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Statistical methods and software tools to analyze and
infer ecological networks and process multi-species

data

Abstract

Interactions between species in ecological communities are complex: many species
can interact with each other in a variety of ways and at different spatial and temporal
scales. Moreover, these interaction networks are the result of multiple causes, gener-
ate multiple processes and can have indirect effects transmitted through the structure
of the network. This complexity calls for a variety of approaches to understand the
determinants of interactions and predict their effects in ecological systems.

This thesis studies several aspects of ecological interaction networks using a
methodological approach that focuses on the description, evaluation and development
of statistical methods and software tools.

In a first part, I study causes of the structure of interaction networks, focusing on
interaction niches and using the notion of trait matching between species. To this end, I
use methods from the correspondence analysis family and apply and extend reciprocal
scaling methods to the analysis of bipartite networks. I apply these methods to the
analysis of a plant-frugivore interaction network in a Peruvian montane forest, and
show that species traits can be related to their niche width.

In a second part, I study the consequences of interactions through their influence
on the spatio-temporal distribution of species. To this end, I use multivariate Hawkes
processes to analyze camera trap data. I illustrate these models on five mammals from
the South African savanna, showing attraction and avoidance between several of these
species at a short spatio-temporal scale.

In a third part, I consider camera trap data analysis. I develop a R package to clean
and standardize camera trap data intended for the Snapshot Safari program, as well as
a Shiny application intended for a more general use to visualize data in an interactive
and reproducible way.

This thesis presents statistical methods and software tools to analyze complex eco-
logical data and improve our understanding of interaction networks. These results
open new perspectives on ecological data analysis and methodological development
in ecology.

Keywords— ecological networks; interaction niche; spatio-temporal interaction; repro-

ducibility; correspondence analysis; Hawkes process; R package; Shiny application
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Méthodes statistiques et outils logiciels pour l’analyse
et l’inférence de réseaux écologiques et le traitement

de données multi-espèces

Résumé

Les interactions entre espèces dans les communautés écologiques sont com-
plexes : de nombreuses espèces peuvent interagir les unes avec les autres de façons
variées et à différentes échelles spatiales et temporelles. De plus, ces réseaux d’in-
teractions sont la résultante de multiples causes, engendrent de multiples processus
et ont des conséquences parfois indirectes transmises au travers de la structure du
réseau. Cette complexité nécessite une diversité d’approches pour comprendre les
déterminants des interactions et prédire leurs effets dans les systèmes écologiques.

Cette thèse étudie plusieurs aspects des réseaux d’interactions écologiques par
une approche méthodologique qui se concentre sur la description, l’évaluation et le
développement de méthodes statistiques et d’outils logiciels.

Dans une première partie, j’étudie les causes de la structure des réseaux d’inter-
actions en me concentrant sur les niches d’interactions et en utilisant la notion de
concordance des traits entre espèces. Pour cela, j’utilise des méthodes de la famille
de l’analyse des correspondances et j’applique et j’étends des méthodes de mise à
l’échelle réciproque à l’analyse de réseaux bipartites. J’applique ces méthodes à l’ana-
lyse d’un réseau d’interactions plantes-frugivores d’une forêt de montagne péruvienne
et je montre que les traits des espèces peuvent être reliés à leur largeur de niche.

Dans une deuxième partie, j’étudie les conséquences des interactions au travers
de leur influence sur la répartition spatio-temporelle des espèces. Pour cela, j’utilise
des processus de Hawkes multivariés pour analyser des données de pièges photogra-
phiques. J’illustre ces modèles sur cinq mammifères de la savane sud-africaine et je
montre des attractions et évitements entre plusieurs de ces espèces à courte échelle
spatio-temporelle.

Dans une troisième partie, je me penche sur l’analyse de données collectées par
pièges photographiques. Je développe un package R pour nettoyer et standardiser
ces données à l’usage du programme Snapshot Safari, ainsi qu’une application Shiny
destinée à un usage plus général pour visualiser de données de façon interactive et
reproductible.

Cette thèse présente des méthodes statistiques et outils logiciels pour analyser
des données écologiques complexes et améliorer la compréhension des réseaux d’in-
teractions. Ces résultats ouvrent des perspectives nouvelles concernant l’analyse de
données écologiques ainsi que les développements méthodologiques en écologie.
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Cover picture: this drawing represents a semi-arid savanna in the Karoo semi-desertic

area (South Africa). A gemsbok antelope stands in the foreground and succulent

shrubs Drosanthemum eburneum are blooming with bright purple flowers. The back-

ground features a characteristic Karoo koppie (plateau formed by erosion).

© Own drawing inspired from a picture taken in the Karoo National park.
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Introduction

In this general introduction, I outline the theoretical and methodological framework in

which this thesis takes place. This introduction takes a broad perspective, and each

part of the manuscript is prefaced with a more specific introduction.

I begin by presenting the general framework of ecology, with a focus on the ecolog-

ical community, which is the scale at which questions are asked in this thesis. Then, I

present interspecific interactions, their types and the challenges and questions associ-

ated to the study of interspecific interactions. After that, I briefly present the diversity

of methods allowing to study interactions in ecological communities and conclude by

outlining the questions addressed in this thesis and presenting the structure of the

manuscript.

1 Ecology

Ecology is the science studying the distribution and abundance of organisms, and their

interactions with the environment (C. R. Townsend et al., 2008; British Ecological Soci-

ety, 2024). This umbrella definition covers a wide range of questions appealing to many

neighboring disciplines like biology, chemistry, ethology or geology. For instance, ecol-

ogy aims to determine the environmental factors affecting species spatial distribution

on the globe (Pan et al., 2013; Pie et al., 2017), predict how species coexistence in

the same areas can alter their abundance (Estes et al., 2011), or determine behavioral

factors explaining species movements (Nathan et al., 2008).

Ecology was born out of a long tradition of natural history, focused on describing the

diversity of the natural world. Aristotle (4th century BC) is often regarded as one of the

first scientists of natural history (Matagne, 2002). More recently, in the 1700s-1800s,

ecology was conducted by naturalists, and naturalist clubs and societies (especially
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Part 1: General introduction

botanists) were quite popular (Matagne, 2002). The aim of these naturalists back then

was not to understand the functioning of ecosystems, but to describe and inventory

species (their characteristics and their distributions). It was not until the early 1800s

that botanists made the first attempts to go beyond description of the natural world.

One of the first works to study general patterns of species distribution was made by

Alexander von Humboldt (Matagne, 2002). In his Essay on the Geography of Plants

(Humboldt et al., 2008, first published in 1807), he described the distribution of vegeta-

tion in the Andes, notably recognizing the importance of altitude gradients in explaining

the observed distribution patterns. This publication is one of the first to go beyond

the simple description of plant species. The following extract captures the innovative

aspect of this book (Humboldt et al., 2008):

"Botanists usually direct their research towards objects that encompass only

a very small part of their science. They are concerned almost exclusively

with the discovery of new species of plants, the study of their external struc-

ture, their distinguishing characteristics [...]. Even if this knowledge is wor-

thy of occupying a great number of botanists, [...] it is no less important to

understand the Geography of Plants, [...] the science that concerns itself

with plants in their local association in the various climates."

The term “ecology” was coined in 1866 by the zoologist Ernst Haeckel, from the

Ancient Greek oikos (house), and -logia (study of). Although this term is now widely

adopted, it initially coexisted with other appellations before gradually becoming more

popular in the early 1900s. An important additional development to ecology as we know

it today emerged after the 1920s with the growing mathematization of the discipline:

one of the first successes of this mathematical formalization was through the works

of the mathematicians Alfred J. Lotka and Vito Volterra, who independently modeled

prey-predator population dynamics with differential equations (Lotka, 1920; Volterra,

1926).

Charles Darwin’s work, and especially On the Origins of species, published in 1859

(Darwin, 1859), is particularly influential in ecology. The idea of natural selection pro-

posed by Darwin prompted a whole new set of questions, because this mechanism

provided the basis for causes leading to observed patterns in species morphology, be-

havior and distribution. Since all organisms have evolved, and are subject to natural
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selection forces, this allows ecologists to answer questions like “why do giraffes have a

long neck?”. This makes ecology address final questions, i.e. questions related to the

cause of observed patterns (Barbault, 2008; Mossio et al., 2014). This emphasis on

final causes contrasts for instance with physics: it would not be relevant to ask “why”

gravity exists, but rather “how” it operates, and determining the laws it follows.

Organization scales

Figure 1.1: Ecological scales. Ecological systems are hierarchically organized as individuals,
populations, communities and ecosystems. Here, we use the example of a poppy plant indi-
vidual. All poppy plants individuals make up the population of this species, which grows in a
prairie community composed of other plant species, but also interacting with pollinator insects,
birds that eat and disperse their seeds and microorganisms living in the soil. This community
is included in an urban ecosystem on La Doua campus (Lyon, France). Own pictures, inspired from a
figure in Smith and Smith (2015).

Ecological systems are characterized by different levels of organization (see Figure

1.1) (Levin, 1992; C. R. Townsend et al., 2008; Smith & Smith, 2015). The small-

est level used in ecology is the individual, and its characteristics (e.g. morphology,

personality traits) that are relevant to explain its relation to the environment and to

other species. Then, there are populations: an assemblage of individuals of the same

species. Different populations coexist within a community, and communities are com-

prised in ecosystems and biomes. These organization scales are not independent, and

focusing on a given scale does not amount to ignoring other levels of organization: if

we want to understand processes happening at a given level, it is generally necessary

to study the organization level immediately below (Betts et al., 2021). For instance, to

study the response of a poppy individual to drought, we need to quantify physiologi-

cal responses occurring inside the organism, such as stomatal closure, leaf rolling or

osmotic adjustment in its cells (Fang & Xiong, 2015). Similarly, to study poppy popula-

tion dynamics, we need to take into account mechanisms influencing individuals’ death
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and reproduction rates. Conversely, a process might be affected by higher organization

scales, like competition between poppies individuals of a population that can weaken

the individual response to drought (Guo et al., 2020).

In this thesis, I focused on a particular level of organization of ecological systems:

the ecological community, which is defined and described below.

2 Ecological communities

Ecological communities are broadly defined as the species that occur together in space

(Morin, 2011; Stroud et al., 2015). Examples of ecological communities include coral

reefs and resident fishes and mollusks, tropical forests trees and associated mammal,

birds and insect species, or lakes and their inhabitant fishes and algae.

This generic definition of ecological communities leaves plenty of space for different

interpretations (Morin, 2011; Stroud et al., 2015). First, this definition remains evasive

on the operational way to delimit the contours of the “shared space” in practice. To

come back to the previous example, if we take a coral reef community, does the shared

space stop at the coral edge, or 1, 10, 100 meters from it? Second, defining the

species considered in the communities is subject to a similar arbitrary concept. For

instance, for a lake community, should the heron fishing on its banks, but nesting in a

nearby tree, be included in the community? Finally, another important component of

the community is its temporal aspect. We can ask ourselves how long does it take for

two species to share the same space before we consider that they are part of the same

community, in particular in regard to immigration and emigration dynamics (Stroud et

al., 2015) and succession ecology (Clements, 1936): does a community remain the

same community even if species change, or are succession dynamics a fundamental

alteration of the community? The contours of the communities are not clear-cut, but

rather have a blurry frontier.

Several factors have been proposed to delineate communities, and can be classi-

fied into four underlying approaches (Morin, 2011). First, communities might be de-

fined based on their dominant species, i.e. species whose abundance is important and

thought to structure the community. For instance, this is the case for kelp forests (see

Figure 1.2), where kelp (algae of the order Laminariales) are an abundant species that
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seem to structure the algal community and provide a habitat and food resources for

otters, fish, urchins and other invertebrates (Harrold & Reed, 1985). Second, commu-

nities can also be characterized using the physical environment, often based on dis-

continuities in the landscape. For example, bodies of water (lakes, ponds) or anatom-

ical features (e.g. gut or mouth and their associated microbial communities) can be

used to characterize communities (Smith & Smith, 2015; Ding & Schloss, 2014). Third,

statistical associations between species might be used as indicators of communities:

the community is then defined using its species composition quantified using statistical

synthetic indices, often defined with ordination methods, which consists in positioning

species composition vectors in a multivariate space. Communities are then defined

based on the distance between vectors (Morin, 2011). Finally, communities might

be defined in terms of the interactions of species sharing the same space (for a de-

tailed definition of interactions, see section 3.1), on the grounds that these interactions

have strong consequences on the abundance and maintenance of species and on the

functions they perform. For instance, we might define the plant-pollinator community

composed of a set of plant species and insects that pollinate these plants (Memmott,

1999), or the host-parasitoid community, like lepidopteran (butterfly) species and their

tachinid (files) parasitoids (Stireman III & Singer, 2003).

No matter the definition used, ecological communities are typically made up of tens

to hundreds of species, sometimes rare or difficult to observe. This complexity of the

community makes it difficult to accurately sample the entire community: moreover,

the sampling of communities is often limited by practical considerations (Morin, 2011).

Therefore, although ecologists recognize a broader definition of the community, practi-

cal considerations often constrain them to restrict themselves to an observable subset

of this community. These limitations are to keep in mind when interpreting commu-

nity ecology studies, because it is probable that some species of the community are

missing due to sampling constraints.

The importance of interactions as a structuring factor of ecological communities

has been the subject of debates. Schematically, one view holds that interactions are

a fundamental factor structuring communities, and the other that communities are de-

fined primarily by the physical environment, and that interactions are a consequence

of this (Smith & Smith, 2015). This debate has its origins in the early 1900s in the con-
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Figure 1.2: Kelp forest community. Kelp algae (shown on the picture) are considered founda-
tional species and sometimes used to define kelp communities because they provide a habitat
for a wide array of species, among which otters, fish (shown on the picture), algae, urchins and
other vertebrates and invertebrates. Own picture taken at the Cape Town aquarium (CC-BY 4.0).

text of plant ecology, with the organismic versus individualistic debate. At that time, the

dominant view among botanists, notably championed by Frederic Clements (Clements,

1936), was that plant communities were composed of tightly linked species, structured

by their interactions, that formed an operational unit akin to an organism: this is the

organismic view of communities. A major argument supporting organicism was that

plant communities are fundamentally distinct units (e.g. deciduous forest and prairie).

Thus, to explain these fundamental differences, organicism relies on internal regulating

processes occurring inside communities, and these processes are mediated by inter-

actions between species (Nicolson, 1990). In 1926, Henry Allan Gleason challenged

this view and proposed the individualistic concept to explain the structure of plant com-

munities (Gleason, 1926). This paradigm views the emergence of a plant community

as resulting of individual colonization processes for different species, determined by

their specific environmental requirements (which would later be developed by the con-

cept of ecological niche). The individualistic view explained vegetation gradients much

better than organicism: for instance, consider an altitude gradient, where communi-

ties dominated by coniferous species gradually give way to deciduous trees dominated

communities. In that case, the distinction between communities are not clear-cut, thus

challenging the organismic view.
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The contemporary view of ecological communities has become wider and includes

other taxa than plants, and recognizes both interactions and the environment as struc-

turing factors of communities. More recently, the relevance of community ecology has

been challenged by some and defended by others (see Box 1.1). The organismic view

of communities has gradually become less popular, notably due to the invocation of

final causes to explain observed patterns, in particular with the vision of successional

changes in a community as a path towards its stable state (climax) (Pickett et al., 2009).

However, studying processes regulating communities is still relevant today (Pickett et

al., 2009). In particular, the study of a global functioning of communities has been

revived through the study of ecological networks (see section 4 for a definition and

discussion) (Elton, 1927; Proulx et al., 2005; Valiente-Banuet et al., 2015).

All definitions of communities presented above can be relevant, depending on the

context: ultimately, the concept of community resides in the eye of the observer, and

defining its contours depends on what they want to study (Levin, 1992). In this thesis, I

define communities so that they encompass interacting species. Because of limitations

imposed by sampling, I also restrict this definition to some phyla. In part 2 of the thesis,

I use a community of birds and fruits that interact through seed dispersal. In part 3, I

study the spatio-temporal distribution of preys and a predator from the African savanna

and for practical reasons, I restrict the community to a subset of 5 mammal species.

Box 1.1: The scientific status of community ecology

In 1999, John H. Lawton published an article entitled “Are there general laws in

ecology?” (Lawton, 1999). In this article, he criticized the study of ecological

systems at the scale of communities, and called community ecology a “mess”,

because community dynamics are essentially contingent on the species and the

environment involved. Lawton deems the community scale as unworkable and

impossible to study scientifically, and asks “why ecologists continue to devote so

much time and effort to traditional studies in community ecology”, stating that “in

[his] view, the time has come to move on.”

Daniel Simberloff answered Lawton (Simberloff, 2004) and agreed that al-

though communities are largely contingent, in the context of climate change and

increasing anthropic pressure on ecological systems, many contemporary chal-

29



Part 1: General introduction

lenges require a good understanding of communities to protect biodiversity and

ensure humanity’s survival. In his response, he also states that general laws are

not necessarily a good indicator of the value of the scientific knowledge. Indeed,

Lawton’s critique of community ecology as a science lacking laws is shared by

many ecologists criticizing ecology as a whole, in particular when they compare

ecological knowledge to the laws of physics, and exhibit a so-called “physics envy”

(Travassos-Britto et al., 2021; Simberloff, 2004; Egler, 1986).

Another addition to the debate is brought by McGill et al. (2006), who chal-

lenge the idea that no generalizations are possible in community ecology. They

proposed to shift the focus from species as fundamental units of communities to

their functional traits. Indeed, studying species through their traits could allow to

transpose knowledge between communities of species with similar traits, thereby

effectively reaching community ecology laws.

More recently, Bruno Travassos-Britto and colleagues (Travassos-Britto et al.,

2021) reflected on the epistemological status of ecology. In their article, they point

out that there are several ways to generate knowledge that do not necessarily

require the formulation of universal laws. They propose that the knowledge gen-

eration process in ecology is best described using the pragmatic view, by which

knowledge emerge from the confrontation of multiple models with data. Interest-

ingly, models with different underlying assumptions can still both be informative

under this view: Travassos-Britto et al. (2021) cite the example of Hubbell’s neutral

theory (Hubbell, 2001) and niche models of community assembly, two models that

inform us about different facets of the niche assembly process.

I am aware and deeply concerned about global changes affecting ecological

systems. When I read the article of Lawton, it really made me doubt that commu-

nity ecology could be useful to protect natural systems. Reading the argument of

Travassos-Britto and colleagues was an epiphany, because I realized that even if

ecology does not find universal laws, it can still generate useful knowledge.
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3 Interspecific interactions

3.1 Definitions

In their broader sense, interspecific interactions are generally defined as the effect

that a species has on another one (Strydom et al., 2021). In the “Community ecol-

ogy” article of the Encyclopedia Brittanica, interspecific interactions are defined as “the

interactive relationships that arise between populations of different species” (Thomp-

son, 2024). Definitions are rarely expressed with more details (see Box 1.2), and these

generic definitions do not precise the nature of the effects exerted on species (Strydom

et al., 2021; Landi et al., 2018). In the literature, these effects have been character-

ized in different ways. Below, we list three ways to define interactions, without the

ambition to be exhaustive: through plastic, demographic and co-occurrence effects of

interactions.

Intuitively, interactions are generally conceived as the physical encounter between

two individuals of different species: the effect of an interaction is to trigger behavioral

or physiological responses (Wootton & Emmerson, 2005). In this view, interactions are

characterized by the effect on the plastic response of species when there is a direct

encounter. For example, we could view the predation interaction as the encounter

of an individual of a predator species (say, a wolf) with an individual of a prey species

(deer), and predation would then be described as the resulting sequence of pursuit, and

potentially catching and eating of the prey by the predator. Another example involving

plants is the response of a plant species to another plant competitor, where one plant

grows of deeper roots to evade the competition for nutrients. However, the plastic

responses of a species to another one encompass a much wider variety than reactions

to a physical encounters (Montgomery et al., 2019). In particular, some behaviors

might be displayed in anticipation of the encounter, like preys behavioral strategies to

mitigate predation, including grouping, sound-signaling or vigilance: this is the notion

of “landscape of fear” (Palmer & Packer, 2021; Palmer et al., 2022). Similarly, the

search for resources of a pollinator species, or bees’ waggle dance to communicate

the position of flowers, might be considered as behaviors arising from the interaction

of pollination.

Another way to characterize the effects of interactions is through demography, by
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quantifying the effect of interactions through the influence that the abundance of a

species has on the abundance of another one. This conception of interactions is

very popular in ecology, especially in the context of food webs (Wootton & Emmer-

son, 2005; Berlow et al., 2004). Demographic effects are mediated by finer-scale

behavioral processes as described above, so they can be viewed as a more integrative

scale. However, as Say-Sallaz et al. (2019) point out in the context of predation interac-

tions, demographic effects do not encompass the complete array of preys responses to

interactions. Moreover, these demographic effects are more easily conceivable in the

context of trophic interactions, and the correspondence between behavior and demog-

raphy is less evident in the context of mutualistic or competitive interactions (Wootton

& Emmerson, 2005).

A third definition of interaction is related to species spatial and/or temporal distribu-

tion. This conception rests upon the concept of species co-occurrences, i.e. the joint

presence of two species in the same place. In this context, interactions are defined by

Blanchet et al. (2020) as “the presence of a species [that] has some influence on the

occurrence of another”. Like the demographic view, this definition also relies on smaller

scale responses, like movement for mobile species or demographic effects leading to

the loss of individuals in a given area (e.g. due to predation). Species co-occurrence

can be defined at various spatial and temporal scales, and the choice of the scale at

which co-occurrence is defined impacts the ecological interpretation of co-occurrences

(Levin, 1992; Araujo et al., 2010). For instance, if two animal species co-occur in a 10

square kilometers area, we should not exclude finer-scale spatial avoidance mecha-

nisms inside this larger unit (Palmer et al., 2022). Conversely, two species might avoid

each other at fine scale, but their range can be restricted to the same biome.

These different effects of interactions are not mutually exclusive, and probably oc-

cur jointly in most communities. The focus on one of these effects is dictated by the

ecological question of interest, but recognizing that interactions may have several ef-

fects (on behavior, demography and co-occurrences) allows to view interactions as an

integrative process that affects many characteristics of the community.

In this thesis, I use two definitions of interactions. In part 2, I define bird-fruit in-

teractions as the observable behavior of birds seen eating fruits. In part 3, I define

interspecific interactions as the attraction-avoidance between species at a small spatio-
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temporal scale.

Box 1.2: Definitions of interspecific interactions in the literature

Although interspecific interactions are an important ecological concept, it is rarely

defined in the literature other than by examples. This lack of comprehensive defi-

nition became apparent to me when I searched for definitions in academic articles

mentioning interspecific interactions, as only two articles gave an operational def-

inition of what the authors meant by interaction (Strydom et al., 2021; Blanchet

et al., 2020). Similarly, in the ecology textbooks that I could read, interactions are

not defined in a generic way, but instead exemplified through several instances of

interaction types (C. R. Townsend et al., 2008; Morin, 2011; Smith & Smith, 2015).

This is maybe due to the perception of the definition of interactions as intuitive, and

comparable to its dictionary definition: “a mutual or reciprocal action or influence”

(Collins English Dictionary, 2024).

This lack of definition does not prevent the practical study of interactions in

ecological systems, but it precludes a more general view of what interactions are.

I also think that employing a vague definition can weaken the study of interactions,

because without a clear characterization of interactions in mind, we might miss

some of their effects or causes when studying them.

3.2 Types of pairwise interactions

Interspecific interactions are generally considered between pairs of species and classi-

fied following the influence of the interactions on each species (see Figure 1.3). Inter-

actions can have a positive (+), negative (-) or neutral (0) effect on the fitness of each

species, i.e. its survival and/or reproduction abilities (Araújo & Rozenfeld, 2014; Mathis

& Bronstein, 2020).

First, mutualistic (+, +) interactions are beneficial for both interacting species. For

example, pollination of plant species by insect, birds or mammals can be character-

ized as mutualistic interactions, like the orchid species Disa uniflora pollinated by the

butterfly Meneris tulbaghia. The butterfly benefits the orchid by fecundating the flow-

ers and allowing the plant to produce fruits, while the flower provides nectar resources
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Figure 1.3: Classification of interactions following their effect on the interacting species. In-
teractions can be classified along a positive-negative effect gradient with two dimensions, one
for each species. The x-axis describes the effect of the interaction on the first species, and
the y-axis on the second species: positive (+), negative (-) or neutral (0) effect. Each zone
corresponds to one interaction type and species silhouettes illustrate examples of interactions
described in the main text. The hatched area covers symmetric interactions types to those
already represented on the figure. Own figure (CC BY-SA 4.0) inspired by Figure II in Morales-Castilla et al. (2015).
Silhouette images from Phylopic by Andy Wilson (Meneris tulbaghia), Beth Reinke (Nazca booby), Jon Hill (blue-footed booby),
Jonathan Wells (Plasmodium falciparum), and NASA (Homo sapiens sapiens), others are in the public domain.

to the butterfly (Johnson & Bond, 1992). Commensal interactions (+,0) are beneficial

for one species only, while the effect on the other species is neutral (Mathis & Bron-

stein, 2020). For example, the liana species Schisandra repanda and Schizophragma

hydrangeoides grow on trees, that provide them the necessary structure to reach the

canopy and photosynthesize more efficiently, while leaving their host trees unaffected

by their presence (Ichihashi & Tateno, 2011). Another example is the relationship be-

tween a sponge species Halichondria melanodocia, and a seagrass species Thalassia

testudinum (Archer et al., 2015). Sponges benefit from the seagrass because they pro-

vide a substrate on which they can grow, namely the base of the seagrass shoots. For

the seagrass, the cost incurred by sponges blocking photosynthesis balances out with
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the benefit conferred by the presence of sponges that produce bioavailable nutrients for

the plant (Archer et al., 2015). When interactions are positive for one partner, but neg-

ative for the other (+,-), 3 main subtypes of interaction have been identified: predation,

herbivory and parasitism. Predation occurs when one animal species eats another,

thereby killing it. For instance, lions are iconic predators of many species of the African

savanna, including gemsbok, buffalo and zebra (Hayward & Kerley, 2008). Herbivory

is an interaction where one animal species eats a plant (or some part of the plant):

for example, the herbivorous parrotfish Calotomus spinidens predominantly grazes on

seagrass, species of marine angiosperms (flowering plants) (Vonk et al., 2008; Heck

et al., 2008). Parasitism is an interaction involving one species that takes advantage

of the other, but needs to maintain this species alive to do so. During a parasitic inter-

action, the two species often live in close association, like the protozoan Plasmodium

falciparum, a parasite of humans that benefits from the protected environment of liver

cells to accomplish a step of their life cycle. When doing so, they considerably affect

their human hosts, as P. falciparum is one of the Plasmodium species causing malaria

in humans, with severe symptoms including fever, headaches and sometimes leading

to death (Ménard et al., 2013; Paul et al., 2003). Another instance of parasitism is

parasitoidism, where the host is eventually killed by the parasite: most parasitoids are

Hymenoptera insects which develop inside an arthropod host in the larval stage (San-

tos & Quicke, 2011). Neutral interactions (0,0) occur when two species interact, but the

interaction has no effect on either species. For instance, in mild environmental condi-

tions, the cushion plant Silene acaulis seems to have no detrimental or positive effect

on the common alpine forb growth Bistorta vivipara (Kjær et al., 2018). Amensalism

(0,-) occurs when one species is negatively affected by the interaction while the other

gains no apparent benefit. For example, H. M. Townsend et al. (2002) describe the

relationship between two bird species, blue-footed and Nazca boobies. Non-breeding

Nazca boobies have been observed attacking blue-footed boobies nestlings, thus neg-

atively affecting this species, while apparently retiring no benefit from this interaction

because they do not predate on the nestling or acquire the nestling site. Amensal-

ism can be considered a form of asymmetric competitive interaction. Competition (-,-)

arises when the effect of the interaction is detrimental to both species. Two species

can compete for resources like food or territory. Examples of direct or interference
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competition include aggression between animal species. For instance, the two species

of lizards Anolis sagrei and Anolis cristatellus exhibit a stereotyped behavior when the

other species enter their territory, by doing pushups, head-bobs and dewlap displays

(Grether et al., 2013). This type of behavior is potentially costly to the defender species,

because they consume energy to display the aggressive behavior, and to the intruder

species, because they are prevented the access to the territory.

All these examples highlight the diversity of outcomes of interactions types, but also

the range of behaviors that constitute interactions. Many other forms of interactions are

possible, and they might be more difficult to classify than the simple examples given

above. Indeed, in ecological communities, the delineation between interactions’ out-

comes is a gradient (see Figure 1.3). For instance, some mutualistic interactions might

be only marginally positive for both species, and in practice closer to neutralism. In-

teractions might also be asymmetric: thus, competition (-,-) might negatively affect a

species more strongly than the other. The outcome of interactions may also vary de-

pending on the context. To give an example, the neutral interactions between the cush-

ion plants and the common alpine forb described above becomes commensal for the

forb when environmental conditions are harsher (closer to the glacier), in accordance

with the stress-gradient hypothesis (Kjær et al., 2018). Within the same species, inter-

and intra-individual variations might also change the outcome of the interaction. For ex-

ample, several pollinator species are capable of nectar robbing, a behavior consisting

in perforating the flower’s corolla to access nectar instead of pollinating the flower by

entering from the top. Individuals from the same species can use both tactics to access

nectar (Bronstein et al., 2017): this behavioral variability has the potential to change

the interspecific interaction from mutualistic to parasitic/commensal. Finally, accurately

quantifying the whole range of positive or negative effects of a species interaction is

extremely difficult, and we may fail to accurately measure the effect of the interaction

on fitness (Mathis & Bronstein, 2020). For example, the shark-remora association, by

which remoras attach to marine megafauna by their suction disk, has long been con-

sidered mutualistic or commensal, because of the benefits of such an association for

remoras. But recent evidence nuance this conclusion by highlighting a hydrodynamical

burden of remoras attachment for sharks, shifting the relationship to parasitic in some

contexts (Gayford, 2024).
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3.3 Indirect effects

Above, we described the effect of species pairwise interactions in isolation. But inside

communities, species coexist with a variety of other species, and a single species in-

teracts with many other species at once. These complex webs of interacting species

have long been recognized in ecology, especially in the context of predator-prey in-

teractions gathered in food webs (Ings et al., 2009). For example, in 1927, Charles

Elton wrote that “there are [...] chains of animals linked together by food” (Elton, 1927).

Considering the whole network of interactions occurring within a community can sub-

stantially affect the outcome of the interactions involving only two species. Indeed, the

interaction between two species can be modified by a third species through indirect

effects (Strauss, 1991). There are two fundamental mechanisms by which such effects

can appear (Wootton & Emmerson, 2005): density-mediated effects and higher-order

interactions (see Figure 1.4), presented in the two following paragraphs.

Figure 1.4: Schematic representation of indirect interactions. Species are depicted as circles
and interactions as arrows. The arrow points to the species receiving a positive or negative
outcome. Only the relevant interactions are represented (e.g. the predation in a) is only sym-
bolized with a negative outcome for the prey). Density-mediated effects include: a) trophic cas-
cade, where a top predator indirectly benefits a species at an inferior trophic level; b) apparent
competition, when a predator induces indirect competition between two prey species; c) key-
stone predation, where a predator indirectly benefits a subordinate competitor; d) exploitative
competition, where two predators indirectly compete for the same resource. e) Higher-order
interactions occur when a species modifies the nature of the interaction between two other
species (on this diagram, the trophic level is irrelevant).

Density-mediated effects (Figure 1.4a-d), sometimes called interaction chains

(Wootton, 1994), occur when a species alters the consequence of an interaction by

reducing or increasing the abundance of one (or both) species through a direct in-
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teraction. Frequently-described density-mediated indirect interactions include trophic

cascades, apparent competition, keystone predator effect, and exploitative competition

(Werner & Peacor, 2003; Wootton, 1994). First, trophic cascades can occur when a

top predator is added to a dyadic interaction. For instance, the recently introduced

brown trout present in New Zealand streams exerts a strong predation pressure on

small invertebrates that graze on small algae growing on the riverbed (Huryn, 1998).

In streams where the trout is present, algal biomass is much higher than in the absence

of trout, due to the release of grazing by invertebrates caused by higher predation pres-

sure (McIntosh & Townsend, 1996; Huryn, 1998). Apparent competition occurs when a

shared predator is added to the system and fosters indirect competition between these

species. For instance, the important abundance of soybean aphids in the Midwest-

ern United States allows to maintain a substantial population of predaceous coccinellid

beetles, which then turn to pea aphids. Hence, soy aphids exert an indirect negative ef-

fect on pea aphids through a shared predator, and an (asymmetric) competition arises,

even though they forage on distinct resources (Kaplan & Denno, 2007). Another out-

come of shared predators is keystone predation, when a predator holds a dominant

competitor in check and allows species coexistence, thus being indirectly beneficial to

the subordinate competitor. One example of keystone predation is the classical study

by Robert Paine on an intertidal marine community composed of a species of starfish,

Pisaster ochraceus, as well as several smaller species preyed upon by the starfish, like

bivalves, barnacles and chitons, that all compete for space to grow on the rocks (Paine,

1966). The experimental removal of starfish lead to an increase of the population of

mussels Mytilus californianus, free from the predation pressure; this species then out-

competed other species, resulting in a decrease of specific diversity that shifted from 15

species when the starfish was present to 8 species in its absence. In this experiment,

the starfish presence then indirectly benefits the competitors of mussels. Exploitative

competition occurs when two species compete for the same resource (Wootton, 1994;

Strauss, 1991). For instance, Teder et al. (2013) describe three species of parasitoid

wasps competing for the access to resources, in that case, the larvae of their moth

hosts in which they lay eggs. In their study, they show evidence of indirect competition

because when a parasitoid species laid more eggs, the other two laid less.

Another type of indirect interactions are higher-order interactions (Figure 1.4e), also
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called trait-mediated interactions. They occur when the presence of a third species af-

fects the strength of the interaction between two other species, potentially even modify-

ing the interaction outcome, mediated by plastic changes (Levine et al., 2017; Werner &

Peacor, 2003). To illustrate, we can take the example of wolves interactions with other

species, which could be affected by humans in various ways (Kuijper et al., 2024).

Notably, wolves predation on ungulates might be modified when humans are present,

because humans modify wolves behavior by making them avoiding human-dominated

areas. As wolves tend to avoid humans more than their preys, this could lead to a

“human-shield” effect for ungulates, thus releasing wolves predation pressure even

when wolf density remains the same. As higher-order effects have been little studied,

and are difficult to quantify, few ecological examples exist yet (Levine et al., 2017).

Figure 1.5: Indirect effects of ants Formica yessensis on oak trees Quercus dentata described
by Ito and Higashi (1991). This diagram summarizes the interactions between ants Tubercula-
tus quercicola, aphids Tuberculatus quercicola, acorn borers exemplified by the weevil Scythro-
pus japonicus and oak trees Quercus dentata. Ant and aphid icons by DBCLS (CC-BY 4.0), weevil adapted from
a picture of Udo Schmidt (CC-BY-SA 2.0) and tree adapted from a drawing of Carl Theodor Reiffenstein (public domain).

These examples illustrate classic cases of indirect interactions. However, depend-

ing on the combination of interactions considered, and of the number of species in-

volved, many types of indirect effects can arise. For example, we can consider the

relationship between ants, aphids, oak trees and acorns insect parasites described

by Ito and Higashi (1991) (see Figure 1.5). Some ants and aphid species undergo

a mutualistic relationship, where aphids produce nutritious honeydew consumed by

ants, while ants protect aphids from predators. Aphids feed on plants sap, thus dam-
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aging and weakening plants, so their effect on plants is expected to be negative. At

the same time, ants are predators of various insects, including larvae of acorn borers.

Ito and Higashi (1991) observed the ants Formica yessensis and aphids Tuberculatus

quercicola provided a net benefit for oak trees Quercus dentata on which they were

installed. Indeed, although acorn production was the same between trees with and

without ants/aphids associations, the parasitism rate was higher on trees that did not

harbor ants and aphids. This was explained by ant predation on insect larvae and

aggression towards adult weevils and lepidopterans. This study suggests an indirect

benefit of ants for oaks, despite the negative effect aphids have on oaks, because it is

outweighed by ants’ predation on oaks parasites. With this example, we can see how

complex the effects of interaction networks can be inside communities when multiple

interactions are considered.

4 Ecological interaction networks

To study these complex interaction networks, ecology is increasingly using the tools

of network science (Miranda et al., 2013). In this section, I briefly present network

science and describe how networks are used to describe and analyze of ecological

interactions.

4.1 Network science

Networks (or graphs) are mathematical objects describing the relationships between

entities, represented by a set of nodes (or vertices) linked by links (or edges). Net-

works have been used to describe a variety of systems: for instance, social networks

can be modeled with people (nodes) linked by relations (links), such as friendships;

metabolic networks can be modeled as molecules linked by biochemical reactions; or

the World Wide Web can be represented as webpages connected by hyperlinks (Albert

& Barabási, 2002).

Network science, which is the study of networks representing real phenomena,

rests upon the mathematical tools of graph theory (see Box 1.3), which traces back to

the mid-18th century and the bridges of Königsberg problem, asking if one can find a

path going through all seven bridges of the town of Königsberg without crossing one
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bridge twice. In 1735, Leonard Euler solved the problem by representing it as a graph,

with nodes representing land masses and links representing bridges, thus demonstrat-

ing that such a path did not exist (Euler, 1741). This work is considered to be the first

mathematical proof using graph theory (Barabási & Pósfai, 2016). Network science

gained traction in the beginning of the 21st century: this growth was notably motivated

by computational advances making it easier to map, store and analyze networks (Albert

& Barabási, 2002; Barabási & Pósfai, 2016).

Box 1.3: Graph theory and network science

In this section, I discuss graph theory and network science, which are two con-

nected fields: graph theory refers to the fundamental aspect of the study of net-

works and often involves mathematical or numerical developments, while network

science refers to the study of networks with a much more empirical focus, applying

the principles of graph theory to real-life networks.

Graph theory and network science use different terminologies to refer to similar

concepts: hence, in network science, people tend to use the terms “network”, “link”

and “node”, while in graph theory they use “graph”, “edge” and “vertex” to refer to

the same concepts. In this manuscript, I mainly use the terminology of network

science.

Networks can be characterized by a variety of summary statistics. Some properties

are global: for instance, a network can be characterized by its size, defined as its

number of nodes, or its connectance, defined as the proportion of realized links among

all theoretically possible links. Other indices are more local: for example, the node

degree defines how many links a given node engages in, and the clustering coefficient

characterizes the degree to which neighbors of a node (nodes connected to it) are

connected to each other.

In the beginning of the 21st century, it became increasingly clear that several empir-

ical networks describing very different systems tend to share common structural char-

acteristics (Albert & Barabási, 2002). For instance, real networks tend to be sparse:

that is, they have a low connectance (Barabási & Pósfai, 2016). They also tend to

be “small-world”, which means that few links are needed to join two nodes in com-

parison with the size of the graph (Watts & Strogatz, 1998). Moreover, real networks
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tend to display clusters (i.e. subsets of highly connected nodes) (Albert & Barabási,

2002). Networks have also been found to have a scale-free degree distribution, which

means that the distribution of node degree tends to follow a power law (Barabási &

Albert, 1999) with a few well-connected nodes and many weakly connected nodes.

However, more recently, this property has been contested: in particular, Broido and

Clauset (2019) analyzed close to 1000 real networks from various domains and found

that less than 4% exhibited a strong evidence for a scale-free degree distribution.

In parallel to the discovery of these shared structural patterns, several modeling

paradigms have been proposed to generate networks with given structural properties,

and in particular to reproduce structures observed in real networks (see Figure 1.6).

One of the earliest probabilistic graph model is the Erdős-Rényi model (Gilbert, 1959;

Erdős & Rényi, 1959). This model starts from N nodes, between which links are formed

with probability p (see Figure 1.6a). The resulting networks are also called “random

graphs” and often used as a null model for graphs, because the links formation process

is random. Erdős-Rényi networks can be sparse, and they typically have a small-world

property, but they fail to capture the clustering property commonly observed in real

networks.

(a) Erdős-Rényi (b) Watts-Strogatz (c) Barabási-Albert

Figure 1.6: Examples of networks generated with different models. (a) Erdős-Rényi network
with N = 20 nodes and linkage probability p = 0.3. (b) Watts-Strogatz network with N = 20
nodes, K = 3 links per node and rewiring probability p = 0.1. (c) Barabási-Albert network with
N = 20 nodes, m0 = 1 initial nodes and m = 3 links per new node.

To reproduce typically clustered real networks, Watts and Strogatz (1998) proposed

a model allowing to generate small-world networks with high clustering coefficients

(see Figure 1.6b). This model starts with a regular network where N nodes are dis-

posed as a ring, and each node is connected to its first K neighbors. Each link is then

randomly rewired with probability p. This model rests on the idea that a node is more
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likely to be connected to its neighbors, but with time, some long-distance links may

develop: for instance, in social systems, people tend to form links with people that are

spatially close, but some may also be connected to people that live far away (Albert &

Barabási, 2002).

The Barabási-Albert model (Barabási & Albert, 1999) importantly proposed a dy-

namical mechanism to explain the emergence of scale-free graphs (Albert & Barabási,

2002). Contrary to the Erdős-Rényi and the Watts-Strogatz models, the Barabási-

Albert generation process does not start with its final number of nodes N , but with a

subset m0 < N , thus allowing to describe the dynamical formation process of a net-

work. The network grows by sequentially adding new nodes connected to m old nodes.

These links are preferentially attached to nodes that are already highly connected. This

preferential attachment property is thought to be realistic in many systems, where al-

ready highly connected agents are more likely to form new links (e.g. due to popularity

in social networks).

The simplicity and versatility of these three models have made them classical start-

ing points for modeling networks. However, some features of real networks fail to be

accurately captured with these models (Amaral et al., 2000; Albert & Barabási, 2002;

Broido & Clauset, 2019) and other models have been proposed to take into account

specific constraints of the system. For instance, the network of actors collaborations in

movies from the Internet Movie Database exhibits a truncated scale-free distribution,

with the most connected nodes (actors) having a lower degree than predicted by the

Barabási-Albert model: Amaral et al. (2000) proposed that this could be explained by

aging, as when actors get older, they become less likely to act in new movies, and this

imposes a threshold on the maximal number of collaborations.

In ecology and evolution, networks have been used to describe a variety of systems

(Lau et al., 2017; Gosak et al., 2018), among which gene regulatory networks (Banf

& Rhee, 2017), fluxes of biomass and energy (Ings et al., 2009) or spatial connec-

tivity between patches (Fletcher et al., 2013). In this thesis, I will focus on networks

representing interaction between species, which are described in the following section.

43



Part 1: General introduction

4.2 Generalities on interaction networks

In community ecology, networks are commonly used to describe interactions between

species: nodes represent species, and links represent their ecological interactions

(Ings et al., 2009). Values might be associated to links and/or nodes, for instance

to represent the interaction strength (links) or species abundance (nodes).

Interaction networks have been used to describe a variety of interaction types: the

most commonly described are predation, mutualism and parasitism (Ings et al., 2009).

Historically, food webs have been the earliest and most studied network type. They

describe feeding relationships between species in a community and are typically com-

posed of multiple trophic levels. These levels can be blurred, for example by mutual

predation of two species, or by cannibalism. For this reason, food webs can be de-

scribed as unipartite networks, i.e. networks whose nodes belong to the same cat-

egory (Montoya & Solé, 2002; Jordano et al., 2003). However, strict prey-predator

networks have also been described as bipartite networks (networks which have two

classes of nodes, with links only between the two classes) (Bascompte et al., 2003).

Host-parasitoid networks describe relationships between parasitoids (e.g. parasitoid

wasps species) and their hosts (e.g. insect species), and are most generally described

as bipartite networks. Mutualistic networks describe interactions such as pollination

(often between insects and flowering plants) and frugivory (often between birds and

plants producing fruits dispersed by birds). These networks are bipartite as well.

Even though these multiple interaction types coexist within communities, for prac-

tical reasons, they have been studied mostly separately. However, statistical tools

and data allowing to integrate multiple interaction types are beginning to emerge, and

some studies have used multiplex networks, i.e. networks integrating multiple interac-

tion types (Kéfi et al., 2016; Melián et al., 2009): these exciting studies pave the way

for a deeper understanding of complex ecological systems.

Since interactions can be defined in multiple ways (section 3.1), interaction net-

works can represent physical, demographic or co-occurrence interactions (see Figure

1.7). For instance, Memmott (1999) (Figure 1.7a) construct a plant visitation network

between flowering plants and insects of an English meadow, where links represent the

number of observed insect visits, defined as an insect being observed on the flower.

Food webs frequently represent demographic effects of predators on prey, like the net-
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work by Bascompte et al. (2005) (Figure 1.7b), who consider trophic interactions from

a marine community, where edges represent the proportion of prey biomass consumed

per unit of predator biomass per day. Another example is the co-occurrence network

of eight herbivore mammals and lion analyzed by Anderson et al. (2024) (Figure 1.7c),

where links represent positive or negative spatial co-occurrence estimated from an oc-

cupancy model.

(a) Physical interactions

(b) Demographic effects (c) Co-occurrences

Figure 1.7: Examples of networks representing different effects. (a) Physical interactions de-
fined as visits of flowers by insect pollinators (Figure 1 from Memmott, 1999). (b) Demographic
interactions defined as per-capita effect of predators on prey (Figure 2a from Bascompte et
al., 2005). (c) Co-occurrence network defined as the non-random spatial association between
species (Figure 5 from Anderson et al., 2016). a) © 1999 Blackwell Science Ltd/CNRS; b) © (2005) National
Academy of Sciences, U.S.A. c) © The Author(s) Published by the Royal Society.

Inside communities, tens of species, and thousands of individuals might interact in

diverse ways, possibly dependent on many individual, spatial and temporal variables.

Therefore, ecological networks can be classified as complex systems, systems that

are made up of multiple interacting components. One of the characteristics of com-

plex systems is that their dynamics are hard to predict, due to the multiple interactions

between their components and to their structure that can give rise to non-linearity or

feedback loops (Barabási & Pósfai, 2016; Pessoa, 2022). Complex systems can also

display emergence, which refers to a property that arises only when all components of

the system interact, but cannot be deduced from the behavior of its subcomponents.
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A prime example of emergence in ecological systems is the higher-order interactions

mechanism described above. Indeed, if a species modifies the interaction between

other species, it is hard to predict this modification based only on each species’ pair-

wise interactions, and we need to observe the whole system for this higher-order in-

teraction to arise. Emergence is a philosophically debated concept: it is not clear if

emergent properties could theoretically be predictable with enough information, or if

they are intrinsically unpredictable by breaking down the system (Pessoa, 2022). For

instance, if we consider the impact of humans on the interactions between wolves and

other species (such as the system described by Kuijper et al., 2024, and discussed in

section 3.3), it might be that with enough knowledge on wolves’ behavioral response

to humans, we could predict the dynamics of the system. However, emergence can be

defined pragmatically in a weaker sense, as a property that is not predictable with the

knowledge available at a given time (Pessoa, 2022).

Box 1.4: Holism and reductionism in ecology

In ecology, there is a long-standing debate between tenants of a holistic and a re-

ductionist view of ecological systems (Lévêque, 2001). Holistic supporters believe

that to understand ecological systems, they should be studied as a whole because

their global functioning is fundamentally different than what we could observe by

cutting down the problem. This way of thinking is well summarized by the saying

“the whole is more than the sum of its parts”.

On the contrary, reductionists believe that the best way to understand complex

ecological systems is to study manageable subsets of its components one at a

time. This position can be summarized by the following quote from the biologist

Edward O. Wilson: “The cutting edge of science is reductionism, the breaking

apart of nature into its natural constituents” (Wilson, 1998).

These two approaches have the potential to complement each other, by back-

and-forth movements between detailed study of isolated components (reduction-

ism) and overview of the system (holism). I think this process can be especially

useful to study interaction networks, and link the observed network-wide patterns

to physiological or behavioral constraints of species.
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4.3 The structure of interaction networks

Several network patterns have attracted interest in the context of ecological network

analysis. I describe a few of these patterns and their occurrence in the context of

ecological networks below, but more exhaustive reviews can be found in Delmas et al.

(2019), Landi et al. (2018) or Lau et al. (2017).

Some patterns describe properties at the whole network scale. One of these pat-

terns is the connectance of the network, i.e. the proportion of realized interactions

among all possible interactions. Notably, the seminal article by May (1972) yielded a

theoretical result stating that the probability that a network will be stable decreases with

its connectance, constrained by the interaction strengths. Although this work made a

number of simplifying hypotheses, like considering a random network structure, it was

the starting point for a new research topic investigating ecological network stability

(Pimm, 1979; Thébault & Fontaine, 2010; Mougi & Kondoh, 2012; Landi et al., 2018).

(a) Modular (b) Nested

Figure 1.8: Matrix representations of perfectly modular (a) and nested (b) networks. Rows and
columns of the matrices represent respectively the two types of nodes of a bipartite network,
and non-null values in the matrix (dots) represent a link.

Two other network-scale patterns have been repeatedly highlighted in ecological

networks: modularity and nestedness (see Figure 1.8) (Ings et al., 2009; Thébault &

Fontaine, 2010). Modularity (see Figure 1.8a) quantifies the degree to which a given

network can be described as subnetworks of distinct densely connected components,

called modules. Real networks are rarely perfectly nested (i.e. composed of subnet-

works that are completely disjoint and in which all nodes are connected), and several

ways to quantify and detect imperfect modules have been proposed (Delmas et al.,

2019). Modules have been found in particular in food webs (Krause et al., 2003; Ings

et al., 2009), but also more recently in some mutualistic networks (Olesen et al., 2007).
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Nestedness (see Figure 1.8b) is a measure used to describe bipartite networks

(with two classes of nodes): a bipartite network is said to be nested when the inter-

acting partners of specialist species are a subset of those of more generalist species

(Bascompte et al., 2003). Real networks are rarely perfectly nested, and imperfect

nestedness can be detected and quantified using several approaches (Landi et al.,

2018). Nestedness has been highlighted in particular in mutualistic networks (Bas-

compte et al., 2003; Bascompte & Jordano, 2007; Thébault & Fontaine, 2010), but

some degree of nestedness has also been shown in bipartite prey-predator food webs

(Ings et al., 2009), although it has been found to be lower than in mutualistic networks

(Bascompte et al., 2003).

Modularity and nestedness are notably linked to network stability: modularity has

been found to increase stability of food webs, but to decrease stability of mutualistic

networks (Thébault & Fontaine, 2010), while nestedness seems to destabilize food

webs (Thébault & Fontaine, 2010) and has varying effects on the stability of mutualistic

networks (Landi et al., 2018).

Network properties discovered in several real networks in the beginning of the 21st

century (discussed in section 4.1 above) have also been studied in ecological networks.

For instance, studies have investigated small-world properties in food webs (Montoya

& Solé, 2002; Dunne et al., 2002) and mutualistic networks (Olesen et al., 2006).

These studies have found that mutualistic networks tend to have stronger small-word

properties than food webs (Olesen et al., 2006; Dunne et al., 2002); in food webs in

particular, the clustering property necessary for small-world networks does not seem

universal (Dunne et al., 2002). The degree distribution of ecological networks has also

been studied. Regarding food webs, several studies have found degree distributions

deviating from the Poisson distribution typically expected under Erdős-Rényi random

networks (Landi et al., 2018; Camacho et al., 2002; Dunne et al., 2002). However, the

actual degree distribution is debated; for instance, Montoya and Solé (2002) found a

good fit with a scale-free distribution for three well-resolved food webs; Camacho et al.

(2002) found a better fit to a distribution predicted by another model for seven food

webs, and Dunne et al. (2002) found varying degree distributions for 16 food webs.

Regarding mutualistic networks, Jordano et al. (2003) found that most of them have a

truncated scale-free distribution.
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Other network metrics center on a unique node (species). For instance, the node

degree quantifies the number of links connected to this node, which can also be

weighted (using links weights). In the context of ecological networks, the node de-

gree quantifies the number of interaction partners of a species, possibly weighted by

interaction frequencies. Weighted or unweighted degree has often been used to quan-

tify species’ specialization or generalization (Landi et al., 2018; Devictor et al., 2010).

However, it has been criticized for being biased (Blüthgen et al., 2008) and other in-

dices integrating species availability have been proposed (notably by Blüthgen et al.,

2006). Another measure is the centrality of a node, defined as its “importance” (Del-

mas et al., 2019): in ecological networks, centrality is used in relation with the notion of

keystone species (i.e. a species which disproportionately affects the system in relation

to its abundance). Several centrality measures exist to quantify a node’s importance:

for instance, betweenness centrality quantifies the number of paths in the network that

go through a given species (Delmas et al., 2019).

Finally, network metrics can be defined at an intermediate scale, for a subset of the

network. Metrics defined at this scale notably include motifs, which describe the ar-

rangements of links between a given number of nodes (Milo et al., 2002). Graph motifs

are central to the concept of indirect interactions discussed before in section 3.3: indi-

rect interactions depicted in Figure 1.4 can be seen as graphs motifs, and seeking such

motifs in ecological networks can inform us about indirect interactions between species

(Simmons et al., 2019). Another example of intermediate-scale metrics concerns bi-

partite networks, where it can be relevant to study the properties of one class of nodes,

e.g. compare resources and consumers (Bascompte & Jordano, 2007): for instance,

Blüthgen et al. (2006) compare the specialization of plants and of their pollinators.

The patterns described above are not necessarily static: indeed, ecological net-

works can change dynamically and spatially (Poisot et al., 2016; Tylianakis et al., 2008;

CaraDonna et al., 2021). These changes can be driven by species turnover, due for in-

stance to phenological or environmental constraints. They can also be due to a modifi-

cation of interaction frequencies, irrespective of species abundances (Tylianakis & Mor-

ris, 2017). For instance, Laliberté and Tylianakis (2010) showed that host-parasitoids

interaction networks in Ecuador were more homogenous in deforested than in forested

sites: to explain these differences, they hypothesized that foraging efficiency could in-
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crease in less complex (deforested) environments, thus increasing coupling between

species abundances and interaction probabilities, compared to forested habitats. Such

patterns of interaction rewiring, i.e. changes in interactions even in the absence of

change of community composition, are increasingly recognized in interaction networks

(CaraDonna et al., 2017; Martins et al., 2022).

5 Questions related to ecological networks

While early studies on ecological networks concentrated primarily on describing and

characterizing their structure, recent research is beginning to address questions related

to the underlying causes and broader ecological consequences of these structures.

In this section, I describe how mechanisms leading to observed network structures

have been investigated, and how the consequences of these structures on ecological

communities have been studied.

5.1 Processes and models explaining network patterns

Several processes influence observed patterns in the structure of interaction networks

(Vázquez, Blüthgen, et al., 2009; Benadi et al., 2022). Some of these patterns are

discussed below and summarized in Figure 1.9.

First, species abundances are thought to play a prominent role by influencing the

encounter, and hence the interaction probability between species (Poisot et al., 2015;

Dormann et al., 2017). Additionally, as discussed above, these abundances can also

vary in space and time, thus inducing spatio-temporal variations in networks structures

(CaraDonna et al., 2021; Tylianakis & Morris, 2017).

Species traits may also influence interaction probabilities through trait matching,

which posits that two species need to have compatible traits to interact, such as the

proboscis length of a pollinator and the corolla depth that determine the likelihood of

interaction (Peralta et al., 2024). Trait matching could emerge through trait adaptations

between interacting partners, but could also be due to environmental pressures fa-

voring certain sets of traits that incidentally favor species interactions (Dormann et al.,

2017). The detection of trait matching from experimental interaction data is investigated

in more detail in part 2.
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These traits may also be partially constrained by the evolutionary history of species

via phylogenetic inertia (Benadi et al., 2022; Dormann et al., 2017). Alternatively, phy-

logenetic relatedness may also indicate that species evolved with similar pressures,

possibly adapting their traits to the same interaction partner or to each other recipro-

cally (Dormann et al., 2017). These mechanisms may explain why phylogenetically

related species tend to display similar interaction patterns (Rezende et al., 2007).

Additionally, network structure may also be shaped by stability constraints: in par-

ticular, theoretical works have shown a stabilizing or disrupting effects of patterns like

nestedness or modularity (Thébault & Fontaine, 2010; Okuyama & Holland, 2008;

Krause et al., 2003). Note that the different mechanisms listed above are not neces-

sarily independent, and might interact with each other to create the observed network

structure (Vázquez, Blüthgen, et al., 2009).

Figure 1.9: Different causes affecting the structure of ecological networks. Own figure inspired from
Figure 1A in Peralta et al. (2024).

These factors can explain network patterns at different scales. For instance, net-

work modules may emerge through co-evolution of species leading to increased inter-

actions frequencies (Olesen et al., 2007; Dormann et al., 2017) and nestedness could

emerge from power-law species abundances distributions (as shown by the analytical

model of Araujo et al., 2010). At a more local scale, pairwise interaction frequencies

between species are thought to be influenced by their traits (Fründ et al., 2016; Dehling

et al., 2014). At the species level, traits have also been proposed to explain patterns of

specialization or generalization (Dehling et al., 2016).

Several mechanistic models integrating these factors have been proposed to ex-

plain the assembly of ecological networks (Valdovinos, 2019; Eklöf et al., 2013). First,

null models describe interaction frequencies as arising only from species respective

abundances (Bartomeus et al., 2016; see for instance Araujo et al., 2010). Other
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models integrate trait matching processes to constrain interaction probabilities (e.g.

the niche model of Williams & Martinez, 2000, for food webs), often jointly with neutral

abundance-based processes (Valdovinos, 2019). These models frequently incorporate

additional constraints or mechanisms, like species phylogeny (Benadi et al., 2022), net-

work sampling processes (Fründ et al., 2016) or spatial and temporal overlap of species

(Vázquez, Chacoff, & Cagnolo, 2009). Other frameworks use optimal foraging theory

to predict interaction frequencies (Petchey et al., 2008). These models have generally

been found to reasonably explain network-level patterns, but still need to be improved

to predict pairwise species interactions (Olito & Fox, 2015; Benadi et al., 2022), al-

though food webs are generally better predicted, especially using body sizes (Benadi

et al., 2022).

5.2 Consequences of network structure on the community

In addition to being shaped by ecological processes, network patterns are also thought

to influence various aspects of ecological communities, including population dynamics,

community stability, species evolution, ecosystem functions and behavior. The influ-

ence of interactions on these processes is discussed below.

The influence of interactions on population dynamics is very well known (Morin &

Lawler, 1995), and has been extensively studied both theoretically and empirically. In

particular, dynamical models like the Lotka-Volterra equations (Lotka, 1920; Volterra,

1926) have been used to predict oscillations in prey and predator abundances (Beng-

fort et al., 2017), and such dynamics have been observed in some ecological systems

(e.g. Gilg et al., 2003, predicted oscillations in lemming and stoat abundances in a

predators-prey system with five species).

A crucial question regards community stability, and the conditions under which inter-

acting species coexist. The seminal work of Robert May (May, 1972) (see section 4.3)

showed that strong interactions and a high network connectivity destabilize random

networks. Other network structures have been shown to influence network stability, for

instance nestedness (Thébault & Fontaine, 2010; Bastolla et al., 2009) and modularity

(Thébault & Fontaine, 2010; Pimm, 1979). Interaction types and strengths may also af-

fect the network stability (Mougi & Kondoh, 2012; Kéfi et al., 2016). Network structure

can then influence species abundances and even cause species extinctions (Dormann
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et al., 2017). Therefore, in addition to the influence of species abundances on network

structure (discussed in the previous section), network structure also affects species

abundances (this reciprocal relationship has been described as the “chicken-and-egg

problem” of abundance and network structure; Dormann et al., 2017).

Interactions also have the potential to influence evolutionary processes in commu-

nities. For instance, Munoz et al. (2023) use a theoretical model showing that inter-

specific interactions can favor the evolution of functionally distinct species. Similarly

to species abundances, evolutionary processes can both influence (e.g. through co-

evolution, discussed in the previous section) and be influenced by interactions.

Ecological interactions are also the backbone of many ecosystem functions, such

as seed dispersal or pollination (Schleuning et al., 2015; Jordano, 2016b): interactions

are related to these functions through the interaction efficacy (Bartomeus et al., 2016;

Vázquez et al., 2015), which can be defined in several ways, but broadly speaking

quantifies the efficacy of the interaction in realizing a specific process. For example,

the interaction efficacy can be defined as the effect of the interaction on the per capita

or total growth rate of an interacting partner (Berlow et al., 2004; Vázquez et al., 2015).

Interaction efficacy is difficult to quantify experimentally: it is most often approximated

assuming interaction frequency as a proxy (Vázquez et al. (2005) showed that it is a

good approximation, if the efficacy is considered at the population scale), but has also

been measured for instance using pollen removal or pollen deposition (Vázquez et al.,

2015).

Finally, another question regards the degree to which interspecific interactions can

influence the plastic responses of interacting species, either in response or in antici-

pation of a physical interaction (Palmer et al., 2022). For instance, Palmer and Packer

(2021) highlighted a diversity of behavioral responses of zebra, wildebeest and impala

to the simulated presence of their predators. Their study found that the type and inten-

sity of response was modulated by the predator hunting style (e.g. zebra fled more from

coursing than ambush predators). The response of species to interactions is discussed

more extensively in part 3, where I investigate the short-term effect of interactions on

species spatio-temporal distribution patterns.

53



Part 1: General introduction

6 Sampling and analyzing ecological networks

To address the questions above and assess their importance in real communities,

among other things, we need to collect and analyze interaction data. However, ac-

curate sampling of interspecific interactions in communities is often difficult, due to the

number of interacting species and the spatial and temporal scales (Dormann et al.,

2017). First, a lot of species are often involved in interaction networks, so sampling

methods must be adapted to the potentially various characteristics of these species to

detect them accurately. A diverse community may contain birds, trees, mosses, fungi

and bacteria: if we want to study the interactions between these species, all groups

must be accurately sampled. Some species might also be rare or elusive, which makes

it even harder to detect those species and their interactions (Jordano, 2016a). Second,

the spatial scale of communities may also make it difficult to sample the community

accurately, either because it is very large (e.g. tropical rainforests) or difficult of access

(e.g. marine communities), or on the contrary, because it is very small and difficult

or impossible to observe directly (e.g. microbial communities). Similarly, the temporal

scale at which communities dynamics happen can be very long, when studying long-

lived species, or it can happen very fast, thus making it difficult to accurately capture the

community dynamics (e.g. microbial communities) (CaraDonna et al., 2017). Because

of these challenges, ecological networks are generally poorly characterized: the lack

of knowledge pertaining to species interactions has been called the Eltonian shortfall

(Hortal et al., 2015).

6.1 Sampling interactions

Despite these challenges, there are many methods to collect interaction data (see Ta-

ble 1.1). These methods can record interspecific interactions directly, by observing

physical interactions, or indirectly, using signs of interactions detected on species or

species occurrences to infer interactions. Direct observation methods often involve sci-

entists observing focal individuals and waiting to observe interactive behaviors. When

the interactions involve plant and animals (pollination, seed dispersal), focal individuals

are often plants (Dormann et al., 2017; Jordano, 2016a). For example, Albrecht et al.

(2018) collected pollination interactions between insects and plants by doing transect
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walks and recording all interactions of insects with plants, defined as all observations

of an insect touching a plant’s reproductive part. Interactions can also be assessed

by automated methods, as the study of Melidonis and Peter (2015), who documented

the first instance of rodent pollination on the plant species Protea foliosa by using cam-

era traps, i.e. cameras that trigger automatically when movement is detected, focused

on P. foliosa individuals. Indirect methods to record interactions are very diverse: for

example, a popular method to assess trophic interactions is to analyze fecal or stom-

ach content to assess species’ diet (Miranda et al., 2013), either by visual examination

or using molecular techniques relying on antibodies or DNA (Sheppard & Harwood,

2005). Similarly, it is possible to assess pollination interactions by analyzing pollen

grains deposited on pollinators, either visually, using microscopy (possibly assisted

with machine learning tools for automated identification) or DNA metabarcoding (Lowe

et al., 2022).

Other indirect methods to detect interactions rely on species occurrences, i.e.

species detections at a particular time and place. These methods aim at inferring

interactions from species occurrences: the rationale is that the observed patterns in

species occurrences are due to underlying ecological interactions. For instance, two

species that never co-occur can be inferred to have a negative interaction. This idea

was popularized by Jared Diamond (J. M. Diamond, 1975): he observed that some bird

species in the Bismarck Archipelago occurred only on some islands. These islands

were geographically interspersed, forming a checkerboard pattern, and he interpreted

this as evidence of interspecific competition. There are diverse data collection methods

to gather species occurrence data. Classical methods involve visual observation on the

field: for instance, transect consists in moving along a path and recording species seen

along this path, and quadrat sampling consists in counting species within defined ar-

eas (quadrats) on a given landscape. Automated methods can also be used, such as

camera traps, taking pictures or videos, or acoustic telemetry transceivers, allowing to

collect movement data from tagged animals. In microbial communities, sequencing ap-

proaches have been used to assess species’ relative abundances and co-occurrences

(Faust & Raes, 2012). More recently, opportunistic data collected via participatory sci-

ence programs (for example via platforms like iNaturalist) arose as an enormous and

promising source of species occurrence data (Binley & Bennett, 2023).
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Type Observation method References

Direct methods
Direct observation Albrecht et al. (2018)

Automated sensors Melidonis and Peter (2015)

Indirect methods

Fecal or stomach content Miranda et al. (2013)

Pollen load of pollinators Lowe et al. (2022)

Species occurrences

Direct observation J. M. Diamond (1975)

Transects Bao et al. (2017)

Quadrats Raath-Krüger et al. (2021)

Automated sensors Anderson et al. (2016)

Sequencing Faust and Raes (2012)

Participatory science Binley and Bennett (2023)

Table 1.1: Summary of some direct and indirect methods to sample interaction networks.

6.2 Analyzing and inferring interactions

This diversity of data collection processes require different models to analyze data and

draw conclusions on the interactions. Indeed, each sampling method has specific char-

acteristics and biases that must be accounted for during the analysis. Using adapted

models can be useful to mitigate biases, and make the most out of each data type. For

example, direct observation methods can suffer bias in the detection of interactions

between rare species (Jordano, 2016a) that can greatly affect ecological data interpre-

tation (Blüthgen et al., 2008; Vázquez, Blüthgen, et al., 2009). Opportunistic datasets

of species occurrences, collected for example via participatory science, are not homo-

geneous in space, as sampling intensity is more intense in highly populated or easily

accessible areas (Binley & Bennett, 2023). All data collection methods are not equiva-

lent: therefore, they require adapted modeling techniques to be analyzed and provide

information on the processes underlying the observed patterns. For instance, statis-

tical approaches exist to account for species detection biases in ecological networks

(Jordano, 2016a; Blüthgen et al., 2008) or spatial biases in opportunistic data (Fink

et al., 2014).

Among all approaches used to sample species interactions in communities, as-

sessing interactions from occurrence data requires particular attention. Indeed, this

approach makes strong hypotheses on the influence of interactions on species dis-
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tribution and/or abundance, and particular care is needed when designing sampling

and analyzing data (Blanchet et al., 2020). One of the challenges to infer interac-

tions from occurrence data is to choose the spatial scale at which co-occurrences are

considered: for example, in a simulation study, Araújo and Rozenfeld (2014) showed

that the co-occurrence signal produced by an interaction is not necessarily conserved

across scales, depending on the sign of the interaction. Moreover, to infer interac-

tions from occurrence data, sophisticated models are usually required to account for

all factors affecting species occurrences besides interactions (Blanchet et al., 2020).

For instance, Diamond’s foundational idea itself (J. M. Diamond, 1975) led to a con-

siderable debate in the following years, notably regarding his modeling approach and

the absence of null model to generate occurrence patterns expected by chance alone

(Connor & Simberloff, 1979; Connor et al., 2013; J. Diamond et al., 2015; Connor et al.,

2015). Another illustration of these modeling tools is the use of the precision matrix,

allowing to tease apart occurrences affected by direct and indirect interactions (Harris,

2016; Popovic et al., 2019; Chiquet et al., 2021). For the reasons described above,

several authors have advised to treat co-occurrence data with caution when inferring

interactions (Blanchet et al., 2020; Friedman & Alm, 2012).

Another challenge pertaining to all analyses described above regards the data anal-

ysis process itself. Here by data analysis, I refer to the stage conduced once data has

been collected and the analysis method chosen, and before the interpretation. Data

analysis includes formatting data, inputting data in the model and producing figures

and summary statistics. Today, these analysis steps are often conduced on a com-

puter, and ecology increasingly relies on programming and coding (Filazzola & Lor-

tie, 2022; Markowetz, 2017). Several challenges come with these computing tools.

First, computer code can be considered a product of the research itself, and, as such,

the same standards of integrity, data transparency and openness apply (O’Dea et al.,

2021). When conducted with a coding language, these analyses steps can easily be

saved to a file and shared with other materials for the publication; in fact, more and

more journals require or encourage authors to share their code. Second, comput-

ing tools allow more and more sophisticated models to be built (Warton et al., 2015;

King, 2014), which opens great opportunities for data analyses but also makes room

for errors (MacFadyen et al., 2022). In this context, using reproducible and readable
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data analyses pipelines is important to prevent data analysis errors (Filazzola & Lortie,

2022). Third, ecology also enters an era of big data, with tools such as DNA metabar-

coding or camera trap data producing tremendous amounts of data. As the amount

of data grows, it becomes increasingly essential to automate steps of data process-

ing (MacFadyen et al., 2022), especially when integrating multiple data sources that

require an additional step of data standardization (Ronquillo et al., 2024).

7 Thesis objectives

This thesis aims at advancing our understanding of ecological communities, and in

particular of ecological interactions inside ecological communities. To do so, I under-

take a methodological approach and develop statistical or software tools to analyze

ecological networks and ecological community data. In each part, presented below, I

address different scientific questions and develop methods tailored to these questions

and adapted to specific data collection processes. Each part begins with a short intro-

ductory chapter presenting its methods and the question, and parts 2 and 3 also have

a dedicated discussion chapter. The bibliography is presented separately for each part.

In part 2, I investigate the causes of observed patterns in ecological networks. More

specifically, I use and develop multivariate methods to investigate trait matching as a

driver of the observed patterns of interactions. In this part, I quantify interaction pat-

terns using the notion of interaction niche (see the introduction chapter 7). In chapter

2.1, I use correspondence analysis and reciprocal scaling to measure species’ interac-

tion niches breadth and optima. In this chapter, I do not use species traits per se, but

latent traits inferred with correspondence analysis. I intend to submit the results of this

chapter for publication in PCI Ecology. In chapter 2.2, I use constrained multivariate

analyses to include species traits. In this chapter, I quantify species’ interaction niche

optima taking into account measured traits, and I also partition the total variance of

the network. I intend to use the results of this chapter for an upcoming publication. In

chapter 2.3, I extend the constrained analyses used in the preceding chapter to quan-

tify niche breadth in addition to niche optima quantified in the preceding chapter. To

illustrate the analyses along part 2, I use a bird-fruit interaction network sampled in the

Peruvian montane forest (data from Dehling et al., 2021).
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In part 3, I investigate the consequences of interspecific interactions on species’

plastic response. In particular, I investigate how different animal species respond to

the presence of other species by modifying their spatio-temporal distribution patterns

at short spatio-temporal scales. In chapter 3.1, I use a multivariate point process model

to infer attraction and avoidance between species, from data collected in continuous

time using camera traps. This chapter has been published as an article in Ecology

(Nicvert et al., 2024). In chapter 3.2, I use a multivariate point process model allowing

to incorporate temporal covariates to tease apart species’ circadian activities from the

attraction-avoidance due to other species. In this part, I illustrate the methods on a

camera trap dataset with five mammal species from the South Africa savanna (data

available at Nicvert et al., 2023), collected with the Snapshot Safari project (Pardo et

al., 2021).

In part 4, I present two software tools that I developed to automate data analyses.

These tools aim at making data analysis easier and more reproducible when process-

ing species occurrence data obtained with camera traps. Chapter 4.1 describes a R

package to standardize and clean camera trap records, targeted to meet the needs of

data from the Snapshot Safari project. Chapter 4.2 presents a Shiny application and R

package to visualize camera trap data, aiming at a wider audience of camera trap data

users.

Part Broad question Objectives Data used Tool

2 Which causes affect
network structure?

Measure the impor-
tance of trait matching

Direct
observation

Multivariate
methods

3 What are the con-
sequences of interac-
tions in communities?

Infer attraction or
avoidance between
species at short
spatio-temporal
scales

Camera
trap

Multivariate
point process
models

4 How to improve the
reliability and repro-
ducibility of scientific
analyses?

Design software tools
for data processing
and analysis

Camera
trap

R packages
and Shiny
application

Table 1.2: Thesis objectives for each part. This table summarizes the broad scientific question,
the more precise objectives, the source of data and the method used in each part of the thesis.
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Cover picture: plants and birds from the Peruvian montane forest are linked by a net-

work of frugivorous interactions. Each species has specific interaction partners: their

interaction niches are represented with ellipses. From left to right and top to bottom,

the plants are Vismia gracilis, Banara arguta, Ocotea sp., Ficus coerulescens and An-

thurium obtusum, and the birds are Elaenia pallatangae, Anisognathus somptuosus,

Chlorochrysa calliparaea, Trogon personatus, Cephalopterus ornatus and Rupicola

peruvianus.

© Own drawing.
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Introduction

1 Preamble: PhD context

This axis, which I began investigating at the end of my first year of PhD, was not initially

planned in the PhD project. Indeed, after one year of PhD working on inference of

interactions from camera trap data (presented in part 3), we decided to take on a new

approach to study interspecific interactions, because the first part did not yield the

results allowing to pursue the original PhD project. We choose this particular research

direction because it was a research question that one of my supervisors, Stéphane

Dray, had begun to investigate and for which he had seen a scientific potential, and

that was less exploratory than the original PhD project, which was reassuring for me at

the end of one year of PhD with no publishable results.

Initially, I approached this subject with less interest than the original PhD project,

and somewhat reluctantly since I had to give up the time and energy previously invested

in another scientific question and study system. But with time, I began to appreciate

working on this axis, to find the scientific question really interesting and to understand

and appropriate the associated methods and algebra. A small anecdote shows how

this part really grew on me. One evening, as I was walking in the streets of Lyon, I saw

a group of pigeons trying to eat a marinated olive. The olive probably fell on the floor

from a terrace table, and pigeons seized the opportunity. As I saw them struggle to

peck tiny bits of this olive, I immediately thought of trait matching: their beaks were too

small.
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Part 2: Investigate trait matching in interaction networks

2 Introduction

In ecological networks, many patterns deviating from random networks have been ob-

served (Bascompte and Jordano, 2007; Ings et al., 2009; see also section 5.1 in the

general introduction). For instance, ecological networks tend to have a degree dis-

tribution (i.e. distribution of the number of links per species) that deviates from the

distribution expected for random networks (Dunne et al., 2002; Jordano et al., 2003;

Ings et al., 2009) in the sense of the Erdős-Rényi model (Erdős & Rényi, 1959). Eco-

logical networks also have a tendency to be modular, i.e they comport modules of

species that tend to interact with each other but not with other species (Ings et al.,

2009). Some patterns also depend on the type of network: in particular, food webs

include many generalist species, while host-parasite networks include more specialists

(Ings et al., 2009). Nestedness is also commonly observed in mutualistic networks, i.e.

interactions of specialist species tend to be subsets of interactions of more generalist

species (Bascompte et al., 2003; Valdovinos, 2019). While these patterns begin to be

relatively well-known, the processes that underpin them are less understood (Benadi

et al., 2022).

Identifying causes that determine whether two species inside a community inter-

act or not, and the nature of their interaction, is a broad ecological question of great

interest. As discussed more extensively in the general introduction (section 5.1), sev-

eral factors have been hypothesized to influence the probability of species interactions,

among which species abundances (Poisot et al., 2015; Dormann et al., 2017), trait

matching (Dormann et al., 2017), or species evolutionary history (Benadi et al., 2022;

Dormann et al., 2017), and mechanistic models integrating some of these factors have

been proposed.

In this part, I more precisely focus on one of the drivers of interactions in ecological

networks: trait matching (Figure 2.I.1), which posits that species interactions are no-

tably driven by the traits complementary of the interacting species. Trait matching may

result from species adapting to their interactions over evolutionary time, but may also

result from evolutionary processes independent of their interactions (Dormann et al.,

2017): either way, studying trait matching remains valuable to understand the proxi-

mate drivers of species interactions.

Trait matching has been studied notably through niche-based models, which repre-
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sent the effect of species traits on interactions (Williams & Martinez, 2000), possibly

modulated by other processes such as species abundances, sampling process or phy-

logeny (Fründ et al., 2016; Benadi et al., 2022). These models have been useful to

study the effect of traits on interactions, but also have shortcomings. First, most niche-

based models consider only a single niche dimension (but see Eklöf et al., 2013 and

Benadi et al., 2022), thus generating interval networks (i.e. networks in which interac-

tions frequencies are explained by one single trait), even though interaction probabil-

ities are generally thought to be shaped by several traits (Williams & Martinez, 2000;

Eklöf et al., 2013). Second, these models generally require knowing which traits are

relevant for trait matching beforehand to evaluate its importance (but see Eklöf et al.,

2013). Finally, most methods ignore the tolerance of species around their trait matching

constraints.

Figure 2.I.1: Illustration of trait matching between a bird and a fruiting plant. Here, trait matching
is based on the morphological complementarity between the bird’s beak height h and the fruit
diameter d (a single trait is involved).

In this part, I consider multivariate methods allowing to model trait matching be-

tween multiple and possibly latent traits, and model species’ preferences for their inter-

acting partners with their interaction niche, thus taking the variability around matching

constraints into account. The concept of niche, its origins and influence on interaction

networks are briefly discussed below.

2.1 The ecological niche

The ecological niche is broadly defined as the set of conditions a species can persist

in: more formally, the niche has been defined by Hutchinson as an n-dimensional hy-

pervolume in which the species can persist, where each niche axis represents environ-

mental conditions and resources (Hutchinson, 1957) (see Figure 2.I.2). The ecological

niche is usually studied considering either environmental conditions or interactions with
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other species, although both factors can affect the niche at the same time. The envi-

ronmental (or Grinnellian) niche (Grinnell, 1924) considers environmental resources

and constraints, such as pH, temperature or precipitation. The interaction (or Eltonian)

niche (Elton, 1927) considers the niche in terms of the interactions of a species with

other species in the community, allowing to study how a species is included in the

community, “its relation to food and enemies” (Elton, 1927).

Figure 2.I.2: Original illustration of the Hutchinsonian niche concept. This figure shows two-
dimensional niches defined by food size and temperature. The niches of species S1 and S2 are
depicted as hatched areas and overlap in the middle of the graph. Adapted from Figure 1 in Hutchinson
(1957).

The ecological niche is recognized as an important structuring factor of communi-

ties (Smith & Smith, 2015). Among other things, niche partitioning between species is

thought to be a stabilizing factor of the composition of ecological communities under

modern coexistence theory (Chesson, 2000): by utilizing different resources, species

can alleviate competition enough to coexist.

More recently, studies have also investigated the stability of species interactions

(Valiente-Banuet et al., 2015). Interaction niches are one of the factors influencing the

stability of interaction networks (Godoy et al., 2018). For example, the simulation ap-

proach used in Valdovinos et al. (2016) shows that niche partitioning in plant-pollinator

networks can stabilize the network. Species interaction niches also influence network

structure through trait matching. For instance, in most predation networks, especially

for aquatic systems, body size is an important factor determining if predation can occur

(Ings et al., 2009). Hence, the interaction niche notably determines which interactions

are “forbidden”, i.e. cannot occur due to incompatible species traits (Jordano et al.,
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2003).

The notion of interaction niche is often fuzzy and can be defined in multiple ways

(Ferry-Graham et al., 2002). Here, I propose to use the Hutchinsonian conceptualiza-

tion of the niche as a hypervolume, where we can view other species in the network

as resource axes that allow a given species to persist. As species are not quantita-

tive variables, they cannot readily define axes in the sense of the Hutchinsonian niche,

which is defined with quantitative axes (Hutchinson, 1957; Vandermeer, 1972). How-

ever, viewing species through their traits allow to define quantitative traits axes: then,

for a given species, we can define the subset of their interacting partners’ trait space

(the Hutchinsonian n-dimensional hypervolume) in which this species is able to inter-

act. For instance, if we consider a pollinator, its pollination niche can be defined in

terms of floral traits such as corolla depth, nectar quantity or flowering phenology.

Several methods can be used to quantify species niches (see Devictor et al., 2010,

for a review): but if we quantify niches in the Hutchinsonian sense, multivariate ordina-

tion methods seem particularly suited.

2.2 Multivariate ordination methods

Multivariate ordination methods (hereafter, simply ordination methods) aim at arranging

entities on the basis of variables that are associated to them (C. J. F. ter Braak, 1995).

In ecology, these methods are classically used to arrange sites, using the associated

counts of species occurrences in each site. Ordination methods transform the data

to highlight the main patterns of variation with the tools of matrix algebra, where the

matrix is classically a species-by-sites matrix.

Ordination methods are also relevant to analyze networks, as they can also be seen

as matrices. Here, I consider a particular class of networks representing the interac-

tions between two classes of objects, called bipartite networks. These network can be

represented by an incidence matrix, a matrix with one class of objects in rows and the

other in columns. In the context of interaction networks, bipartite networks represent

interactions between two groups of species (e.g. plant-pollinator). Incidence matrices

can also be seen as contingency matrices, i.e. matrices describing the frequency distri-

bution of two crossed factors (here, the counts of interactions between the two species

classes).
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Contingency matrices are routinely analyzed using methods in the correspondence

analysis (CA) family, which is a class of ordination methods. There are three CA meth-

ods: simple correspondence analysis (CA, or simple CA) (Hirschfeld, 1935; Hill, 1974),

that allows to analyze a contingency table alone; canonical correspondence analysis

(CCA), that allows to include a second table of quantitative variables (C. J. F. ter Braak,

1986) and double-constrained correspondence analysis (dc-CA), that allows to include

two tables of quantitative variables in the analysis (C. J. F. ter Braak et al., 2018).

Methods of the CA family allow to examine the relationship between qualitative

variables (here, species from each class) by associating a score to each species along

several axes. With CA, these scores are determined using the identity of the interacting

species, and with CCA and dc-CA, these scores take into account a linear combination

of the interacting species traits. Species scores are fitted so that species positions on

one axis are optimally separated.

Species scores obtained with CA methods can be interpreted as a measure of

their niche optima (i.e. their preference), where species niches are approximated by a

normal distribution along each axis. CA methods have been mainly used to describe

environmental niches in the context of species-environment associations (C. J. F. ter

Braak, 1987). Here, on the contrary, I analyze interaction networks, which allows to

investigate the interaction niche. Ordination methods thus allow to ordinate qualitative

variables, the species, along multivariate axes. These axes can be seen as the niche

axes in Hutchinson’s framework: ordination methods of the CA family thus extend the

definition of the Hutchinsonian niche to interaction niches (Eklöf et al., 2013).

2.3 Plan

In this part, I show how CA methods can be used to study species interaction niches.

In chapter 2.1, I describe how CA and reciprocal scaling (Thioulouse & Chessel, 1992)

can be used to determine species niche optima and breadth. I validate the method

with a simulation approach and illustrate it on a real interaction network (Dehling et

al., 2021). In chapter 2.2, I describe how constrained methods, CCA and dc-CA, can

be used to determine species niche optima constrained with species traits. I also

partition the network variance into parts due to species traits and residual variation, and

illustrate the method on the same interaction network. Finally, in a more exploratory
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chapter 2.3, I explore how a measure of niche breadth can be added to constrained

analyses, by adapting reciprocal scaling to CCA and dc-CA.

2.4 Dataset

For all three chapters described above, I illustrate the method on a bird-fruit interac-

tion network collected by Dehling et al. (2021) in the ANDEAN frugivory dataset. This

dataset was collected in Peruvian lower montane forest (1500 meters above sea level)

by direct observation of birds removing fruits from fleshy-fruited plants. Further infor-

mation on the dataset can be found in chapter 2.1, but I also provide a brief overview

of the dataset here.

Figure 2.I.3 shows the interaction matrix between 53 bird species (in columns) and

40 plant species (in rows) (after data filtering, see chapter 2.1). In total, the dataset

records almost 5000 interactions sampled over 960h.

Figure 2.I.3: Interaction matrix for the bird-fruit interaction network. Rows and columns are
ordered by increasing number of weighted interactions.

Figure 2.I.4 shows a glimpse of the diversity of birds and plant species. Birds body

mass ranges from 8 g (scale-crested pygmy tyrant Lophotriccus pileatus) to 700 g (An-

dean cock-of-the-rock Rupicola peruvianus), with most birds being small passerines

(80% of the birds weigh less than 100 g). Plants have very diverse heights, ranging

from 3 m (Miconia barbeyana) to 15 m Ficus americana), and correspond to under-

story or canopy plants. Most of these plants produce small fruits, ranging from 2.2 mm

(Miconia egensis) to 20.4 mm (Cecropia polystachya).
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(a) Lophotriccus pileatus (b) Patagioenas plumbea (c) Rupicola peruvianus

(d) Cestrum parqui (e) Miconia affinis
(f) Ficus americana

Figure 2.I.4: Overview of some bird and plant species sampled in the network, ordered from
smaller to larger. Credits (from left to right): Chris Jimenez, Félix Uribe, Charles J. Sharp, tayloredtotaylor, Sébastien SANT
and sebacixl (CC-BY pictures).
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Chapter 2.1

Trait matching without traits: using

correspondence analysis to analyze

the latent structure of interaction

networks

Lisa Nicvert, Hervé Fritz and Stéphane Dray

We intend to submit the results of this chapter for publication in PCI Ecology.
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Abstract

Species interact with each other within interaction networks. The place of species in the interac-

tion network determines their interaction (or Eltonian) niche and is strongly related to the notion

of trait matching, by which a species interacts with partners whose traits are complementary to

their own.

Multivariate methods are commonly used to quantify species environmental (or Grinnellian)

niche. More recently, multivariate methods have also been used to study the interaction niche,

but they consider only the niche optimum and require trait data, which can be tedious to collect

and challenging to select.

In this paper, we propose to use correspondence analysis to study interaction networks

and investigate trait matching without requiring traits, using the notion of latent traits. We also

use reciprocal scaling to estimate the optimum and breadth of the interaction niche. In our

framework, niche breadth is defined as the diversity of latent traits of interacting partners. We

present the model, test its performance with a simulation approach using a model we designed

and analyze a real mutalistic bird-fruits interaction network.

The simulation study shows that the method is able to recover niche breadths and optima

for data generated with parameters values typical of ecological networks. The bird-fruit net-

work analysis shows strong relationships between species niche optima and niche breadths: a

posteriori correlation with measured species traits suggest that this latent structure is related

to traits. In this network, birds and plants of intermediate size tend to have the widest niches.

Birds with pointed wings (preferentially foraging in the canopy) have smaller niches than birds

with rounded wings (preferentially foraging in the understory).

Correspondence analysis and reciprocal scaling are described as fruitful methods to char-

acterize species interaction profiles. These methods provide an ecologically meaningful graphi-

cal representation of interaction niches and allow to explore the effect of latent traits on network

structure.
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1 Introduction

The ecological niches constitute the pool of environmental conditions and resource

required for species persistence (Vandermeer, 1972). These factors can be abiotic

(e.g., temperature, precipitation, light) and grouped together in the notion of Grinnel-

lian niche (Grinnell, 1924), which centers on the physical and environmental require-

ments essential for a species’ survival. The niche can also be seen through the lens of

species’ interactions with other organisms (Eltonian niche) originally formalized in the

context of food webs by Charles Elton (Elton, 1927) but that can be extended to other

types of interactions like competition and symbiosis. By encapsulating the ecological

requirements and constraints of a species, the ecological niche is a crucial concept

contributing to enlighten our understanding of species distributions, coexistence or ex-

clusion.

Hutchinson (1957) famously formalized the niche concept as an n-dimensional hy-

pervolume. One common way to describe these hypervolumes is to approximate the

niche space with Gaussian curves along each niche axis (Gauch Jr. & Whittaker, 1972)

to estimate species niche optimum and breadth along environmental gradients (as

mean and standard deviation parameters of a normal distribution). Niche optimum

describes the conditions where species growth is maximized, whereas niche breadth

defines the range of conditions tolerated by a species. Niche breadth (or tolerance) al-

lows to define the degree of specialization/generalization of species: generalists have

wide niches and specialists have narrow niches. Generalization or specialization are

usually defined for a given niche dimension, so that a generalist that tolerates a broad

range of temperatures might tolerate a very narrow range of precipitations. The factors

influencing niche breadth are still being investigated (Sexton et al., 2017; Devictor et

al., 2010).

In this paper, we focus on the niche occupied by a species in its community, i.e. its

realized niche, by opposition to its fundamental niche, which is the range of conditions

a species can tolerate due to physiological or morphological constraints (Hutchinson,

1957; Devictor et al., 2010). The realized niche has often been defined as the niche

of a species restricted to a narrower range than its fundamental niche by biotic inter-

actions with other species in the community (Futuyma & Moreno, 1988): however, this

characterization has environmental niches in mind and here, we use a broader defi-
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nition of the realized niches as the range of resources effectively used by a species,

affected by a range of processes including for instance competition with other species

but also by availability of resources.

Multiple methods have been developed to study species environmental (or Grinnel-

lian) niches. In particular, weighted averaging is a very simple method that estimates

species optimum for a single environmental gradient by averaging the values of the en-

vironmental variable over the samples in which a species occurs (weighted by species

abundance). It is at the basis of several popular multivariate techniques routinely used

when the data at hand are species abundance (or presence) sampled across different

sites. They include reciprocal averaging (Hill, 1973) (a.k.a. correspondence analysis

(CA) Hill, 1974) to estimate latent gradients when no environmental data are available;

canonical correspondence analysis (C. J. F. ter Braak, 1986) when multiple environ-

mental data are recorded; or fourth-corner analysis (Legendre et al., 1997), RLQ anal-

ysis (Dolédec et al., 1996) and double-constrained correspondence analysis (C. J. F.

ter Braak et al., 2018) to link niche optima to the species characteristics when traits

data are also available. Note that these methods focus on species niche optima and

ignore the aspects related to niche breadth. However, Thioulouse and Chessel (1992)

notably proposed reciprocal scaling as a method to estimate niche breadth in the con-

text of CA using weighted variances.

By contrast, methods used to describe and analyze interaction (or Eltonian) niches

often use the formalism of networks (Ings et al., 2009; Bascompte & Jordano, 2007).

Networks are mathematical objects composed of a set of nodes (species) which are

linked by edges (interactions). In this paper, we focus on bipartite networks, i.e. net-

works where nodes are separated in two sets (e.g., plants and pollinators) and inter-

actions occur only between the two sets, but not within a set: bipartite networks can

describe a variety of interactions like pollination, parasitism or frugivory.

Ecological networks generally display non-random structures (Bascompte et al.,

2005; Ings et al., 2009; Jordano et al., 2003) such as nestedness, where interactions

of specialist species tend to be subsets of interactions of more generalist species (Bas-

compte et al., 2003). Various factors can influence the structure of ecological networks

(Ings et al., 2009; Vázquez, Blüthgen, et al., 2009; Peralta et al., 2024). Neutral effects

imply that a given species has more chance to interact with abundant species than with
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the rarest ones (Vázquez, Blüthgen, et al., 2009). Variations in abundance, influenced

for instance by environmental conditions or species phenology, can thus induce struc-

tures in ecological networks. Species evolutionary history is also thought to influence

their interaction patterns (Benadi et al., 2022). Trait matching, wherein species with

complementary traits preferentially engage in interactions, is also a well studied mech-

anism: for instance, body size has been identified as a key factor influencing food web

structure (Elton, 1927; Ings et al., 2009). Importantly, these processes are not mutually

exclusive and are often considered to act in synergy in shaping the observed network

patterns.

More recently, several multivariate methods originally developed to study environ-

mental niches have been applied to study trait matching. Indeed, as networks can

be encoded with matrices, many methods applicable to species-by-sites matrices are

readily applicable to networks (van Dam et al., 2021). For instance, RLQ and fourth-

corner analyses have been used to describe trait matching by measuring the correla-

tion between species traits of two sets of partners weighted by the interaction matrix

(Albrecht et al., 2018; Dehling et al., 2014; Bender et al., 2018). Even if niche theory is

usually not explicitly integrated in the study of ecological networks (Godoy et al., 2018;

Phillips et al., 2020), it is clear that trait matching implicitly relies on the notion of inter-

action niche (Albrecht et al., 2018). Indeed, trait matching posits that a species with

given traits will interact only with species with trait values lying in a range defining its

interaction niche. The average value of trait of their partners defines its niche optimum,

while their diversity correspond to its niche breadth. Niche breadth, which can be seen

as the degree of generalization of a species, has often been defined as the number of

interacting partners, potentially considering their abundance in the network (Devictor

et al., 2010). Other studies have also defined niche breadth with respect to the traits of

interacting species (functional niche, Dehling et al., 2016), considering multiple traits

separately (Maglianesi et al., 2015) or simultaneously (Dehling et al., 2016, 2014).

Methods to analyze ecological networks have brought invaluable insights on trait

matching and degree of specialization, but also have shortcomings. First, trait matching

in ecological networks has mainly been investigated separately from interaction niches.

However, trait matching can be seen through the lens of ecological niches (Eklöf et

al., 2013): the term "matching" then refers to the alignment of the interacting species
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traits with their functional niche optima (as considered in several simulations models,

e.g. Fründ et al., 2016; Benadi et al., 2022). Second, trait matching studies only

consider the average relationship between species traits across the network. Hence,

they generally ignore the variability around the matching, which can be related to the

concept of niche breadth. Lastly, methods to study trait matching require the collection

of traits data, which has been recognized as a challenge (Vázquez, Blüthgen, et al.,

2009), because it is tedious to collect multiple traits and identify a priori which ones are

relevant drivers of interactions.

We propose to use correspondence analysis (CA) (Hirschfeld, 1935; Hill, 1974),

a method often used in ecology to study species’ environmental niches, to study trait

matching and specialization/generalization in interaction networks. Indeed, these con-

cepts can be related to the interaction niche, with trait matching defining niche optimum

and specialization/generalization defining niche breadth. CA can also be useful to an-

alyze interaction networks, as previously pointed out by Lewinsohn et al. (2006) and

van Dam et al. (2021). Here, we combine the niche and the network aspect to show

how CA can be used to infer species’ interaction niches from interaction network data.

Our framework allows to measure the effect of trait matching without using traits data

(using the notion of latent traits). Scores produced by CA allow to ordinate species

along gradients determined by their interacting partners. We show that these scores

estimate the optima of species interaction niches and can be used as proxy for unmea-

sured traits determining the occurrences of interactions. We also use reciprocal scaling

(Thioulouse & Chessel, 1992) to estimate species niche breadths. Lastly, these meth-

ods also enable ecologically meaningful graphical representation of bipartite networks

and species interaction niches.

In this paper, we first present CA and reciprocal scaling and their interpretation in

the context of interaction networks. Then, we evaluate the performance of our frame-

work to estimate species niches (optimum and breadth) using simulated data. Finally,

we analyze a real bird-fruit interaction network (Dehling et al., 2021) to show how our

framework can help to measure and represent interaction niches, highlight trait match-

ing and explore the drivers of niche breadth.
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2 Material and methods

All analyses were performed with R 4.3.3 (R Core Team, 2024) and are stored in a

private GitHub repository (https://github.com/LisaNicvert/PhDaxis01_CAnetwork/tre

e/thesis), and can be shared on demand. It is also intended to be made public upon

publication.

2.1 Notations

In this part, we consider a r × c matrix Y = [yij] representing the interactions between

r resource species and c consumer species (either abundances or presences). We

use the terms “resource” and “consumer” in accordance with the literature, as these

terms describe broad categories that encompass diverse networks such as pollination,

herbivory or parasitism: but as long the interaction network is bipartite, the two sets of

species could belong to any category.

Let P be the table of relative frequencies (P = [yij/y++], where y++ =
∑r

i=1

∑c
j=1 yij

is the grand total of Y). We define the weight matrices for resources/rows Dr = diag(r)

and column/consumers Dc = diag(c), where the vectors r = P1r = [p1+, . . . , pr+]
⊤ and

c = P⊤1c = [p+1, . . . , p+c]
⊤ represent respectively the row and column marginal sums

and pi+ =
∑c

j=1 pij and p+j =
∑r

i=1 pij.

2.2 Quantify trait matching

We consider two known traits x and y measured, respectively, on the resource and con-

sumer species. A simple measure of trait matching is given by the fourth-corner statis-

tic, which measures the correlation between the traits of consumers and resources,

weighted by the interaction matrix:

corP(x,y) = x̃⊤Pỹ (2.1.1)

where x̃ and ỹ contains normalized traits using weights (x̃ and ỹ are centered

scaled, respectively using weights Dr and Dc). When the traits are not known, in-

direct gradient methods such as correspondence analysis are useful to identify latent

structures in ecological networks.
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2.3 Correspondence analysis (CA)

Correspondence analysis (Hirschfeld, 1935; Hill, 1974) is a multivariate method used

to analyze contingency tables. CA is based on the generalized singular value decom-

position of the doubly centered frequency interaction matrix P, P0 = P− rc⊤:

P0 = U∆V⊤ (2.1.2)

The matrices U and V are orthonormal with respect to weights Dr and Dc

(U⊤DrU = I and V⊤DcV = I) and contain the left (resource) and right (consumer)

generalized singular vectors (respectively). ∆ is the diagonal matrix containing ordered

singular values. The matrix of CA eigenvalues Λ is equal to ∆2.

If we consider a given dimension k, rewriting the previous equation shows that CA

finds singular vectors uk and vk so that the singular value δk is maximized:

δk = u⊤
k P0vk (2.1.3)

Equation (2.1.3) is analogous to the trait matching equation (2.1.1) (except for the

use of P0 instead of P, which does not affect results if traits data are centered),

where known traits are replaced with the generalized singular vectors uk and vk. CA

amounts to finding the singular vectors with maximal correlation: the square-root of

CA eigenvalue λk represents the absolute value of the correlation between uk and vk

(
√
λk = |corP(uk,vk)|). Thus, scores uk and vk can be interpreted as latent traits, as-

sociated to resources (respectively, consumers), that maximizes trait matching. The

eigenvalues λk give an indication on the agreement of consumer and resource species

scores on dimension k: if eigenvalues are high, it indicates that latent traits are able to

explain well the probability of interaction.

CA has the advantage to evaluate the effect of trait matching, without using traits

data, using these latent scores. However, latent traits can be interpreted in a broader

sense as proxies for unmeasured properties for species, not only traits (for instance as

phylogenetic signal as in Benadi et al., 2022). To help the interpretation, it is possible

to link a posteriori latent scores identified by CA to known properties such as traits

or phylogeny. CA is well suited to exploratory analyses, to identify structures in the

network and estimate the part that the measured traits or phylogeny succeed, or fail,
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to explain.

CA assigns similar scores to species with the same interaction profile. In other

words, two consumer species interacting with the same resources will be positioned

nearby in the multivariate space (and vice versa for resource species). Species scores

can thus be used to reorder rows and columns of the interaction matrix and highlight

the structure of the network (Lewinsohn et al., 2006) (see Appendix C).

Standards outputs of CA consist of two biplots where both consumers and re-

sources are displayed. For that, we use the following transition formulas:

U⋆ = Dr
−1PV (resources) (2.1.4a)

V⋆ = Dc
−1P⊤U (consumers) (2.1.4b)

Equation (2.1.4a) expresses resources scores as a weighted mean of the con-

sumers scores they interact with. Reciprocally, Equation (2.1.4b) expresses consumers

scores as a weighted mean of the resources scores they interact with. The transfor-

mation described in Equations (2.1.4) is called weighted averaging.

A first biplot can be drawn by displaying the resources scores given by the latent trait

(U) and consumers scores given by weighted averaging (V⋆). On this plot, a consumer

is located at the centroid of the resource it uses, and a resource is located according

to its latent traits.

On the second biplot, scores are inverted so that consumers are represented with

scores V (given by the latent traits) and resources with scores U⋆ (given by weighted

averaging). On this plot, a resource is located at the centroid of the consumers that

use it, and a consumer is located according to its latent traits.

The coordinates of U⋆ and V⋆ can be interpreted as the niche optima of resource

(respectively, consumer) species in the interaction network, measured with its interact-

ing partners. This interpretation of the interaction niche is similar to the niche quantified

with the method of Dehling and Stouffer (2018), but in the context of CA (as discussed

by C. J. ter Braak and Prentice, 2004 and C. J. F. ter Braak and Verdonschot, 1995 for

environmental niches).

CA seems particularly adapted to the analysis of interaction networks, as it allows to
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display structures associated to trait matching and represent species niches by estimat-

ing their optima by weighted averaging. A major drawback of CA is that it completely

ignores the diversity of interacting partners, and thus the niche breadth. Moreover,

niche optima can only be represented on two different biplots.

2.4 Reciprocal scaling

Reciprocal scaling (Thioulouse & Chessel, 1992) is an extension of CA that solves the

two issues mentioned above by providing a simultaneous display of niche optima and

breadths of consumers and resources.

Reciprocal scaling uses the interpretation of CA as a special case of canonical

correlation analysis and shift the focus of the analysis by considering the interactions,

rather than the species, as statistical individuals (for complete mathematical develop-

ment, see Thioulouse & Chessel, 1992). For the k-th dimension, reciprocal scaling

defines a score hk for each resource-consumer interaction in the matrix: these interac-

tions, represented by non-empty cells in Y, are called correspondence by Thioulouse

and Chessel (1992). hk is of length n0̄, where n0̄ is the number of unique interactions

in the matrix (i.e. non-empty cells). hk can be easily computed using the CA scores for

the k-th dimension:

hk(i, j) =
u⋆
ik + v⋆jk√
2λkµk

(2.1.5)

where λk is the CA eigenvalue for axis k and µk = 1+
√
λk. Here, a double indexing

is used for the elements of hk, which is a one-dimensional vector: hk(i, j) corresponds

to the x-th element of hk (x = 1 . . . n0̄), containing the interaction between consumer

i and resource j. Note that the score hk(i, j) is defined only when species i and j

interact.

The interaction score hk(i, j) allows to display each resource-consumer interaction

in the multivariate space. Then, it is possible to display a consumer (or a resource)

as a cloud of individual interactions in the multivariate space. This cloud represents

the interaction niche of a species, and can be summarized by estimating its optimum

and its breadth. To do so, ellipses corresponding to the bivariate normal distribution

summarizing species niches can be drawn in the multivariate plane (see Figure 2.1.1).
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If we consider species s in the plane given by axes k and l, the center of its ellipse is

given by the niche optima of species s in axes k and l (weighted averages of interaction

scores), the semi-minor and -major axes are given by its niche breadths in axes k and l

(weighted standard deviations of interactions scores) and the orientation of the ellipse

represents the weighted covariance of interaction scores for axes k and l. Moreover,

we can show that the niche optima computed from these scores correspond to the

scores U⋆ and V⋆ defined above, with a scaling factor. Formulas to compute niche

optima, breadths and covariances from Thioulouse and Chessel (1992) adapted with

the notation used in this article are given in Appendix D.

Figure 2.1.1: Visualization of the interaction niche in the multivariate plane. The niche of is
depicted by an ellipse whose center represents niche optima and axes represent niche breadths
on each axis. The angle of the ellipse represents the covariance between niche axes.

2.5 Simulation

We simulated interaction data to evaluate the performance of CA and reciprocal scaling

to estimate parameters of species interaction niches. Our simulation model takes into

account species traits (via trait matching) and their abundances (via neutral effects)

and combines these two processes to generate an observed interaction matrix (see

Figure 2.1.2).

Simulation model

Our model is inspired from the models of Fründ et al. (2016) and Benadi et al. (2022)

to simulate trait-based interaction networks and of the models of Dray and Legendre
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(2008) and Minchin (1987) for niche modeling in the context of species/sites associa-

tions.

We consider the interactions between the i-th resource (i = 1 . . . r) and the j-th

consumer species (j = 1 . . . c). The simulation procedure consists in different steps

described below and illustrated in Figure 2.1.2:

Figure 2.1.2: Model used to simulate interactions between consumer and resource species. (a)
Two traits are generated for each species corresponding to their niche optima. For consumers,
standard deviations are also associated to traits to generate the niche breadths. (b) Interaction
probabilities due to trait matching are computed using a multivariate normal distribution. (c)
In parallel, resource and consumers abundances are randomly generated. (d) Interactions
counts representing the neutral effect of abundances on interaction probability are computed
from abundances. (e) Matching and abundance-driven interactions are combined to get the
interactions counts based on both processes. (f) Observed interactions are then sampled from
the mixed interaction probabilities. Equations are explained in the main text.
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Step (a): we simulate two traits for both consumer and resource species (Figure

2.1.2a). Resource species traits are stored in matrix Tr = [trik] (r × 2) and consumer

traits are stored in matrix Tc = [tcjk] (c × 2). The first trait for both resources and con-

sumers is drawn from a uniform distribution between 0 and 100, and the second trait

is generated similarly but in the interval 15-85 (see length of the traits axes on Figure

2.1.2a), so that the second trait has less weight in driving matching. For consumers, we

associate the two columns vectors of Tc to those of S = [sjk] that allow to define the de-

gree of specialization (i.e., niche breadth) for consumers (values of S are represented

on Figure 2.1.2a as the standard deviation of a Gaussian curve). The elements of S

contain the absolute values of numbers drawn from a normal distribution with mean

µbreadth and standard deviation σbreadth.

Step (b): traits generated in the previous step are used to compute an interaction

probability due to matching (Figure 2.1.2b). Species traits are assumed to define the

interaction niche with a bivariate normal distribution: the probability of interaction due

to matching mij follows a normal distribution influenced by the difference between the

trait values of resource species i and consumer species j (tcjk − trik) and the degree of

generalization of consumer species (sjk) as follows:

M = [mij] =
1

2πsj1sj2
exp

(
−
(tcj1 − tri1)

2

2s2j1
−

(tcj2 − tri2)
2

2s2j2

)
(2.1.6)

Step (c): we generate species abundances for consumers and resource species

independently (Figure 2.1.2c) from a uniform or a log-normal distribution. These abun-

dances are stored in vectors nc (c× 1) for consumers and nr (r × 1) for resources.

Step (d): we then compute a matrix of predicted interaction counts based solely on

the abundances (Figure 2.1.2c):

A = [aij] =

[
nr
i∑r

i=1 n
r
i

nc
j

]
(2.1.7)

Here, we model neutral effects where interactions are the result of consumer choices

influenced only by the relative abundance of resources (representing the availability of

resource species in the landscape). The values in matrix A represent the predicted

interaction counts, for each species pair, based solely on their abundances.

Step (e): we compute a composite interaction probability resulting from the com-
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bined effects of trait matching (M, equation (2.1.6)) and neutral abundance effects (A,

equation (2.1.7)) (Figure 2.1.2e). A factor δ (0 ≤ δ ≤ 1) allows to control the relative

weight of the matching and the abundance processes: if δ = 0, then the strength of the

matching is null, and interactions are driven only by abundances. If δ = 1, abundances

and matching concur to produce the observed pattern, and the strength of matching

is maximal compared to other values of δ. The mixed interaction frequency matrix

A⋆ = [a⋆ij] is computed as:

a⋆ij = (mi|j)
δaij (2.1.8)

where mi|j = mij/m+j represents the probability of interaction with resources per con-

sumer species and m+j =
∑r

i=1mij is the marginal probability of interaction for species

j.

The interaction probability matrix P⋆ = [p⋆ij] is then computed from the abundance

matrix:

p⋆ij =
a⋆ij
a⋆++

(2.1.9)

where a⋆++ is the grand total of A⋆.

Step (f): finally, we sample observed interactions counts from the interaction prob-

ability matrix P∗ (Figure 2.1.2f). To do so, we sample ninter interactions from a multino-

mial distribution with κ = rc outcomes corresponding to the pairwise interactions. The

probability vector corresponds to the flattened matrix P⋆, noted p⋆ (of length κ).

z ∼ Mκ=rc(n = ninter, p = p⋆) (2.1.10)

The interactions counts obtained after sampling in the vector z are finally rearranged in

the matrix Z (r × c) which corresponds to the sampled interaction network.

Simulation parameters

To evaluate our method, we simulate data under the model described above. We

conduct 4 experiments to study the influence of 4 parameters (the detailed parameter

values are presented in Table 2.1.1):
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Experiment ninter Distribution of nr and nc µbreadth σbreadth

1. ninter

200 Lognormal(µ = ln(3), σ = ln(1.5)) 10 5
500
5000
1000
10 000

2. nr and nc

5000 U(a = 0, b = 100) 10 5
Lognormal(µ = ln(10), σ = ln(1.5))

Lognormal(µ = ln(3), σ = ln(1.5))

Lognormal(µ = 0, σ = ln(10))

3. µbreadth

5000 Lognormal(µ = ln(3), σ = ln(1.5)) 2 1
10 5
20 10
50 25

4. σbreadth

5000 Lognormal(µ = ln(3), σ = ln(1.5)) 10 0.1
1
5
10
50

Table 2.1.1: Parameter values used for the simulation study. Each experiment (first column)
consists of simulations with different values for one of the parameters. Experiment 1 (ninter)
varies the total number of interactions. Experiment 2 (nr,nc) progressively increases the skew-
ness of the species abundances. Experiment 3 (µbreadth) changes the mean value of the con-
sumers’ niche breadth. Experiment 4 (σbreadth) changes the standard deviation of the con-
sumers’ niche breadth. For Experiment 3 (µbreadth), the standard deviation is also changed to
keep a constant ratio of σbreadth = µbreadth/2.

1. Sampling (ninter): we vary the total number of interactions in the matrix ninter, which

represents the sampling intensity and allows to evaluate the robustness to incom-

plete sampling.

2. Species abundance distributions (nr and nc): we sample nr and nc from a uni-

form distribution, and log-normal distributions either mildly, moderately- or very

skewed. The aim is to evaluate the robustness of the method to skewed abun-

dances typically encountered in ecological communities.

3. Average degree of specialization of consumers (µbreadth): we vary the mean of

the normal distribution in which the consumers traits variance s2jk (k = 1, 2) are

sampled. This allows to contrast generalists consumers (high variance) with spe-

cialized consumers (low variance).

4. Heterogeneity of the degree of specialization (σbreadth): we vary the variance of
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the normal distribution in which the consumers traits variance s2jk (k = 1, 2) are

sampled. This allows to contrast homogeneous consumers (same degree of spe-

cialization) with heterogeneous consumers (diverse degrees of specialization).

For each of the four experiments described above, we vary one of the simulation

parameters, corresponding to the effect we study. The other parameters are fixed to a

default value (see Table 2.1.1). For all simulations, we generated interactions between

r = 50 resources and c = 60 consumers. We set the matching strength to δ = 0.2, a

value that was fixed empirically because it generated data where the relative strengths

of abundance- and matching-driven processes seemed to both structure the observed

matrix (results with other values of δ are presented in Appendix A).

For each experiment, we generated 100 datasets. For each dataset, we computed

the true niche optimum as the mean of the traits of the interacting partners of a species,

weighted by their interaction frequency. Similarly, the true niche breadth is computed

as the variance of the traits of the interacting partners of a species weighted by the

interaction frequency. These true values quantify species’ realized niche (inference of

the fundamental niche is discussed in Appendix B). Then, we performed CA and re-

ciprocal scaling on each dataset and obtained estimates of the realized niches optima

and breadths with these methods. To evaluate the performance, we measured the cor-

relation between the niches optima and breadths estimated by reciprocal scaling and

the true values of the realized niche. In order to choose which trait/axis pair correlation

to measure, we chose the trait for which the correlation of optima is maximal on the

first axis, and the other trait is correlated to axis 2.

2.6 Real data analysis

Dataset

To illustrate CA and reciprocal scaling on real ecological data, we used a bird-fruit

interaction network from the ANDEAN frugivory dataset (Dehling et al., 2021) (the cor-

responding interaction matrix is shown in Appendix C). In this dataset, consumers are

bird species and resources are the fruiting plants they feed on and whose seeds they

disperse. This network was sampled in the lower montane rainforest in Peru (data

Peru1 in the ANDEAN dataset). We chose this network as this is the one with the most
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observations and sampling effort (960h) in the ANDEAN dataset. Data were collected

by direct repeated observation conduced throughout an entire year (4 times between

2009 and 2010) in 3 plots of 100 m × 30 m. A transect was used to determine fo-

cus fruiting plants inside each plot and seed removal by birds were recorded on these

plants.

Along with interactions, this dataset also includes species traits which are thought to

have an important role in trait matching processes. Although CA and reciprocal scaling

do not require traits, we will use these traits a posteriori to interpret the analysis. Plant

traits were collected in the field, and bird traits on museum specimens. Four traits were

collected for plants: fruit diameter, fruit length, crop mass (mean number of fruits per

plant × mean fruit mass) and plant height. For birds, four traits were measured as well:

bill width, bill length, body mass and Kipp’s index. The Kipp’s index is a measure of

the pointedness of the wing: it is the Kipp’s distance (distance from the tip of the first

secondary to the wing tip) divided by wing length (Dehling et al., 2014). A low Kipp’s

index indicates rounded wings, and a high Kipp’s index indicates pointed wings. In the

following analyses, to ease interpretation, we discard fruit length and beak length, as

these traits are functionally similar to fruit diameter and bill width.

Before data analysis, we filter out the birds or plants that interact only with one other

species (8 birds and 12 plants). Indeed, since CA is based on species ordination, these

species are problematic from a methodological point of view (Greenacre, 2013). These

very specialized species can be seen as a part of an interaction module, as indicated

in van Dam et al. (2021), who also advise analyzing modules separately. The final data

has 40 plants and 53 birds (the list of these species, their traits and their corresponding

codes can be found in Appendix E).

Analyses

We performed CA and reciprocal scaling on this dataset using the R package ade4

(Thioulouse et al., 2018). This allows us to visualize species niches in the multivariate

space and to compute their niche breadths and optima.

To show how our method can answer ecological questions, we investigated the

drivers of niche breadth using the latent variables given by the multivariate axes. There-

fore, we modeled the relationship between niche breadths and optima obtained by re-
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ciprocal scaling for the first two axes. In total, we model 4 relationships (two axes for

resources’ and for consumers’ niches). We consider linear and quadratic regression

models and choose the best model with a likelihood ratio test.

Finally, to interpret CA and reciprocal scaling outputs, we computed a posteriori

correlations between the coordinates of the species on each CA axis and measured

species traits.

3 Results

3.1 Simulation

We carried out simulations studies to evaluate the capacity of CA and reciprocal scal-

ing to infer species latent niches. We performed 4 experiments to test the influence of

sampling intensity, species abundance distribution, consumer niche breadth and het-

erogeneity. The results are presented in Figure 2.1.3.

First, as expected, performance consistently improves with sampling completeness

for all niche measures (Figure 2.1.3a). Note however that the niche breadth for re-

sources on axis 2 is always the least well estimated. Second, in all reasonable cases

and when there are enough data (Figure 2.1.3a), the niche optima are recovered cor-

rectly on both axes (median correlation value above 0.875), and niche breadths are

recovered less precisely. Niche parameters are always better recovered on the first

axis, which is consistent with the fact that, by construction, trait matching with the first

trait explains more structure. Finally, consumers niche breadths are always better re-

covered than resource niche breadths.

Regarding the effect of abundance distribution (Figure 2.1.3b), the model is ro-

bust to skewed abundance distributions, although performance drops a little with very

skewed distributions.

Regarding consumer niche breadth (Figure 2.1.3c), the performance is better for

niche breadth of intermediate size (the optimal performance is reached with a niche

breadth of 10, representing 10% of the total length of the gradient in our setting).

Finally, regarding the heterogeneity of consumers’ niche breadths (Figure 2.1.3d),

homogeneous niche breadths improve the performance. In particular, the niche
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(a) Sampling intensity (b) Abundance distribution

(c) Consumers niche breadth (d) Heterogeneity of consumers niche breadth

Figure 2.1.3: Results of the simulation study. Each subfigure explores the influence of one
parameter on the model performance. (a) Effect of sampling intensity. (b) Effect of species
abundance distributions. (c) Effect of the mean consumers niche breadths. (d) Effect of het-
erogeneity of consumers niche breadths. The y-axis is the absolute value of the correlation
between true and estimated values of niche optima and niche breadths (respectively top and
bottom of each subplot). Below the legend, matrices exemplify network data generated with the
corresponding parameter value (with the size of points proportional to the number of observed
interactions censored at the 1st and 99th percentile).

breadth of resources is correctly recovered only with very homogeneous consumer

niches.
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3.2 Data analysis

The permutation chi-squared test performed on the interaction table shows that there

is a non-random structure in the network (χ2 = 17784, 2000 permutations, p-value =

5.0 × 10−4). The effect size computed with Cramér’s V (V = 0.29, IC95 = [0.26, 1.00]),

suggests a medium effect (Ellis, 2010).

We performed correspondence analysis and reciprocal scaling. CA eigenvalues

suggest that matching between latent traits is quite strong. The square-root of the CA

eigenvalues correspond to the absolute value of the correlation between latent traits:

here, for the first three eigenvalues, we have
√
λ1 = 0.79,

√
λ2 = 0.65 and

√
λ3 = 0.63.

(a) Bird niches (b) Plant niches

Figure 2.1.4: Reciprocal scaling of the birds-plants interaction network. Points correspond to
the correspondences hk(i, j) in the first 2 dimensions. The correspondences are grouped by
bird species (a) or plant species (b). The species label are placed at the reciprocal scaling
mean, and the ellipses correspond to the bivariate normal distribution of variances and covari-
ances given by reciprocal scaling (with a scaling factor of 1.5, i.e. the ellipse axes lengths are
equal to 1.5

√
λk on axis k, corresponding to around 67% of the points contained in the ellipse).

Species are colored according to their position on the first axis.

With reciprocal scaling, we can position interactions in the multivariate space, and

visualize species niches as the mean and variance of these interaction scores. On

Figure 2.1.4, interactions (points) are grouped by interacting partner (either birds or

plants). Here, we separate the two groupings to avoid a cluttered representation, but

the two graphs show niches in the same multivariate space. Figures 2.1.4a and 2.1.4b

show interactions grouped by bird and plant species, respectively. The first 2 axes

together explain 28.7% of the variance in the data (17.2% on axis 1 and 11.5% on axis
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2). Eigenvalues suggest that the third axis also holds structure (10.9% variability), but

here we do not show results on the third axis for concision.

On these figures, two birds (or plants) whose means are located nearby have similar

niche optima. Moreover, a bird and a plant that interact preferentially have their niche

optima nearby. For instance, if we consider B05 (Cephalopterus ornatus) and P47

(Symplocos arechea), their interaction with each other represent respectively 66% and

33% of their interactions. Finally, the length of the ellipses’ axes correspond to the

niche width along each multivariate axis (latent trait), and the inclination of the ellipse

represents the covariance between the niche axes.

These figures also show how niches are distributed in the latent traits space. For

birds (Figure 2.1.4a), many have a niche located around the origin (they interact with

average plants, in the sense of their latent traits). Then, we can distinguish two clus-

ters along the positive portion of the two main axes, which show two strategies of birds

along the two latent plant traits axes: either interact with plants with above-average

values on axis 1, and small values on axis 2, or the reverse. This open triangle is com-

pleted by a few bird species around the diagonal (e.g. B33 Penelope montagnii, B53

Thraupis bonariensis and B59 Turdus chiguanco) that seem to have an intermediate

niche optimum and a high niche breadth.

For plants, many also have a niche optimum close to the origin (they interact with

average birds, in the sense of their latent traits). As for birds, two clusters emerge

along the two main axes, which also reflects two plant strategies. However, contrary to

birds, we cannot clearly see plant species around the diagonal, except P47 (Symplocos

arechea) that stands out against the two clusters. Species further from the origin also

seem to have wider niches for both birds and plants; but the cluttered niches around

the origin make it hard to investigate this pattern on these plots.

To better visualize the relationship between axis position and niche breadth, we

plot the relationship between these two variables for each axis in Figure 2.1.5. We also

model these relationships as described in the material and methods. On axis 1, there

is a concave relationship with a positive linear component between niche optimum and

niche breadth for birds, but the variance of the residuals increases along axis 1. For

plants, there is a concave relationship only. On axis 2, we have a convex relationship

for birds, with a strong linear positive component (the convex form seems to be driven
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(a) Axis 1

(b) Axis 2

Figure 2.1.5: Niche breadth versus niche optimum on the 2 multivariate axes. Niche breadths
(variances) and niche optima (means) were computed with reciprocal scaling. The top graphs
(a) shows the relationship on axis 1 and the bottom graphs (b) on axis 2. The left and right
panels represent bird and plant species, respectively. The solid line is the prediction of the best
linear model and the gray shading represents the 95% confidence interval around the predicted
mean value. The coefficient of determination (R2) and the linear model equation are shown in
the top left corner.

mainly by B32 (Patagioenas plumbea). For plants, we have a very weak relationship

(R2 = 0.2) with convex and linear positive components.

To interpret the latent trait axes, we correlated measured traits with plant and birds

CA coordinates a posteriori. Figure 2.1.6 shows how traits are correlated with the multi-

variate axis and with each other. All traits correlate positively with axis 1, which strongly

suggests a size effect along this axis. Axis 2 is characterized by its negative correla-
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Figure 2.1.6: Correlation circle measured a posteriori between species traits and multivariate
axes. Bird traits are shown in solid red lines and plant traits in dashed blue lines. Axis 1 shows
a size effect while axis 2 is defined by the matching between plant height and Kipp’s index.

tion with plant height, Kipp’s index and crop mass. All plant traits are also strongly

correlated with each other. For birds, body mass and bill width are highly correlated.

Regarding cross-trophic level traits, Kipp’s index is strongly positively correlated with

crop mass and plant height.

4 Discussion

We evaluated CA and reciprocal scaling on both simulated and real interaction data to

quantify species interaction niches. We also showed how this approach can be used to

test hypotheses on the drivers of species position on the specialist/generalist gradient

with the case study.

Reciprocal scaling provides a quantitative measure of the interaction niches.

Species niche optima are approximated using the centroid, and species niche breadths

using the variance of species interactions in the multivariate space. The resulting niche

is then a hyperellipsoid in n dimensions, corresponding to the isocontours of a multi-

variate normal distribution in the same hyperspace. This definition of the niche bears a

strong parallel with Hutchinson’s definition as a hypervolume (Hutchinson, 1957). The

latent approach of CA also has the advantage not to be limited to collected traits to as-

sess niche patterns. However, latent gradients are also harder to interpret, especially
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without external knowledge on the studied system.

4.1 Simulation

The simulation study shows good performance of this method to recover niche optima,

but mixed performance regarding niche breadth. In particular, the niche breadths of

resource species are poorly recovered overall, except in a few particularly favorable

cases. Unsurprisingly, performance increases with sampling intensity (when ninter in-

creases, Figure 2.1.3a). When the proportion of variance explained by latent traits

is smaller (axis 2), performance drops. The estimation is robust to skewed data, but

performance decreases with extremely skewed data: in that case, we can hypothesize

that the niche of rare species is estimated less precisely because they have very few

observed interactions.

Consumers’ niche breadth has an effect on the performance. This was expected,

because of the way CA orders individuals on a latent gradient. For instance, if we

consider consumers, they are ordered so that two consumers interacting with similar

resource species are positioned nearby. Hence, CA needs some overlap in interac-

tions to position consumers on the gradient, but not too much or the signal weakens.

Therefore, there is a trade-off between narrow and wide niches: they need to overlap

enough to order adjacent species, but not too much so that there is still a structure

in the network. This trade-off is well reflected in the performance of the inference in

Figure 2.1.3c.

The heterogeneity of consumers niche breadth decreases the performance of the

estimation for both niche optima and niche breadth. We can hypothesize that this is

due to insufficient overlap with other species’ interactions for specialist species, which

might bias the placement of niche optima and the estimation of niche breadths for

specialist species and their interacting partners.

Finally, niche parameters are better recovered for consumers than for resources.

While niche optima are recovered fairly well for both trophic levels, niche breadths

are significantly less well recovered for resources. Differences might arise from the

asymmetric way niche breadths are specified in our simulation model: indeed, niche

breadths for resources are not controlled and driven entirely by the niche breadth of

the consumers they interact with.
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CA is able to recover a signal of matching rather accurately for any trait matching

strength, which we can evaluate by examining eigenvalues and chi-squared tests (see

Appendix A). Paradoxically, a stronger matching does not translate to a better recovery

of the latent traits, as discussed in Appendix A. Indeed, if the matching is too strong,

each species becomes increasingly separated of the others on the ordination, and CA

is unable to find the common structuring driver without external information.

Regarding the simulation model, it makes a number of simplifying hypotheses on in-

teraction networks. First, in our model, only consumers have a preferred niche breadth.

This makes sense in our case study with birds (as consumers) and plants (as re-

sources), because birds’ cognitive processes and movement abilities allow them to

choose the plants with which they interact: but on an evolutionary timescale, plants

might evolve to attract more diverse or more similar birds, thereby effectively evolving

a preferred niche breadth. However, specifying a model taking into account both pre-

ferred niche breadths to determine matching (i.e. adapting Equation (2.1.6)) is difficult,

because it requires to combine both niche breadths in the trait matching step. In fact,

to our knowledge, no such model exists in the literature. The model also specifies trait

matching with a multivariate normal distribution, which is a reasonable choice if the

real-world interactions are at least symmetrical. Despite theory and observations sup-

porting this hypothesis for environmental niches, especially for plants (e.g. Shelford’s

law of tolerance, Erofeeva, 2021; Shelford, 1931 and observations of Gauch Jr. and

Whittaker, 1972), for interaction networks this hypothesis is debated (Blonder et al.,

2014; Benadi et al., 2022). Despite these limitations, we think that the simulation

model used here was useful to get an idea of the method’s ability to recover niche

parameters, before applying it to real data.

4.2 Data analysis

Regarding real data analysis, a permutation chi-squared test suggests that there is

a non-random structure in the network. However, the network is also very noisy, as

suggested by visual examination of the network and medium effect size (Cramér’s

V = 0.29, IC95 = [0.26, 1.00]). This non-random structure is quantified as interaction

counts that deviate from their expected value in the sense of the chi-squared statistic.

However, to assess the expected number of interactions, the chi-squared statistic uses
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the matrix margins, thus assuming that the number of times a species is observed in

the network is a surrogate of its abundance. This hypothesis might not be valid for real

data due to sampling effects. In particular, the interactions range of the most abun-

dant species might be better sampled, thus artificially increasing their generality, and

reciprocally under-sampling of rare species might artificially increase their specializa-

tion. This is a well-known problem highlighted in simulation studies (Blüthgen et al.,

2008; Fründ et al., 2016). Finally, this network represents a subsample of species, and

some species in the network were probably not sampled, which may affect the network

structure.

To interpret latent traits given by the multivariate axes, we correlated species co-

ordinates on the multivariate axes (giving their latent traits) with their measured traits.

Because of allometry, traits are strongly correlated within each trophic level. Tall plants

also tend to produce larger fruits and yield a higher crop mass, while large birds also

tend to have a wide beak. We can also understand the (smaller) positive correlation be-

tween Kipp’s index (wing pointedness) and other bird traits, because large birds tend to

reside in the more open canopy where they can circulate more freely (Pearson, 1971).

Traits of birds and plants are also generally positively correlated, which suggests some

degree of trait matching.

In the results, we explored the niche patterns for the first two axes (or latent traits).

We find relationships between niche optimum and niche breadth for birds and plants.

There is a concave relationship between niche breadth and the first latent trait for birds

and plants, and a convex relationship between birds niche breadth and the second

latent trait for birds.

The first axis is mostly correlated with birds and plants size. For birds (Figure 2.1.5a,

left), there is a convex relationship with a positive linear component between niche

breadth and axis 1, which suggests that the larger birds are, the wider their niches are,

but that the birds with the widest niches are medium-sized birds. Here, a wide niche

means a high diversity of fruits sizes eaten. To interpret this result biologically, we can

hypothesize that birds are limited by beak size. Small-billed birds may not be able to

grasp large fruits, while bigger-billed birds can swallow even small fruits (Wheelwright,

1985). However, birds that are too large do not eat very small fruits because they need

to satisfy their high absolute energy expenses and cannot spend too much time and en-
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ergy foraging, so they focus on fruits that are larger or found in higher abundance on the

plant (crop mass) that minimize foraging time (Schoener, 1971; Albrecht et al., 2018).

This limiting effect of energy requirements is weak: the graph rather shows a diversity

of strategies for large birds, with for instance B34 (Pharomachrus antisianus) and B41

(Rupicola peruvianus) eating more diverse-sized fruits and B05 (Cephalopterus orna-

tus) and B58 (Trogon personatus) choosing fruits of more uniform sizes. In addition,

the correlation between birds’ body mass and indices of plant productivity such as crop

mass or fruit diameter is weak (Figure 2.1.6). This weak effect of energy traits may

be due to the fact that birds foraging on fruits is partially modulated by whether they

are fruit-gulpers or pulp-feeders (Palacio et al., 2017). These large birds can also have

diverse ways of handling fruits, as well as other food sources (Foster, 1987).

For plants (Figure 2.1.5a, right), the convex relationship between niche breadth and

axis 1 is clearer. It suggests that plants of intermediate size attract more diverse-sized

birds, while small fruits are only consumed by small birds, and large plants are reserved

to big birds. To characterize plants with intermediate coordinates and wide niches on

the first axis, we examine the reciprocal scaling plot 2.1.4b. We can see that P11

(Elaeagia mariae) and P49 (Turpinia occidentalis) predominantly interact with small

and medium-sized birds, while P12 (Endlicheria sp.) and P47 (Symplocos arechea)

interact with medium to large birds. A closer examination of their respective traits

reveal that the large size of P11 and P49 on the first axis is predominantly driven by

their height, so it does not impose a harsh barrier for interactions. On the contrary, P12

and P47 produce large fruits, in particular larger than the mean bird bill size, so the

interaction barrier for small birds is stronger.

On axis 2, we interpret the relationship for birds only, because the relationship be-

tween the latent trait and niche breadth for plants is very weak. Figure 2.1.5b (left)

shows a concave effect with a large positive linear component. In this discussion, we

will focus on this linear component, because the convex form seems to be driven by a

single species (Patagioenas plumbea B32). The second axis is negatively correlated

to Kipp’s index (wing pointedness) and plant height. So birds with pointed wings have

smaller niches on the second axis, i.e. they consume fruits from plants of homoge-

neous heights, while birds with rounded wings have wider niches (i.e. they consume

fruits from plants of heterogeneous heights). We can interpret these results as prefer-

109



Part 2: Investigate trait matching in interaction networks

ences driven by foraging space. Indeed, rounded wings confer more maneuverability

in dense vegetation (Thiel et al., 2023), so birds with rounded wings primarily feed on

small plants from the dense understory. On the contrary, birds with pointed wings pref-

erentially forage on tall plants from the more open canopy. Here, we find a higher spe-

cialization for birds with a high Kipp’s index (pointed wings). We hypothesize that these

birds might find it difficult to navigate dense understory where vegetation is denser,

while birds with rounded wings might move to the less dense canopy at a lesser cost.

It is also possible that top canopy bird focus on highly productive fruit patches in the

canopy by choosing plants with high crops (as suggested by the high correlation be-

tween crop mass and Kipp’s index in Figure 2.1.6), whereas birds with rounded wings

also supplement their diet with other food sources such as insects (Foster, 1990; Thiel

et al., 2023). The higher specialization of canopy birds seems in contradiction with

the findings of Schleuning et al. (2011): however, in this study, the authors measure

specialization with an index considering the diversity of interacting partners and not the

diversity of their (latent) traits.

Finally, we must keep in mind that we observe realized niches here, so these niches

might not reflect the “true” fundamental preference of birds. In Appendix B, we explore

the performance of CA and reciprocal scaling to infer species fundamental niches. We

show that, in our simulation setting, the method can also recover fundamental niche

parameters, although not as well as the realized niches. The realized niches of birds

and plants and might be constrained by two external factors. First, the distribution of

species traits in the community might constrain species to settle for suboptimal inter-

acting partners. For instance, here most plants species yield small fruits and have a

small crop mass, so large birds might not have a choice with regard to the fruit size

they ingest and might be constrained to also eat small fruits. Second, competition may

also constrain species to differentiate their interaction niche from other species in the

community.

Although the analysis produces sensible results, the two axes discussed above

explain roughly 30% of the variability, so these patterns cover only a small fraction

of the non-random network structure. In particular, discussing patterns on the third

axis would be important, as it explains almost the same variability as the second axis.

Moreover, the eigenvalues’ distribution shows a gap between the 3rd and 4th and 6th
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and 7th eigenvalues, thus suggesting that underlying structures are found up to the

6th axis: considering the first 6 axes explains more than 60% of the variation of the

network.

4.3 Perspectives

The method and analyses presented above address important questions and open

avenues to investigate the structure of interaction networks. CA and reciprocal scal-

ing make a conceptual and quantitative link between species interaction niches, trait

matching and specialization/generalization. Using latent traits allows the analysis to

be data-driven, not limited by costly trait collection and suited for exploratory analyses.

However, when traits are present, it would also be interesting to constrain the multivari-

ate axes with bird, plant or both trophic levels traits. Such constrained analyses have

been performed with RLQ or fourth-corner in the context of network data (Albrecht et

al., 2018; Dehling et al., 2014; Bender et al., 2018). However, fourth-corner does not

allow to visualize data, and RLQ is covariance-based and does not allow to partition

the variation explained by traits in interaction networks.

An alternative would be to use constrained versions of CA, like canonical correspon-

dence analysis (using one trait table) (C. J. F. ter Braak, 1986) or double-constrained

correspondence analysis (using both trait tables) (C. J. F. ter Braak et al., 2018). This

would allow to examine the relationship with traits and the multivariate axes, partition

variance explained by traits and measure trait matching (with double-constrained cor-

respondence analysis). Moreover, canonical methods would prevent the separation of

specialized species on different axes of the multivariate space when a common trait

explains the network structure (results described in Appendix A and discussed above).

To our knowledge, constrained versions of correspondence analyses have never been

applied to interaction networks. Moreover, for all methods above, there is not a known

way to measure niche breadth because reciprocal scaling is restricted to CA. Further

methodological developments in multivariate analyses could therefore benefit network

analysis.
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Appendices

A Effect of the relative importance of matching on the recovery of

niche parameters

Here, we investigate how the model performs when the network is more or less struc-

tured by trait matching compared to neutral processes. For that, we simulate networks

with different values of the parameter δ from Equation (2.1.8): δ = 0 (network struc-

tured only by neutral processes), δ = 0.2 (intermediate strength of trait matching) or

δ = 1 (maximum strength of trait matching). For each value of δ, we generate networks

with different sampling intensities (corresponding to experiment ninter in the main text).

Results are shown in Figure A.1 below.

(a) δ = 0 (b) δ = 0.2 (c) δ = 1

Figure A.1: Effect of the relative importance of matching on the inference of niche parameters.
Each subfigure shows the result of the inference for a different value of the trait matching
strength δ. For a more complete description of the figure axes, panels and example matrices,
refer to Figure 2.1.3 from the main text.

As expected, when there is no trait matching (δ = 0), niche parameters are poorly

recovered by CA and reciprocal scaling, because the true niche is random. Surpris-

ingly, the performance is best when the matching strength is intermediate (δ = 0.2),

and decreases with a stronger matching (δ = 1).

If we examine the associated eigenvalues in Figure A.2, we can see that, as ex-

pected, the matching signal is better recovered when δ = 1. This plot shows the

square root of eigenvalues (correspond to the absolute value of correlation between
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latent traits) for different values of matching strength δ and different sampling intensi-

ties. For a given sampling intensity, the eigenvalues are closer to one as δ increases.

When δ = 0, the (spurious) signal detected at low sampling intensity vanishes for all

axes when the sampling improves. No matching is detected, so the model fails to re-

cover niche parameters that are random and cannot be inferred from the matrix when

δ = 0. When δ = 0.2, the two first eigenvalues become increasingly separated from

other eigenvalues as sampling intensity increases. This means that two latent traits

are inferred, that are well correlated to the two true traits used in the simulation, so

the niche parameters are better recovered. When δ = 1, we have high eigenvalues,

but on all axes, thus indicating that the model recovers structuring latent traits on all

axes. Therefore, the latent traits on the first two axes correspond less closely to the two

true traits used in the simulation, thus yielding less accurate estimations of the niche

parameters.

Figure A.2: Eigenvalues evolution with sampling intensity for different values of δ. This plot
shows how eigenvalues evolve with sampling strength, for different values of δ (panels). Col-
ored points and dotted line represent an eigenvalue, and error bars represent the 2.5 and
97.5-th percentiles on the eigenvalues over 100 repetitions.
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B Realized and fundamental niches

In the article, we measured the model performance by comparing the inferred niche

parameters to the realized niches. However, we could also compare the inferred niche

parameters to the fundamental niches, i.e. the trait values (and niche breadths, for

consumers) fixed in the model. Below, we present the performance of the model when

we consider the fundamental niches as the ground truth (results are shown only for

consumers). For simulation parameters, we choose the same parameters as described

in 2.1.1.

(a) Sampling intensity (b) Heterogeneity of consumers niche breadth

Figure B.1: Performance of the model to infer fundamental niche parameters. (a) Shows the
effect of the sampling intensity and (b) shows the effect of the heterogeneity of consumers
niche breadths on the model performance. y-axis and matrices have the same meaning as
in Figure 2.1.3. The correlation is presented separately for realized and fundamental niches
(respectively left and right panels) on axes 1 and 2.

In most cases, the performance of the model to recover fundamental niche is a

reflection of the realized niche performance, but with slightly less good performance.

As an example, we present the model performance for realized and fundamental niches

depending on sampling intensity in Figure B.1a.

However, the performance pattern is different when the true niche breadth varies:

whereas the realized niche is less well recovered as the variance of niche breadth

increases, the fundamental niche is better recovered for intermediate values of niche

breadths (Figure B.1b). We can see it as an artifact of the performance metric used
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here: when niches breadths are very homogeneous, the model is able to recover the

absolute niche breadths, but not their relative order because they are very homoge-

neous.
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C Networks visualization using CA

Correspondence analysis can also be useful to reorder rows and columns of the ana-

lyzed interaction matrix. Many ways to visualize interaction networks have been pro-

posed, with all of them highlighting a specific aspect of network structure like centrality,

modularity or nestedness (Araujo et al., 2010; Miele et al., 2019). CA can also serve

this purpose. The figure below shows the interaction matrix corresponding to the bipar-

tite birds-plants interaction network analyzed in this article. In Figure C.1a, rows and

columns are ordered according to the alphabetical order, while in Figure C.1b they are

ordered according to their rank on the first axis of the CA. This means that species are

positioned in an ecologically meaningful way, according to their interaction niche optima

on the first latent trait axis. Here, we can see two weakly connected modules, corre-

sponding to the bulk of small plant and bird species that interact together (bottom-left

corner), and fewer large birds and plants that also interact together (top-right corner).

A few species interact with species from both modules (like P12 (Endlicheria sp.) and

B41 (Rupicola peruvianus)), and correspond to the generalist intermediate species

from Figure 2.1.5.

(a) Raw matrix (b) Reordered matrix

Figure C.1: Interaction matrix reordered using correspondence analysis. This figure shows how
an interaction matrix can be reordered using CA. Rows and columns of matrix (a) are ordered
alphabetically and for matrix (b) they are ordered following the coordinates of species on the
first axis of CA.
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D Reciprocal scaling formulas

Reciprocal scaling allows to compute niche optima and niche breadths on each axis k,

as well as the covariance between two niche axes k and l. Each of these quantities can

be expressed either with the scores hk derived from reciprocal scaling or equivalently

using the scores u⋆
k and v⋆

k of correspondence analysis, so each quantity has two

equivalent expressions. The corresponding formulas are written below, adapted from

Thioulouse and Chessel (1992) to match our notation.

Niche optima

Niche optima can be expressed either as a weighted mean of the correspondences

scores, or from the CA scores. For the resource species i, we have:

mik =


1

yi+

∑c
j=1 yijhk(i, j)

√
µk√
2λk

u⋆
ik

(2.1.11)

where µk = 1 +
√
λk.

Similarly, for consumer species j, we have:

mjk =


1

y+j

∑r
i=1 yijhk(i, j)

√
µk√
2λk

v⋆jk

(2.1.12)

Niche breadths

The niche breadth can be expressed as the weighted variance of the correspondences

scores or from the CA scores as well. For resource species i, we have:

sik
2 =


1

yi+

∑c
j=1 yij (hk(i, j)−mik)

2

1
2λkµk

(
1

yi+

∑c
j=1

(
yijv

⋆
jk

2
)
− λku

⋆
ik

2
) (2.1.13)

Similarly, for consumer species j, we have:

sjk
2 =


1

y+j

∑r
i=1 yij (hk(i, j)−mjk)

2

1
2λkµk

(
1

y+j

∑r
i=1

(
yiju

⋆
ik

2
)
− λkv

⋆
jk

2
) (2.1.14)
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Covariances

We can express the covariance between two niche axes from the reciprocal scaling

of the CA scores as well. The covariance between niche axes k and l for resource

species i is written:

ckl(i) =


1

yi+

∑c
j=1 yijhk(i, j)hl(i, j)−mikmil

1
2
√
λkλl

√
µkµl

(
1

yi+

∑c
j=1 yijv

⋆
jkv

⋆
jl −

√
λkλlu

⋆
iku

⋆
il

) (2.1.15)

For consumer species j, the covariance is written as:

ckl(j) =


1

y+j

∑r
i=1 yijhk(i, j)hl(i, j)−mjkmjl

1
2
√
λkλl

√
µkµl

(
1

y+j

∑r
i=1 yiju

⋆
iku

⋆
il −

√
λkλlv

⋆
jkv

⋆
jl

) (2.1.16)
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E Species names

Throughout the article, we use codes to describe species. Below are the correspon-

dence between these codes and the species names, alongside with their traits.

Code Species name
Fruit diameter
(mm)

Plant height
(m)

Crop mass
(g)

P01 Anthurium obtusum 2.9 5 0.8
P02 Banara arguta 9 5.2 241.5
P05 Cecropia polystachya 20.4 13 6813.4
P06 Cecropia strigosa 9.2 12.1 3813.1
P07 Cestrum parqui 5.9 3.9 470.8
P08 Cestrum stipulatum 6.9 4 225
P10 Croton rusbyi 6.5 6.8 7.2
P11 Elaeagia mariae 2.8 9.8 22.4
P12 Endlicheria sp 12.3 13.8 3986.1
P13 Ficus americana 3.7 15 606.7
P14 Ficus coerulescens 6.2 15 5400
P15 Graffenrieda cucullata 4.7 8.3 58.1
P16 Guatteria duodecima 17.4 13.3 7372.2
P18 Guettarda crispiflora 8.5 10.5 1448.6
P19 Hedyosmum tepuiense 7.7 5.3 583.5
P21 Isertia laevis 11.6 10.1 1100.5
P22 Miconia affinis 5 6.3 222.6
P23 Miconia aprica 3.2 7 333.7
P24 Miconia barbeyana 4 3.3 32.6
P25 Miconia calvescens 4.2 4.7 121.4
P26 Miconia cyanocarpa 3.6 4.1 416.3
P27 Miconia egensis 2.2 6.5 76.3
P28 Miconia hygrophila 3.3 4.2 18.4
P29 Miconia longifolia 4.2 12.3 293.3
P30 Miconia myriantha 2.7 7.3 7.9
P32 Miconia sp3 10.1 4 488.1
P34 Miconia spennerostachya 5.1 5.2 632.4
P35 Myrcia fallax 6.2 10.7 544.6
P38 Ocotea sp 8.5 12 850
P40 Peristethium polystachyum 3.7 3.5 139.4
P41 Phoradendron chrysocladon 3.2 7 16.4
P42 Pleurothyrium trianae 10.7 10.8 574.5
P43 Rubus floribundus 9.9 5.4 851
P44 Schefflera mathewsii 5.2 7.5 1951.3
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Code Species name
Fruit diameter
(mm)

Plant height
(m)

Crop mass
(g)

P47 Symplocos arechea 12.6 9.8 3650.6
P48 Trema micrantha 2.2 9.1 1.5
P49 Turpinia occidentalis 8.3 7.2 235.9
P50 Viburnum hallii 6.1 5.5 249.3
P51 Vismia gracilis 10.4 9.5 1087
P52 Zanthoxylum mantaro 3.8 6.1 27.9

Table E.1: Correspondence between plant codes and species names.

Code Species name Kipp’s index
Bill width
(mm)

Body mass
(g)

B01 Anisognathus somptuosus 0.19 10.6 42
B04 Catharus ustulatus 0.32 9.5 30.3
B05 Cephalopterus ornatus 0.17 30.2 380
B06 Chiroxiphia boliviana 0.16 9.2 17.2
B07 Chlorochrysa calliparaea 0.24 7.5 17
B08 Chlorophonia cyanea 0.28 6.5 14
B09 Chlorospingus flavigularis 0.17 10.1 25.6
B10 Chlorospingus ophthalmicus 0.16 7.7 15.7
B11 Chlorospingus parvirostris 0.16 8.5 24
B12 Colaptes rubiginosus 0.23 11.2 65.4
B14 Cyanocorax yncas 0.08 15 78.5
B15 Dacnis cayana 0.25 7.7 13
B17 Diglossa cyanea 0.17 7.2 17.1
B18 Diglossa glauca 0.19 5.4 12
B19 Elaenia albiceps 0.23 8.4 15.5
B20 Elaenia pallatangae 0.21 7.1 17.8
B21 Entomodestes leucotis 0.21 12.9 61.7
B22 Eubucco versicolor 0.14 12.6 32.8
B23 Euphonia mesochrysa 0.21 7.4 13
B24 Euphonia xanthogaster 0.22 7.4 13
B26 Iridosornis analis 0.16 8.4 26
B28 Lophotriccus pileatus 0.13 7.6 8.1
B29 Mionectes striaticollis 0.15 8.8 15
B30 Myadestes ralloides 0.21 12 29.1
B31 Ortalis guttata 0.15 13.5 550
B32 Patagioenas plumbea 0.35 8.1 179
B33 Penelope montagnii 0.15 16.5 706
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Code Species name Kipp’s index
Bill width
(mm)

Body mass
(g)

B34 Pharomachrus antisianus 0.42 21.8 153
B35 Pharomachrus auriceps 0.37 22.1 180
B38 Psarocolius angustifrons 0.25 17.3 218.5
B39 Psarocolius atrovirens 0.25 15.9 152
B40 Ramphocelus carbo 0.15 11.4 28
B41 Rupicola peruvianus 0.12 20.9 244
B42 Saltator maximus 0.18 13 47.7
B43 Tangara arthus 0.22 8.5 22
B44 Tangara chilensis 0.23 7.4 23
B45 Tangara chrysotis 0.26 8.2 24
B46 Tangara cyanicollis 0.22 7.7 17
B47 Tangara gyrola 0.2 7.7 21
B48 Tangara nigroviridis 0.23 7.8 17
B49 Tangara punctata 0.21 6.8 15
B50 Tangara ruficervix 0.24 7.6 19
B51 Tangara vassorii 0.23 8 18
B52 Tangara xanthocephala 0.22 7.3 19
B53 Thraupis bonariensis 0.2 11 36
B54 Thraupis cyanocephala 0.16 10.7 36
B55 Thraupis episcopus 0.23 10.2 35
B56 Thraupis palmarum 0.22 9.6 39
B57 Trichothraupis melanops 0.19 9.2 24.3
B58 Trogon personatus 0.37 16 63.4
B59 Turdus chiguanco 0.22 13.5 93.3
B60 Xenopipo unicolor 0.19 10 15.5
B61 Zimmerius bolivianus 0.14 6.5 11

Table E.2: Correspondence between bird codes and species names.
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Constrained correspondence

analyses to analyze the structure of

interaction networks, or trait matching

with traits

I intend to use the results of this chapter for an upcoming publication.
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1 Introduction

In the previous chapter (2.1), we used an interaction network to infer species interaction

niches using the notion of latent traits. To do so, we used correspondence analysis to

associate latent traits to species that best explained their interaction patterns. This

method is useful to explore data, but does not allow to test the effect of specific traits

on network structure. In the present chapter, I describe methods allowing to constrain

multivariate axes with measured traits, and to quantify the part of variation due to these

traits.

Multivariate methods are very popular to analyze the link between species abun-

dance and environmental factors, allowing to investigate the notion of species environ-

mental (or Grinnellian) niche (Green, 1971, 1974; C. J. F. ter Braak & Verdonschot,

1995; Dolédec et al., 2000). In the previous chapter, we presented correspondence

analysis (CA), which is an indirect gradient analysis method, i.e. a method in which

multivariate axes are not constrained with external variables. In addition to CA, con-

strained (or canonical) methods such as canonical correspondence analysis (CCA) and

double-constrained correspondence analysis (dc-CA) have also been used to charac-

terize the environmental niche (Dolédec et al., 2000; C. J. F. ter Braak & Verdonschot,

1995; C. J. ter Braak & Prentice, 2004).

In this chapter, I investigate the ecological implications of analyzing species inter-

actions instead of species abundance data, from a niche point of view. If we consider

bipartite interaction networks (i.e. networks with two sets of species interacting be-

tween sets but not within sets), we can use the same algebra that is classically used to

analyze species-environment relationships to understand how traits shape interaction

networks. However, this implies a different biological interpretation: instead of defining

environmental niches (see box 2.1), we quantify interaction (Eltonian) niches. Here, I

use the same convention as in chapter 2.1 and call the two sets of species resources

and consumers.

To investigate interaction niches, we can use canonical correspondence analysis

(CCA) (C. J. F. ter Braak, 1986). Depending on the table used to constrain the analysis,

CCA will define resource or consumer niches: resource niches are defined when the

analysis is constrained with consumer traits and conversely. To investigate interaction

niches with double constrained correspondence analysis (dc-CA) (C. J. F. ter Braak
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et al., 2018), we use both resource and consumer traits. dc-CA defines resource and

consumer species niches constrained with their traits. We can draw a parallel between

these interaction niches and species environmental niches defined by CCA and dc-CA

in the context of species-environment analyses (see box 2.1 and C. J. F. ter Braak and

Verdonschot, 1995).

Box 2.1: Environmental niches from constrained analyses

Multivariate analyses are often used to analyze species-by-sites tables and ob-

tain estimates of species environmental niches optima. Here, I explain how two

constrained analyses, CCA and dc-CA, can be used to this end.

CCA classically analyzes a species-by-sites table constrained with a table of

environmental variables measured for these sites. CCA defines species positions

as weighted averages (WA) of sites scores, which are expressed as linear combi-

nations (LC) of environmental variables. These species WA scores can be seen as

species environmental niche optima, as they characterize the mean score of sites

in which the species is present. The sites LC scores maximize the separation of

species WA scores (niches) (C. J. F. ter Braak & Verdonschot, 1995).

dc-CA analyzes a species-by-sites table constrained with a table of environ-

mental variables and a table of species traits. dc-CA defines two sets of LC scores:

for sites and for species. These two sets of scores are defined so that their cor-

relation is maximized. In other words, we search the combination of traits that

best respond to environmental variation, and the environmental gradient that is

the most important to explain observed species traits. Then, species WA scores

can be computed from sites LC scores to represent their niche optima (as for

CCA).

These multivariate methods (CA, CCA and dc-CA) can also be used to quantify the

part of inertia explained by resource or consumer traits, or matching between resource

and consumer traits (trait matching), thus realizing variance decomposition. This allows

to quantify the part of structure in the network due to resource traits, consumer traits,

or trait matching between resource and consumers.

This chapter describes constrained analyses allowing to incorporate traits into the

analysis: either the traits of one set of species (CCA) or the traits for both species sets
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(dc-CA). First, I present CCA and dc-CA in the context of interaction networks analysis.

Then, I exemplify these methods by analyzing a bird-fruit interaction network from the

ANDEAN frugivory dataset also used in chapter 2.1 (Dehling et al., 2021).

2 Material and methods

All analyses were performed with R 4.3.3 (R Core Team, 2024) and are stored in a

private GitHub repository (https://github.com/LisaNicvert/PhDaxis01_CAnetwork/t

ree/thesis) but can be shared on demand and are intended to be made public upon

publication.

As in the previous chapter, we consider an interaction matrix Y (r× c). Additionally,

we suppose that l traits were collected for the resource species, stored in matrix L

(r × l), and k traits were collected for consumer species, stored in matrix Q (c× k).

Like in chapter 2.1, we define the following matrices and vectors: the table of

relative frequencies P = [yij/y++] (where y++ is the grand total of Y); the weight

matrices for resources Dr = diag(r) and consumers Dc = diag(c), where the vec-

tors r = P1r = [p1+, . . . , pr+]
⊤ and c = P⊤1c = [p+1, . . . , p+c]

⊤ represent respec-

tively the row and column marginal sums (pi+ =
∑c

j=1 pij and p+j =
∑r

i=1 pij); matrix

P0 = P−rc⊤. Additionally, we define matrices R̃ and Q̃ as the centered scaled version

of R and Q, respectively weighted by r and c.

2.1 Canonical correspondence analysis (CCA)

Canonical correspondence analysis (CCA) (C. J. F. ter Braak, 1986) considers the in-

teraction matrix Y and one of the matrices R or Q. CCA allows to ordinate resource

and consumer species in a multivariate space constrained with resource species traits

R (or consumer species traits Q). From an interaction niche perspective, CCA allows

to quantify meaningfully the niche optima of one species type (resource of consumers).

Indeed, if we use the resource traits R, only consumer niches can be quantified mean-

ingfully. Conversely, if we use consumer traits Q, only resource niches can be quanti-

fied meaningfully.

Below, I present the method considering that we use matrix R (resource traits) to

constrain the analysis: to use consumer traits, we would need to replace Y by Y⊤ and
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R by Q in the equations below.

Algebra

First, we perform a weighted multiple linear regression of P0 by R̃:

P̂0 = Dr
1/2R̃B (2.2.1)

where B (r × c) is the matrix of regression coefficients and each coefficient bkj cor-

responds to the contribution of resource trait k on the frequency of interaction of con-

sumer species j. B is defined as (Legendre & Legendre, 2012):

B =
[
R̃⊤DrR̃

]−1

R̃⊤Dr
1/2P0 (2.2.2)

Then, we diagonalize the covariance matrix of the predicted matrix P̂0, noted Ŝ =

P̂⊤
0 P̂0.

Ŝ = V0ΛV0
−1 (2.2.3)

V0 contains the consumer species scores and is orthonormal. Λ is the matrix of eigen-

values of dimension min(r − 1, c, l).

For resource species, we define the linear combination scores (LC scores) Z0,

which represent scores predicted by the multiple linear regression. They are computed

as (Legendre & Legendre, 2012):

Z0 = Dr
−1/2P̂0V0 (2.2.4)

We can also define observed scores U0 for resource species (Legendre & Legen-

dre, 2012). These scores are computed from the coordinates of consumer species V0,

and contrary to Z0, they have no relation to resource species traits.

U0 = P0V0Λ
−1/2 (2.2.5)

Finally, the coordinates of explanatory variables (here, resource species traits) are

given by:

C = R̃⊤DrZ̃0 (2.2.6)
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where Z̃0 is a centered scaled version of Z0 using weights r. These coordinates rep-

resent the correlations of resource species traits with the multivariate axes. C is often

drawn on the correlation circle, where the angles between elements of C give correla-

tions between traits, and the angle between elements of C and multivariate axes also

give the correlation between traits and multivariate axes.

Biplot

Standard outputs of CCA consist of biplots where both resource and consumers scores

are represented. In the context of interaction niches, we are interested only in the

biplot in the consumer species space (scaling type 2). For that, we define the following

scaling for resource species LC scores: Z = Z0Λ
−1/2 (the scores Z are normed to

one). Then, the consumer weighted average (WA) score V⋆ is defined as (Greenacre,

2010):

V⋆ = Dc
−1P⊤Z (2.2.7)

Equation (2.2.7) is analogous to the CA transition formula in for consumers in the previ-

ous chapter (Equation (2.1.4b)), except that resource scores Z are defined as a linear

combination of their traits.

We can then represent resource LC scores Z and consumer WA scores V⋆ in the

same space. On this biplot, resource species LC scores are positioned as a linear

combination of their traits with variance 1 on each axis. Consumer species WA scores

are at the centroid of the resource species LC scores they interact with, so they are

positioned at their interaction niche optimum. Additionally, consumer species scores

have maximal variance.

Other biplots (or triplots, if we plot variables scores C as well) are possible, but here

we will focus on this biplot as it conveys the position of the consumer species in the

network by displaying their niche optima.

2.2 Double constrained correspondence analysis (dc-CA)

Double constrained correspondence analysis (dc-CA) (C. J. F. ter Braak et al., 2018)

considers the 3 tables defined above: interactions Y, resource traits R and consumer

traits Q. dc-CA finds resource and consumer species scores defined by linear combi-
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nation of their respective traits, so that the correlation between these scores is maxi-

mized.

From an interaction niche perspective, dc-CA allows to define the niche optima

of resource species using the traits of consumer species they interact with, and con-

versely, the niche optima of consumer species using the traits of resource species they

interact with.

Algebra

We search resource scores U and consumer scores V, each defined as a linear com-

bination of the traits tables. U and V are analogous to the LC score defined with CCA

noted Z: we could view U as ZR and V as ZQ, but we write these scores U and V to

ease the notation. These scores maximize the following correlation:

max
B,C

(U⊤PV) = max
B,C

([
R̃B

]⊤
PQ̃C

)
(2.2.8)

This equation is analogous to Equation 2.1.3 defined for CA in the previous chapter,

except the scores that maximize the correlation are linear combinations of species

traits.

In order to find the coefficient matrices B and C, we define the following matrix D

(similarly to C. J. F. ter Braak et al., 2018, but using centered scaled traits instead of

centered traits and P instead of Y):

D = [R̃⊤DrR̃︸ ︷︷ ︸
L

]−1/2R̃⊤PQ̃[Q̃⊤DcQ̃︸ ︷︷ ︸
K

]−1/2 (2.2.9)

Matrices L and K represent weights matrices for resource (respectively, consumer)

trait tables. Then, we perform the generalized SVD of D:

D = B∆C⊤ (2.2.10)

where B (l× d) and C (k× d) are the matrices of coefficients for resource (respectively

consumer) species traits, and d = min(k, l). B and C are orthonormal with respect to

weights L and K (B⊤LB = I and C⊤KC = I). ∆ is the diagonal matrix of singular val-

ues. dc-CA eigenvalues Λ are computed as ∆2, and there are d non-null eigenvalues.
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We can derive resource and consumer LC scores using coefficient matrices B and

C:

U = R̃B (resources) (2.2.11a)

V = Q̃C (consumers) (2.2.11b)

Resource species scores U are defined as a linear combination of their traits, and

reciprocally consumer scores V are defined as a linear combination of their traits.

Like for CA, the square root of the dc-CA eigenvalues represent the absolute value

of the correlation between resource and consumer scores:

√
λk = |cor(uk,vk)| (2.2.12)

Variables scores are often represented on the correlation circle using the following

coordinates: resource species traits are represented with CR = L̃⊤DcV and consumer

species traits with CQ = Q̃⊤DrU.

Biplots

To represent resource and consumers on the same biplots, we use the following tran-

sition formulas giving the weighted averaging scores (WA scores):

U⋆ = Dr
−1PV (resources) (2.2.13a)

V⋆ = Dc
−1P⊤U (consumers) (2.2.13b)

Equation (2.2.13a) expresses resources scores as the weighted mean of the con-

sumers scores they interact with and Equation (2.2.13b) expresses consumers scores

as the weighted mean of the resources scores they interact with. Equation (2.2.13) is

analogous to the CA transition formula in the previous chapter (Equation (2.1.4)), ex-

cept that resource and consumer scores U and V are defined as linear combinations

of their traits.

To visualize the niche optima of resource species, we plot consumer LC scores V

jointly with resource WA scores U⋆, so that resource species are at the centroid of

the consumer species they interact with. Reciprocally, to visualize the niche optima of
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consumer species, we represent the consumer WA scores V⋆ jointly with the resource

LC scores U, so that consumer species are at the centroid of the resource species

they interact with.

It can also be interesting to represent the WA scores jointly with the LC scores

normed to the eigenvalues (instead of one), i.e., U⋆ with U1 = UΛ1/2, and V⋆ with

V1 = VΛ1/2. The closer the scores are on these biplots, the stronger the matching is

between species niches and their traits, so this biplot can then visually represent trait

matching strength. Other biplots (or tri- and quadri-plots) are possible (see C. J. F. ter

Braak et al., 2018), but they are not all detailed here in the context of niche represen-

tation.

2.3 Variation partitioning

CCA and dc-CA are regression-based methods: therefore, they allow to decompose

the inertia of the interaction table into parts explained by resource traits, consumer traits

or resource-consumer trait matching (Figure 2.2.1) (Borcard et al., 1992; Peres-Neto

et al., 2006; Peng et al., 2021).

Figure 2.2.1: Variance partitioning of the interaction table. This schematic representation shows
how the total inertia of the interaction table [t] can be partitioned into inertia explained by re-
source and consumer traits in isolation (respectively [r] and [c]), inertia due to trait matching [m]
and residual inertia [z] ([t] = [r + c + m + z]). In the general case, when there is some degree of
trait matching (i.e. [m] ̸= ∅), the total variance explained by resource ([r + m]) and consumer
traits ([c + m]) overlap. Own figure inspired from Figure 1 of Sîrbu et al. (2021).

First, we can compute the total inertia of the interaction table due to non-random in-

131



Part 2: Investigate trait matching in interaction networks

teractions ([t] in Figure 2.2.1). Non-random patterns in the interaction matrix are quan-

tified as counts that deviate from their expected value in the sense of the χ2 statistic,

i.e. counts that deviate from the neutral abundance effects (as defined in chapter 2.1).

The total inertia is given by the sum of the CA eigenvalues. Equivalently, [t] can be

computed with the trace of the variance-covariance matrix P0P0
⊤.

The variation explained by resource or consumer traits can be quantified using CCA

constrained with either of those traits (Borcard et al., 1992; Peres-Neto et al., 2006;

Peng et al., 2021). Quantitatively, this corresponds to the inertia of P0 explained by the

regression (P̂0). The variation explained by resource (respectively, consumer) traits

correspond to [r + m] and [c + m] in Figure 2.2.1. They can be computed as the sum of

the eigenvalues of each corresponding CCA. Equivalently, the inertia can be computed

using matrices P0 and P̂0 (see Appendix A from Peres-Neto et al., 2006). This inertia

is also commonly expressed as a fraction of the total inertia [t] defined above. This

fraction is noted R2
Y|R and R2

Y|Q for resource and consumer traits respectively. It is akin

to a coefficient of determination in univariate linear regression.

Finally, we can quantify the variation explained by trait matching ([m] in Figure

2.2.1). [m] corresponds to the inertia explained by resource and consumer traits that

covary, which biologically corresponds to interactions constrained by trait matching. [m]

can be quantified as the sum of the dc-CA eigenvalues. It can also be expressed as a

fraction of the total inertia, noted R2
Y|R,Q.

Variation partitioning can be performed using simple subtractions to get the inertia

due to resource and consumer traits only ([c] and [r]), knowing [t], [r + m], [c + m] and

[m] from CA, CCA and dc-CA.

Corrected R2

Peres-Neto et al. (2006) showed that the inertia of CCA computed as above is a biased

estimator of the true inertia. They propose a corrected estimator R2
(Y|X)perm (in our case,

X denotes the traits matrix R or Q):

R2
(Y|X)perm = 1− 1

1− R̄2
(Y|X)perm

(
1−R2

Y|X
)

(2.2.14)

where R̄2
(Y|X)perm is the mean coefficient obtained with permuted matrices (see
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Peres-Neto et al., 2006, for details).

By analogy, for dc-CA, we can think that the estimator for the inertia is biased too. To

my knowledge, this hypothesis has not been formally tested and an unbiased estimator

of the dc-CA inertia has never been proposed. Here, I propose a correction for the

dc-CA estimator inspired from Peres-Neto et al. (2006) using the works of Dray and

Legendre (2008) in the case of fourth-corner analysis. I use the formula of Equation

(2.2.14), where X is replaced by R,Q. To define R2
(Y|R,Q)perm, I use the permutation

approach combining model 2 with model 4 proposed by Dray and Legendre (2008)

to randomize matrices in the context of fourth-corner analysis (see Dray & Legendre,

2008, for more details).

2.4 Data analysis

I reanalyze the bird-fruit interaction data from the ANDEAN frugivory dataset used in

chapter 2.1 (Dehling et al., 2021). I perform three analyses of the interaction table: a

CCA constrained by resource (plant species) traits, a CCA constrained by consumer

(bird species) traits, and a dc-CA constrained by both resource and consumer (plant

and bird species) traits. This allows to partition the variation of the interaction table, and

thus to quantify the impact of traits on the structure of the interaction network. More-

over, these analyses allow to visualize and compare species niches optima defined

with different metrics.

3 Results and discussion

In this section, I present the results of CCA and dc-CA applied to the bird-fruit interac-

tion network. By concision, I present biplots only for two of the three analyses: CCA

constrained with bird traits and dc-CA. The biplot for CCA constrained with plant traits

is left in Appendix B.

To interpret these biplots, I compare species traits to the general distribution of

traits in the community. An overview of traits distribution in the community is presented

in Appendix A with histograms of trait values, and the traits values per species are

presented in Appendix E of the previous chapter.
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3.1 CCA constrained with bird traits

First, I investigate how well the plant interaction niches can be explained using the

following bird traits: body mass, bill width and Kipp’s index. These traits are thought

to be related to bird-plants interactions (Albrecht et al., 2018; Bender et al., 2018).

Indeed, bird body mass is an energetic constraint, because large birds must be able to

get enough calories from fruits they feed on; bill width is a morphological constraint, as

birds with a small beak cannot grasp large fruits easily; and Kipp’s index is related to

foraging strategy, since birds with a large Kipp’s index (pointed wings) tend to forage in

the canopy, as opposed to the understory.

I first test the significance of the association between bird traits and network struc-

ture. A permutation test suggests that bird traits explains a significant part of the net-

work structure (R2
(Y|Q) = 17.39%, p-value = 0.001, 999 permutations). After correction

(see Section 2.3), the part of explained variation R2
(Y|Q)perm is 12.93%.

(a) Correlation circle (C) (b) Plant niches (V⋆ and Z, from Y⊤)

Figure 2.2.2: Correlation circle and plant niches optima from CCA constrained with bird traits.
(a) Correlation circle of the CCA constrained with bird traits. (b) Biplot showing plant niches
optima (V⋆) in relation to bird traits (Z).

Figure 2.2.2 shows the correlation circle and the biplot obtained from the CCA con-

strained with bird traits for the first two axes. These two axes account for 86% of the

inertia of the constrained analysis, so they are rather representative of the effect of

bird traits on the network structure. The correlation circle (Figure 2.2.2a) allows us to

interpret the axes. The first axis is positively correlated to bill width and body mass,

and can be seen as a size effect. The second axis is negatively correlated to Kipp’s

index (birds with pointed wings that tend to forage in the canopy).

Figure 2.2.2b shows the biplot representing birds and plants individuals scores in
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the multivariate space. This is the result of the CCA of Y⊤ constrained by bird traits Q.

Therefore, notations are inverted compared to the methods section: birds scores are

denoted by Z and are linear combinations of their traits, and plant scores are denoted

as V⋆ and are positioned at the centroid of bird scores.

First, we can investigate the position of birds in the multivariate space. Most species

are located around the origin, so they have average size and Kipp’s index (e.g. B55,

Thraupis episcopus). Birds that have a small score on the first axis also tend to be

located in the top-left corner of the graph, which means that small birds also tend to

have a small Kipp’s index (e.g. B28, Lophotriccus pileatus). Then, some species have

low scores on the second axis, and tend to have a medium to high score on the first

axis. These birds all have a high Kipp’s index (pointed wings adapted to the canopy)

and their size ranges from average (e.g. B32 Patagioenas plumbea, which is a large

bird with a medium beak) to large (e.g. B34 Pharomachrus antisianus, a large bird with

a wide beak). Some birds are also located in the top-right corner (e.g. B41 Rupicola

peruvianus), so they tend to be large and have a low Kipp’s index (rounded wings

adapted to the understory).

Then, we can investigate the position of plant species, as their niche optimum.

Most plants’ niches are located around the origin, where most birds are as well. This

implies that most plants have an interaction niche optimum corresponding to average

birds. A few plants also have a niche optimum corresponding to birds with medium

to high scores on the first axis, and a wide range of bird scores on the second axis.

Interestingly, as their niche optimum moves to larger birds, plants tend to have a niche

optimum favoring birds with a higher Kipp’s index as well. For instance, P11 Elaeagia

mariae tends to interact with medium birds with a low Kipp’s index, and P16 Guatteria

duodecima tends to interact with large birds with a high Kipp’s index. This suggests

that a latent trait of plants matches the birds size-Kipp’s index trait syndrome. Finally,

P14 Ficus coerulescens stands out as a plant that interacts with average-sized birds

that also have a high Kipp’s index.

3.2 dc-CA constrained with bird and plant traits

We use dc-CA to constrain the analysis with bird and plant traits. For that, we add

the following plant traits to the analysis: fruit diameter, plant height and crop mass.
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These traits are thought to be related to interactions with birds (Albrecht et al., 2018;

Bender et al., 2018), as plants’ crop mass can correspond to the energy that plants

invest in fruit production, supposedly reflected in the preferences of birds with high

energy expenditure; fruit diameter can constrain morphological matching with birds

beak size; and plant height can correspond to birds’ foraging strata. Therefore, the

following pairs of traits are hypothesized to be positively correlated under trait matching:

body mass/crop mass, beak width/fruit diameter and Kipp’s index/plant height (Albrecht

et al., 2018; Dehling et al., 2014).

We test the significance of the association between bird traits and network struc-

ture, using the permutation approach described in Section 2.3. This test suggests that

the association between bird and plant traits is significant (R2
(Y|R,Q) = 6.65%, p-value =

0.001, 999 permutations). The corrected part of explained variation due to trait match-

ing R2
(Y|R,Q)perm is 5.97%.

The eigenvalues can also inform us on the matching strength. Here, I consider the

first 2 eigenvalues (on a total of 3 eigenvalues) and consider their square-root, which

represent the absolute value of the correlation of traits with each axis. Here, we have
√
λ1 = 0.39 and

√
λ2 = 0.29, which suggest a limited strength of matching. In total,

these 2 axes account for 99.5% of the trait matching inertia.

Figure 2.2.3a shows how bird and plant traits are correlated. The hypotheses on

trait matching above are verified to some extent: first, the energy traits (crop mass

and body mass) are well positively correlated. Second, morphology traits (bill width

and fruit diameter) are well positively correlated too. Finally, foraging traits (Kipp’s

index and plant height) are the least correlated. Another notable trait relationship is

the positive correlation between plant height and crop mass, probably due to the fact

that large plants tend to produce pore fruits. Comparatively, the correlation between

bodymbodymassass and bill width for birds is less strong.

Regarding axes interpretation, axis 1 is characterized by the matching of energy

traits between birds and plants, because it is positively correlated to plant height, crop

mass and bird body mass. Axis 2 is positively correlated to the morphological matching

between birds and plants (bill width and fruit diameter). To a lesser extent, it is also

negatively correlated to Kipp’s index.

Regarding biplots interpretation, we first focus on Figure 2.2.3b that shows plant
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(a) Correlation circle (CR and CQ)

(b) Plant niches (U⋆ and V) (c) Bird niches (V⋆ and U)

Figure 2.2.3: Correlation circle and niches optima from dc-CA. (a) Correlation circle with plant
and bird traits scores (respectively CR and CQ). Bird traits are shown in solid red lines and
plant traits in dashed blue lines. (b) Biplot showing birds positioned as linear combination of
their traits (V) and plants at their interaction niche optimum (U⋆). (c) Biplot showing plants
positioned as linear combination of their traits (U) and birds at their interaction niche optimum
(V⋆).

niches in relation to bird traits. On this figure, if we first interpret birds’ position, most

birds are located near the origin (average birds). Birds on the left of the first axis (small

birds) also tend to have medium to high scores on the second axis (i.e. medium to

wide beaks and small Kipp’s index), like B14 Cyanocorax yncas, which is an average

bird having the smallest Kipp’s index of the dataset. In parallel, larger birds tend to

be located in the top-right corner of the plot (large birds with wide beaks), (e.g. B05

Cephalopterus ornatus, which has the widest beak of the dataset and is the third largest

bird). The only bird that deviates in that respect is B32 (Patagioenas plumbea), which

seems functionally distinct from other large birds that tend to have a large beak as well,

since this bird is among the largest of the dataset but has an average beak.
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Regarding plants positions (which indicate their niche optimum), most plants have

a niche optimum near the origin (they interact preferentially with average birds). How-

ever, a group of plants in the top-right corner of the plot stands out as plants that

interact with large-billed birds, and medium to large-bodied birds (e.g. P11 Elaeagia

mariae and P16 Guatteria duodecima). We can note that these plants were already

distinct from other plants on the CCA constrained with bird traits. If we categorize these

plants with their traits using the second biplot (2.2.3c), we can see that most of these

plants whose fruits are eaten preferentially by large birds are located in the top-right

corner of the plot: they tend to be large plants that produce large fruits (except for

P08, Cestrum stipulatum, which is the fourth smallest plant of the dataset but yields

medium-sized fruits and a medium crop mass). However, by comparing plants posi-

tions on the two biplots, these plants are much less distinct from other plants based on

their traits only (Figure 2.2.3c) than based on their niche optimum (Figure 2.2.3b). P14

Ficus coerulescens seems to have a particular niche position, as a plant interacting

with average-sized birds that have small beaks. If we characterize this species with its

traits using the second biplot, its distinctiveness in interaction niches is mirrored in its

functional distinctiveness, because it is a large plant (the tallest from the dataset) that

yields average-sized fruits.

Next, we focus on the interpretation of Figure 2.2.3c that shows bird niches in re-

lation to plant traits. First, if we interpret plants position, they are well spread out on

the multivariate plane. There seems to be a negative relationship between plant score

on the first and the second axis (larger plants tend to produce smaller fruits). As noted

before, P14 (Ficus coerulescens) has traits that are very distinctive from other plants.

Regarding birds positions (niche optima), most birds interact with average plants.

A group of distinct birds that have high scores on axis 2 and dispersed scores on axis

1 emerges (e.g. B17 Diglossa cyanea and B05 Cephalopterus ornatus): these birds

tend to eat large fruits from plants of various sizes and crop yields. If we characterize

these birds with their traits on the first biplot (Figure 2.2.3b), we can see that the birds

with the highest scores on axis 1 (preference for large plants with high yield) are the

largest birds with the widest beaks (B05 Cephalopterus ornatus, B35 Pharomachrus

auriceps, B34 Pharomachrus antisianus or B58 Trogon personatus). B32 (Patagioenas

plumbea) stands out as a bird consuming small fruits from tall plants with high crop
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mass. As discussed before, this can be explained by the fact that it is a large bird, which

means that it needs more energy, but it has an average beak size. The distinctiveness

of its niche optimum can then be explained by morphological restrictions on matching,

that prevents this bird from eating large fruits because of its small beak, but this bird

still needs to consume large quantities of fruits, and for that it focuses on plants with

high crop mass to optimize its foraging time.

3.3 Variation partitioning

Using CA, CCA and dc-CA, we can partition the variance of the interaction matrix

in order to attribute the non-random interactions to either plant traits only, birds traits

only, or matching between birds and plant traits (respectively components [r], [c] and

[m] from Figure 2.2.1). Results are presented in Table 2.2.1, for the total inertia, the

uncorrected and the corrected part of total inertia. Below, I interpret results for the

corrected part of inertia (last column of the table).

Inertia (uncorrected) R2 (%) R2
perm (%)

Plant traits [r] 0.346 9.58 1.06

Bird traits [c] 0.387 10.74 6.96

Trait matching [m] 0.240 6.65 5.97

Residual inertia [z] 2.635 73.03 86.01

Total [t] 3.608 100 100

Table 2.2.1: Variance partitioning of the interaction matrix. In rows, the different sources of vari-
ation and their corresponding abbreviation from Figure 2.2.1. In columns, different measures of
the inertia: raw inertia (uncorrected), uncorrected part of inertia relatively to the total (R2), and
corrected part of inertia (R2

perm).

First, an extremely large part of the inertia is not attributable to any trait: indeed,

86.01% of total inertia is explained neither by the traits used in the analyses, nor by their

matching. This suggests that important factors driving network structure are missing

from the analyses. These factors can include unmeasured species traits, for instance,

fruit energetic caloric content or nutrient composition, of birds’ digestive system, which

could play a role in trait matching (Moermond & Denslow, 1985; Palacio et al., 2017) but

have not been used in the analysis. This residual inertia could also be due to sampling

effects. Indeed, to assess the expected number of interactions, CCA and dc-CA use
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the matrix margins, thus assuming that the number of times a species is observed in

the network is a surrogate of its abundance: but as discussed in the previous chapter,

this might not be the case (see e.g. Blüthgen et al., 2008).

Second, the principal mechanism of interest studied here, trait matching, accounts

for only 5.97% of the total inertia. If we compare this to the part of inertia explained

by bird or plants traits including matching ([c + m] and [r + m]), which are respectively

12.93 and 7.03%, we can see that plant traits are much more related to bird traits

via trait matching than the reverse. Indeed, when taking the matching part into ac-

count, the part of inertia attributable to plant traits drops to only 1.06%, while the part

of variation due to bird traits is still 6.96%. Ecologically, we would expect most of the

inertia explained by consumer and resource traits to be driven by their matching, i.e.

consumers will forage on resources with specific traits that match their traits, and re-

ciprocally, resources will be used by consumers because these resources have some

traits that benefit the consumer. But here, a substantial part of the inertia due to bird

traits is not explained by trait matching (6.96%, which is of the same magnitude as the

variation due to trait matching). This suggests that some plant traits that are matched

by bird traits used here (body mass, bill width and Kipp’s index) are missing in the anal-

ysis. In contrast, the plant traits used here (crop mass, fruit diameter and plant height)

are accurately matched by these bird traits, since their part of explained variation is

only 1.06%.

4 Conclusion and perspectives

In this chapter, I presented constrained correspondences analyses, namely CCA and

dc-CA, to visualize the network structure and niche optima and decompose the sources

of variation in the network. Visualization of species in the multivariate space allows to

highlight patterns of trait matching related to species (latent) traits, as well as the struc-

ture of species within the community. This allows to identify species that are distinct

from the community in terms of interaction niche or of morphology. Here, for instance,

in the dc-CA analysis, the traits of Ficus coerulescens P14 stand out from the rest of

the community (particularly large plant with small fruits), and the niche ofPatagioenas

plumbea B32 stands out (bird consuming small fruits from large plants). Moreover,
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these two species tend to appear as distinct from the community both for their interac-

tion niche and their traits: this supports the findings of Dehling et al. (2016), conducted

partly on the same dataset, who showed that morphological specialists also tend to be

interaction specialists.

I find relatively weak associations between the traits used in the analyses and net-

work structure. Indeed, more than 85% of the structure is not attributed to those traits.

Moreover, trait matching, which is the main hypothesis relating traits to the network

structure, explains only 5.97% of the total variation.

To fully characterize the interaction niches, we would also need to quantify niche

breadth. But here, the niche scores U⋆ and V⋆ consider only the niche optimum, and

there is no measure of the dispersion around these optima (niche breadth). Without a

measure of niche breadth, it is difficult to investigate specialization and generalization

(although central tendencies can be inferred from the niche optima, as discussed above

or in Dehling et al., 2016). In the next chapter, I introduce a measure of niche breadth

by extending reciprocal scaling (Thioulouse & Chessel, 1992), presented in the context

of CA (chapter 2.1), to the constrained analyses presented in the present chapter (CCA

and dc-CA).

141



Part 2: Investigate trait matching in interaction networks

Appendices

A Traits distributions

This figure shows the trait distribution for birds and plants in the observed community

sampled through the interaction network.

(a) Plant traits

(b) Bird traits

Figure A.1: Bird and plant traits histograms. a) represents the distribution of plant traits in the
community and b) for the birds traits. The vertical dashed line represents the median and the
y-axis represents species count.
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B CCA constrained with plant traits

This appendix shows the result of the CCA constrained with plant traits. First, we test

the significance of the association between plant traits and network structure. A per-

mutation test suggests that the association between plant traits and birds latent traits

is significant (R2
(Y|R) = 16.23%, p-value = 0.003, 999 permutations). The corrected part

of explained variation R2
(Y|R)perm is 6.96%.

(a) Correlation circle (C) (b) Bird niches (V⋆ and Z)

Figure B.1: Correlation circle and bird niches optima from CCA constrained with plant traits. (a)
Correlation circle of the CCA constrained with plant traits. (b) Biplot showing bird niches optima
(V⋆) in relation to plant traits (Z).

Figure B.1 below shows the results of the analysis on the correlation circle and

biplot for the first two axes accounting for 85% of the explained inertia. The correlation

circle (Figure B.1a) shows that the first axis is positively correlated to the three plant

traits, so it is a size effect mainly related to plant height and productivity (crop mass).

Axis 2 is negatively correlated to all traits, but mainly to fruit diameter.

The biplot (Figure B.1b) shows plants positioned with their traits and bird niches

optima. Regarding plant species, most plants have small scores on the first axis, i.e.

they are small and low-productivity. A few very large productive plant species exist

(e.g. P05 Cecropia polystachya and P14 Ficus coerulescens) and they have diverse

scores on axis 2, which reflects diverse strategies in terms of fruit size. For instance,

P05 is the plant that produce the largest fruits while P14 produces average-sized fruits.

There is a concave pattern between the score on axis 1 and on axis 2 (except for P14),

which means that medium-sized and medium-productivity plants tend to produce the

smallest fruits.
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Regarding bird niches optima, most bird species are located around the origin (birds

tend to interact with average plants). Birds that interact with plants producing large

fruits (small score on axis 2) interact with a wide variety of plant sizes and productivity

(dispersed scores on axis 1): so birds that eat large fruits tend to interact with plants of

any size and productivity. On the contrary, most birds that interact with plants producing

small to medium fruits (medium to large scores on axis 2) also interact with small, low

productivity plants (small scores on axis 1), so birds consuming small to medium fruits

also tend to interact with small and low productivity plants. Patagioenas plumbea B32

stands out in this respect, because whereas it tends to consume small fruits (high score

on axis 2), it interacts with large, productive plants (very high score on axis 1).
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Using constrained reciprocal scaling

to measure interaction niche breadth

taking species traits into account
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1 Introduction

In the previous chapter (2.2), I examined the relationships between species traits and

the structure of interaction networks. For that, I used constrained multivariate analy-

ses, namely canonical correspondence analysis (CCA) and double-constrained corre-

spondence analysis (dc-CA). These methods allow to incorporate species traits in the

measure of their niche optimum, but do not quantify niche breadth.

Niche breadth has multiple definitions (Ferry-Graham et al., 2002), and can be

quantified with numerous indices. In the context of interaction niches, niche breadths

are more often defined using only the number of interacting partners: this is the real-

ized niche breadth (as defined in Ferry-Graham et al., 2002 or Devictor et al., 2010).

Metrics that quantify realized niche breadth include the number of interacting part-

ners (degree), weighted indices taking into account their respective abundances (e.g.

Shannon diversity of interacting partners), or indices taking into account species rel-

ative availability (e.g. Blüthgen et al., 2006). However, these measures consider only

species identity and not their attributes. The focus on species identity in ecology has

been described as the “curse of the Latin binomial” by Raffaelli (2007): this concept

argues that by focusing on species identity rather than other features, we might miss

important determinants of ecological processes (McGill et al., 2006).

To overcome the “curse of the Latin binomial”, the niche breadth of species can

be defined with their own traits, using the notion of morphological specialization and

assuming that distinct traits reflect specialization. Morphological specialization (as de-

fined by Ferry-Graham et al., 2002) is usually evaluated by quantifying the distinctive-

ness of species traits compared to the community. Distinctiveness is usually measured

on several traits, for instance using multivariate ordination methods like principal com-

ponent analysis to position species in a functional trait space (Bellwood et al., 2005;

Dehling et al., 2014). Specialization is then quantified using the Euclidean distance of

a species from the mean of the community (Bellwood et al., 2005).

More recent works have used the traits of species’ interacting partners instead of

their own traits to define their interaction niche. For instance, this would mean defining

the niche of a pollinator with visited flowers’ corolla depth instead of proboscis length.

Measuring the niche of a species using its interacting partners is arguably better suited

to measuring its functional role (Dehling & Stouffer, 2018), and is also in better agree-
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ment with the definition of the niche as conceptualized by Hutchinson (1957), defining

niche axes using resources. These methods follow the same approach as the ones

using species own traits, but they describe specialization using the distinctiveness of

interacting partners traits. A method using this approach is described in Dehling et

al. (2016) (see also Dolédec et al. (2000) in the context of the environmental niche).

Compared to methods using species own traits, these techniques require an additional

step to project species in the trait space of its interaction partners (e.g. Dehling et al.

(2016) use two PCAs). Using the traits of interacting partners traits instead of species

own traits is another way to measure specialization, but under trait matching, the two

measures should be equivalent.

Recently, Dehling and Stouffer (2018) defined niche breadth as the trait diversity

of a species interacting partners. For that, they projected species in the trait space of

their interacting partners, and used the convex hull defined with a species’ interacting

partners’ position in the multivariate space to define niche breadth. This approach is

fundamentally different from the approaches described above, because specialization

in this context is not defined as distinctiveness, but as diversity of traits of the inter-

acting partners. It is better in line with Hutchinson’s conceptualization of the niche as

a hypervolume (Hutchinson, 1957). With this last approach, distinctiveness does not

measure niche specialization, but niche differentiation, and is assimilated to the niche

optimum of species.

Here, I introduce a new method to quantify interaction niche breadth, that is philo-

sophically similar to the approach of Dehling and Stouffer (2018) described above. This

method introduces a measure of niche breadth determined by the diversity of interact-

ing partners’ traits. To this end, I extend the reciprocal scaling method of Thioulouse

and Chessel (1992) to CCA and dc-CA. In this chapter, I line up the theory underpin-

ning the method allowing to visualize the dispersion around niche optima defined in

constrained analyses (CCA or dc-CA) and describe the method with interaction matri-

ces constrained with species traits in mind. Then, I exemplify the method on the bird-

fruit interaction network analyzed in the two previous chapters (Dehling et al., 2021)

and briefly discuss the ecological significance of the results.
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2 Theory

This section presents the algebra used to add a measure of dispersion to CCA and dc-

CA, thus extending reciprocal scaling for simple correspondence analysis (Thioulouse

& Chessel, 1992) described in chapter 2.1. To do so, we use the link between cor-

respondence analyses and canonical correlation analysis (CcorA) (Hotelling, 1936).

Indeed, correspondence analysis (CA), CCA and dc-CA can be seen as a special case

of CCorA where the analyzed variables are qualitative (see Hill (1974) for CA, Pélissier

et al. (2002) and Gimaret-Carpentier et al. (2003) for CCA and C. J. F. ter Braak et al.

(2018) for dc-CA). Here, we consider a r × c interaction matrix Y, along with resource

traits R (r × l) and consumer traits Q (c× k).

2.1 Add dispersion to CCA

To add a measure of dispersion to CCA, we take advantages of the strong links be-

tween canonical correlation analysis (CCorA) and CCA. Indeed, canonical variates

obtained from CCorA can be related to the CCA coordinates (Pélissier et al., 2002;

Gimaret-Carpentier et al., 2003), but provide scores for interactions (also called cor-

respondences), whereas CCA provides scores for species. Hence, in addition to the

niche optima provided by CCA (average of scores computed for species, see chap-

ter 2.2), CCorA provides a measure of the dispersion of interactions (variance of the

interactions for each species), thus allowing to quantify niche breadth.

We present the analysis considering the interaction matrix Y along with resource

traits R. To perform the analysis with consumer traits, the developments are the same

but using Y⊤ and Q.

Canonical correlation analysis (CCorA)

To highlight the similarities between CCA and CCorA, we inflate tables R and Y, i.e.

we reorganize the data in these matrices so that they have one row per non-null in-

teraction. Therefore, we can see each row of the inflated matrices as representing

a pairwise interaction. These rows are called correspondences, as they describe the

correspondence between a row and a column of the original matrix: here, correspon-

dences correspond to the interactions between a resource and a consumer species.
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Figure 2.3.1 shows the correspondence between original and inflated matrices, using

a small example dataset.

(a) Incidence matrix Y (b) Traits matrix R

Figure 2.3.1: Correspondence between original and inflated matrices. (a) Correspondence
between an incidence matrix Y and the inflated matrix Yinfl. (b) Correspondence between
a traits matrix R and the inflated matrix Rinfl. In this example, Y represents the interactions
between r = 3 resources and c = 4 consumers. R represents l = 2 traits for resource species.
For clarity, zeroes are omitted in the matrices. In the inflated matrices, each row corresponds
to an interaction type from the original matrix (n0̄ = 6 interaction types). The weight vector w
contains interaction weights, computed as the weight of the interaction from the original matrix
(where n is the grand total of Y). The interaction between R2 and C2, and the corresponding
traits for R2 are highlighted in all matrices to show their correspondence.

The inflated matrices Yinfl and Rinfl are of dimensions n0̄×c and n0̄×l (respectively)

where n0̄ denotes the number of non-empty interactions in matrix Y. We also define

a weight vector w of length n0̄, which contains the relative frequency of each corre-

spondence from the original matrix, and the associated diagonal matrix Dw = diag(w)

(n0̄ × n0̄).

Then, we perform the weighted CCorA between Rinfl and Yinfl. CCorA involves the

computation of the matrix of correlations K between Rinfl and Yinfl, computed as:

K = SRinflRinfl

⊤−0.5
SȲinflR̄infl

SRinflYinfl

−0.5 (2.3.1)

where Ȳinfl and R̄infl denote the centered matrices using weights Dw. SXZ = X⊤DwZ

denotes the variance-covariance matrix between X and Z weighted with Dw and S−0.5

is the inverse of the Cholesky root of S (where the Cholesky root of matrix A is defined

as the upper triangular matrix L so that L⊤L = A). Matrix K (l × c) contains the

correlation coefficients between the columns of Rinfl and Yinfl weighted by Dw.

We perform the SDV of K:

K = R0∆Y0 (2.3.2)
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R0 (l× k) gives the eigenvectors associated to Rinfl, Y0 (c× k) gives the eigenvectors

associated to Yinfl and ∆ gives the canonical correlations. The CCorA eigenvalues

matrix Λ is equal to ∆2, and there are k ≤ min(l, c) non-null eigenvalues.

The canonical coefficients, which give the contribution of Rinfl and Yinfl to the mul-

tivariate axes, are computed as:

CR = SRR
−0.5R0 (2.3.3a)

CY = SYY
−0.5Y0 (2.3.3b)

Finally, the scores of the objects (resource and consumers correspondences),

called canonical variates, are computed from the original tables using the canonical

coefficients:

SR = RinflCR (2.3.4a)

SY = YinflCY (2.3.4b)

SR and SY are of dimension n0̄ × k. These scores are orthonormal with respect to

weights Dw (SR
⊤DwSR = I and SY

⊤DwSY = I).

Compute niche measures from CCorA scores

Using the scores SR computed above, we can define measures corresponding to con-

sumer species niche optima, breadth and to the covariances between niche axes.

These measures are defined in a meaningful way for consumers only, because here

we consider the analysis constrained with resource species traits. Below, we consider

the niche of consumer species j on axis k. Resource species are denoted by i.

The weighted means of the scores SR (associated to resources) grouped by con-

sumers can be seen as the consumer niche optima (Equation (2.3.5)). Indeed, this

corresponds to the weighted mean of the interactions (or correspondences) in which a

given consumer is involved.

mjk =
1

p+j

r∑
i=1

pij sRk(i, j) (2.3.5)
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Here, a double indexing is used for the elements of sRk, which is a one-dimensional

vector: sRk(i, j) corresponds to the x-th element of sRk (x = 1 . . . n0̄), containing the

score for the interaction between consumer i and resource j.

Similarly, we can compute weighted variances from the scores SR, that represent

niche breadths of consumer species.

s2jk =
1

p+j

r∑
i=1

pij sRk(i, j)
2 −m2

jk (2.3.6)

Finally, the weighted covariance can be computed to obtain the covariance between

two niche axes k and l:

ckl(j) =
1

p+j

r∑
i=1

pijsRk(i, j)sRl(i, j)−mjkmjl (2.3.7)

These measures (mean, variance, covariance) allow to draw multivariate normal

ellipses to visualize species niches in the multivariate plan, like reciprocal scaling with

CA in chapter 2.1.

Link CCorA scores with CCA

Above, I have established definitions of consumer niche optimum, breadth and covari-

ance between niche axes computed from the scores SR (Equations (2.3.5), (2.3.6) and

(2.3.7)).

Another definition of the consumer species niche optimum was established in chap-

ter 2.2 using CCA scores: below, I show that these two definitions are equivalent. We

consider the CCA constrained with resource traits: this CCA yields resource LC scores

Z (linear constraints) as predicted with their traits, consumer WA scores V⋆ (weighted

averages) which represent their niche optimum. Additionally, we can define consumer

scores V = Dc
−1/2V0 positioned with their latent traits.

The scores SR and SY computed above have a strong relationship, respectively,

with the CCA scores Z and V. We can even say, in a sense, that they are equiva-

lent. Indeed, some of the n0̄ rows of SR are duplicated: these duplicated rows are the

correspondences for the same resource species and are repeated as many times as

the number of interactions for this resource species. Similarly, duplicated rows of SY
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are the correspondences for the same consumer species, duplicated as many times

as the number of interactions for this consumer species. We can show that the unique

scores SR given by CCorA correspond to the resource species scores given by CCA

Z. Similarly, the unique scores SY correspond to the consumer species scores V. This

equivalence between CCorA scores and CCA scores allows us to link the mean, vari-

ance and covariances defined from CCorA scores with CCA scores (computed below).

The niche optima computed from the CCorA scores (Equation (2.3.5)) can be ex-

pressed from the CCA scores (see Appendix A for the demonstration). For consumer

j on axis k, the consumer niche optimum computed from CCorA scores correspond to

the niche optimum defined with CCA using the score V⋆.

mjk = v⋆jk (2.3.8)

We can also express the conditional variance corresponding to niche breadth di-

rectly from the CCA scores as follows (see Appendix A for the demonstration):

s2jk =
1

p+j

r∑
i=1

(
pij z

2
ik

)
− v⋆jk

2 (2.3.9)

It is also possible to express covariances from CCA scores (see Appendix A for the

demonstration). For axes k and l, the covariance is written as:

ckl(j) =
1

p+j

r∑
i=1

pijzikzil − v⋆jkv
⋆
jl (2.3.10)

The computations above show that in practice, performing CCorA is not necessary

to obtain niche measures as they can be obtained directly from CCA scores. These

formulas are summarized in Table 2.3.1 (columns 3 and 4).

Proposed scaling

To improve the graphical representation of consumer niches, we propose the following

scaling for the correspondences:

hr
k(i, j) =

sRk(i, j) +mjk

2
(2.3.11)
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hr
k(i, j) represents the scaled interaction scores computed in the resource space (r

superscript).

Species Value From CCorA From CCA Scaled scores

Consumer

Correspondences SR (2.3.4a) Hr (2.3.11)

Niche optimum mjk (2.3.5) v⋆jk (2.3.8) Idem (2.3.13)

Niche breadth s2jk (2.3.6) (2.3.9) Divided by 4 (2.3.14)

Covariance ckl(j) (2.3.7) (2.3.10) Divided by 4 (2.3.15)

Table 2.3.1: Summary table for the correspondences, mean, variance and covariance of in-
teractions from CCA. Values give the corresponding equation numbers in the main text. The
formulas for non-scaled scores (columns 3 and 4) are equivalent. The relation of scaled scores
with these non-scaled scores is indicated in the table.

Using the properties of sRk(i, j) and mjk, this scaled score can be expressed from

the CCA scores:

hr
k(i, j) =

zik + v⋆jk
2

(2.3.12)

This formula shows that the scaled correspondences are at the mean between the

resource LC scores and consumer WA scores.

Means, variances and covariances can then be computed by grouping scaled

scores by consumer (as in Equations (2.3.5), (2.3.6) and (2.3.7)). We show below

that the scaled scores also have strong links with CCA scores. With this new scaling,

niche optima stay the same:

mjk = v⋆jk (2.3.13)

Regarding variances and covariances, they are simply divided by 4 compared with

the non-scaled variances/covariances:

s2jk =
1

4

(
1

p+j

r∑
i=1

(
pij zik

2
)
− v⋆jk

2

)
(2.3.14)

Covariances between axes k and l are written as:

ckl(j) =
1

4

(
1

p+j

r∑
i=1

pijzikzil − v⋆jkv
⋆
jl

)
(2.3.15)
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These formulas and their correspondence with non-scaled scores are summarized in

Table 2.3.1.

(a) No scaling (H) (b) Proposed scaling (Hr)

Figure 2.3.2: Graphical effect of the proposed scaling. This figure illustrates how the proposed
scaling changes the graphical representation of species niches on a synthetic dataset where 3
consumer species niches are represented.

The proposed scaling reduces the variance and covariance compared to the non-

scaled score. On the biplots, this has the effect to declutter the representation a little by

separating the density ellipses better. Figure 2.3.2 illustrates the difference between

niches represented with and without the proposed scaling on a synthetic example: I

simulated the interactions between 3 bird species and 10 plant species and plotted

the bird niches with and without scaling. Without the proposed scaling (Figure 2.3.2a),

the bird-plant interactions have the same position for the same plant, and the ellipses

are bigger. With the proposed scaling (Figure 2.3.2b), bird-plant interactions are not

confounded and ellipses are smaller.

2.2 Add dispersion to dc-CA

We can use a similar approach to add dispersion measures to dc-CA, using its link with

CCorA. In this section, we consider the interaction matrix Y along with resource and

consumer traits R and Q.

First, we perform a weighted CCorA of the inflated matrices Rinfl and Qinfl (with

weights Dw). Using the same developments described for CCA, CCorA allows to define

the consumer scores SQ and the resource scores SR.
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Compute niche measures from CCorA scores

Using the scores SQ and SR computed with CCorA, we can define means, variances

and covariances, which correspond respectively to niche optima, breadths and co-

variances between niche dimensions. With dc-CA, niche scores can be meaningfully

defined for both resources and consumers.

The weighted means of scores SQ (associated to consumers) grouped by resources

can be seen as consumers niche optima. Reciprocally, the weighted means of scores

SR (associated to resources) grouped by consumers can be seen as resources niche

optima.

mik =
1

pi+

c∑
j=1

pij sQk(i, j) (resources) (2.3.16a)

mjk =
1

p+j

r∑
i=1

pij sRk(i, j) (consumers) (2.3.16b)

Similarly, we can compute weighted variances from the scores SQ and SR, that

represent the niche breadth of the resource (respectively, consumer) species.

s2ik =
1

pi+

c∑
j=1

pij sQk(i, j)
2 −m2

ik (resources) (2.3.17a)

s2jk =
1

p+j

r∑
i=1

pij sRk(i, j)
2 −m2

jk (consumers) (2.3.17b)

Finally, we can compute the covariance between two niche axes k and l:

ckl(i) =
1

pi+

c∑
j=1

pijsQk(i, j)sQl(i, j)−mikmil (resources) (2.3.18a)

ckl(j) =
1

p+j

r∑
i=1

pijsRk(i, j)sRl(i, j)−mjkmjl (consumers) (2.3.18b)

Link CCorA scores with dc-CA

The equations above define niche optima, bot another definition was previously pro-

posed from dc-CA in chapter 2.2: but as for CCA, the two definitions are equivalent.

dc-CA yields two sets of scores for resource and consumers, used in two biplots. The

first biplot uses resource scores U as predicted with their traits, and consumer scores
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V⋆ which represent their niche optimum. The second biplot uses consumers scores V

predicted with their traits, jointly with resource scores U⋆ which represent their niche

optimum.

We can show that unique values of SQ correspond to the dc-CA scores V. Similarly,

the unique values of SR correspond scores U. Using this equivalence between CCorA

and dc-CA scores, we can express niche optima defined as a weighted mean of the

CCorA scores (Equation (2.3.16)) with the dc-CA scores. For resource i or consumer

j on axis k:

mik = u⋆
ik (resources) (2.3.19a)

mjk = v⋆jk (consumers) (2.3.19b)

We can also express the conditional variances corresponding to niche breadth

(Equation (2.3.17)) directly from the dc-CA scores as follows:

s2ik =
1

pi+

c∑
j=1

pij v
2
jk − u⋆

ik
2 (resources) (2.3.20a)

s2jk =
1

p+j

r∑
i=1

pij u
2
ik − v⋆jk

2 (consumers) (2.3.20b)

Finally, covariances (Equation (2.3.18)) expressed from dc-CA scores for axes k

and l are written as:

ckl(i) =
1

pi+

c∑
j=1

pijvjkvjl − u⋆
iku

⋆
il (resources) (2.3.21a)

ckl(j) =
1

p+j

r∑
i=1

pijuikuil − v⋆jkv
⋆
jl (consumers) (2.3.21b)

Scaling

We can use the same scaling defined for CCA (section 2.1) to represent correspon-

dences in the multivariate space. Here, we define two sets of scores that will be used

to define niches for resource and consumers.
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hc
k(i, j) =

mik + sQk(i, j)

2
for biplot 1 (resources niches) (2.3.22a)

hr
k(i, j) =

sRk(i, j) +mjk

2
for biplot 2 (consumers niches) (2.3.22b)

hr
k(i, j) and hc

k(i, j) represent the scaled interaction scores computed respectively in

the resource (r superscript) and consumer (c superscript) space.

This scaling has the same effect as for CCA, i.e. niche optima remain the same as

described in the equations above, while variances and covariances are divided by 4.

The correspondence between those scores are summarized in Table 2.3.2.

Species Value From CCorA From CCA Scaled scores

Resource

Correspondences SQ Hc (2.3.22a)

Niche optimum mik (2.3.16a) u⋆
ik Idem

Niche breadth s2ik (2.3.17a) (2.3.20a) Divided by 4

Covariance ckl(j) (2.3.18a) (2.3.21a) Divided by 4

Consumer

Correspondences SR Hr (2.3.22b)

Niche optimum mjk (2.3.16b) v⋆jk Idem

Niche breadth s2jk (2.3.17b) (2.3.20b) Divided by 4

Covariance ckl(j) (2.3.18b) (2.3.21b) Divided by 4

Table 2.3.2: Summary table for the correspondences, mean, variance and covariance of inter-
actions from dc-CA. Values give the corresponding equation numbers in the main text. The
formulas for non-scaled scores (columns 3 and 4) are equivalent. The relation of scaled scores
with these non-scaled scores is indicated in the table.

2.3 Data analysis

To illustrate the method, I reanalyze the bird-fruit interaction network from the ANDEAN

frugivory dataset (Dehling et al., 2021). All analyses were performed with R 4.3.3 (R

Core Team, 2024) and are stored in a private GitHub repository (https://github.com/L

isaNicvert/PhDaxis01_CAnetwork/tree/thesis) that can be shared on demand and is

intended to be made public upon publication.

I perform two analyses of the interaction table: a CCA constrained by consumer

(bird species) traits, and a dc-CA constrained by both resource and consumer (plant
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and bird species) traits. For both analyses, I added a measure of niche breadth com-

puted with the method presented above. The CCA constrained with plant traits with

niche breadths is presented in Appendix B.

3 Results and discussion

In this chapter, I presented the theoretical framework allowing to add a measure of dis-

persion to CCA and dc-CA by extending reciprocal scaling, originally designed for CA

(Thioulouse & Chessel, 1992). This framework allows to visualize and quantify niche

breadths for constrained analyses of interaction networks. In this section, I present

the application to a bird-fruit interaction network (Dehling et al., 2021) and discuss the

results.

3.1 CCA constrained with bird traits

First, I examine plant niches constrained with bird traits. Figure 2.3.3 shows the corre-

lation circle of bird traits and plant niches in the two first dimensions of the multivariate

space. The correlation circle is the same as presented in the previous chapter and

shows a size effect on axis 1, and Kipp’s index (pointed wings linked with foraging in

the canopy) negatively correlated to axis 2. These two axes account for 86% of the

inertia of the constrained analysis, but as discussed in the previous chapter, bird traits

account for only 13% of the total inertia of the network (see section 3.1). Here, I ana-

lyzed Y⊤ constrained with Q, so the notations are inverted compared to the methods

section.

Figure 2.3.3b represents the proposed scaling presented in the material and meth-

ods: points represent the scores hr
k(i, j) defined in Equation (2.3.11). The niche op-

tima (corresponding to labels’ positions) are computed with Equation (2.3.13), and

variances and covariances represented on the ellipses are computed with Equations

(2.3.14) and (2.3.15).

This figure complements Figure 2.2.2, that presented plant niche optima computed

from the CCA constrained with bird traits (chapter 2.2), by adding a visual represen-

tation of niche breadths. In chapter 2.2, we could see that most plants have their

optimum around the origin, implying that they tend to interact with average birds. This
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(a) Correlation circle (C) (b) Plant niches (hc
k(i, j) grouped by plants)

Figure 2.3.3: Correlation circle and plant niches from CCA constrained with bird traits. (a)
Correlation circle of the CCA constrained with bird traits. (b) Plant niches. On this figure, each
point represents a bird-fruit pairwise interaction. The scores hck(i, j) are computed from Y⊤

constrained with Q. Plant labels are positioned at the optimum of their niche and the ellipse
correspond to the bivariate normal distribution of variances and covariances given by reciprocal
scaling (with a scaling factor of 1.5, i.e. the ellipse axes lengths are equal to 1.5

√
λk on axis

k, corresponding to around 67% of the points contained in the ellipse). Species are colored
according to the position of their niche optima on the first axis.

figure allows to say that these species also tend to have small niches, as their ellipses

are small. On this graph, we can also note that P12 Endlicheria sp. has a very wide

niche on both axes, and that P11 Elaeagia mariae has a small niche that is very dis-

tinct from other species’ niches. Finally, visually, plants that interact with medium-sized

birds seem to have large niches on the first axis (i.e. they interact with birds of diverse

sizes). This is consistent with the pattern found with the linear model from chapter 2.1

with the unconstrained analysis.

3.2 dc-CA constrained with bird and plant traits

I analyzed niches constrained with both bird and plant traits. Figure 2.3.4 shows

the correlation circle (identical to the one presented in the previous chapter) and the

species niches on the two first multivariate axes (accounting for 99.5% of the trait

matching inertia). As discussed in the previous chapter, trait matching accounts for

only about 6% of the total inertia, so these results do not capture the complete network

structure.

We recall the interpretation of the correlation circle (Figure 2.3.4a) from the previous

chapter: axis 1 is characterized by the matching of energy traits, and axis 2 is related
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(a) Correlation circle (CR and CQ)

(b) Plant niches (hc
k(i, j) grouped by plants) (c) Bird niches (hr

k(i, j) grouped by birds)

Figure 2.3.4: Correlation circle and niches from dc-CA. (a) Correlation circle with plant and bird
traits scores (respectively CR and CQ). Bird traits are shown in solid red lines and plant traits in
dashed blue lines. (b) Plant niches. On this figure, each point represents a pairwise interaction
(scores hck(i, j)). (c) Bird niches. On this figure, each point represents a pairwise interaction
(scores hrk(i, j)). Species are colored according to the position of their niche optima on the first
axis. The interpretation of the labels positions and ellipses is the same as in Figure 2.3.3.

to morphological matching.

Figures 2.3.4b and 2.3.4c complete the biplots presented in chapter 2.2 (Figure

2.2.3) by adding species niche breadths. Regarding plant niches (Figure 2.3.4b), in

the previous chapter, based on their optima, we could see that most plants interact

with average birds, and that a small group of large plants with large fruits (in the top-

right corner) tend to interact with large-billed birds and medium- to large-bodied birds.

With this analysis, we can add that plants interacting with small birds tend to have

small niches, and that the top-right corner group tends to have larger niches. On this

analysis, P11 Elaeagia mariae stands out again as a plant with a very distinct niche

from other plants.
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Regarding birds niches (Figure 2.3.4c), in the previous chapter, we could see that

most birds interact with average plants, but there was a group of large birds with wide

beaks tending to eat large fruits from any plant size (top half of the plot). With this

analysis, we can add that there seems to be a high overlap between all birds’ niches.

However, B32 (Patagioenas plumbea) seems to have a distinct niche compared to

other species. In chapter 2.2, I hypothesized that its small beak constrained this bird to

eat small fruits. With this new analysis, we can nuance this, because although this bird

eats mostly small fruits, it has a wide niche on axis 2, which suggests that it consumes

fruits of various diameters. If we examine the characteristics of the fruits eaten by this

species, they range from 6.20 (average fruit size) to 20.40mm (which is the largest

fruit in the dataset): however, the smallest fruits are their favorite, consumed 47% of

the times. On this plot, we can also distinguish two opposed types of niches. Birds in

the top-left corner, i.e. birds that interact with small to medium plants bearing medium

to large fruits have a wider niche on axis 2 than on axis 1: they interact with plants of

similar sizes, but these plants have diverse fruits sizes. Conversely, birds in the bottom-

right corner (except the B32), i.e. interacting with medium to large plants bearing small

to medium fruits have a wider niche on axis 1 than on axis 2: they interact with plants

bearing fruits of similar size that have diverse sizes. Between these two extremes are

birds with wide niches, interacting with various plant types.

4 Conclusion and perspectives

In this chapter, I developed a method to associate a measure of niche breadth tak-

ing into account multiple traits of interacting species. For that, I used the link be-

tween canonical correlation analysis (CCorA) and constrained correspondence analy-

ses methods (CCA and dc-CA). I briefly illustrated the methods on an example network,

by showing niches in the multivariate space and discussing their interpretation.

These methods allow to quantify the niche optima and niche breadths of a given

species related to the traits of their interacting partners. We can use these niche mea-

sures to compare the niche optima or breadth of a given species to other species in

the network to characterize this species. We could also go further in the interpretation

by quantifying the niche overlap between species, for instance to inform us about po-
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tential competition for resources between birds. Further perspectives are discussed in

the discussion for this part (chapter 4).
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Appendices

A Demonstration of the equivalence between CCA and CCorA

niche measures

Here, we shortly demonstrate how means, variances and covariances computed with

CCorA scores can be related to the CCA scores.

For the mean, we start from the definition of the niche optimum of computed as a

weighted mean of the resources canonical variates SR (Equation (2.3.5)):

mjk =
1

p+j

r∑
i=1

pij sRk(i, j)

=
1

p+j

r∑
i=1

pijzik (by property of sRk(i, j))

mjk = v⋆jk (by definition of v⋆jk)

For the variance, we start from the definition of the niche breadth as a weighted

variance of SR (Equation (2.3.6)):

s2jk =
1

p+j

r∑
i=1

pij sRk(i, j)
2 −m2

jk

s2jk =
1

p+j

r∑
i=1

pij zik
2 − v⋆jk

2 (by property of sRk(i, j) and mjk)

For the covariance, we start from the definition of the weighted covariance of SR

(Equation (2.3.7)):

ckl(j) =
1

p+j

r∑
i=1

pijsRk(i, j)sRl(i, j)−mjkmjl

ckl(j) =
1

p+j

r∑
i=1

pij zjkzjl − v⋆jkv
⋆
jl (by property of sRk,l(i, j) and mjk,l)
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B CCA constrained with plant traits

I constrain the analysis with plant traits to measure bird niche optima and breadth.

The figure below shows bird niches in the 2 first dimensions of the multivariate space,

where the axes are constrained by plant traits. These 2 axes account for 85% of the

inertia of plant traits. However, as discussed in the previous chapter, overall plant traits

account for around 7% of the total inertia of the network (see Appendix B).

(a) Correlation circle (C) (b) Bird niches (hr
k(i, j) grouped by birds)

Figure B.1: Correlation circle and bird niches from CCA constrained with plant traits. (a) Corre-
lation circle of the CCA constrained with plant traits. (b) Plant niches. On this figure, each point
represents a bird-fruit pairwise interaction (scores hrk(i, j)). Species are colored according to
the position of their niche optima on the first axis. The interpretation of the labels positions and
ellipses is the same as in Figure 2.3.3.

The correlation circle (identical to the one in Appendix B) shows that the first axis

is positively correlated with tall and productive plants, and the second axis is weakly

negatively correlated to fruits diameter. In the previous chapter, we could use niche

optima to see that most birds interact with small plants. Some birds also tend to interact

with plants producing large fruits that can be of any size (bottom part of the graph).

B32 (Patagioenas plumbea) stands out as a bird eating fruits from large plants bearing

small fruits. With this graph, we can say that birds niches overlap a lot, apart from the

plumbeous pigeon (B32).
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In this part, I used multivariate methods of the correspondence analysis family to quan-

tify the interaction niche of species. In chapter 2.1, I employed an indirect gradient ap-

proach, using correspondence analysis (CA) and reciprocal scaling to measure species

niche optima and breadths without using traits information. In chapter 2.2, I extended

this approach to constrained analyses, canonical CA (CCA) and double-constrained

CA (dc-CA) to measure species niche optima constrained with their interacting part-

ners’ traits and to partition the variation of the network. Finally, in chapter 2.3, I ex-

tended reciprocal scaling to constrained analyses, allowing to measure niche breadths

constrained with species traits. In all chapters, I exemplified the method on a real

bird-fruit interaction dataset, and for chapter 2.1, I also used a simulation approach to

validate the method.

1 Quantify the niche with CA methods

In this part, I used several CA methods to define species niches. CA methods use ob-

served interaction networks, so they quantify the realized interaction niches of species.

Below and in Figure 2.D.1, I briefly describe the rationale of each method:

CA positions resource species scores as weighted averages (WA) of the consumers

scores, so that they are maximally separated, and reciprocally (Figure 2.D.1a). Both

scores can be seen as niche optima. In addition to species WA scores (niche optima),

we can measure the variance of species interacting partners (niche breadths).

CCA is akin to CA, but we use the traits of resource or consumer species to con-

strain their scores. If CCA is constrained with resource species traits, it defines re-

source species scores that are a linear combination (LC) of their traits (Figure 2.D.1b).

Consumers WA scores computed from these LC scores can be seen as niche optima.
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A weighted variance of species scores (niche breadth) can also be computed using

the link between CCA and canonical correlation analysis. If CCA is constrained with

consumer traits, it defines resource WA scores (niche optima) and variances (niche

breadths) using consumer LC scores constrained with their traits (Figure 2.D.1c).

dc-CA is constrained with both resource and consumer traits. It finds LC scores

for resource and consumers, defined as linear combinations of their respective traits.

Then, resource species WA scores are defined using consumers LC scores, and re-

ciprocally. These WA scores can be seen as species niche optima, and a weighted

variance can be computed using the link between dc-CA and canonical correlation

analysis to define niche breadth (Figure 2.D.1b).

Figure 2.D.1: Summary of CA methods and niche inference. Each column represents a CA
method. The first row represents the matrices inputs, and the second and third rows represent
the inferred species niches in one dimension. In each case, one species for which the niche is
computed is highlighted in blue (resource) or in red (consumers). The interacting partners of
the species are represented as colored points on the niche axis (red for consumers and blue
for resources), with their size proportional to their abundance.

To summarize, CA defines species niche using the similarity of their interacting

partners using latent traits and CCA and dc-CA define species niche using the traits of

their interacting partners.
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2 Comparison of the analyses

In this section, I compare the niches inferred on the bird-fruit interaction network with

the different methods and discuss the implications of their differences and similarities.

Figure 2.D.2 gathers the niches inferred with each method, represented in the first two

axes of each multivariate space (same figures as in the chapters).

(a) CA (plants niches) (b) CCA (plants niches) (c) dc-CA (plants niches)

(d) CA (birds niches) (e) CCA (birds niches) (f) dc-CA (birds niches)

Figure 2.D.2: Comparison of the niches inferred with the different methods. The top row (a-c)
shows plant niches and the bottom row (d-e) bird niches. The first column (a and d) shows CA,
the second column CCA constrained with bird traits (b) and CCA constrained with plant traits
(e) and the last column shows dc-CA (c and f).

First, as expected, the unconstrained method (CA) is the one that seems to sepa-

rate species niches best (see Figures 2.D.2d and 2.D.2a). Indeed, with simple CA there

are no linear constraints on the axes, and they are defined to maximize the variance of

birds and plants scores. In other words, CA constructs birds’ latent traits that maximize

plants niche separation, and conversely.

Second, we can investigate the effect of adding species traits, compared to the

analysis using latent traits. Plant niches computed with constrained methods (Figures

2.D.2b and 2.D.2c) are visually very similar to niches computed with CA (Figure 2.D.2a).
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In particular, a group of species has consistently high scores on axis 1 (notably P49,

P11, P12, P47, P42 and P38). This suggests that bird traits used in the analysis (Kipp’s

index, bill width and body mass) accurately capture plant niches measured with latent

bird traits. On the contrary, there is a visual difference between bird niches computed

with constrained methods (Figures 2.D.2e and 2.D.2f) and with CA (Figure 2.D.2d).

This suggests that the plant traits (fruit diameter, crop mass and plant height) do not

accurately capture birds’ niche measured with latent plant traits. These results are

consistent with the variation partitioning from chapter 2.2, which found that bird traits

explain a larger part of the network structure than plant traits (respectively, 13% and

7%).

Third, we can compare niches computed with CA and dc-CA. For both plants and

birds, they seem rather consistent (although axis 2 is flipped for birds). In other words,

adding a species’ own traits does not change its niche a lot compared to the niche

constrained with their interacting partners’ traits. Overall, this observation comforts the

conclusion from the dc-CA analysis (chapter 2.2) that there is some degree of matching

between the available traits. This also suggests that the available bird and plant traits

accurately capture latent traits that match available plant (respectively, bird) traits. The

consistency of bird niches is in contradiction with the variation partitioning analysis from

chapter 2.2, which suggested that some plant traits matched by the available bird traits

are missing from the analysis.

Finally, these plots of species niches in the multivariate space can inform us about

their niche separation. While birds and plants niches computed with unconstrained

methods are similarly separated (Figures 2.D.2a and 2.D.2d), plant niches computed

with constrained methods (Figures 2.D.2b and 2.D.2c) seem to be better separated

than bird niches (Figures 2.D.2e and 2.D.2f). This could indicate that bird species

display a higher niche overlap than plant species, thus potentially being in competition

more than plants. However, this conclusion can be nuanced by the fact that birds

niches using latent traits are more separated, potentially indicating missing plant traits

that separate the niches better.
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3 Characteristics and limits of CA approaches

Methods in the correspondence family are useful to study species niches, but they

come with a set of assumptions that must be kept in mind. First, constrained methods

(CCA and dc-CA) work best when few traits are used to constrain the analyses. Indeed,

there is no selection of important or redundant variables integrated in the method:

therefore, when more traits than species are added, they will explain 100% of the

variation, even if they are random. However, it is possible to perform variable selection

to choose relevant traits (see for instance the approach of Blanchet et al., 2008).

Another point of attention concerns CA, which can struggle to recover the true traits

with latent traits when trait matching is too strong, (see Appendix A). This can seem

counter-intuitive, as we would expect a better performance of the method when the

signal is stronger. But if we consider that CA has no external variable providing in-

formation on how to order species scores, when the gradient is not visible in the data

(e.g. species are too specialized due to perfect trait matching), CA will not be able to

recover the latent traits and will position species equidistant in the multivariate space,

one specie on each axis. In the absence of additional information to determine species

order, this actually makes sense, even if the true interactions obey to a unique trait

gradient. In that case, the eigenvalues will be high for all axes, thus indicating a strong

non-random structure. In this context, constrained approaches like CA and dc-CA can

mitigate this problem by adding external information allowing to order species.

4 Define the interaction niche

The niche is a fundamental concept in ecology. Its broad definition is generally shared

across all ecologists. However, specific aspects of the niche, such as optimum and

breadth, have been defined and measured in numerous ways depending on the context

(Ferry-Graham et al., 2002). The approach described here is no exception, and in this

section I explicit the assumptions I made to define and measure the interaction niche.

In this framework, the niche is defined as an n-dimensional hypervolume, following

Hutchinson (1957). First, I measured realized niches, as the analyses are based on

observed ecological networks.
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I also approximate the shape of the niche as an ellipse in dimension 2 (and a hy-

perellipsoid in n dimensions). This is a normal approximation of the niche space, which

has no reason to be constrained to any particular sort of shape (Blonder et al., 2014).

For this approximation to be meaningful, the niche of species has to be unimodal

(unique optimum) and more or less symmetrical. The unimodal hypothesis is often

assumed in trait matching studies (e.g. Benadi et al., 2022; Fründ et al., 2016; Albrecht

et al., 2018) and posits that species have a unique trait preference: for example, we as-

sume bird species have a preference for a single fruit size. This simplifying assumption

is useful to draw general conclusions: however, I am not aware of any empirical ver-

ification in interaction networks. The symmetry assumption could also be discussed,

because it is possible that the niche breadth extends more in one direction than the

other (e.g. medium birds might be able to eat small fruits, but not large fruits; see

for instance Peralta et al., 2024; Benadi et al., 2022). However, once the interactions

are projected in the multivariate space, we could quantify the niche hypervolume using

other measures than the hyperellipsoid approximation (for different volume measures,

see Blonder et al., 2014).

Our framework also focuses on the part of the niche related to interactions. This is

pertinent to study one specific aspect of the community functions: in the example here,

seed dispersal. However, the sampled network might miss some species that are part

of the seed dispersal network. Moreover, seed dispersal is not isolated of other pro-

cesses at play in the community. For instance, some bird species complement their

diet with insects as well, which could influence their fruit consumption. Multiplex net-

works, where more species types are taken into account, are increasingly recognized

as relevant units to study community processes (Kéfi et al., 2016).

Finally, to define and quantify interaction niches, I drew strong parallels with species

environmental (Grinnellian) niche. Indeed, there are some similarities, as the notion of

hypervolume (Hutchinson, 1957) that can be applied to both niche types. However,

there are also some fundamental differences. First, the interaction niche is a result of

the coevolution of the interacting partners, whereas the environmental niche involves

the evolution of the species only in an environment that is not subject to natural se-

lection. This leads to fundamental differences in the modeling of these processes and

in the interpretation of the scores measured by CA methods for consumer-resource
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or species-by-sites matrices. Moreover, the environmental niche has more often been

described as the conditions of persistence of a species, or “what a species needs”,

(Devictor et al., 2010), whereas the interaction (Eltonian) niche is more focused on the

ecological processes in which the species takes part, “what a species does”, (Devic-

tor et al., 2010). In the end, the distinction between Eltonian and Grinnellian niche

is dictated by the focus of the study. Indeed, we could argue that some interspecific

interactions are essential for species persistence (e.g. trophic links), and that some

species have functional effects through their environment (e.g. engineer species). Ul-

timately, the distinction between Eltonian and Grinnellian niches is not clear-cut and

resides mostly in the eye of the observer (Devictor et al., 2010).

5 What structures networks and how much?

CA methods can be used to quantify the part of total variation in the interaction matrix

explained by species traits. Variation partitioning thus allows to quantify the part of in-

teractions explained by resource traits, consumer traits, or the matching between traits

(see Figure 2.2.1). In the bird-fruit interaction network analyzed here, trait matching

explained about 6% of the total variation, and more than 85% of the variation was not

explained by any of the measured traits (see Table 2.2.1).

Quantifying the importance of trait matching on the structure of interaction networks

allows us to measure the relative importance of this process. In our bird-fruit interaction

network example, trait matching explains a minor part of the structure in the matrix. We

can wonder how this result generalizes to other ecological communities, or network

types. During exploratory analyses on other mutualistic networks (not presented in this

thesis), I could see that trait matching was also a weak explanatory factor of network

structure. The question is, then, what are the factors that structure these networks,

and how much do these factor contribute to the observed pattern? Candidate factors

include environmental variation, species abundance or phylogeny, but their relative

importance remains to be quantified (Vázquez, Chacoff, & Cagnolo, 2009). Although

CA could be constrained with phylogeny, there is no obvious way to include species

abundances collected independently or environmental factors in the analysis.
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6 Conclusion and perspectives

In this part, I used multivariate methods of the correspondence analysis family to quan-

tify species interaction niches. These methods, some of which (CA and CCA) are well-

known to ecologists, can be fruitfully re-employed and extended to study interaction

networks.

An interesting development of these methods would be to quantify species niche

overlap, which can contribute to the strength of competition between two species. This

overlap could be quantified by computing the overlapping n-dimensional volume be-

tween the niche hyperellipsoids of species (with approaches similar to those used by

Blonder et al., 2014 and Pappas and Stoermer, 1997).

An increasingly studied aspect of species niche is the individual aspect of the niche:

“interactions, after all, occur between individuals” (Sexton et al., 2017). In our ap-

proach, the niche is defined at the species level, and related to species-averaged

traits. It would be interesting to complement this approach with an individual-based

one. It would allow us to see how the niche varies within species and between in-

dividuals (if it does at all) to better understand the species-specific patterns of niche

measures (Sexton et al., 2017). For instance, we could imagine two species with the

same species-level niche breadth, but in one of the species, all individuals have a wide

niche and approximately the same niche optima and in the other species, all individuals

have narrow niches but different optima.

Finally, I argue that the number of interacting partners of a species, or diversity in-

dices based on this number, despite their popularity, are not necessarily good descrip-

tors of the interaction niche breadth (Dehling & Stouffer, 2018). To understand this

seemingly counter-intuitive statement, we can consider the parallel with the environ-

mental niche of species. For a species to be considered an environmental generalist,

merely being present in numerous locations is not enough: what matters is whether the

occupied sites encompass diverse environmental conditions (e.g. elevation, tempera-

ture, precipitations). Similarly, I argue that to measure the interaction niche breadth of

species, we should take into account the traits of their interacting partners, and how

(dis)similar they are.
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Erdős, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae, 6(3-4), 290–297. https:
//doi.org/10.5486/PMD.1959.6.3-4.12

174

https://doi.org/10.2307/1940179
https://www.jstor.org/stable/221736
https://doi.org/10.5061/DRYAD.WM37PVMN5
https://doi.org/10.1098/rspb.2015.2444
https://doi.org/10.1098/rspb.2015.2444
https://doi.org/10.1111/oik.05415
https://doi.org/10.1111/geb.12193
https://doi.org/10.1111/geb.12193
https://doi.org/10.1111/j.1365-2664.2009.01744.x
https://doi.org/10.1007/BF02427859
https://doi.org/10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
https://doi.org/10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
https://doi.org/10.1146/annurev-ecolsys-110316-022928
https://doi.org/10.1890/08-0349.1
https://doi.org/10.1073/pnas.192407699
https://doi.org/10.1111/ele.12081
https://doi.org/10.5486/PMD.1959.6.3-4.12
https://doi.org/10.5486/PMD.1959.6.3-4.12


Bibliography

Erofeeva, E. A. (2021). Plant hormesis and Shelford’s tolerance law curve. Journal of Forestry Research,
32(5), 1789–1802. https://doi.org/10.1007/s11676-021-01312-0

Ferry-Graham, L. A., Bolnick, D. I., & Wainwright, P. C. (2002). Using Functional Morphology to Examine
the Ecology and Evolution of Specialization. Integrative and Comparative Biology, 42(2), 265–
277. https://doi.org/10.1093/icb/42.2.265

Foster, M. S. (1987). Feeding Methods and Efficiencies of Selected Frugivorous Birds. The Condor,
89(3), 566–580. https://doi.org/10.2307/1368645

Foster, M. S. (1990). Factors Influencing Bird Foraging Preferences among Conspecific Fruit Trees. The
Condor, 92(4), 844–854. https://doi.org/10.2307/1368720

Fründ, J., McCann, K. S., & Williams, N. M. (2016). Sampling bias is a challenge for quantifying spe-
cialization and network structure: Lessons from a quantitative niche model. Oikos, 125(4), 502–
513. https://doi.org/10.1111/oik.02256

Futuyma, D. J., & Moreno, G. (1988). The Evolution of Ecological Specialization. Annual Review of
Ecology and Systematics, 19, 207–233. Retrieved May 14, 2024, from https://www.jstor.org/sta
ble/2097153

Gauch Jr., H. G., & Whittaker, R. H. (1972). Coenocline Simulation. Ecology, 53(3), 446–451. https://do
i.org/10.2307/1934231

Gimaret-Carpentier, C., Dray, S., & Pascal, J.-P. (2003). Broad-scale biodiversity pattern of the endemic
tree flora of the Western Ghats (India) using canonical correlation analysis of herbarium records.
Ecography, 26(4), 429–444. https://doi.org/10.1034/j.1600-0587.2003.03356.x

Godoy, O., Bartomeus, I., Rohr, R. P., & Saavedra, S. (2018). Towards the Integration of Niche and
Network Theories. Trends in Ecology & Evolution, 33(4), 287–300. https://doi.org/10.1016/j.tree
.2018.01.007

Green, R. H. (1971). A Multivariate Statistical Approach to the Hutchinsonian Niche: Bivalve Molluscs of
Central Canada. Ecology, 52(4), 543–556. https://doi.org/10.2307/1934142

Green, R. H. (1974). Multivariate Niche Analysis with Temporally Varying Environmental Factors. Ecol-
ogy, 55(1), 73–83. https://doi.org/10.2307/1934619

Greenacre, M. (2010). Correspondence analysis of raw data. Ecology, 91(4), 958–963. https://doi.org/1
0.1890/09-0239.1

Greenacre, M. (2013). The contributions of rare objects in correspondence analysis. Ecology, 94(1),
241–249. https://doi.org/10.1890/11-1730.1

Grinnell, J. (1924). Geography and Evolution. Ecology, 5(3), 225–229. https://doi.org/10.2307/1929447

Hill, M. O. (1973). Reciprocal Averaging: An Eigenvector Method of Ordination. The Journal of Ecology,
61(1), 237. https://doi.org/10.2307/2258931

Hill, M. O. (1974). Correspondence Analysis: A Neglected Multivariate Method. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 23(3), 340–354. https://doi.org/10.2307/23471
27

Hirschfeld, H. O. (1935). A Connection between Correlation and Contingency. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 31(4), 520–524. https://doi.org/10.1017/S030500
4100013517

Hotelling, H. (1936). Relations Between Two Sets of Variates. Biometrika, 28(3/4), 321–377. https://doi
.org/10.2307/2333955

175

https://doi.org/10.1007/s11676-021-01312-0
https://doi.org/10.1093/icb/42.2.265
https://doi.org/10.2307/1368645
https://doi.org/10.2307/1368720
https://doi.org/10.1111/oik.02256
https://www.jstor.org/stable/2097153
https://www.jstor.org/stable/2097153
https://doi.org/10.2307/1934231
https://doi.org/10.2307/1934231
https://doi.org/10.1034/j.1600-0587.2003.03356.x
https://doi.org/10.1016/j.tree.2018.01.007
https://doi.org/10.1016/j.tree.2018.01.007
https://doi.org/10.2307/1934142
https://doi.org/10.2307/1934619
https://doi.org/10.1890/09-0239.1
https://doi.org/10.1890/09-0239.1
https://doi.org/10.1890/11-1730.1
https://doi.org/10.2307/1929447
https://doi.org/10.2307/2258931
https://doi.org/10.2307/2347127
https://doi.org/10.2307/2347127
https://doi.org/10.1017/S0305004100013517
https://doi.org/10.1017/S0305004100013517
https://doi.org/10.2307/2333955
https://doi.org/10.2307/2333955


Part 2: Investigate trait matching in interaction networks

Hutchinson, G. E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology,
22(0), 415–427. https://doi.org/10.1101/SQB.1957.022.01.039

Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., Edwards, F.,
Figueroa, D., Jacob, U., Jones, J. I., Lauridsen, R. B., Ledger, M. E., Lewis, H. M., Olesen, J. M.,
Van Veen, F. F., Warren, P. H., & Woodward, G. (2009). Ecological networks – beyond food webs.
Journal of Animal Ecology, 78(1), 253–269. https://doi.org/10.1111/j.1365-2656.2008.01460.x

Jordano, P., Bascompte, J., & Olesen, J. M. (2003). Invariant properties in coevolutionary networks of
plant–animal interactions. Ecology Letters, 6(1), 69–81. https://doi.org/10.1046/j.1461-0248.20
03.00403.x

Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A., & Berlow, E. L. (2016). How Structured Is the En-
tangled Bank? The Surprisingly Simple Organization of Multiplex Ecological Networks Leads to
Increased Persistence and Resilience. PLOS Biology, 14(8), e1002527. https://doi.org/10.1371
/journal.pbio.1002527

Legendre, P., Galzin, R., & Harmelin-Vivien, M. L. (1997). Relating Behavior to Habitat: Solutions to The
fourth-Corner Problem. Ecology, 78(2), 547–562. https://doi.org/10.1890/0012-9658(1997)078
[0547:RBTHST]2.0.CO;2

Legendre, P., & Legendre, L. (2012, August). Numerical Ecology [Google-Books-ID: DKlUIQcHhOsC].
Elsevier.

Lewinsohn, T. M., Inácio Prado, P., Jordano, P., Bascompte, J., & M. Olesen, J. (2006). Structure in
plant–animal interaction assemblages. Oikos, 113(1), 174–184. https://doi.org/10.1111/j.0030-
1299.2006.14583.x

Maglianesi, M. A., Böhning-Gaese, K., & Schleuning, M. (2015). Different foraging preferences of hum-
mingbirds on artificial and natural flowers reveal mechanisms structuring plant–pollinator inter-
actions. Journal of Animal Ecology, 84(3), 655–664. https://doi.org/10.1111/1365-2656.12319

McGill, B., Enquist, B., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional
traits. Trends in Ecology & Evolution, 21(4), 178–185. https://doi.org/10.1016/j.tree.2006.02.002

Miele, V., Matias, C., Robin, S., & Dray, S. (2019). Nine quick tips for analyzing network data. PLOS
Computational Biology, 15(12), e1007434. https://doi.org/10.1371/journal.pcbi.1007434

Minchin, P. R. (1987). Simulation of multidimensional community patterns: Towards a comprehensive
model. Vegetatio, 71(3), 145–156. https://doi.org/10.1007/BF00039167

Moermond, T. C., & Denslow, J. S. (1985). Neotropical Avian Frugivores: Patterns of Behavior, Mor-
phology, and Nutrition, with Consequences for Fruit Selection. Ornithological Monographs, (36),
865–897. https://doi.org/10.2307/40168322

Palacio, F., Valoy, M., Bernacki, F., Sánchez, M., Núñez-Montellano, M., Varela, O., & Ordano, M. (2017).
Bird fruit consumption results from the interaction between fruit-handling behaviour and fruit crop
size. Ethology Ecology & Evolution, 29(1), 24–37. https://doi.org/10.1080/03949370.2015.1080
195

Pappas, J. L., & Stoermer, E. F. (1997). Multivariate measure of niche overlap using canonical corre-
spondence analysis. Écoscience, 4(2), 240–245. https://doi.org/10.1080/11956860.1997.1168
2401

Pearson, D. L. (1971). Vertical Stratification of Birds in a Tropical Dry Forest. The Condor, 73(1), 46–55.
https://doi.org/10.2307/1366123

176

https://doi.org/10.1101/SQB.1957.022.01.039
https://doi.org/10.1111/j.1365-2656.2008.01460.x
https://doi.org/10.1046/j.1461-0248.2003.00403.x
https://doi.org/10.1046/j.1461-0248.2003.00403.x
https://doi.org/10.1371/journal.pbio.1002527
https://doi.org/10.1371/journal.pbio.1002527
https://doi.org/10.1890/0012-9658(1997)078[0547:RBTHST]2.0.CO;2
https://doi.org/10.1890/0012-9658(1997)078[0547:RBTHST]2.0.CO;2
https://doi.org/10.1111/j.0030-1299.2006.14583.x
https://doi.org/10.1111/j.0030-1299.2006.14583.x
https://doi.org/10.1111/1365-2656.12319
https://doi.org/10.1016/j.tree.2006.02.002
https://doi.org/10.1371/journal.pcbi.1007434
https://doi.org/10.1007/BF00039167
https://doi.org/10.2307/40168322
https://doi.org/10.1080/03949370.2015.1080195
https://doi.org/10.1080/03949370.2015.1080195
https://doi.org/10.1080/11956860.1997.11682401
https://doi.org/10.1080/11956860.1997.11682401
https://doi.org/10.2307/1366123


Bibliography

Pélissier, R., Dray, S., & Sabatier, D. (2002). Within-plot relationships between tree species occurrences
and hydrological soil constraints: An example in French Guiana investigated through canonical
correlation analysis. Plant Ecology, 162(2), 143–156. https://doi.org/10.1023/A:1020399603500

Peng, F.-J., ter Braak, C. J. F., Rico, A., & Van den Brink, P. J. (2021). Double constrained ordination for
assessing biological trait responses to multiple stressors: A case study with benthic macroinver-
tebrate communities. Science of The Total Environment, 754, 142171. https://doi.org/10.1016/j
.scitotenv.2020.142171

Peralta, G., CaraDonna, P. J., Rakosy, D., Fründ, J., Pascual Tudanca, M. P., Dormann, C. F., Burkle,
L. A., Kaiser-Bunbury, C. N., Knight, T. M., Resasco, J., Winfree, R., Blüthgen, N., Castillo,
W. J., & Vázquez, D. P. (2024). Predicting plant–pollinator interactions: Concepts, methods, and
challenges. Trends in Ecology & Evolution, S0169534723003361. https://doi.org/10.1016/j.tree
.2023.12.005

Peres-Neto, P. R., Legendre, P., Dray, S., & Borcard, D. (2006). Variation Partitioning of Species Data
Matrices: Estimation and Comparison of Fractions. Ecology, 87 (10), 2614–2625. https://doi.org
/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2

Phillips, R. D., Peakall, R., Van Der Niet, T., & Johnson, S. D. (2020). Niche Perspectives on
Plant–Pollinator Interactions. Trends in Plant Science, 25(8), 779–793. https:/ /doi .org/10.10
16/j.tplants.2020.03.009

Poisot, T., Stouffer, D. B., & Gravel, D. (2015). Beyond species: Why ecological interaction networks vary
through space and time. Oikos, 124(3), 243–251. https://doi.org/10.1111/oik.01719

R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statis-
tical Computing. https://www.R-project.org/

Raffaelli, D. (2007). Food Webs, Body Size and the Curse of the Latin Binomial. In N. Rooney, K. S. Mc-
Cann, & D. L. G. Noakes (Eds.), From Energetics to Ecosystems: The Dynamics and Structure
of Ecological Systems (pp. 53–64). Springer Netherlands. https://doi.org/10.1007/978-1-4020-
5337-5_3

Schleuning, M., Blüthgen, N., Flörchinger, M., Braun, J., Schaefer, H. M., & Böhning-Gaese, K. (2011).
Specialization and interaction strength in a tropical plant–frugivore network differ among forest
strata. Ecology, 92(1), 26–36. https://doi.org/10.1890/09-1842.1

Schoener, T. W. (1971). Theory of Feeding Strategies. Annual Review of Ecology, Evolution and Sys-
tematics, 2(Volume 2, 1971), 369–404. https://doi.org/10.1146/annurev.es.02.110171.002101

Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R., & Slatyer, R. A. (2017). Evolution of Ecological
Niche Breadth. Annual Review of Ecology, Evolution, and Systematics, 48(1), 183–206. https:
//doi.org/10.1146/annurev-ecolsys-110316-023003

Shelford, V. E. (1931). Some Concepts of Bioecology. Ecology, 12(3), 455–467. https://doi.org/10.2307
/1928991

Sîrbu, I., Benedek, A. M., & Sîrbu, M. (2021). Variation partitioning in double-constrained multivariate
analyses: Linking communities, environment, space, functional traits, and ecological niches.
Oecologia, 197 (1), 43–59. https://doi.org/10.1007/s00442-021-05006-6

Smith, T. M., & Smith, R. L. (2015). Elements of ecology (Global ed., 9. ed). Pearson.

ter Braak, C. J. F. (1995). Ordination. In R. H. Jongman, C. J. F. ter Braak, & O. F. R. Van Tongeren (Eds.),
Data analysis in community and landscape ecology (New ed., with corr). Cambridge University
Press.

177

https://doi.org/10.1023/A:1020399603500
https://doi.org/10.1016/j.scitotenv.2020.142171
https://doi.org/10.1016/j.scitotenv.2020.142171
https://doi.org/10.1016/j.tree.2023.12.005
https://doi.org/10.1016/j.tree.2023.12.005
https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
https://doi.org/10.1016/j.tplants.2020.03.009
https://doi.org/10.1016/j.tplants.2020.03.009
https://doi.org/10.1111/oik.01719
https://www.R-project.org/
https://doi.org/10.1007/978-1-4020-5337-5_3
https://doi.org/10.1007/978-1-4020-5337-5_3
https://doi.org/10.1890/09-1842.1
https://doi.org/10.1146/annurev.es.02.110171.002101
https://doi.org/10.1146/annurev-ecolsys-110316-023003
https://doi.org/10.1146/annurev-ecolsys-110316-023003
https://doi.org/10.2307/1928991
https://doi.org/10.2307/1928991
https://doi.org/10.1007/s00442-021-05006-6


Part 2: Investigate trait matching in interaction networks

ter Braak, C. J. F. (1986). Canonical Correspondence Analysis: A New Eigenvector Technique for Multi-
variate Direct Gradient Analysis. Ecology, 67 (5), 1167–1179. https://doi.org/10.2307/1938672

ter Braak, C. J. F. (1987). The analysis of vegetation-environment relationships by canonical correspon-
dence analysis. Vegetatio, 69(1), 69–77. https://doi.org/10.1007/BF00038688

ter Braak, C. J. F., Šmilauer, P., & Dray, S. (2018). Algorithms and biplots for double constrained corre-
spondence analysis. Environmental and Ecological Statistics, 25(2), 171–197. https://doi.org/1
0.1007/s10651-017-0395-x

ter Braak, C. J. F., & Verdonschot, P. F. M. (1995). Canonical correspondence analysis and related
multivariate methods in aquatic ecology. Aquatic Sciences, 57 (3), 255–289. https://doi.org/10.1
007/BF00877430

ter Braak, C. J., & Prentice, I. (2004). A Theory of Gradient Analysis. In Advances in Ecological Research
(pp. 235–282, Vol. 34). Elsevier. https://doi.org/10.1016/S0065-2504(03)34003-6

Thiel, S., Willems, F., Farwig, N., Rehling, F., Schabo, D. G., Schleuning, M., Shahuano Tello, N., Töpfer,
T., Tschapka, M., Heymann, E. W., & Heer, K. (2023). Vertically stratified frugivore community
composition and interaction frequency in a liana fruiting across forest strata. Biotropica, 55(3),
650–664. https://doi.org/10.1111/btp.13216

Thioulouse, J., & Chessel, D. (1992). A Method for Reciprocal Scaling of Species Tolerance and Sample
Diversity. Ecology, 73(2), 670–680. https://doi.org/10.2307/1940773

Thioulouse, J., Dray, S., Dufour, A.-B., Siberchicot, A., Jombart, T., & Pavoine, S. (2018). Multivariate
Analysis of Ecological Data with {ade4}. Springer. doi.org/10.1007/978-1-4939-8850-1

Valdovinos, F. S. (2019). Mutualistic networks: Moving closer to a predictive theory. Ecology Letters,
22(9), 1517–1534. https://doi.org/10.1111/ele.13279

Valdovinos, F. S., Brosi, B. J., Briggs, H. M., Moisset de Espanés, P., Ramos-Jiliberto, R., & Martinez,
N. D. (2016). Niche partitioning due to adaptive foraging reverses effects of nestedness and
connectance on pollination network stability. Ecology Letters, 19(10), 1277–1286. https://doi.or
g/10.1111/ele.12664

Valiente-Banuet, A., Aizen, M. A., Alcántara, J. M., Arroyo, J., Cocucci, A., Galetti, M., García, M. B.,
García, D., Gómez, J. M., Jordano, P., Medel, R., Navarro, L., Obeso, J. R., Oviedo, R., Ramírez,
N., Rey, P. J., Traveset, A., Verdú, M., & Zamora, R. (2015). Beyond species loss: The extinction
of ecological interactions in a changing world. Functional Ecology, 29(3), 299–307. https://doi.o
rg/10.1111/1365-2435.12356

van Dam, A., Dekker, M., Morales-Castilla, I., Rodríguez, M.
bibinitperiod, Wichmann, D., & Baudena, M. (2021). Correspondence analysis, spectral cluster-
ing and graph embedding: Applications to ecology and economic complexity. Scientific Reports,
11(1), 8926. https://doi.org/10.1038/s41598-021-87971-9

Vandermeer, J. H. (1972). Niche Theory. Annual Review of Ecology and Systematics, 3, 107–132. Re-
trieved January 29, 2024, from https://www.jstor.org/stable/2096844

Vázquez, D. P., Blüthgen, N., Cagnolo, L., & Chacoff, N. P. (2009). Uniting pattern and process in
plant–animal mutualistic networks: A review. Annals of Botany, 103(9), 1445–1457. https: / /d
oi.org/10.1093/aob/mcp057

Vázquez, D. P., Chacoff, N. P., & Cagnolo, L. (2009). Evaluating multiple determinants of the structure
of plant–animal mutualistic networks. Ecology, 90(8), 2039–2046. https://doi.org/10.1890/08-1
837.1

178

https://doi.org/10.2307/1938672
https://doi.org/10.1007/BF00038688
https://doi.org/10.1007/s10651-017-0395-x
https://doi.org/10.1007/s10651-017-0395-x
https://doi.org/10.1007/BF00877430
https://doi.org/10.1007/BF00877430
https://doi.org/10.1016/S0065-2504(03)34003-6
https://doi.org/10.1111/btp.13216
https://doi.org/10.2307/1940773
doi.org/10.1007/978-1-4939-8850-1
https://doi.org/10.1111/ele.13279
https://doi.org/10.1111/ele.12664
https://doi.org/10.1111/ele.12664
https://doi.org/10.1111/1365-2435.12356
https://doi.org/10.1111/1365-2435.12356
https://doi.org/10.1038/s41598-021-87971-9
https://www.jstor.org/stable/2096844
https://doi.org/10.1093/aob/mcp057
https://doi.org/10.1093/aob/mcp057
https://doi.org/10.1890/08-1837.1
https://doi.org/10.1890/08-1837.1


Bibliography

Wheelwright, N. T. (1985). Fruit-Size, Gape Width, and the Diets of Fruit-Eating Birds. Ecology, 66(3),
808–818. https://doi.org/10.2307/1940542

Williams, R. J., & Martinez, N. D. (2000). Simple rules yield complex food webs. Nature, 404(6774),
180–183. https://doi.org/10.1038/35004572

179

https://doi.org/10.2307/1940542
https://doi.org/10.1038/35004572


Part 2: Investigate trait matching in interaction networks

180



Part 3

Infer attractions and repulsions with

Hawkes processes

181



Cover picture: the cyanotype technique consists in arranging objects on a surface

coated with photosensitive compounds, which are then exposed to light and leave their

imprint on the surface. This drawing represents the imprint of species occurrences on

subsequent occurrences as captured with a cyanotype: from left to right and top to

bottom, species are greater kudu, impalas, lion, zebra and wildebeest.

© Own drawing.
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Introduction

1 Preamble: PhD context

My PhD was originally structured only around the work developed in this axis. How-

ever, at the end of my first year, we decided to extend the scope of the PhD, because

inference on real data yielded only null interspecific interactions. Six months later, as

I was tidying up the analyses to include this work in my thesis, I realized that there

was an error in the code I had written to analyze data. This error randomized inter-

specific occurrence times and explained why I was not able to detect interactions with

real data. I began working on this axis again, but even though the model fared better

than expected, contrary to what we originally planned, the experimental design and the

available data did not allow to robustly test ecological hypotheses using this model, so

the PhD project was diversified with other axes.

During my PhD, I had the opportunity to spend 3 months in South Africa and to

meet people working on the Snapshot Safari project, which collects the camera trap

data used in this axis. This experience allowed me to have great exchanges with

people who are part of the Snapshot Safari project, to better understand the biological

system I analyzed and to be more familiar with the camera trap data protocol used for

the Snapshot project.

This axis is the first one I worked on during my PhD, and holds a special place in

my heart. It is the first subject I investigated in a research context, the axis I spend the

most time on and I invested myself in the most and a stimulating and novel research

question.
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2 Introduction

Species distribution patterns are influenced by a variety of factors in interplay acting

at different scales. First, the evolutionary history of the species influence their distri-

bution. For instance, Malagasy Carnivora are endemic to the island of Madagascar

because of the geological history of Madagascar, that has been isolated from other

landmasses for more than 80 million years (Yoder et al., 2003). Environmental vari-

ables, like climate or habitat, also influence species distribution. For example, some

plant species of alpine communities require cold temperatures to develop, as their

germination is highly favored when the seed is exposed to cold temperatures under

snow cover (Cavieres & Sierra-Almeida, 2018). Another important factor is habitat: for

example, klipspringers (small antelopes of Eastern and Southern Africa) prefer rocky

outcrops that their hooves are adapted to (Estes, 2012). Temporal variables like the

season or the time of day can also affect species distributions, like for plankton com-

munities which display a diel vertical migration following the day-night cycles (Haren &

Compton, 2013). Finally, biotic interactions like competition or mutualism may influence

species distribution as well. Thus, plants of the knotweed complex (Faloppia sp.) are

able to limit the growth of other plants by reducing nutrient quality in the soil (Stoll et al.,

2012; Aguilera et al., 2010). Conversely, some species tightly depend on mutualism,

like figs of the genus Ficus and wasps of the Agaonidae family: figs depend on wasps

for pollination, and wasps depend on figs to lay their eggs (Janzen, 1979; Weiblen,

2002).

These different processes act at various spatial and temporal scales: species evolu-

tionary history is generally relevant to study broad spatial distribution pattern, while the

effect of the time of day is more often studied at fine spatial scale. While large scales

patterns are the focus of biogeography (Weiher et al., 2011), community ecology fo-

cuses on smaller scales (Hubbell, 1997). The ecological filters framework (Weiher et

al., 2011) unites different processes at play at the community scale: a regional species

pool, determined by species evolutionary history, is distributed into communities via

environmental filtering and biotic interactions that determine the finer-scale patterns.

This framework relies on the niche concept, which posits that species have different

ecological preferences determining their range. But community assembly is affected

by stochastic processes as well (Weiher et al., 2011; Gravel et al., 2006), a principle
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developed by Hubbell’s neutral theory Hubbell (2001).

We can also study species distribution in communities: indeed, several studies sug-

gest that non-random fine-scale species distribution patterns occur inside communities.

For instance, some species prefer specific habitats inside the community. In addition

to the klipspringer example given above (Estes, 2012), we can also cite the example of

water-dependent ungulates in arid savannas, like impala or giraffe, for which the habi-

tat choice is strongly constrained by the distance to water (Valeix et al., 2009). Species

distribution can also be influenced by fine scale climatic events, like precipitations or

temperature: for example, to protect themselves from extreme temperatures, some

species use unoccupied aardvarks burrows in South Africa (Whittington-Jones et al.,

2011, document the use of these burrows by 27 other species). Other species inside

the community can also affect species distribution. For instance, prey tend to adapt

their distribution in response to the “landscape of fear” caused by predator presence

(Say-Sallaz et al., 2019) at different spatio-temporal scales (Palmer et al., 2022).

In this part, I focus on the influence of other species from the community on species’

spatio-temporal distribution at very short spatio-temporal scales. I focus on animal

species to illustrate the method and questions, since animals (by opposition to plants)

are able to change their distribution with short-term behavioral responses. I explore

the extent to which camera trap data can be used to answer this question. Therefore,

I use multivariate Hawkes processes that take advantage of the continuous-time de-

tection process of camera traps. Hawkes processes are a family of self-exciting point

processes, i.e. point processes modeling punctual occurrences in continuous time,

where the probability of occurrences is affected by past occurrences. This framework

can be applied to camera trap data, using species occurrences captured by in contin-

uous time by camera traps. In chapter 3.1, we analyze camera trap data using a linear

multivariate Hawkes process. We describe the model, evaluate its performance with a

simulation approach and compare it to another method. We also analyze a real cam-

era trap dataset and highlight attractions and repulsions between five mammal species

from the South African savanna. This chapter has been published as a research arti-

cle (Nicvert et al., 2024). In chapter 3.2, I enrich our analysis with a more exploratory

chapter investigating the use of a non-linear multivariate Hawkes process with a tem-

poral covariate. I perform a small simulation study to evaluate the model performance,
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and I reanalyze the data from chapter 3.1 with a temporal covariate to take into account

species circadian rhythms. Finally, I discuss the outcomes of these models in chapter

4.3.

2.1 Dataset

In this part, I illustrate the analyses on a camera trap dataset collected in semi-arid

African savannas. I describe data in greater detail in chapter 3.1, but I give a brief

overview here. This dataset was collected as part of the Snapshot Safari project (Pardo

et al., 2021): here, I use a subset of data consisting in 5 species collected in 6 protected

areas.

This dataset was collected over two years and gathers a large number of capture

events (more than 70 000 overall for the five focal species), which is a lot compared to

typical camera trap datasets (Burton et al., 2015). Figure 3.I.1 summarizes the capture

counts for each species: impala is the most abundant and lion the rarest.

Figure 3.I.1: Capture count for each species. These counts take into account the number of
times capture events without accounting for the number of individuals on the picture. The x-axis
is in log-scale. Silhouette images from PhyloPic by Lukasiniho (wildebeest), Margot Michaud (lion), Robert Hering (kudu),
Zimices (zebra) and an unknown author (impala).

I chose impala, greater kudu, lion, blue wildebeest and Burchell’s zebra as focal

species because they are thought to interact in diverse ways: lion predates on all

species, and herbivores form mixed-species groups or follow a grazing succession.

The ungulate species are also among the more common in savannas, which allowed

to keep several sites in which they were all present and to have enough data to perform
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a reliable inference. Figure 3.I.2 shows camera trap pictures used in the analysis for

each species.

(a) Impala (b) Greater kudu (c) Lion

(d) Blue wildebeest (e) Burchell’s zebra

Figure 3.I.2: Camera trap pictures of focal species. Pictures from the Snapshot Safari project.
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Chapter 3.1

Using the multivariate Hawkes

process to study interactions between

multiple species from camera trap

data

The published version of the following article is available at https://esajournals.onlineli

brary.wiley.com/doi/10.1002/ecy.4237.
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Abstract

Interspecific interactions can influence species’ activity and movement pat-

terns. In particular, species may avoid or attract each other through reactive

responses in space and/or time. However, data and methods to study such

reactive interactions have remained scarce and were generally limited to two

interacting species. At this time, the deployment of camera traps opens new

opportunities but adapted statistical techniques are still required to analyze

interaction patterns with such data. We present the multivariate Hawkes pro-

cess (MHP) and show how it can be used to analyze interactions between sev-

eral species using camera trap data. Hawkes processes use flexible pairwise

interaction functions, allowing us to consider asymmetries and variations over

time when depicting reactive temporal interactions. After describing the theo-

retical foundations of the MHP, we outline how its framework can be used to

study interspecific interactions with camera trap data. We design a simulation

study to evaluate the performance of the MHP and of another existing method

to infer interactions from camera trap-like data. We also use the MHP to infer

reactive interactions from real camera trap data for five species from
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South African savannas (impala Aepyceros melampus, greater kudu

Tragelaphus strepsiceros, lion Panthera leo, blue wildebeest Connochaetes

taurinus and Burchell’s zebra Equus quagga burchelli). The simulation study

shows that the MHP can be used as a tool to benchmark other methods of

interspecific interaction inference and that this model can reliably infer inter-

actions when enough data are considered. The analysis of real data highlights

evidence of predator avoidance by prey and herbivore–herbivore attraction.

Lastly, we present the advantages and limits of the MHP and discuss how it

can be improved to infer attraction/avoidance patterns more reliably. As cam-

era traps are increasingly used, the multivariate Hawkes process provides a

promising framework to decipher the complexity of interactions structuring

ecological communities.

KEYWORD S

African savanna, camera trap, interaction network, interspecific interactions, multivariate

Hawkes process, reactive response, Snapshot Safari, spatio-temporal interactions

INTRODUCTION

Interspecific interactions affect many aspects of ecological

communities. For instance, they influence ecosystem ser-

vices (Valiente-Banuet et al., 2015), species assembly via

biotic filtering (Ovaskainen et al., 2017) and the behavior

of interacting species. In particular, interactions are one of

the factors that structure the way in which animal species

move in the landscape and adjust their habitat choices or

activity times (Palmer et al., 2022). Mobile animals can

respond to interactions by avoiding or seeking proximity

with individuals of other species, depending on the posi-

tive or negative outcome of the interactions. For instance,

prey can avoid their predators (Say-Sallaz et al., 2019),

competing species can avoid each other (Cornhill et al.,

2022; Searle et al., 2021), or herbivores can forage together

to reduce predation risk or increase access to preferred for-

aging resources (Beaudrot et al., 2020). In this paper, we

will use the term “interaction” to refer to the attraction or

avoidance of a species by another one, even though “inter-

action” also refers to the underlying process of the attrac-

tion/avoidance pattern.

These interactions (as defined above) can occur in

space and/or time, at different scales. Species can adjust

their space use in response to the expected distribution of

other species (proactive spatial interaction; Palmer et al.,

2022). Species can also alter their daily activity patterns

(e.g., Karanth et al., 2017) in response to other species

(proactive temporal interaction). However, some species

could also exhibit a reactive response to the presence of

other species, that is, change their behavior in response

to the actual presence of a species sometime before at a

given location (e.g., Karanth et al., 2017; Parsons et al.,

2016). This type of response could be mediated, for

instance, by olfactory (Cornhill & Kerley, 2020; Kuijper

et al., 2014) or auditory cues (Hettena et al., 2014).

Investigating these reactive interactions is particularly

promising as it allows us to identify fine-grained patterns

that could be missed by approaches aggregating data in

space or in time (Cusack et al., 2017; Frey et al., 2017;

Parsons et al., 2022).

Investigating such fine-scale responses is very chal-

lenging, as it requires an intensive sampling effort to mon-

itor multiple species in space and time. In this context,

camera traps open new opportunities to study the spatial

and temporal activities of multiple species (Caravaggi

et al., 2017). Camera trap arrays allow the collection of

multiple species occurrences and, therefore, the continu-

ous monitoring of entire communities for large areas in

time (Pardo et al., 2021). Hence, camera traps can produce

massive amounts of data and offer new possibilities to

study interactions between several species at multiple

scales. Moreover, they are relatively cheap and easier to

set up than classical fieldwork survey techniques

(e.g., transects), especially for rare or elusive species or in

remote areas. As camera traps become more affordable

and automated species identification methods from pic-

tures are being developed with deep learning, camera trap

data (and other passive sensor data) will probably become

more abundant in the future (Caravaggi et al., 2017).

With camera trap data, interspecific interactions are

mostly studied at a broad spatial or temporal scale. To do

this, data are often aggregated so that either the spatial or

the temporal aspect is completely ignored. There are two

main approaches for this purpose: comparing species’

daily activities patterns (Ridout & Linkie, 2009) or spatial
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occupancy patterns (e.g., with the multispecies occu-

pancy model of Rota et al., 2016). Such methods provide

a measure of the proactive attraction or avoidance strat-

egy, with species adapting their space or time use in

anticipation of other species’ presence or absence

(Palmer et al., 2022). However, other approaches have

combined spatial and temporal aspects to infer reactive

attraction/avoidance strategies (frequently called

spatio-temporal interactions in the literature; Karanth

et al., 2017; Murphy et al., 2021; Niedballa et al., 2019;

Prat-Guitart et al., 2020). Most methods using camera

trap data quantify only the temporal aspect of reactive

interactions; therefore, we will call the inferred patterns

reactive temporal interactions. Most are based on the com-

putation of time intervals between the detections of two

species at a given place (e.g., Harmsen et al., 2009); here,

we call this family of methods interevent times methods.

The distribution of time intervals can then be contrasted

according to the order of appearance of species (Parsons

et al., 2016; Prat-Guitart et al., 2020) or summarized by

a statistic that is compared with values obtained under

a null model (usually data permutation; Cusack et al.,

2017; Galindo-Aguilar et al., 2022; Karanth et al., 2017;

Murphy et al., 2021). For a comparison of different

approaches to infer reactive temporal avoidance with

time interval measures, see Niedballa et al. (2019).

Other more recent approaches use point processes,

which allow us to integrate temporal dependence in

a model-based framework (Kellner et al., 2022;

Schliep et al., 2018).

Although all methods described above are useful to

study reactive interactions, they usually focus on pairs of

species and can therefore be unsuitable for studying com-

plex interaction networks. For instance, these methods

can identify spurious interactions between two species if

other species are involved in the interaction network but

not considered in the analysis. Moreover, they summa-

rize the effect of a species on another one by a single

value (e.g., the median of the time interval; Karanth

et al., 2017), thus ignoring the multiscale and possibly

time-dependent changes in the attraction/avoidance pat-

terns (but see Cusack et al., 2017).

In this paper, we propose the multivariate Hawkes

process (MHP) (Hawkes, 1971; Lambert et al., 2018) as a

modeling framework to infer reactive interactions

between multiple species from passive sensors such as

camera traps. Hawkes processes belong to the family of

point processes that allow the analysis of species capture

events in continuous time, thus avoiding any data aggre-

gation procedure. In Hawkes processes, species’ interac-

tions are modeled as pairwise interaction functions that

depend on the time elapsed between species detections.

The MHP used in this article is generative and offers the

possibility to simulate occurrence data, given parameters

specification. It also comes with an inference procedure

that allows the adjustment of the pairwise interaction

functions from observed data. It deals properly with indi-

rect effects caused by species interaction chains, thus

minimizing the risk of inferring spurious interactions.

We believe that this model is a useful conceptual frame-

work that is well suited for assessing reactive temporal

interactions between species. We first present the

Hawkes process and how it can be used to analyze cam-

era trap data. Then, we describe the MHP used in this

article, which was developed by Lambert et al. (2018) and

implemented in the R package UnitEvents (Albert et al.,

2021). We then show how this model can be used to sim-

ulate data to evaluate the performance of statistical

methods or to infer interactions from camera trap data.

We also apply the MHP on real camera trap data from

the Snapshot Safari monitoring program (Pardo et al.,

2021) to infer reactive temporal interactions between five

mammal species. Finally, we discuss the usefulness of the

MHP and the perspectives on how to develop this model

further.

MATERIALS AND METHODS

All analyses were performed using R statistical software

(v4.3.0; R Core Team, 2023) and the code and data

(Nicvert et al., 2023) are available at https://doi.org/10.

6084/m9.figshare.24552157.v5.

Model: The multivariate Hawkes
process (MHP)

Hawkes processes are a family of point processes used to

describe dependencies between punctual events. These

processes belong to the class of self-exciting point pro-

cesses for which the probability of occurrence at time t

depends on the occurrences of the previous events. The

first Hawkes process was introduced in 1971 by Alan

G. Hawkes (Hawkes, 1971). Originally applied to model

aftershocks following earthquakes (e.g., Ogata, 1988),

Hawkes processes have been applied in various fields

(Reinhart, 2018) for instance to model crime recurrence

in cities (Mohler et al., 2018), the evolution of prices on

the stock market (Hawkes, 2018) or the transmission of

action potentials in a network of neurons

(Reynaud-Bouret et al., 2013). The theoretical properties

of Hawkes processes have also been thoroughly studied,

and numerous extensions have been proposed.

Throughout this article, we define an occurrence as

the detection of an individual at a camera at a given time,
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and we do not take imperfect detection into account. To

describe the model, we consider data on the occur-

rences of S species collected on C cameras. In our frame-

work, the data collected on C cameras are seen as C

independent realizations of the MHP. Let T li
m denote the

m-th instant of punctual occurrence for species i at cam-

era l. Let N l
i be the total number of occurrences for

species i at camera l. We model the occurrence times

T li
m

� �
m¼ 1…N l

i,i ¼ 1…S,l ¼ 1…C
as C realizations of an MHP.

To model punctual occurrences, point processes use a

latent intensity function, which is a measure of the rate

at which events occur in time. When modeling species

occurrences from camera trap data, the intensity for a

given species represents the rate at which this species

occurs at a camera. For species i, the intensity λli tð Þ at

camera l is formally defined as (Daley &

Vere-Jones, 2003):

λli tð Þ¼ lim
δ!0

P nli�t,t+ δ� >0
n o

δ
, ð1Þ

where nli�t,t+ δ� is the number of points occurring between

times t and t+ δ for species i at camera l and δ is an infin-

itesimally small amount of time. Informally, the intensity

of a point process multiplied by a small amount of time

can be viewed as the probability that there will be at least

one point occurring around time t.

In this work, we used the R package UnitEvents

(Albert et al., 2021) available from https://sourcesup.

renater.fr/frs/?group_id=3267, to simulate and infer

MHPs. UnitEvents is only available on Linux and Mac

OS. However, in the code and data repository for the arti-

cle (Nicvert et al., 2023), we provide a Dockerfile allowing

us to run the analyses from any operating system (includ-

ing Windows).

UnitEvents implements the MHP described in

Lambert et al. (2018). In this framework, the intensity of

species i seen on camera l for a Hawkes process with S

interacting species is written as:

λli tð Þ¼ νi +
XS

j¼1

X

mjT
lj
m < t

f j!i t−T lj
m

� �
0

@

1

A

+

, ð2Þ

where λli tð Þ represents the intensity for species i (as

defined above) at camera l. νi is a positive parameter, the

background rate: it represents the basal intensity of spe-

cies i (in time−1, e.g., day−1) unrelated to previous occur-

rences. For instance, νi would be low for a rare species

and higher for a common species.

f j!i is the interaction function that represents the

influence of an occurrence of species j on species i as a

function of time delay: positive values of f j!i represent

an attraction of species i by species j, negative values rep-

resent a repulsion and null values independence. In the

case j¼ i, the function f i!i represents the interaction

between individuals of the same species i. In that case,

we will call f i!i the auto-interaction function: it could

reflect for instance the fact that some species are solitary

or gregarious. f j!i are defined as piecewise constant func-

tions with K time bins of equal length δ:

f j!i ¼
XK

k¼1

αkj!i1� k− 1ð Þδ,kδ�, ð3Þ

where 1� k− 1ð Þδ,kδ� denotes the indicator function between

delays k− 1ð Þδ and kδ. The K coefficients αkj!i represent

the average number of occurrences of species i gained (if

positive) or suppressed (if negative) by an occurrence of

species j in the k-th interval after this occurrence of spe-

cies j.

In this framework, f j!i can take negative values, thus

allowing modeling the repulsive effect of species j on spe-

cies i. As the intensity λli must be positive by definition,

Equation (2) includes a positive part �ð Þ+ . However, for

mathematical reasons, in the following developments we

will assume that the negative values of f j!i are never too

strong so that the intensity never becomes negative, and

the positive part is not needed. To enforce this assump-

tion, the repulsion terms can only be as strong as the

other terms making up the total intensity.

Figure 1 illustrates a realization of an MHP with five

species (measured at a single camera) simulated with

UnitEvents. In this example, some species attract each

other (see the interaction network in Figure 1a) with the

same decreasing discrete exponential interaction function

with K ¼ 12 time bins of width δ¼ 4 h (Figure 1b). The

background rate is the same for all species and is fixed at

0.2 occurrences day−1. The right panel in Figure 1c shows

the simulated species occurrences and associated intensi-

ties over time. When nothing happens, the intensity is

fixed at the background rate. When an attracting species

occurs, the intensity of the attracted species peaks, mak-

ing an occurrence more likely. For instance, each occur-

rence of species s1 gives rise to a peak in the intensity of

s2. Moreover, when several attracting events occur, the

interaction functions add up, which makes the occur-

rence of the target species even more likely.

Model inference

The inference procedure implemented in the UnitEvents

package is a fast and scalable LASSO-penalized (least

absolute shrinkage and selection operator) least-squares

criterion. It allows the estimation of a single MHP from C
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realizations (in our setting, this corresponds to C

cameras).

Let β1,…,βSð Þ denote the parameters of interest for

each species i¼ 1,…,S. Each βi is a vector of size 1+ SK

containing the background rate of species i (νi) and the

parameters of the interaction functions targeted to this

species i for the S species and the K bins:

βi ¼ νi, αkj!i

� �

j¼1…S,k¼1…K

� �
. Each βi is estimated as:

bβi ¼ argmin
βi

LASSO βið Þ where

LASSO βið Þ¼ − 2
XC

l¼1

b
l
i

T
βi + βTi

XC

l¼1

G
lβi

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
least−squares

+ 2dT
i j βi j|fflfflfflffl{zfflfflfflffl}

penalization

, ð4Þ

where T denotes transposition and j βi j is the vector

containing the absolute values of the coordinates of βi. b
l
i

is an observable vector of size 1+ SK. If camera l is active

between times αl and ηl, then:

b
l
i ¼ N l

i,

ðηl

αl

n
lj

t− kδ,t− k− 1ð Þδ½½ dnli
t

� �

j¼1…S,k¼1…K

 !
: ð5Þ

Its first value is the total count of species i observed

on camera l. The other values represent the total occur-

rence counts of the species j observed in the k-th bin

before the occurrences of species i at camera l. Gl is also

an observable matrix defined as:

F I GURE 1 Example of a realization of a multivariate Hawkes process. (a) Shows the interaction network between five species (each

arrow represents a non-null interaction function). In this example, all autointeraction functions f i!i are null. (b) Shows the shape of the

interaction functions (K ¼ 12 time bins of width δ¼ 4 h) corresponding to arrows in the interaction network (a). (c) Shows a realization of

the Hawkes process with the interaction network and the interaction functions shown in (a) and (b). For this simulation, the background

rate was set to 0.2 occurrences day−1 for all species. For each species i, the above panel shows the intensity λi and the bottom panel shows

the species occurrences. Each time an attracting species occurs, the intensity for the attracted species peaks and then decreases as dictated by

the interaction function shape.
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G
l ¼

ðηl

αl

c
l
tc

l
t

T
dt, ð6Þ

where c
l
t is a vector of size 1+ SK defined as

c
l
t ¼ð1,ðnlj

t− kδ,t− k− 1ð Þδ½ �Þj¼1…S,k¼1…KÞ. Its first value is 1

and other values represent the occurrence counts of

species j occurring on camera l in the k-th bin before

time t.

The term 2dT
i j βi j of Equation (4) corresponds to the

LASSO penalization: it can make some parameter values

shrink to zero and thus avoid overparameterization. The

strength of this LASSO penalization is controlled by the

weights vectors di, which are computed from the data

and tuned by a unique user-chosen parameter γ (equa-

tion derived from Lambert et al. (2018) adapted from

Hansen et al. (2015)):

di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γ log S+ S2K
� �XC

l¼1

ðηl

αl

clt
2
dnlit

vuut

+
γ log S+ S2K

� �

3
max
l¼1…C

sup
t � αl,ηl½ �

jcltj

 !
: ð7Þ

The choice of a suitable value for γ is crucial for

model selection, because γ ensures that only relevant

nonzero parameters are kept in the model. However,

choosing a good value for γ is difficult: it has been evalu-

ated by simulations in Lambert et al. (2018) and Hansen

et al. (2015), and we proceeded similarly in this article.

In the current implementation of UnitEvents, three

flavors of the LASSO penalization are available. We chose

the “Bernstein Vanishing LASSO” (BVL), where the

penalization in Equation (4) is first applied to discard

weak interaction parameters. Then, the estimates of the

remaining non-null parameters are obtained by minimiz-

ing the least-squares criterion. Lastly, an additional step

is introduced to remove parameters smaller than a

data-computed threshold (see Lambert et al., 2018, for

details and justification).

In the implementation of UnitEvents, the bins width δ

and the number of bins K for the interaction functions

are fixed by the user, who also needs to choose a value of

γ a priori. The other parameters (interaction functions

coefficients αkj!i and background rates νi) are fitted as

described before.

Simulation study

We generated camera trap-like data under the MHP and

used these simulated data to (1) evaluate the performance

of a method and (2) tune the penalization parameter for

inference on real data.

Simulation parameters

For these two objectives, we conducted two sets of simu-

lations in the same conditions. We considered an interac-

tion network with five species si¼1…5 where s1 attracts s2
and s2 attracts s3 and s4 (network from Figure 1a). This

network represents a difficult case as an inference

method should detect direct interactions, but not spuri-

ous indirect interactions (e.g., s1 ! s3) and identify that

species s5 is not interacting with others. In this simula-

tion, we define the true interactions by decreasing expo-

nential functions to 2 days:

f tð Þ¼
αexp −

ln 2ð Þ

0:5
t

� �
if t<2

0 if t≥ 2

8
<

: , ð8Þ

where α is the interaction strength. The half-life of this

function is the denominator of the decrease rate, so that

this function will reach half of its initial value at t¼ 0:5

day. The interaction strength α for the true model varied

from 0.01 to 1 day−1. Here, the interaction strength repre-

sents the maximum intensity of the pairwise interaction

function for t¼ 0. An analogous interaction function is

shown in Figure 1b with α¼ 1 and with discrete bins.

The background rate was fixed at 0.1 day−1 for all species.

The simulated trapping length varied from 20 to

500 trapping days for each camera over 25 cameras (mak-

ing up to 12,500 trapping days in total). For each condi-

tion, 30 different data sets were generated to evaluate the

variability of the inference.

We evaluated the performance of the inference by

computing the true positive and true negative rates. The

true positive rate is the proportion of inferred nonzero

interactions over the count of true nonzero interactions.

The true negative rate is the proportion of inferred null

interactions over the count of true null interactions.

Evaluating a method to infer reactive temporal
interactions

We illustrated how synthetic data generated with the

MHP can be used to evaluate the performance of a

method to infer interspecific interactions, considering the

interevent times method of Murphy et al. (2021). We

applied the method described by Murphy et al. (2021) on

simulated data (simulation settings are described in

Simulation parameters). This method consists of comput-

ing the median time between directed pairwise species

occurrences (excluding pairs from the same species) for

observed and randomly permuted data (999 permuta-

tions). The permutation procedure involved randomly

6 of 15 NICVERT ET AL.
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changing the cameras’ labels of species occurrences (for

details see Murphy et al., 2021). Finally, the statistical sig-

nificance of interactions was estimated by comparing the

median time for observed and permuted data. We used a

significance threshold of 5% with a Holm correction for

multiple testing.

Choice of the penalization parameter

To choose the best penalization parameter γ in the con-

text of interaction inference, we used a simulation

approach (simulation settings are described in

Simulation parameters). We inferred MHPs with different

values of γ (between 0.3 and 1) from the simulated

datasets. For the inference parameters, we chose K ¼ 12

bins of width δ¼ 4 h (2 days in total, corresponding to the

length of the simulated interaction functions). Then, we

defined any inferred interaction function as null if all

bins were zero over the function’s support, and nonnull if

at least one bin was not null.

Application: Analysis of interactions
between five species in the African
savanna

We used the MHP to infer interaction functions between

five species of the southern African savanna: impala

Aepyceros melampus, greater kudu Tragelaphus strepsiceros,

lion Panthera leo, blue wildebeest Connochaetes taurinus,

and Burchell’s zebra Equus quagga burchelli.

Data collection

Camera trap data were collected as part of the

long-term Snapshot Safari monitoring program (Pardo

et al., 2021). Snapshot Safari is a network of camera trap

grids set up in more than 30 locations in southern

Africa. The camera trap design consists of grids of

5 km2 in each location, in which cameras were fixed at

~50 cm high. Cameras were automatically triggered by

motion or heat using passive infrared sensors. Each

camera was programmed to take a series of three

images within 1–5 s of each other by day, and only one

image by night to minimize disturbance occasioned by

white flash. For this analysis, we focused on six camera

trap grids in the savanna biome in northern

South Africa: the Associated Private Nature Reserves

(around Kruger National Park), Kruger National Park,

Madikwe Game Reserve, Pilanesberg National

Park, Somkhanda Game Reserve, and Venetia Limpopo

Nature Reserve (see Figure 2).

Data preprocessing

Pictures were classified by citizen science using the

Zooniverse platform (www.zooniverse.org), where pictures

were available online and annotated by more than 150,000

volunteers (see Pardo et al., 2021, for more details).

For this analysis, we filtered out cameras where cap-

ture events were too rare (less than two pictures in total or

fewer than one picture every 30 days on average). We did

not filter for independence between occurrences of the

same species. However, because the Hawkes model does

not allow two capture events to occur simultaneously, if

two or more individuals of different species were seen on

the same capture event, their occurrence time was ran-

domly shifted from 1 min in advance to 1 min later. For

multiple individuals of the same species seen simulta-

neously, the occurrences of the individuals were counted

as a single event (i.e., an occurrence corresponds to an

individual or a group of individuals of a given species).

After the filtering procedure, 72,703 occurrence

events (corresponding to 70,409 unique pictures) were

collected on 179 cameras in total. Cameras were active

during 503 ± 224 (SD) days on average (minimum:

19 days, maximum: 851 days), amounting to 90,176 trap-

ping days on all cameras. All pictures were taken

between June 2017 and November 2019.

Parameters inference

We inferred the parameters of a MHP using interaction

functions defined by K ¼ 6 bins of δ¼ 6 h (36 h in total).

This parametrization should allow us to capture the

F I GURE 2 Study sites. Six protected areas were surveyed with

camera traps for this study: the Associated Private Nature Reserves

(APN), Kruger National Park, Madikwe Game Reserve, Pilanesberg

National Park, Somkhanda Game Reserve, and Venetia Limpopo

Nature Reserve. Data by OpenStreetMap contributors under ODbL

license (https://www.openstreetmap.org/copyright).
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dynamics of reactive temporal interactions with enough

granularity while keeping a relatively low number of

parameters to estimate to allow reliable inference. Using

the results of the simulation study (see Choice of the

penalization parameter), we decided to set the value of

the penalization parameter γ to 0.5.

RESULTS

Simulation study

Evaluating a method to infer reactive temporal
interactions

We used data simulated under the MHP to evaluate the

method of Murphy et al. (2021). As expected, the ability

to detect interactions (true positive rate) increases with

the strength of the interactions (Figure 3). Provided the

interaction strength α is big enough (at least 0.1 day−1),

the ability to detect interactions increases with the num-

ber of trapping days, which indicates that a significant

sampling effort is required to infer interactions from cam-

era trap data (at least 300 trapping days for 25 cameras

when the interaction strength is above 0.2 day−1). More

surprisingly, when the interaction strength is high

(at least 0.5 day−1), the true negative rate decreases with

increasing sampling effort. This indicates that the method

wrongly detects interactions between noninteracting spe-

cies. Additional investigations (Appendix S1: Section S1)

show that these errors mainly concern the detection of

spurious indirect interactions between species involved

in interaction chains (e.g., s1 ! s3).

Choice of the penalization parameter

The simulation study to find suitable values for the

penalization parameter γ led to the results shown in

Figure 4. Unsurprisingly, the ability to detect true inter-

actions (true positive rate) increases with the number of

trapping days and the strength of interactions. When the

penalization is too low (γ¼ 0:3; top row), the model tends

to identify interactions between noninteracting species

(reducing the true negative rate) but this problem van-

ishes when the sampling effort increases. Conversely, a

high penalization (γ¼ 1; bottom row), moderately

improves the true negative rate, but more importantly

dramatically hampers the ability to detect non-null inter-

actions for small interaction strengths. A value of γ¼ 0:5

seems to be a good compromise allowing the efficient

detection of true interactions when their strength is not

too small (at least 0.1 day−1) but avoiding the identifica-

tion of false interactions. It gives good results especially

when the sampling lasts more than 400 trapping days per

camera. Hence, we decided to use a penalization parame-

ter of γ¼ 0:5 to infer the parameters of an MHP from real

data (see Analysis of real data). Lastly, supplementary

analyses show that the spurious interactions are ran-

domly distributed and not biased toward indirect interac-

tions as with the interevent time method (Appendix S1:

Section S1).

Analysis of real data

We fitted a MHP using the occurrence data of five species

(impala, greater kudu, lion, blue wildebeest, and Burchell’s

F I GURE 3 Evaluation of an interevent times method (Murphy et al., 2021). Panels represent different interaction strengths (maximum

value of the interaction function). The x-axis represents the sampling length and the y-axis represents the performance: true positive rate

(full dots, continuous line) or true negative rate (circles, dashed line). Points indicate values for the 30 repetitions, lines joins the medians,

and the colored area represents the 2.5th and 97.5th percentiles.
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zebra) collected with camera traps. Adjusting the model

only took a few seconds on a personal computer. The

resulting interaction functions are shown in Figure 5 and

the inferred background rates are in Appendix S1:

Section S2.

Background rates represent the basal intensity for

each species, independently of the others. They vary

greatly between species, with impala having a much

higher background rate than other species (impala:

0.212 day−1; zebra: 0.040 day−1; kudu: 0.035 day−1; wilde-

beest: 0.022 day−1, and lion: 0.003 day−1). As expected,

they are strongly related to the total occurrence count of

each species.

Regarding the interaction functions, the inferred

parameters highlight a strong auto-attraction for the first

bin (0–6 h), varying between 1.5 and 2.25 day−1 depending

on the species. Regarding the cross-species interaction

functions, many herbivores are attracted to each other.

Impalas follow or avoid kudus (depending on the delay),

wildebeests and zebras; zebras follow impalas, kudus,

and wildebeests; wildebeests mainly follow zebras.

Other interactions between herbivores are negligible.

These herbivore–herbivore interactions are composed of a

short-term attraction (during the first 6 h after an

occurrence) and of a medium-term attraction (12 to 36 h

after an occurrence) except impalas that are not attracted

by zebras in the short term. Additionally, impalas seem to

avoid kudus 6 to 12 and 30 to 36 h after an occurrence.

We notice that these interactions are asymmetrical

(impalas and zebras follow other species much more than

they are followed). Regarding prey–predator interactions,

lions do not follow or avoid any other species. Zebra and

impala seem to avoid lions in the next 6 h following an

occurrence of this predator. Finally, the inferred interac-

tions are relatively robust to a change in bin width as we

show in Appendix S1: Section S4, where we performed the

inference on the same dataset with different bin widths

(3 and 9 h).

DISCUSSION

It is now well established that identifying the signature of

interspecific interactions from species occurrence data is

generally difficult (Blanchet et al., 2020; Popovic et al.,

2019). However, camera trap data provide additional

F I GURE 4 Performance of the inference with the multivariate Hawkes model. In columns, the interaction strength (maximum value of

the interaction function). In rows, the different values of the penalization parameter γ. The x-axis represents the sampling length and the

y-axis represents the performance (true positive rate or true negative rate). Lines, points and colors have the same meaning as in Figure 3.
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information (time and order of occurrence of species)

that can help to relate occurrence patterns to underlying

interspecific interactions. In this context, the Hawkes

model provides a new theoretical framework to analyze

species occurrences sampled in continuous time using

camera traps. This model aims to predict the probability

of occurrence of a given species at a given time taking

into account the previous occurrences for several species.

By considering the exact time at which species occur, this

model provides a detailed picture of species reactive tem-

poral interactions under the form of interaction functions

(here, the term “interaction” refers to the attraction/

repulsion pattern). These functions allow a multiscale

description of interactions as they characterize how the

interaction strength varies with time, contrary to other

methods that provide a single measure of attraction/

F I GURE 5 Inference of interactions from real data using the multivariate Hawkes model. The top plot shows the auto-interaction

functions (between occurrences of the same species). The bottom plot shows cross-species interactions, where the intensity of species in rows

is affected by species in columns. The horizontal dashed line represents zero. Note that the y-axis scale is different between autointeractions

and cross-species interactions. Silhouette images from PhyloPic by Lukasiniho (wildebeest), Margot Michaud (lion), Robert Hering (kudu),

Zimices (zebra), and an unknown author (impala).
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avoidance. Moreover, these functions are directed: the

inferred interactions can be asymmetrical, as expected for

ecological interactions. The toolbox associated with this

model offers the possibility to generate data and design

simulation studies or to infer parameters from real data.

We used the MHP to generate camera trap-like

datasets with different properties (sampling effort,

strength of interactions) and showed how these simu-

lated data can be used to evaluate the performance of a

method or to tune inference parameters. Both simulation

studies demonstrate that camera trap data can be used to

detect reactive temporal interactions between species but

this requires a substantial sampling effort, especially

when the strengths of interactions are low. In our simula-

tion setup (five species, background rates of 0.1 day−1

and only attractions), results suggest that at least 1 year

of sampling with 25 cameras is required to obtain reliable

inference, and this holds only if the interaction is strong

enough (interactions of strength 0.01 day−1 are not reli-

ably detected in our simulations). These requirements

would probably be higher if more species were consid-

ered, especially for rare species (smaller background

rate). Hence, we agree with Schliep et al. (2018) that

more data are needed to estimate reliable reactive inter-

action patterns than to estimate species occupancy. In

this context, the MHP provides a powerful simulation

tool to design and assess the quality of sampling protocols

in camera trap studies by adopting a virtual ecologist

approach (Zurell et al., 2010). The simulation study also

highlights the limits of methods focusing on pairs of spe-

cies to analyze interactions between multiple species. By

focusing only on two species at a time, these approaches

are not able to disentangle direct interactions from indi-

rect effects due to other species in interaction chains

(Appendix S1: Section S1). Moreover, the correction for

multiple testing we applied in our study was not suffi-

cient to eliminate these spurious interactions, and we can

assume that this issue is more important in the literature

when no correction is considered. As a consequence,

interevent times methods tend to overestimate the num-

ber of interactions, especially when their strength is high

or the sampling effort increases. However, such spurious

interactions were inferred only when we simulated quite

strong interactions, and more investigations would be

needed to estimate the range of interaction strengths we

can expect in natural conditions. By contrast, the Hawkes

process used here is multivariate by nature, so it works

on all species simultaneously and thus allows the identifi-

cation of interactions between two species conditionally

to the other species, similar to graphical models in the

context of co-occurrence analysis (Popovic et al., 2019).

This modeling approach thus provides a better picture of

the interaction network of the whole community.

The real dataset analysis shows how the MHP can be

used to infer reactive interactions between five mammal

species from the African savanna. In our example, because

we defined an occurrence as the presence of an individual

or a group of individuals, the values of the interaction

functions represent the number of individuals or groups of

individuals that are attracted/repulsed by other occur-

rences, and the typical group size to consider depends of

the species. We identified strong auto-attractions for all

species but also attractions between different herbivores

and avoidance of lions by two herbivore species (impala

and zebra). Whereas it could be tempting to interpret these

results as behavioral responses of species to an underlying

interaction (e.g., avoidance in response to predation), the

Hawkes model only characterizes attraction/avoidance

patterns and particular care should be taken when

interpreting these results, especially because no covariates

were included in this analysis. We discuss these different

interpretations of the observed patterns in terms of ecolog-

ical processes below and we make suggestions to improve

the MHP to untangle the different hypotheses.

We identified auto-attractions for all species, indicat-

ing that the occurrence of a given species increases the

probability of having another occurrence of the same spe-

cies at the same place. This could be due to the same

individual lingering in front of the camera, especially

because no independence filter was applied (although

cameras are configured to pause for 1 min between trig-

ger events), or this could reflect sociality among individ-

uals, as an individual or a group may attract other

individuals for gregarious species. This could also stem

from habitat selection processes, so that numerous subse-

quent occurrences could be observed at cameras located

in species’ preferred habitats. Lastly, circadian rhythms

impose physiological constraints on the activity times of

each species and thus could increase their occurrence

rate at certain times of the day. When they are not taken

into account, as is the case here, circadian rhythms could

affect the interaction functions in the short term (0–6 h)

and also induce a 24-h periodicity in the interaction func-

tions. This issue is clearly illustrated using simulated data

(see Appendix S1: Section S3) and could partly explain

the short-term (0–6 h) auto-attraction, and probably most

of the weak auto-attraction observed at ~24 h for impala,

kudu, wildebeest and zebra (Figure 5).

Regarding the cross-species interactions, we observed

attraction patterns between some herbivores, which could

be explained by four mechanisms. First, temporal niche

convergence could induce attraction between species

when they are active at the same time of day and if they

also share the same location. In our example, the four her-

bivore species are diurnal with crepuscular activity peaks.

However, if the apparent attraction was due to shared
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circadian rhythms, we would probably observe a

symmetry of interaction functions (i.e., if s1 ! s2 is not null,

s2 ! s1 is also not null) as the order of appearance of spe-

cies at a camera during the activity time would be ran-

dom. This is not always the case in the example depicted

here, for instance between zebra and kudu. Second, spe-

cies sharing the same kind of preferred environment

might show apparent attraction. However, as for the tem-

poral niche, this spatial niche should induce a symmetri-

cal interaction pattern. Third, the apparent attraction

between species could be due to the mixed-species group-

ing strategy, whereby some species forage together in

mixed groups. Such groups are thought to mitigate preda-

tion risk and/or improve access to resources (Beaudrot

et al., 2020). Moreover, when it comes to predation risk,

in addition to the dilution effect (a simple number game),

there is a possible benefit to being associated with more

vulnerable species (Fitzgibbon, 1990). This implies a

directionality in the choices of association, an asymmetry

well captured by the MHP. In our analysis, some species

are attracted by others in the first hours following an

occurrence (impala follows kudu and wildebeest; zebra

follows wildebeest, kudu and impala; and wildebeest fol-

lows zebra). Interestingly, these associations have been

described in the literature (Meise et al., 2019; Pays et al.,

2014; Schmitt et al., 2014). Finally, another mechanism

that could explain interactions between herbivore species

is grazing succession (Bell, 1971), which describes a strat-

egy by which species sequentially use the same grazing

area: less selective species come first (nonruminants and

species with higher body mass), followed by more selec-

tive species (smaller ruminants). In our results, some her-

bivore species are attracted with a delay (impala

following zebra, kudu, and wildebeest; wildebeest follow-

ing zebra; zebra following wildebeest and impala).

Impala following other (bigger) species and wildebeest

following the nonruminant zebra are compatible with

the grazing succession theory (Bell, 1971). However, the

temporal scale of this potential grazing succession occurs

at a temporal scale much shorter than the one classically

described (McNaughton, 1976, 1985).

Regarding the apparent avoidance of lions by

zebras and impalas, here again this could stem from

temporal niche divergence (lion is a nocturnal species

whereas impala and zebra are diurnal). This apparent

repulsion could also reflect a strategy of impala and

zebra to minimize predation risk by reactively

avoiding lions, that is, responding to actual cues of lion

presence (olfactory or auditory cues for instance) at a

fine spatio-temporal scale, as documented for zebras

(Courbin et al., 2016).

As discussed with the real dataset analysis, a major

challenge remains linking attraction/repulsion patterns

identified by the MHP to underlying ecological processes.

To date, the implementation used in this paper cannot

include covariates to model variations in species’ back-

ground occurrence rates. This calls for two major

improvements: first, we could include temporal

covariates to account for the variation of species occur-

rence rate through the day according to their diel cycle.

Second, we could include environmental covariates to

account for species habitat preferences across the land-

scape. Works such as Fujita et al. (2018) for temporal

covariates or Carstensen et al. (2010) for temporal and

environmental covariates could be helpful in this per-

spective. Further developments include accounting for

imperfect detection by camera traps, which is known

to be an important issue (Burton et al., 2015). In this

regard, Kellner et al. (2022) recently developed an

occupancy model with a detection process occurring in

continuous time with a Markov-modulated Poisson

process, and a similar approach could be envisioned

with the MHP.

Here, we inferred an MHP from camera trap data, but

this modeling approach could be extended to other types

of passive sensors collecting occurrence data in continu-

ous time (e.g., microphones, hydrophones) that are

increasingly used to monitor biodiversity. In particular,

using a spatially explicit extension of the Hawkes process

(first described by Ogata, 1998, in the context of earth-

quake occurrences) could be especially suited to include

a spatial dependency between camera traps or to analyze

GPS collar data and estimate interaction functions in

time and space.

The Hawkes process could also be used for other

applications than estimating interspecific interactions,

for instance to study behavioral synchrony within a

group (e.g., Pays et al., 2012) or to infer animal social net-

works from occurrence data (e.g., Jacoby et al., 2016).

Even if more developments are required to improve

ecological inference, we contend that the MHP and other

point-process methods offer an adapted theoretical

framework for the analysis of time-continuous occur-

rence data while contributing to an explanation of inter-

actions among herbivores and between herbivores and

predators.
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Chapter 3.1. Linear multivariate Hawkes process

Appendices

S1 Bias in the inference methods

We are interested in knowing whether spurious interactions are more likely to be in-

ferred between species which are part of an interaction chain. To investigate this ques-

tion, we analyze the inferences performed with the inter-event times method of Murphy

et al. (2021) and with the Hawkes method. The true interaction graph used for these

simulations is depicted in Figure 1a in the main text (s1 attracts s2, and s2 attracts s3 and

s4). The total number of repetitions over all conditions were respectively N = 750 for

the inter-event times method (Figure S1a) (5 durations × 5 strengths × 30 datasets)

and N = 2250 for the Hawkes model (Figure S1b) (5 durations × 5 strengths × 30

datasets × 3 penalizations). With the inter-events times method, the model is biased

towards inferring more often the indirect interactions s1 → s3, s1 → s4, s3 → s4 and

s4 → s3. This is not the case with the Hawkes model.

(a) Inter-event times (b) Hawkes model

Figure S1: Bias in the inference. These graphs show the proportion of times an interaction
was inferred over all simulated data in different conditions for (a) the inter-event times method
of Murphy et al. (2021) and (b) the Hawkes model. The true interactions are s1 → s2, s2 → s3
and s2 → s4.
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S2 Background rates inferred for real data

The figure below shows the background rates inferred for each species in the applica-

tion example. These background rates are closely linked to the species abundances

observed on camera traps, with impala being by far the most abundant species (50 803

occurrences), followed by zebra (9 843), then wildebeest and kudu (respectively 5910

and 5560) and lion being far more rare (587).

Figure S2: Background rates inferred with the Hawkes process for each species. The
background rates values are written besides the points.
Silhouette images from PhyloPic by Lukasiniho (wildebeest), Margot Michaud (lion), Robert Hering (kudu), Zimices (zebra) and
an unknown author (impala).
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S3 Influence of circadian rhythms

We simulated two species occurrences with cyclic rates in order to mimic circadian

rhythms. We simulated occurrences over 1000 days on a single camera. For that, we

used an inhomogeneous Poisson process for which species intensities varied periodi-

cally over 24 hours, with the Poisson non-homogeneous intensity defined with a cosine

function with a period of 24 hours. Even though species occurrences were indepen-

dent, the Hawkes process inferred a periodic attraction/repulsion pattern between and

within species.

(a) Inhomogeneous Poisson intensity (b) Inferred interactions with the Hawkes process

Figure S3: Inference of spurious interactions when circadian rhythms are present. (a)
shows the non-homogeneous Poisson intensities for the two species. (b) shows the interaction
functions inferred with a multivariate Hawkes process from the data simulated with two non-
homogeneous Poisson process for which the intensities are shown in (a).
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S4 Influence of bin width

In order to check if bin width influences the inferred interaction functions, we changed

the bin width used for the inference on the real data. Here, we inferred a Hawkes

process with bins widths δ of 3 and 9 hours (compared to δ = 6 hours in the main text).

Results are shown in Figure S4. Overall, the parameters are similar between 3, 6

and 9 hour bins. Regarding the 3 hours bins, the nonzero interactions are the same

than with 6 hours bins and they have the same direction. Only the negative interac-

tions (lion-impala and lion-zebra) are missed, possibly due to low power. The inferred

background rates are similar to the rates inferred with 6 hours bins, except for impala

which has a smaller background rate (0.194 compared to 0.212 occurrences day-1 in

the main text).

(a) Bin width: 3 hours (b) Bin width: 9 hours

Figure S4: Inference of a multivariate Hawkes process with different bin widths. (a) shows
the parameters inferred with 3 hours bins and (b) the parameters inferred with 9 hours bins.
Silhouette images from PhyloPic by Lukasiniho (wildebeest), Margot Michaud (lion), Robert Hering (kudu), Zimices (zebra) and
an unknown author (impala).

Regarding the 9 hours bins, all nonzero interactions are the same and they have
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the same direction as in the 6 hours bins version. The inferred background rates are

similar to those inferred with 6 hours bins as well.

Finally, we can note that the values of the interaction functions are smaller when the

bins widths are larger. This is expected because the average number of occurrences

gained or suppressed during a given interval is the integral of the function over this

interval.
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1 Introduction and motivation

At the community scale, species distributions are influenced by a multitude of factors.

One of these factors is the presence of other species of the community, mediated by

interspecific interactions, an effect we have described and studied in the previous chap-

ter. Indeed, the presence or absence of other animal species can have an effect on the

distribution of species, in space and/or time and at different scales. But other important

factors include environmental and temporal variables. Regarding environmental vari-

ables, for example, Gompper et al. (2016) showed that the type of habitat (like forests,

roads or house densities) is a prominent factor shaping the distribution of five carni-

vore taxa in North America. Regarding temporal factors, several species have evolved

activity patterns depending on external cues. Circadian clocks are widespread across

the tree of life, and allow species to adapt their activity to the day-night cycle (Dibner

et al., 2010). In this context, camera trap data allows to precisely quantify species

daily activity patterns by collecting species records with precise date and time (Frey

et al., 2017). Other temporal factors include seasonal variation: for instance, Fisher

et al. (2020) showed that the distribution of white-tailed deer in a boreal forest shrinks

in winter, reflecting the higher difficulty to move in a harsh environment.

In chapter 3.1, we used the multivariate Hawkes process (MHP) to infer the attrac-

tion and repulsion between species from camera trap data. We called the inferred pat-

tern reactive temporal interaction, as it corresponds to a reactive response to another

species presence in time. However, this model does not allow to include covariates,

thus overlooking environmental and temporal factors affecting species distribution on

top of species interactions. This hampers the interpretability of the model, as variables

not taken into account might blur the signal or produce spurious reactive temporal in-

teraction patterns. On particular, the results of the inference on real data in chapter 3.1

suggests a strong effect of circadian rhythms to explain the observed periodic patterns

of attractions between species.

Recently, several Hawkes processes including covariates have been proposed

(Truccolo et al., 2005; Mohler et al., 2018; Fallahi and Pourtaheri, 2024; Xu et al.,

2018; see Reinhart, 2018 for a review). Covariates can be included in the model in dif-

ferent ways: for instance, UnitEvents allows the interaction functions to vary according

to the time period (Albert et al., 2021). There are also spatio-temporal extensions of
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the Hawkes processes allowing to model the interaction functions depending on spatial

coordinates as well as time (Ogata, 1998; Reinhart, 2018). In our context, including

covariates in the background rate of the Hawkes model is particularly interesting. In-

deed, biologically, we expect the intrinsic probability of presence of a species to vary

substantially according to spatial and temporal covariates such as habitat or circadian

rhythms. Such models have been developed for instance by Truccolo et al. (2005) or

Xu et al. (2018).

In this chapter, I test a non-linear multivariate Hawkes process (non-linear MHP)

described by Carstensen et al. (2010) and implemented in the R package ppstat

(Hansen, 2023). I first evaluate the inference using simulated data. Then, I infer in-

teractions between species on real data using time of the day as a covariate, using the

same dataset as the one used in chapter 3.1.

2 Material and methods

2.1 Model: the non-linear multivariate Hawkes process

In this chapter, I use a non-linear MHP to model species occurrences collected by cam-

era trap data. This model is presented in Carstensen et al. (2010) and implemented in

the R package ppstat (Hansen, 2023).

The main difference of this model with the linear MHP used in chapter 3.1 is the

way interaction functions and background rates combine to define the species intensity

λ: with the linear MHP, the effects of previous events on the focal species intensity

are additive, whereas with the non-linear MHP they are multiplicative (see Equation

(3.2.2)).

We consider S species observed on C cameras. For each camera l, let tl0 be the

time of the first event occurrence. The non-linear MHP used in ppstat is parameterized

by a log-linear intensity, written as:

ln(λl
i(t)) = ηli(t) +

S∑
j=1

∫
[tl0,t]

gj→i(t− u)N l
j(du) (3.2.1)

where i denotes the focal species, j denotes the other species and l denotes the
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camera. N l
j(t) is the number of occurrences of species j on camera l at time t. This

log-linear parametrization allows to model repulsion between species, as λl
i(t) is con-

strained to be positive with the logarithm.

Interpreting the model is easier when the equation directly describes intensity. By

modifying Equation (3.2.1), we can rewrite the model as:

λl
i(t) = νl

i(t)︸︷︷︸
exp(ηli(t))

×
S∏

j=1

∫
[a,t]

fj→i(t− u)︸ ︷︷ ︸
exp(gj→i(t−u))

N l
jdu (3.2.2)

In this equation, νl
i(t) and fj→i are respectively defined as the exponentials of ηli(t)

and gj→i defined in Equation (3.2.2). νl
i(t) represents the background rate function, a

function with positive values that represents the intensity of species i independent on

previous occurrences. To model variations in the background rate, νl
i(t) can include

covariates:

νl
i(t) = exp

(
(αl

i)
⊤Xl

i(t)
)

(3.2.3)

where Xl
i(t) is a matrix of covariates that can depend on camera l, species i and

time t, αl
i is a parameter vector of coefficients and ⊤ denotes transposition. The first

element of νl
i(t) corresponds to the baseline intensity for species i (the first element of

αl
i is the logarithm of the baseline intensity and the corresponding elements of Xl

i(t)

are 1). If no covariates are included, νi is a constant depending only on the species,

as in the MHP presented in chapter 3.1.

The interactions functions fj→i represent the multiplicative effect of occurrences of

species j on the intensity of species i. They have values in ]0,+∞[: a value between

zero and one indicates an avoidance of species j by species i, a value above one

indicates an attraction and a value of one indicates no effect. In this framework, I

choose to model these functions using cubic splines: the functions gj→i are defined as

cubic splines, which are piecewise polynomials of degree 3 that are jointed at specific

points on the support of the function (the knots). The polynomial functions are defined

using the B-spline basis, so that the functions fj→i are written as:

fj→i(t− u) = exp

(
K+4∑
k=1

(βk
j→i)

⊤Bk(t− u)

)
(3.2.4)

214



Chapter 3.2. Non-linear multivariate Hawkes process with a temporal covariate

where Bk are the B-spline basis functions, βk
i→j is the parameter vector correspond-

ing to the k-th spline basis, and K is the number of equidistant knots. The number of

knots together with the splines degree controls the degrees of freedom (here, it is equal

to K + 4 because I use cubic splines).

The spline parametrization (spline basis and knots) is chosen by the user a priori.

A particular point of interest is the knots number and placement (Perperoglou et al.,

2019). With the B-spline basis, I choose inner knots defining the support of the function,

in addition to boundary knots which are outside the support and allow more flexibility.

To choose the knots, I rely on the preliminary study in Carstensen et al. (2010) and

choose similar parameters.

In order to illustrate this model, I simulate a simple realization of a non-linear MHP

described with Equation (3.2.2) (Figure 3.2.1). In this example, five species interact

following the graph in panel 3.2.1a, where the interaction functions fj→i are shown in

panel 3.2.1b. The right panel 3.2.1c shows the resulting occurrences and intensities.

As with the linear MHP, an occurrence of an attracting species leads to a peak in the

intensity of an attracted species (see for example the effect of an occurrence of s1 on

the intensity of s2). But contrary to the linear MHP, the magnitude of the peak is not

fixed, but instead depends on the intensity of the focal species at time t: it is very clear

when comparing the magnitudes of the first and the second peak of s3 and s4.

2.2 Inference

To infer the parameters of a non-linear MHP from data, ppstat uses a maximum like-

lihood approach. The observed occurrence times are denoted T li
m for the m-th instant

of occurrence of species i on camera l. Let N l
i be the total number of occurrences of

species i at camera l. The log-likelihood to maximize is written as:

L(Θ) =
C∑
l=1

 S∑
i=1

 N l
i∑

m=1

log(λl
θi
(T l

m))−
∫ tlmax

tl0

λl
θi
(s)ds

 (3.2.5)

where θi denotes the parameter vector for species i (covariates coefficients αl
i and

spline coefficients and βk
j→i) and Θ is the parameter matrix for all species. λl

θi
is the

intensity of species i on camera l computed with the parameters θi.
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(a) Interaction network

(b) Shape of the interaction function (c) Intensities and occurrences over time

Figure 3.2.1: Example of a realization of a non-linear multivariate Hawkes process. (a) shows
the interaction network between five species (each arrow represents an interaction function
fi→i different from one). (b) shows the shape of the interaction functions fi→i, corresponding
to arrows in the interaction network (a). The functions fi→j are equal to exp(gi→j), where gi→j

are defined as a decreasing exponentials. (c) shows a realization of the Hawkes process with
the interaction network and the interaction functions shown in (a) and (b). For this simulation,
the background rate νli was set to 0.2 occurrences day−1 for all species. For each species i,
the above panel shows the intensity λi and the bottom panel shows the species occurrences.
Each time an attracting species occurs, the intensity for the attracted species is multiplied by a
factor dictated by the interaction function and then decreases following this function’s shape.

The log-linear parametrization of the model guarantees to find the global maximum

for this log-likelihood, if it exists (see Daley and Vere-Jones, 2003 (p 235), cited in

Carstensen et al., 2010). This property allows ppstat to use a gradient descent proce-

dure for the optimization (see the original publication by Carstensen et al. (2010) and

its Appendix 11 for additional details).

2.3 Simulation

To evaluate the accuracy of the inference, I simulated data under a non-linear MHP and

reinferred the model parameters from simulated data. For this pilot study, I chose to
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simulate interactions between five interacting species (see interaction graph in Figure

3.2.1a) with a background rate ν fixed at 0.1 day-1 for all species. The interaction

function is defined as

fj→i(t) =


exp(gj→i) = exp (a exp (−bt)) if t < 2

0 if t ≥ 2

(3.2.6)

The shape of this function is constrained by the definition of fj→i as the exponential

of gj→i. Defining fj→i as the exponential of a decreasing exponential still has good

properties: indeed, this function converges to one (independent species) when time

increases. Furthermore, we can define the parameters a and b to be interpretable.

In this framework, I fixed a = ln(3). This parametrization makes the strength of the

interaction at t = 0 equal to 3. This means that if an attracting species occurs at

time t, the intensity will be multiplied by 3. b controls the decrease rate: I chose b =

− 1
0.5

ln
(

1
a
ln
(

exp(a)+1
2

))
. With this parametrization, we can show that half of the initial

value of the function fj→i is reached at t = 0.5 days.

These interactions were simulated on 25 cameras active for 300 days each, and

the inference was repeated on 100 simulated datasets. The inference parameters are

200 B-spline bases of order 4, evenly spaced between -0.5 and 2 days with a step of 6

hours.

2.4 Data analysis

I reanalyzed the occurrences of S = 5 species collected on l = 179 camera traps of

the Snapshot Safari network (same data as in chapter 3.1). The data collection and

cleaning processes are described in chapter 3.1.

I fitted two models. The first model is a non-linear MHP with no covariates, which

serves as a baseline for comparison with other models. It is written as:

λl
i(t) = νi ×

S=5∏
j=1

∫
[a=1.5,t]

fj→i(t− u)N l
jdu (3.2.7)

Here, the background rate νi is a constant depending only on the species.

The second model is a non-linear MHP using the time of the day as a covariate,
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which allows to model the background rate as a function of the time of day. It is written

as:

λl
i(t) = νl

i(t)×
S=5∏
j=1

∫
[a=1.5,t]

fj→i(t− u)N l
jdu (3.2.8)

Here, the background rate νl
i(t) is a function of the time of the day. We note xl(t)

the vector of the time of day at time t on camera l. In this model, the time of day is

represented as a fraction of a day (it has values in [0, 1[). νl
i(t) is defined with cubic

splines:

νl
i(t) = exp

(
(αl

i)
⊤B1(x

l(t))
)

(3.2.9)

Where B1(x
l(t)) is a spline-transformation of the time of day. Its first row is only com-

posed of ones and other columns represent the cubic spline transformations on the

time of day. αl
i is the covariates vector (its first element corresponds to the logarithm

of the baseline intensity and the other elements are the coefficients associated to the

splines bases). I chose 15 equidistant knots between −2/24 and 1+2/24 (1 knot every

2 hours, with two boundary knots), and I enforced symmetric spines bases around zero,

so that the values loop around midnight. Because the dataset spans over 2 years, sun-

rise and sunset times change depending on the season. To correct that, I anchored the

time of day to mean sunrise and sunset times using the activity package (Rowcliffe,

2023).

For both models, I consider only interactions occurring at most 36 hours after the

occurrence (a = 1.5 days). The interaction functions fj→i are modeled as exponentials

of cubic splines, as described in Equation (3.2.4) (with K = 200 basis functions). I

chose 9 equidistant knots between -0.5 and 1.5 days (inter-knot space is 6 hours).

3 Results

3.1 Simulation

I simulated data under the non-linear MHP, and used the simulated data to reinfer

the parameters of the same model using the inference procedure of ppstat. Results

are presented in Figure 3.2.2. Interactions are correctly recovered: the confidence

intervals of the inferred functions exclude one when there are interactions and includes
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one when there are no interactions. Together, these results suggest that the model is

able to detect true interactions (no false negatives) and to avoid the spurious inference

of interactions (no false positives).

Figure 3.2.2: Performance of the inference with the non-linear multivariate Hawkes process.
This graph shows the inferred function (blue, with confidence interval), compared to the true
functions used in the simulation model (red) for each pair of species. The line for the inferred
interactions functions represents the median of the function for the 100 repetitions and the con-
fidence interval represents the medians of the 95% confidence interval computed by ppstat.
The intensity of species in rows is affected by species in columns. The horizontal dashed line
represents one. Interaction functions correspond to the fj→i from Equation (3.2.2).

However, we observe some differences between the values of the inferred and the

simulated interactions functions. In particular, a trend for spurious positive interaction at

a small delay is observed for the majority of functions even when there are no simulated

interactions. Similarly, the inferred values corresponding to a simulated interaction are

also over-estimated at small delay. The inferred functions also tend to fluctuate around

the true value: this is particularly visible for the non-one interaction functions between

delays 0.25 and 1.

3.2 Data analysis

I analyzed species occurrences using two models: one model no covariates, and one

model where the time of day is included as a covariate. Both models could be run on a
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personal computer and the inference took around 5–10 minutes per model. As noted

by Carstensen et al. (2010), fitting big models can be prohibitive because the inference

involves computing a large model matrix.

(a) Interaction functions (b) Background rates

Figure 3.2.3: Model inferred without covariates. (a) Inferred interaction functions, where the
intensity of species in rows is affected by species in columns. The horizontal dashed line
represents one. Interaction functions correspond to the fj→i from Equation (3.2.2). (b) Inferred
background rate. With this model, background rates are a constant depending only on the
species. They correspond to the νli defined in Equation (3.2.2). Silhouette images from PhyloPic by
Lukasiniho (wildebeest), Margot Michaud (lion), Robert Hering (kudu), Zimices (zebra) and an unknown author (impala).

Regarding interaction functions, contrary to what I expected, the two models yielded

very similar interaction functions (Figures 3.2.3a and 3.2.4a). Unless stated otherwise,

the results below apply to both models. Regarding auto-attractions, kudu, lions, wilde-

beest and zebra (and to a lesser extent, impala) display a short-term attraction (up to

6 hours after an occurrence). For kudu and wildebeest, this short-term attraction is fol-

lowed by a repulsion between 3 and 12 hours, and then an attraction again. For kudu,

the auto-repulsion is attenuated with the model taking the time of day into account.

Regarding interspecific interactions, we observe weak herbivore-herbivore attrac-

tions. Impala follows kudu, and to a lesser extent wildebeest and zebra (surprisingly,

the attraction with zebra does not occur in the immediate short term, but is initially one

and increases, then decreases to be one again at 12 hours). Kudu does not display

any clear following pattern with other herbivores. Wildebeest follows kudu mainly in the

short term (< 6 hours), and zebra to a lesser extent and on a more extended timespan

(up to 36 hours). Finally, zebra follows kudu (strong attraction in the short term, then

decreases and extends to 36 hours) and to a lesser extent wildebeest (weak attraction

up to 36 hours). The uncertainty around lion-related interactions are very large, so it is
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(a) Interactions (b) Background rates

Figure 3.2.4: Model inferred with a time of day covariate. (a) Inferred interaction functions,
where the intensity of species in rows is affected by species in columns. The horizontal dashed
line represents one. Interaction functions correspond to the fj→i from Equation (3.2.2). (b)
Inferred background rate. With this model, background rates are a function of the time of the
day. They correspond to the νli defined in Equation (3.2.2). Silhouette images from PhyloPic by Lukasiniho
(wildebeest), Margot Michaud (lion), Robert Hering (kudu), Zimices (zebra) and an unknown author (impala).

hard to draw solid conclusions. However, we can see a small attraction of lion by zebra

between up to 6 hours and 12 to 24 hours after an occurrence and by kudu between

12 and 18 hours. Regarding the effect of lions on other herbivores, impala avoids lion

between 3 and 9 hours, and this effect is accentuated when taking the time of day into

account. Surprisingly, this avoidance is not immediately after a lion occurrence: the

effect is initially one, then decreases and increases to reach one again after 12 hours.

Kudu seems to avoid lion between 12 and 24 hours, an effect that vanishes when tak-

ing the time of day into account. Finally, zebra displays a tendency to avoid lion in the

short-term and up to 24 hours, but the confidence interval indicates that this effect is

very uncertain.

Background rates are estimated differently depending on the model. For the first

model (Figure 3.2.3b), the occurrence rates are constants depending on the species.

They follow the total occurrence counts of species (impala: 0.506; zebra: 0.098; kudu:

0.057; wildebeest: 0.055 and lion: 0.006 day-1). For the second model (Figure 3.2.4b),

the background rates are functions of the time of the day. They show that impala,

kudu and wildebeest are diurnal with crepuscular activity peaks (particularly marked

for impala), zebra is diurnal and lion is crepuscular. These function shapes are in ac-

cordance with the species circadian rhythms measured from data collected with these

camera traps and also described in the literature. The baseline of the background rate,
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which corresponds to the value of the function computed at midnight (intercept of the

model), are proportional to species abundances collected on camera traps (impala:

0.321; zebra: 0.074; kudu: 0.026; wildebeest: 0.026; lion: 0.008 day-1).

4 Discussion

In this chapter, I used a non-linear multivariate Hawkes process to analyze camera

trap data. I included a temporal covariate to take circadian rhythms into account and

measured patterns of reactive temporal interactions between species (more simply,

“interactions” in this discussion).

4.1 Simulations

Simulations suggest that the model can accurately infer the presence or absence of

interactions. However, the inferred shape of the interaction is not very precise. Notably,

we notice a spurious trend to infer short-term attractions and the inferred interactions

tend to fluctuate around the true value. Despite these issues on the estimates, the con-

fidence interval around the estimated value encompasses the true interaction function

shape.

These fluctuations are most probably due to the spline parametrization: as noted

in Perperoglou et al. (2019), splines are sensitive to over-fitting. This problem could

be overcome by fitting penalized splines, thought to be less sensitive to over-fitting

(Eilers & Marx, 2010). The splines knots are also known to have a big influence on

the estimate and are notoriously difficult to choose (Perperoglou et al., 2019). In this

preliminary work, I chose the knots in a heuristic manner, but a solution could be to

conduct a more thorough evaluation to choose optimal knots spacing and bounds. We

could also use another function shape to specify the interaction functions or covariates

response, for instance polynomial functions, as advised by Kroc and Olvera Astivia

(2023): with the ppstat framework, the choice of the function is free, so this would be

entirely possible.

The ppstat simulation algorithm does not allow to simulate data from a model in-

cluding a covariate in the background rate. Therefore, I could not evaluate the accuracy

of estimation procedure with covariates, in particular to check if the model is able to
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disentangle the effect of covariates from the effect of other species. Finding a way

to simulate data with species interactions and covariates effect would allow to better

evaluate the inference performance.

4.2 Real data analysis

I analyzed real data with two models, one with no covariate, and one with the time

of day included as a covariate. Contrary to what I expected, the inferred interactions

remain similar whether or not the time of day is taken into account, which seems to

indicate that the time of day has a negligible effect compared to interspecific interac-

tions. This result is surprising, because species have very consistent and strong diel

activity patterns in several systems, including in African savannas. Moreover, the infer-

ence with the second model suggests an important effect of the time of day on species

background rates in these data (as shown in Figure 3.2.4b).

Regarding the inferred interactions, the biological interpretation is subject to caution

because not all covariates were taken into account. In particular, these models do not

take the environment into account, so the observed patterns could also stem from

species’ (dis)similarity in habitat preferences (as in chapter 3.1). However, the second

model takes the time of day into account so it should remove the confounding effects

of species temporal niche convergence/divergence.

Most intraspecific interactions are weaker than interspecific interactions. All species

display auto-attractions: kudu has the strongest auto-attraction, then lion, zebra and

finally impala. The weak intraspecific interaction for impala is surprising, but can be

understood to a certain extent if we consider the high basal rate of impala and the

multiplicative nature of the model: even a small increase in the interaction function can

lead to many attracted individuals when the background rate is already high.

We observed several herbivore-herbivore interactions: impala follows kudu, wilde-

beest and zebra; wildebeest follows kudu and zebra and zebra follows kudu and wilde-

beest. These interactions can be explained by mixed-species grouping (Beaudrot et

al., 2020; Fitzgibbon, 1990), especially for short-term attractions. They could also be

due to grazing succession (Bell, 1971), especially for delayed attractions. Finally, simi-

lar habitat preferences might also influence these patters, in particular for the constant

long-term attraction of zebra on wildebeest.
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We observed four prey-predator interactions. Impala and zebra avoid lion, which

could be the sign of an anti-predator response. These results are consistent with the

literature for zebras (Courbin et al., 2016, 2019) and other ungulates (Valeix et al.,

2009). Second, lion is weakly attracted by zebra and kudu, which could be explained

by predator tracking behavior.

We can also note that many of the inferred interactions are either small variations

around the one-line (no interaction), or short-term attractions. As the simulation study

showed, the inferred models tend to infer spurious short-term attractions and fluctua-

tions around the true value. In the simulation, these spurious patterns were not signif-

icant, contrary to what we see in the real data analysis: but real data might be more

challenging for the model, so this calls for caution when interpreting the results.

4.3 Conclusions and perspectives

In this chapter, I described a non-linear MHP with covariates (Carstensen et al., 2010).

I tested this model with a simulation approach and used it to analyze real data of

species occurrences collected by camera traps.

In this model, covariates affect only the background rate. However, we could also

imagine covariates that affect the shape of the interaction function, i.e. an interplay

between environmental or temporal covariates and response to interactions. Such

patterns have already been highlighted in the literature: for example, Valeix et al. (2009)

showed a differentiated response of African herbivores to lion’s presence depending

on the distance to water and the type of habitat. Clare et al. (2023) also showed that

white-tailed deer response to wolves and coyotes varies following the seasons, the

avoidance of predators being reduced in winter, because deer cannot avoid predators

as freely as they do at other times of the year due to resource scarcity. We could also

imagine an interaction between several covariates, as observed for red deer from the

Alps, that select sites of lower altitudes, south-facing and steeper slopes in winter, but

not in summer (Zweifel-Schielly et al., 2009).

To conclude, this chapter builds on the previous chapter by adding a temporal co-

variate to the model. However, it remains very exploratory: many conditions were not

tested, the inference parameters were chosen empirically (knots spacing, time win-

dow), and spatial covariates were not taken into account. The simulation study could
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be enriched by testing more conditions (as in the previous chapter). The inference

could also be improved by using more stable functions specifications than splines, for

instance polynomials or piecewise constant functions. These analyses still constitute

a good starting point to refine this model, with the aim to draw more reliable and eco-

logically relevant inferences.
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In this part, I investigated the patterns of attraction/avoidance between species at short

timescales (less than 2 days). I considered data collected with camera traps, and an-

alyzed them with models from the Hawkes process family. In chapter 3.1, we used a

linear multivariate Hawkes process (MHP). We first described this model, showed how

its capacity to simulate data can be used to evaluate interaction inference methods,

and exemplified it on real camera trap data. In chapter 3.2, I considered a non-linear

MHP able to include covariates. I described the model, briefly evaluated its perfor-

mance and illustrated it on the same camera trap dataset, comparing a model with no

covariate to a model with a time of day covariate. I chose these two models notably be-

cause they had a ready-to-use implementation available (the UnitEvents and ppstat

R packages), which was convenient to quickly evaluate the potential of Hawkes models

to infer interactions. Here, I discuss what these two approaches can teach us about

interspecific interactions and the ways forward.

1 Compare models outputs

In the two previous chapters, I used a linear and a non-linear MHP to model interactions

between 5 species from the African savanna. With the non-linear MHP, I fitted two

models, one of which included the time of day as a covariate: these two models yielded

similar results, so in the following I only discuss the differences between linear and non-

linear models. The figures depicting the interaction functions inferred with the linear

and non-linear models (with a covariate) are reproduced in Figure 3.D.1.

The outputs of the inference on real data are rather similar for the linear and non-

linear models. However, a striking difference is the lesser strength of auto-attractions in

the non-linear MHP. The interaction functions for the two model families do not have the
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(a) linear MHP (b) non-linear MHP

Figure 3.D.1: Comparison of the linear and non-linear MHPs. (a) Linear MHP inferred in chapter
3.1. (b) Non-linear MHP with time of day as a covariate inferred in chapter 3.2. The intensity
of species in rows is affected by the species in columns. Silhouette images from PhyloPic by Lukasiniho
(wildebeest), Margot Michaud (lion), Robert Hering (kudu), Zimices (zebra) and an unknown author (impala).

same interpretation: for the linear MHP, the values of the interaction functions represent

the average number of occurrences gained or suppressed by an occurrence. For the

non-linear MHP, it represents the factor by which occurrence rate is affected by an oc-

currence. Even if we take this into account, the patterns are still different. For instance,

if we consider the impala auto-attraction function, with the linear MHP, the strength in

the first time step is 2 (so 2/6 = 0.3 day-1 for the instantaneous rate). It is about 10

times larger than impala’s background rate, so we could expect the non-linear MHP to

infer an auto-attraction of this magnitude, but the non-linear MHP instantaneous rate

with no delay is 1.1.

If we compare the interspecific interactions, most patterns stay the same. Four

additional interactions are inferred with the non-linear MHP: lion tends to follow kudu

and zebra and wildebeest follows kudu and avoids lion (only for the model with no

covariate). Moreover, some interaction shapes also vary: with the non-linear MHP,

impala following interactions are weaker and the avoidance of lion by zebra is less

clear.

Regarding background rates, they have a higher value with the non-linear MHP

than with the linear MHP (here, we refer to the non-linear MHP without covariates,

else the rates are much more difficult to compare). However, the relative values of the
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background rates are consistent between models, with impala having the highest rate,

followed by zebra, kudu, wildebeest, and lion.

2 From the data to the model

In this part, I aimed at inferring a reactive behavioral response of species to other

species in their space use. However, the measure to consider (an effect of the interac-

tion in time, what I called a reactive temporal interaction) was not based on biological

considerations, but rather guided by the data at hand (camera trap data) and by the

Hawkes model specification. We could imagine many other ways to measure the at-

traction/repulsion signal, and other models have been proposed in the literature (e.g.

Karanth et al., 2017; Parsons et al., 2016; Murphy et al., 2021; Galindo-Aguilar et al.,

2022).

I chose to model data with a multivariate Hawkes model. However, even within this

framework, there is still room for different model specifications. Hawkes processes sup-

pose that there is a cumulative effect of occurrence on intensity, but there are two ways

these effects can add up: via an additive approach (linear MHP) or via a multiplicative

approach (non-linear MHP) and we have no solid a priori on the best way to specify the

model. The best way to check which model is the best would be to compare the fit of

these models, but this is difficult due to different model optimization strategies. Here, I

can make the cautious hypothesis that an additive effect (linear MHP) is more suited,

because multiplicative models tend to produce highly clustered data and species oc-

currence data are not highly clustered.

The MHP models interactions as arising directly from punctual data, but species

are not punctual entities: they move across the landscape in a continuous manner,

and only the data collection process is punctual (via discrete camera traps triggers).

Therefore, considering punctual data as the observation process underlying contin-

uous species movement patterns, similarly to the multispecies occupancy model of

Kellner et al. (2022), could be better suited. This would also make links between in-

terspecific interactions and movement ecology by considering interspecific interactions

as a dynamic continuous process, occurring in space and time.

In this part, I validated the MHPs with simulations but used the same model for
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simulation and inference. This might be unrealistically easy for the model, and also

confounds the ecological process we want to simulate (species interactions) with the

sampling process (camera trap pictures) (Zurell et al., 2010). This choice was moti-

vated by the fact that I could not find another model to simply generate punctual data

with interactions between different species, except by designing an individual-based

model, which was outside the scope of this thesis.

The modeling strategy used here is part of a larger movement of recent papers

using continuous-time approaches to model camera trap data (Cusack et al., 2017;

Karanth et al., 2017; Parsons et al., 2016; Galindo-Aguilar et al., 2022), some of them

through point processes (Keim et al., 2019; Schliep et al., 2018; Kellner et al., 2022).

But during the analysis, I had doubts on whether this was a good strategy. The rele-

vance of continuous-time processes has recently been investigated in the literature for

occupancy models by Pautrel et al. (2024) who concluded that continuous-time mod-

els provided little additional benefits. Point processes are complex models, requiring

the fitting of more parameters than other currently used approaches like permutations

(Murphy et al., 2021) or GLMs on delays (Parsons et al., 2016). Moreover, the Hawkes

model used in chapter 3.1 uses a penalization parameter and not classical confidence

intervals, which can make the results more difficult to interpret. I think that the real

advantage of point process models such as the MHPs resides in the interpretability of

the output and the formal model specification. Model parameters are easier to interpret

in terms of effect sizes than outputs of simple permutation tests: for instance, the inter-

action functions can be interpreted as mean occurrence count gained or suppressed,

whereas the mean time to event is difficult to interpreted biologically. Another advan-

tage is the fact that MHPs are causal model that theoretically allow to explicitly model

the effect of covariates and to disentangle the effect of multiple species.

3 Measuring interaction strength

Quantifying species interactions strength is difficult. It depends on how interactions are

defined, but even if we consider that interactions are given by the effect of one species

on the abundance of the other (typically measured by consumption rates in dynamic

models), they are hard to quantify (Wootton & Emmerson, 2005). For finer processes
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based on behavioral response, which are even harder to evaluate than population dy-

namics, we can think that it is even more difficult.

The strength of interspecific interactions as measured with the MHP, i.e. as a num-

ber of occurrences gained or suppressed by a species, is not often quantified in the

literature. I had to proceed by trial and error to define model parameters for simulation

and for inference, because I did not have a clear a priori idea of the magnitude of in-

teractions or of potential confounding factors such as circadian rhythms or habitat pref-

erences. In particular, it was unclear if confounding factors could completely obscure

the signal of interactions and hamper reliable inferences of interspecies interactions.

The camera trap literature about interspecific interactions is very focused on the spa-

tial effect of interactions (via occupancy models) or on their temporal effect (via overlap

measures), and even when some studies focus on finer scale spatio-temporal interac-

tions, most of them do not provide an interpretable estimate of interaction strength and

the outcomes of the different studies are also difficult to compare due to the variety of

methods and study systems.

Overall, there are still few studies that investigate short-term interactions as the

ones studied here. I think that this is not due to a nonexistent or uninteresting bio-

logical question, but that such fine-scale patterns are simply more difficult to highlight

and to measure. Large and fine-scale datasets, collected for instance by camera trap

data, acoustic monitoring devices or GPS collars, are relatively recent and still rare. In

parallel, since these data have just emerged, the methods to analyze them are lacking

or not widespread among the scientific community.

4 Including more covariates?

As noted before, species occurrence patterns are influenced by a multitude of envi-

ronmental and temporal factors. In chapter 3.1, we only looked at the effect of other

species without correcting for these confounding factors. In chapter 3.2, I used a model

allowing to include covariates and fitted a model with a temporal covariate. Arguably,

many factors are still missing from these analyses, like the seasonal variability or spa-

tial heterogeneity due to roads, water points or vegetation.

Correcting for the time of day is a rather straightforward procedure, because circa-
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dian rhythms are closely related to the day-night cycle. However, taking into account

environmental variability would be much more challenging. Indeed, a multiplicity of

features account for environmental variability, and taking them all into account would

be difficult because of data collection, model power and interpretability.

When I started this analysis, I was convinced that refining the model with the more

covariates possible was the way forward: now I am not so sure that this is the final end

goal, and rather think that the most important is to select covariates that are important

to take into account so that the signal-to-noise ratio is good enough (Levin, 1992).
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Cover picture: this drawing represents magnolia flowers with R code from the

camtrapviz application is written in the background.

© Own drawing.
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Introduction

1 Preamble: PhD context

This last part is very important to me, because it embodies an aspect of science that

I find crucial: harnessing scientific knowledge to act in the real world in a context of

global biodiversity and climate crisis. Even though I am passionate about ecology and

better understanding communities from a fundamental perspective, I am also aware

of the emergency caused by global changes that impose rapid action. In this context,

I feel that creating bridges between fundamental research and applied tools is very

important.

We initially hesitated to include these results as a standalone of the manuscript

because of its very applied nature. However, given the time needed to develop such

tools and their scientific relevance, in my opinion they deserve to be included in the

manuscript.

This research axis emerged from discussions with the team of people collecting and

using camera trap data for the Snapshot Safari project. When I was in South Africa (in

Summer 2022), I had the chance to take part in a workshop of the Snapshot Safari

project. During discussions, we realized that there was a need for user-friendly tools to

clean and visualize camera trap data, both for researchers and for conservationists and

reserve managers. Moreover, I like coding and developing software tools, so I found it

very enjoyable to work on this part.
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2 Introduction

Camera traps are still relatively recent. Although the first camera setup with automatic

trigger to detect wildlife dates back to the 1890s (O’Connell et al., 2011), it is only

since the 2000s-2010s that computing facilities and decreasing cost made camera

traps a popular and accessible survey tool (O’Connell et al., 2011). The only R package

specifically developed for camera trap data that is widely used, camtrapR (Niedballa et

al., 2016), is relatively recent, and no doubt other helping packages will follow (e.g.

Bubnicki et al., 2024).

Camera trap data comes with specific methodological needs in the domains of sam-

pling design, electronics and sensors and modeling for data analysis. In particular,

data processing needs are relatively more important for camera traps than for tradi-

tional methods to survey communities. Indeed, the data collected with camera traps

are images, which are large files, and demand specific processing. Specifically, cam-

era trap data are often used to extract species occurrences, and identifying species

from pictures is an important and time-consuming task. Machine learning models have

been used to fulfill this task (e.g. Chen et al., 2014; Tabak et al., 2019; Norouzzadeh

et al., 2018). Traceability and reproducibility are also important stakes with camera

trap data, because the raw camera files need to be archived and properly linked to

the final tabular data with species annotation. More generally, we need standardized

and automated procedures to reliably analyze large amounts of data: in particular, for

biodiversity data, we need reproducible workflows allowing to select and filter data, as

pointed out by Ronquillo et al. (2024). Finally, there is also a need for data standard-

ization for sharing camera trap data (Bubnicki et al., 2024).

Moreover, camera trap data have the potential to interest a wide range of re-

searchers, applied scientists, reserve managers, and more largely anyone interested

in collecting camera trap data. Therefore, there is a double challenge regarding, on

the one hand, reproducibility of the data processing workflow, and on the other hand,

accessibility of this workflow to allow people without a strong background in computer

science to use these tools.

In this chapter, I develop two software tools to process camera trap data in R. In

chapter 4.1, I develop a R package, standardizeSnapshot (https://github.com/Snaps

hotSafari/standard-merge), to process camera trap data, specifically designed for data
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collected by the Snapshot Safari project. In chapter 4.2, I develop a more generalist R

Shiny application, camtrapviz (https://lbbe-shiny.univ-lyon1.fr/camtrapviz/), to select,

filter and visualize camera trap data, with a special attention to making the interactive

analyses reproducible.
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Chapter 4.1

standardizeSnapshot, a camera trap

data cleaning tool

243



Part 4: Software development

1 Introduction

Snapshot Safari is camera trap data collection project in Southern and Eastern Africa

(see Figure 4.1.1) (Pardo et al., 2021). This camera trap data collection effort encom-

passes camera trap grids with a standardized design in more than 30 sites across 6

countries (Tanzania, Botswana, Kenya, Mozambique, South Africa, and Zimbabwe).

Each camera trap grid comprises 8 to 245 camera traps, and most have been operat-

ing since 2018. Snapshot Safari is a long-term monitoring project designed to collect

species occurrence data over a long period to gather information on biodiversity trends,

and the cameras are intended to operate for around 10 years or longer.

Figure 4.1.1: Location of the Snapshot Safari camera trap grids. Figure 1 from Pardo et al. (2021).

The amount of data collected with these cameras is very large and cannot be han-

dled without automated data processing and cleaning procedures. To annotate species

and/or behaviors from camera trap pictures, 3 methods have been used. Some pic-

tures were processed using the Zooniverse platform (https://www.zooniverse.org/o

rganizations/meredithspalmer/snapshot-safari), thanks to volunteer people from the

public. Other pictures were annotated manually by researchers and graduate students

using the Digikam software. Finally, an automated machine learning tool, TrapTagger,

is increasingly used to annotate camera trap data collected with the Snapshot Sa-

fari project. These three tools produce different tabulated outputs, and do not always

contain the same information. For instance, TrapTagger does not annotate species’ be-

havior, so there are no associated columns, whereas Zooniverse and Digikam outputs

contain behavior data (but not encoded in the same way).
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Moreover, some of the encoded information follow to different standards, because

the different projects were managed by different people. For instance, cameras iden-

tifiers sometimes differ between batches of data collection (e.g. MAD_A01 or A01);

the same species could be identified with different codes (e.g., “batearedfox” or “fox-

bateared” for the bat-eared fox), or the date and time encoded in different ways (e.g.

2020-01-13 and 01/13/2020).

Before designing this package, some code had already been written to clean and

homogenize data, but it was not tested on all data and not distributed in an executable

code bundle. Initially, there was no need for more, as people concentrated on analyses

of small parts of the data that did not have discrepancies (or few discrepancies). But

as more data was being collected, people began addressing questions requiring data

from many sites: and using large parts of the dataset was hampered by these different

data standards.

To overcome these issues, Lain Pardo, Sarah Huebner (postdocs working on the

Snapshot Safari project) and me first defined a data standard to homogenize all for-

mats. Then, I implemented a R package, standardizeSnapshot, with functions to

automate data cleaning and conform data to the new data standard (available at:

https://github.com/SnapshotSafari/standard-merge).

2 The data standard

To define the data standard, I exchanged with two postdocs working on the Snapshot

Safari project, Lain Pardo and Sarah Huebner. Thanks to their knowledge on the data

processing workflow and the specifics of naming conventions, together we could define

rules to automate data standardization. To define the data standard, we used the

recommendations from GBIF for camera traps column name (Reyserhove et al., 2023)

and used a consistent camel case naming scheme for columns.
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Standard Nature of the data Digikam TrapTagger Zooniverse
locationID Camera trap grid site ID
cameraID Camera trap ID Station Cam.Site site
season Zooniverse batch season
roll ID for the camera trap period of

activity between two services
roll

eventID Capture event ID Capture_ID capture_id
snapshotName Species Species capture_labels question__species
eventDate Capture event date Date date capture_date_local
eventTime Capture event time Time time capture_time_local
filePath1 Path to picture file 1 file_path_1 capture_url zooniverse_url_0
filePath2 Path to picture file 2 zooniverse_url_1
filePath3 Path to picture file 3 zooniverse_url_2
capture Capture rank (by roll) capture
captureID Capture event ID id subject_id
countMax Species maximum count question__count_max
countMedian Species count (or median

count for Zooniverse)
metadata_Number capture_sighting_count question__count_median

countMin Species minimum count question__count_min
standing Species behavior Standing question__standing
resting Resting question__resting
moving Moving question__moving
eating Eating question__eating
interacting Interacting question__interacting
drinking Drinking question__drinking
youngPresent Young individuals metadata_young_present question__young_present
hornsVisible Visible horns question__horns_visible
consensusSpecies Proportion of users that identi-

fied the species
p_users_identified_this_species

PielouEvennessIndex Pielou Evenness index on
species identification

pielou_evenness_index

classifier Image classifier

Table 4.1.1: Standard column names. The first column gives standard column names, the second column describes the nature of the data stored
in the column and other columns give column names obtained with each data processing tool. Blank cells indicate that the column does not exist
in the corresponding data format. Columns with no correspondence in the new standard are not shown.
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We defined this standard in the best way possible to not lose information in the

final table. Because of that, some columns of the standard are not relevant to all data

processing methods and may contain NAs. For instance, the new standard includes a

column named consensusSpecies that indicates the proportion of users that identified

this species, because on Zooniverse, a single picture was presented to several different

users to be tagged. This column is relevant only for Zooniverse data, because for other

processing tools, a single user or model identified the species. The correspondence

between old and new column names is provided as an illustration in Table 4.1.1.

3 Main functionalities

The final R package provides functions to build a data standardization workflow, from

reading raw files to writing files (Figure 4.1.2). The more important functions allow to

standardize data: standardize_snapshot_df and standardize_snapshot_list, that

allow to standardize either a dataframe object or that standardize a list of dataframes.

The function read_snapshot_files allows to read files in a folder directly into a

list of dataframes. This function works recursively, supports CSV and Excel files,

and allows to specify files that should be ignored inside the folder. Finally, the

functions write_standardized_df and write_standardized_list write the file(s) to

a new location. These functions are essentially a wrapper around the R function

write.csv to write dataframes objects to CSV files, but implements an automated

naming scheme defined using the tables’ column values, using the format “loca-

tionID_Sseason_Rroll.csv”.

The standardization functions perform several cleaning operations at once: they

homogenize dates and times format, species names and camera IDs, and standard-

ize the column names to conform to the defined standard. These cleaning steps

can be reproduced individually with package functions (that are combined inside the

standardize_snapshot* functions) to allow a greater flexibility in the analyses.

In parallel, a function create_logger allows to create an optional logger object to

redirect all R outputs, including functions messages, warnings and errors from the

package functions to a file for traceability, thanks to the R package log4r (Myles White

et al., 2022). The main functions of the package (described above and in Figure 4.1.2)
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Figure 4.1.2: Workflow of standardizeSnapshot. a) Typical workflow for one file: the file is
read into a dataframe (typically with the read.csv function). This dataframe is standardized
and written to a CSV file. b) To handle multiple files at once, one can provide a path to a folder
containing CSV files. The files are read to a list of dataframes, that are standardized and written
to files. Icons: CSV by Awicon, folder by DinosoftlLabs and table by Pixel perfect from Flaticon.

have an optional logger argument allowing to specify a logger object used to redirect

outputs to a file.

4 Software development

While developing the code, I made an effort to follow coding best practices, by test-

ing and documenting the code, and using a version control system along the project

development.

To validate the functions, I wrote unit tests for all functions developed in the package.

Unit testing consists in formally testing individual components of a program to ensure

the written code generates the expected results. Although all package development

includes some degree of testing, these tests are usually informal, not exhaustive and

deleted upon checking (Wickham & Bryan, 2023). By contrast, unit testing is a code

development strategy that formally tests the written code and keeps the written tests

available to re-run at any time, for example to ensure that adding a new functionality

does not break existing code. To automate testing, the programmer provides code to

test and the expected result and the result obtained by running the code is compared

to the expected result. To write unit tests, I used the R package testthat (Wickham,
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2011), which provides helper functions to test code and automate the process of run-

ning unit tests.

Unit testing has consequences on the code reliability and programming style. Be-

cause unit testing encourages to formally think about code testing, the tests tend to

be more exhaustive, and edge cases can be tested to ensure the codes does not

produce an unexpected behavior. Running the tests is automated, thus reducing the

probability that new features or updated package dependency will break existing code.

Finally, unit testing naturally encourages to write code such that broad functionalities

are broken down in smaller steps to be tested separately. Since R is a functional pro-

gramming oriented language (i.e. a language built around functions), the natural unit

on which tests are performed is the function. Therefore, unit testing naturally encour-

ages to write a function for each programming task. This encourages to follow a “DRY”

(Do Not Repeat Yourself) coding strategy.

I wrote the code of these functions to make results as reliable as possible. Along

with unit testing of functions, I also provided helper functions allowing to write a log

file. This file stores the outputs of the functions printed to the R console, by redirecting

these outputs to a text file where outputs can be kept and checked after code execution.

Additionally, the main workflow function have a verbose argument allowing to control

the amount of output displayed to the console.

I also documented the package by writing documentation for each function and

exhaustive comments in the code. Along with the documentation, I provided exam-

ples and wrote two vignettes to demonstrate a typical workflow using the package. I

also created data objects exported with the package and used in the examples and

vignettes. The package installation procedure, functions documentation and vignettes

are available on a website: https://snapshotsafari.github.io/standard-merge/ (created

with pkgdown Wickham et al., 2024).

Along the project development, I used the version control system Git to keep a

traceability of the package’s advancement. I also unit tests and documentation writing

along with the project development.

The package is available in open access and hosted on GitHub by the Snapshot

Safari Organization (https://github.com/SnapshotSafari/standard-merge).
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5 Conclusion and perspectives

I wrote a R package, standardizeSnapshot, to automate the standardization and data

cleaning of the tabular data obtained after processing camera trap images. This pack-

age is available in open access, tested and documented.

Once the package was finished, I used it to standardize all available Snapshot Sa-

fari data. This package is now routinely used by researchers from the Snapshot Safari

project to standardize camera trap data tables: at the moment, 15 active Snapshot

subprojects (sites) using TrapTagger and Zooniverse as classifiers are using this pack-

age. The feedback so far regarding the package functionalities and usage has been

positive.

The data standardization step addressed with this package is only one part of the

global data collection and management workflow, from sampling design to data anal-

ysis by way of image processing. Within the Snapshot Safari project, many parts of

this data management process constitute a logistic, programming or data storage chal-

lenge. Although I think that standardizeSnapshot constitutes a valuable tool inside the

data management workflow, it could be better integrated with the other steps of data

management, for instance by running the data standardization workflow automatically

on processed data. Moreover, other parts of the data management process could be

benefit from automation or standardization of some steps, but this is a real challenge

considering the project scale.
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camtrapviz, a Shiny app to visualize

camera trap data
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1 Introduction

Camera trapping is an increasingly popular method to collect biodiversity data. It has

many advantages, among which its automated nature, its non-invasiveness or its ability

to record rare or elusive species (Burton et al., 2015). In the last 10 years, camera trap-

ping has become a mainstream ecological data collection method (Delisle et al., 2021)

and has prompted many methodological developments. Many models have been de-

veloped to analyze camera trap data, like the multispecies occupancy model of Rota

et al. (2016) or time-continuous models like tomcat (Azzou et al., 2021); picture clas-

sification tools have also been proposed (e.g. Chen et al., 2014), and studies have

evaluated sampling design (Kays et al., 2021; Fonteyn et al., 2021).

Despite these numerous developments, free and accessible tools to curate and ex-

plore camera trap data remain scarce. Yet camera traps can easily generate a large

amount of data, which often includes spatial and temporal information collected for mul-

tiple species: this quantity and complexity calls for automated and transparent methods

to handle data (Niedballa et al., 2016; MacFadyen et al., 2022). One of the main tools

to process camera trap data is the R package camtrapR, dedicated to camera trap

data management (Niedballa et al., 2016). This package is mainly focused on the con-

version of annotated pictures to tabular data, with additional functionalities to format

data or filter for temporal independence, and some built-in functions to visualize data.

Another R package for camera trap data is camtraptor (Oldoni et al., 2024, still in

development). This package allows to import and handle data in Camera Trap Data

Package format (Bubnicki et al., 2024) in R.

One of the characteristics of camera trap data is that they can be useful for people

with various backgrounds, in particular applied ecologists and reserve managers who

generally have little to no training in computer science. Interactive data analysis tools

are therefore particularly relevant for camera trap data analysis. More generally, quick

and interactive exploration of camera trap data can be useful to anyone, even ecologists

who are familiar with coding.

In this chapter, I present camtrapviz, a Shiny application and R package to analyze

and visualize camera trap data. camtrapviz provides functions to filter, summarize and

visualize camera trap data. It is also available as an interactive application allowing to

perform these analyses interactively. This software is intended to visualize tabulated
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camera trap data (once species have been annotated) primarily for exploratory pur-

poses.

2 Preliminary work

Before developing this application, I exchanged with different actors from the camera

trapping community to gather their opinion on the usefulness of this application and on

useful features to include. I talked with people from the Snapshot Safari project, ex-

changed with PhD students that I knew who worked on camera trap data and contacted

researchers from the camera trap community by email (Jürgen Niedballa, developer of

the camtrapR package, and the development team of the Camtrap DP standard).

The responses of these people were positive and encouraging, so I began devel-

oping the application. To choose the analyses that the application should perform,

I searched the literature, gathered the opinion of camera trap actors and used the

knowledge of camera trap data developed during my PhD.

3 Camera trap data terminology

In this section, I briefly describe typical camera trap data and the associated terminol-

ogy. For this application, I consider camera trap data collected on a grid of cameras

setup in one area, which I refer to as a survey. Once camera traps have collected

pictures, they are processed to identify species.

The resulting data are extracted to a table which compiles the species, the time of

detection and the camera identifier, and possibly other information depending on the

survey. Here, I call each row of the table a record, and call this table the records ta-

ble. Often, a second table also compiles camera information, in particular coordinates,

using cameras’ identifier to link this data with records table. I call this second file the

cameras information table.

More recently, another camera trap data format has been proposed by Bubnicki

et al. (2024): the Camera Trap Data Package (or Camtrap DP), based on the Fric-

tionless Data Package Standard. Camtrap DP comprises 3 CSV tables: Observations

(corresponding to the records table), Deployments (corresponding to cameras informa-
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tion) and Media (containing pictures information). A descriptor file in JSON format links

these files and stores metadata like sampling design information or contributors names.

This data format is intended to homogenize camera trap data to facilitate exchanges,

and to enhance reproducibility by storing information in one data bundle (Bubnicki et

al., 2024).

4 Shiny application

The camtrapviz interactive application was developed using the Shiny R package

(Chang et al., 2023) for web applications development with R. camtrapviz allows to

analyze camera trap data interactively, based on the functions developed in the asso-

ciated R package. The application is available at https://lbbe-shiny.univ-lyon1.fr/camt

rapviz/.

The interface of the Shiny application is organized as a dashboard with different

tabs corresponding to different analyses steps, alternatively displayed in the main body

(Figure 4.2.1).

Figure 4.2.1: Overview of the camtrapviz application. The navigation bar on the left allows
to switch between the 7 application tabs. The analysis modules (Figure 4.2.2) correspond to
one tab each, and two additional “Home” and “About” tabs give more information about the
application. The application body (right) displays the content of the selected tab (here, the
home tab).
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4.1 Modules

The application is organized in 5 modules, corresponding to different steps of the anal-

ysis (Figure 4.2.2). An overview of these modules is available in Appendices.

Figure 4.2.2: Analysis modules in the Shiny application. Two modules allow to select data, and
three other modules allow to visualize and analyze data.

Import

First, users must choose a dataset in the “Import” module: they can choose one of the

two example datasets or upload their own dataset. camtrapviz accepts 2 data formats:

a single CSV file for records or 2 CSV files for records and cameras information. The

application is built to be compatible with the camtrap DP format, meaning that all in-

ternal functions can handle camtrapDP data (although interactive import of camtrapDP

data in the application is impossible to date).

Columns names of the imported data are free, and only 3 columns are mandatory:

camera, species and date and time of detection (alternatively, the user can also provide

separate date and time columns). If the user uploads their data, the code automatically

attempts to match column names with the information they contain based on pattern

matching: for example, if a column contains “species”, it is assumed to contain species

information.

Once data are imported, the dataset is formatted to be used by the application. I

apply as few changes as possible: I only set data to the right data type (e.g. date

instead of character) and when a single CSV was provided, I split data between records

and cameras information.
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Filter

The “Filter” module allows to select a subset of the data on which all subsequent anal-

yses will be based. This module allows to filter data by species, cameras or pictures

dates. These can be chosen manually, or based on another column in the dataset:

for instance, if a user wants to select all carnivore species, they can select species

manually from the species column, or if information is encoded in a “diet” column, they

can select all species for which “diet” is “carnivore”. An interactive graph allows to

see the filtered data in real time, by displaying all records and graying out the filtered

out records. This module typically allows to remove empty pictures or cameras that

malfunctioned, select species of interest or concentrate the analysis on a season.

Overview

The “Overview” module provides an overview of the survey with summary statistics for

camera activity and detected species. A graph showing all records is displayed, with

time on the x-axis and cameras on the y-axis. If the user provided cameras coordi-

nates, a map of the camera trap grid is included. This module also displays summary

tables: the camera summary table recapitulates information by camera, like the num-

ber of pictures, sampling length or setup and retrieval date. The species summary

table includes species-specific information, for instance the number of pictures or the

proportion of cameras on which the species was seen.

All species

The “All species” module displays more in-depth information about species in the com-

munity. This module aims at describing the community structure collected with camera

trap data, by summarizing records counts by species (displayed as a barplot) and com-

puting diversity indices by camera (displayed as a barplot or on a map if coordinates

were provided).

One species

Finally, the “One species” module is designed to analyze more precisely data for user-

chosen species, by examining their activity pattern and spatial distribution. For each
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species chosen by the user, its activity pattern is displayed as an estimate of kernel

density, computed with the R package activity (J. M. Rowcliffe et al., 2014; M. Row-

cliffe, 2023), superimposed on a histogram of the observed records times. Descriptors

of this species occurrences per camera are also displayed as a barplot or on a map (if

coordinates were provided). The available descriptors are count, proportion or relative

abundance index (number of sightings per time unit) of the species per camera.

4.2 Other features

Throughout the application, I paid particular attention to make analyses flexible. For in-

stance, in the import module, users can import data with custom column names, dates

and times formats or coordinates reference systems. To make the analysis workflow

more free, the only mandatory module is the import module. In addition, although the

underlying application logic performs the analyses in a sequential order (indicated in

Figure 4.2.2), the user can navigate between modules at will because data are updated

reactively in the background.

At each step of the analysis, users have the possibility to view the code allowing

to reproduce the analysis in R (Figure 4.2.3). This is made possible by the shinymeta

package (Cheng & Sievert, 2021), which provides functionalities to parse code used in

the application to make it executable outside Shiny. The code of a Shiny application

cannot be exported as is, because it uses special variables to manage user inputs that

are only understandable in the context of the Shiny application: for instance, a Shiny

numeric input from a user-filled field is encoded in the application as input$mynumeric.

To export code using such a user input, shinymeta replaces this special variable as a

hard-coded value corresponding to the user input (e.g. “42”). Users can also down-

load code to reproduce the complete analysis workflow as a R Markdown file and its

compiled HTML version, a functionality provided by shinymeta. Exporting R code from

the interactive Shiny application improves code reproducibility, but also allows users

to enhance the analyses conduced in the application by running and enriching them

directly in R.
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(a) Graph (b) Associated R code

Figure 4.2.3: R code display in the Shiny application. (a) In the interface, the graph is associ-
ated with a “Show code” button (top left) allowing to display the associated R code (b).

5 Software development

As for the development of standardizeSnapshot package (chapter 4.1), I made an

effort to follow best coding practices and make code reproducible. I used Git throughout

project development, wrote unit tests and documentation. I performed unit tests on

the functions of the camtrapviz package, with the same benefits described in chapter

4.1. I chose to write tests only for the package functions and did not write tests to

check Shiny user interface or reactive server logic. This choice was made to gain

time while focusing on testing the more critical parts of the project, i.e. ensuring the

functions analyzed data without errors. I also wrote extensive documentation and 6

code vignettes, available at https://lisanicvert.github.io/camtrapviz/ (website created

with pkgdown Wickham et al., 2024).

To enhance the readability and portability of the Shiny application, I followed some

of the best practices of Shiny application development described in Wickham (2024a)

by avoiding code duplication with functions, using Shiny modules and organizing the

application as a R package.

I notably subdivided the Shiny application into modules. Modules in Shiny are akin

to functions in base R: they are subdivisions of the full Shiny application that can take

inputs and return values, but are isolated from the rest of the application (Wickham,

2024c). Each data treatment module from camtrapviz (Figure 4.2.2) is encapsulated

in a Shiny module. Shiny modules can also be instantiated several times in the Shiny

application, thus reducing code duplication: in this application, I used this property
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for the “One species” module, where each instance of the analyses for one species

corresponds to a Shiny module. Shiny modules enforce a better compartmentalization

of the application functionalities and allow to separate the source code for the Shiny

application into different R scripts, thus making the code easier to read and to maintain.

I also wrapped the application into a R package: in addition to the online ver-

sion of the application, users can also install the camtrapviz package from https:

//github.com/LisaNicvert/camtrapviz and run the application locally. Developing a

Shiny application as a R package has several advantages (Wickham, 2024b; Fay et

al., 2022). First, this facilitates sharing the application by managing dependencies via

package metadata (DESCRIPTION and NAMESPACE files). The package structure also pro-

vides features to document and test functions that can then be used in the server part

of the application. In the case of camtrapviz, this double package/application nature is

particularly relevant, since camtrapviz can also be seen as a standalone package to

analyze camera trap data, thus allowing people to use functions directly in R.

6 Conclusion and perspectives

I developed camtrapviz, an open access Shiny application and R package to visualize

and analyze camera trap data. This package is still in development, and many analyses

can be added to make it more comprehensive. First, a module to filter for records

independence would be essential. Indeed, it is common to set camera traps to take a

series of pictures at each detection (usually 3 pictures) and filtering out these repeated

pictures is important. The function filterRecordTable from the camtrapR package

allows to filter for records independence and we could use this function directly in

the Shiny application to filter for records independence. Second, including species

occupancy modeling in the application would be very useful. Occupancy models are

hierarchical models used to predict species’ latent presence or absence (“occupancy”),

often using covariates to model the detection or occupancy process (MacKenzie et

al., 2004). In the camera trapping context, these models are used to infer species’

environmental preferences on the camera trap grid. Occupancy models are one of the

most popular analyses of camera trap data (Delisle et al., 2021), so including basic

occupancy models in the application would be interesting.
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Some existing analyses of the application could also be improved. First, the func-

tion to launch the Shiny application locally (from the camtrapviz package) could be

improved to include an argument for users to provide their dataset directly, instead of

interactively selecting a file in the import module. It would also be useful to make the

camera column optional for users who only import data from a single camera (typically

members from the public).

I think that camtrapviz could be useful for the scientific community if the develop-

ments listed above were made. The actors from the camera trapping community that

I contacted were enthusiast regarding the idea of a Shiny application, especially since

none of them knew any similar application. Recently, a Shiny application to analyze

camera trap data interactively using functions from the camtrapR package was added

as an extension of this package, which emphasizes the relevance of Shiny applications

for camera trap data. Several recent analysis tools in ecology have also been deployed

as Shiny applications, like PhenoSpace to study plant species in their trait space (Seg-

restin et al., 2021), OCCUR to design a workflow to select species occurrence records

(Ronquillo et al., 2024), or movedesign to guide sampling design decisions in move-

ment ecology (Silva et al., 2023).

The interactive application associated with camtrapviz could be especially useful

for reserve managers or members of the general public interested in visualizing their

camera trap data, notably since it is available online and users are not required to

install anything on their computers. However, the online application is not dimensioned

for intense traffic, so this solution is viable only if the number of users stays low.

To conclude, camtrapviz is a first step towards user-friendly analysis of camera trap

data which combines the ease of use and interactivity of the Shiny application with the

flexibility and reproducibility of coding.
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Appendices

These appendices show a glimpse of the Shiny application for each analysis module.

A Import module

This module allows users to choose an example dataset or to import their own.

Figure A.1: Import module with the example datasets. Here, the “mica” dataset was chosen
from the drop-down menu. An overview of the data is displayed below.
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Figure A.2: Import module with a user-chosen dataset. Here, two CSV tables were imported
(for the records and for the cameras). The drop-down menus allow to select the column names
corresponding to the different variables.
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B Filter module

This module allows users to select a subset of the data.

Figure B.1: Filter module. Three menus allow to select specific data subsets based on species,
cameras or pictures date. A figure summarizing the filtering is displayed in the bottom-right
corner.
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C Overview module

This module provides general information about their data with summary statistics,

graphs and summary tables.

Figure C.1: Summary statistics showing the number of cameras and species, the total number
of trapping nights over all cameras and the date range.

Figure C.2: Overview module map.
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Figure C.3: Overview module records plot representing pictures taken by each camera in time.

(a) Cameras

(b) Species

Figure C.4: Overview module summary tables for cameras (a) and for species (b).
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D All species module

This module provides graphical summaries related to all species captured on camera

traps.

Figure D.1: All species module. The top graph shows capture counts by species and the bottom
plot shows Shannon diversity by camera (circle size is proportional to the Shannon diversity).
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E One species module

This module allows to investigate the activity rhythm and spatial distribution per

species.

Figure E.1: One species module overview. The top menu allows to select species: here,
gemsbok, leopard and ostrich are selected. Below, the activity and spatial distribution for these
species are shown.
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Figure E.2: One species module analyses showing the activity graph and presence map for
ostrich.
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Cover picture: this drawing goes back over the cover for the general introduction. Some

time has passed, and as we observed this system we realized that species are linked

with a network of interactions. The species (nodes of the network) are, from top to bot-

tom and left to right: pale chanting goshawk, impala, honeybadger, lion, zebra, leopard,

Karoo bush rat, gemsbok, a bush species, a grass species, a monkey beetle (Hopliini)

and the flowering succulent Drosanthemum eburneum. These species engage in a

complex interaction network, and edges represent various interactions such as com-

petition, predation, herbivory, commensalism or pollination.

© Own drawing inspired from a picture taken in the Karoo National park.
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This thesis was the opportunity to explore different aspects of ecological networks and

communities, from a methodological and an ecological point of view. In this general

discussion, I first synthesize the main results from the different chapters of this thesis.

Then I reflect on open science, especially on the contribution of clean and open code

for research. After that, I discuss model validation approaches and philosophical im-

plications of ecological data modeling, and conclude with more personal thoughts on

generalist versus specialist approaches in this thesis and more broadly in ecology.

1 Synthesis of the main results

In this thesis, I explored different facets of interspecific interactions and ecological

communities. I investigated trait matching in ecological networks (part 2), attrac-

tion/repulsion patterns between species (part 3) and provided tools for processing large

amounts of multi-species occurrence data, which are often necessary to study ecologi-

cal networks (part 4). Table 5.1 synthesizes the main methodological and data analysis

results for each chapter.

1.1 Investigate trait matching in interaction networks

In part 2, I investigated causes of structure in ecological networks, and more precisely

the importance of trait matching on interactions in ecological communities, using the

notion of interaction niche. To do so, I extended, developed and evaluated multivariate

methods of the correspondence analysis (CA) family. I illustrated these methods on a

mutualistic bird-fruit interaction network (data from Dehling et al., 2021). In this part,

an interaction is defined as a physical encounter between species, here birds eating

275



Part 5: General discussion

Part Chapter Methodological results Data analysis results

2

2.1 Evaluation and interpretation of
CA and reciprocal scaling in
ecological networks

Bird and plants niche breadths
are related to latent traits

2.2 Interpretation of CCA and dc-
CA in ecological networks
Definition of variation partition-
ing in ecological networks

Trait matching explains 6% of
variation in the network

2.3 Extension of reciprocal scaling
to CCA and dc-CA

Visualize birds and plants
niches constrained with traits

3

3.1 & 3.2 Evaluation and interpretation of
MHPs to infer interactions from
camera trap data

Zebra and impala follow other
herbivores and avoid lion

3.2 Specification and interpretation
of a MHP with a temporal co-
variate

Circadian rhythms have little ef-
fect on interactions

4

4.1 Implementation of a R package
to process Snapshot Safari data

Standardize Snapshot Safari
database

4.2 Implementation of a R package
and Shiny application to ana-
lyze and visualize camera trap
data

Table 5.1: Synthesis of the main results of the thesis. In part 2, I analyzed a bird-fruit interaction
network; In part 3, I analyzed mammal occurrence data collected with camera traps and in
chapter 4.1, I standardized data collected by the Snapshot Safari program.

plant fruits.

In chapter 2.1, I used CA and reciprocal scaling to analyze the interaction niche

of species by applying methods initially designed for environmental niches to study

interaction niches, thus providing a new ecological interpretation of these methods.

Evaluation on simulated data suggests that the model can accurately infer interaction

niche breadths and optima. The bird-fruit network analysis also shows how these meth-

ods can be used to answer ecological questions about the drivers of species niches

breadths and optima in relation to their traits. In particular, intermediate size bird and

plant species tend to have wider niches than small or large birds and plants.

In chapter 2.2, I employed constrained multivariate methods, canonical and double-

constrained correspondence analyses (respectively CCA and dc-CA), to quantify more

precisely the part of the network structure due to species traits. I illustrated these
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methods by performing variation decomposition on the bird-fruit interaction network,

showing that matching of the available traits accounts, at best, for a small part of the

total variability (less than 6%).

Finally, in chapter 2.3, I developed a method allowing to measure species niche

breadth from constrained analyses, by extending reciprocal scaling to CCA and dc-CA.

I exemplified the model by measuring interaction niche breadths constrained with traits

on the bird-fruit network.

To summarize, in this part I studied networks through the lens of the interaction

niche by using statistical methods and ecological concepts developed with environmen-

tal niches in mind to study interaction niches. I also proposed to measure interaction

niche indices by taking species traits into account.

1.2 Infer attractions and repulsions

In part 3, I investigated the consequences of interspecific interactions in a network of in-

teracting species. I explored how the interactions between different species can affect

other species’ spatio-temporal distribution patterns: in this part, an interaction is de-

fined as an effect of species on other species distribution patterns. I used multivariate

point processes in the Hawkes process family to analyze data collected in continuous

time with camera traps data. The goal was to use the temporal information provided

by camera traps, which is often overlooked, to inform the inference of interspecific in-

teractions. I illustrated Hawkes processes on a dataset of five species occurrences in

the South African savanna collected with camera traps (data available at Nicvert et al.,

2023).

In chapter 3.1, I used a linear multivariate Hawkes process (linear MHP) to ana-

lyze camera trap data. Simulations performed to evaluate the method suggest that it

can successfully infer interactions when using enough data and when interactions are

strong enough. Real camera trap data analysis highlighted ecologically interpretable

interactions between species: attractions between individuals of the same species, at-

tractions between herbivore species (in particular zebra and impala following other her-

bivores) and avoidance of lion by impala and zebra. These patterns can be interpreted

using known behavioral interactions between species such as predation, grazing suc-

cession or mixed-species grouping, but may also be influenced by environmental and
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temporal factors.

In chapter 3.2, I used a non-linear MHP with a temporal covariate to reanalyze this

dataset and tease apart species’ occurrence patterns due to circadian rhythms from

patterns due to interspecific interactions. Results suggest that circadian rhythms have

little effect on the inferred interactions, and are overall consistent with results from the

linear MHP.

To sum up, I showed that multivariate Hawkes processes can successfully analyze

ecological data. Compared to other existing methods to infer interactions from camera

trap data, this model has more interpretable outputs, but this comes at the cost of more

statistical complexity.

1.3 Software development

In part 4, I took a more applied stance and developed two software tools to process,

clean and visualize multi-species data collected with camera traps. This part is in line

with the growing need for automated analysis tools to process increasing amounts of

data in ecology.

In chapter 4.1, I developed a R package, standardizeSnapshot, to automate the

internal data standardization and cleaning process of camera trap data collected with

the Snapshot Safari program. I used this package to standardize all available Snap-

shot Safari data collected to date. standardizeSnapshot is tested, documented and

distributed on GitHub (https://github.com/SnapshotSafari/standard-merge), and now

routinely used to process Snapshot Safari data.

In chapter 4.2, I developed a Shiny application and R package, camtrapviz, to

summarize and visualize multi-species data collected with an array of camera traps (ht

tps://github.com/LisaNicvert/camtrapviz). The package provides functions to analyze

and summarize camera trap data with R, and the application allows to interactively

analyze data and to export code to reproduce the analyses outside the application.

camtrapviz is still in development and I plan to enrich it with new analyses.

This part exemplifies how software and coding tools can be used to automate the

data cleaning and data exploration processes. More generally, these developments are

part of the open science movement to make scientific results available for more people

by releasing the code freely. They also aim at making scientific analyses more reliable
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by putting a greater effort on writing clean, documented and tested code.

2 Open science and reproducibility

To be reliable, research should be carried out with appropriate methods, conducted

honestly (i.e. without fraud) and reported clearly. Owing to the scale and tempo-

ral dynamics of ecological systems, ecology faces specific challenges regarding data

collection (Filazzola & Lortie, 2022) and causal inference (Arif & MacNeil, 2022; Tre-

dennick et al., 2021). While these broad issues are important, in this section, I focus

more specifically on how clean and open code and data can improve the reliability of

ecological research. I begin by defining replicability and reproducibility, outline how

clean and open code and data can help mitigate reproducibility issues, and show how

reproducible and open code has been implemented in this thesis.

2.1 Replicability and reproducibility

Replicability is the ability to qualitatively confirm the conclusions of research on a dif-

ferent dataset (Popovic et al., 2024). The successful replication of a scientific result is

essential to increase the confidence we have in this result and/or generalize findings

(Ioannidis, 2005).

Reproducibility is the ability to reproduce results using the same analyses on the

same dataset, and can be seen as a first step towards replicability (see Figure 5.1).

In the context of growing use of code in ecology, reproducibility includes making code

and data available (at least on demand), ensuring that the code can run (in particular,

checking that the needed libraries can be installed and specifying their version) and that

running the code produces consistent and desired results (Ivimey-Cook et al., 2023).

Replicability is so fundamental that it has been described as a distinction between

science and non-science (Filazzola & Cahill Jr, 2021). However, the replicability of

scientific research has recently been challenged, and research has been described as

undergoing a “replication crisis” (Filazzola & Cahill Jr, 2021; Shrout & Rodgers, 2018).

In psychology, a systematic replication experiment across many labs estimated the rate

of replication success for published studies at only 36% (Open Science Collaboration,

2015). To my knowledge, no similar estimation exists in ecology, but the extremely
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low rate of replication studies, estimated to 0.023% (Kelly, 2019), makes it difficult to

evaluate the replicability rate. This replication crisis can be due to intentional fraud,

thought to be very rare, (Shrout & Rodgers, 2018), or more commonly to unintentional

factors, like publication bias for significant results (Ioannidis, 2005) or questionable use

of statistics (Popovic et al., 2024).

To improve reproducibility and replicability of scientific studies, several avenues

have been proposed, including encouraging the publication of negative results (Ioanni-

dis, 2005), using better statistical practices (Popovic et al., 2024) or developing studies

preregistration to avoid HARKing (Hypothesizing After Results are Known) (Kerr, 1998;

Shrout & Rodgers, 2018). Below, I focus on solutions involving better coding practices

and open science, which have the potential to greatly improve the reproducibility of

scientific studies at a relatively low cost. Indeed, code has become a cornerstone of

ecological research (Filazzola & Lortie, 2022; Markowetz, 2017) but is still surprisingly

little scrutinized today. In ecology, although more than 90% of published papers use

code to produce results, only 27% provide the code to reproduce the analyses (Culina

et al., 2020). Additionally, this code is usually not reviewed (Ivimey-Cook et al., 2023).

This is an issue, because not disclosing code or disclosing code with errors can ham-

per reproducibility and replicability.

Figure 5.1: Link between coding practices, reproducibility and replicability. Code influences
replicability, along with other factors such as scientific integrity or statistical analyses. Many
reproducible studies yielding the same result allow to reach replicability, but it is also affected
by sampling bias or the natural variability of the studied systems.
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2.2 Coding practices to improve reproducibility

The coding process provides several opportunities to make data analyses as repro-

ducible as possible (see Figure 5.1) (Gomes et al., 2022; Ivimey-Cook et al., 2023;

Filazzola & Lortie, 2022). The first element is to conduct as many analysis steps as

possible in a reproducible manner: non-reproducible analyses include using a propri-

etary software to process data or processing data manually (Gomes et al., 2022). If

code automation is not possible, or too costly to implement, analyses steps conduced

in a non-reproducible manner can be thoroughly described and reported (Gomes et al.,

2022).

Another way to increase reproducibility is by verifying that the code runs with no

errors (Ivimey-Cook et al., 2023). These errors include syntax errors (e.g. a miss-

ing parenthesis), programming errors (e.g. inverted row and column coordinates), or

missing or wrong versions of libraries.

Third, reproducibility includes ensuring that running the code yields the conclusions

supported by the publication (Ivimey-Cook et al., 2023), meaning that data analysis

code should fulfill its intended purpose with no errors (Popovic et al., 2024; Ivimey-

Cook et al., 2023). The increasing use of code to analyze data has the potential to

advance science, but can also lead to new sources of errors that need to be accounted

for (Ivimey-Cook et al., 2023). An example of coding error in the scientific literature

is related to misspelled genes names due to automatic type conversion when enter-

ing these names in Microsoft Excel (e.g. gene MARCH1 being converted to the date

“Mar-1”). A study by Ziemann et al. (2016) examining the supplementary material of

published articles in genomics found that about 20% of articles included gene names

errors attributable to Microsoft Excel. This high prevalence of errors prompted the Hu-

man Gene Name Consortium to rename some of the offending genes in 2020: for

example, MARCH1 became MARCHF1 (Vincent, 2020).

Finally, writing clean code, i.e. code that is easily readable and understandable by

humans, is also useful to avoid coding errors (Filazzola & Lortie, 2022). Writing clean

code includes choosing relevant variable names, organizing analyses in a clear way,

commenting and documenting code and avoiding code duplication (Filazzola & Lortie,

2022). Writing clean code is not only beneficial for future code reviewers or readers,

but also for the author of the code themselves if they need to reuse or modify their
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code some time after writing it. The process of cleaning and testing code can also lead

to the detection of errors in the analyses that would not have been spotted otherwise

(Filazzola & Lortie, 2022). For example, during this thesis, I realized I had made a

mistake in the code to analyze data with the linear MHP (chapter 3.1) while cleaning

code.

Using code to analyze results makes it an integral part of the research process,

so best coding practices contribute to the quality of scientific research. We can also

view code as a way to communicate scientific results in its own right (Filazzola & Lor-

tie, 2022). Therefore, code can be included in the material involved in open science

alongside data and publications.

2.3 Open science, code and data

Open science is the movement advocating for free and open access to scientific results

(Racimo et al., 2022). It is increasingly recognized as an efficient means to advance

scientific knowledge (Gomes et al., 2022): open science benefits researchers, who can

access research findings freely and rapidly and avoid to “reinvent the wheel” (Hampton

et al., 2015; Racimo et al., 2022), but it also benefits society at large, as anyone from

the general public that might be interested in scientific results can access them.

Opening code increases the likelihood to spot analysis and coding errors (Ivimey-

Cook et al., 2023). In research articles, it is commonly accepted that the material and

methods should be reported in sufficient details in order to allow anyone to critically

examine the research protocol, and to reproduce or replicate results. In the context

of increasing use of code, this includes accurately describing the coding procedure,

and even better, including the code as supplementary material in publications. Open-

ing code for scrutiny has the potential to improve the reliability of research results.

The experience related by Andrew Anderson is eloquent in this respect: in this story

published on the SORTEE (Society for Open, Reliable, and Transparent Ecology and

Evolutionary biology) Blog (Anderson, 2023), he relates how he fixed a coding error in

a published article. In 2022, he published an article about sexual selection in primates,

including open code and data. One year after publication, a reader reached out by

email pointing out an error they had spotted in the data analysis code that substan-

tially affected the study conclusions. The article was then retracted, and replaced with
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another article with correct analyses.

Open code and data also have the potential to accelerate the spread of research

results and ideas, which can be essential to act fast in response to crises (Racimo

et al., 2022). For example, during the COVID-19 crisis, preprint servers have been

increasingly used to disseminate scientific results and accelerate research in the face

of the pandemic (Fraser et al., 2021; Gomes et al., 2022).

2.4 In this thesis

For all reasons above, in this thesis I made an effort to write reproducible code and to

open and document the code and the underlying data (see List of online resources).

All code for part 2 is stored in a GitHub repository (which is private at the moment).

The published article about the linear MHP from chapter 3.1 was published with open

code and data, and the complete code for the analyses performed in part 3 (updated

with code from chapter 3.2 to analyze non-linear MHPs) is available on GitHub. The

source code of software applications developed in chapters 4.1 and 4.2 are available

on GitHub, and the Shiny application is also available freely on a server.

To make code readable, I distributed the analyses in computational documents cre-

ated using Quarto. I also made an effort on documentation, using a global README

to document all code repositories and additionally using documentation websites for

chapters 4.1 and 4.2. All code repositories are distributed as R packages, which facil-

itate dependency management and function documentation. For software tools devel-

oped in chapters 4.1 and 4.2, I also used unit tests to check results.

2.5 Additional remarks

Opening code and data entails many benefits for the scientific community. Sometimes,

sharing code and data may not be possible (e.g. proprietary software) or desirable (e.g.

sensitive biodiversity data on poached species) (Jenkins et al., 2023). However, these

exemptions do not prevent to archive code privately, and code can still be cleaned and

documented.

Here, I also want to stress that, as Gomes et al. (2022) say it, “there is no such

thing as ‘perfect code”’. Writing clean code is a continuous process, and the code can
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always be improved. In the end, clean coding conventions rest on a trade-off balancing,

among other things, readability, efficiency, longevity and invested cleaning time, and

also depends on arbitrary preferences between coding standards. It is particularly

important to recognize this last point, because one of the barriers to sharing code and

data is a fear of being judged because one codes “poorly” or does not use sophisticated

coding tools (Gomes et al., 2022; Hampton et al., 2015). Another factor is the fear of

exposing coding errors (Hampton et al., 2015). However, even though exposing errors

can be hard (Anderson, 2023), it is in the interest of scientific research: therefore, I

think it is essential to develop a culture of sharing code and data in ecology, as well as

fostering a positive and kind research environment to mitigate the fear of being judged

(Gomes et al., 2022).

3 Model validation: with simulations or real data?

For the statistical models developed in this thesis (models of the CA family in part 2 and

Hawkes processes in part 3), I validated models using both simulation approaches and

real data analyses. Here, I define model validation as the testing procedures conduced

to determine how well the model performs, and whether it is suitable to estimate the

parameters of interest for real data (after Rykiel, 1996). In this section, I reflect on the

pros and cons of simulation and real data analysis to evaluate models.

3.1 Validation with a simulation approach

The simulation approach consists in simulating the ecological process and the data

collection, fitting the model, and comparing the model parameters to the simulated

ground truth: this is the “virtual ecologist approach” described by Zurell et al. (2010).

Validating models with this approach has several advantages. First, simulating data

allows to know the ground truth for the parameters values, which is not possible in

general for real data. For instance, in chapter 2.1, we simulated a probability of in-

teraction based on trait matching between species: this probability is unknown in the

real dataset. Second, simulations allow to test the model performance under different

conditions. For example, the simulation of the linear MHP in chapter 3.1 showed how

the model’s performance changes with different sample sizes and interaction strength
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and allowed to determine conditions for which we can expect the model to produce a

reliable inference. Finally, simulations can also be used to choose the model’s hyperpa-

rameters. For instance, I used simulations for the linear MHP in chapter 3.1 to choose

a suitable value of the penalization parameter γ: without this simulation approach, the

value of γ would have been a random guess.

Although simulations can be very useful, they also have limits. First, defining realis-

tic simulation parameters can be challenging (Gotelli & Ulrich, 2012). For instance, to

simulate data for the MHPs in part 3, I had to proceed by trial and error to determine

the ecologically realistic range of interaction strengths. Second, the simulation model

can also be computationally intensive or challenging to implement. For example, again

regarding the validation of the MHPs in part 3, I used the same model for simulation

and inference because implementing an individual-based model would have been too

time-consuming. Another limit of simulations is that they only inform us on the perfor-

mance of the model we can expect under ideal conditions, i.e. with no factors other

than the ones used in the simulation model. Therefore, evaluating models using sim-

ulations provides an upper bound for the performance we can expect on real, noisy,

data. For instance, the simulation of species interactions in chapter 2.1 assumes a

normal interaction niche, which is not necessarily true for real species.

3.2 Validation using real data

Considering the limits of simulation approaches, it is tempting to use real data to vali-

date the model. A major limit of real data is that the ground truth is unknown: but we

can use different criteria to validate the model. First, considering a statistical model that

is fitted on data, we can verify that it converges on real data, i.e. that the optimization

algorithm finds an optimal solution. In particular, the model might fail to converge when

fitted on too sparse data (this is the case for example for the non-linear MHP presented

in chapter 3.2). We can also check the model outputs for unexpected patterns, when a

priori knowledge on the system allows it. Indeed, some factors that are ignored in the

model can affect the patterns observed in real data: spotting these unexpected effects

can hint to an unmodeled effect and guide model specification and interpretation. For

instance, in chapter 3.1, the inference of a MHP on real data yielded a cyclic interac-

tion between some species. This led us to suspect an effect of circadian rhythms, and
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prompted the design of a simulation experiment to check if circadian rhythms could

produce such observed patterns (and they could, see Appendix S3). I think that testing

models on real data is essential: after all, the aim of ecological models, such as the

ones developed in this thesis, is to understand and analyze real data.

3.3 Two complementary approaches and other perspectives

I think that evaluating models on simulated and real data are highly complementary ap-

proaches in the context of ecological data analysis. On one hand, simulation confers

more control on the data and allows to check the model performance in ideal condi-

tions. However, good model performances under simulation do not guarantee that the

model is flawless. Indeed, the model might perform well with simulated data, but fail to

account for a critical ecological process, or perform well only for ecologically unrealistic

parameter values. On the other hand, an application on real data is essential to test

whether the model is able to infer the patterns of interest despite the noise owing to

the multiple factors at play in ecological systems. However, with real data, we do not

control factors affecting the observed patterns, and some model parameters might be

wrongly estimated because of noise introduced by unmodeled variables. For instance,

the avoidance of lion by zebra detected in chapter 3.1 might be due to the time of

day, which is not taken into account in the model. Therefore, simulation and real data

analysis are both useful to validate a model.

Another important characteristic of a model is its conceptual validity (sensu Rykiel,

1996), i.e. whether the model is an accurate description of real world mechanisms. In

this thesis, I did not explicitly assess the conceptual validity of models: I did not test

the assumption that species traits generate structure in interaction networks (part 2)

or that interspecific attraction/avoidance generate non-random patterns in occurrence

data (part 3). To evaluate models conceptual validity, it could be useful to compare

them to other models. In particular, I could have used null or neutral models: null

models are based on randomization of real data to produce a pattern that is expected

in the absence of a given mechanism (Gotelli & McGill, 2006), and neutral models

allow to simulate data without taking a given mechanism into account (Gotelli & McGill,

2006). These models allow to evaluate the effect of a mechanism, by comparing real

data to data generated with models where the mechanism is absent. However, null and
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neutral models are difficult to design, because it is difficult to account for all processes

affecting the observed patterns besides the mechanism we are interested in. Indeed,

if some structuring factors are omitted from the null or neutral model, real data might

hold more structure than simulated/randomized data, even if the mechanism we want

to test has no importance (Gotelli & Ulrich, 2012).

More broadly, we can also ask ourselves whether scientific models can be good

descriptors of the real world, and how accurate this description is. Below, I briefly

discuss this issue and its implications in the frame of this thesis.

4 Modeling ecological data

Models are an important component of scientific process. Scientific models are ex-

tremely diverse (Frigg & Hartmann, 2020; Hughes, 1997; Varenne, 2013): a few exam-

ples of models include the model of the atom in physics, the Lotka-Volterra model of

prey-predator dynamics in ecology or the plant Arabidopsis thaliana as a model organ-

ism in biology. Owing to this diversity, giving a general definition of scientific models is

difficult, and some have even argued it is not relevant (Callender & Cohen, 2005). One

of the common determinants of models is that they are tools to understand the real

world, often (but not always) by means of simplified representation of a phenomenon

(Varenne, 2013; Legay, 1997).

In this thesis, I developed and studied two main models: a model to infer species

interaction niches (part 2) and a model to infer and simulate attraction and avoidance

between species (part 3). Both models rely on mathematical equations to formalize

the study system, and both models can be fitted to data to infer information about real

systems. This section focuses on the nature of such models, and on what they can

and cannot teach us on natural systems.

An important question regards the relationship of models with the real world and

can be put as follows: what kind of representation of the real world do models pro-

vide, and how accurate is it? This question has spurred much debate, and there is

no philosophical consensus on the answer to these questions today (Frigg & Nguyen,

2016). Different authors have proposed different conceptions of the link between sci-

entific models and reality: two views that are particularly relevant for ecology are the
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axiomatic and the pragmatic view (see Figure 5.2) (Travassos-Britto et al., 2021).

Figure 5.2: Axiomatic and pragmatic view of models. The axiomatic view postulates that the
model is an approximation of the reality, while the pragmatic view adds that models also rep-
resent a point of view of a given phenomenon occurring in reality. Cube for reality and axiomatic view by
kmg design. Other cubes are own designs.

The axiomatic view posits that models can be formulated with a set of axioms, i.e.

statements about a phenomenon, and expressed with a model that will then be tested

against the real phenomenon (Travassos-Britto et al., 2021). To exemplify how this

reasoning can apply, I take the example of the Hawkes model used in part 3. We

can formulate the axiom : “some species attract or avoid each other”. This axiom

can be translated into the equation of the Hawkes process, modeling the occurrence

rate of a species λi(t) as a function of the occurrences of other species: for instance,

with the linear MHP, the model is described with Equation (2) of chapter 3.1: λl
i(t) =(

νi +
∑S

j=1

∑
m | T lj

m<t fj→i(t− T lj
m)
)
+

. Then, this model can be fitted to real data of

species occurrences and we can see if, and which species attract or avoid each other.

There is a fundamental philosophical issue with the axiomatic view applied in this

context. Indeed, axioms tend to simplify the system by stressing one particular aspect

of the system functioning (Travassos-Britto et al., 2021). For instance, here, consider-

ing species simply in terms of occurrences dictated by interactions with other species

neglects other aspects of the ecological system like the environment or the personal-

ity of each individual, which can both affect species occurrences. Is it to say that this

model is useless because it does not depict the real world accurately? I think that the

answer is no, and from a philosophical perspective this issue is resolved by adopting a

pragmatic view.

The pragmatic view shifts the emphasis of the model as a representation of reality
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to a representation of a given phenomenon about reality: Travassos-Britto et al. (2021)

summarize this difference between the axiomatic and the pragmatic view by stating

that “[the axiomatic view defines] the notion of a ‘model of something’, stressing how

models represent the world, [and the pragmatic view defines] the notion of ‘model for

something’, laying emphasis on how models are used to learn about the world”. Taking

the example of the Hawkes model, it is designed specifically to study the effect of

previous species occurrences on the occurrences of a given species.

I think that the models developed in this thesis fit the pragmatic view. In part 2, the

objective was to quantify measures of the interaction niche in networks measured as

the diversity of (latent) traits of their interacting partners. Other phenomenons influ-

ence the probability of interactions (e.g. phylogeny or seasonality), and they are not

explicitly modeled or taken into account in this part. This model also constrains the

shape of species niches to be hyperellipsoids. In part 3, the objective was to quantify

the effect of previous species occurrences on the occurrence of a given species. Other

phenomenons were neglected as well (e.g. environment, personality, spatial aspect),

and the mathematical model constraints the shape of the effect of the interaction (e.g.

additive effect in chapter 3.1 or multiplicative effect in chapter 3.2).

Under the pragmatic view, models are not necessarily isomorphic representations

of the real world, i.e. models structure does not necessarily represent the causal re-

lationships occurring in real systems. Therefore, the question of what exactly these

models can and cannot tell us about the causal relationships occurring in the real world

is crucial. In particular, two questions are of interest: evaluate the agreement of the

model with data, and quantify how the model’s results might generalize. Evaluating the

agreement of a model with data is the domain of statistics (Romeijn, 2014). Several

statistical methods exist to do so, for instance frequentist hypothesis testing, Bayesian

inference, and models comparison (Romeijn, 2014; Tredennick et al., 2021): in this

thesis, I evaluated models with simulations and inference on real data (see section

3). Another open question is the generalization of the model to other study systems

or settings. In this thesis, I inferred interaction niches of bird and plant species using

data collected in the Peruvian montane forest between 2009 and 2010 (part 2), and the

attraction and avoidance between 5 mammal species from 6 protected areas in South

African savannas collected between 2017 and 2019 (part 3). Inferences were con-
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duced on these particular datasets, and their results and statistical validation applies

to these instances only. However, the results of these models would be more useful if

they could be generalized: for example, in chapter 2.2, I estimated the inertia explained

by trait matching in the Peruvian network to approximately 6%, and an open question

is to determine if this low percentage is common across all bird-fruit mutualistic net-

works, or even across all ecological networks. Similarly, in chapter 3.1, we inferred an

avoidance of lion by zebra and impala in the studied sites, and we can wonder if this

results holds true for other locations. To generalize these conclusions, we would need

to replicate the study by applying the models to other data (see section 2 for a definition

and discussion of scientific replication).

Adopting a pragmatic view of models has practical consequences for the formaliza-

tion of scientific models. At the beginning of my thesis, I wanted to build a “perfect”

model to represent species occurrences at camera traps. So when I realized that the

Hawkes model lacked some explanatory factors affecting species occurrences, I was

disappointed and thought that this model was useless to draw reliable inferences on

ecological data. But by adopting the pragmatic view, I realized that, even if some as-

pects of the system are omitted, a model can still inform us about the phenomenon

we want to study. Under the pragmatic view, a more complete knowledge of the sys-

tem can then be obtained by confronting models with different assumptions to data

(Travassos-Britto et al., 2021). Therefore, a single model (and a single modeler) does

not necessarily need to account for all factors in a system, nor do they need to be a

specialist in every aspect of the functioning of a given system.

5 Generalism and specialization in science

This thesis is focused on developing tools to improve ecological data analysis, either

by using statistical models or software tools. All axes study complex systems, and in

particular ecological communities and their multiple species (parts 2, 3 and 4) and mul-

tiple spatial and temporal sampling units (3 and 4). However, this thesis also gathers

three diverse parts. They differ in the scientific question addressed: how to explain the

structure of networks (part 2), what effects do they have (part 3) and how to improve

data processing for community data (part 4). Study systems are also varied: Peruvian
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bird-fruit network (part 2), African mammals community (part 3) and any animal com-

munity investigated with camera traps (part 4). Finally, the methods that are used and

developed in each part are also distinct: multivariate methods in part 2, point process

models in part 3 and software tools in part 4.

This multiplicity of approaches was not a choice: rather, it was driven by the con-

tingencies of the thesis project and unexpected developments compared to the initially

planned project. It was also driven by our skills and interests, as part 2 was suggested

by one of my supervisors and part 4 arose from my will to conduct more applied re-

search.

Deviating from a planned research project (see Figure 5.3) seems to be very com-

mon, if I trust the numerous discussions I had with other scientists (see also the per-

sonal introduction in Barabási and Pósfai, 2016). However, this reality is rarely ap-

parent in the way that science is shared, with the most prominent form of research

dissemination, research articles, sharing a common and rigid structure (introduction,

material and methods, results and discussion). I understand the need to present re-

search linearly and to discard some of the explored paths for clarity. But at the same

time, this homogenization of research findings and the current publishing system com-

bine to yield unwanted effects: notably, because the final research product tends to

focus on significant results (by performing HARKing, or Hypothesizing After the Re-

sults are Known Kerr, 1998), because it tends to overemphasize results significance

(Corneille et al., 2023), and more largely because the way science is presented in

articles largely distorts the way science is practiced.

This thesis is no exception, and while I presented results linearly, here I acknowl-

edge that this is a simplification of the unfolding of this PhD. The planned research

project was organized to proceed linearly from point A to point B (Figure 5.3a), but it

is very different from the work presented in this manuscript, that is the result of trial

and error, explored and abandoned research axes and unexpected results and devel-

opments. This journey leads to results B’ that are different from the planned results

(Figure 5.3b). Moreover, my experience of pursuing a research project was not neu-

tral: even though as a scientist, my research is based on logic and reason, there was

also a component of personal and emotional investment in this research. Succeeding

to write a proof, or obtaining an ecologically meaningful result brought me a lot of joy,
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(a) Expected research trajectory (b) Real research trajectory

Figure 5.3: Real and expected research trajectories. At the beginning of this PhD, I was expect-
ing to pursue a linear research trajectory (a), but the trajectory I followed in the end was much
more convoluted and colorful due to personal and emotional investment in research results (b).

while being stuck on an equation or a bug in the code was extremely frustrating.

This convoluted progression, as well as the position of my work at the interface

between ecology and statistics, was initially the source of much doubt and discomfort.

This was in contradiction with the idea of research that I had in mind, which was follow-

ing a linear path towards increasingly specialization in a given subject, its literature and

associated methods. In the contrary, as I progressed in my PhD, I was continuously

taking on new methods and study systems.

Now that I approach the end of this PhD, I reflect on this experience much more

positively. I think that a diversity of approaches and methods can increase one’s un-

derstanding of a subject (Legay, 1986), and that generalist scientific culture is impor-

tant to link seemingly unrelated subjects. I also see my position at the interface of

statistics and ecology more positively. Indeed, interdisciplinary research in statistics

and ecology can be very fruitful (King, 2014; Gimenez et al., 2014; Warton, 2015), but

to be valuable, statisticians and ecologists must understand one another, by using the

same language and understand biological or statistical constraints. Sometimes, peo-

ple knowing concepts between two different fields can help bridge the gap between

disciplines. For instance, causal models, which are increasingly advocated in ecology,

require not only statistical skills, but also ecological knowledge of the system (Arif &

MacNeil, 2022; McGowan et al., 2023). This came with the growing realization that

science is not necessarily an individual endeavor, but can be conduced in teams: so it

is not necessary to know everything to make good science.
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