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À Roger Dusséaux, dont le coeur tacite insuffle mes réflexions



vi

Mathematics has two faces : it is the rigorous science of Euclid, but
it is also something else. Mathematics presented in the Euclidean
way appears as a systemic, deductive science ; but mathematics in
the making appears as an experimental, inductive science. Both
aspects are as old as the science of mathematics itself.

— George Pólya, How to Solve it.

vi



Apprentissage statistique appliqué à la cardiologie

Résumé

La sténose de la valve aortique (SA) est une maladie chronique progressive dont la prévalence
risque de tripler dans les décennies à venir en Amérique du Nord et par conséquent ses impacts
en santé et économie. À l’heure actuelle, aucun médicament contre la SA n’est disponible. La
nécessité de pharmacothérapies adaptées pousse donc à l’exploration des différentes causes de
la progression de la SA chez les patients. Bien qu’il existe déjà certaines sous-catégories de la
SA, ces dernières sont difficiles à identifier et par conséquent à cibler par une thérapie.
Afin de découvrir et identifier des causes potentielles de la SA, nous formulons la recherche
de ces phénogroupes en tant que problème de partitionement. Le partitionnement est un
problème issu du domaine d’apprentissage automatique consistant à répartitr de multiples
observations en groupes nommés clusters selon leurs similarités. Afin d’accompagner ce
problème d’apprentissage automatique, nous utilisons l’étude sur le progression des déterminants
métaboliques de la SA (étude PROGRESSA). L’étude PROGRESSA comprend trois modalités:
clinicopathologique, protéomique et radiomique pour 351 patients avec suivi annuel. La
structure de PROGRESSA est complexe: elle est de grande dimension avec des variables de
natures différentes. De plus, les différentes modalités ne se recouvrent pas nécessairement.
Dans ce contexte, nous formulons le problème de partitionnement à travers un prisme discrimi-
natif, ce qui permet d’intégrer avec facilité des modèles d’apprentissage profond, notamment
pour manipuler des données grande dimensions. Ces dernières années ont été marquées par
l’arrivée de méthodes de partitionnement profonds, souvent basés sur la maximisation de
l’information mutuellee. Cependant, les récents succès de ces méthodes sont souvent spécifique
à un type unique de données et ne permettent donc pas d’anticiper leur applicabilité à un
problème multi-source.
Afin de construire une solution pour le problème de partitionnement multi-source, cette thèse
s’orchestre autour du développement d’un ensemble de méthodes de clustering nommé infor-
mation mutuelle généralisée (GEMINI) à partir du Chapitre 3. Cet ensemble de méthodes
permet d’utiliser n’importe quelle architecture de réseau de neurones profonds sur des données
de natures variées. Nous montrons également comment cette méthode peut être améliorée
pour incorporer des méchanismes de sélections de vaiables afin de faciliter l’interprétation
des clusters au Chapitre 4: Sparse GEMINI. Puis nous complètons le spectre des modèles
entraînables par GEMINI avec l’introduction d’arbres non supervisés donnant un clustering
avec explication intégrée dans le chapitre 5.
Enfin, nous terminons cette thèse avec un pipeline intégrant divers variants de GEMINI pour
la découverte de phénogroupes de la SA dans l’étude PROGRESSA au Chapitre 6. Certains
de ces phénogroupes montrent une mortalité accentuée et sont caractérisés par des marqueurs
spécifiques, par exemple liés aux lipoprotéines, au diabète ou à la bicuspidie des valves aortiques.
Ces phénogroupes peuvent ainsi être ciblés par des thérapies spécifiques afin de réduire le risque
de progression de la maladie.

Mots-clés : Partitionnement discriminatif, apprentissage non supervisé, cardiologie, sténose
aortique, phénogroupes
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Statistical learning applied to cardiology

Abstract

Aortic valve stenosis (AS) is a chronic progressive disease whose prevalence is likely to triple
in the coming decades in North America, with a consequent impact on health and the economy.
However, efficient drug therapies for this disease are not available. The need for appropriate
medication is therefore driving the exploration of the various causes of AS progression in
patients. There exist a few sub-categories of the disease that could be differently targeted by
drugs, but they are hard to define and identify.
To alleviate the finding of different possible causes of AS, we formulate the search of phenogroup
(i.e. disease subtypes) as a clustering problem. Clustering is a family of approaches from
machine learning that consists in gathering multiple observations deemed similar in categories
called clusters. To support this machine learning problem instance, we employ the metabolic
determinants of the progression of AS study (PROGRESSA study). The PROGRESSA dataset
comprises 3 modalities: clinicopathological, proteomics and radiomics data for 351 patients
with yearly follow-ups. The structure of the PROGRESSA study is challenging for current
clustering algorithms: it is high-dimensional with mixed data types. Moreover, the different
modalities of the data do not necessarily overlap, making it to a multi-source clustering problem.
In this context, we formulate the clustering problem through the lens of discriminative clustering:
a point of view that leverages the easy integration of deep learning models for handling and
concatenating high-dimensional data. Within this framework, the last decade witnessed the
impressive rise of deep clustering methods that often involves the maximisation of mutual
information. However, the recent success of deep clustering models are often over-specified for
one type of data and therefore hardly account for multi-modal data.
To pave the way for a multi-source discriminative clustering algorithm, we developed a set of
discriminative clustering methods called generalised mutual information (GEMINI) in Chapter 3.
Thanks to its discriminative construction, this set of methods can be used with any deep neural
network architecture on data of various types. We also show how this method can be improved to
incorporate variable selection mechanisms to facilitate the interpretation of clusters in Chapter 4:
Sparse GEMINI. Then, we complete the spectrum of models trainable by GEMINI in Chapter 5
with the introduction of unsupervised trees giving a clustering with integrated explanation.
Finally, we conclude this thesis in Chapter 6 with a pipeline integrating various GEMINI variants
for the discovery of AS phenogroups in the PROGRESSA study. Some of these phenogroups
show increased mortality and are characterised by specific markers, for example linked to
lipoproteins, diabetes or bicuspid aortic valves. These phenogroups can therefore be targeted by
specific therapies to reduce the risk of disease progression.

Keywords: Discriminative clustering, unsupervised learning, cardiology, aortic stenosis,
phenogroups
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1.1 Aortic stenosis

1.1.1 Definition

As you read those first lines, a small amount of blood is passing through your beating heart.
Eventually, blood will leave the organ and roam the body for another lap. When leaving, blood
passes through one of the last cardiac chambers: the lower left chamber, also known as the left
ventricle. There, a valve continuously closing and opening partakes to the pumping role of the heart.
However, for some of us, and especially with most prevalence in high income countries (Coffey et
al., 2021 ; Iung et al., 2019 ; Lindman et al., 2016), this valve may someday narrow or open poorly,
thus affecting the quality of blood flow to the body. This disease is known as aortic stenosis (AS)
and is estimated to affect 3 million individuals in North America. Among the elderly population
(older than 75 years old), estimates range from 3.5% to 12.4% depending on the severity of AS in
Europe and North America (Osnabrugge et al., 2013).

Figure 1.1 – Apical four chambers drawing of the heart. The aortic valve is located close to the
mitral valve in the left ventricle.

The progression of this chronic disease is often classified into the following categories: mild,
moderate, severe or critical. However, it is often difficult to detect the disease in a reasonable
time. In fact, patients may live for years without symptoms of aortic stenosis before realising it, a
moment at which immediate intervention is often required. Notably, according to Thoenes et al.
(2018):

“A diagnosis of severe symptomatic AS is associated with an average life expectancy
of 2-3 years and necessitates a timely valvular intervention.”

A non-exhaustive list of potential symptoms includes chest pain, fatigue, heart palpitations, or
left ventricular hypertrophy (Thoenes et al., 2018). Without intervention, patients exhibit a higher
mortality rate for the 4 following years (Généreux et al., 2023). Within this period, it is estimated
that 62.7% of patients with moderate AS showing heart failure with reduced ejection fraction may
suffer from an all-cause mortality or heart failure hospitalisation (Khan et al., 2023).
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1.1.2 Diagnosis, prognosis and treatment

Echocardiography is the primary imaging modality used for diagnosing and assessing hemo-
dynamic severity and progression rate of AS, which ultimately determines optimal timing for
intervention (Beyersdorf et al., 2021 ; Otto et al., 2021). Notably, the European and US guidelines
recommend aortic valve replacement (AVR) upon observation of an abnormal left ventricular
ejection fraction, a rate of peak transvalvular velocity progression greater than 0.3 m/s per year or
repeated and markedly elevated B-type natriuretic peptide (Sevilla, Revilla-Orodea, & San Román,
2021).

Certain risk factors can be associated with AS such as the body mass index (BMI), hypertension,
alcohol and tobacco consumption or diabetes (Back & Larsson, 2020). However, these factors
alone often remain insufficient to forecast the progression rate of the disease.

To treat patients affected by severe aortic stenosis, surgery remains the only therapeutic option
with surgical AVR or transcatheter aortic valve implantation (TAVI) (Beyersdorf et al., 2021 ; Otto
et al., 2021), as to this day no effective pharmacological treatment to prevent the development
and/or progression of AS exists. This absence of validated drugs emerges from the lack of
accurate identification of pathophysiological mechanisms to target. For instance, the predominant
pathobiological process among women is valvular fibrosis (Simard et al., 2017 ; Tastet et al., 2020),
whereas men are more prone to aortic valve tissue calcification. Younger patients are concerned by
the infiltation and oxydation of lipids within valvular tissue and older patients rather suffer from
the relationship between osteoporosis and ectopic calcificationc of soft tissues, also known as the
calcification paradox (Persy & D’Haese, 2009).

Nonetheless, recent developments suggest the usage of ultrasound therapy for a safe and feasible
treatment of calcific AS (Messas et al., 2023), and other pharmaceutical targets are currently being
investigated.

1.1.3 Expected challenges

Today, the prevalence of AS is expected to increase substantially with the ageing of the
population and its ensuing economic and health burden is expected to do the same (Coffey et al.,
2021 ; Osnabrugge et al., 2013 ; Roth et al., 2020). Specifically, the prevalence of AS is expected
to triple in the 30 coming years (Andell et al., 2017 ; Danielsen, Aspelund, Harris, & Gudnason,
2014 ; Lindman et al., 2016). Consequently, with a cost estimated up to 10.2 billion USD per year
solely in North America between 1996 and 2011, AS has a dramatic impact on patients, society,
and healthcare (Moore, Chen, Mallow, & Rizzo, 2016). At the individual level, studies estimate a
cost of 11,000 USD per year per asymptomatic patient and 13,000 USD per year per symptomatic
patient in the United States (Moore et al., 2016) or 28,000 EUR per patient in Italy at the time
of intervention (Veronesi, Beccagutti, Corbo, Blini, & Degli Esposti, 2015). From 2000 to 2017,
drastic increases in mortality were reported by Hartley et al. (2021) over 23 countries in the EU
including UK, with smaller increases for western Europe than in eastern Europe.

However, despite the increasing use of TAVI (Pilgrim & Windecker, 2018), the unequal access to
health facilities brings imbalance in mortality in favour of more urban and high-income population,
e.g. Damluji et al. (2020). In this sense, countries that were able to establish a well-developed
access to TAVI rather observed plateaus of mortality rates instead of increases, e.g. Germany or
the Netherlands (Hartley et al., 2021). Yet, the access to surgery is not a sufficient criterion for the
challenges of AS. Studies highlight denials of aortic valve replacement for 30% to 50% of patients
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with even severe symptomatic AS, often due to overestimations of the risk of operation (D. S. Bach
et al., 2009 ; Malouf et al., 2012 ; Morris et al., 1993). To quote Thaden, Nkomo, et Enriquez-Sarano
(2014):

“Outcome is known to be poor in symptomatic patients with severe AS, but, despite
this knowledge, multiple studies have documented poor adherence to evidence-based
guidelines and inappropriate denial of surgery [...].”

There is a dire need for progress in the screening, diagnosis and risk and treatment stratification
throughout the world. Today, the core challenge of AS is the existence of almost no biomarkers and
strategies for identifying the optimal intervention moment in the disease treatment. Indeed, Thaden
et al. (2014) report that:

“Because there are no effective therapies for AS, management relies on optimal timing
for AVR.”

Hence, recent advances look for novel biomarkers or screening methods for unmasking even
asymptomatic AS (Pibarot & Dumesnil, 2012). Beyond the question of the optimal time for
intervention, the discovery of new biomarkers of the disease could lead to a specific development
of an adequate pharmacological treatment. Therefore, the identification of groups of individuals
sharing common characteristics that could be targeted by such a medication is an important
challenge for aortic stenosis. Such groups are called phenogroups.

1.1.4 Implementing machine learning in cardiology

Finding and unmasking the factors that could predict the different facets of AS is an exhausting
task which cannot be done manually. It is thus of interest for practitioners to automate the research
for patterns that could be relevant in the context of AS.

The last decades witnessed the spectacular rise of machine learning, a field at the crossing of
mathematics, statistics and computer science that could be briefly described as the art of uncovering
patterns (Bishop, 2007, Chapter 1) and for which cardiology observes a growing, but careful,
interest (Ben Ali et al., 2021 ; Sermesant, Delingette, Cochet, Jais, & Ayache, 2021), e.g. in
mortality prediction of patients with known coronary artery disease (Pezel et al., 2022). A machine
learning model can be described as a function f that processes a data set of observations x,
sometimes called samples, and produces a response y. Briefly written:

y⏞⏟⏟⏞
Response

= f⏞⏟⏟⏞
Model

( x⏞⏟⏟⏞
Observation

). (1.1)

A machine learning model is designed to achieve a specific task. This task varies according to
observations, response, availability of labels to assess the quality of proposed responses, and the
design of the model f . Observations can vary in nature: images, texts, customer information, social
media interactions, or, of course, health records regarding aortic stenosis. The response can also
vary in nature. It may, for example, be a price forecast, a weather forecast, or a category. Finally,
the choice of the model affects the response produced. It can be either deterministic, e.g. summing
two digits, or stochastic, e.g. answering with text an open question. In general, learning refers to
the concept of optimising the model f until a specific criterion is met. This criterion is chosen
according to the machine learning task.
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Since the end of the twentieth century, drastic improvements in information technology led
to the collection of increasing observed data, both in quantity and in size. Accompanied by the
development of powerful machines in terms of memory and speed, this context served as a breeding
ground for neural networks, a specific family of machine learning models. A neural network
consists in a stack of multiple layers, where each layer’s goal is to extract simplified concepts from
the previous layer’s concept. Thus:

“(By) gathering knowledge from experience, this approach avoids the need for human
operators to formally specify all the knowledge that the computer needs. The hierarchy
of concepts enables the computer to learn complicated concepts by building them out
of simpler ones” (Goodfellow, Bengio, & Courville, 2016, Introduction)

From this prism, deep learning refers to the specific case of a large number of such layers
stacked within a neural network.

Machine and deep learning algorithms have been previously used for various cardiology tasks,
including risk prediction and decision making optimisation (Ahmad et al., 2018 ; Feeny et al., 2019 ;
Motwani et al., 2017 ; Tokodi et al., 2020). Recently, several studies reported the applicability and
accuracy of machine and deep learning-based algorithms to detect AS in various settings (Chang et
al., 2021 ; Cohen-Shelly et al., 2021 ; Hernandez-Suarez et al., 2019 ; Kwon et al., 2020 ; Wang et
al., 2020).

1.1.5 The PROGRESSA study

Data observations are the fuel for machine learning. To leverage a model for AS, the Québec
Heart and Lung Institute (Institut Universitaire de Pneumologie et Cardiologie de Québec, IUCPQ)
and Laval University (Université Laval, UL) allowed us to exploit the metabolic determinants of the
progression of aortic stenosis (PROGRESSA, NCT01679431) study directed by Philippe Pibarot,
PhD, DMV. This study, started in 2005, was first introduced by Capoulade, Després, et al. (2012)
with an initial number of 104 patients. Since then, this database unique in the world has been
growing constantly (Capoulade et al., 2015 ; Lachmann et al., 2021 ; Tastet et al., 2017), so our
work will focus on the version of PROGRESSA from the 30th of December 2020, now including
351 patients.

All patients presented in the dataset were affected by aortic stenosis with at least mild severity.
Entries contain multiple visits of each patients at an average rate of a visit every 2 years. Patients
were excluded if they had symptomatic AS, moderate or greater aortic regurgitation, or mitral valve
disease (stenosis or regurgitation), left ventricular ejection fraction lower than 50%, and if they
were pregnant or lactating.

The PROGRESSA study comprises multiple variables for each patient. These information can
be divided essentially in clinical data, e.g. age, weight, blood pressure, echocardiographic data e.g.
left ventricular mass, aortic jet velocity, proteomic data i.e. the level of expression of given genes in
a patient, and imagery e.g. CT scans.

Thanks to the PROGRESSA study, we can explore biomarkers or risk factors associated to AS
with machine learning. This problem can be solved using the specific task of clustering that we
now introduce.
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1.2 Clustering

1.2.1 Definition

Clustering is a fundamental learning task that involves separating data samples into several
groups, each named cluster. A cluster should be a cohesive set of elements that may share some
common properties. Ideally, these commonly shared properties should allow us to distinguish
one cluster from the other (Bouveyron, Celeux, Murphy, & Raftery, 2019, Chapter 1). Therefore,
this task is useful for exploring and uncovering knowledge in data analysis, e.g. biology with
microarray analysis (McLachlan, Bean, & Peel, 2002 ; Sturn, Quackenbush, & Trajanoski, 2002),
customer segmentation (Kansal, Bahuguna, Singh, & Choudhury, 2018 ; Kashwan & Velu, 2013),
social network analysis (Bedi & Sharma, 2016 ; Himelboim, Smith, Rainie, Shneiderman, &
Espina, 2017), political campaign analysis (Bode, Hanna, Yang, & Shah, 2015) or, in our context,
phenogroup discovery of aortic stenosis (Kwak et al., 2020).

Given a potentially large collection of data samples xxxi gathered into a dataset D, a clustering
algorithm is a deterministic or probabilistic model f that assigns each sample xxxi to a cluster yi.
While xxxi may take several values in a potentially large data space X e.g. images, tabular entries,
or graphs, the cluster assignment is only an integer bounded by the desired maximal number of
clusters K, formally:

f : X ↦→ JKK,
xxxi ↦→ f(xxxi) = yi.

(1.2)

Conceptually, clustering belongs to the family of unsupervised learning. This means that the
dataset does not contain any information about a potential ideal target. Therefore, we do not have
explicit information guiding the optimisation of the model f .

In the absence of such targets, clustering hinges on two main questions (Hennig, 2015). The
first main question concerns the assessment of correct clustering. We are interested there in knowing
if the discovered clusters are insightful and teach us something about the data. However, we must
emphasise that there is no global consensus on the definition of a cluster. Consequently, it was
shown that each clustering algorithm cannot satisfy simultaneously multiple properties (Kleinberg,
2003). Overall, the use case drives the need and the “clustering is in part in the eye of the
beholder” (Estivill-Castro, 2002). We may thus say that there are no absolute best clustering
algorithm, yet some may be relatively better depending on the context. The second major question
to address in clustering is the actual, sometimes called optimal, number of clusters i.e. the value
of K in Eq. (1.2). For instance, a clustering algorithm could find more insightful clusters when
searching only for 5 of them instead of 10. Perhaps more would be more beneficial. Yet again, the
lack of formal definition of clusters implies that no method can be absolutely better than others
in finding the correct number of clusters if that number is even existing. However, by restricting
clusters to some narrow definition, methods for assessing the quality of the number of clusters
exist (Biernacki, Celeux, & Govaert, 2000 ; Davies & Bouldin, 1979 ; Rousseeuw, 1987 ; Tibshirani,
Walther, & Hastie, 2001).

Hence, clustering is a relevant task for finding phenogroups in the PROGRESSA dataset
regarding AS as we are conducting an exploratory analysis. The number of phenogroups is for now
unknown, yet our medical collaborators established from previous studies (Capoulade, Clavel, et
al., 2012 ; Fatima et al., 2019 ; Gardezi et al., 2018) the hypothesis that the expression of aortic
stenosis would comprise 5 main disease phenogroups according to the predominant pathobiological



1.3 – 1.2.2 Limitations for the PROGRESSA study 7

process. These hypothetised groups are: lipidic, inflammatory, thrombotic (Sellers et al., 2019),
fibrotic (Simard et al., 2017) and calcific (Lindman et al., 2016), i.e. at least phenogroups. The
discovery and interpretation of such clusters would eventually open the path to personalised
pharmacotherapy for treating AS.

1.2.2 Limitations for the PROGRESSA study

The structure of the PROGRESSA dataset is peculiar and will drive our choices in the design
of a clustering algorithm in this thesis. The data set is made up of 3 distinct parts: a clinico-
pathological part which contains clinical, demographic, echocardiographic and metabolic data; a
proteomics part, i.e. the level of expression of some selected proteins, and a radiomics part with
the actual images and videos from echocardiography, Doppler, computed tomography (CT) scan
records.

Each patient is associated with at least three entries in the clinicopathological dataset, one
per medical visit. However, not all of them underwent proteomic analysis. Out of the 351 initial
patients, only 141 have corresponding entries to proteomic expressions. Moreover, the proteomics
analysis was always carried exactly 4 times from the first to the 4th visit. Finally, all patients are
associated with a set of 1 or more images, even videos, resulting from various scans. However,
these images are related only to each patient’s first visit.

Beside images that are high-dimensional, the PROGRESSA dataset contains more than 500
variables both continuous or discrete, many of which containing missing values for only 351 patients.
This poses a challenging high-dimensional clustering problem on mixed-type data. Moreover, the
medical interpretation of clusters is challenging because of the large number of variables and several
may be noisy and irrelevant to the phenogroups we seek. Consequently, a selection strategy must
be considered to reduce the number of used variables per cluster and thus ease the interpretation.

The structure of the PROGRESSA dataset imposes a specific case of clustering: the heteroge-
neous source clustering. As all parts of the dataset cannot be naively concatenated due to temporal
differences in visits, we need to design an approach that could leverage a new structure in the
dataset on which to perform clustering. This need for a specific structure can be rephrased as
finding a suitable representation of the dataset. Such representations can be learnt using neural
networks.

That is why we will focus in this thesis on the elaboration of a clustering algorithm compatible
with neural networks, such that it could handle data variety, from tabular to images and pave the
way to heterogeneous clustering.

1.3 Thesis outline

This thesis aims at building a framework able to handle the structure of the PROGRESSA
dataset for the purpose of clustering and hence phenogroup identification. To that end, we will
revisit the general spectrum of discriminative clustering and propose a novel generic framework. In
particular, this framework alleviates the training of any neural network for clustering. We list with
every chapter here the associated contributions, whether published or in process.
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Chapter 2

We start with a review of clustering algorithms with a specific focus on the deep discriminative
clustering algorithms. We discuss the advantages and limitations of each model and incorporate a
discussion of the algorithmic and probabilistic tools for interpreting the obtained clusters. Notably,
we highlight how mutual information appeared as a common choice of objective function in recent
years for training neural networks for discriminative clustering.

Chapter 3

We then discuss how the mutual information presents some core limitations and extend its
definition to add geometrical constraints in the clustering. This extension is called generalised
mutual information (GEMINI) and will serve as a basis for a complete clustering framework
throughout the thesis. We introduce as well the package GemClus, a minimal-requirements Python
package for repeating and exploiting most of the models of this thesis.

Published as a conference paper Louis Ohl, Pierre-Alexandre Mattei, Charles Bouveyron,
Warith Harchaoui, Mickaël Leclercq, Arnaud Droit, and Frederic Precioso. Gener-
alised mutual information for discriminative clustering. In S. Koyejo, S. Mohamed, A.
Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems, volume 35, pages 3377–3390. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
16294049ed8de15830ac0b569b97f74a-Paper-Conference.pdf

Preprint, submitted to a journal (extension) Louis Ohl, Pierre-Alexandre Mattei, Charles
Bouveyron, Warith Harchaoui, Mickaël Leclercq, Arnaud Droit, and Frédéric Precioso.
Generalised Mutual Information: a Framework for Discriminative Clustering. arXiv preprint
arXiv:2210.06300, September 2023. URL https://hal.science/hal-04198445

Software, open-source Louis Ohl, Pierre-Alexandre Mattei, and Frédéric Precioso. GemClus.
https://github.com/gemini-clustering/GemClus, March 2024

Chapter 4

After constructing the GEMINI framework, we highlight how the discriminative nature of
neural networks and logistic regressions in clustering can easily incorporate regularisations leading
to sparse models. This extension, called Sparse GEMINI, adds feature selection to the GEMINI
framework, enhancing thus the interpretation of clusters.

Preprint, submitted to a journal Louis Ohl, Pierre-Alexandre Mattei, Charles Bouveyron,
Mickaël Leclercq, Arnaud Droit, and Frédéric Precioso. Sparse gemini for joint discrimina-
tive clustering and feature selection. arXiv preprint arXiv:2302.03391, 2023.

Chapter 5

Beyond feature selection, we show how we can construct explainable clustering with decision
trees where the selected variables obey structured rules and introduce two models: Kauri and
Douglas. Specifically, Kauri is an end-to-end decision tree learnt using a kernel K-means objective.
Douglas is a differentiable tree using combinations of soft bins of features trained with any GEMINI.

https://proceedings.neurips.cc/paper_files/paper/2022/file/16294049ed8de15830ac0b569b97f74a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/16294049ed8de15830ac0b569b97f74a-Paper-Conference.pdf
https://hal.science/hal-04198445
https://github.com/gemini-clustering/GemClus
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Preprint, submitted to a conference Louis Ohl, Pierre-Alexandre Mattei, Mickaël Leclercq,
Arnaud Droit, and Frédéric Precioso. Kernel kmeans clustering splits for end-to-end
unsupervised decision trees. arXiv preprint arXiv:2402.12232, 2024

Chapter 6

With the complete GEMINI framework built throughout the previous chapters, we develop a
complete pipeline for preprocessing, clustering and selecting variables in the PROGRESSA dataset.
Involving an application of GEMINI in consensus clustering, we develop a complete pipeline to
obtain clusters of patients that are stable despite the progression of severity of AS and interpret
them as phenogroups. We present as well briefly some related works by Sanabria et al. regarding
the PROGRESSA study for which our main contribution was the decision process of the model
construction and code revisions.

In submission Melissa Sanabria, Lionel Tastet, Simon Pelletier, Mickael Leclercq, Louis Ohl,
Lara Hermann, Pierre-Alexandre Mattei, Frédéric Precioso, Nancy Coté, Philippe Pibarot,
and Arnaud Droit. Deep learning-based algorithm to predict aortic stenosis progression
from the progressa cohort, 2023.

Under writing Marie-Ange Fleury*, Louis Ohl*, Lionel Tastet, Mickaël Leclercq, Frédéric
Precioso, Pierre-Alexandre Mattei, Jérémy Bernard, Mylène Shen, Nancy Côté, Arnaud
Droit, and Philippe Pibarot. Enhancing risk stratification in aortic stenosis using echocar-
diography and artificial intelligence, 2024

Conclusion

Finally, we summarise all contributions of the thesis and offer insights on the theoretical
proposal of heterogeneous source clustering with the GEMINI framework, which is part of our
future works.
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2.1 Intuition for the PROGRESSA dataset

The clustering of the PROGRESSA dataset requires the integration of multiple modalities:
tabular data, images. Therefore, we are interested in developing an algorithm that could easily
concatenate or merge representations of all modalities, whether at the data level or an intermediate
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representation level. This operation is called fusion (Bramon et al., 2011). In practice, we will see
that we did not perform fusion of radiomics in Chapter 6 and only fused proteomics with clinical
data.

Throughout the many flavours of clustering algorithms, little did address the task of heteroge-
nous data clustering. This problem arises when the data are composed of many different sources
that vary in nature, for example conjunctions of graphs with images, or tabular data accompanied
by sound. Therefore, models that were designed for one specific type of input space are not fit and
we need to rethink models such that they can integrate the various input sources.

A trivial and simplistic solution would be to concatenate the input spaces, in the hope that
traditional model can consider this concatenated input as a single block. However, doing so means
merging various metric spaces that may not be comparable. Moreover, the challenge of adequately
balancing even a linear combination of two metrics from two different metric spaces remains an
open problem.

A deep-learning-orientated solution would rather be to transform each of the various sources
into identical hence comparable metric spaces. This can be achieved with neural networks, one per
source, and each finishing onto identical layers or layers of similar dimensions.

We explore in this chapter different approaches to do clustering of data. We specifically focus on
the discriminative models because they allow an easy fusion of representations due to their absence
of parametric hypothesis on the data distribution. We show how mutual information imposed itself
as a strong objective in deep clustering and finally discuss some approaches to help interpreting the
clusters with feature selection.

2.2 Modelling frameworks

Clustering is the task of grouping data samples. Each data sample is formally described as a
random variable xxx, taking values from X . This variable is uni- or multidimensional, with a mix of
continuous and/or discrete dimensions. We consider that we have a dataset of n independent and
identically distributed samples D = {xxxi}ni=1. The membership of the cluster is indicated by y, a
discrete random variable taking values in JKK, where K is the number of clusters to determine.

To link these two random variables, a model is required. However, the nature of the assumptions
that are made for the model greatly impacts the algorithmic procedures for learning. Here we
describe two major contrasting frameworks: the generative and the discriminative modellings.

2.2.1 Starting from Bayes theorem

A clustering algorithm can be described as a probabilistic distribution p that assigns to a given
sample xxx a cluster membership y. This distribution is controlled by a set of parameters θ. Thus,
a clustering model is the parameterisation of the distribution p by θ and so it is written pθ(y|xxx).
According to the Bayes theorem, we can devise a definition of the clustering model pθ(y|xxx):

pθ(y|xxx) = pθ(xxx|y)pθ(y)
pθ(xxx) . (2.1)

This theorem highlights that building a distribution binding clusters y and data xxx necessarily
implies the existence of three other distributions: one for the generation of the data given a cluster
pθ(xxx|y), one for the proportion of clusters pθ(y) and one for the probability of observing the data
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y xxx

(a) Generative modelling

xxx y

(b) Discriminative modelling

Figure 2.1 – The generative and discriminative modelling frameworks for clustering models.
Observed variables are shaded.

pθ(xxx), often called likelihood. We further note that as the clustering distribution is dependent on θ,
most other distributions are consequently also dependent on θ, unless specified otherwise.

Given a clustering model pθ(y|xxx), the final clustering of a dataset is the assignment of each
sample in the dataset D to the cluster for which the conditional probability is maximal. The k-th
cluster is defined as:

Ck = {xxx ∈ D|k = arg max
y

pθ(y|xxx)}. (2.2)

The definition offered by the Bayes theorem on the clustering models brings two different ways
of defining the clustering model and its parameters. The first one is the generative modelling which
views the clustering membership as a latent variable explaining how the data was generated, and
the second one is the discriminative modelling which seeks immediately the clusters from the data.
With probabilistic graphical models (Koller & Friedman, 2009, Chapter 1), we can summarise both
views with Figure 2.1.

2.2.2 Generative models

In generative modelling, knowing the latent cluster y is sufficient to describe the distribution
of its associated data xxx, see Figure 2.1a. The design of this model is therefore focused on the
right hand-side factors of the Bayes theorem in Eq. (2.1): a generative model is the design of
pθ(xxx|y), with learnable proportions pθ(y) (Bouveyron et al., 2019). Often, the distribution pθ(xxx|y)
is very simple, e.g. Gaussian distributions. The generative approach can be interpreted as creating a
ready-made template of how clusters would look like, then stretching the template until it fits as
best as possible the observed data. The key idea of fitness is often measured with the likelihood:

pθ(xxx) =
K∑︂
y=1

pθ(xxx|y)pθ(y). (2.3)

The intuition is that a model similar to the true process that generate the data should be likely
to generate again similar samples to those observed. The clustering distribution pθ(y|xxx) is then
a consequence of the modelling. Indeed, a generative model indirectly specifies the clustering
distribution because it is implicitly proportional to the generative process pθ(xxx|y)pθ(y). We give a
simple example of a generative model where each cluster obeys a Gaussian distribution in Figure 2.2.
Each cluster distribution is therefore written pθ(xxx|y) = N (xxx|µµµy, σ2

y) and each cluster proportion
pθ(y) = πy. The parameters θ comprise the location µµµy, the scale σ2

y and proportion πy for each
cluster. In the one-dimensional binary example from Figure 2.2, we have a total of 6 parameters
with θ = {µµµred, σ

2
red, πred,µµµblue, σ

2
blue, πblue}. The resulting likelihood is defined as:
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−2 2
x

(a) 25% of red cluster

−2 2
x

(b) 50% of red cluster

−2 2
x

(c) 90% of red cluster

Figure 2.2 – An example of generative models with 2 clusters in 1 dimension. The parameters
θ of the model comprise the Gaussian distribution locations µµµred = −1, µµµblue = 2, the scales
σ2

red = σ2
blue = 1 and the proportions of each clusters.

pθ(xxx) = pθ(y = red)pθ(xxx|y = red) + pθ(y = blue)pθ(xxx|y = blue) (2.4)

= πredN (xxx|µµµred, σ
2
red) + πblueN (xxx|µµµblue, σ

2
blue). (2.5)

For a mixture of 2 d-dimensional Gaussian distribution with proportions π1, π2, locationsµµµ1,µµµ2
and the same covariance ΣΣΣ, it is possible to show that the clustering distribution is defined (Bishop,
2007, Eq. 4.64):

pθ(y = 1|xxx) = Sigmoid(www⊤xxx+ b), (2.6)

where the sigmoid function is defined for all real values a:

Sigmoid(a) = 1
1− e−a , (2.7)

and the coefficients are:

www = ΣΣΣ−1(µµµ1 −µµµ2), (2.8)

and:

b = −1
2µ
µµ⊤

1 ΣΣΣ−1µµµ1 + 1
2µ
µµ⊤

2 ΣΣΣ−1µµµ2 + log π1
π2
. (2.9)

We observe in Eq. (2.6) that the clustering distribution pθ(y|xxx) is therefore drawn around a
linear decision boundary of coefficientswww and b when the covariances are equal between 2 Gaussian
distributions.

To optimise the parameters, the most straightforward method is maximum likelihood, i.e.
maximising the value of the likelihood pθ(xxx) of all samples xxxi in the dataset D. Under the common
assumption of i.i.d. samples in the dataset, the maximum likelihood parameter is defined as:

θ̂MLE = arg max
θ

∏︂
xxx∈D

pθ(xxx). (2.10)

However, this likelihood is often challenging to maximise due to the unobserved and latent
nature of the cluster membership y. In such a case, an expectation-maximisation (EM) algorithm
can be used to find a local maximum for the likelihood (McLachlan & Krishnan, 2007). This
algorithm alternates between two steps. In the first step, called expectation, the probability of cluster
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membership is estimated using the current state of the model parameters θ. In the second step,
called maximisation, the parameters θ are optimised to maximise the likelihood given the current
cluster membership probabilities. This procedure is repeated multiple times until convergence. Still
today, this algorithm remains one of the most commonly used in mixture modelling.

The most common example of a generative clustering model is the Gaussian Mixture Model
(GMM), where each cluster is assumed to follow a Gaussian distribution (Banfield & Raftery,
1993 ; Bouveyron et al., 2019). Other examples comprise mixtures Gaussian copulae for handling
mixed types of variables (Marbac, Biernacki, & Vandewalle, 2017), mixtures of multivariate t-
distribution (Peel & McLachlan, 2000) for robustness against outliers thanks to heavily tailed
distributions, for instance, applied on Box-Cox transformed data (Lo, Brinkman, & Gottardo,
2008), mixtures of Poisson distributions (Karlis & Tsiamyrtzis, 2008), or mixtures of multinomial
distributions (Goodman, 1974).

Model-based clustering benefits from a large panel of statistical tools. Notably, it is possible to
assess the adequation of the model to the data and validate a correct choice of number of clusters
with internal scores. For example, the Bayesian information criterion (BIC, Schwarz, 1978) is
defined for parameters θ̂MLE obtained after training:

BIC(K) = 2
∑︂
xxx∈D

log pθ̂MLE
(xxx)− νK logn, (2.11)

where νK is the number of free parameters in θ̂MLE for K clusters. For instance: in the previous
GMM example, we had νK = 5 because the proportions of the clusters πred and πblue depend on
each other. BIC encourages models to fit well the data with a strong likelihood while maintaining a
low number of parameters. This criterion focuses on the good number of components that fit well
the data in terms of likelihood. However, this does not imply that it is correct for clustering the
data. For example, a cluster for which the samples describe a spline cannot be covered by a single
Gaussian distribution. In this case, we would like to fit multiple Gaussian distributions at different
part of the spline and consider all of them as describing a single cluster. A more adequate internal
score for mixture-based clustering models is the integrated complete likelihood (ICL, Biernacki et
al., 2000) for K clusters and M components:

ICL(K,M) = BIC(M)−
∑︂
xxx∈D

K∑︂
y=1

pθ̂MLE
(y|xxx) log pθ̂MLE

(y|xxx). (2.12)

The ICL penalises the BIC by subtracting the entropy of the cluster memberships of the model.
As the entropy becomes smaller when the model decisions are clear-cut, ICL encourages models
for which the number of clusters leads to distinct separations.

The difficulty of generative models for clustering lies essentially in the choice of the generative
distribution pθ(xxx|y). In practice, the choice of distribution, e.g. Poisson, Gaussian, is often guided
by the expertise developed on the dataset. However, the statistical challenges emerging from the
high-dimensional nature of modern data call for adequate regularisations and constraints of the
distributions (Bouveyron & Brunet-Saumard, 2014b, Chapter 8).

Beyond the usage of well-known distributions with scalar or matrix parameters, the last decade
witnessed the rise of generative modelling with neural networks, notably with the variational auto-
encoders (VAE, Kingma & Ba, 2014 ; Rezende, Mohamed, & Wierstra, 2014) and the generative
adversarial networks (GAN, Goodfellow et al., 2014). Both methods aim to build generative models
in which the latent variable zzz is continuous contrary to generative clustering models. Starting
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from ease-to-sample distributions, these models transform low-dimensional latent variables to
high-dimensional variables using complex nonlinear transformations. VAEs, as part of the broader
class of Deep Latent Variable Models (DLVM), parameterise the generative distribution with the
output of a function g from the latent variable: p(x|g(zzz)). For instance, g can be a neural network
returning the mean and diagonal covariance of a Gaussian distribution. To optimise the generative
process, an amortised variational inference method is often used with an encoder network as the
proposal distribution for approximating the posterior distribution of the latent variable, hence the
name variational auto-encoder. GANs focus instead on optimising a zero-sum game, where the
generative distribution must produce samples of sufficient quality to fool a discriminative network,
sometimes called a critic. The goal of this discriminator is to differentiate true samples coming
from a target distribution, the data, from samples created de novo by the generator. The core
limitation of these initial models in the context of clustering is the usage of a continuous latent
variable, the code, rather than a discrete variable, the cluster. Proposals exist to make the latent
variable categorical (Jang, Gu, & Poole, 2017), but this does not imply that they were intended for
clustering. Thus, extensions were proposed to adapt VAEs and GANs for clustering.

In the VAE framework, the first straightforward approach was to propose a Gaussian mixture
model as prior distribution ∗ (Dilokthanakul et al., 2016 ; Jiang, Zheng, Tan, Tang, & Zhou, 2017).
Thus, the choice of a specific cluster restricts the sampling in the latent space that generates the
corresponding set of clustered data. To provide further improvement, X. Li, Chen, Poon, et Zhang
(2019) proposed to use latent tree models as a distribution over the latent space to leverage structure
learning jointly with clustering. There is today still ongoing work on the optimisation of the prior
for clustering (L. Yang, Fan, & Bouguila, 2021) or the addition of constraints in VAE (H. Ma,
2022).

Turning to GAN, a simple clustering approach is to extend the discriminator’s task to assign
each sample to one class instead of guessing fake from generated data (Springenberg, 2015).
Another approach proposed by Mukherjee, Asnani, Lin, et Kannan (2019) with their clusterGAN
model is to constrain the sampling space to a mixture of continuous and discrete variables that
depend on the cluster. Recently, GAN mixtures have also been proposed (Mello, Assunção, &
Murai, 2022). To still take into account and correct the errors that could arise from poorly initialised
clusters, other GAN-based approaches tend to regularise their model using auto-encoders (Mrabah,
Bouguessa, & Ksantini, 2020 ; Zhou, Hou, & Feng, 2018).

In general, generative modelling presents compelling tools for clustering. However, the difficulty
of making assumptions is one of the main keys to the success of the model. Moreover, in the context
of mixed types of variables, this choice of parametric assumption becomes even harder. Often,
assumptions of independence between categorical and continuous variables are made to achieve
mixed-type variables clustering with mixture models (Marbac et al., 2017 ; Marbac & Sedki, 2017).
For VAEs, this can be done by training individualised VAE per variable (C. Ma, Tschiatschek,
Turner, Hernández-Lobato, & Zhang, 2020). However, these solutions remain at the data level and
are hardly applicable for the concatenation of specified representations on heterogeneous sources of
data. Although this fusion problem of intermediate representations of the data could be leveraged by
generative neural networks such as GANs or VAE, we believe that this choice remains suboptimal.
On the one hand, the difficulty of training GANs (Arjovsky & Bottou, 2017 ; Bottou, Curtis, &
Nocedal, 2018 ; Salimans et al., 2016) limits their practical application, and on the other hand, the

∗. We use here the term prior in the sense of parametric assumption on the latent variable, instead of some belief on
the model’s parameters.
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latent space of a VAE which maps samples to distributions according to the variational distribution
hardly account for modality fusion.

2.2.3 Discriminative models

To avoid the burden of choosing parametric assumptions following the generative modelling,
we turn to the discriminative point of view. In this context, we do not take any assumption at all
regarding the data distribution and denote it pdata(xxx). However, we assume to be able to sample
from a dataset of fixed samples. The discriminative framework can be interpreted as taking the data
as is and inferring clusters instead of finding assignments suiting a notion of likelihood. Thus, we
only design a discriminative model pθ(y|xxx) and we obtain:

pθ(xxx, y) = pdata(xxx)pθ(y|xxx). (2.13)

From a generative perspective, the discriminative modelling corresponds to the joint distribution
of a data distribution and inference distribution with decoupled parameters (Minka, 2005). The
data is generated by a set of external parameters θ′ and the complete model is written pθ,θ′(xxx, y) =
pθ(y|xxx)pθ′(xxx). Note however that in contrast to this generative view, we do not even assume the
existence of such parameters in our discriminative models when writing pdata(xxx).

This framework can be conveniently used with any function ψθ whose outputs lie in the simplex
of dimension K: the number of clusters. This output can then be considered as the parameters of a
categorical distribution defining the conditional cluster membership:

y|xxx ∼ Categorical(ψθ(xxx)). (2.14)

Thanks to the degrees of freedom for the definition of ψθ, the discriminative clustering frame-
work can tolerate various softmax-ended neural networks. For example, we can consider logistic
regressions where the discriminative model takes the form:

ψθ(xxx) = Softmax(WWW⊤xxx+ bbb), (2.15)

where the parameters are θ = {WWW,bbb}. The softmax function is defined for any real vector and
returns a stochastic vector:

Softmax(zzz) =
[︃
ezzz1

Z
, . . . ,

ezzzi

Z
, . . . ,

ezzzd

Z

]︃
, with Z =

d∑︂
i=1

ezzzi . (2.16)

Therefore, in contrast to generative modelling, discriminative modelling encompasses our
hypotheses through the design of the decison boundary. For example, Eq. (2.16) shows that a
logistic regression is the discriminative equivalent of a mixture of Gaussian distributions with equal
variances because the decision boundaries of the latter are also linear as we showed in Eq. (2.6).

Beyond the scope of clustering, discriminative modelling is the core approach used for classi-
fication with neural networks. Thus, a neural network that was well designed for a classification
task on a specific type of data can immediately be used for clustering. This motivates us to choose
discriminative modelling for solving the clustering task in the case of PROGRESSA.

However, the discriminative perspective in the context of clustering severely affects the proce-
dures for learning optimal parameters.
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2.3 The challenge of learning in discriminative clustering

We now discuss how discriminative models can be trained and the implied properties.

2.3.1 The shortcomings of classical statistical tools

Due to the absence of a model on the data distribution pdata(xxx), we cannot use maximum
likelihood to learn the optimal parameters, and consequently neither expectation-maximisation
nor variational inference. Additionally, we cannot construct a generative cluster distribution
pθ(xxx|y) since it will be constrained by the empirical distribution pdata(xxx), which is undefined for
samples outside of the dataset. In other words, a discriminative model cannot generate samples
outside the dataset. The only elements we can estimate are the proportions of the clusters through
marginalisation:

pθ(y) = Exxx∼pdata(xxx) [pθ(y|xxx)] . (2.17)

In summary, the absence of parametric assumptions on the data distribution leads to the absence
of joint modelling:

pθ(y|xxx)⏞ ⏟⏟ ⏞
Known

× pdata(xxx)⏞ ⏟⏟ ⏞
Unknown

= pθ(xxx|y)⏞ ⏟⏟ ⏞
Unknown

× pθ(y)⏞ ⏟⏟ ⏞
Estimable

= pθ(xxx, y)⏞ ⏟⏟ ⏞
Unknown

. (2.18)

The only thing we assume to be able is sampling from the data distribution, owing to the
presence of a dataset D = {xxxi}ni=1.

Therefore, a different approach must be taken for training discriminative models in clustering.
To build such an approach, we will draw inspiration from the supervised models in classification
that are often discriminative. These models leverage the learning with an objective function that is
decoupled from the model.

2.3.2 Objective functions in classification

In the absence of parametric assumptions on the data, we are interested only in grouping the
samples based on some meaningful criterion. In classification tasks, in contrast to clustering, we
have access to labels that provide us with this guiding criterion. Therefore, we know that there exists
an ideal distribution pdata(y|xxx) that we must match as best as possible with our model pθ(y|xxx). To
that end, we must measure the distance of our current model from this ideal distribution and make it
as close as possible. The most common distance between two distributions is the Kullback-Leibler
(KL) divergence. For two arbitrary distribution q1 and q2, the KL divergence is defined:

DKL (q1(zzz))∥q2(zzz)) = Ezzz∼q1(zzz)

[︃
log q1(zzz)

q2(zzz)

]︃
. (2.19)

Note that the KL is not a distance due to its non-symmetry. Incorporating in this divergence
the definition of our target model pdata(y|xxx) and our classification model pθ(y|xxx) would only tell
us how far apart these two distributions are for one specific datum xxx. Therefore, we wrap up this
divergence in an expectation over the data distribution to ensure that on average, our model sticks
as best as possible to the targets. This data distribution is part of the ideal model pdata(xxx). Thus, we
get the average distance of our parameters to the data distribution L(θ):
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L(θ) = Exxx∼pdata(xxx) [DKL (pdata(y|xxx)∥pθ(y|xxx))] , (2.20)

= Exxx,∼pdata(xxx),y∼pdata(y|xxx)

[︃
log pdata(y|xxx)

pθ(y|xxx)

]︃
, (2.21)

= Exxx∼pdata(xxx),y∼pdata(y|xxx) [log pdata(y|xxx)]− Exxx∼pdata(xxx),y∼pdata(y|xxx) [log pθ(y|xxx)] , (2.22)

= cst− Exxx∼pdata(xxx)

[︄
K∑︂
k=1

pdata(y = k|xxx) log pθ(y = k|xxx)
]︄
. (2.23)

The constant here depends only on the ideal distribution and thus is not impacted by our choice
of discriminative parameters θ. Under the assumption that we have access to a dataset containing n
samples independently and identically distributed from pdata(xxx, y), we can estimate the expectation
using Monte Carlo. Noting the dataset D = {(xxxi, yi)}ni=1 which specifies the class to which each
sample should belong, the target distribution can be approximated using a delta Dirac distribution
for all xxxi: pdata(y|xxx = xi) ≈ 1[y = yi]. As we ignore the constant first term from Eq. (2.23), we
get:

L(θ) = −Exxx∼pdata(xxx)

[︄
K∑︂
k=1

pθ(y = k|xxx) log pθ(y = k|xxx)
]︄
, (2.24)

≈ − 1
|D|

∑︂
xxxi,yi∈D

K∑︂
k=1

1[yi = k] log pθ(y = k|xxx = xxxi), (2.25)

= − 1
|D|

∑︂
xxxi,yi∈D

log pθ(y = yi|xxx = xxxi). (2.26)

Notice that we replaced the ideal target distribution pdata(y|x) with the simple indicator function,
which is equal to 1 only on the observed class. This objective is called cross-entropy and is one of
the most natural objective function, sometimes called cost, in classification tasks and enjoys good
properties: it is convex w.r.t. to the outputs of the model and ensures the minimisation of the KL
divergence to the empirical estimate of pdata. Moreover, the minimisation of the cross-entropy is
equivalent to maximising the likelihood of the data distribution in classification.

Owing to its differentiability and its sole dependence on the output of the model, this objective
can be trained by gradient descent on condition that the model’s outputs are differentiable w.r.t. θ.
This means differentiating the cross-entropy and backpropagating the derivative throughout the
complete model parameters such that the cross-entropy gets lowered. When the derivative of the
objective is 0, the model found a local minimum.

Throughout this example, we see that the notion of objective function depending on the output
of the model providing a convenient gradient is a functional solution for training discriminative
models. The cross-entropy naturally emerged from the distance comparison between our model
and a target model, guiding thus the gradient descent. We are interested in finding such an objective
function that would fit into the context of clustering for discriminative models.

2.3.3 Mutual information as a promising objective

For the classification task, we relied on the distance in the KL sense to a target distribution to
train the model to develop the cross-entropy loss. For the clustering task with generative modelling,
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we rely on the likelihood of the data describing how fit our model is to the data. Therefore, we must
focus on a key property that is desirable in the discriminative clustering case. The key idea that
the final clustering should reflect insights on the data distribution is that specific property. Indeed,
clusters inform us about the data and conversely, knowing the data informs us about the cluster.
This notion is conveyed through the dependence between two random variables. In our specific
case: the clusters y and the data xxx must be as dependent as possible.

To seek dependence between two random variables ααα and βββ there exists a score that we can use
as an objective function based as well on the KL divergence: the mutual information (MI), defined
as:

I (ααα;βββ) = DKL (p(ααα,βββ)∥p(ααα)p(βββ)) . (2.27)

The mutual information can be seen as a measure of how dependent two random variables are:
the greater, the more dependent. Indeed, following from Theorem 2.3.1, a null mutual information
value indicates that the clusters y and the data xxx are independent, i.e. unrelated.

Theorem 2.3.1 (Independence in mutual information). Let ααα and βββ be two random variables. Both
variables are independent if and only if their mutual information is equal to 0.

Remark 2.3.1. Theorem 2.3.1 is a direct consequence of DKL (p∥q) = 0 ⇐⇒ p = q.

The upper bound of mutual information is the minimum of the entropies of y and xxx. Thus,
maximising mutual information to increase dependence between data and clusters seems a coherent
objective. However, we will show in Chapter 3 that this maximum can be attained with solutions
that do not provide satisfactory clusters.

The definition from Eq. (2.27) cannot be optimised as such because the joint model pθ(xxx, y) and
the data distribution pdata(xxx) are unknown in the discriminative context. Fortunately, well-known
properties of MI can invert the distributions on which the KL divergence is computed (Bridle,
Heading, & MacKay, 1992 ; Krause, Perona, & Gomes, 2010) via Bayes’ theorem:

I (xxx; y) = DKL (pθ(xxx, y)∥pdata(xxx)pθ(y)) , (2.28)

= Exxx,y∼pθ(x,y)

[︃
log pθ(xxx, y)

pdata(xxx)pθ(y)

]︃
, (2.29)

= Exxx∼pdata(x)

[︃
Ey∼pθ(y|xxx)

[︃
log pθ(y|x

xx)pdata(xxx)
pdata(xxx)pθ(y)

]︃]︃
. (2.30)

Then, we can simplify the factors on the data distribution inside the log and reidentify the KL
divergence between a conditional distribution and a single marginal within an expectation:

I (xxx; y) = Exxx∼pdata(xxx) [DKL (pθ(y|xxx)∥pθ(y))] . (2.31)

Owing to the expectation of the data distribution, we can derive estimates of mutual information
and its gradients w.r.t. θ using Monte Carlo. Thus, the usage of the product rule within the
KL divergence to get an estimable version is the key property to compute mutual information in
discriminative modelling. This estimate depends only on the output of the model pθ(y|xxx) from
which we can estimate the proportions of the clusters through marginalisation. Note that the cost
function for clustering in Eq. (2.31) is interestingly similar to the KL we minimised in supervised
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learning from Eq. (2.20). In both equations, we sample on a data distribution and optimise the KL
divergence between the model’s clustering outputs and a target. In Eq. (2.31), this target to reach is
the ideal classifier on the dataset and we minimise the KL. In Eq. (2.20), the sampling distribution
is the empirical approximation of the data distribution, the target is the cluster proportions and we
maximise the KL. Finally, we can maximise mutual information through gradient ascent.

However, we must remember that we do not maximise the true mutual information. Indeed,
we previously showed with Eq. (2.17) that the proportions pθ(y) are estimated with Monte Carlo.
This means that the true proportions of the clusters are often not known in practice because batch
optimisation leads to estimates of this expectation. Consequently, by rewriting this estimate as a
proposal distribution q(y) for the proportions of the cluster, we can unfold mutual information as
follows (Poole, Ozair, Van Den Oord, Alemi, & Tucker, 2019):

I (xxx; y) = Exxx∼pdata(xxx)

[︃
DKL

(︃
pθ(y|xxx)∥pθ(y)× q(y)

q(y)

)︃]︃
, (2.32)

= Exxx∼pdata(xxx) [DKL (pθ(y|xxx)∥q(y))−DKL (pθ(y)∥q(y))] , (2.33)

≤ Exxx∼pdata(xxx) [DKL (pθ(y|xxx)∥q(y))] . (2.34)

This implies that maximising mutual information through mini-batches is rather about an upper
bound estimate of mutual information, even though the KL divergence between the estimate cluster
proportions and the true proportions may be negligible due to our unbiased estimate. This upper
bound also holds if the target variable is continuous in I (xxx;zzz).

2.4 Other clustering models

Between generative and discriminative models, there exist other clustering models. We discuss
some of these objectives and compare their (dis)advantages with mutual information.

2.4.1 K-means

K-means is the most standard clustering algorithm (Likas, Vlassis, & Verbeek, 2003). The
algorithm consists of two alternating steps. Starting from a set ofK centroids: {µµµk}Kk=1, all samples
in the dataset are affected to the cluster Ck matching their closest centroid µµµk. Then each centroid is
recomputed as the mean of all samples assigned to the corresponding cluster. Overall, the K-means
algorithm minimises the following objective (Elkan, 2003 ; Lloyd, 1982), although there are no
guarantees of reaching the global optimum:

µµµ⋆1...K = arg min
µµµ1...K

K∑︂
k=1

∑︂
xxx∈Ck

∥xxx−µµµk∥22. (2.35)

The simplicity of the algorithm makes it a standard basis for clustering algorithms. However, its
decision boundaries are linear because they appear for all samples laying equidistantly of two close
means. Consequently, this does not allow complex cluster shapes when the Euclidean distance is
used between data samples. An alternative called kernel K-means (Dhillon, Guan, & Kulis, 2004)
can be used to alleviate more complex boundaries. Instead of drawing a boundary in the Euclidean
space, it is drawn in a reproducing kernel Hilbert spaceH endowed with projection φ (Hofmann,
Schölkopf, & Smola, 2008). The new objective is described:
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L({µµµk}Kk=1) =
K∑︂
k=1

∑︂
xxx∈Ck

∥φ(xxx)−µµµk∥2H. (2.36)

Beyond its wide applicability, K-means offers multiple advantages. First, the definition of fixed
centroids also allows the clustering of unseen samples, i.e. samples that were not part of the training
dataset. Second of all, this algorithm is fast as it scales linearly to the number of samples n and
the number of input features d. However, K-means has several drawbacks: it is very sensitive to
outliers, i.e. samples far away from the main modes of the data, and it displays high sensitivity
to the initialisation. Moreover, the clustering model conveyed by K-means is a mixture of Dirac
models which does not provide a fine-grained quantification of the cluster conditional probability.

K-means can be seen as a generative clustering model as it is similar to a mixture of isotropic
Gaussian distributions. It can also be seen and used as an objective function for discriminative
clustering as we will show in Chapter 5.

2.4.2 Spectral clustering

Related to kernel K-means, spectral clustering is a multi-step algorithm (von Luxburg, 2007) in
which an alternative representation of the data is derived and used as input for a K-means algorithm.
At the start of the algorithm, an affinity matrix is computed between all samples. The choice of
the notion of affinity is arbitrary: ϵ-neighbourhood, n nearest neighbours, or a kernel like RBF,
polynomial. This affinity matrix allows us to define a Laplacian matrix that views the complete
dataset as a graph. The nature of the Laplacian can vary, e.g. being normalised or symmetrised (Ng,
Jordan, & Weiss, 2001 ; Shi & Malik, 2000). Then, an alternative representation of the data emerges
from the spectrum of this Laplacian matrix. Specifically, the first K eigenvectors of the Laplacian
matrix are used as new features. Consequently, each sample is associated with a vector of dimension
K where its k-th component is its weight for the k-th eigenvector.

While spectral clustering is efficient when cluster structures are non-convex, its strong require-
ment is the construction of a graph between all samples which enforces the fusion of modalities
when several modalities are present. Moreover, its multi-step nature makes it inapplicable to unseen
samples. Once again, due to the final K-means algorithm, the spectral clustering can be seen as a
delta Dirac distribution which only delivers hard membership to clusters for all samples.

2.4.3 Hierarchical clustering

Hierachical clustering is a method that iteratively gathers or separates samples to build clusters
in an ordered manner. It is commonly used in bioinformatics (Bohbot et al., 2022 ; Lachmann
et al., 2021) for the structured point of view it offers on the data. Through the construction of a
dendrogram linking at low or high levels the samples, the introduced hierarchy offers insight into
the proximity of samples. Two types of hierarchical clustering algorithms can be distinguished: the
agglomerative ones which start with all samples in their own cluster to finish with a single cluster,
i.e. bottom-up, and the divisive ones that run in the opposite way, i.e. top-down. It is important to
note here that, unlike decision trees, hierarchical algorithms do not provide rules explaining the
branches of the dendrogram.

The bottom-up approach greedily merges the clusters that are closest until all samples are in
a single cluster. The naive complexity of such algorithm is O(n3), but some improved proposals
brought it down to O(n2)(Defays, 1977 ; Sibson, 1973). To obtain K clusters, it is necessary to
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perform n −K iterations of the algorithm. To perform well, this algorithm needs to define the
notion of distance between clusters, i.e. sets of samples, called linkage. The most common forms of
linkage are single (Sibson, 1973), complete (Defays, 1977), centroids or the Ward linkage (Ward Jr,
1963). Respectively, they correspond to the distance between the closest points of each cluster, the
distance between the farthest points of each cluster, the distance between the centroids of each
cluster, and the variation of the sum of squares through merging.

Divisive algorithms are built top-down (Roux, 2018) and try to find the best split for separating
a cluster into two new ones. In such case, the proposals of split become combinatorial and reach
2n−1 − 1 proposals for n samples (Edwards & Cavalli-Sforza, 1965). These models are therefore
costly, yet account for few iterations, as we only need K − 1 splits to obtain K clusters. Multiple
splitting procedures were proposed to alleviate the computation of all splits (Hubert, 1973 ; Williams
& Lambert, 1959) including K-means (Mollineda & Vidal, 2000). One of the most well known
divisive clustering algorithms is DIANA (Kaufman & Rousseeuw, 1990). Roux (2018) suggests
that ratio-based splits are among the most efficient. To further accelerate the evaluation of the
gain procedures and constrain the search space, combinations of divisive clustering algorithms
with model-based clustering algorithms were proposed, i.e. generative models, hence using the
maximum likelihood as a global objective for the model (Burghardt, Sewell, & Cavanaugh, 2022 ;
Sharma, López, & Tsunoda, 2017). We can still note the usage of K-means as a heuristic for
proposing splits at each node (Sharma et al., 2017).

In discriminative clustering, hierarchical clustering only offers hard cluster memberships for
all samples. It is possible however to obtain soft assignments using generative modelling. For
example, Baudry, Raftery, Celeux, Lo, et Gottardo (2010) use entropy gains to merge components
of a mixture model into clusters. Moreover, similar to spectral clustering, it cannot be applied to
unseen samples and is hardly compatible with modality fusion.

2.5 Thrive of mutual information: from clustering to representation
learning

Mutual information is an elegant objective function, which can train through gradient ascent
various differentiable models. We trace here the multiple usages it has met for the past 30 years in
the context of clustering.

2.5.1 Early usage of mutual information for clustering

The MI was first used as an objective for learning discriminative clustering models by Bridle
et al. (1992). They described MI as an objective that maximises the fairness of a model, i.e. the
entropy of the cluster proportions, and aim to maximise firmness, i.e. minimising the conditional
entropy. Thus, a good clustering model is fair but firm.

Two decades later, Krause et al. (2010) initiated again the work on discriminative clustering
models with mutual information. Similarly to Bridle et al. (1992), they first propose to train a
logistic regression but specifically add a constraint ℓ2 to alleviate the constraint on the firmness of
the classifier model. Among the multiple proposals of this framework called regularised mutual
information (RIM), Krause et al. (2010) also propose to learn a regularised logistic model on a
positive semi-definite kernel matrix of some dataset instead of the sample features to alleviate a
non-linear decision boundary.



26 CHAPTER 2 — Clustering

Another interesting approach, named the information bottleneck, focusses on the notion of
information relevance. Indeed:

“The problem of extracting a relevant summary of data, a compressed description
that captures only the relevant or meaningful information, is not well-posed without a
suitable definition of relevance” (Tishby, Pereira, & Bialek, 2000)

The information bottleneck framework is derived from signal processing theory and related
to rate-distortion theory. As such, it considers an input variable Z, that must be quantised into a
lower-dimensional or discrete variable called code Z̃. However, this quantisation must be done
such that another output variable Z̄, can be recovered from the code. The final model is therefore:

p⋆(Z̃|Z) = arg min
p(Z̃|Z)

I
(︂
Z̃;Z

)︂
− βI

(︂
Z̃; Z̄

)︂
. (2.37)

The distribution we seek to optimise p(Z̃|Z) can be parametric or nonparametric. It can be for
instance the discriminative clustering model with Z̃ = y and Z = xxx.

The hyperparameter β controls the trade-off between a highly detailed compression (β =∞)
and a one-hot-encoding compression (β = 0) of Z into Z̃ (Tishby et al., 2000). The specific case
of β = 0 corresponds precisely to the direct maximisation of MI as did Bridle et al. (1992). For
more theoretical aspects, we refer to Shamir, Sabato, et Tishby (2010). Although its design makes
it compatible with discriminative models, a variational approach to minimisation of the information
bottleneck (Alemi, Fischer, Dillon, & Murphy, 2016) was found to produce a similar objective to
generative models β -VAE (Higgins et al., 2017).

In a classification context, the output variable Z̄ can be replaced by the classes l and the input
variables Z by the data samples xxx. In this spirit, Dhillon, Mallela, et Kumar (2003) used clustering
as a tool to reduce the dimensions of input texts for a classification task. They wrote the information
bottleneck as:

L = I (l;xxx)− I (l; y) . (2.38)

Thus, the information bottleneck compresses the words into clusters y that suffice to guess the
class of documents. Notice that in this context, the hyperparameter β was set to 1. Slonim, Atwal,
Tkačik, et Bialek (2005) adapted as well this framework for doing only clustering. To that end, they
replaced the first mutual information by the expectation of cluster similarity measure sim. Taking
a random subset of r samples per cluster to evaluate the similarity, their objective is:

L = Ey∼pθ(y)
[︂
Exxx1···r∼

∏︁r

i=1 pθ(xxxi|y) [sim(xxx1···r)]
]︂
− βI (xxx; y) . (2.39)

It is interesting to see that in this specific example, one of the mutual informations was replaced
to take into account distances between samples of clusters to regulate mutual information between
the clusters and the data. We will use a similar implicit regularisation in Chapter 3, which will be
the basis of the remaining chapters.

In contrast to the work of Bridle et al. (1992) and Krause et al. (2010), the early works using
the information bottleneck framework used nonparametric models (Dhillon et al., 2003 ; Slonim et
al., 2005), i.e. models that take the form:

pθ(y = k|xxx = xxxi) = τki, (2.40)
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where the parameters are θ = {τki}n,Ki=1,k=1 and constrained such that
∑︁K
k=1 τki = 1 and τik is

positive. Such nonparametric models cannot generalise to new samples and are bound to cluster
only the samples from the dataset on which they were trained.

2.5.2 Towards deeper networks

Two years after the RIM model, Krizhevsky, Sutskever, et Hinton (2012) introduced the AlexNet
model, an example of strong modern deep learning success. Following this advance, depth also
affected the neural networks involved in clustering tasks. To the best of our knowledge, the first deep
clustering model involving mutual information was proposed by Hu, Miyato, Tokui, Matsumoto, et
Sugiyama (2017) who replaced the constraint ℓ2 of Krause et al. (2010) by a virtual adversarial
constraint (Miyato, Maeda, Koyama, & Ishii, 2018). The key idea is to add small perturbations to
the input samples and ensure that the assigned cluster is consistent with the clustering of the initial
sample. Augmentations such as random cropping, scaling or rotations were also used to perturb
the initial sample. The key idea is that these perturbations provide invariances in clustering (Ji,
Henriques, & Vedaldi, 2019). Along with the progressive usage of Resnets (K. He, Zhang, Ren,
& Sun, 2016) as deep networks, the neural network architecture was changed itself to provide
regularisation through auxiliary loss terms (Ren et al., 2022), e.g. auxiliary clustering heads (Ji et al.,
2019). As an example of regularisation impact: maximising MI with ℓ2 constraint can be equivalent
to a soft and regularised K-Means in a feature space (Jabi, Pedersoli, Mitiche, & Ayed, 2019). This
drift towards deep networks and the introduction of data augmentation led to the emergence of
contrastive learning as a core basis for deep discriminative clustering methods. We now detail its
relationship to mutual information.

2.5.3 From discrete to continuous output variables: contrastive learning and info-
Max

With the introduction of deep neural networks in clustering, the related field of deep clustering
rapidly paved the way to the development of discriminative models that predict a continuous
variable zzz ∈ Z instead of a simple cluster assignment y ∈ JKK. For example, the variable zzz can be
defined as zzz = ψθ(xxx) + σ2ϵ where ϵ is a unit Gaussian noise (Alemi et al., 2016). The focus hence
switched to representation learning. These models are no longer designed for clustering, but are
compatible with clustering in the learnt representation space. To learn such models, lower bounds
of mutual information between xxx and zzz are used as objective functions.

Several lower bounds have been designed, as named by Poole et al. (2019): MINE (Belghazi
et al., 2018), NCE (Van den Oord, Li, & Vinyals, 2018), BA(Barber & Agakov, 2003). Some of
these lower bounds rely on the key property that mutual information is invariant to the addition of
a variable vvv independent of xxx and zzz, noted shortly: I (xxx,vvv;zzz) = I (xxx,zzz). Consequently, looking
at each sample individually and detailing the probability distribution over all samples yields the
following:

I (xxx1,xxx2...,n;zzz) = I (xxx1, zzz) . (2.41)

This implies that we can estimate mutual information by summing mutual informations between
the representation and each individual samples:
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I (xxx1,··· ,n;zzz) = 1
n

n∑︂
i=1
I (xxxi;zzz) . (2.42)

Poole et al. (2019) show that we can obtain tractable lower bounds of MI in the equation above
if we approximate the distribution pθ(xxx|zzz) with a distribution q(xxx|zzz) taken from the energy-based
variational family:

q(xxx|zzz) ∝ pdata(xxx)ef(xxx,zzz), (2.43)

where f is a critic function. Specifically, Poole et al. (2019) obtain the NCE lower bound of
Van den Oord et al. (2018):

I (xxx;zzz) ≥ 1
n

n∑︂
i=1

Epdata(xxx1,...n),pθ(zzz|xxxi)

[︄
log expf(xxxi,zzzi)∑︁n

j=1 expf(xxxi,zzzj)

]︄
+ logn. (2.44)

Due to the constant logn, this estimator of mutual information is biased. The NCE estimator
can be linked to the temperature-scaled cross-entropy of contrastive learning (NT-XENT, T. Chen,
Kornblith, Norouzi, & Hinton, 2020).

Contrastive learning is an integral part of representation learning through the lens of self-
supervised learning. Representation learning consists in finding high-level features zzzi extracted
from the data xxxi to perform a downstream task, e.g. clustering or classification. However, the nature
of the model is different with regards to the mutual information in Eq. (2.44).

The key idea of contrastive learning is to perform a set of random augmentations on a sample
xxxi, then maximise the similarity between the representation associated with this sample and its
augmentation, while decreasing the similarity with any other sample. This choice implies that we
no longer maximise mutual information between the data xxx and the representation variable zzz, but a
variable corresponding to the augmentation of the data Aug(xxx). This also means that the conditional
distribution p(Aug(xxx)|xxx) is unknown. Nonetheless, we assume can sample augmentations of xxx
easily. We can rewrite Eq. (2.44) in the context of contrastive clustering as:

I (xxx; Aug(xxx)) ≥ 1
n

n∑︂
i=1

Ep(xxx1,...n),p(Aug(xxx)|xxxi)

[︄
expfconstrastive(xxxi,Aug(xxxi))∑︁n
j=1 expfconstrastive(xxxi,Aug(xxxj))

]︄
+ logn. (2.45)

Note that in this context, the distributions on which we perform the expectations are not
parameterised any longer by θ. The parameters of our neural networks are now hidden in the
critic function fcontrastive, which must favour high similarities between samples and their respective
augmentations:

fconstrastive(xxxi,Aug(xxxj)) = sim (ψθ(xxxi), ψθ(Aug(xxxj))) , (2.46)

Contrastive learning provides a convenient framework that takes advantage of the key idea
that the neighbourhood of a sample should remain in the neighbourhood of the representation
of this sample. In this context, the nature of the neighbourhood is dependent on the choices of
data augmentation. Although it is not related to clustering, this approach indirectly views each
sample in an individual cluster because we maximise MI between two variations of xxx. This means
that the only elements that can go in the same cluster are the augmentations of the samples and
called positive pairs, whereas all others including their augmentations are called negative pairs
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and must be excluded. However, such setup completely loses the end goal of clustering that is to
put samples into K categories. Therefore, additional tricks are required to bring back the learning
of the continuous representations to a clustering model. We give now some examples of such
tricks. Note that we purposefully omit some details for the sake of clarity, especially regarding how
augmentations are handled through batches during learning and regularisations.

A proposal by Caron et al. (2020) was to add K centroids in the representation space: µµµk ∈ Z .
Each output of the model zzzi = ψθ(Aug(xxxi)) is mapped to a linear combination of these centroids.
Then, the mutual information between the augmented samples and the centroids is maximised.
However, a slightly altered version of NCE is used by Caron et al. (2020).

In the spirit of the SIMCLR model (T. Chen et al., 2020), Do, Tran, et Venkatesh (2021)
propose to decompose the model in two different parts. One is a backbone ψ learning common
representations for the second part that comprises two different projection heads: one for clustering
χ, i.e. a softmax-ended function, and φ a projection to the continuous domain. Notice that we omit
the parameters for brevity. The model thus comprises two functions, the clustering function:

χ ◦ ψ : X ↦→ ∆K ,
xxxi ↦→ χ ◦ ψ(xxxi) = yi.

(2.47)

and the representation function:

φ ◦ ψ : X ↦→ Z,
xxxi ↦→ φ ◦ ψ(xxxi) = zzzi.

(2.48)

Then, by summing two mutual informations with different critics f1 and f2, one for the
representation and one for the clustering, Do et al. (2021) achieve a model with features presenting
high intra-cluster variability and low inter-group similarity:

L = If1 (xxx; Aug(xxx))⏞ ⏟⏟ ⏞
f1(·,·)=sim(φ◦ψ(·),φ◦ψ(·))

+ If2 (xxx; Aug(xxx))⏞ ⏟⏟ ⏞
f2(·,·)=sim(χ◦ψ(·),χ◦ψ(·))

. (2.49)

Another line of works proposed instead to construct a critic function f that evaluates the
similarity between the distribution of the clusters instead of the representations. Let us note the
conditional distribution as a vector:

hhhk = [pθ(y = k|xxx1), . . . , pθ(y = k|xxxi), . . . , pθ(y = k|xxxn)] ∈ Rn. (2.50)

Using this formulation, Huang, Gong, et Zhu (2020) proposed to maximise I
(︂
hhh1,...K ;hhh̄

)︂
where

hhh̄ is the cluster distribution obtained after applying random augmentations on the samples. Y. Li et
al. (2021) extended this idea by adding a second mutual information between the representations,
as we explained for Do et al. (2021).

The advantage of contrastive learning is the single-stage nature of training. However, the
performances of these methods are tied to the choices of augmentations, which may not always be
clear cut depending on the data. For instance, basic transformations like translations, Gaussian blur
and scaling were shown to be efficient augmentations for classification and segmentation tasks of
CT scans (Chlap et al., 2021 ; Garcea, Serra, Lamberti, & Morra, 2023). Yet, this does not imply
that these augmentations could be beneficial in an unsupervised context.

Aside contrastive clustering, the InfoMax principle is another framework involving mutual
information for learning continuous representations. It was started by Linsker (1988) and its goal
was to construct a network such that:
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“The information that reaches a layer is processed so that the maximum amount of
information is preserved. We have seen that this does not in general lead to a trivial
one-to-one identity mapping [...].” (Linsker, 1988)

This principle was later refined by Hjelm et al. (2019) into the Deep InfoMax principle (DIM).
Instead of focussing on a layer-wise maximisation of mutual information, the key proposal is to
both maximise mutual information between data and clusters as we previously described, but also
enforce high mutual information between subsets of visual features of an image and the clusters.
Denoting gθ1 the local feature learning function and ψθ2 the representation function, the DIM can
be written as follows:

θ⋆1, θ
⋆
2 = arg max

θ1,θ2

I (xxx;ψθ2 ◦ gθ1(xxx)) + λ
M∑︂
i=1
I
(︂
gθ1(xxx)(i);ψθ2 ◦ gθ1(xxx)

)︂
, (2.51)

where g(i)
θ1

is the i-th subset of M subsets of features, e.g. some pixels in an image. Notice that
we omitted the prior matching constraint of Hjelm et al. (2019) for clarity. In this original work, the
NCE estimator was used for mutual information (Van den Oord et al., 2018), see Eq. (2.44).

The DIM framework has been extended, for example, to focus beyond local subsets of features
of data and consider augmentations of the data instead (Bachman, Hjelm, & Buchwalter, 2019)
and incorporated into GANs (K. S. Lee, Tran, & Cheung, 2021) to avoid their mode collapse.
Nonetheless, we find that the modern meaning of InfoMax differs from mutual information for
clustering as seen in the previous sections.

2.5.4 Dissonance between MI and performances

Evaluating mutual information between two continuous random variables is challenging due to
the intractability of the underlying integrals. Therefore, lower bounds were derived to alleviate the
maximisation of mutual information. However, these bounds can either come with high variance
or high bias. That is why Poole et al. (2019) proposed an interpolated lower bound to offer a
trade-off between variance and bias: Iα. Nonetheless, it was noticed that MI is hardly predictive
of downstream tasks (Tschannen, Djolonga, Rubenstein, Gelly, & Lucic, 2020) with the output
continuous variable zzz. In other words, a high value of mutual information does not clarify whether
the learnt continuous representations are insightful and can leverage a second-step task such as
clustering or classification.

This observation stands in contrast to the most recent papers on deep clustering that achieve
good performance in supervised datasets, e.g. CIFAR10 and ImageNet (Dang, Deng, Yang, Wei,
& Huang, 2021 ; D. H. Lee, Choi, Kim, & Chung, 2022 ; Park et al., 2021). Interestingly, the
datasets used for benchmarking often focus on images and rarely other types of data such as tabular
data (Min et al., 2018). Overall, it is plausible that the success of these methods may be due to
the good design of the discriminative model’s architecture which encompasses the underlying
assumptions and its regularisations, rather than mutual information itself. Ren et al. (2022) noted
that:

“Due to the complexity brought by massive data, most of the existing deep clustering
models are designed for specific data sets. Complex data from different sources and
forms bring more uncertainties and challenges to clustering.”
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Consequently, we empirically observe that the number of clusters to find is an often-discarded
question when the evaluation protocol lies on datasets in which the number of classes, not clusters,
is known. Therefore, an interesting clustering algorithm should be able to find a relevant number of
clusters, i.e. perform model selection. However, model selection for parametric deep clustering
models is expensive (Ronen, Finder, & Freifeld, 2022).

2.6 Interpreting the clusters

Assuming that we get a clustering algorithm selected for a specific number of clusters, we can
now enter the second important part of clustering: analysing the content of the clusters. Indeed,
the definition of a cluster remains blurry enough to make clustering an ill-posed problem. This
encourages a more in-depth study of the nature of the obtained clusters, whether informative or not.

2.6.1 The curse of dimensionality

To analyse the content of the clusters, the first basic step is to look at the variables involved in
the clusters and whether some of them play a more crucial role. Although this may sound trivial, it
is unfortunately not that easy as the number of variables grows. To some extent, clustering high-
dimensional data will eventually fall under the curse of dimensionality (Bellman, 1957), a series of
unexpected phenomena that appear for a large number of variables (Bouveyron & Brunet-Saumard,
2014b). This typically concerns multi-omics data, e.g. genomics or proteomics, and high-quality
images. Consequently, selecting a subset of variables that can be representative of the clusters can
facilitate the interpretation of the clusters obtained.

2.6.2 Variable selection

Selecting variables is thus motivated by the facilitation of the clusters’ interpretation. However,
for d input features, we can compute up to 2d − 1 possibilities of selected subsets of features. That
is why we need to carefully design an algorithm for selecting the relevant variables.

Feature selection algorithms can be divided into two distinct categories (Dy, 2007 ; John,
Kohavi, & Pfleger, 1994): filter methods and wrapper methods. Filter methods apply in an
independent step feature selection using a relevance criterion to eliminate irrelevant features before
performing clustering. This can be done, for example, using information theory (Cover, 1999)
with the SVD-Entropy (Varshavsky, Gottlieb, Linial, & Horn, 2006) or spectral analysis (X. He,
Cai, & Niyogi, 2005 ; von Luxburg, 2007 ; Zhao & Liu, 2007). Those methods are thus easily
scalable and quick despite the challenge of defining unsupervised feature relevance (Dy, 2007).
Wrapper methods encompass the selection process within the model and exploit their clustering
results to guide the feature selection (Solorio-Fernández, Carrasco-Ochoa, & Martínez-Trinidad,
2020). Other related works sometimes refer to a third category named hybrid model (Alelyani,
Tang, & Liu, 2018) or embedded models (Blum & Langley, 1997) as a compromise between the
two first categories.

While the definition of relevance of a variable is more straightforward for supervised learning,
its definition in unsupervised learning impacts the choice of selection criterion for filter methods
or distribution design in model-based methods (Fop & Murphy, 2018). Often, the terms relevant
variables, irrelevant variables (Tadesse, Sha, & Vannucci, 2005) for the notion of conveying infor-
mation are used. Others may consider redundant variables as those that bring information already
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available (Maugis, Celeux, & Martin-Magniette, 2009). Another key difference in the models
would be to consider whether the informative variables are independent given the cluster assignment
(local independence) or dependent (global independence from the uninformative variables), but the
latter hardly accounts for the redundant variables (Fop & Murphy, 2018).

Finally, wrapper models for clustering in feature selection are often model-based (Maugis
et al., 2009 ; Raftery & Dean, 2006 ; Scrucca & Raftery, 2018), implying that they assume a
parametric mixture model that can explain the distribution of the data, including the distribution of
the irrelevant variables. To perform well, these methods need a good selection criterion to compare
models with each other (Marbac, Sedki, & Patin, 2020 ; Maugis et al., 2009 ; Raftery & Dean,
2006). However, most of these generative wrapper methods hardly scale both in sample quantity
and/or variable quantity. There exists attempts of combining feature selection and discriminative
clustering using MI maximisation. For instance, Kong, Deng, et Dai (2015) employ a proximal
gradient technique to combine MI with an ℓ1 (lasso) penalty on the weights. We will come back
to the lasso penalty in Chapter 4.We detail some potential discriminative wrapper methods in
Section 2.6.4, however, their training is often multi-stage.

2.6.3 Projections and subspaces

Feature selection should not be mistaken for dimensionality reduction, sometimes called feature
reduction, which is the process of finding a latent space of lower dimension leveraging good
manifolds for clustering, e.g. using matrix factorisation (R. Shen et al., 2012). In this sense,
methods that seek a sparse subspace for spectral clustering (Peng, Kang, Yang, & Cheng, 2016) or
K-means clustering through PCA (Long et al., 2021) are discriminative. However, the nature of the
latter forces the clustering to be done according to linear boundaries due to the projections. Still,
by enforcing the projection matrix to be sparse, feature selection can be recovered in the original
space (Bouveyron & Brunet-Saumard, 2014a). Similarly, subspace clustering seeks to find clusters
in different subspaces of the data (H. Chen, Wang, Feng, & He, 2018 ; Zografos, Ellis, & Mester,
2013) and is thus an extension of feature selection (Parsons, Haque, & Liu, 2004), particularly with
the motivation that several latent variables could explain the heterogeneity of the data (Vandewalle,
2020). However, such problems usually incorporate a mechanism to merge clusters, which is also
challenging, while we are interested in a method that selects features while producing a single
clustering output.

It is also possible to perform this projection after the clustering for visualisation purposes (Bier-
nacki, Marbac, & Vandewalle, 2021 ; Scrucca, 2010).

2.6.4 Intrinsically interpretable models

Beyond wrapper methods that perform variable selection along the objective, we can focus
specifically on the subclass of intrinsically interpretable models. Not only do these models exploit
a subset of selected variables, but they also display how that variable contributes to the clustering
through their construction. This is for example the case of Sparse K-means (Witten, Tibshirani,
& Witten, 2013). This algorithm benefits from the interpretability of the centroids defined by the
K-means algorithm, yet restricts it to a subset of variables.

Recently, the literature has also focused on the creation of unsupervised decision trees (Bertsi-
mas, Orfanoudaki, & Wiberg, 2021 ; Gamlath, Jia, Polak, & Svensson, 2021 ; Laber, Murtinho, &
Oliveira, 2023 ; Tavallali, Tavallali, & Singhal, 2021). A decision tree is a set of iterative rules to
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apply until no rule is left, in which case a decision is returned. Conveniently, the rules of a decision
tree often present a binary decision on a single feature. Thus, a tree not only involves a subset of
selected features but also orchestrates their relevance with the order of the rules to apply. These
methods are therefore discriminative wrapper methods, but their construction always require a
warm-up step, e.g. K-means.
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3.1 Introduction

Clustering is a fundamental learning task that consists in separating data samples into several
groups, each named cluster. This task hinges on two main questions concerning the assessment
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of correct clustering and the actual number of clusters. However, this problem is ill-posed since a
cluster lacks formal definitions which makes it a hard problem (Kleinberg, 2003).

We discussed in Chapter 2 the recent rise of deep clustering methods, mostly based on mutual
information (MI) as an objective function to maximise in order to get a discriminative clustering
model. Mutual information can be written in two ways, either as a measure of dependency between
two variables xxx and y e.g. , data distribution p(xxx) and cluster assignment p(y):

I (xxx; y) = DKL (p(xxx, y)∥p(xxx)p(y)) , (3.1)

or as an expected distance between cluster distributions and the data distributions:

I (xxx; y) = Ey∼p(y) [DKL (p(xxx|y)∥p(xxx))] , (3.2)

with DKL being the Kullback-Leibler (KL) divergence.
It is interesting to observe that the increasing usage of scores derived from mutual information

was carried with increasing regularisations. Regularisation techniques were employed to leverage
the potential of MI, mostly by specifying model invariances. This started with ℓ2 regularisation by
Krause et al. (2010), later followed by the virtual adversarial training (Miyato, Maeda, et al., 2018)
in deeper networks (Hu et al., 2017). Later on, data augmentations were employed to ensure that
the clustering model learns representations that are invariant to these augmentations (Ji et al., 2019).
The maximisation of MI thus gave way to contrastive learning objectives which aim at learning
stable representations of data (Caron et al., 2020 ; T. Chen et al., 2020). Clustering methods also
benefited from recent successful deep architectures (Huang et al., 2020 ; Y. Li et al., 2021 ; Tao,
Takagi, & Nakata, 2021) by encompassing regularisations in the architecture.

However, most of the methods above rarely discuss their robustness when the number of
clusters to find is different from the amount of preexisting known classes. While previous work
was essentially motivated by considering MI as a dependence measure (Eq. 3.1), in this chapter
we explore the alternative definition of MI as the expected distance between the data distribution
implied by the clusters and the entire data (Eq. 3.2). We first start by questioning the quality of
mutual information as an objective function without regularisations. Then, we propose an extension
that incorporates cluster-wise comparisons of implied distributions and question the choice of the
KL divergence with other possible statistical distances. This novel objective is called generalised
mutual information (GEMINI). Through several qualitative and quantitative experiments, we show
how GEMINI is a relevant distance-based objective for discriminative clustering and can address
some limitations of MI.

3.2 Is MI a good clustering objective?

3.2.1 Entropy perspectives

Maximising MI directly can be a poor objective when y is continuous: a high MI value is not
necessarily predictive of the quality of the features regarding downstream tasks (Tschannen et al.,
2020). We support a similar argument for the case where the data xxx is a continuous random variable
and the cluster assignment y is a categorical variable. Indeed, MI can be maximised by setting
appropriately a sharp decision boundary that partitions evenly the data, i.e. when the distribution
pθ(y|xxx) converges to a Dirac distribution and pθ(y) is the uniform distribution. Rewriting MI in
terms of entropies:
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I (xxx; y) = H (y)−H (y|xxx) , (3.3)

highlights a requirement for balanced clusters, through the cluster entropy term H (y). Indeed,
a uniform distribution maximises the entropy. This hints that an unregularised discrete mutual
information for clustering can possibly produce uniformly distributed clusters among samples,
regardless of how close they could be. Moreover, any sharp decision boundary minimises the
negative conditional entropy, while ensuring balanced clusters maximises the entropy of cluster
proportions.

3.2.2 A practical example

Let us consider a mixture of two Gaussian distributions with different means µ0 and µ1, s.t.
µ0 < µ1 and same standard deviation σ:

p(x|y = 0) = N (x|µ0, σ
2), p(x|y = 1) = N (x|µ1, σ

2), (3.4)

where y is the cluster assignment. We take balanced clusters proportions, i.e. p(y = 0) = p(y =
1) = 1

2 . This first model is the basis that generated the complete dataset p(x). When performing
clustering with a discriminative model, we are not aware of this true distribution. Consequently,
we create other models. We want to compute the difference of mutual information between two
decision boundaries that two different discriminative models pθ(y|x) may yield. Thus, we define
two decision boundaries: one which splits evenly the data space called pA (good boundary) and
another which splits it on a closed set pB (misplaced boundary):

pA(y = 1|x) =
{︄

1− ϵ x > µ1−µ0
2

ϵ otherwise
, (3.5)

pB(y = 1|x) =
{︄

1− ϵ x ∈ [µ0, µ1]
ϵ otherwise

. (3.6)

(a) Good decision boundary (b) Misplaced boundary

Figure 3.1 – Example of maximised MI for a Gaussian mixture 1
2N (µ0, σ

2) + 1
2N (µ1, σ

2). It is
clear that figure 3.1a presents the best decision boundary and posterior between the two Gaussian
distributions. Yet, as the posterior turns sharper, the difference between both MIs converges to 0.

Both these models are depicted in Figure 3.1. We show in App A that both models will converge
to the same value of mutual information. The sketch of the proof is the following: we start by
computing the proportions of clusters pA(y) (resp. pB(y)), then compute the KL divergences
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between the distribution pA(y|xxx) and pA(y) (resp. pB(y|xxx) and pB(y)). For the good model A, we
obtain a constant term, whereas the KL divergence of the model B depends on the proportion of
data captured between µ0 and µ1:

β =
∫︂ µ1

µ0
p(x)dx. (3.7)

Integrating over the true distribution of the data, we finally obtain the respective values of
mutual information for both models. Their difference then depends on the proportion β and the
value of ϵ. We finish the demonstration by taking the limit with ϵ −→ 0 and show:

lim
ϵ→0
IA − IB = log 2−H (β) , (3.8)

where H (β) is the entropy.

(a) Differences of MI between models A and B (b) Gaussian mixture distribution p(x) with proportion
β in between the two means µ0 and µ1

Figure 3.2 – Value of the mutual information for the two models splitting a Gaussian mixture
depending on the distance between the two means µ0 and µ1 of the two generating Gaussian
distributions. We estimate the MI by computing it 50 times on 1000 samples drawn from the
Gaussian mixture.

To conclude, as the decision boundaries turn sharper, i.e. when ϵ approaches 0, the difference
of mutual information between the two models is controlled by the entropy of proportion of data
β between the two means µ0 and µ1. We know that for binary entropies, the optimum is reached
for β = 0.5. In other words having µ0 and µ1 distant enough to ensure balance of proportions
between the two clusters of model B leads to a difference of mutual information equal to 0. We
experimentally highlight this convergence in Figure 3.2 where we compute the mutual information
of models A and B as the distance between the two means µ0 and µ1 increases in the Gaussian
distribution mixture. It is interesting to observe that it is easier to misplace the boundaries because
of poor local maxima when the Gaussian distributions are far apart instead of close.

Globally, MI misses the idea in clustering that any two points close to one another may be in the
same cluster according to some chosen distance. Hence regularisations are required to ensure this
constraint. An early sketch of these insights was mentioned by Bridle et al. (1992) or Corduneanu
et Jaakkola (2002). A similar example to ours can be found in the work of Ver Steeg, Galstyan, Sha,
et DeDeo (2014). Finally, the non-predictiveness of MI was as well recently empirically highlighted
by Zhang et Boykov (2023).
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3.3 Extending the MI to the GEMINI

Given the identified limitations of MI, we now describe the discriminative clustering framework
based on the expected distance equation of mutual information (Eq. 3.2). We then detail the different
statistical distances we can use to extend MI to the Generalised Mutual Information (GEMINI).

3.3.1 The discriminative clustering framework for GEMINIs

We only consider two random variables: the data xxx which can be continuous or discrete and the
cluster assignment y which is discrete. Instead of viewing the mutual information as a dependence-
seeking objective, we view it as a clustering objective that aims at separating the data distribution
given cluster assignments p(xxx|y) from the data distribution p(xxx) according to the KL divergence:

I (xxx; y) = Ey∼p(y) [DKL (p(xxx|y)∥p(xxx))] . (3.9)

To highlight the discriminative clustering design, we explicitly do not set any hypothesis on the
data distribution by writing pdata(xxx). The only part of the model that we design is a conditional
distribution pθ(y|xxx) with parameters θ of some learnable function ψθ (Minka, 2005):

y|xxx ∼ Categorical(ψθ(xxx)). (3.10)

The function ψθ can typically be a neural network of adequate design regarding the data,
e.g. a CNN or a logistic regression. We assume for this entire section that the distribution is
non-degenerate, i.e. each cluster has at least one sample assigned, and the distributions pθ(xxx|y)
exists and are defined on the entire data space X . Recalling Section 2.3.1, the only other terms we
can estimate in discriminative clustering are the cluster proportions through marginalisation using
Monte Carlo on i.i.d. samples:

pθ(y) = Exxx∼pdata(xxx) [pθ(y|xxx)] . (3.11)

In contrast, the conditional distribution pθ(xxx|y) is unknown because we cannot compute the
data distribution:

pθ(xxx, y) = pdata(xxx)pθ(y|xxx). (3.12)

Fortunately, well-known properties of MI can invert the distributions on which the KL diver-
gence is computed (Bridle et al., 1992 ; Krause et al., 2010) via Bayes’ theorem:

I (xxx; y) = Exxx∼pdata(xxx) [DKL (pθ(y|xxx)∥pθ(y))] , (3.13)

which can be estimated using Monte Carlo assuming i.i.d samples from pdata(xxx). Since
we highlighted earlier that the KL divergence in MI cannot distinguish inappropriate decision
boundaries from better ones, we are interested in replacing it by other distances or divergences.
However, replacing the KL in Eq. (3.13) would focus on the separation of cluster assignments from
the cluster proportions which may be irrelevant to the data distribution. We rather alter Eq. (3.9)
to clearly show that we separate data distributions given clusters from the entire data distribution
because it allows us to take into account the data space geometry.

In this context of distance replacement, we question as well the relevance of the chosen
distributions to compare. Taking the terminology from ensemble learning with regards to the
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combination of multiple binary classifiers (Bishop, 2007, Section 4.1.2), we consider two cases: the
One-vs-All (OvA) and the One-vs-One (OvO). In the context of binary classifiers, OvA means that
the classifier must learn to distinguish a single class from any other, leading to as many classifiers
as classes, and OvO means that the classifier must learn to distinguish a specific pair of classes,
leading to as many classifiers as pairs of classes. In our context, OvA means that we evaluate the
distance between one cluster distribution and the data distribution, which encompasses all cluster
distributions. OvO means that we evaluate the distance between any pair of cluster distributions,
which will be more expensive.

3.3.2 The One-vs-All GEMINI

3.3.2.1 Replacing the Kullback-Leibler divergence with other distances

The goal of GEMINI is to separate data distributions according to an arbitrary distance D, i.e.
the KL divergence for another divergence or distance in MI. This brings the definition of our first
GEMINI, the One-vs-All:

IOvA
D (xxx; y) = Ey∼pθ(y) [D (pθ(xxx|y)∥pdata(xxx))] , (3.14)

as it compares the distance between the distribution of a specific cluster pθ(xxx|y) (one) against the
entire data distribution p(x) (all). This generalisation of MI still respects the dependence-seeking
nature of MI as highlighted by Theorem 3.3.1.

Theorem 3.3.1 (Independence in OvA GEMINIs). LetD be a positive function between probability
distributions such that D(p∥q) = 0 ⇐⇒ p = q. Two random variables x and y are independent
if and only if the one-vs-all GEMINI IOvA

D (x; y) is null.

Proof. Let D be a distance or divergence between two distributions such that D(p∥q) = 0 ⇐⇒
p = q. Let x and y two random variables. If x and y are independent, then p(x|y) = p(x) and
reciprocally. Consequently, the definition of GEMINI unfolds as:

IOvA
D (x; y) = Ey∼p(y) [D (p(x|y)∥p(x))] , (3.15)

= Ey∼p(y) [D (p(x)∥p(x))] , (3.16)

= 0. (3.17)

The reciprocal is true because D is always positive and the only way to get 0 through the
expectation with a non-degenerate clustering distribution is to haveD equal to 0. The demonstration
also holds in the case of a degenerate distribution by considering the variable y′ corresponding the
non-empty clusters.

There exist distances other than the KL to measure how far two distributions p and q are
from each other. We can make a clear distinction between two types of distances, Csiszar’s f -
divergences (Csiszár, 1967) and Integral Probability Metrics (IPM) (Sriperumbudur, Fukumizu,
Gretton, Schölkopf, & Lanckriet, 2009). Unlike f -divergences, IPM-derived distances like the
Wasserstein distance or the Maximum Mean Discrepancy (MMD) (Gneiting & Raftery, 2007 ;
Gretton, Borgwardt, Rasch, Schölkopf, & Smola, 2012) bring knowledge about the data throughout
respectively a distance, sometimes called cost, c or a kernel κ: these distances are geometry-aware.
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3.3.2.2 f -divergence GEMINIs

These divergences involve a convex function f : R+ ↦→ R such that f(1) = 0. This function is
applied to evaluate the ratio between two distributions p and q, as in Eq. (3.18):

Df (p∥q) = Ezzz∼q(zzz)

[︃
f

(︃
p(zzz)
q(zzz)

)︃]︃
. (3.18)

We will focus on three f -divergences: the KL divergence, the Total Variation (TV) distance
and the squared Hellinger distance. While the KL divergence is the usual divergence for MI,
the TV and the squared Hellinger distance present different advantages among f -divergences.
Both of them are bounded between 0 and 1. It is consequently easy to check when any GEMINI
using those is maximised contrarily to MI that is bounded by the minimum of the entropies of
xxx and y (Gray & Shields, 1977). When used as distance between data conditional distribution
pθ(xxx|y) and data distribution pdata(xxx), we can apply Bayes’ theorem in order to get an estimable
equation to maximise, which only involves cluster assignment pθ(y|xxx) and marginals pθ(y) as
summarised in Table 3.1, generalising thus the work of Bridle et al. (1992) who did it for the
KL divergence. Note that all f -divergences are maximised when the two distributions p and q
have disjoint supports (Liese & Vajda, 2006). Common f -divergence like the KL, the squared
Hellinger, or the Pearson χ2 divergence, except for the total variation distance, are specific cases of
the α-divergence subclass. The convex function of α-divergence is parameterized by a real number
α with:

fα(t) =

⎧⎪⎨⎪⎩
tα−αt+(α−1)

α(α−1) , α ̸= 0, α ̸= 1,
t ln t, α = 1,
− ln t, α = 0.

(3.19)

However, the class of α-divergence is inappropriate in some cases for clustering. Indeed, we
show with Proposition 3.3.1 (proof in B.1) that the maximisation of α-divergences can lead to
any clustering with balanced clusters as the discriminative model pθ(y|xxx) converges to a Dirac
distribution.

Proposition 3.3.1. Let {Xk}Kk=1 be a partition of X such that P(xxx ∈ Xk) = 1
K . Then for

any α-divergence with α > 0, OvA GEMINI is upper bounded by a function which depends
only on the proportions of the clusters. If the clustering model follows a Dirac distribution:
pθ(y = k|xxx) = 1[xxx ∈ Xk], then the upper bound is tight and GEMINI cannot be improved.

It is worth mentioning in Proposition 3.3.1 that the proportions of the cluster p(y = k) do
not matter for the specific case of α = 2 to achieve the global maximum, i.e. for the Pearson
χ2-divergence. We can infer from Proposition 3.3.1 the specific Corollary 3.3.1 since MI is a case
of OvA α-divergence-GEMINI with α = 1. We conclude that MI maximisation is a poor objective
when a discriminative model can converge to a Dirac distribution as could be the case with very
deep neural networks. In a sense, this is a generalisation of the introduction example of Section 3.2.

Corollary 3.3.1. Let {Xk}Kk=1 be a partition of X . Then the mutual information of a discriminative
distribution p(y|xxx) is upper bounded by the entropy of xxx and the upper bound is tight if the
distribution is a Dirac model p(y = k|xxx) = 1[xxx ∈ Xk]. The highest upper bound is reached when
the partition is balanced.
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3.3.2.3 IPM and Wasserstein-GEMINIs

The IPM is another class of distance that incorporates knowledge from the data through a
function f :

DIPM (p∥q) = sup
f∈F

(︂
Ezzz∼p(zzz) [f(zzz)]− Ezzz∼q(zzz) [f(zzz)]

)︂
, (3.20)

where F is a set of functions. As backpropagation through suprema could be intractable, we choose
to focus on two specific variations of the IPM for GEMINI: the MMD and the Wasserstein distance.
Note however that not all Wasserstein distances are IPMs and while some of our propositions are
formulated for IPMs, we consider as well the entire class of the Wasserstein distances.

The MMD corresponds to the distance between the respective expected embedding of samples
from the distribution p and the distribution q in a reproducing kernel Hilbert space (RKHS)H:

DMMD (p∥q) = ∥Ezzz∼p(zzz) [φ(zzz)]− Ezzz∼q(zzz) [φ(zzz)] ∥H, (3.21)

where φ is the RKHS embedding. To compute this distance, we can use the kernel trick (Gretton et
al., 2012) by involving the kernel function κ(aaa,bbb) = ⟨φ(aaa), φ(bbb)⟩. We then use Bayes’ theorem to
uncover a version of the MMD that can be estimated through Monte Carlo using only the predictions
pθ(y|xxx).

The Wasserstein distance is an optimal transport distance. It corresponds to the minimal amount
of energy to transform a distribution into another according to an energy function yielding the cost
c of moving the mass of a sample from one location to another:

DWd
c
(p∥q) =

(︄
inf

γ∈Γ(p,q)
Exxx,zzz∼γ(xxx,zzz)

[︂
c(xxx,zzz)d

]︂)︄ 1
d

, (3.22)

where Γ(p, q) is the set of all couplings between p and q, c a distance function in X and d a
positive integer. Computing the Wasserstein-d distance between two distributions pθ(xxx|y = k)
and pθ(xxx) is difficult in our discriminative context because we only have access to a finite set of
samples N . Note that in the remainder of the paper, we will focus on the Wasserstein-1 metric and
note it DW . The Wasserstein-1 distance benefits from a dual definition which takes the form of a
supremum over the set of 1-Lipschitz function, thus joining the form of IPMs from Eq. (3.20):

DW (p∥q) = sup
f,∥f∥L≤1

(Ezzz∼p [f(zzz)]− Ezzz∼q [f(zzz)]) . (3.23)

Yet, evaluating a supremum as an objective to maximise is hardly compatible with the usual
backpropagation in neural networks. This definition was used in attempts to stabilise GAN
training (Arjovsky, Chintala, & Bottou, 2017) by using 1-Lipschitz neural networks (Gouk, Frank,
Pfahringer, & Cree, 2021). However, the Lipschitz continuity was achieved at the time by weight
clipping, whereas other methods such as spectral normalisation (Miyato, Kataoka, Koyama, &
Yoshida, 2018) now allow arbitrarily large weights. The restriction of 1-Lipscthiz functions to
1-Lipschitz neural networks does not equal the true Wasserstein distance, and the term "neural net
distance" is sometimes preferred (Arora, Ge, Liang, Ma, & Zhang, 2017). Still, estimating the
Wasserstein distance using a set of Lipschitz functions derived from neural networks architectures
brings more difficulties.

Globally, we hardly experimented the generic IPM for GEMINIs. Our efforts for defining a set
of 1-Lipschitz critics, one per cluster for OvA, to perform the neural net distance (Arora et al., 2017)
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were not fruitful. This is mainly because such an objective requires the definition of one neural
network for the posterior distribution pθ(y|xxx) and K other 1-Lipschitz neural networks for the OvA
critics, i.e. a large number of parameters. Moreover, this brings the problem of designing not only
one but many neural networks while the design of one accurate architecture ψθ for clustering is
already a sufficient problem.

The idea of an expected Wasserstein distance was first proposed by Harchaoui (Harchaoui,
2020, Eq. (48)) under the name one-vs-rest with an additional cluster proportion factor. However,
we found that this additional factor is not grounded enough. Notably, Harchaoui used the neural
net distance (Arora et al., 2017) for estimating the Wasserstein rather than the true Wasserstein
distance in the context of enforced representations by autoencoders for Gaussian mixture models,
rather than an end-to-end neural network. Moreover, we can show, using the dual definition of the
Wasserstein metric (Eq. 3.23), that the one-vs-rest Wasserstein preliminary work (Harchaoui, 2020)
is equivalent to the one-vs-all Wasserstein-GEMINI.

To compute the Wasserstein-GEMINI, we instead use approximations of the distributions with
weighted sums of N Diracs:

pθ(xxx|y = k) ≈
N∑︂
i=1

mk
i δxxxi(xxx) = pkN ,with mk

i = pθ(y = k|xxxi)∑︁N
j=1 pθ(y = k|xxxj)

, (3.24)

where δxxxi is a Dirac located at sample location xxxi. For the distribution pdata, we approximate
with the empirical distribution: pN =

∑︁N
i=1 δxxxi/N . We state in Prop. 3.3.2 that this empirical

estimate of the Wasserstein distance converges to the correct Wasserstein distance. These importance
weights are compatible with the emd2 function of the python optimal transport package Flamary
et al. (2021) which requires normalised histograms. Moreover, this implementation gracefully
supports automatic differentiation through the earth mover’s distance algorithm of Bonneel, Van
De Panne, Paris, et Heidrich (2011).

Proposition 3.3.2. Let p(xxx|y = k) and p(xxx) be two distributions that we empirically approximate
with importance-weighed Dirac estimators pkN , and pN . Then, for all k1, k2:

lim
N→+∞

DW(pk1
N ∥p

k2
N ) = DW (pθ(xxx|y = k1)∥pθ(xxx|y = k2)) , (3.25)

and
lim

N→+∞
DW(pk1

N ∥pN ) = DW (pθ(xxx|y = k1)∥pθ(xxx)) . (3.26)

Proof. We first need to show that pkN weakly converges to p. To that end, we will use the Portman-
teau theorem (Billingsley, 1999, Theorem 2.1). Let f be any bounded and continuous function.
Computing the expectation of f(xxx) with respect to pθ(xxx|y = k) is:

Exxx∼pθ(xxx|y=k) [f(xxx)] =
∫︂

X
f(xxx)pθ(xxx|y = k)dxxx, (3.27)

which can be estimated using self-normalised importance sampling (Owen, 2013, Chapter
9). The proposal distribution we take for sampling is pdata(xxx). Although we cannot evaluate both
pθ(xxx|y) and pdata(xxx) up to a constant, we can evaluate their ratio up to a constant which is sufficient:
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Exxx∼pθ(xxx|y=k) [f(xxx)] =
∫︂

X
f(xxx)pθ(x

xx|y = k)
pdata(xxx) pdata(xxx)dxxx, (3.28)

=
∫︂

X
f(xxx)pθ(y = k|xxx)

pθ(y = k) pdata(xxx)dxxx, (3.29)

≈
N∑︂
i=1

f(xxxi)
pθ(y = k|xxx = xxxi)∑︁N
j=1 pθ(y = k|xxx = xxxj)

. (3.30)

Now, by noticing in the last line that the importance weights are self normalised and add up to
1, we can identify them as the point masses of our previous Dirac approximations:

mk
i = pθ(y = k|xxx = xxxi)∑︁N

j=1 pθ(y = k|xxx = xxxj)
. (3.31)

This allows to write that the Monte Carlo estimation through importance sampling of the
expectation w.r.t pθ(xxx|y = k) is directly the expectation taken on the discrete approximation pkN .
We can conclude that their is a convergence between the two expectations owing to the law of large
numbers:

lim
N→+∞

Exxx∼pk
N (xxx) [f(xxx)] = Exxx∼pθ(xxx|y=k) [f(xxx)] . (3.32)

Since f is bounded and continuous, the portmanteau theorem (Billingsley, 1999, Theorem
2.1) states that pkN weakly converges to pθ(xxx|y = k) when defining the importance weights as the
normalised predictions cluster-wise.

When two series of measures pN and qN weakly converge respectively to p and q, so does their
Wasserstein distance (Villani, 2009, Corollary 6.9), hence:

lim
N→+∞

DW
(︂
pk1
N ∥p

k2
N

)︂
= DW (pθ(xxx|y = k1)∥pθ(xxx|y = k2)) . (3.33)

This concludes the proof.

3.3.3 The One-vs-One GEMINI

We question the relevance of evaluating a distance between the distribution of the data given a
cluster pθ(xxx|y) and the data distribution pdata(xxx) when the geometry is taken into account. We argue
that it is intuitive in clustering to compare the distribution of one cluster against the distribution of
another cluster rather than the data distribution. Indeed, considering the geometry of the data space
through a kernel in the case of the MMD or a distance in the case of the Wasserstein metric implies
that we can effectively measure how two distributions are close to one another. In the formal design
of the mutual information, the distribution of each cluster pθ(xxx|y) is compared to the complete
data distribution pdata(xxx). Therefore, if one distribution of a specific cluster pθ(xxx|y) were to look
alike the data distribution pθ(xxx), for example with identical moments, then its distance to the data
distribution could be 0, making it unnoticed when maximising OvA GEMINI.

Take the example of 3 distributions {p(xxx|y = i)}3i=1 with respective different expectations
{µi}3i=1. We want to separate them using the OvA MMD-GEMINI with linear kernel. The mixture
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(a) OvA (b) OvO

Figure 3.3 – Here, 3 clusters of equal proportions from isotropic Gaussian distributions are located
in -2, 0 and 2 on the x-axis, with small covariance. The complete data distribution hence has its
expectation in 0 on the x-axis. Consequently, maximising the OvA MMD-GEMINI with a logistic
regression led to 2 clusters whereas the same model with the OvO MMD-GEMINI is able to see all
3 clusters.

of the 3 distributions creates a data distribution with expectation µ =
∑︁3
i=1 p(y = i)µi. However,

if the distributions satisfy that this data expectation µ is equal to one of the subexpectations µi, then
the associated distribution i will not provide any information since its MMD to the data distribution
is equal to 0. We illustrate this example in figure 3.3.

To address this issue, we introduce the second GEMINI named One-vs-One (OvO) which
compares cluster distributions from independent clusters ya and yb:

IOvO
D (xxx; y) = Eya,yb∼pθ(y) [D (pθ(xxx|ya)∥pθ(xxx|yb))] . (3.34)

The example of Figure 3.3 is tackled by OvO GEMINI since the distance between each pair
of the 3 clusters is non-null. França, Rizzo, et Vogelstein (2020) demonstrated that such an
objective is equivalent to kernel K-means in objective, however, their approach was focused only
on nonparametric models whereas our approach does not require the specification of centroids and
is done through gradient descent. The OvO GEMINI holds the same properties of independence
and nullity as OvA GEMINI using the same proof with an additional expectation.

Theorem 3.3.2 (Independence in OvO GEMINIs). LetD be a positive function between probability
distributions such that D (p∥q) = 0 ⇐⇒ p = q. Two random variables x and y are independent
if and only if the one-vs-one GEMINI IDOvO (xxx; y) is null.

Note that for most distances, OvO GEMINI is an upper bound of OvA GEMINI (proof in
App. B.2).

Proposition 3.3.3. Let D be an f -divergence or an IPM. Then: IOvA
D (xxx; y) ≤ IOvO

D (xxx; y).

In the case of binary clustering, using an IPM distance implies equality between OvA GEMINI
and OvO GEMINI (proof in B.3).

Proposition 3.3.4. Let D be an IPM and p(y|xxx) a clustering distribution y taking K = 2 values.
Then: IOvA

D (xxx; y) = IOvO
D (xxx; y).
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We can extend Proposition 3.3.1 to all f -divergences for OvO GEMINI with Proposition 3.3.5
(proof in App. B.4). We notably conclude that for the total variation and the squared Hellinger
distance, Dirac distributions on an even partition of the data space are the only optimal solutions.

Proposition 3.3.5. Let D be an f -divergence, pθ(y|xxx) a clustering distribution such that pθ(y =
k) = 1

K . The OvO GEMINI is then upper bounded by a function depending only on the cluster
proportions. For the upper bound to be tight, a sufficient condition is to have disjoint supports
between cluster distributions pθ(xxx|y = k). The condition is necessary if the function f satisfies
f(0) + g(0) <∞ where g(t) = tf

(︂
1
t

)︂
is the convex conjugate of f .

3.4 GEMINI in practice

Table 3.1 – Definition of the GEMINI for f -divergences, MMD and the Wasserstein distance. We
directly write here the equation that can be optimised to train a discriminative model pθ(y|xxx) via
stochastic gradient descent since they are expectations over the data.

Name Equation

KL OvA/MI Epdata(xxx) [DKL (pθ(y|xxx)∥pθ(y))]
KL OvO Epdata(xxx) [DKL (pθ(y|xxx)∥pθ(y)) +DKL (pθ(y)∥pθ(y|xxx))]

Squared Hellinger
OvA

1− Epdata(xxx)

[︃
Epθ(y)

[︃√︃
pθ(y|xxx)
pθ(y)

]︃]︃
Squared Hellinger

OvO
Epdata(xxx)

[︃
Vpθ(y)

[︃√︃
pθ(y|xxx)
pθ(y)

]︃]︃
TV OvA Epdata(xxx) [DTV (pθ(y|xxx)∥pθ(y))]
TV OvO 1

2Epdata(xxx)
[︂
Eya,yb∼pθ(y)

[︂
|pθ(ya|xxx)
pθ(ya) −

pθ(yb|xxx)
pθ(yb) |

]︂]︂

MMD OvA Epθ(y)

[︃
Exxxa,xxxb∼pdata(xxx)

[︂
k(xxxa,xxxb)

(︂
pθ(y|xxxa)pθ(y|xxxb)

pθ(y)2 + 1− 2pθ(y|xxxa)
pθ(y)

)︂]︂ 1
2
]︃

MMD OvO
Eya,yb∼pθ(y)

[︃
Exxxa,xxxb∼pdata(xxx)

[︃
k(xxxa,xxxb)

(︃
pθ(ya|xxxb)pθ(ya|xxxb)

pθ(ya)2

+pθ(yb|xxxa)pθ(yb|xxxb)
pθ(yb)2 − 2pθ(ya|x

xxa)pθ(yb|xxxb)
pθ(ya)pθ(yb)

)︃]︃ 1
2

⎤⎦
Wasserstein OvA Epθ(y)

[︂
DW

(︂∑︁N
i=1m

y
i δxxxi∥

∑︁N
i=1

1
N δxxxi

)︂]︂
Wasserstein OvO Eya,yb∼pθ(y)

[︂
DW

(︂∑︁N
i=1m

ya
i δxxxi∥

∑︁N
i=1m

yb
i δxxxi

)︂]︂

3.4.1 Geometric considerations

We stated in Section 3.3.2 that we present GEMINI as a distance between distributions evaluated
in the data space X so that the distance D can take into account the topology of the data. In practice,
we only design a discriminative model pθ(y|xxx). Therefore, we need to compute all formulas of the
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GEMINI through Bayes’ theorem to get equations depending on pθ(y|xxx) and pθ(y). We summarise
the equations from all aforementioned GEMINIs in Table 3.1 (see Appendix C for derivations). It
is also important to consider the experimental purposes and context to choose a GEMINI. Indeed,
when it is easier to design a distance than a kernel, Wasserstein-GEMINI is more compatible than
the MMD-GEMINI and vice-versa. Moreover, MMD-GEMINI inherently computes expectations
in a Hilbert space which allows computing centroids deemed representative of the clusters. This
notion of centroid is less straightforward when using the Wasserstein metric.

3.4.2 Estimating a GEMINI
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(a) OvA GEMINIs
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(b) OvO GEMINIs

Figure 3.4 – Mean Squared Error (log scale) of estimates with varying batch sizes compared to the
true value over a complete dataset of a 1000 samples. Each estimate was performed 50 times per
batch size and GEMINI.

All GEMINIs in Table 3.1 can be estimated using Monte Carlo, making them compatible
with mini-batch learning, e.g. batch sizes of a few hundred for large datasets similarly to prior
works (Hjelm et al., 2019 ; Hu et al., 2017 ; Ji et al., 2019). We highlight the importance of the
batch size when using GEMINIs. With the use of mini-batch for training, the complete GEMINI
is not evaluated on the entire dataset and hence a bias may rise from the empirical estimate. This
bias then has consequences on the gradient, which in turn alters training. To illustrate this point,
we generated 1000 samples from a Dirichlet distribution with 10 clusters. These samples are a
proxy for the output of any discriminative model pθ(y|xxx). We then compute the true GEMINI on
all samples before evaluating it 50 times for different randomly sampled batches of increasing size.
We report in Figure 3.4 the Mean Squared Error of all GEMINIs upon evaluation. We see that past
200 samples for both the OvA and the OvO models, the mean squared error is already close to or
below 10−2, except for OvO Wasserstein- and MMD-GEMINIs. This implies an upper bound of
10−2 for the bias of the estimates. We conclude that there is possibly a bias in GEMINIs estimates,
but it remains small enough to be negligible, e.g. smaller than 10−1.

3.4.3 Complexity considerations

The complexity of evaluating GEMINI increases with the distances previously mentionned
depending on the number of clusters K and the number of samples per batch N . It ranges from
O(NK) for the usual MI to O(K2N3 logN) for OvO Wasserstein-GEMINI. Indeed, the usual MI
only consists in two sums over N samples and K clusters. Evaluating one Wasserstein distance
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takesN3 logN (Shirdhonkar & Jacobs, 2008) which is then summed K2 times for the OvO version
of GEMINI. As an example, we show in Figure 3.5 the average time of GEMINI evaluation as the
number of tasked clusters increases for both 10 samples per batch (Figure 3.5a) and 500 samples
(Figure 3.5b). The batches consists in randomly generated prediction and distances or kernel
between randomly generated data.

(a) 10 samples per batch (b) 500 samples per batch

Figure 3.5 – Average performance time (in seconds) of GEMINIs as the number of tasked clusters
grows for batches of size 10 and 500 samples.

OvO Wasserstein is the most complex, and so its usage should remain for 10 clusters or less
overall. The second most time-consuming loss is OvA Wasserstein, which is a good compromise
between encompassing all data distribution information and computation complexity. The main
difference also to notice their memory complexity. OvA MMD requires only O(KN2) while OvO
MMD requires O(K2N2). This memory complexity should be the major guide to choosing one
MMD-GEMINI or the other. Thus, the minimal time-consuming and resource-demanding GEMINI
is OvA MMD if we consider GEMINIs that incorporates knowledge of data through kernels and
distances. Other versions involving f -divergences have in fact the same complexity as MI in our
implementations, apart from OvO TV which reaches O(K2N) in our implementation.

3.4.4 Further speed-ups for the OvO Wasserstein

The complexity of the Wasserstein metric is O(N3 logN) for a batch of size N . Consequently,
the complexity of the OvO Wasserstein reaches O(K2N3 logN) for K clusters. This implies that
this GEMINI is hardly usable for a high number of clusters. To tackle this complexity, we propose
instead to sample T independent pairs among the K(K − 1)/2 pairs of clusters to compare. We
evaluate the OvO Wasserstein on these pairs and scale it to the same order as if performed on all
pairs. This is an unbiased estimate of the OvO Wasserstein for all pairs:

Îovo
DW (xxx; y) = 2T

K(K − 1)
∑︂
k,k′∈I

pθ(y = k)pθ(y = k′)DW

(︄
N∑︂
i=1

mk
i δxxxi∥

N∑︂
i=1

mk′
i δxxxi

)︄
, (3.35)

with

I = {(kt, k′
t)}Tt=1 ; (kn, k′

n) ∼ U (JKK× JKK) , (3.36)
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1 from gemclus.linear import LinearMMD
2 from sklearn.datasets import load_iris
3 # load data
4 X, _ = load_iris(return_X_y=True)
5 # Perform clustering with a logistic regression
6 y_pred = LinearMMD(n_clusters=3).fit_predict(X)

Listing 3.1 – An example of logistic regression model trained with the OvA-MMD-GEMINI on the
iris dataset. Default kernel is linear.

1 from gemclus.mlp import MLPWasserstein
2 from sklearn.datasets import load_iris
3 # load data
4 X, _ = load_iris(return_X_y=True)
5 # Perform clustering with a MLP
6 y_pred = MLPWasserstein(n_clusters=3, ovo=True, n_hidden_dim

=3).fit_predict(X)

Listing 3.2 – An example of an MLP model trained with the OvO-Wasserstein-GEMINI on the iris
dataset. Default distance is Euclidean.

a set of uniformly drawn pairs of clusters.
This optimisation requires however longer training time as a tradeoff for a controlled complexity

ofO(TN3). Indeed, by comparing fewer pairs of clusters that are uniformly selected, we may need
more epochs to ensure that all pairs of clusters are compared enough times. Note that the same
optimisation can be applied to the OvA Wasserstein-GEMINI.

3.4.5 The GemClus package

Owing to the exact computations of the gradients that we detail in the appendices C and D, we
developped a Python package encompassing all GEMINI methods named GemClus. Overall, the
package is aimed for small datasets as it is implemented on CPU only ∗. We give an example of
code in the listings 3.1 and 3.2.

Beyond the scope of learning models for clustering, GEMINIs can be isolated for scoring other
model predictions, as shown in Listing 3.3.

We want as well to extend this package to other discriminative clustering methods for potentially
small-scale datasets. Therefore, we include an implementation of the regularised mutual information
(RIM) model by Krause et al. (2010) as shown in Listing 3.4 because we consider this model to be
one of the very first proposed in the domain yet find few satisfying implementations.

This package aims at containing most of the essential code of this thesis and is also expected to
grow beyond this specific scope. At the moment of writing, the package is publicly available with
the version 1.0.0.

∗. The gemclus package can be found at https://gemini-clustering.github.io/.

https://gemini-clustering.github.io/
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1 from gemclus.gemini import WassersteinGEMINI
2 # Load some data and fit a model to it
3 X, y_pred = ... # y_pred has a shape of n_samples x n_clusters
4 # Create the GEMINI for scoring with default Euclidean metric
5 gemini = WassersteinGEMINI(ovo=True)
6 # Compute the distance matrix then evaluate the GEMINI
7 D = gemini.compute_affinity(X)
8 score = gemini(y_pred, D)

Listing 3.3 – Using GEMINI for scoring the predictions of another model

1 from gemclus.linear import RIM
2 y_pred = RIM(n_clusters=3).fit_predict(X)

Listing 3.4 – The package gemclus incorporates as well the basic logistic regression with mutual
information regularised by an ℓ2 penalty (RIM).

3.5 Experiments

For all experiments below, we report the Adjusted Rand Index (ARI) (Hubert & Arabie, 1985),
a common metric in clustering. This metric is external as it requires labels for evaluation. It ranges
from 0, when labels are independent of cluster assignments, to 1, when labels are equivalent to
cluster assignments up to permutations. An ARI close to 0 is equivalent to the best accuracy when
voting constantly for the majority class, e.g. 10% on a balanced 10-class dataset. Regarding the
MMD- and Wasserstein-GEMINIs, we used by default a linear kernel and the Euclidean distance
unless specified otherwise. All discriminative models are trained using the Adam optimiser (Kingma
& Ba, 2014).

We start by giving detailed examples where GEMINI overcomes the limitations of MI followed
by examples to illustrate the compatibility of the method with various models and metrics, before
concluding on a practical example: the Enron email dataset.

3.5.1 When MI fails because of the modelling

We first took the most simple discriminative clustering model, where each cluster assignment
according to the input datum follows a categorical distribution:

y|xxx = xxxi ∼ Categorical(θθθi1, θθθi2, · · · , θθθiK). (3.37)

We generated n = 100 samples from a simple mixture of K = 3 Gaussian distributions. Each
model thus only consists in nK parameters to optimise. This is a simplistic way of describing the
most flexible deep neural network. We then maximised on the one hand OvA KL (MI) and on
the other hand OvA MMD. Both clustering results can be seen in Figure 3.6. We concluded that
without any function, e.g. a neural network, to link the parameters of the conditional distribution
with xxx, MI struggles to find the correct decision boundaries. Indeed, the position of xxx in the 2D
space plays no role and the decision boundary becomes only relevant with regards to cluster entropy
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maximisation: a uniform distribution between 3 clusters. However, it plays a major role in the
kernel of the MMD-GEMINI thus correctly solving the problem.

(a) OvA KL (MI) (b) OvA MMD with linear kernel

Figure 3.6 – Clustering of a mixture of 3 Gaussian distributions with MI (left) and GEMINI (right)
using categorical distributions. MI does not have insights on the data shape because of the model,
and clusters points uniformly between the 3 clusters (black dots, red triangles and blue crosses)
whereas MMD-GEMINI is aware of the data shape through its kernel.

3.5.2 Resistance to outliers

To prove the strength of using neural networks for clustering trained with GEMINI, we intro-
duced extreme samples in Gaussian mixtures by replacing a Gaussian distribution with a Student-t
distribution for which the degree of freedom ρ is small. We fixed K = 4 clusters, 3 being drawn
from multivariate Gaussian distributions and the last one from a multivariate Student-t distribution
with 1 degree of freedom or 2. Thus, the Student-t distribution produces samples that can be
perceived as outliers regarding a Gaussian mixture owing to its heavy tail.

(a) OvA KL (MI) Entropy Map (b) OvO MMD Entropy Map (c) OvO Wasserstein Entropy Map

Figure 3.7 – Entropy maps of the predictions of each MLP trained using a GEMINI or the MI. The
bottom-left distribution (yellow) is a Student-t distribution with 1 degree of freedom that produces
samples far from the origin. The Rényi entropy of prediction is highlighted from lowest (blue
background) to highest (red background). MI on the left has the most confident predictions overall
and the smallest uncertainty around the decision boundary, i.e. high entropy variations.

Each cluster distribution is centred around a mean µi whose proximity is controlled by a scalar
α. For simplicity, all covariance matrices are the identity. We define:

µ1 = [α, α], µ2 = [α,−α],
µ3 = [−α, α], µ4 = [−α,−α].
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Table 3.2 – Mean ARI std of a MLP fitting a mixture of 3 Gaussian and 1 Student-t multivariate
distributions compared with Gaussian Mixture Models and K-Means. The Student-t distribution
has ρ=1 or 2 degrees of freedom and the model can be designed to find either 4 or 8 clusters at best.
Bottom line presents the ARI for the maximum a posteriori of an oracle aware of all parameters of
the data.

Model
ρ = 2 ρ = 1

4 clusters 8 clusters 4 clusters 8 clusters

K-Means 0.965 0 0.897 0.040 0 0 0.657 0.008
GMM full covariance 0.972 0 0.868 0.042 0 0 0.610 0.117

GMM diagonal covariance 0.973 0 0.862 0.048 0.024 0.107 0.660 0.097

Iova
KL 0.883 0.182 0.761 0.101 0.939 0.006 0.742 0.092
Iovo

KL 0.731 0.140 0.891 0.129 0.723 0.114 0.755 0.163
Iova

H2 0.923 0.125 0.959 0.043 0.906 0.103 0.86 0.087

Iovo
H2 0.926 0.112 0.951 0.059 0.858 0.143 0.887 0.074

Iova
TV 0.940 0.097 0.973 0.004 0.904 0.104 0.925 0.103
Iovo

TV 0.971 0.005 0.620 0.053 0.938 0.005 0.595 0.055

Iova
MMD 0.953 0.060 0.940 0.033 0.922 0.004 0.908 0.016
Iovo

MMD 0.968 0.001 0.771 0.071 0.921 0.007 0.849 0.048
Iova

W 0.897 0.096 0.896 0.021 0.915 0.131 0.889 0.051
Iovo

W 0.970 0.002 0.803 0.067 0.922 0.006 0.817 0.042

Oracle 0.991 0.989

To sample from a multivariate Student-t distribution, we first draw samples xxx from a centred
multivariate Gaussian distribution. We then sample another variable u from a χ2-distribution using
the degrees of freedom ρ as parameter. Finally, xxx is multiplied by

√︂
ρ
u , yielding samples from the

Student-t distribution.
We report the ARIs of Multi-Layered Perceptron (MLP) trained 20 times with GEMINIs

in Table 3.2. The presence of "outliers" leads K-Means and Gaussian Mixture models to fail
at grasping the 4 distributions when trying to find 4 clusters. Meanwhile, GEMINIs perform
better. Note that MMD- and Wasserstein-GEMINI present lower standard deviation for high scores
compared to f -divergence GEMINIs. We attribute these performances to both the MLP that tries
to find separating hyperplanes in the data space and the absence of hypotheses regarding the data.
Moreover, MI is best maximised when its decision boundary presents little entropy H (y|xxx). As
neural networks can be overconfident (Guo, Pleiss, Sun, & Weinberger, 2017), MI is likely to yield
overconfident clustering by minimizing the conditional entropy. We highlight such behaviour in
Figure 3.7 where the Rényi entropy (Rényi, 1961) associated with each sample in MI (Figure 3.7a)
is much lower, if not 0, compared to OvO MMD and OvO Wasserstein (figures 3.7b and 3.7c).
We conclude that Wasserstein- and MMD-GEMINIs train neural networks to less overconfidence,
hence yielding more moderate distributions pθ(y|xxx).



3.5 – 3.5.3 Leveraging a manifold geometry 53

(a) Iova
kl for 2 clusters (b) Iova

kl for 5 clusters

(c) Iovo
W for 2 clusters (d) Iova

W for 5 clusters

Figure 3.8 – Fitting hand-generated moons using the GEMINI on top of an MLP for different
amount of clusters. The OvO Wasserstein model with 5 clusters eventually found 4 clusters.

3.5.3 Leveraging a manifold geometry

We highlighted that MI can be maximised without requiring a suitable decision boundary.
Here, we show how the provided distance to OvO Wasserstein-GEMINI can leverage appropriate
clustering when we have a good a priori on the data.

To that end, we create a dataset with two interlacing moon-shaped clusters. The cluster
assignment is drawn according to a Bernoulli distribution with parameter 0.5. The points are then
sampled using a uniformly distributed angle in [0, π]. Axis symmetry is applied depending on
the clusters. All points are distributed at the same radius ρ from some circle centre before adding
some Gaussian noise. The samples then undergo some offset so that both moons are not linearly
separable.

To construct a distance c for the Wasserstein distance, we derived a distance from the Floyd-
Warshall algorithm (Roy, 1959 ; Warshall, 1962) on a sparse graph describing neighbourhoods of
samples. This distance describes how many neighbours are in between two samples. To compute it,
we first use a sub-metric that we note d, in this example the ℓ2 norm. This allows us to compute
all distances dij between every sample i and j. From this matrix of sub-distances, we can build a
graph adjacency matrix W following the rules:

Wij =
{︄

1 dij ≤ ϵ
0 dij > ϵ

, (3.38)
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where ϵ is a chosen threshold such that the graph has sparse edges. Our typical choice for ϵ is
the 5% quantile of all dij .

We chose the graph adjacency matrix to be unweighted and undirected, owing to the symmetry
of dij . Indeed, solving the all-pairs shortest paths involves the Floyd-Warshall algorithm (Roy,
1959 ; Warshall, 1962) which complexity O(n3) is not affordable when the number of samples n
becomes large. An undirected and unweighted graph leverages performing n times the breadth-
first-search algorithm, yielding a total complexity of O(n2 + ne) where e is the number of edges.
Consequently, setting a good threshold ϵ controls the complexity of the shortest paths to finds. Our
final distance between two nodes i and j is eventually:

cij =
{︄

Shortest-pathW (i, j) if it exists.
n otherwise

. (3.39)

This metric c can then be incorporated inside the Wasserstein-GEMINI.
We report the different decision boundaries in Figure 3.8. We observe that the insight on the

neighbourhood provided by our distance c helped the MLP to converge to the correct solution
with an appropriate decision boundary, unlike MI. Note that the usual Euclidean distance in
the Wasserstein metric would have converged to a solution similar to MI. Indeed for 2 clusters,
the optimal transport plan has a larger value using a distribution similar to Figure 3.8a than
in Figure 3.8c. This toy example shows how an insightful metric provided to the Wasserstein
distance in GEMINIs can lead to correct decision boundaries while only designing a discriminative
distribution pθ(y|xxx) and a distance c.

In addition, we highlight an interesting behaviour of all GEMINIs. During optimisation, it is
possible that the model converges to using fewer clusters than the number to find. For example
in Figure 3.8, for 5 clusters, the model can converge to 4 balanced clusters and 1 empty cluster
(Figure 3.8d) unlike MI that produced 5 misplaced clusters (Figure 3.8b). Indeed, the entropy on
the cluster proportion in MI forces to use the maximum number of clusters.

3.5.4 Fitting MNIST

We trained a neural network using either MI or GEMINIs. Following Hu et al. (2017), we
first tried with a MLP with one single hidden layer of dimension 1200. To further illustrate the
robustness of the method and its adaptability to other architectures, we also experimented using a
LeNet-5 architecture (LeCun, Bottou, Bengio, & Haffner, 1998) since it is adequate to the MNIST
dataset. We report our results in Table 3.3. Since we are dealing with a clustering method, we may
not know the number of clusters a priori in a dataset. The only thing that can be said about MNIST
is that there are at least 10 clusters, one per digit. Indeed, the writings of digits could differ leading
to more clusters than the number of classes. That is why we further tested the same method with
15 clusters to find in Table 3.3. We first see that the scores of MMD and Wasserstein-GEMINIs
are greater than MI. We also observe that no f -divergence-GEMINI always yields the best ARIs.
Nonetheless, we observe better performances in the case of the TV-GEMINIs that we attribute to
its bounded gradient. This results in controlled stepsize when doing gradient descent contrarily to
KL- and squared Hellinger-GEMINIs. Notice that the change of architecture from an MLP to a
LeNet-5 unexpectedly halves the scores for the f -divergences. We believe this drop is due to the
change in the notion of neighbourhood implied by the network architecture.
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Table 3.3 – ARI for deep neural network trained with GEMINIs on MNIST for 500 epochs. Models
were trained either with either 10 clusters to find or 15. We indicate in parentheses the number of
used clusters by the model after training.

GEMINI
10 clusters 15 clusters

MLP LeNet-5 MLP LeNet-5

KL
OvA 0.320 (10) 0.138 (8) 0.271 (15) 0.136 (12)
OvO 0.348 (7) 0.123 (4) 0.333 (8) 0.104 (4)

Squared Hellinger
OvA 0.301 (10) 0.207 (6) 0.224 (13) 0.162 (7)
OvO 0.287 (10) 0.161 (6) 0.305 (13) 0.157 (7)

TV
OvA 0.299 (10) 0.171 (6) 0.277 (15) 0.140 (6)
OvO 0.422 (10) 0.161 (9) 0.330 (15) 0.182 (14)

MMD
OvA 0.373 (10) 0.382 (10) 0.345 (15) 0.381 (15)
OvO 0.361 (10) 0.373 (10) 0.364 (15) 0.379 (15)

Wasserstein
OvA 0.471 (10) 0.463 (10) 0.390 (15) 0.446 (11)
OvO 0.450 (10) 0.383 (10) 0.415 (15) 0.414 (15)

K-Means 0.367 0.385

3.5.5 Number of non-empty clusters and architecture

We repeat our previous experiment on the MNIST dataset from Sec. 3.5.4. We choose this time
to get 50 clusters at best for both MI and the MMD-GEMINI and train the models for 100 epochs.
We did not choose to test with the Wasserstein-GEMINI because its complexity implies a long
training time for 50 clusters. We repeat the experiment 20 times per model and plot the resulting
scores in Figure 3.9. We first observe that MMD-GEMINI with linear kernel has a tendency to
exploit more clusters than MI. The model converges to approximately 30 clusters in the case of
the MLP and 25 for the LeNet-5 model with less variance. We can further observe that for all
metrics the choice of architecture impacted the number of non-empty clusters after training. Indeed,
by playing a key role in the decision boundary shape, the architecture may limit the number of
clusters to be found: the MLP can draw more complex boundaries compared to the LeNet5 model.
Moreover, we suppose that the cluster selection behaviour of GEMINI may be due to optimisation
processes. Indeed, we optimise estimators of GEMINI rather than the exact GEMINI. Finally,
Fig. 3.9 also confirms from Table. 3.3 the stability of MMD-GEMINI regarding the ARI despite
the change of architecture whereas MI is affected and shows poor performance with the LeNet-5
architecture.

3.5.6 Number of clusters and training time

We observed in the previous experiments that models trained with GEMINI may not always
converge to the desired number of clusters. We go further here by showing that in a general, a
longer training time implies better chances of getting the desired number of clusters. To that
end, we generate a dataset called barrel which consists in a balanced mixture of 10 isotropic
Gaussian distributions circularly and evenly distributed around the origin of R2 with sufficiently
small covariance to guarantee a good separation of clusters. We then train MLPs with a hidden
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Figure 3.9 – Distributions of the ARI scores given a number of non-empty clusters after 100 epochs
of training on MNIST on two different architectures.

size of 20 nodes with all GEMINIs for 10,000 epochs. A model thus contains a greater number of
nodes than required to separate correctly the distributions. With Figure 3.10, we conclude that a
longer training time implies an increase in the number of non-empty clusters. However, none of
the models reached the 10 clusters, even after 10,000 epochs. Still, we note that in general, OvO
GEMINIs tend to converge faster to the targeted number of clusters than OvA GEMINIs, owing to
their cluster-wise comparative nature. In the specific cases of KL- and Hellinger-GEMINIs, we
can respectively explain the failure due to the cancellation of the cluster entropy term emerging
from the symmetric KL, and to the unrelated nature of a variance expectation regarding the number
of clusters. Hence these objectives do not encourage the model to reach the targeted number of
clusters. Finally, we observe a stronger tendency for MMD-GEMINI to stabilise sooner around a
fixed number of clusters while others keep on increasing. From these observations, we advise to
start any training with an OvA GEMINI for ease of computations, then switch to OvO GEMINI
once the training reaches a fixed number of clusters. If possible, a longer training might present
chances of a greater number of clusters if the current number is not satisfactory.

3.5.7 Cifar10 clustering using a SIMCLR-derived kernel

To further illustrate the benefits of the kernel or distance provided to GEMINIs, we continue
the same experiment as in section 3.5.4. However, we focus this time on the CIFAR10 dataset.
As an improved distance, we chose a linear kernel and ℓ2 norm between features extracted from a
pretrained SIMCLR model (T. Chen et al., 2020). We provide results for two different architectures:
LeNet-5 and ResNet-18 both trained from scratch on raw images, the latter being a common choice
of models in deep clustering literature (Tao et al., 2021 ; Van Gansbeke, Vandenhende, Georgoulis,
Proesmans, & Van Gool, 2020). We report the results in Table 3.4 and provide the baseline of
MI. We also add the baselines from related works when not using data augmentations to make a
fair comparison. Indeed, models trained with GEMINIs do not use data augmentation: only the
architecture and the kernel or distance function in the data space plays a role. We observe here that
the choice of kernel or distance can be critical in GEMINIs. While the Euclidean norm between
images does not provide insights on how images are far as shown by K-Means, features derived from
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Figure 3.10 – Number of non-empty clusters on average for 30 GEMINI models trained during
10,000 epochs on the barrel dataset. Shaded areas correspond to the 95% confidence intervals.

SIMCLR carry much more insight on the proximity of images. This shows that the performances
of GEMINIs depend on the quality of distance functions. Interestingly, we observe that for the
Resnet-18 using SIMCLR features to guide GEMINIs was not as successful as it has been on
the LeNet-5. We believe that the ability of this network to draw any decision boundary makes it
equivalent to a categorical distribution model as in Sec. 3.5.1. Finally, to the best of our knowledge,
we are the first to train from scratch a standard discriminative neural network on CIFAR10 raw
images without using labels or direct data augmentations, while getting sensible clustering results.
However, other recent clustering methods achieve best scores using data augmentations which we
do not (Park et al., 2021).

3.5.8 A practical application with Graph Neural Networks: the Enron email dataset

We focus in this experiment on the clustering of nodes in a graph representing email interac-
tion between individuals in the Enron dataset (available at https://www.cs.cmu.edu/~./
enron/). This famous company was filed for bankruptcy on the 2nd of December 2001 following
an investigation for fraud by the Securities and Exchange Commision (SEC). Following Bouveyron,
Latouche, et Zreik (2018), we focus on the exchange of emails in the Enron corporation between
the 1st of September 2001 and the 31st of December 2001, which corresponds to the peak period at
which the company collapsed. We represent the dataset as a graph where each node corresponds
to an employee and each edge represents the sending of at least one email. We choose to keep
the edges unweighted because the number of emails sent between two persons is not necessarily
reflexive of how they can be close to each other. After filtering nodes that do not communicate
between September and December, the graph comprises 141 nodes and 872 symmetric edges. In
order to use the Wasserstein metric, we choose as a distance the all-pairs-shortest path. Due to the
necessity of using a symmetric distance for the Wasserstein metric, we left the graph undirected.
Thus, an edge between two persons represents the exchange of at least one email anyhow.

To cluster the nodes of the graph, we adopt a simple Graph Convolution Network (GCN)
inspired by Kipf et Welling (2016) and Liang, Corneli, Bouveyron, et Latouche (2022) with a
hidden size of dimension 64 and 10 clusters to find at best (Bouveyron et al., 2018). We vary the

https://www.cs.cmu.edu/~./enron/
https://www.cs.cmu.edu/~./enron/
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Table 3.4 – ARI score of models trained for 200 epochs on CIFAR10 with different architectures
using GEMINIs. The kernel for the MMD is either a linear kernel or the dot product between
features extracted from a pretrained SIMCLR model. Both the Euclidean norm between images and
SIMCLR features are considered for the Wasserstein metric. We report the ARI of related works
when not using data augmentation for comparison.*: scores reported from Y. Li et al. (2021).

GEMINI Metric ARI with LeNet-5 ARI with Resnet-18

Iova
KL ∅ 0.02 0.008

Iova
MMD

Euclidean 0.049 0.047
SIMCLR 0.157 0.122

Iovo
MMD

Euclidean 0.048 0.044
SIMCLR 0.145 0.145

Iova
W

Euclidean 0.043 0.037
SIMCLR 0.079 0.052

Iovo
W

Euclidean 0.041 0.036
SIMCLR 0.138 0.080

Competitor ARI

K-means on raw images 0.041
K-means on SIMCLR features 0.147

IDFD (Tao et al., 2021) 0.060
CC (Y. Li et al., 2021) 0.030

JULE (J. Yang, Parikh, & Batra, 2016) 0.138

number of hidden layers from 1 to 3. All models were run 30 times. We perform clustering by
maximising the OvO Wasserstein during 1000 epochs with a learning rate of 2 × 10−3 for the
Adam optimiser. Indeed, with a long training time, we allow the model to find more clusters as seen
in Sec 3.5.6. We also experimented using MI with the same models and hyperparameters. Finally,
we selected the final model using the highest GEMINI value for each different depth of GCN.

Similarly, we ran 30 times two competitors with a number of clusters to find ranging from 2 to
10: the LPM model (Hoff, Raftery, & Handcock, 2002) and the Deep LPM model (Liang et al.,
2022) which are generative methods based on the assumption of a latent position of the nodes in
the graph determining their interaction. Their respective best models were selected according to the
lowest Bayesian information criterion and the highest evidence lower bound. For Deep LPM, we
used the architecture proposed by Liang et al. (2022) with a one-hidden-layer network.

We start by showing the highest Wasserstein-GEMINI clustering in Figure 3.11 where the graph
nodes are positioned according to the Fruchterman Reingold algorithm (Fruchterman & Reingold,
1991).

When we look at the interaction matrices of the best models in Figure 3.12, we can observe
that GEMINI clustering applied to graph yields dense clusters where nodes intensively connect
with each other (Figure 3.12a). The LPM model found fewer clusters that are as well densely
connected, while the Deep LPM found 6 clusters including one densely connected and another
one which contains multiple nodes sparsely connected. Interestingly, GEMINI managed to isolate
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Table 3.5 – Average ARI scores std between 30 GEMINI-trained models and the best Deep LPM
and LPM clustering according to ELBO criterion. H represents the number of hidden layers in the
model trained with GEMINI.

GEMINI H LPM Deep LPM

MI
1 0.470.08 0.310.10
2 0.310.07 0.170.09
3 0.290.04 0.160.05

OvO Wasserstein
1 0.580.04 0.250.03
2 0.540.06 0.220.03
3 0.490.06 0.210.04

graph nodes that act as hubs, e.g. the 9th cluster in Fig. 3.12a with star-shaped interactions while
Deep LPM mixes hubs in its 3rd cluster in Figure 3.12c. A potential explanation for this difference
is that LPM models seek to cluster nodes based on supposedly close latent representations whereas
GEMINI clustering uses the Wasserstein distance, hence taking into account the flow of information
passing through each graph node. In Table 3.5, we compared the average ARI between our 30
GEMINI models with the best-selected LPM and Deep LPM clustering. It appears indeed that
GEMINI models have a stronger ARI with the LPM model than with the Deep LPM, as the former
concentrated on dense clusters. Interestingly, we can notice in Table 3.5 that MI models with one
hidden layer are able to produce satisfying results with an ARI close to or better than the ARI
between GEMINI and LPM methods. However, when the models turn deeper, the performances of
MI drop whereas the ARI between the Wasserstein-GEMINI decreases more slowly.

To further compare the performances of these models, we chose to evaluate their proportions
of ambiguous clusters (PAC score) (S, enbabaoğlu, Michailidis, & Li, 2014). The PAC score
corresponds to the proportion of pairs of samples that have been ambiguously clustered together
between 10% and 90% of the runs. Through Figure 3.13, we can see that the models trained with
Wasserstein-GEMINI have a lower PAC score compared to MI-trained models which highlights a
more consistent clustering assignment through all 30 runs. We can further observe that for both
objective functions, a deeper model leads to a higher PAC score that we can explain by the difficulty
of repeating the same decision boundary with deep models. Eventually, we may conclude that
although MI may have competitive results with shallow models compared to GEMINI and Deep
LPM, it is unable to repeat a consistent clustering as illustrated by a high PAC score.

3.6 Conclusion

We highlighted that the choice of distance at the core of MI can alter the performances of deep
learning models when used as an objective for deep discriminative clustering. We first showed that
MI maximisation does not necessarily reflect the best decision boundary in clustering when the
clustering model converges to a Dirac distribution. We introduced GEMINI, a method which only
needs the specification of a neural network and a kernel or distance in the data space. Moreover,
we showed how the notion of neighbourhood built by the neural network can affect the clustering,
especially for MI. To the best of our knowledge, this is the first method that trains single-stage
neural networks from scratch using neither data augmentations nor regularisations, yet achieving
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good clustering performances. We emphasised that GEMINIs are only searching for a maximum
number of clusters: after convergence, some may be empty. Finally, we introduced several versions
of GEMINIs and would encourage OvA MMD or OvA Wasserstein as a default choice, since it
proves to both incorporate knowledge from the data using a kernel or distance while remaining
less complex than OvO MMD and OvO Wasserstein in time and memory. OvO versions could
be privileged for fine-tuning steps. Future works could focus on the joint learning of distances or
kernels (Wu, Khan, Ioannidis, & Dy, 2020) while maximising the GEMINI to get both meaningful
clustering and metrics in the data space. We will also investigate why after convergence some
clusters end up empty.

GEMINI constitutes therefore a promising clustering algorithm for the PROGRESSA dataset.
However, obtaining the clusters is the first cornerstone of clustering. There still remains to analyse
the contents of the clusters. To alleviate this interpretation, we now turn to Chapter 4 where we
introduce feature selection along clustering with Sparse GEMINI.
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(a) GEMINI complete graph (b) GEMINI summary graph

(c) Deep LPM complete graph (d) Deep LPM summary graph

Figure 3.11 – Fruchterman Reingold representation of the Enron email interaction graph. Nodes
are coloured according to clusters. The summary graph is a cluster-wise average of the positions of
the nodes with edges as strong as the number of interactions between two clusters.
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(a) GEMINI clustering (b) LPM clustering (c) Deep LPM clustering

Figure 3.12 – Interaction matrices: each black cell encodes an edge. Nodes were reorganised
according to their clustering for each model.

(a) MI with 1 hidden layer (PAC = 0.27) (b) MI with 3 hidden layers (PAC=0.36)

(c) GEMINI with 1 hidden layer (PAC=0.13) (d) GEMINI with 3 hidden layers (PAC=0.22)

Figure 3.13 – CDFs of consensus between all clusterings produced by the models on the Enron
Email dataset. The indicated PAC score is the difference of cdf between the quantiles 10% and
90%. A lower PAC score is better and highlights more consistent clustering assignments.
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4.1 Introduction

It is common that clustering algorithms and supervised models rely on all available features
for the best performance. However, as datasets become high-dimensional, clustering algorithms
tend to break under the curse of dimensionality (Bouveyron & Brunet-Saumard, 2014b), for
instance in biological micro-array data where the number of variables outweighs the number of
samples (McLachlan et al., 2002). To alleviate this burden, feature selection is a method of choice.
Indeed, all features may not always be of interest: some variables can be perceived as relevant or
not with respect to the clustering objective. Relevant variables bring information that is useful
for the clustering operation, while irrelevant variables do not bring any new knowledge regarding
the cluster distribution (Tadesse et al., 2005) and redundant variables look relevant but do not
bring beneficial knowledge (Maugis et al., 2009). The challenge of selecting the relevant variables
often comes with the burden of combinatorial search in the variable space. Therefore, solutions
may be hardly scalable to high-dimensional data (Raftery & Dean, 2006) or to the number of
samples (Witten & Tibshirani, 2010) when the selection process is part of the model. Therefore
reducing the number of variables for learning to a relevant few is of interest, notably in terms of
interpretation (Fop & Murphy, 2018). The necessity of variable selection notably met successful
applications in genomics (Marbac et al., 2020), multi-omics (Meng, Helm, Frejno, & Kuster, 2016 ;
Ramazzotti, Lal, Wang, Batzoglou, & Sidow, 2018 ; R. Shen et al., 2012).

Often, integrating the selection process as part of the model will lead to either not scaling
well (Solorio-Fernández et al., 2020) in terms of number of features (Raftery & Dean, 2006) or
number of samples (Witten & Tibshirani, 2010) or imposing too constrained decision boundaries due
to the nature of strong parametric assumptions. To alleviate both problems, we present the Sparse
GEMINI: a model that combines the logistic regression or the LassoNet architecture (Lemhadri,
Ruan, Abraham, & Tibshirani, 2021) and the discriminative clustering objective GEMINI from
Chapter 3 for a scalable discriminative clustering with penalised feature selection.

We start by presenting the different choices of clustering distributions pθ(y|xxx) for Sparse
GEMINI: logistic regression and LassoNet as summarised in Figure 4.1 with their associated
objectives. We then detail how the feature elimination is ensured during training and proceed to
experiments on both synthetic and real-world datasets.
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Figure 4.1 – Description of the complete Sparse GEMINI model. Through a proximal gradient,
clusters learned by GEMINI drop irrelevant features both in a skip connection and an MLP. Setting
M = 0 recovers a sparse unsupervised logistic regression.

4.2 Sparse GEMINI

4.2.1 Unsupervised logistic regression architecture

We start with the simplest discriminative model for variable selection: logistic regression. This
corresponds to the case where our clustering distribution pθ(y|xxx) is characterised by the underlying
architecture:

ψθ(xxx) = Softmax(θ⊤xxx), (4.1)

with θ ∈ Rd×K for d features and K clusters. Notice the absence of bias as this linear model is a
sub-case of the neural network model covered in the next section. To properly ensure that vector
weights are eliminated at once, a group-lasso penalty is preferred (Hastie, Tibshirani, & Wainwright,
2015, Section 4.3) also known as ℓ1/ℓ2 penalty (F. Bach, Jenatton, Mairal, & Obozinski, 2012).
We consider a user-defined partition of the input features into G ≤ d groups, each with associated
parameter subset θj . Note that the dimensions of θj vary depending on the number of features
within the j-th group. For example, a categorical variable taking M values transformed into a
one-hot-encoded vector of dimension M can be associated to a single group. Thus, the optimal
parameters should satisfy:

θ̂ = arg max
θ

ID (xxx; y|θ)− α
G∑︂
j=1
∥θj∥2. (4.2)

This is exactly the same objective formulation as the supervised multi-class Lasso if we replace
GEMINI by the likelihood or any other supervised loss. Notice that α is positive because we seek
to simultaneously maximise GEMINI and minimise the ℓ1/ℓ2 penalty. During training, the sparse
linear parameter will progressively remove variables by setting all grouped parameters to 0. If we
set G = d, then each variable can be removed on its own as there are no groups of variables. A
similar objective without group-lasso and using standard mutual information can be found in (Kong
et al., 2015, Eq. (4)), although specific initialisation strategies were required to circumvent the
unspecificity of mutual information local maxima.
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4.2.2 The LassoNet architecture

We extend this procedure to neural network by adapting the LassoNet (Lemhadri et al., 2021)
framework with GEMINIs. The neural network ψθ : X ↦→ RK consists of one multi-layered
perceptron (MLP) and a linear skip connection:

ψθ(xxx) = Softmax
(︂
gωωω(xxx) +WWW⊤xxx

)︂
, (4.3)

with θ containing ωωω the parameters of the MLP gωωω and WWW ∈ RK×d the weights of a linear skip
connection penalised by group-lasso. This leads to the same optimisation objective as previously
with a focus on the skip connection parameters:

θ̂ = arg max
θ

ID (xxx; y|θ)− α
G∑︂
j=1
∥WWW j∥2, (4.4)

with WWW j , the weights of the j-th group of features from WWW . As the sparse skip connection WWW
loses some feature subset we must force the MLP gω to drop this same subset of features as well.
Therefore the weights of the first layer ωωω(1) are constrained such that:

∥ωωω(1)
j ∥∞ ≤M∥WWW j∥2,∀j ≤ G. (4.5)

where M is called the hierarchy coefficient. Thus, when the j-th set of features is eliminated, all
weights starting from these features in the MLP will be equal to 0 as well. When M = 0, the
method is equivalent to the penalised logistic regression from the previous section because all entry
weights of the MLP are equal to zero, hence passing no information.

Interestingly, in addition to the constraints that are designed to specifically select features,
dimension reduction can be performed as well by extracting representations from lower-dimension
layers in the network gωωω. However, this intermediate representation would not be complete as it
misses the information from the skip connection.

4.3 Optimisation

4.3.1 Training and model selection

We follow Lemhadri et al. (2021) in proposing a dense-to-sparse training strategy for the penalty
coefficient. Training is carried along a path where the ℓ1 penalty parameter α is geometrically
increased:

α = α0ρ
t, (4.6)

with ρ > 1 at time step t after an initial step without ℓ1 penalty. We stop when the number
of remaining features used by the model is below a user-defined threshold 0 < dthres < d which
can be thought of as the minimum number of useful variables required. Each time the number of
features decreases during training, we save its associate intermediate model

Once the training is finished, we look again at all GEMINI scores during the feature decrease
and select the model with the minimum of features that managed to remain in the arbitrary range
of 90% of the best GEMINI value. This best value is most of the time the loss evaluated with the
model exploiting all features.
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Interestingly, as MMD-GEMINI is equivalent to a kernel K-means objective, as shown by
França et al. (2020), a subset of the method resembles to a sparse kernel K-means. However,
unlike related works (França et al., 2020 ; Witten & Tibshirani, 2010), the selection process is done
through gradient descent, i.e. without pre-selecting variables, and without the definition of explicit
centroids, thus being less strict regarding the number of clusters to find.

4.3.2 Extension proposal: the dynamic training regime

As features get eliminated during the training, the notion of affinity (distance c or kernel κ)
and clustering with respect to GEMINI between two samples changes. Indeed, GEMINI aims
at maximising a distance between two related distributions using an affinity computed between
samples, yet removing features from the inference implies we do not cluster any longer the same
original data space, but rather a subspace at step t: Xt =

∏︁
j∈It
Xj , where It is the set of remaining

groups of features. If we still compute our affinity function using all features from X , the extra
removed features may bring noise compared to the affinity between the relevant features, and thus
bring confusion with regards to the ideal decision boundary.

To respect the original notion of GEMINI in clustering, we introduce the dynamic training
regime, where at each time step t, the affinity function is computed using only the subset of relevant
group of features It. We call static regime the training with usage of all features in the affinity
function as described in section 4.2. The advantage of the dynamic training regime is that it
respects the notion of GEMINI with regard to the decision boundary, while the static regime yields
comparable values of GEMINI independently of the number of selected features. However, the
dynamic regime is incompatible with the selection process described in section 4.3.1 because any
change of data space implies a change of values for kernels or distances and thus for GEMINI,
making models incomparable. Moreover, we may have more theoretical guarantees of convergence
for the usual static regime than in the dynamic regime, which may seem unstable.

4.3.3 Gradient considerations

To ensure the convergence of the parameters to 0 upon elimination, we adopt a proximal
gradient strategy (Hastie et al., 2015, Chapter 5). In the case of sparse logistic regression, the
gradient ascent hence follows the two classical steps:

β = θt + ηt∇θID (xxx; y|θ) , (4.7)

θt+1
j = Sρtα∥βj∥2(βj),∀j ≤ G, (4.8)

where η is the learning rate at timestep t. The soft-thresholding operation Sα:

Sα(x) = sign(x) max{0, |x| − α}, (4.9)

is the closed-form solution of the proximal operator to project the parameters on the constrained
space due to the group-lasso penalty (Hastie et al., 2015, Section 5.3.3). Consequently, we are
sure to obtain true zeroes in the linear weights of the logistic regression or the weights of the skip
connection for the neural network. For the case of the complete neural network model, Lemhadri et
al. (2021) gracefully provide a proximal gradient operation to satisfy inequality constraints during
training time which guarantees true zeros in the first MLP layer as well.
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1 from gemclus.sparse import SparseLinearMMD
2 from sklearn.datasets import load_breast_cancer
3 # load data
4 X, _ = load_breast_cancer(return_X_y=True)
5 # Create a simple sparse logistic regression model
6 model = SparseLinearMMD(n_clusters=2, alpha=1)
7 # Perform the path for eliminating the variables
8 path_results = model.path(X)
9 # Conclude with clustering

10 y_pred = model.predict(X)

Listing 4.1 – An example of gemclus doing clustering with variable selection with the path
method.

Table 4.1 – Brief description of datasets involved in experiments

Name Samples Features #Classes

US-Congress 435 16 2
Heart-statlog 270 13 2

MNIST 12000 784 10
MNIST-BR 12000 784 10

Prostate-BCR 171 25904 2

4.3.4 Implementation in GemClus

The Sparse GEMINI method is implemented in GemClus. The available models comprises
logistic regression and LassoNet models with any GEMINI, including both static and dynamic
training regimes. For instance, Listing 4.1 gives an example of a path performed with the unsuper-
vised LASSO model for MMD-GEMINI. The code of this chapter was written prior to GemClus
with PyTorch’s automatic differentiation.

In the specific case of the logistic regression, we added a bias to the model from Eq. (4.1) in the
GemClus implementation. However, that bias is not regularised by the ℓ1 penalty.

4.4 Experiments

A brief summary of the datasets used in these experiments can be found in table 4.1.

4.4.1 Metrics

Depending on the experiments for comparison purposes, we report 3 different metrics. The
adjusted rand index (ARI, Hubert & Arabie, 1985) describes how close the clustering is to the
classes, with a correction to random guesses. The variable selection error rate (VSER), for instance
used by Celeux, Martin-Magniette, Maugis-Rabusseau, et Raftery (2014), describes the percentage
of variables that the model erroneously omitted or accepted, therefore the lower the better. We
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1 from gemclus.sparse import SparseMLPMMD
2 from gemclus.data import celeux_one
3

4 # Generate the data according to the 5th scenario
5 X,y = celeux_one(n=300, p=95, mu=1.7)
6 # Prepare the model: MLP with OvA MMD-GEMINI for 3 clusters
7 model = SparseMLPMMD(n_clusters=3)
8 # Progressively increase the penalty until all features are

removed
9 # res contains the history of feature selection and best model

weights
10 res = model.path(X)

Listing 4.2 – An example of sparse GEMINI model fitting the 5th scenario of the synthetic datasets

finally report the correct variable rate (CVR) which describes how many of the expected variables
were selected: higher is better. For example, a model selecting all variables of a dataset with d
variables and d′ good variables will get a CVR of 100% and a VSER of 1− d′

d .

4.4.2 Default hyperparameters

We set the hierarchy coefficient to M = 10, as Lemhadri et al. (2021) report that this value
seems to “work well for a variety of datasets”. We also report the performances for the logis-
tic regression mode when M = 0. The optimiser for the initial training step with α = 0 is
Adam (Kingma & Ba, 2014) with a learning rate of 10−3 while other steps are done with SGD with
momentum 0.9 and the same learning rate. Most of our experiments are done with 100 epochs per
step with early stopping as soon as the global objective does not improve by 1% for 10 consecutive
epochs. The early stopping criterion is evaluated on the same training set since we do not seek to
separate the dataset in train and validation sets in clustering. All activation functions are ReLUs.
The default starting penalty is α0 = 1 with a 5% increase per step. We keep the linear kernel and
the Euclidean distance respectively in conjunction with the MMD and Wasserstein distances when
evaluating GEMINI. Finally, we evaluate in most experiments the method with the exact same
number of clusters as the number of known (supervised) labels.

4.4.3 Numerical experiments

We experimented Sparse GEMINI on two synthetic datasets proposed by Celeux et al. (2014)
and also used by Bouveyron et Brunet-Saumard (2014a) to first highlight some properties of the
algorithm and compare it with competitors.

The first synthetic dataset consists of a few informative variables amidst noisy independent
variables. The first 5 variables are informative and drawn from an equiprobable multivariate
Gaussian mixture distribution of 3 components. All covariances are set to the identity matrix. The
means are µµµ1 = −µµµ2 = α111 and µµµ3 = 000. All remaining p variables follow independent noisy
centred Gaussian distributions. The number of samples n, the mean proximity α and the number of
non-informative variables p vary over 5 scenarios. For the 2 first scenarios, we use n = 30 samples
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and n = 300 for others. The scenarios 1 and 3 present the challenge of close Gaussian distributions
with α = 0.6 while others use α = 1.7. Finally, we add p = 20 noisy variables, except for the fifth
scenario which takes up to p = 95 uninformative variables. This experiment can typically be done
by running the algorithm from Listing 4.2 using gemclus.

The second dataset consists of n = 2000 samples of 14 variables, 2 of them being informative
and most others being linearly dependent on the former. The Gaussian mixture is equiprobable
with 4 Gaussian distributions of means [0, 0], [4, 0], [0, 2] and [4, 2] with identity covariances. The
9 following variables are sampled as follows:

xxx3−11 = [0, 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8]⊤

+ xxx1−2⊤
[︄

0.5 2 0 −1 2 0.5 4 3 2
1 0 3 2 −4 0 0.5 0 1

]︄
+ ϵϵϵ, (4.10)

where ϵϵϵ ∼ N (000,ΩΩΩ) with the covariance:

ΩΩΩ = diag
(︃
III3, 0.5III2, diag([1, 3])Rot(π3 ), diag[2, 6]Rot(π6 )

)︃
. (4.11)

Finally, the last 3 variables are independently sampled from N ([3.2, 3.6, 4], III3).
For all synthetic datasets, we asked training to stop with dthres set to the expected quantity of

variables. We report the results of Sparse GEMINI in Table 4.2 after 20 runs. We compare our
results against our own runs of other methods using their R package: Sparse K-means (Witten
et al., 2013), ClustVarSel (Scrucca & Raftery, 2018), vscc (Andrews & McNicholas, 2014) and
SparseFisherEM (Bouveyron & Brunet, 2012). Due to the lack of space, we only report the scores
for OvO GEMINI in Table 4.2. The results for OvA GEMINI can be found separately in Table 4.3.

It appears that Sparse GEMINI is efficient in selecting relevant variables when several others
are noisy, especially with OvO MMD-GEMINI while maintaining a high ARI. Moreover, while we
do not systematically get the best ARI, our performances never fall far behind the most competitive
method. We can also observe that MMD-GEMINI learns well despite the presence of few samples in
scenarios 2 and 3 and that the usage of an MLP leads to a trade-off between ARI and VSER when we
have enough samples. Additionally, the selection strategy often leads to selecting the correct number
of variables for MMD-GEMINI, except in scenarios 1 and 3 where the Gaussian distributions are
close to each other, which is hard given the large variance. For Wasserstein-GEMINI, we notice
that the performances in selection are improved with the presence of more samples. However, the
clustering performances are worse than MMD-GEMINI’s, which we can attribute to the contribution
of the noisy variables to the computation of the distances between samples, thus troubling the
holistic perspective of the Wasserstein distance on the cluster distribution. It also appears that we
performed poorly at selecting the correct variables in the presence of redundancy in the second
dataset. However, since all variables except 3 are correlated to the informative variables, we
still managed to get a correct ARI on the dataset while using other variables. On average, the
variables selected by our models were the 6th and the 8th variables. We focus on this difference of
convergence in Figure 4.2 where we plot the norm of the skip connection per featureWWW j . In the
case of noisy variables, we were able to recover them as the number of selected features decreased,
whereas we eliminated the informative variable of the second dataset during the first steps. In
general, Clustvarsel (Scrucca & Raftery, 2018) performed better on this type of synthetic dataset
in terms of variable selection because it explicitly assumes a linear dependency between relevant
variables and others.
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Table 4.2 – Performances of Sparse GEMINI (OvO only) on synthetic datasets after 20 runs. We
compare our performances against other methods. SX stands for a scenario of the first synthetic
dataset and D2 stands for the second synthetic dataset. Standard deviation is reported in subscript.

(a) ARI scores (greater is better)

Sparse Clust
VSCC SFEM

MMD Wasserstein

K-means VarSel Logistic MLP Logistic MLP

S1 0.090.08 0.050.07 0.000.02 0.130.11 0.140.11 0.080.07 0.090.12 0.040.07
S2 0.800.15 0.200.22 0.020.03 0.720.17 0.590.17 0.520.23 0.440.18 0.430.15
S3 0.110.03 0.040.10 0.150.10 0.220.05 0.210.05 0.210.04 0.140.05 0.100.05
S4 0.870.04 0.880.04 0.840.12 0.870.04 0.740.07 0.860.05 0.730.19 0.820.11
S5 0.870.03 0.650.38 0.000.00 0.830.03 0.760.05 0.860.03 0.590.20 0.670.20

D2 0.310.03 0.600.02 0.580.02 0.580.01 0.570.01 0.540.03 0.570.01 0.550.02

(b) VSER scores (lower is better)

Sparse Clust
VSCC SFEM

MMD Wasserstein

K-means VarSel Logistic MLP Logistic MLP

S1 0.310.22 0.280.06 0.720.15 0.240.07 0.440.15 0.430.11 0.510.11 0.560.13
S2 0.750.18 0.290.07 0.730.09 0.270.08 0.060.05 0.110.07 0.150.10 0.240.12
S3 0.470.34 0.250.07 0.650.22 0.200.04 0.070.05 0.200.11 0.200.12 0.560.14
S4 0.800.00 0.010.03 0.640.29 0.230.08 0.000.00 0.000.00 0.010.03 0.000.02
S5 0.950.00 0.050.03 0.950.00 0.100.02 0.000.00 0.000.00 0.010.01 0.010.01

D2 0.840.06 0.000.00 0.740.13 0.520.08 0.290.00 0.310.04 0.290.00 0.290.00

(c) CVR scores (greater is better)

Sparse Clust
VSCC SFEM

MMD Wasserstein

K-means VarSel Logistic MLP Logistic MLP

S1 0.530.31 0.110.10 0.870.23 0.280.18 0.600.26 0.640.19 0.630.23 0.590.17
S2 1.000.00 0.140.17 0.660.39 0.390.17 0.930.10 0.820.22 0.830.13 0.780.14
S3 1.000.00 0.190.30 0.970.13 0.270.15 0.950.09 0.990.04 0.680.25 0.920.12
S4 1.000.00 0.190.30 0.970.13 0.270.15 1.000.00 1.000.00 0.990.04 0.990.04
S5 1.000.00 0.750.44 1.000.00 0.660.18 1.000.00 1.000.00 0.940.11 0.960.10

D2 0.980.11 1.000.00 1.000.00 1.000.00 0.000.00 0.000.00 0.000.00 0.000.00
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Table 4.3 – Performances of Sparse GEMINI using the OvA objectives on the synthetic datasets.
SX stands for a scenario of the first synthetic dataset and D2 stands for the second synthetic dataset.

(a) ARI scores (greater is better)

MMD-GEMINI Wasserstein-GEMINI

Logistic MLP Logistic MLP

S1 0.080.08 0.110.12 0.030.05 0.080.09
S2 0.460.11 0.470.11 0.460.13 0.410.15
S3 0.230.07 0.220.05 0.130.07 0.080.06
S4 0.430.05 0.450.05 0.560.17 0.740.22
S5 0.440.05 0.580.11 0.520.16 0.470.18

D2 0.530.06 0.550.03 0.570.02 0.540.03

(b) VSER scores (lower is better)

MMD-GEMINI Wasserstein-GEMINI

Logistic MLP Logistic MLP

S1 0.380.14 0.370.11 0.580.13 0.550.10
S2 0.040.04 0.100.06 0.160.08 0.250.11
S3 0.060.08 0.190.11 0.200.13 0.680.16
S4 0.000.00 0.000.00 0.030.03 0.000.00
S5 0.000.00 0.000.00 0.020.02 0.080.07

D2 0.290.00 0.300.04 0.290.00 0.290.03

(c) CVR scores (greater is better)

MMD-GEMINI Wasserstein-GEMINI

Logistic MLP Logistic MLP

S1 0.560.20 0.630.31 0.650.21 0.710.17
S2 0.930.10 0.840.12 0.910.10 0.810.12
S3 0.940.16 0.980.06 0.660.23 0.960.08
S4 1.000.00 1.000.00 0.950.09 0.990.04
S5 1.000.00 1.000.00 0.940.09 0.950.09

D2 0.000.00 0.000.00 0.000.00 0.000.00
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Figure 4.2 – Example of convergence of the norm of the weights of the skip connection for every
feature during training with OvA Wasserstein. Green lines are the informative variables, black lines
are the noise and red are the correlated variables. (a) In the case of noisy variables, Sparse GEMINI
can recover the informative variables. (b) In the presence of redundant variables, Sparse GEMINI
eliminates informative variables to keep the redundant ones.

Table 4.4 – ARI scores on the synthetic datasets with the dynamic regime of training for the Sparse
GEMINI using MLPs

Method
MMD Wasserstein

OvA OvO OvA OvO

Scenario 1 0.120.13 0.150.12 0.050.09 0.070.06
Scenario 2 0.480.11 0.630.21 0.370.11 0.300.13
Scenario 3 0.230.04 0.200.03 0.110.05 0.110.06
Scenario 4 0.450.07 0.880.03 0.820.13 0.850.10
Scenario 5 0.620.09 0.840.05 0.560.20 0.480.17

Dataset 2 0.540.04 0.540.05 0.500.08 0.560.01

4.4.3.1 Specific case of the dynamic training regime

We experimented the dynamic approach on the same synthetic datasets and report the results in
Table 4.4. For this experiment, we only evaluated the performances on the final subset of selected
features. However, since the Sparse GEMINI is trained until a user-defined number of features is
reached, we avoid unfair comparisons with other variable selections methods and do not report
the VSER and the CVR. Our main observation on the introduction of the dynamic regime is that
it greatly improves the clustering performances of the Wasserstein-GEMINI while not affecting
MMD-GEMINI. This success can be explained by the removal of variables as the removal of noise
in the distance computation which is crucial for the Wasserstein distance because it takes a global
point of view on the complete distribution. In contrast, the MMD only considers expectations,
which helps getting rid of noisy variations of the distance around informative variables.
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4.4.4 Examples on MNIST and variations

We demonstrate as well performances of the Sparse GEMINI algorithm by running it on the
MNIST dataset. The initial α0 was set to 40. Following Lemhadri et al. (2021), we chose to stop
training after finding 50 features. We also use 5% of dropout inside an MLP with 2 hidden layers
of 1200 dimensions each (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012), i.e.
dropping uniformly 5% of the neuron activations. We report in Figure 4.3 the selected features
by the clustering algorithms and the evolution of the ARI. We extended this experiment to the
variations of MNIST proposed by Larochelle, Erhan, Courville, Bergstra, et Bengio (2007) by
showing the performances on the MNIST-BR dataset ∗, a challenging dataset for unsupervised
variable selection (Mattei, Bouveyron, & Latouche, 2016). This variation consists in samples of
MNIST with the black background being replaced by uniform noise hence displaying conditional
noise on the data. To be fair, we reduced MNIST to the first 12,000 samples of the training set in
order to match the number of samples in MNIST-BR.

(a) MNIST importance map (b) MNIST-BR importance map
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Figure 4.3 – Relative importance of MNIST features after training of Sparse GEMINI with a
log-scale color map. Blue features were eliminated at the first steps of α and red features were
eliminated last. On the right: evolution of the GEMINI depending on α.

∗. Datasets available at https://web.archive.org/web/20180519112150/http://www.iro
.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations

https://web.archive.org/web/20180519112150/http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
https://web.archive.org/web/20180519112150/http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
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We observed in Figure 4.3 that for both the default MNIST dataset and the MNIST-BR dataset,
the feature map concentrates precisely on the good location of the digits in the picture. Following
the GEMINI curves in the figures 4.3c and 4.3d despite the presence of noise, the respective selected
numbers of features were 122 for MNIST and 243 for MNIST-BR. These chosen models also have
a respective ARI of 0.34 for 7 clusters and 0.28 for 8 clusters. The presence of empty clusters is a
possible outcome with GEMINI that contributed here to lowering the ARI when evaluating with
the true digits targets.

4.4.5 Real datasets

4.4.5.1 OpenML datasets

We ran Sparse GEMINI on two OpenML datasets that are often shown in related works: the US
Congress dataset (Quarterly, 1985) and the Heart-statlog dataset (Brown, 2004). The US congress
dataset describes the choice of the 435 representatives on 16 key votes in 1984. The labels used
for evaluation are the political affiliations: 164 Republican against 267 Democrats. We replaced
the missing values with 0 and converted the yes/no answers to 1, -1. Thus, an unknown label is
equidistant from both answers. The Heart-statlog dataset describes 13 clinical and heart-related
features with labels describing the presence or absence of cardiac disease among patients. We
preprocessed it with standard scaling. For the US Congress dataset, we used one hidden layer of
20 nodes and a batch size of 87 samples. For the Heart-statlog dataset, we used 10 nodes and 90
samples. As we seek only two clusters, we only ran the OvA versions of GEMINI because it is
strictly equal to the OvO in binary clustering. Both datasets had a penalty increase of ρ = 10%. We
first show the number of selected features evolving with α as well as the evolution of the GEMINI
score as the number of features decreases respectively in Figure 4.4 for the US Congress dataset and
in Figure 4.5 for Heart-statlog. Table 4.5 contains the performances for the both datasets, reporting
the average number of selected variables over 20 runs according to our postprocessing selection
criterion. We also added the performances of competitors from the previous section. However, we
did not manage to run Sparse Fisher EM on the US Congress dataset. For comparison purposes, the
best unsupervised accuracy reported on the Heart-statlog dataset by Solorio-Fernández et al. (2020)
is 75.3% while Sparse GEMINI achieves 79% with the MMD. The best score for all methods in
the review (Solorio-Fernández et al., 2020) is 79.6%, but this encompasses filter methods, which
Sparse GEMINI is not. We also get similar results to the best performances of Marbac et al. (2020)
who report 33% of ARI. Since most competitors retained all variables in the dataset, we chose to
show as well the clustering performances without selection and hence with the greatest GEMINI
score.

We averaged the number of times each feature was selected according to the model over
the 20 runs and sorted them decreasingly. This post-process revealed that Wasserstein-GEMINI
consistently selected the El Salvador Aid and the Aid to Nicaraguan contras votes as sufficient to
perform clustering. Indeed, these two votes are among the most discriminating features between
Republicans and Democrats and were often chosen by other model-based methods (Fop & Murphy,
2018). The MMD-GEMINI objective only added the Physician fee freeze vote to this subset.
Regarding the Heart-Statlog dataset, MMD-GEMINI consistently picked a subset of 8 features out
of 13, including for example age or chest pain type as relevant variables. In contrast, Wasserstein-
GEMINI did not consistently choose the same subset of variables, yet its top variables, which were
selected more than 80% of the runs, agree with the MMD-GEMINI selection as well.
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Figure 4.4 – Average training curves of Sparse GEMINI on the US Congress dataset over 50 runs.
Blue lines correspond to Wasserstein-GEMINI, red lines to MMD-GEMINI.
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Figure 4.5 – Average training curves of Sparse GEMINI on the Heart Statlog dataset over 20 runs.
Blue lines correspond to Wasserstein-GEMINI, red lines to MMD-GEMINI.

4.4.5.2 Scalability example with the Prostate-BCR dataset

To show the scalability of Sparse GEMINI, we demonstrate its performance on the Prostate-
BCR dataset, taken from Vittrant et al. (2020) †. This dataset is a combination of transcriptomics
data from 3 different sources: the Cancer Genom atlas (Abeshouse et al., 2015), the GSE54460
dataset from the NCBI website, and the PRJEB6530 project of the European Nucleotide Archive.
The combined dataset contains 25,904 transcripts, i.e. variables, over 171 filtered patients with
long-term follow-up, counting 52, 96 and 23 patients from the respective sources. The objective is
to find biochemical recurrences (BCR) of prostate cancer through transcriptomic signature, hence
binary targets.

To carefully eliminate the variables, we increase α gradually by 2%. We took a simple MLP
with only one hidden layer of 100 neurons. We chose to run until converging to 400 features or less,
following Vittrant et al. (2020). We trained Sparse GEMINI with OvA objectives 5 times to find

†. Available at https://github.com/ArnaudDroitLab/prostate_BCR_prediction

https://github.com/ArnaudDroitLab/prostate_BCR_prediction
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Table 4.5 – ARI of Sparse GEMINI (OvA) on the Heart-statlog and US Congress datasets with the
average number of selected features. Standard deviation in subscript. Scores with an asterisk are
the initial performances when using all features.

Heart-statlog US Congress

ARI # Variables ARI # Variables

Sparse K-means 0.18 0.00 13 0.00 0.54 0.00 16 0.0
Clustvarsel 0.03 0.00 2 0.00 0.00 0.00 2 0.00

VSCC 0.27 0.00 13 0.00 0.40 0.00 11 0.00
Sparse Fisher EM 0.19 0.00 1 0.00 - -

Logistic regression
MMD 0.37 0.03 7.5 0.51 0.53 0.02 8.3 0.81

Wasserstein 0.33 0.08 5.8 2.09 0.48 0.00 8.0 0.92

MLP
MMD 0.32 0.01 8.0 0.00 0.48 0.00 3.1 0.37

Wasserstein 0.32 0.09 8.4 2.70 0.47 0.00 2.0 0.00

MLP
MMD* 0.37 0.02 13 - 0.55 0.01 16 -

Wasserstein* 0.33 0.09 13 - 0.55 0.02 16 -

either 2 clusters or 3 clusters in order to break down possible substructures among the supervised
targets.

Interestingly, we observed in Table 4.6 that the clustering results did not catch up with the
actual BCR targets, with an ARI close to 0 most of the time. However, upon evaluation of the
clusters with respect to the original source of each sample, we found scores close to 1 of ARI in the
case of MMD-GEMINI. Thus, the unsupervised algorithm was able to find sufficient differences
in distribution between each source of data to discriminate them. Additionally, consistent subsets
of features were always selected as the final subset on all 5 runs depending on the GEMINI. This
implies that even without the best GEMINI within a range for feature selection, several runs can
lead to identifying subsets of relevant data. This example illustrates how even in the presence of
potentially legitimate labels, there exist other valid cluster structures in the data (Hennig, 2015)

These results can be viewed as discovering batch effect in the data. Batch effect, also known
as batch variation, is a phenomenon that occurs in biological experiments where the results are
affected by factors unrelated to the experimental variables being studied. These factors can include
variations in sample processing, measurement conditions, people manipulating the samples, or
equipment used. One common example of a batch effect is observed in microarray or RNA
sequencing experiments, where the samples are processed in different batches and the results are
affected by variations in the reagents or protocols used. It has been demonstrated that batch effects
in microarray experiments originated from multiple causes, including variations in the labelling
and hybridisation protocols used, which led to differences in the intensity of gene expression
signals (Luo et al., 2010).

To minimise batch effects, it is important to control for variables such as reagents, protocols,
and equipment used, and to use appropriate normalisation and data analysis methods to account for
these variations. Several approaches can be used to detect batch effects in RNA-seq experiments,
including PCA (Reese et al., 2013) and clustering. For this latter, Hierarchical clustering is often
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Table 4.6 – ARI scores of the Prostate BCR dataset for various numbers of clusters depending on
the chosen type of targets. We either use the expected targets (BCR) regarding cancer prediction, or
data source targets that identify the data origin of each sample. The indicated GEMINIs are in the
one-vs-all setting.

Model
#Var

ARI

Architecture GEMINI K BCR targets Data source targets

Logistic
regression

MMD
2 810 590 -0.01 0.00 0.79 0.01
3 1229 2270 0.04 0.00 1.00 0.01

Wasserstein
2 1334 2561 0.01 0.02 0.60 0.13
3 1430 3127 0.04 0.01 0.96 0.06

MLP
MMD

2 4013 6541 -0.01 0.00 0.78 0.01
3 4287 6590 0.03 0.02 0.93 0.11

Wasserstein
2 4403 6843 0.00 0.00 0.65 0.04
3 4331 6742 0.02 0.02 0.80 0.20

used as a method that groups samples based on their similarity in gene expression patterns, and
batch effects can be identified based on dendrogram analysis (Leek et al., 2010).

4.4.6 Discussion

Our first observation from Table 4.2 is that Sparse GEMINI can reach performances close to
some competitors in terms of ARI while performing better in variable selection, especially with
OvO MMD-GEMINI. The MMD is a distance computed between expectations making it thus
insensitie to small variations of the kernel, typically when noisy variables are introduced contrary
to the Wasserstein distance which takes a global point of view on the distribution. Specifically, the
algorithm is good at discarding noisy variables, but less competitive regarding redundant variables
as illustrated with the second synthetic dataset. Nonetheless, the ARI remains competitive even
though the model failed to give the correct ground for the clustering.

Additionally, the training path produces critical values of α at which features disappear. Thus,
the algorithm produces an explicit unsupervised metric of the relevance of each feature according to
the clustering. Typically, plateaus of the number of used variables like in figures 4.4b and 4.5b for
the MMD shed light on different discriminating subsets. We also find that the empirical threshold
of 90% of the maximal GEMINI to select fewer variables is an efficient criterion. In case of a too
sudden collapse of variables, we encourage training new models on iteratively selected subsets of
features. Indeed, as α increases during training, the collapse of the number of selected variables will
often happen when the geometric increase is too strong, which might lead to unstable selections.

4.5 Conclusion

We presented a novel algorithm named Sparse GEMINI that jointly performs clustering and
feature selection by combining GEMINI for objective and an ℓ1 penalty. The algorithm shows good
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performances in eliminating noisy irrelevant variables while maintaining relevant clustering. Owing
to the nature of multi-layered perceptrons, Sparse GEMINI is easily scalable to high-dimensional
data and provides thus an unsupervised technique to get a projection of the data. However, the
limits of the scalability are the number of clusters and samples per batch due to the complex nature
of GEMINI. Thus, we believe that Sparse GEMINI is a relevant algorithm for multi-omics data
where the number of samples is often little and the number of features large, especially when it is
hard to design a good generative model for such data. As a concluding remark, we want to draw
again the attention to the discriminative nature of the algorithm: Sparse GEMINI focuses on the
design of a decision boundary instead of parametric assumptions.

Although Sparse GEMINI provides a subset of variables with which clustering was done, its
nature in the case of an MLP leaves an opaque idea of the relevance of each of these variables
to the clusters. As a consequence, we will explore in the next chapter how we can orchestrate
the intervention of each variable within the GEMINI framework using intrinsically interpretable
models: trees.
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5.1 Introduction

We explored in Chapter 3 the development of an objective function, the GEMINI, to train
any discriminative model for clustering, then introduced sparsity in the models in Chapter 4 for
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Figure 5.1 – Summary of the proposed framework for learning end-to-end unsupervised trees. The
framework concatenates a tree structure with an objective to maximise: the generalised mutual
information. The Kauri model corresponds to a binary decision tree with the squared-MMD-
GEMINI whereas the Douglas model corresponds to a differentiable tree and Wasserstein-GEMINI.

enhancing interpretability. However, in both cases we mainly focused on neural networks, which
may not be instrinsically interpretable. Although we included sparse logistic regression in Chapter 4,
we can train simpler and/or non-differentiable models to maximise the GEMINI. We focus in this
chapter on the training of trees.

Decision tree classifiers are one of the most intuitive models in machine learning owing to their
intrinsic interpretability (Molnar, 2020, Section 3.2). Decision trees consist of a set of hierarchically
sorted nodes starting from one single root node. Each node comprises two or more conditions
called rules, each of which leading to a different child node. Once a node does not have any child,
a decision is returned. A childless node is named a leaf.

While the end model is eventually interpretable, building it implies some questions to be
addressed, notably regarding the number of nodes, the feature (or set of features) on which to apply
a decision rule, the construction of a decision rule i.e. the number of thresholds and hence the
number of children per node. Learning the structure is easier in the case of supervised learning,
whereas the absence of labels makes the construction of unsupervised trees more challenging.
In recent related works, the problem was oftentimes addressed with twofold methods (Laber et
al., 2023 ; Tavallali et al., 2021): first learning clusters using another algorithm e.g. K-means,
then applying a supervised decision tree to uncover explanations of the clusters. However, such
unsupervised trees are not fully unsupervised in fact since their training still requires the presence
of external labels for guidance which are provided by K-means.

To achieve end-to-end unsupervised learning in trees, we propose a framework where we
merge the view of trees as statistical models with learnable parameters and a clustering criterion to
maximise: GEMINI. We derive two new clustering algorithms from this framework; respectively
binary decision trees for datasets with a large number of features (Kauri) and k-ary differentiable
trees for datasets with a large number of samples (Douglas). A short description of these methods
is provided in Fig. 5.1.

5.2 Training trees

We progressively present in this section the different means for creating a decision tree structure,
with supervision or not.
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5.2.1 How do we train supervised trees?

In supervised learning, we have access to targets y which guides our tree construction for
separating our samples. In this field, we can refer to the well-known classification and regression
tree (CART) (Breiman, 1984). At each node, we evaluate the quality of a split, i.e. a proposed rule
on a given feature and data-dependent threshold, through gain metrics. We then add to the tree
structure the split that achieved the highest possible gain. Common implementations of supervised
trees use the Gini criterion developed by the statistician Corrado Gini (1912), which indicates how
pure a tree node is given the proportion of different labels in its samples (Casquilho & Österreicher,
2018). Later works then proposed different gain metrics like the difference of mutual information
in the ID3 (Quinlan, 1986) and C4.5 (Quinlan, 2014) algorithms.

When the number of leaves and features to explore is unlimited, these approaches can produce
deterministic results. Moreover, their greedy nature can lead to the construction of very deep
trees which harms the interpretable nature of the model (Luštrek, Gams, & Martinčić-Ipšić, 2016).
This motivates for example the construction of multiple trees that are equivalent in terms of
decision, yet different in terms of structure presenting thus an overview of the Rashomon set
for interpretations (Xin et al., 2022). Other approaches tried to overcome the deterministic non-
differentiable nature of the rule-based tree by introducing differentiable leaves (Fang, Jennings,
Wen, Li, & Li, 1991 ; Y. Yang, Morillo, & Hospedales, 2018) which allows to train trees through
gradient descent. We will later come back to the definition of one such model for our method, the
deep neural decision tree (Y. Yang et al., 2018).

Whether differentiable or not, we choose to describe the decision trees as statistical models
pθ(y|xxx) which assign the data sample xxx to a discrete variable y, the cluster membership, according
to some parameters θ. These parameters can be for example the set of thresholds and features on
which decisions are carried at each node or matrix weights in differentiable trees as we will see in
the next sections.

5.2.2 How do we train unsupervised trees?

In clustering, we do not have access to labels making all previous notions of gains unusable, so
we need other tools for guiding the splitting procedure of the decision trees. A common approach is
then to keep the algorithm supervised as described in the previous section, yet providing labels that
were derived from a clustering algorithm e.g. K-means (Held & Buhmann, 1997 ; Laber et al., 2023).
In this sense, centroids derived from K-means can also be involved in split procedures (Tavallali
et al., 2021), even to the point that the data from which the centroids are derived do not need to
be collected (Gamlath et al., 2021). However, such methods do not properly construct the tree
from scratch in an unsupervised way despite potential changes in the gain formulations. We are
interested in a method that can provide a directly integrated objective to optimise tree training.
Other gains derived from entropy formulations can also be proposed (Basak & Krishnapuram,
2005 ; Bock, 1994). We even note the usage of recursive writing of mutual information to achieve
deeper and deeper refinements of binary clusters (Karakos, Khudanpur, Eisner, & Priebe, 2005).

Oftentimes, these approaches assume that a leaf describes fully a cluster, e.g. Blockeel, Raedt,
et Ramon (1998). Combining leaves into a single cluster requires then post hoc methods (Fraiman,
Ghattas, & Svarc, 2013). In such a case, an elegant approach for constructing an unsupervised
tree was proposed by Liu, Xia, et Yu (2000) by adding uniform noise to the data and assigning a
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Figure 5.2 – A dataset proposed by Moshkovitz et al. (2020) consisting in two isotropic Gaussian
distributions and a cluster of two points distant on the y-axis. In order to split optimally the clusters,
a decision tree should start with a y-axis split (solid red line) then use an x-axis split (dashed blue
line) to separate the two Gaussian distributions.

decision tree to separate the noise from the true data. Such trees put in different leaves dense areas
of the data, which can then be labelled manually.

To ensure that several leaves can be assigned to a single cluster, related work also focused on
the complete initialisation of a tree and refinement according to a global objective function. For
example, Bertsimas et al. (2021) directly maximise the silhouette score or the Dunn index, which
are internal clustering metrics and require the initialisation of the tree through greedy construction
or K-means labels. The objective is optimised using a mixed integer optimisation formulation of the
tree structure. Lately, Gabidolla et Carreira-Perpinan (2022) proposed to optimise an oblique tree, a
more difficult tree structure through the alternative optimisation of a distance-based objective, e.g.
K-means, providing pseudo-labels to a tree alternating optimisation problem (Carreira-Perpinan &
Tavallali, 2018).

5.2.3 Related motivating example

To justify the interest in seeking novel algorithms for unsupervised clustering trees instead of
naively applying K-means then a supervised CART tree on the obtained clusters, Moshkovitz, Das-
gupta, Rashtchian, et Frost (2020, Figure 2b) created a simple dataset where this naive combination
would solve the task with excellent accuracy, yet with non-optimal splits.

This dataset consists in 3 clusters. The first two ones are respectively drawn from two Gaussian
distributions: N ([2, 0]⊤, ϵIII2) and N ([−2, 0], ϵIII2) with ϵ small enough. The last cluster contains
two points located at (−2, v) and (2, v). We plot in Figure 5.2 a sample of such dataset for
v = 1000.

A decision tree learning from K-means labels will start by separating the samples along the
x-axis. This non-optimal choice then requires two splits on the left- and right-hand sides to
then separate the Gaussian distributions from the third cluster. The optimal choice, achieved by
ExKMC (Moshkovitz et al., 2020), starts by cutting on the y-axis, separating thus all Gaussian
distributions from the third cluster. A single split afterwards is sufficient for separating the two
Gaussian distributions.
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The Kauri model that we now introduce is also able to find such optimal splits.

5.3 Kauri: K-means as unsupervised reward ideal

The Kauri tree is a non-differentiable binary decision tree that looks in many ways alike the
CART algorithm. It constructs from scratch a binary tree giving hard clustering assignments
to the data by using an objective equivalent to both the optimisation of kernel K-means and
MMD-GEMINI. In the Kauri structure, a cluster can be described by several leaves.

5.3.1 Notations and modelling

We consider that we have a dataset of n samples: D = {xxxi}ni=1. We can model the classifica-
tion/clustering distribution associated with decision trees as a delta Dirac:

pθ(y = k|xxx) = 1[xxx ∈ Xk] , (5.1)

with {Xk}Kk=1 a partition of the data space X . Notice that we use the notation 1 because y is
discrete. We set X ⊆ Rd. We write the partition into K clusters as the sets samples that fall in the
respective data subspace:

Ck = {xxxi ∈ Xk},∀k ≤ K. (5.2)

We assume that the model sees all the data, i.e. we don’t use mini-batches, and that pdata(xxx)
corresponds to the empirical distribution of the training data. Consequently, the expectations of the
model turn to discrete sums. Notably, we have:

pθ(y = k) = |Ck|
n
. (5.3)

We note Tp the set of samples reaching the p-th node and τpj its threshold defined for a single
feature j. This threshold defines two binnings and produces two child nodes. For example, if
xxxij ≤ τpj , then this sample goes to the left child of the parent node p, otherwise to the right child.

5.3.2 Objective

The kernel KMeans algorithm minimises the cluster sum of squares in a Hilbert spaceH with
projection φ and kernel κ with respect to Kmax centroids µµµk . . .µµµKmax :

LKMeans =
Kmax∑︂
k=1

∑︂
xxx∈Ck

∥φ(xxx)−µµµk∥2H. (5.4)

Instead of computing the sample-wise distance to the centroid using the kernel trick (Dhillon et
al., 2004), Kauri optimises this objective without explicitly computing centroids per cluster. To that
end, we use the following simple equality:

∑︂
xxx∈Ck

∥φ(xxx)−µµµk∥2H = 1
2 |Ck|

∑︂
xxx,yyy∈Ck

∥φ(xxx)− φ(yyy)∥2H. (5.5)

This equality can be briefly shown using the kernel trick and the bilinearity of the kernel:



86
CHAPTER 5 — From neural networks to trees: explainable discriminative clustering with Kauri

and Douglas

∑︂
xxx∈Ck

∥φ(xxx)− 1
|Ck|

∑︂
yyy∈Ck

φ(yyy)∥2H =
∑︂
xxx∈Ck

⎛⎝⟨φ(xxx), φ(xxx)⟩+ 1
|Ck|2

⟨
∑︂
yyy∈Ck

φ(yyy),
∑︂
yyy∈Ck

φ(yyy)⟩ (5.6)

− 2
|Ck|
⟨φ(xxx),

∑︂
yyy∈Ck

φ(yyy)⟩

⎞⎠ (5.7)

=
∑︂
xxx∈Ck

⟨φ(xxx), φ(xxx)⟩ − 1
|Ck|

∑︂
xxx,yyy∈Ck

⟨φ(xxx), φ(yyy)⟩. (5.8)

This demonstration is finished by summing Ck times the first term on the unused variable yyy to
retrieve the expression of the norm using kernels between xxx and yyy:

∑︂
xxx∈Ck

∥φ(xxx)−µµµk∥2H =
∑︂

xxx,yyy∈Ck

(︃ 1
|Ck|
⟨φ(xxx), φ(xxx)⟩ − 1

|Ck|
⟨φ(xxx), φ(yyy)⟩

)︃
(5.9)

= 1
|Ck|

∑︂
xxx,yyy∈Ck

(︃1
2⟨φ(xxx), φ(xxx)⟩+ 1

2⟨φ(yyy), φ(yyy)⟩ − ⟨φ(xxx), φ(yyy)⟩
)︃

(5.10)

= 1
2 |Ck|

∑︂
xxx,yyy∈Ck

∥φ(xxx)− φ(yyy)∥2H. (5.11)

Once inserted into the kernel KMeans objective, we get an alternative formulation without
centroids:

LKMeans =
Kmax∑︂
k=1

1
2 |Ck|

∑︂
xxx,yyy∈Ck

∥φ(xxx)− φ(yyy)∥2H. (5.12)

Using the kernel trick, we can rephrase this objective as:

LKMeans =
Kmax∑︂
k=1

1
2 |Ck|

∑︂
xxx,yyy∈Ck

(κ(xxx,xxx) + κ(yyy,yyy)− 2κ(xxx,yyy)), (5.13)

where the two first kernel terms can be summarised as the size of clusters weighting the diagonal
elements of the kernel. Finally, the third term is the grand sum of the kernel of the cluster, and thus:

LKMeans =
∑︂
xxx∈D

κ(xxx,xxx)−
Kmax∑︂
k=1

1
|Ck|

∑︂
xxx,yyy∈Ck

κ(xxx,yyy). (5.14)

For the sake of simplicity, we introduce the function σ that sums the kernel values κ(xxxi,xxxj) =
⟨φ(xxxi), φ(xxxj)⟩ of samples indexed by two sets:

σ(E × F ) =
∑︂
xxxi∈E
xxxj∈F

κ(xxxi,xxxj). (5.15)

We will refer to the σ function as the kernel stock. This function is bilinear with respect to the
input spaces. We provide in Figure 5.3 a visual explanation of its different usages.
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We finally note that the first term of Eq. (5.14) is a constant because it does not depend on
the clustering. With only the second term remaining, we can remove the minus sign and hence
maximise the objective:

LKauri =
Kmax∑︂
k=1

σ(C2
k)

|Ck|
, (5.16)

Therefore, maximising our objective function L is equivalent up to a constant to minimising
a KMeans objective for any kernel. However, in contrast to Eq. (5.4), it is not a function of
centroids, but a function of a partition. This objective can also be connected to both OvA and OvO
MMD-GEMINIs from Chaper 3.

5.3.2.1 Equivalence to OvA MMD-GEMINI

We start by recovering the definition of OvA squared-MMD-GEMINI using only the outputs of
the outputs of our model pθ(y|xxx):

Iova
DMMD

2 (xxx; y|θ) = Ey∼pθ(y)

[︃
Exxxa,xxxb∼p(xxx)

[︃
κ(xxxa,xxxb)

(︃
pθ(y|xxxa)pθ(y|xxxb)

pθ(y)2 + 1− 2pθ(y|x
xxa)

pθ(y)

)︃]︃]︃
.

(5.17)
We can replace the expectations with discrete sums for both the clusters and the data. Notice the

factor 1
n in front of the kernel as we are simply doing a Monte Carlo estimate using the empirical

data distribution. We replace at the same time the values of the distributions by either the indicator
functions or cluster sizes:

Iova
DMMD

2 (xxx; y|θ) =
K∑︂
k=1

|Ck|
n

n∑︂
i=1
j=1

κ(xxxi,xxxj)
n2

(︄
1[xxxi ∈ Xk]1[xxxj ∈ Xk]n2

|Ck|2
+ 1− 21[xxxi ∈ Xk]n

|Ck|

)︄
.

(5.18)
By applying the indicator functions, we see that we sum the terms of a kernel on condition that

the respective samples belong specifically to some subset of data. We can consequently rewrite the
inner sum as a combination of kernel stocks σ:

Iova
DMMD

2 (xxx; y|θ) =
K∑︂
k=1

|Ck|
n

(︄
σ(C2

k)
|Ck|2

+ σ(D2)
n2 − 2σ(Ck ×D)

n |Ck|

)︄
. (5.19)

Then, we develop all 3 terms and get:

Iova
DMMD

2 (xxx; y|θ) =
K∑︂
k=1

σ(C2
k)

n |Ck|
+ |Ck|σ(D2)

n3 − 2σ(Ck ×D)
n2 . (5.20)

We can obtain the final form of the GEMINI by summing constant terms. Observing that∑︁
k |Ck| = n for the first term and using the bilinearity of σ for the second term, we have:

Iova
DMMD

2 (xxx; y|θ) = −σ(D2)
n2 +

K∑︂
k=1

σ(C2
k)

n |Ck|
. (5.21)
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As we are interested in optimising the clustering assignments in the tree, we can remove all
constant terms and factors that do not bring extra information. Hence, the final objective L to
maximise is:

L =
K∑︂
k=1

σ(C2
k)

|Ck|
. (5.22)

5.3.2.2 Equivalence to OvO MMD-GEMINI

We now prove that the objective function L obtained in the previous section is also equivalent
to maximising the OvO squared MMD-GEMINI in case of delta Dirac classifiers. We start by
expressing the complete squared MMD-GEMINI:

Iovo
DMMD

2 (xxx; y|θ) = Eya,yb∼pθ(y)

[︃
Exxxa,xxxb∼p(xxx)

[︃
κ(xxxa,xxxb)

(︃
pθ(ya|xxxa)pθ(ya|xxxb)

pθ(ya)2

+pθ(yb|xxxa)pθ(yb|xxxb)
pθ(yb)2 − 2pθ(ya|x

xxa)pθ(yb|xxxb)
pθ(ya)pθ(yb)

)︃]︃]︃
. (5.23)

As we exactly did for the OvA MMD-GEMINI demonstration, we apply the following tricks:
discretising the expectations on the dataset D, re-expressing the cluster proportions, simplifying
the sums. Our discrete version is:

Iovo
DMMD

2 (xxx; y|θ) =
K∑︂
k,k′

|Ck| |Ck′ |
n2

∑︂
xi∈D
xj∈D

κ(xxxi,xxxj)
n2

(︄
n2
1[xxxi ∈ Xk]1[xxxj ∈ Xk]

|Ck|2

+n2
1[xxxi ∈ Xk′ ]1[xxxj ∈ Xk′ ]

|Ck′ |2
− 2n

2
1[xxxi ∈ Xk]1[xxxj ∈ Xk′ ]

|Ck| |Ck′ |

)︄
. (5.24)

We can cancel the factors in n2 and replace our sum over indicator functions by the kernel stock
function σ. Thus, we obtain:

Iovo
DMMD

2 (xxx; y|θ) =
K∑︂
k,k′

|Ck| |Ck′ |
n2

(︄
σ(Ck × Ck)
|Ck|2

+ σ(Ck′ × Ck′)
|Ck′ |2

− 2σ(Ck × Ck′)
|Ck| |Ck′ |

)︄
. (5.25)

For the first two terms, we can cancel one part of the summation. Indeed, the kernel stock of Ck
does not depend on k′, consequently, the sum over k′ just multiplies this kernel stock up to a factor
n that will be cancelled by the denominator n at the very start. The same reasoning goes for the
second term. Last but not least, we can cancel cluster sizes on the last term. Our expression is then:

Iovo
DMMD

2 (xxx; y|θ) = 2
K∑︂
k=1

σ(Ck × Ck)
n |Ck|

− 2
K∑︂
k,k′

σ(Ck × Ck′)
n2 . (5.26)

As we now look forward to maximising this expression, we can realise that the last term is
simply the kernel stock of the dataset, in other words, a constant with respect to the clustering. We
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can then discard this term. For the first term, we simply remove the constant factor 2/n to obtain
the equivalent:

Iovo
DMMD

2 (xxx; y|θ) = 2
n

(︄
K∑︂
k=1

σ(Ck × Ck)
|Ck|

− σ(D ×D)
n

)︄
∝ L+ constant. (5.27)

This concludes our proof. Consequently, we that Eq. (5.21) is equal up to a factor 2 to Eq. (5.27)
and this equality holds for any non-null proportion of clusters.

Proposition 5.3.1. Let p(y = k|xxx) = 1[xxx ∈ Xk] be a non-degenerate clustering distribution on
the partition of the data space X = ⊎Kk=1Xk. Then IOvO

MMD2 (xxx; y) = 2IOvA
MMD2 (xxx; y).

5.3.3 Tree branching

For supervised trees like CART or ID3, the types of splits are binary and guided by the labels
which tell us to which class each child node should go. For unsupervised trees, we must consider
all possibilities: to which cluster goes the left child, to which cluster goes the right child, on which
feature to do the split, on what threshold within this feature to split, on which nodes. Assuming to
be located at a node p for a split, let SL the subset of samples from the node samples Tp that will
go to the left child node and SR the complementary subset of samples that will go to the right child
node. Each child node will be assigned to a different cluster, whether new, already existing or equal
to the parent node’s cluster assignment. Let kp be the current cluster membership of the parent node
p, kL the future cluster membership for the left child node and kR the future cluster membership of
the right child node, then SL ∪ SR = Tp ⊆ Ckp and after splitting: SL ⊆ CkL

and SR ⊆ CkR
.

We enforce the following constraints: (i) a child node must stay in the parent node’s cluster if
both children leaving would empty the parent’s cluster; (ii) the creation of a new cluster can only
be done under the condition that the number of clusters does not exceed a specified limit Kmax.
We also impose a maximum number of leaves Tmax which can be equal to at most the number of
samples n. It is nonetheless possible that the algorithm stops the splitting procedure if all gains
become negative before reaching the maximum number of leaves allowed.

Thus, learning consists in greedily exploring from all nodes the best split and either taking this
split to build a new cluster or merging with another cluster. We now present the objective function
and related gains depending on the children’s cluster memberships.

5.3.4 Gain metrics

5.3.4.1 General expression of a gain

We can derive from the Kauri objective (Eq. 5.16) four gains that evaluate how much score we
get by assigning one child node to a new cluster, assigning both child nodes to two new clusters,
merging one child node to another cluster or merging both child nodes to different clusters. We
denote by C′

• the clusters after the split operation and C• the clusters before the split. Hence, the
global gain metric is:
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C1

C2

C3

T1 T2 T3 T4 T5

σ(T1 ×D)

σ(T4 × C2)

σ(C1 × C3)

σ(T 2
5 )

σ(T4 × {xxx9})

Figure 5.3 – A toy example with a dataset consisting of 11 samples partitioned in 3 clusters using 5
leaves in a tree. The matrix represents the kernel between all pairs of samples and dashed areas
correspond to the sum of kernel elements according to the kernel stock function σ.

∆L(SL : kp → kL,SR : kp → kR) =
σ(C′

kL

2)⃓⃓⃓
C′
kL

⃓⃓⃓ +
σ(C′

kR

2)⃓⃓⃓
C′
kR

⃓⃓⃓ +
σ(C′

kp

2)⃓⃓⃓
C′
kp

⃓⃓⃓
−
σ(C2

kL
)

|CkL
|
−
σ(C2

kR
)

|CkR
|
−
σ(C2

kp
)⃓⃓⃓

Ckp

⃓⃓⃓ , (5.28)

which corresponds to subtracting the contribution of the kernel stocks of the former clusters
and adding the kernel stocks of the new clusters after splitting. From this global gain metric, we
derive four different gains: the star gain ∆L⋆ for assigning either the left or right child of a leaf
to a new cluster, the double star gain ∆L⋆⋆ for assigning the left and right children of a leaf to
two new clusters, the switch gain ∆L⇄ for assigning either the left or right child of a leaf to
another existing cluster and the reallocation gain ∆L↪→ for assigning respectively the left and right
children to different existing clusters. We provide Figure 5.3 for visual purpose and assistance in
the demonstrations.

5.3.4.2 Creating a new cluster: the star gain

In this case, we assign one of the splits SL or SR to a new cluster and let the other split in the
same cluster as the parent node, i.e. either kL = K + 1 and kR = kp or kL = kp and kR = K + 1.
Taking the case where the left split is given to a new cluster, we derive from the global gain a
variation that we call star gain:

∆L⋆(SL : kp → kL) = σ(S2
L)

|SL|
+
σ(C′

kp

2)⃓⃓⃓
C′
kp

⃓⃓⃓ − σ(C2
kp

)⃓⃓⃓
Ckp

⃓⃓⃓ . (5.29)

However, that expression is not convenient since there is a clear dependence: C′
kp

= Ckp \ SL
and we would be interested in avoiding the evaluation of σ(C′

kp

2). We can use the bilinearity of the
σ function and decompose over the new cluster C′

kp
= Ckp \ SL. Similarly, we can reexpress the

cardinal as
⃓⃓⃓
C′
kp

⃓⃓⃓
=
⃓⃓⃓
Ckp

⃓⃓⃓
− |SL|. Consequently, our term becomes:
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∆L⋆(SL : kp → kL) = σ(S2
L)

|SL|
+
σ(C2

kp
)− 2σ(Ckp × SL) + σ(S2

L)⃓⃓⃓
Ckp

⃓⃓⃓
− |SL|

−
σ(C2

kp
)⃓⃓⃓

Ckp

⃓⃓⃓ . (5.30)

It is then just a matter of reordering with respect to the kernel stocks σ to obtain the final
equation:

∆L⋆(SL : kp → kL) = σ(S2
L)

⎛⎝ 1
|SL|

+ 1⃓⃓⃓
Ckp

⃓⃓⃓
− |SL|

⎞⎠+ σ(C2
kp

)

⎛⎝ 1⃓⃓⃓
Ckp

⃓⃓⃓
− |SL|

− 1⃓⃓⃓
Ckp

⃓⃓⃓
⎞⎠

− 2
σ(Ckp × SL)⃓⃓⃓
Ckp

⃓⃓⃓
− |SL|

, (5.31)

which will be the used equation for the star gain.

5.3.4.3 Creating two clusters: the double star gain

The operation of creating two clusters can be seen as assigning in a first step the complete node
p to a new cluster, then taking one of its split and assigning it to a second new cluster. The double
star gain ∆L⋆⋆ can be thus computed by the sum of ∆L⋆ with Tp replacing the source cluster Ckp

and another ∆L⋆ with Tp replacing SL:

∆L⋆⋆(SL → kL,SR → kR) = ∆L⋆(Tp : kp → kL) + ∆L⋆(SR : kL → kR). (5.32)

5.3.4.4 Merging with another cluster: the switch gain

This type of split is very similar to the creation of a new one. The main difference is that as one
of the child nodes will join another cluster, e.g. kp ̸= kL ≤ K, we must take into account in the
gain that we must subtract the kernel stock of the former target cluster. We call this type of gain the
switch gain:

∆L⇄(SL : kp → kL) =
σ(C′

kL

2)⃓⃓⃓
C′
kL

⃓⃓⃓ +
σ(C′

kp

2)⃓⃓⃓
C′
kp

⃓⃓⃓ − σ(C2
kL

)
|CkL
|
−
σ(C2

kp
)⃓⃓⃓

Ckp

⃓⃓⃓ , (5.33)

where we arbitrarily chose the left split for the equation. Similarly to the new cluster case,
this expression can be completely re-written using only the original clusters and SL to remove
dependencies in the equation. We start by exploiting the bilinearity of σ. The first new cluster is
the source one without the split elements and the second new cluster is the target one with added
split elements. Therefore, we have C′

kp
= Ckp \ SL and C′

kL
= CkL

∪ SL. We can deduce:

∆L⇄(SL : kp → kL) =
σ(C2

kp
)− 2σ(Ckp × SL) + σ(S2

L)⃓⃓⃓
Ckp

⃓⃓⃓
− |SL|

+
σ(C2

kL
) + 2σ(CkL

× SL) + σ(S2
L)

|CkL
|+ |SL|

−
σ(C2

kp
)⃓⃓⃓

Ckp

⃓⃓⃓ − σ(C2
kL

)
|CkL
|
. (5.34)
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Then we finish again the demonstration by reordering the factors according to the respective
stocks:

∆L⇄(SL : kp → kL) = σ(S2
L)

⎛⎝ 1
|CkL
|+ |SL|

+ 1⃓⃓⃓
Ckp

⃓⃓⃓
− |SL|

⎞⎠− 2
σ(Ckp × SL)⃓⃓⃓
Ckp

⃓⃓⃓
− |SL|

+ σ(C2
kp

)

⎛⎝ 1⃓⃓⃓
Ckp

⃓⃓⃓
− |SL|

− 1⃓⃓⃓
Ckp

⃓⃓⃓
⎞⎠+ σ(C2

kL
)

⎛⎝ 1
|CkL
|+ |SL|

− 1⃓⃓⃓
Ckp

⃓⃓⃓
⎞⎠+ 2σ(CkL

× SL)
|CkL
|+ |SL|

.

(5.35)

which is the equation we use in Kauri switch splits.

5.3.4.5 Reallocating content to different clusters: the reallocation gain

As the tree grows, it may as well be interesting to reconsider whether samples that are currently
in a cluster should all be in a new cluster. We call this process reallocation as both splits of a node
end up in two different clusters: kL ̸= kp and kR ̸= kp.

Contrary to the double cluster creation case, we cannot simply sum two switch gains ∆L⇄ to
compute the reallocation gain. Indeed, the switch gain assumes that the final state of the original
cluster Ckp still contains the complementary of the chosen split SL (or SR) from the leaf samples
Tp which is not true when both parts of the leaf go to different clusters. Hence, a corrective term ϵ
is required.

When we sum two switch gains, the final state of the target clusters is correct: we simply added
elements from a split. The corrective term thus only focuses on the state of the source cluster. Let
C′
k the state of the source cluster according to the first switch gain on the left split, C′′

k the state of
the source cluster according to the second switch gain on the right split and C↪→k the true state after
reallocating both left and right splits. Notice that we lighten the notation kp to k. The corrective
term must satisfy:

σ(C′
k

2)⃓⃓
C′
k

⃓⃓ + σ(C′′
k

2)⃓⃓
C′′
k

⃓⃓ + ϵ = σ(C↪→k
2)⃓⃓

C↪→k
⃓⃓ . (5.36)

We can rewrite each new definition of the source clusters using the left split SL and right split
SR. Thus we get:

σ(Ck \ SL2)
|Ck| − |SL|

+ σ(Ck \ SR2)
|Ck| − |SR|

+ ϵ = σ(Ck \ Tp2)
|Ck| − |Tp|

, (5.37)

which allows us to use the bilinearity of σ:

σ(C2
k)− 2σ(Ck × SL) + σ(S2

L)
|Ck| − |SL|

+ σ(C2
k)− 2σ(Ck × SR) + σ(S2

R)
|Ck| − |SR|

+ ϵ

= σ(C2
k)− 2σ(Ck × Tp) + σ(Tp2)

|Ck| − |Tp|
. (5.38)

Then, by reordering the terms and simplifying for the factor σ(C2
k), we get the expression of ϵ:
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ϵ =
σ(C2

kp
) + σ(T 2

p )− 2σ(Ckp × T )⃓⃓⃓
Ckp

⃓⃓⃓
− |Tp|

+
σ(C2

kp
)⃓⃓⃓

Ckp

⃓⃓⃓ − σ(C2
kp

) + σ(S2
L)− 2σ(Ckp × SL)⃓⃓⃓

Ckp

⃓⃓⃓
− |SL|

−
σ(C2

kp
) + σ(S2

R)− 2σ(Ckp × SR)⃓⃓⃓
Ckp

⃓⃓⃓
− |SR|

. (5.39)

Thus, we can express the reallocation gain ∆L↪→ as the sum of two switch gains assigning
both left and right children nodes to different clusters plus the corrective term ϵ.

∆L↪→(SL : kp → kL,SR : kp → kR) = ∆L⇄(SL : kp → kL) + ∆L⇄(SR : kp → kR) + ϵ.
(5.40)

5.4 A fast implementation for Kauri

Upon looking at one leaf containing a small subset of samples, we need to find the best
possible split according to a given threshold on a specified feature. As each feature specifies a
different ordering and offers little space for optimisation, computing all possible gains may be
time-consuming. Indeed, computing σ(E × F ) is done in O(|E||F |), so evaluating gains for a
proposal split S on a single feature for node samples Tp contributing to a cluster of Ck has a naive
complexity of: O(|S|2 + |Ck|2 + |Ck||S|) for ∆L⋆, O(|S|2 + |Ck|2 + |Tp|2 + |Ck|(|S|+ |Tp|)) for
∆L⋆⋆, O(|Tp|2 + |Ck|2 + Ck||Tp|+ |Ck′ |2 + |Ck′ ||Tp|) for each k′ ̸= k for ∆L⇄, and at worst K
times the previous complexity again for all pairs of assignable new clusters k′, k′′ in the reallocation
gain ∆L↪→. Therefore, iterating over all features and all possible splits needs to be optimised as
this operation is the core of the tree construction.

5.4.1 Pre-computing kernel stocks

Most of the kernel stocks can be computed ahead in fact, and then the splitting choice would
just need to access the value of the kernel stocks instead. To that end, we choose to formulate
two matrices that will store all structural information. The matrix ZZZ ∈ {0, 1}Tmax×n describes the
membership of samples to leaves where Tmax is the maximal number of leaves allowed (Tmax ≤ n).
As a sample can only belong to 1 leaf, each column of ZZZ has a single 1. Similarly, the matrix
YYY ∈ {0, 1}Kmax×Tmax describes the membership of leaves to clusters, and only one cluster is
allowed per leaf. We can then compute most of the kernel stocks required for split computations,
as:

ΛΛΛ = [σ(Ti × {xxxj})] = ZZZκκκ, (5.41)

is the matrix containing all stocks between leaves and single samples requiring O(n2Tmax) to
compute, and:

γγγ = [σ(Ci × Cj)] = YYYΛΛΛZZZ⊤YYY ⊤, (5.42)

is the matrix with cluster-cluster stocks, requiring O(n2Tmax + T 2
maxKmax) for computations.
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Algorithm 1 Computes the best possible type of split given kernel stocks of a currently split node

Require: σ(S2
L) the stock of the left split

Require: |SL| the size of the left split
Require: σ(S2

R) the stock of the right split
Require: |SR| the size of the right split
Require: σ(Ck)∀k the stock of all clusters
Require: |Ck|∀k the size of all clusters
Require: σ(Ck × SL)∀k the adversarial stocks of the left split
Require: σ(Ck × SR)∀k the adversarial stocks of the right split
Require: σ(T 2) the leaf stock
Require: k the indicator of the current cluster of the split leaf
Require: K the current number of clusters

1: function COMPUTESPLITS(σ(S2
L), |SL|, σ(S2

R), |SR|, {σ(Ck)}, {|Ck|}, {σ(Ck × SL)},
{σ(Ck × SR)}, σ(T 2), k, K)

2: ∆L← 0
3: Split← (−1,−1) ▷ Stores the cluster targets of left and right splits
4: if Creating a new cluster is allowed then
5: Compute ∆L⋆L using the left split SL and Eq. 5.30
6: Compute ∆L⋆R using the right split SR and Eq. 5.30
7: ∆L, Split← TAKEBEST({∆L, Split}, {∆L⋆L, (K + 1, k)}, {∆L⋆R,(k, K + 1)})
8: end if
9: if Creating two clusters is allowed then

10: Compute ∆L⋆⋆ using either SL or SR and Eq. 5.32
11: ∆L, Split← TAKEBEST({∆L, Split},{∆L⋆⋆, (K + 1, K + 2)})
12: end if
13: TopL, SecondL, TopR, SecondR← 0,0,0,0
14: TopkL, SecondkL, TopkR, SecondkR← -1,-1,-1,-1
15: for k′ ∈ {1, · · · ,K} \ {k} do
16: Compute ∆L⇄L using the left split SL and Eq. 5.35
17: Compute ∆L⇄R using the right split SL and Eq. 5.35
18: ∆L, Split← TAKEBEST({∆L, Split}, {∆L⇄L , (k′, k)}, {∆L⇄R , (k, k′)})
19: Update TopL, SecondL, TopkL and SecondkL using ∆L⇄L to keep track of the

two best switch gains and their respective target cluster k′

20: Update TopR, SecondR, TopkR and SecondkR using ∆L⇄R to keep track of the
two best switch gains and their respective target cluster k′

21: end for
22: if Reallocation is allowed then
23: Compute ϵ using Eq. 5.39
24: Compute ∆L↪→ using TopL, SecondL, TopkL, SecondkL, TopR, SecondR,

TopkR, SecondkR and ϵ.
25: ∆L, Split← TAKEBEST({∆L, Split}, {∆L↪→, (target left, target right)})
26: end if
27: return ∆L, Split
28: end function
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5.4.2 Optimising split evaluation

Thanks to the formulation of the star gain ∆L⋆, the double star gain ∆L⋆⋆ and assuming we
know the variables σ(SL × SL) (resp. SR) and σ(SL × Ck) (resp. SR), evaluating the creation of
clusters is done in O(1). Inevitably, we achieve O(K) for the switch gains ∆L⇄ since evaluating
these gains is easy but needs iteration over all clusters.

To alleviate the complexity of the reallocation gain ∆L↪→ due to the exploration of all pairs
of clusters, we propose to remember the top two switch gains per left children and right children.
Indeed, the corrective term ϵ (Eq. 5.39 does not depend on the two clusters to which the left and
right children will be reallocated. Hence maximising the reallocation gain is the same as finding
the combination of the best switch gains. Thus, remembering the top two switch gains and finding
the best combination between left and right child, with different clusters membership per child,
will yield the optimal reallocation gain. Therefore we achieved the best gain in O(K) and the
evaluation of all types of gain is done in O(K). This search is summarised in Algorithm 1.

5.4.3 An iterative rule for split stocks

Starting from here, we seek an update rule that allows us to easily update the kernel stocks of
the splits σ(S × Ck) and σ(S2) that are required by Algorithm 1. We must explore all possible
splits by considering thresholds on chosen variables. Therefore, a split on a variable must be done
according to the ordering imposed by that variable, leaving a left child S(l)

L and a right child S(l)
R

at the l-th threshold. The algorithm consist in starting from the split of a single sample to the left
child S(1)

L and all other samples to the right child S(1)
R then progressively remove or add samples

according to an ordering given by a sorted feature: t = ν(l) to compute S(l)
L and S(l)

R . For example,
if the p-th node has the data samples 5, 8, 9 and 15, a feature may order those as 9,8,15,5. Then,
ν(1) = 9, ν(2) = 8, ν(3) = 15 and ν(4) = 5.

Note that there is a key difference regarding the indices notations. We write i the absolute index
of sample from the dataset D while l refers to the ordered count of samples inside a specific node.
The index t is the absolute index according to the ordering ν(l).

We introduce 3 helping variables. The first one is the sample-wise cluster adversarial stocks:

ωωωk,i = σ(Ck × {xxxt}), (5.43)

which does not depend on the ordering specified by a feature and will ease the computation
of both σ(SL × Ck) and σ(SR × Ck). We can shortly write that ωωω = YYYZZZκκκ. To alleviate the
computations of σ(S2

L) and σ(S2
R), we introduce the ordering-dependent variables:

ανt =
∑︂

l=1···|Tp|
ν(l)<t

κν(l),t, (5.44)

and:

βνt =
∑︂

l=1···|Tp|
ν(l)>t

κν(l),t. (5.45)
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(a) There is no ordering of the samples
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(b) There exists an ordering ν
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A

(c) Reordering according to ν

Figure 5.4 – An example of the value of the variables α3 and β3 which respectively are the sum of
green squares and red squares on the kernel matrix of the elements A, B, C and D in a leaf. In 5.4b
and 5.4c, the ordering is ν({1, 2, 3, 4}) = {B,D,C,A}.

These two variables verify a constant sum βνt + ανt + κtt = σ({xt} × Tp) for all t ∈ Tp. We
provide a visual intuition of the definition of these variables in Fig. 5.4. Once the variables ωωωk,i,
ανt , βνt are initialised, we can compute all split gains with simple additions.

The initialisation of the variables is easy. For the split self-stock, we have:

σ(S(0)
L × S

(0)
L ) = 0, (5.46)

σ(S(0)
R × S

(0)
L ) = σ(T 2

p ), (5.47)

because starting from no sample yields all content of the node Tp to the right split S(0)
R . The

adversarial stocks follow the same logic:

σ(S(0)
L × Ck) = 0, (5.48)

σ(S(0)
R × Ck) = σ(Tp × Ck), (5.49)

where the last term is simply an element of γγγ indexed by the respective leaf and cluster. The
iterations then consist in removing adequate adversarial stock or self-kernel stock:

σ(S(l)
L × S

(l)
L ) = σ(S(l−1)

L × S(l−1)
L ) + 2ανν(l) + κν(l),ν(l), (5.50)

σ(S(l)
R × S

(l)
R ) = σ(S(l−1)

R × S(l−1)
R )− 2βνν(l) − κν(l),ν(l). (5.51)

The adversarial scores are easier to update:

σ(S(l)
L × Ck) = σ(S(l−1)

L × Ck) +ωωωk,ν(l), (5.52)

and conversely:

σ(S(l)
R × Ck) = σ(S(l−1)

R × Ck)−ωωωk,ν(l). (5.53)

Thanks to these iterative variables, the iterative computation of all kernel stocks can be achieved
in O(|Tp|(|Tp| + K)) for a specific feature and node samples Tp as summarised in Algorithm 2.
The pre-computing of ωωω takes O(n2) and can be done in advance at the tree level.
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Algorithm 2 Finding the best split according a feature-specified ordering ν at a given leaf T
Require: T the set of samples in the leaf of length |T |
Require: p the index of the leaf
Require: ν an ordering precised by a feature of length |T |
Require: κκκ a kernel of shape n× n
Require: ΛΛΛ the Tmax × n leaf-sample stocks
Require: ωωω the Kmax × n cluster-sample stocks
Require: γγγ the Kmax ×Kmax cluster-cluster stocks
Require: |Ck|,∀k the size of all clusters
Require: k the cluster of the considered leaf

1: function FINDBESTSPLIT(T , ν, κκκ, Λ, ωωω, γγγ, {|Ck|}, k)
2: σ(S(0)

L × S
(0)
L )← 0 ▷ Initialise all iteration variables

3: σ(S(0)
R × S

(0)
R )←

∑︁
xxxi∈T ΛΛΛpi

4: σ(S(0)
L × Ck)← 0, ∀k ≤ Kmax ▷ Arrays of size Kmax

5: σ(S(0)
R × Ck)←

∑︁
xxxi∈T ωωωki, ∀k ≤ Kmax

6: σ(T × T )← σ(S(0)
R × S

(0)
R )

7: K ← |{k s.t. |Ck| ̸= 0}| ▷ Current number of clusters
8: ∆L, BestSplit← 0, ∅ ▷ Best split so far
9: for l← 1 to |T | − 1 do

10: α, β ← 0,0
11: for l′ ← 1 to |T | do
12: if l′ < l then
13: α← α+ κν(l),ν(l′)
14: end if
15: if l′ > l then
16: β ← β + κν(l),ν(l′)
17: end if
18: end for
19: Update σ(S(l)

L ×S
(l)
L ), σ(S(l)

R ×S
(l)
R ), σ(S(l)

L ×Ck) and σ(S(l)
R ×Ck) using equations 5.50,

5.51, 5.52, 5.53.
20: ∆L̃,split← COMPUTESPLITS(σ(S(l)

L ×S
(l)
L ), l, σ(S(l)

R ×S
(l)
R ), |T |−1−l, diag(γγγ),

|Ck|, σ(S(l)
L × Ck), σ(S(l)

R × Ck), σ(T × T ), k, K)
21: if ∆L̃ > ∆L then
22: ∆L← ∆L̃
23: BestSplit← split ∪ (ν(l)) ▷ The split gives the left target, the right target,

the sample on which the split is done
24: end if
25: end for
26: return ∆L, BestSplit
27: end function



98
CHAPTER 5 — From neural networks to trees: explainable discriminative clustering with Kauri

and Douglas

1 from sklearn import datasets
2 from gemclus.tree import Kauri, print_kauri_tree
3 # Load a dataset
4 iris = datasets.load_iris()
5

6 # Train Kauri with a specific kernel function
7 model = Kauri(max_clusters=3, kernel="linear", max_depth=3).

fit(iris["data"])
8

9 # Print the tree using the feature names of the dataset in the
rules

10 print_kauri_tree(model, iris["feature_names"])

Listing 5.1 – An example of Kauri in GemClus

Finally, we can optimise the computation of all splits.

5.4.4 Complete picture

The complete algorithm of Kauri is written in Algorithm 3. We estimate the complexity of
the split search from line 14 to line 25 to O(dn(K + n)) assuming to use a structure with O(n)
insertion complexity and O(1) access complexity.

5.4.5 Implementation in GemClus

Kauri is implemented in GemClus. We give an example of usage in the Listing 5.1.

5.5 Douglas: DNDTs optimised using GEMINI leverage apprised
splits

5.5.1 The Douglas model

The Douglas model seeks the full potential of GEMINI by combining it with differentiable
trees, e.g. deep neural trees (C. Yang, Ojha, Aranoff, Green, & Tavassolian, 2020). Thanks to
this choice of architecture, we can optimise Wasserstein-GEMINI, an objective more efficient
for clustering than the MMD-GEMINI, with respect to the parameters through gradient descent.
Indeed, the MMD-GEMINI only carries information through the means of cluster distributions and
does not encompass all information on the data space whereas the expected Wasserstein distance
between two randomly chosen clusters will take into account the complete distribution. However,
the cost of Douglas is the loss of depth in tree as all rules are produced at the root level.

Deep neural decision trees (DNDTs, Y. Yang et al., 2018) aim at learning individual rules per
feature and then merge those rules to provide a final decision. Formally, each feature f among a
subset of selected features is assigned a vector of T sorted thresholds bf1···T called cut-points that
determines the binnings of the feature. By defining a bias cccf = [0,−bf1 ,−b

f
1 − b

f
2 , · · · ,−b

f
1 − b

f
2 −
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Algorithm 3 Training the complete Kauri tree

Require: D = {xxxi}ni=1 a dataset, xxxi ∈ Rd
Require: Kmax >= 2 the maximum number of allowed clusters
Require: dmax ∈ {1, d} the maximum number of feature to consider per split.
Require: Tmax ≤ n the maximum number of leaves

1: function TRAINKAURI(D, Kmax, dmax, Tmax)
2: κκκ← ⟨φ(D), φ(D)⟩ ▷ Kernel value of samples, n× n
3: Initialise ZZZ and YYY ▷ All samples in one leaf, leaf belongs to only one cluster
4: Initialise the tree structure in Tree.
5: Leaves← List(0) ▷ Only one starting leaf to explore
6: ∆L←∞ ▷ Last gain value
7: BestSplit← ∅ ▷ The best split proposal
8: while Leaves ̸= ∅ ∧ |Tree| ≤ Tmax ∧∆L̄ > 0 do
9: ∆L← 0 ▷ Best split achieved so far

10: ΛΛΛ← ZZZκκκ ▷ Compute σ(Tp × {xxxj})
11: ωωω← YYYΛΛΛ ▷ Compute σ(Ck × {xxxj})
12: γγγ ← ωωωZZZ⊤YYY ⊤ ▷ Compute σ(Ck × Ck′)
13: |Ck| ← YYYZZZ111n ▷ Sizes of clusters
14: for p ∈ Leaves do
15: Tp← {xxxi|ZZZji == 1} ▷ Find the indices of leaf p
16: k← argmaxk′YYY k′,p ▷ The current cluster of leaf p
17: for f ← 1 to dmax do
18: ν ← Argsort({xxxif |xxxi ∈ Tp})
19: ∆L̃,split← FINDBESTSPLIT(T , j, ν, κκκ, Λ, ωωω, γγγ, |Ck|, k)
20: if ∆L̃ > ∆L then
21: ∆L← ∆L̃
22: BestSplit← split ∪ (p, f) ▷ Add node and feature information to

the best split
23: end if
24: end for
25: end for
26: if ∆L > 0 then
27: Remove the best leaf from the list Leaves and add the children of the split in

Leaves if they satisfy structural constraints.
28: Update Tree using BestSplit
29: Update ZZZ and YYY .
30: end if
31: end while
32: return Tree
33: end function
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1 from sklearn import datasets
2 from gemclus.tree import Douglas
3 # Load a dataset
4 X, _ = datasets.load_iris(return_X_y=True)
5

6 # Train Douglas with OvA Wasserstein-GEMINI
7 y_pred =Douglas(n_clusters=3, gemini="wasserstein_ova",

max_iter=100, n_cuts=1)

Listing 5.2 – An example of Douglas in GemClus

· · · − bfT ] and a vector aaaf = [0, 1, · · · , T ], Y. Yang et al. (2018) write a feature-wise probability
distribution with:

paaaf ,cccf (β|xxxf ) = SoftMax

(︄
aaafxxxf + cccf

τ

)︄
, (5.54)

named soft-binning where τ is a temperature hyperparameter set to 0.1. After each individual
soft binning is applied, all combinations of features are computed using a Kronecker product.
For example, if the d features are all separated in T + 1 binnings, the final decision will contain
(T + 1)d entries per sample. To produce a decision from this entry, a matrix multiplication with
some parametersWWW is applied. The global model can be described as:

pθ(y = k|xxx) =
T∑︂

t1=1

T∑︂
t2=1
· · ·

T∑︂
td=1

Wk,t1+dt2+···+dd−1td

d∏︂
f=1

paaaf ,cccf (β = tf |xxxf ). (5.55)

This model is therefore differentiable and can be trained by gradient descent. However, DNDTs
are hardly scalable in terms of features because of the Kronecker product between all soft binnings.

For interpretation purposes, we choose to exploit active cut points as proposed by Y. Yang et al.
(2018). This is the number of features for which the respective cut points parameters do not lie
outside of the feature boundaries in the dataset. For example, if for a single cut value (two bins)
the bias bf1 is lower or greater than all samples on its respective feature f , then this cut point is not
active and does not participate in the decision because all samples are in the same bin.

5.5.2 Implementation in GemClus

Douglas is implemented in GemClus. We give an example of usage in the Listing 5.2.

5.6 Experiments

We start by proposing a summary of the advantages and limitations of both tree algorithms in
Table 5.1. Overall, Kauri is recommended for small-scale datasets whereas Douglas can be used
with large datasets on condition that there are few features.

We tried to cover datasets used for benchmarking by Laber et al. (2023), Frost, Moshkovitz, et
Rashtchian (2020) and those from the Fundamental Clustering Data Suite (Thrun & Stier, 2021) as
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Table 5.1 – Advantages and disadvantages of the Kauri and Douglas algorithms for unsupervised
tree construction. The number of samples is noted n and the number of features d.

Splits Scalable with n Scalable with d Hyperparameters

Kauri Binary No Yes Kmax, Tmax
Douglas k-ary Yes with minibatches No Number of cut-points T

Table 5.2 – Summary of the datasets used in the experiments. *The number of features may be
slightly larger than the actual number of variables as discrete variables were one-hot encoded.

Name Samples Features Classes

Atom 800 3 2
Avila 20,867 10 12

Breast Cancer 683 9 2
Car evaluation* 1,728 21 4

Chainlink 1,000 3 2
US Congress 435 16 2

Engytime 4,096 2 2
Digits 1,797 64 10

Haberman Survival 306 3 2
Hepta 212 3 7

Iris 150 4 3
Lsun 404 3 3

Mice protein 552 77 8
Target 770 2 6
Tetra 400 3 4

Twodiamonds 800 2 2
Vowel 990 10 2
Wine 178 13 3

Wingnut 1,016 2 2

did Bertsimas et al. (2021). We will assess the general clustering performances and explanation
power of the models before showing qualitative examples.

We used minmax scaling for all datasets in order to be comparable with the ICOT (Bertsimas
et al., 2021) method which assumes features in the [0,1] range. All categorical variables were
one-hot-encoded, except for the US congressional votes dataset, where we encoded specifically
the answer yes as 1, the no as -1 and the unknown votes as 0 as we did in Section 4.4.5. In other
datasets, we tossed away all samples that presented missing values for the sake of simplicity.

We used 4 different metrics for assessing the performances: the adjusted rand index (ARI,
Hubert & Arabie, 1985) and the kernel K-means score normalised by the reference score of the
sole kernel K-means algorithm for the clustering quality, then the weighted average depth (WAD,
Laber et al., 2023) or weighted average explanation size (WAES, Laber et al., 2023) for the tree
structure. The WAD score corresponds to the mean depth where a decision is returned for samples,
i.e. for the set of leaves {Tp} we have:
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WAD({Tp}Tmax
p=1 ) = 1

n

Tmax∑︂
p=1

Depth(Tp)× |Tp| . (5.56)

In the case of the WAES, we do not consider the depth of the nodeas weighting factor but the
number of non-redundant rules. For instance, if the path leading to a leaf specifics xxxi1 ≤ τp11,
xxxi2 ≤ τp22 and xxxi1 ≤ τp31, then only two rules are sufficient to cluster xxxi because the first and third
rules inspect the same feature.

Table 5.3 – ARI scores std (greater is better) after 30 runs on random subsamples of 80% of the
input datasets. Entries marked X were not run because of excessive runtime due to large numbers
of features. All models are limited to finding as many leaves as clusters.

Dataset Kauri K-means+DT ICOT IMM ExShallow RDM

Atom 0.190.03 0.170.03 0.170.05 0.200.04 0.190.03 0.170.01
Avila 0.020.02 0.040.02 X 0.050.03 0.040.02 0.050.03

Cancer 0.740.01 0.730.01 0.780.05 0.730.02 0.730.01 0.650.02
Car 0.040.06 0.070.08 X 0.060.06 0.060.06 0.070.05

Chainlink 0.100.01 0.090.02 0.080.04 0.100.01 0.090.01 0.080.01
Congress 0.480.02 0.470.04 0.490.03 0.470.04 0.480.02 0.390.02

Digits 0.400.04 0.420.03 X 0.360.04 0.430.02 0.230.04
Engytime 0.510.01 0.510.01 X 0.500.01 0.490.01 0.510.01
Haberman 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00

Hepta 1.000.01 1.000.00 0.790.16 1.000.00 1.000.00 0.930.02
Iris 0.790.09 0.730.04 0.570.02 0.740.06 0.780.05 0.510.03

Lsun 0.890.02 0.910.04 0.780.20 0.860.04 0.900.05 0.580.10
Mice 0.230.02 0.200.03 X 0.170.03 0.210.03 0.120.03
Target 0.640.01 0.560.05 X 0.630.02 0.640.02 0.280.02
Tetra 0.940.07 1.000.00 1.000.00 1.000.00 1.000.00 0.610.03

Twodiamonds 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 0.980.01
Vowel 0.020.02 0.020.02 X 0.030.03 0.040.06 0.040.03
Wine 0.670.08 0.730.04 0.480.16 0.750.03 0.750.04 0.290.09

Wingnut 0.150.01 0.150.01 0.460.38 0.150.01 0.150.01 0.130.01

We compare the performances of Kauri against recent methods for unsupervised tree construc-
tions, namely ExShallow (Laber et al., 2023), RDM (Makarychev & Shan, 2022), IMM (Moshkovitz
et al., 2020), ExKMC (Frost et al., 2020) and ICOT (Bertsimas et al., 2021) for which we found
available packages or implementations. These methods are twofold and start by fitting K-means
centroids to the data. Then, they learn a tree to explain the obtained clusters. The differences in all
methods lie in attempts to limit the depth of the tree for the sake of simple explanations as deep
trees tend to lose expressivity in explanation. Specifically in the case of ICOT, the K-means only
serves as a warm-start initialisation for a greedy tree that is then refined through a mixed integer
optimisation problem. We also choose to provide a combination of kernel-K-means and a standard
CART decision tree classifier as a baseline for all algorithms, noted K-means+DT. To the best of
our knowledge, only ExKMC (Frost et al., 2020) was surprisingly compared to such baseline, and
Bertsimas et al. (2021) compared their model to K-means.
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Due to the nature of the Douglas model, we preferred to keep the evaluation of this model in a
separate subsection on the same datasets.

5.6.1 Performances with as many leaves as clusters

Table 5.4 – Relative K-means score std (lower is better) after 30 runs on subsamples of 80% of the
input datasets divided by the K-means reference score (=1.0). All models are limited to finding as
many leaves as clusters.

Dataset Kauri K-means+DT ICOT IMM ExShallow RDM

Atom 1.030.02 1.040.02 1.050.03 1.020.02 1.040.02 1.030.02
Avila 1.450.58 3.331.16 X 1.490.66 1.520.71 1.990.68

Cancer 1.140.03 1.140.03 1.090.04 1.140.03 1.140.03 1.370.04
Car 1.000.00 1.000.00 X 1.000.00 1.000.00 1.020.03

Chainlink 1.020.01 1.020.01 1.040.02 1.020.01 1.020.01 1.030.01
Congress 1.090.01 1.090.02 1.080.01 1.090.01 1.090.02 1.190.02

Digits 1.210.01 1.240.02 X 1.250.02 1.200.01 1.380.04
Engytime 1.140.04 1.150.05 X 1.130.04 1.140.06 1.150.05
Haberman 1.100.07 1.080.04 1.090.04 1.100.07 1.080.04 1.100.06

Hepta 1.090.09 1.080.03 3.121.94 1.070.04 1.080.03 1.360.09
Iris 1.180.06 1.190.05 1.920.10 1.170.05 1.160.04 1.460.10

Lsun 1.090.04 1.090.04 1.140.12 1.070.03 1.070.04 1.660.09
Mice 1.080.02 1.110.04 X 1.140.05 1.080.02 1.410.06
Target 1.350.05 1.580.13 X 1.190.08 1.190.03 1.830.10
Tetra 1.120.15 1.040.02 1.040.01 1.040.02 1.050.02 1.530.06

Twodiamonds 1.050.02 1.040.02 1.040.02 1.050.02 1.040.02 1.040.02
Vowel 1.070.01 1.080.01 X 1.090.02 1.070.01 1.110.01
Wine 1.150.05 1.150.08 1.370.17 1.110.04 1.110.04 1.540.10

Wingnut 1.090.02 1.090.01 1.140.06 1.090.02 1.090.02 1.090.01

As some related works focus on trees with one leaf per cluster, we limit the Kauri tree and the
K-means+DT to as many leaves as clusters. However, we could not limit the number of leaves for
ICOT, so we restrained the depth to 5 levels. Consequently, the scores of ICOT may outperform
other methods due to a freer architecture.

Since some algorithms are deterministic in nature, we introduce stochasticity in results by
selecting 80% of the training data over 30 runs. We report the ARI for all algorithms in Table 5.3,
the normalised K-means score in Table 5.4 and the WAD in Table 5.5.

We observe in Table 5.3 that Kauri often performs on par with related works. In general, the
performances of all methods are quite similar regarding the ARI. Notably, the ARI of Kauri is often
close to the K-means+DT baseline, except for the wine dataset. We believe that the differences
of scores are in general negligible as they are covered by the standard deviations throughout the
multiple subsets of data. However, for very different scores like the ARI on the Target dataset,
we believe that this difference can be explained by the order of the choice of splits in the trees
owing to the presence of the K-means objective among methods or just the usage of labels. We
did not manage to run ICOT on datasets with a large number of features or clusters. This joins
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Table 5.5 – WAD scores std (lower is better) after 30 runs on random subsamples of 80% of the
input datasets. All models are limited to finding as many leaves as clusters.

Dataset Kauri K-means+DT IMM ExShallow RDM

Atom 2.000.00 2.000.00 2.000.00 2.000.00 2.000.00
Avila 5.370.13 5.120.17 8.160.72 5.740.55 7.820.69

Cancer 2.000.00 2.000.00 2.000.00 2.000.00 2.000.00
Car 3.000.00 3.060.06 3.040.05 3.040.06 3.000.12

Chainlink 2.000.00 2.000.00 2.000.00 2.000.00 2.000.00
Congress 2.000.00 2.000.00 2.000.00 2.000.00 2.000.00

Digits 4.470.08 4.600.21 6.550.36 4.880.21 4.480.17
Engytime 2.000.00 2.000.00 2.000.00 2.000.00 2.000.00
Haberman 2.000.00 2.000.00 2.000.00 2.000.00 2.000.00

Hepta 4.800.06 4.750.05 4.880.07 4.770.06 4.910.06
Iris 2.670.03 2.670.02 2.670.01 2.670.02 2.680.02

Lsun 2.480.01 2.480.02 2.710.11 2.580.13 2.590.09
Mice 4.030.04 4.140.10 5.610.59 4.160.11 4.380.31
Target 4.200.02 3.740.21 4.300.07 4.300.02 4.030.02
Tetra 3.230.08 3.250.02 3.250.02 3.260.02 3.140.03

Twodiamonds 2.000.00 2.000.00 2.000.00 2.000.00 2.000.00
Vowel 2.000.00 2.000.00 2.000.00 2.000.00 2.000.00
Wine 2.620.05 2.650.04 2.700.02 2.700.02 2.630.10

Wingnut 2.000.00 2.000.00 2.000.00 2.000.00 2.000.00

the observations of Bertsimas et al. (2021) who reported a runtime of more than an hour for the
Engytime dataset. We observe similarly in Table 5.4 that despite the strong performances of
ExShallow on most of the datasets, both Kauri and the K-means+DT baseline do not fall short
behind in scores, except on the Target dataset. Finally, we observe good performances in Table 5.5
regarding the depth of the nodes at which the cluster decisions are returned. We purposefully
removed in Table 5.5 the Atom, Cancer and Chainlink datasets because they are binary, which
implies that the WAD is always equal to 2 when the model is constrained to 2 leaves. Moreover, we
did not manage to obtain the tree structure underlying in ICOT to compute the WAD.

5.6.2 Performances with more leaves than clusters

We run here the exact same benchmark as proposed in section 5.6.1, except we seek to compare
Kauri with the ExKMC method. To that end, all trees are now limited to 4 times more leaves than
clusters following the result of Frost et al. (2020). Contrary to section 5.6.1, the excessive number
of leaves will necessarily imply that multiple leaves might explain a single cluster. We chose then
to measure the WAES because we want to emphasize the complexity of the explanation of a cluster
rather than the depth of trees. We report the ARI in Table 5.6 and the WAES in Table 5.7.

We observe in Table 5.6 that Kauri often performs on par with ExKMC and the baseline
regarding the clustering performances. However, we find that our WAES scores are steadily lower
with the baseline compared to ExKMC on most datasets in Table 5.7. In this context, we believe that
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Table 5.6 – ARI scores std (greater is better) after 30 runs on random subsamples of 80% of the
input datasets. All models are limited to finding 4 times more leaves than clusters.

Method Kauri K-means+DT ExKMC

Atom 0.180.03 0.170.02 0.170.02
Avila 0.030.03 0.040.02 0.040.02

Cancer 0.860.01 0.840.02 0.870.01
Car 0.070.06 0.050.05 0.060.06

Chainlink 0.100.01 0.090.01 0.110.01
Congress 0.500.05 0.570.04 0.530.03

Digits 0.550.03 0.580.02 0.580.02
Engytime 0.730.02 0.800.02 0.720.04
Haberman -0.000.00 -0.000.00 -0.000.00

Hepta 1.000.00 1.000.00 1.000.00
Iris 0.720.03 0.720.03 0.720.04

Lsun 0.880.03 0.880.03 0.870.03
Mice 0.220.01 0.200.02 0.200.02
Target 0.630.02 0.630.01 0.640.02
Tetra 1.000.00 1.000.00 1.000.00

Twodiamonds 1.000.00 1.000.00 1.000.00
Vowel 0.090.04 0.120.04 0.150.04
Wine 0.850.04 0.870.04 0.850.04

Wingnut 0.150.01 0.410.02 0.300.05
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Figure 5.5 – Explanation scoring with WAES (lower is better) as the maximal number of leaves
increases on the mice protein and digits datasets for Kauri (green), K-means+Tree (blue) and
ExKMC (red).



106
CHAPTER 5 — From neural networks to trees: explainable discriminative clustering with Kauri

and Douglas

Table 5.7 – WAES scores std (lower is better) after 30 runs on random subsamples of 80% of the
input datasets. All models are limited to finding 4 times more leaves than clusters.

Dataset Kauri K-means+DT ExKMC

Atom 2.370.41 2.890.44 3.180.72
Avila 5.760.40 6.250.45 7.870.78

Cancer 3.450.16 3.880.13 4.020.12
Car 3.000.00 3.020.05 3.040.05

Chainlink 2.590.32 2.780.31 3.260.39
Congress 2.630.37 3.400.28 3.530.32

Digits 6.590.16 6.590.15 8.590.35
Engytime 3.030.16 3.140.05 3.360.26
Haberman 2.000.00 2.060.13 2.150.35

Hepta 4.390.05 4.370.05 4.460.05
Iris 3.320.35 3.480.20 3.650.35

Lsun 2.820.27 2.860.27 3.390.46
Mice 6.540.29 6.390.31 8.000.45
Target 4.170.04 4.220.05 4.180.07
Tetra 3.420.16 3.250.02 3.250.02

Twodiamonds 2.000.00 2.000.00 2.000.00
Vowel 4.060.33 3.850.40 4.510.41
Wine 3.680.39 3.860.30 4.360.52

Wingnut 2.000.00 3.170.02 3.300.20
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(a) Variations for growing angle, num-
ber of samples fixed to 300.
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Figure 5.6 – Variations of WAES scores for aligned isotropic 2d Gaussian distributions separated
by Kauri or K-means+Tree as the angle of the alignment (red line in 5.6c) with the x-axis (blue line
in 5.6c) grows or the number of samples increases over 30 runs. The distance between the means is√

2 and the scale matrices are 0.2III2.
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Figure 5.7 – PCA of the wine dataset with samples coloured according to clusters found by Kauri
or K-means+DT with a χ2 kernel.

the difference between the baseline and Kauri is mainly due to the contrast between the respective
optimisation of a Gini impurity on clustering labels and the greedy optimisation of kernel K-means.

To further investigate some differences, we observe in Fig. 5.5 the differences in WAES scores
between K-means+Tree, Kauri and ExKMC (Frost et al., 2020). We observe that overall, for a fixed
amount of leaves to use, we obtained explanations with lower WAES scores than ExKMC while
maintaining an ARI that is close to K-means+Tree.

To highlight some differences in behaviour between Kauri and K-means + DT, we show in
Figure 5.6 how the angles of the decision boundary and the number of samples in the dataset can
change the performances in seemingly identical distributions. Indeed, K-means easily builds linear
boundaries that are not axis-aligned, hence as the boundaries become less and less aligned with
the axes, the decision trees struggle to maintain a low number of leaves to mimic these "diagonal"
boundaries. This effect gets worse if the number of samples to separate is high on this decision
boundary. However, as soon as the decision boundaries are axis-aligned, the decision tree becomes
again a fierce competitor. Both trees have unlimited leaves and stop only when no gain is longer
possible.

5.6.3 Varying the kernel

Our comparisons have been done so far with related works using the linear kernel in kernel
K-means. However, using a different kernel leads to the absence of a definition of centroids in
the Euclidean space where the data lie. Consequently, previously compared methods are not
compatible with such a setup because they require an explicit centroid, and we are only left with
the K-means+DT baseline as a competitor. We explore 4 different kernels with default parameters
from scikit-learn: χ2, additive χ2, Laplacian and RBF kernels with Table 5.8 for the ARI
and Table 5.9 for the normalised K-means score.

We generally observe equal or stronger ARI scores for the Kauri algorithm in Table 5.8. The
same observation goes for the K-means score in Table 5.9, especially for the Laplacian kernel in
both tables. We note that some kernel K-means scores are below 1 after normalisation. This is due
to the phenomenon of empty clusters that arises in the kernel K-means algorithm. Consequently,
the basis on which the decision tree is learnt does not provide enough clusters, thus lowering the
ARI and increasing the kernel K-means score. Similarly, the reference kernel K-means score used
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Figure 5.8 – Number of non-empty clusters for 100 runs of kernel K-means with an additive χ2 or
polynomial kernel. The algorithm had to find the same number of clusters as classes per dataset.

for normalisation suffered from the same problem. Empirically, we observed this behaviour for 2
implementations of the kernel K-means algorithm. ∗

As a simple example, we ran 100 kernel K-means models with an additive χ2 kernel or a
polynomial kernel for the Mice protein dataset and the Target dataset. From Figure 5.8, we observe
that for a relatively small number of clusters, the kernel K-means may converge to several empty
clusters, with the worst effect from the polynomial kernel in this example. To complete Figure 5.8,
the number of clusters found with the best kernel K-means score was 8 for the Mice protein dataset
and 6 for the Target dataset. In contrast, datasets with only 2 clusters to find often converged to the
good number of clusters, making scores comparable.

This shows that with the end-to-end construction of the Kauri tree, we do not suffer from
dependence to the basis K-means algorithm, and manage to get the correct user-desired number of
clusters.

In the case of the presented datasets in Table 5.8 where kernel K-means managed to converge
to the desired number of clusters, we think that the improved performances by Kauri come from
its greedy nature. The greedy optimisation leads to a local minimum where no branch can be
further found, even with fewer leaves than the maximum specified. Consequently, the obtained tree
remains in a simpler state than a decision tree that would overfit the labels from kernel K-means.
We provide a simple visualisation through PCA and clustering of the wine dataset in Figure 5.7.

5.6.4 Pure numpy Douglas performances

We present here in the tables 5.10 and 5.11 respectively the ARI and normalised K-means score
of our two implementations of the Douglas algorithm. We first observe that in most datasets, the
performances of both algorithms are similar. We note that Douglas finds clusters for which the K-
means score can exceed the score of a K-means algorithm even for the MMD objective, e.g. 10 times
more on the Hepta dataset or almost 4 times more on the Target dataset. We believe that this is due

∗. https://gist.github.com/mblondel/6230787 and https://tslearn.readthedocs.io/
en/latest/gen_modules/clustering/tslearn.clustering.KernelK-means.html

https://gist.github.com/mblondel/6230787
https://tslearn.readthedocs.io/en/latest/gen_modules/clustering/tslearn.clustering.KernelK-means.html
https://tslearn.readthedocs.io/en/latest/gen_modules/clustering/tslearn.clustering.KernelK-means.html
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Table 5.10 – ARI scores std (greater is better) after 30 runs on random subsamples of 80% of the
input datasets. We present here the results on two different Douglas implementations with OvO
GEMINIs.

Method Numpy version Torch version

GEMINI MMD Wasserstein MMD Wasserstein

Atom 0.080.06 0.210.08 0.060.07 0.050.06
Avila 0.020.03 0.010.02 -0.010.01 -0.000.02

Cancer 0.810.05 0.800.06 0.830.02 0.820.02
Chainlink 0.100.06 0.120.06 0.100.05 0.080.04
Congress 0.500.11 0.440.12 0.560.04 0.560.04
Engytime 0.330.17 0.440.21 0.430.13 0.400.13
Haberman 0.020.06 0.010.05 -0.000.01 -0.000.01

Hepta 0.250.12 0.250.10 0.120.09 0.160.11
Iris 0.510.09 0.460.12 0.300.24 0.370.23

Lsun 0.510.24 0.550.21 0.320.23 0.450.17
Target 0.060.06 0.080.11 0.110.09 0.150.08
Tetra 0.480.17 0.440.16 0.230.10 0.270.15

Twodiamonds 0.670.48 0.770.42 0.700.45 0.820.37
Vowel 0.020.03 0.010.02 0.040.04 0.040.04
Wine 0.430.15 0.420.15 0.360.11 0.330.10

Wingnut 0.390.36 0.560.41 0.280.28 0.280.28

Table 5.11 – K-means scores std (lower is better) after 30 runs on random subsamples of 80% of the
input datasets. We present here the results on two different Douglas implementations with OvO
GEMINIs.

Method Numpy version Torch version

GEMINI MMD Wasserstein MMD Wasserstein

Atom 1.160.06 1.140.07 1.110.05 1.110.05
Avila 3.541.14 3.621.24 3.711.07 3.351.06

Cancer 1.120.07 1.150.08 1.040.02 1.040.03
Chainlink 1.060.05 1.070.05 1.070.07 1.060.05
Congress 1.110.04 1.170.07 1.050.02 1.050.01
Engytime 1.220.09 1.180.09 1.150.06 1.190.09
Haberman 1.380.26 1.270.23 1.290.19 1.300.21

Hepta 10.992.70 10.832.25 13.671.70 13.252.17
Iris 2.030.76 2.431.04 3.641.70 3.211.76

Lsun 1.890.42 1.800.42 2.270.50 2.120.20
Target 3.810.70 3.860.67 3.970.48 4.020.47
Tetra 2.570.63 2.660.49 3.170.33 3.050.48

Twodiamonds 1.260.31 1.190.26 1.230.28 1.150.23
Vowel 1.090.02 1.090.02 1.050.02 1.060.02
Wine 1.370.17 1.390.14 1.460.14 1.450.11

Wingnut 1.100.04 1.130.05 1.090.04 1.080.03

to the nature of the algorithm which can provide non-linear boundaries through the combinations
of multiple soft-binnings. In general, except for the Congress dataset, the performances of the
Douglas model are worst in ARI than the binary decision trees from Table 5.3.
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T1 [C1]
∆L⋆

T2 [C2]
∆L⇄

T4 [C1]
∆L⇄

T6 [C2]

MX: no

T7 [C1]

MX: yes, ?

NC: no

T5 [C2]

NC: yes,?

SA: no, ?

T3 [C1]

SA: yes

Figure 5.9 – The unsupervised Kauri tree for 2 clusters on the Congressional votes dataset. SA
stands for the El Salvador Aid vote, NC for the Nicaraguan Contras vote and MX for the MX-missile
vote. The question mark means that the voter did not vote or was missing. Nodes contain their
name, the associated cluster to which they assign samples and the type of split that occured during
learning.

5.6.5 A qualitative example of the obtained decision tree

In this example, we focus on the congressional votes dataset that details 16 key votes from
the 435 members of the US Congress in 1985. The targets of the dataset are the Republican or
Democrat affiliations of the voters. We preprocessed the dataset by binarising the vote outcome
with −1 for “no" and 1 for “yes". Missing values due to the absence of votes were converted to 0
which is midway between yes and no and hence does not influence the linear kernel by favouring
one type of answer. The Kauri tree that was fitted on this dataset is described in Figure 5.9. The
obtained clusters translate very well the Republican and Democrat opposition through arming and
international assistance, with one cluster containing up to 73% of Republicans and the second one
adding up to 96% of Democrats. The ARI is 0.47 for this tree which corresponds to an unsupervised
accuracy of 84%.

Upon running 30 times the Douglas tree on this dataset, we measured the number of active cut
points. The most selected active cut points were on the exact same features as the ones selected
by Kauri in Figure 5.9: the aid to Nicaraguan Contras (selected 93% of time), the El Salvador aid
(83%) and the MX missile votes (63%). The models had an average ARI of 0.53.

5.7 Conclusion

We introduced a framework for unsupervised end-to-end learning of trees. By combining
tree structures with GEMINI, we derived two novel examples: Kauri and Douglas. The former
maximises a kernel-K-means-like objective to build iteratively unsupervised splits through the
affectation of tree leaves to existing or new clusters while the latter exploits the combined potential
of differential trees and the Wasserstein distance. Kauri can be privileged for small-scale datasets
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whereas Douglas is better suited for long datasets on condition of few features. Overall, both
methods achieve good performances in clustering with Kauri being on par with related works
for unsupervised trees using shallower trees while tackling the empty cluster behaviour of kernel
K-means owing to its greedy nature. The strong advantage of these methods is building an
interpretable by-nature clustering instead of seeking to explain another clustering output from a
different algorithm. Finally, we think that the combination of K-means and a decision tree remains
a strong baseline that should be provided in works on unsupervised tree works.

These models complete the GEMINI framework that we can now apply on the PROGRESSA
dataset.
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Important disclaimer: A part of this chapter’s contents and figures credit go to Marie-Ange
Fleury, PhD Student in collaboration with Nancy Côté, PhD, and Philippe Pibarot, DVM PhD from
the Quebec Heart and Lung Institute, or were jointly created.

6.1 Introduction

Aortic stenosis (AS) is a chronic progressive disease and is the most prevalent valvular heart
disease in high income countries (Coffey et al., 2021 ; Iung et al., 2019 ; Lindman et al., 2016).
In North America, 3 million people are estimated to be affected by AS, and its prevalence is
expected to increase substantially with the aging of the population and its ensuing health and
economic burden is expected to do the same (Coffey et al., 2021 ; Roth et al., 2020). To this
day, no effective pharmacological treatment to prevent the development and/or progression of AS
exists. Surgical aortic valve replacement (SAVR) and transcatheter aortic valve implantation (TAVI)
remain the only therapeutic options for patients with severe AS (Beyersdorf et al., 2021 ; Otto et
al., 2021). Echocardiography is the primary imaging modality used for diagnosing and assessing
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hemodynamic severity and progression rate of AS, which ultimately determine optimal timing
for intervention (Beyersdorf et al., 2021 ; Otto et al., 2021). To further adjust the pharmacothera-
peutic profile of patients ahead of such interventions, we hypothesise that different phenogroups
exist amongst AS patients. These phenotypes could potentially be non-mutually exclusive and
determining the specific physiopathological pathways of AS are more present in specific patients.
Knowing this could help improve patient-specific pharmacological treatment for AS. Machine and
deep learning have been previously used for various cardiology tasks, including risk prediction
and decision-making optimisation (Ahmad et al., 2018 ; Feeny et al., 2019 ; Motwani et al., 2017 ;
Tokodi et al., 2020).

Recently, several studies reported the applicability and accuracy of machine and deep learning-
based algorithms to detect AS in various settings (Chang et al., 2021 ; Cohen-Shelly et al., 2021 ;
Hernandez-Suarez et al., 2019 ; Kwon et al., 2020 ; Wang et al., 2020). Furthermore, the usefulness
of a novel ML pipeline that integrates a few echocardiographic parameters to improve risk strati-
fication of AS was previously demonstrated (Sengupta et al., 2021). Approaches for identifying
phenogroups, i.e. the clustering task, have already been applied in aortic stenosis (Bohbot et al.,
2022 ; Kwak et al., 2020 ; Lachmann et al., 2021 ; Sengupta et al., 2021). However, these related
works often focus on the identification of clusters for which the defining features are the severity
and/or survival rate of patients rather than clinical or echocardiographic variables. This is interesting
for determining populations with strong risk factors, but is different from identifying causes of AS
that could be targeted by future therapies.

Based on clinical experience, we started from the hypothesis of invariant phenogroups over time.
We hypothesised that each patient belong to one or several specific phenogroups for which only
the severity will increase over time. Therefore, we developed a complete pipeline for clustering
without parametric assumptions on the data distribution and selecting the most stable models
through multiple visits of patients. By applying this pipeline to different sources of data for the
same patients, we created different phenogroups, which are not mutually exclusive throughout all
patients. From previous studies (Capoulade, Clavel, et al., 2012 ; Fatima et al., 2019 ; Gardezi et
al., 2018), our medical collaborators hypothesised that the main phenogroups of AS will be lipidic,
inflammatory, thrombotic (Sellers et al., 2019), fibrotic (Simard et al., 2017) and calcific (Lindman
et al., 2016).

Preliminary work: Before our search for phenogroups of aortic stenosis on the PROGRESSA
dataset, we performed supervised analyses on this dataset (Mrs. Sanabria et al., under review).
In this work, we focused on the forecast of the AS progression rate for patients on a 2-year and
5-year window. To that end, recurrent neural networks (RNNs) were trained to predict the presence
of any clinical outcome, i.e. aortic valve intervention, all-cause mortality or AS hemodynamic
progression, in a window of n years to come. The final model achieved an average AUC of 86% for
the annual follow-up visit of each patient, thus being superior to non-sequential machine learning
approaches, which reached an AUC of 75%. Overall, this provided a good example of how deep
learning approaches could predict disease progression and clinical outcomes in patients with mild
to moderate AS.
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6.2 Known phenogroups

In the last decade, other works focused on identifying phenogroups for aortic stenosis using
clustering methods. These methods often tried to seek mutually exclusive phenotypes qualifying
the severity of aortic stenosis (Sengupta et al., 2021) or qualifying the survival rates of different
populations (Kwak et al., 2020). Overall, these methods often accessed a population of patients
of size comparable to PROGRESSA with few hundreds, yet performed feature selection and
clustering in different flavours. Indeed, other aortic stenosis phenotyping works rather started with
variable selection using PCA as a variable importance criterion and redundant variables removal
according to Pearson correlation (Kwak et al., 2020 ; Lachmann et al., 2021). This implies that the
selection process is independent of the clustering purpose. The number of initial variables before
selection is lower than in our study: from 5 (Bohbot et al., 2022) to 60 (Bohbot et al., 2022). The
clustering algorithms then ranged from ward agglomerative clustering (Lachmann et al., 2021) to
model-based clustering using mclust (Scrucca, Fop, Murphy, & Raftery, 2016) in R (Kwak et al.,
2020) passing through topological data analysis (Bohbot et al., 2022). The found clusters often
highlighted phenotypes with severe AS and low survival rate (Kwak et al., 2020 ; Sengupta et al.,
2021), present extensive disease characteristics such as high New-York Heart Association (NYHA)
score and impaired cardiac functions (Lachmann et al., 2021), potentially severe AS with one or
several comorbidities especially among the older population (Bohbot et al., 2022 ; Kwak et al.,
2020), and finally groups with younger population still through healthy AS.

6.3 Methods

We constructed using GEMINI a full pipeline for finding potentially stable-over-time clusters
along variable selection. A graphical summary of the pipeline is provided in Figure 6.1.

6.3.1 PROGRESSA modalities and datasets

The PROGRESSA study is a cohort of 351 patients with at least mild AS, i.e. peak aortic
jet velocity ≥ 2 m/s. These patients underwent yearly follow-up visits, thus accounting for a
different number of visits per patient depending on their clinical outcome. Patients were excluded
if they had symptomatic AS, moderate or greater aortic regurgitation, mitral valve disease (stenosis
or regurgitation), left ventricular ejection fraction (LVEF) ≤ 50%, and if they were pregnant or
lactating.

The PROGRESSA study comprises three different sources of data: a clinicopathological
database, a proteomics database, and a radiomics database.

The clinicopathological database consists of clinical and metabolic data. These data include
age, sex, body surface area (BSA), body mass index (BMI) and functional status, i.e. the functional
classification of the New York Heart Association (NYHA) at the time of the index echocardiography.
This database also includes clinical comorbodities such as hypertension, diabetes mellitus, history
of smoking and other clinical risk factors. Hematologic profiles are also dressed for each patient
using fasting blood samples. The variables in the clinicopathological database are continuous and
categorical.

The proteomics database contains the expression levels of 100 selected proteins, most of which
are related to the hematologic profile, e.g. alipoproteins, clusterin, or coagulation factors. As for
the radiomics modality, this thesis Chapter is the first mention ever of the proteomics modality in
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Figure 6.2 – In the PROGRESSA dataset, 3 major modalities coexist. However, each of this
modality spans over a different set of visits per patient. Moreover, the proteomics database is only
available for a subset of patients. P stands for a patient, V for one of his/her visit and gray areas
represent the presence of data. In the radiomics database, the files are videos or pictures.

PROGRESSA. This portion of the dataset was acquired thanks to collaborators outside of the AS
project, and we consequently have no background on the choice of technology and methodology
for obtaining these few proteins.

Finally, the radiomics modality consists of comprehensive Doppler-echocardiography conducted
by the same team of sonographers and cardiologists. The images were analysed by experienced
readers. From this analysis, echocardiographic variables were extracted and incorporated into the
clinicopathological database, including stroke volume, left ventricular outflow tract, the velocity
time integral, the mean pressure gradient and the aortic valve area.

Each patient from the dataset is associated with multiple visits: an initial visit and one or
more follow-ups. However, not all visits display the same data. The clinicopathological database
contains information for all patients throughout all visits, up to some missing values. Proteomics
only concerns approximately half of the patients and only the first four visits. Finally, the radiomics
modality of the PROGRESSA study only concerns the first visits of each patient. From few to
many videos can be associated to each patient. We provide a graphical summary of the multimodal
merges in Fig. 6.2.



122 CHAPTER 6 — A GEMINI pipeline for the identification of phenogroups of aortic stenosis

Table 6.1 – Dimensions of the considered datasets extracted from the PROGRESSA study. The
number of features exceeds the number of variables because of the one-hot encoding of the
categorical variables.

Database Number of samples Number of variables Number of features

Clinicopathological 351 87 95
Proteomics 141 87 87

Fused modalities 141 179 191

As our goal is to find stable clusters of phenogroups per patient, we divided all datasets into two
subsets: the subset of the first patients’ visits DF and the subset of subsequent visits DR. The set
of subsequent visits was used to assess the stability of the clusters found using the first visits only:
we favour models that were able to put a patient in the same cluster regardless of its visit number
following the constraint of time invariance. As mentioned above, the proteomics dataset limits the
number of visits. As all patients come a variable number of times, those undergoing proteomics
study have an exact count of 4 proteomics visits which correspond to the first, second, third and
fourth visit of the clinicopathological database. Consequently, the set of patients with proteomics
data is smaller than the global set of all patients.

We could not use the radiomics modality because we do not have access to videos and pictures
for other visits than the first one and therefore could not assess if the clusters were stable over time
using subsequent visits. With two modalities left, we considered 3 different subsets that we will
call indifferently "the dataset" in the remainder of this section: clinicopathological, proteomics,
and the early fusion of both modalities that we call fused.

When integrating the proteomics database, whether alone or with the clinicopathological
database, we chose, in agreement with our medical collaborators, to only look at the second, third
and fourth visits, therefore discarding the first one.

6.3.2 Preprocessing

We started by dropping the variables that have more than 5% missing values and replacing the
missing values for the remaining ones either by the mean or the most frequent term depending
on the type of variable. This strategy present the advantage of being agnostic to the acquisition
technology for proteomics data which is often plagued by missing values Harris, Fondrie, Oh, et
Noble (2023). Continuous variables were transformed with robust scaling. This type of scaling
removes the median and divides the data by the interquartile range. The specific interest of robust
scaling is its preservation of outliers: this avoids compression of the data in a specific region of
space as the z-score normalisation would do. This is particulary interesting for GEMINI methods
as this will lead outliers to remain far from other samples. For categorical variables, we employed
two different transformations depending on the number of categories. Non-binary variables were
encoded using one-hot encoding. As we intended to use GEMINI for clustering, which is distance-
based, we wanted to ensure that all categorical variables have the same distance when varying
from one category to another. Therefore, the binary variables were transformed to either −

√
2/2 or√

2/2. The goal of such an encoding is to ensure that the distance between two different categorical
variables remains

√
2 while avoiding excessive features for binary variables. A binary variable thus

produces a one dimensional feature instead of a two-dimensional feature with one-hot-encoding.
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The scalers were fitted on the set of the first visits. The subsequent visits then underwent the
same scaling, just as we would do for a test set in a supervised context. We present a summary of
the datasets dimensions in Table 6.1. It is important to note here that the case of the fused dataset
does not have the same initial number of input variables since the reduction of the number of
patients allowed some variables to have fewer missing values than the 5% threshold. Consequently,
these five additional variables were only available in the fused modalities dataset and emerged from
the clinicopathological database.

6.3.3 Applying multiple Sparse GEMINI models

For each dataset previously described, we applied the Sparse GEMINI algorithm from Chapter 4
with static training regime. We seeked to find between 5 and 10 clusters using either a linear
regression or a multi-layered perceptron as inference model combined with the one-vs-all or one-
vs-one GEMINI. The upper limit of 10 clusters was arbitrarily agreed for the sake of interpretation
by cardiology experts. In view of the very similar performances in terms of clustering with slightly
better variable selection in Section 4.4.3, we chose to use only the MMD-GEMINI with linear
kernel and drop the Wasserstein-GEMINI, which would have been too costly. For the group-lasso
regularisation, we let each continuous variable on its own and created a group per one-hot-encoded
variable. Each combination of model and objective was run 30 times, resulting thus in 120 different
models per number of cluster. Each model provided a clustering of the patients’ first visit and a
subset of features that were selected to obtain these clusters.

6.3.4 Variables ranking

Although we previously concluded that Sparse GEMINI could be good at eliminating noisy
independent features for a reasonable amount of input features and samples in Chapter 4, some
variance remains at sake in the number of selected variables. Indeed, when the number of input
variables is high, the same subsets of variables may not always be selected by Sparse GEMINI. We
will highlight the selection rates in tables 6.4, 6.5 and 6.6. Consequently, we were interested in
using the 120 trained GEMINI models to further refine our variable selection. By simply counting
how many times each variable was kept by a final model, we obtained an ordering of the variables,
from the most frequently involved to the least used. For later plots, we kept the variables that were
selected more than 95% of the times, i.e. by at least 114 models.

6.3.5 Accuracy filtering for time stability

To find clusters that could match stable-over-time phenogroups, we needed to filter the models
that did not achieve such invariance through the visits. Since we consider that the phenogroup of
a patient does not change over time, we used the clustering of the first visit as ground-truth label
per patient. Then, we simply clustered with the same model all subsequent visits and measure
their accuracy. However, as each patient comes with multiple visits, the unweighted accuracy may
not reveal stable clusters per patient. For instance, a patient with 6 correctly clustered visits and
another patient with 2 misclustered visits yield an accuracy of 75%, which does not reveal stable
phenogroups at the individual level: we prefer an accuracy of 50% because we do not successfully
cluster one of the patients. That is why we introduced weighting factors per visit to account for the
imbalances: 1 over the number of visits. We kept the models that have an accuracy within 90% of
the best accuracy achieved per dataset / number of clusters.
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6.3.6 Consensus clustering

We finished the pipeline with consensus clustering (Strehl & Ghosh, 2002) to provide a single
clustering per dataset and number of clusters. We now cover consensus clustering more in-depth
than in Section 3.5.8.

6.3.6.1 Building the consensus matrix

Consensus clustering consists in aggregating different clusters produced by a finite number of
clustering models and producing a final agreeing clustering. The intuition is that if two samples
are always in the same cluster, they are likely to be together in the final clustering, otherwise they
should not. To that end, we build a consensus matrix that describes how frequently two samples are
in the same clusters (Monti, Tamayo, Mesirov, & Golub, 2003).

In consensus clustering, we assume that we have a set of T clustering models trained on the
dataset D = {xxxi}ni=1. We write the t-th model as the distribution of the cluster membership y
among K clusters given the data xxx using the parameters θt: pθt(y|xxx).

We then define the connectivity matrixCCC(t) ∈ {0, 1}n×n of the t-th model that counts when
two samples are put in the same clusters by the model:

CCC
(t)
ij = 1

[︃
arg max

k
pθt(y = k|xxxi) = arg max

k
pθt(y|xxxj)

]︃
. (6.1)

Finally, the consensus matrixMMM ∈ [0, 1]n×n is the connectivity matrix divided by T to obtain
the frequency of similar clustering per pair of samples:

MMM ij =
∑︁T
t=1CCC

(t)
ij

T
. (6.2)

6.3.6.2 Using the consensus matrix

The consensus matrix MMM comes with 2 different usages. It can be interpreted as a distance
between samples using 1 −MMM , or can be used to derive an informative score on the clustering
difficulty of the dataset: the proportion of ambiguous clusters (PAC, S, enbabaoğlu et al., 2014). For
the PAC, the intuition is that a set of models that find clear-cut clusters would always be certain
about pairs of samples being together or not. Consequently, we would expect the least certain pairs
to have a consensus value close to 0.5, i.e. uncertainty. The PAC is defined as the proportion of
such uncertain pairs. For 2 arbitrary thresholds u1 < u2, often defined to 0.1 and 0.9, that bound
the definition of an uncertain pair, the PAC score is computed as:

PACu1,u2(MMM) =
∑︁n
i=1

∑︁n
j=1 1[u1 ≤MMM ij ≤ u2]

n2 . (6.3)

The PAC score is bounded in [0, 1], and the lower the better. A PAC score equals to 0 reveals
that the set of models always found the same clusters.

6.3.6.3 Consensus model

The distance matrix 1−MMM can be incorporated into any distance-based clustering algorithm
to produce the final clustering. Common solutions for consensus clustering, for instance, employ
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1 # We create a nonparametric model with custom distance
2 model = gemclus.nonparametric.CategoricalWasserstein(

n_clusters=3, ovo=True, metric="precomputed")
3

4 # We fit the model on the data using 1-consensus as a distance
5 consensus_pred = model.fit_predict(X, 1-consensus)

Listing 6.1 – An example of consensus clustering using GEMINI. We assume to have a consensus
matrix describing the pairwise co-clustering frequency of samples.

ascending hierarchical clustering (Kiselev et al., 2017). Although such approach is well-motivated,
we believe that this is not the necessarily perfect algorithm for consensus. In fact, in hierarchical
clustering, clusters are merged according to a linkage function. For instance, the single linkage
merges clusters with the closest samples. With such a linkage, two clusters would be merged as
soon as they possess one part of a pair for which the distance is 0. Consequently, if most of the
samples in one cluster should not match those in another cluster, they could still be merged as
soon as there is a positive pair favouring some proximity. Other linkage methods may even lead to
undesired solutions. For example, complete linkage would merge clusters as soon as they share a
pair of samples that is the farthest, i.e. that should not be together. This result is the contrary of
what we seek.

We propose instead to exploit GEMINI to the fullest and used it again for consensus clustering.
To that end, we simply used the nonparametric model, initially defined in Section 3.5.1:

y|xxx = xxxi ∼ Categorical(θθθ1i, θθθ2i, . . . , θθθKi), (6.4)

with parameters θθθ ∈ RK×n. This is interesting because it breaks the relationships between the
value of the samples and the predicted clusters. A probability of belonging to a cluster is directly
assigned to each sample, however this probability θθθik is not computed using xxxi. Consequently, only
the distance between samples matters, as in hierarchical clustering. We used the OvO Wasserstein
objective to train this model. This allowed us to train all parameters with a holistic view on the
distance matrix thanks to the Wasserstein distances. Indeed, the Wasserstein distance takes into
account the entire distributions, and not just their mean, to compare them. Consequently, the model
was likely better at breaking the uncertain pairs. We show a sample of code achieving this consensus
clustering with GemClus in Listing 6.

Thus the complete pipeline for finding clusters in the PROGRESSA dataset modalities involved
only flavours of GEMINI.

6.4 From clusters to phenogroups

We present here all results that were produced by the pipeline and the finally identified
phenogroups. The results notably helped filtering out models that were not deemed interesting
by our cardiology expert colleagues. The pipeline results cover the 3 modalities previously dis-
cussed: the clinicopathological database, the proteomics database, and their fusion. The identified
phenogroups were only elaborated on the results of the clinicopathological database.
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Table 6.2 – Average accuracy [95% confidence interval] of the individual models for the 3 datasets. Each
combination of model Regression/MLP with a mode OvA/OvO represents 30 trained models for
10 clusters. Accuracy is evaluated on the subsequent visits using the first visit as ground-truth.
Confidence intervals are computed assuming a normal distribution.

Dataset
Logistic regression MLP

OvA OvO OvA OvO

Clinicopathological 60% [59% - 60%] 55% [55% - 56%] 55% [54% - 56%] 53% [53% - 54%]
Proteomics 55% [54% - 56%] 30% [28% - 31%] 45% [43% - 48%] 29% [27% - 31%]

Fused modalities 60% [58% - 62%] 60% [59% - 61%] 53% [52% - 54%] 50% [48% - 52%]

Table 6.3 – Proportion of ambiguous clusters (lower is better) for the subsets of accurate-over-time
models depending on the number of clusters and datasets.

Dataset
Number of clusters

5 6 7 8 9 10

Clinicopathological 57.4% 45.5% 46.2% 51.4% 40.1% 37.9%
Proteomics 26.1% 32.2% 26.5% 20.0% 19.1% 20.7%

Fused modalities 63.4% 50.0% 42.6% 38.9% 34.7% 17.9%

6.4.1 Results and metrics

6.4.1.1 Accuracy of models for subsequent visits

To begin with, we provide in Table 6.2 the patient-wise accuracy of the top-selected models.
Notice that we restricted these tables to the models that were trained to find 10 clusters only for
clarity. In general, models trained for fewer clusters presented similar or greater accuracy, up to
5-10% more. We observed that the presence of the clinicopathological database helps finding more
stable-over-time clusters than the proteomics modality only. Intriguingly, the OvO mode for both
types of architectures nearly halved the accuracy for the proteomics dataset. While these clusters
might be of interest, they do not match our criterion of stability over time and so we discarded them.
The logistic regression models generally found more accurate clusters over time, which we can
attribute to the simplicity of the decision boundary, contrary to MLP models. Overall, the obtained
clusters are not holding throughout time, however we are satisfied that their definition remains
stable more than 50% of the time in most datasets and models.

6.4.1.2 Ambiguity of the filtered models for consensus

We then mixed the subsets of filtered models together to produce a consensus matrix per dataset
and number of clusters. We provide in Table 6.3 the PAC score of all these subsets. It turned
out that keeping 9 to 10 clusters was a good strategy to get better clear-cut clusters as input for
consensus clustering, specifically in the case of the fused dataset where the increase from 5 to 10
clusters leveraged a nearly 50% drop in ambiguity.
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With very few models in the proteomics dataset reaching the accuracy threshold, i.e. only some
for the OvA Logistic Regression in Table 6.2, it was then chosen with our medical collaborators to
not continue with this dataset.

6.4.2 Identifying phenogroups

6.4.2.1 Merging clusters

As we initially provided our medical collaborators with 10 clusters with little ambiguity for
the clinicopathological dataset and the fused dataset, it was chosen to merge those stable clusters
down to 5 to alleviate the burden of interpretation. However, in contrast to directly setting the
pipeline parameters to 5 clusters, this allowed us a more controlled view of the merging process. In
fact, finding 10 clusters allows the algorithm to find more fine-grained distinctions between the
various natures of patients compared to 5 clusters. In this context, more clusters means than we can
potentially distinguish patients that are part of 2 phenogroups at the same time from other patients
that belong to only one of these phenogroups. With the lowest PAC score obtained for 10 clusters,
we are confident that we have obtained stable clusters over time and multiple models.

We merged the clusters according to their similarity in terms of interpretation by our medical
collaborators. For example, we merged clusters where patients had a high cardio-metabolic profile,
despite slight variations in other variables deemed less important in the interpretation of all clusters.

6.4.2.2 Visualising the pipeline outputs

We provide the final heatmaps in Figure 6.3 for the clinicopathological dataset and Figure 6.4
for the fused dataset. These heatmaps are built using the subset of variables selected 95% of the
time across all 120 models. This threshold is arbitrary for the visualisation quality, as most variables
were selected many times, e.g. in Table 6.4.

To start with, we observe in Figure 6.3 a cluster where patients already suffer from moderate
aortic stenosis, sometimes severe: cluster C1. This condition is translated with high gradient and
blood pressure among the echocardiographic variables: the mean gradient of the aorta is the highest
for some patients, as well as the Vpeak and the velocity time integral (vti). All other patients who
did not have serious aortic stenosis at first are in the other clusters, with few exceptions. The second
cluster C2 does not have any high characteristics: no high levels of inflammation, no high levels
of cardiometabolic stress, or high insulin levels. Like the third cluster C3, it is mainly composed
of men. However, the third cluster C3 displays some high echocardiographic variables despite a
low aortic stenosis severity to start with. Furthermore, it corresponds to the bicuspid profile of
the patients. A bicuspid valve is an aortic valve composed of two leaflets, whereas a tricuspid
valve is composed of three leaflets. The mostly female cluster C4 contained a majority of patients
with tricuspid valves. Although a subset of this cluster exhibits a high level of inflammation with
the C-reactive protein or high glycemia, the echocardiographic properties of this cluster do not
match the high blood pressure and velocities from clusters C1 and C3. Finally, the last cluster C5
comprises patients with some comobordities: high weight and high insulin levels. Some patients
exhibit inflammation or glycemia, and their overall blood outflow is between the average and high
levels.

Looking at Figure 6.4, some observed clusters remain. We recover again a cluster of patients
with very high metabolic characteristics, e.g. high body mass index, waist, weight, and insulin
levels: C4. However, we now have another cluster showing above average, though less intense,



128 CHAPTER 6 — A GEMINI pipeline for the identification of phenogroups of aortic stenosis

Figure 6.3 – Heatmap of the scaled top 10% selected input variables for the clinicopathological
dataset. Samples on the rows are sorted according to the final hand-merged 5 clusters.
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Figure 6.4 – Heatmap of the scaled top 10% selected input variables for the fused dataset. Samples
on the rows are sorted according to the final hand-merged 5 clusters.
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metabolic characteristics: C1. However, this cluster comes with rather low variables regarding all
other categories except the echocardiographic variables. We observe again another cluster with low
variables throughout all categories again, C2. Finally, the last cluster C3 and C5 present average to
high values for all categories except metabolic and echocardiographic variables. They highlight
groups of patients with notable inflammation, stress and coagulation necessities.

We chose to focus on the clustering of the clinicopathological dataset only, as the proposed
heatmap from Figure 6.3 seemed more insightful to them than the fused case from Figure 6.4.

6.4.2.3 Characteristics comparisons

Beyond the subset of variables that were frequently selected by our set of clustering algorithms
throughout the pipeline, clinical variables usually assessed by practitioners for aortic stenosis were
evaluated per cluster and compared. We offer these comparisons of characteristics through Table 6.4
for the main clinical characteristics of the patients, Table 6.5 for the metabolic characteristics and
Table 6.6 for the echocardiographic variables.

Different tests were used to compare the set of characteristics between all clusters. Continuous
variables were tested for normality using the Shapiro-Wilk or the Kolmogorov-Smirnov tests
and presented as mean ± standard deviation or as median and interquartile range if not normally
distributed. If the variables were deemed normally distributed, we used a Student’s t-test to evaluate
differences between groups, otherwise we used the Mann-Whitney test. Categorical variables were
expressed as the number of patients (per cent) and compared using the χ2 or the Fisher’s exact
test. We report pairs of clusters for which the p-value was deemed significant following the usual
threshold of 5%. We added to each variable a column indicating the number of times it was selected
by an algorithm in the pipeline for the 120 models.

From these tables, we enumerate five profiles.

High-risk patients (C1) This cluster contains patients who present a high cardiovascular risk.
They generally start or are close to an already moderate aortic stenosis severity (Table 6.6). Their
echocardiographic profile exceeds the other clusters and presents hence a faster risk of aortic
stenosis progression. These patients exhibit a strong presence of calcium compared to other clusters:
they suffer more from calcific aortic stenosis (Lindman et al., 2016).

Young patients (C3) The cluster exhibits the youngest patients. These patients have a particularly
good metabolic profile (Table 6.4) with small BMI, little hypertension and diabetes. This cluster is
also characterised by the presence of bicuspid valve for few patients.

Female cluster (C4) This cluster is mostly characterised by the dominant presence of women
(Table 6.4). Similarly to the previous cluster, these patients are in good physical condition. They
present nonetheless a high level of cholesterol and inflammation through the c-reactive protein
(Table 6.5).

The high cardio-metabolism cluster (C5) In contrast to the previous cluster, this cluster is mostly
composed of male patients. These patients exhibit several comorbidities. Those include severe
diabetes, visceral obesity, hypertension and an overall high-cardiometabolism (tables 6.4 and 6.5).
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(a) Mortality (p-value = 0.829) (b) Composite endpoint (p-value < 0.001)

Figure 6.5 – Kaplan-Meier curves of the clusters for two clinical endpoints using the clusters
of the clinicopathological database from PROGRESSA. Red: C1 (high-risk patients), yellow: C2
(remaining patients), green: C3 (young patients), blue: C4 (female patients), purple: C5 (high
cardiometabolism patients).

The remaining patients (C2) This cluster is not clearly defined by any specific characteristics
overall. It simply contains the remaining patients that did not match any other clusters.

Similar analysis as tables 6.4, 6.5 and 6.6 were conducted on the proteomics and fused datasets.
However, their insights either covered again what was shown with the clinicopathological database
in a least significant manner, or were not considered informative at all.

6.4.2.4 Endpoints of the clusters

We finally evaluated the endpoints of the clusters using Kaplan-Meier curves in Figure 6.5
and Cox regressions in Figure 6.6 obtained with STAT version 17.0 (StatCorp, College Station,
Texas). The endpoints are markers of the disease progression. Different endpoints were considered:
either the death, or composite endpoints that encompass both death and aortic valve replacement.
For Kaplan-Meier curves, a log-rank test was performed. For the Cox regression, Wald tests are
performed (Bradburn, Clark, Love, & Altman, 2003). We did not run a study of the endpoints of
the fused case because we discarded it at this step of the analysis.

Despite a non-significant result with high p-value in Figure 6.5a, other figures highlight clusters
with higher risks of endpoints with time passing. Notably, composite endpoints, which comprises
surgical aortic valve replacement, are accentuated for the cluster C1 both in the Kaplan-Meier and
Cox curves of figures 6.5b and 6.6b. We must note here that this result is adjusted for both sex
and age in Figure 6.6. This implies that the increased risk of composite endpoint for C1 holds
independently of age and sex. Compared to the mortality rate, this sudden difference in cluster
C1 can be justified by a tendency to favour aortic valve replacement among patients with high
cardio-metabolism. If we consider only death as endpoint, then the cluster C3 of young patients
present an increased risk in Figure 6.6a, which could be imputed to the dominant bicuspid nature of
their aortic valve (M. Shen et al., 2020).

6.5 Conclusion

We constructed in this chapter a pipeline using multiple GEMINI models to simultaneously
cluster and select a subset of informative variables. The pipeline is concluded with a consensus
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(a) Mortality (p-value < 0.001) (b) Composite endpoint (p-value < 0.001)

Figure 6.6 – Cox models of the clusters for two clinical endpoints adjusted for the age and the
sex of patients using the clusters of the clinicopathological database from PROGRESSA. Red: C1
(high-risk patients), yellow: C2 (remaining patients), green: C3 (young patients), blue: C4 (female
patients), purple: C5 (high cardiometabolism patients).

clustering algorithm using GEMINI. We applied this pipeline to 3 different subsets of the PRO-
GRESSA dataset: the clinicopathological database, the proteomics database and their fusion. Our
results converged to 5 clusters using only the clinicopathological database as others were deemed
less interesting. Among the clusters, 4 distinct profiles were found: young patients with a bicus-
pid valve which exhibits an increased mortality progression regardless of age and sex; high-risk
patients starting with mild or moderate aortic stenosis with increased risk of composite endpoint,
i.e. death or aortic valve replacement, female patients in good condition with inflammation and no
particular risk progression; and finally high cardio-metabolic patients with obesity, diabetes and
hypertension without a significant risk progression. Although these phenogroups differ from the
clinical hypotheses, they illustrate distinct categories of population for which the progression risk
can be significant.





CHAPTER 7
Final words, ongoing

and future works
7.1 Overview of the thesis contributions

7.1.1 Discriminative clustering

In this thesis, we brought up a complete framework for discriminative clustering using a
distance-based and information-theoretic objective: the generalised mutual information (GEMINI).
We demonstrated how this objective can be compatible with various clustering distributions, data
distributions, and distances. We also extended this objective to incorporate joint feature selection
to obtain subsets of features relevant to the clusters being discovered. We showed as well how
GEMINI objective could be altered to deliver tractable gains in unsupervised tree constructions,
allowing thus an interpretable model in clustering equivalent to kernel K-means in performances.
All these major contributions are wrapped up in package named GemClus which facilitates the
reproduction of most of our experiments.

7.1.2 Phenogroups of aortic stenosis

Building up on GEMINI, we created a complete pipeline for finding phenogroups of aortic
stenosis among patients from the PROGRESSA study. We identified four profiles of patients:
young patients with bicuspid valve who exhibit an increased progression of mortality regardless of
age and sex; high-risk patients starting with an already mild or moderate aortic stenosis with an
increased risk of composite endpoint, i.e. death or valvular replacement, women in good condition
with inflammation and no particular risk progression; and finally, high-cardiometabolic patients
with obesity, diabetes, and hypertension without a significant risk progression.

7.2 Ongoing work

7.2.1 Adding supervision to consensus clustering

We presented how GEMINI can be used for consensus clustering by viewing the consensus
matrix as a distance and using the non-parametric model, which does not require positions of
the samples. However, we can imagine better types of consensus clustering. Notably, we can
add must-link and cannot-link constraints in the clustering algorithms (Wagstaff & Cardie, 2000).
These constraints simply consist in telling, according to some expert, whether some samples should
necessarily be together or apart. This type of supervision is different from giving labels as it only
focuses on the interaction between the samples.
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To implement must-link and cannot-link constraints, we propose to simply use gradient descent
with the addition of regularisation in the objective function. In fact, the output of the model is a
stochastic vector yyy of dimension K. A must-link constraint can be seen as minimising the distance
between two predictions yyy1 and yyy2, while a cannot-link constraint can be seen as maximising the
distance between those vectors. Let TML = {(ai, bi)} be the set of pairs that obey the must-link
constraint and TCL be the set of pairs that obey the cannot-link constraint. The new optimisation
problem becomes:

θ⋆ = arg max
θ

ID (xxx; y)+λ
∑︂

(i,j)∈TCL

∥ψθ(xxxi)−ψθ(xxxj)∥22−ω
∑︂

(i,j)∈TML

∥ψθ(xxxi)−ψθ(xxxj)∥22, (7.1)

where λ and ω are the regularisation weights and ψθ the underlying architecture of the dis-
tribution pθ(y|xxx). This constraint is currently proposed experimentally in GemClus under the
name add_ml_cl_constraint. Of course, this principle of constraints can be extended to all
discriminative models, and not just the non-parametric model in the case of consensus clustering.

7.2.2 Towards heterogenous source clustering

We initially motivated discriminative clustering with the use of neural network producing latent
representations of similar dimensions at the beginning of Chapter 2.

Assume that we have S sources of data. For all of these sources, the data spaces are different. We
denote these spaces X s, 1 ≤ s ≤ S. The complete data space is X =

∏︁S
s=1X s. Let D = {xxxi}ni=1

be a dataset with xxxi ∈ X . We denote xxx(s)
i the part of xxxi that comes from the source space X s.

We are interested in building a complete model that is able to cluster the dataset D:

pθ(y|xxx) = Categorical(Softmax ◦ ψθ(xxx)), (7.2)

with parameters θ and y ∈ [K] the discrete cluster membership assigned to xxx ∈ X . Following
our previous chapters, we want to optimise the parameters θ to maximise a GEMINI. However,
GEMINI requires a metric in the data space X to work properly, yet the context of heterogeneous
sources makes it challenging (Kan et al., 2020). Overall, it is easier to consider one relevant
metric per data source, yet this does not completely solve the global picture because we would
then need to think of linear coefficients (or more complex) to link all sub-metrics into one, which
remains challenging. For instance, in the context of multi-omics, a mixture of kernels (Mariette &
Villa-Vialaneix, 2017) could be used for the MMD-GEMINI.

We propose instead to first cluster each source individually using GEMINI, then derive from
each model a common latent representation which is comparable across all sources and that we can
concatenate. Let pωs(ys|xxx(s)) be the clustering distribution of the source X s. This distribution is
categorical and based on the composition of two consecutive functions, one for projecting into a
latent space gωs

1
: X s ↦→ Zs = Rds and another for projecting the latent space into the clustering

space: hωs
2

: Zs ↦→ RK . All individual models therefore take the form:

pωs(y(s)|xxx(s)) = Categorical
(︂

Softmax ◦ hωs
2
◦ gωs

1
(xxx(s))

)︂
. (7.3)

All individual functions {gωs
1
}Ss=1 end in a latent space Rds that we can concatenate. We can

design the global latent representation space Z =
∏︁S
s=1Zs = RD with D =

∑︁S
s=1 ds. The

multi-source clustering function becomes:
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ψθ(xxx) = fβ ◦ Concat
[︂
{gωs

1
(xxx(s))}Ss=1

]︂
, (7.4)

where fβ is a final clustering function with input space Z . Parameters θ contain the sub-
parameters {β, ω1

1, · · · , ωS1 }. Note that the global model completely omits the clustering heads of
each individual source hωs

2
.

With the means of sub-clustering for GEMINI optimisation, it follows that learning can only be
twofold:

1. We start by training all sub-clustering models {pωs}Ss=1 independently.

2. We finish by optimising only β in pθ to get a final clustering. All other weights are frozen.

Indeed, due to the nature of the gradient of GEMINI, optimising on all of θ at once would
imply that sub-clustering parameters ωs1 receive gradient information coming from other sources s′.
Hence, optimising θ at once violates the idea that each projection of a source into the same latent
space is independent of other sources.

The question of the number of layers in each sub-neural network gωs
1

is critical. Indeed, as we
want to cluster samples using all sources, we need to make sure that the representation learnt per
source preserves the structure of the data yet remains sufficiently different to justify the usage of
neural network. If the learnt representation remains identical to the original input source Xs, then
the neural network gωs

1
does not need many layers. We previously used GEMINI in conjunction

with the Euclidean distance and so it is interesting to know whether this guiding metric affects the
representation quality.

7.3 Perspectives and future work

Our search for phenogroups of aortic stenosis used mainly early fusion of datasets to tackle
the multi-modality problem. However, there remains a different source: the radiomics modality
that contains images and videos. There are also more extensions of GEMINI algorithm that we can
bring up to improve on this thesis.

7.3.1 Integration of radiomics in PROGRESSA clustering

Using the principle previously described for heterogeneous clustering, the next step is to include
videos from the PROGRESSA dataset into the construction of the clusters. We could expect for
example that the addition of videos bring a distinctive feature among the uncharacterised cluster of
patients. We could also expect to maintain the same set of clusters using novel distinctive features.
However, for all patients, the set of videos corresponds only to the first visit ever. This means
that we need to summarise a set of videos to a single feature vector that can be combined with the
features derived from all other modalities. This can for instance be achieved using PointNet-like or
Deep Sets architectures (Qi, Su, Mo, & Guibas, 2017 ; Zaheer et al., 2017) that are designed to
process clouds of points. This architecture design is currently under reflection.

7.3.2 Exploiting pretrained model for clustering

Looking back to the early experiments with GEMINI, we showed how we could use features
derived from a SIMCLR model (i.e. an unsupervised model) to define a custom kernel or distance
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that was sufficiently insightful on the data distribution to better guide the GEMINI clustering. As a
future step, it would be interesting to adapt the notion of transfer learning to GEMINI where the
features used for a kernel or distance could be extracted from a pretrained supervised model, which
is adequate for the data. This would probably help to build clusters that share some properties with
the initial classes used for the pretrained model.

7.3.3 Learning metrics

Finally, we believe that GEMINI could be inverted to address the ill-posed problem of metric
learning in a supervised context. Indeed, during this entire thesis we discussed the maximisation
of the output of a prediction model for a fixed affinity matrix. In contrast, we could use labels
from a supervised dataset to provide a fixed distribution in GEMINI and let the affinity matrix be
optimised through gradient descent. In doing so, we would leverage a model that learns features
that are insightful enough to provide an accurate metric between samples. However, additional
regularisations would be required to avoid trivial solutions.
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Slonim, N., Atwal, G. S., Tkačik, G., & Bialek, W. (2005). Information-Based Clustering.
Proceedings of the National Academy of Sciences, 102(51), 18297–18302. (Publisher: National
Academy of Sciences)

Solorio-Fernández, S., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2020). A Review
of Unsupervised Feature Selection Methods. Artificial Intelligence Review, 53(2), 907–948.
(Publisher: Springer)

Springenberg, J. T. (2015). Unsupervised and Semi-Supervised Learning with Categorical
Generative Adversarial Networks. arXiv preprint arXiv:1511.06390.

Sriperumbudur, B. K., Fukumizu, K., Gretton, A., Schölkopf, B., & Lanckriet, G. R. (2009).
On Integral Probability Metrics,phi-Divergences and Binary Classification. arXiv preprint
arXiv:0901.2698.

Strehl, A., & Ghosh, J. (2002). Cluster Ensembles - A Knowledge Reuse Framework for
Combining Multiple Partitions. Journal of machine learning research, 3(Dec), 583–617.

Sturn, A., Quackenbush, J., & Trajanoski, Z. (2002). Genesis: Cluster Analysis of Microarray
Data. Bioinformatics, 18(1), 207–208. (Publisher: Oxford University Press)

Tadesse, M. G., Sha, N., & Vannucci, M. (2005). Bayesian Variable Selection in Clustering
High-Dimensional Data. Journal of the American Statistical Association, 100(470), 602–617.
(Publisher: Taylor & Francis)

Tao, Y., Takagi, K., & Nakata, K. (2021). Clustering-Friendly Representation Learning via
Instance Discrimination and Feature Decorrelation. In International Conference on Learning
Representations.

Tastet, L., Capoulade, R., Clavel, M.-A., Larose, E., Shen, M., Dahou, A., . . . Dumesnil, J. G.
(2017). Systolic Hypertension and Progression of Aortic Valve Calcification in Patients with
Aortic Stenosis: Results from the PROGRESSA Study. European Heart Journal-Cardiovascular
Imaging, 18(1), 70–78. (Publisher: Oxford University Press)



BIBLIOGRAPHY 157

Tastet, L., Kwiecinski, J., Pibarot, P., Capoulade, R., Everett, R. J., Newby, D. E., . . . Clavel, M.-A.
(2020). Sex-Related Differences in the Extent of Myocardial Fibrosis in Patients with Aortic Valve
Stenosis. JACC: Cardiovascular Imaging, 13(3), 699-711. doi: 10.1016/j.jcmg.2019.06.014

Tavallali, P., Tavallali, P., & Singhal, M. (2021). K-means Tree: An Optimal Clustering Tree for
Unsupervised Learning. The Journal of Supercomputing, 77, 5239–5266. (Publisher: Springer)

Thaden, J. J., Nkomo, V. T., & Enriquez-Sarano, M. (2014). The Global Burden of Aortic
Stenosis. Progress in Cardiovascular Diseases, 56(6), 565–571. (Publisher: Elsevier)

Thoenes, M., Bramlage, P., Zamorano, P., Messika-Zeitoun, D., Wendt, D., Kasel, M., . . . Steeds,
R. P. (2018). Patient Screening for Early Detection of Aortic Stenosis (AS)—Review of Current
Practice and Future Perspectives. Journal of Thoracic Disease, 10(9), 5584. (Publisher: AME
Publications)

Thrun, M. C., & Stier, Q. (2021). Fundamental Clustering Algorithms Suite. SoftwareX, 13,
100642. (Publisher: Elsevier)

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the Number of Clusters in a Data Set
via the Gap Statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63(2), 411–423. doi: 10.1111/1467-9868.00293

Tishby, N., Pereira, F. C., & Bialek, W. (2000). The Information Bottleneck Method. arXiv
preprint physics/0004057.
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APPENDIX A
Proof of the mutual

information convergence
for the separation of two

Gaussian distributions
We consider the data distribution from Section 3.2.2:

p(x|y = 0) = N (x|µ0, σ
2), p(x|y = 1) = N (x|µ1, σ

2), (A.1)

where y is the cluster assignment. We take balanced clusters proportions, i.e. p(y = 0) =
p(y = 1) = 1

2 . We defined two different clustering models: one which splits evenly the data space
called pA (good boundary) and another which splits it on a closed set pB (misplaced boundary):

pA(y = 1|x) =
{︄

1− ϵ x > µ1−µ0
2

ϵ otherwise
, (A.2)

pB(y = 1|x) =
{︄

1− ϵ x ∈ [µ0, µ1]
ϵ otherwise

. (A.3)

Our goal is to show that both models pA and pB will converge to the same value of mutual
information as ϵ converges to 0. For this demonstration, we will compute the respective Kullback-
Leibler divergence DKL between cluster distributions of each model, then compute the mutual
information using the expectation of the divergences over the data distribution:

I (x; y) = Ex∼p(x) [DKL (pθ(y|x)∥pθ(y))] . (A.4)

A.1 Mutual information of the good boundary model

To compute the cluster proportions, we estimate with samples x from the distribution pdata(x).
Since we are aware for this demonstration of the true nature of the data distribution, we can use
p(x) for sampling. Consequently, we can compute the two marginals:
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pA(y = 1) =
∫︂

X
p(x)pA(y = 1|x)dx, (A.5)

=
∫︂ µ1−µ0

2

−∞
p(x)ϵdx+

∫︂ +∞

µ1−µ0
2

p(x)(1− ϵ)dx, (A.6)

= ϵ

(︄∫︂ µ1−µ0
2

−∞
p(x)dx

)︄
+ (1− ϵ)

(︄∫︂ +∞

µ1−µ0
2

p(x)dx
)︄
, (A.7)

= 1
2 . (A.8)

We first start by computing the Kullback-Leibler divergence for some arbitrary value of x ∈ R:

DKL (pA(y|x)∥pA(y)) =
1∑︂
i=0

pA(y = i|x) log pA(y = i|x)
pA(y = i) . (A.9)

We now need to detail the specific cases because the value of pA(y = i|x) is dependent on x.
We start ∀x < µ1−µ0

2 :

DKL (pA(y|x)∥pA(y)) = pA(y = 0|x) log pA(y = 0|x)
1
2

+ pA(y = 1|x) log pA(y = 1|x)
1
2

,

(A.10)

= (1− ϵ) log 2(1− ϵ) + ϵ log 2ϵ. (A.11)

The opposite case, ∀x ≥ µ1−µ0
2 yields:

DKL (pA(y|x)∥pA(y)) = pA(y = 0|x) log pA(y = 0|x)
1
2

+ pA(y = 1|x) log pA(y = 1|x)
1
2

,

(A.12)

= ϵ log 2ϵ+ (1− ϵ) log 2(1− ϵ). (A.13)

Since both cases are equal, we can write down:

DKL (pA(y|x)∥pA(y)) = ϵ log 2ϵ+ (1− ϵ) log 2(1− ϵ),∀x ∈ R. (A.14)

We inject the value of the Kullback-Leibler divergence from Eq. (A.14) inside an expectation
performed over the data distribution p(x):

IA (x; y) = Ex∼p(x) [DKL (pA(y|x)∥pA(y))] , (A.15)

=
∫︂

X
p(x) (ϵ log(2ϵ) + (1− ϵ) log(2(1− ϵ))) dx, (A.16)

= ϵ log(2ϵ) + (1− ϵ) log(2(1− ϵ)). (A.17)

Since the KL divergence was independent of x, we could leave the constant outside of the
integral which is equal to 1.

We can assess the coherence of Eq. (A.17) since its limit as ϵ approaches 0 is log 2. In terms of
bits, this is the same as saying that the information on x directly gives us information on the y of
the cluster.
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A.2 Mutual information of the misplaced boundary model

For the misplaced decision boundary, the marginal is different:

pB(y = 1) =
∫︂

X
p(x)pB(y = 1|x)dx, (A.18)

= ϵ

(︃∫︂ µ0

−∞
p(x)dx+

∫︂ +∞

µ1
p(x)dx

)︃
+ (1− ϵ)

∫︂ µ1

µ0
p(x)dx, (A.19)

= ϵ

(︃
1−

∫︂ µ1

µ0
p(x)dx

)︃
+ (1− ϵ)

∫︂ µ1

µ0
p(x)dx. (A.20)

Here, we simply introduce a new variable named β that will be a shortcut for noting the
proportion of data between µ0 and µ1:

β =
∫︂ µ1

µ0
p(x)dx. (A.21)

And so can we simply write the cluster proportion of decision boundary model B as:

pB(y = 1) = ϵ(1− β) + (1− ϵ)β. (A.22)

For the Kullback-Leibler divergence, we proceed to the same detailing as before. We start with
the set x ∈ [µ0, µ1]:

DKL (pB(y|x)∥pB(y)) = pB(y = 0|x) log pB(y = 0|x)
pB(y = 0) + pB(y = 1|x) log pB(y = 1|x)

pB(y = 1) ,

(A.23)

= ϵ log ϵ

pB(y = 0) + (1− ϵ) log 1− ϵ
pB(y = 1) . (A.24)

When x is out of this set, the divergence becomes:

DKL (pB(y|x)∥pB(y)) = pB(y = 0|x) log pB(y = 0|x)
pB(y = 0) + pB(y = 1|x) log pB(y = 1|x)

pB(y = 1) ,

(A.25)

= (1− ϵ) log 1− ϵ
pB(y = 0) + ϵ log ϵ

pB(y = 1) . (A.26)

To fuse the two results, we will write the KL divergence as such:

DKL (pB(y|x)∥pB(y)) = ϵ log ϵ+ (1− ϵ) log(1− ϵ)− C(x),∀x ∈ R, (A.27)

where C(x) is a constant term depending on x defined by:

C(x) =
{︄
ϵ log pB(y = 0) + (1− ϵ) log pB(y = 1) x ∈ [µ0, µ1]
ϵ log pB(y = 1) + (1− ϵ) log pB(y = 0) x ∈ R \ [µ0, µ1] . (A.28)
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For simplicity of later writings, we will shorten the notations by:

C(x) =
{︄
α1 x ∈ [µ0, µ1]
α0 x ∈ R \ [µ0, µ1] . (A.29)

We inject the value of the KL divergence from Eq. (A.27) inside the expectation of the mutual
information:

IB (x; y) = Ex∼p(x) [DKL (pB(y|x)∥pB(y))] , (A.30)

=
∫︂

X
p(x) (ϵ log ϵ+ (1− ϵ) log(1− ϵ)− C(x)) dx, (A.31)

= ϵ log ϵ+ (1− ϵ) log(1− ϵ)−
∫︂

X
p(x)C(x)dx. (A.32)

The first terms are constant with respect to x and the integral of p(x) over X adds up to 1. We
finally need to detail the expectation of the constant C(x) from Eq. (A.28):

Ex [C(x)] =
∫︂ µ0

−∞
C(x)p(x)dx+

∫︂ µ1

µ0
C(x)p(x)dx+

∫︂ +∞

µ1
C(x)p(x)dx, (A.33)

= α0

(︃∫︂ µ0

−∞
p(x)dx+

∫︂ +∞

µ1
p(x)dx

)︃
+ α1

∫︂ µ1

µ0
p(x)dx, (A.34)

= α0(1− β) + α1β. (A.35)

This can be further improved by unfolding the description of α0 and α1 from Eq. (A.28):

α0(1− β) + βα1 = α0 + β(α1 − α0), (A.36)

= ϵ log pB(y = 1) + (1− ϵ) log pB(y = 0) + β [ϵ log pB(y = 0)
+(1− ϵ) log pB(y = 1)− ϵ log pB(y = 1)− (1− ϵ) log pB(y = 0)] ,

(A.37)

= [1− ϵ+ βϵ− β + βϵ] log pB(y = 0) + [ϵ+ β − βϵ− βϵ] log pB(y = 1),
(A.38)

= log pB(y = 0) + [2βϵ− β − ϵ] log pB(y = 0)
pB(y = 1) . (A.39)

We can finally write down the mutual information for the model B:

IB (x; y) = ϵ log ϵ+ (1− ϵ) log(1− ϵ)− log pB(y = 0)− [2βϵ− β − ϵ] log pB(y = 0)
pB(y = 1) . (A.40)

A.3 Differences of mutual information

Now that we have the exact value of both mutual informations, we can compute their differences:
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∆I = IA (x; y)− IB (x; y) , (A.41)

= ϵ log(2ϵ) + (1− ϵ) log(2(1− ϵ))− ϵ log ϵ− (1− ϵ) log(1− ϵ)

+ log pB(y = 0) + [2βϵ− β − ϵ] log pB(y = 0)
pB(y = 1) , (A.42)

= ϵ log 2 + (1− ϵ) log 2 + log pB(y = 0) + [2βϵ− β − ϵ] log pB(y = 0)
pB(y = 1) . (A.43)

We then deduce how the difference of mutual information evolves as the decision boundary
becomes sharper, i.e. when ϵ approaches 0:

lim
ϵ→0

∆I = log 2 + log pB(y = 0)− β log pB(y = 0)
pB(y = 1) . (A.44)

However, the cluster proportions by B pB(y = 1) also take a different value as ϵ approaches 0.
Recalling Eq. (A.3):

lim
ϵ→0

pB(y = 1) = β, lim
ϵ→0

pB(y = 0) = 1− β. (A.45)

And finally can we write that:

lim
ϵ→0

∆I = log 2 + log(1− β)− β log 1− β
β

, (A.46)

= log 2 + (1− β) log(1− β) + β log β, (A.47)

= log 2−H (β) . (A.48)





APPENDIX B
Proofs for the GEMINI

propositions
B.1 Proof of Prop. 3.3.1

Proof. For the sake of clarity, we will use the notations πk ≡ pθ(y = k) during the demonstration.

Modelisation of the conditional distribution We will consider two types of models. The first
one is the generic clustering model, where the cluster assignment follows a categorical distribution:

y|xxx ∼ Categorical(ψθ(xxx)), (B.1)

where ψθ : X → ∆K is a learnable function of parameters θ and ∆K is a K-simplex.
The second model is a Dirac distribution where the data space X is divided into a partition

Xk,∀k ∈ {1, · · · ,K}:

p(y|xxx) = 1[xxx ∈ Xk] , (B.2)

with 1 the indicator function. This is simply a sub-case of the generic model.
For both models, we consider that clusters are not empty and that the model is not degenerate,

i.e. πk ∈]0, 1[∀k ∈ {1,K}.

Value of OvA GEMINI and upper bounds We first unfold the OvA GEMINI for the generic
model and α ∈ R \ {0, 1}:

Iova
Dα

(xxx; y) = Ey∼pθ(y)

[︃
Exxx∼pdata(xxx)

[︃
fα

(︃
p(xxx|y)
p(xxx)

)︃]︃]︃
, (B.3)

=
K∑︂
k=1

πk

∫︂
X
p(xxx)

(︄
p(xxx|y = k)αp(xxx)−α

α(α− 1) − p(xxx|y = k)p(xxx)−1

α− 1 + 1
α

)︄
dxxx, (B.4)

=
K∑︂
k=1

πk

∫︂
X

(︄
p(xxx)p(y = k|xxx)α

παkα(α− 1) − p(xxx|y = k)
α− 1 + p(xxx)

α

)︄
dxxx. (B.5)

After distributing the factor p(xxx) in the integral, we can notice that the two last terms will be
summed to 1, up to a factor depending on α.
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Iova
Dα

(xxx; y) =
K∑︂
k=1

πk

(︄
1
α
− 1
α− 1 + 1

παkα(α− 1)Exxx∼p(xxx) [p(y = k|xxx)α]
)︄
,

= −1
α(α− 1) + 1

α(α− 1)

K∑︂
k=1

π1−α
k Exxx∼p(xxx) [p(y = k|xxx)α] ,

= (α(α− 1))α
[︄
−1 +

K∑︂
k=1

π1−α
k Exxx∼p(xxx) [p(y = k|xxx)α]

]︄
.

Since we face a categorical distribution, we can affirm that p(y|xxx) ∈ [0, 1]. Therefore, depend-
ing on the value of α, we have either p(y = k|xxx)α ∈ [1,∞[ if α is negative, and p(y = k|xxx) ∈ [0, 1]
for α positive. We now inspect these different cases.

Case of α ∈]1,+∞[ The upper bound we can get on the expectation involves the inequality
p(y = k|xxx)α ≤ p(y = k|xxx). Owing to the linearity of the expectation, we can affirm that:

Exxx∼p(xxx) [p(y = k|xxx)α] ≤ Exxx∼p(xxx) [p(y = k|xxx)] , (B.6)

≤ πk. (B.7)

This allows us to derive the following upper bound on the OvA GEMINI:

Iova
Dα

(xxx; y) = (α(α− 1))−1
[︄
−1 +

K∑︂
k=1

π1−α
k Exxx∼p(xxx) [p(y = k|xxx)α]

]︄
, (B.8)

≤ (α(α− 1))−1
[︄
−1 +

K∑︂
k=1

π2−α
k

]︄
, (B.9)

≤ B]1,+∞[(π1, · · · , πK). (B.10)

The upper bound B]1,+∞[(π1, · · · , πK) is a convex function that is invariant to permutations of
πk. Interestingly, this upper bound only depends on the proportions of the clusters. Its maximimum
is reached when πk = K−1. However, any solution is acceptable for the special case of α = 2,
i.e. the Pearson χ2-divergence. In this case, the upper bound is a constant: B+

2 = K−1
2 . In this

situation, the proportions of the clusters do not matter. Only getting a Dirac model is sufficient to
maximise the OvA GEMINI.

We can further conclude that the bound is tight when considering a Dirac model since 1α = 1
and 0α = 0, leading to:

Exxx∼p(xxx) [1[xxx ∈ Xk]α] = Exxx∼p(xxx) [1[xxx ∈ Xk]] , (B.11)

= πk. (B.12)

And so do we conclude:
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Iova
Dα

(xxx; y) = (α(α− 1))−1
[︄
−1 +

K∑︂
k=1

π1−α
k Exxx∼p(xxx) [p(y = k|xxx)α]

]︄
, (B.13)

= (α(α− 1))−1
[︄
−1 +

K∑︂
k=1

π2−α
k

]︄
, (B.14)

= B]1,+∞[(π1, · · · , πK). (B.15)

Case of a α ∈]0, 1[ In this case, the front factor (α(α− 1))−1 is negative. Thus, we are interested
in minimising the second term and finding the lower bound. We can already infer:

p(y = k|xxx) ≤ p(y = k|xxx)α, (B.16)

Exxx∼p(xxx) [p(y = k|xxx)] ≤ Exxx∼p(xxx) [p(y = k|xxx)α] , (B.17)

πk ≤ Exxx∼p(xxx) [p(y = k|xxx)α] . (B.18)

This lower bound is tight for a Dirac model. We can finally compute for the OvA GEMINI that:

Iova
Dα

(xxx; y) = (α(α− 1))−1
[︄
−1 +

K∑︂
k=1

π1−α
k Exxx∼p(xxx) [p(y = k|xxx)α]

]︄
, (B.19)

≤ (α(α− 1))−1
[︄
−1 +

K∑︂
k=1

π2−α
k

]︄
, (B.20)

≤ B]0,1[. (B.21)

Hence, we conclude that B]0,1[ = B]1,+∞[ = BR+∗\{1}. In both cases, using a Dirac model
implies that the OvA GEMINI reaches its upper bound.

Case of a negative α The upper bound of the OvA GEMINI in this case is the infinity. Indeed,
taking the example of the Dirac model is sufficient to consider regions of the data space X where the
clustering distribution has no support. Thus, the expectation is undefined, or rather drifts towards
infinity.

Specific case of α = 1, the KL divergence In this case, we need to start the computations all
over again using the definition f(t) = t log t. Indeed, we can skip the term −t+ 1 since it does not
affect the value of an f -divergence, i.e. for any convex function f s.t. f(1) = 0 and for any real
constant c:

Df(t)(p∥q) = Df(t)+c(t−1)(p∥q). (B.22)

We thus get:
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Iova
D1 (xxx; y) = Ey∼p(y)

[︃
Exxx∼p(xxx)

[︃
p(xxx|y = k)

p(xxx) log p(x
xx|y = k)
p(xxx)

]︃]︃
, (B.23)

=
K∑︂
k=1

πk

∫︂
X
p(xxx|y = k) log

(︃
p(xxx|y = k)

p(xxx)

)︃
dxxx, (B.24)

=
K∑︂
k=1

∫︂
X
p(y = k|xxx)p(xxx) log

(︃
p(y = k|xxx)

πk

)︃
dxxx. (B.25)

We can then separate the log term to make appear the two different entropies contributing to
mutual information:

Iova
D1 (xxx; y) =

K∑︂
k=1

∫︂
X
p(y = k|xxx)p(xxx) log(p(y = k|xxx))dxxx− log πk

∫︂
X
p(y = k|xxx)p(xxx)dxxx,

(B.26)

=
K∑︂
k=1

∫︂
X
p(y = k|xxx)p(xxx) log(p(y = k|xxx))dxxx− πk log πk (B.27)

We find once again an upper bound on the integral depending on p(y|xxx). We know that the
function g : t ↦→ t log t is convex and below 0 for t ∈ [0, 1]. Hence:

p(y = k|xxx) log p(y = k|xxx) ≤ 0, (B.28)

with strict equality iff p(y = k|xxx) ∈ {0, 1}. This implies that the Dirac model maximises the
left integral. We deduce the upper bound of mutual information:

Iova
D1 (xxx; y) =

K∑︂
k=1

∫︂
X
p(y = k|xxx)p(xxx) log(p(y = k|xxx))dxxx− πk log πk, (B.29)

≤
K∑︂
k=1
−πk log πk, (B.30)

≤ B1. (B.31)

This shows that the cluster proportion entropy is the upper bound of mutual information. It is
reached for any Dirac model.

Last subcase: the null alpha In this case, the α-divergence is defined by the function f(t) =
− log t. Let us derive again the OvA GEMINI:
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Iova
D0 (xxx; y) = Ey∼p(y)

[︃
Exxx∼p(xxx)

[︃
− log p(x

xx|y = k)
p(xxx)

]︃]︃
, (B.32)

= −
K∑︂
k=1

πk

∫︂
X
p(xxx) log

(︃
p(xxx|y = k)

p(xxx)

)︃
dxxx, (B.33)

= −
K∑︂
k=1

πk

∫︂
X
p(xxx) log

(︃
p(y = k|xxx)

πk

)︃
dxxx. (B.34)

We expand again the logarithm and compute the integral over constant terms factorised by
p(xxx):

Iova
D0 (xxx; y) =

K∑︂
k=1

πk log πk − πk
∫︂

X
p(xxx) log p(y = k|xxx)dxxx. (B.35)

Now we can see that this OvA GEMINI may converge to infinity. Indeed, for the example of
the Dirac model, we evaluate the integral with terms worth limt→0 log t. We cannot conclude on
the upper bounds of this case.

Maximal upper bound We have shown so far that for α > 0, we can derive two different upper
bounds that only depend on the proportions of the clusters πk. These upper bounds can be reached
by Dirac model of type p(y = k|xxx) = 1[xxx ∈ Xk].

We can now question for the two upper bounds, BR+∗\{1} and B1 what are the optimal cluster
proportions πk. By adding a Lagrangian constraint to enforce

∑︁K
k=1 πk = 1 in each upper bound,

we can show that the maximal upper bound is reached iff πk = K−1∀k. This concludes our proof.

B.2 Proof of Prop. 3.3.3

Proof. Let us consider the value of OvO GEMINI when the distance D is an f -divergence or an
IPM.

Demonstration for f -divergences We first need to highlight that f -divergences come with
a conjugate convex function g. This conjugate enables the inversion of the arguments of the
f -divergence:

Df (p∥q) = Dg (q∥p) , (B.36)

for any distributions p and q. We can use this trick to revert first the f -divergence between the
distribution pθ(y = k|xxx) and p(xxx):

Df (pθ(xxx|y = k)∥p(xxx)) = Dg(p(xxx)∥pθ(xxx|y = k)). (B.37)

We then write p(xxx) as a sum marginalising the y variable. Using the convexity of the function
g, we get a weighted upper bound of this divergence:
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Dg (p(xxx)∥pθ(xxx|y = k)) = Dg

(︄
K∑︂
k′=1

p(y = k′)p(xxx|y = k′)∥
(︄

K∑︂
k′=1

p(y = k′)
)︄
pθ(xxx|y = k)

)︄
,

(B.38)

≤
K∑︂
k′=1

p(y = k′)Dg
(︁
p(xxx|y = k′∥pθ(xxx|y = k)

)︁
, (B.39)

≤ Ek′∼p(y)
[︁
Dg
(︁
p(xxx|y = k′∥pθ(xxx|y = k)

)︁]︁
. (B.40)

To retrieve the OvO form, we can compute the expectation of this inequality over all possible
combinations of p(y):

Ey∼p(y) [Df (p(xxx)∥pθ(xxx|y = k)))] ≤ Ey1,y2∼p(y) [Dg (p(xxx|y1)∥p(xxx|y2))] , (B.41)

Iova
Df

(xxx; y) ≤ Iovo
Dg

(xxx; y) . (B.42)

Then, owing to the conjugate convex functions, we can observe that for any k, k′ ∈ {1, · · · ,K}:

Dg
(︁
pθ(xxx|y = k)∥p(xxx|y = k′)

)︁
+Dg

(︁
p(xxx|y = k′)∥pθ(xxx|y = k)

)︁
= Df

(︁
p(xxx|y = k′∥pθ(xxx|y = k)

)︁
+Df

(︁
pθ(xxx|y = k)∥p(xxx|y = k′)

)︁
. (B.43)

Consequently, the symmetry of OvO in its double expectation implies that:

Iovo
Df

(xxx; y) = Iovo
Dg

(xxx; y) . (B.44)

And so do we conclude that:

Iova
Df

(xxx; y) ≤ Iovo
Df

(xxx; y) . (B.45)

Demonstration for IPMs For IPMs, we start from the OvA distance between the distribution of
an arbitrary cluster i among K:

DIPM (p(xxx|y = i)∥p(xxx)) = sup
f∈F

Exxx∼p(xxx|y=i) [f(xxx)]− Exxx∼p(xxx) [f(xxx)] . (B.46)

We can extend the expectation of the data distribution over all clusters using the sum rules of
probabilities:

DIPM (p(xxx|y = i)∥p(xxx)) = sup
f∈F

Exxx∼p(xxx|y=i) [f(xxx)]−
K∑︂
k=1

p(y = k)Exxx∼pθ(xxx|y=k) [f(xxx)] , (B.47)

= sup
f∈F

K∑︂
k=1

p(y = k)
(︂
Exxx∼p(xxx|y=i) [f(xxx)]− Exxx∼pθ(xxx|y=k) [f(xxx)]

)︂
.

(B.48)
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We used in the second line the fact that the sum of
∑︁K
k=1 p(y = k) = 1 to factorise the first

expectation. Finally, we can use the property that the supremum of a sum is lower or equal than a
sum of suprema:

DIPM (p(xxx|y = i)∥p(xxx)) ≤
K∑︂
k=1

sup
f∈F

p(y = k)
(︂
Exxx∼p(xxx|y=i) [f(xxx)]− Exxx∼pθ(xxx|y=k) [f(xxx)]

)︂
,

(B.49)

≤
K∑︂
k=1

p(y = k)DIPM (p(xxx|y = i)∥pθ(xxx|y = k)) . (B.50)

This upper bound corresponds to the expectation of the IPM between a specific cluster distribu-
tion i and all other cluster distributions. Finally, by performing the expectation over all cluster of
index i, we can conclude that:

Iova
DIPM

(xxx; y) ≤ Iovo
DIPM

(xxx; y) . (B.51)

B.3 Proof of Prop. 3.3.4

Proof. We will show here that when the cluster variable y is binary, the OvA and OvO GEMINIs
are equal if we use IPMs for distance between distributions. Indeed we can first unfold both
equations:

Iova
DIPM

(xxx; y) = Ey∼p(y) [DIPM (p(xxx|y)∥p(xxx))] , (B.52)

= p(y = 0)DIPM (p(xxx|y = 0)∥p(xxx)) + p(y = 1)DIPM (p(xxx|y = 1)∥p(xxx)) , (B.53)

= p(y = 0) sup
f∈F
{Exxx∼p(xxx|y=0) [f(xxx)]− Exxx∼p(xxx) [f(xxx)]}

+ p(y = 1) sup
g∈F
{Exxx∼p(xxx|y=1) [g(xxx)]− Exxx∼p(xxx) [g(xxx)]}, (B.54)

and for the OvO, we simply use the symmetric property of IPMs:

Iovo
DIPM

(xxx; y) = Eya,yb∼p(y) [DIPM (p(xxx|ya)∥p(xxx|yb))] , (B.55)

= p(y = 0)p(y = 1)DIPM (p(xxx|y = 0)∥p(xxx|y = 1))
+ p(y = 1)p(y = 0)DIPM (p(xxx|y = 1)∥p(xxx|y = 0)) , (B.56)

= 2p(y = 0)p(y = 1)DIPM (p(xxx|y = 0)∥p(xxx|y = 1)) . (B.57)

Notice that in Eq. (B.55), we skipped the terms where both the random variables y1 and y2 are
equal, since the implied distance is necessarily 0.

Now, to show the equivalence of both equations (B.52) and (B.55), we simply need to write the
sum rule of probabilities leading to the marginalisation of xxx:
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p(xxx) = p(xxx|y = 0)p(y = 0) + p(xxx|y = 1)p(y = 1). (B.58)

Thus, we can rewrite the expectations depending on the distribution p(xxx) with other distributions
for any function f :

Exxx∼p(xxx) [f(xxx)] = p(y = 0)Exxx∼p(xxx|y=0) [f(xxx)] + p(y = 1)Exxx∼p(xxx|y=1) [f(xxx)] , (B.59)

which we can incorporate back into Eq. (B.52) to get:

Iova
DIPM

(xxx; y) = p(y = 0) sup
f∈F
{(1−p(y = 0))Exxx∼p(xxx|y=0) [f(xxx)]−p(y = 1)Exxx∼p(xxx|y=1) [f(xxx)]}

+ p(y = 1) sup
g∈F
{(1− p(y = 1))Exxx∼p(xxx|y=1) [g(xxx)]− p(y = 0)Exxx∼p(xxx|y=0) [g(xxx)]}. (B.60)

Since we only use two clusters, we know that p(y = 1) = 1 − p(y = 0). This helps us
factorising terms inside the sup expressions:

Iova
DIPM

(xxx; y) = p(y = 0) sup
f∈F

{︂
p(y = 1)

[︂
Exxx∼p(xxx|y=0) [f(xxx)]− Exxx∼p(xxx|y=1) [f(xxx)]

]︂}︂
+ p(y = 1) sup

g∈F

{︂
p(y = 0)

[︂
Exxx∼p(xxx|y=1) [g(xxx)]− Exxx∼p(xxx|y=0) [g(xxx)]

]︂}︂
. (B.61)

Eventually, the factors p(y = 0) and p(y = 1) do not depend on the functions f and g, so we
can pull them out of the supremum. The remaining expressions are then symmetric and can be thus
factorised:

Iova
DIPM

(xxx; y) = 2p(y = 0)p(y = 1) sup
f∈F

{︂
Exxx∼p(xxx|y=0) [f(xxx)]− Exxx∼p(xxx|y=1) [f(xxx)]

}︂
, (B.62)

= 2p(y = 0)p(y = 1)DIPM (p(xxx|y = 0)∥p(xxx|y = 1)) , (B.63)

= Iovo
DIPM

(xxx; y) . (B.64)

This concludes the proof.

B.4 Proof of Prop. 3.3.5

Proof. For any f -divergence and two distribution p and q taking value in the space X , then disjoint
support between p and q implies the maximisation of the f -divergence. Indeed, the bounds of an
f -divergence are:

0 ≤ Df (p∥q) ≤ f(0) + g(0), (B.65)

where the upper bound can be infinity depending on f and its convex conjugate g : t −→
tf(1/t). Thus, for any two different clusters k ̸= k′:
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0 ≤ Df

(︁
p(xxx|y = k)∥p(xxx|y = k′)

)︁
≤ f(0) + g(0). (B.66)

However, distributions for the same clusters have an f -divergence of 0. We can therefore sum
all the terms and their respective upper bounds:

K∑︂
k ̸=k′

p(y = k)p(y = k′)Df

(︁
p(xxx|y = k)∥p(xxx|y = k′)

)︁
≤

K∑︂
k ̸=k′

p(y = k)p(y = k′)(f(0) + g(0)),

(B.67)

Iovo
Df

(xxx; y) ≤
K∑︂
k=1

p(y = k)p(y ̸= k)(f(0) + g(0)),

(B.68)

Following (Caglar, 2014, theorem 5), disjoint supports between the distribution p(xxx|y = k)
and p(xxx|y = k′) implies the equality with the upper bound. Assume that the data space X is
separated into K disjoint and supplementary spaces Xk. To each subspace Xk corresponds a cluster
distribution p(xxx|y = k). This disjoint supports are achieved for any model of the form:

p(y = k|xxx) = 1[xxx ∈ Xk] , (B.69)

which implies the disjoint distributions:

p(xxx|y = k) ∝ 1[xxx ∈ Xk] . (B.70)

Each of these spaces control the proportion of data in the cluster k, and hence controls p(y = k).
Thus, the OvO GEMINI is equal to its upper bound owing to disjoint supports:

Iovo
Df

(xxx; y) =
K∑︂
k=1

p(y = k)p(y ̸= k)(f(0) + g(0)). (B.71)

We need to maximise the upper bound. This will be the maximum value of OvO GEMINI
reachable for models with disjoint supports. Adding a Lagrangian term to respect the contraint of∑︁K
k=1 p(y = k) = 1 leads to the optimal solution p(y = k) = 1

K . This concludes the proof.





APPENDIX C
Derivation and gradients

of GEMINIs
We show in this appendix how to derive all estimable forms of the GEMINI and their gradients.

In the specific case of the Wasserstein-GEMINI, we consider that the proof of Proposition 3.3.2 is
sufficient to provide the estimable form. For every case, we start with the estimation, then follow
with the gradient.

C.1 f -divergence GEMINI

We detail here the derivation for 3 f -divergences that we previously chose: the KL divergence,
the TV distance and the squared Hellinger distance. To do so, we first describe the generic scenario
for any function f .

C.1.1 Generic f function

First, we recall that the definition of an f -divergence involves a convex function:

f : R+ → R, (C.1)

x→ f(x), (C.2)

s.t. f(1) = 0, (C.3)

between two distributions p and q as described:

Df (p∥q) = Ezzz∼q

[︃
f

(︃
p(zzz)
q(zzz)

)︃]︃
. (C.4)

C.1.1.1 Derivation

We simply inject this definition in the OvA GEMINI and directly obtain both an expectation
on the cluster assignment y and on the data variable xxx. We then merge the writing of the two
expectations for the sake of clarity.

185
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IOvA
Df

(xxx; y) = Ey∼pθ(y) [Df (pθ(xxx|y)∥pdata(xxx))] , (C.5)

= Ey∼pθ(y)

[︃
Exxx∼pdata(xxx)

[︃
f

(︃
pθ(xxx|y)
pdata(xxx)

)︃]︃]︃
, (C.6)

= Ey∼pθ(y),xxx∼pdata(xxx)

[︃
f

(︃
pθ(y|xxx)
pθ(y)

)︃]︃
. (C.7)

Injecting the f -divergence in the OvO GEMINI first yields:

IOvO
Df

(xxx; y) = Eya,yb∼pθ(y) [Df (pθ(xxx|ya)∥pθ(xxx|yb))] , (C.8)

= Eya,yb∼pθ(y)

[︃
Exxx∼pθ(xxx|yb)

[︃
f

(︃
pθ(xxx|ya)
pθ(xxx|yb)

)︃]︃]︃
. (C.9)

Now, by using Bayes theorem, we can perform the inner expectation over the data distribution.
We then merge the expectations for the sake of clarity.

IOvO
Df

(xxx; y) = Eya,yb∼pθ(y)

[︃
Exxx∼pdata(xxx)

[︃
pθ(yb|xxx)
pθ(yb)

f

(︃
pθ(xxx|ya)
pθ(xxx|yb)

)︃]︃]︃
, (C.10)

= Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︃
pθ(yb|xxx)
pθ(yb)

f

(︃
pθ(ya|xxx)pθ(yb)
pθ(yb|xxx)pθ(ya)

)︃]︃
. (C.11)

Notice that we also changed the ratio of conditional distributions inside the function by a ratio
of posteriors through Bayes’ theorem, weighted by the relative cluster proportions.

C.1.1.2 Gradients

We will show in this section the derivations of the gradient w.r.t. the parameters θ of the
posterior distribution pθ(y|xxx) for the f -divergence GEMINIs. Note that the discrete variable y
for the cluster assignment has a distribution depending on the parameters θ whereas the pdata(xxx)
distribution does not.

Starting with OvA For any f-divergence, we can rewrite the one-vs-all GEMINI by extending
the expectation over the discrete cluster assignments:

IOvA
Df

(xxx; y) = Exxx∼pdata(xxx),y∼pθ(y)

[︃
f

(︃
pθ(y|xxx)
pθ(y)

)︃]︃
, (C.12)

= Epdata(xxx)

⎡⎣ K∑︂
y=1

pθ(y)f
(︃
pθ(y|xxx)
pθ(y)

)︃⎤⎦ . (C.13)

We can now start applying the gradient operator:

∂IOvA
Df

(xxx; y)
∂θ

=
∂Exxx∼pdata(xxx)

[︂∑︁K
y=1 pθ(y)f

(︂
pθ(y|xxx)
pθ(y)

)︂]︂
∂θ

. (C.14)
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First, as the data distribution pdata(xxx) is constant w.r.t. the parameters θ, we can perform the
derivation inside the expectation:

∂IOvA
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx)

⎡⎣ K∑︂
y=1

∂pθ(y)f
(︂
pθ(y|xxx)
pθ(y)

)︂
∂θ

⎤⎦ , (C.15)

= Exxx∼pdata(xxx)

⎡⎣ K∑︂
y=1

pθ(y)
∂f
(︂
pθ(y|xxx)
pθ(y)

)︂
∂θ

+ f

(︃
pθ(y|xxx)
pθ(y)

)︃
∂pθ(y)
∂θ

⎤⎦ . (C.16)

We unfold the derivatives of the first term:

∂IOvA
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx)

⎡⎣ K∑︂
k=1

pθ(y)f ′
(︃
pθ(y|xxx)
pθ(y)

)︃ ∂ pθ(y|xxx)
pθ(y)
∂θ

+ f

(︃
pθ(y|xxx)
pθ(y)

)︃
∂pθ(y)
∂θ

⎤⎦ ,
(C.17)

= Exxx∼pdata(xxx)

[︄
K∑︂
k=1

pθ(y)f ′
(︃
pθ(y|xxx)
pθ(y)

)︃
pθ(y)∂pθ(y|xxx)

∂θ − pθ(y|xxx)∂pθ(y)
∂θ

pθ(y)2

+f
(︃
pθ(y|xxx)
pθ(y)

)︃
∂pθ(y)
∂θ

]︃
, (C.18)

= Exxx∼pdata(xxx)

[︄
K∑︂
k=1

f ′
(︃
pθ(y|xxx)
pθ(y)

)︃
∂pθ(y|xxx)
∂θ

+
{︃
f

(︃
pθ(y|xxx)
pθ(y)

)︃

−pθ(y|x
xx)

pθ(y) f ′
(︃
pθ(y|xxx)
pθ(y)

)︃}︃
∂pθ(y)
∂θ

]︃
. (C.19)

The marginal is estimated directly as the expectation of the posterior over the data. In practice,
we use an unbiased estimate for the marginal. Therefore, the gradient of the marginal w.r.t θ
becomes:

∂pθ(y)
∂θ

= Exxx∼pdata(xxx)

[︃
∂pθ(y|xxx)
∂θ

]︃
, (C.20)

which we can re-inject in the equation above:

∂IOvA
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx)

[︄
K∑︂
k=1

f ′
(︃
pθ(y|xxx)
pθ(y)

)︃
∂pθ(y|xxx)
∂θ

+
{︃
f

(︃
pθ(y|xxx)
pθ(y)

)︃

−pθ(y|x
xx)

pθ(y) f ′
(︃
pθ(y|xxx)
pθ(y)

)︃}︃
Exxx′pdata(xxx′)

[︃
∂pθ(y|xxx′)

∂θ

]︃]︃
. (C.21)

We then realise that since xxx and xxx′ are drawn from the same distribution, it is equivalent to
rearranging the equation thanks to expectations’ linearity in order to factor everything by the same
posterior gradient ∂pθ(y|xxx)

∂θ :
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∂IOvA
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx)

[︄
K∑︂
k=1

{︃
f ′
(︃
pθ(y|xxx)
pθ(y)

)︃

+Exxx′∼pdata(xxx′)

[︃
f

(︃
pθ(y|xxx′)
pθ(y)

)︃
− pθ(y|xxx′)

pθ(y) f ′
(︃
pθ(y|xxx′)
pθ(y)

)︃]︃}︃
∂pθ(y|xxx)
∂θ

]︃
,

(C.22)

= Exxx∼pdata(xxx),y∼pθ(y)

[︃ 1
pθ(y)

{︃
f ′
(︃
pθ(y|xxx)
pθ(y)

)︃
+Exxx′∼pdata(xxx′)

[︃
f

(︃
pθ(y|xxx′)
pθ(y)

)︃
− pθ(y|xxx′)

pθ(y) f ′
(︃
pθ(y|xxx′)
pθ(y)

)︃]︃}︃
∂pθ(y|xxx)
∂θ

]︃
.

(C.23)

Therefore the gradient of the OvA f -divergence-GEMINI consists in two terms. The first one
depends on both the value of the data xxx and the cluster assignment y, whereas the second only
depends on the cluster assignment y since it consists in an expectation over the data.

Concluding with OvO Once again, the data distribution does not undergo the gradient operator
for it does not depend on the parameters θ. Therefore, we pass the gradient operator inside the data
expectation from equation C.11:

∂IOvO
Df

(xxx; y)
∂θ

=
∂Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︂
pθ(yb|xxx)
pθ(yb) f

(︂
pθ(ya|xxx)pθ(yb)
pθ(yb|xxx)pθ(ya)

)︂]︂
∂θ

, (C.24)

= Exxx∼pdata(xxx)

⎡⎢⎢⎣K,K∑︂
ya=1
yb=1

∂pθ(ya)pθ(yb|xxx)f
(︂
pθ(ya|xxx)pθ(yb)
pθ(yb|xxx)pθ(ya)

)︂
∂θ

⎤⎥⎥⎦ . (C.25)

For the sake of brevity, we will note the inner fraction:

γ = pθ(xxx|ya)
pθ(xxx|yb)

= pθ(ya|xxx)pθ(yb)
pθ(yb|xxx)pθ(ya)

, (C.26)

which derivative w.r.t. θ is:

∂γ

∂θ
= γ

pθ(yb)
∂pθ(yb)
∂θ

+ γ

pθ(ya|xxx)
∂pθ(ya|xxx)

∂θ
− γ

pθ(yb|xxx)
∂pθ(yb|xxx)

∂θ
− γ

pθ(ya)
∂pθ(ya)
∂θ

. (C.27)

We can now inject these elements inside the main derivative:
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∂IOvO
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx)

⎡⎢⎢⎣K,K∑︂
ya=1
yb=1

∂pθ(ya)pθ(yb|xxx)f(γ)
∂θ

⎤⎥⎥⎦ , (C.28)

= Exxx∼pdata(xxx)

⎡⎢⎢⎣K,K∑︂
ya=1
yb=1

pθ(yb|xxx)f(γ)∂pθ(ya)
∂θ

+ pθ(ya)f(γ)∂pθ(yb|x
xx)

∂θ

+pθ(ya)pθ(yb|xxx)f ′(γ)∂γ
∂θ

]︃
. (C.29)

We detail the derivation of the last term inside the expectation by first noticing that the front
factor can be rewritten with the inverse of γ, then develop and simplify the fractions:

pθ(ya)pθ(yb|xxx)f ′(γ)∂γ
∂θ

= pθ(ya|xxx)pθ(yb)
γ

f ′(γ)∂γ
∂γ
, (C.30)

= pθ(ya|xxx)pθ(yb)
γ

f ′(γ)
(︃

γ

pθ(yb)
∂pθ(yb)
∂θ

+ γ

pθ(ya|xxx)
∂pθ(ya|xxx)

∂θ

− γ

pθ(yb|xxx)
∂pθ(yb|xxx)

∂θ
− γ

pθ(ya)
∂pθ(ya)
∂θ

)︃
, (C.31)

= f ′(γ)
(︃
pθ(ya|xxx)∂pθ(yb)

∂θ
+ pθ(yb)

∂pθ(ya|xxx)
∂θ

− pθ(ya)γ
∂pθ(yb|xxx)

∂θ

−pθ(yb|xxx)γ ∂pθ(ya)
∂θ

)︃
. (C.32)

We can now rewrite all inner terms of the expectation factorised with their respective gradient
term:

∂IOvO
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx)

⎡⎢⎢⎣K,K∑︂
ya=1
yb=1

(︁
f(γ)− γf ′(γ)

)︁
pθ(yb|xxx)∂pθ(ya)

∂θ

+pθ(ya|xxx)f ′(γ)∂pθ(yb)
∂θ

+ pθ(yb)f ′(γ)∂pθ(ya|x
xx)

∂θ
+
(︁
f(γ)− γf ′(γ)

)︁
pθ(ya)

∂pθ(yb|xxx)
∂θ

]︃
.

(C.33)

Since the two random variables ya and yb are independent, all terms have a symmetric version
which simply consists in swapping the position of the index a or b. Note that the swapped version
of γ is 1

γ . We can therefore write a new version of the gradient that only depends on the gradient of
the marginal and posterior of one single cluster assignment ya:
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∂IOvO
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx)

⎡⎣ K∑︂
ya=1

⎧⎨⎩
K∑︂

yb=1
pθ(yb|xxx)

(︃
f(γ)− f ′(γ) + f ′( 1

γ
)
)︃
∂pθ(ya)
∂θ

+
K∑︂

yb=1
pθ(yb)

(︃
f ′(γ) + f( 1

γ
)− 1

γ
f ′( 1

γ
)
)︃
∂pθ(ya|xxx)

∂θ

⎫⎬⎭
⎤⎦ . (C.34)

We can now introduce the function h defined as:

h(t) = f(t)− tf ′(t) + f ′(1
t
), (C.35)

which we can recognize in our gradient and thus simplify the notation:

∂IOvO
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx)

⎡⎣ K∑︂
ya=1

K∑︂
yb=1

pθ(yb|xxx)h(γ)∂pθ(ya)
∂θ

+
K∑︂

yb=1
pθ(yb)h( 1

γ
)∂pθ(ya|x

xx)
∂θ

⎤⎦ .
(C.36)

We finish this step by replacing sums in the equation by expectations:

∂IOvO
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx),ya∼pθ(y)

[︃ 1
pθ(ya)

Eyb∼pθ(y)

[︃
pθ(yb|xxx)
pθ(yb)

h(γ)
]︃
∂pθ(ya)
∂θ

+ 1
pθ(ya)

Eyb∼pθ(y)

[︃
h( 1
γ

)
]︃
∂pθ(ya|xxx)

∂θ

]︃
. (C.37)

In order to finish this demonstration, we perform the same trick as in the OvA scenario. In
practice, the cluster proportion are estimated via the posterior distribution, and so must we unfold
the expression ∂pθ(ya)

∂θ :

∂pθ(ya)
∂θ

=
∂Exxx∼pdata(xxx) [pθ(ya|xxx)]

∂θ
= Exxx∼pdata(xxx)

[︃
∂pθ(ya|xxx)

∂θ

]︃
, (C.38)

leading to:

∂IOvO
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx),ya∼pθ(y)

[︃ 1
pθ(ya)

Eyb∼pθ(y)

[︃
pθ(yb|xxx)
pθ(yb)

h(γ)
]︃

×Exxx′∼pdata(xxx′)

[︃
∂pθ(ya|xxx′)

∂θ

]︃
+ 1
pθ(ya)

Eyb∼pθ(y)

[︃
h( 1
γ

)
]︃
∂pθ(ya|xxx)

∂θ

]︃
. (C.39)

Then, we can reorder the elements thanks to the linearity of the expectation:

∂IOvO
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx),ya∼pθ(y)

[︃ 1
pθ(ya)

Eyb∼pθ(y)

[︃
h( 1
γ

)

−Exxx′∼pdata(xxx′)

[︃
pθ(yb|xxx′)
yb ∼ pθ(y)h(γ)

]︃]︃
∂pθ(ya|xxx)

∂θ

]︃
. (C.40)
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For the final equation, we can expand again the definition of γ:

∂IOvO
Df

(xxx; y)
∂θ

= Exxx∼pdata(xxx),ya∼pθ(y)

[︃ 1
pθ(ya)

Eyb∼pθ(y)

[︃
h

(︃
pθ(xxx|yb)
pθ(xxx|ya)

)︃
−Exxx′∼pdata(xxx′)

[︃
pθ(yb|xxx′)
pθ(yb)

h

(︃
pθ(xxx′|ya)
pθ(xxx′|yb)

)︃]︃]︃
∂pθ(ya|xxx)

∂θ

]︃
. (C.41)

Thus, we highlighted for both the OvA and OvO GEMINIs based on f -divergences that
gradients consists in two terms within an expectation. The first one varies both with the values of
the cluster assignment y and the data sample xxx, whereas the second one only varies with y. For
the remainder of this section, we will not give the explicit formula for the gradient of each specific
GEMINI and we will only focus on their estimate.

C.1.2 Kullback-Leibler divergence

The function for Kullback-Leibler is f(t) = t log t and its derivative f ′(t) = log t+ 1. We do
not need to write the OvA equation: it is straightforwardly the usual MI. For the OvO, we inject in
Eq. (C.11) the function definition by replacing:

t = pθ(ya|xxx)pθ(yb)
pθ(yb|xxx)pθ(ya)

, (C.42)

in order to get:

IOvO
DKL

(xxx; y) = Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︃
pθ(yb|xxx)
pθ(yb)

× pθ(ya|xxx)pθ(yb)
pθ(yb|xxx)pθ(ya)

log pθ(ya|x
xx)pθ(yb)

pθ(yb|xxx)pθ(ya)

]︃
. (C.43)

We can first simplify the factors outside of the logs:

IOvO
DKL

(xxx; y) = Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︃
pθ(ya|xxx)
pθ(ya)

log pθ(ya|x
xx)pθ(yb)

pθ(yb|xxx)pθ(ya)

]︃
. (C.44)

If we use the properties of the log, we can separate the inner term in two sub-expressions:

IOvO
DKL

(xxx; y) = Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︃
pθ(ya|xxx)
pθ(ya)

log pθ(ya|x
xx)

pθ(ya)
+ pθ(ya|xxx)

pθ(ya)
log pθ(yb)

pθ(yb|xxx)

]︃
. (C.45)

Hence, we can use the linearity of the expectation to separate the two terms above. The first
term is constant w.r.t. yb, so we can remove this variable from the expectation among the subscripts:

IOvO
DKL

(xxx; y) = Eya∼pθ(y),xxx∼pdata(xxx)

[︃
pθ(ya|xxx)
pθ(ya)

log pθ(ya|x
xx)

pθ(ya)

]︃
+ Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︃
pθ(ya|xxx)
pθ(ya)

log pθ(yb)
pθ(yb|xxx)

]︃
. (C.46)

Since the variables ya and yb are independent, we can use the fact that:
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Eya∼pθ(y)

[︃
pθ(ya|xxx)
pθ(ya)

]︃
=
∫︂
pθ(ya)

pθ(ya|xxx)
pθ(ya)

dya = 1, (C.47)

inside the second term to reveal the final form of the equation:

IOvO
DKL

(xxx; y) = Exxx∼pdata(xxx),y∼pθ(y)

[︃
pθ(y|xxx)
pθ(y) log pθ(y|x

xx)
pθ(y)

]︃
+ Exxx∼pdata(xxx),y∼pθ(y)

[︃
log pθ(y)

pθ(y|xxx)

]︃
.

(C.48)
Notice that since both terms did not compare one cluster assignment ya against another yb, we

can switch to the same common variable y. Both terms are in fact KL divergences depending on
the cluster assignment y. The first is the reverse of the second. This sum of KL divergences is
sometimes called the symmetric KL, and so can we write in two ways the OvO KL-GEMINI:

IOvO
DKL

(xxx; y) = Exxx∼pdata(xxx) [DKL (pθ(y|xxx)∥pθ(y))] + Exxx∼pdata(xxx) [DKL (pθ(y)∥pθ(y|xxx))] , (C.49)

= Exxx∼pdata(xxx)
[︁
DKL-sym (pθ(y|xxx)∥pθ(y))

]︁
. (C.50)

We can also think of this equation as the usual MI with an additional term based on the reversed
KL divergence.

C.1.3 Total Variation distance

For the total variation, the function is f(t) = 1
2 |t− 1|. Thus, the OvA GEMINI is:

IOvA
DTV

(xxx; y) = 1
2Ey∼pθ(y),xxx∼pdata(xxx)

[︃
|pθ(y|x

xx)
pθ(y) − 1|

]︃
. (C.51)

And the OvO is:

IOvO
DTV

(xxx; y) = 1
2Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︃
pθ(yb|xxx)
pθ(yb)

|pθ(ya|x
xx)pθ(yb)

pθ(yb|xxx)pθ(ya)
− 1|

]︃
, (C.52)

= 1
2Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︃
|pθ(ya|x

xx)
pθ(ya)

− pθ(yb|xxx)
pθ(yb)

|
]︃
. (C.53)

We did not find any further simplification of these equations.

C.1.4 Squared Hellinger distance

Finally, the squared Hellinger distance is based on f(t) = 2(1−
√
t). Hence the OvA unfolds

as:

IOvA
DH2 (xxx; y) = Ey∼pθ(y),xxx∼pdata(xxx)

[︄
2
(︄

1−
√︄
pθ(y|xxx)
pθ(y)

)︄]︄
, (C.54)

= 2− 2Exxx∼pdata(xxx),y∼pθ(y)

[︄√︄
pθ(y|xxx)
pθ(y)

]︄
. (C.55)
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The idea of the squared OvA Hellinger-GEMINI is therefore to minimise the expected square
root of the relative certainty between the posterior and cluster proportion.

For the OvO setting, the definition yields:

IOvO
DH2 (xxx; y) = Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︄
pθ(yb|xxx)
pθ(yb)

× 2×
(︄

1−
√︄
pθ(ya|xxx)pθ(yb)
pθ(yb|xxx)pθ(ya)

)︄]︄
, (C.56)

which we can already simplify by putting the constant 2 outside of the expectation, and by
inserting all factors inside the square root before simplifying and separating the expectation:

IOvO
DH2 (xxx; y) = 2Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︄
pθ(yb|xxx)
pθ(yb)

− pθ(yb|xxx)
pθ(yb)

√︄
pθ(ya|xxx)pθ(yb)
pθ(ya)pθ(yb|xxx)

]︄
, (C.57)

= 2Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︃
pθ(yb|xxx)
pθ(yb)

]︃

− 2Eya,yb∼pθ(y),xxx∼pdata(xxx)

[︄√︄
pθ(ya|xxx)pθ(yb|xxx)
pθ(ya)pθ(yb)

]︄
. (C.58)

We can replace the first term by the constant 1, as shown for the OvO KL derivation. Since we
can split the square root into the product of two square roots, we can apply twice the expectation
over ya and yb because these variables are independent:

IOvO
DH2 (xxx; y) = 2− 2Exxx∼pdata(xxx)

⎡⎣Ey∼pθ(y)

[︄√︄
pθ(y|xxx)
pθ(y)

]︄2⎤⎦ . (C.59)

To avoid computing this squared expectation, we use the equation of the variance V to replace
it. Thus:

IOvO
DH2 (xxx; y) = 2− 2Exxx∼pdata(xxx)

[︄
Ey∼pθ(y)

[︃
pθ(y|xxx)
pθ(y)

]︃
− Vy∼pθ(y)

[︄√︄
pθ(y|xxx)
pθ(y)

]︄]︄
, (C.60)

= 2− 2Exxx∼pdata(xxx)

[︃
Ey∼pθ(y)

[︃
pθ(y|xxx)
pθ(y)

]︃]︃

+ 2Exxx∼pdata(xxx)

[︄
Vy∼pθ(y)

[︄√︄
pθ(y|xxx)
pθ(y)

]︄]︄
. (C.61)

Then, for the same reason as before, the second term is worth 1, which cancels the first constant.
We therefore end up with:

IOvO
DH2 (xxx; y) = 2Exxx∼pdata(xxx)

[︄
Vy∼pθ(y)

[︄√︄
pθ(y|xxx)
pθ(y)

]︄]︄
. (C.62)

Similar to the OvO KL case, the OvO squared Hellinger converges to an OvA setting, i.e.
we only need information about the cluster distribution itself without comparing it to another.
Furthermore, the idea of maximising the variance of the cluster assignments is straightforward for
clustering.
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C.2 Maximum Mean Discrepancy

When using an IPM with a family of functions that project an input of X to the unit ball of an
RKHSH, the IPM becomes the MMD distance.

DMMD (p∥q) = sup
f :||f ||H≤1

Ezzz∼p(zzz) [f(zzz)]− Ezzz∼q(zzz) [f(zzz)] , (C.63)

= ∥Ezzz∼p(zzz) [φ(zzz)]− Ezzz∼q(zzz) [φ(zzz)] ∥H, (C.64)

(C.65)

where φ is a embedding function of the RKHS.
By using a kernel function κ(zzza, zzzb) =< φ(zzza), φ(zzzb) >, we can express the square of this

distance thanks to inner product space properties (Gretton et al., 2012):

DMMD2 (p∥q) = Ezzza,zzzb∼p(zzz) [κ(zzza, zzzb)] + Ezzza,zzzb∼q(zzz) [κ(zzza, zzzb)]− 2Ezzza∼p(zzz),zzzb∼q(zzz) [κ(zzza, zzzb)] .
(C.66)

Throughout this section, we will use the following shortcut notation:

DMMD2 (p∥q) = (α+ β − 2γ)2, (C.67)

where we purposefully omit the dependence on xxx, y and θ in the terms α, β and γ for the sake
of brevity.

Now, we can derive each term of this equation using our distributions p ≡ pθ(xxx|y) and
q ≡ pdata(xxx) for the OvA case, and p ≡ pθ(xxx|ya), q ≡ pθ(xxx|yb) for the OvO case. In both
scenarios, we aim at finding an expectation over the data variable xxx using only the respectively
known and estimable terms pθ(y|xxx) and pθ(y).

C.2.1 OvA scenario

C.2.1.1 Estimation

For the first term, we use Bayes’ theorem twice to get an expectation over two variables xxxa and
xxxb drawn from the data distribution.

α = Exxxa,xxxb∼pθ(xxx|y) [κ(xxxa,xxxb)] = Exxxa,xxxb∼pdata(xxx)

[︃
pθ(y|xxxa)pθ(y|xxxb)

pθ(y)2 κ(xxxa,xxxb)
]︃
. (C.68)

For the second term, we do not need to perform anything particular as we directly get an
expectation over the data variables xxxa and xxxb. The last term only needs Bayes theorem once, for
the distribution q is directly replaced by the data distribution pdata(xxx):

γ = Exxxa∼pθ(xxx|y),xxxb∼pdata(xxx) [κ(xxxa,xxxb)] = Exxxa,xxxb∼pdata(xxx)

[︃
pθ(y|xxxa)
pθ(y) κ(xxxa,xxxb)

]︃
. (C.69)

Note that for the last term, we could replace pθ(y|xxxa) by pθ(y|xxxb); that would not affect the
result since xxxa and xxxb are independently drawn from pdata(xxx). We thus replace all terms, and do not
forget to put a square root on the entire sum since we have computed so far the squared MMD:
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IOvA
DMMD

(xxx; y) = Ey∼pθ(y) [DMMD (pθ(xxx|y)∥pdata(xxx))] , (C.70)

= Ey∼pθ(y)

[︃(︃
Exxxa,xxxb∼pdata(xxx)

[︃
pθ(y|xxxa)pθ(y|xxxb)

pθ(y)2 κ(xxxa,xxxb)
]︃

+Exxxa,xxxb∼pdata(xxx) [κ(xxxa,xxxb)]− 2Exxxa,xxxb∼pdata(xxx)

[︃
pθ(y|xxxa)
pθ(y) κ(xxxa,xxxb)

]︃)︃ 1
2

⎤⎦ .
(C.71)

Since all variables xxxa, xxx′
a, xxxb and xxx′

b are independently drawn from the same distribution
pdata(xxx), we can replace all of them by the variables xxx and xxx′. We then use the linearity of the
expectation and factorise by the kernel κ(xxx,xxx′):

IOvA
DMMD

(xxx; y) = Ey∼pθ(y)

⎡⎣Exxx,xxx′∼pdata(xxx)

[︃
κ(xxx,xxx′)

(︃
pθ(y|xxx)pθ(y|xxx′)

pθ(y)2 + 1− 2pθ(y|x
xx)

pθ(y)

)︃]︃ 1
2

⎤⎦ .
(C.72)

C.2.1.2 Gradient

To compute the gradient, we will first unfold the expectation over the cluster proportions to be
able to differentiate:

IOvA
DMMD

(xxx; y) =
K∑︂
y=1

√︂
pθ(y)2DMMD2 (pθ(xxx|y)∥pdata(xxx)), (C.73)

=
K∑︂
y=1

Exxx,xxx′∼pdata(xxx)
[︂
κ(xxx,xxx′)

(︂
pθ(y|xxx)pθ(y|xxx′) + pθ(y)2 − 2pθ(y|xxx)pθ(y)

)︂]︂ 1
2 .

(C.74)

There, we can first differentiate with respect to the distance, and then backpropagate for each
term within the expectation because the data distribution does not depend on θ:

∂IOvA
DMMD

(xxx; y)
∂θ

=
K∑︂
y=1

1
2pθ(y)DMMD (pθ(xxx|y)∥pdata(xxx))×

Exxx,xxx′∼pdata(xxx)

[︄
κ(xxx,xxx′)

(︄
∂pθ(y|xxx)pθ(y|xxx′)

∂θ
+ ∂pθ(y)2

∂θ
− 2∂pθ(y|x

xx)pθ(y)
∂θ

)︄]︄
. (C.75)

Each term corresponds then to the respective gradients of α, β and γ. For the first term, we will
use the fact that xxx and xxx′ are sampled independently and the symmetry of the kernel to swap the
expectations definitions and get a factor 2:
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∂Exxx,xxx′∼pdata(xxx) [α]
∂θ

= Exxx,xxx′

[︃
κ(xxx,xxx′)∂pθ(y|x

xx)pθ(y|xxx′)
∂θ

]︃
, (C.76)

= Exxx,xxx′

[︃
κ(xxx,xxx′)

(︃
pθ(y|xxx)∂pθ(y|x

xx′)
∂θ

+ pθ(y|xxx′)∂pθ(y|x
xx)

∂θ

)︃]︃
, (C.77)

= 2Exxx∼pdata(xxx)

[︃
Exxx′∼pdata(xxx)

[︁
κ(xxx,xxx′)pθ(y|xxx′)

]︁ ∂pθ(y|xxx)
∂θ

]︃
. (C.78)

The second term β is easier since it depends only on the cluster proportions which is constant
throughout the double expectations. Thus:

∂Exxx,xxx′∼pdata(xxx) [β]
∂θ

= Exxx,xxx′∼pdata(xxx)

[︄
κ(xxx,xxx′)∂pθ(y)2

∂θ

]︄
, (C.79)

= Exxx,xxx′∼pdata(xxx)
[︁
κ(xxx,xxx′)

]︁
× 2pθ(y)Exxx∼pdata(xxx)

[︃
∂pθ(y|xxx)
∂θ

]︃
, (C.80)

= 2κ̄pθ(y)Exxx∼pdata(xxx)

[︃
∂pθ(y|xxx)
∂θ

]︃
, (C.81)

where κ̄ is the mean kernel of the data. We then finish the last term:

∂Exxx,xxx′∼pdata(xxx) [γ]
∂θ

= Exxx,xxx′∼pdata(xxx)

[︃
κ(xxx,xxx′)∂pθ(y|x

xx)pθ(y)
∂θ

]︃
, (C.82)

= pθ(y)Exxx,xxx′∼pdata(xxx)

[︃
κ(xxx,xxx′)∂pθ(y|x

xx)
∂θ

]︃
+ Exxx,xxx′∼pdata(xxx)

[︃
κ(xxx,xxx′)pθ(y|xxx)× Exxx′′∼pdata(xxx)

[︃
∂pθ(y|xxx′′)

∂θ

]︃]︃
, (C.83)

= pθ(y)Exxx∼pdata(xxx)

[︃
κ(xxx, ·)∂pθ(y|x

xx)
∂θ

]︃
+ Exxx,xxx′∼pdata(xxx)

[︃
κ(xxx′, ·)pθ(y|xxx′)∂pθ(y|x

xx)
∂θ

]︃
. (C.84)

Finally, we can merge these three terms to obtain the complete OvA-MMD gradient:

∂IOvA
DMMD

(xxx; y)
∂θ

=
K∑︂
y=1

1
2pθ(y)DMMD (pθ(xxx|y)∥pdata(xxx))×

Exxx∼pdata(xxx)
[︂{︂

2Exxx′∼pdata(xxx)
[︁
κ(xxx,xxx′)pθ(y|xxx′)

]︁
+ 2κ̄pθ(y)

−2pθ(y)κ(xxx, ·)− 2Exxx′∼pdata(xxx)
[︁
κ(xxx′, ·)pθ(y|xxx′)

]︁}︂ ∂pθ(y|xxx)
∂θ

]︃
. (C.85)

To conclude, we simplify the factor 2 and factorise a bit the equation to obtain:
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∂IOvA
DMMD

(xxx; y)
∂θ

=
K∑︂
y=1

1
pθ(y)DMMD (pθ(xxx|y)∥pdata(xxx))×

Exxx∼pdata(xxx)

[︃{︂
Exxx′∼pdata(xxx)

[︁
[κ(xxx,xxx′)− κ(xxx′, ·)]pθ(y|xxx′)

]︁
+ [κ̄− κ(xxx, ·)]pθ(y)

}︂ ∂pθ(y|xxx)
∂θ

]︃
(C.86)

C.2.2 OvO scenario

C.2.2.1 Estimation

The two first terms α and β of the OvO MMD are the same as the first term α of the OvA
setting, with a careful attention to swapping the subscript a and b as appropriate. Only the negative
term γ changes. We once again use Bayes’ theorem twice:

γ = Exxxa∼pθ(xxx|ya),xxxbpθ(xxx|yb) [κ(xxxa,xxxb)] = Exxxa,xxxb∼pdata(xxx)

[︃
pθ(ya|xxxa)
pθ(ya)

pθ(yb|xxxb)
pθ(yb)

κ(xxxa,xxxb)
]︃
.

(C.87)
The final sum is hence similar to the OvA:

IOvO
DMMD

(xxx; y) = Eya,yb∼pθ(y) [DMMD (pθ(xxx|ya)∥pθ(xxx|yb)))] , (C.88)

= Eya,yb∼pθ(y)

[︃
Exxx,xxx′∼pdata(xxx)

[︃
κ(xxx,xxx′)

(︃
pθ(ya|xxx)pθ(ya|xxx′)

pθ(ya)2

+pθ(yb|xxx)pθ(yb|xxx′)
pθ(yb)2 − 2pθ(ya|x

xx)pθ(yb|xxx′)
pθ(ya)pθ(yb)

)︃]︃ 1
2

⎤⎦ . (C.89)

C.2.2.2 Gradient

Similarly to the OvA case, we start by unfolding the OvO GEMINI and incorporating the
cluster proportions within the square root:

IOvO
DMMD

(xxx; y) =
K,K∑︂
ya=1
yb=1

Exxx,xxx′∼pdata(xxx)
[︂
κ(xxx,xxx′)

(︂
pθ(ya|xxx)pθ(ya|xxx′)pθ(yb)2

+pθ(yb|xxx)pθ(yb|xxx′)pθ(ya)2 − 2pθ(ya|xxx)pθ(yb|xxx′)pθ(ya)pθ(yb)
)︂]︂ 1

2 . (C.90)

The gradient will then be a sum of terms proportional to their respective inverse MMD and
cluster proportions. Skipping this step as it its identical to the OvA case, we directly focus on the
gradient of the 3 inner terms. For the first term, we have:

∂pθ(ya|xxx)pθ(ya|xxx′)pθ(yb)2

∂θ
= pθ(ya|xxx′)pθ(yb)2∂pθ(ya|xxx)

∂θ
+ pθ(ya|xxx)pθ(yb)2∂pθ(ya|xxx′)

∂θ

+ 2pθ(ya|xxx)pθ(ya|xxx′)pθ(yb)Exxx′′∼pdata(xxx)

[︃
∂pθ(yb|xxx′′)

∂θ

]︃
. (C.91)
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Incorporating it in the double expectation over the data distribution and multipliying with the
kernel simplifies the first terms:

Exxx,xxx′∼pdata(xxx)

[︃
∂α

∂θ

]︃
= 2pθ(yb)2Exxx∼pdata(xxx)

[︃
Exxx′∼pdata(xxx)

[︁
κ(xxx,xxx′)pθ(ya|xxx′)

]︁ ∂pθ(ya|xxx)
∂θ

]︃
+ 2pθ(yb)Exxx∼pdata(xxx)

[︃
Exxx′,xxx′′∼pdata(xxx)

[︁
κ(xxx′.xxx′′)pθ(ya|xxx′)pθ(ya|xxx′′)

]︁ ∂pθ(yb|xxx)
∂θ

]︃
. (C.92)

The second term β has the exact same equation with a permutation of the a and b subscripts.
We can compute the last term:

∂pθ(ya|xxx)pθ(yb|xxx′)pθ(ya)pθ(yb)
∂θ

= pθ(yb|xxx′)pθ(ya)pθ(yb)
∂pθ(ya|xxx)

∂θ

+ pθ(ya|xxx)pθ(ya)pθ(yb)
∂pθ(yb|xxx′)

∂θ

+ pθ(ya|xxx)pθ(yb|xxx′)pθ(yb)Exxx′′∼pdata(xxx)

[︃
∂pθ(ya|xxx′′)

∂θ

]︃
+ pθ(ya|xxx)pθ(yb|xxx′)pθ(ya)Exxx′′∼pdata(xxx)

[︃
∂pθ(yb|xxx′′)

∂θ

]︃
. (C.93)

Once inserted inside the double expectation over the data distribution, we obtain:

Exxx,xxx′∼pdata(xxx)

[︃
∂γ

∂θ

]︃
= pθ(ya)pθ(yb)Exxx∼pdata(xxx)

[︃
Exxx′∼pdata(xxx)

[︁
κ(xxx,xxx′)pθ(yb|xxx′)

]︁ ∂pθ(ya|xxx)
∂θ

+Exxx′∼pdata(xxx)
[︁
κ(xxx,xxx′)pθ(ya|xxx′)

]︁ ∂pθ(yb|xxx)
∂θ

]︃
+ Exxx,xxx′∼pdata(xxx)

[︁
κ(xxx,xxx′)pθ(ya|xxx)pθ(yb|xxx′)

]︁
×
(︃
pθ(yb)Exxx∼pdata(xxx)

[︃
∂pθ(ya|xxx)

∂θ

]︃
+ pθ(ya)Exxx∼pdata(xxx)

[︃
∂pθ(yb|xxx)

∂θ

]︃)︃
. (C.94)

Now, we can add all terms together and factorise with respect to each differential factor. To
lighten the expression, we will only write the factors in front of the differential ∂pθ(ya|xxx)

∂θ because
those weighting the differential ∂pθ(yb|xxx)

∂θ are the same through permutation of the a and b subscripts:

∂Exxx,xxx′∼pdata(xxx) [α+ β − 2γ]
∂θ

= 2Exxx∼pdata(xxx)
[︂{︂

Exxx′∼pdata(xxx)
[︁
κ(xxx,xxx′)pθ(yb)(pθ(yb)pθ(ya|xxx)

−pθ(yb|xxx)pθ(ya))] + Exxx′,xxx′′∼pdata(xxx)
[︁
κ(xxx′,xxx′′)(pθ(ya)pθ(yb|xxx′)pθ(yb|xxx′′)

−pθ(yb)pθ(ya|xxx′)pθ(yb|xxx′′))
]︁}︁ ∂pθ(ya|xxx)

∂θ
+ {. . .} ∂pθ(yb|x

xx)
∂θ

]︃
. (C.95)

The final gradient of the OvO-MMD-GEMINI therefore the incorporation of the equation
above in a sum weighted by the inverse MMD distance and the matching cluster proportions of the
GEMINI:
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∂IOvO
DMMD

(xxx; y)
∂θ

=
K,K∑︂
ya=1
yb=1

1
2pθ(ya)pθ(yb)DMMD (pθ(xxx|ya)∥pθ(xxx|yb))

×

∂Exxx,xxx′∼pdata(xxx) [α+ β − 2γ]
∂θ

. (C.96)

Naturally, the gradient to optimise upon implementation would merge the differential over the
different variables ya and yb into a single variable y. However, the length of such expression given
the inverse MMD distance would be too long to write out here. Instead, we propose to take a look at
the effective implementation of the MMD-GEMINI using matrix multiplications and element-wise
operations in App. D which provides an automated easy-to-write gradient.

C.3 Gradients for the Wasserstein-GEMINI

We seek the expression of the gradient of the Wasserstein-GEMINI for some output τττ ∈ RN×K

of some probabilistic model. The matrix τττ is therefore row-stochastic. The expression of the
GEMINI in the one-vs-all context is then:

IOvA
DW (xxx; y|θ) = Ey∼pθ(y) [DW (pθ(xxx|y)∥pdata(x))] , (C.97)

and the one-vs-one variant simply replaces the data distribution with another cluster distribution on
which to perform the expectation as well. The distance between the samples is noted δ. During
training, the model does not see continuous distribution and only gets batches of samples. Hence,
the problem is discretised and the Wasserstein distance can be then evaluated using histogram
vectors. We demonstrated in Section 3.3.2.3 that these histogram vectors consist in a cluster-
wise normalisation of the predictions which arises from importance sampling. Thus, the discrete
approximation of the Wasserstein-GEMINI is:

ÎOvA
DW (xxx; y|θ) =

K∑︂
k=1

πk min
PPP∈U(ωωωk,111N/N)

N,N∑︂
i=1
j=1

PPP i,jδ(xxxi,xxxj), (C.98)

wherePPP is constrained in a set that forces it to have rows summing to the values ofωωω·k and columns
summing to 111N/N . The vector ωωω·k = τττ ·k/

∑︁N
i=1 τττ ik is the normalised cluster predictions.

C.3.1 Gradient for the Wasserstein distance

The new formulation of the discrete Wasserstein distance corresponds to a linear program and
is often referred to as the Kantorovich problem. This problem admits the following dual (Peyré &
Cuturi, 2019):

DW (ωωω·1∥ωωω·2)) = max
(uuu,vvv)∈RN ×RN

uuui+vvvj≤δij ,∀i,j≤N

⟨uuu,ωωω·1⟩+ ⟨vvv,ωωω·2⟩, (C.99)

thanks to the strong duality for linear programs (Bertsimas & Tsitsiklis, 1997, p 148, Theorem 4.4).
It immediately appears that once we found the optimal "Kantorovich potentials" uuu⋆ and vvv⋆ for each
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respective histogram vector ωωω·1 and ωωω·2 we can compute the gradient of the distance using these
optimal values because we remove the max term. However, as we want to remain in the simplex,
we need to recenter the mass of a gradient and thus substract the mean of the dual variables:

∂DW (ωωω·1∥ωωω·2))
∂ωωω·1

= uuu⋆ −
N∑︂
i=1

uuu⋆i
N

= uuū, (C.100)

∂DW (ωωω·1∥ωωω·2))
∂ωωω·2

= vvv⋆ −
N∑︂
i=1

vvv⋆i
N

= vvv̄. (C.101)

C.3.2 Complete gradient for the OvA Wasserstein

We can now simply unfold the rules of derivation w.r.t. τττ ik between the product of the cluster
proportions πk and the Wasserstein distance. However, we must take into account that due to the
self-normalisation of τττ to produce the histogram vectors ωωω, we have to sum its derivative over all
normalised samples. Thus:

∂Î
∂τττ ik

=
K∑︂
k′=1

DW (ωωω·k′∥111N/N) ∂πk
′

∂τττ ik
+

N∑︂
j=1

πk′
∂DW (ωωω·k′∥111N/N)

∂ωωωjk′

∂ωωωjk′

∂τττ ik
, (C.102)

= DW (ωωω·k∥111N )
N

+ πk

N∑︂
j=1

uuūjk

(︄
1[i == j]
Nπk

− τττ jk
N2π2

k

)︄
, (C.103)

where 1 is the indicator function resulting from the derivative of the self normalisation. After
summing over all samples, we can conclude that the gradient of the one-vs-all Wasserstein-GEMINI
w.r.t. model predictions τττ is:

∂ÎOvA
DW

∂τττ ik
= DW (ωωω·k∥111N )

N
+ uuūik

N
− ⟨u

uū·k, τττk⟩
N2πk

. (C.104)

C.3.3 Complete gradient for the OvO Wasserstein

The demonstration follows the same rules as before. We add as well the fact that the Wasserstein
distance is symmetric, and hence its gradient is as well so we can permute the names uuū and vvv̄ when
changing DW (ωωω1∥ωωω2) for DW (ωωω2∥ωωω1). Therefore, we sum twice the gradients of the Wasserstein
distances, as well as twice the gradients for the proportions due to the symmetric nature of this
function. We can thus arrive to a final gradient that is very similar to the OvO scenario with an
additional summing over adversarial proportions:

∂ÎOvO
DW

∂τττ ik
=

K∑︂
k′=1

2πkDW (ωωω·k∥ωωω·k′)
N

+ 2
πk′uuūj,k/k′

N
− 2
⟨uuū·k/k′τττk⟩
N2πk

. (C.105)

Notice that we detailed in subscript for which Wasserstein evaluation a dual variable emerges
using the notation k/k′. Since the one-vs-one GEMINI makes K2 distance evaluation, we have K2

dual variables as well when removing duplicate dual variables due to symmetry.



APPENDIX D
Implementing

MMD-GEMINI using
matrix multiplications

In this appendix, we provide a practical view on the implementation of the MMD and its
gradient when we have a fixed batch of size N and K clusters. We consider the computations
starting from a row-stochastic matrix τττ ∈ RN×K , typically the softmax output of a model. The
provided gradients are of course not as generic as the ones provided in App. C. We assume in this
appendix that the reader is familiar with the definition of the OvA and OvO MMD-GEMINIs.

D.1 OvA scenario

D.1.1 Alternative computation of the forward pass

We focus here only on the computations of the objective function, the OvA MMD. First, we
can compute the cluster proportions:

πππ = 1
N

111⊤
Nτττ . (D.1)

Our goal is to compute the vector ∆∆∆ ∈ RK where the k-the component is the squared distance
in the Hilbert space between one cluster distribution and the data distribution:

∆∆∆k =
N,N∑︂
i,j

κ̃i,j

[︄
τττkiτττkj
π2
k

+ 1− 2τ
ττki
πk

]︄
. (D.2)

To that end, we introduce the matrix ααα ∈ RN×K which is the element-wise division of τττ by the
proportions of the matching cluster.

ααα = τττ ⊘ (111Nπππ⊤) =
[︃
τττki
πk

]︃
. (D.3)

Individually, we can interprete the value of αik as the ratio p(y = k|xxxi)/p(y = k) or p(xxxi|y =
k)/p(xxxi). This represents the relative strength of the sample in the cluster distribution. We can then
deduce the writing of ∆∆∆:

∆∆∆ = diag
(︂
ααα⊤κ̃κ̃κ̃ααα

)︂
+ 111K×Nκ̃κ̃κ̃111N − 2ααα⊤κ̃κ̃κ̃111N = aaa+ ccc− 2bbb. (D.4)

201
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τ

π α κ

γω

ba c

∆I

Figure D.1 – Summary of computations for the forward pass of the OvA MMD-GEMINI using
matrices

To name the elements, aaa is the cluster contribution: how the distribution of the cluster contributes
to increase the distance, and the same goes for the constant ccc which represents the agnostic data
strength. Finally, bbb is the agreement between the two distributions p(y| = k|xxx) and p(xxx) which
diminishes the value of the MMD: the more the cluster distribution takes to the data (by having
everything in the same cluster), the stronger bbb is and the lower the MMD. Yet, to simplify the
derivatives to compute later, we introduce two intermediary variables:

γγγ = κ̃κ̃κ̃ααα, (D.5)

and

ωωω = ααα⊤γγγ, (D.6)

of respective shapes N ×K and K ×K. Thus, we simply rewrite:

∆∆∆ = aaa+ ccc− 2bbb = diag(ωωω) + 111K×Nκ̃κ̃κ̃111N − 2γγγ⊤111N . (D.7)

Finally, assuming the square root is applied element-wise, we can write the final objective as:

ÎOvA
MMD(xxx, y|θ) = πππ⊤

√
∆∆∆. (D.8)

The graph of computations is summarised in Figure D.1.

D.1.2 Gradient

We can now compute the derivatives of each part of the graph with respect to the conditional
probabilities: ∂Î

∂τττ . By reversing the graph, we get the list of the following sorted derivatives to

compute: (1) ∂Î
∂∆∆∆ (2) ∂Î

∂aaa (3) ∂Î
∂bbb (4) ∂Î

∂ωωω (5) ∂Î
∂γγγ (6) ∂Î

∂ααα (7) ∂Î
∂πππ (8) ∂Î

∂τττ .
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To compute these derivatives, we will follow an automatic differentiation procedure. All
derivatives correspond to the gradient of a scalar with respect to a matrix or vector, hence all
derivatives will keep the same shape as the denominator. Notice that because c and κ̃ do not depend
on τττ , they will not produce any gradient.

D.1.2.1 Deriving for ∆

We simply take the vector π for this derivative that summed the square root of ∆. Additionally,
the element-wise square root is differentiated. Thus:

∂Î
∂∆∆∆ = πππ

2
√

∆
. (D.9)

D.1.2.2 Deriving for aaa and bbb

The contributions of aaa and bbb are simple element-wise sums of vectors. They have the same
shape as the previous gradient. Therefore:

∂Î
∂aaa

= ∂Î
∂∆∆∆ = πππ

2
√

∆
, (D.10)

∂Î
∂bbb

= −2 ∂Î
∂∆∆∆ = − πππ√

∆
. (D.11)

D.1.2.3 Deriving for ω

Since we took only the diagonal of ω for computation, the gradient with respect to ω will be a
diagonal matrix, which diagonal is exactly the previously committed error:

∂Î
∂ωωω

= diag

(︄
∂Î
∂aaa

)︄
= 1

2diag
(︃
πππ√
∆∆∆

)︃
. (D.12)

D.1.2.4 Deriving for γ

The vector γ contributed two times in the computation graph: once to ωωω and another time for bbb.
Both cases involve simple matrix multiplications. We can sum the matrix gradient to both errors to
get:

∂Î
∂γγγ

= ∂Î
∂ωωω

ααα⊤ + ∂Î
∂bbb

111⊤
N , (D.13)

= 1
2α
ααdiag

(︃
πππ√
∆∆∆

)︃
− 111N

(︃
πππ√
∆∆∆

)︃⊤
. (D.14)

Notice that for the derivative from bbb, we had to transpose the error since bbb is computed using
γγγ⊤. Here, we can remark that by unfolding the definition of ααα, and thanks to matrix product with
the diagonal product, the values of πππ gets cancelled. Therefore:



204 APPENDIX D

∂Î
∂γγγ

= 1
2

τττ

111N
√

∆∆∆⊤ − 111N
(︃
πππ√
∆∆∆

)︃⊤
. (D.15)

D.1.2.5 Deriving for α

As we did for γγγ, we need to sum here the gradient contributions of ααα to ωωω and γγγ. Both are
matrix multiplications, however we add a transposition in the case of ω. Thus:

∂Î
∂ααα

=
(︄
∂Î
∂ωωω

γγγ⊤
)︄⊤

+ κ̃κ̃κ̃⊤∂Î
∂γγγ
, (D.16)

= 1
2γ
γγdiag

(︃
πππ√
∆∆∆

)︃
+ κ̃κ̃κ̃

(︄
1
2

τττ

111N
√

∆∆∆⊤ − 111N
(︃
πππ√
∆∆∆

)︃⊤
)︄
. (D.17)

Here, we can unfold the definition of γγγ to make a common factor κ̃κ̃κ̃ appear on the left matrix
multiplication. Thus:

∂Î
∂ααα

= κ̃κ̃κ̃

[︄
1
2α
ααdiag

(︃
πππ√
∆∆∆

)︃
+ 1

2
τττ

111N
√

∆∆∆⊤ − 111N
(︃
πππ√
∆∆∆

)︃⊤
]︄
. (D.18)

We notice the exact same simplification on the left term between ααα and the diagonal matrix as
we had for the gradient w.r.t. γγγ. Rewriting this term is exactly equal to the second, and thus:

∂Î
∂ααα

= κ̃κ̃κ̃

[︄
τττ

111N
√

∆∆∆⊤ − 111N
(︃
πππ√
∆∆∆

)︃⊤
]︄
. (D.19)

D.1.2.6 Deriving for π

Same procedure for πππ by summing the contributions of the gradient from ααα and the dot product
with
√

∆∆∆ in I . For the derivative from ααα, we multiply the rows of the previous error by the squared
inverse of πππ and βββ and sum them. Hence:

∂Î
∂πππ

=
√

∆∆∆−
[︄[︄

τττ⊤
√

∆∆∆111⊤
N

− πππ√
∆∆∆

111⊤
N

]︄
κ̃κ̃κ̃⊙ βββ

πππ2111⊤
N

]︄
111N , (D.20)

=
√

∆∆∆−
[︄[︄

τττ⊤
√

∆∆∆111⊤
N

− πππ√
∆∆∆

111⊤
N

]︄
κ̃κ̃κ̃⊙ ααα

πππ111⊤
N

]︄
111N . (D.21)

Since the inverse factor 1/πππ111⊤
N is constant row-wise, we can incorporate it directly to the left

term of the matrix multiplication. This simplifies again the notations:

∂Î
∂πππ

=
√

∆∆∆ +
[︄(︄

ααα⊤κ̃κ̃κ̃√
∆∆∆111⊤

N

− 111⊤
Nκ̃κ̃κ̃√
∆∆∆111⊤

N

)︄
⊙ααα

]︄
111N . (D.22)

Here, the combination of the element-wise multiplication by ααα followed by a sum over all
samples is in fact equal to the respective distance terms aaa and bbb. First first simplification yields:
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∂Î
∂πππ

=
√

∆∆∆− aaa− bbb√
∆
. (D.23)

To finally go further, we can use the definition of ∆∆∆ to replace the left term by another. Indeed,
since:

aaa− bbb = ∆∆∆ + bbb− ccc, (D.24)

and the denominator
√

∆ gets cancelled by ∆∆∆, we obtain:

∂Î
∂πππ

= ccc− bbb√
∆
. (D.25)

D.1.2.7 Deriving for τ

Finally, the gradient for τττ sums contributions from bothααα and πππ. In both cases, we just consider
element-wise operations, so the global gradient will just be element-wise multiplication of the
errors, with a specific repetition over all rows for the gradient from πππ:

∂Î
∂τττ

= 111N
N

∂Î
∂πππ

⊤

+ ∂Î
∂ααα
⊙ 1

111Nπππ⊤ , (D.26)

= 111N
ccc− bbb
N
√

∆

⊤
+ κ̃κ̃κ̃

[︄
τττ

111N
√

∆∆∆⊤ − 111N
(︃
πππ√
∆∆∆

)︃⊤
]︄
⊙ 1

111Nπππ⊤ , (D.27)

= 111N
ccc− bbb
N
√

∆

⊤
+ κ̃κ̃κ̃

[︄
ααα

111N
√

∆∆∆⊤ −
1

111N
√

∆∆∆⊤

]︄
. (D.28)

To conclude, we can factorise all terms by the common denominator:

∂Î
∂τττ

= 1

111N
√

∆∆∆⊤ ⊙
[︃111N
N

(ccc− bbb)⊤ + κ̃κ̃κ̃(ααα− 111N×K)
]︃
. (D.29)

For further simplification of the gradients, we can unfold again the definition of bbb and ccc as
follows:

111N
N

(ccc− bbb)⊤ = 1
N

[111N×Nκ̃κ̃κ̃111N×K − 111N×Nκ̃κ̃κ̃ααα] , (D.30)

= 1
N

[111N×Nκ̃κ̃κ̃ (111N×K −ααα)] . (D.31)

Thus, we can conclude that the final equation for the gradient of the OvA MMD is:

∂Î
∂τττ

= 1

111N
√

∆∆∆⊤ ⊙ [(IN − 111N×N/N) κ̃κ̃κ̃ (ααα− 111N×K)] . (D.32)

To be more precise, we can even express the value for a component at position i, k:
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∂Î
∂τττ i,k

=

⎡⎣ 1√
∆k

N∑︂
j=1

(︄
κ̃ij −

1
N

N∑︂
l=1

κ̃jl

)︄
(αjk − 1)

⎤⎦ , (D.33)

=
[︄

1√
∆k

(c− bk + γik − κ̄i)
]︄
, (D.34)

with κ̄i =
∑︁N
j=1 κ̃ij .

D.2 OvO scenario

D.2.1 Alternative computation of the forward pass

We will proceed here to the exact same reasoning as in the OvA MMD. We first compute the
distance ∆∆∆ before summing them with πππ. Contrary to the OvA MMD, ∆∆∆ is now a matrix of shape
K ×K where each entry describes the distance between two clusters k and k′:

ÎOvO
MMD(xxx, y|θ) = πππ⊤

√
∆∆∆πππ. (D.35)

As previously done, we can express the squared distance as the sum of two self-contributions
minus a cross-contribution. These contributions will be here matrices of shape K ×K. Yet, we
can notice that in the OvO MMD, the matrix ∆∆∆ is symmetric. Simply put, the cross-contribution is
symmetric, and the two self-contributions are the transposed of each other:

∆∆∆ = AAA+CCC − 2BBB, (D.36)

= AAA+AAA⊤ − 2BBB. (D.37)

We can here realise that the matrixAAA is in fact a column-wise copy of the vector aaa from the
previous computations with OvA MMD. Similarly,BBB is the entire matrix ωωω whileAAA only consists
in its diagonal. Therefore:

∆∆∆ = diag(ωωω)111⊤
K + 111Kdiag(ωωω)⊤ − 2ωωω. (D.38)

The remaining of the definition of ωωω strictly unfolds from the OvA MMD forward pass.

D.2.2 Gradient

In the specific case of the OvO, we have square roots of values of ∆∆∆ which can be equal to 0,
hence undifferentiable. This is in fact not a burden since in principle, these 0 only happen when we
evaluate the MMD between a cluster and itself. Thus, we can discard easily the null components
of ∆∆∆ during the final sum (expectation over π) and adopt locally the small convention that the
derivative of I w.r.t. ∆∆∆ will be equal to 0 on the diagonal, despite the square root computation.
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D.2.2.1 Deriving for ∆∆∆

We start simple, the derivative is simply a square matrix where all components are the cartesian
product of the vector πππ:

∂Î
∂∆∆∆ = ππ⊤

2
√

∆
. (D.39)

From now on, we will arbitrarily say that
(︂
∂Î
∂∆∆∆

)︂
k,k

= 0 because it was not summed at the end

of the forward pass in the OvO MMD. Thus, we will write for clarity:

∂Î
∂∆∆∆ = ππ⊤

2
√

∆
⊙ (111K×K − IIIK). (D.40)

D.2.2.2 Deriving for ωωω

For the gradient w.r.t. ωωω, we have two contributions to sum, one which comes from the diagonal
of ωωω times 2, and another from the complete matrix ωωω:

∂Î
∂ωωω

= ∂Î
∂∆∆∆

(︄
∂∆∆∆

∂diag(ωωω)
∂diag(ωωω)
∂ωωω

+ ∂∆∆∆
∂diag(ωωω)⊤

∂diag(ωωω)⊤

∂ωωω

)︄
− 2× ∂Î

∂∆∆∆
∂∆∆∆
∂ωωω

, (D.41)

= 2diag

(︄
∂Î
∂∆∆∆111K

)︄
− 2 ∂Î

∂∆∆∆ . (D.42)

We can simplify the factor 2 to get:

∂Î
∂ωωω

= diag

(︄[︄
ππππππ⊤
√

∆∆∆
⊙ (111K×K − IIIK)

]︄
111K

)︄
− ππππππ⊤
√

∆∆∆
⊙ (111K×K − IIIK). (D.43)

This gradient says that on all parts of the matrix except the diagonal, we backpropagate the
cross-contribution from ωωω, but sum all this contributions as well on the diagonal. To ease later
writings, we introduce ΛΛΛ:

ΛΛΛ = ππππππ⊤
√

∆∆∆
⊙ (111K×K − IIIK). (D.44)

Thanks to ∆∆∆ and the cross-product of the vector πππ, ΛΛΛ is positive and symetric.

D.2.2.3 Deriving for γγγ

Now, we can backpropagate as we did for the OvA MMD, except that γ only contributed once
to the computation of ωωω. Thus:

∂Î
∂γγγ

= ααα
∂Î
∂ωωω

, (D.45)

= ααα [diag (ΛΛΛ111K)−ΛΛΛ] . (D.46)
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D.2.2.4 Deriving for ααα

The derivative w.r.t. ααα is a backpropagation through two matrix multiplications: one in γγγ and
one in ωωω. Hence:

∂Î
∂ααα

= κ̃κ̃κ̃
∂Î
∂γγγ

+ γγγ
∂Î
∂ωωω

, (D.47)

= κ̃κ̃κ̃ααα
∂Î
∂ωωω

+ γγγ
∂Î
∂ωωω

, (D.48)

= 2γγγ ∂Î
∂ωωω

. (D.49)

Thus:

∂Î
∂ααα

= 2γγγ [diag (ΛΛΛ111K)−ΛΛΛ] . (D.50)

Note that we can write the first term differently because we multiply the matrix γγγ by a diagonal
matrix. This is equivalent to doing an element-wise multiplication of γγγ by the vector inside the
diag function repeated row-wise:

∂Î
∂ααα

= 2111N×KΛΛΛ⊙ γγγ − 2γγγΛΛΛ. (D.51)

D.2.2.5 Deriving for πππ

The proportions contributed in the final expectation with ∆∆∆ and in the computations of ααα. This
looks like what we had in the OvA MMD backpropagation. Therefore:

∂Î
∂πππ

= ∂πππ⊤√∆πππ
∂πππ

− 111⊤
N

[︄
ααα

111Nπππ⊤ ⊙
∂Î
∂ααα

]︄
, (D.52)

= 2πππ⊤√∆− 2× 111⊤
N

[︃
ααα

111Nπππ⊤ ⊙ (111N×KΛΛΛ⊙ γγγ − γγγΛΛΛ)
]︃
. (D.53)

By noticing that the matrix 111N×KΛΛΛ is constant row-wise, we can easily permute the element-
wise operation with γγγ and perform the matrix multiplication with 111⊤

N before thanks to factorisation.
The element-wise product of ααα with γγγ summed over all samples is equal to the diagonal of ωωω. We
can rewrite:

∂Î
∂πππ

= 2πππ⊤√∆− 2diag(ωωω)
πππ⊤ ⊙ 111KΛΛΛ + 2

πππ⊤ ⊙
(︂
111⊤
N [ααα⊙ γγγΛΛΛ]

)︂
. (D.54)

D.2.2.6 Deriving for τττ

We can finally draw a conclusion to this backpropagation by summing the gradient of the two
contributions of τττ : one from ααα and another one from πππ:



APPENDIX D 209

∂Î
∂τττ

= 1
111Nπππ⊤ ⊙

∂Î
∂ααα

+ 1
N

111N
∂Î
∂πππ

, (D.55)

= 2
111Nπππ⊤ ⊙ [γγγ ⊙ 111N×KΛΛΛ− γγγΛΛΛ] + 2

N
111Nπππ⊤

√
∆∆∆− 2

N
111N

[︃
diag(ωωω)
πππ⊤ ⊙ 111KΛΛΛ

]︃
+ 2
N

111N
[︃ 1
πππ⊤ ⊙

(︂
111⊤
N [ααα⊙ γγγΛΛΛ]

)︂]︃
, (D.56)

= 2
N

111Nπππ⊤
√

∆∆∆ + 2
111Nπππ⊤ ⊙

[︃
γγγ ⊙ 111N×KΛΛΛ− γγγΛΛΛ− 111N

N
(diag(ωωω)⊙ 111KΛΛΛ)

+111N×N
N

(ααα⊙ γγγΛΛΛ)
]︃
. (D.57)

Thus, we computed the gradient of the OvO-MMD-GEMINI using only matrices for batches of
fixed size N .







Apprentissage statistique appliqué à la cardiologie

Clustering discriminant et phénogroupes de la sténose aortique

Louis OHL

Résumé

La sténose de la valve aortique (SA) est une maladie chronique progressive dont la prévalence
risque de tripler dans les décennies à venir en Amérique du Nord et par conséquent ses impacts
en santé et économie. À l’heure actuelle, aucun médicament contre la SA n’est disponible. La
nécessité de pharmacothérapies adaptées pousse donc à l’exploration des différentes causes de
la progression de la SA chez les patients. Bien qu’il existe déjà certaines sous-catégories de la
SA, ces dernières sont difficiles à identifier et par conséquent à cibler par une thérapie.
Afin de découvrir et identifier des causes potentielles de la SA, nous formulons la recherche
de ces phénogroupes en tant que problème de partitionement. Le partitionnement est un
problème issu du domaine d’apprentissage automatique consistant à répartitr de multiples
observations en groupes nommés clusters selon leurs similarités. Afin d’accompagner ce
problème d’apprentissage automatique, nous utilisons l’étude sur le progression des déterminants
métaboliques de la SA (étude PROGRESSA). L’étude PROGRESSA comprend trois modalités:
clinicopathologique, protéomique et radiomique pour 351 patients avec suivi annuel. La
structure de PROGRESSA est complexe: elle est de grande dimension avec des variables de
natures différentes. De plus, les différentes modalités ne se recouvrent pas nécessairement.
Dans ce contexte, nous formulons le problème de partitionnement à travers un prisme discrimi-
natif, ce qui permet d’intégrer avec facilité des modèles d’apprentissage profond, notamment
pour manipuler des données grande dimensions. Ces dernières années ont été marquées par
l’arrivée de méthodes de partitionnement profonds, souvent basés sur la maximisation de
l’information mutuellee. Cependant, les récents succès de ces méthodes sont souvent spécifique
à un type unique de données et ne permettent donc pas d’anticiper leur applicabilité à un
problème multi-source.
Afin de construire une solution pour le problème de partitionnement multi-source, cette thèse
s’orchestre autour du développement d’un ensemble de méthodes de clustering nommé infor-
mation mutuelle généralisée (GEMINI) à partir du Chapitre 3. Cet ensemble de méthodes
permet d’utiliser n’importe quelle architecture de réseau de neurones profonds sur des données
de natures variées. Nous montrons également comment cette méthode peut être améliorée
pour incorporer des méchanismes de sélections de vaiables afin de faciliter l’interprétation
des clusters au Chapitre 4: Sparse GEMINI. Puis nous complètons le spectre des modèles
entraînables par GEMINI avec l’introduction d’arbres non supervisés donnant un clustering
avec explication intégrée dans le chapitre 5.
Enfin, nous terminons cette thèse avec un pipeline intégrant divers variants de GEMINI pour
la découverte de phénogroupes de la SA dans l’étude PROGRESSA au Chapitre 6. Certains
de ces phénogroupes montrent une mortalité accentuée et sont caractérisés par des marqueurs
spécifiques, par exemple liés aux lipoprotéines, au diabète ou à la bicuspidie des valves aortiques.
Ces phénogroupes peuvent ainsi être ciblés par des thérapies spécifiques afin de réduire le risque
de progression de la maladie.

Mots-clés : Partitionnement discriminatif, apprentissage non supervisé, cardiologie, sténose aortique,
phénogroupes



Abstract

Aortic valve stenosis (AS) is a chronic progressive disease whose prevalence is likely to triple
in the coming decades in North America, with a consequent impact on health and the economy.
However, efficient drug therapies for this disease are not available. The need for appropriate
medication is therefore driving the exploration of the various causes of AS progression in
patients. There exist a few sub-categories of the disease that could be differently targeted by
drugs, but they are hard to define and identify.
To alleviate the finding of different possible causes of AS, we formulate the search of phenogroup
(i.e. disease subtypes) as a clustering problem. Clustering is a family of approaches from
machine learning that consists in gathering multiple observations deemed similar in categories
called clusters. To support this machine learning problem instance, we employ the metabolic
determinants of the progression of AS study (PROGRESSA study). The PROGRESSA dataset
comprises 3 modalities: clinicopathological, proteomics and radiomics data for 351 patients
with yearly follow-ups. The structure of the PROGRESSA study is challenging for current
clustering algorithms: it is high-dimensional with mixed data types. Moreover, the different
modalities of the data do not necessarily overlap, making it to a multi-source clustering problem.
In this context, we formulate the clustering problem through the lens of discriminative clustering:
a point of view that leverages the easy integration of deep learning models for handling and
concatenating high-dimensional data. Within this framework, the last decade witnessed the
impressive rise of deep clustering methods that often involves the maximisation of mutual
information. However, the recent success of deep clustering models are often over-specified for
one type of data and therefore hardly account for multi-modal data.
To pave the way for a multi-source discriminative clustering algorithm, we developed a set of
discriminative clustering methods called generalised mutual information (GEMINI) in Chapter 3.
Thanks to its discriminative construction, this set of methods can be used with any deep neural
network architecture on data of various types. We also show how this method can be improved to
incorporate variable selection mechanisms to facilitate the interpretation of clusters in Chapter 4:
Sparse GEMINI. Then, we complete the spectrum of models trainable by GEMINI in Chapter 5
with the introduction of unsupervised trees giving a clustering with integrated explanation.
Finally, we conclude this thesis in Chapter 6 with a pipeline integrating various GEMINI variants
for the discovery of AS phenogroups in the PROGRESSA study. Some of these phenogroups
show increased mortality and are characterised by specific markers, for example linked to
lipoproteins, diabetes or bicuspid aortic valves. These phenogroups can therefore be targeted by
specific therapies to reduce the risk of disease progression.

Keywords: Discriminative clustering, unsupervised learning, cardiology, aortic stenosis,
phenogroups
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