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Chapter 0

Summary

Geopolymers are alternative binders to cement and form a promising class of materials for civil and
nuclear engineering. Based on aluminosilicate, they can develop strong mechanical properties that
are of great interest for the storage of radioactive wastes or isolating foams. The geo-polymerization
process starts with the dissolution of a solid aluminosilicate source with an alkaline solution of high
pH. Oligomers of few nanometers in size form and aggregate in a 3D percolating porous network at the
mesoscale (hundreds of nm). Mechanical setting is reached in about 5h, analogous of setting in neat
cement pastes. Several questions remain open regarding the complex process of geopolymerization such
as : What originates cohesion ? What is the water behavior at the grain-grain interface within the gel
? How to model the complex gel phase at the atomistic level ? In this thesis, molecular simulations are
used to investigate the formation mechanism of geopolymers at the atomistic (∼ 1nm) and meso scale
(∼ 100nm), hardly reachable by experiment. The starting point of the atomistic scale simulations are
aluminosilicate nano-grains generated with a reactive interaction potential. The Potential of Mean
Force (PMF) quantifies the potential energy of interactions between two geopolymer oligomers. It
can be computed in various charge conditions to mimic the pH effects, using either a perturbative
approach or well-tempered metadynamics. Both methods are compared and their limitations are
discussed in the framework of amorphous aluminosilicate nano-grains immersed in an electrolyte.
Under such analysis, metadynamics is chosen for more thorough investigation of oligomers cohesion.
At low deprotonation level/grain charge attraction is observed. These results shed light on the role
of oligomers deprotonation that appears to be key point for the gel formation. A view of the system
as “meta-grains” is proposed based on the evolution of grain geometry and ionic polarization. In
this view, we decompose the global PMF into fundamental interaction terms at the grain scale, in
terms of coulombic, dipole-dipole and dispersion/van der Walls interactions. Metadynamics results
are recovered with water dielectric constant chosen based on the water content at the grain-grain
interface. At large deprotonation level, the Poisson-Boltzmann repulsion is recovered, with a wet
interface and a strong Debye screening. At very short range and low deprotonation level, we found
that grain-grain attraction can be related to the formation of very local hydrogen bonds between the
hydroxyls of the grains, in a dry interface. Oligomers then link through iono-covalent bonds with
the release to the solution of water molecules and OH− groups. This attracto/repulsive behavior is
supported by experiments and discussed in regards to the cohesion of clays and cement hydrates. In
the last part of the thesis, mesoscale models for the growth of geopolymers are proposed based on
the obtained PMFs in attractive conditions. Structures resulting from Coarse-Grained Monte Carlo
simulations are characterized in terms of pore size distributions and small angle neutron scattering,
discussed with experimental data.
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La thèse est souvent décrite comme un long chemin, solitaire. Il s’agirait plutôt de la voir comme une
bonne randonnée : parfois les horizons nous paraissent inaccessibles et les lignes droites interminables.
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famille n’a pourtant jamais été aussi proche. Mamie Mithé, Papi Serge, Tata Céline, Tonton Miguel,
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Introduction

Through the ages, the development of most civilizations was allowed by the evolution of its surround-
ing environment. Civil engineering has always been a part of humanity’s progress : homes, rooms
for industrialization (agriculture, factories), scientific labs and offices, buildings are everywhere and
requires resources that may not be infinite.

Up to date, the most widely used materials in civil engineering is the Ordinary Portland Cement
(OPC). It constitutes an accessible (from both cost and quantity point of view) way to satisfy the
humans need in building materials. Moreover, it shows very good performances in terms of mechan-
ical stress resistance and thermal isolation. Most of the concrete-built materials are able to endure
earthquake or keep houses warm in winter.

Despite cement-based concrete is a material that can be easily manufactured, it has the flaw of being
at the origin of strong carbon dioxides (CO2) emissions. Cement production contributes to global
warming more than aeronautics that is often referred as a dramatic green gas emission source. Still,
the manufacturing of cement requires the decomposition of calcium carbonate that emits carbon
dioxide proportionally to the quantity of obtained cement. From this point of view and knowingly of
the current environmental situation, concrete may not constitute a viable source of building materials
for the upcoming years.

Earth makes a lot of means available either at its surface and in its core. While humans have been
able to exploit underground resources like oil and gas, many materials are still very abundant and may
show great mechanical properties as Earth Crust constituents. Aluminum and silicon profuse under
our foot and their exploitation has started many years ago. Inspired from geological systems that
have survived through the years, geomaterials have been industrially manufactured, as clay, zeolites
or many other granular materials. New low carbon emission cement such as Limestone Calcined Clay
Cement (LC3) have also been proposed, as a blend of Portland cement (50%), calcined clay under the
form of metakaolin (30%), limestone (15%) and gypsum (5%) [1, 2].

With internal structures similar to clay or zeolites, inorganic polymer materials called ”geopolymers”
have been designed, using residual raw materials as meta-kaolins or fly ashes. However, the path to
reach such cement-like pastes is not straightforward. The use of alkali activated materials do not
pretend to replace the cement but may have new specific targeted applications. For instance, in
nuclear industry geopolymers are under consideration to condition reactive metals such as magnesium
cladding used by the past in reactor for thermal dissipation [3]. Geopolymer as a foam also find
applications for the decontamination of liquid effluent [4].

Highly depending on the raw materials properties, the manufacturing of geopolymers is a complex
series of reactions happening at many scales that may not be accessible to the human eye. The purpose
of this Ph. D thesis is to use molecular simulations to study the geopolymerization process at multiple
scales. Such work contributes to the designing of a global numerical process to model the reactions
happening from the atomic to the macro scale. As a triptych alongside theory and experiments,
numerical simulations may open a very new path to the understanding of the multi-faceted and multi-
scale processes geopolymerization is.

As a guideline towards a better comprehension of sub-processes occurring at both atomic, mesoscopic
and macroscopic scales, this thesis is organized as follow. In Chapter 1, a state of art about geopoly-
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mers is presented, covering the definitions of the materials from an atomic to a macroscopic point
of view. Experimental results are presented, characterizing the geopolymerization process and recent
modeling approaches are discussed. These are contrasted with studies on cement and clays. The
literature over molecular simulations of cement and geopolymer pastes is reviewed to motivate fur-
ther modeling choices. Chapter 2 stands as a methodology chapter, gathering the basics and most
important principles of statistical physics that are involved in molecular simulations. It gives the tech-
nical details on most of calculations employed within this work. Chapter 3, employs the Free Energy
Perturbation (FEP) technique to evaluate the Potential of Mean Force (PMF) between two alumi-
nosilicates oligomers in solution. Such grains are defined and the calculations performed in two cases:
with dry and wet interface. These results are compared to metadynamics simulations, converging
to a transferable methodology for effective pair-potential calculations for aluminosilicates oligomers
in solution. Applying this procedure to systems with different charges, the origin of interactions are
sought in Chapter 4. Ions trajectories and grain rigidity are discussed and related to the ability of
these small particles to aggregate. Under the view of larger meta-grains, as a first step to an upscaled
model, meso-interactions are discussed to better describe the interactions at stake within geopolymer
gels. The specific role of water is shown and related to the grains deprotonation and so, the pH of
the system. Finally, Chapter 5 opens a window on mesoscale simulations, using for the first time, an
effective potential of interactions based on a fully atomistic description. From fittings of the obtained
PMFs and the choice of a coarse-graining length based on experimental/simulation literature, the in-
fluence of the pair-potential on the final structure is discussed. Different scenarios of aggregation are
proposed, mimicking the effect of pH. Generated structures are characterized via an analysis of their
pore size distributions and scattering intensities. This Ph.D present a path from an atomic description
of a geopolymer oligomer to a porous paste with mechanical characteristics.
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Chapter 1

Geopolymer materials

A geopolymer can be defined as a chain or a network of mineral silicon/aluminum-based oligomers
linked together with covalent bonds. Silicon that represents 25.7% of Earth crust, is its second most
abundant component right behind oxygen. Therefore, many engineering materials involving silicon
are widely used in many domains such as chemical engineering, construction and nuclear industries.
In the latter case, geopolymers are considered for radioactive wastes management, namely magnesium
cladding and radioactive oil storage. Geopolymers that are low-calcium containing compounds (by
contrast to the cement paste) are also building materials: Alkali-Activated Materials (AAM) synthe-
sized from slags and fly ashes can be strong alternative to concrete (the mix of cement paste with
mineral aggregates and sand), at lower cost and are being widely studied worldwide as a mean to
reduce cement carbon footprint (which production accounts for at least 8% of the anthropogenic CO2
emissions [5]) resulting from the melting of limestone and clay at high temperature (1500◦C)[6].

From the dissolution of inorganic precursor using a strong alkaline solution, AAMs are formed, as
a solid aluminosilicate amorphous 3D network. With porosities around 40-50% and compressive
strength around 50-60MPa, they show similar mechanical properties to that of the cement paste.
While cement is based on the dissolution-precipitation reaction of clinker grains (from the cement sac),
geopolymers (as a poor calcium system) forms under polycondensation reactions between aluminates
and silicates. Sodium Aluminosilicate (N-A-S-H) gels are formed in a competition of both dissolution
and precipitation of oligomers in solution. With such constitution, geopolymers are often seen as
”Green concrete” since they present a lot of similarities with concrete in their mechanical properties
and generate 80 to 90% less CO2 in their production[7].

However, the use of geopolymers as “green cement” must be nuanced[8]. So-called activating solutions
needed in the geopolymerization process are not “green” since they require the use of high concentra-
tion alkaline solution at high pH values. In addition, such highly concentrated solutions could induce
health hazards in their manipulation.

The denomination of geopolymers have been proposed by Davidovits in 1976[9], who proposed an
accurate definition of geopolymers, depending on the Si/Al atomic ratio. It is given in Table 1.1 and
allows to distinguish materials that, even if likely-constituted, can have very different structures and
properties.

Si:Al ratio Terminology

0 siloxo

1 sialate

2 sialate-siloxo

3 sialate-disiloxo

>3 sialate link

Table 1.1: Scientific terminology for geopolymers [10]



Chapter 1 1.1. Basics of aluminosilicate structures

The molar ratio between silicon and aluminum also allows to define different classes of geopolymers[10]
that is presented here below. Note that in this work, we will mostly focus on aluminosilicate materials
activated with sodium hydroxide.

• Waterglass-based geopolymer : Si:Al=1,

• Kaolinite/Hydrosodalite-based geopolymer : Si:Al=1,

• Metakaolin MK-750-based geopolymer : Si:Al=2,

• Calcium-based geopolymer (Ca,K,Na) : Si:Al=1,2,3,

• Rock-based geopolymer : Si:Al ∈]1, 5[,

• Silica-based geopolymer, sialate link and siloxo link in poly(siloxonate) Si:Al>5,

• Fly ash-based geopolymer.

1.1 Basics of aluminosilicate structures

As mentioned earlier, geopolymers are mostly made of elementary Al and Si oxide oligomers atoms,
connected with covalent bonds. There exists a wide range of such materials, with very different
compositions. Silicates, aluminates and aluminosilicates are the basis components of geopolymers.

1.1.1 Silicates

Silicates are anions made of Si and O atoms, connected with covalent bonds, usually with the general

formula [SiO
(4−2x)−
4−x ]n, x ∈ [0, 2[. In most cases, silicates are formed with corner-sharing tetrahedra,

4-x also called orthosilicate anion. It has an average Si-O distance of 1.62 Å and a bond angle O-Si-O
around 109.5◦ as shown in Fig. 1.1 (a).

(a) (b)

Figure 1.1: (a) : Ortho-silicate anion ; (b) : Crystallizine silica (i.e. of the form [SiO2]n) : Quartz

These tetrahedra can assembly to form 3D crystal structures such as cristobalite and quartz as shown in
Fig. 1.1(b). In these crystals, Si-tetrahedra share corner oxygens. In (sodium, potassium. . . ) hydrox-
ide solutions, the ortho-silicate [SiO4]

2− species can form solid hydrates of the form [Na2xSiyO2y+x]n or
[(Na2O)x(SiO2)y]n) that result from two competing reactions: (i) the hydrolysis/condensation reaction
and (ii) the protonation/deprotonation reaction, depending on pH.

≡ Si−O− Si ≡ +H2O←→≡ Si−OH+HO− Si ≡
= Si−O = +H2O←→= Si(−OH)2,

(I)

≡ Si−OH←→ Si−O− +H+. (II)

The simplest silicate that exists is the orthosilicate acid : Si(OH)4, a weak acid with pKa = 9.8. It is
stable in water as long as the concentration remains under the solubility limit (around 1mmol.L−1).

9



Chapter 1 1.1. Basics of aluminosilicate structures

Beyond this limit, it dissolves and poly-condensation begins to give a solution of oligomers which com-
position depends on pH. In fact, an increase of the alkaline concentration increases the de-condensation
of the silicate species, allowing the formation of oligomers of various sizes. As de-condensation pro-
ceeds, smaller and smaller entities can form. At high pH, hydroxyl groups react, increasing the
monomers concentration. The stability diagram for silica at ambient temperature is given in Fig. 1.2
(a), while Fig. 1.2(b) illustrates the silicate de-condensation caused by a OH− group. There is a do-
main of silicate concentration/pH in which a solution of polydisperse oligomers can exist. At too low
pH, silicates are not soluble while too high pH induces a strong dissolution, i.e. a bath of monomers.

(a) (b)

Figure 1.2: (a) Stability diagram of silica at 298 K. Reproduced from [11] ; (b) Illustration of oligomer
polycondensation via a OH− group in a geopolymer gel. Reproduced from [12].

Silicate oligomers in solution can be identified thanks to Nuclear Magnetic Resonance (NMR) and
display very specific peaks depending on their sizes. These structures are named regarding the number
of Si atoms they involve. Micro-structures with two, three, four, five or yet six atoms are referred to as
dimers, trimers, tetramers, pentamers and hexamers. These oligomers are usually denoted with a Qn

notation [13], where n refers to the number of connected Si (and/or Al) atoms. Thus, Q0 correspond
to an isolated Si atom, surrounded by oxygen (O) atoms. A Q1 species is a chain of two Si atoms,
surrounded by oxygens, chained according to Si-O-Si, a Q2 corresponds to a chain Si-O-Si-O-Si and
so on. The subscript c is also often used to denote cyclic oligomers : Qn

c (i.e. -Si-O-Si- connections
forming a closed cycle, meaning that n must be at least equal to 2).

Dupuis et al. have modeled de-condensation in an alkali activated solution [12]. Using molecular
simulations with a reactive potential (allowing bond formation and breaking), the ability for large
oligomers to decompose into smaller ones was studied, presenting a size distribution of the latter and
their shapes. In their work, they started from highly poly-condensed structure (n = 2, 3 and 4) and
studied the alkaline dissolution by addition of sodium. Both initial and final simulation steps are
shown in Fig. 1.3. Note that this was further extended to investigating the condensation phenomenon
for both silicates and aluminosilicates, and will serve as a starting point in the present work [14, 15].

The connectivity between silicate species depends on its pKa and arise from deprotonated bonds [16].
More precisely, an increase of the monomer and dimer charge leads to an increase of the associated
pKa as shown in Table 1.2, summarizing Sefcik et al.. results [16]. A pH higher than these pKa

values ensures the predominance of the associated silanols in solution. Note that to fully de-ionize a
monomer, a pKa of 18.8 is required.

Charge i 1 2 3 4 5 6

pKa monomer 9.5 12.6 15.7 18.8 - -

pKa dimer 9.0 10.7 12.4 14.1 15.8 17.5

Table 1.2: pKa of i-th ionisations of silanols for monomer Si(OH)4 and dimer Si2O(OH)8. Data from
[16].
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Figure 1.3: Snapshot of a geopolymer gel containing aluminosilicate oligomers of different sizes. Re-
produced from [12]. It shows the influence of the addition of sodium hydroxides on the decondensation
process. The left panel shows the initial simulation box containing oligomers of n = 2, 3 and 4 sizes.
Addition of sodium and performing molecular simulations allow to reach the right panel as the final
state, showing a different oligomer distribution with smaller species. NMR associated signals are dis-
played above.

1.1.2 Aluminates

An aluminate is a species containing an oxyanion of aluminum in solution, i.e containing elements
with the formula Al Oz−. The most known is the tetrahedral monomer AlO−

4 . This tetrahedra has a
bond angle O-Al-O around 109.5◦ and an average Al-O length of 1.74 Å[17]. With sodium ion it can
form the Na5AlO4 species, or other sodium aluminates such as NaAlO2 and NaAl(OH)4.

1.1.3 Aluminosilicates

The nomenclature aluminosilicates encompasses many materials, either natural or synthesized as ze-
olites or geopolymers with Si/Al ratio higher than 1 or even imogolites with Si/Al lower than 1. An
aluminosilicate species is a silicate where a few Si atoms has been replaced by Al atoms (substitution).
As a consequence, a charge deficit appears which implies the presence of a counter-ion species to
maintain electroneutrality. Among aluminosilicate species, one can find bi-dimensional phyllosilicates
and tri-dimensional silicates structure (tectosilicates).

• Phyllosilicates are layered materials, with a (AlSi3O10)
5− basis to form, e.g., Muscovite : (NaAl2(OH)2AlSi3O10);

• Tectosilicates are tridimensional crystal of (Si,Al)xO2x tetrahedra, coupled with charge-compensating
cations to form porous materials such as zeolites or non porous structures such as feldspaths.

1.1.4 Alkali-Activated Materials (AAM)

In civil engineering, Alkali-Activated Materials (AAM) geopolymers have attracted a lot of attention.
They are also called poly-sialates, where Si and Al are 4-coordinated, with the empirical formula

Mn[(SiO2)zAlO2]n, wH2O, (1.1)

where M denotes the used cation (Na+,K+,Cs+...), n the poly-condensation degree, w the water
quantity and z the Si:Al ratio that lies between 1 and 5.

With this definition, all geopolymer materials can be defined according to their molar ratio H2O/M2O,
SiO2/M2O and z ≡ Si/Al and are referred as M-geopolymers. With this notation by ratio, the
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Chapter 1 1.2. Geopolymerization : a multi step reaction

concentrations of species in the activating solution are unknown. Still, it is the initial concentrations
of silicates or alkali hydroxide that define the pH, degrees of connectivity and silicate protonation.
These have a significant impact on the mobility of the species and on their reactivity with respect to
aluminates, contained in the solid aluminosilicate source.

In this work, we only consider geopolymers with low calcium concentrations, precursors as class F
fly ashes (spherical) or Meta-kaolin (layered) also called N-A-S-(H) gels[18]. These differ to alkali-
activated gels with more calcium denoted C-A-S-H gels.

1.2 Geopolymerization : a multi step reaction

Geopolymerization describes the formation process of geopolymers as building materials. Similar to
Portland Cement a solid powder phase is mixed with a liquid. The initial solid raw material is an
aluminosilicate source such as Metakaolin, Slag or Fly [19]. The liquid phase, is an alkali solution
at high pH (high concentration of, e.g. sodium hydroxides Na++OH−). The solid component gets
dissolved by the basic solution, allowing its restructuring into a network of silicate/aluminosilicate
species. A first step is the formation of a gel of aluminosilicate oligomers, which depends on the initially
used constituents. As time passes by, up to a few minutes, oligomers will form bigger clusters[12].
Material setting then starts within a few hours. Still, the structure strengthens to acquire its final
mechanical properties after more than 3 months[20].

These steps are discussed in the following with the goal of listing the different reactions involved in
the formation process of geopolymer materials.

1.2.1 Dissolution, oligomerization and polymerization

The different steps as described in Fig. 1.4 of the synthesis process are presented below :

1. The aluminosilicate source is dissolved by the activating basic solution : water is consumed,
silicate and aluminate species are formed;

2. An equilibrium is reached : silicates and aluminates gather to form aluminosilicate oligomers:
this is called speciation;

3. The gelation starts by the oligomers growing and forming clusters with covalent bonds Si-O-Si
and Si-O-Al. In the meantime, water and hydroxyl groups are released, maintaining dissolution
of the initial solid.

4. Finally these gel groups polymerize and harden to form the solid material.

The reaction kinetics depends on the source and solvent concentrations, both impacting the pH but
also the quantities, sizes, and types of formed oligomers. These elements play an important role in
the mechanical properties of the final material.

The gelation step of geopolymerization is the key for the solidification reaction. Nevertheless, it
is poorly understood as it is a complex process and it is difficult to deconvolute the experimental
information. Aluminosilicates oligomers are the elementary bricks of the gel. Still, their interactions
are difficult to infer. The modeling approaches of this manuscript have as starting point the formation
of oligomers, then the evaluation of the effective interactions between two oligomers and a coarse-
grained model that uses the effective interactions. For the interaction between oligomers two options
can be considered:

1. non-reactive interactions where no chemical bonds are formed. The effective interactions are
evaluated via the concept of potential of mean force (PMF) (see Chapter 3);

2. reactive interactions where oligomers could establish irreversible covalent bonds, corresponding
to an infinite interaction potential, forming a continuous network akin to porous networks or
glasses.
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Chapter 1 1.2. Geopolymerization : a multi step reaction

Figure 1.4: Geopolymerization process. Reproduced from [21]. Note that not only H2O is released in
the solution, but also OH−, enhancing dissolution.

1.2.2 Reaction parameters

Geopolymers are amorphous thermo-metastable monolith while zeolites are stable crystalline powders.
Conditions on temperature and Al and Si ratio for zeolites and geopolymer synthesis are given in Fig.
1.5, showing that geopolymers are formed at lower temperature. These differences in the formation
process necessarily leads to differences in mechanical properties and in the overall micro-structure.
However, it is interesting to note that zeolites can be formed from geopolymerization after a sufficiently
long time.

Figure 1.5: Zeolites and geopolymers formation domains. Reproduced from [22]

Even though the speciation process is still triggering a lot of research, several parameters are known
to directly influence the macro-structure[19, 23, 24] and especially the porosity of the final product[25,
26, 27].

• Type of alkali cations;

• Silicate and water concentration in the activating solution;

• Al/Si ratio in the aluminosilicate source;

• Ambient conditions (humidity, temperature).

Fig. 1.6 displays both Pore Size Distributions (PSDs) and nitrogen sorption isotherms for different
geopolymer pastes, changing water contents and with potassium (K) and sodium (Na) as alkaline
ions. An increase of the water content leads to larger pore sizes until a certain ratio (15 H2O/M2O
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ratio, M=Na or K). The use of a heavier ion leads to an increase of the specific surface and the
accessible porous volume. The pore diameter is estimated around 100Å, the actual values depending
on materials constitution. PSDs ranges from 30Å to almost 0.1µm according to mercury intrusion
porosimetry data.

(a) (b)

Figure 1.6: Porous network characterization. (a) Nitrogen sorption isotherms and (b) pore size distri-
butions for different geopolymer compositions (alkaline ion and water content). Each color corresponds
to a paste composition that reads as M-SiO2/M2O-H2O/M2O, M being the alkaline ion of the activat-
ing solution. Top and bottom panels show the PSD from nitrogen sorption porosimetry and mercury
intrusion porosimetry respectively. Reproduced from [28].

1.2.3 Aging of geopolymers

The setting of geopolymers occurs with few hours, however the micro-structure and mechanical prop-
erties are evolving for several days and months[20, 23]. Covering a wide range of aluminosilicates
sources (meta-kaolin, fly ashes, red mud,...) with different Al:Si contents and concentrations of the al-
kaline solution, the influence of aging parameters has been fully demonstrated by experiments[28, 29].
As an example, Fig. 1.7 displays how the scattering varies between a few hour up to 180 days. This
proves that the aging of geopolymers involves very long time scales and that the final structure is
highly dependent on the activating ion, as shown in the (d) panel. These results suggest that the
use of heavier alkaline ions leads to smaller aggregate sizes and so, smaller porosity. For the three
used alkaline ions, a Porod regime (q−4) is found, accounting for a smooth interface over the range of
[0.1,2-3]nm.

Figure 1.7: SAXS intensities data for Na, K and Cs-based geopolymers respectively in panels (a),(b)
and (c). It shows the evolution of the paste structure with the setting time. In addition, the panel
(d) shows the role of the alkaline ion on the final structure, set after 180 days. Reproduced from [29].

The role of setting conditions must also not be neglected : ambient temperature and relative humidity
have been shown to highly influence the resulting pastes [29, 28].
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1.3 Comparison between ordinary portland cement and geopoly-
mers

Cement and geopolymers serve as binding materials in construction applications, but they have signif-
icant differences in their chemical compositions, production processes, and properties. They are made
by mixing two phases, a solid and a liquid. The difference between the two is that water is enough to
initiate the chemical reactions of cement whereas geopolymer require an alkali solution. This is due to
the difference in dissolution reactivity of the cement powder and the aluminosilicate source material.

1.3.1 Micro-structure comparison

Geopolymers are made of aluminosilicate oligomers. Through the years, these structures have been
identified and studied using 29Si Nuclear Magnetic Resonance (NMR)[30]. Fig 1.8 (a) shows a plethora
of possible stable molecules. The same process has been iterated to identify structures involving Al
and Si atoms and so aluminosilicates. These structures are given in Fig 1.8(b).

(a) (b)

Figure 1.8: (a) Silicate and (b) aluminosilicate oligomers identified by 29Si NMR and 27Al NMR.
Filled dots correspond to Si atoms while empty ones to Al atoms, each surrounded by 4 oxygen atoms.
Reproduced from [30].

Cement and geopolymers undergo chemical reactions to form a solid matrix. Cement powder (the
so-called clinker grains from the cement sac) primarily consists of Portland cement clinker, which is
composed mainly of calcium silicates and aluminates. When mixed with water, these compounds
undergo hydration reactions to form a solid made of the so-called CSH gel (85% in volume) and
other hydration products (15% mainly Portlandite, CH)[31, 32]. Geopolymers on the other hand, are
typically based on aluminosilicate materials such as metakaolin or fly ash, and form a three-dimensional
polymeric network through geopolymerization reactions[21].

Both materials involve the formation of silicate- based structures, although the specific chemical bonds
and structures vary. In cement, the primary nano-grains are considered to be calcium silicate hydrate
(CSH) particles. CSH particles are formed during the hydration of Portland cement clinker and are
responsible for the strength and durability of concrete[32]. In geopolymers, oligomers or short-chain
polymers are formed during the geopolymerization process. These oligomers then cross link to form
a three-dimensional network, which provides the binding properties of geopolymers. These oligomers
can be considered as elementary nano-grains in geopolymers[21].

Fig. 1.9 shows the molecular structures from atomistic simulations of such materials. We note that
CSH has the least ordered molecular structure compared to clays or zeolites. Geopolymer grains shows
even less ordering, as a ramified structure.
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(a) (b)

(c) (d) (e)

Figure 1.9: Different types of structures discussed in literature (a) : CSH platelet [33], with in
red,yellow and gray respectively oxygen, silicon and calcium ions; (b) : clay grains [34] with in
red,yellow, white and gray respectively oxygen, silicon, hydrogen atoms and calcium ions ; (c) Silicate
zeolite amorphous structure, red and yellow display oxygen and silicates atoms [35], (d) Aluminosili-
cate zeolite amorphous structure [36], red and yellow correspond to oxygen and silicon while blue and
green stands for aluminum and sodium atoms. (e) Geopolymer grain structure obtained from reactive
molecular simulations [15] with red, yellow, pink, white and blue spheres corresponding to oxygen,
silicon, aluminum, hydrogen and sodium atoms.

1.3.2 Comparison of the solidification process

Cement paste solidifies primarily through hydration/precipitation reactions, forming calcium silicate
hydrates (CSH) gel, while geopolymers solidify through geopolymerization reactions, forming a poly-
meric network structure. The solidification process of geopolymers is typically slower than that of
cement paste and involves the reaction of aluminosilicate compounds with an alkaline activator solu-
tion. In the following section, the two processes are described.

Cement paste formation

With the addition of water to cement powder (typically Portland cement), chemical reactions occur
between the water and the cementitious compounds in the powder. The phenomenon is called hy-
dration/precipitation. Calcium silicates and aluminates in the cement powder react with water to
form calcium silicate hydrates (CSH) and calcium hydroxide (CH). CSH is the primary binding phase
in concrete, providing strength and durability. The CSH gel forms a network of interlocking grains,
which gradually hardens over time. This process is known as the setting and hardening of concrete.
It involves both chemical reactions and physical processes such as precipitation and nucleation. After
mixing, the cement paste undergoes a curing process to allow the hydration/precipitation reactions
to continue and the cement to gain strength. Curing typically involves maintaining appropriate tem-
perature and moisture conditions for a certain period[32].

Lootens et al.. [37] has studied the evolution of both elastic G′ and shearing G∗ moduli during the
setting of cement pastes. Fig 1.10 (a) displays three regions : (i) under 1 minute, (ii) until 15 minutes
(ii) after 15 minutes. The first step corresponds to the beginning of the dissolution reaction. After a
minute, hydrates (CSH grains) start to precipitate at the surface of C3S grains and water is consumed.
This causes an increase of the moduli that reach a plateau as the material sets.

Fig. 1.10 (b) illustrates how conductivity and the thermal behavior monitor the setting of Ordinary
Portland Cement (OPC) pastes. Under the simultaneous dissolution-precipitation mechanism during
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the first minutes, ions are released in solution, inducing an increase in ionic strength that in turn
increases the (ionic) conductivity C. As the cement gets into contact with water, massive precipitation
starts, increasing the temperature (strong exothermic process) along with a fast decrease of C. As
the moduli stabilize, the conductivity converges to 0, accounting for the formation of the porous solid
network. Note that after 15 hours, a small peak of temperature is attributed to the formation of
ettringite (a calcium sulfate that is a minor phase in the overall process). These results are supported
by the heat flow analysis performed by Jansen et al.[38].

(a) (b)

Figure 1.10: (a) G′ and G∗: elastic and shearing moduli respectively in dots and squares. Reproduced
from [37]. (b) Elastic modulus measurement alongside conductivity and temperature during an OPC
paste setting. Reproduced from [39].

Geopolymer formation

Geopolymers solidify through a process called geopolymerization. The source materials, such as
metakaolin, fly ash, or slag, are mixed with an alkaline solution, typically a solution of sodium
hydroxide (NaOH) or potassium hydroxide (KOH). The alkaline activator solution reacts with the
aluminosilicate compounds in the source materials, forming polymeric chains or oligomers. Oligomers
aggregation starts, giving rise to a porous network and binding properties of geopolymers. Geopoly-
merization typically occurs rapidly compared to the hydration process of cement. The mixture sets
and hardens within hours, and the strength development continues over time as the geopolymer matrix
undergoes further polymerization and curing. Fig. 1.11 displays the visco-elastic moduli during the
setting of geopolymer pastes.

(a) (b)

Figure 1.11: (a) G′ and G′′, elastic and viscous moduli during a geopolymer paste setting, shown
respectively in straight and dotted lines. The dashed lines corresponds to tan δ = G′′/G′. Arrows
shows the different levels of G′ at the beginning of the reaction. Reproduced from [40]. (b) Shearing
modulus measurement during geopolymer paste setting. Reproduced from [41].

From Fig. 1.11(a), one can observed that a 3-step process is recovered as that for the cement paste,
see Fig. 1.10. At first, G′ remains constant at the very beginning, it levels slightly for geopolymers,
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as shown by black arrows. Then, moduli increase to reach a plateau, similarly as in Fig. 1.10(a).
Characteristic times appears to be very different though. It takes 8h for G′ to reach a plateau of
1MPa for geopolymer pastes while 15 minutes are required in the case of CSHs. In comparison to Fig.
1.10(a), the shearing modulus of geopolymer shown in Fig. 1.4 is similar, once again with a higher
characteristic time (250min instead of around 100s).

The G′′ modulus, accounting for viscous dissipation is also displayed. It shows a faster increase
than G′ between 7 to 8 hours. Illustrating the dominant role of viscous dissipation, this shows that
interactions are, in the case of geopolymers, controlled by water: H2O and OH− are released in the
system as the polycondensation occurs. As geopolymers are formed mostly from aluminates coming
from the dissolution of solid metakaolin source that poly-condensate with silicates from the alkaline
solution, oligomer interactions appear to be weaker than the interactions of CSH particles in cement.
The Al-O-Si grains, as products from polycondensation remain suspended in solution. During the
formation of geopolymers, no nucleation and growth of nano-grains is observed around the unreacted
metakaolin. This is different than cement where the CSH particles precipitate close to the surface of
un-hydrated cement grains and form the so called inner and outer CSH. These are area of CSH with
high and low density respectively.

Fig. 1.12 summarizes the evolution of elastic modulus, conductivity and temperature alongside the
different steps of paste setting, similarly as from Fig. 1.10 (c) but with longer characteristic times. At
first, the conductivity decreases as OH− complexes are consumed and Al3+ released. This induces a
slight increase of visco-elastic moduli, that then diverge during polycondensation, up to a percolation
time around 5h. After such time, aggregation and densification starts as observed from the decrease
of the conductivity and increasing of scattering intensities.

Figure 1.12: Summary of the experimental study of the geopolymerization process using a a cell that
combines rheology, conductivity and thermal analysis. Different steps in the process are shown along
with measurements of conductivity, elastic and loss modulus and scattering intensity. Data are given
on the courtesy of Arnaud Poulesquen (CEA Marcoule).

The geopolymerization process occurs in different stages based on Nuclear Magnetic Resonance (NMR)
and X-ray diffractograms, consistent with SEM observations [42, 43, 44]. These different stages are
shown in Fig. 1.12 and, even though similar to cement, require more time to produce the final set
material, mostly because of the release of water in the case of geopolymers instead of its consumption
for cement.

1.4 Experimental characterization of geopolymers

At the macroscopic scale, geopolymers appear to be porous rocks showing very interesting charac-
teristics in comparison to Portland cements[45]. Advanced characterization techniques such as scan-
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ning electron microscopy (SEM), X-ray diffraction (XRD) and nuclear magnetic resonance (NMR)
spectroscopy are often used to analyze the micro-structure of geopolymers. In addition, Nitrogen
Sorption/Mercury Intrusion Porosimetry (NSP/MIP) and Small Angle X-ray/Neutron Scattering
(SAXS/SANS) also gives major insights on material texture at the micro level. As the micro-structural
features determine the mechanical performance of geopolymers, techniques such as compressive tests
and nanoindentation are used for mechanical characterization.

In MIP, the structure in immersed in a mercury solution while a force is applied for the liquid to
fill pore materials. Then, inserted volume is measured at each pressure point and related to pore
sizes. It is usually used to investigate pores of sizes ranging from 3nm to a few hundreds of µm. Gas
sorption methods as NSP complement these measurements to smaller pores (from mm to nm) with the
evaluation of gas adsorption isotherms within a material, connected to specific surface areas according
to the BET (Brunauer, Emmett and Teller) theory[46]. Pore size distributions can be obtained from
desorption branches of the isotherms using the Barret–Joyner–Halenda (BJH) model[47].

Scattering experiments stand as a non-invasive method to study micro-structures. Intensity I and
small angles variations of the deflected beams (under the form of wave vectors q) relate to the structure
S and form factor P as I(q) = S(q)P (q), giving information on characteristic sizes, shape or orientation
of the structures. Fig. 1.13 displays the setting of a SAS experiment.

Figure 1.13: Sketch of the set up of a Small Angle Scattering (SAS) experiment. Reproduced from
[48].

On mechanical tests, both compressive and nanoindentation are incremental methods that evaluate
the response of a structure w.r.t. an imposed stress. They allow to measure, e.g. Young modulus,
compression and hardness. Nanoindentation is used to measure mechanical properties of materials
at small length scales, typically in the 100nm to micrometer range. It applies a controlled load or
force using a sharp indenter, such as a diamond tip, onto the surface of a material and measures the
resulting indentation depth or displacement. From the load-displacement data, various mechanical
properties of the material can be determined, including hardness, elastic modulus and indentation
creep.

1.4.1 Structural properties of geopolymers

Geopolymers exhibit a complex micro-structure characterized by a three-dimensional network of
alumina-silicate gel. This gel structure is intertwined with a diverse pore network comprising macro-
pores, meso-pores, and micro-pores, influencing properties like strength and permeability. Addition-
ally, geopolymers may contain crystalline phases originating from unreacted precursors or secondary
reactions during geopolymerization. Curing conditions, such as temperature and humidity, play a cru-
cial role in shaping the final microstructure and properties of geopolymers. The following subsections
present the characterization of hardened geopolymers paste via Mercury Intrusion/Nitrogen Sorption
Porosimetry (MIP/NSP) and Small Angle Scattering (SAS) experiments.

Pore network in geopolymers

Porous structure of geopolymers relates to their mechanical, thermal, and transport properties [20, 28].
Geopolymers typically exhibit a range of pore sizes, including micropores (less than 2 nm), mesopores
(2-50 nm), and macropores (greater than 50 nm). While the porosity is expected to be around
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30%-40% , mean mesopore sizes are obtained around 10nm [28], confirmed by isotherm measurements
[49, 50]. Controlling the pore structure is important to tailor properties such as strength, permeability,
and durability.

For many pastes of meta-kaolin based geopolymers, Table 1.3 shows pore diameters obtained from
both MIP and NSP tests. In addition, gyration radius and specific areas are also given, alongside the
ones obtained from SANS measurements.

Table 1.3: Average pore diameters or radius of gyration and specific areas for geopolymer pastes. First
column denotes the paste compositions as M-SiO2:M2O-H2O:M2O, where M stands for the alkaline
cation and the other terms for molar ratios. These values have been obtained for one-month-aged
pastes via different techniques. After one month, the porosity still evolves but far slower than before.
Gyration radius is evaluated thanks to SANS experiment using the Beaucage model described in the
next subsection dedicated to scattering experiments. Reproduced from [28].

In complement to Fig. 1.14, this table shows that the pores and gyration radii increase with the
water quantity (last number in pastes’ name). This is attributed to more water being trapped within
the material, and so, to the formation of larger pores. This is also illustrated in panel (d), with a
H2O:Na2O ratio of 10. Distribution of the pores is thicker than at higher ratio, even after only 30
days. Despite mercury intrusion is less appropriate to account for smaller pore, the three method
(MIP, NSP and SAXS) shows the same tendency and are complementary. Recalling Fig. 1.6(b), MIP
probes micro and meso pore distributions while NSP captures nanopores (up to 50nm), probing a
bi-modal porosity.

Figure 1.14: Time evolution of pore sizes for different geopolymer pastes. Main plots shows the
nitrogen sorption isotherms for (a) K-3.6-11.5, (b) Na-4-13, (c) Na-3.6-13 and (d) Na-4-10 pastes,
according to the nomenclature defined in Table 1.3. Insets are the associated pore distribution obtained
with the BJH method[47]. The different colors stand for the curing days of the pastes. Reproduced
from [28].
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A SiO2/Na2O ratio of 4 suggests a decreasing of pore sizes in comparison to a ratio of 3.6. In addition,
the use of bigger alkaline cations (K+ vs Na+) proves different results depending on the used methods.
MIP suggests an increase of the pore size at the micron scale while NSP a decrease in the 1-50 nm
range.

Overall, for Na-based materials, the quantity of water mostly monitors pore sizes distributions at fixed
SiO2:M2O ratio. Geopolymer meso-porosity is in the range of [50-100] Å, largest values standing for
a higher H2O:M2O ratio, i.e. more hydrated/diluted systems.

Scattering experiments

Scattering experiments in geopolymer and cement paste are used to probe its microstructure and
properties. Neutron, X-ray (including small-angle and wide-angle X-ray), and light scatterings are
among the common methods employed. These techniques provide insights into the arrangement of
particle and cluster sizes, pores, and crystalline phases, shedding light on factors influencing strength,
durability, and reaction kinetics. In this section, are briefly presented data from Small-Angle Neutron
and X-ray Scattering (SANS/SAXS) for geopolymer pastes. Results from SANS [51] and SAXS [28]
experiments for both cement and geopolymer are shown in Fig. 1.15.

(a) (b)

Figure 1.15: (a) SANS data for CSH. Reproduced from [51]. (b) SAXS data for geopolymer pastes.
The different colors correspond to different paste compositions. Dotted lines show the different power
law q−D. Reproduced from [28].

Structural regimes

In some systems, scattering may follow a power-law relationship (I ∝ q−D), where the scattering
intensity decreases with increasing scattering vector magnitude q. According to the value of D,
different regimes can be characterized.

• With a non-integer exponent D. This regime is often observed in systems with fractal or self-
similar structures. It arises from the lack of long-range order and heterogeneity.

• Power law of q−4, also called Porod law: this regime typically occurs at intermediate scattering
angles. In the Porod regime, scattering is dominated by interfaces between different phases,
such as the interface between particles and the surrounding medium or the interface between
different regions within a heterogeneous material. It provides information about the surface area
and interfacial roughness.

• Constant I (usually power law of q−2 at low q-values): the Guinier regime occurs at very small
scattering angles (q → 0). It provides information about the size and shape of large well-defined
particles or structures within the sample.

Gyration radius calculations

Small Angle X-ray Scattering experiments (SAXS) allows to characterize the structure of geopolymer
pastes [28]. Thanks to the Beaucage model [52, 53] the scattering curves and structural parameters

21



Chapter 1 1.4. Experimental characterization of geopolymers

of the material can be related. Involving both Guinier and Porod’s contributions, it describes the
scattering intensity I(q) as :

I(q) = G exp
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where Rg refers to the gyration radius, G to the Guinier scaling factor, d the Porod exponent and
C the Porod scaling factor. This latter ensures a smooth transition from the Porod to the Guinier
regime according to Eq. 1.3:
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Γ being the gamma function. Note that in literature, N -levels Beaucage models can be used, writing
as the sum of individual levels:
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Scattering results discussion

Fig. 1.15(a) illustrates that at higher q-vectors, a Porod (q−4) regime is observed for CSH, accounting
for a sharp smooth interface that allows the definition of a specific area. Around the grain characteristic
sizes, a −2.6 or −2.7 slope appears. Allen argues that this mass fractal regime arises from the low
density of CSH at the surrounding of C3S clinkers. At small angles (q → 0.01Å), a rough surface
appears in the continuity of the previously mentioned low CSH density.

Geopolymer pastes also probes a Porod regime at high q-values (around 1Å−1). Fig. 1.15(b) also
account for a volume fractal regime that extends to far small q-vectors (up to 0.0001Å−1) and is
attributed to badly defined correlation distances because of the grain polydispersity in the pastes.
Especially, characteristic grain sizes are dependent of the water concentration and may correspond to
a distance between partially dissolved metakaolin grains, illustrating the role of water and associated
viscous effects in geopolymerization.

Comparing both pastes, the characteristic sizes of geopolymers materials are smaller than the one of
CSH but remains within the same range of q vectors around a few nm. Both structures probes a
sharp interface at sizes smaller than 2π/0.1 ≈ 6.3Å. Above, a power law in D = −2.7 is seen, as a
volume-fractal accounting for less heterogeneous phases. The surface fractal slope seen for CSH has
not been observed for geopolymer pastes, despite investigations at lower q-vector amplitudes.

1.4.2 Mechanical properties of geopolymers

Geopolymers exhibit a range of mechanical properties that make them attractive as alternatives to
traditional cementitious materials like concrete. They can achieve high compressive strength, often
comparable to or even exceeding that of Portland cement-based concrete. Geopolymers typically have
a high elastic modulus, which reflects their stiffness and ability to resist deformation under applied
loads. In the paragraph below literature results of compressive strength, Young modulus and nano-
indentation are discussed.

Both compressive strength and Young modulus have been studied and converge to the results shown
in Fig. 1.16 (a), with an order of magnitude at 40MPa for the compressive strength [54, 55, 19] while
the Young modulus is found to be at the order of magnitude of 10GPa [41]. These latter results also
combine well with the one of Fig. 1.16 (b). In both studies, an increase of the available pore volume
results into a significant decrease of the strength.
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(a) (b)

Figure 1.16: (a) Experimental Young modulus and compressive strength measurements. Reproduced
from [56]. (b) panel shows the relationship between mechanical resistance w.r.t. the porous network.
As another example en compressive strength experimental measurements, it illustrates that more open
pores leads to a smaller compressive strength. Reproduced from [57].

Apart from macroscopic mechanical characterization of geopolymers it is worth mentioning small scale
mechanical characterization by nanoindentation, shown in Fig. 1.17 for both cement and geopolymers.

(a)

(b)

Figure 1.17: (a) Indentation and creep moduli of cement pastes obtained from nanoindentation, with
a maximal load of 0.5mN. Red, blue and yellow colors refer to the CSH density, respectively low,
high and ultra high. Reproduced from [58]. (b) Indentation and creep moduli of geopolymer pastes
obtained from nano-indentation with a maximum applied force of 0.3mN. Yellow areas correspond to
quartz and blue ones to the interface between geopolymer and quartz. Red and green dots are NASH
structures. Unpublished data on the courtesy of Thibault Divoux (ENS Lyon).

At small creep values a linear behavior is observed for geopolymer materials, similar to the one of
CSH over the same range of creep modulus. Green and red areas in Fig. 1.17(b) compares well with
the low and high density CSH, displayed in red in Fig. 1.17(a) : low creep relates to smaller hardness
and indentation modulus. As the creep modulus increases, so does the indentation modulus, linearly,
as observed from the yellow squares, associated to quartz. Here is recovered the evolution from low to
ultra high density for CSH. Major difference stands in the existence of a quartz-geopolymer interface
at high creep. Such observations do not exist in the case of CSH and are mostly inherent to the
suspension of aluminosilicate oligomers in solution.
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1.5 Atomistic and coarse-grained simulations

Molecular simulations has played a major role in material sciences for the last 20 years, giving great
opportunities to study both reaction paths and mechanical properties. Especially, grains interfaces,
individual phases or very different mixtures have been explored to scales ranging from the nanometer
to the micron-scale [59]. Within this range, atomic systems involving times up to the nanosecond can
be studied while mechanical tests can also be performed at the engineering levels, i.e. up to seconds.

At the atomic scale, grains can be studied using either reactive or non-reactive potential. Performing
equilibrium runs will give clues about the most probable structure (shape, size,...) of material grains.
Then, the interaction between grains can be evaluated via different methods. With a sufficiently
accurate description of interaction between grains, the agglomeration of these latter can be studied:
mesoscale structures can be then obtained. From there, the texture of set of porous networks can be
investigated and their mechanical properties tested using computer calculations.

Atomistic simulations deal with individual atoms, capturing their dynamics of interactions with out-
most details. These simulations provide a microscopic view, unveiling the fundamental principles
governing molecular dynamics and chemical reactions. At this scale, interactions are guided by weak
and strong electrostatic interactions as Van der Waals or Coulombic interactions, usually modeled via
inter-atomic force-fields/potentials.

Coarse-grained simulations adopt a larger scale approach, grouping atoms into larger entities to sim-
plify the computational complexity while retaining essential features of the system. By zooming out,
they offer understanding of phenomena that span longer timescales and larger spatial dimension. Both
definition of coarse-graining lengths and effective interactions are of greatest importance to perform
such simulations.

In this section, atomistic simulations of cement and clay from literature are presented with emphasis
on the choice of force-fields. Upscaling simulations are then discussed before to move on a state of the
art of performed simulations on geopolymer systems, at both atomic and meso-scales.

1.5.1 Cement and clay molecular simulations

At the atomic level, cement and clays are materials involving silicon network and alkaline ions. The
physics of cement is based on the cohesion of CSH, as nano-platelet particles which surface charge
is compensated by calcium ions. Clays are layered structures with a well-organized aluminosilicate
structures. Local charge deficiencies due to the presence of Al(OH)−3 is compensated by sodium ions.
Both their formation process is based on the dissolution of a solid raw material and the formation of
grains in water. These latter are then condensing to form larger network to develop strong mechanical
properties under a few minutes[60, 37].

As shown in Fig. 1.9 (a) and (b), CSH grains and clay platelets are usually modeled as layered silicate
chains with charge compensating ions around. Thanks to these models, cohesion of cement pastes has
been studied, allowing for a good understanding of most interaction involved at the colloidal level [61].
Layered grains have been employed to efficiently compute Potential of Mean Forces (PMFs) for both
CSH [62] and clay [63] using a perturbative approach.

In this section, few examples of atomistic simulations for cement and clays are presented that are
relevant either for their simulation approach or for the results obtained. With similar constitution
and following a similar formation path as CSH and clays, literature of these nano-granular materials
constitutes a starting point to our investigation into the cohesion of geopolymer oligomers/grains.

Force fields for cement and clays

Pair-potential between two atoms is driven by their chemistry on their local environment. Each atom
carries a charge, inducing Coulomb interactions. Van der Waals interactions are also in action at short
distance. But these (coulomb, Van der Waals) are usually referred to as non-bonded interactions as
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they involve no electron sharing. The formation of covalent bonds (hence electron sharing processes
can be modeled through various approaches starting with the most simple one, the Morse potential
to the most advanced reactive force-field such as the ReaxFF force-field[64]. These accounts for the
chemical bonding energies but also bonds length and angles (including dihedral (torsion)). Reac-
tive force fields explicitly account for chemical reactions and bond breaking/forming events within a
system. They incorporates a reactive potential energy surface that depends on the local atomic envi-
ronment described through the so-called bond-order parameter. This allows these types of interatomic
potentials to capture the dynamic evolution of chemical reactions and the rearrangement of chemical
bonds during simulations.

Traditional force fields (ClayFF, IFF, CSH-FF,...)

The electrostatic (Coulombic) pair-potential between two particles i and j at a distance rij is described
in Eq. 1.5

UCoul =
e2

4πε0

qiqj
rij

, (1.5)

where e stands for the elementary charge, 1
4πε0

for the coulombic constant, qi and qj being the atomic
charges.

For two particles σi and σj , Van der Waals interactions are usually approximated by Lennard-Jones
potentials using distance and energy parameters σij and εij as in Eq. 1.6.
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σij and εij respectively quantify the well zero-point and depth. 12/6 and 9/6 exponents describes the
well width and their choice depends on the studied system.

Bonded interactions are also usually described using harmonic terms for bonds and angles as in Eq.
1.7.

Ebond = kr(rij −R0)
2 and Eangle = kθ(θij − θ0)2, (1.7)

where kr and kθ stand for the elastic constants, R0 and θ0 for equilibrium distance and angle respec-
tively.

A force field corresponds to a set of parameters for chosen interactions. As a example, ClayFF[65]
and Interface-FF[66] are defined as the sum of a Van der Waals and Coulomb potentials coupled with
angles and bonds interactions as shown in Eq. 3.1, relating to Eq. 1.7.

Etot = EVdW + ECoul + Ebond + Eangle. (1.8)

Still, they differ from the definition of atomic charges. The first, had these fitted to DFT calculations
while the second, evaluated them via dipole moments.

Water, can also be described different ways, either with the SPC/E model [67] or the TIP4P model [68].
The SPC/E model (used in this work) describes water molecules as rigid isosceles triangle between
H-O-H atoms. Interactions within the molecules are the sum of Coulomb and a 12/6 Lennard-Jones
interactions with the following parameters :

σ ε rOH θHOH qO qH
3.166Å 0.1554 1.0Å 109.47◦ -0.82e +0.41e
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In overall, potential parametrizations can be different to study similar structure. They should be seen
as a whole, encompassing all interactions at stake in a system.

A Reactive force field: ReaxFF

ReaxFF differs from the previously discussed interaction potentials, as it allows for reactions at the
atomic level. i.e. bonds forming/bonds breaking based on the bond order parameter calculations.
The bond order describes the electron density at the vicinity of interacting atoms. It quantifies the
pair-potential energies via the strength of bonds between atoms[69]. At every simulation step, the
update of atomic positions helps balancing the interactions and charges of each atoms are recomputed
using charge equilibration methods as Qeq proposed by Rappé et al.[70]. In such a reactive field,
each atom has a unique identity reflecting its local chemical environment. Therefore, ReaxFF is an
extremely strong tool, based on initial quantum-DFT parametrization on representative but simpler
situations (hence assuming a good degree of transferability). It is able to reproduce chemical reactions
and transitions paths at the atomic scale with a smaller computational cost than direct ab initio
calculations. However, compared to non-reactive potentials, it might be up to 10 times slower in
simulations since it requires small timesteps and comport many subsequent calculations.

Mesoscale modeling of CSH and clays

In mesoscale simulations, the main elements are the grain definition, seen as a coarse-graining length
and the effective interactions between the grains.

The mesoscale modeling efforts can be very much guided by concepts imported from colloids physics as
in the end, we are dealing with charged objects and their cloud of counter ions in high pH conditions,
all immersed in a solvent (water). Regarding the cement paste, water and ions get confined between
CSH nanoplatelets. It is therefore legitimate to invoke the DLVO theory [71] that precisely deals with
this situation but in the simplest way i.e. assuming that ions are point-charges and that the solvent
can be modeled through a single dielectric constant) so to have an analytical mathematical solution. In
short the DLVO theory handles the coulombic interactions though the Poisson-Boltzmann equation on
the top of which a mesoscopic description of Van der Waals interactions are added using the Derjaguin
approximation and a Hamaker constant. The outcome of the DLVO theory is a prediction on system
cohesion or absence of cohesion; it is by all means a mean-field theory.

The Poisson-Boltzmann equation predicts a strong repulsion between two CSH platelets (or any
charged colloids immersed in a electrolyte)[72] and augmented by van der Waals interactions will
not allow to recover from the DLVO theory the observed strongly cohesive layer-to-layer interaction.
This demonstrates the need of having the correct physical ingredients and approach to describe the
behavior of charged objects as the nanolayers in CSH in a mesoscale modeling effort[71]. The proper
CSH attracto/repulsive interactions are recovered as a function of ionic strength (and pH) provided
the inclusion of ions position correlations together with the correct water dielectric constant [33, 73, 74]
Interestingly enough the exact same conclusions were earlier reached by Carrier to explain clay co-
hesion making the colloidal physics approach to quantitatively agree the results from full atomistic
simulations[34, 63]. AFM experiments found that in the case of CSH, this attraction phenomena is
related to ionic concentration [75]. Both pH and calcium concentration appear as major parameters
in the cohesion of cement pastes, accounting for either repulsion, attraction or attracto-repulsion be-
tween cement hydrates. The attracto/repulsive behavior between colloids were obtained through the
interlayer pressure calculations that relates to the system free energy through an integration step. It is
strictly equivalent to the so-called Potential-of-Mean-Force) approach (PMF) here below introduced.

The overall interaction between grains in solution can be evaluated under the scope of a free energy
surface also called Potential of Mean Force (PMF). As a function of atomic/molecular coordinates, it
quantifies the cohesive behavior of two entities immersed in a dielectric medium. From this definition,
it stands as a way to move from the atomistic scale where the distance free-energy curve between grains
is first established to the mesoscale describing an assembly of these grains in pairwise interactions.
Defining the effective pair-potential of interaction at the mesoscopic level, the PMF can usually be

26



Chapter 1 1.5. Atomistic and coarse-grained simulations

obtained from molecular simulations using different methods [33, 76].

A widely used approach to obtain the PMF for coarse grained system is the Free Energy Perturbation
(FEP) technique. By sampling equilibria of grains at different distances, free energy variations can
be estimated by applying small perturbation to the system. Once a model for interactions is pro-
posed, precipitation of particles can be modeled thanks to Grand Canonical Monte Carlo (GCMC)
simulations. Insights have been proposed on CSH and clays precipitation processes, based on transfer-
able potentials as the Lennard-Jones, Yukawa or yet Gay-Berne potentials for spherical or ellipsoidal
particles [77, 78, 79].

CSH particles interactions

At the colloidal level, Atomic Force Microscopy (AFM) allows measurement of surface interactions.
In AFM experiments, interactions can be obtained between a CSH platelet and a CSH crystal[80].
Surface forces in such grains are dictated by the physico-chemical reactions at their interface as so
AFM is a good way to quantify interface cohesion strength. The force between two grains presents a
minimum and, depending on the Ca(OH)2 concentration, a maximum, both separated by a free energy
barrier (as the force can be expressed as a variation of the free energy). Such a shouldered-shape of
the force versus distance curve is attributed to the electrostatic correlation due to the charged surfaces
of the grains[81, 82, 83]. Note that AFM experiments are very sensitive to the grain definition (shape,
size)[84] and to the paste density[85, 86]. Thus, the obtained results may be used to model colloidal
systems with a medium-range separations but not between inner layers of the grains.

Attractive inter-grain forces procure cement cohesion[80]. These are the direct consequence correlated
movement of Ca2+ ions in-between CSH negatively charged grains immersed in a basic electrolyte as
shown by experiments [87, 88] and simulations [89, 90].

Once the CSH grains have been defined from both their chemistry and size and the potential of
interactions between them measured or calculated, the CSH paste can be modeled at the mesoscale
using simulations techniques imported from Statistical Physics namely Molecular Dynamics (also used
at the atomic scale) and Grand Canonical Monte Carlo. Masoero et al. proposed an effective potential
for coarse-grained simulations of CSH based on molecular simulations [91]. According to experiments,
as a function of the distance between two grains, this potential should fulfill three features: a minimum
at short distances to ensure cohesion, a repulsive shoulder at medium range for adhesion and must
go to zero as the distance increases. To reproduce only the well of interaction, they proposed a Mie
potential (slightly modified Lennard-Jones potential)[92], with a well depending on the particles size
so that a poly-disperse approach can be taken. Between two grains i and j of size σi and σj, the
potential energy stands as:

Uij = 4ε
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where calibration of potential depth ε and the exponent α has been performed using mechanical
measurements as the elastic modulus or the strain failures obtained from previous work [93, 94].
Ioannidou et al. [95] carried mono-disperse simulations using a combination of a Mie (short-range
attraction) and a Yukawa (medium range repulsion) potentials as follow :
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These simulations were mostly performed considering spherical particles. However, most PMFs cal-
culations were obtained from the study of nanolayers/platelets [33, 62, 63]. To account for such
geometry, coarse-graining simulations have been proposed for cement using a orientation-dependent
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potential [96, 97] as the Gay-Berne potential [98] with disk-shaped particles [99, 100]. As an illustra-
tion, PMFs obtained for CSH, fitted with a Lennard-Jones and a Gay-Berne potential are shown in
Fig. 1.18.

(a) (b)

Figure 1.18: PMF obtained for face-to-face interactions of CSH nanolayered particles as a function of
the center-of-mass distance. (a) Fitted with a hybrid 12/6 exponent Lennard-Jones+Yukawa potential.
In the inset are shown the curves w.r.t. the surface-to-surface distance. Reproduced from [33]. (b)
Fitted with a Gay-Berne potential with oblate C-S-H particle with diameter of 10 nm. The inset
shows the dependence of fitting parameters on the particle diameter. Reproduced from [101].

Both plots show a attractive well at a few nanometer distances followed with a repulsive shoulder.
Attractive well from the fits mostly arise from the −1/r6 in the LJ model, as the Gay-Berne model
stands as an anisotropic form for the 12/6 Lennard-Jones potential. These results illustrates the ability
for CSH layers to interact in water through an attracto-repulsive potential, accounting for cohesion.

Precipitation simulations of CSH

Having set up the coarse-graining lengths and effective potential of interaction, the precipitation of
grains can be studied thanks to molecular simulations [102, 103]. In particular, cement mesostructures
can be studied with regard to the precipitation kinetics/parameters.

Both attractive and attracto-repulsive effective potential have been proposed to study the evolution of
CSH gels at the micro-level. Both roles of potential and kinetics on resulting structures are presented.
As the potential mimics the pH (or lime concentration), its relation to pore size distributions is
shown. Faster setting times are modeled using larger precipitation rates R as the ratio between
molecular dynamics and Grand Canonical Monte Carlo steps. In overall it shows that increasing the
lime concentration induces higher local coordination and so, stronger gels. This is seen from as slighter
deceleration of precipitation at high pH.

Mesostructures also appear to be sensitive to precipitation kinetics. In addition to particle clustering
studies, resulting porous network can be evaluated under the scope of pore size distributions and scat-
tering intensities [78]. Such properties allow for a direct comparison with experimental measurements.

1.5.2 Geopolymer molecular simulations

Similarly as for CSH and clays, geopolymer materials are formed from the dissolution of a solid source
and the agglomeration of nano-grains, motivating a coarse-grain approach to model the geopolymer-
ization. Formed under high pH conditions, these aluminosilicate materials show a more amorphous
microstructure, as a result of a complex simultaneous dissolution/condensation reaction. At the atomic
scale, oligomers formation has been studied thanks to reactive potentials [104, 105, 15]. A few upscal-
ing models for geopolymer gels were proposed to study the agglomeration process either on from a
grain structure as a defective clay crystal structure [106] or as lattice/silicate cubic particle (accounting
for the tetrahedron geometry)[107].
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Atomic simulations: speciation using reactive potentials

With its strong ability to form and break bonds, ReaxFF has allowed to generate aluminosilicate
structures in water and alkaline solutions, mimicking the dissolution/aggregation process of geopoly-
merization [107, 108, 15]. Yang et al. have presented the stability and the structure of key neutral
aluminosilicate clusters [109]. In addition, favorable oligomer structures from geopolymer speciation
have been obtained under different conditions [14, 105].

The formation of clusters of sizes greater than 4nm from monomers and dimers has been modeled
thanks to reactive molecular dynamics[104]. Especially, regarding the free energies, they observed
that the AlSi(OH)4Na dimer turns out to be the main reactant in cluster growth, which is consistent
with previous experimental investigations[110, 111]. AlSi(OH)4Na also appeared to be more reactive
than its silicate counterpart Si(OH)4Na, making it sensitive enough to form Si/Al dimers, avoiding
Loewenstein’s rule violation [112] (according to which there should be no Al-O-Al bonds, even though
this one is not strictly applying to geopolymers[113]). Further, beside experimental works [31, 114],
it was noticed that temperature has only little impact on the thermodynamics of these aggregating
reactions.

Parallel tempering techniques have been used to dissolve and speciate large aluminosilicate clusters,
as illustrated in Fig. 1.19 [12, 15]. It was performed for pure silicate mix of aluminate and silicate,
also illustrating how would the presence of aluminum in the system impacts the gel network. Alumina
content, already known to enhance the whole geopolymerization process, allows larger structure to be
formed, up to gyration radius of Rg ≈ 10 Å. Especially, these results are consistent with the gyration
radius estimated around 2.1Å using the Guinier model from SAXS experiments [20].

Figure 1.19: Different phases of the formation of an aluminosilicate species in an alkaline solution
modeled in molecular simulations with a reactive potential. A silicate species merges with an aluminate
ring species form in the solution before aluminum atoms diffuse into the structure to reach the more
energetically favored structure. Red, yellow and cyan spheres display oxygen, silicon and aluminum
atoms. Reproduced from [15].

The speciation process is shown to be highly dependent of the initial concentrations (either in the
aluminosilicate sources or in the activating solution), the pH or the activating alkali.

Mesoscale simulation of geopolymers

A geopolymer gel is constituted of polydisperse aluminosilicate oligomers. Based on both quantum
Density Function Theory (DFT) and Coarse-Grained Monte Carlo (CGMC) simulations, White et al.
developed a methodology to study solid-gel transition in zeolites [115] and applied it to geopolymers
[116]. Defining particles as silicate and aluminate monomers (tetrahedron of size around 3.1Å), they

29



Chapter 1 1.6. Conclusion and research questions

used CGMC simulations to mimic dissolution, polycondensation and aggregation of species into nano-
particles called nano-precipitates, in aluminosilicate gels [107]. This approach allowed to study a
system within a box size of 9nm.

They studied the formation of clusters depending on the composition of the activating solution as
seen from Fig. 1.20 (a). Especially, it turns out that without silicates in the solution, big clusters
form continuously from the aggregation of mid-sizes clusters. On the contrary, introducing silicates in
solution lead to more direct formation of big clusters, as an enhanced 3D-networking.

(a) (b)

Figure 1.20: (a) Cluster formation with regard to the Si:Al ratio in CGMC. Reproduced from [107].
(b) Geopolymer gel relaxation using a coarse-grain Monte Carlo approach by White et al.. It shows
the relaxation of hydroxide activated geopolymer with aluminate sites in yellow and silicate sites in
purple. Reproduced from [116].

Multi-scale first trials

As proposed by Lolli et Masoero[117], a new model of defective crystal opened new insights in mesoscale
simulations of geopolymers. Based on the fact that experimental studies of geopolymers showed both
crystalline and amorphous structures [118, 119], they have decided to define a model as an intermediate
state between these two latter, called defective crystal model, corresponding to a ”pseudo-crystalline”
structure[120]. Relating this structure to material mechanical properties allowed to account for av-
erage geopolymer particle sizes ranging from 5 to 50nm, seen as oligomer aggregates. Considering a
polydisperse Lennard-Jones potential of interaction, Monte Carlo simulations have been performed for
meta-kaolin based-geopolymers, activated with an alkaline aqueous solution[117]. Resulting structures
encompass key features of mechanical properties, but underestimate effective forces at the mesoscale
(compared from mechanical characterization of the mesostructures and the derivation of the used
potential of interactions).

1.6 Conclusion and research questions

Even though geopolymer pastes stand alongside cementitious and clay materials, their formation pro-
cess remains poorly understood. Still, experimental works brought many insights on their mechanical
properties and how they do relate to raw materials constitutions.

On the first hand, aggregation of CSH grains and clay platelets have been deeply investigated from
both experiments and simulations. On the other hand, despite their differences in time scales, their
formation process shows many analogies with geopolymerization, leading to equivalent mechanical
properties.

From a simulation point of view, forces at the origin of cement cohesion have been understood as a
competition between electrostatic and Van der Waals interactions, arising from local charge exchange.
These advances allowed the definition of mesoscale models based on the determination of both a coarse-
graining length and an effective potential of interactions at the atomic scale. Mesostructures were so
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obtained and validated according to experimental measurements. While a few attempts of mesoscale
modeling have been proposed for geopolymer materials, none accounted for the use of an effective pair
potential of interaction directly computed from atomistic simulations. Still, using reactive potentials,
the coarse-graining length of geopolymer and oligomers properties have been discussed.

The next step toward a better understanding of the aggregation of oligomers in aluminosilicate gels is
to use individual grain characteristics to evaluate the effective pair-potential, driving a path towards
mesoscale simulations of geopolymers. This thesis stands there, digging into the nature of cohesion
within geopolymer gels and their growth. It aims to better relate atomistic properties to mesoscale
structures of these promising materials.
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Chapter 2

Methodology

In this chapter, the methodologies that have been used in this work will be presented. First, statistical
physics will be introduced. Then, we discuss the methods used to reconstruct the mean force potential
from atomistic simulations: the perturbation theory approach and enhanced sampling approaches
(metadynamics).

2.1 Statistical physics and molecular simulations

Statistical physics connect microscopic states to and the macroscopic states by giving a description of
system with large number of particles. First introduced by Kelvin, Maxwell and Boltzmann with the
study of gas kinetics (modeled as random collisions of particles due to Brownian trajectories for the
atoms and molecules), the principles of statistical mechanics or also called equilibrium thermodynamics
were formalized by Gibbs in 1902 [121].

Let us consider a system at the thermodynamic equilibrium. It is commonly accepted to describe it
with macroscopical parameters as its density ρ, pressure P , temperature T or volume V . The purpose
of statistical physics is to give a correct description of these parameters with regard to microscopic
ones, such as the system energy, the chemical potential or the number of particles.

A system can be defined with variables that can be either extensive (system-size dependent such as
pressure) or intensive (system-size independent such as volume). As shown in Table 2.1 for instance
pressure and volume are conjugated variable. As an example, the macroscopic temperature T of a
system is nothing less than a measurement of the microscopic kinetic energy of an ensemble of particles.

Extensive variable Intensive conjugated variable

Internal Energy E Temperature T

Volume V Pressure P

Number of particles N Chemical Potential µ

Table 2.1: List of thermodynamic state variables

2.1.1 Thermodynamic basics

In order to properly understand and manipulate the variables involved in the study of such thermo-
dynamic state we come back to the first principle which stands that the energy E of the system is the
sum of absorbed heat Q and the amount of work W done on the system :

E = Q+W. (2.1)

It is important to note that E is a state function, meaning it does not depend on the chosen path,
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while Q and W are not. Therefore, any change in Q or W must be considered along a differential
path such that

dE = δQ+ δW ≡ dQrev + dWrev. (2.2)

While the differential amount of heat exchanged by a system is directly related to the differential
entropy by δQ = TdS, the differential work done by the system must be decomposed into a mechanical
work dWmech and a chemical work dW chem. The first one is subjected to the volume evolution
according to δWmech = −P (V )dV ≡ PdV , where P is the system’s pressure. The chemical work is
related to the number of particles within the system. If we go from a set of N1 particles to a state
with N2 particles (N2 > N1), the chemical work can be quantified as W chem =

∑N2
Ni=N1

µ(Ni), µ(Ni)
being the chemical potential of the system comporting Ni particles. Thus, the differential chemical
work is given by δW chem = µ(N)dN ≡ µdN .

Finally, we obtain the relation between thermodynamic variables as

dE = TdS − PdV − µdN, (2.3)

and so the differential entropy is

dS =
µ

T
dN +

P

T
dV +

1

T
dE. (2.4)

On the other hand,

S ≡ S(N,V,E) =⇒ dS =

(
S

N

)
V,E

dN +

(
S

V

)
N,E

dV +

(
S

E

)
N,V

dE. (2.5)

From identification we recover expressions for the thermodynamic variables T, P and µ as

1

T
=

(
∂S

∂E

)
N,V

;
P

T
=

(
∂S

∂V

)
N,E

;
µ

T
=

(
∂S

∂N

)
V,E

. (2.6)

Since the energy can be expressed as a function of the system energy E ≡ E(N,V, S), these can also
be rewritten as

T =

(
∂E

∂S

)
N,V

; P = −
(
∂E

∂V

)
N,S

; µ =

(
∂E

∂N

)
V,S

. (2.7)

Equations 2.7 show relations between macroscopic observables and the energy of the microstates.

Thermodynamic ensemble

One macroscopic state may not be only defined by a single microscopic state. In fact, the fundamental
postulate of statistical physics known as the a priori equiprobability postulate stands that :

Given an isolated system in equilibrium, the system has the same probability of being in any of the
accessible microstates.

Thus, by denoting Ω the number of accessible microstates of a system, the probability for a system to
be in a given microstate is p = 1/Ω and so, is uniform.

The ensemble of microstates is the thermodynamics ensemble and is defined by its variables. For
instance, in the microcanonical ensemble, microstates are defined at a given number of particles N
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inside a given volume V and at an energy E. Thus, the microcanonical ensemble is often referred as
the (N,V,E) ensemble.

The function Ω ≡ Ω(N,V,E) quantify the part of the phase space accessible by the system. It can
be obtained from an integration over 6N −1-dimensional constant-energy hyper-surface (defined from
positions and momenta). Moreover, we recall that we work in the classical mechanics and so in a
Hamiltonian framework. The Hamiltonian, H, is therefore conserved over the phase space (see [122],
chapter 1 and Eq. 1.6.15 for details).

By denoting x = (r,p) a vector of such a phase space, we have

H(x) = E, (2.8)

and the number of accessible state by the system reads as

Ω(N,V,E) =
1

h3NN !

∫
dxδ(H(x)− E), (2.9)

where h is the Plank constant.

Gibbs’ entropy

While the macroscopic state of a system can be well defined by three parameters: e.g. P , T and
V , microscopic states with N particles requires 6N parameters (x, y, z the position and vx, vy, vz the
velocity, for each particle). As a consequence, a lot of information is lost when moving from the
microscopic to the macroscopic state. Even though considering very large system allow to consider
such transitions, information remains lost and can be quantified by a quantity called entropy and
denoted S.

In the framework of statistical physics, Gibbs defined the entropy as

S(Pi) = −kB
M∑
i

Pi ln(Pi), (2.10)

where M is the number of accessible microstates with probability Pi. Note that if the probability
is uniformly equal to Pi ≡ P = 1/Ω we recover S = +kB ln(Ω), which is the Boltzmann’s entropy
formula.

Ergodicity

Up till now, we have only discussed the microscopic states in a purely static sense : every state can
be occupied with the same probability and the actual state can be seen as an ensemble average over
all these states, i.e over the phase space.

The ergodicity principle states that time and ensemble averages are equivalent, i.e :

lim
N→+∞

1

N

N∑
k=1

Fk = lim
τ→+∞

1

τ

∫ t0+τ

t0

F (t)dt, (2.11)

i.e

⟨F ⟩ = F . (2.12)
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A way to properly understand it is to see that with a sufficiently long time, a system at equilibrium
will occupy most of the configurations that would correspond to the N duplicates one can consider.
This is one of the key principles of Molecular Dynamics.

2.1.2 Other statistical ensembles

As already mentioned, a macroscopic state is defined by three parameters. Fixing such macroscopic
parameters allows to define statistical ensembles (of microstates) that will be presented below. Each
of these ensemble has its own definition of partition function (distribution of probability), entropy and
so, relations between the macro and microscopic variables.

The canonical ensemble (NV T )

Now considering a system inside a thermostat T , i.e a macroscopic state at the temperature T , it is
possible to define a (canonical) partition function Q for the ensemble (N,V, T ), called the canonical
ensemble.

Partition function Q ≡ Q(N,V, T )

By denoting i a possible microstate, we get the two key equations of the statistical mechanics, quan-
tifying the probability for the state i to occur as Pi :

Q =
∑
i

exp

(
− Ei

kBT

)
; Pi ≡

exp
(
− Ei

kBT

)
Q

, (2.13)

where Ei is the energy of microstate state i, kB is the Boltzmann constant and T is the system
temperature (which is fixed along the volume V and the number of particles N).

With regard to this density probability function Pi(Ei), the canonical partition functionQ(N,V, T ) can
be related to the micro-canonical partition function Ω(N,V,E). In fact, in the canonical ensemble, the
Hamiltonian is not conserved and so the energy changes according to a Boltzmann distribution (with
mean E0), allowing the system to access a new number of accessible microscopic states. Therefore,
the canonical partition function is related to its micro-canonical counterpart as

Q(N,V, T ) =
1

E0

∫ ∞

0
dE exp(−βE)M

∫
dxδ(H(x)− E) =

1

E0

∫ ∞

0
dE exp(−βE)Ω(N,V,E). (2.14)

Mean energy E and internal energy U

Many thermodynamics quantities can now be defined, starting with the system’s mean energy reading
as

E ≡ ⟨E⟩ ≡
∑
i

EiPi =
∑
i

Ei
1

Q
exp (−βEi) = −

∂ lnQ

∂β
, (2.15)

where β = 1/kBT the inverse temperature (in inverse energy units). Note that in the thermodynamic
limit, E ≡ U is the internal energy of the system.

Entropy S and Helmholtz free energy A

Now using the definition of the entropy in Eq. 2.10 and Eq. 2.13, one gets S ≡ S(N,V, T ) for the
canonical ensemble :

−S(N,V, T )
k

= −βE − lnQ⇐⇒ S =
E

T
+ lnQ. (2.16)
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Recalling the definition of the Helmholtz free energy A ≡ A(N,V, T ) = E − ST (Legendre transform
method to change the energy from a function of (N,V, S) to a function of (N,V, T )[122]), it relates to
the partition function according to Eq. 2.35

A = −kT lnQ = − 1

β
lnQ. (2.17)

One may recall that the free energy variation quantifies the amount of work a thermodynamic system
can perform at constant T . A ’+’ sign refers to a favorable thermodynamic process while ’−’ refers
to an unfavorable one.

The isothermal-isobaric ensemble (NPT )

Characterizing the system with the number of particles N , the pressure P and the temperature T
defines the (N,P, T ) ensemble, called the isothermal-isobaric ensemble. In this ensemble, the energy
is defined and identified as the enthalpy H = E′ = E + PV .

The partition function of this ensemble is given as the following integral over the volume similarly as
the canonical partition function was over energy :

∆ ≡ ∆(N,P, T ) =
1

V0

∫ ∞

0
Q(N,V, T ) exp(−βPV )dV. (2.18)

The grand canonical ensemble (µV T )

The Grand Canonical ensemble can be used to exchange particles with a fictitious reservoir with a
chemical potential µ. It corresponds to the states for which the chemical potential µ, the volume V
and the temperature T are fixed.

According to the first principle of thermodynamics, the energy E and the Helmholtz free energy A
are given as

E = TS − PV + µN ; A ≡ E − TS = −PV + µN. (2.19)

The grand partition function Ξ ≡ Ξ(µ, V, T ) is therefore given by

Ξ =
∑
i

exp(−(Ei − µNi)/kBT ) =
+∞∑
N=0

exp(βµN)Q(N,V, T ), (2.20)

where the sum is made over the microstates i composed of Ni particles, with energy Ei. Q(N,V, T )
is the canonical partition function.

By defining the Landau free energy (according to a Legendre transform) or here called the grand
potential : Ω ≡ A(µ, V, T ) − N(µ)µ, we recover the relation Ω = −kBT ln Ξ and similarly as for the
previous ensembles, it allows to relate thermodynamic properties to microscopic properties. Note that
we have Ω = −PV and so PV = kBT ln Ξ.

The Nosé-Hoover thermostat

All the previously discussed ensembles involve constant temperature T . However, for a system of N
particles, temperature relates to the kinetic energy of the system (quantified from particles’ velocities)
according to:

⟨Ekin⟩ =
3

2
NkBT. (2.21)
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A thermostat is an algorithm that controls of the temperature of the system by introducing energy
fluctuations. This can be done by coupling to system to an external heat bath. To do so, Andersen
proposed a model based on stochastic collisions of particles)[123]. Another approach, taken by Nosé
et al. is to introduce energy fluctuations as an additional term in the Hamiltonian of the system[124].
With the introduction of a virtual variable s accounting for the influence of the external system, on a
system of N particles with masses mi and momenta pi, the Nosé-Hoover Hamiltonian writes as:

HNosé−Hoover =

N∑
i=1

pi

2mis2
+ ϕ(q) +

p2s
2Q

+ gkBT ln(s), (2.22)

where Q corresponds to an effective mass associated to the variable s and ps its momentum. With
this definition, equations of motion are slightly modified and so the system can account for associated
energy fluctuations, controlling the temperature, i.e. acting as the thermostat.

2.1.3 Molecular simulations

As seen in §3, the thermodynamic properties of a system can be expressed as an average as an integral
over the ensemble of accessible microstates, also called phase space. To calculate the macroscopic
observables, it is necessary to know the microstates that can be reached by the system within a
given thermodynamic ensemble. Simulations can be used to sample the ensemble of microstates of a
system. Molecular dynamics (MD) and Monte Carlo (MC) approaches are efficient tools for sampling
the microstates that have been widely used. While a Monte Carlo method will skim the phase space
according to probabilistic algorithm, Molecular Dynamics is time-dependent and is based on Newton’s
laws. According to the ergodicity principle, both method are equivalent and can be coupled in order
to study a great variety of systems.

Monte Carlo (MC)

In the Monte Carlo simulations, at each step of the simulation, a MC move is attempted. The
acceptance of the refusal of the attempts are based on a probability of acceptance that depends on
the energy of the system before the move and after the move.

Metropolis algorithm

The Metropolis algorithm can be used to determine the acceptance of the refusal of a MC move, within
the framework of a Markov chain.

First, we denote πij the transition probability to move from a state i to a state j, while the probability
to be in state i is denoted ρi. The Markov Chain corresponds to a sequence of independent states.
Therefore, πij is the probability that if the nth state of the chain is in state i, the state n+1 is in the
state j. For our Markov Chain to be consistent, a few conditions must be satisfied :

• The transition matrix is stochastic : starting from a state i of the chain leads to a state in the
chain :

∑
j πij = 1 ;

• Ergodicity : all accessible states are at equilibrium :
∑

i ρiπij =
∑

j ρjπji ;

• Micro-reversibility : ρiπij = ρjπji.

Now, the transition probability is decomposed into two probabilities : πij = αijPij , where αij is
the probability to try the state change from i to j (and is symmetric) and Pij is the probability to
accept the trial. Such an approach allows to define a distribution of probability Pij independent of
the partition function. In fact, from the micro-reversibility condition :

ρiPij = ρjPji ⇒
Pij

Pji
=
ρj
ρi

= exp [−β(Uj − Ui)] . (2.23)
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There exist many possibilities to chose such distribution. Metropolis et al. chose the following :

Pij =

{ ρj
ρi

if ρj < ρi
1 if ρj ≥ ρi

. (2.24)

Thus, the transition matrix elements are

πij =

{
αij

ρj
ρi

if ρj < ρi
αij if ρj ≥ ρi

πii = 1−
∑

j ̸=i πij

. (2.25)

Monte Carlo simulation covers the phase space by moving from one state to another with regard to
the energy difference between the states. As a consequence, the larger the energy difference is, the
lowest the probability to visit the state is.

Molecular Dynamics (MD)

In Molecular Dynamics, equilibrated states are visited following the evolution of time and the me-
chanical laws of motion.

Fi = miai ≡ mi
d2ri
dt2

, (2.26)

where mi correspond to the mass of the atom i, Fi the force exercing on the atom i and a its proper
acceleration.

For a given configuration of N atoms with coordinates r = {r1, ...rN}, the energy E is quantified
with regard to the motion of atoms via its kinetic energy K and with regard to their positions via its
potential energy V = V (r1, r2, ..., rN )), also called Potential Energy Surface (PES). Thus, the atomic
forces are defined according to

Fi = −∇riV (r1, r2, ..., rN ). (2.27)

Interatomic interactions

For MC and MD algorithms, the interparticles forces have to be calculated. Within an atomic system,
particles interact via intermolecular forces (Coulombic interaction, Van der Walls forces, covalent
bonds, etc.). For atomistic systems, there are two ways of computing the forces: either using quantum
approaches which are based on the calculation of the electronic density or using classical force fields.

For classical force fields, the PES is often computed from pairwise potentials ϕ(rij) and requires the
definition of a cut-off radius rc above which interactions are null (i.e. particles are so far that their
interactions can be neglected).

V (r) =
∑
i

∑
j>i

ϕ(|ri − rj |) ≡
∑
i

∑
j>i

ϕ(rij). (2.28)

The Lennard-Jones Potential

One of the most basic pairwise potentials is the Lennard-Jones (LJ) potential, as plotted in Fig. 2.1 (a),
which has an attractive contribution and a repulsive one. For instance, the attractive contribution can
reproduce the Van der Waals forces while the repulsive contribution corresponds to the Pauli repulsion
in an atomic system.

It is defined by ε, the potential depth, and σ the potential zero-point:
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(a) (b)

Figure 2.1: (a) Lennard-Jones and (b) Yukawa pair-potentials for different sets of parameters

ϕLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (2.29)

This potential is said to be attractive since it presents a well which is characterized by it depth ε and
its zero distance σ.

The Yukawa Potential

Another example of pairwise potential, is the Yukawa potential, which is a purely repulsive potential
given as:

ϕYukawa = A
e−κr

r
, (2.30)

where A is the amplitude and κ quantifies the range of interactions. Fig. 2.1 (b) illustrates its behavior
with regard to the inter-atomic distance r.

Periodic boundary conditions

In order to account for larger system, periodic boundary conditions are often used in molecular sim-
ulations. These mimic a replication of the simulation box in chosen space directions (x,y and z). It
has the strength to allow calculations to be performed with a smaller number of atoms.

Fig. 2.2 shows the replication of a cubic simulation box and the application of the Minimal Image
Convention (MIC).
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Figure 2.2: Periodic boundary conditions applied in two dimensions to a cubic simulation box contain-
ing spherical particles, filled in blue. Red dots shows the particles and the arrows the forces applied
on them. The cut-off sphere of interactions is shown for an atom, illustrating the MIC. Reproduced
from [125].

MIC stands that for an atom, its interactions are taken within the cut-off spheres of atoms according
to box replication and not necessarily with the one its own cell. It ensures that all interactions are
taken into account only once within the replicated system but requires the cut-off radius rc to be taken
smaller as half the simulation box size.

2.1.4 Potential of mean force

The Potential of Mean Force corresponds to the mean force of interaction between two atomic clus-
ters. PMF can be computed from the free energy differences, itself computed from Thermodynamics
Integration (TI). TI purpose it to compute the difference in a thermodynamic property (usually the
free energy) of the system between some reference states and the state of interest. To measure the
free energy change from initial to final state, thermodynamic parameters characterizing the system
are changed along a continuous path keeping the system in an equilibrium. This ensures that the path
is reversible, i.e., the same path can be traversed in the opposite direction.

The evaluation of the potential mean force can be done using a perturbative theory or enhanced
sampling methods, such as nudge elastic band, umbrella sampling or metadynamics. Herein, we will
present the perturbation theory approach as well as the metadynamics approach, account for a more
direct potential energy calculations.

2.1.5 Theory of the perturbative approach

This perturbative method [126, 34, 62] is based on the thermodynamics integration principles. Along
a perturbation coordinate (distance, angle, charge, etc.) λ, a large number of states are created. For
each state, a trajectory is simulated to obtain a sample of configurations that are used to compute
the free energy of a system by perturbing it around its equilibrium.

The free energy difference ∆A between two states i (unperturbed) and j (perturbed) can be quantified
by

∆A(i→ j) = Aj −Ai = −kBT ln

〈
exp

(
−Uj − Ui

kBT

)〉
i

, (2.31)

where U is the state energy and the triangular brackets denotes the average over a simulation run for
the state i.

Configuration space and importance sampling

This perturbative approach must remain, by definition, in a perturbative framework which must be
properly defined. Considering a given state i, there exist a multitude of microstates that can cor-
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responds to this state, also called configurations. The ensemble of such microstates can be called
configuration space or phase space. When performing perturbative calculations between two states,
we expect both states not to be too different from each other and so, they share the same configu-
ration space Γ. It is commonly accepted in molecular simulations that states can be characterized
by their respective energy. Let us then consider a state i. The perturbation will then generate two
states, corresponding to a state i, L and a state i,H, respectively with a lower and a higher energy.
Over a finite simulation run, both state will cover a set of micro-states belonging to the whole phase
space Γ, that we can denote Γi,L and Γi,H for low and high energy states. These are called important
configurations since they constitute direct transcriptions of all micro-state possibilities for initial and
perturbed states.

In the perturbative approach, one expects these important configuration spaces to overlap so that the
energy differences between two states is not too large (while differences are still required, otherwise
it means that the perturbation was not sufficient to differentiate both states). In fact, the better the
overlap is, the more accurate FEP calculations will be [127].On the counterpart, computational costs
will be increased because of lowering the perturbation. An example of important configurations over
a phase space is given in Fig. 2.3

Γ

Γi,H

Γi,L

Figure 2.3: Schematic diagram of important configurations for a state i that is perturbed to run FEP
calculations. Γi,L in blue and Γi,H in red correspond to the important configurations respectively
to the low and high energy states while Γ denotes the whole configuration space. The intersection
between both important configurations is represented with the magenta dashed lines.

A way to quantify the overlap between the important spaces is to study the distribution of energy
for these states, since each of the micro-state can be characterized by its energy (or especially, by its
entropy).

Let us now consider a given state i. In the following, the subscript i will be abandoned for clarity. There
exist two states, of lower and high entropy/energy : by denoting the entropy difference ∆S ≡ SL−SH ,
and by definition ∆S ≤ 0. Then, recalling Eq. 2.31 the free energy difference ∆A ≡ AL−AH is given
according to :

exp (−β∆A) = exp (−β∆U) ≡ exp (−β(UL − UH)), (2.32)

where β = 1
kBT .

Assuming that the free energies differences from low to high energy states are distributed with regard
to two distribution functions f and g such that

{
exp (−β∆A) =

∫
du exp (−βu)f(u)

exp (+β∆A) =
∫
du exp (+βu)g(u)

, (2.33)
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Figure 2.4: Examples of f and g distribution functions of the energy differences- between two states
of lower and higher mean energy. Reproduced from [127].

u corresponding the energy difference between the two states, the integral being evaluated from −∞
to +∞. The accuracy of PMF calculations can be quantified according to the overlap of the f and g
distributions. In fact, the tails of these ones will correspond to low and high energies of each of the
lower and higher energy states as shown in Fig. 2.4. The more likely are the states, the more overlap
the Gaussian will have. This indicates how much one works within the framework of a perturbative
approach.

During a simulation, which runs for a finite time, not all the distributions are sampled and this is
especially true for the Gaussian tails, generating inaccuracies (as non-visited states) in the calculations.

Overlap Sampling (OS) methods

As discussed above, the accuracy of PMF calculations depends on the overlapping of energy distri-
butions between initial and the perturbed states, which requires long equilibria for each distributions
to be well sampled. There are methods to improve the efficiency of these calculations [128]. In this
former paper, Lu et Kofke have extended their study of the insertion/deletion FEP calculations by
implementing different Overlap Sampling methods.

Let us consider two states, i and j with their respective Hamiltonian Hi and Hj . The key of OS
methods is to consider an imaginary state M in between i and j. The Hamiltonian of state M can be
reasonably taken as

HM = −kBT lnw(∆H) +
(Hi +Hj)

2
, ∆H = Hj −Hi, (2.34)

w being a weight function that gives flexibility on the choice of M . Note that in the NV T ensemble,
the free energy is related to the partition function Q as in Eq. 2.35 :

A = −kT lnQ = − 1

β
lnQ. (2.35)

As the canonical partition functions Q is related to the Hamiltonian and especially to the free energy
from Eq. 2.35, one can write

exp (−β∆A) ≡ Qj

Qi
=
QM

Qi

Qj

QM
. (2.36)

Since the partition function is defined with regard to the Hamiltonian, one obtains, by denoting
u = Uj − Ui :
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exp (−β∆A) = ⟨w(u) exp (−βu/2)⟩i
⟨w(u) exp (+βu/2)⟩j

. (2.37)

This equation differs from the one obtained by Direct Averaging (DA) discussed earlier. In fact, using
the DA method, from Eq. 2.31 with the same notations :

exp (−β∆A) = ⟨exp (−βu)⟩i. (2.38)

The main difference is that the OS approach requires to average the energy differences over two
different states. In the case of Eq. 2.38, only state i rules the calculations. Uj is obtained from
perturbation applied to a system in state i in one energetic direction. However, it is known that
energy distribution obtained from perturbation in one direction (e.g. from i to j) can widely differ
from the one obtained in the other direction [129]. This generate a statistical bias that the OS method
expect to palliate by taking both directions (called forward and backward) into account.

An important thing is to notice that Eq. 2.37 does not require any equilibrium of the intermediate state
M but only involves its weighting function of the Hamiltonian w. Since w can be chosen arbitrarily,
one might here identify different cases, corresponding to notable choices of w.

Simple Overlap Sampling : w(u) = 1 for all u

This corresponds to the simplest possible choice for the weight function. The free energy difference is
directly obtained from

exp (−β∆A) = ⟨exp (−βu/2)⟩i
⟨exp (+βu/2)⟩j

. (2.39)

In fact, it corresponds to a choice of M at ”equal distance” of states i and j as depicted in Fig. 2.5.

i M j

Figure 2.5: Illustration of the Simple Overlap Sampling case between two states i and j.

In terms of energies, this can be written as below

u ≡ Uj − Ui = (Uj − UM )− (Ui − UM ) =

〈
Uj − Ui

2

〉
j

+

〈
Uj − Ui

2

〉
i

, (2.40)

where the brackets denote the average over i and j states. These two averages correspond to pertur-
bation performed forward and backward, differing from the DA case for which the energy difference u
is taken as u = ⟨Uj − Ui⟩i.

Application of the Simple Overlap Sampling (SOS)

Let us consider, between an initial and a final states 0 and 1, intermediate ones i− 1, i and i+1. The
system is then perturbed to each states in the forward and backward directions, as pictured in Fig.
2.6.
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i− 1 i i+ 1

1
2⟨∆Ui−1,i⟩i−1

1
2⟨∆Ui,i−1⟩

1
2⟨∆Ui,i+1⟩i

1
2⟨∆Ui+1,i⟩i+1

Figure 2.6: Scheme of the intermediate perturbed states in the SOS method. Three successive states
are shown : i− 1,i and i+1. Intermediate states as the perturbed ones are shown in dashed lines and
energy differences associated to each perturbation shown.

With such sampling, Eq. 3.10 rewrites as :

∆A(i→ i+ 1) = Ai+1 −Ai = −kBT ln

[
⟨exp(−∆Ui,i+1/2kBT )⟩i
⟨exp(−∆Ui+1,i/2kBT )⟩i+1

]
, (2.41)

and, assuming free energy additivity within the perturbative framework, the full free energy difference
between states 0 and 1 writes as the sum of intermediate states free energy :

∆A(0→ 1) = A1 −A0 =
∑
i

∆A(i→ i+ 1). (2.42)

2.1.6 Uncertainties calculations

Calculations involving free energies are subject to uncertainties that can be estimated using different
statistical methods as proposed by Lu et al. [128]. Both jackknife and the bootstrap methods have
been performed in the framework of this study in order to compare their relevance and efficiencies.

Jackknife bias estimation

Developed between 1949 and 1956 [130], the jackknife resampling method constitutes a strong tool to
evaluate standard deviation and variance of estimators. Let us consider an estimator G, computed
from a set of N sets of values : G = fN (x1, ..., ...xN ), fN being a functional that computes the
estimator based on a set of N sets of observations. In our study, this corresponds to the calculations
of the free energy variations ∆G(i → i + 1) as a function of N = 500 configurations for states i and
i+ 1.

It is possible to compute G = fN−1(x1, ..., ...xN−1), by removing one observation, i.e. to compute
the energy difference using ”only” N = 499 configurations. This way, one can get 500 values G(i) =
fN−1({xk∈[1,N ],k ̸=i}) and compute a jackknife average :

Gjack =
1

N

∑
i∈[1,N ]

G(i). (2.43)

Finally, the standard deviation of G, taken over the total set of observables (configurations) is given
by :

σjackknife =

(
n− 1

n

n∑
i=1

(G(i) −Gjackknife)
2

) 1
2

. (2.44)
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Bootstrap bias estimation

Inspired by the jackknife approach and published in 1979 by Efron [131, 132], the bootstrap technique
relies on a probabilistic approach of standard deviation calculations. For an estimatorG, the real values
are not known but still, its standard deviation can be computed based on a probability distribution
of its actual values. Therefore, by computing many values of the estimators based on many different
sets of observations, it is possible to evaluate the distribution of this estimator.

For a given set of N observations, it is possible to build B sets, each composed of K observations, with
K < N . The bootstrapping being a probabilistic method, the K observations are taken randomly
among the total N of configurations. The estimator Gb = fK(xb1, ..., x

b
K), can be obtained for a given

set b among the B so-generated.

In our case, we can, e.g., build B = 200 sets of K = 100 configurations for each states i and i + 1.
Thus, we are able to compute 200 values of ∆Gb(i→ i+ 1). Similarly as for the jackknife method, a
bootstrap average of the estimator G is given as :

Gbootstrap =
1

B

B∑
b=1

Gb, (2.45)

and the associated standard deviation for the bootstrap method is :

σbootstrap =

(
1

B − 1

B∑
b=1

(Gb −Gbootstrap)
2

) 1
2

. (2.46)

2.2 Metadynamics and the Well-Tempered approach

The potential of mean force can also be constructed using metadynamics, which is an enhanced
sampling method introduced by Laio and Parrinello in 2002 [133]. Metadynamics is using an adaptative
bias potential in order to reduce the probability of the system to visit twice the same configuration.
Within this framework, configurations are characterized by the so-called collective variables (CV).

Using metadynamics in molecular simulations allow PMF calculations based on an energy bias that is
added during the run instead of using a thermodynamics integration approach. It has been shown that
metadynamics and umbrella sampling (which is a thermodynamics integration approach [134]) give
the same result, metadynamics being more efficient and having lower uncertainties [135]. Umbrella
sampling is a method also commonly used to perform PMF calculations but is not at stake in this
thesis.

2.2.1 Theoretical concept

Metadynamics is a molecular dynamics with an adaptative biased external potential. If V is the
potential of the system, then the adaptative potential V ′ is

V ′ = V + Vbias, (2.47)

where Vbias ≡ Vbias(
−→s ) is the potential bias, a function of CV −→s ≡ −→s ({−→ri }i), themselves functions

of all the positions of the system components. The key purpose of this bias is to change the potential
energy of a system so that it is encourage visiting states it has not seen yet. In fact, during a
simulation run, the system will spend more time in regions of the Potential Energy Landscape (PEL)
within potential wells. Metadynamics allows to fill these gaps so that the system will have higher
probability to visit other states and so on, encouraging it to explore more regions than without bias.
Fig. 2.7 shows how can the free energy be estimated using a single collective variable x.
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Figure 2.7: Illustration from the metadynamics approach. The black line corresponds to the actual free
energy of a system as a function of a collective variable (CV) x. The red dot shows the corresponding
state at initial, intermediate an final stages of the metadynamics run. The blue area illustrates the
”filling” of the potential wells via the summation of biases. Last panel shows that the free energy can
be estimated from so-added biases. Figure from [136].

The bias is a function of time and is updated according to a rate γ, under a distribution function δ
with regard to the instantaneous CV −→st at time t such as

∂Vbias(
−→s )

∂t
= γδ(|−→s −−→st |) =⇒ Vbias(

−→s ) =
∫ t

0
γδ(|−→s −−→st |)dt ≡ γN(s, t). (2.48)

For a run sufficiently long, the system is expected to reach its minimum ”effective” potential of mean
force A as most of the local potential minima have been filled by repulsive ”hills” (biases). This means
that the effective potential obtained at the final stages of the simulation is an estimator of the free
energy A. Thus, the free energy of the system in a state with the CV −→s can be recovered, modulo a
constant C, from

A(−→s ) = − lim
t→+∞

Vbiais(
−→s ) + C. (2.49)

A common choice (and the one we use in this work) for the distribution δ is a multi-dimensional
Gaussian function. This means that the potential energy of the system will be ”filled” using Gaussian
hills of energy. Note that th

2.2.2 Well-Tempered Meta Dynamics

By construction, metadynamics does not converge since constant bias is continuously being added to
the system. An approach developed by Barducci et al. and proposed in 2008 [137] allows to change
the bias in metadynamics simulations. The principles is that the bias added in a state that has already
been visited will be reduced over time.

The bias is adding following:

dVbias,WT(
−→s ) = ∆T ln

(
1 +

γVbias,WT(
−→s )

∆T

)
, (2.50)

where ∆T stand for the bias in temperature, γ is a chosen energy rate and s⃗ the set collective variables.

Well-Tempered Metadynamics simulations have a converging Vbias, meaning that after all states have
been visited no more bias is added and the simulations is terminated. The choice of the bias is
important to cover the PEL properly. Especially, in Well-Tempered Metadynamics, a too large bias
would lead to a classical metadynamics while a too low will requires far more steps to converge.
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2.3 Precipitation simulations

Molecular simulations of precipitation usually employ Grand-Canonical Monte Carlo simulations. It
couples particle insertion/deletion in the µV T ensemble with Molecular Dynamics runs in the associ-
ated NV T ensemble, N being the number of particles in the simulation box. In a cubic box of size
L∗, with periodic boundary conditions, particles are inserted and deleted according to the Metropolis
Monte Carlo process, with a probability of

P (insertion/deletion) = min
[
1, e−β(µexc−∆U)

]
, (2.51)

where µexc denotes the excess chemical potential. This excess chemical potential is defined w.r.t. the
true µ and the ideal gas chemical potential µid as

µexc ≡ µ− µid, where µid = kBT ln ρΛ3. (2.52)

The ideal term corresponds to the ideal gas contribution to the chemical potential and is a function of
ρ, the density of the fictitious ideal gas reservoir, Λ standing for the de Broglie wavelength as defined
in 2.54.

Grand Canonical Monte Carlo (GCMC)

In this work, precipitation will be studied through the MC algorithm, applied within the framework of
Grand Canonical Monte Carlo (GCMC) simulations. Within the Grand Canonical ensemble µV T , an
excess chemical potential µ guides the equilibrium and the number of particles is allowed to fluctuate.
Particles can be inserted/deleted to the system according to a MC algorithm with move acceptance
probabilities defined as :

{
acc(N → N + 1) = V Λ−3

N+1 exp(βµ) exp(−β(UN+1 − UN )), insertion

acc(N → N − 1) = N
V Λ−3 exp(−βµ) exp(−β(UN−1 − UN )), deletion

, (2.53)

where Λ is the de Broglie wavelength defined as

Λ =

√
2πh̄2

mkBT
, (2.54)

m and T being respectively the atomic mass and the temperature. Under such definition of acceptation
of either insertion/deletion probability, the probability goes to zero as the energy difference between
the two states gets closer to the chemical potential µ.

2.4 Derjaguin-Landau-Verwey-Overbeek (DLVO) theory

The Derjaguin-Landau-Verwey-Overbeek (DLVO), shown independently by pairs Derjaguin and Lan-
dau in 1941 [71] and Verwey and Overbeek in 1948 [138], describes the interactions of charged colloidal
particles/surfaces in an aqueous medium by quantifying both Van der Waals and Coulomb interactions.

Let us consider two spheres of radius R. Each carries a charge Z and both are immersed in a liquid
medium with a dielectric constant εr.

Electrostatic interactions

Two charged objects at distance r in solution will generate an electrostatic potential ψ(r) that obeys
the Poisson-Boltzmann equation as:
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∆ψ(r) ≡ ∇2ψ(r) = −ρe(r)
ε0εr

, (2.55)

ε0 standing for the vacuum permittivity. ρe(r) denotes the local electric charge density that writes,
for a solution composed of N ions of respective charges qi and local concentrations ci(r):

ρe(r) =

N∑
i=1

qici(r) ≡
N∑
i=1

qic
0
i exp

(
qψ(r)

kBT

)
, (2.56)

as the ions distribution is described by the Boltzmann statistics.

For simplicity and to remain within the framework of our study, we will consider only one type of
cations in solution (corresponding to sodium is the cases discussed in the manuscript). Therefore, Eq.
2.55 rewrites as

∆ψ(r) =
−Z
ε0εr

c0 exp

(
−Zψ(r)
kBT

)
. (2.57)

Under the Debye-Hückel theory [139], the equation linearizes as the Helmoltz equation,

∆ψ(r) = κ2ψ(r), with κ ≡

√
Z2c0

ε0εrkBT
. (2.58)

Such an equation has an analytic solution, that, taking into account that the potential is null at
infinite distance, writes as a Yukawa (or may also be referred as a screened-Coulomb) potential :

ψ(r) = A
exp(−κr)

r
. (2.59)

Continuity of the forces at a distance r = R imposes the constant A and the effective pair potential
for our two spheres in the ionic solution is given as

ψ(r) =
−Z

4πε0εr

exp(κR)

1 + κR

exp(−κr)
r

. (2.60)

From Eq. 2.60, the Debye screening length λD ≡ 1/κ can be defined. It corresponds to the distance
beyond which the charged objects are screened by the surrounding ions. Note also that this latter
stands, in an electrolyte of ionic strength I, composed of N ion types with respective concentrations
ci and charges zi, as :

λD =

√
ε0εrkBT

2NNae2I
, with I =

1

2

N∑
i

ciz
2
i . (2.61)

Usually, for water at room temperature (20◦C), the Debye length is related to the ionic strength as
λ(nm) = 0.3/

√
I(M).

Within this medium, the electrostatic interaction between two elementary charges is equal to the
thermal energy scale at the Bjerrum length λB [140]. Therefore, for two spheres at a distance r = λB
:

Ep,Coulomb ≡ e2

4πε0εrλB
λB = kBT ⇔≡ λB =

e2

4πε0εrkBT
. (2.62)
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Integrating the electrostatic potential from Eq. 2.60 over the surface of a sphere at distance r gives
the Coulomb effective potential as

UCoulomb(r) =
1

β
Z2λB

(
eκR

1 + κR

)2
e−κr

r
, (2.63)

where β = 1/kBT .

Van der Walls interactions

Between two small species at distance r in solution, Van der Walls interactions can be calculated
assuming an attractive pair-potential of the form uVdW(r) = −C/r6 [141]. In addition, we assume
potential additivity : the interaction of a sphere with a surface is the sum of every sphere’s particle
interactions with the surface. Within a circular cross section dσ = 2πdxdz of a sphere of radius R,
the number of particles is dN = ρdσ = 2πρzdxdz. Geometry of the situation is shown in Fig. 2.8.

x

z
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R

dx

z

D

(b)

R

z
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A
C

D

B’

R

Figure 2.8: Scheme of geometrical considerations for charged (a) sphere-to-surface and (b) sphere-to-
sphere Van der Walls interactions.

Thus, for a sphere at a distance D of a surface with infinite length as shown in Fig. 2.8 (a) :

uVdW(D) =

∫
N
uVdW(rN )dN = −2πρ

∫ +∞

x=D
dx

∫ z=+∞

z=0

z

(
√
x2 + z2)6

dz. (2.64)

First, we have

∫ z=+∞

z=0

z

(
√
x2 + z2)6

dz =

∫ z=+∞

z=x2

1

2

dx2

(x2)3
=

1

4

1

x4
, (2.65)

and then

∫ +∞

x=D

1

x4
dx =

1

3

1

D3
. (2.66)

It comes that the interaction between the sphere and the surface is given by :

uVdW(D) = −πρC
6D3

(2.67)

Let us now integrate the pair potential over a whole sphere by seeing the second one as a succession
of surfaces of height D ≪ z, that can be seen as infinite planes. First, we consider a circular section
of area as shown in Fig. 2.8 (a) : in the y-plane, the circular cross section is dσ = πz2dx. From the
Chord’s theorem, using the notation of Fig 2.8 (b), one can write

49



Chapter 2 2.4. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory

|BD| · |DB′| = |AD| · |DC′|, i.e. z2 = x(2R− x). (2.68)

Therefore, the cross section becomes dσ = πx(2R − x)dx and contains dN = ρdσ = ρπx(2R − x)dx
particles, where ρ is the particle number density within the cross section of thickness dx.

The potential of interaction of a sphere at distance D of the second sphere’s surface is the sum of all
its components (each at a distance D + x of the opposite surface) interactions. It is therefore given
by :

UVdW(D) =

∫
N
uVdW(D + x)dN = −2π2ρ2C

6

∫ 2R

x=0

x(2R− x)
√
D + x

6 dx. (2.69)

When the spheres are close, D ≪ R and only the smaller value of z account in the interactions, i.e
these where z ≈ D. The previous integral can then be evaluated by

∫ 2R

x=0

x(2R− x)
√
D + x

6 dx ≈
∫ +∞

x=0

2Rx
√
D + x

6dx =

∫ +∞

0

z −D
z3

dz =
1

D
− 1

2D
=

1

2D
. (2.70)

Thus, the interaction between both spheres is :

UVdW(D) = −π
2ρ2RC

6D
≡ −AHR

6D
, (2.71)

where we recall that ρ is the number particle density, R the spheres’ radius and D the surface-to-
surface distance. AH is called the Hamaker constant [142]. Especially, AH allows the calculation of
the London Van der Walls parameter C without explicitly accounting for the medium the interaction
occurs into.

Full DLVO potential

The DLVO theory couples Coulomb interactions and Van der Waals’ one. For two spheres at a
surface-to-surface distance r, the potential energy is

UDLVO(r) = UCoulomb(r) + UVdW(r) =
1

β
Z2λB

(
eκR

1 + κR

)2
e−κr

r
− AHR

6r
. (2.72)
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Chapter 3

Potential of mean force calculation for
aluminosilicate grains

This chapter investigates the effective interactions between nano-grains of aluminosilicate species.
This is a key step towards coarse-grain models of geopolymers to reach mesoscale (few hundreds
of nm) simulations. The effective interactions between two nano-grains can be calculated via the
Free Energy Perturbation (FEP) method. Based on the computation of free energy differences from
Molecular Dynamics, Monte Carlo or Metadynamics simulations. It has been used successfully to
evaluate effective interaction of calcium-silicate-hydrates [33] or clays [62].

In the first section of this chapter, the definition of geopolymer nano-grain is discussed as a first step
to compute nano-grain interactions and the potential of interaction is described. Then, two grains
are set in solution and molecular simulations are performed to sampled configurations required to
implement FEP calculations. The results are presented and compared to metadynamics calculations.
Finally, their limitations are discussed.

3.1 Initial setup of aluminosilicate nano-grains

The first step of geopolymerization process corresponds to the dissolution of the aluminosilicate solid
source with an activation solution. As a consequence, bonds are broken within the solid network to
form smaller species that will fuse to form the gel phase as oligomers in solution. This process involves
bonds breaking/formation and is highly related to initial concentrations of the raw materials, either
in silicates, aluminates and sodium.

3.1.1 Grain structuring

The initial structure for the aluminosilicate skeleton has been generated via MD simulations led by
Dupuis et al.[15]. In their work, they used brief Parallel Tempering to reproduce the aggregation
of aluminates and silicates into an aluminosilicate cluster at a Si:Al=50:6 ratio. An aluminate ring
species formed in a basic solution polymerize with a higher degree silicate cluster. Then, the aluminum
diffuses in the silicate structure to form a stable aluminosilicate skeleton composed of 20 Si and 3 Al
atoms. It will be taken as a reference grain in this work and is shown in Fig. 3.1. So-generated
aluminosilicate cluster has been measured with a gyration radius of 10 Å[15]. Note that remaining Si
and Al atoms formed smaller structure in the solution (size estimated around 4 Å[15]). In this work,
we have considered only the interaction between the largest grains for simplification but geopolymer
precursor solutions are highly polydisperse.

3.1.2 ClayFF potential and adaptations

In the literature, the closest aluminosilicate structures that have been simulated using classical force
fields are clays, for which ClayFF has been developed[65, 143]. Therefore, this potential can be chosen
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Figure 3.1: Geopolymer grain generated from reactive molecular dynamics [15]. Red, yellow, pink,
white and blue spheres respectively represent oxygen, silicon, aluminum, hydrogen and sodium atoms.

and slightly adapted to perform our simulations.

This potential is defined as the sum of a Van der Walls and Coulomb potentials coupled with angles
and bonds interactions as shown in Eq. 3.1.

Etot = EVdW + ECoul,Wolf + Ebond + Eangle. (3.1)

In the ClayFF potential, bond and angle energies are included with a harmonic model as given in Eq.
3.2:

Ebond = kr(rij −R0)
2 Eangle = kθ(θij − θ0)2, (3.2)

where kr and kθ stand for the elastic constants, R0 and θ0 for equilibrium distance and angle respec-
tively.

Parametrization

In ClayFF, the partial charge attributed to each atom has been developed only for entirely protonated
species, i.e. SiO4H4, Si2O7H5, etc. However, in geopolymers, AlO4H4 clusters have are partially
charged and are compensated by Na+. This counter cations carries a partial charge of +1 whereas H+
carries a charge of +0.425 in ClayFF. As a result, to ensure electroneutrality, we have modified the
partial charge on O atoms first neighbors of Al. Moreover, when the clusters are partially deprotonated,
the charge on O- is adapted. The final parametrization of the ClayFF potential is given in Table 3.1

Species q(e) D0 (kcal/mol) R0 (Å) M (u)

O -1.05 0.1554 3.5532 15.999

O(Al) -1.175 0.1554 3.5532 15.999

Si +2.1 1.8405e-6 3.7064 28.085

Al +1.6 1.8405e-6 3.7064 26.9815

Na +1.0 0.1301 2.6378 22.9898

Of -1.0 0.1554 3.5532 15.999

Of(Al) -1.075 0.1554 3.5532 15.999

H≡Hf +0.425 0 0 1.0

Ow -0.82 0.1553 3.166 15.999

Hw +0.41 0 0 1.0

Table 3.1: Parameters of the ClayFF parameters to account for local deprotonation. O, Si, Al, Na
and H stands for oxygen, silicon, aluminum, sodium and hydrogen atoms. The f subscript stands for
atoms at the edges of the grains and the (Al) notation corresponds to oxygen included into a Al(OH)−4
tetrahedron.
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Note that the parameters are mixed between two species i and j according to Eq. 3.3

D0,ij =
√
D0,iD0,j and R0,ij =

1

2
(R0,i +R0,j), (3.3)

and that the parameters of water atoms corresponds to the Extended Simple Point Charge (SPC/E)
model [67, 144, 143].

The SPC/E model describes water molecules as rigid isosceles triangle between H-O-H atoms. Interac-
tions within the molecules are the sum of coulomb and Lennard-Jones interactions with the following
parameters :

σ ε rOH θHOH qO qH
3.166Å 0.1554 1.0Å 109.47◦ -0.82e +0.41e

3.1.3 Implementation of the potential : the Ewald summation method

For numerical calculations, cut-off pair potentials are usually used. While the Lennard-Jones potential
varies as 1/r6 and converges quickly to 0 as the atomic distance increase, Coulomb interactions varies
as 1/r and can be considered as a very long-range potential. In practice, we consider a tail-correction
for electrostatic interaction in simulations so that the energy ”lost” by the cut-off implementation can
be evaluated at a reduced computational cost.

One way to do so is the Ewald summation method, proposed by the physicist of the same name in
1921 [145]. As a purely mathematical approach, it allows to compute the contribution of electrostatic
interactions above the cut-off radius by dividing the total electrostatic potential energy into two parts
corresponding to the real space and the reciprocal space (from PBCs).

ECoul = ECoul,r + ECoul,k. (3.4)

In a simulation box of size L, containing N ions with associated charges qi at positions ri, by denoting
rij = |ri − rj| the distance between atoms, the Coulomb potential from a non-periodic system stands
as

ECoul ≡
1

2

N∑
i=1

∞∑
j ̸=i=1

qiqj
rij

. (3.5)

Ewald’s proposal is to use periodic image of the simulation cell n = (nx, ny, nz) to rewrite this latter
formula with regard to a convergence parameter α as

EEwald
Coul =

1

2

N∑
i=1

N∑
j=1

∞∑
n=0

qiqj
|rij + nL|

[erfc(α|rij + nL|) + erf(α|rij + nL|)]. (3.6)

The n components correspond to the periodic images of each particles in the associated axes, repro-
ducing an artificial periodicity of the interactions.

The error (erf) and the complementary (erfc) error functions correspond to the Gauss error function
as

erf(αr) =
2√
2

∫ αr

0
exp(−t2)dt, and erfc(αr) = 1− erf(αr). (3.7)
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In practice, the Ewald correction calculations has a computational complexity in O(N2) that can be

reduced to O(N
3
2 ) with an well chosen convergence parameter. In addition, the Particle-Particle-

Particle-Mesh (PPPM) method can be used to build up the reciprocal vectors basis, reducing the
complexity to O(N log(N))[146].

Wolf summation

In Eq. 3.4, reciprocal contributions appears to be small [147, 148] . In order to improve the Ewald CPU
performances, Wolf et al. to propose an adaptation of the Ewald summation as a shifted potential at
the cut-off distance [149]. It stands as :

φWolf
Coul(rij) =

qiqj
rij

erfc(αrij)− lim
rij→Rc

(
qiqjerfc(αrij)

rij

)
. (3.8)

Such a formula recovers the Ewald summation if the cut-off is long enough (w.r.t. to the box size) and
a convergence parameter small enough (i.e. that allows to take every box contributions into account).

3.1.4 Validation of the adapted potential

First, a relaxation of the reference grain (shown in Fig. 3.1) is performed in the NV T ensemble,
placed within a large box of size 45×53×43Å (which was chosen arbitrarily but respecting more than
twice the grain size and the cut-off of defined interaction). This box is then filled with water to reach
liquid water properties (ρ ≈ 1.0g.cm−3) at ambient temperature. The system is pre-relaxed for 0.1ns
in the NV T ensemble with a timestep of 0.1fs so that the system can reach an equilibrium. Then, it
relaxes in the NV T ensemble for 5ns with a timestep of 0.5fs. This procedure is applied using both
our adapted ClayFF potential and a reactive force field for aluminosilicates (ReaxFF) [69, 150]. The
cut-off for interactions is set to rc = 12Å, according to the grain geometry. Resulting final structures
are shown in Fig. 3.2.

Note that this adapted potential of interaction has also been successfully tested over a structure
containing more aluminum atoms. By substitutions of some silicon into aluminum atoms and addition
of sodium counter-cations for charge equilibration, a grain with Si:Al=16:7 (closer to the ratio of 2 of
interest for the industry) have been produced.

(a) (b)

Figure 3.2: Final structure after relaxation with the (a) adapted ClayFF and (b) ReaxFF (right)
potentials. Red, yellow, pink, white and blue spheres respectively represent oxygen, silicon, aluminum,
hydrogen and sodium atoms.

Final properties of the simulation box/grain structures are given in Table 3.2 and 3.3. Table 3.2
illustrates that the thermodynamics output from grain relaxation using either ReaxFF or the adapted
ClayFF are similar. In addition, the radial distribution characteristics are gathered in Table 3.3.

ReaxFF ClayFF

Ep (kcal/mol) -14250 ± 8.43 -17701 ± 313.45

P (atm) -0.860 ± 168.63 -1.834 ± 112.6

T (K) 300.15 ± 22.09 299.97 ± 22.68

Table 3.2: Thermal parameters comparison between ClayFF and ReaxFF.
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g(r) (rpeak/g(rpeak)) Adapted ClayFF ReaxFF

Si-O 1.55/9 1.55/163

Al-O 1.64/1 1.58/107

Na-O 2.35/0.03 2.32/33

O-O 2.55/9 2.55/42

Si-Si 3.08/2 3.1/40

Al-Al 4.05/0.1 4.06/8.00

Si-Al 2.95/4 2.95/71

O-H 1.05/21 1.05/160

Table 3.3: g(r) comparison between our Adapted ClayFF and ReaxFF potentials

The structure of the grains generated from both potential are similar. In this work, since no chemical
reactions are investigated, we will use the adapted ClayFF potential. The procedure described here
will serve as a reference for further simulations, involving more grains.

3.2 Initial configurations for Free Energy calculations

The grand potential of interaction, or also called Potential of Mean Force (PMF) between two grains
in solution is described by free energy change between two states. One of the states is when grains are
in contact, the other state is when grains are separated. In this work, we are considering a inter-grain
distance from 0 to 30 Angstroms and we aim to reproduce the PMF along this coordinate. We have
presented before the structure of a single aluminosilicate grain in solution that can serve as a reference
grain. The pair-potential of interaction between two such grains now needs to be evaluated w.r.t.
their relative distance.

3.2.1 Box preparation : from one grain to water immersed interacting grains

First, the grain generated previously is duplicated and rotated giving us two grains. These two grains
are set at an initial distance dCOM and immersed into solution with the PACKMOL package [151]. In
this first part of the chapter, this immersion is performed as follow: after setting the grains at a
given distance, ions are added to the box to compensate the local charge of the grain (that can vary
depending on the protonation degree of the grain, as discussed later), the grains are relaxed in void
before water addition to the simulation box.

3.2.2 Grain orientation

In solution, many grain geometries can be observed. While grains can deform, we first want to check
that there is no energetically favored relative axial orientation between the two structures.

Then, the two grains are placed at a surface-to-surface distance of 3 Å (defined in this work as the
minimum distance between two atoms of each grains), it is immersed in water and relaxed in the
NV T ensemble for 3ns. Fig. 3.3 illustrates the simulation box with a relative angle θ = 0°. Fig. 3.4
illustrates that the system potential energy is barely impacted from the grain rotation. Therefore, our
simulations will be initiated with an orientation θ = 0°.

3.2.3 States at different distances

Interaction between the grains in water is computed using the Free Energy Perturbation (FEP) method
described in Chapter 2. Already applied to CSH and clay [34, 62], it has probed good results in free
energy calculations for such systems. This methods requires to sample configurations at different
distances, which energies must be close enough to remain within the perturbation framework.
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Figure 3.3: Two aluminosilicates in solution : yellow, pink, red, white and blue spheres correspond to
the Si, Al, O, H and Na atoms of the aluminosilicate structures while the red and white branches are
water molecules.

Figure 3.4: Potential energy as a function of angles between the two grains at a surface-to-surface
distance of 3Å. The red lines are the error bars over the simulation run.

We recall here, that the free energy difference ∆A between two states i and j can be quantified by

∆A(i→ j) = Aj −Ai = −kBT ln

〈
exp

(
−Uj − Ui

kBT

)〉
i

=

j−1∑
k=i

∆A(k → k + 1). (3.9)

Generation of states at different distances

600 configurations have been created varying the distance from 0 to 30 angstroms with a step of
δd = 0.05Å. Before each displacement step, a relaxation of the grains is performed for 0.1ns in the
NV T ensemble at ambient temperature, with a timestep of 1.0fs. During this relaxation, grain COM
remain fixed at their initial position but the grain are fully allowed to relax (so that the dCOM = 0Å
distance can be reached). Each of these is associated to a distance dCOM = ri.

Relaxation of the grains in water

For each state, water immersion is performed by the addition of 1200 water molecules, using the
PACKMOL package[151]. Simulation box dimensions are of 80Å×40Å×40Å, and a NPT relaxation
is performed at ambient conditions : T = 300K and P = 0atm. The final box dimensions remain the
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Figure 3.5: Scheme of the Free Energy Perturbation calculations. Configurations are sampled along
the equilibrium trajectory, as a few are shown in blue dots. For each state i, the 2500 sampled
configurations are perturbed in both forward and direction. 2500 values are obtained for each ∆Ui,i+1

and ∆Ui,i−1. ⟨Ui,i+1⟩i and ⟨Ui,i−1⟩i are obtained as averages over the 2500 energy differences for each
perturbation direction, for a single state i. These calculations are performed over the 600 states.

same ±0.1 depending on the distance, and the box density is ρ = 1.05g.cm−3 in average. It contains
12834 atoms, including the two aluminosilicate entities composed each of 117 atoms (grain+ions).
Note that the number can increase if the grain gets deprotonated (H+↔Na+ substitution).

Equilibrium of each state

A simulation is run for each state, in the NV T ensemble at ambient temperature and atmospheric
pressure with a Nosé-Hoover thermostat. The NV T ensemble is applied to both water molecules and
grains atoms. Both aluminosilicates center-of-mass (COM) remain fixed at their initial position so
that the center of mass distance dCOM is kept constant. The timestep is set tot 1.0fs and Periodic
Boundary Conditions (PBCs) are applied in every directions.

At each distance ri, a 0.5ns equilibrium is performed in the NV T ensemble to reach equilibrium.
Then, configurations are sampled over a 2.5ns production run every 1000 steps, i.e. 1000fs=1.0ps.
This way, a total of 2500 configurations are extracted, for each state ri.

Perturbation steps

Finally, for each of the 2500 saved configurations, a single perturbation step is performed both forward
and backward with the associated δd, depending on the distance ri, : the right grain is moved either in
the right or the left direction by δd = 0.05Å. Both energy differences ∆Ui,i+1 and ∆Ui+1,i w.r.t. the
state i are computed. These can then be averaged over state i (considering N configurations among
the 2500 sampled) and doing the same procedure for state i + 1 allow to compute the free energy
variation between states i and i+1 : ∆G(ri → ri+1). Fig. 3.5 illustrates the methodology for a given
state i. All the molecular dynamics simulations has been performed with LAMMPS [152].

3.3 Convergence of DA and SOS calculations

In order to improve the convergence of free energy perturbation calculations, we have applied the Sim-
ple Overlap Sampling (SOS) method. A first set of tests have been performed using configurations for
which grains have been relaxed without interstitial water and both water and alkaline solution added
a posteriori. The alkaline solution is modeled by replacement of 50 water molecules by (OH)−+Na+,
accounting for a solution with [Na+]=0.727 mol/L (vs 0.078mol/L in the case of water, because of the
compensating sodium ions).
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Chapter 3 3.3. Convergence of DA and SOS calculations

Fig. 3.6 displays the curves obtained from DA and SOS formula and one sees that the SOS is better
converged as the DA since with DA, the resulting PMF depends on the sampling size.

(a) (b)

Figure 3.6: Convergence w.r.t. the number of configurations for the Potential Mean Force (PMF) of
interaction between two grains (a) in water, (b) in an alkaline solution. DA results are plotted in
dotted lines while continuous plots depicts SOS calculations.

Fig. 3.6 shows that DA calculations converge to the SOS one as the number of sampled configurations
increases. Moreover, the independence of the SOS-computed PMF w.r.t. the number of configuration
probes that this one is well set. With a number of 500 configurations, DA calculations fits well with
the results obtained with SOS, using only a 100 of configurations.

Note that one can also check the stability of these results by sampling the configurations used in PMF
randomly (instead of periodically over the sampling period). Taking randomly 100 configurations with
5 different seeds among the total set of samples give, for the SOS method, leads to Fig. 3.7, comforting
on the convergence of the method.

(a) (b)

Figure 3.7: Plots of the Potential Mean Force (PMF) of interaction between two grains (a) in water, (b)
in an alkaline solution. The PMF have been computed considering 100 configurations taken randomly
among the total set of samples. Each set of 100 configurations corresponds to a color.

3.3.1 Estimation of PMF standard deviation

For both cases, we have performed standard deviation calculations using both jackknife and bootstrap
methods as described in Chapter 2. They have been performed over 500 of the 2500 samples. Using
the 500 available configurations, the jackknife method has been performed in two different ways, by
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considering either the 100 or 500 configurations (periodically sampled from the total set). Note that
the first way is only possible for the SOS calculations, since with 100 configurations, the PMF is far
from converged with the DA method (cf. Fig. 3.6).

Comparison of the methods

For each ∆G(i→ i+1), the Jackknife standard deviation have been estimated from either 100 or 500
configurations. These are plotted w.r.t. the COM distance in Fig. 3.8 with the total ∆G standard
deviation.

(a) (b)

Figure 3.8: Jackknife standard deviation estimation over the PMF computed by the SOS sampling
between (a) two successive states (∆G(i→ i+ 1)) and (b) initial to j states (∆G(0→ j) ≡ ∆G(0→
j)),, as the sum of individual ones until state j.

As it requires on a sub-sampling of the configurations, the convergence of Bootstrap standard deviation
on ∆G(i → i + 1) must be ensured by applying the procedure for different sets sizes B. According
to Fig. 3.9, Considering B = 100 sets of configurations appears to be enough to reach a converged
estimator standard deviation.

(a) (b)

Figure 3.9: Convergence of the bootstrap standard deviation over PMF calculations using both DA
and SOS methods between (a) two successive states (∆G(i → i + 1)) and (b) initial to j states
(∆G(0→ j) ≡ ∆G(0→ j))

Both estimation of standard deviations can be compared from Fig. 3.10, probing that for smaller initial
set of data, the bootstrap performs better than the jackknife, while considering a higher number of
possible sets of data leads to a smaller standard deviation for the jackknife approach.
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(a) (b)

Figure 3.10: Comparison of jackknife and bootstrap method for different maximum sampling size N .
Jackknife calculations are based on sets of (a) 100 configurations in total, (b) 500 configurations in
total. Bootstrap standard deviations is still estimated considering 100 configurations among the 500
available.

Fig. 3.11 clearly shows that the bootstrap states a better standard deviation for ∆G(0 → j), at less
computational cost. The order of magnitude is the same for both method but the Jackknife approach
requires more configurations and so calculations.

(a) (b)

Figure 3.11: Comparison of jackknife and bootstrap methods for different maximum sampling sizes
N . Jackknife calculations are based on sets of (a) 100 configurations in total, (b) 500 configurations
in total. Bootstrap standard deviations is estimated considering 100 configurations among the 500
available.

The bootstrap has shown very good performances for a smaller number of sets of observations, e.g.
for B = 100 in Table 6.1 from [132]. If the convergence of the method is ensured, it might therefore
be more relevant to work with it rather than with the jackknife. This is our choice, which was also
taken in studies similar to ours [62].

Results on the Potential of Mean Forces

Finally, it is possible to plot the converged PMF for both cases : grains in water and grains in
the alkaline solution, with their respective standard deviations in Fig. 3.12. These PMFs show an
attraction at short range for the grains, with a well around -120kcal/mol located at a distance of 8.5Å.
At very short distances, a repulsive regime appears and the interactions go to zero to larger distances.
The attraction well ranges between 5 to 24Å COM distances.
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(a)(i) (ii)

(b)(i) (ii)

Figure 3.12: Potential of Mean Force for grains in (a) water and (b) in the alkaline solution with their
respective standard deviation obtained with (i) the jackknife and (ii) the bootstrap methods.

3.4 Influence of simulation parameters

A good representation for grain-grain interaction requires a good grain representation but also a good
quantification of physics at stake at the atomistic level. Pair-potential must be chosen wisely and
so does all simulations parameters as the NV T parameters, the conditions of equilibrium and the
perturbation step used for FEP calculations.

3.4.1 Choice of the pair-potential parameters

Until this point, the cut-off of pair interactions was set to rc = 12Å, according to the grain geometry.
This choice is important as it highly influences the CPU time if it is too large and may not be able
to account for all interactions if taken too small. For the Lennard-Jones term, a few tests probed the
12Å value to be at good balance.

From an electrostatic point of view, in addition to the cut-off, a damping parameter is required to
compute the potential energy. Fig. 3.13 shows the dependence of this latter on damping parameter α
and the cut-off rc involved in Wolf sum calculations.
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(a) (b)

Figure 3.13: Potential energy of a box with two neutral grains at distance dCOM = 15Å, during a run
of 1000 steps of 1.0 fs. The electrostatic pair-potential is computed w.r.t. the wolf summation method
with varying damping parameter α and a cut-off of (a) rc = 12 Å and (b) rc = 18 Å.

The damping does influence the potential energy of the system. The change in potential energy with
damping changing from α = 0.25 to 0.05 can be estimated to around 0.5% of the average value as
shown in Fig. 3.13 (a). The change is also related to the cut-off used for Coulomb interactions. With a
longer cut-off, this α-dependence decreases, according to Fig. 3.13 (b). This tells us that with a cut-off
long enough, the damping parameter will not influence much the total potential energy. However, one
must be aware of its role and still chose it small enough so that the wolf tail-correction has converged
to the Ewald one, according to Fig. 3.14.

To study this, we introduce local grain deprotonation by remove hydrogen of the structure, so creating
a surface charge. By substitution of an edging hydrogen atom with a sodium ion (and so, an adaptation
of the edging oxygen charge to −0.95− (1−0.425) = −1.525), the grain electronic charge is increased.
The deprotonation degree d is defined as the number of edging protons that have been randomly
substituted. It relates to the grains charge qgrains = −d− 3(e), since the grain already carries a charge
of −3 due to the presence of aluminum in its structure.

(a) (b)

Figure 3.14: Potential energy for equilibrated configurations at different distances. The electrostatic
pair-potential is computed w.r.t. the wolf summation method with varying damping parameter α and
cut-offs rc for (a) neutral grains and (b) highly charged grains (qgrain = −13e).

Fig. 3.14 compares two cases, where the grains are neutral charges and one with high surface charges
qgrain = −13e (grain surface charging is discussed in next subsection). The red curves confirm the
previous statement that with a too short cut-off and a too important damping, the potential energy is
not converged to the Ewald one. However, with a damping less than 0.05 and/or a cut-off of 12 Å, the
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Wolf summation gives a tail-correction similar to the Ewald one. From a molecular simulation point
of view, it may be relevant, if the CPU cost is reasonable, to work with the longest cut-off as possible.
After a few tests, a cut-off of 18 Å will be applied to electrostatic interactions for further simulations.
The damping not affecting significantly the computational cost, it will be set to 0.01.

3.4.2 Choice of the perturbation step

Applying a perturbative approach requires to study similar states. From a molecular dynamics point
of view, a way to quantify the similarity of two states is to compare their respective potential energies.

Let us consider two states, i and i+ 1. In the framework of the SOS method, the convergence of the
FEP calculations can be ensured by a sufficient similarity between state i+ 1 perturbed with regard
to state i and state i perturbed with regard to state i + 1. This condition directly arises from Eq.
2.41. To ensure this, we compute, for each state, the energy differences forward and backward (from
i to i + 1 and from i + 1 to i) Fig. 3.15 (on next page) shows their distributions for three different
grain charges and with different perturbation size δd.

Fig. 3.15 display smaller energy differences as the perturbation size decreases. Still, for these different
δd, the overlap is higher than 50% and remains within the framework of the perturbative approach
discussed by Lu and Kofke [127, 128].

In addition, the overlap percentage can be estimated as the overlapping area with regard to the full
histogram coverage for all states. It is shown as a function of the COM distance between the grains
as shown in Fig 3.16.

(a) (b)

(c) (d)

Figure 3.16: Overlap of δU overlap from both forward and backward perturbation for (a) neutral, (b)
qgrain = −6e, (c) qgrain = −8e and (d) qgrain = −13e grains.
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(a)(i) (ii)

(b)(i) (ii)

(c)(i) (ii)

Figure 3.15: Energy differences in absolute values while performing the perturbation in both forward
and backward directions. In blue, the system is moved from state i to i+ 1 (forward) and in red, the
system is moved from state i + 1 to state i (backward). The plots are done for systems at distance
dCOM = 15 Å for (a) neutral grains, (b) grains with a charge qgrains = −6e and (c) with charge
qgrains = −13e. (i) and (ii) plots respectively correspond to perturbation sizes of δd = 0.1 Å and 0.2 Å.
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The smaller the perturbations are, better the overlap are. At short distances though, energy differ-
ences between both direction seems to differ more than at larger ones. Below 6 Å, grains are forced
to be very close which induces necessarily important potential energy change when performing the
perturbation. In overall, the energy overlap are robust enough to ensure the convergence of this
perturbative approach.

Finally, the mean of each distribution is computed as ⟨∆U⟩i and ⟨∆U⟩i+1 w.r.t. reference states
(i.e. COM distances) and their differences are compared in Fig. 3.17, for the different deprotonation
degrees.

(a) (b)

(c) (d)

Figure 3.17: Overlap of δU overlap from both forward and backward perturbation for (a) neutral, (b)
qgrain = −6e, (c) qgrain = −8 and (d) qgrain = −13e grains.

The Simple Overlap Sampling (SOS) method involves calculations based on a ratio of two energy
differences. Fig 3.17 depicts as δd increases, the energy differences gets larger, therefore impacting the
free energy calculations, taken as an exponential of these potential energy changes according to Eq.
2.41 from Chapter 2. Smaller δd therefore lead to more accurate calculations.

Influence on the PMF

The perturbation size appears to highly influence the calculation of energy differences between per-
turbed states but not the overlap of ∆U distribution. Using the SOS method should therefore ensure
that obtained results are consistent along this range of perturbation sizes. Fig. 3.18 shows the influ-
ence of the choice of δd on the final grand potential of interaction between two grains in water for
many cases.
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(a) (b)

(c) (d)

Figure 3.18: Potential of Mean Force (PMF) computed following the designed procedure, using dif-
ferent perturbation sizes, for (a) neutral, (b) qgrain = −6e, (c) qgrain = −8e and (d) qgrain = −13e
grains. Note that these PMF have been computed with the initially described procedure but with
the latest potential parameters discussed in this section (especially, the well for the fully protonated
case (a) shows a wel less deep that it was from the first run, from Fig. 3.12). Note that Potential
of Mean Forces obtained here for the fully protonated case (Fig. (a)) differing from the ones of Fig.
3.6 because of the electrostatic potential corrections. The associated well is shifted up of 30kcal/mol
(slightly reducing its width) but has the same minimum location.

In overall, grains appears to attract each other no matter their deprotonation degree. Especially,
the most deprotonated case is purely attractive within a range [0,30]Å. While electrostatic repulsion
increases as the grains charge surface do, Van der Walls attractive interactions overwhelms coulombic
forces. In fact, grain deprotonation make available O− sites for the formation of non-covalent bonds
(as hydrogen bonds), therefore increasing the Van der Walls contribution to the global interactions.
Note that for most deprotonated grains, at most one proton per silicate is removed and therefore the
surface still has OH groups.

In Fig. 3.18 (a) and (c), the well depth and width are dependent of the perturbation step. This
enlighten that the interaction is not converged with a step that is not small enough. The global
behavior of the interaction is not affected by the choice of the perturbation. However, a too large step
may not allow to quantify the characteristic quantities of the pair-potential (well depth and location).

A perturbation of 0.1 Å might be sufficient to obtain a good estimate of interactions between our two
grains in solution. However, a step of 0.05 Å might be preferable at short distances to avoid too large
energy fluctuations within our system and properly quantify the grain-grain interaction. However,
dividing by two the perturbation step requires to double the number of equilibrium to perform, i.e.
the CPU cost of the calculations, according to the FEP model.
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3.5 Calculation of the Potential Of Mean Force with Metadynamics

We propose to use a second approach of Free Energy calculations with Metadynamics. As discussed
in Chapter 2, the Free Energy calculations using Metadynamics are based on the addition of the
updated bias at every timestep and differs from a thermodynamic integration approach such as the
small perturbation theory.

3.5.1 Metadynamics simulation details

In our case, the metadynamics simulation are performed using the inter-grain COM distance as the
collective variable, i.e. the variable that will be biased and on which we can reconstruct the energy
landscape. To get a good convergence, Well-Tempered Metadynamics (WT-MTD) is performed, in
the NV T ensemble, at ambient temperature with a timestep of 0.1fs. We use the adapted ClayFF
potential already discussed. Long-range Coulomb interactions are computed with the Wolf summation
with a damping of 0.01 and a cut-off of 18 Å. Lennard-Jones cut-off interaction is set to 12 Å. All
simulations are performed until PMF calculations are converged. Such a convergence is ensured
that after additional runs, the PMF is not changed. In other terms, that added bias is too low
to effectively disturbed the system. Well-Tempered Metadynamics aims to visit most states within
important configurations (i.e at the edges of energetic distributions). Thus, when mostly converged,
less biases are required to visit new states.

3.5.2 Discussion on the results

Fig. 4.2 displays the grand potential of interaction between the grains in water as they get deproto-
nated. Thanks to the zero line, two regimes can be observed : either attractive (d = 0, 3, 5) or repulsive
(d = 10). Each curves is normalized with regard to its average values over the largest distances range:
[24,25]Å.

Figure 3.19: Potential of Mean Forces (PMFs) computed using Well-Tempered Metadynamics. Sim-
ulations have been performed for deprotonation degrees of d = 0, 3, 5 and 10 similarly as discussed in
Fig. 3.18. The dashed black line corresponds to the zero line.

Fully protonated case: d = 0

Shown in blue in Fig. 4.2, interactions between the grains are attractive. The well with a minimum
at -70kcal/mol accounts for an attraction when the two grains are away at a distance of 8Å. This
attraction ranges until a COM distance of 15Å while a flat repulsive shoulder guides interactions
above. At short distances, less than 6Å, a strong repulsive wall is recovered. Below 10Å grains are
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merging. This will be a key point in the next discussions. Fig. 3.20 shows snapshots of the simulation
box during Metadynamics simulations.

(a) (b) (c) (d)

dCOM = 6.5Å dCOM = 8Å dCOM = 10Å dCOM = 12.5Å

Figure 3.20: Successive snapshots of the protonated grains at different COM distances within the
simulation box during metadynamics simulations. Red, yellow, pink and white spheres corresponds to
Oxygen, Silicon, Aluminum and Hydrogen atoms. Water molecules and sodium ions are not displayed
for clarity.

Fig. 3.20 illustrates the importance of grain deformation as they get closer. The four configurations
belong to the attractive well but shows very different structures. As a recall, metadynamics run by
adapting the potential of interactions to visit less-favorable states. A consequence is that for a given
COM distance, very different configurations can be visited, illustrated in Fig 3.21 for two grains at
the same distance dCOM = 10Å.

(a) (b) (c)

Figure 3.21: Snapshots of the protonated grains at dCOM = 10Å at different simulation times during
metadynamics simulations. Red, yellow, pink and white spheres corresponds to Oxygen, Silicon,
Aluminum and Hydrogen atoms. Water molecules and sodium ions are not displayed for clarity.

As the grains leave the attractive well, they appear to shown even more variety in the visited configu-
rations. Atomic interactions between the grains are not influencing their shapes anymore. The study
of grains geometry will be discussed in more details in the next Chapter.

Slightly deprotonated case: d = 3

As the grains get deprotonated, the interaction appears to be affected. Getting rid of three protons
at each grain’s vicinity, PMF calculations using potential biasing probe a shift in the well minimum
location. With a value still around -70kcal/mol, grains shows the strongest cohesion at a COM distance
of 10Å. In overall, the same attractive behavior is observed as for the fully protonated cases, with the
same well width, ranging from 6 to 15Å with a slight repulsion at larger distances.

Midly deprotonated case: d = 5

Interestingly, the interaction between two grains with a deprotonation degree of 5, even though the
values are negative, tend to have a neutral behavior with regard to each other. With a very large,
almost flat, potential of interaction that minimize to -30kcal/mol (modulo the fluctuations due to
the method), it probes that attraction is weaker. There is no clear well formation arising from the
calculations. The well width also illustrates that there is not that much dependence of the interaction
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(a) (b) (c)

Figure 3.22: Snapshots of grains with a deprotonation degree of d = 10 at dCOM = 8Å at different
simulation times during metadynamics simulations. Red, yellow, pink and white spheres correspond to
Oxygen, Silicon, Aluminum and Hydrogen atoms. Water molecules and sodium ions are not displayed
for clarity.

global behavior on the COM distance. Both negative and positive value might arise from the re-
normalization, highly influenced by the fluctuations undergone by the system under this simulation
framework.

Strongly deprotonated case: d = 10

Full repulsion is obtained for two grains with surface charges of q = −13e (3 due to the presence of
aluminates and 10 to the deprotonation). The black curves of Fig. 4.2 shows tat the repulsive wall
starts at a distance of 12.5Å. Above, the interactions appears to be flat.

Fig. 3.22 shows that there is a clear deformation path for the right grain. In contrast with Fig. 3.20
(b), there is an avoidance of grain merging. This phenomenon arises from an opening of the grains
arms to avoid inter-penetration. Chapter 4 will give a deeper insight on this point by a characterization
of grains’ geometry.

3.5.3 Comparison with FEP calculations

For low deprotonation degrees, the attractive behavior is recovered. Especially, both Fig. 3.18 and
Fig. 4.2 display, in the fully protonated case, the similar wells with a minimum located at 8Å with
a minimum of -70kcal/mol. Major difference stands in the well width that is 5Å larger for the FEP
calculations, ranging up to dCOM = 20Å. Both curves are plotted together in Fig. 3.23. Because of
the grain pre-relaxation in void, shorter COM distances are available to FEP calculations. Still, both
methods show a repulsive wall between 5 and 6Å.

While Fig. 3.18 (b) displays also attraction, it shows a well 3 times deeper than the one obtained with
metadynamics, with a location that remains unchanged from the fully deprotonated case, around 8Å
(to compare to 10Å with metadynamics).

The more the deprotonation degree increases, the more FEP and metadynamics PMFs differ. Panels
(c) and (d) from Fig. 3.18 clearly show attraction while metadynamics do not. While FEP calculations
accounts for only attraction between the grains, independently of its surface charge, metadynamics
stands for a transition from attractive to repulsive regime as observed if Fig. 4.2.

In the following, we will try to understand what can induce such differences between the two meth-
ods and identify which is the most adapted to evaluate the grand potential of interaction between
aluminosilicate species in water.

3.6 Role of the relaxation process in the perturbation approach

3.6.1 Grain relaxation

As detailed previously in this Chapter, the PMF is computed from equilibria of states generated
with pre-relaxed grains in void (similarly as Zhu et al.[63], who added water after generating CSH
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Figure 3.23: PMF obtained from equilibrium generated from pre-relaxed grains in water, rigid grains
in water both with FEP and metadynamics calculations, respectively in blue, black and red. Note that
in Metadynamics run, the grains are free to relax. These results are shown for grains fully protonated
(d = 0).

grains configurations). In order to understand the effect of relaxation, we performed the perturbation
approach using a rigid grain, in other words, no relaxation is performed and water is added immediately
after displacing the grains. During the production run, grains are kept rigid by setting the forces acting
on their composing atoms at 0. Resulting PMF is shown in Fig. 3.23.

Fig. 3.23 illustrates the role of relaxation in the materials’ cohesion. The black curve, especially, shows
that a hard wall of repulsion is reached as the grains have not yet fallen into the attraction well. Even
though below distances of 15Å, both blue and red curves probe negative values, the rigidity does not
allow such behavior. Grains are not interpenetrating each other, preventing short inter-grain distances
and short-range phenomena as, e.g. the formation of H bonds that might be at stake according to the
geometry of our oligomers. Note that the initial orientation of the grains have been chosen randomly,
as discussed in §2.2 and shown in respective Fig. 3.3. In order to create cohesion, grain relaxation is
required.

Therefore, the role of water/grain interaction on the relaxation of the grain appears essential and has,
until that point, been strongly biased by the procedure to create the configurations. Indeed, since
water is added after grain relaxation, the grains are attractive and reshape so that no water can be
added in-between the grains at close distance. This explains the artificial attractiveness observed on
all the PMF obtained by perturbation theory. Note that a dry interface would also contribute to ease
the formation of non-covalent bonds.

3.6.2 Grain pre-relaxation

In the following, we are using a new procedure which consists in adding water molecules before relaxing
the grains and water. Then, the same procedure of equilibration and production runs is used.

It was shown in most works involving FEP calculations, that water must be dealt with carefully at the
grains interface [34, 97, 63]. Having water in the relaxation has a direct consequence on the available
range for the COM distances. Indeed, water limits the contact between the grains and therefore, with
a wet pre-relaxation, COM distances are taken to range from 2Å to 32Å, to keep 300 states. Both
initial and this fore-mentioned procedure are detailed in Fig. 3.24.

Procedures described in Fig. 3.24 allow to perform equilibria of the 300 configurations in parallel.
From a computational point of view, initiating these states (with water) for all 300 distances required
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Two grains in
void dCOM = 30/32Å

i = 0
Equilibrium
for 0.1ns

Addition of water
to the last config.

Save the
configuration

Displace atoms as
d′COM = dCOM − 0.1Å

i = i + 1

i = 300

i = 0

Addition of water
Equilibrium
for 0.1ns

Save the last
configuration

Displace atoms as
d′COM = dCOM − 0.1Å

i = i + 1

i = 300

300 starting
configurations

Figure 3.24: Scheme of the two pre-relaxation methods to initiate FEP calculations. The upper line
corresponds to the initial path, for which grains are relaxed in void and the water added a posteriori :
dry relaxation. The bottom line describes the pre-relaxation of grains with water added initially to
the system: wet relaxation. The shared starting point is the simulation box with two aluminosilicate
grains in void with their surrounding ions. At the end of both paths, 300 configurations of water
immersed grains are obtained, each corresponding to COM distances ranging from 0Å to 30Å with a
step δd = 0.1Å in the case of dry relaxation and from 2Å to 32Å with wet relaxation.

2 days of simulations. Therefore, the choice was taken to consider states equilibria in parallel rather
than in series, which would have required around 400 days for a 2ns simulated time at each distance.

In the following, we consider, for FEP calculations, equilibria generated using this second pre-relaxation
procedure. Free energy variations are computed using the exact same path as previously. Resulting
PMFs are shown in Fig. 3.25 for the protonated (qgrains = −3e) and the high charged (qgrains = −13e)
scenarios.

(a) (b)

Figure 3.25: Potential of Mean Force computed via the FEP approach for the (a) protonated and
(b) highly charged (q = −13e) cases. In black straight lines is plotted the PMF obtained from well-
tempered metadynamics calculations. The configurations are taken randomly over the generated set
of 150 configurations over a 0.15ns sampling (i.e. every 1.0ps).

Fig. 3.25 shows that PMF calculations are converged with only 150 configurations sampled every
1.0ps and that our grains repulse each other for both cases. This is not in favor of the polymerization
process nor the results computed from metadynamics.
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(a) (b)

(c) (d)

Figure 3.26: Kernel Density Estimation of the potential energy differences distributions for (a)/(b)
the fully protonated case and (c)/(d) the highly deprotonated one (d = 10). Blue, red and green plots
corresponds to the energy differences respectively felt by bot grains, water and total system. Straight
line corresponds to ⟨U⟩i,i.e energy differences obtained from i as the reference state (forward) and
dashed lines to ⟨U⟩i+1 (backward).

By comparing both FEP calculations, it appears that the way grains are relaxed before each equilib-
rium strongly influence the interactions between the grains. It appears that letting the grain approach
each other allow the system to reach a configuration with a deep minimum of energy and stands within
such energetic state. With water at the grain interface, there might not be such a deep potential energy
minimum. Despite the flexibility of the grains, no attraction can be observed. These results are also
in contradiction with the results obtained with the metadynamics approach. Moreover, it is unlikely
that geopolymers form a cohesive material with purely repulsive inter-grain interactions.

3.6.3 Water energy correction

The main difference between Fig. 3.18 and 3.25 is the addition of the water during grain pre-relaxation.
This step seems to be key in order to allow for either attraction or repulsion between the entities.

On the role of water in the perturbation

In theory ⟨U⟩i ≡ Ui+1 − Ui and ⟨U⟩i+1 ≡ Ui+1 − Ui must have same sign : either i and i + 1 state
should be of higher energy. In our case, it appears not to be the case. Fig. 3.26 shows the distribution
of potential energy differences for different distances and for both fully protonated (d = 0) and highly
deprotonated (d = 10) cases.

Opposite signs illustrates that the forces applied by perturbing the system are the same in both
forward and backward direction : ⟨∆U⟩i ≡ Ui+1 − Ui and −⟨∆U⟩i+1 ≡ Ui − Ui+1 are similar. These
perturbations, as displacement of one grain closer and away to the other, should generated respectively
an increase (⟨∆U⟩i ≥ 0) and a decrease −⟨∆U⟩i+1 ≤ 0) of the potential energy. In both forward and
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backward directions, the moved grain gets shifted from its position of a distance δd. It feels a shift
in potential energy originating from its neighboring water molecules and the second grain. Since the
magnitude of energy shift is of same order and same sign for different grain displacement directions,
it probes that the energy difference caused by neighboring water overwhelms the grain-grain one.

Fig. 3.27 display the average energy variation ⟨∆Ui⟩ performing the perturbation. The average is
made over the whole set of sampled configurations involved in the PMF calculations.

(a) (b)

Figure 3.27: Mean energy differences when performing the perturbation with a step of δd = 0.1Å.
The panel (a) corresponds to the protonated grains while panel (b) to deprotonated ones (d = 10).
For both plots, the straight lines correspond to a perturbation of state i to i + 1 (forward) and the
dashed ones to a perturbation from state i+ 1 to i (backward). The different colors accounts for the
energy felt by a group of atoms w.r.t. all the others (e.g. for the blue, as the sum of grain-grain,
grain-water,grain-ions interactions).

Both energy variations and pressure present larger variation in the deprotonated case. According to
the plots of grain energies, there is a well in energy differences, at distances between 5 and 10Å. As a
system would favor a minimum of energy, this accounts for an attraction. Still, water and ions should
also play a role in the grain-grain interaction. While in the protonated case, the perturbed energy
of water and ions influence only a few the total potential energy differences (blue and green curves
are very similar, only shifted by a constant), they play a more important role in the second case. As
they undergo larger fluctuation, these ionic and water potential energies flatten the green curve, as a
screening effect of grain-grain interaction that may even lead to a repulsion of the grains.

In literature, most potential of mean forces calculations showed to be water sensitive. Zhu et al. 2022
added water after the generation of states in the void [63], preventing the detrimental insertion of
water at unfavored locations in clays PMF calculations. Masoumi et al. 2017 had to displace water
molecule at box edges to limit the screening effect of water between CSH nanolayers [62]. Ebrahimi
et al. 2014 [34] deleted the one too close to the interface of CSH platelets.

In these cases, interacting structures also had ionic adsorbed layers, which is not our case. The presence
of ions at the grains vicinity may influence, because of electrostatic repulsion, the grains ability to
deform and their interface. In the case of amorphous grains, the interstitial medium appears to be
more complex, with insertion of water molecules in between grain branches and the non-formation of
ionic layers, resulting into interstitial screening effects that can not be easily get ridden of.

Correction of the potential energy

We recall that the free energy perturbation ∆G is obtained using the total potential energy shift ∆u
of the system from
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exp (−β∆G) = ⟨exp (−β∆u/2)⟩i
⟨exp (+β∆u/2)⟩j

. (3.10)

The influence of water

The energy u contains all potential energy interactions, i.e. grain-grain, grain-water, grain-ions, water-
ions, water-water and ions-ions (and symmetric contributions). From the above discussion, water
interactions may hide the effective shift in potential energy arising from grains interactions. Therefore,
we propose to shift the system potential energy as follow :

(∆U(i→ i+ 1))′ = ∆U(i→ i+ 1) + ∆Uwater(i→ i+ 1). (3.11)

Here, ∆Uwater(i → i + 1) denotes the potential energy change due to water. This correction aims to
cancel the constant slope that arise from calculations in the direct free energy calculations method
(cf Eq. 2.31 in Chapter 2), shown from panels (a) and (c) in Fig. 3.28. In fact, for a given state
transition, if a constant shift δU = ⟨δU⟩ is applied to ∆U so that (∆U)′ = ∆U + δU , the free energy
variations transforms as

(∆G)′ = − 1

β
ln
〈
exp(−β(∆U))′

〉
= −kBT ln ⟨exp(−β(∆U))⟩ − δU = ∆G− δU. (3.12)

In practice, this correction term is constant and corresponds to the potential energy shift obtained
for the state at the longer distance. As the grains are the furthest away, the cut-off of interaction is
smaller than the smallest distance between grain atoms to the other ones : only displacement with
regard to water (and ions, even though they do not stand as close to the grains to the perturbation
level) induces a change in potential energy. We hereby define a constant correction that can be applied
according to Eq. 3.12 to the computed PMF.

Fig. 3.28 displays the PMF calculations using both Simple Overlap Sampling (SOS) and DA (Direct
Averaging) with different ways of computing the ∆U energy difference (either forward, backward and
average of both).

(a) (b)

Figure 3.28: Correction of PMF calculations in the highly deprotonated cases (d = 10). The dashed
lines/(a) panel represent the curves obtained from the perturbation theory. Straight lines/(b) panel
shows the corrected curves. Correction is applied according to Eq. 3.12 and the value of energy shift
at large distance. The different colors corresponds to the method used for free energy calculations.
SOS refers to the SOS sampling as in Eq. 3.10 from Chapter 2. The different DA calculations have
been performed with Eq. 2.38, where the energy difference is taken (in absolute value) in the forward
(⟨∆U⟩i), backward (⟨∆U⟩i+1) and by average of both ((⟨∆U⟩i + ⟨∆U⟩i+1)/2).
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Panels (a) displays curves with a constant slope, as an accumulation of a constant shift. In fact,
applying the correction leads to panel (b) that do not show such linear behavior anymore. Despite
this correction, there remains strong differences between the different approaches, accounting for a
failure of our perturbative approach to evaluate the PMF for small aluminosilicate grains in water.

Symmetrization of the distributions

Perturbative theory requires likeness between the studied states as previously discussed, recalling Fig.
3.15. Still, from Eq. 2.33 in Chapter 2, our energy distributions of opposite sign should overlap, i.e.
that their distributions of energy differences must be symmetric around 0kcal/mol.

We propose a symmetrization of potential energy shifts, aiming to artificially rebuilt the symmetry
within the system. Both energy shift in the forward and backward direction are shifted from a mean
value in order to make ⟨∆U⟩i and ⟨∆U⟩i+1 symmetric according to Eq. 3.13. The associated PMF
results are shown in Fig. 3.29

{
⟨∆U⟩i = ⟨∆U⟩i − ⟨∆U⟩i+⟨∆U⟩i+1

2 ,

⟨∆U⟩i+1 = ⟨∆U⟩i+1 − ⟨∆U⟩i+⟨∆U⟩i+1

2 .
(3.13)

(a) (b)

Figure 3.29: Correction of the potential energy difference distributions. Panel (a) shows an example of
symmetrized potential energy variation distributions obtained from 3.13. The color refers to the energy
felt by the different groups of atoms. Panel (b) displays the PMF obtained from these symmetrized
energy differences. Different methods are displayed.

Even with potential energy centered (and so a good overlap of energy difference distributions), the
obtained PMF depends on the used calculation technique. This illustrates that the calculations do not
converge for our system. Despite canceling the error, at least partially, which can not be quantifies, the
SOS approach fails to predict the switch between attractive/repulsive behavior upon pH modifications.
This could be related to sampling issues at close distance.

3.7 On the role of the sampling

The FEP technique requires a good importance sampling, i.e. a sampling of very different configura-
tions of the same microstates. Until now, it was shown that the overlap of potential energy differences
are sufficient for the calculations to converge. At the difference with CSH grains and clay platelets,
the amorphous structures have a flexibility that induces a very large number of possible microstates
to visit and so, very long simulations to perform to visit. As a consequence, it may be more relevant
to perform metadynamics simulation to compute free energy variations rather than run very long
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equilibrium states to perform FEP calculations. As an enhancing sampling method, temperature bias
prevent the system to remain within a too deep local minimum for a long time.

In order to investigate the effect of the sampling, we have extracted configurations from a metady-
namics trajectory of 2ns every 5ps, each corresponding to a given COM distance ranging from 6 Å to
25 Å. Configurations are then binned within bins of size δd = 0.1 Å so that a perturbation of same size
can be processed forward and backward and FEP calculations performed with the SOS method. FEP
calculations are performed for grains with deprotonation degree of d = 0, 4 and 10 and the results
plotted in Fig 3.30.

(a) (b)

(c) (d)

Figure 3.30: (a) Number of configurations per COM distance bin from metadynamics samplings. Red,
green and blue colors correspond to deprotonation degrees of d = 0, 4 and 10. (b)/(c)/(d) panels are
PMFs computed applying FEP calculations to configurations sampled with metadynamics with the
SOS method for (b) protonated (q = −3), (c) q = −7e, and (d) q = −13e grains. The plots are shown
for a different number of configurations, ”max” referring to the maximum number of configurations
binned for each distance, shown in panel (a).

Using this approach, the FEP method is able to qualitatively reproduce either the attractive or
repulsive behavior of interaction as metadynamics does. For the protonated case (panel (b)), the
well locates around 13Å with a value around -100kcal/mol, contrasting with the one of -70kcal/mol
obtained from the sum of the bias, at a COM distance of 8Å. For the most deprotonated grains, strong
repulsion at 200kcal/mol is seen, at a distance of 14Å while metadynamics foresees it around 8Å.

Although the small number of configurations does not allow to carry a quantitative study, it seems
to be consistent with metadynamics. Increasing the system charge increases the repulsion between
the grains, which is physically expected from the presence of ions between the aluminosilicate grains.
Note that with a sampling performed using metadynamics the sampled configurations shows far less
correlation. During these simulations, the COM distance between aluminosilicate grains changes,
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(a) (b)

Figure 3.31: Potential of Mean Forces obtained from metadynamics sampling using the Direct Average
(DA) calculations for (a) fully protonated and (b) highly deprotonated cases. The plots are shown
for a different number of configurations, ”max” referring to the maximum number of configurations
binned for each distance, shown in Fig. 3.30 panel (a).

allowing for water molecules to insert/leave the grain-grain interface. This is not the case when
performing equilibria at fixed COM distances. As previously mentioned, using the relaxation without
water, we observed that the PMF were attractive using the FEP approach. On the opposite it has
been extensively discussed that they are always repulsive using the configurations with a relaxation
after adding the water. Seemingly, for the 26 Na cases, the metadynamics results show that the water
remains in between the grains and therefore the potential is repulsive. However, in the 6 Na case, the
water should be partially depleted fro m the interface. The fact that metadynamics trajectories are
performed continuously with grains being approached and separated hundreds of times allows water
to enter/exit the inter-grain region. In the opposite, when the system is relaxed in water, the water
is being trapped at the interface and the PMF is made artificially repulsive. Performing a longer MD
trajectory is not a solution. The most adequate solution is enhanced sampling.

Comparison of FEP and metadynamics

In terms of computational costs, the FEP approach requires about 600 trajectories of 2ns for each
system while metadynamics requires a single 2ns simulation. As a result, metadynamics is about 500
times faster than FEP. Moreover, FEP requires complex data management with a large number of
configuration files. On the other hand, metadynamics requires more testing of the meta parameters:
bias temperature, Gaussian weights, etc. This needs to be done case by case to ensure that the system
entirely explores the collective variable space at a reasonably slow pace to make sure that it probes
all the minimum.

For our system the perturbation approximation overpass its limitations and despite testing different
samplings, that can solve one of the issues, there is still systematic errors in direct averaging calcu-
lations as shown in Fig. 3.31. As described in this chapter, the systematic errors are most probably
due to fact that moving the grain to the left or to the right results in the same interaction with water.
For systems containing small grains in a liquid, it appears that the metadynamics approach is more
reliable than the perturbation approach.

3.8 Literature PMFs of clays and CSH

While investigation of the PMFs for geopolymers using a FEP approach have, to our knowledge,
never been performed, this method has already performed well on other systems such as clay and CSH
[34, 33, 74, 97, 63]. Still, a difference is that geopolymers are formed by small ellipsoidal clusters that
can interpenetrate.
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As aluminosilicate systems, one might expect results comparable to the ones obtained in these previous
studies, even though the shape and orientation of the clay platelets and CSH layered-nanoparticles
can highly influence the order of magnitude of interactions. These results are discussed below and
compared in Fig. 3.32.

3.8.1 Clay interactions

Ebrahimi et al. [34] has studied edge-to-edge and face-to-face interactions of two Wyoming Na-
montmorillonite platelets immersed in water. Using such nano-layered grains, they built their simu-
lations using finite-length layers with water in between each. The application of the FEP procedure
allowed to obtain potential of interaction for both orientations.

In the edge-to-edge case, a single well is seen around rmin = 45 Å, with a depth of ∆G(rmin) =
−80kJ/mol = −19kcal/mol. However, in the face-to-face case, the potential of interactions present
two wells with depths around ∆G(rmin) = −200-250kJ/mol = −50-60kcal/mol. This study was
carried out with grains of dimensions 20.9 Å × 36.3 Å × 6.7 Å. The well depth for the per-surface

interaction are, for edge-to-edge and surface-to-surface estimated around : −0.17kcal/mol/Å
2
and

−0.08kcal/mol/Å
2
.

These results, obtained by Ebrahimi et al., have been discussed by Zhu et al. [63] who com-

puted Na-illite and Na-smectite PMFs. The first one has an attractive well of −0.5kJ/mol/Å
2
=

−0.12kcal/mol/Å
2
at a center-to-center distance of 11 Å. The second appears to be fully repulsive.

They have respectively been fitted with a Gay-Berne and a DLVO (Derjaguin, Landau, Verwey and
Overbeek ) model.

3.8.2 CSH interactions

Among the most recent works on CSH, we retrieve the one performed by Masoumi and Ebrahimi
[74, 97].

In their early 2019 paper, layered-CSH globules of size 13.2Å×24.5Å×12.20Å are built and immersed
in water to interact. Such globules are built with different Ca/Si ratio, allowing to studied the
influence of the counter-cation concentration on the PMF. A common characteristic of the PMF
obtained for all calcium contents is a well of ∆G(rmin) = −110kBTnm2 ≈ −0.65kcal/mol/Å

2
at

ambient temperature. The well position is located around rmin = 12.3 Å for Ca/Si≤ 1.5 and moves
backward to rmin = 10.5 Å as the calcium content increase. It appears to be weaker when Ca/Si= 1.5,

with a depth of −45kBT/nm2 ≈ −0.27kcal/mol/Å
2
.

Performing a FEP on grains in water for face-to-face and edge-to-edge configurations [97] allowed
to obtain an attracto-repulsive PMF for the first case with a minimum ≈ −30kcal/mol/nm2 =

−0.3kcal/mol/Å
2
and a fully attractive one for the second, with a minimum of ≈ −5kcal/mol/Å

2
=

−0.05kcal/mol/nm2 at 41 Å. These results have been fitted using a Gay-Berne potential.

3.8.3 Comparison of the PMFs

All the results obtained in literature are summarized in Table 3.4.

Comparing our results to the one from CSH and clay allows to see that our protonated geopolymer
grains interaction stands between the one of clay and CSH. CSH tend to favor attracto-repulsive
potentials while clays are mostly attractive. Thanks to their amorphous structure and flexibility,
geopolymer grains are allowed to interpenetrate each other. This will shift the minimum of interactions
at smaller distances than for layered-aluminosilicate materials which are geometrically restrained.

These geometrical considerations also plays a role on the strength of interactions. While interpene-
trating, the Coulomb repulsion between the aluminosilicate chain components can increase, favoring
a repulsion of the grains. In the cases of CSH and clay, the counter-cations between the layers may
prevent such a strong repulsion and are even known to be at the origin of the cohesion [73].
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rmin ∆G(rmin) (kcal/mol) ∆G(rmin) (kcal/mol/Å
2
)

(Å) Face-to-face Edge-to-edge Face-to-face Edge-to-edge
Grain type and size (x× y × z (Å

2
))

11/45 -60.5 -23.8 -0.08 -0.17 Clay platelets, 20.9× 36.3× 6.7 [34]

11 -91 × -0.12 × Clay platelets, 20.9× 36.3× 6.7 [63]

10.5/41 -96.6 -16 -0.3 -0.05 CSH layers, 13.2× 24.5× 12.2 [97]

10.2 -87 × -0.27 × CSH globules (Ca/Si= 1.5), 13× 24.5× 12[74]

12.5 -209 × -0.65 × CSH globules (Ca/Si= 1.1), 13× 24.5× 12[74]

Flexible

8 -66.4 -0.18 Geopolymer ellipsoid, 11.4× 16.6× 14

Table 3.4: Summary of renormalized PMF calculations using molecular simulations for clay and
CSH. Geopolymer grains have been modeled as a prolate ellipsoid with a = 5.7Å, b = 8.3Å, c = 7Å.
The contact surface has been obtained according to Eq. 4.4 defined in Chapter 4. Details on the
renormalization are discussed within the text.

Figure 3.32: Comparison of PMFs previously obtained in the literature. Different systems have been
studied, as clays and CSH. The curves are plotted as a function of the surface-to-surface distance
and are normalized with regard to the particle surfaces for every case. Note that for CSH, charge-
compensating ions are included in the size of the grains while for the study of clay they are not,
inducing a shift in the surface-to-surface distance. In our case, the small number of ions and the
flexibility of the grains do not generate such questioning. Details on key values are given in Table 3.4.

Both PMF for geopolymer and the one obtained for CSH by Masoumi et al. for smaller Ca:Si ratio have
a minimum at the same surface-to-surface distance, around 2.8 Å. In terms of intensity, geopolymer
attraction stands in the very in between clays and CSH. However, while this latter is tight (the well
ranges from [1, 6]Å and present a small repulsive shoulder), our PMF for protonated grains is far wider
and fully attractive, closer to the shape of the ones of clay. Such an widening of the curves can be
attributed to the effects of surrounding ions, while these were included inside the grain definition in
PMF calculations for CSH. In there, counteractions at the surface of the well shaped silicate network
will create a so-called surface charge, acting as a repulsive barrier between the grains. For clay and,
here, geopolymers, the ions may locate differently and so will not form a well-arranged barrier to
generate repulsion between the two micro-structures. Further analysis from Chapter 4 will show that
there is no ionic adsorption at the grain’s vicinity, in opposition to clays and CSHs.
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3.9 Conclusion

In this chapter are compared different ways to obtain the Potential of Mean Forces for aluminosilicate
grains in solution. The first taken approach, motivated by similar works performed over clays and
CSH is the Free Energy Perturbation technique, coupled with the Simple Overlap Sampling for a
faster convergence of the calculations. While the convergence of the method is ensured with regard
to different parameters in a case, we have realized that the way our configurations are initiated can
strongly influence the resulting grain-grain interactions.

At first stance, grains are relaxed in void and can approach each other in a dry environment before the
sampling of configurations is performed within water. Under this framework, attraction is observed
at short range, for different degree of deprotonation of our grains. Adding the water before approach-
ing the entities to initiate state equilibria then produce repulsive interactions, no matter what the
grain surface charge is. A deeper investigation had us realize that water plays an important role in
the potential energy difference obtained performing the perturbation and prevent them to properly
reproduce the grain-grain interactions. A systematic error is found. Despite corrections applied to the
calculations, there is no ability for the calculations to converge from both approach, to a consistent
interaction regime. This is attributed to the small size of our amorphous aluminosilicate skeleton,
that differs from layered materials platelets and globules previously discussed in the literature.

Metadynamics simulations allowed new calculation of the PMF, from a different approach, resulting in
a transition from attractive to repulsive interaction as the grains’ charge increases. These results are
quantitatively recovered performing FEP calculations to configurations obtained from this enhanced
sampling method. This enlightens that the complexity of our system should require far more sampling
for the FEP calculations to converge. In overall, the metadynamics appear to be a better performing
methods (either from a quantitative and CPU time point of view). Moreover, the found results stands
within the order of magnitude of CSH and clays cohesive interactions.
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Chapter 4

A metadynamics study of
aluminosilicate interactions

While aluminosilicate oligomers stand as small and amorphous species, measuring their interactions
in water appears to be a tedious task. The analogy with clays and CSH lead us use to the Free
Energy Perturbation (FEP) method to evaluate how they may interact in water. However, from the
previous Chapter, it is shown that such a method may not be the more efficient to evaluate Potential
Of Mean Forces (PMFs) for small aluminosilicate grains. The use of Metadynamics has allowed a
enhanced sampling that managed to evaluate PMFs based on both thermodynamic integration and
on bias addition, confirming global tendencies of either attraction and repulsion depending on the
grains’ surface charge.

The role of grain flexibility has shown that relaxation is required (even in a dry relaxation case)
in order to account for inter-grain cohesion. While we expect grain surface properties to influence
its rigidity (and so, interactions), grain geometry will be studied within this chapter, over different
deprotonation degrees. From a chemistry point of view, protons (H+), oxygens (O−) and sodium ions
(Na+) might have a strong effect on local interactions.

In the continuity of free energy calculations performed using Metadynamics, we use this method to
study the effect of charge density on the grains in solution. The role of the deprotonation degree on the
interaction is discussed alongside the ability for the grain to deform and reorganize. The contributions
of the different types of interactions is presented, in order to originate either the attractive or repulsive
behavior of our species in water. Thanks to a meta-grain approach, the key role of water in geopolymer
cohesion is enlightened.

4.1 Grain deprotonation : influence of the ionic contribution

Previous chapter probed a dependence of aluminosilicates grains in water on their deprotonation degree
and their flexibility. These dependence might relate to either their surface charge and/or an effect of
surrounding ions. In this section, we discuss the influence of the deprotonation on grain geometry and
analyze the behavior of ions to investigate how these two parameters can induce either attraction or
repulsion.

Starting from our fully protonated grain, a surface charge is generated, by removing edge hydrogen
atoms as discussed in Chapter 3. Fig. 4.1 shows a single grain that have been deprotonated at d
random sites, and so, that has d Na+ ions added to compensate for the charge deficit. We recall that
the charge of edging oxygens is adapted from 0.95e to 0.95e − (+0.425e − 1e) = 1.525e according to
the inter-atomic potential charge parameters.
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(a) (b)

(c) (d)

Figure 4.1: Representation of the grains with a deprotonation degree d of (a) 0, (b) 3, (c) 6, (d) 9.
Note that the number of ions around the grain is given by Nions = d+ 3 as 3 ions are initially set to
counter balance the Al(OH)−3 in the aluminosilicate structure.

4.1.1 Potential of mean force : a charge dependence

For each deprotonation degree, metadynamics molecular simulations are performed, resulting in PMFs
shown in Fig. 4.2.

Figure 4.2: Potential of Mean Force computed using well-tempered metadynamics for different de-
protonation degree d. The dash-dotted line shows the zero line, allowing the delimitation for either
attraction or repulsion between the two grains.

There exists a transition path from an attractive to a repulsive behavior as the grains surface charge
increases. With a surface charge higher than ∥qgrains∥ = 9e (i.e. d = 6), the interaction are fully
repulsive.

Three regimes can be seen: (i) fully attractive, (ii) transitional as a flat curve and (iii) fully repulsive.
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This transition is counter-intuitive with respect to ionic correlation forces accounting for attraction
between electrolytes as their charge increase. This is the case for CSH, in which cations are adsorbed
at the grains interface, compensating surface charge.

4.1.2 Ion displacement

As amorphous materials, geopolymer grains do not present a linear surface charge that might induce
ionic layer adsorption. However, one may wonder whether this is a propensity for ions to stands at
the grain vicinity to compensate for local charge deficit. Starting from a configuration shown in Fig.
4.3, we analyze the trajectories of sodium ions at equilibrium.

Figure 4.3: Snapshot of the simulation box with one grain (d = 6) immersed in water and ions. Red,
yellow, pink, white and blue spheres respectively represent oxygen, silicon, aluminum, hydrogen and
sodium atoms. Red and white lines are water molecules.

By placing a single grain in a box of size 40Å×40Å×40Å, filled with water, ions are set randomly
within the simulation box. A NV T molecular dynamics run under ambient conditions (T = 300K and
P = 1atm) is performed for 10ns. Data are sampled over the last 9ns. Simulations are performed for
a deprotonation degree d ranging from 0 to 9.

Ionic trajectories

Trajectories of each ion (numbered from 1 to 9) can be analyzed w.r.t. its distance to the grain surface
(as the minimum distance of the ion to any atom from the grain structure). It is shown in Fig. 4.4.

Fig. 4.4(a) shows, that ions can move freely within the simulation box. However, ions can be captured :
standing close to the grain surface (distance decreasing to 0 Å, with low oscillations). As a example,
it is the case for the 9th ion during most of the trajectory. After 7ns, ions 6 and 7 are also located
close to the grain. Still, this captured state is not permanent. After 5ns, ion number 3 leaves the grain
vicinity it has stand in for more than 2ns. The number of neighboring ions is not constant during
the run. There is no need for the grain to be surrounded by a given number of ions. This may be
counter-intuitive as one may expect ions to compensate the charge locally.
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(a) (b)

Figure 4.4: (a) Distance of each ion to the grain surface. (b) Radial distribution functions averaged
over the full trajectory.

From the radial distribution of ions, in Fig. 4.4 (b), two distances seemed to be favored by the ions to sit
close to the grain, at 2.5 and 4Å. Note that this value around 2.5Å is in good agreements with distances
measured in glasses and crystals using either NMR, SAXS or Molecular Dynamics [153, 154, 155] and
also between Na+ ions and water oxygens in concentrated NaOH aqueous solutions [11] (consistent
with both theory and experiment [156, 157]). A part of the sodium are acting as charge-compensating
ions. Other ones are solvated. This result matches the discussion on the dissolution of aluminosilicate
species in sodium hydroxides solution[105].

By considering an area ranging at a distance of 5Å from the grain surface (according to radial distri-
bution functions from Fig. 4.4 (b)), it is possible to evaluate the average number of ions at a grain
vicinity for each d, as shown in Fig. 4.5.

Figure 4.5: Proportion of ions captured by the grain during our simulations. In green is displayed the
total number of ions and in black the one belonging within an area of 5Å around the grain surface.
The number of ions in the 5Å area is computed at each timestep and averaged over the full trajectory.

Because of the increasing number of ions in our simulations, the number of captured ions by the grain
can increase with the deprotonation degree. However, there does not appear to be an absolute relation
between these quantities.

Ionic energies

Dynamics of ions is related to both its kinetic and potential energy . In Fig. 4.6 are shown potential
energy distributions of each ions during equilibrium runs.
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(a) (b)

(c)

Figure 4.6: Distribution of potential energy of each sodium ion for a deprotonation degree d of (a):
3, (b): 9. Each color refer to an ion, according to coloring already defined in Fig. 4.4. (c) Mean
potential energy for captured ions as a function of the deprotonation degree. The dots correspond to
captured ions and the squares to free ones. Color map refers to the proportion of ions either in the
captured or free state: darker color corresponds to a majority of ions in the associated state.

All energy distributions are Gaussian. Associated mean values slightly change with the deprotonation
degree as it is shown in Fig. 4.6 (c). The energy difference between free and captured ions is less than
2kcal/mol and can be attributed to thermal fluctuations (at ambient temperature kBT = 0.6kcal/mol).
Still, we denote that captured ions undergo larger energy variations as it interacts with the grain. This
relates to the less smooth distributions seen from panels (a) and (b).

4.1.3 Geometrical characterization

Previous Chapter, especially Fig. 3.20 and 3.21, showed that the regime of interactions is highly related
to grains ability to deform. In order to quantify grain deformations, different geometrical parameters
are computed as its elongation or its asphericity (arising from gyration tensor calculations). To perform
these calculations, the grain core will be defined as the aluminosilicate core, including aluminum and
silicon atoms.

Maximum elongation

Grain maximal elongation does not depend on a specific direction and is obtained by computing the
maximum of distance separating two atoms of the aluminosilicate skeleton.
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x

z

y

b∗ < 0 : oblate
b∗ = 0 : spherical b∗ > 0 : prolate

Figure 4.7: Deviation from spherical shape from normalized asphericity value

Gyration tensor

The morphology of a multi-particle system of size N can be studied with the gyration tensor. For two
direction a and b in x, y or z, it is defined according to :

Sab =
1

N

N∑
i=1

[
(ria − ra,COM)(rib − rb,COM)

]
, with rCOM =

∑N
i rimi∑N
i mi

, (4.1)

rCOM corresponding to the system center-of-mass.

From this gyration tensor, both gyration radius Rg and asphericity b (deviation from a spherical shape)
can be computed, using Sab eigen-values λ1, λ2, λ3, sorted as λ1 ≥ λ2 ≥ λ3 :

R2
g ≡ Tr(Sab) = λ1 + λ2 + λ3, (4.2)

b ≡ λ1 −
1

2
(λ2 + λ3). (4.3)

From these two parameters, it is possible to characterize our grain shape w.r.t to a sphere using the
normalized asphericity b∗ = b

R2
g
. For a sphere, b∗ = 0 while a positive (resp. negative) value refers to a

prolate (resp. oblate) object as depicted in Fig. 4.7. Note that in 3D, with no constraint, it is possible
to evaluate the deviation from a sphere with only positive value as a prolate ellipsoid turns out to be
an oblate one from another angular point of view. As a consequence, only positive asphericities will
be discussed in this work, to quantify the deformation.

In addition, we relate that for a prolate ellipsoid with parameters a, b, c, the surface is given as :

Sprolate = 2πa2 + 2π
ac

e
arcsin e, where e ≡

√
c2 − a2
c

. (4.4)

Auto-correlation function

When considering a series of values, its auto-correlation corresponds to the correlation of its value at
a time t with the value with a lag δt, i.e at a time t − δt. Considering a series X of length N , its
auto-correlation function for a lag δt is given as
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ACF(δt) = E [X(t)X(t− δt)] = 1

NVar(X)

∑
k

(X(t)− X̄)(X(t− kδt)− X̄), (4.5)

where X̄ designates the mean of the series X̄ = 1
N

∑N
k=1X(tk).

Correlation : the Pearson coefficient

Between two series X and Y , the correlation coefficient can be computed using the Pearson formula
according to which

CorrXY =
(X − X̄)(Y − Ȳ )

σXσY
, (4.6)

where X̄ designates the mean of the series and σX is standard deviation, σX =
√

Var(X), i.e. σX =√
1
N

∑N
k=1(Xk − X̄)2.

Grain geometry

An overall description of the grain geometry are shown Fig. 4.8.

(a) (b)

(c) (d)

Figure 4.8: Geometrical characterization of a single aluminosilicate grain in water. (a) Gyration radius
of the aluminosilicate core with regard to the simulation time for d = 6. (b) Normalized asphericity as
a function of the deprotonation degree. Averages have been performed over the 9ns production runs.
(c) Correlation between normalized asphericity and maximal elongation of the grain for d = 6. (d)
Auto-correlation function of the series of geometrical characteristics over the simulation time. Colored
lines corresponds to the geometric quantities, the gray ones either dashed and continuous display the
95% and 99% confidence interval respectively.

Panel (a) illustrates the ability of the structure to deform during an equilibrium. The gyration radius
undergo fluctuations of 7% with regard to an average value of 5.9Å. Still, its average shape, related
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to its asphericity/elongation, does not show any changing tendency w.r.t. the deprotonation degree
as shown in panel (b). Note that panel (c) correlates asphericity to the maximal elongation.

According to Fig. 4.8 (d), there exists a correlation of the geometry at time t with its antecedent
values. This plot reads as follow: if the function is within the 95%-confidence (resp. 99%) interval,
there is a 95% (resp. 99%) probability that the series is not self-correlated. Out, there is 95% (resp.
99%) that it is. Here, both quantities are correlates with themselves. This illustrates that the way our
grain shape evolve is path dependent during the simulation : there is no randomness and a latency
in the grain deformation. If there was no auto-correlation the grain geometry would change mostly
randomly (i.e. not depending on its shape at time t− δt), probing that it is very flexible. Fig. 4.8(d)
probes the opposite: our grain has a certain degree of rigidity.

Role of the deprotonation

A deeper insight is taken over the auto-correlation functions (ACFs) for asphericity for each deproto-
nation degree and is shown in Fig. 4.9.

(a) (b)

Figure 4.9: (a) ACFs of grain asphericity . (b) Number of neighboring ions and percentage lag out of
the 95%-confidence interval as a function of the deprotonation degree.

As the deprotonation increases, the ACFs tend to spent less time within the confidence interval,
accounting for less path-dependence of its asphericity. Fig. 4.9 (b) displays a linear evolution of the
time spent out of of the 95% bands, illustrated in panel (a). This shows that the higher the surface
charge is, the more rigid the grain becomes. This can also relates to the number of surrounding ions,
which increases with grain deprotonation. Acting as local charge compensatory, these might cause the
formation of O–Na–O, impacting grains structure.

Grain’s rigidity can also be evaluated from the time required to reach a geometry that is completely
uncorrelated from its initial one (corresponding to the initial slope of the ACF). Assuming that a
geometry at time t becomes independent of grain’s initial one when it enters the 95% confidence band,
Table 4.1 can be drawn. The time required to reach an auto-correlation of 0 is also discussed.

Deprot. deg. d 0 1 2 3 4 5 6 7 8 9 10

Time decorr. (ns) 0.55 0.82 0.44 1.07 0.32 0.96 1.31 1.93 1.17 2.84 2.51

Full decorr. (ns) 0.81 0.90 1.35 1.27 0.38 1.02 1.41 3.36 1.21 3.28 2.79

Table 4.1: Minimum asphericity decorrelation time depending on the grains deprotonation degree.
The decorrelation time is defined as the minimum time at which the ACF crosses the first (upper)
0.95 confidence band (dashed lines in Fig. 4.9(a)). Full decorrelation refers as the time required for
the ACF to reach 0 (straight black line), i.e. a perfectly decorrelated state, for the first time.
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Even though no linear relation between geometrical quantities and the deprotonation degree seems to
appear, its relaxing ability is related to its surface charge: Protonated grains are more flexible and
adapt quicker to change.

4.1.4 Interface medium

In the case of layered material as CSH, the role of water at the interface is primordial. Previous
Chapter also probed that our systems can be strongly sensitive to its presence. As grains approaches,
they deform, allowing or not for water molecules to insert/escape the interstitial area. Fig. 4.10 shows
an overview of the interstitial environment as the number/density of water and ions.

(a) (b)

(c) (d)

Figure 4.10: Analysis of the inter-grain area for the three cases 06, 14 and 26 respectively in red,
green and blue. (a): Interstitial volume computed as a box volume based on grain elongations along
the y and z axes and the COM distance (along the x-axis). (b): Water density normalized with the
bulk one. (c) and (d): Number of ions and water molecules between the grains. Every quantities are
computed for every configurations sampled over the metadynamics run averaged over COM distance
bins of 0.1Å.

Fig. 4.10 (a) and (b) illustrate that both interstitial volume and water density between the grains are
highly related to the deprotonation degree d. The increase of water molecule at the grains interface
with d suggests a transition for a hydrophobic to a hydrophilic state. This transition relates to the
ability of the grain to deform. With a high rigidity, grains do not deform much (see Fig. 3.21 in
Chapter 3), i.e. do not let water molecules insert/leave the interface, as shown in Fig. 4.10(d). Note
that at extremely close distances, the number of molecules is almost 0 since grains are almost merging.

In opposition to the case of CSH [89, 62] and clays [63], there does not seem to be any ion adsorption
at the interface, echoing previous discussion from which these can move freely within the simulation
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box.

4.1.5 Perturbation and metadynamics discussion

The discussion on water at the grain-grain interface echoes Chapter 3 PMFs obtained using three
different approaches: (i) FEP calculations with a dry initiated interface ; (ii) FEP calculations with a
wet initiated interface ; (iii) Well-tempered metadynamics. These are illustrated in Fig. 4.11. With
dry initial interfaces, accounting for a hydrophobic regime, all the computed PMFs were attractive.
In opposition, in the hydrophilic regime, interactions were always found to be repulsive.

Figure 4.11: Potential of Mean Forces obtained with metadynamics and with FEP calculations in dry
and wet interface scenarios as described in Fig. 3.24 in Chapter 3. The dash-dotted lines is the zero
line.

As an enhanced sampling method, metadynamics allows to visit a large variety of states that our
classical molecular dynamics equilibria may miss. This was illustrated from Fig. 3.22 in Chapter 3:
very different configurations can be visited at a same COM distance. This accounts for a sampling of
very different water quantities at the grain-grain interface, as seen from the largest standard deviations
on Fig. 4.10(d). Indirect consequence is that this allows the system to chose whether it prefers an
hydrophilic or hydrophobic interface, while this one was forced to one or another with the perturbative
approaches.

Thanks to metadynamics enhanced sampling, the transition from attraction to repulsion between
aluminosilicate grains can be put through to the grains ability to deform and relates strongly to a
transition from a hydrophobic to hydrophilic interface.

4.2 Hydrogen bonds

Hydrogen non-covalent bonds exist between the two grains if a hydrogen of one grain gets close enough
to an edge oxygen of the other one. These bonds might appear for distances shorter than 3.4Å if the
H–O-H ranges between 120 and 180◦[158]. Once these criteria have been set, it is possible to evaluate
the bonds formation between the entities as a function of the distance as in Fig. 4.12.

Lower deprotonation allows the formation of more bonds. When deprotonating the grains, less hydro-
gen atoms are available at the grain-grain interface. Recalling Fig. 4.10 (b), it is also worth denoting
that in the d = 10 case, shown in Fig. 4.12 (d), much water is located between the two aluminosili-
cate entities that for the two other cases. A direct consequence is the prevention of hydrogen bonds

91



Chapter 4 4.2. Hydrogen bonds

forming, illustrated here. In addition, we denote that bonds form equivalently from the left grain to
the right one and reverse.

(a) (b)

(c) (d)

Figure 4.12: Number of hydrogen bonds for the different deprotonation degrees : (a) d = 0, (b) d = 4
and (c) d = 10. Panel (d) compares the total (summed) number of hydrogen bonds for the different
cases. Each point correspond to an average of the quantity over binned configurations and the lines
to the associated standard deviations.

Hydrogen bonds formation mostly relates on the interface medium, itself related to the grains geom-
etry/deprotonation degree. Higher deprotonation leads to less flexibility, therefore leading to more
water molecules at the grains’ interface, preventing the formation of hydrogen bonds. Rather than a
cause to attraction between our species, hydrogen bonds are a consequence of this interaction regime.
As we are working with non reactive force field, no chemical reactions are allowed. However, the
existence of these bonds relates both entities. Especially, within the alkaline solution, these H bonds
might potentially turn into Si-O-Si or Si-O-Al bonds, connecting the species and so, fostering the
polymerization process.

Such a behavior has already been discussed in literature an seen from experiments [159, 160]. Kai
et al. has studied the silicate-geopolymers aggregates interface using reactive force field (ReaxFF).
They denote that hydrogen bonds between the aggregates are the major interfacial bonding. In
addition, tensile experiments were simulated over the system, observing two stages. A first one in
which the strength decreases, with the breaking of Al-O-Si, Na-O and H bonding at the interface
and a recovery one with the re-formation of Na-O and H-bonds (up to 0.5GPa). These results are
supported by Brandvold et al. [160] who experimentally observed thixotropic restructuring associated
to the reformation of hydrogen bonds between alumina and silica tetrahedra in the gel phase. OH
groups from these tetrahedra would indeed induce attraction before to react with H+ ions coming
from either solution or a neighboring tetrahedron, so breaking and releasing water and enhancing
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polymerization (e.g. forming a polysialate) via chemistry.

4.3 An atomic description to model interactions

Both grains consist of aluminosilicate skeleton immersed in water surrounded by sodium ions. As
seen from Fig. 4.4(b), some ions can stand close to the grains at a surface distance less than 5Å.
According to this, we can define two entities as {grain+close ions} that are set to interact in water.
These correspond to charged systems interacting in water according to van der Waals and electrostatic
interactions.

4.3.1 Defining the interactions

From an atomic point of view, our charged oligomers with ions can be seen as two clusters of charged
particles interacting in water. Their electrostatic interactions are described by both coulombic and
dipole-dipole pairing.

Coulombic interaction

Considering two punctual charges in water at location Pi and Pj , with charges qi and qj , the electro-
static force of a punctual charge q at location M stands as

−→
F =

qqi
4πε0εr

−−→
PiM

∥
−−→
PiM∥3

, (4.7)

where ε0 is the void permeability and εr the water dielectric constant.

Generalizing this equation to both left and right grains, Eq. 4.7 quantifies the electrostatic force felt
by the right {grain+close ions} cluster on the left one as

−→
F =

Nleft∑
i=1

Nright∑
j=1,j ̸=i

qiqj
4πε0εr

−−→
PiPj

∥
−−→
PiPj∥3

. (4.8)

Adding the interaction with flying ions respectively for each cluster, the total resulting coulombic
potential energy stands as

Ecoul =

Nleft∑
i=1

Nright∑
j=1,j ̸=i

qiqj
4πε0εr

1

∥
−−→
PiPj∥

+

Nleft∑
i=1

Nflying left∑
k=1,k ̸=i

qiqk
4πε0εr

1

∥
−−→
PiPk∥

+

Nright∑
j=1

Nflying right∑
k=1,k ̸=j

qjqk
4πε0εr

1

∥
−−−→
PjPk∥

,

(4.9)

where the subscripts ”flying left/right” refer to the ions that are not considering within the left or
right cluster respectively.

Dipole-dipole interactions

Each {grain+ions} system is so composed of a negative and a positive charge, inducing a local dipole.
Dipole moments are computed according to the following procedure. Each specie, identified as a
group of atoms (aluminosilicate skeleton + closest ions) is divided into two subgroups, composed of
respectively atoms with positive and negative charges. For each of these subgroups, composed of
atoms with mass mi,charge qi and coordinates ri, the COM is computed as

rCOM =
1

M

∑
i∈group

miri, where M =
∑

i∈group
mi. (4.10)

93



Chapter 4 4.3. An atomic description to model interactions

Then, a center of charge can be associated to both positive and negative charges according to

µ± =
∑

i∈group,
sign(qi)=±

qi(ri − rCOM). (4.11)

The moment dipole associated to a grain is finally obtained by

µgrain = rQ− − rQ+. (4.12)

Between the two dipoles, the potential energy of interactions can be quantified according to the dipole-
dipole part of the Stockmayer potential [161] as:

Vdip−dip(r) = −
µ1µ2

4πϵ0ϵr3
(2 cos(θ1) cos(θ2)− sin(θ1) sin(θ2) cos(θ12)) , (4.13)

where µi and θi corresponds respectively to each grain dipole moment and angle relative to the inter-
grain axis (here the x-axis). θ12 refers to the relative angle between both dipoles.

van der Waals interactions

The Lennard-Jones pair-potential is of common use in molecular simulation to account for van der
Waals attraction forces. With our adapted ClayFF, their potential energy are expressed as a function
of εi and σi parameters. Similarly as for the coulombic interactions, the van der Waals pair-potential
energy can be obtained between our two {grain+ions} entities as

EvdW = −
Nleft∑
i=1

Nright∑
j=1,j ̸=i

4εij

(
σij
rij

)6

−
Nleft∑
i=1

Nflying left∑
k=1,k ̸=i

4εik

(
σik
rik

)6

−
Nleft∑
j=1

Nflying right∑
k=1,k ̸=j

4εjk

(
σjk
rjk

)6

(4.14)

where σij and εij are set according to the discussion of §1.2 in Chapter 3.

Hard core repulsion

In addition, we propose a hard core repulsion at a COM distance Rg = 6Å corresponding to the
aluminosilicate skeleton gyration radius computed earlier, with the form :

Vrepulsion(r) =
1

(r − 6)12
. (4.15)

4.3.2 Resulting interactions

All these interactions can be summed up, leading to the total potential energy of interaction, according
to Eq. 4.16.

Vgrain−grain,atomic(r) = VCoulomb(r) + Vdip−dip(r) + VvdW(r) + Vrepulsion(r). (4.16)

Resulting interactions are shown in Fig. 4.13 with the respective contributions in different colors.

It is interesting to denote that Coulombic interactions are mostly repulsive for charged cases and
increase with grain deprotonation. When the grain is fully protonated, Coulomb forces becomes at-
tractive below a COM distance of 10Å. Note that below this distance, grains deformation is forced,
leading to proximity effects. According to Fig. 4.13(b), embedded dipoles interaction appears negli-
gible w.r.t. the others.
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(a) (b)

(c) (d)

Figure 4.13: (a) Coulombic, (b) dipole-dipole and (c) van der Waals contributions to the pair-potential
of interaction between our two atomic clusters {grain+ions}. In (c), a 1/r3 is shown with a black line.
(d) Total pair-potential energy. Color refer to the different deprotonation degree case, with d = 0, 4
and 10, respectively accounting for 6, 14 and 26 sodium ions in solution.

Van der Waals potential energies show a interesting behavior. Especially, while accounting for a strong
well of attraction, there appear to be independent on the deprotonation degree. As a sum of 1/r6

terms, the pair interaction shows a 1/r3 tendency, as for the dipole-dipole term.

Finally, Fig. 4.13(d) illustrates well a transition from an attractive to a repulsive regime as the surface
charge of the oligomer increases. The fully protonated case displays a clear well of attraction within
the range [6,16]Å with a minimum slightly higher than the one of metadynamics (-55 vs -75kcal/mol).
Repulsion in the highly deprotonated case is not as strong as observed from metadynamics results
illustrated in Fig. 4.2. However, we recall that the system is forced to close distances under 10Å
and that in this highly protonated, the sampling is poor at shorter COM distances (see Fig. 3.30
in Chapter 3). In the mildly deprotonated case (d = 4), attraction starts below this distance 10Å.
These results are consistent with metadynamics calculations, especially as the well is recovered in the
protonated case and a repulsive regime in the highly deprotonated one, with the mildly charged case
at the in-between.

While this approach requires atomic positions, it allows to get a simpler overview of the grain-grain
interaction regime in solution. In the next section, we propose to upscale the approach by defining a
model which do not involving inter-atomic properties.
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4.4 Grains as charged meta-grains

There is a strong analogy between our aluminosilicate grains in water with flying ions and the atom,
as an hard core with its electronic cloud. In this section, we propose to define a meta-grain, seen
as a hard core aluminosilicate skeleton (which formulation depends on the deprotonation degree d:
[Si20Al3O61H30−d]

(d−3)−), with its ionic cloud. Such a view permits the definition of different properties
for the {grain+ions} complex, relating to grain-grain interactions at the mesoscale. In the following,
three deprotonation cases will be discussed, of d = 0, 4 and 10, with respectively 6, 14 and 26 sodium
ions in solution.

4.4.1 Geometry of the grains

Over a simulation run, both grains are able to deform and reshape as already seen in §1.3 for a single
grain in water. Fig. 4.14 illustrates that grains’ geometry is influenced by the presence of a second one
in solution. Despite the grains are similarly defined at the beginning of the simulation, their shapes
undergo large fluctuation during the simulation. The different panels displays that not only grains
asphericities depend on the deprotonation, but also on its proximity with the other grain.

(a) (b) (c)

Figure 4.14: Evolution of the left (blue) and right (red) grain geometries as a function of the distance.
The plots correspond to asphericities computed as defined in Chapter 2 . Each plot corresponds to a
deprotonation degree of: (a) 0, (b) 4 and (c) 10. Every quantities are computed for every configurations
sampled over the metadynamics run averaged over COM distance bins of 0.1Å.

At short distance, for all three cases, one grain as an asphericity close to 0.55 while the other stands
as 0.45. However, only the fully protonated case display a convergence of both asphericities to the
same values at largest distances. The higher the grain charge is, the more the shapes differ. This
echoes the path dependence deformation of the grains already discussed from Fig. 4.9 and Table 4.1.
For all the three cases, asphericities are mostly constant above 10Å, distances already discussed to be
of extreme grains proximity, almost merging.

4.4.2 Meta-grains under different views

In the previous section, it was shown that sodium ions are allowed to move freely within the simulation
box. Therefore ionic cloud associated to hard cores can be defined under different considerations. Two
approaches are proposed here, both accounting for electro-neutrality of the whole system seen as two
meta-grains in water.

(I) Splitting the box into a left and right parts from the middle of the meta-grains interface, at-
taching ions of each part to the respective grains ;

(II) Distributing ions to the closer grain in order to compensate for the charge deficit to obtain two
meta-grains of null charge.
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Fig. 4.15 illustrates how the ionic clouds are defined in both (I) and (II) cases. These two models
will, in the following, be referred as the Half box (I) and Null charge (II) models.

(a)

(b)

Figure 4.15: Ionic cloud definition under two perspectives : (a) the simulation box is split into two
regions of same size (40Å×40Å×40Å) with regard to the middle of the COM distance between the
grains (I). Blue and red regions are respectively defined with regard to the left and right grains. As
the grains move along the x-axis, so do both regions. ; (b) atoms are attributed to either the left or
right grain depending on their distance to grain surfaces to form {grain,ion} complex with null charge
(II). The green arrow illustrates an ion that is attributed to the left grain while it is closer to the
right one. This is a consequence that the right grain has more ions at its vicinity than the right one.
In order to keep both structures neutral, this ion, being the closer non-belonging to the left entity, is
attached to it.

4.4.3 Meta-grains characterization

Based on both approaches, our two meta-grains acquire electrostatic characteristics and geometric
properties as charges, dipole norms and polarizabilities. These relate to dictate the interaction between
the meta-grains in water.

Electric charge

The charge of a meta-grain is defined as the sum of the charge of its aluminosilicate skeleton, i.e.
−3 − d, d being the deprotonation degree, and its associated ions. We recall that a −3 charge is
inherent to the grain because of the presence of aluminum ions in its core.

From its definition, model (II) ensures a null charge for both meta-grains. Since our models are thought
to ensure electro-neutrality between the two meta-grains in water, both charges are of opposite signs.

Polarizability and Density Energy Transition

Within a meta-grain, the volumetric polarizability α can be computed as α = 4/3πσ3, with σ being
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the distance of the furthest sodium ion to the grain center of mass. Such a definition gives rise, in
first approach, to a Dipole Energy Transition (DET) η as

η =

√
S

α
, (4.17)

S being the number of flying ions belonging to the ionic cloud, i.e. out of the grain vicinity (here taken
further away from the grain of more than 6Å according to the ion pair correlation functions seen in
Fig. 4.4(b)).

Average characteristics

For each model, the physical characteristics and geometrical properties can be obtained for both
grains. Even though these might be distance dependent as discussed in next section, their dependence
w.r.t. the model and the protonation degree is shown in Fig. 4.16. Note that the dipoles are defined
similarly as in §3.1

(a) (b)

(c) (d)

Figure 4.16: Electrostatic characterization of the meta-grains depending on the deprotonation degree
d. All quantities are averaged over the full metadynamics trajectories, independently of the COM
distances. (a): Charge, (b): Polarizability, (c): Dipole norm, (d): Dipole angle w.r.t. the x-axis.
Triangles and rectangle shows the left and right grains. Magenta lines account for model (I) and the
orange one to model (II). Red green and blue refers to the color code of Chapter 3 on the different
deprotonation cases.

As expected, the charges of meta-grains with model (I) are opposite and remain null for model (II). The
polarizability, expressed as a maximum distance between the aluminosilicate COM and the furthest
ion, increases with deprotonation. However, the relation is not linear, since ions are allowed to move
freely within the simulation box, according to Fig. 4.4. Deprotonating the aluminosilicate grains
introduce a strong polarizability, without requiring a high surface charge.
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As the deprotonation degree increases, meta-grains dipoles do too. This linear behavior is related
to the increase of surface charge of the aluminosilicate grain alongside the increasing of the distance
of ions to the grain. Both models display the same tendency for dipoles orientations. They go from
almost perpendicular orientation to the x-axis to almost parallel, in opposite directions.

4.5 Meta-grains potential energy of interaction

Our meta-grains in solution are interacting in solution with three major types of interactions: 1.
Coulombic interaction, depending on their respective charges; 2. Dipole-dipole interactions, from the
fact that aluminosilicate skeleton is negatively charged and its ionic cloud positively; 3. Dispersion
interactions (with analogy to the London dispersion force) accounted for from meta-grains polariz-
ability.

These interactions, depending on the meta-grains characteristics, are discussed below and compared
to Potential of Mean Forces obtained from metadynamics simulations.

4.5.1 Electrostatic repulsion

As seen from Fig. 4.15, model (I) allow charge exchange between the two meta-grains, therefore
inducing a coulombic attraction. From the definition of model (II), meta-grains have null charge and
so, are not subject to this type of interactions.

For two charges qi and qj at a distance rij , the coulombic interaction associated to their charges
potential energy writes as

VCoulomb(rij) =
qiqj

4πϵ0ϵrij
. (4.18)

Fig. 4.17 shows the meta-grain charge evolution with the COM distance and the resulting coulombic
interactions in model (I) description, according to Eq. 4.18.

(a) (b)

Figure 4.17: (a): Left meta-grain charge as a function of the COM distance between the grain. Dots
corresponds to mean values and lines to standard deviations, taken over binned configurations (i.e. over
time). Note that the charges computed here undergo very large fluctuations that are strongly related
to the small number of available configurations, shown in Fig. 3.30(a) from Chapter 3. (b): Coulombic
interaction between the two charged meta-grains. Both quantities are shown in the framework of model
(I). All three deprotonation cases d = 0, 4 and 10 are shown with associated colors : red, green and
blue. In this gray shaded area, above 20Å, meta-grains charges oscillates around 0. Because of the
small number of sampled configurations (see Fig. 3.30(a) in Chapter 3), the average value is slightly
different, therefore inducing numerical artifacts at larger distances, that do not have a physical sense.
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4.5.2 Dipole-dipole interaction

Dipoles related to our meta-grains interact according to an embedded point dipole (within a dielectric
sphere, as according to our modeling) interaction can be estimated from Eq. 4.13.

Fig. 4.18 shows the interactions obtained from dipole-dipole calculations according to Eq. 4.13.

(a) (b) (c)

Figure 4.18: Dipole-dipole interaction contribution from the Stockmayer potential for (a): d = 0, (b)
: d = 4 and (c): d = 10 respectively. Each color corresponds to a model for meta-grain definition

Without deprotonation, a attractive well is observed at very low distance, starting from 16Å. At
distances lower than 10Å the aluminosilicate skeletons almost touch each other and so, the system
undergo more fluctuation in their geometry (as seen from Fig. 4.14) due to their flexibility, causing
oscillations in the computed quantities.

For the three cases, both model display the same behavior. Dipole-dipole interactions are attractive in
the protonated case and strongly repulsion at high deprotonation degree. The middle case, however,
shows a more sensitive behavior, even probing for a slight attraction between 10 and 14Å.

In order to get a better understand of this interaction regimes dipoles behavior can be analyzed via
their norms and relative angles. Fig. 4.19 shows both these quantities in two cases

(a) (b) (c)

Figure 4.19: Analysis of meta-grains dipoles. Dipole norm of the left meta-grain norm obtained from
the different model in the (a): protonated case; (b): highly deprotonated case. (c) Relative dipoles
orientation for method (I), similar for (II). An angle of +180◦corresponds to dipoles that have opposite
directions and +90◦to perpendicular ones.

Dipole-dipole repulsion appears to be characterized by the strong increase of the dipoles norms as
aluminosilicates approach each other in high charge case. At higher deprotonation degree, we find
more ions within the simulation box, which are more likely to be located far from the grain. This
extend the dipole norm as seen from Fig. 4.15(c). The dipole norm increases as the grain gets closer.
Since in the highly deprotonated case, dipole relative angle is around 150◦, a strong repulsion is
induced.
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Both d = 0 and 4 embedded dipoles have relative orientations ranging between [100,120]° , suggesting
almost perpendicular dipoles. According to Fig. 4.19(a), dipole norm is almost constant, even when
the grains gets close. Its intensity is lower to the one of the mildly deprotonated case. However, as
this one shows a repulsive regime of dipole-dipole interaction, it turns out that the intensity of its
dipole is high enough to generate repulsion, weaker than the one of the 26Na because of the relative
angles.

4.5.3 Dipole-induced dipole interaction : the dispersion approach

The dispersion effects contribution to the potential energy is of the shape

Vdisp(r) = −
(
C6

r6
+
C8

r8
+
C10

r10

)
, (4.19)

where the Cn coefficient stands for the dispersion forces coefficients and r corresponds to the distance
between the two interacting entities[162]. Note that Eq. 4.19 is expressed in reduced units, as e = 1,
1/4πε0 = 1 and h̄ = 1[163]. They do account for instantaneous dipole-dipole quadripole-dipole and
quadripole-quadripole/octopole-dipole interactions from n = 6, 8 and 10 respectively. In our case, the
first term is of most interest and can be computed from grains polarizabilities.

The dipole-dipole coefficient C6 is obtained from Density Energy Transitions η and polarizability α
for two particles i and j in solution as :

3

2

ηiηj
ηi + ηj

αiαj , (4.20)

and so, the dispersion energy terms rewrites, in Hartree, as

Vdispersion(rij) = −
3

2

ηiηj
ηi + ηj

αiαj
1

r6ij
. (4.21)

Arising from both quantities is the resulting dispersion interaction that is shown in Fig. 4.20.

(a) (b)

Figure 4.20: Dispersion contribution to the potential energy between the two meta-grains. (a) Inter-
actions for different deprotonation degrees in the model (I). (b): Interactions in the highly protonated
case d = 10 for both models.

In the opposite of dipole-dipole interactions shown in Fig. 4.18, the dispersion turns out to be strongly
attractive. This is inherent to the grains strong polarizabilities as ions are flying in the entire box. This
can be seen from both panels of Fig. 4.20. Panel (a) probes that attraction occurs at largest distances
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as the deprotonation degree increases, i.e. more ions fly within the simulation box. In addition, panel
(b) illustrates that both models are converging.

4.5.4 Total interactions

In this section, the grain-grain interactions have been thought under the scope of two meta-grains as
{grain+ions} complexes, in which ions are included w.r.t. different models, involving or not alumi-
nosilicate grain-ion distance. Meta-grains interactions have been seen under the scope of coulombic,
dipole-dipole and dispersion interactions, in water. Once again, we apply a hard core repulsion at the
COM distance Rg = 6Å according Eq. 4.15. All these interactions can be summed up, leading to the
total potential energy of interaction, according to Eq. 4.22.

Vgrain−grain,meta(r) = VCoulomb(r) + Vdip−dip(r) + Vdispersion(r) + Vrepulsion(r). (4.22)

Resulting potential energies are shown in Fig. 4.21 and discussed below.

(a) (b)

(c) (d)

Figure 4.21: Total interactions computed from the different meta-grain models using Eq. 4.22. Panel
(a) compares the potential energy for different deprotonation degrees in the second model (II). The
results of both models are shown and compared in details in panels (b),(c) and (d), respectively for
deprotonation degrees of d = 0, 4 and 10.

From Fig. 4.21 panels shows:

(b) attraction for the d = 0 case;

(c) a attracto-repulsion for d = 4;

(d) a strong repulsion for d = 10.
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These results recall the one previously obtained from metadynamics and especially the transition
from attractive to repulsive regime with the increase of grain deprotonation (see from Fig. 4.2). The
different models shows a good ability to account for either attractive or repulsive regime for our system.
However, the interactions here appears to be out of scale as the grain surface charge increases.

Rescaling the interactions

Up to this point, interactions have been computed in the void, i.e. with a dielectric constant εr = 1.
However, section §1.4 showed that water must not be neglected at the grains interface. While the
attractive well is recovered with the meta-grain approach, we recall that it showed a hydrophobic
regime, i.e. a dry interface, consistent with a value of εr = 1. Fig. 4.10 (b) illustrates that it is not
the case when the grains are deprotonated.

In fact, the water content at the grains interface is likely to influence the interactions as probed for
clays and CSH charged materials by Carrier[164] and Goyal et al. 2021[73] respectively. In addition,
Thoenen [165] studied the dependence of water dielectric constant in clays as a function on the water
content. It results in an equation of the form:

ε(w) = εbulk − (εbulk − εadsorbed) exp(−αw), (4.23)

where w stands for the water content, εbulk and εadsorbed being the dielectric constant for both bulk
and adsorbed water. This function proposes a strong increase of ε a function of the water content,
similar to the sigmoid function proposed to evaluated εr depending on CSH COM distance[73].

Under such view, we propose a rescaling of interactions according to the dielectric constant distribution
shown in Fig. 4.22. According to Fig. 4.10, the water content per 100g of aluminosilicate grain can
be evaluated.

Figure 4.22: Dependence of the water dielectric constant εr on the water content. Dark red dots
corresponds to experimental values obtained for clays and the black straight line to the associated fit,
data reproduced from [165]. Yellow dots are the simulated values obtained for clay systems and the
magenta line to the associated fit, data reproduced from [166]. These data are originally produced as
a function of the d-spacing between two clay platelets. Here, water content is modeled linearly to the
distance as equal to 0 at null spacing and of 100 (corr. to a εr = 78 from [165]) at d = 8Å. Colored
crosses are the proposed values to rescale the interaction for our geopolymer grains, respectively 2,25
and 71 for deprotonation degrees of 0,4 and 10.

We proposed, for each deprotonation degree (and so, water content), a value of εr that rescales the
meta-grain interactions to the same order of magnitude than the one of metadynamics. As seen from
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Fig. 4.22, these follow a tendency similar to the one obtained experimentally for clays and fit well
with the estimated curve from molecular simulations [166]. Resulting interactions are shown on Fig.
4.23 and compared to previously obtained PMFs.

(a) (b)

(c) (d)

Figure 4.23: Total interactions computed from the different meta-grain models using Eq. 4.22. Panel
(a) compares the potential energy for different deprotonation degrees in the second model (II). The
results of both models are shown and compared in details in panels (b),(c) and (d), respectively for
deprotonation degrees of d = 0, 4 and 10. The Potential of Mean Forces obtained from metadynamics
simulations are shown in black lines.

With this rescaling, the details of interactions can be shown in Fig. 4.24. It displays the contributions
of Coulombic, dipole-dipole and dispersion interactions for all the three cases.

In the three deprotonation cases, the total interactions is driven by the dipole-dipole interactions.
These relate to a strong ionic correlation between the grains[164]. As the surface charge increases, the
dielectric screening gets stronger, reducing ionic fluctuations and so, repulsion occurs.

No deprotonation d = 0

When the grain is fully protonated, a fully attractive potential is observed, starting around 16Å
(see Fig. 4.23(b)). This attraction arises from a combination of both dipole-dipole and dispersion
interactions.

According to MTD calculations, the attractive well starts around 16Å to reach a minimum at 8Å.
Using the meta-grains models, this one reaches a minimum a bit later because of the strong dispersion
attraction at short distances. At 8Å, the same values of metadynamics potential well are recovered
around -80kcal/mol.
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(a) (b) (c)

Figure 4.24: Details of the contributions to the total meta-grain-meta-grain interactions. The different
colors corresponds to each interaction and the light blue is the total interaction as the sum of the
different contribution and the repulsive wall as defined in Eq. 4.15. All contributions have been
normalized w.r.t. εr according to Fig. 4.22. The dash-dotted black line is the zero line.

Mid-range deprotonation d = 4

Potential of interaction of this mildly deprotonated case displays a small attractive well between 10
to 12Å. Still, within the range 8-16Å dipole-dipole interaction undergo very slight fluctuations around
0kcal/mol before being strongly repulsive. The short-range repulsion starting at 10Å can be attributed
to dipole-dipole interactions (see Fig. 4.19. This is explained by a combination of both the increasing
of dipoles norms an their non-aligned disposition. For d = 4, even if the dipole norm increases as the
COM distance decreases, both dipoles are not parallel (see Fig. 4.18) but rather parallel. Especially,
Fig. 4.18 (c) probes that the dipoles relative angle undergo fluctuations over this range of distances.
Mid-range attraction appears to originate from dispersion interactions, not overwhelmed by dipole-
dipole repulsion at this distance range. Finally, state at COM distances smaller than 8Å are unfavored
ones and have been poorly sampled with metadynamics (see Fig. 3.30 from Chapter 3). Therefore,
results below this distance are assumed irrelevant.

With a gyration radius of the whole cluster around Rg = 10Å= 1nm[15], a spherical model for the
aluminosilicate grains leads to an approximation of the surface charge as 7/4πR2

g = 0.006e/Å2 similar
to the one of clays[164]. In the case of clays, the same behavior as found here have been discussed for
nano-particles in water[166]. Especially, using metadynamics to model this system, they have found
a well of attraction around 1eV = 26kcal/mol, consistent with Fig. 4.23(c). According to their study,
sodium ions are to leave the inter-grain region, promoting an hydrophobic interface (Donnan effect
[167]). At a grain spacing distance ranging from 1.5 to 2.0nm, they estimated the water dielectric
constant to εr = 10 to 30, similar to the value around 25 proposed here.

Meta-grains approach and metadynamics results converge. Both curves show a very potential of
interaction, illustrating a transition regime, at the in between of repulsion and attraction.

High deprotonation d = 10

From both models (I) and (II), a strong dipole-dipole repulsion is recovered as for metadynamics,
starting at 16Å COM distance instead of 12Å for the biasing method. Even though dispersion inter-
actions account for attraction, it does not overwhelm the dipole-dipole term. Coulombic interaction,
despite attractive, is too low to influence the total interaction.

In this case, the surface charge is about 0.01e/Å2. As immersed in almost bulk water (εr = 71, the
dielectric water constant measured for SPC/E water model used in this work [168]), the grains Debye
length is of 8.1Å, accounting for a high screening of its electrostatic effects. While low electrostatic
coupling is the basis of the Poisson-Boltzmann equation, this repulsion regime aligns well with the
DLVO theory (discussed in more details in Chapter 2)[71], using both metadynamics or the meta-grain
approach.
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Role of the water at the interface

Results on the protonated case echo §1.5 discussion and Fig. 4.11. In the dry interface (corresponding
to εr = 1), the well of interactions is recovered by the perturbation technique. In opposition, while all
cases deprotonation cases were found attractive in the dry interface case (see Fig. 3.18 in Chapter 3),
both metadynamics and meta-grains approaches nuance these results with a transition to a repulsive
regime as the surface charge increases. According to the current discussion, this strongly relies on role
of the water content at the interface and is illustrated in Fig. 4.25.

(a) (b)

Increasing of the
surface charge

Transition from
hydrophobic to

hydrophilic interface

Figure 4.25: (a) PMFs obtained from four different techniques, echoing Fig. 4.11 with addition of
the meta-grain model PMF. (b) Metadynamics and meta-grain model PMFs. The metadynamics
curve has been fitted with a DLVO equation as described in Chapter 2, with a Hamaker constant of
8× 10−20J as measured for aluminosilicate materials[169, 170].

4.5.5 Reactivity at short distances for protonated grains d = 0

While high pH conditions (i.e. surface charge) seems to forbid the cohesion because of an induced hy-
drophilic regime, attraction turns out to occur when oligomers are fully protonated, at a dry interface.

Considering two grains at a COM distance of 8Å, we perform a well-tempered metadynamics run
with, as a collective variable, the distance between a silicon atom of a grain and an oxygen atom from
the other one. The run is performed in the NV T ensemble at ambient temperature with the ReaxFF
potential [69] in order to account for either the formation or not of chemical bonds between the entities.
Fig. 4.26 shows the PMF obtained w.r.t. the O-Si–O distances between the two oligomers.

Fig. 4.26(a) shows the formation of a Si-O–Si bond with a well of energy in the PMF. This PMF also
display a strong well in the 3 to 5Å distance range, that may account for electrostatic bonds between
the OH edge of a grain with the O− and OH sites of the second one. Such equilibria is only possible at
a dry interface and could act as a strong precursor to further geopolymerization (this process happen
while geopolymerization has already started, especially allowing the existence of our studied oligomer).
Entities link via the formation of a siloxane bond with the release of an OH− group, via the following
reaction process:

R–O–H + O–R’ → R–O–R’ + OH−,

where R and R’ stand for either silicon (Si) or aluminum (Al) atoms.

This phenomenon can only happen with a dry interface between the two oligomers, i.e. under not too
high pH conditions.

106



Chapter 4 4.6. Conclusion

(a) (b)

Figure 4.26: (a) Potential Energy as a function of the O-Si–O distances between two protonated
aluminosilicate oligomers at a COM distance of 8Å. (b) Snapshot of the two bonded grains. In blue
and red are shown the two grains and in yellow the bonds. The siloxane (Si-O-Si) bond formed during
the simulation is shown in the green circle.

4.6 Conclusion

In this Chapter, the dynamics of ions have been discussed alongside the ability of the aluminosilicate
grain to deform. Their flexibility have been quantified w.r.t. the deprotonation degree and appear to
relate to effective interactions in solution. Higher grain surface charge account for less flexible grains
and a repulsive regime.

An overall transition from attraction to repulsion between the oligomers in solutions is seen from
metadynamics PMF calculations. These results probe a transition from a hydrophobic to hydrophilic
interface that can be described with a dielectric screening theory. Effective interactions have been
recovered by simplified atom/atom model and using a meta-grain approach, also supported by CSH
and clay previous works.

Dielectric screening key role has been demonstrated in this meta-grains model. In the dry interface,
pre-geopolymerization can start through an electrostatic cohesion between the two entities. In fine,
cohesion is allowed if oligomers charges are low enough, i.e. at a pH that is not too high with the
formation of Si-O-Si or Si-O-Al bonds. This echoes that with a too high pH in solution, geopolymer
pastes do not set as observed experimentally at the CEA Marcoule from unpublished experiments
and that aluminosilicate polycondensation is highly limited at high sodium concentration[171]. In
addition, both experiments and simulations probed the existence of a maximal silicate oligomer size.
At high pH, bigger grains are more deprotonated and so, may be less favorable to form Si-O-Si or
Si-O-Al bonds with other oligomers within the gel.
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Chapter 5

Mesoscale modeling of geopolymers

Gel phases involve oligomers of few nanometers size. In solution, oligomers with sizes up to 2nm are
formed and interact with each other in order to form a larger oligomer network. This reaction path is
called polymerization. Hardened material characteristics are highly related to the interactions between
these oligomers as these rule the structuring of the paste at the meso-scale level.

From an atomic point of view, molecular dynamics simulations has allowed to quantify the grand
potential of interaction between two aluminosilicate grains in solution using different techniques. As
a matter of fact, these interactions appear to depend on their deprotonation degree. However, it
remains, of a great interest to consider the structures that can be generated from the computed
potentials, assuming an uniform distribution of aluminosilicate oligomers in solution.

To do so, in this Chapter, the Potential of Mean Forces (PMFs) obtained will be fitted to empirical
potentials and implemented in Grand Canonical Monte-Carlo (GCMC) molecular simulations. Such a
process aims to reproduce the aggregation of oligomers during precipitation, i.e. the formation of the
meso-network from which the final material will arise. According to the previous discussion on grains
geometry, a coarse-grained approach is proposed, with grain seen as spherical particles.

Because of the different Potential of Mean Forces (PMFs) obtained before, three types of potentials
are discussed : an attractive one, corresponding to the fully protonated case (deprotonation degree
d = 0 as defined in the previous chapter), one with a middle-range shoulder (d = 4) and a fully
repulsive one (d = 10). These three case allow to study the resulting structures under the scope of
pore size distributions and scattering intensity data, for geopolymer materials.

5.1 Aluminosilicate grains as particles

In order to define a coarse-grain model for geopolymer pastes, the geometry of a geopolymer particle
must be identified. It would allow for the definition of coarse-graining length for mesoscale simulations.
The average size of aluminosilicate oligomers has been evaluated using different approaches, either from
experimental or in atomistic simulation. In addition, fitting the potential of mean force would also
allow to define a characteristic size for the particle.

5.1.1 Scattering experiments

Performed by Steins et al. [20], Small Angle X-ray Scattering experiments (SAXS) allows to char-
acterize the structure of geopolymer pastes. Thanks to the Beaucage model [52, 53] the scattering
curves and structural parameters of the material can be related as described in Chapter 1. Gyration
radius for oligomers was estimated around 2nm, in a geopolymer pastes.
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5.1.2 Mesoscale Simulation literature

Two different models have been proposed to build up mesoscale simulations. Based on two distinct
approaches, they have their own coarse-graining length and effective potential of interactions.

DFT calculations have allowed to understand the role of silicate addition to the activating solution
at constant pH on the cluster formation from monomers in aluminosilicate materials[107]. In their
simulation they used particles of size around 3.1Å corresponding to silicon and aluminum tetrahedron.

From measurement of mechanical properties of geopolymers pastes, an effective interaction potential
between aluminosilicates nano-particles have been proposed under the form of a polydisperse Lennard-
Jones potential. According to SAXS, MIP and TEM observations, a range of particles between 5 to
50nm is proposed to generate structure based on the agglomeration of oligomers and study their
mechanics [108].

5.1.3 Reactive atomistic simulations

Recalling the grain model used in Chapter 3 and 4, a maximum gyration radius for an aluminosilicate
grain containing 21 Si/Al atoms in solution has been estimated to 10Å [15]. With a Si-O distance
of 1.6Å in silicates, this values is consistent with the 3.8Å gyration radius of silicate dimers or cyclic
trimers.

5.1.4 Potential of Mean Force fitting

In Chapter 4, the grain geometry was discussed and it was shown that its asphericity oscillates between
0.3 and 0.6 according to Fig. 4.8 from Chapter 3. From a unique geometrical point of view, this
characterization do not allow to model our grains as spherical particles.

Aluminosilicate grains appear to be highly amorphous w.r.t. their CSH and clay counterparts. Their
geometry evolve alongside their Center-Of-Mass (COM) distance (also dependently on its deproto-
nation, as seen from Fig. 3.20 and 3.21 in Chapter 3). Therefore, there do not appear to be a
straightforward geometrical model for aluminosilicate particles.

In this work though, we propose to account for spherical particles as a first approach and for simplicity.
This choice has already been taken to study, e.g. CSH systems[102, 101] despite CSH grains are usually
seen as platelets consisting of nanolayers[74, 33].

Pair-potentials for spherical particles

According to Chapter 3, without any deprotonation, the potential of interaction is fully attractive.
When increasing grains deprotonation, it transits to a repulsive regime. Fig. 5.1 displays two types
of inter-atomic potentials usually employed within molecular simulations : the Lennard-Jones and the
Yukawa (see Chapter 2).

From the definition of the Lennard-Jones potential, σ corresponds to the distance that sets the po-
tential energy to zero and can be seen as a ”particle diameter”, i.e. a characteristic particle size.

From the definition of σ as a parameter of the Lennard-Jones potential, transition from Fig. 5.1(a) to
Fig. 5.1(b) is straight forward. With a particle size of 8Å, the well depth and location are retrieved.
Increasing the particle size shift the well minimum to the right, meaning that with a bigger particle
size, the actual well will not be accounted for. As a hard sphere model, a repulsive wall is imposed
as the particles get in contact. Therefore, such potentials can not allow for grain deformation at very
close distance that would result into sphere inter-penetration.
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(a) (b)

Figure 5.1: Fitting of the metadynamics Potential of Mean Force (PMF) obtained for the fully pro-
tonated case d = 0. The fit are proposed for either a single Lennard-Jones (LJ) potential or the sum
of a Lennard-Jones and Yukawa (LJ+Yukawa) potentials. Panel (a) and (b) corresponds to particles
sizes σ of 6Å and 8Å respectively. LJ energy parameter is taken as ε = 75kcal/mol for the (a) panel.
It is set to ε = 105kcal/mol in panel (b), with Yukawa parameters as A = 4

1.5ε and κ = 2/σ. The
black line is the metadynamics PMF.

A density approach

On the perspective of using a simple geometrical shape to design our geopolymer grains, a density
approach is proposed here. Considering a single grain, by defining a minimal region according to its
edges (in the x,y and z directions), the grain can be contained within a box. The volume of empty
regions (containing no grain atoms) can be subtracted to the total, estimating a grain-containing
volume, as illustrated in Fig. 5.2(a). This volume is estimated to be less than 60% of the box one.

(a) (b) (c)

Figure 5.2: (a) Aluminosilicate grain within a box defined w.r.t. its edges atoms, shown in the x− z
plane. The green dashed rectangles show the volumes subtracted to the one of the box to estimate a
local density of the grain. (b) Values of the density of aluminosilicate contained within a sphere taken
at the COM of each grain. The values are shown in blue and red for the left and right grains, as a
function of the sphere’s radius in the case of two grains immersed in water. The green straight line
correspond to local grain density obtained within the volume defined in (a). (c) Spheres at the center
of a grain with radii of 4, 6 and 8Å.

On the purpose of a spherical definition, because of the grains’ flexibility, the distance that matters
most is half the smallest accessible COM-distance (6Å), i.e. a minimum radius of 3Å. Fig. 5.2(b)
shows the density of aluminosilicate grains at different COM distances. The density changes due to
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the flexibility of grains. It shows a non monotonic behavior with maximum at 4Å. In fact, this 4Å
sphere is able to encompass the denser part of the grains. Moreover, this density is higher than the
one of the full grain, ensuring that we do not overestimate this volume.

Oppositely, using a sphere radius higher than 7Å would be too large. The volume of the spherical
model should be as small as possible to account for deformation, i.e. attraction from a mesoscale point
of view.

In overall, relating these results to Fig. 5.1, the choice of a spherical particle radius of 4Å is proposed for
mesoscale modeling of geopolymer gels, in the framework of coarse-grained Monte Carlo simulations.

5.2 On the variety of pair-potentials

As a way to study the precipitation and aggregation of colloidal particles, precipitation simulation
technique has been employed for reactive solution of CSH[102]. Coupling Grand Canonical Monte
Carlo (GCMC) and Molecular Dynamics (MD), it mimics the reactive solidification of a paste. The
precipitation is modeled via a GCMC procedure as defined in Chapter 2: our geopolymer particles
are inserted with regard to a probability that depends on a excess chemical potential µexc. Similarly
as for CSH, we assume that during precipitation, there is an excess amount of dissolved solute within
the pores, and that the precipitation do not stop. As a consequence, µexc, accounting for the energy
required to the formation of an oligomer (i.e. a particle), is taken to favor a full densification. MD runs
are applied in between GCMC trials as it allow the system to aggregate and restructure dynamically.

Modeling precipitation reaction using Grand Canonical Monte Carlo requires an effective pair-potential
for interactions. Variety of functions can describe potential energies as a function of the inter-particle
distances, w.r.t. to physical model and types of particles. In this work, three types of interactions are
discussed :

• A Lennard Jones (LJ) model: to model the attractive PMF (d = 0 case);

• A LJ+Yukawa model : to fit the transitive PMF (d = 4 case);

• A single Yukawa : to account for the DLVO repulsion (d = 10 case).

5.2.1 The Lennard-Jones model

An attractive inter-grain behavior can be modeled with a single Lennard-Jones (LJ) potential, con-
sidering particles as hard spheres. It is one of the most used and is well implemented in molecular
simulation codes. Under its Mie form shown in Eq. 5.1, it can be parameterized in terms of well
depth, location and width according to ε, σ and γ.

ϕLJ(r) = 4ε

[(σ
r

)2γ
−
(σ
r

)γ]
. (5.1)

Using a LJ model has the benefit to be highly transferable. From simulation performed with generic
parameters (i.e. in so-called LJ units) σ∗ = 1 and ε∗ = 1, the results can be asset to any system by
re-normalizing their values in S.I. units, according to Table 5.1 given in the next page.
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Property Dimensionless quantity S.I. conversion

Length r∗ r = r∗σ

Energy E∗ E = E∗ε

Time t∗ t = t∗
√

mσ2

ε

Temperature T ∗ T = T ∗ε/kB
Pressure P ∗ P = P ∗ε

σ3

Density ρ∗ ρ = ρ∗/σ3

Table 5.1: Table for conversion of Lennard-Jones dimensionless units[172]

With a particle size σ = 6Å, taken as the gyration radius of our grain (see Fig. 4.8 in Chapter 4),
Lennard-Jones pair-potentials are proposed with different γ exponents in Fig. 5.3, allowing to cover
a good range of potential width. The γ = 6 and 12 potentials are the most commonly used while the
2.5 value was chosen to reproduce the well shape in the range [7,9]Å.

Figure 5.3: Fitting of the metadynamics PMF. Dashed-dotted lines stand for the LJ potential with
different values of the γ exponent with a well depth ε = 75kcal/mol and a particle size of σ = 6Å.
Note that the well can be distance-shifted by changing the value of σ as seen from Fig. 5.1. The blue
line is the metadynamics PMF.

5.2.2 Morse model

Out of consideration of the particle sizes, the fore-mentioned PMF can be fitted using either a Lennard-
Jones or a Morse potential, both accounting for Van der Walls interactions. The first one stands for
a hard core modeling while the second allows to study soft systems (e.g. bonds equilibrium in bio-
molecules). Note that both potentials account for spherical particles.

The Morse pair-potential is defined as a

ϕMorse(r) = De(1− e−a(r−re))2, (5.2)

where De and re denotes respectively the well depth and the equilibrium distance between the atoms.
a is a width parameter that monitors the width of the well : this latter is wider as a increases. It is
often normalized according to

ϕMorse(r) = De

(
1− e−a(r−re)

)2
−De, (5.3)
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and can be rewritten as

ϕMorse(r) = De(e
−2a(r−re) − 2e−a(r−re)). (5.4)

Comparison of the fit

Fig. 5.4 shows the fit performed for the Morse model defined above and an alternative Lennard-Jones
potential.

Figure 5.4: Fitting of the metadynamics PMF. Dashed-dotted line shows the LJ potential with ε =
75kcal/mol, σ = 6.5Å and γ = 4.2. Morse fit is shown with the blue continuous line, with an
amplitude of De = 75kcal/mol, a width parameter a = 0.5Å−1 and equilibrium distance re = 8Å. The
black straight line is the metadynamics PMF and the dash-dotted one is the zero line.

The Morse potential is usually used to model molecule bonds or soft models as its behavior at short
distances is less sharp than the LJ potential. As a consequence, even though it has a better ability
to reproduce the shape of the grand potential of interaction, it does not probed interesting results at
first stance in the framework of GCMC simulations.

5.2.3 Yukawa fitting

At high deprotonation degrees, the interaction between two grains appears to be repulsive, in consis-
tence with the DLVO theory discussed in Chapter 2. Fig. 5.5 illustrates the fitting of the repulsive
PMF with (a) the DLVO theory ; (b) a Yukawa potential. Note that as seen from Fig. 4.2 from
Chapter 4, the deprotonation degree does not influence the shape of the pair-potential as soon as this
one entered a repulsive regime (deprotonation degree higher than 6). Thus, most repulsive cases are
concerned by this fitting.

From a technical point of view, the Yukawa potential is well implemented in molecular simulations
codes. Therefore, it will be the one used in following coarse-grains simulations. Still, performing
fore-mentioned simulations with a repulsive Yukawa potential as shown above results in a gas phase
that do not reproduce a gel or solid phase.
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Figure 5.5: Fit of the repulsive potential of interaction between deprotonated grains in water with the
DLVO formula with a Hamaker constant of 8× 10−20J as measured for aluminosilicate materials[169,
170] and a Yukawa potential with A = 1.4e4kcal/mol and κ = 0.35. The fits are performed for the
highest charge system, i.e. a deprotonation degree d = 10.

5.2.4 Choice of the pair-potential

We dispose of four possibilities to model the effective pair-potential for GCMC simulations. According
to the PMF discussed in Chapter 3 and 4, three regimes are obtained, that can be modeled either
using a Lennard-Jones for the d = 0 case (cf Fig. 5.3 or 5.1), a combination of LJ and Yukawa (cf
Fig. 5.1) for the d = 4 case and a repulsive Yukawa for the d = 26 case (cf Fig. 5.5).

In the following, we will proceed with these three options with a first study on the LJ potential and
especially the role of its well width, before to propose different scenarios using both LJ and hybrid
LJ and Yukawa pair potentials. Precipitation simulations will be performed with these potential used
in reduced LJ units, ensuring transferable results to different coarse-graining lengths. Note that the
repulsive Yukawa not being able to account for a hardened material, it will not be discussed further.

5.3 Reactive solidification for aluminosilicates

Building up a mesoscale model requires two main ingredients : particles morphology and an effective
potential of interaction. From atomistic simulations, aluminosilicate grains have been designed and
their geometry characterized (ellipsoidal shape, gyration radius). In addition, using different methods,
the grand potential of interaction between such grains in water have been evaluated as the PMF.
Both allow the study the aggregation of many aluminosilicate grains in solution thanks to hybrid
GCMC+MD simulations.

In the following, two discussions are presented. The first one compares the Lennard-Jones potentials
with different γ parameters as shown in Fig. 5.3. It evaluates the role of the pair-potential width
on the mesostructure. The second one proposes three different scenarios of precipitation, based on
the LJ and hybrid LJ+Yukawa potentials. Such a description aims to highlight the role of the pH on
effective interactions that must be taken into account to buildup mesoscale simulation of geopolymer
nano-particles.

This work differs from previous attempts of mesoscale simulations for geopolymers materials as it is
based on a PMF obtained from fully atomistic simulations.
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5.3.1 Simulation details

In the following, we perform precipitation simulations within a cubic box of length L∗ (and so volume
V ∗ = L∗3), defined at constant temperature T ∗ = 0.15. As discussed in §2, the excess chemical
potential µ∗exc is taken to ensure full densification of the system (and this, for every pair-potentials
discussed). The timestep is set to δt∗ = 0.0025. The packing fraction, corresponding to the percentage
of volume occupied by our particles, is estimated from the particle number density ρ as φ ≈ ρπ/6σ3.
It is set initially to φ∗ = 0.0005 [95]. The ∗ subscript denotes reduced Lennard-Jones units.

The kinetics of aggregation influences the resulting structures. When performing these hybrid sim-
ulation in the Grand Canonical ensemble, the Monte Carlo process of particle insertion/deletion is
coupled with time-dependent relaxation. Thus, we define a precipitation rates as the ratio between
Monte Carlo (MC) and Molecular Dynamics (MD) steps R ≡ NMC/NMD. Note that to respect the
dynamics when increasing the box size, the volumic precipitation rate R/V ∗ must be kept constant.
Therefore, as the box size increases, so does R, by increasing the number of MC calls (more particles
inserted).

5.3.2 Kinetics of the Mie potentials

Let us first discuss the three Mie potentials shown in Fig. 5.3. Simulations are performed at a
precipitation ratio R = 0.5, with 50 Monte Carlo trials performed every 100 Molecular Dynamics
steps. These are carried out in a simulation box of size L∗ = 34σ. The excess chemical potential is
taken at a value µ∗exc = −1.0.

Densification

The precipitation kinetics of our simulations are shown and compared in Fig. 5.6. The evolution of
the number of trials (a) and the convergence of precipitation rates to 0 (b) ensure that the system
does not densify further.

(a) (b)

(c) (d)

Figure 5.6: (a) Accepted trials of insertion and deletion of particles. Empty dots correspond to the
number of accepted insertions and empty squares to accepted deletions. (b) Evolution of the packing
fraction w.r.t. simulation time. (c) Packing precipitation rate during the run and (d) Potential energy
as a function of the packing fraction. The colors refer to the values of γ.
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The potentials with γ = 6 and γ = 2.5 reach similar final packings, the case γ = 12 shows a more
packed structure, at a given µ∗ = −1.0. Recalling Fig. 5.3 it reads that a narrower well potential for
short distances favors more packed structures. A wide well allow clusters of particles to be formed at
larger distances : atoms maybe be attracted to a cluster without necessarily being at the minimum
of the potential. This also directly relates from Fig. 5.6 (c): packing precipitation rate is lower for
the narrower potential. This illustrates that the system requires more time to equilibrate. In fact,
supposing an infinitely narrow potential, a particle would be either in or out of the well. Therefore,
the addition of new particle would generate stronger energy difference whether it is added close or not
of other particles. On the opposite, with a wide well, inserted particle can transit to the minimum
of potential continuously, accounting for a more smooth precipitation. According to Fig. 5.6 (d),
structure stability (under the scope of lower per particle potential energy) is increased according
alongside two parameters : (i) the pair-potential width ; (ii) the packing fraction.

5.3.3 Kinetics of the attracto-repulsive potential

Fig. 5.1 (b) shows two pair-potentials, corresponding to an attractive and a attracto-repulsive regimes
which kinetics is discussed here.

As the precipitation rate R for CSH simulation was taken between 0.2 and 4[102], geopolymers probed
a slower setting time (see Chapter 1). Therefore, we chose to study aggregation with a precipitation
rate of R = 0.1. This value is set to R for L∗ = 20 and is adapted for different box sizes L∗ = 25, 34
and 50 to keep R/V ∗ constant. The excess chemical potential is set to µ∗exc = −1.0 for the attractive
potential and to −0.21 for the attracto-repulsive one.

Densification

Fig. 5.7 shows both the evolution of the packing fraction as a function of the simulation time, expressed
in Lennard-Jones units and the potential energy per particle as a function of the packing. Simulations
are performed over different box sizes L∗ (expressed in LJ units) ranging from 20 to 50σ. As expected,
Fig. 5.7 illustrates that the precipitation kinetics does not depend on the box size.

(a) (b)

Figure 5.7: (a) Increasing of the packing fraction with simulation time. (b) Per particle potential
energy as a function of the packing fraction. Each color refer to a box length. The straight lines
corresponds to the attracto-repulsive potential (Lennard Jones + Yukawa) while the dash-dotted to
the attractive one (Lennard Jones).

Considering chemical potential that allows to reach a packing fraction φ higher than 0.5 (but still less
than 0.64 because of the spherical packing), both potential probes similar precipitation kinetics. The
studied simulations allow the sampling of structure with φ varying from 0.1 to 0.5. Panel (b) shows
that the potential energy per particle is smaller for the attractive potential, accounting for a more,
thermodynamically speaking, stable structure.
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5.4 Microstructure results for Mie potentials

In this section are discussed the influence of the width of the pair-potential of interaction on the overall
structure. Especially, structures are analyzed with regard to their Pores Sizes Distributions (PSDs)
and small angle scattering data.

5.4.1 Structure dependence on the well width

Fig. 5.8 shows the evolution of the global structure within the simulation box of size L∗ = 34σ for the
Mie potential with respectively, γ = 2.5, 6 and 12.

(a) (b) (c)

Figure 5.8: Surface mesh structures of configurations based on GCMC simulations with γ = (a) 2.5,
(b) 6 and (c) 12, at a packing fraction of φ∗ = 0.3. Surface areas can be estimated based on the
alpha-shape algorithm [173] implemented in Ovito [174] and stands, in LJ units, as 6494, 6601 and
7231 with increasing γ.

Transition from (a) to (c) illustrates that if particle precipitates with narrower interaction well the
final form irregularities. This is illustrated from the increase of the mesh surface: narrower potential
induces the formation of more locally packed particle clusters. Note that the structures obtained here
would also be dependent on the precipitation rate initially chosen according to number of MC trials
performed every MD steps.

5.4.2 Pore Size Distribution (PSD)

For packing fractions ranging from 0.1 to 0.3, the PSDs can be compared to discuss the influence of
the γ parameter. Fig. 5.9 displays the PSDs with regard to γ at fixed packing fractions, ranging
from ϕ ≃ 0.18 (at which the system percolates) to ϕ ≃ 0.3. Computations have been performed using
a Monte Carlo process of particles insertion thanks to Bhattacharya et al. code [175], based on the
Solvopt algorithm [176].

Both γ = 6 and γ = 12show a peak at small values which are the pores within the first neighbor
shell. Overall, there is an a more important distribution of pores within the range [4,8]σ, with a
maximum around 6σ. However, these distributions are not Gaussian. Fig. 5.9 (a) and (b) illustrate
the densification of the system as the PSDs shift to smaller sizes as ϕ increases. This is seen with an
increase of the proportion of [0,3]σ pore diameters.

Fig. 5.9(b) shows a very discontinuous distribution. This is illustrated from Fig. 5.8(c): a narrow
well for interactions leads to a less smooth surface. From Fig. 5.9 (d) wide potential may not favor
the formation of small pore sizes. As seen from Fig. 5.8(a), particles aggregate into a big cluster.

We recall here Table 1.3 in Chapter 1 [28], referring to the obtained gyration radius of aggregates within
a range of [60,100]Å for Na-based geopolymers. Especially, with a particle diameter of σ = 8Å, this size
of pores is recovered here. In fact, with such a definition, we simulate a box of size L = 34σ = 272Å.
Fig. 5.8 displays a huge pore that size can be estimated ≃ 9σ = 72Å from Fig. 5.9.
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(a) (b)

(c) (d)

Figure 5.9: Pore Size Distributions for (a) γ = 6, (b) γ = 12, (c) ϕ ≃ 0.18, (d) ϕ ≃ 0.3. Test particles
radius is taken at 0.01 in LJ units and diameter bins with a size of 0.01. A rolling mean is applied to
the results.

5.4.3 Discussion on the role of the well width

In overall, with a wide well of interaction, the generated structure tends to form bigger pores. The
contributions to nanopores smaller pores (less than 2σ) is lower than with a γ parameter of 6 and 12.
As γ increases, the structure appears more rough, with pore distributed less continuously, i.e. probing
a more complex porous network.

Still, according to Fig. 5.3, it is the wider well of potential the fits the best our obtained PMF. In
addition, previous discussion related the observed dominant pore size to the experimental pores close
to 10nm (see Table 1.3 in Chapter 1).

Fig. 5.10 shows the PSDs obtained from the potential but with a simulation box of size L∗ = 50 and
a snapshot of the simulation box illustrating the percolation of the system, happening at a packing
fraction of φ = 0.25.

From Fig. 5.10(a), shows a strong distribution of pores with diameter of ranging from 4σ to 10σ,
i.e. around a mean of 70Å, considering a particle size of σ = 8Å. It illustrates the ability of a wide
well potential to reproduce pore sizes as obtained from sorption experiments [28]. Still, as observed
from Fig. 5.10, larger simulation box may be required to a more complete investigation of the porous
network. Fig. 5.10(b) and (c) illustrates the way the porous network forms. Particles aggregate to
form big local clusters, inducing large pores within the meso-structure.
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(a) (b) (c)

Figure 5.10: (a) Pore Size Distributions for γ = 2.5 at different packing fraction φ in a simulation box
of size L∗ = 50σ. The black straight line shows nitrogen sorption porosimetry data [28]. The upper
axis refers to the pore diameter with a particle of size σ = 8Å. (b) and (c) Snapshots of the simulation
box before (b) φ ≈ 0.2 and after φ ≈ 0.3 (c) percolation. Red dots account for the particles and the
shading shows the ambient occlusion

Fig. 5.11 shows the porous network at different packing fractions under the view of a surface mesh.
As the system densifies, the porous network closes.

In the framework of geopolymer gels and under the view of Chapter 4 results, geopolymer oligomers
agglomerate with a dry interface. The precipitation observed here can be seen as the local formation
of aluminosilicate glasses that expel water molecules out, therefore inducing the formation of large
pores, similar to a demixing process.

(a) (b) (c)

Figure 5.11: Surface mesh structures of configurations based on GCMC simulations with γ = 2.5 at
packing fraction φ of (a) 0.3, (b) 0.4 and (c) 0.5. The box faces are blurred to display the system
porosity. Surface areas can be estimated based on the alpha-shape algorithm [173] implemented in
Ovito [174] and stands, in LJ units, as 15174, 16299 and 16413 with increasing φ.

5.5 Results for attractive and attracto-repulsive scenarios

As grain-grain cohesion depends on the pH (i.e. the grain deprotonation degree), previous discussions
highlighted that interactions can either be in a attractive or attracto-repulsive regime. Both cases are
discussed here and a third scenario of switching potential is proposed.

The influence of the box size on the final structure is discussed and PSDs and small angle scattering
data are presented.

119



Chapter 5 5.5. Results for attractive and attracto-repulsive scenarios

5.5.1 Three different scenarios

During the gel phase, both dissolution and polycondensation occur. Activation from the alkaline solu-
tion deprotonates the grains, influencing the interactions within the gel. Assuming a fully attractive
potential within our particles may not reflect the complex aggregation phenomenon, related to the
pH.

In this work, we propose to use the potential of the form only Lennard-Jones and Lennard-Jones+Yukawa
to perform the aggregation of the grains, as shown in Fig. 5.1 (b), for their ability to fit the well depth.
In addition, we propose a third scenario, switching from the attracto-repulsive potential to the attrac-
tive one and relax the structure at the same temperature. This mimics a decreasing of the pH as the
material sets, when most hydroxyl groups have been consumed. This case will be referred as switching
in the following.

Grand Canonical Monte Carlo (GCMC) simulations are performed according to the procedure de-
scribed in Chapter 2. Structures with different packing fraction ϕ can then be extracted for each
scenario and studied.

5.5.2 Structural characterization

As seen on Fig. 5.12, the three different precipitation scenarios lead to different structures. These can
be characterized in terms of pore size distributions and scattering intensities. For the different length
and packing fraction, both PSDs and scattering intensities can be computed.

From sampled structures with the attractive potential, 1000000 additional steps and a minimization
at 0 temperature are performed in the NV T ensemble after switching the potential to generate the
third scenario structures switching. Fig. 5.12 shows snapshots of the structures at different packing
fractions, for both potentials and the so-relaxed case.

(a) (b) (c)

Figure 5.12: Snapshots of the structures for the three scenarios (a) attractive, (b) attracto-repulsive,
(c) switching. Red dots accounts for the particles and the shading shows the ambient occlusion. The
first line corresponds to a packing φ = 0.2 and the second one to φ = 0.4. Structures are shown for a
box size of L∗ = 50σ.

Pore Size Distributions (PSDs)

Fig. 5.12 displays porous mesostructures with different pore sizes distributions that can be investigated
similarly as in §2.

120



Chapter 5 5.5. Results for attractive and attracto-repulsive scenarios

Dependence on the box size

We performed a system size analysis using 4 box sizes. As the structures that are formed are hetero-
geneous, larger system size might capture better heterogeneities and show larger pore sizes. Fig. 5.13
displays the dependence of the PSD on the simulation box size.

(a) (b) (c)

Figure 5.13: Pore size distributions for various box sizes L∗ in the three different scenarios as (a)
attractive, (b) attracto-repulsive, (c) switching. On the top of the graphs are shown the pore diameters
w.r.t. particles of size (diameter) of 8Å. The calculations have been performed for a packing fraction
of φ∗ = 0.4. A rolling mean per 20 bins (0.2Å) have been performed over the raw data. The peak at
0.01Å corresponds to closely packed particles.

In most cases, the distributions cover the same range of pore diameters: [0,40]Å. Moving from panel
(b) to (c), we observe that the relaxation flattens the pore distribution, accounting for the formation
of a few larger pores. With a size of L∗ = 50σ, more pore sizes are accessible by the system in the
attractive case. In overall, it probes a complex continuum in pore size distributions while smaller box
sizes may lack information. As a consequence, further study will be based on structures obtained with
this larger box size.

Comparison of the scenarios

As the packing fraction increases, Fig. 5.12 shows that the porous network evolves. In fact, this latter
is expected to close with densification: the number of bigger pores should decrease and the number of
smaller increase. Fig. 5.14 illustrates such a behavior, reading from left to right.

(a) (b) (c)

Figure 5.14: Pore size distributions of the three different scenarios for different packing fraction (a)
ϕ = 0.2, (b) ϕ = 0.3, (c) ϕ = 0.4. On the top of the graphs are shown the pore diameters w.r.t.
particles of size (diameter) of 8Å. A rolling mean per 20 bins (0.2Å) have been performed over the
raw data.

At every packing fraction, the switching scenario stands at the in-between of the two others. While
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the attractive potential leads to a pore distribution centered on [0,4]σ, the addition of a repulsion
shoulder allows the formation of pores up to 6σ at a packing fraction of ϕ = 0.4. Fig. 5.14 illustrates
that switching from the attracto-repulsive regime to the attractive one increases the pore size, i.e.
shrinks the structure. This is well shown from Fig. 5.12, transiting from panel (b) to (c).

Considering particle size of σ = 8Å, PSDs range goes from [0,40Å] to [0,60Å]. These ranges of pores
are of the same order of magnitude than the one obtained by Benavent [24], even if a bit smaller.
Especially, this can be attributed to the choice of the particle size to 8Å (4Å radius), while its
gyration radius is estimated around 6Å (but may not be able to account for attraction in a simplified
model as proposed here). Note also that this model is monodisperse while geopolymer pastes tend
to be highly polydisperse. In fact, experimental measurement estimated, thanks to a modeling with
a two-levels Beaucage model (see Chapter 1, §4 for details), the gyration radius of particle within a
range of [50,90]Å.

The attracto-repulsive potential stands for the formation of local clusters that stabilizes at an equi-
librium distance dependent on the potential shoulder, accounting for a mid-range attraction and the
formation of small pores. However, at high deprotonation degree, we found out that interactions can
be strongly repulsive. According to Fig. 5.1, the repulsive should is light, not exceeding 15kcal/mol
(in opposition to a -75kcal/mol well). With a stronger repulsion, the equilibrium distance between
the formed clusters might increase, leading to bigger pore sizes.

In overall, there appears to be a net difference between the attracto-repulsive and the attractive
cases with almost a factor two in pore sizes. Still, the switching case illustrates that a change in the
interaction between the grains can influence a lot its porous network.

Scattering intensities

In addition to PSDs, scattering intensities can be computed to investigate the texture of our generated
structures in the three discussed scenarios.

Atoms coordinates within the simulations box can be explicitly used to compute the scattering intensity
as obtained from SAXS and SANS experiments. This one is defined as

I(q) = ϕV 2∆ρ2P (q)S(q), (5.5)

where q = 2π/d denotes the modulus of the scattering vector, with d the scattering distance, ϕ the
packing fraction and, V the particles’ volume and ∆ρ the scattering contrast. Both P (q) and S(q)
refers to the form and structure factors of the particles at a given scattering vector modulus.

In our simulations, spherical particles of diameter σ are used, i.e. of radius R = σ/2 are used. For a
sphere, the form factor writes as

P (q) =

[
3
sin(qR)− qR cos(qR)

(qR)3

]2
. (5.6)

The structure factor, mostly relevant for concentrated systems, is a function that can be obtained
directly from a set of N particles coordinates {ri}i=1...N according to:

S(q) =

〈
1

N

∑
i,j

e−iq(ri−rj)

〉
q,∥q∥=q

, (5.7)

the bracket denoting the average over the wavevectors q that share the same norm q. Note that this
structure factor is nothing less than the Fourier transform of the pair correlation function g(r). As a
consequence, it can be computed either directly from the set of coordinates or by Fourier transforma-
tion of this pair correlation function, this second methods have been used to validate our calculations.
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Dependence on the box size

Different box sizes could produce different structures, as seen from PSDs, even though the dependence
on the box size is light. Fig. 5.16 shows that for all scenarios, there is no dependence on scattering
data from the simulation box size.

(a) (b) (c)

Figure 5.15: Scattering intensities at a packing fraction ϕ = 0.4 for different box sizes, in the three
different scenarios: (a) attractive, (b) attracto-repulsive, (c) switching. On the top of the graphs are
shown the q-vector amplitudes w.r.t. a particles of size (diameter) of 8Å. Calculations have been
performed from Eq. 5.7 and 5.6, with a scattering factor ∆ρ∗ = 1 in reduced units. q−D slopes are
shown to illustrates the main regimes encountered. Oscillations at largest q-vector amplitudes come
from the system monodispersity. The left area is blurred for its poor q-vector sampling as it reaches
the simulation box size.

A Porod regime of q−4 is recovered a highest q-vectors. At smaller q-vectors, three q regimes are
observed depending on each scenario.

Comparison of the scenarios

Fig. 5.16 shows the scattering intensities obtained from the generated structures over the three
scenarios. It illustrates that the intensity slightly depends on the packing fraction and the scenario.

(a) (b) (c)

Figure 5.16: Scattering intensities for the three scenarios at different packing fractions: (a) ϕ = 0.2,
(b) ϕ = 0.3, (c) ϕ = 0.4. On the top of the graphs are shown the q-vector amplitudes w.r.t. a
particles of size (diameter) of 8Å. Calculations have been performed from Eq. 5.6 and 5.7, with a
scattering factor ∆ρ∗ = 1 in reduced units. q−D slopes are shown to illustrates the three main regimes
encountered. Oscillations at largest q-vector amplitudes come from the system monodispersity. The
left area is blurred for its poor q-vector sampling as it reaches the simulation box size.

At highest q-vector amplitudes, structures are similar. At lowest values, the addition of repulsion
between the grains flattens the slopes. In the mid-range (around [0.5, 5.0]σ−1) of visited q-vector
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amplitudes, the same behavior is seen, from panel (a) to (b), slopes exponent change from −3 to
−3.4. Still, we denote that a regime of q−3.4 is recovered when switching the interaction potential
from attracto-repulsive to an attractive one. q-vectors at which the transition between two regimes
occur are slightly shifted to higher values as repulsion is introduced, leading to smaller characteristic
sizes: more attraction leads to the formation of bigger clusters (big oligomers).

Transition regimes with exponent varying as non-integers around −3 account for heterogeneity and
a lack of order at this q-vectors scales, i.e. sizes of d = 2π/q ∈ [1.26, 12.6]σ. In opposition to SAXS
and SANS experiments discussed in Chapter 1, no −2.7 exponent regime is seen here. In Fig. 1.15
(b) from Chapter 1, this regime is expected within the q range [0.0001, 0.01]Å−1=[0.018, 1.8]σ−1 with
a particle size 2Rg = 2 × 90Å, as discussed in §1[28]. Despite the value of −2.7 is not obtained, a
less-ordered structure is recovered over this range of sizes. Note that the same transition from the
Porod (q = −4) to a −3.4 regime has been seen from CSH, and attributed to a surface fractal regime,
as shown in Fig. 1.15 (a) from Chapter 1[51].

5.5.3 Discussion on the scenarios

From both PSDs and scattering intensities, the three scenarios leads to different mesostructures.
Structural characterization shows that if the structure is generated with an attracto-repulsive potential
before relaxation with an attractive one, it shows smaller pore sizes and a larger specific aggregate
size than if there is no possible repulsion. Ongoing discussion illustrates the role of the repulsion on
the formation of the porous network.

From the PMF results discussed in the previous Chapters, an aggregation with only attraction between
the grain would correspond to a geopolymer gel in which the oligomers are not deprotonated. This
would be the case at very low pH (or very high water content). Increasing the pH in solution would
induce an ability of the interaction to cover both attractive and repulsive regimes.

Chapter 4 showed that water strongly influences the grains interactions and that repulsion is related
to the omnipresence of water at the interface. In addition, experiments probed [24] that an increase of
the water content leads to bigger pore sizes. These results are consistent and converging to say that
a too large water content (or very low pH in solution) would induce very large pores and so, weaker
mechanical properties.

On the opposite, increasing of the pH/lowering of the water content induces a strong dissolution of the
solid aluminosilicate into an homogeneous gel of small oligomers, with a high degree of deprotonation
[105]. This is also consistent from simulation performed with a fully repulsive potential (discussed
below), corresponding to highly deprotonated grains.

As a matter of fact, there do not exist a linear relation between the porous structure and the water
content. Under a given range of water content/pH, geopolymer oligomers in the gel will react with
varying deprotonation degrees. As a consequence, their interactions will highly fluctuate, forming
structures with a complex porosity at different levels within the mesoscale.

5.6 Conclusion

The mesoscale models proposed in this work give a few insights on the key challenges to build up
a consistent model to study geopolymerization via molecular simulations. According to the PMF
calculations from our previous work, different forms of the Mie potential have been used to model to
precipitation of geopolymer oligomers thanks to a coupled Molecular Dynamics and Grand Canonical
Monte Carlo molecular simulations. Fitting the potential well with a single Lennard-Jones pair-
potential allowed to recover similar pore sizes as from experiments lead on geopolymer pastes. With
a large well pair-potential, a scenario of local glass packing is observed. The implementation of
simulation in larger box sizes may probed interesting results but would require more computational
time.
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With a monodisperse approach of spherical particles, three precipitation scenarios have been proposed,
accounting either for a full attraction, attracto-repulsion or a path-dependent attractive interaction
between aluminosilicate grains. On the one hand, Pore Sized Distributions and Scattering Intensities
have been obtained and probed, that the ability of a potential to account for oligomers repulsion influ-
ences the porous network. With no repulsion, the pore sizes are larger and so does the characteristics
aggregate sizes. On the other hand, fully repulsive potential does not lead to a formation of a stable
paste. Under the view of these results, there appear to be a necessity for the oligomers in solution to
show both attractive and repulsive interaction regimes.

Even though these models do not encompass the whole complexity of geopolymerization, it gives a
good overview on how this process can be studied thanks to molecular simulations. Previous Chapter
discussed the role of the grain flexibility on oligomer interactions. For the most part, these appear
to be strongly related to their surface deprotonation which is highly influenced by the raw material
constitution. During the dissolution of the solid metakaolin and the first steps of polymerization,
it was experimentally probed that a lot of chemistry influence the structure of the oligomers (both
sizes and deprotonation) and so, the nature of interactions within the gel. In the view of this work,
including polydispersity and variety of pair-potential of interactions appears to be key parameters
towards an improvement of geopolymer mesoscale simulations.
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Conclusion and perspective

Thoroughly investigated through the scope of molecular simulations, geopolymer materials are promis-
ing materials, probing many similarities to cement and clays both in structure and in mechanical
properties. At the nanoscale, cohesion is causing the aggregation of charged grains in an electrolyte.
However, the amorphous shape of aluminosilicate oligomers complexifies the modeling of the geopoly-
merization at small length scale and long time scale.

This thesis proposes a new approach on the modeling of geopolymer materials at both the atomistic
and the mesoscale. Based on aluminosilicate oligomers obtained from reactive molecular dynamics,
a potential of interactions for amorphous aluminosilicates has been proposed adapted from ClayFF,
first designed for clay systems. It allowed the calculation of Potential of Mean Forces (PMFs) between
two oligomers in solution via a perturbative approach: the Free Energy Perturbation (FEP). The
results have been compared to the one obtained from an enhanced sampling method: Well-Tempered
Metadynamics. Despite the use of the Simple Overlap Sample in FEP calculations, it was shown
that this technique requires far longer equilibrium to reflect the actual water behavior at the grain
interface, while the bias introduced in the metadynamics algorithm led to a better description of the
phase space. The comparison of PMF obtained with wet and dry interfaces probed the important role
of interstitial-water on the potential of interaction. From the sampling of metadynamics configurations
used to apply the FEP technique, PMFs were qualitatively retrieved. Overall, the order of magnitude
of these effective interactions stand in the same range as the one discussed for clays and CSH.

Interaction between aluminosilicate grains in solution is related to their charge. An increase of grain
deprotonation showed the transition from an attractive to a repulsive regime strongly related to the
transition from a hydrophobic to hydrophilic grain-grain interface. This relates to a dependence of
the grain flexibility on its deprotonation degree (and to its size and associated pKa). While its overall
geometry (gyration radius, maximum elongation) does not vary a lot, the branched shape accounts
for a strong grain reorganization, especially at short distances, leading to attraction under the scope
of a dry interface. At close distances a pre-geopolymerization can start, leading to chemical reactions
and merging oligomers over Si-O-Si and Si-O-Al bonds. High pH relates to a wet interface. In this
case, a strong repulsive regime is found, consistent with high electric screening in electrolytes and the
DLVO theory. Upscaling the system, interactions have been quantified under the view of meta-grains,
seen as two {grain+ions} bigger particles interacting in water with different dielectric constant, that
depends on the grains deprotonation, i.e. on the pH. From this view, the PMFs are recovered from
a theoretical description based on molecular physics. This allows to propose an engineering approach
relying on non fudge parameters (only physical ones) to evaluate the global behavior of interactions
at a given [OH−] concentration.

Geopolymer coarse-grained simulations first attempts have been performed in small simulations boxes,
based on the fully atomistic PMFs obtained. Assuming grains as dense spherical particles, it is possible
to capture the physical properties of the aluminosilicate oligomers and perform Grand Canonical
Monte Carlo aggregation according to either attractive, attracto-repulsive or repulsive potential using
monodisperse particles. The dependence of the attractive well width on meso-structure is discussed.
Especially, fitting the PMF with a wide well Lennard-Jones pair-potential allowed to describe the nano-
porous network as a demixing process. To model local pH variation with geopolymer gels, different
scenarios of attractive/attracto-repulsive potentials were proposed. Generated meso-structures were
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also discussed in the scope of pore size distributions and scattering intensities. However, there is no
homogeneous interaction regime in geopolymer pastes, as seen from the dependence of interactions
on deprotonation. As an insight, many potential simulations must be carried out. Additionally,
polydispersity might also be a key feature since geopolymer gels are made of a large variety of oligomer
sizes.

Focusing on a monodisperse study of grains in water, this thesis has given new insights on the geopoly-
merization process at the nano and mesoscale levels. Comparison of different methods allowed to chose
metadynamics as an efficient technique to evaluate the PMF for aluminosilicate grains in solution.
While this work focused of monodisperse interactions, further work may aim to quantify the interac-
tion between grains of different sizes and/or different compositions (Al/Si ratio). Experimental works
provided also many data on the use of heavier alkaline cations as potassium or cesium, which can be
used with the same procedure defined in this work. While the systems discussed were highly diluted
and deprotonation manually performed, it might be interesting to model the system in an alkaline
solution and allow the grain to naturally deprotonate with the introduction of a reactive potential.
Mesoscale simulations can be highly improved with larger box sizes and mechanical tests might be
implemented to characterize mechanical properties of so-generated structures.
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[16] Ján Šefč́ık and Alon V. McCormick. Thermochemistry of aqueous silicate solution precursors to
ceramics. AIChE Journal, 43(S11):2773–2784, 1997.

[17] Edet F. Archibong, Neelum Seeburrun, and Ponnadurai Ramasami. Geometric and electronic
structure of AlO4 and AlO 4 -. Chemical Physics Letters, 481(4-6):169–172, October 2009.

[18] John L. Provis and Jannie S. J. van Deventer. Geopolymers Structure, processing, properties
and industrial applications.

[19] Mo Zhang. Geopolymer, Next Generation Sustainable Cementitious Material - Synthesis, Char-
acterization and Modeling. PhD thesis, 2015.

[20] Prune Steins, Arnaud Poulesquen, Olivier Diat, and Fabien Frizon. Structural Evolution during
Geopolymerization from an Early Age to Consolidated Material. Langmuir, 28(22):8502–8510,
June 2012.
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[23] Prune Steins. Discipline : Matériaux Céramiques et Traitements de Surface. PhD thesis, 2014.
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Experimental and Monte Carlo studies. Cement and Concrete Research, 41(2):161–168, February
2011.

[91] Enrico Masoero, Emanuela Del Gado, Roland J.-M. Pellenq, Sidney Yip, and Franz-Josef Ulm.
Nano-scale mechanics of colloidal C–S–H gels. Soft Matter, 10(3):491–499, 2014.

[92] Gustav Mie. Zur kinetischen Theorie der einatomigen Körper. Annalen der Physik, 316(8):657–
697, 1903.

[93] E Masoero and E Del Gado. Nanostructure and Nanomechanics of Cement: Polydisperse Col-
loidal Packing. Physical Review Letters, page 5, 2012.

[94] E Masoero, H Jennings, F Ulm, E Del Gado, H Manzano, R Pellenq, and S Yip. Modelling
cement at fundamental scales: From atoms to engineering strength and durability. In Nenad
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and pressure-induced structural changes in mirabilite (Na2SO4·10H2O) determined from ab
initio density functional theory calculations. Physics and Chemistry of Minerals, 37(5):265–282,
May 2010.

[156] Johan Mähler and Ingmar Persson. A Study of the Hydration of the Alkali Metal Ions in Aqueous
Solution. Inorganic Chemistry, 51(1):425–438, January 2012.

[157] Takashi Ikeda, Mauro Boero, and Kiyoyuki Terakura. Hydration of alkali ions from first prin-
ciples molecular dynamics revisited. The Journal of Chemical Physics, 126(3):034501, January
2007.

[158] Daniel Herschlag and Margaux M. Pinney. Hydrogen Bonds: Simple after All? Biochemistry,
57(24):3338–3352, June 2018.

[159] Ming-Feng Kai and Jian-Guo Dai. Understanding geopolymer binder-aggregate interfacial char-
acteristics at molecular level. Cement and Concrete Research, 149:106582, November 2021.

[160] Allison S Brandvold and Waltraud M Kriven. Geopolymers as Alternatives to Cements.

[161] W. H. Stockmayer. Second Virial Coefficients of Polar Gases. The Journal of Chemical Physics,
9(5):398–402, May 1941.

[162] Geoffrey Maitland, Maurice Rigby, E. Brian Smith, William A. Wakeham, and D. Austin Hen-
derson. Intermolecular Forces: Their Origin and Determination. Physics Today, 36:57–58, 1983.

[163] Wikipedia. Atomic units. https://en.wikipedia.org/wiki/Atomic_units, 2024. [Online;
last updated March 2, 2024].
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