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Abstract

Background. Thirty to 40% of the 7000 rare diseases present with craniofacial anomalies.
Identifying these facial features requires the expert eye of dysmorphologist, and diagnosis in
this field is based on experience. Hence, there have been a recent increase in the number of
publications dedicated to the automatic diagnosis of rare conditions using facial
photographs, an approach termed Next Generation Phenotyping (NGP).

We aimed to develop and evaluate the performances ofa new NGP method on 2D
photographs on an unprecedentedly large database, with a wide array of genetically proven
syndromes, of various ages, genders, and ethnicities.

Methods. We included pictures from the photographic database of the maxillofacial surgery
and plastic surgery department and from the medical genetics department of Hopital Necker —
Enfants Malades (AP-HP), Paris, France. This database contains 1,042,468 photographs from
22,000 patients followed in the department since 1981. The writing of this work is based on
the different stages in the construction of this new tool. We first described the first stage in
analyzing photographs: (1) automatically detecting regions of interest, i.e., frontal, lateral and
external ear pictures; and (2) automatically placing a series of landmarks on these regions. We
then used a combination of shape analysis methods based on geometric morphometrics and
texture analysis on key areas of the face. Finally, these geometric and textural
parameters were used to train machine learning models based on a XGboost classifier. These
models were validated on independent data, from other national (Nantes, Lille, Montpellier)
and international (London, Bangkok) hospitals.

Results. Object recognition was optimized with the Faster R-Convolutional Neural Network
(CNN) based detector. The best landmarking model was the patch-based Active Appearance
Model (AAM) and was able to significantly distinguish

patients with Treacher Collins (TC) syndrome from control non-syndromic patients (p <
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0.001). We were then able to train a detection model for Guion Almeida syndrome
(Mandibulofacial Dysostosis with Microcephaly, MFDM) based on geometric morphometrics
of the external ear, with an accuracy of 0.969 [0.838 - 0.999] (p < 0.001) among non-
syndromic controls, and 0.813 [0.544 - 0.960] (p = 0.003) among 3 differential diagnoses of
this condition. Then, the incorporation of frontal and lateral facial analysis, as well as texture
analysis, enabled the diagnosis of Apert, Crouzon and Pfeiffer syndromes with respective
accuracies of 0.879 [0.718 - 0.966] (p < 0.001), 0.932 [0.813 - 0.986] (p < 0.001) and 1.000
[0.815 - 1.000] (p <0.001).

Conclusion. We were able to build a robust NGP tool, allowing automated analysis of the
facial phenotype on 2D photographs of children with various genetic syndromes. In addition,
three main types of deliverables were obtained: (1) diagnostic performances for one or more
genetic  syndromes, (2) phenotype-genotype correlations for certain syndromes
with multiple genetic variants, and (3) an analysis of the effects of surgery or drugs on facial
morphology. We will now extend this algorithm, whose methodology has been completed

and validated, to the analysis of the total number of syndromes in our database.

Keywords: computer vision, machine learning; Artificial Intelligence; dysmorphology;

genetic diseases; craniofacial syndromes; automatic diagnosis; Next Generation Phenotyping.
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Résumé

Contexte. Trente a 40 % des 7 000 maladies rares présentent des anomalies craniofaciales.
L'identification de ces caractéristiques faciales nécessite I'eeil expert d'un dysmorphologiste, et
le diagnostic dans ce domaine repose sur l'expérience. C'est pourquoi le nombre de
publications consacrées au diagnostic automatique des maladies rares a partir de
photographies faciales a récemment augmenté, une approche appelée "Next Generation
Phenotyping" (NGP).

Nous avons cherché a développer et a évaluer les performances d'une nouvelle méthode NGP
sur des photographies 2D dans une base de données d'une ampleur sans précédent, avec un
large éventail de syndromes génétiquement prouvés, d'ages, de genres et d'ethnies différents.
Méthodes. Nous avons inclus des images provenant de la base de données photographiques
du service de chirurgie maxillo-faciale et de chirurgie plastique et du service de génétique
médicale de I'Hopital Necker - Enfants Malades (AP-HP), Paris, France. Cette base de
données contient 1 042 468 photographies de 22 000 patients suivis dans le service depuis
1981. La rédaction de ce travail s'appuie sur les différentes étapes de la construction de ce
nouvel outil. Nous avons tout d'abord décrit la premiére étape de 1'analyse des photographies :
(1) la détection automatique des régions d'intérét, c'est-a-dire les photos frontales, latérales et
de l'oreille externe ; et (2) le placement automatique d'une série de points de repére sur ces
régions. Nous avons ensuite utilis¢é une combinaison de méthodes d'analyse de la forme
basées sur la morphométrie géométrique et l'analyse de la texture sur des zones clés du visage.
Enfin, ces parametres géométriques et texturaux ont été utilisés pour entrainer des modéeles
d'apprentissage automatique basés sur un classificateur XGboost. Ces modeles ont été validés
sur des données indépendantes provenant d'autres hopitaux nationaux (Nantes, Lille,

Montpellier) et internationaux (Londres, Bangkok).
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Résultats. La reconnaissance des objets a été optimisée a l'aide d’un détecteur basé sur un
réseau neuronal CNN (Faster R-Convolutional Neural Network). Le meilleur modele de
repérage ¢était le modele d'apparence active (AAM) basé sur les patchs et a permis de
distinguer de maniére significative les patients atteints du syndrome de Treacher Collins (TC)
des patients témoins non syndromiques (p < 0,001). Nous avons ensuite pu entrainer un
modele de détection du syndrome de Guion Almeida (Dysostose mandibulofaciale avec
microcéphalie, MFDM) basé sur la morphométrie géométrique de l'oreille externe, avec une
précision de 0,969 [0,838 - 0,999] (p < 0,001) parmi les témoins non syndromiques, et de
0,813 [0,544 - 0,960] (p = 0,003) parmi les 3 diagnostics différentiels de cette pathologie.
Ensuite, l'incorporation de I'analyse frontale et latérale du visage, ainsi que de I'analyse de
texture, a permis de diagnostiquer les syndromes d'Apert, de Crouzon et de Pfeiffer avec des
précisions respectives de 0,879 [0,718 - 0,966] (p < 0,001), 0,932 [0,813 - 0,986] (p < 0,001)
et 1,000 [0,815 - 1,000] (p < 0,001).

Conclusion. Nous avons pu construire un outil NGP robuste, permettant I'analyse automatisée
du phénotype facial sur des photographies 2D d'enfants présentant divers syndromes
génétiques. De plus, trois principaux types de livrables ont été obtenus : (1) des performances
diagnostiques pour un ou plusieurs syndromes génétiques, (2) des corrélations phénotype-
génotype pour certains syndromes avec plusieurs variantes génétiques, et (3) une analyse des
effets de la chirurgie ou des médicaments sur la morphologie faciale. Nous allons maintenant
étendre cet algorithme, dont la méthodologie a ét¢ complétée et validée, a l'analyse de

l'ensemble des syndromes de notre base de données.

Mots-clés : apprentissage automatique ; intelligence artificielle ; dysmorphologie ; maladies

génétiques ; syndromes craniofaciaux ; diagnostic automatique ; Next Generation

Phenotyping.
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Résumé substantiel

Introduction. La dysmorphologie est une discipline de la génétique clinique qui étudie et
tente d'interpréter les variations de structure et de croissance chez I'homme. La reconnaissance
de traits phénotypiques parfois subtils nécessite une expertise clinique. Moeschler et al
admettent que le diagnostic est retardé ou reste inconnu dans 38% des évaluations de
dysmorphologie. Selon ces auteurs, trois raisons expliquent cette incertitude : la rareté de
nombreux syndromes génétiques, le manque d'accés des patients aux services spécialisés en
dysmorphologie et I'expérience variable des praticiens. De plus, la plupart des ouvrages
académiques et des cas publiés dans la littérature ne concernent que des populations
caucasiennes. Certaines anomalies mineures observées dans une population caucasienne,
telles que I'épaisseur des Iévres ou une large implantation nasale, peuvent étre considérées
comme un trait phénotypique normal dans une population africaine. L'anomalie nasale
observée dans le syndrome de délétion 22q11 chez les Caucasiens se retrouve dans 89 % des
populations asiatiques, contre 15 a 40 % des populations africaines. Ces inégalités sont encore
aggravées par le fait que les centres spécialisés en génétique clinique et en dysmorphologie
sont plus concentrés dans les pays développés que dans la plupart des pays a faible revenu
dont la population n'est pas caucasienne. Les photographies permettent de stocker des
informations identifiées par le praticien en vue d'une utilisation ultérieure (analogie avec de
nouveaux patients ou suivi de patients), ou a des fins pédagogiques. Les bases de données
photographiques des départements de génétique clinique ou d'autres spécialités en contact
avec les syndromes génétiques sont donc souvent dune grande valeur pour la recherche. La
base de données compléte contient 1 042 468 photographies d'environ 22 000 patients.

Les maladies congénitales sont la cinquiéme cause de mortalité néonatale, représentant 270
000 déces dans le monde en 2010. On estime a 7000 le nombre de maladies rares, dont 80%

sont d'origine génétique. 30 a 40 % de ces 7 000 maladies rares présentent des anomalies
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craniofaciales. Ces anomalies peuvent étre majeures, comme une fente labiale et une fente
palatine, et facilement détectables, mais elles peuvent aussi étre mineures et n'étre détectées
que par un praticien qualifié. Certains de ces syndromes entrainent une mort prématurée, le
plus souvent en raison de malformations des organes associés, de difficultés respiratoires ou
de problémes d'alimentation. On peut donc supposer que 2100 a 2800 affections rares
pourraient étre dépistées par une analyse détaillée du visage.
Dans les approches d'apprentissage automatique, les régles prédéfinies sont remplacées par la
capacité du modele a apprendre a partir d'exemples. Les applications de l'apprentissage
automatique se multiplient dans le domaine de la santé, dans divers domaines tels que la
radiologie, la dermatologie et la chirurgie. Les données d'entrée pertinentes de I'apprentissage
automatique pour l'analyse d’images dans le domaine de la santé sont des évaluations de
radiographies, des comptes-rendus, des coupes de pathologie et des photographies cliniques.
Parmi ces sources de données, les photographies cliniques sont, comme nous l'avons vu
précédemment, particulierement importantes pour le diagnostic des malformations
craniofaciales.
Les deux objectifs principaux de ce projet étaient :

- diagnostiquer un syndrome, dans une classification binaire puis multi-syndromes ;

- mettre en évidence des différences au sein d'un méme syndrome, c'est-a-dire établir

une corrélation phénotype-génotype.
Différents syndromes seront testés au cours du manuscrit afin de répondre a des questions
diagnostiques pratiques posées par les généticiens. Nous conclurons par une analyse en
situation multi-syndromique, basée sur I'ensemble des affections que nous avons pu inclure au
cours de la thése, a savoir : Crouzon - Pfeiffer, Apert, Saecthre Chotzen, Muenke, Kabuki,

Treacher Collins, Nager, Guion-Almeida, CHARGE et Silver Russell.
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Méthodes. Nous présentons ici le pipeline de fonctionnement de notre mod¢le : prétraitement
des images, placement automatique des /landmarks, extraction des caractéristiques
géométriques et texturales, stratification a 1'aide de métadonnées et classification a l'aide d'un
modele d'apprentissage automatique.

Dans le set d'entrainement, nous avons inclus des images provenant de la base de données
photographiques des services de chirurgie maxillo-faciale et plastique et de génétique
médicale de 1'Hopital Necker - Enfants Malades (Assistance Publique - Hopitaux de Paris).
Cette base de données contient 1 042 468 photographies de 22 000 patients suivis dans le
service depuis 1976. Toutes les photographies ont été¢ prises par un photographe médical
professionnel. Nous avons inclus rétrospectivement et prospectivement, de 1976 a 2023,
toutes les photographies frontales et latérales de patients diagnostiqués avec 9 syndromes.
Tous les patients ont eu une confirmation génétique de leur syndrome. Nous avons exclu les
patients ayant des antécédents de chirurgie faciale. Plusieurs photographies par patient
correspondaient a des ages différents. Les enfants non syndromiques ont été sélectionnés
parmi les patients admis pour des plaies, des traumatismes, des infections et diverses 1ésions
cutanées, sans aucun antécédent de maladie chronique. Plus précisément, le suivi de tout type
de maladie chronique a été considéré comme un critere d'exclusion. Les comptes-rendus
médicaux ont été récupérés a l'aide de Dr Warehouse (68). Pour chaque patient, la meilleure
photographie de profil a été sélectionnée en termes de symétrie.

Dans le set de validation, nous avons récupéré des photographies frontales et latérales des
syndromes d'intérét auprés de plusieurs centres spécialisés, a Londres, Bangkok, Lausanne,
Lille, Montpellier, Nantes, Tours et Grenoble. Cette diversité des données de validation ajoute
une robustesse a 1'étude, d'autant plus que certains centres comme Londres et Bangkok ont
permis de tester les modéles sur des populations ethniquement diverses. Nous avons utilisé les

meémes critéres d'inclusion et d'exclusion que pour le set d'entrainement.
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Nous avons utilisé trois modeles différents basés sur 105 landmarks pour les vues frontales,
73 pour les vues latérales et 41 pour les images de 1'oreille externe. Nous avons développé un
modele d'annotation automatique pour chaque modele en suivant un pipeline comprenant : (1)
la détection de la région d'intérét (ROI) et (2) le placement automatique des landmarks.

Pour la détection des zones d'intérét, un modéle RCNN (réseau neuronal convolutionnel plus
rapide basé sur les régions) a été entrainé apreés l'augmentation des données. Pour le
placement automatique des points de repere, nous avons utilis¢ un modele AAM (Active
Appearance Model) basé sur les patchs en utilisant la bibliothéque menpo sur Python 3.7.
Chaque photographie annotée automatiquement a été vérifiée par deux auteurs en aveugle du
diagnostic, et les landmarks ont été¢ repositionnés manuellement si nécessaire, a l'aide de
landmarker.io. L'ICC (coefficient de corrélation intraclasse) a été calculé entre les
évaluateurs.

Nous avons effectué¢ une analyse Procrustes généralisée (GPA) sur tous les nuages de
landmarks en utilisant le paquetage geomorph sur R. Les coordonnées Procrustes ont ensuite
¢été traitées a l'aide de l'analyse en composantes principales (ACP) pour la réduction des
dimensions. Nous avons retenu les composantes principales expliquant 99% de la variance
totale de la somme cumulée. Le dernier 1% a été considéré comme une information
négligeable.

Nous avons divisé les photos de face et de profil en zones clés et appliqué des méthodes
d'extraction de caractéristiques texturales a chacune de ces zones, ce qui permet de vérifier les
résultats et de déterminer quelle zone a le plus contribué¢ au diagnostic. Nous avons défini 14
zones clés, 11 a partir de la photographie frontale (ceil droit, ceil gauche, sourcil droit, sourcil
gauche, glabelle, front, pointe nasale, philtrum, joue droite, joue gauche, menton) et 3 a partir
de la photographie latérale (région pré-auriculaire, ceil, relief malaire). Ces zones peuvent

potentiellement contribuer au diagnostic et a la caractérisation du phénotype facial. Chaque
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zone a été extraite automatiquement a 1'aide des landmarks placés précédemment. Nous avons
utilis¢ 1'algorithme CLAHE (Contrast Limited Adaptative Histogram Equalization) pour
I'égalisation de 1'histogramme. Les méthodes de matrice de cooccurrence en niveaux de gris
(GLCM), proposées par Haralick, sont basées sur I'estimation des fonctions de densité de
probabilité conditionnelles conjointes du deuxiéme ordre.

Les caractéristiques géométriques et les composantes principales géométriques ont été
combinées pour la suite de l'analyse. Pour tenir compte des métadonnées associées (age et
genre) et du fait que nous avons inclus plus d'une photographie par patient (c'est-a-dire la non-
indépendance des données), un modele mixte a été congu pour chaque caractéristique. Les
variables a expliquer étaient les caractéristiques (géométriques et texturales), 1'age, le genre et
l'origine ethnique étant considérés comme des variables explicatives. L'dge, le genre et
l'origine ethnique sont des facteurs importants en dysmorphologie car ils influencent le
diagnostic et doivent donc étre pris en compte. Un effet aléatoire sur 1'dge et les individus a
¢été introduit. Les résidus de chaque caractéristique ont été calculés pour prendre en compte les
biais potentiels liés aux métadonnées.

Les entrées du modele étaient les résidus des modéeles linéaires décrits ci-dessus, pour chaque
caractéristique géométrique ou texturale. Nous avons utilis¢ XGBoost (eXtreme Gradient
Boosting), un classificateur d'apprentissage automatique supervisé, pour toutes les analyses.
Nous avons choisi un booster basé sur les arbres, et la fonction de perte & minimiser était une
régression logistique dans le cas d'une classification binaire, ou une fonction softmax pour
une classification multi-classes. Le modéle présentant le taux d'erreur le plus faible dans le
cas d'une classification binaire ou le taux d'erreur multi-classe dans le cas d'une classification
multi-classe a été¢ choisi pour l'analyse. Nous avons séparé 'ensemble de données en un
ensemble d'apprentissage et un ensemble de test, et une validation croisée a été utilisée pour

définir le nombre idéal d'itérations afin d'éviter le surajustement. Le modele choisi avec le
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nombre idéal d'itérations a ensuite été utilisé sur l'ensemble de validation indépendant pour
tester les performances, en tracant la précision et ' AUC.

Résultats. Le set d’entrainement contenait 3330 photographies, correspondant a 1086 patients
; 47 % des patients étaient des témoins et 53 % présentaient un syndrome. Dans le groupe de
contrdle, 54 % des patients étaient des femmes et 1'age moyen était de 7,0 +/- 4,6 ans. Dans le
groupe de patients, les syndromes étaient les suivants : Crouzon-Pfeiffer (N = 348, 60%),
Kabuki (N = 167, 29%), Treacher Collins (N = 149, 26%), Silver Russell (N = 131, 23%)),
Apert (N = 88, 15%), Muenke (N = 72, 13%), CHARGE (N = 69, 12%), MFDGA (N = 60,
10%), Saethre Chotzen (N = 47, 8%) et NAFD (N = 14, 2%). Le set de validation contenait
216 photographies, correspondant a 108 patients ; 18 % des patients étaient des témoins et 82
% présentaient un syndrome. Dans le groupe de contrdle, 58 % des patients étaient de genre
féminin et 1'dge moyen était de 6,1 +/- 4,5 ans. Dans le groupe de patients, les syndromes
¢taient les suivants : Crouzon-Pfeiffer (N = 27, 30%), Apert (N = 13, 15%), Kabuki (N =11,
12%), Muenke (N = 7, 8%), Saethre Chotzen (N = 7, 8%), CHARGE (N = 6, 7%), Silver
Russell (N = 6, 7%), MFDGA (N =5, 6%), Treacher Collins (N =5, 6%) et NAFD (N = 2,
2%).

Les représentations de Procrustes ont montré les caractéristiques morphologiques
classiquement décrites dans la littérature pour ces 10 syndromes. Outre les traits du visage sur
les vues frontales, les vues de profil et les oreilles externes étaient importantes pour la
description phénotypique du syndrome, en particulier la brachycéphalie trouvée dans les
syndromes d'Apert, de Crouzon-Pfeiffer, de Muenke et de Saethre Chotzen, les grandes
oreilles proéminentes du syndrome de Kabuki, la conque triangulaire et 1'hypoplasie du lobe
de l'oreille du syndrome CHARGE, la rétrognathie des syndromes de Treacher Collins,
NAFD et MFDGA, et la petite mandibule du syndrome de Silver Russell. Notre mod¢le a

permis de classer correctement 71,3 % (61,8 - 79,6) des patients (précision top-1). La
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précision du top-3 était de 93,5 %. Les performances varient en fonction des syndromes, avec
une précision de 96,1 % pour les témoins (AUC = 1 000) ou de 90,7 % pour les groupes Apert
(AUC = 0,992) et CHARGE (AUC = 0,912). Cependant, la précision était de 50 % dans le
groupe NAFD (AUC = 0,450), correspondant au plus petit nombre de patients. Les courbes
ROC et les AUC pour les ensembles de formation et de validation étaient comparables.

Dans le syndrome d'Apert, notre modéle n'a pas permis de classer correctement les patients
entre les deux génotypes (FGFR2 p.Pro253Arg vs. FGFR2 p.Ser252Trp) (AUC = 0.506
[0.215 - 0.797], p = 0.874). Dans le syndrome de Crouzon - Pfeiffer, les génotypes liés aux
domaines Igl, Igll, Iglllc et TK de FGFR2 et les variations de FGFR3 ont été associés a des
phénotypes faciaux plus séveres que les variations d'un site d'épissage de FGFR2. Dans ce
dernier groupe, la brachycéphalie, le phénotype oculaire et la hauteur réduite du tiers moyen
du visage semblaient moins séveres.

Le modele a également permis de distinguer le syndrome de Kabuki 1 (KS1, li¢ a KMT2D) du
syndrome de Kabuki 2 (KS2, li¢ & KDM6A) avec une AUC empirique de 0,805 (0,729 -
0,880, p < 0,001). Les patients atteints du syndrome KS2 avaient un visage plus rond, un nez
plus court, une Iévre supérieure plus épaisse, des narines antéversées et un tiers moyen du
visage plus court. Il n'y avait pas de différence évidente au niveau des sourcils et des yeux.
Les oreilles externes étaient plus allongées verticalement chez KS2, avec un lobe
hypoplasique et une rotation dans le sens inverse des aiguilles d'une montre. La conque
semblait plus verticale en KSI.

Conclusion. Nous présentons ici un nouveau modéle de phénotypage de nouvelle génération,
qui peut étre utilisé pour détecter un syndrome génétique sur des photographies 2D du visage
et du profil, afin d'aider les praticiens dans leur processus de diagnostic. Ce travail a été rendu
possible grace a l'incroyable quantité et qualité¢ de la base de données photographiques de

I'hopital Necker - Enfants Malades. La valeur ajoutée par rapport aux outils existants est
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l'analyse des vues de profil, la prise en compte de la forme de la volite cranienne et la
possibilit¢ de détecter des patients non syndromiques. Ce modele ne remplacera jamais
l'expertise clinique, mais permettra de reconsidérer les approches phénotype-first, le but
ultime étant de réduire la durée moyenne de I'errance diagnostique dans les maladies rares.
Cette thése n'est que l'introduction d'un grand projet, avec le recrutement de plusieurs
ingénieurs et chercheurs, afin d'intégrer plusieurs centaines de syndromes génétiques dans

l'algorithme, et d'étre utilisé en pratique quotidienne par les médecins.
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1 Introduction

Variations in the shape and proportions of the human face have long fascinated both scientists
and artists. Giovanni Francesco Caroto painted a picture of a smiling child holding a drawing,
which inspired Dr. Harry Angelman to describe the syndrome of the same name in 1965. The
dysmorphologist admitted having made the connection between three children seen in
consultation and this painting seen during his visit to the Castelvecchio museum in Verona
(1). Similarly, the portrait by the Flemish painter Quinten Massy, "The Ugly Dutchess",
painted in 1513 and exhibited at the National Gallery (London, UK), is the first phenotypic
description of the facies leonina, associated with large nostrils, prominent cheekbones and
pronounced superciliary arches. In 1989, Dequeker diagnosed Paget's disease in this woman.
(2). Finally, the painting by an anonymous pupil of the Flemish painter Jan Joest van Kalkar,
"Adoration of the Christ Child" (1515), depicts a shepherd and an angel with a typical Down's
syndrome facies, with a narrowing of the middle third of the face, upslanted palpebral fissures
and a small upturned nasal tip (Figure 1).

Pablo Picasso said, "Should you paint what's on a face? What's inside a face? Or what is
hidden behind a face". With this in mind, the dysmorphologist identifies phenotypic facial
features (among others), combines them and uses her or his experience and training to
propose a diagnosis. Earlier diagnosis will reduce the morbidity and mortality associated with

this syndrome (3).
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Figure 1. Artistic representations of characters with facial dysmorphia. A. Painting by
Giovanni Francesco Caroto, at the Castelvecchio Museum in Verona, depicting a child
probably suffering from Angelman syndrome. B. « The Ugly Duchess », painting by Quinten
Massy, exhibited at the National Gallery in London, UK (1513). This is the first description of
the facies leonina, a term used by clinicians. C. "Adoration of the Christ Child", a painting by
one of the anonymous pupils of the Flemish painter Jan Joest van Kalkar, exhibited at the
Metropolitan Museum of Art in New York, USA (1515). The painting probably features a

shepherd and an angel affected by Down's syndrome.

1.1 Dysmorphology and experience

Dysmorphology is a discipline of clinical genetics that studies and attempts to interpret human
structural and growth variations (4). The recognition of sometimes subtle phenotypic traits
requires expertise (5). In 1988, Diliberti described the 6 main tasks in this discipline: 1)
identify a clinical sign and select a list of candidate syndromes from a book or through
experience, 2) compare the patient's associated clinical presentation with the potential signs of

the selected syndromes selected, in order to restrict the list, 3) screen for publications in the
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scientific literature to support a diagnosis, 4) seek the opinion of a geneticist who is an expert
in the syndrome, 5) if there is no specialist, seek the opinion of colleagues and possibly
identify a new syndrome, and 6) carry out additional tests, particularly genetic tests, to
confirm a diagnosis (6). Moeschler et al admit that the diagnosis is delayed or unknown in
38% of dysmorphology assessments. According to these authors, there are three reasons for
this uncertainty: the rarity of many genetic syndromes, patients' lack of access to specialist
dysmorphology services and the variable experience of practitioners (7). Furthermore, most of
the academic books and cases published in the literature focus on Caucasian populations only
(8). Certain minor anomalies found in a Caucasian population, such as lip thickness or broad
nasal implantation, may be considered a normal phenotypic trait in an African population (9).
The nasal anomaly found in Caucasian 22q11 deletion syndrome is found in 89% of an Asian
population, compared with 15-40% of an African population (10,11). These inequalities are
further exacerbated by the fact that centers specializing in clinical genetics and
dysmorphology are more concentrated in developed countries than in most low-income

countries with non-Caucasian populations (12).

1.2 Photographic data

Photographs allowed to store information identified by the practitioner for further use

(analogy with new patients or patient follow-up), or for teaching purposes. The photographic

databases of clinical genetics departments or other specialties in contact with genetic

syndromes are therefore often incredibly valuable for research.

The photographic database we exploited in this work results from the fusion of three sources.
- The database of digitized photographs from the Maxillofacial surgery and plastic

surgery department at Necker — Enfants Malades Hospital; each photograph was taken
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by a professional medical photographer in standardized positions. The oldest
photograph dates from 1995.

- The database of non-digitized photographs from the same department; each
photograph was taken by the practitioner himself using different cameras, in
standardized positions. The oldest photograph dates from 1976.

- The database of digitized photographs from the Clinical genetics department of the
Necker — Enfants Malades Hospital and the Imagine Institute; each photograph was
taken by the practitioner himself using different cameras, usually in standardized
positions. The oldest photograph dates from 1998.

The complete database contains 1,042,468 photographs from about 22,000 patients. Necker-
Enfants Malades is a hospital which accounts for a third of the pediatric activity of the
Assistance Publique des Hopitaux de Paris (APHP), the trust of the 38 Greater Paris academic
hospital, and almost half of pediatric surgery cases yealry. Since the 1950s, the hospital has
specialized in the management of genetic diseases. Necker — Enfants Malades is home to 32
local rare disease competence centers, and coordinates 15 national rare disease reference
centers. As a specialist center, although it receives mostly patients from the Greater Paris
region, more than 20% of the patients treated at Necker — Enfants Malades Hospital travel
from other regions of France or from abroad (1). The Imagine Institute was created in 2007,
and the building was inaugurated in 2014 on the Necker — Enfants Malades campus. Imagine
brings together more than 1,000 researchers, doctors and healthcare staff with the aim of
accelerating synergies, promoting the transfer of knowledge, and thus finding new treatments
and diagnoses faster. Imagine Institute is a translational research center at the interface
between care and research, where patients are monitored by Necker — Enfants Malades
doctors and diagnosed by the Institute research teams. Imagine is Europe's leading center for

research, care and teaching in the field of genetic diseases.
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1.3 The burden of rare diseases

Congentital diseases are the 5th leading cause of neonatal death, accounting for 270,000 deaths
worldwide in 2010 (14). There are an estimated 7000 rare diseases, 80% of which are genetic
in origin (15). 30-40% of the 7000 rare diseases have craniofacial anomalies (15). These
anomalies may be major, such as a cleft lip and cleft palate, and easily detected, but they may
also be minor and only detectable by a trained practitioner. Some of these syndromes lead to
premature death, most often due to associated organ malformations, breathing difficulties or
feeding problems (2). We can therefore assume that 2100 to 2800 rare conditions could be

screened by a detailed gestalt analysis.

1.4 Dysmorphology and machine learning

In machine learning approaches, pre-defined rules are replaced by the ability of the model to
learn from examples (16). The applications of machine learning are increasing in healthcare
(16), in diverse fields such as radiology (17), dermatology (18) and surgery (19). Relevant
inputs of machine learning approached to shape analysis in healthcare are assessments of
radiographs, texts, pathology sections, and clinical photographs. Among these sources of data,
clinical photographs are, as we have seen previously, particularly important in the diagnosis

of craniofacial malformations.

1.5 Objectives and prospects

The two main objectives of this project were:

- to diagnose a syndrome, in a binary then multi-syndromes classification;
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- to highlight differences within the same syndrome, i.e., to establish a phenotype-
genotype correlation.

Various syndromes will be tested in the course of the manuscript in order to answer practical
diagnostic questions raised by geneticists. We will conclude with an analysis in a multi-
syndrome situation, based on all the conditions that we were able to include during the thesis,
namely: Crouzon - Pfeiffer, Apert, Saethre Chotzen, Muenke, Kabuki, Treacher Collins,
Nager, Guion-Almeida, CHARGE and Silver Russell syndromes.
A secondary objective was to evaluate the effect of a treatment on facial morphology. In this
prospect, we have evaluated: (1) the effect of a medical treatment, alpelisib, on a specific type
of PIK3CA-related hypergrowth syndrome (hemifacial myohyperplasia), (2) the morphology
of the nose after two different surgical corrections of cleft lip and palate, and (3) two surgical

methods for treating non-syndromic scaphocephaly.
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2 State-of-the-art

There has been a recent increase in the number of scientific publications dedicated to the
diagnosis of rare conditions using facial photographs (20). We will divide this literature
review into two parts: (1) assessment of algorithms designed for research purposes and (2)

analysis of commercial tools for healthcare professionals.

2.1 Non-marketed algorithms

We first aimed at reporting all articles describing the computerized identification of a disease
and/or a syndrome based on 2D facial photographs. PubMed was used to screen the
MEDLINE database using MeSH (Medical Subject Heading) terms along with keywords
from titles and abstracts.

(diagnosis[Title] OR detection[Title] OR dysmorphic[Title/Abstract] OR
dysmorphology[Title/Abstract] OR disease[Title/Abstract] OR syndrome[Title/Abstract])
AND (face[Title/Abstract] OR faces[Title/Abstract] OR facial[Title/Abstract])

AND ("face-classification"[Title/Abstract] OR "facial analysis technology"[Title/Abstract]
OR "artificial intelligence"[MeSH Terms] OR "biometric identification"[Mesh] OR "Medical

informatics"[MeSH Terms] OR "Image Processing, Computer-Assisted"[MeSH Terms])

All human studies involving 2D facial photographs used to diagnose one or several conditions

in healthy or patient populations were included. Only studies with diagnosis confirmation by
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clinical experts and/or molecular investigations were retained. We excluded studies based on
the diagnosis of patients using a commercial tool.

We reported the pre-processing of the pictures, i.e., every treatment the authors applied to the
photograph before extracting features or using classifiers. Concerning feature extraction, we
reported the use of: (1) landmarks, with manual and/or automatic placement, (2) geometric
features, i.e., distances, angles, or other morphometric data, and (3) texture features, based on
the spatial arrangement of intensities on the image. We listed the classifiers and the validation
methods of machine learning designs. We considered that authors had used machine learning
methods when predictions were made based on a test set with a classifier, or on a model
trained on a training set. With the pre-defined request, we listed 1515 results on PubMed.
After applying all the exclusion criteria on reading title, abstract and full text when necessary,
we included 27 articles. We defined two types of studies depending on the number of diseases
to be diagnosed.

The first and most common study design — in 18/27 (67%) publications — intended to diagnose
one condition in the general population versus healthy controls using facial photographs
(11,21-35). The second most prevalent study design — in 9/27 (33%) publications — consisted
in using multi-syndrome classification, i.e., in differentiating syndromes from each other and
from the general population (36—44). The photographic data had diverse origins: (1) pictures
taken during clinics (45,46), (2) pictures from articles or books (36,44), (3) pictures from pre-
existing cohorts (47) and (4) pictures publicly available on the internet (22). There was one
photograph per patient in all publications. Authors used age-, sex-, and ethnicity-matched
controls in 22% studies.

All publications applied two exclusive image processing approaches: (1) use of geometric
and/or textural features to describe phenotypes or (2) deep learning process in order to detect

a syndrome without describing phenotypes. Machine learning approaches used to diagnose
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clinical conditions on 2D photographs generally followed similar frameworks: features were
extracted from photographs to diagnose a disease or the syndrome was detected directly
without feature extraction by deep learning. In case of features extraction, the steps were:
image pre-processing, image processing with or without landmark placement, extraction of
geometrical and/or textural features, reduction of the dimensions of the input, and

classification and validation using training and test sets.

2.1.1 Features extraction

Landmarks are defined by reproductible points of interest on an image. They were one of the
most common tools used to extract phenotypic data, as in 22/27 (81%) publications. Other
authors had applied global shape and texture analysis approaches without landmark
placement.

Geometric features were extracted from landmarks and used for disease detection. One
straightforward approach was to measure Euclidean distances and angles from landmarks
(29,30,41,42.,48). Another approach to geometrical information extraction, used in 4/27 (15%)
publications, was Procrustes superimposition (21,25,36,49). Procrustes distance was defined
as the deformation necessary to fit a dysmorphic face on a control face via an iterative least-
squares process. Each face was centered and scaled using a centroid (50) to minimize the sum
of squared differences between the landmarks. Douglas and Mutsvangwa (51) concluded that
Procrustes-based approaches were the best methods for shape analysis in terms of prediction
accuracy.

A texture extraction system was used in 18/27 (67%) publications, in association with
geometric features extraction or independently. The most common methods were Gabor
Wavelet Transformation (GWT) used in 12/27 (44%) (52,53) and/or a Local Binary Patterns

(LBP) in 7/27 (26%) publications (54). These methods provided information about the surface
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located between the landmarks. For example, zygomatic hypoplasia in Treacher Collins
syndrome could be better detected by analyzing the shadows on a frontal facial photograph
than by measuring angles between landmarks.

Machine learning was defined by using a training set to make predictions on a validation or
test set. Based on this, only 3/27 (11%) publications were not using machine learning
methods. Diverse classifiers were applied, such as Generalized Linear Models (GLM),
Support Vector Machines (SVM), k-nearest neighbors (kNN), or random forests (RF). Deep
learning — Convolutional Neural Networks (CNN) or Artificial Neural Networks (AAN) —
was used in 3/27 (11%) publications. Kong et al. (28) also used CNN with convolutional

layers, pooling layers and fully-connected layers.

2.1.2 Performances

Saraydemir et al. (55) found an overall accuracy of 97% with 15 patients for diagnosing
Down syndrome within a healthy population. This performance was higher than clinical
experts. Kruszka et al (11) found an accuracy of 95% for detecting 22ql1.2 deletion
syndrome in 156 patients vs. the general population. Kong et al. (28) used the Fl-score to
evaluate the performances of their classifier in detecting acromegaly in 527 patients. They

obtained a F1-score of 91% without landmarks and with deep learning methods.

2.1.3 Published paper
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Introduction clinical photographs are particularly important in the diagnosis of

Shape analysis on 2D pictures can involve computations based on
pre-defined rules; in machine learning approaches, these rules are
replaced by the ability of the model to learn from examples [1]. Appli-
cations of machine learning are increasing in healthcare 1), in a vari-
ety of fields such as radiology | 2|, dermatology |3] and surgery [4].
Inputs or features are converted into outputs or labels. Deep learning
is defined as a subtype of machine learning in which artificial neural
networks are used. These neural networks can encode relationships
between features and labels that are not accessible to the human
brain, because of their complexity or because they do not match the
way our brain processes data[1].

Examples of relevant inputs in healthcare are X-rays, texts,
pathology slices and clinical photographs. Among these inputs,
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craniofacial malformations. In fact, 30—40% of the 7000 rare diseases
have craniofacial anomalies |[5). Many among these 2-3000 syn-
dromes have minor facial features or are very uncommaon: their
screening requires the eye of an expert in dysmorphology. Due to
this specific clinical issue, there have been a recent increase in the
number of scientific publications dedicated to the diagnosis of rare
conditions using computational methods on facial photographs [6).

Here we provide a literature review of all the methods used for
computational diagnosis on facial photographs. This overview will be
of use for physicians and scientists interested in syndrome recogni-
tion, and more generally, in facial recognition.

Methods

We performed a review of the literature according to the frame-
work described by Arksey and O'Malley | 7]. We aimed at reporting
all articles describing the computerized identification of a disease
andfor a syndrome based on 2D facial photographs. PubMed was
used to screen the MEDLINE database using MeSH (Medical Subject
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Heading) terms along with keywords from titles and abstracts (see
request Table 1).

All human studies involving 2D facial photographs used to diag-
nose one or several conditions in healthy or patient populations were
included. Only studies with diagnosis confirmation by clinical experts
andjor molecular investigations were retained. Articles on prenatal
diagnosis, extra-facial diseases and dermatological diseases of the
face (e.g. facial acnea or naevi) were excluded. Studies assessing
treatment results, such as craniofacial surgery results, were excluded,
as well as studies dedicated to the detection of pain or other emo-
tions. We also excluded studies based on the diagnosis of patients
using a pre-existing algorithm, such as Face2Gene [8).

One reviewer (QH) screened all the titles and/or abstracts. When
exclusion criteria were not clear after reading title and abstract, the
full text was assessed. The relevant publications were then charted
with the following items: year of publication, first author, country of
affiliation, study design or objective, disease of interest, origin of data
and number of patients. We reported the pre-processing of the pic-
tures, ie. every treatment the authors applied to the photograph
before extracting features or using classifiers. Concerning feature
extraction, we reported the use of: | 1| landmarks, with manual and/
or automatic placement, [2| geometric features, Le. distances, angles
or other morphometric data and |3| texture features, based on the
spatial arrangement of intensities on the image. We listed the classi-
fiers and the validation methods of machine learning designs. We
considered that authors had used machine learning methods when
predictions were made on a test set with a classifier or a model
trained on a training set.

Results

With the pre-defined request, we listed 1515 results on PubMed.
After applying all the exclusion criteria on reading title, abstract and
full text when necessary, we included 27 articles. These publications
were fully read and charted (Table 2). The region of affiliation of the
first author was North America — USA only in 37%, Europe - Ger-
many, UK and Croatia in 33%, and Asia = China, India and Turkey in
30%.

1. Study designs and conditions

We defined two types of studies depending of the number of dis-
eases to be diagnosed.

The first and most common study design = in 18/27 (67%) publi-
cations = intended to diagnose one condition in the general popu-
lation versus healthy controls using facial photographs. Facial
pictures of the following conditions were tested versus healthy
controls: Down syndrome |9-12], Cornelia de Lange syndrome
| 12], Rubinstein-Taybi syndrome |13 ], 22g11.2 deletion syndrome
|14), Laron syndrome | 15], Williams-Beuren syndrome [ 16], acro-
megaly [17-21]. Cushing disease 22|, Turner syndrome [23],
Chronic Fatigue Syndrome | 24| and schizophrenia [25].

The second most prevalent study design = in 9{27 (33%) publica-
tions = consisted in using multi-syndrome classification, ie. in

Tabile 1
Pubmed reguest.

( diagnosis|Titke | O detection| Titke | ORt dysmorphic] Tetle/Abstract] DR
dysmorphology] Title/Abstract| OR disease| Tidle) Abstract] OR
syndrome| Title{Absiract])

AND  (facefTitle|Abstract] OR faces|Tithe/Abstract] OR facial| Title) Abstro] )

AND  (Tace-classification”| Title/Abstract | OR “facial analysis technology™|-
Tirle/Abstract| OR “artificial intelligence”| MeSH Terms] OR “biomet-
rit identification®[Mesh ] OR “Medical informatics™|Me5SH Terms] OR
“Image Processing. Compurter-Assisted | MeSH Terms|)
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differentiating syndromes from each other and from the general
population |8,26-35). For example, Ferry et al. [26] aimed at diag-
nosing 8 syndromes — Angelman, Apert, Cornelia de Lange, Down,
fragile X, progeria. Treacher-Collins and Williams-Beuren syn-
dromes = in the general population. Gurovich et al. [8] aimed at
diagnosing 216 different syndromes in a population of affected
patients.

The conditions reported in the included studies were:

genetic syndromes: Down |26, Angelman |8], Prader-Willi |31],
Comnelia de Lange |8|, X fragile [31), Apert |26), Progeria [26],
Treacher-Collins |26], Williams-Beuren |29|, Sotos [27), Cri-du-
chat [31], Smith-Lemli-Opitz |31], 22q112 deletion |31], Turner
|8]. Noonan |8 |, Mucopolysaccharidosis | 31, Rubinstein-Taybi | 8],
Hurler [33 |, Walf-Hirschhorn |33 ] and 183 others in [8],
endocrine conditions with a facial phenotype (e.g. acromegaly and
Cushing syndrome) [20]

psychiatric conditions: schizophrenia [25] and chronic fatigue
syndrome |24

2. Data description

The photographic data had diverse origins: | 1] pictures taken dur-
ing clinics [9,11,14-2224,37 7933 36,37,38-40, 2| pictures
from articles or books [13,14,26,35,41, 3| pictures from pre-exist-
ing cohorts [£,34,42,43] and |4 pictures publicly available on the
internet [10,26). The data volume varied from 15 pictures of
affected patients [36] to 17,106 for Gurovich et al. |£). The average
number of affected (non-control) patients in the studies was 844
(+/- 3272); more precisely, 114 (+/- 138) affected individuals were
included in average in order to detect one syndrome versus the
general population and 2085 (+/- 5309) affected individuals in
order perform multi-syndrome classification. There was one pho-
tograph per patient in all publications. Authors used age-, sex-,
[16,19,22,37,39] and ethnicity-matched controls [11] in 627
(22%) studies.

3. Image pre-processing

Pre-processing corresponded to the preparation of pictures before
extracting data and applying classifiers. It is a uvseful step in
machine learning: images are grouped (face, profile), resized and
transformed (rotation, cropping, lighting) to optimize analysis.

An automared facial detection systermn was used in several studies
to sort frontal views from lateral views and then crop the pictures.
The most comman algorithm in this field was the Haar cascade
tool developed by Viola and Jones |1). One author used manual
cropping, scaling and rotation to maximize the classifier perform-
ances [36]. This approach was not adapted to large datasets. Man-
val or automated cropping was useful for little standardized
databases, for instance when several individuals were present on
pictures (e.g. the child and his mother] |G].

4. Image processing
All authors applied two exclusive image processing approaches:
[1] use of geometric and/or textural features in order to describe
phenotypes or | 2| deep learning process in order to detect a syn-
drome without describing phenotypes.

Landmarks positioning
Landmarks are defined by reproductible points of interest on an

image. They are one of the most commaon tools used to extract phe-
notypic data, as in 22/27 (81%) publications. In 727 (26%)
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General characteristics for each of the studies, and method of classification. Publicatons not using machine learning (n = 3) were excluded.
WM = Support Vector Machine. kNN = k-Mearest Meighbors. RF = Random forests, CNN = Convolutional Meural Network. AAN = Artificial

Meural Nerwaorks.

Multisyndrome Datavolume  Mumber of syndromes Linear functions ~ 5WM kNN RF CMHN | ANN
Boehringer, 2006 147 0 E W
Vollmar, 2007 200 4 e W
Boehringer, 2011 202 4 e B

Ferry, 2014 1363 B W

Kuru, 2014 - F3 15 W

Shu, 2015 13 100 ¥ W
Oedemir, 2018 124 5 o
Gurovich, 2019 17,108 216

Monosyndrome Condition | syndrome

Schapfer, 1994 49 Laron o

Learned-Miller, 2006 24 Acromegaly r

Miller, 2011 24 Acromegaly r

Saraydemir. 2011 15 Down r o
Schneider, 2011 a7 Acromegaly o

Burenc-Tomljanovic, 2012 58 Schizophrenia r

Kosilek, 2013 i Cushing o

Fhao, 2014 100 Down r o o
Chen, 2015 294 Chronic fatkgue syndrome e

Kong, 2017 57 Acromegaly o e e
Kruszka, 2017 156 Iiq11.2 e

Kruszka, 2017 129 Down r

Kruszka, 2017 161 Comelia de Lange r

Chen, 2018 32 Turner r

Kruszka, 2018 2EE ‘Willlams-Beuren r

Dawsert, 2019 246 Comelia de Lange r

publications, the authors placed landmarks manually and automatic
landmarking was wsed in 16/27 (59%) publications.

In 427 (15%) publications [10,21,36,40), the authors did not use
landmarks to analyze faces and phenotypes and preferred assessing
the overall shape and textures.

Frontalization and facial alignment

Frontalization is a process modifying a frontal image in order to
improve the orientation of the frontal view. Kong et al. [18] used
alignment, based on Procrustes superimposition [44,45], in order to
compute frontal pictures from photos with capture angles varying
from —45° to +45° around the standard coronal plane. The final fron-
tal face was produced using the corresponding symmetric sides,
which raised numerous issues in conditions with facial asymmetry.

Geometric features extraction

Geometric features were extracted from landmarks and used for
disease detection. The main advantage of using landmarks was to be
more flexible with pose changes and different angles of view. One
straightforward approach was to measure Euclidean distances and
angles from landmarks [19,20,22,23,32,33].

Another approach to geometrical information extraction, used in
427 (15%) publications, was Procrustes analysis [9,12,26,46,47]. Pro-
crustes distance was defined as the deformation necessary to fit a
dysmorphic face on a control face via an iterative least-squares pro-
cess. Each of the faces were centered and scaled using a centroid |48
to minimize sum of squared differences between the landmarks.
Douglas and Mutsvangwa |49] concluded that Procrustes-based
approaches were the best methods for shape analysis in terms of pre-
diction accuracy.

Texture features extraction
A texture extraction system was used in 18/27 (67%) publications,

in association with geometric features extraction [8,10,11,19,20,22
24,7934 40,41 ,45) or independently [10,36,40]. The most common

methods were Gabor Wavelet Transformation (GCWT) used in 12/27
(44%) [50,51)] andfor a Local Binary Patterns (LEP) in 7/27 (26%) publi-
cations [52]. These methods provide information about the surface
located between the landmarks. For example, zygomatic hypoplasia
in Treacher Collins syndrome would be better detected by analyzing
the shadows on a photo than by measuring angles between land-
marks.

The information on geometric | texture features created extensive
data matrices, with the need to reduce dimensionality before incor-
poration into classifiers. For this purpose, Principal Component Anal-
ysis [PCA) was used in 17/27 [70%) publications.

Gurovich et al. [8] did not use any geometric or textural features
extraction step for prediction making after facial alignment based on
different landmarks. Their approach is referred to as deep learning
because it corresponds to a block box approach diagnosing dysmor-
phic features without going through a phenotype description process.
When using deep learning, authors cannot easily explain what con-
tributed to the diagnosis of a particular syndrome.

5. Classification

Machine learning was defined by using a training set to make pre-
dictions on a validation or test set. Based on this, 3/27 (11%) publi-
cations were not using machine learning methods.

In these studies, diverse classifiers were used. The simplest classi-
fiers were Generalized Linear Models (GLM) such as logistic
regression and linear discriminant analysis, as used in 4/27 (15%)
publications [13,18]. Their output was a linear combination of
input facial data.

SVM - used in 13/27 (48%) publications - was a dassification
method aiming at separating two data sets with distance maximi-
zation based on an optimal separating hyperplane [53|. Bounds
between datasets and the optimal separating hyperplane were
referred to as ‘support vectors' (68).

The k-nearest neighbors (kNN) rule — used in 11/27 (41%) publica-
tions - classified each unlabeled example by the majority label of
its k-nearest neighbors in the training set |54 ). It stored instances
of previously earned images. Classification was obtained from a
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majority vote of the nearest neighbors | 18). The kNN classifier was
particularly adapted for multiclass detection.

Random forests (RT) — used in 2/27 (7%) publications — were
another technique | 18] consisting in growing many classification
trees. The forest chose the classification tree having the best pre-
diction. In addition, a subset of features was randomly selected
from the optional features in order to grow the tree at each node,
Random forests were particularly adapted for large number of
weak classifiers.

Deep learning — Convolutional Meural Metworks (CNM) or Artifi-
cial Neural Networks (AAN) — was used in 3/27 (11%) publica-
tions. Kong et al. 18] also used CNMN with convolutional layers,
pooling layers and fully-connected layers. Gurovich et al. 8] used
Deep Convolutional Neural Networks (DCNN) |55] for each of the
cropped facial areas, which were then combined by averaging to
form a model for a multiclass problem.

Kong et al. 18| compared the performances of these machine
learning technigques (linear functions, SVM, kNN, RF and CNN):
better classification abilities were found in terms of accuracy for
S¥M with detected features and for CNN without detected
features.

6. Clinical results

Saraydemir et al. |36] and Zhao et al. |9] found an overall accuracy
of respectively 97% and 97.9% with 15 and 24 patients for diagnos-
ing Down syndrome in a healthy population. Both these perform-
ances were higher than clinical experts. Kruszka and his team
found an accuracy of 95% for detecting 22q11.2 deletion syn-
drome in 156 patients vs. the general population [14], 94% for
Down syndrome [11] in 129 patients, 90% for Williams-Beuren
syndrome in 286 patients |16, 94% for Cornelia de Lange in 246
patients [37] and 89% for Moonan syndrome in 161 patients [39].
Eong et al. |[18] used the F1-score in order to evaluate the per-
formances of their classifier in detecting acromegaly in 527
patients. They obtained a Fl-score of 92% with landmarks and
SVM and 91% without landmarks and with deep learning meth-
ods. Accuracies of 86% and 82% were obtained to detect acromeg-
aly among a healthy population in 24 |17 | and 57 patients [19].
Ferry et al. [26] used the Clustering Improvement Factor (CIF) after
implementing kNN on 8 syndromes and 1363 patients. Treacher-
Collins syndrome was then clustered 23.5-fold better than by
chance alone, Down syndrome 11.6-fold better, and Williams-
Beuren 9.4-fold-better. The overall accuracy for detecting one syn-
drome vs. the 7 others was 76% and the overall accuracy for
detecting syndromes vs. a healthy population was 95%. Another
method for displaying results in a multi-syndrome classification
design was to provide a Top-5 or Top-10 accuracy. i.e. to evaluate
the probability of a condition to be ranked as the 5 or 10 most
probable syndromes by the classifier. Gurovich et al. ||, in 17,106
patients with 216 syndromes, found a Top-10 accuracy of 91%, a
Top-5 accuracy of 85% and a Top-1 accuracy of 61%. Kuru et al
|35] found 53% accuracy on a multi-class syndrome detection of
15 conditions with 92 patients. Boehringer et al. |29] had an over-
all accuracy of 21% for multi-syndrome detection on 14 conditions
in 202 patients, which is very low compared to the performances
of the clinical experts.

Discussion

Machine learning approaches used to diagnose clinical conditions
on 2D photographs generally followed similar frameworks: either
features were extracted from photographs to diagnose a disease or
the syndrome was detected directly without feature extraction by
deep learning. In case of features extraction, the steps were: image
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pre-processing, image processing with or without landmark place-
ment, extraction of geometrical and for textural features, reduction of
the dimensions of the input, and classification and validation using
training and test sets. Procrustes analysis was a reliable technique for
the extraction of morphometric parameters |49). Texture extraction
techniques seemed of interest in adding information to the geometric
features [24).

Deep learning methods are a promising tool with much space for
performance improvement |[8). The number of publications using
deep learning was however limited because this approach requires
large data volumes — 17,106 patients in Gurovich et al. |8| — in order
to train the model. The challenge in the future years will be to build
large photographic databases and train neural networks in order to
improve predictions.

Comparing publications and diagnosis performances of machine
learning tools was difficult due to the variety of assessment parame-
ters: Boehringer |29] used accuracy, Zhao |9 precision and recall,
Dudding-Byth | 34| top-10, top-5 and top-1 accuracies, and Ferry [26]
the Clustering Improvement Factor (CIF). Evidence-based compari-
sons of machine learning in facial recognition would greatly benefit
from more homogenous result assessment approaches.

Conclusion

Facial recognition approaches are efficient in identifying rare con-
ditions using 2D photographs. Machine-learning algorithms improve
recognition accuracy. Deep learning techniques such as CNNs are
promising, but larger datasets are needed. Based on the current
results of available algorithms, we can predict that collaborative stud-
ies with massive shared datasets could shortly lead to the develop-
ment of algorithms with almost perfect diagnostic abilities.
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2.2 Marketed algorithms

Two models based on deep learning methods were commercialized and are currently used by
physicians to help them with diagnosis.

Face2Gene (FDNA, Inc.), using their DeepGestalt algorithm, operates according to two
processes: (1) CLINIC, where the user uploads a facial photograph and obtains a list of 30
most-likely syndromes, with a Gestalt score per syndrome, grading the similarities between
the tested face and the average face of the syndrome; and a Features score, which is obtained
after manually selecting HPO terms allowing to refine the diagnosis on photographs; (2)
RESEARCH, which allows users to compare up to 6 cohorts uploaded from personal
databases by providing classification performances based on AUC and accuracies between
these different groups. GestaltMatcher, the other commercially available algorithm, now
integrated into the Face2Gene technology through the ULTRA-RARE tab in CLINIC, creates
a ‘Clinical Face Phenotype Space’ which establishes distances between photographs and
similarities between patients, and may suggest a molecular diagnosis.

PubMed was used to screen the MEDLINE database using MeSH (Medical Subject Heading)

terms along with keywords from titles and abstracts:

(“next generation phenotyping”’[Text Word] AND “photos” [Text Word]

OR  (“Face2Gene”[Text Word] OR “DeepGestalt”[Text Word] OR “FDNA”[Text Word])

The results were initially screened with the abstract only, to exclude unrelated articles. The
articles finally included were analyzed by a single author (QH), according to the following
template: lead author, year of publication, syndrome of interest, number of patients included,

country of origin of the first author, use of Face2Gene, GestaltMatcher or other tool, use of
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the CLINIC or RESEARCH version of Face2Gene, control population (for Face2Gene
RESEARCH), comparisons with clinical experts, ethnicity considerations, multiclass or
binary comparison, performance, and presence of conflict of interest (defined by one of the
authors belonging to FDNA, Inc. or GestaltMatcher).

The request resulted in 155 Pubmed results. After reading the abstracts, 87 were selected: 83
evaluated the DeepGestalt tool (95%), 3 the GestaltMatcher tool (3%), and 1 another tool
(1%). 16/87 (18%) were case reports, reporting either the top 10 syndrome ranking proposed
by Face2Gene CLINIC or the Gestalt score. 42/87 (48%) used the RESEARCH version of
Face2Gene, with comparison to healthy controls or to a differential diagnosis. Controls were
systematically matched on age and gender to cases. 8 (9%) papers compared performances to
clinical experts. 23/87 (26%) considered the effects of ethnic differences on performance. The
design was a multiclass classification in 33/87 (38%), and binary in 54/87 (62%).
Performance when using Face2Gene CLINIC was expressed in terms of top 1, top 3, top 10 or
top 30 sensitivities, rank position, or Gestalt scores. Performance when using Face2Gene
RESEARCH was expressed in terms of Area Under the Curve (AUC), mean accuracy, and/or
sensitivity / specificity. Finally, 39/87 (45%) papers declared conflicts of interest with FDNA,
Inc. (Supplemental Table 1).

This literature review provided an update on advances in Next-Generation Phenotyping on 2D
photographs. The DeepGestalt method from Face2Gene (FDNA, Inc.) offered an algorithm
based on deep learning methods following automatic landmark detection. The lead article of
Gurovich et al (56) described an algorithm trained on more than 200 syndromes with more
than 17,000 photographs and obtained a top 10 sensitivity of 91%. The results of the
Face2Gene CLINIC tool were variable across studies, and depended on the performance
metrics. Zarate et al (57) found a top 10 sensitivity of 27% in the detection of SATB2-

associated disorders, while Martinez-Monseny et al (58) found a top 10 sensitivity of 100% in
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the diagnosis of PMM2-CDG. Pascolini et al (59) reports a top 1 sensitivity of only 9% in a
multiclass design on 16 syndromes. The results in using the Face2Gene RESEARCH tool
were also variable in the studies: Stamberger et al (60) found a non-significant AUC of 61.7%
in the NEXMIF encephalopathy classification versus age-, gender-, ethnicity-matched healthy
controls.

The study of Porras et al (61) described a new tool, not owned by FDNA Inc., also based on
deep learning methods with landmark detection, using geometric morphometrics parameters,
referred to a Statistical Shape Model (SSM). These authors trained their model on 2800
photographs comprising 128 syndromes using data augmentation methods. Porras et al (3)
described an accuracy of 88% for detecting the presence of a syndrome (90% sensitivity and
86% specificity) and explained that the DeepGestalt tool would identify a syndrome with an
accuracy of only 61 to 69% and only perform well on frequent genetic syndromes. We can
however note some limitations in this study. Firstly, not all patients had genetic confirmation
of their syndrome. Furthermore, Mensah et al (62), a team including members of FDNA Inc.,
explained in a response to Porras et al (3) that 5 syndromes out of 129 were largely over-

represented, accounting for 77% of the photos.

2.3 Prospects for a new Next Generation Phenotyping model

In the Porras et al (61) tool and in DeepGestalt / GestaltMatcher (56), the algorithms were
based on a deep learning analysis of the face. Phenotypic elements in profiles, skull outline,
hairline, and external ear position and shape were not taken into account. The profile contains
essential information for diagnosis in dysmorphology. Todd et al (63) described as major
features the facial tilt, nasolabial angle, and glabellar projection in Congenital Central
Hypoventilation Syndrome due to the PHOXZ2B variant; Abell et al (64) explained that

retrognathia is a major highlight of the diagnosis of EFTUD2-related Mandibulo-Facial
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Dysostosis with Microcephaly; finally, Tiiysiliz et al (65) defined prognathism as a common
sign in Beckwith-Widemann syndrome. Legendre et al (66) described a characteristic
asymmetric external ear with a triangular concha and an absent lobe in a cohort of 119
patients with CHARGE syndrome; Gordon et al (67) described a characteristic ear in PLCB4-
related auriculo-condylar syndrome, including the presence of a question-mark ear with post-
auricular tag. The existing tools did not mention whether facial surgery had been performed
on the patients at the time the photograph was taken. Some photographs in the GestaltMatcher
database contained images of Treacher Collins syndrome patients with mandibular distractors
in place. Bone surgeries (distraction, orthognathic surgery, zygomatic osteotomies,
craniofacial surgery) or soft tissue surgeries (canthopexy, lipofilling) may be performed as
part of the patient follow-up. It seems questionable to define an average face of a syndrome if
the subset of included patients was benefited from mandibular advancement for instance.

Finally, neither of the two tools can be used to detect controls. Even with low reliability, they

will suggest the diagnosis of a genetic syndrome for all subjects.

We therefore aimed to develop a new Next Generation Phenotyping tool, trained on full

frontal and lateral facial photographs of non-syndromic control children with genetically

confirmed genetic syndromes who have not undergone surgery.
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3 Material and methods

Here we report the operating pipeline of our model: image pre-processing, automatic
landmark placement, extraction of geometric and textural features, stratification using

metadata, and classification using a machine learning model (Figure 2).
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Figure 2. From the initial photograph to diagnostic probability. Faster RCNN = Faster
Region-based Convolutional Neural Network; CLAHE = Contrast Limited Adaptative
Histogram Equalization; GLCM = Gray-level Co-occurrence Matrix; XGboost = eXtreme

Gradient Boosting.
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3.1 Data description

3.1.1 Training set

As explained in the introduction, we included pictures from the photographic database of the
Maxillofacial surgery and plastic surgery and the Medical genetics departments of Hopital
Necker — Enfants Malades (Assistance Publique — Hopitaux de Paris), Paris, France. This
database contained 1,042,468 photographs from 22,000 patients followed in the department
since 1976. All photographs were taken by a professional medical photographer using a
Nikon D7000 device in standardized positions. The non-digitized slide data (before 1985) was
scanned using an Epson Perfection V850 Pro scanner.

We included retrospectively and prospectively, from 1976 to 2023, all frontal and lateral
pictures of patients diagnosed with 9 syndromes. The photographs were not calibrated. All
patients had genetic confirmation of their syndrome. We excluded patients with a history of
facial surgery. Multiple photographs per patient corresponded to different ages. Duplicate
photographs were excluded.

Non-syndromic children were selected among patients admitted for wounds, trauma,
infection, and various skin lesions, without any record of chronic conditions. More precisely,
follow-up for any type of chronic disease was considered as an exclusion criterion. The
reports were retrieved using Dr Warehouse (68). For each patient, the best profile picture was

selected in terms of symmetry.

3.1.2 Validation set

We retrieved frontal and lateral photographs of the syndromes of interest from several

specialized centers:
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the Craniofacial unit of Great Ormond Street Hospital (GOSH) in London (UK):
Crouzon, Pfeiffer, Apert, Muenke, Saethre Chotzen and Treacher Collins syndromes
(Pr. David Dunaway);

the Center of excellence in genomics and precision dentistry, Chulalongkorn
University, Bangkok (Thailand): Treacher Collins, CHARGE, Kabuki syndromes (Dr.
Thantrira Porntaveetus);

the Clinical genetic department of Lausanne University Hospital, Lausanne,
(Switzerland): Kabuki syndrome (Dr. Fabienne Giuliano);

the Maxillofacial surgery department of Lille University Hospital (France): Nager
syndrome (Pr. Joél Ferri);

the Clinical genetics department of Montpellier University Hospital (France): Kabuki,
CHARGE, Treacher Collins syndromes (Dr. Marjolaine Willems, Pr. David
Genevieve);

the Maxillofacial department of Nantes University Hospital (France): Guion Almeida,
Nager, Treacher Collins syndromes (Pr. Pierre Corre);

the Clinical genetics department of Tours University Hospital (France): Kabuki
syndrome (Pr. Annick Toutain);

the Clinical genetics department of Grenoble University Hospital (France): Kabuki

syndrome (Pr. Klaus Dieterich);

This diversity of validation data adds real strength to the study, especially as certain centers

such as London and Bangkok allowed to test the models on ethnically diverse populations. All

patients had genetic confirmation of their syndrome. None of the patients in the validation set

were present twice, and none were issued from the training set. We excluded patients with a

history of facial surgery.
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For the control group, we selected photographs from our local database, without any
redundancy with the training set, using similar inclusion criteria. We extracted data on age at
the time of the photograph and gender. Informed and written consents were obtained from the
legal representatives of each child, or from the patient himself if he was of age. All
photographs in the validation group were manually annotated by two independent raters,
blinded for the diagnosis. The ICC (Intraclass Correlation Coefficient) was computed. ICC

values greater than 0.9 corresponded to excellent reliability of the manual annotation (69).

3.2 Model for Automated Landmark Annotation

We used three different templates based on 105 landmarks for the frontal view, 73 for the
lateral view and 41 for the external ear. We developed an automatic annotation model for
each template following a pipeline including: (1) detection of the region of interest and (2)

automatic placement of the landmarks.

3.2.1 Model selection

Step 1: Region Of Interest (ROI) detection
An initial step was the detection of the ROI, i.e., a frontal, a lateral view or an external ear,
using bounding boxes. We assessed two bounding box detection methods.

- (1) Haar cascades (70), which is the historical method, trained from scratch with the
OpenCV library (71); a Haar feature was a calculation performed on adjacent
rectangular regions in a detection window. This calculation was based on pixel sum
differences between the regions, on which cascade classifiers were used.

- (2) Faster R-CNN (Faster Region-based Convolutional Neural Network) (72), more

recent, which were incremented with defectron2 (73) from a pre-trained model. Faster
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R-CNN was based on a Convolution Neural Network (CNN) preceded by a region
proposal algorithm to generate ‘bounding boxes’ or locations of possible objects in the
image. The Fast RCNN model was trained after data augmentation (images and their
+10° and -10° rotations), with a learning rate of 0.001, a batch size of 4, and a gamma
of 0.05 and 2000 iterations.
The manual annotations of the bounding boxes were performed with labelme (74). We
manually annotated a total of 100 facial photographs, 100 profiles, and 100 ears. Data
augmentation techniques, i.e., +/— 10 degrees of rotation and flipping, were used to increase
the size of the training set (75). In case of multiple detections, the bounding box with the
highest probability of detection was selected. The highest weight of the Haar cascade and the
best confidence score of the Faster R-CNN were selected. Intersection over Union (IoU) was
used to define true positives, false positives, and false negatives for the predicted bounding
boxes. Then, all methods were compared using precision, recall and F1-score at IoU of 0.5
and 0.75 for models which had been trained with and without data augmentation (76). An [oU
of 0.5 would limit false negatives and therefore sensitivity, while an IoU of 0.75 would limit
false positives and therefore specificity. The objects of interest were then reduced to 600 X

600 pixels and converted to gray levels.

Step 2: Automatic landmark detection

The objective of this second step was (1) to evaluate the open-source algorithms on their
ability to automatically place landmarks and (2) in case of failure, to determine the best
method using our data.

We manually annotated a total of 1709 facial photographs, 2186 profiles, and 1443 ears.

The manual landmarking of the frontal, profile, and external ear photographs was performed

according to the templates proposed by the /BUG group (Intelligent Behavior Understanding
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Group, Department of Computing, Imperial College London, United Kingdom) which defined
a consensual list of facial landmarks, that we later extended.

The manual annotation of the true landmarks was performed using the /landmarker.io tool
(77).

For each of the three sets, a 5% sample was randomly selected to define a test set. Patients in
the test set were removed from the training set to obtain two completely independent sets.
Since a patient could have several photographs in the database, all photographs of patients
selected for the test set were removed from the training set. The final fitting error was defined
as the distance between the final automatic annotation on the validation set and the manual
annotation, considered as the gold standard. Random samples were created to induce
variations in the size of the training set (n = 10, 50, 100, 200, 300, 400, 500, 600, 700, 800,
900, ..., 1500) and each sample was repeated 10 times. The final errors per patient, per run,
and per sample size were reported. A linear hierarchical model was produced to account for

inter- and intra-individual variability, with the introduction of a polynomial term of degree 3.

Three automatic annotation models were tested using to the Menpo platform (78).

1) The holistic Active Appearance Model (holistic AAM), a statistical deformable model
of the shape and appearance of a deformable object class (79). AMM was a generative
model which aims to recover a parametric description of a certain object through
optimization during fitting. AAM contained: (1) a shape model, based on a
Generalized Procrustes Analysis (GPA) and dimension reduction by Principal
Component Analysis (PCA), (2) a motion model, based on a warp function, and (3) an
appearance model, after applying the warp function on the shapes (80). The holistic
AAM used a holistic appearance representation obtained by warping the texture into

the reference frame with a non-linear function.
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2) The patch-based AAM (patch AAM), representing the appearance in a patch-based
fashion: rectangular patches were extracted around the landmark points. Fitting an
AAM on a test image involved the optimization of the following cost function with
respect to the shape and appearance parameters. The Lucas-Kanade optimization
belonged to the family of gradient-descent algorithms (81,82).

3) The Constrained Local Model (CLM) was a class of methods for locating sets of
points (constrained by a statistical shape model) on a target image. The general
approach was to sample a region from the image around the current estimate, project it
into a reference frame and search for a combination of points which optimized the

total cost, by manipulating the shape model parameters (83,84).

As described on their homepage, the Menpo Project provided: a web-based tool for annotation
of bulk data for model training, a command line tool for landmark localization with state-of-
the-art pre-trained models, and a generic object detection in terms of a bounding box.

The fitting error per iteration was then calculated. The model with the best performance in the
previous step was pre-trained on public databases to determine whether the contribution of a
pre-trained model increased performance (Figure 3). Annotated and publicly available online
databases of photographs are available (85), i.e., Labeled Face Parts in the Wild (LFPW)
(86), Annotated faces-on-the-wild (AFW) (87), Helen (88) and XM2VTS (89) for frontal
facial pictures with a total of 3402 images; Annotated Facial Landmarks in the Wild (AFLW)
(90) for profiles with a total of 1526 images; Ears in-the-Wild (91) for ears with a total of

2858 images.
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A Haar cascades

Only data

Faster R-CNN

Figure 3. Selection of the best automatic landmarking model. A. ROI detection. B.
Testing for three automatic annotation models (Hol AAM, Patch AAM, CLM). C.
Comparison of the model only trained on the data versus the model pre-trained on public data,
on frontal face photographs. The public photographs in step C were extracted from the LPFW

database. Hol = Holistic.

3.2.2 Model optimization

We have attempted to optimize the chosen automatic annotation model using three methods.

- A raw annotation on the base image.

- Annotation by groups: after a raw annotation, a second model for each group of
landmarks (eye, nose, mouth, mandibular contour, etc.) was reapplied to refine the
placement.

- Double-scale annotation: a raw annotation is made on the image, then a second
annotation is performed after resizing the image around the landmarks initially placed.

The best model was selected based on the minimization of the final fitting error.
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3.3 Geometric features extraction

As underlined before, Douglas and Mutsvangwa (51) concluded that Procrustes-based
approaches were the best methods for shape analysis in terms of prediction accuracy.

We performed Generalized Procrustean Analysis (GPA) (49) on all landmark clouds using the
geomorph package on R (Figure 4). Since the data were uncalibrated photographs, ROI sizes

were not available: shape parameters only were assessed and not centroid sizes.
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Figure 4. Superposition (A/C/E) and average (B/D/F) of Procrustes coordinates for
frontal views (A/B), profiles (C/D), and external ears (E/F). This example includes all

patients with Crouzon syndrome.

57



3.4 Textural features extraction

3.4.1 Image partitioning

We decided to separate the frontal and profile views of the face into key areas and apply
textural feature extraction methods to each of these zones. This allowed us to check the results
and determine which zone had contributed most to the diagnosis.

We defined 14 key areas, 11 on the frontal (right / left eye, right / left eyebrow, glabella,
forehead, nasal tip, philtrum, right / left cheek, chin) and 3 from the profile (pre-auricular
region, eye, malar relief) views. Each of these areas could potentially guide towards the
diagnosis of facial dysmorphia. Each zone was extracted automatically using the previously

placed landmarks (Figure 5).

3.4.2 Histogram equalization

We used the CLAHE (Contrast Limited Adaptative Histogram Equalization) algorithm for
histogram equalization. This method has been used used by several authors before the use of
feature extractors (92,93). CLAHE enhances contrast by evenly dispersing gray values (94).
The aim was to reduce the influence of illumination, particularly at the time of the photograph
was taken, or of skin color. Kiflie et al recommend CLAHE as a first-choice equalization

method (95).

3.4.3 Gray-level co-occurrence matrix

Gray-level co-occurrence matrix (GLCM) methods, as proposed by Haralick (96), are based
on the estimation of the second-order joint conditional probability density functions. These

matrices characterize the spatial relationships between pixels. GLCM is one of the most
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popular and actual methods for texture analysis (97,98), recently used extensively in
radiomics, for instance to analyze CT-scan or MRI images (99—101). GLCM has also proven
its effectiveness in analyzing skin texture (102). The co-occurrence matrix contains
information on:

1) entropy: local variations in the GLCM;

2) homogeneity: the closeness of the distribution of elements in the GLCM to the GLCM

diagonal;
3) contrast, in the GLCM;
4) energy, or angular second moment: sum of squared elements in the GLCM,;

5) correlation: the joint probability occurrence of the specified pixel pairs (103).

There are 28 GLCM features, taking into account the average and range for each item of

information, for each zone, so 28 x 14 = 394 textural features for each patient (Figure 5).

- A

Facial partitioning

14 key areas

7 A

GLCM application  On each key area

CLAHE application

28 GLCM features x 14 key areas = 392 textural features

2 N 4

Figure 5. Extraction procedure for textural features. CLAHE = Contrast Limited

Adaptative Histogram Equalization; GLCM = Gray-Level Co-occurrence Matrix.
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3.5 Dimension reduction and stratification using metadata

Procrustean coordinates were processed using Principal Component Analysis (PCA) for
dimension reduction (104,105). We retained the principal components explaining in
cumulative sum 99% of the total variance. The last 1% was considered as negligible
information.

The geometric features described in the previous paragraph, and the geometric principal
components, were combined for further analysis. To consider associated metadata (age and
gender) and the fact that we had included more than one photograph per patient (that is the
non-independence of the data), a mixed model was designed for each feature. The variables to
be explained were the features (geometric and textural), with age, gender, and ethnicity
considered as explanatory variables. A random effect on age and individuals was introduced.

The equation of the mixed model was:

Features; ; a+age.p,+gender.[,+ethnicity.B,+age.pB, +¢; ;

where age. B, ; corresponded to a random slope for age per individual and €; ; was a random
error term. We did not use an interaction term between age and gender and age and ethnicity
as it did not increase the likelihood of the model. Age, gender and ethnicity are significant
factors in dysmorphology because they influence the diagnosis, and must therefore be taken
into account (8,106).

The residuals of each feature were calculated to take into account potential biases linked to

the metadata:

¢, ;=Features, ,—a+age. B,+gender . 3,+ethnicity .p,+age .3, ;
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3.6 Training the classification model

The inputs to the model were the residuals from the linear models described above, for each
geometric or textural feature.

We used XGBoost (eXtreme Gradient Boosting), a supervised machine learning classifier, for
all the analyses (107). We chose a tree-based booster, and the loss function to be minimized
was a logistic regression in the case of binary classification, or a softmax function in case of
multi-class classification. We set a number of hyperparameters to improve the performance
and effect of the machine learning model: learning rate = 0.3, gamma = 0, maximum tree
depth = 6. The model with the lowest error rate in case of binary classification, or multiclass
error rate in case of multi-class classification, was chosen for analysis. We separated the
dataset into a training set and a testing set, and a 5-fold cross-validation was used to define the

ideal number of iterations to avoid overfitting.

The chosen model with the ideal number of iterations was then used on the independent
validation set to test performances by plotting accuracy, sensitivity, specificity, F1-score,
precision and recall, and AUC. The ROC (Receiver Operating Characteristics) curves were

plotted in R using the plotROC package (108).

3.7 UMAP (Uniform Manifold Approximation and Projection)

representations

The residuals €; ; were represented using UMAP for visual clustering, a nonlinear dimension
reduction technique (109). We retained the residuals associated with features with a
classification gain (in their cumulative sum) > 0.75 in the importance matrix associated with

the XGboost model. A k (local neighborhood size) value of 15 was used. A cosine metric was
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introduced to compute distances in high dimensional spaces: the effective minimal distance
between embedded points was 10°°. The three conditions of UMAP, namely uniform
distribution, local constancy of the Riemannian metric, and local connectivity were verified.

UMAP analyses were performed using the package umap on R (110).
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4 Choice of automatic annotation model

4.1 ROI detection

For all types of ROI (frontal pictures, profiles, and external ears), and for an loU of 0.5, the
best performances based on the F1-score were obtained for the Faster R-CNN, in comparison
to Haar cascades. F1-score were 1.000, 0.999, and 0.969 respectively for frontal pictures,
profiles, external ears (111). As stated before, in (111), the Faster RCNN model was trained
after data augmentation (images and their +10° and -10° rotations), with a learning rate of
0.001, a batch size of 4, a gamma of 0.05 and 2000 iterations. The Faster RCNN model has
since been optimized and split into two stages:

- 1) ROI detection: Faster RNN trained on 15633 images after data augmentation
(images and their +10° and -10° rotations). There were 6186 frontal images (2062 x 3)
and 9447 right and left profile images (3159 x 3). The batch size was set to 2, the
learning rate was set to 0.0025, and the maximum number of iterations was 2800.

- 2) Determination of profile laterality: pre-trained ResNet50 network (112) using the
Pytorch library (113). The training images included 1,570 left profiles and 1,579 right
profiles. The batch size was set at 16, an Adam optimizer (114) was used with a

learning rate of 0.001, a step of 7, a gamma of 0.1, trained over 25 epochs.

4.1.1 Automatic landmarking

Based on the final fitting error, for all type of annotation, the best model was the patch-based

AAM (p < 0.001). The pretrained patch-based AAM led to a final error higher than the patch-
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based AAM trained from scratch (p < 0.001) (111). Since the publication of (111), the patch
AAM has been improved:

- 1) Modification of the templates proposed by the Menpo platform (85) (Figure 6): 105
frontal landmarks, to take into account the shape of the cranial vault, the hairline and
the position of the ears; 73 profile landmarks, to take into account the shape of the
cranial vault, the hairline and the position of the ear; 45 ear landmarks, after removing
the ‘anthelix’ group, which was considered to be not reproducible, according to the

publication below (4).

Figure 6. Initial (A/B/C) landmark templates proposed by the Menpo platform versus
the updated templates, for the frontal pictures (A/D), profile views (B/E), and external

ears (C/F). Note the addition of the shape of the cranial vault, the position of the hairline and
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the position and size of the ears for the frontal and profile faces, and the deletion of the

anthelix landmarks for the ear.

- 2) Two-scales landmarking: the model for frontal pictures was trained on 904
manually annotated photographs, with a first stage of dimensioning (diagonal = 150),
a patch shape of [(15, 15), (23, 23)], and 50 iterations, then a second stage without
resizing, with a patch shape of [(20, 20), (30, 30)] and 10 new iterations. The final
fitting error was then the lowest in this design, with an average of 7.68 +/- 8.14. The
model for profile views was trained on 1,439 manually annotated photographs, with a
first stage of dimensioning (diagonal = 150), a patch shape of [(15, 15), (23, 23)] and
25 iterations, then a second stage without resizing, with a patch shape of [(15, 15), (23,
23)], and 5 new iterations. The final fitting error was then the lowest in this design,
with an average of 11.65 +/- 14.30. The model for ears was trained on 1221 manually
annotated photographs, with a first stage of dimensioning (diagonal = 100), a patch
shape of [(15, 15), (23, 23)], and 50 iterations, then a second stage without resizing,
with a patch shape of [(20, 20), (30, 30)] and 20 new iterations. The final fitting error
was then the lowest in this design, with an average of 29.87 +/- 14.50. All three

models used the Lucas Kanade optimizer (115).

4.1.2 Manual landmarking reproducibility

The comparison between two raters was excellent with an ICC of 0.999 [0.999-0.999] for
frontal pictures, 0.999 [0.999-0.999] for profile views, and 0.992 [0.991-0.993] for external
ears. The landmarks defining the antihelix were the less reproducible, because this anatomical

region can be missing in some individuals.
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Abstract

Two to three thousand syndromes modify facial features: their screening requires
the eye of an expert in dysmorphology. A widely used tool in shape characterization
is geometric morphometrics based on landmarks, which are precise and reproducible
anatomical points. Landmark positioning is user dependent and time consuming.
Many automatic landmarking tools are currently available but do not work for chil-
dren, because they hawve mainly been trained wusing photographic databases of
healthy adults. Here, we developed a method for building an automatic landmarking
pipeline for frontal and lateral facial photographs as well as photographs of external
ears. We evaluated the algorithm on patients diagnosed with Treacher Collins
[TC) syndrome as it is the most frequent mandibulofacial dysostosis in humans and is
clinically recognizable although highly variable in severity. We extracted photographs
from the photographic database of the maxillofacial surgery and plastic surgery
department of Hopital Mecker-Enfants Malades in Paris, France with the diagnosis of
TC syndrome. The control group was built from children admitted for craniofacial
traurna or skin lesions. After testing two methods of object detection by bounding
boxes, a Haar Cascade-based tool and a Faster Region-based Convolutional Meural
Metwark (Faster R-CMNM)-based tool, we evaluated three different automatic annota-
tion algorithms: the patch-based active appearance model (AAM), the holistic AAM,
and the constrained local model (CLM). The final error corresponding to the distance
between the points placed by automatic annotation and those placed by manual
annotation was reported. We included, respectively, 1664, 2044, and 1375 manually
annotated frontal, profile, and ear photographs. Object recognition was optimized
with the Faster R-CNN-based detector. The best annotation model was the patch-
based AAM (p < 0.001 for frontal faces, p = 0.082 for profile faces and p < 0.001 for
ears). This automatic annotation model resulted in the same classification perfor-
mance as manually annotated data. Pretraining on public photographs did not
improve the performance of the model. We defined a pipeline to create automatic

This ks an open access article under the terms of the Creative Commans Attribution-MonCommercial-MoDerivs License, which permits use and distribution in amy
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. American Jeurnal of Medical Genetics Part A published by Wiley Perindicals LLC.
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annotation models adapted to faces with congenital anomalies, an essential prerequi-
site for research in dysmorphology.

KEYWORDS

dysmorphalogy, geometric morphometrics, landmarks, machine learning, Treacher Callins

syndrome

1 | INTRODUCTION

Shape analysis on two-dimensional (2D) pictures can involve compu-
tations based on predefined rules, such as in multivarizte models used
in geometric morphometrics. In machine learning approaches, these
predefined rules are replaced by the ability of the model to learn from
examples (Rajkomar et al.. 2019). The applications of machine leaming
are increasing in healthcare (Rajkomar et al, 2019). in diverse fields
such as radiology (Choy et al, 2018), dermatology (Movoa
et al, 2019), and surgery (Loftus et al, 2020).

Relevant inputs of machine learning approached to shape analysis
in healthcare are assessments of radiographs, texts, pathology slices,
and clinical photographs (Gurovich et al., 2019). Among these sources
of data, clinical photographs are particularly important in the diagnosis
of craniofacial malformations. In fact, 30%-40% of the 7000 rare dis-
eases have eranlofacial anomalies (Hart & Hart, 2009). Many of these
syndromes have facial features that are subtle to describe or not
known to nonspecialist physicians: their screening reguires the eye of
an expert in dysmorphology. Due to this specific clinical issue, there
have been a recent increase in the number of scientific publications
dedicated to the diagnosis of rare conditions using facial phatographs
(Thevenot et al., 2018).

A tool developed in 2011 by the fadial dysmarphology novel analy-
sis (FDMA) group and used by geneticists is Foce2gene (Gurovich
et al, 201%). This algorithm is based on deep learning techniques to
make a diagnasis using a photograph as input. The performance of deep
learning is robust due to a large amount of training data (Latorre-
Pellicer et al, 2020), but a shortcoming raised is that some classification
steps are not controlled, leading to the so-called black box effect
(Hennocq et al., 2021). The alternative is to decompose the classifica-
tion phenomenon and add certain amount of patient metadata, essen-
tial for diagnosis, such as age, ethnicity, or gender (Lumaka et al, 2017).

A widely used tool in this context is landmark-based geometric
morphometrics, as this was used in 81% of the studies, according to a
literature review by our team (Hennocg et al. 2021) on phenotyping
methods on 2D frontal photographs. Landmarks are precise and
reproducible  anatomical points. Positioning landmarks s wser-
dependent and time-consuming. To tackle this issue, automatic land-
marking tools have been developed, such as the active appearance
model (AAM) and the constrained local model (CLM) for frantal and
profile faces but are mainly trained on photographs of healthy adults.
The growth of the human face is an allometric, that is, nonlinear phe-
namenan (Gayan, 2000). A child is not simply a small adult; there is 2
change in facial ratios at different ages and a tool for automatic

annotation of children's faces would probably need to be trained with
children (Larson et al., 2018; Nyemb et al, 2014).

Here, we described the pipeline for automatic annotation of fron-
tal, profile, and ear photographs in normal children and in children
with a specific craniofacial malformation—Treacher Collins
(TC) syndrome—and we evaluated the performance of this tool. This
annatation tool will allow to improve the diagnostic performance of
the practitioners, to teach the practitioners the features that allowed
the diagnosis, and finally to compare patients within the same syn-
drome. The first step was to detect the ohject of interest, that is, a
face, a profile or an ear, and the second step to train an automatic
annotation model using manually annotated images. A supplementary
step was to evaluate the guality of the manual annotation and in par-
ticular the interrater variability.

2 | MATERIALS AND METHODS

2.1 | Editorial policies and ethical considerations
The work has been carried out in accordance with The Code of Ethics
af the World Medical Association. The study was approved by the CES-
REES {Comité éthique et sdentifique pour les recherches, les études et
les dvaluations dans le domaine de la santé) ethics committee ireference
4570023 Bis) and by the CHIL (Commission Nationale Informatique et
Libertés, reference MLD/MFI/AR221%00). Informed and written con-
sent was obtained from the legal representatives of each child.

22 | Dataset

We included pictures from the photographic database of the maxillo-
facial surgery and plastic surgery department of Hopital Necker Enfants
Malades in Paris, France. This database contains 594,000 photographs
af 22,000 patients followed in the department since 1981. The photo-
graphs were taken by a professional medical photographer using
Nikan D7000 in standardized positions, that is, frontal facial pictures
with neutral expression and right and left profiles along the Frankfort
horizantal plane (Hexsel et 21, 2017).

We induded all pictures of patients diagnosed with TC syndrome
during a medical genetics consultation. Non syndromic children were
selected among patients admitted for wounds, trauma, infection and var-
fous gkin lesions not being part of a chronic disesse. Fellow-up for any
type of chronic disease was considered as an exclusion criterion, as this

67

O] S ) e agapeglide aop dn ponsoan® s s v aen o sqne oy Camary auegacs Sy w0 b e e oo < e s oo Gage, £ am gy oy osdm) s uoes paoy e s s o e g D00 T g ] wo Cm g ampac o g “oonm g e oy oo £q 97 g v Bl g o) sop weo G Cem ooy, sdog wn g papeog g T FERPTEE]



HENNOCE) £7 a0

chronie disease eould be related to a genetic syndrome with a potential
described or undescribed facial phenotype (Khonsar et al, 2013). The
reports were retreved using Dr Warehause (Garcelon et al., 2018).

All frontal and profile pictures of contral and TC children were
included. Only photographs of control ears were included, as the ears
of ehildren with TC were too abrnormal ranging from dysplastic ears to
microtia or anotia (McElrath & Winters, 2022). For profiles and ears,
for each patient. pictures of right and left sides were included.

23 | Step 1: Preprocessing by object detection

An initial step was the detection of the object of interest, that is, a
frontal face, a profile face or an ear, using bounding boxes. We
assessed two bounding box detection methods: (1) the Haar cascades
(Wiola & Jones, 2001) and (2) Faster Region-based Convolutional Neu-
ral Metwark (Faster R-CNN) (Ren et al, 2017). The Hoar cascade
miodel, which is the historical method, was trained from scratch with
the OpenCV library (Bradski, 2000); the Faster R-CNN, more recent,
was inerement with detectron2 (Wu et al., 2019) from a pretrained
model

A Haar feature is a caleulation performed on adjacent rectangular
regions in a detection window. This calculation is based on pixel sum
differences between the regions, on which cascade classifiers are then
used (Viola & Jones, 2001). Faster R-CNN is based on a convalution
neural network (CMN) preceded by a region proposal algorithm to
generate “bounding boxes” or locations of possible objects in the
image (Ren et al, 2017).

The manual annotations of the bounding boxes were performed
with [abelme (Labelme, 2022). We manually annotated a total of
100 facial photographs, 100 profiles and 100 ears. Data augmentation
technigues, that is, +10 degrees of rotation and flipping, were used to
increase the size of the training set (Pawara et al, 2017).

In case of multiple detections, the bounding box with the highest
probability of detection was selected.

The highest weight of the Hoaor cascade and the best confidence
score of the Faster R-CNN were selected. Intersection over union
{lol)) was used to define true positives, false positives, and false nega-
tives for the predicted bounding boxes. Then, methods were com-
pared with precision, recall and Fl-score at loU of 0.5 and 0.75 for
models, which had been trained with and without data augmentation
(Padilla et al, 2020} An loU of 0.5 would limit false negatives and
therefare sensitivity, while an loU of 0.75 would limit false positives
and therefore specificity. The objects of interest were then reduced
to 400 = &00 pixels and converted to gray levels.

24 | Step 2: Training of an automatic landmark
detection algorithm

The objective of this second step was (1) to evaluate the open-source
algorithms on their ability to automatically place landmarks, and (2) in
case of failure, to determine the best method using our data.

medical genetics B-WILEY-L 2

We [suthor QH) manually annotated a total of 1709 facial photo-
graphs, 2186 profiles, and 1443 ears.

The manual landmarking of the frontal (68 points), profile
(39 points), and ear (35 points] photographs was performed according
to the templates proposed by the [BUG group (Intelligent Behavi
Understanding Group, Department of Computing, Imperial College
London, UK) which define a consensual list of fadial landmarks
(Figure 51).

The manual annotation of the true landmarks was performed
using the landmarker.io tool (landmarker.io, n.d.).

Far each of these three sets, a 5% sample was randomly selected
to define a validation set. Patients in the validation set were removed
from the training set to obtain two completely independent sets.
Since a patient could have several photographs taken, all photographs
of patients selected for the validation set were removed from the
training set.

The final fitting error was defined as the distance between the
final automatic annotation on the validation set and the manuwal anno-
tation, considered as the gold standard.

Random samples were created ta vary the size of the training set
(n = 10, 50, 100, 200, 300, 400, 500, 400, 700, 800, 900, .., 1500)
and each sample was repeated 10 times. The final error per patient,
per run and per sample size was reported. A linear hierarchical model
wias produced to account for interindividual and intraindividual vari-
ability, with the introduction of a polynomial term of degree 3.

Three automatic annotation models were tested, such as (i) the
AAM with its holistic, (i) the AAM patch-based variants, and (i) the
CLM, using to the Menpo platform (Alabart-i-Medina et al, 2014). As
described on their homepage. the Menpo Project provides a web-
based tool for annotation of bulk data for model training, a command
line tool for landmark localization with state-of-the-art pretrained
models and a generic object detection in terms of a bounding box.

(i} AAM is a statistical deformable model of the shape and appear-
ance of a deformable object class (Matthews & Baker, 2004). It is a
generative model, which aims to recover a parametric description of a
certain object through optimization during fitting. AAM contained:
1) a shape model, based on a generalized procrustes analysis (GPA)
and a reduction of dimensions by principal companent analysis (PCA),
(2) a motion model, based on a warp function, (3) an appearance
model, after applying the warp function on the shapes [Active Appear-
ance Model, n.d.). The holistic AAM uses a holistic appearance repre-
sentation obtained by warping the texture into the reference frame
with a nanlinear warp function.

(i) A patched AAM model represents the appearance in a pateh-
based fashion: rectangular patches are extracted arcund the landmark
points. Fitting an AAM on a test image invalves the optimization of
the fallowing cost function with respect to the shape and appearance
parameters. The Lucas- Kanade optimization belengs to the family of
gradient-descent algorithms (Antonakos et al, 2015; Xiong & De la
Teorre, 2013). The fitting error per iteration was then caleulated.

{iii) A CLM is a class of methods for locating sets of points (con-
strained by a statistical shape model) on a target image. The general
approach is to sample a region from the image around the current
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estimate, project it into a reference frame and search for a combina-
tion of points, which optimized the total cost, by manipulating the
shape model parameters (Cristinacce & Cootes, 2006, 2008).

The model with the best performance in the previous step was
then pretrained on public databases to find out whether the contribu-
tion of a pretrained model increases performance. Indeed, already
annotated and publicly available online databases of photographs are
available (Deng et al, 2019), that is, Labeled Face Parts in the Wild
(LFPW) (Bethumeur et al, 2011), Annotated faces-on-the-wild (AFW)
{Zhu & Ramanan, 201Z), Helen (Le et al, 2012), and XM2VTS (Messer
et al, 2003) for frontal facial pictures with a total of 3402 images;
Annotated Faclal Landmarks in the Wild (AFLW) (Kostinger et al.. 2011)
for profiles with a total of 1526 images, Ears in-the-Wild (Zhou &
Zaferiou, 2017) for ears with 2 total of 2858 images.

These steps were summarized in Figure 1. The code & available to
readers on the website https://framagit.orgimagine-plateforme-bdd/aidy.

25 | Supplementary step: Analysis of manual
landmarking reproducibility

The abjective of this step was to determine whether manual land-
marking between two raters was reproducible, and which land-
marks were the most difficult to place that is, those with the most
inter-rater variability. A sample of 55 patients was double anno-
tated by two independent reviewers to assess reproducibility.
Results were in the form of Kendall's tau (Kendall, 1947), Pearson's
r* (Gaddis & Gaddis, 1990), and intraclass correlation coefficient
(ICC) {Bartko, 1964) on both axes and on centroid size [Lam
et al., 2015; Maji et al., 2014). A Kendall's tau greater than 0.7 and
an r* close to 1 carresponded to a good agreement between the
two annotations (Kendall, 1947). An ICC greater than 0.9 corre-
sponded to  excellent reliability of the manual annotation
({Bartkao, 1946).

(a) Hlaar cascades (b H-:g'u:_f
"
. I h
- — riy
. L
L
Fasigr B-CNK

FIGURE 1

A landmark reproducibility map based on Pearson's correlation
coefficient was produced for the facial, profile, and ear pictures to
determine which points were reproducible and therefore the most dif-
ficult to place between two different raters.

2.6 | Statistical assessment

A linear hierarchical model, used to represent the final fitting error
as a function of sample size, was then designed to account for
interindividual and intraindividual wvariability, as the data were
repeated in the same individual and therefore not independent,
with the intreduction of a polynomial term of degree 3. This paly-
namial term was introduced as it maximized the likelihood of the
model. Secondary models were then designed to compare the dif-
ferent algorithms [patch-based AAM, holistic AAM, and CLM) and
to assess the effect of group {controls/TC syndrome) and age cate-
gory (<2 years old {y.0.). 2-8 y.o., and »B y.o) variables on the final
error. The significance threshold was defined as p < 0.05; a signifi-
cant parameter had an effect on the relevant variables for each
model. Assumptions of normality and homoscedasticity of errors
were tested. The statistical analyses were performed on R 3.4.2
using the nlme (Pinkeiro et al, 2012) and ggplot packages
(Wickham, 2014).

2.7 | Clinical application: Classification

A classification between TC patients versus controls in the valida-
tion set was performed, using either ground-truth landmarks
(placed manually) or automatically placed landmarks with the best
model from the previous step. For nonanatomically defined
landmarks—that is, landmarks 2-16 for frontal Faces; 2-11 for pro-
files; 2-19, 22-35, and 37-50 for ears—we used the sliding semi-

Steps for creating an automatic landmarking taol. (a). Bounding box detection. (b). Testing of three automatic annatation models.

(el Comparison of the madel anly trained on the data versus the model pretrained on public data. Here the examples chasen are frontal face
photographs. The public photographs in Step C were extracted from the LPFW database.
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landmarks method (Bookstein, 1997) to remove the artifacts from
equidistant sampling. We then performed a GPA (Rahlf &
Slice, 1990), followed by a PCA. We kept the first components
that explained more than 95% of the total varance. We used a
MANOWA to determine whether these components were suffi-
cient to classify a patient into the two groups. The significance
threshold was defined as p < 0.05. These statistical analyses were
performed on B 3.4.2 using the geomorph package (Baken
et al., 2021).

3 | RESULTS

3.1 | Dataset
In the TC syndrome proup, 56% of included patients had a genetic
confirmation (TCOF1 or POLR1D mutations) (Table 1).

For frontal facial pictures (N = 1664), we incduded 618 photographs
of patients with TC corresponding to 60 patients and 1046 photographs

of control patients corresponding to 842 patients. Mean age was 8 years
(#5.5) ard there were 44% of girls in the dataset of photographs.

For the profile pictures (N = 2044), we included 451 photographs of
patients with TC corresponding to 40 patients and 1593 photographs of
control patients carresponding to 576 patients. Mean z2ge was 7.8 years
(£5.2) and there were 53% of girls in the dataset of photographs.

Faor the ears (N = 1375), we included 100% photographs of con-
trol patients corresponding to 503 patients. Mean age was 7.5 years
{£5.1) and there were 53% of girls.

3.2 | Step 1 evaluation: Preprocessing by object
detection

For frantal facial pictures and for an loU of 0.5, the best performances
based on the F1-score were obtained for the Faster R-CNN tool with
or without data augmentation (F1-score = 1) (Table 51). For an loU of
0.75, the best performances were obtained for the Faster R-CNN toal
without data augmentation (F1-score = 1),

TABLE 1 (A) Dataset of photographs and (B) population description.
A} Frantal Praofile Ears
N 1664 2044 1375
Gender Girls 770 (46%) 1093 (53%) 733 (53%)
Group
Treacher Collins 618 (37%) 451 (22%) 0 (03%)
Controls 1046 (53%) 1593 (78%) 1375 (100%)
Age (years)
Mean £ 50 80+55 FB+52 IT5+51
Median 74 . 77
Min o Lt} (1]
Max 7 7 22
<2 yo 257 (16%) 326 (16%) 276 (20%)
2-Byo 655 (405) 753 (37%) 450 (67%)
=8B yo 739 (45%) 949 [47%) 649 (47%)
B} Frontal Profile Ears
N 902 576 503
Gender Girls 463 (51%) 303 (53%) 268 (53%)
Group
Treacher Collins 60 (7%) 60 (10%) 0 (098]
Controls B42 (93%) 516 (90%) 503 (53%)
Age (years)
Mean £ 5D 6.6+ 48 T5+59 72+53
Median 6.2 72 72
bin 0 (1] o
MMan 27 27 22
<2yo 204 (23%) 103 (18%) 102 (20%)
2-Byo 377 (42%) 275 (39%) 183 (36%)
sByao 321 (36%) 248 (43%) 218 (43%)
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(d)

FIUGRE 2 Automatic annotation
models for frontal facial pictures.

(a) Patch-based AAM. Prediction of the
final error as a function of the training
sample size, with its credibility interval.
Datted line: final error obtained only with
the public photographic base. (b).
Automatic annotation with the patch-
based AAM trained on 1200
photographs, an a child with Treacher
Collins syndrome. (). Holistic AAM:
prediction of the final error as a function
af the training sample size, with its
credibility interval. (d) Automatic
annotation with the holistic AAM trained
on 1200 photographs. (e) CLM:
prediction of the final error as a function
of the training sample size, with its
eredibility interval. (f). Automatic
annotation with the CLM trained on 1200
photographs. (g). Comparison of the
patch-based AAM (orange), holistic AAM
(red) and CLM (blue) madels, with their
credibility intervals. (h) Comparison of the
patch-based AAM trained from scratch
f{orange), and the pretrained patch-based
AAM (purple).
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For profile pictures and for an lol of 0.5, the best perfarmances
based on the F1-score were obtained for the Faster R-CNN tool with-
out data augmentation (Fl-score = 0.999). For an loU of 0.75, the
best performances were also obtained for the Faster R-CNN tool with-
aut data augmentation [F1-score = 0.969).

For ears and for an lolU of 0.5, the best performances were
abtained for the Faster R-CNN tool with or without data augmentation
[F1-score = 0.984). For an loU of 0.75, the best perfarmances were
also obtained for the Faster R-CNN tool without data augmentation
[Fl-scone = 0.944).

3.3 | Step 2 evaluation: Training of an automatic
landmark detection algorithm

First, each photo was autamatically annotated only with publicly
available data corresponding to the baseline (Table 53 and 54). For
front faces, the final errors were 0033 (£0.021), 0.038 (+0.024),
and 0.037 (+0.037) for the AAM patch, holistic AAM, and CLM
madels, respectively. For profile faces, the final errors were 0.053
(£0.076). 0.078 + 0.091, and 0.071 £ 0.079. For the ears, the
results were 0.450 (£0.045), 0.485 (+0.055), and 0.420 (+0.043).
These final errors, represented by the dotted lines in Figures 2-4,
were all larger than those obtained by algorithms trained on
our data.

Using our annotated data, 2 final fitting error rate was caleulated
for training sets containing from 10 to 1200 images for frontal facial
pictures, 1500 for profiles, and 1100 for ears.

Faor frontal facial pictures, the best model was the patch-based
AAM (p < 0.001) (Figure 2). The pretrained patch-based AAM led to a
final error higher than the patch-based AAM trained from scratch
{p < 0.001). Patients with TC had a higher final error than controls
lp = 0.001). There was no significant difference for age categories, but
a trend toward less error for older children (*8 yo wvs. <2 yo;
p = 0.077) [Figure 53).

34 | Supplementary step evaluation: Analysis of
manual landmarking reproducibility

For frontal facial pictures, the comparison between two raters was
excellent with a Kendall's tau of 0.972, an * (Pearson coefficient) of

0.999, an ICC of 0999 [0.999-0.999] on the axes and 1 (Rajkomar
et al, 201%) on the centroid size (Figure 52).

For profiles, the comparisan between two raters was excellent with a
Kendall's tau of 0243, an © (Pearson coefficient) of 0.998, an ICC of
0.999 [0.999-0.999] an the axes and 1 (Rajkomar et al, 2019) an the cen-
troid size. The mandibular angle did not show satisfactory reproducibility,
as this anatomical reglon is less pronounced in patients with TC syndrome.

Far the ears, the comparison between two evaluatars was also
excellent with a Kendall's tau of 0.934, an r* af 0.992, an ICC of 0.992
[0.991-0.993] an the axes and 0.999 [0.999-0.999] on the centraid
size. The landmarks defining the antibelix were the less reproducible,
because this anatomical region can be missing in some individuals.

3.5 | Clinical application: Classification

GPA followed by PCA was then performed for the frontal and profile
images, for (1) the manually annotated photos (“ground-truth™) and
(2] the automatically annotated photos by our best model (the patch-
based AAM). The first 8 principal components, explaining more than
95% of the total varance were tested using MANOVA to predict if
the patient had TC or was a control. Thus, face landmarks were pre-
dictive of TC syndrome in the ground-truth data and in the automati-
cally annotated data, whereas profile landmarks were not in both
groups. The results of the manually annotated data were reproducible
with the automatically annotated data (Table 2).

4 | DISCUSSION

Based on our results, it appears that the best tools to create an auto-
matic annotation tool are (1) a detection algorithm, based on a Faster
R-CHM to generate a reliable bounding box around the object without
data augmentation, then (2) a patch-based AAM not pretrained on
public data. AAM seems to be a robust algorithm in medical image
analysis (Cootes et al, 2001; Wilms et al, 2017). The use of open-
source algorithms trained on healthy adults all performed worse than
the algorithms trained on our data.

Most papers used Haar cascades for object detection, but it turms
out that this detection tool was described by some authors as not
very effective in uncontrolled environments with varying exposure
angles and lighting {Hennoog et al, 2021; Zhang & Zhang 2010). A

FIGURE 3 Automatic annotation models for profile faces. (a) Patch-based AAM: prediction of the final error as a function of the training
sample size, with its credibility interval. Dotted line: final error obtained only with the public photographic base. (b) Automatic annotation with the
patch-based AAM trained on 1500 photographs, on a child with Treacher Collins syndrome. (c) Halistic AAM: prediction of the final error as a
function of the training sample size, with its credibility interval. (d) Automatic annatation with the holistic AAM trained en 1500 photographs.

(&) CLM: prediction of the final error 25 2 function of the training sample size, with its credibility interval. [f) Automatic annotation with the CLM
trained on 1500 photographs. (g} Comparison of the patch-based AAM [orange). holistic AAM (red), and CLM (blue] models, with their credibility
intervals. (h) Comparison of the patch-based AAM trained from scratch (orange), and the pretrained patch-based AAM (purple).
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few authors used a R-CNM-based tool for frontal and profile facial
detection (Gurovich et al, 201%; Li et al_, 2015).

Among the studies using landmarks (81%), 27% used manual land-
marking and 73% used automatic landmarking. Some authors used the
AAM as an automatic annotation tool (Yi et al, 2014). Mone has stud-
ied the external ear.

Some authors (Gurovich et al., 2019) did not include any land-
marks or geometric features extraction step in their diagnostic tool for
facial malformations. In their approach, the face was automatically
cropped into several regions such as the eyes or the mouth and CNN
were applied to classify patients straight on the pixels. Their approach
was therefore a strict deep learning technigue, using a black box diag-
nosis principle without a phenotype description process. The system
propose allows, through the placement of landmarks and the extrac-
tion and transformation of geametric features, to carry out a clinically
relevant phenotypic description for each syndrome, while taking into
account all the data useful for diagnosis, such as age, sex, ethnicity, or
genotype of the patient. This method will allow to compare patients
with ne diagnoss among them and also with patients considered simi-
lar and diagnosed with a syndromic condition, in order ta guide
genetic investigations.

As previously described in the results section, issues with manual
landmarking were reported on facial pictures, profiles, and ears. For
profile pictures, the mandibular ange did not show satisfactory repro-
ducibility, as this anatomical region is less pronounced in patients with
TC symdrome. For ears, the landmarks defining the antihelix were the
less reproducible, because this anatomical region can be missing in
some individuals (Figure 52). These results were nevertheless excel-
lent, with, respectively, a general Kendall's tau of 0.972, 0.943, and
0.936 for frontal facial pictures, profiles, and ears, which can be con-
sidered as a proof of the excellent reliability of manual annotation

For all annotated structures, the final ermor seemed to stabilize for
a training sample size of 500. By observing the results of automatic
annotation beyond this threshold of 500 images with a patch-based
AAM, which was significantly the best annotation madel for our type
of data, the results were satisfactory. The pretrained models based on
public photographs did not improve the annotation performance,
probably because the public data were too different from the photo-
graphs included into the study (several very young children and chil-
dren with craniofacial malfarmations).

In the process of developing a clinically relevant diagnostic tool
based on a machine learning approach of shape analysis for facial 2D
picture, we performed a GPA and then a dimension reduction using
PCA to compare our two groups. The results were reproducible

TABLE 2 Comparison of the predictability of TC syndrome for
manually placed (ground-truth) and automatically placed (patch-based
AAM) landmarks.

Ground-truth Patch-based AAM
Frontal 0001 0.040"
Profile 0719 0621

Note: A significant result {"p < 0.05) by MANOWA means that the eight
principal components are statistically different between the TC and
control groups.

between the manually annotated photos and the automatically anmo-
tated photos by patch-based AAM, a point that adds strength to our
tool. The final step of the process will consist in the application of
machine learning methods to enable the classification of children
acwording to a syndrome, ar within the same syndrome for different
genotypes. For instance, our approach will allow to objectively deter-
mine whether TC includes different phenotypes, with potential phe-
notype/genotype correlations based on the presence of TCOF1 or
POLRAD mutations. These methods can thus be applied to other cra-
niofacial syndromes that are sometimes difficult to diagnose. The clin-
ical features of a syndrome can thus be objectively described, and
contribute to deeper phenotyping. Genotype/phenotype correlations
within the same syndrome can furthermore be established by includ-
ing metadata.

The use of open-source algorithims trained on healthy adults all
performed worse than the algorithms trained on our data. Here, we
provide a pipeline to develop an automatic annotator for assessing
craniofacial anomalies of frontal. profiles, and ears photographs for
children of various age, sometimes with significant facial dysmorphia.
This annatation tool could alse be used for the assessment of other
part of the face such as the cculo-palpebral region, the front, the lips,
ar the extremities, using the same pipeline. Such an automatic annota-
tion tool is a prerequisite in the field of artificial intelligence, where
large volumes of data are often required, and for which manual anmo-
tation is difficult to implement.
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based AAM trained on 1100 photographs, on an example of ear. {c) Holistic AAM: prediction of the final error as a function of the training sample
size, with its credibility interval. (d) Automatic annotation with the holistic AAM trained on 1100 photographs. (g) CLM: prediction of the final
errar as a function of the training sample size, with its credibility interval {f) Automatic annotation with the CLM trained on 1100 photographs.
(g} Comparison of the patch-based AAM (orange), holistic AAM (red) and CLM (blue) maodels, with their credibility intervals. (h) Comparison of the
patch-based AAM trained from scratch (orange), and the pretrained patch-based AAM (purple).
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5 Results for the first main objective: diagnosis support

Here we report the results corresponding to the first objective, i.e., diagnostic support. We
will first describe a diagnostic task based on the external ear for a group of 4 syndromes
validated on children and fetuses. We will then present the results of our classification into 10

groups (9 syndromes and controls).

5.1 Diagnosis in Mandibulofacial Dysostosis with Microcephaly (MFDM)

using external ear shapes

Mandibulo-Facial Dysostosis with Microcephaly (MFDM) is a rare disease with a broad
spectrum of symptoms, characterized by zygomatic and mandibular hypoplasia,
microcephaly, and ear abnormalities. Here, we aimed at describing the external ear phenotype
of MFDM patients and train a model to differentiate MFDM ears from non-syndromic control
ears (binary classification) and from ears of the main differential diagnoses of this condition

(multi-class classification): Treacher Collins (TC), Nager (NAFD), and CHARGE syndromes.

Figure 7. External ear photographs for each patient group: controls, Mandibulo-Facial

Dysostosis with Microcephaly (MFDM), Nager type Acro-Facial Dysostosis (NAFD),

Treacher Collins (TC), and CHARGE syndromes.
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The training set contained 1592 ear photographs, corresponding to 550 patients; 52% of
patients were female and the mean age was 7.2 +/- 5.9 years, ranging from 0 to 60.7
years. We included 1296 photographs of control ears, corresponding to 471 patients; 53% of
controls were female, with a mean age of 7.2 +/- 5.4 years. The MFDM group included 105
photographs from 31 patients, all genetically confirmed (EFTUD2 heterozygous pathogenic
variations), the NAFD group included 33 pictures from 9 patients, all genetically confirmed
(SF3B4). We included 70 photographs corresponding to 15 patients in the TC group. All had
genetic confirmation (T7COFI or POLR1D). The CHARGE group included 88 photos from 24

patients. All were genetically confirmed (CHD?).

Design Nel
The best performances were obtained after 114 iterations. Patients could be classified into
MFDM or control groups in the validation set with a balanced accuracy of 0.969 [0.838 —

0.999] (p < 0.001) and an AUC of 0.975. Only one patient was misclassified.

Design No2.1

The classification into MFDM, TC, CHARGE and control groups in the validation set was
optimized after 76 iterations. On the validation data, the overall balanced accuracy was 0.811
[0.648 — 0.920] (p = 0.002). The balanced accuracy was 0.769 for the classification into
MFDM, 0.721 for TC, 0.752 for CHARGE, and 0.938 for controls. AUC in the validation set

was 0.837 for MFDM, 1.000 for controls, 0.857 for CHARGE, and 0.500 for TC.

Design Ne2.2

The classification into MFDM, TC and CHARGE groups in the validation set was optimized

after 91 iterations. On the validation data, the overall balanced accuracy was 0.813 [0.544 —
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0.960] (p = 0.003). With this classifier, the balanced accuracy was 0.944 for the classification
into MFDM, 0.873 for CHARGE, and 0.500 for TC. AUC in the validation set was 1.000 for

MFDM, 0.969 for CHARGE, and 0.500 for TC.

We also illustrated the potential for clinical use of automatic ear-based diagnosis on a
preliminary case study. A non-premature female child aged 9 days was admitted in fetal
pathology with bilateral choanal atresia, inner ear malformations, agenesis of the acoustic-
facial bundle and cerebello-pontine hypoplasia. She had died within a few days after birth.
CHARGE syndrome was confirmed post-mortem by a heterozygous de novo pathogenic
variation in the CHD7 gene (c. 4353+1G>A). The patient also carried a heterozygous de novo
variation of unknown significance in the EFTUD2 gene (c. 1954G>A, p.Asp652Asn). Our
ear-based model on the ears of this patient (with a XGBoost classifier) proposed: CHARGE
syndrome 84%, control patient 11%, MFDM 3%, NAFD 2% or TC 1% (Figure 8), supporting
the diagnosis of CHARGE syndrome, and showing little tendency towards an MFDM ear. As
systematic EFTUD?2 heterozygous pathogenic variation screening is currently recommended
in unusual CHARGE cases (116): our model, with further clinical validation, could be used as

a clinical support for directing genetic investigations (117).

"t
5 o CHARGE A 84%
Control 4 11%

MFDM A 3%

 NAFD

NAFD 4 2%
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Figure 8. Case study for automatic ear-based diagnosis in CHARGE syndrome (A). (B)
UMAP clustering of design Ne2.1; black dot: patient. (C) probability histogram with a

XGBoost classifier.
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Introduction: Mandibulo-Facial Dysostosis with Microcephaly (MFDM) is a rare
disease with a broad spectrum of symptoms, characterized by zygomatic and
mandibular hypoplasia, microcephaly, and ear abnormalities. Here, we aimed at
describing the external ear phenotype of MFDM patients, and train an Artificial
Intelligence (Al)-based model to differentiate MFDM ears from non-syndromic
control ears (binary classification), and from ears of the main differential
diagnoses of this condition (multi-class classification): Treacher Collins (TC),
Mager (NAFD) and CHARGE syndromes.

Methods: The training set contained 1.592 ear photographs, corresponding to 550
patients. We extracted 48 patients completely independent of the training set, with
only one photograph per ear per patient. After a CNN-(Convelutional Neural
Metwork) based ear detection, the images were automatically landmarked.
Generalized Procrustes Analysis was then performed, along with a dimension
reduction using PCA (Principal Component Analysis). The principal components
were used as inputs in an eXtreme Gradient Boosting (XGBoost] model,
optimized using a 5-fold cross-validation. Finally, the model was tested on an
independent validation set.

Results: We trained the model on 1,592 ear photographs, corresponding to 1,296
control ears, 105 MFDM, 33 NAFD, 70 TC and 88 CHARGE syndrome ears. The
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model detected MFDM with an accuracy of 0.969 [0.838-0.999] (p<0.001) and an AUC
(Area Under the Curve] of 0975 within controls (binary classification). Balanced
accuracies were 0.811 [0.648-0.920] (p=0.002) in a first multiclass design (MFDM vs.
controls and differential diagnoses) and 0.813 [0.544-0960] (p=0.003) in a second
multiclass design (MFDM vs. differential diagnoses).

Conclusion: This is the first Al-based syndrome detection model in dysmorphology based
on the external ear, opening promising clinical applications both for local care and referral,

and for expert centers.

HKEYWODRDS

Al, machine learning, dysmorphology, craniofacial malfermation, MFDM

1. Introduction

Mandibulo-Facial Dysostosis with Microcephaly (MFDM),
formerly named Mandibulo-Facial Dysostosis Guion Almeida
type (MFDGA]) (1, 2), is a rare disease with a broad spectrum of
symptoms, characterized by zygomatic (92%) and mandibular
(93%) hypoplasia, microcephaly (88%, 64% congenital or 36%
postnatal), cognitive impairment (97%-100%), small or dysplastic
external ear (97%) and deafness (83%), most often conductive
(3). MFDM may also include choanal atresia {30%-33%), cleft
palate (43%-47%), facial asymmetry (53%-58%), and extra-facial
abnormalities, such as heart malformations (30%-35%), thumb
abnormalities (31%), esophageal involvement (atresia/fistulae,
27%-33%), short stature (30%), vertebral abnormalities (28%)
and epilepsy (27%) (4). Facial dysostoses are subdivided into two
groups: Mandibulo-Fadal Dysostoses (MFD) and Acro-Facial
Dysostoses (AFD), the latter including limb abnormalities (5).
Because there may be associated with spine abnormalities, some
authors have listed MFDM as a pre-axial acrofacial dysostosis,
Guion Almeida type (AFDGA) (5-7).

Since 2012, the diagnosis of MFDM is established based on
clinical features and the screening for a heterozygous pathogenic
varfant of the EFTUD2 gene (17q21.31) coding for the nuclear
ribonucleoprotein component of 116 KDA US protein (8). This
variant occurs frequently de nowe (80%) (4, 9). The main
mechanism of disease is haploinsufficiency (10}, caused in 18%
of cases by a missense substitution, in 38% by a stop-gain
EFTUD2 heterozygous pathogenic variation and in 43% by a
splice site variation {4, 11). No genotype-phenotype correlations
in patients with EFTUD2 heterozygous pathogenic variations
have been identified (8, 12).

Regarding deformities of the external ear in MEDM, Lines et al.
(3, 8) described microtia (grades I-1II), abnormalities of the
superior helix and antihelix, p::aun'n:u]ar Lags and auditurj' canal
atresia/stenosis. The posterior-inferior margin of the lobule can
have a right-angle (“squared-off”) configuration (3, 8, 13).

The main differential diagnoses of MFDM are other
mandibulofacial dysostoses — ie, Nager type Acro-Facial
Dysostosis (NAFD), Postaxial acrofacial dysostosis Miller type,
and Treacher Colling (TC) syndromes — and CHARGE
syndrome (14, 15). MFDM patients are often misdiagnosed
within this spectrum. Distinguishing MFDM ears from CHARGE
ears can somelimes be tricky, and EFTUD2 heterozygous
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pathogenic variation sereening is recommended in patients with
unusual forms of CHARGE syndrome (14).

Based on these clinical questions, the three objectives of this
study were: (1) objectively determine the phenotype of pinna
malformations in MFDM using geometric morphometrics and
machine learning techniques vs. controls (design Ne 1), (2)
compare the ears of MFDM patients with ears from the main
differential diagnoses, with or withoul controls (respectively
design MNe 2.1 and N 2.2) and (3) compare phenotypes from the
different genotypes causing MFDM (design Ne 3).

2. Material and methods
2.1. Training set

We included pictures from the photographic database of the
Maxillofacial surgery and Plastic Surgery department and from
the Medical genetics department of Hipital Necker—Enfants
Malades (Assistance Publique—Hdpitaux de Paris), Paris, France.
This database contains 594,000 photographs fram 22,000 patients
followed in the department since 1981. All photographs were
taken by a professional medical photographer using a Nikon
D7000 device in standardized positions.

We included retrospectively and prospectively, from 1981 1o
2023, all profile pictures of patients diagnosed with MFDM, TC,
NAFD and CHARGE syndromes, with a wisible pinna
(Figure 1). The photographs were not calibrated. All patients
had genetic confirmation of their syndrome. We excluded
patients with ear reconstruction surgery. Multiple photographs
per  patient  corresponded  to  different  ages.  Duplicate
photographs were excluded.

Non-syndromic  children were  selected among  patients
admitted for wounds, trauma, infection and various skin lesions,
without any record of chronic conditions. More precisely, follow-
up for any type of chronic disease was considered as an
exclusion criterion. The reports were retrieved using Dr
Warchouse (16). For each patient, right and left sides were
included.

The study was approved by the CESREES (Comité Ethique et
Scientifique pour les Recherches, les Etudes et les Evaluations
dans le domaine de la Santé, Me 4570023bis) and by the CNIL
(Commission Nationale Informatique et Libertés, Ne MLD/MFIS
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AGLURE 1

AR221900). Informed and written consents were obtained from the
legal representatives of each child, or from the patient himself if he

was of age.

2.2. Validation set

A fully independent validation set was designed using publicly
available data published in the literature. We included patients with
MEFDM (6, 14, 17), NAFD (18-20), CHARGE syndrome (21-24)
and TC syndrome (25, 26); all had genetic confirmation of their
syndromes.

We also retrieved ear photographs of these syndromes of
interest from the databases of the Maxillofacial surgery and/or
Genetics  departments of the University Hospitals of Lille
(France), Montpellier (France), Nantes (France) and the King
Chulalongkorn Memorial Hospital in Bangkok (Thailand). None
of the patients in the validation set were present twice, and none
were from the training set. For the control group, we selected a
group of photographs from our local database, without any
redundancy with the training set, using similar inclusion eriteria.

We extracted data on age at the time of the photograph and
gender. We excluded patients with no information on the
contralateral ear to take into account asymmetry or severity.

All photographs in the wvalidation group were manually
annotated by two independent raters (QH and MD), blinded for
the diagnosis. The ICC (Intraclass Correlation Coefficient) was
computed. ICC values greater than 0.9 corresponded to excellent
reliability of the manual annetation (27).

2.3. Landmarking

We used an available template (28) based on 55 landmarks
placed on the outer helix, the antihelix, the lobe, the tragus, the
antitragus, the helix, the crus helicis, and the concha. We
developed an automatie annotation model trained on 1,592
manually annotated ear photographs following a pipeline
including: (1) a Faster B-CNN (Convolution Neural Network) to
detect ears on the pixels of lateral face photographs and (2) a
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patch-AAM (Active Appearance Model), to aulomatically place
landmarks.

The Fast RCNN model (29) was trained on 5,154 ear
photographs after data augmentation (1,718 images and their
+10° and =107 rotations), with a learning rate of 0.001, a batch
size of 4, a gamma of 0.05 and 2,000 iterations. The patch- AAM
was trained on 1,221 ear photos, after 50 iterations, with a
Lucas-Kanade optimization  (30). The Faster R-CNN  was
developed in Pytorch on Python 3.7 (31). The patch-AAM was
developed using the menpo library on Python 3.7 (32). These
two methods and the choice of hyperparameters have been
deseribed in a previous report by our team (33).

Each automatically annotated photograph was checked by the
first author (QH) and landmarks were manually re-positioned
when necessary, using landmarker.io (34).

To ensure a uniform distribution of landmarks along the curves
of the ear (outer helix, inner helix, antihelix, concha), anatomical
landmarks were transformed into sliding semi-landmarks using
the geomorph package on R (35). Landmarks corresponding to
the antihelix were removed because Hennocq et al. (33) showed
that they were not reproducible between two annotators.

Ears were finally annotated based on 41 anatomical landmarks
and semi-landmarks, placed automatically and double-checked

manually.

2.4. Geometric morphometrics

We performed Generalized Procrustes Analysis (GPA) (36)
on all landmark clouds using the geomorph package on R. Since
the data were uncalibrated photographs, ear sizes were not
available: shape parameters only were assessed and not centroid
slzes.

Procrustes  coordinates were processed using  Principal
Component Analysis (PCA) for dimension reduction (37): 8
principal components (PC) accounting for more than 90% of the
global variance were retained.

To take into account associated metadata (age and gender) and
the fact that we had included more than one photograph per
patient {that is the non-independence of the data), a mixed
maodel was designed for each principal component. The variable
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to be explained was PC, with age and gender considered as
explanatory variables. A random effect on age and individuals
was introduced. The equation of the mixed model was:

PCy ~ a4 age 4 g:mlrr.ﬂz age By + By
where age,, corresponded to a random slope for age per
individual, and B Was a random error term. We did not use an
interaction term between age and gender as it did not increase
the likelihood of the model. Age, gender and ethnicity are
significant factors in dysmorphology because they influence the
diagnosis, and must therefore be taken inte account (38).

2.5. Asymmetry and severity of microtia

Accounting for the heterogeneity of external ear anomalies was
difficult. We graded microtia in stages I-IV according to the Marx
classification (39). Only grade I ears could be annotated, as the
main anatomical structures were missing in grades II, IIT et IV.
However, the frequency of ears >grade I had to be considered for
each disease group as it was a polential diagnostic feature.
Information on the left/right asymmetry was also included as it
could have been variable according to syndromes.

The overall severity for each patient was defined as the sum of
microtia grades on each ear. Asymmetry was guantified using a
mixed scale ranging from 0 to 3, corresponding to the
subtraction of the left and right microtia grades. A high score
m:po:nded o higll lcﬂ,l"righl asymmetry. For bilateral grade 1
cars, we computed an asymmetry index based on ﬂuclua.l.i.ng
asymmetry (40, 41}, normalized between 0 and 1. A patient with
two grade 11 ears had a symmetry score of 0. A patient with one
grade 11T ear and one grade [ ear had a symmetry score of 2. A
patient with two grade [ ears had an asymmetry score
corresponding to his normalized asymmetry index, ranging
between 0 and 1.

The severity and asymmetry scores were compared between
different groups using mixed linear models to take into account
repeated data per patient. The model coefficients for each group
were compared to 0 by Student’s t tests. The significance level
was set at p < 0.05,

2.6. Uniform manifold approximation and
projection (UMAP) representations

The residuals gy were represented using UMAP (42), a
nonlinear dimension reduction technique for data visualization.
Each design was plotted with and without the severity and
asymmetry scores. A k (local neighborhood size) value of 15 was
used A cosine metric was introduced to compute distances in
high dimensional spaces: the effective minimal distance between
embedded points was 1075, The three conditions of UMAP,
namely uniform distribution, local constancy of the Riemannian
metric and local connectivity were verified. UMAP analyses were
performed using the package wmap on R (43).
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2.7. Machine learning models and metrics

The landmark clouds were superimposed with the previous
generalized Procrustes analysis and PCA. With the metadata {age
and gender), the residuals £,; were reported for each PC and
each ear of the validation group. The inputs to the model were
the residuals from the linear models described above.

We used XGBoost (eXtreme Gradient Boosting), a supervised
machine learning classifier, for all the analyses (44). We set a
number of hyperparameters to improve the performance and
effect of the machine ].ca.min.g model: Iv:':a.n'.ling rate = 0.3, gamma
=0, maximum Lree dcpl]:'l:ﬁ. We s:parated the dataset into a
training set and a tlesting set, and a 5-fold cross-validation was
used to define the ideal number of iterations to avoid overfitting,
The model with the lowest logloss-score was chosen for analysis.
The chosen model was then used on the independent validation
sel to tlest performances, by plotting accuracy, sensitivity,
specificity, Fl-score, precision and recall, AUC (in a one vs. all
design). The ROC (Receiver Operating Characteristics) curves
were plotted in R using the plofROC package (45).

3. Results

3.1. Training set

The training sel contained 1,592 ear photographs,
corresponding to 550 patients; 52% of patients were female and
the mean age was 7.2 £ 5.9 years, ranging from 0 to 60.7 years.

We included 1,296 photographs of control ears, corresponding
to 471 patients; 53% of controls were female, with a mean age of
72 +54 years.

The MFDM group included 105 photographs from 31 patients,
all genetically confirmed (EFTUD2 heterozygous pathogenic
variations); 52% were female and the mean age was 9.2+9.8
years. Regarding ear aplasia, 92% of the ears were normal or
grade I, 3% were grade 22, 5% were grade II1, and 0% was grade IV.

The NAFD group included 33 pictures from 9 patients, all
genetically confirmed (SF3B4), with 56% females, and a mean
age of 11.8 £ 8.8 years. All ears were normal or grade L.

We included 70 photographs corresponding to 15 patients in
the TC group. The mean age was 5.5+ 4.2 years and 40% were
female. All had genetic confirmation (TCOF! or POLRID).
Eighty percent of the ears were normal or grade I, 17% grade II,
3% grade I11, and 0% grade IV.

The CHARGE group included 88 photos from 24 patients; 42%
were female and mean age was 5.1 £ 5.9 years. All were genetically
confirmed (CHD7). All ears were normal or grade I (Table 1).

In the MFDM group, 11 out of 31 patients (35%) had a
heterozygous pathogenic variation in a splice site of EFTUD2.
One of these patients had a Lys620Asn variant (1860G =C)
which could be considered as a splice site variation and not as
missense (35). Nine out of 31 patients (29%) had a frameshift
EFTUD2? heterozygous  pathogenic  variation, 7/31 (23%) a
nonsense variation, and 4/31 (13%) an intragenic deletion. Na
patient had a missense varation (Supplementary Table S1).
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TABLE 1 Description of the training set population.

Controls MFDM ( CHARGE

N (ears) 1,592 1,296 105 33 0 88

N (patients) 550 an 31 3 15 2

Gender

Female | e zw) | 511471 (53%) 1631 (52%) | 5/9 (56%) 6115 (40%) [ 1024 pazm)

Age

Mean £ 5D 72£59 7254 92598 115488 55842 51559
Median 6.9 7.3 50 95 53 65

“Min 0o 0l 0o 00 [ T g o
Max 607 0.7 96 135 172 26
Identified pathogenic genetic variation HA 31731 (100%) %9 (100%) 15715 (100%) 24124 (100%)
Grade of aplasia
o-1 | 1,796/1 296 {lm“] 977105 (92!’:] 3333 (lm] S6{70 (80%) i BE/BE [100%)
2 | 1,296 (0%) 37105 (3%) 0/33 (%) 70 0m% | 0/88 (0%)
3 ) 1,296 (0%) 5/105 (5%) /33 (%) 2770 (3%] /88 (0%)
_I._ . 12546 (0%) i 0105 (0% -l].l'33 (Ol B O70 {0%) /88 (0%)

MFDM, mandibulo-facial dysosdodis with microcephaly, NAFD, nager type scro-facial dysosiesis; TC, ireacher colling, CHARGE, coloboma, heart defect, afresia choanse,

retarded growdh and development, genital hypoplasia, ear anomabes (dealness; SD, standand desiatan.

Average models per group were designed afier Procrustes

3.2. Validation set

transformation, and compared (Figures 2, 3). Ears in the MFDM
group had a clockwise rotation and a vertical shift of the concha
(Figure 2) when compared to controls. Previously described
features—thickened helix, enlarged and square lobe—were also

reported.

We extracted a total of 48 patients completely independent of
the training set, with only one photograph per ear per patient.
Severity and asymmetry scores were computed and only one side
was then randomly selected. The validation set included 11
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Comparison of average MFDM (red) and the main differential diagnoses:
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Procrustes transformation. Wectors (A, €. El represent distances
betwean MFDM mean landmarks and other groups mean landmarks
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MEDM patients (23%), 2 NAFD (4%), 6 TC {13%), 8 CHARGE
{17%) and 21 controls {44%) (Supplementary Table $3). We did
not have access to the other ear for NAFD patients in the
validation set and therefore the asymmetry and severily scores
were not obtained.

1CC was 0991 between the two annotators and the reliability of
the annotation was therefore considered as excellent (27).

3.3. Severity and asymmetry

Severity and asymmetry scores were compared between groups.
In design Ne 1, TC ears were statistically maore severely affected (p
<0.001). CHARGE and contral groups had lower severity grades
(p=0027 and p<0001, respectively). compared to MFDM.
Control ears were less asymmetric (p<0.001) than MFDM ears.
CHARGE ears were less asymmetric than MFDM ears in design
Ni 2.2 (Supplementary Table 52).

3.4. UMAP representations

Patients were clustered using UMAP (Figure 4). MFDM
patients were distinet from controls (design Ma 1, Figure 4A),
and CHARGE patients, but not from NAFD and TC patients
(designs Ne 2.1 and Na 2.2, Figures 4B,C).

3.5. Machine learning models and metrics

3.5.1. Design Ne 1

The best performances were obtained without integrating the
asymmetry and severity parameters, after 114 iterations. The
AUC was 0.985 in the training set (Figure 5A). Patients could be
classified inte MFDM or control groups in the validation set
with a balanced accuracy of 0969 [0.838-0.999] (p<0.001) and

FIGURE 4

UMAP representations for designs Ml (Al N 2.1 (B) and M 2.2 (Cl, including severity and asymmetry parameters. Each color corresponds to a patient
group. MFDM, Mandibulo-Facial Dysostosis with Microcephaly: MAFD, Mager type Acro-Facial Dysostosis; TC, Treacher Collins; CHARGE, Coloboma,
Heart defect, Atresia choanae, Retarded growth and development. Genital hypoplasia, Ear anomaliesfdeafness
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Empirical ROC curves for designs M& 1 {A), M 2.1 (B) and »& 2.2 (C). MFDM, Mandibulo- Facial Dysostosis with Microcephaly; NAFD, Nager type Acro-Fadial
Dysostosis; TC, Treacher Collins; CHARGE, Coloboma, Heart defect, Atresia choanae, Retarded growth and dewelopment, Genital hypoplasia, Ear
anomalies/deafness.

an AUC of 0975 (Table 2). Only one patient was misclassified
(Table 3).

3.5.2. Design Ne 2.1

The best performances were obtained by integrating the
asymmetry and severity parameters. The classification into
MFDM, TC, CHARGE and control groups in the validation set
was optimized after 76 iterations. The AUC was 0912 for
MFDM, 1.000 for controls, 0.855 for CHARGE, 0.772 for NAFD
and 0846 for TC in the training set (Figure 5B). On the
validation data, the overall balanced accuracy was 0.811 [0.648-
0.920] (p=0.002). The balanced accuracy was 0769 for the
classification into MFDM, 0.721 for TC, 0.752 for CHARGE and
0.938 for controls. AUC in the validation set was 0.837 for
MFDM, 1.000 for controls, 0.857 for CHARGE and 0.500 for TC
(Tables 4, 5).

TABLE 2 Classification results on the validation set for design M 1

i Roat [0 GE-0.999] pr< B0~
Sensitivity (5¢) 1000

Specificity (Sp) 0.909

Balanced Accuracy 0954
._AI._TC__ 0.975

Se, Sensitivity, Sp, Specificity.
*Statistically significant test result (p < 0.05)

TABLE 3 Confusion matrix on the validation set for design M: 1.

Reference

MFDM Control

MFDM, mandibulo-facial dysostosis with microcephaly.
Bolded vatees denote True Pasitives [TP).
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TABLE 4 Classification results on the validation set for design M 2.1,

Overall {mukticlass design)
| Accuracy 0.811 [0.548-0.920] p=0.002"
Binary (one-vs-all design)
| Sensitivity (Se) MEDM 0571

[ Contral I 1.000

CHARGE 0571

o 0500

[ Specificity (sp) MFDM 0967
Contral 0875

CHARGE 0933

| TC 0943
[Balanced Accuracy | MEFDM 0769
Contral 0938

CHARGE 0752

IC 07

[ave MEDM 0837
Contral 1.000

CHARGE 0857

K- 0500

MFDM, mandibulo-facial dysostosis with microcephaly; TC, ftreacher collins,
CHARGE, coloboma, heasrt defect, atredia choanse, retarded geowth and
development, genital hypoplasia, ear anomalies/deafness.

“Statistically sgraficant test resull (p<0.05)

TABLE 5 Confusion matrix on the validation set for design h: 2.1,

Reference

MFDM Control CHARGE TC

| Prediction | MFDM 1 0 o ‘
Control 0 11 | 3 | o

" CHARGE | 1 e [ | |

TC | 2 [ | a '1"|

MFDM, rrandibulo-lacial dysostosis with micrecephaly, TC, treacher colling
CHARGE, codoborma, heart defect alredia choanse, retarded growth and
development, genital hypoplasia, ear anomalies/deafness

Bolded values denote True Pasitives (TP
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3.5.3. Design Ne 2.2

The best performances were obtained by integrating the
asymmetry and severity parameters. The classification into MFDM,
TC and CHARGE groups in the validation set was optimized after
91 iterations. The AUC was 0974 for MFDM, 0.889 for CHARGE,
0.801 for NAFD and 0914 for TC in the training set (Figure 5C).
On the validation data, the overall balanced accuracy was 0.813
[0.544-0960] (p=0.003). With this classifier, the balanced accuracy
was 0944 for the dassification into MFDM, 0873 for CHARGE
and 0.500 for TC. AUC in the validation set was 1.000 for MFDM,
0969 for CHARGE and 0.500 for TC (Tables 6, 7).

3.5.4. Design Mt 3

AUC was 0.602 [0.483-0.734] (p = 0.370) on the training set. This
classification was not statistically significant and was therefore not
tested on the validation set. The UMAP representation did not find
any clusters based on EFTUD2 heterozygous pathogenic variation
type and site {Supplementary Figure S1).

4. Discussion

Applications of machine learning are increasing in healthcare
(46—49). The field of dysmorphology has been transformed by the

TABLE 6 Classification results on the validation set for design M 2.2

Overall {multiclass design) |

Accuracy 0.813 [0.544-0.960] p=0.003"
Binary (onevs-alldesign) |
Sensitivity (Se) MFDM 1.000
CHARGE 0.857
TC 0.000
| Specthicity (5p) MFDM 0889
| CHARGE 0889
T ' 0s9
| Batanced accuracy MEDM 0.9
CHARGE 0.573
TC 0.464
AUC MFDM ' Lm0
CHARGE 0.969
E-EE 0.500

MFDM, Mandibulo-Facisl Dysostasic with Micraeephaly: TC, Trescher Collins;
CHARGE, Coloboma, Heart defect, Atresia choanse, Retarded grewth and
sevelopment, Genital Fypoplasa, Ear anormalies/dealneds.

*Statistically cignificant test result (p < 0.05),

TABLE 7 Confusion matrix on the validation set for design M 2.2,

Reference

MFDM CHARGE
| Prediction | MFDM 7 [ 0 1
LEHARGE. | O | & | -1
T o 1 0

MFDM, mandibula-facial dysestesis with mecrecephaly, TC, trescher collins,
CHARGE, coloborma, heart defect, alresis choanse, retarded growth and
development, genital hypoplasia, ear anomabes/deafness.

Bolded vabees denote True Pasitives [TF).
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framework for genetic syndrome classification called DeepGestalt
(50), produced by the Face2Gene group. Publications comparing
human performances 1lo DeepGestalt performances
flourishing (51-54), and some authors state that digital tools
provide better resulls than human experts in terms of diagnosis.
We do not believe that Artificial Intelligence (Al) algorithms
can fully replace the experience of an expert practitioner, but
Al-based tools can  considerably increase  diagnestic
performances, and also contribute to the diffusion of specialized
expertise. However, as in all deep learning approaches,
DeepGestalt  predictions are tricky to  explain  (50): the
phenotypic traits leading to diagnosis cannot be traced.
Moreover, only the frontal facial pictures are considered within
this framework, that does not take into account the profile
pictures and external ears. To our knowledge, we report the
first machine learning classifier based on external ear shape.
Even though the diagnosis of a given syndrome is never fully
based on ear anomalies, this anatomical region is a major
source of distinetive phenotypic features in a large array of
syndromes (42-44).

Ear phenotype in MFDM has been previously reported.
Guion-Almeida et al. described 4 Brazilian children with small
ears, a large lobe, and preauricular skin tags in years 2000 (55)
and 2006 (1). In 2009 (2), the same team described small and
cup-shaped ears with atretic external auditory canal in twao
ather cases. Smigiel et al. (56) reported three MFDM cases with
asymmelric microtia, a thickened helix, and protruding ear
lobes. Lehalle et al. (17) described abnormalities of the external
ear in 100% out of 34 MFDM cases, with minor abnormalities
in 29/34 cases (squared, flattened and externally deviated ear
lobe), asymmetric ears in 24% of cases and preauricular tags in
33% of cases. Voigt et al. (6), Huang et al. (4). Lines et al. (8)
et Yu et al. (57) described similar abnormal pinnae. We could
not find any information in the literature on the frequency of
grade >I ear invalvement in MFDM, or on the asymmetry of
microtia.

In TC, Katsanis & Jabs (58) reported absent or small,
malformed, sometimes rotated ears. Abdollabi Fakhim et al. (59)
compared NAFD and TC without mentioning ears. Bernier et al.
(18) described pinnae malformations in NAFD without providing
further details. We did not find detailed phenotypic descriptions
af the external ear in TC and NAFD in the literature.

In contrast, Davenport et al. (60) described the ear phenotype
of CHARGE ears in greater details. CHARGE ears were small, wide
and ‘looked as if they were stretched or bent' (60). The most
distinetive feature according to these authors was the triangular
shape of the concha and a discontinuity between the antihelix
and the antitragus. Davenpart et al (60) also explained that
many patients had small or absent lobes, with significant left/
right asymmetry.

We thus report new features for MFDM ears: clockwise rotation
and vertical shifl of the concha (Figure 2). We confirm previously
described features such as helix thickening, and enlarged and
squared lobes. MDFM ears were also more asymmetric than
contrals. These overall features were shared with the NAFD and
TC groups. Microtia grades were nevertheless higher in TC.

are
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CHARGE ears had a specific shape, with a triangular concha, a
smaller but wider overall size with a thinner helix and a smaller
lobe. In brief, the shape of the pinna can be considersd as a
relevant feature to differentiate MFDM from CHARGE.

The classification algorithm from design M 1 provides an
acCUracy of 96.9% for dish'ngujshimg MDFM from controls, with
only 1 patient misclassified in the validation sel. with poorer
results when using multi-elass classification, which provides an
overall balanced accuracy of 81.1% in design Ne 2.1 (MFDM and
its differential diagnoses + controls) and 81.3% in design Me 22
(MFDM and its differential diagnoses). These resulls account for
the difficulty to diagnose MFDM from NAFD and TC. On the
other hand, our results were satisfactory for detecting CHARGE
ears, with an AUC reaching 85.7% in design Ne 2.1, and 96.9%
in design Ne 22 'We could not detect any genotype-phenatype
correlations (design Ne 3).

The clinical use of automatic ear-based diagnosis can be
highlighted based on a preliminary case study. A non-premature
female child aged 9 days was admitted in fetal pathology with
bilateral choanal atresia, inner ear malformations, agenesis of the
acoustic-facial bundle and cerebellopontine hypoplasia. She had
died within a few days after birth. CHARGE syndrome was
confirmed post-mortem by a heterozygous de nove pathogenic
variation in the CHD? gene (c. 4353 + 1G = A). The patient also
carried a helerozygous de novo variation of unknown significance
in the EFTUD2 gene (c 1954G > A, p.Asp652Asn). Our ear-
based model on the ears of this patient (with a XGBoost
classifier) proposed: CHARGE syndrome 84%, control patient
11%, MFDM 3%, NAFD 2% or TC 1% (Figure 6), supporting
the d.ia.g;nmiis of CHARGE syn.dr:‘.!mr. and shuw:i.ng little
tendency towards MFDM ear. As  systematic EFTUDZ
heterozygous pathogenic variation screening being currently
recommended in unusual CHARGE cases [9], our model, with
further clinical validation, could be used as a elinical support for
direcling genetic investigations.

Here we report the first attempt of automatic ear-based
diagnosis in craniofacial dysmorphology. The algorithms we

Frontiers in Pediatrics

propose have been tested on independent and international
validation sets involving rare disease centers in Europe and
Asia. Validation data was nevertheless limited for NAFD,
highlighting the need for data sharing when designing machine
learning-based clinical tools. Al-based automatic facial diagnostic
algb.rilhms. im:luding prbfll: and ear analysis, are pam.:ful
approaches in supporting praclitioners in diagnostic processes.
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5.2 Al-based diagnosis in fetal pathology using external ear shapes

We applied the previous model to a new validation population, corresponding to fetuses.
Facial analysis of fetuses is crucial for antenatal and post-mortem diagnosis (118). Prenatal
abnormalities of the external ear are common in many syndromes (119,120). For instance,
Nunez-Castruita et al (121) reported that the insertion position of the external ears supports
the diagnostic process in genetic disorders, as fetuses with low set ears are at greater risk of
congenital anomalies. Similarly, Sacchini et al (122) recommended the analysis of the length
of the external ear in the antenatal diagnosis of Down syndrome.

The aim of this study was to test the model described in the previous section on photographs
of fetal ears, with the aim of supporting the medical genetics diagnosis. The two genetic
syndromes studied were Mandibulo-Facial Dysostosis with Microcephaly (MFDM) and
CHARGE syndromes. These two syndromes present, as explained previously, characteristic
external ear phenotypes (123,124), enabling post-mortem diagnosis.

We tested the trained model on photographs of fetuses from the Fetal pathology department of
Hopital Necker - Enfants Malades. Control came from a large data set of fetuses including
intra uterine fetal death, termination of pregnancy and late miscarriage, autopsied between
2022 and 2023. From this data, 14 subjects were selected according to several criteria. We
excluded: macerated fetuses, fetuses with polymalformative syndrome (except isolated
malformation), fetuses with dysmorphic features, fetuses with chromosomal abnormalities,
and fetuses with oligoamnios. Post-mortem examination was performed in the Fetal pathology
department following a standard protocol including frontal and profile X-rays, photographs,
external and internal examination, and histological assessment (125). Each fetus was
photographed using a Nikon D7000 device. The associated metadata were reported, i.e., term
and gender. The term was then converted to age (then negative) by subtracting the theoretical

term (41 SA) from the term of the fetus for input into the linear models previously
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described. We included 14 photographs of control ears, corresponding to 14 fetuses; 71% of
controls were female, with a mean term of 27 +/- 7.2 WA. Controls were one late miscarriage,
two non-macerated intra-uterine fetal death without malformation in post-mortem
examination, and eleven terminations of pregnancy (ten for isolated cardiopathy and one for
low urinary tract obstruction without oligoamnios). The MFDM group included 12
photographs from 12 fetuses, all genetically confirmed (EFTUD?2 heterozygous pathogenic
variations); 50% were female and the mean term was 31 +/- 4.5 WA. The CHARGE group
included 25 photos from 25 fetuses; 60% were female and mean term was 31 +/- 4.5 WA. All
were genetically confirmed (CHD?7 variation).

37/51 (72.5%) of the fetuses were correctly classified (Table 1). The overall accuracy was
therefore 72.6% (58.3 - 84.1%, p < 0.001), and the balanced accuracies were 76.4%, 86.2%,
and 74.9% respectively for CHARGE, MFDM and control fetuses (Table 2). The AUC was

86.8%, 90.3%, and 87.5% respectively for CHARGE, MFDM and control fetuses.

Reference
CHARGE MFDM Control

s CHARGE 18 ] 4
8
5 MFDM ] 9 0
X~
& Control 6 2 10

Table 3. Confusion matrix for the model predictions on the validation set. The green
boxes corresponded to true positives (correctly classified fetuses). MFDM = Mandibulo-
Facial Dysostosis with Microcephaly; CHARGE = Coloboma, Heart defect, Atresia choanae,

Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness.
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Overall (multiclass design)

Accuracy

Binary (one-versus-all design)

72.6% [58.3 - 84.1%] p <0.001 *

Sensitivity (Se) CHARGE 72.0%
Control 71.4%
MFDM 75.0%
Specificity (Sp) CHARGE 80.8%
Control 78.3%
MFDM 97.4%
Balanced Accuracy CHARGE 76.4%
Control 74.9%
MFDM 86.2%
AUC CHARGE 86.8%
Control 87.5%
MFDM 90.3%

Table 2. Final model performances on the validation set. AUC = Area Under the Curve.

* Statistical significance compared to the No Information Rate (NIR) = 0.490.

.
e A
e

Groups
® CHARGE val
® CHARGE train
® Control val
Control train
*  MFDM val
©  MFDM train

0.50

True positive fraction

AUC (MFDM) = 0.903

AUC (CHARGE) = 0.868

050 075 0.90
False positive fraction

1.00
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Figure 9. A. UMAP visualization for the training set (children) and validation set
(fetuses). Note that the MFDM cluster is more distinct than the two other ones. B. ROC
curves for the validation data for each syndrome, with the associated AUC (in a one-

versus-all design). AUC = Area Under the Curve.

We were able to prove the efficiency of an automatic detection model for external ear
anomalies of two genetic syndromes versus controls, trained on children and tested on fetuses.
External ears alone are not sufficient for antenatal diagnosis. Prospects based on our current
results are (1) to integrate information on the face (frontal and profile views) in order to offer
a comprehensive diagnostic support model for fetal pathologists and (2) to validate the
performances of the model on 3D ultrasound data to include our approach in antenatal

diagnosis. This publication is currently under review.
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Abstract. External ear analysis in fetuses provides key
clinical elements for antenatal and post-mortem diagnoses.
Here we trained an automatic phenotype assessment tool to
recognize syndromic ears in two syndromes, CHARGE and
Mandibulo-Facial Dysostosis  Guion  Almeida  type
(MFDGA), versus controls. We trained an automatic model
on all profile pictures of children diagnosed with genetically
confirmed MFDGA and CHARGE syndromes, and a cohort
of control patients, collected from 1981 to 2023 in Necker-
Enfants Malades Hospital (Paris) with a visible external ear.
The model consisted in  extracting landmarks from
photographs of external ears, in applying geometric
morphometry methods (Procrustes transformation) and in
classification using an eXtreme Gradient Boosting
(XGboost) model. The approach was then tested on
photographs of two groups of fetuses: controls or with
CHARGE and MFDGA syndromes. The training set
contained a total of 1592 ear photographs, corresponding to
550 children. The validation set contained a total of 51 ear
photographs, corresponding to 51 fetuses. The overall
accuracy was 72.6% (58.3 - 84.1%, p < 0.001), and 76.4%,
74.9% and 86.2% respectively for CHARGE, control and
MFDGA fetuses. The AUC were 86.8%, 8§7.5% and 90.3%
respectively for CHARGE, controls and MFDGA fetuses.
We report the first automatic fetal phenotyping model, with
satisfactory classification performances. Further validations
are required before using this approach as a diagnostic tool.

Keywords: Al machine learning; dysmorphology: fetal
pathology: external ear; MFDGA:; CHARGE
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Introduction. Applications of machine learning
are increasing in healthcare '*. The field of
dysmorphology has been challenged and
transformed by the framework for genetic
syndrome classification called DeepGestalt °,
produced by the Face2Gene group. Publications
comparing human performances to DeepGestalt
performances are flourishing ®9 and some of them
suggest that digital tools do it better than human
experts in terms of diagnosis. However, these tools
do not currently use any information about the
morphology of the outer ear; andnone of these
tools has yet been tested on fetuses. Even though
the diagnosis of a given syndrome 1s never fully
based on ear anomalies, this anatomical region 1s a
major source of distinctive phenotypic features in a
large array of syndromes '0-12

Facial analysis of fetuses 1s crucial for antenatal
and  post-mortem  diagnosis '".  Prenatal
abnormalities of the external ear are common in
many syndromes !5 For instance, Nunez-
Castruita et al '® report that the insertion position
of the external ears supports the diagnostic process
in genetic disorders, as fetuses with low set ears
are at greater risk of congenital anomalies.
Similarly, Sacchini et al '7 recommend the analysis
of the length of the external ear in the antenatal
diagnosis of Down syndrome.

The aim of this study was (1) to train a tool using
artificial intelligence (Al) methods on photographs
of the external ears of control children and children
with 2 genetic syndromes, and (2) to test this tool
on photographs of fetal ears, with the aim of
supporting the medical genetics diagnosis. The
genetic syndromes studied were Mandibulo-Facial
Dysostosis Guion Almeida type (MFDGA) and
CHARGE syndromes. These two syndromes
present characteristic external ear phenotypes '*'%,
enabling post-mortem diagnosis.

Material and Methods

Training set

We screened the photographic databases of the
Maxillofacial surgery & Plastic surgery and
Medical genetics departments of Hdpital Necker —
Enfants Malades (Assistance Publique — Hopitaux
de Paris), Pans, France. This database contained
594,000 photographs from 22,000 patients
followed in these departments since 1981. All
photographs were taken by a professional medical
photographer using a Nikon D7000 device m
standardized positions.

We included retrospectively and prospectively,
from 1981 to 2023, all profile pictures of patients
diagnosed with MFDGA and CHARGE
syndromes, with a visible external ear (Figure 1).
All patients had genetic confirmation of their
syndrome. We excluded patients with ear
reconstruction surgery.

Control children were selected among patients
admitted for lacerations, trauma, mfection and
various skin lesions, without any records of a
chronic disease. More precisely, follow-up for any
type of chronic disease was considered as an
exclusion criterion. The reports were retrieved
using Dr Warehouse 2 the local hospital data
warehouse. For each patient, right and left sides
were included.

The study was approved by the CESREES (Comuté
Ethique et Scientifique pour les Recherches, les
Etudes et les Evaluations dans le domaine de la
Sante, Ne4570023bis) and by the CNIL
(Commission Nationale Informatique et Libertés,
NeMLD/MFIAR2219000). Informed and written
consents were obtained from the legal
representatives of each child. or from the patient
himself when over 18 years of age.

Landmarking

We used an available template *' based on 55
landmarks placed on the outer helix, the antihelix,
the lobe, the tragus, the antitragus, the helix, the
crus helicis, and the concha. We developed an
automatic annotation model trained on 1592
manually annotated ear photographs following a
pipeline including: (1) a Faster R-CNN
(Convolution Neural Network) to detect ears on
lateral face photographs and (2) a patch-AAM
(Active Appearance Model), to automatically place
landmarks.  Each  automatically  annotated
photograph was checked by the first author (QH)
and landmarks were manually re-positioned when
necessary, using landmarker.io =

To ensure a umform distribution of landmarks
along the curves of the ear (outer helix, inner helix,
antihelix, concha), anatomical landmarks were
transformed into sliding semi-landmarks using the
geomorph package on R %, Landmarks
corresponding to the antthelix were removed
because our team ** has previously showed that
they were mnot reproducible between two
annotators.
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Ears were finally modeled based on 41 anatomical
landmarks and semi-landmarks, placed

automatically and double-checked manually.

Geometric morphometrics
We performed Generalized Procrustes Analysis
(GPA) ¥ on all landmark clouds using the
geomorph package on R *. Since the data were
uncalibrated photographs, ear sizes were not
available: shape parameters only were assessed
and not centroid sizes.
Procrustean coordinates were processed using
Principal Component Analysis (PCA)  for
dimension reduction: § principal components (PC)
accounting for more than 90% of the global
variance were retained.
To take into account associated metadata (age and
gender) and the fact we had included more than
one photograph per patient (non-independence), a
mixed model was designed for each principal
component. A random effect on age and
individuals was introduced. The equation of the
mixed model was:
PCi; ~a+ age.f; + gender.f> + age.
+ Ef.j
where age. 1 ; corresponded to a random slope for
age per individual, and £;; was a random error
term. We did not use an interaction term between
age and gender as it did not increase the likelihood
of the model. A model residual could thus be
plotted for each PC and for each ear,

Uniform Manifold Approximation and Projection
(UMAP) representations

The residuals £;; were represented using UMAP
for wisual clustering, a nonlinear dimension
reduction technique **. A k (local neighborhood
size) value of 15 was used. A cosine metric was
introduced to compute distances in high
dimensional spaces: the effective minimal distance
between embedded points was 1075, The three
conditions of UMAP, namely uniform distribution,
local constancy of the Riemannian metric and local
connectivity were verified. UMAP analyses were
performed using the package umap on R %'

Machine learning models and metrics

The landmark clouds were superimposed with the
previous generalized Procrustes analysis and PCA.
With the metadata (age and gender), the residuals
g; j were reported for each PC and each ear of the
validation group.

We used XGBoost (eXtreme Gradient Boosting), a
supervised machine learning classifier, for all the
analyses **. We set a number of hyperparameters to
improve the performance and effect of the machine
learning model: learning rate = 0.3, gamma = 0,
maximum tree depth = 6. We separated the dataset
into a training set and a testing set, and a 5-fold
cross-validation was used to define the 1deal
number of iterations to avoid overfitting. The
model with the lowest logloss-score was chosen
for analysis. The chosen model was then used on
the independent validation set to test performances,
by plotting accuracy, sensitivity, specificity, F1-
score, precision and recall, AUC (in a one versus
all design). The ROC (Receiver Operating
Characteristics) curves were plotted in R using the

plotROC package >

Validation set

We tested the trained model on photographs of
fetuses from the Fetal pathology department of
Hapital Necker - Enfants Malades. Control came
from a large data set of fetuses including intra
uterine fetal death, termination of pregnancy and
late muiscarriage, autopsied between 2022 and
2023. From this data, 14 subjects were selected
according to several criteria. We excluded:
macerated fetuses, fetuses with polymalformative
syndrome (except isolated malformation), fetuses
with  dysmorphic features, fetuses  with
chromosomal abnormalities, fetuses with
oligpamnios. Post mortem examination was
performed in the Fetal pathology department
following a standard protocol including face and
profile radiographies, photographies, external and
internal examination and histological 3°. Each fetal
profile was photographed using a Nikon D7000
device. The associated metadata were reported, Le.
term and gender. The term was then converted to
age (then negative), by subtracting the theoretical
term (41 SA) from the term of the fetus, for input
into the linear models previously described.

Each affected fetus had genetic confirmation of the
syndrome. Manual landmarking was performed by
the same author (QH), blind to the diagnosis. None
of the fetus in the validation set were present twice
(Figure 1).
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Ears were finally modeled based on 41 anatomical
landmarks and semi-landmarks, placed

automatically and double-checked manually.

Geometric morphometrics
We performed Generalized Procrustes Analysis
(GPA) * on all landmark clouds using the
geomorph package on R *. Since the data were
uncalibrated photographs, ear sizes were not
available: shape parameters only were assessed
and not centroid sizes.
Procrustean coordinates were processed using
Principal Component Analysis (PCA) for
dimension reduction: 8 principal components (PC)
accounting for more than 90% of the global
variance were retained.
To take into account associated metadata (age and
gender) and the fact we had mcluded more than
one photograph per patient (non-independence), a
mixed model was designed for each principal
component. A rtandom effect on age and
individuals was introduced. The equation of the
mixed model was:
PC;; ~a+ age.f; + gender. fi; + age. f5y;
+ & j
where age. f; ; corresponded to a random slope for
age per individual, and £;; was a random error
term. We did not use an interaction term between
age and gender as it did not increase the likelihood
of the model. A model residual could thus be
plotted for each PC and for each ear,

Uniform Manifold Approximation and Projection
(UMAP) representations

The residuals & ; were represented using UMAP
for wisual clustering, a nonlinear dimension
reduction technique . A k (local neighborhood
size) value of 15 was used. A cosine metric was
mmtroduced to compute distances in high
dimensional spaces: the effective minimal distance
between embedded points was 107°. The three
conditions of UMAP, namely uniform distribution,
local constancy of the Riemannian metric and local
connectivity were verified. UMAP analyses were
performed using the package umap on R 2

Machine learning models and metrics

The landmark clouds were superimposed with the
previous generalized Procrustes analysis and PCA.
With the metadata (age and gender), the residuals
£; ; were reported for each PC and each ear of the
validation group.

We used XGBoost (eXtreme Gradient Boosting), a
supervised machine learning classifier, for all the
analyses **. We set a number of hyperparameters to
improve the performance and effect of the machine
learning model: learming rate = 0.3, gamma = 0,
maximum tree depth = 6. We separated the dataset
into a training set and a testing set, and a 5-fold
cross-validation was used to define the ideal
number of iterations to avoid overfitting. The
model with the lowest logloss-score was chosen
for analysis. The chosen model was then used on
the independent validation set to test performances,
by plotting accuracy, sensitivity, specificity, Fl-
score, precision and recall, AUC (in a one versus
all design). The ROC (Receiver Operating

Characteristics) curves were plotted in R using the

plotROC package ¥.

Validation set

We tested the trained model on photographs of
fetuses from the Fetal pathology department of
Hopital Necker - Enfants Malades. Control came
from a large data set of fetuses including intra
uterine fetal death, termination of pregnancy and
late miscarriage, autopsied between 2022 and
2023. From this data, 14 subjects were selected
according to several criterta. We excluded:
macerated fetuses, fetuses with polymalformative
syndrome (except isolated malformation), fetuses
with  dysmorphic features, fetuses  with
chromosomal abnormalities, fetuses with
oligoamnios. Post mortem examination was
performed in the Fetal pathology department
following a standard protocol including face and
profile radiographies, photographies, external and
internal examination and histological *. Each fetal
profile was photographed using a Nikon D7000
device. The associated metadata were reported, Le.
term and gender. The term was then converted to
age (then negative), by subtracting the theoretical
term (41 SA) from the term of the fetus, for mput
into the linear models previously described.

Each affected fetus had genetic confirmation of the
syndrome. Manual landmarking was performed by
the same author (QH), blind to the diagnosis. None
of the fetus m the validation set were present twice
(Figure 1).

Results

Training set

The training set contained a total of 1592 ear
photographs, corresponding to 550 patients (Figure
2); 52% of patients were female and the mean age
was 7.2 +/- 59 years, ranging from 0 to 60.7

years.
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Figure 1. Description of the model steps. and the
training and validation sets. MFDGA =
Mandibulo-Facial Dysostosis Guion Almeida type:
CHARGE = Coloboma, Heart defect, Atresia
choanae, Retarded growth and development,
Genital hypoplasia, Ear anomalies/deafness;

RCNN = Convolutional Neural Network; PCA =
Principal Component Analysis; AAM = Active
Appearance Model; XGboost = eXtreme Gradient

Boosting.

Figure 2. Typical examples of external ear
photographs for each patient group in the training
set (children): controls, CHARGE syndrome and
Mandibulo-Facial Dysostosis Guion Almeida type
(MFDGA). Phenotypes are sometimes not as

pronounced.

We included 1296 photographs of control ears,
corresponding to 471 patients: 53% of controls
were female, with a mean age of 7.2 +/-~ 54
years. The MFDGA group included 105
photographs from 31 patients, all genetically
confirmed (EFTUDZ2 heterozygous pathogenic
variations); 52% were female and the mean age
was 9.2 +/-~ 9.8 years. The CHARGE group
included 88 photos from 24 patients; 42% were
female and mean age was 5.1 +/- 5.9 years. All
were genetically confirmed (CHD7  varation)
(Table 1).

Average models per group were then designed
after Procrustes transformation (Figures 2). The
MFDGA group had a clockwise rotation and a
vertical shift of the concha when compared to
controls. Previously described features - thickened
helix. enlarged and square lobe - were also
reported. In the CHARGE group, we reported
badly hemmed. squared and cup-shaped external

ear, as previously described in the literature 3.

| Toeal Comtrals MFDGA|  CHARGE
Mg | 1592 129% 103 L]
N ipatients) 550 471 L] 4
Gender | Females IRRESO (5| I5LATI (S| 180 (82| 1024 AR
m T
| Mean /- SO T2H-59 TI+R54] 924098 51+-59
| Madian 69 73 50 [X]
| Min 0.0 01 [ o
| Max [ 1y 607 L 214
Identifled pathopenke gencile NA| 3131 (00| 2424 {1P)

Table 1. Description of the training set
population. MFDGA =  Mandibulo-Facial
Dysostosis Guion Almeida type; CHARGE =
Coloboma, Heart defect, Atresia choanae, Retarded
growth and development, Genital hypoplasia, Ear
anomalies/deafness; SD = Standard Deviation.

Validation sef

The wvalidation set contained a total of 51 ear
photographs, corresponding to 51 fetuses (Figure
4); 61% of were female and the mean term was 29
+/- 5.4 WA, ranging from 15 to 39 WA,

We included 14 photographs of control ears,
corresponding to 14 fetuses; 71% of controls were
female, with a mean term of 27 +/- 7.2 WA.
Contrels were one late miscarriage and two non-
macerated intra uterine fetal death without
malformation in post mortem examination and
eleven terminations of pregnancy (ten for isolated
cardiopathy and one low urinary tract obstruction
without oligoamnios). The MFDGA group
included 12 photographs from 12 fetuses, all
genetically confirmed (EFTUD2  heterozygous
pathogenic variations); 50% were female and the
mean term was 31 +/- 4.5 WA. The CHARGE
group included 25 photos from 25 fetuses: 60%
were female and mean term was 31 +/- 4.5 WA, All
were genetically confirmed (CHD?  vanation)
(Table 2).

Classification performances

The optimal performance of the model without
overfitting was obtained after 19 iterations. 37/51
(72.5%) of the fetuses were correctly classified
(Table 3).
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The overall accuracy was therefore 72.6% (58.3 - Reference

84.1%, p < 0.001), and the balanced accuracies CHARGE MFDGA  Control
were 76.4%, 86.2% and 74.9% respectively for % CHARGE 18 { 4
CHARGE, MFDGA and control fetuses (Table 4). g

The AUC was 86.8%, 90.3% and 87.5% E MFDGA 1 9 0
respectively for CHARGE, MFDGA and control Control 6 2 10
fetuses (Figure 5). :

Table 3. Confusion matrix for our model
predictions on the validation set. The green

,"‘_“\ /':_ boxes correspond to true positives (correctly
| A classified fetuses). MFDGA = Mandibulo-Facial
7 \ | I Dysostosis Guion Almeida type; CHARGE =
; e | || [ /.'“ | | Coloboma, Heart defect, Atresia choanae, Retarded
gl / f L, 3 ; , growth and development, Genital hypoplasia, Ear

| i £t anomalies/deafness.

2 /
; N ___._/’ -
Caiitral CHARGE MDA “""'"—""‘"""—'""'-'mj

Accuracy TL6% [58.3 - B4.1%] p<0.001 *

. Binary (one-versus-all design)
Figure 3. Mean shapes after Procrustes Sensitivity (Se) CHARGE TL0%
superimposition for controls, CHARGE, and Conrol T14%
MEDGA MFDGA 75.0%
: Specificity (Sp) CHARGE B0.5%
Control 78.3%
MFDGA 97.4%
Balanced Accuracy CHARGE Thd%
Control T4.9%
MFDGA 86.2%
AUC CHARGE B6R%
Control 87.5%
MFDGA 90.3%

Table 4. Final model performances on the
) validation set. AUC = Area Under the Curve.
Figure 4. Examples of external ear photographs * Statistical significance compared to the No

for each group in the validation set (fetuses): Information Rate (NIR) = 0.490.
control (23 WA), CHARGE syndrome (34 WA)

and Mandibulo-Facial Dysostosis Guion Almeida A
type (MFDGA) (27 WA).
s | . T Comsh| MipA]Caakit
™ (paticnts) 51 14 12 25|
Gender Peiniles st e eazisen| 1aes s
Tewmm (WA}
Bbean +i- S0 29 #- 5.4 27 +5-73 % +i- 4.0 3 +-4.5)
Median 30 27| 20 k]
Tnlvmtifiod pathesimic Mi;'—ii:mi-i&- : & N? 3 |'i-i'z'c_|ci];.]s'3 "isris'él'ﬁhé:‘s; - I =
o o Figure 5. A. UMAP visualization for the
Table 2. Description of the "ﬂh_ﬂmlﬂﬂ set training set (children) and walidation set
P“P“Jﬂt“_m- MFDGA . Mandibulo-Facial (fetuses). Note that the MFDGA cluster 1s more
Dysostosis Guion Almeida type; CHARGE = distinct than the two other ones. B. ROC curves
Coloboma, Heart defect, Atresia choanae, Retarded for the validation data for each syndrome, with
growth and development, Gemital hypoplasia, Ear the associated AUC (in a one-versus-all design).
anomalies/deafness; WA = Weeks of Amenorrhea; AUC = Area Under the Curve.

SD = Standard Dewviation.
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Discussion. We were able to prove the efficiency
of an automatic detection model for external ear
anomalies of two genetic syndromes versus
controls, tramed on children and tested on fetuses.
Performance was satisfactory, with a significant
overall accuracy of 74.9%, and 76.4% and 86.2%
respectively for the specific detection of control,
CHARGE and MFDGA fetuses.

Facial analysis of fetuses is crucial for antenatal
and post-mortem diagnosis . Abnormalities of the
external ear are common in many syndromes 15,
Sondern et al * proposes charts for the size/width
ratio of the prenatal external ear using 3D
ultrasound, and proposes a pathological score in a
fetus with proven Noonan syndrome. These
authors suggest that the external ear is crucial for
the antenatal diagnosis of craniofacial anomalies.
A study conducted by Biard et al ** showed that
neonatal climical examination of children with
CHARGE syndrome revealed abnormal external
ears in 100% of cases, with low set, posteriorly
rotated, symmetrical and badly hemmed. squared
or cup-shaped ears. Other studies 433 also report
a 100% prevalence of external ear anomalies in
this condition. Biard et al. ** therefore stated that
external ear analysis should be considered as the
keystone of antenatal diagnosis im CHARGE
syndrome. The detection rate for these anomalies
1s 48% by ultrasound and 100% by antenatal MRI,
according to the study conducted by Millischer et
al *. Regarding MFDGA, Lehalle et al '* described
abnormalities of the external ear in 100% out of 34
MFDGA cases, with minor abnormalities in 29/34
cases (squared, flattened and externally deviated
ear lobe), asymmetric ears in 24% of cases and
preauricular tags in 33% of cases.

External ear development begins in the sixth
embryonic week with the formation of six
mesenchymal hillocks and is achieved by the tenth
embryonic week. However, the external ear
continues to grow throughout the gestation and 1t is
not until 32 weeks that the ear pinna completes its
migration to the side of the head 7. The
characteristic configuration is  thus
detectable from the 4th month of gestation
onwards, when the auricular hillocks merge and
form the outer ear '**?. The examination of the
fetal ear with 2D ultrasound 1s most informative
between 20 and 24 weeks of gestation and is

currently part of the standard ultrasound screening
Ex

surface

Previous studies on the fetal ear development
consistently showed a positive linear correlation of
both ear length and width with gestational age and
established reference values %, In addition to 2D
ultrasound, 3D ultrasound has proven useful in the
differentiation between normal and abnormal fetal
anatomy of the external ear #142,
Here we report the first automatic fetal
phenotyping model, focused on the external ear.
External ears alone are not sufficient for antenatal
diagnosis. Future prospects based on our current
results are (1) to integrate information on the face
(frontal and profile views) in order to offer a
comprehensive diagnostic support model for fetal
pathologists and (2) to validate the performances
of the model on 3D ultrasound data to include our
approach in antenatal diagnosis.
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5.3 Multi-syndromes classification

5.3.1 Training set

The training set contained 3330 photographs, corresponding to 1086 patients; 47 % of patients
were controls and 53% presented with a syndrome. In the control group, 54% of patients were
females and the mean age was 7.0 +/- 4.6 years. In the patient group, the syndromes were:
Crouzon-Pfeiffer (N = 348, 60%), Kabuki (N = 167, 29%), Treacher Collins (N = 149, 26%)),
Silver Russell (N = 131, 23%), Apert (N = 88, 15%), Muenke (N = 72, 13%), CHARGE (N =

69, 12%), MFDGA (N = 60, 10%), Saethre Chotzen (N = 47, 8%) and NAFD (N = 14, 2%)

(Table 3).
Controls Syndromic patients
N
Consultations 520 (31%) 1145 (69%)
Photographs 1040 (31%) 2290 (69%)
Patients 510 (47%) 576 (53%)
Gender
Female 279 (54%) 513 (45%)
Male 241 (46%) 632 (55%)
Age
(years)
Mean +/- SD 7.0 +/- 4.6 59+/-8.4
Median 7.1 2.9
Min 0.2 0
Max 22.1 80.0
Ethnicity
African 28 (5%) 101 (9%)
Asian 9 (2%) 28 (2%)
Caucasian 483 (93%) 1016 (89%)
Syndrome
Apert 88 (15%)
CHARGE 69 (12%)
Crouzon Pfeiffer 348 (60%)
Kabuki 167 (29%)
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MFDGA 60 (10%)
Muenke 72 (13%)
NAFD 14 (2%)
Saethre Chotzen 47 (8%)
Silver Russell 131 (23%)
Treacher Collins 149 (26%)

Table 3. Description of the training set population. CHARGE = Coloboma, Heart defect,

Atresia choanae,

Retarded growth

and development,

Genital

hypoplasia,

Ear

anomalies/deafness; MFDGA = Mandibulo-Facial Dysostosis Guion Almeida type; NAFD =

Nager type Acro-Facial Dysostosis; SD = Standard Deviation.

5.3.2 Validation set

The training set contained 216 photographs, corresponding to 108 patients; 18 % of patients

were controls and 82% presented with a syndrome. In the control group, 58% of patients were
p y

females and the mean age was 6.1 +/- 4.5 years. In the patient group, the syndromes were:

Crouzon-Pfeiffer (N = 27, 30%), Apert (N = 13, 15%), Kabuki (N = 11, 12%), Muenke (N =

7, 8%), Saethre Chotzen (N = 7, 8%), CHARGE (N = 6, 7%), Silver Russell (N = 6, 7%),

MFDGA (N =5, 6%), Treacher Collins (N =5, 6%) and NAFD (N = 2, 2%) (Table 4).

Controls Syndromic patients

N

Consultations 19 (18%) 89 (82%)

Photographs 38 (18%) 178 (82%)

Patients 19 (18%) 89 (82%)
Gender

Female 11 (58%) 51 (57%)

Male 8 (42%) 38 (43%)
Age
(years)

Mean +/- SD 6.1 +/-4.5 53+/-5.9
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Median 6.6 3.6

Min 0.1 0.0
Max 15.8 33.5
Ethnicity
African 1 (5%) 7 (8%)
Asian 1 (5%) 0 (0%)
Caucasian 17 (90%) 82 (92%)
Syndrome
Apert 13 (15%)
CHARGE 6 (7%)
Crouzon Pfeiffer 27 (30%)
Kabuki 11 (12%)
MFDGA 5 (6%)
Muenke 7 (8%)
NAFD 2 (2%)
Saethre Chotzen 7 (8%)
Silver Russell 6 (7%)
Treacher Collins 5 (6%)

Table 4. Description of the validation set population. CHARGE = Coloboma, Heart defect,
Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear
anomalies/deafness; MFDGA = Mandibulo-Facial Dysostosis Guion Almeida type; NAFD =

Nager type Acro-Facial Dysostosis; SD = Standard Deviation.

5.3.3 Results of the multi-syndrome classification model

The Procrustes representations showed the morphological characteristics classically described
in the literature for these 10 syndromes (Figure 10). In addition to the facial features on
frontal views, the profile views and external ears were important for the phenotypic
description of the syndrome, in particular the brachycephaly found in the Apert, Crouzon-
Pfeiffer, Muenke and Saethre Chotzen syndromes, the large, prominent ears of Kabuki

syndrome, the triangular concha and earlobe hypoplasia of CHARGE syndrome, the

109



retrognathia of Treacher Collins, NAFD and MFDGA syndromes, and the small mandible of
Silver Russell syndrome.

Our model was able to correctly classify 71.3% (61.8 - 79.6) of patients (top-1 accuracy).
Top-3 accuracy was 93.5%. Performance varied according to syndromes, with 96.1%
accuracy for the controls (AUC = 1,000) or 90.7% for Apert (AUC = 0.992) and CHARGE
(AUC = 0.912) groups. However, the accuracy was 50% in the NAFD group (AUC = 0.450),
corresponding to the smallest number of patients. The ROC curves and AUCs for the training

and validation sets were comparable (Figure 11) (Tables 5, 6).
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Figure 10. Average shapes for 10 syndromes vs controls after Procrustes
superimposition of frontal views, lateral views, and external ears, before 5 years of age.
Grey = controls. CHARGE = Coloboma, Heart defect, Atresia choanae, Retarded growth and
development, Genital hypoplasia, Ear anomalies/deafness; MFDGA = Mandibulo-Facial

Dysostosis Guion Almeida type; NAFD = Nager type Acro-Facial Dysostosis.

Group AUC (training) AUC (validation) Sensitivity  Specifity Accuracy
Overall 0.713 (0.618 - 0.796) *
Control 1.000 1.000 1.000 0.921 0.961
Apert 0.921 0.992 0.846 0.968 0.907
CHARGE 0912 0.986 0.833 0.980 0.907
Crouzon Pfeiffer 0.994 0.970 0.667 0.975 0.821
Kabuki 0.941 0.983 0.727 0.959 0.843
MFDGA 0.867 0.888 0.400 0.990 0.695
Muenke 0.985 0.804 0.286 0.950 0.618
NAFD 0.586 0.450 0.000 1.000 0.500
Saethre Chotzen 0.865 0.778 0.429 0.990 0.709
Silver Russell 0.951 0.986 0.833 0.971 0.902
Treacher Collins 0.974 0.972 0.800 0.971 0.885
Table 5. Classification performances in the validation set. AUC = Area Under the Curve;
CHARGE = Coloboma, Heart defect, Atresia choanae, Retarded growth and development,
Genital hypoplasia, Ear anomalies/deafness; MFDGA = Mandibulo-Facial Dysostosis Guion
Almeida type; NAFD = Nager type Acro-Facial Dysostosis.
Group
Controls AS CHARGE CPS KS MFDGA MS NAFD SCS SRS TCS
Controls 19 0 0 3 2 0 2 0 0 0 0
AS 0 11 0 0 0 0 2 0 1 0 0
g CHARGE 0 1 5 1 0 0 0 0 0 0 0
5 |CPS 0 0 0 18 1 0 1 0 0 0 0
T |ks 0 0 0 1 8 | 0 0 0 1 |
2 MFDGA 0 0 0 0 0 2 0 1 0 0 0
MS 0 1 0 2 0 0 2 0 2 0 0
NAFD 0 0 0 0 0 0 0 0 0 0 0
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SCS
SRS
TCS

Table 6. Confusion matrix in the validation set. AS = Apert Syndrome; CHARGE =

Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital

hypoplasia, Ear anomalies/deafness; CPS = Crouzon Pfeiffer Syndrome; KS = Kabuki

Syndrome; MFDGA = Mandibulo-Facial Dysostosis Guion Almeida type; MS = Muenke

Syndrome; NAFD = Nager type Acro-Facial Dysostosis; SCS = Saethre Chotzen Syndrome;

Silver Russell Syndrome; Treacher Collins Syndrome.
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Figure 11. A. Empirical ROC curves (training set) for the different groups with AUC. B.

ROC curves (validation set) for the different groups with AUC. AUC = Area Under the

Curve; AS = Apert Syndrome; CHARGE = Coloboma, Heart defect, Atresia choanae,

Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness; CP
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Crouzon Pfeiffer Syndrome; MFDGA = Mandibulo-Facial Dysostosis Guion Almeida type;
NAFD = Nager type Acro-Facial Dysostosis; Silver Russell Syndrome; Treacher Collins

Syndrome.

On Figure 12, we have reported two examples of the use of our model on two patients from
the validation set. The results are given in the form of a probability for each group. The first
proband has a 99% probability of CHARGE syndrome and a variant in the CHD?7 gene should

be investigated. The second proband has an 88% probability of Apert syndrome and a variant

in the FGFR2 gene should be investigated.

D

Apert{ 0%
CHARGE 99%
Control 0%
ccccc crd o%
Kabuki 0%
______ MFDGA{ 0%
Muenke 0%
NAFD 0%

Saethre Chotzen 0%

TC1 0%

H Apert 88%
CHARGE 1%
Group Control 0%
o
+ ot cP I 5%
cHARGE
Kabuki 0%

mmmmm

o WFDGA MFDGA 0%
......
Muenke 0%
NAFD 0%
Saethre Chotzen 5%

TC 0%

0 25 50 75
%

Figure 12. Example of classification using our model for two probands of the validation
set. A and B. Frontal and profile faces of proband 1. C. UMAP representation of the training

data according to the different groups, with positioning of proband 1. D. Histogram of
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predictions by our model. E and F. Frontal and profile faces of proband 2. G. UMAP
representation of the training data according to the different groups, with positioning of

proband 2. H. Histogram of predictions by our model.
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6 Results for the second main objective: phenotype — genotype
correlations

We will present two use cases of phenotype-genotype correlations using our model:
- Diagnosis and phenotype-genotype correlations in the group of syndromic
craniosynostoses

- Diagnosis and phenotype-genotype correlations in the Kabuki syndrome group

6.1 Facial Al-based diagnosis and phenotype — genotype correlations in

syndromic craniosynostoses

Craniosynostosis is a group of diseases characterized by premature fusion of one or more
cranial sutures (126). Around 8% of craniosynostoses are genetic or syndromic in origin
(127). Many syndromes combine craniosynostosis, facial abnormalities and various extra-
cranial malformations. Genetic variations in the FGFR2 (Fibroblast Growth Factor Receptor
2) and FGFR3 (Fibroblast Growth Factor Receptor 3) genes lead to gains in function and
accelerated differentiation of osteoblasts (128,129), eventually causing the premature closing
of craniofacial sutures. These genetic variations are the most frequent causes of syndromic
craniosynostoses (130). Among less frequent genes implicated in syndromic forms, TWISTI
mutations cause Saethre Chotzen syndrome (SCS).

The FGFR2 and FGFR3 genes code for a tyrosine kinase receptor and are composed of: (1)
an extracellular portion containing Immunoglobulin-like domains (Igl, Igll, Igllla and Iglllc),
(2) a transmembrane region, and (3) an intracellular tyrosine kinase region (TK1 and TK2)

(131-136). Phenotype/genotype correlations are not well understood in FGFR-related
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craniosynostoses despite several reports focused on specific anatomical regions, such as
Morice et al (137), who have reported that genetic variations on the different portions of the
FGFR2 and FGFR3 receptor were associated with phenotypic variability in the mandible, and
Bouaoud et al (138) who have associated the thickness of the supra-orbital bar with specific
FGFR mutations.

Crouzon syndrome (CS) is an autosomal dominant condition caused by activating mutations
in FGFR2 or exceptionally FGFR3 genes (139,140). The facial presentation of CS is
characterized by ocular proptosis, hypertelorism, brachycephaly, and midface retrusion, but
familial cases with high variability in penetrance are reported (141).

Pfeiffer syndrome (PS) is also autosomal dominant, caused by activating FGFRI or FGFR2
mutations. In addition to a facial phenotype similar to CS, PS affects feet and hands, with
large thumbs or toes, brachydactyly, and syndactyly (142).

Apert syndrome (AS) is another autosomal dominant FGFR2-related craniosynostosis mostly
affecting the coronal suture (brachycephaly) and associated with midface hypoplasia,
hypertelorism, a small mandible, and syndactyly of the hands and feet (126). (142).

Muenke syndrome (MS) is an autosomal dominant disorder affecting the FGFR3 gene
(p.Pro250Arg), with involvement of the coronal suture, hypoplasia of the midface,
hypertelorism and macrocephaly (142).

Saethre-Chotzen syndrome (SCS) is caused by an autosomal dominant mutation in the
TWISTI gene, resulting in fusions of the coronal, lambdoid and/or metopic sutures, facial
asymmetry, a variable degree of syndactyly and hearing loss (143,144).

The aims of this study were (1) to train a tool using artificial intelligence (AI) methods on
facial frontal, lateral and external ear pictures to support diagnosis for syndromic
craniosynostoses vs controls and (2) to screen for genotype / phenotype correlations in AS,

CS and PS.
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Controls
AS
CS

MS
PS

SCS

Ranging between 1979 and 2023, we included 2228 frontal and lateral facial photographs,
corresponding to 541 patients. The control group comprised 1122 photographs, corresponding
to 304 patients. The AS, CS, MS, PS, and SCS groups comprised 146, 604, 52, 236, and 68
photographs respectively, corresponding to 44, 98, 16, 51, and 28 patients. The validation set
was composed of 168 frontal and lateral facial photographs corresponding to 84 patients from
Great Ormond Street Hospital (GOSH, London). The control, AS, CS, MS, PS, and SCS
groups comprised 26, 40, 62, 12, 10, and 18 photographs respectively, corresponding to 13,
20, 31, 6, 5, and 9 patients.

We found the facial characteristics classically found in the literature for these syndromes.
There were very few phenotypic differences between the CS and PS groups.

Each of the 5 syndromes was significantly distinguishable from control patients in the
validation set, with high AUCs going from 0.983 [0.954 — 1.000] (p < 0.001) for CS to 1.000
[1.000 — 1.000] (p < 0.001) for MS and PS. AS was significantly distinguishable from CS
(0.955 [0.893 — 1.000], p < 0.001) and from SCS (0.906 [0.799 — 1.000], p < 0.001), but not
from MS (0.658 [0.394 — 0.923], p = 0.546) and PS (0.700 [0.470 — 0.930], p = 0.348).
Interestingly, the model was not able to distinguish CS and PS, with an AUC of 0.548 [0.270
—0.827] (p = 0.672). MS was not discernable from PS and SCS with AUCs of 0.567 [0.157 —
0.977] (p = 0.841) and 0.667 [0.370 — 0.963] (p = 0.642) (Figure 13). Finally, the model was

able to distinguish PS from SCS with an AUC of 0.844 [0.606 — 1.000] (p = 0.021) (Table 7).

Controls AS CS MS PS
0.992 [0.974 - 1.000] *
0.983[0.954 - 1.000] *  0.955 [0.893 - 1.000] *
0.785[0.522 - 1.000]
1.000 [1.000 - 1.000] *  0.658 [0.394 - 0.923] *
1.000 [1.000 - 1.000] *  0.700 [0.470 - 0.930] 0.548 [0.270 - 0.827] 0.567[0.157 - 0.977]
0.871[0.704 - 1.000]
0.940 [0.834 - 1.000] *  0.906 [0.799 - 1.000] * * 0.667[0.370 - 0.963] 0.844 [0.606 - 1.000] *
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Table 7. AUC for each binary classification on the validation set. AS = Apert Syndrome,

CS = Crouzon Syndrome, MS = Muenke Syndrome, PS = Pfeiffer Syndrome, SCS = Saethre-

Chotzen Syndrome. * = statistically significant (p < 0.05).

For further analyses, we grouped CS and PS patients together under the name Crouzon-

Pfeiffer syndrome (CPS), given the absence of significant phenotypic differences in binary

classification. The number of iterations retained for this multi-class model was 248 and 70.2%

[0.593 - 0.797] of patients in the validation set were correctly diagnosed. The confusion

matrix revealed 13 correctly predicted controls, 13 AS, 27 CPS, 3 MS, and 3 SCS correctly

diagnosed (Table 8).

Reference
Control AS CPS MS SCS
P Control 13 2 4 1 1
re AS 0 13 2 2 1
‘CJ; CPS 0 3 27 0 0
io MS 0 3 4
n SCS 0 0 0 3

Table 8. Confusion matrix in a multi-syndrome design. AS = Apert Syndrome, CPS =

Crouzon-Pfeiffer Syndrome, MS = Muenke Syndrome, SCS = Saethre-Chotzen Syndrome.

Bold values: True Positives (TP).
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Figure 13. Multi-syndrome classification in syndromic craniosynostoses. A. UMAP
representation of the training data according to the different groups. B. Empirical ROC curves
(training set) for each group with AUC. C. ROC curves (validation set) for each group, with

AUC. AUC = Area Under the Curve.

In AS, our model was unable to correctly classify patients between the two genotypes
(FGFR2 p.Pro253Arg vs. FGFR2 p.Ser252Trp) (AUC = 0.506 [0.215 - 0.797], p = 0.874).

In CPS, genotypes linked to the Igl, Igll, Iglllc and TK domains of FGFR2 and variations in
FGFR3 were associated with more severe facial phenotypes than variations in a splice site of
FGFR2. In the latter group, brachycephaly, ocular phenotype and reduced height of the mid-
face seemed to be less severe.

A binary classification between the ‘Iglllc’ and ‘Splicing domain’ groups was significant,
with an AUC = 0.786 [0.554 - 1.000] (p < 0.023) on the validation set. In addition, the
controls were indistinguishable from the ‘Splicing domain’ group (AUC = 0.577 [0.332 -

0.822], p = 0.657).
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To conclude, we were able to detect more than 70% of patients, with excellent performance
particularly in the CPS group (84.4% and AUC = 0.941). Finally, we were able to describe the

significant phenotypic variability within the CPS group.
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Abstract. Apert (AS). Crouzon (CS), Muenke (MS),
Pfeiffer (PS), and Saethre Chotzen (SCS) are among
the  most frequently diagnosed syndromic
craniosynostoses. The aim of this study was (1) to train
an innovative model using Al-based methods on 2D
facial frontal, lateral, and external ear photographs to
assist diagnosis for syndromic craniosynostoses vs
controls, and (2) to screen for genotype / phenotype
correlations m AS, CS§, and PS. We included
retrospectively and prospectively, from 1979 to 2023,
all frontal and lateral pictures of patients genetically
diagnosed with AS, CS, MS, PS and SCS syndromes.
After a deep learning-based preprocessing, we
extracted geometric and textural features and used
XGboost (eXtreme Gradient Boosting) to classify
patients. The model was tested on an independent
international validation set of genetically confirmed
AS, C5, P5, MS, SCS and non-syndromic controls.
Between 1979 and 2023, we mcluded 2228 frontal and
lateral facial photographs corresponding to 541
patients. 70.2% [0.593 - 0.797] (p < 0.001) of patients
in the validation set were correctly diagnosed. The best
performances were obtained by the control group
(balanced accuracy = 0.943 and AUC = 1.000), the
Crouzon Pfeiffer syndrome group (balanced accuracy
= 0.844 and AUC = 0.941) and the AS group (balanced
accuracy = 0.786 and AUC = 0.836). We found no
statistically significant facial phenotype difference
between CS and PS (AUC = 0.548 [0.270 - 0.827].p=
0.672). Genotypes linked to a splice donor site of
FGFR2 in Crouzon Pfeiffer syndrome (CPS) caused a
milder phenotype in CPS.

Keywords: artificial intelligence; machine learning;
dysmorphology: syndromic craniosynostosis: Crouzon
syndrome; Pfeiffer syndrome; Apert syndrome;
FGFR2, Saethre Chotzen syndrome; Muenke

syndrome
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Introduction

Applications of Al (Artificial Intelligence) are
increasing in healthcare '*. The field of
dysmorphology is currently being transformed by
these new methods °. Studies comparing human
performances to Al are flourishing **, and some
of them suggest that digital diagnostic tools
outperform human experts '.

Craniosynostosis 1s a group of diseases
characterized by premature fusion of one or more
cranial sutures . Around 8% of craniosynostoses
are genetic or syndromic in origin 2. Many
syndromes combine craniosynostosis, facial
abnormalities and various extra-cranial
malformations. Genetic variations in the FGFR2
(Fibroblast Growth Factor Receptor 2) and FGFR3
(Fibroblast Growth Factor Receptor 3) genes lead
to gains in function and accelerated differentiation
of osteoblasts %, eventually causing the
premature closing of cramiofacial sutures. These
genetic variations are the most frequent causes of

syndromic craniosynostoses . Among less
frequent genes implicated in syndromic forms,
TWIST! mutations cause Saethre Chotzen
syndrome (SCS).

The FGFR2 and FGFR3 genes code for a tyrosine
kinase receptor and are composed of: (1) an
extracellular portion containing Immunoglobulin-
like domains (Igl, Igll, Igllla and Iglllc), (2) a
transmembrane region, and (3) an intracellular
tyrosine kinase region (TK1 and TK2) 1521
Phenotype/genotype correlations are not well
understood in FGFR-related craniosynostoses
despite several reports focused on specific
anatomical regions, such as Morice et al %, who
have reported that genetic variations on the
different portions of the FGFR2 and FGFR3
receptor were associated with  phenotypic
variability in the mandible, and Bouaoud et al 3
who have associated the thickness of the supra-
orbital bar with specific FGFR mutations.

Crouzon syndrome (CS) 1s an autosomal dominant
condition caused by activating mutations in
FGFR2 or exceptionally FGFR3 genes ***°. The
facial presentation of CS is characterized by ocular
proptosis, hypertelorism, brachycephaly, and
midface retrusion, but familial cases with high
variability in penetrance are reported 2°.

Pfeiffer syndrome (PS) 1s also autosomal
dominant, caused by activating FGFR! or FGFR2
mutations. In addition to a facial phenotype similar
to CS, PS affects feet and hands, with large thumbs
or toes, brachydactyly and syndactyly *’. Apert
syndrome (AS) is another autosomal dominant
FGFR2-related cranmosynostosis mostly affecting
the coronal suture (brachycephaly) and associated
with midface hypoplasia, hypertelorism, a small
mandible and syndactyly of the hands and feet ''.
2. Muenke syndrome (MS) is an autosomal
dominant disorder affecting the FGFR3 gene
(p.Pro250Arg), with invelvement of the coronal
suture, hypoplasia of the mudface, hypertelorism
and macrocephaly 7 Fmally, Saethre-Chotzen
syndrome (SCS) is caused by an autosomal
dominant mutation in the TWIST! gene, resulting
in fusions of the coronal, lambdoid and/or metopic
sutures, facial asymmetry, a variable degree of
syndactyly and hearing loss 2%,

The aims of this study were (1) to train a tool using
artificial intelligence (AI) methods on facial
frontal, lateral and external ear pictures to support
diagnosis for syndromic craniosynostoses vs
controls and (2) to screen for genotype / phenotype
correlations 1n AS, CS and PS.

Material and Methods. The study was approved
by the CESREES (Comité Ethique et Scientifique
pour les Recherches, les Etudes et les Evaluations
dans le domaine de la Sante, Ne4570023bis) and by
the CNIL (Commission Nationale Informatique et
Libertes, NeMLD/MFIVAR221900). Informed and
written consents were obtained from the legal
representatives of each child or from the patients
themselves if they were of age.

Training set

We included pictures from the photographic
database of the Maxillofacial surgeryand Plastic
surgery and Neurosurgery departments of Hépital
Necker — Enfants Malades (Assistance Publique —
Hopitaux de Paris), Paris, France. This database
contains 594,000 photographs from 22,000 patients
followed in these departments since 1979. All
photographs from 1995 were taken by a
professional medical photographer using a Nikon
D7000 device in standardized positions. The
photographs between 1979 and 1995 were not
digiized and were therefore scanned using an
Epson Perfection V850 Pro scanner.
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We included retrospectively from 1979 to 2019
and prospectively from 2019 to 2023, all frontal
and lateral pictures of patients diagnosed with CS,
AS, PS, MS and SCS syndromes (Figure 1). The
photographs were not calibrated. All patients had
genetic confirmation of their syndrome. PS was
diagnosed, in addition to the presence of a genetic
variation m FGFRI or FGFR2, by clinical
involvement of the feet and/or hands. We excluded
patients with any history of cramal or facial
surgery. Multiple photographs per patient
corresponded to different ages of follow-up.
Duplicate photographs were excluded.
Non-syndromic children were selected among
patients admitted for lacerations, trauma, mfection
and various skin lesions, without any record of
chronic conditions. More precisely, follow-up for
any type of chronic disease was considered as an
exclusion criterion. The reports were retrieved
using the local data warehouse Dr Warehouse 3.

Validation set

Similar inclusion and exclusion criteria as the
training set were used to build the validation set,
from the database of the Craniofacial Unit of Great
Ormond Street Hospital, London (UK). All patients
had genetic confirmation of their syndrome. None
of the patients in the validation set was present
twice, and none was from the training set. For the
control group, we selected photographs from our
local database, without any redundancy with the
training set, using similar inclusion criteria. We
extracted data on age at the time of the photograph
and gender. Informed and written consents were
obtained from the legal representatives of each
child or from the patient himself if he was of age.

Landmarking

We used three different templates based on 105
landmarks for the frontal, 73 for the lateral views
and 41 for the external ear pictures. We developed
an automatic annotation model for each template
following a pipeline including: (1) detection of the
Region Of Interest (ROI) and (2) automatic
placement of the landmarks.

For ROI detection, a Faster RCNN (Faster Region-
based Convolutional Neural Network) model was
trained after data augmentation (1images and their
+10° and -10° rotations), with a learmning rate of
0.001, a batch size of 4, a gamma of 0.05 and 2000
iterations. Our Faster RCNN model was optimized
and split into two stages.

(1) ROI detection: Faster RNN trained on 15633
images, after data augmentation (images and their
+10° and -10° rotations). There were 6186 frontal
images (2062 x 3) and 9447 right and left profile
mmages (3159 x 3). The batch size was set to 2, the
learning rate was set to 0.0025 and the maximum
number of iterations was 2800.
(2) Determination of profile laterality: pre-
trained ResNet50 network 3' using the
Pytorch library **. The training images
included 1,570 left profiles and 1,579 night
profiles. The batch size was set at 16, an
Adam optimizer ** was used with a learning
rate of 0.001, a step of 7, a gamma of 0.1,
trained over 25 epochs.
For the automatic placement of landmarks, we
used a patch-based AAM (Active Appearance
Model) using the menpo library on Python 3.7 *,
as shown being the most accurate method in ¥,
We used a two-scale landmarking: the model for
frontal pictures was trained on 904 manually
annotated photographs, with a first stage of
dimensioning (diagonal = 150), a patch shape of
[(15, 15), (23, 23)] and 50 iterations, then a second
stage without resizing, with a patch shape of [(20,
20), (30, 30)] and 10 new iterations. The model for
profile pictures was trained on 1,439 manually
annotated photographs, with a first stage of
dimensioning (diagonal = 150), a patch shape of
[(15, 15), (23, 23)] and 25 iterations, then a second
stage without resizing, with a patch shape of [(15,
15), (23, 23)] and 5 new 1terations. The model for
ears was trained on 1221 manually annotated
photographs, with a first stage of dimensioning
(diagonal = 100), a patch shape of [(15, 15), (23,
23)] and 50 iterations, then a second stage without
resizing, with a patch shape of [(20, 20), (30, 30}]
and 20 new iterations. All three models used the
Lucas Kanade optimizer *°.
Each automatically annotated photograph was
checked by two authors blinded for the diagnosis,
QH and MD, and landmarks were manually re-
positioned when necessary, using landmarker.io *7.
The ICC (Intraclass Correlation Coeflicient) was
computed between the raters. ICC values greater
than 0.9 corresponded to excellent reliability of the
manual annotation **,

Geometric morphometrics
We performed Generalized Procrustes Analysis
(GPA) * on all landmark clouds using the
geomorph package on R *.
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Since the data were uncalibrated photographs, ROI
sizes were not available: shape parameters only
were assessed and not centroid sizes. Procrustes
coordinates were then processed using Principal
Component  Analysis (PCA) for dimension
reduction. We retained the principal components
explaiming 99% of the total variance in cumulative
sum. The last 1% was considered as negligible
information.

Texture extraction

We partitioned the frontal and profile pictures into
key areas, and applied textural feature extraction
methods to each of these zones, allowing to check
the results and determine which zone has
contributed most to the diagnosis.

We defined 14 key areas, 11 from the frontal (right
eye, left eye, nght eyebrow, left eyebrow, glabella,
forehead, nasal tip, philtrum, right cheek, left
cheek, chin) and 3 from the lateral (pre-auricular
region, eye. malar relief) pictures. These areas
could potentially contribute to the diagnosis and
characterization of the facial phenotype. Each zone
was extracted automatically using the previously
placed landmarks.

We used the CLAHE (Contrast Limited Adaptative
Histogram Equalization) algorithm for histogram
equalization, a previously reported before the use
of feature extractors *'*?. CLAHE enhanced
contrast by evenly dispersing gray values *, by
reducing the influence of illummation when the
picture was taken, and of skin color. Kiflie et al

recommended CLAHE as a first choice
equalization method H
Gray-level  co-occurrence  matrix  (GLCM)

methods, as proposed by Haralick +, are based on
the estimation of the second-order joint conditional
probability density functions. These matrices
characterize the spatial relationships between
pixels. GLCM constitutes one of the most
commonly used methods in texture analysis 47,
for instance in radiomics to analyze CT or MRI
images *3U or for skin texture assessment °'. In
GLCM, the co-occurrence matnx contamns
information on entropy, homogeneity, contrast,
energy and correlation between pixels. There are
28 GLCM features, taking into account the average
and range for each item of information and for
each zone, representing 28 x 14 = 394 textural
features for each patient.

Stratification using metadata

The geometric features and the geometric principal
components were combined for further analysis. To
consider associated metadata (age and gender) and
the fact that we included more than one
photograph per patient (that is the non-
independence of the data), a mixed model was
designed for each feature. The variables to be
explained were the features (geometric and
textural), with age, gender and ethnicity considered
as explanatory variables. Age, gender and ethnicity
are significant factors in dysmorphology because
they influence the diagnosis, and must therefore be
taken into account 333,

A random effect on age and ndividuals was
mtroduced. The equation of the mixed model was:

Features;j ~ a + age.}; + gender. 5,
+ ethnicity. s + age.ff; + &

where age. ff; ; corresponded to a random slope for
age per individual, and & ; was a random error
term. We did not use an interaction term between
age and gender and age and ethnicity as it did not
increase the hkelihood of the model.

The residuals of each feature were computed to
consider potential biases linked to the metadata:

£;j = Features;; — a + age.f; + gender.f5;
+ ethnicity. f; + age.f,;

Classification model

The mnputs to the model were the residuals from
the linear models descnibed above, for each
geometric or textural feature. We used XGBoost
(eXtreme Gradient Boosting), a supervised
machine learning classifier, for all the analyses >.
We chose a tree-based booster, and the loss
function to be minimized was a logistic regression
in the case of binary classification, or a softmax
function for multi-class classification. We set
several  hyperparameters to improve the
performance and effect of the machine learning
model: learning rate = 0.3, gamma = (), maximum
tree depth = 6. The model with the lowest error
rate in case of binary classification or multiclass
error rate in case of multi-class classification was
chosen for analysis. We separated the dataset into a
traiming set and a testing set, and a 5-fold cross-
validation was used to define the 1deal number of
iterations to avoid overfitting.
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The chosen model with the ideal number of
iterations was then used on the independent
validation set to test performances, by plotting
accuracy and AUC. The ROC (Receiver Operating
Characteristics) curves were plotted in R using the

plotROC package +.

Uniform Manifold Approximation and Projection
(UMAP) representations

The residuals &;; were represented using UMAP
for wvisual clustering, a nonlinear dimension
reduction technique *°. We retained the residuals
associated with features with a classification gain
(in their cumulative sum) > (.75 in the importance
matrix associated with the XGboost model. A k
(local neighborhood size) value of 15 was used. A
cosine metric was introduced to compute distances
in high dimensional spaces: the effective minimal
distance between embedded points was 107°. The
three conditions of UMAP, namely uniform
distribution, local constancy of the Riemannian
metric and local connectivity were verified. UMAP

analyses were performed using the package wumap
onR 7.,

Classification designs

We produced several models to meet different

objectives (Figure 1).

1) Syndrome diagnosis support: each group
(controls, AS, CS, MS, PS, SCS) was tested

agamnst all others in binary classifications; a
multi-class model was then designed.

2)  Genotype-phenotype correlations: the two
genotypes associated with AS (FGFR2
p.Pro253Arg vs. FGFR2 p.Ser252Trp) were
tested in binary classifications with the
control group; the 5 groups of genotypes
associated with CS and PS (FGFR2 Igl-Illa,
Igllle, Splicing domain, TK, FGFR3 and
FGFRI) were tested i binary classifications.

Results

1.  Training set

A total of 2228 frontal and lateral facial
photographs, corresponding to 541 patients, were
included. The mean age was 6.2 +/- 6.5 and ranged
from 0 to 44 vyears; 44% were girls. Ethnicity was
02% Caucasian, 7% African or Canbbean, and 1%
Aslan.

The control group comprised 1122 photographs,

corresponding to 304 patients with a mean age of
6.1 +/- 4.8 years.
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Figure 1. Analysis pipeline, from the initial
photograph to diagnostic probability. Faster
RCNN = Faster Region-based Convolutional
Neural Network; CLAHE = Contrast Limited
Adaptative Histogram Equalization; GLCM =
Gray-level Co-occurrence Matrix; XGboost =
eXtreme Gradient Boosting.

The AS, CS, MS, PS and SCS groups comprised
146, 604, 52, 236 and 68 photographs respectively,
corresponding to 44, 98, 16, 51 and 28 patients.
Examples from the database are shown Figure 2.

Figure 2. Examples from the training set for
each group. A, G: Control, male (dental abscess).
B, H: Apert syndrome, male. C., I: Crouzon
syndrome, male. D, J: Muenke syndrome, male.

E.K: Pfeiffer syndrome, female. F, L: Saethre
Chotzen syndrome, female.
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Within the CS group, 99% were affected by the
FGFR2 gene mutation and 1% FGFR3. For PS5,
this was 8% on the FGFRI gene and 92% on the
FGFR2 gene. 24% of the genetic variations were
located on the extracellular portion of FGFR2 (1gl,
Igll, Igllla) with the most frequent variation being
p.Cys278Phe (7%): 57% were located on the trans-
membrane portion of FGFRZ (Igllle) with the
most frequent variation being p.Cys342Tyr (10%):
7% affected a splice donor site. with the most
common variant being p.Ala344Ala (4%); 6% of
the variations were located on the FGFR2 mntra-
cellular domain (TK), with p.Asn549His as the
most prevalent variation (1%):; finally, 2% affected
FGFR3  (p.Ala391Glu) and 4% FGFRI
(p.Pro252Arg).

In 100% of cases, genetic variation was identified
in the FGFR2 gene in the AS group (of which 57%
p.Ser252Trp and 43% p.Pro253Arg), in the FGFR3
gene in the MS group (p.Pro250Arg) and in the
TWIST! gene in the SCS group (of which subtype
p.Glu65* 1n 25% of the cases) (Table 1, Supp.
Table 1).

The comparison between two raters was excellent
with an ICC of 0.999 [0.999-0.999] for frontal
pictures, 0.999 [0.999-0.999] for lateral pictures,
and 0.992 [0.991-0.993] for external ears.

1. Validation set

We included 168 frontal and lateral facial
photographs corresponding to 84 patients. The
mean age was 3.4 +/~ 4.4 and ranged from 0 to 29
yvears; 54% were girls. Ethnicity was 93%
Caucasian, 5% African or Canbbean, and 1%
Asian.

The control, AS, CS, MS, PS, and SCS groups
comprised 26, 40, 62, 12, 10 and 18 photographs
respectively, corresponding to 13, 20, 31, 6, 5 and
9 patients.

Concerning CS and PS, 34% of the genetic
variations were located on the extracellular portion
of FGFR2 (Igl, Igll. Igllla) with the most frequent
variation being p.Cys278Phe (6%); 41% were
located on the trans-membrane portion of FGFR2
(Iglllc) with the most frequent variation being
p.Cys342Tyr (22%); 13% affected a splice donor
site, with the most common variant being
p.Ala344Ala (9%): finally. 4% affected FGFR3
(p.Ala391Glu). There were no FGFRI and FGFR2
TK domain vanations in the validation set. In AS,
53% of genetic variations were p.Ser252Trp and
47% p.Pro253Arg. In MS, 100% of patients were
diagnosed with the characteristic p.Pro250Arg
mutation of the FGFR3 gene. SCS patients were
all TWISTI mutated, with the most frequent
variation being p.Leul49Phe (50%) (Table 2,
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Table 1. Clinical description of the training set.
AS = Apert Syndrome, CS = Crouzon Syndrome,
MS = Muenke Syndrome, PS = Pfeiffer Syndrome,
SCS = Saethre-Chotzen Syndrome, SD = Standard
Deviation, FGFR = Fibroblast Growth Factor
Receptor, TWIST! = Twist Family bHLH
Transcription Factor 1.

Table 2. Clinical description of the validation
set. AS = Apert Syndrome, CS = Crouzon
Syndrome, MS = Muenke Syndrome, PS = Pfeiffer

Syndrome, SCS = Saethre-Chotzen Syndrome, SD
= Standard Dewviation, FGFR = Fibroblast Growth

Factor, TWIST! = Twist Family bHLH
Transcription Factor 1.
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1.  Classification between syndromes

3.1 Phenotype descriptions

Craniofacial phenotype in AS vs controls

In AS, we report significant brachycephaly,
hypertelorism, thin and downslanted palpebral
fissures, a severe mudface retrusion and a small
upturned nose. AS  patients had labial
incompetence compared to controls. The chin
appears to be in the same position as in the
controls, but the midfacial retrusion resulted mn a
relative prognathia. (Figures 4, 5). AS ears were
similar to controls in shape (Figure 6) but were low
set (Figure 5).

Craniofacial phenotype in CS and PS vs controls
Patients with CS and PS also had brachycephaly

with hypertelorism, open palpebral slits, a midface
retrusion, and low-set ears (Figures 4 and 5). CS
and PS patients had labial incompetence compared
to controls. Ears were similar to controls in shape
and position (Figure 6).

Craniofacial phenotype in MS vs controls

Patients with MS had significant brachycephaly, an
increase in size and a flattening of the forehead,
temporal bossing, wider face, midface retrusion,

and labial incompetence. Palpebral fissures were
thin and downslanted without telecanthus (Figures
4 and 5). Ears were similar to controls in shape but
anteriorly placed (Figure 5 and 6).

Craniofacial phenotype in SCS vs controls
Brachycephaly was also present in SCS. The
palpebral fissures were small and without
hypertelorism. The reduction in height of the
palpebral fissures probably corresponded to the
ptosis characteristic of this syndrome. The hairline
was low with a small forehead. There was also a
labial incompetence (Figures 4 and 5). The ears
appeared rounder, and there was the crux cymbae
characteristic of this syndrome.

Craniofacial phenotype differences  between
syndromes

There were very few phenotypic differences

between the CS and PS groups (Figures 4, 5, 6).

The mean shapes were superimposable on frontal,
lateral, and external ear pictures. Patients with PS

may have more pronounced brachycephaly.

The AS and MS groups were also very similar
phenotypically, but with a less upturned nose, a
longer muddle third of the face, less low-set ears
and a smaller inter-ocular distance in the MS group
(Figures 4 and 5). The SCS group was
distinguished from the other groups by its normally
set eyes, low hairline, and longer middle and lower
thirds of the face. The crux cymbae, an inconsistent
cartilaginous nidge dividing the cymba conchae
mto two parts, and rounded ear also seemed
characteristic of SCS.

Control AS s MS PS 508

Control
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s

M

SC8

Figure 3. Average shapes by syndrome and
comparisons after Procrustes analysis of frontal
pictures in patients < 5 y.0. the diagonal
corresponds  to  average faces for each
syndromeFace below the diagonal correspond to
superimpositions of two average faces from
different groups, and faces above the diagonal
correspond to vectors of transformation between
two groups. AS = Apert Syndrome, CS = Crouzon
Syndrome, MS = Muenke Syndrome, PS = Pfeiffer
Syndrome, SCS = Saethre Chotzen Syndrome.
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Figure 4. Average shapes by syndrome and
comparisons after Procrustes analysis of lateral
pictures in patients < 5 y.o. The elements on the
diagonal (from the upper left face to the lower
right profile) correspond to the average profiles.
The elements below this diagonal correspond to
superimpositions of two average profiles from
different groups, and the elements above this
diagonal correspond to vectors allowing a
transformation from a first group to a second
group. AS = Apert Syndrome, CS = Crouzon
Syndrome, MS = Muenke Syndrome, PS = Pfeiffer
Syndrome, SCS = Saethre Chotzen Syndrome.

2. Binary classifications

Each of the 5 syndromes was significantly
distinguishable from control patients in the
validation set, with high AUCs going from 0.983
[0.954 — 1.000] (p < 0.001) for CS, to 1.000 [1.000
— 1.000] (p < 0.001) for MS and PS. AS was
significantly distinguishable from CS (0.955
[0.893 — 1.000], p < 0.001) and from SCS (0.906
[0.799 — 1.000], p < 0.001), but not from MS
(0.658 [0.394 — 0.923], p = 0.546) and PS (0.700
[0470 — 0.930], p = 0.34%). Interestingly, the
model was not able to distinguish CS and PS, with
an AUC of 0.548 [0.270 — 0.827] (p = 0.672). MS
was not discernable from PS and SCS with AUCs
of 0.567 [0.157 — 0.977] (p = 0.841) and 0.667
[0.370 — 0.963] (p = 0.642). Finally, the model was
able to distinguish PS from SCS with an AUC of
0.844 [0.606 — 1.000] (p = 0.021) (Tables 3, 4).

Camtrol AS s Ms Prs SC8
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Figure 5. Average shapes by syndrome and
comparisons after Procrustes analysis of ears in
patients < 5 v.o. The elements on the diagonal
(from the upper left face to the lower right ears)
correspond to the average ears. The elements
below this diagonal correspond to
superimpositions of two average ears from
different groups, and the elements above this
diagonal correspond to vectors allowing a
transformation from a first group to a second
group. AS = Apert Syndrome, CS = Crouzon
Syndrome, MS = Muenke Syndrome, PS = Pfeiffer
Syndrome, SCS = Saethre Chotzen Syndrome.
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Table 3. AUC for each binary classification on
the validation set. AS = Apert Syndrome, CS =
Crouzon Syndrome, MS = Muenke Syndrome, PS

= Pleiffer Syndrome, SCS = Saethre-Chotzen
Syndrome. * = statistically significant (p < 0.05).

2. Multi-syndrome classification
For further analysis, we grouped CS and PS

patients together under the name Crouzon-Pfeiffer
syndrome (CPS). given the absence of significant
phenotypic differences in binary classification.
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The number of iterations retained for this multi-
class model was 248 and 70.2% [0.593 - 0.797] of
patients in the wvalidation set were correctly
diagnosed. The No Information Rate (NIR) was
0.429, making this prediction significant at 95% (p
= (.001). The best performances were obtained by
the control group (balanced accuracy = 0.943 and
AUC = 1.000), the CPS group (balanced accuracy
= 0.844 and AUC = 0.941) and the AS group
(balanced accuracy = 0.786 and AUC = (.836).
The MS and SCS groups were more difficult to
predict (Table 4).

Overall (multiclass design)

Accuracy 0.702 [0.593 - 0.797] *
One-versus-all design
Balanced accurary
Control 0.943
AS 0.786
CPS 0.544
MS 0.692
s5Cs 0.667
AUC
Control 1.000
AS 0.836
CPS 0.941
M5 0.625
SCS 0.744

Table 4. Classification performances in a multi-
syndrome design. AS = Apert Syndrome, CPS =
Crouzon-Pfeiffer Syndrome, MS = Muenke
Syndrome, SCS = Saethre-Chotzen Syndrome,
AUC = Area Under the Curve.

The confusion matrix revealed 13 correctly

predicted controls, 13 AS, 27 CPS, 3 MS and 3
SCS correctly diagnosed (Table 5).

Reference
Control AS CPS MS sCs
: Control 13 2 4 1 |
2 AS 0 13 2 2 1
] CPS 0 3 27 D 0
£ MS 0 2 3 3 4
sCS 0 0 0 0 3

Table 5. Confusion matrix in a multi-syndrome
design. AS = Apert Syndrome, CPS = Crouzon-
Pfeiffer Syndrome, MS = Muenke Syndrome, SCS
= Saethre-Chotzen Syndrome. Bold values: True
Positives (TP).

The results were consistent with the ROC curves
and the UMAP representation (Figure 6), which
showed a clear separation between the control and

the CPS groups.

Figure 6. Multi-syndrome classification. A.
UMAP representation of the training data
according to the different groups. B. Empirical

ROC curves (training set) for each group with
AUC. C. ROC curves (validation set) for each

group, with AUC. AUC = Area Under the Curve.
1.  Genotype — phenotype correlations

1. AS group: FGFR2? p.Pro253Arg vs.
FGFR2 p.Ser252Trp

Both genotypes were significantly
distinguishable from controls, with an AUC =
1,000 [1,000 - 1.000] (p < 0.001). However,
our model was unable to correctly classify
patients between the two genotypes (AUC =
0.506 [0.215 - 0.797], p = 0.874) (Table 6 and
Supp. Figures 1-3).

Controls p.Pro2siarg
Controls
p.Pro253Arg 1.000 [1.000 - 1.000] *
p-Ser252Trp 1.000 [1.000 - 1.000] * 0.506 [0.215 - 0.797)

Table 6. AUC for each binary classification in
the two genotype groups of AS. * = statistically
significant (p < 0.05).

1. CPS group: comparisons between the
6 genotype groups (Igl-Illa, Iglllc,
splicing domain, TK, FGFR3 and
FGFRI)

There was considerable phenotypic variability

within the CPS group (Figure 7).
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Figure 7. Phenotypical variability in children
with Crouzon-Pfeiffer syndrome. A, G: Genetic
variation located on FGFR2 Igl domain; B, H:
Genetic  variation located on FGFR2Z Igllle
domain; C, I: Genetic variation located on a splice
donor site of FGFR2; D, J: Genetic variation
located on FGFR2 TK domamn; E. K: Genetic
variation located on FGFR3; F/L: Genetic
variation located on FGFRI.

Genotypes linked to the Igl, Igll, Iglllc and TK
domains of FGFR2 and vanations in FGFR3 were
associated with more severe facial phenotypes than
variations in a splice site of FGFR2. In the latter
group, brachycephaly, ocular phenotype and
reduced height of the mid-face seemed to be less
severe (Figures 8 and 9). The ears have not been
plotted in this case, as Figure 5 does not show any
clear differences between the control ears and the
CS/PS ears.

A binary classification between the ‘“Iglllc’ and
‘Splicing domain’ groups was significant, with an
AUC = 0.786 [0.554 - 1.000] (p < 0.023) on the
vahdation set. In addition, the controls were
indistinguishable from the *Splicing domain” group
(AUC = 0.577 [0.332 - 0.822], p = 0.657) (Table
7).
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Table 7. AUC for each binary classification on
the validation set. There are no results for the TK
and FGFRI groups, as there were no patients in the
validation group. FGFR = Fibroblast Growth
Factor Receptor, Ig = Immunoglobulin-like
domain, TK = Tyrosine Kinase domain.

Splidng  TH _FGFR?

Classification between the *Splicing domain® group
and the 4 other genotypes showed a significant
AUC on the empirical curve (training set) of 0.706
[0.602 - 0.810] (p = 0.012). This significance was
not found on the validation set, with an AUC of

0.629 [0.381 - 0.878] (p = 0.438).
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Figure 8. Average shapes by CPS genotype
groups and comparisons after Procrustes
analysis of frontal pictures in patients < 5 y.o.
The elements on the diagonal (from the upper left
face to the lower right face) correspond to the
average faces. The elements below this diagonal
correspond to superimpositions of two average
faces from different groups, and the elements
above this diagonal correspond to vectors allowing
a transformation from a first group to a second
group. FGFR = Fibroblast Growth Factor
Receptor, Ig = Immunoglobulin-like domain, TK =
Tyrosine Kinase domain.

Discussion

1. Syndrome diagnosis support
We report the first algorithm for the automatic
detection of syndromic craniosynostoses using
machine learning and a controlled database, based
on frontal and lateral facial pictures.
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Figure 9. Average shapes by CPS genotype
groups and comparisons after Procrustes
analysis of profile pictures in patients < 5 y.o.
The elements on the diagonal (from the upper left
face to the lower right profile) correspond to the
average profiles. The elements below this diagonal
correspond to superimpositions of two average
profiles from different groups, and the elements
above this diagonal correspond to vectors allowing
a transformation from a first group to a second
group. FGFR = Fibroblast Growth Factor
Receptor, Ig = Immunoglobulin-like domain, TK =
Tyrosine Kinase domain.

Face2Gene (FDNA, Inc.), an alternative approach
able to tackle similar climical questions, - 1s a
commercial tool for automatic diagnosis on 2D
photographs based on a deep-learming algorithm
and automatic landmark detection °. However,
FacelGene does not take profiles and ears mto
account, which contain critical information. such
as mandibular position, nose shape, mudface
retrusion, and position and size of the ears. In
addition, unlike Face2Gene, we report a method
that records the shape of the cramal vault and the
position of the hairline, which are relevant in
craniosynostoses. Finally, our approach is unique
in that it includes the prediction of a ‘control’

group.

We were able to correctly diagnose 70.2% [0.593 -
0.797] (p < 0.001) of patients in the validation set
using our imnovative method. The best
performances were obtained by the control group
(balanced accuracy = 0.943 and AUC = 1.000), the
CPS group (balanced accuracy = 0.844 and AUC =
0.941) and the AS group (balanced accuracy =
0.786 and AUC = 0.836).

1.  Phenotypical description

We confirm the usual phenotypic descriptions of
AS, with brachycephaly, hypertelorism, down-
slanting palpebral fissures, severe mudface
retrusion, open gonial angle and short mandibular
ramus height *%3_ (8 is most often characterized
by brachycephaly, significant hypertelonsm,
opening of the palpebral fissures due to ocular
proptosis, midface retrusion leading to Angle class
III occlusion, open gonial angle and short ramus
height, and low implantation of the ears *2-23-6061,
We confirm these findings on the average CS faces
computed by our approach. Similarly, we confirm
the anomalies classically described in MS 2, ie.
brachycephaly or turribrachycephaly ("tower-
shaped" skull), flattening of the forehead, anterior
and low-set ears, temporal bossing, short nose and
midface retrusion. Finally, we were also able to
recognize common features of SCS 286364
brachycephaly, midface retrusion and low anterior
hairline. The small palpebral fissures probably
correspond to the characteristic ptosis of SCS. We
found also report specific external ear shapes:
smaller, rounder, with crux cymbae.

Assessment of limb anomalies 1s an essential
element for differentiating between CS, AS, PS5,
and SCS but was not included into our model.
More precisely, the classical anomalies in these
syndromes are: syndactyly of fingers 2-3 or
duplication of the distal phalanx of the hallux n
SCS 5, syndactyly of fingers and toes and lateral
deviation of thumbs and great toes in AS **, and
deviation of thumbs
symphalangism in PS %,

and great toes with

Mild forms of MS and SCS are often misdiagnosed
because of overlapping clinical features #8557, In
our model, we were unable to differentiate MS
from SCS 1n a binary classification (0.667 [0.370 —
0.963], p = 0.642). The distinctive features of MS
are carpal and tarsal fusions and hearing loss %,
whereas the main distinctive features of SCS are

strabismus and ptosis **.
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The round and small pinna with a crux cymbae, a
prominent crura, contributes to the differential
diagnosis. De Heer et al 8 stated that this feature 1s
present in 56% of patients with SCS. Choi et al ®
listed the skeletal differences between MS and
SCS: both syndromes result in midface narrowing;
however, M5 causes posterior rotation of the
palatal plane, maxillo-mandibular hyper-
divergence resulting in labial incompetence and
reduction in the height of the mandibular ramus,
while SCS causes posterior rotation of the palatal
plane, with no difference in maxillary height,
resulting in hyper-divergence and lengthening of
the lower third of the face. Choi et al state that
FGFR3 and TWIST! act differently on the timing
of fusion of circum-maxillary sutures, resulting in
differences in facial growth .

Several teams consider that CS and PS syndromes
correspond to the same entity 0616970 We found
no significant difference in facial phenotypes
between these two syndromes in a binary
classification (AUC = 0.548 [0.270 — 0.827), p =
0.672).

2. Genotype-phenotype correlations

AS 1s caused by 2 mutations only in FGFR2:
p-Ser252Trp and p.Pro253Arg "7, Jadico et al
suggested that patients with the p.Ser252Trmp
variant have a more severe ocular phenotype 7,
while Lajeunie et al ** stated that p.Pro253Arg
leads to more severe cognitive impairement and
anomalies of the upper extremities anomalies.
Based on a large cohort of patients, we could not
show any facial phenotype difference between
these two AS genotypes (AUC = 0.506 [0.215 -
0.797], p=0.874).

Fenwick et al ™ suggested that alterations in
normal FGFR2 splicing may result in a nmuld CS
phenotype. We showed in a binary classification
between the ‘Igllle” and “Splicing domain’ groups
in CPS, a significant prediction with an AUC =
0.786 [0.554 - 1.000] (p < 0.023) on the validation
set. In addition, the controls were indistinguishable
from the *Splicing domain’ group (AUC = 0.577
[0.332 - 0.822], p = 0.657). Classification between
the *Splicing domamm’ group and the 4 other
genotype groups showed a significant AUC on the
empirical curve (training set) of 0.706 [0.602 -
0.810] (p = 0.012), but this significance was not
confirmed by the validation set, with an AUC of
0.629 [0.381 - 0.878] (p = 0.438), most probably

due to limited data volume.

These results are corroborated by average faces,
with  less  hypoplastic  mudface,  mulder
hypertelorism and brachycephaly in the "Splicing

domain" group relative to other genotype groups.

We observed significant phenotype differences
between the other CPS genetic groups. Variations
localized to the intracellular (TK) domain of
FGFR2, and variations in FGFR3 appeared to
result in more severe brachycephaly and even
turricephaly (Figures & and 9). Varations in
FGFRI and FGFR3 appear to affect mandibular
growth less than FGFR2, and the mudfacial
narrowing results in a class III malocclusion.
Morice et al 2 showed a short ramus height in
patients with FGFR2 variant, but not in patients
with a FGFR3 variant. Midfacial involvement
appeared extreme for patients with FGFR/
variation, compared to vanations on FGFR2 and
FGFR3. These facial and cranial morphological
differences between FGFR? and FGFR3
craniosynostoses support the hypothesis that the
genes affect the membranous and endochondral
processes differently. Comnille et al ™ showed in a
CS mouse model with FGFR3 overactivation, a
brachycephaly, an oculo-orbital disproportion, a
premature fusion of the anterior-intra-occipital
synchondroses, prognathism, and mudfacial
hypoplasia. The authors explained that the
relatively small mandible and the severe maxillary
retrusion leads to class 111 malocclusion.

Conclusion

Here we report a new approach of the automatic
detection of syndromic cramosynostoses with Al-
based methods, using a database covering forty
years of activity of the Necker — Enfants Malades
craniofacial center. Performances were validated
based on data from another large craniofacial
center, Great Ormond St. Hospital, London. All
patients in both databases had identified genetic
variations.

The novelty of our study 1s that we account for
frontal and profile facial morphology, external ear
shape, cranial vault outline, hairline implantation,
and prediction within a group of control patients.
‘We were able to detect more than 70% of patients,
with excellent performance particularly in the CPS
group (84.4% and AUC = 0.941). Finally, we were
able to describe the sigmificant phenotypic
variability within the Crouzon Pfeiffer group, all to

better predict patients’ clinical course.
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6.2 Next Generation Phenotyping model for diagnosis and phenotype —

genotype correlations in Kabuki syndrome

Kabuki syndrome (KS) is a rare genetic disorder, with an estimated prevalence of 1:86,000
to1:32,000 (145-147). The typical KS face includes long palpebral fissures associated with
eversion of the lower third of the lower eyelid; long and heavy lashes giving the impression of
made-up eyes; broad, arched and interrupted eyebrows; broad, depressed nasal tip; and
prominent, cupped ears (145,146,148). Non-facial anomalies include mild to moderate
cognitive impairment, visceral malformations, skeletal dysplasia and immunological
manifestations (149). KS has been described in all ethnic groups (150,151). More than 80% of
KS patients have a pathogenic variant in the coding regions of KMT2D (KS type 1, KS1,
OMIM147920), and around 10% of patients have a pathogenic variant in the KDM6A4 gene
(KS type 2, KS2, OMIM300128) (152—156). The aim of this study was to test our model for

KS diagnosis and distinguish KS1 from KS2.

Ranging between 1998 and 2023, we included 1448 frontal and lateral facial photographs,
corresponding to 634 patients. The control group comprised 1084 photographs, corresponding
to 527 patients. The KS group comprised 364 photographs, corresponding to 107 patients. 82
(78%) of patients had a variation in the KMT2D gene (KS1), 23 (22%) in the KDM6A4 gene
(KS2).

We confirmed the usual characteristics described in KS: high and arched eyebrows, long
palpebral fissures, and large and prominent ears. The facial phenotype seemed more severe in
patients under 3 years of age than in older patients. We were able to distinguish KS vs
controls in the independent validation group with an accuracy of 95.8% (78.9 - 99.9%, p <
0.001). AUCs were comparable in the training set (0.994) and in the validation set (0.993)

(Figure 14).
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Figure 14. A. Empirical ROC curves (training set) for KS with AUC in design Mel. B.

ROC curves (validation set) for KS with AUC in design M21. AUC = Area Under the

Curve, KS = Kabuki Syndrome.

Ten out of eleven patients were correctly predicted as KS with our model, and this

performance was the same using Face2Gene CLINIC. In addition, we were able to predict all

control patients (Table 9).
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Table 9. Confusion matrix for design N2l (KS versus controls) in the validation group.

AUC = Area Under the Curve. Bold values: True Positives (TP).

KS2 patients had a rounder face, a shorter nose, a thicker upper lip, anteverted nostrils, and a
shorter midface. There was no obvious difference in the eyebrows and eyes. The external ears
were more elongated vertically in KS2, with a hypoplastic lobe, and with a counterclockwise
rotation. The conch seemed more vertical in KS1. The model was able to distinguish KSI

from KS2 with an empirical AUC of 0.805 (0.729 - 0.880, p < 0.001) (Figure 15).

1.001
0.75-
=
K]
8
£ Group / AUC
é 0.50
: KS2 0.805
(0]
=
=
0.25
0.00-
0.00 0.25 0.50 0.75 1.00

False positive fraction

140



Figure 15. Empirical ROC curve (training set) for KS2 with AUC in design 2. AUC =

Area Under the Curve, KS = Kabuki Syndrome.

Rouxel et al (149) showed that the Face2Gene RESEARCH tool distinguished KS1 from KS2
in a cohort of 66 patients with an AUC of 0.722 (p = 0.022). The same team showed a
classification accuracy of 61% (20/33) by clinical genetics experts between KS1 and KS2.
The performance of our model was at least comparable to Face2Gene RESEARCH and
seemed to outperform that of clinical experts.

Rouxel et al (149) explained that KS1 patients had a longer face and nose, a thin upper lip
vermilion and a longer midface than KS2 patients, who have a rounder face, a thicker
vermilion and anteverted nostrils. Our study reports new phenotypic features not seen on
frontal images alone for KS2, such as a particular morphology of the external ear, longer
along the vertical axis and with counterclockwise rotation.

The model was unable to detect a difference in facial phenotype between KS1 patients with a
Protein-Truncating Variant (PTV) compared to patients with a Protein-Altering Variant

(PAV) (0.555 [0.419 — 0.690], p = 0.786).
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Abstract. Introduction: Kabuki syndrome (KS) i1s a rare genetic
disorder with a well recognizable facial phenotype. More than 80% of
K5 patients have a pathogenic variant in the coding regions of
KMT2D (KS type 1, KS1), and around 10% of patients have a
pathogenic variant in the KDM64 gene (KS type 2, KS2). Improving
diagnosis in clinical genetics 1s a crucial challenge in reducing
diagnostic wandering. The field of dysmorphology is changing with
Artificial Intelligence (Al) and the development of Next Generation
Phenotyping (NGP). The aim of this study was to propose a new NGP
model for predicting KS on 2D facial photographs and distinguish
KS1 from KS2. Material and methods: We included retrospectively
and prospectively, from 1998 to 2023, all frontal and lateral pictures
of patients with a molecular confirmation of KS. After Region Of
Interest (ROI) detection using a Faster RCNN (Faster Region-based
Convolutional Network) and automatic placement of
landmarks using a patch based AAM (Active Appearance Model), we
extracted geometric features using Procrustes superimposition, and
textural features using a Gray-Level Co-occurrence Matrix (GLCM).
After a dimension reduction step using Principal Component Analysis
(PCA) and incorporation of metadata such as age, gender, and
ethmicity, we used XGboost (eXtreme Gradient Boosting), a
supervised machine learning classifier. The model was tested on an
independent validation set of genetically confirmed KS and controls
using accuracies and Area Under the Curves (AUC). We then tested
for belonging to KS1 and KS2 groups. Finally, we compared the
performances of this NGP model with DeepGestalt (Face2Gene), a
current commercially available Al-based diagnostic tool. Results: The
study included 1448 frontal and lateral facial photographs from 6
centers, corresponding to 634 patients (527 controls, 107 KS); 82
(78%) of patients had a variation in the KMT2D gene (KS1), 23 (22%)
in the KDM64 gene (K52). We were able to distinguish KS from
controls in the independent validation group with an accuracy of
95.8% (78.9 - 99.9%, p < 0.001), and distinguish KS1 from KS2 with
an empirical AUC of 0.805 (0.729 - 0.880, p < 0.001). We found no
facial shape difference between KS1 patients with a protein-truncating
variant (PTV) vs a protein-altering variant (PAV). Conclusion: We
report an automatic detection model for KS that considers the face,
profile and ears, with high performances (AUC 0.993 and accuracy
05.8%). We were able to separate patients with KS1 (KMT2D) from
K52 (KDM64), with an AUC of 0.805. These results outperform the
current commercial Al-based solutions and expert clinicians.
Keywords: Next Generation Phenotyping, DeepGestalt, Kabuki
syndrome, KMT2D, KDM64, dysmorphology.
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Introduction. Kabuki syndrome (KS) is a rare
genetic disorder, with an estimated prevalence of
1:86,000 t01:32,000 7. The typical KS face
includes long palpebral fissures associated with
eversion of the third part of the lower eyelid: long
and heavy lashes giving the impression of made-up
eyes; broad, arched and interrupted eyebrows;
broad, depressed nasal tip; and prominent, cupped
ears '7* Non-facial features include mild to
moderate intellectual disability, visceral
malformations, skeletal dysplasia and
immunological manifestations ’. KS has been
described in all ethnic groups 7. More than 80% of
KS patients have a pathogenic variant in the coding
regions of KMWT2D (KS type 1, KSI,
OMIM147920), and around 10% of patients have a
pathogenic variant in the KDM64 gene (KS type 2,
KS2, OMIM300128) *'2. Improving diagnosis in
clinical genetics 1s a crucial challenge m reducing
diagnostic wandering. In France, the 7,000 rare
diseases identified to date represent 4.5% of the
population, half of which affect children under the
age of 5 with 10% of deaths between 0-5. Around
50% of patients are not diagnosed, and for the
remaining 50%, diagnostic wandering reaches an
average of 5 years 'Y Diagnostic wandering is
defined by the failure to define the precise cause of
a disease after having performed all available
investigations. Applications of Al (Artificial
Intelligence) are increasing in healthcare '*'7. The
field of dysmorphology has been transformed by
these new methods, under the name of Next
Generation Phenotyping (NGP) '®. Publications
comparing human performances to NGP are
flourishing ', and some suggest that digital tools
do 1t better than human experts in terms of
diagnosis: Dudding-Byth et al = showed a better
performance of NGP compared to clinicians in a
group of ten genetic syndromes, not including KS;
Rouxel et al * compared the performance of the
DeepGestalt technology ' using the Face2Gene
online tool (FDNA Inc. Boston, MA, USA) to the
performances of clinicians trained in the recognition
of K51 and K52, The aim of this study was to
develop a NGP model for KS diagnosis and
distinguishing KS1 from KS2. We trained and
validated the model on a large national and
international multi-centric cohort of patients of all
ages and ethnicities. The unique specificity of this
approach was the integration of full frontal face,
including the shape of the cramial vault and the
position of the ears, as well as the frontal face and
the morphology of the external ear.

Materials and methods. The study was approved
by the CESREES (Comité Ethique et Scientifique
pour les Recherches, les Etudes et les Evaluations
dans le domaine de la Santé, Ned5370023bis), the
CNIL (Commission Nationale Informatique et
Libertés, NeMLD/MFI/AR221900), the Institutional
Review Board, Faculty of Medicine, Chulalongkorn
University (IRB 264/62), and in accordance with the
1964 Helsinki declaration and its later amendments.
Informed and written consents were obtained from
the legal representatives of each child or from the
patients themselves if they were of age.

Photographic dataset

We included most pictures from the photographic
database of the Maxillofacial surgery and Plastic
surgery department of Hdpital Necker — Enfants
Malades (Assistance Publique — Hopitaux de Paris),
Paris, France. This database contains 594,000
photographs from 22,000 patients, and all pictures
since 1995 were taken by a professional medical
photographer using a Nikon D7000 device m
standardized positions.

We included retrospectively and prospectively, from
1995 to 2023, all frontal and lateral pictures of
patients diagnosed with KS. The photographs were
not calibrated. All patients had genetic confirmation
of KS (KMT2D or KDM64). We excluded patients
with a history of cramiofacial surgery. Multiple
photographs per patient corresponded to different
ages of follow-up. Duplicates were excluded.
Controls were selected among patients admitted for
lacerations, trauma, nfection and wvarnous skin
lesions, without any record of chronic conditions.
More precisely, follow-up for any type of chronic
disease was considered as an exclusion criterion.
The reports were retrieved using the local data
warehouse Dr Warehouse . For each patient, the
best lateral view was included.

Data from five other medical genetics departments
were also included according to the same criteria:
(1) Montpellier University hospital, (2) Grenoble
University hospital, (3) Tours University hospital,
(4) King Chulalongkorn Memorial Hospital
Bangkok, Thailand, and (5) Lausanne University

Hospital, Lausanne, Switzerland.

Validation set

For designs Nel and Ne2, we randomly selected a
group of individuals corresponding to 10% of the
number of patients with KS, and the equivalent
number of control patients. These patients were
removed from the traiming set. The two sets were
therefore independent.
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Landmarking
We used three different templates based on 105
landmarks for the frontal views, 73 for the lateral
views and 41 for the external ear pictures. We
developed an automatic annotation model for each
template following a pipeline including: (1)
detection of the Region Of Interest (ROI) and (2)
automatic placement of the landmarks.
For ROI detection, a Faster RCNN (Faster Region-
based Convolutional Neural Network) model was
trained after data augmentation (images and their
+10° and -10° rotations), with a learning rate of
0.001, a batch size of 4, a gamma of 0.05 and 2000
iterations, optimized and split into two stages: ROI
detection and determination of profile laterality.
(1) ROI detection: Faster RNN trained on 15633
images, after data augmentation (images and their
+10° and -10° rotations): 6186 frontal images (2062
x 3) and 9447 right and left profile images (3159 x
3). The batch size was 2, learning rate was 0.0025
and the maximum number of iterations was 2800.
(2) Determination of profile laterality: Pre-
trained ResNet50 network *° using the
Pytorch library “*. The training images
included 1,570 left profiles and 1,579 right
profiles. The batch size was 16, an Adam
optimizer *’ was used with a learning rate of
0.001, a step of 7, a gamma of 0.1, trained
over 25 epochs.
For the automatic placement of landmarks, we used
a patch-based AAM (Active Appearance Model)
using the menpo library on Python 3.7 **. We have
previously reported the relevance of this approach
2 We used two-scale landmarking: the model for
frontal pictures was trained on 904 manually
annotated photographs, with a first stage of
dimensioning (diagonal = 150), a patch shape of
[(15, 15), (23, 23)] and 50 iterations, and a second
stage without resizing, with a patch shape of [(20,
20y, (30, 30)] and 10 new iterations. The model for
profile pictures was tramed on 1,439 manually
annotated photographs, with a first stage of
dimensioning (diagonal = 150), a patch shape of
[(15, 15), (23, 23)] and 25 iterations, and a second
stage without resizing, with a patch shape of [(15,
15). (23, 23)] and 5 new iterations. The model for
ears was ftrained on 1221 manually annotated
photographs, with a first stage of dimensioning
(diagonal = 100), a patch shape of [(15, 15), (23,
23)] and 50 1iterations, and a second stage without
resizing, with a patch shape of [(20, 20), (30, 30)]
and 20 new iterations. All three models used the
Lucas Kanade optimizer ".

Each automatically annotated photograph was
checked by two authors blinded for the diagnosis,
QH and MD, and landmarks were manually re-
positioned when necessary, using landmarker.io *'.
The ICC (Intraclass Correlation Coefficient) was
computed between the raters. ICC values greater
than 0.9 corresponded to excellent reliability of the

manual annotation *.

Geometric morphometrics

We performed Generalized Procrustes Analysis
(GPA) * on all landmark clouds using the geomorph
package on R **. Since the data were uncalibrated
photographs, ROl sizes were not available: shape
parameters only were assessed and not centroid
sizes. Procrustes coordinates were processed using
Principal Component Analysis (PCA) for dimension
reduction. We retained the principal components
explaining 99% of the total variance in cumulative
sum. The last 1% was considered as negligible
information.

Texture extraction

We partitioned the frontal and profile pictures into
key areas and applied textural feature extraction
methods to each zone, allowing to check the results
and determine which zone had contributed most to
the diagnosis.

We defined 14 key areas that could potentially
contribute to diagnosis: 11 on frontal views
(right/left eyes, rightleft eyebrows, glabella,
forehead, nasal tip, philtrum, right/left cheeks, chin)
and 3 on lateral views (pre-auricular region, eye,
zygoma relief). Each zone was extracted
automatically using the previously placed
landmarks.

We used the CLAHE (Contrast Limited Adaptative
Histogram Equalization) algorithm for histogram
equalization, as previously reported before the use
of feature extractors ¢, CLAHE enhanced
contrast by evenly dispersing gray values * and by
reducing the influences of illumination during
picture capture and of skin color. Kiflie et al
recommended CLAHE as a first choice equalization
method ¥,

Gray-level co-occurrence matrix (GLCM) methods,
as proposed by Haralick ¥ are based on the
estimation of the second-order joint conditional
probability density functions, which characterize the
spatial relationships between pixels. GLCM 1s
commonly used in texture analysis ***', for instance
in radiomics on CT-scan or MRI images *** or for
skin texture assessment .
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In GLCM, the co-occurrence matrix contains
information on entropy, homogeneity, contrast,
energy and correlation between pixels. GLCM
includes 28 features, taking into account the average
and range for each item of information and for each
zone, representing 28 x 14 = 394 textural features
for each patient.

Stratification using metadata
The textural features and the geometric principal
compoenents were combined for further analysis. To
consider associated metadata (age and gender) and
the fact that we included more than one photograph
per patient (that is the non-independence of the
data), a mixed model was designed for each feature.
The wvariables to be explained were the features
(geometric and textural), with age, gender and
ethmicity considered as explanatory variables. A
random effect on age and individuals was
introduced. The equation of the mixed model was:
Features;; ~a + age.p; + gender.f3;
+ ethnicity. iz + age.f;; + & j

where age. f, ; corresponded to a random slope for
age per individual, and &; ; was a random error term.
We did not use an interaction term between age and
gender and age and ethnicity as it did not increase
the likelihood of the model. Age, gender and
ethnicity are significant factors in dysmorphology
4647
The residuals of each feature were computed to
consider potential biases linked to the metadata:

£j = Features;; — a + age.p, + gender.f;
+ ethnicity. By + age. f;

Clussification model

The inputs to the model were the residuals from the
linear models described above, for each geometric
or textural feature. We used XGBoost (eXtreme
Gradient Boosting), a supervised machine learning
classifier, for all the analyses *. We chose a tree-
based booster, and the loss function to be minimized
was a logistic regression for binary classification.
We set several hyperparameters to improve the
performance and effect of the machine learning
model: learning rate = 0.3, gamma = 0, maximum
tree depth = 6. The model with the lowest error rate
was chosen for analysis. We separated the dataset
into a training set and a testing set, and a 5-fold
cross-validation was used to define the i1deal number
of iterations to avoid overfitting.

The chosen model with the ideal number of
iterations was then used on the independent
validation set to test performances, by plotting
accuracy and AUC. The ROC (Receiver Operating
Characteristics) curves were plotted in R using the
plotROC package *7. We used the DeepGestalt tool
proposed by Face2Gene CLINIC on our validation
set, to be able to compare its performance
(accuracies).

Uniform Manifold Approximation and Projection
(UMAP) representations

The residuals &; ; were represented using UMAP for
visual clustering, a nonlinear dimension reduction
technique *'. We retained the residuals associated
with features with a classification gain (in their
cumulative sum) > (.75 in the importance matrix
associated with the XGboost model. A k (local
neighborhood size) value of 15 was used. A cosine
metric was introduced to compute distances in high
dimensional spaces: the effective minimal distance
between embedded points was 107%. The three
conditions of UMAP, namely uniform distribution,
local constancy of the Riemannian metric and local
connectivity were verified. UMAP analyses were
performed using the package umap on R ' (Figure
1.

Clussification designs

1) Design Ael, syndrome diagnosis support: KS
was tested against controls mm a binary
classification.

2} Design M2, genotype-phenotype correlations:
KS1 and KS2 were tested in binary
classifications.

3)  Design M3, genotype-phenotype correlations:
KS1 Protein-Altering Variants (PAVs) and
Protein-Truncating Varants (PTV) were tested
in bmary classifications.
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Figure 1. Analysis pipeline, from the initial
photograph to diagnostic probability. Faster
RCNN = Faster Region-based Convolutional Neural
Metwork; CLAHE = Contrast Limited Adaptative
Histogram Equalization; GLCM = Gray-level Co-
occurrence Matnx; XGboost = eXtreme Gradient
Boosting.

Results

Population description

Ranging between 1998 and 2023, we included 1448
frontal and lateral facial photographs, corresponding
to 634 patients. The mean age was 7.2 +/- 4.2 and
ranged from 0 to 40.2 vyears; 50% were girls.
Ethnicity was 91% Caucasian, 6% African or
Caribbean, and 3% Asian.

The control group comprised 1084 photographs,
corresponding to 527 patients with a mean age of
7.0 +/- 4.6 years. Fifty-four percent were girls and
ethnicities were 93% Caucasian, 3% African /
Caribbean, and 2% Asian.

The KS5 group comprised 364 photographs,
corresponding to 107 patients with a mean age of
7.8 +/- 6.7 years. Forty-one percent were girls and
ethmicities were 83% Caucasian, 9% African /
Caribbean, and 8% Asian. Eighty percent of patients
were KS1 (Table 1).

Two patients had a genetically confirmed diagnosis
of KS, but we had no information on the causal
gene. We thus collected information on genetic
varniation for 105 KS individuals with 82 (78%) and
23 (22%) with vanations m KMT2D (KS1) and
KDM6A4 (KS2) respectively.

In the KS1 group, 74% of vanants were PTVs, with
49% nonsense variants leading to a premature stop
codon (24% non-sense, 24% frameshift) and 26%
splice donor site variants. Eighteen percent were
PAVs, with 17% muissense varnants and 1% in-frame
indel.

In the KS2 group, 78% of vanants were PTVs, with
43% nonsense variants leading to a premature stop
codon (30% non-sense, 13% frameshift), 30% sphce
donor site variants and 4% a large deletion. Nine
percent were missense PAVs (Supp. table 2).

Total Controls KS

™

Consultations 724 542(75%) 182 (25%)

Photographs 1448 1084 (75%) 364 (33%)

Patients 634 52T (B3%) 107 {17%)
Gender

Female 365 (50%) 291 (54%) T4 (41%)

Male 359 (50%) 251 (46%) 108 (59%)
Age (years)

Mean +/- SD T2+:42 J0+-46 TB+H-5T

Median [ 7.l 6.0

Minimum L] 0.1 1]

Maximum 40.2 22.1 40.2
Ethnicity

African / Caribbean 45 (6%) 29 (5%) 16 (9%)

Asian 25 (3%) 10 {2%) 15 (B%)

Cancasian 654 (%) 503 (93%) 151 (8B3%)
Genetic varlation

KMT2D (K81) 1446 (B0%)

KDMEA (KS2) 35 (20%)

Table 1. Clinical description of the cohort. SD =
Standard Deviation, KMT2D = Lysine (K)-specific
methyltransferase 2D, KDM64 = Lysine (K)-
specific demethylase 6A.

Design Nel @ KS vs controls

1) Phenotvpe

We confirmed the usual characteristics described in
KS: high and arched eyebrows, long palpebral

fissures, and large and prominent ears.

1) Classification

We were able to distinguish K5 vs controls in the
independent vahidation group with an accuracy of
95.8% (78.9 - 99.9%, p < 0.001). AUCs were
comparable m the training set (0.994) and in the
validation set (0.993) (Figure 3).
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Figure 2. Average shapes in KS and controls, and
comparisons after Procrustes superimposition of
frontal views, profile views and external ears for
three age groups. Blue = controls, Dark red = KS.
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Figure 3. A. Empirical ROC curves (training set)
for KS with AUC in design Azl. B. ROC curves
(validation set) for KS with AUC in design M1,
AUC = Area Under the Curve, KS§ = Kabuki

Syndrome.

Ten out of eleven patients were correctly predicted
as KS with our model, and this performance was the
same using Face2Gene CLINIC (Supp. Table 1). In
addition, we were able to predict all control patients

(Figure 4, Table 4).

Design Nel
Accuracy 0.958 [0.789 - (.999] p=0.001*
AUC 0.993 [0.974 - 1.000] p=0001*
~ F1 score 0.963

Table 3. Classification performances for design
Nel (KS vs controls) in the validation group. AUC
= Area Under the Curve. * = statistically significant
(p < 0.05).

Figure 4. Classification using design Nel for
proband 3 of the validation set. A and B. Frontal
and profile views of proband 3. C. UMAP
representation of the training data according to
the two groups, with positioning of proband 3. D.
Histogram of predictions by the model. This child
was also detected as KS by Face2Gene CLINIC. KS

= Kabuki Syndrome.

Reference
Control KS
.:G:, Control 13 1
5
=
& KS 0 10

Tuble 4. Confusion matrix for design Nel (KS
versus controls) in the validation group. AUC =
Area Under the Curve. Bold values: True Positives

(TP).

Design Ne2 : KS§1 vs KS2

1) Phenotvpe

KS2 individuals had a rounder face (HP:0000311), a
shorter nose (HP:0003196). a thicker upper lip
(HP:0000215), anteverted nostrils (HP:0000463),
and a shorter midface (HP:0011800). There was no
obvious difference in the eyebrows and eyes. The
external ears were more elongated vertically in K52

(HP:0400004), with a  hypoplastic  lobe
(HP:0000385), and with a counter-clockwise

rotation. The conch seemed more vertical in KS1.

1) Classification
The model was able to distinguish KS1 from KS2

with an empirical AUC of 0.805 (0.729 - 0.880, p <
0.001) (Figures 6, 7). This trend was found in the
validation group, with an accuracy of 70% without

reaching the significance threshold (Supp. Tables 2
and 3).

Design Ne3: PTV vs PAV in KS1
The model was unable to detect a difference in

facial phenotype between KSI patients with a PTV
compared to patients with a PAV (0.555 [0.419 —

0.690], p = 0.786) (Figure 8).
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Figure 6. Empirical ROC curve (training set) for
K52 with AUC in design 2. AUC = Area Under the
Curve, KS = Kabuki Syndrome.

-

Figure 7. Classification using design Ne2 for two
probands of the training set. A, B, E, F. Frontal
and profile views of the two probands. C, G.
UMAP representations of the training data
according to the two groups, with positioning of
probands 3. D, H. Histograms of predictions by
the model. The phenotype included a reduced
height of the midface. a thicker upper lip, and a
vertical elongation of the external ear in the K52
group (E and F). KS = Kabuki Syndrome.

Discussion. The model we report distinguished KS
from controls in the independent validation group
with an accuracy of 95.8% (78.9 - 99.9%, p <
0.001). Only 1 patient out of 24 was classified as
‘control” while she had KS (accuracy 96%). In the
KS group, 10 out of 1l patients were correctly
classified (accuracy 91%).

Group / AUC
K51 PAV (0,555

=

True posiive faciion
L

3 6
Fabiis posdvi lemcton

Figure 8. Empirical ROC curve (training set) for
KS1 PAV with AUC in design Ne3. AUC = Area
Under the Curve, KS = Kabuki Syndrome, PAV =

Protein-Altering Variant.

Using the Face2Gene CLINIC tool on KS patients
(because DeepGestalt technology is not able of
recognizing non-syndromic patients) | patient out of
11 could not be analyzed and could not be classified
as KS (accuracy 91%). Performances were therefore
comparable. Interestingly, the patient not recognized
by our model and by Face2Gene CLINIC was of
African ethnicity, highlighting the lack of training
data for non-Caucasian patients.

The model we report was also able to distinguish
KSI1 from KS2 with an empirical AUC of 0.805
(0.729 - 0.880, p < 0.001). Rouxel et al * showed
that the Face2Gene RESEARCH tool distinguished
KS1 from K52 in a cohort of 66 patients with an
AUC of 0.722 (p = 0.022). The same team showed a
classification accuracy of 61% (20/33) by clinical
genetics experts between KS1 and KS2. The
performance of our model was at least comparable
to Face2Gene RESEARCH and seemed to
outperform that of clinical experts.

Rouxel et al ° explained that KS1 patients had a
longer face and nose, a thin upper lip vermilion and
a longer midface in comparison to KS2 patients,
who have a rounder face, a thicker vermilion and
Our study reports new
phenotypic features not seen on frontal images
alone for KS2, such as a particular morphology of
the external ear, longer along the vertical axis and
with counter-clockwise rotation.

anteverted nostrils.
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Phenotype-genotype correlation have been reported
in KS for extra-facial anomalies. Cardiovascular
abnormalities, namely ventricular septal defects,
coarctation of the aorta, atrial septal defects,
bicuspid aortic valve, patent ductus arteriosus, and
hypoplastic left heart syndrome 3233:33-53
prevalent in KS2 compared to KS1 '°* Persistent
hypoglycemia due to pituitary hormone deficiency,
adrenal insufficiency, growth hormone deficiency
and dysregulated insulin secretion by the pancreatic
B-cells 3% are also more frequent in KS2 19
probably because the inhibition
of KDM6A increases the release of nsulin from
pancreatic islet cells in murine models ¥, Urinary
tract anomalies, such as horseshoe kidneys and renal
hypoplasia, seem to be more frequent in KSI, and
genital defects such as cryptorchidism and
hypospadias could be more frequent in KS2 366061,
Rouxel et al * underline the lack of Asian patients in
their evaluation, and proposed that larger series
were needed to  Dbetter define phenotypical
differences between KS1 and KS2, and the general
dependance of the phenotype with ethnicity &'2. The
collaboration with an Asian clinical genetics center
(Bangkok) 1s thus a strong point of this study. The
use of textural feature extraction allowed our model
account for typical KS characteristics not
recognized by geometric analysis (Procrustes)
alone. The lateral sparsening of the eyebrows and
heavy lashes giving the impression of make-up eyes
were thus included mto in the classification. In
addition, a side effect of diazoxide %% used to treat
hyperinsulinism more often mn KS2 is hirsutism.
This side effect could have contributed to the
classification between KS1 and KS2 via the analysis
of textures. Barry et al ! reported a large meta-
analysis including 152 articles and 1369 individuals
with KS and assessed the prevalence of the different
types of pathogenic variation per gene. The majority
of KMT2D variants were truncating (nonsense 34%,
frameshift 34%), then missense (23%) and finally
splice  site  vanants (9%). The majonty
of KDM6A wvariants were truncating (frameshift
36% > nonsense 27%), followed by splice site
(20%), and missense (18%). We found similar
results, with a higher prevalence of truncating
nonsense variants for both genes. There was a
higher prevalence of splice donor site variants, with
26% for KMT2D and 30% for KDM6A. Some
authors report a more severe clinical outcomes in
patients with non-sense variants than m patients
with a frameshift variant !. Faundes et al *® found
more severe neurodevelopmental anomalies in
patients with protein-truncating mutations in the
K52 group.

are more

Shah et al ® reported ophthalmological anomalies
such as strabismus, blue sclerae, microphthalmia
and refractive anomalies that were more severe In
patients with a nonsense variant, and less frequent
in patients with a frameshift variant. Our model did
not find any significant difference m facial

phenotype between PTV and PAV.

Conclusion. Here we report an automatic detection
model for KS including the face, profiles and ears,
with performances (AUC 0.993 and accuracy
95.8%) comparable to those of Face2Gene, on an
independent validation set. These performances
were achieved using an international cohort of 107
patients with a confirmed molecular diagnosis of
KS. Using the same model, we were able to separate
patients with KS1 (KMT2D) from K82 (KDM64),
with an AUC of 0.805. These results seem to at least
outperform Face2Gene and support the possibility
of using a phenotype-first strategy to diagnose KS
and detect its two causal genes.
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7 Results for the secondary objective: effect of a treatment on facial

morphology

We will present three cases analyzing the effects of a medical or surgical treatment on facial

morphology:

- Efficacy of alpelisib on the facial phenotype in PIK3CA-related hemifacial
myohyperplasia

- Comparison of the nasal phenotype of two techniques for the surgical treatment of
cleft lip and palate

- Comparison of two surgical techniques for the treatment of non-syndromic

scaphocephaly

7.1 Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain- of-

function mutation and responds to pharmacological inhibition (Appendix

1)

Hemifacial myohyperplasia (HFMH) is a rare cause of facial asymmetry exclusively involving
facial muscles, initially reported as ‘hypertrophy and asymmetry of the facial muscles’ (157).
This disorder is reported in very few patients in the literature (36,158-161). The clinical
presentation of HFMH patients is strikingly consistent, with unilateral muscular hypertrophy
mimicking spasm and orofacial dystonia, leading to diagnostic errors and inadequate
management strategies, including aggressive attempts of surgical correction (162). Currently
the genetic causes of HFMH are unknown. The recent discovery of the role played by somatic
mutation of genes activating the PI3KCA/AKT/mTOR pathway has opened new treatment

perspectives for patients (163). Particularly, PIK3CA gain-of-function mutations explain most
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overgrowth syndromes. The understanding of the genetic bases of overgrowth has allowed to
treat patients presenting PIK3CA-related overgrowth syndromes (PROS) with a specific PI3K
inhibitor (BYL719, alpelisib), initially designed as an anti-neoplastic drug (164). Alpelisib is
efficiently tackling soft-tissue overgrowth in PROS (164—167). Bayard et al hypothesized that
PIK3CA/AKT/mTOR pathway was abnormally affected in patients with HFMH (168). Here,
we report the results of the clinical screening and treatment in 5 patients with HFMH. After 6
months, 2D photographs were performed for all patients. 2D photographs were analyzed as
previously described. The pre-treatment facial phenotype was compared to the facial
phenotype after a minimum of 6 months of treatment. An associated assessment using 3D

photography was also conducted, as detailed in (168), but falls outside the score of this PhD.

Based on 2D photography quantification, we confirmed the lowering of the lip commissure,
the widening of the palpebral fissure, the reduction of nose and chin deviation (Figures 16,
17). These results were published in 2023 (168), together with cellular, molecular,
radiographic, and 3D photography data demonstrating the efficiency of alpelisib in treating
HFMH. The results from 2D photography analyses were nevertheless removed from the final
version of the article during the revision process as required by the reviewers of the Journal of

Experimental Medicine (168).
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Figure 16. Phenotypical description of Hemifacial myohyperplasia (HFMH). Face (A),

profile (B) and external ear (C) assessment for controls (blue) and patients with HFMH (red).

Figure 17. Alpelisib improves hemifacial myohyperplasia phenotype in patients. Face,
profile, and external ear assessment based on 2D photographs of the 5 patients before

treatment (light green) compared with presentation after 6 months of treatment (dark green).

7.2 Comparison of nasal symmetry in two surgical techniques for cleft lip

and palate repair

The aim of the next study was to evaluate the short- and long-term results of two cleft lip and
palate repair techniques (Delaire technique (5) vs. Talmant technique (6)) on the symmetry of
the nose. We included full-face, low-angle photographs from two referral centers for cleft lip
and palate surgery. For each patient, if available, we included a pre-operative photograph and

two post-operative photographs, one less than 3 years after the operation (early post-
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operative) and the second one more than 3 years after cleft repair (late post-operative).
For each patient, we recorded the following additional data: age at surgery, gender, laterality
of the cleft, complete / partial cleft, and the identity of the surgeon.
We used a new template based on 61 landmarks placed on both nostrils and the perimeter of
the nasal pyramid. Landmarks were manually placed.
To ensure a uniform distribution of landmarks along the curves, anatomical landmarks were
transformed into sliding semi-landmarks using the geomorph package on R (7). As performed
previously to account for associated metadata (age and type of cleft) and the fact that we had
included more than one photograph per patient (that is the non-independence of the data), a
mixed model was designed for each principal component. The variable to be explained was
PC, with age and type of cleft considered as explanatory variables. A random effect on age
and individuals was introduced. The equation of the mixed model was:

PC, ; a+age.B +typeof cleft.p,+¢,
where age. B3, ; corresponded to a random slope for age per individual and €; ; was a random
error term. We measured the directional asymmetry (DA) of the nasal dome and the
asymmetry of the nostrils for each landmark cloud. The means and standard deviations of DA
for each time point (pre-operative, early post-operative, and late post-operative) were
measured and compared by Student’s t tests, according to the surgical technique groups. We
used a Linear Discriminant Analysis (LDA) to measure the classification accuracy between
the two surgical techniques at different operative times. A 10-fold cross validation was used
to measure the uncertainty. Accuracy and standard deviation at different times were reported.
We included a total of 290 photographs, corresponding to 74 patients, 47% in the Talmant
group and 53% in the Delaire group. In the Talmant group, 23% were females, 63% were
operated on by surgeon Nel and 37% by surgeon Ne2. 29% were right clefts, and 86% were

complete. The mean age at surgery was 6.4 +/- 2.3 months. 24% were pre-operative
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photographs, 44% photographs early post-operative, and 32% late post-operative. In the
Delaire group, 18% were females, 51% were operated on by surgeon Nel and 49% by surgeon
Ne2. 38% were right clefts, and 85% were complete. The mean age at surgery was 6.9 +/- 1.7
months. 25% were pre-operative photographs, 41% photographs early post-operative and 35%

late post-operative (Table 10).

Talmant Delaire
N 35 (47%) 39 (53%)
N photos 139 (48%) 151 (52%)
Gender
Female 8 (23%) 7 (18%)
Male 27 (73%) 32 (82%)
Surgeon
1 22 (63%) 20 (51%)
2 13 (37%) 19 (49%)
Laterality
R 10 (29%) 15 (38%)
L 25 (71%) 24 (62%)
Cleft type
Complete 30 (86%) 33 (85%)
Incomplete 5 (14%) 6 (15%)
Age at surgery (months)
Mean +/- SD 6.4+/-2.3 6.9 +/-1.7
Median 6.0 6.6
Min 3.0 4.7
Max 17.0 10.2
Time after surgery
Pre-op. 34 (24%) 37 (25%)
<3 y.o— early post-
op. 61 (44%) 61 (41%)
>3 y.o — late post-op. 44 (32%) 53 (35%)

Table 10. Description of the cohort. R = Right, L = Left, SD = Standard Deviation.

Before surgery, we found a statistically equivalent asymmetry index between the Delaire and

Talmant groups for the nasal dome (p = 0.599) and the nostrils (0.623).
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Three years after surgery, the asymmetry index for the nasal dome was higher in the Delaire
group (1.41 +/- 0.05 vs. 1.39 +/- 0.07) than in the Talmant group, but this result did not reach
the significance threshold (p = 0.072). The asymmetry index for the nostrils was also higher
in the Delaire group (1.48 +/- 0.15 vs. 1.44 +/- 0.09) than in the Talmant group, but this result
failed to reach the significance threshold (p = 0.078).

After three years, theses asymmetry indexes were equivalent between the two groups for the
nasal dome (p = 0.999). The asymmetry index was higher in the Delaire group for the nostrils
(1.47 +/- 0.11 vs. 1.45 +/- 0.09) but this result was not statistically significant (p = 0.340)
(Table XX).

These numerical results were coherent with the graphical results (Figure XX).

Delaire Talmant p-value
Nose Al
Pre-op. 1.43 +/-0.07 1.44 +/-0.09 0.599
Early post-op. 1.41+/-0.05 1.39+/-0.07 0.072
Late post-op. 1.38 +/-0.07 1.38 +/- 0.09 0.999
Nostrils Al
Pre-op. 1.71 +/-0.07 1.70 +/- 0.10 0.623
Early post-op. 1.48 +/-0.15 1.44 +/-0.09 0.078
Late post-op. 1.47+/-0.11 1.45+/-0.09 0.340

Table 11. Comparisons of asymmetry indices for both techniques at different time

points. Al = asymmetry index.
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Figure 18. Comparison of average landmark positions for the three different time
points, for both surgical methods (Talmant = blue, Delaire = orange) after Procrustes

superimposition.

We found a non-significant accuracy of 0.649 +/- 0.178 (p = 0.386) in the prediction of the
group before surgery. This accuracy became significant in the early post-operative period (< 3
years), with a value of 0.731 +/- 0.112 (p = 0.023), and in the late post-operative period (> 3

years), with a value of 0.742 +/- 0.129 (p = 0.018).

7.3 Pre- and post-operative phenotyping of non-syndromic isolated

scaphocephaly

This section is dedicated to a condition that falls within the category of non-syndromic
craniostenoses, i.e., due to the premature closure of a single cranial suture. Scaphocephaly is
the most common isolated craniosynostosis (169), linked to the premature closure of the
sagittal suture. One of the aims of surgery is morphological, to restore a normal skull shape.
In this study, we compared a population of patients with non-syndromic scaphocephaly before
and after cranioplasty with a population of control patients.

We also compared the phenotypes of patients operated on using two surgical methods: Renier
H cranioplasty and total vault remodeling (TVR). Retrospective data from 1979 to 2023 on

patients diagnosed with non-syndromic scaphocephaly were considered.
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Figure 19. Landmarking for faces (A, B, C) and profiles (D, E, F), in a control subject (A
and D), and in a child with non-syndromic scaphocephaly, before (B and E) and after

cranioplasty (C and F).

We collected 1,720 photographs of the face and profile, corresponding to 860 consultations
and 742 patients, between 1979 and 2022: 1,016 (59%) photographs of control patients and
704 (41%) photographs of patients with non-syndromic scaphocephaly, including 466 (27%)

pre-operative, 160 (9%) post-H-cranioplasty and 78 post-TVR (5%).

Controls versus pre-op.

In the ‘< 3 y.o.” group (Figures 20A and 20B), non-operated patients had a more elongated
cranial vault, both anteriorly and posteriorly, with a more rounded forehead compared with

controls (Figure 20B). The skull appeared narrower with a higher forehead (Figure 20A).
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Facial morphology appeared to differ little between the two groups, apart from a lower

mandibular height in the ‘pre-operative scaphocephaly’ group.

Pre-op. versus post-op. H-cranioplasty

In the ‘< 3 y.o.” group, the procedure was likely to result in a widening of the forehead
(Figure 20A), with receding and flattening (Figure 20B), no posterior vault changes, and an

increase in vertex height.

Pre-op. versus post-op. TVR

In the ‘< 3 y.0.” group, the procedure probably resulted in a widening of the forehead (Figure
20A) and an increase in the height of the vertex without any change in the antero-posterior

length of the skull on profiles (Figure 20B).

Controls versus post-op. (H-cranioplasty + TVR)

In the ‘< 3 y.0.” group who underwent surgery, there were several morphological differences
compared with controls. The skull was higher when viewed from the front for both types of
surgeries (Figure 20A), the vertex was higher in profile (Figure 20B), and the posterior cranial

vault was more rounded (Figure 20B), especially for patients operated on using TVR.

Post-op. H cranioplasty versus post-op. TVR

The skull appeared to be longer on profiles and wider from frontal views in the TVR group
for children under 3 years of age. The posterior vault appeared more rounded in TVR (Figures

20A/B).
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Figure 20A. Average shapes after Procrustes analysis of frontal views, in children under 3
years of age, in the ‘control’, ‘pre-operative scaphocephaly’, ‘post H-cranioplasty’ and ‘post-

TVR’ groups. The elements on the diagonal (from the upper left face to the lower right face)
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corresponded to average faces. The elements below this diagonal corresponded to
superimpositions of two average faces from different groups, and the elements above this

diagonal corresponded to vectors of transformation from a first group to a second group.
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Figure 20B. Average shapes after Procrustes analysis of profiles, in children under 3 years
of age, in the ‘control’, ‘pre-operative scaphocephaly’, ‘post-H-cranioplasty’ and ‘post-TVR’

groups. The elements on the diagonal (from the upper left face to the lower right face)
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corresponded to average faces. The elements below this diagonal corresponded to
superimpositions of two average faces from different groups, and the elements above this

diagonal corresponded to vectors of from a first group to a second group.

An initial binary classification model automatically distinguished the ‘control’ from ‘pre-
operative scaphocephaly’ groups with an AUC = 0.905 [0.885 - 0.926] (p < 0.001). These
performances were slightly improved in a ‘controls’ classification against ‘post-H-
cranioplasty’ (AUC = 0.917 [0.888 - 0.946], p < 0.001) and against ‘post-TVR’ (AUC =

0.908 [0.860 - 0.957], p < 0.001).

The difference remained significant when comparing ‘pre-operative scaphocephaly’ and ‘post
H-cranioplasty’ (AUC = 0.648 [0.572 - 0.724], p < 0.001). On the other hand, the model was
unable to significantly detect TVR patients among pre-operative patients (AUC = 0.481
[0.374 - 0.589], p = 0.651). Finally, H-cranioplasty patients were significantly distinguishable

from TVR patients (AUC = 0.622 [0.511 - 0.733], p = 0.023). The results are detailed in

Table 12.
Controls Pre-op. Post-op. H
Controls
Pre-op. 0.905[0.885 - 0.926] *

Post-op. H 0.917 [0.888 - 0.946] * 0.648 [0.572 - 0.724] *
0.622[0.511 - 0.733]
%

Post-op. TVR | 0.908 [0.860 - 0.957] *  0.481 [0.374 - 0.589]

Table 12. AUC and 95% confidence interval for each binary classification model. * =

statistical significance at p < 0.05. H = H cranioplasty, TVR = total vault remodeling.
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These results precisely described the morphological difference in frontal and profile views
between patients with unoperated scaphocephaly and controls, with an antero-posteriorly
elongated skull and a more rounded forehead. We also described the effect of surgery on the
cranial shape of children with scaphocephaly: flattening and upward elongation of the
forehead, with little effect on the posterior cranial vault. We suggest that children who have
undergone cranioplasty for scaphocephaly have a facial phenotype in frontal and in profile
views that is distinguishable from control children, in particular by a more rounded posterior
cranial vault and a higher, flatter forehead. Finally, H-shaped cranioplasty appears to have a
greater effect on cranial morphology than TVR, with a greater reduction in anteroposterior

diameter. The publication summarizing these results is currently under review.
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8 Discussion

8.1 Summary of results

Our algorithm, based on the use of a combination of deep learning, geometric morphometrics,
texture analysis, and machine learning methods, used a large high-quality database to detect
10 genetic syndromes and non-syndromic control patients with a top-1 accuracy of 71.3% and
a top-3 accuracy of 93.5% on an independent validation set. These performances were
excellent for some groups, with 96.1% accuracy for the controls (AUC = 1,000) or 90.7% for
Apert (AUC = 0.992) and CHARGE (AUC = 0.912) groups.

We were able to perform phenotype-genotype correlation assessments by describing a
significant phenotypic variability within the Crouzon-Pfeiffer (CPS) group. Genotypes linked
to the Igl, Igll, Iglllic and TK domains of FGFR2 and variations in FGFR3 were associated
with more severe facial phenotypes than variations in a splice site of FGFR2. In the latter
group, brachycephaly, ocular phenotype and reduced height of the mid-face seemed to be less
severe. Our model was also able to distinguish patients with Kabuki syndrome 1 and 2 with an
empirical AUC of 0.805 (0.729 - 0.880, p < 0.001), providing results comparable to
Face2Gene.

Finally, our method has also demonstrated its ability to analyze the effects of drug or surgical

treatment on facial morphology and to compare the efficiency of different treatments.
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8.2 Competitors and added value

The DeepGestalt method from Face2Gene (FDNA, Inc.) offers an algorithm based on deep
learning following automatic landmark detection. The seminal article of Gurovich et al (56)
described an algorithm trained on more than 200 syndromes with more than 17,000
photographs, and obtained a top 10 sensitivity of 91% on an independent validation set.

The study of Porras et al (170) described a new tool, not owned by FDNA Inc., also based on
deep learning methods with landmark detection, using geometric morphometry parameters
known as Statistical Shape Model (SSM). These authors trained their model on 2800
photographs comprising 128 syndromes using data augmentation methods. The authors
describe an accuracy of 88% for detecting the presence of a syndrome (90% sensitivity and

86% specificity).

8.2.1 Taking profiles into account

Neither of the above methods took profile analysis into account. Many clinical signs in
dysmorphology can only be detected on this incidence:

- Micro- or retrognathism: mandibulofacial dysostoses (MFD), i.e. TC (171), NAFD

(172) and MFDM (173), as well as all the syndromes associated with a Pierre Robin
sequence, such as 22q11 deletion syndrome or Stickler syndrome (174);

- Zygomatic projection defect: MFD (175), Hypohydrotic Ectodermal Dysplasia (HED)

(176), Laron syndrome (26,177), spliceosomopathies (178) or syndromic
craniostenoses (142) are just a few examples;

- Nose shape and projection: for example, Williams Beuren (24) and Noonan

syndromes (179) lead to a small snub nose, genes associated with Binder maxilla-nasal

dysplasia syndrome lead to nasal hypoplasia (180);
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- Position and size of the ears: low-set ears are a sign found in frequent syndromes, such

as Down (181) and Turner syndromes (182), or in rarer syndromes such as
Wiedemann Beckwith (183), Pallister-Killian (184) or Rubinstein-Taybi syndromes
(185). MFDs (186) and Meier-Gorlin syndromes (187) lead to microtia, which is only
detectable on profiles;

- Hair abnormalities: a characteristic sign of TC syndrome is preauricular hair

displacement (171). This clinical sign cannot be seen on a frontal photograph.

8.2.2 Taking the cranial vault and the hairline position into account

Existing tools do not take the entire craniofacial morphology into account.

- Cranial vault: it is an essential indicator of dysmorphology. It is estimated that there
are at least 180 genetic syndromes are associated with craniostenosis, simple or
complex, and therefore exhibit an anomaly in skull shape (188,189). In addition,
microcephaly is a sign in several diseases, such as MFDM (190) and Mowat-Wilson
syndromes (191);

- Hairline position: a high anterior hairline is characteristic of Noonan syndrome

(192,193), whereas a low hairline may point to Saethre Chotzen syndrome (143,194).

8.2.3 Taking the external ear morphology into account

In a previous paper, we demonstrated that CHARGE syndromes or MFDs can be suspected
based on the morphology of the external ear (117), in children and even in fetuses. Some
syndromes have a very specific phenotype, such as auriculo-condylar syndrome (195,196)

with question-mark ears, or the crux cymbae of Saethre Chotzen syndrome (197).
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8.2.4 Including controls in the prediction

Part of our database came from the maxillofacial and plastic surgery department at Hopital
Necker - Enfants Malades. Some of the children were being followed for conditions unrelated
to a genetic syndrome, such as dental infections, facial trauma, or skin lesions. After checking
the clinical records, these photographs were used to create a cohort of non-syndromic control
children. The use of control photographs seemed essential to us, and the absence of a genetic
syndrome should be a possible prediction for our algorithm.

In fact, the commercial tools mentioned above do not include control databases (Figure 21).

Stickler Syndrome Angelman Syndrome; AS Fragile X Syndrome; FXS

HIGH

Figure 21. Examples of use of the Face2Gene CLINIC tool on 3 non-syndromic control
children from our base. A. The suggested diagnosis was Stickler syndrome in a 6-year-old

boy being followed up for a dental abscess. B. Angelman syndrome was proposed in this 1-
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year-old girl followed for a gingival trauma. C. Fragile X syndrome was suggested in this 2-

year-old girl who is being followed for a palpebral nevus.

8.2.5 Limitations of deep learning

The Face2Gene solution uses diagnostic methods based on deep learning (56). Our Al
algorithm is based on supervised learning, i.e., it is possible to dissect each step that led to a
prediction. The alternative approach is unsupervised learning, or deep learning. The
prediction process is then no longer transparent, leading to a ‘black-box effect’ (198,199). He
et al state that ‘Al technologies will need transparency to justify a particular diagnosis,
treatment recommendation, or outcome prediction’ (198,200). One concern that may occur
regarding automatic diagnostic approaches on 2D photographs is the recognition of extra-
facial features: For example, the recognition of a cochlear implant in a patient with TC
syndrome or a nasogastric tube in a patient with Goldenhar syndrome associated with

esophageal atresia. This is why we chose to use a fully supervised classification method.

Figure 22. Risks of the black box effect. A. Figure from Kumps et al (201) describing the

average face of patients with Spondylo-Dysplastic Ehlers-Danlos Syndrome Type 3,
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generated by DeepGestalt, Face2Gene's algorithm. Presence of a pair of glasses on the
synthetic face. DeepGestalt therefore used the presence or absence of glasses for its diagnosis.
B. Patient in our database followed for a TC syndrome. The risk here would be the
recognition of his cochlear implant, which is obviously not specific to this syndrome. C.
Patient in our database followed for Goldenhar syndrome with esophageal atresia. The risk

here is uncontrolled recognition of the nasogastric tube.

8.3 Prospects for improvement

In our opinion, it was essential to add information about the shape of the skull, profiles and
the ears. However, to progress towards a closer match with the mental processes of
dysmorphologists, many other criteria should be taken into account:

- Clinical data associated with the patient: height, weight, head circumference, medical

history and visceral malformations, family history are just a few examples.

- An automatic analysis of other areas of the body, such as the hands, feet or chest.
The number of syndromes present in our multi-class model obviously needs to be increased,
to make our results comparable with those of Gurovich et al (56) and Porras et al (170). This
process is time-consuming, as we need to check the clinical and genetic records looking for
any clearly identified genetic variation or surgery that may have altered the facial phenotype.
Another area of development that could not be started during this thesis work is the generation
of average and synthetic faces, by syndrome, age and ethnicity, for educational purposes. We

should be addressing this issue in a few months’ time.
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8.4 [Ethical considerations

Using Al for diagnosing rare diseases from patient photographs has the potential to
revolutionize healthcare, but it also opens significant ethical challenges. Ensuring patient
privacy, addressing bias and fairness issues, and maintaining transparency and accountability
are essential to responsibly deploy such technologies in the healthcare sector. Ethical
considerations should be at the forefront of Al development and implementations to maximize
benefits while minimizing potential harms.

We still need to assess and address potential disparities in the Al performance across different
ethnic groups to ensure equitable access to accurate diagnoses in a human-Al collaboration.
We also need to emphasize that Al should augment the capabilities of healthcare professionals
rather than replace practitioners. The final diagnosis and treatment decisions still require

human expertise.
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9 Conclusion

Here we present a new Next Generation Phenotyping model, which can be used to detect a
genetic syndrome on 2D photographs of the face and profile, in order to help practitioners in
their diagnostic process. This work was made possible thanks to the incredible quantity and
quality of the Necker — Enfants Malades Hospital photographic database. The added value
compared with existing tools are the analysis of profile views, taking into account the shape

of the cranial vault and the possibility of detecting non-syndromic patients.

This model will never replace clinical expertise, but will enable us to reconsider phenotype-
first approaches, the ultimate aim being to reduce the average length of diagnostic wandering
in rare diseases. This thesis is just the introduction to a great project, with the recruitment of
several engineers and researchers, in order to integrate several hundred genetic syndromes

into the algorithm, and to be used in everyday practice by doctors.
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Appendix 1

Hemifacial myohyperplasia is due to somatic
muscular PIK3CA gain-of-function mutations and
responds to pharmacological inhibition

Charles Bayard***@®, Eleonora Segna**®, Maxime Taverne®*®, Antcine Fraissenon®="#*@, Quentin Hennocg®®, Baptiste Periou®@®,
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Hemifacial myohyperplasia (HFMH) is a rare cause of facial asymmetry exclusively involving facial muscles. The underlying
cause and the mechanism of disease progression are unknown. Here, we identified a somatic gain-of-function mutation of
PIK3CA in five pediatric patients with HFMH. To understand the physiopathology of muscle hypertrophy in this context, we
created a mouse model carrying specifically a PIK3CA mutation in skeletal muscles. PIK3CA gain-of-function mutation led to
striated muscle cell hypertrophy, mitochondria dysfunction, and hypoglycemia with low circulating insulin levels. Alpelisib
treatment, an approved PIK3CA inhibitor, was able to prevent and reduce muscle hypertrophy in the mouse model with
correction of endocrine anomalies. Based on these findings, we treated the five HFMH patients. All patients demonstrated
clinical, esthetical, and radiological improvement with proof of target engagement. In conclusion, we show that HFMH is due to
somatic alteration of PIK3CA and is accessible to pharmacological intervention.

Introduction

Hemifacial myohyperplasia (HFMH) is a rare cause of facial errors and inadequate management strategies, including ag-

asymmetry exclusively involving facial muscles, initially re-
ported as “hypertrophy and asymmetry of the facial muscles”
(Lee et al., 2001). This disorder is reported in very few patients
in the literature (Castillo Taucher et al., 2003; Pereira-Perdomo
et al., 2010; Miranda et al., 2010; Siponen et al., 2007; Zissman
et al, 2020). The clinical presentation of HFMH patients is
strikingly consistent, with unilateral muscular hypertrophy
mimicking spasm and orofacial dystonia, leading to diagnostic

gressive attempts of surgical correction (Zissman et al., 2020).
The genetic causes of HFMH are currently unknown.

The recent discovery of the role played by somatic mutation
of genes activating the PIK3CA/AKT/mTOR pathway has opened
new treatment perspectives for patients (Canaud et al., 2021).
Particularly, PIK3CA gain-of-function mutations explain the vast
majority of overgrowth syndromes (Canaud et al., 2021). PIK3CA
encodes the 110-kD catalytic a-subunit of PI3K, a lipid kinase
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that controls signaling pathways involved in cell proliferation,
motility, survival, and metabelism (Madsen and Vanhaesebroeck,
2020). Post-zygotic mosaic gain-of-function PIK3CA mutations
result in protein activation, leading to abnormal cellular prolif-
eration, tissue hyperplasia, and organ avergrowth. The under-
standing of the genetic bases of overgrowth has enabled the
treatment of patients presenting PIK3CA-related overgrowth
syndromes (PROS) with a specific PI3K inhibitor (BYL719, alpe-
lisib), initially designed as an antineoplastic drug (Venot et al,
2018). Alpelisib is efficiently tackling soft-tissue overgrowth in
FROS (Venot et al., 2018; Ladraa et al.,, 2022; Delestre et al., 2021;
Morin et al., 2022).

We hypothesized that the PIK3CA/AKT/mTOR pathway was
abnormally affected in patients with HFMH. Here, we repart the
results of the clinical screening, mechanistic investigations, and
treatment of five patients with HFMH.

Results

PIK3CA gain-of-function mutations explain HFMH

We identified five pediatric patients, including three girls,
ranging from 4 to 15 yr old with clinical presentation of HFMH
(Fig. 1 and Fig. 51). In more detail, 5/5 patients had chin skin
dimpling and small nasal vestibule, 4/5 had chin deviation,
dysmorphic ear, narrow palpebral fissure, and eyebrow ptosis,
3/5 had lip commissure canting, and finally, 3/5 had nasal de-
viation. All patients had magnetic resonance imaging (MRI)
demonstrating muscular hypertrophy affecting in various com-
binations facial, masticatory (pterygoids and masseter), and neck
(scalene and sternocleidomastoid) muscles (Fig. 1). All patients had
benefited from computerized tomography (CT) scan imaging be-
fore HFMH diagnosis that showed bone anomalies in 4/5 cases
including mild chin deviation in 3/4 and major skeletal deforma-
tion with homolateral maxillary and mandibular growth impair-
ment in 1/5. All patients had awvailable electroneuromyography
assessments that showed normal results, including normal blink
reflex responses and needle electromyogram of facial muscles.

2/5 patients had been treated with botulinum toxin with
injections performed every 6 mo. Patient 5 benefited from three
injections in mentalis, zygomaticus minor, and major and orbi-
cularis oculi muscles (130 then twice 200 L.U.), and patient 3
benefited from nine injections in the same three muscles (I.U.
injected from 50 to 400). For both patients, no relevant esthetic
or functional results were abserved.

We performed musenlar biopsies from the affected zomes
{oral mucosa, buccinator muscle, and masseter muscle) in 5/5
patients, under general or local anesthesia depending on age,
threugh an intraoral appreach. Standard histology was normal.
Genotyping of the biopsies revealed the presence of PIK3CA
variants in all tested samples. Pathogenic ES45K variant was
found in patient 1 and 5 with a variant allelic frequency (VAF) of
15% and 14%, respectively. The E542K variant was detected in
patient 3 (VAF 12%) and 4 (VAF 21%). Lastly, the HI047R variant
was identified in patient 2 (VAF 25%; Table 1). All variants were
already characterized as pathogenic (Canaud et al., 2021).

Thus, we concluded that PIK3CA gain-of-function mutations
explained all five HFMH cases.
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A mouse model of PIK3CA gain-of-function mutations in
sheletal muscles

To gain insight into the mechanisms of PIK3CA-related muscle
avergrowth, we designed a mouse model carrying specifically a
PIK3CA gain-of-function mutation in striated muscle. To this
aim, we interbred the R265topFLP110* mouse strain with HSA
Cre mice to generate PIFBCAMSACrER apimals that express a
constitutively overactivated form of PIK3CA upon tamoxifen
administration. To follow Cre recombination, PIK3CAHSA-CreER
mice were then interbred with Gt{ROSA)26Sortm4(ACTB-tdTo-
mato-EGFP)Luo/] mice. In all tissues, these mice express a cell-
membrane-localized tdTomato fluorescent protein that is replaced
by GFP after Cre recombination.

To overcome developmental issues, we used 6-wk-old mice
that were treated with a daily dose of 40 mg.kg-1 tamoxifen for
5 d to induce Cre recombination. We observed that starting 3 wk
after Cre recombination, PIK3CAHSACr=ER mipce progressively
gained weight compared with their wild-type littermates
(PIF3CAWT; Fig. 2 A). This was the case for both males and fe-
males. Around 11 wk after induction in males and 24 wk in
females, body weight of control mice became higher than in
PIRBCAMSACreER (Fig 2 A). Whole-body MRI at 15 wk after tamoxifen
revealed skeletal muscle hypertrophy in PIRBCAMSA 2 mice that
was approximately twice as in controls (Fig. 2, B and C). Fat
content in PIR3CAHSA-CreER was significantly reduced compared
with controls (Fig. 2, B and C). Skeletal muscle hypertrophy was
associated with gain in muscle strength compared with controls
(Fig. 2 D).

We sacrificed 20 controls and 20 PIK3CAHS 0t mijce 15 wk
after tamoxifen administration. Necropsy examination con-
firmed diffuse skeletal muscle hypertrophy with adipose tissue
shrinkage compared with control littermates (Fig. 2 E). We
confirmed that mutant pl10a (pl10*) and GFP were expressed
in striated muscles of PIK3CAMSA-CreER mice (Fig. 2, F and G).
Histological examination revealed hypertrophic striated cells
(Fig. 2 H and Fig. 52, A-D). We did not observe any other his-
tological anomalies. Western blot and immunofluorescence
studies showed AKT/mTOR pathway activation in striated
muscles of PIKICAMSACrER miee (Fig. 2, I and J). Mechanisti-
cally, PIK3CA is invelved in cell growth and proliferation but
KI67 immunostaining did not show hyperplasia (Fig. 2 K).
However, using the Amnis ImageStream system, we confirmed
that cells isolated from striated muscle of PIK3CAHSA-CreER mjce
were hypertrophic compared with controls (Fig. 2 L). Blood cell
count did not reveal any anomalies (Fig. 52 E). However, we
observed that PIK3CAM*V 5 mice were hypoglycemic com-
pared with controls (Fig. 2 M). We recently identified an en-
docrine loop leading to chronic hypeglycemia in another mouse
moedel carrying specifically PIE3CA gain-of-function mutation
inadipose tissue (Ladraa et al., 2022). Indeed, FIK3CA gain-of-
function mutation led to permanent glucose transporters
addressing the cell membrane, allowing glucose entry and
subsequent hypoglycemia. The latter reduced insulin secre-
tion, which in turn dramatically increased insulin-like
growth factor binding protein production followed by liver
IGF-1 sequestration and a reduction in 1GF-1 circulating levels
similar to clinical observations. We obtained similar results in
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Figure 1. [Patients with hemifacial myohyperplasia. Representative photographs of the five patients and affected muscles assessed with MRI. Scale bar:
5 cm.
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Table 1. Patient characteristics
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Patient 1 Patient 2 Patient 3 Patient 4 Patient 5
Age, year 4 -] g 14 15
Specimen used for genotyping Muscle Muscle Muscle Muscle Muscle
DMA changes c.1633G=A c3140A=G c1624G=A c1624G=A c1633G=A
VAF (%) 15 5 ) 21 14
Amino acid change p.GluS45Lys p.His104TArg p-Glus42Lys p.GluS42Lys p-GluS45Lys
cosmict genomic mutation 1D COSW55873239 COSVE5873195 COSWS5B73227 COSVS5873227 COSVS5873239

Treatments prior to alpelisib - -

Botulinum toxin injections

Botulinum toxin injections

“Corresponds to the percentage of alternate or mutant reads to total reads detected by next-generation sequencing.

Catalogue of Somatic Mutations in Cancer.

PIK3CAHSA-CreER mpyse model with low insulin and IGF1 levels
(Fig. 2, M and O; and Fig. 52 F) but conserved insulin secretion
capacities as demonstrated using oral glucose tolerance test
(GTT; Fig. 2 F). Consistently, positron emission tomography
and computed tomography (PET-CT) scan showed higher
fluoro-D-glucose (FDG) muscular uptake in PIKICARS4-C=EX mjce
compared with controls (Fig. 2 Q).

Mitochondria play a major role in energy for striated muscle
metabolism. PI3K has been involved in mitochondrial funetion
(Li et al., 2019); we therefore explored the impact of PIK3CA
gain-of-function on mitochondria number and activity in the
PIKGCAHSA-CreER monge model. Flow cytometry of isolated stri-
ated muscle cells revealed alteration in the mitochondrial
transmembrane potential as assessed by tetramethylrhodamine
ethyl ester (TMRE) staining with reduced Mitotracker expres-
sion (Fig. 2, R and S). 10-N-nonyl acridine orange (NAQ) staining
showed reduced mitochondrial mass in striated muscle cells of
PIK3CAHSACreER pompared with controls (Fig. 2 T). Plasma me-
tabalites metabolomics analysis revealed energy production with
increased ATP production with mitochondria and anabolic ac-
tivities (Fig. 53).

Hence, we created a mouse model of PIK3CA-related skeletal
muscle overgrowth affecting the gross morphology, cellular
structure, and function of striated muscles.

Alpelisib improves PIKICAHSA-C=tR mayce model

We recently identified alpelisib (BYL719), a PIK3CA inhibitor, as
a promising treatment for patients with PROS, and very recently
this drug has been approved by the US FDA for patients with
PROS (over 2 yr of age; Venot et al., 2018). We decided to test
whether this molecule was efficient at improving skeletal
muscle overgrowth in our mouse model. To this end, we used
two different approaches. We first administered alpelisib daily
starting 48 h after Cre induction as a preventive study. We ob-
served that alpelisib-treated PIK3CAHSA“r=E8 mice had an overtly
normal appearance during the 22 wk of treatment and a body
weight increase similar to that of controls (Fig. 3 A). MRI per-
formed 8 wk after alpelisib initiation showed no skeletal muscle
overgrowth compared with vehicle PIR3CAHS" 8 tpeated mice
(Fig. 3, B and C). Mice were then sacrificed and a necropsy ex-
amination confirmed that alpelisib-treated PIR3CAHSA-Cref® mjea

Bayard et al
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had no muscle hypertrophy and were indistinguishable from
controls. Histology showed no difference between PIR3CAHSA-Cets
mice treated with preventive alpelisib and PIK3CA%T mice
(Fig. 3 D). Western blot and immunofluorescent studies showed
blunted AKT and S6RP phosphorylation (Fig. 3, E and F).
PIFCAMSVEreE® mjjpe treated with preventive alpelisib demonstrated
normal 12-h fasted glycemia compared with PIK3CAHSA-Cretf
wvehicle-treated mice (Fig. 3 G). Consistently, insulin and IGF-1 cir-
culating levels were corrected (Fig. 3, H and I).

Next, we administered alpelisib to PIR3CAHSA ©=E8 mijce 2 wk
after Cre induction when global muscle hypertrophy was already
prominent for 20 additional weeks, as a therapeutic study.
Following alpelisib introduction, we noticed a rapid body weight
decrease in alpelisib-treated PIK3CAM*4C™ mice compared
with control (Fig. 3 A). MRI performed at 8 wk showed significant
reduction in muscular volume compared with PIK3CAHSA-CreE®
wehicle mice (Fig. 3, B and C; and Fig. 52, B-D). Similar to pre-
vious experiments with early alpelisib introduction, we observed
that the histology of the striated muscle of PIK3CAHSA-CER mijea
treated in the therapeutic study was conserved (Fig. 3 D), with
reduced phosphorylation of the AKT and S6RP proteins (Fig. 3, E
and F). Blood glucose, insulin, and IGF-1 circulating levels were
increased in the therapeutic alpelisib group (Fig. 3, G-I).

Alpelisib treatments were associated with a partial correction
of the different metabolomic anomalies (Fig. 54, A and B).

We then concluded that alpelisib was efficient at both
preventing and treating PIK3CA-related striated muscle
hypertrophy.

Alpelisib improves patients with PIK3CA-related skeletal
muscle overgrowth

Based on the preclinical data, we decided to treat the five HFMH
pediatric patients with alpelisib. We obtained the authorization
from the French regulatory agency (Agence nationale de sécurité
du médicament et des produits de santé) and administered a
daily dose of 50 mg per day for each patient. Following alpelisib
introduction, we noticed in the five patients clinical meaningful
hemifacial velume reduction with softer tissues within 3-4 wk
(Fig. 4 A). Based on 2D photography quantification, we con-
firmed the lowering of the lip commissure, the widening of the
palpebral fissure, the reduction of nose and chin deviation, and a
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Figwre 2. A mouse model of PIK3CA-related skeletal muscle overgrowth. (A) Male and female body weights of PIKICA"T and PIKICA™4CF (7 = 15 per
group) mice following Cre recombination. (B) Coronal whole-body T2-weighted magnetic resonance images of PRICA™ and PIKICARS* 5 mice. Scale bar:
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1 cm. (€) Adipose tissue and skeletal muscle volume quantification. (D) Strength measured wsing grip test (n = 3 per group). (E) Representative pictures of
PIKZCA™T and PIK3CAHEA-CER mice, Scale bar: 1 cm. (F) Western blot of pl10a and GFP in skeletal muscles of PIK3CAWT and PIK3CAHSAC<ER mica (o = 3 per
group). (G) Representative GFP immunofluorescence in skeletal muscles of PIKICAYT and PIKICAHSA-CE mice Scale bar: 10 pm. (H) Representative H&E
staining of striated muscles of PIKICA™T and PIKICAY™ T mice_ Scale bar: 20 pm_ (1) Western blot of P-AKT>4™, total AKT, P-S6RP, and S6RF in skeletal
muscles of PIKICA"T and PIKICA"S““ mice and guantification at 8 and 24 wk of age (n = 5-10 mice per group). (J) Representative immunofluorescence of
P-AKT™322 and P-SERP in skeletal muscle of PIK3CA™T and PIK2CAMSA-CER mice, Scale bar: 10 pm. (K) Representative immunoflucrescence of KI67 in skeletal
muscle of PIKICAT and PIKICA"™“F mice. Scale bar: 10 pm. (L) Quantification of skeletal muscle cell area of PIKICA*T and PIKICA"S*F mica (n = & mice
per group). (M) 12-h fasted glycemia in PIKICAT and PIK3CA™™C%% mice (n = 5-13 mice per group). (N) Insulin circulating levels in PIKICAYT and PIKICARSA-CresR
mice {n = 10 per group). (0} Circulating IGF-1 levels in PIKICAT and PIKICAHS-C5R mice (n = 10-11 per group). {P) Oral tolerance test (GTT) in PIK3CAMT and
PIKZCAHSA-CoER mice (n = 6 mice per group). (Q) 18F-FDG uptake in skeletal muscle of PIK3CAWT and PIKICAMSA-2458 mice (o = 4 per group). (R-T) (R) TMRE, (S)
Mitotracker, and (T} 10 NAO staining in skeletal muscle of PIK3CA"T and PIX3CA"* %% mice (n = 4 per group). Data are shown as mean : SEM. *P < 0.05, **P <
0.00, ***P < 0.001 (two-tailed unpaired ¢ test). Each dot represents one mouse. Data are representative of at least two independent experiments. Of nate, all

blats from this figure originate from the same gel Source data are available for this figure: SourceData F2.

better skin texture with a decrease of dimpling effects. 3D
photography follow-up before and after treatment initiation was
available in three patients (1, 3, and 5). Two-blocks partial least-
squares regressions (PLS2B) analysis showed a strong covaria-
tion between facial shape and treatment duration in two out of
three patients (Fig. 4 B and Fig. 55). In 3/3 patients, the hyper-
trophic regions were preferentially improved by treatment
(Fig. 4 B and Fig. 55).

MRI performed & mo after drug introduction showed a
modest mean muscular velume reduction of 2.56% (Fig. 4 C).
During the study, the drug was well tolerated with no adverse
events reported by patients and parents. Since we used a stan-
dard dose of alpelisib (50 mg per day) in the five patients while
their body weights and ages were different, we decided to ex-
plare AKT activity in the affected skeletal muscles after 6 mo on
the treatment. We obtained a biopsy in four out of five patients
(patients 2-5). Immunoflucrescence studies revealed increased
AKT and 56RP phosphorylation in the biopsies from 4/4 patients
compared with healthy controls (Fig. 4, D-F). Following drug
introduction, we observed that AKT and S6RP phosphorylation
were blunted demonstrating that alpelisib penetrated into
skeletal muscles at this dose in 4/4 patients (Fig. 4, D-F).

In parallel, we performed an unbiased approach of circulat-
ing plasma metabolites before and & mo following alpelisib in-
troduction. We observed significant changes in key metabolite
levels involved in mitochondria and anabolic activities (Fig. 5).

Discussion
Here, we report for the first time that HFMH is due to a somatic
gain-of-function mutation of PIK3CA in striated muscles and
indeed, belongs to the PIK3CA-related disorder spectrum. We
further created a mouse madel harboring a PIK3CA gain-of-
function mutation in striated muscles that demonstrates muscle
avergrowth. We finally showed that mouse and patient striated
muscles are sensitive to PIK3CA inhibition using alpelisib.
HFMH has long been standing without molecular explana-
tion. All 5/5 patients in our cohort carried a samatic variant of
PIK3CA. From a disease mechanism point of view, these muta-
tions make sense since PIK3CA is a major actor of cell growth
(Madsen and Vanhaesebroeck, 2020). This was confirmed by the
PIK3CAHSACrE® mice that demonstrated increased skeletal
muscle valumes and strength. PIK3CA activation in mice skeletal
muscles induced anabolic activities and mitochondrial changes.

Bayard et al
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Identification of PIK3CA mutations opens new therapeutic per-
spectives for HFMH patients since surgical management, botu-
linum toxin injections, and physical therapy are currently the
only treatment solutions and seem to be associated with little to
no efficiency. Interestingly, two patients were previously un-
successfully treated with botulinum toxin injection and demon-
strated some degree of response to alpelisib. Since alpelisib
benefited from an accelerated US FDA approval for patients with
FROS, our work identifies a new patient population that may
benefit fram the drug. In these potential new alpelisib in-
dications, it is important to determine the affected tissues that
are sensitive to PIK3CA inhibition such as we recently reported
in lymphatic vessels (Delestre et al., 2021; Morin et al., 2022) and
adipocytes (Ladraa et al., 2022). Here, for the first time, to
monitor drug efficacy, we performed secondary biopsies & mo
after drug introduction, and tissue analyses revealed AKT inhi-
bition in all tested patients demonstrating that low doses of al-
pelisib were sufficient to achieve target inhibition.

One limitation of this study is that the transgene utilized in
our mouse model is not found in human pathology. However,
it possesses significant potency in activating the AKT/mTOR
pathway and overcoming mouse resistance to the PIK3CA hu-
man variant (Venat et al., 2018).

In conclusion, in this study, we precise the clinical presen-
tation of a little-known syndrome and determine its molecular
bases. We further expand the phenotypic spectrum of PROS, we
detail the effects of PIK3CA hyperactivity on skeletal muscles
using a mouse model, and we show that PIK3CA inhibition
seems to be a promising option for treating patients with HFMF,
based both on shape quantification and functional assessments.
Further investigations ave required to establish a more precise
determination of the frequency of PIK3CA mutation in HFMF,
and the encouraging clinical results obtained using alpelisib will
have to be confirmed in larger studies.

Materials and methods

Animals

Following previously described procedures (Delestre et al., 2021),
we interbred homozygous R265topFLPI0" (Stocks 012343) mice
with HSA Cre-ER mice (Stocks 025750), bath obtained from The
Jackson Laboratory. We obtained R26StopFLPII0®+/- x HSA Cre-
ER+ (henceforth PIK3CAHSACreER) and R26StopFLPLIO™+/- % HAS
Cre-ER- (henceforth PIK3CA"Y) littermate mice. The pl10® protein
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T2-weighted magnetic resonance images of PIKICAYT treated either with vehicle (n = 4) or alpelisib (n = 4), PIK3CA"SC*5F yehicle-treated (n = 5), PIK3CAMSCree.
treated with preventive alpelisib (n = 4), and PIKICA+C%.treated with therapeutic alpelisib (n = 4) mice. Scale bar: 1 cm. (D) Representative HEE staining of
skeletal muscle of PIK3CAT and PIKICAMS4C2® mice treated with either vehicle or preventive or curative alpelisib. Scale bar: 10 pm. (E) Representative im-
munofluorescence of P-AKT™"3%2 znd P-SERP in skeletal muscle of PIK3CA"T and PIKICAMS* S48 mice treated with either vehicle or alpelizib. Scale bar:
10 pm. (F) Western blot and quantification of P110, P-AKT=*"473, AKT, P-S6RP, and S6RP in skeletal muscle of PIKICA™T and PIK3CAR* - mice treated
with either vehicle or alpalisib (n = 4-5 mice per group). (G) 12-h fasted glycemia in PIKICAWT and PIKICAMSA-CretR mice treated with vehicle, preventive, or
curative alpelisib (n = 4 mice per group). {H and 1) (H) Insulin and (I} IGF-1 circulating levels in PIK3CAYT and PIK3CAY* % mice treated with vehicle,
preventive, or curative alpelisib (n = 4 mice per group). Data are shown as mean + SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (ANOVA, followed by the
Tukey-Kramer post hoc test). Each dot represents one mouse. Data are representative of at least two independent experiments.

expressed by R265topFLPII0® mice is a constitutively active
chimera that contains the iSH2 domain of p85 fused to the NH2-
terminus of pl10 via a flexible glycine linker (Klippel et al., 1996).
To generate tissue-specific pl10*-transgenic mice, a cloned loxP-
flanked neoR-stop cassette was inserted into a modified version
of pROSA26-1, followed by ¢DNA encoding pl10* and then a
frt-flanked IRES-EGFP cassette and a bovine polyadenylation
sequence (R265topFLPLI0*; Srinivasan et al., 2009). To follow
Cre recombination, PIK3CA%T and PIK3CAHSA-CrER mijce were
then interbred with Gt{ROSA)26Sort™#ACTE tdTomata,-EGFF]Lua/]
mice (Muzumdar et al., 2007; Delestre et al., 2021). These
mice express a cell membrane-localized tdTomato fluorescent
protein in all tissues that is replaced by GFP after Cre recom-
bination. All mice used were on a C57BL/6 background.

Animals were fed ad libitum and housed at a constant am-
bient temperature in a 12-h light cycle. Animals were fed regular
chow food (2018 Teklad global 18% protein rodent diets, 3.1 Kcal/
g Envigo). Animal procedures were approved by the Ministére
de I'Enseignement Supérieur, de la Recherche et de I'Innovation
[APAFIS N°20439-2018121913526398 and 2021110914486827). All
appropriate procedures were followed to ensure animal welfare.

At the age of 6 wk, PIK3CA"T and PIK3CAMSACrt8 mice re-
ceived a daily dose of 40 mgkg™ tamoxifen for 5 consecutive
days to induce Cre recombination. Tamoxifen was administered
through oral gavage.

PIK3CAYT and PIK3CAMSACrER mice were treated with the
PIK3CA inhibitor alpelisib (MedChem Express; 50 mgkg™ in
0.5% carboxymethyleellulose [Sigma-Aldrich], daily oral ga-
vage) or vehicle (0.5% carboxymethylcellulose [Sigma-Aldrich],
daily oral gavage). Treatment was started either immediately
(preventive study) or 6 wk (therapeutic study) following Cre
induction. The last dose of alpelisib or vehicle was administered
~3 h before sacrifice.

All mice were fasted for 12 h before blood glucose mea-
surement (Accuchek Performa; Roche Diagnostic), MRI, and
sacrifice.

Grip test

Grip strength performance of the mice was evaluated using a
grip strength dynamometer obtained from Bioseb. To assess
hindlimb muscle strength, the mice were positioned on a grid
surface. Gentle traction was applied to the mice's tails in the
appaosite direction, and the maximum strength exerted by each
mouse before releasing its grip was measured five times. A re-
covery period of 30 s was provided between each measurement.
The average value from the five measurements was calculated as
the indicator of hindlimb grip strength.

Bayard et alL
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MRI evaluation

All images were acquired with a 4.7-T small-animal MRI system
(BioSpec USR47/40; Bruker BioSpin) on the Plateforme Imag-
eries du Vivant, Université de Paris, Paris Cardiovascular Re-
search Center, Institut national de la santé et de la recherche
médicale, Paris, France. Mice underwent whole-body MRI using
3D T2-weighted sequences with and without fat saturation
Volumetric evaluation by MRI was performed with 3D Slicer
software (Fedorov et al,, 2012) and IntelliSpace Portal software
(Philips Healthcare). Whole-body adipose tissue segmentation
was obtained by thresholding on a T2-weighted sequence and
then removing hypersignal related to water on a T2-weighted
sequence with far saturation. Muscles of each limb were man-
ually segmented according to their low signal intensity and
anatomy on a T2-weighted sequence. For both adipose and
muscle tissues, volume was calculated by summing images based
on 2D contours and slice thickness.

FDG PET-CT imaging

Mice were fasted overnight with free access to water. Mice were
then anesthetized (2 + 0.5% isoflurane in dioxygen) and
weighed, and glycemia was measured in blood drawn from the
caudal ventral artery using an Accu-Chek Aviva Nano A (Accu-
Chek). A 29G needle catheter (Thermo Fischer Scientific) con-
nected to 5 cm polyethylene tubing (Tygon Microbore Tubing,
0.010" = 0.030" OD; Thermo Fisher Scientific) was inserted into
the caudal vein for radiotracer injection. 9.2 + L5 MBq of 2'-
deoxy-2'-[18F]FDG (Advanced Applied Applications) in 0.2 ml
saline was injected via the catheter. Mice were left awake in
their cage for 45 min and then installed into the PET-CT dedi-
cated bed. Respiration and body temperature were registered.
Body temperature was maintained at 34 + 2°C and anesthesia
was controlled according to the breathing rate throughout the
entire PET-CT examination. CT was acquired in a PET-CT
scanner (nanoScan PET-CT; Mediso Medical Imaging Systems)
using the following acquisition parameters: semicircular mode,
50 kV tension, 720 projections full scan, 300 ms per projection,
and binning 1:4. CT projections were reconstructed by filtered
retroprojection (filter: cosine; cutoff: 100%) using Nucline
3.00.010.0000 software (Mediso Medical Imaging Systems).
55 min after tracer injection, PET data were collected for 10 min
in list mode and binned using a 5-ns time window with a
400-600 keV energy window and a 1:5 coincidence mode. Data
were reconstructed using the Tera-Tomo reconstruction engine
(3D-0SEM-based manufactured customized algorithm) with
expectation maximization iterations, scatter, and attenuation
correction. Volumes of interest were delineated on the organs
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are associated with regions that display shrinkage compared to contralateral control. Distances (cm) indicate the absolute distance between each node of the
affected side and the mirrored non-affected side. Affected side: right. (C) Volumetric changes of facial muscles in patients before and after drug introduction.
(D and E} (D) Representative immunoflucrescence of P-AKT™3% and P-SERP in healthy contralateral skeletal muscle and (E) in the affected skeletal muscle
before and & mo after alpelisib introduction. (F) Quantification of immunofluorescence intensity. AL Arbitrary units. Scale bar: 10 pm. Data are shown as mean =
SEM. *P < 0.05 and ***P < 0.001 (two-tailed unpaired t test for C and ANOVA, followed by the Tukey-Kramer post hoc test for F). Each dot represents one

mouse. Data are representative of at least two independent experiments.

or anatomical structure of interest on PET/CT fusion slices
using the PMOD software package (PMOD Technologies Ltd.).
FDG accumulation was quantified as the standard uptake value,
which measures the ratio of the radicactivity concentration in
volume of interest to the whole-body concentration of the in-
jected radioactivity.

Blood and plasma analysis

At the end of each experiment, blood samples were collected
from the mice in EDTA-coated tubes. To measure blood count,
fresh blood samples were analyzed on a hematology analyzer
(ProCyte Dx; IDEXX Laboratories) and centrifuged at 500 = g
for 15 min. The collected plasma concentration was used to
determine insulin (U-PLEX mouse insulin Assay [Meso Scale
Discovery], refe K1526HK) and IGF-1 (ref: MG100; Novus
Biologicals) circulating levels using enzymatic methods from
commercially available kits.

Oral glucose test

Mice were fasted overnight (12 h) with access to drinking water.
All body weights were measured and tails were carefully cut for
blood glucose determination (time point 0). During GTT, freshly
prepared glucose solution was administered orally (1 g gluco-
se/kg body weight of 20% glucose solution in water; refs G8270;
Sigma-Aldrich). After 15, 30, 45, 60, 90, and 120 min, blood
glucose was measured again at all time points.

Morphological analysis

Mouse tissues were fixed in 4% paraformaldehyde and paraffin
embedded. Tissue sections (4 um thick) were stained with he-
matoxylin and eosin (H&E).

Measurement of muscle fiber size
H&E slides were scanned with a NanoZoomer 2.0HT (Hama-
matsu) and analyzed with Qupath-0.2.3 (Bankhead et al., 2017).
Muscles were segmented using deep-learning Cellpose algo-
rithm (Stringer et al,, 2021). For both, areas were then measured
with Fiji (Schindelin et al, 2012).

Immunohistochemistry and immunofluorescence

Paraffin-embedded tissue sections (4 pum) were submitted to
antigen retrieval protocels using high temperature (120°C) and
high pressure in citrate buffer and a pressure cooker. Sections
were then incubated with primary antibodies (Table S1). For
the immunofluorescence procedure, appropriate Alexafluor-
conjugated secondary antibodies (Thermo Fischer Scientific)
were incubated on the samples and analyzed using an LSM 700
confocal microscope (Zeiss) or Eclipse Ni-E (Nikon). Immuno-
histochemistry revelation was performed with appropriate
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horseradish peroxidase linked secondary antibodies and ana-
lyzed with ES00 (Nikon).

In human skin biopsies, P-S6RP and P-AKT™* staining were
segmented with Ilastik v1.3.3post3, a machine-learning pixzel
classification open-source software. For each immunofluores-
cence staining, mean intensity area and quantity were measured
with Fiji v2.3.0/1L.53f51 (Quantity = Mean intensity = Area) and
normalized by tissue area (Berg et al., 2019).

Western blot

Tissues were crushed and then lysed in radicimmunopre-
cipitation assay lysis buffer supplemented with phosphatase
and protease inhibitors. Protein concentrations were deter-
mined through the bicincheninic acid method (Pierce). Then,
protein extracts were resolved by SDS-PAGE before being
transferred onto the appropriate membrane and incubated
with the primary antibody (Table 51) followed by the appropriate
peroxidase-conjugated secondary antibody (dilution 1:10,000).
Chemiluminescence was acquired using Chemidoc MP and
bands were quantitated using Image Lab Software (Bio-Rad
Labaoratories).

Tissue digestion

Muscles of PIK3CA“T and PIR3CAMSACE% mice were harvested
and rinsed with PES IX (Gibco). After cutting them into small
pieces, digestion buffer was added with DNAse (0.1 mg/ml),
Dispase I (0.8 mg/ml), and Collagenase P (0.2 mg/ml) in 10 ml of
RPMI (Gibeo) and incubated for 40 min at 37°C on GentleMACS
(Miltenyi) with the appropriate program. Following dissocia-
tion, tissues were filtered (70 wm; Clearline), centrifuged 5 min
at 250 g, and resuspended in PBS.

Mitotracker cytometry

Following treatment with either vehicle or alpelisib, muscle
of PIK3CAWT and PIK3CAHSACreER mice were collected and
digested. Cells were resuspended in 100 pl of PBS in a 96-
well round-bottomed plate (Thermo Fisher Scientific). Cells
were incubated with fluorescent buffer in the dark for
10 min at 37°C (Table 51) and rinsed with PBS-FCS 2%. Cells
were analyzed using Sony Spectral ID7000 and all flow data
were processed with Sony ID7000 software and Kaluza
software.

Imaging flow cytometry (ImageStream)

Skeletal muscles from PIK3CA"T and PIRGCAMSAC=E8 mijce were
isolated, rinsed in PBS IX, cut into small pieces, and digested as
detailed below. After dissociation, cell suspensions were filtered
(70 pum; Clearline), centrifuged 10 min at 350 g, and resuspended
in PBD solution 1X supplemented with 2% fetal bovine serum
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Figure 5. Metabolic changes observed in patients before and 6 mo after alpelisib introduction. Graphic example of metabolite level changes observed.
AL: Arbitrary units. Data are shown as mean + sem. *P < 0.08, **P < 0.01, ***F < 0.001 (two-tailad unpaired t test).

and EDTA at 0.5 m/mol. Cells were then transferred in a mi-
crotube. Samples were run on an ImageStream ISX mkII (Amnis
part of Luminex) that combines flow cytometry with detailed
cell imaging. Magnification (40x) was used for all acquisitions.
Data were acquired with INSPIRE software (Amnis part of Lu-
minex) and analyzed with IDEAS software (v.6.2; Amnis part of
Luminex). The antibodies used for flow cytometry are availble in

Table S1.
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Targeted liquid chromatography-mass spectrometry (LC-MS)
metabolites analyses
Plasma and serum were obtained after centrifugation of the
bleod at 500 g for 10 min. Blood samples were obtained in EDTA
tubes for plasma analysis and EDTA-free tubes for serum
analysis. Cells, plasma, and serum samples were immediately
snap-frozen in liquid nitrogen. For the LC-MS analyses, me-

tabolites were extracted as previously described (Ladraa et al.,
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2022). Briefly, the extraction solution was composed of 50%
methanol, 30% acetonitrile, and 20% water. The volume of the
added extraction solution was adjusted to the cell number (1 ml
per 1 million cells) or plasma and serum volume (200 pl per
10 pl of plasma or serum). After the addition of extraction so-
lution, samples were vortexed for 5 min at 4°C and then
centrifuged at 16,000 g for 15 min at 4°C. The supernatants
were collected and stored at -80°C until the analyses were
performed. LC-MS analyses were conducted using a QExactive
Plus Orbitrap mass spectrometer (Thermo Fisher Scientific)
equipped with an lon Max source and a HESI II probe coupled
to a Dionex UltiMate 3,000 UPLC system (Thermo Fisher Sci-
entific). External mass calibration was performed using the
standard calibration mixture every 7 d as recommended by the
manufacturer. 5 ul of each sample was injected onto Zic-pHilic
(150 mm = 2.1 mm, 5 pm) with the guard column (20 mm = 2.1
mm, 5 um; Millipore) for liquid chromatography separation.
Buffer A was 20 mM ammonium carbonate and 0.1% ammo-
nium hydroxide (pH 9.2); buffer B was acetonitrile. The chro-
matographic gradient was run at a flow rate of 0.200 pl/min as
follows: for 0-20 min, linear gradient from 80 to 20% B; for
20-20.5 min, linear gradient from 20% to 80% B; for 20.5-28
min, hold at 80% B. The mass spectrometer was operated in
full-scan polarity switching mode with the spray voltage set to
2.5 kV and the heated capillary held at 320°C. The sheath gas
flow was set to 20 U, the auxiliary gas flow was setto 5 U, and
the sweep gas flow was set to 0 U. The metabolites were de-
tected across a mass range of 75-1,000 m/z at a resclution of
35,000 (at 200 m/z) with the automated gain control target set
to 106 and a maximum injection time of 250 ms. Lock masses
were used to ensure mass accuracy below 5 parts per million.
Data were acquired with Thermo Xcalibur 4.0.27.131 software
(Thermo Fisher Scientific). The peak areas of metabolites were
determined using Thermo TraceFinder 3.3 5P1 software
(Thermo Fisher Scientific) and identified by the exact mass of
each singly charged ion and by known retention time in the
high performance liquid chromatography column.

Patients

HFMH was defined as congenital facial asymmetry with
thickening of soft tissues leading to a set of specific clinical
features: narrow palpebral fissure, eyebrow ptosis, nose de-
viation with small alar rim, external ear asymmetry and dis-
placement with prominent concha, chin deviation with skin
dimpling, and lip commissure canting. Previous treatment
attempts were recorded.

Following procedures previously described (Delestre et al.,
2021), the study was conducted on five pediatric patients, in-
cluding three females who were followed at Hopital Necker
Enfants Malades. This protocol was approved by the Agence
Mationale de Sécurité du Médicament et des Produits de Santé
and the local ethical committee (Comité d'Ethique de Necker—
Enfants Malades). Written informed consent was obtained from
adult patients and the parents of pediatric patients. Alpelisib was
compassionately offered by Novartis. Patients received 50 mg/d
(Venet et al., 2018). Alpelisib was taken crally every morning
during breakfast. Patients were assessed at regular intervals as
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previously reported (Venot et al,, 2018). At each visit, 2D pho-
tographs were performed for all patients. 3D photographs were
performed on three patients (EVA 3D Scanner; Artec 3D). For
3D facial reconstruction, we applied non-rigid and dense reg-
istrations between a template and patient faces (Amberg, B.
2007). Each 3D image was rigidly aligned with the template,
which was a standardized, controlled, symmetrical mesh of an
average human head, using Wrap v2020.12.2 (R3DS) by placing
landmarks to control relative positioning and by computing
translations, rotations, and scaling (Fig. 51). The template was
then warped around the 3D face by computing a non-rigid it-
erative closest point alignment involving 50 iterations. The
deformed template mesh had the target mesh shape and pre-
served its original node topology. The 3D coordinates of all
nodes were extracted and processed in R (R Core Team, 2018},
where the node coordinates were aligned based on Procrustes
superimposition without scaling using ProcSym from Morpho
library (Schlager, 2017). The superimposition included only the
non-affected side of the face to emphasize the variations located
an the affected side. PLS2B were computed to screen for co-
variation patterns described by Procrustes coordinates and
time since treatment introduction using PLS2B from the Mor-
pho library (Schlager, 2017). The theoretical morphological
changes associated with each statistically significant covaria-
tion axis were visualized using tps3d from the Morpho
(Schlager, 2017) and shade3d from the rgl library (Murdoch and
Adler, 2023). Non-affected sides were mirrored based on sag-
ittal planes using Wrap and the Procrustes distances between
the affected and the mirrored non-affected sides were com-
puted, leading to the generation of facial heatmaps (Fig. 51)
using meshDist from the Morpho library (Schlager, 2017). 2D
photographs were analyzed as previously described (Hennocq
et al., 2023). After manual landmarking, clouds of landmarks
were extracted from the frontal views (n = 105), profile views
(n = 73), and external ears (n = 41) and compared after Pro-
crustes superimposition and principal component analysis. The
pretreatment facial phenotype was compared to the facial
phenotype after a minimum of 6 mo of treatment. Analyses
were performed in R (R Core Team, 2018) using the geomorph
package.

In addition, we assessed the volume of skeletal muscle
avergrowth using MRI for each patient. MRI examination was
performed using T1, T2, and fat suppression, and T2-weighted
imaging sequences were performed before alpelisib (day 0) in-
troduction and again 6 mo after. Volumetric evaluation of
skeletal muscle malformation was determined by thresholding
and manually delineating hypersignal T2 lesions. Volume was
calculated by summing images based on the 2D contours and
slice thickness.

Biopsies of the buccinator and/or masseter muscles of the
affected and control sides were performed in 5/5 HFMH pa-
tients, for diagnosis, and four out of five patients after 6 mo of
treatment.

Control buccinator and masseter muscles were harvested on
pediatric patients admitted for facial lacerations and/or man-
dibular trauma, that required surgical approaches to this ana-
tomical region.
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Data analysis and statistics

Data are expressed as the means + SEM. Differences between the
experimental groups were evaluated using ANOVA, followed by
the Tukey-Kramer post hoc test when the results were signifi-
cant (P < 0.05). When only two groups were compared,
Mann-Whitney tests were used. Statistical analyses were per-
formed using GraphPad Prism software (version 10.0.0).

Online supplemental material

Fig. 51 shows the workflow for the assessment of 3D pictures.
Fig. S2 shows the mouse model characterization and quantita-
tive histological analysis of tibialis anterior muscle changes in
PIKZCAYT and PIR3CAHSACrER mijce treated with either vehicle or
alpelisib. Fig. 53 shows metabolic changes observed in PIK3CAWT
and PIK3CAHSACER, Fig. 54 shows metabolic changes observed
in PIK3CA"T and PIK3CAHSA-C=ER treated with either vehicle or
alpelisib. Fig. 55 shows the covariation between treatment du-
ration and facial asymmetry using two-blocks partial least-
squares regressions. Table 51 lists the antibodies, materials,
and buffers used in the study.

Data availability
All data needed to evaluate the conclusions in the paper are
present in the paper and/or the supplementary materials.
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Figure S1  Waorkflow for the assessment of 3D pictures. First, the template (blue mesh) was rigidly matched with the “target” head surface of each patient
{cyan mesh) by an ICP (iterative closest point) alignment. The template was then non-rigidly matched with the target surface by means of an NICP {non-rigid
iterative closest paint) alignment, which consists of the local deformation of the template following thin-plate splines to adept the conformation of the target.
This resulted in a registered template. The process was repeated for each subject at each age. Then, the facial region was extracted and symmetrized against
the non-affected facial side. A Procrustes superimpesition was performed to align all faces to tackle undesirable effects of position and orientation. Finally, all
subsequent analyses including the generation of heatmaps were computed on the Procrustes coordinates exclusively.
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Figure 52. Mouse model characterization and quantitative histelogical analysis of tibialis anterior (TA) muscle changes in PIK3CAWT and
PIKICAMSA-CreER e o treated with either vehicle or alpelisib. (A) Representative immunofluorescence of PAXT satellite cells and quantification.
(B and €) Digjtal pictures of TA muscle cross-section area allowing an automated image quantification of (8) major and minar (C) myofiber diameters in PIKICAYT
and PIKICAHSA-CrER g treated with either vehicle or alpelisib. {D) Quantification. (E) Complete blood count in PIKICAMT and PIKZCAHSA Cef8 mice. (F) B Islet area
in PIKICAWT and PIKICARS-CER mice, Data are shown as mean + SEM. *P < 0.05 and ***P < 0,001 (two-tailed unpaired t test for A, E, and F, and ANOVA, followed
by the Tukey-Kramer post hoc test for D). Each dot represents one mouse. Data are representative of at least two independent experiments.
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Figure 53. Metabolic changes observed in PIK3CAMT and PIK3CA"™SA-CER, Graphic example of metabolite level changes ohserved. AL Arbitrary units. Data
are shown as mean + SEM. *P < 0.05, **P < 0.01, ***F = 0.001 {two-tailed unpaired t test).
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