 : 𝑇 ⊢

Θ; Γ ⊢ 𝑇 sort (Θ ∈ MCtx; Γ ∈ Ctx |Θ|; 𝑇 ∈ Tm |Θ| |Γ |)

𝑓 (Ξ) sort ∈ T

SortSym
Θ; Γ ⊢ t : Ξ

Θ; Γ ⊢ 𝑓 (t) sort

Θ; Γ ⊢ 𝑡 : 𝑇 (Θ ∈ MCtx; Γ ∈ Ctx |Θ|; 𝑇 ∈ Tm |Θ| |Γ |; 𝑡 ∈ Tm |Θ| |Γ |)

𝑥 : 𝑇 ∈ Γ

Var
Θ; Γ ⊢

Θ; Γ ⊢ 𝑥 : 𝑇
x{Δ} : 𝑇 ∈ Θ

MVar
Θ; Γ ⊢ ®𝑡 : Δ

Θ; Γ ⊢ x{®𝑡} : 𝑇 [®𝑡]

𝑓 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑇 ∈ T
®𝑡 [t1, t2] ≡ ®𝑢 [t1, t2]

TmSym
Θ; Γ ⊢ t1, t2 : Ξ1.Ξ2 Θ; Γ ⊢ 𝑇 [t1, t2] sort

Θ; Γ ⊢ 𝑓 (t2) : 𝑇 [t1, t2]

𝑇 ≡ 𝑈

Conv
Θ; Γ ⊢ 𝑡 : 𝑇 Θ; Γ ⊢ 𝑈 sort

Θ; Γ ⊢ 𝑡 : 𝑈

Θ; Γ ⊢ ®𝑡 : Δ (Θ ∈ MCtx; Γ ∈ Ctx |Θ|; Δ ∈ Ctx |Θ|; ®𝑡 ∈ Sub |Θ| |Γ | |Δ|)

EmptySub
Θ; Γ ⊢

Θ; Γ ⊢ Y : (·)

ExtSub
Θ; Γ ⊢ ®𝑡 : Δ Θ; Γ ⊢ 𝑡 : 𝑇 [®𝑡]

Θ; Γ ⊢ ®𝑡, 𝑡 : (Δ, 𝑥 : 𝑇 )

Θ; Γ ⊢ t : Ξ (Θ ∈ MCtx; Γ ∈ Ctx |Θ|; Ξ ∈ MCtx; t ∈ MSub |Θ| |Γ | |Ξ|)

EmptyMSub
Θ; Γ ⊢

Θ; Γ ⊢ Y : (·)

ExtMSub
Θ; Γ ⊢ t : Ξ Θ; Γ.Δ[t] ⊢ 𝑡 : 𝑇 [t]

Θ; Γ ⊢ t, ®𝑥Δ.𝑡 : (Ξ, x{Δ} : 𝑇 )

Figure 7.4: Typing system defined by the theory T
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rules, defining the type system of the corresponding theory, with the rules in Figure 7.4.
There, we write ≡ for the conversion generated by the underlying rewrite system of T.

The type system is defined by 6 judgment forms:
• Θ ⊢ : Well-typedness of metavariable context Θ.

• Θ; Γ ⊢ : Well-typedness of variable context Γ under metavariable context Θ.

• Θ; Γ ⊢ 𝑇 sort : Well-typedness of sort 𝑇 under contexts Θ; Γ.

• Θ; Γ ⊢ 𝑡 : 𝑇 : Typing of a term 𝑡 by 𝑇 under context Θ; Γ.

• Θ; Γ ⊢ ®𝑡 : Δ : Typing of a variable substitution ®𝑡 by Δ under context Θ; Γ.

• Θ; Γ ⊢ t : Ξ : Typing of a metavariable substitution t by Ξ under context Θ; Γ.
The most important rules are the ones which instantiate schematic typing rules, which

are SortSym and TmSym. For instance, in order to use TmSym to type 𝑓 (t2) a metavariable
substitution t1 not stored in the syntax must be "guessed", and then we must show that
t1, t2 is typed by Ξ1.Ξ2, verify the equational premises of the rule and check that the
sort of the rule is well-typed. In order to type t1, t2, we can apply the rules for typing
metavariable substitutions, which has the effect of unfolding the judgment t1, t2 : Ξ1.Ξ2
into regular term typing judgments. At the end of this unfolding process, the resulting
"big-step derivation" has basically the same shape as the schematic typing rule for 𝑓 , and
it can be understood as its instantiation. Let us look at a concrete example of this.
Example 7.6. Suppose we want to show that @(𝑡,𝑢) is well-typed in the theory T_Π.
Because@ has the term rule

@(A : Ty, B{𝑥 : Tm(A)} : Ty ; t : Tm(Π(A, 𝑥 .B{𝑥})), u : Tm(A) ; Y ≡ Y) : Tm(B{u})

then by guessing some 𝐴 and 𝐵 we can start the derivation with rule TmSym, giving

Θ; Γ ⊢ 𝐴, 𝑥 .𝐵, 𝑡,𝑢 : (A : Ty, B{𝑥 : Tm(A)} : Ty, t : Tm(Π(A, 𝑥 .B{𝑥})), u : Tm(A))
Θ; Γ ⊢ Tm(B{u}) [𝐴, 𝑥 .𝐵, 𝑡,𝑢] sort

Θ; Γ ⊢ @(𝑡,𝑢) : Tm(B{u}) [𝐴, 𝑥 .𝐵, 𝑡,𝑢]
If we note that Tm(B{u}) [𝐴, 𝑥 .𝐵, 𝑡,𝑢] = Tm(𝐵 [id, 𝑢]), and we continue by applying the
rules defining the judgment Θ; Γ ⊢ t : Ξ, we get

Θ; Γ ⊢ Θ; Γ ⊢ 𝐴 : Ty Θ; Γ, 𝑥 : Tm(𝐴) ⊢ 𝐵 : Ty
Θ; Γ ⊢ 𝑡 : Tm(Π(𝐴, 𝑥 .𝐵)) Θ; Γ ⊢ 𝑢 : Tm(𝐴) Θ; Γ ⊢ Tm(𝐵 [id, 𝑢]) sort

Θ; Γ ⊢ @(𝑡,𝑢) : Tm(𝐵 [id, 𝑢])
which can be understood as the instantiation of the schematic rule for @. Note that
sometimes the first three and the last premises are omitted, but this is only justified
because they are admissible from the other ones, a result we could also show here by
applying results from Section 7.5. □
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T ⊢ (T ∈ Thy)

· ⊢
T ⊢ T ⊲ Ξ ⊢
T, 𝑓 (Ξ) sort ⊢

T ⊢
T, (\ ⊩ 𝑙 ↦−→ 𝑟 ) ⊢

T ⊢ T ⊲ Ξ1.Ξ2 ⊢ 𝑇 sort for some Δ : T ⊲ Ξ1.Ξ2 ⊢ ®𝑡 : Δ T ⊲ Ξ1.Ξ2 ⊢ ®𝑢 : Δ
T, 𝑓 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑇 ⊢

Figure 7.5: Well-typed theories

Remark 7.6. In rule TmSym it might seem odd that we also ask the sort to be well-typed,
whereas this hypothesis is not needed in rulesMVar and Var. The reason is that in the
proof of Theorem 8.4 we will need to apply the induction hypothesis to the sort 𝑇 of the
term 𝑓 (t), and thus we need a derivation of𝑇 sort smaller than the one of 𝑓 (t) : 𝑇 we start
with. Nevertheless, we will show in Section 7.5 that this extra hypothesis is admissible,
allowing us to use the economic version of the rule when building derivations. A similar
technique is also employed by Harper and Pfenning [HP05], and Abel et al. [AOV18]. □
Notation 7.3. We finish this subsection by establishing some notations.

1. We write Θ; Γ ⊢ J for any of the following: Θ; Γ ⊢ or Θ; Γ ⊢ 𝑇 sort or Θ; Γ ⊢ 𝑡 : 𝑇 or
Θ; Γ ⊢ ®𝑡 : Δ or Θ; Γ ⊢ t : Ξ.

2. We write T ⊲ Θ; Γ ⊢ J when T is not clear from the context.

3. We write Θ ⊢ J for Θ; · ⊢ J and Γ ⊢ J for ·; Γ ⊢ J . □

7.4 Valid theories

Our definition of theories given in Section 7.2 specifies the desired syntax but imposes not
typing constraints whatsoever, allowing for non-sensible and ill-behaved theories. But
now that we have introduced typing rules, we can impose such constraints a posteriori by
defining the valid theories.

Our first step to do this is to define the well-typed theories with the judgment T ⊢
specified in Figure 7.5. The definition of T ⊢ ensures that each time we extend a theory T
with a schematic typing, T can justify that the new rule is well-typed. For sort rules
𝑓 (Ξ) sort this amounts to ensuring that the metavariable context Ξ is well-typed, whereas
for term rules 𝑓 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑇 this means ensuring that 𝑇 is a well-typed sort in
metavariable context Ξ1.Ξ2 — implying in particular that the metavariable context is also
well-typed — and that there is some context Δ typing both ®𝑡 and ®𝑢 under the metavariable
context Ξ1.Ξ2.
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The definition of well-typed theory ensures that the schematic rules are well-behaved,
but it does not say anything about the rewrite rules of the theory. To remedy this, we
then define a theory T to be valid when the following criteria are met:

(I) T is well-typed.

(II) The rewrite system of T is confluent, meaning that 𝑡2 ∗←− 𝑡1 −→∗ 𝑡3 implies
𝑡2 −→∗ 𝑡4 ∗←− 𝑡3 for some 𝑡4.

(III) The rewrite system of T satisfies subject reduction, meaning that T ⊲ Θ; Γ ⊢ 𝑡 : 𝑇
and 𝑡 −→ 𝑡 ′ imply T ⊲ Θ; Γ ⊢ 𝑡 ′ : 𝑇 , and that T ⊲ Θ; Γ ⊢ 𝑇 sort and 𝑇 −→ 𝑇 ′ imply
T ⊲ Θ; Γ ⊢ 𝑇 ′ sort.7

Example 7.7. It is tedious but uncomplicated to see that the theory T_Π is valid. Checking
its well-typedness is straightforward, and confluence follows from the fact that the rewrite
system is orthogonal [MN98]. The most interesting part is verifying that the rewrite
system satisfies subject reduction, which we postpone to Example 7.8. □

Remark 7.7. The definition of T ⊢ asks schematic typing rules to be typed incrementally,
which excludes theories that rely on circularities — for instance, when a rule depends
on itself to be well-typed. Nevertheless, by a form of weakening for theories we can still
deduce that all schematic typing rules of T can also be typed in T itself (for instance, if
𝑓 (Ξ) sort ∈ T and T ⊢ then T ⊲ Ξ ⊢), a fact that we will often use without announcement
in the proofs to come. □

7.5 Metatheory

We now show some basic metaproperties satisfied by the declarative type system. Most of
these properties hold even when the theory is not well-typed or valid, so such assumptions
will be stated explicitly when needed.

Proposition 7.5 (Weakening). Let us write Γ ⊑ Δ if Γ is a subsequence of Δ, and Θ ⊑ Ξ if
Θ is a subsequence of Ξ. The following rules are admissible.

Γ ⊑ Δ
Θ; Γ ⊢ J Θ;Δ ⊢

Θ;Δ ⊢ J
Θ ⊑ Ξ

Θ; Γ ⊢ J Ξ ⊢
Ξ; Γ ⊢ J

Proof. In order for the induction to go through, we strengthen the first statement: instead
we show that Θ; Γ.Γ′ ⊢ J and Θ;Δ ⊢ and Γ ⊑ Δ imply Θ;Δ.Γ′ ⊢ J . The proof is then by
induction on Θ; Γ.Γ′ ⊢ J for the first statement, and on Θ; Γ ⊢ J for the second. ■

7Note that both implications are necessary in (III) because we can have rewrite rules both at the level of
terms and sorts. On the other hand, (II) can be stated uniformly because, at the level of untyped terms,
there is no distinction between terms and sorts.
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Our theories also satisfy a substitution property, meaning that if Θ; Γ ⊢ J is derivable,
then by applying any substitution typed by Γ or metavariable substitution typed by Θ the
resulting judgment is still derivable. In order to state this property precisely, we first need
to explain what it means to apply a substitution to a judgment J . This is specified by the
following table.

⊢ J ⊢ J [®𝑣] ⊢ J [v]Γ
⊢ ⊢ ⊢
⊢ 𝑇 sort ⊢ 𝑇 [®𝑣] sort ⊢ 𝑇 [v] sort
⊢ 𝑡 : 𝑇 ⊢ 𝑡 [®𝑣] : 𝑇 [®𝑣] ⊢ 𝑡 [v] : 𝑇 [v]
⊢ ®𝑡 : Δ ⊢ ®𝑡 [®𝑣] : Δ ⊢ id, ®𝑡 [v] : Γ.Δ[v]
⊢ t : Ξ ⊢ t[®𝑣] : Ξ ⊢ t[v] : Ξ

Note that in the case J = ®𝑡 : Δ, taking J [v]Γ := ®𝑡 [v] : Δ[v] would not in general
yield a well-formed judgment, given that v might introduce dangling variables in Δ[v].
Therefore, we need to prefix Δ[v] with the context Γ of the substitution, and fill its
positions with the identity id, yielding J [v]Γ := id, ®𝑡 [v] : Γ.Δ[v].

Proposition 7.6 (Substitution property). The following rules are admissible.

Θ; Γ ⊢ ®𝑣 : Δ Θ;Δ ⊢ J
Θ; Γ ⊢ J [®𝑣]

Ξ; Γ ⊢ v : Θ Θ;Δ ⊢ J
Θ; Γ.Δ[v] ⊢ J [v]Γ

Proof. For the proof to go through, we strengthen the first statement in the following way:

Θ; Γ ⊢ ®𝑣 : Δ Θ;Δ.Γ′ ⊢ J
Θ; Γ.Γ′[®𝑣] ⊢ J [®𝑣, id]

Then both statements can be shown by induction, onΘ;Δ.Γ′ ⊢ J for the first statement,
and Θ;Δ ⊢ J for the second. Most cases follow directly from the induction hypothesis,
the basic properties of substitution (Propositions 7.1 to 7.3) and, for the rule Conv, from
the stability of conversion under substitution (Corollary 7.1). We show the key cases, and
illustrate the other ones by some representative cases.

• Case Var of the first statement.

𝑥 : 𝑇 ∈ Δ.Γ′
Θ;Δ.Γ′ ⊢

Θ;Δ.Γ′ ⊢ 𝑥 : 𝑇

We have either 𝑥 : 𝑇 ∈ Γ′ or 𝑥 : 𝑇 ∈ Δ. In the first case, we apply the i.h. to get
Θ; Γ.Γ′[®𝑣] ⊢ and then conclude with the variable rule. Otherwise, if 𝑥 : 𝑇 ∈ Δ
then from Θ; Γ ⊢ ®𝑣 : Δ we first get Θ; Γ ⊢ 𝑣𝑥 : 𝑇 [®𝑣′], with ®𝑣′ being the prefix of ®𝑣
preceding 𝑣𝑥 . Then, by i.h. we have Θ; Γ.Γ′[®𝑣] ⊢, so we can apply Proposition 7.5 to
get Θ; Γ.Γ′[®𝑣] ⊢ 𝑣𝑥 : 𝑇 [®𝑣′]. Because we have 𝑇 [®𝑣′] = 𝑇 [®𝑣, id] we are done.
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• Case TmSym of the first statement.

𝑓 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑇 ∈ T
®𝑡 [t1, t2] ≡ ®𝑢 [t1, t2]

Θ;Δ.Γ′ ⊢ t1, t2 : Ξ1.Ξ2 Θ;Δ.Γ′ ⊢ 𝑇 [t1, t2] sort
Θ;Δ.Γ′ ⊢ 𝑓 (t2) : 𝑇 [t1, t2]

By i.h. we haveΘ; Γ.Γ′[®𝑣] ⊢ (t1, t2) [®𝑣, id] : Ξ1.Ξ2 andΘ; Γ.Γ′[®𝑣] ⊢ 𝑇 [t1, t2] [®𝑣, id] sort.
From ®𝑡 [t1, t2] ≡ ®𝑢 [t1, t2] we also get ®𝑡 [(t1, t2) [®𝑣, id]] ≡ ®𝑢 [(t1, t2) [®𝑣, id]], and we
also have 𝑇 [t1, t2] [®𝑣, id] = 𝑇 [(t1, t2) [®𝑣, id]], therefore we can derive Θ; Γ.Γ′[®𝑣] ⊢
𝑓 (t2 [®𝑣, id]) : 𝑇 [(t1, t2) [®𝑣, id]]. Applying 𝑇 [(t1, t2) [®𝑣, id]] = 𝑇 [t1, t2] [®𝑣, id] once
again, we conclude.

• Case ExtMSub of the first statement.
Θ;Δ.Γ′ ⊢ t : Ξ Θ;Δ.Γ′.Δx [t] ⊢ 𝑡 : 𝑇 [t]

Θ;Δ.Γ′ ⊢ t, ®𝑥Δ.𝑡 : (Ξ, x{Δx} : 𝑇 )

By i.h., Θ; Γ.Γ′[®𝑣] ⊢ t[®𝑣, id] : Ξ and Θ; Γ.(Γ′.Δx [t]) [®𝑣] ⊢ 𝑡 [®𝑣, id] : 𝑇 [t] [®𝑣, id]. We
have (Γ′.Δx [t]) [®𝑣] = Γ′[®𝑣] .Δx [t[®𝑣, id]] and𝑇 [t] [®𝑣, id] = 𝑇 [t[®𝑣, id]], and so we also
have Θ; Γ.Γ′[®𝑣] .Δx [t[®𝑣, id]] ⊢ 𝑡 [®𝑣, id] : 𝑇 [t[®𝑣, id]]. Thus, we can build a derivation
of Θ; Γ.Γ′[®𝑣] ⊢ t[®𝑣, id], ®𝑥Δx .𝑡 [®𝑣, id] : (Ξ, x{Δx} : 𝑇 ), and because (t, ®𝑥Δx .𝑡) [®𝑣, id] =
t[®𝑣, id], ®𝑥Δx .𝑡 [®𝑣, id] we are done.

• Case MVar of the second statement.

x{Δ′} : 𝑇 ∈ Θ
Θ;Δ ⊢ ®𝑡 : Δ′

Θ;Δ ⊢ x{®𝑡} : 𝑇 [®𝑡]

By i.h. we have Ξ; Γ.Δ[v] ⊢ id, ®𝑡 [v] : Γ.Δ′[v]. Moreover, from Ξ; Γ ⊢ v : Θ
we can deduce Ξ; Γ.Δ′[v] ⊢ vx : 𝑇 [v], so by the substitution property for variable
substitutions we getΞ; Γ.Δ[v] ⊢ vx [id, ®𝑡 [v]] : 𝑇 [v] [id, ®𝑡 [v]], and because x{®𝑡}[v] =
vx [id, ®𝑡 [v]] and 𝑇 [v] [id, ®𝑡 [v]] = 𝑇 [®𝑡] [v] we are done

• Case EmptySub of the second statement.
Θ;Δ ⊢

Θ;Δ ⊢ Y : (·)

By i.h. we have Ξ; Γ.Δ[v] ⊢. We can show Ξ; Γ.Δ[v] ⊢ id : Γ and so we are done.

• Case ExtMSub of the second statement.
Θ;Δ ⊢ t : Ξ Θ;Δ.Δ′[t] ⊢ 𝑡 : 𝑇 [t]

Θ;Δ ⊢ t, ®𝑥Δ.𝑡 : (Ξ, x{Δ′} : 𝑇 )

By i.h. we haveΞ; Γ.Δ[v] ⊢ t[v] : Ξ andΞ; Γ.(Δ.Δ′[t]) [v] ⊢ 𝑡 [v] : 𝑇 [t] [v]. We have
(Δ.Δ′[t]) [v] = Δ[v] .Δ′[t[v]] and𝑇 [t] [v] = 𝑇 [t[v]], thereforeΞ; Γ.Δ[v] .Δ′[t[v]] ⊢
𝑡 [v] : 𝑇 [t[v]]. We can thus conclude Ξ; Γ.Δ[v] ⊢ t[v], ®𝑥 .𝑡 [v] : (Ξ, x{Δ′} : 𝑇 ). ■
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The conversion rule in Figure 7.4 can be generalized to contexts in the following
manner:

Proposition 7.7 (Conversion in context). The following rules are admissible.

Δ ≡ Δ′
Θ; Γ ⊢ ®𝑡 : Δ Θ;Δ′ ⊢

Θ; Γ ⊢ ®𝑡 : Δ′
Γ ≡ Δ

Θ; Γ ⊢ J Θ;Δ ⊢
Θ;Δ ⊢ J

Proof. We first show the first statement by induction on Δ, using Proposition 7.6. Then,
for the proof of the second statement we instantiate the first with Θ;Δ ⊢ id : Δ to get
Θ;Δ ⊢ id : Γ and then conclude by applying Proposition 7.6 and using the fact that
J [id] = J . ■

Proposition 7.8 (Sorts are well-typed). The following rule is admissible.

Θ; Γ ⊢ 𝑡 : 𝑇
Θ; Γ ⊢ 𝑇 sort

Proof. By case analysis on Θ; Γ ⊢ 𝑡 : 𝑇 , using Propositions 7.5 and 7.6 for case MVar and
Proposition 7.5 for case Var. ■

Using Proposition 7.6, the premise for typing the sort in rule TmSym can now be
dropped, as anticipated in Remark 7.6. In the following we allow ourselves to use this
economic version of the rule TmSym without announcement.

Proposition 7.9 ("Economic" TmSym). The following rule is admissible when T is well-typed.

𝑓 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑇 ∈ T
®𝑡 [t1, t2] ≡ ®𝑢 [t1, t2]

Θ; Γ ⊢ t1, t2 : Ξ1.Ξ2

Θ; Γ ⊢ 𝑓 (t2) : 𝑇 [t1, t2]

Proof. By well-typedness of the theory we have Ξ1.Ξ2 ⊢ 𝑇 sort, therefore by Proposi-
tion 7.6 we get Θ; Γ ⊢ 𝑇 [t1, t2] sort, and thus Θ; Γ ⊢ 𝑓 (t2) : 𝑇 [t1, t2] by rule TmSym. ■

Finally, we now conclude this chapter by showing that subject reduction can be
reduced to a more local condition. Namely, we say that a rewrite rule 𝑙 ↦−→ 𝑟 preserves
typing if Θ; Γ ⊢ 𝑙 [t] : 𝑇 implies Θ; Γ ⊢ 𝑟 [t] : 𝑇 for all Θ, Γ, t and 𝑇 , and if Θ; Γ ⊢ 𝑙 [t] sort
implies Θ; Γ ⊢ 𝑟 [t] sort for all Θ, Γ and t.

Proposition 7.10 (Subject reduction is equivalent to preservation of typing). A well-typed
theory satisfies subject reduction iff all its rewrite rules preserve typing.

Proof. The direct implication is trivial, and for the reverse implication we show that
preservation of typing implies the following statements:

• If Θ; Γ ⊢ 𝑇 sort and 𝑇 −→ 𝑇 ′ then Θ; Γ ⊢ 𝑇 ′ sort
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• If Θ; Γ ⊢ 𝑡 : 𝑇 and 𝑡 −→ 𝑡 ′ then Θ; Γ ⊢ 𝑡 ′ : 𝑇

• If Θ; Γ ⊢ ®𝑡 : Δ and Θ;Δ ⊢ and ®𝑡 −→ ®𝑡 ′ then Θ; Γ ⊢ ®𝑡 ′ : Δ

• If Θ; Γ ⊢ t : Ξ and Ξ ⊢ and t −→ t′ then Θ; Γ ⊢ t′ : Ξ

The proof is by induction on the typing derivation, and by case analysis on the
rewriting relation.

• Case 𝑙 [t] −→ 𝑟 [t]. The result follows directly from the assumption that all rewrite
rules in T preserve typing.

• Case 𝑓 (t) −→ 𝑓 (t′) with t −→ t′, and where 𝑓 (Ξ) sort ∈ T. By inversion of typing
on Θ; Γ ⊢ 𝑓 (t) sort we have Θ; Γ ⊢ t : Ξ, and because T is well-typed we have Ξ ⊢,
so by i.h. we get Θ; Γ ⊢ t′ : Ξ, allowing us to conclude Θ; Γ ⊢ 𝑓 (t′) sort.

• Case 𝑓 (t2) −→ 𝑓 (t′2) with t2 −→ t′2, and where 𝑓 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑈 ∈ T.
By inversion of typing on Θ; Γ ⊢ 𝑓 (t2) : 𝑇 we have Θ; Γ ⊢ t1, t2 : Ξ1.Ξ2 and
®𝑡 [t1, t2] ≡ ®𝑢 [t1, t2] and 𝑇 ≡ 𝑈 [t1, t2]. Because T is well-typed, we have Ξ1.Ξ2 ⊢,
therefore by i.h. we get Θ; Γ ⊢ t1, t′2 : Ξ1.Ξ2, and moreover we have ®𝑡 [t1, t′2] ≡
®𝑡 [t1, t2] ≡ ®𝑢 [t1, t2] ≡ ®𝑢 [t1, t′2]. We can thus derive Θ; Γ ⊢ 𝑓 (t′2) : 𝑈 [t1, t′2], and by
Proposition 7.8 applied to Θ; Γ ⊢ 𝑓 (t2) : 𝑇 we have Θ; Γ ⊢ 𝑇 sort, so we conclude by
applying conversion with𝑈 [t1, t′2] ≡ 𝑇 .

• Case x{®𝑡} −→ x{®𝑡 ′} with ®𝑡 −→ ®𝑡 ′, and where x{Δ} : 𝑈 ∈ Θ. By inversion of typing
on Θ; Γ ⊢ x{®𝑡} : 𝑇 we obtain Θ; Γ ⊢ ®𝑡 : Δ and 𝑇 ≡ 𝑈 [®𝑡]. From Θ ⊢ we can extract
a derivation of Θ′;Δ ⊢ for some Θ′ ⊑ Θ, which by Proposition 7.5 gives Θ;Δ ⊢.
Therefore, we can apply the i.h. to get Θ; Γ ⊢ ®𝑡 ′ : Δ, and so Θ; Γ ⊢ x{®𝑡 ′} : 𝑈 [®𝑡 ′]. We
thus have 𝑈 [®𝑡 ′] ≡ 𝑇 , and by Proposition 7.8 applied to Θ; Γ ⊢ x{®𝑡} : 𝑇 we have
Θ; Γ ⊢ 𝑇 sort, allowing us to conclude Θ; Γ ⊢ x{®𝑡 ′} : 𝑇 using the conversion rule.

• Case ®𝑢, 𝑡 −→ ®𝑡 ′. By inversion onΘ; Γ ⊢ ®𝑢, 𝑡 : Δwe get Δ = Δ′, 𝑥 : 𝑈 andΘ; Γ ⊢ ®𝑢 : Δ′
and Θ; Γ ⊢ 𝑡 : 𝑈 [®𝑢]. Moreover, from Θ;Δ ⊢ we get Θ;Δ′ ⊢ 𝑈 sort.

– Case ®𝑡 ′ = ®𝑢′, 𝑡 with ®𝑢 −→ ®𝑢′. Then by i.h. we get Θ; Γ ⊢ ®𝑢′ : Δ′. By Propo-
sition 7.6 with Θ;Δ′ ⊢ 𝑈 sort we get Θ; Γ ⊢ 𝑈 [®𝑢′] sort, so we can apply
conversion to Θ; Γ ⊢ 𝑡 : 𝑈 [®𝑢] to get Θ; Γ ⊢ 𝑡 : 𝑈 [®𝑢′], allowing us to conclude
Θ; Γ ⊢ ®𝑢′, 𝑡 : (Δ′, 𝑥 : 𝑈 ).

– Case ®𝑡 ′ = ®𝑢, 𝑡 ′ with 𝑡 −→ 𝑡 ′. Then by i.h. we get Θ; Γ ⊢ 𝑡 ′ : 𝑈 [®𝑢], allowing us
to conclude Θ; Γ ⊢ ®𝑢, 𝑡 ′ : (Δ′, 𝑥 : 𝑈 ).

• Case u, ®𝑥 .𝑡 −→ t′. By inversion on Θ; Γ ⊢ u, ®𝑥 .𝑡 : Ξ we get Ξ = Ξ′, x{Δ} : 𝑈 and
Θ; Γ ⊢ u : Ξ′ and Θ; Γ.Δ[u] ⊢ 𝑡 : 𝑈 [u]. Moreover, from Ξ ⊢ we get Ξ′;Δ ⊢ 𝑈 sort.



72 CHAPTER 7. A LOGICAL FRAMEWORK WITH ERASED ARGUMENTS

– Subcase t′ = u′, ®𝑥 .𝑡 with u −→ u′. Then by i.h. we get Θ; Γ ⊢ u′ : Ξ′. By
Proposition 7.6 with Ξ′;Δ ⊢ 𝑈 sort we get Θ; Γ.Δ[u′] ⊢ 𝑈 [u′] sort, so we
can apply conversion and Proposition 7.7 to Θ; Γ.Δ[u] ⊢ 𝑡 : 𝑈 [u] to get
Θ; Γ.Δ[u′] ⊢ 𝑡 : 𝑈 [u′], allowing us to conclude Θ; Γ ⊢ u′, ®𝑥 .𝑡 : (Ξ′, x{Δ} : 𝑈 ).

– Subcase t′ = u, ®𝑥 .𝑡 ′ with 𝑡 −→ 𝑡 ′. By i.h. we get Θ; Γ.Δ[u] ⊢ 𝑡 ′ : 𝑈 [u], and so
we conclude Θ; Γ ⊢ u, ®𝑥 .𝑡 ′ : (Ξ′, x{Δ} : 𝑈 ). ■

Example 7.8. To show that T_Π satisfies subject reduction, we can apply Proposition 7.10
and reduce this to verifying that the rule @(λ(𝑥 .t{𝑥}), u) ↦−→ t{u} preserves typing. By
inversion of typing, it is clear thatΘ; Γ ⊢ @(λ(𝑥 .t{𝑥}), u) [𝑥 .𝑡,𝑢] sort can never hold, sowe
only need to verify that Θ; Γ ⊢ @(λ(𝑥 .t{𝑥}), u) [𝑥 .𝑡,𝑢] : 𝑇 implies Θ; Γ ⊢ t{u}[𝑥 .𝑡,𝑢] : 𝑇 ,
for all Θ, Γ, 𝑇 , 𝑡 and 𝑢.

We have @(λ(𝑥 .t{𝑥}), u) [𝑥 .𝑡,𝑢] = @(λ(𝑥 .𝑡), 𝑢) and t{u}[𝑥 .𝑡,𝑢] = 𝑡 [id, 𝑢], so we
start by applying inversion of typing to Θ; Γ ⊢ @(λ(𝑥 .𝑡), 𝑢) : 𝑇 to get

Θ; Γ ⊢ 𝐴 : Ty Θ; Γ, 𝑥 : Tm(𝐴) ⊢ 𝐵 : Ty

Θ; Γ ⊢ λ(𝑥 .𝑡) : Tm(Π(𝐴, 𝑥 .𝐵)) Θ; Γ ⊢ 𝑢 : Tm(𝐴)

for some 𝐴, 𝐵 with 𝑇 ≡ Tm(B{u}) [𝐴, 𝑥 .𝐵, 𝑡,𝑢] = Tm(𝐵 [id, 𝑢]). By inversion again, but
this time on Θ; Γ ⊢ λ(𝑥 .𝑡) : Tm(Π(𝐴, 𝑥 .𝐵)), we then have

Θ; Γ ⊢ 𝐴′ : Ty Θ; Γ, 𝑥 : Tm(𝐴′) ⊢ 𝐵′ : Ty Θ; Γ, 𝑥 : Tm(𝐴′) ⊢ 𝑡 : Tm(𝐵′)

for some𝐴′, 𝐵′with Tm(Π(𝐴, 𝑥 .𝐵)) ≡ Tm(Π(𝐴′, 𝑥 .𝐵′)). Using confluence and the fact that
no rewrite rule is headed by Tm or Π, it is easy to see that the pattern Tm(Π(A, 𝑥 .B{𝑥}))
is injective, meaning that Tm(Π(𝐴, 𝑥 .𝐵)) ≡ Tm(Π(𝐴′, 𝑥 .𝐵′)) implies 𝐴 ≡ 𝐴′ and 𝐵 ≡ 𝐵′.

Now we can conclude by applying some of the meta-theorems we saw in this sub-
section, that crucially do not rely on subject reduction — which would otherwise incur
a circularity in our reasoning. More precisely, from the above derivations we can show
Θ; Γ, 𝑥 : Tm(𝐴) ⊢ and Θ; Γ, 𝑥 : Tm(𝐴) ⊢ Tm(𝐵) sort, so starting from Θ; Γ, 𝑥 : Tm(𝐴′) ⊢ 𝑡 :
Tm(𝐵′) we can apply Proposition 7.7 and conversion to obtainΘ; Γ, 𝑥 : Tm(𝐴) ⊢ 𝑡 : Tm(𝐵).
We can also show Θ; Γ ⊢ id, 𝑢 : (Γ, 𝑥 : Tm(𝐴)), so by Proposition 7.6 we then get Θ; Γ ⊢
𝑡 [id, 𝑢] : Tm(𝐵 [id, 𝑢]). Finally, by applying Proposition 7.8 to Θ; Γ ⊢ @(λ(𝑥 .𝑡), 𝑢) : 𝑇
we get Θ; Γ ⊢ 𝑇 sort, so by applying conversion with Tm(𝐵 [id, 𝑢]) ≡ 𝑇 we conclude
Θ; Γ ⊢ 𝑡 [id, 𝑢] : 𝑇 .

Importantly, note that the above verification only relied on two properties: (1) that the
theory is well-typed, and (2) that the pattern Tm(Π(A, 𝑥 .B{𝑥})) is injective. This means
that the rule@(λ(𝑥 .t{𝑥}), u) ↦−→ t{u} actually preserves typing in any extension of T_Π
satisfying these two properties, an observation that will be relevant when considering
extensions of this theory in Chapter 9. □

Remark 7.8. It is easy to see that the procedure of Example 7.8 could be automated, as
done already in the case of Dedukti [Sai15, Bla20]. We leave this for future work. □



Chapter 8

Generic Bidirectional Typing

In Chapter 7 we specified the theories of our framework, as well as the type system they
define. However, as discussed in Chapter 6, the omission of some arguments in the syntax
means that this system is not algorithmic, and when building derivations one is obliged to
guess the missing information. The goal of this chapter is to refine the notion of theory
seen in the last chapter into bidirectional theories, for which we develop bidirectional
typing generically. More precisely, for each bidirectional theory, we define a bidirectional
type system and show it to be not only equivalent to the type system of Figure 7.4 but
also to be decidable for strongly normalizing theories.

We start the chapter by defining our notion of bidirectional theory, and then discussing
the problem of matching modulo, which is needed for recovering missing arguments. We
then continue by introducing the bidirectional syntax, over which the bidirectional type
system is defined, and defining the bidirectional system itself. We conclude the chapter
with the definition of the valid bidirectional theories, and the proofs of correctness and
decidability of the bidirectional type system.

8.1 Bidirectional theories

When specifying the theories in Section 7.2 we allowed term rules to omit some of their
arguments without worrying how they could be algorithmically recovered. We fix this by
defining bidirectional theories T♭, in which term rules are required to be of a certain shape.

Recall from Chapter 6 that the way in which missing arguments can be recovered in
bidirectional typing is deeply linked with whether a symbol is a constructor or a destructor.
In order to capture this distinction, let us suppose that symbols 𝑓 , 𝑔, . . . are partitioned as
constructors 𝑐 and destructors 𝑑 . We then update our notational convention and write
destructor names in orange, so that they stand apart from constructor names, which are
still written in blue. Then, the bidirectional theories are defined by Figure 8.1, where,
given a bidirectional theory T♭, we write T for its underlying regular theory, obtained
by mapping 𝑑 (Ξ1 ; x :p 𝑇 ; Ξ2) : 𝑈 into 𝑑 (Ξ1 ; x : 𝑇,Ξ2 ; Y ≡ Y) : 𝑈 , and keeping all the
other rules as they are.

73
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Thy
♭ ∋ T♭ ::= | ·

| T♭, 𝑐 (Ξ ∈ MCtx |T |) sort
| T♭, 𝑐 (Ξ1 ∈ MCtx |T | ; Ξ2 ∈ MCtx |T | |Ξ1 | ;

®𝑡 ∈ Tm |T | |Ξ1 .Ξ2 | 𝛾 ≡ ®𝑢 ∈ Tm |T | |Ξ1.Ξ2 | 𝛾) : 𝑇 ∈ TmP

|T | |Ξ1 | (·)

| T♭, 𝑑 (Ξ1 ∈ MCtx |T | ; x :p 𝑇 ∈ TmP

|T | |Ξ1 | (·) ;
Ξ2 ∈ MCtx |T | ( |Ξ1 |, x)) : 𝑈 ∈ Tm |T | ( |Ξ1 |, x, |Ξ2 |) (·)

| T♭, \ ⊩ 𝑙 ∈ TmP

|T | \ (·) ↦−→ 𝑟 ∈ Tm |T | \ (·) with 𝑙 not a metavariable

Figure 8.1: Definition of bidirectional theories

Remark 8.1. Note that in sort rules we impose the associated symbol to be a constructor.
It would also be reasonable to introduce a specific class of symbols for sorts, but, as it
turns out, considering them to be constructors seems to make the developments of this
chapter simpler. □

Constructor rules

In Figure 8.1, schematic rules of the form

𝑐 (Ξ1 ∈ MCtx ; Ξ2 ∈ MCtx |Ξ1 | ; ®𝑡 ∈ Tm |Ξ1 .Ξ2 | 𝛾 ≡ ®𝑢 ∈ Tm |Ξ1.Ξ2 | 𝛾) : 𝑇 ∈ TmP |Ξ1 | (·)

are called constructor rules. Recall from Chapter 6 that in bidirectional typing constructors
support type-checking, so that the missing information can be recovered from the sort
given as input. In order to ensure that this is possible, the sort 𝑇 of a constructor rule
is required to be a pattern over the metavariables of the erased arguments Ξ1 — we will
then see in detail how this allows arguments to be recovered in Section 8.2.

Two examples of constructor rules are the ones for Π and λ in T_Π:

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
Π(A, 𝑥 .B{𝑥}) : Ty

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
𝑥 : Tm(A) ⊢ t : Tm(B{𝑥})

λ(𝑥 .t{𝑥}) : Tm(Π(A, 𝑥 .B{𝑥}))

The requirement that the sort of the rule is a pattern over |Ξ1 | can however be
problematic in some cases, for instance when trying to define the constructor refl for the
equality type, and the constructor cons for the type of vectors.

A : Ty a : Tm(A)
refl : Tm(Eq(A, a, a))

A : Ty n : Tm(Nat) t : Tm(A) l : Tm(Vec(A, n))
cons(n, t, l) : Tm(Vec(A, S(n)))
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In the case of refl, the metavariable a occurs non-linearly in its sort Tm(Eq(A, a, a)),
which is therefore not a pattern in our sense. In the case of cons its sort actually is a
pattern, however because it contains the metavariable n we would need to omit it in the
syntax. This in principle can appear to be a good thing, after all the goal of bidirectional
typing is precisely to remove annotations that are not needed. However when writing
the reduction rules associated with the eliminator for vectors we realize that n actually is
needed. Indeed, the argument n is computationally relevant, meaning that the result of a
computation might depend on it, and therefore it cannot be erased — see the discussion
in Section 9.2.

This is where equational hypotheses come in handy, as they allow us to rephrase the
previous rules in the following manner, fitting the format required for constructor rules.
The technique of moving from the previous presentation of the rules to the one using
equational constraints is known as fording [McB00, CDMM10] and will be discussed in
more details in Section 9.2.

A : Ty a : Tm(A)
b : Tm(B) a ≡ b

refl : Tm(Eq(A, a, b))

A : Ty m : Tm(Nat) n : Tm(Nat)
t : Tm(A) l : Tm(Vec(A, n)) m ≡ S(n)

cons(n, t, l) : Tm(Vec(A, m))

Destructor rules

In opposition to constructors, in bidirectional typing destructors support type inference,
and the missing arguments are instead recovered by inferring the first non-erased ar-
gument, which is called the principal argument. This leads to destructor rules of the
form

𝑑 (Ξ1 ∈ MCtx ; x :p 𝑇 ∈ TmP |Ξ1 | (·) ; Ξ2 ∈ MCtx ( |Ξ1 |, x)) : 𝑈 ∈ Tm ( |Ξ1 |, x, |Ξ2 |) (·)

Note that because the missing arguments in Ξ1 are now recovered from the sort of the
principal argument x :p 𝑇 , then its sort most be a pattern over the metavariables of Ξ1.

The prime example of a destructor rule is the following one for application. Note that
writing destructor names in orange and annotating the p in x :p 𝑇 is helpful here so that
we can easily "parse" the informal rules into the formal notation.

A : Ty 𝑥 : Tm(A) ⊢ B : Ty t :p Tm(Π(A, 𝑥 .B{𝑥})) u : Tm(A)
@(t, u) : Tm(B{u})

Remark 8.2. One may wonder why we impose the associated context of the principal
argument to be always empty. If we had principal arguments of the form x{Γ} :p 𝑇 instead
of x :p 𝑇 , we would have to extend the current context by Γ before inferring x, yet Γ may
make reference to the erased arguments, which are only recovered after the sort of the
principal argument is inferred. □
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Remark 8.3. As a simplification, here we consider destructor rules without equational
premises, as we do not know of any interesting examples in which they would be needed.
Nevertheless, modifying the developments of this chapter to allow for destructor rules
with equations would be straightforward. □

Example 8.1. As we have just seen, all of the term rules of T_Π can be seen as either
constructor or destructor rules, and so we obtain the following bidirectional theory:

Ty(·) sort, Tm(A : Ty) sort, Π(· ; A : Ty, B{𝑥 : Tm(A)} : Ty ; Y ≡ Y) : Ty, (T♭
_Π
)

λ(A : Ty, B{𝑥 : Tm(A)} : Ty ; t{𝑥 : Tm(A)} : Tm(B{𝑥}) ; Y ≡ Y) : Tm(Π(A, 𝑥 .B{𝑥})),
@(A : Ty, B{𝑥 : Tm(A)} : Ty ; t :p Tm(Π(A, 𝑥 .B{𝑥})) ; u : Tm(A)) : Tm(B{u}),
@(λ(𝑥 .t{𝑥}), u) ↦−→ t{u} □

8.2 Matching modulo

Suppose we want to type@(𝑡,𝑢) by first inferring the sort of 𝑡 , yielding𝑇 . We know that
the sort of the principal argument in the rule for@ is the pattern Tm(Π(A, 𝑥 .B{𝑥})), so
we could hope to recover 𝐴 and 𝐵 by matching 𝑇 against this pattern. However, because
of the conversion rule, in dependent type theories we cannot expect 𝑇 to be syntactically
equal to an instance of this pattern, but only convertible to it. Therefore, our goal is
instead to find 𝐴 and 𝐵 satisfying Tm(Π(A, 𝑥 .B{𝑥})) [𝐴, 𝑥 .𝐵] ≡ 𝑇 . This shows that the
process of recovering missing arguments in bidirectional typing is actually an instance of
matching modulo — a connection that apparently had not been made explicit before in the
bidirectional typing literature.

In order to solve matching modulo problems, we define in Figure 8.2 an inference
systemwhich, given a pattern 𝑡 and a term𝑢, tries to compute a metavariable substitution v
such that 𝑡 [v] ≡ 𝑢. Here we write 𝑡 −→h 𝑢 when 𝑡 −→∗ 𝑢 and 𝑢 is head-normal, meaning
that for all 𝑢′ with 𝑢 −→∗ 𝑢′, no rewrite rule can be applied to the head of 𝑢′.

Correctness of matching modulo

Let us now establish the correctness of this inference system in three steps, starting by its
soundness.

Proposition 8.1 (Soundness of matching).

• If 𝑡 ≺ 𝑢 { v then 𝑢 −→∗ 𝑡 [v].

• If t ≺ u { v then u −→∗ t[v].

Proof. By induction on the derivation. ■
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𝑡 ≺ 𝑢 { v (𝑡 ∈ TmP \ 𝛾 ; 𝑢 ∈ Tm (·) 𝛿.𝛾 ; v ∈ MSub (·) 𝛿 \ )

𝑢 −→h 𝑓 (u)
t ≺ u { v

𝑓 (t) ≺ 𝑢 { v x{id𝛾 } ≺ 𝑢 { ®𝑥𝛾 .𝑢

t ≺ u { v (t ∈ MSub
P \ 𝛾 b ; u ∈ MSub (·) 𝛿.𝛾 b ; v ∈ Sub (·) 𝛿 \ )

Y ≺ Y { Y

t ≺ u { v1 𝑡 ≺ 𝑢 { v2
t, ®𝑥 .𝑡 ≺ u, ®𝑥 .𝑢 { v1, v2

Figure 8.2: Inference system for matching modulo

Is our inference system for matching modulo always complete? Is easy to see that
trying to match the term @(λ(𝑥 .𝑥), 𝑦) against the pattern @(t, u) fails, even though the
former is an instance of the latter. The problem here is that rewriting an instance of@(t, u)
can lead to a term that is not an instance of this pattern anymore. While completeness
might be recovered in such cases using the technique of narrowing [BS01, MH94, Pre94],
the procedure becomes more complex, less efficient and the solutions one obtain are
in general not unique modulo conversion. For instance, the metavariable substitutions
λ(𝑥 .𝑥), 𝑦 ∈ MSub (·) (𝑦) (t, u) and λ(𝑥 .𝑦), 𝑦 ∈ MSub (·) (𝑦) (t, u) are both solutions to
the above matching problem, yet they are not convertible. Therefore, we instead chose to
impose an extra condition, ruling out patterns like @(t, u), and which, in the context of
bidirectional typing, is always satisfied in practice.

Recall from rewriting theory that a (term or metavariable substitution) pattern 𝑒
overlaps with a term pattern 𝑡2 when, for some subterm 𝑡1 of 𝑒 not of the form x{®𝑥},
the terms 𝑡1 and 𝑡2 unify, meaning that we have 𝑡1 [t1] = 𝑡2 [t2] for some metavariable
substitutions t1 and t2. We then say that a (term or metavariable substitution) pattern 𝑒 is
rigid when it overlaps with the left-hand side of no rewrite rule. For instance, in T♭

_Π
, the

pattern@(t, u) is not rigid because its (non-proper) subterm@(t, u) unifies with the left-
hand side of the 𝛽-rule. In contrast, no non-metavariable subterm of Tm(Π(A, 𝑥 .B{𝑥}))
unifies with a rewrite rule left-hand side, and so this pattern is rigid.

We now show that the system of Figure 8.2 is indeed complete provided that the
pattern we are matching against is rigid and the rewrite system is confluent. To do this,
we first show the following technical result, ensuring that rewriting an instance of a rigid
pattern leads to another instance of it.

Lemma 8.1 (Rewriting a rigid pattern).

• Suppose that 𝑡 ∈ TmP b 𝛿 is rigid. If for some v ∈ MSub (·) 𝛾 b we have 𝑡 [v] −→ 𝑡 ′

then 𝑡 ′ = 𝑡 [v′] for some v′ ∈ MSub (·) 𝛾 b with v −→ v′.
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• Suppose that t ∈ MSub
P b 𝛿 \ is rigid. If for some v ∈ MSub (·) 𝛾 b we have t[v] −→ t′

then t′ = t[v′] for some v′ ∈ MSub (·) 𝛾 b with v −→ v′.

Proof. By mutual induction on 𝑡 and t.

• Case 𝑡 = x{id𝛿 }. We therefore have b = x{𝛿}. By taking v′ := ( ®𝑥𝛿 .𝑡 ′) ∈ MSub (·) 𝛾 (x{𝛿})
we get x{id𝛿 }[v′] = 𝑡 ′ and v −→ v′.

• Case 𝑡 = 𝑓 (t). We have 𝑓 (t) [v] −→ 𝑡 ′, and because 𝑓 (t) is rigid, it follows that for
no rule 𝑙 ↦−→ 𝑟 and v′ we can have 𝑓 (t) [v] = 𝑙 [v′]. Therefore, the reduction step
𝑓 (t) [v] −→ 𝑡 ′ cannot happen in the head. We thus have 𝑡 ′ = 𝑓 (t′) with t[v] −→ t′.
By the i.h., we get t′ = t[v′] for some v′ ∈ MSub (·) 𝛾 b with v −→ v′, and thus
𝑡 ′ = 𝑓 (t′) = 𝑓 (t) [v].

• Case t = Y. Impossible.

• Case t = u, ®𝑥 .𝑢. Therefore, \ is of the form \0, x{𝛾0} and b is of the form b1.b2,
and we have u ∈ MSub

P b1 𝛿 \0 and 𝑡 ∈ Tm
P b2 𝛿.𝛾0. Moreover, we must have

t′ of the form u′, ®𝑥 .𝑢′. Let us split v into v1.v2 with v𝑖 ∈ MSub (·) 𝛾 b𝑖 , so that
u[v1], ®𝑥 .𝑢 [v2] −→ u′, ®𝑥 .𝑢′.

– Subcase u[v1] −→ u′. We have 𝑢′ = 𝑢 [v2], and by i.h. we get u′ = u[v′1] with
v′1 ∈ MSub (·) 𝛾 b1 and v1 −→ v′1. Thus t′ = u[v′1], ®𝑥 .𝑢 [v2] = t[v′1, v2] with
v1, v2 −→ v′1, v2.

– Subcase 𝑢 [v2] −→ 𝑢′. We have u′ = u[v1], and by i.h. we get 𝑢′ = 𝑢 [v′2] with
v′2 ∈ MSub (·) 𝛾 b2 and v2 −→ v′2. Thus t′ = u[v1], ®𝑥 .𝑢 [v′2] = t[v1, v′2] with
v1, v2 −→ v1, v′2. ■

Remark 8.4. Lemma 8.1 might feel familiar to readers knowledgeable in rewriting theory:
it is very similar to the main auxiliary lemma used in proofs of confluence by orthogonal-
ity [MN98, BKdVT03], except that there one replaces −→ by developments. □

We can now show the completeness of matching:1

Proposition 8.2 (Completeness of matching). Suppose that the underlying theory is con-
fluent and let v ∈ MSub (·) 𝛿 \ .

• If 𝑡 ∈ TmP \ 𝛾 is rigid and 𝑡 [v] ≡ 𝑢 then 𝑡 ≺ 𝑢 { v′ for some v′ ≡ v.

• If t ∈ MSub
P \ 𝛾 b is rigid and t[v] ≡ u then t ≺ u { v′ for some v′ ≡ v.

1Combined with Lemma 8.6, this implies in particular the unicity of solutions modulo conversion,
provided that the pattern is rigid and the rewrite system is confluent.
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Proof. By induction on the pattern, the only interesting case being when 𝑡 = 𝑓 (t). In
this case, by confluence we have 𝑢 −→∗ 𝑢′ ∗←− 𝑓 (t) [v], so by iterating Lemma 8.1 we
obtain 𝑢′ = 𝑓 (t) [v′] for some v′ ∈ MSub (·) 𝛿 \ with v −→∗ v′, implying in particular
t[v′] ≡ t[v]. Moreover, it is easy to see that 𝑓 (t) [v′] is head-normal: given any 𝑢′′ such
that 𝑓 (t) [v′] −→∗ 𝑢′′, by iterating Lemma 8.1 again we deduce that 𝑢′′ is of the form
𝑓 (t) [v′′], so because 𝑓 (t) is rigid it follows that 𝑢′′ does not match any rewrite rule at the
head. To conclude it suffices to note that, because 𝑓 (t) is rigid, then t also is, so by the i.h.
we get t ≺ t[v′] { v′′ for some v′′ ≡ v. ■

A direct consequence of soundness and completeness of matching is the following
corollary, which will be useful in the proof of Proposition 8.3.

Corollary 8.1 (Matching respects conversion). Suppose that underlying theory is confluent.

• If 𝑡 is rigid and 𝑡 ≺ 𝑢 { v and 𝑢 ≡ 𝑢′ then 𝑡 ≺ 𝑢′ { v′ for some v′ ≡ v.

• If t is rigid and t ≺ u { v and u ≡ u′ then t ≺ u′ { v′ for some v′ ≡ v.

Finally, we establish that matching modulo is decidable when the expression 𝑒 from
which we extract the substitution is strongly normalizing (often abbreviated as s.n.),
meaning that all reduction sequences issuing from 𝑒 are finite.

Proposition 8.3 (Decidability of matching). Suppose that the underlying theory is confluent.

• If 𝑢 is strongly normalizing then ∃v. 𝑡 ≺ 𝑢 { v is decidable for all 𝑡 rigid.

• If u is strongly normalizing then ∃v. t ≺ u { v is decidable for all t rigid.

Proof. By induction on the pattern. We show the only interesting case, when 𝑡 = 𝑓 (t).
Because 𝑢 is strongly normalizing, we can use any reduction strategy to compute a
head-normal form 𝑢′ for 𝑢.

If 𝑢′ is not headed by 𝑓 then ∃v. 𝑡 ≺ 𝑢 { v cannot hold. Indeed, this would imply
𝑢 −→∗ 𝑓 (u) for some u, so by confluence and the fact that 𝑓 (u) and 𝑢′ are head-normal
we would be able to show that 𝑢′ is headed by 𝑓 , contradiction.

If 𝑢′ is of the form 𝑓 (u), then by i.h. we can decide ∃v. t ≺ u { v. If this holds, then
it follows that ∃v. 𝑡 ≺ 𝑢 { v holds. If ∃v. t ≺ u { v does not hold, then ∃v. 𝑡 ≺ 𝑢 { v
also does not hold. Indeed, if ∃v. 𝑡 ≺ 𝑢 { v holds then we have 𝑢 −→h 𝑓 (u′) and
t ≺ u′ { v′ for some u′ and v′. But from 𝑓 (u) ≡ 𝑓 (u′), confluence and the fact that both
terms are head-normal, we get u ≡ u′, but Corollary 8.1 then implies ∃v. t ≺ u { v. ■

Remark 8.5. The condition of strong normalization in Proposition 8.3 could be slightly
weaken to require only weak normalization, for instance by exploring all the reducts in a
fair manner until reaching the normal form, which would however be terribly inefficient.

Alternatively, we could ask for the existence of a normalizing strategy, that is, a strategy
that eventually reaches a normal form when there exists one. For instance, for orthogonal
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systems, it is known that the maximal-outermost strategy is normalizing [vR97, vO99].
However, even if strategies derived from call-by-value have weaker theoretical guarantees,
they are generally easier to implement efficiently — for instance, by using normalization-
by-evaluation, as in the case of our implementation. Moreover, most theories used in
practice are either strongly normalizing or not normalizing at all, and so it is questionable
whether asking only for weak instead of strong normalization would bring any benefit in
practice. □

8.3 Bidirectional syntax

In order to define the bidirectional type system, we first have to address the problem that
some terms without annotations cannot be algorithmically typed. Indeed, suppose for
instance that we want to type the term @(λ(𝑥 .𝑡), 𝑢) by inferring the sort of the principal
argument of@ to recover 𝐴 and 𝐵. But because λ(𝑥 .𝑡) is headed by a constructor it can
only be bidirectionally typed in mode check, so we are stuck. One could think that this
limitation is specific to bidirectional typing, however a famous result by Dowek shows
that, in a dependently typed setting, the problem of typing non-annotated terms is actually
undecidable in its full generality [Dow93]. Therefore, instead of defining the bidirectional
system over the regular syntax of terms, we will define it over the bidirectional syntax
which, given a signature Σ, is defined by the following grammar.

tm
c 𝛾 ∋ 𝑡,𝑢, 𝑣 ::= | 𝑐 (t ∈ msub

c 𝛾 b) if 𝑐 (b) ∈ Σ

| 𝑡 ∈ tmi 𝛾

tm
i 𝛾 ∋ 𝑡,𝑢, 𝑣 ::= | 𝑥 if 𝑥 ∈ 𝛾

| 𝑑 (𝑡 ∈ tmi 𝛾, t ∈ msub
c 𝛾 b) if 𝑑 (x, b) ∈ Σ

| 𝑡 ∈ tmc 𝛾 :: 𝑇 ∈ tmc 𝛾

msub
c 𝛾 b ∋ t,u, v ::= | Y if b = ·

| t ∈ msub
c 𝛾 b ′, ®𝑥𝛿 .𝑡 ∈ tmc 𝛾 .𝛿 if b = b ′, x{𝛿}

By separating between checkable terms 𝑡 ∈ tmc 𝛾 and inferrable terms 𝑡 ∈ tmi 𝛾 we are
now able to specify that the principal argument of a destructor can only be an inferable
term, avoiding the situation described in the previous paragraph. As a consequence of this,
terms of the form 𝑑 (𝑐 (t),u) are not directly part of the bidirectional syntax, and we must
instead first turn 𝑐 (t) into an inferable term by adding a (sort) ascription 𝑐 (t) :: 𝑇 , allowing
us to then write 𝑑 (𝑐 (t) :: 𝑇,u). We also have a symmetric operation of embedding, which
creates a checkable term 𝑡 from an inferable one 𝑡 .
Example 8.2. The inferrable and checkable terms for the signature Σ_Π are given respec-
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tively by the following grammars, where we omit the scope information.

𝑡 i, 𝑢 i ::= 𝑥 | 𝑡 c :: 𝑇 c | @(𝑡 i, 𝑢c)
𝑡 c, 𝑢c, 𝐴c, 𝐵c,𝑇 c ::= Ty | Tm(𝐴c) | Π(𝐴c, 𝑥 .𝐵c) | λ(𝑥 .𝑡 c) | 𝑡 i □

Because the bidirectional syntax requires us to add additional ascriptions when writing
terms of the form𝑑 (𝑐 (t),u), one can wonder if this requirement might be too inconvenient
in practice. If we remove sort ascriptions from the bidirectional syntax, then for most
theories (like T_Π) the checkable terms coincide exactly with the normal forms. As argued
in other works [Nor07], users of type theory almost never write redexes, and because of
this a large part of the bidirectional typing literature only supports the typing of normal
forms [AC05, Nor07, AA11, Coq96, ACP11, AVW17], for which one needs no ascriptions.
Our choice of also supporting ascriptions is simply a matter of giving users an extra
convenience for the few situations in which writing a redex is more convenient, yet we
expect that in most cases they will not be needed.

Given 𝑡 ∈ tmc 𝛾 or 𝑡 ∈ tmi 𝛾 we write ⌜𝑡⌝ ∈ Tm (·) 𝛾 for its underlying term, obtained
by forgetting the difference between checkable and inferable terms and by removing sort
ascriptions. Similarly, if t ∈ msub

c 𝛾 b we write ⌜t⌝ ∈ MSub (·) 𝛾 b for its underlying
metavariable substitution.
Remark 8.6. Note that we have omitted metavariables from the bidirectional syntax. Even
if metavariables are needed in the core syntax for specifying the theories in Section 7.2
(and the well-typed theories in Section 7.4), they are in general not needed for using them,
and this is why they are in general omitted from most presentations of type theories. It is
therefore reasonable to leave them out of the bidirectional syntax, as they would be of no
utility for users. □

8.4 Bidirectional typing rules

Given a bidirectional theory T♭, we can now define its bidirectional type system by the
rules in Figure 8.3. The system is split in 4 judgments:

• Γ ⊢ 𝑇 ⇐ sort : Checking that a checkable term 𝑇 is a well-formed sort.

• Γ ⊢ 𝑡 ⇐ 𝑇 : Checking that a checkable term 𝑡 has sort 𝑇 .

• Γ ⊢ 𝑡 ⇒ 𝑇 : Inferring a sort 𝑇 for an inferable term 𝑡 .

• Γ | v : Ξ ⊢ t⇐ Θ : Checking that a checkable metavariable substitution t can be
typed by Θ, knowing that v : Ξ.2

2The reader could argue that the most natural choice would be a judgment of the form Γ ⊢ t ⇐ Θ.
However, in some cases it will be necessary to check v.⌜t⌝ : Ξ.Θ knowing already that v : Ξ holds, so our
more general judgment allows us to avoid reverifying that v is well-typed.
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Γ ⊢ 𝑇 ⇐ sort (Γ ∈ Ctx; 𝑇 ∈ tmc |Γ |)

𝑐 (Ξ) sort ∈ T♭
Sort
Γ | Y : (·) ⊢ t⇐ Ξ

Γ ⊢ 𝑐 (t) ⇐ sort

Γ ⊢ 𝑡 ⇐ 𝑇 (Γ ∈ Ctx; 𝑇 ∈ Tm (·) |Γ |; 𝑡 ∈ tmc |Γ |)

𝑐 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑇 ∈ T♭
®𝑡 [t1, ⌜t2⌝] ≡ ®𝑢 [t1, ⌜t2⌝]

Cons
𝑇 ≺ 𝑇 ′ { t1 Γ | t1 : Ξ1 ⊢ t2 ⇐ Ξ2

Γ ⊢ 𝑐 (t2) ⇐ 𝑇 ′
𝑇 ≡ 𝑈

Switch
Γ ⊢ 𝑡 ⇒ 𝑇

Γ ⊢ 𝑡 ⇐ 𝑈

Γ ⊢ 𝑡 ⇒ 𝑇 (Γ ∈ Ctx; 𝑇 ∈ Tm (·) |Γ |; 𝑡 ∈ tmi |Γ |)

𝑥 : 𝑇 ∈ Γ
Var

Γ ⊢ 𝑥 ⇒ 𝑇

Ascr
Γ ⊢ 𝑇 ⇐ sort Γ ⊢ 𝑡 ⇐ ⌜𝑇 ⌝

Γ ⊢ 𝑡 :: 𝑇 ⇒ ⌜𝑇 ⌝

𝑑 (Ξ1 ; x :p 𝑇 ; Ξ2) : 𝑈 ∈ T♭

Dest
Γ ⊢ 𝑡 ⇒ 𝑇 ′ 𝑇 ≺ 𝑇 ′ { t1

Γ | t1, ⌜𝑡⌝ : (Ξ1, x : 𝑇 ) ⊢ t2 ⇐ Ξ2

Γ ⊢ 𝑑 (𝑡, t2) ⇒ 𝑈 [t1, ⌜𝑡⌝, ⌜t2⌝]

Γ | v : Θ ⊢ t⇐ Ξ (Θ ∈ MCtx; Γ ∈ Ctx; v ∈ MSub (·) |Γ | |Θ|; Ξ ∈ MCtx |Θ|; t ∈ msub
c |Γ | |Ξ|)

EmptyMSub

Γ | v : Θ ⊢ Y ⇐ (·)

ExtMSub
Γ | v : Θ ⊢ t⇐ Ξ Γ.Δ[v, ⌜t⌝] ⊢ 𝑡 ⇐ 𝑇 [v, ⌜t⌝]

Γ | v : Θ ⊢ t, ®𝑥Δ.𝑡 ⇐ (Ξ, x{Δ} : 𝑇 )

Figure 8.3: Bidirectional system defined by T♭
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As in the declarative type system of Figure 7.4, the most important rules are the ones
that instantiate the schematic typing rules: Cons, Dest and Sort. However, differently
from the declarative system, no more guessing is needed when building a type derivation.
For instance, when using rule Dest with 𝑑 (𝑡,u) the omitted arguments are no longer
guessed, but instead recovered by inferring the sort of the principal argument 𝑡 and then
matching it against the associated pattern.
Example 8.1. Suppose we want to infer a sort for @(𝑡,𝑢) in the theory T♭

_Π
. To use

rule Dest, we start by inferring a sort 𝑇 ′ for 𝑡 , and then we try to match it against the
pattern Tm(Π(A, 𝑥 .B{𝑥})). If matching succeeds, we recover the arguments 𝐴 and 𝐵,
which together with 𝑡 are then used in

Γ | (𝐴, 𝑥 .𝐵, 𝑥 .⌜𝑡⌝) : (A : Ty, B{𝑥 : Tm(A)} : Ty, t{𝑥 : Tm(A)} : Tm(B)) ⊢ (𝑢) ⇐ (u : Tm(A))

By applying the rules that define the judgment Γ | v : Θ ⊢ t⇐ Ξ, we see that this amounts
to showing Γ ⊢ 𝑢 ⇐ Tm(𝐴), and so the final shape of this "big-step derivation" is the
following, which corresponds to the usual bidirectional rule for application.

Γ ⊢ 𝑡 ⇒ 𝑇 ′ Tm(Π(A, 𝑥 .B{𝑥})) ≺ 𝑇 ′ { 𝐴, 𝑥 .𝐵 Γ ⊢ 𝑢 ⇐ Tm(𝐴)
Γ ⊢@(𝑡,𝑢) ⇒ Tm(𝐵 [idΓ, ⌜𝑢⌝])

□

8.5 Valid bidirectional theories

In order to establish the correctness of the bidirectional system with respect to the
(declarative) typing rules of Figure 7.4, we first need to refine the notion of bidirectional
theory with some extra assumptions. In the following, let us say that a pattern 𝑇 is
destructor-free if it contains no subterm headed by a destructor. Then, a bidirectional
theory T♭ is said to be valid when the following two conditions are met:
(A) Its underlying theory T is valid — recall that this means that (I) T is well-typed and

its rewrite system satisfies (II) confluence and (III) subject reduction.

(B) For all patterns 𝑇 , if 𝑐 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑇 ∈ T♭ or 𝑑 (Ξ1 ; x :p 𝑇 ; Ξ2) : 𝑈 ∈ T♭, then
𝑇 is rigid (with respect to the rewrite rules of T♭) and destructor-free.

Assumption (A) is clearly reasonable, as we want the underlying theory of T♭ to
be well-behaved. For assumption (B), the requirement that 𝑇 is rigid will be needed
when using Propositions 8.2 and 8.3 for showing completeness and decidability of the
bidirectional system. Finally, the requirement that 𝑇 is destructor-free is justified a
posteriori by Lemma 8.3, needed for typing the recovered arguments and whose proof
does not work when considering patterns with destructors.
Example 8.2. It is easy to see that the bidirectional theoryT♭

_Π
is valid. Indeed, condition (A)

follows from Example 7.7, and condition (B) can be straightforwardly verified. □
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8.6 Correctness of bidirectional typing

In the following, when working over a bidirectional theory T♭, all the declarative typing
judgments are to be understood as in its underlying theory T.

Soundness

In order to establish soundness, we will first need to know how to type the arguments
recovered through matching. This is the role of the following Lemma 8.3, which roughly
states that, given a well-typed pattern 𝑡 such that the result of substituting v in 𝑡 is also
well-typed, one can conclude that v is also well-typed (though for Theorem 8.3 we need a
slightly more general statement), an implication that generally does not hold when 𝑡 is
not a pattern. The proof of Lemma 8.3 in turn requires the following easy lemma.

Lemma 8.2 (Injectivity of rigid patterns). Suppose that the rewrite system is confluent and
let 𝑡 ∈ TmP b 𝛿 be a rigid pattern. If for some v1 ∈ MSub (·) 𝛾 b and v2 ∈ MSub (·) 𝛾 b we
have 𝑡 [v1] ≡ 𝑡 [v2] then v1 ≡ v2.

Proof. By confluence we have 𝑡 [v1] −→∗ 𝑢 ∗←− 𝑡 [v2] for some𝑢. By iterating Lemma 8.1
we then get 𝑢 = 𝑡 [v′1] with v1 −→∗ v′1 and 𝑢 = 𝑡 [v′2] with v2 −→∗ v′2. Finally, from
𝑡 [v′1] = 𝑡 [v′2] we can easily show v′1 = v′2 by induction on 𝑡 , and so we get v1 ≡ v2. ■

Lemma 8.3 (Substitution typing inversion for destructor-free patterns). Suppose that
(B) is satisfied and that the rewrite system is confluent. Let v1 ∈ MSub (·) |Δ| |Θ1 | and
v2 ∈ MSub (·) |Δ| |Θ2 | and assume that one of the following three points is verified:

• 𝑡 ∈ TmP |Θ1 | (·) is destructor-free and Θ1.Θ2 ⊢ 𝑡 : 𝑇 and Δ ⊢ 𝑡 [v1] : 𝑇 [v1, v2].

• t ∈ MSub
P |Θ1 | (·) |Ξ| is destructor-free and Θ1.Θ2 ⊢ t : Ξ and Δ ⊢ t[v1] : Ξ.

• 𝑇 ∈ TmP |Θ1 | (·) is destructor-free and Θ1.Θ2 ⊢ 𝑇 sort and Δ ⊢ 𝑇 [v1] sort.

Then we have Δ ⊢ v : Θ1.

Proof. In order for the proof to go through, we need to show a stronger statement. Let
v = v1, v2, v3 and Θ = Θ1.Θ2.Θ3 with v𝑖 ∈ MSub (·) |Δ| |Θ𝑖 | for 𝑖 = 1, 2, 3, and suppose
moreover that Δ ⊢ v1 : Θ1 and that one of the following holds.

• 𝑡 ∈ Tm
P |Θ2 | |Γ | is destructor-free and Θ; Γ ⊢ 𝑡 : 𝑇 and Δ.Γ′ ⊢ 𝑡 [v2] : 𝑇 ′ with

Γ′ ≡ Γ [v] and 𝑇 ′ ≡ 𝑇 [v].

• t2 ∈ MSub
P |Θ2 | |Γ | |Ξ2 | is destructor-free and Θ; Γ ⊢ t1, t2 : Ξ1.Ξ2 and Δ.Γ′ ⊢

t′1, t2 [v2] : Ξ1.Ξ2 with Γ′ ≡ Γ [v] and t′1 ≡ t1 [v].

• 𝑇 ∈ Tm
P |Θ2 | |Γ | is destructor-free and Θ; Γ ⊢ 𝑇 sort and Δ.Γ′ ⊢ 𝑇 ′[v2] sort with

Γ′ ≡ Γ [v].
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Then we have Δ ⊢ v1, v2 : Θ1.Θ2. The proof is by induction on the pattern.

• Case 𝑇 = 𝑐 (t ∈ MSub
P |Θ2 | |Γ | |Ξ|) for 𝑐 (Ξ) sort ∈ T♭. By inversion on Θ; Γ ⊢ 𝑇 sort

and Δ.Γ′ ⊢ 𝑇 ′[v2] sort we obtain Θ; Γ ⊢ t : Ξ and Δ.Γ′ ⊢ t[v2] : Ξ, so by i.h. we
conclude.

• Case 𝑡 = 𝑐 (t2 ∈ MSub
P |Θ2 | |Γ | |Ξ2 |) for 𝑐 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑈 ∈ T♭. By inversion

on Θ; Γ ⊢ 𝑐 (t2) : 𝑇 and Δ.Γ′ ⊢ 𝑐 (t2) [v2] : 𝑇 ′ we obtain Θ; Γ ⊢ t1, t2 : Ξ1.Ξ2 with
𝑇 ≡ 𝑈 [t1, t2] and Δ.Γ′ ⊢ t′1, t2 [v2] : Ξ1.Ξ2 with𝑇 ′ ≡ 𝑈 [t′1, t2 [v2]], for some t1 and t′1.
From (B) we get that𝑈 ∈ TmP |Ξ1 | (·) is rigid, and moreover we also have

𝑈 [t′1] = 𝑈 [t′1, t2 [v2]] ≡ 𝑇 ′ ≡ 𝑇 [v] ≡ 𝑈 [t1, t2] [v] ≡ 𝑈 [t1 [v], t2 [v]] = 𝑈 [t1 [v]]

where the first and last equations follow from the fact that the metavariables in Ξ2
do not occur in𝑈 . Therefore, by Lemma 8.2 we get t′1 ≡ t1 [v], allowing us to apply
the i.h. to conclude.

• Case 𝑡 = 𝑑 (𝑢, t). Impossible, because 𝑡 is destructor-free.

• Case 𝑡 = x{idΓ}, in which case we must have Θ2 = x{Γx} : 𝑇x for some Γx and 𝑇x.
By inversion on Θ; Γ ⊢ 𝑡 : 𝑇 we get 𝑇 ≡ 𝑇x and Γ ≡ Γx, and therefore 𝑇 ′ ≡ 𝑇x [v]
and Γ′ ≡ Γx [v]. Moreover, as the only metavariables of Θ appearing in Γx and𝑇x are
those of Θ1, we have Γx [v1] = Γx [v] and 𝑇x [v1] = 𝑇x [v], and therefore 𝑇 ′ ≡ 𝑇x [v1]
and Γ′ ≡ Γx [v1]. Then, because Θ ⊢, we have Θ1; Γx ⊢ 𝑇x sort, so by applying
Proposition 7.6 with Δ ⊢ v1 : Θ1 we get Δ.Γx [v1] ⊢ 𝑇x [v1] sort. Now we can apply
conversion and Proposition 7.7 to Δ.Γ′ ⊢ 𝑡 [v2] : 𝑇 ′ to get Δ.Γx [v1] ⊢ 𝑡 [v2] : 𝑇x [v1].
Because 𝑡 [v2] = vx then together with Δ ⊢ v1 : Θ1 we can conclude Δ ⊢ v1, ®𝑥Γ .vx :
(Θ1, x{Γx} : 𝑇x).

• Case t2 = Y ∈ MSub (·) |Γ | (·). Then the result follows by hypothesis.

• Case t2 = u ∈ MSub |Θ2𝑙 | |Γ | |Ξ′2 |, ®𝑥 .𝑢 ∈ TmP |Θ2𝑟 | |Γ |.|Δx | for Θ2 = Θ2𝑙 .Θ2𝑟 and Ξ2 =

Ξ′2, x{Δx} : 𝑇x. Let v2 = v2𝑙 , v2𝑙 be the splitting of v2 according to the decomposition
Θ2 = Θ2𝑙 .Θ2𝑟 . By inversion on Θ; Γ ⊢ t1, t2 : Ξ1.Ξ2 and Δ.Γ′ ⊢ t′1, t2 [v2] : Ξ1.Ξ2 we
obtain the following.

Θ; Γ ⊢ t1,u : Ξ1.Ξ
′
2

Θ; Γ.Δx [t1,u] ⊢ 𝑢 : 𝑇x [t1,u]
Θ; Γ ⊢ t1,u, ®𝑥 .𝑢 : (Ξ1.Ξ

′
2, x{Δx} : 𝑇x)

Δ.Γ′ ⊢ t′1,u[v2𝑙 ] : Ξ1.Ξ
′
2

Δ.Γ′.Δx [t′1,u[v2𝑙 ]] ⊢ 𝑢 [v2𝑟 ] : 𝑇x [t′1,u[v2𝑙 ]]
Δ.Γ′ ⊢ t′1,u[v2𝑙 ], ®𝑥 .𝑢 [v2𝑟 ] : (Ξ1.Ξ

′
2, x{Δx} : 𝑇x)
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By the i.h. applied to the first premises we get Δ ⊢ v1, v2𝑙 : Θ1.Θ2𝑙 . Then, note
that we have (Γ.Δx [t1,u]) [v] = Γ [v] .Δx [t1 [v],u[v2𝑙 ]] ≡ Γ′.Δx [t′1,u[v2𝑙 ]] and
𝑇x [t1,u] [v] ≡ 𝑇x [t1 [v],u[v2𝑙 ]] ≡ 𝑇x [t′1,u[v2𝑙 ]], so by the i.h. applied to the second
premises we get Δ ⊢ v1, v2𝑙 , v2𝑟 : Θ1.Θ2𝑙 .Θ2𝑟 , concluding the proof. ■

We can now show soundness:

Theorem 8.3 (Soundness). Suppose that T♭ is valid.

• If Γ ⊢ and Γ ⊢ 𝑡 ⇒ 𝑇 then Γ ⊢ ⌜𝑡⌝ : 𝑇

• If Γ ⊢ 𝑇 sort and Γ ⊢ 𝑡 ⇐ 𝑇 then Γ ⊢ ⌜𝑡⌝ : 𝑇

• If Γ ⊢ and Γ ⊢ 𝑇 ⇐ sort then Γ ⊢ ⌜𝑇 ⌝ sort

• If Γ ⊢ v : Θ and Θ.Ξ ⊢ and Γ | v : Θ ⊢ t⇐ Ξ then Γ ⊢ v, ⌜t⌝ : Θ.Ξ.

Proof. By induction on the derivation.

• Case Cons.

𝑐 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑇 ∈ T♭
®𝑡 [t1, ⌜t2⌝] ≡ ®𝑢 [t1, ⌜t2⌝]

𝑇 ≺ 𝑇 ′ { t1 Γ | t1 : Ξ1 ⊢ t2 ⇐ Ξ2

Γ ⊢ 𝑐 (t2) ⇐ 𝑇 ′

By Proposition 8.1 we have 𝑇 ′ −→∗ 𝑇 [t1], so because we have Γ ⊢ 𝑇 ′ sort then
by subject reduction we get Γ ⊢ 𝑇 [t1] sort. We have 𝑇 ∈ Tm

P |Ξ1 | (·), and well-
typedness of T also gives Ξ1.Ξ2 ⊢ 𝑇 sort, therefore by Lemma 8.3 we get Γ ⊢ t1 : Ξ1.
We also have Ξ1.Ξ2 ⊢, therefore by applying the i.h. to the second premise we
get Γ ⊢ t1, ⌜t2⌝ : Ξ1.Ξ2. Because we also have ®𝑡 [t1, ⌜t2⌝] ≡ ®𝑢 [t1, ⌜t2⌝] we can
now derive Γ ⊢ 𝑐 (⌜t2⌝) : 𝑇 [t1, ⌜t2⌝], and because 𝑇 [t1, ⌜t2⌝] = 𝑇 [t1] ≡ 𝑇 ′ and
Γ ⊢ 𝑇 ′ sort we can apply conversion to conclude Γ ⊢ 𝑐 (⌜u⌝) : 𝑇 ′.

• Case Switch.

𝑇 ≡ 𝑈
Γ ⊢ 𝑡 ⇒ 𝑇

Γ ⊢ 𝑡 ⇐ 𝑈

By i.h. we have Γ ⊢ ⌜𝑡⌝ : 𝑇 , and because we have Γ ⊢ 𝑈 sort and 𝑇 ≡ 𝑈 we can
apply the conversion rule to conclude Γ ⊢ ⌜𝑡⌝ : 𝑈 .

• Case Dest.

𝑑 (Ξ1 ; x :p 𝑇 ; Ξ2) : 𝑈 ∈ T♭
Γ ⊢ 𝑡 ⇒ 𝑇 ′ 𝑇 ≺ 𝑇 ′ { t1

Γ | t1, ⌜𝑡⌝ : (Ξ1, x : 𝑇 ) ⊢ t2 ⇐ Ξ2

Γ ⊢ 𝑑 (𝑡, t2) ⇒ 𝑈 [t1, ⌜𝑡⌝, ⌜t2⌝]
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By i.h. we have Γ ⊢ ⌜𝑡⌝ : 𝑇 ′. By Proposition 8.1 we have 𝑇 ′ −→∗ 𝑇 [t1], so by
Proposition 7.8 and subject reduction we get Γ ⊢ 𝑇 [t1] sort. By well-typedness
of T, we have Ξ1.(x : 𝑇 ).Ξ2 ⊢ 𝑈 sort and therefore Ξ1 ⊢ 𝑇 sort, so because 𝑇 ∈
Tm

P |Ξ1 | (·) we can apply Lemma 8.3 to derive Γ ⊢ t1 : Ξ1. From Γ ⊢ ⌜𝑡⌝ : 𝑇 ′
and 𝑇 ′ ≡ 𝑇 [t1] and Γ ⊢ 𝑇 [t1] sort we can derive Γ ⊢ ⌜𝑡⌝ : 𝑇 [t1], and thus
Γ ⊢ t1, ⌜𝑡⌝ : (Ξ1, x : 𝑇 ). We can now apply the i.h. to the third premise to derive
Γ ⊢ t1, ⌜𝑡⌝, ⌜t2⌝ : Ξ1.(x : 𝑇 ).Ξ2, and thus Γ ⊢ 𝑑 (⌜𝑡⌝, ⌜t2⌝) : 𝑈 [t1, ⌜𝑡⌝, ⌜t2⌝].

• Case Var. Trivial

• Case Ascr.

Γ ⊢ 𝑇 ⇐ sort Γ ⊢ 𝑡 ⇐ ⌜𝑇 ⌝
Γ ⊢ 𝑡 :: 𝑇 ⇒ ⌜𝑇 ⌝

By the i.h. applied to the first premise we have Γ ⊢ ⌜𝑇 ⌝ sort. Now we can apply the
i.h. to the second premise and conclude Γ ⊢ ⌜𝑡⌝ : ⌜𝑇 ⌝, and because ⌜𝑡 :: 𝑇 ⌝ = ⌜𝑡⌝
we are done.

• Case Sort.

𝑐 (Ξ) sort ∈ T♭
Γ | Y : (·) ⊢ t⇐ Ξ

Γ ⊢ 𝑐 (t) ⇐ sort

By well-typedness of T we have Ξ ⊢ and therefore we can apply the i.h. to show
Γ ⊢ ⌜t⌝ : Ξ, from which we conclude Γ ⊢ 𝑐 (⌜t⌝) sort.

• Case EmptyMSub. Trivial.

• Case ExtMSub

Γ | v : Θ ⊢ t⇐ Ξ Γ.Δ[v, ⌜t⌝] ⊢ 𝑡 ⇐ 𝑇 [v, ⌜t⌝]
Γ | v : Θ ⊢ t, ®𝑥Δ.𝑡 ⇐ (Ξ, x{Δ} : 𝑇 )

By hypothesis we have Θ.Ξ, x{Δ} : 𝑇 ⊢, from which we get Θ.Ξ ⊢ and Θ.Ξ;Δ ⊢
𝑇 sort. By the i.h. applied to the first premise we get Γ ⊢ v, ⌜t⌝ : Θ.Ξ, so by
Proposition 7.6 applied with Θ.Ξ;Δ ⊢ 𝑇 sort we get Γ.Δ[v, ⌜t⌝] ⊢ 𝑇 [v, ⌜t⌝] sort.
Now we can apply the i.h. to the second premise and get Γ.Δ[v, ⌜t⌝] ⊢ ⌜𝑡⌝ :
𝑇 [v, ⌜t⌝], from which we can conclude Γ ⊢ v, ⌜t⌝, ®𝑥 .⌜𝑡⌝ : Θ.Ξ, x{Δ} : 𝑇 . ■

Annotability

We now want to show that the bidirectional system is complete with respect to the
declarative typing rules, however what notion of completeness should we consider?
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As argued by Dunfield and Krishnaswami [DK21], completeness in bidirectional typing
should correspond to annotability: if Γ ⊢ 𝑡 : 𝑇 then for some 𝑡 ′ with ⌜𝑡 ′⌝ = 𝑡 we should
have Γ ⊢ 𝑡 ′ ⇐ 𝑇 . In other words, 𝑡 ′ should be equal to 𝑡 modulo the insertion of sort
ascriptions for when a destructor meets a constructor. Our proof of annotability will need
the following lemma, ensuring that the bidirectional system respects conversion.

Lemma 8.4 (Bidirectional system respects conversion). Suppose that T♭ satisfies (B) and
confluence.

• If Γ ⊢ 𝑡 ⇒ 𝑇 and Γ′ ≡ Γ then Γ′ ⊢ 𝑡 ⇒ 𝑇 ′ for some 𝑇 ′ ≡ 𝑇 .

• If Γ ⊢ 𝑡 ⇐ 𝑇 and Γ′ ≡ Γ and 𝑇 ′ ≡ 𝑇 then Γ′ ⊢ 𝑡 ⇐ 𝑇 ′.

• If Γ ⊢ 𝑇 ⇐ sort and Γ′ ≡ Γ then Γ′ ⊢ 𝑇 ⇐ sort

• If Γ | v : Θ ⊢ t⇐ Ξ and Γ′ ≡ Γ and v′ ≡ v then Γ′ | v′ : Θ ⊢ t⇐ Ξ.

Proof. By straightfoward induction, using Corollary 8.1 for cases Cons and Dest. ■

Our actual statement for annotability will be slightlier stronger than what we antic-
ipated in the previous paragraphs. Let us call a bidirectional expression minimal if it
contains no occurrences of 𝑡 :: 𝑇 or 𝑡 :: 𝑇 . Our theorem will not only ensure that a regular
term can be annotated into a bidirectional one, but also that the resulting term is minimal.
In the end of the subsection, this will allow us to derive an alternative completeness result
as a corollary of Theorem 8.4.

Theorem 8.4 (Annotability). Suppose that T♭ satisfies (B) and confluence.

1. If Γ ⊢ 𝑡 : 𝑇 then Γ ⊢ 𝑡 ′⇐ 𝑇 for some 𝑡 ′ ∈ tmc |Γ | minimal with ⌜𝑡 ′⌝ = 𝑡 .

2. If Γ ⊢ 𝑡 : 𝑇 then Γ ⊢ 𝑡 ′⇒ 𝑇 ′ for some 𝑇 ′ ≡ 𝑇 and 𝑡 ′ ∈ tmi |Γ | minimal with ⌜𝑡 ′⌝ = 𝑡 .

3. If Γ ⊢ 𝑇 sort then Γ ⊢ 𝑇 ′⇐ sort for some 𝑇 ′ ∈ tmc |Γ | minimal with ⌜𝑇 ′⌝ = 𝑇 .

4. If Γ ⊢ v, t : Θ.Ξ then Γ | v : Θ ⊢ t′ ⇐ Ξ for some t′ ∈ msub
c |Γ | |Ξ| minimal with

⌜t′⌝ = t.

Proof. The proof is by induction on the derivation. For the rules Var, TmSym, Conv we
need to show both points 1 and 2, and so we will organize these cases accordingly.

• Case Var. Trivial.

• Case TmSym with a constructor rule 𝑐 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑇 ∈ T♭

®𝑡 [t1, t2] ≡ ®𝑢 [t1, t2]
Γ ⊢ t1, t2 : Ξ1.Ξ2 Γ ⊢ 𝑇 [t1, t2] sort

Γ ⊢ 𝑐 (t2) : 𝑇 [t1, t2]

Fist note that, because 𝑇 ∈ Tm
P |Ξ1 | (·) does not contain metavariables from Ξ2,

then𝑇 [t1, t2] = 𝑇 [t1], so the above occurrences of𝑇 [t1, t2] can be replaced by𝑇 [t1].
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1 By Proposition 8.2 we have𝑇 ≺ 𝑇 [t1] { t′1 with t′1 ≡ t1. By the i.h. applied to
the first premise, for some t′2 ∈ msub

c |Γ | |Ξ2 | minimal we have Γ | t1 : Ξ1 ⊢
t′2 ⇐ Ξ2 and ⌜t′2⌝ = t2, and by Lemma 8.4 with t1 ≡ t′1 we have Γ | t′1 : Ξ1 ⊢
t′2 ⇐ Ξ2. Finally, we also have ®𝑡 [t′1, ⌜t′2⌝] ≡ ®𝑡 [t1, t2] ≡ ®𝑢 [t1, t2] ≡ ®𝑢 [t′1, ⌜t′2⌝],
so we conclude Γ ⊢ 𝑐 (t′2) ⇐ 𝑇 [t1] with ⌜𝑐 (t′2)⌝ = 𝑐 (t2) and 𝑐 (t′2) minimal.

2 By the previous paragraph, we have Γ ⊢ 𝑡 ′ ⇐ 𝑇 [t1] for some 𝑡 ′ ∈ tm
c |Γ |

minimal with ⌜𝑡 ′⌝ = 𝑐 (t2). Moreover, by the i.h. applied to the second premise
we get 𝑇 ′ ∈ tm

c |Γ | such that Γ ⊢ 𝑇 ′ ⇐ sort and ⌜𝑇 ′⌝ = 𝑇 [t1], so we have
Γ ⊢ 𝑡 ′ :: 𝑇 ′ ⇒ 𝑇 [t1] with ⌜𝑡 ′ :: 𝑇 ′⌝ = 𝑐 (t2). Finally, by inspection on the
previous paragraph, 𝑡 ′ is not of the form 𝑡 ′′, and so 𝑡 ′ :: 𝑇 ′ is indeed minimal

• Case TmSym with a destructor rule 𝑑 (Ξ1 ; x :p 𝑇 ; Ξ2) : 𝑈 ∈ T♭.

Y ≡ Y
Γ ⊢ t1, 𝑡, t2 : Ξ1.(x : 𝑇 ).Ξ2 Γ ⊢ 𝑈 [t1, 𝑡, t2] sort

Γ ⊢ 𝑑 (𝑡, t2) : 𝑈 [t1, 𝑡, t2]
2 We can extract a strictly smaller derivation of Γ ⊢ 𝑡 : 𝑇 [t1], so by i.h. we get
𝑡 ′ ∈ tm

i |Γ | minimal with Γ ⊢ 𝑡 ′ ⇒ 𝑇 ′ and 𝑇 ′ ≡ 𝑇 [t1] and ⌜𝑡 ′⌝ = 𝑡 , and by
Proposition 8.2 we get 𝑇 ≺ 𝑇 ′ { t′1 with t′1 ≡ t1. By the i.h. again we also
get t′2 ∈ msub

c |Γ | |Ξ2 | minimal with Γ | t1, ⌜𝑡 ′⌝ : (Ξ1, x : 𝑇 ) ⊢ t′2 ⇐ Ξ2
and ⌜t′2⌝ = t2, so by Lemma 8.4 with t1, ⌜𝑡 ′⌝ ≡ t′1, ⌜𝑡

′⌝ we have Γ | t′1, ⌜𝑡⌝ :
(Ξ1, x : 𝑇 ) ⊢ t′2 ⇐ Ξ2. Finally, we conclude Γ ⊢ 𝑑 (𝑡 ′, t′2) ⇒ 𝑈 [t′1, ⌜𝑡 ′⌝, ⌜t′2⌝],
and we indeed have 𝑈 [t′1, ⌜𝑡 ′⌝, ⌜t′2⌝] ≡ 𝑈 [t1, 𝑡, t2] and ⌜𝑑 (𝑡 ′, t′2)⌝ = 𝑑 (𝑡, t2)
and 𝑑 (𝑡 ′, t′2) minimal as required.

1 By the previous paragraph, for some 𝑡 ′ ∈ tmi |Γ | minimal we have Γ ⊢ 𝑡 ′⇒ 𝑈 ′

with 𝑈 ′ ≡ 𝑈 [t1, 𝑡, t2] and ⌜𝑡 ′⌝ = 𝑑 (𝑡, t2). Therefore, by rule Switch we get
Γ ⊢ 𝑡 ′⇐ 𝑈 [t1, 𝑡, t2]. Finally, by inspection on the previous paragraph, 𝑡 ′ is not
of the form 𝑡 ′′ :: 𝑇 and so 𝑡 ′ is indeed minimal.

• Case Conv.

𝑇 ≡ 𝑈
Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑈 sort

Γ ⊢ 𝑡 : 𝑈
1 By the i.h. applied to the first premise we get 𝑡 ′ ∈ tm

c |Γ | minimal with
Γ ⊢ 𝑡 ′⇐ 𝑇 and ⌜𝑡 ′⌝ = 𝑡 . By Lemma 8.4 with 𝑇 ≡ 𝑈 we get Γ ⊢ 𝑡 ′⇐ 𝑈 , so we
are done.

2 By the i.h. applied to the first premise we get 𝑡 ′ ∈ tmi |Γ | minimal with ⌜𝑡 ′⌝ = 𝑡
and Γ ⊢ 𝑡 ′⇒ 𝑇 ′ for some 𝑇 ′ ≡ 𝑇 . Because 𝑇 ′ ≡ 𝑇 ≡ 𝑈 , we are done.

• Case SortSym with 𝑐 (Ξ) sort ∈ T♭.
Γ ⊢ t : Ξ

Γ ⊢ 𝑐 (t) sort
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By i.h. we have t′ ∈ msub
c |Γ | |Ξ| minimal such that Γ | Y : (·) ⊢ t′ ⇐ Ξ and

⌜t′⌝ = t, and thus Γ ⊢ 𝑐 (t′) ⇐ sort with ⌜𝑐 (t′)⌝ = 𝑐 (t) and 𝑐 (t′) minimal.

• Cases EmptyMSub or ExtMSub with Γ ⊢ v, Y : Θ.(·). Follows directly by applying
the bidirectional rule EmptyMSub.

• Case ExtMSub with t = u, ®𝑥 .𝑢.

Γ ⊢ v,u : Θ.Ξ Γ.Δ[v,u] ⊢ 𝑢 : 𝑇 [v,u]
Γ ⊢ v,u, ®𝑥Δ.𝑢 : (Θ.Ξ, x{Δ} : 𝑇 )

By the i.h. applied to both premises we get u′ ∈ msub
c |Γ | |Ξ| minimal such

that Γ | v : Θ ⊢ u′ ⇐ Ξ and ⌜u′⌝ = u, and we also get 𝑢′ ∈ tm
c |Γ.Δ[v,u] |

minimal such that Γ.Δ[v,u] ⊢ 𝑢′⇐ 𝑇 [v,u] and ⌜𝑢′⌝ = 𝑢. Therefore, we conclude
Γ | v : Θ ⊢ u′, ®𝑥 .𝑢′ : (Ξ, x{Δ} : 𝑇 ) with ⌜u′, ®𝑥 .𝑢′⌝ = u, ®𝑥 .𝑢 and u′, ®𝑥 .𝑢′ minimal. ■

Ascription-free completeness

When considering a bidirectional systemwith ascriptions, completeness is nicely expressed
by the notion of annotability. However, as mentioned in Section 8.3, some authors prefer to
leave ascriptions out of the bidirectional syntax, given that they are generally only needed
for writing redexes. In this setting, completeness instead ensures that, if a bidirectional
term (seen as a regular one) is typable by the regular type system, than it is also typable by
the bidirectional one.3 We now show that, when considering the subset of the bidirectional
syntax which removes ascriptions, this form of ascription-free completeness can be deduced
almost for free from Theorem 8.4. More precisely, let us say that a bidirectional expression
is ascription-free if it contains no occurrence of 𝑡 :: 𝑇 . We will then show that, if Γ ⊢ ⌜𝑡⌝ : 𝑇
for 𝑡 a checkable ascription-free term, then Γ ⊢ 𝑡 ⇐ 𝑇 . Our main lemma for proving this
will be the following one, stating that ⌜−⌝ satisfies a restricted form of injectivity.

Lemma 8.5 (Restricted injectivity of ⌜−⌝).

• If 𝑡 ∈ tmc 𝛾 is ascription-free and 𝑡 ′ ∈ tmc 𝛾 is minimal and ⌜𝑡⌝ = ⌜𝑡 ′⌝ then 𝑡 = 𝑡 ′.

• If 𝑡 ∈ tmi 𝛾 is ascription-free and 𝑡 ′ ∈ tmi 𝛾 is minimal and ⌜𝑡⌝ = ⌜𝑡 ′⌝ then 𝑡 = 𝑡 ′.

• If t ∈ msub
c 𝛾 b is ascription-free and t′ ∈ msub

c 𝛾 b is minimal and ⌜t⌝ = ⌜t′⌝ then
t = t′.

Proof. By straightfoward induction on 𝑡 (or t) and case analysis on 𝑡 ′ (or t′). ■

Ascription-free completeness now follows directly by composing Theorem 8.4 with
Lemma 8.5.

3This is actually the notion of completeness we employed in our previous work [Fel24a].
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Corollary 8.2 (Ascription-free completeness). Suppose that T♭ satisfies (B) and confluence.

• If 𝑡 ∈ tmi |Γ | is ascription-free and Γ ⊢ ⌜𝑡⌝ : 𝑇 then Γ ⊢ 𝑡 ⇒ 𝑈 with 𝑇 ≡ 𝑈

• If 𝑡 ∈ tmc |Γ | is ascription-free and Γ ⊢ ⌜𝑡⌝ : 𝑇 then Γ ⊢ 𝑡 ⇐ 𝑇

• If 𝑇 ∈ tmc |Γ | is ascription-free and Γ ⊢ ⌜𝑇 ⌝ sort then Γ ⊢ 𝑇 ⇐ sort

• If t ∈ msub
c |Γ | |Ξ| is ascription-free and Γ ⊢ v, ⌜t⌝ : Θ.Ξ then Γ | v : Θ ⊢ t⇐ Ξ

8.7 Decidability of bidirectional typing

We now come to the main property of interest of the bidirectional typing system: its
decidability, allowing it to be used when implementing a type-checker for our framework.
Our proof will need the following two lemmas, ensuring that matching and type-inference
are functional, in the sense that when starting from convertible inputs we can only deduce
convertible outputs.

Lemma 8.6 (Functionality of matching). Suppose that the rewrite system is confluent.

• If 𝑡 ≺ 𝑢 { v and 𝑡 ≺ 𝑢′ { v′ and 𝑢 ≡ 𝑢′ then v ≡ v′

• If t ≺ u { v and t ≺ u′ { v′ and u ≡ u′ then v ≡ v′

Proof. By induction on 𝑡 or t. The only interesting case is when 𝑡 = 𝑓 (t), in which case
we have 𝑢 −→h 𝑓 (u) and t ≺ u { v and 𝑢′ −→h 𝑓 (u′) and t ≺ u′ { v′. By applying
confluence to 𝑓 (u) ≡ 𝑓 (u′), and using the fact the two terms are head normal, we get
u ≡ u′, allowing us to apply the i.h. to conclude v ≡ v′. ■

Lemma 8.7 (Functionality of inference). Suppose that the rewrite system is confluent.
Then Γ ≡ Γ′ and Γ ⊢ 𝑡 ⇒ 𝑇 and Γ′ ⊢ 𝑡 ⇒ 𝑇 ′ imply 𝑇 ≡ 𝑇 ′

Proof. By straightforward induction, using Lemma 8.6 for the case Dest. ■

A final hypothesis we will ask for ensuring the decidability of bidirectional typing is
for the theory to be strongly normalizing, meaning that Θ; Γ ⊢ 𝑡 : 𝑇 implies that 𝑡 is s.n.,
and that Θ; Γ ⊢ 𝑇 sort implies that 𝑇 is s.n.4 Indeed, type-checking with dependent types
requires checking the conversion of terms (in rules Switch and Cons), whose decidability
requires normalization. Moreover, strong normalization is also a requirement for the
decidability of matching (Proposition 8.3).

Theorem 8.5 (Decidability of bidirectional typing). Suppose that T♭ is valid and s.n.

• If 𝑡 is inferable and Γ ⊢ then the statement ∃𝑇 . (Γ ⊢ 𝑡 ⇒ 𝑇 ) is decidable.
4Note that both conditions are necessary, and one does not always imply the other
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• If 𝑡 is checkable and Γ ⊢ 𝑇 sort then the statement Γ ⊢ 𝑡 ⇐ 𝑇 is decidable.

• If 𝑇 is checkable and Γ ⊢ then the statement Γ ⊢ 𝑇 ⇐ sort is decidable.

• If t is checkable and Θ.Ξ ⊢ and Γ ⊢ v : Θ then the statement Γ | v : Θ ⊢ t ⇐ Ξ is
decidable.

Proof. By induction on the bidirectional expression.

• Case 𝑐 (t2) with 𝑐 (Ξ1 ; Ξ2 ; ®𝑡 ≡ ®𝑢) : 𝑇 ∈ T♭. Given Γ,𝑇 ′ with Γ ⊢ 𝑇 ′ sort, we are to
decide if Γ ⊢ 𝑐 (t2) ⇐ 𝑇 ′ holds. Because Γ ⊢ 𝑇 ′ sort then 𝑇 ′ is s.n., so together with
(B) we can apply Proposition 8.3 to obtain that ∃t1. 𝑇 ≺ 𝑇 ′ { t1 is decidable.

– If 𝑇 ≺ 𝑇 ′ { t1 does not hold for any t1, then Γ ⊢ 𝑐 (t2) ⇐ 𝑇 ′ is not derivable.
– If 𝑇 ≺ 𝑇 ′ { t1 holds, we apply Proposition 8.1 to derive 𝑇 ′ −→∗ 𝑇 [t1]. Then,

by subject reduction applied to Γ ⊢ 𝑇 ′ sort we get Γ ⊢ 𝑇 [t1] sort, and by well-
typedness of T we have Ξ1.Ξ2 ⊢ 𝑇 sort, so by Lemma 8.3 we derive Γ ⊢ t1 : Ξ1.
Because we have Ξ1.Ξ2 ⊢, by i.h. we get that Γ | t1 : Ξ1 ⊢ t2 ⇐ Ξ2 is decidable.

∗ If Γ | t1 : Ξ1 ⊢ t2 ⇐ Ξ2 does not hold, if follows that Γ ⊢ 𝑐 (t2) ⇐ 𝑇 ′ does
not hold. Indeed, if Γ ⊢ 𝑐 (t2) ⇐ 𝑇 ′ holds then we must have 𝑇 ≺ 𝑇 ′ { t′1
and Γ | t′1 : Ξ1 ⊢ t2 ⇐ Ξ2 for some t′1, so by Lemma 8.6 we get t1 ≡ t′1.
But then Lemma 8.4 gives Γ | t1 : Ξ1 ⊢ t2 ⇐ Ξ2, contradiction.

∗ If Γ | t1 : Ξ1 ⊢ t2 ⇐ Ξ2 holds then by Theorem 8.3 we get Γ ⊢ t1, ⌜t2⌝ :
Ξ1.Ξ2. By well-typedness of Twe have Ξ1.Ξ2 ⊢ ®𝑡 : Δ and Ξ1.Ξ2 ⊢ ®𝑢 : Δ for
some Δ, so by Proposition 7.6 we get Γ ⊢ id, ®𝑡 [t1, ⌜t2⌝] : Γ.Δ[t1, ⌜t2⌝] and
Γ ⊢ id, ®𝑢 [t1, ⌜t2⌝] : Γ.Δ[t1, ⌜t2⌝]. Because the theory is s.n. and confluent,
we can thus decide ®𝑡 [t1, ⌜t2⌝] ≡ ®𝑢 [t1, ⌜t2⌝]. If this holds, then it follows
that Γ ⊢ 𝑐 (t2) ⇐ 𝑇 ′ is derivable, otherwise it cannot be derivable. Indeed,
if Γ ⊢ 𝑐 (t2) ⇐ 𝑇 ′ holds then for some t′1 we have 𝑇 ≺ 𝑇 ′ { t′1 with
®𝑡 [t′1, ⌜t2⌝] ≡ ®𝑢 [t′1, ⌜t2⌝], but Lemma 8.6 then implies t′1 ≡ t1 and thus
®𝑡 [t1, ⌜t2⌝] ≡ ®𝑢 [t1, ⌜t2⌝], contradiction.

• Case 𝑐 (t) with 𝑐 (Ξ) sort ∈ T♭. Given Γ with Γ ⊢ we are to decide if Γ ⊢ 𝑐 (t) ⇐ sort

holds. By well-typedness of T we have Ξ ⊢, so by i.h. we get that Γ | Y : (·) ⊢ t⇐ Ξ
is decidable. Because this holds iff Γ ⊢ 𝑐 (t) ⇐ sort, it follows that the latter is also
decidable.

• Case 𝑥 . Trivial, as ∃𝑇 . (Γ ⊢ 𝑥 ⇒ 𝑇 ) holds iff 𝑥 : 𝑇 ∈ Γ for some 𝑇 .

• Case 𝑡 :: 𝑇 . Given Γ with Γ ⊢ we are to decide if ∃𝑇 ′. (Γ ⊢ 𝑡 :: 𝑇 ⇒ 𝑇 ′) holds. By
i.h., we can decide Γ ⊢ 𝑇 ⇐ sort. If this does not hold, it follows that ∃𝑇 ′. (Γ ⊢
𝑡 :: 𝑇 ⇒ 𝑇 ′) also does not hold. If Γ ⊢ 𝑇 ⇐ sort holds, by Theorem 8.3 we get
Γ ⊢ ⌜𝑇 ⌝ sort, hence by i.h. again we can decide Γ ⊢ 𝑡 ⇐ ⌜𝑇 ⌝. If this is the case then
we get Γ ⊢ 𝑡 :: 𝑇 ⇒ ⌜𝑇 ⌝, otherwise ∃𝑇 ′. (Γ ⊢ 𝑡 :: 𝑇 ⇒ 𝑇 ′) does not hold.
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• Case 𝑑 (𝑡, t2) with 𝑑 (Ξ1 ; x :p 𝑇 ; Ξ2) : 𝑈 ∈ T♭. Given Γ with Γ ⊢ we are to decide if
∃𝑈 ′. (Γ ⊢ 𝑑 (𝑡, t2) ⇒ 𝑈 ′) holds. By i.h. it follows that ∃𝑇 ′. Γ ⊢ 𝑡 ⇒ 𝑇 ′ is decidable.

– If ∃𝑇 ′ .(Γ ⊢ 𝑡 ⇒ 𝑇 ′) does not hold, it is clear that ∃𝑈 ′. Γ ⊢ 𝑑 (𝑡, t2) ⇒ 𝑈 ′ does
not hold.

– If Γ ⊢ 𝑡 ⇒ 𝑇 ′ is derivable, then by Theorem 8.3 it follows that Γ ⊢ ⌜𝑡⌝ : 𝑇 ′
holds. Therefore,𝑇 ′ is s.n. and we have (B) by hypothesis, so by Proposition 8.3
it follows that ∃t1. 𝑇 ≺ 𝑇 ′ { t1 is decidable.

∗ If 𝑇 ≺ 𝑇 ′ { t1 holds for no t1, it follows that ∃𝑈 ′. Γ ⊢ 𝑑 (𝑡, t2) ⇒ 𝑈 ′ does
not hold neither. Indeed, if Γ ⊢ 𝑑 (𝑡, t2) ⇒ 𝑈 ′ holds for some𝑈 ′, then we
have Γ ⊢ 𝑡 ⇒ 𝑇 ′′ and𝑇 ≺ 𝑇 ′′ { t′1 for some𝑇 ′′ and t′1. But by Lemma 8.7
and Corollary 8.1 we get 𝑇 ≺ 𝑇 ′ { t1 for some t1, contradiction.

∗ If 𝑇 ≺ 𝑇 ′ { t1 is derivable, then by Proposition 8.1 we get 𝑇 ′ −→∗ 𝑇 [t1],
so by subject reduction applied to Γ ⊢ 𝑇 ′ sort we get Γ ⊢ 𝑇 [t1] sort. By
well-typedness of T we have Ξ1.(x : 𝑇 ).Ξ2 ⊢ 𝑈 sort and thus Ξ1 ⊢ 𝑇 sort.
Therefore by Lemma 8.3 we get Γ ⊢ t1 : Ξ1 and so Γ ⊢ t1, ⌜𝑡⌝ : (Ξ1, x : 𝑇 ).
By i.h., the statement Γ | t1, ⌜𝑡⌝ : (Ξ1, x : 𝑇 ) ⊢ t2 ⇐ Ξ2 is decidable.
If it holds, we conclude that Γ ⊢ 𝑑 (𝑡, t2) ⇒ 𝑈 [t1, ⌜𝑡⌝, ⌜t2⌝] also holds.
Otherwise Γ ⊢ 𝑑 (𝑡, t2) ⇒ 𝑈 ′ cannot hold for no 𝑈 ′. Indeed, this would
imply Γ ⊢ 𝑡 ⇒ 𝑇 ′′ and𝑇 ≺ 𝑇 ′′ { t′1 and Γ | t′1, ⌜𝑡⌝ : (Ξ1, x : 𝑇 ) ⊢ t2 ⇐ Ξ2
for some 𝑇 ′′ and t′1, so Lemmas 8.4 and 8.7 and Corollary 8.1 would give
Γ | t1, ⌜𝑡⌝ : (Ξ1, x : 𝑇 ) ⊢ t2 ⇐ Ξ2, a contradiction.

• Case 𝑢. Given Γ,𝑇 with Γ ⊢ 𝑇 sort, we are to decide if Γ ⊢ 𝑢 ⇐ 𝑇 holds. By i.h. we
have that ∃𝑈 . Γ ⊢ 𝑢 ⇒ 𝑈 is decidable. If this statement does not hold, it follows
that Γ ⊢ 𝑢 ⇐ 𝑇 does not hold. If ∃𝑈 . Γ ⊢ 𝑢 ⇒ 𝑈 holds, then by Theorem 8.3 we get
Γ ⊢ ⌜𝑢⌝ : 𝑈 , which by Proposition 7.8 implies Γ ⊢ 𝑈 sort. We also have Γ ⊢ 𝑇 sort

so it follows that both𝑈 and 𝑇 are s.n., allowing us to decide 𝑇 ≡ 𝑈 . If this is the
case, then it follows that Γ ⊢ 𝑢 ⇐ 𝑇 holds. Otherwise Γ ⊢ 𝑢 ⇐ 𝑇 cannot hold, as
this would imply Γ ⊢ 𝑢 ⇒ 𝑈 ′ for some𝑈 ′ ≡ 𝑇 , but then Lemma 8.7 implies𝑈 ≡ 𝑈 ′
and so 𝑇 ≡ 𝑈 , contradiction.

• Case Y. Trivial, as Γ | v : Θ ⊢ Y ⇐ Ξ holds iff Ξ = ·.

• Case t, ®𝑥 .𝑡 . Given Γ,Θ,Ξ, v with Θ.Ξ ⊢ and Γ ⊢ v : Θ, we are to decide if Γ | v : Θ ⊢
t, ®𝑥 .𝑡 ⇐ Ξ holds. If Ξ = · then this clearly does not hold, so let us now suppose that
Ξ = Ξ′, x{Δ} : 𝑇 . From Θ.Ξ′, x{Δ} : 𝑇 ⊢ we then get Θ.Ξ′ ⊢ and Θ.Ξ′;Δ ⊢ 𝑇 sort. By
i.h. we then get that Γ | v : Θ ⊢ t⇐ Ξ′ is decidable. If this does not hold, then it is
clear that Γ | v : Θ ⊢ t, ®𝑥 .𝑡 ⇐ Ξ is not derivable, so in the following we assume that
we have Γ | v : Θ ⊢ t⇐ Ξ′. Then, by Theorem 8.3 we get Γ ⊢ v, ⌜t⌝ : Θ.Ξ′, so by
applying Proposition 7.6 with Θ.Ξ′;Δ ⊢ 𝑇 sort we get Γ.Δ[v, ⌜t⌝] ⊢ 𝑇 [v, ⌜t⌝] sort.
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By i.h. we therefore get that Γ.Δ[v, ⌜t⌝] ⊢ 𝑡 ⇐ 𝑇 [v, ⌜t⌝] is decidable, hence by
testing this statement we can decide Γ | v : Θ ⊢ t, ®𝑥 .𝑡 ⇐ Ξ′, x{Δ} : 𝑇 . ■



Chapter 9

A Zoo of Bidirectional Theories

In the previous chapters we have illustrated our framework with the theory T_Π and its
bidirectional counterpart T♭

_Π
. We now showcase the generality of our framework by

going through various other examples of bidirectional theories we support.
All of the bidirectional theories we present in this chapter are valid:

• Condition (A), stating that the underlying theory is valid, follows because:

– Condition (I), stating that schematic rules are well-typed, can be verified either
manually or using the implementation.

– Condition (II), stating that rewrite rules are confluent, follows directly from
Mayr and Nipkow’s orthogonality criterion [MN98] for almost all examples,
and for the other ones we discuss explicitly how confluence can be shown.

– Condition (III), stating that rewrite rules satisfy subject reduction, follows
by applying Proposition 7.10 and verifying manually that all rewrite rules
preserve typing, using the same strategy as in Example 7.8.

• Condition (B), stating that the patterns of constructor and destructor rules are rigid
and destructor-free, can also be readily verified manually or using the implementa-
tion.

Throughout this chapter, we use the informal notation for schematic rules discussed
in Sections 7.2 and 8.1 for readability purposes. For more information about the examples
we refer to the files in the implementation in which they are detailed.

9.1 Inductive types

Our framework supports the definition of arbitrary inductive types [ML84, PM93]. For
instance, starting from T♭

_Π
, dependent sums can be defined by the following declarations.

Note that, as one would wish, the parameters A and B are completely omitted in the
constructor and the projections.

95
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A : Ty 𝑥 : Tm(A) ⊢ B : Ty
Σ(A, 𝑥 .B{𝑥}) : Ty

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
t : Tm(A) u : Tm(B{t})
pair(t, u) : Tm(Σ(A, 𝑥 .B{𝑥}))

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
t :p Tm(Σ(A, 𝑥 .B{𝑥}))

proj1(t) : Tm(A)

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
t :p Tm(Σ(A, 𝑥 .B{𝑥}))

proj2(t) : Tm(B{proj1(t)})

proj1(pair(t, u)) ↦−→ t proj2(pair(t, u)) ↦−→ u

Dependent sums are an example of negative types, which are types that are eliminated
by means of projections — these correspond to record types in proof assistants like Agda.
We can also define positive types,1 which feature instead a dependent eliminator. The
main example of positive inductive type are W types, which can be used to define any
other positive inductive type [Hug21]. Once again, note how the parameters A and B are
omitted from both the constructor sup and the eliminator recW.

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
W(A, 𝑥 .B{𝑥}) : Ty

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
a : Tm(A) f : Tm(Π(B{a}, _.W(A, 𝑥 .B{𝑥})))

sup(a, f) : Tm(W(A, 𝑥 .B{𝑥}))

A : Ty 𝑥 : Tm(A) ⊢ B : Ty t :p Tm(W(A, 𝑥 .B{𝑥})) 𝑥 : Tm(W(A, 𝑥 .B{𝑥})) ⊢ P : Ty
𝑥 : Tm(A), 𝑦 : Tm(Π(B{𝑥}, _.W(A, 𝑥 .B{𝑥}))), 𝑧 : Tm(Π(B{𝑥}, 𝑥 ′.P{@(𝑦, 𝑥 ′)})) ⊢ p : Tm(P{sup(𝑥,𝑦)})

recW(t, 𝑥 .P{𝑥}, 𝑥𝑦𝑧.p{𝑥,𝑦, 𝑧}) : Tm(P{t})

recW(sup(a, f), 𝑥 .P{𝑥}, 𝑥𝑦𝑧.p{𝑥,𝑦, 𝑧}) ↦−→ p{a, f, λ(𝑥 ′.recW(@(f, 𝑥 ′), 𝑥 .P{𝑥}, 𝑥𝑦𝑧.p{𝑥,𝑦, 𝑧}))}

9.2 Indexed inductive types

The types of the previous subsection are non-indexed, in the sense that they are specified
uniformly in their parameters (in the examples, A and B). Our framework however also
supports indexed inductive types [Dyb94, PM93], which are also specified by indices that
can vary along the definition. An example of such a type is the one of vectors, for which
the length n takes the value 0 in the constructor nil but S(m) in the constructor cons.

A : Ty n : Tm(Nat)
Vec(A, n) : Ty

A : Ty n : Tm(Nat) n ≡ 0
nil : Tm(Vec(A, n))

A : Ty n : Tm(Nat) m : Tm(Nat) t : Tm(A)
l : Tm(Vec(A, m)) n ≡ S(m)
cons(m, t, l) : Tm(Vec(A, n))

1Note that this terminology is unrelated to the strict-positivity condition [PM93]. In this thesis, all
considered inductive types are strictly positive.
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A : Ty n : Tm(Nat) l :p Tm(Vec(A, n))
𝑥 : Tm(Nat), 𝑦 : Tm(Vec(A, 𝑥)) ⊢ P : Ty pnil : Tm(P{0, nil})

𝑥 : Tm(Nat), 𝑦 : Tm(A), 𝑧 : Tm(Vec(A, 𝑥)),𝑤 : Tm(P{𝑥, 𝑧}) ⊢ pcons : Tm(P{S(𝑥), cons(𝑥,𝑦, 𝑧)})
recVec(l, 𝑥 .P{𝑥}, pnil, 𝑥𝑦𝑧𝑤.pcons{𝑥,𝑦, 𝑧,𝑤}) : Tm(P{n, l})

As anticipated in Section 8.1, in order for the above definition to be a bidirectional
theory in the sense of Section 8.1, we have applied what is known as the fording technique,2
consisting in indexing constructors over a fresh metavariable n, which is then constrained
by equational premises to be equal to the actual indices (0 and S(m) in the above example).

While applying fording for nil is not essential, it is in the case of cons. This becomes
visible whenwriting the rewrite rules for recVec: without the use of fording, the argument m
of cons would be omitted, yet if m were not available in the left-hand side of the second
rule, how would we fill □ in pcons{□, t, l, recVec(. . . )}?

recVec(nil, 𝑥𝑦.P{𝑥,𝑦}, pnil, 𝑥𝑦𝑧𝑤.pcons{𝑥,𝑦, 𝑧,𝑤}) ↦−→ pnil

recVec(cons(m, t, l), 𝑥𝑦.P{𝑥,𝑦}, pnil, 𝑥𝑦𝑧𝑤.pcons{𝑥,𝑦, 𝑧,𝑤}) ↦−→
pcons{m, t, l, recVec(l, 𝑥𝑦.P{𝑥,𝑦}, pnil, 𝑥𝑦𝑧𝑤.pcons{𝑥,𝑦, 𝑧,𝑤})}

Another example of indexed type is equality, also known as Martin-Löf’s identity type:
A : Ty a : Tm(A) b : Tm(A)

Eq(A, a, b) : Ty
A : Ty a : Tm(A) b : Tm(A) a ≡ b

refl : Tm(Eq(A, a, b))

A : Ty a : Tm(A) b : Tm(A) t :p Tm(Eq(A, a, b))
𝑥 : Tm(A), 𝑦 : Tm(Eq(A, a, 𝑥)) ⊢ P : Ty p : Tm(P{a, refl})

J(t, 𝑥𝑦.P{𝑥,𝑦}, p) : Tm(P{b, t})
J(refl, 𝑥𝑦.P{𝑥,𝑦}, p) ↦−→ p

Here, we use Paulin-Mohring’s eliminator [PM93], which allows for refl to carry no
arguments whatsoever. It is also possible to use Martin-Löf original eliminator [ML75] —
which is known to be equivalent to Paulin-Mohring’s eliminator [Str93, Addendum] — at
the cost of adding an extra annotation to refl.

9.3 Higher-order logic

It is well-known that the Curry-Howard correspondence allows us to embed many kinds of
logic into type theories, enabling us to use the previously introduced types as propositions.
Nevertheless, it can be useful sometimes to explicitly separate types from propositions, as
done for instance in the proof assistant Coq. Let us illustrate how this can be done in our

2Fording was initially introduced by Coquand for being used in the Agda proof assistant — see the
discussion by Dybjer and Setzer in [DS06, Subsection 1.4]. The name fording is however due to McBride,
who rediscovered this technique in the context of his work on compiling dependent pattern matching to
eliminators [McB00].
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framework by defining a variant of Higher-Order Logic. We start by extending T♭
_Π

with
a type of propositions and a sort Prf(P) for representing the judgment form "□ is a proof
of 𝑃", where □ stands for the subject.

Prop : Ty
P : Tm(Prop)
Prf(P) sort

We can then add arbitrary connectives or quantifiers. For instance, we can add
universe quantification with the following declarations. We refer to the file hol.bitts of
the implementation in which we also add implication and define conjunction using the
impredicative encoding [GTL89].

A : Ty 𝑥 : Tm(A) ⊢ P : Tm(Prop)
∀(A, 𝑥 .P{𝑥}) : Tm(Prop)

A : Ty 𝑥 : Tm(A) ⊢ P : Tm(Prop)
𝑥 : Tm(A) ⊢ p : Prf(P)

∀i(𝑥 .p{𝑥}) : Prf(∀(A, 𝑥 .P{𝑥}))

A : Ty 𝑥 : Tm(A) ⊢ P : Tm(Prop)
q :p Prf(∀(A, 𝑥 .P{𝑥})) t : Tm(A)

∀e(q, t) : Prf(P{t})
∀e(∀i(𝑥 .p{𝑥}), t) ↦−→ p{t}

9.4 Universes

In dependent type theories, types can be reified as terms by adding universes. Starting
from T♭

_Π
, we define a Tarski-style universe by adding a type U of codes and a decoding

function El mapping each code to an associated type. We then must close U under the
type formers of our theory, by adding the codes u for U and 𝜋 for Π, and stating that El
decodes them to the expected types.

U : Ty
a :p Tm(U)
El(a) : Ty u : Tm(U)

El(u) ↦−→ U

a : Tm(U) 𝑥 : Tm(El(a)) ⊢ b : Tm(U)
𝜋 (a, 𝑥 .b{𝑥}) : Tm(U)

El(𝜋 (a, 𝑥 .b{𝑥})) ↦−→ Π(El(a), 𝑥 .El(b{𝑥}))

For illustrative purposes, in the above we have defined a type-in-type universe, which
is known to be inconsistent [Coq86]. This can however be easily solved if we stratify
universes into an hierarchy, by instead introducing a family of symbols U𝑙 , El𝑙 , . . . indexed
by some set 𝑙 ∈ ℒ of universe levels. In particular, this allows us to define a Tarski-style
variant of Pure Type Systems, which are usually presented using Russell-style universes.

Internal universe levels

By indexing the above symbols externally, they become annotated with levels 𝑙 in their
names, as in Chapter 5. An alternative approach is to index them internally, which
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then allows us to leverage our support for erased arguments. Let us illustrate this by
takingℒ := N. We start by declaring a sort of levels along with constructors for zero and
successor.

Lvl sort 0 : Lvl
l : Lvl

S(l) : Lvl

We then update the definitions of U, El, u, 𝜋 in the following manner, so that they now
take a level as an argument. With these definitions, we can omit the level annotations
in El and 𝜋 . Note that in the case of u we cannot omit l from the syntax, otherwise we
would not be able to define the rewrite rule El(u) ↦−→ U(?).
l : Lvl

U(l) : Ty
l : Lvl a :p Tm(U(l))

El(a) : Ty
i : Lvl l : Lvl i ≡ S(l)

u(l) : Tm(U(i))
El(u(l)) ↦−→ U(l)

l : Lvl a : Tm(U(l))
𝑥 : Tm(El(a)) ⊢ b : Tm(U(l))
𝜋 (a, 𝑥 .b{𝑥}) : Tm(U(l))

El(𝜋 (a, 𝑥 .b{𝑥})) ↦−→ Π(El(a), 𝑥 .El(b{𝑥}))

Cumulativity

For now, in the above theory we can only find a code decoding to Π(El(𝑎), 𝑥 .El(𝑏)) if 𝑎
and 𝑏 live in the same universe. In order to fix this, we could define an heterogeneous
version of 𝜋 allowing for 𝑎 and 𝑏 to be in different universes, in which case the code
for the type Π(El(𝑎), 𝑥 .El(𝑏)) would then live in the maximum of the two — see the
file mltt-tarski-heterogeneous.bitts in the implementation where this solution is
developed. Here, we instead prefer to add cumulativity to the theory. This is done by
adding a lift ↑mapping a code 𝑎 from U(𝑙) to U(S(𝑙)), and a rewrite rule identifying its
elements with the ones for 𝑎. Now we can form a code for Π(El(𝑎), 𝑥 .El(𝑏)) by simply
lifting the smaller code to the universe of the bigger one.

l : Lvl A : Tm(U(l))
↑(a) : Tm(U(S(l)))

El(↑(a)) ↦−→ El(a)

Some authors consider a stronger version of cumulativity in which the lift operator ↑
commutes with all codes [Ass14, Ste19, Kov22]. This can be obtained by adding the
following rewrite rule. Note that this is the first rewrite rule we consider which is not
headed by a destructor, illustrating the usefulness of not imposing rules to be of this shape.

↑(𝜋 (a, 𝑥 .b{𝑥})) ↦−→ 𝜋 (↑(a), 𝑥 .↑(b{𝑥}))

When considering the above rule, the rewrite system is not orthogonal anymore,
and a more complex proof of confluence is required. We separate the rewrite system
into R1 ∪ R2, where R1 contains the rules El(𝜋 (a, 𝑥 .b{𝑥})) ↦−→ Π(El(a), 𝑥 .El(b{𝑥})) and
El(↑(a)) ↦−→ El(a) and ↑(𝜋 (a, 𝑥 .b{𝑥})) ↦−→ 𝜋 (↑(a), 𝑥 .↑(b{𝑥})), and R2 contains all the
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other rewrite rules. Then R2 is confluent by orthogonality, and R1 is confluent because it is
strongly normalizing and all critical pairs close [MN98]. Because R1 and R2 are left-linear
and there are no critical pairs between them, we conclude that their union is confluent by
Van Oostrom & Van Raamsdonk’s orthogonal combinations criterion [vOvR94].

Universe polymorphism

With our current theory we can write the polymorphic identity function at the base
universe λ(𝐴.λ(𝑥 .𝑥)) : Tm(Π(U(0), 𝑎.Π(El(𝑎), _.El(𝑎)))), but there is no way of writing
an identity function that can be used with types in all universes. This can be achieved by
extending our theory with universe polymorphism [Kov22, BCDE23, ST14], in which we
add a type former for quantifying over levels. We can then write the universe-polymorphic
identity function Λ(𝑖 .λ(𝐴.λ(𝑥 .𝑥))) : Tm( A(𝑖 .Π(U(𝑖), 𝑎.Π(El(𝑎), _.El(𝑎))))).

𝑖 : Lvl ⊢ A : Ty

A(𝑖 .A{𝑖}) : Ty
𝑖 : Lvl ⊢ A : Ty 𝑖 : Lvl ⊢ t : Tm(A{𝑖})

Λ(𝑖 .t{𝑖}) : Tm( A(𝑖 .A{𝑖}))

𝑖 : Lvl ⊢ A : Ty t :p Tm(

A(𝑖 .A{𝑖})) l : Lvl
inst(t, l) : Tm(A{l})

inst(Λ(𝑖 .t{𝑖}), l) ↦−→ t{l}

Coquand-style universes

Up until now we have only seen examples showing the use of Tarski-style universes,
however in our framework we can also define Coquand-style universes [Coq13, KHS19,
Kov22]. In this approach, we start by redefining the sorts Ty and Tm so that they become
themselves stratified — note therefore that this example is the first which is not an
extension of T♭

_Π
.

Lvl sort 0 : Lvl
l : Lvl

S(l) : Lvl
l : Lvl

Ty(l) sort
l : Lvl A : Ty(l)

Tm(l, A) sort

We then postulate once again a type for the universe U and a decoding function El,
but instead of adding codes for each type former manually, we add a code constructor c.
Two rewrite rules then state that decoding c(𝐴) yields precisely 𝐴, and that coding El(𝑎)
yields precisely 𝑎, thus establishing a definitional isomorphism between the sort Ty(𝑙)
and the sort Tm(S(𝑙),U), for all 𝑙 : Lvl.

l : Lvl
U : Ty(S(l))

l : Lvl A : Ty(l)
c(A) : Tm(S(l),U)

l : Lvl a :p Tm(S(l),U)
El(a) : Ty(l)

El(c(A)) ↦−→ A
c(El(a)) ↦−→ a

We can extend the theory with other type formers, such as function types. Note then
that, not only the types A and B can be omitted, but also the level l.
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l : Lvl A : Ty(l)
𝑥 : Tm(l, A) ⊢ B : Ty(l)
Π(A, 𝑥 .B{𝑥}) : Ty(l)

l : Lvl A : Ty(l) 𝑥 : Tm(l, A) ⊢ B : Ty(l)
𝑥 : Tm(l, A) ⊢ t : Tm(l, B{𝑥})
λ(𝑥 .t{𝑥}) : Tm(l,Π(A, 𝑥 .B{𝑥}))

l : Lvl A : Ty(l) 𝑥 : Tm(l, A) ⊢ B : Ty(l)
t :p Tm(l,Π(A, 𝑥 .B{𝑥})) u : Tm(l, A)

@(t, u) : Tm(l, B{u})
@(λ(𝑥 .t{𝑥}), u) ↦−→ t{u}

We refer to the file mltt-coquand.bitts of the implementation in which this ap-
proach is further developed.

Finally, note that the rewrite system of this theory is not orthogonal, because the
rewrite rules El(c(A)) ↦−→ A and c(El(a)) ↦−→ a create two critical paris. Fortunately,
these critical pairs are trivial, so the rewrite system is weakly orthogonal and hence
confluent [vOvR94].

Russell-style universes

Coquand-style universes are characterized by a definitional isomorphism Tm(S(𝑙),U) ≃
Ty(𝑙), establishing that the two sorts are morally the same. We can however also go
further and identify the two with a rewrite rule, yielding Russell-style universes. This
is done by simply replacing the previous declarations of El, c and the associated rules
with the rule Tm(S(l),U) ↦−→ Ty(l). We refer to the file mltt-russell.bitts of the
implementation for more details.

9.5 Exceptional type theory

We have seen that our framework supports the definition of many features commonly
found in dependent type theories. However, we can also define theories with features that
are more unusual. Let us now see how to define in our framework a variant of Pédrot
and Tabareau’s Exceptional Type Theory [PT18], that extends MLTT with exceptions.
Starting from T♭

_Π
, we add a new sort Ex for exceptions, a default exception err and a

constructor raise that allows us to raise an exception at any type. Note that raise renders
the theory inconsistent, however in their paper Pédrot and Tabareau show how to define a
parametricity layer to isolate a consistent subset of the language, in which exceptions have
to be caught locally. Nevertheless, if one wishes to use the theory for programming instead
of proving theorems, it is reasonable to drop this extra layer and work in a language
where all types are inhabited (like almost all commonly used programming languages).

Ex sort err : Ex
A : Ty e : Ex
raise(e) : Tm(A)
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We thenmust add rules for ensuring that destructors properly propagate the exceptions,
such as the following one.

@(raise(e), u) ↦−→ raise(e)

We can then extend the theory with generalized eliminators for the positive types in
order to allow for exception-catching. For instance, supposing we also have extended the
theory with booleans — and added the associated rule recB(raise(e), 𝑥 .P{𝑥}, pt, pf) ↦−→
raise(e) for propagating exceptions — we can add a new eliminator catchB in which raise
is treated like a constructor of B, allowing us to handle the raised exception.

t :p Tm(B) 𝑥 : Tm(B) ⊢ P : Ty
pt : Tm(P{true}) pf : Tm(P{false}) 𝑥 : Ex ⊢ pe : Tm(P{raise(𝑥)})

catchB(t, 𝑥 .P{𝑥}, pt, pf, 𝑥 .pe{𝑥}) : Tm(P{t})

catchB(true, 𝑥 .P{𝑥}, pt, pf, 𝑥 .pe{𝑥}) ↦−→ pt

catchB(false, 𝑥 .P{𝑥}, pt, pf, 𝑥 .pe{𝑥}) ↦−→ pf

catchB(raise(e), 𝑥 .P{𝑥}, pt, pf, 𝑥 .pe{𝑥}) ↦−→ pe{e}

This theory can then be extendedwith various types, andwe refer to the file exceptional.bitts
of the implementation for more details.

We can also interface the exceptional theory with a pure one by restricting the elimina-
tors, in the spirit of the Multiverse Type Theory (MuTT) [MMS+21]. For this, we redefine
the theory by parametrizing Ty and Tm by a mode 𝔐, which can either be P (for pure)
or E (for exceptional). The raise constructor is then restricted to only allow for raising
exceptions when in the exceptional mode, and the only way for eliminating from types in
the exceptional mode to the pure world is by using catching eliminators, ensuring that
exceptions cannot be propagated. We refer to the file exceptional-multiverse.bitts
of the implementation, where this approach is sketched.

9.6 Observational type theory

As our last example, we show how to define a variant of Altenkirch and McBride’s ob-
servational type theory (OTT) [AMS07, PT22] in our framework. Starting from T♭

_Π
, we

begin by extending the theory with an heterogeneous equality type.
A : Ty a : Tm(A) B : Ty b : Tm(B)

Eq(A, a, B, b) : Ty

The defining characteristic of OTT is that its equality Eq(𝐴, 𝑡, 𝐴′, 𝑡 ′) is defined induc-
tively on the structure of the types𝐴 and𝐴′. For instance, a proof of Eq(Π(𝐴, 𝑥 .𝐵), 𝑓 ,Π(𝐴′, 𝑥′.𝐵′{𝑥′}), 𝑓 ′)
should correspond exactly to a function mapping proofs of equality between 𝑡 and
𝑡 ′ to proofs of equality between @(𝑓 , 𝑡) and @(𝑓 ′, 𝑡 ′). In the original formulation of
OTT [AMS07] this correspondence was made by adding a rewrite rule explaining how to
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reduce Eq(Π(𝐴, 𝑥 .𝐵), 𝑓 ,Π(𝐴′, 𝑥′.𝐵′{𝑥′}), 𝑓 ′). Here we instead adopt the approach taken
by Atkey [Atk18] and more recently by Pujet and Tabareau [PT24], in which one instead
postulates symbols EqΠ𝑖 and EqΠ𝑒 for constructing and eliminating equality proofs be-
tween 𝑓 and 𝑓 ′. Note that our support for omitting arguments is vital here to ensure that
the numerous arguments do not get all recorded in the syntax.

A : Ty 𝑥 : Tm(A) ⊢ B : Ty f : Tm(Π(A, 𝑥 .B{𝑥}))
A′ : Ty 𝑥 ′ : Tm(A′) ⊢ B′ : Ty f′ : Tm(Π(A′, 𝑥 ′.B′{𝑥 ′}))

𝑥 : Tm(A), 𝑥 ′ : Tm(A′), 𝑦 : Tm(Eq(A, 𝑥, A′, 𝑥 ′)) ⊢ p : Tm(Eq(B{𝑥},@(f, 𝑥), B′{𝑥 ′},@(f′, 𝑥 ′)))
EqΠ𝑖 (𝑥𝑥 ′𝑦.p{𝑥, 𝑥 ′, 𝑦}) : Tm(Eq(Π(A, 𝑥 .B{𝑥}), f,Π(A′, 𝑥 ′.B′{𝑥 ′}), f′))

A : Ty 𝑥 : Tm(A) ⊢ B : Ty f : Tm(Π(A, 𝑥 .B{𝑥}))
A′ : Ty 𝑥 ′ : Tm(A′) ⊢ B′ : Ty f′ : Tm(Π(A′, 𝑥 ′.B′{𝑥 ′}))

p :p Tm(Eq(Π(A, 𝑥 .B{𝑥}), f,Π(A′, 𝑥 ′.B′{𝑥 ′}), f′))
x : Tm(A) x′ : Tm(A′) e : Tm(Eq(A, x, A′, x′))

EqΠ𝑒 (p, x, x′, e) : Tm(Eq(B{x},@(f, x), B′{x′},@(f′, x′)))

If we add a Tarski-style universe U to the theory, we would then like to allow for
transporting a term from El(𝑎) to El(𝑏) when we have a proof of Eq(U, 𝑎,U, 𝑏). In OTT,
this is achieved by adding a cast operator to the theory. Note that the arguments a and b
could be recovered from p, but they cannot be omitted because they are needed to know
how to reduce casts.

a :p Tm(U) b : Tm(U) p : Tm(Eq(a,U, b,U)) t : Tm(El(a))
cast(a, b, p, t) : Tm(El(b))

cast(𝜋 (a, 𝑥 .b{𝑥}), 𝜋 (a′, 𝑥 ′.b′{𝑥 ′}), p, t) ↦−→
λ(𝑥 ′. let 𝑒 := EqU𝜋,𝜋

𝑒1 (p) in
let 𝑥 := cast(a′, a, 𝑒, 𝑥 ′) in
cast(b{𝑥}, b{𝑥 ′}, EqU𝜋,𝜋

𝑒2 (p, 𝑥, 𝑥 ′, 𝑒),@(t, 𝑥)))

We refer to the file ott.bitts of the implementation in which this construction is
worked out in detail. We also provide a second variant of OTT in the file ott-2.bitts,
this time using an homogeneous equality, in the style of Pujet and Tabareau [PT22].



Chapter 10

BiTTs: An Implementation

of our Framework

The bidirectional type system of Chapter 8 has been implemented in the tool BiTTs (for
Bidirectional Type Theories), available at

https://github.com/thiagofelicissimo/BiTTs

and which we present in this section. We start by illustrating how the tool can be used in
practice, and then briefly discuss some aspects of the implementation.

10.1 A quick introduction to the tool

As we have seen, our framework is not designed to target a specific type theory, but
instead a whole class of bidirectional theories. Therefore, in order to use our tool, the
first step is to specify the bidirectional theory we want to work in. This is done with the
commands sort, constructor, destructor and equation which specify respectively
sort, constructor, destructor and rewrite rules. For instance, the bidirectional theory T♭

_Π
can be defined with the following declarations. Note that metavariable contexts are
delimited by parentheses, principal arguments are delimited by square brackets, and that
we support unicode characters in names.

sort Ty ()

sort Tm (A : Ty)

constructor Π () (A : Ty, B{x : Tm(A)} : Ty) : Ty

constructor _ (A : Ty, B{x : Tm(A)} : Ty) (t{x : Tm(A)} : Tm(B{x})) : Tm(Π(A, x. B{x}))

destructor @ (A : Ty, B{x : Tm(A)} : Ty) [t : Tm(Π(A, x. B{x}))] (u : Tm(A)) : Tm(B{u})

equation @(_(x. t{x}), u) --> t{u}

By Theorem 8.3, the type-checker implemented is sound with respect to the type
system of Figure 7.4, as soon as the specified bidirectional theory is valid. Checking this
hypothesis is mostly left to the user, however the implementation helps to check some of
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the required conditions. First, it verifies automatically condition (B), and it reports on
any critical pairs, so that if there are none then condition (II) is satisfied by orthogonality.
The implementation also tries to verifies condition (I), however this check relies on
the hypothesis that the theory satisfies confluence and subject reduction incrementally,
meaning that each prefix of the theory should also verify these properties.1 Thankfully,
for most theories the rewrite system is orthogonal, ensuring that any prefix of it is also
confluent, and the verification that rewrite rules preserve typing is in most cases modular
(see the discussion at the end of Example 7.8).

Once the theory is specified, we can start writing and typechecking terms in the
implementation. For instance, supposing we have also added a Tarski-style universe U,
we can check the following definition of the polymorphic identity function.

let idU : Tm(Π(U, a. Π(El(a), _. El(a)))) := _(a. _(x. x))

To type-check this definition, the tool first verifies that the sort given in the annotation
is well-typed, and then type-checks the body of the definition against the sort. If all the
steps succeed, the identifier is added to a global scope of top-level definitions and becomes
available to be used in the rest of the file.

The implementation also supports local let definitions, as illustrated in the following
example, which also shows how sort ascriptions can be used.

let redex' : Tm(N) :=

let ty : Ty := Π(N, _. N) in

@(_(x. x) :: Tm(ty), 0)

Finally, we also provide commands for evaluating terms to normal form and asserting
that two terms are definitionally equal. For instance, assuming we have defined factorial,
we can use these commands to compute the factorial of 3 and check that it is equal to 6.

let fact3 : Tm(N) := @(fact, S(S(S(0))))

evaluate fact3

let 6 : Tm(N) := S(S(S(S(S(S(0))))))

assert fact3 = 6

The implementation also comes with many theories that can be defined in the frame-
work, along with some examples of terms written in these theories. These can be found
in the directory examples/, and most of them are discussed in Chapter 9.

1The reason is that we use an extension of the system of Figure 8.3 to check the typing judgments of
Figure 7.5, however its soundness requires the bidirectional theory to be valid.
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10.2 The implementation

The core of the implementation can be separated into two main parts: the type-checking
and the normalization algorithms. The type-checking algorithm follows closely the
bidirectional system described in Chapter 8 with only minor differences, so we will not
discuss it here.

Regarding normalization, we have implemented it by employing an untyped vari-
ant of Normalization by Evaluation (NbE), inspired by the works of Coquand [Coq96],
Abel [Abe13] and Kovacs [Kov23]. In NbE, terms are evaluated into a separate syntax
of runtime values, in which binders are represented by closures and free variables by
unknowns. This evaluation roughly corresponds to a call-by-value reduction to a head
normal form. Values can then be compared for equality by entering closures and recur-
sively evaluating and comparing their bodies. One of the benefits of this approach is that,
by using de Bruijn indices in the syntax of regular terms but de Bruijn levels2 in the syntax
of values, we completely avoid the need of implementing substitution or index-shifting
functions, which are often complicated and inefficient — see for instance the discussion
by Gratzer et al. [GSB19], or the lecture given by Sterling [Ste22a].

In the future, we would like to test the general performances of our tool with realistic
examples. In particular, we would like to compare it with typecheckers for Dedukti,
and we expect that BiTTs’ support for non-annotated syntaxes should allow for shorter
typechecking times.

2Whereas indices count variables starting from the right of the context, levels count them starting from
the left, so the variable 𝑥 in 𝑥 : 𝑇,𝑦 : 𝑈 ⊢ 𝑥 : 𝑇 is represented as 1 when using indices but 0 when using
levels.



Chapter 11

Perspectives on Generic

Bidirectional Typing

In this Part II we have given a logical framework for specifying theories with their
usual non-annotated presentations, and then showed how our notion of theory could
be refined with bidirectionality, allowing us to give in particular a generic treatment
of bidirectional typing and to explain why the omission of some arguments does not
jeopardize decidability of typing. Our main results, Theorems 8.3 and 8.4, establish an
equivalence between declarative and bidirectional type systems for the whole class of
valid bidirectional theories, as defined in Sections 8.1 and 8.5. The decidability of the
bidirectional type system (Theorem 8.5) allowed for its implementation in the tool BiTTs,
which has been used in practice with multiple theories. Compared to other theory-
independent typecheckers, such as Dedukti and Andromeda [HB23, BK22], BiTTs’
support for non-annotated syntaxes can allow for better performances, making it a good
candidate for cross-checking real proof libraries.

11.1 Related work

Our framework draws much inspiration from other proposals, such as GATs/QIITs [Car86,
AK16b, KKA19], SOGATs [Uem21], FTTs [HB23], and logical frameworks such as De-
dukti [BDG+23] and Harper’s Equational LF [Har21a]. However, we differ from these
works by supporting non-annotated syntaxes, and enforcing a constructor/destructor
separation of schematic typing rules in our bidirectional theories (both of which seem to
be important ingredients for bidirectional typing).

Another point of divergence from these frameworks is that most of them allow the
use of arbitrary equations when defining the definitional equality of theories. However,
it then becomes hard to give an implementation, as it would require deciding arbitrary
equational theories. We instead follow the approach of Dedukti of supporting only
rewrite rules, which allows us to decide the definitional equality of theories in a uniform
manner, and made it possible to implement our framework. A different approach is
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taken in Andromeda, an implementation of FTTs, where one also allows for extension-
ality rules [BK22]. They however provide no proof of completeness for their equality-
checking algorithm.

Our proposal also draws inspiration from the works of McBride, a main advocate of
dependent bidirectional typing. Their ongoing work on a framework for bidirectional
typing [McB18, McB22] shares many similarities with ours, for instance by adopting a
constructor/destructor separation of rules. However, an important difference with our
framework is that they take the bidirectional type system as the definition of the theory.
Therefore, there is no discussion on how to show soundness and completeness with
respect to a declarative system, as the bidirectional one is the only type system defined in
their setting. This approach differs from most of the literature on dependent bidirectional
typing [AC05, LB21, AA11, ACP11, AVW17], in which one first defines the type theory
by a "platonic" declarative type system and then shows it equivalent to a bidirectional
system which can be implemented. Finally, this choice also makes the metatheoretic study
of theories quite different from what we have done here: for instance, even to be able
to state subject reduction for the bidirectional system, the notion of reduction has to be
updated to take ascriptions into account.

Another work from which ours drew inspiration is the one of Reed [Ree08], who
proposes a variant of the Edinburgh Logical Framework inwhich arguments can be omitted.
Crucially, these arguments are not elaborated through global unification, but instead
locally recovered by annotating each declaration with modes to guide a bidirectional
algorithm. However, his framework does not allow for extending the definitional equality,
meaning that one cannot define dependent type theories with non-trivial equalities directly,
but instead has to encode its derivations trees. This also means that his system does not
need to deal with some complications that arise in our more general setting, such as
matching modulo.

Finally, concurrently to our work, Chen and Ko [CK24] have proposed a framework for
simply typed bidirectional typing. They also define declarative and bidirectional systems
and establish a correspondence between them. Compared to our work, their restriction to
simple types removes many of the complexities that appear with dependent type theories.
For instance, while their types are first-order terms with no notion of computation or
typing, our sorts are higher-order terms considered modulo a set of rewrite rules and
subject to typing judgments, making the process of recovering missing arguments much
more intricate. The restriction to simple types also rules out examples like the ones
presented in Chapter 9, given that they are all dependent type theories. They however
provide an impressive formalization of all their results in Agda.
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11.2 Future work

The most important omission that we would like to address in future work is that of
type-directed equality rules, which are needed for handling [-laws and definitional proof
irrelevance. As mentioned in Section 11.1, our choice of supporting only rewrite rules
was motivated by the fact that they allow for deciding the definitional equality in a
uniform way, which made it possible to implement our framework. Indeed, as long as a
rewrite system R is both confluent and strongly normalizing, computing and comparing
normal forms is a complete equality-checking algorithm, regardless of any other specificity
of R. In contrast, even if it is well known how to design complete equality checking
algorithms for specific theories with type-directed equalities [AOV18], doing so in a
general setting like ours seems to be an important challenge. We could take inspiration
from the customizable equality-checking algorithm implemented in Andromeda [BK22].
However, as previously mentioned, their algorithm is not proven complete, so further
research in this direction seems to be required.

Moreover, in this work we chose to adopt the style of bidirectional typing most premi-
nent in the literature [McB18, DK21, AA11, Coq96, Nor07, GSB19], in which constructors
always check and destructors always infer. Yet, some proposals take an alternative ap-
proach by adding enough annotations to the syntax so that all terms can always be
inferred [LB22, HHP93, Pol92]. For instance, in this approach abstractions are annotated
with their domains, and their bidirectional rule becomes:

Γ ⊢ 𝐴⇐ type Γ, 𝑥 : 𝐴 ⊢ 𝑡 ⇒ 𝐵

Γ ⊢ _𝑥 : 𝐴.𝑡 ⇒ Π𝑥 : 𝐴.𝐵

Because this rule is inferring, we could try to interpret it in our framework as a destructor
rule, however it violates two of our assumptions: (1) that the principal argument should
always be the first non-erased argument, and (2) that the principal argument should be
inferred in the empty context. In general, the bidirectional approach in which all terms
infer seems to be less symmetric and thus less amenable to a generic treatment, like the
one we gave here. We actually tried to also acommotated this style in a preliminary
version of this work, but the definitions turned out to be too complicated and difficult
to handle. Still, we do not rule out that our framework could be adapted in the future to
support more liberal bidirectional rules in a cleaner way.

Finally, one could argue that our choice of declarative type system is not "declarative"
enough, as some authors prefer more abstract definitions for specifying what type theories
are. For instance, the point of view that syntax should correspond to the initial model (for
some notion of semantics) often leads one to consider fully anotated terms with typed
equality (or even quotiented terms [AK16b]), whereas our declarative type system uses
non-annotated terms and untyped equality. In the future, wewould like to investigate if our
results could be adapted to such a setting, for instance by considering a variant of Uemura’s
SOGATs [Uem21] for the declarative type system. In this setting, our bidirectional system
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would be adapted into an elaboration algorithm, producing core fully annotated syntax
from the user-friendly bidirectional one — similarly to [GSA+22].



Part III

Sharing Proofs with

Predicative Systems
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Chapter 12

Introduction to Part III

In Parts I and II we have studied logical frameworks from a more theoretical perspec-
tive, showing how one can prove encodings to be conservative and then integrating
bidirectional typing to allow for eliminating some annotations. But we also saw in this
thesis’ introduction that frameworks like Dedukti are actually developed with practical
applications in mind. In particular, a long-term goal of the Dedukti project is to improve
the interoperability of proof assistants. Let us discuss this in more detail.

Interoperability of proof assistants

As discussed before, an important achievement of the research community in logic is the
invention of proof assistants. Such tools allow for interactively writing proofs, which
are then checked automatically and can then be reused in other developments. Proof
assistants do not only help mathematicians make sure that their proofs are indeed correct,
but are also used to verify the correctness of safety-critical software.

Unfortunately, a proof written in a proof assistant cannot be directly reused in another
one, which makes each tool isolated in its own library of proofs. This is specially the case
when considering two proof assistants with incompatible logics, as in this case simply
translating from one syntax to another would not work. Therefore, in order to share
proofs between systems it is often required to do logical transformations.

A naïve approach to share proofs from a proof assistant 𝐴 to a proof assistant 𝐵 is to
define a transformation acting directly on the syntax of𝐴 and then implement it using the
codebase of𝐴. However, this code would be highly dependent on the implementation of𝐴
and can easily become outdated if the codebase of 𝐴 evolves. Moreover, if there is another
proof assistant 𝐴′ whose logic is very similar to the one of 𝐴 then this transformation
would have to be implemented once again in order to be used with 𝐴′ — the translation is
implementation-dependent.

Logical Frameworks & Dedukti

A better solution is to instead first define the logics of all proof assistants in a logical
framework, so that proof transformations can be defined uniformly inside it. This way,
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such transformations do not depend on the implementations anymore, but instead on the
logics that are implemented.

The logical frameworkDedukti is a good candidate for a system where multiple logics
can be encoded, allowing for logical transformations to be defined uniformly inside it.
Indeed, first, the framework was already shown to be sufficiently expressive to define
(considerable fragments of) the logics of many proof assistants [BDG+23]. Moreover,
previous works have shown how proofs can be transformed inside Dedukti. For instance,
Thiré [Thi18] describes a transformation to translate a proof of Fermat’s Little Theo-
rem from the Calculus of Inductive Constructions to Higher Order Logic (HOL), which
can then be exported to multiple proof assistants such as HOL-Light, PVS, Lean, etc.
Géran [Gé] also used Dedukti to export the formalization of Euclid’s Elements Book 1 in
Coq [BNW19] to several proof assistants.

(Im)Predicativity

One of the challenges in proof interoperability is sharing proofs coming from impredicative
proof assistants (the majority of them) with predicative ones such as Agda. Indeed,
impredicativity, which states that propositions can refer to entities of arbitrary sizes, is
a logical principle absent from predicative systems. It is therefore clear that any proof
that uses impredicativity in an essential way cannot be translated to a predicative system.
Nevertheless, one can wonder if most proofs written in impredicative systems really use
impredicativity and, if not, how one could devise a way for detecting and translating them
to predicative systems.

A predicativization transformation

In this Part III, we tackle this problem by proposing a transformation that tries to do
precisely this. Our translation works by forgetting all the universe information of the
initial impredicative term, and then trying to elaborate it into a predicative universe-
polymorphic term as general as possible. The need for universe polymorphism arises
from the fact that mapping all occurrences of the same universe to a unique one in the
target theory is in most cases insufficient — this is explained in details in Chapter 13.

Universe level unification

During the translation, we need to solve level unification problems which are generated
when elaborating the impredicative term into a universe polymorphic one. We therefore
develop a (partial) unification algorithm for the equational theory of universe levels. This
is done by first giving a novel and complete characterization of which single equations
admit a most general unifier (m.g.u.), along with an explicit description of a m.g.u. when it
exists. This characterization is then employed in an algorithm implementing a constraint-
postponement strategy: at each step, we look for an equation admitting a m.g.u. and solve
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it while applying the obtained substitution to the other equations, in the hope of bringing
new ones to the fragment admitting a m.g.u.

The given algorithm is partial in the sense that, when the unification problem is
not a singleton, it may fail to find a m.g.u. even in cases where there is one — see for
instance Example 17.1. We then propose a second unification algorithm, this time proven
to be complete, but under the hypothesis that two conjectures from max-plus algebra are
true. As further explained in Chapter 17, the algorithm works by reducing the problem of
unification to the one of finding finite bases of solutions for two linear problems in a certain
max-plus algebra, very similarly to Baader’s algorithm for commutative theories [BS01]
(the precise relationship is discussed in Chapter 19). Finally, we then show how the first
constraint-postponement-based algorithm can be used in conjunction with this second
algorithm, optimizing the computation of unifiers.

The implementation

Our predicativization algorithmwas implemented on top of theDkCheck type-checker for
Dedukti with the tool Predicativize (available at https://github.com/Deducteam/
predicativize), allowing for the translation of proofs inside Dedukti. Our tool works
in a semi-automatic manner: most of the translation is handled by the proposed algorithm,
yet some intermediate steps that are harder to automate currently require some user
intervention. These translated proofs can then be exported to Agda, the main proof
assistant based on predicative type theory.

Translating Matita’s arithmetic library

The tool has been used to translate to the proof assistant Agda the whole of Matita’s
arithmetic library, making many important mathematical developments available to Agda
users. In particular, this work has led to (as far as we know) the first ever proofs in Agda
of Fermat’s Little Theorem, stating that for 𝑝 ∈ N prime and 𝑛 ∈ N coprime to 𝑝 we have
𝑛𝑝−1 equal to 1 modulo 𝑝 , and of Bertrand’s Postulate,1 stating that for all positive 𝑛 ∈ N
one can always find a prime number 𝑝 with 𝑛 < 𝑝 ≤ 2𝑛.

The proof of Bertrand’s Postulate in Matita had even been the subject of a whole
journal publication [AR12], evidencing its complexity and importance. Thanks to Pred-
icativize, the same hard work did not have to be repeated to make it available in Agda,
as the transformation allowed the translation of the whole proof without any need of
specialist knowledge about it.

Related version

A preliminary version of this work was published in the proceedings of the 31st EACSL
Annual Conference on Computer Science Logic [FBB23]. The version given here is closer

1Which, despite its name, is actually a theorem and not a postulate.

https://github.com/Deducteam/predicativize
https://github.com/Deducteam/predicativize
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to (while not being exactly the same) an extended version published in the journal Logical
Methods in Computer Science (LMCS) [FB24], and contains a number of improvements,
among which are the following:

1. A main novelty with respect to [FBB23] is that we provide a complete character-
ization of when a single equation between universe levels admit a m.g.u., along
with an explicit description of such a m.g.u. This characterization then allows us
to give a better algorithm for level unification, which in particular is complete for
singleton problems, whereas the original algorithm is not. While this algorithm is
still not complete in general, we then also give a second unification algorithm, this
time with a proof of completeness, but which relies on two conjectures on max-plus
algebra that are left for future work.2

2. The Church-Rosser modulo proof of T∀P in our preliminary work relied on the ad
hoc restriction that level variables could only be replaced by universe levels, in order
to avoid interactions between the equational theory of levels and the rewrite rules.
We make this condition more precise by proposing a version of Dedukti tailored
for external equational theories, in which we employ a form of confinement. This
technique, first proposed by Assaf et al. [ADJL17], allows one to isolate a first-order
subset of terms from the global higher-order syntax.

3. Finally, most of the text has been rewritten in order to improve the presentation.

2This second unification algorithm is a new contribution, that does not appear in the LMCS paper.



Chapter 13

A First Informal Look at

Proof Predicativization

In this informal chapter we present the problem of proof predicativization and discuss
the challenges that arise through the use of examples. Even though the examples might
be simplistic, they showcase real problems we found during our first predicativization
attempt of Fermat’s Little Theorem — some of them being already noted by Delort [Del20].

Preliminaries

We model the problem of predicativization in Dedukti as the task of translating from an
impredicative theory TI to a predicative one TP, specified by instantiating the Dedukti
theory for PTSs in Figure 5.2 with the following specifications.1

ℒI := {Ω,□} ℒP := N
𝒜I := {(Ω,□)} 𝒜P := {(𝑛, 𝑛 + 1) | 𝑛 ∈ N}
ℛI := {(Ω,Ω,Ω), (□,Ω,Ω), (□,□,□)} ℛP := {(𝑛,𝑚,max{𝑛,𝑚}) | 𝑛,𝑚 ∈ N}

Note that in the theory TI we have (□,Ω,Ω) ∈ ℛI, and thus for Γ ⊢ 𝐴 : Tm⊤ U□ and
Γ, 𝑥 : Tm□ 𝐴 ⊢ 𝐵 : Tm□ UΩ we have Γ ⊢ Π□,Ω (𝑥 .𝐴) 𝐵 : Tm□ UΩ. Therefore, the universe
UΩ is closed under dependent products indexed over types in U□, a larger universe, so
TI is indeed an impredicative theory. Finally, we note that TP is a subtheory of the
one implemented in Agda, whereas TI is a subtheory of the ones implemented in Coq2,
Matita, Isabelle, etc, justifying why they are of interest.

In order for the examples that will follow to be readable, it is indispensable that
we adopt a more informal and lighter notation for terms in TI and TP: we will write

1Recall that the theory of Figure 5.2 is actually only defined for finite specifications. However, as
explained in Remark 5.3, we can abuse the definitions and still consider the theory TP, specially given that
we are in an informal chapter.

2There the impredicative universe UΩ is referred to as Prop, as its elements are most often seen as
propositions.
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Π𝑙,𝑙 ′ 𝐴 (𝑥 .𝐵) as Π𝑥 : 𝐴.𝐵 (or as 𝐴{𝐵 when 𝑥 ∉ fv(𝐵)), and@𝑙,𝑙 ′ 𝐴 (𝑥 .𝐵) 𝑡 𝑢 as 𝑡@𝑢, and
λ𝑙,𝑙 ′ 𝐴 (𝑥 .𝐵) 𝑡 𝑢 as λ𝑥 .𝑡 , and Tm𝑙 𝐴 as Tm 𝐴. Note that, unlike in Part II, this is just an
informal notation used in examples, and in the actual Dedukti syntax all the omitted
arguments have to be written.3

In order to properly model the problem of predicativization, we also have to introduce
a notation for local signatures Φ, made of entries of the form 𝑓 : 𝑇 and 𝑓 : 𝑇 := 𝑡 . We then
write T ⋉ Φ for the extension of T with Φ, defined by

T ⋉ (·) := T
T ⋉ (Φ, 𝑓 : 𝑇 ) := T ⋉ Φ, 𝑓 : 𝑇
T ⋉ (Φ, 𝑓 : 𝑇 := 𝑡) := T ⋉ Φ, 𝑓 : 𝑇, 𝑓 ↦−→ 𝑡

and we say that Φ is well-typed in T when we can derive T ⊢ Φ using the following rules:

T ⊢ ·
T ⊢ Φ T ⋉ Φ ⊲ · ⊢ 𝑇 : 𝑠

T ⊢ Φ, 𝑓 : 𝑇
T ⊢ Φ T ⋉ Φ ⊲ · ⊢ 𝑡 : 𝑇

T ⊢ Φ, 𝑓 : 𝑇 := 𝑡

In the following, we write names of symbols in the local signature in sans serif black in
order to distinguish them from symbols of the theory, whose names are still written in
blue serif, following the conventions of Chapter 2.

Then, the problem of proof predicativization consists in defining a transformation
such that, given a local signature Φ well-formed in TI, we obtain a local signature Φ′

well-formed in TP — a suitable transformation should of course preserve the structure of
the statements in Φ, however we leave the precise relationship between Φ and Φ′ vague
at this point. Stated more informally, we would like to translate symbol declarations 𝑓 : 𝑇
(which represent axioms) and symbol definitions 𝑓 : 𝑇 := 𝑡 (which also represent proofs)
from TI to TP. Note in particular that such a transformation is not applied to a single term
but to a sequence of declarations and definitions, which can be related by dependency.
This dependency, as we shall see, turns out to be a major issue for the translation.

1st try: A naïve translation

Now that our basic notions are explained, let us try to predicativize proofs. For our first
step, consider a very simple development showing that for every object type 𝐴 in UΩ we
can build a term in𝐴{𝐴 — this is actually just the polymorphic identity function for the
universe UΩ. Here we adopt an Agda-like syntax to display entries of the local signature.

id : Tm (Π𝐴 : UΩ .𝐴{𝐴)
id := λ𝐴.λ𝑥 .𝑥

3One then may wonder why not using the framework of Part II instead of Dedukti. The reason is very
mundane: the work presented here had been done before the one of Part II.
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To translate this simple development, the first idea that comes to mind is to define a
mapping on universe levels: the level Ω is mapped to 0 and the level □ is mapped to 1. If
this mapping defined a specification morphism4 then this transformation would always
produce a well-typed definition in TP [Geu93, Lemma 4.2.6]. Unfortunately, it is easy to
check that it does not define a specification morphism (worse, no function ℒI → ℒP
defines a specification morphism). Nevertheless, this does not mean that it cannot produce
something well-typed in TP in some cases. For instance, by applying it to id we get the
following entry,5 which is actually well-typed in TP.

id : Tm (Π𝐴 : U0.𝐴{𝐴)
id := λ𝐴.λ𝑥 .𝑥

This naïve approach however quickly fails when considering other cases. For instance,
suppose now that one adds the following definition.

id-to-id : Tm ((Π𝐴 : UΩ .𝐴{𝐴){ (Π𝐴 : UΩ .𝐴{𝐴))
id-to-id := id@(Π𝐴 : UΩ .𝐴{𝐴)

If we try to perform the same syntactic translation as before, we get the following
result.

id-to-id : Tm ((Π𝐴 : U0.𝐴{𝐴){ (Π𝐴 : U0.𝐴{𝐴))
id-to-id := id@(Π𝐴 : U0.𝐴{𝐴)

However, one can verify that this term is not well typed. Indeed, in the original
term one quantifies over all types in UΩ in the term Π𝐴 : UΩ .𝐴{𝐴, and because of
impredicativity this term stays at UΩ. However, in TP quantifying over all elements of
the universe U0 in Π𝐴 : U0.𝐴{𝐴 lifts the overall type of the term to U1. As id expects a
term of type U0, the term id@(Π𝐴 : U0.𝐴{𝐴) is not well-typed.

2nd try: Elaborating proofs with Universo

The takeaway lesson from the first try is that impredicativity introduces a kind of typical
ambiguity, as it allows us to put in a single universe UΩ types which, in a predicative
setting, would have to be stratified and placed in larger universes. Therefore, we should
not translate every occurrence of Ω to 0 naively as we did, but try to compute for each
occurrence of Ω some natural number 𝑛 such that replacing it by 𝑛 would produce a
well-typed term in TP. In other words, we should erase all universe level information and
then elaborate it into a well-typed term in TP.

4That is, a mapping of levels 𝜙 : ℒI → ℒP such that (𝑙, 𝑙 ′) ∈ 𝒜I implies (𝜙 (𝑙), 𝜙 (𝑙 ′)) ∈ 𝒜P and
(𝑙, 𝑙 ′, 𝑙 ′′) ∈ ℛI implies (𝜙 (𝑙), 𝜙 (𝑙 ′), 𝜙 (𝑙 ′′)) ∈ ℛP.

5Modulo the recomputation of some omitted levels.
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Thankfully, performing such kind of transformations is exactly the goal of the tool
Universo [Thi20]. To understand how it works, let us come back to the previous example.
Universo starts here by replacing each level by a fresh schematic level representing a
natural number.

id : Tm (Π𝐴 : U𝑖1 .𝐴{𝐴)
id := λ𝐴.λ𝑥 .𝑥

id-to-id : Tm ((Π𝐴 : U𝑖2 .𝐴{𝐴){ (Π𝐴 : U𝑖3 .𝐴{𝐴))
id-to-id := id@(Π𝐴 : U𝑖4 .𝐴{𝐴)

Then, in the following step Universo tries to elaborate these into well-typed terms in
TP. To do so, it first tries to typecheck them and generates constraints in the process. These
constraints are then given to a SMT solver, which is used to compute for each schematic
level 𝑖 a natural number so that the local signature is well-typed in TP. For instance,
applying Universo to our previous example produces the following local signature, which
is indeed well-typed in TP.

id : Tm (Π𝐴 : U1.𝐴{𝐴)
id := λ𝐴.λ𝑥 .𝑥

id-to-id : Tm ((Π𝐴 : U0.𝐴{𝐴){ (Π𝐴 : U0.𝐴{𝐴))
id-to-id := id@(Π𝐴 : U0.𝐴{𝐴)

By using Universo it is possible to go much further than with the naïve method
shown before. Still, this approach also fails when being employed with real libraries. To
see the reason, consider the following minimum example, in which one uses id twice to
build another element of the same type.

id
′ : Tm (Π𝐴 : UΩ .𝐴{𝐴)

id
′ := id@(Π𝐴 : UΩ .𝐴{𝐴)@id

If we repeat the same procedure as before, we get the following entries, which when
type-checked generate unsolvable constraints.

id : Tm (Π𝐴 : U𝑖1 .𝐴{𝐴)
id := λ𝐴.λ𝑥 .𝑥

id
′ : Tm (Π𝐴 : U𝑖2 .𝐴{𝐴)

id
′ := id@(Π𝐴 : U𝑖3 .𝐴{𝐴)@id

The reason is that the application id@(Π𝐴 : U𝑖3 .𝐴{𝐴)@id forces 𝑖1 to be both 𝑖3 and
𝑖3 + 1, which is of course impossible. Therefore, the takeaway lesson from this second try
is that impredicativity does not only hide the fact that types need to be stratified, but also
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that they need to be usable at multiple levels of this stratification. Indeed, in our example
we would like to use id both at type Π𝐴 : U𝑖3 .𝐴{𝐴 and at type Π𝐴 : U𝑖3+1.𝐴{𝐴. In
practice, when trying to translate libraries using Universo we found that at very early
stages a translated proof or object was already needed at multiple universes at the same
time, causing the translation to fail.

Our proposal: Universe-polymorphic elaboration

In order to properly compensate for the lack of impredicativity, we propose not to translate
entries by fixing once and for all their universes, but instead to let them vary by using
universe polymorphism [HP91, ST14]. This feature, present in some type theories (and also
in the one of Agda [Tea]), allows defining terms containing universe variables, which
can later be instantiated at various concrete universes.

Our translation will then work by first computing for each definition or declaration its
set of constraints. However, instead of assigning concrete values to schematic levels, we
perform unification which allows us to solve constraints in a symbolic way. The result will
then be a universe polymorphic term, which will be usable at multiple universes when
translating the next entries. In order to define this formally, in Chapter 15 we refine the
target of our translation to a theory featuring Agda-style universe polymorphism, but
for this we will first need to consider an extension of Dedukti with external equational
theories, presented in the next chapter.



Chapter 14

Extending Dedukti with

Confined Equational Theories

When defining the conversion of a dependent type theory, most equations can be split
either as reduction rules or extensionality rules — though we do not consider theories
with extensionality rules in this thesis. However, many recent type theories are also
defined on top of some ad-hoc external equational theories containing equalities which
can be much more arbitrary. This is the case for instance of type theory with Agda-style
universe polymorphism, which is defined on top of an equational theory we dub the
theory of predicative universe levels.

Because such theories often contain equations that cannot be oriented (such as com-
mutativity), there is no hope of being able to express them with rewriting only, meaning
they cannot be directly defined in vanilla Dedukti. One first solution would be to con-
sider an extension of Dedukti with arbitrary undirected equations, however interactions
between the external equational theory and the rewrite rules would not be ruled out
a priori, and so proving confluence/Church-Rosser and deciding the conversion would
become much more intricate. Whereas some criteria for Church-Rosser can still be found
when the rewrite system is normalizing [Hue80, JK84, MN98] or when all equations are
linear [Bla03, Fel24b], both assumptions prove to be often too strong for our use cases.
For instance, as we will see, the theory of predicative levels uses equations which are non-
linear, and because we prove Church-Rosser over pre-terms, rewriting is non-terminating
because of the 𝛽-rule.

Thankfully, a solution to the aforementioned problem was found by Assaf et al. by
proposing a variant of Dedukti with confinement [ADJL17]. This technique consists of
isolating a first-order subset of the syntax, over which equations operate, from the global
syntax of the framework, thereby limiting the interaction between rewrite rules and the
equational theory. With this separation in place, the authors successfully managed to
prove a Church-Rosser criterion that addressed the aforementioned problems.

In this chapter, we revisit Assaf et al.’s key idea by proposing yet another extension of
Dedukti with confined equational theories along with a criterion for showing Church-
Rosser in the theories defined therein. The need for improving Assaf et al.’s framework
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Tm ∋ 𝑡,𝑢 ::= 𝑥 | 𝑓 (𝑡1, . . . , 𝑡𝑘) where arity(𝑓 ) = 𝑘

Tm ∋ 𝑡,𝑢, 𝑣,𝑇 ,𝑈 ::= · · · | ∀𝑥 .𝑇 | 𝑥 .𝑡 | 𝑡 𝑢
Ctx ∋ Γ,Δ ::= . . .
Thy ∋ T ::= · · · | T, 𝑓 | T, 𝑡 ≈ 𝑢

Figure 14.1: Raw syntax of the framework, extending the grammars of Figure 2.1

steams from many reasons, the main one being its lack of support for abstracting confined
variables. Without such a construction, one is unable to encode universe polymorphism
when using the confined layer for representing universe levels, as level variables can then
never be abstracted.

While our extension was designed with the example of Agda-style universe polymor-
phism in mind, we suspect that many other interesting examples of type theories with
external equational theories could be covered by this framework. Moreover, we think
that extensions of Dedukti in this direction could allow in the future to cover the case of
cubical type theories [CCHM18], which are defined over an external equational theory of
De Morgan algebras.

14.1 The framework

Given a new set of confined variables 𝑥,𝑦, · · · ∈ V and a set of confined function symbols
𝑓 ∈ F equipped with arities, the raw syntax of our extension of Dedukti is defined
in Figure 14.1.1 Elements of Tm are called confined terms, which are first-order terms
built from F andV . The grammar of regular terms is then extended with quantification
over confined variables ∀𝑥 .𝑇 , abstraction of a confined variable 𝑥 .𝑡 and application to
a confined term 𝑡 𝑢 — similarly to how first-order terms are added to proof terms and
propositions in first-order logic [SU06, Section 8.7].

The notion of substitution is also extended to allow for entries of the form 𝑡/𝑥 , and
the application of a substitution to a term 𝑡 or confined term 𝑡 is defined in the most
straightforward way possible.

Because we now also have redexes of the form (𝑥 .𝑡)𝑢, we also consider the 𝛽 rule,
defined by (𝑥 .𝑡)𝑢 −→𝛽 𝑡 [𝑢/𝑥]. The global rewriting relation is thus updated to −→𝛽𝛽R ,
and we still write it as just −→ when R is clear from the context.

In this setting, an equational theory is a set E of equations of the form 𝑡 ≈ 𝑢, whose
closure under context and substitution is written ≃E , or just ≃ when E is clear from the

1There, the ". . . " mean that we recover the clauses from Figure 2.1.
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Γ ⊢ 𝑡 : 𝑇

𝑥 ∉ fv(Γ)

ForAll
Γ ⊢ 𝑇 : 𝑠

Γ ⊢ ∀𝑥 .𝑇 : 𝑠
𝑥 ∉ fv(Γ)

AbsC
Γ ⊢ 𝑡 : 𝑇

Γ ⊢ 𝑥 .𝑡 : ∀𝑥 .𝑇
F (𝑢) ⊆ F T

AppC
Γ ⊢ 𝑡 : ∀𝑥 .𝑇

Γ ⊢ 𝑡 𝑢 : 𝑇 [𝑢/𝑥]

Figure 14.2: Typing rules of the framework, extending those of Figure 2.2

context. The notion of theory T is extended with equations 𝑡 ≈ 𝑢 and confined symbols 𝑓
(which, as explained before, are assumed to be equipped with an arity), and we write ET
for the equational theory defined by T, and F T ⊆ F for the confined symbols specified
in T. Given a theory T, the typing judgment is then defined by the rules in Figure 14.2.
Note that in rule Conv the conversion ≡ defined by the theory now does not only contain
−→𝛽 and −→RT , but also ≃ET and −→𝛽 . Also remark that confined terms are subject to no
typing constraints: in rule AppC we only require the set of confined symbols in 𝑢, written
F (𝑢), to be a subset of F T, meaning that only symbols declared in the theory can be used
in confined terms.

The definition of well-typed theory is then straightforwardly extended to our new
notion of theory, by simply ignoring equations and confined symbol declarations, similarly
to how rewrite rules are handled in Figure 2.3. Finally, we also consider the notion of local
signature Φ and the definitions of T ⋉ Φ and T ⊢ Φ, as specified in Chapter 13.

14.2 Basic metatheory

The basic properties of Proposition 2.1 are updated here in the following manner:

Proposition 14.1 (Basic metaproperties). Let us write Γ ⊑ Γ′ when Γ is a subsequence of Γ′.

Weakening Suppose Γ ⊑ Γ′ and T ⊲ Γ′ ⊢. Then T ⊲ Γ ⊢ 𝑡 : 𝑇 implies T ⊲ Γ′ ⊢ 𝑡 : 𝑇 .

Substitution property If T ⊲ Γ, 𝑥 : 𝑈 , Γ′ ⊢ 𝑡 : 𝑇 and T ⊲ Γ ⊢ 𝑢 : 𝑈 then T ⊲ Γ, Γ′[𝑢/𝑥] ⊢
𝑡 [𝑢/𝑥] : 𝑇 [𝑢/𝑥]. If T ⊲ Γ ⊢ 𝑡 : 𝑇 and F (𝑢) ⊆ FT then T ⊲ Γ [𝑢/𝑥] ⊢ 𝑡 [𝑢/𝑥] : 𝑇 [𝑢/𝑥].

Conversion in context If T ⊲ Γ, 𝑥 : 𝑈 , Γ′ ⊢ 𝑡 : 𝑇 and T ⊲ Γ ⊢ 𝑈 ′ : 𝑠 and 𝑈 ≡ 𝑈 ′ then
T ⊲ Γ, 𝑥 : 𝑈 ′, Γ′ ⊢ 𝑡 : 𝑇 .

In the following points, suppose that T is well-typed.

Validity If T ⊲ Γ ⊢ 𝑡 : 𝑇 then either 𝑇 = Kind or T ⊲ Γ ⊢ 𝑇 : 𝑠 for 𝑠 = Type or Kind.

We say that a rule 𝑙 ↦−→ 𝑟 preserves typing in T whenever T ⊲ Γ ⊢ 𝑙 [\ ] : 𝑇 implies
T ⊲ Γ ⊢ 𝑟 [\ ] : 𝑇 , for every \, Γ,𝑇 .
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Subject reduction for RT If every rule in RT preserves typing in T, then T ⊲ Γ ⊢ 𝑡 : 𝑇
and 𝑡 −→RT 𝑡 ′ implies T ⊲ Γ ⊢ 𝑡 ′ : 𝑇 .

In the following points, suppose that injectivity of → and ∀ hold in T, meaning that
(𝑥 : 𝑇 ) → 𝑈 ≡ (𝑥 : 𝑇 ′) → 𝑈 ′ implies 𝑇 ≡ 𝑇 ′ and𝑈 ≡ 𝑈 ′, and that ∀𝑥 .𝑇 ≡ ∀𝑥 .𝑇 ′ implies
𝑇 ≡ 𝑇 ′.

Subject reduction for 𝛽 and 𝛽 If T ⊲ Γ ⊢ 𝑡 : 𝑇 and 𝑡 −→𝛽𝛽 𝑡
′ then T ⊲ Γ ⊢ 𝑡 ′ : 𝑇 .

Proof. Similar to Proposition 2.1. ■

14.3 A simple criterion for Church-Rosser modulo

In Dedukti, we often require theories to be Church-Rosser — or equivalently, for them
to be confluent. Because we now consider not only rewrite rules but also undirected
equations, the Church-Rosser property must be adapted into Church-Rosser modulo, stating
that for 𝑡 ≡ 𝑢 we have 𝑡 −→∗ 𝑡 ′ ≃ 𝑢′ ∗←− 𝑢 for some 𝑡 ′, 𝑢′.2

In order to show this important property in our framework, we propose the following
simple criterion. We emphasize that the use of confinement is essential in its proof — see
Remark 14.1 for a detailed discussion on this.

Theorem 14.1. If RT is left-linear, confluent and its left-hand sides do not mention symbols
from F , then the Church-Rosser modulo property holds.

The above result is important for two reasons. First, like in vanilla Dedukti, the
Church-Rosser property allows us to establish the injectivity of→, and here also of ∀,
which then ensure that 𝛽 and 𝛽 satisfy subject reduction. Church-Rosser is also needed
for showing that most rewrite rules preserve typing.

Second, from an implementation point of view, Theorem 14.1 ensures us that for
deciding 𝑡 ≡ 𝑢 we do not need matching modulo ET, which means deciding if there is \
with 𝑡 ≃ 𝑢 [\ ] for some given 𝑡,𝑢, but instead we only need for the word problem of ET to
be decidable and for −→ to be strongly normalizing for the considered subset of terms.
This is a point of departure with respect to Assaf et al.’s original criterion [ADJL17], that
instead proves a weaker version of Church-Rosser modulo in which rewriting employs
matching modulo — necessary in their case because, unlike here, rewrite rule left-hand
sides are allowed to mention confined symbols.3

2One can also generalize confluence to confluence modulo, however this property is not equivalent to
Church-Rosser modulo, which is actually stronger [BKdVT03, Remark 14.3.6]. Therefore, we will not be
interested in proving confluence modulo in this thesis.

3It is also worth noting that the hypotheses of our criteria are, in general, incomparable. For instance, if
Assaf et al.’s result allows for confined symbols in rules, it also forbids rewrite rules whose right-hand sides
are abstractions or variables, a restriction that is not necessary in our case. Additionally, we consider our
proof to be more elementary, whereas Assaf et al.’s proof requires complex tools like decreasing diagrams
and nested critical pairs.
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We consider the avoidance of matching modulo to be important because the equational
theories ET are user-defined, so it would not be reasonable to ask users to also provide an
ET-matching algorithm for each specified theory. Indeed, designing such algorithms is
generally highly non-trivial and requires specialist knowledge about ET. On the other
hand, asking for the word problem to be decidable is a much more reasonable assumption,
after all if ≃ is not decidable then there is no hope of deciding ≡.

Finally, we note that the approach of avoiding matching modulo was initially promoted
by Huet in his seminal work on rewriting [Hue80], though his criterion for achieving
this employs different hypotheses from the ones we have here. In particular, he requires
−→ ◦ ≃ to be terminating, which does not hold in our setting, given that we prove
confluence/Church-Rosser at the level of untyped terms.

We now show Theorem 14.1 in two steps. We first start with the following criterion for
showing Church-Rosser modulo in the setting of abstract rewriting. Recall that an abstract
equational rewrite system (⊲,∼) is given by a binary relation ⊲ ⊆ 𝑋 2 and an equivalence
relation ∼ ⊆ 𝑋 2. Then (⊲,∼) is said to be Church-Rosser modulo if 𝑥 (⊲ ∪ ⊳ ∪ ∼)∗ 𝑦 implies
𝑥 ⊲∗ ◦ ∼ ◦ ∗⊳ 𝑦, where we write ◦ for composition of relations, and ⊳ for the inverse of ⊲.
Finally, we say that ∼ is a simulation for ⊲ if ∼ ◦ ⊲ is included in ⊲ ◦ ∼.

Proposition 14.2. Let (⊲,∼) be an abstract equational rewrite system. If ⊲ is confluent and
∼ is a simulation for ⊲, then (⊲,∼) is Church-Rosser modulo.

Proof. If 𝑥 (⊲ ∪ ⊳ ∪ ∼)∗ 𝑦, then we have 𝑥 (⊲ ∪ ⊳ ∪ ∼)𝑛 𝑦 for some 𝑛. We prove the result
by induction on 𝑛, the base case being trivial. For the inductive step, we have

𝑥 (⊲ ∪ ⊳ ∪ ∼)𝑛 𝑧 (⊲ ∪ ⊳ ∪ ∼) 𝑦

for some 𝑧. First note that by i.h. we have 𝑥 ⊲∗ ◦ ∼ ◦ ∗⊳ 𝑧. We now have three possibilities:

1. 𝑧 ⊲ 𝑦 : We have 𝑥 ⊲∗ ◦ ∼ ◦ ∗⊳ ◦ ⊲ 𝑦, so by confluence we have 𝑥 ⊲∗ ◦ ∼ ◦ ⊲∗ ◦ ∗⊳ 𝑦.
Using the fact that ∼ is a simulation with respect to ⊲, we conclude 𝑥 ⊲∗ ◦ ∼ ◦ ∗⊳ 𝑦.

2. 𝑧 ⊳ 𝑦 : We have 𝑥 ⊲∗ ◦ ∼ ◦ ∗⊳ ◦ ⊳ 𝑦, and thus 𝑥 ⊲∗ ◦ ∼ ◦ ∗⊳ 𝑦.

3. 𝑧 ∼ 𝑦 : We have 𝑥 ⊲∗ ◦ ∼ ◦ ∗⊳ ◦ ∼ 𝑦, thus using the fact that ∼ is a simulation with
respect to ⊲, we get 𝑥 ⊲∗ ◦ ∼ ◦ ∗⊳ 𝑦. ■

Therefore, Theorem 14.1 follows directly from the following result:

Proposition 14.3. For RT whose left-hand sides are linear and do not mention symbols in F ,
the relation ≃ET is a simulation with respect to −→𝛽𝛽RT . Diagrammatically,

𝑢 𝑡

∃𝑢′ 𝑡 ′≃

≃
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Proof. By induction on the rewrite context of 𝑡 −→ 𝑡 ′. The crux of the proof is that, if
𝑡 = 𝑙 [\ ] for some rewrite rule 𝑙 ↦−→ 𝑟 ∈ RT, then linearity of 𝑙 combined with the fact
that it cannot mention symbols from F imply that we must have 𝑢 = 𝑙 [\ ′] with \ ≃ \ ′,
and so 𝑢 = 𝑙 [\ ′] −→ 𝑟 [\ ′] ≃ 𝑟 [\ ] = 𝑡 ′. The same reasoning also discharges the cases
(𝑥 .𝑣1)𝑣2 −→𝛽 𝑣1 [𝑣2/𝑥] and (𝑥 .𝑣)𝑢 −→𝛽 𝑣 [𝑢/𝑥]. ■

Remark 14.1. Note that, if we had not syntactically separated confined terms from regular
ones, the above proof would not have worked. For instance, taking ET with the equation
𝑓 (x, x) ≈ 𝑔(x) and RT with 𝑎 ↦−→ 𝑏, we would have

𝑔(𝑎) ≃ 𝑓 (𝑎, 𝑎) −→ 𝑓 (𝑏, 𝑎)

yet the only reduct of 𝑔(𝑎) is 𝑔(𝑏) and 𝑔(𝑏) ≃ 𝑓 (𝑏, 𝑎) does not hold. Therefore, it is crucial
for our proof that regular terms can mention confined terms but not the other way around.

□



Chapter 15

A Dedukti Theory for Predicative

Universe Polymorphism

In this chapter we define T∀P, a theory which extends TP (defined in Chapter 13) by
internalizing universe levels and allowing for prenex universe polymorphism [HP91, ST14].
This is in particular a subtheory of the one implemented in the Agda proof assistant [Tea],
and will be used as the new target of our proof translation. Before presenting it, let
us mention that in previous work Genestier also proposed another Dedukti theory for
predicative universe polymorphism [Gen20], yet, differently from our proposal, his one
is not Church-Rosser modulo and furthermore requires the use of matching modulo
associativity-commutativity, which is why we consider here a different theory.

15.1 Introducing T∀
P

The main change in the theory T∀P with respect to TP is that, instead of indexing symbols
externally, we index them inside the framework [Ass15, Ste19]. To do this, we first
introduce in Dedukti a syntax for predicate universe levels, by declaring confined symbols
0 (nullary), S (unary) and ⊔ (binary).
Notation 15.1. In the following, we use the letter 𝑙 to refer to confined terms built from 0,
S and ⊔, henceforth called levels, and we use the letters 𝑖, 𝑗, l to refer to confined variables
occurring in them (though we will adopt more liberal notations in Chapter 17). To allow
for more readable levels, we also adopt a lighter notation: we write ⊔ in infix notation, S
in curryfied notation, and consider ⊔ as having a lower precedence than S — for instance,
S 𝑖 ⊔ 𝑗 should be parsed as ⊔ (S(𝑖), 𝑗). □

Universe levels are then subject to the following equational theory, which we call the
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theory of predicative universe levels, also used in the Agda proof assistant [Tea].1

l1 ⊔ (l2 ⊔ l3) ≈ (l1 ⊔ l2) ⊔ l3 S (l1 ⊔ l2) ≈ S l1 ⊔ S l2 l ⊔ 0 ≈ l

l1 ⊔ l2 ≈ l2 ⊔ l1 l ⊔ S l ≈ S l l ⊔ l ≈ l

As we will see later in Chapter 17, not only these equations define a decidable theory,
but they also ensure that two levels are convertible exactly when they are arithmetically
equivalent, allowing us for instance to exchange S 𝑖 ⊔ 𝑖 ⊔ 0 with S 𝑖 .

The declarations of Figure 5.2 defining PTSs in Dedukti are then replaced by the
following ones, the only change being that the level parameters are now represented
inside the framework. Note that the two rewrite rules are presented in linearized form, in
order for them to be left-linear.

Ty : ∀l.Type
Tm : ∀l.Ty l→ Type

U : ∀l.Ty (S l)
Tm l′ (U l) ↦−→ Ty l

Π : ∀ll′.(A : Ty l) → (B : Tm l A→ Ty l′) → Ty (l ⊔ l′)
λ : ∀ll′.(A : Ty l) → (B : Tm l A→ Ty l′) →
((𝑥 : Tm l A) → Tm l′ (B 𝑥)) → Tm (l ⊔ l′) (Π l l′ A B)

@ : ∀ll′.(A : Ty l) → (B : Tm l A→ Ty l′) →
(t : Tm (l ⊔ l′) (Π l l′ A B)) → (u : Tm l A) → Tm l′ (B u)

@ l l′ A B (λ l′′ l′′′ A′ B′ t) u ↦−→ t u

This then concludes the definition of the theory T∀P. In the following, we adopt a
subscript notation for levels and write Ty𝑙 , Tm𝑙 , U𝑙 , Π𝑙,𝑙 ′ , λ𝑙,𝑙 ′ and @𝑙,𝑙 ′ to improve clarity.
When omitting arguments is mandatory for readability, we also continue to write Π𝑥 : 𝐴.𝐵
for Π𝑙,𝑙 ′ 𝐴 (𝑥 .𝐵) or𝐴{𝐵 when 𝑥 ∉ fv(𝐵), and Tm𝐴 for Tm𝑙 𝐴, and λ𝑥 .𝑡 for λ𝑙,𝑙 ′ 𝐴 𝐵 (𝑥 .𝑡),
and 𝑡@𝑢 for@𝑙,𝑙 ′ 𝐴 𝐵 𝑡 𝑢.

Universe polymorphism in T∀P can be represented directly with the use of the frame-
work’s function type [Ass15]. Indeed, if a definition contains free level variables, it can be
made universe polymorphic by abstracting over such variables. The following example
illustrates this.
Example 15.1. The universe polymorphic identity function is given by

id : ∀𝑖 .Tm (Π𝐴 : U𝑖 .𝐴{𝐴)
id := 𝑖 .λ𝐴.λ𝑎.𝑎

1Some authors consider a version of this theory without the neutral element 0 [BC22, BCDE23]; here
we stick to the variant used in Agda, which includes the 0.
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This then allows us to use id at any universe level: for instance, we can obtain the
polymorphic identity function at the level 0 with the application id 0, which has the
framework type Tm (Π𝐴 : U0.𝐴{𝐴). □

Remark 15.1. Note that, unlike in Agda and the proposal of Bezem et al. [BCDE23], but
similarly to the one of Sozeau and Tabareau [ST14], there is no object-level operation
for universe level abstraction, which is instead handled by the framework function type.
Therefore, universe polymorphic definitions are best understood as schemes rather than
actual terms in the object logic. Alternatively, this can be understood as the fragment of
Agda which only employs prenex level quantification. □

We conclude this short chapter by proving the following basic metaproperties of T∀P.

Proposition 15.1 (Basic properties of T∀
P
).

Well-typedness The theory T∀P is well-typed.

Church-Rosser Modulo The Church-Rosser modulo property holds.

Subject reduction If Γ ⊢ 𝑡 : 𝑇 and 𝑡 −→ 𝑡 ′ then Γ ⊢ 𝑡 ′ : 𝑇 .

Proof. Well-typedness of T∀P can be easily verified manually. Church-Rosser modulo
follows from Theorem 14.1 and the fact that 𝛽𝛽RT∀P is left-linear, confluent (by orthogonal-
ity [MN98]) and its left-hand sides do not mention 0, S or ⊔. Finally, from Church-Rosser
modulo we get the injectivity of→ and ∀, which yields subject reduction for 𝛽 and 𝛽 by
Proposition 14.1, and using Church-Rosser modulo again we can also check that all rules
in RT∀P preserve typing, which yields subject reduction for RT∀P by Proposition 14.1. ■



Chapter 16

Elaborating Universe-

Polymorphic Definitions

Now that we have refined the target of our translation from TP to T∀P, we update the
statement of the problem we are trying to solve: given a local signature Φ in the theory TI
— or actually in any theory given by instantiating Figure 5.2 with a PTS specification —
we want to translate it to a local signature Φ′ well-typed in the theory T∀P. As anticipated
in the end of Chapter 13, we propose to do this by incrementally elaborating each entry
of Φ into a universe-polymorphic one in T∀P, allowing for each previously translated entry
to be usable at various levels. Of course, the elaboration might fail at some point, however
if all steps succeed then we should get a local signature Φ′ well-typed in T∀P.

16.1 A bidirectional elaborator

In order to explain how a local signature Φ can be translated, we first explain how a
single term can be elaborated into a universe-polymorphic term in T∀P. This is done by
adapting the seminal work of Harper and Pollack [HP91], which defines a type system for
elaborating terms written using the typical ambiguity discipline, where universe levels are
left implicit. Compared with their work, the main differences is that we target a different
theory, and that our elaborator is bidirectional, similarly to the one of Norell [Nor07].

Recall from Part II that in bidirectional type systems the typing judgment Γ ⊢ 𝑡 : 𝑇 is
split into modes infer Γ ⊢ 𝑡 ⇒ 𝑇 and check Γ ⊢ 𝑡 ⇐ 𝑇 . In mode infer we start with Γ, 𝑡 and
we output a type 𝑇 for 𝑡 in Γ, whereas in mode check we are given Γ, 𝑡,𝑇 and we check
that 𝑡 indeed has type 𝑇 in Γ. Crucial in bidirectional typing is the proper bookkeeping of
pre-conditions and post-conditions, which are resumed in the following table — there, we
mark inputs with − and outputs with +.

Judgment Pre-condition Post-condition
Γ− ⊢ 𝑡− ⇒ 𝑇 + Γ ⊢ Γ ⊢ 𝑡 : 𝑇
Γ− ⊢ 𝑡− ⇐ 𝑇 − Γ ⊢ 𝑇 : 𝑠 Γ ⊢ 𝑡 : 𝑇
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To define our elaborator, we refine the standard bidirectional judgments in two ways:
first by outputting the term resulting from the elaboration, and second by returning a set
of equational constraints under which the term is well-typed. In order to do the latter, let
us start with some preliminary definitions. A level unification problem C is a set containing
equations of the form 𝑙

?
= 𝑙′, sometimes also referred to as constraints. In the following

definitions, let \ be a level substitution, meaning that 𝑖 [\ ] is a level for all 𝑖 ∈ dom(\ ).1
We write \ ⊨ C when 𝑙 [\ ] ≃ 𝑙′[\ ] for all 𝑙 ?

= 𝑙′ ∈ C, in which case \ is called a unifier (or
solution) for C. We then write Γ ⊢C when \ ⊨ C implies Γ [\ ] ⊢ for all \ , and Γ ⊢C 𝑡 : 𝑇
when \ ⊨ C implies Γ [\ ] ⊢ 𝑡 [\ ] : 𝑇 [\ ] for all \ .

Intuitively, just like the context Γ in Γ ⊢ 𝑡 : 𝑇 allows us to state a typing judgment
𝑡 : 𝑇 with typing hypotheses of the form 𝑥 : 𝐵 ∈ Γ, the set C in Γ ⊢C 𝑡 : 𝑇 refines this
with equational hypotheses of the form 𝑙 ≃ 𝑙′. With this in mind, we can now give the
new typing judgments in the following table. Compared with the previous table, we now
start with a set of constraints D that guarantees that the pre-condition holds, and in the
process we output a term 𝑡 ′ and a set of constraints C that, together with D, ensure that
the returned term has the expected type.

Judgment Pre-condition Post-condition
Γ− ↑ D− ⊢ 𝑡− ⇒ 𝑇 + ↓ C+ { 𝑡 ′+ Γ ⊢D Γ ⊢C∪D 𝑡 ′ : 𝑇
Γ− ↑ D− ⊢ 𝑡− ⇐ 𝑇 − ↓ C+ { 𝑡 ′+ Γ ⊢D 𝑇 : 𝑠 Γ ⊢C∪D 𝑡 ′ : 𝑇

We can now define the bidirectional elaborator by the rules in Figure 16.1. In rule
Sym we write ˆ(−) for the function mapping the symbols Ty𝑙 ,Tm𝑙 ,U𝑙 ,Π𝑙,𝑙 ′,@𝑙,𝑙 ′, λ𝑙,𝑙 ′ from
Figure 5.2 to the symbols Ty,Tm,U,Π,@, λ from Chapter 15, and keeping any other
symbol unchanged.

The elaborator also relies on two new conversion judgments𝑇 ≡ 𝑈 ↓ C and 𝑇 ≡h 𝑈 ↓
C used to compute a set of constraints needed for the conversion to hold. In the given
rules, we write 𝑡 −→h 𝑢 for the reduction of 𝑡 to a head-normal form 𝑢, meaning that
𝑡 −→∗ 𝑢 and, if 𝑢 −→∗ 𝑢′ 𝑣1 . . . 𝑣𝑘 (where 𝑘 might be 0), then 𝑢′ matches no rewrite rule
left-hand side at the head (including 𝛽 and 𝛽).2

Remark 16.1. Note that the elaborator of Figure 16.1 is not defined for the whole syntax of
the framework — for instance, it is not defined for 𝑡 not in 𝛽-normal form. This is because
we are only interested in the fragment of TI which is in the image of the translation
function defined in Chapter 5. □

1That is, \ may only mention confined symbols declared in the theory T∀P .2Therefore, the definition of head-normal form is not the same one as in Section 8.2, which would allow
for instance for terms like (𝑥 .𝑥)𝑦𝑧. This is because Dedukti uses a different formalism of higher-order
rewriting, in which the definition of head-normal form is instead adapted from the _-calculus.
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𝑡 ≡ 𝑢 ↓ C

𝑡 −→h 𝑡 ′ 𝑢 −→h 𝑢′ 𝑡 ′ ≡h 𝑢′ ↓ C
𝑡 ≡ 𝑢 ↓ C

𝑡 ≡h 𝑢 ↓ C

𝑡 = 𝑥, 𝑓 , 𝑠

𝑡 ≡h 𝑡 ↓ ∅
𝑡 ≡ 𝑡 ′ ↓ C

𝑥 .𝑡 ≡h 𝑥 .𝑡 ′ ↓ C
𝑡 ≡h 𝑡 ′ ↓ C

𝑡 𝑙 ≡h 𝑡 ′ 𝑙′ ↓ C ∪ {𝑙 ?
= 𝑙′}

𝑇 ≡ 𝑇 ′ ↓ C1 𝑈 ≡ 𝑈 ′ ↓ C2
(𝑥 : 𝑇 ) → 𝑈 ≡h (𝑥 : 𝑇 ′) → 𝑈 ′ ↓ C1 ∪ C2

𝑡 ≡h 𝑡 ′ ↓ C1 𝑢 ≡ 𝑢′ ↓ C2
𝑡 𝑢 ≡h 𝑡 ′ 𝑢′ ↓ C1 ∪ C2

Γ ↑ D ⊢ 𝑡 ⇐ 𝑇 ↓ C { 𝑡 ′

Switch
Γ ↑ D ⊢ 𝑡 ⇒ 𝑇 ↓ C1 { 𝑡 ′ 𝑇 ≡ 𝑈 ↓ C2

Γ ↑ D ⊢ 𝑡 ⇐ 𝑈 ↓ C1 ∪ C2 { 𝑡 ′

Abs
𝑇 −→h (𝑥 : 𝑇1) → 𝑇2

Γ, 𝑥 : 𝑇1 ↑ D ⊢ 𝑡 ⇐ 𝑇2 ↓ C { 𝑡 ′

Γ ↑ D ⊢ 𝑥 .𝑡 ⇐ 𝑇 ↓ C { 𝑥 .𝑡 ′

Γ ↑ D ⊢ 𝑡 ⇒ 𝑇 ↓ C { 𝑡 ′

Sym
𝑓 : ∀𝑗1 . . . 𝑗𝑘 .𝑇 ∈ T 𝑖1, . . . , 𝑖𝑘 fresh
Γ ↑ D ⊢ 𝑓 ⇒ 𝑇 [®𝑖/®𝑗] ↓ ∅ { 𝑓 𝑖1 . . . 𝑖𝑘

Var
𝑥 : 𝑇 ∈ Γ

Γ ↑ D ⊢ 𝑥 ⇒ 𝑇 ↓ ∅ { 𝑥

App
Γ ↑ D ⊢ 𝑡 ⇒ 𝑇 ↓ C1 { 𝑡 ′ 𝑇 −→h (𝑥 : 𝑇1) → 𝑇2 Γ ↑ D ∪ C1 ⊢ 𝑢 ⇐ 𝑇1 ↓ C2 { 𝑢′

Γ ↑ D ⊢ 𝑡 𝑢 ⇒ 𝑇2 [𝑢′/𝑥] ↓ C1 ∪ C2 { 𝑡 ′ 𝑢′

Figure 16.1: Bidirectional type system for universe-polymorphic elaboration
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Example 16.1. Suppose we want to elaborate the entry

id
′ : Tm (Π𝐴 : UΩ .𝐴{𝐴)

id
′ := id@(Π𝐴 : UΩ .𝐴{𝐴)@id

in an extension of T∀P with id : ∀𝑖 .(Π𝐴 : U𝑖 .𝐴{𝐴) := 𝑖 .λ𝐴.λ𝑥 .𝑥 . To do so, we first
elaborate Tm (Π𝐴 : UΩ .𝐴{𝐴) into a valid type, yielding

() ↑ ∅ ⊢ Tm (Π𝐴 : UΩ .𝐴{𝐴) ⇐ Type ↓ C1 { Tm (Π𝐴 : U𝑖1 .𝐴{𝐴)

We can then elaborate id@(Π𝐴 : UΩ .𝐴{𝐴)@id under the constraints C1:

() ↑ C1 ⊢ id@(Π𝐴 : UΩ .𝐴{𝐴)@id⇐ Tm (Π𝐴 : U𝑖1 .𝐴{𝐴) ↓ C2
{ (id 𝑖2)@(Π𝐴 : U𝑖3 .𝐴{𝐴)@(id 𝑖4)

In the end we get the constraints

C1 ∪ C2 := {S 𝑖1
?
= 𝑖2, 𝑖1

?
= 𝑖3, 𝑖1

?
= 𝑖4, ...}

where the hidden constraints concern level variables appearing in implicit arguments. □
We can show the soundness of elaboration by simply verifying that each rule locally

preserves the invariants of the last table — this is the essence of the proof of Theorem 16.1.
Before proving this, we first need a lemma establishing the soundness of conversion
checking.

Lemma 16.1. Suppose that 𝑇 ≡ 𝑈 ↓ C or 𝑇 ≡h 𝑈 ↓ C. If \ ⊨ C then 𝑇 [\ ] ≡ 𝑈 [\ ].

Proof. By an easy mutual induction on 𝑇 ≡ 𝑈 ↓ C and 𝑇 ≡h 𝑈 ↓ C. ■

Theorem 16.1 (Soundness of term elaboration). In the following, suppose that the under-
lying theory satisfies well-typedness and subject reduction.

• If Γ ⊢D 𝑇 : 𝑠 and Γ ↑ D ⊢ 𝑡 ⇐ 𝑇 ↓ C { 𝑡 ′ then Γ ⊢C∪D 𝑡 ′ : 𝑇

• If Γ ⊢D and Γ ↑ D ⊢ 𝑡 ⇒ 𝑇 ↓ C { 𝑡 ′ then Γ ⊢C∪D 𝑡 ′ : 𝑇

Proof. By mutual induction on the elaborator judgments.

• Case Var. Let \ ⊨ ∅ ∪ D. By hypothesis we have Γ [\ ] ⊢, and hence Γ [\ ] ⊢ 𝑥 : 𝑇 [\ ].

• Case Sym. Let \ ⊨ ∅ ∪ D. By hypothesis we have Γ [\ ] ⊢, and hence Γ [\ ] ⊢ 𝑓 : ∀®𝑗 .𝑇 .
Because \ is a level substitution, then 𝑖1 [\ ], . . . , 𝑖𝑘 [\ ] are all levels, so we can derive
Γ [\ ] ⊢ 𝑓 ®𝑖 [\ ] : 𝑇 [®𝑖 [\ ]/®𝑗]. Finally, \ is not defined for ®𝑗 , so 𝑇 [®𝑖 [\ ]/®𝑗] = 𝑇 [®𝑖/®𝑗] [\ ].
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• Case Switch. Let \ ⊨ C1∪C2∪D. By hypothesis we have Γ ⊢D 𝑈 : 𝑠 and thus Γ ⊢D ,
therefore by i.h. we have Γ ⊢C1∪D 𝑡 ′ : 𝑇 , from which we get Γ [\ ] ⊢ 𝑡 ′[\ ] : 𝑇 [\ ].
Moreover, from Lemma 16.1 we also get 𝑇 [\ ] ≡ 𝑈 [\ ]. Finally, from Γ ⊢D 𝑈 : 𝑠 we
have Γ [\ ] ⊢ 𝑈 [\ ] : 𝑠 , and therefore we conclude Γ [\ ] ⊢ 𝑡 ′[\ ] : 𝑈 [\ ] by conversion.

• Case App. By hypothesis we have Γ ⊢D , therefore by i.h. we have Γ ⊢C1∪D 𝑡 ′ : 𝑇 .
We first claim that Γ ⊢C1∪D 𝑇1 : Type and Γ ⊢C1∪D 𝑡 ′ : (𝑥 : 𝑇1) → 𝑇2. Let \ ⊨ C1 ∪D,
in which case we have Γ [\ ] ⊢ 𝑡 ′[\ ] : 𝑇 [\ ]. By validity we have Γ [\ ] ⊢ 𝑇 [\ ] : 𝑠
for some 𝑠 , so by subject reduction and 𝑇 [\ ] −→∗ (𝑥 : 𝑇1 [\ ]) → 𝑇2 [\ ] we have
Γ [\ ] ⊢ (𝑥 : 𝑇1 [\ ]) → 𝑇2 [\ ] : 𝑠 . By inversion we thus get Γ [\ ] ⊢ 𝑇1 [\ ] : Type.
Finally, applying conversion with Γ [\ ] ⊢ 𝑡 ′[\ ] : 𝑇 [\ ], we get Γ [\ ] ⊢ 𝑡 ′[\ ] : (𝑥 :
𝑇1 [\ ]) → 𝑇2 [\ ].
Using Γ ⊢C1∪D 𝑇1 : Type, we can now apply the i.h. again and obtain Γ ⊢C1∪C2∪D
𝑢′ : 𝑇1. Now let \ ⊨ C1 ∪ C2 ∪ D. We thus have Γ [\ ] ⊢ 𝑡 ′[\ ] : (𝑥 : 𝑇1 [\ ]) → 𝑇2 [\ ]
and Γ [\ ] ⊢ 𝑢′[\ ] : 𝑇1 [\ ], so by the application rule we get Γ [\ ] ⊢ 𝑡 ′[\ ] 𝑢′[\ ] :
𝑇2 [\ ] [𝑢′[\ ]/𝑥]. Because 𝑇2 [\ ] [𝑢′[\ ]/𝑥] = 𝑇2 [𝑢′/𝑥] [\ ], the result follows.

• Case Abs. By hypothesis we have Γ ⊢D 𝑇 : 𝑠 , from which we can easily derive
Γ ⊢D 𝑇1 : Type and Γ, 𝑥 : 𝑇1 ⊢D 𝑇2 : 𝑠 , like in the previous case.
Now let \ ⊨ C ∪ D. By the i.h. we get also get Γ, 𝑥 : 𝑇1 ⊢C∪D 𝑡 ′ : 𝑇2, and thus
Γ [\ ], 𝑥 : 𝑇1 [\ ] ⊢ 𝑡 ′[\ ] : 𝑇2 [\ ], and from Γ ⊢D 𝑇1 : Type and Γ, 𝑥 : 𝑇1 ⊢D 𝑇2 : 𝑠 we
also get Γ [\ ] ⊢ 𝑇1 [\ ] : Type and Γ [\ ], 𝑥 : 𝑇1 [\ ] ⊢ 𝑇2 [\ ] : 𝑠 . Therefore, we conclude
Γ [\ ] ⊢ 𝑥 .𝑡 ′[\ ] : (𝑥 : 𝑇1 [\ ]) → 𝑇2 [\ ] by the abstraction rule. ■

16.2 Elaborating local signatures

Using the term elaborator of last section, we can then translate a local signature Φ by
simply elaborating each of its entries, in the theory given by T∀P extended with the prefix
preceding the entry in question.

However, because the result of elaborating each entry generates a set of constraints,
in order to obtain a well-typed term we first need to solve them. Yet, as explained in
Chapter 13, we do not want a numerical assignment of level variables that satisfies the
constraints, but rather a general symbolic solution which allows the term to be instantiated
later at different universe levels. This, therefore, requires the use of unification. However,
because levels are not purely syntactic entities, one needs to devise a unification algorithm
specific for the equational theory of universe levels, which will be the purpose of the next
chapter. So for now, let us just assume we are given a (partial) function Unify which
computes from a set of constraints C a substitution \ with \ ⊨ C.

The elaboration of a local signature can then be defined by the rules in Figure 16.2. Let
us explain the case of elaborating an entry 𝑓 : 𝑇 := 𝑡 . The first step is elaborating 𝑇 and
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Φ { Φ′

· { ·

Φ { Φ′ T∀P ⋉ Φ
′ ⊲ · ↑ ∅ ⊢ 𝑇 ⇐ Type ↓ C { 𝑇 ′

\ = Unify(C) ®𝑖 = fv(𝑇 ′[\ ])
Φ, 𝑓 : 𝑇 { Φ′, 𝑓 : ∀®𝑖 .𝑇 ′[\ ]

Φ { Φ′ T∀P ⋉ Φ
′ ⊲ · ↑ ∅ ⊢ 𝑇 ⇐ Type ↓ C { 𝑇 ′

T∀P ⋉ Φ
′ ⊲ · ↑ C ⊢ 𝑡 ⇐ 𝑇 ′ ↓ D { 𝑡 ′

\ = Unify(C ∪ D) ®𝑖 = fv(𝑇 ′[\ ]) ®𝑗 = fv(𝑡 ′[\ ]) \ fv(𝑇 ′[\ ])
Φ, 𝑓 : 𝑇 := 𝑡 { Φ′, 𝑓 : ∀®𝑖 .𝑇 ′[\ ] := ®𝑖 .𝑡 ′[\ ] [0/®𝑗]

Figure 16.2: Local signature elaboration

then 𝑡 , yielding the terms 𝑡 ′,𝑇 ′ and the constraints C andD, and then calculating a unifier
for them. If we write ®𝑖 for fv(𝑇 ′[\ ]) and ®𝑗 for fv(𝑡 ′[\ ]) \ fv(𝑇 ′[\ ]), we could then simply
generalize over ®𝑖, ®𝑗 and obtain the entry 𝑓 : ∀®𝑖 ®𝑗 .𝑇 ′[\ ] := ®𝑖 ®𝑗 .𝑡 [\ ′]. However, because the ®𝑗
do not appear on the type𝑇 ′[\ ], then in order to reduce the number of level arguments we
can simply map them to the bottom level 0, yielding 𝑓 : ∀®𝑖 .𝑇 ′[\ ] := ®𝑖 .𝑡 [\ ′] [0/®𝑗] instead.
Even though this does not impact the soundness of the elaboration, this optimization is
still useful because reducing the number of level arguments empirically leads to unification
problems that are easier to solve in practice.
Example 16.2. Suppose that we want to translate the last example of Chapter 13, namely

Φ = id : (Π𝐴 : UΩ .𝐴{𝐴) := λ𝐴.λ𝑡 .𝑡,

id
′ : Tm (Π𝐴 : UΩ .𝐴{𝐴) := id@(Π𝐴 : UΩ .𝐴{𝐴)@id

For the sake of this example, we skip the calculation of the first part of Φ, which yields

id : (Π𝐴 : UΩ .𝐴{𝐴) := λ𝐴.λ𝑡 .𝑡 { id : ∀𝑖 .(Π𝐴 : U𝑖 .𝐴{𝐴) := 𝑖 .λ𝐴.λ𝑡 .𝑡

Now recall that, by Example 16.1, elaborating the terms

Tm (Π𝐴 : UΩ .𝐴{𝐴) and id@(Π𝐴 : UΩ .𝐴{𝐴)@id

yields the terms

∀𝑖 .Tm (Π𝐴 : U𝑖 .𝐴{𝐴) and (id 𝑖2)@(Π𝐴 : U𝑖3 .𝐴{𝐴)@(id 𝑖4)

and the equations
C1 ∪ C2 := {S 𝑖1

?
= 𝑖2, 𝑖1

?
= 𝑖3, 𝑖1

?
= 𝑖4, ...}
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The algorithm of the next section is able to compute the unifier

\ = 𝑖1 ↦→ 𝑖4, 𝑖2 ↦→ S 𝑖4, 𝑖3 ↦→ 𝑖4, ...

so we can now apply the unifier to the generated terms and generalize over the free level
variables of the type, while mapping the other ones to 0, giving at the end

id
′ : ∀𝑖4.Tm (Π𝐴 : U𝑖4 .𝐴{𝐴) := 𝑖4.(id (S 𝑖4))@(Π𝐴 : U𝑖4 .𝐴{𝐴)@(id 𝑖4)

Note that in the resulting term, the two occurrences of id are applied to different universe
levels, illustrating the importance of using universe polymorphism in the translation. □

Let us now show the final soundness theorem for our translation. For this, we will
need the following easy lemma.

Lemma 16.2. If Φ is well-typed in T∀P then T∀P ⋉ Φ satisfies well-typedness and subject
reduction.

Proof. Well-typedness of T∀P ⋉ Φ is a trivial consequence of well-typedness of T∀P (Propo-
sition 15.1) and T∀P ⊢ Φ. To show subject reduction, we will also need Church-Rosser
modulo, which follows by Theorem 14.1, using the fact that RT∀P⋉Φ is orthogonal and hence
confluent. Then, subject reduction for 𝛽𝛽 follows from injectivity of→ and ∀ (which we
have by Church-Rosser modulo), and subject reduction for the other rewrite rules follow
by verifying that they all preserve typing. The preservation of typing of the rules already
in T∀P is shown by the same proof as in Proposition 15.1, and for the other rules 𝑓 ↦−→ 𝑡

we use T∀P ⊢ Φ to obtain a derivation of · ⊢ 𝑡 : 𝑇 for each 𝑓 : 𝑇 := 𝑡 ∈ Φ. ■

Theorem 16.2 (Soundness of local signature elaboration). If Φ { Φ′ then T∀P ⊢ Φ
′.

Proof. By induction on the definition of the judgment Φ { Φ′, the base case being trivial.
Let us consider the case of a local signature Φ, 𝑓 : 𝑇 := 𝑡 , the case Φ, 𝑓 : 𝑇 being similar.
By applying the i.h. to Φ { Φ′, we obtain that Φ′ is well-typed in T∀P, implying by
Lemma 16.2 that T∀P ⋉ Φ

′ is well-typed and satisfies subject reduction. Therefore, we can
apply Theorem 16.1 to get T∀P⋉Φ

′⊲ · ⊢D 𝑇 ′ : Type and T∀P⋉Φ
′⊲ · ⊢C∪D 𝑡 ′ : 𝑇 ′, and because \

is a unifier for C ∪ D, we get T∀P ⋉ Φ
′ ⊲ · ⊢ 𝑡 ′[\ ] : 𝑇 ′[\ ]. By the substitution property,

and the fact that the ®𝑗 do not occur in 𝑇 ′[\ ], we obtain T∀P ⋉ Φ
′ ⊲ · ⊢ 𝑡 ′[\ ] [0/®𝑗] : 𝑇 ′[\ ],

and thus T∀P ⋉ Φ
′ ⊲ · ⊢ ®𝑖 .𝑡 ′[\ ] [0/®𝑗] : ∀®𝑖 .𝑇 ′[\ ] [0/®𝑗], allowing us to conclude T∀P ⊢ Φ

′, 𝑓 :
∀®𝑖 .𝑇 ′[\ ] := ®𝑖 .𝑡 ′[\ ] [0/®𝑗]. ■



Chapter 17

Unification for Predicative

Universe Levels

The elaborator presented in the last chapter relies on an unspecified algorithm for universe
level unification, which we now define in this chapter.
Notation 17.1. We adopt new notation conventions for the rest of this chapter. First,
we write 𝑡,𝑢, 𝑣, . . . for levels, instead of 𝑙, 𝑙′, and 𝑥,𝑦, . . . for level variables, instead of
𝑖, 𝑗1 — because the only terms we deal with in this chapter are levels (except for the
proof of Theorem 17.2, where we return to the previous notations), no ambiguity can
arise. Moreover, to improve the readability of large level expressions, we write 𝑛 + 𝑡 for
the level S𝑛 𝑡 , 𝑛 for the level S𝑛 0, and we drop the blue color in ⊔. For instance, the
level S 0 ⊔ S (S 𝑥 ⊔ 0) will henceforth be written 1 ⊔ 1 + (1 + 𝑥 ⊔ 0) — note that +
binds tighter then ⊔, and that the left argument of + is always a natural number, so this
expression can be parsed unambiguously. Finally, we also allow ourselves to write entries
of substitutions \ as 𝑥 ↦→ 𝑡 instead of 𝑡/𝑥 , which sometimes can improve readability when
𝑡 is a big term. □

Preliminaries about unification

Before going any further, let us review some important preliminaries about unification
theory — we refer to Baader and Snyder [BS01] for a thorough introduction to this topic.
Recall from the previous section that we consider unification problems C containing
equations of the form 𝑡 ?

= 𝑢, for 𝑡 and𝑢 levels, and that a unifier\ forC is a level substitution
for which we have 𝑡 [\ ] ≃ 𝑢 [\ ] for all equations 𝑡 ?

= 𝑢 in C, in which case we write \ ⊨ C.2
Given a finite set 𝑋 of level variables, we define the instantiation pre-order ⪯𝑋 by

\ ⪯𝑋 𝜏 iff there is some 𝜎 such that 𝑥 [\ ] [𝜎] ≃ 𝑥 [𝜏] for all 𝑥 ∈ 𝑋 . We then say that a set
Θ of unifiers for C is complete if, for any unifier 𝜏 of C, we have \ ⪯fv(C) 𝜏 for some \ ∈ Θ,

1This frees 𝑖, 𝑗 so we can use them for indexing, as is common in many mathematical texts.
2Therefore, in this thesis we only consider the problem of elementary unification, in which only symbols

from the equational theory and variables might appear in the problem or the solutions.

137
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and we say that it is minimal if any two unifiers \, \ ′ ∈ Θ are incomparable with respect
to ⪯fv(C) . We often abbreviate "minimal complete set of unifiers" as just m.c.u..

Because m.c.u.s are unique up to the equivalence relation defined by ⪯fv(C) [BS01,
Corollary 3.13], it is possible to classify unification problems with respect to the cardinality
of their m.c.u.s. Given a unification problem C, we then say that C is unitary when m.c.u.s
exist and have cardinality of 0 or 1,3 finitary if m.c.u.s exist and have finite cardinality,
infinitary if m.c.u.s exist and have infinite cardinality, and nullary if m.c.u.s do not exist. By
ordering these as unitary < finitary < infinitary < nullary, we then say that an equational
theory is unitary (resp. finitary, infinitary, nullary) when its unification problems are at
most unitary (resp. finitary, infinitary, nullary). Finally, when a problem is unitary, the
elements of its singleton m.c.u.s are called most general unifiers, and often abbreviated as
just m.g.u.s.

The theory of predicative universe levels is not unitary

When studying unification in an equational theory, a very natural first question is whether
the theory is unitary, given that unitary theories are much more convenient to handle
from the point of view of unification theory. Unfortunately, our first observation is that
the equational theory of predicative levels used in T∀P is not unitary.

Theorem 17.1. The theory of predicative universe levels is not unitary, that is, there is some
solvable unification problem that has no most general unifier.

Proof. Consider the equation 1 + 𝑥1
?
= 𝑥2 ⊔ 𝑥3, which is solvable, and suppose it had a

m.g.u. \ . Note that \1 = 𝑥1 ↦→ 0, 𝑥2 ↦→ 1, 𝑥3 ↦→ 0 is also a unifier, thus for some 𝜏 we have
𝑥3 [\ ] [𝜏] ≃ 0. Therefore, there can be no occurrence of a successor in 𝑥3 [\ ]. By taking
\2 = 𝑥1 ↦→ 0, 𝑥2 ↦→ 0, 𝑥3 ↦→ 1 we can show similarly that there can be no occurrence of a
successor in 𝑥2 [\ ]. But by taking a substitution \ ′ mapping all variables in (𝑥2 ⊔ 𝑥3) [\ ]
to 0, we get (𝑥2 ⊔ 𝑥3) [\ ] [\ ′] ≃ 0, which cannot be equivalent to (1 + 𝑥1) [\ ] [\ ′]. Hence,
1 + 𝑥1

?
= 𝑥2 ⊔ 𝑥3 has no m.g.u. ■

One can then also wonder if, by restricting to the fragment of problems generated by
the elaborator, one can expect to recover the property that all solvable problems admit a
m.g.u. The following result also answers this negatively.

Theorem 17.2. There is a local signature whose constraints computed by the elaborator are
solvable but have no most general unifier.

Proof. In this proof, we locally return to the conventions of Notation 15.1. Consider
the following singleton signature, which is well-typed in TP. Once again, we reuse our

3Note therefore that a problem that has no unifier is automatically unitary, as the empty set is an m.c.u.
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convention of keeping some arguments implicit.

Φ = 𝑓 : Tm (U1{ U1{ (Π𝐶 : U2.𝐶{𝐶{ U0){ U0)
𝑓 := λ𝐴.λ𝐵.λ𝑅.𝑅@U1@U0@(𝐴{ 𝐵)

Its elaboration yields the terms

Tm (U𝑖1 { U𝑖2 { (Π𝐶 : U𝑖3 .𝐶{𝐶{ U𝑖4){ U𝑖5)
and

λ𝐴.λ𝐵.λ𝑅.𝑅@U𝑖6@U𝑖7@(𝐴{ 𝐵)
and a unification problem that can be simplified to {S 𝑖7

?
= 𝑖1 ⊔ 𝑖2}, after solving some easy

equations.4 This is because the application of 𝑅@U𝑖6 : Tm (U𝑖6 { U𝑖6 { U𝑖4) to U𝑖7 and
(𝐴{ 𝐵) requires the last two to be in the same universe, whose levels are respectively
S 𝑖7 and 𝑖1 ⊔ 𝑖2. This equation is solvable but, by Theorem 17.1, does not admit a most
general unifier. ■

Remark 17.1. Note that the definition of the above proof can be typed predicatively,
showing that impredicativity is not the culprit of the problem. One can also wonder if
a similar term can be typed in TI. It seems that the idea of the above counter-example
requires at least 3 universe levels while TI has only 2. However, impredicative proof
assistants such as Coq,Matita and Lean often consider an infinite hierarchy of universes,
in which the counter-example can be reproduced. □

Remark 17.2. In the above proof, one can alternatively verify the calculation of constraints
automatically in Agda by typechecking the code

test : (𝐴 : Set _) → (𝐵 : Set _) → (𝑅 : (𝐶 : Set _) → 𝐶 → 𝐶 → Set _) → Set _
test = _𝐴 𝐵 𝑅 → 𝑅 (Set _) (Set _) (𝐴→ 𝐵)

which returns the error
Failed to solve the following constraints: _0 ⊔ _1 = lsuc _10

showing that Agda’s elaborator also simplifies the problem to find the same constraint. □
In other words, some elaborated terms may not admit a most general universe-

polymorphic instance, even when they admit some well-typed instances. A possible
strategy would be to look not for a m.g.u., but instead for a minimal set of incomparable
unifiers, as is often done in the equational unification literature [BS01]. However, this
would not only require to duplicate each term being translated, one for each incomparable
unifier, but this strategy would also risk of growing the output size exponentially. Indeed,
a term using a previous translated entry that was duplicated 𝑛 times would then need to
be elaborated multiple times, once with each of these 𝑛 variants. Therefore, we at first
insist on looking only for m.g.u.s, even if by Theorem 17.2 this approach can fail in some
cases when the problem is solvable but does not admit a m.g.u.

4For instance, by using the algorithm of Figure 17.2.
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Overview of the chapter

The first main contribution of this chapter, given in Section 17.2, is a complete characteri-
zation of the equations 𝑡 ?

= 𝑢 that admit a most general unifier. More precisely, our result
says exactly when such a single equation (1) admits a m.g.u., in which case we also have
an explicit description of one, (2) does not admit any unifier, or (3) admits some unifier
but no most general one. However, because we are interested in unification problems that
may contain multiple equations, in Section 17.3 we then apply this characterization in the
design of an algorithm using a constraint-postponing strategy [ZS17, DHKP96, Ree09]: at
each step, we look for an equation which admits a m.g.u. and eliminate it, while applying
the obtained substitution to the other constraints. This can then bring new equations to
the fragment admitting a m.g.u., allowing us to solve them next. This is similar to how
most proof assistants handle higher-order unification problems, by trying to solve the
equations that are in the pattern fragment, in the hope of unblocking some other ones
in the process. When applying our algorithm to a problem, there are then three possible
outcomes: (1) it yields a substitution, in which case it is a m.g.u., (2) it yields ⊥, in which
case there are no unifiers, or (3) it gets stuck in the process and produces no solution.

Our algorithm is based on a complete characterization of single equations, so it follows
that it is complete for finding m.g.u.s when the problem has only one equation. Yet,
outside of this class, there are actually problems with m.g.u.s for which our algorithm
does not return any unifier. We then contribute a second algorithm in Section 17.4 which
we show to calculate a minimal complete set of unifiers under two conjectures about
linear problems in max-plus algebra — in particular, under these hypotheses, it is able
to find a m.g.u. for all problems that admit one. More explicitly, our algorithm works
similarly to Baader’s unification algorithm for commutative theories [BS01] — though we
stress that the equational theory of predicative universe levels is not an instance of his
framework — by reducing the problem to the one of finding a finite basis for the solutions
of two linear problems in a specific max-plus algebra. To the best of our knowledge,
it is however not known if the space of solutions for the problems we consider always
admits a finite basis, and so the proof of correctness of our algorithm has to rely on this
conjecture. Finally, we expect that this algorithm should have a high complexity, so to
address this we propose to pre-process problems using our first constraint-postponement-
based algorithm, allowing to cheaply eliminate some equations from the problem before
running the second algorithm.

17.1 Preliminaries on levels

Before presenting our results, we first start by reviewing some important properties about
universe levels that will be useful in our proofs.

In order to be able to compare levels syntactically, it is useful to introduce a notion of
canonical form. A level is said to be in canonical form [Voe14, Gen20] when it is of the
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form
𝑝 ⊔ 𝑛1 + 𝑥1 ⊔ · · · ⊔ 𝑛𝑘 + 𝑥𝑘

with 𝑛𝑖 ≤ 𝑝 for all 𝑖 = 1, . . . , 𝑘 , and each variable occurs only once. In this case we call
𝑝 the constant coefficient, and 𝑛𝑖 the coefficient of 𝑥𝑖 . We recall the following fundamen-
tal property, which appears in [Voe14, Gen20, Bla22], and which we reprove here for
completeness reasons.

Theorem 17.3. Every level is equivalent to a canonical form, which is unique modulo
associativity-commutativity. Moreover, there is a computable function mapping each level to
one of its canonical forms.

Proof. Let us describe the calculation of a canonical form, while at the same time showing
that each step leads to a convertible level. Given a level 𝑡 , we first replace each variable 𝑥
by 𝑥⊔0 (which are convertible levels). Then, by repeatedly applying 1+(𝑡⊔𝑢) ≃ 1+𝑡⊔1+𝑢,
we get a level of the form 𝑡1 ⊔ · · · ⊔ 𝑡𝑘 , in which each 𝑡𝑖 is either of the form 𝑛𝑖 + 𝑥𝑖 or 𝑛𝑖 .
Note that we can easily show 𝑛 +𝑥 ⊔𝑥 ≃ 𝑛 +𝑥 for all 𝑛 ∈ N, by induction on 𝑛, which then
implies 𝑛 + 𝑥 ⊔𝑚 + 𝑥 ≃ max{𝑛,𝑚} + 𝑥 . Using this equation, we can merge all constant
coefficients, and then all coefficients of a same variable, by always taking the maximum
between them. Because in the beginning we started by replacing each variable 𝑥 by 𝑥 ⊔ 0,
it follows that the constant coefficient of the resulting level must be greater or equal to all
variable coefficients. Therefore, we have reached a canonical form.

To see that the canonical form is unique modulo associativity-commutativity, it suffices
to note that if two canonical forms have different coefficients for a variable 𝑥 , then by
applying a substitution mapping 𝑥 to some 𝑛 large enough and the other variables to 0 we
get two levels which are not convertible, hence the canonical forms we started with could
not have been convertible. Similarly, if the constant coefficients are different, it suffices to
take the substitution mapping all variables to 0, which then also yields non-convertible
levels. ■

We hence get the following theorem, also in [Voe14, Gen20, Bla22].

Corollary 17.1. The equational theory of predicative universe levels is decidable.

In view of Theorem 17.3 and the notion of canonical form, we introduce the following
notation: given a level 𝑡 , we write 𝑡 ⟨𝑥⟩ for the coefficient of 𝑥 in its canonical form, and
set it to −∞ if 𝑥 ∉ fv(𝑡). We extend this notation to 𝑡 ⟨•⟩, which denotes the constant
coefficient of the canonical form of 𝑡 .
Remark 17.3. Note that, from the definition of canonical forms, we always have:

(i) 𝑡 ⟨•⟩ ≠ −∞

(ii) 𝑡 ⟨•⟩ ≥ 𝑡 ⟨𝑥⟩ for all 𝑥

(iii) 𝑡 ⟨𝑥⟩ ≠ −∞ only for finitely many 𝑥
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Moreover, a functionV ∪ {•} → N ∪ {−∞} defines a valid canonical form exactly when
these three conditions are met. □

In the following, let 𝑥• stand for either a variable 𝑥 or the token •. Then Theorem 17.3
says exactly that 𝑡 ≃ 𝑢 iff for all 𝑥• we have 𝑡 ⟨𝑥•⟩ = 𝑢⟨𝑥•⟩. This principle, together with
the following two easy lemmas, will be very useful when proving or disproving that two
levels are equivalent.

Lemma 17.1. The following equations hold for all 𝑡 , 𝑢 and 𝑥•.

(𝑡 ⊔ 𝑢)⟨𝑥•⟩ = max{𝑡 ⟨𝑥•⟩, 𝑢⟨𝑥•⟩}
(𝑛 + 𝑢)⟨𝑥•⟩ = 𝑛 + 𝑢⟨𝑥•⟩

Proof. By merging the canonical forms of 𝑡 and 𝑢 like in the proof of Theorem 17.3 we
get a canonical form (which by unicity must be the canonical form, modulo associativity-
commutativity) with the coefficients given by the first equation. Similarly, by moving the
⊔ outside in 𝑛 + 𝑢 we also get a canonical form, with the coefficients described by the
second equation. ■

Lemma 17.2. The following equations hold for all 𝑡 , \ , 𝑥 and 𝑌 ⊇ fv(𝑡).5

𝑡 [\ ]⟨𝑥⟩ = max{𝑡 ⟨𝑦⟩ + 𝑦 [\ ]⟨𝑥⟩ | 𝑦 ∈ 𝑌 }
𝑡 [\ ]⟨•⟩ = max({𝑡 ⟨•⟩} ∪ {𝑡 ⟨𝑦⟩ + 𝑦 [\ ]⟨•⟩ | 𝑦 ∈ 𝑌 })

Proof. We start from 𝑡 and \ in canonical form, we apply \ to 𝑡 and then we rearange
terms like in the proof of Theorem 17.3 by moving the ⊔ outside and merging occurrences
of the same variable, resulting in a canonical form. The coefficients we get the end are
then precisely the ones described by the above equations. ■

Finally, the definition of ≃ can now be justified by the following property. Given
a function 𝜙 mapping each 𝑥 to a natural number, define the interpretation ⟦𝑡⟧𝜙 ∈ N
of a level 𝑡 by interpreting the symbols 0, S and ⊔ as zero, successor and max, and by
interpreting each variable 𝑥 by 𝜙 (𝑥).

Proposition 17.1.We have 𝑡 ≃ 𝑢 iff, for all 𝜙 , ⟦𝑡⟧𝜙 = ⟦𝑢⟧𝜙 .

Proof. Note that for each axiom 𝑡 ≈ 𝑢 of the equational theory we have ⟦𝑡⟧𝜙 = ⟦𝑢⟧𝜙 for
all 𝜙 , and thus the direction⇒ can be showed by an easy induction on 𝑡 ≃ 𝑢.

For the other direction, let us take the canonical forms 𝑡 ′ of 𝑡 and 𝑢′ of 𝑢. By the left to
right implication, we have ⟦𝑡⟧𝜙 = ⟦𝑡 ′⟧𝜙 and ⟦𝑢⟧𝜙 = ⟦𝑢′⟧𝜙 for all 𝜙 , hence ⟦𝑡 ′⟧𝜙 = ⟦𝑢′⟧𝜙
for all 𝜙 . By varying 𝜙 over suitable valuations we can show that 𝑡 ′ and 𝑢′ have the same
constant coefficients, and that each variable appearing in one also appears in the other with
the same coefficient. Therefore, 𝑡 ′ and 𝑢′ are equal modulo associativity-commutativity,
and thus 𝑡 ≃ 𝑢. ■

5Note that the variables 𝑦 ∉ fv(𝑡) do not change the value of the right-hand sides, given that their
coefficients are −∞.
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In other words, ≃ allows one to simplify level expressions which are semantically the
same — for instance, 1 + 𝑥 ⊔ 𝑥 ⊔ 0 and 1 + 𝑥 . This also shows that our definition of ≃,
which is also used in Agda [Tea], agrees with the one used in other works about universe
levels [Gen20, Voe14, Fer21, Bla22].

17.2 Characterizing equations that admit a m.g.u.

With the preliminaries now set up, we can move to the first main contribution of this
chapter: a characterization of the equations that admit a most general unifier, along with
an explicit description of a m.g.u. in these cases.

We start by extending the notion of canonical forms to equations: we say that 𝑡 ?
= 𝑢 is

in canonical form when the following conditions are satisfied:

(1) Both 𝑡 and 𝑢 are in canonical form.

(2) If 𝑥 ∈ fv(𝑡) ∩ fv(𝑢), then 𝑡 ⟨𝑥⟩ = 𝑢⟨𝑥⟩

(3) There is some 𝑥• ∈ fv(𝑡,𝑢) ∪ {•} with 𝑡 ⟨𝑥•⟩ = 0 or 𝑢⟨𝑥•⟩ = 0

The main motivation for introducing this notion is the following result, stating that in
our analysis it suffices to consider only equations in canonical form.

Proposition 17.2. For all equations 𝑡1
?
= 𝑡2, there is an equation 𝑢1

?
= 𝑢2 in canonical form,

such that for all \ , 𝑡1 [\ ] ≃ 𝑡2 [\ ] iff 𝑢1 [\ ] ≃ 𝑢2 [\ ].

Proof. Let 𝑡1
?
= 𝑡2 be any equation. We apply transformations so that properties (1), (2)

and (3) that define canonical forms are satisfied one by one, and we argue that they do
not change the set of unifiers.

1. We put each level 𝑡𝑝 in canonical form 𝑡 ′𝑝 . It is clear that this preserves the set of
unifiers, as any level is convertible to its canonical form.

2. If some variable 𝑥 appears in 𝑡 ′1 and 𝑡 ′2 with different coefficients, we remove it from
the side with smaller coefficient, and we name the resulting equation 𝑡 ′′1

?
= 𝑡 ′′2 — this

step is then repeated until condition (2) of the canonical form definition is met. By
decomposing 𝑡 ′1 ≃ 𝑣1 ⊔ 𝑛 + 𝑥 and 𝑡 ′2 ≃ 𝑣2 ⊔𝑚 + 𝑥 with 𝑛 < 𝑚 (or the symmetric),
the correctness of this step follows from 𝑡 ′1 [\ ] ≃ 𝑡 ′2 [\ ] iff 𝑣′1 [\ ] ⊔ 𝑛 + 𝑥 [\ ] ≃
𝑣2 [\ ] ⊔𝑚 + 𝑥 [\ ] iff 𝑣1 [\ ] ≃ 𝑣2 [\ ] ⊔𝑚 + 𝑥 [\ ], where the last equivalence follows
from the fact that

max{𝑘1, 𝑛 + 𝑞} = max{𝑘2,𝑚 + 𝑞} ⇐⇒ 𝑘1 = max{𝑘2,𝑚 + 𝑞}

for all 𝑘1, 𝑘2, 𝑛,𝑚, 𝑞 ∈ N with 𝑛 < 𝑚, and then by Proposition 17.1.
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3. Finally, if no coefficient in 𝑡 ′′1 or 𝑡 ′′2 is equal to zero, we subtract from all coefficients
the value of the current minimal coefficient, and we name the resulting equation
𝑡 ′′′1

?
= 𝑡 ′′′2 . If we call this value 𝑘 , then the correctness of this step follows from the

fact that 𝑡 ′′𝑝 ≃ 𝑘 + 𝑡 ′′′𝑝 for 𝑝 = 1, 2, and so 𝑡 ′′1 [\ ] ≃ 𝑡 ′′2 [\ ] iff 𝑘 + 𝑡 ′′′1 [\ ] ≃ 𝑘 + 𝑡 ′′′2 [\ ] iff
𝑡 ′′′1 [\ ] ≃ 𝑡 ′′′2 [\ ], where the last equivalence follows by applying Proposition 17.1.

It is clear that 𝑡 ′′′1
?
= 𝑡 ′′′2 is in canonical form, and we have shown that each step of the

transformation preserves the set of unifiers. ■

Example 17.4. Consider the equation 𝑥 ⊔ 1 + (𝑥 ⊔ 1 + 𝑦) ?
= 𝑦 ⊔ 2 + 𝑥 and let us show how

it can be put in canonical form using the underlying algorithm of the above proof. First,
we compute the level canonical forms of each side, yielding

2 ⊔ 1 + 𝑥 ⊔ 2 + 𝑦 ?
= 2 ⊔ 2 + 𝑥 ⊔ 𝑦

As the variables 𝑥 and𝑦 appear in the two sides with different coefficients, we then remove
from each of the sides the occurrence with the smaller one, yielding

2 ⊔ 2 + 𝑦 ?
= 2 ⊔ 2 + 𝑥

Finally, as the minimum among all coefficients is 2, we subtract this from all of them,
giving

0 ⊔ 𝑦 ?
= 0 ⊔ 𝑥 □

We are now able to state the main theorem that we are going to show. In the following,
if 𝑘 ∈ N we write [𝑘] for the set {1, ..., 𝑘}, and we call an equation 𝑡1

?
= 𝑡2 trivial when

𝑡1 ≃ 𝑡2. We also call 𝑡2
?
= 𝑡1 the symmetric of the equation 𝑡1

?
= 𝑡2. Finally, if ®𝑥 = 𝑥1...𝑥𝑘 is a

list of level variables, we sometimes identify it with the level 𝑥1 ⊔ ... ⊔ 𝑥𝑘 .

Theorem 17.5. A non-trivial equation has

(A) a most general unifier iff its canonical form (or its symmetric) is of the form

(i) 𝑛 ⊔ 𝑥 ?
= 𝑡 with 𝑛 < 𝑡 ⟨•⟩, in which case \ := 𝑥 ↦→ 𝑡 is a m.g.u.

(ii) 0 ⊔ ®𝑥 ⊔ ®𝑦 ?
= 0 ⊔ ®𝑥 ⊔ ®𝑧 with ®𝑥 , ®𝑦 and ®𝑧 disjoint, in which case a m.g.u. is given by

\ := 𝑥𝑘 ↦→ 𝛼𝑘 ⊔ (⊔𝑛∈[𝑝1]𝛽𝑘,𝑛) ⊔ (⊔𝑚∈[𝑝2]𝛾𝑘,𝑚) (𝑘 ∈ [𝑝0])
𝑦𝑛 ↦→ (⊔𝑘∈[𝑝0]𝛽𝑘,𝑛) ⊔ (⊔𝑚∈[𝑝2]𝛿𝑛,𝑚) (𝑛 ∈ [𝑝1])
𝑧𝑚 ↦→ (⊔𝑘∈[𝑝0]𝛾𝑘,𝑚) ⊔ (⊔𝑛∈[𝑝1]𝛿𝑛,𝑚) (𝑚 ∈ [𝑝2])

where 𝑝0, 𝑝1, 𝑝2 are the lengths of ®𝑥 , ®𝑦 and ®𝑧 respectively, and where {𝛼𝑘}𝑘∈[𝑝0] ,
{𝛽𝑘,𝑛}𝑘∈[𝑝0],𝑛∈[𝑝1] , {𝛾𝑘,𝑚}𝑘∈[𝑝0],𝑚∈[𝑝2] and {𝛿𝑛,𝑚}𝑛∈[𝑝1],𝑚∈[𝑝2] are disjoint sets of
variables.
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(B) no unifier iff its canonical form (or its symmetric) is of the form 𝑛
?
= 𝑡 with 𝑛 < 𝑡 ⟨•⟩

(C) some unifier but no most general one iff its canonical form (or its symmetric) is not of
any of the previous forms

Before proving the result, let us consider some examples to see how it can be used.
Example 17.6.

• The equation 𝑥 ⊔ 𝑦 ?
= 𝑥 ⊔ 𝑧 has the canonical form

0 ⊔ 𝑥 ⊔ 𝑦 ?
= 0 ⊔ 𝑥 ⊔ 𝑧

and therefore, by point (A).(ii) it admits the m.g.u.

\ = {𝑥 ↦→ 𝛼 ⊔ 𝛽 ⊔ 𝛾, 𝑦 ↦→ 𝛽 ⊔ 𝛿, 𝑧 ↦→ 𝛾 ⊔ 𝛿}

• The equation 𝑥 ⊔ 1 + (𝑦 ⊔ 2) ?
= 1 + (2 ⊔ 𝑥 ⊔ 𝑦) has the canonical form

2 ⊔ 𝑦 ?
= 2 ⊔ 𝑥 ⊔ 𝑦

and therefore by point (C) it is solvable but admits no m.g.u.

• The equation 𝑥 ⊔ 1 + (𝑦 ⊔ 1) ?
= 1 + (2 ⊔ 𝑥 ⊔ 𝑦) has the canonical form

1 ⊔ 𝑦 ?
= 2 ⊔ 𝑥 ⊔ 𝑦

and therefore by point (A).(i) it admits the m.g.u.

\ = {𝑦 ↦→ 2 ⊔ 𝑥 ⊔ 𝑦}

• The equation 𝑥 ⊔ 1 + (𝑦 ⊔ 1) ?
= 2 + (1 ⊔ 𝑥 ⊔ 𝑦) has the canonical form

0 ?
= 1 ⊔ 𝑥 ⊔ 𝑦

and therefore, by point (B) it admits no unifier. □

Let us now move to the proof of Theorem 17.5. Figure 17.1 shows its structure: we
take a non-trivial equation in canonical form and consider its possible forms. Each
leaf is annotated with the proposition associated with its proof, along with the case of
Theorem 17.5 which we are in. We also write |𝑡2 | for the number of free variables occurring
in 𝑡2.



146 CHAPTER 17. UNIFICATION FOR PREDICATIVE UNIVERSE LEVELS

symmetric

(A).(ii) (Proposition 17.4)

(C) (Proposition 17.6.(b))

(B) (Proposition 17.5)

(C) (Proposition 17.6.(a))

(A).(i) (Proposition 17.3)

(C) (Proposition 17.6.(c))

Figure 17.1: Structure of proof of Theorem 17.5

Equations with m.g.u.s

Proposition 17.3. The equation in canonical form 𝑛 ⊔ 𝑥 ?
= 𝑡 with 𝑛 < 𝑡 ⟨•⟩ has the mgu

𝜏 = {𝑥 ↦→ 𝑡}.

Proof. It is easy to verify that 𝜏 is a unifier. Now let \ be any unifier and let us first show
that 𝑥 [\ ] ≃ 𝑡 [\ ]. To do this we show 𝑥 [\ ]⟨𝑦•⟩ = 𝑡 [\ ]⟨𝑦•⟩ for all𝑦•. Using Lemma 17.1, we
have 𝑡 [\ ]⟨𝑦•⟩ = (𝑛 ⊔ 𝑥 [\ ])⟨𝑦•⟩ = max{𝑛⟨𝑦•⟩, 𝑥 [\ ]⟨𝑦•⟩} for all 𝑦•, and because 𝑛⟨𝑦⟩ = 0,
then it follows that 𝑥 [\ ]⟨𝑦⟩ = 𝑡 [\ ]⟨𝑦⟩ for all 𝑦. Then, for the case 𝑦• = •, we have
max{𝑛, 𝑥 [\ ]⟨•⟩} = 𝑡 [\ ]⟨•⟩, but because 𝑡 [\ ]⟨•⟩ > 𝑛 we must have 𝑥 [\ ]⟨•⟩ = 𝑡 [\ ]⟨•⟩.
Now we can show that 𝜏 is more general than \ : we have 𝑦 [𝜏] [\ ] ≃ 𝑦 [\ ] trivially for
𝑦 ≠ 𝑥 , and for 𝑦 = 𝑥 we have 𝑥 [𝜏] [\ ] = 𝑡 [\ ] ≃ 𝑥 [\ ]. ■

Proposition 17.4. The equation 0⊔ ®𝑥 ⊔ ®𝑦 ?
= 0⊔ ®𝑥 ⊔ ®𝑧 with ®𝑥 , ®𝑦 and ®𝑧 disjoint has the m.g.u.

\ := 𝑥𝑘 ↦→ 𝛼𝑘 ⊔ (⊔𝑛∈[𝑝1]𝛽𝑘,𝑛) ⊔ (⊔𝑚∈[𝑝2]𝛾𝑘,𝑚) (𝑘 ∈ [𝑝0])
𝑦𝑛 ↦→ (⊔𝑘∈[𝑝0]𝛽𝑘,𝑛) ⊔ (⊔𝑚∈[𝑝2]𝛿𝑛,𝑚) (𝑛 ∈ [𝑝1])
𝑧𝑚 ↦→ (⊔𝑘∈[𝑝0]𝛾𝑘,𝑚) ⊔ (⊔𝑛∈[𝑝1]𝛿𝑛,𝑚) (𝑚 ∈ [𝑝2])

where𝑝0, 𝑝1, 𝑝2 are the lengths of ®𝑥 , ®𝑦 and ®𝑧 respectively, andwhere {𝛼𝑘}𝑘∈[𝑝0] , {𝛽𝑘,𝑛}𝑘∈[𝑝0],𝑛∈[𝑝1] ,
{𝛾𝑘,𝑚}𝑘∈[𝑝0],𝑚∈[𝑝2] and {𝛿𝑛,𝑚}𝑛∈[𝑝1],𝑚∈[𝑝2] are disjoint sets of variables.
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Proof. It is easy to see that \ is a unifier: all introduced variables appear in both sides,
with coefficient 0. Given a unifier 𝜏 , define 𝜏′ by setting for each 𝑥•:

𝛼𝑘 [𝜏′]⟨𝑥•⟩ := 𝑥𝑘 [𝜏]⟨𝑥•⟩
𝛽𝑘,𝑛 [𝜏′]⟨𝑥•⟩ := min{𝑥𝑘 [𝜏]⟨𝑥•⟩, 𝑦𝑛 [𝜏]⟨𝑥•⟩}
𝛾𝑘,𝑚 [𝜏′]⟨𝑥•⟩ := min{𝑥𝑘 [𝜏]⟨𝑥•⟩, 𝑧𝑚 [𝜏]⟨𝑥•⟩}
𝛿𝑛,𝑚 [𝜏′]⟨𝑥•⟩ := min{𝑦𝑛 [𝜏]⟨𝑥•⟩, 𝑧𝑚 [𝜏]⟨𝑥•⟩}

The reader can verify that conditions (i), (ii) and (iii) of Remark 17.3 are satisfied, so
this definition is indeed valid. Let us now show that 𝜏 and 𝜏′ ◦ \ are convertible over the
variables ®𝑥, ®𝑦, ®𝑧.

Because𝑥𝑘 [𝜏]⟨𝑥•⟩ is greater or equal thanmin{𝑥𝑘 [𝜏]⟨𝑥•⟩, 𝑦𝑛 [𝜏]⟨𝑥•⟩} andmin{𝑥𝑘 [𝜏]⟨𝑥•⟩, 𝑧𝑚 [𝜏]⟨𝑥•⟩}
for all 𝑛,𝑚, using Lemma 17.1 we have

𝑥𝑘 [\ ] [𝜏′]⟨𝑥•⟩ = (𝛼𝑘 [𝜏′] ⊔ (⊔𝑛∈[𝑝1]𝛽𝑘,𝑛 [𝜏′]) ⊔ (⊔𝑚∈[𝑝2]𝛾𝑘,𝑚 [𝜏′]))⟨𝑥•⟩
= max({𝑥𝑘 [𝜏]⟨𝑥•⟩}

∪ {min{𝑥𝑘 [𝜏]⟨𝑥•⟩, 𝑦𝑛 [𝜏]⟨𝑥•⟩} | 𝑛 ∈ [𝑝1]}
∪ {min{𝑥𝑘 [𝜏]⟨𝑥•⟩, 𝑧𝑚 [𝜏]⟨𝑥•⟩} | 𝑚 ∈ [𝑝2]})

= 𝑥𝑘 [𝜏]⟨𝑥•⟩

for all 𝑥• and 𝑘 ∈ [𝑝0]. Therefore, we get 𝑥𝑘 [\ ] [𝜏′] ≃ 𝑥𝑘 [𝜏] for all 𝑘 ∈ [𝑝0].
Because 𝜏 is a unifier, we have 0 ⊔ ®𝑥 [𝜏] ⊔ ®𝑦 [𝜏] ≃ 0 ⊔ ®𝑥 [𝜏] ⊔ ®𝑧 [𝜏], which together with

Lemma 17.1 yields

max({𝑥𝑘 [𝜏]⟨𝑥•⟩ | 𝑘 ∈ [𝑝0]} ∪ {𝑦𝑛 [𝜏]⟨𝑥•⟩ | 𝑛 ∈ [𝑝1]})
= max({𝑥𝑘 [𝜏]⟨𝑥•⟩ | 𝑘 ∈ [𝑝0]} ∪ {𝑧𝑚 [𝜏]⟨𝑥•⟩ | 𝑚 ∈ [𝑝2]})

for all 𝑥•. Therefore, for every 𝑛 ∈ [𝑝1], there is some 𝑘 ∈ [𝑝0] with 𝑥𝑘 [𝜏]⟨𝑥•⟩ ≥
𝑦𝑛 [𝜏]⟨𝑥•⟩, or there is some𝑚 ∈ [𝑝2] with 𝑧𝑚 [𝜏]⟨𝑥•⟩ ≥ 𝑦𝑛 [𝜏]⟨𝑥•⟩. Hence, either we have
min{𝑥𝑘 [𝜏]⟨𝑥•⟩, 𝑦𝑛 [𝜏]⟨𝑥•⟩} = 𝑦𝑛 [𝜏]⟨𝑥•⟩ for some𝑘 ∈ [𝑝1], or we havemin{𝑦𝑛 [𝜏]⟨𝑥•⟩, 𝑧𝑚 [𝜏]⟨𝑥•⟩} =
𝑦𝑛 [𝜏]⟨𝑥•⟩ for some𝑚 ∈ [𝑝2]. Therefore, using Lemma 17.1, we obtain

𝑦𝑛 [\ ] [𝜏′]⟨𝑥•⟩ = ((⊔𝑘∈[𝑝0]𝛽𝑘,𝑛 [𝜏′]) ⊔ (⊔𝑚∈[𝑝2]𝛿𝑛,𝑚 [𝜏′]))⟨𝑥•⟩
= max({min{𝑥𝑘 [𝜏]⟨𝑥•⟩, 𝑦𝑛 [𝜏]⟨𝑥•⟩} | 𝑘 ∈ [𝑝0]}

∪ {min{𝑦𝑛 [𝜏]⟨𝑥•⟩, 𝑧𝑚 [𝜏]⟨𝑥•⟩} | 𝑚 ∈ [𝑝2]})
= 𝑦𝑛 [𝜏]⟨𝑥•⟩

for all 𝑥• and 𝑛 ∈ [𝑝1]. Therefore, we get 𝑦𝑛 [\ ] [𝜏′] ≃ 𝑦𝑛 [𝜏] for all 𝑛 ∈ [𝑝1].
Finally, a symmetrical reasoning shows 𝑧𝑚 [\ ] [𝜏′] ≃ 𝑧𝑚 [𝜏] for all𝑚 ∈ [𝑝2]. ■

Remark 17.4. Proposition 17.4 shows that, when there is no occurrence of S in the equation,
it can be solved as an ACUI unification problem. Indeed, the m.g.u. given there is also a
m.g.u. of the equation when seen as a unification problem in the theory ACUI [BB88]. □
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Unsolvable equations

Proposition 17.5. A non-trivial equation in canonical form has no solution iff it (or its
symmetric) is of the form𝑚

?
= 𝑡 with𝑚 < 𝑡 ⟨•⟩.

Proof. It is clear that𝑚 ?
= 𝑡 with𝑚 < 𝑡 ⟨•⟩ has no solution. For the other direction, we

show that any equation not of this form has a solution.
First note that if 𝑡1

?
= 𝑢2 has variables in both sides then it is easy to build a solution.

Indeed, if 𝑥1 ∈ fv(𝑡1), 𝑥2 ∈ fv(𝑡2) are (not necessarily distinct) variables, then \ = 𝑥1 ↦→
𝑝 − 𝑡1⟨𝑥1⟩, 𝑥2 ↦→ 𝑝 − 𝑡2⟨𝑥2⟩, _ ↦→ 0,6 where 𝑝 = max{𝑡1⟨•⟩, 𝑡2⟨•⟩}, is a solution — note
that this is also well-defined in the case 𝑥1 = 𝑥2, because for equations in canonical form
this implies 𝑡1⟨𝑥1⟩ = 𝑡2⟨𝑥2⟩.

We can thus restrict our analysis to equations with one of the sides constant, of the
form𝑚

?
= 𝑡 . Note that we can suppose that 𝑡 has some variable: indeed, if 𝑡 is constant

and equal to𝑚 then the equation is trivial, and if 𝑡 is constant and different from𝑚 then
the equation is of the form𝑚′

?
= 𝑡 ′ with𝑚′ < 𝑡 ′⟨•⟩ and indeed has no solution. Finally, it

is easy to see that for𝑚 ?
= 𝑡 with𝑚 ≥ 𝑡 ⟨•⟩ and where 𝑡 has some variable 𝑥 , we have the

unifier \ = 𝑥 ↦→𝑚 − 𝑡 ⟨𝑥⟩, _ ↦→ 0. ■

Solvable equations not admitting a m.g.u.

The last ingredient for our proof is showing that in all other cases there is no m.g.u. In
order to show this, we will use the following auxiliary lemma. In the following, we refer
to a level not containing any occurrence of S as flat.

Lemma 17.3 (Auxiliary lemma). Let 𝑡 ?
= 𝑢 be an equation admitting a unifer \ and a

m.g.u. 𝜏 .

(1) If 𝑥 [\ ] = 0 and 𝑥 ∈ fv(𝑡) ∪ fv(𝑢) then 𝑥 [𝜏] is flat.

(2) If 𝑥 [\ ] =𝑚 > 0with 𝑥 ∈ fv(𝑡)∪fv(𝑢), and for all 𝑖 = 1, . . . , 𝑘 we have 𝑥𝑖 [\ ] = 𝑛𝑖 < 𝑚
and 𝑥𝑖 ∈ fv(𝑡)∪fv(𝑢), then if 𝑥 [𝜏] is flat it must contains one variable not in any 𝑥𝑖 [𝜏].

(3) If 𝑥 ∈ fv(𝑡) and 𝑧 ∈ fv(𝑥 [\ ]), then for some 𝑦 ∈ fv(𝑢) we must have 𝑧 ∈ fv(𝑦 [\ ]).

Proof. We show each point separately.

1. Because 𝜏 is a m.g.u., for some \ ′ we have 𝑥 [𝜏] [\ ′] ≃ 𝑥 [\ ] = 0, so by Lemma 17.2
we conclude that all coefficients of 𝑥 [𝜏] must be either 0 or −∞.

6Recall that substitutions are finite sets of pairs of the form 𝑥 ↦→ 𝑡 , so _ ↦→ . . . is actually an abuse of
notation, which should be understood as "every other relevant variable is mapped to . . . ".
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2. Because 𝜏 is a m.g.u., for some \ ′ we have 𝑥 [𝜏] [\ ′] ≃ 𝑥 [\ ] = 𝑚 and 𝑥𝑖 [𝜏] [\ ′] ≃
𝑥𝑖 [\ ] = 𝑛𝑖 < 𝑚 for 𝑖 = 1, . . . , 𝑘 . Now if we suppose that 𝑥 [𝜏] is flat, by Lemma 17.2
the only way to have 𝑥 [𝜏] [\ ′] ≃ 𝑚 > 0 is if for some variable 𝑦 in 𝑥 [𝜏] we have
𝑦 [\ ′]⟨•⟩ = 𝑚. But because 𝑥𝑖 [𝜏] [\ ′] ≃ 𝑛𝑖 < 𝑚, it is clear that 𝑦 cannot appear in
any of the 𝑥𝑖 [𝜏].

3. Follows from the fact that, if \ is a unifier, then the same variables that appear in
𝑡1 [\ ] must also appear in 𝑢2 [\ ]. ■

Proposition 17.6 (Equationswith nomgu). The following non-trivial equations in canonical
form do not admit a m.g.u.:

(a) 𝑡 ?
= 𝑢 with |𝑢 | > 1 and 𝑡 ⟨•⟩ > 𝑢⟨•⟩.

(b) 𝑡 ?
= 𝑢 with 𝑡 ⟨•⟩ = 𝑢⟨•⟩ > 0.

(c) 𝑡 ?
= 𝑛 ⊔ 𝑘 + 𝑥 with 𝑘 > 0 and 𝑛 < 𝑡 ⟨•⟩.

Proof. The structure of the proof is the same in all cases: we suppose the existence of a
most general unifier 𝜏 which we use to obtain a contradiction.

(a) Let 𝑥,𝑦 be two different variables in 𝑢. By Lemma 17.3.(1), the unifiers \1 = 𝑥 ↦→
𝑡 ⟨•⟩ − 𝑢⟨𝑥⟩, _ ↦→ 0 and \2 = 𝑦 ↦→ 𝑡 ⟨•⟩ − 𝑢⟨𝑦⟩, _ ↦→ 0 show that 𝑧 [𝜏] is flat for
all 𝑧 ∈ fv(𝑡,𝑢). But then we have 𝑡 [𝜏] [_ ↦→ 0] ≃ 𝑡 ⟨•⟩ and 𝑢 [𝜏] [_ ↦→ 0] ≃ 𝑢⟨•⟩,
and because 𝜏 is a unifier we must then have 𝑡 ⟨•⟩ = 𝑢⟨•⟩, a contradiction with
𝑡 ⟨•⟩ > 𝑢⟨•⟩.

(b) First note that _ ↦→ 0 is a unifier, so by Lemma 17.3.(1), 𝑧 [𝜏] is flat for all 𝑧 ∈ fv(𝑡,𝑢).
Because the equation is supposed to be in canonical form and non-trivial, some
variable 𝑥 appears in only one side. Take such a 𝑥 with a minimal coefficient, which
we henceforth call 𝑝 .
If 𝑝 < 𝑡 ⟨•⟩ = 𝑢⟨•⟩, then the unifier \1 = 𝑥 ↦→ 𝑡 ⟨•⟩ − 𝑝, _ ↦→ 0 shows, by
Lemma 17.3.(2), that 𝑥 [𝜏] contains a variable not in any other𝑦 [𝜏] with𝑦 ∈ fv(𝑡,𝑢) \
{𝑥}, a contradiction with Lemma 17.3.(3), as 𝑥 appears in only one side.
Suppose now that 𝑝 = 𝑡 ⟨•⟩ = 𝑢⟨•⟩. Because the equation is in canonical form and
the constant coefficient of each side is different from 0, then some variable 𝑦 must
appear with coefficient 0. Moreover, because the minimal coefficient of a variable
occurring in only one side is 𝑝 ≠ 0, it follows that 𝑦 must appear in both sides (both
occurrences, of course, with coefficient 0). Because 𝑝 = 𝑡 ⟨•⟩ > 0, by Lemma 17.3.(2)
the unifier \2 = 𝑥 ↦→ 1, 𝑦 ↦→ 𝑝 + 1, _ ↦→ 0 shows that some variable 𝑥′ ∈ fv(𝑥 [𝜏])
does not appear in any 𝑧 [𝜏] with 𝑧 ∈ fv(𝑡,𝑢) \ {𝑥,𝑦}. Therefore, because 𝑥′ can
only also occur in 𝑦 [𝜏], and because the coefficient of 𝑥 is 𝑝 and the coefficient of 𝑦
is 0, by composing 𝜏 with 𝑥′ ↦→ 1, _ ↦→ 0 we get 𝑝 + 1 at the side in which 𝑥 occurs
but 𝑝 at the other side, a contradiction.
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(c) Because we suppose the equation is in canonical form, we must have some 𝑦 ∈ fv(𝑡)
different from 𝑥 with coefficient 0. By Lemma 17.3.(1), the unifier \1 = 𝑥 ↦→
𝑡 ⟨•⟩ − 𝑘, _ ↦→ 0 shows that 𝑦 [𝜏] is flat, and by Lemma 17.3.(2) the unifier \2 = 𝑥 ↦→
𝑡 ⟨•⟩ − 𝑘, 𝑦 ↦→ 𝑡 ⟨•⟩, _ ↦→ 0 shows that some variable in 𝑦 [𝜏] does not occur in 𝑥 [𝜏],
given that 𝑡 ⟨•⟩ − 𝑘 < 𝑡 ⟨•⟩. Because 𝑥 is the only variable that appears in the right
side, this establishes a contradiction with Lemma 17.3.(3). ■

Putting everything together

Proof of Theorem 17.5. We proceed as illustrated in Figure 17.1. The case 𝑡 ⟨•⟩ = 𝑢⟨•⟩ is
covered by Proposition 17.4 when 𝑡 ⟨•⟩ = 𝑢⟨•⟩ = 0, and by Proposition 17.6.(b) when
𝑡 ⟨•⟩ = 𝑢⟨•⟩ ≠ 0. In the case 𝑡 ⟨•⟩ ≠ 𝑢⟨•⟩ we suppose w.l.o.g. that 𝑡 ⟨•⟩ > 𝑢⟨•⟩, the
other case being symmetric. Then we branch on the number of variables occurring in
𝑢: the case of no variables is covered by Proposition 17.5, and the case of more than one
variable is covered by Proposition 17.6.(a). For the case of exactly one variable, we branch
on the coefficient of this one variable. If the coefficient is zero, the result follows from
Proposition 17.3, otherwise it follows by Proposition 17.6.(c). ■

17.3 A partial unification algorithm

We now apply Theorem 17.5 in the design of a partial algorithm for universe level unifica-
tion. The configurations of our algorithm are either of the form⊥, or C;\ with dom(\ ) and
fv(C) ∪ vrange(\ ) disjoint, where vrange(\ ) := ∪𝑥∈dom(\ )fv(𝑥 [\ ]). Configurations are
rewritten according to the rules of Figure 17.2, where C[𝜎] := {𝑡1 [𝜎]

?
= 𝑡2 [𝜎] | 𝑡1

?
= 𝑡2 ∈ C}

and \ [𝜎] := {𝑥 ↦→ 𝑥 [\ ] [𝜎] | 𝑥 ∈ dom(\ )}. We define the variables of a configuration
C;\ byV(C;\ ) := fv(C) ∪ dom(\ ).

Theorem 17.5 is used in Solve to detect if some equation admits a m.g.u., and in
Fail to detect if some equation is unsolvable. We assume that for each 𝜎 chosen in step
Solvewe have dom(𝜎) = fv(𝑡1, 𝑡2), which guarantees thatV(C;\ ) ⊆ V(C′;\ ′) whenever

C;\ { C′;\ ′

{𝑡1
?
= 𝑡2} ∪ C;\ { C[𝜎];𝜎 ∪ \ [𝜎] if 𝜎 = mgu(𝑡1, 𝑡2)(Solve)

{𝑡1
?
= 𝑡2} ∪ C;\ { ⊥ if 𝑡1 and 𝑡2 are not unifiable(Fail)

Figure 17.2: Unification algorithm for universe levels
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C;\ { C′;\ ′.7 This assumption can always be satisfied by removing useless entries 𝑥 ↦→ 𝑡

in 𝜎 for which 𝑥 ∉ fv(𝑡1, 𝑡2), and adding trivial entries 𝑥 ↦→ 𝑥′ for 𝑥 ∈ fv(𝑡1, 𝑡2) \ dom(𝜎)
and 𝑥′ fresh, and the resulting substitution is still a m.g.u. We also suppose that the
set vrange(𝜎) only contains fresh variables not in fv(C) ∪ dom(\ ) ∪ vrange(\ ), which
also guarantees that steps preserve disjointness of dom(\ ) and fv(C) ∪ vrange(\ ). This
assumption can always be satisfied by composing 𝜎 with a bijective renaming, as the
composition of a m.g.u. with a bijective renaming is also a m.g.u.

The algorithm succeeds if it reaches a configuration of the form ∅;\ , it fails if it reaches
the configuration ⊥ and it gets stuck if it reaches any other configuration in which no
rule applies. Moreover, the following straightforward result guarantees that the algorithm
cannot run forever, so these are the only options.

Proposition 17.7. The relation{ defined in Figure 17.2 is strongly normalizing.

Proof. Each step Solve decreases the cardinality of C, and a step Fail leads to a final
state. ■

In the following, we write 𝑡1
?
= 𝑡2 ∈ C;\ when either 𝑡1

?
= 𝑡2 ∈ C or 𝑡1 = 𝑥 and 𝑡2 = 𝑢

for some 𝑥 ↦→ 𝑢 ∈ \ . We then write 𝜏 ⊨ C;\ when 𝑡1 [𝜏] ≃ 𝑡2 [𝜏] for every 𝑡1
?
= 𝑡2 ∈ C;\ .

Finally, given substitutions 𝜏, 𝜏′ and a set of variables 𝑋 , we write 𝜏 =𝑋 𝜏′ if 𝑥 [𝜏] = 𝑥 [𝜏′]
for all 𝑥 ∈ 𝑋 .

Lemma 17.4 (Key lemma). Suppose C1;\1 { C2;\2. Then

1. 𝜏 ⊨ C1;\1 implies 𝜏′ ⊨ C2;\2 for some 𝜏′ with 𝜏′ =V(C1;\1) 𝜏

2. 𝜏 ⊨ C2;\2 implies 𝜏 ⊨ C1;\1

Proof. The only possible case is rule Solve:

{𝑡1
?
= 𝑡2} ∪ C;\ { C[𝜎];𝜎 ∪ \ [𝜎]

where 𝜎 is a m.g.u. of 𝑡1 and 𝑡2. We show each point separately.

1. By hypothesis we have 𝑡1 [𝜏] ≃ 𝑡2 [𝜏], so because 𝜎 is a m.g.u. for 𝑡1 and 𝑡2 it follows
that for some \ ′ we have 𝑥 [𝜎] [\ ′] ≃ 𝑥 [𝜏] for all 𝑥 ∈ fv(𝑡1, 𝑡2). In the following, we
suppose w.l.o.g. that dom(\ ′) = vrange(𝜎) — otherwise we just take the restriction
of \ ′ to vrange(𝜎) and add trivial entries 𝑥 ↦→ 𝑥 for 𝑥 ∈ vrange(𝜎) \ dom(\ ′), and
the equation 𝑥 [𝜎] [\ ′] ≃ 𝑥 [𝜏] still holds. Recall as well that, by hypothesis on
how m.g.u.s are chosen in Solve, vrange(𝜎) contains only fresh variables not in
{𝑡1

?
= 𝑡2} ∪ C;\ , and dom(𝜎) = fv(𝑡1, 𝑡2).

7Note that this property is not true in Robinson’s unification algorithm, because the step eliminating a
trivial equation {𝑥 ?

= 𝑥} ∪ C;\ { C;\ may decrease the set of free variables of the configuration.
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Defining 𝜏′ := \ ′ ∪ {𝑥 ↦→ 𝑥 [𝜏] | 𝑥 ∈ dom(𝜏) \ dom(\ ′)}, we first claim that
𝑥 [𝜎] [𝜏′] ≃ 𝑥 [𝜏] for all 𝑥 ∉ vrange(𝜎). To see this, first consider the case 𝑥 ∈
dom(𝜎): then 𝑥 [𝜎] contains only variables in vrange(𝜎) = dom(\ ′) for which 𝜏′
because just \ ′, and so 𝑥 [𝜎] [𝜏′] = 𝑥 [𝜎] [\ ′] ≃ 𝑥 [𝜏]. Now consider the case 𝑥 ∉

dom(𝜎): then 𝑥 [𝜎] [𝜏′] = 𝑥 [𝜏′], and because we have 𝑥 ∉ vrange(𝜎) = dom(\ ′)
then 𝑥 [𝜏′] = 𝑥 [𝜏], concluding the proof of the claim.
By the above claim and the fact that vrange(𝜎) contains only fresh variables not
in C;\ , for each 𝑢1

?
= 𝑢2 ∈ C;\ we have 𝑢𝑖 [𝜏] ≃ 𝑢𝑖 [𝜏′ ◦ 𝜎] for 𝑖 = 1, 2, so 𝜏 ⊨ C;\

implies 𝜏′ ◦ 𝜎 ⊨ C;\ and thus 𝜏′ ⊨ C[𝜎];\ [𝜎]. Finally, the claim also implies
𝑥 [𝜎] [𝜏′] ≃ 𝑥 [𝜏′] for all 𝑥 ∈ dom(𝜎), given that 𝑥 [𝜏] = 𝑥 [𝜏′] for 𝑥 not fresh. Hence,
we conclude 𝜏′ ⊨ C[𝜎];𝜎 ∪ \ [𝜎] as required.

2. By hypothesis we have 𝑥 [𝜏] ≃ 𝑥 [𝜎] [𝜏] for all 𝑥 ∈ dom(𝜎), and the equation
trivially holds for 𝑥 ∉ dom(𝜎), given that in this case 𝑥 [𝜎] = 𝑥 . Therefore, from
𝜏 ⊨ C[𝜎];\ [𝜎] we get 𝜏 ⊨ C;\ . Finally, because 𝜎 unifies 𝑡1 and 𝑡2, we have
𝑡1 [𝜎] [𝜏] ≃ 𝑡2 [𝜎] [𝜏], and because 𝑡𝑖 [𝜏] ≃ 𝑡𝑖 [𝜎] [𝜏] for 𝑖 = 1, 2, we get 𝑡1 [𝜏] ≃ 𝑡2 [𝜏].
We thus conclude 𝜏 ⊨ {𝑡1

?
= 𝑡2} ∪ C;\ . ■

The key lemma then leads to the correctness of the unification algorithm.

Theorem 17.7 (Correctness of unification). If C; ∅ {∗ ∅;\ then \ is a most general unifer
for C, and if C; ∅ {∗ ⊥ then C has no unifier.

Proof. Suppose that C; ∅ {∗ ∅;\ . Because dom(\ ) is disjoint from vrange(\ ), it follows
that \ is idempotent, and thus \ ⊨ ∅;\ . By iterating Lemma 17.4 we then get \ ⊨ C; ∅,
showing that \ is a unifier for C. To see it is a most general one, given some unifier 𝜏 , we
first iterate Lemma 17.4 to get 𝜏′ ⊨ ∅;\ for some 𝜏′ =fv(C) 𝜏 , implying 𝑥 [𝜏′] ≃ 𝑥 [\ ] [𝜏′] for
all 𝑥 ∈ dom(\ ). But we have fv(C) = V(C; ∅) ⊆ V(∅;\ ) = dom(\ ), and moreover 𝜏 and
𝜏′ agree on fv(C), so we conclude 𝑥 [𝜏] ≃ 𝑥 [\ ] [𝜏′] for all 𝑥 ∈ fv(C).

Now suppose that C; ∅ {∗ ⊥. Thenwe have C; ∅ {∗ C′;\ ′ { ⊥. If 𝜏 is a unifier for C,
then by iterating Lemma 17.4 with the restriction of 𝜏 to fv(C), we get a unifier for C′.
But if C′;\ ′ { ⊥, then C′ must contain an unsolvable equation, a contradiction. ■

Remark 17.5. We note that the correctness proofs do not rely on any specificity of the
equational theory of universe levels, and therefore the algorithm of Figure 17.2 can be
used with any equational theory in which one can compute a m.g.u. for two terms when
it exists. □

Because our algorithm uses Theorem 17.5, which gives a complete characterization of
the equations that admit a m.g.u., it follows that our algorithm is complete for solving
equations, in the sense that it can always find a m.g.u. for an equation that admits one.
We can then wonder whether if it is also complete for problems that contain more than
one equation. The following example shows that this is not the case.
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Example 17.1. Consider the problem C := {1 + 𝑥 ?
= 𝑧 ⊔ 1 + 𝑦, 1 + 𝑥 ?

= 𝑦 ⊔ 1 + 𝑧}. We can
check that, according to Theorem 17.5, both equations are solvable but admit no most
general unifiers, so neither the rule Solve nor Fail apply. Nevertheless, by combining
both equations we get 𝑧⊔1+𝑦 ?

= 𝑦⊔1+𝑧, whose canonical form is 0⊔𝑦 ?
= 0⊔𝑧. Therefore,

C is equivalent to C ∪ {0 ⊔ 𝑦 ?
= 0 ⊔ 𝑧}, a problem that can be solved by our algorithm,

yielding the m.g.u. \ = 𝑦 ↦→ 0 ⊔ 𝑧, 𝑥 ↦→ 0 ⊔ 𝑧. It follows that C also admits \ as a m.g.u.,
yet our algorithm does not return any m.g.u., showing it is not complete for problems
with more than one equation. □

Moreover, Theorem 17.2 shows that, even if our algorithm were complete, it would
still get stuck in problems which are solvable but admit no m.g.u. In practice, it is very
unsatisfying for the unification to get stuck, as this means that the whole predicativization
algorithm has to halt. Thus, in order to prevent this, in our implementation we extended
the unification with heuristics that are only applied when none of the presented rules
applies. Then, whenever the heuristics are applied, the computed substitution is still a
unifier, but might not be a most general one. This means that the term which generated
the unification problem can still be translated to a valid term in T∀P, but the resulting term
might not be a most general universe-polymorphic instance.

17.4 Towards a complete unification algorithm

In this final section, we present a unification algorithm which we prove to be complete
under two conjectures about max-plus algebra. Our algorithm works by reducing a
unification problem to two problems in the semi-ring N+ := (N, ⊕, ⊗), where N :=
N ∪ {−∞}, 𝑥 ⊕ 𝑦 := max{𝑥,𝑦} and 𝑥 ⊗ 𝑦 := 𝑥 + 𝑦. A finite basis for the solutions of the
problems then allows us to provide a complete set of unifiers for the unification problem
we started with.

More precisely, given an unification problem C with 𝑛 equations — which we write as
𝑡1

?
= 𝑢1, . . . , 𝑡𝑖

?
= 𝑢𝑖, . . . , 𝑡𝑛

?
= 𝑢𝑛 — and𝑚 variables — which we write as 𝑥1, . . . , 𝑥 𝑗 , . . . , 𝑥𝑚 —

let us start by defining the matrices T, U ∈ N𝑛×𝑚 and t, u ∈ N𝑛 by

t𝑖 := 𝑡𝑖 ⟨•⟩ u𝑖 := 𝑢𝑖 ⟨•⟩ T𝑖, 𝑗 := 𝑡𝑖 ⟨𝑥 𝑗 ⟩ U𝑖, 𝑗 := 𝑢𝑖 ⟨𝑥 𝑗 ⟩

We then consider the following two-sided linear problems ΦC and ΨC , in which x ∈ N𝑚 is
the unknown.

t ⊕ T ⊗ x = u ⊕ U ⊗ x (ΦC)

T ⊗ x = U ⊗ x (ΨC)

Example 17.2. In this section we use as a running example the unification problem given
by the only equation 1 ⊔ 𝑥1

?
= 2 ⊔ 1 + 𝑥2 ⊔ 𝑥3. This problem is translated into the matrices

T = [0 −∞ −∞], U = [−∞ 1 0], t = [1] and u = [2]. □
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Our interest in these two problems is justified by the following result, where we write
\ ⟨𝑦⟩ ∈ N𝑚 for (𝑥1 [\ ]⟨𝑦⟩, . . . , 𝑥𝑚 [\ ]⟨𝑦⟩) and \ ⟨•⟩ ∈ N𝑚 for (𝑥1 [\ ]⟨•⟩, . . . , 𝑥𝑚 [\ ]⟨•⟩).

Proposition 17.8. A substitution \ is a unifier for C iff \ ⟨•⟩ is a solution for ΦC and \ ⟨𝑦⟩
is a solution for ΨC for all 𝑦 ∈ fv(C[\ ]).

Proof. A substitution \ is a unifier iff, for all 𝑡𝑖
?
= 𝑢𝑖 ∈ C, we have 𝑡𝑖 [\ ]⟨•⟩ = 𝑢𝑖 [\ ]⟨•⟩ and

𝑡𝑖 [\ ]⟨𝑦⟩ = 𝑢𝑖 [\ ]⟨𝑦⟩ for all 𝑦 ∈ fv(C[\ ]). By Lemma 17.2, this holds iff we have

𝑡𝑖 ⟨•⟩ ⊕ (
⊕
𝑗

𝑡𝑖 ⟨𝑥 𝑗 ⟩ ⊗ 𝑥 𝑗 [\ ]⟨•⟩) = 𝑢𝑖 ⟨•⟩ ⊕ (
⊕
𝑗

𝑢𝑖 ⟨𝑥 𝑗 ⟩ ⊗ 𝑥 𝑗 [\ ]⟨•⟩)

and ⊕
𝑗

𝑡𝑖 ⟨𝑥 𝑗 ⟩ ⊗ 𝑥 𝑗 [\ ]⟨𝑦⟩ =
⊕
𝑗

𝑢𝑖 ⟨𝑥 𝑗 ⟩ ⊗ 𝑥 𝑗 [\ ]⟨𝑦⟩

which are precisely the result of replacing \ ⟨•⟩ for x in ΨC and \ ⟨𝑦⟩ for x in ΦC . ■

As we will see, in order to get a complete set of unifiers for C, we will need to compute
finite bases for the space of solutions for the problems ΨC and ΦC . This is the point in
which we will need to introduce the following conjectures.8

Conjecture 17.1. For all A,B ∈ N𝑛×𝑚 , the set of solutions for

A ⊗ x = B ⊗ x

is of the form {
⊕

w∈W 𝑟w ⊗ w | 𝑟w ∈ N for all w ∈ W} for some finite and computable set
W ⊂ N𝑚 .

Conjecture 17.2. For all A,B ∈ N𝑛×𝑚 and p, q ∈ N𝑛 , the set of solutions for

A ⊗ x ⊕ p = B ⊗ x ⊕ q

is of the form {a ⊕ v | a ∈ A, v ∈ 𝑋 } for some finite and computable set A ⊂ N𝑚 , and
where 𝑋 is the set of solutions for A ⊗ x = B ⊗ x.

We can now show the main theorem of this section. In the following, let us write 0 for
(−∞, . . . ,−∞) and 1 for (0, . . . , 0), so that they are indeed the units of ⊕ and ⊗ respectively.

8A proof of the first conjecture has actually been sketched by the author with Stéphane Gaubert.
The second conjecture, to the best of this author’s (and Gaubert’s) knowledge, is still unproven and
is left for future work. Surprisingly, while max-plus algebra has been widely studied over R := R ∪
{−∞} [But10, GK07], the case of (N,max, +) does not seem to have been considered in the literature — for
instance, it is not mentioned in [GP97, Table 1].
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Theorem 17.8 (Complete set of unifiers for C). Suppose Conjectures 17.1 and 17.2 and,
given a problem C, letW and A be respectively the set of vectors given by the conjectures
on ΨC and ΦC . Then define for each a ∈ A and𝑊 ⊆ W the substitution \a

𝑊
by9

\a𝑊 ⟨𝑧w⟩ := w \a𝑊 ⟨•⟩ := 1 ⊕ a ⊕ (
⊕
w∈𝑊

w)

with {𝑧w}w∈𝑊 fresh. Then the set of all such \a
𝑊

is a complete set of unifiers for C.

Before giving the proof, let us see an example of how it can be applied.
Example 17.9. We can manually verify that the setsW = {(0,−∞, 0), (1, 0,−∞)} andA =

{(2,−∞,−∞)} generate all solutions for the linear problems of Example 17.2. Therefore,
Theorem 17.8 gives the following unifiers:

\
(2,−∞,−∞)
∅ = 𝑥1 ↦→ 2 𝑥2 ↦→ 0 𝑥3 ↦→ 0

\
(2,−∞,−∞)
{(0,−∞,0)} = 𝑥1 ↦→ 2 ⊔ 𝑧1 𝑥2 ↦→ 0 𝑥3 ↦→ 0 ⊔ 𝑧1
\
(2,−∞,−∞)
{(1,0,−∞)} = 𝑥1 ↦→ 2 ⊔ 1 + 𝑧2 𝑥2 ↦→ 0 ⊔ 𝑧2 𝑥3 ↦→ 0

\
(2,−∞,−∞)
{(0,−∞,0),(1,0,−∞)} = 𝑥1 ↦→ 2 ⊔ 𝑧1 ⊔ 1 + 𝑧2 𝑥2 ↦→ 0 ⊔ 𝑧2 𝑥3 ↦→ 0 ⊔ 𝑧1 □

Proof of Theorem 17.8. We first show that the \a
𝑊

are unifiers of C. Applying Proposi-
tion 17.8, because each w ∈ W is a solution to the homogeneous problem ΨC , it suffices
to show that \a

𝑊
⟨•⟩ is a solution to ΦC for each a ∈ A. We thus need to show that

t ⊕ T ⊗ (1 ⊕ a ⊕ (
⊕
w∈𝑊

w)) = u ⊕ U ⊗ (1 ⊕ a ⊕ (
⊕
w∈𝑊

w))

This equation can be rearranged into

t ⊕ T ⊗ 1 ⊕ T ⊗ a ⊕ (
⊕
w∈𝑊

T ⊗ w) = u ⊕ U ⊗ 1 ⊕ U ⊗ a ⊕ (
⊕
w∈𝑊

U ⊗ w)

Now note that, because each w ∈𝑊 is a solution to ΨC , then T ⊗ w and U ⊗ w are equal
for all w ∈𝑊 . Moreover, at the 𝑖-th line of the product T ⊗ 1 we have

⊕
𝑗 𝑡𝑖 ⟨𝑥 𝑗 ⟩, which

is smaller or equal than 𝑡𝑖 ⟨•⟩, the 𝑖-th line of t. So we have t ≥ T ⊗ 1, and a symmetric
reasoning shows u ≥ U ⊗ 1. Therefore, to conclude now it suffices to show

t ⊕ T ⊗ a = u ⊕ U ⊗ a

which holds because a is a solution to ΦC .
9We implicitly set \a

𝑊
⟨𝑦⟩ := −∞ for any other 𝑦. Note that conditions (i), (ii), (iii) from Remark 17.3 are

satisfied, so this indeed defines a valid canonical form 𝑥𝑖 [\a𝑊 ] for each 𝑥𝑖 .
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Now let us show that the set of unifers made of the \a
𝑊

is complete. Given any unifier \ ,
by Proposition 17.8 the vector \ ⟨•⟩ is a solution for ΦC and the vector \ ⟨𝑦⟩ is a solution
for ΨC for all 𝑦 ∈ fv(C[\ ]). Therefore, by Conjecture 17.1, for all 𝑦 ∈ fv(C[\ ]) we have

\ ⟨𝑦⟩ =
⊕
w∈W

𝑟
𝑦
w ⊗ w (17.1)

for some {𝑟𝑦w}w∈W , and by Conjectures 17.1 and 17.2 we have

\ ⟨•⟩ = a ⊕ (
⊕
w∈W

𝑟 •w ⊗ w) (17.2)

for some a ∈ A and {𝑟 •w}w∈W .
Note that, because \ ⟨•⟩ ≥ \ ⟨𝑦⟩ for all 𝑦 ∈ fv(C[\ ]), we can assume 𝑟 •w ≥ 𝑟

𝑦
w, given

that we can replace each 𝑟 •w by max({𝑟 •w} ∪ {𝑟
𝑦
w | 𝑦 ∈ fv(C[\ ])}) without changing the

value of the right-hand side of Equation (17.2). Moreover, because \ ⟨•⟩ ≥ 1, we can also
add a 1 to its right-hand side, once again without changing its value. We thus have

\ ⟨•⟩ = 1 ⊕ a ⊕ (
⊕
w∈W

𝑟 •w ⊗ w) (17.3)

Pose𝑊• := {w ∈ W | 𝑟 •w ≠ −∞} and define 𝜏 on {𝑧w}w∈𝑊• by10

𝑧w [𝜏]⟨•⟩ := 𝑟 •w 𝑧w [𝜏]⟨𝑦⟩ := if 𝑦 ∈ fv(C[\ ]) then 𝑟𝑦w else −∞

We now show that 𝜏 ◦ \a
𝑊•
≃ \ . First, for all 𝑦 ∈ fv(C[\ ]) we have

(𝜏 ◦ \a𝑊•)⟨𝑦⟩ =
⊕
w∈𝑊•

𝑧w [𝜏]⟨𝑦⟩ ⊗ \a𝑊• ⟨𝑧w⟩ by Lemma 17.2

=
⊕
w∈𝑊•

𝑟
𝑦
w ⊗ w by definition of \a𝑊• and 𝜏

=
⊕
w∈W

𝑟
𝑦
w ⊗ w because 𝑟 𝑦w ≤ 𝑟 •w = −∞ for w ∉𝑊•

= \ ⟨𝑦⟩ by Equation (17.1)

10Once again, the reader can check that conditions (i), (ii) and (iii) of Remark 17.3 are verified.
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Moreover, we also have

(𝜏 ◦ \a𝑊•)⟨•⟩ = \
a
𝑊•
⟨•⟩ ⊕ (

⊕
w∈𝑊•

𝑧w [𝜏]⟨•⟩ ⊗ \a𝑊• ⟨𝑧w⟩) by Lemma 17.2

= 1 ⊕ a ⊕ (
⊕
w∈𝑊•

w) ⊕ (
⊕
w∈𝑊•

𝑟 •w ⊗ w) by definition of \a𝑊• and 𝜏

= 1 ⊕ a ⊕ (
⊕
w∈𝑊•

𝑟 •w ⊗ w) because w ⊗ 𝑟 •w ≥ w for w ∈𝑊•

= 1 ⊕ a ⊕ (
⊕
w∈W

𝑟 •w ⊗ w) because 𝑟 •w = −∞ for w ∉𝑊•

= \ ⟨•⟩ by Equation (17.3)

concluding the proof. ■

We immediately get the following corollary.

Corollary 17.2 (The theory of predicative universe levels is finitary). If Conjectures 17.1
and 17.2 hold, then the theory of predicative universe levels is finitary.

Proof. By Theorem 17.8, each problem admits a finite complete set of unifiers, and by
Theorem 17.1 we also know that the theory is not unitary, hence it can only be finitary. ■

One can wonder if the set Θ is also minimal. Example 17.9 actually shows that this
is not the case, given that all the four unifiers are instances of \ (2,−∞,−∞){(1,0,−∞),(0,−∞,0)} — which
was expected, as this is also the m.g.u. provided by Theorem 17.5 (modulo renaming).
Fortunately, if the instantiation pre-order ⪯𝑋 is decidable, a minimal complete set of
unifiers can always be computed from a finite complete set by simply removing the
redundant unifiers. So the only ingredient missing is the following:

Theorem 17.10 (⪯ is decidable). Given two substitutions 𝜏, \ and a finite set of level
variables 𝑋 , it is decidable whether 𝜏 ⪯𝑋 \ holds.

Proof. By definition of the pre-order, this holds iff there is some \ ′ for which we have
𝑥 [𝜏] [\ ′] ≃ 𝑥 [\ ] for all 𝑥 ∈ 𝑋 . By Lemma 17.2, we have

𝑥 [𝜏] [\ ′]⟨𝑦⟩ =
⊕

𝑧∈fv(𝑥 [𝜏])
𝑥 [𝜏]⟨𝑧⟩ ⊗ 𝑧 [\ ′]⟨𝑦⟩

and
𝑥 [𝜏] [\ ′]⟨•⟩ = 𝑥 [𝜏]⟨•⟩ ⊕ (

⊕
𝑧∈fv(𝑥 [𝜏])

𝑥 [𝜏]⟨𝑧⟩ ⊗ 𝑧 [\ ′]⟨•⟩)



158 CHAPTER 17. UNIFICATION FOR PREDICATIVE UNIVERSE LEVELS

Writing 𝑦1, . . . , 𝑦𝑛 for the variables in 𝑋 [\ ] and 𝑧1, . . . , 𝑧𝑚 for the variables in 𝑋 [𝜏], the
problem can then be rephrased as deciding if there is A ∈ N𝑛,𝑚 and a ∈ N𝑚 solving

𝑥 [\ ]⟨𝑦𝑖⟩ =
⊕
𝑗

A𝑖, 𝑗 ⊗ 𝑥 [𝜏]⟨𝑧 𝑗 ⟩

𝑥 [\ ]⟨•⟩ = 𝑥 [𝜏]⟨•⟩ ⊕ (
⊕
𝑗

a 𝑗 ⊗ 𝑥 [𝜏]⟨𝑧 𝑗 ⟩)

for all 𝑖 = 1, . . . , 𝑛 and 𝑥 ∈ 𝑋 , and such that the lines of A are smaller than or equal to a. It
is also clear that it suffices to consider A for which the A𝑖, 𝑗 are bounded by ⊕𝑥∈𝑋𝑥 [\ ]⟨𝑦𝑖⟩,
and a for which the a 𝑗 are bounded by ⊕𝑥∈𝑋𝑥 [\ ]⟨•⟩.11 Therefore, because the search
space is finite, it follows that the problem is decidable. ■

Corollary 17.3 (m.c.u.s are computable). Supposing Conjectures 17.1 and 17.2, we can
compute a minimal set of unifers for each problem C.

Proof. As explained above, this is a direct consequence of Theorems 17.8 and 17.10. ■

Pre-processing the unification problem

As we have seen, to calculate a m.c.u. for the problem of Example 17.2 we first calculate the
set of unifiers given by Theorem 17.8, which requires us to solve the associated problems
ΦC and ΨC , and then minimize this set by using Theorem 17.10, revealing that the problem
actually has a m.g.u. Even if we do not have the explicit complexity of our algorithm, it
should be clear that for solving equations that have a m.g.u. it would be much cheaper to
just apply the algorithm of Figure 17.2 instead.

Therefore, we conclude this section by proposing an optimization to our algorithm.
Starting from C, we apply the rules of Figure 17.2 as much as possible, yielding some
final state D;\ . In the case of Example 17.2 this actually solves the problem, as we obtain
D = ∅, but even when D ≠ ∅ we at least get a problem with less equations. Then, we
can apply Theorem 17.8 to obtain a complete set of unifers for D, which together with
\ allows us to calculate a complete set for C. Finally, we then apply Theorem 17.10 to
reduce the obtained set to a m.c.u.

Theorem 17.11 (Optimized computation of m.c.u.s). Given a problem C, let D;𝜏 be a
state of Figure 17.2 with C; ∅ {∗ D;𝜏 and, supposing Conjectures 17.1 and 17.2, let Θ
be the the complete set of unifers for D given by Theorem 17.8. Then, by minimizing
Θ′ := {\ ∪ \ ◦ 𝜏 | \ ∈ Θ} with Theorem 17.10, we obtain a m.c.u. for C.

Proof. We only need to show thatΘ′ is a complete set of unifiers for C, which then trivially
implies that its minimization is a m.c.u. We first show that all elements of Θ′ are indeed
unifiers of C. Given some \ ∈ Θ, we know that \ is a unifier for D, and because dom(𝜏)

11There are of course smaller bounds, but here we are only worried abour decidability.
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and vrange(𝜏) ∪ fv(D) are disjoint, we have 𝑥 [\ ∪ \ ◦ 𝜏] = 𝑥 [𝜏] [\ ] = 𝑥 [𝜏] [\ ∪ \ ◦ 𝜏] for
all 𝑥 ∈ dom(𝜏). This shows \ ∪ \ ◦ 𝜏 ⊨ D;𝜏 , so by iterating Lemma 17.4 in the inverse
direction we get \ ∪ \ ◦ 𝜏 ⊨ C; ∅.

Now let us show that Θ′ is complete. Let 𝜎 be a unifier for C. By iterating Lemma 17.4,
we get some 𝜎′ =fv(C) 𝜎 with 𝜎′ ⊨ D;𝜏 . So 𝜎′ is a unifier for D, and therefore there is
\ ∈ Θ and some \ ′ such that 𝑥 [𝜎′] ≃ 𝑥 [\ ] [\ ′] for all 𝑥 ∈ fv(D).

Moreover, looking at the unifiers given by Theorem 17.8, we see that fv(D[\ ]) only
cotains fresh variables, so we can assume w.l.o.g. that dom(\ ′) also only contains fresh
variables, different from the ones in D;𝜏 . We can thus define \ ′′ := \ ′ ∪ 𝜎′ and we have

𝑥 [𝜎′] ≃ 𝑥 [\ ] [\ ′′] (17.4)

for all 𝑥 ∉ dom(\ ′): indeed, for 𝑥 ∈ fv(D) this is automatic, and for 𝑥 ∉ fv(D) this follows
from the fact that \ is only defined over fv(D), and thus 𝑥 [\ ] [\ ′′] = 𝑥 [\ ′′] = 𝑥 [𝜎′].

We also have 𝑥 [𝜎′] ≃ 𝑥 [𝜏] [𝜎′] for all 𝑥 ∈ dom(𝜏), and because vrange(𝜏) is disjoint
from dom(\ ′), by Equation (17.4) we have 𝑥 [𝜎′] ≃ 𝑥 [𝜏] [\ ] [\ ′′] = 𝑥 [\ ◦ 𝜏] [\ ′′] for all 𝑥 ∈
dom(𝜏). Then, given that dom(𝜏) is disjoint from fv(D), we get 𝑥 [𝜎′] ≃ 𝑥 [\∪\◦𝜏] [\ ′′] for
all 𝑥 ∈ dom(𝜏) ∪ fv(D). Finally, we have fv(C) = V(C; ∅) ⊆ V(D;𝜏) = fv(D) ∪dom(𝜏)
and 𝜎 =fv(C) 𝜎

′, thus 𝑥 [𝜎] ≃ 𝑥 [\ ∪ \ ◦ 𝜏] [\ ′′] for all 𝑥 ∈ fv(C), concluding the proof. ■



Chapter 18

Predicativize: A Tool for Sharing

Proofs with Predicative Systems

In this chapter we present Predicativize, an implementation publicly available at

https://github.com/Deducteam/predicativize/

of a variant of our algorithm, and describe how it was used to translateMatita’s arithmetic
library to Agda.

18.1 The tool

Our tool is implemented on top of DkCheck [Sai15], a type-checker for Dedukti, and
thus does not rely neither on the codebase of Agda, nor on the codebase of any other proof
assistant. Like in the case of Universo [Thi20], we instrument DkCheck’s conversion
checker in order to implement the computation of level constraints, yielding an algorithm
similar to the one of Figure 16.1.

Because the currently available type-checkers forDedukti do not implement rewriting
modulo for equational theories other than AC (associativity-commutativity), we used
Genestier’s encoding of the equational theory of universe levels [Gen20] in order to define
a variant of T∀P in a DkCheck file.

To see how everything works in practice, one can run make running-example which
translates our running example and produces aDedukti file output/running_example.dk
and an Agda file agda_output/running-example.agda. In order to test the tool with
a more realistic example, the reader can also run make test_agda, which translates a
proof of Fermat’s little theorem from the Dedukti encoding of HOL [Thi18] to T∀P.

We also note that for the moment the implementation lags behind the theory in various
places, in particular by still using the older unification algorithm and the previous version
of T∀P proposed in our previous work [FBB23].

In the following, let us give a high-level description of some of the practical differences
with the theory presented until now.
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User added constraints

As we have seen, our transformation tries to compute the most general type for a definition
or declaration to be typable. However, it is not always desirable to have the most general
type, as shown by the following example.
Example 18.1. Consider the local signature

Φ = Nat : Tm U□, zero : Tm Nat, succ : Tm Nat→ Tm Nat

defining the natural numbers in TI. The translation of this signature by our algorithm is

Φ′ = Nat : ∀𝑖 .Tm U𝑖, zero : ∀𝑖 .Tm (Nat 𝑖), succ : ∀𝑖 𝑗 .Tm (Nat 𝑖) → Tm (Nat 𝑗)

However, we normally would like to impose 𝑖 to be equal to 𝑗 in the type of succ, or even
to impose Nat not to be universe polymorphic. □

In order to solve this problem, we added to Predicativize the possibility of adding
constraints by the user, in such a way that we can for instance impose Nat to be in the
bottom universe, or 𝑖 = 𝑗 in the type of the successor. Adding constraints is also used to
help the unification algorithm, which can be particularly useful for simplifying unification
problems when translating definitions that do not need to be universe polymorphic.

Rewrite rules

The algorithm that we presented and proved correct covers two types of entries: definitions
and constants. This is enough for translating proofs written in higher-order logic or
similar systems, in which every step either poses an axiom or makes a definition or proof.
However, when dealing with full-fledged type theories, such as those implemented by
Coq orMatita, which also feature inductive types, it is customary to use rewrite rules to
encode recursion and pattern matching [Ass15, Fer21, Thi20].1 If we simply ignore these
rules when performing the translation, we would run into problems as the entries that
appear after may need them to typecheck.

Therefore, our implementation extends the presented algorithm to also translate
rewrite rules. In order to do this, we use DkCheck’s subject reduction checker to gen-
erate constraints and proceed similarly as in the algorithm. Because this feature is still
experimental, this step requires user intervention in most cases. This is done by adding
new constraints over the symbols appearing in the rules, in order for their translations to

1Of course, ideally the definitions by pattern-matching should be compiled down to eliminators [CDP14,
GMM06], and then inductive type declarations should be compiled down to W-types [Hug21] or similar
constructions [CDMM10], which would allow us to work inside a fixed theory that would never need to
be extended. Unfortunately, this is not what the currently available Dedukti translators do, and adding
the abovementioned transformations would require some serious implementation work — though very
preliminary steps in this direction have been made by the author together with Jesper Cockx, in the context
of the Agda2Dk translator [Fel].



162 CHAPTER 18. PREDICATIVIZE: A TOOL FOR SHARING PROOFS WITH PREDICATIVE SYSTEMS

be less universe polymorphic, which helps the algorithm. This part of the translation is
yet to be formally defined, and its correctness is still to be proven. Nevertheless, it has
been successfully used on the translation of Matita’s arithmetic library to Agda.

Agda output

Predicativize produces proofs in the theory T∀P, which is a subtheory of the one im-
plemented by the Agda proof assistant. In order to produce proofs that can be used
by Agda, we also integrated in Predicativize a translator that performs a simple syn-
tactical translation from a Dedukti file in the theory T∀P to an Agda file. For instance,
make test_agda_with_typecheck translates Fermat’s Little Theorem proof from HOL
to Agda and typechecks it.

18.2 TranslatingMatita’s arithmetic library to Agda

Predicativize

Krajono

Human intervention

Adds extra constraints

Implements inductive types
 and recursive functions

Dedukti

Figure 18.1: Diagram representing the translation of Matita’s arithmetic library to Agda

We now discuss how we used Predicativize to translate Matita’s arithmetic library
to Agda. The translation is summarized in Figure 18.1, where TCIC stands for a Dedukti
theory defining the Calculus of Inductive Constructions, the underlying type theory of
theMatita proof assistant.

Matita’s arithmetic library [mat] was already available in Dedukti thanks to Kra-
jono [Ass15, Ded], a translator fromMatita to the theory TCIC in Dedukti. Therefore,
the first step of the translation was already done for us.

Then, using Predicativizewe translated the library from TCIC to T∀P. As the encoding
of Matita’s recursive functions uses rewrite rules, their translation required some user
intervention to add constraints over certain symbols, as mentioned in the previous section.
Moreover, in order to help the unification algorithm, we also added constraints for fixing
the levels of many definitions which were only required to be at one universe. The
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Matita Dedukti (TCIC) Dedukti (T∀P) Agda
File size (in Kb) 67 640 570 190

Table 18.1: Comparison of (compressed) file sizes

list of all added constraints can be found in the file extra_cstrs/matita.dk in the
implementation. These were obtained, for each of the concerned definitions, by looking at
its (unconstrained) output and then adding equations involving some of its level variables
— similarly to how 𝑖 and 𝑗 can be equated in Example 18.1. Once this step is done, the
library is known to be predicative, as it typechecks in T∀P.

We then used Predicativize to translate these files to Agda files. However, because
the rewrite rules in the Dedukti files cannot be translated to Agda, and given that they
are needed for typechecking the proofs, the library does not typecheck directly. Therefore,
to finish our translation we had to define the inductive types and recursive functions
manually in Agda. To do this we first assembled the type formers and constructors,
which had been translated simply as postulates, into inductive type declarations. This
required us to add futher constraints over some symbols, for instance between 𝑖 and 𝑗 in
the type of the successor (Example 18.1), in order to implement them as constructors of
an inductive type.

With the inductive types defined, we could then define the recursive functions (like
addition), which had been translated as postulates with no computational content. Thank-
fully, even if we cannot translate the rewrite rules from Dedukti to Agda in a way that
is accepted by Agda, we could still translate them as comments in the Agda files. Then,
instead of writing such functions from scratch, we could just adapt these comments into
valid Agda function declarations. We believe that this step, also needed in previous
work [Thi18], could be automated by better studying the translation between different
representations of recursive functions. Nevertheless, because most of Matita’s arithmetic
library is made of proofs, whose translation we do not need to change, automating it was
not crucial in our case, so we decided to leave this study for future work.

The result of the translation is available at

https://doi.org/10.5281/zenodo.10686897

and, as far as we know, contains the very first proofs in Agda of Bertrand’s Postulate and
Fermat’s Little Theorem. It also contains a variety of other interesting results such as the
Binomial Law, the Chinese Remainder Theorem, and the Pigeonhole Principle. Moreover,
this library typechecks with the –safe flag, attesting that it does not use any of Agda’s
more exotic and unsafe features.

We conclude by discussing some statistics about the translation. The total translation
time, from Dedukti (TCIC) to Dedukti (T∀P) and then to Agda, is about 32 minutes
on a machine with an i7 processor. We also provide in Table 18.1 a comparison of the
file sizes inMatita, Dedukti (in both theories TCIC and T∀P) and Agda. Here we chose

https://doi.org/10.5281/zenodo.10686897
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to analyse their compressed sizes (using .tar.xz) to avoid discrepancies arising from
administrative differences in the files and formats. As we see, the translation fromMatita
to Dedukti (TCIC) increases a lot the file sizes, which are multiplied by almost 10. This is
not surprising, as the original proofs are done using tactics, that are compiled to proof
terms when going to Dedukti. Moreover, the representation of terms in Dedukti is
much more annotated and low-level than in commonly used proof assistants, which also
explains why some of this extra size is eliminated when going fromDedukti (T∀P) to Agda.
Yet, the proofs in Agda are still much more low-level than their Matita counterparts
given that they still use proof terms instead of tactics. Finally, we see that going from
Dedukti (TCIC) to Dedukti (T∀P) only mildly alters the file sizes, which is not surprising
since our translation does not drastically change the terms.



Chapter 19

Perspectives on Proof Predicativization

and Universe Level Unification

We have proposed a transformation for sharing proofs with predicative systems. Our
implementation allowed to translate many non-trivial proofs fromMatita’s arithmetic
library to Agda, showing that our proposal works well in practice.

Universe-polymorphic elaboration

Our solution is based on the use of universe-polymorphic elaboration. While elabora-
tion algorithms are well-studied in the literature, our proposal differs from most on the
use of universe level unification, which is needed in our setting for handling universe-
polymorphism. Other proposals for universe-polymorphic elaboration, such as the ones
by Harper and Pollack [HP91] and by Sozeau and Tabareau [ST14], avoid the use of
universe level unification by allowing in their target languages for entries in the signature
to come with associated sets of constraints, which are then verified locally at each use.
This feature is however unfortunately not supported by Agda, the main target of our
translation, which is why we need universe level unification to eliminate the constraints.

Universe level unification

Our proposal required us to study the problem of universe level unification. In order to
provide an algorithm for this problem, we first contributed with a complete characteri-
zation of which equations admit a m.g.u., along with an explicit description of a m.g.u.
when it exists. We then employed this characterization in the design of an constraint-
postponement-based unification algorithm, which is an improvement over our preliminary
work [FBB23]. It is in particular able to solve all equations that admit a m.g.u., whereas
our previous algorithm was not — for instance, it was not capable of solving the first
equation of Example 17.6. However some problems admitting a m.g.u. cannot be solved
by our algorithm because they combine multiple equations, none of them admitting a
m.g.u. (see Example 17.1).
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We then proposed a second algorithm for universe level unification, which is able to
compute minimal complete sets of unifiers, provided that two conjectures about max-plus
algebra can be solved. Like we mentioned, we have a proof sketch of the first conjecture,
however the second seems more challenging. Proving it is the main problem to be tackled
in future work, which would then solve definitely the problem of universe level unification.

Our second algorithm works very similarly to Baader’s unification algorithm for
commutative theories [BS01], which also reduces the problem of unification to the one
of solving problems in some specific algebra, and so it might come as a surprise that the
theory of predicative universe levels is not an instance of his framework. However, even
if we have not verified all details, it seems that a unification algorithm for universe levels
can be obtained through a translation to the theory of abelian idempotent monoids with
an inflationary endomorphism (AIMIE), which is a commutative theory.

More precisely, AIMIE is defined by an associative, commutative and idempotent
operaton ⊔ with neutral element −∞ and a endomorphism S which also satisfies the
inflationary identity S 𝑙 ⊔ 𝑙 ≃ S 𝑙 .1 The translation is then almost the identity, except that
variables 𝑖 are translated as 𝑖 ⊔ 0, and 0 is treated as an undefined constant. Then, by
solving translated problems in AIMIE, it seems that we can translate-back the unifiers into
the theory of universe levels, obtaining this way a m.c.u. for the original problem. This
alternative algorithm would also need Conjectures 17.1 and 17.2, providing evidence that
the obtained algorithm would be essentially the same as the one we gave here. Finally,
if our algorithm can indeed be recovered from the one for commutative theories as it
appears, then a natural question is if the strategy described above can be generalized to
a class of theories, containing as a specific instance the theory of universe levels. This
seems to be an interesting question that could be investigated in future work.

Regarding related work specifically on equational unification in the theory of universe
levels, this problem does not appear to have been previously discussed in the literature.
The proof assistant Agda features an algorithm for solving level metavariables, but to
the best of our knowledge it does not seem to have been formally specified or proven
correct in the literature, making it hard to provide a detailed comparison with our work.
Nevertheless, practical tests suggest that our algorithm is an improvement. As an example,
typechecking in Agda the entry

test : (𝐴 : Set _) → (𝐵 : Set _) → (𝐶 : Set _) → (𝑅 : (𝐷 : Set _) → 𝐷 → 𝐷 → Set _) → Set _
test = _𝐴 𝐵 𝐶 𝑅 → 𝑅 (Set _) (𝐴→ 𝐶) (𝐴→ 𝐵)

gives the error Failed to solve the following constraints: _0 ⊔ _1 = _0 ⊔
_2, however this constraint is solvable by our algorithm (see Example 17.6). Therefore,
our work could also be used to improve Agda’s unification algorithm.

1Note that this theory is inadequate to be used in the context of type universes, as the equation
S −∞ ≃ −∞ implies U−∞ : Tm U−∞, yielding an inconsistent theory.
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Predicativize

For future work, we would also like to look at possible ways of making Predicativize less
dependent on user intervention. In particular, the translation of inductive types and recur-
sive functions involves some considerable manual work. We thus expect improvements
in this direction to be needed in order to translate larger proof libraries.

Another problem that we have also not tackled is the one of concept alignment, that is,
adapting the translated statements and proofs so that they use the definitions from the
Agda standard library, which would make our proofs more usable for Agda users. This
is already being investigated in the context of the translation from HOL-Light to Coq
by Blanqui [Bla24], however his proposed method requires a lot of manual invervention.
One can thus wonder if a more automatic solution could be applied. The use of proof
transfer tools such as Trocq [CCM24] could be an interesting direction to explore.
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