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Chapter 1

Introduction

Future mobile networks are envisioned to support a large number of different ser-

vices tailored to the specific needs of Vertical sectors and complying with stringent

and diverse Quality of Service (QoS) requirements [1]. Network slicing is a key

enabler of this vision, facilitating the creation of multiple independent logical net-

works (“slices”), running on top of the physical network and sharing its resources.

Each slice can be dedicated to a different service, offering isolation and an agreed

upon QoS [2]. However, considering the dynamicity of traffic demand (e.g. di-

urnal variations, peaks of traffic during big sports events, etc.), dynamic slice

orchestration is essential to ensure the QoS requirements of different slices in a

cost-efficient way [3]. This Thesis focuses on data-driven optimization methods

for dynamic slice orchestration in Beyond 5G Networks.

1.1 Network Slicing in Beyond 5G Networks

In this section we provide some background on Network Slicing, starting with

the evolution from a Network Sharing paradigm in 3G and 4G networks to the

modern network slicing concept introduced in 5G. Then, we give an overview of

the current standardization and deployment status of 5G, as well as the vision for

Beyond 5G (B5G) networks (with a focus on slicing). Finally, we outline some key

algorithmic challenges that still remain open in 5G+ network slicing and explain

how our work comes into the picture.

1
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Network Sharing. With a view to accommodate the ever-increasing mo-

bile traffic demand in an economically viable way, Network sharing was intro-

duced in mobile networks reducing the capital and operational expenditure costs

(CAPEX/OPEX) for Mobile Network Operators (MNOs) [4]. First, with passive

sharing and network roaming in 3G networks (e.g. sharing of sites, masts, etc.),

and then with active Radio Access Network (RAN) sharing in 4G networks (e.g.

sharing base stations, antennas, spectrum resources, backhaul equipment, etc.),

including also scenarios of core network component sharing (e.g. the Mobility

Management Entity (MME)) [1]. However, the 5G and beyond vision to sup-

port on-demand services tailored for Vertical sectors with stringent and diverse

QoS requirements, requires a more advanced paradigm that extends beyond static

network sharing solutions.

From Network Sharing to Network Slicing. The key to flexible service

provisioning in 5G networks, was the advent of Network Function Virtualization

(NFV) and Software Defined Networking (SDN) technologies [5, 6]. With NFV,

traditional Network Functions (e.g. baseband processing, firewalls, load balancers,

etc.), that were typically running on dedicated proprietary hardware, are now

virtualized. Thus, Virtual Network Functions (VNFs) can be flexibly deployed

as software on commercial off the self servers throughout the network. On the

other hand, SDN provides flexible connectivity between VNFs by decoupling the

control and data planes, meaning that the routing of traffic from VNF to VNF can

be directly programmed via open interfaces (e.g., OpenFlow [7]). Network slicing

leverages on both of these technologies to create virtual networks (“slices”) on

top of the Physical Network Infrastructure, offering isolation (both performance-

wise and privacy-wise) and flexible resource sharing [8, 9]. It is the enabler of

multi-tenancy in 5G and beyond systems, where Verticals, Over-The-Top (OTT)

service providers, and Virtual MNOs can flexibly lease slices of the network from

the Infrastructure Provider (typically an MNO), with custom functionalities and

QoS that is governed by a Service Level Agreement (SLA) [1]. The benefits of

Network slicing are the following:

• It expedites the provisioning of new services (no need to purchase new ded-

icated hardware equipment and re-train technicians to operate it).

• It offers isolation between slices (performance-wise and privacy-wise).
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• It offers flexible utilization of the network resources, significantly reducing

operational and capital expenses for MNOs (the network capacity provi-

sioned to any slice can be dynamically managed according to traffic demands,

avoiding unnecessary use of resources).

However, the above benefits of network slicing are offered in the expense of higher

complexity in resource management, and therefore, challenging slice orchestration

problems have emerged, that require algorithmic innovation.

5G Standardization Status. Network Slicing was introduced in Release 15

(Rel-15) of the 3rd Generation Partnership Project (3GPP) specifications, which

was the first set of specifications for 5G networks. It was aiming to enable three

main use case scenarios [10]:

• enhanced Mobile Broadband (eMBB): High data rates for accessing multi-

media content and data (e.g. mobile video streaming, cloud applications,

etc.).

• Ultra-Reliable and Low Latency Communications (URLLC): Stringent re-

quirements on latency, throughput, and availability, targeting to mission-

critical applications (e.g. remote surgeries, transportation safety, etc.).

• massive Machine Type Communications (mMTC): Supports a massive num-

ber of connected devices that transmit small volumes of data with high delay

tolerance (e.g. smart meters, sensors, etc.).

While Rel-15 laid the foundations for 5G networks by introducing the main key

enabling technologies (e.g. network slicing, Multi-Access Edge Computing (MEC),

5G New Radio (NR), 5G Core (5GC), etc.) to drive the above use cases, it fo-

cused mostly on the eMBB service. The second phase of 5G specifications (Rel-16

and Rel-17), termed as 5G-Evolution, included enhancements to support (among

others) the Industrial Internet of Things (URLLC, Time Sensitive Networks) and

Non Public Networks (NPNs) [11]. The third phase of 5G standardization, coined

5G-Advanced, started with Rel-18 that was concluded at the end of 2023, and is

currently continuing with the on-going Rel-19, paving the way towards 6G net-

works. Some of the 5G-Advanced era features are the enhanced support of (new)

services (e.g. cloud gaming, immersive reality, indoor positioning, and industrial

sensor networks), as well as initial steps towards using Artificial Intelligence (AI)
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and Machine Learning (ML) for network automation (to reduce energy consump-

tion and improve QoS) [12].

5G Deployment Status. The first commercial rollout of 5G networks started

in 2019 and concerned the Non-Stand Alone (NSA) version, meaning that only

the 5G New Radio part was deployed, coexisting with the 4G radio (Long Term

Evolution), and using the 4G core network (Evolved Packet Core). 5G NSA was

deployed with a view to enhance network capacity and support the eMBB use case,

however, it does not support network slicing, which requires a fully-fledged 5G

network (5G radio and 5G core). The progress of the rollout has been significant,

as more than 81% of the population in European Union is now covered by a 5G

network [13].

Mobile Network Operators (MNOs) around the world are currently putting sig-

nificant efforts to upgrade their 5G networks to the Stand Alone (SA) version,

which will enable the full extend of 5G features, using 5G radios along with a

cloud-native, service-based 5G core network. According to the latest European

5G Observatory report [13], at least 36 operators in 25 countries have already de-

ployed 5G SA networks, however, their wide deployment is expected to take time

as it requires careful planning and large investments.

Network slicing is supported by the 5G SA deployments, and is expected to address

the needs of various Vertical sectors and applications in the future. To this end,

MNOs have started conducting initial trials, with an example being the successful

pilot of Vodafone and Ericsson in August 2023, that deployed a network slice for

cloud gaming at Coventry University, achieving a significant QoS improvement

[14]. It is noteworthy that network slicing is considered as the 5G feature with the

highest potential impact in economic growth and sustainability, as its industrial

applications will optimize production processes and reduce resource consumption

(aligned with European Union’s goals) [13]. Therefore, there is a great interest in

addressing the remaining research challenges related to network slicing, that will

allow its wide use in future mobile networks.

The Vision for Beyond 5G Networks. The need for a new generation of

mobile networks is driven by the predicted exponential growth of mobile traffic

[15], and the emergence of new disruptive services with more stringent QoS re-

quirements. Discussions regarding the road to 6G had already started since 2019

with the creation of a focus group within the International Telecommunication
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Union (ITU), intending to set the vision for mobile networks of 2030 and beyond

and to identify the main drivers [16]. Similar projects were undertaken later on

by other organizations, e.g. the white paper of the Next Generation Mobile Net-

works (NGMN) [17]. Some of the envisioned new use cases for 6G networks are

holographic-type communications, extended reality, tactile internet, and Pervasive

Intelligence [18]. One of the main drivers will be the extensive use of MEC, which

will provide distributed computing, storage, and memory resources in close prox-

imity to the connected devices, with a large number of “small” servers located

at the Edge of the network [19]. Therefore, it will offer computation off-loading

capabilities (computational intensive AI tasks can be off-loaded by a mobile device

with limited resources to an edge server), and facilitate time-sensitive AI tasks by

avoiding the transfer of data all the way to the Cloud for processing. Another key

enabler will be end-to-end network automation, facilitated by data-driven slice

orchestration based on AI/ML techniques [20].

Algorithmic and Modeling Challenges in Network Slicing. When it

comes to algorithms for slice orchestration, or “squeezing as many virtual slices

into a common physical network without anyone knowing it”, two important per-

formance considerations arise: (i) the fulfilment of the desired QoS metrics (defined

by Service Level Agreements (SLAs)); (ii) the efficient utilization of the limited

network resources. Since the demand for resources (by the hosted slices) fluctu-

ates over time due to traffic variations, data-driven algorithms for dynamic slice

orchestration are necessary to accomplish the aforementioned goals [3].

While different types of “slicing problems” have been considered in recent cellular

network literature [21], the main flavors appear to be either: (i) the problem of

allocating resources of physical nodes among slices (and users of that slice) sharing

that node, e.g. allocating resource blocks in the Radio Access Network (RAN) [22–

24], or (ii) the problem of slice embedding ; the latter represents slices as graphs

(“VNF chains”) of Virtual Network Functions (VNFs) and a set of virtual links

(VLs) that need to be mapped among physical nodes and links, while satisfying

each slice’s demands [25, 26]. Despite interesting initial attempts to tackle such

problems, a number of challenges arising from the vision of 5G+ slicing remain:

these relate both to the existence of generic yet useful models, as well as algorithmic

efficiency.

Challenge 1: the majority of the parameters that affect the performance of each
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network component (and thus hosted VNFs) are often unknown a priori, dynami-

cally changing, or even non stationary, rendering traditional static and centralized

optimization methods (whether discrete, continuous, or stochastic) problematic, if

not altogether inapplicable. To this end, different works have applied Supervised

ML using Deep Neural Networks (DNNs) to either forecast mobile traffic or even

forecast directly the allocated resources [27–29]. Moreover, Deep Reinforcement

Learning (DRL) has been employed to find effective slice orchestration policies by

learning either the unknown traffic dynamics and/or the unknown performance

functions [30, 31]. The reconfiguration cost involved when migrating VNFs from

one server to another [32] makes far-sighted policies essential for slice orchestra-

tion, while the ability of DRL to obtain such policies makes it an ideal candidate

for this task [33].

Challenge 2: B5G networks will involve slices whose VNFs will be spread across

multiple technological (and administrative) domains (e.g. RAN, Edge, Core,

Cloud, etc.); they will also be governed by end-to-end performance KPIs (key

performance indicators) that often depend on the performance along the entire

VNF chain (e.g. queuing delay across an end-to-end, possibly non-loop free path

of VNFs and links). This not only complicates the modeling of such KPIs in

a tractable manner, but immensely increases the optimization complexity due to

the combinatorial nature of placing multiple (correlated) VNFs, for multiple slices,

among multiple computation nodes. So, most works addressing slicing problems

focus on simple setups (e.g. single domain, single slice, simple VNF chains and

performance metrics), while solutions based on modern reinforcement learning

theory have to deal with astronomically high action spaces, when one considers

multi-VNF, multi-domain, multi-slice problems.

Challenge 3: the training of the algorithms is not particularly data-efficient, which

can hinder their practical application given the scarce(r) availability of cellular

network related data (as opposed to standard machine learning problems).

In this Thesis we focus on the problem of dynamic slice embedding (reconfigura-

tion) in the context of inter-slice orchestration, assuming that resource allocation

per node is performed by a given scheduling algorithm (e.g., proportionally fair

sharing) whose impact is captured by our model. We attempt to tackle all the

aforementioned shortcomings in one common RL framework.
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1.2 Related Work and Novelty of Our Approach

In what follows we outline some key related work papers, which are close to our

work either from a modeling or algorithmic perspective, and highlight the novelty

of our approach.

In [34], the authors tackled the joint problem of placement and resource allocation

for single-tenant scenarios, introducing a queuing-based system model (focusing

on the end-to-end delay KPI). Their solution was based on decoupling the two

problems but accounted for their mutual impact. So, they proposed to first place

VNFs to physical nodes, based on a heuristic, and then allocate resources to them

by solving a convex optimization problem with strict constraints on the end-to-

end delay (the traffic demands are known - no statistical multiplexing). The

common ground with our approach is that we also use queuing theory to model

the end-to-end delay of slices, however our framework is very different, considering

unknown traffic demands (statistical multiplexing) and using RL to address the

placement problem (accounting also for the resource allocator impact through our

queuing model). Moreover, our goal is to find a good trade-off between slice and

network performance (taking into account the reconfiguration cost), while in [34]

the authors try to merely minimize the SLA violations (user-centric perspective).

The resource allocation problem, in every node and link of the physical network,

was recently addressed in an inter-slice setting with fully distributed deep RL

agents (partial observability) in [31]. That work shares a number of features with

ours, as it considers an inter-slice, multi-domain, end-to-end setup, and proposes

a multi-agent DRL solution. However, there are two key differences in our work:

(i) the work in [31] does not consider the VNF placement problem, assuming the

placement is predetermined and fixed. Its focus instead is on the allocation prob-

lem among flows on that node; (ii) unlike [31], we propose and use an analytical

(queuing) model to estimate the end-to-end delay for each slice (that also captures

the competition of traffic among collocated VNFs); as a result, the (mean) reward

at a given step is quickly available to the DRL algorithm, rather than having to

be measured for every flow of every slice.

The two papers we consider to be the closest to our work, as they both tackle slice

placement with deep RL algorithms, are [30] and [33]. In [30] the authors pro-

posed the Deep Deterministic Policy Gradient algorithm, enhanced by a heuristic

to speed up convergence (explore more efficiently the large action space). One
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of the main reasons for employing RL was to learn the unknown and nonlinear

performance functions (stressing the scarcity of available models). In [33], the

reconfiguration cost was additionally taken into account, which is the reason why

far-sighted policies are required, and the branching Deep Q-Network was proposed

to deal with the large action space. While both of the above works manage to ad-

dress a very challenging problem, considering the action space complexity hurdle,

they ignore the end-to-end performance aspect (no slice-specific end-to-end SLAs),

which is an important limitation nowadays with the type of complex slices envi-

sioned for B5G networks (which should go with specific end-to-end performance

guarantees). The inclusion of end-to-end KPIs introduces two additional compli-

cations: (i) it requires more sophisticated (queuing) models to properly capture

end-to-end metrics like delay (e.g. probabilistic routing of flows through VNF

chains, loops, etc.); (ii) the action space complexity, when considering multiple

VNFs per slice does not simply scale additively (as would be the case if we simply

require that the performance of every VNF is “good enough”); it rather scales

multiplicatively, due to the “coupling” induced by the aforementioned end-to-end

performance metrics, quickly giving rise to astronomically high action spaces, in-

duced by the combinatorial nature of the problem.

Apart from the aforementioned differences, there are two additional aspects of our

work that distinguish it from the above (as well as additional, but of course not

all, related work): (i) we make a conscious effort to slowly build up to our final

algorithm, starting from small, theoretically tractable scenarios (to use as bench-

marks), and attempting an informed justification of every new building block along

the way (this is not something common in related literature, and we believe it helps

the reader understand/dissect the potential impact of each algorithmic component

on the observed performance benefits); (ii) we also validate our algorithm using a

real traffic dataset [35] (it is crucial to confirm that the proposed solution is still

effective in realistic non-Markovian scenarios).

In Table 1.1 we present a table of (desirable) features, problem, and algorithmic

characteristics that each of these discussed schemes (including ours) cover, in order

to provide a more compact picture of similarities and differences.
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Table 1.1: Comparison with related work. The checkmarks indicate which
features are supported by each work (enclosed within parentheses when a feature

is partly supported).

Features
Related work papers

This Thesis
[34] [31] [30] [33]

P
ro
b
le
m slice placement ✓ ✓ ✓ ✓

resource allocation ✓ ✓ (✓)

O
p
ti
m
.
go
al
s e2e SLAs ✓ ✓ ✓

network performance ✓ ✓ ✓ ✓

reconfigurations ✓ ✓

M
o
d
el

statistical multiplexing ✓ ✓ ✓ ✓

multiple slices ✓ ✓

complex slices ✓ ✓ ✓ ✓

multiple domains ✓ ✓

V
al
id
at
io
n

Markov traffic ✓ ✓ ✓

real traffic ✓

1.3 Outline of Thesis and Contributions

In this section we provide an outline of the Thesis and specify, separately for

each chapter, the corresponding technical contributions as well as the limitations

of existing works they address. The final goal is to tackle all the modeling and

algorithmic challenges highlighted in Section 1.1 in one common RL framework,

facilitating dynamic slice embedding in B5G networks. Therefore, each chapter

builds on top of the previous to provide all the different components required,

starting from the RL environment in Chapter 2, and continuing with the RL

agents in Chapters 3 and 4.
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1.3.1 Chapter 2: RL Environment for End-to-End Inter-

Slice Orchestration

Limitations of Existing Works

Most works addressing the problem of dynamically placing VNF chains upon a

physical network topology with RL-based methods focus on single-domain setups,

or single/simple network slices, or simple performance metrics (no end-to-end SLAs

with diverse and slice-specific KPIs). However, Beyond 5G networks are envisioned

to be multi-tenant systems, hosting a large number of different services (slices) that

span multiple domains (e.g. Edge, RAN, Core, Cloud), have widely diverse QoS

requirements, and are governed by end-to-end SLAs. Moreover, there is lack of

analytical (but still realistic) RL models capturing the above characteristics. Such

analytical models could be potentially used to speed up the (offline) training of

RL agents, since simulating the end-to-end performance of every flow of every slice

can be computationally intensive in large scale scenarios.

Technical Contributions

We first introduce a generic queuing-based system model that can capture the

co-existence of multiple VNF chains residing upon the same physical network and

sharing its resources (Section 2.2). To this end, (i) we model the physical network

as a queuing network of M/G/1/PS queues that correspond to physical nodes

and links (the per node resource allocation approximates a proportionally fair

scheduler); (ii) we model network slices as directed graphs of VNFs and VLs that

may have arbitrarily complex topologies (allowing for probabilistic routing of flows

and loops). Finally, we provide analytical expressions for the per slice end-to-end

delay (as a function of the assignment of VNFs to physical nodes and the traffic

demand).

Based on the above system model, we formulate the RL problem of dynamic

slice embedding (Section 2.3). Therefore, (i) we define the corresponding state

and action spaces and discuss their scaling properties; (ii) we define the reward

function as a weighted sum of three different cost terms: SLA violations cost,

reconfigurations cost, and active nodes cost.

This Chapter’s contributions appear in:
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• P. Doanis, T. Giannakas, and T. Spyropoulos, “Scalable end-to-end slice em-

bedding and reconfiguration based on independent DQN agents,” in IEEE

Global Communications Conference (GLOBECOM), pp. 3429–3434, Dec. 2022.

• (prelim version) P. Doanis and T. Spyropoulos, “Scalable slice orchestration

with DQN agents in Beyond 5G networks,” in IEEE 27th International Work-

shop on Computer Aided Modeling and Design of Communication Links and

Networks (CAMAD), Nov. 2022.

1.3.2 Chapter 3: Multi-Agent DQN with Independent Sample-

Efficient Agents

Limitations of Existing Works

While Chapter 2 introduced the RL environment, laying the ground for an RL-

based solution that will be inline with the key characteristics dictated by the B5G

vision (multiple complex slices, multiple domains, end-to-end SLAs), it didn’t pro-

pose any specific DRL algorithm. It is evident that, since such an environment

further exacerbates the state and action complexity, the proposed algorithmic

solutions should be scalable and sample efficient. Some additional limitations fre-

quently encountered in related works are: (i) the performance of the proposed

DRL schemes (that have no performance guarantees whatsoever) is not compared

against any theoretically grounded scheme (at least in smaller more tractable sce-

narios); (ii) the proposed schemes are not validated under real traffic datasets.

Technical Contributions

Due to the inherent complexity of the problem at hand, stemming from the com-

binatorial state and action spaces, we first attempt a theoretical analysis of the

scalability properties of various existing RL approaches (Section 3.2). We use as a

starting point the standard (tabular) Q-learning method, and gradually build on

top of that, justifying each additional component along the way. We end up with

a multi-agent scheme of independent DQN agents (iDQN), that will be the basis

of our proposed algorithm for this chapter. This scheme decomposes the combina-

torial action space into smaller sub-spaces, by allotting the control of each VNF

to a different agent. Therefore, the DQN component tackles the state complexity,

while the use of multiple agents tackles the action complexity.
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To further improve the (sample) efficiency of standard DQN agents (single or

multi), we introduce two additional mechanisms that optimize how the “experi-

ence replay” is used (Section 3.2.4): (i) a priority mechanism to access the samples

in the experience replay (often referred to as a prioritized experience replay [36]);

and (ii) the storage of some additional information per experience to reduce the

number of computations during updates. These mechanisms aim to further speed

up the convergence of our multi-agent algorithm and facilitate its practical ap-

plicability. We denote by DQN+ and iDQN+ the “enhanced” DQN and iDQN

versions respectively.

In Section 3.3, we use simulation both with synthetic (Markovian) and real traffic

to confirm in practice the observations of Section 3.2 (that were based on theo-

retical computational complexity arguments). First, in Section 3.3.2, using small

scale scenarios and synthetic traffic, we show that Q-learning based approximate

algorithms, either single-agent or multi-agent, are able to obtain close to optimal

solutions (i.e. ones found by exact Q-learning), yet with much higher convergence

speed. We also show that as the problem size increases, iDQN converges orders

of magnitude faster than standard single-agent DQN, with minimum penalty of

decision optimality. Then, in Section 3.3.3, using a real traffic dataset to drive the

demand, we confirm the convergence speed gains offered by the proposed speed up

heuristics on top of DQN and iDQN, while in a fairly large multi-domain scenario

(Section 3.3.4) we show that the proposed algorithm outperforms static heuristic

policies by at least a 3× factor.

This Chapter’s contributions appear in:

• P. Doanis, and T. Spyropoulos, “Multi-agent DQN with sample-efficient up-

dates for large inter-slice orchestration problems,” in IEEE International

Conference on Computing, Networking and Communications (ICNC), Feb. 2024.

• P. Doanis and T. Spyropoulos, “Sample-efficient multi-agent DQNs for scal-

able multi-domain 5G+ inter-slice orchestration,” IEEE Transactions on Ma-

chine Learning in Communications and Networking (TMLCN), 2024.

1.3.3 Chapter 4: Scalable DQN with Coordinated Branches

Limitations of Existing Works
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Although the multi-agent DQN-based scheme proposed in Chapter 3 proved to be

a much more scalable solution compared to its single-agent counterpart, the use

of independent agents can potentially still be problematic in large scale scenarios.

The lack of coordination among agents results to a non-stationary environment,

which might negatively affect sample efficiency, quality of the obtained policies, or

even lead to stability problems. Moreover, in the validation section of the previous

chapter, the policies obtained by the DRL schemes were grounded to the optimal

policies of Q-learning only under synthetic (Markovian) traffic, while in real traffic

scenarios no theoretically grounded scheme was used as a benchmark (Q-learning

is not applicable due to the infinite state space).

Technical Contributions

First, we formulate the dynamic slice embedding problem as a (stateless) “experts”

problem and propose a state-of-the-art algorithm, called Multiplicative Weights

(MW), that is theoretically optimal in the experts context (Section 4.3.1). While

“stateless”, this experts algorithm can in fact explore all actions - often a huge

number - in parallel, unlike our scheme which operates in a “bandit-like” setup,

exploring one action at a time. As a result, this baseline can be seen as a non-

implementable oracle, that even a stateful scheme might not be able to match,

and therefore, we use it as a benchmark in real traffic scenarios.

Then, in Section 4.4, we propose a DQN-based scheme with a different DNN ar-

chitecture, called the Branching Deep Q-Network (BDQ). According to this, the

control of each VNF is allotted to a different branch of the DNN, dramatically

reducing action complexity compared to vanilla single-agent approaches (simi-

lar action decomposition advantages with iDQN). On top of that, to avoid the

non-stationarity issues arising in multi-agent solutions with independent agents, a

shared DNN module between different branches is responsible for their (implicit)

coordination, improving the scheme’s sample efficiency and scalability properties.

Finally, in Section 4.5, using real traffic to drive the demands, we demonstrate by

simulations that the proposed BDQ scheme outperforms (i) the experts baseline,

both in terms of cost performance and sample efficiency (theoretically “grounding”

the proposed DRL scheme); and (ii) the existing state-of-the-art multi-agent DQN

approach of Chapter 3, showing up to 45% cost improvement in a fairly large

scenario.

This Chapter’s contributions appear in:
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• P. Doanis, and T. Spyropoulos, “The Curse of (Too Much) Choice: Handling

combinatorial action spaces in slice orchestration problems using DQN with

coordinated branches,” in IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), May 2024.



Chapter 2

RL Environment for End-to-End

Inter-Slice Orchestration

2.1 Introduction

As we discussed in Chapter 1, while different types of “slicing problems” have been

considered in recent cellular network literature [21], the main flavors appear to be

either: (i) the problem of allocating resources of physical nodes among slices (and

users of that slice) sharing that node, e.g. allocating resource blocks in the Radio

Access Network (RAN) [22–24], or (ii) the problem of slice embedding ; the latter

represents slices as graphs (“VNF chains”) of Virtual Network Functions (VNFs)

and Virtual Links (VLs) that need to be mapped among physical nodes and links

respectively, while satisfying each slice’s demands [25, 26]. Despite interesting

initial attempts to tackle such problems, a number of challenges arising from the

vision of 5G+ slicing remain: these relate both to the existence of generic yet

useful models, as well as algorithmic efficiency.

First, beyond 5G networks will involve slices whose VNFs will be spread across

multiple technological (and administrative) domains; they will also be governed

by end-to-end performance KPIs (key performance indicators) that often depend

on the performance along the entire VNF chain (e.g. queuing delay across an

end-to-end, possibly non-loop free path of VNFs and links). This not only compli-

cates the modeling of such KPIs in a tractable manner, but immensely increases

the optimization complexity due to the combinatorial nature of placing multiple

(correlated) VNFs, for multiple slices, among multiple computation nodes.

15
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Second, the majority of the parameters that affect the performance of each net-

work component (and thus hosted VNFs) are often unknown a priori, dynamically

changing, and often non stationary, rendering traditional static and centralized

optimization methods (whether discrete, continuous, or stochastic) problematic,

if not altogether inapplicable.

This Thesis focuses on the problem of dynamic slice embedding assuming that

resource allocation per node is performed by a given scheduling algorithm (e.g.,

proportionally fair sharing), whose impact is captured by our model. The above

problem is characterized by (i) unknown future resource demands; and (ii) de-

layed rewards (e.g. if the resource demand of a VNF is predicted to increase soon

and stay high for a while, paying now a cost to migrate this VNF to a less busy

server could potentially lead to high future rewards). Since this is the standard

“playground” of RL, in this Chapter we introduce a generic queuing-based B5G

RL environment that attempts to tackle the aforementioned modeling complex-

ity challenges and supports multiple technological domains, complex slices, and

diverse end-to-end SLAs (the algorithmic complexity challenges will be addressed

later on, in Chapters 3 and 4 ).

2.2 System Model

First, we will define a B5G system model that facilitates slicing and VNF chains

co-existence. We introduce the model components gradually as follows:

• the physical network model : the network components to be shared by various

tenants/slices (Subsection 2.2.1).

• the virtual network model : the (virtual) components of a “slice” (VNF

chain), their demands for network resources, and their placement upon the

physical network (Subsection 2.2.2).

• the queuing model that captures the competition for the same resources by

different slices assigned on the same physical component (Subsection 2.2.3).

Since there is plenty of notation to keep track of, we will use the toy example of

Fig. 2.1 to explain the various quantities involved throughout this section. We

also provide a notation table (Table 2.1).
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Figure 2.1: A toy example depicting some of the features of our model for
inter-slice orchestration. The complex topology of slice 1 is an example that
showcases the probabilistic routing of flows supported by our model, e.g., if a
flow has just been processed by VNF 0, it will next move either to VNF 1 or
to VNF 2 with respective probabilities (there could be also some probability to

exit the system).

2.2.1 Physical Network

The physical network is represented as a weighted undirected graph G = (V , E) of
physical nodes and the links connecting them, as is common in related literature

[25], [26].

Physical nodes: They are either nodes that can process and forward user gen-

erated traffic (e.g. servers, virtual machines, base stations) or nodes responsible

only for traffic forwarding (routers). Each node, v ∈ V = {0, 1, ..., V − 1}, is
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characterized by some capacity bv, which may correspond to its mean service rate,

number of CPU cores, memory, storage, resource blocks, etc., depending on the

domain and the underlying modeling assumptions1. It is important to note that

these nodes might belong to different technological or administrative domains, e.g.

Cloud Radio Access Network (C-RAN), Multi-access Edge Computing (MEC),

Core network, etc.

Physical Paths: We assume that any two physical nodes v and v′ are connected

by a path of physical links and routers/switches with (bottleneck) capacity bv,v′ .
2

In the toy example of Fig. 2.1, the physical network comprises two different do-

mains, Edge and Core, with two servers per domain and a router that is responsible

for forwarding traffic between servers.

2.2.2 Network Slices

A set K = {0, 1, ..., K − 1} of virtual networks, called network slices (or VNF

chains), are hosted on top of the physical network. Each slice k ∈ K is represented

by a directed graph Hk = (Nk,Lk), comprising a set Nk = {0, 1, ..., Nk − 1} of

Virtual Network Functions and a set Lk of Virtual Links, and is associated with

some SLA qk (a maximum or minimum value for an end-to-end KPI metric). This

is a standard way to model slices in related work literature [25], [26].

Virtual Network Functions (VNFs): They are processing tasks running

on physical nodes (e.g. baseband processing at the C-RAN [38], analytics at the

MEC [39], access and mobility management at the Core [40]). Assuming that

time is separated into time windows (referred to as slots hereafter), each VNF

n ∈ Nk of slice k ∈ K requires an amount of resources dkn(t) during slot t, where

t ∈ {0, 1, ..., T} (in the remainder, we drop the time notation when clear from the

1We assume that the capacity restrictions of routers are already included in the path capacity
(to be defined shortly).

2W.l.o.g. we assume that routing paths are predetermined and known, for any pair of physical
nodes. Hence, the main impact of including path capacity in our model is that, an algorithm
might choose to migrate a VNF in different nodes, even if the current node is not congested,
because it predicts that the path capacity will become congested soon. However, our algorithm
could easily be extended to scenarios with multiple alternative paths to choose from, for each
node pair (e.g., SDN-based implementation of per slice routing, for load-balancing, as in [37]).
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context). These demands fluctuate over time slots, and their transition dynamics

are assumed to be unknown initially (possibly non-stationary).3

Virtual Links (VLs): They are directed links l = (n, n′) ∈ Lk, where n ̸= n′,

that capture some communication demand from a VNF n to another VNF n′ and

are mapped to physical paths. Thus, VLs indicate the sequence of VNFs a user

flow must go through. They are associated to a time-varying resource demand

dkn,n′(t) (similarly to VNFs).

Slice topology (VNF chain): Our model is fairly generic allowing for proba-

bilistic routing of flows through the chain: i.e., not all user flows must go through

the same VNFs sequence (akin to a Jackson queuing network [41]; we will elabo-

rate on this shortly). In Fig. 2.1, we show two simple VNF chain examples. Slice

0 is a simple “tandem” of two VNFs that all flows go through. Slice 1 contains 3

VNFs, but a flow will go through given VNFs “paths” with some probability, or

possibly even “loop” through the same VNF (e.g. a flow might go from VNF 0 to

VNF 1 and then back to VNF 0 again).

A motivating example of such probabilistic routing could be that of a video stream-

ing slice consisting of 4 VNFs: firewall, deep packet inspection, transcoder, and

billing [34]. The traffic of this slice must first traverse the firewall VNF and then

only a sample of (possibly malevolent) packets will also go through deep packet

inspection before proceeding to the transcoder and finally billing (the rest will go

straight for transcoding-billing).

Slice orchestration: Our main goal is to “orchestrate” the various VNF chains

of different slices on top of the shared resources, which mainly means to decide on

which physical node to place each VNF of each slice (see Fig. 2.2 for an example).

This placement decision must take place at each time slot, and hence a VNF might

change its location from slot to slot (“migrate”) if this will benefit the slice and/or

the network performance (we will elaborate on this placement problem shortly).

Following, we define two of the most important slice-related quantities, the con-

figuration and demand vectors, which we will be frequently using throughout the

thesis:

3We assume that this corresponds to the mean aggregate demand (e.g. arrival rate) for all
flows served by that VNF, whose number might also fluctuate from slot to slot. While mean
traffic demand between time slots might change, to facilitate our analysis, we’ll assume that it is
constant during a slot (it is long enough for standard queuing models to reach the steady state).
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Configuration vector (ct ∈ C): the assignment of all VNFs to physical nodes

at time slot t,

ct = (ckn(t)|∀k ∈ K, n ∈ Nk), (2.1)

where ckn(t) indicates the host node of VNF n (slice k) at t; e.g., in Fig. 2.2, the

configuration vector is c = (c00, c
0
1, c

1
0, c

1
1, c

1
2) = (0, 3, 0, 1, 3).

Demand vector (dt ∈ D): denotes the demands of all slices at time slot t,

dt = (dki (t)|∀k ∈ K, i ∈ Nk ∪ Lk). (2.2)

As an example, in Fig. 2.1 the demand vector is d = (d00, d
0
1, d

0
0,1, d

1
0, d

1
1, d

1
2, d

1
0,1, d

1
1,0, d

1
0,2, d

1
1,2).

Figure 2.2: Slice embedding example corresponding to the toy-scenario of
Fig. 2.1. VNFs are assigned to physical nodes and VLs to physical paths. In
this example we assume that the resource demand of VNF 1 (red) is currently
very high (e.g., training of a Machine Learning model under way), and thus
it has been placed on a dedicated server to avoid congestion/SLA violations.
Regarding the rest of the VNFs, the capacity of a single server is adequate
to host two of them if paired properly (e.g. a high-demand VNF is placed
together with a low-demand VNF). Due to fluctuating demands, this placement
might become highly sub-optimal withing the next few time slots; in that case
a reconfiguration might be required to maintain optimal system performance.

2.2.3 Queuing model.

Given a configuration decision (assignment of VNFs to nodes), the (unknown)

traffic demands of co-located VNFs will compete for that node’s resources. We

are therefore in need for a model that captures:

1. Scheduling: the competition of VNF demands on the same node and its

impact on the VNF/node performance.
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Table 2.1: Notation table

Notation Description
G = (V , E) Physical network (weighted undirected graph)
V Set of physical nodes (cardinality V )
E Set of physical links (cardinality E)
bv Capacity of physical node v
bv,v′ Capacity of physical link/path (v, v′)
K Set of network slices (cardinality K)

Hi = (Ni,Li) Weighted directed graph representing slice k ∈ K
Nk Set of VNFs of slice k (cardinality Nk)
Lk Set of VLs of slice k (cardinality Lk)
dkn Resource demand of VNF n of slice k
dkn,n′ Resource demand of VL (n, n′) of slice k
d Demand vector: d = (dki |∀k ∈ K, i ∈ Nk ∪ Lk)
ckn Indicates the host node of VNF n of slice k
ckn,n′ Indicates the host link of VL (n, n′) of slice k
c Configuration vector: c = (ckn|∀k ∈ K, n ∈ Nk)
s State of the system
a Agent action
r Reward

2. End-to-end performance: how the performance of all (physical) nodes and

paths on which a given VNF chain is placed upon is combined into an end-

to-end (slice-wise) KPI.

Per node performance model (Scheduling). We model each physical

node/path as a single server queue. In the simplest setup, we assume that the

traffic demands of all VNFs/VLs assigned on that physical component are mul-

tiplexed using a simple “Processor Sharing” (PS) scheduling. It is known that

PS schedulers (with traffic classes) can be a good approximation for a number of

real life schedulers (e.g. LTE) [42]. Given that the actual flow demands can be

generically distributed, this gives rise to an M/G/1/PS queuing system [41] for

each physical node/path i, with total arrival rate equal to λi (a function of c and

d; we will elaborate on its derivation shortly) and service rate bi. The mean delay

per flow for that node/path is:

fdelay
i (ct, dt) =

1

bi − λi(ct, dt)
(2.3)
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End-to-end performance. Having modeled the performance of each node/-

path involved in each chain, the entire network can now be modelled as a Jackson

network of M/G/1/PS servers. Thankfully, closed form expressions for the total

delay of such networks are available, even in situation where VNF chain paths

contain loops. In fact, these results can be greatly generalized through the BCMP

model [43] that allows for different traffic classes, priorities, etc., allowing signifi-

cantly more fine-tuned scheduler models to be captured as well. We give a simple

example of calculating the end-to-end delay of complex slices in Fig. 2.3. Note

that any other end-to-end KPI metric can be supported by our framework, e.g.,

considering an SLA agreement on bandwidth, if ψv
k,n is the amount of bandwidth

assigned to VNF n of slice k on host node v by the local scheduler, then the

corresponding end-to-end KPI could be given by F bw
k (st) = min

n,v
ψv
k,n.

Figure 2.3: Queuing network corresponding to the system of Fig. 2.2 (to
simplify illustration we ignored physical links). Each physical node i is an
M/G/1/PS queue with mean service rate bi and total arrival rate λi. We denote
by dkn the arrival rate of jobs from outside the network for VNF n of slice k,
while pkn,n′ is the probability that a flow of slice k will be processed by VNF n′

right after getting processed by VNF n. The total arrival rate at each node can
be simply calculated by solving the corresponding system of equations given in
the figure. Then, the end-to-end delay of a flow is the sum of delays at the

traversed nodes (given by (2.3), based on the calculated λi).
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2.3 RL Problem Formulation

In RL problems the state of the environment is observed by an agent in discrete

time slots. Based on this observation, the agent takes an action in each slot and

the environment returns a feedback signal (called the reward) to indicate how good

this action was. Following, we define the state space, the action space, and the

reward function in our problem.

State Space S. The state of the system at time slot t consists of (i) the config-

uration vector ct (2.1); and (ii) the demand vector dt (2.2) (both are necessary to

calculate the instantaneous reward, to be elaborated shortly).

Definition 2.1 (State). st = (ct, dt), st ∈ S = C × D

We consider two cases:

-Discrete traffic demand: this scenario arises either in situations where traffic

demand is expressed in naturally discrete quantities (e.g. Resource Blocks in

OFDM, or Modulation and Coding schemes [44]) or as an approximation of con-

tinuous demand (e.g., quantized). While these scenarios can be easily handled

with standard (“exact”) discrete MDP based scenarios, in theory, the complexity

of the state space increases combinatorially in the traffic levels. We will mainly

use this scenario in simulations, for sensitivity analysis or toy examples, to better

illustrate the tradeoffs involved.

-Continuous traffic demand: while this is a natural modeling assumption for traffic

demand, it implies an infinite state space, and thus cannot be handled by standard

(“tabular”) methods. We will handle such scenarios with approximate RL methods

only (specifically, using DNNs), and will be the main driving scenario for our more

advanced, data-driven DRL solutions.

Action space A. Given the current state of the system st = (ct, dt), the agent’s

action at is a new assignment of VNFs to physical nodes ct+1.

Definition 2.2 (Action). at = ct+1, at ∈ A = C

Remark: This implies that both the state space and the action space of this

problem quickly explode in bigger scenarios. This is unlike recent video game

problem setups [45], where DNNs are able to handle successfully very large state



Chapter 2: RL Environment for End-to-End Inter-Slice Orchestration 24

spaces (video game images), but action spaces are rather small. While more recent

successes in the field of board games (e.g. Go, Chess [46]) do need to tackle large

state and action spaces, they tackle “planning” problems, where the environment

and rules are fully known, unlike our problem, where environment variables (the

VNF demands) are unknown and time-varying.

Reward function. We consider three different cost terms that determine the

total cost performance of the system (other components can be straightforwardly

added to the framework).

Type 1 cost (SLA violation): When the maximum (or minimum) KPI value

defined by the SLA is infringed, a penalty is paid by the network operator to the

slice tenant [29]. This is captured by a function Φk(st), for slice k ∈ K, which
may take any suitable form (e.g., linear, quadratic, etc.) to model the impact of

violating the corresponding KPI (depending on the slice type). Then, the total

SLA violation cost is given by:

g1(st) =
∑
k∈K

Φk(st) (2.4)

We give as an example the linear form of the function Φk(st), assuming that the

SLA defines a maximum value of the corresponding KPI:

Φk(st) = (σk + (FKPI
k (st)− qk)) · 1{FKPI

k (st)>qk}, (2.5)

where FKPI
k (st) is a function that outputs the end-to-end KPI value of slice k, σk

is a fixed penalty paid for any SLA violation, and 1{condition} is a binary indicator

variable that is equal to 1 when the condition inside the brackets is satisfied and

0 otherwise. In this work, we consider SLAs on the end-to-end delay, which can

be calculated based on our queuing model (see (2.3), Section 2.2.3).

Type 2 cost (Reconfiguration): Migrating VNFs from their host servers causes

network overhead (e.g., due to signalling, transfer of associated data), or even

service downtime [29, 32, 33]. If M = (mv,v′) is a matrix that defines the cost

of migrating a VNF between any two nodes v and v′ of the network4, then the

reconfiguration cost is:

4The diagonal elements of matrix M are equal to zero.



Chapter 2: RL Environment for End-to-End Inter-Slice Orchestration 25

g2(c, c
′) =

∑
k∈K

∑
n∈Nk

mckn,ckn′ (2.6)

In the remainder, w.l.o.g., we assume that all migrations are equivalent (with a

cost equal to one).

Type 3 cost (Active nodes): Each of the physical nodes that are “on” (host at least

one VNF) inflicts a monetary cost (or perhaps some other resource maintenance

cost); e.g., the idle servers/virtual machines can be turned off or set to sleep mode

in order to save energy [47]:

g3(ct) =
∑
v∈V

won
v · 1{v∈ct}, (2.7)

where won
v is the cost of node v when it is “on”. In the remainder, w.l.o.g., we

assume that won
v = 1, ∀v ∈ V . Note that minimizing this cost leads to freeing up

resources, which in turn facilitates admission control [48].

Reward: Given the current state of the system st = (ct, dt), the respective agent

action at = ct+1, and the next state st+1 = (ct+1, dt+1), we define the total cost as

a weighted sum of the individual costs (2.5), (2.6), and (2.7):

g(ct, at, st+1) = w1 · g1(st+1) + w2 · g2(ct, at) + w3 · g3(at), (2.8)

where the weights w1, w2, w3 are positive scalars and sum to one. Then, the cor-

responding reward is defined as:

Definition 2.3 (Reward).

rt+1 = −g(ct, at, st+1) (2.9)

We introduce the negative sign in (2.9), as typically RL agents try to maximize the

expected accumulated rewards (we want to minimize the expected accumulated

cost).
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2.4 Conclusions

In this Chapter we introduced a generic queuing-based B5G RL environment for

dynamic slice embedding, that supports multiple technological domains, complex

slices (allowing for probabilistic routing of flows and loops), and diverse end-to-

end SLAs. The reward function was defined as a weighted sum of three different

cost terms corresponding to SLA violations, reconfigurations, and number of ac-

tive physical nodes, with a view to optimize slice performance (minimize SLAs)

while also keeping network costs low (resource consumption and reconfigurations).

Based on this framework, we provided analytical expressions for the per slice end-

to-end delay KPI (a function of the assignment of VNFs to physical nodes and

the traffic demand), but we stress that our model is generic and can support any

other KPI. We also remark that the proposed environment has been implemented

in Python, based on the popular Open AI Gym framework, and thus it can be

easily reused and further enhanced by other researchers (we plan to make the code

available in a public repository soon).

Remaining Open Questions. What is missing is to devise RL agents that can

learn an effective slice embedding policy in reasonable time (withing a reasonable

number of interactions with the environment), without any prior knowledge on the

dynamics of traffic demand. As discussed in Section 2.3, due to the combinatorial

nature of placing multiple VNFs of multiple slices over multiple nodes and domains

of the physical network, both the state space and the action space of this problem

quickly explode in realistically-sized scenarios (let alone the infinite state space

when considering continuous traffic demands). Therefore, the devised RL agents

should be able to cope with the algorithmic complexity challenges arising from

this state/action space explosion.



Chapter 3

Multi-Agent DQN with

Independent Sample-Efficient

Agents

3.1 Introduction

While in Chapter 2 we introduced an RL environment for dynamic slice embedding,

inline with the key characteristics dictated by the B5G vision (multiple complex

slices, multiple domains, end-to-end SLAs), this Chapter focuses on devising RL

agents that can address the inherent complexity of such problems, stemming from

the combinatorial state and action space. We make a conscious effort to slowly

build up to our final algorithm, starting from small, theoretically tractable scenar-

ios (to use as benchmarks), and attempting an informed justification of every new

building block along the way (this is not something common in related literature).

The main contributions of this Chapter are:

(C.1) In Section 3.2, we attempt a theoretical analysis of the scalability properties

of various existing RL approaches. We start our exposition with the standard

(tabular) Q-learning method, and gradually evolve to a multi-agent DQN-based

scheme that will be the basis of our proposed algorithm.

(C.2) To further improve the (sample) efficiency of standard DQN agents (single or

multi) we introduce two additional mechanisms that optimize how the “experience

replay” is used (Section 3.2.4): (i) a priority mechanism to access the samples in

27
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the experience replay (often referred to as a prioritized experience replay [36]); and

(ii) the storage of some additional information per experience to reduce the number

of computations during updates. These mechanisms aim to further speed up the

convergence of our multi-agent algorithm and facilitate its practical applicability.

(C.3) Using a real dataset to drive a fairly large, multi-domain scenario, we show

that the proposed multi-agent scheme reduces convergence time by orders of mag-

nitude with minimum penalty of decision optimality, compared to standard single-

agent DQN (Section 3.3.2), while it also significantly outperforms static heuristic

policies by at least a 3× factor (Section 3.3.4). To our best knowledge, validation

with real data is not so common in some of the close related works.

3.2 RL Agents

The goal of any Reinforcement Learning problem like the above is to devise an

agent that gradually (but efficiently) learns to take better actions over time, even-

tually maximizing the rewards per round. This learning is achieved by interacting

with the environment of the problem. We briefly describe this interaction here

using some standard RL nomenclature:

-Agent: At every round t, based on the current state of the system st = (ct, dt)

(consisting of the current configuration and demand vectors), it must choose a

new configuration vector at = ct+1(st), namely the new embedding of each VNF

chain on the physical network (which might involve a certain number of VNF mi-

grations). This action is taken based on a value function Q(s, a) that the agent

maintains, which estimates the expected (discounted) cumulative reward starting

from state s and taking action a (for all s, a)1. Note that the expected discounted

cumulative reward starting from a state st = s and following a policy π is defined

as V π(s) = Eπ{
∑∞

k=0 γ
krt+k|st = s}, where the expectation is over the transi-

tion probabilities between states, dictated by the traffic demand dynamics, and

γ ∈ [0, 1) is the discount factor (for larger values of γ future costs become more

important).

-Environment: After the agent has chosen the next placement vector ct+1, the

environment “reveals” the true current demand vector dt+1. This moves the state

1This function can initially be arbitrarily bad, and thus the initial configuration actions.
Some knowledge of problem structure could help use a better initialization of the agent.
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of the problem to the new state st+1 = (ct+1(st), dt+1). It also decides the instan-

taneous reward rt+1 (a function of the old state st, the action at, and the new state

st+1), according to the details of Section 2.3.

-Agent: Given the tuple (st, at, st+1, rt+1), often referred to as an “experience”,

the agent first attempts to “improve” its decision function Q(s, a), based on the

recent (and/or past experiences), and then proposes a new configuration ct+2(st+1)

for the time window.

-Environment: Again reveals the new demands dt+2 and respective rewards, the

agent will improve its value function and proceed with a new configuration pro-

posal, and so on and so forth, until convergence.

The key features that differentiate the vast gamut of RL algorithms are (i) how

the Q(s, a) is encoded, (ii) how it is updated, (iii) whether in fact this actual value

function is learned as an intermediate step (known as “value-based” methods)

or whether action(s) probabilities are learned directly (known as “policy-based”

methods), and (iv) how new actions (i.e., configuration here) are to be chosen from

this function. This section attempts to introduce and motivate all the building

components and choices of the RL agent(s) we propose. We choose to introduce

these, step-by-step, using the previous blueprint as a guide, starting from textbook

(“tabular”) Q-learning for two reasons: (i) to justify which specific obstacle each

extra mechanism we add is trying to improve upon, and (ii) while we cannot claim

any theoretical optimality guarantees for the (final) RL scheme we propose (as is

the case for any Deep RL scheme on non-toy size problems), we hope that this will

make our scheme and its pros and cons more clear to the reader, as sophisticated

(Deep) RL algorithms tend to be quite complex and opaque.

3.2.1 Q-learning (QL)

A “tabular” Q-learning (QL) agent maintains a table of size |S| × |A|, for every
possible state s ∈ S and action a ∈ A, where each table entry captures an estimate

of the corresponding Q-value [49].

Actions Selection: Actions are chosen based on this Q(s, a) table according to the

well known ϵ-greedy algorithm [49]: With probability 1 − ϵ at a given state the

agent picks the configuration with the maximum predicted Q value (“exploit”)

and with probability ϵ it picks an action randomly (“explore”).
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Action Improvement: Based on the reward it observes at that round it applies a

stochastic approximation step [50] that aims to improve the estimate Q(s,a) for

that specific state and action only.2

We give the algorithmic steps of the QL scheme in more detail in Alg. 1.

Algorithm 1 (QL) Main algorithmic steps.

Step 1 (in agent): When at state s (Def. 2.1), take an action a (Def. 2.2) with
ϵ-greedy:

a←

random a ∈ A, with probability ϵ

argmax
a∈A

Q(s, a), with probability 1− ϵ (3.1)

Step 2 (in env): Returns the next state s′ and reward r (Def. 2.3)
Step 3 (in agent): Update the corresponding Q-table entry:

Q(s, a)← (1− η)Q(s, a) + η(r + γmax
a′∈A

Q(s′, a′)), (3.2)

where η is the learning rate and γ the discount factor.
Repeat steps 1 to 3 until convergence.

Pros: The main advantage of tabular QL is that it provably converges to the

optimal Q values, under mild conditions, and thus also to the optimal actions that

maximize long-term rewards for every possible state. For this reason, in scenarios

small enough to run Q-learning to convergence, we will use it as an “oracle” to

compare other schemes against.

Cons: Due to the combinatorial nature of states and actions, serious scalability

bottlenecks arise in all of the three key features of QL (decision function, action

improvement, action selection). Fig. 3.1 demonstrates how the size of the state,

action, and state-action spaces scale with the number of slices, highlighting the

prohibitively large number of states and actions even in toy-ish scenarios (let alone

realistic ones). Hence, the scalability bottlenecks are (i) in decision function: the

size of the Q-table, which leads to slow convergence and high memory requirements

(this renders QL inapplicable in scenarios with continuous traffic demands due to

the infinite state space); (ii) in action improvement: only the value of the visited

state-action pair is updated at each timestep (3.2), meaning that multiple visits

2Approximate Q-learning schemes such as the ones based on Deep Neural Networks that we’ll
introduce shortly, attempt to improve their predictions for multiple (s,a) pairs at a single step.
This is often termed “generalization”.
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are required over every state-action pair for convergence (poor sample efficiency)3;

(iii) in action selection: the expensive maximization operations (3.1), (3.2), over

all possible configurations (combinatorial) at every time slot lead to impractical

runtimes (slow convergence);

Figure 3.1: Number of states, actions, and state-action pairs as a function of
the number of slices for “vanilla” Q-learning. This plot corresponds to a toy
scenario where the physical network is similar to that of Fig. 2.1 (two domains
with two nodes per domain), the slices are simple VNF chains similar to Slice
0 of Fig. 2.1 (one VNF for each domain), and the VNF demands are quantized

to only 2 different levels.

3.2.2 Approximate QL - Step 1: Deep-Q Network (DQN)

A natural first step to tackle the shortcomings of Q-learning, related to state

space explosion, is to replace the (potentially huge) Q(s, a) table with a function

Qθ(s, a), parameterized by a set of variables (or parameters) θ, which attempts

to approximate the (optimal) Q-table efficiently. While a number of different ap-

proximations can be tried here (see [49] for for a survey of methods that have been

popular in earlier RL works), using a Deep Neural Network (DNN) has recently

shown great promise [52], giving rise to the broad class of Deep Reinforcement

Learning.

3There exist some recent theoretical results that improve the sample efficiency of tabular
methods [51], but the main shortcomings of tabular methods largely remain.
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A standard design is a DNN that takes as input the state s of the system (i.e.,

the current configuration and recent traffic demand), and has |A| outputs that

“predict” the long term reward of every possible configuration we could choose4.

We’ll elaborate shortly on the advantages of this approach, compared to tabular,

but intuitively, we are now able to use continuous values as (part of the) input as

well as learn (potentially) much fewer parameters θ than the Q-table entries.

Action Selection: is performed as before, using the ϵ-greedy algorithm withQθ(s, a).

Action Improvement: Upon receiving a reward r from the environment the agent

calculates the, so called, Temporal Difference (TD) error δ, meaning that it com-

pares its prediction of the (long term) reward of the chosen configuration a (i.e.,

Qθ(s, a)) to an improved “estimate” based on the reward r just received and the

predicted remaining rewards from the resulting next state s′:

δ = Qθ(s, a)− (r + γmax
a′∈A

Qθ(s
′, a′)) (3.3)

The latter quantity of this equation is referred to as the TD-target, and is akin

to semi-supervised learning as this target is used as a (weak) proxy of the true

value in approximate RL. The agent then applies a gradient step on the parame-

ters θ of the DNN (referred to as backpropagation in DNN lingo), attempting to

slightly “correct” them toward reducing δ and improving its Q value prediction

(and consequently the respective actions)5:

θ ← θ − η∇θδ
2 (3.4)

While this alone resolves the state space issue, in theory, such methods can be

extremely unstable and often fail to converge [53]. Instead, the recent seminal

work of [45] has proposed some additional mechanisms on top of the DNN-based

4In other words, instead of maintaining a single output function Qθ(s, a), as implied earlier,
here the agent maintains a multiple output function Qθ(s). This is common practice and is often
advantageous [45].

5It is important to note here, that the Q value update step for the tabular method can also
be cast as a gradient step on a linear function with features its table entries, and a parameter
θi for each entry. Hence the two methods so far only differ in the function used, a table vs a
DNN [49].
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QL, coined Deep Q Network (DQN), achieving remarkable success in solving tough

problems ranging from video games to wireless networks [54].

DQN mechanisms. There are three main ideas, each targeting a specific short-

coming of the vanilla DNN-based approximation. We briefly describe them fol-

lowing.

Experience Replay Buffer: Each transition (s, a, s′, r) experienced by the agent,

consisting of a state, action, next-state, and reward, is stored in the replay buffer

and can be used in a next timestep to update the DNN parameters. Hence, in

(3.4), we don’t use anymore the current experience but rather select randomly

from the replay buffer. This is necessary to ensure that updates are performed

based on i.i.d. samples, which is a theoretical requirement for convergence in

Supervised Machine Learning [55] (it is easy to see that the sequence of states

visited by the agent is highly correlated in the simple approximate QL algorithm

described earlier).

Mini-batch updates: The key idea here is to use multiple random samples (expe-

riences) from the buffer (instead of one) at each gradient step. This is a standard

idea in stochastic gradient descent methods to reduce variance [55].

Target Network: Instead of using the current DNN Qθ(s) for the calculation of

the TD-target in (3.3), we use an older (“frozen”) version of the network Qθ′(s),

that is only periodically updated. This is to remove correlations between Qθ(s, a)

and the TD-target in (3.3).

The algorithmic steps of DQN are summarized in Alg. 2, with the main differences

from tabular QL highlighted.

Pros: A key advantage of DQN is that it can handle arbitrarily large state spaces,

including continuous-valued ones. Another key advantage of approximation meth-

ods in general is their ability to “generalize” each experience: In “tabular” QL,

an experience (s, a, r, s′) is used to improve the Q value estimate only for that

specific state-action pair (s, a). Instead, in DQN this experience is used to change

the weights of the approximation, affecting (and hopefully improving) the pre-

dicted Q value for a large number of other (s, a) pairs with similar “features”.

Thereof stems the ability to handle much larger problems effectively (together

with the extra DQN mechanisms for stability). More specifically, DQN (partly)

tackles shortcomings (i) and (ii) of QL as listed in Section 3.2.1. The theoretical
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Algorithm 2 (DQN) Main algorithmic steps. The important differences
from QL (Alg. 1) are highlighted in red.

Step 1 (in agent): When at state s, take an ϵ-greedy action:

a←

random a ∈ A, with probability ϵ

argmax
a∈A

Qθ(s, a), with probability 1− ϵ (3.5)

Step 2 (in env): Returns the next state s′ and reward r
Step 3 (in agent): store transition (s, a, s′, r) in the replay buffer B
Step 4 (in agent): copy the policy network parameters θ to the target network
θ′ (only every T timesteps)
Step 5 (in agent): pick M samples randomly from replay buffer and calculate
δi for each sample i:

δi = Qθ(si, ai)− (ri + γmax
a′i∈A

Qθ′(s
′
i, a

′
i)) (3.6)

Then, perform a gradient step:

θ ← θ − η∇θEi∼U(B)[δ
2
i ], (3.7)

where i ∼ U(B) denotes that experiences have been sampled uniformly at ran-
dom from the replay buffer.
Repeat steps 1 to 5 till termination criterion.

advantage of DQN compared to QL as the state space grows larger is highlighted

in Fig. 3.2(a), which confirms the fixed memory requirements regardless of the

state space explosion (the ability of DQN to obtain good quality policies will be

investigated later, in the simulation section).

Cons: DQN still faces two hurdles. The first is the combinatorial action space

A, which materializes in two ways: (i) the fanout of the Qθ(s) DNN is equal to

the size of the action space, meaning that the number of parameters explodes in

large scale scenarios (see Fig. 3.2(b)); (ii) as it can be observed in (3.5) and (3.6),

there is a max operation to be performed over this large action space twice per

round (in fact, in (3.6) as many times as the size of the mini-batch). The former

leads to delays due to training a large number of parameters (and high memory

requirements), the latter leads to delays due to significantly more flops per round.

The second hurdle is that the full potential of the replay buffer toward improving

sample efficiency has not been harnessed yet (the uniformly random sampling of

experiences from the buffer is often suboptimal).
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(a) Varying number of demand levels (2 slices) (b) Varying number of slices (2 levels of demand)

Figure 3.2: Scalability comparison QL vs DQN. The above plots correspond
to a toy scenario where the physical network is similar to that of Fig. 2.1, the
slices are simple VNF chains similar to Slice 0 of Fig. 2.1, and the VNF demands
are quantized. The DQN’s DNNs have 3 hidden layers with 60 neurons per
layer (this setup performed well in both large and small scale scenarios in the

simulation section).

3.2.3 Approximate QL - Step 2: independent DQN agents

(iDQN)

While DQN can handle arbitrarily large state space S, as explained earlier, the

combinatorial action space A still hinders its scalability. In this section, we in-

troduce the concept of independent DQN agents to tackle the problems stemming

from the action space complexity, while maintaining the state space advantages

of standard DQN. The idea is to decompose the (large) action space into (much)

smaller action subspaces as follows:

Action space decomposition: Let us consider again the toy example of Fig. 2.2.

Instead of having one agent choosing the entire configuration for every VNF of

every slice at each round, i.e. c = (c00, c
0
1, c

1
0, c

1
1, c

1
2), and learning a Qθ(s, c) for

every possible configuration, we assume one separate agent (n, k) responsible for

each VNF n ∈ Nk of slice k ∈ K: i.e. agent (n, k) is responsible for ckn only, and

attempts to learn/predict a rewarding next configuration for that VNF only, given

the same (full) state s, but a smaller DNN Qθnk
(s, ckn).

Remarks: It is important to stress here that, while each such agent could be a

separate, possibly distributed agent, residing with/close to the VNF it controls,

this is not necessary and it is orthogonal to our work. The main idea here, is

to decompose the DNN network (solving the large fanout problem) and the max
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operations of (3.5) and (3.6), in order to largely reduce the computational com-

plexity, even if the agents are still one piece of code residing in the same location.

What is more, one could consider, w.l.o.g., other granularities of decomposition

(e.g. per slice, per slice and domain, etc.).

Hence, the action selection and policy improvement are the same as in the DQN

algorithm, except that now each agent acts independently and in parallel. The fully

independent flavor that we employ here has been considered both for “tabular”

QL in [56], and for approximate QL in [57]. Note that even though there is no

explicit coordination between agents, they still get sufficient signals to co-operate

harmoniously via the common state s (that they all observe) and the reward per

round (which depends on the collective action of all agents). Additional levels of

coordination can be explored [58] but we defer them for future work.

The algorithm’s steps, with the differences from single agent DQN highlighted, are

shown in Alg. 3.

Pros: The action space Ank per agent (n, k) is orders of magnitude lower com-

pared to the original action space A of DQN. Considering one agent per VNF,

the action is not combinatorial anymore (the number of actions is equal to the

number of candidate hosts where the VNF can be assigned on). This translates to

(i) computationally cheaper max operations per agent (faster convergence); and

(ii) smaller DNN fanouts (better sample efficiency, lower memory requirements).

The latter is confirmed by Fig. 3.3, which demonstrates that the number of train-

able parameters per iDQN agent remains constant with the number of slices, while

both QL and DQN requirements quickly explode.

Cons: First, the use of independent agents can potentially lead to stability prob-

lems as the environment becomes non-stationary. This is because each agent

conceives the rest of the agents as part of the environment (due to their inde-

pendence) but their policies change over time (each of them tries to improve its

policy). Hence, older experiences stored in the buffer may quickly become out-

dated and negatively affect policy updates. However, by using a small experience

replay buffer (that retains the most recent experiences) and by carefully choosing

the learning and exploration rates (so that agents don’t change their policies very

fast), this problem can be mitigated. A second shortcoming is that there is still

much room for improvement regarding sample efficiency and convergence speed.
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Algorithm 3 (iDQN)Main algorithmic steps. The important differences
with respect to DQN (Alg. 2) are highlighted in red.

iDQN algorithm
Multiagent scheme:
one DQN agent (n, k) per VNF n ∈ Nk of slice k ∈ K
Step 1: (in agent) each agent (n, k) takes an ϵ-greedy action:

ank ←

random ank ∈ Ank, with probability ϵ

argmax
ank∈Ank

Qθnk
(s, ank), with probability 1− ϵ

Then, the collective action is:

a = (a00, ..., aNKK)

Step 2 (in env): Returns the next state s′ and reward r
Step 3: (in agent) ∀(n, k) store transition (s, ank, s′, r)
Step 4 (in agent): ∀(n, k) copy the policy network parameters θnk to the target
network θ

′

nk (only every T timesteps)
Step 5 (in agent): ∀(n, k) pick M samples randomly from replay buffer and
calculate δi for each sample i:

δi = Qθnk
(si, a

nk
i )− (ri + γ max

(ank
i )′∈Ank

Qθ
′
nk
(s′i, (a

nk
i )′)) (3.8)

Then, perform a gradient step:

θnk ← θnk − η∇θnk
Ei∼U(Bnk)[δ

2
i ], (3.9)

Repeat steps 1 to 5 till termination criterion.

As described in Section 3.2.2, the full potential of the replay buffer toward im-

proving sample efficiency has not been harnessed yet. Lastly, despite the massive

improvement offered by iDQN, the max operations could still become expensive

for very large scenarios, large minibatch sizes (the TD-error must be calculated

for every sample), or when a coarser action decomposition is considered (e.g. one

agent per slice)6.

6This kind of decomposition (one DQN agent per slice) becomes necessary in scenarios where
we try to optimize both VNF and VL placement. This is because the set of possible physical
paths where a VL can be mapped to depends on the placement of the VNFs it interconnects (it
is not possible to treat them independently in parallel).



Chapter 3: Multi-Agent DQN with Independent Sample-Efficient Agents 38

Figure 3.3: Number of trainable parameters for QL, DQN, and iDQN as a
function of the number of slices. This plot corresponds to a toy scenario where
the physical network is similar to that of Fig. 2.1, the slices are simple VNF
chains similar to slice 0 of Fig. 2.1, and and the VNF demands are quantized to
only 2 different levels. Moreover, DQN and iDQN agents have the same number

and size of hidden layers (3 hidden layers with 60 neurons per layer).

3.2.4 DQN+/iDQN+

As we saw, iDQN manages to resolve the first major hurdle that DQN faced (for

the problem at hand), the exploding action space size, by introducing a multi-

agent decomposition of the action space. Together with the DNN-based encod-

ing of the state space, the algorithm can now smoothly scale up to considerably

large(r) problems. The last obstacles remaining are the experience replay buffer

suboptimalities, as well as the potentially expensive computation of the TD-error

in large scale scenarios (requires a max operation for every sample of the mini-

batch). The above are both related to the action improvement mechanism, and

in order to tackle them we propose respectively, (i) the use of a prioritized experi-

ence replay, to intelligently pick minibatches from the replay buffer in a way that

improves sample efficiency; (ii) a “lazy” computation of the TD-target to further

improve convergence speed. The above speed up mechanisms can be applied on

top of either DQN or iDQN (we refer to these schemes as DQN+ and iDQN+
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respectively).

Prioritized experience replay. We have observed that as the action space in

our problem grows larger, actions with similar effect are over-represented in the re-

play buffer, while potentially more effective actions are under-represented (slowing

down convergence). For example, due to the combinatorial nature of the action

space, the subset of actions that utilize just a few of the available physical nodes

(among which lie the optimal actions, during periods when the majority of VNFs

have low traffic) is much smaller compared to the subset that assigns at least one

VNF to each physical node; thus it is very rare to randomly explore an action from

the former subset with the ϵ-greedy policy. As a result, due to the random se-

lection of minibatches from the replay buffer, the over-represented transitions are

replayed more frequently and their Q-value prediction by the DNN quickly stabi-

lizes around a (suboptimal) value, meaning that the associated TD-error becomes

small (slow learning). To this end, we employ a prioritized experience replay [36],

which prioritizes the transitions with a larger TD-error to boost sample efficiency.

The modification introduced in the DQN algorithm to incorporate this mechanism

is given in Alg. 4.

Algorithm 4 (DQN+) Modification 1: Prioritized experience replay.
The modified steps with respect to DQN (Alg.2) are given below.

Step 5 (in agent): Select M samples from the replay buffer, with probability
P (i) for each of the N experiences:

P (i) = pα
rep

i /
N∑
j=1

pα
rep

j , (3.10)

where pi = |δi|+ ϵ, with ϵ being a small positive constant that prevents pi from
going to zero. Then, perform a gradient step:

θ ← θ − η∇θEi∼P (B)[(
wrep

i

maxj w
rep
j

δi)
2], (3.11)

where wrep
i = (N · P (i))−βrep

(3.12)

The performance of prioritized experience replay is affected by two important

hyperparameters, αrep, which determines the amount of prioritization (αrep = 0

leads to uniform sampling while αrep = 1 to full prioritization), and βrep, which
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similarly determines the amount of compensation applied by weighted importance

sampling to balance the bias introduced by prioritization.

Lazy computation of TD-target. The maximization operation in (3.6), re-

quired for every sample of the minibatch, may become computationally expensive

in large scale scenarios. In order to reduce the number of such computations,

we introduce a second mechanism (modification), that stores the current Q value

estimate of s′ along with the visited (s, a, s′, r) tuple and uses it as (part of)

the TD-target every time the corresponding experience is sampled. The detailed

mechanism can be seen in Alg. 5.

Algorithm 5 (DQN+) Modification 2: Lazy TD-target computation.
The modified steps with respect to DQN (Alg.2) are given below.

Step 3 (in agent): calculate Qnext:

Qnext = max
a′∈A

Qθ′(s
′, a′) (3.13)

and store (s, a, s′, r, Qnext) in the replay buffer.
Step 5 (in agent): the TD-error for all M minibatch samples is now computed
using the stored Qnext values:

δi = Qθ(si, ai)− (ri + γQnext
i ) (3.14)

This trick offers important real time gains, as DQN+ performs M times less com-

putations per timestep, compared to DQN, for TD-target calculations (in DQN+,

the max operation of (3.13) is applied only on the visited transition, while in DQN

on each one of the M samples). The gain of the “lazy” TD-target computation

mechanism is confirmed by Table 3.1, which outlines the simulation results for

a toy-ish slicing scenario (256 possible configurations). Observe that the sample

efficiency may be mildly deteriorated compared to “vanilla” DQN, as expected,

but convergence speed (in real time) is improved by roughly 40% (“lazy” DQN

fully converges in 1025 sec, while “vanilla” DQN in 1462 sec). This gain should

further increase in scenarios with larger action spaces, as the TD-target compu-

tation would constitute a larger part of the total runtime (due to more expensive

max operations).
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Table 3.1: Convergence speed comparison in scenario with 256 actions

Convergence (%)
Time slot Real time (s)

DQN “lazy” DQN DQN “lazy” DQN
60 18493 30829 574 663
80 32157 35304 1005 757
100 46937 47515 1462 1025

3.3 Simulation Results

So far, we have analyzed the theoretical scalability of the various solutions, using

toy scenarios, and computational complexity arguments about the state and action

space explosion. In this section, we will use simulation to see these phenomena

in practice. To this end, we will use both synthetic traffic demands, as well as

a real dataset [35] that has been used before as a benchmark in the wireless

community [59].

Specifically, the three main goals of this section are: (i) to establish that Q-learning

based approximate algorithms, either single-agent or multi-agent, are able to ob-

tain close to optimal solutions (i.e. ones found by exact Q-learning), yet with much

higher convergence speed as the problem size increases; (ii) to quantify the conver-

gence speed gains offered by the speedup heuristics proposed in section 3.2.4 on

top of of DQN and iDQN algorithms; and (iii) to validate our proposed enhanced

multiagent solution (iDQN+) in a realistic large scale setup.

3.3.1 Simulation Setup

Algorithms. We summarize here the main algorithms we will test, as well as

their shorthand we’ll use to refer to them, hereafter:

• QL the tabular (theoretically optimal) RL algorithm of Section 3.2.1.

• DQN the single-agent approximate RL algorithm of Section 3.2.2.

• iDQN the multi-agent approximate RL algorithm of Section 3.2.3.

• DQN+/iDQN+ these variants are the above DQN/iDQN, but with all the

speedup heuristics we have proposed in Section 3.2.4.
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DNN architectures: We choose simple and relatively small DNN architectures as

Q-function approximators. On the one hand to demonstrate that the methodology

is generic enough to work without the need for specialized, large architectures.

On the other hand, because they offer better sample efficiency. To this end, all

DQN-based agents utilize multilayer perceptron DNNs with 3 hidden layers and

60 neurons per layer (this architecture performed well in the whole range of tested

scenario sizes). Note that multilayer perceptrons have been also employed for

similar slicing problems in related work literature, e.g. in [30].

Hyperparameters: In approximate RL schemes we set the replay buffer size to

5000, the target update period to 500, the minibatch size to 32, and the learning

rate to 10−3 (these are the typical values used in [45], adapted to our problem when

necessary). In Q-learning, we set the learning rate to 10−1, which is a commonly

used value in related work literature [49]. Finally, we set the discount factor to γ =

0.9. In general, γ relates to the reconfiguration cost and how far ahead the agent

is willing to look in order to amortize the immediate cost, and a value of 0.9 allows

the agent to look “roughly” 10 timesteps ahead without making convergence too

slow (the higher the γ the slower the convergence). This value is large enough to

provide good policies even in scenarios involving important reconfiguration costs.

Note that all the above parameters performed well in a variety of tested scenarios.

Traffic details. We consider two types of traffic in our simulations, (i) synthetic

Markov traffic (quantized demands); (ii) real traffic from the well known Milano

dataset (continuous demands) [35]. The former is used in small toy scenarios, so

that tabular methods are applicable (not the case with continuous), and an optimal

policy benchmark can be derived (in reasonable time). The latter is employed later

on to validate our practical/scalable approximate schemes in large setups driven

by data entailing common characteristics of real demands (e.g. diurnal patterns

and other non-stationarities).

Traffic type 1 (synthetic): In these first toy scenarios, we use the simplest possible

(non-IID) traffic model, driven by a 2-state Markov chain, able to capture bursts of

traffic (with configurable mean duration), with (also configurable) silence periods



Chapter 3: Multi-Agent DQN with Independent Sample-Efficient Agents 43

in between. W.l.o.g. we use the following chain for every VNF: 7

P =

[
0.98 0.02

0.02 0.98

]
(3.15)

This kind of simple traffic model is helpful in better illustrating the performance

of optimal dynamic actions against static heuristics.

Traffic type 2 (real trace): The Milano dataset is a real traffic open dataset pro-

vided by Telecom Italia [35]. It contains timeseries of 10K base stations located in

the city of Milan and the Province of Trentino. Each timeseries has 8928 samples,

with one sample taken every 10 minutes, meaning that the total real time duration

of the dataset is 2 months. Each sample consists of different Call Detail Records

(CDRs), e.g. the number of calls, SMSs, internet connections etc. Here we use

only the internet connections CDR, and in particular we map the average arrival

rate of jobs for each VNF to the normalized timeseries of a different base station.

Moreover, to make simulations even more realistic, we choose highly correlated

timeseries for VNFs that belong to the same slice. The first half of the datapoints

are used for the training of the algorithms and the other half for testing, meaning

that each episode consists of 4464 timeslots. It is the case that such mobile traffic

datasets usually contain a limited number of samples. Thus, it is important to

confirm that our agent can perform well even when encountering previously unseen

states (testing episode). In Fig. 3.4 we depict an example of aggregate demand

timeseries from the Milano dataset (training and testing episodes). The key obser-

vations are that (i) there are some patterns emerging in traffic due to the day/night

and weekend human activities, but also plenty of unpredictable (“noisy”) patterns

(these plots underline the need for algorithms, like RL, that are able to deal with

non-IID patterns); (ii) the magnitude of demand decreases in the second half of

the testing episode in this example, so indeed the training and testing datasets

may differ.

Service Level Agreements. We consider the end-to-end delay KPI, which can

be calculated with our model as described in Section 2.2.3, based on (2.3). The

penalty for SLA violations is incurred according to (2.5) of Section 2.3.

7Note that even with this simple model the burst periods do not coincide for all VNFs, and
considerable complexity of states can already be produced by the environment with a few VNFs
and nodes.
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(a) Training episode (b) Testing episode

Figure 3.4: Example of demand timeseries from the Milano dataset. The
aggregate demand in the y axis corresponds to the sum of the (normalized)
demands of 4 VNFs and each time-slot in the x axis corresponds to a 10 minutes

period of the trace.

3.3.2 Part I: Scalability of RL schemes

In this part, our aim is to address the first main goal of the results section, namely

to ground the cost performance of approximate RL schemes (DQN, iDQN) with re-

spect to optimal policies obtained by QL and examine how the increase of problem

size affects the convergence speed of the above schemes.

System Setup. To ensure the tabular Q-learning is tractable we focus on a single

domain physical network and two different setups, a small one and a larger one

(which we will refer to as Scenario 1 and 2 respectively), differing in the number of

physical nodes and hosted slices. Regarding traffic demands, we use the synthetic

Markov model of (3.15).

Training. Each algorithm is trained over 10 individual runs with different initial

random seeds, meaning that the randomly initialized parameters of the Q-function

(either with “tabular” or DNN representation) and the random exploration of

actions differ among runs. The exploration rate during training is constant and

equal to ϵ = 0.1.

Scenario 1 (Fig. 3.5(a)): The system consists of 2 servers that host 4 slices,

corresponding to 256 states, 16 actions, and 4096 state-action pairs. The cost as

a function of time slot during training (averaged over the 10 runs), is depicted

in Fig. 3.5(a) for QL, DQN, and iDQN algorithms. Two important remarks for
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this cost metric, which we will be using throughout the simulation section, are

that i) the lower the cost the better; and ii) this cost includes also the cost of the

random exploration actions during training which is constant due to the constant

exploration rate. The two main observation from Fig. 3.5(a) we after are:

(i) Near-Optimality: that the two approximate algorithms, DQN and iDQN, are

able to achieve similar cost to the (optimal) QL policy. Indeed, in Fig. 3.5(a), when

the QL algorithm has finally converged to an optimal policy (at timeslot 120000),

it achieves roughly the same cost as DQN and iDQN (this has been confirmed for

a variety of other small scenarios as well).

(ii) Convergence Speed: that the two algorithms, even in this very simple scenario

(hence, not so computationally challenging for tabular Q-learning) still reduce

convergence speed, as expected. In Fig. 3.5(a), QL takes roughly an order of

magnitude more iterations to converge compared to approximate RL schemes (the

performance deficit of QL only increases in larger scenarios). This gain is mainly

attributed to the inherent ability of the DNN to be more sample efficient than

tabular methods, and quickly generalize. This is corroborated by the fact that the

number of trainable parameters for the DNN in this small scenario (the weights) is

comparable to the number of trainable parameters (the Q table entries) of QL, and

therefore the speed gain cannot be attributed, in this small scenario, to having

to learn for example much fewer parameters. Note that the convergence speed

performance of DQN and iDQN is similar, since the action space is still quite

small (the advantage of iDQN will become evident in Scenario 2, to be introduced

shortly).

Finally, as a “sanity check” to ensure that the scenario is not trivial, despite its

simplicity, we plot the performance of two simple static heuristic policies: group-

all, that aims to merely minimize the cost of active nodes by grouping all VNFs

in one server, and split-all, that tries to minimize SLA violations by distributing

VNFs equally to both servers. Given that such policies can in fact be optimal

for a subset of time slots 8, we want to make sure that an optimal policy (and

respective cost) outperforms both (i.e., there is a “non-trivial” policy to be learned,

even in this small scenario). Indeed, looking at Fig. 3.5(a), the dynamic policies

obtained by RL demonstrate roughly 20% lower cost compared to simple static

8The group-all policy is optimal when the traffic demand is low (avoids unnecessary node
usage). The split-all policy is optimal when the traffic demand is high (avoids SLA violations).
We will revisit these “extreme” policies and how optimal policies learn to live in between such
extremes, in more detail, in the data-driven scenarios to follow.
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(a) Scenario 1 (b) Scenario 2

Figure 3.5: Convergence plots for two scenarios of different size (Markov
traffic). On the left, Scenario 1 is a small toy-scenario with 256 states and 16
actions, while on the right, Scenario 2 has 279936 states and 2187 actions.

heuristics (this gain significantly increases in larger setups, as we will see later on

in Section 3.3.4).

Take-away message 1: DQN based algorithms (either single or multi agent) can

obtain good quality solutions in orders of magnitude fewer iterations than vanilla

QL.

Scenario 2 (Fig. 3.5(b)): The above experiment serves to confirm the theoret-

ical advantages of the DQN agent of Section 3.2.2: near-optimality with better

convergence speed. Nevertheless, in this very small scenario, action space com-

plexity is not yet large enough to show any advantages of iDQN over DQN. To test

this conjecture, we consider now a larger scenario with a physical network that

consists of 3 servers and hosts 7 slices (279936 states, 2187 actions, ∼ 6 ·108 state-
action pairs)9. While this is still not a very large scenario, in practice Q-learning

already collapses due to memory requirements; we therefore omit this scheme and

compare iDQN only with DQN.

The convergence plot of Fig. 3.5(b) depicts only the first 50000 training steps, in

order to facilitate comparisons up until iDQN’s convergence (DQN converges also

to a similar cost policy, but much later). To better quantify the convergence speed

gain, we give the full results of the training phase in Table 3.2, which indicate that

9Note that, while this sounds like a “slighly” larger scenario only, the number of possible
actions has already reached 2187, compared to 16 in scenario 1. Note also that DQN algorithms
start becoming extremely sluggish, as we will see, even for this action space size. We also remind
that traffic demands in scenario 2 are Markov (Traffic type 1, Section 3.3.1), similar to scenario
1.
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Table 3.2: Convergence speed comparison

Convergence (%) DQN iDQN
78 148857 919
84 297143 963
89 593224 1198
95 593311 13620
100 708700 25956

iDQN fully converges 27 times faster than DQN (it also reaches 44 times faster the

95% of convergence). This is reasonable, as the action space has quickly grown

larger in this scenario due its combinatorial nature. The reasons for the much

slower convergence of DQN, as we have discussed in Section 3.2.2, are mainly: (i)

the exploding fanout (the output layer of DQN dominates the number of trainable

parameters leading to a total of 142000 parameters, as opposed to 8400 parameters

per iDQN agent, despite that we have set the same number of hidden layers and

neurons therein for both schemes); (ii) the computational complexity of the max

operations (3.5) and (3.6) (for DQN it is exponential V K ,while for iDQN it is

linear V ·K, where V the number of servers and K the number of slices).10

Take-away message 2: Even for mildly realistic size scenarios, DQN quickly

collapses in terms of convergence speed.

3.3.3 Part II: Performance gains of DQN+/iDQN+

Having established that approximate schemes can increase convergence speed with-

out significantly impacting the quality of the obtained policy, here we aim to val-

idate that the speed up heuristics proposed in Section 3.2.4 can further boost

convergence speed in a realistic setup. We will also introduce real traffic data to

drive the demand, as well as a full-fledged multi-domain physical network, coupled

with the end-to-end queuing delay SLAs to further induce realism into our scenar-

ios. We will first test the prioritized experience replay mechanism, and the impact

of hyperparameters αrep, βrep (where αrep and βrep roughly control the amount of

prioritization and importance sampling applied respectively, see Section 3.2.4 for

the exact definition). We will then proceed to compare the convergence speed of

10Even if we could perhaps consider a different DNN architecture for DQN in order to avoid
(i), e.g., use as an input the state-action pair and output the corresponding Q-value estimate,
(ii) is an inherent problem that would remain.
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approximate RL schemes (DQN/iDQN), with and without the speed up heuris-

tics. Note that since the demands take continuous values (traffic type 2, see

Section 3.3.1), the state space has infinite size and only approximate algorithms

can be directly employed.

System Setup. The physical network consists of 2 domains, each of them com-

prising 2 nodes (servers) respectively. On top of it there are 4 slices (simple VNF

chains) with 2 VNFs each (one VNF per domain). We match real traffic to each

VNF of each slice, from the Milano dataset [35], as explained in Section 3.3.1.

For simplicity, and without loss of generality, we assume that the demands of VLs

are all zero.

Training. The training procedure is similar to Part I, only that now we execute

20 individual runs instead of 10 to increase the accuracy of the results (in Part

I the performance difference between algorithms was orders of magnitude, while

here the tested algorithms perform much closer).

Sensitivity Analysis. In the paper where prioritized replay was introduced [36],

the corresponding hyperparameters were set to αrep = 0.6, βrep = 0.4 (for the pro-

portional variant). However, their optimal values are problem dependent. In order

to adjust them for DQN+ in our setup we performed a coarse grid search, with the

best performing values being αrep = 0.4, βrep = 0.6. We give two representative

convergence plots in Fig. 3.6. An important observation is that these parameters

can affect both the sample efficiency and the quality of the obtained policy. In

Fig. 3.6(a), a low brep leads to suboptimal policies (inadequate importance sam-

pling) and a high brep to very slow convergence (excessive importance sampling);

brep = 0.6 demonstrates roughly 11% better cost performance than brep = 0.2.

In Fig. 3.6(b), varying arep affects mostly the sample efficiency (roughly up to

a 1.6 factor speed improvement between the best and worst parameter values).

Note that repeating the same analysis for iDQN resulted in similar findings, while

these parameters performed well in a variety of scenarios. Thus, we use the same

hyperparameters in the remainder of the section.

Take-away message 3: Hyperparameter tuning can significantly affect the per-

formance of prioritized experience replay.

Impact on DQN/iDQN. In Fig. 3.7, we compare the performance of vanilla

DQN/iDQN algorithms with respect to their DQN+/iDQN+ counterparts. There
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(a) Sensitivity of βrep (αrep = 0.6) (b) Sensitivity of αrep (βrep = 0.6)

Figure 3.6: Sensitivity analysis of prioritized experience replay’s hyperparam-
eters for DQN+ in a real traffic scenario. Convergence plots for (a) varying

βrep; (b) varying αrep.

are 4 main observations to take away, (i) iDQN is again confirmed to converge

faster than DQN (due to the additional approximation in action space) (ii) the

speedup heuristics of DQN+/iDQN+ improve their convergence speed compared

to their vanilla counterparts; (iii) the speed improvement for DQN is much larger

than the speed improvement for iDQN, due to its larger action space (the gain for

iDQN is expected to become more prominent in larger scenarios); (iv) iDQN+ is

the fastest among the tested algorithms (but only slightly faster than DQN+).

To better quantify the speed gain, we outline the full simulation results in Ta-

ble 3.3, which indicates the timestep when the average cost of each algorithm

went below a specified threshold values. So, Table 3.3 highlights that DQN and

iDQN converge 7.8 and 0.5 times slower than iDQN+ respectively.

Take-away message 4: the proposed speedup heuristics on top of DQN/iDQN

offer significant convergence speed gains.

3.3.4 Part III: Validation of iDQN+ in large scale scenario

We have thus far confirmed the advantages of the speedup mechanisms for both

DQN schemes in relatively realistic scenarios. In this last set of experiments, we

go one final step further increasing the action complexity (in fact beyond what

single agent DQN can handle). Our goal is to show that this final scheme can

indeed handle rather large scenarios and scale gracefully, while also seeing higher
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Figure 3.7: Convergence plot for DQN, iDQN, DQN+, iDQN+ in a real traffic
scenario (after fine-tuning the prioritized experience replay hyperparameters).

Table 3.3: Convergence speed comparison

Average DQN DQN+ iDQN iDQN+
cost

threshold
2.3 13832 7384 6731 4577
2.2 21044 9913 12974 9538
2.1 30233 12900 17440 12444
2.0 36711 14857 24676 16149
1.9 107555 26975 35159 24973
1.85 236139 44433 45361 30465

advantages from the smart replay buffer even for iDQN, given the larger problem

size. Moreover, while the results of the previous section (3.3.3) are promising

indeed, we have no hope whatsoever of knowing the optimal policy (since tabular

Q-learning is impossible to run), in order to get some insights as to how far from

the optimal cost we might be. Instead, in this last scenario, we go back to our

static heuristics (introduced in Section 3.3.2), as another “sanity check”, to ensure

that we outperform them.

System Setup. The physical network consists of two technological domains,

comprising 9 and 3 servers respectively. On top of it there are 10 slices (simple

VNF chains) with 2 VNFs each (one VNF per domain). This results to 2 · 1014

possible actions for a DQN agent. In contrast, each of the iDQN agents associated
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to one of the VNFs, has only only 9 or 3 possible actions (depending on the

domain). Similarly to Part II, we use real traffic VNF demands (traffic type 2,

Section 3.3.1).

Training. The training procedure is similar to Part II.

Evaluation. Since this last part focuses both on convergence speed and cost per-

formance (part II focused on the convergence speed gains of the proposed speedup

heuristics), all the obtained policies are evaluated over 1 episode of the training and

testing datasets (we just rollout each policy and record the average cost achieved).

We evaluate the algorithms in both datasets in order to confirm that they can

perform well even when applied in previously unseen states.

Convergence speed. The convergence plot of Fig. 3.8 provides a comparison

between iDQN and iDQN+. There are two key observations: (i) iDQN+ is again

verified to be more sample efficient than iDQN, as it achieves lower cost in the

same amount of training steps (this is a standard metric in ML [55]); (ii) con-

vergence time remains reasonable, despite the significant increase in the problem

size compared to Part II (the number of timesteps to reach convergence has only

doubled compared to Fig. 3.7, while the original action space has increased from

256 to 2 · 1014 actions).

Figure 3.8: Convergence speed comparison between iDQN and iDQN+ (large-
scale real traffic scenario).
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(a) Training dataset (b) Testing dataset

Figure 3.9: Cost performance evaluation. Box plot depicting the distribution
of the cost achieved by each algorithm in the training and testing datasets

(large-scale real traffic scenario).

Cost performance. The results of evaluating each of the obtained policies in

the training and testing datasets are given in the box plots of Fig. 3.9(a) and

Fig. 3.9(b) respectively, which compare iDQN, iDQN+, and the static heuristic

policies group-all and split-all (introduced in Section 3.3.2). The main observations

are: (i) in the training dataset iDQN+ on average outperforms iDQN by 15.2%

and the static policies by a factor of 3.16; (ii) in the testing dataset iDQN+ on

average outperforms iDQN by 22% and the static policies by a factor of 2.92 (the

performance of iDQN+ doesn’t deteriorate significantly in the testing dataset);

(iii) even the worst policies obtained by iDQN (with or without the speed up

extensions) in all 10 runs perform much better than the static baselines; (iv) the

performance gain of iDQN+ is more prominent in this larger scenario, compared

to Part II;

Analysis of obtained policies. To better understand where the lower cost of

the iDQN+ policies originates from, we provide Fig. 3.10, which highlights the

configurations used by different policies and the corresponding costs per time slot.

In Fig. 3.10(a), the number of active nodes as a function of time slot is depicted

(this is an important characteristic of the configuration, which can be used to

justify cost performance). Then, Fig. 3.10(b) depicts the cost as a function of

time slot (zooming into a specific area to aid more detailed comparisons). In what
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follows, we analyze the different policies based on observations from Fig. 3.10, and

having in mind that demands fluctuate over time (see Fig. 3.4):

-group-all: it places all VNFs in only 3 nodes (static policy) and is characterized

by large magnitude periodical fluctuations of the cost. When demands are low (no

SLA violations) group-all is the best policy (uses the minimum number of nodes),

but when demands are high it suffers from severe SLA violations.

-split-all: it distributes the VNFs in all 12 nodes (static policy). Thus, when

demands are low split-all keeps unnecessary many nodes active (higher cost than

group-all), but when demands are high it partly avoids SLA violations (lower cost

than group-all). However, a more intelligent placement of VNFs is required to

further reduce SLA violation penalties.

-iDQN: it intelligently distributes VNFs mainly to 6 nodes (migrating 1 VNF only

every now and then, when things get really hectic). When demands are high it

mostly avoids SLA violations (lower cost than split-all and group-all), but when

demands are low it still uses more active nodes than necessary (lower cost than

split-all but higher than group-all).

-iDQN+: it is a dynamic policy that intelligently distributes VNFs between 4 and

6 nodes (more dynamic than iDQN). When demands are high it mostly avoids

SLA violations (similar cost to iDQN) and when demands are low it tries to reduce

the number of active nodes by migrating VNFs (lower cost than iDQN but still

slightly higher than group-all). It is probable that iDQN+ doesn’t reduce the

number active nodes all the way down to group-all during the low traffic periods

due to the corresponding reconfiguration cost.

According to the above analysis, iDQN+ manages to obtain better, more dynamic,

policies than iDQN in the same number of training timesteps (the sample efficiency

gain offered by the prioritized experience replay is confirmed). The dynamic nature

of the iDQN+ policies explain also why it demonstrates an increased performance

gain against iDQN in the testing dataset. Looking at the demand timeseries of the

training and testing datasets in Fig.3.4, it is evident that the latter is characterized

by lower magnitude demands. Hence, the iDQN+ policies that are able to migrate

VNFs toward reducing the number of active nodes when traffic is low have the

upper hand compared to the more static iDQN policies.
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(a) Number of active nodes (b) Cost

Figure 3.10: Comparison of policies during evaluation in the training dataset
(large-scale real traffic scenario).

Take-away message 5: the proposed speed up heuristics of iDQN+ improve the

performance of iDQN, particularly as the action space gets larger, and provide a

more scalable solution.

3.4 Conclusions

In this chapter we presented a theoretical analysis of the scalability properties

of various Q-learning-based schemes in our problem, starting from a standard

“tabular” Q-learning method and gradually adding extra components towards

a more scalable solution (based on computational complexity arguments). We

ended-up with a multi-agent scheme of independent DQN agents (iDQN), where

the DQN component can tackle state space complexity and the use of multiple

agents addresses action space complexity. Then, we propose two speed-up heuristic

mechanisms to further improve convergence speed: (i) by selecting more efficiently

the mini-batch samples (prioritized experience replay); (ii) by smartly reducing

computations during parameter updates (lazy TD-target computation).

Remaining Open Questions. Although the proposed multi-agent DQN-based

scheme proved to be a much more scalable solution compared to its single-agent

counterpart, the use of independent agents can potentially still cause problems

in large scale scenarios. The lack of coordination among agents results to a non-

stationary environment, which might negatively affect sample efficiency, quality

of the obtained policies, or even lead to stability problems. Therefore, further
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investigation is required to assess if inducing coordination among agents could

further improve performance.



Chapter 4

Scalable DQN with Coordinated

Branches

4.1 Introduction

As discussed in Chapter 3, some of the hurdles faced by RL based solutions tack-

ling the dynamic slice embedding problem are the following: (i) infinite state

spaces, due to continuous traffic demands of the VNFs involved; (ii) astronomi-

cally high action spaces, due to the combinatorial nature of placing multiple VNFs

upon multiple nodes (considering multiple slices further exacerbates this problem);

(iii) poor sample-efficiency, which can be an important shortcoming in online set-

tings. While DNN-based RL schemes, e.g. DQN [45], can help with challenge

(i), multi-agent DQN (Section 3.2.3) can mitigate challenge (ii), and the speed-up

heuristic mechanisms proposed in Section 3.2.4 can (up to an extent) alleviate

from challenge (iii), the scalability of existing multiagent schemes, of collabora-

tive but independent DQN agents, may be negatively affected by the emerging

non-stationary environment (induced by agent independence).

In this Chapter, we propose a DRL scheme based on the Branching Deep Q-

Network (BDQ) architecture [60], which dramatically reduces action complexity

(with respect to single-agent approaches) by allotting the control of each VNF to

a different DNN branch. Moreover, to avoid the non-stationarity issues arising in

multi-agent schemes of independent agents, BDQ involves an input DNN module

that is shared among all branches and is responsible for their (implicit) coordina-

tion, improving the scheme’s sample efficiency and scalability properties. Finally,

56
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in contrast to the majority of the closely related works involving DRL solutions,

we benchmark the proposed scheme against an algorithm that is theoretically op-

timal in the (stateless) “experts” setting, even in real traffic scenarios. Note that,

while “stateless”, this experts algorithm can in fact explore all actions - often a

huge number - in parallel, unlike our scheme which operates in a “bandit-like”

setup, exploring one action at a time. As a result, this baseline can be seen as a

non-implementable oracle, that even a stateful scheme might not be able to match.

The outline and specific contributions of this Chapter are as follows:

(C.1) In Section 4.3.1, we formulate the dynamic slice embedding problem as a

(stateless) “experts” problem. We use a state-of-the-art algorithm that is theoret-

ically optimal (in the experts context) as a baseline for our scheme.

(C.2) Section 4.3.2 recaps on the stateful RL version of the problem (introduced in

Chapter 2), which attempts to take advantage of patterns in the VNF/VL traffic

dynamics. It also includes a discussion on how and where existing DQN-based

schemes fail to cope with the combinatorial state and action spaces involved.

(C.3) In Section 4.4, we propose a DRL scheme based on a sophisticated DNN

architecture that considers: (i) a different DNN branch for each VNF; (ii) (implicit)

coordination among branches (to improve scalability).

(C.4) Using a real dataset, in Section 4.5, we demonstrate that the proposed

scheme outperforms (i) the experts baseline, both in terms of cost performance

and sample efficiency (theoretically “grounding” the proposed approximate RL

scheme); and (ii) the existing state-of-the-art multi-agent DQN approach, showing

up to 45% cost improvement in a fairly large scenario.

4.2 System Model

Our model is based on some common assumptions on VNF embedding, originally

discussed in [25], and generalized in Chapter 2. We summarize below the main

attributes, as a recap, but refer the reader to Chapter 2 for details.

Physical Network: a weighted undirected graph G = (V , E) of physical nodes
(set V = {0, 1, ..., V − 1}), interconnected by a set of links E (physical paths).

Each node, v ∈ V , and link, (v, v′) ∈ E , is characterized by a capacity to process

traffic flows.
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Network Slices: virtual networks on top of the physical network. Each slice

k ∈ K is a directed graph Hk = (Nk,Lk) of VNFs (set Nk) and VLs (set Lk), that

must be assigned to physical nodes and paths respectively. Assuming that time is

slotted, each VNF n and VL (n, n′) requires an amount of resources denoted by

dkn(t) and d
k
n,n′(t) respectively, where t indicates the time slot.

(Input) Demand vector dt ∈ D: denotes the demands of all slices at time

slot t,

dt = (dki (t)|∀k ∈ K, i ∈ Nk ∪ Lk).

(Control Variables) Configuration vector ct ∈ C: denotes the assignment

of all VNFs to physical nodes1 at time slot t,

ct = (ckn(t)|∀k ∈ K, n ∈ Nk),

where ckn(t) indicates the host node of VNF n (slice k) at t.

The goal of dynamic slice embedding is to choose the configuration ct at every time

slot t, before actually knowing the demands for that slot (but possibly knowing past

demands and configurations), in order to ensure that (i) each slice’s performance

is isolated from other slices, despite sharing common resources (SLAs are fulfilled);

(ii) network resources are utilized efficiently (low network-related costs).

Slice SLAs: We assume that each slice’s performance is measured with an

end-to-end KPI, and there is an agreed slice-specific worst case performance qk

(SLA). Without loss of generality, we will assume here that this KPI is the end-to-

end delay of an average flow going through that VNF chain, given by a function

F delay
k (c, d). This delay is captured by a fairly sophisticated queuing model, where

resources between collocated VNFs on a node (or VLs on a link) are scheduled

with a (generalized) Processor Sharing discipline, while the end-to-end delay per

chain is captured with a (generalized) Jackson network (see Section 2.2.3). Then

the SLA violation cost ℓSLA(c, d) is given by (2.5).

Network Costs: In addition to the costs associated with end-to-end delay violating

the SLA qk, we assume that there are additional network costs that an operator

might pay. First, we consider a (monetary) cost related to using a node, e.g., an

1W.l.o.g., we assume that routing paths are predetermined and known for any pair of physical
nodes. Our algorithm could be straightforwardly extended to scenarios with multiple alternative
paths to choose from, for each node pair.
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idle node could be set to sleep mode to save energy [47], given by (2.7). Second,

we assume there is another potential cost for migrating a VNF from one node to

another,e.g., network overhead due to signalling, or even service downtime [32],

given by (2.6).

4.3 Optimization Baselines for VNF Chain Place-

ment

In this section, we will discuss two popular solution frameworks for solving the

previously defined high level problem. In both cases, demands dt are assumed

unknown and time-varying, so algorithms sought fall in the broad area of online

learning/optimization.

4.3.1 Experts optimization

As a first step, we formulate and solve the problem as a standard “experts” prob-

lem. These problems are often categorized under the umbrella of Bandit opti-

mization or Online Convex Optimization (OCO) [61]. In the experts setting, a

learning agent takes actions based on a “goodness” estimate that he maintains for

each configuration (“arm” or “expert”). This estimate depends only on past costs

and gets updated at every time slot for all configurations. We stress here that an

experts algorithm is very powerful in that, at every step, it improves the goodness

estimate of all possible configurations, not just the chosen configuration ct. This

is in stark contrast to bandit environments, or online RL environments, where

information only about ct is obtained at each step. For massive action spaces, like

the ones arising in slice embedding problems, this constitutes a very significant

theoretical advantage in terms of sample efficiency. For this reason, we’ll treat this

scheme as one of our baselines, that is not possible to implement in practice, for

large problems.

Action space. The agent’s action at t, is the assignment of VNFs to physical

nodes in t+ 1 (without knowing dt+1):

at = ct+1 ∈ A.
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The action space A = C quickly explodes, even in moderate-sized scenarios, due

to the combinatorial configuration vector.

Cost function: The total cost of a configuration a at t is:

ℓ(a, dt) = wSLA · ℓSLA(a, dt) + wON · ℓON(a), (4.1)

where wSLA and wON are “fixed” scalar weights that determine the importance of

the respective cost terms. Note that we normalize the cost, so that ℓ(a, dt) ∈ [0, 1]

for all a ∈ A and t ∈ {0, 1, ..., T − 1}, where T is the optimization horizon.

Baseline algorithm. To solve this problem, we consider the Multiplicative

Weights (MW) algorithm [62], a simple online algorithm that can learn proba-

bilistic policies with optimality guarantees. The algorithmic steps of MW are

detailed in Fig. 6.

Algorithm 6 (MW) Main algorithmic steps.

MW algorithm
Initialize a “goodness” estimate vector Qt(a) to Q0(a) = 1, for all configura-

tions a ∈ A. Set the learning rate to η =
√

ln |A|
T

, where |A| is the number of

configurations and T the optimization horizon.
Step 1: At time slot t, the agent selects at ∈ A (the configuration ct+1), with
probability:

pt(a) =
Qt(a)∑
aQt(a)

(4.2)

Step 2 The demand vector dt+1 is revealed and the cost ℓ(at, dt+1) is inflicted.
Also, the costs ℓ(a, dt+1) for all configurations a ∈ A become known.
Step 3: All estimates are updated according to:

Qt+1(a)← Qt(a) · (1− η)ℓ(a,dt+1),∀a ∈ A (4.3)

Repeat steps 1 to 3 untill t = T .

The performance of experts algorithms is compared to an “optimal static oracle”.

This oracle knows in advance all future demands up to horizon T and chooses one

(hence “static”) configuration (a(0) = a(1) = ... = a(T−1) = a):

a∗ = argmin
a∈A

T−1∑
t=0

ℓ(a, dt+1). (4.4)



Chapter 4: Scalable DQN with Coordinated Branches 61

Regret is defined over T , as the difference between the accumulated cost achieved

by the MW agent L
(T )
MW =

∑T−1
t=0

∑
a pt(a)ℓ(a, dt+1), and the respective cost of the

optimal static oracle L
(T )
a∗ =

∑T−1
t=0 ℓ(a

∗, dt+1). MW has optimal (scaling-wise) re-

gret [62]:

Lemma 4.1. Regret(T ) = L
(T )
MW − L

(T )
a∗ ≤ 2

√
T ln |A|.

Sublinear regret implies that MW eventually catches up with the oracle, in terms

of cost per slot, and hence, we cannot expect to do better (in this class of schemes).

We will thus use both the performance of MW and the oracle’s performance as

theoretically-grounded baselines.

We stress that MW is 1-to-1 equivalent to the more well known Exp3 algorithm,

with appropriate parameter changes [63]. Exp3 (“Explore and Exploit with Ex-

ponential weights”) is an algorithm for the bandit setting, where only the cost of

the chosen action is revealed (as opposed to the experts setting where the costs

of all actions become available). This becomes clearer in Alg. 7, where the main

algorithmic steps of the Exp3 are given. The most important difference compared

to MW, is that in Exp3 there is a small probability of exploring a random action

per round, instead of only exploiting the already learned “goodness” estimates

(see (4.5)). Without any exploration the algorithm could potentially get stuck to

suboptimal actions (no sublinear regret). Of course, another difference is that at

each timestep only the estimate of the taken action gets updated, as there is no

feedback for the rest of the actions. The result of this partial feedback is that

the regret of Exp3 is O(
√
|A| · T ln |A|) (as opposed to the O(

√
T ln |A|) regret

of MW). This highlights the important advantage of MW in terms of sample ef-

ficiency compared to bandit schemes, as |A| grows very fast with the scenario

size.

Pros : (i) MW doesn’t require any foreknowledge about demands; (ii) it has opti-

mality guarantees on cost performance; (iii) it has an important sample efficiency

advantage compared to standard bandit-like schemes.

Cons: (i) it is a very strong assumption, and computationally very intensive, to

improve the estimates for all configurations at every step, when |A| is in the or-

der of billions (not to mention the memory requirements); (ii) MW is a stateless

scheme, essentially assuming an “adversary” chooses demands, hence fails to ex-

ploit any patterns intrinsic to the demands (e.g. diurnal traffic, week-weekend
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Algorithm 7 (Exp3) Main algorithmic steps.

Exp3 algorithm
Initialize a “goodness” estimate vector Qt(a) to Q0(a) = 1, for all configura-

tions a ∈ A. Set the learning rate to η =
√

ln |A|
T ·|A| , and the exploration rate to

γ = |A| · η.
Step 1: At time slot t, the agent selects at ∈ A (the configuration ct+1), with
probability:

qt(a) = (1− γ)pt(a) +
γ

|A|
, (4.5)

where pt(a) =
Qt(a)∑
aQt(a)

.

Step 2 The demand vector dt+1 is revealed and the cost ℓ(at, dt+1) is inflicted.
Step 3: The estimate of the taken action a = at is updated according to:

Qt+1(a)← Qt(a) · e−η· ℓ(a,dt+1)

qt(a) (4.6)

Repeat steps 1 to 3 untill t = T .

patterns, etc.); (iii) it does not account for reconfiguration costs (while bandit

algorithms for setups with reconfiguration costs do exist [64], these go beyond the

scope of this work).

4.3.2 RL optimization

We now assume that that the (unknown) demand dynamics have stateful charac-

teristics, meaning that the current history of demands determines the probability

distribution of future demands. Considering also a reconfiguration cost for mi-

grating VNFs between consequent time slots, gives rise to a problem with delayed

rewards (e.g. if the demand of a VNF is predicted to increase and stay high for

long enough, its migration to a less busy server might be suboptimal in the short

term, due to a high reconfiguration cost, but could pay-off in the next few time

slots). This is a typical RL setting that we discussed in detail in Chapter 2. In

what follows, we briefly recap on the RL formulation of the slice embedding prob-

lem and the approximate RL algorithms of Chapter 3, as we will use them as

baselines for the more advanced proposed scheme of this Chapter.
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State Space. The state of the system at t consists of the configuration vector

(2.1) and the demand vector (2.2):

st = (ct, dt) ∈ S.

Consequently, the state space S is the Cartesian product between the sets of

configuration and demand vectors (S = |C| × |D|). In this work we consider

continuous real traffic demands imported from the Milano dataset [35], which

implies an infinite state space (due to the infinite set D).

Action space. The agent action at is the same as in the experts setting (the

configuration to be applied in the next time slot).

Remark: An RL algorithm can be practically applied in the slice embedding prob-

lem only if it is able to handle both the infinite state space and the combinatorial

action space.

Reward function. If the system is at state st and the agent takes an action

at, then in the next time slot a new state st+1 is revealed and the corresponding

reward is:

rt+1 = −(wSLA · ℓSLA(st+1) + wON · ℓON(at) + wRC · ℓRC(st, at))

The only difference of the above reward with the cost function of the experts prob-

lem (4.1), is that it has an additional reconfiguration cost term and a minus sign

(typically RL agents try to maximize the received rewards instead of minimizing

the cost).

Q-learning. In the RL setting, the goal is to learn an optimal configuration for

each possible state s of the system. This gives rise to a more “powerful” oracle

than the static one, which may select a different action at every state (this optimal

policy can be obtained by dynamic programming algorithms, e.g. Policy Iteration

[49]). Q-learning is a standard “tabular” RL algorithm that is guaranteed to

converge to this more “powerful oracle”, in theory (see Section 3.2.1).

However, neither Q-learning nor dynamic programming can be (directly) applied

to our problem, due to the infinite number of states (even for quantized demands,

these schemes would be applicable only in very small toy scenarios due to the

combinatorial state and action spaces). Thus, we refer to them as a motivation
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for more practical DRL schemes, and instead, we use the MW algorithm and the

static “oracle” of Section 4.3.1 as baselines.

Deep Q-Network (DQN). It is an approximate RL algorithm, introduced in

[45], that can tackle problems with an infinite number of states, as is the case

in our problem (see Section 3.2.2 for a detailed analysis). It uses a DNN with

parameters θ to approximate the action value function Q(s, a), which takes as

input the state s and outputs the estimates Qθ(s, a) of the expected (discounted)

long-term reward, for all actions a ∈ A. Learning a “good” approximation Qθ(s, a)

is equivalent to learning a “good” slice embedding policy: at any state, the agent

can select the best configuration by performing an argmax operation over the

action values of all possible configurations. While standard DQN can be applied in

arbitrarily large state spaces, the exploding action space of our problem still poses

a scalability bottleneck (exploding DNN fanout and expensive argmax operations

over the combinatorial actions space).

RL baseline: independent Deep Q-Networks (iDQN). It is the multi-

agent, DQN-based algorithm of Section 3.2.3. The action complexity problems

of single-agent DQN can be addressed by the use of multiple independent DQN

agents, that decomposes the original action space into much smaller action sub-

spaces. The sample-efficiency of this scheme can be further improved with the

speed-up heuristic mechanisms proposed in Section 3.2.4 (we denote this enhanced

version by iDQN+).

Action space decomposition: Each independent DQN agent (n, k) is responsible

only for the placement of a specified VNF n (of slice k), and thus its DNN outputs

the predicted action values of placing this VNF to any of the permitted physical

nodes (all agents view the same state st (2.1)). The new action space Ank is

not combinatorial anymore (much smaller fanout). Moreover, the computational

complexity of the argmax operation required to choose a configuration increases

linearly instead of exponentially (N argmax operations over V actions instead of

one argmax over V N actions, where V is the number of physical nodes and N the

total number of VNFs).

Pros: iDQN can be applied in practical slicing scenarios (the DQN component

tackles state space complexity while the use of multiple agents radically reduces

action space complexity).
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Cons: The lack of coordination among agents can potentially deteriorate sample

efficiency and quality of the obtained policies (or even lead to stability problems),

due to the induced non-stationarity. The fact that the agents are independent

means that each of them conceives the rest as part of the environment, and thus,

as agents try to improve their policies, the environment becomes non-stationary.

4.4 DQN with Coordinated Branches

We are now ready to delve into the details of our proposed algorithm, that attempts

to overcome the different shortcomings in the baseline schemes, identified earlier.

The action branching Deep Q-Network (BDQ) architecture was introduced in [60]

to facilitate the application of DQN (and any other discrete-action RL algorithm)

into problems with high-dimensional discrete action spaces. This method shares

the same action space decomposition advantages with the iDQN scheme of the

previous section, but also aims to tackle the problems stemming from the lack of

coordination between agents. Fig. 4.1 visualizes the branching architecture.

Figure 4.1: Schematic representation of the branching architecture. A shared
module of the DNN takes as input the state st and outputs a latent represen-
tation ŝt, which in turn is given as input to N different branches (one branch
per VNF). The assignment ci(t + 1) of each VNF i to a physical node in the
next slot is determined by an argmax operation over the Q-value estimates of
branch i. Then, the chosen action is at = (c0(t+ 1), c1(t+ 1), ..., cN (t+ 1)).

Action space decomposition: Each DNN branch Qθnk
(s), outputs the action value

estimates of placing VNF n of slice k to any of the permitted physical nodes.

This results to a linear increase of network outputs as a function of the number of

VNFs, as opposed to the exponential increase of the vanilla DQN scheme (V ·N
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instead of V N , where V the number of physical nodes and N the number of VNFs).

The same holds for the computational complexity of the argmax operation over

all Q-value estimates, that is required in every time slot to select the best action.

Coordination: A DNN module that is shared among the different branches is

responsible for their implicit coordination. It takes as input the state s and outputs

a latent representation ŝ, that is in turn given as input to each one of the branches.

Action selection: An ϵ-greedy policy is used to balance exploration of new actions

and exploitation of the learned Q-function. To this end, at each time slot a random

configuration is chosen with probability ϵ, while each VNF is assigned to the node

with the maximum Q-value estimate with probability 1− ϵ.

Stability mechanisms: Using a DNN to approximate the Q-function can poten-

tially lead to instabilities due to correlations between subsequent parameter up-

dates (the visited states by the agent are highly correlated). BDQ uses the two

standard DQN mechanisms that ensure stable learning, the experience memory

replay and the target network, which where discussed in detail in Section 3.2.2.

The former is a replay buffer that stores visited experiences (s, a, s′, r), and en-

ables updating the parameters θ of the DNN (policy network) based on randomly

sampled mini-batches. The latter is an older “frozen” version of the policy net-

work, with parameters θ′, that is updated less frequently and is used as part of a

Temporal Difference (TD) target (4.7) for semi-supervised learning.

Action improvement: At each round, a minibatch of experiences is randomly sam-

pled from the replay buffer and the policy network’s parameters are updated based

on the expected value of the mean squared TD error across all branches (4.9).

The main algorithmic steps of BDQ are given in Alg.8.

4.5 Simulation Results

In this Section we employ a real traffic dataset to drive the demands in various

slice embedding scenarios, with the goal to: (i) examine the theoretical optimality

of the proposed BDQ scheme in terms of cost per time slot (compared to the

static oracle), as well as its sample efficiency (compared to MW), in a moderately-

sized setup; (ii) validate the scalability of BDQ and the performance gains offered
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Algorithm 8 (BDQ) Main algorithmic steps.

BDQ algorithm
Action branching architecture: A DNN Qθ(s), with a separate branch Qθnk

(s)
per VNF n ∈ Nk of slice k ∈ K.
Step 1: (in agent) An ϵ-greedy action is taken:

ank ←

random ank ∈ Ank, with probability ϵ;

argmax
ank∈Ank

Qθnk
(s, ank), with probability 1− ϵ.

Then, the collective action is:

a = (a00, ..., aNKK)

Step 2 (in env): Returns the next state s′ and reward r.
Step 3: (in agent) store transition (s, a, s′, r).
Step 4 (in agent): copy the policy network parameters θ to the target network
θ
′
(only every X timesteps).

Step 5 (in agent): pick M samples randomly from replay buffer and calculate
the TD target yi for each sample i:

yi = ri + γ
1

N

∑
n∈Nk,k∈K

max
(ank

i )′∈Ank
Qθ

′
nk
(s′i, (a

nk
i )′), (4.7)

where N is the number of branches.
Then, perform a gradient step:

θ ← θ − η∇θL, (4.8)

where

L = Ei∼U(D)[
1

N

∑
n∈Nk,k∈K

(yi −Qθnk
(si, a

nk
i ))2]. (4.9)

Repeat steps 1 to 5 for T time slots.

by coordination, compared to the independent agents of iDQN+, in a large-scale

setup. Thus, the Section is divided into two respective parts, each dedicated to

one of the above objectives.

Algorithms. Below we first outline all the algorithms (or policies) used in this

section and then specify the selected values for all the algorithm-specific parame-

ters.

• group-all a simple static policy that merely minimizes the number of active

nodes by placing all VNFs on the largest node. Possibly suffers from SLA



Chapter 4: Scalable DQN with Coordinated Branches 68

violations.

• split-all a sister policy to group-all, which instead aims to minimize SLA

violations by spreading VNFs to all available nodes. It often uses more nodes

than necessary, inflicting a high “on” nodes cost.

• static oracle the optimal static policy of Section 4.3.1.

• Exp3 the adversarial multi-armed bandit algorithm of Section 4.3.1 (Fig. 7),

that has optimal regret (in the bandit setting) with respect to the static

oracle above.

• MW the experts algorithm of Section 4.3.1 (Fig. 6), that has optimal regret

(in the experts setting) with respect to the static oracle above.

• iDQN the multi-agent DRL scheme of Section 3.2.3 (denoted by iDQN+

when employing also the speed-up enhancements of section 3.2.4).

• BDQ the DRL scheme of Section 4.4.

Parameters of DRL schemes: We set the replay buffer size to 5000, the target

update period to 500, the minibatch size to 32, the learning rate to 10−3, and

the discount factor to γ = 0.9, same as in Section 3.3. The DNNs are multilayer

perceptrons2 (commonly used in related works, e.g. [30], [65]). Each iDQN agent

has 3 hidden layers with 60 neurons per layer (this size performed well in a variety

of tested scenarios). In BDQ there is first a fully connected layer shared among

the different branches, which takes as input the state and has 60 output neurons.

This is followed by N different branches, each of them being an MLP with 60 input

neurons, 1 hidden layer of 60 neurons, and an output that has as many neurons

as the number of actions per VNF.

VNF demands. We use the popular Milano dataset [35] to drive the demands

and use half of the imported datapoints for training and the rest for testing. More

details can be found in Section 3.3.1 (Traffic Type 2 ).

2We use simple DNNs to not entangle our discussion with the additional impact of specific
(fancier) DNN architectures. We defer this to future work.
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4.5.1 Comparison with experts baseline

We first focus on a medium-sized setup, in order to compare our proposal to the

theoretically grounded MW algorithm and the corresponding static oracle.

System setup. We consider a physical network with two domains, each consisting

of two servers, while there are four slices comprising 2 VNFs each (one VNF per

domain). This results to 256 possible configurations (we remind that the state

space is infinite due to continuous traffic demands).

Scenario 1 - free reconfigurations. We first consider a scenario without recon-

figuration cost (wRC = 0), in order to assess in isolation the ability of both bandit

and DRL algorithms to dynamically adapt their actions according to the changing

traffic. Fig. 4.2(a) depicts the cost as a function of time slot during training (aver-

aged over 10 independent training runs and smoothed), for the algorithms under

test. Note that Exp3, MW, iDQN, and BDQ start with a random policy that

they improve online at each timestep (they demonstrate a higher cost at timestep

0, which gets lower over time), while the rest of the policies have been obtained

offline.

Sanity checks: (i) static oracle is indeed better than the simple static heuristics

group-all and split-all; (ii) MW converges to the cost of the static oracle as ex-

pected; (iii) MW has a huge sample-efficiency advantage compared to Exp3 (it

manages to drive regret close to zero in the given horizon, while Exp3 barely

achieves any significant cost reduction). This advantage stems from the fact that

MW receives feedback for all actions at each round in contrast to Exp3 and any

other bandit-like algorithm that receive feedback only for the chosen action (as

discussed in Section 4.3.1)

Key Observations: i) both iDQN and BDQ are able to not only reach the static or-

acle much faster than MW, but they in fact outperform any static or bandit/expert

policy (i.e. they more than make up for the theoretical sample efficiency gap with

MW, through increased algorithmic sophistication); (ii) already the advantages of

BDQ over iDQN are visible, even in this relatively small action space setup.

Take-away message 1: DRL schemes converge faster than the experts baseline.
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(a) Scenario 1 (b) Scenario 2

Figure 4.2: Convergence plots for 2 different scenarios in a setup with 256
actions. In (a) reconfigurations are free, while in (b) an additional reconfigu-
ration cost is inflicted. Notice that the y axis is discontinuous in order to be
able to depict MW in (b), where it demonstrates significantly higher costs due
to reconfigurations. We remark that in (b) we also plot “MW (free reconf.)”,

which is MW, but with the advantage of making free reconfigurations.

Take-away message 2: DRL schemes obtain dynamic policies with lower cost

than any static or bandit/expert policy.

Scenario 2 - costly reconfigurations. We now introduce a reconfiguration cost

in the previous scenario (we increase wRC). We hope that the DRL agents will

be able to smartly factor this in, unlike (vanilla) experts algorithms that do not.

To make this even more challenging for DRL schemes, we further compare their

performance with an MW version that has been given the advantage of free recon-

figurations, denoted by “MW(free reconf.)”. The results are depicted in Fig.4.2(b),

with the main observations being: (i) the DRL schemes are able to gracefully de-

grade a little bit their performance, now making some costly reconfigurations only

when they predict that this can be amortized later (hence the slightly higher cost

compared to Scenario 1); (ii) they are still better than MW(free reconf.), despite

its advantage of free reconfigurations; (iii) without this advantage, MW’s perfor-

mance is severely degraded due to many unnecessary reconfigurations.

Take-away message 3: approximate RL schemes obtain effective policies even

in the presence of reconfiguration costs.
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4.5.2 Comparison with DRL baseline

Having established both the theoretical sanity and necessity for (stateful) RL

policies, we now consider a more realistically sized scenario, to test our new BDQ-

based policy to a state-of-the-art iDQN+ one. We execute 10 independent training

runs for each DRL agent (with different random seeds per run), as in Section 4.5.1,

and then we evaluate the obtained policies both in the training and in the testing

datasets to check the ability of DRL agents to generalize (in the evaluation phase

agents act greedily with respect to the learned action value functions). We remark

that, due to the vast action space of this scenario, MW is not applicable3.

System setup. We consider a physical network with two domains, where one

domain consists of 9 servers and the other of 3, while on top of it there are 10

slices comprising 2 VNFs each (one VNF per domain). This setup already leads

to an immense action space of |A| = 2 · 1014 confgurations!

Convergence speed. To facilitate a speed comparison between BDQ and iDQN+,

we provide a convergence plot (Fig. 4.3) depicting the cost (averaged over 10 runs

and smoothed) of each algorithm as a function of time slot during training. The

key observation is that BDQ is verified to be more sample-efficient than iDQN+,

as it manages to achieve a lower cost policy in the same number of training steps.

Cost performance. In order to examine both the mean performance and the

stability of the DRL agents, we outline the results of the evaluation phase in

the box plots of Fig. 4.4. The main observations are the following: (i) in the

training dataset, BDQ demonstrates 41% and 47% better mean cost than iDQN+

and the static oracle respectively; (ii) in the testing dataset, BDQ demonstrates

45% and 65% better mean cost than iDQN+ and the static oracle respectively

(both DRL schemes generalize successfully in the testing dataset and increase

their performance gain against the static oracle’s policy, which was also obtained

based on the traffic demands of the training dataset; the lower cost achieved by

the DRL schemes in the testing dataset can be explained by the lower traffic

demand compared to the training dataset, as it can be seen in Fig. 3.4); (iii) BDQ

has robust performance with much lower standard deviation than iDQN+ in both

datasets (thanks to the implicit coordination of its branches); it is noteworthy that

even the worst policy obtained by BDQ is still better than the static oracle.

3To obtain the static oracle in this scenario we used the surrogateopt function of Matlab with
the default parameter values (this solver performed well in a variety of tested scenarios).
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Figure 4.3: Convergence speed comparison between iDQN+ and BDQ (large-
scale real traffic scenario).

(a) Training dataset (b) Testing dataset

Figure 4.4: Cost performance evaluation in large-scale scenario (2 · 1014 ac-
tions). Box plot depicting the distribution of the cost achieved by each algorithm

in the training and testing datasets.

Take-away message 4: the performance gains of BDQ against iDQN+ and the

static oracle become more prominent as the scenario size grows larger.

Analysis of obtained policies. Here we will attempt to highlight why the

cost of the obtained policies by BDQ is lower compared to the corresponding

iDQN+ and static oracle policies. To this end, we provide two plots: (i) Fig. 4.5

depicts the number of active nodes per time slot for each of the above algorithms
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(highlighting the dynamicity of the obtained policies); (ii) Fig. 4.6 depicts the

corresponding costs as a function of time slot (we zoom into a specific area to

facilitate comparisons). In what follows, we analyze the different policies based on

observations from these two Figures and having in mind that demands fluctuate

periodically over time (see Fig. 3.4):

Figure 4.5: Number of active nodes as a function of time slot for BDQ,
iDQN+, and the static oracle, during their evaluation in the training dataset

(large-scale real traffic scenario).

Figure 4.6: Inflicted cost as a function of time slot for BDQ, iDQN+, and
the static oracle, during their evaluation in the training dataset (large-scale real

traffic scenario).
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-static oracle: a static VNF placement using 6 nodes (see Fig. 4.5). The chosen

static configuration distributes VNFs in a way that avoids SLA violations (in

Fig. 4.6 the cost of the static oracle is constant, equal to the cost of having 6 nodes

active). We note that the oracle knows in advance all future traffic demands, and

thus can choose an optimal configuration that avoids SLAs.

-iDQN+: it is a dynamic policy that distributes VNFs between 4 and 6 nodes

(see Fig. 4.5). When demands are low it mostly uses 4 nodes to reduce the active

nodes cost (lower cost than static oracle), but when demands are high it tries to

avoid SLA violations by distributing VNFs to more nodes (at most 6). However,

at traffic peaks the chosen configuration is usually worse than the static oracle’s

(see Fig. 4.6), inflicting higher costs due to either using a lower number of nodes

than required or not distributing VNFs smartly enough.

-BDQ: it is the most dynamic policy of the three (see Fig. 4.5). When demands

are low it uses less than 3 nodes to reduce the active nodes cost (lower cost than

iDQN+ and static oracle), but when demands are high it intelligently distributes

VNFs to more nodes and mostly avoids SLA violations, as it rarely inflicts higher

cost than the static oracle (see Fig. 4.6).

According to the above analysis, the highly dynamic nature of the BDQ policies

explain why it demonstrates an increased performance gain against both the static

oracle and iDQN+.

4.6 Conclusions

This last Chapter focused on further improving the scalability of our DQN-based

slice orchestrator, as well as on grounding its performance with respect to algo-

rithms that are simpler, yet theoretically optimal even in real traffic scenarios (in

the experts context). To this end, we proposed a DQN agent with a more ad-

vanced DNN architecture, called BDQ. It comprises one DNN branch per VNF

(offering the same action decomposition advantages with the multiagent DQN

scheme of Chapter 3), but also considers a number of shared layers to induce co-

ordination among branches and avoid the non-stationarity issues arising in multi-

agent schemes of independent agents. Using a real dataset, we demonstrate that

the proposed scheme outperforms (i) the experts baseline, both in terms of cost

performance and sample efficiency (theoretically “grounding” the proposed BDQ
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scheme); and (ii) the multi-agent DQN approach of Chapter 3 (iDQN+), showing

up to 45% cost improvement in a fairly large scenario.



Chapter 5

Conclusions

The current Thesis explored modeling and algorithmic approaches for the dy-

namic placement of multiple, concurrent, VNF chains (“slices”) on top of the

physical network infrastructure in Beyond 5G networks (commonly known as slice

orchestration). The goal was to fulfil the QoS requirements of each slice while

utilizing efficiently the limited network resources. The challenges we attempted

to tackle arise from the B5G vision: (i) standard static optimization methods are

not applicable, since traffic demands, and thus slice performance, are dynamically

changing, a priori unknown, or even non stationary, necessitating online learning

approaches; (ii) slices span multiple technological (and administrative) domains

(e.g. RAN, Edge, Core, Cloud, etc.), they possibly involve loops and probabilis-

tic routing of flows, while slice performance is determined by end-to-end KPIs

along the entire VNF chain, increasing both modeling complexity and algorithmic

efficiency.

The unknown traffic demands, the stateful characteristics of traffic variations (e.g.

diurnal variations), and the potentially large cost of migrating a VNF from the

host server to another server of the network, motivate the use of Reinforcement

Learning methods to tackle the problem at hand. Therefore, as a first step, we

introduced an RL environment for dynamic slice embedding in B5G networks

(Chapter 2) that can support any KPI or SLA and attempts to address all the

modeling challenges mentioned above. Relying on queuing theory, we provided

analytical expressions for the end-to-end delay of complex slices over non loop-free

paths across heterogeneous domains. Since simulating the end-to-end performance

of every slice (consisting of numerous flows) can become computationally intensive

76
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in large scale scenarios, the proposed analytical model can facilitate the faster

training of RL agents.

Having formulated the RL problem, the next step was to devise RL agents that

would be able to cope with the vast state and action spaces, stemming from the

combinatorial nature of placing multiple VNFs of multiple slices over a large num-

ber of physical nodes across different domains. To this end, in Chapter 3 we

presented a theoretical analysis of the scalability properties of various RL meth-

ods, starting from a vanilla “tabular” Q-learning algorithm, and gradually adding

components on top of it to improve scalability (justifying the addition of each com-

ponent along the way with computational complexity arguments). The above anal-

ysis concludes with a multiagent scheme of independent DQN agents. The DQN

component tackles the problems stemming from state space complexity, using a

DNN to approximate the Q-function, while the use of multiple agents mitigates the

problems stemming from action space complexity (decomposing the vast original

action space into much smaller per agent subspaces). Then, to further improve

sample-efficiency and convergence speed of DQN-based methods (either single or

multiagent), we proposed two heuristic mechanisms: (i) a prioritized experience

replay that expedites learning by selecting more intelligently mini-batches from the

experience replay memory (more efficient parameter updates); (ii) a novel mecha-

nism that reduces the number of computations in parameter updates, by storing

the Q-value estimate of the current state in the buffer and using it later in mul-

tiple updates. We confirmed the gains offered by the above multi-agent scheme

by conducting extensive simulations, both with synthetic traffic (Markovian) in

small scale scenarios (to compare with an optimal baseline) and with a real traf-

fic dataset. We showed that the proposed scheme reduces convergence time by

orders of magnitude with minimum penalty of decision optimality, compared to

standard single-agent DQN (Section 3.3.2), while it also significantly outperforms

static heuristic policies by at least a 3× factor (Section 3.3.4).

While using multiple independent DQN agents proved to be a much more scalable

solution compared to single-agent DQN, their performance may still deteriorate

in very large scale realistic scenarios. This is due to the non-stationary environ-

ment arising from independent agents, since each of them conceives the rest as

part of the environment, but their policies evolve over time. Therefore, a large

number of co-existing independent agents can potentially lead to instabilities, very

slow convergence, or convergence to a highly sub-optimal policy. To this end, the
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last part of this Thesis focused on investigating if algorithmic efficiency can be

improved by introducing coordination among the controlling entities of different

VNFs. We proposed a DQN-based agent with an advanced DNN architecture,

where each branch of the DNN is dedicated to the control of a different VNF

(offering the same action decomposition benefits with the predecessor multiagent

DQN scheme), while a shared DNN module among the branches offers (implicit)

coordination. To theoretically ground the proposed method, we formulated dy-

namic slice embedding as a stateless “experts” problem, in order to use the MW

algorithm, that is optimal in this context, as a baseline for our scheme. While

MW disregards any stateful characteristics in the traffic variations, it has an im-

portant sample-efficiency advantage compared to bandit-like schemes (e.g. RL),

by getting feedback for all possible actions at each time step (not just the chosen

one). Moreover, it is guaranteed to converge to the optimal static policy. In Sec-

tion 4.5, using real traffic to drive the demands, we demonstrated by simulations

that the proposed BDQ scheme outperforms (i) the experts baseline, both in terms

of cost performance and sample efficiency (theoretically “grounding” the proposed

DRL scheme); and (ii) the predecessor multi-agent DQN approach of Chapter 3,

showing up to 45% cost improvement in a fairly large scenario.
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