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1.1 Cetaceans and acoustics

Despite a first appearance on land, some mammalian species are now commonly

found in planet Earth’s oceans, forming the marine mammals group. Families

evolving from 3 distinct orders have physiologically evolved to thrive in the marine

environment: Pinnipeds (Carnivora, e.g. seals and walruses), Sirenians (Afrotheria,

e.g. manatees), and Cetaceans (Cetartiodactyla, e.g. whales and dolphins). The
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2 1.1. Cetaceans and acoustics

following thesis will focus on the latter. Cetaceans are classified into two suborders:

Odontocetes (toothed cetaceans, such as dolphins, orcas or sperm whales) and

Mysticetes (baleen cetaceans, such as blue whales or humpback whales, see Fig. 1.1).

Figure 1.1: (left) Evolution of the marine mammals. (right) Cetacean evolutionary
relationships (top: Odontocetes, bottom: Mysticetes). Both figures are taken from
Whitehead and Rendell [225].

Returning to the sea some 50 million years ago [225], cetaceans now show

a complete adaptation to their marine environment, with their powerful flukes,

streamlined body, and nostrils displaced on top of their head (allowing for efficient

breathing while swimming). Another important adaptation, especially relevant to

this study, is the development of their acoustic capabilities, both as emitters and

as receivers. Indeed, light typically fades out after a few dozen meters in water,

which makes of vision a quite limited sense. In contrast, the higher density of water

(compared to air) makes sound travel faster and further. Cetaceans make use of this

property to communicate and/or echolocate up to great distances. Blue whale calls

can be heard 200km away [194], and sperm whales are theoretically able to detect

a 1m object at 470m (considering the amplitude and frequency of their click [58]).
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1.1.1 Echolocation

One of the uses cetaceans make of underwater acoustics is echolocation. Alike an

active sonar, emitting a sound and measuring how it bounces back to you (its echo)

allows to sense distance from surrounding objects, their shape [148], or even their

texture [84] (Fig. 1.2). Bats use echolocation to navigate and hunt, odontocetes

use echolocation in a similar way underwater.

Short impulse like sounds commonly named ‘clicks’ (transitory waves) are mostly

associated with echolocation purposes [9]. However, there is not one single type of

click used for echolocation: it might coincide with habitats and feeding behaviours

[107]. Using short duration clicks, more can be sent in a small period of time without

them mixing up, thus increasing the potential temporal resolution of the echolocation.

This is typically suited for hunting at high speeds, like small odontocetes do. On

the other hand, clicks at lower frequencies will travel further, and thus would be

more suited for hunting from long distances like sperm whales do (extremely high

Kogia clicks go against this hypothesis). It is worth noting that other evolutionary

drives such as physiological constraints or predator avoidance also could have taken

part in the differentiation of echolocation clicks across odontocetes species.

Finally, despite the old consensus that only odontocetes echolocate with their

high frequency clicks, new studies suggest that mysticetes might also make use

of their low frequency signals as sonars [133].

1.1.2 Communication

The second major use of sound by cetaceans is communication, a broad concept that

can be divided into two main categories: song and social communication systems [99].

Song

The term song has been first used for cetacean signals by Payne and McVay [156],

listening to humpback whales whose vocalisations met the following definition:

"a series of notes, generally of more than one type, uttered in succession and

so related as to form a recognisable sequence or pattern in time”. Similarly to
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www.acsonline.org  (310) 548-6279

Photo © Michael Ho
 www.michaeldanielho.com

All toothed whales (Odontocetes) have a unique way 
of finding prey and navigating in their often dark 
and murky water world. Like bats, toothed whales 
(such as orcas, sperm whales, dolphins, porpoises) 
use echolocation, or SONAR (SOund Navigation   
And Ranging). They send out clicking sounds, and 
then they receive back echoes when these sounds 
bounce off objects. The echoes help deliver an 
“acoustic message” to the animal’s brain about these 
objects.

Illustrations © Uko Gorter

How does echolocation work?
• PHONIC LIPS - Sounds are produced by two sets of 

“Phonic Lips” in a complex system of air sacs and nasal 
passages that the animal has below its blowhole. Each 
set of phonic lips works independently or simultaneously 
to produce sounds.

• BEAM OF SOUND - The animal projects these sounds 
through a fatty tissue in its forehead called the “Melon.” 
The melon focuses this beam of sound on an object (such 
as a fish or an obstacle).

• ECHOES BOUNCE BACK - The sound waves bounce 
off the object and are received back as echoes by the 
animal through its lower jaw (mandible). 

• FROM JAW TO INNER EAR - Inside the lower jaw 
an area of fatty tissue called the “acoustic or mandibular 
window” is directly connected to the animal’s inner ear 
(bulla).

• ACOUSTIC MESSAGE The echo passes through the 
inner ear to form an acoustic message in the animal’s 
brain. 

ACS  Echolocation

Figure 1.2: Illustration of the dolphin echolocation mechanism for hunting purposes
(image credit: Uko Gorter - American Cetacean Society).

bird songs, they have shown a role in reproductive behaviours: mostly males are

observed singing, during the reproductive season, potentially to attract females,

fend off other males, or a combination of both [42, 197]. Songs usually come in

strictly patterned sequences, shared by whole species or communities [225]. Among

cetaceans, they have yet been observed only in mysticetes, with the most renowned

one probably being the humpback whale song.

Social communication

On the other hand, communication is also observed in odontocetes social groups.

Alike in songs, these signals are patterned vocalisations, some of which being

identified in discrete categories [68, 223]. However, they are not restricted to

reproductive contexts, and appear in relatively less deterministic sequences. The

term song therefore seems less appropriate for this phenomenon, which is rather

associated with social bonding functions [187, 69].

In most cases, these vocal signals occur with tonal, whistled or pulsed calls.

Their associated categories (‘call type’) are commonly defined by characteristics

on their time / frequency contour. As an exception, sperm whales produce clicks

in stereotyped rhythmic sequences (named codas) that were also attributed to
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communication purposes [223]. It is however not excluded that other odontocetes

use clicks as means of communication, but no similar stereotyped sequences have

yet been observed among them.

1.1.3 Culture

The term culture is often encountered when describing cetacean communication

systems [62, 73, 170]. It seems appropriate to describe the vocal divergences observed

between cetacean communities. In a broad sense, culture is defined as ‘behaviour or

information shared within a community, that is acquired from conspecifics through

some form of social learning’ [225]. In cetaceans, it takes form as specialisation

in diets or hunting techniques (e.g. with orcas) or as specific vocal patterns. For

instance, sperm whale codas [170] (Fig. 1.3), orca stereotyped calls [44], humpback

whale songs [74] (Fig. 1.6) or fin whale pulse sequences [32], are all community

specific, some evolving through the years, and thus are described as cultural

phenomenons. This is only possible thanks to the vocal production learning capacity

that cetaceans demonstrate [99], a relatively rare characteristic among mammals.

1.1.4 Human activity impacts

In the twentieth century, close to 3 million large whales were caught by whalers

[177]. Seeing some whale species coming close to extinction has motivated a large

majority of the international community to cease commercial whaling in the late 20th

century. However, cetaceans are still heavily impacted by human marine activities

in numerous ways (Fig. 1.4). We will focus here on the impacts related to acoustics.

There exist a wide variety of anthropogenic acoustic disturbances in the marine

environment, which has triggered the development of a new fields of research

focusing solely on ambient noise levels [134]. Marine traffic, seismic surveys using

airguns (often to search for oil patches), pile driving (for marine constructions

such as offshore wind turbines), military sonars and explosive tests are the most

widespread, with several consequences on cetaceans.
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Figure 1.3: (left) Map of the two study areas (noted with stars), each being home to
different sperm whale communities (vocal clans). (right) Comparison of coda types with
the same number of clicks between the two areas, with the number of clicks followed by
(R) for similar or (S) for increasing intervals. Figures are taken from Amano et al. [6]

We hear better in a silent environment. This implies the first consequence of

acoustic disturbances: acoustic masking. With increasing ambient noise levels, the

hearing capacities of cetaceans decrease, thus hindering their ability to communicate,

hunt, and navigate [51]. More generally, dense marine traffic has also been shown

to cause stress to some cetaceans species [179].

The second main consequence is acoustic impairment: temporary or permanent

injuries of the hearing apparatus. Powerful sounds such as those emitted by airguns

or military tests have been shown to cause deafness in some cetaceans, sometimes

leading to mass strandings [50].

Eventually, arising from a dense marine traffic, presumably combined with

disorientation due to acoustic masking, the collision problem has also attracted

the attention of the cetacean conservation community. Especially affecting large

mysticetes (e.g. fin whales or right whales), records of death from collisions with

boats show a significant impact on whale populations [178], motivating measures

to mitigate collision risks.
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An interdisciplinary approach to the management of whale-ship collisions 
 

 34 

 

Figure 6. Evolution of the worldwide sperm (top) and fin (bottom) whale populations and the main human-induced 
direct mortality threats. The threats are expressed in relative value based on the following indicators: the number of 
catch worldwide for the “whaling” threat; the tonnes of capture worldwide for the “fishing industry” threat; and the 
tonnes of cargo transported for the “shipping industry”. Theoretical abundances were calculated using a population 
dynamic model with pre-disturbance parameters (Chapter 4). Data source: FAO, 2016; IUCN, 2018; Schneider and 
Pearce, 2004; Stopford, 2009; Whitehead, 2002. Conception: Sèbe. 
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Figure 1.4: Evolution of the worldwide sperm whale (top) and fin whale (bottom)
populations and the main human-induced direct mortality threats. The threats are
expressed in relative value. This figure is taken from Sèbe [189].

1.2 Passive Acoustic Monitoring of cetaceans

To reveal the aforementioned complexity and diversity of cetacean’s uses of acoustics,

scientists also have put forward their hearing sense. Passive Acoustic Monitoring

(PAM) is a field of bioacoustic studies that combines several scientific and technical

domains, from electronics for recording hardware, to signal processing and statistical

analysis. The term passive refers to the notion of listening from a distance, without

interfering with the animals, as opposed to active sonar systems or attaching

acoustic tags to the animals. The analysis of the cetaceans acoustic activity

is providing important insights on their behaviour, population dynamics, social

structures or even physiology.
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1.2.1 Comparison of acoustic and visual surveys

Besides PAM, visual surveys is the second main approach to the biological study

of cetaceans. Each comes with its pros and cons. The acoustic approach enables

long term surveys at relatively low costs: placing a fixed antenna allows to monitor

biological activities for several consecutive months, requiring human intervention

only for the installation and extraction of the recording system. In contrast, the

visual approach demands a continuous human implication throughout the survey,

in the relatively inaccessible marine environment.

In terms of detection capacities, cetaceans can be heard from great distances

(up to 200km for the blue whale [194]), even during deep dives, at night, and

in rough sea conditions. On the other hand, they can be visually detected from

relatively short distances (around 1km, depending on weather conditions), only

when surfacing (less than a third of the time for sperm whales [222]), and in

daylight. However, species had first to be classified visually before we could learn

on their associated acoustic behaviour, and photo identification is still to this

day the only reliable way to recognise individuals. Moreover, the observation of

group sizes, behaviour, and body conditions still mostly relies on vision. The two

approaches thus really are complementary.

1.2.2 Antenna types

PAM starts by placing hydrophone(s) (underwater microphones) to listen or record

the acoustic environment. They can be fixed on the sea floor (bottom mounted),

to a buoy (sonobuoy), to a cable towed by a boat (towed array), or directly to the

hull of a boat or Autonomous Surface Vehicule (ASV) (Fig. 1.5). When recording

with multiple synchronised hydrophones, one can also triangulate (infer the position

of) sound sources, by measuring their Time Difference Of Arrivals (TDOAs) for

instance. The types of recording devices, their placement in the water column, and

their layout between each other have crucial impacts on the yielded recordings,

facilitating or not the following signal processing analysis.
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Figure 1.5: Example of a multi-hydrophone antenna mounted on an ASV, taken from
Poupard et al. [164].

For that matter, when implementing acoustic recording systems, one has to

make compromises. Indeed, the functioning time of a recorder is limited by its

available resources (battery power and data storage). On the other hand, settings

that allow for a more detailed view of the acoustic scene (increased number of

channels, sampling frequency and/or the bit depth) also imply a higher rate of

consumption of these resources.

1.2.3 PAM for biological studies

Once recordings have been collected, the first step of their analysis typically comes

down to the detection and classification of cetacean vocalisations. The amount of

detection through time in long term surveys already provides significant information

on the animals’ lives. From these, one can infer population density [211] and

seasonal or diel presence patterns [166]. When combining several antennas, a

spatial dimension can be also integrated.

The analysis of the detected signals can then bring further knowledge on the

recorded animals, such as community membership, current behaviour (hunting,

socialising, courting), and individual’s characteristics (e.g. sexual maturity or body

size for sperm whales [166]). These measures can themselves be put in a space-time
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Figure 1.6: Example of passive acoustic monitoring findings: long term cultural
transmission of humpback whale songs eastward through the Southern Pacific Ocean
(each colour represents identified song types). Taken from Garland et al. [74].

perspective, potentially revealing patterns. In this way, PAM becomes useful to

cetacean ethology and stock structure assessment.

A second field PAM provides to is the study of animal communication systems.

Indeed, cetaceans represent a significant part among the vocal learning species

(along with birds, bats, seals, elephants, mice and primates). Identifying patterned

sequences and associating them with species, communities and/or behaviours yields

exemplary data on the development of vocal interaction in the animal kingdom [67].

Moreover, acoustic behaviour studies revealing cultural differences has provided

knowledge on population dynamics [147] (Fig. 1.6) and social structures [76]. There

is therefore a great diversity of biological wonders that PAM contributes to unveil.

1.2.4 Cetacean conservation

Some may question the amount of effort put into cetacean biology studies, consid-

ering that knowledge of nature is not in itself a sufficient driver. In that regard,

it is to be kept in mind that cetaceans are at the top of the ocean’s food web,
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Figure 1.7: Example of conservation measure in the Gulf of St. Lawrence in Canada
[30]. Reduced speed zones are put in place all year round (red) and seasonally (green) to
protect North Atlantic Right Whales.

consequently being significant regulators of their ecosystem as a whole. Moreover,

the oceanic ecosystem is not only an important provider of food to humans, but

also crucial to breathe (it is responsible for around 70% of the atmosphere’s oxygen

production [86]). This field of study thus matters not only for the knowledge of

planet earth’s animal kingdom, but simply to our long term survival.

As stated previously, human activities heavily impact cetacean species, putting

some of them close to extinction [110]. Considering their aforementioned importance,

it seems relevant that we learn how to mitigate this impact and work on cetacean

conservation policies. Some regulation measures have already been put in place

like the Marine Mammal Protection Act in the U.S. [65], speed regulations [64]

(Fig. 1.7), and the definition of marine mammal sanctuaries [144, 208]. Monitoring

the efficiency and necessity of regulations, as well as maximising their relevance

(e.g. habitats and/or seasons of importance) can only be done via the knowledge

of the animals, which justifies their study.
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1.3 Neural Networks and PAM

1.3.1 Automated PAM before Neural Networks

As previously stated, acoustic detections are needed to carry out long term cetacean

surveys. They can be gathered by manually inspecting signals, especially their

time-frequency representation (spectrograms). However, this is very costly in human

efforts and non-repeatable, which motivated the development of automatic detection

mechanisms. With such systems at hand, researchers can seamlessly process months

of data to yield results such as spatio-temporal presence statistics.

Detection mechanisms have long been implemented with handcrafted algorithms

[78]. They can be sufficient for some use cases, but often come quite limited, as the

variety of sounds to detect and potential noises increase. Analysing long streams of

data across recording devices and antenna locations demands highly robust systems,

for which handcrafted algorithms remain unsatisfactory.

As an analogy, let us consider our ability to recognise our kin by the sound of

their voice. Formally describing how to robustly differentiate talking individuals

seems nearly impossible, especially in a computer language. However, we know that

given a hearing sense and sufficient cognitive capacities, by listening to a voice several

times, we acquire the capacity to recognise it. This led the scientific community

to start shifting towards machine learning algorithms, which are introduced in

the following section.

1.3.2 Artificial neural networks

Training Artificial Neural Networks (ANNs) is the chosen approach for the automa-

tion of PAM throughout this thesis. It is one of the most popular techniques of

machine learning, a field of computer sciences that approaches problem solving

without programming solutions explicitly. Specifically, in machine learning, the

algorithm is designed to find (or learn) a solution to a problem, often formulated as

a mathematical framework. An analogy could be made that genes encode a brain

structure for it to learn but genes do not encode knowledge directly. Similarly, in
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machine learning, a learning framework is programmed but the task’s solution

is to be learnt.

ANNs represent a major branch of today’s machine learning, solving tasks

in computer vision and speech recognition with performances and robustness

highly superior to that of traditional handcrafted algorithms. This motivated

the application of ANNs to the field of PAM, making it the central topic of this

thesis as described in the following section.

1.4 Thesis objectives
Context and motivation

This thesis was co-financed by the GIAS European project, aiming at improving

navigation security in the Mediterranean sea (western bassin). It takes part in one

axis of this project: the mitigation of whale-ship collision risk. For that purpose,

a ‘smart bioacoustic buoy’ was designed, with the intent to acoustically detect

large cetaceans of the zone (sperm whales and fin whales). Then, alerts can be

transmitted close to real-time, for ships to adapt their speed or route accordingly.

Being a thesis in computer science, its goal is to design and implement the

acoustic detection algorithms embedded in the buoy (collaborating with third parties

on the hardware development). To this end, motivated by the recent advances

in the field, the ANN approach was chosen.

The work of training ANNs for the detection of cetacean vocalisations quickly

expanded well beyond the initial needs of the GIAS project. Indeed, the team

participates in a variety of projects (see section 3.2.1). In each of them, our role is

typically to analyse large amounts of recordings to advance on biological questions.

Hence the need for cetacean acoustic detection and classification mechanisms.

Moreover, the performance demonstrated by ANNs in early experiments motivated

to use them extensively on other species. This is how the objective of this work

dissociated from the GIAS implementation to become a general study of applying

ANNs to cetacean acoustic detection and classification.
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(chapter 4)
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Figure 1.8: Flowchart of the typical process when using ANNs for bioacoustics. The
main steps covered by this thesis are shown by arrows with their associated chapters. If a
model is already available for the target signal, the two first steps can be skipped.

Research problematic

Given the context described above, this thesis oriented its work around the following

problematic: “how to best train deep learning models to solve cetacean vocalisation

detection and classification tasks”.

Structure of the manuscript

This document is organised as follows. First, chapter 2 introduces the State Of The

Art (SOTA) of the deep learning techniques that will be used in this study, along

with their precedent use for automated PAM. Then, chapter 3 will go through

the species of interest for this work, the signals they emit, and the recordings

available. The rest of the manuscript then revolves around the three main steps

needed to address PAM with ANNs (Fig. 1.8).

Chapter 4 starts with the construction of training databases, describing annota-

tion procedures suited for a variety of constraints (depending on the recordings at

hand and the target signals). Then, to train ANNs on these databases, chapter 5

describes architectures and frameworks to yield robust detection and classification

mechanisms (this time depending on constraints of computational power and target

signals). Finally, for some of the trained models, chapters 6 and 7 illustrate their

applications around two main uses: species conservation (for Mediterranean fin

whales and sperm whales) and communication modelling (for fin whales and orcas).

Contributions

Following the SOTA and material description, each chapter of this manuscript puts

forward several contributions to the field of PAM using ANNs:
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• Chapter 4 proposes several reusable interfaces making annotating easier and

quicker (they allowed to gather 5 databases, each of thousand(s) samples).

One of these makes use of an auto-encoder which appears to be a relevant

feature extractor for orca call type clustering.

• Chapter 5 presents a light weight but effective CNN architecture to be

embedded in low power MCUs. Also, it gives insights on of PCEN behaviour,

and reports on the resolution of 6 different tasks using deep learning (5 of

detection and 1 of classification). Finally, it proposes a new performance

metric for detection systems.

• Chapter 6 illustrates the application of a CNN model in a real-time alert system

for collision risk mitigation. Then, again using a CNN based detection system,

a long term survey of Mediterranean sperm whales is analysed, revealing

presence patterns in relationship with ferries traffic.

• Chapter 7 characterises the long term evolution of the Mediterranean fin

whale song (obviously based on CNN detections) and puts it in relation to

other populations worldwide. Finally, as a last contribution to this thesis,

orca call sequences are studied (at a larger scale than ever before), advancing

questions on their potential structure.
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The following chapter introduces the main technical aspects relevant to the

subsequent work, lying between pedagogic and bibliographic objectives. It starts

with the main techniques involved in building and training ANNs, within their most

prevalent context in the literature (computer vision). Then, I review cetacean PAM

automation (in general and using ANNs). Finally, this thesis is put in perspective

with respect to its field of application.
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2.1 Neural networks for computer vision

If computer vision techniques can be used to tackle acoustic tasks, it is in part

because sound can be represented as time-frequency images such as spectrograms.

They describe content such that vocalisations appear as patterns with identifiable

shapes.We will therefore first go through the SOTA in image pattern recognition

before applying these methods to our acoustic tasks. This is obviously not an

exhaustive review of deep neural networks, but rather an overview of the key

elements used in this thesis to build detection and classification systems.

2.1.1 Introduction to Artificial Neural Networks

The idea of emulating brain neural systems computationally emerged in the mid 20th

century [66]. It is however only recently that ANNs have taken such an important

part in applied mathematics and computer sciences, with the increasing availability

of data and computational power. The underlying approach to ANNs is to reproduce

advanced processes emerging from the accumulation of simple operations, alike

brains with neurons. Put mathematically, neurons would typically take the form of

a simple linear transformation of an input x into an output y (y = wx + b). With

their combination into large networks emerges the capacity of modelling high level

functions such as classifying cat and dog images for instance.

An ANN is defined by a network architecture (interconnection of neurons) and

its neurons’ weights (the linear transformations’ coefficients, namely w and b). Like

so, we can formulate an ANN model as a function g which is the composition (noted

◦) of linear functions lθi
(also called layers, and having non-linear functions in

between) and the concatenation of all their weights θ (Eq. 2.1). Stacking together

a large number of layers gave the appellation ‘deep learning’.

gθ(x) = lθ1 ◦ nlθ2 ◦ lθ3 ◦ ...lθn(x) (2.1)

We first design an architecture g before optimising its weights θ for our task,

typically with supervised learning. This paradigm consists in feeding the model
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examples with their associated labels. For instance with our cats and dogs task, this

means giving the model images of each class and asking it to predict the associated

label, namely ‘cat’ or ‘dog’. An error L (called loss) is then computed between the

expected and the predicted labels. Like so, the training objective can be formulated

as Eq. 2.2 to find the weights θ̂ that minimise the error L.

θ̂ = argmin
θ

L(y, gθ(x)) (2.2)

Under the hood, the network learns a projection of the input images (called

embedding) from the pixel space to a new abstract one. Put simply, the more

neurons in a network, the more complex the resulting projection can be. Training

becomes trying to learn the optimum embedding space to solve a given task.

There are two main limitations here, the first being the necessary computational

power. Training a large ANN typically demands thousands of iterations, each of

which consists in an update of millions of neurons. This is in part why we had to wait

for the development of parallel computation with Graphical Processing Units (GPUs)

to see the democratisation of ANNs. The second limitation, this time a human

effort cost, is the necessary training data. To learn a robust solution, training

typically demands thousands of examples for each class, with their associated label

(often manually annotated) for the computation of the loss that will be optimised.

This leads us to the major challenge of training ANNs and modelling in general:

robustness, or generalisation. Optimising a performance metric on a limited amount

of examples might bring the curse of overfitting: when the model finds a solution

that works for its given training data, but not the generalised solution that we

desire (Fig. 2.1). As an example, coming back to the cats and dogs task, if all the

cats we show the ANN are white and all dogs are black, it might just discriminate

based on average pixel colours. This will lead to great performances on the training

data, but will fail as soon as we try our ANN on a black cat image. As we will

see throughout this thesis, most of the struggle in training ANNs comes down to

enforcing generalised solutions with limited training data.
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 Underfitting

 Overfitting

 Good fit

Figure 2.1: Illustration of the concepts of underfitting and overfitting, for the cats and
dogs classification task. Lines denote discrimination boundaries, in a two-dimensional
abstract embedding space.

2.1.2 Performance optimisation

As previously mentioned, training ANNs comes down to trying to find the optimum

weights for a task. This optimisation takes form as the minimisation of some loss

function (Eq. 2.2). This section describes the methods involved in optimising this

loss, especially with Stochastic Gradient Descent (SGD). Then, the different loss

functions that will be needed in this thesis are introduced. Finally, we will go

through the ‘second level’ of performance estimation and optimisation, employed to

account for architecture and training quality once weights have converged.

Optimising the loss

Depending on our task and label availability, let’s consider a differentiable loss L

to be minimised. A straightforward way of finding some function’s minima is to

follow the slope downwards iteratively (“gradient descent”). Furthermore, having

multiple data points to account for in the computation of the loss, a stochastic

estimate of the gradient can be used. This is the approach followed by the SGD

algorithm [173] to iteratively update model weights as expressed by Eq. 2.3. The

amplitude of the update is defined by the learning rate α ∈ [0, 1].
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θ(i+1) = θ(i) − α × Ex,y[∇θL(y, gθ(x)]. (2.3)

The choice of learning rate is critical to achieving convergence of the model’s

parameters. Indeed, a too small learning rate might result in getting stuck in a local

minima, whereas with a too large one the actual minima might be skipped and the

procedure may diverge. No generic learning rate is good for every task, so it will be

one of the hyper-parameters to be tuned, as we will see in following sections.

To enhance convergence quality and speed, the community is now opting for

learning rates that evolve through the course of the optimisation. This evolution

(termed learning rate scheduling) can be a simple exponential decay, a decay when

the loss plateaus, or more advanced periodic schedules with warm restarts [124].

No definite agreement has yet been made on the right schedule, and the answer

might again be task specific.

Additionally, the data used to compute the loss and update weights at each

step needs to be defined: it is called a batch. Using the whole dataset at each step

would be too costly in memory and computation, but thanks to parallel computing

hardware such as GPUs, several hundreds of samples can be processed as fast as

a single one. Mini-batch SGD thus consists in using only a sub-sample of the

available data at each weight update. In a compromise between computation

cost and each batch being representative of a global direction to follow, a “batch

size” (number of samples per batch) needs to be defined. It is also part of the

hyper-parameters to be tuned (see section 2.1.2).

Methods like SGD to iteratively update the model’s parameters depending

on the loss gradient are called optimisers. Several variations of SGD have been

proposed since its original formulation, especially via smoothing the gradient across

batches. The Nesterov momentum [207] as well as the gradients’ moments [108]

serve that purpose.
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Classification and detection losses

Because it will be needed for SGD, the chosen loss to optimise needs to be convex

and differentiable. For our classification tasks, the accuracy is therefore not suitable

since it relies on the argmax of the output vector. We will rather choose the Cross-

Entropy (CE) instead, and will keep the accuracy for model evaluation, selection

and validation as we will see in following sections.

The CE is a mean of measuring the agreement between two vectors, being here

the class prediction and target label. The definition of the CE classification loss H

is given in Eq. 2.4, with y the one-hot encoded label1, ŷ the vector of predicted

probabilities for each class, and C the set of possible classes.

H(y, ŷ) = −
∑
c∈C

yc log(ŷc). (2.4)

To get normalised predictions of the model homogeneous to a probability distribution

(summing to 1), we use the SoftMax function described in Eq. 2.5, given the

unnormalised model output z (also called logits).

ŷc = pg,θ(x|c) = SoftMax(z)c = ezc∑
k ezk

(2.5)

This is appropriate for multi-class classification tasks, when a higher confidence for

a class implies lower probabilities for others. When solving multi-label classification

tasks however, a sample can be assigned multiple classes, making the SoftMax

assumption not appropriate. We then rather use the Sigmoid function to normalise

logits to probability like values (Eq. 2.6 and Fig. 2.2), and the sum of the independent

Binary Cross Entropys (BCEs) as a loss.

Sigmoid(zc) = 1
1 + e−zc

. (2.6)

The BCE is simply a special case of the CE, with C = 2. However, we can use

single valued labels y and predictions ŷ for its computation (Eq. 2.7 and Fig. 2.3).

BCE(y, ŷ) = −y log(ŷ) − (1 − y) log(1 − ŷ). (2.7)
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Figure 2.2: Sigmoid function (Eq. 2.6).
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Figure 2.3: BCE loss (Eq. 2.7).

Through this thesis, the binary classification will be used as a proxy to solve

detection tasks (one class being the target event to detect, and the other anything

else). When running a classifier model post training, the predicted class will

be argmax(z). For binary classifiers however, the output becomes a single value

denoting the confidence in the presence of one class, equivalent to a detection

confidence. A threshold is then set to binarise this continuous value (yielding

a presence/absence decision).

Representation learning losses

The losses previously mentioned are suited when a sufficient amount of labels

are available for supervised learning. When few or no labels are available, the

literature proposes frameworks to learn semantically relevant embedding spaces,

used subsequently by clustering algorithms or in supervised fine tuning. We call this

process deep representation learning. Since this learning paradigm does not rely

on labels for optimisation, but uses iterative optimisation with loss computation

(it lies between supervised and unsupervised learning), it is referred to as Self

Supervised Learning (SSL).

1Vector of zeros except for the true class which is one.
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Triplet loss and contrastive learning Contrastive learning is a branch of SSL

algorithms in which we enforce a models’ embedding to reflect a desired notion

of distance (or contrast) between points. For that purpose, we will minimise the

distance between the projection of two samples with respect to the projection of

other samples (Fig. 2.4). In this way, rather than directly learning an embedding

space for discrimination, the model is trained to learn an embedding space that

reflects a desired notion of similarity and difference (the contrast). The mathematical

formulation of this objective is termed as triplet loss since it uses the projection

of three samples: an anchor (the original sample), a positive (the transformation

of the anchor), and a negative (another unrelated sample). Several metrics have

been used in the literature to measure distances between embeddings :

• The cosine similarity (SimCLR [34])

• The cross-entropy (Unsupervised Data Augmentation (UDA) [229], fixMatch

[198])

• The cross-correlation (Barlow [231])

• The mutual information (Invariant Information Clustering (IIC) [101])

These contrastive losses can also be combined with a regular classification loss

in a semi-supervised paradigm, as seen in fixMatch and UDA for instance. They

can then be considered as a form of training regularisation (see section 2.1.5).

Reconstruction loss In other SSL frameworks such as Auto-Encoders (AEs) we

ask models to reconstruct an input image (see section 2.1.4). We will then use a

reconstruction loss which reflects the fidelity of the reconstructed sample with respect

to the original input. This can simply take the form of a Mean Square Error (MSE)

between the input and the reconstructed image (pixel loss). There are also more

advanced approaches such as the perceptual loss which uses the MSE in the latent

space of an independently trained encoder to yield a higher level comparison [102].
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Figure 2.4: Illustration of the contrastive learning approach. The anchor and the
negative are randomly sampled from the database, whereas the positive is a hand crafted
transformation of the anchor. The distance metric to be minimised/maximised varies
among implementations.

Model validation

Once our model has optimised the chosen loss function until convergence, we usually

want to measure its performance with interpretable metrics, and with new data.

Performance validation metrics (detection) For detection tasks, which are

the most common in this thesis, these metrics reflect the proportion of target

signals that we won’t miss (recall) and the proportion of detections that will be the

signal we look for (precision). This is typically described via the areas under the

Reveiving Operating Characteristics (ROC) and Precision Recall (PR) curves. For

varying thresholds, they give average values of recall/fall-out and precision/recall

respectively. Note that the area under the ROC and PR curves will be referred

to as Area Under the ROC Curve (AUC) and mean Average Precision (mAP)

respectively. Equations 2.9 and 2.10 formulate their computation with rec, prec,

and fal denoting recall, precision and fall-out respectively. TP , P , PP , FP , and

N denote numbers of true positives, positive ground truths, positive predictions,

false positives, and negative ground truths respectively. Some are a function of a
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threshold noted λ, used to binarise continuous prediction values.

rec(λ) = TP (λ)
P

, prec(λ) = TP (λ)
PP (λ) , fal(λ) = FP (λ)

N
, (2.8)

AUC =
∫ 1

0
rec(λ) dfal(λ), (2.9)

mAP =
∫ 1

0
rec(λ) dprec(λ). (2.10)

These two last metrics are similar, but differ on the measurement of false alarm

rate: the mAP normalises on the number positive predictions whereas the AUC

normalises on the number of negative samples. This difference has a significant

impact especially with imbalanced datasets.

Performance validation metrics (classification) For multi-label classification

tasks (each sample can be assigned multiple classes), we will average the independent

detection performance of each class. As for multi-class classification (each sample is

assigned to a single class), we will rather compute the accuracy: the rate of correct

predictions. Averaging methods for the performance metric should be chosen to

account for class imbalance or not (i.e. averaging the performance per class before

averaging between classes or averaging performances per samples directly).

Performance validation metrics (representation learning) Latent rep-

resentations learnt via SSL are intended to reflect semantic similarity. Thus

samples’ embeddings can be used for clustering (grouping samples by similarity).

To measure the relevance of clusters against a set of labels, the Mutual Information

(MI) noted I(X; Y ) can be used. It is formulated as the Kullback-Leibler (KL)

divergence between the joint and the marginal distributions of labels X and

clusters Y (Eq. 2.11).

I(X; Y ) =
∑
y∈Y

∑
x∈X

P(X,Y )(x, y) log
(

P(X,Y )(x, y)
PX(x)PY (y)

)
(2.11)

To compute the Normalised Mutual Information (NMI) (normalised between 0 and

1), one can divide I(X; Y ) by the average of the entropy of X and Y (Eq. 2.12).

NMI(X; Y ) = I(X; Y ) × 2
H(X) + H(Y ) (2.12)
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Validating with new data To reduce human effort, we usually desire models

to be applicable across different databases. However, ANNs have the tendency to

overfit, showing a decrease in performance on data that differs from those seen

in training. In machine learning, to account for this potential overfitting, models’

performance are usually measured on new data (not seen in training). It is called the

test set, as opposed to the training set which is used for the iterative loss optimisation.

When designing experiments, one must ensure that the test set is significantly

disjoint from the training set to relevantly measure the generalisation capacity

of models. For instance, in sound event detection tasks, we might want to test

our model on recording devices, environments, and emitters that have not been

observed during training. How well the model performs facing such domain shifts

is the only reliable measure that should be taken into account, especially if we

want the model to be reusable in new conditions. Conversely, if a model has been

trained and tested on similar data, a large performance drop should be expected

as soon as the data changes.

Hyper-parameter tuning

We went through the iterative optimisation of weights to minimise a loss, but other

parameters can also be tuned to enhance performance: the model architecture

and the optimiser have numerous settings that need to be set before training.

They cannot be optimised via gradient descent alike model weights and have

a huge impact in both convergence speed and the found loss minima. We call

them hyper-parameters.

Often, hyper-parameters are tuned to optimise performance on a separate set of

data called “validation set”. Doing so, we keep the test set for the final performance

evaluation, and avoid finding hyper-parameters that would be specific to the test set.

Throughout this thesis, accounting for the efforts put into having a test set disjoint

from the training set and their sufficient size (reducing the probability of hyper-

parameter overfitting), the test set was directly used to tune hyper-parameters.
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Each training taking at least several minutes on a super computer, the exploration

of hyper-parameter combinations to improve model performance is a challenging

task. Dedicated algorithms have been proposed to efficiently explore the hyper-

parameter space. They combine several principles among which the early stopping

of low performing models [120], as well as muting high performing ones for the

next trials [96].

2.1.3 Layers

As previously mentioned, the accumulation of layers of neurons (linear transfor-

mations) forms the basis of ANNs’ functioning. However, several other types of

layers exist. Let us dive deeper into the different layers that will be needed for

this thesis, and each of their specific utility.

Convolution

Convolution is a mathematical operation that describes the integral of the point-

wise product of two functions, with a varying shift on the input variable. It is

usually noted with the asterisk symbol (see Eq. 2.13, given a kernel f of size

M and a function g).

(f ∗ g)[n] =
M∑

m=0
f [m] × g[n − m] (2.13)

Typically, in image processing, we will use this operator to slide a filter (or kernel)

over a larger image. The output of the convolution will be maximal where the filter

matches most the image, or in other words where there is the strongest correlation.

In 1995, LeCun et al. [118] introduced the concept of using convolution operators

in neural networks; Convolutionnal Neural Networks (CNNs) were born.

Before that, pixels where given independently to input neurons. The input

image size was thus fixed for a given network architecture, and a displacement of

patterns within an image would mean a totally different response of the network.

With CNNs, the network’s neurons take the form of kernels (or filters), which are

convolved onto input images. Like so, patterns are searched all over the image,

independently of their placement.
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This behaviour is called spatial invariance and is crucial to pattern recognition

in images (e.g. looking for a cat in a picture or a vocalisation in a spectrogram,

independently of their placement). This characteristic led CNNs to become

unavoidable in the field2.

In terms of mathematical definitions, a traditional ANN layer is described as

y = Wx + b with x ∈ Rin an input vector, and y ∈ Rout an output vector. In deep

neural networks, the input of a layer is the output of the preceding one (Eq. 2.1). The

weights W and b are thus matrices defined in Rout×in and Rout respectively, with in

and out being the number of neurons in the preceding and current layers respectively.

As for CNNs, a layer is no longer composed of a stack of neurons, but rather

a stack of kernels. The behaviour of a kernel of width wk and height hk is

formulated by Eq. 2.14, given an input of width w, height h, and depth d (also

called number of features).

Y = W ∗ X + b, X ∈ Rh×w×d, A ∈ Rhk×wk×d, b ∈ R (2.14)

The convolution integration (sum) is done over the 3 dimensions, but the shift will

occur on the width and height dimensions only, making Y ∈ Rh×w. The outputs

of each kernel of the layer will eventually be stacked to form the depth dimension

for the input of the next layer3 (see Fig. 2.5).

A CNN layer is thus defined by the number of input features it processes, its

number of kernels, and their width and height. The number of trainable parameters

in a layer is given by Eq. 2.15.

#θ = din × wk × hk × dout + dout. (2.15)

Depth-wise separable convolution

As presented in the previous section, convolution kernels are cuboids, with a depth

that fits the depth of the input. The filters are designed in order to find patterns that

are interconnected depth-wise. However, sometimes we might want patterns to be
2Let aside the recent rise of transformers for computer vision [152]
3The colour dimension of input images are also put as depth dimension
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…
input kernels output

Figure 2.5: Convolution layer. Blue denotes a slice of the image, a kernel, and the
resulting point in the output image (the sum of the point-wise product between the two).
The number of kernels will define the depth of the output cuboid.

filtered independently through the input image depth, for a subsequent depth-wise

combination. This is the idea introduced by depth-wise separable convolutions,

first used in the context of a CNN by Chollet [35].

In this new type of convolution layer, we dissociate the spatial filtering and

the feature combination in two stages, as opposed to regular convolutions that

process it all at once. A kernel remains cubic, but the convolutions are separated

depth-wise, thus yielding a cuboid, when a regular convolution kernel yields a flat

image. The feature combination then happens with the point-wise stage, similar

to a convolution with a kernel of width and height 1. This stage can be repeated

to obtain an output depth (see Fig. 2.6).

For comparison with the regular convolutions, the number of trainable parameters

in a depth-wise separable convolution layer is given by Eq. 2.16.

#θ = din × (wk × hk + 1 + 2 × dout) (2.16)

Having less parameters involved in a network most often means less compu-

tational complexity for inference and for weight updates. Moreover, this type of

convolution has shown improved generalisation performances for computer vision



2. State of the art 31

…

depth-wise stage point-wise stage

Figure 2.6: Depth-wise separable convolution. In the depth-wise stage, each depth
bin is convolved with its own kernel independently. For the point-wise stage, the depth
dimension is combined point by point by various vector kernels, each of which will result
in a depth bin in the output.

tasks [35]. Indeed, limiting feature inter-dependence could limit potential overfitting,

alike the dropout [203] technique introduced later on.

Pooling

As previously mentioned, convolution enables spatial invariance. However, it

doesn’t treat the scale problem. Indeed, some patterns might have to be detected

independently of their scale in input images. Moreover, detecting large patterns

would require large kernels, which are expensive in computation and memory. For

this purpose, pooling layers enable a progressive decrease in image resolution (on

the width and height dimensions), so that deeper layers can have a larger scale

view without requiring larger kernels.

Often, we want to simply denote if features were activated in a given area, with

a lower resolution. Max-pooling layers are well suited for this, simply keeping the

maximum value in a window with a stride > 1 (the stride is the amplitude of

sliding windows’ steps in pixels). Typically, max-pooling layers are placed after

every 2 or 3 convolution layers.

Non-linearity layers

Even if they are spatialised, convolution layers remain a simple linear transformation

of the input, and accumulating linear transformations successively is equivalent

to a single linear transformation (Eq. 2.17).
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w2(w1x + b1) + b2 = (w2w1)x + (w2b1 + b2) (2.17)

Therefore, building deep networks by accumulating layers of neurons would

not add to the complexity the network is able to model. In order to model

non-linear functions up to a great complexity, non-linearity layers are needed.

Common non-linearity layers are Rectified Linear Unit (ReLU) (y = max(0, x)),

leaky ReLU, TanH, among others.

Additionally, functions such as ReLU insert zeros in numerous dimensions of

vectors. This serves the stabilisation of gradients during the optimisation and has an

effect of sparsity enhancement (latent representations lie in lower-rank manifolds).

2.1.4 Architectures
CNN encoder

Besides ANNs, non linear Support Vector Machines (SVMs) [3] were used for a

similar purpose: learning the optimum projection of data points to make them

linearly separable. Only their approach to optimisation differs. In our case study

of CNNs, we typically want to project an image from the pixel space to a lower

dimensional space that embeds semantic content. We often refer to CNNs as

encoders for this projection property.

The projection is usually the last operation of a network, done using linear

layers after flattening the image (compression of the width, height, and depth into

a single dimension, see Fig. 2.7). In the case of classifiers, the dimensionality of

the output projection is defined by the number of possible classes, each dimension

denoting the confidence for one class.

Standard architectures

Some encoder architectures have become standard and are commonly used by

the deep learning community: in most cases starting the design of a new archi-

tecture from scratch seems unnecessary and counterproductive. Through this

thesis, experiments will make use of two types of architectures coming from the
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Figure 2.7: VGG-16 architecture [193]. Dimensions at each layer are given in this order:
height × width × depth (image taken from Ferguson et al. [57]). The convolutional part
is in blue and red, and the projection part is in green.

ImageNet computer vision benchmark [46]: Visual Geometry Group (VGG) [193]

and ResNet-18/50 [88].

• The VGG architecture (Fig. 2.7) is a ‘classic’ convolutional encoder tailed by

fully connected layers.

• The ResNet-18 and ResNet-50 architectures are composed of residual blocks,

which make use of ‘skip-connections’ (the output of a block is the sum of its

processed input and the original input). Their associated number denotes the

number of layers that compose them.

These two types of architectures were chosen as they are (or have been) the baseline

in image classification tasks, therefore considered standard CNN architectures, even

for bioacoustic tasks (see section 2.2.4).

Auto-Encoders

Encoders can serve classification tasks, but they can also take part in other

systems such as Auto-Encoders. AEs, among other applications, may serve tasks of

dimensionality reduction for clustering. To enforce the conservation of information

while reducing dimensionality, the encoder is followed by a decoder that reconstructs

the input image from the low dimensional space (called bottleneck). The encoder
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and decoder combination (called AE) is trained to compress and reconstruct the

input most faithfully, despite the low dimensional bottleneck.

The compression that AEs offer enables a removal of random or unstructured

information (denoising), and a lower dimensional space which facilitates clustering

(clustering relies on distance estimations that are unreliable in the pixel space

and suffer the curse of dimensionality).

2.1.5 Training regularisation

Methods employed during training to reduce potential overfitting and enhance

generalisation are called regularisation. They are especially relevant when a limited

amount of training data is available (the case of many bioacoustics tasks). Some

of these approaches come down to increasing variability, both in the input and

in the activations of the network.

Data Augmentation

Introducing variability to the input data is widely used to avoid overfitting. The

idea is to virtually increase the dataset size without needing more annotation by

generating new data samples out of existing ones. To do so, we apply randomised

transformations, realistic or not, with the only constraint that we must ensure not to

change the sample’s class. For image classification, RandAugment [40] might be the

most common augmentation policy, combining texture and shape transformations

(Fig. 2.8). We will go through data augmentation for acoustic tasks in section 2.2.3.

Another branch of data augmentation worth mentioning is MixUp [234], which

combines two input samples and their labels, creating “in-between” data points.

The combination takes form as a simple weighted mean of inputs and labels, which

we will feed our model with (like a regular sample). This simple concept of giving

mixtures of 2 instances as training samples has shown to improve generalisation

in most computer vision tasks with standard architectures [234].
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Augmentation procedures

Input sample

Figure 2.8: Using data augmentation enables new samples to be derived from original
ones, while conserving the label. Transformations are randomly sampled among several
texture and position alterations.

Within-network regularisation

By introducing perturbations and variability within the network, we can mitigate its

dependency to highly specific events, presumably increasing its robustness. Dropout

[203] follows that incentive by randomly deactivating neurons or kernels (putting

their activation to 0). The probability of discarding is defined by the dropout

hyper-parameter p, commonly set to 0.25.

A second common way to regularise the network while training is to enforce the

model to rely on as few weights as possible [112]. To do so, we introduce a new

term in the loss: the L2 norm of all parameters, weighted to control its influence

on weight updates. We call this method weight decay, and its weight introduces

another hyper-parameter to the learning framework.

Leveraging unlabelled samples

As seen in section 2.1.2, contrastive losses can be used to train encoders for resilience

to data augmentation. Several algorithms have been published to incorporate this,

often termed as consistency training. Table 2.9 summarises their performances on

semi-supervised learning datasets, with varying proportions of labelled samples.

The fixMatch algorithm [198] combines a supervised loss, pseudo labelling, and
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Figure 2.9: Error rates on CIFAR-10, CIFAR-100, SVHN and STL-10 on 5 different
folds (taken from Sohn et al. [198]).

consistency training in one framework to achieve SOTA performances for the

tasks with the fewest labels.



2. State of the art 37

2.2 Cetacean acoustic detection and neural net-
works

After presenting CNNs in their original context of computer vision, let us discuss

their application to cetacean monitoring in the literature. This section starts with

techniques used before the appearance of ANNs in the field. It will then introduce

methods involved in the frequency decomposition of signals into spectrogram images,

followed by specific techniques and past use cases of PAM using ANNs.

2.2.1 Automated PAM
Template Matching

A straightforward way to detect cetacean vocalisations is to search for localised

energy in a target frequency band, and yielding a detection when it surpasses

a given threshold. For instance, it is known that some fin whale vocalisations

are pulses centered at 20 Hz that last approximately 1 second. In that case, the

signal can be analysed in search for localised energy peaks in that time / frequency

range to automatically detect them.

Further extending this concept, strong correlations between recordings and a

prototype of target signal can be looked for directly. This can be achieved either in

the time domain (waveforms) [224, 10], the frequency domain (spectrums), or in

the spectro-temporal domain (spectrograms) [24, 132]. We call these techniques

template matching, or matched filter.

Such approaches have been used extensively, but still suffer from the fact that

they only work when target signals show enough consistency to be described by one

or several templates. This is not the case for orca vocalisations for example, that

show great spectro-temporal variability (techniques such as dynamic warping can

help to some extent, as demonstrated by Somervuo [199] for bird classification).

Pitch tracking

Other detection and classification algorithms rely on the fundamental frequency

(or pitch) contour of vocalisations. It can be estimated via the instantaneous peak
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Figure 2.10: Difficulty in estimating the pitch on orca calls (OrcaLab recording). This
estimate was done via the auto-correlation algorithm using the parselmouth python
package [97].

frequency, spectrogram thresholding, or spectrum auto-correlation for instance.

Once the pitch contour is extracted, one can infer features such as the duration,

frequency range, or frequency variation. These can later serve filtering and/or

clustering vocalisations, potentially enabling the identification of species and

vocalisation units [14]. Contours can also be compared directly as pitch sequences

to measure similarity between vocalisations. In this context, dynamic time warping

helps to cope with temporal distortions, as shown by Brown et al. [27] for orca call

classification, and by Deecke and Janik [43] for automated unit categorisation.

However, as Figure 2.10 illustrates, pitch estimates can be highly unreliable.

They depend on manually tuned settings, and struggle in low Signal to Noise

Ratio (SNR) conditions or in the presence of transitory impulses (e.g. odontocete

clicks). Nonetheless, more robust frequency contour estimation methods are being

developed [121].

Machine learning

Using pre-extracted vocalisation features (e.g. pitch or Mel Frequency Cepstral Co-

efficientss (MFCCs)), machine learning algorithms have been used for classification
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in supervised and unsupervised settings:

• Roch et al. [174] compared SVMs and Gaussian Mixture Models (GMMs) to

classify odontocete clicks based on MFCCs,

• Brown and Smaragdis [26] used a GMM and Hidden Markov Model (HMM)

based approach to classify orca calls,

• Esfahanian et al. [53] explored the classification of dolphin whistles using

time-frequency contours and a SVM.

These methods heavily depend on their input features which might be either too

specific and not estimated accurately (pitch) or too generic and giving only a

gross description of the signals (MFCC).

Overall limitations

All in all, despite efforts to build robust algorithms [89], difficulties remain to cope

with the wide variety of perturbations found in underwater recordings. For instance,

noise can induce acoustic masking and heavily alter signals, hindering template

correlations and/or pitch estimates. Furthermore, noise from boats, waves, currents,

sonars, or even earthquakes take a variety of acoustic forms, that potentially

strongly correlate with whale vocalisation templates [224].

In a general sense, for studies to base their results on automatic detections,

underlying algorithms need to be robust to low SNR conditions and heavy dis-

turbances, or important biases will be introduced. Take for instance studies on

the impact of marine traffic on the wildlife: if boats trigger or hinder detections,

further interpretations will be dramatically falsified.

Additionally, tuning templates and thresholds to cope with all possible per-

turbations can be very demanding, and sometimes the global compromise simply

does not exist. In that sense, ANNs might be able to push forward automated

PAM systems, seamlessly learning robust representations for the detection and

classification of cetacean vocalisations.
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2.2.2 Preparing the network’s input (front-end)

The frequency decomposition of signals is a powerful tool to their analysis. It is the

preliminary feature extraction step in many acoustic studies, this thesis included.

This section goes through some of the implications of such approach, describing

how waveforms can be compiled into images (spectrograms).

Let us start with an acoustic recording. It is described digitally by a sequence

of samples x = {x[i]}1..n that denotes the evolution of pressure through time. The

number of samples recorded per second is given by the sampling frequency, noted fs.

Fourier

The Fourier transform is a major tool in signal processing. It allows to describe any

signal as a sum of sinuses, each characterised by an amplitude and a phase. This

representation is called the spectrum. Given our acoustic signal x, the Discrete

Fourier Transform (DFT) will yield a spectrum X that gives complex numbers as a

function of frequencies. These complex numbers describe each frequency component

of the signal, with the amplitude as the modulus and phase as the angle. The

behaviour of the DFT F of a signal of size N is given in Eq. 2.18.

Xf = F(x)f =
N∑

n=0
x[n]e−i 2π

N
fn. (2.18)

In terms of computational application, Fast Fourier Transform (FFT) imple-

mentations of the DFT are available, enabling a significant complexity reduction

from O(N2) to O(Nlog(N)).

Time-frequency analysis

Numerous signal processing techniques, especially those presented in this thesis,

rely on spectrograms. A spectrogram is a matrix representation of a signal, with

values denoting magnitudes (square modulus of Fourier values) for each frequency

and time bin (rows and columns respectively). It results from the juxtaposition

of successive DFTs, computed by sliding a window over the signal.
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Sf,t =
∣∣∣∣NF F T∑

n=0
x[t × hop + n]e−i 2π

NF F T
fn

∣∣∣∣2. (2.19)

Several parameters are to be set prior to the Short Term Fourier Transform

(STFT) computation responsible for the generation of a spectrogram. They define

the sliding window’s behaviour: the window size NFFT and the hop size hop.

Along with the sampling frequency fs, these will define the range and resolution

of our resulting spectrogram :

• The sampling frequency will affect the maximum frequency represented by

our spectrogram: fmax ≤ 1
2fs (Nyquist theorem).

We sometimes downsample the signal during preprocessing to withdraw high

frequency contents when non relevant. Downsampling also drastically reduces

the downstream computation complexity.

• The window size defines the length of the signal to be decomposed.

A bigger window will yield a more detailed representation frequency wise.

However, it will also blur short transitory events (the yielded spectrum is an

average of the frequency contents in the window).

• NFFT is the number of points used in each DFT. It will define the number of

frequency bins of the resulting spectrogram: ∆f = fs

NF F T
. The DFT size can

be larger than the window size, in which case borders are filled with zeros (zero

padding). Like so, short transitory events are preserved as compared to using

a larger window. Note that a larger NFFT also implies more computation

per DFT.

• The hop size defines the temporal sampling rate of the spectrogram:

∆t = hop
fs

.

A smaller hop size will yield a more detailed spectrogram, but also implies

more computation (each step demands a DFT).
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Figure 2.11: Spectrograms of an orca call (OrcaLab recording) with varying NFFT .

These parameters have a crucial impact on the spectrogram and especially on

how well our target signal(s) will be represented (Fig. 2.11). Therefore, finding the

appropriate spectrogram settings is the first step in building any spectral based

detection algorithm, ANNs included.

Alternative to the Fourier transform Sometimes, both temporal and frequency

high resolutions are needed, and a satisfying window size does not exist. While

Fourier uses the same window size for all frequencies, algorithms such as the wavelet

transform propose a non uniform sampling of the time-frequency space, enabling

a better compromise in terms of temporal and frequency resolution.

Wavelet transform allows a satisfactory representation of both low frequency

and high frequency events, which can be useful in PAM applications. Researchers

have studied the use of wavelet transforms as front-ends, for instance with cetacean

click detection [123]. Further studies have also experimented on combining Fourier

and wavelet transforms into multi-channel spectrograms, as a front-end for speech

recognition [8] or bird classification [233]. Additionally, the chirplet transform has

been used by Stowell and Plumbley [206] to analyse bird songs.

Nonetheless, the Fourier transform remains the choice in a wide majority of

applications, because of its convenience of use and its efficient FFT implementation.
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Throughout this thesis, the large majority of experiments are based on the Fourier

transform, focusing more on the effects of other components of the analysis such

as downstream processing.

Beyond the empirical choice of STFT parameters In machine learning

frameworks, finding the best spectrogram parameters can be part of the optimisation

process. For instance, it can be done via STFT differentiation [235].

Indeed, when there is a wide variety of target signals, the empirical choice of the

right STFT parameters can be challenging. Optimising them through learning will

lead to a compromise between several parameters, but may not be optimally suited

for each type of target signals. Multi-channel spectrograms offer a solution to this

issue, by giving a stack of spectrograms with different parameters to the model

(they must be interpolated to match in time / frequency resolutions). Studies that

have experimented on this technique have not seen a significant improvement so

far [140, 212], let aside the computational cost implied by such approach.

Learnable front-ends Alternatively to learning STFT parameters during opti-

misation, researchers have experimented on trainable transforms to extract features

from input signals. Some directly learn convolution kernels to be applied in the

time domain [59, 149]. Others optimise known filters parameters, such as cardinal

sinus [169], spline [11], gammatone [182], or gabor [232].

The latter, called Leaf, has outperformed SOTA in 8 different acoustic recognition

tasks, but is still quite recent and remains very costly in computation (two orders of

magnitude higher than a regular STFT). Consequently, to this day the STFT and

optionally its Mel transform remain the standard approach to feature extraction

for acoustic recognition.

Mel-spectrograms

Humans have a logarithmic sensibility to frequencies: we perceive a constant tonal

shift when frequencies are multiplied by a constant. Besides, harmonic structures

of acoustic signals also often show logarithmic behaviours. To have a spectrogram
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Figure 2.12: Example of Mel filterbank (set of triangular filters). Each colour represents
a filter, which will ponderate the input spectrum to yield a Mel frequency bin.

representation that reflects this phenomenon, the Mel transform changes the linear

frequency layout into a logarithmic one: the Mel scale. The Mel scale describes

a frequency layout that follows human perception of tones in terms of hearing

range, but also such that a constant shift in Mel bin will be perceived as a constant

shift in tone. However, we can extend this scale to a wider range of frequencies,

extrapolating the human perception into frequencies suited for the hearing range

of cetaceans for example. For simplicity, we will refer to these logarithmic layout

of frequency as Mel spectrograms.

To build a Mel-spectrogram, a dot product is computed between a matrix of

logarithmically spaced triangular filters (Fig. 2.12) and STFT magnitudes. The

relationship in Eq. 2.20 is used to convert frequencies to mel bins, and an example

of a resulting Mel-spectrogram is given in Fig. 2.13.

fmel = 1127 × log
(

fHz

700 + 1
)

. (2.20)

Range compression

In acoustics, the energy is usually measured in decibels (dB), a logarithmic

transformation of measured magnitudes such that E = 10 log10(S). Typically,
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Figure 2.13: Comparison of frequency layouts (regular STFT versus Mel transformed)
and range compression for an orca call spectrogram. Notice how the 4 kHz stationary
noise gets removed with PCEN.

for spectrograms, this will shift the values from a logarithmic distribution to

a Gaussian distribution.

The strength of the shift can be modulated by amplifying magnitudes before

computing the logarithm. For this purpose, Schlüter [186] proposes to make this

amplification a trainable parameter using E = log(1 + S × 10a) (Fig. 2.13)).

Moreover, adding a dynamic gain control to the range compression, Per-Channel

Energy Normalisation (PCEN) [218] has recently gained attention in speech recogni-

tion and animal vocalisation detection. This method adapts the compression range

depending on local loudness and reduce stationary noise (estimated via an infinite

impulse response (IIR) filter for each frequency bin, see Fig. 2.13). The formula

for PCEN is given by Eq. 2.22, given an input spectrogram S, and parameters

ϵ, α, δ and r. M denotes the IIR filtered version of the spectrogram (Eq. 2.21),

depending on the smoothing coefficient s that impacts the filter’s latency. This

method requires 5 hyper-parameters to be set for initialisation and potentially to

be optimised end-to-end with the downstream model.

Mf,t = (1 − s)Mf,t−1 + s × Sf,t, (2.21)
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PCENf,t =
(

Sf,t

(ϵ + Mf,t)α
+ δ

)r

− δr. (2.22)

2.2.3 Data augmentations for acoustics

Last section described how to get a time-frequency representation of signals, taking

the form of spectrogram images. We will refer to it as ‘front-end’, as it is the

preliminary feature extraction step before the CNN inference.

As previously mentioned for image classification tasks, data augmentation is

a crucial regularisation method when training models. It is especially relevant

when dealing with bioacoustics tasks with very few labels available [205]. This

section presents several acoustic data augmentation policies, both fort the time

domain and for the time-frequency domain.

Addition of noise

Acoustic signals can simply be summed to be combined. A first augmentation

technique thus comes down to adding randomly generated noise to the input

sample in the time domain [141]. One can add white noise (flat spectrum), pink

noise (spectrum following 1/f) or brown noise (spectrum following −20dB/decade).

The latter being the closest to underwater ambient noise, it is the most relevant

to PAM of cetaceans.

Instead of synthesising random noise, one can also add soundscape recordings

[116]. To some extent, this is equivalent to the MixUp approach aforementioned

(section 2.1.5).

Whether it is synthesised or recorded in situ, a weight needs to be set when

adding noise, defining its strength relatively to the input signal (the SNR). This

value can be fixed for the whole training, or sampled randomly at each generation.

SpecAugment

Alike RandAugment for images [40], a suite of audio augmentation policies has

been proposed for spectrograms: SpecAugment [151]. It includes time wise dilation
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Figure 2.14: Demonstration of three common augmentation policies on orca calls
recorded at OrcaLab (top: original sample, bottom: augmented version).

or compression (via the interpolation of pixels values), as well as the masking of

random time and frequency bands (Fig. 2.14).

The authors did not include frequency stretching in their SpecAugment suite,

perhaps because it was not appropriate for their task at hand, or since it is more

common to operate pitch shifts on waveforms [125] rather than on spectrograms [95].

SpecAugment has shown SOTA results in several acoustic recognition tasks

[151], with the drawback that it potentially converts the overfitting problem to

an underfitting problem. To cope with this, the authors propose larger networks

and longer training schedules.

Temporal / frequency shifts

Temporal and frequency shifts of spectrograms seem like a straightforward way of

augmenting the data, by simply displacing patterns to be recognised (in realistic

ranges). As for the time shifts, as previously mentioned, CNNs offer spatial

invariance, making such data augmentation non significant. On the other hand,

pitch modulation potentially implies more than just a vertical shift for the resulting

spectrogram (see Fig. 2.14). By speeding up or slowing down the input sample

(waveform resampling), the spectrogram is shifted frequency wise but also stretched
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time wise. Pitch shifting is thereby a relevant data augmentation approach even

for CNNs [125].

2.2.4 Applications to bioacoustics

We have seen how time-frequency representation of signals can be fed to CNNs,

allowing to train them on acoustic classification tasks. This section reviews how

the bioacoustic community made use of this opportunity in several use cases.

Annotation optimisation

The amount of training data is crucial to a robust deep learning model. Besides

the large performance gap between supervised and unsupervised approaches, it

would be hard to have a biological interpretation of ANN results without them

accounting for current biological knowledge (association of signals with specific

species for instance). Therefore, large amounts of labelled examples are still needed

prior to developing automated detection systems.

The usual annotation scenario starts with the access to a bank of audio signals.

When recorded by autonomous antennas, this typically means weeks or months of

recordings, with no other prior information than the presumed presence of some

species’ vocalisations. Listening to the whole recordings would be too tedious and

is therefore not viable. To efficiently browse through recordings and potentially

annotate certain sections, several approaches are found in the literature :

• Long Term Spectral Average (LTSA) enables a quick glimpse at frequency

distributions of several hours of data at a time [195],

• Running high recall handcrafted detection mechanisms allows a first extraction

of potential signals of interests (pre-detections) [70, 52],

• Handcrafted filtering rules can sort out known false positives among pre-

detections [224],

• Clustering pre-detections via handcrafted features can group similar acoustic

events together [70],
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Figure 2.15: Example of an advanced annotation interface for mice vocalisations:
DeepSqueak [37]. (1) call statistics, (2) extracted contour, (3) spectral gradient of
spectrogram, (4) tonality and sound wave, (5) position in file.

• Dedicated interfaces can improve the efficiency of visualisation and annotation

of pre-detections and clusters [204, 37] (Fig. 2.15).

Active learning Using one or more of these techniques should suffice in yielding

dozens of positive and negative annotations, enough to start training small CNN

models. To further increase the system’s performance, if not yet robust enough,

active learning is commonly adopted [190], including in bioacoustic applications

[181, 5]. Active learning defines a set of algorithms in which human intervention

occurs during the training process. For instance, it might consist in an iteration

of three steps: training the model, running it on unlabelled data and asking an

expert to validate or invalidate the model’s predictions. Active learning is a field of

research of its own, with the study of when to solicit an expert for his input, and

how to select samples that need corrections. In this thesis, a simplified version of

active learning is employed such as iteratively looking for false positives with strong

confidence (hard negative mining [191]). Therefore, the term iterative annotation

will be employed rather than active learning.
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Deep representation learning for bioacoustic signals Clustering similar

signals into groups can drastically reduce the annotation effort. For this purpose,

similarity can be measured using hand-crafted features such as MFCC [41], or

features learnt via SSL for instance. Several papers explored this approach such as

Tolkova et al. [214] for birdsong annotation using an AE framework, Goffinet et al.

[81] similarly with a variational AE [109], or Jahangirnezhad and Mashhadi [98]

combining an AE reconstruction loss with the Deep Embedded Clustering (DEC)

loss [228]. In the case of using embeddings for annotation via clustering, attention

should be paid to the potential biases induced (some classes might be favored

by the similarity metric employed).

Additionally, models trained via deep representation learning can also serve the

classification task directly. Indeed, either via a semi-supervised loss, or via network

pre-training, the performance of classifiers can be enhanced when fine tuning from

relevant embedding spaces, despite a reduced quantity labels.

Transfer learning The method of using weights optimised on a third party

task to initialise a model (pre-training or transfer learning) has indeed proven its

effectiveness, especially when dealing with small datasets. For instance, the third

party task can be a SSL paradigm such as training an AE on data similar to that of

the target task [15, 209]. On the other hand, it can also be a a totally unrelated task.

Indeed, fine-tuning from models trained on AudioSet [92] or even ImageNet [46] was

shown to be relevant for bioacoustics event detection [12, 236, 209]. The assumption

here is that early feature extraction are quite generic, and that knowledge gained

from very large datasets are useful for other tasks.

Available databases

A common practice in the computer science community is to publish databases for

researchers to evaluate their automatic systems on. They enable shared performance

metrics, essential to the objective comparison of models.

Public databases in bioacoustics are found with different annotation systems:

some denote the presence of events in a large window of recordings (up to several
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minutes), they are called weak labels. On the other hand, strong labels give exact

time positions associated with target events.

I will hereby present some public databases for cetacean vocalisation detection

along with their associated deep learning experiments.

• The Watkins marine mammals sound database [185] proposes excerpts for

numerous marine mammal species from different recorders. It was used by

Lu et al. [126] with an AlexNet architecture (pretrained on ImageNet), and

by Murphy [140] with a ResNet architecture and multi-channel spectrograms.

One limitation of this database is that most of the recording devices and

locations are species specific, which hinders good generalisation measures.

• The Orchive database [142] presents annotation of Northern Resident killer

whales (NRKW) calls. It includes calls with their class label (call type, see

section 3.1.3) or just as positives, along with negative samples (boats and

other noises); all recorded at the OrcaLab laboratory. It was used by Bergler

et al. [16] with a ResNet architecture for call detection and unit classification,

and by Vargas [216] for classification using SVMs.

• The Detection Classification Localisation and Density Estimation of marine

mammals (DCLDE) workshops have published numerous datasets with differ-

ent target species and labeling (some of them offer only weak labels). It was

used by Shiu et al. [191] for Northern Right Whale (NRW) upcall detection

using LeNet and BirdNet architectures.

• The DOCC10 database [59] is an extension of the DCLDE 2018 dataset that

used an automated algorithm to extract strong labels from the available weak

labeling. Samples include clicks from 10 different odontocete species. It was

used in the same study to train an end to end deep classifier of a custom

architecture.
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• The acoustic trends blue fin library [136] offers almost 2,000 hours of recordings

from the Southern Ocean, annotated by a consortium of experts. Several

thousands of samples are available for each of the 7 call types from 2

mysticete species: the blue whale and the fin whale. By covering several

recorders, locations, environmental conditions and years, this database offers

an opportunity to robustly measure models’ generalisation performances.

Deep classifiers for bioacoustics

Since the introduction of CNNs in bioacoustics, numerous experiments were pub-

lished, either with public or private databases. Most of them report their experiment

with a standard CNN architecture on some database, like a ResNet for orca

vocalisation detection for instance [16]. Some also report empirical studies of

varying settings such as data augmentation, front-end or architecture [191, 5].

Other architectures than regular CNNs are also encountered:

• a Recurent Neural Networks (RNN)+CNN that integrates the prior of call

rates into the detection process, [127]

• a Long Short-Term Memory (LSTM) on spectrograms for click detection [48],

• an ANN that classifies odontocetes’ clicks [176],

• siamese networks for classifying blue whale calls [237],

• transformers for bird recognition [168],

• a context adaptive CNN that makes use of soundscape features to gain

robustness [125].

Stowell [205] proposes a review gathering 159 articles on bioacoustics using

deep learning, 30 of which concern marine mammals. One important insight of

this review is a report on chosen CNN architectures. The most popular mentioned

are Resnet (23 papers), and VGG or VGGish (17 papers). Other tendencies are

described, but besides perhaps the use of spectrograms as inputs for CNNs, no clear

advantage emerges for a specific architecture or set of hyper-parameters.
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Such reviews demonstrate how the automatic analysis of bioacoustic recordings

is still an open research subject. In this context, Brown et al. [25] explored a wide

range of settings evaluated on multiple bird recognition tasks. They show how

there is not one generic workflow that is well adapted to every task. In a similar

perspective, this thesis explores the application of several deep learning methods to

marine bioacoustic tasks. The objective is to extract reusable knowledge to guide

decision making when implementing such systems.
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2.3 Thesis position within the literature

This chapter went through the technical elements that will be needed in the

subsequent work, borrowing from both computer vision and bioacoustics literature.

Before diving into this thesis’ contributions, let us get an overview of the challenges

and opportunities that come along the research problematic.

Challenges

ANNs, despite having already some implementation in industrial systems, is still

an open research topic. This is even more true when it comes to its application

to PAM. Indeed, PAM brings specific problems uncommon to other domains of

application of ANNs, the main ones probably being the lack of annotations and

the scarcity of events to detect. As mentioned previously, training ANNs demands

large quantities of labels, which are costly to produce in terms of human effort.

When implementing image classification or speech recognition systems, one can

make use of large databases already available for these quite popular tasks. High

quality databases of cetacean vocalizations (large amount of annotations with

precise timestamps) are more rare. To cope with this, I will show in this thesis

how annotation processes can be optimized to reduce human effort.

Another challenge comes from the underwater conditions that highly impact

acoustic properties of signals. Since few researchers apply ANNs underwater,

they have to find their own way to cope with these conditions yet relatively

unexplored in the literature. Moreover, detection systems are most useful when

reusable across acoustic stations. This demands highly robust models, taking into

account the variability in potential noise exposition (e.g. depending on depth,

boat traffic, bathymetry).

Also, we will later discuss the need for PAM systems to be embedded into field

stations (section 6.2). This demands efforts in reducing the computational needs,

as well as building trustworthy algorithms, which can be challenging when having

relatively low control on ANNs’ behavior (ANNs are often described as ‘black boxes’

since their functioning is hardly interpretable).
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Another important challenge faced during this thesis was to sort out relevant

methods to explore among the wide variety of propositions. Indeed, ANNs being a

highly popular topic, dozens of different approaches are still being explored, with

few consensuses on universally reliable techniques.

Eventually, despite numerous occurrences of trained ANNs for marine bioacous-

tics in the literature, very few are found to be put in production yet [5] (using the

prediction for biological analysis). It is thus an ambitious goal to bridge this gap

between training experiments and production use of deep learning models.

Opportunities

Even with few annotations available, large amounts of data can still be useful

when training ANNs, as section 5.5 discusses with unsupervised approaches. The

democratisation in autonomous recording units (ARUs) has already yielded Ter-

abytes of data which, even when containing only few signals of interest, can come

handy to train ANNs because of the diversity they provide. Indeed, these long

recordings often demonstrate a wide variety of noises (e.g. from boat engines, sonars,

reef activity, waves, currents, or earthquakes). Additionally, data variability can

also arise from differences in recorders’ frequency responses, and/or placements

regarding the bathymetry.

This is a major challenge when building handcrafted algorithms, having to

compensate for each potential acoustic disturbance independently. However, ANNs

represent a great opportunity in that sense since they have the potential of learning

robust representations that can be resilient to the most diverse perturbations.

Section 4.6 discusses how one can make use of the variations in the available data

to rigorously measure a model’s generalisation performances, and/or use it to train

projections of sound that are most stable against such noise diversity.

Eventually, PAM strongly benefits from such robust systems, since they help

reduce the minimum SNR for detection as well as the amount of false alarms. A

first axis of benefits offered by this characteristic is that it facilitates the use of
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such systems in real-time applications, with implication for species conservation

via ship strike mitigation for instance.

A second axis of benefits is the potential for long term surveys that would

not have been feasible otherwise. They enable learning on presence patterns,

song structure evolution and to characterise communication systems for instance

(each is demonstrated in chapter 7). Indeed, such large scale analysis represent a

good opportunity to yield biological insights, especially in blind datasets (audio

recordings with no complementary data such as behaviour) and in uncontrolled

settings. Finally, these uncontrolled settings ensure that no behavioural bias is

induced, conversely to many laboratory experiments with animals.
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This chapter presents the material used for the experiments conducted through-

out the thesis. It takes form as underwater acoustic data, containing several types

of signals, and recorded at different places and times. This chapter will thus revolve

around two axis: the studied signals, and the recording setups.

3.1 Target species and signals

The target signals described here are those for which detection and classification

systems were built. Their characteristics are summarised in Table 3.1, and each

subsection underpins the current knowledge about them, especially regarding their

context of emission.

57
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Figure 3.1: Sequence of sperm whale echolocation clicks recorded by Bombyx in July
2018. STFT parameters are: fs = 50kHz, NFFT = 1, 024, hop = 128, padding = 0%.

Note that for the signal types of Table 3.1 and throughout this thesis, stationary

refers to “signals locally stable in frequency” (calls, whistles) as opposed to transitory

signals (clicks).

Species Sperm whale Fin whale Orca Dolphin Humpback whale
Sub-order Odontoceti Mysticeti Odontoceti Odontoceti Mysticeti
Signal clicks 20 Hz pulses pulsed calls whistles calls
Signal type Transitory Transitory Stationary Stationary Stationary
Frequency (Hz) 12,500 20 [500; 5,000] [5,000. 20,000] [300; 3,000]
Bandwidth (Hz) 20,000 6 100 20 50
Duration (sec) 0.001 1 [0.5; 2] [1; 2] [0.5; 1]

Table 3.1: Summary of the target signals for the detection systems built throughout this
thesis. For transitory waves, the frequency denotes the approximate centroid frequency,
for stationary signals it denotes its range

3.1.1 Sperm whale (Physeter macrocephalus) clicks

Sperm whales produce echolocation clicks to navigate and locate preys during hunts.

Their large head contains a series of oil sacks surrounded by sound-reflecting air

sacs that amplify impulses [143], making it the most powerful sonar in the animal

kingdom [137] (the loudest recorded click was at 230 dB re: 1µPa rms).

Echolocation clicks usually come in sequences (see Fig.3.1), with the Inter Click

Interval (ICI) ranging between 0.01 and 1 sec, usually decreasing when approaching

a prey [56]. The clicks lie around relatively low frequencies compared to other

smaller odontocetes (between 3 kHz and 30 kHz).
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3.1.2 Fin whale (Balaenoptera physalus) 20Hz pulses

As the second largest animal on earth, the fin whale produces very low-pitched

vocalisations, barely noticeable to the human ear. So far, bioacousticians have

documented 3 main types of signals emitted by fin whales: 100-30 Hz down-sweeps,

30 Hz rumbles, and 20 Hz pulses. They supposedly serve for group cohesion [157, 220],

food signaling [180], and mate attraction [221, 39].
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Figure 3.2: Spectrogram (left) and waveform (right) of a fin whale pulse recorded by
Bombyx. STFT parameters are: fs = 100Hz, NFFT = 128, hop = 3, padding = 50%.

In this thesis, I will focus on the most common signal: the 20 Hz pulse. It is

often further classified into two sub categories, named A and B, or classic pulse and

back-beat [188]. They highly resembles a Gabor wavelet: a sine wave enveloped by

a Gaussian (see Fig.3.2), and can be emitted either as single pulses, or in patterned

sequences, termed as songs [192]. The pulses and the sequences they take part in are

highly stereotyped: pulses show very low variability both in frequency and duration,

and when in sequences, the Inter Note Interval (INI) remains highly stable.

Fin whale song characteristics, especially the INI, are population specific [45, 32].

They also are subject to seasonal cyclic variations [146, 138] and long-term trends

[224, 90] (e.g. linear increase of the INI through years).

3.1.3 Orca (Orcinus orca) calls

Orcas produce three types of signals: clicks, pulsed calls, and whistles [69]. As for

most dolphin species, clicks presumably serve echolocation, while the two stationary
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Figure 3.3: Sequence of orca tonal calls recorded at OrcaLab in September 2016. STFT
parameters are fs = 22050Hz, NFFT = 1024, hop = 50, padding = 0%. The N.. labels
denote each call type [68], with a ‘?’ showing an ambiguous one.

signals would rather be used for communication. Pulsed calls are highly harmonic,

typically lying between 500 Hz and 5 kHz, and lasting up to 1.5 seconds (Fig. 3.3).

On the other hand, whistles show little or no harmonic structure, lay between

6 kHz and 12 kHz, and can last up to 12 seconds. This thesis focuses on the pulsed

calls, referring to them as calls or vocalisations.

As shown in Fig. 3.3, some orca calls have stereotyped frequency contours that

have been classified into discrete types [68]. These were proven to be community

specific (dialectic), and subject to cultural evolution [44, 62]. The identification of

call types strongly contributed to the study of the orca’s social structures, and its

categorisation is widely accepted by the scientific community. Difficulties remain

however, for some calls to be attributed to one class or another, especially for non

experts. Indeed, despite calls being stereotyped, they still are prone to variability

which might lead to overlap between classes’ characteristics [69].

3.1.4 Dolphin (Delphinidae) whistles

Exceptionally for this type of signal, we do not target a single species, but rather

a family of species: the Delphinidae. It includes several sub-families such as

Globicephalinae, Delphininae, and Orcininae. They all produce whistles, which are

typically high pitched, tonal, and narrow-band. Their frequency contour can be

stereotyped [217], individual specific [29], and serve group cohesion [100].
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Figure 3.4: Sequence of dolphin whistles from the Carimam dataset. STFT parameters
are fs = 256kHz, NFFT = 8, 192, hop = 512, padding = 0%, Mel transformed from 5
to 40 kHz, and PCEN normalised. The stationary signal around 12 kHz is the remaining
self noise of the sound card used [13] (despite heavy mitigation via the PCEN).
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Figure 3.5: Extract of a humpback whale song from the Carimam dataset. STFT
parameters are fs = 22050Hz, NFFT = 4096, hopsize = 48, padding = 50%.

3.1.5 Humpback whale (Megaptera novaeangliae) vocal-
isations

The humpback whale song is among the most widely studied cetacean acoustic

signals. These vocalisation sequences are mostly emitted by males during the

reproductive season, presumably playing a role in courtship [91] (male-female

and/or male-male interaction). They follow strict hierarchical structures: series of

units form phrases that are arranged into themes, themselves combined in songs

that can last several hours [156].

Each component of the hierarchical structure of the humpback whale songs are

stereotyped, as seen in Fig. 3.5 with a sequence of stereotyped units. Moreover,

song structures are shared by individuals at a given place and time, with cultural
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Figure 3.6: Map of the three Mediterranean antennas used throughout this thesis.

implications for their spatio-temporal evolution [225].

3.2 Data at hand

In order to experiment on detection and classification mechanisms for the target

signals aforementioned, datasets are needed. Through this thesis, work was

conducted on recordings from both local and publicly available databases. They

involve a variety of recorders, locations and time spans which are described in this

section. It starts with the local projects of the DYNI team (Toulon University)

which is followed by the public Blue and Fin whale Acoustic Trends dataset.

3.2.1 Data from DYNI

Table 3.2 summarises some of the sources of data H. Glotin co-set up at Toulon

University. Three of them are antennas located in the Ligurian Sea (Fig. 3.6). The

data is stored locally in a Network-Attached Storage (NAS) system, funded by

the DYNI team projects and maintained by the LIS laboratory. Each are briefly

introduced in the following sections.
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Figure 3.7: (left) Installation of the Bombyx stereophonic antenna [79]. (right) Structure
of the Boussole antenna [114]

Boussole

This project consisted in a partnership between GIS3M, Pelagos marine mammal

sanctuary, and Port-Cros National Park. In order to study marine mammals acoustic

activity, a monophonic recording system was placed on the Boussole buoy [114].

Originally dedicated to marine optics and designed to be transparent to the swell,

this buoy was moored on the 2,440 meters deep sea floor, off the coast of Nice

(France). During 4 phases between October 2008 and September 2009, the system

recorded at 32 kHz, enabling the detection of vocalisations from sperm whales,

fin whales, and delphinids of the area (Stenella coeruleoalba, Globicephala melas,

Grampus griseus, Tursiops truncatus and Delphinus delphis).

A study prior to this thesis intended to monitor the acoustic presence of sperm

whales and fin whales in these recordings. The automatic detection of sperm whale

clicks was successful but the fin whale 20 Hz pulses analysis was hindered by the

self noise of the system [114] (Fig. 3.8).
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Figure 3.8: Spectrogram of a noisy recording from the Boussole antenna (fs = 32kHz,
NFFT = 32, 768, hop = 5, 568). White dots denote the temporal position of some
confirmed fin whale 20 Hz pulses.

Bombyx

The Bombyx antenna was set up by a partnership between Toulon University, Port-

Cros National Park, TVT Innovation, and the Pelagos marine mammal sanctuary.

Being placed right on the rift of a 2,000 meters deep canyon, it allows to monitor

sperm whales hunting in the area [79], and did so during several phases spread

across 4 years (2015 to 2018). The area is of interest because of the nearby canyons

prone to sperm whale hunts [63], but also because of the ferries that travel across on

a daily basis. In addition to the noise that the latter generate, Bombyx recordings

are also subject to self noise (Fig. 3.9).

KM3Net

The ORCA detector of the KM3Net observatory is an array of detection units

allowing the measurement of neutrino particles [2]. It was installed on the seabed,

2,440 meters deep, connected to the shore of Toulon (France) via a fiber cable.

Hydrophones are used as part of a positioning system, but as a by-product, also

enable the PAM of local cetaceans.
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Figure 3.9: Example of signal from the Bombyx antenna (high pass filtered, order 3
butterworth at 3 kHz). Orange dots denote sperm whale clicks, and red ones self noise from
the recording device. (top) Waveform. (bottom) Spectrogram (fs = 5kHz, NFFT = 512,
hop = 256).

OrcaLab

In the 1970s, Paul Spong founded OrcaLab, an in-situ observatory in the Johnstone

Strait [202] (British Columbia, Fig. 3.10). It serves the visual and acoustic

monitoring of orcas, especially the population that feeds on the local salmon

every summer: the NRKW. From 2015 to 2020, the 5 hydrophones’ signal has been

recorded continuously (at 22,050 Hz until march 2018, then at 44,100 Hz).

The fact that the orcas regularly come to this relatively confined space represents

an unique opportunity to observe and listen to them 24/7 from the shore. Most

importantly, it guarantees no behavioural disturbance and a continuous supply of

power and data storage (the main constraints of many PAM approaches).

Carimam

The Carimam project, led by a consortium composed of AGOA, the OFB and

Toulon University, is a network of 16 monophonic acoustic stations spread through

the Caribbean archipelagos [80] (Fig. 3.11). It aims at monitoring the rich marine

mammal activity of the area. To manage such a wide number of stations, low-cost

recording devices (HighBlue [13]) were sent to local environmental managers, who

set them up on existing mooring lines close to the shore.
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Figure 3.10: Map of the OrcaLab observatory, with its 5 hydrophones and associated
acoustic range.

Figure 3.11: Map of recording stations for the Carimam project, in the Caribbean
archipelago. Colours denote the recording effort as of the end of 2021.
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Spatialisation

In Table 3.2, the number of hydrophones is given for each recording system. When

synchronised and with overlapping acoustic coverage, multi-channel data can serve

the spatialisation of acoustic sources. It can be done via the computation of

TDOAs for signals to be triangulated.

• For Bombyx, since two hydrophones record 1.8 meters apart (on the same

horizontal plane, see Fig. 3.7), two possible azymuths can be computed (for

acoustic sources of the same horizontal plane).

• For KM3Net, the 3 hydrophones are synchronised and approximately 30

meters apart. With prior knowledge on the depth of a source, its coordinates

could be estimated.

• For Carimam, the stations’ acoustic coverage do not overlap: the spatial

precision is the acoustic range of the antennas.

• Finally, for the OrcaLab network, hydrophones are several kilometers apart

but sent to a centralised Digital Analog Converter (DAC) via radio waves,

which makes them temporally synchronised. Therefore, spatialisation could

be performed in the zones of acoustic overlap.

3.2.2 Blue and Fin whale acoustic trends dataset

In early 2021, a large acoustic dataset of antarctic mysticetes was made publicly

available [136]. It was built by a working group from the Southern Ocean Observing

System (SOOS) titled Acoustic Trends of Antarctic blue and fin whales (Acoustic

Trends Working Group; ATWG). The following is an extract from their terms of

reference [200]:

SOOS Capability Working Group Key Objective(s): Continue to develop

and mature a long term acoustic research program to understand trends in Southern

Ocean blue and fin whale distribution, seasonal presence, and population growth

through the use of passive acoustic monitoring techniques. Implementation of

these objectives will occur via:
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Figure 3.12: Map of the recording stations used in the Acoustic Trends dataset. The
map was published by Miller et al. [136].

1. analysis and interpretation of existing ad-hoc acoustic datasets from the

Southern Ocean,

2. the development and implementation of an ongoing network of long-term

circumpolar underwater listening stations, and

3. development of novel and efficient methods for standardised analysis of acoustic

data collected in the Antarctic and sub-Antarctic

It is regarding this third axis of work that the Acoustic Trends dataset was built

and published [136], especially to share performance metrics for detection systems.

It gathers annotations from a group of experts, on data yielded by several recorders

at different locations from 2005 to 2017 (see Fig. 3.12 and Tab. 3.3).

Annotations gather 7 target signals: 4 types of vocalisation from blue whales

(Balaenoptera Musculus (Bm)) and 3 types of vocalisation from fin whales (Balaenoptera

Physalus (Bp)). They all lie in low frequencies (between 20 Hz and 100 Hz) lasting

from 1 to 15 seconds (their time-frequency distributions are shown in Figure 3.13).
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Location Year Instrument Recordings (hours)
Balleny Islands 2015 PMEL-AUH 204
Elephant Island 2013 AURAL 707
Elephant Island 2014 AURAL 216
Greenwich 64S 2015 Sono.Vault 32

Maud Rise 2014 AURAL 80
Ross Sea 2014 PMEL-AUH 184

Casey 2014 AAD-MAR 194
Casey 2017 AAD-MAR 187

Kerguelen 1 2005 ARP 200
Kerguelen 2 2014 AAD-MAR 200
Kerguelen 2 2015 AAD-MAR 200

Table 3.3: Summary of recorders’ characteristics and amounts of data available in the
Acoustic Trends dataset.

Figure 3.13: Distributions of lengths and frequencies for each of the 7 call types of the
Acoustic Trends dataset. (left) Balaenoptera Musculus, (right) Balaenoptera Physalus.
The figure comes from Miller et al. [136].
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4.1 Context and objective

Given the large amount of available recordings presented in the previous section, the

objective of this thesis is to build robust detection and classification mechanisms for

the vocalisations of species of interest. For this purpose and with the chosen approach

of ANNs, annotated databases are needed. In the following chapter, procedures and

User Interfaces (UIs) suited for bioacoustic use cases are proposed, with an objective

71
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Figure 4.1: Flow chart of procedures employed in the annotation processes.

of optimising annotation quantity while minimising human effort. For all tasks, the

annotation procedure can be summarised in 5 steps that are illustrated in Figure 4.1.

This chapter starts by introducing a versatile and efficient approach to annotation

(thumbnail picking), it will be used in the subsequent experiments. Then, algorithms

and UIs are proposed for several use cases, each being adapted to specific constraints:

• To detect stationary signals with some samples to tune a handcrafted algo-

rithm, a spectrogram binarisation approach is described (applied to orca calls

of OrcaLab in section 4.3.1).

• Looking for transitory signals in stereophonic recordings, I propose an interface

to visualise and annotate TDOAs tracks (applied to sperm whale clicks of

Bombyx in section 4.3.2).

• For a case when no target signals are available a priori, a generic extraction

of spectral distributions is used to cluster similar acoustic events (applied to

humpback whale vocalisations of Carimam in section 4.4.1).

• In contrast, when a large quantity of signals of interest are available, an AE

demonstrated the ability to learn relevant features to cluster calls with similar

frequency contours (applied to orca call types of OrcaLab in section 4.4.3).

Finally, after employing these methods to gather an initial set of annotations,

iterative annotation was conducted until a satisfying amount of labels were available

(section 4.5). The resulting datasets are presented with their chosen train / test

split in the last section of this chapter.
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Figure 4.2: Example of thumbnails ready to be annotated (picked), using the Thunar
file explorer [227]. Here, files are clustered spectrograms of orca calls (see section 4.4.3).

4.2 Thumbnail picking

Often during annotation procedures, we want to manually sort out true and false

positives from a set of detections. It occurred numerous times during this thesis,

after preliminary detection algorithms or during the iterative annotation process.

Picking spectrogram images from their thumbnails in file explorers appeared to

be the most efficient way to do it (see Fig. 4.2).

The typical scenario in which this procedure was used is to pick false positives

from a set of detections. In a few minutes, an annotator can browse hundreds

of samples (exhaustively or not), and select dozens of files to move them to a

new folder. Having identifiers in filenames then allows to retrieve the annotator’s

decisions and update a dataset accordingly.

Annotating by organising thumbnails in folders is not only efficient in time,

but also very versatile (it requires no specific software installation). This comes

practical especially when needing annotation efforts from different experts with

different operating systems for example.
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4.3 Gathering regions of interest

To get an initial set of events to annotate, we can use our prior knowledge of target

signals and run an algorithm that filters the data in that regard. These handcrafted

algorithms present limitations (argued in section 2.2.1), but avoid having to go

through long chunks of void in recordings to find our first training examples.

In detection algorithms, the user usually sets a threshold to binarise continuous

prediction values. In the case of cetacean vocalisations, the threshold is typically

on the energy level at a specific frequency, or on the cross-correlation coefficient

(template matching approaches). The lower we set this threshold, the lower the

specificity (higher risk of false detections) but also the higher the sensitivity (lower

risk of missed detections). Conversely, by increasing this threshold, we increase

the specificity but decrease the sensitivity.

This trade-off is to be kept in mind when tuning handcrafted algorithms to

build a first database: we want just enough sensitivity to yield some true positives

(perhaps the ones with the highest SNR), while keeping the number of detections

low enough so that we can go through them in a reasonable amount of time.

The following paragraphs introduce two case studies of such approaches, one with

stationary signals (orca calls) and one with transitory ones (sperm whale clicks).

4.3.1 Spectrogram energy thresholding (orca calls)

This work was conducted in collaboration with Jan Schlüter and Marion Poupard,

on the OrcaLab data introduced in section 3.2.1).

The chosen approach to the preliminary detection of orca calls was inspired by

Lasseck [115] on spectrogram segmentation for bird call detection. We first binarise

spectrograms with adaptive thresholds that use rows and columns moments (Fig. 4.3).

The original formula proposed by Lasseck [115] for the threshold Tf,t given a

log compressed spectrogram E is given in Eq. 4.1. The goal being to detect

pixels with energy values above the distribution of their row and column, we

propose to rather use Eq. 4.2.
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Figure 4.3: Comparison of the spectrogram binarisation procedure following Eq. 4.1
(middle) and Eq. 4.2 (right).

Tf,t = max(3 × median
j

(Ef,j), 3 × median
i

(Ef,i)). (4.1)

Tf,t = max(median
j

(Ef,j) + 2 × std
j

(Ef,j), median
i

(Ei,t) + std
i

(Ei,t)). (4.2)

Connected positive pixels are later grouped by regions, from which we will

extract features such as minimum and maximum frequencies, duration, and mean

and maximum decibels. We finally use our prior knowledge of orca calls to filter

out impossible regions (features that are out of range), and plot the remaining ones

for annotation via thumbnail picking. With such algorithms, the user can filter

detections to get a first set of positive annotations, but also has an opportunity to

fetch negative ones (strong acoustic events that might confuse the model later on).

4.3.2 TDOA tracking (sperm whale clicks)

This work was conducted in collaboration with Maxence Ferrari and Marion Poupard,

on the Bombyx data introduced in section 3.2.1.

For sperm whale clicks, time domain signal processing is more appropriate than the

spectral based energy detection presented above. We thus propose the following

procedure. In a first pre-processing step, sperm-whale clicks are emphasised by

correlating the signal with a sinus of their centroid frequency (12.5 kHz). Then, the

permissive detection mechanism is based on thresholding on the Teager-Kaiser (TK)

energy operator (inspired by Kandia and Stylianou [104]). Finally, for all detected
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Figure 4.4: Custom UI built in matplotlib [94] for the annotation of sperm whale clicks.
(top) TDOAs versus time of detected clicks, with vertical bars denoting gaps between
recorded files. (bottom) Spectrogram of the signal surrounding the selected click, shown
with a red dot on the top panel.

impulses, TDOAs are computed between the two hydrophones of the antenna.

Among the large amount of false positives, clusters of stable TDOA appear, revealing

localised acoustic sources which are here considered as signals of interest.

In our data the three main signals that trigger such a detector are those produced

by sperm whales, boats, and other odontoceti such as long-finned pilot whales (Glo-

bicephala melas). To browse large amount of recordings and efficiently discriminate

between the three for annotation, the custom UI shown in Figure 4.4 was built.

This UI shows the scatter plot of preliminary detections (time versus TDOAs).

It enables to identify tracks (linear formations from high density of points) of moving

acoustic sources, with the slope reflecting the angular speed relative to the antenna.

With such a plot, we display 10 hours of signal at once. When a TDOA track is

identified, the user can click on it. The associated detection will be signaled with a

red dot, its surrounding spectrogram displayed and the sound played. This allows
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for the identification of the source responsible for the selected track, which can be

saved by clicking on the associated button (noise, pilot whale or sperm whale).

4.4 Feature extraction and filtering

Clustering allows for a strong optimisation of the annotation process. Indeed, once

signals are grouped by similarity, browsing and sorting becomes much more efficient,

especially by avoiding to go through large amounts of void.

The key to clustering quality is the extraction of relevant features for similarity

measurement. Hereby are presented three feature extraction approaches on different

kinds of signals : humpback whale vocalisations, toothed whale clicks, and orca calls.

Once features were extracted, they were usually projected using Uniform

Manifold Approximation and Projection (UMAP) [131] before a Density Based

Spatial Clustering of Applications with Noise (DBSCAN) clustering [54]. Allaoui

et al. [4] have shown that dimensionality reduction using UMAP would improve the

performance of clustering such as density based ones. The distribution of projections

in turn motivated a density based approach to clustering such as DBSCAN (Fig. 4.6).

4.4.1 Spectro-temporal features (humpback whale vocal-
isations)

This work was conducted on the Carimam dataset described in section 3.2.1.

The objective of the following procedure is to explore a large dataset with no

samples of target signals given a priori. For this purpose, a relatively generic feature

extraction was conducted before plotting and clustering their projection. Like so, we

intend to isolate groups of similar events, and allow for a more efficient exploration

of the data. Especially, the events we hope to find are click trains and cetacean

vocalisations, but we also expect to retrieve events from other noise sources.

Spectrogram chunks are processed in two main steps in order to emphasize

potential signals of interests (Fig. 4.5). First, to get a representation that preserves

short events (such as clicks) but with a reduced size, we max-pool spectrograms

time wise. Second, to make abstraction of the temporal information (whether
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Figure 4.5: Main steps of the spectral feature extraction procedure. The spectrogram
is first max-pooled time-wise by a given factor. Then, each frequency bin is sorted
(time-wise) to make abstraction of the temporal position of events.

an event is at the beginning of a chunk or at its end) we sort each frequency

bin (time wise) in descending order.

Doing so, the resulting matrix is no longer a spectrogram, but rather a repre-

sentation of the energy distribution for each frequency bin. This allows to select

specific columns as discriminating features, the first denoting the highest energy in

the chunk for each frequency bin, and the last their lowest. For instance, looking

for short events, we can select the first and second columns. Chunks with a large

gap between the two should contain a short but strong acoustic event. It could

thus be differentiated from chunks with stationary strong energy and chunks with

a low overall energy, and this for specific frequency bins. For simplicity, this set

of columns to be kept will be referred to as ‘quantiles’. The full procedure for

this analysis is described in Listing 4.1.

Listing 4.1: Feature extraction and clustering for humpback whale vocalisations. Steps
are operated over a batch of signals on GPU for computation speed.
from torchaudio.functional import resample
import torch
from sklearn.cluster import DBSCAN
from umap import UMAP
gpu = torch.device(’cuda’)

# load a batch of signals using pyTorch DataLoader
sigs = ...
sigs = sigs.to(gpu)
sigs = resample(sigs, source_fs, fmax ∗ 2)
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# compute the magnitude spectrogram using the STFT
specs = torch.stft(sigs, n_fft=1024, hop_length=512)
specs = 20 ∗ torch.log10(specs.norm(p=2, dim=−1))
# substract a background noise estimate
specs = specs − specs.median(dim=1, keepdim=True)[0]
# apply the mel−transform
spec = torch.matmul(melbank, specs)
# undersample the spectrogram over the time dimension
specs = torch.nn.MaxPool1d((uds,))(specs)
# rearange the tensor into a list of time chunks
specs = specs.permute(1, 0, 2)
specs = specs.reshape(specs.shape[0], −1, chunksize)
specs = specs.permute(1, 0, 2)
# sort frequency bins and select quantiles
features = torch.sort(specs, dim=2, descending=True)[0]
features = features[:,:,quantiles].numpy()
# project and cluster each time chunk
features = features.reshape((specs.shape[0], −1))
embeddings = UMAP().fit_transform(features)
clusters = DBSCAN().fit_predict(embeddings)

The variables fmax, uds, and chunksize need to be tuned to the type of signals

we desire to isolate, especially in terms of spectrum range and spectrogram temporal

resolution. fmax determines fs at which the signal is resampled, uds determines

the downsampling factor used for max-pooling the spectrogram, and chunksize

determines the sampling rate of the feature extraction process. As for the humpback

whales, they were set to 8,000 Hz, 14 and 20 respectively (chunks of 10 sec with

20 time bins). Then, the first second and fifth quantiles were chosen.

These choices were made via intuition and empiric testing. However, once anno-

tations were gathered, experiments were carried out to measure which configuration

would have been the most efficient.

Trials with varying values for the size of chunks and the choice of quantiles

were conducted, using the NMI between clusters and annotations as a metric of

configuration quality. The choice of configuration appeared to have a relatively

small impact on the resulting NMI, with values ranging between 0.15 and 0.18

(the random baseline being under 0.01). The highest scoring configuration was to

cut chunks of size 10 keeping only the first quantile.
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Figure 4.6: Interface for browsing projections of spectrogram chunks. The left panel
displays the projections, with colours denoting associated clusters and red dots signaling
points that have been clicked on. The right panel displays the spectrogram of the last
selected audio as well as its metadata.

Once features have been extracted for a large amount of samples, we reduce

their dimensionality using UMAP, and cluster them using DBSCAN (similarly

to [183]). A custom made interface then enables a seamless browse through

clustered projections (Fig. 4.6).

Users can select an audio chunk by clicking on its projection on the scatter

plot. The interface will then play the corresponding sound extract and display

its spectrogram on a secondary window. This allows for the identification of

discriminant clusters to be retained (containing only vocalisations, or only noise for

instance). Eventually, we can plot samples belonging to selected clusters as .png

files and use thumbnail picking to sort out misclassified samples.

4.4.2 Impulses’ features (toothed whale clicks)

This work was strongly inspired by Frasier [70], conducted in collaboration with

Maxence Ferrari and Marion Poupard, on the Carimam data (section 3.2.1).

Besides enhancing the annotation process, clustering can also allow to extract higher

level features of signals. For instance, we can cluster clicks by their spectral features

and infer ICI characteristics, which help discriminate toothed whales click trains
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from reef noise1. This ICI measurement would not be possible without the prior

feature extraction and clustering because of the numerous false positives present.

Similarly than with sperm whale clicks (section 4.3.2), we start with a generic

impulse detection on the waveform before extracting features, this time spectral

characteristics rather than TDOAs. I thus propose the following steps :

• Generic impulse detection:

– high pass the signal x(t) at 5 kHz,

– compute the Hilbert transform H(t) of x(t),

– compute a running average a(t) to smooth H(t),

– convert a(t) into decibels with 20 × log10(a(t)),

– compute the median and std of a(t),

– find peaks of 20× log10(x(t)) that are 3 dB above the noise level expressed

as median +3 × std,

– retain peaks with widths between 0.008 and 1.2ms.

• Feature extraction:

– compute the FFT of a 1ms window surrounding the detected impulse,

– compute the 3 dB centroid frequency,

– cluster impulses by their centroid frequency (separately per chunk of

1 min),

– compute ICIs as the time difference between impulses of the cluster,

– fit a gaussian Kernel Density Estimate (KDE) on the ICI distribution of

the cluster,

– estimate the peak of the KDE,

– for each cluster, save the peak of the KDE (most frequent ICI), its width

(ICI variability), and the mean 3 dB centroid frequency.
1A click train is a sequence of clicks with, to some extent, a locally stable ICI.
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Figure 4.7: Interface for browsing click clusters. The left panel displays the mean ICI
against 3 dB centroid frequency for each cluster of impulses. Red dots signal the selected
cluster of clicks. The right panel displays the spectrogram of audio surrounding the
selected cluster as well as its meta data.

The user can eventually filter data on the KDE peaks height and width depending

on the desired specificity (setting a threshold on the height determines the necessary

stability of the ICI). An interface then displays a scatter plot of ICIs against

centroid frequencies (Fig. 4.7). Again, a click on a point triggers a spectrogram

display of the corresponding signal, which can be further analysed and eventually

saved for annotation.

This method enables to explore large banks of recordings in search for click trains,

with no prior knowledge on the target signals. Again, a simple interface significantly

accelerates the process simply by linking a display of features to associated signals.

4.4.3 AE embeddings (orca calls)

This work was conducted on the OrcaLab data (section 3.2.1), and has been subject

to a workshop intervention [21].

For this section, we are interested in the classification of pre-detected orca calls

(dataset of 114k orca calls detected by a CNN presented in section 5.3.1). NRKW

call types, as defined by Ford [68], are characterised by temporal pitch patterns.

First experiments were thus conducted using a pitch based feature extraction to

cluster calls (leading to a workshop intervention [163]). However, the estimation
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Figure 4.8: Architecture of the encoder part of the AE. (Bottom) shapes of volumes as
(depth × height × width). (Top) Operations and kernel shapes as (height × width).

of the pitch appeared to be quite unreliable in low and medium SNR conditions

(discussed in section 2.2.1). This led to a shift towards a larger scale extraction

of shape (as opposed to local pitch estimates).

Auto-encoders (introduced in section 2.1.4) are trained to compress data in a

lower dimensional space (bottleneck) while keeping the ability to reconstruct it.

When the bottleneck is small enough, the reconstruction has to rely on learning

structures in the data, exploiting them during compression and decompression.

This motivated the use of AEs for the feature extraction of orca calls, expecting

the bottleneck to contain the shape of the call in a low dimensional space.

The training framework of the AE, illustrated in Figure 4.9, was designed

as follows (see Fig. 4.9):

• Compute the Mel-spectrogram on windows of 2 sec around detections (fs =

22050, NFFT = 1024, hop = 330, #Melbands = 128, fmin = 300, fmax =

11025),

• Run the encoder to compress the 128x128 image to 16 dimensions (Fig. 4.8).

Each convolution is followed by batch normalisation and leaky rectifier linear

units. The resolution is lowered via strides of 2 for each convolution, and a

max-pooling layer,

• Run the decoder as the mirror of the encoder. The first 16x4x2 volume is

created via a linear layer, and each resolution increase consists in upsampling

by nearest value followed by two convolution layers of kernels 3x3,
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Encoder Decoder

Bottleneck

V
G
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Figure 4.9: Architecture of the training framework for the AE of orca calls using a
perceptual loss [102].

• Compute the VGG embedding of the input and of the reconstructed images

(VGG16 pretrained on ImageNet [46], extracting activations after the 6th

convolutionnal layer),

• Use the MSE between the two VGG embeddings as the loss

(L = Σ∥VGG(E) − VGG(Ê)∥2).

The size of the bottleneck was empirically chosen as the minimum that still

enables satisfactory reconstructions: 16 channels. To put it in perspective, in

a similar AE experiment on orca calls, Bergler et al. [15] used a bottleneck

of 512 channels.

Figure 4.10 demonstrates how, in reconstructions, details of some calls are

omitted, and background noise becomes patterned. Indeed, due to the limited

amount of information that the bottleneck can fit, the decoder is forced to learn

common data structures to reconstruct the data. This is actually beneficiary for

our end goal of grouping similar shapes together, and it explains why random

background noise, transient clicks, and small variations in call shapes are not

found in output spectrograms.

The bottleneck embeddings were later used as features for clustering (DBSCAN

on UMAP projections similarly to [183]). This enabled a drastic reduction of
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Figure 4.10: Comparison of input and AE reconstructed spectrograms.
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the annotation effort by grouping similar calls together. Thumbnail picking

(Fig. 4.2) was then conducted to verify clusters and associate them with types

as defined by Ford [68].

4.5 Iterative annotation

Active learning algorithms loop between model training and expert correction to

improve a database (qualitatively and/or quantitatively). It is relevant when a

training database is not sufficient to achieve satisfactory performances (because

too few samples are available or only ‘easy’ ones), and has proven to improve

bioacoustic detection models [5]. By correcting the model’s predictions at each

iteration, we emphasis on difficult examples and guide it towards robustness. In this

work, a simplified version of active learning was conducted, referred to as iterative

annotation (Fig. 4.11). No quantitative performance analysis was conducted for

this iterative annotation process, since the aim was not to answer any research

question, but rather to efficiently (quickly and demanding only limited human

effort) provide materials (i.e. annotated databases) for further studies on detection

and classification mechanisms.

The main step of the iterative annotation procedure consisted in selecting the

highest model predictions on unlabelled data, similarly to the ‘hard negative mining’

proposed by Shiu et al. [191]. Typically, several hundreds of the highest predictions

were selected, for an expert to correct them via thumbnail picking.

To enhance the efficiency (reduced human effort) of this correction step, the

expert annotates only ‘easily identifiable’ samples. By ‘easily identifiable’, we

mean a sample for which the expert can make a confident decision from a quick

spectrogram analysis. This decision is typically based on the match between a high

energy event in the spectrogram and the expected spectro-temporal characteristics

of the target signal. By only sorting out ‘easily identifiable’ samples, we save time on

one by one detailed examinations, and we potentially reduce the risk of annotation

error (ambiguous samples might reduce inter-annotator agreement [49]). Thumbnail
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Figure 4.11: Flowchart of the iterative annotation process conducted to increase database
sizes.

picking helped in making this correction of ‘easily identifiable’ samples relatively

rapid, such that an expert can annotate dozens of samples in a few minutes.

During this phase, alike the ‘hard negative mining’ proposed by Shiu et al.

[191], the expert corrects the model on false positives, but also comforts it on

true positives (added as positives to the database). Moreover, when true positives

are encountered, surrounding positives are also added to the training database

(vocalisations most often come in sequences). The intuition for doing so is to avoid

the iterative specialisation of the model in detecting only one type of vocalisation.

After all ‘easily identifiable’ samples were sorted out from the selection of high

predictions (typically between 10% and 50% of the selection depending on the

dataset and the current iteration), a new model is trained on the incremented

dataset, before being forwarded on unlabelled data for another round of correction.

This loop was operated until few false positives were left to be corrected, or test
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set performances (AUC or mAP) would suggest a satisfying model.

This process was used to gather annotations for fin whale pulses, dolphin whistles,

humpback whale vocalisations, and orca calls. For humpback whales, the initial

training database was gathered using clustered spectral features (section 4.4.1).

For orcas, spectrogram binarisations was used (section 4.3.1). For the remaining

two, transfer learning methods were employed.

4.5.1 Transfer learning (fin whale pulses, dolphin whistles)

Pre-training a model on a database before fine tuning on a different one is called

transfer learning. Similar approaches were used to kick-start the iterative annotation

process on two detection tasks, as described in the following paragraphs.

Fin whale pulses

To gather a database of fin whale 20 Hz pulses from the recordings of Bombyx and

Boussole, several handcrafted algorithms were first tested (looking for strong energy

peaks in realistic time and frequency ranges). Without any exemplary signal to

tune them, and with the wide variety of noises present on both banks of recordings,

this approach failed to yield any fin whale signals.

We were lucky to eventually get some help from M. Giani Pavan, who shared

some of his recordings of Mediterranean fin whale songs containing 100 pulses [154].

Despite the limited amount of samples, training a small neural network on this data

allowed to find similar signals on the Bombyx and Boussole datasets (the model

architecture is described in section 5.2.1). This demonstrates the capacity of small

neural networks to generalise to different recorders even with very few training

samples. However, this statement is true for the fin whale 20 Hz pulse which is

highly stereotyped, but might not apply to more complex signals.

Dolphin whistles

For this task, as for the fin whale pulses, we used other sources of data available at

the lab as a starting point to the iterative annotation process. This time though,

the variability of target signals prevented the use of a small model architecture.
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Thus, to enforce the generalisation of the model to other recording systems,

the available data was augmented with negative samples from the target recording

system (Carimam). By mixing annotated foreign inputs with negative samples from

Carimam, we teach the model to be robust to common Carimam perturbations

(self noise from the sound card, reef noise), while training on positive samples

of the target signal. This ‘mixing’ takes form as a simple summation of the

waveforms after their standardisation.

4.6 Resulting annotations and train / test splits

The methods proposed in this section yielded enough annotations to train ANN

models on each detection / classification tasks (Tab. 4.1).

Target signal Positives Negatives Total
Sperm whale clicks 42% 58% 5,554
Fin whale 20 Hz pulses 14% 86% 5,790
Orca calls 78% 22% 6,004
umpback whale vocalisations 67% 33% 2,427
Dolphin whistles 12% 88% 1,595

Table 4.1: Summary of the annotations gathered on the data at hand for detection task.

For the following experiments, performance measurements need to reflect our

end goal, namely training robust models. Robustness, can be defined as the capacity

to ignore perturbations, some kind of resilience. In our case, perturbations are

sound events and background noises, especially those not seen in training. To

measure robustness, our test data must therefore contain new acoustic content,

somewhat different from training.

The randomly sampled train / test splits often seen in the machine learning

community is insufficient in that sense. Indeed, train and test samples will be

extracted from the same vocalisation or noise sequences, thus sharing most of

their characteristics. On the other hand, choosing a specific source of data, or if

not available a distinct time period, should yield novelty in the test set, and give

relevant robustness measures for our models [175].
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Fin whale pulses

The annotated database gathered for fin whale 20 Hz pulses offers three different

data sources (Tab. 4.2). Thus, in the experiments, three folds were used : each

using two sources for training and the remaining one for testing. The Magnaghi

data corresponds to the extracts provided by G. Pavan (see section 4.5.1).

Data Source Positives Negatives Total
Magnaghi 15% 85% 688
Boussole 9% 91% 4,528
Bombyx 49% 51% 574
Total 14% 86% 5,790

Table 4.2: Distribution of annotations of 20 Hz fin whale pulses. Each source of data
was used as test set in a 3 fold manner.

Sperm whale clicks

The annotated database of sperm whale clicks coming from only one source of data

(Bombyx), The year 2017 was chosen for testing and the remaining for training

(Tab. 4.3). This choice is motivated by the fact that 2015 has too few samples for

the test to be relevant, 2016 has a positive / negative distribution too different than

the global dataset, and 2018 has the largest amount of samples which is desirable

for training. To improve the annotation comes from separate files.

Experiments showed that the model would tend to lack sensitivity, with the

exception of pilot whale samples which would trigger a low specificity. To tackle this

issue, and accounting for the imbalance in the data (Tab. 4.3), sperm whale and pilot

whale samples were over-sampled during training, by a factor 3 and 10 respectively.

Recording year Sperm whale Boat / Noise Pilot whale Total
2015 48% 52% 256
2016 75% 23% 2% 1,383
2017 32% 67% 1% 1,363
2018 28% 68% 4% 2,552

Total 42% 55% 3% 5,554

Table 4.3: Distribution of annotations for the sperm whale click detection task. The
year 2017 was used as test set.
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Humpback whale vocalisations

For the detection of humpback whale vocalisations, the data recorded from Sint

Eustatius island was selected as the test set (Tab. 4.4). This was motivated by

the fact that this site has a representative distribution of classes and is neither

too small nor too big (∼ 10%).

Station Positives Negatives Total
Anguilla 100 0 100
Bahamas 0 45 45
Bermude 276 27 303
Guadeloupe 666 26 692
Jamaica 0 11 11
Martinique 354 37 391
Saint Barthélémy 173 0 173
Sint Eustatius 204 103 307
Saint Martin 163 242 405
Total 67% 33% 2,427

Table 4.4: Distribution of humpback whale vocalisations annotations by recording
stations (all from Carimam). The Sint Eustatius data source was used as a test set.

Dolphin whistles

For the detection of dolphin whistles, the data recorded from Guadeloupe Breach

was selected as test set (Tab. 4.5), again for a compromise between class balance

(similar to that of the global dataset) and sufficient size.

Orca call detection

A special recording session was run at OrcaLab in 2019 by Poupard et al. [165],

for the study of group dynamics via call triangulation. This protocol made use

of a different recording system than the original OrcaLab setup. The manual

annotations gathered for this study were used in this thesis, bringing an opportunity

to measure the impact of a change in recording hardware on detection mechanisms

with no additional annotation effort.

Thus, two test sets were used for the orca call detection task, one from the

same antenna than in training but from a different year and one from a different
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Station Positives Negatives Total
Guadeloupe Breach 36 354 390
Gualdeloupe Anse Bertrand 0 49 49
Saint Barthélémy 0 16 16
Sint Eustatius 37 111 148
Saint Martin 0 34 34
Jamaica 24 10 34
Bonaire 74 25 99
Bermude 25 439 464
Bahamas 0 16 16
Anguilla 0 345 345
Total 12% 88% 1,595

Table 4.5: Distribution of dolphin whistle annotations by recording stations (all from
Carimam). The Guadeloupe Breach data source was used as test set.

antenna (Tab. 4.6). A preliminary study using this dataset was published in

a conference paper [19].

Recorder Year Positives Negatives Total
OrcaLab network 2015 - 2017 846 3,777 4,623
OrcaLab network 2019 111 177 288

Different antenna [165] 2019 368 725 1,093

Table 4.6: Distribution of orca call binary annotations. The data from 2019 (from
OrcaLab and different antenna) was used as test set.

Orca call classification

For the orca call classification task, given the diversity of classes and the singular

recording source, the train / test split was simply done by sorting by date and

choosing a proportion for test and the rest for train. For instance, the first 10% of

each class were taken for test, and the remaining 90% were used to train the model.

Figure 4.12 illustrates samples from each class, using the nomenclature de-

fined by Ford [68].

Antarctic blue and fin whale calls

The Antarctic mysticetes dataset [136] was not subject to custom annotations, but

still demanded some preprocessing to be fed to a model (windowing of samples,

extraction of negatives). Table 4.8 summarises the resulting distribution of labels for
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Figure 4.12: Examples of each class of orca call types annotated using clusters of AE
embeddings. The terminology as defined by Ford [68] has been used by associating calls
with their closest class in the catalogue.
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call type instances
N1 854
N2 191
N3 192
N4 1213
N5 209
N9 609
N23 469
other 109
Noise 814

Table 4.7: Distribution of annotations of orca call types [68]. The ‘other’ class corresponds
to infrequent calls that did not have enough occurrences to form an independent class.

each data source. Samples from Kerguelen 2005 were chosen as a test set, motivated

by its specific recording system and location, as well as its sufficient support of all

classes (Tab. 4.8). The remaining date was used for training.

4.7 Discussion

As seen throughout this chapter, techniques employed in pre-detection, feature

extraction and filtering need to be adapted to the type of target signals and the

available recordings. For that matter, Table 4.9 recapitulates the choices made

for each of the 6 annotation procedures conducted.

Often, we need to explore the relevance of extracted features before using them

for filtering. This exploration process is significantly accelerated by interactive

visualisations that load the signal from a click on projected features. Such exploration

helps in finding patterns in the data, and to exploit them to enhance annotations.

The following paragraphs highlight the advantages of some methods employed

through this chapter’s experiments, along with potential pitfalls to be kept in mind.

Random baseline comparison Let us get an idea of the time it would have

taken to annotate the sperm whale click database via random sampling for instance.

Sperm whales were confirmed on 6% of the files from Bombyx (see section 6.3.1). If

we consider 30 seconds to manually check a file (between 1 and 5 minutes long),

to yield the 2,300 positive labels collected here (they are each on separate files),
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Target signal Pre-detection Feature extraction Filtering
Sperm whale clicks TK filter TDOA custom UI

Humpback whale vocalisations NA spectral features custom UI and clustering
Orca call detection spectrogram thresholding region statistics hand-crafted rules

Orca call classification CNN auto-encoder clustering
Fin whale 20 Hz pulses transfer learning

Dolphin whistles transfer learning

Table 4.9: Summary of steps employed in the initial annotation process of each target
signal.

one would need 320 hours. It took approximately 40 hours in total to collect

this database with the annotation approach described in section 4.3.2 (custom

UI to visualise TDOA tracks).

Iterative annotation Iterative annotation has proven to be very efficient in

increasing database sizes. It can be started as soon as few dozen annotations

are at hand. Indeed, in that case, rather than spending time in tuning pre-

detection mechanisms to collect more samples, deep learning models help to collect

occurrences of the target signal as well as disruptors (e.g. boats, signals from other

species). Moreover, it is worth the efforts of developing the training procedures

since they will be used subsequently, as opposed to the pre-detection algorithms

which are rather a one time usage.

The yielded annotations will found the basis of knowledge for our model, and

will further serve performance measurements. For this reason, it is crucial that

no labeling errors slip into our database, or it will negatively impact all following

procedures. A first pitfall is in the gathering of the initial database for active

learning. Depending on their frequency and source level, certain vocalisation

might be missed by the chosen algorithm or annotation procedure. If so, the

model will never learn to detect them. This especially comes from the fact that

we only correct the positive predictions of the model, sorting out false positives

(negative predictions usually come in much larger numbers, making it fastidious to

find false negatives). To mitigate this effect, one can manually browse recordings

around detections and annotate full sequences, or look for false negatives in low

confidence negative predictions.
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A second source of bias can be human annotators, for which Duc et al. [49]

has demonstrated the potential subjectivity. To mitigate this effect, we can cross-

validate labels with several experts, and propose the ‘unsure’ label during annotation.

Proposing the unsure label or simply not annotating ambiguous samples allows to

mitigate potential inter-annotator disagreement. This was the strategy employed

in this thesis, which can be seen as training models to be reliable in detecting

‘clean’ vocalisations, rather than having the ambition for a model being better

than human experts.

Thumbnail picking Thumbnail picking allows to quickly validate detections or

clusters to collect annotations. The only condition is to find a visualisation that

fits a small sized image while allowing to make a decision on sample classes (small

spectrograms work well for most stationary signals as seen in Fig. 4.2). It is versatile

and easily shareable to experts: the only prerequisite is to have a graphical file

manager. It is fast and user friendly: you just need to click on files to select them

and move them to a separate folder (cut and paste). Additionally, seeing multiple

samples at once strongly helps the eye in discriminating singularities.

This last advantage can also be dangerous in the annotation process. Indeed,

when sorting large folders to try and keep only one call type, one might always

see similar calls at a time on the screen, but through scrolling, pitch contours

might shift progressively. When this occurs, the annotator might feel like all the

calls in the folder are similar, when in fact, the ones at the beginning are very

different from the ones at the end. To mitigate this, indexes should be randomly

permuted, since this progressive shift in call contour is likely to occur if files are

sorted time wise, but very unlikely otherwise.

‘Generic’ spectral features extraction Section 4.4.1 proposes a procedure

suited to explore large banks of recordings by grouping events with similar content

in terms of spectro-temporal energy distribution. It allowed to collect a first

database of humpback whale vocalisations. The success of such approach relies

on several assumptions:
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• A minimal knowledge of the target signals is needed to configure the algorithm

(e.g. frequency range, chunk length),

• Events are grouped independently of the temporal distribution of the energy

in the spectrogram (e.g. upwards and downwards chirps will yield the same

features). This is suited to discriminate between events of different temporal

support, but would not work to discriminate between pitch patterns,

• For the projection and the clustering to reveal a group of events, a sufficient

number of instances are needed. This is the most probable explanation of

why we failed to retrieve dolphin whistles and click trains using this method

(they were found to be way more scarce than humpback whale vocalisations).
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5.1 Context and objective

The last chapter presented how annotation datasets were gathered for several

target signals. It represents an important step towards the objective of this thesis:

building robust detection and classification mechanisms. For that purpose this

chapter discusses ANN training in a supervised learning context.
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Experiments start with the detection of sperm whale clicks and fin whale

20 Hz pulses, accounting for a computational constraint (for the detection to be

embedded in a sono-buoy, see section 6.2) . For that matter, several complexity

reduction approaches are studied.

Then, heavier models (having more layers and each with more channels) are used

to detect orca and Antarctic mysticetes calls. Experiments focus on the effect that

network front-ends, architectures and hyper-parameters might have on performances.

Furthermore, given orca call detections, trials with deep representation learning

and semi-supervised learning are reported for the call type classification task.

5.2 Light weight detectors

One objective of this PhD’s funding was the implementation of a real time alert

system for the presence of large cetaceans in the Ligurian Sea (Western Mediter-

ranean Bassin, GIAS Project). This system takes form as a battery powered

sono-buoy with acoustic and processing capacities. To enable the deployment of

detection mechanisms into this embedded system with low computing capacity,

several complexity reduction approaches have been experimented with. Some

computational cost measures will be given according to the specific embedded

Microcontroller Unit (MCU) of the buoy: the PIC32 by MicroChip.

Two large cetacean species evolve in the Ligurian Sea, and therefore are to

be detected by the system: sperm whales and fin whales. Two target signals

are thus concerned by the following experiments on low computational detection:

sperm whale clicks and fin whale 20 Hz pulses (they are the predominant signals

that the two species emit).

This section first reports on experiments with three complexity reduction

approaches (depth-wise convolution, weight pruning and weight quantisation),

comparing their computational needs and detection performance. Then, with the

chosen approach of depth-wise convolution, we investigate on optimal number of

features per layer and kernel sizes via a grid search. Finally, the two selected

detection mechanisms are compared with baseline algorithms of the literature.
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5.2.1 Complexity reduction

The base architecture for the following experiments is a 3 layer network of 1D

convolutions. It takes Mel-spectrograms of 5 sec surrounding annotations as an input:

• Sperm whale clicks: fs = 50 kHz, NFFT = 512, hop = 256, fmin = 2 kHz,

fmax = 25 kHz, #Melbands = 64

• Fin whale 20 Hz pulses: fs = 200 Hz, NFFT = 256, hop = 32, fmin = 0 Hz,

fmax = 100 Hz, #Melbands = 128

Following Schlüter [186], the spectrograms are compressed with log(1 + S ×

10a) with a a trainable parameter. It is worth noting that for the fin whale

frontend, the Mel transformation is insignificant (128 Mel bands among 128 FFT

bins). It was kept for development simplicity, but could be removed with no

expected change in the results.

The frequency bins (spectrogram rows) are considered as input channels for the

first 1D convolution (this is equivalent to a 2D convolution with only one kernel of the

same height as the input spectrogram). This choice was motivated by the fact that

large spectral shifts are not expected for these target signals. Convolving frequency-

wise is thus inappropriate. Using 1D convolution also significantly reduces training

and inference computational complexity.

The following experiments make use of the annotated databases described

in section 4.6.

Depth-wise layers

As demonstrated in section 2.1.3, using depth-wise separable convolution layers is

an efficient way of reducing both the amount of multiplications needed for inference

and the number of trainable parameters. Figure 5.1 compares the number of

multiplications needed for an inference with regular convolution networks and

depth-wise separable networks. The lower bound complexities are of O(n2) and

O(n) respectively (with n the number of features per layer).
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Figure 5.1: Number of multiplications needed per forward pass against the number of
features per layer, for two types of architecture (solid lines). The number of multiplication
was estimated for a single stride with a 3 layer architecture (1D convolutions, 64 channeled
input, single channeled output and kernel of size 4). Estimated inference time on the
PIC32 MCU are also given (dashed lines).

Weight pruning

In ANNs, weight pruning consists in putting to 0 a proportion of weights after

training [117] (e.g. the ones with the smallest L1 norm). The idea is to avoid

computing multiplications for weights that have a small impact on end the prediction.

Experiments were conducted to measure the effect of pruning as compared to

reducing the number of features per layer before training (Fig. 5.2).

For all architectures, 10% of pruning did not decrease performance. As for 20%

and 30% of pruning, it had a detrimental effect for some but not all architectures.

On the other hand, in a few cases, pruning appeared to be slightly beneficial.

In any case, decreasing the number of features per layer before training does

not significantly decrease end performances, at least not as much as pruning

lots of weights (40% of pruning resulted in large performance drops in all cases).

Designing architectures with fewer features per layer thus seems a better option

to reduce the complexity of models.
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Figure 5.2: AUC performance on the sperm whale click detection task before and after
pruning. Models consisted in 3 depth-wise layers with varying numbers of features (each
randomly initialised 5 times). Green boxes denote the performance of models before
pruning, with 16, 32, 64, and 128 features per layer. For each of them, pruning was
applied over 10%, 20%, 30%, and 40% of the weights, whose performances are shown in
white boxes.

Weight quantisation

The type of variables in a multiplication has an important impact on its computa-

tional cost. For instance, on the PIC32 from Microchip (the embedded MCU of

the sono-buoy), a multiplication of two floating point variables takes 736 ns while

multiplying two 8 bit integers takes 48 ns [33] (a factor 16 of difference).

Weights were thus quantised to 8 bit integer variables in an attempt to reduce

computation time. To do so, using the Pytorch [153] quantisation module, inputs,

weights and activations were quantised after a regular floating point training (post-

training quantisation). To calibrate the quantisation parameters and mitigate

information degradation, inference on a few samples is still conducted, but without

any backward propagation. This quantisation approach was experimented on 3 layer

architectures with regular convolution and varying number of features (Fig. 5.3).

The quantisation procedure appeared to have a non-significant impact on

performance. Quantisation can thus be a relevant approach to the complexity

reduction of models.



104 5.2. Light weight detectors

64 128
Number of features per layer

0.90

0.91

0.92

0.93

0.94

0.95

Te
st

 A
UC

floating point weights
8 bits interger weights

Figure 5.3: Performance for sperm whale clicks detection, before and after quantisation
to 8 bits integers. 3 layer regular convolution architecture were trained 5 times for each
configuration.

Conclusion

Figure 5.1 compares computation times of architectures with quantised regular

convolutions and floating point depth-wise layers. For architectures with 16 features

per layer or more, the depth-wise version is much faster. For instance at 128

features per layer (the chosen configuration for fin whale 20 Hz pulse detection),

such architecture yields an inference 50 times faster than a regular convolutional

one, and 5 times faster than its quantised version. Depth-wise convolutions have

thus been retained for the detection systems of sperm whale clicks and fin whale

20 Hz pulses, the two target signals of the GIAS project.

Implementing quantised and pruned depth-wise architectures would have been

possible, but would be more demanding in development efforts. Moreover, as

section 6.2 shows, the main cost of the sono-buoy embedded analysis lies in the

spectrogram computation rather than in the model inference (given the already

reduced complexity of the CNN). Accounting for this, no further efforts were put

into researching complexity reduction for these detection systems.
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Figure 5.4: AUC scores on the test set for the fin whale 20 Hz pulse detection task.
Depth-wise architectures have been experimented with several combinations of hyper-
parameters (number of features per layer and kernel size). For each configuration and
train/test fold, 5 runs were conducted. Folds are labelled by their test set (Bombyx scores
report the performance of models trained on Magnaghi and Boussole data).

5.2.2 Hyper-parameter search

With the chosen 3 layer depth-wise architecture, experiments were conducted to

select the optimal kernel size and number of features per layer. These small neural

networks being quite fast to train (less than 5 seconds per epoch using a GPU),

a simple exhaustive search is possible. Kernel size and number of feature per

layer were chosen to study as they were found to have the largest impact in the

compromise between computation cost and performances.

Networks were trained with batch normalisation, dropout (p = 0.25) and leaky

rectifier units after the two first convolutional layers. Also, learning rate and weight

decay were manually tuned before training with varying numbers of features and

kernel sizes. Figure 5.4 and Figure 5.5 summarise the resulting performances for

the two target signals and with 5 random initialisations for each configuration.

On the fin whale 20 Hz pulse detection task, the Magnaghi test set showed a

great variability to network initialisation, even with the same hyper-parameters.

This is perhaps a consequence of specific recording setup properties (this recorder

was operated from a boat whereas the two other sources were mounted on buoys).
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Figure 5.5: AUC scores (on train and test sets) for the sperm whale clicks detection
task. Depth-wise architectures were experimented with several combinations of hyper-
parameters (number of features per layer and kernel size). For each configuration, 5 runs
were conducted.

On the two remaining folds however, performance is relatively resilient to hyper-

parameter choice and initialisation. The 0.99 AUC score on the test set seems

satisfactory for the task at hand.

As for the sperm whale click detection, larger kernels and deeper layers (number of

features) appeared to induce some overfitting. For some configurations however, the

depth-wise architectures, despite a lower amount of parameters, yield performances

similar to those of regular CNNs (Fig. 5.3).

For the following experiments, the architecture with kernels of size 5 and 32

features per layer was retained for the sperm whale click detection, and kernels of

size 5 with 128 features per layer was retained for the fin whale 20 Hz pulse detection.

5.2.3 Baseline comparison

The performances reported in the last section only have value relatively to that of

previous systems (baselines). This section first reports on a common technique used

in sperm whale click detection: the TK filter. Then, two experiments were conducted

to validate the fin whale 20 Hz pulse detection procedure: comparison to a commonly

used template matching method and trial on a publicly available unseen dataset.
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Figure 5.6: ROC curves for the sperm whale click detection task. Performances are given
for the TK filter (baseline) and for 5 initialisations of the 3 layer depth-wise architecture
(kernels of size 5 and 32 features per layer, median scores are given ± standard deviation).

TK filter (sperm whale clicks)

The chosen baseline for the sperm whale click detection is inspired from the work

of Ferrari [58]. It makes use of the TK energy operator to find impulses, and

normalises them by an estimation of the background noise via a rolling median.

This algorithm was used on the whole dataset of sperm whale clicks for

comparison with ANN performances. Using the maximum energy value of samples

as prediction, the AUC score is 0.86, around 0.07 points below most of the trained

depth-wise models (Fig. 5.6). This translates to, for instance if we fix a 10%

fall-out (false positive rate), a recall of 62% for the TK filter, against 82% in

average for the depth-wise models.

Different base for spectrogram computation

Through numerous research, the scientific community has looked for alternatives to

the Fourier transform as feature extraction before the main neural network. Indeed,

the sinus base the FFT offers might seem too generic, not suited for particular

signals such as sperm whale clicks. Experiments were thus conducted using the

sincnet front-end proposed by Ravanelli and Bengio [169], which is based on cardinal
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sinuses with trainable cut frequencies. Scores never exceeded 0.86 of AUC on the

sperm whale click database (6 points below the average score of FFT based models).

Template matching (20 Hz fin whale pulses)

As mentioned in section 2.2.1, spectrogram correlation is a common approach for

cetacean signals detection, especially for mysticetes. To compare our ANN system

with this baseline, we built a template of fin whale 20 Hz pulse by averaging the

spectrogram of all annotated pulses in the training set. We can use the cross-

correlation product between samples and the template as a detection confidence.

The resulting scores are presented in Figure 5.7. The AUC of the template matching

method is 0.898 (5 to 10 points less than the CNN model, depending on the fold).

Larger ANN architecture (20 Hz fin whale pulses)

The dataset published by Madhusudhana et al. [127] seems relevant to test the

proposed system on foreign data (it also studies CNN based 20 Hz pulse detection). A

depth-wise model trained only on our data was thus run over it. The resulting mAP

and peak F1-score are 0.96 and 0.88, when the best overall performances of the study

are 0.95 and 0.91 respectively (note that the dataset published is only a subsample

of the dataset used in the study, and thus scores are not reliably comparable). This

demonstrates that the proposed model generalises well to new data, with scores

comparable to a larger architecture that exploits the sequentiality of the pulses.

Conclusion

To challenge this thesis’ choice of architecture, handcrafted algorithms, a different

front-end, and tests on foreign data were implemented. All results comfort the

fact that the FFT based depth-wise architectures are successful at the task, and

that with a relatively low computational cost, they show better performances

than handcrafted algorithms.
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Figure 5.7: ROC curves for fin whale 20 Hz pulse detection over each test set (the
two remaining sources serving as training set, see section 4.6 for details). Scores of the
template matching method are also reported, along with that of the depth-wise model
over the dataset published by Madhusudhana et al. [127].

5.3 Deeper and wider models

The remaining target signals treated in this thesis present more variability than

sperm whale clicks and fin whale 20 Hz pulses. Larger architectures than simple

3 depth-wise convolutions have therefore been experimented. We followed the

community by opting for the ResNet architecture, widely used in image and sound

classification tasks, and the most used for bioacoustics applications [205].

Note that when using ResNet architectures, the last layers consist of an average

pooling of the spatial dimensions, followed by a fully connected layer (with the

number of output channels set to the number of target classes). In bioacoustic

applications, it is often more convenient to yield a sequence of predictions through

time rather than one prediction regardless of the size of the input spectrogram. To

retrieve this behaviour while maintaining the ResNet properties, one can discard

the average pooling and replace the fully connected layer by a 1x1 convolutional

layer (kernel of size 1).

During training, the sequence of predictions can be max-pooled before the loss

computation. Max pooling is more suited than average pooling for detection tasks
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since we want the prediction to be invariant to the amount of void surrounding

a target signal. In other words, whether there is one or 10 calls in the input, the

detection should be the same: it denotes the presence of at least one event in the

window. Note that when using a max-pooling layer, during back-propagation, only

the temporal frame with the maximal prediction will propagate gradients.

In this section, experiments study the effect of the choice of front-end (especially

spectrogram range compression), architecture (among ResNet-18, ResNet-50 and

sparrow [83]), training hyper-parameters and evaluation metric. It intends to assist

decision making in these regards, by discussing on their impact to solve two different

detection tasks: orca vocalisations and Antarctic mysticetes calls.

5.3.1 Hyper-parameter search for orca call detection

For this task of orca call detection, un-normalised spectrograms of 5 sec windows

are given as input with the following parameter (fs = 22050, NFFT = 1024,

hop = 128, fmin = 300, fmax = 11025, #Melbands = 80).

Method

Contrary to the smaller architectures aforementioned, heavier models need around

1min per epoch on the orca call detection dataset (see section 4.6). An automatic

hyper-parameter search was thus employed using the Async Successive Halving

Algorithm (ASHA) [120], implemented by the Ray python package [139]. It uses

the hyperband algorithm with successive halving to explore the hyper-parameter

search space, with aggressive early stopping of low performing models. Moreover, to

optimise computations, models with plateauing performance are also stopped rather

than trained until the maximum number of epochs is reached. Hyper-parameter

combinations were drawn from the following search space:

• Learning rate (log uniform distribution between 1095 and 1091, noted lr),

• Weight decay L2 loss (log uniform distribution between 1095 and 1091),

• Batch size (sampled uniformly among [8, 16, 32, 64, 128]),
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• Weighting of positive samples in the loss computation (uniform distribution

of integers between 1 and 5, noted posweight),

• Brown noise data augmentation (sampled uniformly among [True, False]),

• MixUp data augmentation (sampled uniformly among [True, False]),

• SpecAugment [151] spectral data augmentation (sampled uniformly among

[True, False], noted augm)

– maximum frequency dilation (uniform distribution between 1% and 30%),

– maximum temporal dilation (uniform distribution between 1% and 30%),

– maximum mask height (number of frequency bins, uniform distribution

between 10 and 50),

– maximum mask width (number of time bins, uniform distribution between

10 and 50).

Several architectures are studied: sparrow [83] (simple VGG-like model designed

for bird classification) and ResNet-18 models (one randomly initialised and one

pretrained on ImageNet noted ‘resnetPT’). For each of them, logarithmic (log(1+S×

10a)) and PCEN spectrogram range compressions were tested, yielding 6 independent

hyper-parameter searches. The searches were ran independently in order to have a

fair comparison of architectures: each have their own hyper-parameters, optimised

via a systematic procedure with a fixed computational budget (100 trials).

The main objective of this study is to compare architectures on their best

possible performance on the test set (both same antenna and different antenna).

This is why no validation set was kept apart, and the mAP on the whole test set

was used for early stopping and to make halving decisions.

Nonetheless, in the following, scores of the two test sets are reported separately.

Indeed, we will see that a change in recording system (different frequency response)

can introduce a performance drop, as previously observed by Roch et al. [175].

To emphasis on this generalisation problem, performance is reported separately
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Figure 5.8: Test mAP for the two test sets of orca call detection. Scores of the 50 best
trials os the ASHA search are given for each combination of architecture and spectrogram
range compression.

on the close test set (same antenna than seen in training) and the foreign test

set (different antenna).

Search results

Figure 5.8 summarises results from the systematic search. The sparrow architecture

appears more resilient to the choice of hyper-parameters, especially with the PCEN

range compression. The pcen-sparrow models reach the best scores, with an

especially strong performance gain on the foreign test set (different antenna),

demonstrating generalisation capabilities.

These findings will be further studied in a following section, with repeated

initialisations using the best set of hyper-parameter for each of the architectures.

Prior to that, the search results are used as an opportunity to study the correlation

between hyper-parameters and performance.

It is worth noting that because no validation set was left out, resulting perfor-

mances might be optimistic, with test set overfitting via the large scale hyper-

parameter search.



5. Training detection and classification mechanisms 113

Impact of hyper-parameters on model performances

To learn insights from the systematic search, correlations were measured between

hyper-parameters and resulting model performance. For each type of architecture,

statistical tests were run using the 100 trials of the ASHA search. Numeric hyper-

parameters were tested with the Pearson correlation and boolean ones were tested

with the Kruskal-Wallis H-test. Table 5.1 reports hyper-parameters that have a

statistically significant impact on performances (p-value < 0.05). This representation

yields several insights:

archi posweight batchsize lr augm mixup brownnoise
logMel - resnet -0.240 False 0.37

logMel - resnetPT False 0.06
logMel - sparrow -0.216 0.371 False 0.25 True 0.16

pcen - resnet False 0.06 False 0.08
pcen - resnetPT False 0.10
pcen - sparrow 0.312

Table 5.1: Statistical analysis of the impact of hyper-parameters on model performances
(test mAP). For numeric variables (posweight, batchsize, and lr), the Pearson correlation
was computed, and its coefficient is reported for p-values < 0.05. For boolean variables
(augm, mixup, brownnoise), the Kruskal-Wallis H-test was computed, and the beneficial
value along with medians difference are reported for p-values < 0.05. Empty slots denote
p-values above 0.05.

• Smaller batch sizes can improve generalisation. This is consistent with the

study by Kandel and Castelli [103]. It is especially relevant for small datasets,

where large batch sizes imply a reduced variability of batch compositions

which can yield overfitting models.

• High learning rates seem to yield better models. However, several biases have

to be taken into account. A small learning rate implies slower training, and

thus could be early stopped by the search algorithm before they would plateau

to their top performance. Moreover, if selecting only learning rates above

0.001, the Pearson correlation coefficient changes sign with a higher p-value

(r = −0.1, p-value = 0.06).
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• Surprisingly, SpecAugment not only does not improve generalisation but

reduces it, despite the joint optimisation of augmentation strength. This is

presumably related to the underfitting problem reported by the SpecAugment

authors [151]. Indeed, data augmentation can make learning ‘harder’, therefore

requiring longer trainings and / or heavier models. Note that longer trainings

are especially disadvantageous in this paradigm of hyper-parameter search

with early stopping.

Search findings validation

Front-end logMel logMel logMel PCEN PCEN PCEN
Architecture resnet resnetPT sparrow resnet resnetPT sparrow
Batchsize 8 8 128 64 128 32
Learning rate 8e-3 7e-4 2e-3 2e-2 1e-2 4e-2
Weight decay 4e-4 9e-3 8e-5 1e-2 1e-3 2e-2
Posweight 4 3 1 5 3 1
Brown noise False False True True False True
SpecAugment False False False False False True
MixUp False False True False True True
# epochs 6 13 9 5 6 5
Same antenna 0.98 0.97 0.98 0.99 0.99 0.99
Different antenna 0.95 0.90 0.91 0.96 0.95 0.98

Table 5.2: Best scoring hyper-parameters for each front-end / architecture combination
(resulting from the ASHA search with 100 trials). Corresponding mAP scores are given
for the two test sets.

To follow up on this hyper-parameter exploration and validate its findings, using

each architecture’s best scoring hyper-parameters (Tab. 5.2), 10 training procedures

were run with random initialisation. Performances of the latter are displayed in

Figure 5.9. These results reveal several insights:

• The pretrained ResNet (‘resnetPT’) shows a lower performance than its

random initialised relative. For that matter, it is worth mentioning that

the first convolutional layer had to be replaced prior to training (switching

from a 3 channel input to a single channel input). As a result, the pre-learnt

projection at initialisation might be dysfunctional, and even counterproductive

for final convergence.
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Figure 5.9: Distribution of performances after 10 runs on the best scoring hyper-
parameters of each architecture. Best scoring hyper-parameters were tuned systematically
using the ASHA algorithm for 100 trials on each architecture independently.

• For the remaining architectures (ResNet and sparrow), PCEN is highly

beneficial: more resilience to random initialisation (smaller variance), and

improved performance. This will be studied in greater details in the next

section.

• Comparing sparrow and ResNet given PCEN normalised spectrograms, spar-

row gives a more stable higher performance. One possible explanation for this

is the total number of weights of the architectures: sparrow has around 300k

trainable parameters, and the ResNet-18 has 11M. With a relatively small

datasets like this one, smaller models might decrease the risk of overfitting.

PCEN beneficial behaviour

For the orca call detection task, PCEN appeared to be beneficial (Fig. 5.10). To

verify the significance of the impact, a statistical analysis was run to compare the

two distribution of scores (logarithmic versus PCEN range compression). To discard

low performing models that were early stopped by the search algorithm, only the

top 50% of scores were kept for each distribution.

The two distributions were significantly different (p-value < 0.001 on the Kruskal-

Wallis H test). Moreover, the performance gain is even higher on the foreign
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Figure 5.10: Distribution of performance on the orca call detection task depending
on spectrogram range compression. Scores are taken from trials of the hyper-parameter
search (all 6 runs being grouped together). For each front-end, only the top 50% scores
are reported.

test set (median mAP gain of 0.03 and 0.08 for the same antenna and different

antenna test sets respectively).

The trainable parameters of PCEN (s, δ, α and r) remained stable around

their value of initialisation for a large majority of the training runs. This was not

the case during experiments with other datasets such as the Antarctic mysticetes,

where the PCEN parameters appeared to diverge towards irrelevant values, leading

to a performance drop. On this orca call detection dataset however, PCEN

significantly improves generalisation, especially facing domain shift (foreign test

set). This result is consistent with the study by Allen et al. [5] on humpback

whale vocalisation detection.

5.3.2 Experiments on a large public dataset (Antarctic
mysticetes)

This work has been subject to a workshop intervention [23].

For this task, un-normalised spectrograms of 20 sec windows are given as input

(fs = 250, NFFT = 256, hop = 32). Models are trained for 20 epochs with brown

noise data augmentation (SNR sampled from a normal distribution µ = σ = 1),

batch size of 128, learning rate of 0.005 and weight decay of 0.002
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The Antarctic mysticetes dataset (introduced in section 3.2.2) offers two main

opportunities: its public aspect allows a common mean of evaluation for detection

systems among researchers, and its large size enables this evaluation to be the most

relevant. Indeed, annotations come in large numbers (close to 80k in total, 2.5k

for the least represented class, Tab. 4.8) and are spread across multiple recording

locations, devices and years. Again, this gives us a chance to learn robust models

and measure their generalisation capabilities.

Compression Architecture SpecAugm Train mAP test mAP
logarithm sparrow no 0.47 0.37
logarithm ResNet-18 no 0.86 0.54

logarithm ResNet-50 no 0.84 0.66
PCEN ResNet-50 no 0.82 0.57

fixed PCEN ResNet-50 no 0.80 0.58
logarithm ResNet-50 yes 0.70 0.60

Table 5.3: Experiments on spectrogram range compression, architecture, and data
augmentation for the detection of Antarctic mysticetes calls. mAP scores are computed
over each class independently before averaging to ignore class imbalance.

With this dataset at hand, several architectures were first experimented, with

trials on different spectrogram range compression and data augmentation. They

are summarised in Tab. 5.3, and demonstrate several insights:

• Non residual architectures such as sparrow don’t have the capacity to learn

even the training set,

• The larger architecture (ResNet-50) generalises better to the test set than its

smaller relative (ResNet-18),

• Spectral data augmentation produces underfitting,

• PCEN normalisation, whether with trainable or fixed parameters, decreases

generalisation.

The next section will try to get a sense of the latter insight which goes against

the observations on the orca call detection dataset.
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Figure 5.11: Comparison of the different range compression approaches. All spectrograms
come from the same sample containing a Bm-A call. For log compression, a converged
to 0.3 during training. For PCEN, we show how a too high value for s can lead to the
reduction of some target signals. The remaining PCEN parameters were left to the default
values proposed by Wang et al. [218].

PCEN unfavorable behaviour

A reasonable hypothesis of why PCEN appears counter productive is that it filters

the long stationary signals of the blue whale (10 to 15 seconds long). In PCEN, the

parameter s describes the coefficient of the IIR filter, which yields the smoothed

version of the spectrogram M. M is then used to withdraw background noise

from the input S (Eq. 5.1).

Accounting for this, we want the IIR filter to have a high enough time constant

τ = −1
log(1−s) . Indeed, the time constant of a filter is the time it needs to reach

1 − 1
e

≈ 0.63 given an logical gate input [122] (we could make the analogy with the

blue whale calls being logical gates on their frequency bin). Using this relationship,

with s = 0.01, it takes 13 seconds for M to integrate 63% of the energy of S.

Figure 5.11 illustrates this effect of s on PCEN normalisation and compares it

to the log compression.

This value of s = 0.01 seemed sufficient to avoid withdrawing too much of the

blue whale calls, and was used to train a model with a non-trainable (‘fixed’) PCEN.

On the other hand, the intuition is that if a better value exists, the trainable s

would converge to it during optimisation.
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Unexpectedly, the trainable PCEN s parameter converged towards 0.9, an

almost instantaneous smoothing coefficient, high enough to integrate blue whale

calls in the smoothed spectrogram M and subtract them from S. The other

trainable parameters α, δ, and r converged around 0.94, 1, and 0.94 respectively.

Considering these parameters and that M ≈ S when s ≈ 1, the PCEN equation

can be rewritten as Eq. 5.1.

PCENt,f =
(

St,f

(ϵ + Mt,f )α
+ δ

)r

− δr ≈ S0.06
t,f (5.1)

As for the fixed version, the smoothing parameter was set to s = 0.01, corre-

sponding to a 13 sec time constant. It yielded a significant decrease of performance

on the test set (10 points of mAP). Trials were conducted with several other

values ([0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1]) and the maximum performance

was reached with s = 0.025 (reported in Tab. 5.3).

These experiments demonstrate that PCEN does not always yield performance

gains: it depends on the signals to detect and the noises surrounding them. Also,

even if fixing s to a reasonable value tuned for the target signals, performance might

be lowered. This is perhaps explained by the difference in compression compared

to the trainable log approach (Fig. 5.11). Until further understanding of PCEN

behaviour is reached, experiments should thus be conducted on each task before

choosing this spectrogram range compression method.

Study of performance metrics

After the selection of the best performing model (ResNet-50 with logarithmic range

compression), the mAP remains quite low as compared to the AUC (0.11 against

0.99 for Bm B calls for instance, see Tab. 5.4). This is due to the high imbalance of

the dataset (ratio close to 50 between the amounts of positive and negative samples).

Indeed, the mAP uses the precision, which normalises true positives by positive

predictions, whereas the AUC uses the specificity, which normalises true negatives

by negative samples. For a dataset with mostly silent sections like this one, the AUC

will thus be over-optimistic, and the mAP will be over-pessimistic. This motivated
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Bm A Bm B Bm Z Bm D Bp 20 Hz Bp 20+ Bp DS
Train AUC 0.99 0.99 0.99 1.00 1.00 1.00 1.00
Train mAP 0.92 0.74 0.75 0.98 0.95 0.96 0.93
Test AUC 0.97 0.91 0.96 0.97 1.00 1.00 0.99
Test mAP 0.73 0.11 0.55 0.83 0.94 0.61 0.86

Table 5.4: Detection performance of the top performing model on the Antarctic mysticetes
dataset (calls from Balaenoptera Musculus (Bm) and Balaenoptera Physalus (Bp)). The
model is a Resnet-50 with logarithmic spectrogram range compression trained without
SpecAugment.

Data Source Bm A Bm B Bm Z Bm D Bp 20 Hz Bp 20+ Bp DS
Balleny Islands 2015 1.00 1.00 0.98 1.00 1.00 1.00 1.00
Elephant Island 2013 0.99 0.99 0.99 1.00 1.00 1.00 1.00
Elephant Island 2014 0.96 0.97 0.95 0.98 0.99 0.99 0.99
Greenwich 64S 2015 0.97 0.89 0.90 0.91 0.98

MaudRise 2014 0.98 0.82 0.75 0.98 0.92
Ross Sea 2014 1.00

Casey 2014 0.98 0.92 0.96 0.99 0.95
Casey 2017 1.00 1.00 1.00 1.00 1.00 1.00

Kerguelen 1 2005 0.93 0.79 0.89 0.93 1.00 1.00 0.98
Kerguelen 2 2014 0.98 0.94 0.94 0.98 1.00 1.00 1.00
Kerguelen 2 2015 0.99 0.97 0.98 1.00 1.00 1.00 0.92

All 0.98 0.97 0.98 0.99 1.00 1.00 1.00

Table 5.5: Recall at 20 FP/hr for each class and data source. Cells with less than 20
samples are not reported.

to experiment on a different, more informative metric: the number of false positives

per hour, previously used by Shiu et al. [191] on automatic cetacean PAM systems.

Figure 5.12 summarises the number of false positives per hour against the recall

for each class and data source. It shows how for some calls, the performance is

significantly impacted by the data source. This can be explained by a difference

in background noise, average SNR of the annoted calls, or both. Moreover, the

curve for Bm B calls in the Kerguelen 2005 data confirms the low score reported

in Table 5.4, probably due to the presence of hard samples in the dataset (events

that trigger false positive even at high thresholds).

Table 5.5 summarises these curves once more by reporting the recall at which

there are 20 false positives per hour. Indeed, Shiu et al. [191] argues that this

threshold is the maximum acceptable for quality control processes (accounting for

the time needed by an expert to verify detections during surveys).
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Figure 5.12: Number of false positives per hour as a function of recall. Curves are
given for each class and each data source. The dotted horizontal line denotes the 20 false
positives per hour threshold.

These results emphasis the importance of the choice of performance metric.

It needs to account for class imbalance in the dataset, and for the subsequent

application needs. In the absence of the latter, the recall at 20 false positives

per hour seems to be a reasonable metric, for its stability facing class imbalance

and its high interpretability for production use (other thresholds than 20 can be

chosen, depending on project needs).

5.4 Resulting detectors performance

After exploring several ANN architectures on datasets of different characteristics

(target signals, amount of annotation, diversity of recording systems), this section

intends to get an overview of the resulting detection systems.

Best configurations were kept for each task to report performances. When

multiple runs were operated (20 Hz fin whale pulses and sperm whale clicks) the

median values are reported. As for the fin whale 20 Hz pulses, since 3 test folds

were studied, the median gathers the 5 runs of the 3 folds.

Low complexity architectures such as 3 depth-wise convolution layers suffice in

learning to detect low variability signals such as fin 20 Hz pulses and sperm whale
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Target signal Frontend Archi AUC mAP Rec(20FP/hr)
Fin whale 20 Hz pulses Log-STFT 3 depth-wise 0.99 0.84 0.94

Sperm whale clicks Log-Mel 3 depth-wise 0.93 0.85 0.65
Dolphin whistles PCEN-Mel sparrow 0.98 0.86 0.61

Humpback whale vocs. PCEN-Mel sparrow 0.99 0.99 0.97
Orca calls PCEN-Mel sparrow 0.99 0.98 0.87

Antarctic mysticetes Log-STFT ResNet-50 0.97 0.66 0.93

Table 5.6: Summary of performances for all trained detection systems on their test
set (see section 4.6). Reported metrics are, from left to right, area under the receiving
operating characteristics curve, area under the precision recall curve, and recall at 20
false positives per hour.

clicks. To increase the precision, several detections can be integrated in larger

temporal windows, either with handcrafted rules (discussed with the detection

of fin whale songs in section 7.2) or with learnt sequential models as proposed

by Madhusudhana et al. [127].

The sparrow architecture allows to learn more variable signals, as it was originally

designed for bird classification [83]. It is able to yield satisfactory performances

despite a reduced amount of labels.

Then, when larger amounts of annotations are available, the ResNet-50 archi-

tecture originally designed for image classification can be used to detect multiple

calls (e.g. Antarctic mysticetes), sharing the same embeddings before discrimination.

Neither sparrow nor ResNet-18 architectures had the capacity to solve this task

as the ResNet-50 did.

This thesis’ work in annotation and training binary classifiers resulted in

successful detection systems for 13 different target signals (the Antarctic mysticetes

model gathering 7 different ones). The satisfactory performances, especially on test

sets that were designed to reflect generalisation capabilities, allow to consider using

these trained models in production. Indeed, as we will see in the next chapters, the

models served to analyse databases of several thousands recorded hours
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5.5 Contrastive learning for orca call classification

A second axis of work conducted on training procedures was applied to a classification

task for orca call types. Indeed, call types have been attributed discrete classes, and

have served in behavioural and social structure studies [68, 69]. These studies

were done by manually annotating calls, a time consuming task that we try

to automate here.

This task implied to use other losses than the BCE (the only loss function

used so far). Motivated by the lack of annotations, experiments with unsupervised

algorithms were first conducted, and are reported in the first part of this section.

Then, as annotations were progressively gathered, performances of a semi-supervised

learning algorithm are compared to a traditional supervised learning procedure.

5.5.1 Trials with deep representation learning algorithms

Given the large amount of orca call detections (about 300 thousand through 5

years of recordings) and the lack of call type annotations, unsupervised learning

approaches have been experimented with. This call type classification task comes

down to classifying similar pitch patterns together, which fits with the contrastive

learning paradigm. Indeed, learning a representation that ignores small distortions of

shapes (time and frequency shifts and dilations) seems appropriate: these distortions

are found among instances of the same call type. Once such a representation has

been learnt, supervised learning could be operated using a small amount of labels

to optimise discrimination boundaries (fine tuning).

As mentioned in section 2.1.2, numerous algorithms have been proposed in

the literature to learn from sparsely annotated datasets using contrastive learning.

They mainly differ by the distance metric they use in their embedding space. In

search for the right one, papers were in part selected for their top position on the

CIFAR-10 with 1000 labels benchmark [111], as it contains a number of classes and

labels that is similar to the dataset at hand. Experiments were thus conducted

with SimCLR [34], UDA [229], Barlow twins [231]), and IIC [198].
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Figure 5.13: Distribution of NMIs between clusters found using k-means on learnt
embeddings and labels (5 training initialisation for each algorithm). It needs to be taken
into account that annotations were made by filtering some clusters proposed by the AE
and t-SNE. Here, for a comparison of deep metric learning, UDA was trained only with
its unsupervised loss.

In a way reflecting the caveat of modern days deep learning research, a plethora

of algorithms were implemented with limited understanding of their underlying

behaviour. Moreover, in addition to their proposed main algorithm, each paper

comes with a handful of training tricks which are also responsible for the reported

performances. This makes a fair comparison between techniques difficult.

Figure 5.13 reports on learnt representation quality for each of the algorithms

implemented. The metric used is the NMI between embedding clusters and

their associated label. Barlow twins and UDA, for some initialisation, show a

slightly higher NMI than the representation used to annotate (t-SNE projected

AE embeddings).

Despite the invested efforts, none of the implemented algorithms showed a

relevant gain in performance after fine tuning for the classification task (as compared

to a random initialisation of weights).

5.5.2 FixMatch versus supervised learning

This work has been subject to a workshop intervention [21].



5. Training detection and classification mechanisms 125

With the progressive collection of labels, semi-supervised learning approaches

became more and more relevant. Again, several algorithms were experimented

with: Meta Pseudo Labels [160], UDA [229], mixMatch [17] and fixMatch [198].

However, selected for its good loss convergence, reasonable performances, and very

few training tricks needed, fixMatch was retained for further comparison with

the regular supervised approach.

The fixMatch algorithm combines a supervised loss, pseudo labelling, and

consistency training in one framework. Pseudo labelling consists in applying a

supervised loss on samples without annotation by using the highest prediction of a

model (the ‘pseudo label’). This allows to make use of unlabelled data, especially

on easy samples (pseudo labels can be retained only if the confidence is above a

predefined threshold, see Fig. 5.14). This can be beneficial because it broadens the

diversity of data seen by the model without demanding more annotation.

On the other hand, consistency training is the concept of learning a projection

that ignores (is ‘consistent’ against) variations in the data. It is very close to

the concept of contrastive learning aforementioned. FixMatch makes use of it by

applying different levels of data augmentation to its inputs and enforcing similar

predictions using the cross entropy (Fig. 5.14).

Figure 5.14 shows how data augmentation and pseudo-labelling were combined for

the orca call classification task, following the fixMatch approach. H(p, q) denotes the

cross entropy between the pseudo labels and predictions after strong augmentation.

It represents the unsupervised loss that will be added to the regular supervised

cross entropy loss (using annotation labels) before the backward propagation.

The main difference with this thesis’ implementation is the chosen data aug-

mentation policy. Here, SpecAugment [151] was used (instead of RandAugment

[40]). It was applied on PCEN normalised Mel-spectrograms of 2 sec excerpts, with

128 Mel bins and 262 temporal bins (fs = 22050, NFFT = 1024, hop = 165).

Strong augmentations allowed until 20% of dilation (time and frequency wise),

dropping bands of maximum 20 frequency and temporal bins, and gaussian blurring,
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Figure 5.14: The fixMatch algorithm [198], a combination of pseudo-labelling and
consistency training. The figure was taken from the original paper, and adapted for the
orca call classification task.

whereas weak augmentations capped dilations to 5%, and dropped bands up to

5 bins, without gaussian blurring.

As for the remaining hyper-parameters (learning rate, cosine scheduling, batch

sizes, pseudo-labelling threshold, and loss weighting) they were left as proposed

by the fixMatch original paper [198].

90/10 train/test split 50/50 train/test split
F1 score Accuracy F1 score Accuracy

Supervised 0.96 0.98 0.94 0.97
FixMatch 0.95 0.97 0.92 0.95

Table 5.7: Comparison of performances for supervised versus semi-supervised approaches.
Results are given for a 90/10 train/test split (90% of the data for the training set), and
with a reduced training set.

The resulting performance of semi-supervised and supervised training are

compared in Table 5.7, with the accuracy computed across all samples and the

F1-score computed for each class independently before averaging. Both models

are ResNet-50 taking PCEN normalised spectrograms as input (fs = 22050,

NFFT = 1024, hop = 165, fmin = 300, fmax = 11025, #Melbands = 128).

Results demonstrate a counter productive effect of the unsupervised loss, even

when reducing the amount of annotations (training set of approximately 200 samples

per class in average). This might be explained by a too strong augmentation
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Figure 5.15: Confusion matrix of the supervised model over the test set (10% of
annotations).

policy which might mask out complete calls in some cases (some calls lie in less

than 20 frequency bins for instance). Further work should focus on researching

augmentations that are more adapted to the expected intra-class call variations,

without risking to change the associated type. Another explanation for the loss

of performance associated with semi-supervised learning could be that numerous

unlabelled samples belong to classes not present in the annotations, which could

lead to learning an irrelevant embedding space.
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6.1 Context and objective

This chapter illustrates how detection systems can be put to production and serve

species conservation purposes (focusing on sperm whales and fin whales of the

Mediterranean sea). A first axis of application is the use of automatic detection to

mitigate whale / ship strikes, a significant cause of death for these species evolving

in the Pelagos marine mammal sanctuary [150]. Further on, the Bombyx long term

survey is analysed using automatic detections, yielding insights on sperm whale

129
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behaviour in relation to anthropic pressure, and helping to implement relevant

conservation measures in the long term.

6.2 Alert system for collision risk mitigation

6.2.1 Context and objective

Figure 6.1: Technical plans of the Bombyx 2 system, taken from OSEAN SAS
manufacturing report. (left) Mooring system. (right) Pentaphonic acoustic recorder
and floatability variation system (total height of 3 meters).

As part of the GIAS project aiming at reducing navigation risks in the Mediter-

ranean sea, the Bombyx 2 sono-buoy was designed by DYNI in collaboration with

OSEAN SAS. Other similar projects have been operated before, especially in the

U.S. [201], and in the Mediterranean Sea [184]. Preliminary work on this project

was the subject of a conference publication [20].

This sono-buoy is equipped with 5 hydrophones, a floatability variation system,

and embedded algorithms for the detection of sperm whale clicks and fin whale

20 Hz pulses. To mitigate surface noise and exposure to strong weather conditions,

the buoy parks at a depth of 25 meters to record and detect its target signals. In
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the event of a detection, the buoy reaches the surface to transmit an alert with

supporting data via the mobile network. Alerts then allow ferries of the zone to

make decisions to mitigate their risk of collision with nearby whales (reducing

speed or changing route for instance).

The design choice of listening below the surface protects the buoy from weather

conditions but also implies an important limitation: in the case of a false positive,

the buoy consumes a significant amount of energy, and acoustic acquisition is

hindered for almost half an hour (during the time of back and forth travel to the

surface). Nonetheless, a storm in October 2018 has wiped out the first surface

alert system of the Mediterranean Sea (Whalesafe [184]) which put the project

to an end. This motivated to choose a 20 meters deep parking position for the

buoy, hoping to avoid such events.

6.2.2 CNN deployment to an embedded MCU

Section 5.2 introduced low complexity CNNs especially designed to answer the

needs of this alert system. These models, after being trained on GPU using the

Pytorch package [153], were implemented on the embedded system: the PIC32

MCU from Microchip (integrated on the High-Blue sound card [13]).

First, a custom interface was built to export architectures and weights to

text files. I then implemented model loading (architecture and weights), Mel-

spectrogram computation, and CNN inference in C language for it to be compiled

on the chosen MCU.

Several design choices were made for the C implementation, for a compromise

between flexibility and reduced development effort:

• The model input consists in a Mel-spectrogram,

• Signal length, sampling frequency, window length, hop size, number of Mel-

bands, and Mel-frequency boundaries are parametric,

• The architecture consists of successive depth-wise separable convolution layers

intertwined with batch normalisation and leaky ReLU,
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• The number of layers and the number of features, kernel size and stride for

each layer are parametric,

• The last layer is pooled by maximum to yield a global prediction of the signal.

6.2.3 Computation times

Specifications of the input parameters and processing time for the two target signals

are given in Table 6.1. The longest step is by far the spectrogram computation

Target signal Sperm whale clicks 20 Hz fin whale pulse
Signal length (sec) 10 60
Sampling frequency (Hz) 64,000 4,000
FFT window length 512 4096
FFT hop size 256 256
Mel bands 64 64
Mel start (Hz) 2,000 0
Mel end (Hz) 25,000 100
Signal loading (sec) 1 5
Spectrogram computation (sec) 12 26
CNN inference (sec) 4 4

Table 6.1: Specifications and corresponding processing times on the PIC32 MCU, for
the detection mechanisms of sperm whale clicks and fin whale 20 Hz pulses.

compared to CNN inference. This comforts the choice of the Fourier transform

which offers a fast FFT implementation, rather than others such as the wavelet

transforms. The FFT implementation used here is the one proposed by the DSP

library of Microchip.

6.2.4 Detection report

In the event of detections triggered by the CNNs, the sono-buoy is ordered to

lift towards the surface to transmit a report supporting the alert. It includes

multi-channel chunks of signals (cut surrounding detection peaks), prediction

sequences for the two species, and buoy orientation (gyroscope, acccelerometer,

and magnetometer). The signal chunks allow experts to confirm the veracity

of the alert and to take decisions accordingly. Moreover, the reported extracts

being multi-channel (5 hydrophones), triangulation via cross-correlation is possible,
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increasing the spatial precision of the alert. Moreover, thanks to the embedded

detection system, chunks can be localised around signals of interest, drastically

reducing the amount of data to be sent.

I thus developed the report constitution in C language, compiling prediction

peaks into signal chunks with their temporal location in the input signal. Due to

difficulties encountered by the electronic team responsible for the sound card, this

system has not yet been put in the water, and no further results are available.
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6.3 Long term presence monitoring

In addition to its production use in the context of ship collision mitigation, the

sperm whale click detection CNN has been forwarded on the whole Bombyx dataset

for a long term study of sperm whale presence (3,532 recorded hours from May

2015 to December 2018). This work resulted in a journal publication [166], from

which some of the results are reported here.

6.3.1 Sperm whale acoustic presence

A first analysis focused solely on reporting the presence of sperm whales through the

recorded years. Files (1min long) with more than 40 CNN predictions above 0.95

were manually verified using the TDOA interactive interface (described in section

4.3.2). Like so, automatic detections were validated and number of individuals were

estimated (inferred from simultaneous click trains and TDOA tracks). This process

yielded 57 new sperm whales passages (missed during the annotation procedure),

and 25 false positives (including 15 triggered by sound card malfunctions). The

notion of passage was used to account for sperm whale presence, considering that

clicks belong to the same passage if separated by less than 1h.

In total, 226 sperm whale passages have been recovered, with a total of 347

individuals. Figure 6.2 presents the number of detected individuals each day

during the 4 years of recording. Sperm whales were found all year round, with

no statistically significant seasonal pattern (Kruskal-Wallis test between monthly

sperm whale presence have p-value > 0.01). The number of animals per passage

varied from 1 to 9 individuals, with a mean duration of 4 hours.

To evaluate diel patterns, the probability of presence was computed for each

hour of the day. Grouping probabilities into four periods (night, morning, afternoon,

and evening) shows statistically significant differences among periods of the day:

sperm whales are more present (or more acoustically active) during morning or

afternoons than in the evening (Fig. 6.2, Kruskal-Wallis test: p-value < 0.01).
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Figure 6.2: Left (a): Number of detected sperm whales per day during the 4 years of
recordings (white regions denote no data). Right (b): Distribution of hourly probabilities
of presence for each period of the day.

6.3.2 Presence in relation to anthropogenic noise pressure

To assess the performance of the detection system as well as to measure the impact

of noise on the presence of sperm whales, the amplitudes of different octave bands

were computed and analysed. The distribution of background noise through the day

is shown in Figure 6.3. All octaves have diel distributions with the same shape as

the 12,800 Hz octave that is shown, with the energy peaking around 4am and 9pm.

Figure 6.3: (left) Distributions of 12,800 Hz amplitudes during and outside sperm whale
passages. (right) Superposition of diel pattern of amplitudes for the octave 12,800 Hz
(blue) and sperm whales presence probability (red).

Ferries cross the study area daily, connecting Toulon or Marseille to Corsica,

with scheduled times around 3am - 6am and 8pm - 9pm. The closest ferry route
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is approximately 3km away from the antenna. For all octaves, dB amplitudes are

significantly higher during ferry schedules (Mann–Whitney test, p-value < 0.05),

with an average gain of approximately 3 dB.

Moreover, as Figure 6.3 illustrates, the data shows a significantly lower noise

during sperm whale presence (Mann-Whitney U=14.44, sample size=300, p-value

< 0.01), and this for all octaves except 6,400 Hz and 12,800 Hz. This is further

demonstrated by the diel distributions where, around 4 AM and 9 PM (noise peaks),

sperm whale presence is at its lowest (Fig. 6.3). Moreover, this plot also shows that

the reduced sperm whale presence is not due to an increase in background noise,

since sperm whale probability drops before the background noise rises (from 6 to

8 AM and from 4 to 6 PM sperm whale presence is much lower than at noon but

the background noise is identical). For these graphs, the 12,800 Hz octave has been

chosen for its proximity to sperm whale clicks centroid frequency.

6.3.3 Discussion

The Mediterranean sperm whale population had already been studied at very large

geographical scales [72, 167, 113], while other populations were monitored over long

time period such as Gordon et al. [82] (4 months), Ward et al. [219] (42 days), Ackleh

et al. [1] (4 month over 7 years), Caruso et al. [31] (9 months), Merkens et al. [135] (15

cumulative years of recordings). To our knowledge, this is the first time that a sperm

whale study has been carried out over such a long period in the Mediterranean sea.

The calendar (Fig. 6.2) shows there is no seasonal cycle for the presence of sperm

whales in this area. This species is present globally all year round. The months of

February (2017-2018) are quite poor in terms of presence. Laran and Drouot-Dulau

[113] had already analysed on a monthly basis, the relative abundance of sperm

whales in the Ligurian Sea, revealing year-round occurrences, peaks during the

months of September and October, and larger social groups during winter. In our

study, consistently with the latter, the densest observation of sperm whales (up to 9

individuals per day), occurred during the months of December 2016 to January 2017.

The differences in attendance in the area between December 2016, 2017, and 2018
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could be explained by variations in the Liguro-Provençal current. The latter flows

from the Gulf of Genova to the Balearics, passing through the Islands of Hyères until

the Gulf of Lion. This current from the east increases in winter (> 0.8 m s−1), and is

weaker in summer (<0.5 m s−1) [159]. When the current is strong in winter, it might

generate meanders [85], potentially creating zones of organic matter accumulation.

On a daily basis, more sperm whales were detected at noon and fewer at 9 PM

(Fig 6.2). An estimation of the presence of sperm whales in a similar area has been

assessed by André et al. [7], and the maximum of detections was during the daylight

hours. It could be possible that sperm whales move closer to the ridge slope areas

(therefore within the sonobuoy detection range) during the day for foraging purposes.

Indeed, Fiori et al. [63] showed sperm whales have a preference for areas characterized

by a particular seafloor topography (canyon and sea mouth) during the day.

On the other hand, the measured daily pattern of noise levels shows a 3 dB

increase of the noise around 3 AM and 9 PM, synchronous with the passages of

ferries joining Corsica to the continent. This confirms the previous studies about

the high level of anthropogenic noise in the Mediterranean Sea [161], particularly

near the coast [28]. Fig. 6.3 shows a clear inverse pattern between the noise levels

and sperm whale presence, consistently with other studies concerning the impact

of ferries on cetacean species [77, 162, 7]. We suggest that these animals might

purposely come to hunt in this area at times when no ferries are nearby, in order

to avoid acoustic masking and increase their echolocation range.

6.4 Conclusion

The studies of this chapter are a first illustration of the versatility of the detection

systems designed in this thesis. They can be applied to a real-time embedded alert

system to mitigate collision risks, but also in long-term surveys, revealing presence

patterns that are crucial in the implementation of relevant conservation measures.
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7.1 Context and objective

The previous chapter showed how detection systems can be used for species

conservation purposes. Another axis of use is the study of animal communication

systems. In the past, PAM has put forward several examples of song and social

communication systems in cetaceans. They contribute to comparative studies that

reflect on the evolution of music and language in the animal kingdom [67]. For that

139
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same purpose, robust detection and classification mechanisms are able to analyse

large datasets and yield new insights. This is demonstrated in this chapter with

the long term evolution of the Mediterranean fin whale song and communication

patterns of the Northern Resident killer whales.

7.2 Fin whale song structure and temporal trends

7.2.1 Context and objective

In parallel to the sperm whale study with the Bombyx dataset, a similar one was

conducted on fin whales of the Ligurian sea, again making use of the detection system

designed for the GIAS buoy. The trained CNN described in section 5.2 was run over

three available datasets : Boussole, Bombyx, and KM3Net (see section 3.2.1). This

time, instead of presence monitoring, the study focused on fin whale song patterns,

which remain poorly documented in the Mediterranean sea. This work is currently

under submission for a journal publication [22], whose results are reported here.

As other cetacean species, fin whales show geographical acoustic differentiation

[90, 138, 32], hypothesised to be cultural in some cases [224, 90]. The divergence of

mysticetes songs in different populations is presumably a result of drifts emerging

from the conformity and creativity constraints of song production [155]. Moreover,

the character displacement theory with songs serving as a discrimination marker for

allopatric populations has been speculated for fin whales of the Northern Atlantic

[45]. As for the Mediterranean population, it has been shown to be resident

and genetically dissociated from the North Atlantic population [18]. Moreover,

their songs (especially the Inter Pulse Interval (IPI)) allow their identification

[32, 158]. The Mediterranean fin whales do not follow strict migration patterns

or reproduction periods unlike their oceanic conspecifics [145], suggesting that

their song can be heard all year round.

The base unit of the songs, the 20 Hz pulse, is shared by all fin whales. These

pulses occur in sequences that typically last several hours, with highly regular pulse

intervals between 10 and 40 sec [221]. The main differentiation of songs lies in

the IPI and pulse spectra [213, 87]. Alike fin whales classic 20 Hz pulses of the
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Pacific [224, 90], Mediterranean ones fall into 2 distinct types, one with a slightly

higher frequency content than the other [36, 188] (Fig. 7.1). These two categories

are sometimes labelled 20 Hz pulse and back-beat, they will be referred to as type

A and B for short (A being the higher pitched pulse). Fin whales of the Pacific

and Atlantic often exhibit sequences that alternate between two stereotypical IPIs.

These are called doublet patterns, as opposed to singlets where only one IPI occurs.

In doublets there is often a strong relationship between IPI and pulse type: there

is one IPIs from A to B, and another one from B to A [146, 38, 71, 138, 90]. On

the other hand, singlets also follow their own stereotypical IPI.

Two studies present stereotypical IPIs for the Mediterranean fin whale population.

Based on recordings from 1999, Clark et al. [36] reveal a link between pulse type

and IPI from two bouts (about 100 pulses). About ten years later, Castellote

et al. [32] observe a common IPI around 14.9 sec for that same population, but

do not mention its relationship with pulse types. Besides, the songs observed

from this population show more diversity in the succession of pulse types than

simple singlets and doublets (Fig. 7.1).

Besides geographical variations, fin whale song structures also exhibit temporal

variations, such as seasonal IPI increases [221, 146, 138], and inter-annual variations

of IPI and peak frequency [224, 90, 196, 226]. Seasonal IPI increases appear to

be synchronised with mating cycles, suggesting a link between the two (increasing

testes activity or decreasing competition might be responsible for it [146]). This

highlights the importance of considering the song’s function in the interpretation of

temporal patterns. On the other hand, the drives for inter-annual trends remain

unclear, besides a potential cultural phenomenon [224, 90]. Inter-annual trends

are also found in blue whales (not in call rate but rather in call frequency) but

also lack an agreement among numerous hypothesis for their cause (cessation of

commercial whaling[130], increase in calling depth [75], augmentation of noise from

melting icebergs [119] or acidification of the oceans [93]).

PAM stations combined with automated analysis (template matching approach)

have played a key role in revealing these long-term trends [224]. Until now, no large
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scale analysis has been conducted on Mediterranean fin whale songs that could reveal

the long-term evolution of their vocal behaviour, which motivates the following study.

7.2.2 Method
Model inference

While the model was trained to detect pulse presence in 5-second segments, the

convolutional stack is designed to maintain the temporal resolution of the predictions

throughout the network. Discarding the max pooling layer at the end of the CNN,

pulse times were retained as the highest predictions above a given threshold within

sliding 4 sec windows. These timings are approximate up to the size of the receptive

field of the network (0.8 sec).

Thresholds were set at the balance point of the ROC curves (equal sensitivity

and specificity). This setting leads to sensitivities and specificities of 0.96 and

0.97 for the Bombyx and Boussole data respectively. For the KM3Net data, since

the ROC curve is unknown (no annotations are available), a threshold of 0.12

was chosen so that there is approximately the same proportion of detections as

in Bombyx and Boussole (≈ 0.5%).

Following Watkins et al. [221], detected pulses at a distance of less than 45 sec

were considered as being part of the same sequence, and sequences less than 2 hours

apart were considered as being part of the same bout (or passage).

Spectro-temporal pulse analysis

Following the detection process, a signal processing analysis was conducted to

precisely describe each pulse (exact time position, center frequency, bandwidth and

SNR). This yields the necessary data to search for song patterns, as shown in Figure

7.1.

For this analysis, an 8 sec window surrounding the prediction peak is selected

(T = [0, 8]), band-pass filtered (Butterworth of order 3 between 10 Hz and 30 Hz),

and resampled at 250 Hz. The STFT is then applied to the resulting signal (Hann
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Figure 7.1: Spectrogram of a fin whale pulse sequence recorded by the Bombyx buoy in
October 2018 (fs = 250, NFFT = 1024, hop = 8, padding = 75%). Dots show the center
frequencies of the detected pulses, with white dashed lines showing IPIs. The grey dashed
line denotes the discrimination threshold between type A and B pulses, at 19.88 Hz.

window of 256, NFFT = 1024, and hop = 8) resulting in spectral and temporal

resolutions of 0.24 Hz and 0.03 sec respectively.

From this spectrogram, the precise time position of the pulse t̂ is first estimated

by selecting the column of the maximum value in the 18-22 Hz frequency band

(Eq. 7.1). This value will be kept for IPI measurements.

t̂ = argmax
t∈T

(
max

f∈[18,22]
(S)
)

, (7.1)

To measure the spectral envelope of the pulse, a 1.2 sec window around t̂

is max-pooled time wise. Background components are withdrawn (to focus on

the pulse spectra only) by subtracting an estimate of the background spectrum:

the median of each frequency bin within the window T (Eq. 7.2). Doing so,

effects such as the impact of SNR on peak frequency and bandwidth (observed

by Helble et al. [90]) are mitigated.

E(f) = max
t∈[t̂−0.6,t̂+0.6]

(Sf,t ) − median
t∈T

(Sf,t) (7.2)



144 7.2. Fin whale song structure and temporal trends

The resulting pulse envelope is used to compute the left and right boundaries of

the pulse spectrum, with max E(f)
4 as a threshold (equivalent to -6 dB). Left and right

intersection frequencies are linearly interpolated to increase the precision of the

estimate. This process yields the 6 dB bandwidth (width between the boundaries),

and the center frequency (mid-point between the boundaries) of the analysed pulse.
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Figure 7.2: Histogram of the center frequencies of the detected pulses. Black lines
denote the fitted GMM.

For later filtering by pulse quality, the SNR is also computed following Eq. 7.3

(pulse energy as the maximum of its envelope and background energy as the median

of the spectrogram surrounding the pulse).

PBackground = median
f∈[15,25]

T \[t̂−1,t̂+3]

Sf,t,

PP ulse = max
f

E(f),

SNR = 10 log10

(
PP ulse

PBackground

)
.

(7.3)

The pulse spectral characteristics of mysticetes are often described using the

frequency of maximum energy (peak frequency) or the spectrum weighted mean

(centroid frequency) [224, 128]. Here, the center frequency was chosen, as it appeared
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to be better suited for the discrimination between the two pulse types. In fact,

when modelling the distribution of peak frequencies using a Gaussian mixture

model, the two components (emerging from the two types of pulses) overlap more

than when using center frequencies (the Kullback-Leibler divergence between the

Gaussian components in center frequency is significantly higher than that of peak

frequencies, with 113 nats and 30 nats respectively).

Pre-analysis filtering

To filter out false positives, only pulses with a bandwidth below 10 Hz and a center

frequency within [18.5, 22.5] were retained. Besides, only sequences with a mean

SNR of at least 8 dB, and with at least 3 pulses were kept for the following analysis.

Sequences containing IPIs below 10sec or above 45sec were discarded as well.

To classify between A and B types, a two component GMM was fitted on

the center frequency data (Fig. 7.2) using the Expectation Maximisation (EM)

algorithm. This lead to a threshold of 19.88 Hz to discriminate between the two

types. Even though the center frequency is found to evolve over time, the change

is sufficiently small to not interfere with the categorisation (see Fig. 7.6).

7.2.3 Temporal trends analysis

In order to conduct temporal trend analysis, we need to extract points out of

continuous distributions. This section describes the method employed in that

regard, especially to extract stereotypical IPIs and center frequencies for varying

temporal scales.

For each pulse type pair (‘AA’, ‘AB’, ‘BB’, ‘BA’), the long-term evolution of

stereotypical IPIs was analysed with an approach similar to Weirathmueller et al.

[224]. From 2008 to 2018, for each 3 month period, the most frequent IPI was taken

(IPIs were quantised to a resolution of 0.1 sec). To withdraw periods with too few

data for estimates to be reliable, only those with at least 100 pulse transitions were

retained. Moreover, in order to gather only actual stereotypical IPIs, only those

with a frequency of occurrence above 5% in their time period were kept.
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In parallel, a study of intra-annual variations of pulse frequencies was conducted.

For this statistical analysis, we quantised the center frequencies with a resolution of

0.1 Hz and grouped dates by months. Similarly than for IPIs, the most frequent

center frequency of each month were retained, this time only for months with

at least 200 pulses.

Once most frequent observations are gathered for each time period, linear

least-squares regressions were conducted to estimate the linearity and the slope

of measurements.

7.2.4 Results

Data source Boussole [114] Bombyx [79] KM3Net [2] Total
Location South of Sanremo Port-Cros Island Cap Sicié
Recording year 2008-2009 2015-2018 2020-2021
Recorded time (hours) 1,860 3,291 1,124 6,275
Detection threshold 0.15 0.68 0.12
Pre-filtering detections 52,863 83,583 9,684 146,130
Detected pulses 1,647 2,827 657 5,131
Detected A pulses 1,411 2,554 322 4,287
Detected B pulses 236 273 335 844
Detected sequences 246 615 58 919
Detected bouts 51 214 11 276

Table 7.1: Summary of recording characteristics and automatic detections for each
source of data. Complementary information can be found in section 3.2.1.

For each recording system, Table 7.1 summarises the resulting detections. It

emphasis on the importance of the filtering stage, which strongly increases detection

precision by integrating simple spectro-temporal rules.

Moreover, the calendar Figure 7.3 seems to indicate a higher density of songs

during Autumn (from September to November). Nonetheless, the irregular seasonal

sampling does not allow to draw firm conclusions in that regard.
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Figure 7.3: Number of detected sequences for each day with recordings, normalised by
the amount of recorded hours. Grey cells denote days with recordings but no detection.

Stereotypical IPI

The time between a pair of consecutive pulses in a sequence (IPI) appears to be

strongly determined by their type (Fig. 7.4). The typical interval for an ‘AB’

bi-gram is 2 sec longer than that of ‘AA’ or ‘BA’. On the other hand, the ’BB’

pairs (less frequent but still commonly found) are 11 sec longer on average, but

present larger variability than the others.

These stereotypical IPIs also show a steady increase through time (Fig. 7.5). To

increase the temporal window of this observation and place it among the literature

on the Mediterranean fin whale song, we included measurements from previously

published papers: the points measured in 1999 by Clark et al. [36], and a point

measured in 2008 by Castellote et al. [32] (assuming it describes the most common

pair ‘AA’, as it was not specified). The ‘BB’ sequence did not provide enough

occurrences for the statistical tests to be relevant.
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Figure 7.4: Histogram of the IPI for each type sequence (bi-gram).

To estimate the growth of IPIs, for sequences ‘AA’, ‘AB’, and ‘BA’, linear models

were fitted (Fig. 7.5), whose coefficients of determination are 0.86, 0.97, and 0.92

respectively. The p-value for the null-hypothesis that the slope is not significantly

different from 0 are all inferior to 0.001. The estimated slopes for the ‘AA’, ‘AB’,

and ‘BA’ bi-grams are 0.091, 0.096, and 0.097 respectively (in seconds/year).

Center frequency

In a similar fashion, we also analyse the changes over time in spectral characteristics

of pulses. We observe an intra-annual decrease in pulse center frequency between

the months of August and February (Fig. 7.6). However no inter-annual trend

was found (Pearson analysis yields a correlation coefficient of 0.05 between pulse

absolute dates and their center frequency).

Fitting a linear model on this intra-annual trend yields a coefficient of determi-

nation of 0.73, with an estimated slope of -0.10 (in Hz per month). The p-values

for the null-hypothesis that the slope is not significantly different from 0 is 0.03.

We show the distribution of type B pulses with respect to months of the year in

Figure 7.6, below the dashed line. There is not enough data to draw an analysis

like the one conducted for the type A pulses.
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Figure 7.5: Scatter plot of the most frequent IPI per month for each type sequence.
Fitted linear models are shown as grey dashed lines. Points extracted from Clark et al.
[36] and Castellote et al. [32] appear as crosses.

For comparison with other previous studies, we ran the same analysis using

peak and centroid frequencies. The slope of the observed intra-annual trends are

similar for all metrics (-0.08 Hz/month, -0.10 Hz/month, and -0.13 Hz/month for

peak, center, and centroid frequencies respectively).

In a similar fashion, temporal trends of pulses’ spectral characteristics were

analysed. This revealed an intra-annual decrease in pulse center frequency between

the months of August and May (Fig. 7.6). On the other hand, no inter-annual

shift was observed (Pearson analysis yields a correlation coefficient of -0.06 between

pulse absolute dates and their center frequency).

For this statistical analysis, center frequencies were quantised to a resolution of

0.1 Hz and grouped by months. Center frequencies with the most occurrences were

kept, if among groups (months) of at least 50 pulses. Fitting a linear model on

the retained points yields a coefficient of determination of 0.73, with an estimated

slope of -0.08 Hz/month) (for the null-hypothesis that the slope is not significantly

different from 0, the p-value is below 0.01).
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Figure 7.6: Bi-histogram of the center frequencies against months of the year. The
horizontal line shows the separation between type A and type B pulses. The fitted linear
model is shown as a black dashed line.

For comparison with other previous studies, the same analysis was ran using peak

and centroid frequencies. The slope of the observed intra-annual trends are similar

for all metrics (-0.09 Hz/month, -0.08 Hz/month, and -0.11 Hz/month for peak,

center, and centroid frequencies respectively) and p-values for the null-hypothesis

that the slope is not different from 0 are all below 0.01.

Correlation between center frequency and IPI

With the observation of synchronous inter-annual shifts of both IPI and center

frequencies in Pacific fin whales, the hypothesis of a link between the two arose.

Weirathmueller et al. [224] states that the augmentation of the IPI through the

years could be explained by the simultaneous decrease in pulse peak frequencies

(lower frequency pulses presumably requiring a bigger effort to produce, a bigger gap

between them could be needed). The observed stereotypical IPIs of Mediterranean

fin whales also support this idea (sequences towards A pulses show lower IPIs).

This hypothesis was thus further tested by analysing the correlation between IPI

and center frequency (for pulses with IPIs between 14 and 20 sec).
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To dissociate this analysis from the link between pulse types and IPI, a 3

component Gaussian mixture model was fitted on the bi-dimensional representation

of pulses (center frequency versus time until the next pulse). This enabled to group

the different pulse bi-grams (‘AA’, ‘AB’, and ‘BA’), and conduct a correlation

analysis on each group independently. Figure 7.7 shows the scatter plot of the

pulses with their assignation to each mixture component. For each of the latter,

the Pearson correlation coefficient was computed, yielding -0.37, -0.22, and -0.35

for ‘BA’, ‘AB’, and ‘AA’ respectively (all p-values are below 0.01).
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Figure 7.7: Scatter plot of pulses center frequency against the time until the next pulse
(IPI). Colours denote the GMM assignations, whose means are marked with crosses.

7.2.5 Discussion
Mediterranean sea stereotypical IPIs

The present study led to the confirmation of the local stereotypical IPIs being

determined by pulse bi-grams. These results were previously shown on a relatively

small corpora of around 100 pulses [36], they are hereby confirmed with a corpus

larger by an order of magnitude, and over a span of 10 years.

Moreover, two temporal trends were observed. They are put in relation to other

fin whale song studies in Table 7.2 and discussed in the following paragraphs.
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Inter-annual Intra-annual
Study Location Frequency IPI Frequency IPI
Weirathmueller et al. [224] N.E. Pacific -0.17 Hz/yr 0.5-0.9 sec/yr - -
Oleson et al. [146] N. Pacific - - - +7.5 sec
Leroy et al. [119] Indian -0.21 Hz/yr - ∼ -0.1 Hz/mth -
Helble et al. [90] N. Pacific - 0.6-1.3 sec/yr - -
Morano et al. [138] N.W. Atlantic - * 0.5 sec/yr - +5.5 sec
Watkins et al. [221] N.W. Atlantic - - - +6 sec
Širović et al. [196] Gulf of California - ∼ 1 sec/yr - ∼ +8 sec
Furumaki et al. [71] Chukchi sea - ∼ 0.5 sec/yr - ∼ +1 sec
Wood and Širović [226] W. Antarctic -0.2 Hz/yr 0.1 sec/yr - -
self W. Mediterranean - 0.1 sec/yr -0.1 Hz/mth -

Table 7.2: Summary of song pattern trend studies. For intra-annual IPI shifts, since
trends are not linear, we report the difference between low IPI season and high IPI season
(summer vs winter). The inter-annual IPI shift for Morano et al. [138] (see ‘*’) is reported
between two consecutive years only.

IPI trends

Mediterranean fin whale stereotypical IPIs are shown to evolve over the years,

following a linear growth of approximately 0.1 sec/year over the past 20 years.

Such trends had already been observed in the songs of North-East Pacific [224]

and Central-North Pacific [90] fin whales.

Inter-annual shifts in IPI are rather recent and poorly documented. Weirath-

mueller et al. [224] state that the increasing IPI might be linked to the downward

frequency shift, lower frequency pulses potentially being more demanding in energy.

As for the present data, a low correlation coefficient was measured between the

two variables, and no evidence of any inter-annual center frequency decrease was

found. These observations thus go against this hypothesis, but more data is

required to draw firm conclusions.

As for the IPI shift slopes, it seems plausible that the differences between

Pacific and Mediterranean populations arise culturally. Whether they are originally

caused by the same factors or not, the singing patterns drift independently, with

song conformity only taking place within a given population. If environmental

or physiological factors alone were responsible for such patterns, they would have

to be present both in the Pacific and in the Mediterranean sea, but operating at

different rates. The hypothesis of the post-whaling population recovery (increasing

density and animal sizes) explaining these trends suits the latter conditions, as



7. Application to communication modelling 153

recovery rates could differ between Mediterranean and Pacific waters. On the other

hand, cultural features such as contact rate between individuals could explain slope

differences as well, regardless of the root cause of the shift.

As for within-year variations, studies of Atlantic and Pacific fin whales [138,

221, 146, 224] point to IPI increases during winter, before dropping back to autumn

values. These trends are hypothesised to be directly linked to the reproductive

season [146, 90] (due to hormonal activity or progressive dilution of the competition

for instance). No such trend was observed in the present data, but the irregular

data sampling through seasons might create an observational bias in that sense.

Pulse frequency trends

Inter-annual shifts in vocalisation frequencies were already documented in blue

whales [130, 128, 171], and bowhead whales [210]. Fin whales also showed similar

trends in the Pacific [224] (for 20 Hz pulses, -0.17 Hz/year), in the Antarctic

[226] (for 20 Hz pulses, -0.2 Hz/year) and in the Indian Ocean [119] (for 99 Hz

pulses, -0.21 Hz/year). Numerous hypotheses have been formulated for the cause

of this phenomenon, such as the increase in population density or body sizes [130]

(following the cessation of commercial whaling), the increase in calling depth [75],

the augmentation of noise from melting icebergs [119], or the acidification of the

oceans affecting sound propagation [93] (among others).

No inter-annual frequency shift was found in the analysed data: Mediterranean

fin whales could be an exception to this widespread trend. Their isolation from

populations for which this phenomenon was observed probably explains this differ-

ence, but it does not help in identifying the cause of the trend (whether cultural,

genetic, environmental or a combination of the three).

Nonetheless, an intra-annual decrease in center frequencies was observed (-

0.08 Hz/month). Such phenomenon was previously observed in large mysticetes of

the Indian Ocean including fin whales [119]. The latter study hypothesised pulse

frequencies to follow seasonal ambient noise level variations (notably due to melting

ice). Such phenomenon does not apply to the Mediterranean sea.
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7.2.6 Conclusion

The present study reveals the structure of the Mediterranean fin whale songs

from a statistical perspective, extending the previous analyses conducted for this

population [32, 36]. The CNN used for 20 Hz pulse detection showed robustness to

data variability and allowed to collect enough data to evaluate long term trends

(both within and across years).

Results are put in perspective with those of other studies in Table. 7.2. Such

comparative results could contribute to understanding the factor(s) responsible for

these trends, whether they are environmental, cultural, physiological, genomic

or a combination thereof.
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7.3 Orca call sequences

7.3.1 General context and objective

As previously mentioned, part of mysticete communication systems have been

characterised as songs for being associated with courtship. No such phenomenon

has been observed in odontocetes. Nonetheless, toothed whale communication has

been studied extensively, especially with bottlenose dolphins and orcas. Their vocal

displays (such as whistles and pulsed calls) have been suggested to serve social

signaling and bonding purposes [99]. Bottlenose dolphins use individual specific

signature whistles [215], whereas orcas use community specific pulsed calls [68] (the

set of call types are specific at several levels such as clans and pods).

For orcas, the study of stereotyped calls in relation to behavioural states has

suggested no causal dependency between the two, but rather a group identification

function [69, 61]. Ford [69] has manually analysed 20 thousand NRKW calls from

43 days of boat observation from 1978 to 1983, and reported call type bi-gram

distributions (Fig. 7.8). Some call type distributions differed across activities,

especially when involving multiple pods. Filatova et al. [61] have manually analysed

32 hours of recordings for calls to be assigned among 4 categories, and showed that

activity did not affect proportions of occurrence but multi-pod interactions did.

Given the available 5 years of continuous recordings from the OrcaLab obser-

vatory (section 3.2.1), the following study will focus on the NRKW population of

British Columbia. First, the detection CNN presented in section 5.3.1 was run

on the summers from 2015 to 2020 (season of presence of the NRKW), detecting

more than 300 thousands calls. Then, the classification CNN presented in section

5.5 allowed to automatically recognise 7 common call types, and to know when

other calls are encountered.

This work aims to study the structure in the sequences of call types, trying

to make the most out of the large but blind corpus at hand (no information is

available on associated behaviour or on the individual that emitted a call). We start

by estimating the repertoire complexity following the Zipf power law coefficient
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N1 N2 N4 N5 N9 Total

Ford - 10k call transitions 
 1978-1983

N1

N2

N4

N5

N9

0.29 0.11 0.34 0.11 0.15 0.05

0.04 0.35 0.36 0.09 0.15 0.17

0.04 0.14 0.56 0.11 0.15 0.44

0.05 0.14 0.32 0.34 0.14 0.13

0.04 0.11 0.34 0.09 0.42 0.21

N1 N2 N4 N5 N9 Total

self - 100k call transitions 
 2015-2020

0.31 0.05 0.33 0.14 0.17 0.1

0.11 0.24 0.33 0.15 0.16 0.04

0.07 0.03 0.69 0.08 0.14 0.55

0.1 0.05 0.36 0.3 0.19 0.12

0.09 0.03 0.41 0.12 0.36 0.19
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Figure 7.8: Comparison between the transition matrix from Ford [69] (left) and the
present study (right). The ‘Total’ columns denotes the proportion of each call in the
dataset. Only calls present in the two studies are reported.

approach. Then, to question the randomness / predictability of the sequences

of types, we compare the frequency of occurrence of specific events with those

generated by random simulations.

For the following analysis, sequences of calls were extracted from the CNN

predictions (detections are located at confidence peaks that are above 0.8 and

between 0.4 sec and 2 sec long). Following Riesch et al. [172], calls were considered

as being part of the same sequence if separated by less than 5 sec. Sequences with

at least 3 calls, and with no call categorised as ‘other’ were kept. This yielded

15,305 sequences with a total of 77,202 calls (Fig. 7.9).

7.3.2 Zipf’s law and call type repertoire
Context

In several studies, Zipf’s Law [238] has been used to quantitatively evaluate animal

communication system repertoires (for humans [230] and non-humans [129, 106]).

Such analysis rely on the estimation of the Power Law Coefficient (PLC) which

reflects the relationship between the rank of a repertoire’s token r (for the most

frequent token r = 1 and so on) and its frequency of occurrence f , following Eq. 7.4.

f = α × rPLC (7.4)
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Figure 7.9: Log-survivor plot [55] of the extracted sequences’ lengths.

The PLC is a comparative measure for repertoire complexity [129], PLC = 0

indicating a uniform distribution, and PLC << −1 implying highly skewed one.

Zipf [238] states that for a system that follows constraints of efficiency (“least

effort”), the PLC would converge to -1. This is supported by the fact that most

human languages have a PLC close to -1 [230]. A PLC close to -1 would thus be a

necessary condition for a communication system to be ‘language-like’ [106, 129].

Method

With a large enough dataset like the one at hand, a straightforward linear regression

suffices to estimate the PLC of a repertoire (Fig. 4 of Kershenbaum et al. [106]).

Eq. 7.5 shows the logarithm applied to Eq. 7.4 that allows to estimate the PLC

via a linear regression (least-square in our case). Figure 7.10 shows the resulting

linear fits in a log-rank vs log-frequency plot.

log(f) = −PLC × log(r) + log(α) (7.5)

Discussion

The estimated PLC from the whole dataset (-1.12) lies close to the one estimated

by Kershenbaum et al. [106] for a repertoire of the same species but with a much
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Figure 7.10: Zipf’s law analysis for the whole repertoire of detected calls and for the
repertoire of calls from extracted sequences. PLC are reported along with associated
coefficients of determination for the linear regressions.

smaller dataset (with 773 calls, PLC ≈ −1.1))1.

The large gap between the PLCs from the whole dataset and that of the selected

sequences demonstrates the significant impact that data sampling has on the such

estimates, even with relatively large datasets.

7.3.3 Span of correlation in sequences
Context

After the Zipf analysis of call repertoire, the following experiment focuses on

long term dependencies in call sequences. For this purpose, a statistical analysis

measures the impact call types have on subsequent ones, and this at varying

distances. Following Ferrer-i Cancho and McCowan [60] (analysis of dolphin whistle

sequences), we estimate the Mutual Information (MI) between calls X and Y at

a distance d (Eq. 7.6). The distance here is measured in number of calls that

separate a pair, d = 1 denoting a consecutive pair.

1The estimated PLC of Kershenbaum et al. [106] varies between -1 and -1.5 depending on
the method employed, but the method that yielded -1.5 also showed a large error during the
verification showed in Fig. 7 of the paper.
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I(X; Y |D = d) =∑
x,y

p(X = x, Y = y|D = d) log
( p(X = x, Y = y|D = d)

p(X = x|D = d)p(Y = y|D = d)
) (7.6)

The MI measures the KL divergence between marginal and joint probability

distributions of two random variables. Put in the context of orca call sequences, it

quantifies the impact a call type has on the probability of occurrence of another

call type (after d − 1 intermediary calls). If the call type X has no influence on the

probability of occurrence of the call type Y , the MI is 0. Conversely, if knowing

the type of X helps to predict the type of Y , the MI is high.

Method

To have a reference against which measures of MI can be compared, we can randomly

generate call pairs and measure their own MI. For that purpose, Ferrer-i Cancho

and McCowan [60] propose two randomisation methods:

• Global randomisation: shuffle the concatenation of all sequences before

recreating sequences of the same size to count call pairs,

• Local randomisation: shuffle the concatenation of all pairs at distance d

before extracting pairs from the resulting vector.

They are more or less equivalent to generating sequences via a zero order Markov

model (taking into account only the probability of occurrence of a call). I propose

to rather use a first order Markov model (or bi-gram model) to generate sequences

and extract call pairs. Doing so, we integrate the propensity of consecutive calls to

be of the same type, as observed by Ford [69] and shown in Figure 7.8.

Using these randomisation methods, we can generate call pairs (as many as

in the real data), measure I(X; Y |D = d), and compare it to that of the real

data. Doing so, and for each distance d, we can count the number of times the

random pairs show a higher MI than the real ones (in this case out of 10,000 trials).

Again following Ferrer-i Cancho and McCowan [60], we estimate the p-value of the

null-hypothesis that random pairs have a higher MI than real ones, defined as the

number of trials with a higher MI divided by the total number of trials.
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Figure 7.11: (solid lines) MI between pairs of call types depending on their relative
distance d. For randomised MI (10,000 trials for each method), the mean ± std is given.
(dashed lines) associated p-value for the null-hypothesis that the randomised pairs have a
higher MI than the observed ones.

Discussion

Figure 7.11 shows the evolution of the MI with a growing distance between calls. The

fact that less long sequences are available (Fig. 7.9) might explain why the MI grows

for d > 11 (small datasets can induce observation biases). Also, non-surprisingly,

the bi-gram generated pairs have the same MI than real ones at d = 1.

Nonetheless, for d ∈ [2; 14], the MI of the observed pairs is significantly higher

than the global, local and bi-gram randomisation (p-value<0.01), showing that

relatively long term dependencies exist in orca call sequences. To put in perspective,

the maximum distance at which Ferrer-i Cancho and McCowan [60] found a

significantly high MI for dolphin whistles is 7.

7.3.4 Propensity for repetition
Context

Previous sections have put forward metrics of information theory to quantify the

orcas’ repertoire complexity and the duration of impact a call might have on

subsequent ones (in terms of probability of occurrence). However it doesn’t answer

the core objective of this study: to search for a structure if any. Preliminary work

has been conducted in that sense, especially looking for specific sequence patterns.
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At most orders, n-gram frequency distributions are Zipfian (following Eq. 7.4).

No specific pattern seems to stand out, which motivated to look for a procedure

that automatically identifies n-grams with abnormally high frequencies. Therefore,

similarly to the last section, we randomly generated n-grams to compare them with

observed data. This time however, instead of comparing the MI of call pairs, we

compare n-gram frequencies. Let us illustrate the reasoning with a specific example.

31,287 4-grams were observed in the data, among which 324 were ‘N4 N9 N9

N4’. This particular sequence represents 1% of observations, 25 times its random

expected value if assuming that there are 74 = 2, 401 equiprobable 4-grams. For

such a sequence, we can wonder if a second order Markov model would generate

a similar amount of occurrences. Put mathematically, considering a 4-gram as

X0, X1, X2, X3, we want to estimate if (P (X3 = N4|X1 = N9, X2 = N9) = P (X3 =

N4|X0 = N4, X1 = N9, X2 = N9)).

To compare observations with random generations, we can thus fit a second

order Markov model, generate as many n-grams as observed, and count the resulting

frequency of ‘N4 N9 N9 N4’2. Furthermore, to get a robust estimation of n-gram

frequency, we can run the generation step for many trials (10,000 in our case).

Doing so, we have a distribution of n-gram frequencies as expected by a second

order Markov model. For instance, across trials, the ‘N4 N9 N9 N4’ 4-gram appeared

243 times in average (std = 15). Put in relation with the observed frequency of

324, this suggests that if a ‘N4’ precedes ‘N9 N9’, there is a higher chance for a

‘N4’ to follow than expected in average after ‘N9 N9’. In the next section, we will

generalise this procedure and include a test for statistical significance.

Method

This procedure is a systematisation of the reasoning described for the ‘N4 N9 N9

N4’ 4-gram. It was applied for all observed n-grams with n ∈ {3, 4} (as seen

in Tab. 7.3, higher orders do not offer enough data to be relevant). For each of
2An analytical analysis would also be valid to test the present hypothesis.
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them, a Markov model of order n-2 was used to generate as many n-grams as

observed, and this for 10,000 trials3.

N-gram order # Observations # Possible combinations
3 59,302 343
4 43,054 2,401
5 28,299 16,807
6 19,853 117,649

Table 7.3: Number of observed n-grams for varying orders. The number of possible
n-grams is also reported considering 7 call types (7n).

We now want to test whether the observed data is significantly different from the

generated one. For this purpose, we can get a distribution of observed frequencies

by cutting our data by recording year (6 years are available from 2015 to 2020).

For each n-gram, we thus have a distribution of observed frequencies (one for

each year) and a distribution of generated frequencies (one for each trial). For

frequencies to be comparable across years, they are normalised by the number of

observations (f = #occurrence
#observations

). An example of resulting distributions is illustrated

for the ‘N4 N9 N9 N4’ 4-gram in Figure 7.12.

For each n-gram, we can then compare observed and generated frequency

distributions using the Kruskal-Wallis H-test for independent samples (one-way

ANOVA). Several filters were applied to only keep relevant n-grams in the analysis:

• Only n-grams with frequencies higher than twice their random expected value

were kept (f > 2 × 7−n),

• Only n-grams with a mean observed frequency higher than the mean generated

frequency were kept,

• The p-value threshold was set to 0.01.

Result

Table 7.4 reports on patterns that were observed significantly more than generated

with a lower order Markov model. 5 3-grams and 8 4-grams appeared to show
3No back-off strategy was adopted since the highest order at which Markov models were fitted

is 2
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Figure 7.12: Distribution ‘N4 N9 N9 N4’ frequencies (observed for each year and
generated by a second order Markov model for 10,000 trials).

this property. For all of them, except for the ‘N4 N4 N2 N5’ 4-gram, the starting

call and the ending call are identical.

Discussion

This approach of frequency comparison between observations and generations

presents several limitations. As noted by Kershenbaum et al. [105], Markov chains

are not the best suited to model animal vocalisation sequences (renewal processes

seem more appropriate). Moreover, the reliability of the Kruskal-Wallis test is

questionable when one of the two distributions has only 6 samples.

Nonetheless, a pattern seems to emerge from the highly frequent n-grams: the

propensity for repetition. Indeed, the conclusion of our initial example with ‘N4

N9 N9 N4’ was: «if a ‘N4’ precedes ‘N9 N9’, there is a higher chance for a ‘N4’

to follow than expected in average after ‘N9 N9’». This appears to be applicable

to other call types, and suggests the following generalisation: knowing that a

call type was emitted increases its probability of occurrence in the following ones,

even with other calls in between.

This might be the explanation of the large span of correlation in call sequences

observed in the previous section (7.3.3). Also, this phenomenon had already been
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N-gram Observed
frequency (%)

Mean generated
frequency (%)

Std of generated
frequency (%)

3-grams (n = 3)
N4 N1 N4 1.15 0.85 0.04
N4 N5 N4 1.54 1.19 0.04
N4 N9 N4 3.41 2.74 0.07
N9 N4 N9 1.27 0.98 0.04
N9 N9 N9 2.72 2.24 0.08

4-grams (n = 4)
N4 N4 N1 N4 0.75 0.68 0.04
N4 N4 N9 N4 2.35 2.10 0.07
N4 N9 N9 N4 1.04 0.81 0.04
N1 N4 N4 N1 0.15 0.06 0.01
N5 N4 N4 N5 0.20 0.11 0.02
N5 N5 N4 N5 0.16 0.11 0.02
N4 N4 N2 N5 0.11 0.06 0.01
N5 N9 N9 N5 0.11 0.05 0.01

Table 7.4: N-grams with significantly high observed frequencies (p-value<0.01 for the
Kruskal-Wallis H test when comparing yearly observed frequencies with frequencies
generated by a n-2 order Markov model).

observed by Ford [69], especially with call transition probabilities (2-gram models).

7.3.5 Conclusion

Overall, the present analysis of orca call sequences does not reveal any strict

structural pattern. Quantitative measures of repertoire complexity and correlation

spans are provided, which can be integrated to subsequent comparative studies.

An important limitation faced by this study is the lack of information on the

emitter of each call: analysed sequences could be emitted by only one or by multiple

individuals, and this would completely change the way we can interpret the results.

For instance, the intentional feature of an emerging pattern would be interpreted

differently whether one or multiple orcas are responsible for it.

Nonetheless, results comfort previous observations that the emission of calls is

not completely random [69]. The group of vocalising orcas as well as their current

activity are most probably responsible for changes in call type distributions, which

yields relatively long range correlations between calls of a sequence. Nonetheless,

these correlation effects are not to be confused with causation.



7. Application to communication modelling 165

Information theory tools might suggest long range dependencies in animal

sequences (in terms of occurrence probability) but factors external to the actual se-

quences might be responsible for them, and care in interpreting them should be taken.
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8
Conclusion and perspectives

8.1 Thesis contributions

This thesis demonstrates several PAM applications, revolving about the use of ANNs

to accelerate data analysis. It lies between a tutorial on how to use ANNs for PAM,

an empirical study of what works and what doesn’t, and the demonstration of the

wide potential ahead of this approach. It is motivated by the following problematic:

how to best use ANNs for cetacean vocalisation detection? Answers are provided

in 3 folds : data annotation, architecture design and training regularisation, and

detection exploitation for biological insights.

Methods in annotation Robust detection systems are needed to save analysis

time on long term PAM recordings. ANNs offer an opportunity for this, but demand

annotations to be trained and evaluated on. I propose several procedures and UIs

to enhance annotation efficiency, making the most out of recording characteristics

and prior knowledge on target signals.

The proposed procedures where illustrated with several use cases starting from

raw recordings, yielding 6 annotated databases (5 for detection and 1 for classifica-

tion).
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Training procedures Given annotated databases, training ANNs allowed to

solve the detection tasks for 12 target signals (5 from custom annotated databases,

and 7 from the Antarctic mysticetes database). For signals with a limited variability

such as sperm whale clicks and fin whale 20 Hz pulses, relatively small (three depth-

wise convolution) networks yield satisfactory performances, improved compared

to previous handcraft algorithms.

As for detecting the more variable orca calls, systematic searches with deeper

models also yield satisfactory performances. Several insights arise from the ex-

ploration of network frontends, architectures and hyper-parameters (they might

be task specific).

On the other hand, deep models can also serve the detection of several target

signals with a shared set of weights, as shown with Antarctic mysticete calls. In

this context, performance metrics are discussed and an interpretable metric for

PAM uses is proposed (recall at 20 false positives per hour).

Eventually despite efforts in using unlabeled data for self supervised repre-

sentation learning and semi-supervised learning, the regular supervised approach

appeared to be the most efficient for the orca call type classification task.

Applications Perhaps the most ambitious objective of this thesis was to bridge

the gap between training deep learning algorithms and their application to long term

bioacoustic surveys. This was conducted for the study of 3 species: sperm whales, fin

whale and orcas. For each of them, different orientations were taken for the analysis.

Sperm whale presence was studied in relation to anthropogenic noise, the fin whale

song structure was described by long-term trends, and sequences of orca call types

were analysed in search of specific patterns and dependencies. Several insights

emerged from this work, contributing to the biological knowledge of these species.

Data availability All detection and classification systems built throughout

this thesis (model architectures, trained weights, and corresponding annotation

databases) will be made available online at http://sabiod.lis-lab.fr/pub/PB_

thesis_data_and_weights/.

http://sabiod.lis-lab.fr/pub/PB_thesis_data_and_weights/
http://sabiod.lis-lab.fr/pub/PB_thesis_data_and_weights/
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8.2 Future work

Frontend experiments PCEN is a promising frontend but does not lead to

a systematic performance gain. Work should be oriented towards understanding

better why it might be detrimental, especially when fixing its smoothing and

compression parameters.

In addition, to advance on embedded capacities for real time alert systems,

analog feature extraction (stack of band-pass filters) should be experimented with.

This would be relevant to tackle the main computational bottleneck of embedded

bioacoustic analysis: the STFT.

Integration of spatial information The data available at DYNI has the

potential to numerous other studies than the ones conducted so far. Work on

the spatialisation of acoustic sources could be conducted on the data from KM3Net

and OrcaLab. This would allow to add a new dimension of analysis when processing

vocalisation sequences.

Intra call modulations The analysis of orca call sequences presented in this work

was subject to the prior discretisation by types. Some information is presumably

lost in this process, such as within call variations. Li et al. [121] propose a deep

learning based whistle contour extraction procedure, which seems robust to low

SNR and overlapping calls. Experiments with this approach would be relevant

to the analysis of orca call sequences.

Using ANNs for sequence modelling Modern day language modelling is often

conducted with ANN based methods, especially with the recent boom of Transformer

architectures [47]. These models could be trained on orca call sequences and yield

a notion predictability and / or perplexity more reliable than with n-gram models.
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Résumé en français
Détection et classification automatique de signaux acoustiques de cétacés
Les cétacés font un usage important de l’acoustique pour socialiser, se déplacer
et chasser. De ce fait, leur suivi par l’acoustique passive permet d’accroître nos
connaissances sur ces espèces dont certaines sont en voie de disparition. Cette
approche génère de grandes quantités de données qui motive le développement de
procédures automatiques pour les traiter. Les réseaux neuronaux représentent une
opportunité pour cette tâche, ayant déjà démontré de grandes performances pour la
classification d’image ou encore la reconnaissance de parole. Les travaux de cette thèse
sont articulés en trois parties: l’annotation de données, l’entraînement de réseaux
neuronaux, et la mise en application des modèles résultants. Différentes méthodes
sont d’abord proposées pour accélérer le processus d’annotation en fonction du type
de signal cible et des données disponibles. Ces travaux ont permis de constituer des
bases d’entraînement pour la détection de 5 types de signaux (cliques de cachalots,
impulsions 20Hz de rorqual communs, vocalises d’orques, vocalises de delphinidés, et
appels de baleines à bosse). Les différents modèles résultants ont d’abord permis
le développement d’un système embarqué d’alerte temps réel pour la réduction de
risques de collision avec les ferrys. Ensuite, l’analyse des bases de données long
terme a montré des phénomènes de présence de cachalots en fonction du bruit
anthropique, et révélé la structure de chant du rorqual commun méditerranéen avec
une évolution sur 20 ans. Enfin, une modélisation du système de communication des
orques de Colombie Britannique a été effectuée grâce aux modèles de détection et de
classification de vocalises.
Mots clés : Cétacés, bioacoustique, réseaux de neurones

Résumé en anglais
Automated detection and classification of cetacean acoustic signals
Cetaceans make an important use of acoustics to socialise, travel and hunt. Therefore,
their monitoring via passive acoustics allows to increase our knowledge on these
species, some of which are endangered. This approach generates large amounts of
data which motivates the development of automatic procedures. Neural networks
represent an opportunity for this task, having already shown great performances
for image classification or speech recognition. The work of this thesis is in three
folds: data annotation, neural network training, and model application. Different
methods are first proposed to speed up the annotation process depending on the type
of target signal and the available data. This work allowed to build training databases
for the detection of 5 types of signals (sperm whale clicks, fin whale 20Hz pulses,
killer whale vocalisations, delphinid vocalizations, and humpback whale calls). The
resulting models have first allowed the development of an embedded real time alert
system for the reduction of collision risks with ferries. Then, the analysis of long
term data showed sperm whale presence patterns in relation to anthropogenic noise,
and revealed the song structure of the Mediterranean fin whale with an evolution
over 20 years. Finally, a modelling of the orcas communication system in British
Columbia was carried out using vocalisation detection and classification models.
Keywords : Cetacean, bioacoustics, neural networks
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