
HAL Id: tel-04752047
https://theses.hal.science/tel-04752047v1

Submitted on 24 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental and Theoretical Analysis of Reinforcement
Learning Algorithms

David Brellmann

To cite this version:
David Brellmann. Experimental and Theoretical Analysis of Reinforcement Learning Algorithms.
Neural and Evolutionary Computing [cs.NE]. Institut Polytechnique de Paris, 2024. English. �NNT :
2024IPPAE008�. �tel-04752047�

https://theses.hal.science/tel-04752047v1
https://hal.archives-ouvertes.fr

.

626

N
N

T
:

20
24

IP
PA

E
00

8

Experimental and Theoretical Analysis of
Reinforcement Learning Algorithms

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à École nationale supérieure de techniques avancées

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat: Mathématiques et Informatique

Thèse présentée et soutenue à Palaiseau, le 01/07/2024, par

David Brellmann

Composition du Jury :

Rémi Munos
Directeur de Recherche, DeepMind/INRIA Président

Odalric-Ambrym Maillard
Chargé de recherche, INRIA Lille (Scool) Rapporteur

Marcello Restelli
Associate Professor, Politecnico di Milano Rapporteur

Yaqi Duhan
Assistant Professor, New York University Examinateur

Goran Frehse
Enseignant-chercheur, ENSTA Paris (U2IS) Directeur de thèse

David Filliat
Enseignant-chercheur, ENSTA Paris (U2IS) Co-directeur de thèse

À mes parents,

Remerciements

J’aimerais tout d’abord exprimer toute ma reconnaissance à mon directeur de thèse, Goran Frehse,
pour sa confiance et son soutien tout au long de cette thèse. Je souhaite le remercier d’avoir
toujours été bienveillant et pédagogue et de m’avoir fourni un encadrement sans faille, aussi bien
scientifique qu’humain. J’ai beaucoup appris auprès de toi et je continuerai à appliquer tes précieux
conseils. Je remercie mon co-directeur de thèse, David Filliat, pour sa constante disponibilité, son
écoute, sa bienveillance et ses conseils avisés. Je remercie aussi Eloïse Berthier avec qui j’ai eu
la chance de collaborer. Tu t’es toujours montrée disponible, généreuse et tu m’as fait découvrir
de nouveaux horizons mathématiques. Ce travail n’aurait pas également été possible sans l’École
Polytechnique, sans Armines et sans l’École Nationale Supérieure des Techniques avancées de Paris
qui m’ont permis grâce à leurs soutiens financiers de me consacrer sereinement à mes travaux de
recherches.

J’adresse mes remerciements à Odalric-Ambrym Maillard et Marcello Restelli pour avoir accepté
de rapporter ce manuscrit malgré leurs emplois du temps très chargés ainsi qu’à Rémi Munos et
Yaqi Duan qui me font l’honneur de l’examiner. Je remercie également mon comité de suivi de
thèse, composé de Sylvain Lamprier et Olivier Pietquin, pour leurs précieux retours et conseils.

Je tiens aussi à remercier toutes mes collègues de l’U2IS pour leur bienveillance et conseils, notam-
ment Abdelmouaiz Tebjou, Mohamed Fnadi, Gaël Parfait et Alexandre Chapoutot.

Sans oublier un grand merci à Gianni, Pavan, Raphaël et Gwendal pour leur amitié, leur générosité,
leur soutien et pour tous ces bons moments vécus. Merci aussi à mes amis Aurélien, Christian,
Mathieu, Vincent et Tessa qui ont été particulièrement présents ces dernières années et qui ont
su apporter un peu de légèreté par leur bonne humeur. Je remercie toutes les personnes, amis et
professeurs, qui m’ont soutenu au cours de mes études.

Un grand merci à ma compagne, Fiorella, d’avoir toujours cru en moi dans les bons comme dans
les mauvais moments. Sans toi, mon quotidien aurait été beaucoup moins heureux et tout cela
n’aurait pas été possible.

Enfin, il me serait impossible de terminer sans remercier ma famille pour leur soutien indéfectible
depuis toujours. Je tiens à remercier mes grands-parents pour leurs encouragements et leurs
sollicitudes. Merci à mes parents d’avoir toujours été présents, aimants et de m’avoir poussé à
donner le meilleur de moi-même. Merci à mon papa de m’avoir encouragé dans la voie scientifique
et de m’avoir appris le sens de la rigueur. Merci à ma maman qui avec patience et persevérance m’a
donné le goût d’apprendre. Merci à ma sœur Léa, ma confidente, de me supporter et de m’avoir
accompagné depuis toutes ces années.

i

Abstract

In Reinforcement Learning (RL), an agent learns how to act in an unknown environment in order
to maximize its reward in the long run. In recent years, the use of neural networks has led to
breakthroughs, e.g., in scalability. However, there are still gaps in our understanding of how to
best employ neural networks in RL. In this thesis, we improve the usability of neural networks
in RL in two ways, presented in two separate parts. First, we present a theoretical analysis of
the influence of the number of parameters on learning performance. Second, we propose a simple
feature preprocessing based on the Fourier series, which empirically improves performance in several
ways.

In the first part of this thesis, we study how the number of parameters influences performance.
While in supervised learning, the regime of over-parameterization and its benefits are well under-
stood, the situation in RL is much less clear. We present a theoretical analysis of the influence
of number of parameters and L2 regularization on performance. We identify the ratio between
the number of parameters and the number of visited states as a crucial factor and define over-
parameterization as the regime when this ratio is larger than one. We observe a double descent
phenomenon, i.e., a sudden drop in performance around the parameter/state ratio of one. Our
analysis is based on the regularized Least-Squared Temporal Difference (LSTD) algorithm with
random features in an asymptotic regime, as both the number of parameters and states go to
infinity while maintaining a constant ratio. We derive deterministic limits of the empirical, the
true Mean-Squared Bellman Error (MSBE), and the true Mean-Squared Value Error (MSVE) that
feature correction due to the constant ratio between the number of parameters and distinct visited
states. We experimentally associate those correction terms with the double descent phenomenon
and an implict regularization of the model. We demonstrate that the correction terms vanish
as either the L2 regularization increases, the number of parameters increases, or the number of
unvisited states decreases.

In the second part of this thesis, we study the preprocessing of features through a Fourier series.
In addition to the number of parameters, the amount of optimization that can be achieved in
practice remains limited. Neural networks behave thus as under-parameterized models that are also
regularized through early stopping. This regularization induces a spectral bias since fitting high-
frequency components of the value function requires exponentially more gradient update steps than
the low-frequency ones. We propose a simple Fourier mapping for preprocessing, which improves
the learning of high-frequency components and thus helps to overcome the spectral bias in RL.
We present experiments indicating that this can lead to significant performance gains in terms
of rewards and sample efficiency. Furthermore, we observe that this preprocessing increases the
robustness with respect to hyperparameters, leads to smoother policies, and benefits the training
process by reducing learning interference, encouraging sparsity, and increasing the expressiveness
of the learned features.

ii

Résumé

En apprentissage par renforcement (RL), un agent apprend comment agir dans un environnement
inconnu de façon à maximiser sa récompense sur le long terme. Ces dernières années, l’utilisation
de réseaux de neurones artificiels a conduit à de nombreuses avancées, notamment en termes de
scalabilité. Cependant, de nombreuses lacunes subsistent dans notre compréhension de la meilleure
manière d’employer les réseaux de neurones en RL. Dans cette thèse, nous proposons d’améliorer
l’utilisation des réseaux de neurones en RL de deux manières, présentées dans deux parties dis-
tinctes. La première partie présente une analyse théorique de l’impact du nombre de paramètres
sur la performance d’apprentissage. La seconde partie propose un prétraitement simple des don-
nées, basé sur la série de Fourier, qui améliore empiriquement les performances des réseaux de
neurones de plusieurs façons.

Dans la première partie de cette thèse, nous étudions l’influence du nombre de paramètres sur
la performance. Alors que dans l’apprentissage supervisé, le régime de surparamétrisation et ses
avantages sont assez bien compris, la situation en RL est beaucoup moins claire. Nous présentons
donc une analyse théorique sur l’influence du nombre de paramètres et sur l’impact d’un terme de
régularisation L2 sur la performance. Nous identifions le rapport entre le nombre de paramètres
et le nombre d’états visités comme un facteur crucial et définissons la surparamétrisation comme
le régime où ce rapport est supérieur à un. Nous observons un phénomène de double descente,
caractérisé par une chute soudaine de performance au-delà d’un rapport paramètres/états visités
de un. Notre analyse est basée sur l’algorithme de Least-Squares Temporal Difference learning
(LSTD) doté de caractéristiques aléatoires et d’un terme de regularisation L2 dans un régime
asymptotique, où le nombre de paramètres et d’états visités tendent vers l’infini tout en maintenant
un rapport constant. Nous dérivons les limites déterministes de l’erreur quadratique moyenne de
Bellman (MSBE) basée sur les échantillons collectés durant l’entraînement, de la vraie MSBE, et
de l’erreur quadratique moyenne de la fonction de valeur (MSVE) qui comportent notamment des
termes correctifs induits par le rapport fini nombre de paramètres/états visités. Nous associons
expérimentallement ces termes correctifs au phénomène de double descente et à une régularisation
implicite du modèle. Nous démontrons que ces termes correctifs diminuent soit lorsque le terme de
pénalité associé à la régularisation L2 augmente, soit lorsque le nombre de paramètres augmente,
soit lorsque le nombre d’états non visités diminue.

Dans la seconde partie de cette thèse, nous proposons l’étude d’un prétraitement des données basé
sur la série de Fourier. En effet, outre le nombre de paramètres, le nombre d’optimisations réalisé
en pratique reste souvent limité. Par conséquent, les réseaux de neurones tendent souvent à se
comporter comme des modèles sous-paramétrisés régularisés par un arrêt prématuré. Cette forme
de régularisation induit notamment un biais spectral, puisque l’apprentissage des composantes à
haute fréquence de la fonction cible requiert exponentiellement plus d’itérations dans la descente
de gradient stochastique que pour les composantes à basse fréquence. Pour pallier à ce prob-
lème, nous proposons un prétraitement des données basé sur la série de Fourier afin d’améliorer
l’apprentissage des composantes à haute fréquence et surmonter le biais spectral en RL. Nous
présentons des expériences indiquant que ce prétraitement peut conduire à des améliorations sig-
nificatives des performances, en termes de récompenses obtenues et de données utilisées. De plus,
nous observons que ce prétraitement favorise une plus grande robustesse face aux hyperparamètres,
conduit à l’élaboration de politiques plus régulières, et bénéficie au processus d’entraînement en
réduisant l’interférence d’apprentissage, en encourageant l’apprentissage de caractéristiques dis-
tinctes et sparses (ou creuses), et en augmentant l’expressivité des caractéristiques apprises.

1

Contents

Abstract/Résumé 1

1 Introduction 13

1.1 Outline . 14

1.2 Contributions . 17

I Reinforcement Learning & Function Approximation 19

2 Reinforcement Learning 20

2.1 Mathematical Framework . 21

2.2 Dynamic Programming . 25

2.3 Tabular Reinforcement Learning Algorithms . 28

3 Function Approximation in Value-Based Algorithms 32

3.1 Markov Reward Processes . 32

3.2 Objective Functions . 33

3.3 Linear Value Function Approximation using Gradient Based Approach 35

3.4 Deep Q-Network . 36

4 Least-Squares Temporal Difference Learning 39

4.1 Definition . 39

4.2 LSTD as a Linear Least-Squares Approximation on R̄π 40

4.3 Convergence of LSTD . 42

4.4 Recursive LSTD . 43

4.5 Regularized LSTD . 44

2

Contents

II Double Descent in Least-Squares Temporal Difference Learning 47

5 Introduction to the Double Descent Phenomenon 50

5.1 Classical Bias-Variance Tradeoff . 50

5.2 The Double Descent Phenomenon . 52

5.3 Asymptotic Regimes . 53

5.4 Motivations in Reinforcement Learning & Contributions 55

6 Regularized LSTD with Random Features in High-Dimensional Problems 57

6.1 Linear Function Approximation in Markov Reward Processes 57

6.2 Regularized LSTD with Random Features . 58

6.3 Double Asymptotic Regime & Resolvent in LSTD 60

7 Main Results in High-Dimensional Problems 62

7.1 Pitfalls of High-Dimensional Problems & Deterministic Equivalent 62

7.2 A Deterministic Equivalent Resolvent for Regularized LSTD 67

7.3 Asymptotic Empirical Mean-Squared Bellman Error 70

7.4 Asymptotic Mean-Squared Bellman Error . 71

7.5 Asymptotic Mean-Squared Value Error . 74

8 Implicit Regularization 76

8.1 Kernel Methods in Reinforcement Learning . 76

8.2 Reformulation of the Main Results . 80

8.3 Interpretation . 83

9 Numerical Experiments 86

9.1 Experimental Setup . 86

9.2 Correction Factor δ . 87

9.3 The Double Descent Phenomenon . 88

9.4 Influence of the Number of Unvisited States . 92

9.5 Influence of the Discount Factor . 93

III Features Encoding in Deep Reinforcement Learning 94

10 Features Encoding 96

10.1 Features Encoding in Linear Function Approximations 96

3

Contents

10.2 Limitations of Neural Networks in Deep RL . 97

10.3 Features Encoding with Neural Networks & Contributions 98

11 Features Encodings Based on Fourier Series 101

11.1 Fourier Features . 101

11.2 Empirical Performance . 103

12 Observed Effects on Training Neural Networks 109

12.1 Catastrophic Interference . 109

12.2 Sparsity . 112

12.3 Expressiveness . 114

12.4 Smoothness . 116

12.5 Correlations with the Fourier Light Features Order 119

Conclusions and Perspectives 122

Appendices 125

A Mathematical Proofs: Double Descent in LSTD 126

A.1 Proof of Theorem 7.2.3 . 126

A.2 Proof of Theorem 7.3.2 . 136

A.3 Proof of Theorem 7.4.2 . 150

A.4 Technical Details on the Resolvent Qm(λ) . 164

A.5 Existence of the Resolvent Qm(λ) . 171

A.6 About the Existence, Positiveness, and Uniqueness of the correction factor δ . . . 173

A.7 Concentration Results . 176

A.8 Intermediary Lemmas . 181

B Additional Experiments: Features Encoding in Deep Reinforcement Learning 183

B.1 Sparsity Curves for DQN on Discrete Control Tasks 183

B.2 Smoothness Curves for DQN on Discrete Control Tasks 184

B.3 Interference Curves for DQN on Discrete Control Tasks 186

4

List of Figures

2.1 Description of the interaction with the environment: at time t, the agent is in
state st and chooses the action at. The environment sends back a reward rt+1=
R(st, at, st+1) and a new state st+1, which will be used by the agent at time t+ 1. 20

5.1 Classical Bias-Variance Tradeoff. As the model complexity H increases, the
generalization error exhibits a U-shaped curve with a miminum at the sweet spot,
whereas the training error is a decreasing function. The “sweet spot" is the balance
between under-fitting and over-fitting. 52

5.2 The Double Descent Phenomenon. As the model complexity H increases, the
generalization error first shows the U-shaped curve depicted in Figure 5.1, peaking
around the interpolation threshold. The double descent phenomenon refers to the
decreasing behavior of the generalization error beyond the interpolation threshold,
i.e, when predicators prefectly interpolate training data. 53

7.1 Eigenvalue distributions of the empirical covariance matrix ĈN (equa-
tion 7.3) and the covariance matrix Im mismatch for N = 100m. The
eigenvalue distribution of the empirical covariance matrix ĈN converges
to the Marchenko-Pastur distribution. Eigenvalue histogram of ĈN versus the
Marchenko-Pastur distribution for m = 512 and N = 100m (Liao et al., 2020). . 64

9.1 The correction factor δ is a decreasing function of the number of pa-
rameters N . For small l2-regularization parameter λ, we observe a sharp
decrease near N/m = 1, for m distinct visited states. As λ increases,
the function becomes smoother and smaller (note the different scales of
the y-axis). δ is computed with equation 7.8 in synthetic ergodic, Girdworld and
Taxi-v3 MRPs with γ = 0.95,m = 499, n = 3000, γ = 0.95,m = 386, n = 5000 and
γ = 0.95,m = 310, n = 5000, respectively. 87

9.2 The correction factor δ is a decreasing function of the l2-regularization pa-
rameter λ. As the model complexity c = N/m increases, the impact of reg-
ularization parameter λ becomes less significant (note the different scales
of the y-axis). δ is computed with equation 7.8 in synthetic ergodic, Girdworld
and Taxi-v3 MRPs with γ = 0.95,m = 499, n = 3000, γ = 0.95,m = 386, n = 5000
and γ = 0.95,m = 310, n = 5000, respectively. 88

5

List of Figures

9.3 The double descent phenomenon occurs in the true MSBE (red) of regu-
larized LSTD, peaking around the interpolation threshold (N/m = 1 for
N parameters, m distinct visited states) when the empirical M̂SBE (blue)
vanishes. It diminishes as the l2-regularization parameter λ increases.
Continuous lines indicate the theoretical values from Theorem 7.3.2 and Theorem 7.4.2,
the crosses are numerical results averaged over 30 instances after the learning with
regularized LSTD in synthetic ergodic, Gridworld and Taxi-v3 MRPs with γ =
0.95,m = 499, n = 3000; γ = 0.95,m = 386, n = 5000; and γ = 0.95,m = 310, n =
5000, respectively. 89

9.4 The double descent phenomenon occurs in the true MSVE (red) of regu-
larized LSTD, peaking around the interpolation threshold (N/m = 1 for
N parameters, m distinct visited states) when the empirical M̂SVE (blue)
vanishes. It diminishes as the l2-regularization parameter λ increases.
Continuous lines indicate the theoretical values from Corollary 7.5.0.1, the crosses
are numerical results averaged over 30 instances after the learning with regularized
LSTD in synthetic ergodic, Gridworld and Taxi-v3 MRPs for γ = 0.95,m = 499, n =
3000; γ = 0.95,m = 386, n = 5000; and γ = 0.95,m = 310, n = 5000, respectively. . 91

9.5 With more distinct states m visited, the double descent in the MSBE
diminishes, disappearing for m = |S|. Continuous lines indicate the theoretical
values of MSBE from Theorem 7.4.2 for different numbers of distinct visited states
m; the crosses are numerical results averaged over 30 instances after the learning
with regularized LSTD in synthetic ergodic, Gridworld and Taxi-v3 MRPs with
γ = 0.95, d = 50. 92

9.6 The discount factor γ has little effect on the double descent in the MSBE.
Continuous lines indicate the theoretical values of MSBE from Theorem 7.4.2 for γ =
0 (purple), γ = 0.5 (maroon), γ = 0.95 (green), and γ = 0.99 (orange); the crosses
are numerical results averaged over 30 instances after the learning with regularized
LSTD in synthetic ergodic, Gridworld and Taxi-v3 MRPs for γ = 0.95,m = 499, n =
3000; γ = 0.95,m = 386, n = 5000; and γ = 0.95,m = 310, n = 5000, respectively . 93

10.1 Example ofM∼ PM drawn from the MDP distribution of Dong et al. (2020) for a
number of “kinks" k = 2. 97

10.2 MDP with simple dynamics may have complex optimal Q-function. MLPs
without function expansion underperform on MDPs. Evaluation curves of
different MLP architectures on the toy MDP described in Figure 10.1. Curves are
averaged over 10 training runs. Shading indicates the 95% confidence interval (CI).
The tested architectures are a 1-layer MLP with 400 hidden neurons and 4-layer
MLPs with 400, 2048, and 4096 hidden neurons. 98

10.3 MLPs without features encoding underfit the optimal Q-value function
of the toy MDP M described in Figure 10.1. Predictions of MLPs trained
with the neural Fitted Q-Iteration are averaged over 10 training runs. The tested
architectures are a 1-layer MLP with 400 hidden neurons and 4-layer MLPs with
400, 2048, and 4096 hidden neurons. 99

6

List of Figures

10.4 Example of a 2-layers MLP with features encoding for value-based algo-
rithms. The state s ∈ Rd is processed with a functional expansion (e.g, Fourier
features) before being passed into the MLP. For a given state s ∈ S, features re-
turned by the penultimate layer of the MLP are denoted by ϕ(s; W), where W

depicts the weights of the MLP excluding those of the output layer. Output of
the neural network V̂ (s; W ,θ) is a linear function V̂ (s; W ,θ) = θT ϕ(s; W), where
θ ∈ RN denotes the weights of the last layer. 100

11.1 Example of Fourier Features over 2 variables (d = 2). Darker colors indicate a value
closer to 1, and lighter colors indicate a value closer to −1. Note that c = [0, 0]
results in a constant function. When c = [0, ky] or [kx, 0] for positive integers kx

and ky, the basis function depends on only one of the variables, with the value
of the non-zero component determining frequency. Only when c = [kx, ky] does it
depend on both; this basis function represents an interaction between the two state
variables. The ratio between kx and ky describes the direction of the interaction,
while their values determine the basis function’s frequency along each dimension. . 102

11.2 Example of Fourier Light Features for d = 1. 102

11.3 The use of features encoding based on Fourier series improve performance
and sample efficiency of DQN on discrete control tasks. Similar behavior
is observed for FF-NN and FLF-NN. Evaluation learning curves of NN (blue),
FF-NN (orange), and FLF-NN (green), reporting episodic return versus environment
timesteps. Results are averaged over 30 training (different seeds), with shading
indicating the 95% confidence interval (CI). 105

11.4 The use of Fourier Light Features improves the performance and sample
efficiency of PPO on continuous control tasks. Evaluation learning curves
of NN (blue) and FLF-NN (green), reporting episodic return versus environment
timesteps. Results are averaged over 10 training with shading indicating the 95%
confidence interval (CI). 105

11.5 Learning rate variations over n = 10 trainings. 107

11.6 Buffer size variations over n = 10 trainings. 107

11.7 Target update variations over n = 10 trainings. 107

11.8 Fourier Features are more robust to learning rate, buffer size and target
update frequency. Cumulative reward over different hyperparameter variations,
for NN (blue) and FF-NN (orange) on MountainCar-v0 and CartPole-v1. Results
are averaged over 10 trainings and shading indicating the 95% confidence interval
(CI). 107

11.9 Fourier Features/Fourier Light Features perform better than other stan-
dard features encodings on discrete control tasks with DQN. Evaluation
learning curves of NN (blue), FF-NN (orange), FLF-NN (green), PF-NN (red),
RFF-NN (purple) and TC-NN (brown) reporting episodic return versus environ-
ment timesteps. Results are averaged over 30 trainings with shading indicating the
standard deviation. 108

7

List of Figures

12.1 The use of Fourier Features and Fourier Light Features enhances the ex-
pressiveness of the learned features on discrete control tasks. Normalized
effective rank srankδ(Φt) over environment timesteps during the training for neural
networks fed raw inputs (blue), Fourier Features (orange), and Fourier Light Fea-
tures (green). Results are averaged over 30 trainings with shading indicating the
95% CI. 116

12.2 Normalized effective rank srankδ(Φt) over environment timesteps during the training
for neural networks fed with raw inputs (blue), Fourier features (orange), Fourier
Light Features (green), Fourier Light Features (green), Polynomial Features (red),
Random Fourier Features (purple) and Tile Coding features (brown). Results are
averaged over 30 trainings with shading indicating the 95% CI. 117

12.3 Preprocessing inputs with Fourier Features or Fourier Light Features may
improve the smoothness of the neural network. Lower and upper bounds on
the Lipschitz constant L of neural networks over environment timesteps during the
training, for neural networks fed with raw inputs (blue), Fourier Features (orange),
and Fourier Light Features (green). Bounds are averaged over 30 trainings. A lower
score is better. 118

12.4 Lower and upper bounds on the Lipschitz constant of neural networks over envi-
ronment timesteps during the training, for neural networks fed with raw inputs
(blue), Fourier Features (orange), Fourier Light Features (green), Polynomial Fea-
tures (red), Random Fourier Features (purple) and Tile Coding features (brown).
Bounds are averaged over 30 trainings with shading indicating the 95% CI 118

12.5 Cumulative rewards over varying FLF orders, averaged across all timesteps for 5
trainings with DQN fed with Fourier Light features. The red line indicates the
performance for DQN without any preprocessing. 119

12.6 Selected metrics over varying FLF orders, for two discrete control tasks 121

B.1 Normalized Overlap over environment steps during the training for neural networks
fed with raw inputs (blue), Fourier features (orange), and Fourier Light Features
(green). Results are averaged over 30 trainings with shading indicating the 95% CI. 183

B.2 Normalized Overlap over environment steps during the training for neural networks
fed with raw inputs (blue), Fourier features (orange), Fourier Light Features (green),
Fourier Light Features (green), Polynomial Features (red), Random Fourier Features
(purple) and Tile Coding features (brown). Results are averaged over 30 trainings
with shading indicating the 95% CI. 183

B.3 L2 weight norm of layers of a two-layers neural networks over environment steps
during the training for neural networks fed with raw inputs (blue), Fourier features
(orange), and Fourier Light Features (green). Results are averaged over 30 trainings
with shading indicating the 95% CI. 184

B.4 L1 weight norm of layers of a two-layers neural networks over environment steps
during the training for neural networks fed with raw inputs (blue), Fourier features
(orange), and Fourier Light Features (green). Results are averaged over 30 trainings
with shading indicating the 95% CI. 185

8

List of Figures

B.5 L∞ weight norm of layers of a two-layers neural networks over environment steps
during the training for neural networks fed with raw inputs (blue), Fourier features
(orange), and Fourier Light Features (green). Results are averaged over 30 trainings
with shading indicating the 95% CI. 185

B.6 Average Stiffness (AS) over environment steps during the training for neural net-
works fed with raw inputs (blue), Fourier features (orange), and Fourier Light Fea-
tures (green). Results are averaged over 30 trainings with shading indicating the
95% CI. 186

B.7 Average Interference (AI) over environment steps during the training for neural
networks fed with raw inputs (blue), Fourier features (orange), and Fourier Light
Features (green). Results are averaged over 30 trainings with shading indicating the
95% CI. 186

B.8 Interference Risk (IR) over environment steps during the training for neural networks
fed with raw inputs (blue), Fourier features (orange), and Fourier Light Features
(green). Results are averaged over 30 trainings with shading indicating the 95% CI. 186

B.9 Average Stiffness (AS) over environment steps during the training for neural net-
works fed with raw inputs (blue), Fourier features (orange), Fourier Light Features
(green), Fourier Light Features (green), Polynomial Features (red), Random Fourier
Features (purple) and Tile Coding features (brown). Results are averaged over 30
trainings with shading indicating the 95% CI. 187

B.10 Average Interference (AI) over environment steps during the training for neural net-
works fed with raw inputs (blue), Fourier features (orange), Fourier Light Features
(green), Fourier Light Features (green), Polynomial Features (red), Random Fourier
Features (purple) and Tile Coding features (brown). Results are averaged over 30
trainings with shading indicating the 95% CI. 187

B.11 Interference Risk (IR) over environment steps during the training for neural networks
fed with raw inputs (blue), Fourier features (orange), Fourier Light Features (green),
Fourier Light Features (green), Polynomial Features (red), Random Fourier Features
(purple) and Tile Coding features (brown). Results are averaged over 30 trainings
with shading indicating the 95% CI. 187

9

List of Tables

4.1 Comparison of Regularization Approaches for LSTD. Ωp : RN → R and Ωf : RN →
R are the regularization terms in the nested problem formulation of LSTD (Equa-
tions 4.12 and 4.13) (Dann et al., 2014). (*) l1-PBR actually assumes a small l2
regularization on the operator problem if the estimate of ΣSDµΣT

S is singular. . . 45

7.1 Values of Φab for w ∼ N (0, Id), ∠(a, b) ≡ aT b
∥a∥∥b∥ (Louart et al., 2018). 69

11.1 Range of DQN Hyperparameters Used for Optimization with Optuna. 104

12.1 Fourier Features and Fourier Light Features mitigate learning interfer-
ence on discrete control tasks. Interference measures with Average of Stiffness
(AS), Average of Interference (AI), and Interference Risk (IR) averaged across all
timesteps for DQN fed with raw inputs (NN), Fourier Features (FF-NN), and Fourier
Light Features (FLF-NN) on discrete control tasks. The symbol ↓ (↑) indicates that
a lower (higher) score is better. Best interference measures are in bold. 111

12.2 Interference measures with Average of Stiffness (AS), Average of Interference (AI),
and Interference Risk (IR) averaged across all timesteps for DQN fed with raw inputs
(NN), Fourier Features (FF-NN), Fourier Light Features (FLF-NN), Polynomial
Features (PF-NN), Random Fourier Features (RFF-NN), and Tile Coding (TC-
NN) on discrete control tasks. The symbol ↓ (↑) indicates that a lower (higher)
score is better. Best interference measures are in bold. 112

12.3 Fourier Features and Fourier Light Features promote sparsity on discrete
control tasks. Sparsity scores with the percentage of dead neurons (DN), normal-
ized activation overlap (NO), and instance sparsity (IS) obtained for DQN fed with
raw inputs (NN), Fourier Features (FF-NN), and Fourier Light Features (FLF-NN),
averaged across environment timesteps. Averages are taken across all timesteps and
margins of error of the 95% confidence interval (CI) are computed over 30 trainings.
Lower sparsity scores are better and better scores are in bold. 114

12.4 Sparsity scores with percentage of dead neurons (DN), normalized activation overlap
(NO) and instance sparsity (IS) obtained for DQN fed with raw inputs (NN), Fourier
Features (FF-NN), Fourier Light Features (FLF-NN), Polynomial features (PF-NN),
Random Fourier Features (RFF-NN) and Tile Coding (TC-NN) on discrete control
tasks averaged across all timesteps. Averages and margins of error of the 95% CI
are over 30 trainings. Lower sparsity scores are better and better scores are in bold. 114

10

List of Tables

12.5 Increasing the Fourier Light Features order improves the metrics. The
table shows Spearman’s rank correlation coefficient rS between different metrics
and the FLF order. The p-value of the hypothesis test indicates high confidence in
the result in almost all cases. The metrics are the percentage of dead neurons (DN),
normalized activation overlap (NO), instance sparsity (IS), Average of Stiffness (AS),
Average of Interference (AI), Interference Risk (IR), Lipschitz Lower Bound (LLB),
Lipschitz Upper Bound (LUB), averaged across all environment timesteps for 5
trainings with DQN fed with Fourier Light features (FLF-NN), over an order varying
from 1 to 30. ↓ and ↑ indicate the direction in which the metric is better. 120

11

List of Symbols

R Set of real numbers.

C Set of complex numbers.

[n] Set of integers between 1 and n.

I(·) Imaginary part of a complex number.

diag(·) Diagonal operator, for A ∈ Rn×n, diag(A) ∈ Rn is the vector with entries {Aii}n
i=1;

for a ∈ Rn, diag(a) ∈ Rn×n is the diagonal matrix taking a as its diagonal.

(·)T Transpose operator.

Tr(·) Trace.

|·| Cardinality operator of a set, module of a complex number.

∥·∥ Operator norm of a matrix and Euclidean norm of a vector.

∥·∥A Norm induced by a matrix A, ∥v∥A = vT Av.

∥·∥∞ Infinity norm of a matrix, ∥A∥∞ = maxi,j Aij .

∥·∥F Frobenius norm of a matrix, ∥A∥F =
√

Tr(AAT).

ν(·) Spectrum of a matrix.

νmax(·) Largest eigenvalue of a matrix.

νmin(·) Smallest eigenvalue of a matrix.

E[·] Expectation operator.

Var[·] Variance operator.
a.s−−→ Almost surely convergence. We say a sequence xn

a.s−−→ x if Pr(limn→∞ xn = x) = 1.

H(·) Symmetric part, H(A) = A+AT

2 .

O(1), o(1) A sequence xn is bounded or converges to zero as n→∞, respectively.

12

Chapter 1

Introduction

Machine Learning is a branch of Artificial Intelligence (AI) that enables machines to “learn” au-
tomatically from raw data and past experiences in order to identify patterns and make predictions
without requiring explicit programming of rules or behaviors (Bishop et al., 1995; Sutton and
Barto, 2018; Géron, 2022). Machine Learning algorithms learn directly from a large volume of
data instead of relying on any predetermined equation serving as a model. With the advance-
ment of computing technology and the onset of the “big data” era, characterized by an increasing
collection of data, machine learning algorithms have seen widespread use. They are applied to
many fields including language processing (Vaswani et al., 2017; Brown et al., 2020; Touvron et al.,
2023; Team et al., 2023), computer vision (He et al., 2016; Redmon et al., 2016; Krizhevsky et al.,
2017), robotics (Trautman and Krause, 2010; Berkenkamp et al., 2016; Kumar et al., 2021), agri-
culture (Meshram et al., 2021), medicine (Deo, 2015; Popova et al., 2018), finance (Hambly et al.,
2023), video games (Mnih et al., 2015; Vinyals et al., 2019; Gillberg et al., 2023), and recommen-
dation systems (Hu et al., 2008; Covington et al., 2016; He et al., 2017).

Reinforcement Learning (RL) is a branch of Machine Learning, where an agent learns how to solve
a task in an unknown environment (Sutton, 1988). The goal of the agent is to maximize a numerical
reward signal over time through trial and error. In other words, RL enables a computer or robot to
learn how to perform a task by trying different strategies and identifying the most effective ones.
More precisely, the learner receives rewards for its actions and adjusts its behavior accordingly
to maximize the reward signal in the future. In RL, the objective for the learner is to optimize
its behavior by making decisions that result in favorable rewards based on its past experiences
and the feedback it receives from the environment. RL is particularly convenient as it enables
learners to solve tasks through observed data, without the need for a specific model or the explicit
programming of rules or behaviors. This characteristic is particularly useful in complex stochastic
environments, where it is impractical to define the equations of a model or to predefine a fixed
set of rules or behaviors. Another benefit of RL algorithms is their capacity to learn and adapt
their behavior in real time. This can be beneficial across a wide range of applications, and RL has
been applied in areas such as natural language processing (He et al., 2015; Luketina et al., 2019),
robotics (Trautman and Krause, 2010; Berkenkamp et al., 2016; Kumar et al., 2021), autonomous
driving (Likmeta et al., 2020; Kiran et al., 2021), video games (Mnih et al., 2015; Vinyals et al.,
2019; Gillberg et al., 2023), and recommendation systems (Chen et al., 2019; Afsar et al., 2022).

The performance of machine learning and RL algorithms mainly depends on the representation of

13

Chapter 1. Introduction

the data they need to handle (Bishop et al., 1995; Sutton, 1988). The representation that includes
the crucial information for performing a task is known as a set of features, and depends on the
problem being solved. For instance, the glucose level is more relevant as a feature when predicting
the risk of diabetes than it is for cardiovascular disease. For the latter, the cholesterol level is a more
suitable feature. In conventional approaches, features are typically hand-designed according to the
specific task and then passed to classical machine learning algorithms to make decisions. Choosing
appropriate features for a task is a critical way of adding prior domain knowledge. However,
determining which features to use can be a complex challenge. In domains such as computer vision
or language processing, determining the significance of a pixel in an image or a word in a sentence
may be particularly challenging (Bengio et al., 2013).

In recent years, the use of artificial neural networks has led to breakthroughs due to their ability
to learn features from raw data without prior knowledge (Schmidhuber, 2015). Interest in RL ex-
ploded in the wake of the results from Mnih et al. (2015), who demonstrated that neural networks
could learn to play a collection of Atari games, using screen images as input and applying a variant
of Q-learning. Since then, RL algorithms using neural networks, i.e., deep RL algorithms have
shown impressive performance in many domains, including robotics and natural language (Schul-
man et al., 2017; Haarnoja et al., 2018; Espeholt et al., 2018). Neural networks are particularly
promising due to their scalability, enabling their application to a wide range of high-dimensional
sequential decision-making problems. They excel in problems where other classes of techniques
currently fail to provide solutions. For example, neural networks perform better than humans in
complex games like Go or Starcraft (Silver et al., 2018; Vinyals et al., 2019; Perolat et al., 2022).
While they perform well on challenging tasks, their theoretical understanding remains limited.
Many questions arise: how do neural networks generalize? What do they learn? How many pa-
rameters do we need to achieve good performance? How many samples do we need? What are
their limitations? The difficulty is further exacerbated in RL by a myriad of new challenges that
limit the scope of these works, such as the absence of true targets or the non-i.i.d nature of the
collected samples (Kumar et al., 2020; Luo et al., 2020; Lyle et al., 2021; Dong et al., 2020). There
are still gaps in our understanding of how to best employ neural networks in RL. In this thesis, we
contribute to the domain of neural networks in deep RL in two ways, presented in two separate
parts. First, we present a theoretical analysis of the influence of the number of parameters and the
level of regularization on learning performance. Second, we propose a simple preprocessing based
on the Fourier series, which empirically improves performance in several ways. The outline and
primary contributions of this thesis are summarized below.

1.1 Outline

We begin the thesis with Part I, which covers the basics of RL and provides the preliminaries
necessary to follow the rest of the thesis. If the reader is already familiar with RL, we suggest
skipping these chapters and going directly to Part II. Chapter 2 provides a brief introduction to RL.
We first recall the concept of a Markov Decision Process and the definition of value functions and
policies. After introducing dynamic programming algorithms, we then provide a brief overview of
traditional tabular value-based algorithms, such as TD(0) and Q-learning. In Chapter 3, we discuss
function approximation within the framework of value-based algorithms. We introduce the concept
of the Markov Reward Process, which is used to mathematically describe the value evaluation. We
then present value-based algorithms using linear models and neural networks with their respective

14

1.1. Outline

objective functions. In Chapter 4, we review the Least-Squares Temporal Difference Learning
(LSTD) algorithm, its connection with stochastic gradient-based approaches, and its derivation
from least-squares methods. After introducing LSTD, we discuss several regularization methods
that can be applied to LSTD and Temporal Difference (TD) learning algorithms to avoid overfitting,
with a particular emphasis on l2 regularization. Following the introductory part, we proceed into
two Parts that contain the main body of our work.

Part II, Double Descent in Least-Squares Temporal Difference Learning, investigates
how the number of parameters and the level of regularization influence performance. Temporal
Difference (TD) learning algorithms are widely used in deep RL as they are simple and efficient.
Their performance is heavily influenced by the size of the neural network. While the regime of
over-parameterization and its benefits are well understood in supervised learning, the situation in
RL is much less clear. In this part, we present a theoretical analysis of the influence of network size
and l2-regularization on the performance of TD learning algorithms. This part is mainly based on
our work On Double Descent in Reinforcement Learning with LSTD and Random Features, with
Eloïse Berthier, David Filliat, and Goran Frehse, accepted for publication in the International
Conference on Learning Representations (ICLR), 2024. Part II is organized as follows:

• In Chapter 5, we start by presenting the classical bias-variance tradeoff theory, which guided
the selection of models and the choice of the number of parameters in traditional machine
learning. This theory has been used to select models rich enough to express underlying
structure in data and simple enough to avoid fitting of noise. Yet, as shown in this chapter,
practitioners usually prefer using a large amount of parameters and interpolating the training
data. We then briefly define and review the double descent theory introduced in supervised
learning to explain the good performance of over-parameterized models. This chapter can
be skipped by readers familiar with the phenomenon of double descent.

• In Chapter 6, we propose a novel theoretical framework for studying neural value function
approximation in high-dimensional problems. Indeed, theoretical studies of TD learning
algorithms often explore high-dimensional problems in asymptotic regimes, where the number
of samples tends to infinity while the number of parameters remains constant (Tsitsiklis and
Van Roy, 1996; Bradtke and Barto, 1996; Nedić and Bertsekas, 2003; Sutton, 1988). When
TD learning algorithms are applied to neural networks, it is commonly assumed that the
number of parameters tends to infinity with either a fixed or infinite number of samples
without providing details on the relative magnitudes of those dimensions (Cai et al., 2019;
Agazzi and Lu, 2022; Berthier et al., 2022; Xiao et al., 2021). In this chapter, we propose
studying TD learning algorithms using neural networks in a novel double asymptotic regime,
where both the number of parameters and states visited go to infinity while maintaining a
constant ratio called model complexity. In this double asymptotic regime, we approximate
TD learning algorithms using two-layer neural networks with the regularized Least-Squared
Temporal Difference (LSTD) algorithm on random features by leveraging the lazy training
regime.

• In Chapter 7, we first introduce the mathematical framework of Random Matrix Theory
and concentrations results used to study the performance of regularized LSTD in the double
asymptotic regime, and then we present our main theoretical results. In particular, we iden-
tify the resolvent of a non-symmetric positive-definite matrix that emerges as a crucial factor
in the performance analysis of regularized LSTD. We provide a deterministic equivalent of this
resolvent in the double asymptotic regime. Using the deterministic equivalent of the resolvent

15

Chapter 1. Introduction

and concentration results, we analyze the performance of regularized LSTD in the double
asymptotic regime with the derivation of deterministic equations for the asymptotic empiri-
cal Mean-Squared Bellman Error on the collected transitions, the asymptotic Mean-Squared
Bellman Error (MSBE), and the asymptotic Mean-Squared Value Error (MSVE). The de-
terministic forms expose correction terms that arise from the double asymptotic regime. We
show that the correction terms vanish as the l2-regularization increases or the model com-
plexity (i.e., the ratio between the number of parameters and number of states visited) goes
to infinity. We also show that the influence of the l2-regularization parameter decreases as
the model complexity increases.

• In Chapter 8, after reviewing kernel methods and their Mercer feature spaces, we revisit the
results of Chapter 7 in the Mercer feature space approximated by the random features. This
reformulation enables us to rewrite all the results using a similar expression and highlights
the connections that exist between the asymptotic error functions of random feature models
and the corresponding errors of a regularized kernel LSTD predicator. In particular, this
reformulation provides a better understanding of correction terms that arise from the double
asymptotic regime and highlights an implicit regularization induced by the model complexity.

• In Chapter 9, we present our experimental results and show our theory closely matches em-
pirical results for regularized LSTD on a range of both toy and small real-world environments;
where both the number of states visited m and the number of parameters N are fixed, but
for which our asymptotic predictions still gives accurate predictions. From our experiments,
we identify two distinct regimes: an under-parameterized regime where N/m < 1 and an
over-parameterized regime where N/m > 1. Each regime exhibits different behaviors in the
empirical MSBE, the true MSBE, and the MSVE. Notably, in the phase transition around
N/m = 1, we observe a double descent phenomenon similar to what has been reported in
supervised learning, with a peak in the true MSBE and MSVE around N/m = 1. For the
empirical MSBE and MSVE on the collected transitions, the phase transition is characterized
by an almost zero training error and a perfect fit with the training data. We experimentally
associate correction terms found in Chapter 7 and 8 with the double descent phenomenon.
We also show that correction terms, and therefore the double descent phenomenon, empiri-
cally vanish when the number of unvisited states goes to zero or the level of regularization
increases. Finally, we show that the discount factor has no influence on the double descent
phenomenon.

Part III, Features Encoding in Deep Reinforcement Learning, studies the preprocessing
of neural networks through a Fourier series to enhance the performance and sample efficiency of
deep RL algorithms. This part is mainly based on our work Fourier Features in Reinforcement
Learning with Neural Networks, with David Filliat and Goran Frehse, accepted for publication in
the Transactions on Machine Learning Research (TMLR), 2024. Part III is organized as follows:

• In Chapter 10, we start by presenting features encoding in linear function approximation and
the use of neural networks in deep RL to automatically learn features from raw data without
prior knowledge. As highlighted in this chapter, although neural networks are universal
approximators in theory, they suffer from some limitations in practice. These limitations
include not only the number of parameters, as discussed in the last part, but also the amount
of optimization that can be achieved in practice. We present experiments that indicate
neural networks behave as under-parameterized models regularized through early stopping.

16

1.2. Contributions

In particular, we observe this form of regularization induces a spectral bias, in which the
fitting high-frequency components of the value function requires exponentially more gradient
update steps than the low-frequency ones.

• In Chapter 11, to overcome the spectral bias and improve the learning of high-frequency
components in RL, we suggest the use of two preprocessings based on the Fourier series for
neural networks. The first preprocessing suggested is the Fourier Feature (FF) mapping,
based on the Fourier series and introduced by Konidaris et al. (2011) for linear value func-
tion approximation. However, the major bottleneck of this Fourier preprocessing is that the
dimension of the feature space grows exponentially with the dimension of the state space,
which limits its use in high-dimensional problems. We propose a lighter, scalable version of
the FF preprocessing called Fourier Light Features (FLF) to remedy this issue. In the fol-
lowing of this chapter, we present experiments indicating that the use of FF/FLF can lead to
significant performance gains in terms of rewards and sample efficiency, and outperform other
traditional preprocessings. We observe that both FLF and FF achieve similar performance,
while FLF has fewer features than FF. Furthermore, we observe that such preprocessings
increase the robustness with respect to hyperparameters.

• In Chapter 12, we empirically investigate the effects of the Fourier encodings on the learning
process. In particular, we show that the proposed preprocessings lead to smoother neural
networks, mitigate learning interference, promote sparsity, and increase the expressivity of
learned features.

We conclude the thesis with a concise summary of our contributions and a discussion of future
works.

1.2 Contributions

This thesis is divided into two distinct parts, each contributing a different aspect to the use of
neural networks in Reinforcement Learning.

In Part II, we take a step towards a better theoretical understanding of the influence of the number
of parameters and the l2-regularization on the performance of Temporal Difference algorithms. Our
main contributions can be summarized as follows:

• We propose a novel double asymptotic regime to study regularized LSTD with random fea-
tures, where the number of features N and distinct visited states m go to infinity while
maintaining a constant ratio. This leads to a precise assessment of the performance in both
over-parameterized (N/m > 1) and under-parameterized regimes (N/m < 1).

• We identify the resolvent of a non-symmetric positive-definite matrix that emerges as a crucial
factor in the performance analysis of TD learning algorithms in terms of the error functions
and we provide its deterministic equivalent form in the double asymptotic regime.

• We derive analytical equations for the asymptotic empirical MSBE on the collected transi-
tions, the asymptotic true MSBE, and the asymptotic MSVE and expose correction terms due
to the constant ratio N/m. We show that the correction terms vanish as the l2-regularization
increases or N/m goes to infinity. We also show that the influence of the l2-regularization
parameter decreases as N/m increases.

17

Chapter 1. Introduction

• We show that the asymptotic errors studied can be expressed as the sum of the corresponding
error terms of a regularized kernel LSTD predicator, with implicit l2-regularization parameter
λ̃ induced by the ratio N/m, and a second-order correction factor. Furthermore, we show
that the second-order correction factors can be interpreted and linked to classical notions
from non-parametric statistics, e.g., with the effective dimension.

• Our theory closely matches empirical results on a range of toy and small real-world Markov
Reward Processes for any ratio N/m. In the phase transition around N/m = 1, we experi-
mentally observe a peak in the Mean-Squared Bellman Error (MSBE) and the Mean-Squared
Value Error (MSVE), i.e, a double descent phenomenon similar to what has been reported
in supervised learning. We experimentally associate the correction terms found in our the-
oretical predictions with the double descent phenomenon. Correction terms, and therefore
the difference between true and empirical MSBE, empirically vanish when the number of
unvisited states reaches zero.

In Part III, we propose the use of a feature encoding based on the Fourier series as preprocessing for
neural networks to improve performance. Our main contributions can be summarized as follows:

• While Fourier Features are standard in classic Reinforcement Learning, we suggest that
Fourier Features are beneficial in kinematic observation-based RL problems with neural net-
works. We observe significant performance gains in both rewards and sample efficiency and
extend the range of usable hyperparameters. In our experiments, Fourier Features outper-
form other common types of input preprocessing.

• We empirically investigate the effects of Fourier features on the learning process and show that
Fourier features lead to smoother neural networks, mitigate learning interference, promote
sparsity, and increase the expressivity of learned features.

• We propose a light, scalable version of Fourier Features to avoid the exponential explosion
of traditional Fourier Features while maintaining much of their benefits.

18

Part I

Reinforcement Learning &
Function Approximation

19

Chapter 2

Reinforcement Learning

Reinforcement Learning (RL) is a branch of Machine Learning in which an agent learns how to solve
a task within an unknown environment by making sequential decisions based on its interactions
with the environment. At each iteration t, the agent performs an action at based on its current
situation described by the state st. One iteration later, at t+1, as a consequence of the action at, the
agent receives a numerical reward rt+1 and transitions to a new state st+1. Agent/environment
interactions are described in Figure 2.1. The reward rt+1 is a numeric feedback of the agent’s
performances after taking the action at in the state st. The objective of the agent is to maximize
the numerical reward signal over time through trial and error, based on its past experiences and the
feedback it receives from the environment. RL is particularly convenient as it enables learners to
solve tasks through observed data without the need for a specific model or the explicit programming
of rules or behaviors.

Agent
st

rt+1

Environment

st+1 at

Figure 2.1: Description of the interaction with the environment: at time t, the agent is in state
st and chooses the action at. The environment sends back a reward rt+1= R(st, at, st+1) and a
new state st+1, which will be used by the agent at time t+ 1.

In this chapter, we first recall the concept of a Markov Decision Process and the definitions of
policies and value functions to mathematically describe the agent/environment interactions in
Section 2.1. After introducing dynamic programming algorithms in Section 2.2, we then provide
a brief overview of traditional tabular value-based algorithms, such as TD(0) and Q-learning in

20

2.1. Mathematical Framework

Section 2.3. This chapter can be skipped by readers familiar with the RL terminology.

2.1 Mathematical Framework

2.1.1 Markov Decision Processes & Policy

Environments in RL are mathematically described by Markov Decision Processeses (MDPs) (Put-
erman, 2014; Bellman, 1957; Sutton and Barto, 2018). In the following, we denote by P(S) the
space of probability distributions over the state space S.

Definition 2.1.1 (Markov Decision Process). A MDP (Puterman, 2014; Bellman, 1957; Sutton
and Barto, 2018) is defined by a tuple (S,A, P,R, µ0) in which:

• S is the state space, which is measurable and may be finite or infinite;

• A is the action space, which is measurable and may be finite or infinite;

• P : S×A → P(S) is the transition function (stochastic kernel) that captures the dynamics of
the environment. With P (s′|s, a) we indicate the probability of moving to state s′ ∈ S from
state s ∈ S after performing the action a ∈ A where

P (s′|s, a) = Pr
[
st+1 = s′|st = s, at = a

]
.

• R : S ×A× S → R is the bounded reward function. R(s, a, s′) depicts the immediate reward
obtained when the agent in state s chooses an action a and moves to the state s′.

• µ0 ∈ P(S) is the initial state distribution. µ0(s) = Pr
[
s0 = s

]
depicts the probability of

starting at state s.

Remark 1. While episodic Markov Decision Processes are also considered in the literature (Sutton,
1988) and without loss of generality, we focus here on non-terminating MDPs, where the agent
interacts with its environment indefinitely.

Remark 2. The transition function P : S×A → P(S) and the reward function R : S×A×S → R
depend only on the current state and action, not on past states or actions. In this context, we say
that we satisfy the Markov Assumption (Puterman, 2014).

Remark 3. In RL problems, the parameters of an MDP are usually assumed to be unknown. RL
algorithms only learn from data collected from interactions with the MDP

The behavior of the agent, or the action-selection strategy, is mathematically described by policies.

Definition 2.1.2 (Policy). A policy π : S → P(A) maps each state in S to a probability distribution
over actions P(A). In particular, π(a|s) = Pr

[
a|s
]

denotes the probability of taking the action
a ∈ A in the state s ∈ S.

Remark 4. If for every state s ∈ S the associated distribution π(·|s) is deterministic, then the
policy is said to be deterministic. In that case, we write the deterministic policy as a function
π : S → A.

The reward function R : S × A × S → R formalizes the agent’s objective, as the agent aims to
maximize the cumulative sum of the received rewards.

21

Chapter 2. Reinforcement Learning

Objective. RL algorithms aim at finding a policy that maximizes the total amount of rewards
it receives and is mathematically described with the expected return defined as follows

J(π) = Eµ0,P,π

[∞∑
t=0

γtrt+1

]
= Eµ0,P,π

[∞∑
t=0

γtR(st, at, st+1)
]
, (2.1)

where rt+1 = R(st, at, st+1) and the expectation is taken under at ∼ π(·|st), st+1 ∼ P (·|st, at)
and s0 ∼ µ0. γ ∈ [0, 1) is the discount factor and quantifies the preference for immediate rewards
compared to delayed rewards. Complete indifference to the future corresponds to γ = 0. If γ = 0,
the agent is “myopic” and only maximizes immediate rewards, i.e., its objective is to learn how to
choose at to maximize only rt+1. However, acting to maximize immediate reward can generally
reduce access to future rewards, and leads to lower returns and poorer performance. γ < 1
guarantees J(π) in equation 2.1 is finite.

2.1.2 Value Functions

The performance of an agent under a policy π can be described by its value function V π : S → R.

Definition 2.1.3 (Value Function). Given a state s ∈ S and policy π, we define the value function
V π(s) at s as the expected total discounted amount of reward that the agent receives if it follows
the policy π starting from the state s

V π(s) = EP,π

[∞∑
t=0

γtrt+1
∣∣ s0 = s

]

= EP,π

[∞∑
t=0

γtR(st, at, st+1)
∣∣ s0 = s

]
,

(2.2)

where rt+1 = R(st, at, st+1) and the expectation is taken under at ∼ π(·|st) and st+1 ∼ P (·|st, at).

Remark 5. We observe that the expected return J(π) (equation 2.1) can be expressed with the
value function V π(·) as

J(π) = Eµ0

[
V π(s)

]
.

Remark 6. From the Markov property, the value function is invariant to the starting time from
which the cumulative rewards are considered. Indeed, for any t0 ≥ 0 and s ∈ S:

V π(s) = EP,π

[∞∑
t=0

γtR(st, at, st+1)
∣∣ s0 = s

]
= EP,π

[∞∑
t=0

γtR(st+t0 , at+t0 , st+t0+1)
∣∣ st0 = s

]
.

For control purposes, instead of considering the value function for each state, it is more practical to
consider a value function for each state-action pair using the action-value function Qπ : S×A → R.

Definition 2.1.4 (Action-Value Function). Given a state s ∈ S, an action a ∈ A and a policy π,
we define the action-value function Qπ(s, a) for the state-action pair (s, a) as:

Qπ(s, a) = EP,π

[∞∑
t=0

γtrt+1
∣∣ s0 = s, a0 = a

]

= EP,π

[∞∑
t=0

γtR(st, at, st+1)
∣∣ s0 = s, a0 = a

]
,

(2.3)

22

2.1. Mathematical Framework

where rt+1 = R(st, at, st+1) and the expectation is taken under at ∼ π(·|st) and st+1 ∼ P (·|st, at).

2.1.3 Optimal Policy

Since the objective is to find a policy that maximizes the expected return, value functions can be
used to define a partial ordering over policies. Indeed, a policy π′ is said to be better than or equal
to a policy π if its expected return is greater than or equal to that of π for all states, i.e.,

π′ ≥ π ⇐⇒ Vπ′(s) ≥ Vπ(s), ∀s ∈ S. (2.4)

If a policy is greater or equal to all the other policies, it is called an optimal policy.

Theorem 2.1.1 (Optimal Policy). For any MDP, there exists a deterministic optimal policy
π∗ : S → A (Bellman, 1952; Bertsekas et al., 2011; Feinberg, 2011; Agarwal et al., 2019).

Although there may be more than one optimal policy, we denote all the optimal policies by π∗.
All optimal policies share the same optimal value function V ∗ : S → R and optimal action-value
function Q∗ : S ×A → R and defined as follows:

V ∗(s) = V π∗
(s) = max

π
V π(s),

Q∗(s, a) = Qπ∗
(s, a) = max

π
Qπ(s, a),

for all states s ∈ S and actions a ∈ A. An example of deterministic optimal policy π∗ : S → A
can be found by maximizing over Q∗ as

π∗(s) = arg max
a∈A

Q∗(s, a).

2.1.4 Bellman Operators

It is known that the value function V π and the action-value function Qπ satisfy the following
Bellman equations (Bellman, 1957):

Qπ(s, a) = EP,π

[∞∑
t=0

γtR(st, at, st+1)
∣∣ s0 = s, a0 = a

]

= EP,π

[
R(s0, a0, s1) + γ

∞∑
t=0

γtR(st+1, at+1, st+2)
∣∣ s0 = s, a0 = a

]

= Es′∼P (·|s,a)

[
R(s, a, s′)

]
+ γEs′∼P (·|s,a),P,π

[∞∑
t=0

γtR(st+1, at+1, st+2) | s1 = s′
]

= R̄(s, a) + γEs′∼P (·|s,a)

[
V π(s′)

]
(Markov property)

(2.5)

23

Chapter 2. Reinforcement Learning

with R̄(s, a) = Es′∼P (·|s,a)

[
R(s, a, s′)

]
, and

V π(s) = EP,π

[∞∑
t=0

γtR(st, at, st+1)
∣∣ s0 = s

]

= Ea∼π(·|s)

[
EP,π

[∞∑
t=0

γtR(st, at, st+1) | s0 = s, a0 = a
]]

= Ea∼π(·|s)

[
Qπ(s, a)

]
.

(2.6)

From these equations, we define the Bellman operators.

Definition 2.1.5 (Value Function Bellman Operator). Let π be a policy. The value function
Bellman operator T π

V of the policy π is defined for any function V : S → R as(
T π

V V
)
(s) = Ea∼π(·|s)

[
R̄(s, a) + γEs′∼P (·|s,a)

[
V (s′)

]]
, ∀s ∈ S. (2.7)

Definition 2.1.6 (Action-Value Function Bellman Operator). Let π be a policy. The action-value
function Bellman operator T π

Q of the policy π is defined for any function Q : S ×A → R as

(
T π

QQ
)
(s, a) = R̄(s, a) + γEs′∼P (·|s,a)

[
Ea′∼π(·|s′)

[
Qπ(s′, a′)

]]
, ∀s, a ∈ S ×A. (2.8)

Bellman operators are γ-contracting with respect to the infinity norm l∞ (Puterman, 2014; Agarwal
et al., 2019), i.e.,

∥T π
V V − T π

V V
′∥∞ ≤ γ∥V − V ′∥∞,

∥T π
QQ− T π

QQ
′∥∞ ≤ γ∥Q−Q′∥∞.

According to the Banach fixed-point theorem, since T π
V and T π

Q are contractions, there are unique
fixed-points V and Q such that T π

V V = V and T π
QQ = Q. From equation 2.5 and equation 2.6, V π

and Qπ satisfy the fixed-point equations of Bellman operators as

T π
V V

π = V π,

T π
QQ

π = Qπ.

From Theorem 2.1.1, there always exists a deterministic optimal policy π∗. Therefore, using
equation 2.5 and equation 2.6, we can derive Bellman equations for the optimal value function V ∗

and the optimal action-value function Q∗. In particular, for all states s ∈ S and actions a ∈ A, we
have

V ∗(s) = max
a∈A

{
R̄(s, a) + γEs′∼P (·|s,a)

[
V ∗(s′)

]}
,

Q∗(s, a) = R̄(s, a) + γEs′∼P (·|s,a)
[
V ∗(s′)

]
.

From the equations above, we can derive optimal Bellman operators that can also be shown as
γ-contractions under the infinity norm l∞. These operators ensure that V ∗ and Q∗ satisfy the
fixed-point equations.

Definition 2.1.7 (Optimal Value Function Bellman Operators). The optimal value function Bell-

24

2.2. Dynamic Programming

man operator T ∗
V is defined for any function V : S → R as(
T ∗

V V
)
(s) = max

a∈A

{
R̄(s, a) + γEs′∼P (·|s,a)

[
V (s′)

]}
, ∀s ∈ S. (2.9)

Definition 2.1.8 (Optimal Action-Value Function Bellman Operator). The optimal action-value
function Bellman operator T ∗

Q is defined for any function Q : S ×A → R as

(
T ∗

QQ
)
(s, a) = R̄(s, a) + γEs′∼P (·|s,a)

[
max
a′∈A

{
Qπ(s′, a′)

}]
, ∀s, a ∈ S ×A. (2.10)

2.2 Dynamic Programming

In this section, we describe the dynamic programming (DP) approach to RL, in the case where
the transition model P : S × A → P(S) is known to the agent (Bertsekas, 2012). Furthermore,
we assume that the state and action spaces are finite. A common way to apply DP algorithms
in continuous state and action spaces is to discretize them before applying them. The use of DP
algorithms in RL is strongly limited because the transition model P : S × A → P(S) is often
unknown, and because of the great computational expense with iterations overall the state space
S. Although not commonly used in practice, DP algorithms are still theoretically important and
provide an essential foundation for understanding the methods presented in the following sections.

2.2.1 Policy Evaluation

In policy evaluation or policy prediction, the objective is to evaluate the performance of a policy
π by estimating its value function V π : S → R. Since the dynamics P : S × A → P(S) of the
environment are known, we can repetitively compute the Bellman equation to get an increasingly
accurate approximation of the value function. The initial approximation V0 is chosen arbitrarily,
and each successive approximation Vk is obtained using the Bellman operator (equation 2.7) as the
update rule. In particular, the update rule for all k ≥ 1 is given by

Vk+1(s)←
(
T π

V Vk

)
(s) =

∑
a∈A

π(a|s)
∑
s′∈S

P (s′|s, a)
(
R(s, a, s′) + γV (s′)

)
, ∀s ∈ S. (2.11)

Exploiting successively the contraction property of the Bellman operator and the fact that V π =
T π

V V
π, we can show that the sequence (Vk) converges to the value function V π. Indeed, for all

k ≥ 1, we have∥∥Vk − V π
∥∥

∞ =
∥∥T π

V Vk−1 − T π
V V

π
∥∥

∞ ≤ γ
∥∥Vk−1 − V π

∥∥
∞ ≤ γ

k
∥∥V0 − V π

∥∥
∞.

A full description of policy evaluation is provided by Algorithm 1

2.2.2 Policy Iteration

With policy evaluation, we can estimate how “good” is a policy π. In the policy iteration, starting
from a policy π, we seek to find a policy π′ that is better than π, i.e., we want to find π′ such
that π′ ≥ π as in equation 2.4. To achieve this, a popular approach is to use the following policy
improvement theorem (Sutton and Barto, 2018).

25

Chapter 2. Reinforcement Learning

Algorithm 1 Policy Evaluation (Sutton and Barto, 2018)
Input: π (the policy to be evaluated), ϵ (a small threshold determining the accuracy)
Output: Value-function V
V (s)← 0 ∀s ∈ S
∆← ϵ+ 1
while ∆ > ϵ do

for s ∈ S do
v ← V (s)
V (s)←

∑
a∈A π(a|s)

∑
s′∈S P (s′|s, a)

(
R(s, a, s′) + γV (s′)

)
∆← min

(
∆, |V (s)− v|

)
end for

end while

Theorem 2.2.1 (Policy Improvement Theorem). Let π and π′ be any pair of deterministic policies
such that, for all s ∈ S,

Qπ(s, π′(s)) ≥ V π(s).

Then, for all s ∈ S, we have
V π′

(s) ≥ V π(s).

Proof. Let s ∈ S. We have

V π(s) ≤ Qπ(s, π′(s))

= EP,π

[
R(s0, a0, s1) + γ

∞∑
t=0

γtR(st+1, at+1, st+2)
∣∣ s0 = s, a0 = π′(s)

]
= EP,π′

[
R(s0, a0, s1) + γV π(s1)

∣∣ s0 = s

]
≤ EP,π′

[
R(s0, a0, s1) + γQπ(s1, π

′(s1))
∣∣ s0 = s

]
= EP,π′

[
R(s0, a0, s1) +R(s1, a1, s2) + γV π(s2)

∣∣ s0 = s

]
...

≤ V π′
(s).

A common method for obtaining a better policy π′ is by acting greedily on the current policy π,
i.e., by selecting the best action for every state according to the current value of the action-value
function Qπ : S ×A → R, as follows

π′(s) = arg max
a∈A

Qπ(s, a) = arg max
a∈A

∑
s′∈S

P (s′|s, a)
[
R(s, a, s′) + γV (s′)

]
, ∀s ∈ S.

For the greedy policy π′, the condition of Theorem 2.2.1 is satisfied since for all states s ∈ S we
have

Qπ(s, π′(s)) = max
a∈A

Qπ(s, a) ≥ Qπ(s, π(s)) = V π(s).

26

2.2. Dynamic Programming

Algorithm 2 Policy Iteration (Sutton and Barto, 2018)
Input: ϵ (a small threshold determining the accuracy)
Output: Policy π
π(s) ∈ A arbitrarily for all s ∈ S
V (s)← 0 ∀s ∈ S
∆← ϵ+ 1
stable ← false
while not stable do

1. Policy Evaluation
while ∆ > ϵ do

for s ∈ S do
v ← V (s)
V (s)←

∑
a∈A π(a|s)

∑
s′∈S P (s′|s, a)

(
R(s, a, s′) + γV (s′)

)
∆← min

(
∆, |V (s)− v|

)
end for

end while

2. Policy Improvement
stable ← true
for s ∈ S do

old_action ← π(s)
π(s)← arg maxa∈A

∑
s′∈S P (s′|s, a)

[
R(s, a, s′) + γV (s′)

]
If old_action ̸= π(s), then stable ← false

end for
end while

Note that generating the greedy policy π from the policy π is equivalent to applying the Bellman
optimal operator to the value function V π. The greedy operation combined with policy evaluation
generates a sequence of monotonically policy improvements:

π0
E−→ V π0 I−→ π1

E−→ V π1 I−→ π2
E−→ · · · I−→ π∗ E−→ V ∗,

where E E−→ denotes a policy evaluation and I−→ denotes a policy improvement. Each policy is
guaranteed to be a strict improvement over the previous one (unless it is already optimal). This
process is called policy iteration, and its complete pseudo-code is given by Algorithm 2.

2.2.3 Value Iteration

The challenge with policy iteration is that each iteration includes a policy evaluation step and
requires multiple sweeps through the state space S. This step can be expensive and unneces-
sary since the policy evaluation can be truncated without negatively affecting the policy iteration
step (Sutton and Barto, 2018). The Value Iteration algorithm combines the policy iteration and
policy evaluation step into one step by constructing a sequence (Vk) where the initial approxima-
tion V0 is chosen arbitrarily, and each successive approximation is obtained by using the optimal
Bellman operator (equation 2.9) for Vk as an update rule. Therefore, the update rule for all k ≥ 1
is given by

Vk+1 ← T ∗
V Vk = max

a∈A

∑
s′∈S

P (s′|s, a)
(
R(s, a, s′) + γV (s′)

)
, ∀s ∈ S.

27

Chapter 2. Reinforcement Learning

Algorithm 3 Value Iteration (Sutton and Barto, 2018)
Input: π (the policy to be evaluated), ϵ (a small threshold determining the accuracy)
Output: Deterministic policy π such that

π(s) = arg max
a∈A

∑
s′∈S

P (s′|s, a)
(
R(s, a, s′) + γV (s′)

)
V (s)← 0 ∀s ∈ S
∆← ϵ+ 1
while ∆ > ϵ do

for s ∈ S do
v ← V (s)
V (s)← maxa∈A

∑
s′∈S P (s′|s, a)

(
R(s, a, s′) + γV (s′)

)
∆← min

(
∆, |V (s)− v|

)
end for

end while

Exploiting successively the fact that V ∗ = T ∗
V V

π and the contraction property of the optimal
Bellman operator, we can show the sequence (Vk) converges to the value function V ∗. Indeed, for
all k ≥ 1, we have∥∥Vk − V ∗∥∥

∞ =
∥∥T ∗

V Vk−1 − T ∗
V V

∗∥∥
∞ ≤ γ

∥∥Vk−1 − V ∗∥∥
∞ ≤ γ

k
∥∥V0 − V ∗∥∥

∞.

A pseudo-code of Value Iteration is reported in Algorithm 3.

2.3 Tabular Reinforcement Learning Algorithms

The main drawback of the DP algorithm stems from the assumption that both the transition model
P : S ×A → P(S) and the reward function R : S ×A× S → R are known. However, in most RL
problems, this information is not available making the use of these algorithms often impractical as
the Bellman operator cannot be computed explicitly and must instead be estimated.

Model-based vs model-free. Two strategies can be considered to solve an RL problem: the
model-based approach and the model-free approach. Model-based algorithms first learn a model of
the transition function P : S × A → P(S). Based on this approximation, they attempt to find
the corresponding optimal value function or the optimal policy (Moerland et al., 2023), e.g., with
dynamic programming algorithms. In contrast, model-free approaches do not require an explicit
formulation or approximation of the model and just rely on learning the optimal policy and/or
value functions from interactions with the environment.

On-policy vs off-policy. The optimal solution of an MDP can be learned using two paradigms:
on-policy and off-policy learning. On-policy methods evaluate and improve the policy used to
make decisions and generate data. In contrast, off-policy algorithms aim to evaluate and improve
a target policy that differs from the behavior policy used to interact with the environment.

In this section, we present some popular value-based algorithms that rely on estimates of value
functions to compute the optimal policy in MDPs with finite state and action spaces. Temporal
Difference (TD) learning algorithms presented in Section 2.3.1 are popular value-based algorithms

28

2.3. Tabular Reinforcement Learning Algorithms

Algorithm 4 The On-line TD(0) Learning Algorithm (Sutton and Barto, 2018)
Input: π (the policy to be evaluated), (αn)n≥0 (sequence of learning rates), T (number of steps)
Output: Value function V
V (s)← 0 ∀s ∈ S
Initialize s ∼ µ0
for each step t ∈ [T] do

Choose action a ∼ π(·|s)
Take action a, observe next state s′ and reward r = R(s, a, s′)
V (s)← V (s) + αt

(
r + γV (s′)

)
s← s′

end for

for policy evaluation, i.e., to estimate the value-function V π of a given policy π. TD learning
algorithms must be combined with a policy improvement process to compute an optimal policy.
They form the basis of widely used algorithms in practice, among which SARSA presented in
Section 2.3.2 and Q-learning introduced in Section 2.3.3.

2.3.1 Temporal Difference Learning

Temporal Difference (TD) learning algorithms (Sutton and Barto, 2018) execute the current policy
π and update the estimation of its value function V π : S → R at every interaction (see Algorithm 4).
At each timestep t, the agent, in state st, takes an action at according to its current policy π, moves
to the state st+1 and receives the reward rt+1 = R(st, at, st+1) from the environment. The update
rule of the simplest TD learning method, known as TD(0) (Sutton and Barto, 2018), is given for
all states s ∈ S by

V (s)← V (s) + 1s=st
αt

(
rt+1 + γV (st+1)− V (st)

)
, (2.12)

where αt ∈ [0, 1] is the stepsize or learning rate1, rt+1 + γV (st+1) is the TD target and δt =
rt+1 + γV (st+1) − V (st) is the TD error. This TD method is called TD(0), or one-step TD,
because it is a special case of the TD(λ) and n-step TD methods (Sutton and Barto, 2018).

Remark 7. To highlight the proximity with the update of equation 2.11, we can rewrite the update
of equation 2.12 as

V (s)←
(
1− 1s=stαt

)
V (s) + 1s=stαt

(
rt+1 + γV (st+1)

)
, ∀s ∈ S. (2.13)

In particular, if αt = 1 and the MDP is deterministic, then equation 2.13 is just the update of
equation 2.11 for the state st. Otherwise, equation 2.13 is an exponential average, and the temporal-
difference update provides an estimate of its expectation.

TD(0) is considered a bootstrapping method because it updates estimates using targets rt+1 +
γV (st+1), which are derived from current value estimates V . Indeed, from Bellman equation 2.6
and equation 2.5, we have

V π(s) = EP,π

[∞∑
t=0

γtrt+1 | s0 = s

]
(2.14)

= EP,π

[
rt+1 + γV π(st+1)

∣∣ s0 = s

]
. (2.15)

1For the sake of simplicity, we present learning rates that only depend on time. Other approaches, like depen-
dencies on states and actions, can be found in Sutton and Barto (2018)

29

Chapter 2. Reinforcement Learning

Algorithm 5 SARSA (Rummery and Niranjan, 1994)
Input: π (the policy to be evaluated), (αn)n≥0 (sequence of learning rates), T (number of steps)
Output: Action-value function Q
Q(s, a)← 0 ∀(s, a) ∈ S ×A
Initialize s ∼ µ0
Choose action a ∼ π(·|s)
for each step t ∈ [T] do

Take action a, observe next state s′ and reward r = R(s, a, s′)
Choose action a ∼ π(·|s′)
Q(s, a)← Q(s, a) + αt

(
r + γQ(s′, a′)−Q(s, a)

)
s← s′, a← a′

end for

The TD target is an estimate for both reasons: it samples the expected values in equation 2.15
and uses the current estimate V instead of the true V π. The TD(0) algorithm can be shown to
converge to V π if learning rates satisfy the Robbins-Monro conditions (Robbins and Monro, 1951):

∞∑
t=1

αt =∞
∞∑

t=1
α2

t <∞. (2.16)

TD learning algorithms can also be used to estimate the action-value function Qπ : S × A → R,
which is more convenient for policy improvement in control tasks. In the following of this section,
we review two well-known TD(0) approaches to estimate the action-value function Qπ : S×A → R
in Section 2.3.2 and the optimal action-value function Q∗ : S ×A → R in Section 2.3.3.

2.3.2 SARSA

SARSA (Rummery and Niranjan, 1994) is an on-policy TD learning algorithm that uses the TD
error to update the action-value function Qπ : S ×A → R. At each timestep t, the agent, in state
st, takes an action at according to its current policy π, moves to st+1 and receives the reward
rt+1 = R(st, at, st+1) from the environment. The update rule of SARSA for all state-action pairs
(s, a) ∈ S ×A is given by

Q(s, a)← Q(s, a) + 1{s=st,a=at}αt

(
rt+1 + γQ(st+1, at+1)−Q(st, at)

)
, ∀(s, a) ∈ S ×A, (2.17)

where at+1 ∼ π(· | st) and αt ∈ [0, 1] is the learning rate. The use of the quintuple of events
(st, at, rt+1, st+1, at+1) gives rise to the name SARSA. The convergence properties of SARSA de-
pend on the policies used. Singh et al. (2000) prove that SARSA converges to the action-value
function Qπ : S ×A → R under the assumption that the collected rewards are bounded, the agent
selects actions so as to visit every (s, a) pair infinitely often, and the sequence of learning rates
(αt)t satisfy the Robbins-Monro conditions (equation 2.16). The pseudocode of SARSA can be
found in Algorithm 5.

2.3.3 Q-Learning

The Q-learning algorithm (Watkins and Dayan, 1992) is one of the most popular RL algorithms.
It is an off-policy TD learning algorithm. At each timestep t, the agent, in state st, takes an action
at according to its current policy π, moves to st+1 and receives the reward rt+1 = R(st, at, st+1)

30

2.3. Tabular Reinforcement Learning Algorithms

Algorithm 6 Q-learning (Watkins and Dayan, 1992)
Input: (αn)n≥0 (sequence of learning rates), T (number of steps)
Output: Q (estimation of the optimal action-value function Q∗)
Q(s, a)← 0 ∀(s, a) ∈ S ×A
Initialize s ∼ µ0
for each step t ∈ [T] do

With probability ϵ select a random action a otherwise select a = arg maxa′∈A Q(s, a′)
Take action a, observe next state s′ and reward r = R(s, a, s′)
Q(s, a)← Q(s, a) + αt

(
r + γmaxa′∈A Q(s′, a′)−Q(s, a)

)
s← s′

end for

from the environment. The update rule for all state-action pairs (s, a) ∈ S ×A is given by

Q(s, a) = Q(s, a) + 1{s=st,a=at}αt

(
rt+1 + γmax

a′∈A
Q(st+1, a

′)−Q(st, at)
)
, ∀s, a ∈ S ×A,

where αt ∈ [0, 1] is the learning rate. Since the Q-learning update rule does not consider the policy
used to collect rewards, the algorithm is off-policy. The difference with SARSA lies in the fact that
the Q-learning algorithm approximates the optimal action-value function Q∗ : S ×A → R at each
iteration with a sample version of the optimal Belman operator. Watkins and Dayan (1992) prove
that the Q-learning algorithm converges to the optimal action-value function Q∗ : S × A → R,
under the assumption that the collected rewards are bounded, the agent selects actions so as to visit
every (s, a) pair infinitely often, and the learning rates (αt)t satisfy the Robbins-Monro conditions
(equation 2.16). The success of this algorithm is mainly due to its simplicity. The pseudocode of
Q-Learning is presented in Algorithm 6.

31

Chapter 3

Function Approximation in
Value-Based Algorithms

In the previous chapter, we assumed that the state space S and action space A were finite. This
assumption enabled the use of lookup tables to represent value functions and policies, in which a
unique distinct value is assigned for each state or state-action pair. While this approach has strong
theoretical foundations and is effective in MDPs with finite spaces, it encounters significant limi-
tations in real-world scenarios that often involve large or infinite state and action spaces. Indeed,
the amount of memory required to store the lookup table and the number of samples required to
learn an optimal policy increase exponentially with the dimensions of the problem. This challenge
is commonly called the “curse of dimensionality”. One solution is to use function approximation
methods within RL algorithms to approximate the value functions or policies. Typically, the num-
ber of parameters is significantly lower than the number of states, and the variation of a single
parameter affects the estimated values of many states. Such generalization makes the learning
potentially more powerful but challenging to manage and understand.

In this chapter, we discuss function approximation methods for value-based algorithms, which are
used to approximate value functions. In Section 3.1, we introduce the concept of the Markov Re-
ward Process, which is the mathematical framework considered in value function approximation
for describing the behavior of the agent in its environment. In Section 3.2, we present different
objective functions that value-based algorithms consider to approximate value functions. In Sec-
tion 3.3, we present a linear function approximation approach considering stochastic gradient-based
approaches to approximate value functions. In Section 3.4, we explore how value-based algorithms
can be extended to neural networks through the example of the Deep Q-Network (DQN) algorithm.

3.1 Markov Reward Processes

In value function approximation, the behavior of a fixed policy π within an MDP is often described
by a Markov Reward Process (MRP).

Definition 3.1.1 (Markov Reward Process). For a given policy π in a MDP (S,A, P,R, µ0), the
corresponding Markov Reward Process is defined by the tuple (S, Pπ, Rπ, µ0) where:

32

3.2. Objective Functions

• S is the state space of the MDP, which is measurable and may be finite or infinite;

• Pπ : S → P(S) is the transition function (stochastic kernel) that captures the behavior of the
policy π in the environment. With Pπ(s′|s), we indicate the probability of moving to state
s′ ∈ S from state s ∈ S after choosing an action a from π(·|s) where

Pπ(s′|s) = Ea∼π(·|s)
[
P
(
s′|s, a

)]
;

• Rπ : S × S → R is a bounded reward function. Rπ(s, s′) depicts the immediate reward
obtained when the agent in state s moves to the state s′. It is defined as

Rπ(s, s′) = Ea∼π(·|s)
[
P
(
s′|s, a

)
R(s, a, s′)

]
;

• µ0 ∈ P(S) is the initial state distribution of the MDP.

The value function V π : S → R of a given MRP (S, Pπ, Rπ, µ0) is the value function V π defined
in equation 2.2 as

V π(s) = EP π

[∞∑
t=0

γtRπ(st, st+1)
∣∣ s0 = s

]
∀s ∈ S.

In this chapter, we focus on value-based algorithms that approximate the value function V π : S →
R of a given MRP (S, Pπ, Rπ, µ0) with a parameterized function Vθ : S → R of parameters θ. In
the following section, we present different objective functions that can be considered to estimate
V π : S → R. It is important to note that this approach can also be extended to approximate the
action-value function Qπ : S ×A → R.

3.2 Objective Functions

In value function approximation, the objective is to find parameters θ that yield a value function
Vθ : S → R as close as possible to the value function V π : S → R. Since the number of parameters
is typically significantly lower than the number of states, making the approximation Vθ(s) more
accurate for one specific state s ∈ S invariably means making the estimates for other states less
accurate. Therefore, it is necessary to include a state distribution µ within the objective functions
to determine which states should be prioritized by the value function approximation. Usually, we
consider the stationary distribution µπ of the MRP (S, Pπ, Rπ, µ0), which naturally weights states
according to their long-term occupancy probabilities under the policy π.

Mean-Squared Value Error. Since we are interested in estimating parameters θ that yield a
value function Vθ : S → R as close as possible to the true value function V π : S → R, a natual
objective function is the Mean-Squared Value error (MSVE), defined as

MSVE(θ) = Es∼µπ

[(
V π(s)− Vθ(s)

)2
]
. (3.1)

In supervised learning problems, we typically have access to predictions of the target function,
which is not the case in RL, where we only have access to rewards collected by the agent. Although

33

Chapter 3. Function Approximation in Value-Based Algorithms

the value function V π : S → R can be estimated using Monte-Carlo (MC) estimates, this approach
requires a large number of samples and often results in high variance. The high variance of MC
estimates makes their use in the MSVE objective function inefficient in practical applications.

Mean-Squared Bellman Error. The solution is to consider a new objective function, in which
the value function V π can be approximated with fewer samples and more efficiently than with MC
estimates. A solution is to use bootstrapping (Sutton, 1988), where V π : S → R is approximated
with a one-step TD target using the approximated value-function Vθ. This new objective function
called the Mean-Squared Bellman error (MSBE) is defined as

MSBE(θ) = Es∼µπ

[(
T π

V Vθ(s)− Vθ(s)
)2
]
, (3.2)

where the Bellman operator T π
V is defined for any function V : S → R as in equation 2.7 as(
T π

V V
)
(s) = R̄π(s) + γEs′∼P π(·|s)

[
V (s′)

]
, (3.3)

with R̄π(s) = Es′∼P π(·|s)
[
Rπ(s, s′)

]
for all states s ∈ S. While the MSVE directly compares the

approximated value function Vθ : S → R with value function V π : S → R, the MSBE leverages
the Bellman equation to quantify how closely Vθ approaches its unique-fixed point solution V π.

Mean-Squared Projected Bellman Error. In the MSBE, the result T π
V Vθ(s) may not belong

to the space of functions V represented by parameterized functions. Therefore, the minimum of the
MSBE may not be solved with function approximation. To address this issue, the Mean-Squared
Projected Bellman Error (MSPBE) propose computing the squared distance between Vθ : S → R
and the closest function of T π

V Vθ that does lie in V. This is formalized as

MSPBE(θ) = Es∼µπ

[(
ΠT π

V Vθ(s)− Vθ(s)
)2
]
, (3.4)

where Π is a projection operator defined as

Πf = min
fθ∈V

Es∼µπ

[
fθ(s)− f(s)

]
(3.5)

which projects arbitrary functions f onto the space of representable functions V. Finding θ∗ =
arg minθ MSPBE(θ) can be solved indirectly by solving the following nested optimization prob-
lem, which includes minimizing the projection error and the fixed-point error (Antos et al., 2008;
Farahmand et al., 2008)

u∗ = arg min
u

Es∼µπ

[(
ΠT π

V Vθ∗(s)− Vu(s)
)2
]

(projection error) (3.6)

θ∗ = arg min
θ

Es∼µπ

[(
Vu∗(s)− Vθ(s)

)2
]

(fixed-point error). (3.7)

In the projection error, we approximate the Bellman operator applied to the value function Vθ∗

with Vu. In the fixed-point problem, we reduce the distance between both parameter estimates u∗

and θ∗. Many RL algorithms solve this problem by alternating between improving the operator
and fixed-point error (Dann et al., 2014). The MSPBE is easier to optimize but loses the direct
connection to the original MSVE with the projection operator.

34

3.3. Linear Value Function Approximation using Gradient Based Approach

3.3 Linear Value Function Approximation using Gradient
Based Approach

One of the simplest method used for function approximation is linear function approximation.
In linear value function approximation, the value function V π : S → R is approximated by a
parameterized function Vθ : S → R defined for all states s ∈ S as

Vθ(s) = σ(s)T θ =
N∑

i=1
θiσi(s), (3.8)

where θ ∈ RN is the parameter vector and σ(s) denotes the features of the state s. The feature
map σ : S → RN reduces the number of parameters from |S| to N with N ≪ |S|, but comes
at the price of less precision. The choice of the feature representation σ : S → RN is always a
trade-off between compactness and expressiveness to get Vθ(s) ≈ V (s) for all states s ∈ S. While
the feature map σ(·) is fixed during the training, the parameter vector θ is adjusted during the
learning process to get Vθ ≈ V π. Features

{
σi(·)

}N

i=1 determine the space of functions V that
can be represented by linear function approximation, whereas the parameter vector θ defines the
function Vθ ∈ V. The problem of learning a function approximator from a static training set of
i.i.d. input/output samples over which multiple passes are made has been extensively studied in
supervised learning. However, the problem is more complex in RL, making most of the function
approximation algorithms developed in supervised learning ineffective. This complexity arises from
the online learning process, wherein the agent interacts with its environment without having direct
access to predictions of the target V π. To consider the online learning process, several approaches
rely on the use of stochastic gradient descent (SGD) to minimize their objective function.

Stochastic Gradient Descent. In function approximation considering parameterized func-
tions, stochastic gradient descent (SGD) is commonly used on loss functions of the form L(θ) =
Ex∼p[l(x; θ)], for which the distribution p is independent of θ. In standard gradient descent, the
parameter update is given by

θt+1 ← θt − αt∇L(θt) = θt − αt∇Ex∼p[l(x; θt)]. (3.9)

where αk denotes the learning rate at timestep t. In standard gradient descent, the gradient is
calculated with the expectative value of l(x; θt), whereas stochastic gradient descent evaluates the
gradient using just one sample xt as follows

θt+1 ← θt − αt∇l(xt; θt) with xt ∼ p.

Parameters (θt)t updated with the stochastic gradient update rule are guaranteed to converge to
a local minimum θ∗ of L(θ) for learning rates (αt)t satisfying the Robbins-Monro conditions given
by equation 2.16 (Robbins and Monro, 1951).

Linear Value Function Approximation with SGD. The SGD update rule can be used for
finding parameters θ in linear value function approximation to minimize the Mean-Squared Value
Error (equation 3.1) where

θt+1 ← θt − αt∇
(
V π(st)− Vθt(st)

)2 = θt + 2αt

(
V π(st)− θT σ(st)

)
σ(st). (3.10)

35

Chapter 3. Function Approximation in Value-Based Algorithms

If V π(st) is replaced by an unbiased estimate Tt for which E
[
Tt|st = s

]
= V π(st), then θt is

guaranteed to converge to a local optimum under the Robbins-Monro conditions (equation 2.16).
An example of unbiased estimates is the Monte-Carlo estimates.

Semi-Gradient TD Learning Algorithms. In the popular linear TD(0) algorithm proposed
by Sutton and Barto (2018), the target V π(st) in equation 3.10 is replaced by its TD target
T π

V Vθt(st) as

θt+1 ← θt + 2αt

(
T π

V Vθt
(st)− Vθt

(st)
)
∇Vθt

(st) = θt + 2αt

(
T π

V θT σ(st)− θT σ(st)
)
σ(st). (3.11)

As highlighted by Barnard (1993), bootstrapping methods are not considered as true gradient
descent algorithms as they only take into account the effect of changing the weight vector θt on
the standard estimate part, without considering its change on the target. Furthermore, the target
T π

V Vθt(·) is not fixed and changes over time. Because bootstrapping methods only include a part
of the gradient, they are classified as semi-gradient methods. In practice, we prefer using for the
unbiased TD targets as

θt+1 ← θt + 2αtδt∇Vθt
(st) = θt + 2αt

(
rt+1 + γθT σ(st+1)− θT σ(st)

)
σ(st), (3.12)

where δt = rt+1 + γVθt(st+1)− Vθt(st) is the TD error. This update rule can also be extended to
TD(λ) or n-step TD methods (Sutton and Barto, 2018). It has been shown that semi-gradient linear
TD learning algorithms are guaranteed to converge to the unique fixed-point solution of the Mean-
Squared Projected Bellman error (equation 3.4) in the on-policy setting for ergodic MRPs (Tsitsiklis
and Van Roy, 1996; Sutton, 1988). If the value function is estimated in the off-policy setting, the
convergence towards θ∗ is not guaranteed anymore, and we can easily find examples for which TD
learning algorithms diverge (Baird, 1995).

Remark 8. We can observe that the update rule of the semi-gradient linear TD(0) given by
equation 3.12 is similar to the update rule of equation 2.12 for the tabular TD(0).

Remark 9. In contrast to semi-gradient algorithms, the residual-gradient (RG) algorithm (Baird,
1995) takes into account the function approximator in the target when computing the gradient of
the learning. In particular, RG algorithms aim to minimize the Mean-Squared Bellman using the
following stochastic gradient update

θt+1 ← θt + 2αt

(
rt+1 + γθT σ(st+1)− θT σ(st)

)
(σ(st)− γσ(st+1)). (3.13)

However, the RG algorithm suffers from the double-sampling problem and does not converge to the
same solution than semi-gradient linear TD learning algorithms.

3.4 Deep Q-Network

In recent years, the use of artificial neural networks in deep learning has led to breakthroughs due
to their ability to learn features from raw data without prior knowledge. Interest in RL exploded in
the wake of the results from Mnih et al. (2015), who demonstrated that neural networks could learn
to play a collection of Atari games using screen images as input. Since then, RL algorithms using
neural networks, i.e., deep RL algorithms have shown impressive performance in many domains,

36

3.4. Deep Q-Network

Algorithm 7 DQN (Mnih et al., 2015)
Input: N (capacity of the buffer), T (number of steps), U (number of steps required to update

the target network), ϵ
Output: Q̂ (estimation of the optimal action-value function Q∗)

Initialize replay buffer B to capacity N
Initialize weights Θ of DQN with random weights
Initialize the weights of the target network as Θ← Θ
Initialize s ∼ µ0
for each step t ∈ [T] do

With probability ϵ select a random action a otherwise select a = arg maxa′∈A Q̂(s, a′; Θ)
Take action a, observe next state s′ and reward r = R(s, a, s′)
Store transition (s, a, r, s′) in B
Sample random minibatch of transitions

{
(si, ai, ri, s

′
i)
}B

i=1 from B
for each transition (si, ai, ri, s

′
i) in B do

Set yi = ri + γmaxa′∈A Q̂(s′
i, a

′; Θ)
Perform a stochastic gradient descent step on 1

2
(
yi − Q̂(si, ai; Θ)

)2

Update the weights of the target network Θ← Θ every U steps
end for
s← s′

end for

including robotics and natural language (Schulman et al., 2017; Haarnoja et al., 2018; Lillicrap
et al., 2015).

In this section, we present the use of neural networks in RL through the Deep Q-Network (DQN)
algorithm (Mnih et al., 2015), studied in Part III with the use of preprocessings based on Fourier
series. The DQN algorithm is the neural network version of the Q-Learning algorithm presented
in Section 2.3.3. Like its tabular version, the DQN algorithm aims to approximate the optimal Q-
value function Q∗ : S×A → R of a given MDP (S,A, P,R, µ0) with a neural network approximator
Q̂Θ : S ×A → R of parameters Θ. At each timestep t, the agent, in state st, selects an ϵ-greedily
action at with respect to the action values Q̂Θ(st, ·). The environment sends it back a new state
st+1 and a reward rt+1 = R(st, at, st+1). The agent stores the transition (st, at, rt+1, st+1) to a
replay memory buffer, which stores the last transitions collected by the agent. The parameters Θ
of the neural network are optimized by performing stochastic semi-gradient steps on a batch of
transitions (st, at, rt+1, st+1) drawn from the replay buffer on the loss

l(st, at, rt+1, st+1) = 1
2
(
rt+1 + γmax

a′∈A
Q̂Θ(st+1, a

′)− Q̂Θ(st, at)
)2
,

where Θ represents the parameters of a target network.

Parameters Θ of the target network are updated to Θ every U iterations. The target network is
a duplicate of the neural network but is updated less frequently to provide a stable set of fixed
target values for training. In particular, its use stabilizes the learning process by preventing the
learning process from becoming unstable due to constantly shifting targets.

The use of a replay buffer (Lin, 1992) is motivated by the fact that the learning is online with
the collection of transitions that are not i.i.d. Updating parameters Θ with a batch of transitions
randomly drawn from the replay buffer helps in breaking correlations between transitions and
leads to more stable training. Furthermore, the use of a replay buffer can prevent feedback loops
and oscillations as the current parameters Θ determine the behavior of the agent, which in turn

37

Chapter 3. Function Approximation in Value-Based Algorithms

determines the next transitions that are visited and used for optimization. For example, in online
learning, if an agent learns to prefer using certain actions, it may collect more data derived from
those actions, become biased, reinforce its preference for those actions, and could get stuck in a
poor local minimum or even diverge catastrophically. By using experience replay, the behavior
distribution is averaged over many previous transitions and prevents such behavior. The use of
a replay buffer also makes DQN more data efficient as the same transitions can be used multiple
times. The optimization in DQN is performed using RMSprop. A pseudocode version of DQN
is presented in Algorithm 7. As a TD learning algorithm using function approximation, DQN
aims to minimize the Mean-Squared Projected Bellman error for the optimal action-value function
Q∗ : S ×A → R. Variants and improvements of DQN can be found in Hessel et al. (2018).

38

Chapter 4

Least-Squares Temporal Difference
Learning

Rather than considering a gradient-based approach, the Least-Squares Temporal Difference Learn-
ing (LSTD) (Bradtke and Barto, 1996) algorithm is a linear TD learning method that analytically
solves an empirical version of the projection error (equation 3.6) and of the fixed-point error (equa-
tion 3.7).

Section 4.1 introduces the LSTD algorithm and its analytical solution. Section 4.2 presents the
historical motivation behind LSTD by viewing it as a derivation of the linear least-squares ap-
proximation on R̄π : S → R, s 7→ Es′∼P π(·|s)[Rπ(s, s′)]. In Section 4.3, we study the convergence
of LSTD and its connection with TD learning methods using a gradient-based approach. Sec-
tion 4.4 introduces an iterative version of LSTD and a model-based interpretation. In Section 4.5,
we review some popular regularized variants of LSTD, including the regularized LSTD studied in
Part II.

4.1 Definition

As described in Chapter 3, we formalize the behavior of the agent in its environment using a Markov
Reward Process (MRP) (S, Pπ, Rπ, µ0). The dynamics Pπ : S → P(S) are typically unknown in
RL problems. Instead, we assume we have access to a dataset of n transitions consisting of
states, rewards, and next-states drawn from a MRP, i.e., we have Dtrain :=

{
(si, ri, s

′
i)
}n

i=1 where
s′

i ∼ Pπ(si) and ri = Rπ(si, s
′
i). From the dataset Dtrain :=

{
(si, ri, s

′
i)
}n

i=1, we define the sample
matrices

Xn = [s1, . . . , sn] ∈ Rd×n, r = [r1, . . . , rn]T ∈ Rn, X ′
n = [s′

1, . . . , s
′
n] ∈ Rd×n. (4.1)

Considering the feature map σ : S → RN of a linear parameterized model of parameters θ (as
defined in equation 3.8), we define the following features matrices

ΣXn
= [σ(s1), . . . ,σ(sn)] ∈ RN×n, ΣX′

n
= [σ(s′

1), . . . ,σ(s′
n)] ∈ RN×n. (4.2)

39

Chapter 4. Least-Squares Temporal Difference Learning

LSTD solves an empirical version of equation 3.6 and equation 3.7 (Hoffman et al., 2011) defined
as follows:

ûn = arg min
un∈RN

∥r + γΣT
X′

n
θ̂n −ΣT

Xn
un∥2 (projection error) (4.3)

θ̂n = arg min
θn∈RN

∥ΣT
Xn

ûn −ΣT
Xn

θn∥2 (fixed-point error). (4.4)

LSTD solves the fixed-point of the linear system approximation given by equation 4.3 and equa-
tion 4.4 and gives

θ̂n =
[
ΣXn

[
ΣXn − γΣX′

n

]T]−1
ΣXnr, (4.5)

with the assumption that the matrix An = ΣXn

[
ΣXn − γΣX′

n

]T is non-singular.

4.2 LSTD as a Linear Least-Squares Approximation on R̄π

Before showing that LSTD can be viewed as a linear least-squares approximation on R̄π : S →
R, s 7→ Es′∼P π(·|s)

[
Rπ(s, s′)

]
with an input noise in Section 4.2.2, we will provide first the basics

of least-squares function approximations and instrumental variables in Section 4.2.1.

4.2.1 Linear Least-Square Function Approximation & Instrumental Vari-
ables.

Least-Square Approximation. The objective in linear least-squares function approximation
is to linearly approximate a target function f : Rd → R using n samples of observed inputs
{xi ∈ Rd}n

i=1 and their corresponding observed predictions {yi ∈ R}n
i=1. Assuming that the

targets {yi ∈ R}n
i=1 are generated by a linear function f and corrupted with noise, we have the

following for all i ∈ [N]
yi = f(xi) + ϵi = xT

i θ∗ + ϵi, (4.6)

where θ∗ ∈ Rd is the unknown vector of parameters defining f : Rd → R and ϵi is the output
observation noise associated to the sample i. Least-squares approximations analytically minimize
the quadratic objective function J(θ) defined as

J(θ) = 1
n

n∑
i=1

(yi − xT
i θ)2.

Taking the partial derivative of J(θ) with respect to θ, setting this equal to zero and solving for
θ gives

θ̂n = 1
n

[
1
n

n∑
i=1

xix
T
i

]−1 n∑
i=1

xiyi. (4.7)

If the correlation matrix 1
n

∑n
i=1 xix

T
i is nonsingular and finite and the output observation noise

ϵi is uncorrelated with the input observations xi, then θ̂n converges with probability 1 to θ∗ as
n→∞ (Young, 2012).

Least-Square Approximation with Input Noise. Instead of being able to directly observe
xi like in equation 4.6, we assume we only observe noisy samples x̂i = xi + ηi, where ηi is the

40

4.2. LSTD as a Linear Least-Squares Approximation on R̄π

input observation noise vector for the sample i. In such a setting, we have

yi = f(xi) + ϵ = f(x̂i − ηi) + ϵ = xT
i θ∗ − ηT

i θ∗ + ϵi,

for all i ∈ [n]. Substituting x̂i directly with xi in equation 4.7 introduces noise and a bias, with the
consequence that θ̂n no longer converges to θ∗. One way to overcome this problem is by introducing
instrumental variables (Young, 2012). An instrumental variable zi is a vector correlated with the
true input vectors xi but uncorrelated with the observation noise ηi. A modification of equation 4.7
that uses the instrumental variables and the noisy inputs is given by

θ̂n = 1
n

[
1
n

n∑
i=1

zix̂
T
i

]−1 n∑
i=1

ziyi. (4.8)

If the correlation matrix 1
n

∑n
i=1 zix̂

T
i is nonsingular and finite and if the true input vector xi

and the output observation noise ϵi are uncorrelated with the instrumental variable zi, then the
solution θ̂n defined in equation 4.8 converges with probability 1 to θ∗ as n→∞ (Young, 2012).

4.2.2 LSTD as a Least-Squares Approximation on R̄π

In this section, we assume the existence of a parameter vector θ∗ ∈ RN such that, for all states
s ∈ S, we have

V π(s) = σ(s)T θ∗,

for the feature map σ : S → RN . We recall that V π is the unique-fixed point of the Bellman
operator T π

V (equation 4.9). For all states s ∈ S, we have

V π(s) =
(
T π

V V
π
)
(s) = R̄π(s) + γEs′∼P π(·|s)

[
V π(s′)

]
. (4.9)

From above, R̄π : S → R can be linearly approximated with θ∗ since

R̄π(s) = V π(s)− γEs′∼P π(·|s)
[
V π(s′)

]
= Es′∼P π(·|s)

[
[σ(s)− γσ(s′)]T

]
θ∗.

The objective is to find the parameter vector θ∗ ∈ RN that linearly approximates both R̄π : S → R
and V π : S → R, using least-squares methods presented in the previous section with the transitions
collected in Dtrain :=

{
(si, ri, s

′
i)
}n

i=1. For every transition i ∈ [n] in Dtrain, we have

ri = Es′∼P π(·|si)
[

[σ(si)− γσ(s′)]T
]
θ∗ +

(
ri − R̄π(si)

)
= xT

i θ∗ + ϵi,

where ϵi = ri− R̄π(si) is the observed output noise and xi = Es′∼P π(·|si)
[

[σ(si)−γσ(s′)]T
]

is an
input vector observed for the transition i. The noise term ϵi has a zero mean and is uncorrelated
with the input vector xi (Bradtke and Barto, 1996). If the transition function Pπ : S → P(S)
and the state space S are known, we obtain a similar expression than in equation 4.6. Therefore,
if 1

n

∑n
i=1 xix

T
i is nonsingular and finite, then the least-square solution θ̂n given by equation 4.7

converges with probability 1 to θ∗ as n→∞. However, Pπ : S → P(S) and the state space S are
typically unknown in RL. By exploiting the next states {s′

i}n
i=1 stored in Dtrain, we can observe

that for each transition i ∈ [n] in Dtrain, we have

x̂i = σ(si)− γσ(s′
i)

41

Chapter 4. Least-Squares Temporal Difference Learning

= Es′∼P π(·|si)
[

[σ(si)− γσ(s′)]T
]

+ γEs′∼P π(·|si)
[

[σ(s′
i)− σ(s′)]T

]
= xi + ηi,

for which ηi = γEs′∼P π(·|si)
[

[σ(s′
i) − σ(s′)]T

]
is an input observed noise. We find a similar

expression than in equation 4.8 since

ri = Es′∼P π(·|si)
[

[σ(si)− γσ(s′)]T
]
θ∗ +

(
ri − R̄π(si)

)
= xT

i θ∗ + ϵi

= x̂T
i θ∗ − ηT

i θ∗ + ϵi.

By observing that for each transition i, the variable zi = σ(si) is uncorrelated with the input noise
ηi and the output noise ϵi, we can use zi as an instrumental variable and consider the least-squares
approximation approach with input noise to solve the problem. In particular, from equation 4.8,
if 1

n

∑n
i=1 zix̂

T
i is nonsingular and finite, we find the solution

θ̂n = 1
n

[
1
n

n∑
i=1

zix̂
T
i

]−1 n∑
i=1

ziri

= 1
n

[
1
n

n∑
i=1

σ(si)
(
σ(si)− γσ(s′

i)
)T
]−1 n∑

i=1
σ(si)ri

= 1
n

[
1
n ΣXn

[
ΣXn

− γΣX′
n

]T]−1
ΣXn

r.

This solution corresponds to the solution returned by LSTD in equation 4.5. Analytically solving
equation 4.3 and equation 4.4 is thus equivalent to a least-squares problem on R̄π : S → R with
noisy observed inputs {x̂i}n

i=1 and outputs {r̂i}n
i=1.

4.3 Convergence of LSTD

In this section, without loss of generality, we consider finite MRPs in which the state space S
is finite, i.e., in which |S| < ∞. The state space S can be thus described by the state matrix
S ∈ Rd×|S|, where each column of S denoted by Si represents a state in S. Furthermore, the
transition probability matrix associated with the stochastic kernel Pπ is denoted by P π ∈ R|S|×|S|.

Lemma 4.3.1 (Convergence LSTD (Bradtke and Barto, 1996; Nedić and Bertsekas, 2003)). If
(1) each state s ∈ S is visited infinitely often; (2) if each state s ∈ S is visited in the long
run with probability 1 in proportion µ(s); and (3) if ΣSDµ

[
I|S| − γP

]
ΣT

S is invertible, for ΣS =[
σ(S1), · · · ,σ(S|S|)

]
the feature matrix of the state space S and Dµ = diag(µ) the diagonal matrix

of µ ∈ R|S|, then the weight vector θ̂n returned by LSTD (equation 4.5) converges to

θ̂ =
[
ΣSDµ

[
I|S| − γP

]
ΣT

S

]−1
ΣSDµr̄π (4.10)

with probability 1, where r̄πT =
[
R̄π(S1), · · · , R̄π(S|S|)

]
.

If the considered data distribution µ is the stationary distribution µπ of P π, we are in the on-policy
setting and we find

θ̂ = θ∗,

42

4.4. Recursive LSTD

where θ∗ is the analytical solution of the MSPBE (equation 3.4) defined as

θ∗ =
[
ΣSDµπ

[
I|S| − γP

]
ΣT

S

]−1
ΣSDµπ r̄π.

When transitions are drawn from the stationary distribution µπ or are derived from sample paths
in ergodic or absorbing MRPs, the parameter vector θ̂n defined in equation 4.5 and returned by
LSTD converges to the analytical solution θ∗ of the MSPBE (Dann et al., 2014; Ciosek, 2013;
Sutton, 1988).

In the off-policy scenario, i.e, when µ ̸= µπ the situation is more complex, and the convergence
towards θ∗ no longer holds (Bertsekas and Yu, 2009; Geist et al., 2014; Dann et al., 2014). However,
by using eligibity traces and importance sampling reweighting (Glynn and Iglehart, 1989), the
convergence of θn towards θ∗ can be facilitated (Bertsekas and Yu, 2009; Geist et al., 2014; Dann
et al., 2014). Finally, as linear semi-gradient TD learning algorithms tend to converge to the
minimum of the MSPBE under the Robbins-Monro conditions, they converge to the same solution
as the one returned by LSTD (Tsitsiklis and Van Roy, 1996; Dann et al., 2014; Sutton and Barto,
2018).

4.4 Recursive LSTD

The LSTD solution of equation 4.5 explicitely estimates the matrices

Ân =
n∑

i=1
σ(si)

(
σ(si)− γσ(s′

i)
)T and b̂n =

n∑
i=1

σ(si)ri

and then computes θ̂n = Â−1
n b̂n. Estimating θ̂n requires thus to invert the matrix Ân of dimension

N ×N . LSTD is more expensive in computation and memory with a complexity O(n3) than semi-
gradient TD learning algorithms with a complexity O(n). A solution to reduce the complexity
to O(n) is to compute and update iteratively Ân and b̂n (Bradtke and Barto, 1996). Estimates
Ân+1, b̂n+1 can be computed iteratively using the (n+ 1)th transition (sn+1, rn+1, s

′
n+1) as

Ân+1 = Ân + σ(sn+1)
(
σ(sn+1)− γσ(s′

n+1)
)T

b̂n+1 = b̂n + σ(sn+1)rn+1.
(4.11)

The iterative computation of Â−1
n is obtained with the Sherman-Morrison formula as

Â−1
n+1 =

[
Ân + σ(sn+1)

(
σ(sn+1)− γσ(s′

n+1)
)T]−1

= Â−1
n −

Â−1
n σ(sn+1)

(
σ(sn+1)−γσ(s′

n+1)
)T

Â−1
n

1+
(

σ(sn+1)−γσ(s′
n+1)

)T
Â−1

n σ(sn+1)
.

The sequence (A−1
n)n needs to be initialized with a hand-designed element Â−1

0 that incorporates
some prior knowledge. Ideally, Â−1

0 should be the null-matrix. In practice, a popular choice is
Â−1

0 = 1
λ IN for λ > 0. Recursive LSTD does not require a learning rate for gradient descent

but requires a parameter λ for initialization. If λ is set too high, the sequence of inverses can
vary wildly. On the other hand, if λ is set too low, then learning slows down. As discussed in
the following section, the parameter λ acts as a regularizer. From Nedić and Bertsekas (2003), as

43

Chapter 4. Least-Squares Temporal Difference Learning

Algorithm 8 The On-line Recursive LSTD Algorithm
Input: π (the policy to be evaluated), T (number of steps), σ : S → RN (feature representation),
ϵ

Output: Parameter vector θ̂n

Â−1 ← 1
λ IN

b̂← 0
Initialize s ∼ µ0
for each step t ∈ [T] do

Choose action a ∼ π(·|s)
Take action a, observe next state s′ and reward r = R(s, a, s′)
v ← Â−1T

(
σ(s)− γσ(s′)

)
Â−1 ← Â−1−Â−1σ(s)vT

1+vT σ(s)

b̂← b̂ + rσ(s)
θ̂ ← Â−1b̂
s← s′

end for

n→∞ we have

Ân → A and b̂n → b,

where A = ΣSDµ

[
I|S| − γP

]
ΣT

S and b = ΣSDµr̄π define the solution θ∗ in equation 4.10. The
pseudocode of online recursive LSTD is presented in Algorithm 8.

From the iterative equation 4.11, we can also provide a model-based interpretation of LSTD (Boyan,
1999), since the matrix Ân contains an empirical model of the transition probabilities. Indeed, we
can rewrite Ân and b̂n as

Ân = ΣS
[
Ĉn − γN̂n

]
ΣT

S and b̂n = ΣSĈn
ˆ̄r;

where Ĉn is a diagonal matrix containing the state visit counts of each state state s ∈ S in the
dataset Dtrain :=

{
(si, ri, s

′
i)
}n

i=1; elements
[
N̂n

]
ij

of matrix N̂n contain the number of times
a transition from state Si to state Sj has been observed in Dtrain; and ˆ̄ri denotes the average
observed reward when being in state Si for all in i ∈ [|S|]. Using those notations, we can rewrite
equation 4.5 for θ̂n as

θ̂n =
[
ΣSĈn[I|S| − γP̂n]ΣT

S
]−1ΣSĈn

ˆ̄r.

Note that if the diagonal matrix Ĉn is invertible, then we can define the matrix P̂n = Ĉ−1
n N̂n and

show that P̂n is a transition probability matrix. As n → ∞, we have P̂n → P and 1
n Ĉn → Dµ.

P̂n and Ĉn can be thus interpreted as approximations of P and Dµ.

4.5 Regularized LSTD

Value function approximation faces several challenges in high-dimensional feature space when con-
sidering a large number of features N . Indeed, when the number of transitions n collected in Dtrain

is small compared to the number of features N , performance can deteriorate as explained by the
bias-variance tradeoff model described in Section 5.1. This scenario often results in overfitting,
where the model better fits the noise of outputs rather than the underlying system itself. Over-

44

4.5. Regularized LSTD

Regularization Penalities Optimization Technique

LSTD with l2 Ωp(un) ∝ ∥un∥,Ωf (θn) = 0 closed-form solution
(Bradtke and Barto, 1996)

LSTD with l2, l2 Ωp(un) ∝ ∥un∥,Ωf (θn) ∝ ∥θn∥ closed-form solution
(Hoffman et al., 2011)

LARS-TD Ωp(un) ∝ ∥un∥1,Ωf (θn) = 0 custom LARS–like solver
(Kolter and Ng, 2009)

LC-TD Ωp(un) ∝ ∥un∥1,Ωf (θn) = 0 standard LCP solvers
(Johns et al., 2010)

l1-PBR Ωp(un) = 0,Ωf (θn) ∝ ∥θn∥1 standard Lasso solvers
(Geist and Scherrer, 2011)

LSTD with l2, l1 Ωp(un) ∝ ∥un∥,Ωf (θn) ∝ ∥θn∥1 standard Lasso solvers
(Hoffman et al., 2011)

Laplacian-based reg. LSTD Ωp(un) ∝ ∥LΣSθ∥,Ωf (θn) = 0 closed-form solution
(Geist et al., 2012)

Table 4.1: Comparison of Regularization Approaches for LSTD. Ωp : RN → R and Ωf : RN →
R are the regularization terms in the nested problem formulation of LSTD (Equations 4.12
and 4.13) (Dann et al., 2014). (*) l1-PBR actually assumes a small l2 regularization on the
operator problem if the estimate of ΣSDµΣT

S is singular.

fitting typically occurs when the number of parameters exceeds the number of samples. In this
section, we will examine various regularization methods designed to prevent such overfitting.

Most regularization methods in value function approximation introduce different penalty terms into
the projection and/or to the fixed-point error equations defined in equation 3.6 and equation 3.7.
In particular, regularization penalities Ωp : RN → R and Ωf : RN → R are added as follows:

ûn = arg min
un∈RN

(
∥r + γΣT

X′
n
θ̂n −ΣT

Xn
un∥2 + Ωp(un)

)
(projection error) (4.12)

θ̂n = arg min
θn∈RN

(
∥ΣT

Xn
ûn −ΣT

Xn
θn∥2 + Ωf (θn)

)
(fixed-point error). (4.13)

Different regularization approaches are presented in Table 4.1. The simplest and most popular form
of regularization involves adding an l2 regularization penalty Ωp(un) = λ∥un∥ to the projection
error (equation 4.12) (Kolter and Ng, 2009; Hoffman et al., 2011; Chen et al., 2013). The l2-
regularization parameter λ controls the strength of regularization. With the introduction of the
l2-penality Ωp(un) = λ∥un∥ into the projection error, equation 4.12 and 4.13 still have a closed-
form solution given by

θ̂λ
n =

[
ΣXn

[
ΣXn

− γΣX′
n

]T + λIN

]−1
ΣXn

r

=
[
Ân + λIN

]−1
b̂n,

where Ân = ΣXn

[
ΣXn − γΣX′

n

]T and b̂n = ΣXnr. In previous sections, we have assumed that

45

Chapter 4. Least-Squares Temporal Difference Learning

Ân = ΣXn

[
ΣXn

− γΣX′
n

]T is invertible to compute θ̂n = Â−1
n b̂n. However, in practice, Ân may

be singular. To avoid this and instead of computing θ̂n, many practical implementations of LSTD
opt for its l2 variant and compute θ̂λ

n =
[
Ân +λIN

]−1
b̂n, by choosing λ such that it is not equal to

one of the eigenvalues of Ân, i.e., λ ̸∈ ν(Ân). For example, by initializing A0 = λIN , the recursive
LSTD (Algorithm 8) introduces an l2-regularization term Ωp(un) = λ

n∥un∥ into the prohection
error and computes θ̂λ

n instead of θ̂n. The performance of the l2-regularized LSTD is studied in
high-dimensional problems in the following Part.

46

Part II

Double Descent in Least-Squares
Temporal Difference Learning

47

Temporal Difference (TD) algorithms are widely used in Deep Reinforcement Learning (RL). Their
performance is heavily influenced by the size of the neural network. While in supervised learning,
the regime of over-parameterization and its benefits are well understood, the situation in RL is
much less clear. In this part, we present a theoretical analysis of the influence of network size and
l2-regularization on performance. We identify the ratio between the number of parameters and the
number of visited states as a crucial factor and define over-parameterization as the regime when
it is larger than one. Furthermore, we observe a double descent phenomenon, i.e., a sudden drop
in performance around the parameter/state ratio of one. Leveraging random features and the lazy
training regime, we study the regularized Least-Squared Temporal Difference (LSTD) algorithm
in an asymptotic regime, as both the number of parameters and states go to infinity, maintaining
a constant ratio. We derive deterministic limits of both the empirical, the true Mean-Squared
Bellman Error (MSBE) and the true Mean-Squared Value Error (MSVE) that feature correction
terms responsible for the double descent. Correction terms vanish when the l2-regularization is
increased or the number of unvisited states goes to zero. Numerical experiments with synthetic
and small real-world environments closely match the theoretical predictions.

Part II is organized as follows:

• In Chapter 5, we start by presenting the classical bias-variance tradeoff theory, which shows
that models with a large number of parameters and a near-zero training error tend to overfit
and perform poorly on new data. Despite this, practitioners prefer using heavily parameter-
ized models that interpolate the training data. In this chapter, we then briefly define and
review the double descent theory introduced in supervised learning to reconcile the classical
bias-variance tradeoff and modern practice. This chapter can be skipped by readers familiar
with the phenomenon of double descent.

• In Chapter 6, we propose a novel theoretical framework for studying neural value function
approximation in high-dimensional problems. In particular, we propose studying TD learn-
ing algorithms using neural networks in a novel double asymptotic regime, where both the
number of parameters and states visited go to infinity and are comparable. Within the double
asymptotic regime, we approximate TD learning algorithms using two-layer neural networks
with the regularized Least-Squared Temporal Difference (LSTD) algorithm on random fea-
tures by leveraging the lazy training regime.

• In Chapter 7, we first introduce the mathematical framework of Random Matrix Theory
and concentrations results used to study the performance of regularized LSTD in the double
asymptotic regime, and then we present our main theoretical results. In particular, we iden-
tify the resolvent of a non-symmetric positive-definite matrix that emerges as a crucial factor
in the performance analysis of regularized LSTD. We provide a deterministic equivalent of this
resolvent in the double asymptotic regime. Using the deterministic equivalent of the resolvent
and concentration results, we analyze the performance of regularized LSTD in the double
asymptotic regime with the derivation of deterministic equations for the asymptotic empiri-
cal Mean-Squared Bellman Error on the collected transitions, the asymptotic Mean-Squared
Bellman Error (MSBE), and the asymptotic Mean-Squared Value Error (MSVE). The de-
terministic forms expose correction terms that arise from the double asymptotic regime. We
show that the correction terms vanish as the l2-regularization increases or the model com-
plexity (i.e., the ratio between the number of parameters and number of states visited) goes
to infinity. We also show that the influence of the l2-regularization parameter decreases as
the model complexity increases.

48

• In Chapter 8, after reviewing kernel methods and their Mercer feature spaces, we revisit the
results of Chapter 7 in the Mercer feature space approximated by the random features. This
reformulation enables us to rewrite all the results using a similar expression and highlights
the connections that exist between the asymptotic error functions of random feature models
and the corresponding errors of a regularized kernel LSTD predicator. In particular, this
reformulation provides a better understanding of correction terms that arise from the double
asymptotic regime and highlights an implicit regularization induced by the model complexity.

• In Chapter 9, we present our experimental results and show our theory closely matches em-
pirical results for regularized LSTD on a range of both toy and small real-world environments;
where both the number of states visited m and the number of parameters N are fixed, but
for which our asymptotic predictions still gives accurate predictions. From our experiments,
we identify two distinct regimes: an under-parameterized regime where N/m < 1 and an
over-parameterized regime where N/m > 1. Each regime exhibits different behaviors in the
empirical MSBE, the true MSBE, and the MSVE. Notably, in the phase transition around
N/m = 1, we observe a double descent phenomenon similar to what has been reported in
supervised learning, with a peak in the true MSBE and MSVE around N/m = 1. For the
empirical MSBE and MSVE on the collected transitions, the phase transition is characterized
by an almost zero training error and a perfect fit with the training data. We experimentally
associate correction terms found in Chapter 7 and 8 with the double descent phenomenon.
We also show that correction terms, and therefore the double descent phenomenon, empiri-
cally vanish when the number of unvisited states goes to zero or the level of regularization
increases. Finally, we show that the discount factor has no influence on the double descent
phenomenon.

This part is mainly based on our work On Double Descent in Reinforcement Learning with LSTD
and Random Features, with Éloïse Berthier, David Filliat and Goran Frehse, accepted for publica-
tion in the International Conference on Learning Representations (ICLR), 2024.

49

Chapter 5

Introduction to the Double
Descent Phenomenon

In this chapter, we start in Section 5.1 by presenting the classical bias-variance tradeoff theory,
which guided the selection of models and the choice of the number of parameters in traditional
machine learning. This theory has been used to select models rich enough to express underlying
structure in data and simple enough to avoid fitting of noise. Yet, as shown in Section 5.2,
practitioners usually prefer using a large amount of parameters and interpolate the training data.
We then briefly define and review the double descent theory introduced in supervised learning
to bridge the gap between the traditional theory and the modern practice. Section 5.3 reviews
the different asymptotic regimes considered for theoretical studies of over-parameterized models
in supervised learning and reinforcement learning. Contributions and motivations of this part are
summarized in Section 5.4 Note that Sections 5.1, 5.2, and 5.3 can be skipped by readers familiar
with the double descent phenomenon.

5.1 Classical Bias-Variance Tradeoff

Machine Learning Problems. We assume we have a training dataset of n samples denoted by
Dtrain :=

{
(x1, y1), · · · , (xn, yn)

}
, where each xi ∈ Rd and yi ∈ R. Targets

{
yi

}n

i=1 are generated
by a function f : Rd → R such that, for all i ∈ [n], we have

yi = f(xi) + ϵi,

with the noise terms ϵi drawn from a distribution with zero mean and variance σ2. We assume the
training samples in Dtrain are drawn from a probability distribution P over Rd × R.

In machine learning problems, the objective is to learn a predictor f̂ : Rd → R to approximate the
function f : Rd → R using samples from the training dataset Dtrain. The predictor f̂ : Rd → R
can then be used to predict the output y of a new point x, i.e., unseen during the training. The
predictor f̂ is commonly chosen from some function class F , such as neural networks with certain
architectures or linear models with hand-crafted features. During the learning, the objective is to

50

5.1. Classical Bias-Variance Tradeoff

find the predictor f̂ ∈ F that minimizes the training error

L̂(f̂ ,Dtrain) = 1
n

n∑
i=1

l
(
f̂(xi), yi

)
,

where l : R× R→ R is the loss function. Typically, we choose the mean-squared loss l(f̂(x), y) =(
f̂(x) − y

)2 for regression problems or the zero-one loss l(f̂(x), y) = 1f̂(x) ̸=y for classification
problems. Ideally, we also want to find a predictor f̂ that performs well on unseen data. To
study the generalization, i.e., performance on unseen data, we typically study the test or the
generalization error defined as

L(f̂ ,Dtrain) = E(x,y)∼P

[
l
(
f̂(x), y

)]
.

Bias-Variance Decomposition. In regression problems using the Mean-Squared Error (MSE),
we can decompose the test error as

L(f̂ ,Dtrain) = E(x,y)∼P,ϵ

[(
f̂(x)− y

)2]
= E(x,y)∼P,ϵ

[
f̂(x)2]+ E(x,y)∼P,ϵ

[
y2]− 2E(x,y)∼P,ϵ

[
f̂(x)y

]
= E(x,y)∼P,ϵ

[
f̂(x)2]± E(x,y)∼P,ϵ

[
f̂(x)

]2 + E(x,y)∼P,ϵ

[
y2]± E(x,y)∼P,ϵ

[
y
]2 − 2E(x,y)∼P,ϵ

[
f̂(x)y

]
= Var

[
f̂(x)

]
+ E(x,y)∼P,ϵ

[
f̂(x)

]2 + Var
[
y
]

+ E(x,y)∼P,ϵ

[
y
]2 − 2E(x,y)∼P,ϵ

[
f̂(x)y

]
= Var

[
f̂(x)

]
+ E(x,y)∼P,ϵ

[
f̂(x)

]2 + σ2 + E(x,y)∼P,ϵ

[
f(x)

]2 − 2E(x,y)∼P,ϵ

[
f̂(x)f(x)

]
= E(x,y)∼P,ϵ

[
(f̂(x)− f(x))2]+ Var

[
f̂(x)2]+ σ2,

(5.1)

where E(x,y)∼P,ϵ

[
(f̂(x) − f(x))2] depicts the bias, i.e, the amount by which the average of our

estimate differs from the true mean; Var
[
f̂(x)

]
is the variance, i.e, the expected squared deviation

of f̂(x) around its mean; and σ2 is the irreductible error, i.e., the variance of the target around its
true mean f(x), which cannot be avoided no matter how well we estimate f(x) (unless σ = 0).
Note that a similar decomposition can be found for classification problems with the zero-one loss.

Bias-Variance Tradeoff. The bias and the variance in equation 5.1 can be controlled with the
capacity of the function class or the model complexity H. For parameterized models, the model
complexity H is directly related to the number of parameters N . Typically, the variance increases
and the bias decreases as the model complexity H increases. Indeed, complex models have more
degrees of freedom, better fit the training data, and can adapt to more complicated underlying
structures. The opposite behavior occurs when the model complexity H is decreased. To find a
predictor f̂ ∈ F that approximates the target f , the objective is to minimize the generalization
error L(f̂ ,Dtrain) by finding the “sweet spot", i.e., the model complexity H that balances the bias
and the variance. The challenge stems from the fact that the training error L̂(f̂ ,Dtrain) is not a good
estimate of the generalization error L(f̂ ,Dtrain), since it does not take into account properly the
model complexity. Figure 5.1 highlights the typical behavior of the generalization and the training
error as the model complexity H increases. The training error decreases as the model complexity
increases, i.e., we better fit the training data. However, when the model overfits and fits too much
the training data, the model captures the noise along with the underlying pattern in data. In such
a scenario, it does not generalize well, has a large generalization error, and the predictions f̂(x)

51

Chapter 5. Introduction to the Double Descent Phenomenon

Over-FittingUnder-Fitting

High Bias
Low Variance

Low Bias
High Variance

“Sweet Spot”

Model Complexity H

Er
ro

r

Generalization Error
Training Error

Figure 5.1: Classical Bias-Variance Tradeoff. As the model complexity H increases, the
generalization error exhibits a U-shaped curve with a miminum at the sweet spot, whereas the
training error is a decreasing function. The “sweet spot" is the balance between under-fitting and
over-fitting.

have a large variance. On the other hand, when the models are not complex enough, they underfit,
have a large bias, and generalize poorly. From this theory, a model with a zero training error that
overfits the training data is expected to generalize poorly. Classical thinking is thus concerned
with finding the “sweet spot” between under-fitting and over-fitting (Hastie et al., 2009).

5.2 The Double Descent Phenomenon

Modern Machine Learning Problems. Instead of finding the “sweet spot" of Figure 5.1, prac-
titioners prefer using modern machine learning methods, such as huge neural network architectures
or other non-linear predictors with very low or zero training error. With a high function capacity
H, those predictors perfectly fit the training data and perform well on unseen data. Those empir-
ical observations guided the practitioners to choose huge neural network architectures to achieve
zero training loss and interpolate the training data. Furthermore, empirical evidence indicates
that neural networks and kernel machines trained to interpolate training data obtain near-optimal
generalization results, even in the case where the training data are corrupted with high levels of
noise (Zhang et al., 2021; Belkin et al., 2018b).

The Double Descent Phenomenon. To bridge the gap between theory and practice, Belkin
et al. (2018a) reconcile the classical understanding and the modern practice within the “double
descent" phenomenon described in Figure 5.2. For “small” model complexities H, learned predic-
tors are in the under-parameterized regime and exhibit the classical U-shaped curve depicted in
Figure 5.1. When predictors fit too much the training data in the under-parameterized regime,
the generalization error increases as the model capacity H increases. However, when the model
complexity is higher than the interpolation threshold, i.e., when learned predictors perfectly fit
the training data and are in the over-parameterized regime, increasing the model complexity leads
to a decreasing generalization error. In the over-parameterized regime, the generalization error
typically goes below the test error achieved at the sweet spot of the under-parameterized regime.
A popular intuitive explanation of this phenomenon is that by considering larger function classes

52

5.3. Asymptotic Regimes

Under-Parameterized
Regime

Over-Parameterized
Regime

Interpolation
Threshold

Model Complexity H

Er
ro

r

Generalization Error
Training Error

Figure 5.2: The Double Descent Phenomenon. As the model complexity H increases, the
generalization error first shows the U-shaped curve depicted in Figure 5.1, peaking around the
interpolation threshold. The double descent phenomenon refers to the decreasing behavior of the
generalization error beyond the interpolation threshold, i.e, when predicators prefectly interpolate
training data.

F that contain more candidate predictors compatible with the training data, we are also able to
find interpolating functions that are “simpler” and are smoother to follow a form of Occam’s ra-
zor (Belkin et al., 2018a). While the double descent phenomenon has been theoretically shown in
asymptotic regimes, where neural networks are ideally approximated by linear models with random
features (Louart et al., 2018; Mei and Montanari, 2022; Belkin et al., 2020; Liao et al., 2020; Jacot
et al., 2020a;b; Canatar et al., 2021; Bach, 2024), the double descent phenomenon has also been
observed in experiments with popular neural network architectures (Belkin et al., 2018a; Nakkiran
et al., 2021). In addition to depending on the model complexity H, the double descent phenomenon
also depends on other dimensions such as the level of regularization (Mei and Montanari, 2022;
Liao et al., 2020), the number of epochs (Nakkiran et al., 2021; Stephenson and Lee, 2021), or the
data eigen-profile (Liu et al., 2021).

5.3 Asymptotic Regimes

As described in the previous section, modern machine learning problems using neural networks
typically consider huge deep architectures with thousands or even billions of parameters. To
bridge the gap between theory and practice and for mathematical convenience, a line of theoretical
works consider asymptotic regimes where the number of parameters tends to infinity. This section
reviews three related approaches to study huge neural network architectures in supervised learning
and Reinforcement Learning.

Lazy Training regime. In the lazy training regime, one considers that infinitely wide neural
networks, with appropriate scaling and initial conditions, behave like the linearization of the neural
network around its initialization (Jacot et al., 2018; Chizat et al., 2019). However, as highlighted
by Chizat et al. (2019), this behavior is not specific to neural networks and is not so much due
to over-parameterization than an implicit choice of scaling. In such a scenario, neural networks
can be modeled as linear models with random features (Rahimi and Recht, 2007). A recent line of

53

Chapter 5. Introduction to the Double Descent Phenomenon

works (Jacot et al., 2018; Du et al., 2019; Bietti and Mairal, 2019; Fan and Wang, 2020; Golikov
et al., 2022) has focused on the lazy training regime for studying the dynamics of neural networks
with the neural tangent kernels (Jacot et al., 2020b). The lazy training regime was also considered
in RL to prove the convergence of infinite-width neural TD learning algorithms towards the global
optimum of the MSBE in both finite and infinite state spaces (Cai et al., 2019; Agazzi and Lu,
2022; Liu et al., 2019a).

Mean-Field regime. Under appropriate initial conditions and scaling, the mean-field analysis
models the neural network and its induced feature representation with an empirical distribution,
which, at the infinite-width limit, corresponds to a population distribution. The evolution of such
a population distribution is characterized by a partial differential equation (PDE) known as the
continuity equation and captures Stochastic Gradient Descent (SGD) dynamics as a Wasserstein
gradient flow of the objective function (Chizat and Bach, 2018; Rotskoff and Vanden-Eijnden, 2018;
Mei et al., 2018). Although more challenging than the NTK regime, the mean-field regime is more
realistic since the weights are not restricted to staying in their initial regions (Chizat et al., 2019).
The mean-field regime was studied in RL to prove the convergence of infinite-width neural TD
learning algorithms towards the global optimum of the MSBE (Zhang et al., 2021; Agazzi and Lu,
2022).

Double Asymptotic regime. In the above regimes, the number of training samples n in Dtrain

is negligible compared to the number of parameters as it grows to infinity. However, this is
rarely the case in practice, particularly in modern machine learning problems, where we have
to deal with a massive amount of high-dimensional data. For example, the popular ImageNet
dataset (Russakovsky et al., 2015) contains typically more than n = 500, 000 image samples of
dimension p = 256 × 256 = 65, 536 in each class. Furthermore, we constantly face situations
where those dimensions are comparable. For this reason, a line of theoretical studies in supervised
learning (Louart et al., 2018; Mei and Montanari, 2022; Belkin et al., 2020; Liao et al., 2020; Jacot
et al., 2020a;b; Canatar et al., 2021; Bach, 2024) considers a double asymptotic regime (Mei and
Montanari, 2022; Louart et al., 2018; Liao et al., 2020; Belkin et al., 2020); where both the number
of parameters, the number of samples n and their dimension go to infinity while maintaining their
ratios constants. Since the number of parameters goes to infinity, the above works leverage the lazy
training assumption to approximate neural networks as linear models with N random features and
assume that N,n, p go to infinity while maintaining a constant ratio. In such a setting, the model
complexity is defined as the ratio between the number of parameters N of the linear approximation
and the number of samples n. Techniques from Random Matrix Theory or statistical physics can
be used to show that the interpolation threshold is defined for N/n = 1 and to derive a precise
description of the phase transition between under-(N/n < 1) and over-(N/n > 1) parameterization
and the double descent phenomenon. In RL, Thomas (2022) investigated off-policy linear TD
methods in the limit of large number of states and parameters on a transition matrix of rank 1
and observed a peaking behavior in the MSBE.

54

5.4. Motivations in Reinforcement Learning & Contributions

5.4 Motivations in Reinforcement Learning & Contributions

In recent years, neural networks have seen increased use in Reinforcement Learning (RL) (Mnih
et al., 2015; Schulman et al., 2017; Haarnoja et al., 2018; Espeholt et al., 2018). While they
can outperform traditional RL algorithms on challenging tasks, their theoretical understanding
remains limited. Even for supervised learning, which can be considered a special case of RL with a
discount factor equal to zero, deep neural networks are still far from being fully understood despite
significant research efforts (Arora et al., 2019; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018;
Lee et al., 2019; Bietti and Mairal, 2019; Cao et al., 2019). The difficulty is further exacerbated in
RL by a myriad of new challenges that limit the scope of these works, such as the absence of true
targets or the non-i.i.d nature of the collected samples (Kumar et al., 2020; Luo et al., 2020; Lyle
et al., 2021; Dong et al., 2020).

We decided to study theoretically the behavior of TD Learning methods in high-dimensional prob-
lems because they are widely used in practice as they are simple and efficient. In this part, we
propose to study the l2-regularized Least-squares Temporal Difference (LSTD) algorithm (Bradtke
and Barto, 1996) presented in Section 4.5, which is easier to analyze since it doesn’t use gradient
descent, and because it converges to the same solution as other TD learning algorithms (Bradtke
and Barto, 1996; Boyan, 1999; Berthier et al., 2022).

Theoretical studies of TD learning algorithms often explore high-dimensional problems in asymp-
totic regimes where the number of samples n → ∞ while the number of model parameters N
remains constant (Tsitsiklis and Van Roy, 1996; Bradtke and Barto, 1996; Nedić and Bertsekas,
2003; Sutton, 1988). When TD learning algorithms are applied to neural networks, it is commonly
assumed that the number of parameters N →∞ with either a fixed or infinite number of samples
without providing details on the relative magnitudes of those dimensions (Cai et al., 2019; Agazzi
and Lu, 2022; Berthier et al., 2022; Xiao et al., 2021). Inspired by advancements in supervised
learning (Louart et al., 2018; Liao et al., 2020), we apply Random Matrix tools and propose a
novel double asymptotic regime where the number of parameters N and the number of distinct
visited states m go to infinity, maintaining a constant ratio N/m, called model complexity. We
use a linear model and nonlinear random features (RF) (Rahimi and Recht, 2007) to approximate
an overparameterized single-hidden-layer network in the lazy training regime (Chizat et al., 2019).
The results of our theoretical and empirical analyses are outlined below.

Contributions. We make the following contributions in this part, taking a step towards a better
theoretical understanding of the influence of model complexity N/m and l2-regularization on the
performance of Temporal-Difference learning algorithms:

1. We propose a novel double asymptotic regime, where the number of parameters N and dis-
tinct visited states m go to infinity while maintaining a constant ratio. This leads to a
precise assessment of the performance in both over-parameterized (N/m > 1) and under-
parameterized regimes (N/m < 1). This is a nontrivial extension of existing work in super-
vised learning since several properties essential to proofs, such as the positive definiteness of
key matrices, are voided by a discount factor in RL.

2. In the phase transition around N/m = 1, we observe a peak in the Mean-Squared Bellman
Error (MSBE) and the Mean-Squared Value Error (MSVE), i.e, a double descent phenomenon

55

Chapter 5. Introduction to the Double Descent Phenomenon

similar to what has been reported in supervised learning (Mei and Montanari, 2022; Liao
et al., 2020).

3. We identify the resolvent of a non-symmetric positive-definite matrix that emerges as a crucial
factor in the performance analysis of TD learning algorithms in terms of the error functions
and we provide its deterministic equivalent form in the double asymptotic regime.

4. We derive analytical equations for the asymptotic empirical MSBE on the collected transi-
tions, the asymptotic true MSBE, and the asymptotic MSVE. The deterministic forms expose
correction terms that we experimentally associate with the double descent phenomenon. We
show that the correction terms vanish as the l2-regularization is increased or N/m goes to
infinity. We also show that the influence of the l2-regularization parameter decreases as N/m
increases.

5. We show that the asymptotic errors studied can be expressed as the sum of the corresponding
error terms of a regularized kernel LSTD predictor, with implicit l2-regularization parameter
λ̃ induced by the ratio N/m, and a second-order correction factor.

6. Our theory closely matches empirical results on a range of both toy and small real-world
Markov Reward Processes where m and N are fixed, but for which the asymptotic regime
still gives accurate predictions. Notably, we observe a peak in the true MSBE and MSVE
around N/m = 1 that is not observed in the empirical MSBE and MSVE. Correction terms,
and therefore the difference between true and empirical MSBE, empirically vanish when the
number of unvisited states goes to zero.

56

Chapter 6

Regularized LSTD with Random
Features in High-Dimensional
Problems

This chapter proposes a theoretical framework for studying neural value function approximation in
high-dimensional problems. In particular, we propose studying TD learning algorithms using neural
networks in a double asymptotic regime, where both the number of parameters and states go to
infinity while maintaining a constant ratio called model complexity. Before introducing this double
asymptotic regime, we revisit and recall the framework of linear function approximation in Markov
Reward Processes in Section 6.1. In Section 6.2, we present the l2-regularized Least-Squared
Temporal Difference (LSTD) algorithm with random features. Section 6.3 formally introduces the
double asymptotic regime in which, by leveraging random features and the lazy training regime,
we approximate TD learning algorithms using a two-layer neural networks with the regularized
Least-Squared Temporal Difference (LSTD) algorithm on random features.

6.1 Linear Function Approximation in Markov Reward Pro-
cesses

Markov Reward Processes. In the context of function approximation for value-based algo-
rithms, the behavior of a fixed policy π within an MDP is characterized by a Markov Reward
Process (MRP) (S, Pπ, Rπ, µ0) properly defined in Definition 3.1.1, where S ⊆ Rd is the state
space; Pπ : S × S → [0, 1] is the transition kernel (stochastic kernel) for which Pπ(s, s′) denotes
the probability of transitioning to state s′ from state s; Rπ : S×S → R is the reward function; and
µ0 ∈ P(S) is the initial state distribution of the MDP. For notational convenience, the state space
S is described by the state matrix S ∈ Rd×|S|, where each column i ∈ |S| of S is denoted by Si and
represents a state in S. The transition probability matrix associated with the stochastic kernel Pπ

is denoted by P π ∈ R|S|×|S|. The objective is to learn the value function V π : S → R, which maps
each state s to the expected discounted sum of rewards when starting from a state s ∈ S and

57

Chapter 6. Regularized LSTD with Random Features in High-Dimensional Problems

following the dynamics of the MRP defined by P π as

V π(s) := EP π

[∑∞

k=1
γk−1Rπ(sk, sk+1)

∣∣ s1 = s
]
,

where γ ∈ [0, 1) is the discount factor. The value function is the unique fixed-point of the Bellman
equation (equation 4.9)

V π = r̄π + γP πV π, (6.1)

where V π ∈ R|S| is the vector representation of V π : S → R, for which the i-th element V π
i is

equal to V π(Si); and r̄π ∈ R|S| is the vector containing the expected rewards, for which r̄π
i =

R̄π(Si) = Es′∼P π [Rπ(Si, s
′)] for all i ∈ [|S|].

Linear Function Approximation. In practice, equation 6.1 cannot be solved since P π is un-
known and |S| is too large. One common solution is to use Linear Function Approximation
methods (LFA) introduced in Section 3. Using a parameter vector θ ∈ RN and a feature matrix
ΣS ∈ RN×|S|, whose columns are the feature vectors for every state, the objective of LFA methods
is to approximate V π as V π ≈ ΣT

S θ. For a given feature matrix, the learning process based on
equation 6.1 amounts to finding a parameter vector θ that minimizes the Mean-Squared Bellman
error (Section 3.2) defined as

MSBE(θ) = ∥r̄π + γP πΣT
S θ −ΣT

S θ∥2
Dµπ , (6.2)

where µπ ∈ R|S| is the stationary distribution induced by the MRP (S, Pπ, Rπ, µ0) and Dµπ ∈
R|S|×|S| is its diagonal matrix. Since r̄π +γP πΣT

S θ may not lie in the span of the bases ΣS , there
may not be a parameter vector θ that brings the MSBE to zero.

Linear Temporal-Difference Methods. Linear Temporal-Difference (TD) learning methods
presented in Section 4.2.1 are LFA methods that aim to minimize the MSBE in equation 6.2 by
replacing the second occurrence of θ in equation 6.2 with an auxiliary vector u, minimizing on u

and then finding a θ close to u (Dann et al., 2014):

u∗ = arg min
u∈RN

∥r̄π + γP πΣT
S θ∗ −ΣT

S u∥2
Dπ

µ
(projection step), (6.3)

θ∗ = arg min
θ∈RN

∥ΣT
S u∗ −ΣT

S θ∥2
Dπ

µ
(fixed-point step). (6.4)

The projection step (equation 6.3) implies that TD learning methods actually minimize the Mean-
Squared Projected Bellman error (MSPBE) rather than the MSBE (see Section 3.2). In the
following section, we describe the key elements on which we base our asymptotic analysis of the
MSBE in TD learning algorithms: random features, the regularized LSTD algorithm, and the
double asymptotic regime.

6.2 Regularized LSTD with Random Features

Random Features. We consider value function approximation using the random feature map-
ping RF : S → RN defined for all s ∈ S as

RF(s) = σ(W s), (6.5)

58

6.2. Regularized LSTD with Random Features

where σ : R → R is Kσ-Lipschitz continuous and applied component-wise; W = φ(W̃) ∈ RN×d

is a random weight matrix fixed throughout training, for which W̃ ∈ RN×d has independent and
identically distributed N (0, 1) entries and φ : R → R is Kφ-Lipschitz continuous and applied
component-wise. From the perspective of neural networks, the N random features can be inter-
preted as N outputs from a single-hidden-layer neural network. Indeed, in asymptotic regimes
where the number of features N of the single layer grows towards infinity, this simplification be-
comes even more accurate as we enter into the lazy training regime — where weights of the hidden
layer barely deviate from their random initial values (Chizat et al., 2019). In the literature, the lazy
training regime is often considered to approximate large-width single-hidden-layer neural networks
as linear models of random features (Louart et al., 2018; Liao et al., 2020; Mei and Montanari,
2022), including in RL (Cai et al., 2019; Agazzi and Lu, 2022; Liu et al., 2019a). The use of random
features is also popular on theoretical Kernel Ridge Regression (KRR) works (Jacot et al., 2020b;
Canatar et al., 2021; Bordelon et al., 2020; Simon et al., 2023a;b); where the Gaussian assumption
is leveraged to interpret the KRR as a linear model of Gaussian random features. In the KRR
works, the Gaussian assumption is leveraged to approximate the Mercer feature map with random
features (see Section 8.1.1 for further details on the Mercer feature map). In the following, we
denote the random feature matrix of any state matrix A ∈ Rd×p as ΣA where RF is applied
column-wise, i.e.,

ΣA = σ(W A).

Sample Matrices and Empirical MSBE. We assume that the transition probability ma-
trix P π is unknown during the training phase. Instead, we have a dataset of n transitions consist-
ing of states, rewards, and next-states drawn from the MRP, i.e., we have Dtrain :=

{
(si, ri, s

′
i)
}n

i=1
where s′

i ∼ Pπ(si) and ri = Rπ(si, s
′
i). We consider the on-policy setting, where Dtrain is derived

from a sample path of the MRP or its stationary distribution µπ. We collect the states and rewards
in the sample matrices

Xn = [s1, . . . , sn] ∈ Rd×n, r = [r1, . . . , rn]T ∈ Rn, X ′
n = [s′

1, . . . , s
′
n] ∈ Rd×n. (6.6)

Let Ŝ ⊆ S be the set of distinct states in Dtrain, which we call visited states, and let m = |Ŝ| be
the number of distinct visited states. We denote by Ŝ ∈ Rd×m the state matrix of Ŝ, where each
column Ŝi of Ŝ describes a state in Ŝ. ΣŜ ∈ RN×m, ΣXn

∈ RN×n, and ΣX′
n
∈ RN×n depict

the random feature matrices of Ŝ, Xn, and X ′
n, respectively. For the proof of our results, it will

be mathematically advantageous to express ΣXn and ΣX′
n

as the product of ΣŜ with auxiliary
matrices Ûn ∈ Rm×n and V̂n ∈ Rm×n as follows:

ΣXn
=
√
nΣŜÛn and ΣX′

n
=
√
nΣŜV̂n . (6.7)

Each column i of
√
nÛn is a one-hot vector, where the j-th element equals 1 if the i-th state si

of Xn is Ŝj , and similarly for
√
nV̂n and X ′

n. Since P π is unknown, we want to find a parameter
vector θ ∈ RN that minimizes the empirical version of the MSBE (equation 6.2) obtained with
transitions collected in Dtrain:

M̂SBE(θ) = 1
n∥r + γΣT

X′
n
θ −ΣT

Xn
θ∥2, (6.8)

which uses the Euclidean norm since the distribution is reflected by the samples. Assuming glob-
ally stable MRP, a fixed number of features, and all states being visited, M̂SBE(θ) converges to

59

Chapter 6. Regularized LSTD with Random Features in High-Dimensional Problems

MSBE(θ) with probability 1 as the number of collected transitions n→∞ (Nedić and Bertsekas,
2003). This follows from the law of large numbers (Stachurski, 2009). In our analysis, we will also
consider the case where n → ∞ without visiting all states, i.e., with m < |S| such that there can
be a significant difference between M̂SBE(θ) and MSBE(θ).

L2-Regularized Least-Square Temporal-Difference Methods. The l2-Regularized Least-
Square Temporal-Difference (LSTD) algorithm introduced in Section 4.5 is a linear TD learning
method that solves an empirical regularized version of equation 6.3 and 6.4 with the n transitions
collected in Dtrain as

uλ
n = arg min

un∈RN

(
∥r + γΣT

X′
n
θ̂λ

n −ΣT
Xn

un∥2 + λmn∥un∥2
)
, (6.9)

θ̂λ
n = arg min

θn∈RN

∥ΣT
Xn

uλ
n −ΣT

Xn
θn∥2, (6.10)

where λ > 0 is the l2-regularization parameter introduced to mitigate overfitting (Hoffman et al.,
2011; Chen et al., 2013). It is well known that for λ = 0, the fixed point θ̂λ

n of the approximation
equation 6.9 and 6.10 converges to the fixed point θ∗ of equation 6.3 and 6.4 with probability one
as the number of samples n → ∞ (Nedić and Bertsekas, 2003). As shown in Section 4.5, solving
the fixed-point of the linear system approximation given by equation 6.9 and 6.10 gives

θ̂λ
n =

[
ΣXn

[
ΣXn − γΣX′

n

]T + λmnIN

]−1
ΣXnr. (6.11)

Under appropriate learning rates, linear TD learning methods based on gradient-descent converge
towards the same fixed-point θ̂λ

n (Robbins and Monro, 1951; Dann et al., 2014; Sutton and Barto,
2018). Besides reducing overfitting, l2-regularized LSTD with an appropriate λ ensures in practice
that ΣXn

[ΣXn
− γΣX′

n
]T + λmnIN is invertible. Note that LSTD with random features has also

been considered in Ghavamzadeh et al. (2010) for high-dimensional spaces, where the number of
features is bigger than the number of samples collected. Authors show that random features act
as regularizer and prevent overfitting.

6.3 Double Asymptotic Regime & Resolvent in LSTD

We study the l2-regularized LSTD in the following double asymptotic regime:

Assumption 1 (Double Asymptotic Regime). As N,m, d→∞, we have:

1. 0 < lim min
{

N
m ,

d
m

}
< lim max

{
N
m ,

d
m

}
<∞.

2. There exists KS ,Kr > 0 such that lim sup|S|∥S∥ < KS and Rπ(·, ·) is bounded by Kr.

Remark 10. As mentioned in the previous section, we leverage the lazy training regime to ap-
proximate TD learning algorithms using two-layer neural networks by a linear value approximation
on random features with the regularized LSTD algorithm. Indeed, linear models with random fea-
tures approximate single-hidden-layer neural networks in the lazy training regime, and the solution
returned by regularized LSTD is the solution on which converge TD learning with a stochastic
gradient based approach under appropriate learning rates.

60

6.3. Double Asymptotic Regime & Resolvent in LSTD

In order to use Random Matrix tools, we rewrite equation 6.11 as (see proof in Lemma A.8.8)

θ̂λ
n = 1

mn ΣXn

[
1

mn

[
ΣXn − γΣX′

n

]T ΣXn + λIn

]−1
r. (6.12)

We observe that θ̂λ
n = 1

mn ΣXn
Qm(λ)r depends on the random resolvent

Qm(λ) =
[

1
mn

[
ΣXn

− γΣX′
n

]T ΣXn
+ λIn

]−1
=
[

1
m (Ûn − γV̂n)T ΣT

Ŝ ΣŜÛn + λIn

]−1
, (6.13)

when 1
m (Ûn − γV̂n)T ΣT

Ŝ ΣŜÛn + λIn is invertible, which in general may not be the case. We can
guarantee invertibility if the empirical transition model matrix Âm ∈ Rm×m

Âm = Ûn(Ûn − γV̂n)T (6.14)

has a symmetric positive-definite part (see Appendix A.5 for a formal proof). For the remainder
of the paper, we therefore make the following assumption on Âm:

Assumption 2 (Bounded Eigenspectrum). There exist 0 < ξmin < ξmax such that for every m,
all the eigenvalues of H(Âm) are in [ξmin, ξmax].

Assumption 2 is satisfied for the l2-regularized pathwise LSTD (Lazaric et al., 2012), and may also
be valid for sufficiently large n (see Appendix A.5).

Remark 11. The empirical transition model matrix Âm depicts a model-based interpretation
similar to that presented in Section 4.4. Indeed, Âm contains an empirical model of the transition
probabilities as

Âm = 1
n

[
Ĉn − γN̂n

]
, (6.15)

where Ĉn = nÛnÛT
n ∈ Rm×m is a diagonal matrix containing the state visit counts of each state

s ∈ Ŝ in the dataset Dtrain :=
{

(si, ri, s
′
i)
}n

i=1; the elements
[
N̂n

]
ij

of the matrix N̂n = nÛnV̂ T
n ∈

Rm×m contain the number of times a transition from state Ŝi to state Ŝj has been observed in
Dtrain. Under Assumption 2, the diagonal matrix Ĉn is invertible and we can define the matrix
P̂n = Ĉ−1

n N̂n ∈ Rm×m. It can be shown that P̂n is a transition probability matrix. From the sample
collected in Dtrain and from Assumption 2, we can construct the empirical MRP (Ŝ, P̂n, R

π, µ0)
and write Âm as

Âm = Dµ̂n

[
Im − γP̂n

]
, (6.16)

where Dµ̂n = 1
n Ĉn = ÛnÛT

n . Note that diagonal elements of Dµ̂n define the stationary distribution
µ̂n ∈ Rm of the transition probability matrix P̂n. The regularized LSTD solution θ̂λ

n (equation 6.12)
on Dtrain can be rewritten as

θ̂λ
n = 1√

n

[
ΣŜDµ̂n

[
Im − γP̂n

]
ΣT

Ŝ + λIN

]−1
ΣŜÛnr

=
[
ΣŜDµ̂n

[
Im − γP̂n

]
ΣT

Ŝ + λIN

]−1
ΣŜDµ̂n

ˆ̄rn;

where
[ˆ̄rn

]
i

=
∑m

j=1[P̂n]ijRπ(Ŝi, Ŝj), for all i ∈ [m]. From equation 4.10, θ̂λ
n can be thus inter-

preted as the asymptotic solution on the empirical MRP of regularized LSTD when each state s ∈ Ŝ
is visited infinitely often and is visited in the long run with probability 1 in proportion µ̂n(s).

61

Chapter 7

Main Results in High-Dimensional
Problems

In this chapter, we first introduce the mathematical framework of Random Matrix Theory and
concentration results used to study the performance of regularized LSTD in the double asymptotic
regime of Assumption 2, and then we present our main theoretical results. In Section 7.1, we
start by highlighting challenges encountered in studying random matrices in high-dimensional
problems and introduce the Random Matrix Theory framework. In Section 7.2, we identify the
resolvent Qm(λ) of a non-symmetric positive-definite matrix that emerges as a crucial factor in
the performance analysis of regularized LSTD, and we provide a deterministic equivalent of this
resolvent in the double asymptotic regime. In the following, using the deterministic equivalent of
the resolvent Qm(λ) and concentration results, we analyze the performance of regularized LSTD
in the double asymptotic regime of Assumption 2 with the derivation of deterministic equations for
the asymptotic empirical Mean-Squared Bellman Error on the collected transitions in Section 7.3,
the asymptotic Mean-Squared Bellman Error (MSBE) in Section 7.4, and the asymptotic Mean-
Squared Value Error (MSVE) in Section 7.5. In particular, we expose correction terms in those
deterministic forms that arise from the double asymptotic regime. We show that the correction
terms vanish as the l2-regularization increases or the model complexity N/m (i.e., the ratio between
the number of parameters N and the number of states visited m) goes to infinity. We also show that
the influence of the l2-regularization parameter decreases as the model complexity N/m increases.

7.1 Pitfalls of High-Dimensional Problems & Deterministic
Equivalent

7.1.1 Counterintuitive Phenomenon in High-Dimensional Problems

As the number of parameters N → ∞, it can be shown that entry-wise of the Gram matrix
1
N ΣT

Ŝ ΣŜ ∈ Rm×m converges almost surely to the kernel matrix

ΦŜ = Ew

[
σ
(
wT Ŝ

)T
σ
(
wT Ŝ

)]
= Ew̃∼N (0,Id)

[
σ
(
φ(w̃)T Ŝ

)T
σ
(
φ(w̃)T Ŝ

)]
. (7.1)

62

7.1. Pitfalls of High-Dimensional Problems & Deterministic Equivalent

This follows from the strong law of large numbers, which particularly states that as N → ∞, for
any i, j ∈ [m],[

1
N ΣT

Ŝ ΣŜ

]
ij

= 1
N σ
(
W T Ŝi

)T
σ
(
W T Ŝj

) a.s−−→ Ew

[
σ
(
wT Ŝi

)
σ
(
wT Ŝj

)]
=
[
ΦŜ
]

ij
. (7.2)

While 1
N ΣT

Ŝ ΣŜ → ΦŜ holds in the asymptotic N → ∞ limit, the situation becomes more subtle
when N,m → ∞ and N and m are comparable. The entry-wise convergence of equation 7.2
remains valid, but the convergence of

∥∥ 1
N ΣT

Ŝ ΣŜ −ΦŜ
∥∥ no longer holds in the operator norm, due

to the large factor m in the following norm inequality∥∥ 1
N ΣT

Ŝ ΣŜ −ΦŜ
∥∥

∞︸ ︷︷ ︸
→ 0

≤
∥∥ 1

N ΣT
Ŝ ΣŜ −ΦŜ

∥∥ ≤ m∥∥ 1
N ΣT

Ŝ ΣŜ −ΦŜ
∥∥

∞︸ ︷︷ ︸
→ ?

.

From the inequality above, we can not upper bound anymore
∥∥ 1

N ΣT
Ŝ ΣŜ −ΦŜ

∥∥ when N,m→∞,
and ∥∥ 1

N ΣT
Ŝ ΣŜ −ΦŜ

∥∥ ̸→ 0,

as N,m → ∞ for N/m → c < ∞ with c > 0. We can not guarantee anymore the convergence of∥∥ 1
N ΣT

Ŝ ΣŜ −ΦŜ under the operator norm.

7.1.2 The Empirical Covariance Matrix Example

To illustrate the non-convergence of random matrices for the operator norm in high-dimensional
problems, a popular example found in the literature of Random Matrix Theory is the empirical
covariance matrix example (Marchenko and Pastur, 1967; Couillet and Liao, 2022). In this example,
we consider the empirical covariance matrix ĈN ∈ Rm×m defined as

ĈN = 1
N XXT = 1

N

N∑
i=1

xix
T
i ; (7.3)

where X =
[
x1, · · · ,xN

]
∈ Rm×N is composed of N independent and identically distributed

observations from a m-dimensional Gaussian distribution, i.e., xi ∼ N (0, Im) for all i ∈ [N].
When N → ∞ and for a fixed m, by the strong law of large numbers, the empirical covariance
matrix ĈN converges almost surely to the covariance matrix IM , i.e.,

ĈN
a.s−−→ Im.

However, when N,m→∞ with m/N → c <∞ for c > 0, we still have the entry-wise convergence
by the strong law of large numbers, but the eigenvalue distributions of ĈN and Im mismatch.
When we consider the special case for which N and m are both large, but with m > N , the rank
of ĈN is at most equal to N since ĈN is the sum of N rank one matrices. Because 1

N XXT is
a m ×m matrix with m > N , the matrix 1

N XXT is singular and has at least m − N > 0 zero
eigenvalues. As a consequence, as N,m→∞ with m/N → c > 1, we have

ĈN ̸→ IN .

The above claim also holds when N,m→∞ with m/N → c < 1 as depicted by Figure 7.1. Even
if ĈN is a poor estimate of Im and ĈN does not converge in any useful way as N,m → ∞, the

63

Chapter 7. Main Results in High-Dimensional Problems

0.7 0.8 0.9 1 1.1 1.2 1.3
0

2

4

Eigenvalues of Ĉ

D
en

si
ty

Empirical eigenvalues
Marchenko-Pastur law
Population eigenvalues

Figure 7.1: Eigenvalue distributions of the empirical covariance matrix ĈN (equa-
tion 7.3) and the covariance matrix Im mismatch for N = 100m. The eigenvalue dis-
tribution of the empirical covariance matrix ĈN converges to the Marchenko-Pastur
distribution. Eigenvalue histogram of ĈN versus the Marchenko-Pastur distribution for m = 512
and N = 100m (Liao et al., 2020).

limiting eigenvalue distribution of ĈN as N,m → ∞ is known in the Random Matrix Theory to
be the popular Marchenko-Pastur law (Marchenko and Pastur, 1967) given by

µMP (dx) = (1− c−1) · 10(x) + 1
2πcx

√(
x− (1−

√
c)2
)+ ((1 +

√
c)2 − x

)+
dx, (7.4)

with 10(x) the Dirac mass at zero, c = limm/N and (x)+ = max(x, 0).

Remark 12. The Marchenko-Pastur distribution reveals that the eigenvalues of ĈN do not con-
centrate around 1 like in the asymptotic N limit, but concentrate between (1−

√
c)2 to (1 +

√
c)2.

Therefore, the eigenvalues span on the range

(1−
√
c)2 + (1 +

√
c)2 = 4

√
c = 4

√
m
N .

In particular, for N = 100m, where one would expect a sufficiently large N for ĈN to estimate
Im properly, one has a spread around the true eigenvalue 1 equal to 4

√
0.01 = 0.4 as observed in

Figure 7.1.

Remark 13. Although introduced here in the context of Gaussian distributions for xi ∼ N (0, Im).
The Marcenko-Pastur law applies to much more general cases than in the context of Gaussian
distributions. Indeed, the result remains valid when xi has i.i.d. normalized entries of zero mean
and unit variance.

7.1.3 Empirical Eigenvalue Distribution & Resolvent

As in the example found in Section 7.1.2, the symmetric random matrix 1
N ΣT

Ŝ ΣŜ does not converge
in any useful way as N,m→∞. However, the empirical eigenvalue distribution of its limit can be
studied in the Random Matrix Theory through its resolvent with the Stieltjes transform.

Definition 7.1.1 (Stieltjes Transform). For a real probability measure µ with support supp(µ),

64

7.1. Pitfalls of High-Dimensional Problems & Deterministic Equivalent

the Stieltjes transform mµ : C \ supp(µ)→ C is defined for all λ ∈ C \ supp(µ) as

mµ(λ) =
∫
R

1
t−λdµ(t).

Let M ∈ Rm×m be a symmetric matrix. Since M is symmetric, the matrix has real eigenvalues.
We can define its empirical eigenvalue measure µ̂M as

µ̂M (x) = 1
m

m∑
i=1

1νi(M)(x),

for all x ∈ R. The empirical eigenvalue measure µ̂M is a probability measure since µ̂M (x) ≥ 0 for
all x ∈ R, and

∫
R µ̂M (x)dx = 1. For all λ ∈ C \ supp(µ̂M), the Stieltjes transform of µ̂M can be

expressed as the trace of the resolvent [M − λIm]−1 since

mµ̂M
(λ) =

∫
R

1
t−λdµ̂M (t) = 1

m

m∑
i=1

∫
R

1νi(M)(t)
t−λ dt

= 1
m

m∑
i=1

1
νi(M)−λ

= 1
m Tr

(
[M − λIm]−1).

From Lemma 7.1.1, we deduce that the empirical eigenvalue distribution µ̂M of the symmetric
random matrix M can be studied with the resolvent [M−λIm]−1 through the Stieltjes transform.

Lemma 7.1.1 (Inverse Stieltjes Transform (Couillet and Liao, 2022)). For a, b continuity points
of a probability measure µ, we have

µ
(
[a, b]

)
= 1

π lim
y→0

∫ b

a

I
(
mµ(x+ iy)

)
dx

If µ admits a density f at x, i.e., µ(x) is differentiable in a neighborhood of x and

lim
ϵ→0

1
2ϵµ
(
x− ϵ, x+ ϵ

)
= f(x),

then
f(x) = 1

π lim
y→0

I
(
mµ(x+ iy)

)
.

Finally, if µ has an isolated mass at x, then

µ
(
{x}
)

= − 1
π lim

y→0
iymµ(x+ iy).

7.1.4 Deterministic Equivalent

Since the limit of high-dimensional symmetric random matrices does not converge in any useful
sense as highlighted in Sections 7.1.1 and 7.1.2, a first line of works in the Random Matrix The-
ory has instead investigated the asymptotic characterization of their spectral measures using the
Stieltjes transform and Lemma 7.1.1. In particular, the objective has been to determine the limit
of the spectral measure µ̂M of a symmetric random matrix M ∈ Rm×m when the dimension m

65

Chapter 7. Main Results in High-Dimensional Problems

tends to infinity. For this purpose, by using Lemma 7.1.1, a natural approach is to study the
associated random Stieltjes transform mµ̂M

(λ) = 1
m Tr

(
[M − λIm]−1) of µ̂M and to show that it

admits a limit m(λ) in probability or almost surely as m→∞.

Example 1. In the example of the empirical covariance matrix presented in Section 7.1.2, Marchenko
and Pastur (1967) demonstrated that as N,m→∞ with m/N → c with c > 0, we have

mµ̂ĈN
(λ) = 1

m Tr
([

ĈN − λIm

]−1) a.s−−→ m(λ),

where mµ̂ĈN
(λ) is the Stieltjes transform at λ of the empirical eigenvalue distribution µ̂Ĉn

(equa-
tion 7.3) of ĈN , and m(λ) is defined as the unique positive solution of the Marchenko-Pastur
equation

cλm2(λ)− (1− λ− c)m(λ) + 1 = 0. (7.5)

From the Stieltjes transform m(λ), we can derive the Marchenko-Pastur law µMP given in equa-
tion 7.4.

Nevertheless, a study of the limit m(λ) of the random Stieltjes transform λ 7→ mµ̂M
(λ) =

1
m Tr

([
M − λIm

]−1) of µ̂M assumes such a limit m(λ) exists. Furthermore, it only quantifies
the Stieltjes transform λ 7→ mµ̂M

(λ) = 1
m Tr

([
M − λIm

]−1) and does not take into account
other subspace information of the symmetric random matrix M carried in the resolvent matrix[
M − λIm

]−1, e.g, the eigenvector space of M .

To overcome those limitations, we focus instead on finding a “deterministic equivalent” of the
resolvent of the symmetric random matrix M , which is a non-asymptotic deterministic matrix
having in probability or almost surely asymptotically the same scalar observations as the random
one (Hachem et al., 2007; Couillet and Debbah, 2011; Couillet and Liao, 2022). The notion of “de-
terministic equivalent” has not been formally defined in the literature. However, in the following,
we propose a definition we will adopt in this part.

Definition 7.1.2 (Deterministic Equivalent). Let M ∈ RN×m be a random matrix and f :
RN×m → R be a mapping from matrices of size N × m to scalars. A matrix M ∈ RN×m is
said to be a deterministic equivalent of M if, as N,m→∞, we have

f(M)− f(M)→ 0,

where the convergence is either in probability or almost surely.

Remark 14. This definition extends the definition proposed by Couillet and Liao (2022) to include
non-symmetric and rectangular random matrices and any mapping f : RN×m → R. Indeed,
Couillet and Liao (2022) assume in their definition that M is symmetric for the mappings f :
M 7→ 1

m Tr(AM) and f : M 7→ aT Mb, for any deterministic matrix A ∈ Rm×m and vectors
a, b ∈ Rm of unit norms, with respect to the operator and the Euclidean norm.

Remark 15. Let M ∈ Rm×m be a symmetric random matrix. If Q ∈ Rm×m is a deterministic
equivalent of the resolvent

[
M − λIm

]−1 for the application f : M 7→ 1
m Tr

(
M
)
, then the Stieljes

transform mµ̂M
of the empirical eigenvalue distribution µ̂M of M converges towards 1

m Tr
(
Q̄
)
.

In the empirical covariance matrix example presented in Section 7.1.2, the matrix m(λ)Im can be
thus interpreted as a deterministic equivalent of the resolvent

[
ĈN − λIm

]−1 for the application
f : M 7→ 1

m Tr
(
M
)
, where m(λ) is the solution of the Marchenko-Pastur equation (equation 7.5).

66

7.2. A Deterministic Equivalent Resolvent for Regularized LSTD

Finding deterministic equivalents of resolvents of random matrices is particularly useful in theo-
retical works on supervised learning (Louart et al., 2018; Liao et al., 2020; Jacot et al., 2020a; Mei
and Montanari, 2022; Couillet and Liao, 2022). In particular, the aforementioned works investigate
the performance of ridge regression with random features, where the solution to the ridge regres-
sion depends on the resolvent of a symmetric semi-positive-definite random matrix. These studies
assess the asymptotic training error and the test error by identifying a deterministic equivalent
of the resolvent in a double asymptotic regime; where the number of samples n → ∞ and the
number of features N → ∞, while maintaining a constant ratio N/n. Their proofs mainly rely
on the symmetric property of the resolvent and on Random Matrix tools designed for random
symmetric matrices, e.g, the Stieltjes transform. In the following sections of this part, we aim to
extend these results to the regularized LSTD algorithm and to certain resolvents of non-symmetric
random matrices with specific structures.

7.2 A Deterministic Equivalent Resolvent for Regularized
LSTD

From equation 6.12, the weight vector θ̂λ
n returned by regularized LSTD depends on the random

resolvent Qm(λ) defined in equation 6.13 since

θ̂λ
n = 1√

n
1
m ΣŜÛnQm(λ)r.

The random resolvent Qm(λ) thus plays a significant role in the performance of regularized LSTD
and in error functions studied in this chapter; such as the empirical Mean-Squared Bellman Error
(in Section 7.3), the Mean-Squared Bellman Error (in Section 7.4), and the Mean-Squared Value
Error (in Section 7.5). In order to assess the asymptotic performance of regularized LSTD in
the double asymptotic regime of Assumption 2, we need to find a deterministic equivalent for
the random matrix Qm(λ) and for other random matrices that are functions of random features.
In our theoretical analysis, the identification of deterministic equivalents relies on the following
concentration measure for Lipschitz applications of a Gaussian vector.

Lemma 7.2.1 (Normal Concentration). ((Ledoux, 2001, Corollary 2.6, Propositions 1.3, 1.8) or
(Tao, 2012, Theorem 2.1.12)) For d ∈ N, consider µ the canonical Gaussian probability on Rd

defined through its density dµ(w) = (2π)− d
2 e− 1

2 ∥w∥2
and f : Rd → R a Lf -Lipschitz function.

Then

µ

({∣∣∣∣f − ∫ fdµ

∣∣∣∣ ≥ t}) ≤ Ce−c
t2

L2
f , (7.6)

where C, c > 0 are independent of d and Lf .

This concentration result is particularly interesting in our analysis since it can be extended to
Lipschitz functions of sub-Gaussian matrices as stated by the following Lemma.

Lemma 7.2.2. Let f : RN×d → R, W 7→ f(W) be a Kf -Lipschitz function with respect to the
Frobenius norm, for which W = φ(W̃) is the matrix defined in equation 6.5. Then, we have

Pr
(∣∣f(W)− EW

[
f(W)

]∣∣ > t
)
≤ Ce

− ct2

K2
f

K2
φ ,

67

Chapter 7. Main Results in High-Dimensional Problems

for some C, c > 0.

Proof. The vectorization of W̃ , vec(W̃) =
[
W̃11, · · · , W̃nd

]
∈ RN×d is a Gaussian vector. A Kf -

Lipschitz function f of W with respect to the Frobenius norm is also a Kf -Lipschitz function of
vec(W) with respect to the Euclidean norm. Applying Lemma 7.2.1 gives

Pr
(∣∣f(W)− EW

[
f(W)

]∣∣ > t
)

= Pr
(∣∣f(φ(W̃)

)
− EW

[
f
(
φ(W̃)

)]∣∣ > t
)
≤ Ce

− ct2

K2
φK2

f ,

for some C, c > 0.

In the following sections of this chapter, by leveraging Lemma 7.2.2 and the Lipschitz continuity
of the error functions with respect to the random weight matrix W under the frobenius norm,
we show that the error functions asymptotically concentrate around their deterministic expected
values in the double asymptotic regime of Assumption 2. A natural deterministic equivalent for the
random resolvent Qm(λ) would be thus EW [Qm(λ)]. However, EW [Qm(λ)] involves integration
without having a closed form expression due to the matrix inverse, and is inconvenient for practical
computation. Leveraging the Random Matrix Theory, the following Theorem 7.2.3 proposes an
asymptotic form that is i. close to EW [Qm(λ)] under Assumptions 1 and 2, and ii. numerically
more accessible.

Theorem 7.2.3 (Asymptotic Deterministic Resolvent). Under Assumptions 1 (double asymptotic
regime) and 2 (bounded spectrum), let λ > 0 and let Q̄m(λ) ∈ Rn×n be the deterministic resolvent
defined as

Q̄m(λ) =
[

N
m

1
1+δ (Ûn − γV̂n)T ΦŜÛn + λIn

]−1
, (7.7)

where the deterministic Gram feature matrix ΦŜ ∈ Rm×m is defined as

ΦŜ = Ew

[
σ
(
wT Ŝ

)T
σ
(
wT Ŝ

)]
= Ew̃∼N (0,Id)

[
σ
(
φ(w̃)T Ŝ

)T
σ
(
φ(w̃)T Ŝ

)]
and the correction factor δ is the unique, positive, solution to

δ = 1
m Tr

(
(Ûn − γV̂n)T ΦŜÛn

[
N
m

1
1+δ (Ûn − γV̂n)T ΦŜÛn + λIn

]−1
)
. (7.8)

Then
lim

m→∞

∥∥EW [Qm(λ)]− Q̄m(λ)
∥∥ = 0.

Proof. Details of the proof can be found in Appendix A.1.

Remark 16. Since δ → 0 when N/m → ∞, the correction factor 1
1+δ arises from the double

asymptotic regime, which keeps the ratio N/m asymptotically constant. Similar correction fac-
tors arise in related Random Matrix literature, which, however, deals with semi-positive-definite
matrices (Couillet and Debbah, 2011; Liu et al., 2019a; Liao et al., 2020; Jacot et al., 2020a;b).
Our problem exceeds this frame, so we prove the result, including existence and uniqueness, with
a somewhat more involved analysis based on the eigenspectrum of the products of matrices with
semi-positive-definite symmetric part and skew-symmetric matrices (see Appendix A.6).

68

7.2. A Deterministic Equivalent Resolvent for Regularized LSTD

Table 7.1: Values of Φab for w ∼ N (0, Id), ∠(a, b) ≡ aT b
∥a∥∥b∥ (Louart et al., 2018).

σ(t) Φab

t aT b

max(t, 0) 1
2π∥a∥∥b∥

(
∠(a, b) arccos(−∠(a, b)) +

√
1− ∠(a, b)2

)
|t| 2

π∥a∥∥b∥
(
∠(a, b) arcsin(∠(a, b)) +

√
1− ∠(a, b)2

)
erf(t) 2

π arcsin
(

2aT b√
(1+2∥a∥2)(1+2∥b∥2)

)
1{t>0}

1
2 −

1
2π arccos(∠(a, b))

sign(t) 2
π arcsin(∠(a, b))

cos(t) exp(− 1
2 (∥a∥2 + ∥b∥2)) cosh(aT b)

sin(t) exp(− 1
2 (∥a∥2 + ∥b∥2)) sinh(aT b).

Remark 17. It can be shown that δ is a decreasing function with respect to the number of pa-
rameters N (Lemma A.6.3) and with respect to the l2-regularization parameter λ (Lemma A.6.4).

Remark 18. In supervised learning, a comparable proposition is presented by Louart et al. (2018,
Theorem 1) for the resolvent of random symmetric semi-positive-definite matrices. It constitutes
a special case of Theorem 7.2.3 with γ = 0, which corresponds to the case where we learn the
reward function Rπ : S × S → R using samples of Dtrain. Our analysis extends this result to
the resolvent Qm(λ), which is the resolvent of a non-symmetric random matrix. The loss of the
symmetric property significantly complicates our analysis, e.g., with the proof of the existence of
the correction factor δ or the uniform boundess of Qm(λ) with respect to the operator norm.

Remark 19. Note that the matrix Qm(λ) is the resolvent of the random matrix 1
m (Ûn−γV̂n)T ΣT

Ŝ ΣŜÛn,
which is non-symmetric when γ > 0. Therefore, many tools from the related Random Matrix lit-
erature used to study the spectrum of 1

m (Ûn − γV̂n)T ΣT
Ŝ ΣŜÛn with Qm(λ) are not applicable,

e.g., the Stieljes transform. Indeed, with complex eigenvalues, the empirical eigenvalue measure of
1
m (Ûn − γV̂n)T ΣT

Ŝ ΣŜÛn is no longer a real probability measure, does not admit a Stieltjes trans-
form, and 1

m Tr(Qm(λ)) can no longer be interpreted as the Stieltjes transform of this empirical
eigenvalue measure as it was the case in Section 7.1.3. As a consequence, we can not use the
deterministic equivalent Q̄m(λ) of the resolvent Qm(λ) for the application f : M 7→ 1

m Tr
(
M
)

to
provide spectral information about 1

m (Ûn − γV̂n)T ΣT
Ŝ ΣŜÛn.

Remark 20. The evaluation of ΦŜ = Ew

[
σ(wT Ŝ)Tσ(wT Ŝ)

]
is obtained through the evaluation

of its individual entries and thus to the calculus, for arbitrary vectors a, b ∈ Rd of

Φab = Ew

[
σ(wT a)σ(wT b)

]
= (2π)− p

2

∫
σ(φ(w̃)T a)σ(φ(w̃)T b)e− 1

2 ∥w̃∥2
dw̃. (7.9)

The evaluation of equation 7.9 can be obtained through various integration tricks for a wide family
of mappings φ(·) and activation functions σ(·). We provide in Table 7.1 (found in Louart et al.
(2018)) the values of Φab when w ∼ N (0, Id) (i.e., for φ(t) = t) and for a set of activation
functions σ : R→ R not necessarily satisfying the Lipschitz continuity. In experiments in Section 9,
we focus only on the ReLU function, i.e., σ(t) = max(t, 0).

69

Chapter 7. Main Results in High-Dimensional Problems

7.3 Asymptotic Empirical Mean-Squared Bellman Error

Value-based algorithms that use bootstrapping, especially TD learning methods, aim to minimize
the empirical mean squared Bellman error (MSBE), denoted by M̂SBE. As mentioned in Sec-
tion 4.3, under appropriate learning rates (Robbins and Monro, 1951), linear TD learning methods
using a gradient-based approach converge towards the solution θλ

n = 1√
n

1
m ΣŜÛnQm(λ)r of the

regularized LSTD. It is straightforward to show that M̂SBE(θ̂λ
n) depends on a quadratic form of

the random resolvent Qm(λ) as

M̂SBE(θ̂λ
n) = 1

n∥r + γΣT
X′

n
θ̂λ

n −ΣT
Xn

θ̂λ
n∥2

= 1
n

∥∥∥∥r − 1
mn

(
ΣXn

− γΣX′
n

)T ΣXn
Qm(λ)r

∥∥∥∥2

= 1
n

∥∥∥∥[1
mn

(
ΣXn

− γΣX′
n

)T ΣXn
+ λIn − 1

mn

(
ΣXn

− γΣX′
n

)T ΣXn

]
Qm(λ)r

∥∥∥∥2

= λ2

n rT Qm(λ)T Qm(λ)r.

Using Lemma 7.2.2, we show in the following Lemma that M̂SBE(θ̂λ
n) concentrates around

λ2

n rTEW

[
Qm(λ)T Qm(λ)

]
r under the double asymptotic regime of Assumption 2.

Lemma 7.3.1. Under Assumptions 1 and 2, we have

Pr
(∣∣∣M̂SBE(θ̂λ

n)− λ2

n rTEW [Qm(λ)T Qm(λ)]r
∣∣∣ > t

)
≤ Ce−cmt2

,

for some C, c > 0 independent of m and N .

Proof. Let the mapping f : R 7→ λ2

n rT Qm(R)T Qm(R)r, for the resolvent mapping

Qm : R 7→
[

1
m

(Ûn − γV̂n)Tσ(RŜ)Tσ(RŜ)Ûn + λIn

]−1

defined as in equation 6.13. We want to show f is Lipschitz in order to apply Lemma 7.2.2. From
Lemma A.4.6, we know there exists a real K > 0 independent of N and m such that, for all R,H,
we have

∥Qm(R + H)T Qm(R + H)−Qm(R)T Qm(R)∥ ≤ K√
m
∥H∥F .

Let H ∈ RN×d, we have thus

|f(R + H)− f(R)| =
∣∣∣λ2

n rT
[
Qm(R + H)T Qm(R + H)−Qm(R)T Qm(R)

]
r
∣∣∣

≤ λ2

n ∥r∥
2∥Qm(R + H)T Qm(R + H)−Qm(R)T Qm(R)∥

≤ λ2K2
r K√

m
∥H∥F

(1
n∥r∥

2 ≤ 1
nn∥r∥

2
∞ = K2

r

)
.

We deduce f is λ2K2
rK√

m
-Lipschitz under the operator norm. From Lemma 7.2.1, we have for the

random matrix W defined in equation 6.5

Pr
(∣∣f(W)− EW

[
f(W)

]∣∣ > t
)

= Pr
(∣∣∣λ2

n rT Qm(λ)T Qm(λ)r − λ2

n rTEW [Qm(λ)T Qm(λ)]r
∣∣∣ > t

)
= Pr

(∣∣∣M̂SBE(θ̂λ
n)− λ2

n rTEW [Qm(λ)T Qm(λ)]r
∣∣∣ > t

)
70

7.4. Asymptotic Mean-Squared Bellman Error

≤ Ce− cmt2

K2K4
rλ4

,

for some C, c > 0 independent of other parameters.

Remark 21. The Lipschitz nature of the mapping f : R 7→ λ2

n rT Qm(R)T Qm(R)r depends
on Lemma A.4.6, which is guaranteed by the uniform boundedness of the resolvent Qm(λ) for
any random matrix W . The uniform boundness of Qm(λ) in the double asymptotic regime of
Assumption 2 is non-trivial since the dimension n of Qm(λ) ∈ Rn×n tends toward infinity (n >
m→∞). The result plays a key role in our proofs and is proven in Appendix A.4.

From Lemma 7.3.1, to assess the asymptotic M̂SBE(θ̂λ
n) in the double asymptotic regime, we

need to find a deterministic equivalent of Qm(λ)T Qm(λ) close to E
[
Qm(λ)T Qm(λ)

]
. Using the

deterministic equivalent Q̄m(λ) of Qm(λ) (found in Theorem 7.2.3), we identify an asymptotic
form close to E

[
Qm(λ)T Qm(λ)

]
in Lemma A.2.2 to derive the following theorem.

Theorem 7.3.2 (Asymptotic Empirical MSBE). Under the conditions of Theorem 7.2.3, the de-
terministic asymptotic empirical MSBE is

M̂SBE(θ̂λ
n) = λ2

n ∥Q̄m(λ)r∥2 + ∆̂, (7.10)

with second-order correction factor

∆̂ = λ2

n

1
N Tr(Q̄m(λ)Ψ2Q̄m(λ)T)

1− 1
N Tr(Ψ2Q̄m(λ)T Ψ1Q̄m(λ))

∥Q̄m(λ)r∥2
Ψ1
, (7.11)

where
Ψ1 = N

m
1

1+δ ÛT
n ΦŜÛn, and Ψ2 = N

m
1

1+δ (Ûn − γV̂n)T ΦŜ(Ûn − γV̂n). (7.12)

As N,m→∞ with asymptotic constant ratio N/m,

M̂SBE(θ̂λ
n)− M̂SBE(θ̂λ

n) a.s−−→ 0.

Proof. Details of the proof can be found in Appendix A.2.

Remark 22. Similarly to the first order-correction factor δ (equation 7.8), the second order-
correction factor ∆̂ arises from the double asymptotic regime since ∆̂→ 0 as N/m→∞.

Remark 23. A comparable proposition is presented by Louart et al. (2018, Theorem 3) for the
training error in supervised learning. It is a special case of Theorem 7.3.2 with γ = 0, where we
learn the reward function Rπ : S × S → R.

An interpretation of terms in M̂SBE(θ̂λ
n) is provided in Chapter 8.

7.4 Asymptotic Mean-Squared Bellman Error

While the empirical MSBE only takes transitions from the dataset Dtrain into account, the true or
population MSBE (equation 6.2) involves all states in S. To extend the convergence results from
the previous section to this case, we require some further notations. Using a decomposition similar

71

Chapter 7. Main Results in High-Dimensional Problems

to equation 6.7, we express ΣXn
and ΣX′

n
as a product of the random feature matrix of the entire

state space ΣS ∈ RN×|S| with Un ∈ R|S|×n and Vn ∈ R|S|×n as

ΣXn =
√
nΣSUn and ΣX′

n
=
√
nΣSVn.

Each column i of
√
nUn is a one-hot vector, where the j-th element equals 1 if the i-th state si

of Xn is Sj , and similarly for
√
nVn and X ′

n. We obtain a decomposition of the transition model
matrix

An = Un(Un − γVn)T .

Using those notations, we can decompose MSBE(θ̂λ
n) as

MSBE(θ̂λ
n) = ∥r̄ + γP πΣT

S θ̂λ
n −ΣT

S θ̂λ
n∥2

Dµπ

= ∥r̄ +
[
γP π − I|S|

]
ΣT

S θλ
n∥2

Dµπ

=
∥∥∥r̄ − 1

m
√

n

[
I|S| − γP π

]
ΣT

S ΣSUnQm(λ)r
∥∥∥2

Dµπ

= ∥r̄∥2
Dµπ

− 2
m

√
n

r̄T Dµπ

[
I|S| − γP π

]
ΣT

S ΣSUnQm(λ)r︸ ︷︷ ︸
=Z2

+
∥∥∥ 1

m
√

n

[
I|S| − γP π

]
ΣT

S ΣSUnQm(λ)r
∥∥∥2

Dµπ︸ ︷︷ ︸
=Z3

.

Similar to the empirical MSBE, we want to show that MSBE(θ̂λ
n) concentrates around EW

[
MSBE(θ̂λ

n)
]
.

Specifically, we want to show that both Z2 and Z3 concentrate around EW [Z2] and EW [Z3],
respectively. Those concentration results can be derived with Lemma 7.2.2, by showing that
1
m

[
I|S| − γP π

]
ΣT

S ΣSUnQm(λ) is uniformly bounded under the operator norm for any random
matrix W in the double asymptotic regime of Assumption 2. Since the empirical transition model
matrix Âm = Ûn(Ûn − γV̂n)T (equation 6.14) is invertible under Assumption 2, we can easily
bound the operator norm of 1

m ΣT
Ŝ ΣŜÛnQm(λ) as

∥∥ 1
m ΣT

Ŝ ΣŜÛnQm(λ)
∥∥ =

∥∥ 1
m Â−1

m Ûn(Ûn − γV̂n)T ΣT
Ŝ ΣŜÛnQm(λ)

∥∥
=
∥∥Â−1

m Ûn [In − λQm(λ)]
∥∥

≤ 1
ξmin

(
1 + λKQ

)
,

where KQ is the uniform bound of Qm(λ) under the operator norm in the double asymptotic regime
(a proof can be found in Appendix A.4). This results unfolds because ∥Â−1

m ∥ = 1
νmin(ÂT

mÂm) ≤
1

νmin(H(Âm)) ≤
1

ξmin
and ∥Ûn∥ ≤ 1. Unfortunately, we do not have such straightforward control on

the operator norm of 1
m ΣT

S ΣSUnQm since An = Un(Un − γVn)T is not invertible until all states
are visited. Furthermore, only a O(

√
m) upper bound can be derived for

∥∥∥ 1√
m

ΣŜ

∥∥∥ from Corol-
lary A.7.1.1. A solution to upper bound the operator norm of 1

m

[
I|S| − γP π

]
ΣT

S ΣSUnQm(λ) is
to use the model-based interpretation of LSTD (Boyan, 1999) with An as discussed in Section 4.4.
In particular, Tsitsiklis and Van Roy (1996) and Nedić and Bertsekas (2003) showed that E [An]→
Dµπ

[
I|S| − γP π

]
as n→∞. The control of the bound on the difference ∥An−Dµπ

[
I|S| − γP π

]
∥

as a function of n was studied by Tagorti and Scherrer (2015). We make the following assumption
on this norm and the number of distinct visited states m.

72

7.4. Asymptotic Mean-Squared Bellman Error

Assumption 3.

• As N,m→∞, we have ∥An −Dµπ [I|S| − γP π]∥ = O
(

1√
m

)
.

• As N,m→∞, we have m
|S| <∞.

With the additional Assumption 3, we can now bound the operator norm of 1
m Dµπ

[
I|S| − γP π

]
ΣT

S ΣSUnQm(λ)
as stated by the following Lemma.

Lemma 7.4.1. For all m, under Assumptions 1, 2 and 3, there exists K > 0 independent of N
and m such that ∥∥∥ 1

m Dµπ [I|S| − γP π]ΣT
S ΣSUnQm(λ)

∥∥∥ ≤ K.

Proof. We have∥∥∥ 1
m Dµπ [I|S| − γP π]ΣT

S ΣSUnQm(λ)
∥∥∥

≤
∥∥∥ 1

m Un(Un − γVn)T ΣT
S ΣSUnQm(λ)

∥∥∥∥+
∥∥∥ 1

m

[
Dµπ [I|S| − γP π]−Un(Un − γVn)T

]
ΣT

S ΣSUnQm(λ)
∥∥∥

≤
∥∥Un

[
In − λQm(λ)

]∥∥︸ ︷︷ ︸
(1)

+
∥∥∥ 1√

m
Un(Un − γVn)T ΣT

S − 1√
m

Dµπ

[
I|S| − γP π

]
ΣT

S

∥∥∥∥∥∥ 1√
m

ΣSUnQm(λ)
∥∥∥︸ ︷︷ ︸

(2)

.

From Lemma A.4.1, we know there exists KQ > 0 such that, for all m, we have ∥Qm(λ)∥ ≤ KQ.
For the left-hand part (1), we have∥∥Un

[
In − λQm

]∥∥ ≤ 1 + λKQ.

From Assumption 3, we have for the first term in the right-hand part (2)∥∥∥ 1√
m

Un(Un − γVn)T ΣT
S − 1√

m
Dµπ

[
I|S| − γP π

]
ΣT

S

∥∥∥
≤
∥∥Un(Un − γVn)T −Dµπ

[
I|S| − γP π

]∥∥∥∥∥ 1√
m

ΣS

∥∥∥
= O (1) .

This result unfolds from Corollary A.7.1.1 since ∥ΣS∥ = O(|S|) = O(m). For the second term in
(2), from Lemma A.4.4, we know there exists a real K ′

Q > 0 such that, for all m, we have∥∥∥ 1√
m

ΣSUnQm(λ)
∥∥∥ =

∥∥∥ 1√
m

ΣŜÛnQm(λ)
∥∥∥ ≤ K ′

Q.

Using Lemma 7.2.2 and Lemma 7.4.1, we can show that MSBE(θλ
n) concentrates around EW

[
MSBE(θλ

n)
]

in the double asymptotic regime. The following theorem provides a deterministic form for the
asymptotic MSBE(θλ

n).

Theorem 7.4.2 (Asymptotic MSBE). Under Assumptions 1, 2, and 3, the deterministic asymp-
totic MSBE is

MSBE(θ̂λ
n) =

∥∥∥r̄ + γ 1√
n

N
m

1
1+δ P πΦSUnQ̄m(λ)r − 1√

n
N
m

1
1+δ ΦSUnQ̄m(λ)r

∥∥∥2

Dµπ

+ ∆, (7.13)

73

Chapter 7. Main Results in High-Dimensional Problems

with second-order correction factor

∆ = 1
n

1
N Tr(ΛP [ΘS Ψ2ΘT

S −2ΘS(Un−γVn)T ΨS +ΨS])
1− 1

N Tr(Ψ2Q̄m(λ)T Ψ1Q̄m(λ))
∥Q̄m(λ)r∥2

Ψ1
, (7.14)

where

ΨS = N
m

1
1+δ ΦS , ΛP = [I|S| − γP π]T Dµπ [I|S| − γP π], and ΘS = ΨSUnQ̄m(λ). (7.15)

As N,m→∞ with asymptotic constant ratio N/m,

MSBE(θ̂λ
n)−MSBE(θ̂λ

n) a.s−−→ 0.

Proof. The proof can be found in Appendix A.3.

Remark 24. Similarly to the empirical M̂SBE(θ̂λ
n) in Theorem 7.3.2, the true MSBE(θ̂λ

n) is also
influenced by correction terms δ and ∆. Note that the correction terms vanish when N/m → ∞
or λ→∞.

Remark 25. When all states have been visited, the common subexpressions in the second-order
correction factors ∆̂ and ∆ dominate so that ∆̂, ∆ become similar (for a proof, see Lemma A.3.7).

An interpretation of terms in MSBE(θ̂λ
n) is provided in Chapter 8.

7.5 Asymptotic Mean-Squared Value Error

In the regularized LSTD with random features, the MSVE defined in equation 3.1 can be rewritten
as

MSVE(θ̂λ
n) =

∥∥V π −ΣT
S θ̂λ

n

∥∥2
Dµπ

. (7.16)

Using a similar approach than for Theorem 7.4.2, we can obtain a similar deterministic form for
the MSVE in the double asymptotic regime of Assumption 2.

Corollary 7.5.0.1 (Asymptotic MSVE). Under Assumptions 1, 2, and 3, the deterministic asymp-
totic MSVE is

MSVE(θ̂λ
n) =

∥∥∥V π − 1√
n

N
m

1
1+δ ΦSUnQ̄m(λ)r

∥∥∥2

Dµπ

+ ∆′, (7.17)

with second-order correction factor

∆′ = 1
n

1
N Tr(Dµπ [ΘS Ψ2ΘT

S −2ΘS(Un−γVn)T ΨS +ΨS])
1− 1

N Tr(Ψ2Q̄m(λ)T Ψ1Q̄m(λ))
∥Q̄m(λ)r∥2

Ψ1
. (7.18)

As N,m, d→∞ with asymptotic constant ratio N/m,

MSVE(θ̂λ
n)−MSVE(θ̂λ

n) a.s−−→ 0.

74

7.5. Asymptotic Mean-Squared Value Error

Proof. Using Dµπ = [Im− γP π]T Dµπ D−1
µπ [Im− γP π]−1T Dµπ [Im− γP π]−1D−1

µπ Dµπ [Im− γP π]
and a with similar proof than for Theorem 7.4.2, we find Corollary 7.5.0.1.

Remark 26. Similarly to M̂SBE(θ̂λ
n) in Theorem 7.3.2 and MSBE(θ̂λ

n) in Theorem 7.4.2, the
MSVE(θ̂λ

n) is also influenced by the correction terms δ and ∆′. Note that the correction terms
vanish when N/m→∞ or λ→∞.

An interpretation of terms in MSVE(θ̂λ
n) is provided in the following chapter.

75

Chapter 8

Implicit Regularization

Random feature models are efficient parametric approximations of kernel methods (Rahimi and
Recht, 2007). In this chapter, we investigate the connections between regularized kernel LSTD and
regularized LSTD using random features in the double asymptotic regime of Assumption 2. We
begin in Section 8.1 by reviewing kernel methods, their corresponding Mercer feature space, and
the regularized kernel LSTD. In Section 8.2, we revisit and rewrite the asymptotic results found
in Chapter 7 in the Mercer feature space approximated by the random features. Reformulation
of the asymptotic error functions of the regularized LSTD with random features are summarized
in Theorem 8.3.1 and discussed in Section 8.3. In particular, we show how this reformulation
provides a better understanding of correction terms that arise from the double asymptotic regime
and highlights an implicit regularization induced by the model complexity N/m of Assumption 2.

8.1 Kernel Methods in Reinforcement Learning

Kernel methods are a class of algorithms in machine learning (Schölkopf and Smola, 2002). The
term “kernel methods” comes from their use of kernel functions. These functions allow the methods
to work in an implicit high-dimensional feature space without the need to compute the data’s
coordinates in the implicit feature space. Instead, kernel functions are similarity functions, i.e.,
they exploit similarities between all data pairs in the high-dimensional feature space to perform a
wide range of tasks, such as classification, clustering, or principal component analysis.

8.1.1 The Reproducing Kernel Hilbert Space

Definition 8.1.1 (Reproducing Kernel Hilbert Space). Let C be a nonempty set and H = {f, f :
C → R} be a Hilbert space of functions. The Hilbert space H is a Reproducing Kernel Hilbert Space
(RKHS) equipped with the inner product ⟨·, ·⟩H if there exists a function K : C × C → R, called
reproducing kernel, such that

• ∀f ∈ H,∀x ∈ C, we have
⟨K(·, x), f⟩H = f(x), (8.1)

• K spans H, i.e., H = span{K(x, ·) | x ∈ C}, where X denotes the completion of the set X .

76

8.1. Kernel Methods in Reinforcement Learning

Let K : C × C → R be the reproducing kernel of the RKHS
(
H, ⟨·, ·⟩H

)
. For all x, y ∈ C, we have

from the reproducing property (equation 8.1)

K(x, y) = ⟨K(·, x),K(·, y)⟩H (8.2)

as K(x, ·),K(y, ·) ∈ H. From equation 8.2, we deduce that K is a positive-definite kernel.

Definition 8.1.2 (Positive-Definite Kernel). A positive-definite kernel is a symmetric function
K : C × C → R, such that for any integer n ≥ 1 and for any x1, . . . , xn ∈ C, the Gram kernel
matrix K ∈ Rn×n with entries Kij = K(xi, xj) is positive semi-definite (PSD).

According to equation 8.2, all reproducing kernels are positive-definite kernels. The converse is
also true, as stated in the following theorem.

Theorem 8.1.1 (Moore-Aronszajn (Schölkopf and Smola, 2002)). For any positive-definite kernel
K : C × C → R, there exists a unique reproducing kernel Hilbert space (RKHS) (H, ⟨·, ·⟩H) with
reproducing kernel K.

Linear parametric representations of functions are a particular case of RKHS. Consider
{

σi(·)
}N

i=1
the basis of features used in equation 3.8. The associated Hilbert space H = span

{{
σi(·)

}N

i=1 | x ∈
C
}

with the euclidean dot product ⟨·, ·⟩ forms a subset of RN . In the Hilbert space H, each function
f ∈ H can be uniquely represented by a parameter vector θ ∈ RN . Furthermore, the following
reproducing property holds for all x ∈ C

f(x) =
〈
θ,σ(x)

〉
=
〈
f,K(·, x)

〉
,

for the linear positive-definite kernel K : C × C → R, (x, y) 7→
〈
σ(x),σ(y)

〉
. Thus, the space H of

linear parametric representations is a RKHS whose reproducing kernel is K.

In any RKHS H, the reproducing property can be interpreted as an extension of the linear pa-
rameterization. Specifically, for all f ∈ H and for all x ∈ C, the linear parameterization expression
f(x) =

〈
θ,σ(x)

〉
can be replaced by

f(x) = ⟨f,K(·, x)⟩H = ⟨f,σ(x)⟩H, (8.3)

where σ(x) = K(·, x) depicts the feature map of x in H. In equation 8.3, the representation of f
is non-parametric, meaning that it is not represented by a vector θ ∈ RN , but directly by being
an element of H, which may be a possibly infinite-dimensional Hilbert space. As indicated by
equation 8.2, any positive-definite kernel K can be expressed using the inner product ⟨·, ·⟩H and
the feature map σ : x 7→ K(·, x) as

K(x, y) = ⟨σ(x),σ(y)⟩H, ∀x, y ∈ C.

The representation of K via a feature map and the inner product ⟨·, ·⟩H is not unique. The following
theorem represents K in terms of the Mercer feature map and the inner product ⟨·, ·⟩H.

Theorem 8.1.2 (Mercer Theorem (Schölkopf and Smola, 2002)). Let C be a real nonempty compact
set equipped with a positive Borel measure µ and H = {f, f : C → R} be a Hilbert space of functions.
Let K ∈ L2(C × C, µ) be a positive-definite kernel such that∫

C

∫
C
K(x, y)2µ(x)µ(y)dxdy <∞

77

Chapter 8. Implicit Regularization

and its associated Hilbert-Schmidt integral operator

TK : L2(C, µ)→ L2(C, µ)

TK(f)(x) =
∫

C
K(x, x′)f(x)µ(x)dx.

Then, there is a set of orthonormal bases {φi}M
i=1 of L2(C, µ) consisting of eigenfunctions of TK

associated with the non-decreasing sequence of non-negative eigenvalues {νi}M
i=1

TK(ψi)(x) =
∫

C
K(x, y)φi(x)dy = νiφi(x).

K can be represented for all x, y ∈ C as

K(x, y) =
M∑

i=1
νiφi(x)φi(y). (8.4)

Either M is an integer or infinite; in the latter case, the series converges absolutely and uniformly
for almost all (x, y).

Let
{
ωi(·) = √νiφi(·)

}M

i=1 be the rescaled orthogonal eigenfunction basis of L2(C, µ). Equation 8.4
can be rewritten as

K(x, y) =
〈
ω(x),ω(y)

〉
H, ∀x, y ∈ C,

for the feature map ω : C → H, x 7→
(
ωi(x)

)M

i=1. In the literature, the feature map ω : C → H is
referred to as the Mercer feature map.

SinceH may be an infinite-dimensional Hilbert space, designing function approximation algorithms
considering the representation of H with feature maps is challenging for practical computations.
However, as detailed in the following section, this representation is never explicitly considered, and
many computations only involve evaluations of the kernel function. This phenomenon is called the
“kernel trick”.

8.1.2 Regularized Kernel LSTD

Like their parameterized counterparts, non-parametric TD learning methods are value-based algo-
rithms. The objective of non-parametric TD learning methods is to approximate the value function
V π : S → R of a MRP (S, Pπ, Rπ, µ0) with an element V̂ in a RKHS (H, ⟨·, ·⟩H) by minimizing
the Mean-Squared Projected Bellman error (equation 3.4)

MSPBE(V) = Es∼µπ

[(
ΠT π

V V (s)− V (s)
)2
]
,

where Π is the projection operator into the RKHS H defined as

Πf = min
f ′∈H

Es∼µπ

[
f ′(s)− f(s)

]
,

which projects arbitrary value functions onto the RKHS H. Since the transition function Pπ is
assumed unknown, non-parametric TD learning methods try to minimize an empirical version of
the Mean-Squared Bellman error on n transitions Dtrain :=

{
(si, ri, s

′
i)
}n

i=1 consisting of states,
rewards, and next-states drawn from the MRP, where s′

i ∼ Pπ(si, ·) and ri = Rπ(si, s
′
i). In

78

8.1. Kernel Methods in Reinforcement Learning

particular, their objective is to find V̂n ∈ H that minimizes the following training error

Etrain(V) = 1
n

n∑
i=1

(
ri + γV (s′

i)− V (si)
)2 + λn∥V ∥2

H

= M̂SBE(V) + λn∥V ∥2
H,

(8.5)

where M̂SBE(V) = 1
n

∑n
i=1
(
ri + γV (s′

i)− V (si)
)2 is the empirical MSBE defined on Dtrain. The

quadratic regularization term in equation 8.5 is crucial to apply the following representer theorem
and guarantees the existence of a specific solution V̂n ∈ H.

Theorem 8.1.3 (Representer Theorem (Schölkopf and Smola, 2002)). Let K : C × C → R be
positive-definite real-value kernel on a nonempty set C with a corresponding RKHS

(
H, ⟨, ·, ·⟩H

)
.

Let Dtrain =
{

(xi, yi) ∈ C × R
}n

i=1 be training samples, a strictly increasing real-valued function
g : [0,∞) → R, and an arbitrary error function Etrain : (C × R)n → R ∪∞. Then any minimzer
f∗ ∈ H of the regularized risk

min
f∈H

Etrain
(
(x1, y1), . . . , (xn, yn)

)
+ g
(
∥f∥H

)
,

admits a representation of the form

f∗(·) =
n∑

i=1
αiK(·, xi),

for some α ∈ Rn.

Let K : S × S → R be the reproducing kernel of the RKHS H. From the representer theorem,
solving equation 8.5 gives the regularized kernel LSTD solution (Duan et al., 2021)

V̂n(s) = k(s)
[
K(Xn,Xn)− γK(X ′

n,Xn) + λnIn

]−1
r, ∀s ∈ S; (8.6)

where K(Xn,Xn),K(X ′
n,Xn) ∈ Rn×n are defined for all i, j ∈ [n] as[

K(Xn,Xn)
]

ij
= K(si, sj) and

[
K(X ′

n,Xn)
]

ij
= K(s′

i, sj);

and k(s) ∈ Rn is defined for all s ∈ S as[
k(s)

]
i

= K(s, si), ∀i ∈ [n].

Using auxiliary matrices Ûn, V̂n ∈ Rm×n of equation 6.7, we can rewrite equation 8.6 as

V̂n(s) = 1√
n

k̂(s)Ûn

[
(Ûn − γV̂n)T KŜÛn + λIn

]−1
r, ∀s ∈ S, (8.7)

where KŜ ∈ Rm×m is the kernel Gram matrix on the set of distinct visited states Ŝ and k̂ : S → Rm

is defined, for all s ∈ S, as [
k̂(s)

]
i

= K(s, Ŝi), ∀i ∈ [m].

Note that the invertibility of the matrix
[
(Ûn−γV̂n)T KŜÛn +λIn

]
is guaranteed under Assump-

tion 2 (see Appendix A.5 for a formal proof).

79

Chapter 8. Implicit Regularization

8.2 Reformulation of the Main Results

In Chapter 7 — for the solution θ̂λ
n of the regularized LSTD with random features on Dtrain

(equation 6.12) — we have shown under Assumptions 1, 2 and 3 that

M̂SBE(θ̂λ
n) a.s−−→ M̂SBE(θ̂λ

n) (Theorem 7.3.2),
MSBE(θ̂λ

n) a.s−−→ MSBE(θ̂λ
n) (Theorem 7.4.2),

MSVE(θ̂λ
n) a.s−−→ MSVE(θ̂λ

n) (Corollary 7.5.0.1);

where

M̂SBE(θ̂λ
n) = 1

n

∥∥∥∥r − 1√
n

N
m

1
1+δ

(
Ûn − γV̂n

)T ΦŜÛnQ̄m(λ)r
∥∥∥∥2

+ ∆̂ (equation 7.10),

MSBE(θ̂λ
n) =

∥∥∥r̄ − 1√
n

N
m

1
1+δ

[
I|S| − γP π

]
ΦSUnQ̄m(λ)r

∥∥∥2

Dµπ

+ ∆ (equation 7.13),

MSVE(θ̂λ
n) =

∥∥∥V π − 1√
n

N
m

1
1+δ ΦSUnQ̄m(λ)r

∥∥∥2

Dµπ

+ ∆′ (equation 7.17).

Each asymptotic error function is expressed as the sum of two terms. In Section 8.2.1, we show
that the first term can be interpreted as the error function of a regularized kernel LSTD with an
implicit l2-regularization term λ̃, depending on the l2-regularization parameter λ and the model
complexity N/m. In Section 8.2.3, we reformulate the second-order correction factors ∆̂,∆, and
∆′ into a unified expression in the Mercer feature space induced by the regularized kernel LSTD.

8.2.1 Connection with the Regularized Kernel LSTD

Asymptotic error functions found in Chapter 7 depend on the Gram feature matrices ΦŜ and ΦS

of the continuous kernel function Φ : S × S → R defined for all states s, s′ ∈ S as

Φ(s, s′) = Ew

[
σ(wT s)σ(wT s′)

]
. (8.8)

We can observe that the first terms in M̂SBE(θ̂λ
n),MSBE(θ̂λ

n) and MSVE(θ̂λ
n) are equivalent to the

empirical MSBE, MSBE, and MSVE of the regularized kernel LSTD solution V̂ λ̃
n on Dtrain defined

for all states s ∈ S as

V̂ λ̃
n (s) = 1√

n
ϕ̂(s)Ûn

[
(Ûn − γV̂n)T ΦŜÛn + λ̃In

]−1
r; (8.9)

where
λ̃ = λm

N (1 + δ); (8.10)

and ϕ̂ : S → Rm is mapping from states to vectors in Rm, where each element i in [m] is defined
as [

ϕ̂(s)
]

i
= Φ(s, Ŝi).

Asymptotic error functions found in Chapter 7 can be thus rewritten with V̂ λ̃
n as

M̂SBE(θ̂λ
n) = M̂SBE

(
V̂ λ̃

n

)
+ ∆̂,

MSBE(θ̂λ
n) = MSBE

(
V̂ λ̃

n

)
+ ∆,

80

8.2. Reformulation of the Main Results

MSVE(θ̂λ
n) = MSVE

(
V̂ λ̃

n

)
+ ∆′.

We will find it convenient to work with the Mercer map of the kernel Φ(·, ·) to simplify expressions
of second-order correction factors.

8.2.2 Reformulation of the Regularized Kernel LSTD in the Mercer Fea-
ture Space

From the Mercer theorem (Theorem 8.1.2), under the assumption that the state space S is compact,
the continuous kernel Φ(·, ·) can be represented for all states s, s′ ∈ S as

Φ(s, s′) =
M∑

i=1
νiφi(s)φi(s′) =

M∑
i=1

ωi(s)ωi(s′);

where {νi}M
i=1, {φi(·)}M

i=1, and {ωi(·) = √νiφi(·)}M
i=1 are the eigenvalues, eigenfunctions, and

rescaled eigenfunctions of the Hilbert-Schmidt integral operators TΦ : L2(S, µπ)→ L2(S, µπ), f 7→
TΦ(f)(s′) =

∫
Rd Φ(s, s′)f(s)µπ(s)ds. Usually, M is infinite. As {ωi(·) = √νiφi(·)}M

i=1 forms an
orthogonal basis in L2(S, µπ), we will find it convenient to work on a vector representation of
functions in L2(S, µπ) with the Mercer feature map

ω : S → RM

s 7→
[
ω1(s), . . . , ωM (s)

]T
.

For any state matrix A ∈ Rd×p, we denote by ΩA ∈ RM×p the Mercer feature matrix of A so that
[ΩA]ij = ωi(Aj), for Aj the jth column of A. With those new notations, we can decompose ΦŜ
and ΦS as

ΦŜ = ΩT
Ŝ ΩŜ and ΦS = ΩT

S ΩS .

By using the Mercer feature map, we can write the vector representation of the regularized kernel
LSTD solution V̂ λ̃

n on Dtrain (equation 8.9) as

V̂ λ̃
n (s) = ω(s)T θ̄n(λ̃), ∀s ∈ S;

where
θ̄n(λ̃) = 1√

n

[
ΩŜÛn(Ûn − γV̂n)T ΩT

Ŝ + λ̃In

]−1ΩŜÛnr (8.11)

is the vector representation of V̂ λ̃
n in the Mercer feature space. Under Assumption 2 and from the

model-based interpretation of θ̄n(λ̃) (see Remark 11), we can rewrite θ̄n(λ̃) as

θ̄n(λ̃) =
[
ΩŜÛn(Ûn − γV̂n)T ΩT

Ŝ + λ̃In

]−1ΩŜÛnÛT
n

ˆ̄r, (8.12)

where ˆ̄ri =
∑m

j=1[P̂n]ijRπ(Ŝi, Ŝj), for all i ∈ [m]. The value function Vn : Ŝ → R of the empirical
MRP (Ŝ, P̂n, R

π, µ0) is the unique-fixed point of the Bellman equation (equation 4.9) and its vector
form Vn ∈ Rm on Ŝ is defined as

Vn =
[
Im − γP̂n

]−1 ˆ̄r =
[
Im − γ

[
ÛnÛT

n

]−1
ÛnV̂ T

n

]−1 ˆ̄r.

81

Chapter 8. Implicit Regularization

Putting Vn into equation 8.12 gives

θ̄n(λ̃) =
[
ΩŜÛn(Ûn − γV̂n)T ΩT

Ŝ + λ̃In

]−1ΩŜÛnÛT
n

[
Im − γ

[
ÛnÛT

n

]−1
ÛnV̂ T

n

]
Vn

=
[
ΩŜÛn(Ûn − γV̂n)T ΩT

Ŝ + λ̃In

]−1ΩŜÛn(Ûn − γV̂n)T Vn.
(8.13)

Since the eigenbasis {ωi(·)}M
i=1 forms an orthogonal basis of L2(S, µπ), we can rewrite the contin-

uous extension V S
n : S → R on the state space S of Vn : Ŝ → R in its vector form as

V S
n (s) = ω(s)T θ̄∗

n, ∀s ∈ S, (8.14)

where θ̄∗
n ∈ RM . Using this vector from, equation 8.12 can be rewritten as

θ̄n(λ̃) = Π(λ̃)θ̄∗
n,

where Π(λ̃) ∈ RM×M is the hat matrix1 defined as

Π(λ̃) =
[
ΩŜÛn(Ûn − γV̂n)T ΩT

Ŝ + λ̃IM

]−1ΩŜÛn(Ûn − γV̂n)T ΩT
Ŝ . (8.15)

Remark 27. Note that for λ̃ = 0, we have Π(0) = IM and V̂ λ̃
n (s) = ω(s)T θ∗

n = V S
n (s), for

all states s ∈ S. In particular, for all states s ∈ Ŝ, we have V̂ λ̃
n (s) = V S

n (s) = Vn(s), which
corresponds to the value function Vn : Ŝ → R of the empirical MRP (Ŝ, P̂n, R

π, µ0).

Remark 28. The hat matrix Π(λ) can be interpreted for the regularized LSTD as an extension
of the reconstruction operator of Jacot et al. (2020b) or as the learning transfer matrix of Simon
et al. (2023a) proposed in ridge regression.

8.2.3 Reformulation of the Second-Order Correction Factors

Using the Mercer map of the kernel Φ(·, ·), we can reformulate the following second-order correction
factors (found in Chapter 7)

∆̂ = λ2

n

1
N Tr(Q̄m(λ)Ψ2Q̄m(λ)T)

1− 1
N Tr(Ψ2Q̄m(λ)T Ψ1Q̄m(λ))

∥Q̄m(λ)r∥2
Ψ1

(equation 7.11),

∆ = 1
n

1
N Tr(ΛP [ΘS Ψ2ΘT

S −2ΘS (Un−γVn)T ΨS +ΨS])
1− 1

N Tr(Ψ2Q̄m(λ)T Ψ1Q̄m(λ))
∥Q̄m(λ)r∥2

Ψ1
(equation 7.14)

∆′ = 1
n

1
N Tr(Dµπ [ΘS Ψ2ΘT

S −2ΘS(Un−γVn)T ΨS +ΨS])
1− 1

N Tr(Ψ2Q̄m(λ)T Ψ1Q̄m(λ))
∥Q̄m(λ)r∥2

Ψ1
(equation 7.18).

Indeed, as detailed in Appendix A.7.1, we can show that

∆̂ = ∆̄
(
(Ûn − γV̂n)T ΩT

Ŝ

)
,

∆ = ∆̄
(
D

1
2
µπ

[
I|S| − γP π

]
ΩT

S
)
,

∆′ = ∆̄
(
D

1
2
µπ ΩT

S
)
;

where ∆̄(M) is defined, for any Mercer feature matrix M ∈ Rp×M of dimension p > 0, as

∆̄(M) = 1
n

λ̃
λ

1
N

∥∥Π(λ̃)θ̄∗
n

∥∥2

1− 1
N

∥∥Π(λ̃)
∥∥2

F

∥∥M
[
IM −Π(λ̃)

]∥∥2
F
.

1The notion of hat matrix was defined for the first time in ridge regression in (Hoaglin and Welsch, 1978)

82

8.3. Interpretation

Second-order correction factors ∆̂,∆ and ∆′ share a similar expression defined by ∆̄(·). In partic-
ular, they depend on the hat matrix Π(λ̂) (equation 8.15) of the regularized kernel LSTD solution
V̂ λ̃

n on Dtrain (equation 8.9) and on its vector representation θ̄n(λ̃) = Π(λ̃)θ∗
n in the Mercer feature

space.

8.3 Interpretation

The following theorem summarizes the reformulation of results found in Chapter 7 in the Mercer
feature space described in Section 8.2.2.

Theorem 8.3.1. Under Assumptions 1, 2 and 3, we define the implicit l2-regularization parameter

λ̃ = λm(1+δ)
N . (8.16)

and the continuous kernel function Φ : S × S → R defined as

Φ(s, s′) = Ew

[
σ(wT s)σ(wT s′)

]
, ∀s, s′ ∈ S.

For the kernel Φ(·, ·) and the l2-regularization parameter λ̃, the regularized kernel LSTD solution
V̂ λ̃

n on Dtrain can be represented in its vector form with the Mercer feature map ω : S → RM as

V̂ λ̃
n (s) = ω(s)T θ̄n(λ̃), ∀s ∈ S;

where ω(s) is the feature vector representation of the state s in the Mercer feature space; and
θ̄n(λ̃) = Π(λ̃)θ̄∗

n ∈ RM is the vector representation of V̂ λ̃
n in the Mercer feature space (equa-

tion 8.15), which depends on the vector representation θ̄∗
n of the continuous extension of the value

function of the empirical MRP induced by Dtrain (equation 8.14) in the Mercer feature space.

As N,m→∞, with asymptotic constant ratio N/m, we have

M̂SBE(θ̂λ
n) a.s−−→ M̂SBE

(
V̂ λ̃

n

)
+ ∆̄

(
(Ûn − γV̂n)T ΩT

Ŝ

)
,

MSBE(θ̂λ
n) a.s−−→ MSBE

(
V̂ λ̃

n

)
+ ∆̄

(
D

1
2
µπ

[
I|S| − γP π

]
ΩT

S
)
,

MSVE(θ̂λ
n) a.s−−→ MSVE

(
V̂ λ̃

n

)
+ ∆̄

(
D

1
2
µπ ΩT

S
)
;

where ∆̄(·) is the second-order function defined for any Mercer feature matrix M ∈ Rp×M of
dimension p > 0, as

∆̄(M) = 1
n

λ̃
λ

1
N

∥∥Π(λ̃)θ̄∗
n

∥∥2

1− 1
N

∥∥Π(λ̃)
∥∥2

F

∥∥M
[
IM −Π(λ̃)

]∥∥2
F
.

The behavior of the implicit l2-regularization parameter λ̃ defined in equation 8.16 with respect
to the model complexity N/m and the l2-regularization parameter is described by the following
lemma.

Lemma 8.3.2. The implicit l2-regularization λ̃ defined in equation 8.16 satisfies the following
properties:

• λ̃ is a decreasing function with respect to N/m,

83

Chapter 8. Implicit Regularization

• λ̃→ 0 as N/m→∞,

• λ̃
λ = 1

N
m − Tr(Π(λ̃))

m

is a decreasing function with respect to λ,

• λ̃
λ →

m
N as λ→∞.

The following remarks attempt to provide an interpretation of the results of the above Lemma and
Theorem.

Remark 29. In the asymptotic N -limit, where N/m → ∞, we find that λ̃ → 0 and ∆̄
(
(Ûn −

γV̂n)T ΩT
Ŝ

)
, ∆̄
(
D

1
2
µπ

[
I|S| − γP π

]
ΩT

S
)
, ∆̄
(
D

1
2
µπ ΩT

S
)
→ 0. In particular, we have

M̂SBE(θ̂λ
n) a.s−−→ M̂SBE

(
V S

n

)
= 0,

MSBE(θ̂λ
n) a.s−−→ MSBE

(
V S

n

)
,

MSVE(θ̂λ
n) a.s−−→ MSVE

(
V S

n

)
,

where V S
n : S → R is the continuous extension of the value function Vn : Ŝ → R in S (equa-

tion 8.14) of the empirical MRP induced by Dtrain. We refind the well-known result that random
feature models can be used as efficient parametric approximations of kernel methods in the asymp-
totic N -limit (Rahimi and Recht, 2007; Rudi and Rosasco, 2017). Note also that in the asymptotic
N -limit, we perfectly interpolate the training data since M̂SBE(θ̂λ

n) a.s−−→ 0.

Remark 30. In the double asymptotic regime of Assumption 2, the model complexity N/m induces
an implicit regularization λ̃, which prevents the model from perfectly interpolating the training data.
The implicit regularization λ̃ depends on the model complexity N/m and is especially high in the
under-parameterized regime for low model complexities N/m. As the model complexity N/m in-
creases, the implicit regularization λ̃ decreases, and the random feature model better interpolates
training data. A similar implicit regularization was observed in supervised learning for ridge regres-
sion with random features in double asymptotic regimes (Jacot et al., 2020a; Cheng and Montanari,
2022; Bach, 2024).

Remark 31. In the literature, the quantity Tr(Π(λ̃)) =
∑m

i=1
νi(ÂmΦŜ)

νi(ÂmΦŜ)+λ̃
is usually referred to

as the number of degrees of freedom or the effective dimension of kernel methods (Hastie et al.,
2009; Caponnetto and De Vito, 2007). Indeed, Tr(Π(λ̃)) describes how many dimensions are
“effectively” used by the regularized kernel LSTD and defines its model complexity. The degrees of
freedom Tr(Π(λ̃)) consumed by the regularized kernel LSTD estimator is monotone decreasing in
λ̃. Note that Tr(Π(λ̃)) = m when λ̃ = 0 (no regularization) and Tr(Π(λ̃))→ 0 as λ̃→∞. In our
setting, since the implicit l2-regularization parameter is a decreasing function with respect to the
model complexity N/m, the number of degrees of freedom Tr(Π(λ̃)) consumed by the regularized
kernel LSTD estimator is monotone decreasing in N/m. Consequently, models with low model
complexities N/m induce higher constraints on the regularized kernel LSTD predictor, resulting in
poorer performance. The oppositive behavior occurs for models with high model complexities N/m.
Furthermore, note that Tr(Π(λ̃)) ≤ min(N,m) since λ̃

λ ≥ 0. This shows that choosing a number of
features N automatically lowers the effective dimension of the related kernel method. Finally, we
can show that in the ridgeless under-parameterized regime (when λ → 0), the effective dimension
Tr(Π(λ̃))→ N .

Remark 32. In analogy with supervised learning (Hsu et al., 2012; Bach, 2024), the term
∥∥Π(λ̃)

∥∥2
F

=
Tr
(
Π(λ̃)T Π(λ̃)

)
=
∑M

i=1 σi(Π(λ̃))2, where σi(Π(λ̃))2 depicts the i-th singular value of Π(λ̃), can

84

8.3. Interpretation

be related to the second-degree of freedom of the regularized kernel LSTD. This quantity is also
indicative of the number of dimensions or degrees of freedom that are “effectively” used by the
regularized kernel LSTD.

85

Chapter 9

Numerical Experiments

In this chapter, we present our experimental results and show our theory closely matches empirical
results for regularized LSTD on a range of both toy and small real-world environments, where
both the number of states visited m and the number of parameters N are fixed, but for which our
asymptotic predictions still gives accurate predictions. In Section 9.1, we describe the experimental
setup for our experiments. In Section 9.2, we discuss the behavior of the correction factor δ from
Theorem 7.2.3 with respect to the model complexity N/m and the l2-regularization parameter λ.
In particular, we highlight a sharp decrease of the correction factor δ around N/m = 1 for small
l2-regularization parameters. We experimentally associate this sharp decrease with the double
descent phenomenon observed for the MSBE and the MSVE in Section 9.3, which results in a peak
in the MSBE and MSVE around N/m = 1. From our experiments, we also identify two distinct
regimes: an under-parameterized regime where N/m < 1 and an over-parameterized regime where
N/m > 1. Each regime exhibits different behaviors in the empirical MSBE, the true MSBE, and
the MSVE. In Section 9.4, we empirically study the effect of the number of distinct unvisited states
on the double descent phenomenon. In Section 9.5, we investigate the influence of the discount
factor on the double descent phenomenon.

9.1 Experimental Setup

For computation, we use the recursive regularized LSTD (see Section 4.4) implementation of Dann
et al. (2014) on three MRPs: a synthetic ergodic MRP (500 states); a gridworld MRP (400 states)
obtained from a random policy in a 20 × 20 gridworld (Ahmed, 2018); and a Taxi-v3 MRP (356
states) obtained from a learned policy acting in the OpenAI gym Taxi-v3 environment (Towers
et al., 2023). In all MRPs, states are described by d-Gaussian vectors where d = 50. For the
random features of equation 6.5, W is drawn from a Gaussian distribution, and σ(·) = max(0, ·)
is the ReLU activation function. For all experiments, Dtrain := {(si, ri, s

′
i)}n

i=1 is derived from
a sample path of n transitions with the same seed (42). For each instance i, we sample random
features using the seed i. The following Figures in this section show averages over 30 instances.

86

9.2. Correction Factor δ

9.2 Correction Factor δ

Correction Factor δ vs Model Complexity. The correction factor δ (equation 7.8) plays a
key role in the asymptotic errors studied in Section 7 and 8. Figure 9.1 shows δ as a function of the
model complexity N/m and for different values of the l2-regularization parameter λ. It confirms
that, as stated in Remark 17 and Lemma A.6.3, δ is a decreasing function with respect to the
model complexity N/m. Furthermore, for a small λ, we observe a sharp decrease near N/m = 1.
E.g., for λ = 10−9, δ falls from an order of 107 when N/m < 1 to an order of 101 when N/m > 1.
For larger values of λ, the correction factor δ decreases more smoothly and has smaller values.

0 0.5 1 1.5 2
100

104

108

λ = 10−9

N/m

δ

0 0.5 1 1.5 2
100

102

104 λ = 10−6

N/m

0 0.5 1 1.5 2
100

101
λ = 10−3

N/m

(a) Synthetic Ergodic MRP

0 0.5 1 1.5 2
100

104

108

λ = 10−9

N/m

δ

0 0.5 1 1.5 2
100

102

104 λ = 10−6

N/m

0 0.5 1 1.5 2

100

101

λ = 10−3

N/m

(b) Gridworld MRP

0 0.5 1 1.5 2
100

104

108

λ = 10−9

N/m

δ

0 0.5 1 1.5 2
100

102

104 λ = 10−6

N/m

0 0.5 1 1.5 2

100

101

λ = 10−3

N/m

(c) Taxi-v3 MRP

Figure 9.1: The correction factor δ is a decreasing function of the number of pa-
rameters N . For small l2-regularization parameter λ, we observe a sharp decrease
near N/m = 1, for m distinct visited states. As λ increases, the function becomes
smoother and smaller (note the different scales of the y-axis). δ is computed with equa-
tion 7.8 in synthetic ergodic, Girdworld and Taxi-v3 MRPs with γ = 0.95,m = 499, n = 3000,
γ = 0.95,m = 386, n = 5000 and γ = 0.95,m = 310, n = 5000, respectively.

87

Chapter 9. Numerical Experiments

Correction Factor δ vs L2-Regularization Parameter λ. Figure 9.2 depicts δ as a function
of the l2-regularization parameter for different model complexities N/m. It confirms that δ de-
creases monotonically as the l2-regularization parameter λ increases, as shown in Remark 17 and
Lemma A.6.4. As the model complexity N/m increases, we observe a larger initially flat region
and smaller values of δ. Such behavior indicates that the impact of the l2-regularization parameter
λ becomes less significant as the model complexity N/m increases.

10−9 10−3 103
10−4

101

106
c = 0.25

λ

δ

10−9 10−3 103
10−4

101

106

c = 0.5

λ

10−9 10−3 103
10−4

10−1

102

c = 1

λ

10−9 10−3 103
10−4

10−2

100

c = 2

λ

(a) Synthetic Ergodic MRP

10−9 10−3 103
10−4

101

106
c = 0.25

λ

δ

10−9 10−3 103
10−4

101

106

c = 0.5

λ

10−9 10−3 103
10−4

10−1

102

c = 1

λ

10−9 10−3 103
10−4

10−2

100

c = 2

λ

(b) Gridworld MRP

10−9 10−3 103
10−4

101

106
c = 0.25

λ

δ

10−9 10−3 103
10−4

101

106

c = 0.5

λ

10−9 10−3 103
10−4

10−1

102

c = 1

λ

10−9 10−3 103
10−4

10−2

100

c = 2

λ

(c) Taxi-v3 MRP

Figure 9.2: The correction factor δ is a decreasing function of the l2-regularization
parameter λ. As the model complexity c = N/m increases, the impact of regularization
parameter λ becomes less significant (note the different scales of the y-axis). δ is
computed with equation 7.8 in synthetic ergodic, Girdworld and Taxi-v3 MRPs with γ = 0.95,m =
499, n = 3000, γ = 0.95,m = 386, n = 5000 and γ = 0.95,m = 310, n = 5000, respectively.

9.3 The Double Descent Phenomenon

The Double Descent Phenomenon in the MSBE. As a consequence of the sharp transition
of the correction factor δ for small l2-regularization parameters λ depicted in Figure 9.1, Theo-
rem 7.3.2 and Theorem 7.4.2 predict a change in behavior of the empirical M̂SBE and true MSBE
near N/m = 1. Figure 9.3 shows both M̂SBE and MSBE as a function of the model complexity
N/m with different l2-regularization penalties λ. Although the equations for M̂SBE and MSBE
were derived for the asymptotic regime N,m→∞ defined in Assumption 2, we observe an almost
perfect match with the numerically evaluated original definitions in equation 6.8 and equation 6.2.
From the experiments, we can identify two distinct regimes: the under-parameterized regime where

88

9.3. The Double Descent Phenomenon

0 0.5 1 1.5 2
10−1

100

λ = 10−9

N/m

M
SB

E

0 0.5 1 1.5 2
10−1

100

λ = 10−6

N/m

0 0.5 1 1.5 2
10−1

100

λ = 10−3

N/m

(a) Synthetic Ergodic MRP

0 0.5 1 1.5 2
10−2

10−1

100

101

λ = 10−9

N/m

M
SB

E

0 0.5 1 1.5 2
10−2

10−1

100

101

λ = 10−6

N/m

0 0.5 1 1.5 2
10−2

10−1

100

101

λ = 10−3

N/m

(b) Gridworld MRP

0 0.5 1 1.5 2
100

101

102
λ = 10−9

N/m

M
SB

E

0 0.5 1 1.5 2
100

101

102
λ = 10−6

N/m

0 0.5 1 1.5 2
100

101

102
λ = 10−3

N/m

(c) Taxi-v3 MRP

Figure 9.3: The double descent phenomenon occurs in the true MSBE (red) of regular-
ized LSTD, peaking around the interpolation threshold (N/m = 1 for N parameters, m
distinct visited states) when the empirical M̂SBE (blue) vanishes. It diminishes as the
l2-regularization parameter λ increases. Continuous lines indicate the theoretical values from
Theorem 7.3.2 and Theorem 7.4.2, the crosses are numerical results averaged over 30 instances
after the learning with regularized LSTD in synthetic ergodic, Gridworld and Taxi-v3 MRPs with
γ = 0.95,m = 499, n = 3000; γ = 0.95,m = 386, n = 5000; and γ = 0.95,m = 310, n = 5000,
respectively.

89

Chapter 9. Numerical Experiments

N/m < 1 and the over-parameterized regime where N/m > 1. For small l2-regularization pa-
rameters λ, the empirical M̂SBE is close to its minimum at the interpolation threshold. At the
interpolation threshold N/m = 1, the predictor almost perfectly interpolates the training data.
For over-parameterized models with N/m ≥ 1, the empirical M̂SBE decreases more slowly with
respect to N/m and remains almost constant. In contrast, for small λ, the true MSBE exhibits
a peak around the interpolation threshold (N/m = 1), leading to a double descent phenomenon.
In the under-parameterized regime (N/m < 1), the MSBE exhibits the classic U-shaped curve.
Meanwhile, in the over-parameterized regime (N/m > 1), the MSBE decreases with respect to
the model complexity N/m. While for the Taxi-v3 MRP, the empirical M̂SBE is smaller than
the true MSBE, this is not necessarily the case in other environments, where the empirical M̂SBE
can be larger overall than the true MSBE. For larger λ, the double descent in the true MSBE
disappears, and the difference between the true MSBE and the empirical M̂SBE is less pronounced,
although it may not vanish. Note that the minimum error is achieved in all experiments in the
over-parameterized regime. All the above observations are in accordance with established results
in the supervised learning literature (Liao et al., 2020).

The Double Descent Phenomenon in the MSVE. Figure 9.4 shows both the empirical
M̂SVE and the true MSVE as a function of the model complexityN/m for different l2-regularization
penalties λ in the synthetic ergodic, Girdworld and Taxi MRPs. We observe an almost perfect
match with the numerically evaluated original definition in equation 7.16. Similarly to the true
MSBE, for small l2-regularization penalties λ, the MSVE peaks around the interpolation threshold
N/m = 1, leading to a double descent phenomenon. In contrast, the empirical M̂SVE is close to
its minimum at N/m = 1 and almost constant for N/m ≥ 1, with no double descent observed.
For larger λ, the double descent in the true MSVE disappears, and the difference between the true
MSVE and the empirical M̂SVE is less pronounced, although it may not vanish. Unlike the true
MSBE, we observe that the empirical M̂SVE is constantly smaller than the true MSVE.

90

9.3. The Double Descent Phenomenon

0 0.5 1 1.5 2
10−1

100

101
λ = 10−9

N/m

M
SV

E

0 0.5 1 1.5 2
10−1

100

101
λ = 10−6

N/m

0 0.5 1 1.5 2
10−1

100

101
λ = 10−3

N/m

(a) Toy Ergodic MRP

0 0.5 1 1.5 2

10−1

100

101

λ = 10−9

N/m

M
SV

E

0 0.5 1 1.5 2

10−1

100

101

λ = 10−6

N/m

0 0.5 1 1.5 2

10−1

100

101

λ = 10−3

N/m

(b) Gridworld

0 0.5 1 1.5 2

100

102 λ = 10−9

N/m

M
SV

E

0 0.5 1 1.5 2

100

102 λ = 10−6

N/m

0 0.5 1 1.5 2

100

102 λ = 10−3

N/m

(c) Taxi-v3

Figure 9.4: The double descent phenomenon occurs in the true MSVE (red) of regular-
ized LSTD, peaking around the interpolation threshold (N/m = 1 for N parameters,
m distinct visited states) when the empirical M̂SVE (blue) vanishes. It diminishes
as the l2-regularization parameter λ increases. Continuous lines indicate the theoretical
values from Corollary 7.5.0.1, the crosses are numerical results averaged over 30 instances af-
ter the learning with regularized LSTD in synthetic ergodic, Gridworld and Taxi-v3 MRPs for
γ = 0.95,m = 499, n = 3000; γ = 0.95,m = 386, n = 5000; and γ = 0.95,m = 310, n = 5000,
respectively.

91

Chapter 9. Numerical Experiments

9.4 Influence of the Number of Unvisited States

Once all states have been visited, MSBE and M̂SBE exhibit a similar behavior (see Remark 25),
with no peak at the interpolation threshold (N/m = 1) and no double descent phenomenon.
The experiments in Figure 9.5 depict this behavior. They also illustrate that the double descent
phenomenon diminishes as the number of distinct unvisited states goes to zero, yet it remains
visible. In particular, in experiments on the synthetic ergodic MRP, we observe that the double
descent phenomenon remains evident for small l2-regularization parameters λ, even when only one
state remains unvisited (maroon curve).

0 0.5 1 1.5 2
10−1

100

101

102 λ = 10−9

N/m

M
SB

E

0 0.5 1 1.5 2
10−1

100

101

102 λ = 10−6

N/m

0 0.5 1 1.5 2
10−1

100

101

102 λ = 10−3

N/m

(a) Synthetic Ergodic MRP for m = 0.86|S| (purple), m = 0.998|S| (maroon), m = |S| (green).

0 0.5 1 1.5 2
10−2

100

102 λ = 10−9

N/m

M
SB

E

0 0.5 1 1.5 2
10−2

100

102 λ = 10−6

N/m

0 0.5 1 1.5 2
10−2

100

102 λ = 10−3

N/m

(b) Gridworld MRP for m = 0.59|S| (purple), m = 0.92|S| (maroon), m = 0.97|S| (green).

0 0.5 1 1.5 2
100

101

102

103 λ = 10−9

N/m

M
SB

E

0 0.5 1 1.5 2
100

101

102

103 λ = 10−6

N/m

0 0.5 1 1.5 2
100

101

102

103 λ = 10−3

N/m

(c) Taxi-v3 MRP for m = 0.57|S| (purple), m = 0.79|S| (maroon), m = 0.87|S| (green).

Figure 9.5: With more distinct states m visited, the double descent in the MSBE
diminishes, disappearing for m = |S|. Continuous lines indicate the theoretical values of MSBE
from Theorem 7.4.2 for different numbers of distinct visited states m; the crosses are numerical
results averaged over 30 instances after the learning with regularized LSTD in synthetic ergodic,
Gridworld and Taxi-v3 MRPs with γ = 0.95, d = 50.

92

9.5. Influence of the Discount Factor

9.5 Influence of the Discount Factor

The experiments in Figure 9.6 illustrate that the discount factor γ has little impact on the double
descent phenomenon. As the discount factor increases, we observe an increase of the MSBE
since learning becomes more difficult. Note that the curves (pruple) for γ = 0 are also depicted,
indicating situations where the solution of the regularized LSTD is equivalent to the solution of
ridge regression on the reward function Rπ : S × S → R.

0 0.5 1 1.5 210−3

10−1

101 λ = 10−9

N/m

M
SB

E

0 0.5 1 1.5 210−3

10−1

101 λ = 10−6

N/m

0 0.5 1 1.5 210−3

10−1

101 λ = 10−3

N/m

(a) Synthetic Ergodic MRP

0 0.5 1 1.5 2
10−4

10−1

102

λ = 10−9

N/m

M
SB

E

0 0.5 1 1.5 2
10−4

10−1

102

λ = 10−6

N/m

0 0.5 1 1.5 2
10−4

10−1

102

λ = 10−3

N/m

(b) Gridworld MRP

0 0.5 1 1.5 2
10−1

101

103

λ = 10−9

N/m

M
SB

E

0 0.5 1 1.5 2
10−1

101

103

λ = 10−6

N/m

0 0.5 1 1.5 2
10−1

101

103

λ = 10−3

N/m

(c) Taxi-v3 MRP

Figure 9.6: The discount factor γ has little effect on the double descent in the MSBE.
Continuous lines indicate the theoretical values of MSBE from Theorem 7.4.2 for γ = 0 (purple),
γ = 0.5 (maroon), γ = 0.95 (green), and γ = 0.99 (orange); the crosses are numerical results
averaged over 30 instances after the learning with regularized LSTD in synthetic ergodic, Gridworld
and Taxi-v3 MRPs for γ = 0.95,m = 499, n = 3000; γ = 0.95,m = 386, n = 5000; and γ =
0.95,m = 310, n = 5000, respectively

93

Part III

Features Encoding in Deep
Reinforcement Learning

94

In classic Reinforcement Learning (RL), encoding the inputs with a Fourier feature mapping is
a standard way to facilitate generalization and add prior domain knowledge. In Deep RL, such
input encodings are less common since they could, in principle, be learned by the network and
may therefore seem less beneficial. In this part, we present experiments on Multilayer Perceptrons
(MLP) that indicate that even in Deep RL, Fourier features can lead to significant performance
gains in both rewards and sample efficiency. Furthermore, we observe that they increase the
robustness with respect to hyperparameters, lead to smoother policies, and benefit the training
process by reducing learning interference, encouraging sparsity, and increasing the expressiveness
of the learned features. However, a major bottleneck with conventional Fourier features is that
the number of features increases exponentially with the state dimension. As a remedy, we propose
a simple, light version that only has a linear number of features yet empirically provides similar
benefits. Our experiments cover both shallow/deep, discrete/continuous, and on/off-policy RL
settings.

Part III is organized as follows:

• In Chapter 10, we start by presenting features encoding in linear function approximation and
the use of neural networks in deep RL to automatically learn features from raw data without
prior knowledge. As highlighted in this chapter, although neural networks are universal
approximators in theory, they suffer from some limitations in practice. In particular, we
present experiments that indicate neural networks behave as under-parameterized models
regularized through early stopping.

• In Chapter 11, to overcome the spectral bias and improve the learning of high-frequency
components in RL, we suggest the use of two preprocessings based on the Fourier series
for neural networks. The first preprocessing suggested is the Fourier Feature (FF) mapping,
based on the Fourier series and introduced by Konidaris et al. (2011) for linear value function
approximation. For the second preprocessing, we propose a lighter, scalable version of the
FF preprocessing called Fourier Light Features (FLF) in which the dimension of the feature
space grows linearly with the dimension of the state space. In the following of this chapter, we
present experiments indicating that the use of FF/FLF can lead to significant performance
gains in terms of rewards and sample efficiency, and outperform other traditional preprocess-
ings. We observe that both FLF and FF achieve similar performance, while FLF has fewer
features than FF. Furthermore, we observe that such preprocessings increase the robustness
with respect to hyperparameters.

• In Chapter 12, we empirically investigate the effects of the Fourier encodings on the learning
process. In particular, we show that the proposed preprocessings lead to smoother neural
networks, mitigate learning interference, promote sparsity, and increase the expressivity of
learned features.

This part is mainly based on our work Fourier Features in Reinforcement Learning with Neural
Networks, with David Filliat and Goran Frehse, accepted for publication in the Transactions on
Machine Learning Research (TMLR), 2024.

95

Chapter 10

Features Encoding

In this chapter, we start by presenting in Section 10.1 features encoding in linear function approx-
imation and the use of neural networks in deep RL to automatically learn features from raw data
without prior knowledge. Although neural networks are universal approximators in theory, they
suffer from some limitations in practice. These limitations include not only the number of param-
eters, as discussed in the last part, but also the amount of optimization that can be achieved in
practice. In Section 10.2, we present experiments that indicate neural networks behave as under-
parameterized models regularized through early stopping. In particular, we observe that this form
of regularization induces a spectral bias, in which the fitting high-frequency components of the
value function requires exponentially more gradient update steps than the low-frequency ones. In
Section 10.3, we propose to mitigate the spectal bias and improve the learning of high-frequency
components by using feature encodings as preprocessing as shown in Figure 10.4.

10.1 Features Encoding in Linear Function Approximations

In linear function approximation, the performance of linear parameterized models mainly depends
on how the data are represented in the feature space. As discussed in Section 3.3, the accuracy
of predictions largely depends on the space of functions that linear function approximations can
represent. A huge amount of practical and theoretical work has been dedicated to understanding
feature selection and generation for linear value function approximation (Parr et al., 2007; 2008;
Song et al., 2016; Ghosh and Bellemare, 2020). Choosing appropriate features for a task is a
critical way of adding prior domain knowledge. The representation is hand-designed according to
the task and projected into a higher-dimensional space to facilitate a linear separation (Sutton
and Barto, 2018). However, determining what features to use remains a complex challenge as they
depend on the problem being solved. In RL, a large amount of works proposed feature encodings
for linear function approximation, e.g., Polynomial Features (Lagoudakis and Parr, 2003), Tile
Coding (Albus, 1971), Krylov basis (Petrik, 2007) or Fourier Features (Konidaris et al., 2011).
However, one main bottleneck of such feature encodings is that they do not scale well to high-
dimensional inputs, as their size grows exponentially with the input dimension.

In recent years, artificial neural networks have led to breakthroughs due to their ability to learn

96

10.2. Limitations of Neural Networks in Deep RL

features from raw data without prior knowledge. In particular, the layer preceding the linear output
layer called the penultimate layer can be interpreted as a learnable feature extractor or encoder in
the linear function approximation framework, as depicted in Figure 10.4. Neural networks allow
machine learning algorithms to learn feature representations specific to tasks, using raw sensory
data and without prior knowledge (Mnih et al., 2015; Schulman et al., 2017; Lillicrap et al., 2015;
Haarnoja et al., 2018).

10.2 Limitations of Neural Networks in Deep RL

Although neural networks may be very useful and powerful for learning feature representations
from raw data without prior knowledge, they suffer from some limitations in practice. A recent
study by Dong et al. (2020) suggests that neural networks have limitations when predicting value
functions in RL. Through theoretical analysis and empirical evidence, the authors highlighted that
MDPs with simple dynamics can have very complex optimal action-value function Q∗ : S×A → R
and optimal policies π∗ : S → A characterized by high-frequency variations. Complexities of the
optimal action-value function Q∗ : S×A → R arise from to the recursive application of the Bellman
optimality operator and the nature of unrolling of the dynamics. In this section, to highlight the
limitations of neural networks in RL, we propose to experimentally study the learning of optimal
value functions on the toy MDP distribution PM introduced by Dong et al. (2020). For each MDP
M∼ PM, the MDP M is defined by a tuple (S,A, P,R, µ0) for which we have

• the state space S = [0, 1);

• the discrete action space A = {0, 1};

• the deterministic dynamics of the MDP P : S × A → S, where P (·, 0), P (·, 1) are randomly
sampled from the space of piece-wise linear functions with a fixed number k of “kinks”;

• the reward function R : S × S → R defined for all s, s′ ∈ S as R(s, s′) = s;

• and the initial state ditribution µ0 defined as the uniform distribution on S.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s

P
(s

,a
)

0 0.2 0.4 0.6 0.8 1

5

6

7

s

Q
∗
(s

,a
)

Action 0
Action 1

Figure 10.1: Example of M ∼ PM drawn from the MDP distribution of Dong et al. (2020) for a
number of “kinks" k = 2.

Figure 10.1 depicts the dynamics and the optimal Q-function of a toy MDP M drawn from the
distribution PM, for a number of “kinks” k = 2. Even though the dynamics of the MDP M

97

Chapter 10. Features Encoding

0 0.5 1 1.5 2 2.5 3
·104

4

4.5

5

5.5

6

Episodes

Av
er

ag
e

R
et

ur
n

pe
r

E
pi

so
de

Optimal Performance
NFQI 400@1
NFQI 400@4
NFQI 2048@4
NFQI 4096@4

NFQI FLF 400@1

Figure 10.2: MDP with simple dynamics may have complex optimal Q-function. MLPs
without function expansion underperform on MDPs. Evaluation curves of different MLP
architectures on the toy MDP described in Figure 10.1. Curves are averaged over 10 training runs.
Shading indicates the 95% confidence interval (CI). The tested architectures are a 1-layer MLP
with 400 hidden neurons and 4-layer MLPs with 400, 2048, and 4096 hidden neurons.

are piece-wise linear functions, the optimal action-value function Q∗ : S × A → R is complex
with high-frequency components. Figure 10.3 depicts predictions of action-value functions from
different Multilayer Perceptrons (MLP) architectures trained with the Neural Fitted Q-Iteration
(FQI) algorithm (Riedmiller, 2005) on the toy MDP M depicted in Figure 10.1. All predic-
tors (including those with a large architecture) underfit the optimal value function and fail to
capture the high-frequency components after learning. These observations are consistent with ex-
perimental results in supervised learning, where Rahaman et al. (2019) highlighted a learning bias
of deep networks towards low-frequency functions, i.e., functions that vary globally without local
fluctuations. Considerable effort has been made in supervised learning to provide a theoretical
explanation of this spectral bias (Bietti and Mairal, 2019; Bordelon et al., 2020; Cao et al., 2021;
Xu et al., 2022; Canatar et al., 2024). In RL, the spectal bias was also experimentally observed and
studied in value function approximation by Yang et al. (2021). However, the phenomenon seems
more complex and depends on the dynamics of the MDP (Lyle et al., 2021). Such spectral bias
may prevent MLPs from accurately learning high-frequency components of complex value functions
with high-frequency components, resulting in poor performance as depicted by Figure 10.2. This
phenomenon is further exacerbated by the fact that neural networks in TD learning algorithms
tend to generalize poorly and memorize experiences during the training (Lyle et al., 2021; 2022;
Nikishin et al., 2022).

10.3 Features Encoding with Neural Networks & Contribu-
tions

In this part, we propose adding a features encoding block to the MLP architecture to enhance
the learning of high-frequency components. In Deep Learning, it is common to apply min-max
normalization (Bishop et al., 1995) or batch normalization (Ioffe and Szegedy, 2015) on data.
However, preprocessing inputs with hand-designed features are less common since such features
could, in principle, be learned by the network and thus may seem less beneficial. In recent work,

98

10.3. Features Encoding with Neural Networks & Contributions

0 0.2 0.4 0.6 0.8 1
0

2

4

6

s

Q̂
∗
(s

,a
)

Figure: NFQI FLF 400@1

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

s

Figure: NFQI 400@4

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

s

Figure: NFQI 2048@4

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

s

Figure: NFQI 4096@4

0 0.2 0.4 0.6 0.8 1

4

6

s

Action 0
Action 1

Figure: NFQI FLF 400@1

Figure 10.3: MLPs without features encoding underfit the optimal Q-value function of
the toy MDP M described in Figure 10.1. Predictions of MLPs trained with the neural
Fitted Q-Iteration are averaged over 10 training runs. The tested architectures are a 1-layer MLP
with 400 hidden neurons and 4-layer MLPs with 400, 2048, and 4096 hidden neurons.

it has been shown that preprocessing inputs with Random Fourier Features (Rahimi and Recht,
2007) help Multilayer Perceptrons (MLP) to control the frequencies that the network tends to
learn first (Tancik et al., 2020; Wang et al., 2021) and improves the training performance for
neural networks (Mehrkanoon and Suykens, 2018; Mitra and Kaddoum, 2021). In Deep RL, it
has been observed that Tile Coding can improve performance, sample efficiency, and robustness to
hyperparameter variations by mitigating learning interference (Ghiassian and Huizhen Yu, 2018;
Ghiassian et al., 2020; Liu et al., 2019b). In the following of this part, we empirically study
preprocessing inputs with a functional expansion based on the Fourier series for MLPs in Deep
RL, as illustrated in Figure 10.4. The study is based on kinematic observation-based benchmarks,
where observations are expressed as state vectors whose components are the agent’s kinematic
quantities. Although the advantages of Fourier Features have been investigated in the case of
standard RL Konidaris et al. (2011), to the best of our knowledge, their use was not yet studied
in Deep RL at the time of the study. Concurrent works propose tuning the scale of learnable
Fourier features to ensure that high-frequency components of the value function are captured (Li
and Pathak, 2021; Yang et al., 2021). Another recent work studied the use of the Fourier series
with MLP in computer vision (Benbarka et al., 2022).

Our main contributions in this part can be summarized as follows:

• While Fourier Features are standard in classic Reinforcement Learning, we suggest that
Fourier Features are beneficial in kinematic observation-based RL problems with neural net-
works. We observe significant performance gains in both rewards and sample efficiency and
extend the range of usable hyperparameters. In our experiments, Fourier Features outper-
form other common types of input preprocessing.

99

Chapter 10. Features Encoding

σ

σ

...

σ

σ

σ

σ

...

σ

σ

s1

s2

...

sd

s1

s2

sd

FunctionalE
xpansion

σ

σ

...

σ

σ

s1

s2

...

sd

σ

σ

...

σ

σ

θ1

θN

ϕ(s; W) ∈ RNInput

s ∈ Rd

Output

V̂ (s; W , θ) = θT ϕ(s; W)

Figure 10.4: Example of a 2-layers MLP with features encoding for value-based algo-
rithms. The state s ∈ Rd is processed with a functional expansion (e.g, Fourier features) before
being passed into the MLP. For a given state s ∈ S, features returned by the penultimate layer of the
MLP are denoted by ϕ(s; W), where W depicts the weights of the MLP excluding those of the out-
put layer. Output of the neural network V̂ (s; W ,θ) is a linear function V̂ (s; W ,θ) = θT ϕ(s; W),
where θ ∈ RN denotes the weights of the last layer.

• We empirically investigate the effects of Fourier features on the learning process and show that
Fourier features lead to smoother neural networks, mitigate learning interference, promote
sparsity, and increase the expressivity of learned features.

• We propose a light, scalable version of Fourier Features to avoid the exponential explosion
of traditional Fourier Features while maintaining much of their benefits.

100

Chapter 11

Features Encodings Based on
Fourier Series

In this chapter, to overcome the spectral bias phenomenon described in Section 10.2 and improve
the learning of high-frequency components in RL, we suggest the use of two preprocessings based
on the Fourier series for neural networks as depicted by Figure 10.4. In Section 11.1, we propose
as preprocessing the Fourier Feature (FF) mapping, based on the Fourier series and introduced
by Konidaris et al. (2011) for linear value function approximation. However, the major bottleneck
of this Fourier preprocessing is that the dimension of the feature space grows exponentially with
the dimension of the state space, which limits its use in high-dimensional problems. To remedy
this issue, we propose in Section 11.1.1 a lighter, scalable version of the FF preprocessing called
Fourier Light Features (FLF). In Section 11.2, we present experiments indicating that the use of
FF/FLF can lead to significant performance gains in terms of rewards and sample efficiency, and
outperform other traditional preprocessings.

11.1 Fourier Features

Konidaris et al. (2011) introduced Fourier Features (FF) in RL in linear value function approx-
imation by using the terms of the multivariate Fourier series as features. In practice, Fourier
features are easy to use and perform better for linear function approximation than other popular
feature encodings, such as Tile Coding or Polynomial Basis (Konidaris et al., 2011). Formally,
they are generated by the order-m Fourier Feature function expansion FF : [0, 1]d → Rp, mapping
a normalized state s ∈ S ⊆ [0, 1]d into a p-dimensional feature space (Konidaris et al., 2011), with
p = (m+ 1)d. For i ∈ [p], the feature i is given by

FFi(s) = cos(πsT ci), (11.1)

where each coefficient vector ci takes a value in {0, . . . ,m}d (one-to-one). Examples of Fourier
Features are provided in Figure 11.1.

Remark 33. The inner product s⊤ci in equation 11.1 determines the frequency along dimension
i and creates interactions between state variables.

101

Chapter 11. Features Encodings Based on Fourier Series

Figure 11.1: Example of Fourier Features over 2 variables (d = 2). Darker colors indicate a value
closer to 1, and lighter colors indicate a value closer to −1. Note that c = [0, 0] results in a constant
function. When c = [0, ky] or [kx, 0] for positive integers kx and ky, the basis function depends on
only one of the variables, with the value of the non-zero component determining frequency. Only
when c = [kx, ky] does it depend on both; this basis function represents an interaction between the
two state variables. The ratio between kx and ky describes the direction of the interaction, while
their values determine the basis function’s frequency along each dimension.

Figure 11.2: Example of Fourier Light Features for d = 1.

Remark 34. Fourier series approximate periodic functions with a linear combination of cosine and
sine functions. However, value functions are generally not periodic. The trick used in equation 11.1
to use Fourier series in non-periodic functions is normalizing the inputs. By normalizing the state
space into [−1, 1]d, we can use a linear combination of the sine and cosine functions to approximate
the value function, even if the value function is aperiodic. Indeed, in such a case, the value function
under study can be interpreted as the single period (with period 1 = [1, . . . , 1]T) of a periodic
function. To drop the sine terms and obtain equation 11.1, the value function under study can be
interpreted as the single half-period (with period 1 = [1, . . . , 1]T) of a symmetric periodic function,
by normalizing the state space into [0, 1]d.

The major bottleneck of Fourier features is that their number p grows exponentially with the
dimension d of the state space S as p = (m+ 1)d. To remedy this, we propose the following subset
of Fourier features that do not join state variables during preprocessing and scale linearly with the
state dimension d.

11.1.1 Fourier Light Features

We define order-m Fourier Light Features (FLF) as the d(m + 1) Fourier Features generated by
the order-m Fourier Light Feature functional expansion FLF : [0, 1]d → Rd(m+1), which maps a
normalized state s = [s1, . . . , sd]T ∈ [0, 1]d into a d(m+ 1)-dimensional feature space as follows

FLF(s) =
[
FF(s1) | . . . | FF(sd)

]T

, (11.2)

with FF : R → [0, 1]m+1 defined in equation 11.1 as FF(si) =
[
1, cos(πsi), . . . , cos(mπsi)

]
, ∀i ∈

[1, d]. The choice not to mix state variables in this version of Fourier features is motivated by
the fact that Fourier features are not directly used for making predictions but rather serve as a
preprocessing for the data injected into the neural network. We let neural networks choose how
state variables will be mixed while learning the features used for predictions. Examples of order-7
FLF for d = 1 are depicted in Figure 11.2.

102

11.2. Empirical Performance

11.2 Empirical Performance

In this section, we present the empirical performance of the Fourier features encoding described
in Section 11.1 and the Fourier light features encoding introduced in Section 11.1.1. In particu-
lar, we apply these encodings on the off-policy Deep-Q Network (DQN) algorithm (Mnih et al.,
2015) in discrete action environments and on the on-policy Proximal Policy Optimization (PPO)
algorithm (Schulman et al., 2017) in continuous action environments. Both types of environments
provide kinematic observations, which are expressed as a state vector whose components are the
agent’s kinematic quantities. In Section 11.2.1, we detail the experimental setup used for experi-
ments. In Section 11.2.2, we present the empirical performance of neural networks equipped with
Fourier preprocessings. In Section 11.2.3, we study the influence of these preprocessings on hyper-
parameters of RL algorithms. In Section 11.2.4, we compare the performance of neural networks
using Fourier encodings with those usign other popular features encodings, such as Tile Coding.

11.2.1 Experimental Setup

In our experiments, all observations are kinematic observations, expressed as a state vector whose
components are the agent’s kinematic quantities. We used the DQN and PPO implementations
provided by StableBaselines-3 (Raffin et al., 2019) (version 0.10.0) and Pytorch 1.8.0. In all experi-
ments, optimization was performed using the Adam optimizer (Kingma and Ba, 2014), parameters
were initialized using the Xavier initializer (Glorot and Bengio, 2010), and the ReLU function was
used as the activation function.

Experiments on Discrete Environments. Experiments with DQN are performed on five
discrete-action environments provided by OpenAI Gym (Brockman et al., 2016): Acrobot-v1,
CartPole-v1, LunarLander-v2, MountainCar-v0, and Catcher-v1 (Tasfi, 2016). Since hyperpa-
rameters for the discrete control tasks were not included in Stable Baselines Zoo (Raffin, 2020)
at the time of experiments, we tuned the DQN hyperparameters for each task with Optuna
2.4.0 (Akiba et al., 2019). In particular, we used the Tree-structured Parzen Estimator (TPE) al-
gorithm (Bergstra et al., 2011) to sample hyperparameters from the ranges provided in Table 11.1.
Given that TPE is very sensitive to the scores of the first trials, we ran 5 independent hyperpa-
rameter research, each consisting of 500 trials. Each trial corresponds to a training of 120, 000
timesteps with hyperparameters sampled from TPE, and its score is evaluated on the return of 100
rollouts of the learned policy. Due to the unreliability of Deep RL algorithms (Henderson et al.,
2018; Islam et al., 2017), we selected the 15 best hyperparameter configurations found by Optuna
and ran 5 additional trainings of 150, 000 timesteps for each. The optimal hyperparameter setting
was selected based on the highest average final return across these trainings.

Experiments on Continuous Environments. Experiments with PPO are performed on five
continuous-action control tasks provided by Mujoco (Todorov et al., 2012): HalfCheetah-v2, Hopper-
v2, InvertedDoublePendulum-v2, Swimmer-v2, and Walker-2d-v2. PPO hyperparameters are
taken from StableBaselines Zoo (Raffin, 2020).

Experiments with Fourier Features Encodings. Fourier Features (FF) and Fourier Light
Features (FLF) encodings take normalized states as inputs. Before being passed into these feature

103

Chapter 11. Features Encodings Based on Fourier Series

Table 11.1: Range of DQN Hyperparameters Used for Optimization with Optuna.

Hyperparameter Range
Number of Hidden Layers 1
Number of Neurons per Hidden Layer {16, 32, 64, 128, 256}
Batch Size {16, 32, 64, 100, 128, 256, 512}
Replay Buffer Size {1e4, 5e4, 1e5, 1e6}
Discount Factor {0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999}
Learning rate [1e− 5, 1]
Target Update Frequency {0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999}
Train Frequency {1, 4, 8, 16, 128, 256, 1000}
Exploration Fraction [0, 0.5]
Final Value of Random Action Probability [0, 0.2]
Fourier Order (FF) {1, 2, 3, 4, 5}

encodings, observations returned by environments are normalized with a min-max normalization.
For computation reasons, only the learning rate and the Fourier order are re-optimized with Op-
tuna. Note that in experiments involving both FF and FLF encodings, the FLF order is selected
with Optuna to range from 1 to the FLF order corresponding to the number of traditional FF
determined in prior research on FF.

11.2.2 Overall Performance

We apply Fourier Features (FF-NN) and Fourier Light Features (FLF-NN) to the off-policy Deep-Q
Network (DQN) algorithm (Mnih et al., 2015) in discrete action environments and to the on-policy
Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017) in continuous action envi-
ronments. We then compare these implementations to the respective algorithms without encoding
(NN). Figure 11.3 shows the averaged returns per timesteps for DQN on four discrete-action envi-
ronments from OpenAI Gym (Brockman et al., 2016). Figure 11.4 shows the averaged returns per
timesteps of PPO on five continuous-action control tasks from Mujoco (Todorov et al., 2012). For
experiments on continuous action environments, we only test FLF because the number of standard
Fourier Features explodes due to the higher state dimension. In all discrete tasks, except for the
LunarLander-v2 task, both FLF and FF improve the sample efficiency, i.e., both FLF and FF
have better performance in terms of cumulative rewards with fewer environment interactions. In
the LunarLander-v2 task, their performance does not deteriorate. It is worth noting that in the
MountainCar-v0 task, FLF and FF significantly increase the final cumulative reward, as traditional
neural networks in this experiment are unable to converge to the optimal policy. The increase of
final cumulative reward for FLF and FF is not observed in other discrete environments, as they
are relatively simple. In all continuous tasks, FLF considerably outperforms the baseline in terms
of both cumulative rewards and sample efficiency. Where the dimension is small enough so that
we can apply FF, we obtain similar performance by FF and FLF. This observation suggests only
the subset FLF of FF is required to enhance performance, as assumed in Section 11.1.1. Note
also that in experiments with neural Fitted Q-Iterations of Section 10.2, FLF-NN better fits the
optimal Q-value function than simple MLP architectures, as show in Figure 10.2. This better
approximation can be explained by the learning of the high-frequency components of the optimal
Q-function with FLF-NN and results in better performance.

104

11.2. Empirical Performance

0 0.5 1 1.5
·105

−200

−150

−100

TimestepsAv
er

ag
e

R
et

ur
n

Pe
r

E
pi

so
de

Figuccce: MountainCar-v0

0 0.5 1 1.5
·105

0

200

400

Timesteps

Fixcbsdgure: CartPole-v1

0 2 4 6
·104

−400

−200

Timesteps

Figuwcxxre: Acrobot-v1

0 0.5 1 1.5
·105

−1,000

−500

0

Timesteps

NN
FF-NN

FLF-NN

Figuxre: LunarLander-v2

Figure 11.3: The use of features encoding based on Fourier series improve performance
and sample efficiency of DQN on discrete control tasks. Similar behavior is observed
for FF-NN and FLF-NN. Evaluation learning curves of NN (blue), FF-NN (orange), and FLF-
NN (green), reporting episodic return versus environment timesteps. Results are averaged over 30
training (different seeds), with shading indicating the 95% confidence interval (CI).

0 0.5 1 1.5 2
·106

0

2,000

4,000

TimestepsAv
er

ag
e

R
et

ur
n

Pe
r

E
pi

so
de

Figcccfxcre: HalfCheetah-v2

0 0.5 1 1.5 2
·106

0

100

200

300

Timesteps

Fixcbsfddgure: Swimmer-v2

0 0.5 1 1.5 2
·106

0

500

1,000

1,500

Timesteps

Figuwcxfdxre: Hopper-v2

0 0.2 0.4 0.6 0.8 1
·106

0
0.2
0.4
0.6
0.8

1 ·104

Timesteps

sdfs-
fteInvertedDoublePendulum

0 0.5 1 1.5 2
·106

0

1,000

2,000

3,000

Timesteps

NN
FLF-NN

Figuwcxxre: Walker2d-v2

Figure 11.4: The use of Fourier Light Features improves the performance and sample
efficiency of PPO on continuous control tasks. Evaluation learning curves of NN (blue) and
FLF-NN (green), reporting episodic return versus environment timesteps. Results are averaged
over 10 training with shading indicating the 95% confidence interval (CI).

105

Chapter 11. Features Encodings Based on Fourier Series

11.2.3 Robustness to Hyperparameter Changes

RL algorithms can be very sensitive to hyperparameter changes (Henderson et al., 2018; Islam
et al., 2017). The following experiments indicate that Fourier features reduce the sensitivity to
hyperparameters. Figure 11.5 illustrates how the performance varies with the learning rate while
keeping other hyperparameters constant. It shows that FF-DQN and FLF-DQN perform well over
a larger range, although they require a smaller learning rate than NN. As discussed in Section 3.4,
experience replay buffers (Lin, 1992; Mnih et al., 2015) and target networks (Mnih et al., 2015)
were introduced in RL to mitigate interference problems and have become critical in the training
of many deep RL algorithms including DQN. However, it is at the cost of higher computational
and memory costs and slower offline learning (Plappert et al., 2018). Zhang and Sutton (2017)
highlighted difficulties in properly tuning the buffer size where either too small or too big buffer
can have a negative effect on performance. In Figure 11.6 and 11.7, we vary only the buffer size
and target update frequency, respectively, while keeping other hyperparameters fixed. In the cases
where standard DQN shows large performance variations for different buffer sizes and frequencies,
we observe that FF-DQN is both better and less sensitive. This indicates a more stable learning
process, with potentially less interference (see Section 12.1), and makes Fourier Features even more
interesting for nonstationary and online problems.

11.2.4 Comparisons with Other Features Encodings

FF/FLF provide clear benefits, but it is natural to ask whether other classical feature encodings
used in linear value function approximation might provide similar benefits. In this section, we
compare the performance of Fourier features with the three following standard features encodings:

• Polynomial Features (PF-NN). Polynomials are one of the simplest families of feature encod-
ing used for interpolation and regression. The feature vector consists of all polynomial combi-
nations of the state variables with a degree less than or equal to a specified degree (Lagoudakis
and Parr, 2003; Sutton and Barto, 2018).

• Random Fourier Features (RFF). Random Fourier Features are used to approximate an
arbitrary stationary kernel-invariant by exploiting Bochner’s theorem (Rahimi and Recht,
2007). Recent works have shown promising results where RFFs enhance the performance of
deep neural networks (Mehrkanoon and Suykens, 2018), reduce the probability of misclas-
sification (Mitra and Kaddoum, 2021), or facilitate the learning of high-frequency compo-
nents (Tancik et al., 2020). In RL, RFFs have been used with Natural Policy Gradient to
outperform performance obtained with NNs (Rajeswaran et al., 2017). The i-th feature of
the Random Fourier Feature mapping RFF : Rd → Rp is

RFFi(s) = 2√
p cos(sT ci + bi), (11.3)

where c ∼ N (0, σ2Ip), b ∼ U(0, 2π). The term 2/√p is used as a normalization factor to
reduce the variance of the estimates. RFFs and Fourier features have a very similar definition,
except that the vector c creating interaction between state variables is sampled from a normal
distribution in RFFs.

• Tile Coding (TC). Tile Coding (Albus, 1971; Sutton and Barto, 2018) is a generalization
of state aggregation, in which we cover the state space S with overlapping grids, known

106

11.2. Empirical Performance

10−5 10−3 10−1
−200

−150

−100

Learning Rate

Av
er

ag
e

R
et

ur
n

Pe
r

E
pi

so
de

Figuccce: MountainCar-v0

10−5 10−3 10−1
0

200

400

Learning Rate

Fixcbsdgure: CartPole-v1

Figure 11.5: Learning rate variations over n = 10 trainings.

0 1 2 3
·105

−200

−150

−100

Buffer Size

Av
er

ag
e

R
et

ur
n

Pe
r

E
pi

so
de

Figuccce: MountainCar-v0

0 1 2 3
·105

0

200

400

600

Buffer Size

Fixcbsdgure: CartPole-v1

Figure 11.6: Buffer size variations over n = 10 trainings.

0 200 400
−300

−250

−200

−150

−100

Target Update Frequency

Av
er

ag
e

R
et

ur
n

Pe
r

E
pi

so
de

Figuccce: MountainCar-v0

0 200 400
0

200

400

Target Update Frequency

NN
FF-NN

Fixcbsdgure: CartPole-v1

Figure 11.7: Target update variations over n = 10 trainings.

Figure 11.8: Fourier Features are more robust to learning rate, buffer size and target
update frequency. Cumulative reward over different hyperparameter variations, for NN (blue)
and FF-NN (orange) on MountainCar-v0 and CartPole-v1. Results are averaged over 10 trainings
and shading indicating the 95% confidence interval (CI).

107

Chapter 11. Features Encodings Based on Fourier Series

as tilings. Each grid divides the state space into small squares, referred to as tiles. The
representation of a state for each tile is a one-hot vector of dimension the number of tiles,
with one for the tile where the state is in and zero otherwise. Concatenation of one-hot
vectors for each tiling forms Tile Coding features. A nice property of Tile Coding is that it
generalizes not only to the trained state but also to any other states that share the same tiles.
In Deep RL, Ghiassian et al. (2020) proposed to preprocess neural network inputs with Tile
Coding to promote the sparsity of learned representations and obtain better performance.

Figure 11.9 depicts the averaged results per timesteps for DQN applied to MountainCar-v0 and
CartPole-v1 tasks. In the experiments shown in Figure 11.9, none of the other features encod-
ings achieve the performance of FF-NN/FLF-NN, even though we tuned their hyperparameters
through an extensive search. It is even worse since PF and RFF degrade performance. In par-
ticular, the ranking on final average rewards is as follows: PF-NN < RFF-NN < NN < TC-NN
< FF-NN ≃ FLF-NN, where < means lower performance. Note that TC-NN outperforms NN in
the MountainCar-v0 task but exhibits similar performance in the CartPole-v1 task. From those
experiments, we deduce that applying feature encodings to neural networks does not consistently
lead to performance improvements and may even degrade performance.

0 0.5 1 1.5
·105

−200

−150

−100

Timesteps

Av
er

ag
e

R
et

ur
n

Pe
r

E
pi

so
de

Figuccce: MountainCar-v0

0 0.5 1 1.5
·105

0

200

400

Timesteps

NN
FF-NN

FLF-NN
PF-NN

RFF-NN
TC-NN

Fixcbsdgure: CartPole-v1

Figure 11.9: Fourier Features/Fourier Light Features perform better than other stan-
dard features encodings on discrete control tasks with DQN. Evaluation learning curves
of NN (blue), FF-NN (orange), FLF-NN (green), PF-NN (red), RFF-NN (purple) and TC-NN
(brown) reporting episodic return versus environment timesteps. Results are averaged over 30
trainings with shading indicating the standard deviation.

108

Chapter 12

Observed Effects on Training
Neural Networks

In this chapter, we empirically investigate the effects of the Fourier encodings presented in Chap-
ter 11 on the learning process of neural networks. In particular, we study the effects of Fourier
features on DQN with MLP architectures using ReLU activation functions. In this setting, for any
state-action pairs (s, a) in S ×A, the output of the neural network can be expressed as

Q̂(s, a; W ,θ) = θT Φ(s, a; W), (12.1)

where θ ∈ RN depicts the weights of the last linear output layers of the neural network; W depicts
the weights of the preceding layers; and Φ(s, a; W) ∈ RN represents the output of the penultimate
layer, which captures the representations learned by the network. We denote by Θ =

[
W ,θ

]
∈ RN ′

the vector of parameters of the MLP architecture. In the following of this chapter, we study the
effects of Fourier features on catastrophic interference in Section 12.1, on the sparsity of the learned
features in Section 12.2, and the expressiveness of neural networks in Section 12.3.

12.1 Catastrophic Interference

Catastrophic interference occurs in function approximation when the learner “forgets” what it has
learned in the past by overwriting previous updates to better fit the learned function to recent
data (McCloskey and Cohen, 1989; French, 1991). In RL, this problem is further exacerbated
by the fact that the agent uses its own estimates as targets and changes its policy during the
training. Indeed, if estimates change incorrectly due to interference, there could be a cascading
effect. Therefore, such interference can significantly slow down the learning and even prevent the
network from converging to an optimal solution.

12.1.1 Learning Interference

In the following, we denote by Θt the parameters of DQN at time t during the training. A typical
measure of interference is the learning interference defined below.

109

Chapter 12. Observed Effects on Training Neural Networks

Definition 12.1.1 (Learning Interference (Lopez-Paz and Ranzato, 2017; Riemer et al., 2018)).
At time t + 1, after updating model parameters of DQN from Θt to Θt+1 with its loss function
l, the learning interference function LIt+1 : S × A × R × S → R at time t + 1 is defined for any
transition x = (s, a, r, s′) ∈ S ×A× R× S as

LIt+1(x) = l(x; Θt+1)− l(x; Θt). (12.2)

Remark 35. The positiveness or negativeness of LIt+1(x) determines whether the update of model
parameters of DQN improves or degrades predictions on the transition x = (s, a, r, s′).

Considering a Stochastic-Gradient Descent approach (equation 3.9), the update rule using the
transition xt = (st, at, rt, s

′
t) ∈ S ×A× R× S is given by

Θt+1 ← Θt − αt∇Θl(xt; Θt),

where αt is the learning rate at time t. Using the Taylor series expansion and assuming the learning
rate αt is small, we can rewrite equation 12.1.1 for x = (s, a, r, s′) ∈ S ×A× R× S as

LIt+1(x) = l(x; Θt+1)− l(x; Θt)
≈ ∇Θl(x; Θt)T

(
Θt+1 −Θt

)
(Taylor series expansion)

= −αt∇Θl(x; Θt)T∇Θl(xt; Θt).

(12.3)

The quantity ∇Θl(x; Θt)T∇Θl(x; Θt) is a key quantity to measure interference and is referred
to in the literature as the gradient alignment (Bengio et al., 2020; Lopez-Paz and Ranzato, 2017;
Riemer et al., 2018; Schaul et al., 2019). To quantify the learning interference, we prefer estimating
the stiffness of the gradient alignment (Fort et al., 2020).

Definition 12.1.2 (Stiffness (Fort et al., 2020)). Let l(·; Θt) be the loss function of a DQN of
parameters Θt. The stiffness ρ(x1,x2; Θt) is defined for all transitions x1 = (s1, a1, r1, s

′
1),x2 =

(s2, a2, r2, s
′
2) ∈ S ×A× R× S as

ρ(x1,x2; Θt) = cos
(
∇Θl(x1; Θt),∇Θl(x2; Θt)

)
, (12.4)

where cos(u,v) = uT v/||u||||v|| is the cosine similarity of u and v.

Remark 36. From equation 12.3, the positiveness or negativeness of ρ(x1,x2; Θt) determines
whether the update with the transition x2 is constructive (i.e. positive generalization) or destructive
(i.e. interference) on the transition x1.

Using the stiffness measure, we define three proxy measures for measuring the gradient interference
of DQN with parameters Θ and experience replay buffer B:

• Average Stiffness (AS)
AS(Θ,B) = Ex1,x2∼B

[
ρ(x1,x2; Θ)

]
;

• Average Interference (AI)

AI(Θ,B) = Ex1,x2∼B
[
ρ(x1,x2; Θ) | ρ(x1,x2; Θ) < 0

]
,

110

12.1. Catastrophic Interference

which only considers (negatively) interfering samples and determines the average of interfer-
ence;

• Interference Risk (IR):

IR(Θ,B) = E
[
ρ(x1,x2; Θ) | ρ(x1,x2; Θ) ≤ VaR0.9

(
ρ(x1,x2; Θ) | ρ(x1,x2; Θ) ≤ 0

)]
,

where VaR0.9
(
ρ(x1,x2; Θ) | ρ(x1,x2; Θ) ≤ 0

)
is the 0.9-quantile of the distribution of inter-

ference measure.

12.1.2 Experiments

For experiments described in Section 11.2, we estimated the proxy measures AS, AI, and IR defined
in the previous section to measure the gradient interference of DQN. For every 1, 000 environment
timestep, we estimate the proxy measures using 64 samples drawn from the experience replay
buffer. Our results averaged across all timesteps are reported in Table 12.1, and curves showing
the evolution of interference during the training can be found in Appendix B.3. In all cases,
the proxy measure AS shows that an update with a state-action pair has less impact on other
neural network predictions with the use of Fourier Features/Fourier Light Features compared to
raw inputs. This is confirmed by higher (better) AI and IR scores. Our observations indicate that
using Fourier Features helps to generalize appropriately without overgeneralizing, leading to more
stable training and better performance.

Table 12.1: Fourier Features and Fourier Light Features mitigate learning interference
on discrete control tasks. Interference measures with Average of Stiffness (AS), Average of
Interference (AI), and Interference Risk (IR) averaged across all timesteps for DQN fed with raw
inputs (NN), Fourier Features (FF-NN), and Fourier Light Features (FLF-NN) on discrete control
tasks. The symbol ↓ (↑) indicates that a lower (higher) score is better. Best interference measures
are in bold.

Architecture MountainCar-v0 Acrobot-v1 CartPole-v1 LunarLander-v2

NN
AS ↓ 0.24 0.09 0.22 0.06
AI ↑ −0.83 −0.60 −0.92 −0.56
IR ↑ −0.91 −0.92 −0.99 −0.94

FF-NN
AS ↓ 0.10 0.03 0.05 0.06
AI ↑ −0.47 −0.37 −0.73 −0.49
IR ↑ −0.87 −0.80 −0.98 −0.92

FLF-NN
AS ↓ 0.05 0.04 0.05 0.04
AI ↑ −0.54 −0.38 −0.86 −0.67
IR ↑ −0.87 −0.79 −0.98 −0.94

Table 12.2 indicates measures of gradient interference obtained with DQN for experiments involving
the traditional feature encodings considered in experiments in Section 11.2.4. Results indicate that
the use of Polynomial Features, Random Fourier Features, and Tile Coding highly interferes during
the training, resulting in poor Average of Interference (AI) and Interference Risk (IR) scores. These
results are consistent with the performance scores of Section 11.2.4.

111

Chapter 12. Observed Effects on Training Neural Networks

Table 12.2: Interference measures with Average of Stiffness (AS), Average of Interference (AI), and
Interference Risk (IR) averaged across all timesteps for DQN fed with raw inputs (NN), Fourier
Features (FF-NN), Fourier Light Features (FLF-NN), Polynomial Features (PF-NN), Random
Fourier Features (RFF-NN), and Tile Coding (TC-NN) on discrete control tasks. The symbol ↓
(↑) indicates that a lower (higher) score is better. Best interference measures are in bold.

Tasks NN FF-NN FLF-NN PF-NN RFF-NN TC-NN

MountainCar-v0

AS ↓ 0.24 0.1 0.05 0.21 0.14 0.1
AI ↑ −0.83 −0.47 −0.54 −0.81 −0.88 −0.86
IR ↑ −0.91 −0.87 −0.87 −0.95 −0.93 −0.93

CartPole-v1

AS ↓ 0.22 0.05 0.05 0.13 0.49 0.07
AI ↑ −0.92 −0.73 −0.86 −0.84 −0.97 −0.95
IR ↑ −0.99 −0.98 −0.98 −0.87 −0.99 −0.97

12.2 Sparsity

In the tabular RL with lookup table representations discussed in Section 2.3, catastrophic inter-
ferences are unlikely since features and information are not shared across other states. The main
limitations of this approach are that lookup table representations do not scale well with the size
of the state space, and learning does not generalize across states. Therefore, it is desirable to
learn representations Φ(·, ·; W) in equation 12.1 that can generalize across different states while
ensuring “locality in the generalization”, i.e., changing the features for a given state only affects
the representation of other similar states. Sparse representations are such representations that
promote the “locality in the generalization” and reduce interference.

12.2.1 Sparse Representations

In sparse representations, only a few features are active (nonzero) for any given input, so each
update only impacts a few weights and is less likely to interfere with other updates (Liu et al.,
2019b; Hernandez-Garcia and Sutton, 2019; Ghiassian et al., 2020; Pan et al., 2020). Another
beneficial effect of sparsity is the promotion of locality, where similar inputs should produce similar
features. Thus, it may be easier for the agent to make accurate predictions for an explored local
region, as the local dynamics are likely to be simpler functions than the global dynamics. A
recent line of works shows that learning sparse representations improves performance and reduces
catastrophic interference (Liu et al., 2019b; Hernandez-Garcia and Sutton, 2019; Ghiassian et al.,
2020; Pan et al., 2020). In this section, we investigate whether Fourier feature encodings may
help the learning of sparse representations as it was observed by Ghiassian et al. (2020) in their
study on Tile Coding with neural networks. This property could explain the good performance of
FF/FLF reported in Section 11.2.2 and the reduction of learning interference measures discussed
in Section 12.1.2.

12.2.2 Metrics

We quantify sparsity in the learned representations Φ(·, ·; W) defined in equation 12.1 with two
proxy measures: the normalized overlap and the instance sparsity (Liu et al., 2019b; Hernandez-
Garcia and Sutton, 2019; Pan et al., 2020). To compute these measures, we denote by D the

112

12.2. Sparsity

number of dead neurons, i.e., the number of neurons with a zero response value for any input. We
refer to the remaining A = N − D neurons as alive. Dead neurons may occur since the ReLU
activation function is used and outputs 0.

Definition 12.2.1 (Normalized Activation Overlap (Hernandez-Garcia and Sutton, 2019)). Let
(s1, a1) and (s2, a2) be two state-action pairs in S ×A. The normalized activation overlap for two
learned representations Φ(s1, a1; W) ∈ RN and Φ(s2, a2; W) ∈ RN is defined as

NO
(
Φ(s1, a1; W),Φ(s2, a2; W)

)
= 1

A

N∑
i=1

1Φi(s1,a1;W)>0∧Φi(s2,a2;W)>0. (12.5)

Remark 37. The normalized overlap reflects the amount of shared activation between any two
representations. When the normalized overlap between two representations is zero, there is no
interference between their corresponding inputs.

Remark 38. The normalization with the number of neurons alive avoids misleadingly low scores
in cases where only a few are alive.

The other proxy measure used to quantify sparsity is the instance sparsity metric.

Definition 12.2.2 (Instance Sparsity (Liu et al., 2019b)). Let (s, a) be a state-action pair in S×A.
The instance sparsity for a learned representation Φ(s, a; W) ∈ RN , denoted by IS

(
Φ(s, a; W)

)
,

is defined as the percentage of active units in the feature vector Φ(s, a; W), i.e.,

IS
(
Φ(s, a; W)

)
= 1

A

N∑
i=1

1Φi(s,a;W)>0.

12.2.3 Experiments

Every 1,000 environment timesteps, we compute the normalized overlap and instance sparsity
proxy measures to estimate the sparsity of the learned representations Φ(·, ·; Wt) for the exper-
iments described in Section 11.2.2. In particular, we compute the percentage of dead neurons,
the normalized overlap, and the instance sparsity during the training over the same dataset of
state-action pairs D :=

{
(si, ai)

}n

i=1. State-action pairs (si, ai) in D are drawn i.i.d from rollouts
obtained with sub-optimal pre-trained policies and random policies. This construction of D aims
to cover state-action pairs likely to be used during the learning. Therefore, estimating the percent-
age of dead neurons with D is more conservative than the true percentage of dead neurons since
it includes alive neurons that are inactive in D. Nevertheless, we believe that measuring sparsity
scores over D makes more sense since it removes neurons only active in parts of the state space
that are less likely to be visited by the agent.

Our results are summarized in Table 12.3; the corresponding curves as a function of environment
timesteps can be found in Appendix B.1. In all tasks, the use of Fourier Features results in lower
(and thus better) normalized overlap and instance sparsity. There are no dead neurons when using
Fourier Features/Fourier Light Features, suggesting a better use of the neural network capacity.
However, the use of Fourier Light Features increases the sparsity in one instance (CartPole-v1),
even though the learning performance with Fourier Light Features is better than simple neural
networks in all instances. Hence, sparsity does not seem to be the only beneficial effect of the
use of Fourier Features/Fourier Light Features. Furthermore, as discussed in Section 12.1.2, neural

113

Chapter 12. Observed Effects on Training Neural Networks

Table 12.3: Fourier Features and Fourier Light Features promote sparsity on discrete
control tasks. Sparsity scores with the percentage of dead neurons (DN), normalized activation
overlap (NO), and instance sparsity (IS) obtained for DQN fed with raw inputs (NN), Fourier
Features (FF-NN), and Fourier Light Features (FLF-NN), averaged across environment timesteps.
Averages are taken across all timesteps and margins of error of the 95% confidence interval (CI)
are computed over 30 trainings. Lower sparsity scores are better and better scores are in bold.

Architecture MountainCar-v0 Acrobot-v1 CartPole-v1 LunarLander-v2

NN
DN 0.47± 0.09 0.0 0.07± 0.02 0.0
NO 0.72± 0.08 0.49± 0.04 0.63± 0.04 0.30± 0.01
IS 0.78± 0.07 0.64± 0.02 0.66± 0.03 0.46± 0.02

FF-NN
DN 0.0 0.01 0.0 0.0
NO 0.37± 0.06 0.05± 0.02 0.52± 0.02 0.23± 0.03
IS 0.57± 0.05 0.13± 0.04 0.60± 0.02 0.40± 0.02

FLF-NN
DN 0.0 0.0 0.0 0.0
NO 0.43± 0.10 0.16± 0.02 0.79± 0.07 0.39± 0.04
IS 0.62± 0.08 0.30± 0.03 0.85± 0.06 0.55± 0.04

Table 12.4: Sparsity scores with percentage of dead neurons (DN), normalized activation overlap
(NO) and instance sparsity (IS) obtained for DQN fed with raw inputs (NN), Fourier Features (FF-
NN), Fourier Light Features (FLF-NN), Polynomial features (PF-NN), Random Fourier Features
(RFF-NN) and Tile Coding (TC-NN) on discrete control tasks averaged across all timesteps.
Averages and margins of error of the 95% CI are over 30 trainings. Lower sparsity scores are better
and better scores are in bold.

Task NN FF-NN FLF-NN PF-NN RFF-NN TC-NN

MountainCar-v0
DN 0.47± 0.09 0.0 0.0 0.66± 0.08 0.48± 0.04 0.0
NO 0.72± 0.08 0.37± 0.06 0.43± 0.10 0.80± 0.08 0.87± 0.06 0.77± 0.13
IS 0.78± 0.07 0.57± 0.05 0.62± 0.08 0.84± 0.08 0.90± 0.05 0.86± 0.09

CartPole-v1
DN 0.07± 0.02 0.01± 0.0 0.0 0.23± 0.02 0.88± 0.07 0.0
NO 0.63± 0.04 0.52± 0.02 0.79± 0.07 0.73± 0.07 0.58± 0.03 0.66± 0.06
IS 0.66± 0.03 0.60± 0.02 0.85± 0.06 0.75± 0.05 0.61± 0.03 0.70± 0.04

networks using Fourier Light Features have less interference than those using Fourier Features, even
if the latter provides sparser representations. Such results suggest that even if sparsity mitigates
catastrophic interference, the use of Fourier Light Features may have other beneficial effects that
reduce catastrophic interference.

Table 12.4 reports sparsity measures obtained with DQN for experiments involving the traditional
feature encodings considered in Section 11.2.4. Results suggest that the other features encoding
degrade sparsity. Even the use of Tile Coding, known to promote sparsity (Ghiassian et al., 2020),
produces less sparse representations than standard DQN. Neural networks with Tile Coding, just
as Fourier Features/Fourier Light Features, do not have dead neurons, while the number of dead
neurons is increased with Polynomial Features and Random Fourier Features.

12.3 Expressiveness

A neural network needs to extract expressive and fine-grained local features to achieve good per-
formance. This is particularly true when consecutive raw inputs are similar, and small differences

114

12.3. Expressiveness

between inputs may lead to different actions. Enforcing sparsity can also promote expressiveness
through the identification of key attributes by encouraging the input to be well-described by a small
subset of attributes. In RL, an implicit under-parameterization phenomenon has been highlighted
for value-based algorithms for Deep RL algorithms using bootstrapping estimates (Kumar et al.,
2020; Luo et al., 2020; Lyle et al., 2021). The implicit under-parameterization phenomenon results
in an excessive aliasing of learned features, i.e., learned features are mapped into a much smaller
subspace than the feature space that could be generated by the neural network. Consequently,
neural networks behave as under-parameterized networks, generate less rich features, and lead to
poorer performance.

12.3.1 Effective Rank

To measure the expressiveness of a learned feature matrix Φ ∈ RN×n, we compute the effective
rank srankδ of Φ.

Definition 12.3.1 (Effective Rank (Kumar et al., 2020)). Let Φ ∈ RN×n be a learned feature
matrix of n samples obtained with the N learned features returned by the penultimate layer of a
neural network. The effective rank srankδ of Φ estimates the proportion of the sum of the k highest
singular values σ1(Φ) ≥ . . . ≥ σk(Φ) ≥ 0 of Φ that capture 1− δ (usually δ = 0.01) of the sum of
all singular values:

srankδ(Φ) = 1
min(N,n) min

{
k :

∑k

i=1
σi(Φ)∑min(N,n)

i=1
σi(Φ)

≥ 1− δ
}
, (12.6)

Remark 39. Intuitively, this quantity represents the number of “effective” unique components of
the feature matrix Φ that form the basis for linearly approximating the targets. When the network
aliases inputs by mapping them to a smaller subspace, Φ has only a few active singular directions,
and srankδ(Φ) takes thus a small value.

Recent studies have shown an implicit under-parametrization phenomenon in neural value-based
algorithms, with the measure of the low effective rank metric Kumar et al. (2020); Luo et al. (2020);
Lyle et al. (2021). This issue is exacerbated in RL due to the lack of direct and accurate targets.
Instead of using true targets, value-based algorithms approximate them with bootstrapping, i.e.,
by sequentially fitting outputs to target value estimates generated from the function learned in
previous iterations. As these targets rely on estimates, they can not be used to extract expressive
representations.

12.3.2 Experiments

For every 1,000 environment timesteps, we compute the effective rank measure on a learned feature
matrix Φt ∈ RN×n to quantify the expressiveness of the learned representations Φ(·, ·; Wt) for
the experiments described in Section 11.2.2. The learned feature matrix Φt ∈ RN×n is built
on samples of the dataset D =

{
(si, ai)

}N

i=1 defined in Section 12.2.3; where the ith row of Φt

is defined as (Φt)i = Φ(si, ai; Wt). Figure 12.1 shows the normalized effective rank over the
environment timesteps of training. The learned features are more expressive for neural networks
using Fourier Features/Fourier Light Features in all instances. This may induce a better use
of the network capacity and explain better performance. These results are consistent with the
absence of dead neurons reported in Table 12.3 when using Fourier Features/Fourier Light Features.

115

Chapter 12. Observed Effects on Training Neural Networks

Features learned with neural networks using Fourier Light Features are more expressive than those
with Fourier Features in most instances. In Figure 12.1, all curves exhibit a similar trend. This
observation is consistent with the findings of Kumar et al. (2020), who noted that the effective
rank is a decreasing function with respect to the number of iterations for Deep RL algorithms using
bootstrapping estimates. However, our experiments indicate that the decrease in the effective rank
is less pronounced with Fourier Features/Fourier Light Features in most instances. This suggests
a more stable learning process with less catastrophic interference for neural networks using Fourier
Features and Fourier Light Features.

0 0.5 1 1.5
·105

0

0.2

0.4

0.6

0.8

Timesteps

sr
an

k δ
(Φ

)

Figuwxcre: MountainCar-v0

0 0.5 1 1.5
·105

0

0.2

0.4

0.6

0.8

Timesteps

Fisdgure: CartPole-v1

0 2 4 6
·104

0.8

0.9

1

Timesteps

Figxxre: Acrobot-v1

0 2 4 6
·104

0.6

0.8

1

Timesteps

NN
FF-NN

FLF-NN

Figxxre: LunarLander-v2

Figure 12.1: The use of Fourier Features and Fourier Light Features enhances the
expressiveness of the learned features on discrete control tasks. Normalized effective
rank srankδ(Φt) over environment timesteps during the training for neural networks fed raw inputs
(blue), Fourier Features (orange), and Fourier Light Features (green). Results are averaged over
30 trainings with shading indicating the 95% CI.

Figure 12.2 reports normalized effective rank measures obtained with DQN for experiments involv-
ing traditional feature encodings considered in Section 11.2.4. Neural networks with Polynomial
Features and Random Fourier Features generate poorer learned features than neural networks fed
with raw inputs. As expected, given the absence of dead neurons, the use of Tile-Coding produces
richer features than neural networks without feature encodings and is on par with the use of Fourier
Features/Fourier Light Features.

12.4 Smoothness

In deep learning, larger weight values lead to overfitting, which generally results in poor perfor-
mance on unseen data (Neyshabur et al., 2015; Bartlett et al., 2017; Neyshabur et al., 2017). The
idea follows Occam’s razor that models with small weight norms are simpler and perform better

116

12.4. Smoothness

0 0.5 1 1.5
·105

0

0.2

0.4

0.6

0.8

Timesteps

sr
an

k δ
(Φ

)

Figuccce: MountainCar-v0

0 0.5 1 1.5
·105

0

0.2

0.4

0.6

0.8

Timesteps

NN
FF-NN

FLF-NN
PF-NN

RFF-NN
TC-NN

Fixcbsdgure: CartPole-v1

Figure 12.2: Normalized effective rank srankδ(Φt) over environment timesteps during the train-
ing for neural networks fed with raw inputs (blue), Fourier features (orange), Fourier Light Fea-
tures (green), Fourier Light Features (green), Polynomial Features (red), Random Fourier Features
(purple) and Tile Coding features (brown). Results are averaged over 30 trainings with shading
indicating the 95% CI.

than complex models. Not allowing individual weight norms to grow can also discourage large
changes in output during the training. Similarly, regularization approaches that enforce small
weight norms, such as weight decay, tend to produce better results in RL (Farebrother et al., 2018;
Liu et al., 2020; Cobbe et al., 2019). A common approach to improving the smoothness of a neural
network is to normalize weights to ensure that the learned layers are 1-Lipschitz. This kind of
normalization not only improves the smoothness of the model but also enhances convergence (Sal-
imans and Kingma, 2016; Gogianu et al., 2021) and reduces the generalization gap (Rosca et al.,
2020; Gouk et al., 2021; Wang et al., 2019).

In order to know if Fourier features imporve the sommothness of neural networks, we need to
compute their Lipschitz constant. The exact computation of the Lipschitz constant for a neural
network is NP-hard (Scaman and Virmaux, 2018), but lower bounds and upper bounds can be
estimated. In experiments described in Section 11.2.2, a lower bound is obtained by taking the
largest norm of the gradient of DQN predictions with respect to the input (Rosca et al., 2020)
across a dataset of 300, 000 state-action pairs. To estimate an upper bound, we compute the
Lipschitz constants of each layer in isolation and multiply them (Gouk et al., 2021). Under the l2
and l1 norm, the upper bound of the Lipschitz constant of an MLP is given by the spectral norm
and the maximum absolute column sum norm measure of the weight matrix (Neyshabur, 2017;
Gouk et al., 2021). Figure 12.3 depict estimations of these bounds over environment timesteps
of DQN training. Bounds are estimated every 1, 000 timestep during the training of DQN for
experiments described in Section 11.2.2, and results are averaged over 30 trainings. In three out of
the four tasks shown in Figure 12.3, neural networks with Fourier Features have a lower Lipschitz
constant. Additional metrics, based on the l1, l2, and l∞ norm of different layers, indicate that
neural networks with Fourier Light Features can lie between neural networks with Fourier Features
and simple neural networks, sometimes even surpassing neural networks with Fourier Features; see
Appendix B.2.

Lipschitz bounds of DQN for experiments involving traditional features encodings considered in
Section 11.2.4 are shown in Figure 12.4. Observations suggest that all feature encodings improve the
Lipschitz bound of the neural network, with Tile Coding/Fourier Features/Fourier Light Features

117

Chapter 12. Observed Effects on Training Neural Networks

0 0.5 1 1.5
·105

10−1

102

105

Timesteps

L

Figxcre: MountainCar-v0

0 0.5 1 1.5
·105

100

101

102

Timesteps

Fixcgure: CartPole-v1

0 2 4 6
·104

100

101

102

103

Timesteps

Figuxre: Acrobot-v1

0 2 4 6
·104

10−1

101

103

Timesteps

Fcxxre: LunarLander-v2

Figure 12.3: Preprocessing inputs with Fourier Features or Fourier Light Features may
improve the smoothness of the neural network. Lower and upper bounds on the Lipschitz
constant L of neural networks over environment timesteps during the training, for neural networks
fed with raw inputs (blue), Fourier Features (orange), and Fourier Light Features (green). Bounds
are averaged over 30 trainings. A lower score is better.

Figure 12.4: Lower and upper bounds on the Lipschitz constant of neural networks over envi-
ronment timesteps during the training, for neural networks fed with raw inputs (blue), Fourier
Features (orange), Fourier Light Features (green), Polynomial Features (red), Random Fourier
Features (purple) and Tile Coding features (brown). Bounds are averaged over 30 trainings with
shading indicating the 95% CI

118

12.5. Correlations with the Fourier Light Features Order

Figure 12.5: Cumulative rewards over varying FLF orders, averaged across all timesteps for 5
trainings with DQN fed with Fourier Light features. The red line indicates the performance for
DQN without any preprocessing.

giving the best performance, followed by Polynomial Features/Random Fourier Features. In the
shown instance, smoother networks correlate with better learning performance (see Section 11.2.4).

12.5 Correlations with the Fourier Light Features Order

In this section, we investigate the correlation between the performance/metrics presented in this
section and the Fourier Light Features order. For our experiments, we adopt the same hyperpa-
rameter settings as those used in experiments described in Section 11.2.2. Figure 12.5 depicts the
performance across different Fourier Light Features orders, where the performance is defined as
the cumulative rewards from policy rollouts obtained after the training of DQN. We observe that
increasing the Fourier Light Features order increases the performance up to a certain point, beyond
which performance degrades. Fourier Light Features order can be considered as an additional hy-
perparameter for Deep RL algorithms. Only for the LunarLander-v2 task, the correlation between
the performance after the training and the Fourier Light Features order is unclear.

Table 12.5 summarizes the Spearman’s rank correlation coefficients and p-values over a Fourier
Light Features order for metrics studied in this chapter. Results indicate that increasing the
Fourier Light Features order is strongly correlated with a better metric in almost all tasks and
that this correlation is significant. In the CartPole-v1 task, the correlations are weaker, but a
closer look at the graphs, shown in Figure 12.6, suggests that this is due to outliers and saturation
in the metric.

119

Chapter 12. Observed Effects on Training Neural Networks

Table 12.5: Increasing the Fourier Light Features order improves the metrics. The table
shows Spearman’s rank correlation coefficient rS between different metrics and the FLF order. The
p-value of the hypothesis test indicates high confidence in the result in almost all cases. The metrics
are the percentage of dead neurons (DN), normalized activation overlap (NO), instance sparsity
(IS), Average of Stiffness (AS), Average of Interference (AI), Interference Risk (IR), Lipschitz
Lower Bound (LLB), Lipschitz Upper Bound (LUB), averaged across all environment timesteps
for 5 trainings with DQN fed with Fourier Light features (FLF-NN), over an order varying from 1
to 30. ↓ and ↑ indicate the direction in which the metric is better.

MountainCar-v0 Acrobot-v1 CartPole-v1 LunarLander-v2
Metric rS p-value rS p-value rS p-value rS p-value

DN ↓ −0.876 2.198 × 10−10 −0.882 1.173 × 10−10 −0.658 7.768 × 10−5 −0.869 2.188 × 10−10

NO ↓ −0.991 4.529 × 10−26 −0.93 1.143 × 10−13 −0.77 6.692 × 10−7 −0.562 1.009 × 10−3

IS ↓ −0.992 2.215 × 10−26 −0.724 6.082 × 10−6 −0.75 1.795 × 10−6 −0.131 4.836 × 10−1

srankδ(Φ) ↑ 0.766 8.290 × 10−7 0.998 7.749 × 10−36 0.984 2.379 × 10−22 1.0 0.000
AS ↓ −0.996 1.256 × 10−31 −0.955 2.547 × 10−16 −0.153 4.201 × 10−1 −0.962 6.575 × 10−18

AI ↑ 0.994 3.122 × 10−28 0.968 1.990 × 10−18 0.501 4.780 × 10−3 0.942 2.538 × 10−15

IR ↑ 0.996 1.256 × 10−31 0.996 6.515 × 10−31 0.668 5.566 × 10−5 0.989 1.090 × 10−25

LLB ↓ −0.962 2.380 × 10−17 −0.352 5.631 × 10−2 −0.828 1.610 × 10−8 −0.977 5.119 × 10−21

LUB ↓ −0.575 8.863 × 10−4 0.268 1.521 × 10−1 −0.66 7.228 × 10−5 −0.98 7.797 × 10−22

120

12.5. Correlations with the Fourier Light Features Order

(a) Normalized overlap (NO), instance sparsity (IS), percentage of dead neurons (DN), srank, Average of Stiffness
(AS), Average of Interference (AI), Interference Risk (IR), for CartPole-v1 task

(b) Lipschitz Lower Bound (LLB) and Lipschitz Upper Bound (LUB) for Acrobot-v1 task

Figure 12.6: Selected metrics over varying FLF orders, for two discrete control tasks

121

Conclusions and Perspectives

Conclusions

In this thesis, we have contributed to the domain of neural networks in deep RL in two ways,
presented in two separate parts. We now briefly summarize our contributions.

In Part II, we have analyzed the performance of regularized LSTD with random features in a novel
double asymptotic regime presented in Chapter 6, where the number of parameters N and distinct
visited states m go to infinity with a constant ratio N/m. From the perspective of neural networks,
by leveraging the lazy training regime, the performance of regularized LSTD with random features
in high-dimensional problems can be interpreted as an approximation of the performance of deep
TD learning algorithms using large single-hidden-layer neural networks. In Chapter 7, we have
identified the resolvent of a non-symmetric positive-definite matrix that emerges as a crucial factor
in the performance analysis of TD learning algorithms in terms of the error functions, and we have
provided its deterministic equivalent form in the double asymptotic regime. Using this deterministic
equivalent, we have derived deterministic limit forms of the empirical Mean-Squared Bellman
Error (MSBE) on the collected transitions, the Mean-Squared Bellman Error (MSBE), and the
Mean-Squared Value Error (MSVE). We have demonstrated that those deterministic forms expose
correction terms that arise from the constant ratio N/m and that vanish as the ratio N/m or the
l2 regularization parameter increases. In Chapter 8, we have shown the asymptotic deterministic
errors of regularized LSTD using random features are equivalent to the errors of a regularized
kernel LSTD with implicit regularization. We have highlighted that correction factors can be
interpreted and linked to classical notions from non-parametric statistics, e.g., with the effective
dimension. In Chapter 9, we have observed our theoretical predictions match with experimental
results for regularized LSTD with random features for any ratio N/m in real-world environments.
From experiments, we have distinguished two regimes induced by corrections factors: an under-
(N/m < 1) and an over-(N/m > 1) parameterized regime. In particular, we have observed a double
descent phenomenon in the overparameterized regime for the MSBE and the MSVE induced by
the correction factors. We have shown the correction terms vanish, and so does the double descent
phenomenon when the l2-regularization is increased, or the number of unvisited states goes to zero.

One remaining issue is the lack of interpretability of the corrections terms. In supervised learn-
ing, the theory of non-parametric models provides an interpretation of the correction terms, e.g.,
through the notion of degree of freedoms. A similar connection is missing in Reinforcement Learn-
ing because of the bootstrapping. Our work from Part II provides a stepping stone for further
study of the influence of regularization, of the neural network architecture, and of the spectral
components learned by neural networks. Some of these avenues will be discussed in further detail
in Section 12.5.

122

12.5. Correlations with the Fourier Light Features Order

In Part III, we have proposed and experimentally studied the effect of a type of Fourier encoding
on Deep RL algorithms to mitigate the spectral bias. In particular, in Chapter 11, we have found
that using preprocessings based on the Fourier series for neural networks provides a systematic
increase in the final performance, sample efficiency, learning stability, and robustness to hyperpa-
rameters. Furthermore, we have proposed a light version of Fourier features, with only a linear
number of features compared to the input size, that leads to similar benefits. In Chapter 12, we
have conducted a detailed empirical analysis on the effects of Fourier encodings on the learning
process. In particular, we have observed that the use of Fourier encodings improve the sparsity,
expressiveness, and smoothness of neural networks, and reduce their catastrophic interference dur-
ing learning. Ideally, the experimental analysis could be completed by a theoretical investigation.
But this does not seem straightforward, since the nonlinearity of the proposed preprocessings com-
plicates the analysis. Preprocessing inputs with features encodings for neural networks remains
a promising direction for further research to overcome limitations of neural networks such as the
spectral bias.

Perspectives

In the following, we discuss some possible future research directions in the continuation of this
thesis.

A Refined Theoretical Analysis of the Influence of the Number of Parameters. In
Part II, in our theoretical study of the influence of network size and l2-regularization on the
performance of TD learning algorithms, we have assumed that transitions are collected in the on-
policy setting and we have considered the regularized LSTD algorithm with random features to
approximate the behavior of neural TD learning algorithms in the lazy training regime. Directions
for future work include a study of the off-policy setting and of gradient-based methods, which may
lead to more complex behaviors. Furthermore, one could also relax the Gaussian assumption and
consider the dynamics of learning within the hidden layers in more realistic regimes than the lazy
training regime. Finally, one could go beyond policy evaluation to investigate the effects on the
policy learned and on other RL algorithms, such as actor-critic methods.

“Proving” the Double Descent Phenomenon. In Chapter 7, we have shown that the asymp-
totic deterministic error functions in the double asymptotic regime feature corrections terms due
to the constant ratio between the number of parameters and the number of distinct visited states.
We have experimentally associated these corrections terms with the double descent phenomenon
observed in Chapter 9. However, we did not mathematically prove the double descent phenomenon
with corrections terms and why it occurs. Furthermore, a theoretical and empirical analysis can be
performed to study whether, when, and how the double-descent phenomenon impacts TD learning
algorithms using a gradient-based approach.

Generalization in TD Learning Algorithms. A theoretical understanding of generalization
remains an open problem for many machine learning models. Using the double asymptotic regime
considered in Part II, one can investigate the generalization error of RL aglorithms through a
study of regularized kernel TD learning algorithms, as started in Chapter 8. By decomposing
the generalization error into different spectral components in the Mercer feature space, one could

123

Chapter 12. Observed Effects on Training Neural Networks

highlight which specific components of the value function are prioritized by TD learning algorithms
with respect to the number of parameters. In particular, one could examine how the learning
of these spectral components changes as the number of transitions collected or the number of
distinct visited states collected grows. From a practical perspective, as the spectral components
in the Mercer feature space depend on the dynamics of the environments, such understanding
may be useful for the design of a reward function to improve the learning of value functions. In
addition, this study could also improve our understanding of regularization in RL and propose new
regularization penalities to improve generalization properties.

124

Appendices

125

Appendix A

Mathematical Proofs: Double
Descent in LSTD

A.1 Proof of Theorem 7.2.3

Under Assumptions 1 and 2, this section is dedicated to prove the asymptotic equivalence between
E[Qm(λ)] and

Q̄m(λ) =
[
N

m

1
1 + δ

(Ûn − γV̂n)T ΦŜÛn + λIn

]−1

defined in Theorem 7.2.3, when N,m → ∞. In order to prove Theorem 7.2.3, we shall proceed
by introducing an intermediary resolvent Q̃m(λ) (defined in equation A.1), and show subsequently
under Assumptions 1 and 2 that

∥E[Qm(λ)]− Q̃m(λ)∥ → 0 and ∥Q̃m(λ)− Q̄m(λ)∥ → 0,

as N,m→∞.

We denote the resolvent Qm(λ) by Qm to simplify the notations. The first half of the proof is
dedicated to Lemma A.1.1, which proposes a first characterization of E[Qm] by Q̃m as N,m→∞
under Assumptions 1 and 2. This preliminary step is classical in studying resolvents in the Random
Matrix literature (Louart et al., 2018; Liao et al., 2020) as the direct comparison of E[Qm] to Q̄m

with the implicit δ (equation 7.8) may be cumbersome.

Lemma A.1.1. Under Assumptions 1 and 2, let λ > 0 and let Q̃m(λ) ∈ Rn×n be the resolvent
defined as

Q̃m(λ) =
[
N

m

1
1 + α

(Ûn − γV̂n)T ΦŜÛn + λIn

]−1
; (A.1)

for the deterministic Gram feature matrix

ΦŜ = Ew∼N (0,Id)
[
σ(wT Ŝ)Tσ(wT Ŝ)

]
,

and
α = 1

m
Tr
(
(Ûn − γV̂n)T ΦŜÛnE[Q−(λ)]

)
, (A.2)

126

A.1. Proof of Theorem 7.2.3

where

Q−(λ) =
[

1
m

(Ûn − γV̂n)Tσ(W−Ŝ)Tσ(W−Ŝ)Ûn + λIn

]−1
, (A.3)

for which W− ∈ R(N−1)×d depicts the submatrix of the weight matrix W (defined in equation 6.5)
without the first row. Then,

lim
m→∞

∥EW [Qm(λ)]− Q̃m(λ)∥ = 0.

Remark 40. Firstly, we can note that α is uniformly bounded. Since 1
m Tr(ΦŜ) = E

[
1
m∥σ(wT Ŝ)∥2

]
and from Lemma A.7.2, we have

1
m

Tr(ΦŜ) =
∫ ∞

0
Pr
(

1
m
∥σ(wT Ŝ)∥2 > t

)
dt =

∫ ∞

0
2tPr

(
1
m
∥σ(wT Ŝ)∥ > t

)
dt = O(1). (A.4)

We deduce that

α = 1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛnE[Q−]

)
≤ ∥ÛnE[Q−](Ûn − γV̂n)T ∥ 1

m
Tr(ΦŜ) = O(1), (A.5)

where we used |Tr(AB)| ≤ ∥A∥Tr(B) for non-negative definite matrix B together with Lemma A.4.1
which asserts the operator norm of the resolvent Q− is uniformly bounded. Furthermore, both ∥Ûn∥
and ∥V̂n∥ are upper bounded by 1.

Proof. We decompose the matrix ΣT
Ŝ ΣŜ as

ΣT
Ŝ ΣŜ =

N∑
i=1

σiσ
T
i , (A.6)

where σi = σ(ŜT wi) ∈ Rm for which wi ∈ Rd denotes the i-th row of W (defined in equation 6.5).
Using the resolvent identity (Lemma A.8.1), we write

E[Qm]− Q̃m

= E
[
Qm

[
Q̃−1

m − λIn −
1
m

(Ûn − γV̂n)T ΣT
Ŝ ΣŜÛn

]
Q̃m

]
= N

m

1
1 + α

E[Qm](Ûn − γV̂n)T ΦŜÛnQ̃m −
1
m

N∑
i=1

E
[
Qm(Ûn − γV̂n)T σiσ

T
i Ûn

]
Q̃m

= N

m

1
1 + α

E[Qm](Ûn − γV̂n)T ΦŜÛnQ̃m −
1
m

N∑
i=1

E

[
Q−i

(Ûn − γV̂n)T σiσ
T
i Ûn

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

]
Q̃m,

where the last equality is obtained with the Sherman identity (Lemma A.8.3) for

Q−i =
[

1
m

(Ûn − γV̂n)T ΣT
Ŝ ΣŜÛn −

1
m

(Ûn − γV̂n)T σiσ
T
i Ûn + λIn

]−1
(A.7)

independent of σi and thus wi. Exploiting this independence, we decompose

E[Qm]− Q̃m (A.8)

127

Appendix A. Mathematical Proofs: Double Descent in LSTD

= N

m

1
1 + α

E[Qm](Ûn − γV̂n)T ΦŜÛnQ̃m −
1

1 + α

1
m

N∑
i=1

E
[
Q−i(Ûn − γV̂n)T σiσ

T
i Ûn

]
Q̃m

+ 1
m

1
1 + α

N∑
i=1

E

[
Q−i

(Ûn − γV̂n)T σiσ
T
i Ûn(1

m σT
i ÛnQ−i(Ûn − γV̂n)T σi − α)

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

]
Q̃m

(A.9)

= 1
m

1
1 + α

N∑
i=1

E[Qm −Q−i](Ûn − γV̂n)T ΦŜÛnQ̃m︸ ︷︷ ︸
=Z1

+ 1
m

1
1 + α

N∑
i=1

E
[
Qm

(
Ûn − γV̂n

)T

σiσ
T
i ÛnQ̃m

(
1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi − α

)]
︸ ︷︷ ︸

=Z2

.

(A.10)

The last equality is obtained by exploiting the Sherman identity (Lemma A.8.3) in reverse on the
rightmost term and from the independence of Q−i and σiσ

T
i for the second right-hand term. We

want to prove that both Z1 and Z2 have a vanishing spectral norm under Assumptions 1 and 2.
With both the resolvent identity (Lemma A.8.1) and the Sherman identity (Lemma A.8.3), we
rewrite Z1 as

Z1 = 1
m

1
1 + α

N∑
i=1

E[Qm −Q−i](Ûn − γV̂n)T ΦŜÛnQ̃m

= − 1
m2

1
1 + α

N∑
i=1

E
[
Qm(Ûn − γV̂n)T σiσ

T
i ÛnQ−i

]
(Ûn − γV̂n)T ΦŜÛnQ̃m

= − 1
m2

1
1 + α

N∑
i=1

E
[
Qm(Ûn − γV̂n)T σiDiσ

T
i ÛnQm

]
(Ûn − γV̂n)T ΦŜÛnQ̃m

= − 1
m2

1
1 + α

E
[
Qm(Ûn − γV̂n)T ΣT

Ŝ DΣŜÛnQm

]
(Ûn − γV̂n)T ΦŜÛnQ̃m,

where D ∈ RN×N is a diagonal matrix for which, for all i ∈ [N], we have

Di =
(

1 + 1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi

)
. (A.11)

With a similar proof than for Lemma A.4.1, we can show there exists a KQ̃m
such that, for all m,

we have ∥Q̃m∥ ≤ KQ̃m
and then∥∥∥∥ 1

1 + α
(Ûn − γV̂n)T ΦŜÛnQ̃m

∥∥∥∥ =
∥∥∥m
N

(In − λQ̃m)
∥∥∥ ≤ m

N
(1 + λKQ̃m

). (A.12)

Furthermore, from Lemma A.1.4, we have∥∥∥∥ 1
m2E

[
Qm(Ûn − γV̂n)T ΣT

Ŝ DΣŜÛnQm

]∥∥∥∥ = O
(

1
m

)
. (A.13)

Therefore, by combining both equation A.12 and equation A.13, we conclude that Z1 has a van-

128

A.1. Proof of Theorem 7.2.3

ishing spectral norm, i.e.,

∥Z1∥ =
∥∥∥∥∥ 1
m

1
1 + α

N∑
i=1

E[Qm −Q−i](Ûn − γV̂n)T ΦŜÛnQ̃m

∥∥∥∥∥ = O
(

1
m

)
. (A.14)

We want to show now that Z2 also has a vanishing operator norm. For i ∈ [N], by setting

Bi = m
1
4 Qm

(
Ûn − γV̂n

)T

σi

(
1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi − α

)
and

Ci = m− 1
4 Q̃T

mÛT
n σi,

we decompose Z2 with its symmetric and its skew-symmetric part as

Z2 = 1
1 + α

1
m

N∑
i=1

E
[
Qm

(
Ûn − γV̂n

)T

σiσ
T
i ÛnQ̃m

(
1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi − α

)]

= 1
1 + α

1
m

N∑
i=1

E
[
BiC

T
i

]
= 1

1 + α

1
m

N∑
i=1

E
[

BiC
T
i + CiB

T
i

2

]
+ 1

1 + α

1
m

N∑
i=1

E
[

BiC
T
i −CiB

T
i

2

]
.

For the symmetric part, we use the relations (Bi−Ci)(Bi−Ci)T ⪰ 0 and (Bi +Ci)(Bi +Ci)T ⪰ 0
to deduce that

−BiB
T
i −CiC

T
i ⪯ BiC

T
i + CiB

T
i ⪯ BiB

T
i + CiC

T
i ,

where ⪯ is the Loewner order for semi-positive-definite matrices. For the skew-symmetric part, we
observe that ∥E

[
BiC

T
i −CiB

T
i

]
∥ = ∥i E

[
BiC

T
i −CiB

T
i

]
∥ for i2 = −1. With a similar reasoning

than above, using the relations (Bi + iCi)(Bi + iCi)∗ ⪰ 0 and −(Bi − iCi)(Bi − iCi)∗ ⪯ 0, we
deduce the relation

−BiB
T
i −CiC

T
i ⪯ i(BiC

T
i −CiB

T
i) ⪯ BiB

T
i + CiC

T
i .

From those relations, for both the symmetric and skew-symmetric parts, we have

∥Z2∥ =
∥∥∥∥∥ 1

1 + α

1
m

N∑
i=1

E
[
Q
(

Ûn − γV̂n

)T

σiσ
T
i ÛnQ̃m

(
1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi − α

)]∥∥∥∥∥
≤ 1

1 + α

(∥∥∥∥∥
N∑

i=1
E
[

1
m

BiB
T
i

]∥∥∥∥∥+
∥∥∥∥∥

N∑
i=1

E
[

1
m

CiC
T
i

]∥∥∥∥∥
)
.

(A.15)

From Lemma A.4.4, we know there exists a real K ′
Qm

> 0 such that, for all m, we have∥∥∥∥ 1√
m

Qm(Ûn − γV̂n)T ΣT
Ŝ

∥∥∥∥ ≤ K ′
Qm

.

129

Appendix A. Mathematical Proofs: Double Descent in LSTD

At this point,∥∥∥∥∥
N∑

i=1
E
[

1
m

BiB
T
i

]∥∥∥∥∥
=
∥∥∥∥∥

N∑
i=1

E

[
1√
m

Qm

(
Ûn − γV̂n

)T

σiσ
T
i

(
Ûn − γV̂n

)T

QT
m

(
1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi − α

)2
]∥∥∥∥∥

=
∥∥∥∥√mE

[
1
m

Qm

(
Ûn − γV̂n

)T

ΣT
Ŝ D2

2ΣŜ

(
Ûn − γV̂n

)T

QT
m

]∥∥∥∥
≤
√
mK ′2

Qm
E[∥D2

2∥],

where D2 ∈ RN×N is a diagonal matrix for which, for all i ∈ [N], we have

[D2]i =
(

1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi − α

)
.

From both Lemma A.7.4 and the union bound, we have

Pr (∥D2∥ > t) = Pr
(

max
1≤i≤N

[D2]i > t

)
≤ CNe−cm min(t,t2)

for some c, C > 0 independent of m and N . We have thus

E
(
∥D2∥2) = E

(
max

1≤i≤N
[D2

2]i
)

=
∫ ∞

0
Pr
(

max
1≤i≤N

[D2
2]i > t

)
dt

=
∫ ∞

0
2tPr

(
max

1≤i≤N
[D2]i > t

)
dt

≤
∫ ∞

0
2tCNe−cm min(t,t2)dt

=
∫ 1

0
2tCNe−cmt2

dt+
∫ ∞

1
2tCNe−cmtdt

≤
∫ ∞

0
2tCNe−cmt2

dt+
∫ ∞

0
2tCNe−cmtdt

= 1
m

2C
c

∫ ∞

0
tNe−t2

dt+ 1
m2

2C
c2

∫ ∞

0
tNe−tdt

= O
(

1
m

)
.

We deduce that ∥∥∥∥∥
N∑

i=1
E
[

1
m

BiB
T
i

]∥∥∥∥∥ = O
(

1√
m

)
.

In addition, with a similar proof than for Lemma A.4.4, we can show there exists a real K ′
Q̃m

> 0
such that, for all m, we have ∥∥∥∥∥

√
N

m

√
1

1 + α
Z̄T ÛnQ̃m

∥∥∥∥∥ ≤ K ′
Q̃m

,

130

A.1. Proof of Theorem 7.2.3

where Z̄Z̄T is the Cholesky decomposition of ΦŜ . Therefore,∥∥∥∥∥
N∑

i=1
E
[

1
m

CiC
T
i

]∥∥∥∥∥ =
∥∥∥∥∥

N∑
i=1

E
[

1
m
√
m

Q̃T
mÛT

n σiσ
T
i ÛnQ̃m

]∥∥∥∥∥
=
∥∥∥∥ 1√

m

N

m
Q̃T

mÛT
n ΦŜÛnQ̃m

∥∥∥∥
= O

(
1√
m

)
.

From equation A.15 and above, we deduce that Z2 vanishes under the operator nom, i.e.,

∥Z2∥ = O
(

1√
m

)
. (A.16)

Using both equation A.14 and equation A.16 into equation A.10, we conclude that

∥E[Qm]− Q̃m∥ = O
(

1√
m

)
. (A.17)

To get Theorem 7.2.3, we start from Lemma A.1.1 and we show that

∥Q̄m(λ)− Q̃m(λ)∥ → 0,

as N,m→∞.

Theorem A.1.2 (Asymptotic Deterministic Resolvent). Under Assumptions 1 and 2, let λ > 0
and let Q̄m(λ) ∈ Rn×n be the resolvent defined as

Q̄m(λ) =
[
N

m

1
1 + δ

(Ûn − γV̂n)T ΦŜÛn + λIn

]−1
,

where δ is the correction factor defined as the unique positive solution to

δ = 1
m

Tr
(

(Ûn − γV̂n)T ΦŜÛn

[
N

m

1
1 + δ

(Ûn − γV̂n)T ΦŜÛn + λIn

]−1
)
.

Then,
lim

m→∞

∥∥∥EW

[
Qm(λ)

]
− Q̄m(λ)

∥∥∥ = 0.

Proof. From Lemma A.6.1 in Appendix A.6, we know that δ exists and is the unique positive
solution of equation 7.8 under Assumptions 1 and 2. From Lemma A.1.1 we have a first asymptotic
equivalent of EW [Qm] given by

Q̃m =
[
N

m

1
1 + α

(
Ûn − γV̂n

)T

ΦŜÛn + λIn

]−1
,

where
α = 1

m
Tr
(
(Ûn − γV̂n)T ΦŜÛnE[Q−]

)
,

131

Appendix A. Mathematical Proofs: Double Descent in LSTD

since
lim

m→∞
∥EW [Qm]− Q̃m∥ = 0.

To finish the proof of the Theorem, we want to show that

lim
m→∞

∥Q̃m − Q̄m∥ = 0. (A.18)

From the resolvent identity (Lemma A.8.1), we have

∥Q̃m − Q̄m∥ = N

m

|α− δ|
(1 + δ)(1 + α)

∥∥∥∥Q̃m

(
Ûn − γV̂n

)T

ΦŜÛnQ̄m

∥∥∥∥ . (A.19)

Let Z̄Z̄T be the Cholesky decomposition of ΦŜ . With a similar proof than for Lemma A.4.4, we
can show there exists a real K ′

Q̃
> 0 such that, for all m, we have∥∥∥∥∥

√
1

1 + α

√
N

m
Q̃m

(
Ûn − γV̂n

)T

Z̄

∥∥∥∥∥ ≤ K ′
Q̃
.

Similarly, we can show there exists a real K ′
Q̄
> 0 such that, for all m, we have∥∥∥∥∥

√
1

1 + δ

√
N

m
Z̄T ÛnQ̄m

∥∥∥∥∥ ≤ K ′
Q̄
.

Therefore, ∥∥∥∥Q̃m

(
Ûn − γV̂n

)T

ΦŜÛnQ̄m

∥∥∥∥ ≤√(1 + δ)(1 + α)m
N
K ′

Q̄
K ′

Q̃
.

As a consequence, in order to prove equation A.18, it remains to prove that

lim
m→∞

|α− δ| = 0.

We decompose |α− δ| as

|α− δ| =
∣∣∣∣ 1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛn

[
E[Q−]− Q̄m

])∣∣∣∣ (A.20)

≤
∣∣∣∣ 1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛn

[
E[Q−]− Q̃m

])∣∣∣∣︸ ︷︷ ︸
=Z1

+
∣∣∣∣ 1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛn

[
Q̃m − Q̄m

])∣∣∣∣︸ ︷︷ ︸
=Z2

.

(A.21)

To show Z1 vanishes, we write α as

α = 1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛnE[Q−]

)
= 1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛnE[Qm]

)
+ 1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛn

[
E[Q−]− E[Qm]

])
.

There exists a real K > 0 such that

1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛn

[
E[Q−]− E[Qm]

])
≤ K

∥∥[E[Q−]− E[Qm]
]∥∥ ;

since both ∥Ûn∥ and ∥V̂n∥ are upper bounded by 1, |Tr(AB)| ≤ ∥A∥Tr(B) for non-negative

132

A.1. Proof of Theorem 7.2.3

definite matrix B, and from equation A.4 that uniformly bounds 1
m Tr(ΦŜ). From Lemma A.1.4,

we have

∥E [Qm −Q−]∥ =
∥∥∥∥∥ 1
m

m

N

N∑
i=1

E [Qm −Q−i]
∥∥∥∥∥

=
∥∥∥∥ 1
m2

m

N
E
[
Qm(Ûn − γV̂n)T ΣT

Ŝ DΣŜÛnQm

]∥∥∥∥
= O

(
1
m

)
,

where D ∈ RN×N is a diagonal matrix for which, for all i ∈ [N], we have

Di =
(

1 + 1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi

)
.

As a consequence, by combining the results above and from Lemma A.1.1, we conclude for Z1 that

|Z1| =
∣∣∣∣α− 1

m
Tr
(
(Ûn − γV̂n)T ΦŜÛnQ̃m

)∣∣∣∣ = O
(

1√
m

)
.

Using the vanishing result of Z1 into equation A.21 and applying the resolvent identity (Lemma A.8.1)
on Z2, we get

|α− δ| ≤ N

m

|α− δ|
(1 + δ)(1 + α)

∣∣∣∣ 1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛnQ̃m(Ûn − γV̂n)T ΦŜÛnQ̄m

)∣∣∣∣+O
(

1√
m

)
,

which implies that

|α− δ|
(

1− N

m

1
(1 + δ)(1 + α)

1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛnQ̃m(Ûn − γV̂n)T ΦŜÛnQ̄m

))
= O

(
1√
m

)
.

It remains to show

lim
m→∞

sup
m

1
m

N

m

1
(1 + δ)(1 + α) Tr

(
(Ûn − γV̂n)T ΦŜÛnQ̃m

(
Ûn − γV̂n

)T ΦŜÛnQ̄m

)
< 1.

Let the matrices Bn = (Ûn − γV̂n)T ΦŜÛn, B′
n = Z̄T ÂmZ, Q̄′

m =
[

N
m

1
1+δ B′

n + λIm

]−1
, and

Q̃′
m =

[
N
m

1
1+α B′

n + λIm

]−1
; where Âm = Ûn(Ûn − γV̂n)T is the empirical transition model

matrix defined in equation 6.14. Using the Cauchy–Schwarz inequality, we write

1
m

N

m

1
(1 + δ)(1 + α) Tr

(
BnQ̃mBnQ̄m

)
= 1
m

N

m

1
(1 + δ)(1 + α) Tr

(
B′

nQ̃′
mB′

nQ̄′
m

)
≤

√√√√√√N

m

1
m

1
(1 + δ)2 Tr

(
B′

nQ̄′
mQ̄′T

m B′T
n

)
︸ ︷︷ ︸

Z′
1

N

m

1
m

1
(1 + α)2 Tr

(
B′

nQ̃′
mQ̃′T

m B′T
n

)
︸ ︷︷ ︸

Z′
2

.

We observe that

δ = 1
m

Tr
(
BnQ̄m

)
= 1
m

Tr
(
B′

nQ̄′
m

)
= 1
m

Tr
(
B′

nQ̄′
mQ′T

m Q−1T
m

)

133

Appendix A. Mathematical Proofs: Double Descent in LSTD

= 1
m

N

m

1 + δ

(1 + δ)2 Tr
(
B′

nQ̄′
mQ̄′T

m B′T
n

)
+ λ

m
Tr
(
B′

nQ̄′
mQ̄′T

m

)
.

Since H(B′
n) is at least semi-positive-definite under Assumption 2, we have

Tr
(
B′

nQ̄′
mQ̄′T

m

)
= Tr

(
Q̄′T

m B′
nQ̄′

m

)
= Tr

(
Q̄′T

mH(B′
n)Q̄′

m

)
≥ 0.

As a consequence, we have

1
m

N

m

1
(1 + δ)2 Tr

(
B′

nQ̄′
mQ̄′T

m B′T
n

)
≤
δ − λ

m Tr
(
B′

nQ̄′
mQ̄′T

m

)
1 + δ

≤ δ

1 + δ
.

To prove δ
1+δ < 1, it remains to show that δ <∞. With a similar proof than for Lemma A.4.1, we

can show there exists a real KQ̄ > 0 such that, for all m, we have ∥Q̄m∥ ≤ KQ̄, and thus

δ = 1
m

Tr
(
BnQ̄m

)
= 1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛnQ̄m

)
≤ 2
m

Tr(ΦŜ)∥Q̄m(δ)∥ ≤ 2
m

Tr(ΦŜ)KQ̄ <∞

where we used for the first inequality the relation |Tr(AB)| ≤ ∥A∥Tr(B) for non-negative definite
matrix B. Furthermore, from equation A.4, 1

m Tr(ΦŜ) is bounded under Assumptions 1 and 2,
and both ∥Ûn∥ and ∥V̂n∥ are upper bounded by 1. We thus conclude for Z ′

1 that

lim sup
m

1
m

N

m

1
(1 + δ)2 Tr

(
B′

nQ̄′
mQ̄′T

m B′T
n

)
< 1. (A.22)

With similar arguments, we can show for Z ′
2 that

lim sup
m

1
m

N

m

1
(1 + α)2 Tr

(
B′

nQ̃′
mQ̃′T

m B′T
n

)
< 1,

which concludes the proof that
|α− δ| = O

(
1√
m

)
. (A.23)

Using the result above with equation A.19, we get

∥Q̃m − Q̄m∥ = |α− δ|
∥∥∥∥Nm 1

(1 + δ)(1 + α)Q̃m

(
Ûn − γV̂n

)T

ΦŜÛnQ̄m

∥∥∥∥
= O

(
1√
m

)
,

which concludes the proof.

Lemma A.1.3. Under Assumptions 1 and 2, let D ∈ RN×N be the diagonal matrix defined in
equation A.11 for which, for all i ∈ [N], we have

Di = 1 + 1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi. (A.24)

Then
E [∥D∥] = O(1).

Proof. Let α = 1
m Tr

(
(Ûn−γV̂n)T ΦŜÛnE[Q−(λ)]

)
defined in equation A.2. From equation A.5, α

is uniformly bounded, i.e., there exists a real Kα > 0 such that α ≤ Kα. From both Lemma A.7.4

134

A.1. Proof of Theorem 7.2.3

and the union bound, we have

Pr (∥D∥ > 1 + α+ t) = Pr
(

max
1≤i≤N

Di > 1 + α+ t

)
≤ CNe−cm min(t,t2),

for some c, C > 0 independent of m and N . Therefore,

E [∥D∥] = E
[

max
1≤i≤N

Di

]
=
∫ ∞

0
Pr
(

max
1≤i≤N

Di > t

)
dt

=
∫ 2(1+Kα)

0
Pr
(

max
1≤i≤N

Di > t

)
dt+

∫ ∞

2(1+Kα)
Pr
(

max
1≤i≤N

Di > t

)
dt

≤ 2(1 +Kα) +
∫ ∞

2(1+Kα)
CNe−cm min

(
(t−(1+Kα))2,t−(1+Kα)

)
dt

= 2(1 +Kα) +
∫ ∞

1+Kα

CNe−cmtdt

= 2(1 +Kα) + CN

cm
e−Cm(1+Kα)

= O(1).

Lemma A.1.4. Under Assumptions 1 and 2, let D ∈ RN×N be the diagonal matrix defined in
equation A.11 for which, for all i ∈ [N], we have

Di = 1 + 1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi.

Then ∥∥∥∥E [1
m

Qm(Ûn − γV̂n)T ΣT
Ŝ DΣŜÛnQm

]∥∥∥∥ = O (1) .

Proof. From Lemma A.4.4, there exists K ′
Qm

> 0 such that, for all m, we have
∥∥∥ 1√

m
Qm(Ûn −

γV̂n)T ΣŜ

∥∥∥ ≤ 2K ′
Qm

and
∥∥∥ 1√

m
ΣŜÛnQm

∥∥∥ ≤ K ′
Qm

. Therefore,

∥∥∥∥E [1
m

Qm(Ûn − γV̂n)T ΣT
Ŝ DΣŜÛnQm

]∥∥∥∥ ≤ 2K ′2
Qm

E [∥D∥] .

From Lemma A.1.3, we have
E [∥D∥] = O(1).

As a consequence, we deduce that∥∥∥∥E [1
m

Qm(Ûn − γV̂n)T ΣT
Ŝ DΣŜÛnQm

]∥∥∥∥ = O (1) . (A.25)

135

Appendix A. Mathematical Proofs: Double Descent in LSTD

A.2 Proof of Theorem 7.3.2

This section is dedicated to finding an asymptotic deterministic limit of the empirical M̂SBE(θ̂λ
n)

(equation 6.8) under Assumptions 1 and 2. We determine in Theorem 7.3.2 a deterministic limit of
M̂SBE(θ̂λ

n) by combining Theorem 7.2.3, which provides an asymptotically more tractable approx-
imation of EW

[
Qm(λ)

]
under the form of a fixed-point equation, with concentration arguments.

Theorem 7.3.2 is corollary of Lemma A.2.2 and of the concentration result of Lemma A.7.2 found
in Section A.7. Both Lemma A.2.4 and Lemma A.2.5 are key Lemma used in the proof of Theo-
rem 7.3.2 and Theorem 7.4.2.

To simplify the notations, we denote the matrix Qm as the resolvent Qm(λ) (defined in equa-
tion 6.13). We define the matrix ΨŜ ∈ Rm×m as

ΨŜ = N

m

1
1 + δ

ΦŜ .

Furthermore, the notation A = B +O∥·∥

(
1√
m

)
means that ∥A−B∥ = O

(
1√
m

)
.

Theorem A.2.1 (Asymptotic Empirical MSBE). Under the conditions of Theorem 7.2.3, the
deterministic asymptotic empirical MSBE is

M̂SBE(θ̂λ
n) = λ2

n ∥Q̄m(λ)r∥2 + ∆̂,

with second-order correction factor

∆̂ = λ2

n

1
N Tr(Q̄m(λ)Ψ2Q̄m(λ)T)

1− 1
N Tr(Q̄m(λ)Ψ2Q̄m(λ)T Ψ1)

∥Q̄m(λ)r∥2
Ψ1
,

where
Ψ1 = ÛT

n ΨŜÛn, and Ψ2 = (Ûn − γV̂n)T ΨŜ(Ûn − γV̂n).

As N,m, d→∞ with asymptotic constant ratio N/m,

M̂SBE(θ̂λ
n)− M̂SBE(θ̂λ

n) a.s−−→ 0.

Proof. We have

M̂SBE(θ̂λ
n) = λ2

n
∥Qm r∥2 = λ2

n
rT QT

mQmr.

From Lemma 7.3.1, we have

Pr
(∣∣∣∣λ2

n
rT QT

mQmr − λ2

n
rTE[QT

mQm]r
∣∣∣∣ > t

)
≤ Ce−cn2mt2

,

for some C, c > 0 independent of m,n and N . Furthermore, from Lemma A.2.2, we have∥∥∥∥E[QT
mQm

]
− Q̄T

mQ̄m −
1
N Tr

(
Ψ2Q̄T

mQ̄m

)
1− 1

N Tr
(
Ψ2Q̄T

mΨ1Q̄m

)Q̄T
mΨ1Q̄m

∥∥∥∥ = O
(

1√
m

)
.

As a consequence, we have
M̂SBE(θ̂λ

n)− M̂SBE(θ̂λ
n) a.s−−→ 0,

as m→∞.

136

A.2. Proof of Theorem 7.3.2

Lemma A.2.2. Under Assumptions 1 and 2, let Qm ∈ Rn×n be the resolvent defined in equa-
tion 6.13, let Q̄m ∈ Rn×n be the deterministic resolvent defined in equation 7.7, and let M ∈ Rn×n

be any matrix with a bounded operator norm. Then,∥∥∥∥E[QT
mMQm

]
− Q̄T

mMQ̄m −
1
N Tr

(
Ψ2Q̄T

mMQ̄m

)
1− 1

N Tr
(
Ψ2Q̄T

mΨ1Q̄m

)Q̄T
mΨ1Q̄m

∥∥∥∥ = O
(

1√
m

)
,

for Ψ1,Ψ2 ∈ Rn×n defined in equation 7.12.

Proof. From Lemma A.2.6, we have

E
[
QT

mMQm

]
= Q̄T

mMQ̄m + E
[
QT

mMQ̄m(Ûn − γV̂n)T ΨŜÛnQm

]
− E

[
QT

−MQ̄m(Ûn − γV̂n)T ΨŜÛnQ−

]
+ 1
N

Tr
(
Ψ2Q̄T

mMQ̄m

)
E
[
QT

−Ψ1Q−
]

+O∥·∥

(
1√
m

)
.

Let
M ′ = MQ̄m(Ûn − γV̂n)T ΨŜÛn = M

[
In − λQ̄m

]
With a similar proof than for Lemma A.4.1, we can show that there exists a real KQ̄ such that,
for all m, we have ∥Q̄m∥ ≤ KQ̄. We deduce thus that M ′ is a matrix with a bounded operator
norm since ∥M ′∥ ≤ (1 + λKQ̄)∥M∥. From Lemma A.2.3, we have

∥∥∥E[QT
mMQ̄m(Ûn − γV̂n)T ΨŜÛnQm

]
− E

[
QT

−MQ̄m(Ûn − γV̂n)T ΨŜÛnQ−

]∥∥∥ = O
(

1
m

)
.

Therefore,

E
[
QT

mMQm

]
= Q̄T

mMQ̄m + 1
N

Tr
(
Ψ2Q̄T

mMQ̄m

)
E
[
QT

−Ψ1Q−
]

+O∥·∥

(
1√
m

)
.

Furthermore, from Lemma A.2.4, we have

∥∥E [QT
mΨ1Qm

]
− E

[
QT

−Ψ1Q−
]∥∥ = O

(
1√
m

)
,

and from Lemma A.2.5 we have

E
[
QT

mΨ1Qm

]
= Q̄T

mΨ1Q̄m + 1
1− 1

N Tr
(
Ψ2Q̄T

mΨ1Q̄m

)Q̄T
mΨ1Q̄m +O∥·∥

(
1√
m

)
.

We conclude thus

E
[
QT

mMQm

]
= Q̄T

mMQ̄m +
1
N Tr

(
Ψ2Q̄T

mMQ̄m

)
1− 1

N Tr
(
Ψ2Q̄T

mΨ1Q̄m

)Q̄T
mΨ1Q̄m +O∥·∥

(
1√
m

)
.

Lemma A.2.3. Under Assumptions 1 and 2, let M ∈ Rn×n be any matrix with a bounded operator
norm, let Qm ∈ Rn×n be the resolvent defined in equation 6.13, and let Q− ∈ Rn×n be the resolvent

137

Appendix A. Mathematical Proofs: Double Descent in LSTD

defined in equation A.3. Then,∥∥∥E [QT
mMQm

]
− E

[
QT

−MQ−
]∥∥∥ = O

(
1
m

)
.

Proof. We observe that∥∥∥E [QT
mMQm

]
− E

[
QT

−MQ−
]∥∥∥ ≤ ∥∥∥E [QT

mMQm

]
− E

[
QT

−MQm

]∥∥∥
+
∥∥∥E [QT

−MQm

]
− E

[
QT

−MQ−
]∥∥∥.

The objective is to show that both terms vanish. By exchangeability arguments, we have∥∥∥E [QT
mMQm

]
− E

[
QT

−MQm

]∥∥∥
=
∥∥∥∥∥ 1
N

E

[
N∑

i=1
[Qm −Q−i]T MQm

]∥∥∥∥∥
=
∥∥∥∥∥ 1
N

E

[
N∑

i=1

1
m

QT
mÛT

n σiσ
T
i (Ûn − γV̂n)QT

−iMQm

]∥∥∥∥∥ (Lemma A.8.1)

=
∥∥∥∥∥ 1
N

E

[
N∑

i=1

1
m

QT
mÛT

n σiσ
T
i (Ûn − γV̂n)QT

mMQm

(
1 + 1

m
σT

i ÛnQ−i(Ûn − γV̂n)T σi

)]∥∥∥∥∥
=
∥∥∥∥ 1
N

E
[

1
m

QT
mÛT

n ΣT
Ŝ DΣŜ(Ûn − γV̂n)QT

mMQm

]∥∥∥∥ ,
where D ∈ RN×N is a diagonal matrix for which, for all i ∈ [N], we have

Di = 1 + 1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi.

From Lemma A.1.3, we know
E [∥D∥] = O(1).

Furthermore, from Lemma A.4.4, we know there exists a real K ′
Q > 0 such that, for all m, we have∥∥∥∥ 1√

m
ΣŜÛnQm

∥∥∥∥ ≤ K ′
Q

and ∥∥∥∥ 1√
m

Qm(Ûn − γV̂n)T ΣT
Ŝ

∥∥∥∥ ≤ 2K ′
Q.

We deduce thus

∥∥E [QT
mMQm

]
− E

[
QT

−MQm

]∥∥ =
∥∥∥∥ 1
m

m

N
E
[

1
m

QT
mÛT

n ΣT
Ŝ DΣŜ(Ûn − γV̂n)QT

mMQm

]∥∥∥∥
= O

(
1
m

)
.

With a similar reasoning, we can show that

∥∥E [QT
−MQm

]
− E

[
QT

−MQ−
]∥∥ = O

(
1
m

)
,

138

A.2. Proof of Theorem 7.3.2

and we conclude thus ∥∥E [QT
mMQm

]
− E

[
QT

−MQ−
]∥∥ = O

(
1
m

)
.

Lemma A.2.4. Under Assumptions 1 and 2, let Qm ∈ Rn×n be the resolvent defined in equa-
tion 6.13, let Q− ∈ Rn×n be the resolvent defined in equation A.3, and let Ψ1 ∈ Rn×n be the matrix
defined in equation 7.12. Then,∥∥∥E [QT

mΨ1Qm

]
− E

[
QT

−Ψ1Q−
]∥∥∥ = O

(
1√
m

)
.

Proof. We observe that∥∥∥E [QT
mΨ1Qm

]
− E

[
QT

−Ψ1Q−
]∥∥∥ ≤∥∥∥E [QT

mΨ1Qm

]
− E

[
QT

−Ψ1Qm

]∥∥∥
+
∥∥∥E [QT

−Ψ1Qm

]
− E

[
QT

−Ψ1Q−
]∥∥∥.

The objective is to show that both terms vanish. By exchangeability arguments, we have∥∥E [QT
mΨ1Qm

]
− E

[
QT

−Ψ1Qm

]∥∥
=
∥∥∥∥∥ 1
N

N∑
i=1

E
[[

Qm −Q−i

]T Ψ1Qm

]∥∥∥∥∥
=
∥∥∥∥∥ 1
N

N∑
i=1

E
[

1
m

QT
mÛT

n σiσ
T
i (Ûn − γV̂n)QT

−iΨ1Qm

]∥∥∥∥∥ (Lemma A.8.1)

=
∥∥∥∥∥ 1
N

N∑
i=1

E
[

1
m

QT
mÛT

n σiσ
T
i (Ûn − γV̂n)QT

mΨ1Qm

(
1 + 1

m
σT

i ÛnQ−i(Ûn − γV̂n)T σi

)]∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥
1
N

E
[

1
m

QT
mÛT

n ΣT
Ŝ DΣŜ(Ûn − γV̂n)QT

mΨ1Qm

]
︸ ︷︷ ︸

=Z

∥∥∥∥∥∥∥∥∥ ,
where D ∈ RN×N is a diagonal matrix for which, for all i ∈ [N], we have

Di = 1 + 1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi.

Let the matrices
B = 1

N

1
m

1
4

QT
mÛT

n ΣT
Ŝ DΣŜ(Ûn − γV̂n)QT

m

and
CT = 1

m
3
4

Ψ1Qm.

We decompose Z with its symmetric and its skew-symmetric parts as

Z = E
[
BCT

]
= E

[
BCT + CBT

2

]
+ E

[
BCT −CBT

2

]
.

With the same reasoning on the symmetric part and the skew-symmetric part than for equa-

139

Appendix A. Mathematical Proofs: Double Descent in LSTD

tion A.15, we get for the operator norm∥∥Z
∥∥ ≤ ∥∥E [BBT

]∥∥+
∥∥E [CCT

]∥∥.
We want to show that both

∥∥E [BBT
]∥∥ and

∥∥E [CCT
]∥∥ vanish. We have

E
[
BBT

]
= E

[
m2

N2
1

m2√m
QT

mÛT
n ΣT

Ŝ DΣŜ(Ûn − γV̂n)QT
mQm(Ûn − γV̂n)T ΣT

Ŝ DΣŜÛnQm

]
.

From Lemma A.1.3, we know
E [∥D∥] = O(1).

Furthermore, from Lemma A.4.4, we know there exists a real K ′
Q > 0 such that, for all m, we have∥∥∥∥ 1√

m
ΣŜÛnQm

∥∥∥∥ ≤ K ′
Q

and ∥∥∥∥ 1√
m

Qm(Ûn − γV̂n)T ΣT
Ŝ

∥∥∥∥ ≤ 2K ′
Q.

We have therefore ∥∥E [BBT
]∥∥ = O

(
1√
m

)
.

For E
[
CCT

]
, we have

E
[
CCT

]
= E

[
1

m
√
m

QT
mΨ2

1Qm

]
.

Let σN+1 and σN+2 be independent vectors with the same law as σi, we have

E
[

1
m
√
m

QT
mΨ1Ψ1Qm

]
= E

[
1

m
√
m

N2

m2
1

(1 + δ)2 QT
mÛT

n σN+1σT
N+1ÛnÛT

n σN+2σT
N+2ÛnQm

]
.

Let
B′ = 1

m
3
4

N

m

1
1 + δ

QT
mÛT

n σN+1σT
N+1Ûn

and
C ′T = 1

m
3
4

N

m

1
1 + δ

ÛT
n σN+2σT

N+2ÛnQm.

We decompose E
[
CCT

]
with its symmetric and its skew-symmetric parts as

E
[
CCT

]
= E

[
B′C ′T] = E

[
B′C ′T + C ′B′T

2

]
+ E

[
B′C ′T −C ′B′T

2

]
,

and we get for the operator norm∥∥E [CCT
]∥∥ ≤ ∥∥E [B′B′T]∥∥+

∥∥E [C ′C ′T]∥∥.
To prove

∥∥E [CCT
]∥∥ vanish, we prove both

∥∥E [B′B′T]∥∥ and
∥∥E [C ′C ′T]∥∥ vanish. Let K =

1
(1+δ)2

N
N+1

N
m , we write E

[
B′B′T] as

E
[
B′B′T] = E

[
1

m
√
m

N2

m2
1

(1 + δ)2 QT
mÛT

n σN+1σT
N+1ÛnÛT

n σN+1σT
N+1ÛnQm

]

140

A.2. Proof of Theorem 7.3.2

= E
[

1
m
√
m

N2

m2
1

(1 + δ)2 QT
−N−1ÛT

n σN+1σT
N+1ÛnÛT

n σN+1σT
N+1ÛnQ−N−1

]
= E

[
K

1
m
√
m

N+1∑
i=1

QT
−iÛ

T
n σiσ

T
i ÛnQ−i

(
1
m

σT
i ÛnÛT

n σi

)]

= E

[
K

1
m
√
m

N+1∑
i=1

QT
−iÛ

T
n σiσ

T
i ÛnQ−i

1
m

Tr
(
ÛnÛT

n ΦŜ
)]

+ E

[
K

1
m
√
m

N+1∑
i=1

QT
−iÛ

T
n σiσ

T
i ÛnQ−i

(
1
m

σT
i ÛnÛT

n σi −
1
m

Tr
(
ÛnÛT

n ΦŜ
))]

= E
[
K

1
m

Tr
(
ÛnÛT

n ΦŜ
) 1
m
√
m

QT
mÛT

n ΣT
Ŝ D2ΣŜÛnQm

]
︸ ︷︷ ︸

=Z1

+ E
[
K

1
m

Tr
(
ÛnÛT

n ΦŜ
) 1
m
√
m

QT
mÛT

n ΣT
Ŝ D2D′ΣŜÛnQm

]
︸ ︷︷ ︸

=Z2

,

where D′ ∈ RN×N is a diagonal matrices for which, for all i ∈ [N], we have

D′
i = 1

m
σT

i ÛnÛT
n σi −

1
m

Tr
(
ÛnÛT

n ΦŜ
)
.

From Lemma A.1.3, from Lemma A.4.4, and from equation A.4, we have

∥Z1∥ = O
(

1√
m

)
.

From Lemma A.7.2, we have
E
[
∥D′∥

]
= O

(
1√
m

)
.

and thus
∥Z2∥ = O

(
1
m

)
.

We conclude that ∥∥E [B′B′T]∥∥ = O
(

1√
m

)
and ∥∥E [C ′C ′T]∥∥ = O

(
1√
m

)
.

Therefore, ∥∥E [CCT
]∥∥ = O

(
1√
m

)
and ∥∥∥E [QT

mÛT
n ΦŜÛnQm

]
− E

[
QT

−ÛT
n ΦŜÛnQm

]∥∥∥ = O
(

1√
m

)
.

With a similar reasoning, we can show

∥∥E [QT
−Ψ1Qm

]
− E

[
QT

−Ψ1Q−
]∥∥ = O

(
1√
m

)
.

141

Appendix A. Mathematical Proofs: Double Descent in LSTD

We conclude thus ∥∥E [QT
mΨ1Qm

]
− E

[
QT

−Ψ1Q−
]∥∥ = O

(
1√
m

)
.

Lemma A.2.5. Under Assumptions 1 and 2, let Qm ∈ Rn×n be the resolvent defined in equa-
tion 6.13, let Q̄m ∈ Rn×n be the deterministic resolvent defined in equation 7.7, let Ψ1,Ψ2 ∈ Rn×n

be the matrices defined in equation 7.12. Then,∥∥∥∥∥E[QT
mΨ1Qm

]
− 1

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

)Q̄T
mΨ1Q̄m

∥∥∥∥∥ = O
(

1√
m

)
.

Proof. From Lemma A.2.6, we know that

E
[
QT

mΨ1Qm

]
= Q̄T

mΨ1Q̄m + E
[
QT

mΨ1Q̄m(Ûn − γV̂n)T ΨŜÛnQm

]
− E

[
QT

−Ψ1Q̄m(Ûn − γV̂n)T ΨŜÛnQ−

]
+ 1
N

Tr
(
Ψ2Q̄T

mΨ1Q̄m

)
E
[
QT

−Ψ1Q−
]

+O∥·∥

(
1√
m

)
.

Exploiting Q̄m(Ûn− γV̂n)T ΨŜÛn = In− λQ̄n in the above equation, and from Lemma A.2.4, we
obtain the simplification

E
[
QT

mΨ1Qm

]
= Q̄T

mΨ1Q̄m + 1
N

Tr
(
Ψ2Q̄T

mΨ1Q̄m

)
E
[
QT

mΨ1Qm

]
+O∥·∥

(
1√
m

)
.

or equivalently

E
[
QT

mΨ1Qm

](
1− 1

N
Tr
(
Ψ2Q̄T

mΨ1Q̄m

)
E
[
QT

mΨ1Qm

])
= Q̄T

mΨ1Q̄m +O∥·∥

(
1√
m

)
.

Let B′
n = Z̄T ÂmZ and Q̄′

m =
[

N
m

1
1+δ B′

n + λIm

]−1
, for which Âm = Ûn(Ûn − γV̂n)T is the

empirical transition model matrix (equation 6.14) and Z̄Z̄T = ΦŜ is the Cholesky decompositon
of ΦŜ . We have from the cyclic properties of the trace

1
N

Tr
(
Ψ2Q̄T

mΨ1Q̄m

)
= 1
m

N

m

1
(1 + δ)2 Tr

(
(Ûn − γV̂n)T ΦŜ(Ûn − γV̂n)Q̄T

mÛT
n ΦŜÛnQ̄m

)
= 1
m

N

m

1
(1 + δ)2 Tr

(
B′

nQ′
mQ′T

m B′T
n

)
.

From equation A.22, we have

lim sup
m

1
m

N

m

1
(1 + δ)2 Tr

(
B′

nQ̄′
mQ̄′T

m B′T
n

)
< 1.

Therefore,

E
[
QT

mΨ1Qm

]
= Q̄T

mΨ1Q̄m + 1
1− 1

N Tr
(
Ψ2Q̄T

mΨ1Q̄m

)Q̄T
mΨ1Q̄m +O∥·∥

(
1√
m

)
.

142

A.2. Proof of Theorem 7.3.2

Lemma A.2.6. Under Assumptions 1 and 2, let Qm ∈ Rn×n be the resolvent defined in equa-
tion 6.13, let Q− ∈ Rn×n be the resolvent defined in equation A.3, let Q̄m ∈ Rn×n be the de-
terministic resolvent defined in equation 7.7, let Ûn, V̂n ∈ Rm×n be the shift matrices defined in
equation 6.7, and let M be either any matrix with a bounded operator norm or M = Ψ1. Then,∥∥∥∥∥E[QT

mMQm

]
− Q̄T

mMQ̄m − E
[
QT

mMQ̄m(Ûn − γV̂n)T ΨŜÛnQm

]
+ E

[
QT

−MQ̄m(Ûn − γV̂n)T ΨŜÛnQ−

]
− 1
N

Tr
(
Ψ2Q̄T

mMQ̄m

)
E
[
QT

−Ψ1Q−
]∥∥∥∥∥

= O
(

1√
m

)
,

for Ψ1,Ψ2 ∈ Rn×n defined in equation 7.12.

Proof. With the resolvent identity (Lemma A.8.1), we decompose E
[
QT

mMQm

]
as

E
[
QT

mMQm

]
= E

[
QT

mMQ̄m

]
− E

[
QT

mM [Q̄m −Qm]
]

(A.26)

= E
[
QT

mMQ̄m

]
− E

[
QT

mMQ̄m

[
1
m

(Ûn − γV̂n)T ΣT
Ŝ ΣŜÛn − (Ûn − γV̂n)T ΨŜÛn

]
Qm

]
= E

[
QT

mMQ̄m

]︸ ︷︷ ︸
=Z1

+E
[
QT

mMQ̄m(Ûn − γV̂n)T ΨŜÛnQm

]

− 1
m

N∑
i=1

E
[
QT

mMQ̄m(Ûn − γV̂n)T σiσ
T
i ÛnQm

]
︸ ︷︷ ︸

=Z2

,

(A.27)

where ΣT
Ŝ ΣŜ =

∑N
i=1 σiσ

T
i is the same decompositon of ΣT

Ŝ ΣŜ than the one used in equation A.6.
From Theorem 7.2.3, we have

∥∥E[Qm]− Q̄m

∥∥ = O
(

1√
m

)
.

Therefore, from above and from Lemma A.2.9 which upper bounds ∥MQ̄m∥, we deduce for Z1

that

∥Z1∥ −
∥∥Q̄T

mMQ̄m

∥∥ =
∥∥E[QT

mMQ̄m

]∥∥− ∥∥Q̄T
mMQ̄m

∥∥
≤
∥∥E[Qm]− Q̄m

∥∥ ∥MQ̄m∥

= O
(

1√
m

)
.

We want to find now a deterministic approximation for Z2 in equation A.27. From the Sherman
identity (Lemma A.8.3) and with the resolvent Q−i defined in equation A.7 as

Q−i =
[

1
m

(Ûn − γV̂n)T ΣT
Ŝ ΣŜÛn −

1
m

(Ûn − γV̂n)T σiσ
T
i Ûn + λIn

]−1
,

143

Appendix A. Mathematical Proofs: Double Descent in LSTD

we obtain the following relation

Qm = Q−i −
1
m Q−i(Ûn − γV̂n)T σiσ

T
i ÛnQ−i

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

.

By remarking that for all i ∈ [N], we have

QT
mMQ̄m(Ûn − γV̂n)T σiσ

T
i ÛnQm

= QT
mMQ̄m(Ûn − γV̂n)T σiσ

T
i ÛnQ−i

1
1 + 1

m σT
i ÛnQ−i(Ûn − γV̂n)T σi

= 1
1 + δ

QT
mMQ̄m(Ûn − γV̂n)T σiσ

T
i ÛnQ−i

+ 1
1 + δ

QT
mMQ̄m(Ûn − γV̂n)T σiσ

T
i ÛnQ−i

δ − 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

,

we decompose Z2 as

Z2 = 1
m
E

[
N∑

i=1
QT

mMQ̄m(Ûn − γV̂n)T σiσ
T
i ÛnQm

]
(A.28)

= E
[
QT

−MQ̄m(Ûn − γV̂n)T ΨŜÛnQ−

]
︸ ︷︷ ︸

=Z21

(A.29)

− 1
m

1
1 + δ

N∑
i=1

E

[
QT

−iÛ
T
n σiσ

T
i ÛnQ−i

1
m σT

i (Ûn − γV̂n)QT
−iMQ̄m(Ûn − γV̂n)T σi

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

]
︸ ︷︷ ︸

=Z22

(A.30)

+ 1
m

1
1 + δ

N∑
i=1

E

[
QT

−iMQ̄m(Ûn − γV̂n)T σiσ
T
i ÛnQ−i

δ − 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

]
︸ ︷︷ ︸

=Z23

(A.31)

− 1
m

1
1 + δ

N∑
i=1

E
[
QT

−iÛ
T
n σiσ

T
i ÛnQ−i(

1
m σT

i (Ûn − γV̂n)QT
−iMQ̄m(Ûn − γV̂n)T σi

)(
δ − 1

m σT
i ÛnQ−i(Ûn − γV̂n)T σi

)
(

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

)2

]
︸ ︷︷ ︸

=Z24

(A.32)

= Z21 −Z22 + Z23 −Z24. (A.33)

From Lemma A.2.7, we have∥∥∥∥∥Z22 −
1
N

Tr
(
Ψ2Q̄T

mMQ̄m

)
E
[
QT

−Ψ1Q−
]∥∥∥∥∥ = O

(
1√
m

)
.

With a similar proof than for Z22, we can show for Z24 that

∥Z24∥ = O
(

1√
m

)
.

144

A.2. Proof of Theorem 7.3.2

From Lemma A.2.8, we have
∥Z23∥ = O

(
1√
m

)
.

As a consequence, we conclude that

E
[
QT

mMQm

]
= Q̄T

mMQ̄m + E
[
QT

mMQ̄m(Ûn − γV̂n)T ΨŜÛnQm

]
− E

[
QT

−MQ̄m(Ûn − γV̂n)T ΨŜÛnQ−

]
+ 1
N

Tr
(
Ψ2Q̄T

mMQ̄m

)
E
[
QT

−Ψ1Q−
]

+O∥·∥

(
1√
m

)
.

Lemma A.2.7. Under Assumptions 1 and 2, let Z22 ∈ Rn×n be the matrix defined in equa-
tion A.30 as

Z22 = 1
m

1
1 + δ

N∑
i=1

E

[
QT

−iÛ
T
n σiσ

T
i ÛnQ−i

1
m σT

i (Ûn − γV̂n)QT
−iMQ̄m(Ûn − γV̂n)T σi

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

]
.

Then, ∥∥∥∥∥Z22 −
1
N

Tr
(
Ψ2Q̄T

mMQ̄m

)
E
[
QT

−Ψ1Q−
]∥∥∥∥∥ = O

(
1√
m

)
,

where Q̄m ∈ Rn×n is the deterministic resolvent defined in equation 7.7, Q− ∈ Rn×n is the resol-
vent defined in equation A.3, and Ψ1,Ψ2 ∈ Rn×n defined in equation 7.12.

Proof. Let D ∈ RN×N be a diagonal matrix for which, for all i ∈ [N], we have

Di = 1 + 1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi,

and D2 ∈ RN×N be another diagonal matrix for which, for all i ∈ [N], we have

[D2]i =
1
m σT

i (Ûn − γV̂n)QT
−iMQ̄m(Ûn − γV̂n)T σi

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

− 1
N

Tr
(
Ψ2Q̄T

mMQ̄m

)
=

1
m σT

i (Ûn − γV̂n)QT
−iMQ̄m(Ûn − γV̂n)T σi

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

−
1
m Tr

(
(Ûn − γV̂n)T ΦŜ(Ûn − γV̂n)Q̄T

mMQ̄m

)
1 + δ

=
1
m σT

i (Ûn − γV̂n)QT
−iMQ̄m(Ûn − γV̂n)T σi

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

−
1
m Tr

(
(Ûn − γV̂n)Q̄T

mMQ̄m(Ûn − γV̂n)T ΦŜ

)
1 + δ

.

We have∥∥∥∥∥Z22 −
1
N

E
[
QT

−Ψ1Q−
]

Tr
(
Ψ2Q̄T

mMQ̄m

)∥∥∥∥∥
145

Appendix A. Mathematical Proofs: Double Descent in LSTD

=
∥∥∥∥Z22 −

1
m

1
1 + δ

E

[
N∑

i=1
QT

−iÛ
T
n σiσ

T
i ÛnQ−i

]
1
N

Tr
(
Ψ2Q̄T

mMQ̄m

)∥∥∥∥
=
∥∥∥∥ 1
m

1
1 + δ

E
[N∑

i=1
QT

−iÛ
T
n σiσ

T
i ÛnQ−i

(1
m σT

i (Ûn − γV̂n)QT
−iMQ̄m(Ûn − γV̂n)T σi

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

− 1
N

Tr
(
Ψ2Q̄T

mMQ̄m

))]∥∥∥∥
=
∥∥∥∥ 1
m

1
1 + δ

E
[
QT

mÛT
n ΣT

Ŝ D2D2ΣŜÛnQm

]
︸ ︷︷ ︸

=Z221

∥∥∥∥.
Let the matrices

B = m− 1
4

1√
m

QT
mÛT

n ΣT
Ŝ D2,

and
CT = m

1
4

1√
m

D2ΣŜÛnQm.

Using the matrices above, we have

Z221 = 1
m

1
1 + δ

E
[
QT

mÛT
n ΣT

Ŝ D2D2ΣŜÛnQm

]
= 1

1 + δ
E
[
BCT

]
= 1

1 + δ
E
[

BCT + CBT

2

]
,

since Z221 is symmetric. We use the relations (B −C)(B −C)T ⪰ 0 and (B + C)(B + C)T ⪰ 0
to deduce the following relation

−BBT −CCT ⪯ BCT + CBT ⪯ BBT + CCT .

From this relation, we obtain

∥Z221∥ ≤
1

2(1 + δ)

(
E
[∥∥BBT

∥∥]+ E
[∥∥CCT

∥∥]),
where

BBT = 1
m
√
m

QT
mÛT

n ΣT
Ŝ D4ΣŜÛnQm

and
CCT = 1√

m
QT

mÛT
n ΣT

Ŝ D2
2ΣŜÛnQm.

To get the Lemma, we prove that both E
[∥∥BBT

∥∥] and E
[∥∥CCT

∥∥] vanish. From Lemma A.4.4,
we know there exists a real K ′

Q > 0 such that, for all m, we have∥∥∥∥ 1√
m

ΣŜÛnQm

∥∥∥∥ ≤ K ′
Q

and ∥∥∥∥ 1√
m

Qm(Ûn − γV̂n)T ΣT
Ŝ

∥∥∥∥ ≤ 2K ′
Q.

Furthermore, from Lemma A.1.3, we know

E
[
∥D4∥

]
= O(1).

146

A.2. Proof of Theorem 7.3.2

We conclude that
E
[∥∥BBT

∥∥] = O
(

1√
m

)
.

For E
[∥∥CCT

∥∥], we remark that

Pr
(
[D2]i ≥ t

)
≤ Pr

(1
m σT

i (Ûn − γV̂n)QT
−iMQ̄m(Ûn − γV̂n)T σi

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

−
1
m Tr

(
ΦŜ(Ûn − γV̂n)Q̄T

mMQ̄m(Ûn − γV̂n)T
)

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

≥ t

2

)

+ Pr
(1

m Tr
(
ΦŜ(Ûn − γV̂n)Q̄T

mMQ̄m(Ûn − γV̂n)T
)

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

−
1
m Tr

(
ΦŜ(Ûn − γV̂n)Q̄T

mMQ̄m(Ûn − γV̂n)T
)

1 + δ
≥ t

2

)
.

Since ∥MQ̄m∥ is bounded from Lemma A.2.9, with a similar proof than for Lemma A.7.4, we can
prove that

Pr
(∣∣∣∣ 1

m
σT (Ûn − γV̂n)QT

−iMQ̄m(Ûn − γV̂n)T σ

− 1
m

Tr
(
(Ûn − γV̂n)E[QT

−i]MQ̄m(Ûn − γV̂n)T ΦŜ
)∣∣∣∣ > t

)
≤ Ce−cm max(t,t2),

for some C, c independent of N,m. Besides, from the proof of Theorem 7.2.3, we also have∣∣∣∣ 1
m

Tr
(
(Ûn − γV̂n)E[QT

−i]MQ̄m(Ûn − γV̂n)T ΦŜ
)

− 1
m

Tr
(
(Ûn − γV̂n)Q̄T

mMQ̄m(Ûn − γV̂n)T ΦŜ
)∣∣∣∣ = O

(
1√
m

)
,

as both ∥Ûn∥ and ∥V̂n∥ are upper bounded by 1, |Tr(AB)| ≤ ∥A∥Tr(B) for non-negative definite
matrix B, and from equation A.4 that bounds 1

m Tr(ΦŜ). From Lemma A.7.4, we have

Pr
(

1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi − α > t

)
≤ C ′e−mc′ max(t,t2),

for some C ′, c′ independent of N,m. From equation A.23 in the proof of Theorem 7.2.3, we have

|α− δ| = O
(

1√
m

)
.

Combining all the results above, we deduce that

E
(
∥D2∥2) = E

(
max

1≤i≤N
[D2

2]i
)

=
∫ ∞

0
Pr
(

max
1≤i≤N

[D2
2]i > t

)
dt = O

(
1
m

)
,

and therefore
E
[∥∥CCT

∥∥] = O
(

1√
m

)
.

Lemma A.2.8. Under Assumptions 1 and 2, let Z23 ∈ Rn×n be the matrix defined in equa-

147

Appendix A. Mathematical Proofs: Double Descent in LSTD

tion A.31 as

Z23 = 1
m

1
1 + δ

N∑
i=1

E

[
QT

−iMQ̄m(Ûn − γV̂n)T σiσ
T
i ÛnQ−i

δ − 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

]
.

Then,

∥Z23∥ = O
(

1√
m

)
.

Proof. Let the matrices

Bi = m− 1
4

1√
m

QT
−iMQ̄m(Ûn − γV̂n)T σi

and

CT
i = m

1
4

1√
m

σT
i ÛnQ−i

δ − 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

1 + 1
m σT

i ÛnQ−i(Ûn − γV̂n)T σi

.

We decompose Z23 with its symmetric and skew-symmetric parts as

Z23 = 1
1 + δ

N∑
i=1

E
[
BiC

T
i

]
= 1

1 + δ

N∑
i=1

E
[

BiC
T
i + CiB

T
i

2

]
+ 1

1 + δ
E
[N∑

i=1

BiC
T
i −CiB

T
i

2

]
.

With the same reasoning on the symmetric part and the skew-symmetric part than for equa-
tion A.15, we get the operator norm

∥Z23∥ ≤
1

1 + δ

∥∥∥∥∥E
[

N∑
i=1

BiB
T
i

]∥∥∥∥∥+ 1
1 + δ

∥∥∥∥∥E
[

N∑
i=1

CiC
T
i

]∥∥∥∥∥ .
We want to show that both

∥∥∥E [∑N
i=1 BiB

T
i

]∥∥∥ and
∥∥∥E [∑N

i=1 CiC
T
i

]∥∥∥ vanish. We write E
[∑N

i=1 CiC
T
i

]
as

E

[
N∑

i=1
CiC

T
i

]
= E

[
N∑

i=1

1√
m

QT
−iÛ

T
n σiσ

T
i ÛnQ−i

(
δ − 1

m σT
i ÛnQ−i(Ûn − γV̂n)T σi

)2(
1 + 1

m σT
i ÛnQ−i(Ûn − γV̂n)T σi

)2

]

= E

[
N∑

i=1

1√
m

QT
mÛT

n σiσ
T
i ÛnQm

(
δ − 1

m
σT

i ÛnQ−i(Ûn − γV̂n)T σi

)2
]

= E
[

1√
m

QT
mÛT

n ΣT
Ŝ D2

3ΣŜÛnQm

]
,

where D3 ∈ RN×N is a diagonal matrix for which, for all i ∈ [N], we have

[D3]i = δ − 1
m

σT
i ÛnQ−i(Ûn − γV̂n)T σi.

With a similar proof than for Lemma A.1.3, and from Lemma A.1.1 and Theorem 7.2.3, we find

148

A.2. Proof of Theorem 7.3.2

that
E
(
∥D3∥2) = O

(
1
m

)
.

From Lemma A.4.4, we know there exists a real K ′
Q > 0 such that, for all m, we have∥∥∥∥ 1√

m
ΣŜÛnQm

∥∥∥∥ ≤ K ′
Q

and ∥∥∥∥ 1√
m

Qm(Ûn − γV̂n)T ΣT
Ŝ

∥∥∥∥ ≤ 2K ′
Q.

We deduce thus ∥∥∥∥∥E
[

N∑
i=1

CiC
T
i

]∥∥∥∥∥ = O
(

1√
m

)
.

We write E
[∑N

i=1 BiB
T
i

]
as

E

[
N∑

i=1
BiB

T
i

]
= E

[
N∑

i=1

1
m
√
m

QT
−iMQ̄m(Ûn − γV̂n)T σiσ

T
i (Ûn − γV̂n)Q̄T

mMT Q−i

]

= 1√
m

N

m
E
[
QT

−MQ̄m(Ûn − γV̂n)T ΦŜ(Ûn − γV̂n)Q̄T
mMT Q−

]
,

With a similar proof than for Lemma A.4.1, we can show there exists a real KQ̄ > 0 such that, for
all m, we have

∥Q̄m∥ ≤ KQ̄.

Let Âm = Ûn(Ûn − γV̂n)T be the empirical transition model matrix defined in equation 6.14.
Under Assumption 2, Âm is invertible. From Lemma A.4.3, we have∥∥∥Q̄m(Ûn − γV̂n)T ΦŜ

∥∥∥ =
∥∥∥Q̄m(Ûn − γV̂n)T ΦŜÛn(Ûn − γV̂n)T Â−1

m

∥∥∥
=
∥∥∥m
N

(1 + δ)
[
In − λQ̄m

]
(Ûn − γV̂n)T Â−1

m

∥∥∥
≤ 2m

N

1 + δ

ξmin
(1 +KQ̄).

From above and from Lemma A.2.9 that upper bounds ∥MQ̄m∥, we conclude that∥∥∥∥∥E
[

N∑
i=1

BiB
T
i

]∥∥∥∥∥ = O
(

1√
m

)
.

Lemma A.2.9. Under Assumptions 1 and 2, let Q̄m ∈ Rn×n be the deterministic resolvent defined
in equation 7.7, and let M be either any matrix with a bounded operator norm or M = ÛT

n ΨŜÛn.
Then there exists a real K > 0 such that, for all m, we have

∥MQ̄m∥ ≤ K.

Proof. With a similar proof than for Lemma A.4.1, we can show there exists a real KQ̄ > 0 such

149

Appendix A. Mathematical Proofs: Double Descent in LSTD

that, for all m, we have
∥Q̄m∥ ≤ KQ̄.

In the case where M is a matrix with a bounded operator norm, i.e., ∥M∥ ≤ KM we have

∥MQ̄m∥ ≤ KMKQ̄.

Otherwise, when M = ÛT
n ΨŜÛn, we consider Âm = Ûn(Ûn − γV̂n)T the empirical transition

model matrix defined in equation 6.14. Under Assumption 2, Âm is invertible. From Lemma A.4.3,
we have

∥MQ̄m∥ =
∥∥∥∥Nm 1

1 + δ
ÛT

n ΦŜÛnQ̄m

∥∥∥∥
=
∥∥∥∥Nm 1

1 + δ
ÛT

n Â−1
m Ûn(Ûn − γV̂n)T ΦŜÛnQ̄m

∥∥∥∥
=
∥∥∥ÛT

n Â−1
m Ûn

[
In − λQ̄m

]∥∥∥
≤ 1
ξmin

(1 + λKQ̄).

A.3 Proof of Theorem 7.4.2

To simplify the notations, we denote the matrix Qm as the resolvent Qm(λ) (defined in equa-
tion 6.13), and we set p = |S|. We define the matrices ΨŜ ∈ Rm×m and ΨS ∈ Rp×p as

ΨŜ = N

m

1
1 + δ

ΦŜ and ΨS = N

m

1
1 + δ

ΦS .

We also add the notation A = B +O∥·∥

(
1√
m

)
which means that ∥A−B∥ = O

(
1√
m

)
.

Under Assumptions 1, 2 and 3, this section is dedicated to finding an asymptotic deterministic
version of the true MSBE(θ̂λ

n) defined in equation 3.2 with a similar approach than the one used
in Appendix A.2 for M̂SBE(θ̂λ

n).

Theorem A.3.1 (Asymptotic MSBE). Under Assumptions 1, 2, and 3, the determinsitic asymptotic
MSBE is

MSBE(θ̂λ
n) =

∥∥∥r̄ + γ 1√
n

P πΨSUnQ̄m(λ)r − 1√
n

ΨSUnQ̄m(λ)r
∥∥∥2

Dµπ

+ ∆,

with second-order correction factor

∆ = 1
n

1
N Tr(ΛP [ΘS Ψ2ΘT

S −2ΘS(Un−γVn)T ΨS +ΨS])
1− 1

N Tr(Ψ2Q̄m(λ)T Ψ1Q̄m(λ))
∥Q̄m(λ)r∥2

Ψ1
,

where

ΛP = [I|S| − γP π]T Dµπ [I|S| − γP π],
ΘS = ΨSUnQ̄m(λ).

150

A.3. Proof of Theorem 7.4.2

As N,m, d→∞ with asymptotic constant ratio N/m, MSBE(θ̂λ
n)−MSBE(θ̂λ

n) a.s−−→ 0.

Proof. We decompose MSBE(θ̂λ
n) as

MSBE(θ̂λ
n) = ∥r̄ + γP πΣT

S θ̂λ
n −ΣT

S θ̂λ
n∥2

Dµπ = ∥r̄ +
[
γP π − Ip

]
ΣT

S θλ
n∥2

Dµπ (A.34)

=
∥∥∥∥r̄ − 1

m
√
n

[
Ip − γP π

]
ΣT

S ΣSUnQmr

∥∥∥∥2

Dµπ

(A.35)

= ∥r̄∥2
Dµπ (A.36)

− 2
m
√
n

r̄T Dµπ

[
Ip − γP π

]
ΣT

S ΣSUnQmr︸ ︷︷ ︸
=Z2

(A.37)

+
∥∥∥∥ 1
m
√
n

[
Ip − γP π

]
ΣT

S ΣSUnQmr

∥∥∥∥2

Dµπ︸ ︷︷ ︸
=Z3

. (A.38)

We want to find an asymptotic equivalent for both Z2 and Z3. From Lemma A.3.2, we have

E
[
Z2
]

= 2√
n

r̄T Dµπ

[
Ip − γP π

]
ΨSUnQ̄mr +O

(
1√
m

)
.

For Z3, we have

Z3 =
∥∥∥∥ 1
m
√
n

[
Ip − γP π

]
ΣT

S ΣSUnQmr

∥∥∥∥2

Dµπ

= 1
nm2 rT QT

mUT
n ΣT

S ΣSΛP ΣT
S ΣSUnQmr.

From Lemma A.3.3, we have

E
[
Z3
]

= 1
n

rT Q̄T
mUT

n ΨSΛP ΨSUnQ̄mr

+ 1
n

1
N Tr

(
ΛP

[
ΘSΨ2ΘT

S − 2ΘS(Un − γVn)T ΨS + ΨS
])

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

) ∥Q̄mr∥2
Ψ1

+O
(

1√
m

)
.

With a similar proof than for Lemma 7.3.1 we can deduce that

MSBE(θ̂λ
n)−MSBE(θ̂λ

n) a.s−−→ 0,

as m→∞.

Lemma A.3.2. Under Assumptions 1, 2 and 3, let Z2 ∈ R defined in equation A.37 as

Z2 = 1
m
√
n
E
[
r̄T Dµπ

[
Ip − γP π

]
ΣT

S ΣSUnQmr
]
.

Then ∣∣∣∣Z2 −
1√
n

r̄T Dµπ

[
Ip − γP π

]
ΨSUnQ̄mr

∣∣∣∣ = O
(

1√
m

)
,

for Q̄m the deterministic resolvent defined in equation 7.7, and ΨS ∈ Rp×p defined in equation 7.15.

151

Appendix A. Mathematical Proofs: Double Descent in LSTD

Proof. As in equation A.6, we decompose the matrix ΣT
S ΣS as

ΣT
S ΣS =

N∑
i=1

σiσ
T
i ,

where σi = σ(ST wi) ∈ Rm for which wi ∈ Rd denotes the i-th row of W defined in equation 6.5.
Let Q−i ∈ Rn×n be the following resolvent

Q−i =
[

1
m

(Un − γVn)T ΣT
S ΣSUn −

1
m

(Un − γVn)T σiσ
T
i Un + λIn

]−1
,

independent of σi and thus wi. From the Sherman identity (Lemma A.8.3), we have

Z2 = 1
m
√
n
E
[
r̄T Dµπ

[
Ip − γP π

]
ΣT

S ΣSUnQmr
]

= 1
m
√
n
E

[
N∑

i=1
r̄T Dµπ

[
Ip − γP π

]
σiσ

T
i UnQmr

]

= 1
m
√
n
E

[
N∑

i=1

r̄T Dµπ

[
Ip − γP π

]
σiσ

T
i UnQ−ir

1 + 1
m σT

i UnQ−i(Un − γVn)T σi

]
.

Let D ∈ RN×N be a diagonal matrix for which, for all i ∈ [N], we have

Di = δ − 1
m

σT
i UnQ−i(Un − γVn)T σi.

We replace 1 + 1
m σT

j UnQ−j(Un − γVn)T σj by 1 + δ as following

Z2 = 1
m
√
n

1
1 + δ

E

[
N∑

i=1
r̄T Dµπ

[
Ip − γP π

]
σiσ

T
i UnQ−ir

]
︸ ︷︷ ︸

Z21

+ 1
m
√
n

1
1 + δ

E

[
N∑

i=1

r̄T Dµπ

[
Ip − γP π

]
σiσ

T
i UnQ−iDir

1 + 1
m σT

i UnQ−i(Un − γVn)T σi

]
︸ ︷︷ ︸

Z22

.

We have Z22 vanishing since E
[
∥D∥

]
= O

(
1√
m

)
and from Lemma 7.4.1. From Theorem 7.2.3, we

have thus

Z2 = 1
m
√
n

1
1 + δ

E

[
N∑

i=1
r̄T Dµπ

[
Ip − γP π

]
σiσ

T
i UnQ−ir

]
+O

(
1√
m

)
= 1√

n

N

m

1
1 + δ

r̄T Dµπ

[
Ip − γP π

]
ΦSUnE

[
Q−
]
r +O

(
1√
m

)
= 1√

n
r̄T Dµπ

[
Ip − γP π

]
ΨSUnQ̄mr +O

(
1√
m

)
.

Lemma A.3.3. Under Assumptions 1, 2 and 3, let ΛP ∈ Rp×p be the matrix defined in equa-

152

A.3. Proof of Theorem 7.4.2

tion 7.15, and let Z3 ∈ R be defined in equation A.38 as

Z3 = E
[

1
nm2 rT QT

mUT
n ΣT

S ΣSΛP ΣT
S ΣSUnQmr

]
.

Then ∣∣∣∣Z3 −
1
n

rT Q̄T
mUT

n ΨSΛP ΨSUnQ̄mr

− 1
n

1
N Tr

(
ΛP

[
ΘSΨ2ΘT

S − 2ΘS(Un − γVn)T ΨS + ΨS
])

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

) ∥Q̄mr∥2
Ψ1

∣∣∣∣ = O
(

1√
m

)
,

where Q̄m is the deterministic resolvent defined in equation 7.7, Ψ1,Ψ2 ∈ Rn×n are defined in
equation 7.12, ΨS ∈ Rp×p and ΘS ∈ Rp×n are defined in equation 7.15.

Proof. As in equation A.6, we decompose the matrix ΣT
S ΣS as

ΣT
S ΣS =

N∑
i=1

σiσ
T
i ,

where σi = σ(ST wi) ∈ Rm for which wi ∈ Rd denotes the i-th row of W defined in equation 6.5.
Let Q−i ∈ Rn×n be the following resolvent

Q−i =
[

1
m

(Un − γVn)T ΣT
S ΣSUn −

1
m

(Un − γVn)T σiσ
T
i Un + λIn

]−1

independent of σi and thus wi. From the Sherman identity (Lemma A.8.3), we decompose Z3 as

Z3 = E
[

1
nm2 rT QT

mUT
n ΣT

S ΣSΛP ΣT
S ΣSUnQmr

]
(A.39)

=
N∑

i,j=1
E
[

1
nm2 rT QT

mUT
n σiσ

T
i ΛP σjσT

j UnQmr

]
(A.40)

=
N∑

i,j=1
E

[
1

nm2 rT QT
−iU

T
n σiσ

T
i

1 + 1
m σT

i UnQ−i(Un − γVn)T σi

ΛP

σjσT
j UnQ−j

1 + 1
m σT

j UnQ−j(Un − γVn)T σj

r

]
(A.41)

=
N∑

i=1

∑
j ̸=i

E

[
1

nm2 rT QT
−iU

T
n σiσ

T
i

1 + 1
m σT

i UnQ−i(Un − γVn)T σi

ΛP

σjσT
j UnQ−j

1 + 1
m σT

j UnQ−j(Un − γVn)T σj

r

]
︸ ︷︷ ︸

=Z31

+
N∑

i=1
E

[
1

nm2 rT QT
−iU

T
n σiσ

T
i ΛP σiσ

T
i UnQ−i(

1 + 1
m σT

i UnQ−i(Un − γVn)T σi

)2 r

]
︸ ︷︷ ︸

=Z32

.

(A.42)

From Lemma A.3.4, we have

Z31 = 1
n

rT Q̄T
mUT

n ΨSΛP ΨSUnQ̄mr

153

Appendix A. Mathematical Proofs: Double Descent in LSTD

+ 1
n

1
N Tr

(
ΛP

[
ΘSΨ2ΘT

S − 2ΘS(Un − γVn)T ΨS
])

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

) ∥Q̄mr∥2
Ψ1

+O
(

1√
m

)
.

For the second term Z32, we have from Lemma A.3.5,

Z32 = 1
n

1
N Tr(ΛP ΨS)

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

)∥Q̄mr∥2
Ψ1

+O
(

1√
m

)
.

We conclude that

Z3 = Z32 + Z32

= 1
n

rT Q̄T
mUT

n ΨSΛP ΨSUnQ̄mr

+ 1
n

1
N Tr

(
ΛP

[
ΘSΨ2ΘT

S − 2ΘS(Un − γVn)T ΨS + ΨS
])

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

) ∥Q̄mr∥2
Ψ1

+O
(

1√
m

)
.

Lemma A.3.4. Under Assumptions 1, 2 and 3, let Z31 ∈ R defined in equation A.42 as

Z31 = 1
nm2

N∑
i=1

∑
j ̸=i

E

[
rT QT

−iU
T
n σiσ

T
i ΛP σjσT

j UnQ−jr(
1 + 1

m σT
i UnQ−i(Un − γVn)T σi

) (
1 + 1

m σT
j UnQ−j(Un − γVn)T σj

)],
Then ∣∣∣∣∣Z31 −

1
n

rT Q̄T
mUT

n ΨSΛP ΨSUnQ̄mr

− 1
n

1
N Tr

(
ΛP

[
ΘSΨ2ΘT

S − 2ΘS(Un − γVn)T ΨS
])

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

) ∥Q̄mr∥2
Ψ1

∣∣∣∣∣ = O
(

1√
m

)
,

where Q̄m is the deterministic resolvent defined in equation 7.7, Ψ1,Ψ2 ∈ Rn×n are defined in
equation 7.12, ΨS ∈ Rp×p and ΘS ∈ Rp×n are defined in equation 7.15.

Proof. Using the Sherman identity (Lemma A.8.3), we decompose Z31 as

Z31 = 1
nm2

N∑
i=1

∑
j ̸=i

E

[
rT QT

−iU
T
n σiσ

T
i ΛP σjσT

j UnQ−jr(
1 + 1

m σT
i UnQ−i(Un − γVn)T σi

) (
1 + 1

m σT
j UnQ−j(Un − γVn)T σj

)]

= 1
nm2

N∑
i=1

∑
j ̸=i

E

[
rT

QT
mUT

n σiσ
T
i ΛP σjσT

j UnQ−j

1 + 1
m σT

j UnQ−j(Un − γVn)T σj

r

]

= 1
nm2

N∑
i=1

∑
j ̸=i

E

[
rT

QT
−jUT

n σiσ
T
i ΛP σjσT

j UnQ−j

1 + 1
m σT

j UnQ−j(Un − γVn)T σj

r

]
︸ ︷︷ ︸

=Z311

154

A.3. Proof of Theorem 7.4.2

− 1
nm3

N∑
i=1

∑
j ̸=i

E

[
rT

QT
−jUT

n σjσT
j (Un − γVn)QT

−jUT
n σiσ

T
i ΛP σjσT

j UnQ−j(
1 + 1

m σT
j UnQ−j(Un − γVn)T σj

)2 r

]
︸ ︷︷ ︸

=Z312

.

We want to find an asymptotic equivalent for both Z311 and Z312. For Z312, we have

Z312 = 1
nm3

N∑
i=1

∑
j ̸=i

E

[
rT

QT
−jUT

n σjσT
j (Un − γVn)QT

−jUT
n σiσ

T
i ΛP σjσT

j UnQ−j(
1 + 1

m σT
j UnQ−j(Un − γVn)T σj

)2 r

]

= 1
nm

N∑
j=1

E

[
rT

QT
−jUT

n σjσT
j UnQ−j

(
1

m2 σT
j (Un − γVn)QT

−jUT
n Σ−jT

S Σ−j
S ΛP σj

)
(
1 + 1

m σT
j UnQ−j(Un − γVn)T σj

)2 r

]
,

where Σ−j
S = σ(W −jS) ∈ R(N−1)×n for which W −j ∈ R(N−1)×d depicts the same matrix than

the weight matrix W defined in equation 6.5 without the jth row. Let D312 ∈ RN×N be a diagonal
matrix for which, for all j ∈ [N], we have

[D312]j = 1
m2 σT

j (Un−γVn)QT
−jUT

n Σ−jT
S Σ−j

S ΛP σj−
1
m2 Tr

(
(Un − γVn)QT

−jUT
n Σ−jT

S Σ−j
S ΛP ΦS

)
.

From Lemma 7.4.1, we know there exists a real K1 > 0 such that, for all m, we have ∥Dµπ [Ip −
γP π]ΣT

S ΣSUnQm∥ ≤ K1. Therefore, we deduce that∥∥∥∥ 1
m

(Un − γVn)QT
−jUT

n Σ−jT
S Σ−j

S ΛP

∥∥∥∥ = O(1).

From Lemma A.7.2, we deduce that E
[
∥D312∥

]
= O

(
1√
m

)
. Therefore, we get

Z312 = 1
nm

N∑
j=1

E

[
rT

QT
−jUT

n σjσT
j UnQ−j

1
m2 Tr

(
(Un − γVn)QT

−jUT
n Σ−jT

S Σ−j
S ΛP ΦS

)(
1 + 1

m σT
j UnQ−j(Un − γVn)T σj

)2 r

]

+ 1
nm

N∑
j=1

E

[
rT

QT
−jUT

n σjσT
j UnQ−j [D312]j(

1 + 1
m σT

j UnQ−j(Un − γVn)T σj

)2 r

]

= 1
nm

N∑
j=1

E

[
rT

QT
−jUT

n σjσT
j UnQ−j

1
m2 Tr

(
(Un − γVn)QT

−jUT
n Σ−jT

S Σ−j
S ΛP ΦS

)(
1 + 1

m σT
j UnQ−j(Un − γVn)T σj

)2 r

]

+ 1
nm

E

[
rT QT

mUT
n ΣT

S D312ΣSUnQmr

]

= 1
nm

N∑
j=1

E

[
rT

QT
−jUT

n σjσT
j UnQ−j

1
m2 Tr

(
(Un − γVn)QT

−jUT
n Σ−jT

S Σ−j
S ΛP ΦS

)(
1 + 1

m σT
j UnQ−j(Un − γVn)T σj

)2 r

]

+O
(

1√
m

)
,

(A.43)

where the last equality is obtained since E
[
∥D312∥

]
= O

(
1√
m

)
, and since we know there exists a

real K ′
Q > 0 such that, for all m, we have∥∥∥∥ 1√

m
ΣSUnQm

∥∥∥∥ ≤ K ′
Q

155

Appendix A. Mathematical Proofs: Double Descent in LSTD

and ∥∥∥∥ 1√
m

Qm(Un − γVn)T ΣT
S

∥∥∥∥ ≤ 2K ′
Q.

from Lemma A.4.4. We replace 1 + 1
m σT

j UnQ−j(Un − γVn)T σj by 1 + δ in Z312 as following

Z312 = 1
nm3

1
(1 + δ)2

N∑
j=1

E

[
rT QT

−jUT
n σjσT

j UnQ−j Tr
(
(Un − γVn)QT

−jUT
n Σ−jT

S Σ−j
S ΛP ΦS

)
r

]

+ 1
nm3

1
(1 + δ)2

N∑
j=1

E

[
rT

QT
−jUT

n σjD′
jσT

j UnQ−j Tr
(
(Un − γVn)QT

−jUT
n Σ−jT

S Σ−j
S ΛP ΦS

)(
1 + 1

m σT
j UnQ−j(Un − γVn)T σj

)2 r

]

+O
(

1√
m

)
= N

nm3
1

(1 + δ)2E

[
rT QT

−UT
n ΦSUnQ−r Tr

(
(Un − γVn)QT

−UT
n Σ−T

S Σ−
S ΛP ΦS

)]
︸ ︷︷ ︸

=Z3121

+ 1
nm3

1
(1 + δ)2E

[
rT QT

mUT
n ΣT

S D′ΣSUnQmr Tr
(
(Un − γVn)QT

−UT
n Σ−T

S Σ−
S ΛP ΦS

)]
︸ ︷︷ ︸

=Z3122

+O
(

1√
m

)
,

where D′ ∈ RN×N is a diagonal matrix for which, for all j ∈ [N], we have

D′
j = (1 + δ)2 −

(
1 + 1

m
σT

j UnQ−j(Un − γVn)T σj

)2
.

With a similar proof than for equation A.4, we can show 1
m Tr

(
ΦS
)

= p
m

1
p Tr

(
ΦS
)

is uniformly
bounded under Assumption 3. Combining |Tr(AB)| ≤ ∥A∥Tr(B) for non-negative definite matrix
B and Lemma 7.4.1, we have 1

m2 Tr
(
(Un − γVn)QT

−UT
n Σ−T

S Σ−
S ΛP ΦS

)
= O(1). From all these

upper bounds, and since it can be shown that E
[
∥D′∥

]
= O

(
1√
m

)
, we deduce the second term,

Z3122, vanishes and thus

Z312 = 1
nm2

1
1 + δ

E

[
rT QT

−Ψ1Q−r Tr
(
(Un − γVn)QT

−UT
n Σ−T

S Σ−
S ΛP ΦS

)]

+O
(

1√
m

)
.

Let Q−ij ∈ Rn×n be the resolvent defined as

Q−ij =
[

1
m

(Un − γVn)T Σ−ijT
S Σ−ij

S Un + λIn

]−1
, (A.44)

where Σ−ij
S = σ(W −ijS) ∈ R(N−2)×n for which W −ij ∈ R(N−2)×d depicts the same matrix than

the weight matrix W defined in equation 6.5 without the ith and jth row. Using the Sherman iden-
tity (Lemma A.8.3), the term 1

m2 Tr
(
(Un − γVn)QT

−UT
n Σ−T

S Σ−
S ΛP ΦS

)
in Z312 can be rewritten

as

1
m2 Tr

(
(Un − γVn)QT

−UT
n Σ−T

S Σ−
S ΛP ΦS

)

156

A.3. Proof of Theorem 7.4.2

= 1
m2 Tr

∑
i ̸=j

(Un − γVn)QT
−jUT

n σiσ
T
i ΛP ΦS


= 1
m2 Tr

∑
i ̸=j

(Un − γVn)QT
−ijUT

n σiσ
T
i ΛP ΦS

1 + 1
m σT

i UnQ−ij(Un − γVn)T σi


= 1
m2

1
1 + δ

Tr

∑
i ̸=j

(Un − γVn)QT
−ijUT

n σiσ
T
i ΛP ΦS


+ 1
m2

1
1 + δ

Tr

∑
i ̸=j

(Un − γVn)QT
−ijUT

n σiσ
T
i ΛP ΦS

(
δ − 1

m σT
i UnQ−ij(Un − γVn)T σi

)
1 + 1

m σT
i UnQ−ij(Un − γVn)T σi


= N

m2
1

1 + δ
Tr
(
(Un − γVn)QT

−−UT
n ΦSΛP ΦS

)
+ 1
m2

1
1 + δ

Tr
(

(Un − γVn)QT
−jUT

n Σ−jT
S DΣ−j

S ΛP ΦS

)
,

where D ∈ RN×N is a diagonal matrix for which, for all i ∈ [N], we have

Di = δ − 1
m

σT
i UnQ−ij(Un − γVn)T σi.

From the uniform boundness of 1
m Tr

(
ΦS
)

= 1
Kr

1
p Tr

(
ΦS
)
, from Lemma 7.4.1, we have 1

m2 Tr
(
(Un−

γVn)QT
−UT

n Σ−T
S Σ−

S ΛP ΦS
)

= O(1). Since the operator norm of E
[
∥D∥

]
is of order O

(
1√
m

)
, we

deduce the second term vanishes, and thus

1
m2 Tr

(
(Un − γVn)QT

−UT
n Σ−T

S Σ−
S ΛP ΦS

)
= N

m2
1

1 + δ
Tr
(
(Un − γVn)QT

−−UT
n ΦSΛP ΦS

)
+O

(
1√
m

)
.

Applying Lemma A.2.4 and Lemma A.2.5, we deduce for Z312 that

Z312 = 1
n

1
N Tr

(
(Un − γVn)Q̄T

mUT
n ΨSΛP ΨS

)
1− 1

N Tr
(
Ψ2Q̄T

mΨ1Q̄m

) ∥Q̄mr∥2
Ψ1

+O
(

1√
m

)
= 1
n

1
N Tr

(
ΨS(Un − γVn)ΘT

S ΛP

)
1− 1

N Tr
(
Ψ2Q̄T

mΨ1Q̄m

) ∥Q̄mr∥2
Ψ1

+O
(

1√
m

)
.

Now, we want to find an asymptotic equivalent for Z311. We replace 1+ 1
m σT

j UnQ−j(Un−γVn)T σj

by 1 + δ in Z311 as following

Z311 = 1
nm2

N∑
i=1

∑
j ̸=i

E

[
rT

QT
−jUT

n σiσ
T
i ΛP σjσT

j UnQ−j

1 + 1
m σT

j UnQ−j(Un − γVn)T σj

r

]

= 1
nm2

N∑
j=1

E

[
rT

QT
−jUT

n Σ−jT
S Σ−j

S ΛP σjσT
j UnQ−j

1 + 1
m σT

j UnQ−j(Un − γVn)T σj

r

]

= 1
nm2

1
1 + δ

N∑
j=1

E

[
rT QT

−jUT
n Σ−jT

S Σ−j
S ΛP σjσT

j UnQ−jr

]
︸ ︷︷ ︸

=Z3111

157

Appendix A. Mathematical Proofs: Double Descent in LSTD

+ 1
nm2

1
1 + δ

N∑
j=1

E

[
rT

QT
−jUT

n Σ−jT
S Σ−j

S ΛP σjσT
j UnQ−jDj

1 + 1
m σT

j UnQ−j(Un − γVn)T σj

r

]
︸ ︷︷ ︸

=Z3112

,

where D ∈ RN×N is a diagonal matrix for which, for all j ∈ [N], we have

Dj = δ − 1
m

σT
j UnQ−j(Un − γVn)T σj .

We observe that

QT
−jUT

n

Σ−jT
S Σ−j

S
m

= QT
−jUT

n

ΣT
S ΣS

m
−QT

−jUT
n

σjσT
j

m

= QT
mUT

n

ΣT
S ΣS

m
+

1
m QT

−jUT
n σjσT

j (Un − γVn)QT
−j

1 + 1
m σT

j UT
n Q−j(Un − γVn)T σj

UT
n

ΣT
S ΣS

m
−QT

−jUT
n

σjσT
j

m

= QT
mUT

n

ΣT
S ΣS

m

+ QT
mUT

n σjσT
j (Un − γVn)QT

m

(
1 + 1

m
σT

j UT
n Q−j(Un − γVn)T σj

)
UT

n

ΣT
S ΣS

m

−QT
−jUT

n

σjσT
j

m

= QT
mUT

n

ΣT
S ΣS

m
+

QT
mUT

n σjσT
j (Un − γVn)QT

m

1− 1
m σT

j UT
n Qm(Un − γVn)T σj

UT
n

ΣT
S ΣS

m
−QT

−jUT
n

σjσT
j

m
.

From above, we expand Z3112 as

Z3112

= 1
nm2

1
1 + δ

N∑
j=1

E

[
rT

QT
−jUT

n Σ−jT
S Σ−j

S ΛP σjσT
j UnQ−jDj

1 + 1
m σT

j UnQ−j(Un − γVn)T σj

r

]

= 1
nm2

1
1 + δ

E

[
rT QT

mUT
n ΣT

S ΣSΛP ΣT
S DΣSUnQmr

]
︸ ︷︷ ︸

=Z31121

+
N∑

j=1
E

[
rT

QT
mUT

n σjσT
j (Un − γVn)QT

mUT
n ΣT

S ΣSΛP σjσT
j UnQmDj

nm2(1 + δ)
(
1− 1

m σT
j UT

n Qm(Un − γVn)T σj

) r

]
︸ ︷︷ ︸

=Z31122

− 1
nm2

1
1 + δ

N∑
j=1

E

[
rT QT

−jUT
n σjσT

j ΛP σjσT
j UnQmDj

(
1 + 1

m
σT

j UnQ−j(Un − γVn)T σj

)
r

]
︸ ︷︷ ︸

=Z31123

.

We have Z31121 = O
(

1√
m

)
since E [∥D∥] = O

(
1√
m

)
and from Lemma 7.4.1. Subsequently, we

rewrite Z31122 as

Z31122 = 1
nm

1
1 + δ

E
[
rT QT

mUT
n ΣT

S D31122ΣSUnQmr
]
,

158

A.3. Proof of Theorem 7.4.2

with D31122 ∈ RN×N a diagonal matrix for which, for all j ∈ [N], we have

[D31122]j = 1
m

DjσT
j (Un − γVn)QT

mUT
n ΣT

S ΣSΛP σj

1− 1
m σT

j UT
n Qm(Un − γVn)T σj

.

It can be shown that E [∥D31122∥] = O
(

1√
m

)
, and we can deduce Z31122 = O

(
1√
m

)
. Similarly,

we have Z31123 = O
(

1√
m

)
. Z3112 vanishes, and thus

Z311 = Z3111 +O
(

1√
m

)
= 1
nm2

1
1 + δ

N∑
j=1

E

[
rT QT

−jUT
n Σ−jT

S Σ−j
S ΛP σjσT

j UnQ−jr

]
+O

(
1√
m

)
.

It remains to handle Z3111 for which we have from the Sherman identity (Lemma A.8.3),

Z3111 = 1
nm2

1
1 + δ

N∑
j=1

E

[
rT QT

−jUT
n Σ−jT

S Σ−j
S ΛP σjσT

j UnQ−jr

]

= 1
nm2

1
1 + δ

N∑
j=1

∑
i ̸=j

E

[
rT QT

−jUT
n σiσ

T
i ΛP ΦSUnQ−jr

]

= 1
nm2

1
1 + δ

N∑
j=1

∑
i ̸=j

E

[
rT

QT
−ijUT

n σiσ
T
i ΛP ΦSUnQ−ij

1 + 1
m σT

i UnQ−ij(Un − γVn)T σi

r

]
︸ ︷︷ ︸

=Z31111

− 1
nm3

1
1 + δ

N∑
j=1

∑
i ̸=j

E

[
rT

QT
−ijUT

n σiσ
T
i ΛP ΦSUnQ−ij(Un − γVn)T σiσ

T
i UnQ−ij(

1 + 1
m σT

i UnQ−ij(Un − γVn)T σi

)2 r

]
︸ ︷︷ ︸

=Z31112

.

Again, we replace 1 + 1
m σT

i UnQ−ij(Un − γVn)T σi by 1 + δ in Z31111 as following

Z31111 = 1
nm2

1
1 + δ

N∑
j=1

∑
i ̸=j

E

[
rT

QT
−ijUT

n σiσ
T
i ΛP ΦSUnQ−ij

1 + 1
m σT

i UnQ−ij(Un − γVn)T σi

r

]

= 1
nm2

1
(1 + δ)2

N∑
j=1

∑
i ̸=j

E

[
rT QT

−ijUT
n σiσ

T
i ΛP ΦSUnQ−ijr

]

+ 1
nm2

1
(1 + δ)2

N∑
j=1

∑
i̸=j

E

[
rT

QT
−ijUT

n σiσ
T
i ΛP ΦSUnQ−ijDi

1 + 1
m σT

i UnQ−ij(Un − γVn)T σi

r

]

= 1
n

N2

m2
1

(1 + δ)2E

[
rT QT

−−UT
n ΦSΛP ΦSUnQ−−r

]

+ 1
nm2

1
(1 + δ)2

N∑
j=1

∑
i̸=j

E

[
rT QT

−jUT
n σiσ

T
i ΛP ΦSUnQ−jDir

]

+ 1
nm3

1
(1 + δ)2

N∑
j=1

∑
i̸=j

E

[
rT

QT
−jUT

n σiσ
T
i ΛP ΦSUnQ−j(Un − γVn)T σiσ

T
i UnQ−j

1− 1
m σT

i UnQ−j(Un − γVn)T σi

Dir

]

= 1
n
E

[
rT QT

−−UT
n ΨSΛP ΨSUnQ−−r

]

159

Appendix A. Mathematical Proofs: Double Descent in LSTD

+ 1
nm2

1
(1 + δ)2

N∑
j=1

E

[
rT QT

−jUT
n Σ−jT

S DΣ−j
S ΛP ΦSUnQ−jr

]

+ 1
nm

1
(1 + δ)2

N∑
j=1

E

[
rT QT

−jUT
n Σ−jT

S D31111Σ−j
S UnQ−jr

]
,

where D31111 ∈ RN×N is a diagonal matrix for which, for all i ∈ [N], we have

[D31111]i = 1
m

σT
i ΛP ΦSUnQ−j(Un − γVn)T σi

(
δ − 1

m σT
i UnQ−ij(Un − γVn)T σi

)
1− 1

m σT
i UnQ−j(Un − γVn)T σi

,

and Q−− is a resolvent with the same law than Q−ij . With similar arguments that before, we can
show that E

[
∥D∥

]
and E

[
∥D31111∥

]
are of order O

(
1√
m

)
, and therefore

Z31111 = 1
n
E

[
rT QT

−−UT
n ΨSΛP ΨSUnQ−−r

]
+O

(
1√
m

)
.

By extending Lemma A.2.2 to the matrix Λ′
P = UT

n ΨSΛP ΨSUn, and from Lemma A.2.4 we
obtain

Z31111 = 1
n

rT Q̄T
mUT

n ΨSΛP ΨSUnQ̄mr

+ 1
n

1
N Tr

(
ΛP ΘSΨ2ΘT

S
)

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

)∥Q̄mr∥2
Ψ1

+O
(

1√
m

)
.

Following the same reasoning for Z31112, and from Lemma A.7.2, we have

Z31112 = 1
nm3

1
1 + δ

N∑
j=1

∑
i ̸=j

E

[
rT

QT
−ijUT

n σiσ
T
i ΛP ΦSUnQ−ij(Un − γVn)T σiσ

T
i UnQ−ij(

1 + 1
m σT

i UnQ−ij(Un − γVn)T σi

)2 r

]

= 1
nm3

1
(1 + δ)3

N∑
j=1

∑
i ̸=j

E

[
rT QT

−ijUT
n σiσ

T
i ΛP ΦSUnQ−ij(Un − γVn)T σiσ

T
i UnQ−ijr

]

+O
(

1√
m

)
= 1
nm2

1
(1 + δ)3

N∑
j=1

∑
i ̸=j

E

[
rT QT

−ijUT
n σiσ

T
i UnQ−ijr

(
1
m

σT
i ΛP ΦSUnQ−ij(Un − γVn)T σi

)]

+O
(

1√
m

)
= 1
nm2

1
(1 + δ)3

N∑
j=1

∑
i ̸=j

E

[
rT QT

−ijUT
n σiσ

T
i UnQ−ijr

1
m

Tr(ΛP ΦSUnQ−ij(Un − γVn)T ΦS)
]

+O
(

1√
m

)
= 1
n

1
N

E

[
rT QT

−−Ψ1Q−−r Tr(ΛP ΨSUnQ−−(Un − γVn)T ΨS)
]

+O
(

1√
m

)
,

160

A.3. Proof of Theorem 7.4.2

where the last equality is obtained with similar reasoning than for equation A.43. From Lemma A.2.4
and Lemma A.2.5, we have

Z31112 = 1
n

1
N Tr(ΛP ΘS(Un − γVn)T ΨS)

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

) ∥Q̄mr∥2
Ψ1

+O
(

1√
m

)
.

We conclude for Z311 that

Z311 = 1
n

rT Q̄T
mUT

n ΨSΛP ΨSUnQ̄mr

+ 1
n

1
N Tr

(
ΛP

[
ΘSΨ2ΘT

S −ΘS(Un − γVn)T ΨS
])

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

) ∥Q̄mr∥2
Ψ1

+O
(

1√
m

)
,

and for Z31 that

Z31 = 1
n

rT Q̄T
mUT

n ΨSΛP ΨSUnQ̄mr

+ 1
n

1
N Tr

(
ΛP

[
ΘSΨ2ΘT

S − 2ΘS(Un − γVn)T ΨS
])

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

) ∥Q̄mr∥2
Ψ1

+O
(

1√
m

)
.

Lemma A.3.5. Under Assumptions 1, 2 and 3, let Z32 ∈ R defined in equation A.42 as

Z32 =
N∑

i=1
E

[
1

nm2 rT QT
−iU

T
n σiσ

T
i ΛP σiσ

T
i UnQ−i(

1 + 1
m σT

i UnQ−i(Un − γVn)T σi

)2 r

]
.

Then ∣∣∣∣∣Z32 −
1
n

1
N Tr(ΛP ΨS)

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

)∥Q̄mr∥2
Ψ1

∣∣∣∣∣ = O
(

1√
m

)
,

where Q̄m is the deterministic resolent defined in equation 7.7, Ψ1,Ψ2 ∈ Rn×n are defined in
equation 7.12, and ΨS ∈ Rp×p is defined in equation 7.15.

Proof. We decompose Z32 as

Z32 = 1
nm2

N∑
i=1

E

[
rT QT

−iU
T
n σiσ

T
i ΛP σiσ

T
i UnQ−i(

1 + 1
m σT

i UnQ−i(Un − γVn)T σi

)2 r

]

= 1
nm

N∑
i=1

E

[
rT QT

−iU
T
n σiσ

T
i UnQ−i

1
m Tr

(
ΦSΛP

)(
1 + 1

m σT
i UnQ−i(Un − γVn)T σi

)2 r

]

+ 1
nm

N∑
i=1

E

[
rT QT

−iU
T
n σiσ

T
i UnQ−i

1
m

(
σT

i ΛP σi − Tr
(
ΦSΛP

))(
1 + 1

m σT
i UnQ−i(Un − γVn)T σi

)2 r

]

= 1
n

Tr
(
ΦSΛP

)
m

rT
N∑

i=1
E

[
1
m

QT
−iU

T
n σiσ

T
i UnQ−i(

1 + 1
m σT

i UnQ−i(Un − γVn)T σi

)2

]
︸ ︷︷ ︸

=Z321

r

161

Appendix A. Mathematical Proofs: Double Descent in LSTD

+ 1
n

rT
N∑

i=1
E

[
1
m

QT
mUT

n σiσ
T
i UnQm

1
m

(
σT

i ΛP σi − Tr
(
ΦSΛP

))]
︸ ︷︷ ︸

Z322

r.

We want to show Z322 vanishes and find an asymptotic equivalent for Z321. Let D322 ∈ RN×N be
a diagonal matrix for which, for all i ∈ [N], we have

[
D322

]
i

= 1
m

σT
i ΛP σi −

1
m

Tr
(
ΦSΛP

)
.

We rewrite Z322 as

Z322 =
N∑

i=1
E

[
1
m

QT
mUT

n σiσ
T
i UnQm

1
m

(
σT

i ΛP σi − Tr
(
ΦSΛP

))]

= E

[
1
m

QT
mUT

n ΣT
S D322ΣSUnQm

]

From Lemma A.4.4, we know there exists a real K ′
Q > 0 such that, for all m, we have∥∥∥∥ 1√

m
ΣSUnQm

∥∥∥∥ ≤ K ′
Q

and ∥∥∥∥ 1√
m

Qm(Un − γVn)T ΣT
S

∥∥∥∥ ≤ 2K ′
Q.

Using Lemma A.7.2 we show that E
[
∥D322∥

]
= O

(
1√
m

)
, and we deduce that

∥Z322∥ = O
(

1√
m

)
.

We want to find an asymptotic equivalent for Z321. Let D321 ∈ RN×N be a diagonal matrix for
which, for all i ∈ [N], we have

[
D321

]
i

= (1 + δ)2 −
(

1 + 1
m

σT
i UnQ−i(Un − γVn)T σi

)2
.

We replace 1 + 1
m σT

i UnQ−i(Un − γVn)T σi by 1 + δ as following

Z321 =
N∑

i=1
E

[
1
m

QT
−iU

T
n σiσ

T
i UnQ−i(

1 + 1
m σT

i UnQ−i(Un − γVn)T σi

)2

]

= 1
(1 + δ)2

N∑
i=1

E

[
1
m

QT
−iU

T
n σiσ

T
i UnQ−i

]

+ 1
(1 + δ)2

N∑
i=1

E

[
1
m

QT
mUT

n σiσ
T
i UnQm

(
(1 + δ)2 −

(
1 + 1

m
σT

i UnQ−i(Un − γVn)T σi

)2
)]

= N

m

1
(1 + δ)2E

[
QT

−UT
n ΦSUnQ−

]
+ 1

(1 + δ)2E
[

1
m

QmUT
n ΣT

S D321ΣSUnQm

]
= 1

1 + δ
E
[
QT

−Ψ1Q−
]

+O∥·∥

(
1√
m

)
.

162

A.3. Proof of Theorem 7.4.2

The last equality is obtained since we can show that E
[
∥D321∥

]
= O

(
1√
m

)
. We have from

Lemma A.2.4 ∥∥E [QT
mΨ1Qm

]
− E

[
QT

−Ψ1Q−
]∥∥ = O

(
1√
m

)
,

and from Lemma A.2.5

Z321 = 1
1 + δ

E
[
QT

mΨ1Qm

]
= 1

1 + δ

1
1− 1

N Tr
(
Ψ2Q̄T

mΨ1Q̄m

)Q̄T
mΨ1Q̄m +O∥·∥

(
1√
m

)
.

We conclude that

Z32 = 1
n

1
N Tr(ΛP ΨS)

1− 1
N Tr

(
Ψ2Q̄T

mΨ1Q̄m

)∥Q̄mr∥2
Ψ1

+O
(

1√
m

)
.

Lemma A.3.6. When all states have been visited, the empirical transition model matrix Âm =
Ûn(Ûn − γV̂n) = Un(Un − γVn) defined in equation 6.14 is invertible.

Proof. Let c : S → N and c′ : S → N be defined such that, for all i ∈ [p], c(Si) and c′(Si) represent
the number of times Si occurs in Xn and X ′

n, respectively. If all states have been visited (m = p),
for all i in [p], we have thus c(Si) > 0. The structure of

√
nUn ∈ Rm×n indicates each column i of

Un is a one-hot vector, where its j-th element is 1 if the i-th state si of Xn is Sj . Conversely, each
row i of

√
nUn has a j-th element is one if the j-th state sj of Xn is Si. A similar correspondence

holds for
√
nVn and X ′

n. From interpretations of Un and Vn, we deduce nUnUT
n ∈ Rm×m and

nVnV T
n ∈ Rm×m are diagonal matrices where the i-th element of its diagonal are c(Si) and c′(Si),

respectively. In the same way, nUnV T
n ∈ Rm×m is matrix for which [nUnV T

n]ij is c(Si → Sj)
which represents the number of times the state Si follows Sj in Dtrain. We are going to prove Âm

is invertible by using the Gershgorin circle theorem to show Âm is strictly diagonally dominant,
i.e., |[Âm]ii| >

∑
i̸=j |[Âm]ij |. From the interpretations of UnUT

n and UnV T
n , we have

[Âm]ii = [UnUT
n]ii − γ[UnV T

n]ii = c(Si)− γc(Si → Si)
n

> 0, ∀i ∈ [n],

and
[Âm]ij = −γ[UnV T

n]ij = −γc(Si → Sj)
n

< 0, ∀i ̸= j.

To prove Âm is invertible it remains to show
∑

j [Âm]ij =
∑

j [Un(Un−γVn)T]ij > 0 for all i ∈ [m].
Let i ∈ [m], we have

∑
j

[Un(Un − γVn)T]ij = c(Si)
n
− γ

∑
j

c(Si → Sj)
n

= (1− γ)c(Si)
n

> 0,

which concludes the proof.

Lemma A.3.7. Let ∆ be the second-order correction factor of MSBE(θ̂λ
n) defined in equation 7.14.

If all states have been visited, then

∆ = λ2

n

1
N Tr

(
UT

n Â−1T
m ΛP Â−1

m UnQ̄mΨ2Q̄T
m

)
1− 1

N Tr
(
Ψ2Q̄m(λ)T Ψ1Q̄m(λ)

) ∥Q̄m(λ)r∥2
Ψ1
,

163

Appendix A. Mathematical Proofs: Double Descent in LSTD

where Âm = Ûn(Ûn − γV̂n) = Un(Un − γVn) is the empirical transition model matrix defined in
equation 6.14.

Proof. When all states have been visited, we have Un = Ûn, Vn = V̂n and ΣS = ΣŜ . Furthermore,
from Lemma A.3.6, Âm = Ûn(Ûn − γV̂n) = Un(Un − γVn) is invertible. We write

ΘS = ΨSUnQ̄m(λ) = Â−1
m Un(Un − γVn)T ΨSUnQ̄m(λ)

= Â−1
m Un

[
In − λQ̄m

]
Using the equality above and the cyclic properties of the trace, we conclude that

Tr
(

ΛP

[
ΘSΨ2ΘT

S − 2ΘS(Un − γVn)T ΨS + ΨS
])

= Tr
(

ΛP

[
Â−1

m Un

[
In − λQ̄m

]
Ψ2
[
In − λQ̄m

]T
UT

n Â−1T
m

− 2Â−1
m Un

[
In − λQ̄m

]
(Un − γVn)T ΨS + ΨS

])
= λ2 Tr

(
ΛP Â−1

m UnQ̄mΨ2Q̄T
mUT

n Â−1T
m

)
− λTr

(
ΛP Â−1

m UnQ̄m(Un − γVn)T ΨS

)
− λTr

(
ΛP ΨS(Un − γVn)QT

mUT
n Â−1T

m

)
+ 2λTr

(
ΛP Â−1

m UnQ̄m(Un − γVn)T ΨS

)
= λ2 Tr

(
ΛP Â−1

m UnQ̄mΨ2Q̄T
mUT

n Â−1T
m

)
= λ2 Tr

(
UT

n Â−1T
m ΛP Â−1

m UnQ̄mΨ2Q̄T
m

)
.

A.4 Technical Details on the Resolvent Qm(λ)

This section aims to prove that the operator norm of Qm(λ) is uniformly upper bounded under As-
sumption 2. Indeed, controlling the operator norm of Qm(λ) is crucial for proving the theorems in
Chapter 7. When γ = 0, which corresponds to the supervised learning case on the reward function,
the result is straightforward with Lemma A.8.6 since 1

m ΣT
Xn

ΣXn
is positive-definite (Louart et al.,

2018; Liao et al., 2020). In the RL setting, the conclusion is less straightforward as the resolvent
is no longer that of a symmetric positive-definite matrix. This issue is further exacerbated by the
lack of results in the literature concerning the upper bounds for operator norm of resolvents of
non-positive-definite matrices. Lemma A.4.1 aims to propose a solution for the RL setting under
Assumptions 1 and 2. Proof of the widely used Lemma A.4.4 is also presented at the end of this
section.

Lemma A.4.1. Under Assumptions 1 and 2, let λ > 0 and let Qm(λ) ∈ Rn×n be the resolvent
defined in equation 6.13 as

Qm(λ) =
[

1
m

(Ûn − γV̂n)T ΣT
Ŝ ΣŜÛn + λIn

]−1
.

Then there exists a real K > 0 such that, for all m, we have

∥Qm(λ)∥ ≤ K.

164

A.4. Technical Details on the Resolvent Qm(λ)

Proof. Under Assumption 2, the empirical transition model matrix Âm = Ûn(Ûn − γV̂n)T (equa-
tion 6.14) is invertible since the symmetric part of Âm is positive-definite. Let

0 < ϵ < λmin
{

1
ξmax

,
ξmin

4

}
,

for ξmin, ξmax > 0 defined in Assumption 2. We rewrite equation 6.13 as

Qm(λ) =
[

1
m

(Ûn − γV̂n)T ΣT
Ŝ ΣŜÛn + λIn

]−1

=

(Ûn − γV̂n)T

[
1
m

ΣT
Ŝ ΣŜ + ϵIm

]
Ûn + λIn − ϵ(Ûn − γV̂n)T Ûn︸ ︷︷ ︸

=Bn


−1

.

To apply the Woodbury identity (Lemma A.8.2) on Qm(λ), we check that both

Bn = λIn − ϵ(Ûn − γV̂n)T Ûn,

and

Mm =
[

1
m

ΣT
Ŝ ΣŜ + ϵIm

]−1
+ ÛnB−1

n (Ûn − γV̂n)T

=
[

1
m

ΣT
Ŝ ΣŜ + ϵIm

]−1
+
[
λIn − ϵÂm

]−1
Âm

=
[

1
m

ΣT
Ŝ ΣŜ + ϵIm

]−1
+
[
λÂ−1

m − ϵIm

]−1

are non-singular, since 1
m ΣT

Ŝ ΣŜ + ϵIm is non-singular. Given that H(Âm) is positive-definite,
Âm has eigenvalues with positive real parts. Consequently, by the Weinstein–Aronszajn identity
(Lemma A.8.5), (Ûn − γV̂n)T Ûn has non-zero eigenvalues with positive real parts. As ϵ < λ

ξmax
≤

λ
νmax(H(Âm)) ≤

λ
Re(νmax(Âm)) , we deduce that the matrix Bn = λIn − ϵ(Ûn − γV̂n)T Ûn has eigen-

values with positive real parts and is non-singular. To prove that the matrix Mm is non-singular,
we propose to show xT Mmx > 0 for all non-zero x ∈ Rm. Since

[
1
m ΣT

Ŝ ΣŜ + ϵIm

]−1
is at least

positive-semi-definite, the statement xT Mmx > 0 for all non-zero x ∈ Rm may be restated as

for all non-zero x ∈ Rm, xT
[
λÂ−1

m − ϵIm

]−1
x > 0

iff for all non-zero x ∈ Rm, xT
[
λÂ−1

m − ϵIm

]
x > 0

iff for all non-zero x ∈ Rm, xTH
(
Â−1

m

)
x− ϵ

λ
xT x > 0

iff νmin
(
H(Â−1

m)
)
>
ϵ

λ
.

By construction of Ûn and V̂n, we have both ∥Ûn∥ ≤ 1 and ∥V̂n∥ ≤ 1. We deduce thus∥∥Âm

∥∥ =
∥∥Ûn(Ûn − γV̂n)T

∥∥ < 2.

Since H(Â−1
m) = [Â−1

m]TH(Âm)Â−1
m , we deduce from Ostrowski’s Theorem (Lemma A.8.4) that

νmin
(
H(Â−1

m)
)
≥
νmin

(
H(Âm)

)
∥Âm∥2

≥ ξmin

4 .

165

Appendix A. Mathematical Proofs: Double Descent in LSTD

Since ϵ < λξmin
4 , we have xT Mmx > 0 for all non-zero x ∈ Rm, and thus Mm is non-singular. As

a consequence, we apply the Woodbury identity (Lemma A.8.2) on the resolvent Qm(λ) to get

Qm(λ) =
[
(Ûn − γV̂n)T

[
1
m

ΣT
Ŝ ΣŜ + ϵIm

]
Ûn + Bn

]−1

= B−1
n −B−1

n (Ûn − γV̂n)T M−1
m ÛnB−1

n .

Multiplying the equation above by Bn = λIn − ϵ(Ûn − γV̂n)T Ûn on both sides, and after manip-
ulating terms to isolate Qn on the left-hand side gives

Qm(λ) = 1
λ2

[
Bn − (Ûn − γV̂n)T M−1

m Ûn

+ λϵ
[
(Ûn − γV̂n)T ÛnQm(λ) + Qm(λ)(Ûn − γV̂n)T Ûn

]
− ϵ2(Ûn − γV̂n)T ÛnQm(λ)(Ûn − γV̂n)T Ûn

]

= 1
λ2

[
Bn − (Ûn − γV̂n)T M−1

m Ûn

+ λϵ(Ûn − γV̂n)T

[
1
m

ÂmΣT
Ŝ ΣŜ + λIm

]−1
Ûn

+ λϵ(Ûn − γV̂n)T

[
1
m

ΣT
Ŝ ΣŜÂm + λIm

]−1
Ûn

− ϵ2(Ûn − γV̂n)T

[
1
m

ÂmΣT
Ŝ ΣŜ + λIm

]−1
Ûn(Ûn − γV̂n)T Ûn

]
.

Applying the operator nom on the equality above, we find

∥Qm(λ)∥ ≤ 1
λ2

[
λ+ 2ϵ+ 2∥M−1

m ∥

+ 2λϵ
∥∥∥∥∥
[

1
m

ÂmΣT
Ŝ ΣŜ + λIm

]−1
∥∥∥∥∥+ 2λϵ

∥∥∥∥∥
[

1
m

ΣT
Ŝ ΣŜÂm + λIm

]−1
∥∥∥∥∥

+ 4ϵ2
∥∥∥∥∥
[

1
m

ÂmΣT
Ŝ ΣŜ + λIm

]−1
∥∥∥∥∥
]
,

(A.45)

since
∥Bn∥ =

∥∥λIn − ϵ(Ûn − γV̂n)T Ûn

∥∥ ≤ λ+ 2ϵ.

From Lemma A.4.2, we have ∥∥∥∥∥
[

1
m

ÂmΣT
Ŝ ΣŜ + λIm

]−1
∥∥∥∥∥ ≤ 1

λ

4
ξ2

min
,

and ∥∥∥∥∥
[

1
m

ΣT
Ŝ ΣŜÂm + λIm

]−1
∥∥∥∥∥ ≤ 1

λ

4
ξ2

min
.

We find an upper bound for ∥M−1
m ∥ to finish the proof. By denoting by ZT Z the Cholesky

decomposition of the positive-semi-definite matrix
[

1
m ΣT

Ŝ ΣŜ + ϵIm

]−1
, we reuse the Woodbury

166

A.4. Technical Details on the Resolvent Qm(λ)

identity (Lemma A.8.2) to rewrite M−1
m as

M−1
m =

[[
1
m

ΣT
Ŝ ΣŜ + ϵIm

]−1
+
[
λÂ−1

m − ϵIm

]−1
]−1

=
[
ZT Z +

[
λÂ−1

m − ϵIm

]−1
]−1

=
[
λÂ−1

m − ϵIm

]
−
[
λÂ−1

m − ϵIm

]
ZT
[
Z
[
λÂ−1

m − ϵIm

]
ZT + Im

]−1
Z
[
λÂ−1

m − ϵIm

]
.

From Lemma A.8.6, ∥∥∥∥[Z[λÂ−1
m − ϵIm

]
ZT + Im

]−1
∥∥∥∥ ≤ 1,

since H
(
Z
[
λÂ−1

m − ϵIm

]
ZT
)

is positive-semi-definite, and from Lemma A.4.3 we have

∥Â−1
m ∥ ≤

1
ξmin

.

Besides,
∥Z∥2 = νmax

([1
m

ΣT
Ŝ ΣŜ + ϵIm

]−1)
≤ 1
ϵ
.

We deduce for the operator norm of M−1
m that

∥M−1
m ∥ ≤

(
λ

ξmin
+ ϵ

)
+ 1
ϵ

(
λ

ξmin
+ ϵ

)2
.

Setting ϵ = λ
2ϵ′ < λmin

{
1

ξmax
, ξmin

4

}
for ϵ′ > 1

2 min
{

1
ξmax

, ξmin
4

}
and putting upper bounds of

∥M−1
m ∥,

∥∥∥∥[1
m ÂmΣT

Ŝ ΣŜ + λIm

]−1
∥∥∥∥,
∥∥∥∥[1

m ΣT
Ŝ ΣŜÂm + λIm

]−1
∥∥∥∥ into equation A.45 give

∥Qm(λ)∥ ≤ 1
λ2

[
λ+ λ

ϵ′
+ λ

(
2

ξmin
+ 1
ϵ′

)
+ λϵ′

(
2

ξmin
+ 1
ϵ′

)2
+ λ

8
ξ2

minϵ
′ + λ

4
ξ2

minϵ
′2

]

= 1
λ

[
1 + 1

ϵ′
+
(

2
ξmin

+ 1
ϵ′

)
+ ϵ′

(
2

ξmin
+ 1
ϵ′

)2
+ 8
ξ2

minϵ
′ + 4

ξ2
minϵ

′2

]
.

Remark 41. From the proof of Lemma A.4.1, eigenspectrum constraints on the empirical transi-
tion model matrix Âm in Assumption 2 ensure the resolvent Qm(λ) is uniformly bounded.

Lemma A.4.2. Under Assumptions 1 and 2, let λ > 0 and let Q′
m(λ),Q′′

m(λ) ∈ Rm×m be the
following resolvents

Q′
m(λ) =

[
1
m

ÂmΣT
Ŝ ΣŜ + λIm

]−1

and

Q′′
m(λ) =

[
1
m

ΣT
Ŝ ΣŜÂm + λIm

]−1
,

where Âm = Ûn(Ûn − γV̂n)T ∈ Rm×m is the empirical transition model matrix (equation 6.14).

167

Appendix A. Mathematical Proofs: Double Descent in LSTD

Then, for all m, we have

∥Q′
m(λ)∥ ≤ 1

λ

4
ξ2

min
and ∥Q′′

m(λ)∥ ≤ 1
λ

4
ξ2

min
.

Proof. Since the symmetric part of the empirical transition model matrix Âm is positive-definite
under Assumption 2, the matrix Âm is non-singular. We write thus

∥Q′
m(λ)∥ =

∥∥∥∥∥
[

1
m

ÂmΣT
Ŝ ΣŜ + λIm

]−1
∥∥∥∥∥

=
∥∥∥∥∥
[

1
m

ΣT
Ŝ ΣŜ + λÂ−1

m

]−1
Â−1

m

∥∥∥∥∥
≤

∥∥∥∥∥
[

1
m

ΣT
Ŝ ΣŜ + λÂ−1

m − λνmin
(
H(Â−1

m)
)
Im + λνmin

(
H(Â−1

m)
)
Im

]−1
∥∥∥∥∥ ∥Â−1

m ∥

= 1
λ

1
νmin

(
H(Â−1

m)
)∥Â−1

m ∥.

The last inequality is obtained with Lemma A.8.6 since H
(

1
m ΣT

Ŝ ΣŜ +λÂ−1
m −λνmin

(
H(Â−1

m)
)
Im

)
is positive-semi-definite. By construction of both Ûn and V̂n, we have ∥Ûn∥ ≤ 1 and ∥V̂n∥ ≤ 1.
We deduce that ∥∥Âm

∥∥ =
∥∥Ûn(Ûn − γV̂n)T

∥∥ < 2.

Since H(Â−1
m) = [Â−1

m]TH(Âm)Â−1
m , we deduce from Ostrowski’s theorem (Lemma A.8.4) that

νmin
(
H(Â−1

m)
)
≥
νmin

(
H(Âm)

)
∥Âm∥2

≥ ξmin

4 .

Furthermore, from Lemma A.4.3, we have ∥Â−1
m ∥ ≤ 1

ξmin
. We conclude that

∥Q′
m(λ)∥ ≤ 1

λ

4
ξ2

min
.

With similar reasoning, we can find the same upper bound for ∥Q′′
m(λ)∥.

Lemma A.4.3. Let Âm = Ûn(Ûn − γV̂n)T be the empirical transition model matrix defined in
equation 6.14. Under Assumption 2, for all m, we have

∥Â−1
m ∥ ≤

1
ξmin

.

Proof. We rewrite Âm as

Â−1
m =

[[
Âm − νmin

(
H(Âm)

)
Im

]
+ νmin

(
H(Âm)

)
Im

]−1
.

Since the matrix H
([

Âm − νmin
(
H(Âm)

)
Im

])
is positive-semi-definite, we apply Lemma A.8.6

168

A.4. Technical Details on the Resolvent Qm(λ)

on Â−1
m to get

∥Â−1
m ∥ ≤

1
νmin

(
H(Âm)

) ≤ 1
ξmin

.

Lemma A.4.4. Under Assumption 1 and 2, let λ > 0 and let Qm(λ) ∈ Rn×n be the resolvent
defined in equation 6.13 as

Qm(λ) =
[

1
m

(Ûn − γV̂n)T ΣT
Ŝ ΣŜÛn + λIn

]−1
.

Then there exists a real K > 0 such that, for all m, we have∥∥∥∥ 1√
m

ΣŜÛnQm(λ)
∥∥∥∥ ≤ K

and ∥∥∥∥ 1√
m

Qm(λ)(Ûn − γV̂n)T ΣT
Ŝ

∥∥∥∥ ≤ 2K.

Proof. From Lemma A.4.1, we know there exists a real K > 0 such that, for all m, we have
∥Qm(λ)∥ ≤ K. Since the symmetric part of the empirical transition model matrix Âm = Ûn(Ûn−
γV̂n)T (equation 6.14) is positive-definite under Assumption 2, the matrix Âm is non-singular.
Furthermore, from Lemma A.4.3 we have ∥Â−1

m ∥ ≤ 1
ξmin

, and both ∥Ûn∥ and ∥V̂n∥ are upper
bounded by 1. We deduce that∥∥∥∥ 1√

m
ΣŜÛnQm(λ)

∥∥∥∥ =
∥∥∥∥ 1
m

Qm(λ)T ÛT
n ΣT

Ŝ ΣŜÛnQm(λ)
∥∥∥∥ 1

2

=
∥∥∥∥ 1
m

Qm(λ)T ÛT
n Â−1

m Ûn(Ûn − γV̂n)T ΣT
Ŝ ΣŜÛnQm(λ)

∥∥∥∥ 1
2

=
∥∥∥Qm(λ)T ÛT

n Â−1
m Ûn

[
In − λQm(λ)

]∥∥∥ 1
2

≤

√
K(1 +K)
ξmin

.

Similarly, we have∥∥∥∥ 1√
m

Qm(λ)(Ûn − γV̂n)T ΣT
Ŝ

∥∥∥∥
=
∥∥∥∥ 1
m

Qm(λ)(Ûn − γV̂n)T ΣT
Ŝ ΣŜÛn(Ûn − γV̂n)T Â−1

m (Ûn − γV̂n)Qm(λ)T

∥∥∥∥ 1
2

=
∥∥∥[In − λQm(λ)

]
(Ûn − γV̂n)T Â−1

m (Ûn − γV̂n)Qm(λ)T
∥∥∥ 1

2

≤ 2

√
K(1 +K)
ξmin

.

Lemma A.4.5. Let λ > 0 and Ûn, V̂n be the auxiliary matrices defined in equation 6.7. The map-

169

Appendix A. Mathematical Proofs: Double Descent in LSTD

ping f : W →
∥∥∥∥[1

m (Ûn − γV̂n)T ΣŜ(W)T ΣŜ(W)Ûn + λIn

]−1
∥∥∥∥ is K/

√
m-Lipschitz continuous

with respect to the Frobenius norm, for K > 0 independent of N and m.

Proof. Let Qm : W 7→
[

1
m (Ûn − γV̂n)T ΣŜ(W)T ΣŜ(W)Ûn + λIn

]−1
. From Lemma A.4.1, we

know there exists a real KQm
> 0 such that, for all m and W , we have

∥Qm(W)∥ ≤ KQm
.

Furthermore, both ∥Ûn∥ and ∥V̂n∥ are upper bounded by 1. Let H ∈ RN×d, we have

|f(W + H)− f(W)|∣∣∥∥Qm(W + H)
∥∥− ∥∥Qm(W)

∥∥∣∣
≤
∥∥Qm(W + H)−Qm(W)

∥∥
=
∥∥∥∥ 1
m

Qm(W + H)(Ûn − γV̂n)T
[
ΣŜ(W + H)T ΣŜ(W + H)−ΣŜ(W)T ΣŜ(W)

]
ÛnQm(W)

∥∥∥∥
=
∥∥∥∥ 1
m

Qm(W + H)(Ûn − γV̂n)T
[
ΣŜ(W + H)T

[
ΣŜ(W + H)−ΣŜ(W)

]
+
[
ΣŜ(W + H)−ΣŜ(W)

]T ΣŜ(W)
]
ÛnQm(W)

∥∥∥∥
≤
∥∥∥∥ 1
m

Qm(W + H)(Ûn − γV̂n)T ΣŜ(W + H)T
[
ΣŜ(W + H)−ΣŜ(W)

]
ÛnQm(W)

∥∥∥∥
+
∥∥∥∥ 1
m

Qm(W + H)(Ûn − γV̂n)T
[
ΣŜ(W + H)−ΣŜ(W)

]T ΣŜ(W)ÛnQm(W)
∥∥∥∥

≤ KQm

∥∥∥∥ 1√
m

Qm(W + H)(Ûn − γV̂n)T ΣŜ(W + H)T

∥∥∥∥ ∥∥∥∥ 1√
m

[
ΣŜ(W + H)−ΣŜ(W)

]∥∥∥∥
+ 2KQm

∥∥∥∥ 1√
m

[
ΣŜ(W + H)−ΣŜ(W)

]∥∥∥∥ ∥∥∥∥ 1√
m

ΣŜ(W)ÛnQm(W)
∥∥∥∥.

From Lemma A.4.4, we know there exists a real K ′ > 0 such that, for all m, we have∥∥∥∥ 1√
m

ΣŜ(W)ÛnQm(W)
∥∥∥∥ ≤ K ′

and ∥∥∥∥ 1√
m

Qm(W + H)(Ûn − γV̂n)T ΣŜ(W + H)T

∥∥∥∥ ≤ 2K ′.

From those results, we conclude the Lipschitz continuity of f with respect to the Frobenius norm
since

|f(W + H)− f(W)| ≤ 4KQm
K ′
∥∥∥∥ 1√

m

[
ΣŜ(W + H)−ΣŜ(W)

]∥∥∥∥
≤ 4KQmK

′
∥∥∥∥ 1√

m

[
ΣŜ(W + H)−ΣŜ(W)

]∥∥∥∥
F

≤ 4KQm
K ′Kσ√
m

∥HS∥F

= 4KQm
K ′Kσ√
m

√
Tr (HSST HT)

≤ 4KQmK
′Kσ√

m
∥S∥ ∥H∥F .

170

A.5. Existence of the Resolvent Qm(λ)

Lemma A.4.6. Let λ > 0, Ûn, V̂n be the auxiliary matrices defined in equation 6.7, and Qm :
W 7→

[
1
m (Ûn − γV̂n)T ΣŜ(W)T ΣŜ(W)Ûn + λIn

]−1
. The mapping f : W 7→

∥∥Qm(W)T Qm(W)
∥∥

is K/
√
m-Lipschitz continuous with respect to the Frobenius norm, for K > 0 independent of N

and m.

Proof. From Lemma A.4.1 and Lemma A.4.5, we know there exists reals KQm
,K > 0 such that,

for all m and W ,H, we have
∥Qm(W)∥ ≤ KQm .

and ∥∥[Qm(W + H)−Qm(W)
]∥∥ ≤ K√

m
∥H∥F

Let H ∈ RN×d, we have

|f(W + H)− f(W)| =
∣∣∥∥Qm(W + H)T Qm(W + H)

∥∥− ∥∥Qm(W)T Qm(W)
∥∥∣∣

≤
∥∥Qm(W + H)T Qm(W + H)−Qm(W)T Qm(W)

∥∥
≤
∥∥∥Qm(W + H)T

[
Qm(W + H)−Qm(W)

]∥∥∥
+
∥∥∥∥[Qm(W + H)−Qm(W)

]T

Qm(W)
∥∥∥∥

≤ 2KKQm√
m
∥H∥F .

A.5 Existence of the Resolvent Qm(λ)

In this section, we show that Assumption 2 guarantees the existence of the resolvent Qm(λ)
(Lemma A.5.1), but also that Assumption 2 may be true in practice under certain conditions
(Lemma A.5.2).

Lemma A.5.1. Under Assumption 2, for any λ > 0, the resolvent Qm(λ) defined in equation 6.13
exists.

Proof. From Assumption 2, we know that νmin
(
H(Âm)

)
> ξmin > 0, and thus H(ΣŜÂmΣT

Ŝ) is
at least semi-positive-definite. From the Min-Max theorem, we deduce that the eigenvalues of
ΣŜÂmΣT

Ŝ have nonnegative real parts. Consequently, the eigenvalues of 1
m (Ûn− γV̂n)T ΣT

Ŝ ΣŜÛn

have nonnegative real parts since both 1
m (Ûn − γV̂n)T ΣT

Ŝ ΣŜÛn and ΣŜÂmΣT
Ŝ share the same

nonzero eigenvalues from the Weinstein–Aronszajn identity (Lemma A.8.5).

Lemma A.5.2. Let c : Ŝ → N and c′ : Ŝ → N be defined such that, for all i ∈ [m], c(Ŝi) and
c′(Ŝi) represent the number of times Ŝi occurs in Xn and X ′

n, respectively. If for all i ∈ [m],
c(Ŝi) ≥ γc′(Ŝi) then the symmetric part of the empirical transition model matrix Âm (defined in
equation 6.14) is positive-definite.

Proof. The structure of
√
nÛn ∈ Rm×n indicates each column i of Ûn is a one-hot vector, where

its j-th element is 1 if the i-th state si of Xn is Ŝj . Conversely, each row i of
√
nÛn has a

171

Appendix A. Mathematical Proofs: Double Descent in LSTD

j-th element equal to one if the j-th state sj of Xn is Ŝi. A similar correspondence holds for
√
nV̂n and X ′

n. From interpretations of Ûn and V̂n, we deduce that Ĉn = nÛnÛT
n ∈ Rm×m

and Ĉ ′
n = nV̂nV̂ T

n ∈ Rm×m are diagonal matrices where the i-th element of its diagonal is equal
to c(Ŝi) and c′(Ŝi), respectively. In the same way, N̂n = nÛnV̂ T

n ∈ Rm×m is matrix for which
[N̂n]ij is c(Ŝi → Ŝj), i.e., the number of times the state Ŝi follows Ŝj in Dtrain. We want to prove
H(Âm) = Âm+ÂT

m

2 is positive-definite by using the Gershgorin circle theorem and by showing
H(Âm) is strictly diagonally dominant, i.e., |[H(Âm)]ii| >

∑
i̸=j |[H(Âm)]ij |.

For all i ∈ [n], we have

[H(Âm)]ii = 1
n

[
[Ĉn]ii − γ[N̂n]ii

]
= c(Ŝi)− γc(Ŝi → Ŝi)

n
> 0,

and for all i ̸= j

[H(Âm)]ij = −γ[N̂n]ij − γ[N̂n]ji

2n = −γc(Ŝi → Ŝj)− γc(Ŝj → Ŝi)
2n < 0.

To prove that H(Âm) is positive-definite it remains to show that∑
j

[H(Âm)]ij =
∑
j ̸=i

[H(Âm)]ij + [H(Âm)]ii

=
∑

j

[
Ûn(Ûn − γV̂n)T

2

]
ij

+
∑

j

[
Ûn(Ûn − γV̂n)T

2

]
ji

> 0

for all i ∈ [m]. Let i ∈ [m], we have

∑
j

[Ûn(Ûn − γV̂n)T]ij = c(Ŝi)
n
− γ

∑
j

c(Ŝi → Ŝj)
n

= (1− γ)c(Ŝi)
n

> 0

and ∑
j

[Ûn(Ûn − γV̂n)T]ji = c(Ŝi)
n
− γ

∑
j

c(Ŝj → Ŝi)
n

= c(Ŝi)− γc′(Ŝi)
n

> 0,

since c(Ŝi) ≥ γc′(Ŝi) for all i ∈ [m]. We deduce for all i ∈ [m] that

∑
j

[H(Âm)]ij =
∑

j

[
Ûn(Ûn − γV̂n)T

2

]
ij

+
∑

j

[
Ûn(Ûn − γV̂n)T

2

]
ji

> 0,

and thus H(Âm) is strictly diagonally dominant and positive-definite.

Remark 42. Conditions of Lemma A.5.2 may hold in practice. If Dtrain is derived from a sample
path of the MRP, where s′

i+1 = si for all i ∈ [n − 1], and if Ŝl depicts the distinct visited state
corresponding to the last next state visited s′

n in Dtrain, then we have c(Ŝi) = c′(Ŝi) for all i ̸= l and
c(Ŝl) = c′(Ŝl)− 1. For sufficiently large n, we may have c(Ŝl) ≥ γ

1−γ which satisfies conditions of
Lemma A.5.2. Similarly, conditions of Lemma A.5.2 are satisfied for the pathwise LSTD algorithm,
where Dtrain is perturbed slightly by setting the feature of the next state of the last transition to
zero (Lazaric et al., 2012) to get c(Ŝl) ≥ c′(Ŝl).

172

A.6. About the Existence, Positiveness, and Uniqueness of the correction factor δ

A.6 About the Existence, Positiveness, and Uniqueness of
the correction factor δ

This section is dedicated to proving that the fixed-point solution δ of equation 7.8 is unique and
positive under Assumptions 1 and 2. This result is proven in the following Lemma.

Lemma A.6.1. Under Assumptions 1 and 2, for all m, let δ be the solution to the fixed-point
equation 7.8 defined as

δ = 1
m

Tr
(

(Ûn − γV̂n)T ΦŜÛn

[
N

m

1
1 + δ

(Ûn − γV̂n)T ΦŜÛn + λIn

]−1
)
.

Then δ exists, is positive, and is unique.

Proof. For ease of notations, we define the matrix Bn = (Ûn − γV̂n)T ΦŜÛn. The proof is based
on the use of Lemma A.8.7 on the mapping f : δ 7→ 1

m Tr
(
BnQ̄m(δ)

)
. To apply Lemma A.8.7, we

need to show i. f is positive on [0,∞), ii. f is monotonically increasing, iii. f is scalable, and iv.

f admits x0 ∈ [0,∞) such that x0 ≥ f(x0). Following this plan, we will show first i., i.e., f(δ) > 0
for all δ > 0. By denoting νj

(
BnQ̄m(δ)

)
the j-th eigenvalues of the matrix BnQ̄m(δ), we have

νj

(
BnQ̄m(δ)

)
= νj

(
Bn

[
N

m

1
1 + δ

Bn + λIn

]−1
)

= νj(Bn)νj

([
N

m

1
1 + δ

Bn + λIn

]−1
)

(from the Schur decomposition of Bn)

= νj(Bn)
N
m

1
1+δνj (Bn) + λ

= 1∣∣∣N
m

1
1+δνj (Bn) + λ

∣∣∣2
(
N

m

1
1 + δ

|νj(Bn)|2 + λνj(Bn)
)
.

Let Âm = Ûn(Ûn − γV̂n)T be the transition model matrix defined in equation 6.14, and Z̄Z̄T be
the Cholesky decompositon of ΦŜ . From the Weinstein–Aronszajn identity (Lemma A.8.5), the
matrices Bn = (Ûn − γV̂n)T ΦŜÛn and Z̄T ÂmZ̄ share the same non-zero eigenvalues. Under
Assumption 2, the matrix H(Z̄T ÂmZ̄) is at least semi-positive-definite, which implies that non-
zero real parts of eigenvalues of Z̄T ÂmZ̄ are positive. We deduce that Re

(
νj(Bn)

)
≥ 0, for all

j ∈ [m]. As a consequence,

f(δ) = 1
m

Tr
(
BnQ̄m(δ)

)
= 1
m

n∑
j=1

1∣∣∣N
m

1
1+δνj (Bn) + λ

∣∣∣2
(
N

m

1
1 + δ

|νj (Bn)|2 + λνj(Bn)
)

= 1
m

n∑
j=1

1∣∣∣N
m

1
1+δνj (Bn) + λ

∣∣∣2
(
N

m

1
1 + δ

|νj (Bn)|2 + λRe
(
νj(Bn)

))

> 0.

(A.46)

To prove ii., i.e., f is monotonically increasing on [0,∞), we show the derivative f ′ of f is positive

173

Appendix A. Mathematical Proofs: Double Descent in LSTD

on [0,∞). Let δ > 0,

f ′(δ) = 1
m

(n∑
j=1

νj(Bn)
N
m

1
1+δνj (Bn) + λ

)′

= 1
m

n∑
j=1

N
m

1
(1+δ)2(

N
m

1
1+δνj (Bn) + λ

)2 νj(Bn)2

= 1
m

n∑
j=1

N
m

1
(1+δ)2∣∣∣N

m
1

1+δνj (Bn) + λ
∣∣∣4
(
N

m

1
(1 + δ) |νj(Bn)|2 + λνj(Bn)

)2

= 1
m

n∑
j=1

N
m

1
(1+δ)2∣∣∣N

m
1

1+δνj (Bn) + λ
∣∣∣4
(N2

m2
1

(1 + δ)2 |νj(Bn)|4 + 2λN
m

1
1 + δ

|νj(Bn)|2νj(Bn) + λ2νj(Bn)2
)

= 1
m

n∑
j=1

N
m

1
(1+δ)2∣∣∣N

m
1

1+δνj (Bn) + λ
∣∣∣4
(
N2

m2
1

(1 + δ)2 |νj(Bn)|4 + 2λN
m

1
1 + δ

|νj(Bn)|2 Re
(
νj(Bn)

))
︸ ︷︷ ︸

(1)

+
n∑

j=1
λ2

N
m

1
(1+δ)2∣∣∣N

m
1

1+δνj (Bn) + λ
∣∣∣4 Re

(
νj(B2

n)
)

︸ ︷︷ ︸
(2)

Since real parts of eigenvalues of Bn are positive, (1) is clearly positive. Since Tr(B2
n) > 0

(Lemma A.6.2) and thus (2) is positive, we can conclude ii.. We can use a similar proof for the
scalability in iii., i.e., αf(δ) > f(αδ), ∀α > 1. Let α > 1 and δ > 0,

αf(δ)− f(αδ) = α
1
m

Tr
(
BnQ̄m(δ)

)
− 1
m

Tr
(
BnQ̄m(αδ)

)
(A.47)

= 1
m

Tr
(
Bn

[
αQ̄m(δ)− Q̄m(αδ)

])
(A.48)

= 1
m

Tr
(
αBnQ̄m(δ)

[
N

m

(
1

1 + αδ
− 1
α(1 + δ)

)
Bn +

(
λ− λ

α

)
In

]
Q̄m(αδ)

)
(A.49)

= α
1
m

N

m

(
1

1 + αδ
− 1
α(1 + δ)

)
︸ ︷︷ ︸

>0

Tr
(
BnQ̄m(δ)BnQ̄m(αδ)

)︸ ︷︷ ︸
(1)

+ α
1
m

(
λ− λ

α

)
︸ ︷︷ ︸

>0

Tr
(
BnQ̄m(δ)Q̄m(αδ)

)︸ ︷︷ ︸
(2)

.

(A.50)

To prove iii., we can show that both (1) and (2) in equation A.50 are positive. We prove in ii.

that Tr
(
BnQ̄m(δ′)BnQ̄m(δ)

)
> 0 for any δ′ > δ. Since αδ > δ, we also deduce (1) is positive. For

(2), we can write

Tr
(
BnQ̄m(δ)Q̄m(αδ)

)
=

n∑
j=1

νj

(
BnQ̄m(δ)Q̄m(αδ)

)

174

A.6. About the Existence, Positiveness, and Uniqueness of the correction factor δ

=
n∑

j=1

νj(Bn)(
N
m

1
1+δνj(Bn) + λ

)(
N
m

1
1+αδνj(Bn) + λ

)
=

n∑
j=1

cj

((
N2

m2
|νj(Bn)|2

(1 + δ)(1 + αδ) + λ2
)

Re
(
νj(Bn)

)
+ N

m

(
λ

1 + δ
+ λ

1 + αδ

)
|νj(Bn)|2

)
> 0,

where
cj = 1∣∣∣(N

m
1

1+δνj(Bn) + λ
)(

N
m

1
1+αδνj(Bn) + λ

)∣∣∣2 .
In order to apply Lemma A.8.7, we still need to demonstrate iv., i.e., f admits x0 ∈ [0,∞) such
that x0 ≥ f(x0). To prove iv., it is sufficient to notice that if f is bounded, i.e., ∀δ, f(δ) ≤ C. Let
δ > 0, we have

f(δ) = 1
m

Tr
(
BnQ̄m(δ)

)
= 1
m

Tr
(
(Ûn − γV̂n)T ΦŜÛnQ̄m(δ)

)
= 1
m

Tr
(
ΦŜÛnQ̄m(δ)(Ûn − γV̂n)T

)
≤ 1
m

Tr(ΦŜ)∥ÛnQ̄m(δ)(Ûn − γV̂n)T ∥

≤ 2
n

Tr(ΦŜ)∥Q̄m(δ)∥

= O(1),

where we used for the first inequality |Tr(AB)| ≤ ∥B∥Tr(A) for non-negative definite matrix A.
The last inequality is obtained since 1

m Tr(ΦŜ) is uniformly bounded under Assumptions 1 and 2
(see equation A.4). Furthermore, both ∥Ûn∥ and ∥V̂n∥ are upper bounded by 1 and, with a similar
proof than for Lemma A.4.1, we can show there exists a real KQ̄ > 0 such that, for all m and for
all δ ∈ [0,∞), we have ∥Q̄m(δ)∥ ≤ KQ̄. Since all hypotheses required on f to apply Lemma A.8.7
are satisfied, we can apply this Lemma, which concludes the proof.

Lemma A.6.2. We have

Tr
(
(Ûn − γV̂n)T ΦŜÛn(Ûn − γV̂n)T ΦŜÛn

)
> 0.

Proof. Let A = Ûn(Ûn − γV̂n)T . We denote by S(A) = A−AT

2 the skew-symmetric part of A.
We have

Tr
(
(Ûn − γV̂n)T ΦŜÛn(Ûn − γV̂n)T ΦŜÛn

)
= Tr

(
ΦŜAΦŜA

)
= Tr

(
ΦŜAΦŜH(A)

)
+ Tr

(
ΦŜAΦŜS(A)

)
= Tr

(
ΦŜH(A)ΦŜH(A)

)
+ Tr

(
ΦŜS(A)ΦŜH(A)

)
+ Tr

(
ΦŜH(A)ΦŜS(A)

)
+ Tr

(
ΦŜS(A)ΦŜS(A)

)
= Tr

(
ΦŜH(A)ΦŜH(A)

)
+ Tr

(
ΦŜS(A)ΦŜS(A)

)
> 0.

Lemma A.6.3. Under Assumptions 1 and 2, let δ be the correction factor defined in equation 7.8.

175

Appendix A. Mathematical Proofs: Double Descent in LSTD

δ is a decreasing function with respect to N .

Proof. For ease of notations, we define the matrix Bn = (Ûn−γV̂n)T ΦŜÛn and we denote by Q̄m

the resolvent Q̄m(λ). The derivative of δ as function of N is denoted as δ′(N) and defined as

δ′(N) = − 1
m

1
m Tr(BnQ̄mBnQ̄m)

(1+δ)

1− N
m

1
m Tr(BnQ̄mBnQ̄m)

(1+δ)2

For all N , we have δ′(N) ≤ 0 since
1
m Tr(BnQ̄mBnQ̄m)

(1+δ) > 0 and N
m

1
m Tr(BnQ̄mBnQ̄m)

(1+δ)2 < 1 using a
similar reasoning than for equation A.22.

Lemma A.6.4. Under Assumptions 1 and 2, let δ be the correction factor defined in equation 7.8.
δ is a decreasing function with respect to λ.

Proof. For ease of notations, we define the matrix Bn = (Ûn−γV̂n)T ΦŜÛn and we denote by Q̄m

the resolvent Q̄m(λ). The derivative of δ as function of λ is denoted as δ′(λ) and defined as

δ′(λ) = − 1
m

Tr(Q̄mBnQ̄m)

For all λ, we have δ′(λ) ≤ 0 using a similar reasoning than for iii. in Lemma A.6.1.

A.7 Concentration Results

The following section is dedicated to a set of concentration results used for the proofs of Theorems.
Preliminary results yield a concentration of measure properties for the random feature matrix
ΣŜ ∈ RN×m, which stem from the concentration inequality of Lemma 7.2.1 for Lipschitz appli-
cations of a Gaussian vector. Essentially, the guideline of the proofs involves the following steps:
given Wij = φ(W̃ij), for which W̃ij ∼ N (0, 1) and φ a Lipschitz function, the normal concentra-
tion of W̃ is transferred to W . This process induces a normal concentration of the random vector
σ(wT Ŝ), for w = φ(w̃) and w ∼ N (0, Id), and of the matrix ΣŜ . This implies that Lipschitz func-
tionals of σ(wT Ŝ) or ΣŜ also concentrate. As highlighted earlier, these concentration results have
multiple consequences on convergence of random variables and are traditionally employed in Ran-
dom Matrix theory and in Theorem 7.2.3. We start by revisiting Lemma A.7.1 and Lemma A.7.2,
which are derived from Lemma 7.2.1 and that were previously introduced in Louart et al. (2018).
Subsequently, we provide intermediary Lemma 7.2.2 and Lemma A.7.3 to reach the principal re-
sult of this section articulated by Lemma A.7.4, which is employed in proofs of Theorems. In the
remainder of this section, we denote by ∥·∥F the Frobenius norm of a matrix.

Lemma A.7.1. Let σ : R→ R be a Kσ-Lipschitz continuous function, let X ∈ Rd×m be a matrix,
and let w = φ(w̃) be a vector for which φ : R → R is a Kφ-Lipschitz continuous function and
w̃ ∼ N (0, Id). Let

t0 = |σ(0)|+KσKφ∥X∥
√
d

m
.

Then, for all t ≥ 4t0, we have

Pr
(∥∥∥∥ 1√

m
σ(wT X)

∥∥∥∥ ≥ t) ≤ Ce− cmt2
2K2

σK2
φ∥X∥2

,

176

A.7. Concentration Results

for some C, c > 0 are independent of all other parameters.

Proof. The proof of this Lemma can be found in the first half of proof of Louart et al. (2018,
Lemma 2), and is based on Lemma 7.2.1.

Corollary A.7.1.1. (Louart et al., 2018, Remark 2) Let X ∈ Rd×m and let ΣX = σ(W X) ∈
RN×m be its random features matrix defined as in equation 6.5. For all t ≥ 4t0, we have

Pr
(∥∥∥∥ 1

m
ΣX

∥∥∥∥ ≥ t) ≤ CNe− cm2t2
2N∥X∥2 ,

where t0 = |σ(0)|+ ∥X∥
√

d
m .

From the previous Lemma, we deduce the following key concentration result.

Lemma A.7.2. (Louart et al., 2018, Lemma 2) Let σ : R → R be a Kσ-Lipschitz continuous
function, let X ∈ Rd×m be a matrix, and let w = φ(w̃) be a vector for which φ : R → R is a
Kφ-Lipschitz continuous function and w̃ ∼ N (0, Id). Let A ∈ Rm×m be a matrix independent of
w such that ∥A∥ ≤ KA. Then, we have

Pr
(∣∣∣∣ 1

m
σ(wT X)T Aσ(wT X)− 1

m
Tr
(
AE

[
σ(wT X)σ(wT X)T

])∣∣∣∣ > t

)

≤ Ce
− cm

2K2
σK2

φ∥X∥2 min
(

t2
26t2

0K2
A

, t
KA

)
,

for t0 = |σ(0)|+
√

d
mKσKφ∥X∥, and c, C ∈ R independent of all other parameters.

Lemma A.7.3. Under Assumptions 1 and 2, let λ > 0, let W ∈ RN×d, and let the resolvent

Qm(W) =
[

1
m

(Ûn − γV̂n)T ΣŜ(W)T ΣŜ(W)Ûn + λIn

]−1

defined as in equation 6.13. Let σ ∈ Rm independent of W such that 1√
m
∥σ∥ ≤

√
Kv for Kv > 0.

Then

Pr
(∣∣∣∣ 1

m
σT ÛnQm(W)(Ûn − γV̂n)T σ − 1

m
σT ÛnE[Qm(W)](Ûn − γV̂n)T σ

∣∣∣∣ > t

)
≤ Ce−cmt2

,

for some C, c > 0 independent of m and N .

Proof. Let the function f : W 7→ 1
m σT ÛnQm(W)(Ûn− γV̂n)T σ. We want to show f is Lipschitz

continuous to apply Lemma 7.2.2. Both ∥Ûn∥ and ∥V̂n∥ are upper bounded by 1. Let H ∈ RN×d,
we have

|f(W + H)− f(W)|

=
∣∣∣∣ 1
m

σT Ûn

[
Qm(W + H)−Qm(W)

]
(Ûn − γV̂n)T σ

∣∣∣∣
≤ 2Kv

∥∥[Qm(W + H)−Qm(W)
]∥∥

177

Appendix A. Mathematical Proofs: Double Descent in LSTD

From Lemma A.4.5, we know there exists a real K > 0 independent of N and m such that

∥∥[Qm(W + H)−Qm(W)
]∥∥ ≤ K√

m
∥H∥F

We prove that f is Lipschitz with parameter 2KvK√
m

, and applying Lemma 7.2.1 gives

Pr
(∣∣∣∣ 1

m
σT ÛnQm(W)(Ûn − γV̂n)T σ − 1

m
σT ÛnE[Qm(W)](Ûn − γV̂n)T σ

∣∣∣∣ > t

)
≤ Ce− cmt2

4K2
vK2 ,

for some C, c > 0 independent of other parameters.

Lemma A.7.4. Under Assumptions 1 and 2, let Q− ∈ Rn×n be the resolvent defined in equa-
tion A.3, let wi ∼ N (0, Id) be a Gaussian vector independent of Q−, and let σ : R→ R be a real
1-Lipschitz function. Then

Pr
(∣∣∣∣ 1

m
σ(wT

i Ŝ)ÛnQ−i(Ûn − γV̂n)Tσ(ŜT wi)

− 1
m

Tr
(

ÛnE[Q−i](Ûn − γV̂n)TE[σ(ŜT wi)σ(wT
i Ŝ)]

)∣∣∣∣ > t

)
≤ Ce−cm max(t2,t),

for some C, c > 0 independent of N,m.

Proof. We can observe that

Pr
(∣∣∣∣ 1

m
σ(wT

i Ŝ)ÛnQ−i(Ûn − γV̂n)Tσ(ŜT wi)

− 1
m

Tr
(

ÛnE[Q−i](Ûn − γV̂n)TE[σ(ŜT wi)σ(wT
i Ŝ)]

)∣∣∣∣ > t

)
≤ Pr

(∣∣∣∣ 1
m
σ(wT Ŝ)T ÛnQ−i(Ûn − γV̂n)Tσ(wT Ŝ)

− 1
m
σ(wT Ŝ)T ÛnE[Q−i](Ûn − γV̂n)Tσ(wT Ŝ)

∣∣∣∣ > t

2

)
+ Pr

(∣∣∣∣ 1
m
σ(wT Ŝ)T ÛnE[Q−i](Ûn − γV̂n)Tσ(wT Ŝ)

− 1
m

Tr
(

ÛnE[Q−i](Ûn − γV̂n)TE[σ(ŜT wi)σ(wT
i Ŝ)]

)∣∣∣∣ > t

2

)
.

(A.51)

From Lemma A.4.1, there exists a real K > 0 such that, for all m, we have

∥Q−i∥ ≤ K.

Besides, both ∥Ûn∥ and ∥V̂n∥ are upper bounded by 1. We thus bound the probability of the

178

A.7. Concentration Results

right-hand part with Lemma A.7.2 as

Pr
(∣∣∣∣ 1

m
σ(wT Ŝ)T ÛnE[Q−i](Ûn − γV̂n)Tσ(wT Ŝ)

− 1
m

Tr
(

ÛnE[Q−i](Ûn − γV̂n)TE[σ(ŜT wi)σ(wT
i Ŝ)]

)∣∣∣∣ > t

)

≤ Ce
− cm

2K2
σK2

φ∥Ŝ∥2 min
(

t2
28t2

0K2 , t
2K

)
,

(A.52)

for t0 = |σ(0)|+
√

d
mKσKφ∥Ŝ∥, and c, C ∈ R independent of all other parameters. Let define the

real K ′ > 0 and let AK′ be the probability space defined as

AK′ = {w ∈ Rm, ∥σ(wT Ŝ)∥ ≤ K ′√m}.

From Lemma A.7.1, we bound the second term Pr(Ac
K′) as

Pr(Ac
K′) = Pr({∥σ(wT Ŝ)∥ > K ′√m}) ≤ C ′e

− c′mK′2
2K2

σK2
φ∥X∥2

,

for some c′, C ′ > 0 independent of other parameters. Conditioning the random variable of interest
with respect to AK′ and its complementary Ac

K′ gives with Lemma A.7.3

Pr
(∣∣∣∣ 1
m
σ(wT Ŝ)T ÛnQ−(Ûn − γV̂n)Tσ(wT Ŝ)− 1

m
σ(wT Ŝ)T ÛnE[Q−](Ûn − γV̂n)Tσ(wT Ŝ)

∣∣∣∣ > t

)
≤ Pr

(∣∣∣ 1
m
σ(wT Ŝ)T ÛnQ−(Ûn − γV̂n)Tσ(wT Ŝ)

− 1
m
σ(wT Ŝ)T ÛnE[Q−](Ûn − γV̂n)Tσ(wT Ŝ)

∣∣∣ > t ∩ AK′

)
+ Pr(Ac

K′)

≤ C ′′e−c′′mt2
+ C ′e

− c′mK′2
2K2

σK2
φ∥Ŝ∥2

,

(A.53)

where c′′, C ′′ > 0. Combing both equation A.52 and equation A.53 with equation A.51 gives

Pr
(∣∣∣ 1
m
σ(wT

i Ŝ)ÛnQ−i(Ûn − γV̂n)Tσ(ŜT wi)

− 1
m

Tr
(

ÛnE[Q−i](Ûn − γV̂n)TE[σ(ŜT wi)σ(wT
i Ŝ)]

)∣∣∣ > t

)

≤ Ce
− cm

2K2
σK2

φ∥Ŝ∥2 min
(

t2
210t2

0K2 , t
4K

)
+ C ′′e− c′′mt2

4 + C ′e
− c′mK′2

2K2
σK2

φ∥X∥2
.

(A.54)

A.7.1 Reformulation of the Second-Order Correction Factors

In this section, we provide details of the reformulation of second-order correction factors:

∆̂ = λ2

n

1
N Tr(Q̄m(λ)Ψ2Q̄m(λ)T)

1− 1
N Tr(Ψ2Q̄m(λ)T Ψ1Q̄m(λ))

∥Q̄m(λ)r∥2
Ψ1

(equation 7.11),

∆ = 1
n

1
N Tr(ΛP [ΘS Ψ2ΘT

S −2ΘS(Un−γVn)T ΨS +ΨS])
1− 1

N Tr(Ψ2Q̄m(λ)T Ψ1Q̄m(λ))
∥Q̄m(λ)r∥2

Ψ1
(equation 7.14), and

179

Appendix A. Mathematical Proofs: Double Descent in LSTD

∆′ = 1
n

1
N Tr(Dµπ [ΘSΨ2ΘT

S −2ΘS (Un−γVn)T ΨS+ΨS])
1− 1

N Tr(Ψ2Q̄m(λ)T Ψ1Q̄m(λ))
∥Q̄m(λ)r∥2

Ψ1
(equation 7.18)

in the Mercer feature space defined in Section 8.2.2. ∆̂,∆ and ∆′ depend on Tr
(
Ψ2Q̄m(λ)T Ψ1Q̄m(λ)

)
and ∥Q̄m(λ)r∥2

Ψ1
, which can be reformulated as

Tr
(
Ψ2Q̄m(λ)T Ψ1Q̄m(λ)

)
= N2

m2
1

(1+δ)2 Tr
(

(Ûn − γV̂n)T ΩT
Ŝ ΩŜ(Ûn − γV̂n)Q̄m(λ)T ÛT

n ΩT
Ŝ ΩŜÛnQ̄m(λ)

)
= Tr

(
Π(λ̃)T Π(λ̃)

)
(Lemma A.8.8)

=
∥∥Π(λ̃)

∥∥2
F

and

∥Q̄m(λ)r∥2
Ψ1

= m2(1+δ)2

N2

∥∥Π(λ̃)θ∗
n

∥∥2 = λ̃2

λ2

∥∥Π(λ̃)θ∗
n

∥∥2 = λ̃2

λ2

∥∥θ̄n(λ̃)
∥∥2
.

In the Mercer feature space, we can also rewrite in ∆′

Tr
(
Dµπ ΘSΨ2ΘT

S
)

= N
m

1
1+δ Tr

(
Π(λ̃)T ΩSDµπ ΩT

S Π(λ̃)
)

= λ
λ̃

∥∥ΩT
S Π(λ̃)

∥∥2
F,Dµπ

N
m

1
1+δ Tr (Dµπ ΦS) = λ

λ̃

∥∥ΩT
S
∥∥2

F,Dµπ
,

and

N
m

1
1+δ Tr

(
Dµπ ΘS(Un − γVn)T ΦS

)
= N

m
1

1+δ Tr
(
ΩSDµπ ΩT

S Π(λ̃)
)

= λ
λ̃

〈
ΩT

S ,ΩT
S Π(λ̃)

〉
F,Dµπ

.

Therefore,

Tr
(

Dµπ

[
ΘSΨ2ΘT

S − 2 N
m

1
1+δ ΘS(Un − γVn)T ΨS + N

m
1

1+δ ΨS

])
= λ

λ̃

∥∥ΩT
S −ΩT

S Π(λ̃)
∥∥2

F,Dµπ

= λ
λ̃

∥∥∥D
1
2
µπ ΩT

S
[
IM −Π(λ̃)

]∥∥∥2

F
.

With a similar reformulation, we have in ∆

Tr
(
ΛP

[
ΘSΨ2ΘT

S − 2ΘS(Un − γVn)T ΨS + ΨS
])

= λ
λ̃

∥∥∥D
1
2
µπ

[
I|S| − γP π

]
ΩT

S
[
IM −Π(λ̃)

]∥∥∥2

F
.

For ∆̂, we have

λ2 Tr
(
Q̄m(λ)Ψ2Q̄m(λ)T

)
= λ2 N

m
1

1+δ Tr
(

Q̄m(λ)(Ûn − γV̂n)T ΦŜ(Ûn − γV̂n)Q̄m(λ)T
)

= λ2 1
λ̃2

m(1+δ)
N Tr

(
(Ûn − γV̂n)T ΩT

Ŝ

[
IM −Π(λ̃)

][
IM −Π(λ̃)

]T ΩŜ(Ûn − γV̂n)
)

180

A.8. Intermediary Lemmas

= λ
λ̃

∥∥(Un − γVn)T ΩT
S
[
IM −Π(λ̃)

]∥∥2
F
.

We deduce that

∆̂ = ∆̄
(
(Ûn − γV̂n)T ΩT

Ŝ

)
,

∆ = ∆̄
(
D

1
2
µπ

[
I|S| − γP π

]
ΩT

S
)
, and

∆′ = ∆̄
(
D

1
2
µπ ΩT

S
)
;

where ∆̄(M) is defined, for any Mercer feature matrix M ∈ Rp×M of dimension p > 0, as

∆̄(M) = 1
n

λ̃
λ

1
N

∥∥Π(λ̃)θ∗
n

∥∥2

1− 1
N

∥∥Π(λ̃)
∥∥2

F

∥∥M
[
IM −Π(λ̃)

]∥∥2
F
.

A.8 Intermediary Lemmas

Lemma A.8.1 (Resolvent Identity). For invertible matrices A,B ∈ Rn×n,

A−1 −B−1 = A−1(B −A)B−1

Lemma A.8.2 (Sherman–Morrison–Woodbury Matrix Identity). (Horn and Johnson, 2012, The-
orem 0.7.4) Let A ∈ Rn×n be a non-singular matrix with a known inverse A−1; let M = A+UCV ,
in which U ∈ Rk×n, V ∈ Rn×k, and Ck×k is non-singular. If M and C−1 + V A−1U are non-
singular then

(A + UCV)−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1, (A.55)

In particular (A + UV)−1
U = A−1U

(
In + V A−1U

)−1 and V (A + UV)−1 =
(
In + V A−1U

)−1
V A−1.

Lemma A.8.3 (Sherman–Morrison Formula). Let A ∈ Rn×n be a non-singular matrix with a
known inverse A−1; let M = A + uvT , in which u,v ∈ Rn. If M is non-singular and 1 +
vT A−1u ̸= 0 then (

A + uvT
)−1 = A−1 − A−1uvT A−1

1 + vT A−1u
. (A.56)

In particular,
(
A + uvT

)−1
u = A−1u

1+vT A−1u
and vT

(
A + uvT

)−1 = vT A−1

1+vT A−1u
. This Lemma is

an extension of Lemma A.8.2.

Lemma A.8.4 (Ostrowski’s Theorem). (Horn and Johnson, 2012, Theorem 4.5.9) Let A,S ∈
Rn×n with A Hermitian and S nonsingular. Let the eigenvalues of A, SAST , and SST be
arranged in nondecreasing order. Let σ1 ≥ . . . ≥ σn > 0 be the singular values of S. For each
k ∈ [n] there is a positive real number θk ∈ [σ2

n, σ
2
1] such that

νk(SAST) = θkνk(A)

Lemma A.8.5 (Weinstein–Aronszajn Identity). For A ∈ Rm×n, B ∈ Rn×m and λ ∈ R \ {0},

det(AB − λIm) = (−λ)m−n det(BA− λIn).

It follows that the non-zero eigenvalues of AB and BA are the same.

181

Appendix A. Mathematical Proofs: Double Descent in LSTD

Lemma A.8.6. Let A ∈ Rn×n and λ > 0.

∥(A + λIn)−1∥ ≤ 1
λ

if and only if AAT + λ(A + AT) is positive definite. In particular, for matrix A ∈ Rn×n whose
the Hermitian part H(A) = A+AT

2 is semi-positive-definite we have

∥(A + λIn)−1∥ ≤ 1
λ

Proof.

∥(A + λIn)−1∥2 = νmax

(
(A + λIn)−1 T (A + λIn)−1

)
= νmax

([
(A + λIn)

(
AT + λIn

)]−1)
= νmax

((
AAT + λ(A + AT) + λ2In

)−1)
= νmin

((
AAT + λ(A + AT) + λ2In

))−1

(A.57)

where νmax(B) and νmin(B) denotes the maximum eigenvalue and minimum eigenvalues of a
matrix B. Since A is positive-definite the matrix AAT + λ(A + AT) is semi-positive-definite
and has positive nonzeros eigenvalues. Therefore, νmin

((
AAT + λ(A + AT) + λ2In

))
> λ2 and

∥(A + λIn)−1∥ ≤ 1
λ

Lemma A.8.7. (Yates, 1995, Theorem 2) If a mapping f : [0,∞)→ [0,∞)

• is monotonically increasing, i.e x ≥ x′ =⇒ f(x) ≥ f(x′),

• is scalable, i.e ∀α > 1, αf(x) > f(αx),

• admits x0 ∈ [0,∞) such that x0 ≥ f(x0),

then f has a unique fixed-point.

Lemma A.8.8. Let A ∈ Rm×n and B ∈ Rn×m. If AB + λIm is invertible, then[
AB + λIm

]−1
A = A

[
BA + λIn

]−1
.

Proof. We have
A
[
BA + λIn

]
=
[
AB + λIm

]
A

Since both AB and BA share the same non-zero eigenvalues from Lemma A.8.5, we deduce
BA+λIn is also invertible. By multiplying the equation above with both the inverse of [BA+λIn]
and [AB + λIm

]
, we get [

AB + λIm

]−1
A = A

[
BA + λIn

]−1

182

Appendix B

Additional Experiments: Features
Encoding in Deep Reinforcement
Learning

B.1 Sparsity Curves for DQN on Discrete Control Tasks

This appendix shows the evolution of the normalized activation overlap defined in Section 12.2.2
during the learning with respect to the environment steps for experiments of Section 12.2.3.

Figure B.1: Normalized Overlap over environment steps during the training for neural networks
fed with raw inputs (blue), Fourier features (orange), and Fourier Light Features (green). Results
are averaged over 30 trainings with shading indicating the 95% CI.

Figure B.2: Normalized Overlap over environment steps during the training for neural networks
fed with raw inputs (blue), Fourier features (orange), Fourier Light Features (green), Fourier Light
Features (green), Polynomial Features (red), Random Fourier Features (purple) and Tile Coding
features (brown). Results are averaged over 30 trainings with shading indicating the 95% CI.

183

Appendix B. Additional Experiments: Features Encoding in Deep Reinforcement Learning

B.2 Smoothness Curves for DQN on Discrete Control Tasks

This appendix shows the evolution of the l2, l1, l∞ weight norms of layers of a two-layers neural
networks during the learning with respect to the environment steps for experiments of Section 12.4.

(a) In the First Layer

(b) In the Second Layer

Figure B.3: L2 weight norm of layers of a two-layers neural networks over environment steps during
the training for neural networks fed with raw inputs (blue), Fourier features (orange), and Fourier
Light Features (green). Results are averaged over 30 trainings with shading indicating the 95%
CI.

184

B.2. Smoothness Curves for DQN on Discrete Control Tasks

(a) In the First Layer

(b) In the Second Layer

Figure B.4: L1 weight norm of layers of a two-layers neural networks over environment steps during
the training for neural networks fed with raw inputs (blue), Fourier features (orange), and Fourier
Light Features (green). Results are averaged over 30 trainings with shading indicating the 95%
CI.

(a) In the First Layer

(b) In the Second Layer

Figure B.5: L∞ weight norm of layers of a two-layers neural networks over environment steps
during the training for neural networks fed with raw inputs (blue), Fourier features (orange), and
Fourier Light Features (green). Results are averaged over 30 trainings with shading indicating the
95% CI.

185

Appendix B. Additional Experiments: Features Encoding in Deep Reinforcement Learning

B.3 Interference Curves for DQN on Discrete Control Tasks

This appendix shows the evolution of interference measures defined in Section 12.1.1 during the
learning with respect to the environment steps for experiments of Section 12.1.2.

Figure B.6: Average Stiffness (AS) over environment steps during the training for neural networks
fed with raw inputs (blue), Fourier features (orange), and Fourier Light Features (green). Results
are averaged over 30 trainings with shading indicating the 95% CI.

Figure B.7: Average Interference (AI) over environment steps during the training for neural net-
works fed with raw inputs (blue), Fourier features (orange), and Fourier Light Features (green).
Results are averaged over 30 trainings with shading indicating the 95% CI.

Figure B.8: Interference Risk (IR) over environment steps during the training for neural networks
fed with raw inputs (blue), Fourier features (orange), and Fourier Light Features (green). Results
are averaged over 30 trainings with shading indicating the 95% CI.

186

B.3. Interference Curves for DQN on Discrete Control Tasks

Experiments conducted on traditional feature encodings considered in Section 11.2.4 are depicted
below.

Figure B.9: Average Stiffness (AS) over environment steps during the training for neural networks
fed with raw inputs (blue), Fourier features (orange), Fourier Light Features (green), Fourier Light
Features (green), Polynomial Features (red), Random Fourier Features (purple) and Tile Coding
features (brown). Results are averaged over 30 trainings with shading indicating the 95% CI.

Figure B.10: Average Interference (AI) over environment steps during the training for neural
networks fed with raw inputs (blue), Fourier features (orange), Fourier Light Features (green),
Fourier Light Features (green), Polynomial Features (red), Random Fourier Features (purple) and
Tile Coding features (brown). Results are averaged over 30 trainings with shading indicating the
95% CI.

Figure B.11: Interference Risk (IR) over environment steps during the training for neural networks
fed with raw inputs (blue), Fourier features (orange), Fourier Light Features (green), Fourier Light
Features (green), Polynomial Features (red), Random Fourier Features (purple) and Tile Coding
features (brown). Results are averaged over 30 trainings with shading indicating the 95% CI.

187

Bibliography

M. M. Afsar, T. Crump, and B. Far. Reinforcement learning based recommender systems: A
survey. ACM Computing Surveys, 55(7):1–38, 2022.

A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun. Reinforcement learning: Theory and algorithms.
CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

A. Agazzi and J. Lu. Temporal-difference learning with nonlinear function approximation: lazy
training and mean field regimes. In Mathematical and Scientific Machine Learning, pages 37–74,
2022.

Z. Ahmed. emdp. https://github.com/zafarali/emdp, 2018.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparame-
ter optimization framework. In Proceedings of the 25rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2019.

J. S. Albus. A theory of cerebellar function. Mathematical biosciences, 1971.

A. Antos, C. Szepesvári, and R. Munos. Learning near-optimal policies with bellman-residual
minimization based fitted policy iteration and a single sample path. Machine Learning, 71:
89–129, 2008.

S. Arora, S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and generaliza-
tion for overparameterized two-layer neural networks. In International Conference on Machine
Learning, pages 322–332, 2019.

F. Bach. High-dimensional analysis of double descent for linear regression with random projections.
SIAM Journal on Mathematics of Data Science, 6(1):26–50, 2024.

L. Baird. Residual algorithms: Reinforcement learning with function approximation. In Machine
Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

E. Barnard. Temporal-difference methods and markov models. IEEE Transactions on Systems,
Man, and Cybernetics, 23(2):357–365, 1993.

P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural
networks. Advances in Neural Information Processing Systems, 2017.

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine learning and the bias-
variance trade-of. arXiv preprint arXiv:1812.11118, 321, 2018a.

M. Belkin, S. Ma, and S. Mandal. To understand deep learning we need to understand kernel
learning. In International Conference on Machine Learning, pages 541–549. PMLR, 2018b.

188

https://github.com/zafarali/emdp

Bibliography

M. Belkin, D. Hsu, and J. Xu. Two models of double descent for weak features. SIAM Journal on
Mathematics of Data Science, 2(4):1167–1180, 2020.

R. Bellman. On the theory of dynamic programming. Proceedings of the national Academy of
Sciences, 38(8):716–719, 1952.

R. Bellman. A markovian decision process. Journal of Mathematics and Mechanics, 6(5):679–684,
1957. ISSN 00959057, 19435274. URL http://www.jstor.org/stable/24900506.

N. Benbarka, T. Höfer, A. Zell, et al. Seeing implicit neural representations as fourier series. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
2041–2050, 2022.

E. Bengio, J. Pineau, and D. Precup. Interference and generalization in temporal difference learn-
ing. In International Conference on Machine Learning. PMLR, 2020.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization.
Advances in neural information processing systems, 2011.

F. Berkenkamp, A. P. Schoellig, and A. Krause. Safe controller optimization for quadrotors with
gaussian processes. In 2016 IEEE international conference on robotics and automation (ICRA),
pages 491–496. IEEE, 2016.

E. Berthier, Z. Kobeissi, and F. Bach. A non-asymptotic analysis of non-parametric temporal-
difference learning. Advances in Neural Information Processing Systems, 35:7599–7613, 2022.

D. Bertsekas. Dynamic Programming and Optimal Control: Volume I, volume 4. Athena scientific,
2012.

D. P. Bertsekas and H. Yu. Projected equation methods for approximate solution of large linear
systems. Journal of Computational and Applied Mathematics, 227(1):27–50, 2009.

D. P. Bertsekas et al. Dynamic programming and optimal control 3rd edition, volume ii. Belmont,
MA: Athena Scientific, 1, 2011.

A. Bietti and J. Mairal. On the inductive bias of neural tangent kernels. Advances in Neural
Information Processing Systems, 32, 2019.

C. M. Bishop et al. Neural networks for pattern recognition. Oxford university press, 1995.

B. Bordelon, A. Canatar, and C. Pehlevan. Spectrum dependent learning curves in kernel regression
and wide neural networks. In International Conference on Machine Learning, pages 1024–1034.
PMLR, 2020.

J. A. Boyan. Least-squares temporal difference learning. In International Conference on Machine
Learning, pages 49–56, 1999.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22(1):33–57, 1996.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

189

http://www.jstor.org/stable/24900506

Bibliography

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Q. Cai, Z. Yang, J. D. Lee, and Z. Wang. Neural temporal-difference learning converges to global
optima. Advances in Neural Information Processing Systems, 32, 2019.

A. Canatar, B. Bordelon, and C. Pehlevan. Spectral bias and task-model alignment explain gen-
eralization in kernel regression and infinitely wide neural networks. Nature communications, 12
(1):2914, 2021.

A. Canatar, J. Feather, A. Wakhloo, and S. Chung. A spectral theory of neural prediction and
alignment. Advances in Neural Information Processing Systems, 36, 2024.

Y. Cao, Z. Fang, Y. Wu, D.-X. Zhou, and Q. Gu. Towards understanding the spectral bias of deep
learning. arXiv preprint arXiv:1912.01198, 2019.

Y. Cao, Z. Fang, Y. Wu, D.-X. Zhou, and Q. Gu. Towards understanding the spectral bias of deep
learning. In IJCAI, 2021.

A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics, 7:331–368, 2007.

S. Chen, G. Chen, and R. Gu. An efficient L2-norm regularized least-squares temporal difference
learning algorithm. Knowledge-Based Systems, 45:94–99, 2013.

X. Chen, S. Li, H. Li, S. Jiang, Y. Qi, and L. Song. Generative adversarial user model for
reinforcement learning based recommendation system. In International Conference on Machine
Learning, pages 1052–1061. PMLR, 2019.

C. Cheng and A. Montanari. Dimension free ridge regression. arXiv preprint arXiv:2210.08571,
2022.

L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. Advances in Neural Information Processing Systems, 31, 2018.

L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. Advances in
Neural Information Processing Systems, 32, 2019.

K. Ciosek. Properties of the least squares temporal difference learning algorithm. arXiv preprint
arXiv:1301.5220, 2013.

K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman. Quantifying generalization in reinforce-
ment learning. In International Conference on Machine Learning. PMLR, 2019.

R. Couillet and M. Debbah. Random Matrix Methods for Wireless Communications. Cambridge
University Press, 2011.

R. Couillet and Z. Liao. Random matrix methods for machine learning. Cambridge University
Press, 2022.

P. Covington, J. Adams, and E. Sargin. Deep neural networks for youtube recommendations. In
Proceedings of the 10th ACM conference on recommender systems, pages 191–198, 2016.

190

Bibliography

C. Dann, G. Neumann, J. Peters, et al. Policy evaluation with temporal differences: A survey and
comparison. Journal of Machine Learning Research, 15:809–883, 2014.

R. C. Deo. Machine learning in medicine. Circulation, 132(20):1920–1930, 2015.

K. Dong, Y. Luo, T. Yu, C. Finn, and T. Ma. On the expressivity of neural networks for deep
reinforcement learning. In International Conference on Machine Learning, pages 2627–2637,
2020.

S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural
networks. In International conference on machine learning, pages 1675–1685. PMLR, 2019.

Y. Duan, M. Wang, and M. J. Wainwright. Optimal policy evaluation using kernel-based temporal
difference methods. arXiv preprint arXiv:2109.12002, 2021.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. In International conference on machine learning, pages 1407–1416. PMLR, 2018.

Z. Fan and Z. Wang. Spectra of the conjugate kernel and neural tangent kernel for linear-width
neural networks. Advances in neural information processing systems, 33:7710–7721, 2020.

A. Farahmand, M. Ghavamzadeh, S. Mannor, and C. Szepesvári. Regularized policy iteration.
Advances in Neural Information Processing Systems, 21, 2008.

J. Farebrother, M. C. Machado, and M. Bowling. Generalization and regularization in dqn. arXiv
preprint arXiv:1810.00123, 2018.

E. A. Feinberg. Total expected discounted reward mdps: existence of optimal policies, 2011.

S. Fort, P. K. Nowak, S. Jastrzebski, and S. Narayanan. Stiffness: A new perspective on general-
ization in neural networks, 2020.

R. French. Using semi-distributed representations to overcome catastrophic forgetting in connec-
tionist networks. Proceedings of the AAAI Conference on Artificial Intelligence, 1991.

M. Geist and B. Scherrer. l1-penalized projected bellman residual. In European Workshop on
Reinforcement Learning, pages 89–101. Springer, 2011.

M. Geist, B. Scherrer, A. Lazaric, and M. Ghavamzadeh. A dantzig selector approach to temporal
difference learning. arXiv preprint arXiv:1206.6480, 2012.

M. Geist, B. Scherrer, et al. Off-policy learning with eligibility traces: a survey. J. Mach. Learn.
Res., 15(1):289–333, 2014.

A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O’Reilly Media,
Inc.", 2022.

M. Ghavamzadeh, A. Lazaric, O. Maillard, and R. Munos. LSTD with random projections.
Advances in Neural Information Processing Systems, 23, 2010.

S. Ghiassian and R. S. S. Huizhen Yu, Banafsheh Rafiee. Two geometric input transformation
methods for fast online reinforcement learning with neural nets. arXiv, 2018.

191

Bibliography

S. Ghiassian, B. Rafiee, Y. L. Lo, and A. White. Improving performance in reinforcement learn-
ing by breaking generalization in neural networks. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2020.

D. Ghosh and M. G. Bellemare. Representations for stable off-policy reinforcement learning. In
International Conference on Machine Learning, pages 3556–3565, 2020.

J. Gillberg, J. Bergdahl, A. Sestini, A. Eakins, and L. Gisslén. Technical challenges of deploying
reinforcement learning agents for game testing in aaa games. In 2023 IEEE Conference on Games
(CoG), pages 1–8. IEEE, 2023.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings, 2010.

P. W. Glynn and D. L. Iglehart. Importance sampling for stochastic simulations. Management
science, 35(11):1367–1392, 1989.

F. Gogianu, T. Berariu, M. Rosca, C. Clopath, L. Busoniu, and R. Pascanu. Spectral normalisation
for deep reinforcement learning: an optimisation perspective. arXiv preprint arXiv:2105.05246,
2021.

E. Golikov, E. Pokonechnyy, and V. Korviakov. Neural tangent kernel: A survey. arXiv preprint
arXiv:2208.13614, 2022.

H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree. Regularisation of neural networks by enforcing
lipschitz continuity. Machine Learning, 2021.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications. CoRR, 2018.

W. Hachem, P. Loubaton, and J. Najim. Deterministic equivalents for certain functionals of large
random matrices. The Annals of Applied Probability, pages 875–930, 2007.

B. Hambly, R. Xu, and H. Yang. Recent advances in reinforcement learning in finance.
Mathematical Finance, 33(3):437–503, 2023.

T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The elements of statistical learning:
data mining, inference, and prediction, volume 2. Springer, 2009.

J. He, J. Chen, X. He, J. Gao, L. Li, L. Deng, and M. Ostendorf. Deep reinforcement learning
with a natural language action space. arXiv preprint arXiv:1511.04636, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In
Proceedings of the 26th international conference on world wide web, pages 173–182, 2017.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. In Proceedings of AAAI Conference on Artificial Intelligence, (AAAI-18),
2018.

192

Bibliography

J. F. Hernandez-Garcia and R. S. Sutton. Learning sparse representations incrementally in deep
reinforcement learning. arXiv, 2019.

M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

D. C. Hoaglin and R. E. Welsch. The hat matrix in regression and anova. The American
Statistician, 32(1):17–22, 1978.

M. W. Hoffman, A. Lazaric, M. Ghavamzadeh, and R. Munos. Regularized least squares temporal
difference learning with nested L2 and L1 penalization. In European Workshop on Reinforcement
Learning, pages 102–114. Springer, 2011.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2012.

D. Hsu, S. M. Kakade, and T. Zhang. Random design analysis of ridge regression. In Conference
on learning theory, pages 9–1. JMLR Workshop and Conference Proceedings, 2012.

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In 2008
Eighth IEEE international conference on data mining, pages 263–272. Ieee, 2008.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning. PMLR, 2015.

R. Islam, P. Henderson, M. Gomrokchi, and D. Precup. Reproducibility of benchmarked deep
reinforcement learning tasks for continuous control. arXiv preprint arXiv:1708.04133, 2017.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. Advances in Neural Information Processing Systems, 31, 2018.

A. Jacot, B. Simsek, F. Spadaro, C. Hongler, and F. Gabriel. Implicit regularization of random
feature models. In International Conference on Machine Learning, pages 4631–4640. PMLR,
2020a.

A. Jacot, B. Simsek, F. Spadaro, C. Hongler, and F. Gabriel. Kernel alignment risk estimator:
Risk prediction from training data. Advances in neural information processing systems, 33:
15568–15578, 2020b.

J. Johns, C. Painter-Wakefield, and R. Parr. Linear complementarity for regularized policy evalu-
ation and improvement. Advances in neural information processing systems, 23, 2010.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez. Deep
reinforcement learning for autonomous driving: A survey. IEEE Transactions on Intelligent
Transportation Systems, 23(6):4909–4926, 2021.

J. Z. Kolter and A. Y. Ng. Regularization and feature selection in least-squares temporal difference
learning. In Proceedings of the 26th annual international conference on machine learning, pages
521–528, 2009.

G. Konidaris, S. Osentoski, and P. Thomas. Value function approximation in reinforcement learning
using the fourier basis. In Twenty-fifth AAAI conference on artificial intelligence, 2011.

193

Bibliography

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60(6):84–90, 2017.

A. Kumar, R. Agarwal, D. Ghosh, and S. Levine. Implicit under-parameterization inhibits data-
efficient deep reinforcement learning. In International Conference on Learning Representations,
2020.

A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots. arXiv
preprint arXiv:2107.04034, 2021.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration. The Journal of Machine Learning
Research, 2003.

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample analysis of least-squares policy itera-
tion. Journal of Machine Learning Research, 13:3041–3074, 2012.

M. Ledoux. The Concentration of Measure Phenomenon. American Mathematical Soc., 2001.

J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington. Wide
neural networks of any depth evolve as linear models under gradient descent. Advances in Neural
Information Processing Systems, 32, 2019.

A. Li and D. Pathak. Functional regularization for reinforcement learning via learned fourier
features. Advances in Neural Information Processing Systems, 2021.

Z. Liao, R. Couillet, and M. W. Mahoney. A random matrix analysis of random fourier features:
beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent.
Advances in Neural Information Processing Systems, 33:13939–13950, 2020.

A. Likmeta, A. M. Metelli, A. Tirinzoni, R. Giol, M. Restelli, and D. Romano. Combining re-
inforcement learning with rule-based controllers for transparent and general decision-making in
autonomous driving. Robotics and Autonomous Systems, 131:103568, 2020.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

L. J. Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Mach. Learn., 1992.

B. Liu, Q. Cai, Z. Yang, and Z. Wang. Neural trust region/proximal policy optimization attains
globally optimal policy. Advances in Neural Information Processing Systems, 32, 2019a.

F. Liu, Z. Liao, and J. Suykens. Kernel regression in high dimensions: Refined analysis beyond
double descent. In International Conference on Artificial Intelligence and Statistics, pages 649–
657. PMLR, 2021.

V. Liu, R. Kumaraswamy, L. Le, and M. White. The utility of sparse representations for control
in reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence, Jul.
2019b.

Z. Liu, X. Li, B. Kang, and T. Darrell. Regularization matters in policy optimization-an empirical
study on continuous control. In International Conference on Learning Representations, 2020.

D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, 2017.

194

Bibliography

C. Louart, Z. Liao, and R. Couillet. A random matrix approach to neural networks. The Annals
of Applied Probability, 28(2):1190–1248, 2018.

J. Luketina, N. Nardelli, G. Farquhar, J. Foerster, J. Andreas, E. Grefenstette, S. Whiteson, and
T. Rocktäschel. A survey of reinforcement learning informed by natural language. arXiv preprint
arXiv:1906.03926, 2019.

X. Luo, Q. Meng, D. He, W. Chen, and Y. Wang. I4r: Promoting deep reinforcement learning by
the indicator for expressive representations. In IJCAI, 2020.

C. Lyle, M. Rowland, and W. Dabney. Understanding and preventing capacity loss in reinforcement
learning. In International Conference on Learning Representations, 2021.

C. Lyle, M. Rowland, W. Dabney, M. Kwiatkowska, and Y. Gal. Learning dynamics and gener-
alization in deep reinforcement learning. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari,
G. Niu, and S. Sabato, editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 14560–14581. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/lyle22a.html.

V. A. Marchenko and L. A. Pastur. Distribution of eigenvalues for some sets of random matrices.
Matematicheskii Sbornik, 114(4):507–536, 1967.

M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The sequen-
tial learning problem. In Psychology of learning and motivation. Elsevier, 1989.

S. Mehrkanoon and J. A. Suykens. Deep hybrid neural-kernel networks using random fourier
features. Neurocomputing, 2018.

S. Mei and A. Montanari. The generalization error of random features regression: Precise asymp-
totics and the double descent curve. Communications on Pure and Applied Mathematics, 75(4):
667–766, 2022.

S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer neural
networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.

V. Meshram, K. Patil, V. Meshram, D. Hanchate, and S. Ramkteke. Machine learning in agriculture
domain: A state-of-art survey. Artificial Intelligence in the Life Sciences, 1:100010, 2021.

R. Mitra and G. Kaddoum. Random fourier feature based deep learning for wireless communica-
tions. arXiv preprint arXiv:2101.05254, 2021.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker, et al. Model-based reinforcement learning:
A survey. Foundations and Trends® in Machine Learning, 16(1):1–118, 2023.

P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever. Deep double de-
scent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory
and Experiment, 2021(12):124003, 2021.

A. Nedić and D. P. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dynamic Systems, 13(1-2):79–110, 2003.

195

https://proceedings.mlr.press/v162/lyle22a.html

Bibliography

B. Neyshabur. Implicit regularization in deep learning. arXiv preprint arXiv:1709.01953, 2017.

B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural networks. In
Conference on Learning Theory, 2015.

B. Neyshabur, S. Bhojanapalli, D. Mcallester, and N. Srebro. Exploring generalization in deep
learning. Advances in Neural Information Processing Systems, 2017.

E. Nikishin, M. Schwarzer, P. D’Oro, P.-L. Bacon, and A. Courville. The primacy bias in deep
reinforcement learning. In International Conference on Machine Learning, pages 16828–16847.
PMLR, 2022.

Y. Pan, K. Banman, and M. White. Fuzzy tiling activations: A simple approach to learning sparse
representations online. In International Conference on Learning Representations, 2020.

R. Parr, C. Painter-Wakefield, L. Li, and M. Littman. Analyzing feature generation for value-
function approximation. In Proceedings of the 24th international conference on Machine learning,
pages 737–744, 2007.

R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman. An analysis of linear mod-
els, linear value-function approximation, and feature selection for reinforcement learning. In
Proceedings of the 25th international conference on Machine learning, pages 752–759, 2008.

J. Perolat, B. De Vylder, D. Hennes, E. Tarassov, F. Strub, V. de Boer, P. Muller, J. T. Con-
nor, N. Burch, T. Anthony, et al. Mastering the game of stratego with model-free multiagent
reinforcement learning. Science, 378(6623):990–996, 2022.

M. Petrik. An analysis of laplacian methods for value function approximation in mdps. In IJCAI,
pages 2574–2579, 2007.

M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. To-
bin, M. Chociej, P. Welinder, et al. Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464, 2018.

M. Popova, O. Isayev, and A. Tropsha. Deep reinforcement learning for de novo drug design.
Science advances, 4(7):eaap7885, 2018.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2014.

A. Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo, 2020.

A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable baselines3.
https://github.com/DLR-RM/stable-baselines3, 2019.

N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville.
On the spectral bias of neural networks. In International Conference on Machine Learning, pages
5301–5310. PMLR, 2019.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. Advances in Neural
Information Processing Systems, 20, 2007.

A. Rajeswaran, K. Lowrey, E. Todorov, and S. Kakade. Towards generalization and simplicity in
continuous control. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, 2017.

196

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/stable-baselines3

Bibliography

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 779–788, 2016.

M. Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. In European conference on machine learning, pages 317–328. Springer, 2005.

M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro. Learning to learn without
forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910,
2018.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, pages 400–407, 1951.

M. Rosca, T. Weber, A. Gretton, and S. Mohamed. A case for new neural network smoothness
constraints. In Proceedings on "I Can’t Believe It’s Not Better!" at NeurIPS Workshops. PMLR,
2020.

G. Rotskoff and E. Vanden-Eijnden. Parameters as interacting particles: long time convergence
and asymptotic error scaling of neural networks. Advances in Neural Information Processing
Systems, 31, 2018.

A. Rudi and L. Rosasco. Generalization properties of learning with random features. Advances in
neural information processing systems, 30, 2017.

G. A. Rummery and M. Niranjan. On-line Q-learning using Connectionist Systems, volume 37.
University of Cambridge, Department of Engineering Cambridge, UK, 1994.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of
computer vision, 115:211–252, 2015.

T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 2016.

K. Scaman and A. Virmaux. Lipschitz regularity of deep neural networks: analysis and efficient es-
timation. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, 2018.

T. Schaul, D. Borsa, J. Modayil, and R. Pascanu. Ray interference: a source of plateaus in deep
reinforcement learning. arXiv preprint arXiv:1904.11455, 2019.

J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization,
optimization, and beyond. MIT press, 2002.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

197

Bibliography

J. B. Simon, M. Dickens, D. Karkada, and M. Deweese. The eigenlearning framework: A con-
servation law perspective on kernel ridge regression and wide neural networks. Transactions on
Machine Learning Research, 2023a.

J. B. Simon, D. Karkada, N. Ghosh, and M. Belkin. More is better in modern machine learn-
ing: when infinite overparameterization is optimal and overfitting is obligatory. arXiv preprint
arXiv:2311.14646, 2023b.

S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári. Convergence results for single-step
on-policy reinforcement-learning algorithms. Machine learning, 38:287–308, 2000.

Z. Song, R. E. Parr, X. Liao, and L. Carin. Linear feature encoding for reinforcement learning.
Advances in neural information processing systems, 29, 2016.

J. Stachurski. Economic dynamics: theory and computation. MIT Press, 2009.

C. Stephenson and T. Lee. When and how epochwise double descent happens. arXiv preprint
arXiv:2108.12006, 2021.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3
(1):9–44, 1988.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

M. Tagorti and B. Scherrer. On the rate of convergence and error bounds for LSTD(λ). In
International Conference on Machine Learning, pages 1521–1529. PMLR, 2015.

M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ra-
mamoorthi, J. T. Barron, and R. Ng. Fourier features let networks learn high frequency functions
in low dimensional domains. arXiv preprint arXiv:2006.10739, 2020.

T. Tao. Topics in Random Matrix Theory, volume 132. American Mathematical Soc., 2012.

N. Tasfi. Pygame learning environment. https://github.com/ntasfi/
PyGame-Learning-Environment, 2016.

G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M.
Dai, A. Hauth, et al. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

V. Thomas. On the role of overparameterization in off-policy temporal difference learning with
linear function approximation. Advances in Neural Information Processing Systems, 35:37228–
37240, 2022.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu, M. Goulão, A. Kallinteris,
A. K.G., M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen, and
O. G. Younis. Gymnasium, Mar. 2023. URL https://zenodo.org/record/8127025.

198

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://zenodo.org/record/8127025

Bibliography

P. Trautman and A. Krause. Unfreezing the robot: Navigation in dense, interacting crowds. In
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 797–803.
IEEE, 2010.

J. Tsitsiklis and B. Van Roy. Analysis of temporal-difference learning with function approximation.
Advances in Neural Information Processing Systems, 9, 1996.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

H. Wang, S. Zheng, C. Xiong, and R. Socher. On the generalization gap in reparameterizable
reinforcement learning. In International Conference on Machine Learning. PMLR, 2019.

S. Wang, H. Wang, and P. Perdikaris. On the eigenvector bias of fourier feature networks: From
regression to solving multi-scale pdes with physics-informed neural networks. Computer Methods
in Applied Mechanics and Engineering, 2021.

C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

C. Xiao, B. Dai, J. Mei, O. A. Ramirez, R. Gummadi, C. Harris, and D. Schuurmans. Under-
standing and leveraging overparameterization in recursive value estimation. In International
Conference on Learning Representations, 2021.

Z.-Q. J. Xu, Y. Zhang, and T. Luo. Overview frequency principle/spectral bias in deep learning.
arXiv preprint arXiv:2201.07395, 2022.

G. Yang, A. Ajay, and P. Agrawal. Overcoming the spectral bias of neural value approximation.
In International Conference on Learning Representations, 2021.

R. D. Yates. A framework for uplink power control in cellular radio systems. IEEE Journal on
Selected Areas in Communications, 13(7):1341–1347, 1995.

P. C. Young. Recursive Estimation and Time-Series Analysis: an Introduction. Springer science
& business media, 2012.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning (still)
requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021.

S. Zhang and R. S. Sutton. A deeper look at experience replay. arXiv preprint arXiv:1712.01275,
2017.

199

Titre: Analyse Expérimentale et Théorique des Algorithmes d’Apprentissage par Renforcement

Mots clés: Apprentissage automatique, apprentissage par renforcement, réseaux de neurones, matrice aléatoire, pré-
traitement

Résumé: En apprentissage par renforcement (RL), un
agent apprend comment agir dans un environnement in-
connu de façon à maximiser sa récompense sur le long
terme. Ces dernières années, l’utilisation de réseaux de
neurones a conduit à de nombreuses avancées, notamment
en termes de scalabilité. Cependant, de nombreuses la-
cunes subsistent dans notre compréhension de la meilleure
manière d’employer les réseaux de neurones en RL. Dans
cette thèse, nous proposons d’améliorer l’utilisation des
réseaux de neurones en RL de deux manières, présentées
dans deux parties distinctes. La première partie présente
une analyse théorique de l’impact du nombre de paramètres
sur la performance d’apprentissage. La seconde partie pro-
pose un prétraitement simple des données, basé sur la série
de Fourier, qui améliore empiriquement les performances
des réseaux de neurones de plusieurs façons.
Dans la première partie de cette thèse, nous étudions
l’influence du nombre de paramètres sur la performance.
Nous identifions le rapport entre le nombre de paramètres
et le nombre d’états visités comme un facteur crucial. En
particulier, nous observons un phénomène de double de-
scente caractérisé par une chute soudaine de performance
au-delà d’un rapport de un. Notre analyse est basée sur
l’algorithme de Least-Squares Temporal Difference learning
(LSTD) doté de caractéristiques aléatoires et d’un terme

de regularisation L2 dans un régime asymptotique, où le
nombre de paramètres et d’états visités tendent vers l’infini
tout en maintenant un rapport constant. Nous dérivons
des limites déterministes de mesures de performance qui
comportent des termes correctifs induits par le rapport fini
nombre de paramètres/états visités. Nous associons ex-
périmentallement ces termes correctifs au phénomène de
double descente et à une régularisation implicite du mod-
èle. Nous démontrons que ces termes correctifs diminuent
avec l’augmentation de la régularisation L2, du nombre de
paramètres, ou de la diminution du nombre d’états non vis-
ités.
Dans la seconde partie de cette thèse, nous proposons
l’étude d’un prétraitement des données basé sur la série de
Fourier. Nous présentons des expériences indiquant que ce
prétraitement peut conduire à des améliorations significa-
tives des performances, en termes de récompenses obtenues
et de données utilisées. De plus, nous observons que
ce prétraitement favorise une plus grande robustesse face
aux hyperparamètres, conduit à l’élaboration de politiques
plus régulières, et bénéficie au processus d’entraînement
en réduisant l’interférence d’apprentissage, en encourageant
l’apprentissage de caractéristiques distinctes, et en augmen-
tant l’expressivité des caractéristiques apprises.

Title: Experimental and Theoretical Analysis of Reinforcement Learning Algorithms

Keywords: Machine Learning, Reinforcement Learning, neural networks, random matrix, preprocessing

Abstract: In Reinforcement Learning (RL), an agent
learns how to act in an unknown environment in order to
maximize its reward in the long run. In recent years, the
use of neural networks has led to breakthroughs, e.g., in
scalability. However, there are still gaps in our understand-
ing of how to best employ neural networks in RL. In this
thesis, we improve the usability of neural networks in RL
in two ways, presented in two separate parts. First, we
present a theoretical analysis of the influence of the number
of parameters on learning performance. Second, we propose
a simple feature preprocessing based on the Fourier series,
which empirically improves performance in several ways.
In the first part of this thesis, we study how the number of
parameters influences performance. We identify the ratio
between the number of parameters and the number of vis-
ited states as a crucial factor. We observe a double descent
phenomenon, i.e., a sudden drop in performance around
the parameter/state ratio of one. Our analysis is based on
the Least-Squared Temporal Difference (LSTD) algorithm
with random features and an L2 regularization penality in

an asymptotic regime, as both the number of parameters
and states go to infinity while maintaining a constant ra-
tio. We derive deterministic limits of performance measures
that feature correction due to the constant ratio between
the number of parameters and distinct visited states. We
experimentally associate those correction terms with the
double descent phenomenon and an implict regularization
of the model. We demonstrate that the correction terms
vanish as either the L2 regularization increases, the number
of parameters increases, or the number of unvisited states
decreases.
In the second part of this thesis, we study the preprocess-
ing of features through a Fourier series. We present ex-
periments indicating that this can lead to significant per-
formance gains in terms of rewards and sample efficiency.
Furthermore, we observe that this preprocessing increases
the robustness with respect to hyperparameters, leads to
smoother policies, and benefits the training process by re-
ducing learning interference, encouraging sparsity, and in-
creasing the expressiveness of the learned features.

Institut Polytechnique de Paris

91120 Palaiseau, France

	Abstract/Résumé
	Introduction
	Outline
	Contributions

	I Reinforcement Learning & Function Approximation
	Reinforcement Learning
	Mathematical Framework
	Dynamic Programming
	Tabular Reinforcement Learning Algorithms

	Function Approximation in Value-Based Algorithms
	Markov Reward Processes
	Objective Functions
	Linear Value Function Approximation using Gradient Based Approach
	Deep Q-Network

	Least-Squares Temporal Difference Learning
	Definition
	LSTD as a Linear Least-Squares Approximation on siunitxunit-deprecatedࡡ爠barbarR
	Convergence of LSTD
	Recursive LSTD
	Regularized LSTD

	II Double Descent in Least-Squares Temporal Difference Learning
	Introduction to the Double Descent Phenomenon
	Classical Bias-Variance Tradeoff
	The Double Descent Phenomenon
	Asymptotic Regimes
	Motivations in Reinforcement Learning & Contributions

	Regularized LSTD with Random Features in High-Dimensional Problems
	Linear Function Approximation in Markov Reward Processes
	Regularized LSTD with Random Features
	Double Asymptotic Regime & Resolvent in LSTD

	Main Results in High-Dimensional Problems
	Pitfalls of High-Dimensional Problems & Deterministic Equivalent
	A Deterministic Equivalent Resolvent for Regularized LSTD
	Asymptotic Empirical Mean-Squared Bellman Error
	Asymptotic Mean-Squared Bellman Error
	Asymptotic Mean-Squared Value Error

	Implicit Regularization
	Kernel Methods in Reinforcement Learning
	Reformulation of the Main Results
	Interpretation

	Numerical Experiments
	Experimental Setup
	Correction Factor
	The Double Descent Phenomenon
	Influence of the Number of Unvisited States
	Influence of the Discount Factor

	III Features Encoding in Deep Reinforcement Learning
	Features Encoding
	Features Encoding in Linear Function Approximations
	Limitations of Neural Networks in Deep RL
	Features Encoding with Neural Networks & Contributions

	Features Encodings Based on Fourier Series
	Fourier Features
	Empirical Performance

	Observed Effects on Training Neural Networks
	Catastrophic Interference
	Sparsity
	Expressiveness
	Smoothness
	Correlations with the Fourier Light Features Order

	Conclusions and Perspectives

	Appendices
	Mathematical Proofs: Double Descent in LSTD
	Proof of Theorem 7.2.3
	Proof of Theorem 7.3.2
	Proof of Theorem 7.4.2
	Technical Details on the Resolvent Qm(lambda)
	Existence of the Resolvent Qm(lambda)
	About the Existence, Positiveness, and Uniqueness of the correction factor delta
	Concentration Results
	Intermediary Lemmas

	Additional Experiments: Features Encoding in Deep Reinforcement Learning
	Sparsity Curves for DQN on Discrete Control Tasks
	Smoothness Curves for DQN on Discrete Control Tasks
	Interference Curves for DQN on Discrete Control Tasks

