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Abstract

This thesis studies the spectral statistics of inhomogeneous random matrices, such as
weighted random graphs, covariance matrices, and quantum channels. One of the main
proof techniques is adapting the moment method to these models. Our objectives are
twofold. First, we investigate the limiting spectral distribution of regular directed graphs,
quantum channels, and tensor products of non-commutative random variables. Second,
we establish precise asymptotic and non-asymptotic bounds on the norm of such matrices
and their quadratic forms. To achieve our objectives, in the first part, we show the
convergence of large directed d-regular graphs Gn in n vertices, analyze the combinatorics
of its moments, and explore the connection between random uniformly chosen regular
digraphs, the infinite regular directed tree, and the oriented Kesten-McKay conjecture.
We also work on its quantum counterpart, which is known as quantum channels. We will
derive a free central limit theorem with the semi-circle law as the limit. Additionally,
we extend the notion of quantum channels to non-commutative probability spaces and
algebras and prove a central limit theorem for these variables. We show that the limit is
the semi-circle law if and only if the variables are centered; otherwise, the limit can be
written as a free convolution of the semi-circle law and an explicit probability measure.
In the second part, we examine regular weighted graphs whose adjacency matrices Xn

are formed by taking the Hadamard product of the adjacency matrix of the graph and a
weighted matrix. We prove that when the weights are subgaussian random variables, the
norm of the inhomogeneous random matrix Xn shows a sharp transition around d ∼ log n,
indicating the presence of outliers. Additionally, we investigate the centered quadratic
form XnX

t
n − E[XnX

t
n] and provide precise upper bounds on its norm, which is known

as the covariance estimation problem. We present examples that improve upon previous
works and also lower bounds.

Résumé

Cette thèse étudie les statistiques spectrales de matrices aléatoires inhomogènes, telles que
les graphes aléatoires pondérés, les matrices de covariance et les canaux quantiques. L’une
des principales techniques de preuve est l’adaptation de la méthode des moments à ces
modèles. Nos objectifs sont doubles. Premièrement, nous étudions la distribution spec-
trale limite des graphes dirigés réguliers, des canaux quantiques et des produits tensoriels
de variables aléatoires non commutatives. Deuxièmement, nous établissons des limites
asymptotiques et non asymptotiques précises sur la norme de ces matrices et de leurs
formes quadratiques. Pour atteindre nos objectifs, dans la première partie, nous mon-
trons la convergence des grands graphes aléatoires dirigés d-réguliers Gn en n sommets,
analysons la combinatoire de leurs moments, et explorons la connexion entre les digraphes
réguliers aléatoires uniformément choisis, l’arbre régulier dirigé infini, et la conjecture ori-
entée de Kesten-McKay. Nous travaillons également sur sa contrepartie quantique, connue



sous le nom de canaux quantiques. Nous déduisons un théorème central limite libre avec
la loi du demi-cercle comme la limite. En outre, nous étendons la notion de canaux quan-
tiques aux espaces et algèbres de probabilité non commutatifs et prouvons un théorème de
limite centrale pour ces variables. Nous montrons que la limite est la loi du demi-cercle
si et seulement si les variables sont centrées ; sinon, la limite peut être écrite comme
une convolution libre de la loi du demi-cercle et des lois gaussiennes. Dans la deuxième
partie, nous examinons les graphes réguliers pondérés dont les matrices d’adjacence Xn

sont formées en prenant le produit d’Hadamard de la matrice d’adjacence du graphe et
d’une matrice pondérée. Nous prouvons que lorsque les poids sont des variables aléatoires
sousgaussiennes, la norme de la matrice aléatoire inhomogène Xn présente une transition
abrupte autour de d ∼ log n, indiquant la présence de valeurs aberrantes. En outre, nous
étudions la forme quadratique centrée XnX

t
n − E[XnX

t
n] et fournissons des estimations

précises de sa norme, ce qui est connu comme le problème d’estimation de la covariance.
Nous présentons des exemples qui améliorent les travaux précédents ainsi que des limites
inférieures.
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Introduction (English version)

This thesis focuses on inhomogeneous random matrices in various fields, such as free
probability, quantum information theory, high-dimensional probability, and statistics. A
fundamental proof technique consists of applying the moment method to these different
scenarios. The manuscript is divided into two main parts: the spectral distribution and
the operator norm of inhomogeneous matrices. The first part consists of three chapters. In
Chapter 1, we examine a combinatorial variation of the Oriented Kesten-McKay conjec-
ture, along with the spectra of directed random regular graphs. In Chapter 2, we analyze
the Empirical Spectral Distribution (ESD) of quantum channels. Finally, in Chapter 3,
we prove a new central limit theorem for tensor products of free random variables in a
non-commutative probability space. The second part has two chapters. In Chapter 4,
we focus on the outliers of the ESD of inhomogeneous symmetric random matrices with
subgaussian entries. In Chapter 5, we discuss the problem of covariance estimation for
inhomogeneous random covariance matrices.

⋆ ⋆ ⋆

Let’s begin by emphasizing the importance of the moment method and explaining
how it works. For a comprehensive analysis, see [8, 103]. Let Mn be an n× n symmetric
matrix and define its ESD as the measure

µMn = 1
n

∑
k∈[n]

δλk
,

where λ1 ≥ · · · ≥ λn are its n eigenvalues. The p-th moment of µMn is then
∫
xp dµMn = 1

n

∑
k∈[n]

λpk = 1
n

tr(Mp
n).

In order to study the weak convergence of the measure µMn , it is sufficient to analyze
the convergence of the traces 1

n
tr(Mp

n) for all p ≥ 1 under certain conditions. The
combinatorial nature of the trace of the p-th power of an n×n matrix Mn often simplifies
the analysis. To illustrate, Wigner [111] proved the following using the moment method.
A symmetric matrix Xn = (ξij)i,j∈[n] whose entries on and above the diagonal are i.i.d
copies of a random variable ξ and ξij = ξji for i > j is called the Wigner matrix associated
with ξ.
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Chapter 0. Introduction English version

Theorem 0.1 (Wigner’s Theorem). Let Xn be a Wigner matrix associated with a centered
random variable ξ with variance 1/n. Then the ESD µXn converges weakly almost surely
to the semi-circle law. Moreover, its (even) moments converge to the Catalan numbers

1
n

tr(X2p
n )→ 1

p+ 1

(
2p
p

)
=: Cp a. s.

For the sparse case, consider a graph G and its adjacency matrix AG. Then

1
n

tr(ApG) = 1
n

∑
v1,...,vp∈G

∏
i∈[p]

AG(vi, vi+1)

is the average number of closed excursions of length p inG, where vp+1 := v1 by convention.
In particular, one can prove the convergence of ESD µAG

by counting closed excursions
on graph G. For an example, see [78].

Let us now consider the independent problem of controlling the largest eigenvalue λ1.
The limiting law of µMn provides no information on λ1 as its weight is negligible for µMn .
In the case of a Wigner matrix, λ1 does not always converge to 2, which is the extreme
of the spectrum of the semi-circle law. The following is a theorem by Bai and Yin [12].

Theorem 0.2. Let Xn be an n × n Wigner matrix associated with a centered random
variable ξ with variance 1/n. Then λ1(Xn) converges almost surely if and only if E ξ4 <

∞. In this case, λ1(Xn)→ 2 almost surely.

Bai-Yin’s theorem again uses the moment method. We define ∥·∥, the operator norm,
as

∥Mn∥ := sup
x∈Sn−1

∥Mnx∥2,

where ∥·∥2 is the Euclidean norm in Rn and Sn−1 is the Euclidean sphere. First note that

lim inf
n→∞

∥Xn∥ ≥ 2.

Indeed, this follows by Wigner’s Theorem 0.1. We then compare

∥Mn∥2p ≤ tr(M2p
n ) ≤ n∥Mn∥2p,

for any symmetric n×n matrix Mn. This is the l2p−l∞ norm inequality for the eigenvalues
of Mn. Jensen’s Inequality implies

lim sup
n→∞

E∥Xn∥ ≤ lim sup
n→∞

(
E tr(X2pn

n )
) 1

2pn

The trace of X2pn
n has a combinatorial nature, making it easier to work with compared

to the operator norm’s geometric nature. To prove their result, Bai and Yin then showed

16



English version Chapter 0. Introduction

that there exists a sequence (pn)n such that pn/ log n→∞ and

(
E tr(X2pn

n )
) 1

2pn ≤ n
1

2pn (2 + ∆n),

where ∆n → 0. The proof of the almost sure convergence follows by a concentration
argument; see [12].

The thesis is divided into two parts, corresponding to different relaxations of limit
theorems (such as Wigner’s Theorem). In Part I, we relax the assumption of independence
and study random matrices with dependent entries. We analyze the limiting behavior of
their ESD. In Part II, we relax the assumption of identical distribution and consider
random matrices with independent entries and a variance profile. We derive limits and
bounds for their norms. Part I consists of three chapters. In Chapter 1, we will analyze
the ESD of regular directed graphs. In Chapter 2, we will examine the limit spectral
distribution of quantum channels. Concluding this part, in Chapter 3, we will investigate
the limit spectral distribution of tensor products of non-commutative random variables.
Part II includes two chapters. In Chapter 4, we will focus on the presence or absence
of outliers of subgaussian matrices. Finally, in Chapter 5, we will evaluate the operator
norm of covariance matrices.

Part I. Spectral Distribution of Inhomogeneous Matrices

Recall that Wigner’s Theorem 0.1 states that the ESD of an n×n random matrix Wn with
i.i.d centered entries with variance 1/n converges weakly almost surely to the semi-circle
law. In this part, we relax the independence assumption and consider more generally
random matrices Wn with dependent structures. We consider two important examples:
adjacency matrices of random uniformly chosen regular graphs and tensor products Wn⊗
Wn.

⋆ ⋆ ⋆

In Chapter 1, we present the main results from the paper "A combinatorial view on star
moments of regular directed graphs and trees" (https://arxiv.org/abs/2309.02225)
[41], joint work with Benjamin Dadoun.

Let Gn,d be a d-regular graph in n vertices with adjacency matrix An,d. As Gn,d is
regular, the matrix An,d has the largest eigenvalue (by the Perron-Frobenius theorem)
isolated and equal to d, with associated eigenvector 1. Computational algorithms often
rely on the concept of spectral gap, so it is crucial to have a good understanding of

Γ(Gn,d) = d− λ2(Gn,d) > 0,

and the larger Γ is, the better expansion properties Gn,d shares; see [63]. Equivalently, we

17
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Chapter 0. Introduction English version

want to control

E∥An,d − EAn,d∥ = E sup
x∈Sn−1

∥(An,d − EAn,d)x∥2.

The ESD of Gn,d was analyzed in [78, 67], and it is known as the Kesten-McKay distri-
bution.

Theorem 0.3. Let d be fixed and Gn,d be a random uniformly chosen d-regular graph on
n vertices. Then the ESD µAn,d

of the adjacency matrix of Gn,d converges almost surely
to the Kesten-McKay distribution with density

fKM(x) = d

2π

√
4(d− 1)− x2

d2 − x2 1|x|≤2
√
d−1.

Moreover, the moments

m2k =
∫
x2kfKM(x) dx

satisfy the following recursion

m2k = d
k−1∑
l=0

Cl(d− 1)lm2(k−1−l), (1)

where Cl is the l-th Catalan number and m0 = 1.

In this case, it is known that λ2 remains in the bulk of the spectrum, namely,

λ2(Gn,d)→ 2
√
d− 1.

This was known as the Alon’s Conjecture [3] and solved by Friedman [49]; see also [50].
Such graphs are called weakly Ramanujan’s or almost Ramanujan’s.

Consider the d-regular infinite undirected tree UTd rooted at a distinguished vertex
o ∈ UTd. Let m̃2k be the number of closed excursions from o to o of length 2k. Then, a
routine computation shows that m̃ satisfies (1) and both m0 = m̃0 = 1. In this case, the
spectral distribution of UTd with respect to the root o is the Kesten-McKay distribution
because m̃ = m. A connection between UTd and Gn,d can be established by considering
the local topology on graphs [24]. A randomly and uniformly drawn d-regular graph Gn,d

locally converges to a tree as the number of small cycles is sublinear in the dimension. The
convergence of the ESD of Gn,d can be recovered through Bordenave-Lelarge’s criterion
[29]. This provides a comprehensive understanding of undirected regular graphs.

Consider the case of directed d-regular graphs Dn,d, where every vertex has d incoming
and d outgoing edges. As its adjacency matrix An,d is now nonsymmetric, the previous
equivalence between the weak convergence of µAn,d

and the convergence of the traces
tr(Apn,d) no longer holds [14, Chapter 11]. The following is an analog of the Kesten-McKay
theorem [28].
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Conjecture 0.4 (Oriented Kesten-McKay Conjecture). Let Dn,d be a directed uniformly
chosen d-regular graph on n vertices and µAn,d

be the ESD of its adjacency matrix. Then
µAn,d

converges weakly, almost surely, to a radial distribution on the unit disc of the
complex plane with density

fOKM(z) = 1
π

d2(d− 1)
(d2 − |z|2)2 1|z|≤

√
d.

Let us introduce some notation. For w ∈ {1, ∗}p and an n× n matrix A, let

Aw = Aw1 · · ·Awp .

In the case w ≡ 1, we have Aw = Ap, for instance. The moments 1
n

tr(Aw) are the star
moments of the matrix A, and their convergence is defined as the star convergence. Using
a generalization of the Benjamini-Schram topology [24] for directed graphs, we prove
that the random uniformly chosen directed graphs Dn,d locally converge to the directed
d-regular infinite tree Td, and therefore its moments converge.

Theorem 0.5. For every p ≥ 0 and w ∈ {1, ∗}p, we have

1
n
E tr(Awn,d)→Md(w),

where An,d is the adjacency matrix of a random uniformly chosen d-regular digraph on n

vertices.

Here, Md(w) is the number of closed w-excursions on the infinite tree Td starting on a
distinguished vertex o, where a closed w-excursion on a digraph G is a sequence of vertices
v1, . . . , vp such that (vi, vi+1) ∈ E(G) if wi = 1 or (vi+1, vi) ∈ E(G) otherwise, where we
recall vp+1 := v1.

Our second main theorem provides a direct and combinatorial formula for calculating
Md(w). For this purpose, we introduce some notation. Let π ∈ P (k) be a partition of
[k], and we denote i ∼π j if i and j belong to the same block of π. We say that π is
noncrossing if there exist no four-tuple (i1, i2, j1, j2) with i1 < i2 < j1 < j2 such that
i1 ∼π j1, i2 ∼π j2, and i1 ≁π i2. We denote NC(k), the set of all noncrossing partitions
of [k]. The cardinal |NC(k)| is equal to the Catalan number Ck := 1

k+1

(
2k
k

)
. We further

say that π is an alternating non-crossing partition of w (π ∈ ANC(w)) if for every block
V := {i1 < · · · < im} ∈ π, the subword w|V := wi1 · · ·wim of w is alternating, that is
either of the form w|V = 1∗ · · · 1∗ or w|V = ∗1 · · · ∗1.

Theorem 0.6 (Combinatorial formula for Md(w)). For every k ≥ 0 and every w ∈
{1, ∗}k,

Md(w) =
∑

π∈ANC(w)

(∏
V ∈π

(−1)
|V |

2 −1 C |V |
2 −1

)
d|π|. (2)
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Theorem 0.6 indicates a positive answer to the Kesten-McKay conjecture. Indeed, the
w-moments of the measure defined in Conjecture 0.4 are precisely the right-hand side (2);
see Section 1.3.

⋆ ⋆ ⋆

In Chapter 2, we present the results from the paper "Limiting spectral distribution
of random self-adjoint quantum channels" (https://arxiv.org/abs/2311.12368) [73],
joint work with Cécilia Lancien, and Pierre Youssef.

Quantum settings extend classical notions with equivalent questions explored in the
literature. In the previous chapter, we examined regular graphs and directed graphs.
These mathematical objects have a quantum equivalent: a quantum channel.

In quantum physics, a quantum channel is a linear map Φ from the space of complex-
valued n × n matrices to itself. The Kraus representation can be used to describe the
action of Φ ([10, Section 2.3.2], or [114, Chapter 2])

Φ(X) = 1
d

∑
i∈[d]

KiXK
∗
i , (3)

where Ki are known as the Kraus operators. The Kraus dimension of the quantum
channel is represented by the smallest value of d in equation (3). The quantum channel
is trace-preserving if tr(Φ(X)) = tr(X) or equivalently, if

1
d

∑
i∈[d]

KiK
∗
i = Id .

Moreover, a trace-preserving quantum channel sends quantum systems (i.e., positive ma-
trices with trace equal to one) to quantum systems. In particular, the analog of the
Perron-Frobenius theorem [114, Chapter 6] states that a trace-preserving quantum chan-
nel has an isolated largest eigenvalue equal to 1. The spectral gap is defined as

Γ(Φ) = 1− λ2(Φ),

where λ2(Φ) is the second largest eigenvalue of Φ. As in the classical case mentioned before
for regular graphs, the larger the spectral gap is, the better the expansion properties of
Φ are, and the faster the mixing time is.

By the canonical identification Mn(C) = Cn⊗Cn, a quantum channel can be identified
as the matrix

MΦ = 1
d

∑
i∈[d]

Ki ⊗Ki ∈Mn2(C).

Such an equivalence preserves the spectrum of Φ. Therefore, in order to study the spec-
tral properties of Φ, it suffices to study the spectral properties of summations of tensor
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products of matrices. Several results [54, 62, 72, 88] have proved that for a large class
of independent random Kraus operators Ki, the associated quantum channel has a large
spectral gap

Eλ2(Φ) = E

∥∥∥∥∥∥1
d

∑
i∈[d]

Ki ⊗Ki − EKi ⊗Ki

∥∥∥∥∥∥ ≤ C√
d
, (4)

which is the equivalent of Alon’s conjecture [3] for quantum channels. In particular, for
those families of random matrices, their quantum channel is fast mixing.

In the past, research on random quantum channels has primarily focused on the spec-
tral gap and extreme eigenvalues. However, our recent study, as presented in [73], explores
the global spectral distribution of Φ, as well as its ESD µMΦ . This provides a complemen-
tary approach to understanding both the bulk and extreme eigenvalues of the spectrum
of Φ.

Let us now state our main result informally.

Theorem 0.7. Let W1, . . . ,Wd ∈ Mn(C) be independent Hermitian (i.e., self-adjoint)
random matrices such that, for each i ∈ [d], E(Wi) = 0 and E(W 2

i ) = Id. Suppose
additionally that, for each i ∈ [d], the ESD of Wi converges to some distribution µi as
n→∞ and that the joint asymptotic distribution of the family (Wi)i∈[d] is determined by
the family (µi)i∈[d] (see Section 2.2). Define the quantum channel

Φ : X ∈Mn(C) 7→ 1√
d

∑
i∈[d]

WiXW
∗
i ∈Mn(C).

Then, the following holds.

• If d is fixed, then the spectral distribution of Φ−E(Φ) converges to a specific distri-
bution, depending only on µ1, . . . , µd, as n→∞.

• If d = d(n) → ∞ as n → ∞ and Wi are i.i.d, then the spectral distribution of
Φ− E(Φ) converges to the semicircular distribution as n→∞.

Remark 0.8. It is important to note that the normalization factor of 1/
√
d in quantum

channels comes naturally from a central limit theorem-type result. On the other hand,
the previous normalization factor of 1/d in the operator norm of (4) is similar to the one
used in the law of large numbers.

⋆ ⋆ ⋆

In Chapter 3, we will discuss the results from a joint work in progress with Cécilia
Lancien and Pierre Youssef.

In the previous chapter, we studied the quantum channels

MΦ − EMΦ = 1√
d

∑
i∈[d]

(
Wi ⊗W i − EWi ⊗W i

)
,
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and we proved that, as d approaches infinity and Wi are i.i.d centered, the ESD of MΦ −
EMΦ converges to the semi-circle law. In this chapter, we remove the centering condition
and study more generally the problem of finding the limit law of

m− τ(m) = 1√
d

∑
i∈[d]

(ai ⊗ ai − τ ⊗ τ(ai ⊗ ai)1),

where ai are non-commutative random variables. We begin its description now.
Let (A, τ) be a unital non-commutative algebra equipped with a faithful tracial linear

state τ(ab) = τ(ba) for all a, b ∈ A and an involution ∗, that is, (a∗)∗ = a, for all
a ∈ A. Faithfulness means that τ(a∗a) ≥ 0 and equality only holds if a = 0. We say that
subalgebras A1, . . . ,An ⊂ A are free if

τ(a1 · · · ak) = 0,

whenever the following conditions are satisfied.

1. k ≥ 0;

2. τ(ai) = 0 for any i ∈ [k];

3. ai ∈ Aji , where ji ∈ [n] for any i ∈ [k];

4. Consecutive ai’s are not in the same algebra, j1 ̸= j2, . . . , jk−1 ̸= jk.

We say that random variables a1, . . . , an are free whenever their algebras are. Freeness
is the analog of independence in non-commutative spaces, and limit theorems for inde-
pendent random variables extend naturally to free random variables. To illustrate, let us
recall the free central limit theorem [110], [85, Lecture 8]. We denote

var(a) = τ((a− τ(a)1)2),

the variance of a random variable with mean τ(a), and 1 ∈ A is the unit in A.

Theorem 0.9. Let a1, . . . , an ∈ A be self-adjoint (i.e., a∗ = a) free i.i.d centered random
variables with variance one. Let

Sn := 1√
n

∑
i∈[n]

ai.

Then Sn converges in distribution to the semi-circle law, namely, for any p ≥ 1, we have

τ(Spn)→ τ(sp),

where s is a semi-circle random variable.
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Recall that a semi-circle random variable has semi-circle distribution, namely, its odd
moments vanish, and for any p ≥ 1, we have

τ(s2p) = Cp.

Its law µsc has density

f(x) = 1
2π
√

4− x21|x|≤2.

The authors of [37] investigated the tensor product of free random variables bk = ak⊗ ak,
which was inspired by the tensor product of random matrices for quantum channels. They
discovered that in the product space (A⊗A, τ ⊗ τ), such tensors are generally not free.
In particular, Theorem 0.9 does not need to hold for the variables bk. Our goal is then to
identify this limit distribution.

Let a, a1, . . . , an ∈ (A, τ) be self-adjoint free i.i.d random variables. To avoid degen-
erated random variables, assume var(a) > 0. Otherwise, ai = τ(a)1, and the result is
trivial. Consider

bi = ai ⊗ ai − τ ⊗ τ(ai ⊗ ai)1 = ai ⊗ ai − τ 2(ai)1, (5)

and

Sn := 1√
n var(b)

∑
i∈[n]

bi. (6)

Note first that

var(b) = var(a)(var(a) + 2τ 2(a)),

hence,

q := 2τ 2(a) var(a)
var(b) ∈ [0, 1]. (7)

Our main theorem characterizes the limiting distribution of Sn as a function of q. We
require some notation. We denote ⊞ the free convolution and for a measure µ, we denote

(tµ)(A) := µ(t−1A),

its dilation by t > 0 and Borel sets A ⊂ R. For p ∈ N, we denote P (p) the set of all
partitions of [p] and P2(p) the set of all partitions π ∈ P (p) such that for every block
V ∈ π, |V | = 2, and in this case π is called a pair partition. We say that two distinct
blocks V1, V2 ∈ π cross if there exist i < j < k < l such that {i, k} ⊆ V1 and {j, l} ⊆ V2.
We say that a block V is crossing if there exists another block V ′ such that V and V ′

cross. Finally, we define the intersection graph G(π) as follows. The vertices of G(π) are

23



Chapter 0. Introduction English version

the blocks of π, and there exists an edge between blocks V1, V2 if they cross. We denote
P bi(p) (resp. P bi

2 (p)) the set of all partitions (resp. pair partitions) whose intersection
graph is bipartite. We define a measure ν whose odd moments are zero and even moments
are equal to

∫
R
x2p dν = |P bi

2 (2p)| ≤ E g2p,

where g ∼ N(0, 1) is a standard Gaussian random variable whose moments are precisely
the cardinal of pair partitions. The existence of the measure ν is discussed in Remark
3.4, and it is the Moment Problem for the sequence (|P bi

2 (2n)|)n≥1 [2, 92].
The following is our main theorem.

Theorem 0.10. Let a, a1, . . . , an ∈ (A, τ) be self-adjoint free i.i.d random variables with
variance var(a) > 0. Let bi and Sn as in (5), (6), respectively, and

q = 2τ 2(a) var(a)
var(b) ∈ [0, 1].

Then Sn converges in distribution to the weighted free convolution of ν and the semi-circle
law

Sn ⇒
√
q

2ν ⊞
√
q

2ν ⊞
√

1− q µsc.

Part II. Norm of Inhomogeneous Matrices

In this section, we relax the assumption of identical distribution to prove limit theorems
and consider inhomogeneous random matrices Wn = (wij) with independent entries and
a variance profile where E(w2

ij) = σ2
ij. We will focus on two examples. Firstly, we will

compute and study the convergence of the norm of a symmetric inhomogeneous matrix
Wn. Secondly, we consider asymmetric d × n matrices Wn and study bounds on the
operator norm of its quadratic form.

⋆ ⋆ ⋆

In Chapter 4, we present the main results from the paper "On spectral outliers of in-
homogeneous symmetric random matrices" (https://arxiv.org/abs/2401.07852) [5],
joint work with Dylan J. Altschuler, Konstantin Tikhomirov, and Pierre Youssef.

In Chapter 1, we explored the ESD of d-regular graphs Gn. However, we can also
consider a weighted regular graph G̃n, where we assign independent and identically dis-
tributed (i.i.d) random variables ξe to each edge e ∈ E(Gn). In other words, the adjacency
matrix of G̃n is given by Xn = AGn ◦Wn, where AGn is the adjacency matrix of Gn, Wn

is a symmetric random matrix with i.i.d entries following the law ξ, and ◦ denotes the
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Hadamard (entrywise) product. This model is known as a sparse Wigner matrix. A nat-
ural question that arises is the following. "What is the limit ESD of Xn when d = d(n) is
a function of n?"

The celebrated Wigner’s Theorem 0.1 has a universal characteristic similar to the
central limit theorem. It means that the limit is not affected by the distribution of entries
but solely by its variance. Wigner’s ensemble corresponds to the complete graph Gn.
According to Bai-Yin’s Theorem 0.2, for the extreme eigenvalue λ1, such universality
breaks down in a weak sense. Namely, they prove that if the fourth moment is finite, then
there are no outliers

∥Wn∥ → 2 a. s.

Otherwise, the operator norm does not converge. The universality of both of these results
has gained significant focus for other models, in particular for those without the i.i.d
condition [25, 81, 45, 47, 48]. One important model is the sparse case, which is used in
theoretical analysis, numerical simulations, statistical inference, graph theory, and random
matrices [18, 19, 31]. The model we will study in this chapter is as follows.

Model. Let Wn be an n×n (symmetric) Wigner matrix whose on and above the diagonal
entries are i.i.d copies of a centered random variable ξ having unit variance. Let Σn = (σij)
be an n× n symmetric matrix with positive entries such that

∑
i∈[n]

σ2
ij = 1,

for all j ∈ [n]. We consider the dilation Xn = Σn ◦Wn, where ◦ denotes the Hadamard
(i.e., entrywise) product. We call Xn a dilation of the Wigner matrix Wn.

It is natural to ask whether the universality of the spectrum and the extreme eigen-
values holds in the inhomogeneous case. Specifically, we can question whether the limit
spectral distribution of Xn and its norm limit are dependent on ξ and Σn. The first has
been successfully answered in a more general setting in [55].

Theorem 0.11. Let Xn = Σn ◦Wn be a dilation of an n × n Wigner matrix associated
with a centered random variable ξ with unit variance. Then, the following holds.

1. If

σ∗
n = max

ij
σij → 0,

the limit law of µXn is the semi-circle law, no matter the distribution of ξ and the
structure of Σn.

2. Otherwise, if σ∗
n does not converge to zero, the limit law of the ESD of Xn (if it

exists) depends both on ξ and the structure of Σn.

25



Chapter 0. Introduction English version

Regarding the extremity of the spectrum, the results from [74] already demonstrate
that such universality does not hold. In order to determine the influence of the structure
of Σn, we will restrict our case to subgaussian random variables. Recall that a subgaussian
random variable ξ satisfies

E eλ(ξ−E ξ) ≤ eσ
2λ2/2,

for all λ ∈ R and some σ > 0. In the Gaussian case, the following result is shown [19].

Theorem 0.12. Suppose ξ ∼ N(0, 1) and let Xn = Σn ◦Wn be the dilation of its n × n
Wigner matrix. Then

E∥Xn∥ ≤ (1 + ε)
(

2 + C(ε)σ∗
n

√
log n

)
,

for any ε ∈ (0, 1/2).

The main idea to prove Theorem 0.12 is a compression argument that compares the
matrix Xn to a standard symmetric r× r random matrix Gr with iid Gaussian entries on
and above the diagonal such that

E tr(X2p
n ) ≤ κE tr(G2p

r ).

Here, κ and the dimension r are tuned appropriately according to the variance profile; see
[19]. The latter is then computed via sharp bounds on Gaussian processes and Gaussian
concentration as

E tr(G2p
r ) ≤ nE∥Gr∥2p.

Note that the convergence of the spectral distribution of Xn implies that

lim inf E∥Xn∥ ≥ 2.

Therefore, Theorem 0.12 implies that whenever σ∗
n

√
log n goes to zero, there is no outliers

E∥Xn∥ → 2.

Such a result was extended to bounded random variables ξ in [74], but it remained
open whether one could extend it to all subgaussian random variables. This is indeed the
case, as our first main theorem shows.

Theorem 0.13. Let Xn = Σn◦Wn be a dilation of an n×n Wigner matrix Wn associated
with a centered subgaussian random variable ξ having variance one. If σ∗

n

√
log n goes to

zero, Xn has no outliers, namely, ∥Xn∥ → 2 almost surely.

Restricting to the matrices Σn = 1√
d
AGn , that is, normalized adjacency matrices of
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d-regular graphs Gn, the previous result states that whenever d ≫ log n, there are no
outliers. Seginer [93] partially answered the converse.

Theorem 0.14. Let ξ be a Rademacher random variable and Wn be its n × n Wigner
matrix. Then, there exists a regular graph Gn with degree d = ⌈

√
log n⌉ such that

E
∥∥∥∥∥ 1√

d
AGn ◦Wn

∥∥∥∥∥ ≥ c log1/4 n.

Our second main theorem lifts the suboptimal condition d = ⌈
√

log n⌉ all the way up
to the sharp condition d ∼ log n.

Theorem 0.15. Let ξ be a centered random variable with variance one and bounded fourth
moment. Let Wn be its n× n Wigner matrix. Fix any sequence dn = O(log n) such that
dn →∞ and ndn is even. Then, there exists a sequence of dn regular graphs Gn such that
the matrices 1√

dn
AGn ◦Wn have outliers almost surely. Namely,

P
(

lim inf
n→∞

∥∥∥∥∥ 1√
dn
AGn ◦Wn

∥∥∥∥∥ > 2
)

= 1.

⋆ ⋆ ⋆

In Chapter 5, we present the results from the paper "Almost sharp covariance and
Wishart-type matrix estimation" (https://arxiv.org/abs/2307.09190) [91].

Recall that Theorem 0.12 yields

E∥X∥ ≤ (1 + ε)(2 + C(ε)σ∗
√

log n),

where X = Xn and σ∗ = σ∗
n. Here, we drop the index n as in this chapter we will consider

the dimensions to be fixed. We will usually denote by X1, . . . , Xn the columns of the
matrix X.

A natural extension is to consider asymmetric d × n matrices X and polynomials on
X. Let P ∈ R[X, Y ] be a polynomial. We aim to bound

c(P ) := E
∥∥∥P (X,X t)

∥∥∥, (8)

here X t is the transpose of X. Such a problem is related to the concept of Strong
Asymptotic Freeness and outliers of the ESD of random matrices; see, for instance, [59,
38, 12, 14, 35]. In this chapter, we will consider a centered quadratic form

P (X,X t) := XX t − EXX t =
∑
k∈[n]

P (Xk, X
t
k), (9)

where Xk are the vector-columns of X. This is known as the Covariance Estimation

27

https://arxiv.org/abs/2307.09190


Chapter 0. Introduction English version

Problem (CEP). Notice that, if instead we let P1(X,X t) = X ⊗X t and

M :=
∑
k∈[n]

P1(Mk,M
t
k),

for matrices Mk, then M would be a quantum channel studied in Chapter 2.

The CEP is a well-known problem in statistics theory and has been studied extensively
in literature [79, 100, 116, 89, 69, 34, 33]. It also has connections with convex geometry,
as explained in Chapter 9 of [108], and outliers of the spectrum of random matrices. The
problem can be described as follows. Given a collection of independent and identically
distributed random vectors X1, . . . , Xn ∈ Rd, we define its empirical covariance matrix as

Σn = 1
n

∑
k∈[n]

XkX
t
k.

By the Law of Large Numbers, it is known that Σn converges entrywise to the true
covariance matrix Σ = EX1X

t
1. The objective is to control the speed of convergence.

Specifically, we aim to bound

E∥Σn − Σ∥ = E sup
x∈Sd−1

∥(Σn − Σ)x∥2.

In the homogeneous case, it is known [108, Theorem 4.7.1].

Theorem 0.16. Let G1, . . . , Gn ∈ Rd be i.i.d Gaussian random variables N(0, Id). Then

E∥Σn − Σ∥ ≤ C max

dn,
√
d

n

,
where C is a universal constant.

Independent vectors X1, . . . , Xn ∈ Rd, but not necessarily identically distributed, re-
quire good concentration bounds in the absence of the iid hypothesis. Recent works [69,
33, 18, 31] have lifted this hypothesis for more general settings.

By Bai-Yin’s theorem, in order to have convergence for the norm, we require at
least the existence of the fourth moment of the entrywise distribution Xij of each vec-
tor Xj ∈ Rd. For concreteness, we will consider the case of Gaussian random vectors
with independent entries. Let X = (Xij) = (bijgij) be the d × n matrix with columns
Xj = (bijgij), where bij ≥ 0 are deterministic coefficients and gij are i.i.d standard Gaus-
sian random variables. Then our goal is to evaluate

nE∥Σn − Σ∥ = E
∥∥∥XX t − EXX t

∥∥∥.
In order to introduce some parameters, consider bounding E∥X∥, as we did in Chapter
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4. Since the operator norm is bigger than the norm of each column Xj, we have

E∥X∥ ≥ max
j∈[n]

E∥Xj∥2 ≥ cmax
j∈[n]

(E∥Xj∥2)1/2,

where Gaussian Poincaré Inequality implies the second inequality. In particular, we have

E∥X∥ ≥ cmax
j∈[n]

∑
i∈[d]

b2
ij

1/2

=: σC ,

where σC denotes the maximum Euclidean norm of the columns. Similarly,

E∥X∥ ≥ cσR,

and σR is the maximum Euclidean norm of the rows. On the other hand, the operator
norm is bigger than the maximum of the entries; hence

E∥X∥ ≥ Emax
ij
|bijgij|.

If B = (bij) is sufficiently homogeneous, meaning that a polynomial proportion of the
coefficients bij is of the same order as

σ∗ = max
i,j

bij,

then we can immediately lower bound

E∥X∥ ≥ cσ∗

√
log(n ∧ d),

by using the maximum of Gaussian restricted to those large coordinates; see [19]. In this
case, the parameters σ∗, σC , σR are the only ones that matter. Therefore, no structural
parameter is required. Define the following parameters:

• σ̃2
∞ = max

i,l:i ̸=l

∑
j∈[n]

b2
ijb

2
lj; • σ̄2

∞ = max
i∈[d]

∑
j∈[n]

b4
ij;

• σ2
∞ = max

i∈[d]

∑
j∈[n]

∑
l:l ̸=i

b2
ijb

2
lj; • β∞ = σ̃∞σC

σ∞σ∗
.

The following is our main theorem, which is going to be shown in Chapter 5.

Theorem 0.17. Let X be a d × n Gaussian matrix with independent entries such that
Xij = bijgij where {gij : (i, j) ∈ [d]× [n]} are i.i.d standard Gaussian r.v. Let ε ∈ (0, 1/2).
Then, the following holds.
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1. If β∞ ≤ 1, we have

E
∥∥∥XXT − EXXT

∥∥∥ = E

∥∥∥∥∥∥
∑
j∈[n]

XjX
T
j − EXjX

T
j

∥∥∥∥∥∥
≤ (1 + ε)

{
2σ∞ + σ2

C + C(ε)σ∗

(
σC + σ∞

σC

)√
log(n ∧ d) + C2(ε)σ2

∗ log(n ∧ d)
}
.

2. Otherwise, β∞ > 1 and we have

E
∥∥∥XXT − EXXT

∥∥∥
≤ (1 + ε)

{2σ̃∞σC
σ∗

+ σ2
C + C(ε)(σCσ∗ + σ̄∞)

√
log(n ∧ d) + C2(ε)σ2

∗ log(n ∧ d)
}
.

The constant C(ε) is

C(ε) ≤ C√
ε
,

where C is a universal constant.

Theorem 0.17 improves upon the recent works [33, Theorem 2.1] and [31, Theorem
3.17], [18, Theorem 3.12] when β∞ ≤ 1. The condition on β∞ is a byproduct of the proof,
and it is unclear whether it is necessary. In particular, the leading term 2σ∞ + σ2

C seems
to be the correct bound on all cases, as it is indicated by some very sparse examples, the
lower bound on the norm and [18].
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Cette thèse se concentre sur les matrices aléatoires inhomogènes dans divers domaines,
tels que les probabilités libres, la théorie de l’information quantique, les probabilités en
grande dimension et les statistiques. Une technique de preuve fondamentale consiste à
appliquer la méthode des moments à ces différents scénarios. Le manuscrit est divisé en
deux parties principales : la distribution spectrale et la norme d’opérateur des matrices
inhomogènes. La première partie se décompose en trois chapitres. Dans le chapitre 1, nous
examinons une variante combinatoire de la conjecture de Kesten-McKay orientée, ainsi
que les spectres de graphes réguliers aléatoires dirigés. Dans le chapitre 2, nous analysons
la distribution spectrale empirique (DSE) des canaux quantiques. Enfin, dans le chapitre
3, nous prouvons un nouveau théorème central limite pour les produits tensoriels de
variables aléatoires libres dans un espace de probabilité non-commutatif. La deuxième
partie comporte deux chapitres. Dans le chapitre 4, nous nous concentrons sur les valeurs
aberrantes de la DSE de matrices aléatoires symétriques inhomogènes avec des entrées
sous-gaussiennes. Dans le chapitre 5, nous discutons du problème de l’estimation de la
covariance pour les matrices de covariance aléatoires inhomogènes.

⋆ ⋆ ⋆

Commençons par souligner l’importance de la méthode des moments et par expliquer
comment elle fonctionne. Pour une analyse complète, voir [8, 103]. Soit Mn une matrice
symétrique n× n et définissons sa DSE comme la mesure

µMn = 1
n

∑
k∈[n]

δλk
,

où λ1 ≥ · · · ≥ λn sont ses n valeurs propres. Le p-ième moment de µMn est alors
∫
xp dµMn = 1

n

∑
k∈[n]

λpk = 1
n

tr(Mp
n).

Pour étudier la convergence faible de la mesure µMn , il suffit d’analyser la convergence
des traces tr(Mp

n), pour tout p ≥ 1, sous certaines conditions. La nature combinatoire
de la trace de la puissance p d’une matrice n × n Mn simplifie souvent l’analyse. Par
exemple, Wigner [111] a prouvé ce qui suit en utilisant la méthode des moments. Une
matrice symétrique Xn = (ξij)i,j∈[n] dont les entrées sur et au-dessus de la diagonale sont
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des copies i.i.d d’une variable aléatoire ξ et ξij = ξji pour i > j est appelée la matrice de
Wigner associée à ξ.

Théorème 0.18. Soit Xn une matrice de Wigner associée à une variable aléatoire centrée
ξ de variance 1/n. Alors la DSE µXn converge faiblement presque sûrement vers la loi du
demi-cercle. De plus, ses moments (pairs) convergent vers les nombres de Catalan

1
n

tr(X2p
n )→ 1

p+ 1

(
2p
p

)
=: Cp a. s.

Pour le cas parcimonieux, considérons un graphe G et sa matrice d’adjacence AG.
Dans ce cas

1
n

tr(ApG) = 1
n

∑
v1,...,vp∈G

∏
l∈[p]

AG(vl, vl+1)

est le nombre moyen d’excursions fermées de longueur p dans G, où vp+1 := v1, par
convention. En particulier, on peut prouver la convergence de la DSE µAG

en comptant
les excursions fermées sur le graphe G. Pour un exemple, voir [78].

Considérons maintenant le problème indépendant du contrôle de la plus grande valeur
propre λ1. La loi limite de µMn ne fournit aucune information sur λ1 parce que son
poids est négligeable pour µMn . Dans le cas d’une matrice de Wigner, λ1 ne converge pas
toujours vers 2, qui est l’extrême du spectre de la loi du demi-cercle. Voici un théorème
de Bai et Yin [12].

Théorème 0.19. Soit Xn une matrice de Wigner n× n associée à une variable aléatoire
centrée ξ de variance 1/n. Alors λ1(Xn) converge presque sûrement si et seulement si
E ξ4 <∞. Dans ce cas, λ1(Xn) converge vers 2 presque sûrement.

Le théorème de Bai-Yin utilise à nouveau la méthode des moments. Nous définissons
∥·∥, la norme d’opérateur, comme suit

∥Mn∥ := sup
x∈Sn−1

∥Mnx∥2,

où ∥·∥2 est la norme euclidienne dans Rn et Sn−1 est la sphère euclidienne. Notons tout
d’abord que

lim inf
n→∞

∥Xn∥ ≥ 2.

En effet, cela découle du théorème de Wigner 0.18. Nous comparons ensuite

∥Mn∥2p ≤ tr(M2p
n ) ≤ n∥Mn∥2p,

pour toute matrice symétrique n × n Mn. Il s’agit de l’inégalité de norme l2p − l∞ pour
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les valeurs propres de Mn. L’inégalité de Jensen implique

lim sup
n→∞

E∥Xn∥ ≤ lim sup
n→∞

(
E tr(X2pn

n )
) 1

2pn .

La trace de X2pn
n est de nature combinatoire, ce qui la rend plus facile à utiliser que la

norme d’opérateur, de nature géométrique. Pour prouver leur résultat, Bai et Yin ont
ensuite montré qu’il existe une suite (pn)n telle que pn/ log n→∞ et que

(
E tr(X2pn

n )
) 1

2pn ≤ n
1

2pn (2 + ∆n),

où ∆n → 0. La preuve de la convergence presque sûre découle d’un argument de concen-
tration ; voir [12].

La thèse est divisée en deux parties, correspondant à différentes relaxations des théorèmes
limites (tels que le théorème de Wigner). Dans la partie I, nous relâchons l’hypothèse
d’indépendance et étudions les matrices aléatoires avec des entrées dépendantes. Nous
analysons le comportement limite de leur ESD. Dans la partie II, nous relâchons l’hypothèse
de distribution identique et considérons des matrices aléatoires avec des entrées indépen-
dantes et un profil de variance. Nous dérivons des limites et des bornes pour leurs normes.
La partie I se compose de trois chapitres. Au chapitre 1, nous analyserons la DSE des
graphes dirigés réguliers. Au chapitre 2, nous examinerons la distribution spectrale limite
des canaux quantiques. Pour conclure cette partie, au chapitre 3, nous étudierons la dis-
tribution spectrale limite des produits tensoriels de variables aléatoires non-commutatives.
La partie II comprend deux chapitres. Dans le chapitre 4, nous nous concentrerons sur la
présence ou l’absence de valeurs aberrantes de matrices sous-gaussiennes. Enfin, dans le
chapitre 5, nous évaluerons la norme d’opérateur des matrices de covariance.

Partie I. Distribution spectrale des matrices inhomogènes

Rappelons que le Théorème de Wigner 0.18 stipule que la DSE d’une matrice aléa-
toire n × n Wn avec des entrées centrées i.i.d. de variance 1/n converge faiblement
et presque sûrement vers le demi-cercle. Dans cette partie, nous relâchons l’hypothèse
d’indépendance et considérons plus généralement des matrices aléatoires Wn avec des
structures dépendantes. Nous considérons deux exemples importants : les matrices
d’adjacence de graphes réguliers aléatoires uniformément choisis, et les produits tensoriels
Wn ⊗Wn.

⋆ ⋆ ⋆

Dans le Chapitre 1, nous présentons les principaux résultats de l’article "A combinato-
rial view on star des graphes et arbres dirigés réguliers" (https://arxiv.org/abs/2309.
02225) [41], travail en commun avec Benjamin Dadoun.

Soit Gn,d un graphe d-régulier à n sommets avec une matrice d’adjacence An,d. Comme
Gn,d est régulière, la matrice An,d a la plus grande valeur propre (par le théorème de
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Perron-Frobenius) isolée et égale à d, avec le vecteur propre 1 associé. Les algorithmes
de calcul s’appuient souvent sur le concept de trou spectral, il est donc crucial de bien
comprendre

Γ(Gn,d) = d− λ2(Gn,d) > 0,

et plus Γ est grand, meilleures sont les propriétés d’expansion de Gn,d ; voir [63]. De
manière équivalente, nous voulons contrôler

E∥An,d − EAn,d∥ = E sup
x∈Sn−1

∥(An,d − EAn,d)x∥2.

La DSE de Gn,d a été analysée dans [78, 67], et elle est connue sous le nom de distribution
de Kesten-McKay.

Théorème 0.20. Soit d fixé et Gn,d un graphe d-régulier aléatoire uniformément choisi
sur n sommets. Alors la DSE µAn,d

de la matrice d’adjacence de Gn,d converge presque
sûrement vers la distribution de Kesten-McKay avec la densité

fKM(x) = d

2π

√
4(d− 1)− x2

d2 − x2 1|x|≤2
√
d−1.

De plus, les moments

m2k =
∫
x2kfKM(x) dx

satisfant à la récursivité suivante

m2k = d
k−1∑
l=0

Cl(d− 1)lm2(k−1−l), (10)

où Cl est le l-ème nombre de Catalan.

Dans ce cas, on sait aussi que λ2 reste dans la majeure partie du spectre, à savoir,

λ2(Gn,d)→ 2
√
d− 1.

Ce résultat, connu sous le nom de Conjecture d’Alon [3], a été prouvé par Friedman [49]
; voir également [50]. De tels graphes sont appelés faiblement de Ramanujan ou presque
de Ramanujan.

Considérons l’arbre non-dirigé infini d-régulier UTd enraciné à un sommet distingué
o ∈ UTd. Soit m̃2k le nombre d’excursions fermées de o à o de longueur 2k. Un calcul de
routine montre alors que m̃ satisfait (10) et que m0 = m̃0 = 1. Dans ce cas, la distribution
spectrale de UTd par rapport à la racine o est la distribution de Kesten-McKay puisque
m̃ = m. Un lien entre UTd et Gn,d peut être établi en considérant la topologie locale
sur les graphes [24]. Un graphe d-régulier aléatoirement et uniformément choisi Gn,d
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converge localement vers un arbre car le nombre de petits cycles est sous-linéaire dans
la dimension. La convergence de la DSE de Gn,d peut être retrouvée grâce au critère de
Bordenave-Lelarge [29]. Ceci permet une compréhension complète des graphes réguliers
non dirigés.

Considérons le cas des graphes réguliers dirigés Dn,d, où chaque sommet a d arêtes
entrantes et d arêtes sortantes. Comme la matrice d’adjacence An,d est maintenant non
symétrique, l’équivalence précédente entre la convergence faible de µAn,d

et la convergence
des traces tr(Apn,d) ne tient plus [14, Chapitre 11]. Ce qui suit est un analogue du théorème
de Kesten-McKay [28].

Conjecture 0.21 (Conjecture de Kesten-McKay orientée). Soit Dn,d un graphe d-régulier
dirigé uniformément choisi sur n sommets et µAn,d

la DSE de sa matrice d’adjacence.
Alors µAn,d

converge faiblement presque sûrement vers une distribution radiale sur le
disque unitaire du plan complexe avec la densité

fOKM(z) = 1
π

d2(d− 1)
(d2 − |z|2)2 1|z|≤d.

Introduisons quelques notations. Pour w ∈ {1, ∗}p et une matrice n× n A, notons

Aw = Aw1 · · ·Awp .

Dans le cas w ≡ 1, nous avons Aw = Ap, par exemple. Les moments 1
n

tr(Dw) sont les
moments en étoile de la matrice A, et leur convergence est définie comme la convergence en
étoile. En utilisant une généralisation de la topologie de Benjamini-Schram [24] pour les
graphes dirigés, nous prouvons que les graphes dirigés aléatoires Dn,d uniformément choisis
convergent localement vers l’arbre infini d-régulier dirigé Td, et donc que ses moments
convergent.

Théorème 0.22. Pour tout p ≥ 0 et w ∈ {1, ∗}p, nous avons

1
n
E tr(Awn,d)→Md(w),

où An,d est la matrice d’adjacence d’un digraphe aléatoire uniformément choisi d-régulier
sur n sommets.

Ici, Md(w) est le nombre de w-excursions fermées sur l’arbre infini Td à partir d’un
sommet distingué o, où une w-excursion fermée sur un digraphe G est une suite de som-
mets v1, . . . , vp telle que (vi, vi+1) ∈ E(G) si wi = 1 ou (vi+1, vi) ∈ E(G) sinon, où nous
rappelons que vp+1 := v1.

Notre deuxième théorème principal fournit une formule directe et combinatoire pour
calculer Md(w). Pour cela, nous introduisons quelques notations. Soit π ∈ P (k) une
partition de [k], et nous notons i ∼π j si i et j appartiennent au même bloc de π.
Nous disons que π est non croisée s’il n’existe aucun quadruplet (i1, i2, j1, j2) tel que
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i1 < i2 < j1 < j2, i1 ∼π j1, i2 ∼π j2, et i1 ≁π i2. Nous notons NC(k), l’ensemble
de toutes les partitions non croisées de [k]. Le cardinal |NC(k)| est égal au nombre
de Catalan Ck := 1

k+1

(
2k
k

)
. Nous disons également que π est une partition non croisée

alternée de w (π ∈ ANC(w)) si pour chaque bloc V := {i1 < · · · < im} ∈ π, le sous-
mot w|V := wi1 · · ·wim de w est alternant, c’est-à-dire de la forme w|V = 1∗ · · · 1∗ ou
w|V = ∗1 · · · ∗1.

Théorème 0.23 (Formule combinatoire pour Md(w)). Pour tout k ≥ 0 et tout w ∈
{1, ∗}k,

Md(w) =
∑

π∈ANC(w)

(∏
V ∈π

(−1)
|V |

2 −1 C |V |
2 −1

)
d|π|. (11)

Le théorème 0.23 indique une réponse positive à la conjecture de Kesten-McKay. En
effet, les w-moments de la mesure définie dans la conjecture 0.21 sont précisément le côté
droit de l’égalité (11) ; voir la section 1.3.

⋆ ⋆ ⋆

Dans le chapitre 2, nous présentons les résultats de l’article "Limiting spectral distri-
bution of random self-adjoint quantum channels" (https://arxiv.org/abs/2311.12368)
[73], travail en commun avec Cécilia Lancien, et Pierre Youssef.

Les paramètres quantiques étendent les notions classiques avec des questions équiv-
alentes explorées dans la littérature. Dans le chapitre précédent, nous avons examiné
les graphes réguliers et les graphes dirigés. Ces objets mathématiques ont un équivalent
quantique appelé un canal quantique.

En physique quantique, un canal quantique est un endomorphisme Φ de l’espace des
matrices n × n à valeurs complexes La représentation de Kraus peut être utilisée pour
décrire l’action de Φ ([10, Section 2.3.2], ou [114, Chapitre 2])

Φ(X) = 1
d

∑
i∈[d]

KiXK
∗
i , (12)

où les Ki sont définis comme les opérateurs de Kraus. La dimension de Kraus du canal
quantique est représentée par la plus petite valeur de d dans l’équation (12). Le canal
quantique préserve la trace si tr(Φ(X)) = tr(X) ou, de manière équivalente, si

1
d

∑
i∈[d]

KiK
∗
i = Id .

De plus, un canal quantique à trace préservée envoie des systèmes quantiques (c’est-à-
dire des matrices positives dont la trace est égale à un) vers des systèmes quantiques. En
particulier, l’analogue du théorème de Perron-Frobenius [114, Chapitre 6] stipule qu’un
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canal quantique préservant la trace a une plus grande valeur propre isolée égale à 1. Le
trou spectral est défini comme suit

Γ(Φ) = 1− λ2(Φ),

où λ2(Φ) est la deuxième plus grande valeur propre de Φ. Comme dans le cas classique
mentionné précédemment pour les graphes réguliers, plus le trou spectral est grand, plus
les propriétés d’expansion de Φ sont bonnes, et plus le temps de mélange est rapide.

Par l’identification canonique Mn(C) = Cn⊗Cn, un canal quantique peut être identifié
a la matrice

MΦ = 1
d

∑
i∈[d]

Ki ⊗Ki ∈Mn2(C).

Une telle équivalence préserve le spectre de Φ. Par conséquent, pour étudier les propriétés
spectrales de Φ, il suffit d’étudier les propriétés spectrales des sommations de produits
tensoriels de matrices. Plusieurs résultats [54, 62, 72, 88] ont prouvé que pour une grande
classe d’opérateurs de Kraus aléatoires indépendants Ki, le canal quantique associé a un
grand trou spectral

Eλ2(Φ) = E

∥∥∥∥∥∥1
d

∑
i∈[d]

Ki ⊗Ki − EKi ⊗Ki

∥∥∥∥∥∥ ≤ C√
d
, (13)

ce qui est l’équivalent de la conjecture d’Alon [3] pour les canaux quantiques. En partic-
ulier, pour ces familles de matrices aléatoires, leur canal quantique est à mélange rapide.

Dans le passé, la recherche sur les canaux quantiques aléatoires s’est principalement
concentrée sur le trou spectral et les valeurs propres extrêmes. Cependant, notre étude
récente, présentée dans [73], explore la distribution spectrale globale de Φ, ainsi que sa
DSE µMΦ . Ceci fournit une approche complémentaire pour comprendre à la fois la masse
et les valeurs propres extrêmes du spectre de Φ.

Théorème 0.24. Soit W1, . . . ,Wd ∈Mn(C) des matrices aléatoires hermitiennes (c’est-à-
dire auto-adjointes) indépendantes telles que, pour chaque i ∈ [d], E(Wi) = 0 et E(W 2

i ) =
Id. Supposons en outre que, pour chaque i ∈ [d], la DSE de Wi converge vers une certaine
distribution µi lorsque n→∞ et que la distribution asymptotique conjointe de la famille
(Wi)i∈[d] est déterminée par la famille (µi)i∈[d] (voir la section 2.2). Définissons le canal
quantique

Φ : X ∈Mn(C) 7→ 1√
d

∑
i∈[d]

WiXW
∗
i ∈Mn(C).

. Alors, on a les résultats:

• Si d est fixé, alors la distribution spectrale de Φ−E(Φ) converge vers une distribution
spécifique, dépendant uniquement de µ1, . . . , µd, lorsque n→∞.

• Si d = d(n)→∞ lorsque n→∞ et Wi sont i.i.d, alors la distribution spectrale de
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Φ− E(Φ) converge vers la loi du demi-cercle lorsque n→∞.

Remarque 0.25. Il est important de noter que le facteur de normalisation de 1/
√
d dans

les canaux quantiques provient naturellement d’un résultat de type théorème central lim-
ite. D’autre part, le facteur de normalisation précédent de 1/d dans la norme d’opérateur
de (13) est similaire à celui utilisé dans la loi des grands nombres.

⋆ ⋆ ⋆

Dans le chapitre 3, nous discuterons des résultats d’un travail en commun en cours
avec Cécilia Lancien et Pierre Youssef.

Dans le chapitre précédent, nous avons étudié les canaux quantiques

MΦ − EMΦ = 1√
d

∑
i∈[d]

(
Wi ⊗W i − EWi ⊗W i

)
,

et nous avons prouvé que, lorsque d tend vers l’infini et que Wi est centré i.i.d, la DSE
de MΦ − EMΦ converge vers la loi du demi-cercle. Dans ce chapitre, nous supprimons la
condition de centrage et étudions plus généralement le problème de la recherche de la loi
limite de

m− τ(m) = 1√
d

∑
i∈[d]

(ai ⊗ ai − τ ⊗ τ(ai ⊗ ai)1),

où ai sont des variables aléatoires non-commutatives. Nous commençons par quelques
notations.

Soit (A, τ) une algèbre non-commutative unitaire équipée d’un état linéaire tracial
fidèle τ(ab) = τ(ba) pour tout a, b ∈ A et d’une involution ∗, c’est-à-dire (a∗)∗ = a, pour
tout a ∈ A. La fidélité signifie que τ(a∗a) ≥ 0 et l’égalité ne tient que si a = 0. Nous
disons que les sous-algèbres A1, . . . ,An ⊂ A sont libres si

τ(a1 · · · ak) = 0,

lorsque les conditions suivantes sont remplies.

1. k ≥ 0 ;

2. τ(ai) = 0 pour tout i ∈ [k] ;

3. ai ∈ Aji , où ji ∈ [n] pour tout i ∈ [k] ;

4. Aucun ai consécutif n’est dans la même algèbre, c’est-à-dire j1 ̸= j2, . . . , jk−1 ̸= jk.

Nous disons que les variables aléatoires a1, . . . , an sont libres lorsque leurs algèbres le
sont. La liberté est l’analogue de l’indépendance dans les espaces non-commutatifs, et
les théorèmes limites pour les variables aléatoires indépendantes s’étendent naturellement
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aux variables aléatoires libres. Pour l’illustrer, rappelons le théorème limite central libre
[110], [85, Lecture 8]. Nous dénotons

var(a) = τ((a− τ(a)1)2),

la variance d’une variable aléatoire de moyenne τ(a), et 1 ∈ A est l’unité dans A.

Théorème 0.26. Soit a1, . . . , an ∈ A des variables aléatoires centrées i.i.d. libres auto-
adjointes (a∗ = a) avec une variance unitaire. Soit

Sn := 1√
n

∑
i∈[n]

ai.

Alors Sn converge en distribution vers la loi du demi-cercle, c’est-à-dire que pour tout
p ≥ 1, on a

τ(Spn)→ τ(sp),

où s est une variable aléatoire en demi-cercle.

Rappelons qu’une variable aléatoire est semi-circulaire lorsque ses moments impairs
s’annulent, et pour tout p ≥ 1, nous avons

τ(s2p) = Cp.

Sa loi µsc a pour densité

f(x) = 1
2π
√

4− x21|x|≤2.

Les auteurs de [37] ont étudié le produit tensoriel de variables aléatoires libres bk = ak⊗ak,
qui a été inspiré par le produit tensoriel de matrices aléatoires pour les canaux quantiques.
Ils ont découvert que dans l’espace produit (A ⊗ A, τ ⊗ τ), de tels tenseurs ne sont
généralement pas libres. En particulier, le théorème 0.26 ne s’applique pas aux variables
bk. Notre but est donc d’identifier cette distribution limite.

Soit a, a1, . . . , an ∈ (A, τ) des variables aléatoires libres i.i.d. auto-adjointes. Pour
éviter les variables aléatoires dégénérées, supposons var(a) > 0. Sinon, ai = τ(a)1, et le
résultat est trivial. Considérons

bi = ai ⊗ ai − τ ⊗ τ(ai ⊗ ai)1 = ai ⊗ ai − τ 2(ai)1, (14)

et

Sn := 1√
n var(b)

∑
i∈[n]

bi. (15)
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Notons tout d’abord que

var(b) = var(a)(var(a) + 2τ 2(a)),

donc,

q := 2τ 2(a) var(a)
var(b) ∈ [0, 1]. (16)

Notre théorème principal caractérise la distribution limite de Sn en fonction de q. Nous
avons besoin de quelques notations. Nous notons ⊞ la convolution libre et pour une
mesure µ, nous notons (tµ) sa dilatation par t > 0 définie par

(tµ)(A) := µ(t−1A),

pour tout ensemble de Borel A ⊂ R. Pour p ∈ N, nous notons P (p) l’ensemble de toutes
les partitions de [p] et P2(p) l’ensemble de toutes les partitions π ∈ P (p) telles que pour
chaque bloc V ∈ π, |V | = 2, et dans ce cas π est appelé une partition pair. On dit que
deux blocs distincts V1, V2 ∈ π se croisent s’il existe i < j < k < l tel que {i, k} ⊆ V1

et {j, l} ⊆ V2. Nous disons qu’un bloc V est croisé s’il existe un autre bloc V ′ tel que
V et V ′ se croisent. Enfin, nous définissons le graphe d’intersection G(π) comme suit.
Les sommets de G(π) sont les blocs de π, et il existe une arête entre les blocs V1, V2 s’ils
se croisent. Nous notons P bi(p) (resp. P bi

2 (p)) l’ensemble de toutes les partitions (resp.
partitions pairs) dont le graphe d’intersection est biparti. Nous définissons une mesure ν
dont les moments impairs sont nuls et les moments pairs sont égaux à

∫
R
x2p dν = |P bi

2 (2p)| ≤ E g2p,

où g ∼ N(0, 1) est une variable aléatoire gaussienne standard dont les moments sont
précisément le cardinal des partitions de paires. L’existence de la mesure ν est un problème
des moments pour la suite (P bi

2 (2n))n≥1 [2, 92], et sera discutée dans le remarque 3.4.

Notre principal théorème est le suivant.

Théorème 0.27. Soit a, a1, . . . , an ∈ (A, τ) des variables aléatoires libres auto-adjointes
avec une variance var(a) > 0. Soit bi et Sn comme dans (5), (6), respectivement, et

q = 2τ 2(a) var(a)
var(b) ∈ [0, 1].

Alors Sn converge en distribution vers la convolution libre pondérée de ν et la loi du
demi-cercle

Sn ⇒
√
q

2ν ⊞
√
q

2ν ⊞
√

1− q µsc.
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Partie II. Norme des matrices inhomogènes

Dans cette section, nous relâchons l’hypothèse d’une distribution identique pour prou-
ver les théorèmes de limite et nous considérons des matrices aléatoires inhomogènes
Wn = (wij) avec des entrées indépendantes et un profil de variance où E(w2

ij) = σ2
ij.

Nous nous concentrerons sur deux exemples. Premièrement, nous calculons et étudions
la convergence de la norme d’une matrice symétrique inhomogène Wn. Deuxièmement,
nous considérons des matrices asymétriques d×n Wn et étudions les bornes sur la norme
d’opérateur de sa forme quadratique.

⋆ ⋆ ⋆

Dans le chapitre 4, nous présentons les principaux résultats de l’article "On spectral
outliers of inhomogeneous symmetric random matrices" (https://arxiv.org/abs/2401.
07852) [5], travail en commun avec Dylan J. Altschuler, Konstantin Tikhomirov, et Pierre
Youssef.

Dans le chapitre 1, nous avons exploré la DSE des graphes d-réguliers Gn. Cependant,
nous pouvons également considérer un graphe régulier pondéré G̃n, dans lequel nous
attribuons des variables aléatoires indépendantes et identiquement distribuées (i.i.d) ξe à
chaque arête e ∈ E(Gn). En d’autres termes, la matrice d’adjacence de G̃n est donnée par
Xn = AGn ◦Wn, où AGn est la matrice d’adjacence de Gn, Wn est une matrice aléatoire
symétrique avec des entrées i.i.d suivant la loi ξ, et ◦ désigne le produit de Hadamard
(entrée par entrée). Ce modèle est connu sous le nom de matrice de Wigner parcimonieuse.
Une question naturelle qui se pose est la suivante. "Quelle est la limite DSE de Xn lorsque
d = d(n) est une fonction de n ?"

Le célèbre théorème de Wigner 0.18 possède une caractéristique universelle similaire
au théorème de la limite centrale. Cela signifie que la limite n’est pas affectée par la dis-
tribution des entrées mais uniquement par sa variance. L’ensemble de Wigner correspond
au graphe complet Gn. Selon le théorème de Bai-Yin 0.19, pour la valeur propre extrême
λ1, cette universalité s’effondre dans un sens faible. En particulier, ils montrent que si le
quatrième moment est fini, il n’y a pas de valeurs hors du spectre [−2, 2] puisque

∥Wn∥ → 2 a. s.

Sinon, la norme d’opérateur ne converge pas. L’universalité de ces deux résultats a fait
l’objet d’une attention particulière pour d’autres modèles, en particulier pour ceux qui
ne sont pas soumis à la condition i.i.d. [25, 81, 45, 47, 48]. Un modèle important est
le cas parcimonieux, qui est utilisé dans l’analyse théorique, les simulations numériques,
l’inférence statistique, la théorie des graphes et les matrices aléatoires [18, 19, 31]. Le
modèle que nous allons étudier dans ce chapitre est le suivant.

Modèle. Soit Wn une matrice n× n de Wigner (symétrique) dont les entrées sur et au-
dessus de la diagonale sont des copies i.i.d. d’une variable aléatoire centrée ξ ayant une
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variance unitaire. Soit Σn = (σij) une matrice symétrique n× n à entrées positives telle
que

∑
i∈[n]

σ2
ij = 1,

pour tout j ∈ [n]. Nous considérons la dilatation Xn = Σn ◦Wn, où ◦ désigne le produit
de Hadamard (c’est-à-dire entrée par entrée). Nous appelons Xn une dilatation de la
matrice de Wigner Wn.

Il est naturel de se demander si l’universalité du spectre et des valeurs propres extrêmes
se vérifie dans le cas inhomogène. Plus précisément, nous pouvons nous demander si la
distribution spectrale limite de Xn et sa norme limite dépendent de ξ et Σn. La première
question a été résolue avec succès dans un cadre plus général dans [55].

Théorème 0.28. Soit Xn = Σn ◦ Wn une dilatation d’une matrice de Wigner n × n

associée à une variable aléatoire centrée ξ de variance unitaire. Alors, on a:

1. Si

σ∗
n = max

ij
σij → 0,

la loi limite de µXn est la loi du demi-cercle, quelles que soient la distribution de ξ
et la structure de Σn.

2. Sinon, σ∗
n ne converge pas vers zéro, la loi limite de la DSE de Xn (si elle existe)

dépend à la fois de ξ et de la structure de Σn.

En ce qui concerne l’extrémité du spectre, les résultats de [74] démontrent déjà que
cette universalité n’existe pas. Afin de déterminer l’influence de la structure de Σn, nous
allons restreindre notre cas aux variables aléatoires sous-gaussiennes. Rappelons qu’une
variable aléatoire ξ est sous-gaussienne lorsque il existe σ > 0 telle que

E eλ(ξ−E ξ) ≤ eσ
2λ2/2,

pour tout λ ∈ R. Dans le cas gaussien, le résultat suivant est démontré dans [19].

Théorème 0.29. Supposons que ξ ∼ N(0, 1) et que Xn = Σn ◦Wn soit la dilatation de
sa matrice de Wigner n× n. Alors

E∥Xn∥ ≤ (1 + ε)
(

2 + C(ε)σ∗
n

√
log n

)
,

pour tout ε ∈ (0, 1/2).

L’idée principale pour prouver le théorème 0.29 est un argument de compression qui
compare la matrice Xn à une matrice aléatoire symétrique standard r × r Gr avec des
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entrées gaussiennes iid sur et au-dessus de la diagonale telle que

E tr(X2p
n ) ≤ κE tr(G2p

r ).

Ici, κ et la dimension r sont ajustés de manière appropriée en fonction du profil de variance,
voir [19]. Cette dernière est alors calculée par des estimations précises sur les processus
gaussiens et la concentration gaussienne comme suit

E tr(G2p
r ) ≤ nE∥Gr∥2p.

Notons que la convergence de la distribution spectrale de Xn implique que

lim inf E∥Xn∥ ≥ 2.

Par conséquent, le théorème 0.29 implique que lorsque σ∗
n

√
log n converge vers zéro, il n’y

a pas de valeurs hors du spectre [−2, 2], c’est-à-dire que

E∥Xn∥ → 2.

Un tel résultat a été étendu aux variables aléatoires bornées ξ en dimension [74], mais il
restait à savoir si l’on pouvait l’étendre à toutes les variables aléatoires sous-gaussiennes.
C’est effectivement le cas, comme le montre notre premier théorème principal.

Théorème 0.30. Soit Xn = Σn ◦ Wn une dilatation d’une matrice de Wigner n × n

Wn associée à une variable aléatoire sous-gaussienne centrée ξ de variance 1. Si σ∗
n

√
log n

converge vers zéro, Xn n’a pas de valeurs hors du spectre [−2, 2], c’est-à-dire que ∥Xn∥ → 2
presque sûrement.

En se limitant aux matrices Σn = 1√
d
AGn , c’est-à-dire aux matrices d’adjacence nor-

malisées des graphes d-réguliers Gn, le résultat précédent indique que lorsque d≫ log n,
il n’y a pas de valeurs hors du spectre [−2, 2]. Seginer [93] a partiellement répondu à la
question inverse.

Théorème 0.31. Soit ξ une variable aléatoire de Rademacher et Wn sa matrice de
Wigner. Il existe alors un graphe régulier Gn de degré d = ⌈

√
log n⌉ tel que

E
∥∥∥∥∥ 1√

d
AGn ◦Wn

∥∥∥∥∥ ≥ c log1/4 n.

Notre deuxième théorème principal lève la condition sous-optimale d = ⌈
√

log n⌉
jusqu’à la condition précise attendue d ∼ log n.

Théorème 0.32. Soit ξ une variable aléatoire centrée de variance 1 et de quatrième
moment borné. Soit Wn sa matrice de Wigner. Fixons une suite (dn)n≥1 telle que dn =
O(log n), dn → ∞ et ndn est pair. Alors, il existe une suite de graphes dn-réguliers
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Gn telle que les matrices 1√
dn
AGn ◦ Wn ont des valeurs hors du spectre [−2, 2] presque

sûrement. A savoir,

P
(

lim inf
n→∞

∥∥∥∥∥ 1√
dn
AGn ◦Wn

∥∥∥∥∥ > 2
)

= 1.

⋆ ⋆ ⋆

Dans le chapitre 5, nous présentons les résultats de l’article "Almost sharp covariance
and Wishart-type matrix estimation" (https://arxiv.org/abs/2307.09190) [91].

Rappelons que le théorème 0.29 donne

E∥X∥ ≤ (1 + ε)
(

2 + C(ε)σ∗
√

log n
)
,

où X = Xn et σ∗ = σ∗
n. Ici, nous n’indiquerons plus l’indice n puisque, dans ce

chapitre, nous considérerons que les dimensions sont fixes. Nous désignerons cette fois
par X1, . . . , Xn les colonnes de la matrice X.

Une extension naturelle consiste à considérer des matrices asymétriques d × n X et
des polynômes sur X. Soit P ∈ R[X, Y ] un polynôme. Nous cherchons à étudier

c(P ) := E
∥∥∥P (X,X t)

∥∥∥, (17)

où X t est la transposée de X. Un tel problème est lié au concept de liberté asymptotique
forte et aux valeurs aberrantes de la DSE des matrices aléatoires ; voir, par exemple, [59,
38, 12, 14, 35]. Dans ce chapitre, nous examinerons une forme quadratique centrée

P (X,X t) := XX t − EXX t =
∑
k∈[n]

P (Xk, X
t
k), (18)

où Xk sont les colonnes vectorielles de X. C’est ce qu’on appelle le Problème d’Estimation
de la Covariance (PEC). Remarquons que, si nous laissons P1(X,X t) = X ⊗X t et

M :=
∑
k∈[n]

P1(Mk,M
t
k),

pour les matrices Mk, alors M serait un canal quantique étudié au chapitre 2.
Le PEC est un problème bien connu en théorie statistique et a été étudié de manière

approfondie dans la littérature [79, 100, 116, 89, 69, 34, 33]. Il a également des liens avec
la géométrie convexe, comme l’explique le chapitre 9 de [108], et les valeurs aberrantes du
spectre des matrices aléatoires. Le problème peut être décrit comme suit. Étant donné un
ensemble de vecteurs aléatoires indépendants et identiquement distribués X1, . . . , Xn ∈
Rd, nous définissons sa matrice de covariance empirique comme étant

Σn = 1
n

∑
k∈[n]

XkX
t
k.
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Par la loi des grands nombres, on sait que Σn converge vers la vraie matrice de covariance
Σ = EX1X

t
1. L’objectif est de contrôler la vitesse de convergence. Plus précisément, nous

cherchons à borner

E∥Σn − Σ∥ = E sup
x∈Sd−1

∥(Σn − Σ)x∥2.

Dans le cas homogène, on connaît le théorème suivant [108, Théorème 4.7.1].

Théorème 0.33. Soit G1, . . . , Gn ∈ Rd des variables aléatoires gaussiennes i.i.d N(0, Id).
Alors

E∥Σn − Σ∥ ≤ C max

dn,
√
d

n

,
où C est une constante universelle.

Dans notre cas, les vecteurs X1, . . . , Xn ∈ Rd sont indépendants, mais pas nécessaire-
ment identiquement distribués, et cela nécessite de bonnes bornes de concentration en
l’absence de l’hypothèse iid. Des travaux récents [69, 33, 18, 31] ont levé cette hypothèse
dans des contextes plus généraux.

En vertu du théorème de Bai-Yin, pour qu’il y ait convergence de la norme, il faut au
moins l’existence du quatrième moment de la distribution Xij de chaque vecteur Xj ∈ Rd.
Pour être concret, nous allons considérer le cas de vecteurs aléatoires gaussiens avec des
entrées indépendantes. Soit X = (Xij) = (bijgij) la matrice d× n dont les colonnes sont
Xj = (bijgij), où bij ≥ 0 sont des coefficients déterministes et gij des variables aléatoires
gaussiennes standard i.i.d.. Notre objectif est alors d’évaluer

nE∥Σn − Σ∥ = E
∥∥∥XX t − EXX t

∥∥∥.
Afin d’introduire certains paramètres, considérons les bornes de E∥X∥, comme nous
l’avons fait au chapitre 4. Puisque la norme d’opérateur est plus grande que la norme de
chaque colonne Xj, nous avons

E∥X∥ ≥ max
j∈[n]

E∥Xj∥2 ≥ cmax
j∈[n]

(E∥Xj∥2)1/2,

où l’inégalité de Poincaré gaussienne implique la deuxième inégalité. En particulier, nous
avons

E∥X∥ ≥ cmax
j∈[n]

∑
i∈[d]

b2
ij

1/2

=: σC ,

où σC représente la norme euclidienne maximale des colonnes. De même,

E∥X∥ ≥ cσR,
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et σR est la norme euclidienne maximale des lignes. D’autre part, la norme d’opérateur
est plus grande que le maximum des entrées ; par conséquent

E∥X∥ ≥ Emax
ij
|bijgij|.

Si B = (bij) est suffisamment homogène, c’est-à-dire qu’une proportion polynomiale des
coefficients bij est du même ordre que

σ∗ = max
i,j

bij,

alors nous pouvons immédiatement abaisser la borne inférieure de

E∥X∥ ≥ cσ∗

√
log(n ∧ d),

en utilisant le maximum de la gaussienne restreint à ces grandes coordonnées ; voir [19].
Dans ce cas, les paramètres σ∗, σC , σR sont les seuls qui comptent. Par conséquent, aucun
paramètre structurel n’est nécessaire. Définissons:

• σ̃2
∞ = max

i,l:i ̸=l

∑
j∈[n]

b2
ijb

2
lj; • σ̄2

∞ = max
i∈[d]

∑
j∈[n]

b4
ij;

• σ2
∞ = max

i∈[d]

∑
j∈[n]

∑
l:l ̸=i

b2
ijb

2
lj; • β∞ = σ̃∞σC

σ∞σ∗
.

Voici notre théorème principal, qui sera démontré au chapitre 5.

Théorème 0.34. Soit X une matrice gaussienne d × n à entrées indépendantes telle
que Xij = bijgij où {gij : (i, j) ∈ [d] × [n]} sont des v.a. gaussiens standard i.i.d. Soit
ε ∈ (0, 1/2). Dans ce cas, la règle suivante s’applique.

1. Si β∞ ≤ 1, nous avons

E
∥∥∥XXT − EXXT

∥∥∥ = E

∥∥∥∥∥∥
∑
j∈[n]

XjX
T
j − EXjX

T
j

∥∥∥∥∥∥
≤ (1 + ε)

{
2σ∞ + σ2

C + C(ε)σ∗

(
σC + σ∞

σC

)√
log(n ∧ d) + C2(ε)σ2

∗ log(n ∧ d)
}
.

2. Sinon, β∞ > 1 et nous avons

E
∥∥∥XXT − EXXT

∥∥∥
≤ (1 + ε)

{2σ̃∞σC
σ∗

+ σ2
C + C(ε)(σCσ∗ + σ̄∞)

√
log(n ∧ d) + C2(ε)σ2

∗ log(n ∧ d)
}
.

La constante C(ε) est

C(ε) ≤ C√
ε
,
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où C est une constante universelle.

Le théorème 0.34 améliore les travaux récents [33, Théorème 2.1] et [31, Théorème
3.17], [18, Théorème 3.12] lorsque β∞ ≤ 1. La condition sur β∞ est un sous-produit de
la preuve, et il n’est pas clair si elle est nécessaire. En particulier, le terme principal
2σ∞ + σ2

C semble être la borne correcte dans tous les cas, comme l’indiquent certains
exemples très rares, la borne inférieure sur la norme et [18].
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Chapter 1

A combinatorial view on star
moments of regular directed graphs
and trees [41]

Did you hear about the guy who tells
everyone what the colors on the graph
mean?
That guy’s a legend!

I am not this guy

We investigate the method of moments for d-regular digraphs and the limiting d-
regular directed tree Td as the number of vertices tends to infinity, in the same spirit
as McKay [78] for the undirected setting. In particular, we provide a combinatorial
derivation of the formula for the star moments (from a root vertex o ∈ Td)

Md(w) :=
∑

v0,v1...,vk−1,vk∈Td
v0=vk=o

ATd
(v0, v1) · · ·ATd

(vk−1, vk).

with ATd
, the adjacency matrix of Td, where w := w1 · · ·wk is any word on the

alphabet {1, ∗} and A∗
Td

is the adjoint matrix of ATd
. Our analysis highlights a con-

nection between the non-zero summands of Md(w) and the non-crossing partitions
of {1, . . . , k} which are in some sense compatible with w.
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1.3.2 The oriented Kesten–McKay conjecture. . . . . . . . . . . . . . 63

1.1 Introduction

Counting paths in graphs and other discrete structures is a standard question with appli-
cations to many areas of mathematics, see [67, 23, 115, 113] or the book [26]. In random
matrix theory, this question is typically raised when studying the convergence of empirical
spectral distributions (ESDs) through the method of moments, of which Wigner’s orig-
inal proof of the semicircular law [111] is a renowned example. Essentially, for random
Hermitian matrices Wn := (Wn(i, j))1≤i,j≤n whose coefficients on and above the diagonal
are i.i.d. with mean 0 and variance 1 (so-called Wigner matrices), the different summands
EWn(i1, i2) · · ·Wn(ik, i1) occurring in the expansion of the states ETrW k

n , k ≥ 1, can be
related to certain cycles i1 → · · · → ik → i1 in a graph with vertex set [n] := {1, . . . , n},
and understanding the combinatorics of these cycles helps to determine how each of those
summands contributes to the k-th moment of the limiting spectral distribution (the semi-
circle distribution).

In contrast, when An,d ∈ {0, 1}n×n is the adjacency matrix of a uniformly sampled
graph Gn,d with n vertices and constant degree d ≥ 2 (that is, Gn,d is a uniform d-
regular graph on [n] and An,d(i, j) = 1 if and only if {i, j} is an edge in Gn,d), McKay [78]
showed using the same method that the mean ESD E 1

n

∑n
i=1 δλi(An,d) associated with An,d’s

eigenvalues λ1(An,d), . . . , λn(An,d) converges weakly (and in moments) towards a certain
probability measure µKM which is now known as the Kesten–McKay distribution, in the
sense that

1
n
E

n∑
i=1

f
(
λi(An,d)

)
−−−→
n→∞

∫
f(x)µKM(dx) (1.1)

holds for any polynomial or continuous bounded function f : R→ R. When f(x) := xk for
some positive integer k, the left-hand side of (1.1), which can also be written 1

n
ETrAkn,d,

coincides with the expected total number of excursions of length k from a uniformly chosen
vertex in Gn,d, while the right-hand side of (1.1) counts the number of such excursions
(from a fixed vertex) in the (infinite) undirected d-regular tree UTd, which is the Cayley
graph of the free group with presentation ⟨e1, . . . , ed | e2

i = 1⟩, see Figure 1.1a. In fact,
since the graphs Gn,d converge locally to the tree UTd as n → ∞ (i.e., with respect to
the Benjamini–Schramm topology [24]), the convergence (1.1) of their mean ESDs can be
recovered from Bordenave–Lelarge’s criterion [29].

In the present note, we adapt McKay’s approach to the asymmetric (i.e., oriented)
case. Although the local convergence as n → ∞ of uniform d-regular digraphs Gd,n

towards the d-regular directed tree Td does hold in a similar fashion (w.r.t. the “oriented”
Benjamini–Schramm topology), it does not imply the convergence of ESDs anymore, and
the analogue of (1.1) for oriented regular graphs is still an open question, known as
the oriented Kesten–McKay conjecture [28]: the ESD of Gd,n should converge towards a
probability distribution on C corresponding in some sense to the spectral measure of Td.
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(a)

o

e1
e
2

(b)

Figure 1.1: (a) The undirected tree T3 and (b) the directed tree T2.

One difficulty for this conjecture is that because the adjacency matrix An,d of Gn,d is no
longer Hermitian, the tracial moments ETrAkn,d, k ≥ 0, do not continuously determine
the (now complex-valued) mean ESD of An,d. In fact, as An,d is not even normal, neither
do the star moments ETrAwn,d defined for any bit string w := w1 · · ·wk on the alphabet
Σ := {1, ∗}, where Awn,d := Aw1

n,d · · ·A
wk
n,d, and A∗

n,d stands for the adjoint matrix of An,d =:
A1
n,d (said differently, A∗

n,d is the adjacency matrix of the graph G∗
d,n obtained from Gd,n by

reversing each of its arcs). Nonetheless, investigating the star moments of regular digraphs
remains interesting from a combinatorial perspective, and their convergence towards the
corresponding star moments of the regular directed tree suggests that the conjecture holds.

By definition, the d-regular directed tree Td is the unique infinite, connected, and
acyclic digraph in which every vertex has constant in- and out-degree d ≥ 2. In other
words, Td is the Cayley graph of the free group Fd := ⟨e1, . . . , ed⟩ where unlike its sym-
metric version, the generators have no relations (see Figure 1.1b). We identify the vertex
set of Td with Fd, the root vertex o ∈ Td corresponding to the identity element, and we
let ATd

denote the adjacency matrix.

Theorem 1.1 (Convergence of star moments for uniform d-regular digraphs). For every
k ≥ 0 and every w ∈ Σk,

1
n
ETrAwn,d −−−→n→∞

Md(w) := AwTd
(o, o),

where AwTd
(v, v′) is defined for any pair of vertices v, v′ ∈ Td by

AwTd
(v, v′) :=

∑
v0,v1...,vk−1,vk∈Td

v0=v, vk=v′

Aw1
Td

(v0, v1)Aw2
Td

(v1, v2) · · ·Awk
Td

(vk−1, vk).

Note that AwTd
(v, v′) = 1{v=v′} if w = ∅ ∈ Σ0 is the empty word. In any case, all

summands of ATd
(v, v′) are either 0 or 1, and each non-zero summand corresponds to a
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solution (i1, . . . , ik) ∈ [d]k to the word problem

v · ew1
i1 · · · e

wk
ik

= v′

in the free group Fd, where e∗
i denotes the inverse of ei =: e1

i . We call such a solution
(i1, . . . , ik) a w-path from v to v′, which we can also picture as

v =: v0
w1 v1

w2 · · · wk−1 vk−1
wk vk := v′,

where vj := v · ew1
i1 · · · e

wj

ij for all 0 ≤ j ≤ k. In plain words, Md(w) is the cardinal of the
set P (w) of all w-paths from o to o (or from any other vertex to itself, by transitivity
of the Cayley graph Td). We stress that we do not consider any randomness on Td: in
this respect, our purpose is different from Kesten [67], who studied spectral properties of
random walks on the undirected regular tree Td.

In fact, Theorem 1.1 is a consequence of the following general criterion, similar to [78,
Theorem 1.1]: under a growth assumption on the number of short cycles, we show that
the star moments of deterministic d-regular digraphs converge to the star moments of the
d-regular directed tree Td.

Theorem 1.2 (Convergence of star moments for deterministic d-regular digraphs). Let Gn, n ≥
1, be a d-regular digraph with adjacency matrix An on a vertex set Vn. Let k ≥ 1 and
suppose that for every j ∈ [k], the number cj(Gn) of cycles with length j in Gn (see (1.4))
fulfills

cj(Gn)
|Vn|

−−−→
n→∞

0. (1.2)

Then for every word w ∈ Σk,

1
|Vn|

TrAwn −−−→n→∞
Md(w). (1.3)

Our last result is a combinatorial derivation of a formula for Md(w), which requires
some notation. Recall that a partition π of [k] can also be seen as the equivalence re-
lation ∼π on [k] such that i ∼π j ⇐⇒ ∃V ∈ π, {i, j} ⊆ V for all i, j ∈ [k]. We say
that π is non-crossing, written π ∈ NC(k), if i1 ∼π j1, i2 ∼π j2 =⇒ j1 ∼π i2 for all
1 ≤ i1 < i2 < j1 < j2 ≤ k. The cardinal |NC(k)| is equal to the ubiquitous Catalan
number Ck := 1

k+1

(
2k
k

)
, which is also [99] the cardinal |NC2(2k)| of the non-crossing pair

partitions of [2k] (where each block has size 2). We further say that π is an alternating
non-crossing partition of w (π ∈ ANC(w)) if for every block V := {i1 < . . . < im} ∈ π, the
subword w|V := wi1 · · ·wim of w is alternating, that is either of the form w|V = 1∗ · · · 1∗
or w|V = ∗1 · · · ∗1 (so w and all blocks of π must have even size).
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Theorem 1.3 (Combinatorial formula for Md(w)). For every k ≥ 0 and every w ∈ Σk,

Md(w) =
∑

π∈ANC(w)

(∏
V ∈π

(−1)
|V |

2 −1 C |V |
2 −1

)
d|π|.

Notably, our proof shows that the w-paths may be counted by an inclusion-exclusion
principle involving non-crossing pair partitions, thus explaining the presence of signs and
Catalan numbers.

We mention that Theorems 1.1 and 1.3 may be recovered by taking a detour to free
probability from a theorem of Nica [82], see Section 1.3, where we also put the oriented
Kesten–McKay conjecture in more context. Our main motivation for this work is to
provide direct combinatorial proofs, which we do in Section 1.2.

Acknowledgments. We would like to thank Pierre Youssef for suggesting to work on
this problem and Charles Bordenave for informing us about [82].

1.2 Direct combinatorial proofs

1.2.1 Convergence of star moments.

In this section, we prove Theorem 1.2 and its corollary, Theorem 1.1. Let G be a multi-
graph with adjacency matrix A and vertex set V . We call a sequence of j ≥ 1 distinct
arcs ε1, . . . , εj (read in any cyclic order) a plain cycle of length j in G if each of the pairs
{ε1, ε2}, . . . , {εj−1, εj}, {εj, ε1} has a common vertex (we disregard the arc orientations).
Discounting the cyclic orderings, the number of plain cycles with length j in G is then
given by

cj(G) := 1
2j

∑
w∈Σj

∑
v
Aw1(v0, v1) · · ·Awj (vj−1, vj), (1.4)

the second summation ranges over every v := (v0, . . . , vj−1, vj = v0) ∈ V j+1 such that the
sequence

(
(vi−1, vi)wi

)
1≤i≤j

is injective, where (v, v′)1 := (v, v′) and (v, v′)∗ := (v′, v) for
all v, v′ ∈ V .

Proof of Theorem 1.2. Write v ∈ Cn,k if there exists a vertex v′ ∈ Vn at distance at most k
from v (i.e., Aw′

n (v, v′) > 0 for some w′ ∈ Σj, with j ≤ k) and belonging to a cycle of
length at most k in Gn. Note that, by union bound,

|Cn,k| ≤
k∑
i=1

(2d)i
k∑
j=1

j cj(Gn) ≤ k2(2d)k
k∑
j=1

cj(Gn).

Thus, on the one hand,

1
|Vn|

∑
v∈Cn,k

Awn (v, v) ≤ k2(2d2)k
∑k
j=1 cj(Gn)
|Vn|

−−−→
n→∞

0, (1.5)
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using the trivial upper bound Awn (v, v) ≤ dk and (1.2). On the other hand, for v /∈ Cn,k,
no vertex accessible in at most k steps from v belongs to a cycle of length at most k.
Since Gn is d-regular, the ball BGn(v, k) of radius k around v must then look exactly like
the ball BTd

(o, k). In particular, Awn (v, v) = AwTd
(o, o) for all v ∈ Vn \ Cn,k, and thus

1
|Vn|

∑
v ̸∈Cn,k

Awn (v, v) = |Vn| − |Cn,k|
|Vn|

AwTd
(o, o) −−−→

n→∞
Md(w). (1.6)

Adding (1.5) and (1.6) then shows as stated that

1
|Vn|

TrAwn = 1
|Vn|

∑
v∈Cn,k

Awn (v, v) + 1
|Vn|

∑
v/∈Cn,k

Awn (v, v) −−−→
n→∞

Md(w).

Remark 1.4. As we can see from the proof, the condition (1.2) implies more generally
that Gn → Td with respect to the “oriented” Benjamini–Schramm topology: for every
k ≥ 1, the balls of radius k in Gn are eventually isomorphic to the ball of radius k in Td.
As such, Theorem 1.2 constitutes the non-symmetric version of [1, Proposition 14].

Next, we show that the growth condition (1.2) of Theorem 1.2 holds in expectation
for the uniform d-regular digraph Gd,n.

Lemma 1.5 (Gd,n has few short cycles on average). For every k ≥ 1,

1
n
Eck(Gd,n) −−−→

n→∞
0.

Proof. To estimate this expectation, it is convenient to work with the so-called configu-
ration model CMd,n, whose construction we briefly recall. First, to each vertex i ∈ [n] we
attach d unique incoming half-arcs ε+

i+(p−1)n, p ∈ [d], and another d unique outgoing half-
arcs ε−

i+(q−1)n, q ∈ [d]. Second, we choose uniformly at random a bijection fd,n joining each
of the nd outgoing half-arcs to one of the nd incoming half-arcs (so there are (nd)! possible
choices for the bijection fd,n). This gives rise to a random multigraph CMd,n on [n] in
which the number of arcs Ad,n(i, j) from i to j equals the number of pairs (p, q) ∈ [d]2

such that f
(
ε+
i+(p−1)n

)
= ε−

j+(q−1)n. Also, the distribution of CMd,n conditional on the
event

Sn,d : “CMd,n is simple” =
{

Ad,n(i, i) = 0 and Ad,n(i, j) ≤ 1 for all i ̸= j ∈ [n]
}

coincides with the law of Gn,d, that i,s L(Gn,d) = L(CMd,n|Sn,d) Now, the expected
number Eck

(
CMd,n

)
of cycles with length k is easy to estimate from (1.4):

Eck(CMd,n) ≤ 1
2k · 2

k · nk · dkP
(
fd,n(ε+

1 ) = ε−
2 , . . . , fd,n(ε+

k−1) = ε−
k , fd,n(ε+

k ) = ε−
1

)
= (2nd)k (nd− k)!

2k (nd)!

∼ 2k−1

k
,
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by Stirling’s formula. Furthermore, the probability P(Sn,d) of CMd,n being simple was
computed in [64] and is known [40] to be bounded away from zero as n→∞. Hence

1
n
Eck(Gd,n) = 1

n
E[ck(CMd,n) | Sn,d] ≤

Eck(CMd,n)
nP(Sn,d)

−−−→
n→∞

0,

which concludes the proof.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let (np)p≥1 be an increasing sequence of integers tending to ∞.
By Lemma 1.5, the convergence

1
np
ck
(
Gd,np

)
−−−→
p→∞

0

holds in expectation, and thus also in probability. A classical application of the Borel–
Cantelli lemma shows that it further holds almost surely along a subsequence: there exists
(n′

p)p≥1 ⊆ (np)p≥1 such that

1
n′
p

ck
(
Gd,n′

p

)
−−−→
p→∞

0

almost surely. Then Theorem 1.2 entails that

1
n′
p

TrAwn′
p,d
−−−→
p→∞

Md(w)

holds almost surely. Since TrAwn′
p,d
≤ n′

p d
k, the dominated convergence theorem then

yields

1
n′
p

ETrAwn′
p,d
−−−→
p→∞

Md(w).

We have just shown that every subsequence of 1
n
ETrAwn,d, n ≥ 1, admits a further subse-

quence converging to Md(w), so Theorem 1.1 is proved.

1.2.2 Combinatorial formula for Md(w).

Before establishing Theorem 1.3, let us warm up with a simple necessary condition for
the set P (w) of w-paths from o to o to be non-empty.

Lemma 1.6. If w := w1 · · ·wk is a word on Σ such that P (w) ̸= ∅, then w is balanced:

|{i : wi = 1}| = |{i : wi = ∗}|.

Proof. We proceed by induction on k. The lemma holds trivially if k = 0. Suppose k ̸= 0.
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By assumption, there exists a w-path p := (i1, . . . , ik) from v0 := o to itself:

p = v0
w1 v1

w2 · · · wk vk = v0,

with vj := ew1
i1 · · · e

wj

ij , 0 ≤ j ≤ k, where we recall that the generators e1, . . . , ed have no
relations. In particular v1 ̸= v0 (because ei1 ̸= o), and thus k ≥ 2. Let 2 ≤ r ≤ k be the
smallest index for which vr = v0, so

o = v0 = vr := ew1
i1

(
ew2
i2 · · · e

wr−1
ir−1

)
ewr
ir , that is, ewr

ir e
w1
i1 =

(
ew2
i2 · · · e

wr−1
ir−1

)−1
.

Since the generators have no relations, this forces i1 = ir and w1 ̸= wr (in other words,
Td has no cycle, so the arc taken in v0

w1 v1 must match the one in vr−1
wr vr = v0).

Thus w is of the form w = 1u∗v or w = ∗u1v where u = w2 · · ·wr−1 and v := wr+1 · · · vk,
and

p = v0
w1 v1

w2 · · · wr−1 vr−1︸ ︷︷ ︸
u-path

wr vr = v0
wr+1 vr+1

wr+2 · · · wk vk︸ ︷︷ ︸
v-path

= v0. (1.7)

By induction, the smaller words u and v are balanced, and thus w is also balanced.

A consequence of Lemma 1.6 is that Md(w) = 0 if w is not balanced, so Theorem 1.3
is proved for such a word since then ANC(w) = ∅. Note also that Theorem 1.3 holds
if w is the empty word ∅, because ANC(∅) := {∅} is reduced to the empty partition
and P (∅) := {∅} is reduced to the empty path. We henceforth assume w := w1 · · ·w2p

non-empty and balanced. The decomposition (1.7) of a w-path (from o to o) with respect
to its first return time to the origin is clearly unambiguous. Putting aside the choice
of vertices along the path, this gives rise to a “skeleton” which, as we now claim, can
be encoded as a certain partition π ∈ ANC(w) whose every block V ∈ π has cardinal
|V | = 2; we write π ∈ ANC2(w) and call it an alternating non-crossing pair partition
of w. Specifically, let p := (i1, . . . , i2p) ∈ P (w) and denote by r ∈ {2, . . . , 2p} its first
return time to o that is vj := ew1

i1 · · · e
wj

ij ̸= o for every 1 ≤ j < r, and vr = o. Then the
skeleton of p is defined inductively as

σw(p) :=
{
{1, r}

}
∪
{
V + 1 : V ∈ σu(i2, . . . , ir−1)

}
∪
{
V + r : V ∈ σv(ir+1, . . . , i2p)

}
,

where u := w2 · · ·wr−1 and v := wr+1 · · ·w2p, with the base case σ∅(∅) := ∅ for the unique
∅-path ∅. Essentially, a block V := {j < k} in σw(p) means that vj, . . . , vk−1 ̸= vj−1 = vk,
i.e., k is the first return time to the vertex visited at time j − 1.

Conversely, given an alternating non-crossing pair partition π ∈ ANC2(w) of w, what
is σ−1

w {π}, the subset of w-paths p := (i1, . . . , i2p) ∈ P (w) with skeleton σw(p) = π?
Clearly, since each block V := {j < k} ∈ π indicates a segment of the path where it exits
and first returns to the vertex vj−1, we must have ij = ik, i.e., the arc taken at time j
to exit vj−1 must be taken again at time k (but “backwards”, since wj ̸= wk) in order to
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•v0

v8
v10 •v1 v3

v7

•
v2

•v4

v6

•
v5•

v9

(a) p = (i, j, j, k, ℓ, ℓ, k, i, m, m), k /∈
{i, ℓ}.

(Arcs in T ∗
d are drawn with a dashed

line.)

•
1
1

•
2
1

•
3
∗

•
4
∗

•
5
1

•
6
∗

•
7
1

•
8
∗

•
9
∗

•
10
1

(b) π =
{
{1, 8}, {2, 3}, {4, 7}, {5, 6}, {9, 10}

}
,

with ◁π = {(1, 4), (4, 5)} and B(π) =
{
{4, 7}, {5, 6}

}
.

Figure 1.2: (a) A w-path p and (b) its skeleton π := σw(p), for w := 11∗∗1∗1∗∗1.

return to vj−1. This condition alone does not prevent a premature return vj′ = vj−1 for
some j′ ∈ {j + 1, . . . , k− 1}. A premature return at time j′ can, however, only happen if

(i) wj′ ̸= wj (the arc at time j′ must be taken in the opposite direction as when
exiting vj−1), and

(ii) j′ is the lower element in its block, U := {j′ < k′} ∈ π, which is directly surrounded
by V : j < j′ < k′ < k and there is no other block {j′′ < k′′} ∈ π with j < j′′ < j′ < k′ <

k′′ < k.

In case (i) and (ii) hold, we write j ◁π j
′ as well as U ∈ B(π), and say that j, j′ form a

bad pair and that U is a bad block. See Figure 1.2 for an illustration. Summarizing, for a
w-path (i1, . . . , i2p) to have skeleton π, we must have ij ̸= ij′ if j, j′ form a bad pair (i.e.,
j ◁π j

′), and ij = ij′ if j, j′ belong to the same block (j ∼π j′). It should be clear that
these requirements are also sufficient:

Lemma 1.7. The map σw : P (w)→ ANC2(w) is surjective: for every π ∈ ANC2(w),

σ−1
w {π} =

{
(i1, . . . , i2p) ∈ [d]2p

∣∣∣∣∣ ∀(j, j′) ∈ [2p]2,
{
j ∼π j′ =⇒ ij = ij′

j ◁π j
′ =⇒ ij ̸= ij′

}
. (1.8)

Furthermore,

∣∣∣σ−1
w {π}

∣∣∣ =
∏
V ∈π

(
d− 1{V ∈B(π)}

)
. (1.9)

Proof. First, the expression given for the cardinal (1.9) is always positive because d ≥ 2,
and is easily derived from (1.8): for each block V := {j < k} ∈ π, there are d degrees of
freedom for the choice of ij = ik ∈ [d], except if V is a bad block, in which case there is
one degree of freedom less (because ij = ik must be different from ij′ , where j ◁π j

′). It
remains to prove (1.8), which we do by induction on the balanced word w := w1 · · ·w2p.
There is nothing to prove if p = 0. Suppose p ≥ 1 and consider the decomposition of π
with respect to the block containing 1,

π :=
{
{1, r}

}
∪
{
V + 1 : V ∈ π(u)

}
∪
{
V + r : V ∈ π(v)

}
,
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where u := w2 · · ·wr−1, v := wr+1 · · ·w2p, and

π(u) :=
{
V − 1 : V ∈ π, V ⊆ {2, . . . , r − 1}

}
∈ ANC2(u),

π(v) :=
{
V − r : V ∈ π, V ⊆ {r + 1, . . . , 2p}

}
∈ ANC2(v).

For j ∈ [r−2], write j ∈ J if wj+1 ̸= w1 and the block {j < k} ∈ π(u) containing j in π(u) is
not surrounded by any other block (i.e., there is no {j′ < k′} ∈ π(u) with j′ < j < k < k′).
Because of the previous decomposition and the definition of ◁π, we then have

◁π =
{
(1, j + 1) : j ∈ J

}
∪
{
(j + 1, j′ + 1) : j ◁π(u) j′

}
∪
{
(j + r, j′ + r) : j ◁π(v) j′

}
.

Recall also that {1, r} ∈ π indicates that the w-paths with skeleton π first return to o at
time r. Thus

(i1, . . . , i2p) ∈ σ−1
w {π} ⇐⇒

i1 = ir, ∀j ∈ J, ij+1 ̸= i1,

(i2, . . . , ir−1) ∈ σ−1
u

(
π(u)

)
, (ir+1, . . . , i2p) ∈ σ−1

v

(
π(v)

)
,

and, by the induction hypothesis,

(i1, . . . , i2p) ∈ σ−1
w {π} ⇐⇒



i1 = ir, ∀j ∈ J, ij+1 ̸= i1,

∀(j, j′) ∈ {2, . . . , r − 1}2,

{
(j − 1) ∼π(u) (j′ − 1) =⇒ ij = ij′ ,

(j − 1) ◁π(u) (j′ − 1) =⇒ ij ̸= ij′ ,

∀(j, j′) ∈ {r + 1, . . . , 2p}2,

{
(j − r) ∼π(v) (j′ − r) =⇒ ij = ij′ ,

(j − r) ◁π(v) (j′ − r) =⇒ ij ̸= ij′ ,

⇐⇒ ∀(j, j′) ∈ [2p]2,
{
j ∼π j′ =⇒ ij = ij′ ,

j ◁π j
′ =⇒ ij ̸= ij′ .

We can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Let w := w1 · · ·w2p be a balanced word on Σ. It follows from
Lemma 1.7 that the set P (w) of w-paths from o to o may be partitioned with respect to
their skeleton as

P (w) =
⊔

π∈ANC2(w)
σ−1
w {π},

and passing to the cardinal, we get

Md(w) =
∑

π∈ANC2(w)

∏
V ∈π

(
d− 1{V ∈B(π)}

)
=

∑
π∈ANC2(w)

∑
A⊆B(π)

(−1)|A| d|π|−|A|,
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by expanding out the product1. Now, given π ∈ ANC2(w) and A ⊆ B(π), we construct a
coarser partition π′ := γ(π,A) from π by merging, for each bad pair (j, j′) ∈ A, the block
containing j′ into its surrounding block (the one containing j). In other words, ∼π′ is the
smallest equivalence relation on [2p] containing ∼π∪A. For instance, if π is the partition of
Figure 1.2b and A := {(4, 5)}, then π′ := γ(π,A) =

{
{1, 8}, {2, 3}, {4, 5, 6, 7}, {9, 10}

}
. It

is clear that the conditions (i) and (ii) of forming a bad pair guarantee that π′ remains non-
crossing and alternating w.r.t. w: π′ ∈ ANC(w). Further, π′ has exactly |A| fewer blocks
than π, which has p blocks, so (−1)|A| d|π|−|A| = (−1)p−|π′| d|π′|. Conversely, given π′ ∈
ANC(w), any pair partition π which is finer than π′ (i.e., ∼π ⊆ ∼π′) automatically leads
to an alternating non-crossing pair partition π ∈ ANC2(w) of w having a certain set of
bad pairs. Therefore,

Md(w) =
∑

π′∈ANC(w)
(−1)p−|π′| d|π′| ∑

π∈ANC2(w)
π⪯π′

∑
A⊆B(π)
γ(π,A)=π′

1,

where we wrote π ⪯ π′ for ∼π ⊆ ∼π′ . Since

(−1)p−|π′| =
∏
V ∈π′

(−1)
|V |

2 −1,

it remains to observe that

∑
π∈ANC2(w)

π⪯π′

∑
A⊆B(π)
γ(π,A)=π′

1 =
∏
V ∈π′

C |V |
2 −1 (1.10)

to conclude. But constructing π ∈ ANC2(w) such that π ⪯ π′ and γ(π,A) = π′ for
some A ⊆ B(π) is equivalent to partitioning each block V := {i1, . . . , i2m} ∈ π′ using
an alternating pair partition of w|V containing the block {1, 2m}. Since w|V is already
alternating (because π′ ∈ ANC(w)), this amounts to choosing a non-crossing pair partition
of {2, . . . , 2m − 1}, i.e., an element of NC2(2m − 2). Then (1.10) follows from the well-
known fact |NC2(2m− 2)| = Cm−1, see [99, Exercise 61].

1At the level of sets, this amounts to writing

σ−1
w {π} =

{
(i1, . . . , i2p) ∈ [d]2p : ∀(j, j′) ∈ [d]2p

, j ∼π j′ =⇒ ij = ij′

}
\ ⋃

j◁πj′

{
(i1, . . . , i2p) ∈ [d]2p : ij = i′

j

}
and using the inclusion-exclusion formula.
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1.3 Free probability and the oriented Kesten–McKay
conjecture

1.3.1 Free probability.

Let us start this concluding section by showing how Theorems 1.1 and 1.3 can be recovered
from Nica’s work [82]. Free probability is a vast field initiated by Voiculescu; we only
introduce the bare minimum, and refer to [85] for detail. The general framework is that
of non-commutative variables x, y, . . . in some unital algebra A endowed with an adjoint
operator ∗ and a linear form φ : A → C such that φ(1) = 1 and φ(x∗x) ≥ 0 for all
x ∈ A. The pair (A, φ) is called a non-commutative probability space, where the state φ
plays the rôle of an expectation. The distribution of x or, more generally, the (joint)
distribution of (x1, . . . , xk) is given by all mixed moments φ(xi1 · · ·xiℓ) for ℓ ≥ 1 and
(i1, . . . , iℓ) ∈ [k]ℓ, which themselves may be expressed through the moment-cumulant
formula [85, Lecture 11]:

φ(x1 · · ·xk) =
∑

π∈NC(k)

∏
V ∈π

V :={i1<···<iℓ}

κℓ(xi1 , . . . , xiℓ), (1.11)

where the free cumulants κℓ : Aℓ → C, ℓ ≥ 1, are defined inductively so that (1.11) holds
for any k ≥ 1 and any non-commutative variables x1, . . . , xk ∈ A. Similar to the log-
Laplace transform of classical random variables, the free cumulants of (x1, . . . , xk) may
be gathered into the so-called R-transform [85, Lecture 16]:

R(x1,...,xk)(z1, . . . , zk) :=
∞∑
ℓ=1

∑
i1,...,iℓ∈[k]

κℓ(xi1 , . . . , xiℓ) zi1 · · · ziℓ , (1.12)

which is a formal series in non-commutative indeterminates z1, . . . , zk. Analogously to in-
dependence for classical random variables, x1, . . . , xk are free if R(x1,...,xk)(z1, . . . , zk) =
Rx1(z1) + · · · + Rxk

(zk), which is commonly phrased by the sentence “mixed cumu-
lants vanish” (i.e., κℓ(xi1 , . . . , xiℓ) = 0 for every ℓ ≥ 1 and every non-constant sequence
(i1, . . . , iℓ) ∈ [k]ℓ).

Nica [82] showed that for P1,n, . . . , Pd,n ∈ {0, 1}n×n uniform, independently chosen
permutation matrices, there exists a non-commutative probability space (A, φ) and free
variables u1, . . . , ud ∈ A such that:

(a) There is the convergence of mixed moments

1
n
ETrPw1

i1,n · · ·P
wk
ik,n
−−−→
n→∞

φ
(
uw1
i1 · · ·u

wk
ik

)
,

for every k ≥ 1, every (i1, . . . , ik) ∈ [d]k, and every word w ∈ Σk.

(b) The ui’s are Haar unitaries, in the sense that u∗
iui = uiu

∗
i = 1 and φ(uki ) = 0 for

every k ≥ 1.
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It follows from (a) and linearity that the star moments of Ad,n := P1,n+· · ·+Pd,n converge
to those of ad := u1+· · ·+ud, and it is easy to see that Ad,n is distributed like the adjacency
matrix of the configuration model CMd,n introduced in the proof of Theorem 1.1: then,
we may again condition on CMd,n being simple (Ad,n(i, i) = 0 and Ad,n(i, j) ≤ 1 for all
i ̸= j ∈ [n]) to deduce the star-moment convergence, for every word w on Σ,

1
n
ETrAwn,d = 1

n
E
[
Tr Aw

d,n | CMd,n is simple
]
−−−→
n→∞

φ(awd ),

of the uniform d-regular digraph Gd,n with adjacency matrix An,d.
Finally, we check that the star moments φ(awd ) coincide with the number Md(w) of w-

paths in Td. Using (b), it was derived in [86] that (for every i ∈ [d])

Rui,u
∗
i
(z1, z2) =

∞∑
k=1

(−1)k−1 Ck−1
[
(z1z2)k + (z2z1)k

]
.

By freeness, Ra,a∗(z1, z2) = Ru1,u
∗
1
(z1, z2) + · · · + Ru

d
,u∗

d
(z1, z2) = dRu1,u

∗
1
(z1, z2), and the

structure of this R-transform shows that the free cumulants κℓ(aw1
d , . . . , a

wℓ
d ) (which we

recover from (1.12)) vanish if w := w1 · · ·wℓ is not alternating:

κℓ(aw1
d , . . . , a

wℓ
d ) =


d (−1)p−1 Cp−1, if w is alternating: w = (1∗)p or w = (∗1)p,

0, otherwise.

Recalling the definition of ANC(w), the moment-cumulant formula (1.11) then easily
yields

φ(awd ) =
∑

π∈ANC(w)

(∏
V ∈π

(−1)
|V |

2 −1 C |V |
2 −1

)
d|π|,

as in Theorem 1.3.

1.3.2 The oriented Kesten–McKay conjecture.

Theorem 1.1 states that the uniform d-regular digraph Gd,n converges in star moments
to the d-regular directed tree Td. As we saw in the previous section, the star moments
of Td agree with those of the sum ad := u1 + · · · + ud of d free Haar unitary elements in
some non-commutative probability space (A, φ). This implies the convergence of mean
empirical singular value distributions: for every z ∈ C and every continuous bounded
function f ,

1
n
ETr f

(√(
An,d − zIn

)∗(
An,d − zIn

))
−−−→
n→∞

φ

(
f

(√
(ad − z1)∗(ad − z1)

))
,

that is,
∫
f(t)µ|An,d−z|(dt) −−−→

n→∞

∫
f(t)µ|ad−z|(dt), (1.13)
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where X − z means that we subtract z times the identity element to X, and µ|X| is
the spectral measure of the positive operator |X| :=

√
XX∗ (i.e., µ|X| is the unique real

probability measure having the same moments as |X|, as given by the Riesz–Markov–
Kakutani theorem).

Although X ∈ {An,d, ad} is not a normal element, there still exists [58] a unique
probability measure µX (on C), known as the Brown measure of X, such that

∫
log |z − λ|µX(dλ) =

∫
log(t)µ|X−z|(dt)

for every z ∈ C. When X = An,d, µX is nothing but the ESD 1
n

∑n
i=1 δλi(An,d) of Gd,n.

Since the star moments of X determine (µ|X−z|)z∈C and thus µX , and the star moments
of ad and Td coincide, we can also view µad

as the spectral measure of Td. However, we
cannot directly use (1.13) to show

1
n
E

n∑
i=1

f
(
λi(An,d)

)
−−−→
n→∞

∫
C
f(z)µad

(dz) (1.14)

because the logarithm is not a bounded function. There still lacks a uniform control on the
smallest singular value ofAn,d−z to validate the oriented Kesten–McKay conjecture (1.14),
see [28, Lemma 4.3].
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Chapter 2

Limiting spectral distribution of
random self-adjoint quantum
channels [73]

What does a quantum channel drink?
Uncertain-tea.

I need a coffee

We study the limiting spectral distribution of quantum channels whose Kraus opera-
tors are sampled as n×n random Hermitian matrices satisfying certain assumptions.
We show that when the Kraus rank goes to infinity with n, the limiting spectral dis-
tribution (suitably rescaled) of the corresponding quantum channel coincides with
the semi-circle distribution. When the Kraus rank is fixed, the limiting spectral
distribution is no longer the semi-circle distribution. It corresponds to an explicit
law, which can also be described using tools from free probability.
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2.1 Introduction

In quantum physics, the state of an n-dimensional system is described by a density oper-
ator on Cn, i.e. ρ ∈ Mn(C) a Hermitian positive semidefinite matrix with trace 1: ρ ⪰ 0
and tr(ρ) = 1. A transformation of such a quantum system is described by a quantum
channel on Mn(C), i.e. Φ : Mn(C) → Mn(C) a completely positive and trace-preserving
linear map. We recall that a linear map Φ : Mn(C)→Mn(C) is said to be

• positive if it preserves the fact of being Hermitian and positive semidefinite: for all
X ∈Mn(C), X ⪰ 0 implies that Φ(X) ⪰ 0;

• completely positive if Φ⊗ Id : Mn2(C) → Mn2(C) is positive (where Id : Mn(C) →
Mn(C) denotes the identity map);

• trace-preserving if it preserves the trace: for all X ∈Mn(C), tr(Φ(X)) = tr(X).

A quantum channel Φ thus maps quantum states to quantum states (and so does Φ⊗ id).
The action of a completely positive map Φ on Mn(C) can always be described in the

following (non-unique) way, called a Kraus representation of Φ (see e.g. [10, Section 2.3.2]
or [114, Chapter 2]): There exist d ∈ N and K1, . . . , Kd ∈Mn(C), called Kraus operators
of Φ, such that

Φ : X ∈Mn(C) 7→
∑
i∈[d]

KiXK
∗
i ∈Mn(C), (2.1)

where K∗
i stands for the adjoint of Ki (and where we have used the shorthand notation

[d] for the set of integers {1, . . . , d}). The fact that Φ is trace-preserving is equivalent to
the following constraint on the Kraus operators K1, . . . , Kd:

∑
i∈[d]

K∗
iKi = Id .

The smallest d such that an expression of the form of equation (2.1) for Φ exists is called
the Kraus rank of Φ. It is always at most n2 for a completely positive map on Mn(C).

Given a completely positive map Φ on Mn(C), its adjoint (or dual) is defined by duality
with respect to the Hilbert-Schmidt inner product, i.e. as the map Φ∗ on Mn(C) (which
is completely positive as well) such that, for all X, Y ∈Mn(C),

tr(XΦ∗(Y )) = tr(Φ(X)Y ). (2.2)

Φ being trace-preserving is equivalent to Φ∗ being unital, i.e. such that Φ∗(Id) = Id.
Note that, identifying Mn(C) with Cn ⊗ Cn, a linear map Φ : Mn(C) → Mn(C) can

equivalently be seen as a linear map MΦ : Cn⊗Cn → Cn⊗Cn, i.e. an element of Mn2(C).
Concretely, a completely positive linear map

Φ : X ∈Mn(C) 7→
∑
i∈[d]

KiXK
∗
i ∈Mn(C)
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can be identified with
MΦ =

∑
i∈[d]

Ki ⊗Ki ∈Mn2(C), (2.3)

where Ki stands for the entry-wise conjugate of Ki, in the canonical basis of Cn. This
identification preserves the spectrum, i.e. spec(Φ) = spec(MΦ). Moreover, the matrix
version of the adjoint Φ∗ of Φ is simply the adjoint of MΦ, i.e. MΦ∗ = M∗

Φ.
In this paper, we will consider quantum channels Φ whose Kraus operators are Her-

mitian matrices, which ensures that Φ itself is Hermitian (in the sense that it is equal
to its adjoint Φ∗, as defined by equation (2.2)), or equivalently that its matrix version
MΦ is Hermitian. This may look like a restrictive setting, but it, in fact, encompasses all
Hermitian quantum channels. Indeed, it is not hard to see that any Hermitian completely
positive map Φ on Mn(C) admits a Kraus representation with Hermitian Kraus operators,
where we can additionally guarantee that the number of such operators is at most twice
the Kraus rank of Φ (i.e. in general at most 2n2). Concretely, if K1, . . . , Kd ∈Mn(C) are
d Kraus operators for Φ, then K1,R, K1,I , . . . , Kd,R, Kd,I ∈Mn(C) are 2d Hermitian Kraus
operators for Φ, where given K ∈Mn(C), we set KR = (K+K∗)/2, KI = −i(K−K∗)/2,
so that K = KR + iKI and K∗

R = KR, K
∗
I = KI . The latter claim follows from the

observation that,if M∗
Φ = MΦ, then we can re-write MΦ = (MΦ +M∗

Φ)/2, and thus

MΦ = 1
2
∑
j∈[d]

(
Kj ⊗Kj +K∗

j ⊗K
∗
j

)
=
∑
j∈[d]

(
Kj,R ⊗Kj,R +Kj,I ⊗Kj,I

)
.

Now, many interesting and well-studied classes of quantum channels are Hermitian: de-
polarizing channels, dephasing channels, and Pauli channels, to name just a few. Note
that such channels are, in particular, unital.

This work aims to study the spectrum of a randomly generated quantum channel as
the underlying dimension n goes to infinity. More precisely, given a quantum channel Φ
on Mn(C) whose Kraus operators K1, . . . , Kd ∈Mn(C) have been randomly sampled, we
aim to characterize its asymptotic spectrum (i.e. its spectrum in the limit where n goes
to infinity). Our study will involve two regimes, one where the Kraus rank d is fixed and
only n grows, and the other one where d = d(n) is a growing function of n.

Previous related works were mostly concerned with identifying the spectral gap of
a random quantum channel, i.e. the difference between its largest and second largest
eigenvalues. Indeed, it is known that a quantum channel Φ on Mn(C) always has its
largest (in modulus) eigenvalue λ1(Φ) equal to 1 (with an associated eigenvector which is
a positive semidefinite matrix), implying that Φ always has a fixed state. It was established
that random quantum channels generically have their largest eigenvalue 1 isolated from
the rest of the spectrum. All other eigenvalues are of order at most 1/

√
d (in modulus).

This was shown first for specific models, where Kraus operators were sampled either as
independent Haar unitaries [62, 88], or as blocks of a Haar isometry [54], or as independent
Ginibre matrices (i.e. matrices having i.i.d. Gaussian entries) [71], and recently in greater
generality [72].
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On the other hand, much less is known concerning the asymptotic distribution of the
bulk of the spectrum. To understand this, one studies the empirical spectral distribution,
which, given a matrix M ∈Mn(C), is defined as

µM := 1
n

∑
k∈[n]

δλk(M),

where λk(M) is the kth eigenvalue of M . In [32], a model where Kraus operators are
sampled as blocks of a Haar isometry was studied. It was conjectured, from heuristic
arguments and numerical simulations, that in the regime where d = d(n) = n2, the
empirical spectral distribution (rescaled by a factor

√
d) of such random quantum channel

converges towards a circular distribution as n grows. It was later shown in [9] that, in
the same regime d = d(n) of order n2, the empirical singular value distribution (again
rescaled by a factor

√
d) of a random quantum channel whose Kraus operators are sampled

as independent Ginibre matrices converges towards a quarter-circular distribution as n
grows. We believe that for both models (and for more general ones) and in any regime
d = d(n)→∞, the limiting spectral distribution coincides with the circular law.

In this work, we embark on the investigation of the limiting spectral distribution of
quantum channels in the Hermitian setting. This serves as a precursor to our broader
research goals involving the non-Hermitian case and the conjecture presented above. Clas-
sical problems in Random Matrix Theory have traditionally prioritized the exploration
of Hermitian matrices before delving into their non-Hermitian counterparts, partly due
to the inherent technical Complexities introduced by non-Hermitian systems, notably the
instability of the spectrum under perturbations (see [14, Chapter 11]). For instance, while
the limiting spectral distribution of an n× n Hermitian matrix with i.i.d. (up to symme-
try) centered entries of variance 1/n was shown to be Wigner’s semi-circle distribution, it
is almost half a century later that the analogous result in the non-Hermitian case, Girko’s
circular law theorem, was established in full generality [104]. Understanding the limit-
ing spectral distribution in the non-Hermitian case follows the Hermitization technique
invented by Girko [51, 52]. The latter requires a quantitative control on the smallest
singular value of the corresponding random matrix model (see [28] for an introduction to
the method), making the problem significantly more involved. In the context of quantum
channels, the associated random matrix model exhibits dependencies among its entries,
which adds a layer of difficulty compared to classical random matrix models, even in the
Hermitian setting.

Now, let us shift our focus back to the specific context of this paper. Here, we will
consider the case where the Kraus operators of the quantum channel Φ are chosen to
be random Hermitian operators. This ensures that the resulting completely positive
map Φ, or equivalently its matrix version MΦ, is Hermitian. Conversely, as explained
earlier, any Hermitian completely positive map Φ can be written with Hermitian Kraus
operators. Moreover, we aim to keep our assumptions regarding the distribution of these
random Kraus operators as minimal as possible. Our objective is to gain a comprehensive

68



Chapter 2. Quantum channels 2.1. Introduction

understanding of the spectrum of MΦ as the dimension n increases without imposing
specific constraints on the scaling relationship between d and n.

To keep the introduction light, we state an informal version of our main result and
differ from the rigorous statement, requiring notions from free probability, to Section 2.2
(see Theorem 2.3).

Theorem 2.1 (Informal Statement). Let W1, . . . ,Wd ∈ Mn(C) be independent Hermi-
tian random matrices such that, for each i ∈ [d], E(Wi) = 0 and E(W 2

i ) = Id. Suppose
additionally that, for each i ∈ [d], the spectral distribution of Wi converges to some dis-
tribution µi as n → ∞ and that the joint asymptotic distribution of the family (Wi)i∈[d]

is determined by the family (µi)i∈[d]. Next, set Ki = Wi/
√
d for each i ∈ [d] and define Φ

as the random completely positive map on Mn(C) having K1, . . . , Kd as Kraus operators,
i.e.

Φ : X ∈Mn(C) 7→
∑
i∈[d]

KiXKi ∈Mn(C).

First, Φ is, on average, trace-preserving and unital. And second,

• If d is fixed, then the spectral distribution of Φ−E(Φ) converges to a specific distri-
bution, depending only on µ1, . . . , µd, as n→∞.

• If d = d(n) → ∞ as n → ∞ and Wi are i.i.d, then the spectral distribution of√
d(Φ− E(Φ)) converges to the semicircular distribution as n→∞.

The specific assumption underlying the family of independent matrices (Wi)i∈[d] is pre-
cisely asymptotic freeness, a concept introduced by Voiculescu [109] within the framework
of Free Probability. Asymptotic freeness proves instrumental in a systematical examina-
tion of the asymptotic behavior of random matrices. Importantly, this assumption is not
restrictive as many classical independent random matrices are known to be asymptoti-
cally free. However, this property is no longer valid in the context of tensors (see [37]),
preventing a direct derivation of the asymptotic joint spectrum of these random tensors,
which is the setting of interest in this paper. To overcome this, we analyze the moment
method directly on our model in order to derive the limiting distribution.

The required notions from Free Probability are presented in Section 2.2, where the
main rigorous theorem is stated. The proofs are carried out in Section 2.3. Section 2.4
regroups a variety of examples to which our result applies.
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2.2 Preliminaries and rigorous statement of the main
result

2.2.1 Preliminaries

We begin by recalling some notation from Free Probability; see [85]. A noncommutative
probability space is a pair (A, τ), where A is a unital algebra equipped with a tracial state
τ , that is, τ is linear, τ(1) = 1 and τ(ab) = τ(ba). We say that subalgebras A1, . . . ,Ad
are free if

τ(a1 . . . ap) = 0 (2.4)

whenever ai ∈ Aji , τ(ai) = 0 for all i ∈ [p] and j1 ̸= j2 ̸= · · · ≠ jp. We say that random
variables a1, . . . , ad ∈ A are free if their algebras are free. The distribution of a self-adjoint
variable a = a∗ is defined as the collection of moments

{τ(ap) : p ∈ N}.

In particular, there always exists a measure µ on R such that

τ(ap) =
∫
xp dµ,

for every p ∈ N. Such a measure is also called the distribution of a. A particular example
of free variables is the free semicircular system (s1, . . . , sd), whose moments satisfy

τ(si1 · · · sip) =
∑

π∈NC2(p)

∏
(l,k)∈π

δilik .

Here, NC2(p) is the set of all noncrossing pair partitions of [p], namely, each block of
π ∈ NC2(p) has cardinality 2 and π does not contain two blocks {i, j}, {k, l} such that
i < k < j < l. In particular, the moments of the semicircular variable are

τ(sp) = |NC2(p)| =
∫
xpfsc(x) dx,

where fsc denotes the density of the semi-circle distribution µsc

fsc(x) = 1
2π
√

4− x21|x|≤2. (2.5)

Given a matrix M ∈Mn(C), we define its normalized trace as

τ (n)(M) := 1
n

tr(M).
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In particular, for two matrices M,N ∈Mn(C), we have

τ (n2)(M ⊗N) = τ (n) ⊗ τ (n)(M ⊗N) = τ (n)(M)τ (n)(N).

We say that a random Hermitian matrix M ∈Mn(C) is normalized if

E
(
τ (n)(M)

)
= 0;

E
(
τ (n)(M2)

)
= 1.

We say that a sequence (Mn)n∈N of random Hermitian matrices Mn ∈Mn(C) such that
tr(Mp

n) is integrable for all p ≥ 1 converges weakly in probability (resp. in expectation) to
µ, if (µMn)n∈N converges weakly to µ in probability (resp. in expectation). Equivalently,
for any p ≥ 1, we have

τ (n)(Mp
n) = 1

n
tr(Mp

n) →
n→∞

∫
xp dµ

in probability and

E
(
τ (n)(Mp

n)
)

= E
( 1
n

tr(Mp
n)
)
→
n→∞

∫
xp dµ

for the convergence in expectation. Whenever (µMn)n∈N converges weakly to µ, we denote
it by µMn ⇒ µ, or simplyMn ⇒ µ as n→∞. In particular, we can find a noncommutative
random variable a such that a has distribution µ and Mn converges to a.

Finally, we say that d random Hermitian matrices M1, . . . ,Md ∈ Mn(C) are asymp-
totically free in probability if

lim
n→∞

τ (n)
((
Mp1

i1 − τ
(n)(Mp1

i1 )
)
· · ·

(
Mpm

im − τ
(n)(Mpm

im )
))

= 0

in probability, for all m ≥ 1, i1 ̸= i2 ̸= · · · ≠ im ∈ [d] and p1, . . . , pm ≥ 1. They are
asymptotically free in expectation if

lim
n→∞

E
[
τ (n)

((
Mp1

i1 − E
(
τ (n)(Mp1

i1 )
))
· · ·

(
Mpm

im − E
(
τ (n)(Mpm

im )
)))]

= 0,

for all m ≥ 1, i1 ̸= i2 ̸= · · · ≠ im ∈ [d] and p1, . . . , pm ≥ 1. This is equivalent to (2.4) in the
limit for the algebras A(Mi) generated by each Mi. As usual, we write M+λ := M+λ Id,
where M ∈Mn(C), λ ∈ C.

Remark 2.2. We have defined weak convergence as the convergence of the moments of
all order. In particular, this requires that tr(Mp

n) is integrable for all p ≥ 1. In several
cases, however, such strong integrability is not needed, and similar results can be proved
for a larger class of random matrices via truncation techniques [7, Theorem 2.1.21].
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2.2.2 Rigorous results

Let µ1, . . . , µd be probability measures on and a1, . . . , ad be free variables with distribution
µi, respectively. We define the tensor measure µi⋆µi as the measure associated with ai⊗ai
and the tensor convolution µ1 ⊛ · · ·⊛ µd as the distribution of

∑
i∈[d]

ai ⊗ ai = a1 ⊗ a1 + · · ·+ ad ⊗ ad.

In other words, we have
∫
xk dµi ⋆ µi = τ ⊗ τ(aki ⊗ aki ) = τ 2(aki ),

and

∫
xk dµ1 ⊛ · · ·⊛ µd = τ ⊗ τ

∑
i∈[d]

ai ⊗ ai

k =
∑
i∈[d]k

τ 2(ai1 · · · aik).

Note that µ1 ⊛ · · · ⊛ µd is not necessarily the free convolution of µi ⋆ µi. Indeed, it was
proved in [37] that freeness for tensor products ai⊗ ai does not follow from freeness of ai.

In the sequel, we will be considering random Hermitian matrices W1, . . . ,Wd ∈Mn(C)
satisfying the following assumptions:

(A.1) For each i ∈ [d], Wi ∈Mn(C) converges weakly in probability and in expectation to
µi;

(A.2) The family (Wi)i∈[d] is in probability and in expectation asymptotically free, for each
d fixed.

(A.3) For each i ∈ [d], E(Wi ⊗Wi) ∈Mn2(C) converges weakly to 0.

(A.4) The matrices (Wi)i∈[d] are independent and identically distributed.

As we will see in Section 2.4, a variety of classical random matrix models satisfy those
assumptions. We are ready to state our main result.

Theorem 2.3. Let W1, . . . ,Wd ∈Mn(C) be centered Hermitian random matrices satisfy-
ing Assumptions (A.1),(A.2), (A.3) and d = d(n). Then, the following holds.

(2.3.i) If d is fixed, then

∆ := 1√
d

∑
i∈[d]

(
Wi ⊗W i − E(Wi ⊗W i)

)
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converges weakly in probability and in expectation to the tensor convolution of µ̃1, . . . , µ̃d,
where µ̃ denotes the dilation of µ, i.e.

∫
xp dµ̃ := 1

dp/2

∫
xp dµ.

This means that

µ∆ ⇒
n→∞

µ̃1 ⊛ · · ·⊛ µ̃d,

in probability and in expectation.

(2.3.ii) If d = d(n) diverges, (Wi)i∈[d] are also normalized and satisfy Assumption (A.4),
then ∆ converges weakly in probability and in expectation to the semicircular distri-
bution µsc. This means that

µ∆ ⇒
n→∞

µsc,

in probability and in expectation.

2.3 Proofs

We start with the following observation.

Lemma 2.4. Suppose that Assumptions (A.1) and (A.3) hold. For each i ∈ [d], Bi =
Wi⊗W i−E

(
Wi ⊗W i

)
converges weakly in probability and in expectation to ai⊗ai, where

ai has distribution µi.

Proof. For Hermitian matrices M1,M2 ∈ Mn(C), such that M1 ⇒ µ1 and M2 ⇒ 0 as
n→∞, we have

M1 +M2 ⇒ µ1.

Indeed, using Holder’s Inequality, we can bound the trace of a product of the matrices
M1 and M2 by ∣∣∣∣∣∣τ (n)

 ∏
j∈[m]

Mij

∣∣∣∣∣∣ ≤
∏
j∈[m]

(
τ (n)|Mij |pj

)1/pj

, (2.6)

where i ∈ {1, 2}m and (pj)j∈[m] are conjugate exponents. If there is at least one j ∈ [m]
such that ij = 2, then the right-hand side of (2.6) goes to 0. In particular, since

τ (n)((M1 +M2)p) =
∑

i∈{1,2}p

τ (n)

∏
j∈[p]

Mij

,
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any term associated with i ∈ {1, 2}p having at least one index ij = 2 will asymptotically
vanish. Therefore,

lim
n→∞

τ (n)((M1 +M2)p) = lim
n→∞

τ (n)(Mp
1 ).

The result of the lemma follows by taking M1 = Wi ⊗Wi and M2 = −E(Wi ⊗Wi), for
each i ∈ [d]. Indeed,

τ (n) ⊗ τ (n)
((
Wi ⊗W i

)p)
=
(
τ (n)(W p

i )
)2
,

since the eigenvalues of Wi are real. Hence, the weak convergence in probability and in
expectation of Wi to µi implies that

τ (n) ⊗ τ (n)
((
Wi ⊗W i

)p)
→
n→∞

(∫
xp dµi

)2

in probability and in expectation. This finishes the proof.

As an immediate consequence, we have the following.

Corollary 2.5. Suppose that Assumptions (A.1),(A.2), and (A.3) hold. Let Bi =
Wi ⊗Wi − E(Wi ⊗Wi). Then, for each d fixed, (Bi)i∈[d] converges weakly in probability
and in expectation to (ai ⊗ ai)i∈[d], where ai are free variables with distribution µi.

Proof. By Assumption (A.2), we can assume (Wi)i∈[d] converges weakly in probability
and in expectation to (ai)i∈[d], where ai are free. The result follows by Lemma 2.4.

We are ready to prove Theorem (2.3.i).

Proof of Theorem (2.3.i). By Corollary 2.5, we have

∑
i∈[d]

Bi ⇒
n→∞

∑
i∈[d]

ai ⊗ ai,

where ai are free with distribution µi. To conclude, it suffices to note that µ̃i is the
distribution of ai ⊗ ai/

√
d.

Before proving Theorem (2.3.ii), let us give a sufficient condition for Assumption (A.3)
to hold.

Lemma 2.6. Let W1, . . . ,Wd satisfying Assumption (A.1) and assume that

E(τ (n)(Wi)) →
n→∞

0, (2.7)

for all i ∈ [d]. Let (W (l)
i )l∈[L] be independent copies of Wi. If for each i ∈ [d] and L ≥

1, (W (l)
i )l∈[L] are asymptotically free in probability and in expectation, then Assumption

(A.3) holds.
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Proof. Fix i ∈ [d]. Then, we can easily see that

1
n2 tr

((
E
(
Wi ⊗Wi

))p)
= 1
n2 E

(
tr2
(
W

(1)
i · · ·W

(p)
i

))
.

Since (W (l)
i )l∈[p] are asymptotically free in probability and in expectation, we get that

1
n2 tr

((
E
(
Wi ⊗Wi

))p)
→
n→∞

τ 2(a(1)
i · · · a

(p)
i ),

where (a(l)
i )l∈[p] are free i.i.d with distribution µi. The centered Assumption (2.7) implies

that µi is centered, hence τ(a(1)
i · · · a

(p)
i ) = 0 by freeness and the result follows.

2.3.1 The asymptotic free Central Limit Theorem

In order to prove Theorem (2.3.ii), we begin with a simple lemma.

Lemma 2.7. Suppose that Assumption (A.4) holds. For each i ∈ [d], set Bi := Wi ⊗
W i − E(Wi ⊗W i). Let (i1, . . . , ip) ∈ [d]p and suppose that there exists k ∈ [p] such that,
for all l ∈ [p] with l ̸= k, il ̸= ik. Then, we have

E
(
tr(Bi1 · · ·Bip)

)
= 0.

Proof. We can assume without loss of generality that k = 1, i.e. i1 /∈ {i2, . . . , ip}. In this
case, notice that Bi1 is independent of B := Bi2 · · ·Bip by Assumption (A.4), hence

E(tr(Bi1B)) =
∑

k1,k2∈[n]2
E(Bi1(k1, k2))E(B(k2, k1)).

Since Bi1 is centered, we have E(Bi1(k1, k2)) = 0 and the result follows.

Although Lemma 2.7 is a simple consequence of independence and centering, it is a
powerful property that will allow us to obtain a limit distribution for ∆. We are now
ready to prove Theorem (2.3.ii).

Proof of Theorem (2.3.ii). We begin by writing ∆ as

∆ = 1√
d

∑
i∈[d]

Bi,

where Bi = Wi⊗W i−E(Wi⊗W i). We recall that, given X ∈Mn2(C) a random matrix,
we have

E
(
τ (n2)(X)

)
= E

( 1
n2 tr(X)

)
.
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Then, we can compute the moments of ∆ by

E
(
τ (n2)(∆p)

)
= d−p/2 ∑

i∈[d]p
E
(
τ (n2)

(
Bi1 · · ·Bip

))
.

For every i ∈ [d]p, we associate a partition π(i) of [p] defined by placing any k, ℓ ∈ [p]
in the same block of π(i) whenever ik = il. We denote by P (p) the set of all partitions
of [p]. Notice that for every i ∈ [d]p, E

(
τ (n2)(Bi1 · · ·Bip)

)
only depends on the partition

π(i), since Bi are identically distributed by Assumption (A.4). In particular, let τ (n2)(π)
be the common value of E

(
τ (n2)(Bi1 · · ·Bip)

)
for π(i) = π. Hence,

E
(
τ (n2)(∆p)

)
= d−p/2 ∑

π∈P (p)
τ (n2)(π)|{i ∈ [d]p : π(i) = π}|.

The cardinality can be computed by simply choosing an index for each block of π, namely,

|{i ∈ [d]p : π(i) = π}| = d(d− 1) · · · (d− |π|+ 1) = d|π|
(

1 +Op

(1
d

))
,

where f = Op(1/d) means that f ≤ Cp/d, for some constant Cp that depends only on p.
We then have

E
(
τ (n2)(∆p)

)
=

∑
π∈P (p)

τ (n2)(π)d|π|−p/2
(

1 +Op

(1
d

))
.

By Lemma 2.7, if π ∈ P (p) has a block V of size 1, then we would have τ (n2)(π) = 0.
Hence, we can restrict to partitions without single blocks, yielding

E
(
τ (n2)(∆p)

)
=

∑
π∈P (p)

∀V ∈π, |V |≥2

τ (n2)(π)d|π|−p/2
(

1 +Op

(1
d

))
.

Using Assumption (A.1) and Holder’s Inequality, we have that

τ (n2)(π) ≤ max
i∈[d]

[
E
(
τ (n2)(|Bi|p)

)]1/p
≤ Cp, (2.8)

where Cp < ∞ is a constant independent of n. Hence, whenever π has a block of size
|V | ≥ 3, we have |π| < p/2 and

τ (n2)(π)d|π|−p/2 = Op

(
1√
d

)
.

In particular, the only partitions that contribute to the dominating term are the pair
partitions; that is, every block has cardinality two. Let P2(p) be the set of all pair
partitions, then

E
(
τ (n2)(∆p)

)
=

∑
π∈P2(p)

τ (n2)(π) +Op

(
1√
d

)
.
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Note that τ (n2)(π) depends only on B1, . . . , Bp. Corollary 2.5 implies that (Bi)i∈[d] con-
verges to (ai ⊗ ai)i∈[d] in probability and in expectation, where ai are free variables and
the limit of Wi. Hence,

τ (n2)(π) →
n→∞

τ ⊗ τ(π) := τ 2(ai1 · · · aip),

In particular, freeness implies that τ ⊗ τ(π) = 0 if and only if π ∈ P2(p) \NC2(p), where
NC2(p) is the set of noncrossing pair partitions. If π ∈ NC2(p), then τ⊗τ(π) = 1 because
the matrices are normalized. We deduce that

E
(
τ (n2)(∆p)

)
= |NC2(p)|+ op(1) +Op

(
1√
d

)
,

where f = op(1) denotes a function that depends on p and f → 0 as n→∞. This proves
the convergence in expectation. To get convergence in probability, set

τ (n2)(j) = τ (n2)(Bj1 · · ·Bjp),

for each j ∈ [d]p. Then,

var
(
τ (n2)(∆p)

)
= 1
dp

∑
i,j∈[d]p

{
E
(
τ (n2)(i)τ (n2)(j)

)
− E

(
τ (n2)(i)

)
E
(
τ (n2)(j)

)}
.

Now, each index il, jl must appear at least twice in i∪ j, as the matrices are centered and
independent. In particular, the summation has at most dp indices. We thus have

var
(
τ (n2)(∆p)

)
≤ max

i,j∈[d]p

{
E
(
τ (n2)(i)τ (n2)(j)

)
− E

(
τ (n2)(i)

)
E
(
τ (n2)(j)

)}
.

Assumption (A.1) implies that (Bi)i∈[p] are uniformly integrable, then the Dominated
Convergence Theorem [43, Theorem 1.5.8] and Corollary 2.5 imply that

E
(
τ (n2)(i)τ (n2)(j)

)
→
n→∞

τ ⊗ τ(π(i))τ ⊗ τ(π(j)),

The same limit holds for E
(
τ (n2)(i)

)
E
(
τ (n2)(j)

)
, and therefore

var
(
τ (n2)(∆p)

)
= op(1),

from which convergence in probability follows.

Remark 2.8. As we saw in the proof, the only assumption for the existence of a limit of
∆ is the centering assumption in Lemma 2.7. In particular, the proof of Theorem (2.3.ii)
works verbatim for noncommutative variables. If a1, . . . , ad are centered exchangeable
variables such that Lemma 2.7 holds, that is, τ(ai1 · · · aip) = 0 whenever there exists an
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index different than the others, we have

lim
d→∞

τ

 1√
d

∑
i∈[d]

ai

p =
∑

π∈P2(p)
τ(π).

If in addition (ai)i∈[d] = (a(n)
i )i∈[d] depends on some parameter n and are asymptotically

free, as n grows, we get an asymptotic free Central Limit Theorem

lim
n,d→∞

τ (n)

 1√
d

∑
i∈[d]

a
(n)
i

p = |NC2(p)|.

2.4 Examples

We begin with an almost surely unital and trace-preserving Hermitian quantum channel.

Example 2.9 (Rademacher diagonal matrices). Let R = diag(εk)k∈[n] ∈ Mn(C) be a
Rademacher diagonal matrix, i.e. ε1, . . . , εn are independent Rademacher (or symmetric
Bernoulli) random variables with parameter 1/2. Let U1, . . . , Ud ∈Mn(C) be independent
Haar unitary matrices independent of R as well and set Wi = UiRU

∗
i for each i ∈ [d]. It

follows from [109] that (Wi)i∈[d] are asymptotically free and Lemma 2.6 yields Assumption
(A.3). Theorem (2.3.i) thus implies that

∆ ⇒
n→∞

1√
d

∑
i∈[d]

ri ⊗ ri,

in probability and in expectation, where (ri)i∈[d] are free with Rademacher distribution.
In particular, for a polynomial

p(x) := b0 +
∑
l∈[m]

blx
l,

we immediately compute

p(ri)− τ(p(ri)) =
 ∑
l∈[⌈m/2⌉]

b2l−1

ri;
p(ri ⊗ ri)− τ ⊗ τ(p(ri ⊗ ri)) =

 ∑
l∈[⌈m/2⌉]

b2l−1

ri ⊗ ri.
Since τ(ri) = 0, we can readily see that the freeness of (ri)i∈[d] is equivalent to the freeness
of (ri ⊗ ri)i∈[d] in this case. Hence (ri ⊗ ri)i∈[d]

d= (ri)i∈[d] where the equality holds in
distribution. If we denote the limit of ∆ by z, we then have

z
d= 1√

d

∑
i∈[d]

ri.

For d even, we can precisely compute this limit. Indeed, [85, Example 12.8.1] shows that
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the free convolution (r1 + r2) has arcsine distribution. Moreover, such a distribution was
proved to be the law of u+ u∗ in [85, Example 1.14], where u is a Haar unitary. We then
deduce that

z
d= 1√

d

∑
i∈[d/2]

(ui + u∗
i ).

The distribution of the free sum of ui + u∗
i is called the Kesten-McKay distribution with

parameter d; see [67],[85, Exercise 12.21]. Its density is given by

fKM(d)(x) = 1
2π

d

d2 − x2

√
4(d− 1)− x2 1|x|≤2

√
d−1.

It is also the limit spectral distribution of random d-regular graphs [78]. Therefore, the
density of b is given by

f̃KM(d)(x) = 1
2π

d

d− x2

√
4
(

1− 1
d

)
− x2 1|x|≤2

√
1− 1

d

.

A direct computation shows that, for all x ∈ (−2, 2), f̃KM(d)(x)→ fsc(x) as d→∞. This
is a local version of Theorem (2.3.ii).

Let us interpret Example 2.9 above in terms of the corresponding random quantum
channel. Given W = URU∗ ∈ Mn(C) a uniformly rotated Rademacher matrix, we have
W 2 = R2 = Id. Hence, sampling W1, . . . ,Wd ∈ Mn(C) independently and uniformly
rotated Rademacher matrices and setting Ki = Wi/

√
d for each i ∈ [d], the random

completely positive map

Φ : X ∈Mn(C) 7→
∑
i∈[d]

KiXKi ∈Mn(C)

is exactly trace-preserving and unital (not just on average), i.e. it is a random unital
quantum channel. More precisely, it is a mixture of unitary conjugations. What is more,
by what precedes, the spectral distribution of

√
d(Φ − E(Φ)) converges weakly almost

surely to µ̃KM(d) (for d even) as n→∞. And the spectral distribution of
√
d(Φ− E(Φ))

converges weakly in probability and in expectation to µsc as n, d→∞.

Remark 2.10. There is a straightforward generalization of the previous example to de-
terministic matrices. Let M1, . . . ,Md ∈Mn(C) be deterministic Hermitian matrices such
that, for each i ∈ [d], Mi ⇒ µi as n→∞ and µ is centered. A natural way to make them
asymptotically free is by conjugating them with independent Haar unitaries. In particu-
lar, if we set, for each i ∈ [d], Wi = UiMiU

∗
i , where U1, . . . , Ud ∈ Mn(C) are independent

uniformly chosen unitaries, then (Wi)i∈[d] satisfies Assumptions (A.1),(A.2),(A.3) and
(A.4). Indeed, for instance, Assumption (A.3) follows by Lemma 2.6 so that we can
apply Theorem 2.3 to this kind of matrices.
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Example 2.11 (Wigner matrices). A random Hermitian matrix W = (Wkl)k,l∈[n] ∈
Mn(C) is a Wigner matrix if Wkl are i.i.d. centered with variance 1/n for k, l ∈ [n] such
that k ≤ l and Wkl = Wlk for k, l ∈ [n] such that l < k. It is well-known [7, 44, 109]
that independent Wigner matrices W1, . . . ,Wd satisfy Assumptions (A.1), (A.2), (A.3)
(by Lemma 2.6) and (A.4). Their joint law (Wi)i∈[d] converges weakly in probability to a
free semicircular family (si)i∈[d]. Therefore, Theorem 2.3 holds and the limit in Theorem
(2.3.i) is expressed as

∆ ⇒
n→∞

1√
d

∑
i∈[d]

si ⊗ si,

in probability and in expectation.

Let us interpret Example 2.11 above in terms of the corresponding random quantum
channel. Given W ∈ Mn(C) a Wigner matrix, we have E(Wkl) = 0 and E |Wkl|2 = 1/n
for all k, l ∈ [n] and (Wkl)k≤l∈[n] independent. Therefore,

E
(
W 2

)
=
∑
k∈[n]

Ekk = Id .

So we can conclude that, sampling W1, . . . ,Wd ∈ Mn(C) independent Wigner matrices
and setting Ki = Wi/

√
d for each i ∈ [d], the random completely positive map

Φ : X ∈Mn(C) 7→
∑
i∈[d]

KiXKi ∈Mn(C)

is, on average, trace-preserving and unital. Moreover, the spectral distribution of d(Φ −
E(Φ)) converges weakly almost surely to µ⊛d

sc as n→∞, and the spectral distribution of√
d(Φ−E(Φ)) converges weakly in probability and in expectation to µsc as n, d→∞. In

this case, we can actually explicitly compute E(Φ). Indeed, denoting by {e1, . . . , en} the
canonical basis of Cn and setting Ekl = eke

∗
l for each k, l ∈ [n], we have

E
(
W ⊗W

)
= 1
n

∑
k,l∈[n]

Ekl ⊗ Ekl + 1
n

∑
k ̸=l∈[n]

Ekl ⊗ Elk = ψψ∗ + 1
n

(F − diag(F )),

where ψ = ∑
k∈[n](ek⊗ek)/

√
n is a maximally entangled unit vector, F = ∑

k,l∈[n] Ekl⊗Elk
is the flip operator and diag(F ) = ∑

k∈[n] Ekk⊗Ekk is its diagonal part (with respect to the
canonical product basis of Cn ⊗ Cn). F − diag(F ) has spectrum {1,−1, 0}, where 1 and
−1 have multiplicities n(n−1)/2 (with associated eigenvectors {(ek⊗el+el⊗ek)/

√
2, k <

l ∈ [n]} and {(ek ⊗ el − el ⊗ ek)/
√

2, k < l ∈ [n]} respectively) and 0 has multiplicity n.
Hence,

E(MΦ) = ψψ∗ + 1
n

(F − diag(F )).

This can be re-written at the level of Φ as

E(Φ) : X ∈Mn(C) 7→ tr(X)Id
n

+ 1
n

(
XT − diag(X)

)
∈Mn(C),

80



Chapter 2. Quantum channels 2.4. Examples

where XT denotes the transposition of X and diag(X) its diagonal part, both with respect
to the canonical basis of Cn. This means that, up to a correction that vanishes as n
grows, E(Φ) is the so-called fully randomizing channel Π : X 7→ tr(X) Id /n, which has
one eigenvalue equal to 1, with associated eigenvector the maximally mixed state Id /n,
and all the other eigenvalues equal to 0. Our result thus gives a precise understanding of
how the asymptotic spectrum of Φ deviates from the flat one of Π, for d either fixed or
growing.

We can also consider non-homogeneous matrices as in [72, 17].

Example 2.12 (Non-homogeneous matrices). Let W1, . . . ,Wd ∈ Mn(C) be independent
Gaussian matrices such that, for each i ∈ [d],

∥E(Wi)∥ →
n→∞

0;∥∥∥E(W 2
i )− Id

∥∥∥ →
n→∞

0.

Then it was proven in [17, Theorem 2.10] that (Wi)i∈[d] are asymptotically free in expecta-
tion and almost surely as long as the covariance structure of each one goes to 0 sufficiently
fast. Concretely, we have to impose that, for each i ∈ [d],

v(Wi) := ∥cov(Wi)∥ = o
(
log−3/2 n

)
.

The limit is a free semicircular family (si)i∈[d]. So Theorem (2.3.i) implies that

∆ ⇒
n→∞

1√
d

∑
i∈[d]

si ⊗ si,

in probability and in expectation. As a matter of fact, similar results hold for Hermitian
random matrices with bounded entries (see [31, Theorem 3.25]).

Another classical example is Wishart-type matrices.

Example 2.13 (Wishart matrices). A random Hermitian matrix W ∈ Mn(C) is a (cen-
tered) Wishart matrix if

W = XX∗ − E(XX∗) = XX∗ − Id,

where X ∈ Mn(C) has i.i.d. centered entries with variance 1/n. Independent Whishart
matrices W1, . . . ,Wd also satisfy Assumptions (A.1), (A.2), (A.3) (by Lemma 2.6) and
(A.4); see [35]. The limit of a Wishart matrix XX∗ is equal to cc∗, where c is a circular
element, i.e.

c = s+ is′
√

2
,

with s, s′ free semicircular variables, and it is called the quarter circular law or Marchenko-
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Pastur law. The limit law in (2.3.i) is given by

∆ ⇒
n→∞

1√
d

∑
j∈[d]

(cjc∗
j − 1)⊗ (cjc∗

j − 1),

in probability and in expectation, where (cj)j∈[d] are free copies of c.
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Chapter 3

Central Limit Theorem for tensor
products of free variables

I want to break free!

Some random tensor product

We establish a central limit theorem for tensor product random variables ck :=
ak⊗ak, where (ak)k∈N is a free family of variables. We show that if the variables ak
are centered, the limiting law is the semi-circle. Otherwise, the limiting law depends
on their mean and variance and corresponds to the free convolution of an explicit
probability measure and the semi-circle distribution.
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3.1 Introduction

The Free Central Limit Theorem serves as a foundational principle in free probability [110],
[85, Lecture 8]. It asserts that as the number of freely independent operators summed
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together approaches infinity, the distribution of the normalized sum tends towards an
asymptotically semi-circular shape. This mirrors the classical Central Limit Theorem but
with independence conditions replaced by free independence (also known as freeness) and
the Gaussian limit substituted with a semi-circular limit. More precisely, let (A, τ) be
a unital noncommutative probability space equipped with a faithful tracial state τ [85,
Lecture 1]. We say that subalgebras A1, . . . ,Ad ⊂ A are free if

τ(a1 . . . ap) = 0,

whenever ai ∈ Aji , τ(ai) = 0 for all i ∈ [p] and j1 ̸= j2 ̸= · · · ≠ jp. We say that
random variables a1, . . . , ad ∈ A are free if their generated algebras are free. We say that
a sequence of (self-adjoint) variables an ∈ (An, τn) converges in distribution to a variable
a ∈ (A, τ) if

τn(apn)→ τ(ap),

for all integers p ≥ 0 and we denote it an ⇒ a. We denote a− λ := a− λ1, where 1 ∈ A
is the unit in the algebra. As usual, τ(a) is the mean of a and the variance is given by

var(a) = τ((a− τ(a))2).

The Free Central Limit Theorem states that if a1, . . . , an ∈ (A, τ) are free iid random
variables with mean λ and variance σ2, then

1
σ
√
n

∑
k∈[n]

(ak − λ)⇒ µsc,

where µsc denotes the semi-circle distribution whose density is given by

fsc(x) = 1
2π
√

4− x21|x|≤2.

The goal of this paper is to establish a central limit theorem for the tensor product of
free random variables. Concretely, given a1, . . . , an ∈ (A, τ) free i.i.d random variables,
we aim at studying the convergence of the normalized sequence

1√
n

∑
k∈[n]

(ak ⊗ ak − τ ⊗ τ(ak ⊗ ak)), (3.1)

in the product space (A⊗A, τ ⊗ τ).

Just as Free Probability captures the limiting behavior of random matrices, the above
expression appears naturally as the limiting object corresponding to several models of
random Quantum Channels [73]. Indeed, given M1, . . . ,Mn ∈ Md(C) independent ran-
dom self-adjoint matrices, it was shown in [73] that the empirical spectral distribution
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(ESD) of the quantum channel

∆d,n := 1√
n

∑
k∈[n]

(Mk ⊗Mk − E[Mk ⊗Mk]),

having the Mk’s as random Kraus operators and with fixed Kraus rank n, converges as
d→∞ to the expression in (3.1) with the ak’s being the corresponding limits of the ESD
of the Mk’s. Moreover, it was in particular shown that if the random matrices Mk are
centered, then the ESD of ∆d,n converges as n, d → ∞ to the semi-circle distribution.
These two statements combined suggest that, in the case where the ak’s are centered, an
analogue of the free central limit theorem should hold for the ak ⊗ ak’s. Whereas these
heuristics indicate that the semi-circle distribution should appear as the limit of (3.1)
when the ak’s are centered, the convergence and the explicit limit are not clear in the
general case. The goal of this paper is to address this by establishing the convergence
of the expression in (3.1) and identifying the limiting object. The latter, as we show,
depends on the mean and variance of the variables ak’s and represents a free interpolation
between an explicit measure and the semi-circle distribution.

Random matrix models of the form

M =
∑
k∈[n]

Mk ⊗Mk, (3.2)

for M1, . . . ,Mn ∈ Md(C) independent random self-adjoint matrices, are in fact useful in
other areas of Quantum Information Theory. When the Mk’s are positive semi-definite
matrices, normalizing M by its trace produces a model for a random separable quantum
state. Little is known about the typical asymptotic spectrum of separable states, contrary
to that of entangled ones [6]. Moreover, a random matrix M of the form (3.2) appears
naturally when performing a so-called realignment operation on a quantum state. Under-
standing the spectrum of the realignment of a state is important as it gives information
on the entanglement of the state. In [9], this was done in the particular case where the
Mk’s are Gaussian matrices (corresponding to the case where the state is a normalized
Wishart matrix). The results and techniques we develop here (combined with those in
[73]) could be useful in addressing the questions mentioned above.

Given a measure µ, we denote

(tµ)(A) := µ(t−1A),

its dilation by t ̸= 0, where A is any Borel set in R. Let P bi
2 (2p) be the set bipartite pair

partitions, namely, those partitions whose intersection graph is bipartite (see definitions
in Section 3.2). Define the symmetric measure ν such that its odds moments vanish and
its even moments are given by

∫
R
x2p dν := |P bi

2 (2p)|. (3.3)
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For the existence of such measure ν, see discussion in Remark 3.4.
The following is our main theorem.

Theorem 3.1. Let a ∈ (A, τ) be a self-adjoint random variable with mean τ(a) = λ and
variance var(a) = σ2 ̸= 0. Denote

δ2 := var(a⊗ a) = σ2(σ2 + 2λ2),

and

q := 2λ2

σ2 + 2λ2 ∈ [0, 1].

Given (ak)k∈N a sequence of free copies of a, the normalized sum

Sn := 1
δ
√
n

∑
k∈[n]

(ak ⊗ ak − λ2)

converges as n→∞ to

µq :=
√
q

2 ν ⊞
√
q

2 ν ⊞
√

1− q µsc, (3.4)

where ⊞ denotes the free convolution.

The difficulty in analyzing Sn stems from the complicated dependence structure exhib-
ited by tensors, combining classical independence (between the two legs of the tensor) and
freeness (between the variables across tensors). In the centered case, similar computations
were made for semi-circle random variables [83, 42]. It would be of interest to design a
general notion of independence corresponding to the tensor case, analyze its properties,
derive the corresponding limit theorems, and characterize the corresponding universal ob-
jects. One particular generalization is by replacing the tensor product with the product
of ε-independent random variables [98, 80, 97]. A direct consequence of Theorem 3.1 is
that such a notion cannot, in general, reduce to freeness.

Corollary 3.2. Let a1, . . . , an ∈ (A, τ) be self-adjoint free i.i.d noncentered random vari-
ables. Then the {ak ⊗ ak : k ∈ [n]} are not free.

The above corollary trivially follows from Theorem 3.1, since if the ak⊗ak’s were free,
the limit of their normalized sum would be the semi-circle distribution contradicting the
conclusion of Theorem 3.1 (when λ ̸= 0). This fact was originally proved in [37] where,
more generally, the freeness of tensors of free variables was characterized.

This paper is organized as follows. In Section 3.2, we recall some definitions and
notations. In Section 3.3, we provide some properties of the limiting measure appearing
in Theorem 3.1. Section 3.4 establishes the existence of the limit, while Section 3.5 is
dedicated to the proof of Theorem 3.1.
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3.2 Preliminaries and notations

Given p ∈ N, a partition π = {V1, . . . , Vk} of [p] is a collection of disjoint sets V1, . . . , Vk

called blocks such that

V1 ∪ · · · ∪ Vk = [p].

We denote by P (p) the set of partitions of [p]. We say that a partition π ∈ P (p) is
connected (also referred to as a linked diagram in [87]) if no proper subinterval of [p] can
be written as the union of blocks of π. A partition π ∈ P (p) has a crossing i < k < j < l

if there exist two disjoint blocks V1, V2 ∈ π such that {i, j} ⊂ V1 and {k, l} ⊂ V2. A block
V ∈ π is crossing if there exists another V ′ ∈ π such that V ′ crosses V . We say that a
partition π ∈ P (p) is a noncrossing partition if all its blocks are noncrossing. We denote
by P con(p) (resp. NC(p)) the set of all connected (resp. noncrossing) partitions of [p]; see
Figure 3.1.

(a) Connected partition (b) General partition (c) Noncrossing partition

Figure 3.1: Examples of partitions

Finally, for a partition π ∈ P (p), we denote by G(π) its intersection graph. It is the
graph over the blocks of π such that two blocks are connected if they cross, under some
arbitrary labeling. We say that a partition π is a bipartite partition if its intersection
graph is bipartite and denote it π ∈ P bi(p); see Figure 3.2 for the partitions in Figure 3.1.

(a) Connected partition (b) General partition (c) Noncrossing partition

Figure 3.2: Examples of graphs of crossings.

Given π ∈ P (p), we denote |π| its number of blocks and cr(π) its number of crossing
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blocks. Therefore, the number of noncrossing blocks of π is

ncr(π) := |π| − cr(π).

Given π ∈ P (p), we denote cc(π) its number of connected components. We denote
P2(p), P con

2 (p), P bi
2 (p) and NC2(p) the set of pair partitions, connected pair partitions,

bipartite pair partitions, and noncrossing pair partitions, respectively, that is, those par-
titions such that all of their blocks have cardinality two. Sometimes it will be useful
to define similarly P bicon

2 (2p) := P bi
2 (2p) ∩ P con

2 (2p) the set of bipartite connected pair
partitions.

A pair partition π ∈ P2(2p) can be decomposed into its crossing connected components,
namely, let π̂ ∈ P (2p) be the choice of connected components and, for each block T ∈ π̂,
draw a connected partition πT ∈ P con

2 (T ). By definition, π̂ ∈ NC(2p) as otherwise two
disjoint components would meet (π̂ is called the noncrossing closure of π in [77]). The
mapping

Φ : π 7→ (π̂, (πT )T∈π̂) (3.5)

is a bijection that will be used throughout the proof of Theorem 3.1; see Figure 3.3.

(a) π (b) π̂

(c) π{1,2,3,4} (d) π{5,8} ∼= π{6,7}

Figure 3.3: A partition π and its image Φ(π).

We denote

Proj(π̂) := {(πT )T∈π̂) : πT ∈ P con
2 (T ), ∀T ∈ π̂}.

Note that |π̂| = cc(π). At the level of cardinals, the above bijection implies that

|P2(2p)| =
∑

π̂∈NC(2p)

∏
T∈π̂
|P con

2 (T )| =
∑

π̂∈NC(2p)

∑
(πT )T ∈π̂

1, (3.6)

where the second summation is over (πT )T∈π̂ ∈ Proj(π̂).

Given a1, . . . , an ∈ A, we denote by κfree
n (a1, . . . , an) their free cumulants, namely, for
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any i ∈ [n]k, we have

τ(ai1 · · · aik) =
∑

π∈NC(k)
κfree
π (ai1 , . . . , aik),

κfree
π (ai1 , . . . , aik) =

∏
V={v1,...,vl}∈π

κfree
|V | (aiv1

, . . . , aivl
).

This is known as the moment-cumulant formula [85, Notation 11.5]. Note also that if
the variables a1, . . . , an are free, the free mixed cumulants vanish [85, Proposition 11.15].
Similarly, their classical cumulants κclass

n (a1, . . . , an) are defined by

τ(ai1 · · · aik) =
∑

π∈P (k)
κclass
π (ai1 , . . . , aik),

κclass
π (ai1 , . . . , aik) =

∏
V={v1,...,vl}∈π

κclass
|V | (aiv1

, . . . , aivl
).

Here and throughout the paper, we denote V = {v1, . . . , vl} respecting the ordering,
that is, v1 < · · · < vl; see [85, Lecture 11]. We denote κfree

n (a) (resp. κclass
n (a)) the free

(resp. classical) cumulants of a random variable a. It follows from (3.6) that if g ∼ N(0, 1),
we have

κfree
n (g) = |P con

2 (n)|.

This can also be deduced from a general relation between classical and free cumulants
[77]

κfree
n (a) =

∑
π∈P con(n)

κclass
π (a).

We will equivalently denote κfree
n (µ) (resp. κclass

n (µ)) the free (resp. classical) cumulants
of a random variable a with distribution µ. Given two measures µa and µb, the free
convolution µa ⊞ µb denotes the distribution of a + b, where a and b are free random
variables with distribution µa and µb, respectively.

3.3 Properties of the limiting measure

In this section, we summarize some of the properties of the measure µq appearing in (3.4).
We start by calculating the moments and free cumulants of µq.

Proposition 3.3. Given q ∈ [0, 1], let

µq :=
√
q

2 ν ⊞
√
q

2 ν ⊞
√

1− q µsc,

where ν is defined via Equation (3.3). Then the following hold:

1. The free cumulants κfree
n (µq) of µq vanish if n is odd, κfree

2 (µq) = 1 and for any even
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3.3. Properties of the limiting measure Chapter 3. Tensor products

n ≥ 4, we have

κfree
n (µq) = 2

(
q

2

)n/2
|P bicon

2 (n)|. (3.7)

2. The odd moments of µq vanish and, for every p ∈ N, its 2p-th moment is given by

∑
π∈Pbi

2 (2p)
2cc(π)−pqcr(π). (3.8)

Remark 3.4 (The moment problem [92]). It is unclear if the measure ν is well-defined,
namely, if the sequence (an) defined via a2n+1 = 0 and a2n = |P bi

2 (2n)| for all n ≥ 0 is
the moment sequence of some measure ν. Nonetheless, there exists a unique measure
µq whose cumulants and moments are given by (3.7) and (3.8), respectively. Indeed, let
m2n+1 = 0 and

m2n =
∑

π∈Pbi
2 (2p)

2cc(π)−pqcr(π)

be the sequence of its moments. Hamburger’s theorem [60] states that the existence of
such measure µq is equivalent to the Hankel matrix Hn = (mi+j)1≤i,j≤n being positive
semi-definite. As we use the convergence of the moments to prove Theorem 3.1, we show
that

τ(Spn)→ mp,

for all p ≥ 1. In particular, by continuity, the sequence (mn)n satisfies Hamburger’s
criterium, and then it is the moment sequence of some measure. The uniqueness holds by
Carleman’s criterium [2, 92], as its moments are controlled by the Gaussian moments.

Proof. We will use the notion of R-transform; see [85, Lecture 16]. For a random variable
a ∈ A, let

Ra(z) =
∑
n≥1

κfree
n (a)zn,

be its R-transform, defined as a formal series. The R-transform of a standard semi-circle
law is given by

Rµsc(z) = z2,

whereas the R-transform of ν can easily be computed similarly to the Gaussian as

Rγ(z) =
∑
n≥1
|P bicon

2 (2n)|z2n.
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Since the free cumulants linearize the free convolution, we deduce that

Rµq(z) = 2R√ q
2γ

(z) +R√
1−qµsc

(z)

= 2Rγ

(√
q

2z
)

+Rµsc

(√
1− qz

)
= z2 + 2

∑
n≥2

(
qz2

2

)n
|P bicon

2 (2n)|.

This proves the first part of the proposition. To prove the second part, we use the moment-
cumulant formula to deduce that the odd moments vanish, while the 2p-th moment can
be expressed as

∑
π̂∈NC(2p)

∏
T∈π̂

κfree
|T | (µq) =

∑
π̂∈NC(2p)

∏
T∈π̂
|T |≥4

2
(
q

2

)|T |/2
|P bicon

2 (T )|

=
∑

π̂∈NC(2p)

∑
(πT )T ∈π̂

∏
T∈π̂
|T |≥4

2
(
q

2

)|T |/2
,

where the second summation is over (πT )T∈π̂ ∈ Proj(π̂), as in (3.6), such that πT ∈
P bicon

2 (T ) for every T ∈ π̂. Now noting that

|{T ∈ π̂ : |T | ≥ 4}| = cc(π)− ncr(π),

and ∑
T∈π̂

|T |≥4

|T |
2 = cr(π),

we finish the proof after using the bijection Φ from (3.5) to rewrite the above expression.

3.4 Existence of the limit

The goal of this section is to show that the expression in (3.1) admits a limit that depends
only on the first and second moments of the variables at hand. Let us first prove the
following centering lemma.

Lemma 3.5. Let (A, τ) be a unital faithful tracial noncommutative probability space. Let
a1, . . . , an ∈ (A, τ) be free i.i.d random variables and let

ck := ak ⊗ ak − τ ⊗ τ(ak ⊗ ak),
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for every k ∈ [n]. Then for any m ≥ 1 and i1, . . . , im ∈ [n], we have

τ ⊗ τ(ci1 · · · cim) = 0,

whenever there exists an index il that is different from the others.

Proof. By cyclicity of the trace, we can assume that im is the index that is different from
the others. In this case, we write

τ ⊗ τ(ci1 · · · cim) =
∑
I⊆[m]

(−1)|I|τ ⊗ τ

 →∏
l∈Ic

ail ⊗ ail

∏
l∈I
τ ⊗ τ(ail ⊗ ail).

Here,
→∏ denotes the product respecting the ordering. Then,

τ ⊗ τ(ci1 · · · cim) =
∑
I⊆[m]

(−1)|I|λ2|I|τ 2

 →∏
l∈Ic

ail

,
where λ := τ(a1). Splitting the summation depending on whether m ∈ I or not, we can
write

τ ⊗ τ(ci1 · · · cim) =
∑
I⊆[m]
m∈I

(−1)|I|λ2|I|τ 2

 →∏
l∈Ic

ail

+
∑
I⊆[m]
m∈Ic

(−1)|I|λ2|I|τ 2

 →∏
l∈Ic

ail

.

For the first term, we set I = {m} ∪ I ′ with I ′ ⊆ [m− 1] to get

∑
I⊆[m]
m∈I

(−1)|I|λ2|I|τ 2

 →∏
l∈Ic

ail

 =
∑

I′⊆[m−1]
(−1)|I′|+1λ2|I′|+2τ 2

 →∏
l∈(I′)c

ail

.

For the second term, we use freeness of aim from the rest of the ai’s so that

∑
I⊆[m]
m∈Ic

(−1)|I|λ2|I|τ 2

 →∏
l∈Ic

ail

 =
∑

I′⊆[m−1]
(−1)|I′|λ2|I′|τ 2

 →∏
l∈(I′)c

ail

τ 2(aim).

Putting the above together, we deduce

τ ⊗ τ(ci1 · · · cim) =
∑

I′⊆[m−1]
(−1)|I′|+1λ2|I′|+2τ 2

 →∏
l∈(I′)c

ail


+

∑
I′⊆[m−1]

(−1)|I′|λ2|I′|+2τ 2

 →∏
l∈(I′)c

ail

.
This finishes the proof.

We are now ready to prove the existence of the limit and that it only depends on the
first and second moments of the ak’s.
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Proposition 3.6 (Existence). Let (an)n∈N ∈ (A, τ) be free iid random variables with
mean λ, variance σ2, and denote δ2 := var(a1 ⊗ a1) = σ2(σ2 + 2λ2). For every k ∈ N,
denote

bk := 1
δ

(
ak ⊗ ak − τ ⊗ τ(ak ⊗ ak)

)
,

and

Sn := 1√
n

∑
k∈[n]

bk.

Then there exists a random variable S ∈ (A′, τ ′) such that Sn ⇒ S. Moreover, the law of
S depends only on λ and σ, its odd moments vanish and

τ ′(S2p) =
∑

π∈P2(2p)
τ ⊗ τ(bi1 · · · bi2p),

where i ∈ [n]2p is any sequence such that ij = ik if and only {j, k} ∈ π.

Proof. We begin by writing

τ ⊗ τ(Spn) = 1
np/2

∑
i∈[n]p

τ ⊗ τ(bi1 · · · bip).

Since b1, . . . , bn are identically distributed, the expression

τ ⊗ τ(bi1 · · · bip) (3.9)

depends only on the partition π = π(i) ∈ P (p) given by l ∼π k (that is, l, k belong to the
same block of π) if and only if il = ik. Denote the common value of (3.9) by τ ⊗ τ(π).
Then we have

τ ⊗ τ(Spn) = 1
np/2

∑
π∈P (p)

τ ⊗ τ(π)#{i ∈ [n]p : π(i) = π}.

To count the cardinality, we choose an index for each block. Therefore, we have

#{i ∈ [n]p : π(i) = π} = n(n− 1) · · · (n− |π|+ 1) ∼ n|π|.

By Lemma 3.5, if π has a block of size 1, τ ⊗ τ(π) = 0. Thus, we have

τ ⊗ τ(Spn) =
∑

π∈P (p)
|V |≥2;∀V ∈π

τ ⊗ τ(π)n(n− 1) · · · (n− |π|+ 1)
np/2 .

Since |V | ≥ 2 for all blocks V ∈ π, we have |π| ≤ p/2. If there exists a block V ∈ π

such that |V | ≥ 3, we immediately have |π| < p/2, and its contribution is negligible. In
particular, this implies that the odd moments of Sn are asymptotically vanishing. We
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deduce that

lim
n→∞

τ ⊗ τ(Spn) = lim
n→∞

∑
π∈P (p)

|V |=2;∀V ∈π

τ ⊗ τ(π)n(n− 1) · · · (n− |π|+ 1)
np/2 .

In this case, π is a pair partition and |π| = p/2, hence we deduce the formula

lim
n→∞

τ ⊗ τ(Spn) =
∑

π∈P2(p)
τ ⊗ τ(π),

which shows that Sn converges. To prove that the limit depends only on λ and σ, we
write

τ ⊗ τ(π) = τ ⊗ τ(bi1 · · · bip) = 1
δp

∑
I⊆[p]

(−1)|I|λ2|I|τ 2

 →∏
l∈Ic

ail

,
where π(i) = π. By the moment-cumulant formula, we have

τ

 →∏
l∈Ic

ail

 =
∑

σ∈NC(Ic)
κσ((ail)l∈Ic).

Since the mixed cumulants of free variables vanish, the only partitions σ ∈ NC(Ic) that
contribute are those such that every block V ∈ σ has cardinality at most two. We then
have

κσ((ail)l∈Ic) =
∏
V ∈σ

|V |=2

κ|V |(a, a)
∏
V ∈σ

|V |=1

κ|V |(a) = σ2#{V ∈σ:|V |=2}λ#{V ∈σ:|V |=1}.

This concludes the proof.

3.5 Proof of Theorem 3.1

After proving the existence of the limit in the previous section, the goal here is to identify
this limit as stated in Theorem 3.1. In all this section, (an)n∈N denote free copies of
a random variable a with mean λ and variance σ2. Moreover, the common law of the
normalized tensors will be denoted by

b = 1
δ

(
a⊗ a− λ2

)
, (3.10)

where δ2 = var(a⊗ a) = σ2(σ2 + 2λ2).
Throughout the proof, we will assume p is an even integer. Following Proposition 3.6,

we denote S the limit of Sn and note that

τ ′(Sp) =
∑

π∈P2(p)
τ ⊗ τ(π),

94



Chapter 3. Tensor products 3.5. Proof of Theorem 3.1

where τ ⊗ τ(π) = τ ⊗ τ(bi1 · · · bip) with π(i) = π.

The following lemma will be used throughout the proof.

Lemma 3.7. Let b1, . . . , bn be identically distributed tensors of free variables with common
distribution given in (3.10) and let d1, d2 be free from the variables a1, . . . , an. Then, for
any i ∈ [n]p, we have

τ ⊗ τ(d1 ⊗ d2bi1 · · · bip) = τ(d1)τ(d2)τ ⊗ τ(bi1 · · · bip).

Proof. We begin by writing again

τ ⊗ τ(d1 ⊗ d2bi1 · · · bip) = 1
δp

∑
I⊆[p]

(−1)|I|λ2|I|τ ⊗ τ

d1 ⊗ d2

→∏
l∈Ic

ail ⊗ ail

.
By freeness, we can remove τ(d1) and τ(d2) from the trace, hence

τ ⊗ τ(d1 ⊗ d2bi1 · · · bip) = τ(d1)τ(d2)
δp

∑
I⊆[p]

(−1)|I|λ2|I|τ ⊗ τ

 →∏
l∈Ic

ail ⊗ ail

.
Reducing the summation back to τ ⊗ τ(bi1 · · · bip), the conclusion follows.

3.5.1 Contribution of noncrossing blocks

We begin by removing interval blocks.

Lemma 3.8. Let π ∈ P2(p) and suppose that there exists l ∈ [p] such that {l, l + 1} ∈ π
(with the convention that p+ 1 := 1). Then

τ ⊗ τ(π) = τ ⊗ τ(π \ {l, l + 1}).

Proof. By cyclicity, we can assume l = p− 1. We then have

δ2τ ⊗ τ(π) = τ ⊗ τ
(
bi1 · · · bip−2 ·

(
a2
ip ⊗ a

2
ip + λ41⊗ 1− 2λ2aip ⊗ aip

))
= τ ⊗ τ

(
bi1 · · · bip−2 · a2

ip ⊗ a
2
ip

)
+ λ4τ ⊗ τ

(
bi1 · · · bip−2

)
− 2λ2τ ⊗ τ

(
bi1 · · · bip−2aip ⊗ aip

)
=: I + II + III.

We immediately recognize

II = λ4τ ⊗ τ(π \ {p− 1, p}).
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By Lemma 3.7, we have

I = τ 2(a2)τ ⊗ τ(π \ {p− 1, p});

III = −2λ4τ ⊗ τ(π \ {p− 1, p}).

Hence

δ2τ ⊗ τ(π) =
(
τ 2(a2)− λ4

)
τ ⊗ τ(π \ {p− 1, p}).

To conclude, we note that τ 2(a2)− λ4 = δ2 and finish the proof.

Recall that a noncrossing pair partition π ∈ NC2(p) always has an interval block
V = {l, l + 1} ∈ π such that π \ V is a noncrossing pair partition. In particular, by
induction, Lemma 3.8 implies the following.

Corollary 3.9. For any π ∈ NC2(p), we have τ ⊗ τ(π) = 1.

3.5.2 Decomposition of pair partitions

In order to capture the contribution of crossing partitions, we need to decompose a par-
tition π ∈ P2(p) \NC2(p) using smaller partitions. We denote π = π1⊕ · · · ⊕ πk if [p] can
be decomposed into k intervals I1, . . . , Ik such that πk ∈ P2(Ik) and V ∈ π if V ∈ πl for
some 1 ≤ l ≤ k. For I ⊆ [p], let

aI :=
→∏
l∈I
ail .

Lemma 3.10. Let π ∈ P2(p). Then, the following holds.

(3.10.i) If π = π1 ⊕ · · · ⊕ πl, then

τ ⊗ τ(π) = τ ⊗ τ(π1) · · · τ ⊗ τ(πl).

(3.10.ii) If π = {1, p} ∪ π1, where π1 ∈ P2({2, . . . , p− 1}), then

τ ⊗ τ(π) = τ ⊗ τ(π1).

Moreover, if there exists an interval I ⊆ [p] such that π|I is a pair partition, then

τ ⊗ τ(π) = τ ⊗ τ(π|I)τ ⊗ τ(π|Ic).

(3.10.iii) If π has a block V = {r, s} such that for any block U = {l, k} ∈ π with r < l < s,
we have r < k < s (i.e., every point inside V matches another one inside V ), we
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have

τ ⊗ τ(π) = τ ⊗ τ(π|V−)τ ⊗ τ(π|V+),

where π|V− is the restriction of π to inside of V and π|V+ is the restriction of π to
outside of V .

Proof. (3.10.i) By induction, it suffices to prove the case π = π1 ⊕ π2. Let I1, I2 be the
disjoint decomposition of [p] given by π1 and π2. Then, we can write

τ ⊗ τ(π) = 1
δp

∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ 2

∏
l∈Jc

1

ail
∏
l∈Jc

2

ail

.

Since π is the direct sum of π1, π2, the variables aJc
1
, aJc

2
are free and we can write

τ ⊗ τ(π) = 1
δp

∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ 2

∏
l∈Jc

1

ail

τ 2

∏
l∈Jc

2

ail

.

It is immediate to check that the right-hand-side is equal to τ ⊗ τ(π1)τ ⊗ τ(π2).

(3.10.ii) By cyclicity, we have

τ ⊗ τ(π) = τ ⊗ τ(bi2 · · · bip−1bipbi1).

Since {1, p} ∈ π, Lemma 3.8 implies that

τ ⊗ τ(π) = τ ⊗ τ(bi2 · · · bip−1) = τ ⊗ τ(π1).

The second part follows again by cyclicity as we can assume I = {1, . . . , k} for some
k ∈ [p], and the variables are free.

(3.10.iii) By cyclicity, we can assume that V = {1, k} for some k ∈ [p]. Note that V
creates a direct sum π = (V ∪π|V−)⊕π|V+ . The result follows by (3.10.i) and (3.10.ii).

Note that any block V ∈ π that does not cross any other block of π is either an
interval block or a block that satisfies (3.10.iii). In particular, its removal does not affect
the value of τ ⊗ τ(π). It is clear then that τ ⊗ τ(π) is a multiplicative function [30] over
the connected components of π. Using the mapping Φ defined in (3.5), we can write

τ ⊗ τ(π) =
∏
T∈π̂

τ ⊗ τ(πT ), (3.11)

where (π̂, (πT )T∈π̂) = Φ(π). In view of this, we will now focus on the case where π ∈
P con

2 (p), for p ≥ 4, as the case p = 2 corresponds to noncrossing blocks.
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3.5.3 Contribution of connected partitions

Given π ∈ P con
2 (p), for an even integer p ≥ 4, we recall its intersection graph G(π), where

its vertices are the blocks (under some arbitrary labeling) of π, and there is an edge
between two vertices if they cross. We recall that P bicon

2 (p) is the set of connected pair
partitions π whose intersection graph is bipartite.

The following is the main proposition of this subsection.

Proposition 3.11. Let p ≥ 4 be an even integer and π ∈ P con
2 (p). Then, the following

hold.

1. If π /∈ P bicon
2 (p), τ ⊗ τ(π) = 0 ;

2. If π ∈ P bicon
2 (p), we have

τ ⊗ τ(π) = 2
(
q

2

) p
2
,

where q = 2λ2

σ2+2λ2 .

To prove Proposition 3.11, we require some notation. We uniquely order the blocks of
π, V1, . . . , Vp/2, as follows. V1 is the block associated with 1 ∈ [p]. Now, given V1, . . . , Vk,
we define Vk+1 as the block with the lowest element among all remainder blocks such
that Vk+1 crosses at least one Vj, for j < k. This can always be accomplished as π is a
connected pair partition. We call such ordering the canonical ordering. We denote Nj,
the set of all block neighbors of Vj(π) in the intersection graph of π.

Given integer k ≥ 0, we define

τ ⊗ τk(π) := τ ⊗ τ(π, V1, . . . , Vk) = τ ⊗ τ

∏
l∈[p]

bil


recursively as follows. Let (ãl)l∈N be a free independent family of copies of a, free from
(al)l∈N. Given the variables

a
(l)
j , a

(r)
j ∈ {aj, ãj},

and b̃j = a
(l)
j ⊗ a

(r)
j − λ2 defined via

τ ⊗ τk(π) := τ ⊗ τ(π, V1, . . . , Vk) = τ ⊗ τ

∏
j∈[p]

b̃ij

,
we define τ ⊗ τk+1(π) for Vk+1 = {r, s} by the following procedure.

1. If k = 0, for all blocks Vl = {r∗, s∗} ∈ N1(π) with unique element r < s∗ < s, we
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define

b̃ir∗ = air∗ ⊗ air∗ − λ2;

b̃is∗ = ãis∗ ⊗ ais∗ − λ2,

that is, we replace the left leg of the tensor for the element inside V1, and the left legs
of the tensors are free independent. The rest of the variables are kept unchanged.

2. If we can write the joint law of (bir , bis) as

b̃ir = air ⊗ ãir − λ2;

b̃is = ais ⊗ ais − λ2,

that is, the right legs of the tensors are free independent, for all Vl = {r∗, s∗} ∈
Nk+1(π) with unique element r < s∗ < s, we define

bir∗ = air∗ ⊗ a(r)
ir∗ − λ2;

bis∗ = ãis∗ ⊗ a(r)
is∗ − λ2,

that is, we replace the left leg of the tensor for the element inside Vk+1, and the
left legs of the tensors are free independent. The rest of the variables are kept
unchanged.

3. If we can write the joint law of (bir , bis) as

b̃ir = ãir ⊗ air − λ2;

b̃is = ais ⊗ ais − λ2,

that is, the left legs of the tensors are free independent, for all Vl = {r∗, s∗} ∈
Nk+1(π) with unique element r < s∗ < s, we define

bir∗ = a
(l)
ir∗ ⊗ air∗ − λ2;

bis∗ = a
(l)
is∗ ⊗ ãis∗ − λ2,

that is, we replace the right leg of the tensor for the element inside Vk+1, and the
right legs of the tensors are free independent. The rest of the variables are kept
unchanged.

4. Otherwise, we can write the joint law of (bir , bis) as

b̃ir = ãir ⊗ air − λ2;

b̃is = ais ⊗ ãis − λ2,

that is, both legs of the tensors are free independent. Then, for all Vl = {r∗, s∗} ∈

99



3.5. Proof of Theorem 3.1 Chapter 3. Tensor products

Nk+1(π) with unique element r < s∗ < s, we define

(bir∗ , bis∗ ) = (b̃ir∗ , b̃is∗ ).

The rest of the variables are kept unchanged.

We denote τ ⊗ τ0(π) := τ ⊗ τ(π). Finally, we define

τ ⊗ τk1,k2(π) : = τ ⊗ τ(π \ {V1, . . . , Vk1}, V1, . . . , Vk2)

= τ ⊗ τ


→∏
j∈[p]

l /∈V1∪···∪Vk1

bij

,

where the variables bj are defined as in τ ⊗ τk2(π); see Figure 3.4 for the partition π =
{{1, 4}, {2, 5}, {3, 6}}, V1 = {1, 4}, V2 = {2, 5}, and where the top index indicates which
legs of the tensors are replaced.

b1 b2 b3 b1 b2 b3

(a) τ(π)

bl2 b
l
3 b2 b3

(b) τ(π \ V1, V1)

blr3 b3

(c) τ(π \ {V1, V2}, V1, V2)

Figure 3.4: The terms in τ(π), τ(π \ V1, V1), τ(π \ {V1, V2}, V1, V2), respectively.

Summarily, fix the variables b̃j defined in τ⊗τk(π). If the pair (bir , bis) associated with
Vk+1 has a free independent right leg, we change the left leg of all crossing blocks of Vk+1

on the element that lies inside Vk+1. If it has a free independent left leg, we change the
right leg of all its crossing blocks on the element that lies inside Vk+1. If both legs are free
independent, we do not change the variables. The rest of the blocks remain unchanged.

We begin with the following moment-cumulant formula; see [85, Lecture 5, Equation
5.6].

Lemma 3.12. Let a, c1, c2 be variables such that a is free from {c1, c2}. Then

τ(ac1ac2) = var(a)τ(c1)τ(c2) + τ 2(a)τ(c1c2).

The following proposition relates τ ⊗ τ(π) to τ ⊗ τ(π \ V, V ) for some block V ∈ π.

Lemma 3.13. Let p ≥ 4 be an even integer, π ∈ P con
2 (p) and V = {r, s} ∈ π. Then

τ ⊗ τ(π) = q τ ⊗ τ(π \ V, V ),

where q = 2λ2

σ2+2λ2 .
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Proof. By cyclicity, we can assume that r = 1. Setting b = bi1 , we write

τ ⊗ τ(π) = τ ⊗ τ

b →∏
1<l<s

bilb
→∏

s<l≤p
bil

.
Expanding the variable b, we get

τ ⊗ τ(π) = 1
δ2 τ ⊗ τ

a⊗ a →∏
1<l<s

bila⊗ a
→∏

s<l≤p
bil

− λ4

δ2 τ ⊗ τ(π \ V ), (3.12)

where again we used Lemma 3.7 (see the proof of Lemma 3.8). To simplify the notation,
let I1 = {2, . . . , s− 1} and I2 = {s+ 1, . . . , p}. Then,

1
δ2 τ ⊗ τ

a⊗ a →∏
1<l<s

bila⊗ a
→∏

s<l≤p
bil

 = 1
δp

∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ 2
(
aaJc

1
aaJc

2

)
.

Using Lemma 3.12, we get

1
δ2 τ ⊗ τ

a⊗ a →∏
1<l<s

bila⊗ a
→∏

s<l≤p
bil


= 1
δp

∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)
(
σ2τ

(
aJc

1

)
τ
(
aJc

2

)
+ λ2τ

(
aJc

1
aJc

2

))2
.

We expand the square and note that

τ ⊗ τ(π \ V ) = τ ⊗ τ(bI1bI2) = 1
δp−2

∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ 2
(
aJc

1
aJc

2

)
,

and

τ ⊗ τ(bI1)τ ⊗ τ(bI2) = 1
δp−2

∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ 2
(
aJc

1

)
τ 2
(
aJc

2

)
.

Moreover, since π is connected and V is a crossing block of π, at least one index l ∈ I1 is
isolated in I1, i.e., its matching symbol is in I2. By Lemma 3.5, we therefore have

τ ⊗ τ(bI1)τ ⊗ τ(bI2) = 0.

Combining the above identities in (3.12), we get

τ ⊗ τ(π) = 2λ2σ2

δp
∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ
(
aJc

1

)
τ
(
aJc

2

)
τ
(
aJc

1
aJc

2

)
.

It remains to check that the summation is precisely the one from τ ⊗ τ(π \V, V ). Indeed,
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we have

τ ⊗ τ(π \ V, V ) = 1
δp−2

∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ
(
aJc

1
aJc

2

)
τ
(
ãJc

1
aJc

2

)
.

By freeness, the second product factorizes, and the conclusion holds.

The following is the main induction step, and it is an analogue of Lemma 3.13 for
τ ⊗ τ(π \ V, V ).

Lemma 3.14. Let p ≥ 4 be an even integer, π ∈ P con
2 (p) and V1, V2 be two crossing blocks

of π. Then

τ ⊗ τ(π \ V1, V1) = q

2 τ ⊗ τ(π \ {V1, V2}, V1, V2),

where q = 2λ2

σ2+2λ2 .

Proof. By cyclicity of the trace, we assume V1 = {1, k} and V2 = {r, s} for r < k < s and
let b = bir . We begin by writing

τ ⊗ τ(π \ V1, V1) = τ ⊗ τ

 ∏
1<l<r

b̃il b̃
∏
r<l<s

bilb
∏

s<l≤p
bil

,
where to simplify the notation, we used bil = b̃il for l < k, bil = bil for l > k and bik = 1.
By opening the expression for b, we get by Lemma 3.7 that

τ ⊗ τ(π \ V1, V1) = 1
δ2 τ ⊗ τ

 ∏
1<l<r

b̃ila⊗ ã
∏
r<l<s

bila⊗ a
∏

s<l≤p
bil


− λ4

δ2 τ ⊗ τ(π \ {V1, V2}, V1).

Let I1 = {2, . . . , r − 1}, I2 = {r + 1, . . . , s − 1}, I3 = {s + 1, . . . , p}. Then, the first term
can be computed as

1
δ2 τ ⊗ τ

 ∏
1<l<r

b̃ila⊗ ã
∏
r<l<s

bila⊗ a
∏

s<l≤p
bil


= 1
δp−2

∑
J1⊆I1
J2⊆I2
J3⊆I3

(−1)|J1|+|J2|+|J3|λ2(|J1|+|J2|+|J3|)τ
(
aJc

1
aaJc

2
aaJc

3

)
τ
(
ãJc

1
ãaJc

2
aaJc

3

)
.
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By freeness and Lemma 3.12, we get

1
δ2 τ ⊗ τ

 ∏
1<l<r

b̃ila⊗ ã
∏

r<l<k

bila⊗ a
∏

k<l≤p
bil


= 1
δp−2

∑
J1⊆I1
J2⊆I2
J3⊆I3

(−1)|J1|+|J2|+|J3|λ2(|J1|+|J2|+|J3|)σ2τ
(
aJc

1
aJc

3

)
τ
(
aJc

2

)
λ2τ

(
ãJc

1
aJc

2
aJc

3

)

+ 1
δp−2

∑
J1⊆I1
J2⊆I2
J3⊆I3

(−1)|J1|+|J2|+|J3|λ2(|J1|+|J2|+|J3|)λ2τ
(
aJc

1
aJc

2
aJc

3

)
λ2τ

(
ãJc

1
aJc

2
aJc

3

)
.

The second term cancels out with −λ4

δ2 τ ⊗ τ(π \ {V1, V2}, V1). The first is equal to λ2σ2

δ2 τ ⊗
τ(π \ {V1, V2}, V1, V2), and the conclusion follows.

It turns out, however, that V3 cannot cross both V1 and V2.

Lemma 3.15. Let p ≥ 4 be an even integer, π ∈ P con
2 (p) and V1, . . . , Vp/2 be the canonical

ordering of blocks of π. If V3 crosses both V1 and V2, we have

τ ⊗ τ(π) = 0.

Proof. We repeat the proof of Lemma 3.14. Let Vj = {rj, sj} for j = 1, 2, 3 and a = air3
.

By cyclicity, we can assume r1 < r2 < s1 < s2. There is only one possible configuration
for V3: V3 starts inside V1 and V2 and ends outside both, as in Figure 3.5:

r1 < r2 < r3 < s1 < s2 < s3;

V1
V2

V3

Figure 3.5: Three crossing structure.

We then have that bir3
gets both legs replaced, thus

τ ⊗ τ(π \ {V1, V2}, V1, V2) = 1
δ2 τ ⊗ τ

 ∏
1≤l<r3

bil ã⊗ ã
∏

r3<l<s3

bila⊗ a
∏

s3<l≤p
bil


− λ4

δ2 τ ⊗ τ(π \ {V1, V2, V3}, V1, V2).

where the products and the definition of b follows the blocks of π \ {V1, V2} and the
replacements done by V1 and V2. By freeness and Lemma 3.13, we immediately get that
the first term is equal to the second.

We are ready to prove Proposition 3.11. To this end, denote ω : [p/2]→ {0, 1, 2} the
coloring of vertices of G(π) under the canonical ordering such that ω(l) = 0 if Vl replaces
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the left leg of the tensor (Cases 1 and 2), ω(l) = 1 if it replaces the right leg (Case 3) and
ω(l) = 2 otherwise (Case 4) in the definition of τ ⊗ τk1,k2(π), see Figure 3.4.

Proof of Proposition 3.11. Let π /∈ P bicon
2 (p) and V1, . . . , Vp/2 be the canonical ordering of

blocks of π. Then, there exist t1 < t3 such that Vt1 crosses Vt3 and they would replace
the same leg of the tensors by the coloring of replacements ω. Assume ω(t1) = 1. By the
recursive procedure in Lemma 3.14, there must be a block Vt2 with t2 < t3 such that Vt2
crosses Vt3 and ω(t2) = 0, otherwise ω(t3) = 0 by Lemma 3.14. In particular, both legs of
Vt3 get replaced. We have the following cases.

1. Either Vt2 crosses Vt1 ;

2. Or Vt2 does not crosses Vt1 .

Lemma 3.15 implies that the contribution of case (1) is zero. For case (2), if Vtj = {rj, sj},
for j = 1, 2, 3, we have the following.

1. Either Vt2 and Vt1 are well-separated, that is,

r1 < r3 < s1 < r2 < s3 < s2;

or

2. Or Vt2 are inside Vt1 ,

r1 < r2 < r3 < s2 < s1 < s3.

The block interactions are shown in Figure 3.6.

Vt1

Vt3

Vt2

(a) Case (1)

Vt1
Vt2

Vt3

(b) Case (2)

Figure 3.6

For case (1), we have

τ ⊗ τ(π \ {V1, . . . , Vt3−1}, V1, . . . , Vt3−1) = 1
δ2 τ ⊗ τ

 ∏
1≤l<r3

bila⊗ ã
∏

r3<l<s3

bil ã⊗ a
∏

s3<l≤p
bil


− λ4

δ2 τ ⊗ τ(π \ {V1, . . . , Vl}, V1, . . . , Vl−1),

where the definition of b follows the replacements done by V1, . . . , Vt3−1. By Lemma 3.7,
its contribution is zero, and we get the first part. Case (2) follows similarly.

For the second part, let π be a bipartite connected pair partition. Recall that this def-
inition depends only on the structure of π rather than on the canonical ordering of blocks
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V1, . . . , Vp/2. In particular, let Gπ be a representative graph isomorphic to the intersec-
tion graph of π under some arbitrary labeling. Let U0, U1 be its bipartite components of
vertices and define the coloring w : [p/2]→ {0, 1}, where w(l) = w if and only if l ∈ Uw.
Since the graph is connected, there exists a sequence of blocks Vj1 , . . . , Vjp/2 exhausting π
such that Vjl is connected to at least one Vjk , for k < l. By Lemma 3.13, we have

τ ⊗ τ(π) = qτ ⊗ τ(π \ Vj1 , Vj1).

Assume, by induction, that

τ ⊗ τ(π) = 2
(
q

2

)l
τ ⊗ τ(π \ {Vj1 , . . . , Vjl}, Vj1 , . . . , Vjl), (3.13)

for some 1 ≤ l < p/2. Here, we define τ ⊗ τ(π \ {Vj1 , . . . , Vjl}, Vj1 , . . . , Vjl) following the
replacements done by the coloring w, namely, we replace the second leg of the tensors
inside Vjl if w(jl) = 1 and the first if w(jl) = 0, and bil ≡ 1 if l ∈ Vj1 ∪ · · · ∪ Vjl .
Let us prove that (3.13) holds for l + 1 ← l. Indeed, without loss of generality, let
w(jl+1) = 1 (the case w(jl+1) = 0 is similar). Then, all crossing blocks Vjk of Vjl+1 have
w(jk) = 0. In particular, the second leg of the tensors associated with Vjl+1 are still
matched, namely, if Vjl+1 = {r, s}, the variables associated with Vjl+1 in the interaction
τ ⊗ τ(π \ {Vj1 , . . . , Vjl}, Vj1 , . . . , Vjl) are given by

bir = a′ ⊗ ã− λ2;

bis = a′′ ⊗ ã− λ2,

where a′, a′′, ã are free copies of a. We can then apply Lemma 3.14 verbatim and get

τ ⊗ τ(π) = 2
(
q

2

)l+1
τ ⊗ τ(π \ {Vj1 , . . . , Vjl+1}, Vj1 , . . . , Vjl+1).

Induction is then proved. The result follows by the case l = p/2 and Lemma 3.14 applied
for the connected pair partition in four elements π = {{1, 3}, {2, 4}}.

(a) A bipartite connected pair partition

(b) A non-bipartite connected pair partition

Figure 3.7: Examples of connected pair partitions.

Figure 3.7 shows two examples of connected pair partitions, where in Figure 3.7a we
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have a bipartite one, whose graph is the complete bipartite graph over 2 left vertices
and 3 right vertices, and in Figure 3.7b we have a non-bipartite partition, whose graph
is the cyclic graph C5 (the pentagon). Figure 3.8 shows how we break down a bipartite
partition, whereas Figure 3.9 shows how the breaking works for a non-bipartite partition.

1 2 3 4 5 6 7 8 9 10
(a) Remove {1, 5}.

l l l
2 3 4 6 7 8 9 10

(b) Remove {2, 9}.

lr lr r r r

3 4 6 7 8 10
(c) Remove {3, 8}.

lr′ r′ r′

4 6 7 10
(d) Remove {4, 7}.

r′′

6 10
(e) Remove {6, 10}.

Figure 3.8: Induction over a bipartite partition. The letters l, l′, l′′, ... indicate free
independent replacements over the left leg, whereas r, r′, r′′, ... indicate free independent
replacement over the right leg. The first step has contribution q, whereas the rest have

contribution q/2.

1 2 3 4 5 6 7 8 9 10
(a) Remove {1, 4}.

l l
2 3 5 6 7 8 9 10

(b) Remove {2, 9}.

lr r r r r

3 5 6 7 8 10
(c) Remove {3, 6}.

r′ r r

5 7 8 10
(d) Remove {5, 8}.

lr
7 10

(e) Remove {7, 10}.

Figure 3.9: Induction over a non-bipartite partition. The final result is zero, as both legs
of bi7 get replaced, by Lemma 3.7.

3.5.4 Proof of Theorem 3.1

We are now ready to prove the main theorem. Recall that

τ ′(Sp) =
∑

π∈P2(p)
τ ⊗ τ(π) =

∑
π̂,(πT )T ∈π̂

∏
T∈π̂

τ ⊗ τ(πT ),

where the second summation runs over (π̂, (πT )T∈π̂) ∈ Φ(P2(p)), using the bijection Φ
defined in (3.5). Note that if |T | = 2, then by Corollary 3.9 we have τ ⊗ τ(πT ) = 1.
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Therefore, we deduce that

τ ′(Sp) =
∑

π̂,(πT )T ∈π̂

∏
T∈π̂
|T |≥4

τ ⊗ τ(πT ).

Using Proposition 3.11, we get

τ ′(Sp) =
∑

π̂∈NC(p)

∑
(πT )T ∈π̂

∏
T∈π̂
|T |≥4

2
(
q

2

) |T |
2
,

where the second summation runs over bipartite connected pair partitions πT , for T ∈ π̂.
Finally, note that the number of size-two blocks is precisely ncr(π) and thus

|{T ∈ π̂ : |T | ≥ 4}| = cc(π)− ncr(π).

Since ∑
T∈π̂

|T |≥4

|T |
2 = cr(π),

using again the bijection Φ, we deduce that

τ ′(Sp) =
∑

π∈Pbi
2 (p)

2cc(π)−ncr(π)
(
q

2

)cr(π)
.

This finishes the proof in view of Proposition 3.3 and of the fact that

ncr(π) + cr(π) = |π| = p/2.
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Chapter 4

On spectral outliers of
inhomogeneous symmetric random
matrices [5]

What do mathematicians sleep on?
Matrices.

Someone that needs resting

Sharp conditions for the presence of spectral outliers are well understood for Wigner
random matrices with iid entries. In the setting of inhomogeneous symmetric ran-
dom matrices (i.e., matrices with a non-trivial variance profile), the corresponding
problem has been considered only recently. Of special interest is the setting of
sparse inhomogeneous matrices since sparsity is both a key feature and a technical
obstacle in various aspects of random matrix theory. For such matrices, the largest
of the variances of the entries has been used in the literature as a natural proxy
for sparsity. We contribute sharp conditions in terms of this parameter for an in-
homogeneous symmetric matrix with sub-Gaussian entries to have outliers. Our
result implies a “structural” universality principle: the presence of outliers is only
determined by the level of sparsity rather than the detailed structure of the variance
profile.
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4.A.3 The non-universal regime for the limiting ESD . . . . . . . . . 130

4.1 Introduction

Given an n× n random symmetric matrix Mn, define its Empirical Spectral Distribution
(ESD) as the random probability measure

µMn
:= 1

n

∑
k∈[n]

δλk(Mn),

where λk(Mn) is the k-th largest eigenvalue of Mn. A central problem in random matrix
theory is to establish necessary and sufficient conditions for the sequence µMn , n ≥ 1, to
converge to a non-random measure (see, for example, [102, Section 2.4] for a discussion
of different types of convergence: almost surely, in probability, in expectation).

A celebrated result of Wigner [112] asserts that the ESD of a normalized symmetric
matrix with i.i.d entries converges weakly almost surely and in expectation to the semi-
circle distribution µsc whose density fsc is given by

fsc(x) = 1
2π
√

4− x2 1{|x|≤2}. (4.1)

The main feature of this result is its universality: the limiting ESD does not depend on
the distribution of the matrix entries.

The universality phenomenon for the matrix spectrum has been actively studied for
other models of randomness involving non-identically distributed entries. Regarding con-
vergence to the semi-circle law, we refer, in particular, to [25, 81, 84] for random band
matrices, [48, 47] for generalized Wigner matrices, and to the survey [Chapter 1][22] for
further references. Sparse inhomogeneous random matrices have been a subject of much
recent interest. The presence of sparsity often plays the role of both a key feature and a
key challenge in statistical inference, graph theory, and random matrices [17, 19, 31].

We now introduce the matrix model to be studied in this paper.

Model. Let Wn denote an n×n Wigner matrix whose entries on and above the diagonal
are iid copies of a centered random variable ξ having unit variance. Further, let Σn =
(σij)1≤i,j≤n be a symmetric n× n matrix with non-negative entries satisfying

n∑
j=1

σ2
ij = 1, for all 1 ≤ i ≤ n

(that is, the matrix (σ2
ij)1≤i,j≤n is doubly stochastic). The object of our study is the

deformed matrix Xn = Σn ◦Wn, where “◦” denotes the Hadamard (entry-wise) product.
Note that the classical setting in Wigner’s semi-circle theorem corresponds to Σn = 1√

n
11t,

where 1 denotes the vector of all ones.
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A natural question regarding the above model is: does the limiting ESD of Xn depend
on either Σn or the distribution of ξ?

Denote by σ∗
n = max1≤i,j≤n σij the maximum of the standard deviations of the entries

of Xn. The parameter σ∗
n can be viewed as a proxy of the matrix sparsity. The work [55]

provides an essentially complete answer to the above question (we also refer to [17] for
closely related statements):

Theorem 4.1 ([55]). Let Wn be an n× n symmetric matrix whose entries on and above
the diagonal are iid copies of a centered random variable ξ with unit variance. Let Σn =
(σij)1≤i,j≤n be a symmetric matrix such that (σ2

ij)1≤i,j≤n is doubly stochastic. Setting
Xn = Σn ◦ Wn and assuming that σ∗

n → 0, we have that µXn converges weakly almost
surely and in expectation to µsc.

The main result of [55] can additionally handle Wn having entries that satisfy a
Lindeberg-type condition rather than being identically distributed. The authors of [55]
use the Stieltjes transform method to establish convergence in expectation. Additionally,
it was noticed in [36] that this can be “upgraded” to almost sure convergence using a
concentration inequality for the spectral measure of random matrices with independent
entries [27, Lemma C.2], [57]. In this note, we provide an alternative proof of Theorem 4.1
based on the moment method (see appendix to this paper).

Take Σn to be the adjacency matrix of a d-regular graph (rescaled by 1/
√
d to have

a doubly stochastic variance profile). Then Xn can be viewed as a weighted adjacency
matrix with iid centered edge weights of variance 1/d. Specialized to this setting, the
above theorem asserts that the condition d→∞ is sufficient for almost sure convergence
of the limiting ESD to the semi-circle law, regardless of the structure of the underlying
graph. On the other hand, if d ≥ 2 is fixed, then the distribution of µXn is dependent
both on the structure of Σn as well as the atomic distribution of Wn. For completeness,
we provide a proof of this claim in the appendix (see Proposition 4.9 there).

4.1.1 Main results: spectral outliers of inhomogeneous matrices

Convergence of the ESD of Xn to the semi-circle law, which is supported on [−2, 2],
guarantees that n− o(n) eigenvalues of Xn lie in the interval [−2, 2]. That does not rule
out existence of spectral outliers, that is, eigenvalues near the spectral edges, which are
at a non-vanishing distance to the support of the limiting ESD. In the classical setting
of Wigner matrices with iid entries, it is known that the assumption of bounded fourth
moment of the entries is necessary and sufficient to guarantee the absence of outliers [12].

Spectral outliers of Hermitian random matrices have been extensively studied [70, 15,
16, 20, 105, 4, 31], in part due to important applications in statistical inference and signal
processing (we also refer, among others, to papers [106, 96, 65, 95, 94, 46, 76] dealing
with the limiting distribution of the extreme eigenvalues of Wigner and sample covariance
matrices). In particular, the seminal result of Baik–Ben Arous–Peche [15], and its gener-
alizations unraveled a phase transition phenomenon in the appearance of outliers in the
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spectrum of classical random matrix ensembles under small rank perturbations. In [105],
a similar phase transition phenomenon was observed in the case of Wigner matrices under
random sparsification, i.e., in the setting where each entry in the Wigner matrix is kept
independently with some probability pn (see also [4]). In the setting of the present paper,
that corresponds to studying the norm of Bn ◦Wn, where Wn is a Wigner matrix and Bn

is a symmetric matrix whose entries on and above the main diagonal are iid copies of a
Bernoulli random variable with parameter pn.

In this note, we give necessary and sufficient conditions for the presence of outliers for
the matrix Xn = Σn ◦Wn in terms of Σn and ξ. The main problem we want to address is
whether structural universality phenomenon is observed for the spectral outliers, i.e., the
presence/absence of outliers is characterized only by the level of the sparsity of Σn and
does not depend on the fine structure of the variance profile.

Unlike for the bulk, it is readily checked that the presence or absence of outliers
depends on the distribution of ξ regardless of the sparsity pattern. Indeed, this follows
directly from the results of [74], where the norms of inhomogeneous matrices with Gaussian
entries and with heavy-tailed entries were completely characterized. While distributional
universality provably fails to hold, it remains a compelling question whether structural
universality holds under some restrictions on ξ. We isolate the effect of the structure of Σn

by restricting ξ to the class of sub-Gaussian distributions. Recall that a random variable
ξ is said to be sub-Gaussian if there exists a constant C such that Eeλ(ξ−E ξ) ≤ eCλ

2 for
every λ. Our question is as follows.

Question 1. Let Wn be an n × n Wigner matrix whose entries are sub-Gaussian and
consider Xn = Σn ◦Wn. Does the presence/absence of outliers for Xn depend on either
the specific structure of Σn or the particular (sub-Gaussian) distribution of ξ? What
conditions on Σn guarantee the presence/absence of outliers?

We provide a sharp characterization for the appearance of outliers in terms of the
sparsity proxy σ∗

n. Recall by Theorem 4.1 that whenever σ∗
n → 0, the limiting ESD of

Xn is the semi-circle distribution. Thus, if σ∗
n → 0, the above question asks whether

∥Xn∥ → 2, where ∥ · ∥ denotes the spectral norm.

Theorem 4.2 (Main result). Let Wn be an n×n symmetric matrix whose entries on and
above the main diagonal are iid copies of a centered sub-Gaussian random variable ξ with
unit variance. For any symmetric matrix Σn = (σij)1≤i,j≤n such that (σ2

ij)1≤i,j≤n is doubly
stochastic, if σ∗

n

√
log n → 0, then ∥Σn ◦Wn∥ → 2 almost surely, implying the absence of

outliers.

Specialized to the setting of a weighted d-regular graph, the above theorem asserts
that in the case of sub-Gaussian weights, if d grows faster than log n, then there are no
outliers regardless of the structure of the base graph. This result is sharp, as the next
theorem shows.
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Theorem 4.3 (A sufficient condition for existence of outliers). Let ξ be a centered random
variable of unit variance and with bounded fourth moment, and for each n, let Wn be an
n × n symmetric matrix whose entries above the main diagonal are iid copies of ξ. Fix
any sequence d := d(n) = O(log n) with d → ∞ such that nd is even for every n. Then
there exists a sequence of non-random d-regular graphs with adjacency matrices An such
that for all large n, the matrices 1√

d
An ◦Wn have outliers almost surely. That is,

P
(

lim inf
n→∞

∥∥∥∥ 1√
d
AGn ◦Wn

∥∥∥∥ > 2
)

= 1.

The sharp characterization provided by Theorem 4.2 combined with Theorem 4.3 was
previously established in the special case of d-regular graphs with Gaussian edge weights
[19]. Moreover, a succession of works [19, 21, 68, 74, 94] showed that for bounded weights,
there are no outliers whenever d/ log n→∞. In the other direction, the existence of out-
liers for Rademacher weights was previously known when d = O(

√
log n) [93], rather than

up to the sharp rate of d = O(log n) that our results capture. It should be noted that
the argument of [93] can be extended and adapted to the setting of Theorem 4.3 showing
the existence of outliers in the regime d/ log n → 0. However, that argument fails in the
regime where d is of order log n, while the proof we provide for Theorem 4.3 gives a unified
treatment that works in all regimes. We refer to Remark 4.7 for more details.

Returning to the general setting of Theorem 4.2, to the best of our knowledge, the ab-
sence of outliers for the general sub-Gaussian distributions has only been treated in [21] for
matrices with restricted bandwidth and graphs with suboptimal sparsity d/ log9/2 n→∞.
However, there has been much recent progress in characterizing the spectral norm of in-
homogeneous random matrices [17, 19, 21, 31, 74]. To the best of our knowledge, there
are two existing upper bounds for the norm of inhomogeneous sub-Gaussian random ma-
trices. The first is derived through a symmetrization procedure and comparison with
the Gaussian setting [19], which leads to a suboptimal constant multiplicative factor and
thus cannot capture sharp conditions for the presence/absence of outliers. The second
result captures the correct constant 2 but at the expense of increasing the additive error
term, which also results in a suboptimal regime for the absence of outliers (see [19, Corol-
lary 3.6], [74, Remark 4.13]). Theorem 4.2 addresses these shortcomings and captures the
correct asymptotic behavior for general sub-Gaussian matrices.

The proof of Theorem 4.2 avoids the use of symmetrization and instead directly esti-
mates the trace of powers of Σn ◦Wn. It uses a truncation argument to split this matrix
into the sum of a matrix with bounded weights and a remainder. The former is controlled
using the results in [19, 21, 74].

The remainder is controlled by a new version of a compression argument, originally
devised in [19, Proposition 2.1] and also used in [74], for comparing sparse matrices to
dense matrices of smaller dimension. Implementing this argument in our setting requires
tuning the dimension of the dense matrix as a function of the truncation level.
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Matching upper and lower bounds on the norms of inhomogeneous Gaussian matrices
were previously given in [74]. However, these results are only sharp up to a multiplicative
constant, thus failing to capture the scale necessary for characterizing outliers. Upper
bounds with the correct constant scale for the norm of inhomogeneous Gaussian and
bounded random matrices were derived in [19, 74]. In the special case of Gaussian or
bounded matrices, these results imply half of the dichotomy we prove, namely the ab-
sence of outliers. However, matching lower bounds would be needed to establish the
presence of outliers. Theorem 4.3 addresses this shortcoming by showing that for any
sparsity d = O(log n), there is a sequence of graph adjacency matrices Σn such that
Xn := Σn ◦Wn has outliers for Wn having any non-atomic distribution with finite fourth
moment. Thus, there is a sharp transition at sparsity O(log n) below which structural
universality is not observed. Below this level of sparsity, the presence/absence of outliers
necessarily depends on the structure of Σn. The sequence of deterministic graphs in The-
orem 4.3 is a union of cliques, and the proof of the result combines an anti-concentration
argument with incompressibility properties of eigenvectors of Wigner matrices [90].

The paper is organized as follows: in Sections 4.2 and Section 4.3, we prove Theorems
4.2 and 4.3 respectively. Appendix 4.A contains a proof of Theorem 4.1 based on the
moment method, together with a proof of Propositions 4.9. Although Theorem 4.1 is
known, we prefer to include our argument here since it provides a uniform combinatorial
treatment of both the bulk and the edges of the spectrum in an inhomogeneous setting.
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4.2 The regime with no outliers

The goal of this section is to prove Theorem 4.2. Let ξ be a centered sub-Gaussian
random variable with unit variance and Wn = (wij)1≤i,j≤n be an n × n Wigner matrix
whose entries on and above the diagonal are iid copies of ξ. Fix an n × n symmetric
matrix Σn = (σij)1≤i,j≤n satisfying

• (σ2
ij)1≤i,j≤n is doubly stochastic;

• σ∗
n

√
log n→ 0, where σ∗

n = max1≤i,j≤n σij.

Given L = Ln to be specified later, define W≤L
n (resp. W>L

n ) to be the matrix with
entries

(
wij1|wij |≤L

)
1≤i,j≤n

(resp.
(
wij1|wij |>L

)
1≤i,j≤n

). Correspondingly, define X≤L
n :=

Σn ◦W≤L
n (resp. X>L

n := Σn ◦W>L
n ) so that

Xn := Σn ◦Wn = X≤L
n +X>L

n .
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Given an integer p, the triangle inequality combined with the fact that the entries of Xn

are centered yields

(
E tr(X2p

n )
)1/(2p)

≤
(
E tr(X≤L

n − EX≤L
n )2p

)1/(2p)
+
(
E tr(X>L

n − EX>L
n )2p

)1/(2p)

=: Γ1 + Γ2.

In order to bound Γ1, we make use of [74, Theorem 4.8] as the entries of X≤L
n are bounded,

to obtain that

Γ1 ≤ 2
∑
j∈[n]

∑
i∈[n]

σ2
ij E

(
wij1|wij |≤L − Ewij1|wij |≤L

)2
p1/(2p)

+ Cn
1
pLσ∗

n

√
p,

for some universal constant C. Using that (σ2
ij)1≤i,j≤n is doubly stochastic, ξ has unit

variance, and that the wij’s are iid, we deduce that

Γ1 ≤ 2n
1

2p

√
var(ξ1|ξ|≤L) + Cn

1
pLσ∗

n

√
p ≤ n

1
p

(
2 + CLσ∗

n

√
p
)
. (4.2)

To bound Γ2, let X̃>L
n be an independent copy of X>L

n . Since X 7→ tr(X)2p is convex,
Jensen’s Inequality implies that

Γ2 =
(
EXn tr

(
EX̃n

(
X>L
n − X̃>L

n

))2p
)1/(2p)

≤
(
EXn,X̃n

tr(X>L
n − X̃>L

n )2p
)1/(2p)

.

By symmetry, the distribution ofX>L
n −X̃>L

n coincides with that of R◦(X>L
n −X̃>L

n ), where
R = (rij)1≤i,j≤n is an n × n symmetric matrix with independent Rademacher variables
independent of X>L

n and X̃>L
n . By the triangle inequality, it follows that

Γ2 ≤ 2(E tr(R ◦X>L
n )2p)1/(2p).

Expanding the trace, we get

E tr(R ◦X>L
n )2p =

∑
u∈[n]2p

σu1u2 · · ·σu2pu1 E ru1u2(X>L
n )u1u2 · · · ru2pu1(X>L

n )u2pu1 .

Let u1 → · · · → u2p → u1 be a closed path. We define its shape s(u) as the relabelling of
its vertices with labels 1, 2, . . . in order of appearance. Since the Rademacher variable is
symmetric, for any path with non-zero contribution, all edges (ui, ui+1) must appear an
even number of times on the path, and in this case, the corresponding contribution of the
Rademacher variables is equal to 1. Let Seven be the set of all even shapes. Note that the
quantity

T (s) := E(X>L
n )u1u2 · · · (X>L

n )u2pu1
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depends only on the shape s(u) = s of the path u. In particular, we have

E tr(R ◦X>L
n )2p =

∑
s∈Seven

T (s)
∑

u∈[n]2p

s(u)=s

σu1u2 · · · σu2pu1 .

For a shape s ∈ Seven, let Hs = (V (s), E(s)) be the graph generated by the vertices visited
by the shape and edges given by (u1, u2), . . . , (u2p, u1). Denote m(s) = |V (s)|. Since s is
a path, Hs is connected and we have |E(s)| ≥ m(s) − 1. Applying [19, Lemma 2.5] (see
also [74, Theorem 2.8]) and using that (σ2

ij)1≤i,j≤n is doubly stochastic, we have

∑
u∈[n]2p

s(u)=s

σu1u2 · · ·σu2pu1 ≤ n(σ∗
n)2p−2(m(s)−1).

Therefore, we deduce that

E tr(R ◦X>L
n )2p ≤ n(σ∗

n)2p ∑
s∈Seven

T (s)(σ∗
n)−2(m(s)−1). (4.3)

Now, let ke be the number of times the edge e ∈ E(s) is traversed by the shape s. Then

T (s) =
∏

e∈E(s)
E ξke1|ξ|>L.

Using Cauchy–Schwartz inequality and that ξ is sub-Gaussian (see [107, Section 2.5] for
equivalent definitions of sub-Gaussian random variables), we can write

E ξke1|ξ|>L ≤ (E ξ2ke)1/2P(|ξ| > L)1/2 ≤ C̃kee−cL2 E gke ,

where g ∼ N(0, 1) and C̃, c are universal constants.

Since ∑e∈E(s) ke = 2p and |E(s)| ≥ m(s) − 1, putting together the above we deduce
that

T (s) ≤ C̃2pe−c|E(s)|L2
Tg(s) ≤ C̃2pe−c(m(s)−1)L2

Tg(s),

where Tg(s) = ∏
e∈E(s) E gke . Replacing the above relations in (4.3), we deduce that

E tr(R ◦X>L
n )2p ≤ C̃2p(σ∗

n)2pn
∑

s∈Seven

Tg(s)bm(s)−1,

where we denoted b := (σ∗
n)−2e−cL2 . Setting q = ⌈b⌉+p, using that m(s) ≤ p+1 and that

q!
(q −m(s))! ≥ q(q −m(s) + 1)m(s)−1 ≥ qbm(s)−1,
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we get

E tr(R ◦X>L
n )2p ≤ C̃2p(σ∗

n)2pn

q

∑
s∈Seven

Tg(s)
q!

(q −m(s))! .

Now note that for a standard q × q symmetric Gaussian matrix Gq, we readily have

E tr(Gq)2p =
∑

s∈Seven

Tg(s)
q!

(q −m(s))! .

Thus, we deduce that

E tr(R ◦X>L
n )2p ≤ C̃2p(σ∗

n)2pn

q
E tr(Gq)2p

≤ C̃2p(σ∗
n)2pnE∥Gq∥2p

≤ C̃2p(σ∗
n)2pn(2√q + 8√p)2p,

where we have used [19, Lemma 2.2] to bound the moments of the norm of a standard
Gaussian matrix. Replacing b in the above, we get that

Γ2 ≤ C ′n1/(2p)
(
e−cL2/2 + σ∗

n

√
p
)
, (4.4)

for some universal constant C ′. Combining (4.2) and (4.4), and choosing L2 = −2c−1 log(σ∗
n

√
p),

we get that

(
E tr(X2p

n )
)1/(2p)

≤ n1/p

2 + C ′′σ∗
n

√√√√p log
( 1
σ∗
n

√
p

), (4.5)

for some universal constant C ′′. Now choosing

p =
√

log n
σ∗
n

, (4.6)

we deduce that

E ∥Xn∥ ≤
(
E ∥Xn∥2p

) 1
2p ≤ eσ

∗
n

√
logn

2 + C ′′
√
σ∗
n

√
log n

√√√√√log
 1√

σ∗
n

√
log n


.

Since σ∗
n

√
log n→ 0, we have that

lim sup
n→∞

E ∥Xn∥ ≤ 2.

On the other hand, it follows from the almost sure convergence of the empirical spectral
distribution (see Theorem 4.1) that almost surely,

lim inf
n→∞

∥Xn∥ ≥ 2,
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which, by Fatou’s lemma, implies that

lim inf
n→∞

E ∥Xn∥ ≥ 2.

This shows that E ∥Xn∥ converges to 2 whenever σ∗
n

√
log n→ 0.

To prove the almost sure convergence, note that for any fixed η > 2, we have by
Markov’s inequality that

P(∥Xn∥ > η) ≤ E tr(X2p
n )

η2p ≤ n2

2 + C ′′
√
σ∗
n

√
log n

√
log

(
1√

σ∗
n

√
logn

)
η


2p

.

Using the choice of p in (4.6) and that σ∗
n

√
log n → 0, it is easy to see that the above

quantity is summable in n. A classical application of the Borel-Cantelli lemma finishes
the proof.

Remark 4.4 (Communicated by Ramon van Handel). A compression argument along
the lines of [74, Theorem 4.8] can be used as the basis for an alternative proof of The-
orem 4.2. Such a compression argument would yield a comparison to a matrix M with
independent entries of the form b|g|, where b is a normalized Bernoulli variable (with
properly chosen probability of success) and g is an independent standard Gaussian. By
Talagrand’s inequality [101] and Gaussian concentration, the largest eigenvalue of M is
subgaussian. Combining this with the Bai–Yin theorem [12] rules out the presence of
outliers in the asymptotic regime.

Remark 4.5 (Heavy-tailed distributions). The above argument can be adapted to heavy-
tailed distributions. Let ξ be a centered Weibull distribution with shape parameter at
most 2, so that for some β ≥ 1/2 and any p ≥ 1, we have

∥ξ∥p ≤ Cpβ.

Let Σn be a doubly stochastic matrix and Xn = Σn ◦Wn. Then, similarly to the proof of
[74, Theorem 4.4] and the above computations, using √p ≤ pβ, we get

(
E tr(X2p

n )
)1/(2p)

≤ n1/p
[
2 + Cβ

(
e−cβL

1/β + σ∗
nLp

β
)]
.

Choosing

L1/β := 1
cβ

log
(

1
βσ∗

np
β

)
; p :=

√
log n

(σ∗
n)1/(2β) ,

we get

(
E tr(X2p

n )
)1/(2p)

≤ e(σ∗
n logβ n)1/(2β)

2 + Cβ

√
σ∗
n logβ n logβ

 1√
σ∗
n logβ n

.
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Therefore, whenever σ∗
n logβ n→ 0, Xn has no outliers almost surely and in expectation.

This improves upon [75, Theorem 4.4] since the cited theorem does not provide the correct
leading constant 2 for the spectral norm estimate.

4.3 Outliers in the subcritical regime

The goal of this section is to prove Theorem 4.3. Note that since the random variable ξ
is centered and non-constant, it satisfies

sup
u∈R

P(|ξ − u| ≥ ρ) ≥ ρ, P(ξ ≥ ρ) ≥ ρ, and P(ξ ≤ −ρ) ≥ ρ, (4.7)

for some ρ ∈ (0, 1) depending only on the distribution of ξ.

Let n be a large integer, and let d = d(n) = O(log n) and d = ω(1). To simplify the
exposition, we will assume that n/(d + 1) is an integer; we note that our construction
below can be easily adapted to cover all admissible choices of d = d(n). Consider a d-
regular graph Gn on n vertices whose adjacency matrix An is block diagonal with n/(d+1)
blocks of all ones (excluding the entries on the main diagonal). The graph Gn is thus a
disjoint union of n/(d + 1) cliques of size d + 1 each. For every integer k, we denote by
W̃k the k×k symmetric matrix whose entries above the main diagonal are iid copies of ξ,
and the main diagonal is zero. Finally, we define Xn := 1√

d
An ◦ W̃n, so that Xn is block

diagonal with n/(d+ 1) iid blocks, where each block is equidistributed with 1√
d
W̃d+1. We

denote these blocks by W (i)
d+1, i = 1, . . . , n/(d+ 1). To prove Proposition 4.3, we will show

that lim infn→∞ ∥Xn∥ is almost surely bounded away from 2. We will need the following
lemma:

Lemma 4.6. For every ε > 0 there is δ > 0 depending on ε and the distribution of ξ with
the following property. Let k be a sufficiently large integer, and let W̃k+1 be the matrix
defined above. Then

P
(∥∥∥W̃k+1

∥∥∥ ≥ (2 + δ)
√
k
)
≥ exp(−εk).

We provide the proof of the lemma at the end of the subsection. At this point, let
C > 0 be the constant such that d = d(n) ≤ C log n for all sufficiently large n. We choose
ε := 1

2C . Following Lemma 4.6, there is δ ∈ (0, 1) depending on C and the distribution of
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ξ such that

P(∥Xn∥ ≥ 2 + δ) = P
(

max
i=1,...,n/(d+1)

∥W (i)
d+1∥ ≥ (2 + δ)

√
d

)

= 1− P
(
∥W̃d+1∥ < (2 + δ)

√
d
) n

d+1

≥ 1−
(
1− e−εd

) n
d+1

≥ 1−
(

1− 1√
n

) n
d+1

≥ 1− e−n1/4
,

for all large n. A direct application of the Borel–Cantelli lemma implies the result.

Remark 4.7. A weaker version of Lemma 4.6 follows easily by an adaptation of an
argument in [93] (see the proof of Theorem 3.2 there). Indeed, one can write

P
(∥∥∥W̃k+1

∥∥∥ ≥ 3
√
k
)
≥ P(ξ ≥ ρ)

9
ρ2 k.

This follows since the norm of W̃k+1 is bounded below by the norm of its (3
ρ

√
k)× (3

ρ

√
k)

submatrix. The latter is larger than 3
√
k if all entries are larger than ρ. This trivial

observation gives a version of Lemma 4.6 for some ε (rather than for any ε). One can
easily check that using this, we have ∥Xn∥

2 →∞ almost surely whenever d/ log n→ 0. In
this regime, the above argument indicates that the presence of outliers is caused by the
emergence of a submatrix of size O(

√
log n) with large entries of equal signs.

The extra quantification (in terms of ε) present in Lemma 4.6 is needed to treat the
case of d of order log n. On the other hand, we note that stronger and sharper statements
than Lemma 4.6 follow from the large deviation principle for the largest eigenvalue of
Wigner matrices [11, 56, 39]; however, those results only cover particular cases of sub-
Gaussian random variables.

Proof of Lemma 4.6. We start the proof with the following observation. For every choice
of parameters ε, β > 0 there is γ > 0 depending on β, ε and the distribution of ξ with
the following property. Assuming k is sufficiently large, letting v be a non-random unit
vector in Rk with ∣∣∣{i ≤ k : |vi| ≥ β/

√
k
}∣∣∣ ≥ β k,

and taking ξ1, . . . , ξk to be iid copies of ξ, we have

P
(∣∣∣∣ k∑

i=1
viξi

∣∣∣∣ ≥ γ
√
k

)
≥ exp

(
− εk/2

)
.

Indeed, assuming k is large enough, we take ℓ to be the largest integer bounded above
by β k and such that ρℓ ≥ exp

(
− εk/4

)
, where ρ is taken from (4.7) (observe that ℓ

is of order k). Further, let I ⊂ [k] be a non-random subset of cardinality ℓ such that
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|vi| ≥ β/
√
k for every i ∈ I. In view of (4.7) and the choice of ℓ, with probability at least

exp
(
− εk/4

)
we have ∑

i∈I
viξi ≥

β√
k
· ρℓ.

On the other hand, since the variance of ∑i∈[k]\I viξi is less than one, and in view of
Markov inequality, with a probability of at least 3/4, we have

∣∣∣∣∣ ∑
i∈[k]\I

viξi

∣∣∣∣∣ ≤ 2.

Combining the two estimates, we get that

k∑
i=1

viξi ≥
β√
k
· ρℓ− 2

with probability at least 3
4 exp

(
− εk/4

)
≥ exp

(
− εk/2

)
, and the claim follows.

For convenience, we will use the compact notation M := W̃k+1, and we let M ′ be the
top left k × k principal submatrix of M . Let α > 0 be a small parameter (depending
on ε and the distribution of ξ), which will be determined later. The standard covering
arguments imply that, as long as k is sufficiently large, with a probability of at least 0.999
every eigenvector of M ′ is incompressible (see [90]). On the other hand, as a consequence
of the Wigner semi-circle law (Theorem 4.1), with a probability of at least 0.999 there
is an eigenvector v of M ′ with ∥M ′v∥2 ≥ (2 − α)

√
k. To summarize, we can define an

M ′–measurable random unit vector v satisfying

P
(
∥M ′v∥2 ≥ (2− α)

√
k,

∣∣∣{i ≤ k : |vi| ≥ β/
√
k
}∣∣∣ ≥ β k

)
≥ 0.99,

where β depends on the distribution of ξ but not on α. Let z be a vector in Rk+1 obtained
from v by adding zero coordinate. Our goal is to estimate the probability that ∥Mz∥2 is
bounded away from two. Denote the (k + 1)-st row of M by rowk+1. We have

∥M∥2 ≥ ∥Mz∥2
2 = ∥M ′v∥2

2 + ⟨rowk+1, z⟩2. (4.8)

In view of the definition of v, we have

∥M ′v∥2
2 ≥ (2− α)2 k (4.9)

with probability at least 0.99. On the other hand, conditioned on any realization of M ′

such that (4.9) holds and

∣∣∣{i ≤ k : |vi| ≥ β/
√
k
}∣∣∣ ≥ β k,
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we obtain from the observation at the beginning of the proof that

Prowk+1

(
|⟨rowk+1, z⟩| ≥ γ

√
k
)
≥ exp

(
− εk/2

)
,

for some γ depending on β, ε, and the distribution of ξ (but not on α). It remains to
choose α so that (2− α)2 + γ2 > 4, and the proof is complete.
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Appendix

4.A The limiting Empirical Spectral Distribution: A
moment method approach

The goal of this appendix is to provide a proof of Theorem 4.1 based on the moment
method. We will assume that the variance profile Σn satisfies σ∗

n → 0. By a standard
truncation argument (see [102, Section 2.4.1]), it is sufficient to deal with matrices with
bounded entries and zero diagonal. More precisely, we let (Ln)n≥1 be a sequence of
numbers defined by

Ln := min
{

1
√
σ∗
n

, logc n
}

(4.10)

(so that Ln → ∞), and from now on, we will assume that the random matrices Wn =
(wij)1≤i,j≤n have i.i.d centered entries with unit variances and are uniformly bounded by
Ln. Here, c ≥ 1 is a fixed large constant.

The convergence of the ESD of Xn is characterized by the convergence of its moments.
More precisely, we aim to show that for every integer k ≥ 1, the sequence

(
1
n

tr(Xk
n)
)
n≥1

converges almost surely and in expectation to the corresponding kth moment of the semi-
circle distribution.

Given an integer vector u ∈ [n]k, we will treat it as a closed path u = u1 → · · · →
uk → u1 in the complete graph over [n]. The path u generates a (connected) subgraph Hu

whose vertices are {u1, . . . , uk} and the edges are {(ul, ul+1) : l ∈ [k]}, where uk+1 = u1.
With some abuse of notation, we will fix a labeling of the vertices of Hu, namely, V (Hu) =
{1, . . . , |V (Hu)|}. Let qu(e) be the number of times the edge e ∈ E(Hu) is traversed by
the path u, so that ∑e qu(e) = k. Finally, for every u ∈ [n]k, we denote

σu := σu1u2 . . . σuku1 and wu = wu1u2 . . . wuku1 .

4.A.1 The convergence in expectation

To prove the convergence in expectation, we write

1
n
E tr(Xk

n) = 1
n

∑
u∈[n]k

σu Ewu.

Since Wn is centered, the case k = 1 is trivial. Thus, we suppose in the sequel that k ≥ 2.
Note that for a given u ∈ [n]k, each edge e ∈ E(Hu) must be traversed at least twice;
otherwise, their contribution is zero as the variables are independent and centered. This
implies that qu(e) ≥ 2 for every edge e ∈ E(Hu) and therefore that |E(Hu)| ≤ k/2. Since
Hu is a connected graph, we have

|V (Hu)| ≤ |E(Hu)|+ 1 ≤ k/2 + 1.
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We will write qu ≥ 2 (resp. qu = 2) to encode the fact that qu(e) ≥ 2 (resp. qu = 2) for
every edge e ∈ E(Hu). Note that when qu ≥ 2, we have

Ewu ≤ Lk−2|E(Hu)|
n ≤ Lk−2(|V (Hu)|−1)

n , (4.11)

where we used that the entries of Wn are of unit variance and uniformly bounded by Ln.

Applying [19, Lemma 2.5] (see also [74, Theorem 2.8]) and using that (σ2
ij)1≤i,j≤n is

doubly stochastic, we can write for every m ≤ k/2 + 1 that

1
n

∑
u∈[n]k

qu≥2,|V (Hu)|=m

σu Ewu ≤ (Lnσ∗
n)k−2(m−1) = (

√
σ∗
n)k−2(m−1), (4.12)

by the choice of Ln in (4.10). Note that whenever m ≤ k/2, we get that k− 2(m− 1) ≥ 2
and the right-hand side of (4.12) goes to 0. Therefore, we can restrict to the case where
|V (Hu)| = k/2 + 1, that is, Hu is a tree with |E(Hu)| = k/2 edges. Moreover, qu(e) = 2
for all edges (otherwise |E(Hu)| < k/2). Hence, we get that

lim
n→∞

1
n
E tr(Xk

n) = lim
n→∞

1
n

∑
u∈[n]k

qu=2;Hu is a tree

σu Ewu.

In this case, Ewu = 1, so that

lim
n→∞

1
n
E tr(Xk

n) = lim
n→∞

1
n

∑
u∈[n]k

qu=2;Hu is a tree

σu.

Consider now the set Gk of all pairs (G, t) where G is a tree over [k/2 + 1] with a closed
walk t = t1 → · · · → tk → t1 that traverses each edge exactly twice. Then

lim
n→∞

1
n
E tr(Xk

n) = lim
n→∞

∑
(G,t)∈Gk

1
n

∑
u∈[n]k

(Hu,u)=(G,t)

σu.

As G is a tree and each edge is traversed twice, we can sum up over leaves. Using double
stochasticity and induction over leaves, we have

1
n

∑
u∈[n]k

(Hu,u)=(G,t)

σu = 1
n

∑
i,j∈[n]

σ2
ij = 1.

This also follows by a similar argument done in [19, Lemma 2.5]. By [66, Exercise 4.4.1],
it is known that |Gk| = |NC2(k)| which is precisely the kth moment of the semi-circle
distribution. Hence, the result follows.
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4.A.2 Tail bound and almost-sure convergence

By the Borel-Cantelli lemma, the following proposition immediately implies almost sure
convergence of the ESD of Xn.

Proposition 4.8. For all k ≥ 1, p ≥ 2, and ε ∈ (0, 1/2), we have

P
[ 1
n

∣∣∣tr(Xk
n)− E[tr(Xk

n)]
∣∣∣ > n−1/2+ε

]
≤ 2
np
,

for all n sufficiently large depending on k, p and ε.

Proof. Let Ft be the σ-algebra generated by revealing the first t of the entries on or
above the diagonal of X under some arbitrary ordering. Denote Et[·] := E[·|Ft]. In this
notation,

tr(Xk
n)− E

[
tr(Xk

n)
]

=
n(n+1)/2∑

t=1
Et
[
tr(Xk

n)
]
− Et−1

[
tr(Xk

n)
]

=:
n(n+1)/2∑

t=1
∆t .

The key estimate is the following “bounded difference” estimate for the martingale incre-
ments ∆t. For all t ∈ [n(n+ 1)/2],

P
[
|∆t|2 > nεσ2

t

]
≤ 1
np+2 , (4.13)

Once established, this readily implies Proposition 4.8. By union bound:

P
[
∃ t ∈ [n(n+ 1)/2] : |∆t| > nε/2σt

]
≤ 1
np

Thus, by the Azuma–Hoeffding inequality for martingales with bounded increments, since(
σ2
ij

)
ij

is doubly stochastic:

P
[∣∣∣tr(Xk)− E

[
tr(Xk)

]∣∣∣ > y
]
≤ 1
np

+ P
[∣∣∣tr(Xk)− E

[
tr(Xk)

]∣∣∣ > y, ∆2
t ≤ nεσ2

t ∀t
]

≤ 1
np

+ exp
{
− y2

2n1+ε

}
.

Taking y = n
1
2 +ε concludes the proof. We turn towards proving the proposition.

Our strategy is to compute the p’th moment of ∆t and then apply Markov’s inequality,
where p is a large even integer independent of n. Fix t to be the edge (i, j) where (i, j)
is the t’th entry of A. Let p be an even positive integer. We will say that t ∈ u if
(ul, ul+1) = t or (ul+1, ul) = t for some l ∈ [k]. Noting that Et[wu] = Et−1[wu] if t ̸∈ u, we
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obtain

E[∆p
t ] = E

 ∑
u∈[n]k

σu(Et[wu]− Et−1[wu])
p = E


 ∑
u∈[n]k
t∈u

σu(Et[wu]− Et−1[wu])


p .

That is,

E[∆p
t ] =

∑
u=(u(1),...,u(p))∈[n]kp

t∈u(l),∀l∈[p]

σu(1) · · ·σu(p) E

∏
l∈[p]
{Et[wu(l) ]− Et−1[wu(l) ]}

.

Denote H = Hu the subgraph generated by u. Let q(e) = qu(e) be the number of times
an edge e ∈ E(H) is traversed in u. As before, we only consider u such that q(e) ≥ 2 for
all e ∈ E(H). Since all paths u(l) contain the edge t ∈ E(H), we have that H is connected
and q(t) ≥ p. We first bound the contribution of Wn.

∣∣∣∣∣∣E
∏
l∈[p]
{Et[wu(l) ]− Et−1[wu(l) ]}

∣∣∣∣∣∣ ≤ Cp max
r∈{t,t−1}p

E

∏
l∈[p]

Erl
[wu(l) ]

.
Since |wij| ≤ Ln and wij has unit variance, recalling (4.11),

∣∣∣∣∣∣E
∏
l∈[p]
{Et[wu(l) ]− Et−1[wu(l) ]}

∣∣∣∣∣∣ ≤ CpL
pk−2(|V (H)|−1)
n . (4.14)

Thus, it suffices to control

∑
u∈[n]pk:

(Hu,qu)=(H,q),
t∈u(l),∀l∈[p]

σu(1) · · ·σu(q) ≤
∑

u∈[n]V (H)

(ui,uj)=(i,j)

∏
e=(a,b)∈E(H)

σq(e)uaub
.

In order to use the results from [74], we will write this quantity in a better way. First, as
σuv ≤ σ∗

n for all u, v ∈ [n], for any spanning tree T = (V (T ), E(T )) of H with t ∈ E(T ),
we have

∑
u∈[n]V (H)

(ui,uj)=(i,j)

∏
e=(a,b)∈E(H)

σq(e)uaub
≤

∏
e∈E(H)\E(T )

(σ∗
n)q(e)

∑
u∈[n]V (T )

(ui,uj)=(i,j)

∏
e=(a,b)∈E(T )

σq(e)uaub
.

Now define the following collection of (symmetric) matrices (b(e))e∈E(T ).

1. If e = t, then b
(t)
ij = b

(t)
ji := σ

q(t)
ij and 0 otherwise.

2. If e is incident to i, set b(e)
ui = b

(e)
iu = σ

q(e)
ui for all u ∈ [n] and zero otherwise.

3. If e is incident to j, set b(e)
uj = b

(e)
ju = σ

q(e)
uj for all u ∈ [n] and zero otherwise.

4. If e is not incident to neither j nor i, set b(e)
uv = σq(e)uv for all u, v ∈ [n].
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Then it is immediate to see that

∑
u∈[n]V (T )

(ui,uj)=(i,j)

∏
e=(a,b)∈E(T )

σq(e)uaub
≤

∑
u∈[n]V (T )

∏
e=(a,b)∈E(T )

b(e)
uaub

=: W b(T ).

We can readily use [74, Lemma 2.10] for W b(T ) and deduce that

W b(T ) ≤
∏

e∈E(T )

∑
u∈[n]

∑
v∈[n]

b(e)
uv

pe


1/pe

,

where (pe)e∈E(T ) is any collection of conjugate exponents (namely pe ≥ 1 for all e, and∑
e 1/pe = 1). We set pe =∞ for all e ̸= t and pt = 1, so

W b(T ) ≤ σ
q(t)
t

∏
e∈E(T )\{t}

max
u∈[n]

∑
v∈[n]

b(e)
uv .

Since q(e) ≥ 2 for all e ∈ E(H) and σuv ≤ σ∗
n, by double stochasticity, we get

W b(T ) ≤ σ
q(t)
t

∏
e∈E(T )\{t}

(σ∗
n)q(e)−2.

We deduce that

∑
u∈[n]pk:

(Hu,qu)=(H,q),
t∈u(l)∀l∈[p]

σu(1) · · ·σu(q) ≤ σ
q(t)
t

∏
e∈E(T )\{t}

(σ∗
n)q(e)−2 ∏

e∈E(H)\E(T )
(σ∗

n)q(e).

As ∑e∈E(H) q(e) = pk, q(t) ≥ p and |E(T )| = |V (H)| − 1, we get

∑
u∈[n]pk:

(Hu,qu)=(H,q),
t∈u(l),∀l∈[p]

σu(1) · · ·σu(q) ≤ σpt (σ∗
n)pk−p−2(|V (H)|−2). (4.15)

Combining (4.14) and (4.15), we get

E∆p
t ≤ Cp(Lnσt)p

∑
(H,q)

(Lnσ∗
n)pk−p−2(|V (H)|−1)(σ∗

n)2.

To conclude the argument, since q(t) ≥ p and q(e) ≥ 2 for all e ∈ E(H), we have

|E(H)| ≤ pk − p
2 + 1.

In particular,

|V (H)| ≤ |E(H)|+ 1 ≤ pk − p
2 + 2.
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By the choice of Ln in (4.10), we get Lnσ∗
n ≤ 1. The summation over the tuple (H, q) has

a finite number of terms depending only on p and k. By replacing the value of Ln given
in (4.10), we deduce that

E∆p
t ≤ Cp,kσ

p
tL

p−2
n

Markov’s inequality implies that

P(|∆t| ≥ sσt) ≤ Cp,k
Lp−2
n

sp
. (4.16)

Since Ln ≤ logc n, applying (4.16) for s = nε and p′ = (p+ 3)/ε, we get

P(|∆t| ≥ nεσt) ≤ Cp′,k
log(p+3)c/ε n

np+3 ≤ 1
np+2 ,

for all n ≥ n(ε, k, p), where n(ε, k, p) is a large constant depending on ε, k, p. This implies
(4.13), and Proposition 4.8 follows.

4.A.3 The non-universal regime for the limiting ESD

The goal of this subsection is to show that the sparsity assumption σ∗
n → 0 is necessary for

Theorem 4.1 for convergence to the semi-circle law. The following proposition formalizes
this, and the proof is provided for completeness.

Proposition 4.9. Let d ≥ 2 be constant with respect to n, and assume n → ∞ with nd

even.

• (Distributional Non-universality) Let Wn and W ′
n be independent symmetric matri-

ces, with entries drawn as independent copies of bounded random variables ξ and ξ′

respectively, both of which are symmetrically distributed and have unit variance. If
the laws of ξ and ξ′ are not equal, then there is a sequence of d-regular graphs with ad-
jacency matrices An, such that the matrices Xn := 1√

d
An◦Wn and X ′

n := 1√
d
An◦W ′

n

have different limiting ESD almost surely.

• (Structural Non-universality) Let Wn be a symmetric matrix with independent Rademacher
entries. There exist two sequences of d-regular graphs with adjacency matrices An
and A′

n so that Xn := 1√
d
An ◦Wn and X ′

n := 1√
d
A′
n ◦Wn have different limiting ESD

almost surely.

Remark 4.10. We note that the distributional non-universality in Proposition 4.9 was
originally proved in [53] for graphs Gn that are locally tree-like in the Benjamini and
Schramm topology [24]. The authors of [53], however, focus on the "eigendistributions"
of the limit ESD of AGn ◦Wn as a function of ξ.

Proof. Given a centered random variable ξ with unit variance, we denote by W ξ
n the n×n

Wigner matrix whose entries on and above the main diagonal are iid copies of ξ. We fix an
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integer d ≥ 2 independent of n, and for every d-regular graph Gn on n vertices, we denote
by AGn its adjacency matrix. To prove distributional non-universality, we will construct
a sequence of d-regular graphs Gn and show that the limiting spectral distribution of

1√
d
AGn ◦W ξ

n depends on ξ. To show the dependence on the graph structure, we will set ξ
to be a Rademacher variable and construct two sequences of d-regular graphs Gn and G′

n

such that the limiting spectral distributions of 1√
d
AGn ◦W ξ

n and 1√
d
AG′

n
◦W ξ

n are different.
Regarding distributional non-universality, let Cd be the clique in d+ 1 vertices, i.e., a

complete graph on d+ 1 vertices excluding self-loops. To simplify the exposition, we will
suppose that n is a multiple of d+ 1 and let Gn be a d-regular graph on n vertices given
by the union of n/(d+ 1) cliques Cd. Denote the entries of AGn by (aij)1≤i,j≤n, the entries
of W ξ

n by (w(ξ)
ij )1≤i,j≤n, and set Xn = 1√

d
AGn ◦W ξ

n . We can write

1
n
E tr(X2k

n ) = 1
dk

1
n

∑
u∈[n]2k

au1u2 · · · au2ku1 Ew(ξ)
u1u2 · · ·w

(ξ)
u2ku1 ,

for every integer k. Fix a vertex o ∈ Cd. For a graph H and a vertex u1 in H, let
P(u1, H, 2k) be the set of paths in H starting and ending at u1 and of length 2k. Then,
from the above

1
n
E tr(X2k

n ) = 1
ndk

∑
u1∈[n]

∑
u∈P(u1,Cd(u1),2k)

Ew(ξ)
u1u2 · · ·w

(ξ)
u2ku1 ,

where by Cd(u1) we denoted the (d+ 1)–clique in Gn containing u1. Since Gn is a disjoint
union of copies of Cd and the variables in each clique are iid, we deduce that

1
n
E tr(X2k

n ) = 1
dk

∑
u∈P(o,Cd,2k)

Ew(ξ)
u1u2 · · ·w

(ξ)
u2ku1 =: m((Cd, o), 2k, ξ). (4.17)

It is immediate to see that the sequence (m((Cd, o), 2k, ξ))k≥1 uniquely determines all
the even moments of ξ (more specifically, if kmin is the smallest integer such that two
distinct normalized symmetric distributions ξ and ξ′ have different 2kmin–th moments
then necessarily m((Cd, o), 2kmin, ξ) ̸= m((Cd, o), 2kmin, ξ

′)). This completes the proof of
distributional non-universality. Let us remark here that the extra assumption n mod (d+
1) = 0 which we used in our construction, is not essential and can be easily removed by
letting Gn to be a disjoint union of ⌊n/(d+ 1)⌋ − 1 cliques and a d–regular graph of size
n− (d+ 1)⌊n/(d+ 1)⌋+ (d+ 1) having arbitrary topology.

To prove the structural non-universality, we now set ξ to be a ±1 Rademacher random
variable. We assume d ≥ 3, as the case d = 2 can be verified by inspection. Again, to
simplify the exposition, we will suppose that n is a multiple of d + 1. Consider the
sequence of graphs Gn introduced above, and let G′

n be a sequence of randomly uniformly
chosen d-regular graphs on n vertices. Then it was proved in [78] that G′

n converges (in
the Benjamini and Schramm sense [24]) to the infinite rooted d-regular tree (Td, o). If
X ′ = 1√

d
AG′

n
◦W ξ

n where G′
n and W ξ

n are independent, the above argument and the local
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convergence of G′
n imply that

1
n
E tr((X ′

n)2k)→ 1
dk

∑
u∈P(o,Td,2k)

Ewξu1u2 · · ·w
ξ
u2pu1 = m((Td, o), 2k, ξ). (4.18)

Let k = 3, then, by counting the shapes, we can compute

|P(o, Td, 6)| = 3d(d− 1)2 + 6d(d− 1) + 2d(d− 1)(d− 2) + d,

so

d3

n
E tr((X ′

n)6)→ 3d(d− 1)2 + 6d(d− 1) + 2d(d− 1)(d− 2) + d.

On the other hand, for the clique Cd, we have

d3

n
E tr(X6

n) = 2d(d− 1)2 + 8d(d− 1) + 3d(d− 1)(d− 2) + d.

Indeed, the shape s = o→ v1 → v2 → v3 → v2 → v1 → o that originally appeared for Td
and its contribution d(d− 1)2 has to be decomposed on whether v3 = o for the clique. In
this case, the shape is two laps on a triangle, and inverting the orientation of the second
lap implies the contribution of 2d(d−1). If v3 ̸= o, then its contribution is d(d−1)(d−2)
and the result follows. Subtracting one from the other, we get

m((Cd, o), 6, ξ)−m((Td, o), 6, ξ) = d(d− 1)
d3 .

In particular, structural non-universality follows as d ≥ 2.
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Chapter 5

Almost sharp covariance estimation
for inhomogeneous random matrices
[91]

What question does the Cauchy
distribution not like?
"Got a moment?"

Unknown

Let X1, ..., Xn ∈ Rd be independent Gaussian random vectors with independent en-
tries and variance profile (bij)i∈[d],j∈[n]. A major question in the study of covariance
estimation is to give precise control on the deviation of

∑
j∈[n] XjX

T
j −EXjX

T
j . In

this paper, we prove new bounds for

E

∥∥∥∥∥∥
∑
j∈[n]

XjX
T
j − EXjX

T
j

∥∥∥∥∥∥.
The proofs are based on the moment method and a careful analysis of the structure
of the shapes that matter. We also provide examples showing improvement over the
past works and matching lower bounds.
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5.1 Introduction

The study of the norm of random matrices has increased significantly over the years, and
bounding the operator norm has been proved one central topic in the field [12, 61, 19, 74].
Particularly, several applications coming from statistics require a precise, sharp control
on the deviations of the empirical covariance problem [69, 79, 117]. For instance, it is
well-known [108, Theorem 4.7.1] that an i.i.d sample X1, ..., Xn ∈ Rd of isotropic Gaussian
random vectors satisfies the following deviation

E

∥∥∥∥∥∥ 1
n

∑
j∈[n]

XjX
T
j − EX1X

T
1

∥∥∥∥∥∥ ≲ d

n
∨
√
d

n
. (5.1)

Only very recently, the identically distributed condition was removed, and universal
bounds were obtained for the sample covariance model [18, 31, 33]. Our contribution
comes precisely in this direction. We improve their results and get sharper error factors.

We begin our results for the operator norm. Define the parameters:

• σ̃2
∞ = max

i,l:i ̸=l

∑
j∈[n]

b2
ijb

2
lj; • σ̄2

∞ = max
i∈[d]

∑
j∈[n]

b4
ij;

• σ2
∞ = max

i∈[d]

∑
j∈[n]

∑
l:l ̸=i

b2
ijb

2
lj; • σ2

C = max
j∈[n]

∑
i∈[d]

b2
ij;

• σ∗ = max
(i,j)∈[d]×[n]

|bij|; • β∞ = σ̃∞σC
σ∞σ∗

.

Notice in particular that σ̃∞ ≤ σ̄∞, by Cauchy-Schwarz inequality. Moreover, we point
out that the parameters σC and σ∗ already appeared in previous works on the estimation
of the operator norm [74, 19] and the covariance estimation [33], whereas σ∞, σ∞ appeared
in [31].

Theorem 5.1. Let X be a d × n Gaussian matrix with independent entries such that
Xij = bijgij where {gij : (i, j) ∈ [d]× [n]} are i.i.d standard Gaussian r.v. Let ε ∈ (0, 1/2).
Then, the following holds.

1. If β∞ ≤ 1, we have

E
∥∥∥XXT − EXXT

∥∥∥ = E

∥∥∥∥∥∥
∑
j∈[n]

XjX
T
j − EXjX

T
j

∥∥∥∥∥∥
≤ (1 + ε)

{
2σ∞ + σ2

C + C(ε)σ∗

(
σC + σ∞

σC

)√
log(n ∧ d) + C2(ε)σ2

∗ log(n ∧ d)
}
.
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2. Otherwise, β∞ > 1 and we have

E
∥∥∥XXT − EXXT

∥∥∥
≤ (1 + ε)

{2σ̃∞σC
σ∗

+ σ2
C + C(ε)(σCσ∗ + σ̄∞)

√
log(n ∧ d) + C2(ε)σ2

∗ log(n ∧ d)
}
.

The constant C(ε) is

C(ε) = C(1 + ε)√
log(1 + ε)

≤ C√
ε
,

where C is a universal constant.

Theorem 5.1 improves Theorem 2.1 from [33] and in the case β∞ ≤ 1, it improves both
[31, Theorem 3.17], [18, Theorem 3.12]. We do not know whether the two regimes over
β∞ are necessary. One would expect that the leading term 2σ∞ +σ2

C is always sharp, as it
was previously obtained in [18, Thereom 3.12] with a larger error term (already dominant
for the homogeneous case); see Theorem 5.18. Our present method allows us to capture
better estimates and error factors. See discussion in Section 5.3. For the homogeneous
case bij = 1 for all i, j, it was shown in [33, Proposition 2.3],[13] that

lim inf
n,d→∞

E
∥∥∥XXT − EXXT

∥∥∥
2σ∞ + σ2

C

≥ 1,

hence, the numerical factors of 2 and 1 in the leading term are optimal.
Since the method of proof uses the moment method, we can extend Theorem 5.1 to

estimate Schatten norms. Recall that the p-Schatten norm is defined by

∥A∥pSp
= Tr(A)p,

for a positive matrix A. It is also the same as the p-norm of the singular values of A.
This time, we define the more involved parameters

• σp =


∑
i∈[d]

∑
j∈[n]

∑
l∈[d]

b2
ijb

2
lj

p/2


1/p

; • bp =

∑
i∈[d]

max
j∈[n]

b2p
ij


1/(2p)

;

• σp =


∑
i∈[d]

∑
j∈[n]

b4
ij

p/2


1/p

; • βp = σ̄pσC
σpbp

.

Our second main theorem is the following.

Theorem 5.2. Let p ∈ N and X be a d × n Gaussian matrix with independent entries
such that Xij = bijgij where {gij : (i, j) ∈ [d]× [n]} are i.i.d standard Gaussian r.v. Then,
the following holds.
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1. If βp ≤ 1, we have

(E
∥∥∥XXT − EXXT

∥∥∥p
Sp

)1/p ≤ d1/p
{

2σp + σ2
C + C

√
p
(
σCσ∗ + σpσ∗

σC

)
+ C ′pb2

p

}
.

2. Otherwise, βp > 1 and

(E
∥∥∥XXT − EXXT

∥∥∥p
Sp

)1/p ≤ d1/p
{2σpσC

σ∗
+ σ2

C + C
√
p(σCσ∗ + σp) + C ′pb2

p

}
.

For p = ⌈log d⌉ and βp ≤ 1, Theorem 5.2 implies that

(E
∥∥∥XXT − EXXT

∥∥∥2
)1/2 ≲

(
σ∞ + σ2

C +
√

log d
(
σCσ∗ + σ∞σ∗

σC

)
+ σ2

∗ log d
)
.

We will show in Lemma 5.22 that, indeed, the leading term is a lower bound for the
operator norm squared

(E
∥∥∥XXT − EXXT

∥∥∥2
)1/2 ≥ max{σ∞, 0.49σ2

C},

which proves that the leading term is optimal. We will also prove a lower bound for the
Schatten norm in Proposition 5.23.

Remark 5.3. Since the proof uses the moment method and the Schatten norm, it is well-
known (see, e.g., [74, Theorem 4.4], [33, Corollary 3.3] or [19, Corollary 3.2]), universal
constants aside, that the conclusion of Theorems 5.1 and 5.2 holds for random matrices
of the form Y = (hij)i∈[d],j∈[n], where hij are independent symmetric subgaussian random
variables with ∥hij∥ψ2

≤ bij (see definition in [108, Section 2.5]). This is why we focus
exclusively on the Gaussian case in this paper.

5.1.1 Main ideas of the proof

The proof relies on the moment method and a careful analysis of paths. We will first
remove the diagonal Diag(XXT ), so that

E
∥∥∥XXT − EXXT

∥∥∥ ≤ E
∥∥∥∆XXT

∥∥∥+ E
∥∥∥Diag(XXT )− EXXT

∥∥∥,
where ∆XXT is the matrix of off-diagonal elements of XXT . It turns out that the
contribution of the diagonal is sufficiently small and can be added as an error factor (see
Theorem 5.8). On the other hand, the combinatorics of ∆XXT are much easier to deal
with. In particular, all paths in the complete bipartite graph over [d] ⊔ [n] have all right
vertices with at least two neighbors. We then proceed with the moment method. Note
that

E∥Y ∥ ≤ (E∥Y ∥pSp
)1/p,
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by Jensen’s Inequality. We apply this for Y = ∆XXT , and our goal is to obtain a
comparison lemma such as

ETr(∆XXT )p ≤ κETr(∆GGT )p,

where κ > 0 and G is a Gaussian matrix with reduced dimensions as in [19].

5.1.2 Outline of the paper

The paper is organized as follows. In Section 5.2, we will provide the proofs of Theorems
5.1 and 5.2. In Section 5.3, we will give examples to illustrate the improvement from the
previous results. Finally, in Section 5.4, we will prove sharp matching lower bounds.

Notation. Let us clarify some notation used throughout the paper. We denote a ≲ b

or a = O(b) if there exists an absolute constant C such that a ≤ Cb. We also denote it
as b ≳ a. If a ≲ b and b ≲ a hold, we denote a ≍ b. We write a ∧ b = min(a, b) and
a∨ b = max(a, b). We denote [n] = {1, . . . , n} and A⊔B is the disjoint union of two sets
A and B. Finally, we use C, c, C ′, . . . for universal numerical constants.

5.2 Proofs

5.2.1 Preliminaries

We begin by recalling the Gaussian integration by parts lemma.

Lemma 5.4. Let g ∼ N(0, 1) be a standard Gaussian r.v. and f ∈ C1(R), then

E gf(g) = E f ′(g).

The authors of [33, Lemma 5.2] deduced from this lemma a simple property of the
joint moments of g and g2 − 1.

Lemma 5.5. Let an,m = E gn(g2 − 1)m, where g ∼ N(0, 1). Then an,m ≥ 0 and an,m = 0
if and only if n is odd or (n,m) = (0, 1). Moreover, if n is even, then

(n+m− 1)(n+ 2m− 3)!! ≤ an,m ≤ (n+ 2m− 1)!!,

where (2n + 1)!! = (2n + 1)(2n − 1) . . . 1 is the double factorial. In particular, for any
p ≥ 2 or p = 0, we have

cpp! ≤ E(g2 − 1)p ≤ Cpp!.

We also recall the sharp bound on the operator norm for a standard Gaussian matrix
shown in [33, Lemma 2.6].
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Proposition 5.6. Let G be a d × n Gaussian matrix with i.i.d standard Gaussian r.v.
entries. Then, for any p ≥ 2 we have

(E
∥∥∥GGT − EGGT

∥∥∥p)1/p ≤ 2
√
dn+ d+ 4√p(

√
d+
√
n) + 2p.

Note that

E
∥∥∥Diag(GGT )− EGGT

∥∥∥p = Emax
i∈[d]

∑
j∈[n]

(g2
ij − 1)

p.
Bernstein’s Inequality [108, Theorem 2.8.1] implies then that

(E
∥∥∥Diag(GGT )− EGGT

∥∥∥p)1/p ≲
√
pn+ p.

Consequently, we end this subsection with a corollary for the off-diagonal part.

Corollary 5.7. Let G be a d× n Gaussian matrix with i.i.d standard Gaussian entries.
Then, for any p ≥ 2 we have

(E
∥∥∥∆(GGT )

∥∥∥p)1/p ≤ 2
√
dn+ d+ C

√
p(
√
d+
√
n) + C ′p.

5.2.2 The diagonal part

In this section, the main result is the following.

Theorem 5.8. Let X be a d × n Gaussian matrix with independent entries such that
Xij = bijgij and {gij : (i, j) ∈ [d] × [n]} are i.i.d Gaussian random variables. Then, for
any even integer p ≥ 2, we have

(
E
∥∥∥Diag(XXT )− EXXT

∥∥∥p
Sp

)1/p
≍ √pσp + pb2

p.

We first note that

(
E
∥∥∥Diag(XXT )− EXXT

∥∥∥p
Sp

)
=
∑
i∈[d]

E

∑
j∈[n]

b2
ij(g2

ij − 1)
p,

and it suffices to control each summand.

Lemma 5.9. Let (bk)k∈[n] be positive numbers and (gk)k∈[n] be independent standard Gaus-
sians N(0, 1). Then, for any even integer p ≥ 2, we have

E
∑
j∈[n]

b2
k(g2

k − 1)
p1/p

≍ √p

∑
k∈[n]

b4
k

1/2

+ pmax
k∈[n]

b2
k.

Proof. Since gk are Gaussian, g2
k − 1 are independent, centered, and subexponential ran-
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dom variables. In particular, Bernstein’s Inequality [108, Theorem 2.8.1] implies that

P

∣∣∣∣∣∣
∑
k∈[n]

b2
k(g2

k − 1)

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp
(
−cmin

{
t2

a2
1
,
t

a2

})
,

where

a1 =
∑
k∈[n]

b4
k; a2 = max

k∈[n]
b2
k.

Therefore, we have

E
∑
j∈[n]

b2
k(g2

k − 1)
p1/p

≲
√
p

∑
k∈[n]

b4
k

1/2

+ pmax
k∈[n]

b2
k.

For the lower bound, we first note that

E

∑
j∈[n]

b2
k(g2

k − 1)
p =

∑
k1+···+kn=p

p!
k1! · · · kn!

n∏
l=1

b2kl
l E(g2

l − 1)kl .

Here, whenever there exists ki = 1, the summand is zero. Therefore, we can assume that
the summation is restricted to ki ̸= 1 for all i. Lemma 5.5 implies then that

E

∑
j∈[n]

b2
k(g2

k − 1)
p ≥ cpp!

∑
k1+···+kn=p
ki ̸=1,∀i

n∏
l=1

b2kl
l .

If we restrict it to kj = p for some j, we get

E

∑
j∈[n]

b2
k(g2

k − 1)
p ≥ cpp!

∑
j∈[n]

b2p
j ,

that is,

E
∑
j∈[n]

b2
k(g2

k − 1)
p1/p

≥ cp

∑
j∈[n]

b2p
j

1/p

. (5.2)

Moreover, since p is even, if we consider now kj = 2aj and ∑j∈[n] aj = p/2, we get

E

∑
j∈[n]

b2
k(g2

k − 1)
p ≥ cpp!

∑
a1+···+an=p/2

n∏
l=1

b4al
l .
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This implies that

E

∑
j∈[n]

b2
k(g2

k − 1)
p ≥ cp

p!
(p/2)!

∑
a1+···+an=p/2

(p/2)!
a1! · · · an!

n∏
l=1

b4al
l

≥ cp
p!

(p/2)!

∑
j∈[n]

b4
j

p/2

,

that is,

E
∑
j∈[n]

b2
k(g2

k − 1)
p1/p

≥ c
√
p

∑
j∈[n]

b4
j

1/2

. (5.3)

Combining Inequalities (5.2) and (5.3), we get

E
∑
j∈[n]

b2
k(g2

k − 1)
p1/p

≳
√
p

∑
k∈[n]

b4
k

1/2

+ p

∑
k∈[n]

b2p
k

1/p

≳
√
p

∑
k∈[n]

b4
k

1/2

+ pmax
k∈[b]

b2
k,

and this finishes the proof.

Proof of Theorem 5.8. By Lemma 5.9, we get that

[
ETr(Diag(XXT )− EXXT )p

]1/p
≲

∑
i∈[d]

√p
∑
j∈[n]

b4
ij

1/2

+ pmax
j∈[n]

b2
ij.


p

1/p

≲
√
pσp + pb2

p,

where the last inequality follows by the triangle inequality. The lower bound follows
similarly considering Inequalities (5.2) and (5.3) separately.

5.2.3 The off-diagonal part

The proof of the bounds for the off-diagonal part follows the moment method, but a
precise analysis is needed to control the contribution of each path and summand. First,
we open the trace so that

ETr(∆XXT )p =
∑
u∈[d]p

E
p∏

k=1
(XXT )ukuk+11uk ̸=uk+1

=
∑
u∈[d]p

∑
v∈[n]p

E
p∏

k=1
Xukvk

Xuk+1vk
1uk ̸=uk+1 ,

where up+1 := u1 and p ∈ N. We view the path u1 → v1 → u2 → · · · → up → vp → u1 as
a cycle in the complete bipartite graph over [d](l) ⊔ [n](r), where (l) and (r) indicate left
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and right vertices (we will remove the indexes if the context is clear). For a path (u, v),
we define its shape s(u, v) as relabelling its vertices in order of appearance. For instance,
the path

3→ 2′ → 4→ 1′ → 3→ 1′ → 4→ 5′ → 3

has shape

1→ 1′ → 2→ 2′ → 1→ 2′ → 2→ 3′ → 1.

Note that each edge ukvk and uk+1vk must appear at least twice in the path (u, v), by the
independence of the Gaussian r.v. and symmetry. Call the shapes that satisfy this even.
Let then S be the set of even shapes s = (u, v) such that uk ̸= uk+1 for all k = 1, ..., p.
Moreover, the product

L(s) := E
p∏

k=1
gukvk

guk+1vk
(5.4)

only depends on the shape of (u, v), therefore we have

ETr(∆XXT )p =
∑
s∈S

L(s)
∑

(u,v)∈[d]p×[n]p
s(u,v)=s

p∏
k=1

bukvk
buk+1vk

.

Let (m1,m2) = (m1(s),m2(s)) be the quantity of right and left vertices that appear in
the shape s. The key proposition to prove Theorem 5.1 is to bound

W (s) :=
∑

(u,v)∈[d]p×[n]p
s(u,v)=s

p∏
k=1

bukvk
buk+1vk

(5.5)

according to the number of vertices visited by the path.

Proposition 5.10. Assume σ∗ = 1. If β∞ ≤ 1, we have

W (s) ≤
[
d
(
σ∞

σC

)2m1

σ
2(m2−1)
C

]
∧
[
n
(
σ∞

σC

)2(m1−1)
σ2m2
C

]
.

Otherwise, β∞ > 1 and we have

W (s) ≤
[
dσ̃2m1

∞ σ
2(m2−1)
C

]
∧
[
nσ̃2(m1−1)

∞ σ2m2
C

]
.

Let us prove Theorem 5.1 given Proposition 5.10.
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Proof of Theorem 5.1. Assume σ∗ = 1 (by homogeneity) and β∞ ≤ 1. Let

a := σ∞

σC
;

b := σC .

Then, using the first bound on Proposition 5.10, we have

ETr(∆XXT )p ≤ d
∑
s∈S

L(s)
(
σ∞

σC

)2m1

σ
2(m2−1)
C .

On the other hand, for a standard Gaussian r2 × r1 matrix G, we have

ETr(∆GGT )p =
∑
s∈S

L(s) r1!
(r1 −m1)!

r2!
(r2 −m2)!

,

for any r1, r2 > p/2 (see [33]). In particular, if r1 = ⌈a2⌉ + p/2 and r2 = ⌈b2⌉ + p/2, we
have

r1!
(r1 −m1)!

≥ r1 · · · (r1 −m1 + 1)m1 ≥ a2m1 ,

and

r2!
(r2 −m2)!

≥ r2b
2(m2−1).

Hence

ETr(∆XXT )p ≤ d

r2
ETr(∆GGT )p ≤ dE

∥∥∥∆GGT
∥∥∥p.

Now we estimate the latter by Corollary 5.7 so that

(E
∥∥∥∆GGT

∥∥∥p)1/p ≤ 2√r1r2 + r2 + C
√
p(√r1 +√r2) + C ′p.

Together with Theorem 5.8, we deduce that

E
∥∥∥XXT − EXXT

∥∥∥ ≤ d
1
p

{
2σ∞ + σ2

C + C
√
p
(
σC + σ∞

σC
+ σ̄p

)
+ Cpb2

p

}
.

Choose p = ⌈α log d⌉. Since β∞ ≤ 1, we have that

σ̄p ≤ d
1
p σ̄∞ ≤ d

1
p
σ∞

σC
.

Moreover, bp ≤ d
1

2p b∞, thus

E
∥∥∥XXT − EXXT

∥∥∥ ≤ e
1
α

{
2σ∞ + σ2

C + Ce
1
α

√
α log d

(
σC + σ∞

σC

)
+ Cαe

1
2α log d

}
.
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Finally, set 1 + ε = e
1
α , hence

α = 1
log(1 + ε) ,

and we get

E
∥∥∥XXT − EXXT

∥∥∥ ≤ (1 + ε)
{

2σ∞ + σ2
C + C(ε)

√
log d

(
σC + σ∞

σC

)
+ C2(ε) log d

}
.

This gives the upper bound with log d. The second bound in Proposition 5.10 yields the
upper bound with log n, and the general case for β∞ ≤ 1 follows. The case β∞ > 1 is
proved similarly. Indeed, we now set (a, b) to be

a = σ̃∞;

b = σC ,

and then the previous proof follows straightforwardly.

Now we prove Proposition 5.10.

Proof of Proposition 5.10. To simplify the notation, for a graph G, we will denote e ∈ G
if an edge e belongs to E(G), v ∈ G if v ∈ V (G) and G′ = G \ {v} is the subgraph of G
induced by the vertices V (G) \ {v}. We use a similar notation to G \ {e} and an edge
e ∈ E(G).

Given a shape s ∈ S, we define a bipartite graph G over [m2] ⊔ [m1] so that E(G) =
{(ukvk) : k ∈ [p]}. Here, [m2] denotes the left vertices and [m1] denotes the right vertices.
Let ke be the number of times each edge e ∈ E(G) is traversed by the shape s, then∑
e ke = 2p = |k|. According to (5.5), we get an alternative expression for W (s):

W (s) =
∑

w1 ̸=···̸=wm2

∑
t1 ̸=···̸=tm1

∏
e=ij∈E(G)

bke
witj

=: W k(G),

where the notation w1 ̸= · · · ̸= wm2 means that all wk are different, similarly for tk. Note
that, by the assumption on s ∈ S. Now, fix u1 = w1 = z ∈ [d] and define the following
first-time arrivals:

i1(k) := inf{l : ul = k}; k = 2, ...,m2;

i2(k) := inf{l : vl = k}; k = 1, ...,m1.

Let also e(1)
k = ui1(k)vi1(k)−1 and e

(2)
k = ui2(k)vi2(k). Then, all these m1 + m2 − 1 edges are

distinct, and the subgraph H generated by them is a spanning tree of G.
The crucial distinction to [33, Theorem 2.1] is that we want to preserve the property

that every right vertex has at least two neighbors. Call this property P . Let us divide it
into two cases.
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Case I. Suppose the tree H satisfies property P . Assume v, v′ are extreme right
vertices, that is,

d(v, v′) = max
r,r′∈[m1]

d(r, r′).

(In case m1 = 1, the result is trivial). Then v has exactly one neighbor u ∈ [m2] such
that |N(u)| ≥ 2 and it satisfies

d(v′, u) = d(v′, v)− 1,

that is, the unique path from v′ to v passes through u. Indeed, if there are two of such
vertices u, u′ and u′ is connected to both v and a different v′′, we would have that

d(v′, v′′) = d(v′, v) + d(v, v′′) = d(v′, v) + 2,

which contradicts the maximal distance of v and v′. Therefore, if L(v) = {u ∈ N(v) :
|N(u)| = 1} ∪ {v} we have that the graph H ′ = H \ L(v) is still a tree with the property
P . Without loss of generality, we can assume that v = m1. Since σ∗ = 1 and ke ≥ 2 for
all e ∈ G, we have

W k(G) ≤ d
∑

w2 ̸=···̸=wm2

∑
t1 ̸=···̸=tm1

∏
e=ij∈E(H)

b2
witj

≤ d

 ∑
w2 ̸=···̸=wm2

∑
t1 ̸=···̸=tm1−1

∏
e=ij∈E(H′)

b2
witj

max
w∈[d]

∑
j∈[n]

b2
wj

 ∑
l∈[d]:l ̸=w

b2
lj

|N(m1)|−1

.

For the second term, we further estimate

max
w∈[d]

∑
j∈[n]

b2
wj

 ∑
l∈[d]:l ̸=w

b2
lj

|N(m1)|−1

≤ σ2
∞σ

2(|N(m1)|−2)
C .

We then proceed by induction over the right vertices as we did for H. Here, induction is
justified as H ′ is still in case I. In particular, that yields

W k(G) ≤ dσ2m1
∞ σ

2
∑

v∈[m1](|N(v)|−2)
C .

Since |E(H)| = ∑
v∈[m1] |N(v)| = m1 +m2 − 1, we get that

W k(G) ≤ d
(
σ∞

σC

)2m1

σ
2(m2−1)
C .

Case II. In case the tree H does not satisfy property P , we then add for each v ∈
H ∩ [m1] with |N(v)| = 1 in H one extra edge uv ∈ E(G) from G. This creates a graph
H ′ that is not a tree, but it satisfies property P .
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Let

V = {v ∈ H ∩ [m1] : |N(v)| = 1 in H}.

Then, for each v ∈ V we have |N(v)| = 2 in H ′ and v belongs to a cycle in H ′. In
particular, we can remove v from H ′ and H ′′ = H ′ \ {v} is still connected. Assume
v = m1, then we have

W k(G) ≤ d

 ∑
w2 ̸=···̸=wm2

∑
t1 ̸=···̸=tm1−1

∏
e=ij∈E(H′′)

b2
witj

 max
i ̸=l∈[d]

∑
j∈[d]

b2
ijb

2
lj.

We deduce that

W k(G) ≤ dσ̃2
∞

∑
w2 ̸=···̸=wm2

∑
t1 ̸=···̸=tm1−1

∏
e=ij∈E(H′′)

b2
witj

.

By induction, we have

W k(G) ≤ dσ̃2|V |
∞

∑
w2 ̸=···̸=wm2

∑
t1 ̸=···̸=tm1−|V |

∏
e=ij∈E(H\V )

b2
witj

.

By assumption, H \ V = H ′ \ V is a tree satisfying property P . Therefore, case I implies
that

W k(G) ≤ dσ̃2|V |
∞

(
σ∞

σC

)2(m1−|V |)
σ

2(m2−1)
C .

By definition of β∞, we have

W k(G) ≤ dβ2|V |
∞

(
σ∞

σC

)2m1

σ
2(m2−1)
C .

If β∞ ≤ 1, we choose |V | = 0, otherwise we choose |V | = m1. A straightforward compu-
tation yields the bounds of Proposition 5.10 with factor d.

For the second bound, instead of fixing u1 = w1 = z, we fix v1 = t1 = z. Define the
following first-time arrivals:

i1(k) := inf{l : ul = k}; k = 1, ...,m2;

i2(k) := inf{l : vl = k}; k = 2, ...,m1,

and let also e
(1)
k = ui1(k)vi1(k)−1 and e

(2)
k = ui2(k)vi2(k). The same argument done before

implies that these m1 +m2−1 edges are distinct, and the subgraph H generated by them
is a spanning tree of G. We then repeat the proof as in the first bound, but now the first
choice of vertex v1 will contribute with a factor of n.
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5.2.4 Proof of Theorem 5.2

To get the correct parameters for the Schatten norm, we must improve Proposition 5.10
and the bound on W (s). The main proposition of this subsection is the following.

Proposition 5.11. For any shape s ∈ S, if βp ≤ 1, we have

W (s) ≤ dσ2p
∗

{
σp
σ∗σC

}2m1(s){σC
σ∗

}2(m2(s)−1)
.

Otherwise βp > 1 and

W (s) ≤ dσ2p
∗

{
σp
σ2

∗

}2m1(s){
σC
σ∗

}2(m2(s)−1)
.

As soon as Proposition 5.11 is available, the proof of Theorem 5.2 follows similarly as
the proof of Theorem 5.1 and the bound for the diagonal in Theorem 5.8.

Proposition 5.11 follows the same argument shown in [74]. On the other hand, we did
not try to optimize the argument to our setting. Instead, we prefer to prove it directly.

We start with the reduction to tree argument done in [74, Lemma 2.9] for W k(G). In
this case, however, we want to keep track of the exponents for each right leaf that appears
in the final reduction. We hence present the proof for completeness.

Lemma 5.12. Let G be a graph generated by a shape s ∈ S and ke ≥ 2 for each e ∈ E(G).
Then, there exist k′

2, ..., k
′
m1+m2−1 ≥ 2 such that ∑i k

′
i = ∑

e ke and

W k(G) ≤ max
T∈span(G)

W k′(T ),

where span(G) is the set of spanning trees of G. Moreover, the maximum can be taken
such that whenever T has a right leaf v ∈ [m1] with unique edge e = uv ∈ T we have
ke ≥ 4.

Proof. If G is a tree, the equality is rather trivial, so suppose G is not a tree. Let r ∈ [m1]
be a right vertex in a cycle in G. In particular, there exist two distinct edges e1 = l1r

and e2 = l2r such that Gs = (V (G), E(G) \ {es}) is still connected for s = 1, 2. Let
k̄ = ke1 + ke2 . Then

W k(G) =
∑

w1 ̸=···̸=wm2

∑
t1 ̸=···̸=tm1

∏
s=1,2

bk̄wls tr

∏
e=ij ̸=e1,e2

bke
witj

kes/k̄

.

Holder’s Inequality implies that

W k(G) ≤ max
s=1,2

∑
w1 ̸=···̸=wm2

∑
t1 ̸=···̸=tm1

bk̄wls tr

∏
e=ij ̸=e1,e2

bke
witj

= max
s=1,2

W k′
s(Gs).

Notice that Gs runs over all vertices of G, |E(Gs)| = |E(G)| − 1 and Gi is still connected.
Moreover, the neighborhood of v ̸= r is preserved and so are the weights for all v ∈ [m1],
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namely,

(k′
s)v :=

∑
u∈N(v,Gs)

(k′
s)(uv) =

∑
u∈N(v,G)

k(uv) = kv ≥ 4,

where N(v,G) denotes the neighborhood of v in G, and the last inequality follows as v has
at least two neighbors in G. The result follows by induction (see [74, Lemma 2.9]).

Let Tm1,m2 be the set of bipartite trees over [m2] ⊔ [m1]. By Lemma 5.12, we can
assume that G ∈ Tm1,m2 . In [74, Lemma 2.10], the authors developed a method to prune
leaves of G iteratively. In our case, however, we will prune the right vertices. To keep the
notation clean, let

W (G) =
∑

w∈[d]m2
̸=

∑
t∈[n]m1

̸=

∏
e=ij∈E(G)

b
(e)
witj ,

where (b(e))e∈E(G) is a family of d× n matrices and

[m]I̸= := {w ∈ [m]I : wk ̸= wl ,∀k ̸= l ∈ I}.

We can easily recover W k(G) by setting b(e)
wt = bke

wt.
We have the analog of Lemma 2.10 in [74]. Let L(G) be the set of leaves of G, and

for each v ∈ L(G) ∩ [m1], let uv be its only neighbor.

Lemma 5.13. For any G ∈ Tm1,m2 and pv ≥ 1 such that

∑
v∈[m1]

1
pv

= 1,

we have

W (G) ≤
∏

v∈L(G)∩[m1]

∑
i∈[d]

∑
j∈[n]

b
(uvv)
ij

pv


1
pv

×

∏
v∈L(G)c∩[m1]
u∈N(v)∩L(G)c

∑
i∈[d]

∑
j∈[n]

b
(uv)
ij

∏
a∈N(v)\{u}

∑
l ̸=i

b
(av)
lj

pv


1
pv

1
αuv

,

where αuv satisfies

∑
u∈N(v)∩L(G)c

1
αuv

= 1,

for all v ∈ L(G)c ∩ [m1].

Before proving this result, we will use the following easier version. Let u = u(v) be
the choice u ∈ N(v) ∩ L(G)c that maximizes the second term in the bound, then the
following holds.

147



5.2. Proofs Chapter 5. Covariance estimation

Corollary 5.14. For any G ∈ Tm1,m2 and pv ≥ 1 such that

∑
v∈[m1]

1
pv

= 1,

we have

W (G) ≤
∏

v∈L(G)∩[m1]

∑
i∈[d]

∑
j∈[n]

b
(uvv)
ij

pv


1
pv

×

∏
v∈L(G)c∩[m1]

∑
i∈[d]

∑
j∈[n]

b
(uv)
ij

∏
a∈N(v)\{u}

∑
l ̸=i

b
(av)
lj

pv


1
pv

.

Proof of Lemma 5.13. The proof follows by induction. If m1 = 1, then it is easy to check
that pv = 1 and

W (G) ≤
∑
i∈[d]

∑
j∈[n]

∏
a∈N(1′)\{1}

b
(11′)
ij

∑
l ̸=i

b
(a1′)
lj

.
Therefore, if |N(1′)| > 1, W (G) has the second form on the bound shown in the lemma.
Otherwise, |N(v)| = 1, and the bound has the first form. Hence, we can assume that
m1 > 1.

Let L = L(G) and v1, v2 ∈ [m1] be such that

d(v1, v2) = max
r,r′∈[m1]

d(r, r′),

where the distance is the graph distance. Therefore, both v1 and v2 have only one neighbor
u1 ∈ N(v1)∩Lc and u2 ∈ N(v2)∩Lc. This follows the argument shown in Proposition 5.10.
Let thenH be the subgraph generated by removing v1, v2 and all leaves (N(v1)∪N(v2))∩L.
Denote H = (I ⊔ J,E(H)). Then we have

W (G) ≤
∑

w∈[d]I̸=

∑
t∈[n]J̸=

∑
j∈[n]

b
(u1v1)
wu1j

∏
a∈N(v1)\{u1}

 ∑
l ̸=wu1

b
(av1)
lj

×
∑
j∈[n]

b
(u2v2)
wu2j

∏
a∈N(v2)\{u2}

 ∑
l ̸=wu2

b
(av2)
lj

 ∏
e=ab∈E(H)

b
(ab)
watb ,

where we define

∏
a∈N(v)\{u}

∑
l ̸=wu

b
(av)
lj

 = 1,
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if N(v) \ {u} = ∅. Using Holder’s Inequality, we can estimate

W (G) ≤


∑

w∈[d]I̸=

∑
t∈[n]J̸=

∑
j∈[n]

b
(u1v1)
wu1j

∏
a∈N(v1)\{u1}

 ∑
l ̸=wu1

b
(av1)
lj

1+ pv1
pv2 ∏

e=ab∈E(H)
b

(ab)
watb


pv2

pv1 +pv2

×


∑

w∈[d]I̸=

∑
t∈[n]J̸=

∑
j∈[n]

b
(u2v2)
wu2j

∏
a∈N(v2)\{u2}

 ∑
l ̸=wu2

b
(av2)
lj

1+ pv2
pv1 ∏

e=ab∈E(H)
b

(ab)
watb


pv1

pv1 +pv2

.

(5.6)

Note that this inequality preserves the number of summations of right and left vertices
and homogeneity. Note also that if v ∈ J , the neighbors of v in H and G are the same.

The induction will be based on inequality (5.6). Suppose, for some r > 1 that

W (G) ≤
H∏
h=1


∑

w∈[d]Ih
̸=

∑
t∈[n]Jh

̸=

∑
j∈[n]

b
(uhvh)
wuh

j

∏
a∈N(vh)\{uh}

 ∑
l ̸=wuh

b
(avh)
lj

qh ∏
e=ab∈E(Gh)

b
(ab)
watb


1

αh

,

where H <∞, N(v) is the neighbor of v in G,

1. For every h, uh ∈ Ih, vh /∈ Jh and avh /∈ E(Gh) for every a ∈ N(vh) \ {uh};

2. For every h, Gh is a tree over Ih ⊔ Jh and |Jh| = r;

3. The inequality is 1-homogeneous in all the variables b(e) and it preserves the number
of left and right summations;

4. The exponents qh satisfies

qh =
∑

v∈[m1]\Jh

pvh

pv
,

and αh ≥ 1.

We aim to show that if this holds for r > 1, so does it for r − 1. Indeed, fix one of the
terms

Th :=


∑

w∈[d]Ih
̸=

∑
t∈[n]Jh

̸=

∑
j∈[n]

b
(uhvh)
wuh

j

∏
a∈N(vh)\{uh}

 ∑
l ̸=wuh

b
(avh)
lj

qh ∏
e=ab∈E(Gh)

b
(ab)
watb

.
Since Gh is a tree and r > 1, there exists rh such that uh is not a leaf of rh, and rh has
only one neighbor lh such that N(lh) > 1 in Gh. Let then Hh be the subgraph (a tree) of
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Gh where we remove rh and all of its leaves and let Hh = (Ih′ ⊔ Jh′ , E(Hh)), then

Th ≤
∑

w∈[d]
Ih′
̸=

∑
t∈[n]

Jh′
̸=

∑
j∈[n]

b
(uhvh)
wuh

j

∏
a∈N(vh)\{uh}

 ∑
l ̸=wuh

b
(avh)
lj

qh

×

∑
j∈[n]

b
(lhrh)
wlh

j

∏
a∈N(rh)\{lh}

 ∑
l ̸=wlh

b
(arh)
lj

 ∏
e=ab∈E(Gh)

b
(ab)
watb .

We can thus estimate by Holder’s Inequality that

Th ≤


∑

w∈[d]
Ih′
̸=

∑
t∈[n]

Jh′
̸=

∑
j∈[n]

b
(uhvh)
wuh

j

∏
a∈N(vh)\{uh}

 ∑
l ̸=wuh

b
(avh)
lj

q′
h ∏
e=ab∈E(Gh)

b
(ab)
watb


1/αh

×


∑

w∈[d]
Ih′
̸=

∑
t∈[n]

Jh′
̸=

∑
j∈[n]

b
(lhrh)
wlh

j

∏
a∈N(rh)\{lh}

 ∑
l ̸=wlh

b
(arh)
lj

q ∏
e=ab∈E(Gh)

b
(ab)
watb


1/q

,

where q′
h/qh and q are conjugate exponents. Again, the inequality is 1-homogeneous in all

the variables it involves, and it preserves the number of summations. Moreover, we can
set

q′
h =

∑
v∈[m1]\Jh′

pvh

pv

q =
∑

v∈[m1]\Jh′

plh
pv
,

and it is easy to check that q′
h/qh and q are conjugate exponents. Note that each new term

has the same form as in the induction step with |Jh′| = r− 1. Therefore, the induction is
proved.

The previous argument also shows that the induction holds for r = 0. Since the choice
of u ∈ Lc ∩N(v) is arbitrary for each v, we deduce

W (G) ≤
H∏
h=1


∑

w∈[d]Ih
̸=

∑
t∈[n]Jh

̸=

∑
j∈[n]

b
(uhvh)
wuh

j

∏
a∈N(vh)\{uh}

 ∑
l ̸=wuh

b
(avh)
lj

qh ∏
e=ab∈E(Gh)

b
(ab)
watb


1

αh

≤
∏

e=uv∈E(G):u∈Lc

∑
i∈[d]

∑
j∈[n]

b
(e)
ij

∏
a∈N(v)\{u}

∑
l ̸=i

b
(av)
lj

pv


1
αe

.

The conclusion of the lemma follows by the renormalization αuv ← pvαuv and splitting
the product over v ∈ L and v /∈ L.

Now we can prove Proposition 5.11.

Proof of Proposition 5.11. Let |k| = ∑
v kv = 2p and L = L(G) ∩ [m1]. By Lemma 5.12
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and Corollary 5.14 with pv = |k|/kv, we get

W k(G) ≤ W k′(T ) ≤
∏
v∈L


∑
i∈[d]

∑
j∈[n]

bkv
ij


|k|
kv


kv
|k|

×

∏
v∈Lc


∑
i∈[d]

∑
j∈[n]

bkuv
ij

∏
a∈N(v)\{u}

∑
l ̸=i

bkav
lj


|k|
kv


kv
|k|

,

where T is the spanning tree of G that maximizes W k′(T ′) in Lemma 5.12. Since kv ≥ 4
and bkuv

ij ≤ b2
ijσ

kuv−2
∗ , we get

W k(G) ≤σ|k|−4|L|−2
∑

v∈Lc |N(v)|
∗

∏
v∈L


∑
i∈[d]

∑
j∈[n]

b4
ij


|k|
kv


kv
|k|

×

∏
v∈Lc


∑
i∈[d]

∑
j∈[n]

b2
ij

∏
a∈N(v)\{u}

∑
l ̸=i

b2
lj


|k|
kv


kv
|k|

.

As T is a spanning tree, we have

∑
v∈Lc

|N(v)|+ |L| = m2 +m1 − 1;
∑
v∈Lc

|N(v)| − 2|Lc| = m2 −m1 − 1 + |L|.

Moreover, we can remove σC from each term in the second product to get that

W k(G) ≤σ|k|−2(m1+m2−1)−2|L|
∗ σ

2(m1+m2−1)+2|L|
C

∏
v∈L


∑
i∈[d]

∑
j∈[n]

b4
ij


|k|
kv


kv
|k|

×

∏
v∈Lc


∑
i∈[d]

∑
j∈[n]

b2
ij

∑
l ̸=i

b2
lj


|k|
kv


kv
|k|

.

Finally, the inequality of the norms in Rd implies that

∥·∥ |k|
kv

≤ d
kv−4

|k| ∥·∥ |k|
4
,

so we deduce

W k(G) ≤ dσ|k|−2(m1+m2−1)−2|L|
∗ σ

2(m1+m2−1)+2|L|
C σ2|L|

p σ̄2|Lc|
p .

The proof of Proposition 5.11 follows by a straightforward computation and the fact that
0 ≤ |L| ≤ m1.
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Remark 5.15. Note that we rather proved Theorem 5.2 with a parameter σ′
p instead of

σp, where σ′
p only takes l ̸= i, that is,

σ′
p =


∑
i∈[d]

∑
j∈[n]

∑
l ̸=i

b2
ijb

2
lj

p/2


1/p

.

This minor change is only essential for cases where the contribution of a column Xj

appears only in the diagonal part, that is, when Xj = bijei for some i.

5.3 Examples

To compare our estimates to the known bounds in the literature, we start by recalling the
previous known results in [33, 18, 31].

Theorem 5.16 (Theorem 2.1 in [33]). Let X be a d×n Gaussian matrix with independent
entries such that Xij = bijgij where {gij : (i, j) ∈ [d] × [n]} are i.i.d standard Gaussian
r.v. Then we have

E
∥∥∥XXT − EXXT

∥∥∥
≤ (1 + ε)

{
2σRσC + σ2

C + C(ε)(σCσ∗ + σRσ∗)
√

log(n ∧ d) + C2(ε)σ2
∗ log(n ∧ d)

}
.

Here, σR denotes the maximum norm of the rows

σ2
R := max

i∈[d]

∑
j∈[n]

b2
ij.

Notice that Theorem 5.1 strictly improves Theorem 5.16.

Theorem 5.17 (Theorem 3.17 in [31]). Let X be a d×n Gaussian matrix with independent
entries such that Xij = bijgij where {gij : (i, j) ∈ [d] × [n]} are i.i.d standard Gaussian
r.v. Let ε ∈ (0, 1/2). Then

E
∥∥∥XXT − EXXT

∥∥∥ ≤ 2(1 + ε)σ∞ + C

ε3

(
σ∞ + σ2

C

)
log3(nd).

Theorem 5.18 (Theorem 3.12 in [18],Theorem 3.16 in [31]). Let X be a d× n Gaussian
matrix with independent entries such that Xij = bijgij where {gij : (i, j) ∈ [d] × [n]} are
i.i.d standard Gaussian r.v. Then

E
∥∥∥XXT − EXXT

∥∥∥ ≤ 2σ∞ + σ2
C + Cσ1/2

∗

(
σ

3/2
C + σ

3/2
R

)
log3/2(nd).

In particular, let α ∈ [0, 1] be such that

α := σ∗σR

σ
1/2
∗ σ

3/2
R

=
(
σ∗

σR

)1/2
.

152



Chapter 5. Covariance estimation 5.3. Examples

Since σ∗ = σR only when the rows Ri of X are of the form Ri = bijieji , where (ej)j∈[n] is
the canonical basis and ji ∈ [n], we see that Theorem 5.1 strictly improves Theorem 5.18
when β∞ ≤ 1. Moreover, even in the simplest case bij = 1 for all i, j, Theorems 5.17 and
5.18 cannot capture the right asymptotics of XXT −EXXT . Indeed, Theorem 5.17 does
not have the right leading term, and Theorem 5.18 yields the bound

E
∥∥∥XXT − EXXT

∥∥∥ ≤ 2
√
nd+ d+ C

(
n3/4 + d3/4

)
log3/2(nd).

Here, we note that when d ≤
√
n, the error factor becomes dominant, and the bound

turns out to be

E
∥∥∥XXT − EXXT

∥∥∥ ≲ n3/4 log3/2(nd),

which differs from the correct order
√
nd+ d from [13].

Now we discuss various examples and present how Theorem 5.1 improves upon Theo-
rems 5.16, 5.17, and 5.18.

Proposition 5.19 (Case bij = aibj). Let X be a d×n Gaussian matrix with independent
entries such that Xij = aibjgij where {gij : (i, j) ∈ [d] × [n]} are i.i.d standard Gaussian
r.v. Then

E
∥∥∥XXT − EXXT

∥∥∥ ≲∥b∥2
4∥a∥2∥a∥∞ + ∥a∥2

2∥b∥
2
∞+[

∥a∥2∥a∥∞∥b∥
2
∞ + ∥b∥2

4∥a∥
2
∞

]√
log(n ∧ d)+

∥a∥2
∞∥b∥

2
∞ log(n ∧ d).

Proof. Note that

• σC = ∥a∥2∥b∥∞; • σR = ∥a∥∞∥b∥2;

• σ∗ = ∥a∥∞∥b∥∞; • σ̃∞ ≤ ∥b∥2
4∥a∥

2
∞;

• σ̄∞ = ∥b∥2
4∥a∥

2
∞; • σ∞ ≤ ∥b∥2

4∥a∥2∥a∥∞.

We observe that

σ̃∞σC
σ∗

≤ ∥b∥2
4∥a∥2∥a∥∞.

Therefore, Theorem 5.1 implies that

E
∥∥∥XXT − EXXT

∥∥∥ ≲∥b∥2
4∥a∥2∥a∥∞ + ∥a∥2

2∥b∥
2
∞+[

∥a∥2∥a∥∞∥b∥
2
∞ + ∥b∥2

4∥a∥
2
∞

]√
log(n ∧ d)+

∥a∥2
∞∥b∥

2
∞ log(n ∧ d).
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The result in [33] yields

E
∥∥∥XXT − EXXT

∥∥∥ ≲∥b∥2∥b∥∞∥a∥2∥a∥∞ + ∥a∥2
2∥b∥

2
∞+[

∥a∥2∥a∥∞∥b∥
2
∞ + ∥b∥2∥b∥∞∥a∥

2
∞

]√
log(n ∧ d)+

∥a∥2
∞∥b∥

2
∞ log(n ∧ d).

Theorem 5.17 yields

E
∥∥∥XXT − EXXT

∥∥∥ ≲∥b∥2
4∥a∥2∥a∥∞ +

(
∥b∥2

4∥a∥
2
∞ + ∥a∥2

2∥b∥
2
∞

)
log3(nd)

Finally, Theorem 5.18 gives

E
∥∥∥XXT − EXXT

∥∥∥ ≲∥b∥2
4∥a∥2∥a∥∞ + ∥a∥2

2∥b∥
2
∞+

∥a∥1/2
∞ ∥b∥

1/2
∞

(
∥a∥3/2

2 ∥b∥
3/2
∞ + ∥a∥3/2

∞ ∥b∥
3/2
2

)
log3/2(nd).

In this case, Proposition 5.19 strictly improves the previous results.

Another example is where all columns Bj := Bej have approximately the same norm,
where B = (bij).

Proposition 5.20. Let X be a d×n Gaussian matrix with independent entries such that
Xij = bijgij where {gij : (i, j) ∈ [d]× [n]} are i.i.d standard Gaussian r.v and B = (bij) is
a deterministic matrix. Let ε ∈ (0, 1/2) and Bj = Bej. Assume that there exists K ≥ 1
such that

1
K
∥Bk∥2 ≤ ∥Bj∥2 ≤ K∥Bk∥2,

for all j, k ∈ [n]. Then

E
∥∥∥XXT − EXXT

∥∥∥
≤ (1 + ε)

{
2Kσ∞ + σ2

C + C(ε)K(σCσ∗ + σ̄∞)
√

log(n ∧ d) + C2(ε)σ2
∗ log(n ∧ d)

}
.

Proof. It is easy to compute

β∞ ≤ K.

Hence

σ∞σC
σ∗

≤ Kσ∞.
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By Theorem 5.1, we have

E
∥∥∥XXT − EXXT

∥∥∥
≤ (1 + ε)

{
2Kσ∞ + σ2

C + C(ε)K(σCσ∗ + σ̄∞)
√

log(n ∧ d) + C2(ε)σ2
∗ log(n ∧ d)

}
.

Here, the previous known results only show the leading term with σCσR in [33] and
larger error factors in [18, 31].

To illustrate the unified approach from Theorem 5.1, we present another proof of the
sharp result in [33, Theorem 3.13].

Example 5.21. Let X be a Gaussian matrix with i.i.d rows, that is, bij = bj. In this
case, we have

• σC =
√
d∥b∥∞;

• σR = ∥b∥2;

• σ∗ = ∥b∥∞;

• σ∞ =
√
d− 1∥b∥2

4;

• σ̃∞ = σ̄∞ = ∥b∥2
4.

In particular,

σ̃∞σC
σ∗

=
√
d∥b∥2

4.

Hence, Theorem 5.1 implies that

E
∥∥∥XXT − EXXT

∥∥∥ ≤2
√
d∥b∥2

4 + d∥b∥2
∞+

C
[√
d∥b∥2

∞ + ∥b∥2
4

]√
log(n ∧ d)+

C∥b∥2
∞ log(n ∧ d).

In this case, the error factor is smaller than the leading one, hence

E
∥∥∥XXT − EXXT

∥∥∥ ≤(2√d∥b∥2
4 + d∥b∥2

∞

)
(1 + o(1)),

where o(1) is a quantity that goes to 0 when n, d→∞.

5.4 Lower bounds

For the sake of completeness, we present lower bounds on the operator norm and the
Schatten norm. The former was already proven in a general version in [31, lemma 9.11].

We first begin the lower bounds for the operator norm.
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Lemma 5.22. Let X be a centered Gaussian matrix with independent entries such that
Xij = bijgij where gij are i.i.d standard Gaussian random variables and bij ≥ 0. Then

(
E
∥∥∥XXT − EXXT

∥∥∥2
)1/2
≥ max{σ∞, 0.49σ2

C}.

Proof. Let Sj = XjX
T
j − EXjX

T
j , then

E
∥∥∥XXT − EXXT

∥∥∥2
= E

∥∥∥∥∥∥
∑
j∈[n]

Sj

∥∥∥∥∥∥
2

.

By submultiplicativity of the norm and Jensen’s inequality, we have

E

∥∥∥∥∥∥
∑
j∈[n]

Sj

∥∥∥∥∥∥
2

≥ E

∥∥∥∥∥∥∥
∑
j∈[n]

Sj

2
∥∥∥∥∥∥∥ ≥

∥∥∥∥∥∥∥E
∑
j∈[n]

Sj

2
∥∥∥∥∥∥∥.

The matrix on the right-hand side can be expanded as

E

∑
j∈[n]

Sj

2

=
∑
j∈[n]

ES2
j =

∑
j∈[n]

EXjX
T
j XjX

T
j − (EXjX

T
j )2, (5.7)

as Sj are centered and independent. Note that

(
∑
j∈[n]

EXjX
T
j XjX

T
j )il =

∑
j∈[n]

E⟨XjX
T
j XjX

T
j el, ei⟩

=
∑
j∈[n]

E⟨Xj, Xj⟩⟨Xj, el⟩⟨Xj, ei⟩

= 1i=l
∑
j∈[n]

E

X4
ij +X2

ij

∑
k ̸=i

X2
kj

,
by the symmetry of the Gaussian and independence. Therefore, the right-hand side of
(5.7) is a diagonal matrix D and

Dii =
∑
j∈[n]

2b4
ij + b2

ij

∑
l ̸=i

b2
lj

 ≥ ∑
j∈[n]

∑
l∈[d]

b2
ilb

2
lj.

Therefore ∥∥∥∥∥∥
∑
j∈[n]

EXjX
T
j XjX

T
j − (EXjX

T
j )2

∥∥∥∥∥∥ ≥ σ2
∞,

and

(E
∥∥∥XXT − EXXT

∥∥∥2
)1/2 ≥ σ∞. (5.8)
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On the other hand, Jensen’s inequality implies that

(E
∥∥∥XXT − EXXT

∥∥∥2
)1/2 ≥ E

∥∥∥∥∥∥
∑
j∈[n]

Sj

∥∥∥∥∥∥.
Let k ∈ [n]. Conditioning on the variables indexed by J = [n] \ {k} and using Jensen’s
inequality, we get that

E

∥∥∥∥∥∥
∑
j∈[n]

Sj

∥∥∥∥∥∥ ≥ E∥Sk∥.

By the inverse triangle inequality, we get

E∥Sk∥ ≥ E∥Xk∥2 −
∥∥∥EXkX

T
k

∥∥∥ = ∥Bk∥2
2 − ∥Bk∥2

∞ ≥ ∥Bk∥2
2 − σ

2
∗,

where Bk = (bik)i∈[d]. Moreover, we have the trivial bound ∥S∥ ≥ |Sii|, hence

E∥Sk∥ ≥ E |X2
ik − EX2

ik| = b2
ik E |g2 − 1|,

where g ∼ N(0, 1). Since, E |g2 − 1| = 2
√

2
πe

:= t, we get that

max
k∈[n]

E∥Sk∥ ≥ σ2
C − σ2

∗;

max
k∈[n]

E∥Sk∥ ≥ tσ2
∗.

By summing both inequalities appropriately, we conclude that

max
k∈[n]

E∥Sk∥ ≥
t

1 + t
σ2
C ≥ 0.49σ2

C . (5.9)

We deduce the result with Inequality (5.8).

We also prove a lower bound for the pth moment of the Schatten norm.

Proposition 5.23. Let X be a centered Gaussian matrix with independent entries such
that Xij = bijgij where gij are i.i.d standard Gaussian random variables and bij ≥ 0. For
any even integer p ≥ 2, we have

(
ETr(XXT − EXXT )p

)1/p
≳ σp + σ2

C +√pσ̄p + pb2
p.

Proof. By Lemma 5.5, the joint moments of g and g2 − 1 are always positive, thus it
follows that

(
ETr(XXT − EXXT )p

)1/p
≥
(
ETr(Diag(XXT )− EXXT )p

)1/p
≳
√
pσ̄p + pb2

p,

where the last inequality follows by Theorem 5.8. For the leading factor, note that the
Schatten norm is always lower bounded by the mixed l2(lp) norm (see Lemma 2.12 in
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[74]), then Jensen’s Inequality implies that

(
ETr(XXT − EXXT )p

)1/p
≥

∑
i∈[d]

∑
l∈[d]

E(XXT − EXXT )2
il

p/2


1/p

.

The latter can be estimated as

E(XXT − EXXT )2
il =

∑
j∈[n]

E(XjX
T
j − EXjXj)2

il

=
∑
j∈[n]

E(bijblj(gijglj − 1i=l))2

≥
∑
j∈[n]

b2
ijb

2
lj.

Hence

(
ETr(XXT − EXXT )p

)1/p
≥

∑
i∈[d]

∑
j∈[n]

∑
l∈[d]

b2
ijb

2
lj

p/2


1/p

≥ σp.

Finally, let k ∈ [n], then

(
ETr(XXT − EXXT )p

)1/p
≥
(
ETr(XkX

T
k − EXkX

T
k )p

)1/p
.

Since p is even, we get

(
ETr(XkX

T
k − EXkX

T
k )p

)1/p
≥ E

∥∥∥XkX
T
k − EXkX

T
k

∥∥∥

Therefore, recalling that Sk = XjX
T
j − EXjX

T
j , Inequality (5.9) implies that

(
ETr(XXT − EXXT )p

)1/p
≥ max

k∈[n]
E∥Sk∥ ≥ 0.49σ2

C ,

and this finishes the proof.
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