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Abstract

First order phase transitions (PT) in the early universe happen via the nucleation of
bubbles whose walls can expand at ultra-relativistic velocities. Interactions of the thermal
bath at the wall produce particles which accumulate in shells at the wall. The shells evolve
until they collide with those from neighboring bubbles.

In this thesis we first study the evolution of these shells, including for the first time
number changing interactions of the shell within itself and with the thermal bath. In
particular, we calculate the rates of the dominant 3 → 2 scattering processes, and find
they can be more important than all other processes considered in previous literature.
We identify the regions of parameter space of the PT where the shells free stream, i.e.
they have negligible interactions within themselves and with the bath.

We then use these results to predict the rate and energy with which particles of op-
posite bubbles collide. We find that these particle collisions can reach scattering energies
much larger than the scale of the PT, which in turn can be used to produce highly ener-
getic particles or particles much heavier than the scale of the PT, realising a cosmological
’bubbletron’. As an example, we show that one can produce heavy dark matter with
masses above 103 TeV for scales of the PT of around 10 MeV, and with masses above the
GUT scale for scales of the PT above about 109 GeV.

PTs with ultra-relativistic walls are also relevant for any other process relying on out-
of-equilibrium particle production. If the interaction between particles in the shell also
violates Baryon number, C, and CP, then all three Sakharov conditions are satisifed, and
one can use these PTs to explain the baryon asymmetry of the universe. We do so by
proposing a mechanism of baryogenesis from supercooled confining PTs.

We also compute the gravitational wave signature due to the PT in all the above
scenarios. We find they could be seen by pulsar timing arrays and gravitational wave
interferometers like LISA and the Einstein Telescope, realizing a new link between these
telescopes and the possible origin of dark matter and of the baryon asymmetry of the
universe.
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Abstract long français

Le modèle standard (SM) de la physique des particules a été proposé il y a une cinquan-
taine d’années et a été testé avec une précision remarquable et toujours plus grande.

Bien qu’elle explique certaines parties de la nature avec une précision étonnante, elle
n’est absolument pas complète. D’un point de vue expérimental, il lui manque une explica-
tion des masses des neutrinos, observées via les oscillations des neutrinos [1, 2]. Il n’est pas
non plus en mesure d’expliquer les observations astrophysiques à de nombreuses échelles,
des courbes de rotation des galaxies [3] au bullet cluster [4] en passant par le fond diffus
cosmologique (CMB) [5], qui peut être expliqué de la manière la plus naturelle en étendant
le modèle standard par un candidat à la matière noire (DM), voir p. ex. [6]. En outre, il
ne fournit aucun mécanisme capable d’expliquer l’asymétrie observée dans l’abondance de
la matière et de l’antimatière dans l’univers [7]. D’un point de vue théorique, il manque
une complétion UV pour la gravité à l’échelle de Planck, ∼ 1019 GeV [8]. On peut égale-
ment considérer comme insatisfaisant le fait que 19 constantes arbitraires et sans rapport
soient nécessaires pour décrire le modèle standard. Une solution partielle à ce problème
est apportée par les théories à grande unité (GUT), qui fournissent une description unifiée
des interactions de jauge survenant autour de ∼ 1015 GeV [9].

Les deux mystères probablement les plus importants de la physique des (astro)particules
et de la cosmologie, sur lesquels nous allons également nous concentrer dans cette thèse,
sont la nature de la matière noire et l’origine de l’asymétrie des baryons de l’univers
(BAU). Lorsque le problème de la matière noire a été établi, les physiciens ont proposé
comme solution la plus naturelle les WIMP en tant que particules de matière noire.
Cependant, les expériences de détection de direction n’ayant pas (encore) fait de dé-
couverte et le Grand collisionneur de hadrons n’ayant pas trouvé de nouvelle physique
proche de l’échelle électrofaible (EW), il y a suffisamment de motivation pour s’éloigner
des scénarios les plus simples de la matière noire. Il s’agit notamment de construire des
mécanismes de production plus exotiques qui peuvent être testés par d’autres observables
dans le cadre de nouvelles expériences, et de produire de la matière noire (DM) à dif-
férentes échelles. Nous sommes particulièrement intéressés par la production de matière
noire plus lourde, potentiellement jusqu’à l’échelle du GUT, ce qui constitue une autre
motivation théorique.

Les transitions de phase du premier ordre (FOPT) dans l’univers primitif sont prédites
par de nombreuses théories au-delà du modèle standard, elles peuvent être utilisées pour
générer de la DM et, étant donné qu’il s’agit d’un processus hors équilibre, elles peuvent
servir de cadre aux mécanismes de baryogénèse. Ils ont suscité beaucoup d’intérêt ces
dernières années car ils peuvent générer des ondes gravitationnelles (GWs) observables
par les expériences prévues et, de manière optimiste, potentiellement déjà observées en
juin 2023 par les réseaux de synchronisation de pulsars (PTAs) [10–12]. Dans cette thèse,
nous avons construit de nouveaux modèles reliant les PTAs à la DM et à la BAU. Ces
modèles permettent de tester expérimentalement ces mystères d’une nouvelle manière, et
de les relier aux données récentes et prévues sur l’effet de serre.

Le mécanisme de production de DM lourd, que nous proposons dans cette thèse, repose
sur des transitions de phase cosmologiques du premier ordre avec des parois de bulles ultra-
relativistes, et a des applications potentielles au-delà du DM lourd. Un élément nécessaire
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au développement de ce mécanisme est le calcul de l’évolution des coquilles de particules
aux parois de bulles rapides, qui est un autre contenu original présenté dans cette thèse, et
dont l’intérêt va au-delà de ce mécanisme. Dans cette thèse, nous présentons la première
étude systématique des interactions des coquilles de particules aux parois des FOPTs,
déterminant les régions où elles flottent, et ouvrant la voie à de futures études de leur
évolution qui auront des implications allant de la production de particules à la prédiction
des GWs.

Enfin, les transitions de phase du premier ordre sont un ingrédient possible pour
construire des modèles qui expliquent l’asymétrie matière/antimatière de l’univers. Dans
ce contexte, la communauté s’est jusqu’à présent principalement concentrée sur la PT
EW et sur le régime des parois lentes. Dans cette thèse, nous présentons de nouveaux
résultats qui permettent de produire l’asymétrie des baryons dans les PT avec des parois
de bulles ultra-relativistes, pour des échelles de PT qui peuvent être aussi basses que celle
de l’EW.

Dans le chapitre I, nous donnons un aperçu général des transitions de phase du premier
ordre (FOPT), dans le but d’établir le cadre et de fixer les notations. Nous commençons
par étudier un modèle-jouet (dilaton) qui peut donner lieu à une PT. En effet, dans le
modèle standard, la PT de l’EW n’est pas une transition de phase du premier ordre,
mais un croisement [13], et donc un modèle inadapté à notre scénario souhaité. Nous
généralisons ensuite à partir d’un modèle spécifique vers une description générale des
FOPTs, et introduisons les paramètres pertinents pour une description phénoménologique.
Cela inclut les ingrédients nécessaires à la description du signal GW associé aux FOPTs.

Nous avons décrit comment les bulles, des régions où l’univers a creusé un tunnel
jusqu’au vide véritable, se forment. Le rayon de la bulle augmente alors sous l’effet de
la pression, et le mur, la limite de la bulle, se dilate à des vitesses ultra-relativistes.
L’expansion s’accélère avec l’augmentation de la taille de la bulle, mais peut être stoppée
par la pression exercée par les particules interagissant au niveau de la paroi. Néanmoins,
la vitesse terminale peut devenir très importante, comme le montre l’équation (I.26).
Les particules du bain interagissant avec la paroi sont destinées à s’accumuler dans une
région mince et dense à la paroi, la coquille. Nous avons considéré plusieurs modèles, qui
donnent tous lieu à des coquilles, mais dont l’épaisseur, l’énergie moyenne et la multiplicité
varient. Ils varient également selon que les particules s’accumulent devant la paroi (à
l’extérieur de la bulle dans la phase symétrique) ou derrière la paroi (à l’intérieur de la
bulle dans la phase brisée). Nous avons listé les propriétés des différents modèles dans
le Tab. I.1. A la fin de ce chapitre, nous avons conclu avec le calcul du signal GW,
détectable par les télescopes GW et les PTAs. Nous expliquons en détail comment une
transition de phase du premier ordre donne lieu à une signature d’ondes gravitationnelles,
qui devrait être observée par exemple au LISA, au télescope d’Einstein et dans les réseaux
de synchronisation des pulsars.

Dans le chapitre II, basé sur [14], nous avons entrepris la première catégorisation
générale de toutes les interactions auxquelles nous avons pensé et qui pourraient éventuelle-
ment modifier l’évolution de ces particules depuis leur point d’interaction avec la paroi
jusqu’à la collision avec les particules des bulles voisines. Ces effets comprennent à la fois
les particules de la coquille et celles du bain qui peuvent changer de momentum lors de la
collision avec la paroi ultra-relativiste, les effets de dissipation des particules de la coquille,
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le renforcement de Bose ou les effets de la rupture de la perturbativité conduisant à de
grandes fonctions de distribution de l’espace de phase, et les interactions de changement
de nombre des particules de la coquille avec elles-mêmes et avec le bain thermique. Nous
avons calculé leur taille et avons ainsi pu déterminer la région de l’espace des paramètres,
dépendant du modèle, pour laquelle on peut négliger ces effets en toute sécurité et où les
coques de particules s’écoulent librement.

Notons que pour calculer ces effets, nous avons effectué le premier calcul connu
d’amplitudes de diffusion intégrées pour les processus 3 → 2, dont nous avons présenté
les résultats dans des tableaux II.2,II.3,II.4,II.5. Nous montrons les régions d’écoulement
libre dans les figures II.2,II.3,II.4,II.5,II.6. Nous constatons que tous ces effets deviennent
importants pour des valeurs plus petites de l’échelle du PT, à moins que l’on ne passe à des
valeurs plus petites du couplage de jauge g. Nous constatons également que les théories
non-abéliennes donnent lieu à des interactions effectives dans de plus grandes régions de
l’espace des paramètres, manifestement en raison de la possibilité d’une auto-interaction
supplémentaire entre les bosons de jauge.

L’étude quantitative de tous ces effets nous permet d’identifier les régions de l’espace
des paramètres, de n’importe quelle théorie, où les enveloppes de particules sont ou ne
sont pas libres.

Dans le chapitre III, basé sur [15], nous avons proposé un nouveau mécanisme pour
réaliser des collisions de particules à ultra-haute énergie dans l’univers primitif, qui re-
pose sur la collision de coquilles créées au cours d’un FOPT cosmologique. Comme ces
bulles se dilatent avec des parois ultra-relativistes, les collisions entre différentes bulles se
produisent avec de grandes énergies de diffusion qui peuvent être utilisées non seulement
pour générer de la matière noire mais aussi n’importe quel nouvel état lourd. Nous avons
baptisé ce nouveau mécanisme le bubbletron. Pour ce faire, nous pourrions utiliser notre
nouvelle capacité à retracer l’évolution des particules jusqu’à la collision afin de prédire
correctement tout processus dû à la diffusion de particules entre particules voisines. Nous
y parvenons en évitant en toute sécurité toute région de l’espace des paramètres où les
effets du free-streaming peuvent devenir importants.

Nous avons étudié plusieurs scénarios et calculé les paramètres clés pour calculer le
rendement et l’énergie des particules produites par le mécanisme du bubbletron. La
formule générale pour le rendement d’un bubbletron est donnée dans l’Eq. (III.8). Nous
avons ensuite donné une réalisation pratique d’un bubbletron en identifiant l’état lourd
avec un candidat DM et en calculant la masse maximale possible du DM. Nous montrons
nos résultats dans la Fig. III.4, où nous avons considéré des coques produites par des
bosons de jauge U(1). Nous avons utilisé une théorie abélienne parce qu’elle nous permet
de supposer le free-streaming pour un espace de paramètres plus grand, et donc d’étendre
la région autorisée à des valeurs plus faibles de l’échelle de la PT. Nous constatons que
l’on peut produire du DM lourd avec des masses supérieures à 103 TeV pour des échelles
du PT d’environ 10 MeV, et avec des masses supérieures à l’échelle du GUT pour des
échelles du PT supérieures à environ 109 GeV. Ce mécanisme de création de matière
noire lourde au-dessus de l’échelle TeV est particulièrement motivé parce qu’il échappe à
la limite d’unitarité sur la matière noire produite thermiquement [16].

Comme on peut le voir sur la Fig. III.5, les FOPTs de ces échelles se situent dans
le domaine d’observation des futurs télescopes à effet de serre comme LISA et ET. De
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manière intrigante, ceci pourrait relier le signal GW récemment observé aux PTAs avec
le DM jusqu’à l’échelle du PeV.

Plus généralement, notre étude établit un nouveau lien entre les signaux GW pri-
mordiaux et la physique à des échelles d’énergie autrement inaccessibles, non seulement
en laboratoire mais aussi, jusqu’à présent, dans l’univers primitif. Dans l’exemple du
DM lourd, ces GW pourraient être accompagnés de rayons cosmiques de haute énergie
provenant de la désintégration du DM, s’il est instable.

Dans le chapitre IV, basé sur [17], nous avons utilisé un PT de confinement surfondu
pour créer les scalaires lourds d’un secteur de confinement, qui, en raison de leurs inter-
actions violant C, CP et B, peuvent être utilisés pour réaliser la baryogénèse. Cela est
possible parce que la PT permet la production hors équilibre de particules. Nous avons
constaté que, par rapport aux scénarios analogues examinés dans la littérature précé-
dente, la nature confinante de la PT ouvre l’espace des paramètres autorisés jusqu’aux
échelles EW. Cet espace est de plusieurs ordres de grandeur plus petit que dans les mod-
èles analogues précédents qui s’appuyaient plutôt sur des PT faiblement couplés. On
pourrait donc essayer de relier notre modèle de baryogénèse à la brisure de symétrie EW.
Cela ouvre de nouvelles voies intéressantes pour tester notre modèle avec des expériences
à l’échelle de l’EW, conduisant à des contraintes non-astrophiques, ainsi qu’à des sig-
naux GW à LISA. Nous avons évalué les limites de plusieurs observables, y compris les
recherches dans les collisionneurs, le moment dipolaire électrique du neutron et les pro-
cessus de violation de saveur. Nous montrons la région permettant la baryogénèse dans la
Fig. IV.2. Encore une fois, comme on peut le voir sur la Fig. IV.3, nous constatons qu’en
raison de la faible valeur de l’échelle du PT, ce signal pourrait être observé par LISA et
le télescope d’Einstein à l’avenir.

Nous en venons enfin aux orientations futures possibles. Dans cette thèse, nous avons
jeté les bases de la catégorisation et du calcul des effets d’écoulement libre affectant
l’évolution des particules depuis leur point d’interaction avec la paroi jusqu’à la collision
avec des particules provenant d’autres bulles. Ceci n’est pas seulement intéressant et
pertinent pour le bubbletron décrit, mais aussi pour le calcul correct du signal GW,
puisque l’amplitude des GW pourrait aussi être affectée par des coquilles en interaction.
En particulier, pour les interactions changeantes en nombre, nous pourrions et devrions
améliorer notre calcul en calculant entièrement la moyenne thermique, sans l’hypothèse
de factorisation des intégrales thermiques. Cela nous permettrait d’écrire et de résoudre
les équations de Boltzmann, même si ce n’est que numériquement, pour l’évolution des
densités de nombre et des énergies moyennes. Nous pourrions alors utiliser ces résultats
pour étendre tous les calculs que nous avons effectués dans ce document à la région de
l’espace des paramètres que nous avons jusqu’à présent exclue en raison de notre ignorance
de ce qui se passe au-delà de l’écoulement libre. Ce que nous avons calculé dans cette
thèse sera important pour cette entreprise car il nous guidera vers le processus de free-
streaming particulier qui est dominant et que nous devrions nous efforcer de calculer avec
une plus grande précision.

En ce qui concerne plus spécifiquement les bubbletrons, les futures voies d’exploration
comprennent des bubbletrons autres que ceux induits par des particules réfléchies rayon-
nées, ou dans la région où les coquilles ne s’écoulent pas librement, et d’autres applications
pour la baryogénèse et d’éventuelles diffusions transplanckiennes dans l’univers primitif.
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Enfin, en ce qui concerne la baryogénèse à partir de PT du premier ordre, après avoir dé-
montré que le confinement permet d’étendre l’espace des paramètres jusqu’à l’échelle EW,
il pourrait être intéressant d’étudier un modèle avec des neutrinos composites stériles, afin
de déterminer si ce mécanisme permet de tester la leptogénèse dans les futurs collision-
neurs.
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Invitation

The Standard Model (SM) of particle physics was proposed around 50 years ago, and has
been tested to remarkable and ever-increasing level of accuracy.

While explaining some parts of nature with astonishing precision, it is definitely not
complete. From an experimental point of view it lacks an explanation of neutrino masses,
observed via neutrino oscillations [1, 2]. It is also not able to explain astrophysical obser-
vations ranging over many scales, from galaxy rotation curves [3] over the bullet cluster [4]
to the Cosmic Microwave Background (CMB) [5], which can be explained in the most nat-
ural way by extending the Standard Model by a dark matter (DM) candidate, see e.g. [6].
It further provides no mechanism capable of explaining the observed asymmetry in the
observed abundance of matter and antimatter in the universe [7]. From a theoretical point
of view it lacks a UV completion for gravity at the Planck scale, ∼ 1019 GeV [8]. One
might also consider it unsatisfying that 19 unrelated and arbitrary constants are needed
to describe the Standard Model. A partial solution to this is given by grand unified the-
ories (GUTs), which provides a unified description of gauge interactions arising around
∼ 1015 GeV [9].

In this thesis we focus mostly on the open question of dark matter and matter/antimatter
asymmetry. When the dark matter problem was established, physicists proposed WIMP
as DM particles as the most natural solution. However, with direction detection experi-
ments not having made a discovery (yet) and the Large Hadron Collider not finding New
Physics close to the electroweak (EW) scale, there is sufficient motivation to steer away
from the simplest DM scenarios. This includes building more exotic production mecha-
nisms which can be tested through other observables by new experiments, and producing
dark matter (DM) at different scales. We are particularly interested in heavier DM, po-
tentially up to the GUT scale, providing another theoretical motivation. The mechanism
to produce such heavy DM, which we propose in this thesis, relies on cosmological first
order phase transitions with ultra-relativistic bubble walls, and has potential applications
beyond heavy DM. A necessary input for the development of this mechanism is the com-
putation of the evolution of particle shells at fast bubble walls, which is another original
content presented in this thesis, and whose interest goes beyond this mechanism. Finally,
first order phase transitions are a possible ingredient to build models which explain the
matter/antimatter asymmetry of the universe, in this context the community has so far
mostly focused on the EW PT and on the regime of slow walls. In this thesis we present
novel results that allow to produce the baryon asymmetry in PTs with ultra-relativistic
bubble walls, for scales of the PT that can be as low as the EW one.

This thesis is organized as follows. In Chapter I we give a general overview over first

1
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order phase transitions (FOPT), with the purpose to set up the framework and to fix
notations. We first investigate a toy model (dilaton) that can give rise to a PT. This
is because in the Standard Model the EW PT is not a first order phase transition, but
a crossover [13], and therefore an unsuitable model for our desired scenario. We then
generalize away from a specific model to a general description of FOPTs, and introduce
the relevant parameters for a phenomenological description. We describe the dynamics
of the nucleation process, in particular the creation and expansion of bubbles until their
collision with other bubbles, and the influence of particle driven pressure on the speed of
the bubble expansion. Particles interacting with the wall, the boundary of the bubble, will
accumulate in thin, possibly ultra-relativistic shells. We categorize the thickness, density,
and typical energy of particles in these shell for various models. Last, we provide details
how a first order phase transition gives rise to a gravitational wave signature, expected
to be observed at for example LISA and Einstein Telescope and pulsar timing arrays.

In Chapter II, based on [14], we investigate the effects that modify the evolution of
shells, from the point of creation until the point of collision with neighboring shells. They
change the number densities and the average energies of the particles in the shell, and can
therefore be necessary to correctly compute any subsequent interactions of the shells. In
particular, we investigate Compton and Moller scattering which could potentially reverse
the direction of particles. The heart of the chapter deals with the computation of number
changing interactions. Further we estimate the size of the phase space distribution func-
tion, essentially allowing us to understand when effects from high occupation numbers can
be neglected. The quantitative study of all these effects allow us to identify the regions
of parameter space, of any PT, where particle shells do and do not free stream.

In Chapter III, based on [15], we use our ability to trace the evolution of the particles
until collision in order to correctly predict any processes happening due to scattering of
particles between neighboring particles. We achieve this by safely avoiding any region
in parameter space where free-streaming effects may become large. The large scattering
energies can be used to produce heavy particles, realizing a ’bubbletron’. After having mo-
tivated why dark matter could be heavy, we apply the bubbletron to generate heavy dark
matter. Most importantly, we calculate the largest dark matter mass that is achievable,
depending on the energy scale of the PT.

In Chapter IV, based on [17], we investigate the possibility of using the mechanism
of out-of-equilibrium particle production to explain baryogenesis. We investigate one
model using confining phase transitions. The bubbletron mechanism allows this model
to generate a baryon asymmetry for scales of the PT down to the EW one, orders of
magnitude smaller than in previous analogous models that instead relied on weakly-
coupled PTs. This opens up new interesting ways of testing this baryogenesis model, for
example at colliders, and to connect it with EW symmetry breaking.

We conclude by summarizing the new results we have found during this thesis. We
also give an outlook on what can be improved in our calculation and on the applications,
beyond the ones investigated in this thesis, for which our results are not only interesting,
but also relevant and important.



I – First Order Phase Transitions

Along with the electroweak (EW) and QCD transitions, known to be crossovers in the
Standard Model (SM) [13, 18], one or more first order phase transitions (FOPTs) may
have taken place as the universe expands in the first second after inflation. They are
indeed commonly predicted in several motivated extensions of the SM, such as extra-
dimensional [19], confining [20, 21], or supersymmetric models [22], and solutions to
the strong CP [23, 24], flavour [25], or neutrino mass problems [26]. Independently
of where they come from, such early universe phase transitions may have far reaching
consequences through the possible cosmological relics they can leave behind, e.g. primor-
dial black holes [27–37], topological defects [38–42], magnetic fields [43–49], dark matter
(DM) [50–59], the baryon asymmetry of the universe (BAU) [60–72], together with a
background of gravitational waves (GW) [73–82], to cite just a few.

As the universe expands, sitting in its lowest free energy vacuum, another vacuum
may develop at a lower energy due to the fall in temperature, eventually triggering a PT.
If a PT is first order then it proceeds via the nucleation of bubbles of broken phase into
the early universe bath (see e.g. [83, 84] for reviews), analogously to the PT of water to
vapor.

In this chapter we give an introduction to FOPTs and to collect relevant formulae for
use in later chapters. We begin by investigating the dilaton as a toy model in Sec. I.1 in
order to gain a hands-on understanding of FOPTs. Abandoning this example we move
on and define all the parameters necessary to describe a general FOPT in Sec. I.2. We
explain how bubbles nucleate and expand with possibly ultra-relativistic wall velocities in
Sec. I.4. Finally, we conclude by describing the GW signal in Sec. I.5. The production of
gravitational waves is arising solely due to the FOPT, so we describe it here and reference
any appearance in later chapters to this section.

I.1 Example: dilaton
Here we investigate the dilaton as a toy model to show an example of how a first order
phase transition can arise.

The dilaton is the pseudo-Goldstone boson of conformal symmetry. It can be param-
eterized by [85]

χ(x) = vφ exp
{
σ(x)
vφ

}
, (I.1)

3
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where vφ is the scale of the phase transition and σ(x) transforms non-linearly as σ(x)/vφ →
σ(eλx)/vφ + λ.

To induce the spontaneous symmetry breaking we have to introduce an explicit break-
ing, parameterized as [86]

V T=0
χ = cχg

2
χχ

4
[
1− 1

1 + γε/4

(
χ

vφ

)γε]
, (I.2)

where

γε ' −
1
4

m2
χ

cχg2
χv

2
φ

< 1 . (I.3)

Here mχ = O(χ) is the dilaton mass, we fix cχ = 1, and, for concreteness thinking of the
dilaton as a composite state from a confining sector which is nearly conformal in the UV,
we choose the coupling constant to reproduce glueball normalization, gχ ' 4π/N , with
N the rank of the confining gauge group.

The CFT bosons charged under the confining gauge group contribute towards the
leading order finite temperature corrections to the potential [76, 86],

V T (χ, T ) =
∑
i

nT 2

2π2 JB

(
m2
i

T 2

)
, (I.4)

with mi ' gχχ and∑i n = 45N2/4 = gφ, fixed to this value in order to reproduce the free
energy of N = 4SU(N) large N super-YM dual to an AdS-Schwarzschild spacetime [19].
The function JB accounts for the plasma density of the bosons,

JB(x) =
∫ ∞

0
dk k2 ln

(
1− e−

√
k2+x

)
, (I.5)

implying that for simplicity we neglect contributions from any fermions. Assuming further
that the dilaton still exists in the deconfined phase with all its degrees of freedom, we
have for the total potential

Vtot(χ, T ) = V T=0
χ (χ) + V T (χ, T ) . (I.6)

We show the behavior of Eq. (I.6) in Fig. I.1, for suitable chosen values of the other
parameters, and an anticipated value of the so-called nucleation temperature Tn. To un-
derstand this, consider a universe composed of radiation and vacuum energy (the dilaton),
with energy densities given by

ρr = gRi
π2

30T
4 , ρvac = cvacv

4
φ , (I.7)

where gRi = gSM + gφ are the inital effective degrees of freedom. For the dilaton, cvac =
m2
χ/(16v2

φ). In the early thermal history of the universe, the temperature is large, and
radiation dominates over the vacuum energy density. They become equal at a temperature
Teq, given by

Teq =
(

30cvac
gRiπ2

)1/4

vφ . (I.8)
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Figure I.1: Left: light-dilaton potential with first-order temperature corrections. Right:
zoom in onto the thermal barrier, with zeroth-order vaccum potential in orange, and
tunneling point χ∗ for neglected friction.

At this point the contribution from the vacuum energy becomes relevant, and the shape
of the potential begins to matter. The dilaton still resting at the false vacuum at 〈χ〉 = 0
has a non-zero probability to tunnel through the thermal barrier depicted in the right-
hand side of Fig. I.1, and reach its true vacuum state at 〈χ〉 = vφ, seen on the left-hand
side of Fig. I.1.

We compute the temperature of the tunneling by solving

Γ(Tn) ' H(Tn)4 , (I.9)

where [87, 88]

Γ(T) = R−4
0

(
S4
2π

)2

exp
{
S4
}

(I.10)

is the tunneling rate per volume. Here R0 ' 1/Tn is the tunneling radius at nucleation
and

S4 = 2π2
∫

dr r3
[

1
2φ
′(r)2 + V (φ(r))

]
(I.11)

is the O(4) bounce action with solution

φ′′(s) + 3
s
φ′(s)± dV (φ)

dφ = 0 , (I.12)

with boundary conditions

φ′(0) = 0 , lim
s→∞

φ(s) = 0 . (I.13)

Note that the ± in the equation of motion corresponds to the light-like (+) light-cone
coordinate s =

√
t2 − ~r2 and to the space-like (−) light-cone coordinate s =

√
~r2 − t2.

From the shape of the differential equation in Eq. (I.12) we expect the light-like (+)
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Figure I.2: Left: dilaton profile before nucleation. A transition is taking place from the false,
meta-stable vacuum at 〈χ〉 = 0 towards the nucleation point χ∗. Right: evolution after tunneling.
The field rolls down the potential and then oscillates in the valley around the true vacuum at
〈χ〉 = vφ. The oscillations with period ∼ v−1

φ get damped with damping time ∼ T−1
n � v−1

φ via
friction [55].

solution to be oscillating and the and space-like (−) solution to be exponentially decaying,
both behaviors damped by the friction term φ′(s).

We show the solution to the equations of motion in Fig. I.1. One solves the space-like
solution by guessing an initial value χ∗ for χ(0) using the over-shoot/under-shoot method.
The solution is plugged back into the bounce action, integrated, and then solved for the
nucleation temperature Tn using Eq. (I.9). Since the Tn is required as an input for the
potential and therefore the solution to the equations of motion, this definition is circular.
Solving in this case means trying different values for Tn until Eq. (I.9) is satisfied.

We estimate the tunneling point χ∗ using energy conservation by neglecting the friction
term in equation (I.12). It follows

Vtot(χ∗, T ) ' Vtot(0, T ) ⇒ χ∗
vφ
' 1
√

2 ln(vφ/χ∗)1/4
T

Tc
, (I.14)

where

Tc =
(

2|γε|cχg2
χ

π2N2

)1/4

vφ . (I.15)

Solving this for T = Tn and for the same values of the other parameters as in Fig. I.1,
we find Tc = 0.0012vφ, as indicated with the gray dashed line in Fig. I.1. Numerically
we find Tn = 0.010vφ. The big difference is due to having neglected the friction term in
Eq. (I.12).

The computed values depend on the shape of the potential, and therefore on the model
of the phase transition. The general principle however stays the same. Since the dilaton
is not the focus of this thesis, we now abandon it in favor of defining the PT by general
parameters in the next section.
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I.2 Useful definitions
In this section we define a FOPT via a few key parameters, which can be computed for
specific models, and will serve as input parameters during the following chapters.

The vacuum energy before the PT is defined via

∆V ≡ Λ4 = cvacv
4
φ , (I.16)

where cvac ranges from O(1) to O(10−3) for typical models. We call vφ the (energy) scale
of the PT, which can be thaught as the zero-temperature vacuum expectation value of an
order parameter φ, which in the example of the previous section is the dilaton.

The radiation density is given by

ρrad = gRπ
2

30 T 4 . (I.17)

The temperature at which the nucleation of bubbles start is the so-called nucleation
temperature, Tn.

We assume that the phase transition takes place during the vacuum dominated phase
of the universe, which starts for temperatures smaller than T )eq,

Teq =
(30cvac
gRiπ2

)1/4
f . (I.18)

After the PT is completed, the universe is reheated to

TRH =
(
gRi
gRf

)1/4
Teq , (I.19)

unless the width of φ is much smaller than the Hubble scale at the time of the PT, a case
in which we won’t be interested in the rest of this thesis.

The initial (i) and final (f) degrees of freedom are given by

gRi = gSM + gBSM , (I.20)
gRf = gSM , (I.21)

with gSM = 106.75 the effective degrees of freedom due to SM particles at temperatures
larger than the EW scale and gBSM the contribution from new particles.

In case Tn � vφ, the PT is supercooled.
It further proves useful to define two quantities, α and β, which are needed to compute

the GW signal. They are defined as

α ≡ ∆V
ρrad(Tn) =

(
Teq
Tn

)4
, (I.22)

the ratio of latent heat over radiation energy density, and

β ≡ 1
Γ

dΓ
dt , (I.23)

where Γ is the tunneling rate per volume [87, 88]. The latter therefore measures the
change of the tunneling rate, which implies that β−1 serves as an estimate of the typical
distance between nucleation centers of different bubbles and of the duration of the PT.
Typically the distance is shorter than a Hubble length H−1.
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I.3 Bubble wall velocities
The bubble walls are defined as the spherically symmetric regions of space where the
background field φ rapidly varies, from the high-temperature value outside the bubble,
to vφ inside it. The pressure density inside is larger than outside, driving the expansion
of the bubbles. If friction pressure on the walls is negligible, then they run away with
a Lorentz boost γ(R) = 2R/(3Rn) [89], where R is the bubble radius and Rn ≈ T−1

n is
the average distance between nucleation centers, see e.g. [55]. If the walls run away until
colliding, they reach

γrun = 2Rc
3Rn

' 2.7 · 1014 · Tn
Teq

TeV
vφ

1
(cvacgRi)1/4

20
β/H

(I.24)

where Rc ' (π)1
3β−1 is their radius at collision [90], and we have assumed Tn ≤ Teq so

that H '
√
cvac/3 v2

φ/MPl.
A number of effects can exert pressure on walls and slow them down. Collisional

plasma effects are expected to exert a negligible pressure for Tn . Teq (see e.g. [91–94]),
which is the case we will be interested in. One then enters the so-called ballistic regime,
where particle interactions can be neglected. Then, one has pressure from single particles
getting a mass across the wall, PLO = g∗∆m2 T 2

n/24 [95], with g∗ the number of degrees
of freedom getting an average mass squared ∆m2 ∝ v2

φ at the PT. Another pressure that
could be relevant in some models, Pheav, is that from degrees of freedom heavier than vφ
that couple to the particles that feel the PT [96]. PLO and Pheav are both smaller than
∆V for T 2

n < v2
φ, up to order-one model-dependent coefficients. In this case the velocity

of the bubble walls becomes ultra-relativistic, which is the case we are interested in in
this thesis.

Ultrarelativistic bubble walls can either run away until they collide with those of other
bubbles, or reach a terminal velocity beforehand, set by yet another source of pressure
given by the particle emitted by the bath and that get a mass m at wall crossing. If this
transition radiation is soft-enhanced, as for emitted gauge bosons, then their pressure
grows with γ [97]. Its size is enhanced by large logarithms, that have been resummed
in [89], which gives the pressure

PLL '
ζ(3)
π4 g2geff γ mV T

3
n log(mV /µ) , (I.25)

where g is the gauge coupling, geff a weighted sum of the radiating degrees of freedom
times their charges, mV is the gauge boson mass and µ a physical IR cut-off.1 If PLL(γ)
reaches ∆V = cvacv

4
φ before collision, then walls reach a terminal velocity

γLL ' 3.5 · 104 ·
(
Teq
Tn

)3(0.1
g

)3
(
cvacg

3
Ri

104

)1/4 10
geff logmVµ

, (I.26)

where we have chosen mV = gvφ for definiteness. The typical boost of bubble walls at
collision then is

γcoll ' Min
[
γLL, γrun

]
. (I.27)

1The only two other sources of pressure, which we are aware of, are those from string fragmentation in
confining PTs [55] and that from vectors that get from the wall only a small component of their mass [98].
Neither of them applies to the considered scenarios in this thesis.
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In Fig. I.3 we show the boost factor at collision γcoll in Eq. (I.27), showing that it
becomes large for small values of the scale of the PT vφ.
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Figure I.3: Boost factor at collision γcoll for a gauge boson radiated and reflected at the wall of
a bubble, with terminal velocity determined by Eq. (I.25).

Large boosts at collision are realised for small gauge coupling g, or for large vφ/Tn, or
in global (rather than gauged) PTs because there PLL does not grow with γ.

I.4 Shells of particles at the wall
Due to interactions with the bubble wall, particles will accumulate in thin, dense regions
at the wall. We call this region the shell of the bubble wall. The thickness of the
shell depends on the types of particles considered. Here we exemplarily compute the
thickness of such shells for a massless particle accumulating in front of the wall, such
that our discussion applies for example to radiated gauge bosons (the same ones that are
responsible for PLL of Eq. (I.25)) which are reflected at the wall.

We define the distance x of a shell particle from the wall via∫ x

0
dr =

∫ tc

tej

dt (vp − vw(t)) =
∫ Rc

rej

dr
vw

(1− vw) , (I.28)

x =
∫ Rc

rej
dr
( 1
vw
− 1

)
. (I.29)

where rej is the radius where the particle has been ejected. The size of the shells is set by
the particles which have been ejected the earliest, for which rej ' 1/Tn.
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I.4.1 Runaway regime
Here we use we use that the bubble wall velocity γ scales linearly with the radius r in the
runaway regime, γw(r) ' Tnr.. The exact solution is given by

rej(x) = 1
2
(
Rc −

√
R2

c − 1
T 2

n
+ x

)
+ 1

2T 2
n

(
Rc −

√
R2

c − 1
T 2

n
+ x

) (I.30)

I.4.2 Terminal velocity regime
For the terminal velocity regime we split the integral into two parts. In the first part we
still have runway behavior γw(r) ∼ r, in the second part the velocity is constant. The
radius of equality is fixed by Tnreq = γmax. Then we have to split the integral into two
parts, and we have

x =
[√

r2 − 1
T 2

n
− r

]req

rej

+
(

1√
1− 1/γ2

max
− 1

)
(Rc − req) (I.31)

The exact solution is

rej(x) = B(x)
2 + 1

2T 2
nB(x) , (I.32)

B(x) ≡ x+ req −
√
r2

eq − 1
T 2

n
−
(

1√
1− 1/γ2

max
− 1

)
(Rc − req) . (I.33)

The thickness of the shell is then given by the maximal value of x. For this particu-
lar example we find that

Lp '
1

γcollTn
(I.34)

is a good approximation in the runaway regime and in the terminal velocity regime, and
γcoll is the wall velocity reached at collision.

We derive now the general expression, applicable to all models. We start similarly as
in Eq. (I.28)

x =
∫ tc

tp
dt [vp(tp)− vw(t)] =

∫ tc

tp
dt
(

1
2γ2

w(t) −
1

2γ2
p(tp)

)
=
(

1
2T 2

n tp
− tc − tp

2γ2
q (tp)

)
, (I.35)

but now we have expanded before integrating instead of expanding after integrating. Here
vp and tp are the velocity and ejection time of the particle in the shell.

For massless particles moving faster than the wall, γq → +∞, we get

Lp '
1

γwTn
=⇒ Lw '

1
Tn

, (I.36)

in the plasma and wall frame, respectively.
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In the opposite case, for massive particles moving slower than the wall we get

Lp '
Rc
γ2

q
=⇒ Lw '

γw
γq

Rc
γq

, (I.37)

with Rc ' tc − tp ' β−1 the bubble radius at collision.
If γq ' γw, then we have Lp ' 1/γTn, reproducing the result in Eq. (I.34). At the end

the precise value of shell thickness Lp does not matter since the abundance in Eq. (III.8)
is independent of Lp.

We note that we have derived the general expression for the thickness of the wall in
the runaway regime. However, we find that they are also a good approximation, at most
an overestimate, in the terminal velocity regime.

We note that the particles are not distributed with equal density in the shell, in fact
the most dense region contains the particles which have been ejected the latest. One
can therefore define an effective thickness Leff such that 〈n〉 ·Leff4πR2 equals the number
of particles in the shell. Usually the effective thickness is of the same scaling, see e.g.
Leff ∼ 1/(2T 2

nRc) in [55].

I.4.3 Summary of different models producing shells
We have shown the explicit calculation of the thickness of a shell for a specific scenario.
However, there exist further mechanisms causing particles to accumulate into shells due
to the same origin of the pressures slowing down the expansion of the wall. We list them
below.

1. Particles acquiring their mass [72, 95];

2. Particles radiated and transmitted in the wall [89];

3. Heavier particles if produced by lighter ones that feel the PT [72, 96, 99];

4. In confining PTs, hadrons from string fragmentation [55];

5. Vectors acquiring a small part of their mass [98];

6. Particles produced by oscillations of the wall φ [100];

7. In confining PTs, ejecta from string fragmentation [55];

8. Particles radiated and reflected by the wall [89].

Shells 1 to 6 follow the bubble walls, shells 7 and 8 precede them. When bubbles collide,
also these shells do. If their constituent particles still have an energy much larger than vφ
by that time, then they realise what we define a bubbletron. We present key parameters
in Tab. I.1.
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Channel Multiplicity N Momentum Shell
per incoming particle pX thickness Lp

Leading-order interaction: 1 ∆m
Tn

∆m Rc

(
Tn

∆m

)2

particles acquiring a mass [95, 101]
Gauge interaction g � 4π:

g2

4π ln2 # γ gvφ
1
γTn

bremsstrahlung radiation
[89, 96–98]

Gauge interaction g ' 4π: g2

4π ln γTn
vφ

γvφ
1
γTnhadronization [55, 57]

Non-adiabatic production of γ2v2
φ/M

2
X MX

Tn
MX Rc

(
Tn
MX

)2

heavier particles [56, 72, 99, 102] Θ
(
γ −M2

X/(Tnvφ)
)

Table I.1: Primary particle production mechanism generated by the motion of the wall. All
quantities are expressed in the plasma frame and do not include effects from interactions between
particles. Rc is the bubble radius at collision. Gauge interactions give rise to particles being
reflected and particles being transmitted at the wall. Both their quantities have the same scaling
but different O(1) factors.

I.5 Gravitational wave signal
We finally compute the GW spectrum generated by the PT for ultra-relativistic bubble
walls. According to whether their Lorentz factor γcoll is set by γrun or γLL in Eq. (I.27),
the latent heat fraction α (see Eq. (I.22)) of the PT is either kept in the bubble wall
kinetic energy or is transferred to the plasma in the form of ultra-relativistic shocks. In
the former case, the GW spectrum is given by the bulk flow model [79], which has been
calculated analytically [79] and numerically [80, 82, 103, 104]. It extends the envelop ap-
proximation [75, 77] by accounting for the propagation of bubble wall remnants long after
the collision. In the latter case, ultra-relativistic shocks can be described by extremely
thin and long-lived shells of the stress-energy tensor [105]. From a gravitational point
of view, they should be indistinguishable from stress-energy profile stored in the scalar
field. Hence, the bulk flow model should offer a good description of the GW spectrum
(see also [103]). First results in the moderately-relativistic regime γcoll . 10 support this
choice [101].

We take the GW spectrum ΩGWh
2 in the bulk flow model from [80],

ΩGW (ν) = ΩGWSφ(ν) , (I.38)

where ν is the peak frequency given by

ν̃ = 33µHz
(
g∗(TRH)

100

)1/6 β

H

(
TRH

103 GeV

)
. (I.39)

and ΩGW is the amplitude of the energy spectrum. The shape of the spectrum is governed
by the spectral function

Sφ(ν) = (a+ b)ν̃bνa
b ν̃(a+b) + a ν(a+b) , (I.40)
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where we adopt the central values for the bubbles in the setup with the thickest walls
from [104], namely a = 0.742 and b = 2.16.

Using the numerical results from [104], the GW energy density power spectrum as
measured today, for initially thick walled, runaway bubbles scales as

h2ΩGW (ν) ≡ h2 dΩGW

d ln(ν) = 4.4× 10−7
( 100
g∗(TRH)

)1/3( α

1 + α

)2 Sφ(ν)
(β/H)2 . (I.41)

Finally we impose that ΩGW ∝ ν3 due to causality for super-horizon modes at GW
production [106–109]. We therefore apply a cut in the spectrum at the redshifted fre-
quency today of

ν∗(t0) = a(TRH)
a0

H(TRH)
2π , (I.42)

below which we enforce the correct IR scaling by hand and where a(TRH)/a0 is the ratio
of the scale factors between the PT and today.

We will show the GW spectra in Fig. III.5 and Fig. IV.3.
Gravity waves from PTs can be probed by several current or upcoming GW interfer-

ometers, like Pulsar Timing Arrays, LISA and the Einstein Telescope. The sensitivity of
a detector to a GW signal is given by

Ωsens(ν) = 4π2

3H2
0
ν3Sn(ν) , (I.43)

where H0 =100 h km/s/Mpc is the present day Hubble parameter and Sn is the noise
spectral density, which depends on the respective experiment. The signal to noise ratio
SNR to a GW background is given in terms of the above quantities as

SNR =
√
T

∫ νmax

νmin
dν

(ΩGW (ν)
Ωsens(ν)

)2
, (I.44)

where νmin and νmax are the minimal and maximal frequencies accessible at the detec-
tor and T is the fiducial observation time. Using this expression, the so called power-
law-integrated (PLI) sensitivity curves are computed [110], and our calculations for the
ET [111] and LISA [112] PLI sensitivity curves are shown in Fig. IV.2, for a fiducial
choice of SNR=5. There are several astrophysical stochastic GW foregrounds in the ET
and LISA frequency range which could mimic the GW signal coming from the PT. In
order to take this limitation into account we also define a foreground-limited signal to
noise ratio,

SNRFGL =
√
T

∫ νmax

νmin
dν

(Max[ΩGW(ν)− ΩFG(ν), 0]
Ωsens(ν)

)2
. (I.45)

With the above conservative definition we impose that our signal is not detectable if
buried under ΩFG(ν).
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II – Free-streaming of shell particles

While the particles travel from their creation at the bubble wall to the point of (head-
on) collision with particles from other shells, they interact with each other and with the
particles in the thermal bath of the universe. Computing the effect on the particles’
energy, number density, etc. has proven to be a too optimistic wish for now. We will
therefore leave this for future work, and focus on listing all the possible effects which can
prevent shell particles from free-streaming, and on determining the parameter space for
which we can neglect these effects, i.e. where the particles stream freely. These completely
novel computations, which have only been partially approached in [55, 89, 99], constitute
a necessary input for standard predictions of PTs, like gravitational waves and particle
production (the latter being another novel subject of this thesis), and a first step to study
the evolution and implications of interacting shells.

In Sec. II.1 we compute the momentum loss a particle in the shell experiences due to
moving through a, from its point of view highly boosted, plasma. In Sec. II.2 we estimate
whether due to the same effect, but viewed from a particle from the bath, the particle
in the bath experiences a boost large enough to reverse its momentum, and therefore
reduce the incoming flux of particles at the wall. In Sec. II.3 we estimate the region
where we can neglect Boes-Einstein and Fermi-Dirac phase space distribution functions.
In Sec. II.4 we compute the rate of number-changing interactions of particles from the
shell with themselves and with the bath, which would lead to reaching some form of
equilibrium. In Sec. II.5 we present the results of our computations in the form of colored
regions in the parameter space of the PT. In these regions traditional results, e.g. for
GWs produced by PTs, may need to be re-evaluated.

II.1 Shell momentum loss
Consider a shell produced on either side of the wall and propagating outwards from the
nucleation site in the same direction of the wall. Particles in the shell will see an incom-
ing flux of particles from the thermal bath. Interactions with these bath particles may
change the momentum of the shell particles and therefore modify the overall properties or
propagation of the shell. Also the bath particles may be affected by the shell and perhaps
the flux of particles reaching the wall be suppressed or otherwise modified. We identify
the following possibilities:

• Reversal of the shell: consider a shell traveling in front of the wall. In the plasma
frame, both wall and shell travel at close to the speed of light, but the shell is
slightly faster than the wall. Interactions with the bath particles may lead to a

15
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change in momentum of the shell particles, insufficient for dissipation, but sufficient
to slow the shell particles so that the latter are caught by the wall. The picture
in the wall frame is the following: Shell particles travel outward with momentum
pX,w. Typically, one has pX,w ∼ vφ in the wall frame. Incoming bath particles
have momentum ∼ γT . These interact with the shell particles and if the change of
momentum of the latter in the wall frame is ∆pX ∼ pX before the shells collide, then
the shell particles are typically caught by the wall. More concretely, the condition
to avoid the shell reversal is given by

d log(px,w)
dt

∣∣∣
wall

<
γ

Rc
, (II.1)

where the γ factor takes into account the shorter propagation distance before wall
collision in the wall frame. Note in the wall frame the density of bath particles is
also Lorentz boosted ∼ γT 3.

• Shell dissipation: In the extreme case the shell may be completely dissipated. Con-
sider particles traveling outward with momentum pX in the plasma frame. Depend-
ing on the nature of the shell, we can have pX ' γvφ where γ is the Lorentz factor
of the wall, or pX ≈ m2

X/T . Then if interactions with the bath particles leads to
changes in the shell particle momentum ∆pX ∼ pX before the shells collide, then
the shell will become dissipated back into the plasma. Two conditions can be met
for this to be prevented. Either the momentum exchange is small over the distance
of propagation, here taken to be the bubble size at collision,

d log(pX)
dt

∣∣∣
plasma

<
1
Rc
. (II.2)

Or, alternatively, if the total energy in the shell particles is larger than the total
energy in the bath particles, EX > Ebath, the latter cannot dissipate the former.
Depending on the underlying interactions, a shell traveling in front of the wall can
be reversed without being dissipated, or the reversal and dissipation lengths can
coincide, as we shall see below.

• Reversal of the bath: If a relativistic shell is traveling in front of the wall, its
interactions with the bath may reverse the bath particles, and prevent them from
reaching the wall. This in turn cuts off the shell production sourced from the
bath particles interacting with the wall, and therefore alters the dynamics of shell
production and propagation. In the wall frame the bath particles carry momentum
pa ' γTn. To prevent reversal, we require the change in momentum to be smaller
than the initial one, ∆pa ∼ pa. More precisely, the condition reads

d log(pa)
dt

∣∣∣
wall

<
1
Lw

, (II.3)

where Lw is the shell thickness in the wall frame. The detailed rate of course depends
on the density of the shell particles.

In the following subsections, we go on to evaluate the dissipation/reversal conditions for
the shell for different choices of underlying interactions in greater detail. In section II.2
the bath reversal is worked out in detail.
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p1 = pXw p2 = γT

p3 = q

p4 = p

θth

W
all

Figure II.1: The scattering — as seen in the wall frame — leading to the threshold at
which point the reflected particle will head back to the wall.

II.1.1 Shell reversal

a) Basic picture

We first consider the gauge bosons created at the wall which are reflected back into the
unbroken phase. Gauge bosons are of particular interest here because they obtain an
enhanced production rate compared to fermions and scalars. The gauge bosons have
a typical momentum in the wall frame pX,w ≈ mbroken ∼ gvφ and zero vacuum mass
(accordingly, their momentum in the plasma frame is pX = γpX ∼ γgvφ). We now derive
the conditions for these to be sent back to the wall via interactions with the bath particles.
The case of the shell particles interacting via t-channel gauge boson exchange has been
worked out in [89], the results of which we confirm here using an alternative method
to take into account the accumulated effect of many soft scatterings. We also consider
Compton scattering, which is of relevance when U(1) gauge bosons interact with charged
fermions or scalars in the bath, and which gives a longer path length. The limits from
Compton scattering are therefore the relevant ones in the absence of t−channel gauge
boson exchange processes.

b) Simple estimates

We work in the wall frame. The basic picture is illustrated in Fig. II.1. The gauge
boson momentum before and after scattering is denoted p1 and p3 respectively. The bath
particle momentum is denoted p2 or p4. The four momenta are

p1 = (pX,w, 0, 0, pX,w) , (II.4a)
p2 = (γT, 0, 0, −γT ) , (II.4b)
p3 = (q, 0, q, 0) , (II.4c)
p4 = (p, 0, −p sin θth, −p cos θth) . (II.4d)

Here we are ignoring particle masses and γ is the Lorentz factor of the wall in the plasma
frame. There are three unknowns, q, p, θth and three equations from energy and momen-
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tum conservation

γT + pX,w = q + p , (II.5a)
γT − pX,w = p cos θth , (II.5b)

q = p sin θth . (II.5c)

The solution to these equations is

q = 2pX,wγT

pX,w + γT
' 2pX,w , (II.6a)

p =
p2

X,w + (γT )2

pX,w + γT
' γT , (II.6b)

sin θth = 2pX,wγT

p2
X,w + (γT )2 '

2pX,w
γT

, (II.6c)

where we have also given the approximate solution in the limit γT � pX,w. Clearly then a
small deflection of the incoming bath particle is sufficient to reverse the reflected particle.
The momentum transfer squared is then

− t̂ = −(p1 − p3)2 = 2 p1 · p3 = 4p2
X,w . (II.7)

Note that this is far below the center-of-mass energy squared ŝ = 2p1 ·p2 = 4γTpX,w. The
momentum in the center-of-mass frame is likewise found in the massless limit p2

com = ŝ/4.

Møller scattering.

We assume a matrix element inspired by t−channel gauge boson exchange, as in Møller
scattering in regular QED, and consider the leading contribution in the t̂→ 0 limit

|M|2 ≈ 4g4 ŝ
2

t̂2
. (II.8)

This gives us
dσ

dt̂
= |M|2

64πp2
comŝ

≈ g4

4π t̂2
. (II.9)

If we instead consider Bhaba scattering, we find the same, and for gluon scattering in
an SU(3), a factor of 9/8 enhancement — so for practical purposes the same.1 Other
choices would not give an IR enhancement, so the eventual path length before reversal
is minimized by an assumption of t−channel gauge boson exchange. The effective cross
section to have one scattering impart the necessary momentum exchange is then

σeff =
∫ −4p2

X,w

−4p2
com

dt̂
dσ

dt̂
' g4

16π p2
X,w

. (II.10)

1For the Møller and gluon scattering, there is also a singularity at û → 0, which one could include by
multiplying the overall effective cross section by two, but we have not done this here. The inclusion of
such a factor would not make a major difference in our results.
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We use this to find the rate of such scatterings in the wall frame,

Γwall = nbath,wσeffvrel '
γg4g∗ζ(3)T 3

8π3p2
X,w

, (II.11)

where we have used the bath particle density in the wall frame

nbath,w ≈
γg∗ζ(3)T 3

π2 , (II.12)

and vrel ' 2. This result leads to an effective path length before reversal

lwall ≈
8π3p2

X,w
γg4g∗ζ(3)T 3 . (II.13)

The path length in the plasma frame is larger by a factor of γ

lplasma ≈
8π3p2

X,w
g4g∗ζ(3)T 3 . (II.14)

We will eventually also study the effects of multiple soft scatters not taken into account
in the above. But we first consider some other possibilities for the matrix element.

Compton scattering in fermion QED.

In the massless limit we have

|M|2 = −2g4
(
ŝ

û
+ û

ŝ

)
. (II.15)

Note the divergence in the limit û = (p1 − p4)2 → 0. In terms of the scattering angle,
this divergence occurs when the gauge boson scatters back directly toward the wall. The
divergence is cut-off by the finite fermion mass (we assume the thermal mass of the fermion
is more important than any thermal mass of the U(1) gauge boson). Using û = 2m2

f−ŝ−t̂,
we write the effective cross section as

σeff ≈
1

16πŝ2

∫ −m2
f

−ŝ
dû|M|2 ≈ g4

8π ŝ log
(
ŝ

m2
f

)
≈ g4

32π2γTpX,w
log

4γpX,w
g2/4π
T

 , (II.16)

where we have assumed m2
f ≈

g2

4πT
2 and used ŝ = 4γTpX,w. Note the suppression com-

pared with Eq. (II.10). The effective path length in the wall frame is then

lwall ≈
16π3pX,w

g4g∗ζ(3)T 2 log
(

4γpX,w
g2/4π
T

) . (II.17)

The path length in the plasma frame is therefore

lplasma ≈
γ16π3pX,w

g4g∗ζ(3)T 2 log
(

4γpX,w
g2/4π
T

) . (II.18)

which is larger by a factor ∼ γT/pX,w than the equivalent estimate for Møller scattering.
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Compton scattering in scalar QED.

In the massless limit we have
|M|2 = 4g4 , (II.19)

and therefore
σeff ≈

g4

4π ŝ . (II.20)

The effective path length in the wall frame is then

lwall ≈
8π3pX,w

g4g∗ζ(3)T 2 . (II.21)

The path length in the plasma frame is therefore

lplasma ≈
8γπ3pX,w
g4g∗ζ(3)T 2 . (II.22)

c) Integral method

We again begin by working in the wall frame. From the above discussion, for reversal,
we need to change the initial momentum (and energy) p1 by an O(1) factor in the wall
frame. Using energy conservation, the change in the gauge boson momentum magnitude
is

δpX,w = δEX = −(E2 − E4) . (II.23)
Our first task is to find δpX,w as a function of t̂. In the center-of-mass frame the momenta
are

p′1 = (pcom, 0, 0, pcom) , (II.24a)
p′2 = (pcom, 0, 0, −pcom) , (II.24b)
p′3 = (pcom, 0, pcom sin θcom, pcom cos θcom) , (II.24c)
p′4 = (pcom, 0, −pcom sin θcom, −pcom cos θcom) . (II.24d)

Here ŝ = 4p2
com = 4γTpX,w. To go from the wall frame to the center-of-mass frame

requires a relativistic boost, vboost ' 1, in the direction of the wall with Lorentz factor

γboost = pcom
2E1

= E2
2pcom

= 1
2

√
γT

pX,w
. (II.25)

Note we have the relation between the scattering angle in the center-of-mass frame and
the momentum exchange

cos θcom = 1 + t̂

2p2
com

. (II.26)

Boosting from the center-of-mass frame back into the wall frame we have

E2 = γboost(E′2 − vboostp
′
2z) = 2γboostpcom , (II.27a)

E4 = γboost(E′4 − vboostp
′
4z) = γboostpcom(1 + cos θcom) = 2γboostpcom

(
1 + t̂

4p2
com

)
.

(II.27b)
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Using these we find

δpX,w ' −
t̂

4pX,w
. (II.28)

We have to be careful with the above formula, as it captures the change in the magnitude
of the momentum, but we can only reverse a particle once. Thus we should cut-off the
weighting for −t̂ & 4p2

X,w, by making the replacement

δpX,w → Min
[
− t̂

4pX,w
, pX,w

]
, (II.29)

in regions of phase space where such hard scatterings occur. Then the rate to lose an
O(1) fraction of momentum in the wall frame is given by

1
pX,w

dpX,w
dt

' nbath,wvrel
pX,w

∫ −µ2
IR

−4p2
com

dt̂
dσ

dt̂
δpX,w . (II.30)

Møller scattering.

We apply this formula to our Møller scattering cross section to find

1
pX,w

dpX,w
dt

' nbath,wvrel
p2

X,w

∫ −µ2
IR

−4p2
com

dt̂
g4

−16πt̂
' γg4ζ(3)g∗T 3

8π3p2
X,w

log
(

4γTpX,w
µ2

IR

)
. (II.31)

Assuming a thermal mass cut-off, µ2
IR = g2/4π

T

2
, the streaming length before reversal in

the wall frame is therefore

lwall ≈
8π3p2

X,w

γg4g∗ζ(3)T 3 log
(

4γpX,w
g2/4π
T

) . (II.32)

This finally leads us to the streaming length in the plasma frame

lplasma ≈
8π3p2

X,w

g4g∗ζ(3)T 3 log
(

4γpX,w
g2/4π
T

) . (II.33)

Note up to the logarithmic suppression factor, this is the same estimate as using the
simple σeff method.

Compton scattering in fermion and scalar QED.

Here the scatterings are dominantly hard, so the use of the integral method will
not change the estimates of reversal path length compared to the effective cross section
approach.
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d) Summary of reversal path lengths

For Møller type scattering, i.e. t−channel gauge boson exchange, we can use the path
length for reversal in the plasma frame

lplasma ≈
8π3p2

X,w

g4g∗ζ(3)T 3 log
(

4γpX,w
g2/4π
T

) = 8π3p2
X

γ2g4g∗ζ(3)T 3 log
(

4pX
g2/4π
T

) . (II.34)

For Compton scattering involving fermions

lplasma ≈
16γπ3pX,w

g4g∗ζ(3)T 2 log
(

4γpX,w
g2/4π
T

) = 16π3pX

g4g∗ζ(3)T 2 log
(

4pX
g2/4π
T

) . (II.35)

And for Compton scattering involving scalars

lplasma ≈
8γπ3pX,w
g4g∗ζ(3)T 2 = 8π3pX

g4g∗ζ(3)T 2 . (II.36)

In the above, T will be later identified with the nucleation temperature Tn, pX,w is the
initial gauge boson momentum in the wall frame, and we reintroduce the momentum
in the plasma frame, pX = γpX,w. Finally in order, say, to check whether the shells
meet before particle reversal, one simply compares the above path lengths to the required
propagation distances, typically ∼ Rc in the plasma frame.

We show the region where shell reversal effects are relevant in Fig. II.2.

II.1.2 Shell dissipation

a) Basic picture

We now consider shell dissipation. By this we mean any process which changes the mo-
mentum of shell particles by an O(1) factor. Note this could still leave an expanding
shell with significant, albeit altered, mean momenta and particle types and number den-
sities. In the extreme case, of course, the shell may completely dissipate leaving only a
thermal bath. We shall make additional comments, in the context of specicific examples,
clarifying the two possibilities when relevant below. (Similar calculations to those below,
in the case of non-gauged PTs, have been used in [99].) In our calculation of the shell
reversal, we were interested whether a shell propagating in front of the bubble wall would
remain there, or be sent back into the bubble. Thus the primary interest was for shells of
the radiated and reflected bosons of transition radiation. The shell dissipation, however,
is relevant not only for the shells considered in the reversal, but also for shells formed
behind the bubble wall.

b) Simple method

We work in the plasma frame and consider 2 → 2 scattering between a shell and bath
particle. We assume the shell particles are relativistic in the plasma frame so that E1 ≡



II.1 Shell momentum loss 23

EX ' px. The initial momenta are approximately

p1 = (pX, 0, 0, pX) , (II.37a)
p2 = (T, 0, 0, −T ) . (II.37b)

The center-of-mass energy squared is ŝ ' m2
X + 4pXT and the center-of-mass momentum

squared is p2
com ' 4p2

XT
2/ŝ. To bring the bath particle energy from the plasma to the

center-of-mass frame requires a relativistic boost in the positive z−direction with vboost '
1 and Lorentz factor γboost ' pcom/2T � 1. Consider now a scattering between the
two particles in the center-of-mass frame with a scattering angle θcom, corresponding to
Mandelstam variable t̂ = −2p2

com(1 − cos θcom). In the center-of-mass frame the four-
momenta are

p′1 = (pcom, 0, 0, pcom) , (II.38)
p′2 = (pcom, 0, 0, −pcom) , (II.39)
p′3 = (pcom, 0, pcomsθcom , pcomcθcom) , (II.40)
p′4 = (pcom, 0, −pcomsθcom , −pcomcθcom) . (II.41)

The change in momentum for the shell particle can be found by boosting back into the
plasma frame, and is given by

δpX = E3 − E1 = −γboostvboostpcom(1− cos θcom) = t̂

4T . (II.42)

Thus to achieve δpX ≈ pX requires rather hard scattering t̂ ≈ −4TpX.

Møller scattering.

For t−channel gauge boson exchange processes, such as Møller scattering, we have as
in our discussion for shell reversal,

|M|2 ≈ 4g4 ŝ
2

t̂2
. (II.43)

and thus
dσ

dt̂
≈ g4

4π t̂2
. (II.44)

For the hard scattering processes we are interested in for shell dissipation, we use t̂ ≈
−4TpX, so we take an effective cross section

σeff ≈
g4

16πpXT
. (II.45)

Note the above ignores a suppression factor because the required momentum exchange is
close to ŝ, nevertheless, it should give a suitable estimate up toO(1) factors. Remembering
that we are working in the plasma frame, so that the bath number density is

nbath ≈
g∗ζ(3)T 3

π2 , (II.46)
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we find the scattering rate

Γ = nbathσeffvrel = g4g∗ζ(3)T 2

8π3pX
. (II.47)

Hence, the dissipation length in the plasma frame is

lplasma = 8π3pX
g4g∗ζ(3)T 2 . (II.48)

It is instructive to compare this to the equivalent calculation for the shell reversal path
length, Eq. (II.14), in the case of radiatiated and reflected gauge bosons. Noting pX =
γpX,w ≈

√
g22/4πγvφ, we find the path length for dissipation is a factor γT/(

√
g2/4πvφ)

longer than for reversal. Note kinematics requires γ >
√
g2/4πvφ/T for the gauge bosons

to be produced. As the large momentum change required for dissipation exceeds that
momentum change required for reversal, the former would necessarily imply also the latter,
so it is only self consistent to have a dissipation path length longer than or approximately
coinciding with reversal.

Compton scattering in fermion QED.

The matrix element is given by

|M|2 = −2g4
(
ŝ

û
+ û

ŝ

)
. (II.49)

Thus we have an effective cross

σeff ≈
1

64πŝp2
com

∫ −m2
f

−4p2
com

dû|M|2 ≈ g4

32πp2
com

log
(

4p2
com
m2
f

)
≈ g4ŝ

128πp2
XT

2 log

16p2
X

g2

4π ŝ

 ,

(II.50)

where we have assumed an IR cutoff from the fermion thermal mass m2
f ≈

g2

4πT
2, and used

p2
com ' 4p2

XT
2/ŝ. Note scattering precisely at the u−channel singularity would correspond

to replacing a shell particle of one type (say a gauge boson) with a shell particle of another
type (say a fermion). This changes the nature of the shell but one may hesitate to label
it as dissipation. Nevertheless, at somewhat more moderate t̂, the size of the final state
momenta are also significantly altered, so this remains a valid estimate up to logarithmic
factors. The above leads to a dissipation length in the plasma frame of

lplasma = 64π3p2
X

g4g∗ζ(3)ŝT log
(

16p2
X

g2

4π ŝ

) . (II.51)

Again we compare with the reversal path length in the case of radiated and reflected
gauge bosons, Eq. (II.18), and now find it coincides with the dissipation path length.
This is due to the u-channel singularity, which means hard scatterings dominate up to
teh IR cutoff in the effective particle mass. Physically this makes sense provided we treat
the derived lengths as approximate up to O(1) factors.
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Compton scattering in scalar QED.

As before, for compton scattering in massless scalar QED we have

|M|2 = 4g4 , (II.52)

and therefore
σeff ≈

g4

4π ŝ . (II.53)

As in the fermion QED case, the scatterings of interest are dominantly hard, but there is
now no û→ 0 singularity which makes interpretation easier. Accordingly the dissipation
path length in the plasma frame is

lplasma = 8π3pX
g4g∗ζ(3)T 2 . (II.54)

Making the comparison to the reversal path length in the case of radiated and reflected
gauge bosons, Eq. (II.22), we find the path lengths coincide. Thus the scatterings which
reverse the shell in the wall frame, also change its constituent particle momenta by O(1)
factors in the scalar QED case.

c) Integral method

For our 2→ 2 scattering, we see from Eq. (II.42) that the momentum change of the shell
particle in the plasma frame is given by δpX = −t̂/4T . To take into account the possibility
of a large number of soft scatterings adding up to give a momentum change of order pX,
we can obtain an estimate of the path length by using an integrating, as in Eq. II.30.
The only difference is that here we are working in the plasma frame. Accordingly, the
momentum loss rate is given by

1
pX

dpX
dt
≈ nbathvrel

pX

∫ −µ2
IR

−4p2
com

dt̂
dσ

dt̂
δpX ≈ −

nbathvrel
4pXT

∫ −µ2
IR

−4p2
com

dt̂
dσ

dt̂
t̂ . (II.55)

Møller scattering.

We apply the above to t−channel gauge boson exchange, using , and obtain

d log pX
dt

≈ g4ζ(3)g∗T 2

8π3pX
log

16p2
X

g2

4π ŝ

 . (II.56)

where we have taken a thermal mass cut-off, µ2
IR = g2

4πT
2, as before. Thus the dissipation

path length in the plasma frame is given by

lplasma = 8π3pX

g4ζ(3)g∗T 2 log
(

16p2
X

g2

4π ŝ

) , (II.57)

which is logarithmically suppressed compared to the simple estimate, Eq. II.33, and re-
places it as our preferred approximation. In the case of radiated and reflected gauge
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boson shells, the ratio of dissipation to reversal path lengths remains the same when us-
ing the simple of integrated estimates. That is, the dissipation path length is a factor of
γT/(

√
g2/4πvφ) longer than the reversal path length.

Compton scattering in scalar and fermion QED.

As for the shell reversal, these dissipation path lengths are determined by hard scat-
terings, so the simple estimates are unchanged by use of the integral method.

d) Summary of dissipation lengths

We now summarize the dissipation path lengths due to 2→ 2 interactions between shell
and bath particles. When the shell interacts with the bath via t−channel gauge boson
exchange the dissipation path length in the plasma frame is approximately

lplasma = 8π3pX

g4ζ(3)g∗T 2 log
(

16p2
X

g2

4π ŝ

) , (II.58)

For Compton scattering with fermions

lplasma = 64π3p2
X

g4g∗ζ(3)ŝT log
(

16p2
X

g2

4π ŝ

) . (II.59)

And for Compton scattering with scalars

lplasma = 8π3pX
g4g∗ζ(3)T 2 . (II.60)

We remind the reader that in these expressions, pX is the shell particle momentum as
measured in the plasma frame, ŝ ' 4pXT , and T is the temperature of the bath, in our
scenario the nucleation temperature Tn.

We show the region where dissipation effects are relevant in Fig. II.3.

II.2 Fate of the bath particles

II.2.1 Basic picture
Above we checked whether the shell particles are reversed back to the wall due to their
interactions with the bath. We can also ask whether bath particles reach the wall, or if
they are diverted, i.e. their momentum changes by significant amounts before they reach
the wall. The picture is essentially that which we considered for shell reversal. The main
difference is that bath particle reversal depends on the number density of particles in the
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shell together with the shell thickness. The shell is created by bath particles and the
volume of the shell ∝ Lp/Rc in the plasma frame. Thus, we have the following relation

nshell = nbathPprodRc
Lp

, (II.61)

where Pprod is the probability of producing a shell particle from a bath particle. In the
wall frame the shell density is reduced by a wall Lorentz factor,

nshell,w = nbathPprodRc
γLp

= nbathPprodRc
Lw

, (II.62)

where Lw is the shell thickness in the wall frame.

II.2.2 Simple estimates
We work in the wall frame. Consider an incoming bath particle with energy Ea ' pa ≈ γT
traveling in the negative z−direction. This interacts with a shell particle with momentum
pX,w. The center-of-mass energy squared is ŝ = 4pX,wpa = 4p2

com. Simply following the
arguments which led to Eq. (II.28), we find that after a scattering the change in the bath
particle energy is simply

δEa = t̂

pX,w
. (II.63)

Therefore, to change the energy by ∼ Ea, we need a single scattering to have t̂ ≈ −γTpX,w.

Møller scattering.

Applying the above to Møller scattering type interactions, we find an effective cross
section

σeff =
∫ −γTpX

−4p2
com

dt̂
dσ

dt̂
≈ g4

16πγTpX,w
. (II.64)

The effective path length of a bath particle in the wall frame is therefore

lwall ≈
8πpapX,w
g4nshell,w

. (II.65)

For the bath particles to reach the wall unimpeded we require, lwall > Lw, i.e. a path
length longer than the shell thickness in the wall frame. Later we will compare this to
the shell reversal and dissipation conditions, but we first move on to the other interaction
types.

Compton scattering with fermions.

For Compton scattering in fermion QED we have an effective cross section

σeff = 1
16πŝ2

∫ −µ2
IR

−4p2
com

dû|M|2 ≈ g4

32πpapX,w
log

(
4papX,w
µ2

IR

)
, (II.66)
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where µ2
IR is an IR cutoff, at least of order the fermionic thermal mass g2

4πT
2. Hence we

find an effective path length for a bath particle in the wall frame

lwall ≈
16πpapX,w

g4nshell,w log
(

4papX,w
µ2

IR

) . (II.67)

Compton scattering with scalars.

For Compton scattering in scalar QED we have

σeff ≈
g4

16πpapX,w
. (II.68)

This gives an effective path length for the bath particle in the wall frame

lwall ≈
8πpapX,w
g4nshell,w

. (II.69)

II.2.3 Integral method

Møller scattering.

Remembering the change in momentum is δpa = t̂/4pX,w, we can take into account
multiple soft gauge boson exchanges, to find the momentum loss rate

d log pa
dt

≈ nshell,wvrel
pa

∫ −µ2
IR

−4p2
com

dt̂
dσ

dt̂
δpa ≈

g4nshell,w
8πpapX,w

log
(

4papX,w
µ2

IR

)
. (II.70)

This results in a logarithmically suppressed path length for the bath particle in the wall
frame

lwall ≈
8πpapX,w

g4nshell,w log
(

4papX,w
µ2

IR

) . (II.71)

Compton scattering with scalars or fermions.

Again these are determined by hard scattering, so there is no change in our estimates
using the integral method.

II.2.4 Summary
Taking the above estimates, transforming to the plasma frame to aid comparison, sub-
stituting in µ2

IR ≈
g2

4πT
2 and pa ≈ γT , we find the following path lengths: For Møller

scattering,

lplasma = 8πpXT

g4nshell log
(

4pX
g2

4π T

) . (II.72)
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For Compton scattering with fermions,

lplasma = 16πpXT

g4nshell log
(

4pX
g2

4π T

) . (II.73)

And for Compton scattering with scalars

lplasma = 8πpXT

g4nshell
. (II.74)

The number density, nshell ∝ Pprod/Lp. To check whether the bath enters the wall or is
deflected — which would effectively shut off shell production at some earlier stage — the
above path lengths should be compared with Lp. Due to the scaling of nshell, however,
the condition of bath deflection finally becomes independent of Lp.

We show the region where bath reversal effects are relevant in Fig. II.4.

II.2.5 Comparison to shell reversal and dissipation path lengths
We now return to our example of the radiated and reflected gauge bosons and consider
the conditions for shell reversal, shell dissipation, bath reversal, and collate the results in
one place. Substituting in numbers for the case of Møller scattering, avoidance of shell
reversal requires

8π3 g2

4πv
2
φ

g4ζ(3)g∗T 3 log
(

4pX
g2

4π T

) > Rc . (II.75)

Avoiding shell dissipation requires

8π3γ
√
g2/4πvφ

g4ζ(3)g∗T 2 log
(

4pX
g2

4π T

) > Rc . (II.76)

And avoiding bath reversal requires

8π3γ
√
g2/4πvφ

Pprodg4ζ(3)g∗T 2 log
(

4pX
g2

4π T

) > Rc . (II.77)

Thus, as we found previously, remembering that kinematics requires γ >
√
g2/4πvφ/T ,

the shell will be reversed before it is dissipated. And if we ignored the reversal back into
the wall, the shell would anyway be dissipated before the bath would fail to enter the
bubble. Similar conclusions hold for Compton scattering. Therein the shell reversal and
dissipation are determined by hard scatterings and approximately coincide. Moreover,
due to Pprod < 1, the hard scatterings which reverse or dissipate the shell do not lead to
bath reversal, as there are simply more bath particles than shell particles.
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II.3 Phase space saturation
The particles in the shell form a dense medium. While we have never explicitly computed
the phase space distribution function f(p, T ), we expect it to become possible larger than
one at least in some parameter regions, since also the number density is larger than
its equilibrium value. Having control over the phase space distribution is important as
possible physical effects include Bose-Einstein condensation or processes being straight-up
excluded by the Fermi exclusion principle. Additionally it is simply a necessary ingredient
in the Boltzmann equation. To safely ignore these effects we investigate in this section
the region where f(p, T ) < 1.

II.3.1 Bose enhancement
The interaction Hamiltonian for the splitting process can be expressed as

Hint =M0a
†
ca
†
baa + h.c., (II.78)

where ax are the creation operators in Fock space. Then the transition amplitudes for
emission and absorption read, respectively

Ma→bc = 〈fa − 1, fb + 1, fc + 1|Hint|fa, fb, fc〉 =M0
√
fa
√

1± fb
√

1 + fc , (II.79)
Mbc→a = 〈fa + 1, fb − 1, fc − 1|Hint|fa, fb, fc〉 =M0

√
1± fa

√
fb
√
fc , (II.80)

where +/− refers to boson/fermion statistic. We deduce the interaction rate accounting
for both emission and absorption,

|Ma→bc|2 − |Mbc→a|2 = |M0|2 [fa(1± fb) + fc(fa − fb)] . (II.81)

We can see that Bose-enhancement can be neglected as long as (fa−fb)fc � fa, in which
case we get

|Ma→bc|2 − |Mbc→a|2 ' |M0|2fa . (II.82)

We now estimate the Bose-enhancement piece,

fc(pc)(fa(pa)− fb(pb)) = fc(pc)(pa − pb)
∂fa
∂pa

. (II.83)

We now add a subscript ‘p’ to indicate quantities evaluated in the plasma frame. In the
absence of ‘p’, quantities are evaluated per default in the wall frame. Assuming a Maxwell-
Boltzmann momentum distribution in the plasma frame, fa(pa,p) ∝ exp (−pa,p/Tn), we
can write

∂fa
∂pa

= ∂pa,p
∂pa

∂fa
∂pa,p

= −fa(pa)
γTn

, (II.84)

where we used that pa,p = γpa − βγ
√
m2
a + p2

a ' pa/γ. Plugging equation (II.84) into
equation (II.83) leads to

fc(pc)(fa(pa)− fb(pb)) = fc(pc)fa(pa)
∆m2

a

2paγTn
. (II.85)
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We exemplarily evaluate this expression for radiated reflected vector bosons. Replac-
ing pa ' 3γTn and fa(pa) ' 1, we find

fc(pc)(fa(pa)− fb(pb)) = fc(pc)g4 log2 (mc,h/mc,s)
g2
∗

(
Tn
Teq

)4(
mc,h
Teq

)2(∆ma

Teq

)2 (
γLL
γ

)2
.

(II.86)
For strong phase transition Tn � Teq, we find the condition for neglecting Bose-enhancement
enhancement fc(pc)(fa(pa) − fb(pb)) � 1 less stringent than the condition for non-
perturbativity g2fc(pc)� 1 or g4fc(pc)� (4π)2 discussed in the next section.

II.3.2 Perturbativity break-down
The occupation number fc(pc) of vector bosons is related to the vector boson wave function
Aµ by

(∂A)2 ∼ p2A2 ∼
∫
pc
d3p p fc(p) ∼ p4

c fc(pc) . (II.87)

For non-abelian theory, the hierarchy between the Lagrangian terms

L ⊃ ∂A∂A+ gAA∂A+ g2AAAA , (II.88)

which is essential for perturbation theory to apply, breaks down as soon as

g2fc(pc) > 1 (non-abelian) . (II.89)

Instead, for abelian theory, gauge bosons self-interaction terms are loop-suppressed so
that perturbativity breaks down for

g4

(4π)2 fc(pc) > 1 (abelian) . (II.90)

We now proceed in calculating the phase space occupation number of radiated particles
in the shells. The c particles get accumulated within a thin shell with thickness Lp. The
associated number density of particles in the plasma frame is

nc,p ' N
ζ(3)
π2 g∗T

3
n
Rc
Lp
, (II.91)

We deduce the occupation number fc (number of particles per de Broglie unit)

fc '
nc,p
k2
⊥pc,p

' ζ(3)
π2 g∗N

RcT
3
n

k2
⊥pc,pLp

. (II.92)

Replacing the quantities Lp ' 1/γTn,N ' ( g2

4π/π) log2
(
mc,h
mc,s

)
, pc,p ' 1.6γmc,h/ log1/2

(
mc,h
mc,s

)
and k⊥ ' 0.7mc,h/ log

(
mc,h
mc,s

)
for NLO reflected and pc,p ' 0.4γmc,h/ log1/2

(
Ea
mc,h

)
and

k⊥ ' 0.7mc,h/ log1/2
(
mc,h
mc,s

)
for NLO transmitted, the occupation number of particles ‘c′

reads

fc(pc) = 5.3F
(
g∗

100

)1/2
(
g2/4π
0.01

)(
Teq
mc,h

)3(PeV
Teq

)(
102Tn
Teq

)4 ( 10
β/H

)
, (II.93)
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with

F '
{

log9/2(mc,h/mc,s) (NLO reflected) ,
8 log2(mc,h/mc,s) log3/2(Ea/mc,h) (NLO transmitted) .

(II.94)

Using Lp ' Rc(Tn/mc,h)2, N = 1, pc,p ' m2
c,h/Tn and k⊥ ' Tn shown in Tab. I.1, we

have
fc(pc) = ζ(3)gs/π2, (LO). (II.95)

We show the region where phase-space saturation effects are relevant in Fig. II.5.
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II.4 Number changing interactions
While the thermal bath on its own is a system in thermal equilibrium, the particles
in the shell are strongly boosted and strongly compressed. Interactions between the
thermal bath and the shell, as well as interactions within the shell itself, give rise to
out-of-equilibrium processes, which - if happening sufficiently fast - lead to a new state of
equilibrium, different to the one from before. In this section we consider those processes
that involve number changing-interactions.

In the following we will argue why 3→ 2 processes are the dominant number changing
processes, we describe how to compute them, and finally state the results of our compu-
tations for a few selected processes relevant to the next chapter of this thesis. In section
II.4.4 we also give a quick and easy method how to achieve a conservative estimate for
any other process not explicitly computed. This also helped us to verify and understand
the processes we computed explicitly.

II.4.1 Boltzmann equation
The evolution of the number density under number changing interactions is described by
the integrated Boltzmann equation

dn1
dt =

∫
dΠ1 dΠ2 dΠ3 dΠ4 dΠ5 (2π)4δ(4)(p1 + p2 + p5 − p3 − p4)|M|2 (II.96)

×
{
f3f4(1± f1)(1± f2)(1± f5)− f1f2f5(1± f3)(1± f4)

}
, (II.97)

where

dΠi = d3pi
(2π)32Ei

. (II.98)

We have assumed that 3 → 2 processes give the most dominant contribution to number
changing interactions, for example because others are suppressed by small couplings.

If we can neglect quantum effects, i.e. (1± fi) ' 1, and the phase space integrals
factorize, we can write

dn1
dt ' σ2→3 n3n4 − σ3→2 n1n2n5 . (II.99)

We are describing a coupled system of a bath in thermal equilibrium with a shell which
contains particles in higher density and with more average energy. Because of the con-
servation of the total energy we expect the average energy per particle to go up but the
number density to decrease. Therefore, we consider only the second term in Eq. (II.99),
i.e. we ignore 2 → 3 processes. This can be further justified by their final phase-space
suppression. As long as we stay far away from thermal equilibrium, this is a good ap-
proximation.
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Considering only the annihilation term, we have
dn1
dt '

∫
dΠ1 dΠ2 dΠ3 dΠ4 dΠ5 (2π)4δ(4)(p1 + p2 + p5 − p3 − p4)|M|2

{
− f1f2f5

}
(II.100)

' −
(∫

dΠi fi

)3 ∫
dΠ3 dΠ4 (2π)4δ(4)(p1 + p2 + p5 − p3 − p4)|M|2 (II.101)

= −
(

1
2Ei

gi

∫ d3pi
(2π)3 fi

)3

× 1
32π2

∫
dΩ |M|2 (II.102)

= − 1
2E12E22E5

· n1n2n5 ×
1

32π2

∫
dΩ |M|2 , (II.103)

where from the first to the second line we assumed that the phase space integrals factorize,
and from the second to the third line we went to the center-of-mass frame, and we assumed
in the simplification of the final phase space integral that all particles are massless.

Therefore the rate is given by

Γ3→2 '
1

256π2
n2n5

E1E2E5
×
∫

dΩ |M|2 , (II.104)

and one can describe number changing interactions via dn1
dt ' Γ3→2n1. Here we use the

labeling of particles and momenta p1 + p2 + p5 → p3 + p4, and
∫

dΩ|M|2 is the standard
expression of the final phase space integration over the spin-averaged squared matrix
element in the center-of-mass frame, similar to the one of 2→ 2 scattering.

The total probability of a particle undergoing a 3→ 2 interaction before walls collide
is

P3→2 ' Γ3→2 × Leff , (II.105)
where Γ3→2 is the interaction rate and Leff is the effective distance (or equivalently time,
because particles are ultra-relativistic) it takes the shell particle to travel until collision
with a neighbouring bubble. Note that bath particles are affected by these interactions
only for the short times that they are transversed by the shells.

II.4.2 Thermal field theory
Integrating over the final phase space confronts us with the problem that the amplitudes
are collinear divergent. This is unphysical however, since interactions with the thermal
plasma screen the long-range forces. The collinear divergence is going to be regulated by
the Debye mass, given in Eq. (II.115). In the following we recap the proper procedure
on correctly implementing the Debye mass in the mathematical expression for the ampli-
tudes. We continue with presenting the results of the computation of number changing
interactions in Sec. II.4.3.

a) Vacuum gauge theories

In Rξ-gauges the free gluon propagator is given by

Dµν(K) = 1
K2

[
−gµν + (1− ξ)KµKν

K2

]
. (II.106)
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The propagator Dµν is constructed out of Lorentz-covariant objects, here the metric and
the momentum 4-vector.

The spin-polarization sum is given by
∑
λ=±1

εµ(k, λ)ε∗ν(k, λ) = −gµν + kµnν + kνnµ
k · n

− nµnν

(k · n)2 , (II.107)

where nµ is a linearly independent reference vector with norm n2 = 1.
The interpretation of this equation is that the four 4-vectors ε+µ , ε−µ , kµ, and nµ form a

basis, and above equation is the completeness relation. For massive spin-1 particles there
exists a third longitudinal polarization vector εLµ , therefore nµ in that case is not needed
to have a complete basis.

The Ward identityMµk
µ = 0 implies that for QED only the first term −gµν survives.

However, even for QCD we know that the amplitude must be independent of nµ, since
nµ is a reference vector and does not transform under Lorentz transformations.

b) Thermal gauge theories

In thermal field theory we have another 4-vector given by the 4-velocity of the plasma
frame uµ (u2 = 1). The implications have been derived in [113]. We will recapitulate the
importing points here.

Consider the general decomposition of the non-Abelian self energy

Πµν = ΠTAµν + ΠLBµν + ΠCCµν + ΠDDµν , (II.108)

where Aµν , etc. are basis tensors constructed out of kµ and uµ, see [113]. The coefficients
Πi have to be computed and can be in general momentum and gauge-dependent. This
gives the full propagator

D′µν = − Aµν
k2 −ΠT

+ k̃µk̃ν
k2(k2 −ΠL) − ξ

HµHν

(k2)2(k2 −ΠL)
, (II.109)

where

k̃µ = k · u kµ − k2uµ√
(k · u)2 − k2 , (II.110)

Hµ =
√
k2 −ΠL kµ + σ

√
ΠD k̃µ , σ = ±1 . (II.111)

The σ = ±1 arises due to solving the self-consistency condition

(ΠC)2 =
(
k2 −ΠL

)
ΠD . (II.112)

Since it has been computed that ΠC = O(g2), this immediately implies that we have
at least ΠD = O(g4). We can therefore neglect it in any tree-level computation as a
higher-order effect.

The surviving pieces in HµHν are proportional to kµkν and cancel due to the structure
of non-Abelian gauge theories. Therefore, the resulting amplitude does not depend on
the gauge fixing parameter ξ.
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The only relevant coefficients of the self energy are therefore the transverse part ΠT

and the longitudinal part ΠL. They have been computed in the literature [114, 115], and
are given at leading order by

ΠT (k) = µ2

2

[
(k0)2

|~k|2
+ k0

2|~k|

(
1− (k0)2

|~k|2

)
ln k

0 + |~k|+ iη

k0 − |~k|+ iη

]
, (II.113)

ΠL(k) = µ2
(

1− (k0)2

|~k|2

)[
1− k0

2|~k|
ln k

0 + |~k|+ iη

k0 − |~k|+ iη

]
, (II.114)

where the Debye mass µ is given by

µ2 = 2geffg
2
∫ d3p

(2π)3
f(p, T )
p0 . (II.115)

In case of an equilibrium thermal distribution f(p, T ) this reproduces the well-known
result µ2 ' g2T 2(Nc/3 +Nf/6), see e.g. [114]. In case the shell’s particles feel the inter-
action, e.g. as in the case of shells formed by non-abelian gauge bosons, then Eq.(II.115)
implies an additional contribution to µ2 coming from shell particles, which can dominate
the standard one.

We are only interested in the behavior of the self energies around the collinear singu-
larity, i.e. for |~k| → k0. Away from this region the scalar products will become larger,
and the effect of the Debye mass will become subdominant. Around the singularity we
can approximate the self-energies by a constant,

ΠT ≡ lim
|~k|→k0

ΠT (k) = µ2

2 , (II.116)

ΠL ≡ lim
|~k|→k0

ΠL(k) = 0 . (II.117)

We find that the longitudinal part of the self-energy vanishes in this limit, and in fact we
find that it is not needed in order to regulate the collinear divergence. For this purpose,
the transverse part ΠT is sufficient.

The spin-polarization sum can be constructed in the same way as it is usually done in
vacuum QFT, i.e. by making in ansatz with all possible Lorentz structures and fixing the
coefficients by requiring transversality with respect to momentum and plasma 4-velocity.
We find
∑
λ=±1

εµ(k, λ)ε∗ν(k, λ) = −gµν −
kµkν

(k · u)2 − k2
+ k · u

(k · u)2 − k2
(kµuν + uµkν)− k2 uµuν

(k · u)2 − k2
.

(II.118)

Note that we only have two polarizations and k2 = m2
vac, since the quantum state is

defined at infinity where it doesn’t feel any effect of traveling trough a thermal plasma.
Therefore, Eq. (II.118) is in fact equal to the spin-polarization sum of vacuum QFT in
E. II.107, which can be seen by shifting uµ = αkµ + βnµ.

However, the interpretation of the two vectors, nµ and uµ, is different. In vacuum the
vector nν is a reference vector which does not transform under Lorentz transformations,
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and we could therefore argue that the whole amplitude must be independent of it. In
thermal field theory the vector uµ describes the rest frame of the plasma, i.e. it is a real
physical effect, and therefore in general the amplitude is going to be dependent on the
plasma velocity uµ. However, the leading order, that is keeping only thermal masses in
the denominators and not in the numerator, must have a smooth limit to the vacuum
amplitude. This implies that the leading order will not depend on the plasma velocity.

In vacuum QED one is allowed to drop all terms except −gµν because of the Ward
identity. In thermal field theory, this is in general not allowed, except for example in the
hard thermal loop (HTL) approximation [116], where the Ward-identity is recovered.

For example, the spin-averaged squared matrix element for gg → gg scattering (for
simplicity we only take a 2→ 2 process) is given by

|M|2 ∝
(
s2 + st+ t2

)3
(s+ ΠT )2(t−ΠT )2(u−ΠT )2 , (II.119)

where s, t, u are the Mandelstam variables. We find that for ΠT → 0 we recover the
vaccum QFT result. Computing this result, which has been done with the help of Feyn-
Rules [117], FeynArts [118], and FeynCalc [119–121], there were terms in the numerator
proportional to ΠT and uµ. However, these are O(g2), and if we would want to include
them, we would have also to compute the 1-loop correction to the amplitude. The small
coupling expansion of the ΠT in the denominator can only be done after performing the
final phase space integration, as ΠT is needed to regulate the integral.

Note the following limits. If we take the regulator to zero, we recover the collinear
singularity; if we take the regulator to infinity, the amplitude vanishes. Physically, this
happens because the Debye mass function as a regulator scales with the phase space
distribution function of the medium. For an infinitely dense medium all interactions with
other particles are completely screened by the medium and therefore the probability of an
interaction becomes zero. The limit of vanishing Debye mass corresponds to no medium,
and therefore we have the same singularity as in vacuum QFT. Since it is reasonable
to assume that the dependence of the amplitude on the Debye mass is well-behaved, in
particular monotonic, between the two extremes, we find that smaller masses give larger
probabilities. Therefore, since the thermal mass is at least µ & gT , we can compute an
upper limit on the probability, valid for all processes, independent of what medium they
are interacting with.
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II.4.3 Results for the 3→ 2 interactions
We present here the results obtained after integrating over the final phase space as de-
scribed in appendix A. We compute

∫
dΩ|M|2 for all possible 3 → 2 processes involving

in the initial state at least one gauge boson V and one fermion and/or one scalar charged
under the gauge group, where for completeness in the scalar case we included the self-
coupling L ⊃ λ|φ|4 in addition to the scalar gauge coupling to V . We perform these
computations for the cases of both an Abelian and a non-Abelian gauge symmetry, which
for concreteness we take as U(1) and SU(N), because the self-interactions of the vectors
eventually lead to important differences between the two.

We now report our results for
∫

dΩ|M|2, in terms of scalar products of the 4-momenta
in the center-of-mass frame p1 + p2 + p5 = p3 + p4, including for simplicity only the terms
that are leading order in pi ·pj/µ2. In case at least one initial particle belongs to the bath,
we anticipate that one has the hierarchy µ2 � p1 · p2 � p1 · p5 ' p2 · p5, leading to the
expansions reported in tables II.2 (case of one fermion charged under the gauge group),
II.3 (case of one scalar charged under the gauge group), II.4 (case of both a fermion and
a scalar charged under the gauge group). In case all initial particles belong to the shell,
then all scalar products are of the same order, leading to the leading-order results in
Table II.5.

Depending on the identity of the initial-state scatterers, the scalar products have a
different dependence on the parameters of the PT and of the theory, implying different
results for the probability that the associated 3→ 2 interaction happens before collision,
which is the question of our interest. We therefore now turn to derive expression for the
scalar products in terms of the parameters of the theory. The presented results require as
input parameters the scalar products specific to the model, which we present in Tab. II.1
and whose derivation we explain next. We show the region where number changing
interactions are relevant in Fig. II.6.

Channel Abelian U(1) non-Abelian SU(3)
Leading-order interaction µ2 ∼ g2T 2

n µ2 ∼ g2T 2
n + g2nV / 〈ELO〉

particles acquiring p1 · p2 ∼ pipj ∼ T 2
n

a mass[95, 101] p1 · p5 · γTnELO

Gauge interaction g � 4π: µ2 ∼ g2T 2
n µ2 ∼ g2T 2

n + g2nV / 〈ER,T〉
bremsstrahlung radiation p1 · p2

∣∣
bss ∼ pipj ∼ T

2
n +m2

c,h

reflected (R), transmitted (T) p1 · p2
∣∣
bbs ∼ T

2
n

[89, 96–98] p1 · p5 · γTnER,T

Table II.1: Expressions for scalar products and infrared cutoff µ as explained in Sec. a)
and Sec. b). The indices ’bss’ and ’bbs’ stand for bath-shell-shell and bath-bath-shell.
The scalar products for these two cases can be different because two particles from the
shell do not have to be as collimated as two particles from the bath, depending on whether
the production mechanism at the wall conserves orientation.
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a) Bath-shell-shell and bath-bath-shell

For the interactions between shell and bath particles we use the results from tables II.2,
II.3, II.4. These expression are valid in case there is a hierarchy µ2 � p1 · p2 � p1 · p5 '
p2·p5, which we now justify. Here p1 and p2 are nearly parallel, i.e. they either both belong
to the bath or both belong to the shell. In particular for bath-shell-shell interactions we
have p1 and p2 for the shell particles and p5 for the bath particle; for bath-bath-shell
interactions we have p1 and p2 for the bath particle and p5 for the shell particle. Since p1
and p2 are nearly parallel, their scalar product does not feel the large energies that they
can have in some frame. On the other hand, since p5 tracks a different population than
p1 and p2, the scalar products p1 ·p5 and p2 ·p5 will be of the same order and much larger
than p1 · p2.

For Leff in Eq. (II.105) one chooses the appropriate expression: a particle from the
bath scattering with shell particles only finds other shell particles while it passes through
the shell, therefore Leff is the effective thickness of the shell; a particle from the shell can
scatter with the bath and other shell particles during its whole travel time, therefore Leff
is the radius of the bubble.

Note that by a careful investigation (see Sec. B) of just the scattering kinematics it
is straightforward to show that the two final state particles are of one type shell and one
type bath, i.e. one particle has the typical energy (up to O(1)-factors) of a bath particle
and is traveling inside the bubble, and the other particle has the typical energy of an
ejected particle and is traveling along with other shell particles.

b) Shell-shell-shell

For the interactions between shell and bath particles we use the results from table II.5.
These expression are valid in case there is a hierarchy µ2 � pi ·pj ' p1 ·p2 ' p1 ·p5 ' p2 ·p5.
The expectation value of the scalar product is the typical spread of the particles in the
shell, i.e. a measure how perpendicular to the wall they are ejected.

The effective length Leff is given by the radius of the bubble, since shell particles can
find each other all the time until collision.

We now present all amplitudes of emitted vectors interacting with fermions and scalars,
where the vectors are either gauge under abelian U(1) or non-Abelian SU(N), in the tables
II.2, II.3, II.4, II.5.
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a(p1) b(p2) c(p5)
∫

dΩ|M|2: GV = U(1)

→ XY
∫

dΩ|M|2: GV = SU(N)

V V V → ff̄ g6
48π
(

2 ln
(
p1·p2
µ2

)
+5 ln 2

)
p1·p2

g6 π
N2(N2−1)2

1
p1·p2

[
9N2(N2−1) ln

(
p1·p5
µ2

)
+2(N4−7N2+6) ln

(
p1·p2
µ2

)
+N4(21 ln 2−15)+N2(9−51 ln 2)+30 ln 2

]

V V f → V f g6
24π
(

2 ln
(
p1·p2
µ2

)
+5 ln 2

)
p1·p2

V V f̄ → V f̄
g6 N2

N2−1

36π p1·p5

(
5 ln
(
p1·p2
µ2

)
+6 ln 2

)
(
p1·p2

)2

ff̄V → V V g6
32π
(

ln
(
p1·p2
µ2

)
+3 ln 2

)
p1·p5

g6
8π p1·p5

(
(2N2−3) ln

(
p1·p2
µ2

)
+3(N2−1) ln 2

)
(
p1·p2

)2

ff̄V → ff̄ g6
4π
(

ln
(
p1·p5
µ2

)
+18 ln

(
p1·p2
µ2

)
−1+29 ln 2

)
p1·p2

g6 π
6N2

1
p1·p2

[
3N(N2−1) ln

(
p1·p5
µ2

)
+6(10N3+N2−10N−1) ln

(
p1·p2
µ2

)
+N3(99 ln 2−5)+12N2 ln 2+N(3−99 ln 2)−12 ln 2

]

ffV → ff g6
16π
(

14 ln
(
p1·p2
µ2

)
+15 ln 2

)
p1·p2

f̄ f̄V → f̄ f̄ g6 N2−1
N2

π

(
4(5N−2) ln

(
p1·p2
µ2

)
+30N ln 2

)
p1·p2

V fV → V f g6
π

(
10 ln

(
p1·p5
µ2

)
+4 ln

(
p1·p2
µ2

)
+5+34 ln 2

)
p1·p2

V f̄V → V f̄ g6 1
N2−1

10π p1·p5

(
2(4N2−1) ln

(
p1·p2
µ2

)
+3(3N2−1) ln 2

)
(
p1·p2

)2

Table II.2: Results of our computations for scatterings involving vectors and fermions.
For a more detailed explanation, see Sec. II.4.3.
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a(p1) b(p2) c(p5)
∫

dΩ|M|2: GV = U(1)

→ XY
∫

dΩ|M|2: GV = SU(N)

V V V → φφ̄ g6
8π
(

9 ln
(
p1·p5
µ2

)
+11 ln 2

)
p1·p5

g6 2N2−3
2(N2−1)2

3π
p1·p2

V V φ→ V φ g6
4π
(

9 ln
(
p1·p5
µ2

)
−9+11 ln 2

)
p1·p5

V V φ̄→ V φ̄ g6 π p1·p5
N2−1

8(4N2−1) ln
(
p1·p2
µ2

)
+12(3N2−1) ln 2(

p1·p2
)2

φφ̄V → V V g6
16π
(

ln
(
p1·p2
µ2

)
+3 ln 2

)
p1·p5

g6 π p1 · p5
4(2N2−3) ln

(
p1·p2
µ2

)
+12(N2−1) ln 2(

p1·p2
)2

φφ̄V → φφ̄ g6 π
p1·p2

g6 2N2−3
24N

π
p1·p2

φφV → φφ g6
96π
(

ln
(
p1·p2
µ2

)
+ln 2

)
p1·p5

φ̄φ̄V → φ̄φ̄ π
4N2

1
p1·p5



(N+1)(4λg4N+g6(N−1)) ln
(
p1·p5
µ2

)
−8(N2−1)(4λg4N−g6(3N2−1)) ln

(
p1·p2
µ2

)
+16λ2g2

(
N3(3 ln 2−1)+N2(3 ln 2−2)

)
−8λg4

(
N3(5 ln 2+1)+N2−N(5 ln 2+2)

)
+g6
(
N3(35 ln 2−1)+13N2 ln 2−N(35 ln 2−3)−13 ln 2−2

)



V φV → V φ g6 8π
p1·p2

V φ̄V → V φ̄ g6 π p1·p5
N2−1

8(4N2−1) ln
(
p1·p2
µ2

)
+12(3N2−1) ln 2(

p1·p2
)2

Table II.3: Results of our computations for scatterings involving vectors and scalars. For
a more detailed explanation, see Sec. II.4.3.
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a(p1) b(p2) c(p5)
∫

dΩ|M|2: GV = U(1)

→ XY
∫

dΩ|M|2: GV = SU(N)

φφ̄V → ff̄ g6
2π
(

ln
(
p1·p5
µ2

)
+3 ln 2−1

)
p1·p2

g6 π
12N

3(N2−1) ln
(
p1·p5
µ2

)
+9(N2−1) ln 2−5N2+3

p1·p2

ff̄V → φφ̄ g6 2π
p1·p2

g6 2N2−3
12N

π
p1·p2

φfV → φf g6
8π
(

2 ln
(
p1·p2
µ2

)
+3 ln 2

)
p1·p2

φ̄f̄V → φ̄f̄ g6 N2−1
N

π

(
2 ln
(
p1·p2
µ2

)
+3 ln 2

)
p1·p2

φf̄V → φf̄ g6
8π
(

2 ln
(
p1·p2
µ2

)
+3 ln 2

)
p1·p2

φ̄fV → φ̄f g6 N2−1
N

π

(
2 ln
(
p1·p2
µ2

)
+3 ln 2

)
p1·p2

V V V → V V 0

g6 N3

(N2−1)2

144π p1·p5

(
5 ln
(
p1·p2
µ2

)
+6 ln 2

)
(
p1·p2

)2

Table II.4: Results of our computations for scatterings involving vectors, fermions, and
scalars. For a more detailed explanation, see Sec. II.4.3.
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a(pi) b(pj) c(pk)
∫

dΩ|M|2: GV = U(1)

→ XY
∫

dΩ|M|2: GV = SU(N)

V V V → ff̄ g6
24π
(

5 ln
(
pi·pj
µ2

)
+5 ln 3−ln 2

)
pi·pj

g6 π
2N2(N2−1)2

1
pi·pj

[
15(N4−3N2+2) ln

(
pi·pj
µ2

)
+N4(29 ln 2−3)+N2(−9+105 ln 2−90 ln 3)+24 ln 3−6 ln 2

]

V V V → φφ̄ g6
36π
(

ln
(
pi·pj
µ2

)
+3 ln 2−ln 3

)
pi·pj

g6 π
4N2(N2−1)2

1
pi·pj

[
9(N4−3N2+2) ln

(
pi·pj
µ2

)
+N4(3+11 ln 2)+N2(9−129 ln 2+54 ln 3)−18 ln 3+54 ln 2

]
V V V → V V 0

g6 N3

(N2−1)2

2π
(

1323 ln
(
pi·pj
µ2

)
−3−396 ln 3+1987 ln 2

)
pi·pj

Table II.5: Results of our computations for self-thermalization within the shell. For a
more detailed explanation, see Sec. II.4.3.

II.4.4 An estimate on number changing interactions
In this section we give useful formulae to estimate an upper limit on the integrated spin-
averaged squared matrix element, without actually having to compute the amplitude and
performing the final phase space integration. In general, these estimates are very conser-
vative and one gains a lot of free parameter space by actually computing the amplitude.
This estimate can then serve as a guidance on the computation of new amplitudes.

a) Equilibration between bath and shell

Assume that we have a sizeable spread of particles, i.e. p1 · p2 & µ2.
We take the following basis

p1,com =


pI
0
0
pI

 , p2,com =


pJ

pJ sin(θ12)
0

pJ cos(θ12)

 , p3,com =


√
p2
I + 2pIpJ cos(θ12) + p2

J

−pJ sin(θ1,2)
0

−pI − pJ cos(θ12)

 ,

(II.120)

p4,com =


pF

pF sin(θ13) cos(ϕ13)
pF sin(θ13) sin(ϕ13)

pF cos(θ13)

 , p5,com =


pF

−pF sin(θ13) cos(ϕ13)
−pF sin(θ13) sin(ϕ13)
−pF cos(θ13) ,


(II.121)

which is the one from appendix A, with all particles massless. It is helpful to define

pIJ =
√
p2
I + 2pIpJ cos(θ12) + p2

J ≥ 0 , (II.122)
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sucht that energy conservation implies

2pF = pI + pJ + pIJ . (II.123)

We find these scalar products,

p1 · p5 = 1
2
[
(pI + pIJ)2 − p2

J

]
(II.124)

p2 · p5 = 1
2
[
(pJ + pIJ)2 − p2

I

]
(II.125)

p1 · p2 = 1
2
[
(pI + pJ)2 − p2

IJ

]
(II.126)

Note, that two scalar products are the same if the two associated energies are the same,
i.e. p1 · p5 = p2 · p5 if pI = pJ .

We do not look at interference terms, since they cannot be more divergent than a single
diagram squared. We have the principal form of the spin-averaged squared amplitude,

|M|2 = g6∑ ∏
smn

(sij − µ)a(skl − µ)b
. (II.127)

One case is given by

|M|2 ⊃ 1
(s13 − µ2)a(s45 − µ2)b

, (II.128)

where if p1 ‖ p2, then also p1 ‖ p5, and both denominators become divergent at the same
time. Since they are thermally distributed, this is not exactly the case, so they diverge at
different integration regions. Therefore we find the suppression by the regulator (thermal
mass) to be at maximum (

µ2
)−2+1

. (II.129)

We also have

|M|2 ⊃ 1
(s12 − µ2)a(s45 − µ2)b

, (II.130)

which after integrating scales at worst like
1

(p1 · p2)2

(
µ2
)−2+1

. (II.131)

Therefore we find∫
dΩ |M|2 ' g6 1

p1 · p5

(
p1 · p5
p1 · p2

)k(p1 · p5
µ2

)l
, k ≤ 2 , l ≤ 1 . (II.132)

Here we inserted the only leftover scale p1 · p5 to fix the correct mass dimension, which is
conservative from the point of view of finding an upper limit on the amplitude squared.
We also neglected any appearances of logarithms of scalar products, since they are not
much larger than O(1) factors.

Comparing Eq. (II.132) to the calculated processes in tables II.2, II.3, II.4, we find that
we do not always have maximal divergence with k = 2, l = 1. This is due to cancellations
at amplitude level depending on the specific physical process.
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b) Equilibration within the shell

For equilibration within the shell itself consider the following momentum basis,

p1,com ' p2,com ' p5,com '


µ
0
0
0

 , (II.133)

p3,com =


pf

pf sin(θ13)
0

pf cos(θ13)

 , p4,com =


pf

−pf sin(θ13)
0

−pf cos(θ13)

 , (II.134)

sucht that pf = 3
2µ. This holds under the assumption that the spread is small, which

implies that in the center-of-mass frame each initial particle is approximately at rest with
sub-leading momentum component.

Then we find

p1 · p2 ' p1 · p5 ' p2 · p5 ' m2
c,h (II.135)

p1,2,5 · p3 '
3
2µ

2(1− z13) (II.136)

p1,2,5 · p4 '
3
2µ

2(1 + z13) (II.137)

p3 · p4 ' 2p2
f = 9

2µ
2 (II.138)

An important observation is that mc,h � µ, i.e. having spread gives us a fictitious
suppression, compared to the maximal possible upper limit. The maximal amplitude is
therefore given diagrams scaling like

|M|2 ∝ 1
(p1 · p3)2

1
(p2 · p4)2 (II.139)

which, since they only contain one energy scale, gives us immediately the scaling∫
dΩ |M|2 ∼ 1

µ2 . (II.140)

Comparing Eq. (II.140) to the caculated processes in table II.5, we find that we not
always have maximal divergence. As before, this is due to cancellations at amplitude level
depending on the specific physical process.

While the estimates in Eq. (II.132) and Eq. (II.140) serve as a good guideline and a
valuable sanity check for the full computation, we find that they are in most cases too
conservative. Due to less divergent pole structures of specific amplitudes one expects to
find a result which is smaller by orders of magnitudes by performing a full computation
of the specific process. We refer again to the results for a few selected processes in tables
II.2, II.3, II.4, II.5, for which we have performed the full calculation.
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II.5 Results
We present here the regions in parameter space where the effects discussed in the sections
before become relevant. We keep β/H = 20 and cvac = 0.1 fixed, as well as Tn/Teq = 1
or Tn/Teq = 10−2, and show the region when the probability of an interaction of the re-
spective kind becomes larger than one for values of the scale of the PT vφ and the gauge
coupling g. We distinguish between an abelian U(1) and a non-abelian SU(3). Although
results are shown for g ≤ 1, results for g = O(1) must be interpreted with care, consin-
dering that this calculation is only the leading order of a perturbative computation. We
also distinguish between shell particles produced from LO interaction, or Bremsstrahlung
radiation, either reflected or transmitted particles, see Tab. I.1.

In Fig. II.2 we show the region where shell reversal becomes relevant. Here strongly
boosted shell particles may reverse their momentum due to collision with a, from their
point of view, wall of boosted particles in the bath. More details can be found in Sec. II.1.1.

In Fig. II.3 we show the region where shell dissipation becomes relevant. Here shell
particles may change their momentum by an O(1) factor, due to the same type of scat-
tering as for the momentum reversal of shells. More details can be found in Sec. II.1.2.

In Fig. II.4 we show the region where bath reversal becomes relevant. Here the bath
particles collide with a strongly boosted wall of shell particles, due to which they may
reverse their momentum. More details can be found in Sec. II.2.

As can be seen in the figures, the last three effects become larger in the non-abelian
case. This is because of an additional allowed interaction, namely Møller scattering, which
dominates in most of the parameter space.

In Fig. II.5 we show the region where phase space effects become relevant. This
includes physical effects as Bose-Einstein condensation or Fermi exclusion, as well com-
putational problems due to a breakdown of perturbativity. More details can be found in
Sec. II.3.

We find that in the non-Abelian case a larger region of the parameter space is not
allowed to free-stream. This is because the condition for the breakdown of perturbativity
scales with g4 for non-abelian gauge bosons, compared to g2 for abelian gauge bosons,
see Eq. (II.90) and Eq. (II.89).

In Fig. II.6 we show the region where number changing interactions become relevant.
Number changing interactions modify the number density and average energy of parti-
cles in the shell and in the bath due to interactions of both with each other and with
themselves. More details can be found in Sec. II.4.

Number changing interactions behave roughly the same for abelian and non-abelian
theories. The main difference is due to the additional number density of the shell particles
contributing to the thermal mass. For all our processes however the thermal mass only
enters logarithmically.



II.5 Results 47

Figure II.2: Region of shell reversal, see sec. II.1.1, for shell particles produced from LO in-
teraction (top), Bremsstrahlung radiation, either reflected (middle) or transmitted (bottom),
assuming abelian (left) or non-abelian (right) gauge interaction. The shell particles of interest
do not free-stream in the colored regions.
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Figure II.3: Region of shell dissipation, see sec. II.1.2, for shell particles produced from LO
interaction (top), Bremsstrahlung radiation, either reflected (middle) or transmitted (bottom),
assuming abelian (left) or non-abelian (right) gauge interaction. The shell particles of interest
do not free-stream in the colored regions.
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Figure II.4: Region where bath particles don’t reach the wall, see sec. II.2, for shell particles pro-
duced from LO interaction (top), Bremsstrahlung radiation, either reflected (middle) or trans-
mitted (bottom), assuming abelian (left) or non-abelian (right) gauge interaction. The shell
particles of interest do not free-stream in the colored regions.
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Figure II.5: Region of broken perturbativity due to large phase space distribution function, see
sec. II.3, for shell particles produced from LO interaction (top), Bremsstrahlung radiation, either
reflected (middle) or transmitted (bottom), assuming abelian (left) or non-abelian (right) gauge
interaction. The shell particles of interest do not free-stream in the colored regions.
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Figure II.6: Region of number changing interactions, see sec. II.4, for shell particles produced
from LO interaction (top), Bremsstrahlung radiation, either reflected (middle) or transmitted
(bottom), assuming abelian (left) or non-abelian (right) gauge interaction. The shell particles
of interest do not free-stream in the colored regions.
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III – Bubbletron and implications for
heavy dark matter

Bubble walls that expand with ultra-relativistic velocities store a lot of energy, locally
much higher than both the bath temperature and the scale of the PT. Wall interactions
with the bath then necessarily accelerate particles to high energies and accumulate them
into shells, as first worked out in specific cases in [55, 89, 98, 99]. Collisions of shells from
different bubbles constitute a ultra-high-energy collider in the early universe, which we
dub bubbletron. 1

In this section we perform a quantitative study of bubbletrons. We calculate the
resulting production of heavy particles in Sec. III.1. In Sec. III.2 we apply the bubbletron
to the production of heavy DM and correlate them with the GW from the PT in Sec. III.3.

III.1 Production of heavy particles

We have summarized the key parameters (number density, energy, thickness) of shells
from different models we have listed in Tab. I.1.

To give a quantitative idea of the center-of-mass energies achievable from their colli-
sions, let us consider as an example the case of gauge bosons, with mass mV , radiated
and reflected by the walls (see Fig. III.1). If shells free stream until they collide, one has
the typical center-of mass collision energy squared (see Fig. III.2)

scoll ' 4 γ2
collE

2
V ' 0.4 γ2

collm
2
V , (III.1)

where EV is the typical energy of a reflected shell particle in the wall frame and we
have assumed heads-on collisions for simplicity. In the second equality we have used
E2
V ' 0.1m2

V , which we computed from the distribution dPV ∝
dk2
⊥

k2
⊥

dEV
EV

( m2
V

m2
V +k2

⊥
)2 [89],

with k⊥ the component of V momentum parallel to the wall. Interestingly, collision
energies can lie above the scales of both grand unification [9] and inflation [123],

√
scoll ' 1.7 · 1017 GeV g

γcoll
γrun

Tn
Teq

1
(cvacgRi)1/4

20
β/H

. (III.2)

Let us further consider for simplicity a gauged U(1) with coupling g spontaneously
broken by a scalar φ with charge 1. The condition that shells free stream until collision

1Bubbletrons are not to be confused with the idea of testing new particles (lighter than Hubble) via
their imprint on primordial non-gaussianities, which was named ‘cosmological collider’ [122] by a possible
analogy with laboratory colliders, but where actually no acceleration mechanism is in place.
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Wall φ = 0φ = vφ

f(final) f(initial)

V(final)

Figure III.1: The shell source considered for reflected gauge bosons. Charged particles entering
the bubble can radiate a gauge boson which is reflected by the wall back into the false vacuum
phase. These gauge bosons form shells propagating in front of the bubble walls.
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Figure III.2: Center-of-mass scattering energies of two gauge bosons radiated and reflected at
the walls of different bubbles.

is realised for small g, large vφ, or large vφ/Tn, see chapter II and [124]. In that case
one obtains collisions at energies much larger than the scale of the PT, and thus poten-
tially than the temperature ever reached by the universe after inflation, opening up the
possibility to test such high energies with cosmology.

We assume that a collision of particles i and j from two different shells produces one
much heavier particle Y with cross section σij . Since the total number of particles is
conserved, we can describe the compression of particles into the shell by

Na→cNa = Nc (III.3)∫
bubble

d3rNa→cna(r) =
∫

shell
d3xnc(x) , (III.4)

where Na particles produce Nc particles with a probability of Na→c, see Tab. I.1.
The produced number density is given by∫

bubble
d3r nDM = 2

2

∫
shell

d3x

∫
shell

d3y ni(x)nj(y)σij(x, y) · 1
Ashell

, (III.5)
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with Ashell = 4/piR2
c the surface area of the shell. The last factor accounts for the averaged

production of particles only in this thin spherical shell.
Under the assumption that the cross section σij(x, y) does not depend on the in-

tegration variables, which is only true if it does not depend on the scattering energy
s = s(γwp(r(x))), the two integrals factorize, and we have

YDM · stot '
1

Vbubble

(∫
shell

d3xni(x)
)(∫

shell
d3y nj(y)

)
σij ·

1
Ashell

(III.6)

=
( 1
Vbubble

∫
bubble

d3rNa→cna(r)
)2
σij ·

Vbubble
Ashell

(III.7)

= σijRc
3 (Na→cna)2 , (III.8)

where we used that the number density of dark matter and na are homogeneous.
We find that the produced number density is independent of the number of shells per

Hubble volume.
The discussion above applies to any bubbletron, including those where different pop-

ulations are colliding. For concreteness, we now specify it to the case of a gauged U(1),
with i = j = V , for which [89]

Nb→V '
gemit
gRi

g2

16π2 log2
V , log2

V = log m
2
V

µ2

(
log m

2
V

µ2 − 2
)
, (III.9)

where gRi is the number of relativistic degrees of freedom in the bath and gemit is the
subset charged under U(1), which can thus emit a V . Here µ is an IR cut-off which,
dealing with an abelian theory, we take as the thermal mass µ2 ' gemit

10 g2T 2
n . In principle

one should also include the screening length due to the high density of particles in the
shell (see e.g. [55]), but the V ’s are U(1) singlets and so do not contribute at this order,
and the density of fermions or scalars in the shell is suppressed, with respect to nV , by
extra powers of g2 or 1/γcoll. We assume further that a heavier fermion Y with charge qY
under the U(1) exists in the spectrum. We compute the Y Ȳ production cross section as

σV V→Y Ȳ = q4
Y g

4

4πs fY Ȳ −−−−→
s�M2

Y

q4
Y g

4

4πs
(

log s

M2
Y

− 1
)
, (III.10)

where in figures and numerical results we use the full expression fY Ȳ (y ≡ 4m2
Y
s ) =

(−
√

1− y(1 + y) + (2 + (2 − y)y) tanh−1(
√

1− y)). Using Eq. (I.27), mV = gvφ, nb =
gRiζ(3)T 3

n/π
2 and sRH = gRH2π2T 3

RH/45, with TRH = (30cvac/(gRHπ
2)) 1

4 vφ the reheating
temperature and gRH the number of relativistic degrees of freedom after the PT, we find

Y
U(1)
Y+Ȳ ' 3.1 · 10−20g2

(
Tn
Teq

)4(
γrun
γcoll

)2 vφ
TeV

β/H

20
g2

emit
gRi(

q2
Y g

2/4π
0.1

)2(
cvac
0.1

)3/4( 100
gRH

)1/4 fY Ȳ log4
V

100 . (III.11)

We show the Yield of the Y particle in Fig. III.3.
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Figure III.3: Yield of secondary particles Y produced from collision of radiated reflected
U(1) gauge bosons V . Lines become lighter when free-streaming conditions (see chap-
ter II) are not respected, and thus our derivation of the yield should be changed.

We stress that Eqs. (III.11), and the more general one (III.8), apply only in regions
of parameter space where the free-streaming conditions (see Sec. II) are satisfied. We
display this in Fig. III.4 by interrupting the lines of Y U(1)

Y as soon as the free-streaming
conditions are violated. Our calculations have potentially wide applications, whcih we
begin to explore here for the production of heavy dark matter.

III.2 A bubbletron application: heavy dark matter
We now specify our discussion to the case where Y is stable on cosmological scales, and
therefore a potential DM candidate. We first motivate the need of a non-standard (WIMP)
model for a heavy DM candidate in Sec. III.2.1, and then report the implications for the
maximal dark matter mass in Sec. III.2.2.

III.2.1 Unitarity limit on thermal dark matter mass
For dark matter produced via a thermal mechanism one can derive an upper bound on
the allowed dark matter mass. Here we recapitulate the original paper by Griest and
Kamionkowski [16]. The limitations and conditions of this bound which, since its original
proposal in 1990, has motivated many models and scenarios to evade its conditions and
therefore the mass limit.

We start with the second Kolomogorov axiom that probabilities are bound by unitarity,
P

(J)
ine . 1. This applies also to the expansion of any inelastic scattering cross section in

terms of partial waves, such that we have
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σ
(J)
ine .

π(2J + 1)
p2
i

. (III.12)

Expressing the momentum in terms of particle mass and relative velocity, p2
i = E2

i −
m2
i = γ2m2 − m2 = v2

1−v2m
2 ' m2v2 = m2 v2

rel
4 , this gives an upper limit on the cross

section of the form

σ
(J)
ine .

π(2J + 1)
m2

DMv
2
rel/4

= 4π(2J + 1)
m2

DMv
2
rel

. (III.13)

In the standard freeze-out scenario the predicted DM abundance is

ΩDMH
2
0 = 2nDirac

π

9
√

10
g∗S(T0)

√
g∗(xF )

g∗S(xF )
T 3

0
M3

Pl

1 + n/2
σ0

2 x
1+n/2
F , (III.14)

where

〈σv〉f.o. ≡ σ0x
−n/2
F (III.15)

and3

nDirac =
{

0 particle = antiparticle
1 particle 6= antiparticle

(III.16)

Rearranging equations (III.13) and (III.14) for 〈σvrel〉 one arrives at

2nDirac
π

9
√

10
g∗S(T0)

√
g∗(xF )

g∗S(xF )
T 3

0
M3

Pl

1 + n/2
ΩDMH2

0
xF .

4π(2J + 1)
m2

DM

√
xF
τ
, (III.17)

where τ = 6 or τ = π is an O(1) factor due to taking the thermal average.
Assuming g∗(xF ) = g∗S(xF ) one gets an upper limit on the mass of the DM particle,

mDM .

√
2J + 1

2nDM(1 + n/2) · 136TeV ·
(

ΩDMh
2

0.12

)1/2( 25
xF

)1/4(π
τ

)1/4(g∗(xF )
86.25

)1/4
,

(III.18)
which depends on the dominant partial wave index J .

For J = 0, n = 0, nDirac = 0, ΩDMh
2 = 1, xF = 28, τ = 6, g∗(xF ) = 107, we find

mDM . 360 TeV . (III.19)

This upper limit on the mass of DM was originally achieved by the assumption of a flat
universe, since then the relic abundance ΩDM is bounded by unitarity. Using the measured
value for Ωχh

2 ' 0.12 [5] the limit becomes smaller by a factor of roughly 3.
Evading this bound is of course strongly motivated by any New Physics Models with

UV scales above the unitarity bound. There have been many models proposed in the
literature to achieve this, either by modifying the thermal history of the universe and
thereby diluting the dark matter Yield, or by producing DM non-thermally. We are now
going to explore a new mechanism to produce DM out-of-equilibrium, via bubbletrons.

3Illustrative argument: If the particle is its own antiparticle, then there is a higher chance that two
random DM particles colliding actually annihilate eachother, therefore the final relic density is lower
compared to the case when the particle is not its own antiparticle.
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III.2.2 Maximal mass of heavy dark matter

Figure III.4: Mass of dark matter produced by a bubbletron of reflected U(1) gauge bosons. Lines:
MDM in two representative scenarios, both with β/H = 20 and Tn = Teq. Lines turn dashed when
they stop satisfying the condition of shells free streaming. The champagne shaded area is the
envelope of all the solid lines we obtain upon varying g, Tn/Teq, β/H, cvac, qY . See text for more
details.

We now specify our discussion of Sec. III.1 to the case where Y is stable on cosmological
scales, and therefore a potential DM candidate. We assume zero initial abundance of
Y, Ȳ and impose that their yield from shell collisions reproduces the observed DM one,
i.e. Y U(1)

Y+Ȳ = Y DM
Planck ' 0.43 eV/MDM [125] with MY = MDM. This allows us to plot

lines of DM abundance on an MDM − vφ plane, for any value of the other parameters
g, Tn, etc. We do so varying the parameters as 1 ≥ Tn/Teq ≥ 10−4, 1 ≥ g ≥ 10−5,
104 ≥ β/H ≥ 10, 1 ≥ cvac ≥ 10−3, 10−4 < g2q2

Y /4π < 0.1, with the perturbativity
condition Pb→V < 1. We then discard all lines of DM abundance that do not satisfy
the free streaming conditions visualized in the figures in chapter II. The envelope of the
remaining lines gives the maximal DM mass as a function of vφ, which we visualize in
Fig. III.4. For easiness of the reader, we also visualize the lines corresponding to two
benchmark values of the parameters. One sees that in general there are two solutions
that reproduce Y DM

Planck, one for M2
DM → scoll/4 and one for smaller MDM. At large g the

latter line falls in the regionMDM < vφ. At large vφ, γcoll = γrun, which decreases because
bubbles have less room to expand andMDM saturates to a constant. We stop the plots at
vφ = 1016 GeV in order to avoid the ‘ping-pong’ regime (see e.g. [55]) where gauge bosons
are reflected multiple times. At small values of vφ the free-streaming conditions impose
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small values of g.

III.3 Gravitational wave signal
We have described the computation of the gravitational wave signal in Sec. I.5. Here we
display, in Fig. III.5, the GW spectrum for three different benchmark points. The one for
vφ = 0.1 GeV can provide a good fit [126, 127] of pulsar timing array data [128–131].
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Figure III.5: Lines: GW signal from a U(1) gauge phase transition. The associated bubbletron
can produce dark matter with mass MDM up to the values written in the figure for each vφ, for
β/H = 20 and α = (Tn/Teq)4 = 1. Shaded in gray: expected foregrounds [128, 136–140]. Shaded
in color: current [128–130] and projected limits [111, 131–135].
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IV – Baryogenesis from supercooled
confinement

In this chapter we propose a novel mechanism for baryogenesis from a FOPT, which works
for scales of the PT down to TeV, which allows for new ways of testing the picture with
respect to previous literature, e.g. through collider searches and with LISA. In section
IV.1 we explain and motivate the need for baryogenesis. In section IV.2 we define the
BSM model and in section IV.3 we compute the Yield. In section IV.4 we determine the
available parameter space both of the BSM model and the cosmological phase transition.
In section IV.5 we collect constraints due to experiments performing measurements below
the TeV-scale. Finally, in section IV.6 we present our results and conclude.

IV.1 Introduction to baryogenesis
We now come to the other open problem in physics we deal with in this thesis. On Earth
we are clearly surrounded by more matter than antimatter. To cosmologically measure the
matter-to-antimatter ratio there are two ways, see e.g. [141]. One is using the abundance
of light elements during Big Bang nucleosynthesis (BBN) [142], the other is using the
peaks of the CMB [5]. They give consistent results for the asymmetry,

η = nb − nb̄
s

' 8.6 · 10−11 . (IV.1)

In order to provide an explanation for baryogenesis, models must satisfy in general
three conditions, the so-called Sakharov conditions [143, 144].

• Baryon number violation: without any processes violating baryon number it is not
possible to go from an initially symmetric state to an asymmetric state. One could
start from an already existing asymmetry, which is however unsatisfying, since it
would only impose the asymmetry, not explain it. Additionally, if one accepts the
paradigm of inflation, which is the leading solution to some open cosmological prob-
lems like the flatness and the horizon problem, then any possible initial asymmetry
would have been diluted away.

• C and CP violation: If C would be conserved, the reactions producing baryons would
be balanced by the reactions producing anti-baryons. For CP the same argument
holds with left-handed baryons and right-handed anti-baryons, and vice-versa.

61
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• Out-of-equilibrium production: In thermal equilibrium the reverse reaction would
be equally efficient, washing out any possible baryon asymmetry generated.

The necessary condition to have CP-violation in the Standard Model can be summa-
rized as [145]

CP violation ⇔ Im
{

det
{
MuM

†
u;MdM

†
d

}}
6= 0 , (IV.2)

whereMu andMd are the up and down quark matrices. The imaginary part in Eq. (IV.2)
can be written in an elegatn way as

Im
[
VijVikV

∗
lkV
∗
lj

]
= J

3∑
m,n=1

εilmεjkn , (IV.3)

where Vij are the elements of the CKM matrix. The numerical value of the Jarlskog
determinant J in the SM determined by experiments [146] is given by

J ' 3 · 10−5 . (IV.4)

This implies that there is CP-violation in the SM, it is however too small to explain the
observed asymmetry. In addition, the cosmological evolution of the SM lacks processes
which are enough out-of-equilibrium, therefore failing in satisfying another Sakharov con-
dition [65, 66, 144, 147]. This is therefore a huge motivation for physics beyond the
SM.

We notice immediately that the bubbletron is a mechanism of out-of-equilibrium par-
ticle production, thereby providing the necessary ingredients for successful baryogenesis.
With this as a starting point, we only need to construct a model which violates B, C, and
CP.

IV.2 Model
In this section we build a model giving us a mechanism of baryogenesis. Our model is a
generalization of the one proposed in [72], which, to our knowledge, was the first paper to
realize baryogenesis simply from the mass-gain mechanism at PTs with relativistic bubble
walls (i.e. the mechanism that leads to the LO pressure that we discussed in Sec. I.4.3)1.
Ref [72] focused on weakly coupled PTs, we consider instead confining PTs and show
that this allows to open the parameter space towards lower vφ, and therefore make the
mechanism testable e.g. with colliders and LISA.

We consider a new confining sector which, among its BSM hadrons, includes to gener-
ations of scalar particles ∆i which have interactions with the SM that violate C and CP,
and which are assumed to dominantly decay to elementary particles, including the SM.
This for example could be because of selection rules of the strong sector which we do not
specify here, or because of accidental reasons linked to the spectrum of composite states.

1See [71] and again [72] for two other mechanisms realizing baryogenesis at fast bubble walls, but
relying on the production of heavy particles.
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The Lagrangian describing the interactions of this state with the elementary sector is
given by

L ⊃ ydi∆idcRd
′
R + yui∆iNRu

c
R + h.c. , (IV.5)

where we have two generations i = 1, 2 of ∆i, which transform under the SM as

∆i ∼ (3, 1)2/3 , (IV.6)

and a gauge elementary singlet fermion NR. The primed superscript notes that the two
right-handed down-type quarks must be of different generations, that is

ydid
c
Rd
′
R ∼ yliεlmndcm,Rdn,R . (IV.7)

We have chosen the same particles, quantum numbers and interactions con- sidered in
Ref. [72], such that our only difference with their mechanism is in the nature of the PT
(strongly vs weakly coupled) and the comparison of the two pictures is straightforward.
The mass term is given by

L ⊃
(
∆∗1 ∆∗2

)(m11 m12
m21 m22

)(
∆1
∆2

)
. (IV.8)

The unrotated mass matrix is a general matrix with complex entries, but since it is
Hermitian the eigenvalues are real. After performing the rotation(

∆1
∆2

)
→ U(2)×

(
∆1
∆2

)
(IV.9)

we can eliminate the off-diagonal entries in the mass matrix.
That means that the Yukawa matrices are arbitrary complex matrices, although one

can eliminate some degrees of freedom through field redefinitions. Requiring however
invariance under U(2) forbids the existence of the CP-violating flavor mixing terms in
the Lagrangian (IV.5). We therefore expect and find the CP-violation to be proportional
to the difference in the masses of the two ∆i. Therefore we need them to have different
masses, but both of the order

m∆ ' 4π vφ . (IV.10)

If we only have one ydi and yui for each ∆i, and one NR, then we have 2 · 4− 2(∆)−
1(NR) = 4(real) + 1(phase) parameters. This is sufficient to produce baryogenesis, as
similarly to the Standard Model we have one physical phase.

IV.3 Yield
We assume that the associated PT in the early universe is strongly first-order and super-
cooled, such that it proceeds via the picture of ‘string fragmentation’ proposed in [55]. We
here recall the key feature of the dynamics of supercooled confinement which is relevant
for the rest of the discussion, and refer the reader to [55] for more details. In supercooled
confinement shells of hadrons and of techniquanta (the UV quanta charged under the
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confining sector, which constitute the hadrons in the IR) are produced at the walls. Im-
portantly, after the PT, their evolution simply ends up into a redistribution of their high
energies into masses of the hadrons, such that the value of the final hadron abundance
is robust against possible additional effects like those described in Chapter II. We now
present the abundance of hadrons, and of the ∆i in particular, which is the key input we
need for working out the rest of the mechanism.

In our model the scalar ∆i do not exist before the PT, where the degrees of freedom
are instead the techniquanta that constitute it and which are at equilibrium, which implies
that a B−L asymmetry can be produced by ∆ decays only inside the bubbles. Through
their interactions, the techniquanta are in equilibrium with the thermal bath before the
phase transition and their number density to entropy ratio is given by

YTC ≡
neq

TC
s

= 45ζ(3)gTC
2π4g∗

, (IV.11)

where gTC are the degrees of freedom of ∆, s is the total entropy, and g∗ are the effective
degrees of freedom. Upon the phase transition, provided that γ > M∆/Tn such that ∆
can be produced inside the bubble, Y∆ is maintained across the wall, while neq

∆ receives a
large Boltzmann suppression. The scalars ∆ are then out-of-equilibrium inside the bubble
and can thus produce a net B − L via their CP violating decays.

This produces the following baryonic yield

YB
Y obs
B

= ε∆KSph
YTC
Y obs
B

(
Tn
TRH

)3
γ gTCBr

(
had→ ∆

)
, (IV.12)

where ε∆ is the average baryon number produced in ∆ or ∆∗ decays, KSph = 28/79 is
a sphaleron reprocessing factor, the (Tn/TRH)3 comes from the entropy production from
reheating following the phase transition, gTC � 1 denotes the degrees of freedom of the
quanta of the confining sector and Br

(
had→ ∆

)
is the branching ratio of the hadrons of

the confining sector into ∆, which is model-dependent but (much) smaller than 1.
Comparing Eq. (IV.12) with the corresponding Eq. (6) of [72], it follows that due to

supercooled confinement there is an enhancement of the yield given by γgTCBr
(
had→ ∆

)
,

arising from the deep inelastic scatterings (DIS) of the techniquanta of the confining
sector [55], which increase the number of hadrons, and via their decay into ∆, effectively
increase the final yield.

IV.4 Parameter space for baryogenesis
We now explore in more detail the constraints that our model has to satisfy in order to
successfully address baryogenesis.

IV.4.1 Relativistic walls
In the confined sector the friction preasure stopping the bubble walls from running away
is due to non-perturbative effects [55]. We find that for our scenario of baryogenesis to
work we need ultra-relativistic walls, which requires large supercooling, Tn � vφ.



IV.4 Parameter space for baryogenesis 65

IV.4.2 B and CP violation
Since we require our model to provide the observed baryon number asymmetry, we have
to check whether it contains CP violating sources, and explore the relation between the
amount of CP violation and the field content of the model. A necessary condition for CP
violation is that the above couplings should be complex. Some, but not all the phases,
even in a minimal scenario, can be removed through field rephasings f → eiαf f . To be
more concrete let us examine some specific scenarios:

• In the minimal scenario there is only one copy of NR, one up type quark and one
down type quark flavor combination coupling to ∆1,2, providing 4 couplings. One
can remove 3 phases by rephasing the ∆i and N but one phase survives since in
general Arg(yd2)− Arg(yd1) 6= Arg(yu2)− Arg(yu1). Thus in this setup there are 4
couplings and 1 (physical) phase.

• One can turn on all the allowed SM quark Yukawa couplings, keeping a single
copy of NR. This setup features 12 couplings, 6 involving down type quarks and 6
involving the up type quarks. We have already used all the freedom of the new fields
to absorb the 3 phases as described above, however one can absorb 4 more phases
by performing U(1) transformations on the quark fields, with different phases for
each flavor in general. Therefore in this setup there are 12 couplings and 5 phases.
However it has to be pointed out that rephasing the quarks doesn’t leave the charged
current of the SM invariant, hence the CKM matrix is not in its canonical form but
will have 5 physical phases, instead of the 1 in the canonical form. Therefore the
net effect of quark rephasing is to trade the CP violation in the Yukawa couplings
of ∆ for CP violation in the CKM.

• For 3 copies on NR, we find 24 couplings (6 from down and 18 from up type quarks).
With respect to the previous setup we have the freedom to remove 2 more phases by
redefining N2,3, therefore we end up with 24 independent couplings and 15 phases.

The couplings of the Lagrangian Eq. (IV.5) lead to the following tree level decay rates
for the scalars ∆i,

Γ(∆i → dR dR ) ' |ydi|
2

8π M∆i
,Γ(∆i → NuR) ' |yui|

2

16π M∆i
, (IV.13)

where we have summed over the final state colours for the first decay, but we have left
the summation over flavors implicit.
Interference between tree and loop level diagrams leads to CP violation in the decays.
The imaginary part of the loop controls the rate asymmetry between ∆1 and ∆∗1 decays
and can be extracted via Cutkosky rules [148]. Focusing on the decays of ∆1 only, one
then finds for the rate asymmetry

ε∆ = 1
2π

Im(y∗d1yu1y
∗
u2yd2)

|yui|2 + 2|ydi|2
M2

∆1

M2
∆2
−M2

∆1

∼ Im[y2]
6π

(M∆1

M∆2

)2
, (IV.14)

where we assume that there is no major hierarchy among the Yukawa couplings y and we
take generic O(1) phases. Substituting the above expression in Eq. (IV.12) we obtain the
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baryonic yield

YB
Y obs
B

= 7× 107 g∆ Im[y2]
g∗

( Tn
TRH

)3(M∆1

M∆2

)2
γ gTCBr

(
had→ ∆

)
. (IV.15)

IV.4.3 Washout processes
In our scenario the most constraining washout processes are those occurring after the
reheating, when thermal equilibrium has been restored. Diquark interactions violating
B − L can result in washout if TRH is too high. Off-shell 2 → 2 scattering processes
mediated by ∆ have a rate that can be estimated as

ΓWO '
y4 T 5

RH
8πM4

∆
. (IV.16)

This rate is harmless for our scenario provided that it is below the Hubble rate H, namely

M∆
TRH

≤
(

y4MPl

8πg1/2
∗ TRH

)1/4

. (IV.17)

Moreover also inverse decays into on-shell ∆ can lead to B−L washout. The Boltzmann
suppressed rate is given by

ΓID '
3 y2

16πM∆

(
M∆
TRH

)3/2
Exp

[
−M∆
TRH

]
. (IV.18)

IV.5 Experimental constraints (on the ∆ masses)

IV.5.1 Collider searches
Since we have shown that one can easily accommodate baryogenesis from supercooled
confinement with the scalar ∆ around or below the electroweak scale, the properties of
these particles can be probed thanks to their signatures in high-energy colliders.

A first lower bound on the mass of ∆ comes from the measurement of the decay width
of the Z boson performed at LEP [149]. Since ∆ interacts weakly due to its U(1)Y charge,
it can contribute to the Z boson width, provided that M∆ < MZ/2. One obtains the
following expression for the decay width for Z annihilation into a ∆∆∗ pair

Γ(Z → ∆∆∗) = 3
16π

(
2g sin2 θW
3 cos θW

)
MZ

(
1− 4M2

∆
M2
Z

)3/2

. (IV.19)

Since this expression is about one order of magnitude larger than the uncertainty on the
Z boson width, M∆ < 45 GeV is thus excluded.

We note that ∆ has the same quantum numbers of a right up-type squark in SUSY,
therefore it will share its same production mechanisms at colliders. To our knowledge,
the closest searches to our scenario that have been performed are those involving squark
decays into diquarks, through R-parity violating (RPV) couplings.
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Constraints on top squarks decaying through RPV couplings were first set by the
ALEPH experiment at LEP [150], excluding at 95% CL masses below 75 GeV via four-
jet searches. More stringent bounds come from further searches performed by CDF at
Tevatron [151] and by ATLAS [152] and CMS [153] at the LHC. The combination of
these searches rules out top squarks with RPV decay in the 45 GeV < M∆ < 770 GeV
interval. All these searches aim to detect four jets in the final state associated to the
decay of pair produced heavy resonances. This is the typical signature that one would
expect associated with ∆, as for the allowed values of its mass and coupling constants it
would decay promptly in the detector.

However, as the diquarks and leptoquarks couplings of ∆ are expected to be of the
same size, some significant branching ratio of ∆ scalar could reside in the uNR channel,
such that the signal would be smaller than the one assumed by CMS, and the four-jet
limits would get weaker.

Translating these searches to precise bounds on the ∆ parameter space is non-trivial
and beyond the scope of our work, but for the purpose of our analysis we included the
above-mentioned constraints in the parameter space in Fig. IV.2.

IV.5.2 Neutron electric dipole moment
As we have seen in the previous section, the new fields ∆i and NR contain new sources
of CP violation and therefore give rise to new contributions to the neutron electric dipole
moment (nEDM). The experimental bound set by the nEDM collaboration at the Paul
Scherrer Institut is given by |dn| < 1.8× 10−26e · cm [154]. In this section we analyze the
impact of this bound on our model and show that it does not place significant constraints
on the parameter space.

One defines the EDM d of a fermion through the effective Lagrangian

LEDM = − i2dψσµνγ5ψF
µν , (IV.20)

where Fµν is the field strength tensor of the photon.
The diagrams which may give a non vanishing contribution to the CP odd nEDM

must have an imaginary component. In general the amplitude of any loop diagram can
be recast as a sum of operators Oi weighted by their coefficients Ci, which can be written
as C = y L. In this notation y stands for the product of the couplings of all the vertices
and L is a function coming from the loop integration [155]. In principle both y and L
are allowed to be complex but diagrams with the heavy ∆ and NR running in the loop
cannot have all the intermediate states go on-shell. Therefore the optical theorem implies
that Im(L) = 0 and only y can be complex.

Moreover, any combination of couplings entering the nEDM should be invariant under
rephasing of the fields, thus we need at least four couplings involving the new states,
since Y = y∗d1yu1y

∗
u2yd2 is the simplest combination of the new Yukawas with at least one

physical phase. As a consequence one needs to go at least to 2-loop to find a possible
non-zero contribution.

The relevant topologies of our model are depicted in Fig. IV.1, they are the so-called
Barr-Zee [156] like diagrams. They all give in principle non-zero contributions to the
nEDM but for each of them one can always take the contribution of with complex conju-
gate Yukawa couplings and with the photon attached to the same type of field. One can
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decompose the sum of each set of conjugate diagrams as

#conj.∑
j=1
Aj = Y F (M∆1 ,M∆2) + Y ∗F (M∆2 ,M∆1) , (IV.21)

where Y is the product of the Yukawa couplings and F (i, j) contains the momenta and
masses coming from the loop integration. In general, F (i, j) is not a symmetric function
of the scalar masses, but the asymmetry scales like F (M∆2 ,M∆1) = F (M∆1 ,M∆2)(1 +
O(k2/M2

∆1,2
)), with k the external photon momentum, therefore it vanishes in the k2 = 0

limit for which the EDM is measured. An explicit proof of this statement is given later
in this section. Therefore the sum of the conjugate diagrams ends up being real and thus
2-loop diagrams do not produce a non-vanishing nEDM. There may be contributions to
the nEDM at the three loop level, but we believe them to be negligibly small. Therefore,
the constraint set by nEDM on the mass ∆ turns out to be much less stringent than those
coming from colliders.
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Figure IV.1: All BSM diagrams contributing to the neutron electric dipole moment with 4 different
Yukawa couplings, allowing at least in principle a non-zero CP violating contribution, from the
Lagrangian in Eq. (IV.5).

We present an argument why the nEDM due to the 2-loop diagrams in Fig. IV.1
vanishes. We confirm this by having computed the nEDM at 2-loop using Feynman
parameters, and we confirm (via numeric integration) that it vanishes exactly.

The starting point is given by the structure of the electromagnetic nucleon vertex in
the presence of CP-violation, which is given by

iMµ = uN (q)
[
γµFE(k2) + iσµνkν

2mN
FM (k2) + iσµνkν

2mN
γ5FD(k2)

]
uN (p). (IV.22)

Here k = (p− q) is the momentum of the photon, mN is the nucleon mass and the EDM
of the nucleon is defined as dn = FD(0)/(2mN ). Using the Gordon-decomposition of the
vector-axial current, the CP violating (CP ) part of the above expression reads

iMµ
CP = dnuN (q)γ5uN (p)(p+ q)µ (IV.23)

Thus we need to concentrate on the (p + q) · ε terms in the computation of the EDM,
where ε is the photon polarization.

In order to find whether there is a cancellation among the diagrams, we can factor
out the inner loop, as it is symmetric under ∆1,2 exchange. Let’s focus thus on the outer
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loop and denote by Y the product of all the Yukawa couplings entering the diagram (a).
The relevant amplitude reads

iM = Y

∫
d4`

(2π)4u(q)PL
i

/p− /̀−m
PRu(p) i

`2 −M2
1

i

(`− k)2 −M2
1

( i(2`− k) · ε(k)
(`− k)2 −M2

2

)
(IV.24)

= Y u(q)γαPRu(p)
∫

d4`

(2π)4
(pα − `α)` · ε(k)

(`2 −M2
1 )((`− k)2 −M2

1 )((`− k)2 −M2
2 )((p− `)2 −m2) ,

(IV.25)

where m is the mass of the internal quark and M1,2 the masses of ∆1,2. Since the ∆i live
at much higher scales than those probed by the EDM we can assume M2

1,2 � k2, p2,m2.
The integrand is dominated by `2 ∼M2

1,2, thus one can expand the propagators as

1
(`− k)2 −M2

1
' 1
`2 −M2

1

[
1 + 2 ` · k

`2 −M2
1

+ 4 (` · k)2

(`2 −M2
1 )2

]
, (IV.26)

with analogous expressions for the other propagators. One obtains

iM = Y u(q)γαPRu(p)
∫

d4`

(2π)4

(pα−`α)`·ε
[

1+2 `·k
`2−M2

1
+4 (`·k)2

(`2−M2
1 )2

][
1+2 `·k

`2−M2
2

+4 (`·k)2

(`2−M2
2 )2

]
`2(l2 −M2

1 )2(`2 −M2
2 )

[
1 + 2` · p

`2
+ 4(` · p)2

`4

]
(IV.27)

The denominator is now an even function of the loop momentum `, thus we need to focus
on terms with an even number of ` at numerator. At O(`2) there are two kinds of terms
which might contribute to the nEDM,

• pα `µ `β pβ εµ ∼ `2 pα (p · ε) ,

• pα `µ `βkβ εµ ∼ `2 pα (k · ε) = 0 ,

and as the non-zero one appears also in the diagram with ∆1 ↔ ∆2 the sum of both
contributions to the nEDM would cancel. Let us consider now O(`4) terms. There are
three types of terms which might contribute,

• `α `µ `β `γ kβ kγ εµ ∼ (`2)2
[
εα k

2 + 2 kα(k · ε)
]

= 0 ,

• `α `µ `β `γ pβ pγ εµ ∼ (`2)2
[
εα p

2 + 2 pα(p · ε)
]
,

• `α `µ `β `γ kβ pγ εµ ∼ (`2)2
[
εα(k · p) + pα(k · ε) + kα(p · ε)

]
∼ (`2)2 kα(p · ε) .

The second term appears also in the diagram with ∆1 ↔ ∆2 with coefficient Y ∗ and
therefore cancels. The third doesn’t provide a non-zero nEDM. However, the surviving
contribution stems from an integral with a 1/(`2−M2

1 )2(`2−M2
2 )2 factor and is canceled

by the couple of conjugate diagrams with ∆1,2 exchanged. We have therefore argued
that our model allows new physics contributions to the nEDM to occur only starting
at the three loop level, which is a statement we have carefully checked by a full 2-loop
computation without expanding any propagator.
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IV.5.3 Flavor constraints
Flavor changing neutral current (FCNC) observables are expected to set powerful con-
straints on BSM models, due to the non trivial flavor structure that they imply in order
to comply with experimental data. In our scenario, ∆F = 2 processes are prohibited
at tree level due to the antisymmetric couplings of ∆ with the diquarks, which can be
parametrized as yij = εijkyk. These bounds were firstly discussed by the authors of [157]
and one can identify our state ∆ with the diquark denoted as V III there. It has to be
pointed out that the most general flavor structure, with all the flavor off-diagonal cou-
plings switched on, is not needed to account for baryogenesis, as a single non-zero complex
coupling is sufficient to provide a physical CP violating phase. In this setup flavor bounds
would be evaded completely.

If one wants to stick to the general scenario, bounds coming from the mixing of neutral
the K and Bd,s mesons have to be taken into account.

The scalars ∆i generate a four-fermion effective Hamiltonian given by

HNP
eff (∆F = 2) = 1

32π2

(
λiλ
∗
j

M2
∆

)
G

(
m2
k

M2
∆

)(
qi γ

µPRqj
)(
qiγµPR qj

)
, (IV.28)

where i and j are the external quark flavor indices, k 6= i 6= j is the flavor index of the
internal quark, color indices are contracted within the brackets and the loop function G
is given by

G(x) = 1− x2 + 2x logx
(1− x)3 . (IV.29)

Bounds on representativeD = 6 effective operators contributing to ∆F = 2 transitions
have been obtained by the UTfit collaboration [158], from a combination of CP conserving
and CP violating observables. We can apply these bounds to our model, and we summarize
the results in Table IV.1.

Other constraints which we include are those associated to the ∆F = 1 processes
b→ sγ, b→ dγ, Rb and B± → φπ±. We refer to [157] for more details as the constraints
reported there can be easily translated to our notation. One can note that even the most
constraining observable, namely εk, is compatible with ∆ diquark couplings of O(0.01)
around the TeV scale, which, in the absence of major hierarchies in the Yukawa couplings,
is the benchmark for our baryogenesis mechanism to work. Therefore, we don’t expect
flavor physics to exclude values of M∆ left allowed by collider searches. In fact, even
assuming a hierarchy of the type yui � ydi, in order to lower the bound on M∆ from
colliders, one would get at the same time weaker bounds from flavor.

IV.6 Results
We show the available parameter space in the vφ−cvac plane in Fig. IV.2. We have chosen
illustrative values for the Yukawa coupling y, allowing us to extend the parameter space
by many orders of magnitude towards smaller values of vφ with respect to the analogous
model where the PT is instead weakly coupled, as can be seen by comparing with Figure
6 of [72]. This is because the most constraining bound on M∆ in the scenario considered
by the authors of [72] comes from the washout given by inverse decay of ∆, whose rate
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Observable Bound/(M∆/TeV)
εK | Im(y1y

∗
2)| ≤ 7.8× 10−4

∆mK |Re(y1y
∗
2)| ≤ 1.4× 10−2

Bd mixing |y1y
∗
3| ≤ 1.7× 10−2

Bs mixing |y2y
∗
3| ≤ 5.8× 10−2

b→ sγ |y2y
∗
3| ≤ 2.5

b→ dγ |y1y
∗
3| ≤ 1.2

Rb |y1,2| ≤ 24
B± → φπ± |y1y

∗
3| ≤ 3.6× 10−3

Table IV.1: Bounds in units of M/TeV on antisymmetrically coupled diquarks, taken from [157].

strongly depends on M∆ because of the Boltzmann factor. In our scenario, due to the
presence of a confining sector, we generally expect M∆ ' 4πvφ, hence the constraint
becomes weaker.

It is interesting to understand how the parameter space is affected by the choice of
the benchmark values of y and Tn/vφ. One can see that decreasing y has the advantage
of decreasing the role played by washout effects, but has the drawback of requiring larger
values of gTCBr

(
had → ∆

)
to generate the observed BAU, as the average baryon asym-

metry ε∆ gets reduced as well. By modifying the choice of Tn/vφ instead, one is varying
the expansion regime of the bubble across the parameter space. A smaller value of Tn/vφ
makes the relativistic condition more easily satisfied, but implies a larger entropy dilution,
therefore an excessive amount of supercooling would close the parameter space. Therefore
the allowed parameter space shown in Fig. IV.2 is close to the maximal one compatible
with our baryogenesis mechanism.

In Fig. IV.3 we display the gravitational wave spectrum ΩGWh
2 for two different

benchmark points, by using the methods described in Sec. I.5. As shown also in Fig. IV.2,
LISA and ET will be able to test almost all the theoretically possible parameter space.
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Figure IV.2: Constraints on the parameter space for the mechanism of baryogenesis from su-
percooled confinement, for M∆2/M∆1 = 1.5, y = 0.01, Tn/vφ = 10−3. The white area is not
constrained and the condition to reproduce the observed baryon asymmetry is imposed on the en-
tire plot, fixing one relation among the free parameters. A value of y smaller than unity is needed
to avoid washout. Off-shell and on-shell washout regions come from Eq. (IV.16) and Eq. (IV.17),
while the bottom region is associated to γ > M∆/Tn. The pink region at the bottom corresponds
to the ping-pong regime in [55], where the quanta of ∆ are not sufficiently boosted to enter the
bubbles, hence they get reflected by walls at each scattering. The excluded region on the right
features values of gTCBr

(
had → ∆

)
> 10, chosen as a benchmark upper limit, hence it cannot

account for the whole baryon asymmetry of the Universe (Insufficient BAU). Constraints from
colliders include LEP searches, excluding values of M∆ < 75 GeV and four-jet searches performed
at Tevatron and at the LHC, excluding ∆ in the 50 GeV < M∆ < 770 GeV range. Using the
expected bulk properties of the phase transition, with α = 100, β/H = 20, we show the parameter
space testable by the Einstein Telescope and by LISA, which is the region delimited by the blue and
grey dashed lines respectively. The astrophysical foregrounds have been taken into account.
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Figure IV.3: Example of GW spectra for two benchmark points of the parameter space. The
dashed (solid) blue line shows the predicted gravitational wave spectrum for the PT in the run-
away (terminal velocity) regime, with {cvac, f} = {10−2, 104 GeV} in the terminal velocity and
{cvac, f} = {10−1, 109 GeV} in the runaway. We have assumed Tn/vφ = 10−3, α = 100 and
β/H = 20. The spectra are compared with power law integrated sensitivity curves, with signal-
to-noise ratio SNR=5 for LISA the and the Einstein Telescope (ET). Estimated astrophysical
foregrounds from binary super-massive black holes [136], galactic white-dwarf binaries [140], ex-
tragalactic white-dwarf binaries [159], binary black holes and neutron stars [128] are also shown.
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Conclusion and Outlook

The nature of dark matter (DM) and the origin of the baryon asymmetry of the universe
(BAU) are two of the outstanding mysteries of (astro)particle physics and cosmology.
First order phase transitions (FOPTs) in the early universe are predicted by many theories
beyond the standard model (SM), they can be used to generate DM and, due to being an
out-of-equilibrium process, can serve as a framework for baryogenesis mechanisms. They
have attracted a lot of interest in recent years because they can generate gravitational
waves (GWs) observable by foreseen experiments and, optimistically, potentially have
already been observed in June 2023 by pulsar timing arrays (PTAs) [10–12]. In this
thesis we have built new models connecting FOPTs with DM and with the BAU. These
models allow to experimentally test these mysteries in novel ways, and connect them with
recent and foreseen GW data. In addition, we have presented the first systematic study
of the interactions of particle shells at the walls of FOPTs, determining the regions where
they free-stream, and paving the way for future studies of their evolution which will have
implications ranging from particle production to GWs predictions.

In chapter I of this thesis we summarized the state of the art on FOPTs and their
associated GW signal. We described how bubbles, regions where the universe has tunneled
to the true vacuum, nucleate. The radius of the bubble will then increase driven by
pressure, and the wall, the boundary of the bubble, will expand with ultra-relativistic
velocities. The expansion accelerates with growing size of the bubble, but may be stopped
due to pressure coming from particles interacting at the wall. Nevertheless, the terminal
velocity can become very large as can be seen from Eq. (I.26). Particles in the bath
interacting with the wall are destined to accumulate in a thin, dense region at the wall, the
shell. We have considered several models, all giving rise to shells, however with different
thickness of the shell, average energy, and multiplicity. They also vary by whether the
particles accumulate in front of the wall (outside the bubble in the symmetric phase) or
behind the wall (inside the bubble in the broken phase). We have listed the properties of
different models in Tab. I.1. At the end of this chapter we concluded with the calculation
of the GW signal, detecable by GW telescopes and PTAs.

In chapter II we undertook the first general categorization of all interactions we
thought of that could possibly modify the evolution of these particles from their point
of interaction with the wall until collision with the particles from neighboring bubbles.
These effects include both particles from the shell and from the bath potentially flipping
momentum at collision with the ultra-relativistic wall, dissipation effects of the shell par-
ticles, Bose enhancement or effects from the breakdown of perturbativity leading to large
phase space distribution functions, and number changing interactions of the particles in

75
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the shell with themselves and with the thermal bath. We computed their size, and there-
fore were able to determine the model-dependent region in parameter space for which one
can safely neglect these effects and where particle shells free-stream.

Note that for computing these effects we have performed the first known to us com-
putation of integrated scattering amplitudes for 3 → 2 processes, whose results we
have presented in tables II.2,II.3,II.4,II.5. We show the regions of free-streaming in fig-
ures II.2,II.3,II.4,II.5,II.6. We find for all of these effects that they become important
for smaller values of the scale of the PT, unless one goes to smaller values of the gauge
coupling g. We also find that non-abelian theories give rise to effective interactions in
larger regions of parameter space, obviously due to allowing additional self interaction
between the gauge bosons.

In chapter III we proposed a novel mechanism to realize ultra-high energy particle
collisions in the early universe, which relies on collision of shells created during a cosmo-
logical FOPT. Since these bubbles expand with ultra-relativistic walls, collisions between
different bubbles happen with large scattering energies which can not only be used to
generate dark matter but any heavy new state. We dubbed this novel mechanism the
bubbletron. We investigated several scenarios and computed the key parameters to com-
pute the Yield and energy of produced particles via the bubbletron mechanism. The
general formula for the Yield of a bubbletron is given in Eq. (III.8). We then gave a
practical realization of a bubbletron by identifying the heavy state with a DM candidate
and computed the maximal possible DM mass. We show our findings in Fig. III.4, where
we have considered shells produced by U(1) gauge bosons. We used an abelian theory
because this allows us to assume free-streaming for a larger parameter space, and there-
fore extending the allowed region to lower values of the scale of the PT. We find that
one can produce heavy DM with masses above 103 TeV for scales of the PT of around
10 MeV, and with masses above the GUT scale for scales of the PT above about 109 GeV.
As can be seen in Fig. III.5, FOPTs of these scales lie in the observable range of future
GW telescopes like LISA and ET. Intriguingly, this could link the GW signal recently
observed at PTAs with DM up to the PeV scale.

More in general, our study realizes a new connection between primordial GW signals
and physics at energy scales otherwise inaccessible not only in the laboratory but, so far,
also in the early universe. In the example of heavy DM, these GW could be accompanied
by high energy cosmic rays from decays of DM, if unstable.

In chapter IV we used a supercooled confining PT to create the heavy scalars of a
confining sector, which due to their interactions being C, CP, and B violating can be used
to realize baryogenesis. We found that, compared to analogous scenarios considered in
previous literature, the confining nature of the PT opens up the allowed parameter space
down to EW scales. This allows for testing our model with EW scale experiments, leading
to non-astrophysical constraints, as well as to GW signals at LISA. We evaluated bounds
from several observables, including searches at colliders, the electric dipole moment of
the neutron, and from flavor-violating processes. We show the region allowing to have
baryogenesis in Fig. IV.2. Again, as can be seen from Fig. IV.3 we find that due to the low
value of the scale of the PT this signal could be observed by LISA and Einstein Telescope
in the future.

We finally come to possible future directions. In this thesis we have laid the ground-
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work for categorizing and computing free-streaming effects affecting the evolution of par-
ticles from their point of interaction with the wall until the collision with particles from
other bubbles. This is not only interesting and relevant for the described bubbletron,
but also for the correct computation of the GW signal, since also the amplitude of GWs
could be affected by interacting shells. In particular for the number changing interactions
we could and should improve our calculation by fully computing the thermal average,
without the assumption of factorization of thermal integrals. This would enable us to
write down and solve Boltzmann equations, even if only numerically, for the evolution of
number densities and average energies. We could then use these results to extend any
computation we did in this paper to the region in parameter space we have so far ex-
cluded due to our ignorance about what happens beyond free-streaming. What we have
computed in this thesis will be important for this endeavor as it will guide us towards
the particular free-streaming process which is dominant and which we should focus on
calculating with higher precision.

Concerning more specifically bubbletrons, future avenues of exploration include bub-
bletrons other than those induced by radiated reflected particles, or in the region where
shells do not free-stream, and other applications for baryogenesis and possible trans-
Planckian scatterings in the early universe. Finally concerning baryogenesis from first
order PTs, having demonstrated that confinement allows extending the parameter space
down to the EW scale, it could be interesting to study a model with sterile composite
neutrinos, to determine whether this mechanism makes leptogenesis testable at future
colliders.
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A – Final phase space integration

In this appendix we describe the algorithm used to perform the final phase space integral
of the 3→ 2 scattering amplitudes.

The most complicated expression of scalar products in the denominator is one that
comes from interference terms. One 5-point amplitude, consisting of only 3-point or
4-point interactions, contains at most two denominators from propagators, which are
different from each other. In an interference term this would be multiplied by two more
denominators, all possibly different. Therefore, we should be able to compute terms with
at least 4 different denominators, e.g.

|M|2 ⊃ 1
sa13s

b
24
· 1
sc23s

d
54
. (A.1)

One possible approach to recast that integral is the method of Feynman parameters. In
loop-computations one usually completes the square to get rid of the linear terms, and
then performs the loop integration. Here the approach would be to perform a SO(3)
rotation to get rid of any azimuthal angle in the denominator, such that the integral over
the polar angle can be performed. After doing so one ends up with an integral over 3
Feynman parameters. However, these integrals are not textbook integrals and evaluating
them efficiently or at all is not guaranteed.

In the following we will therefore describe an algorithm which is able to perform the
final phase space integration for all possible amplitudes.

A.1 Partial fraction decomposition of scalar products
We start from the following expression,

|M|2 =
∑
n

Cn
∏
skij

sa13s
b
14s

c
23s

d
24s

e
53s

f
54
. (A.2)

We can have either combination of s12, s15, s25, s34 in the amplitude, but these do not
depend on the final phase space integration. Therefore, we absorb them into the prefactors
Cn.

The next step is to reduce the numbers of different factors in the denominator. We
achieve this by the method of partial fraction decomposition and exploiting energy mo-
mentum conservation. This can be achieved systematically the easiest way by multiplying
with a non-trivial representation of the identity.
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We derive this identity by writing energy momentum conservation in the following
way,

pk · (p1 + p2 + p5 − p3 − p4) = 0 , (A.3)

which represents five independent equations for k = 1, 2, 3, 4, 5. We find, for example for
k = 1,

p1 · p1 + p1 · p2 + p1 · p5 = p1 · p3 + p1 · p4 , (A.4)

or equivalently

s12 + s15 − 2m2
1 −m2

2 −m2
5 −m2

3 −m2
4 = −s13 − s14 . (A.5)

Performing this manipulation for all k we find several equations for the identity,

1 = s13 + s14
C1

, (A.6)

1 = s23 + s24
C2

, (A.7)

1 = s53 + s54
C5

, (A.8)

1 = s13 + s23 + s53
C3

, (A.9)

1 = s14 + s24 + s54
C4

, (A.10)

where the constants Ck do not dependent on the final phase space integration.
More relevant identities, which can be derived in similar fashion, are

1 = s14 + s23 + s53
C14

, (A.11)

1 = s13 + s24 + s54
C13

, (A.12)

1 = s13 + s24 + s53
C24

, (A.13)

1 = s14 + s23 + s54
C23

, (A.14)

1 = s13 + s23 + s54
C54

, (A.15)

1 = s14 + s24 + s53
C53

. (A.16)

All C’s are guaranteed to not introduce any additional singularities into the amplitude.
It is straightforward to see that by strategic multiplication with these identities one

can step by step reduce the powers of particular denominators up to elimination of some
(but not all) of them.

After the full reduction has been completed, we end up with with terms of the structure

I1 ⊃
1
sa13

, I2 ⊃
1

sa13s
b
24
, I3 ⊃

sm13
sa53

, (A.17)
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where any 3 can also be a 4 and vice versa.
Note that any terms in the numerator depending on the final phase space integration

are present already from the amplitude. There are no additional ones created due to the
reduction algorithm.

A.2 Parameterization of the integration region
It is most convenient to evaluate the two-particle final phase space integral in the center-
of-mass frame, where after eliminating the delta-distribution ensuring energy momentum
conservation we are left with an integral over two angles,

R2((p3 + p4)2) = d3p3
(2π)32E3

d3p4
(2π)32E4

δ(4)(p1 + p2 + p5 − p3 − p4) =

√
λ((p3 + p4)2,m2

3,m
2
4)

32π2(p3 + p4)2

∫
dΩ ,

(A.18)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is the Källén function and
∫

dΩ is the
standard integral over the S2-sphere,∫

dΩ =
∫ π

0
dθ13 sin(θ13)

∫ 2π

0
dϕ13 =

∫ +1

−1
dz13

∫ 2π

0
dϕ13 (A.19)

It is worthy to point out that the final phase space integral is invariant under the exchange
of the two momenta of the final states, p3 ↔ p4. This is mostly useful for simplifying the
amplitude in order to safe computational resources by not calculating the same integral
twice, since p3 ↔ p4 implies z13 ↔ −z13. The integral is also invariant under O(3)
rotations on the S2-sphere, which we will exploit heavily in order to being able to compute
some of the integrals.

We now state our choice for the parameterization of the five momenta,

p1,com =


√
m2

1 + p2
I

0
0
pI

 , p2,com =


√
m2

2 + p2
J

pJ sin(θ12)
0

pJ cos(θ12)

 , p5,com =


√
m2

5 + p2
K

−pJ sin(θ12)
0

−pI − pJ cos(θ12)

 ,

(A.20)

p3,com =


√
m2

3 + p2
F

pF sin(θ13) cos(ϕ13)
pF sin(θ13) sin(ϕ13)

pF

 , p4,com =


√
m2

4 + p2
F

−pF sin(θ13) cos(ϕ13)
−pF sin(θ13) sin(ϕ13)

−pF

 .

(A.21)

The on-shell condition p2
5,com = m2

5 fixes pK =
√
p2
I + 2pIpJ cos(θ12) + p2

J . This allows
us to replace the angle θ12 by the length pK , which can be interpreted as describing a
triangle either by two lengths pI , pJ and an angle θ12, or by three lenghts pI , pJ , pK .
This constrains these parameters to the region pI ≥ 0, pJ ≥ 0, pK ≥ 0, pK ≤ pI + pJ ,
pK ≥ |pI − pJ |.
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Conservation of energy also fixes pF via the equation√
m2

1 + p2
I +

√
m2

2 + p2
J +

√
m2

5 + p2
K =

√
m2

3 + p2
F +

√
m2

4 + p2
F . (A.22)

After the integration the result depends only three variables pI , pJ , pK . However, we
can exploit the Lorentz invariance of the amplitude, and re-express the result in terms of
scalar products. This is because p1 · p2 = p1,com · p2,com, etc. defines a solvable system of
three coupled algebraic equations which lets us perform the substitution

{pI , pJ , pK} ⇒ {p1,com · p2,com, p1,com · p5,com, p2,com · p5,com} ⇒ {p1 · p2, p1 · p5, p2 · p5} .
(A.23)

This trick avoids having to work out the explicit Lorentz transformation from the center-
of-mass frame to your favorite frame, since one just computes the three scalar products
in the preferred reference frame and subsitutes them into the result.

Note that because of (p3 + p4)2 = (p1 + p2 + p5)2 the scalar product p3 · p4 is not inde-
pendent. This is consistent with the fact that integration over two integration variables
should reduce the number of independent scalar products from five to three.

A.3 Basis integrals

Let us now proceed with the computation of the basis integrals of equation (A.17). For
a more transparent notation we are going to replace complicated expressions which do
not depend on the final phase space angles with simple variables cl. Also the well known
substitution of integration variable cos(θ13) = z13 is going to be performed without extra
comments.

The analytic integrals have been verified by comparing the results to those of numeric
integration.

A.3.1 I1

Consider the integral∫
dΩ I1 ⊃

∫
dΩ 1

sa13
(A.24)

=
∫ +1

−1
dz13

∫ 2π

0
dϕ13

1
(c0 + c1 · z13)a . (A.25)

The azimuthal integration evaluates trivially to 2π, and the integration over z13 is a
textbook integral which evalutes either to a rational function or a logarithm, depending
on the value of a.

Now consider an integral of similar structure, but different momentum,∫
dΩ I1 ⊃

∫
dΩ 1

sa23
(A.26)

=
∫ π

0
dθ13 sin(θ13)

∫ 2π

0
dϕ13

1
[c0 + c2 · sin(θ13) cos(ϕ13) + c1 · cos(θ13)]a .

(A.27)
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This integral is now no longer be evaluated quickly. The solution is to exploit the in-
variance of the final phase space integral under O(3)-rotations, and rotate the vectors
p3,com, p4,com by an angle such that they are aligned with the direction of p2,com. Note
that because of the linearity of the integral one has to apply this rotation only to this
term, not to all the others. However, scalar products in the same term are invariant
under rotations, since they are part of the Lorentz group, and therefore we do not need
to perform any transformations an scalar products independent of p3,com and p4,com.

Therefore, the method of integrating structures of type I1 is performing an appropriate
O(3) rotation, and then evaluating the integral over a rational function.

A.3.2 I2

Consider the integral ∫
dΩ I2 ⊃

∫
dΩ 1

sa23s
b
54
. (A.28)

One possible way to proceed would be to perform a partial fraction decomposition with
respect to the variable z13, and then apply different O(3) rotations to the different terms.

However, an easier way is Feynman parameterization, which is also easier to implement
as a generally applicable algorithm. For two denominators we have

1
AaBb

= Γ(a+ b)
Γ(a)Γ(b)

∫ 1

0
dx xa−1x̄b−1

(xA+ x̄B)a+b , x̄ = 1− x , (A.29)

Then for above example we have

xA+ x̄B = c′0 − 2(xE2E3 + x̄E5E4) + 2(x ~p2 · ~p3 + x̄ ~p5 · ~p4) (A.30)
= c0(x) + 2(x~p2 − x̄~p5) · ~p3 (A.31)

where Ek = p0
k,com are the energies in the center-of-mass frame, and for readability we

omitted the index com indicating the evaluation in the center-of-mass frame. In the last
step we used that p3,com = −p4,com.

In order to evaluate the integral over the azimuthal and polar angle we make again
use of the invariance under O(3)-rotations and rotate in such a way that the vector ~p3 is
parallel to the vector x~p2 + x̄~p5. We can then write the scalar product as

2(x~p2 − x̄~p5) · ~p3 = 2|x~p2 − x̄~p5||~p3| cos(θ13) , (A.32)

such that the integral over I2 reduces to∫
dΩ I2 ⊃

∫
dΩ 1

sa23s
b
54

(A.33)

= Γ(a+ b)
Γ(a)Γ(b)

∫ 1

0
dx
∫ +1

−1
dz13

∫ 2π

0
dϕ13

xa−1x̄b−1

[c0(x) + c1(x)z13]a+b . (A.34)

The integration over the azimuthal angle ϕ13 evaluates trivially to 2π. Since this ex-
pression only appears for at least denominators, i.e. a ≥ 1, b ≥ 1, we have a + b ≥ 2.



86 Appendix A. Final phase space integration

Therefore, performing the integral over the polar angle z13 is never going to yield a loga-
rithm. It even turns out that, while the length of a vector contains a square root of the
Feynman parameter x, the integral onle depends on the length squared, and therefore we
are left with an integral of the form∫ 1

0
dx

∑k−1
i=0 aix

i

(b0 + b1 · x+ b2 · x2)k
. (A.35)

This is a well known class of textbook integrals, and can be easily computed, for example
with the method of partial fraction decomposition, or Mathematica.

Therefore, the method of integrating structures of type I2 is a combination of applying
Feynman parameters and performing an appropriate O(3) rotation.

A.3.3 I3

Consider the integral ∫
dΩ I3 ⊃

∫
dΩ sm23

sa53
. (A.36)

From the expressions before we have already seen that it is most convenient to eliminate
any azimuthal angle ϕ13 in the denominator. We achieve this as before by rotating p3,com
in a suitable way.

However, now the numerator is not independent of p3,com and will be affected by the
rotation. This is easily done by acting on the vector ~p3 with the standard rotation matrix
R3. Since one can in general not choose the matrix R3 in such a way that any dependence
on ϕ13 disappears, we still have ϕ13 in the numerator. Therefore, we have∫

dΩ I3 ⊃
∫ π

0
dθ13 sin(θ13)

∫ 2π

0
dϕ13

[d0 + d2 · sin(θ13) cos(ϕ13) + d1 · cos(θ13)]m

[c0 + c1 · cos(θ13)]a
(A.37)

We perform the integration over the azimuthal angle ϕ13 first. When we expand the
numerator, we get a series with terms proportional to∫ 2π

0
dϕ13 [sin(θ13) cos(ϕ13)]k . (A.38)

This is integral vanishes for all odd powers of k. This is in so far convenient that keep-
ing only the even powers eliminates all occurences of sin(θ13) =

√
1− z2

13, which is not
straightforward to integrate in general. Therefore after performing the azimuthal inte-
gration we are left with the integration over the polar angle, which takes the form∫ +1

−1
dz13

∑
m amz

m
13

[c0 + c1 · z13]a . (A.39)

As in the previous subsection, this is a well known class of textbook integrals, and can
be easily computed, for example with the method of partial fraction decomposition, or
Mathematica.

Therefore, the method of integrating structures of type I3 is performing an appropriate
O(3) rotation and then proceeding with the integration over the angles as described above.
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A.4 Summary
We have outlined an algorithm how to compute the final phase space integration over
any amplitude describing a 3 → 2 process. The result is, although the integration was
performed in a specific frame, still Lorentz invariant, and can therefore be expressed in
terms of three independent scalar products p1 · p2, p1 · p5, and p2 · p5.
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B – Final state momentum
configuration

In this appendix we achieve a better understanding of the momentum configuration of the
two particles in the final state. We find that for both bath-shell-shell and bath-bath-shell
there will be one particle behaving parameterically as a shell particle and the other one
as a bath particle.

Consider the momentum configuration in the wall frame (f = mc,h, . . .)

p1,w =


f
0
0
f

 , p2,w =


γTn

0
0
−γTn

 , p5,w =


γTn

0
0
−γTn

 , (B.1)

p3,w =


E3

E3 sin(θ3,w)
0

E3 cos(θ3,w)

 , p4,w =


E4

E4 sin(θ4,w)
0

E4 cos(θ4,w)

 , (B.2)

corresponding to the scenario bath-bath-shell. Without loss of generality, this scattering
happens in the x − z-plane. If we were to introduce some spread, the scattering is in
general 3-dimensional and this discussion becomes less illuminating, but the message
stays unaffected.

We can then use energy-momentum-conservation to read of the following equations

E3 sin(θ3,w) = E4 sin(θ4,w) , (B.3)
f + 2γTn = E3 + E4 , (B.4)
f − 2γTn = E3 cos(θ3,w) + E4 cos(θ4,w) . (B.5)

Another important condition is the on-shell condition,

0 . (E4)2 − (E4 sin(θ4,w))2 − (E4 cos(θ4,w))2 (B.6)
= (f + 2γTn − E3)2 − (E3 sin(θ3,w))2 − (f − 2γTn − E3 cos(θ3,w))2 (B.7)
= 8fγTn − 2fE3(1− cos(θ3,w))− 2γTnE3(1 + cos(θ3,w)) . (B.8)

Since the thermal mass can be neglected in these types of discussions, this equation fixes
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the energy as a function of the angle,

E3,w .
8fγTn

2f(1− cos(θ3,w)) + 2γTn(1 + cos(θ3,w)) (B.9)

=


2f θ3,w = 0
4fγTn
f + γTn

θ3,w = π/2

2γTn θ3,w = π

. (B.10)

Remark the following,

E3(θ3,w = π/2) ' 4γTn (B.11)
!= f + 2γTnuc − E4 ' 2γTn − E4 . (B.12)

This is a condition which is impossible to satisfy, since E4 ≥ 0. We conclude that the
scattering must be very collinear. Since the labeling 3↔ 4 is arbitrary, we define without
loss of generality that

E3,w ' O(f) , (B.13)
θ3,w ' 0 . (B.14)

Then energy-momentum-conservation gives

E4,w ' O(γTn) , (B.15)
θ4,w ' π . (B.16)

This implies that each scattering does not change direction by much in the wall frame
(so even less in the plasma frame!), and the outgoing particle is type ejected (E3,w ∼ f)
and the ingoing is type bath (E4,w ∼ γTn).

A similar conclusion is achieved for bath-shell-shell type interactions in the same way.
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