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Titre : Étude de l’influence du noyau sur la motilité cellulaire
Mots clés :modèle à frontière libre, simulations numériques, modélisation, bifurcation, onde progressive,motilité cellulaire
Résumé : La motilité cellulaire est un phénomèneimpliqué dans de nombreux processus biologiquescomme la propagation des cancers, la réponse im-munitaire, la cicatrisation ou le développement em-bryonnaire. Ce phénomène est assuré par la ca-pacité d’une cellule à se déformer d’une configura-tion symétrique, non polarisée, à une configurationasymétrique, polarisée, et à maintenir cette config-uration asymétrique. Dans cette thèse, nous nousintéressons plus particulièrement au rôle du noyaudans ce phénomène. Pour cela, un modèle à fron-tière libre en dimension 2 est introduit. La celluleestmodélisée par un fluide incompressible compor-tant une structure rigide modélisant le noyau. Desmarqueurs de polarité sont présents dans le fluideet ceux-ci transduisent de manière active les forcesappliquées par et sur le cytosquelette. Le modèleproposé permet également de modéliser l’effet del’undercooling et de l’environnement extérieur surla motilité cellulaire. Les différentes composantesdu modèle sont étudiées de manière séparée dansla thèse.Nous étudions l’influence du noyau sur la motil-ité cellulaire. Pour cela nous considérons différentsmodèles dont un modèle déformable, un rigideet deux modèles jouets. Nous montrons que cesmodèles admettent des états stationnaires. Vial’analyse linéaire de la stabilité, nous montrons qu’ilexiste un seuil à partir duquel l’état stationnaire ra-dialement symétrique est instable. Pour chacun deces modèles un schéma numérique aux élémentsfinis est développé. Les résultats numériquesobtenus permettent de mettre en avant le lien en-tre la position du noyau dans la cellule et la polari-

sation de la cellule. Ils sont qualitativement en ac-cord avec les observations biologiques. L’analysedes trajectoires est également réalisée. Un modè-le analogue en dimension 1 qui est une équationnon-locale et non-linéaire de Fokker-Planck est in-troduit. Nous montrons que celui-ci est bien posé.L’existence d’états stationnaires et d’ondes progres-sives est également étudiée. Un second modèle endimension 1 basé sur une seconde modélisation estétudié.L’effet de l’undercooling sur la motilité cellulaireest étudié. Enmontrant l’existence d’ondes progres-sives et d’états stationnaires, nous illustrons quecelui-ci a un effet stabilisant. L’existence d’ondesprogressives est prouvée via un théorème de bi-furcation. Nous montrons également à l’aide del’analyse linéaire de la stabilité qu’il existe un seuilà partir duquel l’état stationnaire est instable.L’influence de la présence de signaux extérieursattractifs sur la motilité cellulaire est aussi inves-tiguée. Nous montrons l’existence d’un état sta-tionnaire et l’existence d’une gammede paramètrespour laquelle celui-ci est stable et une autre pourlaquelle il est instable. Numériquement, nous illus-trons qu’il existe une compétition entre forces in-duites par les marqueurs de polarité et celles in-duites par le signal extérieur.Cette thèse comporte également un travail ef-fectué durant l’école d’été CEMRACS 2022. Unmodè-le d’un des mécanismes ayant lieu à la membrane,l’endocytose, y est présenté. Après avoir étudié lemodèle, un schéma aux volumes finis est présenté.Celui-ci permet d’obtenir des résultats en accordavec les résultats biologiques.
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Title: Study of the influence of the cell nucleus on cell motility
Keywords: free boundarymodel, numerical simulations,modelling, bifurcation, travellingwave, cellmotil-ity
Abstract: Cell motility is a phenomenon involvedin many biological processes such as cancer prop-agation, immune response, wound healing and em-bryonic development. This phenomenon is en-sured by a cell’s ability to deform from a symmet-rical, non-polarised configuration to an asymmet-rical, polarised configuration, and to maintain thisasymmetrical configuration. In this thesis, we fo-cus on the role of the nucleus in this phenomenon.To this end, a free boundary model in dimension2 is introduced. The cell is modelled by an incom-pressible fluid with a rigid structure modelling thenucleus. Polarity markers are present in the fluidand these actively transduce the forces applied byand on the cytoskeleton. The proposed model alsomodels the effect of undercooling and the externalenvironment on cell motility. The different compo-nents of themodel are studied separately in the the-sis. We are studying the influence of the nucleus oncell motility. We consider various models, includ-ing a deformable model, a rigid model and two toymodels. We prove that these models admit station-ary states. Using linear stability analysis, we demon-strate that there exists a threshold above which theradially symmetric stationary state is unstable. Foreach of these models, a finite element numericalscheme is developed. The numerical results ob-tained highlight the link between the position of thenucleus in the cell and the polarisation of the cell.They are in qualitative agreementwith biological ob-

servations. Trajectory analysis is also carried out.An analogous model in dimension 1, which is a non-local and non-linear Fokker-Planck equation, is in-troduced. We show that it is well posed. The ex-istence of stationary states and travelling waves isalso studied. A second model in dimension 1 basedon a second modelling is studied.
The effect of undercooling on cell motility isstudied. By proving the existence of travellingwaves and stationary states, we illustrate that un-dercooling has a stabilising effect. The existence oftravelling waves is proved using a bifurcation the-orem. We also demonstrate, using linear stabilityanalysis, that there exists a threshold above whichthe stationary state is unstable.
The influence of the presence of attractive ex-ternal signals on cell motility is also investigated.We prove the existence of a stationary state andthe existence of a range of parameters for which itis stable and another for which it is unstable. Nu-merically, we illustrate that there is competition be-tween the forces induced by the polarity markersand those induced by the external signal.
This thesis also includes a work carried out dur-ing the CEMRACS 2022 summer school. A model ofone of the mechanisms taking place at the mem-brane—endocytosis—is presented. After studyingthe model, a finite volume scheme is presented.This provides results that are consistent with biolog-ical results.
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Synthèse en français

Cette thèse porte sur l’étude mathématique de l’influence du noyau sur la motilité cellu-
laire et consiste audéveloppement d’unmodèlemathématiquede lamotilité cellulaire prenant
en compte le noyau et à l’étude de ce dernier demanière théorique ainsi qu’à l’aide de simula-
tions numériques. Nous présentons en premier le contexte biologique : la motilité cellulaire.
Nous présentons ensuite le modèle. Enfin nous présentons les résultats obtenus.

Contexte biologique

La cellule est un système complexe qui contient de nombreuses molécules interagissant
entre elles et menant à différents phénomènes remarquables tels que le mouvement des cel-
lules. Dans cette thèse, nous nous intéressons à la modélisation de lamotilité cellulaire. Celle-
ci est impliquée dans différents processus biologiques importants comme le développement
embryonnaire, la cicatrisation, la réponse immunitaire ou la propagation des cancers.

La motilité cellulaire est un processus complexe qui repose sur la capacité d’une cellule à
se polariser. Cela signifie que la cellule est capable de briser sa symétrie interne et d’avoir un
avant et un arrière définis (Danuser et al., 2013; Reig et al., 2014). Une fois que la cellule est
polarisée, la migration cellulaire peut avoir lieu et est décrite par un cycle de quatre étapes
(Abercrombie, 1980) (voir fig. 1).

Figure 1: Représentation schématique du cycle de quatre étapes de la migration cellu-
laire. Les événements dépendant de la polymérisation de l’actine sont représenté en rouge et ceux
dépendant de la myosine en vert. Les adhésions au substrat sont représentées en violet. Image tirée
de Reig et al. (2014).

Nous pouvons noter qu’une fois que la cellule est polarisée, le noyau est situé à l’arrière
de la cellule et qu’il y a une accumulation à l’avant ou à l’arrière de marqueurs de polarité. Ces
marqueurs peuvent, par exemple, être de la myosine ou ses activateurs, des régulateurs de
la polymérisation de l’actine ou des molécules impliquées dans la régulation de la dynamique
des microtubules (Maiuri et al., 2015). La forme de la cellule est également un marqueur de
polarisation de celle-ci. La polarisation et la migration cellulaire peuvent avoir lieu de manière
spontanée ou en réponse à un stimuli extérieur.

Les forces permettant la motilité cellulaire sont générées par le cytosquelette, un réseau
de protéines présent dans le cytoplasme. Les deux principales sont la force induite par la pro-
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trusion de la cellule liée au phénomène de treadmilling de l’actine et la force induite par la con-
traction des fibres d’acto-myosine (voir fig. 1). Le treadmilling de l’actine crée des protrusions
à l’avant ainsi que l’attachement de la cellule au substrat. La contraction des fibres d’acto-
myosine, fibres composées d’actine et de myosine, permet la contraction du cytosquelette
ce qui induit la rétractation de l’arrière de la cellule ainsi que le détachement de la cellule du
substrat à cet endroit.

Le noyau est le plus grand organite de la cellule. Il est entouré de membrane plasmique.
Bien que plus rigide que le reste de la cellule, le noyau est capable de se déformer. Le noyau
est relié au cytosquelette via le complexe LINC, un complexe formé de protéines. Cela permet
la transmission de forces entre le noyau et la cellule (Thiam, 2014). Sa position dans la cellule
est également un marqueur de polarité et influence la polarisation de la cellule.

À la suite de la course mondiale des cellules,Maiuri et al. (2015) ont mis en évidence l’exis-
tence d’un couplage universel entre la vitesse et la persistance des cellules (dit loi de l’UCSP).
La persistance est la capacité d’une cellule à conserver sa direction de mouvement. Celle-ci
est dite conservée tant qu’elle ne dévie pas de plus de 90° de la direction initiale. Le temps de
persistance est le temps pendant lequel la cellulemaintient sa direction initiale demouvement
et la vitesse de persistance est la vitessemoyenne durant ce temps. La loi de l’UCSP donne que
le temps de persistance est proportionnel à une exponentielle de la vitesse de persistance.

Il a également étémis en évidence que les cellules peuvent avoir trois types de trajectoires.
Premièrement, elles peuvent être browniennes et sont caractérisées par l’absence d’état po-
larisé et un temps de persistance faible. Deuxièmement, elles peuvent être persistantes et
sont caractérisées par un long temps de persistance et une longue durée de vie d’un état po-
larisé. Troisièmement, elles peuvent être intermittentes, dans ce cas les trajectoires alternent
entre des phases browniennes et des phases persistantes (Maiuri et al., 2015).

Présentation du modèle

Afin demodéliser le phénomène demotilité cellulaire en prenant en compte le noyau de la
cellule, nous proposons dans cette thèse un modèle à frontière libre de type interface mince.
Le modèle est dans un cadre deux-dimensionnel. Ce modèle reprend les idées du modèle de
Lavi et al. (2020) et peut être vu comme un enrichissementde ce modèle qui est un modèle ne
prenant pas en compte le noyau de la cellule. Le domaine de la cellule, dépendant du temps,
est noté Ω (t) ⊂ R2 où t ≥ 0 désigne le temps. Nous notonsAΩ l’aire de la cellule. Le domaine
du noyau est noté N (t) et nous supposons que pour tout t ≥ 0 nous avons N (t) ⊂ Ω (t). Le
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modèle est donné par :

u+∇P = 0 dans Ω (t) \N (t) ,

div (u) = 0 dans Ω (t) \N (t) ,

Vn = u · n sur ∂Ω (t) ,

P = γκ+ χcfact (c) + χsg (∇s · n)− fNB − fobs + χufund (Vn) sur ∂Ω (t) ,

unucl (t) =
1

ξnucl |N |

(∫
∂N(t)

P (t,x)ndσ + fBN

)
u · n = unucl · n sur ∂N (t) ,

∂tc = div
(
∇c− (1− a)uc− αẆQ

t c
) dans Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 sur ∂ (Ω (t) \N (t)) ,

c(0,x) = cin(x) dans Ω (0) \N (0) ,

(1a)
(1b)
(1c)
(1d)
(1e)
(1f)
(1g)
(1h)
(1i)

où
• κ est la courbure (positive pour un cercle) de la frontière libre ∂Ω et γ ≥ 0 est la tension
de surface,

• Vn est la vitesse normale de la frontière libre ∂Ω et n le vecteur normal sortant à Ω \N ,
• χc > 0, fact est la force active de traction et dépend de la concentration de marqueurs,
cette force modélise l’effet du cytosquelette sur la cellule,

• χs > 0, g est la force qui dépend du signal extérieur s,
• fobs est la force de contact induite par les obstacles sur le bord de la cellule,
• χu > 0, fund est la force qui dépend de la vitesse normale du bord de la cellule qui peut
être vue comme un effet d’undercooling et qui traduit la force induite par la friction du
bord de la cellule,

• ξnucl > 0,
• fNB est la force induite par le noyau sur le bord extérieur de la cellule et fBN celle induite
par le bord extérieur de la cellule sur le noyau,

• a ∈ [0, 1],
• α ≥ 0 et ẆQ

t le bruit coloré associé à un processus Q-Wiener,
• cin, Ω (0), N (0) désignent les conditions initiales,
• σ est une mesure sur le bord.
Le cytoplasme de la cellule estmodélisé par un fluide qui occupe le domaineΩ (t)\N (t) et

qui contient desmarqueurs de polarité d’arrière ayant pour concentration c. Le fluide satisfait
la loi de Darcy (eq. (1a)) et est incompressible (eq. (1b)). Nous supposons que la membrane,
modélisée par l’interface entre le fluide et l’extérieur de la cellule ∂Ω se déplace à la vitesse
du fluide (eq. (1c)). Les marqueurs diffusent dans le fluide et sont transportés à la vitesse du
fluide (eq. (1g)). Le terme a représente la proportion demarqueurs attachés et qui ne sont pas
transportés par le fluide. Un bruit coloré en espace ẆQ

t est ajouté au champ d’advection des
3



marqueurs. Celui-ci modélise les réorganisations internes du cytosquelette. Nous supposons
également que la quantité totale de marqueurs M est conservée au cours du temps, ce qui
est assuré par les conditions de bord (eq. (1h)).

Comme première approche, dans cette thèse, nous supposons que le noyau est rigide
et de forme circulaire. Nous avons alors pour tout t ≥ 0, N (t) = b (xnucl (t) , Rnucl). Noussupposons que le noyau est relié au bord de la cellule par des liens. Ainsi, le noyau induit une
force sur le bord de la cellule que nous notons fBN. Le noyau induit une force réciproque surle bord de la cellule et celle-ci est notée fNB (voir fig. 2 pour une représentation graphique).
L’expression de ces forces est alors donnée par :

fBN (t) = δ

∫
∂Ω(t)

vBN · n
(∥vBN∥ −Rnucl)

β
ndσ,

et pour tout xB ∈ ∂Ω (t)

fNB (t,x) = −δ vBN · n
(∥vBN∥ −Rnucl)

β
,

où vBN = xnucl − xB et δ > 0, β > 1.
Nous supposons qu’au bord du noyau il y a continuité des vitesses normales (eq. (1f)). La

vitesse du noyau (eq. (1e)) est obtenue à l’aide du bilan des forces et en supposant que le noyau
a un mouvement rigide (Lefebvre, 2007). Les forces s’exerçant sur le noyau sont la force de
friction sur le substrat, la force induite par le fluide sur le noyau et la force induite par le bord
de la cellule sur le noyau.

Enfin, nous supposons que les marqueurs induisent une force au bord de la cellule. Cela
modélise l’action du cytosquelette sur la cellule. Nous faisons l’hypothèse de marqueurs d’ar-
rière, cela signifie qu’une haute concentration enmarqueurs définit l’arrière de la cellule. Cette
force a pour expression−χcfact (c) avec χc > 0 et fact une fonction positive. Nous supposonségalement la présence dans l’environnement de la cellule d’obstacles et de signaux extérieurs.
Ces signaux et obstacles induisent des forces sur la cellule. La force induite par les signaux
extérieurs est donnée par −χsg (∇s · n) et la force induite par le contact avec les obstaclesest donnée par fobs. Nous supposons aussi que la membrane subit une force de friction dif-
férente du reste du cytoplasme. Cela mène à un effet d’undercooling. Cette force est notée
−χufund (Vn) où Vn est la vitesse normale du bord de la cellule. Ainsi en écrivant le bilan des
forces qui s’exercent au bord de la cellule, nous obtenons la condition de bord sur la pression
(eq. (1d)), c’est l’équation de Young-Laplace perturbée.
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fBN

Rnucl

xnucl

xB

n

fNB

Figure 2: Hypothèses faites pour lamodélisation dunoyau. Le domaine du fluideΩ (t)\N (t)
est représenté en bleu pâle et le domaine du noyauN (t) est représenté en bleu un peu plus foncé.
Quelques liens entre le noyau et le bord de la cellule sont représentés par les lignes ondulées bleues
foncées. La force induite par le noyau sur le bord de la cellule fNB est représentée pour un point
xB du bord. La force induite par le bord de la cellule sur le noyau fBN est représentée en orange.

Résultats de la thèse

Dans cette thèse les différentes composantes du modèle sont étudiées séparément.

Impact du noyau sur la motilité cellulaire

Unmodèle en dimension 1 : Dans le chapitre 2 unmodèle en dimension 1 analogue aumo-
dèle général est étudié. Dans ce cas, la cellule est représentée par un segment de longueur fixe
[−1, 1]. Nous supposons ici que les marqueurs de polarité peuvent s’attacher et se détacher
au bord de la cellule et nous notons µ+ la quantité de marqueurs attachés en 1 et µ− celle en
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−1. Dans le référentiel de la cellule, le modèle est donné par:

∂tc (t, x) = ∂2xxc (t, x) + au (t) ∂xc (t, x) , x ∈ ]−1, 1[ ,

∂xc (t,±1) + au (t) c (t,±1) = ∓ d

dt
µ± (t) ,

d

dt
µ± (t) = kon c (t,±1)− koff µ± (t) ,

u (t) =
χc

2
(µ− (t)− µ+ (t))− 1

2
g (XN (t)) ,

d

dt
XN (t) =

(
1

ξnucl
− 1

)
u (t) +

1

ξnucl
g (XN (t)) ,

(2a)
(2b)
(2c)
(2d)
(2e)

que nous complétons par la condition initiale suivante :
c (0, x) = c0 (x) , x ∈ [−1, 1] ,

µ± (0) = µ0
±,

XN (0) = X0
N ,

(3a)
(3b)
(3c)

où µ0
± ≥ 0 et X0

N ∈ [−1, 1]. À l’aide de l’étude d’un problème découplé et d’un argument de
point fixe, nousmontrons que, sous certaines conditions sur la condition initiale (3), le modèle
(2) est bien posé.
Proposition. Supposons que c0 est tel que

∫ 1

−1
c0 (x) log c0 (x) dx < +∞. Supposons aussi que

µ0
+, µ

0
− ∈ [0,M ] sont tels que

∫ 1

−1
c0 (x) dx+µ0

++µ0
− =M . Supposons de plus queX0

N ∈ [−1, 1].
Alors il existe une unique solution (c, µ+, µ−, XN ) au problème (2) pour tout temps.

Nous montrons ensuite que le modèle admet un état stationnaire non-polarisé et symé-
trique ainsi que des ondes progressives. Enfin, un schéma numérique aux volumes finis est
décrit afin de pouvoir réaliser des simulations numériques du modèle. Ce schéma permet
bien de retrouver les états stationnaires et ondes progressives du modèle. Des simulations
numériques sont présentées et permettent de faire de premières conclusions sur le rôle du
noyau dans la motilité cellulaire et le fait que le modèle donne des résultats en accord avec les
observations biologiques. Celles-ci permettent d’illustrer que le phénomène de polarisation
est nécessaire à la migration cellulaire et que la position du noyau à l’arrière de la cellule
permet une polarisation rapide de la cellule.

Étude de deuxmodèles rigides jouets : Dans les chapitres 4 et 5 deuxmodèles jouets sont
présentés. Ces deux modèles sont des modèles pour lesquels la cellule est supposée rigide.
Pour le premier, appelé modèle de la couronne, la position du noyau dans la cellule est fixe.
Dans ce cas le modèle est donné par:

∂tc = div
(
∇c− (1− a)uc− αẆQ

t c
) dans Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 sur ∂ (Ω (t) \N (t)) ,

u (t) =
−χc

AΩ

∫
∂Ω(t)

fact (c)ndσ,

6



avec Ω (t) = B (xcell (t) , R0) et Ω (t) = B (xnucl (t) , Rnucl). Nous avons:
d

dt
xcell (t) = u (t)

et
d

dt
xnucl (t) = u (t) .

La vitesse de déplacement de la cellule u est obtenue à l’aide du bilan des forces sur la cellule.
Lorsque le bruit est négligé (α = 0), le modèle admet un unique état stationnaire défini par :

c0 (x) =
M

|Ω0 \N0|
, x ∈ Ω0 \N0,

u0 (x) = 0, x ∈ Ω0 \N0,

Ω0 = B (0, R0) et N0 = B (0, Rnucl) .

Pour le second, appelé modèle avec une particule, la dynamique du noyau est négligée,
nous supposons que le noyau n’induit pas de force sur le bord de la cellule et que le bord de
la cellule n’en induit pas sur le noyau. Dans ce cas, le modèle est donné par :

u+∇P = 0 dans Ω (t) \N (t) ,

div (u) = 0 dans Ω (t) \N (t) ,

u · n = ucm · n sur ∂Ω (t) ,

u · n = unucl · n sur ∂N (t) ,

unucl (t) =
1

ξnucl |N |

∫
∂N(t)

P (t,x)n dσ,

ucm (t) =
−χc

AΩ

∫
∂Ω(t)

fact (c)ndσ +
|N |
AΩ

(1− ξnucl)unucl (t) ,

∂tc = div
(
∇c− (1− a)uc− αẆQ

t c
) dans Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 sur ∂ (Ω (t) \N (t)) ,

Ω (t) = B (0, R0) +

∫ t

0

ucm (s) ds,

N (t) = B (0, Rnucl) +

∫ t

0

unucl (s) ds.

Nous pouvons noter qu’en général, puisque ucm ̸= unucl, le domaine fluide n’est pas un do-
maine rigide mais un domaine déformable. La vitesse ucm est obtenue à l’aide du bilan des
forces sur la cellule. Lorsque le bruit est négligé, ce modèle admet un unique état stationnaire
radialement symétrique défini par :

u0 (x) = 0, x ∈ Ω0 \N0,

P 0 (x) = 0, x ∈ Ω0 \N0,

u0
nucl = 0,

u0
cm = 0,

c0 (x) =
M

|Ω0 \N0|
, x ∈ Ω0 \N0,

Ω0 = B (0, R0) et N0 = B (0, Rnucl) .
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Pour ces deuxmodèles, nous définissons χ∗
c =

1

ac0f ′act (c
0)

etmontrons le résultat suivant
sous l’hypothèse ξnucl = 1 dans le cas du modèle avec une particule ou en toute généralité
dans le cas de la couronne :

Théorème. Si χc < χ∗
c , alors l’état stationnaire est linéairement stable. À l’opposé, si χc > χ∗

c ,
alors l’état stationnaire est linéairement instable.

Nousproposons ensuite un schémanumérique aux éléments finis pour ces deuxmodèles.
Ces schémas numériques s’appuient, lorsque c’est nécessaire, sur uneméthode de décompo-
sition du problème sur la vitesse et la pression afin de séparer les conditions de bord, une ges-
tion du potentiel contact entre le noyau et le bord de la cellule à l’aide d’un algorithme d’Uzawa
et d’une discrétisation en élements finis du bruit (Boulakia et al., 2015). Après avoir vérifié que
les schémas numériques donnent des résultats en accord avec les observations théoriques,
nous simulons des trajectoires. Nous obtenons des observations similaires à celles obtenues
au chapitre 3 lorsque nous ne considèrons pas de noyau et que la cellule est supposée rigide.
Les travaux du chapitre 3 sont effectués en collaboration avec Christèle Etchegaray et Nicolas
Meunier. Les trajectoires satisfont la loi de l’UCSP et des gammes de paramètres sont trouvées
de manière à retrouver les trois types de trajectoires.

Étude d’un modèle rigide : Dans le chapitre 6, un modèle rigide prenant en compte la dy-
namique du noyau est étudié. Le modèle est donné par :


u+∇P = 0 dans Ω (t) \N (t) ,

div (u) = 0 dans Ω (t) \N (t) ,

unucl (t) =
1

ξnucl |N |

(∫
∂N(t)

P (t,x)ndσ + fBN

)
,

ucm (t) =
−χc

AΩ

∫
∂Ω(t)

fact (c)n dσ +
|N |
AΩ

(1− ξnucl)unucl (t) ,

u · n = ucm · n sur ∂Ω (t) ,

u · n = unucl · n sur ∂N (t) ,

∂tc = div
(
∇c− (1− a)uc− αẆQ

t c
) dans Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 sur ∂ (Ω (t) \N (t)) ,

Ω (t) = B (0, R0) +

∫ t

0

ucm (s) ds,

N (t) = B (0, Rnucl) +

∫ t

0

unucl (s) ds.

(4a)
(4b)
(4c)
(4d)
(4e)
(4f)
(4g)
(4h)
(4i)
(4j)
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Lorsque le bruit est négligé, ce modèle admet un unique état stationnaire donné par :



u0 (x) = 0, x ∈ Ω0 \N0,

P 0 (x) = 0, x ∈ Ω0 \N0,

u0
nucl = 0,

u0
cm = 0,

c0 (x) =
M

|Ω0 \N0|
, x ∈ Ω0 \N0,

Ω0 = B (0, R0) et N0 = B (0, Rnucl) .

(5a)
(5b)
(5c)
(5d)
(5e)
(5f)

Nous posons χ∗
c =

1

ac0f ′act (c
0)
. Le théorème suivant est également démontré :

Théorème. Lorsque ξnucl = 1, si χc < χ∗
c , alors l’état stationnaire (5) est linéairement stable. À

l’opposé, si χc > χ∗
c , alors l’état stationnaire (5) est linéairement instable.

Ce théorème est démontré en trois étapes. Premièrement, nous linéarisons le problème
(4) autour de l’état stationnaire (5). Nous en déduisons un problème aux valeurs propres.
Deuxièmement, nous étudions le signe des parties réelles des valeurs propres. L’état station-
naire est stable si toutes les valeurs propres sont de partie réelle négative et instable sinon.
Pour cela, à l’aide de l’analyse de Fourier, nous décomposons le problème aux valeurs propres
en des problèmes plus simples. Enfin, nous dérivons des problèmes plus simples, une condi-
tion explicite sur les valeurs propres. Nous montrons alors que lorsque χc > χ∗

c il existe unevaleur propre dont la partie réelle est positive et que lorsque χc < χ∗
c toutes les valeurs pro-pres ont une partie réelle négative. Ce raisonnement est inspiré de ceux menés par Alazard

et al. (2022); Lavi et al. (2020).
Enfin, un schéma numérique aux volumes finis est écrit. Ce schéma s’appuie sur les

mêmes éléments que ceux développés pour lesmodèles de la couronne et avec une particule.
Les simulations numériques effectuées sont comparées avec celles obtenues aux chapitres 4
et 5. Celles-ci mettent en avant que la dynamique du noyau promeut le caractère intermittent
des trajectoires. Ce modèle permet également de mettre en avant le lien entre le position-
nement du noyau à l’intérieur de la cellule et la polarisation de la cellule.

Les simulations numériques permettent également de valider une autre approche, plus
heuristique, pour modéliser les forces qui s’appliquent entre le noyau et le bord de la cellule.
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Étude du modèle déformable : Le chapitre 7 est dédié à l’étude du modèle déformable
avec la dynamique du noyau. Le modèle étudié est donné par :

u+∇P = 0 dans Ω (t) \N (t) ,

div (u) = 0 dans Ω (t) \N (t) ,

Vn = u · n sur ∂Ω (t) ,

P = γκ+ χcfact (c)− fNB sur ∂Ω (t) ,

unucl (t) =
1

ξnucl |N |

(∫
∂N(t)

P (t,x)ndσ + fBN

)
u · n = unucl · n sur ∂N (t) ,

∂tc = div (∇c− (1− a)uc) dans Ω (t) \N (t) ,

(∇c+ auc) · n = 0 sur ∂ (Ω (t) \N (t)) ,

c (0,x) = cin (x) dans Ω (0) \N (0) .

(6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(6g)
(6h)
(6i)

Nous montrons l’existence d’un unique état stationnaire radialement symétrique défini par :

u0 (x) = 0, x ∈ Ω0 \N0

P 0 (x) =
γ

R0
+ χcfact

(
c0
)
− δR0

(R0 −Rnucl)
β
, x ∈ Ω0 \N0

u0
nucl = 0,

c0 (x) =
M

|Ω0 \N0|
, x ∈ Ω0 \N0

Ω0 = B (0, R0) et N0 = B (0, Rnucl) ,

(7a)
(7b)
(7c)
(7d)
(7e)

où R0 =
√

AΩ

π . Nous posons χ∗
c =

1

ac0f ′act (c
0)

et montrons le résultat suivant :
Théorème. Lorsque ξnucl = 1, si χc < χ∗

c , alors l’état stationnaire (7) est linéairement stable. À
l’opposé, si χc > χ∗

c , alors l’état stationnaire (7) est linéairement instable.
Pour démontrer ce résultat, premièrement, nous linéarisons le problème (6) autour de

l’état stationnaire (7) et en déduisons un problème aux valeurs propres. Ensuite, à l’aide de
l’analyse de Fourier, nous décomposons le problème aux valeurs propres en des problèmes
plus simples indexés parm ∈ N. Nous montrons que pour les casm = 0 etm ≥ 2 alors toutes
les valeurs propres sont de partie réelle négative. L’étude du cas m = 1 montre que lorsque
χc > χ∗

c il existe une valeur propre dont la partie réelle est positive et que lorsque χc < χ∗
ctoutes les valeurs propres ont une partie réelle négative. Ce raisonnement est inspiré de ceux

menés par Alazard et al. (2022); Lavi et al. (2020).
Nous proposons un schéma numérique pour simuler ce modèle. Ce schéma numérique

est un schéma semi-implicite en temps et avec une discrétisation aux éléments finis en espace.
Ce schéma s’appuie sur une discrétisation implicite de la courbure qui est liée à laminimisation
du périmètre de la cellule (Lavi et al., 2023). Pour éviter les potentiels contacts entre le bord
de la cellule et le noyau, deux méthodes sont proposées. L’une repose sur la projection des
vitesses dans un espace de vitesses admissibles, ce qui est réalisé via un algorithme d’Uzawa
(Lefebvre, 2007). L’autre repose sur l’ajout d’une force répulsive de contact entre le bord de
la cellule et le noyau. Les simulations numériques effectuées via ce schéma permettent de
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mettre en avant que le modèle permet de reproduire de manière qualitative le phénomène
de polarisation et de migration cellulaire. En effet, comme illustré par la figure 3, nous obser-
vons que pour certains paramètres, après une perturbation de l’état stationnaire, la cellule se
polarise puis migre à une vitesse constante.

Figure 3: Illustration du phénomène de polarisation suivi de la migration cellulaire. La
cellule est représentée aux temps t ∈ {0, 1, 2, . . . , 9, 10}. Nous observons que jusqu’au temps t = 6,
la cellule se polarise : le noyau de la cellule est placé à l’arrière de la cellule et la concentration en
marqueurs augmente dans cette zone (les zones rouges représentent les zones où la concentration
en marqueurs est haute). Ensuite, lorsque t ≥ 6, il semble qu’une onde progressive est atteinte.
En effet, nous observons que la forme de la cellule est conservée au cours du temps, que la cellule
semble se déplacer à une vitesse constante et que dans le référentiel de la cellule, la concentration
de marqueurs et la position du noyau sont fixes. Voir fig. 7.9 pour plus de détails.

Un modèle heuristique en dimension 1 : Le chapitre 8 est consacré à l’étude d’un modè-
le heuristique en dimension 1 de la motilité cellulaire avec prise en compte du noyau. Ces
travaux sont effectués en collaboration avec Thomas Lepoutre et Nicolas Meunier. La modé-
lisation choisie pour ce modèle diffère du cadre présenté précédemment. Nous supposons
que les marqueurs peuvent s’attacher et se détacher de la membrane de la cellule et que le
taux d’attachement dépend de la position du noyau tandis que le taux de détachement est
constant. Le modèle, dans le référentiel de la cellule est donné par :

∂tc (t, x) = ∂2xxc (t, x) + ∂x [η δµ (t) c (t, x)] , x ∈ ]−1, 1[ ,

∂xc (t,±1) + η δµ (t) c (t,±1) = ∓ d

dt
µ± (t) ,

d

dt
µ± (t) = α± (XN (t)) c (t,±1)− βµ± (t) ,

XN (t) = X0
Ne

−k1t − k2

∫ t

0

δµ (s) ek1(s−t) ds,

c (0, x) = c0 (x) , µ± (0) = µ0
±, XN (0) = X0

N , x ∈ ]−1, 1[ ,

(8a)
(8b)
(8c)
(8d)
(8e)

avec c0, µ0
± et X0

N , la condition initiale, donnés. Le modèle considéré est une équation non-
locale, non-linéaire de Fokker-Planck. À l’aide de l’étude d’un problème découplé et d’un argu-
ment de point fixe, nous montrons que, sous certaines conditions sur la condition initiale, le
modèle (8) est bien posé.
Proposition. Supposons que c0 est tel que

∫ 1

−1
c0 (x) log c0 (x) dx < +∞. Supposons également

que µ0
+, µ

0
− ∈ [0,M ] sont tels que

∫ 1

−1
c0 (x) dx + µ0

+ + µ0
− = M . Supposons de plus que X0

N ∈
[−1, 1]. Alors il existe une unique solution (c, µ+, µ−, XN ) au modèle (8) définie pour tout temps.
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Nous montrons que le modèle (8) admet un état stationnaire non-polarisé. Nous mon-
trons également que sous certaines conditions, le modèle admet des ondes progressives.
Enfin, à l’aide d’un schéma numérique aux volumes finis, nous présentons des simulations
numériques qui illustrent que cette heuristique permet de retrouver, pour certains paramè-
tres, le comportement intermittent des trajectoires. Nous observons que la polarisation de
la cellule s’accompagne du positionnement du noyau à l’arrière de la cellule. La dynamique
d’attachement modifiée par la présence du noyau semble permettre la dépolarisation de la
cellule et l’observation de comportements intermittents.

Étude de l’effet de l’undercooling sur la motilité cellulaire
Dans le chapitre 9, l’effet de l’undercooling sur le motilité cellulaire est étudié. Le modè-

le étudié ne prend plus en compte le noyau et sa dynamique. Il est donné par l’expression
suivante : 

u+∇P = 0 dans Ω (t) ,

div (u) = 0 dans Ω (t) ,

Vn = u · n sur ∂Ω (t) ,

P = γκ+ χcfact (c) + χufund (Vn) sur ∂Ω (t) ,

∂tc = div (∇c− (1− a)uc) dans Ω (t) ,

(∇c+ auc) · n = 0 sur ∂Ω (t) ,

c(0,x) = cin(x) dans Ω (0) .

(9a)
(9b)
(9c)
(9d)
(9e)
(9f)
(9g)

Ce modèle peut être vu comme un enrichissement du modèle de Lavi et al. (2020) qui est
retrouvé lorsqueχu = 0. Nousmontrons que cemodèle (9) admet un unique état stationnaire
donné par : 

c0 (x) =
M

|Ω|
x ∈ Ω0,

P 0 (x) =
γ

R0
+ χcfact

(
c0 (x)

)
x ∈ Ω0,

u0 (x) = 0 x ∈ Ω0,

Ω0 = B (0, R0) ,

(10a)
(10b)
(10c)
(10d)

oùR0 =

√
AΩ

π
. Nous posonsχ∗

c =
R0 + χuf

′
und (0)

R0ac0f ′act (c
0)

etmontrons le résultat suivant qui permet
de dire que l’undercooling a un effet stabilisant. En effet, le seuil χ∗

c est plus grand lorsque
l’undercooling est pris en compte que lorsqu’il est absent.
Théorème. Si χc

χ∗
c

< 1 alors l’état stationnaire (10) est linéairement stable. À l’opposé, si χc

χ∗
c

> 1,

alors l’état stationnaire (10) est linéairement instable.
Pour montrer ce théorème, en s’inspirant de Alazard et al. (2022); Lavi et al. (2020), dans

un premier temps nous linéarisons le modèle (9) autour de l’état stationnaire (10). Nous dé-
duisons du problème linéarisé un problème aux valeurs propres. Pour étudier le signe de la
partie réelle des valeurs propres, nous décomposons le problème aux valeurs propres en des
problèmes plus simples à l’aide de l’analyse de Fourier. Nous montrons que lorsque χc

χ∗
c

< 1

alors toutes les valeurs propres ont une partie réelle négative. Nous déduisons une condition
explicite sur les valeurs propres et montrons que lorsque χc

χ∗
c

> 1, il existe une valeur propre
de partie réelle positive.

12



Ensuite, nous étudions l’existence d’ondes progressives. Nous caractérisons les ondes
progressives du modèle (9) et montrons que si une onde progressive existe alors elle est de
la forme donnée par le résultat suivant :
Proposition. Soit V > 0 donné. L’onde progressive associée à la vitesse V est donnée pour tout
(x, y) ∈ Ω̃ par :

P (x, y) = p1 − V x avec p1 ∈ R,

c (x, y) =
M∫

Ω̃
e−aV x′ dx′ dy′

e−aV x,

avec ∂Ω̃ caractérisé par l’équation sur la courbure suivante :

γκ (x, y) = p1 − V x− χcfact

(
Me−aV x∫

Ω̃
e−aV x′ dx′ dy′

)
− χufund (V nx) ,

où (x, y) ∈ ∂Ω̃.

SoitX et Y les espaces fonctionnels suivants :
X =

{
ρ ∈ C2,α

per (−π, π) : ρ (θ) = ρ (−θ) ,∀θ ∈ (−π, π)
}
,

Y =
{
ρ ∈ C0,α

per (−π, π) : ρ (θ) = ρ (−θ) ,∀θ ∈ (−π, π)
}
.

Enmontrant que la fonctionnelleF : R×X×R×R → Y ×R×Rdéfinie pour tout (χc, ρ, V, p1) ∈
R×X × R× R par :
F (χc, ρ, V, p1) =

(
γκ (θ) + χcfact

(
c1 (V, ρ) e

−aV (R0+ρ(θ)) cos θ
)
+ χufund (V n1 (θ))

+ V (R0 + ρ (θ)) cos θ − p1 −
γ

R0
;∫ π

−π

(R0 + ρ (θ))
2 −R2

0 dθ ;

∫ π

−π

ρ (θ) cos θ dθ

)
.

satisfait le théorème de bifurcation de Crandall and Rabinowitz (1971), nous montrons l’exi-
stence d’ondes progressives pour le modèle (9) :
Théorème. Pour tout a ∈ (0, 1], γ > 0,R0 > 0 et χu > 0 il existe une famille d’ondes progressives
au problème (9) (Ω̃χ, Vχ

)
paramétrée par χ ∈ (χ∗

c ,+∞) telle que
∣∣∣Ω̃χ

∣∣∣ = πR2
0.

Étude de l’impact d’un signal extérieur sur la motilité cellulaire
Le chapitre 10 est consacré à l’étude de l’impact d’un signal extérieur sur la motilité cellu-

laire. Le modèle étudié est le suivant :

u+∇P = 0 dans Ω (t) ,

div (u) = 0 dans Ω (t) ,

P = γκ+ χcfact (c) + χsg (∇s · n) sur ∂Ω (t) ,

Vn = u · n sur ∂Ω (t) ,

∂tc = div (∇c− (1− a)uc) dans Ω (t) ,

(∇c+ auc) · n = 0 sur ∂Ω (t) ,

c(0,x) = cin(x) dans Ω (0) .

(11a)
(11b)
(11c)
(11d)
(11e)
(11f)
(11g)
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Sous l’hypothèse que le signal extérieur est radialement symétrique c’est à dire qu’il existe
ψs : R+ −→ R telle que pour tout x ∈ R2, le signal extérieur s’écrit s (x) = ψs (∥x∥), nousmontrons l’existence d’un unique état stationnaire radialement symétrique donné par :

u0 = 0 dans Ω0,

P 0 =
γ

R0
+ χcfact

(
c0
)
+ χsg (s

′ (R0)) dans Ω0,

c0 =
M

πR2
0

dans Ω0,

Ω0 = B (0, R0) ,

(12a)
(12b)
(12c)
(12d)

où R0 =
√

AΩ

π . La stabilité de l’état stationnaire est étudiée dans le cas où le signal est, en
plus, monotone, c’est à dire qu’il existe η ∈ R et ψs : R+ −→ R+ fonction monotone telle que
pour tout x ∈ R2, le signal extérieur s’écrit s (x) = ηψs (∥x∥). Nous avons alors le résultatsuivant :
Théorème. SoitKs = χsg

′ (s′ (R0)) s
′′ (R0) et χ∗

c =
1

ac0f ′act (c
0)
. SiKs > 0, alors nous avons :

1. Si 0 < χc

χ∗
c

≤ 1 alors l’état stationnaire (12) est linéairement stable.
2. Si χc

χ∗
c

> 1 + 3
8KsR0 alors l’état stationnaire est linéairement instable.

La démonstration de ce théorème s’inspire de Alazard et al. (2022). Dans un premier temps
nous linéarisons le modèle (11) autour de l’état stationnaire (12). Nous déduisons du problème
linéarisé un problème aux valeurs propres. Pour étudier le signe de la partie réelle des valeurs
propres, nous décomposons le problème aux valeurs propres en des problèmes plus simples
à l’aide de l’analyse de Fourier. Nous montrons que lorsque 0 <

χc

χ∗
c

≤ 1 alors λ = 0 est
une valeur propre de multiplicité 2 et toutes les autres valeurs propres sont de partie réelle
négative. Nous montrons que lorsque χc

χ∗
c

> 1 + 3
8KsR0, il existe une valeur propre de partie

réelle positive. Nous étudions également le problème rigide associé.
Nous proposons un schéma numérique aux élements finis pour le problème rigide. Les

simulations numériques effectuées permettent d’illustrer qu’il existe un équilibre entre la
force induite par les marqueurs sur le bord de la cellule et celle induite par le signal extérieur.
Enfin, l’étude de l’impact de la présence d’obstacles dans l’environnement de la cellule y est
brièvement abordée sous le point de vue numérique. Cette étude sera approfondie dans de
futurs travaux.

Modélisation de la compartimentation au sein de la voie de signalisation intra-
cellulaire

Enfin, le chapitre 11 présente un travail effectué durant l’école d’été CEMRACS 2022 en
collaboration avec Juan Calvo, Erwan Hingant, Saoussen Latrach, Nathan Quiblier et Romain
Yvinec. Ce travail est soumis et accepté. Nous présentons une nouvelle approche de modé-
lisation des voies de signalisation activées par les récepteurs, qui prend en compte la com-
partimentation des récepteurs et de leurs effecteurs, à la fois à la surface cellulaire et dans
des vésicules intracellulaires dynamiques appelées endosomes. Le premier élément consti-
tutif du modèle concerne la dynamique des compartiments. Il prend en compte la création
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d’endosomes de novo, c’est-à-dire l’endocytose, puis le recyclage des endosomes à la surface
cellulaire ou leur dégradation, ainsi que la fusion des endosomes via une dynamique de co-
agulation. Le deuxième élément constitutif concerne les réactions biochimiques à la surface
des cellules et dans chaque compartiment intracellulaire. Les deux parties du modèles sont
couplées par le transfert de molécules qui se produit à chaque événement modifiant les com-
partiments.

Le modèle est formulé comme une équation aux dérivées partielles avec terme intégrale,
avec des opérateurs de transport, de coagulation et des termes sources, couplée à une équa-
tion intégro-différentielle. Dans ce travail, nous prouvons des conditions suffisantes pour
obtenir une ergodicité exponentielle pour la distribution en taille des compartiments intra-
cellulaires. Nous concevons en outre un schéma de volumes finis pour simuler notre modèle.
Enfin, nous montrons deux cas d’application qui montrent un accord qualitatif avec des don-
nées publiées récemment, prouvant que notre modèle peut aider à capturer la complexité
spatio-temporelle de l’activation des voies de signalisation.
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1 - Biological context and modelling

1.1 . Biological context

1.1.1 . Cell organisation
The cell is regarded as the fundamental unit of life, as all living organisms are made up

of cells. Although cells can greatly vary in size, shape and function, they all behave according
to the same principles. There are two main types of cells: eukaryotic cells which have nuclei,
and prokaryotic cells which lack nuclei. In this thesis, we focus on eukaryotic cells, which are
animals, plants, and fungi cells. We briefly present here the structure of a cell (see fig. 1.1 for a
schematic view).

Figure 1.1: Schematic representation of a cell. Taken from Kubiak et al. (2020).

The cell is enclosed by the plasma membrane. It protects and separates the contents of
the cell from the external environment. It also enables communication with the external envi-
ronment. It is made up of a lipid bilayer formed from phospholipid molecules and containing
proteins. The plasma membrane contributes to the mechanical properties of cell movement
via membrane tension. Membrane tension induces an opposite force to membrane exten-
sion. It results from the inextensible nature of the bilayer, which creates in-plane tension, and
from the energy derived from adhesion between the cytoskeleton and the membrane. As the
cell is deformed, membrane tension changes rapidly, causing the cell surface tension to vary.
Membrane tension also regulates polarisation between the front and rear of the cell (Thiam,
2014). However, the length of the membrane can vary, particularly as a result of endocytosis,
exocytosis or invagination (Kosmalska et al., 2015).

The cytoplasm and the nucleus are within the plasma membrane. The cytoplasm is made
up of several organelles and the cytosol. The organelles are cell structures separated from
the cytosol and enclosed by the plasma membrane. They carry out many essential functions
for the cell. Mitochondria — which are involved in cellular respiration — are one example.
The cytosol is an aqueous gel containing numerous molecules and proteins, including the
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cytoskeleton—a network of protein filaments. Three types of filament can be distinguished:
actin filaments, intermediate filaments and microtubules. The cytoskeleton plays a very im-
portant role in the cell’s shape and ability to move (Alberts et al., 2002).

Actin filaments are the thinnest. They are composed of actin. Actin is present in two forms
in the cell: globular actin in monomeric form and filamentous actin in polymeric form. When
the concentration of monomeric actin exceeds a critical threshold, actin polymerises at the
filament end present in that zone. Conversely, if one end of an actin filament is located where
the concentration of globular actin is below the critical threshold, the filament depolymerises.
Actin filaments are polarised, with a plus end and aminus end. Each end has a different critical
threshold, which allows actin filaments to grow asymmetrically (Asnacios and Hamant, 2012).
Thus an actin monomer moves in the actin filament from the plus end to the minus end —
a process known as treadmilling (see fig. 1.2). This also results in a retrograde flow of actin
monomers from the boundary of the cell towards the interior. The more actin polymerises,
the greater this retrograde flow.

Figure 1.2: Schematic representation of actin treadmilling. Taken from Alberts et al. (2002).

Actin filaments can assemble with different molecules. For example, by associating with
the Arp 2/3 molecule, actin filaments can form a network and bind to the plasma membrane
to form the cell cortex. Also, by associating with myosin, they create stress fibres that allow
the cell to contract when moving.

Microtubules are the thickest andmost rigid filaments. They are composed of tubulin and
are also polarised filaments. One of their ends is always connected to the centrosome (or
MTOC) located near the nucleus. They are particularly essential in the process of cell division
and the internal organisation of the cell.

Intermediate filaments have a thickness between that of actin filaments andmicrotubules.
They constitute a family of non-polarised filaments and are composed of a wide variety of pro-
teins. Intermediate filaments differ according to cell types. They form a network surrounding
the nucleus and are connected to the cell plasma membrane. Specifically, they create a mesh
around the nucleus called the nuclear lamina which increases the rigidity of the nuclear en-
velope (Lammerding, 2011). These filaments are not polarised and rarely depolymerise. Their
stability allows them to support the structure of the cell (Ndiaye et al., 2022; Cooper, 2000).

The nucleus is the largest organelle in the cell. Like all organelles, it ismembrane enclosed.
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It is composed of a nuclear envelope and contains the organism’s genetic information encoded
in DNA molecules. The interior of the nucleus is made up of the nucleoplasm which, like the
cytoplasm, is made up of an aqueous gel containing proteins (in particular DNA), including
actin filaments. It is able to deform as the shape of the cell varies. When the cell is com-
pressed, the nucleus shrinks, whereas when the cell contracts, the nucleus becomes rounder.
The nucleus is linked to the cytoskeleton by LINC, a protein complex. This contributes to the
transmission of forces from the nucleus to the cell and from the cell to the nucleus (Thiam,
2014; Lammerding, 2011).

1.1.2 . Cell motility
Cell motility is an important mechanism in several biological phenomena such as embryo-

genesis, woundhealing, the immune response and the spread of cancer. It is the ability of a cell
to move by deforming its shape. This movement can be spontaneous or induced in response
to an external cause. To initiate movement, the cell needs to polarise. Polarisation breaks the
symmetry of the non-motile cell resulting in cells with defined front and rear (Danuser et al.,
2013; Reig et al., 2014). Once the cell is polarised, cell migration consists of a four-step cycle
(Danuser et al., 2013; Abercrombie, 1980).
Polarisation. The phenomenon of polarisation enables a cell to switch from a symmetrical
non-polarised state to an asymmetrical polarised one. This phenomenon triggers cell motility.
It can occur spontaneously through the self-reorganisation of the cytoskeleton or in response
to external factors that induce cytoskeletal reorganisation. Polarisation involves three phases
(Yam et al., 2007). A schematic view of it is represented in fig. 1.3. Phase I is the slow rear
retraction. Self-organisation of the actin cytoskeleton causes fluctuations in the contractility
of actin-myosin filaments. Due to the increased contractility of the actin-myosin filaments at
the prospective rear part of the cell, the actin retrograde flow increases and polarises near the
nucleus in the direction of the potential motion. This causes the rear part to retract slightly
and become thinner whereas there are no significant changes in what results as the front
part. Phase II is the fast rear retraction. In the rear part, the contractility of the actin-myosin
filaments and the actin retrograde flux increase. The actin filaments depolymerised. All this
induces a loss of adhesion with the substrate and the retraction of the rear part. At this phase,
the shape of the cell is no longer symmetric and the nucleus starts to be located at the rear
part while there are still no significant changes in the front part. Phase III is the maturation.
During this phase, all the rear collapse and the cell starts to move slowly. At the front part,
the actin retrograde flux decreases, and the polymerisation of actin filaments increases. This
initiate protrusion. The front part creates new adhesive bonds with the substrate. At the
end of this phase, the cell is polarised and motion can be observed. It is important to notice
that polarisation starts with the definition of the rear part (Cramer, 2010) and that the nucleus
positioning at the cell’s rear is independent of the cell’s elongation and depends on themyosin
(Gomes et al., 2005; Cramer, 2010).
Cellmigration. Once the cell is polarised, cell migration can occur. This process is described
by a four-step cycle (Abercrombie, 1980), as depicted schematically in fig. 1.4.

During the first step, actin polymerisation increases at the cell leading edge. This induces
the protrusion of the lamellipodium, which is a thick and very thin layer of actin filaments as-
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Figure 1.3: Schematic representation of polarisation and of each phase involved in the
transition from symmetrical to asymmetrical cell organisation. Taken from Yam et al.
(2007).

sembled in a mesh connected to the cytoplasmic membrane, and filopodia, which form when
actin filaments bundle together in parallel arrays. This allows the creation of new adhesions
with the substrate that are initially unstable. These adhesions mature during the second step,
becoming stable focal contacts. At these points, the cell adheres strongly to the substrate.
These focal contacts associate with stress fibres that are aligned in the direction of the cell’s
movement. The other end of the stress fibres is connected to the cytoskeleton in the region
around the nucleus. Some may be linked to adhesion sites at the rear of the cell. During the
third step, the stress fibres contract, pushing the nucleus and the surrounding cytoskeleton
forward. This leads to the release of the old adhesions at the rear of the cell, allowing the rear
of the cell to retract in the fourth step.

1.1.3 . Trajectories and UCSP law
Trajectories. Cell may have different motion behaviour. The trajectories can be very differ-
ent. Cell trajectories can be classified into three groups (Maiuri et al., 2015).

First, cellsmay have a ballistic behavior even in the absence of external causes (Petrie et al.,
2009; Bosgraaf and Van Haastert, 2009). In this case, the trajectory is said to be persistent. Cells
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Figure 1.4: Schematic representation of the four-step cycle of the cell migration. Actin
polymerisation-dependent events are represented in red, myosin-dependent events in green and
substrate adhesions in purple. Taken from Reig et al. (2014).

with this type of trajectory are characterised by their ability to maintain their direction of mo-
tion. This property is called directional persistence or, when there is no ambiguity, simply
persistence (Maiuri et al., 2015; Loosley et al., 2015). Persistence can be quantified in several
different way, the first one is directionality or tortuosity which is defined as the ratio between
displacement made by the cell and the total migration path length (Loosley et al., 2015; Petrie
et al., 2009; Gorelik and Gautreau, 2014). Directionality quantifies the straightness of the tra-
jectory and thus, persistence corresponds to directionality close to 1. The main defect of this
quantity is that it is dependent on the sampling interval so this can lead to persistent trajec-
tories with a directionality close to 0 (Loosley et al., 2015). Persistence can also be described
through the properties of persistence time and persistence length. Persistence time is the
time during which the cell maintains its original direction of motion. To quantify it, we con-
sider the persistence time as the time required for the cell to change its original direction by at
least π

2 (Maiuri et al., 2015). Other definitions of persistence time can be found in the literature
(see for example (Gorelik and Gautreau, 2014; Selmeczi et al., 2008)). Persistence length is the
length of the path covered during the persistence time. Associated with these two quantities
we can define the mean instantaneous speed as the persistence length over the persistence
time. We can then split a trajectory into sub-trajectories depending on its persistence times.
A persistent trajectory is then a trajectory that can be partitioned into sub-trajectories with
directionality close to 1 on them and a long persistence time. Moreover, when the cell exhibits
ballistic behaviour, the cell is polarised. This means that persistent trajectories are charac-
terised by long-lived polarisation time (Maiuri et al., 2015).

Secondly, cells may have a diffusive behaviour. In this case, the trajectory of the cell is
said to be brownian. Brownian trajectories are characterised by the absence of a stable po-
larised state (Maiuri et al., 2015). This type of trajectory has a small persistence time and its
directionality is close to 0.

Finally, cells may switch from a ballistic phase to a diffusive one (Bénichou et al., 2011).
These trajectories are called intermittent because the cells switch between polarised and non-
polarised phases.

UCSP law. Using the data of the first World Cell Race (Maiuri et al., 2012), a coupling between
cell speed and cell persistence (UCSP law) was proved in Maiuri et al. (2015). The UCSP law was
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first formulated at the scale of a population of cells. In this case, the cell persistence τ is the
average of the persistence times of all the cells of the population and the cell speed ν is the
average of all the mean instantaneous speed of the cell population. Then we have:

τ ∝ eλν (UCSP)
with λ > 0.

It was also showed that the UCSP law is still valid a the cell scale. This means that there
exists λ > 0 such that on each persistent sub-trajectory of a trajectory we have τ ∝ eλν where
τ is the persistence time of the sub-trajectory and ν the mean instantaneous speed (Maiuri
et al., 2015). The fastest cells have a more directional movement whereas the slowest cells
have a more diffusive movement. An illustration of the UCSP law is represented in fig. 1.5.

Figure 1.5: Schematic summary of the UCSP law. Taken from Maiuri et al. (2015).

1.2 . Existing models

Following the description of cell migration by Abercrombie (1980), various models have
emerged to propose models of this phenomenon. Some models have focused on one of the
steps of cell migration. These models provided a better understanding of the different pro-
cesses involved in cell motility, for example the model of Mogilner and Oster (1996) has pro-
vided a better understanding of the mechanisms involved in actin polymerisation at the cell
membrane (see Danuser et al. (2013) for others examples).

Othermodels have sought tomodel the cell by integrating all themechanisms of cell motil-
ity into a singlemodel. Several approaches have beenproposed. These range fromcontinuous
to stochastic approaches. Among the stochastic approaches, we canmention the POTSmodel
(Scianna and Preziosi, 2012), which allows the nucleus to bemodelled. Continuous approaches
are very varied. There is a wide variety of continuous approaches. In particular, the cell can
be seen as a viscous fluid (Blanch-Mercader and Casademunt, 2013; Recho and Truskinovsky,
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2013; Lavi et al., 2020). This view has led to the development of new theories in physics, such as
the theory of active gels (Prost et al., 2015). Other continuous approaches have also been pro-
posed such as viscoelastic material (Gracheva and Othmer, 2004), polarised gel (Kruse et al.,
2005) or phase-field models (Berlyand et al., 2016).

The model studied in this thesis belongs to the models where the cell is seen as a viscous
fluid. It is a free boundary model where the cell is represented by an incompressible fluid with
surface tension. Similar models without the incompressibility assumption also exist for the
study of tumour growth (Friedman and Reitich, 2000).

1.3 . Modelling

In this section we introduce the model studied in the rest of the thesis. First, we give
its formulation. Then, in the following subsections, we detail the modelling steps that led to
the formulation of the model. The model presented is a free boundary model modelling the
cell motility of a cell on a heterogeneous substrate taking into account its nucleus and in the
presence of external signals and obstacles.

1.3.1 . Model formulation

Let Ω (t) ⊂ R2 be a connected open set, where t ≥ 0 denotes time. Let N (t) be a con-
nected open set such that for all t ≥ 0, N (t) ⊂ Ω (t). Ω (t) models the domain of the cell at
time t ≥ 0 and N (t) the domain of the nucleus. The cytoplasm is therefore represented at
time t ≥ 0 by the domain Ω (t) \N (t). We assume that this domain Ω (t) \N (t) is filled with
an incompressible fluid having velocity u and pressure P . Inside this fluid, there are polarity
markers of concentration c. We assume that there are no markers outside the cell or in the
nucleus and that the fluid cannot enter the nucleus. (See fig. 1.6 for the notations.)

As a first approximation, we assume the nucleus to be rigid. The cell can deform and we
assume that the boundary ∂Ω is free. The model we propose is therefore a free-boundary
model with a rigid particle inside. We study a system of equations on a time-dependent do-
main and whose evolution depends on the evolution of the system.

We assume that an external signal, s (t,x) with t ≥ 0 and x ∈ R2, is present in the envi-
ronment of the cell and that this signal induces a force on the cell boundary. We also assume
that obstacles may be present in the environment of the cell and that these obstacles induce
a contact force fobs with the cell boundary.
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xnucl

Markers concentration c

Nucleus N

Fluid with velocity u and pressure P

Cytoplasm Ω \N

n

n

Figure 1.6: Notations of the model. In very light blue is the fluid domain Ω (t) \ N (t) and in
slighty darker is the nucleus domain N (t). In green is the markers concentration c. In orange the
outward normal vector to Ω (t) \N (t) is represented on both domain boundaries.

The model is given by the following system:


u+ ξM∇P = 0 in Ω (t) \N (t) ,

div (u) = 0 in Ω (t) \N (t) ,

Vn = u · n on ∂Ω (t) ,

P = γκ+ χcfact (c) + χsg (∇s · n)− fNB − fobs + χufund (Vn) on ∂Ω (t) ,

unucl (t) =
1

ξnucl (t) |N |

(∫
∂N(t)

P (t,x)n dσ + fBN

)
u · n = unucl · n on ∂N (t) ,

∂tc = div
(
∇c− (1− a)uc− αẆQ

t c
) in Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 on ∂ (Ω (t) \N (t)) ,

c(0,x) = cin(x) in Ω (0) \N (0) ,

(1.1a)
(1.1b)
(1.1c)
(1.1d)
(1.1e)
(1.1f)
(1.1g)
(1.1h)
(1.1i)

where
• ξM is a function depending on time and space such that for all t ≥ 0 and x ∈ R2 we have
ξM (t,x) > 0,
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• κ is the curvature (positive for a circle) of the evolving free-boundary ∂Ω and γ ≥ 0 is
the surface tension,

• Vn is the normal velocity of the free-boundary ∂Ω and n the outward normal vector to
Ω \N ,

• χc > 0, fact is an active traction force depending on the markers concentration,
• χs > 0, g is a force depending on the external signal s,
• χu > 0, fund is a force depending on the normal velocity of the boundary, which can be
seen as undercooling,

• ξnucl is a function depending on time such that for all t ≥ 0 we have ξnucl (t) ̸= 0,
• fNB is the force induced by the nucleus on the cell boundary and fBN the force induced
by the cell boundary on the nucleus,

• a ∈ [0, 1],
• α ≥ 0 and ẆQ

t the coloured noise associated with a Q-Wiener process,
• cin, Ω (0), N (0) are the initial conditions,
• σ denotes a measure on the boundary.

1.3.2 . Force balance on the fluid
In this subsection we detail the modelling developed to obtain the fluid dynamics within

the fluid domain (eqs. (1.1a) and (1.1b)). To obtain this, we use several approximations for a fluid
confined between two plates. Then, we present the kinematic conditions at the boundaries
(eqs. (1.1c) and (1.1f)).

1.3.2.1 . Confined fluid approach
We consider the 3-dimensional framework. We assume that the cell is confined between

two plates separated by a gap of size h (x) with x ∈ R2 (Lavi et al., 2020). We denote by Ωh (t)the 3-dimensional fluid domain at time t ≥ 0 and we have:
Ωh (t) =

{
(x, y, z) ∈ R3 s.t. (x, y) ∈ Ω (t) and z ∈ [0, h (x, y)]

}
.

At time t ≥ 0, the nucleus is then modelled by the domain Nh (t) given by:
Nh (t) =

{
(x, y, z) ∈ R3 s.t. (x, y) ∈ N (t) and z ∈ [0, h (x, y)]

}
.

Finally, at time t ≥ 0, the 3-dimensional fluid domain is defined by Ωf (t) given by:
Ωf (t) = Ωh (t) \Nh (t) =

{
(x, y, z) ∈ R3 s.t. (x, y) ∈ Ω (t) \N (t) and z ∈ [0, h (x, y)]

}
.

We denote by u = (u1, u2, u3) the 3-dimensional fluid flow. We assume that the fluid is viscous
with a viscosity of µ and that it is incompressible. We denote ρ the density of the fluid and we
assume it to be constant. The shear tensor is given by:

Σ = µ (∇u+ (∇u)⊺)− P Id,
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where P is the pressure. Moreover, we assume that we can write:
u (t, x, y, z) = u0 (t, x, y, z) + h̄u1 (t, x, y, z) +O

(
h̄2
)
,

P (t, x, y, z) = P 0 (t, x, y) + h̄P 1 (t, x, y, z) +O
(
h̄2
)
,

(1.2a)
(1.2b)

where h̄ is the typical size gap. Thus, the first two components of the Navier-Stokes momen-
tum equations are given by:{

∂t (ρu1) + ρ (u⊗∇u1) = µ∆u1 − ∂xP in Ωf (t) ,
∂t (ρu2) + ρ (u⊗∇u2) = µ∆u2 − ∂yP in Ωf (t) .

(1.3)
The thin-film lubrication approximation allows us to neglect inertia. Thus, eq. (1.3) reduces to:{

0 = µ∆u1 − ∂xP in Ωf (t) ,
0 = µ∆u2 − ∂yP in Ωf (t) .

(1.4)
The Hele-Shaw approximation allows us to neglect the in-plane viscosity terms. Thus, eq. (1.4)
reduces to: {

0 = µ∂2zzu1 − ∂xP in Ωf (t) ,
0 = µ∂2zzu2 − ∂yP in Ωf (t) .

Using assumption (1.2) we deduce that:{
0 = µ∂2zzu

0
1 (x, y, z)− ∂xP

0 (x, y) in Ωf (t) ,
0 = µ∂2zzu

0
2 (x, y, z)− ∂yP

0 (x, y) in Ωf (t) .
(1.5)

Integrating eq. (1.5) and imposing no-slip condition on z = 0 and z = h (x, y) we get:
u01 (x, y, z) = −z (h (x, y)− z)

2µ
∂xP

0 (x, y) in Ωf (t) ,

u02 (x, y, z) = −z (h (x, y)− z)

2µ
∂yP

0 (x, y) in Ωf (t) .
(1.6)

In the sequel we omit the exponent ·0.
Let u be the gap-average planar flow. For all t ≥ 0 and (x, y) ∈ Ω (t) \N (t), we have:

u (x, y) =
1

h (x, y)

∫ h(x,y)

0

(u1 (x, y, z) , u2 (x, y, z)) dz

= − 1

h (x, y)

∫ h(x,y)

0

z (h (x, y)− z)

2µ
∇P (x, y) dz

= −h (x, y)
2

12µ
∇P (x, y) .

Setting ξM (x) =
h (x, y)

2

12µ
, we recover eq. (1.1a). In this case ξM, represents the mobility (Chap-

lain et al., 2019; Lavi et al., 2020). These approximations allow us to place the problem in the
2-dimensional framework.

Moreover, using the no-slip conditions on z = 0 and z = h (x, y), we have for all t ≥ 0 and
(x, y) ∈ Ω (t) \N (t):

div (u (x, y)) = ∂x

∫ h(x,y)

0

u1 (x, y, z) dz + ∂y

∫ h(x,y)

0

u2 (x, y, z) dz

=

∫ h(x,y)

0

∂xu1 (x, y, z) dz +

∫ h(x,y)

0

∂yu2 (x, y, z) dz

=

∫ h(x,y)

0

div (u (x, y, z)) dz = 0
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We recover eq. (1.1b).
Remark 1.3.1. The equation obtained can also be justified in the two-dimensional framework. We
assume that the cell is on a rigid substrate and is in frictional contact with it (Giverso and Preziosi,
2018; Callan-Jones et al., 2008). We assume that at time t ≥ 0 the cytoplasm is modelled by the
domain Ω (t) \N (t) and that this domain is filled by an incompressible viscous fluid with density
ρ, viscosity µ, velocity u and pressure P . Thus, neglecting inertia (Danuser et al., 2013), the balance
of forces on the fluid is written as follows:

div (Σ) + ρ ffric = 0 in Ω (t) \N (t) ,

withΣ = µ (∇u+ (∇u)
⊺
)−P Id the shear tensor and ffric (t,x) = −k (x)u (t,x) the friction force

at time t ≥ 0 and at position x ∈ Ω (t) \N (t) where, for all x ∈ R2, k (x) is the friction coefficient.
By neglecting the viscous terms and setting ξM (x) =

1

ρ k (x)
, we find the desired dynamics.

1.3.2.2 . Kinematic condition
We assume that the normal velocity of the sharp-interface, Vn, is equal to the normal

velocity of the fluid on ∂Ω (t):
Vn = u · n on ∂Ω (t) . (1.7)

Recall that we assume that the nucleus has a rigidmotion and that we denote unucl its velocity.We then have continuity of velocities on the boundary of the nucleus:
u · n = unucl · n on ∂N (t) . (1.8)

We recover eqs. (1.1c) and (1.1f).
1.3.3 . Nucleus dynamic

In this subsectionwe detail themodelling developed to obtain the nucleus dynamics (given
by eq. (1.1e)). It is known that the nucleus is stiffer than the cytoplasm (Liu et al., 2014). As a first
assumption, we model the nucleus by a rigid particle and we assume that its motion is rigid.
This means that it does not deform. If it is moving, it can be translating or rotating. Hence, to
model the nucleus and its dynamics, we use the theory of fluid-structure interactions.

We assume that the nucleus is a ball and that we have N (t) = B (xnucl (t) , Rnucl) where
xnucl (t) = (xnucl (t) , ynucl (t)) is the nucleus centre at time t ≥ 0, it is also its centre of mass.
The assumption of rigid movement implies that for all t > 0 there exists, Vnucl (t) ∈ R2 and
ωnucl (t) ∈ R such that for all x ∈ N (t):

unucl (t,x) = Vnucl (t) + ωnucl (t) (x− xnucl (t))
⊥
.

We also assume that the friction of the nucleus on the substrate is higher. There exists
knucl ≥ 1 such that for all t > 0 the friction coefficient of the nucleus rubbing on the substrate
is given by:

ξnucl (t) =
knucl
|N |

∫
N(t)

1

ξM (x)
dx,

where |N | denotes the nucleus area. We omit to note the time dependence since the nucleus
area is constant over time. We can note that for all t > 0, we have ξnucl (t) > 0. The fric-
tion of the nucleus on the substrate, at time t > 0 and at the point x ∈ N (t), is given by
−ξnucl (t)unucl (t,x).
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The cell boundary induces a force on the nucleus which we note as fBN. We have:
fBN =

∫
∂N(t)

fBN (x) dσ,

where for all x ∈ ∂N (t) fBN (x) denotes the force induced by the cell boundary at the point
x. We assume that fBN is colinear to n.

The fluid induces a force on the nucleus. Let dσ be an infinitesimal part of ∂N (t). On this
infinitesimal part, the force induces by the fluid on the nucleus is given by Pn dσ (Lefebvre,
2007).

Thus the force balance on the nucleus leads to:

−ξnucl (t)
∫
N(t)

unucl (t,x) dx+

∫
∂N(t)

P (t,x)ndσ + fBN = 0,

−ξnucl (t)
∫
N(t)

(x− xnucl (t))
⊥ · unucl (t,x) dx

+

∫
∂N(t)

P (t,x) (x− xnucl (t))
⊥ · ndσ

+

∫
∂N(t)

(x− xnucl)
⊥ · fBN (x) dx = 0,

(1.9a)

(1.9b)

We observe that we have:∫
N(t)

(x− xnucl (t))
⊥

dx =

∫ 2π

0

∫ Rnucl

0

(
r cos

(
θ + π

2

)
r sin

(
θ + π

2

)) r dr dθ = 0.

Thus, we deduce from eq. (1.9a) the following expression forVnucl:
Vnucl(t) =

1

ξnucl (t) |N |

(∫
∂N(t)

P (t, x)ndσ + fBN

)
.

We can also note that for all x ∈ ∂N (t) we have:
(x− xnucl (t))

⊥ ⊥ n (x) ,

where n (x) is the normal vector to N (t) at point x. Thus, since fBN is colinear to n and:∫
N(t)

(x− xnucl (t))
⊥ · unucl (t,x) dx = ωnucl (t) 2π

R3
nucl

3
,

necessarily, we deduce from eq. (1.9b) that:
ωnucl (t) = 0.

Then the nucleus velocity is given by:
unucl (t) = Vnucl (t) =

1

ξnucl (t) |N |

(∫
∂N(t)

P (t,x)ndσ + fBN

)
. (1.10)

The choice of the expression for fBN is detailled in section 1.3.9.
The eq. (1.10) corresponds eq. (1.1e).
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1.3.4 . Conservation of the domain area
In this subsection, we show that formally, the cell area is constant over time. LetAΩ (t) be

the surface area of the cell domain at time t ≥ 0. We extend the definition of u to the whole
cell by posing:

u = unucl on N (t) .

Thus, we have:
div (u) = 0 on Ω (t) . (1.11)

From the incompressibility constraint (1.11) and the kinematic condition (1.7), we have, for all
t ≥ 0:

d

dt
AΩ (t) =

d

dt
|Ω (t)| = d

dt

∫
Ω(t)

1 dx =

∫
∂Ω(t)

Vn dσ

=

∫
∂Ω(t)

u · n dσ =

∫
Ω(t)

div (u) dx = 0.

Thus, formally, the surface area of the cell domain is constant in time and we denote it byAΩ.For all t ≥ 0, we have:
AΩ = |Ω (t)| .

Since the nucleus is assumed to be rigid, we also have that its area is conserved over time
and we denote it |N |. From this we deduce that the area of the fluid domain Ω (t) \ N (t) is
also constant over time and we denote it A.

1.3.5 . Force balance on the cell boundary
In this subsection, we detail the force balance at the boundary of the cell ∂Ω. The boundary

of the cell is subjected to various forces. We begin by describing these forces, then we write
the force balance.

1.3.5.1 . Force induced by the markers
The markers induce an active force Fc on the boundary of the cell (Lavi et al., 2020). We

assume that the markers are rear markers. This means that the rear part of the cell is defined
by the part where the presence of markers is highest and the front part of the cell by the part
where the presence of markers is lowest (Maiuri et al., 2015). We can therefore say that either
the force induced by the markers inhibits an outward pushing force (e.g. the force induced by
actin polymerisation) or induces an inward pulling force (e.g. the force induced by actomyosin
contraction). Thus, we have for t ≥ 0 and x ∈ ∂Ω (t):

Fc (t,x) = −χcfact (c (t,x)) ,

with χc > 0 and the following assumptions on fact:
fact ∈ C1

(
R+
)
,

fact is an increasing function,
fact (0) = 0,

lim
x→+∞

fact (x) = Lc < +∞.

(1.12a)
(1.12b)
(1.12c)
(1.12d)

For example we can choose the following saturation function for fact:
fact (x) =

x (1 + cs)
2

cs (x+ cs)
,
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with cs > 0 a saturation parameter. This function follows the four conditions of (1.12) with
Lc =

(1+cs)
2

cs
.
1.3.5.2 . Force induced by the friction of the boundary

The cell membrane modelled by the outer boundary of the domain ∂Ω rubs against the
substrate. This induces a frictional force Fu whose intensity depends on the normal velocity
of the boundary. We have for t ≥ 0 and x ∈ ∂Ω (t):

Fu (t,x) = −χufund (Vn (t,x)) ,

with χu > 0 and the following assumptions on fund:
fund ∈ C1

(
R+
)
,

fund is an odd function and increasing function,
f ′und (0) > 0.

(1.13a)
(1.13b)
(1.13c)

We recall that Vn denotes the normal velocity of the boundary. Note that this force can be
seen as undercooling.

1.3.5.3 . Force induced by the external signals
The environment of the cell may contain external signals (e.g. the presence of pathogens

for a neutrophil). These signals can either be attractive or repulsive. Receptors on the bound-
ary of the cell perceive these signals and the perception of these signals induces a force on the
boundary of the cell. We assume that these signals are given and independent of the cell. We
consider that we can treat these signals as if there were only one. We can then have a signal
with attractive and repulsive zones. We denote s (t,x) the external signal at time t ≥ 0 and
position x ∈ R2. Let O ⊂ R2 be an open set. The signal is said to be attractive on O if s has a
local minimum on O and is said to be repulsive on O if s has a local maximum on O.

We assume that the action of the signal on the cell depends on variations in the signal.
This means that the force Fs induced by the signal on the boundary of the cell depends on thegradient of the external signal. For t ≥ 0 and x ∈ Ω (t), we have:

Fs (t,x) = −χsg (∇s (t,x) · n) ,

with g such that:
g ∈ C1 (R) ,
g is an odd function and a increasing function,
lim

x→+∞
g (x) = Ls < +∞.

(1.14a)
(1.14b)
(1.14c)

For example we can choose the following expression for g:
g (x) = tanh (ςsx) ,

where ςs > 0 is a saturation parameter. This function follows the three conditions of (1.14) with
Ls = 1.

1.3.5.4 . Force induced by the obstacles
The cell environment contains obstacles. These can have variable geometries and model

the extra-cellular matrix. In particular, they can have the geometry of channels. The cell and
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these obstacles cannot overlap. The position and geometry of the obstacles are assumed to
be fixed and given. We note Λ ⊂ R2 the obstacles domain.

One way of ensuring that the cell and the obstacles do not overlap is to add a non-overlap
constraint to the cell velocity (Lefebvre, 2007; Cucchi et al., 2020). The interaction between the
cell and the obstacles can also be modelled by a contact force, and this is the choice made
here.

We denote fobs (t,x) the force induced by the obstacles on the boundary of the cell at thepoint x ∈ ∂Ω (t) at time t ≥ 0. We assume that if at time t ≥ 0 the distance between the
cell and the obstacles is greater than the threshold r0 > 0 then the cell does not perceive the
obstacles and for all x ∈ ∂Ω (t) we have fobs (t,x) = 0. Otherwise, if at time t ≥ 0 the distance
between the obstacles and the cell is smaller than the threshold r0 then the obstacle inducesa non-zero force at the point x ∈ ∂Ω (t) given by:

fobs (t,x) = λ

∫
∂Λ

1d(x,x̃)<r0

(
e−

d(x,x̃)
r1 − e−

r0
r1

)
nΛ dσ (x̃) · n,

where λ > 0, r0 > 0, r1 > 0, nΛ is the outward normal vector to Λ, n is the outward normal
vector toΩ at the pointx, and for allx, x̃ ∈ R2, d (x, x̃)denotes the euclidean distance between
x and x̃.

1.3.5.5 . Force induced by the nucleus
The nucleus which is inside the cell induces a force on the cell boundary. We denote it

fNB. This force can be seen as the opposite force to fBN and satisfies∫
∂Ω(t)

fNBndσ + fBN = 0. (1.15)
We refer to section section 1.3.9 for the choice of expression for fNB.

1.3.5.6 . Force balance
The Young-Laplace equation on ∂Ω (t) is perturbed as follow:

P − χcfact (c)− χsg (∇s · n)− χufund (Vn) + fNB + fobs = γκ, (1.16)
where γ denotes the surface tension and κ the curvature.

We can note that χcfact, χsg, χufund, fNB and fobs are forces per unit of length. The
eq. (1.16) corresponds to eq. (1.1d).

1.3.6 . Markers dynamic
In this subsection we detail the modelling developed to obtain the markers concentra-

tion dynamics within the fluid domain (eqs. (1.1g) to (1.1i) with α = 0, see section 1.3.7 for the
case α > 0). As a reminder that we assume the presence of c concentration markers inside
the fluid. c denotes here the gap integrated concentration. These markers can either be free
inside the fluid or attached to the plates or the substrate (see section 1.3.2.1). We can con-
sequently define two populations: the population of attached markers with concentration cpand the population of unattached markers with concentration cf (Lavi, 2019). We assume that
both populations are diffusing in the domain. The population of attached markers diffuses
within the domain with diffusion coefficient Dp while the population of unattached markers
has diffusion coefficient Df . The population of attached markers is not convected while the
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population of unattached markers is convected at fluid velocity u. The markers have constant
attachment and detachment rates with the plates. We note kon the rate of attachment and
koff the rate of detachment. The dynamics of the two populations are given by:{

∂tcp − div (Dp∇cp) = koncf − koffcp in Ω (t) \N (t) ,
∂tcf − div (Df∇cf − u cf) = koffcp − koncf in Ω (t) \N (t) .

Let a = kon

kon+koff
be the steady fraction of attached markers that are not convected by the fluid

flow. Assuming rapid rates of attachment and detachment, at the steady balance, we obtain
cp = ac and cf = (1− a) c. LetD = aDp + (1− a)Df . Hence we have:

∂tc = div (D∇c− (1− a)u c) in Ω (t) \N (t) . (1.17)
We impose non flux condition on the boundaries:

D∇c+ au c on ∂ (Ω (t) \N (t)) . (1.18)
The problem (1.17)-(1.18) is complemented with an initial condition given by:

c(0,x) = cin(x) in Ω (0) \N (0) , (1.19)
with cin given.

LetM (t) be the total quantity of markers at time t ≥ 0:
M (t) =

∫
Ω(t)\N(t)

c (t,x) dx.

Using the boundary condition eq. (1.18) and the kinematic conditions eqs. (1.7) and (1.8), we
have for all t ≥ 0:

d

dt
M (t) =

∫
Ω(t)\N(t)

∂tcdx+

∫
∂(Ω(t)\N(t))

cVn dσ

=

∫
Ω(t)\N(t)

div (D∇c− (1− a)uc) dx+

∫
∂(Ω(t)\N(t))

cu · ndσ

=

∫
∂(Ω(t)\N(t))

(D∇c− (1− a)uc) · n dσ +

∫
∂(Ω(t)\N(t))

cu · ndσ

=

∫
∂(Ω(t)\N(t))

(D∇c+ auc) · n dσ = 0.

Thus, formally, the total quantity of markers is constant in time and we denote it byM . For all
t ≥ 0, we have:

M =

∫
Ω(t)\N(t)

c (t,x) dx.

The three eqs. (1.17) to (1.19) corresponds to eqs. (1.1g) to (1.1i) in the case α = 0 and if we
either take D = 1, or we scale the equations by writing lengths in units of R0 =

√
A+πR2

nucl

π ,
time in units of R2

0

D andmarkers concentration in units of themean planar concentration cm =
M
A .
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1.3.7 . Adding a noise to the deterministic model
Combining the results of the previous subsections, we obtain a deterministic model. Cell

motility is not fully deterministic and noise is playing a role in it. We distinguish two sources
of noise: extrinsic and intrinsic noise. The stochastic fluctuations in the system under con-
sideration are considered as the intrinsic noise whereas the extrinsic noise is related to the
stochastic processes outside the system under consideration (Tsimring, 2014). Tomodel these
noise sources and their effects on cell dynamics, we choose to add a space coloured noise to
the advection field of themarker transport-diffusion equation. This choice is motivated by the
probabilistic nature of biochemical reactions of the markers.

To add noise to our model, we use a method similar to the one used in chapter 7 of
Etchegaray’s thesis. (Etchegaray, 2016). We will use a Q-Wiener process. A Q-Wiener pro-
cess and therefore the noise associated with this process are defined on a probability space
associated with a bounded open space independent of time. As we intend to add noise in
the advection field to the marker transport-diffusion equation, we would like to define noise
associated with the current geometry of the cell which depends of the time. This does not
seem trivial. To circumvent this difficulty as the area of the cell is constant over time and the
perimeter of the cell finite, there exists a bounded open O ⊂ R2 such that for all t ≥ 0 we
have Ω (t) \N (t)− xcm (t) ⊂ O with xcm (t) the cell centre of mass at time t (see section 1.3.8
for details on the definition and the dynamic of the cell centre of mass). We can then define a
two-dimensional Q-Wiener process on this open O and define the coloured noise associated
with this process.

Let us recall the definition of Q-Wiener process, we use the one of Peszat and Zabczyk
(2007).
Definition 1.3.2 (Q-Wiener process). LetQ be a non-negative symmetric trace-class operator on
L2 (O). There exists a probability space (O,F ,P) on which we can define a stochastic process(
WQ

t , t ∈ R+

)
on L2 (O) such that:

• For each t ∈ R+,WQ
t is a L2 (O)-valued random variable,

• We haveWQ
0 = 0L2(O) P-almost surely,

• (WQ
t , t ∈ R+

)
is a Lévy process: it has independent and stationary increments:

- independent increments: for any sequence t1 < · · · < tn, the random variablesWQ
t2 −

WQ
t1 , . . . ,W

Q
tn −WQ

tn−1
are independent,

- stationary increments: for two times s < t, the random variableWQ
t −WQ

s has same
law asWQ

t−s,

• (WQ
t , t ∈ R+

)
is a Gaussian process: for any t ∈ R+ and any ϕ ∈ L2 (O),

(
WQ

t , ϕ
)
is a

real centred Gaussian random variable with variance t (Qϕ, ϕ),

• (WQ
t , t ∈ R+

)
is a L2 (O)-valued pathwise continuous process P-almost surely.

The stochastic process
(
WQ

t , t ∈ R+

)
is a Q-Wiener process.

We also recall the definition of non-negative symmetric linear operator on L2 (O) admit-
ting a kernel (Boulakia et al., 2015).

33



Definition 1.3.3. A non-negative symmetric linear operator Q : L2 (O) −→ L2 (O) is a linear
operator defined on L2 (O) such that for all ϕ1, ϕ2 ∈ L2 (O),

(Qϕ1, ϕ2) = (Qϕ2, ϕ1) , (Qϕ1, ϕ1) ≥ 0.

Let q be a non-negative definite symmetric real valued integrable function on O × O. We say that
Q has the kernel q if,

∀ϕ ∈ L2 (O) ,∀x ∈ O, Qϕ (x) =

∫
O

ϕ (y) q (x,y) dy.

Remark 1.3.4. Let Q : L2 (O) −→ L2 (O) be a non-negative symmetric operator with kernel q.
Then Q is a trace class operator, with trace given by:

Tr (Q) =

∫
O

q (x,x) dx.

Let Q be the non-negative symmetric linear operator with kernel q given by
q (x,y) =

1

4ζ2
e
− π

4ζ2
|x−y|2

,

where x,y ∈ O and ζ > 0 is a parameter that controls the spatial correlation. This choice is the
same as the one done in Boulakia et al. (2015) or Etchegaray (2016). LetWQ

t be a bidimensional
Q-Wiener process associated to the operatorQ. Let ẆQ

t be the colourednoise associate to this
Q-Wiener process. ẆQ

t can be interpret as the limit of WQ
t+ε−WQ

t

ε when ε tends to 0 (Kloeden
and Platen, 1992).

Then we modify the deterministic markers dynamics eqs. (1.17) to (1.19) as follows:
∂tc = div

(
∇c− (1− a)uc− αẆQ

t c
) in Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 on ∂ (Ω (t) \N (t)) ,

c (0,x) = cin (x) in Ω (0) \N (t) ,

(1.20a)
(1.20b)
(1.20c)

with α > 0 and ẆQ
t evaluated at the point x−xcm (t) with x ∈ Ω (t) \N (t). Noise is added so

that the total quantity of markers remains constant over time. In fact, we have:
d

dt

∫
Ω(t)\N(t)

cdx =

∫
Ω(t)\N(t)

∂tcdx+

∫
∂(Ω(t)\N(t))

cVn dσ

=

∫
Ω(t)\N(t)

div
(
∇c− (1− a)uc− αẆQ

t c
)
dx+

∫
∂(Ω(t)\N(t))

cu · n dσ

=

∫
∂(Ω(t)\N(t))

(
∇c− (1− a)uc− αẆQ

t c
)
· ndσ +

∫
∂(Ω(t)\N(t))

cu · ndσ

=

∫
∂(Ω(t)\N(t))

(
∇c+ auc− αẆQ

t c
)
· ndσ = 0.

In this way, a space-correlated noise is added to the deterministic model. We choose to
do it instead of a white noise in order to avoid non trivial effects that can appear when we
discretize our model (Walsh, 2005; Hairer et al., 2012).
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1.3.8 . External force balance
In this section, by deriving the dynamic laws governing the first momentum of Ω (t), we

obtain an insight into the behaviour of the model in the case where the substrate is homoge-
neous, i.e. ξM is independent of time and space. We assume that for all t ≥ 0 and x ∈ Ω (t),
ξM (t,x) = 1. We deduce from this computation the velocity of the cell’s centre of mass and
the external force balance.

LetM1 be the first momentum of Ω (t). For all t ≥ 0, we have:
M1 (t) =

∫
Ω(t)

x dx.

Using the incompresisbility constraint (1.1b), the darcy law (1.1a), the boundary condition
(1.1d) and the nucleus velocity expression (1.1e), we have that for all t ≥ 0:
d

dt

∫
Ω(t)

xdxdy =

∫
∂Ω(t)

xVn dσ =

∫
∂Ω(t)

xu · ndσ

=

∫
Ω(t)\N(t)

div (xu) dxdy +

∫
N(t)

div (xunucl) dxdy

=

∫
Ω(t)\N(t)

∇x · u dxdy + unucl ·
∫
N(t)

∇xdx dy

= −
∫
Ω(t)\N(t)

div (P∇x) dxdy + |N |unucl,x

= −
∫
∂Ω(t)

P∇x · n dσ −
∫
∂N(t)

P∇x · ndσ + |N |unucl,x

= −
∫
∂Ω(t)

(γκ+ χcfact (c) + χsg (∇s · n)− fNB − fobs + χufund (Vn))nx dσ

−
∫
∂N(t)

Pnx dσ + |N |unucl,x

= −
∫
∂Ω(t)

(γκ+ χcfact (c) + χsg (∇s · n)− fNB − fobs + χufund (Vn))nx dσ

− ξnucl |N |unucl,x + fBN,x + |N |unucl,x.

Anagously, for all t ≥ 0, we have:
d

dt

∫
Ω(t)

y dx dy = −
∫
∂Ω(t)

(γκ+ χcfact (c) + χsg (∇s · n)− fNB − fobs + χufund (Vn))ny dσ

− ξnucl |N |unucl,y + fBN,y + |N |unucl,y.

Using the fact that ∫
∂Ω(t)

κndσ = 0 and eq. (1.15), it follows that for all t ≥ 0:
d

dt
M1 (t) = −

∫
∂Ω(t)

(χcfact (c) + χsg (∇s · n)− fobs + χufund (Vn))ndσ

+ (1− ξnucl) |N |unucl.

Let xcm (t) be the centre of mass of Ω (t) at time t ≥ 0. We have:
xcm (t) =

1

AΩ

∫
Ω(t)

(x, y) dxdy =
1

AΩ
M1 (t) .
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We also define the velocity of the centre of mass ucm. For all t ≥ 0, we have:
ucm (t) =

d

dt
xcm (t) .

Thus we have:
ucm (t) =

1

AΩ

d

dt
M1 (t) .

It follows that for all t ≥ 0:
ucm (t) = − 1

AΩ

∫
∂Ω(t)

(χcfact (c) + χsg (∇s · n)− fobs + χufund (Vn))ndσ

+
|N |
AΩ

(1− ξnucl)unucl. (1.21)
We recognise that eq. (1.21) is the balance of external forces on the cell.

1.3.9 . Modelling of the forces between the cell boundary and the nucleus
In this section, we detail the modelling choices made in sections 1.3.3 and 1.3.5.5 concern-

ing the forces acting between the nucleus and the boundary of the cell and give an expression
of these forces.
First approach. We recall that the nucleus and the boundary of the cell interact with each
other via the cytoskeleton and in particular via the intermediate filaments. We propose here
a simplified approach to these interactions by assuming that the nucleus is connected to the
boundary of the cell via links and that each pointxB on the boundary of the cell is connected by
a link to a single point xN on the boundary of the nucleus where xN is the point of intersection
between the segment [xN ,xB ] and the boundary of the nucleus ∂N . We assume that each
link induces a force at xN and at xB . We then note gB and gN the forces induced by the link
at the point xB and xN , respectively. By the action-reaction principle, we have gB + gN = 0.

Naturally, we are tempted to assume that the forces gB and gN are directed along the
vector xBxN . This choice seems in accordance with physics. Nevertheless, we choose the
forces gB and gN as directed along the vector normal to ∂Ω in xB (see fig. 1.7). This choice,
although less intuitive, allows us to retain the formalism of Hele-Shaw cells with a Darcy fluid.
The tangential velocity at the outer boundary of the cell remain zero. If we take the first choice,
which seems more in accordance with physics, we have to consider a Stokes fluid.

Finally, we assume that the smaller the distance between xB and xN , the greater the in-tensity of the forces gN and gB .Let xB ∈ ∂Ω be a point of the cell boundary. We set vBN = xnucl − xB which is colinear
vector with the vector xBxN . We can note that vBN ·n < 0. Since the nucleus is a ball of radius
Rnucl, the distance between xB and xN is then given by ∥vBN∥−Rnucl. A way of ensuring thesetwo assumptions is to set:

gB = −δ vBN · n
(∥vBN∥ −Rnucl)

β
n

and
gN = δ

vBN · n
(∥vBN∥ −Rnucl)

β
n,

with β > 1 and δ > 0 and n the outward normal vector to Ω at xB .
36



gB

xN

n

xB

gN

xnucl

Figure 1.7: Illustration of the modelling for the forces between the nucleus and the
boundary of the cell. The links between the nucleus and the cell boundary are represented by
the dark blue wavy lines. An example of the forces induced by a link is shown. The dark blue ar-
rows represent these forces. The lilac arrows represent the forces with the more in accordance with
physics hypothesis, when the forces induced by the link are directed along the axis of the link.

Next we establish the link between fBN, fNB and the forces gB and gN . fBN represent the
force induced by the cell boundary on the nucleus. Consequently, we sum up all the forces
induced by the links on the nucleus and we have for all t ≥ 0:

fBN (t) = δ

∫
∂Ω(t)

vBN · n
(∥vBN∥ −Rnucl)

β
ndσ. (1.22)

fNB corresponds to the normal coordinate of the force induced by a link at the point xBand we then have for all t ≥ 0 and x ∈ ∂Ω (t):
fNB (t,x) = −δ vBN · n

(∥vBN∥ −Rnucl)
β
. (1.23)

Heuristic approach. We suggest another more heuristic approach to model the fBN and
fNB forces. In this approach, the nucleus is connected to the cell’s centre of mass by a spring
(see fig. 1.8).

In this case, the elastic potential energy is given by:
J =

k

2

(
1

|Ω|

∫
∂Ω

x dx− 1

|N |

∫
∂N

x dx

)2

,
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xnucl

Markers concentration c

Nucleus N

Fluid with velocity u and pressure P

Cytoplasm Ω \N

Figure 1.8: Illustration of the model using the heuristic approach. The nucleus is connected
to the cell’s centre of mass by a spring.

with k > 0 the spring constant and 1

|Ω|

∫
∂Ω

x dx− 1

|N |

∫
∂N

x dx = xcm − xnucl the relative po-
sition of the nucleus centre. We derive the energy with respect to the velocity of deformation
of the domain and for all velocity v admitting V as trace on ∂Ω and ∂N , we have:

∂J

∂v
(v) = k (xcm − xnucl) ·

(
1

|Ω|

∫
∂Ω

xV · n dσ +
1

|N |

∫
∂N

xV · ndσ

)
,

with n the outward normal vector to Ω \N .
We deduce that the force induced on the nucleus gN at the point xN ∈ ∂N is given by:

gN (xN ) =
−k (xcm − xnucl) · xN

|N |
n,

where n is the outward normal vector to Ω \ N at the point xN . Similarly, the force induced
on the boundary gB at the point xB ∈ ∂Ω is given by:

gB (xB) =
−k (xcm − xnucl) · xB

|Ω|
n,

Thus, at time t ≥ 0, the force induced on the whole nucleus fBN (t) is given by the sum of
all the forces induced at the points of the nucleus and we have:

fBN (t) =

∫
∂N(t)

−k (xcm (t)− xnucl (t)) · xN

|N |
ndσ = −k (xnucl (t)− xcm (t)) . (1.24)

38



This force corresponds to the restoring force of a spring.
Moreover, at times t ≥ 0, fNB corresponds to the normal coordinate of the force induced

by a link at the point xB and we then have for all x ∈ ∂Ω (t):
fNB (t,x) =

−k (xcm (t)− xnucl (t)) · x
|Ω|

. (1.25)
The forces fBN and fNB defined by eqs. (1.24) and (1.25) satisfy eq. (1.15).

1.4 . Outline of the thesis

In chapters 2 and 4 to 7, the impact of the nucleus on cell motility is studied. In chapter 2,
a one-dimensional model analogous to the general model is studied. Numerical simulations
provide initial conclusions about the role of the nucleus in cell motility and illustrate that the
model produces results consistent with biological observations.

In chapters 4 and 5, two toy models are presented. For these two models, the stationary
states and their stability are studied. These twomodels produce observations similar to those
obtained in chapter 3 when the nucleus is not considered and the cell is assumed to be rigid.
The trajectories satisfy the UCSP law, and parameter ranges are found to reproduce the three
types of trajectories.

In chapter 6, a rigid model that takes the nucleus dynamics into account is studied. Nu-
merical simulations, compared with those obtained in chapters 4 and 5, highlight that the
dynamics of the nucleus promote the intermittent nature of the trajectories. This model also
highlights the positioning of the nucleus within the cell and its link to polarisation.

Chapter 7 is dedicated to the study of the deformable model with nucleus dynamics. The
stationary states and their stability are studied. A finite element numerical scheme is pro-
posed. Numerical simulations obtained via this scheme highlight that the model qualitatively
reproduces the phenomena of polarisation and cell migration. This illustrates the role of the
nucleus in cell motility.

Chapter 8 is devoted to the study of a heuristic one-dimensional model of cell motility
that takes the nucleus into account. Using a finite volume numerical scheme, numerical sim-
ulations illustrate that this heuristic can reproduce, for certain parameters, the intermittent
behaviour of the trajectories.

In chapter 9, the effect of undercooling on cell motility is studied. The stationary state
is studied. Using a bifurcation argument, the existence of traveling waves is demonstrated.
These results also illustrate the stabilizing effect of undercooling.

Chapter 10 is dedicated to studying the impact of an external signal on cell motility. Using
numerical results, it is illustrated that there is a trade-off between the force induced by the
markers on the cell boundary and the force induced by the external signal.

Finally, chapter 11 presents work carried out during CEMRACS 2022. A model of one of
the mechanisms occurring at the membrane—endocytosis—is presented. After studying the
model, a finite volume scheme is presented. This scheme yields results consistent with bio-
logical observations.

Note that some of the elements previously presented in the model are not studied in this
thesis. Indeed, throughout this thesis, we assume that the substrate is homogeneous and
therefore that for all x ∈ R2 we have ξM (x) = 1. This will be the subject of future work.
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Additionally, the study of the presence of obstacles in the cell’s environment is briefly covered
in chapter 10. This study will be further explored in future work.

Bibliography

Abercrombie, M. (1980). The Croonian Lecture, 1978 - The crawling movement of meta-
zoan cells. Proceedings of the Royal Society of London. Series B. Biological Sciences,
207(1167):129–147. 19, 22

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). Molecular Biology
of the Cell. Garland Science, 4th edition. 18

Asnacios, A. and Hamant, O. (2012). The mechanics behind cell polarity. Trends in Cell Biology,
22(11):584–591. 18

Berlyand, L., Potomkin, M., and Rybalko, V. (2016). Phase-field model of cell motility: Traveling
waves and sharp interface limit. Comptes Rendus. Mathématique, 354(10):986–992. 23

Blanch-Mercader, C. and Casademunt, J. (2013). Spontaneous Motility of Actin Lamellar Frag-
ments. Physical Review Letters, 110(7):078102. Publisher: American Physical Society. 22

Bosgraaf, L. and Van Haastert, P. J. M. (2009). Navigation of Chemotactic Cells by Parallel Sig-
naling to Pseudopod Persistence and Orientation. PLoS ONE, 4(8):e6842. 20

Boulakia, M., Genadot, A., and Thieullen, M. (2015). Simulation of SPDEs for Excitable Media
Using Finite Elements. Journal of Scientific Computing, 65(1):171–195. 33, 34

Bénichou, O., Loverdo, C., Moreau, M., and Voituriez, R. (2011). Intermittent search strategies.
Reviews of Modern Physics, 83(1):81–129. arXiv:1104.0639 [cond-mat, physics:physics]. 21

Callan-Jones, A. C., Joanny, J.-F., and Prost, J. (2008). Viscous Fingering-like Instability of Cell
Fragments. Physical Review Letters, 100(25):258106. arXiv:0804.0707 [cond-mat, q-bio]. 27

Chaplain, M. A. J., Giverso, C., Lorenzi, T., and Preziosi, L. (2019). Derivation and Application of
Effective Interface Conditions for Continuum Mechanical Models of Cell Invasion through
Thin Membranes. SIAM Journal on Applied Mathematics, 79(5):2011–2031. 26

Cooper, G. M. (2000). The Cell. Sinauer Associates, 2nd edition. 18
Cramer, L. P. (2010). Forming the cell rear first: breaking cell symmetry to trigger directed cell
migration. Nature Cell Biology, 12(7):628–632. 19

Cucchi, A., Etchegaray, C., Meunier, N., Navoret, L., and Sabbagh, L. (2020). Cell migration in
complex environments: chemotaxis and topographical obstacles. ESAIM: Proceedings and
Surveys, 67:191–209. 31

Danuser, G., Allard, J., and Mogilner, A. (2013). Mathematical Modeling of Eukaryotic Cell Mi-
gration: Insights Beyond Experiments. Annual Review of Cell and Developmental Biology,
29(1):501–528. 19, 22, 27

40



Etchegaray, C. (2016). Mathematical and numerical modelling of cell migration. phdthesis,
Université Paris Saclay (COmUE). 33, 34

Friedman, A. and Reitich, F. (2000). Symmetry-breaking bifurcation of analytic solutions to
free boundary problems: An application to a model of tumor growth. Transactions of the
American Mathematical Society, 353(4):1587–1634. 23

Giverso, C. and Preziosi, L. (2018). Mechanical perspective on chemotaxis. Physical Review E,
98(6):062402. 27

Gomes, E. R., Jani, S., and Gundersen, G. G. (2005). Nuclear Movement Regulated by Cdc42,
MRCK,Myosin, and Actin Flow EstablishesMTOCPolarization inMigrating Cells. Cell, 121:451–
463. 19

Gorelik, R. and Gautreau, A. (2014). Quantitative and unbiased analysis of directional persis-
tence in cell migration. Nature Protocols, 9(8):1931–1943. Number: 8 Publisher: Nature
Publishing Group. 21

Gracheva, M. E. and Othmer, H. G. (2004). A continuum model of motility in ameboid cells.
Bulletin of Mathematical Biology, 66(1):167–193. 23

Hairer, M., Ryser, M. D., and Weber, H. (2012). Triviality of the 2D stochastic Allen-Cahn equa-
tion. Electronic Journal of Probability, 17(none). arXiv:1201.3089 [math-ph]. 34

Kloeden, P. E. and Platen, E. (1992). Probability and Statistics. In Kloeden, P. E. and Platen, E.,
editors, Numerical Solution of Stochastic Differential Equations, Applications of Mathemat-
ics, pages 1–50. Springer, Berlin, Heidelberg. 34

Kosmalska, A. J., Casares, L., Elosegui-Artola, A., Thottacherry, J. J., Moreno-Vicente, R.,
González-Tarragó, V., Del Pozo, M. A., Mayor, S., Arroyo, M., Navajas, D., Trepat, X., Gauthier,
N. C., and Roca-Cusachs, P. (2015). Physical principles of membrane remodelling during cell
mechanoadaptation. Nature Communications, 6(1):7292. 17

Kruse, K., Joanny, J. F., Jülicher, F., Prost, J., and Sekimoto, K. (2005). Generic theory of active
polar gels: a paradigm for cytoskeletal dynamics. The European Physical Journal E, 16(1):5–
16. 23

Kubiak, A., Zieliński, T., Pabijan, J., and Lekka, M. (2020). Nanomechanics in Monitoring the
Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton. International Journal of
Molecular Sciences, 21(22):8786. Number: 22 Publisher: Multidisciplinary Digital Publishing
Institute. 17

Lammerding, J. (2011). Mechanics of the Nucleus. In Prakash, Y. S., editor, Comprehensive
Physiology, pages 783–807. Wiley, 1 edition. 18, 19

Lavi, I. (2019). Physical modeling of cell motility and morphodynamics. phdthesis, Sorbonne
Université. 31

Lavi, I., Meunier, N., Voituriez, R., and Casademunt, J. (2020). Motility and morphodynamics of
confined cells. Physical Review E, 101(2):022404. Publisher: American Physical Society. 23,
25, 26, 29

41



Lefebvre, A. (2007). Modélisation numérique d’écoulements fluide/particules. phdthesis, Uni-
versité Paris Sud. 28, 31

Liu, H., Wen, J., Xiao, Y., Liu, J., Hopyan, S., Radisic, M., Simmons, C. A., and Sun, Y. (2014). In Situ
Mechanical Characterization of the Cell Nucleus by Atomic Force Microscopy. ACS Nano,
8(4):3821–3828. Publisher: American Chemical Society. 27

Loosley, A. J., O’Brien, X. M., Reichner, J. S., and Tang, J. X. (2015). Describing Directional Cell
Migration with a Characteristic Directionality Time. PLOS ONE, 10(5):e0127425. 21

Maiuri, P., Rupprecht, J.-F., Wieser, S., Ruprecht, V., Bénichou, O., Carpi, N., Coppey, M.,
De Beco, S., Gov, N., Heisenberg, C.-P., Lage Crespo, C., Lautenschlaeger, F., Le Berre, M.,
Lennon-Dumenil, A.-M., Raab, M., Thiam, H.-R., Piel, M., Sixt, M., and Voituriez, R. (2015).
Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence. Cell,
161(2):374–386. 20, 21, 22, 29

Maiuri, P., Terriac, E., Paul-Gilloteaux, P., Vignaud, T., McNally, K., Onuffer, J., Thorn, K., Nguyen,
P. A., Georgoulia, N., Soong, D., Jayo, A., Beil, N., Beneke, J., Hong Lim, J. C., Pei-Ying Sim, C.,
Chu, Y.-S., Jiménez-Dalmaroni, A., Joanny, J.-F., Thiery, J.-P., Erfle, H., Parsons, M., Mitchison,
T. J., Lim, W. A., Lennon-Duménil, A.-M., Piel, M., and Théry, M. (2012). The first World Cell
Race. Current Biology, 22(17):R673–R675. 21

Mogilner, A. and Oster, G. (1996). Cell motility driven by actin polymerization. Biophysical
Journal, 71(6):3030–3045. 22

Ndiaye, A.-B., Koenderink, G. H., and Shemesh, M. (2022). Intermediate Filaments in Cellu-
lar Mechanoresponsiveness: Mediating Cytoskeletal Crosstalk From Membrane to Nucleus
and Back. Frontiers in Cell and Developmental Biology, 10:882037. 18

Peszat, S. and Zabczyk, J. (2007). Stochastic Partial Differential Equations with Lévy Noise: An
Evolution EquationApproach. Encyclopedia ofMathematics and its Applications. Cambridge
University Press, Cambridge. 33

Petrie, R. J., Doyle, A. D., and Yamada, K. M. (2009). Random versus directionally persistent cell
migration. Nature Reviews Molecular Cell Biology, 10(8):538–549. 20, 21

Prost, J., Jülicher, F., and Joanny, J.-F. (2015). Active gel physics. Nature Physics, 11(2):111–117. 23
Recho, P. and Truskinovsky, L. (2013). Asymmetry between pushing and pulling for crawling
cells. Physical Review E, 87(2):022720. Publisher: American Physical Society. 22

Reig, G., Pulgar, E., and Concha, M. L. (2014). Cell migration: from tissue culture to embryos.
Development, 141(10):1999–2013. 19, 21

Scianna, M. and Preziosi, L. (2012). Multiscale Developments of the Cellular Potts Model.
Multiscale Modeling & Simulation, 10(2):342–382. 22

Selmeczi, D., Li, L., Pedersen, L. I., Nrrelykke, S. F., Hagedorn, P. H., Mosler, S., Larsen, N. B.,
Cox, E. C., and Flyvbjerg, H. (2008). Cell motility as randommotion: A review. The European
Physical Journal Special Topics, 157(1):1–15. 21

42



Thiam, H.-R. (2014). Cell migration under confinement: how can a cell squeeze through narrow
gaps? 17, 19

Tsimring, L. S. (2014). Noise in biology. Reports on Progress in Physics, 77(2):026601. 33
Walsh, J. B. (2005). Finite Element Methods for Parabolic Stochastic PDE’s. Potential Analysis,
23(1):1–43. 34

Yam, P. T., Wilson, C. A., Ji, L., Hebert, B., Barnhart, E. L., Dye, N. A., Wiseman, P. W., Danuser, G.,
and Theriot, J. A. (2007). Actin–myosin network reorganization breaks symmetry at the cell
rear to spontaneously initiate polarized cell motility. The Journal of Cell Biology, 178(7):1207–
1221. 19, 20

43



44



2 - Analogous model in dimension 1

In this chapter, in collaboration with Nicolas Meunier, we introduce a one-dimensional
model analogous to the general model (1.1) when considering the forces induced by the nu-
cleus on the cell boundary and by the cell boundary on the nucleus, given by (1.22) and (1.23).
This model is enriched by a dynamic of attachment and detachment of markers to the cell
membrane. Here, we assume that the substrate is homogeneous and that there are neither
obstacles nor external signals. We also neglect the effects of undercooling and noise. The
one-dimensional model considered is a non-local, non-linear Fokker-Planck equation. After
modelling the problem in one dimension, we prove that it is well-posed. We also study the
stationary states of the model. Then, we construct a finite volume numerical scheme in order
to simulate it. The study of the numerical results indicates that themodel produces behaviours
consistent with the biological context, highlighting the importance of positioning the nucleus
at the rear of the cell for polarisation and the initiation of cell migration.

2.1 . Modelling

In this section, we write an analogous model in dimension 1 to the model (1.1) when the
substrate is homogeneous, there is no external obstacles or signal and the effects of under-
cooling and noise are neglected. We recall that in dimension 2 the model of interest is then
given by:

u+∇P = 0 in Ω (t) \N (t) ,

div (u) = 0 in Ω (t) \N (t) ,

P = χcfact (c (t,x))− fNB + γκ on ∂Ω (t) ,

Vn = u · n on ∂Ω (t) ,

u · n = unucl · n on ∂N (t) ,

unucl (t) =
1

ξnucl |N |

(∫
∂N(t)

P (t,x)ndσ + fBN

)
,

∂tc = div (∇c− (1− a)uc) in Ω (t) \N (t) ,

(∇c+ auc) · n = 0 on ∂ (Ω (t) \N (t)) ,

c(0,x) = c0(x) in Ω (0) .

(2.1a)
(2.1b)
(2.1c)
(2.1d)
(2.1e)
(2.1f)
(2.1g)
(2.1h)
(2.1i)

In dimension one, the cell domain is modeled by a segment [b− (t) , b+ (t)]. As in the two-
dimensional case, we assume the cell to be filled with a fluid. This fluid is assumed to be
incompressible. Then the length of the cell domain b+ (t)− b− (t) is constant in time. Initially,
we assume to have [b− (0) , b+ (0)] = [−1, 1]. Thus for all t > 0, we have b+ (t) − b− (t) = 2.
We also assume that the fluid has a velocity u and a pressure P . Inside the fluid, markers of
concentration c are present. We denote XN the nucleus position. Analogous to the model
(2.1), for all t > 0, we have:

u+ ∂xP = 0 in ]b− (t) , b+ (t)[ ,

∂xu = 0 in ]b− (t) , b+ (t)[ ,

P = χcfact (c)− fNB on {b− (t) , b+ (t)} ,

(2.2a)
(2.2b)
(2.2c)
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where we recall that χcfact is the active force of coupling between the markers and the fluid
and fNB is the force induce by the nucleus on the cell boundary.

Thus from eq. (2.2b) we have that there exists a function K1 depending only on the time
such that for all x ∈ ]b− (t) , b+ (t)[:

u (t, x) = K1 (t) .

Combining it with eq. (2.2a), there exists a function K2 depending only on the time such that
for all x ∈ ]b− (t) , b+ (t)[:

P (t, x) = −K1 (t)x+K2 (t) .

Using the boundary conditions eq. (2.2c) we deduce that:
u (t) =

χc (fact (c (t, b− (t)))− fact (c (t, b+ (t)))) + fNB (t, b+ (t))− fNB (t, b− (t))

2
.

In dimension 2, fNB, the force per unit of length exerted by the nucleus on the cell bound-ary, was defined by eq. (1.23). To find an equivalent in dimension 1, we project it on the x-axis.
Thus we have:

fNB (t, b± (t)) = ∓δ XN (t)− b± (t)

|XN (t)− b± (t)|β + ε

where ε > 0 small.
In dimension 1, analogously to eqs. (2.1g) and (2.1h), the dynamic on the concentration

writes: {
∂tc = ∂2xxc− (1− a)u ∂xc in ]b− (t) , b+ (t)[ ,

∂xc+ au c = 0 on {b− (t) , b+ (t)} .

To write the dynamic of the nucleus position, we project the two-dimensional expression
on the x-axis. Then, for all t > 0, we have:

d

dt
XN (t) =

1

ξnucl
u (t) +

1

ξnucl
δ

(
XN (t)− b+ (t)

|XN (t)− b+ (t)|β + ε
+

XN (t)− b− (t)

|XN (t)− b− (t)|β + ε

)
.

For all x, x+, x− ∈ R, we set:

gN (x, x+, x−) = δ

(
x− x+

|x− x+|β + ε
+

x− x−

|x− x−|β + ε

)
.

The model is then given by:

∂tc (t, x) = ∂2xxc (t, x)− (1− a)u (t) ∂xc (t, x) in ]b− (t) , b+ (t)[ ,

∂xc (t, x) + au (t) c (t, x) = 0 on {b− (t) , b+ (t)} ,

u (t) =
1

2
[χc (fact (c (t, b− (t)))− fact (c (t, b+ (t))))]

− 1

2
gN (XN (t) , b+ (t) , b− (t)) ,

d

dt
XN (t) =

1

ξnucl
u (t) +

1

ξnucl
gN (XN (t) , b+ (t) , b− (t)) .
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In the frame of reference of the cell, the model writes:

∂tc (t, x) = ∂2xxc (t, x) + au (t) ∂xc (t, x) in ]−1, 1[ ,

∂xc (t, x) + au (t) c (t, x) = 0 on {−1, 1} ,

u (t) =
χc (fact (c (t,−1))− fact (c (t, 1)))

2
− 1

2
gN (XN (t) , 1,−1) ,

d

dt
XN (t) =

(
1

ξnucl
− 1

)
u (t) +

1

ξnucl
gN (XN (t) , 1,−1) .

(2.3a)
(2.3b)
(2.3c)
(2.3d)

The model is complemented with an initial condition given by:{
c (0, x) = c0 (x) in [−1, 1] ,
XN (0) = X0

N ,

withX0
N ∈ [−1, 1].

In order to avoid blow-up phenomena, as in Etchegaray et al. (2017) or in Calvez et al.
(2012), we enrich the model (2.3) with dynamical exchange of markers at the cell boundary.
We denote µ± (t) the quantity of markers at the membrane at location b± (t) and at time t.
We assume that the markers can attach and detach from the membrane. Unlike in the case
of the model (2.3), where the concentration of markers at the cell boundary exerts a feedback
effect on the fluid velocity and therefore on the velocity of the cell, the feedback effects on the
fluid comes from the markers attached to the membrane. In the frame of reference of the
cell, the exchange dynamic at the membrane is given by:

d

dt
µ± (t) = kon c (t,±1)− koff µ± (t) ,

where kon > 0 is the rate of attachment and koff > 0 the rate of detachment.
Setting fact (µ) = µ, we have:

u (t) =
χc

2
(µ− (t)− µ+ (t)) +

δ

2

(
XN (t)− 1

|XN (t)− 1|β + ε
+

XN (t) + 1

|XN (t) + 1|β + ε

)
.

For all x ∈ [−1, 1], we also set:
g (x) = δ

(
x− 1

|x− 1|β + ε
+

x+ 1

|x+ 1|β + ε

)
.

The equivalent model in dimension 1 of the model (2.1) in the cell frame of reference with the
dynamical exchange at the membrane is given by:

∂tc (t, x) = ∂2xxc (t, x) + au (t) ∂xc (t, x) , x ∈ ]−1, 1[ ,

∂xc (t,±1) + au (t) c (t,±1) = ∓ d

dt
µ± (t) ,

d

dt
µ± (t) = kon c (t,±1)− koff µ± (t) ,

u (t) =
χc

2
(µ− (t)− µ+ (t))− 1

2
g (XN (t)) ,

d

dt
XN (t) =

(
1

ξnucl
− 1

)
u (t) +

1

ξnucl
g (XN (t)) .

(2.4a)
(2.4b)
(2.4c)
(2.4d)
(2.4e)
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The model is complemented with an initial condition given by:
c (0, x) = c0 (x) , x ∈ [−1, 1] ,

µ± (0) = µ0
±,

XN (0) = X0
N ,

(2.5a)
(2.5b)
(2.5c)

with µ0
± ≥ 0 andX0

N ∈ [−1, 1].
The total quantity of markersM is constant over time and for all t ≥ 0 we have:

M =

∫ 1

−1

c (t, x) dx+ µ− (t) + µ+ (t) .

2.2 . Well-posedness of the model

In this section we prove that, under some assumptions on the initial condition (2.5), the
model (2.4) is well-posed.
Proposition 2.2.1. Assume that c0 is such that

∫ 1

−1
c0 (x) log c0 (x) dx < +∞. Assume moreover

that µ0
+, µ

0
− ∈ [0,M ] are such that

∫ 1

−1
c0 (x) dx+µ0

++µ0
− =M . Assume also thatX0

N ∈ [−1, 1].
Then there exists a unique solution (c, µ+, µ−, XN ) to the problem (2.4) for all time.

To prove proposition 2.2.1, as in Lepoutre and Meunier (2022), we will first study an uncou-
pled model associate to (2.4) and then use a fixed point argument.

2.2.1 . Useful result
In this subsection, we prove a useful lemma which is inspired from Calvez et al. (2012).

Lemma 2.2.2. Let f ∈ L1
+ (−1, 1). If

∫ 1

−1
f log f < +∞ then f log f ∈ L1 (−1, 1) and for all γ > 0

the following inequality holds:∫ 1

−1

f (x) |log f (x)| dx ≤
∫ 1

−1

f (x) log f (x) dx+ γ +
2

γe
.

Proof. We denote f̄ = f1f≤1 and m =
∫ 1

−1
f̄ (x) dx. The relative entropy between f̄ and

x 7→ γe−γx is given by:∫ 1

−1

f̄ (x)
(
log f̄ (x) + γx

)
dx =

∫ 1

−1

f̄ (x)

γe−γx
log

(
f̄ (x)

γe−γx

)
γe−γx dx+m log γ

≥
∫ 1

−1

f̄ (x)

γe−γx
γe−γx dx log

(∫ 1

−1

f̄ (x)

γe−γx
γe−γx dx

)
+m log γ

≥ m log (γm)

≥ − 1

γe
.

We also have:
−γ
2

≤
∫ 1

−1

f̄ (x) γxdx ≤ γ

2
.
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Since: ∫ 1

−1

f (x) |log f (x)| dx =

∫ 1

−1

f (x) log f (x) dx− 2

∫ 1

−1

f̄ (x) log f̄ (x) dx,

we have: ∫ 1

−1

f (x) |log f (x)| dx ≤
∫ 1

−1

f (x) log f (x) dx+ γ +
2

γe
.

2.2.2 . An uncoupled PDE
In this subsection, we study the following uncoupled PDE system where, for all t ≥ 0, µ+,

µ− and v are given:
∂tc (t, x) = ∂2xxc (t, x) + v (t) ∂xc (t, x) x ∈ ]−1, 1[ ,

∂xc (t, 1) + v (t) c (t, 1) = − (kon c (t, 1)− koff µ+ (t)) ,

∂xc (t,−1) + v (t) c (t,−1) = kon c (t,−1)− koff µ− (t) ,

c (0, x) = c0 (x) x ∈ [−1, 1] .

(2.6a)
(2.6b)
(2.6c)
(2.6d)

We assume c0, µ+ and µ− to be such that:∫ 1

−1

c0 (x) dx+ µ− (0) + µ+ (0) =M.

We want to prove that this problem admits a global solution.
For smooth µ+, µ−, α+, α−, v and c0, (2.6) is a parabolic problem and then there exists a

local solution c defined over [0, T ] with T > 0.
Lemma 2.2.3. Assume c0 ≥ 0 and for all t ≥ 0, µ± (t) ≥ 0. Let c be a solution of (2.6) define on
[0, T ]× [−1, 1]. Then c is nonnegative.

Proof. Let c be a solution of (2.6). We denote c− = min (c, 0). We want to prove that c− = 0.
Using the Stampacchia argument, we have :
1

2

d

dt
∥c− (t)∥2L2 =

∫ 1

−1

∂tc (t, x) c− (t, x) dx

= − [kon c (t, 1)− koff µ+ (t)] c− (t, 1)− [kon c (t,−1)− koff µ− (t)] c− (t,−1)

−
∫ 1

−1

(∂xc− (t, x))
2
+ v (t) c (t, x) ∂xc− (t, x) dx

= −kon (c− (t, 1))
2 − kon (c− (t,−1))

2

+ koff µ+ (t) c− (t, 1) + koff µ− (t) c− (t,−1)

− ∥∂xc− (t)∥2L2 −
∫ 1

−1

v (t) c− (t, x) ∂xc− (t, x) dx

≤ −∥∂xc− (t)∥2L2 −
∫ 1

−1

v (t) c− (t, x) ∂xc− (t, x) dx

≤ 1

4
|v (t)|2 ∥c− (t)∥2L2 .

We also have ∥c− (0)∥2L2 = 0. Using Gronwall’s lemma, we have that for all t ∈ [0, T ],
∥c− (t)∥2L2 = 0. Thus for all t ∈ [0, T ] and x ∈ [−1, 1], we have c (t, x) ≥ 0.
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Lemma2.2.4. Assume that c0 ∈ L1 (−1, 1) is a positive function such that
∫ 1

−1
c0 (x) log c0 (x) dx <

+∞. Assume also that µ± ∈ C0 (R+) satisfy for all t > 0, 0 < µ± (0) e−koff t ≤ µ± (t) ≤ M . As-
sumemoreover that v ∈ C0 (R+)∩L∞ (R+). Then the solution of the uncoupled system (2.6) exists
globally in L∞

loc (R+, L logL (−1, 1)) ∩ L1
loc
(
R+,W

1,1 (−1, 1)
)
. In addition, for all t ≥ 0, we have:

∫ 1

−1

c (t, x) dx ≤
∫ 1

−1

c0 (x) dx+ 2koffM t.

Proof. First, for all t ≥ 0, we have:
d

dt

∫ 1

−1

c (t, x) dx =

∫ 1

−1

∂tc (t, x) dx

= − (kon c (t, 1)− koff µ+ (t))− (kon c (t,−1)− koff µ− (t))

≤ koff (µ+ (t) + µ− (t))

≤ 2koff M.

Thus, for all t ≥ 0, we have:∫ 1

−1

c (t, x) dx ≤
∫ 1

−1

c0 (x) dx+ 2koff Mt.

Using the convexity of the function x 7→ (kon x− koff µ± (t)) log x, we have that for all t ≥ 0

and x ∈ [−1, 1]:
(kon c (t, x)− koff µ± (t)) log c (t, x)− (kon − koff µ± (t)) log

(
koff
kon

µ± (t)

)
≥ 0.

We also have:
d

dt

∫ 1

−1

c (t, x) log c (t, x)− c (t, x) dx

=

∫ 1

−1

∂tc (t, x) log c (t, x) dx

= − (kon c (t, 1)− koff µ+ (t)) log c (t, 1)− (kon c (t,−1)− koff µ− (t)) log c (t,−1)

−
∫ 1

−1

(c (t, x) ∂x log c (t, x) + v (t) c (t, x)) ∂x log c (t, x) dx

≤ − (kon − koff µ+ (t)) log

(
koff
kon

µ+ (t)

)
− (kon − koff µ− (t)) log

(
koff
kon

µ− (t)

)
−
∫ 1

−1

c (t, x) |∂x log c (t, x)|2 dx−
∫ 1

−1

c (t, x) v (t) ∂x log c (t, x) dx

≤ C1 + 2kont−
1

2

∫ 1

−1

c (t, x) |∂x log c (t, x)|2 dx+
1

2
|v (t)|2

∫ 1

−1

c (t, x) dx

≤ C1 + 2kont+
1

2
∥v∥2L∞

(∫ 1

−1

c0 (x) dx+ 2koffMt

)
, (2.7)

with C1 > 0.
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Then, integrating the previous inequality, we have:∫ 1

−1

c (t, x) log c (t, x) dx ≤
∫ 1

−1

c0 (x) log c0 (x) dx+ C1t+ kont
2

+
1

2
∥v∥2L∞

(
t

∫ 1

−1

c0 (x) dx+ koffMt2
)

≤ C2

(
1 + t2

)
,

with C2 > 0.
We can apply the lemma 2.2.2 and we have:∫ 1

−1

c (t, x) |log c (t, x)| dx ≤ C3

(
1 + t2

)
,

with C3 > 0.
Then, integrating (2.7), we also have:∫ t

0

∫ 1

−1

c (s, x) |∂x log c (s, x)|2 dxds ≤ C4

(
1 + t2

)
−
∫ 1

−1

c (t, x) log c (t, x) dx

≤ C4

(
1 + t2

)
+

∫ 1

−1

c (t, x) |log c (t, x)| dx

≤ C5

(
1 + t2

)
,

with C4 > 0 and C5 > 0.
Thus, finally, we have:∫ t

0

∫ 1

−1

|∂xc (s, x)| dx ds =
∫ t

0

∫ 1

−1

c (s, x) |∂x log c (s, x)| dx ds

≤
(∫ t

0

∫ 1

−1

c (s, x) dx ds

) 1
2

×
(∫ t

0

∫ 1

−1

c (s, x) |∂x log c (s, x)|2 dx ds

) 1
2

≤ C6

(
1 + t2

)
,

with C6 > 0 and this leads to the global existence of c.
2.2.3 . Fixed point mapping

2.2.3.1 . Useful results
Let c1 and c2 be two solutions of (2.6) with two different inputs given by (µ1

±, X
1
N , v

1
) and(

µ2
±, X

2
N , v

2
). As in Lepoutre andMeunier (2022) to compare these two solutions, we introduce

the Gajewski metric:
dG (c1, c2) =

∫ 1

−1

h (c1) + h (c2)− 2h

(
c1 + c2

2

)
dx,

where h is the following function:
h (a) = a log a− a+ 1.
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We define the function∆h by:
∆h (c1, c2) = h (c1) + h (c2)− 2h

(
c1 + c2

2

)
.

We recall the following lemma from Lepoutre and Meunier (2022).
Lemma 2.2.5. For all a, b > 0 and c1, c2 positive functions, the following inequalities hold

0 ≤ 1

4

(b− a)
2

a+ b
≤ 1

4

(b− a)
2

max (a, b)
≤ ∆h (a, b) ≤

1

4

(b− a)
2

min (a, b)

and

dG (c1, c2) ≥
1

4

(∫ 1

−1
c1 dx−

∫ 1

−1
c2 dx

)2
∫ 1

−1
c1 dx+

∫ 1

−1
c2 dx

.

We introduce the following notations cm =
c1 + c2

2
, q1 =

c1
cm

and q2 =
c2
cm

.
Lemma 2.2.6. For all t > 0 the following inequality hold:

d

dt
dG (c1, c2) (t) ≤ koff

(
∆h

(
µ1
+ (t) , µ2

+ (t)
)
+∆h

(
µ1
− (t) , µ2

− (t)
))

− kon (∆h (c1 (t, 1) , c2 (t, 1)) + ∆h (c1 (t,−1) , c2 (t,−1)))

− 3

4

∫ 1

−1

c1 (t, x) |∂x log q1 (t, x)|2 + c2 (t, x) |∂x log q2 (t, x)|2 dx

+
1

2

(
v1 (t)− v2 (t)

)2 ∫ 1

−1

cm (t, x) dx.

Proof. We have
d

dt
dG (c1, c2) (t) =

∫ 1

−1

∂tc1 (t, x) log q1 (t, x) + ∂tc2 (t, x) log q2 (t, x) dx

=

2∑
i=1

koff
[
µi
+ (t) log qi (t, 1) + µi

− log qi (t,−1)
]

− kon [c1 (t, 1) log q1 (t, 1) + c2 (t, 1) log q2 (t, 1)]

− kon [c1 (t,−1) log q1 (t,−1) + c2 (t,−1) log q2 (t,−1)]

−
2∑

i=1

∫ 1

−1

cm (t, x)
(
∂x log ci (t, x) + vi (t)

)
∂xqi (t, x) dx.

We notice that the function q 7→ µ+ log q + µ− log (2− q) reaches its maximum for the
value q∗ =

2µ+

µ+ + µ−
. Then we have:

2∑
i=1

koff
[
µi
+ (t) log qi (t, 1) + µi

− log qi (t,−1)
]

≤ koff
(
∆h

(
µ1
+ (t) , µ2

+ (t)
)
+∆h

(
µ1
− (t) , µ2

− (t)
))
.

We remark that:
c1 (t,±1) log q1 (t,±1) + c2 (t,±1) log q2 (t,±1) = ∆h (c1 (t,±1) , c2 (t,±1)) .

52



We also have
−
∫ 1

−1

cm (t, x)
(
v1 (t)− v2 (t)

)
∂xq1 (t, x) dx

= −1

2

∫ 1

−1

c1 (t, x)
(
v1 (t)− v2 (t)

)
∂x log q1 (t, x) dx

+
1

2

∫ 1

−1

c2 (t, x)
(
v1 (t)− v2 (t)

)
∂x log q2 (t, x) dx

≤ 1

4

∫ 1

−1

c1 (t, x)
(
v1 (t)− v2 (t)

)2
dx+

1

4
c1 (t, x) (∂x log q1 (t, x))

2
dx

+
1

4

∫ 1

−1

c2 (t, x)
(
v1 (t)− v2 (t)

)2
dx+

1

4
c2 (t, x) (∂x log q2 (t, x))

2
dx

≤ 1

2

(
v1 (t)− v2 (t)

)2 ∫ 1

−1

cm (t, x) dx

+
1

4

∫ 1

−1

c1 (t, x) |∂x log q1 (t, x)|2 + c2 (t, x) |∂x log q2 (t, x)|2 dx

and
c1 + c2

q1 (2− q1)
|∂xq1|2 = c1 |∂x log q1|2 + c2 |∂x log q2|2 .

By combining all this, the desired result is obtained.
2.2.3.2 . The fixed point mapping

For a fixed T > 0, we define the following space X

X =

{
(µ+, µ−, XN ) ∈ C (0, T ) ,∀t ∈ (0, T )
0 < µ0

±e
−koff t ≤ µ± (t) ≤M and − 1 ≤ XN (t) ≤ 1

}
.

We want to study (2.6) with v (t) =
χc

2
(µ− (t)− µ+ (t)) − 1

2
g (XN (t)). From the previous

section, we know that, with this choice of velocity, (2.6) admits a global solution.
We also define:

ν± (t) = µ0
±e

−koff t +

∫ t

0

kone
koff (s−t)c (s,±1) ds

and the truncation function χµ such that for all x ∈ R:

χµ (x) =

 0 if x < 0,
x if 0 ≤ x ≤M,
1 if x > M.

Then we define:
YN (t) = X0

N +

∫ t

0

χc

2

(
1

ξnucl
− 1

)
(µ− (s)− µ+ (s)) +

1 + ξnucl
2ξnucl

g (XN (s)) ds

and the truncation function χx such that for all x ∈ R:

χx (x) =
 −1 if x < −1,

x if − 1 ≤ x ≤ 1,
1 if x > 1.
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Let F be the mapping defined by:
F : X −→ X

(µ+, µ−, XN ) 7−→ (χµ (ν+) , χµ (ν−) , χx (YN )) .

We denote by Fn the function composed n times with itself, that is Fn = F ◦F ◦· · ·◦F . We
assume that the two solutions c1 and c2 of eq. (2.6) obtained with different inputs (µ1

±, X
1
N , v

1
)

and (µ2
±, X

2
N , v

2
) are obtained with the same initial conditions c0, µ0

+, µ0
− andX0

N .
Proposition 2.2.7. For all

(
µ1
+, µ

1
−, X

1
N

)
,
(
µ2
+, µ

2
−, X

2
N

)
∈ X , there exists C (T ) such that:

∥∥Fn
(
µ1
+, µ

1
−, X

1
N

)
− Fn

(
µ2
+, µ

2
−, X

2
N

)∥∥
X ≤ (C (T )T )

n

n!

∥∥(µ1
+, µ

1
−, X

1
N

)
−
(
µ2
+, µ

2
−, X

2
N

)∥∥
X .

Proof. Let (µ1
+, µ

1
−, X

1
N

), (µ2
+, µ

2
−, X

2
N

) be two elements of X . We have:∥∥F (µ1
+, µ

1
−, X

1
N

)
− F

(
µ2
+, µ

2
−, X

2
N

)∥∥2
X

=

∫ T

0

(
χµ

(
ν1+ (t)

)
− χµ

(
ν2+ (t)

))2
dt

+

∫ T

0

(
χµ

(
ν1− (t)

)
− χµ

(
ν2− (t)

))2
dt

+

∫ T

0

(
χx
(
Y 1
N (t)

)
− χx

(
Y 2
N (t)

))2
dt

First, since χx is a 1-lipschitz function, we have, for all t ∈ [0, T ]:(
χx
(
Y 1
N (t)

)
− χx

(
Y 2
N (t)

))2 ≤
(
Y 1
N (t)− Y 2

N (t)
)2
.

Using the expression of YN and the Cauchy-Schwarz inequality, we have:(
χx
(
Y 1
N (t)

)
− χx

(
Y 2
N (t)

))2
≤ χ2

2

(
1

ξnucl
− 1

)2

t

(∫ t

0

(
µ1
− (s)− µ2

− (s)
)2

ds+

∫ t

0

(
µ1
+ (s)− µ2

+ (s)
)2

ds

)
+

(1 + ξnucl)
2

2ξ2nucl
t

∫ t

0

(
g
(
X1

N (s)
)
− g

(
X2

N (s)
))2

ds.

g is a differentiable function and its derivative is continuous, then g is a lipshitz function over
[−1, 1]. There exists C1 > 0 a constant such that:(

χx
(
Y 1
N (t)

)
− χx

(
Y 2
N (t)

))2
≤ C1t

∫ t

0

(
µ1
− (s)− µ2

− (s)
)2

+
(
µ1
+ (s)− µ2

+ (s)
)2

+
(
X1

N (s)−X2
N (s)

)2
ds.

Secondly, since χµ is a 1-lipschitz function, we have, for all t ∈ [0, T ]:(
χµ

(
ν1+ (t)

)
− χµ

(
ν2+ (t)

))2
+
(
χµ

(
ν1− (t)

)
− χµ

(
ν2− (t)

))2
≤
(
ν1+ (t)− ν2+ (t)

)2
+
(
ν1− (t)− ν2− (t)

)2
.

We have:
(
ν1± (t)− ν2± (t)

)2
=

(∫ t

0

kone
koff (s−t) (c1 (s,±1)− c2 (s,±1)) ds

)2

.
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Using Cauchy-Schwarz inequality, we have:(∫ t

0

kone
koff (s−t) (c1 (s,±1)− c2 (s,±1)) ds

)2

≤
(∫ t

0

kone
koff (s−t) |c1 (s,±1)− c2 (s,±1)| ds

)2

≤ k2on

(∫ t

0

|c1 (s,±1)− c2 (s,±1)|2

c1 (s,±1) + c2 (s,±1)
ds

)(∫ t

0

e2koff (s−t) (c1 (s,±1) + c2 (s,±1)) ds

)

≤ k2on

(∫ t

0

|c1 (s,±1)− c2 (s,±1)|2

c1 (s,±1) + c2 (s,±1)
ds

)(∫ t

0

c1 (s,±1) + c2 (s,±1) ds

)
.

Using lemma 2.2.5, we have:(∫ t

0

kone
koff (s−t) (c1 (s,±1)− c2 (s,±1)) ds

)2

≤ 4k2on

(∫ t

0

∆h (c1 (s,±1) , c2 (s,±1)) ds

)(∫ t

0

c1 (s,±1) + c2 (s,±1) ds

)
.

Using the boundary condition of (2.4) and the constraint on the total quantity of markers, it
follows:(∫ t

0

kone
koff (s−t) (c1 (s,±1)− c2 (s,±1)) ds

)2

≤ 8konkoff M (1 + t)

∫ t

0

∆h (c1 (s,±1) , c2 (s,±1)) ds.

Integrating the inequality of lemma 2.2.6, we have:
dG (c1, c2) (t)− dG (c1, c2) (0)

≤
∫ t

0

koff
(
∆h

(
µ1
+ (s) , µ2

+ (s)
)
+∆h

(
µ1
− (s) , µ2

− (s)
))

ds

−
∫ t

0

kon (∆h (c1 (s, 1) , c2 (s, 1)) + ∆h (c1 (s,−1) , c2 (s,−1))) ds

− 3

4

∫ t

0

∫ 1

−1

c1 (s, x) |∂x log q1 (s, x)|2 + c2 (s, x) |∂x log q2 (s, x)|2 dxds

+
1

2

∫ t

0

(
v1 (s)− v2 (s)

)2 ∫ 1

−1

cm (s, x) dxds.

Since the initial conditions are the same, we have dG (c1, c2) (t) ≥ 0 and dG (c1, c2) (0) = 0.
It leads to:

kon

∫ t

0

∆h (c1 (s, 1) , c2 (s, 1)) + ∆h (c1 (s,−1) , c2 (s,−1)) ds

≤ koff

∫ t

0

(
∆h

(
µ1
+ (s) , µ2

+ (s)
)
+∆h

(
µ1
− (s) , µ2

− (s)
))

ds

+
1

2

∫ t

0

(
v1 (s)− v2 (s)

)2 ∫ 1

−1

cm (s, x) dx ds.
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Using the result of lemma 2.2.5, we have:
∆h

(
µ1
± (s) , µ2

± (s)
)
≤ ekoffs

4µ0
±

(
µ1
± (s)− µ2

± (s)
)2
.

Using the expression of v, we have:∫ t

0

(
v1 (s)− v2 (s)

)2 ∫ 1

−1

cm (s, x) dx ds

≤M

∫ t

0

χ2
((
µ1
− (s)− µ2

− (s)
)2

+
(
µ1
+ (s)− µ2

+ (s)
)2)

+ 2
(
g
(
X1

N (s)
)
− g

(
X2

N (s)
))2

ds

≤ C2

∫ t

0

(
µ1
− (s)− µ2

− (s)
)2

+
(
µ1
+ (s)− µ2

+ (s)
)2

+
(
X1

N (s)−X2
N (s)

)2
ds,

with C2 > 0.
Hence:
kon

∫ t

0

∆h (c1 (s, 1) , c2 (s, 1)) + ∆h (c1 (s,−1) , c2 (s,−1)) ds

≤ C3 (t)

∫ t

0

(
µ1
− (s)− µ2

− (s)
)2

+
(
µ1
+ (s)− µ2

+ (s)
)2

+
(
X1

N (s)−X2
N (s)

)2
ds,

with C3 (t) = max
(
koff

ekoff t

4µ0
+
, koff

ekoff t

4µ0
−
, C2

).
We thus have:(
χµ

(
ν1+ (t)

)
− χµ

(
ν2+ (t)

))2
+
(
χµ

(
ν1− (t)

)
− χµ

(
ν2− (t)

))2
≤ konC3 (t)

∫ t

0

(
µ1
− (s)− µ2

− (s)
)2

+
(
µ1
+ (s)− µ2

+ (s)
)2

+
(
X1

N (s)−X2
N (s)

)2
ds.

Finally, we have:∥∥F (µ1
+, µ

1
−, X

1
N

)
− F

(
µ2
+, µ

2
−, X

2
N

)∥∥
X

≤ K (T )

∫ T

0

∫ t

0

(
µ1
+ (s)− µ2

+ (s)
)2

+
(
µ1
− (s)− µ2

− (s)
)2

+
(
X1

N (s)−X2
N (s)

)2
dsdt,

which leads to the result.

2.3 . Stationary solutions

In this section, we compute the stationary states of the model (2.4). To do this, we set
∂tc = 0, d

dtµ± = 0 and d
dtXN = 0 and solve the associated spatial ODE. We find that there

exists one to three stationary states that are not in motion and up to six that are steadily
moving.
Proposition 2.3.1. Themodel admits a stationary state which is non-polarised, symmetric and not
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in motion given by:

c∞ (x) =
M

2
(
1 + kon

koff

) , x ∈ [−1, 1] ,

µ∞
+ = µ∞

− =
M

2
(
1 + koff

kon

) ,
X∞

N = 0.

(2.8a)

(2.8b)
(2.8c)

If ε is sufficiently small, then the model admits two additional stationary states.

Proof. The stationary problem associated with eq. (2.4) is as follows:

c′′ (x) = 0 x ∈ ]−1, 1[ ,

c′ (±1) = 0,

konc (±1)− koffµ± = 0,

µ− = µ+,

XN ∈ [−1, 1] s.t. g (XN ) = 0,

M =

∫ 1

−1

c (x) dx+ µ− + µ−.

(2.9a)
(2.9b)
(2.9c)
(2.9d)
(2.9e)
(2.9f)

From eqs. (2.9a) and (2.9b) we deduce that c is constant over [−1, 1]. We set for all x ∈ [1, 1]:
c (x) = c1.

It follows from eq. (2.9c) that:
µ+ = µ− =

kon
koff

c1.

Using the total mass constraint (2.9f), we deduce that:
c1 =

M

2
(
1 + kon

koff

) .
Finally, g is an odd function. ThenXN = 0 is solution of g (XN ) = 0. Moreover, graphically

for ε small enough and β > 1, there exists xM ∈ ]−1, 0[ and xm ∈ ]0, 1[ with xm = −xM such
that we have:

x

g

−1 xM 0 xm 1

< 0< 0

> 0> 0

< 0< 0

> 0> 0

0

then the equation g (XN ) = 0 admits three solutions x0 ∈ ]xm, 1[, −x0 and 0 and there exists
three stationary states with a non-polarised distribution of the markers. Otherwise, for ε not
small enough, g is an increasing function and the equation g (XN ) = 0 admits an unique
solutionXN = 0.
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Proposition 2.3.2. The model (2.3) admits up to six stationary solutions that are steadily moving
ifM is such thatM >

1 + ξnucl
aχc

(
1 +

koff
kon

)
.

For the sequel we introduce the following notations. Let η =
aχc

1 + ξnucl
. Let Q be the

function defined for all x ∈ R by:

Q (x) =


koff

(
1− e−2ηx

)
+ ηkon x

(
1 + e−2ηx

)
ηkon (1− e−2ηx)

if x ̸= 0,

1

η

(
koff
kon

+ 1

)
if x = 0.

(2.10)

Sketch of the proof. A travelling wave of the model (2.3), if it exists, satisfies:

c′′ (x) + auc′ (x) = 0 x ∈ ]−1, 1[ ,

c′ (±1) + auc (x) = 0,

konc (±1)− koffµ± = 0,

u = χc
1

1 + ξnucl
(µ− − µ+) ,

XN ∈ [−1, 1] s.t. g (XN ) = −χc
1− ξnucl
1 + ξnucl

(µ− − µ+) ,

M =

∫ 1

−1

c (x) dx+ µ− + µ−,

(2.11a)
(2.11b)
(2.11c)
(2.11d)
(2.11e)
(2.11f)

with u ̸= 0.
We deduce from eqs. (2.11a) and (2.11b) that for all x ∈ [−1, 1], we have:

c′ (x) + auc (x) = 0.

Thus for all x ∈ [−1, 1], we have:
c (x) = c (−1) e−au(x+1).

We also have:
µ± =

kon
koff

c (±1) .

Thus setting δµ = µ− − µ+, it follows:
δµ =

kon
koff

(c (−1)− c (1)) =
kon
koff

c (−1)
(
1− e−2au

)
,

which gives:
c (−1) =

δµ koff
kon (1− e−2au)

.

Using the expression of u given by eq. (2.11d) and the definition of η, we then have for all
x ∈ [−1, 1] that:

c (x) =
δµ koff

kon (1− e−2η δµ)
e−η δµ(x+1).

Thus the constraint on the total quantity of markers eq. (2.11f) rewrites:
M = Q (δµ) .
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It leads that a travelling wave solution of eq. (2.3), if it exists, is characterised by:

c (x) =
δµ koff

kon (1− e−2η δµ)
e−η δµ(x+1) x ∈ [−1, 1] ,

µ+ =
δµ

1− e−2η δµ
,

µ− =
δµe−2η δµ

1− e−2η δµ
,

M = Q (δµ) ,

g (XN ) = −χc (ξnucl − 1)

1 + ξnucl
δµ ,

(2.12a)
(2.12b)
(2.12c)
(2.12d)
(2.12e)

with δµ ̸= 0. Therefore, it is sufficient to determine whether such a δµ exists.
Q is an even function. Studying the sign of the derivative of Q, we have:

x

Q

−∞ 0 +∞

+∞+∞

1
η

(
1 + koff

kon

)
1
η

(
1 + koff

kon

)
+∞+∞

Thus, ifM > 1
η

(
1 + koff

kon

), there exists exactly two solutions δµs and−δµs such thatQ (δµs) =

Q (−δµs) =M with δµs > 0.
We recall that g is an odd function and that graphically, we have:
x

g

−1 xM 0 xm 1

< 0< 0

> 0> 0

< 0< 0

> 0> 0

0

If −χc (ξnucl − 1)

1 + ξnucl
δµs < min (g (xm) , g (−1)), then there exists no XN ∈ [−1, 1] such that

g (XN ) = −χc (ξnucl − 1)

1 + ξnucl
δµs and eq. (2.9) admits no travelling waves solutions. Otherwise, as-

sociate to δµs, there exists up to three solutions to the equation g (XN ) = −χc (ξnucl − 1)

1 + ξnucl
δµs

and then up to three stationary states associated to −δµs.
Remark 2.3.3. We note, in particular, that there exists travelling waves where the markers are
polarised towards the rear of the cell with the nucleus at the front of the cell.

2.4 . Numerical study

2.4.1 . Numerical scheme
In this section, we detail the numerical scheme used to simulate the model (2.4). This

numerical scheme is obtained after a semi-implicit discretization in time and a finite volume
approximation in space.

59



Grids definition Wewant to simulate eq. (2.4) over the time interval [0, T ], where T > 0. Let
∆t > 0 be the time step. We discretize [0, T ] by the set of points {tn = n∆t, n ∈ {0, . . . , N}},
where N = ⌊ T

∆t⌋.Let J ∈ N. We discretize the space interval [−1, 1] into J + 1 intervals of the same length
∆x. We denote by (xj− 1

2

)
j∈{0,...,J+1}

a regular mesh of [−1, 1] and we set:
x− 1

2
= −1,

∆x = x 1
2
− x− 1

2
,

xj =
xj− 1

2
+ xj+ 1

2

2
= −1 +

(
j +

1

2

)
∆x j ∈ {0, . . . , J} .

Finite volume approximation For all n ∈ {0, . . . , N} and j ∈ {0, . . . , J}, we denote cnj an
approximation of the function c at the time tn and at position xj . We set:

cnj =
1

∆x

∫
Λj

c (tn, x) dx.

Similarly, we denote by µn
+ an approximation of µ+ (tn), µn

− an approximation of µ− (tn),
Xn

N an approximation ofXN (tn) and un an approximation of u (tn) .
First, we write the semi-implicit Euler scheme in time associate to (2.4).
For all n ∈ {0, . . . , N − 1}, we have:

c
(
tn+1, x

)
− c (tn, x)

∆t
= ∂x

[
∂xc

(
tn+1, x

)
+ aunc (tn, x)

]
x ∈ [−1, 1] ,

∂xc
(
tn+1,±1

)
+ aunc

(
tn+1,±1

)
= ∓

µn+1
± − µn

±
∆t

,

µn+1
± − µn

±
∆t

= konc (t
n,±1)− koffµ

n+1
± ,

un =
χc

2

(
µn
− − µn

+

)
− 1

2
g (Xn

N ) ,

Xn+1
N −Xn

N

∆t
=

(
1

ξnucl
− 1

)
un +

1

ξnucl
g (Xn

N ) .

(2.13a)
(2.13b)
(2.13c)
(2.13d)
(2.13e)

Then integrating eq. (2.13a) over Λj for j ∈ {1, . . . , J − 1} and using an upwind approxi-
mation for the transport term we get:
cn+1
j = cnj +

∆t

∆x2
[
cn+1
j+1 − 2cn+1

j + cn+1
j−1

]
+ a

∆t

∆x

[
Aup

(
un, cnj , c

n
j+1

)
−Aup

(
un, cnj−1, c

n
j

)]
,

where
Aup (v, x+, x−) =

{
vx+ if v ≥ 0,
vx− if v < 0.

For j = 0 and j = J , we also integrate eq. (2.13a) and we use the boundary conditions
(2.13b) to obtain:

cn+1
0 = cn0 +

∆t

∆x2
[
cn+1
1 − cn+1

0

]
+ a

∆t

∆x
Aup (un, cn0 , c

n
1 )−

1

∆x

(
µn+1
− − µn

−
)
,

cn+1
J = cnJ − ∆t

∆x2
[
cn+1
J − cn+1

J−1

]
− a

∆t

∆x
Aup

(
un, cnJ−1, c

n
J

)
− 1

∆x

(
µn+1
+ − µn

+

)
.
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Moreover we have:

µn+1
− =

1

1 +∆t koff

(
µn
− +∆t konc

n
0

)
,

µn+1
+ =

1

1 +∆t koff

(
µn
+ +∆t konc

n
J

)
,

un =
χc

2

(
µn
− − µn

+

)
− 1

2
g (Xn

N ) ,

Xn+1
N = Xn

N +∆t

(
1

ξnucl
− 1

)
un +

∆t

ξnucl
g (Xn

N ) .

(2.14a)
(2.14b)
(2.14c)
(2.14d)

Towards a matrix formulation We store the approximate value of c in [−1, 1] at time tn in
a vector Cn, with n ∈ {0, . . . , N}. We have

Cn =

c
n
0...
cnJ

 .
We introduce the following notations. LetD be the following diffusion matrix:

D =
∆t

∆x2



−1 1 0 · · · · · · 0

1 −2 1
. . . ...

0
. . . . . . . . . . . . ...... . . . . . . . . . . . . 0... . . . . . . −2 1

0 · · · · · · 0 1 −1


.

For all n ∈ {0, . . . , N − 1}, let An be the following transport matrix:

An = a
∆t

∆x
max (un, 0)



1 0 · · · · · · 0
−1 1 0 · · · 0

0
. . . . . . . . . ...... . . . . . . 1 0

0 · · · 0 −1 0



+ a
∆t

∆x
min (un, 0)



0 1 0 · · · 0

0 −1
. . . . . . ...... . . . . . . . . . 0

0 · · · 0 −1 1
0 · · · · · · 0 −1

 .

For all n ∈ {0, . . . , N − 1}, let Bn be the following vector:

Bn =
1

∆x


µn+1
− − µn

−
0...
0

µn+1
+ − µn

+

 .
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Then, in the matrix formulation, eqs. (2.14a) to (2.14c) rewrites:
Cn+1 = Cn +D · Cn+1 +An · Cn −Bn,

which leads to:
Cn+1 = (Id−D)

−1
(Cn +An · Cn −Bn) . (2.15)

Numerical scheme The numerical scheme to simulate eq. (2.4) is given by the following
algorithm:
Algorithm 2.1 : Numerical scheme to simulate eq. (2.4) using a semi-implicit Euler ap-proximation in time and a finite volume approximation in space.
1. Initialisation.

• c0j =
1

∆x

∫
Λj

c0 (x) dx,
• µ0

± = µ± (0),
• X0

N = XN (0).
2. Time iteration. For n ∈ {0, . . . , N − 1}, do:

(a) Computation of un using eq. (2.14c):
un =

χc

2

(
µn
− − µn

+

)
− 1

2
g (Xn

N ) .

(b) Computation of µn+1
− using eq. (2.14a):

µn+1
− =

1

1 +∆t koff

(
µn
− +∆t konc

n
0

)
.

.
(c) Computation of µn+1

+ using eq. (2.14b):
µn+1
+ =

1

1 +∆t koff

(
µn
+ +∆t konc

n
J

)
.

(d) Computation ofXn+1
N using eq. (2.14d):

Xn+1
N = Xn

N +∆t

(
1

ξnucl
− 1

)
un +

∆t

ξnucl
g (Xn

N ) .

(e) Computation of the matrix An and the vector Bn in order to compute Cn+1 usingeq. (2.15):
Cn+1 = (Id−D)

−1
(Cn +An · Cn −Bn) .

Remark 2.4.1. We can remark that this scheme preserves the conservation of the mass. Indeed,
for all n ∈ {0, . . . , N}, we have

J∑
j=0

cnj + µn
− + µn

− =

J∑
j=0

c0j + µ0
− + µ0

−.

62



2.4.2 . Numerical results
By implementing the algorithm 2.1 in Python, we can run numerical simulations of the

model (2.4). In this section we present the numerical results obtained. First, we illustrate that,
using the numerical scheme, we can find stationary states and solutions moving at constant
velocity in accordance with proposition 2.3.1 and proposition 2.3.2. Once these verifications
have been carried out, we show that themodel allows us to highlight the action of the nucleus
in cell polarisation and migration.
Numerical verifications. To begin, we verify that the numerical scheme captures the un-
polarised stationary state (2.8). To do this, we fix the discretization by fixing the time step ∆t

and the space step∆x and take the following initial condition:

c0j =
M

2
(
1 + kon

koff

) j ∈ {0, . . . , J} ,

µ0
+ = µ0

− =
M

2
(
1 + koff

kon

) ,
X0

N = 0,

(2.16a)

(2.16b)
(2.16c)

which corresponds to the discretization of the stationary state (2.8).
Whatever the value of the other parameters, we observe that (2.16) is a stationary state

of the numerical scheme (see fig. 2.1 for an example). We observe that the velocity of the cell
remains constant over time and is equal to zero. The position of the nucleus remains stable
and stays at the center of the cell. The initial quantity of markers on the membrane is also
maintained over time.

We also verify that when ε is sufficiently small the numerical scheme captures the others
unpolarised stationary states. After setting the discretization and parameter values, we use a
dichotomy algorithm to solve the equation g (y) = 0 with y ∈ [−1, 0). We then set the initial
discrete condition with:

c0j =
M

2
(
1 + kon

koff

) j ∈ {0, . . . , J} ,

µ0
+ = µ0

− =
M

2
(
1 + koff

kon

) ,
X0

N = y.

(2.17a)

(2.17b)
(2.17c)

We observe that (2.17) is a stationary state of the numerical scheme (see fig. 2.2 for an
example). Indeed the velocity of the cell remains constant over time and is equal to zero. The
position of the nucleus remains stable and stays at its initial position. The initial quantity of
markers on the membrane is also maintained over time. We can note that the scheme also
capture the third stationary state where the initial nucleus position is defined byX0

N = −y.
Next, we check that the numerical schemeaccurately captures the steadymotion solutions

(2.12). To do this, first we set the discretization by fixing ∆t and ∆x and choose parameters.
Then we use a dichotomy algorithm to find ν such thatQ (ν) =M and we find y ∈ [−1, 1] such
that g (y) = −χc(ξnucl−1)ν

1+ξnucl
. We then choose as initial condition for the numerical scheme the

63



(a) Evolution of the cell velocity. (b) Evolution of the nucleus position in the cellframe of reference.

(c) Evolution of the markers quantity at the mem-brane. (d) Evolution of the total quantity of markers.

Figure 2.1: Example of capturing the unpolarised stationary state with the numerical
scheme. The graph on top left (figure (a)) represents the time evolution of the cell velocity. The
velocity is constant and equal to zero. The graph on the top right (figure (b)) represents the time
evolution of the nucleus position in the cell frame of reference. The nucleus remains at the centre
of the cell. The graph on the bottom left (figure (c)) represents the time evolution of the markers
quantity at the membrane. We can see that at both ends of the cell the quantity of markers is
constant over time and equal. The cell therefore remains unpolarised. The graph on the bottom right
(figure (d)) represents the time evolution of the total quantity of markers which remains conserved
over time.
The results presented here are obtained with the parameters∆t = 0.00001,∆x = 0.004, the initial
condition given by (2.16), M = 2, a = 1, χc = 2, β = 2, δ = 1, ε = 0.1, kon = 1, koff = 1 and
ξnucl = 1.
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(a) Evolution of the cell velocity. (b) Evolution of the nucleus position in the cellframe of reference.

(c) Evolution of the markers quantity at the mem-brane. (d) Evolution of the total quantity of markers.

Figure 2.2: Example of capturing the other stationary state with the numerical scheme.
The graph on top left (figure (a)) represents the time evolution of the cell velocity. The velocity is
constant and equal to zero. The graph on the top right (figure (b)) represents the time evolution
of the nucleus position in the cell frame of reference. The nucleus remains at its initial position.
The graph on the bottom left (figure (c)) represents the time evolution of the markers quantity at
the membrane. We can see that at both ends of the cell the quantity of markers is constant over
time and equal. The graph on the bottom right (figure (d)) represents the time evolution of the total
quantity of markers which remains conserved over time.
The results presented here are obtained with the parameters∆t = 0.00001,∆x = 0.004, the initial
condition given by (2.17), M = 2, a = 1, χc = 2, β = 2, δ = 1, ε = 0.1, kon = 1, koff = 1 and
ξnucl = 1. With the parameters chosen, we have that the solutions of the equation g (x) = 0 are
approached by x ∈ {0,−0.94868, 0.94868}, we choose for the initial conditionX0

N = −0.94868.
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following one: 

X0
N = y,

c0j =
1

∆x

∫
Λj

koffνe
−ην(x+1)

kon (1− e−2ην)
dx j ∈ {0, . . . , J} ,

µ0
+ =

ν

1− e−2ην
,

µ0
− =

νe−2ην

1− e−2ην
,

(2.18a)
(2.18b)
(2.18c)
(2.18d)

which corresponds to the discretization of eq. (2.12).
We observe that as soon as there exists ν such that Q (ν) = M and y ∈ [−1, 1] such that

g (y) = −χc(ξnucl−1)ν
1+ξnucl

, then (2.18) is a steady motion solution of the numerical scheme (see
fig. 2.3 for an example). We observe that the cell’s velocity remains constant over time and is
equal to its initial value. The nucleus position is maintained over time. Additionally, the initial
quantity of markers on the membrane is preserved, the cell remains polarised. Moreover the
scheme also capture the second steady motion solution associate to −ν. We can also note
that the nucleus is place at the rear of the cell.

Thus, the numerical scheme algorithm 2.1 proposed to simulate the model (2.4) produces
results consistent with the study of the model.
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(a) Evolution of the cell velocity. (b) Evolution of the nucleus position in the cellframe of reference.

(c) Evolution of the markers quantity at the mem-brane. (d) Evolution of the total quantity of markers.

Figure 2.3: Example of capturing the polarised steady motion solutions with the numer-
ical scheme. The graph on top left (figure (a)) represents the time evolution of the cell velocity. The
velocity is constant and equal to its initial value. The graph on the top right (figure (b)) represents
the time evolution of the nucleus position in the cell frame of reference. The nucleus remains at its
initial position. The graph on the bottom left (figure (c)) represents the time evolution of the mark-
ers quantity at the membrane. We can see that at both ends of the cell the quantity of markers is
constant over time. The cell therefore remains polarised. The graph on the bottom right (figure (d))
represents the time evolution of the total quantity of markers which remains conserved over time.
The results presented here are obtained with the parameters ∆t = 0.00001, ∆x = 0.004, the
initial condition given by (2.18), M = 4, a = 1, χc = 2, β = 2, δ = 1, ε = 0.1, kon = 1,
koff = 1 and ξnucl = 1. With the parameters chosen, we have that the solutions of the equa-
tion Q (ν) = M are approached by ν ∈ {−2.9847, 2.9847}, we choose for the initial condition
ν = 2.9847. With this value of ν, the solutions of the equation g (y) = −χc(ξnucl−1)ν

1+ξnucl
are ap-

proached by y ∈ {0,−0.94868}, we choose for the initial conditionX0
N = −0.94868.
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Numerical illustration of the role of the nucleus. We intend now to highlight the impact
of the nucleus on the trajectories. First, we illustrate that a perturbation of the symmetric
stationary state can lead to cell polarisation and motion. In this case, we illustrate that the
polarisation phenomenon seems to be initiated by the displacement of the nucleus out of the
centre of the cell, in the area that will become the rear of the cell. Secondly, we illustrate that
the position of the nucleus at the rear of the cell is not always necessary for the cell to be in
motion. We illustrate this using a numerical result where, although the nucleus is at the centre
of the cell, the cell is moving.

We therefore consider a perturbation of the symmetrical stationary state given by:

c0j =

 M

2
(
1 + kon

koff

) +Xj

1 M

2

(
1+

kon
koff

)+Xj≥0 +
M

2
(
1 + kon

koff

)1 M

2

(
1+

kon
koff

)+Xj<0,

µ0
± =

 M

2
(
1 + koff

kon

) +X±

1 M

2

(
1+

koff
kon

)+X±≥0 +
M

2
(
1 + koff

kon

)1 M

2

(
1+

koff
kon

)+X±<0,

X0
N = 0,

(2.19a)

(2.19b)
(2.19c)

with j ∈ {0, . . . , J},Xj a realisation of the random variable Y ∼ N (0, 0.01), andX± a realisa-
tion of the random variable Z ∼ N (0, 0.001).

We choose two ranges of parameters. We observe that for the first choice of parameters,
illustrated in fig. 2.4, the cell polarises and becomes in motion. First, we observe that the
nucleus moves away from the centre rapidly. This leads to the definition of the front and
rear of the cell. We observe that the velocity of the cell increases. At the front of the cell the
quantity ofmarkers decreases and at the rear of the cell it increases. Once the cell is polarised,
it retains its polarisation and moves at a constant velocity. We then observe the migration of
the cell. It is interesting to note that we can clearly see the polarisation phases in this numerical
simulation.

For the second choice of parameters, shown in fig. 2.5, we can see that the cell is initially
unpolarised. After a certain time, the velocity of the cell increases. At the same time, the
quantity of markers at the rear of the cell increases and the quantity at the front of the cell
decreases. The nucleus remains in the centre of the cell. We can therefore see that the cell
may be polarised and moving even if the nucleus remains at the centre of the cell. However,
we illustrate in fig. 2.6 that if the nucleus is initially located outside the centre of the cell, then
the polarisation of the cell takes place faster and the initial position of the nucleus defines the
rear of the cell.
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(a) Evolution of the cell velocity. (b) Evolution of the nucleus position in the cellframe of reference.

(c) Evolution of the markers quantity at the mem-brane. (d) Evolution of the total quantity of markers.

Figure 2.4: Illustration of cell polarisation leading tomigration. The graph on top left (figure(a)) represents the time evolution of the cell velocity. We observe that the velocity increases and
then becomes constant. The graph on the top right (figure (b)) represents the time evolution of
the nucleus position in the cell frame of reference. The nucleus moves to the rear of the cell to a
position, after a certain time the nucleus maintains its position. The graph on the bottom left (figure(c)) represents the time evolution of the markers quantity at the membrane. The quantity at the rear
of the cell increases and the quantity at the front decreases. The graph on the bottom right (figure(d)) represents the time evolution of the total quantity of markers which remains conserved over
time. We can split the dynamic into two phases: until t = 60 the cell polarises and then moves at
constant velocity.
The results presented here are obtained with the parameters ∆t = 0.0001, ∆x = 0.004, the initial
condition given by (2.19), M = 3, a = 1, χc = 2, β = 3, δ = 0.3, ε = 0.1, kon = 1, koff = 1 and
ξnucl = 1.5.
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(a) Evolution of the cell velocity. (b) Evolution of the nucleus position in the cellframe of reference.

(c) Evolution of the markers quantity at the mem-brane. (d) Evolution of the total quantity of markers.

Figure 2.5: Illustration of cell migration with the nucleus located at the cell centre. The
graph on top left (figure (a)) represents the time evolution of the cell velocity. The velocity increases
and then becomes constant. The graph on the top right (figure (b)) represents the time evolution
of the nucleus position in the cell frame of reference. The nucleus remains at the cell centre. The
graph on the bottom left (figure (c)) represents the time evolution of the markers quantity at the
membrane. The quantity at the rear of the cell increases and the quantity at the front decreases.
The graph on the bottom right (figure (d)) represents the time evolution of the total quantity of
markers which remains conserved over time.
The results presented here are obtained with the parameters∆t = 0.00001,∆x = 0.004, the initial
condition given by (2.19), M = 4, a = 1, χc = 2, β = 2, δ = 1, ε = 0.1, kon = 1, koff = 1 and
ξnucl = 1.
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(a) Evolution of the cell velocity. (b) Evolution of the nucleus position in the cellframe of reference.

(c) Evolution of the markers quantity at the mem-brane. (d) Evolution of the total quantity of markers.

Figure 2.6: Illustration that the position of the nucleus outside the centre of the cell
allows rapid polarisation of the cell. The graph on top left (figure (a)) represents the time evo-
lution of the cell velocity. The velocity increases rapidly and then becomes constant. The graph on
the top right (figure (b)) represents the time evolution of the nucleus position in the cell frame of
reference. The nucleus returns to the centre of the cell. The graph on the bottom left (figure (c))
represents the time evolution of the markers quantity at the membrane. The quantity at the rear
of the cell increases and the quantity at the front decreases. We observe that the nucleus initial
position defines the rear of the cell. The graph on the bottom right (figure (d)) represents the time
evolution of the total quantity of markers which remains conserved over time.
The results presented here are obtained with the parameters∆t = 0.00001,∆x = 0.004, the initial
condition given by c0j = M

2
(
1+ kon

koff

) for j ∈ {0, . . . , J}, µ0
+ = µ0

− = M

2
(
1+

koff
kon

) , and X0
N = 0.5 ,

M = 4, a = 1, χc = 2, β = 2, δ = 1, ε = 0.1, kon = 1, koff = 1 and ξnucl = 1.
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Conclusion. The numerical results highlight that the model illustrates the phenomenon of
polarisation is necessary for cell migration. They also show that the position of the nucleus at
the rear of the cell enables rapid polarisation. However, the existence of steady motion solu-
tions with the nucleus positioned at the centre of the cell that seems stable suggests that the
position of the nucleus outside the centre of the cell does not alone ensure cell polarisation.
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3 - Numerical simulations of the cell migration problem on a
disk with space-homogeneous advection velocity

In this chapter, in collaboration with Christèle Etchegaray and Nicolas Meunier, we enrich
the rigid model analogous to the model developed in Lavi et al. (2020) by adding coloured
noise in space to the advection field of the transport-diffusion equation concerning the mark-
ers. We develop a finite element numerical scheme to simulate it. After verifying that the
numerical scheme gives results in agreement with the theoretical results shown by Lavi et al.
(2020) and Meunier and Souplet (2023), we illustrate that numerically the simulated trajecto-
ries satisfy the UCSP law and also that we capture the three trajectory regimes. This work will
be supplemented in the future by a finite-volume numerical scheme.

3.1 . Modelling

In this section, wederive from the cellmotilitymodel introduced in Lavi et al. (2020) amodel
of cell motility where the cell is rigid. The model introduced in Lavi et al. (2020) corresponds
to model (1.1) when the nucleus and its dynamics are not specifically taken into account in the
modelling, the substrate is homogeneous and the environment presents neither obstacles nor
external signals and the effects of undercooling and noise are neglected. Before deducing a
rigid model analogous to the model of Lavi et al. (2020), we recall it.

The cell domain is described by the connected open set Ω (t) ⊂ R2, where t > 0 denotes
the current time. The cell is filled with an incompressible fluid of velocity u and pressure P .
Inside this fluid, there is the presence of rear markers of density c. The dimensionless model
is given by: 

u+∇P = 0 in Ω (t) ,

div (u) = 0 in Ω (t) ,

P = γκ+ χcfact (c) on ∂Ω (t) ,

Vn = u · n on ∂Ω (t) ,

∂tc = div (∇c− (1− a)uc) in Ω (t) ,

(∇c+ auc) · n = 0 on ∂Ω (t) ,

(3.1a)
(3.1b)
(3.1c)
(3.1d)
(3.1e)
(3.1f)

where χc > 0 and fact satisfies the assumptions (1.12). The problem (3.1) is complemented with
an initial condition given by

c(0,x) = cin(x) in Ω (0) , (3.2)
where cin is given. The total quantity of markers is constant in time and we denote it byM :

M =

∫
Ω(t)

c (t,x) dx.

The force balance on the system reads:
ucm (t) =

−χc

|Ω (t)|

∫
∂Ω(t)

fact (c (t,x))ndσ, (3.3)
where ucm is the velocity of the center of mass.
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We now assume the cell to have a circular shape: Ω (t) is a disk of radius R > 0. We
assume that the cell moves at the velocity of the centre of mass eq. (3.3) and in this case, the
rigid model analogous to the deformable model (3.1) is given by:

∂tc = div (∇c− (1− a)uc) in Ω (t) ,

(∇c+ auc) · n = 0 on ∂Ω (t) ,

u (t) =
−χc

|Ω (t)|

∫
∂Ω(t)

fact (c (t,x))n dσ.

Changing of frame of reference to the one of the cell we rewrite the rigid model in the
following way: 

∂tc = div (∇c+ auc) in Ω0,

(∇c+ auc) · n = 0 on ∂Ω0,

u (t) =
−χc

|Ω0|

∫
∂Ω(t)

fact (c (t,x))ndσ,

(3.4a)
(3.4b)
(3.4c)

where Ω0 = Ω(0) = B (0, R).
In addition to this modelling, we take into account stochastic fluctuations in cell motility

by proceeding as in section 1.3.7 (see also Boulakia et al. (2015)) and adding a coloured noise
to the advection field of the marker transport-diffusion equation. Thus, in the cell frame of
reference, we have:

∂tc = div
(
∇c+ auc− αẆQ

t c
) in Ω0,(

∇c+ auc− αẆQ
t c
)
· n = 0 on ∂Ω0,

u (t) =
−χc

|Ω0|

∫
∂Ω0

fact (c (t,x))n dσ,

(3.5a)
(3.5b)
(3.5c)

with α > 0 and ẆQ
t a Q-Wiener process on Ω0 (see definition 1.3.2 for a definition) which is aspace-correlated noise. This choice is motivated to avoid non trivial effects that can appears

when we discretize our model (Walsh, 2005; Hairer et al., 2012).

3.2 . Finite element scheme

In this section, wewrite a finite element scheme. This schemewill be implement in FreeFem
++ (Hecht, 2012).

3.2.1 . Discretization of the deterministic part
First we discretize in time the deterministic model (3.4). Let ∆t be the time step. For

n ∈ {0, . . . , Nf} with Nf ∈ N, we denote tn = n∆t, cn (·) an approximation of the function c
at time tn and un an approximation of the cell velocity at time tn. We use a semi-implicit Euler
scheme in time and we have:

cn+1 − cn

∆t
= div

(
∇cn+1 + auncn+1

) in Ω0,(
∇cn+1 + auncn+1

)
· n = 0 on ∂Ω0,

un =
−χc

|Ω0|

∫
∂Ω0

fact (cn (x))ndσ.

(3.6a)
(3.6b)
(3.6c)
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To discretize in space our problem, we use a finite element approximation. Let Th be a tri-
angulation of Ω0. We denote by P2 the set of polynomials of R2 of degrees less or equal to
2. Let Vh =

{
ϕ ∈ H1 (Ω0) | ∀K ∈ Th, ϕ K ∈ P2

} be a finite element set. The finite element
discretization of eq. (3.6) is given by:

∫
Ω0

cn+1 − cn

∆t
φdx =

∫
Ω0

∇cn+1 · ∇φ+ acn+1 un · ∇φdx, ∀φ ∈ Vh,

un+1 =
−χc

|Ω0|

∫
∂Ω0

fact
(
cn+1 (x)

)
ndσ.

(3.7a)
(3.7b)

3.2.2 . Discretization of the noise
We want to run numerical simulations of the model defined by eqs. (3.2) and (3.5) taking

into account the noise. To do so, we will enrich our deterministic scheme (3.7) with the dis-
cretization of the noise done by Boulakia et al. (2015). We denote by ẆQ,n an approximation
of the coloured noise at time tn, n ∈ {1, . . . , Nf}. We set:

ẆQ,n =
WQ

tn −WQ
tn−1

∆t
.

From the definition of WQ
t , we know that ẆQ,n is equal in law to 1√

∆t
WQ

1 and that the{
ẆQ,n

}
1≤n≤Nf

are independent.
Thus we have that the semi-implicit time discretization and finite element discretization in

space of eq. (3.5) reads:
∫
Ω0

cn+1 − cn

∆t
φdx =

∫
Ω0

∇cn+1 · ∇φ+ acn+1

(
un +

α√
∆t

WQ,n
1

)
· ∇φdx, ∀φ ∈ Vh,

un+1 =
−χc

|Ω0|

∫
∂Ω0

fact
(
cn+1 (x)

)
ndσ,

where (WQ,n
1

)
1≤n≤Nf

is a sequence of independent Q-Wiener processes evaluated at time 1.
From Boulakia et al. (2015), we know that a way to approximate the noise and to compute

WQ,n
1 = (ωn

1 , ω
n
2 ) relies on the computation of a covariancematrix. Indeed, let {Pi, 1 ≤ i ≤ Nh}be the set of all the nodes of the triangulation Th, where Nh is the number of nodes of the

triangulation, and {ψi, 1 ≤ i ≤ Nh} be a basis of the Lagrangian P1 finite element. ψi is acontinuous affine function on Ω0 such that for all 1 ≤ i, j ≤ Nh, we have ψi (Pj) = δij . For
k ∈ {1, 2}, the P1 discretization of ωn

k is given by
ωn
k =

Nh∑
i=1

xni ψi.

with {xni , 1 ≤ i ≤ Nh} a realisation of a centred Gaussian vector of covariance matrix Σ. We
have Σ = (q (Pi, Pj))1≤i,j≤Nh

. LetX be a centred Gaussian vector of covariance matrix Σ. We
have

X = SY,

with Y a Gaussian vector such that for all 1 ≤ i ≤ Nh, Yi ∼ N (0, 1) and S such that Σ = SST .
Thus to computeWQ,n

1 , we just have to simulate a realization of a standard Gaussian vector
and to compute the Cholesky decomposition S of the covariance matrix Σ.
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3.2.3 . Numerical scheme
The numerical scheme to simulate model (3.5) is given by:

Algorithm 3.1 : Numerical scheme to simulate the model eq. (3.5) obtained after timediscretization and space discretization with a finite element method.
1. Initialisation: c0 = cin the given initial condition and definition of the mesh.
2. Computation of S the Cholesky decomposition of the covariance matrix Σ.
3. Time iteration:

• Computation ofWQ,n
1 = (Sy1, Sy2) where y1 and y2 are two independentrealisations of a standard Gaussian vector.

• Computation of cn+1 by solving the weak formulation: searching cn+1 such thatfor all φ ∈ Vh we have:∫
Ω0

cn+1 − cn

∆t
φdx =

∫
Ω0

∇cn+1 · ∇φ+ acn+1

(
un +

α√
∆t

WQ,n
1

)
· ∇φdx.

• Deduction of un+1:
un+1 =

−χc

|Ω0|

∫
∂Ω0

fact
(
cn+1 (x)

)
ndσ. (3.8)

3.3 . Simulation outputs

Simulations provide both the molecular concentration in the domain and the cell velocity
over time. In the deterministic case, the time to reach a stationary state is also informative. In
the following, we define two polarization indices that aremonitored in the general case. Then,
we introduce characteristics of single and multiple trajectories in the stochastic case.

3.3.1 . Polarization indices
The indices are based on the molecular concentration at the boundary. More precisely,

let (θk)1≤k≤Ny
be the angular discretization, with θk := k∆θ and Ny = 2π

∆θ . Let ek be the unitvector of direction θk. We define:
• the Relative Standard Deviation (RSD) given by the ratio between the standard devia-
tion of {c̄nNr,k

}1≤k≤Ny
and its mean, normalized by the boundary’s perimeter. More

precisely, writing C̄ = 1
Ny

∑Ny

k=1 c̄
n
Nr,k

, we have that

RSD :=
1

2πRC̄

√√√√ 1

Ny

Ny∑
k=1

|c̄nNr,k
− C̄|2 . (3.9)

• the normalized Mean Resultant Vector of the sample, given by

RV :=
1∑Ny

i=1 c̄
n
Nr,k

Ny∑
i=1

c̄nNr,kek ,
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as defined in circular statistics (Jammalamadaka and SenGupta, 2001). Its norm, the
Resultant Vector Length (RVL), provides a polarization index.
3.3.2 . Single trajectory

In the case of a stochastic simulation, both the pace and directionality of trajectories are
informative. First, descriptive plots can be shown : the velocity norm over time, velocity norm
histogram, 2D velocity histogram and cell trajectory. When a bimodal velocity norm distribu-
tion is observed, a threshold can be established to separate slow and fast velocities. The 1D ve-
locity histogram and the trajectory can be colored accordingly to emphasize on both regimes.
The directionality of trajectories can be further investigated from the following items:

• the scatter plot or histogram of the∆t-turning angles with respect to the corresponding
mean velocity norms,

• the Time-Averaged Squared Displacements (or TASD) defined for cell j and for 1 ≤ n ≤
Nf by:

TASDj(n∆t) :=
1

Nf − n+ 1

Nf−n∑
i=0

|zj((i+ n)∆t)− zj(i∆t)|2 , (3.10)
that is the average of squared displacements over time intervals of n∆t (Loosley et al.,
2015),

• the data of Persistence Times (Tpe) and Persistence Velocities (Vpe). It is obtained by
splitting the trajectory based on the direction of displacement : a new subtrajectory
is defined each time the direction of displacement differs from the initial direction by
at least π/2. Then, each path is associated with its duration and a mean velocity. The
whole trajectory can nowbe shown split by persistent paths, and one can plot Tpe valuesversus Vpe values. The UCSP (Maiuri et al., 2015) proposes an exponential relationship
between both quantities. Therefore, such a fit is performed.
3.3.3 . Multiple stochastic trajectories

• TheMSD (Mean Squared Displacements) is the average of TASD over the cell population
: for 1 ≤ n ≤ Nf , one has

MSD(n∆t) :=
1

Ncell

Ncell∑
j=1

TASDj(n∆t) . (3.11)

• The EASD (Ensemble-Averaged Squared Displacements) is defined from the Squared
displacements between each position and the initial position by

EASD(n∆t) :=
1

Ncell

Ncell∑
j=1

(
|zj(n∆t)− zj(0)|2

)
, (3.12)

• The Ergodicity is defined as the ratio between TASD of the j-th cell and the EASD.

3.4 . Numerical verifications
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When α = 0, the model has been studied in various papers. In this section we recall
various theoretical results on themodel and illustrate that our numerical scheme gives results
in agreement with these results. The numerical scheme is implemented using FreeFEM++
(Hecht, 2012).

3.4.1 . Saturation force prevents from blow-up
The study of the linear stability analysis in the rigid case (Lavi et al., 2020) proved that we

can observe blow-up in the case of a linear active force fact when 1 − χcaf
′act (c̃) c̃ < 0 with

c̃ = M
πR2 , the rest state. It also showed that choosing a saturation force for fact preventsfrom the blow-up; in this case we observe convergence to a stable traveling wave. Moreover

it proved that while 1 − χcaf
′act (c̃) c̃ > 0 there is no blow up in the case of the linear and

saturation force.
Let χ∗

c be the critical value of χc, we have:
χ∗
c =

1

af ′act (c̃) c̃
(3.13)

The criteria 1− χcaf
′act (c̃) c̃ < 0 is equivalent to χc > χ∗

c .

Figure 3.1: Illustration of the blow-up criteria in the case of the linear force fact (c) = c.
We observe that when χc > χ∗

c the velocity norm increases rapidly towards infinity. On the con-
trary, when χc ≤ χ∗

c , the velocity norm is bounded over time. This illustrates that when χc > χ∗
c

with the linear force, blow-up occurs.
Simulations done with Ω0 = B (0, 1) with the initial condition cin (x) = K (1 +X (x))11+X(x)>0

where for all x ∈ Ω0, X (x) ∼ N (0, 1) and K such that
∫
Ω0
cin (x) dx = M and u0 =

−χc

|Ω0|
∫
∂Ω0

fact
(
cin (x)

)
dσ and the parametersM = π, a = 1,∆t = 0.005 and Tf = 30.

Numerically, we recover well the blow-up criteria in the linear force case and the fact that
saturation force prevents from blow-up. Indeed, once χc > χ∗

c and the force is linear then
the velocity norm tends toward infinity while if χc ≤ χ∗

c the velocity norm remains bounded
over time (see fig. 3.1). The saturation force prevents from blow-up. Indeed, in the case of the
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Figure 3.2: Illustration that the saturation force prevents blow-up. Unlike when the active
force is the linear force, we can observe that when we choose as active force a saturation force that
even when χc > χ∗

c we have no blow-up and the velocity norm is bounded over time. The saturation
force is given by fact (c) = c(1+cs)

2

cs(c+cs)
with cs > 0.

Simulations done with Ω0 = B (0, 1) with the initial condition cin (x) = K (1 +X (x))11+X(x)>0

where for all x ∈ Ω0, X (x) ∼ N (0, 1) and K such that
∫
Ω0
cin (x) dx = M and u0 =

−χc

|Ω0|
∫
∂Ω0

fact
(
cin (x)

)
dσ and the parametersM = π, a = 1, cs = 0.5,∆t = 0.005 and Tf = 30.

saturation force, we observe that the velocity norm remains bounded over time even when
χc > χ∗

c (see fig. 3.2).
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3.4.2 . Motility phase diagram
By performing the analysis of the linear stability of the deformable model (3.1), Lavi et al.

(2020) showed that in the case of a rigid cell with the saturation force for the active forcewe can
observe three phases of motility: rest, bistable and traveling. The rest phase is characterised
by the stability of the rest state and no traveling wave. The traveling phase is characterised by
the instability of the rest state and the existence of stable traveling waves. The bistable phase
is characterised by the stability of the rest state and the existence of stable traveling waves.
TakingM = π,R = 1 and a = 1, we have that χ∗

c = 1 and the traveling phase is parameterised
by χc > 1, the rest phase by χc < 1& cs ≥ 0.5 or χc < χ∗ (cs) & cs < 0.5 and the bistable
phase is parameterised by χ∗ (cs) < χc < 1 and cs < 0.5, where χ∗ (cs) is the saddle-nodebifurcation point and depends of cs.

Figure 3.3: Motility phase diagram. The thick black line represents the pitchfork bifurcation
taking place at χc = χ∗

c . To the right of this line, shown in blue, the rest state is unstable and there
exists a stable travelling wave. To the left of this line, shown in white and cyan, the rest state is
stable. The black line with dots represents the saddle-node bifurcation. Above this line, shown in
white, there exists no stable travelling wave. Below this line, shown in cyan, there exists a stable
travelling wave.
Taken from Lavi (2019).

We want to ensure that our numerical scheme retains these properties. We show it on
some examples.

For the rest of this sectionK will be a normalization constant ensuring ∫
Ω0
cin (x) dx = π

and for all x ∈ Ω0,X (x) ∼ N (0, 1).
Rest phase In this paragraphwewant to findparametersχc and cs such that themotility is in
the rest phase. We choose χc = 0.5 and cs = 0.1. First we want to illustrate the stability of the
rest state. The rest state is given by c̃ (x) = 1 and ũ = 0. We perturbed the rest state by taking
as initial condition cin (x) = K (1 +X (x))11+X(x)>0 and u0 = −χc

|Ω0|
∫
∂Ω0

fact
(
cin (x)

)
dσ.
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Figure 3.4: Illustration of the stability of the rest state for χc = 0.5 and cs = 0.1. On top,
evolution of the velocity norm over time for 50 cells. On bottom, evolution over time (t = 0, t = 1
and t = 5) of the markers concentration inside a cell. The red zones correspond to areas of high
marker concentration and the blue zones to areas of low marker concentration.
The initial condition is given by cin (x) = K (1 +X (x))11+X(x)>0 and u0 =
−χc

|Ω0|
∫
∂Ω0

fact
(
cin (x)

)
ndσ. The others parameters are M = π, R = 1, a = 1, ∆t = 0.005 and

Tf = 5.

Numerically, the rest state is stable, after a perturbation of it, we can see that the velocity
is constant in time and has for value 0 (see fig. 3.4 top) and that the markers concentration is,
after a small time, uniformly distributed as in the rest state (see fig. 3.4 bottom).

Secondly we want to illustrate the non-existence of steadily moving solutions. We know
that if a steadily moving solution exists then it should be of the form c (x) = Ke−au·x with u

the velocity. Thus to numerically illustrate the non-existence of traveling wave we choose as
initial condition cin (x) = Ke−aux where u ∼ U ([−5, 5]) and u0 = (u, 0).

Numerically, we observe that whatever the choice of u, the norm of the cell velocity de-
crease to 0 (see fig. 3.5 top). It seems that (c,u) converges to the rest state (c̃, ũ) (see fig. 3.5
bottom). Without proving that there are no steadilymoving solutionswith this choice ofχc and
cs, we can assume that we will not find, numerically, u0 such that we have a steadily moving
solution and that every polarised cell will tends to the rest state, which is unpolarised.
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Figure 3.5: Illustration of the non-existence of steadily moving solutions for χc = 0.5 and
cs = 0.1. On top, evolution of the velocity norm over time for 50 cells. On bottom, example of
evolution over time (t = 0, t = 1 and t = 5) of the markers concentration inside a cell. The red
zones correspond to areas of high marker concentration and the blue zones to areas of low marker
concentration.
The initial condition is given by cin (x) = Ke−aux where u ∼ U ([−5, 5]) and u0 = (u, 0). The
others parameters areM = π, R = 1, a = 1,∆t = 0.005 and Tf = 5.

Bistable phase In this paragraphwewant to find parametersχc and cs such that themotility
is in the bistable phase. We choose χc = 0.9 and cs = 0.1. Thus we want to illustrate for
these parameters that the rest state is stable and there exists a stable traveling wave. First
we illustrate the stability of the rest state. To do it, we use the same procedure as in the
case of the rest phase. We perturbed the rest state by taking as initial condition cin (x) =

K (1 +X (x))11+X(x)>0 and u0 = −χc

|Ω0|
∫
∂Ω0

fact
(
cin (x)

)
n dσ.

Numerically, the rest state is stable, after a perturbation of it, we can see that the velocity
is constant in time and has for value 0 (see fig. 3.6 top) and that the markers concentration is,
after a small time, uniformly distributed as in the rest state (see fig. 3.6 bottom).

Secondly we want to illustrate the existence of a stable traveling wave. We observe that
c (x) = Ke−aux with u = 6.51498 is a steadilymoving solution. We perturbed it by taking as ini-
tial condition cin (x) = K (e−aux +X (x))1e−aux+X(x)>0 and u0 = −χc

|Ω0|
∫
∂Ω0

fact
(
cin (x)

)
ndσ.

Then we study the evolution of the norm velocity and concentration over time. The results are
in fig. 3.7.

Numerically, we observe that we found a stable traveling wave. Indeed after a small per-
turbation the norm of the velocity is constant and we have ∥u∥ = 6.51498 (see fig. 3.7 top).
Moreover we can observe that the markers concentration is steadily in time (see fig. 3.7 bot-
tom). Then we observe that the cell does not change direction over time.
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Figure 3.6: Illustration of the stability of the rest state for χc = 0.9 and cs = 0.1. On top,
evolution of the velocity norm over time for 50 cells. On bottom, evolution over time (t = 0, t = 1
and t = 5) of the markers concentration inside a cell. The red zones correspond to areas of high
marker concentration and the blue zones to areas of low marker concentration.
The initial condition is given by cin (x) = K (1 +X (x))11+X(x)>0 and u0 =
−χc

|Ω0|
∫
∂Ω0

fact
(
cin (x)

)
ndσ. The others parameters are M = π, R = 1, a = 1, ∆t = 0.005 and

Tf = 5.
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Figure 3.7: Illustration of the stability of a steadily moving solutions for χc = 0.9 and
cs = 0.1. On top, evolution of the velocity norm over time for 50 cells. On bottom, example of
evolution over time (t = 0, t = 1 and t = 5) of the markers concentration inside a cell. The red
zones correspond to areas of high marker concentration and the blue zones to areas of low marker
concentration.
The initial condition is given by cin (x) = K (e−aux +X (x))1e−aux+X(x)>0 with u = 6.51498 and
u0 = (u, 0). The others parameters areM = π, R = 1, a = 1,∆t = 0.005 and Tf = 5.
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Traveling phase In this paragraph we want to find parameters χc and cs such that the
motility is in the traveling phase. We choose χc = 1.1 and cs = 0.1. Thus we want to illus-
trate for these parameters that the rest state is unstable and there exists a stable traveling
wave. First we illustrate the instability of the rest state. To do it, we use the same procedure
as in the case of the rest phase. We perturbed the rest state by taking as initial condition
cin (x) = K (1 +X (x))11+X(x)>0 and u0 = −χc

|Ω0|
∫
∂Ω0

fact
(
cin (x)

)
ndσ.

Figure 3.8: Illustration of the instability of the rest state for χc = 1.1 and cs = 0.1. On top,
evolution of the velocity norm over time for 50 cells. On bottom, evolution over time (t = 0, t = 1
and t = 5) of the markers concentration inside a cell. The red zones correspond to areas of high
marker concentration and the blue zones to areas of low marker concentration.
The initial condition is given by cin (x) = K (1 +X (x))11+X(x)>0 where for all x ∈ Ω0, X (x) ∼
N (0, 1) and u0 = −χc

|Ω0|
∫
∂Ω0

fact
(
cin (x)

)
n dσ. The others parameters areM = π, R = 1, a = 1,

∆t = 0.005 and Tf = 5.

Numerically, the rest state is unstable. Indeed after a perturbation of it, we can see that
the velocity norm increases over time (see fig. 3.8 top) and that the markers concentration is,
after a small time, no more uniformly distributed as in the rest state (see fig. 3.8 bottom). We
see that after a small perturbation of the rest state, the cell starts to polarize and to move.

Secondly we want to illustrate the existence of a stable traveling wave. We observe that
c (x) = Ke−aux with u = 7.85613 is a steadily moving solution. We perturbed it by taking as
initial condition cin (x) = K (e−aux +X (x))1e−aux+X(x)>0 and u0 = (u, 0).

Numerically, we observe that we found a stable traveling wave. Indeed after a small per-
turbation the norm of the velocity is constant and we have ∥u∥ = 7.85613 (see fig. 3.9 top).
Moreover we can observe that the markers concentration is steadily in time (see fig. 3.9 bot-
tom). Then we observe that the cell does not change direction over time.

Thus we found three different set of parameters to illustrate the three phases of motility
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Figure 3.9: Illustration of the stability of a steadily moving solutions for χc = 1.1 and
cs = 0.1. On top, evolution of the velocity norm over time for 50 cells. On bottom, example of
evolution over time (t = 0, t = 1 and t = 5) of the markers concentration inside a cell. The red
zones correspond to areas of high marker concentration and the blue zones to areas of low marker
concentration.
The initial condition is given by cin (x) = K (e−aux +X (x))1e−aux+X(x)>0 with u = 7.85613 and
u0 = (u, 0). The others parameters areM = π, R = 1, a = 1,∆t = 0.005 and Tf = 5.

in accordance with the motility phase diagram.
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3.4.3 . Long-time behaviour
In Meunier and Souplet (2023), the long-time behaviour of the model is studied for differ-

ent expressions of fact. Three theorems are proved. First, the following theorem is proved for
the case where a = 1 and χc = 1:
Theorem 3.4.1. Let 1 ≤ m ≤ p <∞ and assume fact(c) = |c|m−1c and cin ∈ Lp(Ω).

(i) Problem (3.4) admits a unique maximal classical solution
c ∈ C2,1(Ω0 × (0, T ∗)) ∩ C([0, T ∗);Lp(Ω0)).

(ii) If cin ≥ 0, cin ̸≡ 0, then c > 0 in (Ω0 ∪ ∂Ω0)× (0, T ∗).
(iii) If p > m and T ∗ <∞, then limt→T∗ ∥c(t)∥p = ∞.

To illustrate theorem 3.4.1, after choosing m, p and cin which satisfy the assumptions of
the theorem, we plot theminimumof c over time onΩ0∪∂Ω0 as well as that of theLP norm of
c. As illustrated in fig. 3.10 form = 1.1, p = 4 and cin (x, y) = Kex withK > 0, we observe that
the minimum of c onΩ0∪∂Ω0 is positive for all t ∈ [0, T ∗) and so c > 0 in (Ω0 ∪ ∂Ω0)× (0, T ∗).
We also observe that limt→T∗ ∥c(t)∥p = ∞. These observations agree well with theorem 3.4.1
and so the numerical scheme allows us to find the result of the theorem.

Figure 3.10: Illustration of the theorem 3.4.1. On the left is represented the time evolution on
the time interval [0, T ∗) of the minimum of c overΩ0∪∂Ω0, we observe that this minimum is always
strictly positive then we have c > 0 in (Ω0 ∪ ∂Ω0) × (0, T ∗). On the right is represented the time
evolution of the Lp norm of c over the time interval [0, T ∗). We observe that this norm is increasing
and tends to∞.
Simulations done with Ω0 = B (0, 1) with the initial condition cin (x, y) = Kex whereK such that∫
Ω0
cin (x) dx =M and the parametersm = 1.1, p = 4,M = π, a = 1,∆t = 0.005 and Tf = 10.

Secondly, the following theorem is proved for the case where a = 1 and χc = 1. Let
c̄in = 1

|Ω0|
∫
Ω
cin dx denote the average of cin.

Theorem 3.4.2. Let f satisfy

0 ≤ f(s) ≤ Csm, s ≥ 0, for somem ∈ (0, 1) (3.14)
with some C > 0, and also assume that f is globally Lipschitz continuous. Let cin ∈ L1(Ω0), with
cin ≥ 0.
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(i) Problem (3.4) admits a unique global, nonnegative classical solution
c ∈ C2,1(Ω0 × (0,∞)) ∩ C([0,∞);L1(Ω0)). (3.15)

Moreover, c is uniformly bounded for t > 0 bounded away from 0. Also, if cin ̸≡ 0, then c > 0

in (Ω0 ∪ ∂Ω0)× (0,∞).
(ii) There exist η0, λ > 0 such that if ∥cin∥1 ≤ η0, then

∥c(t)− c̄in∥∞ ≤ Ce−λt, t ≥ 1 (3.16)
for some constant C > 0.

To illustrate theorem 3.4.2, after choosingm and cin which satisfy the assumptions of the
theorem, we plot the minimum and maximum of c over time on Ω0 ∪ ∂Ω0. We also show the
evolution over time of ∥c(t) − c̄in∥∞ and illustrate that it decreases exponentially towards 0.
As illustrated in fig. 3.11 for m = 0.3 and cin (x, y) = Kex with K > 0, we observe that the
minimum of c on Ω0 ∪ ∂Ω0 is globally lower bounded by the minimum of cin > 0. Also, the
maximum of c on Ω0 ∪ ∂Ω0 is globally upper bounded by the maximum of cin > 0. Thus
c is uniformly bounded for t > 0, away from 0. We observe that ∥c(t) − c̄in∥∞ decreases
exponentially towards 0. These observations are in good agreement with theorem 3.4.2 and
so the numerical scheme allows us to recover the result of the theorem.

Figure 3.11: Illustration of the theorem 3.4.2. On the left is represented the time evolution of
the minimum and the maximum of c over Ω0 ∪ ∂Ω0. We observe that c is uniformly bounded for
t > 0, way from 0. We also observe that c > 0 in (Ω0 ∪ ∂Ω0) × (0, Tf ) where Tf is the final time
of the numerical simulation. On the right is represented the time evolution of ∥c(t) − c̄in∥∞. We
observe that this norm is exponentially decreasing towards 0. In dash light blue is represented an
exponential function such that ∥c(t)− c̄in∥∞ ≤ Ce−λt for t ∈ [0, Tf ].
Simulations done with Ω0 = B (0, 1) with the initial condition cin (x, y) = Kex whereK such that∫
Ω0
cin (x) dx =M and the parametersm = 0.3,M = π, a = 1,∆t = 0.005 and Tf = 100.

Finally, the following theorem is proved for the case where a = 1 and χc = 1.
Theorem 3.4.3. Let f(c) = c, cin ∈ L1(Ω0), cin ≥ 0 and setM = ∥cin∥1.

(i) IfM ≤ 1, then T ∗ = ∞ and c is uniformly bounded for t > 0 bounded away from 0.
(ii) Morever, ifM < 1, then

lim
t→∞

∥c(t)− c̄in∥∞ = 0, (3.17)
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To illustrate theorem 3.4.3, after choosingM and cin which satisfy the assumptions of the
theorem, we plot the minimum and maximum of c over time on Ω0 ∪ ∂Ω0. We also show the
evolution over time of ∥c(t)− c̄in∥∞ and illustrate that ifM < 1 then we have limt→∞ ∥c(t)−
c̄in∥∞ = 0whereas ifM ≥ 1we do not. As illustrated in figs. 3.12 and 3.13 forM = 0.9 andM =

1 respectively and cin (x, y) = Kex with K > 0, we observe that in both cases the minimum
of c on Ω0 ∪ ∂Ω0 is globally lower bounded by the minimum of cin > 0. Also, the maximum
of c on Ω0 ∪ ∂Ω0 is globally upper bounded by the maximum of cin > 0. Thus c is uniformly
bounded for t > 0, away from 0. We observe that whenM = 0.9, limt→∞ ∥c(t) − c̄in∥∞ = 0

whereas whenM = 1 we have limt→∞ ∥c(t)− c̄in∥∞ = 0.447288 ̸= 0. These observations are
in good agreement with theorem 3.4.3 and so the numerical scheme allows us to recover the
result of the theorem.

Figure 3.12: Illustration of the theorem 3.4.3 whenM < 1. On the left is represented the time
evolution of the minimum and the maximum of c over Ω0 ∪ ∂Ω0. We observe that c is uniformly
bounded for t > 0, way from 0. We also observe that c > 0 in (Ω0 ∪ ∂Ω0)× (0, Tf ) where Tf is the
final time of the numerical simulation. On the right is represented the time evolution of ∥c(t)−c̄in∥∞.
We observe that it decreases towards 0.
Simulations done with Ω0 = B (0, 1) with the initial condition cin (x, y) = Kex whereK such that∫
Ω0
cin (x) dx =M and the parametersM = 0.9, a = 1,∆t = 0.005 and Tf = 100.

These numerical results, in agreement with theoretical results from Lavi et al. (2020); Me-
unier and Souplet (2023), validate our numerical scheme. We can then study our model nu-
merically by simulating it using algorithm 3.1.
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Figure 3.13: Illustration of the theorem 3.4.3 whenM = 1. On the left is represented the time
evolution of the minimum and the maximum of c over Ω0 ∪ ∂Ω0. We observe that c is uniformly
bounded for t > 0, way from 0. We also observe that c > 0 in (Ω0 ∪ ∂Ω0)× (0, Tf ) where Tf is the
final time of the numerical simulation. On the right is represented the time evolution of ∥c(t)−c̄in∥∞.
We observe that it is constant equals to 0.447288 and thus limt→∞ ∥c(t)− c̄in∥∞ ̸= 0.
Simulations done with Ω0 = B (0, 1) with the initial condition cin (x, y) = Kex whereK such that∫
Ω0
cin (x) dx =M and the parametersM = 1, a = 1,∆t = 0.005 and Tf = 100.

3.5 . Numerical result and capturing the UCSP law

In this section, we investigate whether the model satisfies the UCSP law and whether we
can capture the three types of trajectory that cells can have. By choosing a range of suitable
parameters, we are able to exhibit a situation where the trajectories are Brownian, a situa-
tion where they are persistent and a situation where they are intermittent (see figs. 3.14, 3.18
and 3.22). In all three cases, the trajectories satisfy the UCSP law.

By fixing all the model parameters and varying only χc, we observe Brownian trajectorieswhen χc < χ∗
c , intermittent trajectories when χc = χ∗

c and persistent trajectories when χc >

χ∗
c . In this section, for the numerical results presented, R = 1,M = π and a = 1. As an initial

condition cin for the concentration of markers, we choose the function defined for all x ∈ Ω

by cin (x) = M

πR2
. The noise parameters are set to α = 0.3 and ζ = 0.2. Finally, the numerical

simulations are performed over the time interval [0, 15] with ∆t = 0.005. Here are the results
when χc = χ∗

c − 0.3, χc = χ∗
c and χc = χ∗

c + 0.5 with χ∗
c defined in eq. (3.13).

Illustration of the case where trajectories are Brownian. In this subsection, we present
the results when χc = χ∗

c − 0.3. We then observe that the trajectories are Brownian. This can
be seen visually in fig. 3.14 and is confirmed by the study of the EASD andMSD, which are close
to 1 (see fig. 3.16). In addition, we can see that the trajectories satisfy the UCSP (see fig. 3.15).
We also observe that the cells have a low velocity: the mean norm is close to the intensity α
of the noise (see fig. 3.17). These observations are in good agreement with those made about
Brownian behaviour in Maiuri et al. (2015).
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Figure 3.14: Trajectories in polar coordinates in the case where χc < χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 4.1 on the time interval
[0, 15]. Visually, the trajectories seem to be Brownian. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c − 0.3 with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and

ζ = 0.2.

91



Figure 3.15: Verification that the trajectories in fig. 3.14 satisfy the UCSP law (case when
χc < χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c − 0.3 with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and

ζ = 0.2.

Figure 3.16: Verification that the trajectories in fig. 3.14 are Brownian (case when χc <
χ∗
c ). On the left is shown in blue the EASD associated with the trajectories in fig. 3.14 and in orange

the interpolation of the EASD, in the form t 7→ ctβ . By the properties of the EASD, as β close to 1,
the trajectories in fig. 3.14 are indeed Brownian. This is confirmed by the study of the MSD, which
is shown in blue on the right. Also shown on the right are the TASD of each cell in yellow and the
interpolation of the MSD in form t 7→ ctβ in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c − 0.3 with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and

ζ = 0.2.
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Figure 3.17: Time evolution of the norm of the velocity of the cells whose trajectories
are shown in fig. 3.14 (case when χc < χ∗

c ). The blue lines show the evolution over time of the
norm of the velocity of each cell and the black line shows the evolution of the mean of the norms of
the velocities of the cells. We can see that the value of the mean of the norms of the cell velocities
corresponds to the choice of α.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c − 0.3 with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and

ζ = 0.2.
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Illustration of the case where trajectories are persistent. In this subsection, we present
the results when χc = χ∗

c + 0.5. We then observe that the trajectories are persistent. This can
be seen visually in fig. 3.18 and is confirmed by the study of the EASD andMSD, which are equal
or close to 2 (see fig. 3.20). In addition, we can see that the trajectories satisfy the UCSP (see
fig. 3.19). We also observe that the cells have a high velocity (see fig. 3.21). These observations
are in good agreement with those made about persistent behaviour in Maiuri et al. (2015).

Figure 3.18: Trajectories in polar coordinates in the case where χc > χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 4.1 on the time interval
[0, 15]. Visually, the trajectories seem to be persistent. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c + 0.5 with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and

ζ = 0.2.
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Figure 3.19: Verification that the trajectories in fig. 3.18 satisfy the UCSP law (case when
χc > χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c + 0.5 with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and

ζ = 0.2.

Figure 3.20: Verification that the trajectories in fig. 3.18 are Brownian (case when χc >
χ∗
c ). On the left is shown in blue the EASD associated with the trajectories in fig. 3.18 and in orange

the interpolation of the EASD, in the form t 7→ ctβ . By the properties of the EASD, as β equals to 2,
the trajectories in fig. 3.18 are indeed persistent. This is confirmed by the study of the MSD, which
is shown in blue on the right. Also shown on the right are the TASD of each cell in yellow and the
interpolation of the MSD in form t 7→ ctβ in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c + 0.5 with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and

ζ = 0.2.
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Figure 3.21: Time evolution of the norm of the velocity of the cells whose trajectories are
shown in fig. 3.18 (case when χc > χ∗

c ). The blue lines show the evolution over time of the norm
of the velocity of each cell and the black line shows the evolution of the mean of the norms of the
velocities of the cells.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c + 0.5 with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and

ζ = 0.2.
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Illustration of the case where trajectories are intermittent. In this subsection, we pre-
sent the results when χc = χ∗

c . We then observe that the trajectories are intermittent. This
can be seen visually in fig. 3.22 and is confirmed by the study of the EASD and MSD, which are
between 1 and 2 (see fig. 3.24). In addition, we can see that the trajectories satisfy the UCSP
(see fig. 3.23). We also observe that the cells have a intermediate velocity: the velocity norm
is between the velocities of the case χc = χ∗

c − 0.3 and χc = χ∗
c + 0.5 (see fig. 3.25). These

observations are in good agreement with those made about intermittent behaviour in Maiuri
et al. (2015).

Figure 3.22: Trajectories in polar coordinates in the case where χc = χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 4.1 on the time interval
[0, 15]. Visually, the trajectories seem to be intermittent. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and ζ = 0.2.
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Figure 3.23: Verification that the trajectories in fig. 3.22 satisfy the UCSP law (case when
χc = χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and ζ = 0.2.

Figure 3.24: Verification that the trajectories in fig. 3.22 are intermittent (case when
χc = χ∗

c ). On the left is shown in blue the EASD associated with the trajectories in fig. 3.22 and
in orange the interpolation of the EASD, in the form t 7→ ctβ . By the properties of the EASD, as β
between 1 and 2, the trajectories in fig. 3.22 are neither Brownian neither persistent. This is confirmed
by the study of the MSD, which is shown in blue on the right. Also shown on the right are the TASD
of each cell in yellow and the interpolation of the MSD in form t 7→ ctβ in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and ζ = 0.2.
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Figure 3.25: Time evolution of the norm of the velocity of the cells whose trajectories
are shown in fig. 3.22 (case when χc = χ∗

c ). The blue lines show the evolution over time of the
norm of the velocity of each cell and the black line shows the evolution of the mean of the norms of
the velocities of the cells. We can see that the value of the mean of the norms of the cell velocities
corresponds to the choice of α.
The results presented here are obtained with the parameters ∆t = 0.005, R = 1,M = π, a = 1,
cin =

M

πR2
, χc = χ∗

c with χ∗
c given by (3.13), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3 and ζ = 0.2.
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Thus, numerically, we find three ranges of parameters for which the trajectories are either
brownian, persistent or intermittent. Moreover, for these three ranges of parameters, the
trajectories satisfy the UCSP law.
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4 - The crown model

In this chapter, we introduce a first toy model which will be useful for highlighting the
properties of the nucleus in chapter 6. This model is a simplification of the general model (1.1)
obtainedwhenwe consider the environment of the cell to be homogeneous, with no obstacles
or external signals, when we neglect the friction of the cell boundary and when the links be-
tween the nucleus and the membrane are rigid. Informally, this means that δ tends to infinity
if we consider fBN and fNB defined by eqs. (1.22) and (1.23). We then obtain a model whose
fluid domain is rigid and has the shape of a crown. After presenting the modelling leading to
this model, we study its stationary states. We then give a numerical scheme for the model,
enabling numerical simulations to be performed. Analysis of the numerical results shows that
the model captures the three types of trajectories and that these satisfy the UCSP law.

4.1 . Modelling

In this section, we derive from the general model eq. (1.1), the crown model. We keep
the same notations as the one from the chapter 1. We assume that the cell’s environment is
homogeneous, with no obstacles or external signals. We neglect the friction at the boundary
of the cell. We assume that fBN and fNB are defined by eqs. (1.22) and (1.23). We assume that δ,
the parameter of the force between the cell boundary and the nucleus, tends towards infinity.
This amounts to assuming that the links connecting the nucleus to the boundary of the cell
are rigid and of the same length (see fig. 4.1 for an illustration of the model). Then necessarily,
for all t ≥ 0, Ω (t) is a ball of radius R0 > Rnucl.Moreover, the nucleus cannot move in the cell, and the geometry of the cell is fixed. We
therefore assume that the cell moves at the velocity of the centre of mass. Thus the model is
given by: 

∂tc = div
(
∇c− (1− a)uc− αẆQ

t c
) in Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 on ∂ (Ω (t) \N (t)) ,

u (t) =
−χc

AΩ

∫
∂Ω(t)

fact (c)n dσ,

(4.1a)
(4.1b)
(4.1c)

with Ω (t) = B (xcell (t) , R0) and Ω (t) = B (xnucl (t) , Rnucl). We have:
d

dt
xcell (t) = u (t)

and
d

dt
xnucl (t) = u (t) .

Note that the geometry of the cell is fixed over time, and the cell is translated at velocity u.
Thus, ẆQ

t is a coloured noise resulting from a Q-Wiener process defined on Ω (0) \N (0).
We can note that the total quantity of markersM is conserved over time and we have:

M =

∫
Ω(t)\N(t)

c (t,x) dx. (4.2)
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Figure 4.1: Illustration of the crownmodel. The links between the nucleus and the cell boundary
are represented by the dark blue lines. These are rigid and of equal length. So the cell is circular
and rigid. The nucleus is at the centre of the cell and, in the cell’s frame of reference, is fixed.

4.2 . Study of the model

In this section, we study the rigidmodel in the casewhere noise is neglected. This amounts
to takeα = 0 in themodel (4.1). In this case, in the frameof reference of the cell, the rigidmodel
is written: 

∂tc = div (∇c+ auc) in Ω \N,
(∇c+ auc) · n = 0 on ∂ (Ω \N) ,

u (t) =
−χc

AΩ

∫
∂Ω

fact (c)n dσ,

(4.3a)
(4.3b)
(4.3c)

with Ω = B(0, R0) andN = B (0, Rnucl). First we study the stationary states of the model and
their linear stability. Then we show the existence of travelling waves.

4.2.1 . Stationary state
4.2.1.1 . Stationary state and linear stability

Proposition 4.2.1. The model (4.3) admits an unique stationary state given by:c0 (x) =
M

|Ω \N |
x ∈ Ω \N,

u0 = 0.

(4.4a)
(4.4b)
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Proof. In the cell frame of reference, the stationary problem associated with the rigid model
(4.3) is as follows: 

∆c = 0 in Ω \N,
∇c · n = 0 on ∂ (Ω \N) ,

u = 0.

Then we have:
∇c = 0 in Ω \N.

This leads to the conclusion that c is constant over Ω \N and so, using the constraint on the
total quantity of markers eq. (4.2), ∫

Ω\N c (x) dx =M , we deduce the result.
The following theorem gives a criterion for the stability of the stationary state (4.4). We

introduce the following notation:
χ∗
c =

1

ac0f ′act (c
0)
. (4.5)

Theorem 4.2.2. If χc < χ∗
c , then the stationary state (4.4) is linearly stable. On the opposite, if

χc > χ∗
c , then the stationary state (4.4) is linearly unstable.

4.2.1.2 . Proof of theorem 4.2.2
The theorem is proved in three steps. The first consists of calculating the linearised prob-

lem of problem (4.3) around the stationary state (4.4) and deducing an eigenvalue problem.
The stationary state will then be stable if and only if all the eigenvalues of the eigenvalue
problem have a negative real part. The second step consists to establish that the eigenvalue
problem admits a positive real part eigenvalue, is equivalent to the fact that a simpler prob-
lem admits a real part eigenvalue. This step is based on the radially symmetric nature of the
problem and Fourier analysis. The third step consists in studying this simpler problem. We
can then exhibit a positive real part eigenvalue of it when χc > χ∗

c . Also, using a graphicalargument, it consists in illustrating that if χc < χ∗
c then the eigenvalues of this problem have

a negative real part. The arguments used are inspired by those of Lavi et al. (2020); Alazard
et al. (2022).
Step 1. The following lemma gives the expression for the linearised problem around the
stationaty state (4.4).
Lemma 4.2.3. The linearised problem associated to eq. (4.3) around the stationary state (4.4) is
given by: 

∂tc̃ = ∆c̃ in Ω \N,(
∇c̃+ aũc0

)
· n = 0 on ∂ (Ω \N) ,

ũ (t) =
−χcf

′
act

(
c0
)

AΩ

∫
∂Ω

c̃ (t,x)n dσ.

(4.6a)
(4.6b)
(4.6c)

Proof. We perform a formal expansion of the solution (c,u) of eq. (4.3) around the stationary
state (c0,u0

). Let ε > 0 small. For all t ≥ 0 and x ∈ Ω \N , we set:
c (t,x) = c0 + εc̃ (t,x) +O

(
ε2
)
,
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and
u (t) = u0 + εũ (t) +O

(
ε2
)
.

Using the fact that c0 satisfies eq. (4.4a) and c satisfies (4.3), we deduce that in Ω \N :
∂tc̃ = ∆c̃.

We also have on ∂ (Ω \N) that:
(∇c+ auc) · n =

(
∇c0 + ε∇c̃+ au0c0 + εau0c̃+ εaũc0

)
· n+O

(
ε2
)

= ε
(
∇c̃+ aũc0

)
· n+O

(
ε2
)
,

which leads to: (
∇c̃+ aũc0

)
· n = 0 on ∂ (Ω \N) .

We also have:
u (t) =

−χc

AΩ

∫
∂Ω

fact
(
c0 + εc̃+O

(
ε2
))

n dσ

=
−χc

AΩ

∫
∂Ω

(
fact

(
c0
)
+ εc̃f ′act

(
c0
)
+O

(
ε2
))

ndσ

= u0 + ε
−χcf

′
act

(
c0
)

AΩ

∫
∂Ω

c̃ndσ +O
(
ε2
)
,

which leads to:
ũ (t) =

−χcf
′
act

(
c0
)

AΩ

∫
∂Ω

c̃ndσ.

The eigenvalue problem associated with eq. (4.6) is given by:
λc̃ = ∆c̃ in Ω \N,(
∇c̃+ aũc0

)
· n = 0 on ∂ (Ω \N) ,

ũ (t) =
−χcf

′
act

(
c0
)

AΩ

∫
∂Ω

c̃ (t,x)ndσ,

(4.7a)
(4.7b)
(4.7c)

where λ ∈ C.
Step 2. Using Fourier analysis and the radially symmetric nature of the problem (4.7), we
prove the following lemma, which reduces the spectral study of eq. (4.7) to that of a simpler
eigenvalue problem.
Lemma 4.2.4. The problem (4.7) admits an eigenvalue with a positive real part is and only if the
following problem admits one.

λc =

(
∂2rr +

1

r
∂r −

1

r2

)
c r ∈ (Rnucl, R0) ,

∂rc (R0) =
aχcc

0f ′act
(
c0
)

R0
c (R0) ,

∂rc (Rnucl) =
aχcc

0f ′act
(
c0
)

R0
c (R0) .

(4.8a)
(4.8b)
(4.8c)
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Proof. Since the problem (4.7) is radially symmetric, we can use the Fourier analysis. Let λ ∈ C
and let (c̃, ũ) be an eigenfunction associated with λ. In polar coordinates, for all r ∈ (Rnucl, R0)and θ ∈ (−π, π], we set:

c̃ (r, θ) =
∑
m∈N

ccm (r) cos (mθ) +
∑
m∈N

csm (r) sin (mθ) .

For allm ∈ N withm ̸= 1, we have:∫ π

−π

cos (mθ) cos (θ) =

∫ π

−π

sin (mθ) sin (θ) = 0

and ∫ π

−π

cos (mθ) sin (θ) =

∫ π

−π

sin (mθ) cos (θ) = 0.

We also have: ∫ π

−π

cos2 (θ) =

∫ π

−π

sin2 (θ) = π

and ∫ π

−π

cos (θ) sin (θ) = 0.

Thus we have: ∫
∂Ω

c̃ndσ = πR0

(
cc1 (R0)
cs1 (R0)

)
,

which leads to:
ũ =

−χcf
′
act

(
c0
)

R0

(
cc1 (R0)
cs1 (R0)

)
.

By linearity of eq. (4.7) and independence of the cosine and sine modes, we deduce that
for allm ̸= 1, ccm and csm satisfy:

λcm =

(
∂2rr +

1

r
∂r −

m2

r2

)
cm r ∈ (Rnucl, R0) ,

∂rc (R0) = 0,

∂rc (Rnucl) = 0.

(4.9a)
(4.9b)
(4.9c)

Similarly when m = 1, using the expression of the cell velocity, the functions cc1 and cs1satisfy: 

λc =

(
∂2rr +

1

r
∂r −

1

r2

)
c r ∈ (Rnucl, R0) ,

∂rc (R0) =
aχcc

0f ′act
(
c0
)

R0
c (R0) ,

∂rc (Rnucl) =
aχcc

0f ′act
(
c0
)

R0
c (R0) .

(4.10a)
(4.10b)
(4.10c)

From the independence of the cosine and sine modes, we also deduce that studying the
spectrum of problem (4.7) is equivalent to study the spectrum of problem (4.9) for all m ̸= 1

and (4.10).
As form ̸= 1 the functions (r, θ) 7→ ccm (r) cos (mθ) and (r, θ) 7→ csm (r) sin (mθ) satisfy:{

λc = ∆c in Ω \N,
∇c · n = 0 on ∂Ω ∪ ∂N,

the eigenvalue problem associated with the heat equation, the problem (4.9) only admits
eigenvalues with negative real part.
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Step 3. We study the spectrum of problem (4.8). The solutions of (4.8) are expressed using
Bessel functions. We have:

c1 (r) = βλJ1

(
−i

√
λr
)
+ γλY1

(
−i

√
λr
)
,

where J1 and Y1 denote respectively the Bessel function of the first kind of order 1 and that
of the second kind of order 1, λ ∈ C is an eigenvalue of the problem and βλ, γλ ∈ C. From
eqs. (4.8b) and (4.8c), we deduce that:

− i
√
λ
(
βλJ

′
1

(
−i

√
λR0

)
+ γλY

′
1

(
−i

√
λR0

))
=
aχcc

0f ′act
(
c0
)

R0

(
βλJ1

(
−i

√
λR0

)
+ γλY1

(
−i

√
λR0

))
and

− i
√
λ
(
βλJ

′
1

(
−i

√
λRnucl

)
+ γλY

′
1

(
−i

√
λRnucl

))
=
aχcc

0f ′act
(
c0
)

R0

(
βλJ1

(
−i

√
λR0

)
+ γλY1

(
−i

√
λR0

))
.

Thus we have that λ satisfies the following eigenvalue equation:
G1 (λ) = λ

(
J ′
1

(
−i

√
λR0

)
Y ′
1

(
−i

√
λRnucl

)
− J ′

1

(
−i

√
λRnucl

)
Y ′
1

(
−i

√
λR0

))
+

i
√
λaχcc

0f ′act
(
c0
)

R0

[
J1

(
−i

√
λR0

)
Y ′
1

(
−i

√
λR0

)
− J ′

1

(
−i

√
λR0

)
Y1

(
−i

√
λR0

)
+J ′

1

(
−i

√
λRnucl

)
Y1

(
−i

√
λR0

)
− J1

(
−i

√
λR0

)
Y ′
1

(
−i

√
λRnucl

)]
= 0.

Using the properties of the Bessel functions, for λ close to zero, we have:
J1

(
−i

√
λR0

)
=

−i
√
λR0

2
+ o (λ) ,

J ′
1

(
−i

√
λR0

)
=

1

2
+

3R2
0λ

16
+ o (λ) ,

Y1

(
−i

√
λR0

)
=

−2i

π
√
λR0

+
i (1− 2γ)

√
λR0

2π
+

2

π
J1

(
−i

√
λR0

)
log

(
−i

√
λR0

2

)
+ o (λ) ,

Y ′
1

(
−i

√
λR0

)
=

−2

λR2
0π

+
1 + 2γ

2π
− R2

0λ (11− 12γ)

32π
+

2

π
J ′
1

(
−i

√
λR0

)
log

(
−i

√
λR0

2

)
+ o (λ) ,

where γ denotes the Euler’s constant. Thus for λ close to zero, we have:
G1 (λ) =

(
1− aχcc

0f ′act
(
c0
))( 1

R2
0π

− 1

R2
nuclπ

)
+

3
(
R4

nucl −R4
0

)
8πR2

0R
2
nucl

λ− aχcc
0f ′act

(
c0
) 3 (R2

0 −R2
nucl

)
8πR2

0

λ

+
aχcc

0f ′act
(
c0
)
− 1

2π
ln

(
R0

Rnucl

)
λ+ o (λ) ,

= g (λ) + o (λ) .
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The function g admits λ1 ∈ R as root with λ1 defined by:

λ1 = −

(
1− aχcc

0f ′act
(
c0
)) (

1
R2

0π
− 1

R2
nuclπ

)
3(R4

nucl−R4
0)

8πR2
0R

2
nucl

− aχcc0f ′act (c
0)

3(R2
0−R2

nucl)
8πR2

0
+

aχcc0f ′
act(c

0)−1
2π ln

(
R0

Rnucl

) .
We have: (

1− aχcc
0f ′act

(
c0
))( 1

R2
0π

− 1

R2
nuclπ

)
> 0 ⇐⇒ aχcc

0f ′act
(
c0
)
> 1.

We also have:
3
(
R4

nucl −R4
0

)
8πR2

0R
2
nucl

− aχcc
0f ′act

(
c0
) 3 (R2

0 −R2
nucl

)
8πR2

0

+
aχcc

0f ′act
(
c0
)
− 1

2π
ln

(
R0

Rnucl

)
< 0

⇐⇒

aχcc
0f ′act

(
c0
)
<

3
(
R4

0 −R4
nucl

)
+ 4R2

0R
2
nucl ln

(
R0

Rnucl

)
R2

nucl

(
3 (R2

nucl −R2
0) + 4R2

0 ln
(

R0

Rnucl

))
and 3

(
R2

nucl −R2
0

)
+ 4R2

0 ln

(
R0

Rnucl

)
> 0

]
or 3 (R2

nucl −R2
0

)
+ 4R2

0 ln

(
R0

Rnucl

)
< 0.

Moreover, if 3 (R2
nucl −R2

0

)
+4R2

0 ln
(

R0

Rnucl

)
> 0 then 3

(
R4

0 −R4
nucl

)
+ 4R2

0R
2
nucl ln

(
R0

Rnucl

)
R2

nucl

(
3 (R2

nucl −R2
0) + 4R2

0 ln
(

R0

Rnucl

)) >
1. Thus λ1 changes sign from negative to positive as χc exceeds χ∗

c . We can note that λ1 ap-proximates well a root of G1 and that we have:
λ1 =

(
aχcc

0f ′act
(
c0
)
− 1
) 8

(
R2

0 −R2
nucl

)
3aχcc0f ′act (c

0) (R4
0 +R2

0R
2
nucl − 2R4

nucl)
+ o

(∣∣aχcc
0f ′act

(
c0
)
− 1
∣∣) .

This eigenvalue is associated with a non-trivial eigenfunction:
c (r) = βλ1

J1

(
−iλ

1
2
1 r
)
+ γλ1

Y1

(
−iλ

1
2
1 r
)
,

with
βλ1

= iλ
1
2
1 Y

′
1

(
−iλ

1
2
1 R0

)
+
χc

χ∗
c

Y1

(
−iλ

1
2
1 R0

)
,

and
γλ1

= −
(
iλ

1
2
1 J

′
1

(
−iλ

1
2
1 R0

)
+
χc

χ∗
c

J1

(
−iλ

1
2
1 R0

))
.

To conclude the proof of the theorem, we need to show that when χc < χ∗
c all the eigen-values associated to (4.8) have negative real part. We give only a graphical illustration here.

For several values of R0, Rnucl and χc

χ∗
c
, we represent the function G1 by representing its realpart, its imaginary part and its modulus (see fig. 4.2 for an example). We then observe that

the root of G1 with the largest real part seems to be a real root of G1, which is confirmed by
studying the imaginary part of G1. Indeed, we notice that if λ ∈ R then G1 (λ) ∈ R.

We can therefore restrict the graphical study of G1 to the graphical study of G1 when
λ ∈ R. For R0 and Rnucl fixed and for different values of χc

χ∗
c
, we plot G1 as a function of λ ∈ R

(see fig. 4.3). This allows us to observe the largest real root of G1 and we notice that when
χc < χ∗

c then this one is negative.
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Figure 4.2: Representation of G1 in the complex framework for R0 = 1, Rnucl = 0.3 and
χc

χ∗
c

= 0.8. Plots of the real part (left), the imaginary part (middle) and the modulus (right) of the

function G1 for λ = x + iy ∈ C with x, y ∈ [−40, 40]. We observe that the root of G1 with the
greatest real part is a real root.
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Representation of G1 when R0 = 1 and Rnucl = 0.3
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Figure 4.3: Graphs of λ 7→ G1 (λ) for λ ∈ R when R0 = 1 and Rnucl = 0.3 for different
values of χc

χ∗
c
= aχcc

0f ′
(
c0
)
. Each curve corresponds to a different value of χc. The solid yellow-

orange curves correspond to the case where χc < χ∗
c , the dashed blue curves correspond to the

case where χc > χ∗
c and the dark dashdotted curve corresponds to the case where χc = 1χ∗

c . The
grey dotted lines are the lines of equation λ = 0 and y = 0. In the case where χc < χ∗

c we notice
that G1 seems to admit no positive root.
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4.2.2 . Travelling waves
Travelling waves correspond to the cell moving by translation with a constant velocity in a

given direction. Without loss of generality, we can assume that the velocity of a travelling wave
is given by utw = (V, 0) with V > 0. In the substrate frame of reference, using the travelling
wave ansatz :

c (t, (x, y)) = c (x− V t, y) ,

we have that, in the cell frame of reference, a travelling wave solution of eq. (4.3) is solution
of the following problem:

div (∇c+ a (V, 0) c) = 0 in Ω \N,
(∇c+ a (V, 0) c) · n = 0 on ∂ (Ω \N) ,

V =
−χc

AΩ

∫
∂Ω

fact (c)nx.

(4.11a)
(4.11b)
(4.11c)

Proposition 4.2.5. If c is a solution of eq. (4.11), then c is of the form:
c (x, y) =

M∫
Ω\N e−aV x′ dx′ dy′

e−aV x,

with (x, y) ∈ Ω \N .

Proof. Any non-negative solution of eqs. (4.11a) and (4.11b) is given by:
c̃ (x, y) = c1e

−aV x, (x, y) ∈ Ω \N,

with c1 > 0. Indeed, as for all (x, y) ∈ Ω \N , ∇c̃ (x, y) = −a (V, 0) c̃ (x, y), then c̃ is a solution
of eqs. (4.11a) and (4.11b). Moreover, if we assume that for all (x, y) ∈ Ω \ N we have c̃ =

c1 (x, y) e
−aV x then, multiplying eq. (4.11a) by c1 (x, y) and integrating by parts, we have:∫

Ω\N
∇c1 (x, y) · (∇c (x, y) + a (V, 0) c (x, y)) dxdy = 0,

and it follows that: ∫
Ω\N

|∇c1 (x, y)|2 e−aV x dxdy = 0.

Then, necessarily, we have for all (x, y) ∈ Ω \N that:
∇c1 (x, y) = 0.

Finally, using the condition on the total number of markers, we have that:
c1 =

M∫
Ω\N e−aV x′ dx′ dy′

.

4.3 . Finite element scheme of the model

In this section we write a finite element scheme to run simulations of the rigid model
eq. (4.1). This scheme is obtained after an implicit time discretization and a finite element
discretization in space.
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4.3.1 . Time discretization
We discretize in time our model eq. (4.1). Let∆t be the time step. For i ∈ {0, . . . , Nf} with

Nf ∈ N, we denote ti = i∆t, ui = u
(
ti
) and ci = c

(
ti, ·
). We also denote xi

nucl = xnucl

(
ti
)

and xi
cell = xcell

(
ti
). Moreover, we denote by ẆQ,i an approximation of the coloured noise

at time ti.
The implicit discretization of the problem is given by:

ci+1 − ci

∆t
= div

(
∇ci+1 + aui+1ci+1 − αẆQ,i+1ci+1

) in Ω \N,(
∇ci+1 + aui+1ci+1 − αẆQ,i+1ci+1

)
· n = 0 on ∂Ω ∪ ∂N,

ui =
−χc

AΩ

∫
∂Ω

fact
(
ci
)
ndσ.

(4.12a)
(4.12b)
(4.12c)

with {
xi+1
cell = xi

cell +∆tui,

xi+1
nucl = xi

nucl +∆tui.

(4.13a)
(4.13b)

4.3.2 . Spatial discretization
We discretize in space our time-discrete model eqs. (4.12) and (4.13). We use a finite el-

ement discretization. Let T be a triangulation of Ω \ N . For all triangle K ∈ T we note(
λK1 , λ

K
2 , λ

K
3

) the barycentric coordinate functions ofK. First we define the functional spaces
needed. Let Pk be the set of polynomials of R2 of degrees less or equal k. Let Hc be the
functional space define by:

Hc =
{
ψ ∈ H1 (Ω \N) | ∀K ∈ T , ψ K ∈ P1 ⊕ Span

{
λK1 , λ

K
2 , λ

K
3

}}
.

4.3.3 . Discretization of the noise
To discretize the coloured noise, we use the one done by Boulakia et al. (2015). We recall

that ẆQ,i denotes an approximation of the coloured noise at time ti, i ∈ {1, . . . , Nf}. We set:

ẆQ,i =
WQ

ti −WQ
ti−1

∆t
.

From the definition of WQ
t , we know that ẆQ,i is equal in law to 1√

∆t
WQ

1 and that the{
ẆQ,i

}
1≤i≤Nf

are independent.
From Boulakia et al. (2015), a way to approximate the noise and to compute WQ,i

1 =(
ωi
1, ω

i
2

) relies on the computation of a covariance matrix. Indeed, let {Pj , 1 ≤ j ≤ Nh} be theset of all the nodes of the triangulation T , where Nh is the number of nodes of the triangula-
tion, and {ψj , 1 ≤ j ≤ Nh} be a basis of the Lagrangian P1 finite element. ψj is a continuousaffine function on Ω \N such that for all 1 ≤ j, k ≤ Nh, we have ψj (Pk) = δjk. Form ∈ {1, 2},
the P1 discretization of ωi

m is given by

ωi
m =

Nh∑
j=1

xijψj .
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with {xij , 1 ≤ j ≤ Nh

} a realisation of a centred Gaussian vector of covariance matrix Σ. We
haveΣ = (q (Pj , Pk))1≤j,k≤Nh

. LetX be a centred Gaussian vector of covariancematrixΣ. We
have

X = SY,

with Y a Gaussian vector such that for all 1 ≤ j ≤ Nh, Yj ∼ N (0, 1) and S such that Σ = SST .
Thus to compute WQ,i

1 , we just have to simulate a realization of a standard Gaussian vector
and to compute the Cholesky decomposition S of the covariance matrix Σ.

4.3.4 . Variational formulation of the discrete problem on the concentration
The variational formulation of eq. (4.12) is given by:

Find ci+1 ∈ Hc such that for all ψ ∈ Hc, we have:∫
Ω\N

(
ci+1 − ci

∆t

)
ψ dx

+

∫
Ω\N

((
aui+1 − α√

∆t
ẆQ,i+1

1

)
ci+1 +∇ci+1

)
· ∇ψ dx = 0,

(4.14)

where (WQ,i
1

)
1≤i≤Nf

is a sequence of independent Q-Wiener processes evaluated at time 1.
4.3.5 . Numerical scheme

After initialization with cin given, a time iteration of the numerical scheme to simulate the
problem (4.1) is given by the following algorithm:
Algorithm 4.1 : Numerical scheme to simulate the model eq. (4.1) obtained after timediscretization and space discretization with a finite element method.
1. Initialisation: c0 = cin the given initial condition and definition of the mesh.
2. Computation of S the Cholesky decomposition of the covariance matrix Σ.
3. Time iteration:

(a) Compute ui+1 =
−χc

AΩ

∫
∂Ω
fact

(
ci
)
n dσ.

(b) Compute ẆQ,i+1
1 = SY , where Y is a realisation of a standard normal gaussianvector.

(c) Computation of the markers concentration ci+1 using ui+1 and ẆQ,i+1
1 bysolving the variational formulation eq. (4.14).

(d) Update of the domain:
xi+1
cell = xi

cell +∆tui,

xi+1
nucl = xi

nucl +∆tui.

4.4 . Numerical results

4.4.1 . Numerical verifications
In this section, we check that the numerical scheme proposed in algorithm 4.1 is consistent

with the mathematical study of the model in the deterministic case α = 0. We therefore check
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that if α = 0 then we recover numerically the stationary state (4.4) as well as the result on the
stability of the latter stated in theorem 4.2.2.

First, we check that the numerical scheme captures the stationary state. We then set a
time step∆t, then R0 and Rnucl in order to define the geometry of the cell, and we choose as
the initial condition for the markers concentration cin (x) = M

|Ω \N |
.

In this case, we observe that whatever the values of R0, Rnucl and χc, we find a stationarystate (see fig. 4.4 for an example). Indeeed, we observe that the velocity of the cell remains
zero over time. We also observe that the distribution of markers is well conserved over time.
Moreover, we can observe that the quantity ofmarkers is well conserved over time (see fig. 4.4
right), which is in agreement with eq. (4.2).
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time
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0.00
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0 20 40 60 80 100
time
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Time evolution of the total 
 quantity of markers

Figure 4.4: Example of capturing the stationary state using the numerical scheme. The
curve on the left represents the evolution of the velocity norm over time. We can observe that this
remains zero throughout the study interval [0, 100]. The curve on the right represents the evolution
of the total quantity of markers over time. We note that this remains constant over time.
The results presented here are obtained with the parameters ∆t = 0.00005, R0 = 1, Rnucl = 0.3,
cin (x) = M

|Ω\N | ,M = π, a = 1, χc = 1.5, fact (c) = c(1+cs)
2

cs(c+cs)
with cs = 0.5 and α = 0.

Secondly, we check that the numerical scheme gives results in accordance with theo-
rem 4.2.2. We therefore study the linear stability of the stationary state numerically. To do
this, we choose a perturbation of the stationary state as the initial condition and observe,
depending on the value of χc, whether the system returns to the stationary state.

The chosen stationary state perturbation is given by:
cin (x) = K (1 +X (x))11+X(x)>0 (4.15)

where for all x ∈ Ω \N we haveX (x) ∼ N (0, 1) andK such that ∫
Ω\N cin (x) dx =M .

As illustrated in fig. 4.5 for the case where R0 = 1 and Rnucl = 0.3, we correctly find the
criterion on the linear stablity of the stationary state. Indeed, when χc < χ∗

c , we have thatthe norm of the velocity decreases very quickly towards 0 then is constant equal to 0. This
illustrates that when χc < χ∗

c the stationary state is stable. Also, when χc > χ∗
c , we observethat the norm increases rapidly towards a strictly positive value and then becomes constant.

This suggests that when χc > χ∗
c there are stable travelling waves.The trajectory study confirms that we are indeed capturing travelling waves (see fig. 4.6).

Each cell maintains its orientation over time, which, coupled with the fact that the norm of
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Figure 4.5: Numerical illustration of theorem 4.2.2. Each curve represents the evolution of the
norm of the velocity of a cell for different values of χc (see legend on the right). When χc < χ∗

c the
norm of the velocity decreases very rapidly towards 0 (dashdotted curves in overlapping shades of
orange), whereas when χc > χ∗

c it increases rapidly towards a non-zero value (dashed curves in
shades of blue) . The critical case χc = χ∗

c is also represented (dark curve), here the velocity is close
to zero.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin given by eq. (4.15) and χ∗

c given by (4.5) and fact (c) = c(1+cs)
2

cs(c+cs)
with cs = 0.5

and α = 0.

the velocity is constant, leads to a progressive wave. The result is not surprising and is in
agreement with Lavi et al. (2020) results in the case of a rigid cell.
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Figure 4.6: Trajectories associated with the cells in fig. 4.5 in the case where χc > χ∗
c .

Each curve represents the trajectory of one of the cells studied in fig. 4.5. Only those where χc > χ∗
c

are represented, keeping the same colour coding (see legend on the right). We can therefore see
that here the cells do not change orientation over time.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin given by eq. (4.15), χ∗

c given by (4.5), fact (c) = c(1+cs)
2

cs(c+cs)
with cs = 0.5 and α = 0.

4.4.2 . Verification of agreement with the UCSP law and capture of the different
types of trajectory

In this section, we illustrate that although the rigid crown model is only a toy model, it
exhibits rich behaviour. Indeed, we illustrate that the trajectories obtained via algorithm 4.1
satisfy the UCSP law. Also, there exists a range of parameters in order to find the three types
of trajectories: Brownian, intermittent and persistent.

By fixing all the model parameters and varying only χc, we observe Brownian trajectorieswhen χc < χ∗
c , intermittent trajectories when χc = χ∗

c and persistent trajectories when χc >

χ∗
c . In this section, for the numerical results presented, R0 = 1, Rnucl = 0.3,M = π and a = 1.

As an initial condition cin for the concentration of markers, we choose the function defined for
all x ∈ Ω\N by cin (x) = M

|Ω \N |
. The noise parameters are set to α = 0.3 and ζ = 0.2. Finally,

the numerical simulations are performed over the time interval [0, 15] with ∆t = 0.005. Here
are the results when χc = χ∗

c − 0.3, χc = χ∗
c and χc = χ∗

c + 0.5 with χ∗
c defined in eq. (4.5).

4.4.2.1 . Illustration of the Brownian trajectories
In this subsection, we present the results when χc = χ∗

c − 0.3. We then observe that
the trajectories are Brownian. This can be seen visually in fig. 4.7 and is confirmed by the
study of the EASD and MSD, which are close to 1 (see fig. 4.9). In addition, we can see that the
trajectories satisfy the UCSP (see fig. 4.8). We also observe that the cells have a low velocity:
the mean norm is close to the intensity α of the noise (see fig. 4.10). These observations are in
good agreement with those made about Brownian behaviour in Maiuri et al. (2015).
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Figure 4.7: Trajectories in polar coordinates in the case where χc < χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 4.1 on the time interval
[0, 15]. Visually, the trajectories seem to be Brownian. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with

cs = 0.5, α = 0.3 and ζ = 0.2.
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Figure 4.8: Verification that the trajectories in fig. 4.7 satisfy the UCSP law (case when
χc < χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with

cs = 0.5, α = 0.3 and ζ = 0.2.

Figure 4.9: Verification that the trajectories in fig. 4.7 are Brownian (case when χc < χ∗
c ).

On the left is shown in blue the EASD associated with the trajectories in fig. 4.7 and in orange the
interpolation of the EASD, in the form t 7→ ctβ . By the properties of the EASD, as β close to 1, the
trajectories in fig. 4.7 are indeed Brownian. This is confirmed by the study of the MSD, which is
shown in blue on the right. Also shown on the right are the TASD of each cell in yellow and the
interpolation of the MSD in form t 7→ ctβ in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with

cs = 0.5, α = 0.3 and ζ = 0.2.
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Figure 4.10: Time evolution of the norm of the velocity of the cells whose trajectories
are shown in fig. 4.7 (case when χc < χ∗

c ). The blue lines show the evolution over time of the
norm of the velocity of each cell and the black line shows the evolution of the mean of the norms of
the velocities of the cells. We can see that the value of the mean of the norms of the cell velocities
corresponds to the choice of α.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with

cs = 0.5, α = 0.3 and ζ = 0.2.
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4.4.2.2 . Illustration of the persistent trajectories
In this subsection, we present the results when χc = χ∗

c + 0.5. We then observe that the
trajectories are persistent. This can be seen visually in fig. 4.11 and is confirmed by the study of
the EASD andMSD, which are equal or close to 2 (see fig. 4.13). In addition, we can see that the
trajectories satisfy the UCSP (see fig. 4.12). We also observe that the cells have a high velocity
(see fig. 4.14). These observations are in good agreement with those made about persistent
behaviour in Maiuri et al. (2015).

Figure 4.11: Trajectories in polar coordinates in the case where χc > χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 4.1 on the time interval
[0, 15]. Visually, the trajectories seem to be persistent. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with

cs = 0.5, α = 0.3 and ζ = 0.2.
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Figure 4.12: Verification that the trajectories in fig. 4.11 satisfy the UCSP law (case when
χc > χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with

cs = 0.5, α = 0.3 and ζ = 0.2.

Figure 4.13: Verification that the trajectories in fig. 4.11 are Brownian (case when χc >
χ∗
c ). On the left is shown in blue the EASD associated with the trajectories in fig. 4.11 and in orange

the interpolation of the EASD, in the form t 7→ ctβ . By the properties of the EASD, as β equals to 2,
the trajectories in fig. 4.11 are indeed persistent. This is confirmed by the study of the MSD, which
is shown in blue on the right. Also shown on the right are the TASD of each cell in yellow and the
interpolation of the MSD in form t 7→ ctβ in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with

cs = 0.5, α = 0.3 and ζ = 0.2.
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Figure 4.14: Time evolution of the norm of the velocity of the cells whose trajectories are
shown in fig. 4.11 (case when χc > χ∗

c ). The blue lines show the evolution over time of the norm
of the velocity of each cell and the black line shows the evolution of the mean of the norms of the
velocities of the cells.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with

cs = 0.5, α = 0.3 and ζ = 0.2.
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4.4.2.3 . Illustration of the intermittent trajectories
In this subsection, we present the results when χc = χ∗

c . We then observe that the trajec-
tories are intermittent. This can be seen visually in fig. 4.15 and is confirmed by the study of
the EASD and MSD, which are between 1 and 2 (see fig. 4.17). In addition, we can see that the
trajectories satisfy the UCSP (see fig. 4.16). We also observe that the cells have a intermediate
velocity: the velocity norm is between the velocities of the case χc = χ∗

c−0.3 and χc = χ∗
c+0.5

(see fig. 4.18). These observations are in good agreement with those made about intermittent
behaviour in Maiuri et al. (2015).

Figure 4.15: Trajectories in polar coordinates in the case where χc = χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 4.1 on the time interval
[0, 15]. Visually, the trajectories seem to be intermittent. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5,

α = 0.3 and ζ = 0.2.
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Figure 4.16: Verification that the trajectories in fig. 4.15 satisfy the UCSP law (case when
χc = χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5,

α = 0.3 and ζ = 0.2.

Figure 4.17: Verification that the trajectories in fig. 4.15 are intermittent (case when χc =
χ∗
c ). On the left is shown in blue the EASD associated with the trajectories in fig. 4.15 and in orange

the interpolation of the EASD, in the form t 7→ ctβ . By the properties of the EASD, as β between 1
and 2, the trajectories in fig. 4.15 are neither Brownian neither persistent. This is confirmed by the
study of the MSD, which is shown in blue on the right. Also shown on the right are the TASD of each
cell in yellow and the interpolation of the MSD in form t 7→ ctβ in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5,

α = 0.3 and ζ = 0.2.
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Figure 4.18: Time evolution of the norm of the velocity of the cells whose trajectories
are shown in fig. 4.15 (case when χc = χ∗

c ). The blue lines show the evolution over time of the
norm of the velocity of each cell and the black line shows the evolution of the mean of the norms of
the velocities of the cells. We can see that the value of the mean of the norms of the cell velocities
corresponds to the choice of α.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (4.5), fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5,

α = 0.3 and ζ = 0.2.
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We have therefore highlighted the fact that the model allows all three types of trajectory
to be found. We note that if the nucleus is fixed in the cell, then the results are similar to
those obtained when we do not consider the nucleus (see chapter 3). The results obtained
numerically in this chapter will be analysed in comparison with those obtained in chapter 6
when the dynamics of the nucleus are taken into account.
Conclusion and perspectives. The model allows all three types of trajectory to be found.
The results obtained seem similar to those obtained when considering a rigid cell with a fluid
domain having a disk domain (see chapter 3). However, the study of the linear stability of
the stationary state proves that, for the choice of fact (c) = c(1+cs)

2

cs(c+cs)
, the crown geometry of

the fluid domain tends to stabilise the model. Indeed, as soon as cs < M
πR2

0
, we have that for

the same choice of parameters, the threshold above which the stationary state is unstable is
greater in the case of the crownmodel. Let us denote c0 (r) the stationary concentration asso-
ciated with the domain where the inner disk of the crown domain has radius r ∈ (0, R0) and
χ∗
c (r) the associated critical threshold. We know that c0 is an increasing function on [0, R0].Also, as we have assumed that cs < M

πR2
0
= c0 (0) and that the function x 7→ 1

axf ′
act(x)

is increas-
ing on [cs,+∞), we obtain that χ∗

c is an increasing function on [0, R0]. The results obtainednumerically in this chapter will be analysed in comparison with those obtained in chapter 6
when the dynamics of the nucleus are taken into account.

In a future project, we aim to study the long-term dynamics of the model. We pursue the
characterisation of travelling waves initiated in section 4.2.2. An explicit expression for the
travelling wave velocity shall be given. We will show the existence of travelling waves and the
convergence in long time to a travelling wave or the stationary state. Finally, we aim to show a
bifurcation result from the stationary state to a travelling wave when χc becomes larger than
χ∗
c .
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5 - Rigid cell model with a particle

In this chapter, we present a second toy model which will be useful for highlighting the
properties of the nucleus in chapter 6. This model is a simplification of the general model (1.1)
in which the cell is assumed to be rigid and has a rigid particle which is transported by the
fluid contained in the cell. This makes it possible to study the impact of the presence of the
nucleus in the cell when its dynamics are neglected and thus to highlight the impact of the
dynamics of the nucleus on the trajectories of the cells (see chapter 6). First we present the
model studied. We then study the stationary states of the model and their stability. Finally,
we discretise themodel in order to write a numerical scheme based on finite element method
for simulating the model. Contrary to the model presented in chapter 4, the fluid domain is a
deformable domain. The particle can move inside the cell. The numerical scheme takes this
into account. In order to handle the different boundary conditions, a decomposition method
is proposed. Potential contacts between the cell boundary and the nucleus are avoided using
an Uzawa algorithm. We then study the trajectories obtained by simulating the model. We
illustrate that the model can simulate Brownian, intermittent and persistent trajectories.

5.1 . Modelling

In this section, we aim to derive a cell motility model from the deformable model, taking
into account a rigid particle transported by the fluid and assuming that the cell is rigid. Con-
sidering a rigid particle transported by the fluid means neglecting the forces characterising
the nucleus fNB and fBN by assuming them to be zero. First, we define the deformable model
with a rigid particle. Next, we study the dynamics of the centre of mass of the cell given by the
deformable model. Finally, we derive a rigid model analogous to the deformable model.

5.1.1 . Deformable model

We restrict ourselves to the case where the cell’s environment presents no obstacle and
where there is no external signal. We neglect the effects of undercooling and assume that
the substrate is homogeneous, i.e. that ξM is independent of space and we set for all x ∈ R2,
ξM (x) = 1. Then we have ξnucl independent of time. We also assume that fNB and fBN to
be zero. Under these assumptions and keeping the notations from chapter 1, the deformable
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model (1.1) is written as follows:

u+∇P = 0 in Ω (t) \N (t) ,

div (u) = 0 in Ω (t) \N (t) ,

Vn = u · n on ∂Ω (t) ,

P = γκ+ χcfact (c) on ∂Ω (t) ,

unucl (t) =
1

ξnucl |N |

∫
∂N(t)

P (t,x)ndσ

u · n = unucl · n on ∂N (t) ,

∂tc = div
(
∇c− (1− a)uc− αẆQ

t c
) in Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 on ∂ (Ω (t) \N (t)) ,

c(0,x) = cin(x) in Ω (0) \N (0) .

(5.1a)
(5.1b)
(5.1c)
(5.1d)
(5.1e)
(5.1f)
(5.1g)
(5.1h)
(5.1i)

5.1.2 . Force balance
Let xcm (t) be the centre of mass of Ω (t) at time t ≥ 0. We have:

xcm (t) =
1

AΩ

∫
Ω(t)

(x, y) dx dy.

We also define the velocity of the centre of mass ucm. For all t ≥ 0, we have:
ucm (t) =

d

dt
xcm (t) .

For all t ≥ 0, we have:
d

dt

∫
Ω(t)

xdxdy =

∫
∂Ω(t)

xVn dσ =

∫
∂Ω(t)

xu · ndσ

=

∫
Ω(t)\N(t)

div (xu) dxdy +

∫
N(t)

div (xunucl) dx dy

=

∫
Ω(t)\N(t)

∇x · udxdy + unucl ·
∫
N(t)

∇x dx dy

= −
∫
Ω(t)\N(t)

div (P∇x) dxdy + unucl,x

= −
∫
∂Ω(t)

P∇x · ndσ −
∫
∂N(t)

P∇x · ndσ + unucl,x

= −
∫
∂Ω(t)

(γκ+ χcfact (c))nx dσ −
∫
∂Ω(t)

Pnx dσ + unucl,x

= −
∫
∂Ω(t)

(γκ+ χcfact (c))nx dσ − ξnucl |N |unucl,x + unucl,x

where we used the incompresisbility constraint (5.1b), the darcy law (5.1a), the boundary con-
dition (5.1d) and the nucleus velocity expression (5.1e). Analogously, we have:

d

dt

∫
Ω(t)

y dxdy = −
∫
∂Ω(t)

(γκ+ χcfact (c))ny dσ − ξnucl |N |unucl,y + unucl,y.

Since ∫
∂Ω(t)

κndσ = 0, it follows:
ucm (t) = − 1

AΩ

∫
∂Ω(t)

χcfact (c)n dσ +
|N |
AΩ

(1− ξnucl)unucl (t) . (5.2)
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5.1.3 . Rigid formulation

Wewant to write the rigidmodel associated with the deformablemodel eqs. (5.1) and (5.2).
We assume the cell to be rigid and the cell to have a circular shape: Ω (t) is a disk of radius
R0 > 0. We assume that the velocity of the centre of mass in the rigid case is the same as
in the deformable case. Thus, the external boundary of the cell moves at the velocity of the
centre of mass. As in the deformable case, the cell is filled by a Darcy fluid with velocity u and
pressure P . Thus, with the assumption that the cell boundary normal velocity is equal to the
inside fluid normal velocity and with velocities continuity at the nucleus boundary, we have:



u+∇P = 0 in Ω (t) \N (t) ,

div (u) = 0 in Ω (t) \N (t) ,

u · n = ucm · n on ∂Ω (t) ,

u · n = unucl · n on ∂N (t) ,

Ω (t) = B (0, R0) +

∫ t

0

ucm (s) ds,

N (t) = B (0, Rnucl) +

∫ t

0

unucl (s) ds.

The rigid particle is modelled as in the deformable case. We assume it to have a rigid
movement. The force balance on the nucleus leads to the following expression for the particle
velocity:

unucl =
1

ξnucl |N |

∫
∂N(t)

P (t,x)n dσ.

Finally, as in the deformable case, we assume that rear markers are inside the cell, that
they can diffuse inside the cell and be transported by the fluid or attached to the plate, and
that in addition they are subject to stochastic fluctuations (modelled as in the section 1.3.7),
which leads to:


∂tc = div

(
∇c− (1− a)uc− αẆQ

t c
) in Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 on ∂ (Ω (t) \N (t)) .
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Thus, the rigid cell model with a rigid nucleus inside the cell that can move is given by:


u+∇P = 0 in Ω (t) \N (t) ,

div (u) = 0 in Ω (t) \N (t) ,

u · n = ucm · n on ∂Ω (t) ,

u · n = unucl · n on ∂N (t) ,

unucl (t) =
1

ξnucl |N |

∫
∂N(t)

P (t,x)ndσ,

ucm (t) =
−χc

AΩ

∫
∂Ω(t)

fact (c)ndσ +
|N |
AΩ

(1− ξnucl)unucl (t) ,

∂tc = div
(
∇c− (1− a)uc− αẆQ

t c
) in Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 on ∂ (Ω (t) \N (t)) ,

Ω (t) = B (0, R0) +

∫ t

0

ucm (s) ds,

N (t) = B (0, Rnucl) +

∫ t

0

unucl (s) ds.

(5.3a)
(5.3b)
(5.3c)
(5.3d)
(5.3e)
(5.3f)
(5.3g)
(5.3h)
(5.3i)
(5.3j)

We can note that, in general, since ucm ̸= unucl, the fluid domain is not a rigid domain
but a deformable domain. In accordance with the modelling of noise in section 1.3.7, the
space coloured noise ẆQ

t is defined on a probability space associated with the open Ω (0) =

B (0, R0).
As in the deformable case, the total quantity of markersM is conserved over time and we

have:

M =

∫
Ω(t)\N(t)

c (t,x) dx. (5.4)

Remark 5.1.1. In the model (5.3), P is defined up to a constant. Indeed, if (P,u, c) is a solution
of (5.3), then for all P0 ∈ R, (P + P0,u, c) is also a solution of (5.3). Thus, in order to define a
form of uniqueness of solutions, we can define an equivalence class and state that (P1,u1, c1) and
(P2,u2, c2) are equivalent solutions if and only if u1 = u2, c1 = c2 and there exists Q ∈ R such
that P1 = P2 +Q.

5.2 . Study of the model

In this section, we study the stationary state of model (5.3) in the case where we neglect
the noise and take α = 0 in eqs. (5.3g) and (5.3h). First, we prove that the model admits
a stationary state. Secondly, we study its linear stability and give a criterion for its stability.
There exists χ∗

c such that if χc < χ∗
c then the stationary state is stable and unstable otherwise.
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Considering α = 0, the model under study in this section is as follows:

u+∇P = 0 in Ω (t) \N (t) ,

div (u) = 0 in Ω (t) \N (t) ,

u · n = ucm · n on ∂Ω (t) ,

u · n = unucl · n on ∂N (t) ,

unucl (t) =
1

ξnucl |N |

∫
∂N(t)

P (t,x)ndσ,

ucm (t) =
−χc

AΩ

∫
∂Ω(t)

fact (c)ndσ +
|N |
AΩ

(1− ξnucl)unucl (t) ,

∂tc = div (∇c− (1− a)uc) in Ω (t) \N (t) ,

(∇c+ auc) · n = 0 on ∂ (Ω (t) \N (t)) ,

Ω (t) = B (0, R0) +

∫ t

0

ucm (s) ds,

N (t) = B (0, Rnucl) +

∫ t

0

unucl (s) ds.

(5.5a)
(5.5b)
(5.5c)
(5.5d)
(5.5e)
(5.5f)
(5.5g)
(5.5h)
(5.5i)
(5.5j)

5.2.1 . Stationary state
Proposition 5.2.1. The model eq. (5.5) admits an unique radially symmetric stationary state given
by: 

u0 (x) = 0, x ∈ Ω0 \N0,

P 0 (x) = 0, x ∈ Ω0 \N0,

u0
nucl = 0,

u0
cm = 0,

c0 (x) =
M

|Ω0 \N0|
, x ∈ Ω0 \N0,

Ω0 = B (0, R0) and N0 = B (0, Rnucl) .

(5.6a)
(5.6b)
(5.6c)
(5.6d)
(5.6e)
(5.6f)

Uniqueness is defined according to the remark 5.1.1.

Proof. We are looking for a radially symmetric stationnary state. Thus necessarily the cell
geometry is given by Ω0 = B (0, R0) and N0 = B (0, Rnucl).With this geometry, the stationary problem asssociated with the model (5.5) is given as
follows: 

u+∇P = 0 in Ω0 \N0,

div (u) = 0 in Ω0 \N0,

u · n = 0 on ∂Ω0 ∪ ∂N0,

∆c− (1− a)u · ∇c = 0 in Ω0 \N0,

(∇c+ auc) · n = 0 on ∂Ω0 ∪ ∂N0.

Thus the problem on P reads:{
−∆P = 0 in Ω0 \N0,

−∇P · n = 0 on ∂Ω0 ∪ ∂N0,
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which leads to the fact that P is such that ∇P = 0 over Ω0 \ N0 and thus P is constant over
Ω0 \N0. Moreover, we deduce that u = 0 over Ω0 \N0.

Substituting the value of u into the dynamics of concentration c, we obtain:{
−∆c = 0 in Ω0 \N0,

−∇c · n = 0 on ∂Ω0 ∪ ∂N0,

and c is constant over Ω0 \N0. Using the constraint on the total quantity of markers (5.4), we
deduce that for all x ∈ Ω0 \N0, c (x) = M

|Ω0 \N0|
.

Remark 5.2.2. We can note that for all xnucl ∈ R2 such that N = B (xnucl, Rnucl) is a subset of
Ω = B (0, R0) then 

u0 (x) = 0, x ∈ Ω \N,
P 0 (x) = 0, x ∈ Ω \N,
u0
nucl = 0,

u0
cm = 0,

c0 (x) =
M

|Ω \N |
, x ∈ Ω \N,

is a stationary of the problem (5.5).
In the sequel we denote:

χ∗
c =

1

ac0f ′act (c
0)
. (5.7)

Theorem 5.2.3. In the case where ξnucl = 1, if χc < χ∗
c , then the stationary state (5.6) is linearly

stable. On the opposite, if χc > χ∗
c , then the stationary state is linearly unstable.

5.2.2 . Proof of theorem 5.2.3
The theorem is proved in three steps. The first consists of computing the linearised prob-

lem of problem (5.5) around the stationary state (5.6) and deducing an eigenvalue problem.
The stationary state will then be stable if all the eigenvalues of the eigenvalue problem have
a negative real part. The second step consists to establish that the eigenvalue problem ad-
mits a positive real part eigenvalue, is equivalent to the fact that a simpler problem admits a
real part eigenvalue. This step is based on the radially symmetric nature of the problem and
Fourier analysis. The third step consists in studying this simpler problem. We can then exhibit
a positive real part eigenvalue of it when χc > χ∗

c . Also, using a graphical argument, it consists
in illustrating that if χc < χ∗

c then the eigenvalues of this problem have a negative real part.
The arguments used are inspired by those of Lavi et al. (2020); Alazard et al. (2022) and are
similar to those of section 4.2.1.2.

Step 1. The following lemma gives the expression for the linearised problem associated with
problem (5.5) around the stationary state (5.6).
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Lemma 5.2.4. The linearised problem associated to eq. (5.5) around the stationary state (5.6) is
given by: 

−∆P̃ = 0 in Ω0 \N0,

−∇P̃ · n = ũcm · n on ∂Ω0,

−∇P̃ · n = ũnucl · n on ∂N0,

∂tc̃ = ∆c̃ in Ω0 \N0,(
∇c̃+ aũcmc

0
)
· n = 0 on ∂Ω0,(

∇c̃+ aũnuclc
0
)
· n = 0 on ∂N0,

(5.8a)
(5.8b)
(5.8c)
(5.8d)
(5.8e)
(5.8f)

with

ũcm (t) =
−χcf

′
act

(
c0
)

AΩ

∫
∂Ω0

c̃ (t,x)ndσ,

ũnucl (t) =
1

|N |

∫
∂N0

P̃ (t,x)n dσ.

(5.9a)
(5.9b)

Proof. We perform a formal expansion of the solutions of model (5.5) around the stationary
state (5.6). Let ε > 0 small. For all t ≥ 0, we set:

Ω (t) = B (xcell (t) , R0) and N (t) = B (xnucl (t) , Rnucl) ,

with
xcell (t) = εx̃cell (t) +O

(
ε2
)
,

xnucl (t) = εx̃nucl (t) +O
(
ε2
)
.

Thus we can set for all t ≥ 0:
ucm (t) = u0

cm + εũcm (t) +O
(
ε2
)
,

unucl (t) = u0
nucl + εũnucl (t) +O

(
ε2
)
.

Moreover, for all t ≥ 0 and x ∈ Ω0 \N0, we set:
P (t) = P 0 + εP̃ (t) +O

(
ε2
)
,

and
c (t,x) = c0 + εc̃ (t,x) +O

(
ε2
)
.

As P0 satisfies eq. (5.6b) and P satisfies eqs. (5.5a) and (5.5b), we have that in Ω0 \N0:
−∆P̃ = 0.

In addition, since P satisfies eq. (5.5b) and u satisfies the boundary conditions eqs. (5.5c)
and (5.5d), we deduce that P̃ satisfies the following boundary conditions:

−∇P̃ · n = ũcm · n on ∂Ω0,

−∇P̃ · n = ũnucl · n on ∂N0.

Using the fact that c0 satisfies eq. (5.6e) and c satisfies (5.5g), we deduce that in Ω0 \N0:
∂tc̃ = ∆c̃.
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We also have on ∂Ω0 that:
(∇c+ aucmc) · n =

(
∇c0 + ε∇c̃+ au0

cmc
0 + εau0

cmc̃+ εaũcmc
0
)
· n+O

(
ε2
)

= ε
(
∇c̃+ aũcmc

0
)
· n+O

(
ε2
)
,

which leads to the boundary condition:(
∇c̃+ aũcmc

0
)
· n = 0 on ∂Ω0.

Similarly, we obtain the boundary condition on N0:(
∇c̃+ aũnuclc

0
)
· n = 0.

Moreover, we have:∫
∂Ω(t)

fact (c)ndσ =

∫
∂Ω(t)

fact
(
c0
)
+ εc̃f ′act

(
c0
)
n dσ +O

(
ε2
)

= εf ′act
(
c0
) ∫

∂Ω(t)

c̃ndσ +O
(
ε2
)

= εf ′act
(
c0
) ∫

∂Ω0

c̃ndσ +O
(
ε2
)
.

Thus we deduce that
ũcm =

−χcf
′
act

(
c0
)

AΩ

∫
∂Ω0

c̃n dσ.

Similarly, we have: ∫
∂N(t)

Pn dσ = ε

∫
∂N0

P̃ndσ +O
(
ε2
)
,

which leads to:
ũnucl =

1

|N |

∫
∂N0

P̃ndσ.

The eigenvalue problem associated with eqs. (5.8) and (5.9) is given by:

−∆P̃ = 0 in Ω0 \N0,

−∇P̃ · n = ũcm · n on ∂Ω0,

−∇P̃ · n = ũnucl · n on ∂N0,

λc̃ = ∆c̃ in Ω0 \N0,(
∇c̃+ aũcmc

0
)
· n = 0 on ∂Ω0,(

∇c̃+ aũnuclc
0
)
· n = 0 on ∂N0,

(5.10a)
(5.10b)
(5.10c)
(5.10d)
(5.10e)
(5.10f)

where λ ∈ C and ũcm, ũnucl defined by eq. (5.9).
Step 2. Using Fourier analysis and the radially symmetric nature of the problem (5.10), we
prove the following lemma, which reduces the spectral study of eq. (5.10) to that of a simpler
eigenvalue problem.

132



Lemma 5.2.5. The problem (5.10) admits an eigenvalue with a positive real part if and only if the
following problem eq. (5.11) admits one.

λc =

(
∂2rr +

1

r
∂r −

1

r2

)
c r ∈ (Rnucl, R0) ,

∂rc (R0) + aũcmc
0 = 0,

∂rc (Rnucl) + aũnuclc
0 = 0,

(5.11a)
(5.11b)
(5.11c)

with

ũcm = ũnucl =
−χcf

′
act

(
c0
)

R0
c (R0) . (5.12)

Proof. Since problem (5.10) is radially symmetrical, we can use Fourier analysis to study its
spectra. Let λ ∈ C and let (P̃ , c̃, ũcm, ũnucl

) be an eigenfunction associated with λ. In polar
coordinates, for all r ∈ (Rnucl, R0) and θ ∈ (−π, π], the Fourier decomposition of P̃ is given
by:

P̃ (r, θ) =
∑
m∈N

Pcm (r) cos (mθ) + Psm (r) sin (mθ) ,

and the one of c̃ by:
c̃ (r, θ) =

∑
m∈N

ccm (r) cos (mθ) +
∑
m∈N

csm (r) sin (mθ) .

For allm ∈ N withm ̸= 1, we have:∫ π

−π

cos (mθ) cos (θ) =

∫ π

−π

sin (mθ) sin (θ) = 0

and ∫ π

−π

cos (mθ) sin (θ) =

∫ π

−π

sin (mθ) cos (θ) = 0.

We also have: ∫ π

−π

cos2 (θ) =

∫ π

−π

sin2 (θ) = π

and ∫ π

−π

cos (θ) sin (θ) = 0.

Thus, in particular, we have:∫
∂N0

P̃n dσ = −πRnucl

(
Pc1 (Rnucl)
Ps1 (Rnucl)

)
and ∫

∂Ω

c̃ndσ = πR0

(
cc1 (R0)
cs1 (R0)

)
.

By linearity of eq. (5.10) and independence of the cosine and sine modes, we deduce that
for allm ̸= 1, (Pcm, ccm) and (Psm, csm) satisfy:

−
(
∂2rr +

1

r
∂r −

m2

r2

)
Pm = 0 r ∈ (Rnucl, R0) ,

− ∂rPm = 0 r ∈ {Rnucl, R0} ,

λcm =

(
∂2rr +

1

r
∂r −

m2

r2

)
cm r ∈ (Rnucl, R0) ,

∂rcm = 0 r ∈ {Rnucl, R0} .

(5.13a)
(5.13b)
(5.13c)
(5.13d)
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Moreover, in the case wherem = 1, we have that (Pc1, cc1) satisfies:

−
(
∂2rr +

1

r
∂r −

m2

r2

)
Pc1 = 0 r ∈ (Rnucl, R0) ,

− ∂rPc1 (R0) = ũcm,x,

∂rPc1 (Rnucl) = ũnucl,x,

λcc1 =

(
∂2rr +

1

r
∂r −

m2

r2

)
cc1 r ∈ (Rnucl, R0) ,

∂rcc1 (R0) + aũcm,xc
0 = 0,

∂rcc1 (Rnucl) + aũnucl,xc
0 = 0,

(5.14a)
(5.14b)
(5.14c)
(5.14d)
(5.14e)
(5.14f)

and similarly, (Ps1, cs1) satisfies:

−
(
∂2rr +

1

r
∂r −

m2

r2

)
Ps1 = 0 r ∈ (Rnucl, R0) ,

− ∂rPs1 (R0) = ũcm,y,

∂rPs1 (Rnucl) = ũnucl,y,

λcs1 =

(
∂2rr +

1

r
∂r −

m2

r2

)
cs1 r ∈ (Rnucl, R0) ,

∂rcs1 (R0) + aũcm,yc
0 = 0,

∂rcs1 (Rnucl) + aũnucl,yc
0 = 0,

(5.15a)
(5.15b)
(5.15c)
(5.15d)
(5.15e)
(5.15f)

where ũnucl,x and ũnucl,y denotes the two coordinates of ũnucl and ũcm,x and ũcm,y the onesof ũcm. We can note that ũcm and ũnucl depends only on the modem = 1 which allows us to
use the independence of the cosine and sine modes.

From the independence of the cosine and sine modes, we also deduce that studying the
spectrum of problem (5.10) is equivalent to study the spectrum of problem (5.13) for allm ̸= 1,
(5.14) and (5.15).

For m ̸= 1, as cm and Pm satisfying eq. (5.13) are not coupled and the functions (r, θ) 7→
ccm (r) cos (mθ) and (r, θ) 7→ csm (r) sin (mθ) satisfy:{

λc = ∆c in Ω \N,
∇c · n = 0 on ∂Ω ∪ ∂N,

the eigenvalue problem associated with the heat equation, the problem (5.13) only admits non
positive eigenvalues.

By symmetry, we see that problems (5.14) and (5.15) are analogous. We therefore restrict
our spectral study of problem (5.10) to the spectral study of the problem (5.14).

Finally, since P̃ satisfies the laplacian equation (5.10a), we have that for all m ∈ N, there
exists Am, Bm, Cm andDm ∈ R such that for all r ∈ (Rnucl, R0):{

Pcm (r) = Amr
m + Cmr

−m,

Psm (r) = Bmr
m +Dmr

−m.

In particular, we have Pc1 (Rnucl) = A1Rnucl + C1R
−1
nucl and thus:

ũnucl,x = −
(
A1 + C1R

−2
nucl

)
.
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From the boundary conditions eqs. (5.14b) and (5.14c), it follows that:
−
(
A1 −

C1

R2
0

)
=

−χcf
′
act

(
c0
)

R0
cc1 (R0) ,

−
(
A1 −

C1

R2
nucl

)
= −

(
A1 +

C1

R2
nucl

)
.

We thus have: A1 =
χcf

′
act

(
c0
)

R0
cc1 (R0) ,

C1 = 0.

We can conclude that:
ũnucl,x = −

χcf
′
act

(
c0
)

R0
cc1 (R0) .

Step 3. We study the spectrum of problem (5.11). The following lemma gives the form of the
eigenfunctions of eq. (5.11).
Lemma 5.2.6. Let λ ∈ C. The eigenfunctions of eq. (5.11) associated with the eigenvalue λ ∈ C are
given by:

c (r) = βλJ1

(
−iλ

1
2 r
)
+ γλY1

(
−iλ

1
2 r
)
, (5.16)

where r ∈ (Rnucl, R0), J1 and Y1 denote respectively the Bessel function of the first kind of order 1
and that of the second kind of order 1 and (βλ, γλ) ∈ C2 solution of:

− iλ
1
2

(
βλJ

′
1

(
−iλ

1
2R0

)
+ γλY

′
1

(
−iλ

1
2R0

))
=
aχcc

0f ′act
(
c0
)

R0

(
βλJ1

(
−iλ

1
2R0

)
+ γλY1

(
−iλ

1
2R0

))
, (5.17)

and

− iλ
1
2

(
βλJ

′
1

(
−iλ

1
2Rnucl

)
+ γλY

′
1

(
−iλ

1
2Rnucl

))
=
aχcc

0f ′act
(
c0
)

R0

(
βλJ1

(
−iλ

1
2R0

)
+ γλY1

(
−iλ

1
2R0

))
. (5.18)

Proof. From the definition of the Bessel functions, there exists βλ and γλ ∈ C such that the
solutions c of eq. (5.11a) are given, for all r ∈ (Rnucl, R0), by:

c (r) = βλJ1

(
−iλ

1
2 r
)
+ γλY1

(
−iλ

1
2 r
)
.

Then the boundary condition eq. (5.11b) reads eq. (5.17) and the boundary condition eq. (5.11c)
reads eq. (5.18).

From the previous lemma we derive the following lemma giving an explicit condition on
the eigenvalues of eq. (5.11).
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Lemma 5.2.7. Let λ ∈ C be an eigenvalue of eq. (5.11). Then λ is such that G1 (λ) = 0 with G1

defined for all z ∈ C by:

G1 (z) = z
(
J ′
1

(
−iz

1
2R0

)
Y ′
1

(
−iz

1
2Rnucl

)
− J ′

1

(
−iz

1
2Rnucl

)
Y ′
1

(
−iz

1
2R0

))
+

iz
1
2 aχcc

0f ′act
(
c0
)

R

[
J1

(
−iz

1
2R0

)
Y ′
1

(
−iz

1
2R0

)
− J ′

1

(
−iz

1
2R0

)
Y1

(
−iz

1
2R0

)
+J ′

1

(
−iz

1
2Rnucl

)
Y1

(
−iz

1
2R0

)
− J1

(
−iz

1
2R0

)
Y ′
1

(
−iz

1
2Rnucl

)]
.

Lemma 5.2.8. If χc > χ∗
c , then the eigenvalue problem defined by eq. (5.11) admits an eigenvalue

with a positive real part.

Proof. Let λ ∈ C be an eigenvalue of the problem (5.11) From lemma 5.2.7, we have that λ is
such that G1 (λ) = 0. We perform the expansion of G1 around 0. Using the properties of the
Bessel functions, for λ close to zero, we have:

J1

(
−iλ

1
2R0

)
=

−iλ
1
2R0

2
+ o (λ) ,

J ′
1

(
−iλ

1
2R0

)
=

1

2
+

3R2
0λ

16
+ o (λ) ,

Y1

(
−iλ

1
2R0

)
=

−2i

πλ
1
2R0

+
i (1− 2γ)λ

1
2R0

2π
+

2

π
J1

(
−iλ

1
2R0

)
log

(
−iλ

1
2R0

2

)
+ o (λ) ,

Y ′
1

(
−iλ

1
2R0

)
=

−2

λR2
0π

+
1 + 2γ

2π
− R2

0λ (11− 12γ)

32π
+

2

π
J ′
1

(
−iλ

1
2R
)
log

(
−iλ

1
2R

2

)
+ o (λ) ,

where γ denotes the Euler’s constant. Thus for λ close to zero, we have:

G1 (λ) =
(
1− aχcc

0f ′act
(
c0
))( 1

R2
0π

− 1

R2
nuclπ

)
+

3
(
R4

nucl −R4
0

)
8πR2

0R
2
nucl

λ− aχcc
0f ′act

(
c0
) 3 (R2

0 −R2
nucl

)
8πR2

0

λ

+
aχcc

0f ′act
(
c0
)
− 1

2π
ln

(
R0

Rnucl

)
λ+ o (λ) ,

= g (λ) + o (λ) .

The function g admits λ1 ∈ R as root with λ1 defined by:

λ1 = −

(
1− aχcc

0f ′act
(
c0
)) (

1
R2

0π
− 1

R2
nuclπ

)
3(R4

nucl−R4
0)

8πR2
0R

2
nucl

− aχcc0f ′act (c
0)

3(R2
0−R2

nucl)
8πR2

0
+

aχcc0f ′
act(c

0)−1
2π ln

(
R0

Rnucl

) .
We have: (

1− aχcc
0f ′act

(
c0
))( 1

R2
0π

− 1

R2
nuclπ

)
> 0 ⇐⇒ χc > χ∗

c .
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We also have:
3
(
R4

nucl −R4
0

)
8πR2

0R
2
nucl

− aχcc
0f ′act

(
c0
) 3 (R2

0 −R2
nucl

)
8πR2

0

+
aχcc

0f ′act
(
c0
)
− 1

2π
ln

(
R0

Rnucl

)
< 0

⇐⇒

aχcc
0f ′act

(
c0
)
<

3
(
R4

0 −R4
nucl

)
+ 4R2

0R
2
nucl ln

(
R0

Rnucl

)
R2

nucl

(
3 (R2

nucl −R2
0) + 4R2

0 ln
(

R0

Rnucl

))
and 3

(
R2

nucl −R2
0

)
+ 4R2

0 ln

(
R0

Rnucl

)
> 0

]
or 3 (R2

nucl −R2
0

)
+ 4R2

0 ln

(
R0

Rnucl

)
< 0.

Moreover, if 3 (R2
nucl −R2

0

)
+4R2

0 ln
(

R0

Rnucl

)
> 0 then 3

(
R4

0 −R4
nucl

)
+ 4R2

0R
2
nucl ln

(
R0

Rnucl

)
R2

nucl

(
3 (R2

nucl −R2
0) + 4R2

0 ln
(

R0

Rnucl

)) >
1. Thus λ1 changes sign from negative to positive as χc exceeds χ∗

c . We can note that λ1 ap-proximates well a root of G1 and that we have:
λ1 =

(
aχcc

0f ′act
(
c0
)
− 1
) 8

(
R2

0 −R2
nucl

)
3aχcc0f ′act (c

0) (R4
0 +R2

0R
2
nucl − 2R4

nucl)
+ o

(∣∣aχcc
0f ′act

(
c0
)
− 1
∣∣) .

This eigenvalue is associated with the non-trivial eigenfunction:
c (r) = βλ1

J1

(
−iλ

1
2
1 r
)
+ γλ1

Y1

(
−iλ

1
2
1 r
)
,

with
βλ1 = iλ

1
2
1 Y

′
1

(
−iλ

1
2
1 R0

)
+
aχcc

0f ′act
(
c0
)

R0
Y1

(
−iλ

1
2
1 R0

)
,

γλ1 = −

(
iλ

1
2
1 J

′
1

(
−iλ

1
2
1 R0

)
+
aχcc

0f ′act
(
c0
)

R0
J1

(
−iλ

1
2
1 R0

))
.

From the lemma 5.2.8, we deduce that when χc > χ∗
c , the eigenvalue problem defined by

eq. (5.10) admits an eigenvalue with a positive real part and thus the stationary state is linearly
unstable.

To conclude the proof of the theorem, we need to show that when χc < χ∗
c all the eigen-values associated to (5.11) have negative real part. We give only a graphical illustration here.

For several values of R0, Rnucl and χc

χ∗
c

, we represent the function G1 by representing its real
part, its imaginary part and its modulus (see fig. 5.1 for an example). We then observe that
the root of G1 with the largest real part seems to be a real root of G1, which is confirmed by
studying the imaginary part of G1. Indeed, we notice that if λ ∈ R then G1 (λ) ∈ R.

We can therefore restrict the graphical study of G1 to the graphical study of G1 when
λ ∈ R. For R0 and Rnucl fixed and for different values of χc

χ∗
c

, we plotG1 as a function of λ ∈ R

(see fig. 5.2). This allows us to observe the largest real root of G1 and we notice that when
χc < χ∗

c then this one is negative.Moreover, we observe numerically that as soon as χc < χ∗
c then the stationary state is

stable, this will be illustrated in section 5.4.1.
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Figure 5.1: Representation of G1 in the complex framework for R0 = 1, Rnucl = 0.3 and
χc

χ∗
c

= 0.8. Plots of the real part (left), the imaginary part (middle) and the modulus (right) of the

function G1 for λ = x + iy ∈ C with x, y ∈ [−40, 40]. We observe that the root of G1 with the
greatest real part is a real root.
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Figure 5.2: Graphs of λ 7→ G1 (λ) for λ ∈ R when R0 = 1 and Rnucl = 0.3 for different
values of χc

χ∗
c
= aχcc

0f ′
(
c0
)
. Each curve corresponds to a different value of χc. The solid yellow-

orange curves correspond to the case where χc < χ∗
c , the dashed blue curves correspond to the

case where χc > χ∗
c and the dark dashdotted curve corresponds to the case where χc = 1χ∗

c . The
grey dotted lines are the lines of equation λ = 0 and y = 0. In the case where χc < χ∗

c we notice
that G1 seems to admit no positive root.
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5.3 . Finite element scheme of the rigid model

In this section we write a finite element scheme to run simulations of the rigid model
eq. (5.3). The proposed scheme is based on a semi-implicit discretization in time and a dis-
cretisation in space using a finite element method.

5.3.1 . Time discretization
We discretize in time our model eq. (5.3). Let∆t be the time step. For i ∈ {0, . . . , Nf} with

Nf ∈ N, we denote ti = i∆t, ui = u
(
ti, ·
), P i = P

(
ti, ·
) and ci = c

(
ti, ·
). We also denote

Ωi = Ω
(
ti
) and N i = N

(
ti
). In addition, we denote f iBN the force induced by the boundary

onto the nucleus associated with the cell geometry at time ti and anagously we denote f iNBthe force induced by the nucleus on a point of ∂Ωi at time ti.
The implicit discretization of the problem about velocities is given by:

ui+1 +∇P i+1 = 0 in Ωi \N i,

div
(
ui+1

)
= 0 in Ωi \N i,

ui+1 · n = ui+1
cm · n on ∂Ωi,

ui+1 · n = ui+1
nucl · n on ∂N i,

ui+1
nucl =

1

ξnucl |N i|

∫
∂Ni

P i+1n dσ,

ui+1
cm =

−1

|Ωi|

∫
∂Ωi

χcfact
(
ci
)
n dσ +

∣∣N i
∣∣

|Ωi|
(1− ξnucl)u

i+1
nucl,

(5.19a)
(5.19b)
(5.19c)
(5.19d)
(5.19e)
(5.19f)

and
ci+1 − ci

∆t
= div

(
∇ci+1 − (1− a)ui+1ci+1 − αẆQ,ici+1

) in Ωi \N i,(
∇ci+1 + aui+1ci+1 − αẆQ,ici+1

)
· n = 0 on ∂Ωi ∪ ∂N i,

(5.20a)
(5.20b)

with {
Ωi+1 =

(
Id+∆tui+1

cm

) (
Ωi
)
,

N i+1 =
(
Id+∆tui+1

nucl

) (
N i
)
.

(5.21a)
(5.21b)

5.3.2 . Decomposition of the fluid problem
We focus on the fluid velocity and pressure eq. (5.19). Instead to solve numerically this

problem (5.19), we solve the following:
−∆P i+1 = 0 in Ωi \N i,

−∇P i+1 · n = ui+1
cm · n on ∂Ωi,

−∇P i+1 · n = ui+1
nucl · n on ∂N i,

(5.22a)
(5.22b)
(5.22c)

with
ui+1
nucl =

1

ξnucl |N i|

∫
∂Ni

P i+1ndσ

and
ui+1
cm =

−1

|Ωi|

∫
∂Ωi

χcfact
(
ci
)
n dσ +

∣∣N i
∣∣

|Ωi|
(1− ξnucl)u

i+1
nucl.
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We then set ui+1 = −∇P i+1. We decompose eq. (5.22) in four independent problems to
separate the boundary conditions on ∂Ωi and ∂N i. We define as follows the four problems:

−∆P1 = 0 in Ωi \N i,

∇P1 · n = nx on ∂Ωi,

∇P1 · n = 0 on ∂N i,

(5.23a)
(5.23b)
(5.23c)

−∆P2 = 0 in Ωi \N i,

∇P2 · n = ny on ∂Ωi,

∇P2 · n = 0 on ∂N i,

(5.24a)
(5.24b)
(5.24c)

−∆P3 = 0 in Ωi \N i,

∇P3 · n = 0 on ∂Ω (t) ,

∇P3 · n = nx on ∂N i,

(5.25a)
(5.25b)
(5.25c)

−∆P4 = 0 in Ωi \N i,

∇P4 · n = 0 on ∂Ω (t) ,

∇P4 · n = ny on ∂N i,

(5.26a)
(5.26b)
(5.26c)

where nx and ny are the coordinates of the normal outward vector of Ωi \N i.
We want to find µ1, µ2, µ3 and µ4 ∈ R such that P i+1 = µ1P1 + µ2P2 + µ3P3 + µ4P4with P1, p2, P3 and P4 respectively solutions to eqs. (5.23) to (5.26). This is equivalent to find

µ = (µ1, µ2, µ3, µ4)
T such that Aµµ = Bµ where Aµ is the following matrix

Aµ =


1 + 1−ξnucl

ξnucl|Ωi|P
x
1

1−ξnucl
ξnucl|Ωi|P

x
2

1−ξnucl
ξnucl|Ωi|P

x
3

1−ξnucl
ξnucl|Ωi|P

x
4

1−ξnucl

ξnucl|Ωi|P
y
1 1 + 1−ξnucl

ξnucl|Ωi|P
y
2

1−ξnucl
ξnucl|Ωi|P

y
3

1−ξnucl
ξnucl|Ωi|P

y
4

1
ξnucl|Ni|P

x
1

1
ξnucl|Ni|P

x
2 1 + 1

ξnucl|Ni|P
x
3

1
ξnucl|Ni|P

x
4

1
ξnucl|Ni|P

y
1

1
ξnucl|Ni|P

y
2

1
ξnucl|Ni|P

y
3 1 + 1

ξnucl|Ni|P
y
4

 (5.27)

and B the following vector

Bµ =


1

|Ωi|
∫
∂Ωi χcfact

(
ci
)
nx dσ

1
|Ωi|

∫
∂Ωi χcfact

(
ci
)
ny dσ

0
0

 (5.28)

with P x
j =

∫
∂Ni Pj nx dσ and P y

j =
∫
∂Ni Pj ny dσ for j ∈ {1, 2, 3, 4} and f iBN,x, f iBN,y the coor-dinates of f iBN.

5.3.3 . Spatial discretization
We discretize in space our time-discrete model eqs. (5.19) to (5.21). We use a finite element

discretization. Let T be a triangulation ofΩi \N i. For all triangleK ∈ T we note (λK1 , λK2 , λK3 )the barycentric coordinate functions of K. First we define the functional spaces needed. Let
Pk be the set of polynomials of R2 of degrees less or equal k. LetHP be the functional space
define by:

HP =
{
Q ∈ H1

(
Ωi \N i

)
| ∀K ∈ T , Q K ∈ P1

}
.

LetHc be the functional space define by:
Hc =

{
ψ ∈ H1

(
Ωi \N i

)
| ∀K ∈ T , ψ K ∈ P1 ⊕ Span

{
λK1 , λ

K
2 , λ

K
3

}}
.
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5.3.4 . Variational formulation of the fluid problem
Instead of writing the variational formulation of eq. (5.19), we use the decomposition result

and write the variational formulation of the four independent problems eqs. (5.23) to (5.26).
The variational formulation of the problem eq. (5.23) is given by:

Find P1 ∈ HP such that for all Q ∈ HP , we have:∫
Ωi\Ni

∇P1 · ∇Qdx−
∫
∂Ωi

Qnx dσ = 0. (5.29)

The variational formulation of the problem eq. (5.24) is given by:
Find P2 ∈ HP such that for all Q ∈ HP , we have:∫

Ωi\Ni

∇P2 · ∇Qdx−
∫
∂Ωi

Qny dσ = 0. (5.30)

The variational formulation of the problem eq. (5.25) is given by:
Find P3 ∈ HP such that for all Q ∈ HP , we have:∫

Ωi\Ni

∇P3 · ∇Qdx−
∫
∂Ni

Qnx dσ = 0. (5.31)

The variational formulation of the problem eq. (5.26) is given by:
Find P3 ∈ HP such that for all Q ∈ HP , we have:∫

Ωi\Ni

∇P3 · ∇Qdx−
∫
∂Ni

Qny dσ = 0. (5.32)

5.3.5 . Discretization of the noise
The discretization of the noise is based on the method developed in Boulakia et al. (2015).

Instead of simulating ẆQ
t over its entire domain of definition, wewant to restrict its simulation

to the current fluid domain. We recall that ẆQ,i denotes an approximation of the coloured
noise at time ti, i ∈ {1, . . . , Nf}. We set:

ẆQ,i =
WQ

ti −WQ
ti−1

∆t
.

From the definition of WQ
t , we know that ẆQ,i is equal in law to 1√

∆t
WQ

1 and that the{
ẆQ,i

}
1≤i≤Nf

are independent. Therefore, to simulate ẆQ,i, we simulate WQ,i
1 . For all i,

WQ,i
1 is a realisation of the Q-Wiener process at time ti restricted to the discrete current fluid

domain Ωi \N i.
A way to compute WQ,i

1 =
(
ωi
1, ω

i
2

), the discrete noise, relies on the computation of a
covariancematrix (Boulakia et al., 2015). The computation of the covariancematrix is restricted
to the computation of the covariance matrix restricted to the current domain. At time ti, let{
P i
j , 1 ≤ j ≤ N i

h

} be the set of all the nodes of the triangulation T i
h ofΩi \N i, whereN i

h is thenumber of nodes of the triangulation, and {ψi
j , 1 ≤ j ≤ N i

h

} be a basis of the Lagrangian P1
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finite element. ψi
j is a continuous affine function on Ωi \N i such that for all 1 ≤ j, k ≤ N i

h, wehave ψi
j

(
P i
k

)
= δjk. Form ∈ {1, 2}, the P1 discretization of ωi

m is given by

ωi
m =

Ni
h∑

j=1

xijψ
i
j .

with {xij , 1 ≤ j ≤ N i
h

} a realisation of a centred Gaussian vector of covariance matrix Σi. We
have Σi =

(
q
(
P i
j , P

i
k

))
1≤j,k≤Ni

h

. Let X be a centred Gaussian vector of covariance matrix Σi.
We have

X = SiY,

with Y a Gaussian vector such that for all 1 ≤ j ≤ N i
h, Yj ∼ N (0, 1) and Si such that Σi =

Si
(
Si
)T . Thus to computeWQ,i

1 , we just have to simulate a realization of a standard Gaussian
vector and to compute the Cholesky decomposition Si of the covariance matrix Σi. Note that
since the domain is deformable, the space-dependent Σi matrix is time-dependent and must
be computed along with its Cholesky decomposition Si at each time step.

5.3.6 . Discretization of the concentration problem
At each step of the numerical simulations, the mesh is propagating with the velocity umeshwhich satisfies: 

∆umesh = 0 in Ωi \N i,

umesh = ui+1
cm on ∂Ωi,

umesh = ui+1
nucl on ∂N i.

Thus the mesh propagation induces advection at velocity umesh of the markers concentra-
tion. Taking it into account leads to modify the discrete concentration problem eq. (5.20) as
follows:

ci+1 − ci

∆t
+ (1− a)ui+1 · ∇ci+1 − α√

∆t
WQ,i

1 ci+1

− umesh · ∇ci+1 −∆ci+1 = 0 in Ωi \N i,(
∇ci+1 + aci+1ui+1 − αẆQ,i+1ci+1

)
· n = 0 on ∂Ωi ∪ ∂N i.

(5.33a)
(5.33b)

The variational formulation of eq. (5.33) is given by:

Find ci+1 ∈ Hc such that for all ψ ∈ Hc, we have:∫
Ωi\Ni

(
ci+1 − ci

∆t

)
ψ dx+

∫
Ωi\Ni

div (umesh) c
i+1ψ dx

−
∫
Ωi\Ni

(
(1− a)ui+1ci+1 − umeshc

i+1 −∇ci+1
)
· ∇ψ dx

+

∫
Ωi\Ni

α√
∆t

ci+1WQ,i
1 · ∇ψ dx = 0.

(5.34)

5.3.7 . Avoid contact between cell boundary and particle
The discretization steps described above can be used to simulate eq. (5.3). However, these

steps do not ensure that the particle remains inside the cell. To ensure this, we add a step to
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the computation of the cell and nucleus velocities. Using a Uzawa algorithm, we project the
velocities of the cell and the nucleus onto a space of so-called admissible velocities, chosen to
ensure that the nucleus and the boundary of the cell are not in contact. The numerical scheme
used to simulate eq. (5.3) is given by the following algorithm.
Algorithm 5.1 : Numerical scheme to simulate eq. (5.3) obtained after time discretizationand space discretization with a finite element method.
1. Initialisation: c0 = cin the given initial condition and definition of the mesh with Ω0 and
N0 given.

2. Time iteration:
(a) Compute ui+1 and P i+1 using ci and the decomposition method:

i. Solve the variational formulation eq. (5.29) to compute P1.ii. Solve the variational formulation eq. (5.30) to compute P2.iii. Solve the variational formulation eq. (5.31) to compute P3.iv. Solve the variational formulation eq. (5.32) to compute P4.
v. Compute µ = (µ1, µ2, µ3, µ4)

T by solving Aµµ = Bµ with Aµ given byeq. (5.27) and Bµ given by eq. (5.28).vi. Deduce P i+1 = µ1P1 + µ2P2 + µ3P3 + µ4P4 and compute ui+1 = −∇P i+1.
(b) Computation of the a priori nucleus velocity: ui+ 1

2

nucl =
1

ξnucl |N i|

∫
∂Ni

P i+1ndσ.
(c) Computation of the a priori cell velocity:

u
i+ 1

2
cm =

−1

|Ωi|

∫
∂Ωi

χcfact
(
ci
)
ndσ +

∣∣N i
∣∣

|Ωi|
(1− ξnucl)u

i+1
nucl.

(d) Using a Uzawa algorithm, computation of ui+1
nucl and ui+1

cm which are the projection
of the a priori velocities ui+ 1

2

nucl and u
i+ 1

2
cm on an admissible velocities space (seealgorithm 5.2 for more details).

(e) Computation of the mesh velocity umesh.
(f) Computation of the covariance matrix Σi and Si its Cholesky decomposition anddeduction of the discrete noiseWQ,i

1 = SiY where Y a realisation of a standardnormal Gaussian vector.
(g) Computation of the markers concentration ci+1 using ui+1,WQ,i

1 and umesh bysolving the variational formulation eq. (5.34).
(h) Update of the domain:

Ωi+1 = (Id+∆tumesh)
(
Ωi
)
,

N i+1 = (Id+∆tumesh)
(
N i
)

Next, we give details concerning Uzawa’s algorithm for handling the potential contact be-
tween the cell boundary and the nucleus. Let i ∈ {0, . . . , Nf}. We denote byX =

(
xi
nucl , x

i
cell

)
the vector with the coordinate of the particle and cell centres at time ti. The distance D (X)

between the particle and the cell boundary is given by:

D (X) = R0 −Rnucl −
∣∣xi

nucl − xi
cell

∣∣ .
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The gradient G of the distanceD is given by:

G (X) = (−e (X) , e (X)) ,

where e (X) =
x
i+ 1

2

nucl − xi
cell∣∣xi

nucl − xi
cell

∣∣ . Let V =
(
u
i+ 1

2

nucl , u
i+ 1

2
cm

) be the vector containing the velocities
of the particle and the cell. The vector V is said to be admissible if the velocities u

i+ 1
2

nucl and
u
i+ 1

2
cm ensure that, at the next time step, the nucleus and the boundary of the cell are not in

contact. This condition is expressed as:

D (X+∆tV) ≥ ε,

with ε > 0 small. By linearising this condition, it can be approximated by:

D (X) + ∆tG (X) ·V ≥ ε.

From this linearized condition and the expression of the gradient G, we derive a space of
admissible velocities defined by:

K (X) =
{
(vn,vc) ∈ R2 × R2 s.t. ∆t (e (X) · vn − e (X) · vc) ≤ D (X)− ε

}
.

Let (ui+1
nucl , u

i+1
cm

) be the projection ofV onto K (X). Then (ui+1
nucl , u

i+1
cm

) satifies the following
minimisation problem:
∣∣(ui+1

nucl , u
i+1
cm

)∣∣2 − 2

〈(
ui+1
nucl , u

i+1
cm

)
,
(
u
i+ 1

2

nucl , u
i+ 1

2
cm

)〉
= min

(vn ,vc)∈K(X)

(
|(vn , vc)|2 − 2

〈
(vn , vc) ,

(
u
i+ 1

2

nucl , u
i+ 1

2
cm

)〉)

It follows that there exists λ ≥ 0 such that (ui+1
nucl , u

i+1
cm

) satisfies (Lefebvre, 2007):

2
(
ui+1
nucl , u

i+1
cm

)
+ λ (∆t e (X) , −∆t e (X)) = 2

(
u
i+ 1

2

nucl , u
i+ 1

2
cm

)
,

∆t
(
e (X) · ui+1

nucl − e (X) · ui+1
cm

)
≤ D (X)− ε,

λ
(
∆t
(
e (X) · ui+1

nucl − e (X) · ui+1
cm

)
−D (X) + ε

)
= 0.

To solve this dual problem, we use a Uzawa algorithm, which is a projected fixed-step gradient
descent algorithm. The algorithm used is described in algorithm 5.2.
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Algorithm 5.2 : Uzawa algorithm for projecting particle and cell velocities to ensureno contact between the cell boundary and the particle.
Assume u

i+ 1
2

nucl and u
i+ 1

2
cm given.

1. Let v0
n ∈ R2 and v0

c ∈ R2. Let λ0 ≥ 0. Let η > 0 small and ρ > 0 a projection step.
2. While ∣∣(vk+1

n ,vk+1
c

)
−
(
vk
n,v

k
c

)∣∣ > η or ∣∣λk+1 − λk
∣∣ > η do:

(a) vk+1
n = u

i+ 1
2

nucl −
1
2λ

k∆t e (X).
(b) vk+1

c = u
i+ 1

2
cm + 1

2λ
k∆t e (X).

(c) λk+1 = ΠR+

[
λk + ρ

(
∆t
(
e (X) · vk+1

n − e (X) · vk+1
c

)
−D (X) + ε

)].
3. Update of the particle and the cell velocities:

ui+1
nucl = vk+1

n

and
ui+1
cm = vk+1

c .

5.4 . Numerical results

In this section, after checking that the proposed numerical scheme is consistent with the
study of the model, we illustrate that numerically the model makes it possible to obtain the
three types of trajectories: persistent, Brownian and intermittent. The numerical scheme is
implemented using FreeFEM++ (Hecht, 2012).

5.4.1 . Numerical verification
In this section, we check that the numerical scheme proposed in algorithm 5.1 is consis-

tent with the mathematical study of the model. We therefore check that if α = 0 then we
recover the stationary state (5.6) as well as the result on the stability of the latter stated in
theorem 5.2.3.

First, we check that the numerical scheme captures the stationary state. We then set a
time step∆t, then R0 and Rnucl in order to define the geometry of the cell, and we choose as
the initial condition for the markers concentration c0 (x) = M

|Ω \N |
.

In this case, we observe that whatever the values of R0, Rnucl and χc, we find a stationarystate (see fig. 6.5 for an example). Indeed, the velocity of the cell remains zero over time
and the position of the nucleus at the centre of the cell is maintained. We also observe that
the distribution of markers is weel conserved over time.Moreover, we can observe that the
quantity of markers is well conserved over time (see fig. 5.3 right), which is in agreement with
eq. (5.4) (see fig. 5.4).

Secondly, we check that the numerical scheme gives results in accordance with theo-
rem 5.2.3. We therefore study the linear stability of the stationary state numerically. To do
this, we choose a perturbation of the stationary state as the initial condition and observe, de-
pending on the value of χc, whether the system returns to the stationary state. In accordance
with remark 5.1.1, we only consider stationary state perturbations where only the marker dis-
tribution is perturbed and not the position of the nucleus.
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Figure 5.3: Example of capturing the stationary state using the numerical scheme. The
curve on the left represents the evolution of the velocity norm over time. We can observe that this
remains zero throughout the study interval [0, 100]. The curves on the right represent the evolution
over time of the coordinates of the nucleus position. We can see that the position of the particle is
preserved over the study interval.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), cin (x) = M

π(R2
0−R2

nucl)
,M = π, a = 1, χc = 0.5, fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5.

The chosen stationary state perturbation is given by:
cin (x) = K (1 +X (x))11+X(x)>0 (5.35)

where for all x ∈ Ω \ N we have X (x) ∼ N (0, 1) and K such that ∫
Ω\N cin (x) dx = M .The

nucleus position is perturbed by choosing:
xin
nucl = (0; 0) .

As illustrated in fig. 5.5 for the case where R0 = 1 and Rnucl = 0.3, we correctly find the
criterion on the linear stablity of the stationary state. Indeed, when χc < χ∗

c , we have thatthe norm of the velocity decreases very quickly towards 0 then is constant equal to 0. This
illustrates that when χc < χ∗

c the stationary state is stable. Also, when χc > χ∗
c , we observethat the norm increases rapidly towards a strictly positive value and then becomes constant.

This suggests that when χc > χ∗
c there are stable travelling waves.The trajectory study confirms that we are indeed capturing travelling waves (see fig. 5.6).

Each cell maintains its orientation over time, which, coupled with the fact that the norm of
the velocity is constant, leads to a progressive wave. The result is not surprising and is in
agreement with Lavi et al. (2020) results in the case of a rigid cell.
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Figure 5.4: Illustration of the conservation of the total quantity ofmarkers. The curve rep-
resents the evolution of the total quantity of markers over time. We note that this remains constant
throughout the study interval [0, 100].
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), cin (x) = M

π(R2
0−R2

nucl)
,M = π, a = 1, χc = 0.5, fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5.
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Figure 5.5: Numerical illustration of theorem 5.2.3. Each curve represents the evolution of the
cell’s centre of mass velocity norm of a cell for different values of χc (see legend on the right). When
χc < χ∗

c the norm of the velocity decreases very rapidly towards 0 (dashdotted curves in overlapping
shades of orange), whereas when χc > χ∗

c it increases rapidly towards a non-zero value (dashed
curves in shades of blue) . The critical case χc = χ∗

c is also represented (dark curve), here the norm
of the velocity is close to zero and decreases.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin given by eq. (5.35) and χ∗

c given by (5.7), fact (c) = c(1+cs)
2

cs(c+cs)
with

cs = 0.5, β = 1.5 and δ = 0.5.
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Figure 5.6: Trajectories associatedwith the cells in fig. 5.5 in the casewhere χc > χ∗
c . Each

curve represents the trajectory of one of the cells studied in figure 3. Only those where χc > χ∗
c are

represented, keeping the same colour coding (see legend on the right). We can therefore see that
here the cells do not change orientation over time.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin given by eq. (5.35), χ∗

c given by (5.7), fact (c) = c(1+cs)
2

cs(c+cs)
with

cs = 0.5.
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Figure 5.7 illustrates the evolution of the organisation of the cell of the trajectory shown
in fig. 5.6 when χc = χ∗

c + 0.1. We can see that the particle is at the rear of the cell at the end
of the simulation. Note also that the shape of the fluid domain changes over time.

Figure 5.7: Snapshots of the cell organisation for the case χc = χ∗
c + 0.1 of the fig. 5.6.

Snapshots at time t = 0, t = 10, t = 15, t = 20, t = 50, and t = 100 of the cell organisation of the
cell whose trajectory is represented in fig. 5.6. The red area represents the area with high markers
concentration and the area in dark blue the one with low markers concentration. We can observe
that the particle moves inside the cell.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin given by eq. (5.35), χc = χ∗

c + 0.1 with χ∗
c given by (5.7),

fact (c) =
c(1+cs)

2

cs(c+cs)
with cs = 0.5.

5.4.2 . Verification of agreement with the UCSP law and capture of the different
types of trajectory

In this section, we illustrate that although the rigid crown model is only a toy model, it
exhibits rich behaviour. Indeed, we illustrate that the trajectories obtained via algorithm 5.1
satisfy the UCSP law. Also, there exists a range of parameters in order to find the three types
of trajectories: Brownian, intermittent and persistent.

By fixing all the model parameters and varying only χc, we observe Brownian trajectorieswhen χc < χ∗
c , intermittent trajectories when χc = χ∗

c and persistent trajectories when χc >

χ∗
c . In this section, for the numerical results presented, R0 = 1, Rnucl = 0.3,M = π and a = 1.

As an initial condition cin for the concentration of markers, we choose the function defined for
all x ∈ Ω\N by cin (x) = M

|Ω \N |
. The noise parameters are set to α = 0.3 and ζ = 0.2. Finally,
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the numerical simulations are performed over the time interval [0, 15] with ∆t = 0.005. Here
are the results when χc = χ∗

c − 0.3, χc = χ∗
c and χc = χ∗

c + 0.5 with χ∗
c defined in eq. (4.5).

5.4.2.1 . Illustration of the Brownian trajectories
In this subsection, we present the results when χc = χ∗

c − 0.3. We then observe that the
trajectories are Brownian. This can be seen visually in fig. 5.8 and is confirmed by the study
of the EASD and MSD, which are close to 1 (see fig. 5.10). In addition, we can see that the
trajectories satisfy the UCSP (see fig. 5.9). We also observe that the cells have a low velocity:
the mean norm is close to the intensity α of the noise (see fig. 5.11). These observations are in
good agreement with those made about Brownian behaviour in Maiuri et al. (2015).

Figure 5.8: Trajectories in polar coordinates in the case where χc < χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 5.1 on the time interval
[0, 15]. Visually, the trajectories seem to be Brownian. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (5.7),

fact (c) =
c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.
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Figure 5.9: Verification that the trajectories in fig. 5.8 satisfy the UCSP law (case when
χc < χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (5.7), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.

Figure 5.10: Verification that the trajectories in fig. 5.8 are Brownian (casewhen χc < χ∗
c ).

On the left is shown in blue the EASD associated with the trajectories in fig. 4.7 and in orange the
interpolation of the EASD, in the form t 7→ ctb. By the properties of the EASD, as b close to 1, the
trajectories in fig. 5.8 are indeed Brownian. This is confirmed by the study of the MSD, which is
shown in blue on the right. Also shown on the right are the TASD of each cell in yellow and the
interpolation of the MSD in form t 7→ ctb in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (5.7), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.
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Figure 5.11: Time evolution of the norm of the velocity of the cells whose trajectories
are shown in fig. 5.8 (case when χc < χ∗

c ). The blue lines show the evolution over time of the
norm of the velocity of each cell and the black line shows the evolution of the mean of the norms of
the velocities of the cells. We can see that the value of the mean of the norms of the cell velocities
corresponds to the choice of α.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (5.7), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.
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5.4.2.2 . Illustration of the persistent trajectories
In this subsection, we present the results when χc = χ∗

c + 0.5. We then observe that the
trajectories are persistent. This can be seen visually in fig. 5.12 and is confirmed by the study of
the EASD andMSD, which are equal or close to 2 (see fig. 5.14). In addition, we can see that the
trajectories satisfy the UCSP (see fig. 5.13). We also observe that the cells have a high velocity
(see fig. 5.15). These observations are in good agreement with those made about persistent
behaviour in Maiuri et al. (2015).

Figure 5.12: Trajectories in polar coordinates in the case where χc > χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 5.1 on the time interval
[0, 15]. Visually, the trajectories seem to be persistent. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (5.7),

fact (c) =
c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.
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Figure 5.13: Verification that the trajectories in fig. 5.12 satisfy the UCSP law (case when
χc > χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (5.7), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.

Figure 5.14: Verification that the trajectories in fig. 5.12 are Brownian (case when χc >
χ∗
c ). On the left is shown in blue the EASD associated with the trajectories in fig. 5.12 and in orange

the interpolation of the EASD, in the form t 7→ ctb. By the properties of the EASD, as b equals to 2,
the trajectories in fig. 5.12 are indeed persistent. This is confirmed by the study of the MSD, which
is shown in blue on the right. Also shown on the right are the TASD of each cell in yellow and the
interpolation of the MSD in form t 7→ ctb in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (5.7), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.
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Figure 5.15: Time evolution of the norm of the velocity of the cells whose trajectories are
shown in fig. 5.12 (case when χc > χ∗

c ). The blue lines show the evolution over time of the norm
of the velocity of each cell and the black line shows the evolution of the mean of the norms of the
velocities of the cells.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (5.7), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.
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5.4.2.3 . Illustration of the intermittent trajectories
In this subsection, we present the results when χc = χ∗

c . We then observe that the trajec-
tories are intermittent. This can be seen visually in fig. 5.16 and is confirmed by the study of
the EASD and MSD, which are between 1 and 2 (see fig. 5.18). In addition, we can see that the
trajectories satisfy the UCSP (see fig. 5.17). We also observe that the cells have a intermediate
velocity: the velocity norm is between the velocities of the case χc = χ∗

c−0.3 and χc = χ∗
c+0.5

(see fig. 5.19). These observations are in good agreement with those made about intermittent
behaviour in Maiuri et al. (2015).

Figure 5.16: Trajectories in polar coordinates in the case where χc = χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 5.1 on the time interval
[0, 15]. Visually, the trajectories seem to be intermittent. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (5.7), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.
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Figure 5.17: Verification that the trajectories in fig. 5.16 satisfy the UCSP law (case when
χc = χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (5.7), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.

Figure 5.18: Verification that the trajectories in fig. 5.16 are intermittent (case when χc =
χ∗
c ). On the left is shown in blue the EASD associated with the trajectories in fig. 5.16 and in orange

the interpolation of the EASD, in the form t 7→ ctb. By the properties of the EASD, as b between 1 and
2, the trajectories in fig. 5.16 are neither Brownian neither persistent. This is confirmed by the study
of the MSD, which is shown in blue on the right. Also shown on the right are the TASD of each cell in
yellow and the interpolation of the MSD in form t 7→ ctb in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (5.7), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.
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Figure 5.19: Time evolution of the norm of the velocity of the cells whose trajectories
are shown in fig. 5.16 (case when χc = χ∗

c ). The blue lines show the evolution over time of the
norm of the velocity of each cell and the black line shows the evolution of the mean of the norms of
the velocities of the cells. We can see that the value of the mean of the norms of the cell velocities
corresponds to the choice of α.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (5.7), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2 and ξnucl = 1.
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Conclusion and perspectives. The model allows all three types of trajectory to be found.
The results obtained seem similar to those obtained when considering a rigid cell without
particle (see chapter 3). Nevertheless, the study of the linear stability of the stationary state
proves that, for the choice of fact (c) = c(1+cs)

2

cs(c+cs)
, the presence of a particle tends to stabilise

the model. Indeed, as soon as cs < M
πR2

0
, we have that for the same choice of parameters, the

threshold above which the stationary state is unstable is greater when the particle is present.
Similarly, the larger the particle, the more stable the stationary state. Let us denote c0 (r)
the stationary concentration associated with the domain where the particle has radius r ∈
(0, R0) and χ∗

c (r) the associated critical threshold. We know that c0 is an increasing function
on [0, R0]. Also, as we have assumed that cs < M

πR2
0
= c0 (0) and that the function x 7→ 1

axf ′
act(x)is increasing on [cs,+∞), we obtain that χ∗

c is an increasing function on [0, R0]. The resultsobtained numerically in this chapter will be analysed in comparison with those obtained in
chapter 6 when the dynamics of the nucleus are taken into account.

Finally, in future work we aim to study the impact on trajectories of the parameter ξnucl.The results presented in this chapter are obtained with ξnucl = 1. Numerically, when ξnucl ̸= 1,
the particle initially positioned at the centre of the cell moves further away from the centre
of the cell when ξnucl = 1 (see fig. 5.20). This justifies the addition of the Uzawa algorithm to
the numerical scheme to manage potential contacts between the nucleus and the boundary
of the cell. Investigating the case of ximathrmnucl ̸= 1 will enable us to understand the impact
of the particle’s position on trajectories and cell motility. This will be done in a future work.
We will also study the impact of this parameter on the stability of the stationary state.

We also plan to demonstrate a bifurcation result from the stationary state to travelling
waves when χc > χ∗

c and to study the convergence in long time to a travelling wave.
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Figure 5.20: Representation of nucleus position in the cell frame of reference for dif-
ferent value of χc and ξnucl. On the left is represented the nucleus position in the cell frame of
reference when χc = χ∗

c − 0.3 and on the right when χc = χ∗
c + 0.5. The curves in dark blue

correspond to ξnucl = 1.75 and the one in turquoise correspond to ξnucl = 1. We observe that in
the case where ξnucl = 1.75, the particle moves away from the centre of the cell.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3, and

ζ = 0.2.
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6 - Rigid cell model with a rigid nucleus

In this chapter, in the first section we introduce an analogous two dimensional rigid model
to the model (1.1) in the case where we assume the substrate to be homogeneous (ξM is in-
dependent of the space and time) and there is no external signal. In the second section, we
design a finite element scheme to simulate our model. In the third one, we present some nu-
merical results. By comparing the results obtained with those obtained in chapters 4 and 5,
we show that taking the nucleus into account enables intermittent trajectories to be recov-
ered. We also study numerically the heuristic approach proposed in section 1.3.9 to model the
forces induced by the nucleus on the cell boundary and by the cell boundary on the nucleus.
We show that the heuristic approach yields results similar to the former.

6.1 . From deformable to rigid model

In this section, we aim to derive amodel of cell motility from the deformablemodel, taking
into account the nucleus and assuming that the cell is rigid. First, we recall the deformable
model. Then we study the dynamics of the cell’s centre of mass given by the deformable
model. Finally, we derive a rigid model analogous to the deformable model.

6.1.1 . Deformable model
We restrict ourselves to the case where the cell’s environment presents no obstacle and

where there is no external signal. We neglect the effects of undercooling and assume that
the substrate is homogeneous, i.e. that ξM is independent of space and we set for all x ∈ R2,
ξM (x) = 1. Then we have ξnucl independent of time. Under these assumptions and keeping
the notations from chapter 1, the deformable model (1.1) is written as follows:

u+∇P = 0 in Ω (t) \N (t) ,

div (u) = 0 in Ω (t) \N (t) ,

Vn = u · n on ∂Ω (t) ,

P = γκ+ χcfact (c)− fNB on ∂Ω (t) ,

unucl (t) =
1

ξnucl |N |

(∫
∂N(t)

P (t,x)n dσ + fBN

)
u · n = unucl · n on ∂N (t) ,

∂tc = div
(
∇c− (1− a)uc− αẆQ

t c
) in Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 on ∂ (Ω (t) \N (t)) ,

c(0,x) = c0(x) in Ω (0) \N (0) .

(6.1a)
(6.1b)
(6.1c)
(6.1d)
(6.1e)
(6.1f)
(6.1g)
(6.1h)
(6.1i)

6.1.2 . Force balance
Let xcm (t) be the centre of mass of Ω (t) at time t ≥ 0. We have:

xcm (t) =
1

AΩ

∫
Ω(t)

(x, y) dx dy.
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We also define the velocity of the centre of mass ucm. For all t ≥ 0, we have:
ucm (t) =

d

dt
xcm (t) .

For all t ≥ 0, we have:
d

dt

∫
Ω(t)

xdxdy =

∫
∂Ω(t)

xVn dσ =

∫
∂Ω(t)

xu · ndσ

=

∫
Ω(t)\N(t)

div (xu) dxdy +

∫
N(t)

div (xunucl) dx dy

=

∫
Ω(t)\N(t)

∇x · udxdy + unucl ·
∫
N(t)

∇xdxdy

= −
∫
Ω(t)\N(t)

div (P∇x) dxdy + unucl,x

= −
∫
∂Ω(t)

P∇x · ndσ −
∫
∂N(t)

P∇x · n dσ + unucl,x

= −
∫
∂Ω(t)

(γκ+ χcfact (c)− fNB)nx dσ −
∫
∂Ω(t)

Pnx dσ + unucl,x

= −
∫
∂Ω(t)

(γκ+ χcfact (c)− fNB)nx dσ − ξnucl |N |unucl,x + fBN,x + unucl,x

where we used the incompresisbility constraint (6.1b), the darcy law (6.1a), the boundary con-
dition (6.1d) and the nucleus velocity expression (6.1e). Analogously, we have:
d

dt

∫
Ω(t)

y dxdy = −
∫
∂Ω(t)

(γκ+ χcfact (c)− fNB)ny dσ − ξnucl |N |unucl,y + fBN,y + unucl,y.

Since ∫
∂Ω(t)

κndσ = 0, it follows:

ucm (t) = − 1

AΩ

∫
∂Ω(t)

(χcfact (c)− fNB)ndσ +
1

AΩ
(|N | (1− ξnucl)unucl (t) + fBN) .

Recalling that
∫
∂Ω(t)

fNBn dσ + fBN = 0, we have:

ucm (t) = − 1

AΩ

∫
∂Ω(t)

χcfact (c)n dσ +
|N |
AΩ

(1− ξnucl)unucl (t) . (6.2)

6.1.3 . Rigid formulation

Wewant to write the rigidmodel associated with the deformablemodel eqs. (6.1) and (6.2).
We assume the cell to be rigid and the cell to have a circular shape: Ω (t) is a disk of radius
R0 > 0. We assume that the velocity of the centre of mass in the rigid case is the same as
in the deformable case. Thus, the external boundary of the cell moves at the velocity of the
centre of mass. As in the deformable case, the cell is filled by a Darcy fluid with velocity u and
pressure P . Thus, with the assumption that the cell boundary normal velocity is equal to the
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inside fluid normal velocity and with velocities continuity at the nucleus boundary, we have:

u+∇P = 0 in Ω (t) \N (t) ,

div (u) = 0 in Ω (t) \N (t) ,

u · n = ucm · n on ∂Ω (t) ,

u · n = unucl · n on ∂N (t) ,

Ω (t) = B (0, R0) +

∫ t

0

ucm (s) ds,

N (t) = B (0, Rnucl) +

∫ t

0

unucl (s) ds.

The nucleus is modelled as in the deformable case. We assume it to have a rigid move-
ment. The force balance on the nucleus leads to the following expression for the nucleus
velocity:

unucl =
1

ξnucl |N |

(∫
∂N(t)

P (t,x)n dσ + fBN

)
.

Finally, as in the deformable case, we assume that rear markers are inside the cell, that
they can diffuse inside the cell and be transported by the fluid or attached to the plate, and
that in addition they are subject to stochastic fluctuations (modelled as in the section 1.3.7),
which leads to:

∂tc = div
(
∇c− (1− a)uc− αẆQ

t c
) in Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 on ∂ (Ω (t) \N (t)) .

Thus, the rigid cell model with a rigid nucleus inside the cell that can move is given by:

u+∇P = 0 in Ω (t) \N (t) ,

div (u) = 0 in Ω (t) \N (t) ,

unucl (t) =
1

ξnucl |N |

(∫
∂N(t)

P (t,x)ndσ + fBN

)
,

ucm (t) =
−χc

AΩ

∫
∂Ω(t)

fact (c)ndσ +
|N |
AΩ

(1− ξnucl)unucl (t) ,

u · n = ucm · n on ∂Ω (t) ,

u · n = unucl · n on ∂N (t) ,

∂tc = div
(
∇c− (1− a)uc− αẆQ

t c
) in Ω (t) \N (t) ,(

∇c+ auc− αẆQ
t c
)
· n = 0 on ∂ (Ω (t) \N (t)) ,

Ω (t) = B (0, R0) +

∫ t

0

ucm (s) ds,

N (t) = B (0, Rnucl) +

∫ t

0

unucl (s) ds.

(6.3a)
(6.3b)
(6.3c)
(6.3d)
(6.3e)
(6.3f)
(6.3g)
(6.3h)
(6.3i)
(6.3j)

We recall that fBN is defined by eq. (1.22) in this case we have for all t ≥ 0:
fBN (t) = δ

∫
∂Ω(t)

vBN · n
(∥vBN∥ −Rnucl)

β
ndσ, (6.4)
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with β > 1, δ > 0 and vBN = xnucl − xB where xB ∈ ∂Ω (t).
We also recall that fBN can also be defined by eq. (1.24) and we recall that in this case, for

all t ≥ 0 we have:
fBN (t) = −k (xnucl (t)− xcm (t)) , (6.5)

with k > 0 and xcm the centre of the cell.
We can note that, in general, since ucm ̸= unucl, the fluid domain is not a rigid domain

but a deformable domain. In accordance with the modelling of noise in section 1.3.7, the
space coloured noise ẆQ

t is defined on a probability space associated with the bounded open
Ω (0) = B (0, R0).

Moreover, the total quantity of markersM inside the cell remains constant over the time
and we have:

M =

∫
Ω(t)\N(t)

c (t,x) dx. (6.6)

Remark 6.1.1. In the model (6.3), P is defined up to a constant. Indeed, if (P,u, c) is a solution
of (6.3), then for all P0 ∈ R, (P + P0,u, c) is also a solution of (6.3). Thus, in order to define a
form of uniqueness of solutions, we can define an equivalence class and state that (P1,u1, c1) and
(P2,u2, c2) are equivalent solutions if and only if u1 = u2, c1 = c2 and there exists Q ∈ R such
that P1 = P2 +Q.

6.2 . Study of the model

In this section, we study the stationary state of model (6.3) in the case where we neglect
the noise and take α = 0 in eqs. (6.3g) and (6.3h). First, we prove that the model admits
a stationary state. Secondly, we study its linear stability and give a criterion for its stability.
There exists χ∗

c such that if χc < χ∗
c then the stationary state is stable and unstable otherwise.

6.2.1 . Stationary state

Proposition 6.2.1. The model eq. (6.3) admits unique stationary state given by:


u0 (x) = 0,

P 0 (x) = 0,

u0
nucl = 0,

u0
cm = 0,

c0 (x) =
M

|Ω \N |
,

Ω0 = B (0, R0) and N0 = B (0, Rnucl) .

(6.7a)
(6.7b)
(6.7c)
(6.7d)
(6.7e)
(6.7f)

Uniqueness is defined according to the remark 6.1.1.
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Proof. The stationary problem asssociated with the model (6.3) is given as follows:

u+∇P = 0 in Ω \N,
div (u) = 0 in Ω \N,
u · n = 0 on ∂Ω ∪ ∂N,∫

∂N

Pndσ + fBN = 0,

∆c− (1− a)u · ∇c = 0 in Ω \N,
(∇c+ auc) · n = 0 on ∂Ω ∪ ∂N,
Ω = B (0, R0) and N = B (xnucl, Rnucl) .

Thus the problem on P reads:{
−∆P = 0 in Ω \N,
−∇P · n = 0 on ∂Ω ∪ ∂N,

which leads to the fact that P is such that ∇P = 0 over Ω \ N and thus P is constant over
Ω \N . Moreover, we deduce that u = 0 over Ω \N .

Substituting the value of u into the dynamics of concentration c, we obtain:{
−∆c = 0 in Ω \N,
−∇c · n = 0 on ∂Ω ∪ ∂N,

and c is constant over Ω\N . Using the constraint on the total quantity of markers, we deduce
that for all x ∈ Ω \N , c (x) = M

|Ω \N |
.

AsP is constant overΩ\N , then necessarily fBN = 0. For both possible choices for fBN = 0

given by eqs. (6.4) and (6.5), it follows that xnucl = 0 and N = B (0, Rnucl) for .
In the sequel we denote:

χ∗
c =

1

ac0f ′act (c
0)
. (6.8)

Theorem 6.2.2. Let fBN be defined either by eq. (6.4) or by eq. (6.5). In the case where ξnucl = 1,
if χc < χ∗

c , then the stationary state (6.7) is linearly stable. On the opposite, if χc > χ∗
c , then the

stationary state is linearly unstable.

6.2.2 . Proof of theorem 6.2.2
To study the linear stability of the stationary state (6.7) and proof theorem 6.2.2, we pro-

ceed in three steps. First, we linearise the problem (6.3) around this stationary state. From
the linearisation of the problem, we derive an eigenvalue problem. Secondly, we study this
eigenvalue problem. We study the sign of the real part of the eigenvalues: when there is an
eigenvalue with a positive real part, the stationary state is linearly unstable, whereas when all
the eigenvalues have a negative real part, the stationary state is linearly stable. To do this,
we use Fourier analysis to decompose the eigenvalue problem into simpler problems. Finally,
we derive an explicit condition on the eigenvalues. We exhibit an eigenvalue with a positive
real part when χc > χ∗

c and with a graphical argument, we illustrate that when χc < χ∗
c allthe eigenvalues have a negative real part. The arguments used are inspired by those of Lavi

et al. (2020); Alazard et al. (2022) and are similar to those of sections 4.2.1.2 and 5.2.2. The
proof is detailed for fBN defined by eq. (6.4). For the case where fBN is defined by eq. (6.5) see
remark 6.2.9.
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Step 1. The linearised problem associated with the model (6.3) around the stationary state
(6.7) in the following lemma. Then we deduce an eigenvalue problem associated to this lin-
earised problem.
Lemma 6.2.3. The linearised problem associated to eq. (6.3) around the stationary state (6.7) is
given by: 

−∆P̃ = 0 in Ω0 \N0,

−∇P̃ · n = ũcm · n on ∂Ω0,

−∇P̃ · n = ũnucl · n on ∂N0,

∂tc̃ = ∆c̃ in Ω0 \N0,(
∇c̃+ aũcmc

0
)
· n = 0 on ∂Ω0,(

∇c̃+ aũnuclc
0
)
· n = 0 on ∂N0,

(6.9a)
(6.9b)
(6.9c)
(6.9d)
(6.9e)
(6.9f)

with

ũcm (t) =
−χcf

′
act

(
c0
)

AΩ

∫
∂Ω0

c̃ (t,x)ndσ,

ũnucl (t) =
1

|N |

(∫
∂N0

P̃ (t,x)ndσ +
δR0π (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

(x̃nucl (t)− x̃cell (t))

)
,

(6.10a)
(6.10b)

and x̃cell = (x̃cell, ỹcell) and x̃nucl = (x̃nucl, ỹnucl) such that for all t ≥ 0:

d

dt
x̃cell (t) = ũcm (t) and d

dt
x̃nucl (t) = ũnucl (t) .

Proof. We perform a formal expansion of the solutions of model (6.3) around the stationary
state (6.7). Let ε > 0 small. For all t ≥ 0, we set:

Ω (t) = B (xcell (t) , R0) and N (t) = B (xnucl (t) , Rnucl) ,

with
xcell (t) = εx̃cell (t) +O

(
ε2
)
,

xnucl (t) = εx̃nucl (t) +O
(
ε2
)
.

Thus we can set for all t ≥ 0:
ucm (t) = u0

cm + εũcm (t) +O
(
ε2
)
,

unucl (t) = u0
nucl + εũnucl (t) +O

(
ε2
)
.

Moreover, for all t ≥ 0 and x ∈ Ω0 \N0, we set:
P (t) = P 0 + εP̃ (t) +O

(
ε2
)
,

and
c (t,x) = c0 + εc̃ (t,x) +O

(
ε2
)
.
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As P0 satisfies eq. (6.7b) and P satisfies eqs. (6.3a) and (6.3b), we have that in Ω0 \N0:
−∆P̃ = 0.

In addition, since P satisfies eq. (6.3b) and u satisfies the boundary conditions eqs. (6.3e)
and (6.3f), we deduce that P̃ satisfies the following boundary conditions:

−∇P̃ · n = ũcm · n on ∂Ω0,

−∇P̃ · n = ũnucl · n on ∂N0.

Using the fact that c0 satisfies eq. (6.7e) and c satisfies (6.3g), we deduce that in Ω0 \N0:
∂tc̃ = ∆c̃.

We also have on ∂Ω0 that:
(∇c+ aucmc) · n =

(
∇c0 + ε∇c̃+ au0

cmc
0 + εau0

cmc̃+ εaũcmc
0
)
· n+O

(
ε2
)

= ε
(
∇c̃+ aũcmc

0
)
· n+O

(
ε2
)
,

which leads to the boundary condition:(
∇c̃+ aũcmc

0
)
· n = 0 on ∂Ω0.

Similarly, we obtain the boundary condition on N0:(
∇c̃+ aũnuclc

0
)
· n = 0.

Moreover, we have:∫
∂Ω(t)

fact (c)ndσ =

∫
∂Ω(t)

fact
(
c0
)
+ εc̃f ′act

(
c0
)
n dσ +O

(
ε2
)

= εf ′act
(
c0
) ∫

∂Ω(t)

c̃ndσ +O
(
ε2
)

= εf ′act
(
c0
) ∫

∂Ω0

c̃ndσ +O
(
ε2
)
.

Thus we deduce that
ũcm =

−χcf
′
act

(
c0
)

AΩ

∫
∂Ω0

c̃n dσ.

Finally, as fBN = δ

∫
∂Ω(t)

vBN · n
(∥vBN∥ −Rnucl)

β
ndσ and for all θ ∈ (−π, π], in polar coordi-

nates, we have:
vBN · n

(∥vBN∥ −Rnucl)
β
=

−R0

(R0 −Rnucl)
β

+ ε
R0 −Rnucl − βR0

(R0 −Rnucl)
β+1

((x̃nucl − x̃cell) cos θ + (ỹnucl − ỹcell) sin θ) +O
(
ε2
)
.

Thus it follows that:
fBN = δε

R0 −Rnucl − βR0

(R0 −Rnucl)
β+1

∫ π

−π

((x̃nucl − x̃cell) cos θ + (ỹnucl − ỹcell) sin θ)

(
cos θ
sin θ

)
dθ +O

(
ε2
)

= δε
R0 −Rnucl − βR0

(R0 −Rnucl)
β+1

(x̃nucl − x̃cell) +O
(
ε2
)
.
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Finally we have:

ũnucl (t) =
1

|N |

(∫
∂N0

P̃ (t,x)ndσ +
δR0π (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

(x̃nucl (t)− x̃cell (t))

)
.

The eigenvalue problem associated with eqs. (6.9) and (6.10) is given by:

−∆P̃ = 0 in Ω0 \N0,

−∇P̃ · n = ũcm · n on ∂Ω0,

−∇P̃ · n = ũnucl · n on ∂N0,

λc̃ = ∆c̃ in Ω0 \N0,(
∇c̃+ aũcmc

0
)
· n = 0 on ∂Ω0,(

∇c̃+ aũnuclc
0
)
· n = 0 on ∂N0,

(6.11a)
(6.11b)
(6.11c)
(6.11d)
(6.11e)
(6.11f)

with
λx̃cm =

−χcf
′
act

(
c0
)

AΩ

∫
∂Ω0

c̃ (x)ndσ,

λx̃nucl =
1

|N |

(∫
∂N0

P̃ (x)ndσ +
δR0π (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

(x̃nucl − x̃cell)

)
,

(6.12a)
(6.12b)

where λ ∈ C.

Step 2. Using Fourier analysis and the radially symmetric nature of the problem (6.12), we
show the following lemma, which reduces the spectral study of eq. (6.12) to a simpler problem.
Lemma 6.2.4. The problem (6.11)-(6.12) admits an eigenvalue with a positive real part if and only
if the following problem eqs. (6.13) to (6.15) admits one.

λc =

(
∂2rr +

1

r
∂r −

1

r2

)
c r ∈ (Rnucl, R0) ,

∂rc (R0) + aũcmc
0 = 0,

∂rc (Rnucl) + aũnuclc
0 = 0,

λx̃cell = ũcm,

λx̃nucl = ũnucl,

(6.13a)
(6.13b)
(6.13c)
(6.13d)
(6.13e)

with

ũcm =
−χcf

′
act

(
c0
)

R0
c (R0) (6.14)

and

ũnucl =
−χcf

′
act

(
c0
)

R0
c (R0) +

δ
(
R2

0 −R2
nucl

)
(R0 (1− β)−Rnucl)

2R0R2
nucl (R0 −Rnucl)

β+1
(x̃nucl − x̃cell) . (6.15)
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Proof. Since problem (6.11) and (6.12) is radially symmetrical, we can use Fourier analysis to
study its spectra. Let λ ∈ C and let (P̃ , c̃, ũcm, ũnucl

) be an eigenfunction associated with λ.
In polar coordinates, for all r ∈ (Rnucl, R0) and θ ∈ (−π, π], the Fourier decomposition of P̃ is
given by:

P̃ (r, θ) =
∑
m∈N

Pcm (r) cos (mθ) + Psm (r) sin (mθ) ,

and the one of c̃ by:
c̃ (r, θ) =

∑
m∈N

ccm (r) cos (mθ) +
∑
m∈N

csm (r) sin (mθ) .

For allm ∈ N withm ̸= 1, we have:∫ π

−π

cos (mθ) cos (θ) =

∫ π

−π

sin (mθ) sin (θ) = 0

and ∫ π

−π

cos (mθ) sin (θ) =

∫ π

−π

sin (mθ) cos (θ) = 0.

We also have: ∫ π

−π

cos2 (θ) =

∫ π

−π

sin2 (θ) = π

and ∫ π

−π

cos (θ) sin (θ) = 0.

Thus, in particular, we have:∫
∂N0

P̃n dσ = −πRnucl

(
Pc1 (Rnucl)
Ps1 (Rnucl)

)
and ∫

∂Ω

c̃ndσ = πR0

(
cc1 (R0)
cs1 (R0)

)
.

By linearity of eq. (6.11) and independence of the cosine and sine modes, we deduce that
for allm ̸= 1, (Pcm, ccm) and (Psm, csm) satisfy:

−
(
∂2rr +

1

r
∂r −

m2

r2

)
Pm = 0 r ∈ (Rnucl, R0) ,

− ∂rPm = 0 r ∈ {Rnucl, R0} ,

λcm =

(
∂2rr +

1

r
∂r −

m2

r2

)
cm r ∈ (Rnucl, R0) ,

∂rcm = 0 r ∈ {Rnucl, R0} .

(6.16a)
(6.16b)
(6.16c)
(6.16d)
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Moreover, in the case wherem = 1, we have that (Pc1, cc1) satisfies:

−
(
∂2rr +

1

r
∂r −

m2

r2

)
Pc1 = 0 r ∈ (Rnucl, R0) ,

− ∂rPc1 (R0) = ũcm,x,

∂rPc1 (Rnucl) = ũnucl,x,

λcc1 =

(
∂2rr +

1

r
∂r −

m2

r2

)
cc1 r ∈ (Rnucl, R0) ,

∂rcc1 (R0) + aũcm,xc
0 = 0,

∂rcc1 (Rnucl) + aũnucl,xc
0 = 0,

(6.17a)
(6.17b)
(6.17c)
(6.17d)
(6.17e)
(6.17f)

and similarly, (Ps1, cs1) satisfies:

−
(
∂2rr +

1

r
∂r −

m2

r2

)
Ps1 = 0 r ∈ (Rnucl, R0) ,

− ∂rPs1 (R0) = ũcm,y,

∂rPs1 (Rnucl) = ũnucl,y,

λcs1 =

(
∂2rr +

1

r
∂r −

m2

r2

)
cs1 r ∈ (Rnucl, R0) ,

∂rcs1 (R0) + aũcm,yc
0 = 0,

∂rcs1 (Rnucl) + aũnucl,yc
0 = 0,

(6.18a)
(6.18b)
(6.18c)
(6.18d)
(6.18e)
(6.18f)

where ũnucl,x and ũnucl,y denotes the two coordinates of ũnucl and ũcm,x and ũcm,y the onesof ũcm. We can note that ũcm and ũnucl depends only on the modem = 1 which allows us to
use the independence of the cosine and sine modes.

We then have that studying the spectrum of problem (6.11) is equivalent to studying, for all
m ̸= 1, the spectrum of problem (6.16) and those of problems (6.17) and (6.18). We note that
for allm ̸= 1, the eigenvalues of problem (6.16), which corresponds to the heat equation, have
negative real parts. Thus, if problem (6.11) has a positive real part eigenvalue, then problem
(6.17) or problem (6.18) has a positive real part eigenvalue. By symmetry, we see that problems
(6.17) and (6.18) are analogous. We therefore restrict our spectral study of problem (6.11)-(6.12)
to the spectral study of the problem (6.17).

Finally, since P̃ satisfies the laplacian equation (6.11a), we have that for all m ∈ N, there
exists Am, Bm, Cm andDm ∈ R such that for all r ∈ (Rnucl, R0):{

Pcm (r) = Amr
m + Cmr

−m,

Psm (r) = Bmr
m +Dmr

−m.

In particular, we have Pc1 (Rnucl) = A1Rnucl + C1R
−1
nucl and thus:

ũnucl,x = −
(
A1 + C1R

−2
nucl

)
+
δR0 (R0 (1− β)−Rnucl)

R2
nucl (R0 −Rnucl)

β+1
(x̃nucl − x̃cell) .

From the boundary conditions eqs. (6.17b) and (6.17c), it follows that:
−
(
A1 −

C1

R2
0

)
=

−χcf
′
act

(
c0
)

R0
cc1 (R0) ,

−
(
A1 −

C1

R2
nucl

)
= −

(
A1 +

C1

R2
nucl

)
+
δR0 (R0 (1− β)−Rnucl)

R2
nucl (R0 −Rnucl)

β+1
(x̃nucl − x̃cell) .
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We thus have:
A1 =

χcf
′
act

(
c0
)

R0
cc1 (R0) +

δ (R0 (1− β)−Rnucl)

2R0 (R0 −Rnucl)
β+1

(x̃nucl − x̃cell) ,

C1 =
R0 (R0 (1− β)−Rnucl)

2 (R0 −Rnucl)
β+1

(x̃nucl − x̃cell) .

We can conclude that:
ũnucl,x = −

χcf
′
act

(
c0
)

R0
cc1 (R0) +

δ
(
R2

0 −R2
nucl

)
(R0 (1− β)−Rnucl)

2R0R2
nucl (R0 −Rnucl)

β+1
(x̃nucl − x̃cell) .

Step 3. We study the spectral problem (6.13) and show with a graphical argument that when
χc < χ∗

c then all the eigenvalues of eq. (6.13) are of negative real part and that if χc > χ∗
c thenthere exists an eigenvalue of eq. (6.13) of positive real part.

Lemma 6.2.5. Let λ ∈ C. The eigenfunctions of eqs. (6.13) to (6.15) associated with the eigenvalue
λ ∈ C are given by: c (r)xcell

xnucl

 =

βλJ1
(
−iλ

1
2 r
)
+ γλY1

(
−iλ

1
2 r
)

x̂cell,λ
x̂nucl,λ

 , (6.19)

where r ∈ (Rnucl, R0), J1 and Y1 denote respectively the Bessel function of the first kind of order 1
and that of the second kind of order 1 and (βλ, γλ, x̂cell,λ, x̂nucl,λ) ∈ C4 solution of:

− iλ
1
2

(
βλJ

′
1

(
−iλ

1
2R0

)
+ γλY

′
1

(
−iλ

1
2R0

))
=
aχcc

0f ′act
(
c0
)

R0

(
βλJ1

(
−iλ

1
2R0

)
+ γλY1

(
−iλ

1
2R0

))
, (6.20)

− iλ
1
2

(
βλJ

′
1

(
−iλ

1
2Rnucl

)
+ γλY

′
1

(
−iλ

1
2Rnucl

))
=
aχcc

0f ′act
(
c0
)

R0

(
βλJ1

(
−iλ

1
2R0

)
+ γλY1

(
−iλ

1
2R0

))
− ac0

δ
(
R2

0 −R2
nucl

)
(R0 (1− β)−Rnucl)

2R0R2
nucl (R0 −Rnucl)

β+1
(x̂nucl,λ − x̂cell,λ) (6.21)

and

λ (x̂nucl,λ − x̂cell,λ) =
δ
(
R2

0 −R2
nucl

)
(R0 (1− β)−Rnucl)

2R0R2
nucl (R−Rnucl)

β+1
(x̂nucl,λ − x̂cell,λ) . (6.22)

Proof. From eqs. (6.13d) and (6.13e), we deduce that:
xcell = x̂cell,λ ∈ C and xnucl = x̂nucl,λ ∈ C

satisfy
λ (xnucl − xcell) = ũnucl − ũcm.
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Combining it with eqs. (6.14) and (6.15), the expressions of ũnucl and ũcm, we deduce that:
λ (x̂nucl,λ − x̂cell,λ) =

δ
(
R2

0 −R2
nucl

)
(R0 (1− β)−Rnucl)

2R0R2
nucl (R0 −Rnucl)

β+1
(x̂nucl,λ − x̂cell,λ) .

From the definition of the Bessel functions, there exists βλ and γλ ∈ C such that the
solutions c of eq. (6.13a) are given, for all r ∈ (Rnucl, R0), by:

c (r) = βλJ1

(
−iλ

1
2 r
)
+ γλY1

(
−iλ

1
2 r
)
.

Then the boundary condition eq. (6.13b) reads eq. (6.20) and the boundary condition eq. (6.13c)
reads eq. (6.21).
Lemma 6.2.6. Let λ ∈ C be an eigenvalue of eqs. (6.13) to (6.15). Then either

λ =
δ
(
R2

0 −R2
nucl

)
(R0 (1− β)−Rnucl)

2R0R2
nucl (R−Rnucl)

β+1

or λ is such that G1 (λ) = 0 with G1 defined for all z ∈ C by:

G1 (z) = z
(
J ′
1

(
−iz

1
2R0

)
Y ′
1

(
−iz

1
2Rnucl

)
− J ′

1

(
−iz

1
2Rnucl

)
Y ′
1

(
−iz

1
2R0

))
+

iz
1
2 aχcc

0f ′act
(
c0
)

R

[
J1

(
−iz

1
2R0

)
Y ′
1

(
−iz

1
2R0

)
− J ′

1

(
−iz

1
2R0

)
Y1

(
−iz

1
2R0

)
+J ′

1

(
−iz

1
2Rnucl

)
Y1

(
−iz

1
2R0

)
− J1

(
−iz

1
2R0

)
Y ′
1

(
−iz

1
2Rnucl

)]
.

Proof. Let λ ∈ C be an eigenvalue of eqs. (6.13) to (6.15). Then by lemma 6.2.5, λ is associate
with an eigenfunction (c, xcell, xnucl) of the form (6.19). In particular it satisfies eq. (6.22). Then
either we have

λ =
δ
(
R2 −R2

nucl

)
(R (1− β)−Rnucl)

2R0R2
nucl (R−Rnucl)

β+1

and xnucl − xcell ̸= 0, or
xnucl − xcell = 0

and λ ̸= 0 such that
− iλ

1
2

(
βλJ

′
1

(
−iλ

1
2R0

)
+ γλY

′
1

(
−iλ

1
2R0

))
=
aχcc

0f ′act
(
c0
)

R

(
βλJ1

(
−iλ

1
2R0

)
+ γλY1

(
−iλ

1
2R0

))
,

− iλ
1
2

(
βλJ

′
1

(
−iλ

1
2Rnucl

)
+ γλY

′
1

(
−iλ

1
2Rnucl

))
=
aχcc

0f ′act
(
c0
)

R

(
βλJ1

(
−iλ

1
2R0

)
+ γλY1

(
−iλ

1
2R0

))
.

Combining these two conditions leads to the condition G1 (λ) = 0.
Remark 6.2.7. Since β > 1, we can note that

δ
(
R2 −R2

nucl

)
(R (1− β)−Rnucl)

2R0R2
nucl (R−Rnucl)

β+1
< 0.

Lemma 6.2.8. If χc > χ∗
c , then the eigenvalue problem defined by eqs. (6.13) to (6.15) admits an

eigenvalue with a positive real part.
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Proof. Let λ ̸=
δ
(
R2 −R2

nucl

)
(R (1− β)−Rnucl)

2R0R2
nucl (R−Rnucl)

β+1
be an eigenvalue of the problem defined by

eqs. (6.13) to (6.15) From lemma 6.2.6, we have that λ is such that G1 (λ) = 0. We perform the
expansion of G1 around 0. Using the properties of the Bessel functions, for λ close to zero,
we have:
J1

(
−iλ

1
2R0

)
=

−iλ
1
2R0

2
+ o (λ) ,

J ′
1

(
−iλ

1
2R0

)
=

1

2
+

3R2
0λ

16
+ o (λ) ,

Y1

(
−iλ

1
2R0

)
=

−2i

πλ
1
2R0

+
i (1− 2γ)λ

1
2R0

2π
+

2

π
J1

(
−iλ

1
2R0

)
log

(
−iλ

1
2R0

2

)
+ o (λ) ,

Y ′
1

(
−iλ

1
2R0

)
=

−2

λR2
0π

+
1 + 2γ

2π
− R2

0λ (11− 12γ)

32π
+

2

π
J ′
1

(
−iλ

1
2R
)
log

(
−iλ

1
2R

2

)
+ o (λ) ,

where γ denotes the Euler’s constant. Thus for λ close to zero, we have:
G1 (λ) =

(
1− aχcc

0f ′act
(
c0
))( 1

R2
0π

− 1

R2
nuclπ

)
+

3
(
R4

nucl −R4
0

)
8πR2

0R
2
nucl

λ− aχcc
0f ′act

(
c0
) 3 (R2

0 −R2
nucl

)
8πR2

0

λ

+
aχcc

0f ′act
(
c0
)
− 1

2π
ln

(
R0

Rnucl

)
λ+ o (λ) ,

= g (λ) + o (λ) .

The function g admits λ1 ∈ R as root with λ1 defined by:
λ1 = −

(
1− aχcc

0f ′act
(
c0
)) (

1
R2

0π
− 1

R2
nuclπ

)
3(R4

nucl−R4
0)

8πR2
0R

2
nucl

− aχcc0f ′act (c
0)

3(R2
0−R2

nucl)
8πR2

0
+

aχcc0f ′
act(c

0)−1
2π ln

(
R0

Rnucl

) .
We have: (

1− aχcc
0f ′act

(
c0
))( 1

R2
0π

− 1

R2
nuclπ

)
> 0 ⇐⇒ χc > χ∗

c .

We also have:
3
(
R4

nucl −R4
0

)
8πR2

0R
2
nucl

− aχcc
0f ′act

(
c0
) 3 (R2

0 −R2
nucl

)
8πR2

0

+
aχcc

0f ′act
(
c0
)
− 1

2π
ln

(
R0

Rnucl

)
< 0

⇐⇒

aχcc
0f ′act

(
c0
)
<

3
(
R4

0 −R4
nucl

)
+ 4R2

0R
2
nucl ln

(
R0

Rnucl

)
R2

nucl

(
3 (R2

nucl −R2
0) + 4R2

0 ln
(

R0

Rnucl

))
and 3

(
R2

nucl −R2
0

)
+ 4R2

0 ln

(
R0

Rnucl

)
> 0

]
or 3 (R2

nucl −R2
0

)
+ 4R2

0 ln

(
R0

Rnucl

)
< 0.

Moreover, if 3 (R2
nucl −R2

0

)
+4R2

0 ln
(

R0

Rnucl

)
> 0 then 3

(
R4

0 −R4
nucl

)
+ 4R2

0R
2
nucl ln

(
R0

Rnucl

)
R2

nucl

(
3 (R2

nucl −R2
0) + 4R2

0 ln
(

R0

Rnucl

)) >
1. Thus λ1 changes sign from negative to positive as χc exceeds χ∗

c . We can note that λ1 ap-proximates well a root of G1 and that we have:
λ1 =

(
aχcc

0f ′act
(
c0
)
− 1
) 8

(
R2

0 −R2
nucl

)
3aχcc0f ′act (c

0) (R4
0 +R2

0R
2
nucl − 2R4

nucl)
+ o

(∣∣aχcc
0f ′act

(
c0
)
− 1
∣∣) .
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This eigenvalue is associated with the non-trivial eigenfunction:c (r)ρ
xnucl

 =

βλ1
J1

(
−iλ

1
2
1 r
)
+ γλ1

Y1

(
−iλ

1
2
1 r
)

0
0

 ,

with
βλ1

=

(
iλ

1
2
1 Y

′
1

(
−iλ

1
2
1 R0

)
+
aχcc

0f ′act
(
c0
)

R0
Y1

(
−iλ

1
2
1 R0

))
,

γλ1
= −

(
iλ

1
2
1 J

′
1

(
−iλ

1
2
1 R0

)
+
aχcc

0f ′act
(
c0
)

R0
J1

(
−iλ

1
2
1 R0

))
.

From the lemma 6.2.8, we deduce that when χc > χ∗
c , the eigenvalue problem defined

by equations eqs. (6.11) and (6.12) admits an eigenvalue with a positive real part and thus the
stationary state is linearly unstable.

To conclude the proof of the theorem, we need to show that when χc < χ∗
c all the eigen-values associated to (5.11) have negative real part. We give only a graphical illustration here.

For several values of R0, Rnucl and χc

χ∗
c

, we represent the function G1 by representing its real
part, its imaginary part and its modulus (see fig. 6.1 for an example). We then observe that
the root of G1 with the largest real part seems to be a real root of G1, which is confirmed by
studying the imaginary part of G1. Indeed, we notice that if λ ∈ R then G1 (λ) ∈ R.
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Representation of G1 when R0 = 1, Rnucl = 0.3 and c
*
c

= 0.8

Figure 6.1: Representation of G1 in the complex framework for R0 = 1, Rnucl = 0.3 and
χc

χ∗
c

= 0.8. Plots of the real part (left), the imaginary part (middle) and the modulus (right) of the

function G1 for λ = x + iy ∈ C with x, y ∈ [−40, 40]. We observe that the root of G1 with the
greatest real part is a real root.

We can therefore restrict the graphical study of G1 to the graphical study of G1 when
λ ∈ R. For R0 and Rnucl fixed and for different values of χc

χ∗
c

, we plotG1 as a function of λ ∈ R

(see fig. 6.2). This allows us to observe the largest real root of G1 and we notice that when
χc < χ∗

c then this one is negative.Moreover, we observe numerically that as soon as χc < χ∗
c then the stationary state is

stable, this will be illustrated in section 6.4.2.
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Figure 6.2: Graphs of λ 7→ G1 (λ) for λ ∈ R when R0 = 1 and Rnucl = 0.3 for different
values of χc

χ∗
c
= aχcc

0f ′
(
c0
)
. Each curve corresponds to a different value of χc. The solid yellow-

orange curves correspond to the case where χc < χ∗
c , the dashed blue curves correspond to the

case where χc > χ∗
c and the dark dashdotted curve corresponds to the case where χc = 1χ∗

c . The
grey dotted lines are the lines of equation λ = 0 and y = 0. In the case where χc < χ∗

c we notice
that G1 seems to admit no positive root.

Remark 6.2.9. If for the force fBN we choose the expression eq. (6.5) given by the heuristic ap-
proach, we then have for all t ≥ 0:

fBN (t) = −k (xnucl (t)− xcm (t)) .

To proof the result on the stability of the stationary state of theorem 7.2.4, we can use the same the
proof as the one in the case where fBN defined by eq. (6.4). It suffices to follow the same procedure

as that detailed in this section with −k =
δπR0 (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

.

6.3 . Finite element scheme of the rigid model

In this section, we write a numerical scheme to simulate model (6.3). The procedure for
obtaining this is very similar to that developed in section 5.3 for themodel with a rigid particle.
The proposed scheme is based on a semi-implicit discretization in time and a discretization in
space using a finite element method.

6.3.1 . Time discretization
We discretize in time our model eq. (6.3). Let∆t be the time step. For i ∈ {0, . . . , Nf} with

Nf ∈ N, we denote ti = i∆t, ui = u
(
ti, ·
), P i = P

(
ti, ·
) and ci = c

(
ti, ·
). We also denote

Ωi = Ω
(
ti
) and N i = N

(
ti
). In addition, we denote f iBN the force induced by the boundary

onto the nucleus associated with the cell geometry at time ti and anagously we denote f iNBthe force induced by the nucleus on a point of ∂Ωi at time ti. Moreover, we denote by ẆQ,i

an approximation of the coloured noise at time ti.
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The implicit discretization of the problem about velocities is given by:

ui+1 +∇P i+1 = 0 in Ωi \N i,

div
(
ui+1

)
= 0 in Ωi \N i,

ui+1 · n = ui+1
cm · n on ∂Ωi,

ui+1 · n = ui+1
nucl · n on ∂N i,

ui+1
nucl =

1

ξnucl |N i|

(∫
∂Ni

P i+1n dσ +
∣∣N i
∣∣ f iBN

)
,

ui+1
cm =

−1

|Ωi|

∫
∂Ωi

χcfact
(
ci
)
n dσ +

∣∣N i
∣∣

|Ωi|
(1− ξnucl)u

i+1
nucl,

(6.23a)
(6.23b)
(6.23c)
(6.23d)
(6.23e)
(6.23f)

and
ci+1 − ci

∆t
= div

(
∇ci+1 − (1− a)ui+1ci+1 − αẆQ,ici+1

) in Ωi \N i,(
∇ci+1 + aui+1ci+1 − αẆQ,ici+1

)
· n = 0 on ∂Ωi ∪ ∂N i,

(6.24a)
(6.24b)

with {
Ωi+1 =

(
Id+∆tui+1

cm

) (
Ωi
)
,

N i+1 =
(
Id+∆tui+1

nucl

) (
N i
)
.

(6.25a)
(6.25b)

6.3.2 . Decomposition of the fluid problem
We focus on the fluid velocity and pressure eq. (6.23). Instead to solve numerically this

problem (6.23), we solve the following:
−∆P i+1 = 0 in Ωi \N i,

−∇P i+1 · n = ui+1
cm · n on ∂Ωi,

−∇P i+1 · n = ui+1
nucl · n on ∂N i,

(6.26a)
(6.26b)
(6.26c)

with
ui+1
nucl =

1

ξnucl |N i|

(∫
∂Ni

P i+1ndσ +
∣∣N i
∣∣ f iBN

)
and

ui+1
cm =

−1

|Ωi|

∫
∂Ωi

χcfact
(
ci
)
n dσ +

∣∣N i
∣∣

|Ωi|
(1− ξnucl)u

i+1
nucl.

We then set ui+1 = −∇P i+1. We decompose eq. (6.26) in four independent problems to
separate the boundary conditions on ∂Ωi and ∂N i. We define as follows the four problems:

−∆P1 = 0 in Ωi \N i,

∇P1 · n = nx on ∂Ωi,

∇P1 · n = 0 on ∂N i,

(6.27a)
(6.27b)
(6.27c)

−∆P2 = 0 in Ωi \N i,

∇P2 · n = ny on ∂Ωi,

∇P2 · n = 0 on ∂N i,

(6.28a)
(6.28b)
(6.28c)
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
−∆P3 = 0 in Ωi \N i,

∇P3 · n = 0 on ∂Ωi,

∇P3 · n = nx on ∂N i,

(6.29a)
(6.29b)
(6.29c)

−∆P4 = 0 in Ωi \N i,

∇P4 · n = 0 on ∂Ωi,

∇P4 · n = ny on ∂N i,

(6.30a)
(6.30b)
(6.30c)

where nx and ny are the coordinates of the normal outward vector of Ωi \N i.
We want to find µ1, µ2, µ3 and µ4 ∈ R such that P i+1 = µ1P1 + µ2P2 + µ3P3 + µ4P4with P1, P2, P3 and P4 respectively solutions to eqs. (6.27) to (6.30). This is equivalent to find

µ = (µ1, µ2, µ3, µ4)
T such that Aµµ = Bµ where Aµ is the following matrix

Aµ =


1 + 1−ξnucl

ξnucl|Ωi|P
x
1

1−ξnucl
ξnucl|Ωi|P

x
2

1−ξnucl
ξnucl|Ωi|P

x
3

1−ξnucl
ξnucl|Ωi|P

x
4

1−ξnucl

ξnucl|Ωi|P
y
1 1 + 1−ξnucl

ξnucl|Ωi|P
y
2

1−ξnucl
ξnucl|Ωi|P

y
3

1−ξnucl
ξnucl|Ωi|P

y
4

1
ξnucl|Ni|P

x
1

1
ξnucl|Ni|P

x
2 1 + 1

ξnucl|Ni|P
x
3

1
ξnucl|Ni|P

x
4

1
ξnucl|Ni|P

y
1

1
ξnucl|Ni|P

y
2

1
ξnucl|Ni|P

y
3 1 + 1

ξnucl|Ni|P
y
4

 (6.31)

and B the following vector

Bµ =


1

|Ωi|
∫
∂Ωi

(
χcfact

(
ci
)
− f iNB

)
nx dσ − |Ni|

ξnucl|Ωi| f
i
BN,x

1
|Ωi|

∫
∂Ωi

(
χcfact

(
ci
)
− f iNB

)
ny dσ − |Ni|

ξnucl|Ωi| f
i
BN,y

− f iBN,x

ξnucl

− f iBN,y

ξnucl

 (6.32)

with P x
j =

∫
∂Ni Pj nx dσ and P y

j =
∫
∂Ni Pj ny dσ for j ∈ {1, 2, 3, 4} and f iBN,x, f iBN,y the coor-dinates of f iBN.

6.3.3 . Spatial discretization
Wediscretize in space our time-discretemodel eqs. (6.23) to (6.25). We use a finite element

discretization. Let T be a triangulation of Ωi \N i (see fig. 6.3). For all triangleK ∈ T we note(
λK1 , λ

K
2 , λ

K
3

) the barycentric coordinate functions ofK. First we define the functional spaces
needed. Let Pk be the set of polynomials of R2 of degrees less or equal k. Let HP be the
functional space define by:

HP =
{
Q ∈ H1

(
Ωi \N i

)
| ∀K ∈ T , Q K ∈ P1

}
.

LetHc be the functional space define by:
Hc =

{
ψ ∈ H1

(
Ωi \N i

)
| ∀K ∈ T , ψ K ∈ P1 ⊕ Span

{
λK1 , λ

K
2 , λ

K
3

}}
.
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Figure 6.3: Illustration of the initial mesh of the fluid domain when the nucleus is at the
cell centre.

6.3.4 . Variational formulation of the fluid problem
Instead of writing the variational formulation of eq. (6.23), we use the decomposition result

and write the variational formulation of the four independent problems eqs. (6.27) to (6.30).
The variational formulation of the problem eq. (6.27) is given by:


Find P1 ∈ HP such that for all Q ∈ HP , we have:∫

Ωi\Ni

∇P1 · ∇Qdx−
∫
∂Ωi

Qnx dσ = 0. (6.33)

The variational formulation of the problem eq. (6.28) is given by:

Find P2 ∈ HP such that for all Q ∈ HP , we have:∫

Ωi\Ni

∇P2 · ∇Qdx−
∫
∂Ωi

Qny dσ = 0. (6.34)

The variational formulation of the problem eq. (6.29) is given by:

Find P3 ∈ HP such that for all Q ∈ HP , we have:∫

Ωi\Ni

∇P3 · ∇Qdx−
∫
∂Ni

Qnx dσ = 0. (6.35)

The variational formulation of the problem eq. (6.30) is given by:

Find P3 ∈ HP such that for all Q ∈ HP , we have:∫

Ωi\Ni

∇P3 · ∇Qdx−
∫
∂Ni

Qny dσ = 0. (6.36)
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6.3.5 . Discretization of the noise
The discretization of the noise is based on the method developed in Boulakia et al. (2015).

Instead of simulating ẆQ
t over its entire domain of definition, wewant to restrict its simulation

to the current fluid domain. We recall that ẆQ,i denotes an approximation of the coloured
noise at time ti, i ∈ {1, . . . , Nf}. We set:

ẆQ,i =
WQ

ti −WQ
ti−1

∆t
.

From the definition of WQ
t , we know that ẆQ,i is equal in law to 1√

∆t
WQ

1 and that the{
ẆQ,i

}
1≤i≤Nf

are independent. Therefore, to simulate ẆQ,i, we simulate WQ,i
1 . For all i,

WQ,i
1 is a realisation of the Q-Wiener process at time 1 restricted to the discrete current fluid

domain Ωi \N i.
A way to compute WQ,i

1 =
(
ωi
1, ω

i
2

), the discrete noise, relies on the computation of a
covariancematrix (Boulakia et al., 2015). The computation of the covariancematrix is restricted
to the computation of the covariance matrix restricted to the current domain. At time ti, let{
P i
j , 1 ≤ j ≤ N i

h

} be the set of all the nodes of the triangulation T i
h ofΩi \N i, whereN i

h is thenumber of nodes of the triangulation, and {ψi
j , 1 ≤ j ≤ N i

h

} be a basis of the Lagrangian P1
finite element. ψi

j is a continuous affine function on Ωi \N i such that for all 1 ≤ j, k ≤ N i
h, wehave ψi

j

(
P i
k

)
= δjk. Form ∈ {1, 2}, the P1 discretization of ωi

m is given by

ωi
m =

Ni
h∑

j=1

xijψ
i
j .

with {xij , 1 ≤ j ≤ N i
h

} a realisation of a centred Gaussian vector of covariance matrix Σi. We
have Σi =

(
q
(
P i
j , P

i
k

))
1≤j,k≤Ni

h

. Let X be a centred Gaussian vector of covariance matrix Σi.
We have

X = SiY,

with Y a Gaussian vector such that for all 1 ≤ j ≤ N i
h, Yj ∼ N (0, 1) and Si such that Σi =

Si
(
Si
)T . Thus to computeWQ,i

1 , we just have to simulate a realization of a standard Gaussian
vector and to compute the Cholesky decomposition Si of the covariance matrix Σi. Note that
since the domain is deformable, the space-dependent Σi matrix is time-dependent and must
be computed along with its Cholesky decomposition Si at each time step.

6.3.6 . Discretization of the concentration problem
At each step of the numerical simulations, the mesh is propagating with the velocity umeshwhich satisfies: 

∆umesh = 0 in Ωi \N i,

umesh = ui+1
cm on ∂Ωi,

umesh = ui+1
nucl on ∂N i.

Thus the mesh propagation induces advection at velocity umesh of the markers concentra-
tion. Taking it into account leads to modify the discrete concentration problem eq. (6.24) as
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follows:


ci+1 − ci

∆t
+ (1− a)ui+1 · ∇ci+1 − α√

∆t
WQ,i

1 ci+1

− umesh · ∇ci+1 −∆ci+1 = 0 in Ωi \N i,(
∇ci+1 + aci+1ui+1

)
· n = 0 on ∂Ωi ∪ ∂N i.

(6.37a)
(6.37b)

The variational formulation of eq. (6.37) is given by:



Find ci+1 ∈ Hc such that for all ψ ∈ Hc, we have:∫
Ωi\Ni

(
ci+1 − ci

∆t

)
ψ dx+

∫
Ωi\Ni

div (umesh) c
i+1ψ dx

−
∫
Ωi\Ni

(
(1− a)ui+1ci+1 − umeshc

i+1 −∇ci+1
)
· ∇ψ dx

+

∫
Ωi\Ni

α√
∆t

ci+1WQ,i
1 · ∇ψ dx = 0.

(6.38)

6.3.7 . Avoid contact between cell boundary and nucleus

The discretization steps described above can be used to simulate eq. (5.3). However, these
steps do not ensure that the particle remains inside the cell. To ensure this, we add a step to
the computation of the cell and nucleus velocities. Using a Uzawa algorithm, we project the
velocities of the cell and the nucleus onto a space of so-called admissible velocities, chosen to
ensure that the nucleus and the boundary of the cell are not in contact. The numerical scheme
used to simulate eq. (5.3) is given by the following algorithm.
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Algorithm 6.1 : Numerical scheme to simulate eq. (6.3) obtained after time discretizationand space discretization with a finite element method.
1. Initialisation: c0 = cin the given initial condition and definition of the mesh with Ω0 and
N0 given.

2. Time iteration:
(a) Compute ui+1 and P i+1 using ci and the decomposition method:

i. Solve the variational formulation eq. (6.33) to compute P1.ii. Solve the variational formulation eq. (6.34) to compute P2.iii. Solve the variational formulation eq. (6.35) to compute P3.iv. Solve the variational formulation eq. (6.36) to compute P4.
v. Compute µ = (µ1, µ2, µ3, µ4)

T by solving Aµµ = Bµ with Aµ given byeq. (6.31) and Bµ given by eq. (6.32).vi. Deduce P i+1 = µ1P1 + µ2P2 + µ3P3 + µ4P4 and compute ui+1 = −∇P i+1.
(b) Computation of the a priori nucleus velocity:

u
i+ 1

2

nucl =
1

ξnucl |N i|

(∫
∂Ni

P i+1ndσ +
∣∣N i
∣∣ fBN

)
.

(c) Computation of the a priori cell velocity:
u
i+ 1

2
cm =

−1

|Ωi|

∫
∂Ωi

χcfact
(
ci
)
ndσ +

∣∣N i
∣∣

|Ωi|
(1− ξnucl)u

i+ 1
2

nucl .
(d) Using a Uzawa algorithm, computation of ui+1

nucl and ui+1
cm which are the projection

of the a priori velocities ui+ 1
2

nucl and u
i+ 1

2
cm on an admissible velocities space (seealgorithm 6.2 for more details).

(e) Computation of the mesh velocity umesh.
(f) Computation of the covariance matrix Σi and Si its Cholesky decomposition anddeduction of the discrete noiseWQ,i

1 = SiY where Y a realisation of a standardnormal Gaussian vector.
(g) Computation of the markers concentration ci+1 using ui+1,WQ,i

1 and umesh bysolving the variational formulation eq. (5.34).
(h) Update of the domain:

Ωi+1 = (Id+∆tumesh)
(
Ωi
)
,

N i+1 = (Id+∆tumesh)
(
N i
)

Next, we give details concerning Uzawa’s algorithm for handling the potential contact be-
tween the cell boundary and the nucleus. Let i ∈ {0, . . . , Nf}. We denote byX =

(
xi
nucl , x

i
cell

)
the vector with the coordinate of the particle and cell centres at time ti. The distance D (X)

between the nucleus and the cell boundary is given by:
D (X) = R0 −Rnucl −

∣∣xi
nucl − xi

cell

∣∣ .
The gradient G of the distanceD is given by:

G (X) = (−e (X) , e (X)) ,

where e (X) =
x
i+ 1

2

nucl − xi
cell∣∣xi

nucl − xi
cell

∣∣ . Let V =
(
u
i+ 1

2

nucl , u
i+ 1

2
cm

) be the vector containing the velocities
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of the nucleus and the cell. The vector V is said to be admissible if the velocities ui+ 1
2

nucl and
u
i+ 1

2
cm ensure that, at the next time step, the nucleus and the boundary of the cell are not in

contact. This condition is expressed as:
D (X+∆tV) ≥ ε,

with ε > 0 small. By linearising this condition, it can be approximated by:
D (X) + ∆tG (X) ·V ≥ ε.

From this linearized condition and the expression of the gradient G, we derive a space of
admissible velocities defined by:

K (X) =
{
(vn,vc) ∈ R2 × R2 s.t. ∆t (e (X) · vn − e (X) · vc) ≤ D (X)− ε

}
.

Let (ui+1
nucl , u

i+1
cm

) be the projection ofV onto K (X). Then (ui+1
nucl , u

i+1
cm

) satifies the following
minimisation problem:∣∣(ui+1

nucl , u
i+1
cm

)∣∣2 − 2

〈(
ui+1
nucl , u

i+1
cm

)
,
(
u
i+ 1

2

nucl , u
i+ 1

2
cm

)〉
= min

(vn ,vc)∈K(X)

(
|(vn , vc)|2 − 2

〈
(vn , vc) ,

(
u
i+ 1

2

nucl , u
i+ 1

2
cm

)〉)
It follows that there exists λ ≥ 0 such that (ui+1

nucl , u
i+1
cm

) satisfies (Lefebvre, 2007):
2
(
ui+1
nucl , u

i+1
cm

)
+ λ (∆t e (X) , −∆t e (X)) = 2

(
u
i+ 1

2

nucl , u
i+ 1

2
cm

)
,

∆t
(
e (X) · ui+1

nucl − e (X) · ui+1
cm

)
≤ D (X)− ε,

λ
(
∆t
(
e (X) · ui+1

nucl − e (X) · ui+1
cm

)
−D (X) + ε

)
= 0.

To solve this dual problem, we use a Uzawa algorithm, which is a projected fixed-step gradient
descent algorithm. The algorithm used is described in algorithm 6.2.
Algorithm 6.2 : Uzawa algorithm for projecting nucleus and cell velocities to ensureno contact between the cell boundary and the nucleus.
Assume u

i+ 1
2

nucl and u
i+ 1

2
cm given.

1. Let v0
n ∈ R2 and v0

c ∈ R2. Let λ0 ≥ 0. Let η > 0 small and ρ > 0 a projection step.
2. While ∣∣(vk+1

n ,vk+1
c

)
−
(
vk
n,v

k
c

)∣∣ > η or ∣∣λk+1 − λk
∣∣ > η do:

(a) vk+1
n = u

i+ 1
2

nucl −
1
2λ

k∆t e (X).
(b) vk+1

c = u
i+ 1

2
cm + 1

2λ
k∆t e (X).

(c) λk+1 = ΠR+

[
λk + ρ

(
∆t
(
e (X) · vk+1

n − e (X) · vk+1
c

)
−D (X) + ε

)].
3. Update of the nucleus and the cell velocities:

ui+1
nucl = vk+1

n

and
ui+1
cm = vk+1

c .
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6.4 . Numerical results

Using FreeFEM++ (Hecht, 2012), the algorithm 6.1 is implemented in order to run numerical
simulations of the model (6.3). Firstly, considering fBN defined by eq. (6.4), we check that the
proposed algorithm is in agreementwith the results obtained during the analysis of themodel.
We therefore check that the scheme enables to recover the model’s stationary state (6.7) and
its stability according to the criterion given in the theorem 6.2.2 (see section 6.4.2). We also
show that the modelling of the force between the boundary of the cell and the nucleus is in
good agreement with the fact that the nucleus returns towards the centre of the cell (see sec-
tion 6.4.1). We then investigate the role of the nucleus in cell motility (see section 6.4.3). Finally,
we illustrate that if fBN is defined by eq. (6.5) then we obtain similar results (see section 6.4.4).
This allows us to justify numerically the heuristic we have developed concerning the forces
between the cell boundary and the nucleus, and to say that it is a good approximation to the
case where fBN is defined by eq. (6.4).

6.4.1 . Illustration of the action of the restoring force on the nucleus
In this subsection, we illustrate, numerically, the effect of the restoring force on the nu-

cleus. This force is supposed to return the nucleus to the centre of the cell. We also aim to
verify that the nucleus represents a system isolated from the cell. This means checking that
the action of the nucleus alone does not modify the cell centre of mass’s velocity. To verify
these two points, we remove the coupling between marker concentration and fluid dynamics
by assuming that χc = 0 and study the evolution of the nucleus position in the cell reference
frame as well as the evolution of the cell velocity.

To ensure this, for different values of R0 and Rnucl, β and δ, we initially place the nucleusoutside its equilibrium position and plot the evolution over time of the position of the nucleus
in the cell reference frame. Whatever the initial position of the nucleus xin

nucl, whatever R0and Rnucl such that B (xin
nucl, Rnucl

)
⊂ B (0, R0), we observe that as long as β > 1 and δ > 0,

the nucleus returns to its equilibrium position and the cell’s centre of mass velocity is equal to
zero (see fig. 6.4). This confirms the modelling assumptions.
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Figure 6.4: Illustration of the nucleus dynamic without coupling with the markers con-
centration. On the left is the time evolution of the nucleus position in the cell frame of reference.
We can observe that the nucleus quickly returns to the centre of the cell, as desired. On the right is
the time evolution of the norm of the velocity of the centre of mass of the cell. We can note that this
is constant and equal to zero, which means that the cell is not moving.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0.4; 0.2), χc = 0, β = 1.5, δ = 0.141372 and ξnucl = 1.

6.4.2 . Illustration of the theorem 6.2.2
In this section, we check that the numerical scheme proposed in algorithm 6.1 is consis-

tent with the mathematical study of the model. We therefore check that if α = 0 then we
recover the stationary state (6.7) as well as the result on the stability of the latter stated in
theorem 6.2.2.

First, we check that the model captures the stationary state. We then set a time step ∆t,
then R0 and Rnucl in order to define the geometry of the cell, and we choose as the initial
condition for the markers concentration cin (x) = M

|Ω \N |
.

In this case, we observe that whatever the values of R0, Rnucl and χc, we find a stationarystate (see fig. 6.5 for an example). Indeed, the velocity of the cell remains zero over time
and the position of the nucleus at the centre of the cell is maintained. We also observe that
the distribution of markers is weel conserved over time. Moreover, we can observe that the
quantity of markers is well conserved over time, which is in agreement with eq. (6.6) (see
fig. 6.6).

Secondly, we check that the numerical scheme gives results in accordance with theo-
rem 6.2.2. We therefore study the linear stability of the stationary state numerically. To do
this, we choose a perturbation of the stationary state as the initial condition and observe,
depending on the value of χc, whether the system returns to the stationary state.

The chosen stationary state perturbation is given by:
cin (x) = K (1 +X (x))11+X(x)>0 (6.39)

where for all x ∈ Ω \N we have X (x) ∼ N (0, 1) and K such that ∫
Ω\N cin (x) dx = M . The

nucleus position is perturbed by choosing:
xin
nucl = (0.1; 0) .
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Figure 6.5: Example of capturing the stationary state using the numerical scheme. The
curve on the left represents the evolution of the velocity norm over time. We can observe that this
remains zero throughout the study interval [0, 100]. The curves on the right represent the evolution
over time of the coordinates of the nucleus position. We can see that the position of the nucleus is
preserved over the study interval.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), cin (x) = M

π(R2
0−R2

nucl)
, M = π, a = 1, χc = 0.733956, fact (c) = c(1+cs)

2

cs(c+cs)
with

cs = 0.5, β = 1.5, δ = 0.5, and ξnucl.

As illustrated in fig. 6.7 for the case where R0 = 1 and Rnucl = 0.3, we correctly find the
criterion on the linear stablity of the stationary state. Indeed, when χc < χ∗

c , we have thatthe norm of the velocity decreases very quickly towards 0 then is constant equal to 0. This
illustrates that when χc < χ∗

c the stationary state is stable. Also, when χc > χ∗
c , we observethat the norm increases rapidly towards a strictly positive value and then becomes constant.

This suggests that when χc > χ∗
c there are stable travelling waves.The trajectory study confirms that we are indeed capturing travelling waves (see fig. 6.8).

Each cell maintains its orientation over time, which, coupled with the fact that the norm of
the velocity is constant, leads to a progressive wave. The result is not surprising and is in
agreement with Lavi et al. (2020) results in the case of a rigid cell.
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Figure 6.6: Illustration of the conservation of the total quantity ofmarkers. The curve rep-
resents the evolution of the total quantity of markers over time. We note that this remains constant
throughout the study interval [0, 100].
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), cin (x) = M

π(R2
0−R2

nucl)
,M = π, a = 1, χc = 0.5, fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5,

β = 1.5, δ = 0.141372 and ξnucl = 1.
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Figure 6.7: Numerical illustration of theorem 6.2.2. Each curve represents the evolution of the
cell’s centre of mass velocity norm of a cell for different values of χc (see legend on the right). When
χc < χ∗

c the norm of the velocity decreases very rapidly towards 0 (dashdotted curves in overlapping
shades of orange), whereas when χc > χ∗

c it increases rapidly towards a non-zero value (dashed
curves in shades of blue) . The critical case χc = χ∗

c is also represented (dark curve), here the norm
of the velocity is close to zero and decreases.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0.1; 0), M = π, a = 1, cin given by eq. (6.39) and χ∗

c given by (6.8), fact (c) = c(1+cs)
2

cs(c+cs)

with cs = 0.5, β = 1.5, δ = 0.141372 and ξnucl = 1.
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Figure 6.8: Trajectories associatedwith the cells in fig. 6.7 in the casewhere χc > χ∗
c . Each

curve represents the trajectory of one of the cells studied in figure 3. Only those where χc > χ∗
c are

represented, keeping the same colour coding (see legend on the right). We can therefore see that
here the cells do not change orientation over time.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0.1; 0),M = π, a = 1, cin given by eq. (6.39), χ∗

c given by (6.8), fact (c) = c(1+cs)
2

cs(c+cs)
with

cs = 0.5, β = 1.5, δ = 0.141372 and ξnucl = 1.
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6.4.3 . Role of the nucleus
In this section we numerically study the impact of the nucleus on cell motility. To do this,

we highlight the properties of the nucleus and show that our model gives results in line with
biological observations. First, we verify that the trajectories simulated via algorithm 6.1 satisfy
the UCSP law. By comparing the results obtained with the crown model (see section 4.4.2)
and the model with a rigid particle (see section 5.4.2), we highlight the effect of the nucleus on
the trajectories. Finally, we highlight the link between cell polarisation and the dynamic of the
nucleus

6.4.3.1 . Impact of the nucleus on the trajectories
In this section, we want to illustrate the impact of the nucleus on trajectories. In order to

be able to compare with the results of sections 4.4.2 and 5.4.2 obtained respectively in the
case of the crown model and the model with a rigid particle, we follow the same procedure.
We fix all the parameters and vary only χc. We thus set for the numerical results presented,
R0 = 1,Rnucl = 0.3,M = π and a = 1. The initial position of the nucleus is set to xin

nucl = (0; 0).
As an initial condition cin for the concentration of markers, we choose the function defined for
all x ∈ Ω \N by cin (x) = M

|Ω \N |
. The noise parameters are set to α = 0.3 and ζ = 0.2. The

nucleus dynamic parameters are set to ξnucl = 1, α = 0.3, ζ = 0.2, β = 1.5 and δ = 0.141372.
Finally, the numerical simulations are performed over the time interval [0, 15]with∆t = 0.005.

Here are the results when χc = χ∗
c − 0.3, χc = χ∗

c and χc = χ∗
c + 0.5 with χ∗

c defined in
eq. (6.8).
Case where χc = χ∗

c − 0.3 In this paragraph, we present the results when χc = χ∗
c − 0.3.

Visually, and unlike the cases of the crown model and the model with a rigid particle, the
trajectories do not seem Brownian. We can observe trajectories with parts that appear to be
persistent. The trajectories look intermittent (see fig. 6.9). This is confirmed by the study of
the EASD and MSD, which are between 1 and 2 (see fig. 6.11). The UCSP law is always satisfied
by the trajectories (see fig. 6.10).

As in the case of the crownmodel and the rigid particle, we observe that the velocity of the
centre of mass is low (see fig. 6.12). However, we can observe that the dynamics of the velocity
of the centre of mass is different. It seems that the mean of the norms of the velocities of the
centre of mass increases over time and is no longer equal to the intensity of the noise. This
means that the cell is not moving just because of the noise.

It seems that, with this choice of parameter χc = χ∗
c − 0.3, the nucleus makes the tra-

jectories more directional than when its dynamics are not taken into account. One possible
explanation is that as soon as the nucleus is no longer located at the centre of the cell, the cell
starts to polarise, which induces directional movement until the nucleus is once again located
at the centre of the cell. As the noise is present all the time, the position of the nucleus, via
the coupling between the markers and the fluid, is permanently perturbed, leading to these
intermittent trajectories.
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Figure 6.9: Trajectories in polar coordinates in the case where χc < χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 6.1 on the time interval
[0, 15]. Visually, the trajectories seem to be intermittent. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (6.8),

fact (c) =
c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.
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Figure 6.10: Verification that the trajectories in fig. 6.9 satisfy the UCSP law (case when
χc < χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.

Figure 6.11: Verification that the trajectories in fig. 6.9 are Brownian (case when χc < χ∗
c ).

On the left is shown in blue the EASD associated with the trajectories in fig. 6.9 and in orange the
interpolation of the EASD, in the form t 7→ ctb. By the properties of the EASD, as b between 1 and
2, the trajectories in fig. 6.9 may be intermittent. This is confirmed by the study of the MSD, which
is shown in blue on the right. Also shown on the right are the TASD of each cell in yellow and the
interpolation of the MSD in form t 7→ ctb in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.
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Figure 6.12: Time evolution of the norm of the velocity of the cells whose trajectories are
shown in fig. 6.9 (case when χc < χ∗

c ). The blue lines show the evolution over time of the norm
of the centre of mass velocity of each cell and the black line shows the evolution of the mean of the
norms of the velocities of the cells.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.
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Case where χc = χ∗
c + 0.5 In this paragraph, we present the results when χc = χ∗

c + 0.5.
Visually, the trajectories seem intermittent (see fig. 6.13), which is in agreement with the EASD
and MSD study, which is between 1 and 2 (see fig. 6.15). This observation is very different from
that made for the same parameters in the case of the crownmodel or themodel with the rigid
particle, where the trajectories were persistent. In addition, we can see that the trajectories
satisfy the UCSP (see fig. 6.14).

Figure 6.13: Trajectories in polar coordinates in the case where χc > χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 6.1 on the time interval
[0, 15]. Visually, the trajectories seem to be intermittent. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (6.8),

fact (c) =
c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.

Finally, we can observe that, with these parameters, the mean velocity of the centre of
mass is high (see fig. 6.16). This is higher than in the case of the crown model and the model
with the rigid particle. In addition, it is interesting to note that, although they move faster, in
the case of themodel with the nucleus the cells move less far from their initial position. In fact,
we can see in fig. 6.13 that on average the cells have moved away from their initial position by
a distance of 20, whereas in the case of the crownmodel they have moved away by a distance
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Figure 6.14: Verification that the trajectories in fig. 6.13 satisfy the UCSP law (case when
χc > χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.

of 25. This is consistent with the intermittent behaviour observed and with the capture of the
stop-and-go phenomenon.

It seems that, with this choice of parameter χc = χ∗
c + 0.5, the nucleus makes the tra-

jectories less directional than when its dynamics are not taken into account. One possible
explanation for this is based on the fact that the dynamics of the nucleus bring it back to the
centre of the cell. If the cell is polarised, with the nucleus at the back, then this dynamic de-
polarises the cell. Fluctuations due to noise disturb the position of the nucleus, leading to
polarisation of the cell and again to persistent movement. Note that this explanation is the
same as that proposed for the case χc = χ∗

c − 0.3. This means that the dynamics of the nu-
cleus tends to make the dynamics of the cell intermittent, which is interesting from the point
of view of observing the stop-and-go phenomenon.
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Figure 6.15: Verification that the trajectories in fig. 6.13 are Brownian (case when χc >
χ∗
c ). On the left is shown in blue the EASD associated with the trajectories in fig. 6.13 and in orange

the interpolation of the EASD, in the form t 7→ ctb. By the properties of the EASD, as b between 1 and
2, the trajectories in fig. 6.13 may be intermittent. This is confirmed by the study of the MSD, which
is shown in blue on the right. Also shown on the right are the TASD of each cell in yellow and the
interpolation of the MSD in form t 7→ ctb in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.

Figure 6.16: Time evolution of the norm of the centre of mass velocity of the cells whose
trajectories are shown in fig. 6.13 (case when χc > χ∗

c ). The blue lines show the evolution
over time of the norm of the velocity of each cell and the black line shows the evolution of the mean
of the norms of the velocities of the cells.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.

194



Case where χc = χ∗
c In this paragraph, we present the results when χc = χ∗

c . Visually,and like the cases of the crown model and the model with a rigid particle, the trajectories
seem intermittent (see fig. 6.17). This is confirmed by the study of the EASD and MSD, which
are between 1 and 2 (see fig. 6.19). The UCSP law is always satisfied by the trajectories (see
fig. 6.18).

Figure 6.17: Trajectories in polar coordinates in the case where χc = χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 6.1 on the time interval
[0, 15]. Visually, the trajectories seem to be intermittent. Fifty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (6.8), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.

As in the case of the crown model and the rigid particle, we observe that the velocity of
the centre of mass is intermediate (see fig. 6.20) but is higher than in the case of the crown
model and the model with the rigid particle.
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Figure 6.18: Verification that the trajectories in fig. 6.17 satisfy the UCSP law (case when
χc = χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (6.8), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.

Figure 6.19: Verification that the trajectories in fig. 6.17 are intermittent (case when χc =
χ∗
c ). On the left is shown in blue the EASD associated with the trajectories in fig. 6.17 and in orange

the interpolation of the EASD, in the form t 7→ ctb. By the properties of the EASD, as b between 1 and
2, the trajectories in fig. 6.17 are neither Brownian neither persistent. This is confirmed by the study
of the MSD, which is shown in blue on the right. Also shown on the right are the TASD of each cell in
yellow and the interpolation of the MSD in form t 7→ ctb in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (6.8), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.
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Figure 6.20: Time evolution of the norm of the velocity of the cells whose trajectories are
shown in fig. 6.17 (case when χc = χ∗

c ). The blue lines show the evolution over time of the norm
of the velocity of each cell and the black line shows the evolution of the mean of the norms of the
velocities of the cells.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (6.8), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.
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Thus, the comparison with the results obtained with the crownmodel and the model with
a rigid particle shows that taking into account the dynamics of the nucleus allows us to accu-
rately capture the intermittent behaviour of the cells. The cells alternate between phases in
which they are polarised and phases in which they are not. This shows that the nucleus and
its dynamics play a very important role in cell polarisation and depolarisation. We investigate
this in the next section.

6.4.3.2 . Cell polarisation is linked with the dynamic of the nucleus
In this section, we illustrate that the dynamics of the nucleus are linked to the polarisation

of the cell. Since the model is rigid, a polarised cell is characterised by an asymmetric distribu-
tion of markers and the nucleus located at the rear of the cell. The more asymmetrically the
marker concentration is distributed, the greater the norm of the velocity of the cell’s centre of
mass. Our model therefore shows that a cell is polarised if its velocity is high and its nucleus
is at the rear.

In order to highlight the effect of the nucleus on the intermittent nature of a cell’s trajec-
tory, we represent the trajectories by subdividing them according to the relative position of
the nucleus and the cell’s velocity. An example of this is shown in fig. 6.21.

We observe that before a change of direction, the velocity decreases. Then, the nucleus
moves closer to the centre of the cell. This leads to depolarisation of the cell. When the cell
takes a new direction, it polarises again. The nucleus moves away from the centre of the
cell and towards the back of the cell (see fig. 6.22). The cell’s velocity increases again. We
also observe that before taking another direction, the cell stops. We then observe a diffusive
movement with a very low velocity. We can see that in the areas where the cell is polarised, it
maintains its direction. This accurately illustrates the intermittent nature of a trajectory.

This suggests that the positioning of the nucleus at the rear of the cell is important in the
phenomenon of polarisation. It also indicates that the positioning of the nucleus is crucial in
the phenomenon of depolarisation. For the cell to be in a depolarised state, the nucleus must
be at its center.

We note that the presented result is obtained when the friction of the nucleus on the
substrate is higher than that of the cytoplasm. We obtain a similar result when assuming the
frictions are the same (ξnucl = 1), though it is less apparent that the nucleus moves to the rear
of the cell, as it remains very close to the center.

These results are interesting because the considered model, despite its simplicity, high-
lights the role of the nucleus in cell motility. This role is clearly highlighted by the numerical
results concerning the polarisation of the cell and the positioning of the nucleus within the
cell. Additionally, we note that when the cell migrates, the nucleus maintains its position at
the rear of the cell.
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Figure 6.21: Representationof the trajectory of cell split according to the relative position
of the nucleus and the cell’s velocity. A trajectory of a cell is represented. The part shown in
dark blue corresponds to the moments when the nucleus is positioned at the back of the cell and
the cell velocity is high. The sky-blue area corresponds to moments when the nucleus is no longer
positioned at the back of the cell and is close to the centre of the cell. The part shown in cyan
corresponds to moments when the cell velocity is low. We observe that before a change of direction,
the velocity decreases. The nucleus then moves closer to the centre. This leads to depolarisation of
the cell. When the cell takes a new direction, the nucleus moves towards the rear of the cell and the
cell velocity increases. The cell becomes polarised. We can see that in the areas where the cell is
polarised, it maintains its direction.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.75. The time interval

of study is [0, 50].
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Figure 6.22: Representation of the trajectory of cell with snapshots of the cell evolution.
Snapshots of the cell evolution of the cell whose ttrajectory is represented in fig. 6.21 are added to
the trajectory. Snapshots of the cell are shown at time t ∈ {0, 5, 10, 15, . . . , 45, 50}. The red area on
the cell represents the area with high markers concentration whereas the dark blue area represents
the area with low markers concentration. We can observe that the nucleus position inside the cell
evolves with time. Moreover, once the cell is polarised, the nucleus position is at the rear part of the
cell.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, β = 1.5, δ = 0.141372 and ξnucl = 1.75. The time interval

of study is [0, 50].
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6.4.4 . Validation of the heuristic approach
In this section, we aim to study numerically the heuristic approach proposed in section

section 1.3.9 for modelling the forces induced by the cell boundary on the nucleus and by the
nucleus on the cell boundary. We therefore assume that fBN is defined by eq. (6.5) which we
recall here:

fBN (t) = −k (xnucl (t)− xcm (t)) .

First, we check that this expression for fBN does indeed act on the nucleus to bring it back
to the centre of the cell. Next, we check that the stationary state is indeed recovered with the
numerical scheme and that we numerically recover the criterion on its stability. Finally, we
study the trajectories obtained for different values of χc and compare the results obtained
with those of section 6.4.3.1.

6.4.4.1 . Numerical verifications
In this subsection, we illustrate, numerically, the effect of the restoring force on the nu-

cleus when we consider the heuristic approach. We aim to check that with this choice of force,
the nucleus effectively returns to the centre of the cell. To verify this, we remove the coupling
between marker concentration and fluid dynamics by assuming that χc = 0 and study the
evolution of the nucleus position in the cell reference frame.

To ensure this, for different values of R0 and Rnucl, and k, we initially place the nucleusoutside its equilibrium position and plot the evolution over time of the position of the nucleus
in the cell reference frame. Whatever the initial position of the nucleus xin

nucl, whatever R0and Rnucl such that B (xin
nucl, Rnucl

)
⊂ B (0, R0), we observe that as long as β > 1 and δ > 0,

the nucleus returns to its equilibrium position (see fig. 6.23). This confirms that the heuristic
approach is in accordance with the biological context.

In fig. 6.23, we have choose k in order to compare it with the result of fig. 6.4. R0 and
Rnucl are equals in both cases and k is such that−k =

δπR0 (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

. The nucleus
returns slower to the centre of the cell with the heuristic approach.

Secondly, we check that, with the heuristic choice of the force, the numerical scheme pro-
posed in algorithm 6.1 is consistent with the mathematical study of the model. We therefore
check that ifα = 0 thenwe recover the stationary state (6.7) aswell as the result on the stability
of the latter stated in theorem 6.2.2.

We observe that with this choice for the boundary force on the nucleus, the scheme still
captures the stationary state well. Indeed, as illustrated in fig. 6.24 if the initial condition is
the stationnary state, then the velocity of the cell remains zero over time and the position of
the nucleus at the centre of the cell is maintained. We also observe that the distribution of
markers is weel conserved over time. Moreover, we can observe that the quantity of markers
is well conserved over time, which is in agreement with eq. (6.6) (see fig. 6.25).

We also check that, with this choice of force, the numerical scheme gives results in ac-
cordance with theorem 6.2.2. We therefore study the linear stability of the stationary state
numerically. As previously, we choose a perturbation of the stationary state as the initial con-
dition and observe, depending on the value ofχc, whether the system returns to the stationary
state. We choose the same perturbation of the initial condition defined by eq. (6.39).

As illustrated in fig. 6.26 for the case where R0 = 1 and Rnucl = 0.3, we correctly find the
criterion on the linear stablity of the stationary state. Indeed, when χc < χ∗

c , we have thatthe norm of the velocity decreases very quickly towards 0 then is constant equal to 0. This
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Figure 6.23: Illustration of the nucleus dynamic without coupling with the markers con-
centration. The time evolution of the nucleus position in the cell frame of reference is represented.
We can observe that the nucleus quickly returns to the centre of the cell, as desired.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0.4; 0.2), χc = 0, k = 0.866677, and ξnucl = 1.

illustrates that when χc < χ∗
c the stationary state is stable. Also, when χc > χ∗

c , we observethat the norm increases rapidly towards a strictly positive value and then becomes constant.
This suggests that when χc > χ∗

c there are stable travelling waves.The choice of the parameters allows to compare the results obtained in fig. 6.26 with the
result obtained in fig. 6.7. We can see that for the same choice of χc the cells simulated with
fBN defined by eq. (6.4) and those where fBN is defined by eq. (6.5) go at the same velocity.
It also seems that in both cases, the cells converge towards a travelling wave at the same
velocity.
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Figure 6.24: Example of capturing the stationary state using the numerical scheme. The
curve on the left represents the evolution of the velocity norm over time. We can observe that this
remains zero throughout the study interval [0, 100]. The curves on the right represent the evolution
over time of the coordinates of the nucleus position. We can see that the position of the nucleus is
preserved over the study interval.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), cin (x) = M

π(R2
0−R2

nucl)
, M = π, a = 1, χc = 0.733956, fact (c) = c(1+cs)

2

cs(c+cs)
with

cs = 0.5, k = 0.866677, and ξnucl = 1.
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3.3

M

Time evolution of the total quantity of markers

Figure 6.25: Illustration of the conservation of the total quantity of markers. The curve
represents the evolution of the total quantity of markers over time. We note that this remains con-
stant throughout the study interval [0, 100].
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), cin (x) = M

π(R2
0−R2

nucl)
,M = π, a = 1, χc = 0.5, fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5,

k = 0.866677, and ξnucl = 1.
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Figure 6.26: Numerical illustration of theorem 6.2.2. Each curve represents the evolution of
the cell’s centre of mass velocity norm of a cell for different values of χc (see legend on the right).
When χc < χ∗

c the norm of the velocity decreases very rapidly towards 0 (dashdotted curves in
overlapping shades of orange), whereas when χc > χ∗

c it increases rapidly towards a non-zero
value (dashed curves in shades of blue) . The critical case χc = χ∗

c is also represented (dark curve),
here the norm of the velocity is close to zero and decreases.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0.1; 0), M = π, a = 1, cin given by eq. (6.39) and χ∗

c given by (6.8), fact (c) = c(1+cs)
2

cs(c+cs)

with cs = 0.5, k = 0.866677 and ξnucl = 1.
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6.4.4.2 . Impact of the nucleus on the trajectories
In this section, we want to illustrate the impact of the nucleus on trajectories. In order to

be able to compare with the results of sections 4.4.2 and 5.4.2 obtained respectively in the
case of the crown model and the model with a rigid particle, we follow the same procedure.
We fix all the parameters and vary only χc. We thus set for the numerical results presented,
R0 = 1,Rnucl = 0.3,M = π and a = 1. The initial position of the nucleus is set to xin

nucl = (0; 0).
As an initial condition cin for the concentration of markers, we choose the function defined
for all x ∈ Ω \ N by cin (x) = M

|Ω \N |
. The noise parameters are set to α = 0.3 and ζ = 0.2.

The nucleus dynamic parameters are set to ξnucl = 1 and k = 0.866677. Finally, the numerical
simulations are performed over the time interval [0, 15] with∆t = 0.005.

Here are the results when χc = χ∗
c − 0.3, χc = χ∗

c and χc = χ∗
c + 0.5 with χ∗

c defined in
eq. (6.8).
Case where χc = χ∗

c − 0.3 In this paragraph, we present the results when χc = χ∗
c − 0.3.

Visually, and like in the first case (see section 6.4.3), the trajectories do not seemBrownian. We
can observe trajectories with parts that appear to be persistent. The trajectories look inter-
mittent (see fig. 6.27). This is confirmed by the study of the EASD andMSD, which are between
1 and 2 (see fig. 6.29). The UCSP law is always satisfied by the trajectories (see fig. 6.28). We
observe that the trajectories obtained are similar to those obtained in section 6.4.3, the EASD
and the MSD are similars. The average velocity of the cells is similar (see figs. 6.12 and 6.30). A
minor difference is that the persistence times are higher when we consider that fBN is given
by the heuristic approach (see figs. 6.10 and 6.28).
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Figure 6.27: Trajectories in polar coordinates in the case where χc < χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 6.1 on the time interval
[0, 15]. Visually, the trajectories seem to be intermittent. Thirty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (6.8),

fact (c) =
c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.
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Figure 6.28: Verification that the trajectories in fig. 6.27 satisfy the UCSP law (case when
χc < χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.

Figure 6.29: Verification that the trajectories in fig. 6.27 are Brownian (case when χc <
χ∗
c ). On the left is shown in blue the EASD associated with the trajectories in fig. 6.27 and in orange

the interpolation of the EASD, in the form t 7→ ctb. By the properties of the EASD, as b between 1 and
2, the trajectories in fig. 6.27 may be intermittent. This is confirmed by the study of the MSD, which
is shown in blue on the right. Also shown on the right are the TASD of each cell in yellow and the
interpolation of the MSD in form t 7→ ctb in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.
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Figure 6.30: Time evolution of the norm of the velocity of the cells whose trajectories
are shown in fig. 6.27 (case when χc < χ∗

c ). The blue lines show the evolution over time of the
norm of the centre of mass velocity of each cell and the black line shows the evolution of the mean
of the norms of the velocities of the cells.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c − 0.3 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.
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Case where χc = χ∗
c + 0.5 In this paragraph, we present the results when χc = χ∗

c + 0.5.
As with the first modelisation of fBN, visually, the trajectories seem intermittent (see fig. 6.31),
which is in agreement with the EASD and MSD study, which is between 1 and 2 (see fig. 6.33).
We can see that the trajectories satisfy theUCSP (see fig. 6.32). We observe that the trajectories
obtained are similar to those obtained in section 6.4.3, the EASD and theMSD are similars. The
average velocity of the cells is similar (see figs. 6.16 and 6.34). A minor difference is that the
persistence times are higher whenwe consider that fBN is given by the heuristic approach (see
figs. 6.14 and 6.32).

Figure 6.31: Trajectories in polar coordinates in the case where χc > χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 6.1 on the time interval
[0, 15]. Visually, the trajectories seem to be intermittent. Thirty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (6.8),

fact (c) =
c(1+cs)

2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.
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Figure 6.32: Verification that the trajectories in fig. 6.31 satisfy the UCSP law (case when
χc > χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.

Figure 6.33: Verification that the trajectories in fig. 6.31 are Brownian (case when χc >
χ∗
c ). On the left is shown in blue the EASD associated with the trajectories in fig. 6.31 and in orange

the interpolation of the EASD, in the form t 7→ ctb. By the properties of the EASD, as b between 1 and
2, the trajectories in fig. 6.31 may be intermittent. This is confirmed by the study of the MSD, which
is shown in blue on the right. Also shown on the right are the TASD of each cell in yellow and the
interpolation of the MSD in form t 7→ ctb in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.
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Figure 6.34: Time evolution of the norm of the centre of mass velocity of the cells whose
trajectories are shown in fig. 6.31 (case when χc > χ∗

c ). The blue lines show the evolution
over time of the norm of the velocity of each cell and the black line shows the evolution of the mean
of the norms of the velocities of the cells.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c + 0.5 with χ∗
c given by (6.8), fact (c) =

c(1+cs)
2

cs(c+cs)
with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.
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Case where χc = χ∗
c In this paragraph, we present the results when χc = χ∗

c . Visually, andlike when we consider the first modelisation of fBN, the trajectories seem intermittent (see
fig. 6.35). This is confirmed by the study of the EASD and MSD, which are between 1 and 2 (see
fig. 6.37). The UCSP law is always satisfied by the trajectories (see fig. 6.36). We observe that
the trajectories obtained are similar to those obtained in section 6.4.3, the EASD and the MSD
are similars. The average velocity of the cells is similar (see figs. 6.20 and 6.38).

Figure 6.35: Trajectories in polar coordinates in the case where χc = χ∗
c . Each curve repre-

sents, in polar coordinates, the trajectory of one cell simulated by algorithm 6.1 on the time interval
[0, 15]. Visually, the trajectories seem to be intermittent. Thirty cells are represented.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (6.8), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.
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Figure 6.36: Verification that the trajectories in fig. 6.35 satisfy the UCSP law (case when
χc = χ∗

c ). The persistence time of a locally persistent trajectory portion is plotted as a function of
the persistence velocity. Each black dot corresponds to a datum. In red is plotted an interpolation
of the points, of form v 7→ aebv , which corresponds to the UCSP law. We can see that the data
corresponds well to the interpolation and that the trajectories satisfy the UCSP law.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (6.8), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.

Figure 6.37: Verification that the trajectories in fig. 6.35 are intermittent (case when
χc = χ∗

c ). On the left is shown in blue the EASD associated with the trajectories in fig. 6.35 and in
orange the interpolation of the EASD, in the form t 7→ ctb. By the properties of the EASD, as b between
1 and 2, the trajectories in fig. 6.35 are neither Brownian neither persistent. This is confirmed by the
study of the MSD, which is shown in blue on the right. Also shown on the right are the TASD of each
cell in yellow and the interpolation of the MSD in form t 7→ ctb in orange.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (6.8), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.
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Figure 6.38: Time evolution of the norm of the velocity of the cells whose trajectories
are shown in fig. 6.17 (case when χc = χ∗

c ). The blue lines show the evolution over time of the
norm of the velocity of each cell and the black line shows the evolution of the mean of the norms of
the velocities of the cells.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, Rnucl = 0.3,
xin
nucl = (0; 0),M = π, a = 1, cin =

M

|Ω \N |
, χc = χ∗

c with χ∗
c given by (6.8), fact (c) = c(1+cs)

2

cs(c+cs)

with cs = 0.5, α = 0.3, ζ = 0.2, k = 0.866677, and ξnucl = 1.
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We therefore observe similar results with the two choices for the expression of forces in-
duced by the nucleus on the cell boundary and by the cell boundary on the nucleus. This
suggests that our heuristic approach can be seen as an approximation of the first modelling.
We have therefore developed a model that allows the dynamics of the nucleus to be taken
into account. Numerical simulations of the model highlight the role of the nucleus in cell po-
larisation and its impact on cell migration. The study of the model is continued in the next
chapter with the study of the associated deformable model.
Conclusion and perspectives. The proposed model and the numerical simulations carried
out highlight the role of the nucleus in cell motility and, in particular, in cell polarisation. The
numerical simulations also validate the heuristic approach chosen tomodel the forces exerted
between the cell boundary and the nucleus. We aim to continue investigating this heuristic in
the context of both a deformable cell and a deformable nucleus. We also intend to continue
studying this model by investigating the influence of the parameter ξnucl on the trajectories.
In a future work, we aim to study the existence of travelling waves for the model as well as its
long-time behaviour. We wish to prove the existence of stable travelling waves when χc > χ∗

cand the convergence towards them. Finally, we hope to establish a bifurcation result from the
stationary state to a travelling wave when χc becomes larger than χ∗

c .
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7 - Deformable cell model with a rigid nucleus

In this chapter, in collaboration with Nicolas Meunier and Raphaël Voituriez, we study the
free-boundarymodel (1.1) in the case where the substrate is assumed to be homogeneous, the
cell environment has no osbstacle or external signal, and we neglect the effects of undercool-
ing and noise. After recalling the model of interest, we study its stationary states. We give a
criterion for the stability of the radially symmetric stationary state. We then write a numerical
scheme for the model. This scheme is obtained after semi-implicit discretisation in time and
discretisation in space using a finite element method. The curvature is discretised implicitly.
Two methods are proposed for handling potential contacts between the cell boundary and
the nucleus. Finally, we present numerical results to highlight that the model gives qualitative
results in line with the biological context. The simulations allow us to observe the different
phases of polarisation followed by cell migration.

7.1 . Presentation of the model

In this section, we recall the general model (1.1) in the case where the substrate is homo-
geneous (ξM = 1) and the environment outside the cell presents neither an external obstacle
nor an external signal. We also neglect the effect of undercooling and noise. Under these
assumptions, keeping the notations of chapter 1, the model studied is then given by:



u+∇P = 0 in Ω (t) \N (t) ,

div (u) = 0 in Ω (t) \N (t) ,

Vn = u · n on ∂Ω (t) ,

P = γκ+ χcfact (c)− fNB on ∂Ω (t) ,

unucl (t) =
1

ξnucl |N |

(∫
∂N(t)

P (t,x)n dσ + fBN

)
u · n = unucl · n on ∂N (t) ,

∂tc = div (∇c− (1− a)uc) in Ω (t) \N (t) ,

(∇c+ auc) · n = 0 on ∂ (Ω (t) \N (t)) ,

c (0,x) = cin (x) in Ω (0) \N (0) .

(7.1a)
(7.1b)
(7.1c)
(7.1d)
(7.1e)
(7.1f)
(7.1g)
(7.1h)
(7.1i)

We recall the expressions for fBN and fNB defined by eqs. (1.22) and (1.23). For all t ≥ 0

and x ∈ ∂Ω (t), we have:
fBN (t) = δ

∫
∂Ω(t)

vBN · n
(∥vBN∥ −Rnucl)

β
ndσ, (7.2)

and
fNB (t,x) = −δ vBN · n

(∥vBN∥ −Rnucl)
β
, (7.3)

with β > 1, δ > 0 and vBN = xnucl − xB where xB ∈ ∂Ω (t).
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We also recall that fBN and fNB can also be defined by eqs. (1.24) and (1.25) and we recall
that in this case, for all t ≥ 0 and x ∈ ∂Ω (t), we have:

fBN (t) = −k (xnucl (t)− xcm (t)) , (7.4)
and

fNB (t,x) =
−k (xcm (t)− xnucl (t)) · x

AΩ
(7.5)

with k > 0 and xcm the centre of the cell.
We recall that the model is such that the total quantity of markers M is conserved over

time and we have:
M =

∫
Ω(t)\N(t)

c (t,x) dx. (7.6)
We also recall that the volume of the cell AΩ is constant over time and we have:

AΩ = |Ω (t)| . (7.7)

7.2 . Study of the radial stationary state

In this section, by defining a stationary state, we prove the existence of stationary states
and study the stability of the radially symmetric stationary state. In all this section, we consider
that fBN and fNB are defined by the expressions (7.2) and (7.3).

The results presented here holds true when we consider fBN and fNB defined by the ex-
pressions (7.4) and (7.5), details are given in remarks 7.2.3 and 7.2.9.

7.2.1 . Definition of the stationary state
The following proposition defines and demonstrates the existence of stationary states.

Proposition 7.2.1. A stationary state of the model defined by eq. (7.1) is characterised by:

u (x) = 0 x ∈ Ω0 \N0,

P (x) = P 0 ∈ R x ∈ Ω0 \N0,

unucl = 0,

c (x) =
M

AΩ − |N |
x ∈ Ω0 \N0,

(7.8a)
(7.8b)
(7.8c)
(7.8d)

with N0 = B (0, Rnucl) and Ω0 a convex such that for all x ∈ ∂Ω0 it holds:

γκ (x) = fNB (x)− χcfact (c) + P 0. (7.9)
Proof. The stationary problem asssociated with the model (7.1) is given as follows:

u+∇P = 0 in Ω \N,
div (u) = 0 in Ω \N,
P = γκ+ χcfact (c)− fNB on ∂Ω,
u · n = 0 on ∂Ω ∪ ∂N,
∆c− (1− a)u · ∇c = 0 in Ω \N,
(∇c+ auc) · n = 0 on ∂Ω ∪ ∂N,
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with Ω and N given. Without loss of generality we can assume that N = B (0, Rnucl).Thus the problem on P reads:
−∆P = 0 in Ω \N,
−∇P · n = 0 on ∂Ω ∪ ∂N,
P = γκ+ χcfact (c)− fNB on ∂Ω.

The two first lines leads to the fact thatP is such that∇P = 0 overΩ\N and thusP is constant
over Ω \N . We then have u = 0

Substituting the value of u into the dynamics of concentration c, we obtain:{
−∆c = 0 in Ω \N,
−∇c · n = 0 on ∂Ω ∪ ∂N,

and c is constant over Ω \ N . Using the constraint on the total quantity of markers (7.6), we
deduce that for all x ∈ Ω \N , c (x) = M

|Ω \N |
.

Finally, we deduce that Ω and N are such that for all x ∈ ∂Ω, we have:
P = γκ (x) + χcfact (c)− fNB (x) .

We recognize the condition eq. (7.9). We prove by contradiction, that it implies thatΩ is convex.
By contradiction, assume that there exists Ω ̸= B (0, R0) satisfying eq. (7.9). By assump-

tions on fNB, the closer x ∈ ∂Ω is to the nucleus, the greater fNB (x) is and for all x ∈ ∂Ω we
have fNB (x) > 0. Then, necessarily, Ω is convex.

Indeed, assume by contradiction there exists a point xneg ∈ ∂Ω such that κ (xneg) < 0. We
assume that xneg minimises the distance between the cell boundary and the nucleus among
the points of negative curvature. As we assume the curvature to be positive for a circle and
∂Ω defined a close curve around N , there exists xpos ∈ ∂Ω such that κ (xpos) > 0 and such
that the distance between xpos and the nucleus is greater than the one between xneg and thenucleus. Then in particular we have:

γ (κ (xpos)− κ (xneg)) = fNB (xpos)− fNB (xneg) ,

with κ (xpos)− κ (xneg) > 0 and fNB (xpos)− fNB (xneg) < 0 which is absurd.
The following proposition immediatly follows.

Proposition 7.2.2. The model eq. (7.1) admits an unique radially symmetric stationary state given
by: 

u0 (x) = 0,

P 0 (x) =
γ

R0
+ χcfact

(
c0
)
− δR0

(R0 −Rnucl)
β
,

u0
nucl = 0,

c0 (x) =
M

|Ω0 \N0|
,

Ω0 = B (0, R0) and N0 = B (0, Rnucl) ,

(7.10a)
(7.10b)
(7.10c)
(7.10d)
(7.10e)

with R0 =
√

AΩ

π .
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Remark 7.2.3. We can note that if fBN and fNB are defined by the expressions (7.4) and (7.5),
then eq. (7.10) is a radially symmetric stationary state of the model.

In the sequel we denote:
χ∗
c =

1

ac0f ′act (c
0)
. (7.11)

Theorem 7.2.4. In the case where ξnucl = 1, if χc < χ∗
c , then the stationary state (7.10) is linearly

stable. On the opposite, if χc > χ∗
c , then the stationary state is linearly unstable.

7.2.2 . Proof of theorem 7.2.4
The theorem is proved in five steps. The first consists of computing the linearised prob-

lem of problem (7.1) around the stationary state (7.10) and deducing an eigenvalue problem.
The stationary state will then be stable if all the eigenvalues of the eigenvalue problem have
a negative real part. The second step consists in establishing that the study of the spectrum
of the eigenvalue problem can be decomposed into the study of the spectrum of simpler (Pm)problems indexed bym ∈ N. This step is based on the radially symmetric nature of the prob-
lem and Fourier analysis. The third step consists in proving that for m = 0, the eigenvalues
of (P0) have all negative real parts. The fourth consists in showing that for m ≥ 2, if χc < χ∗

cthen the eigenvalues of (Pm) are all negative real parts. The fifth consists in studying the case
m = 1. We can then exhibit a positive real part eigenvalue of (P1) when χc > χ∗

c . Also, using agraphical argument, it consists in illustrating that if χc < χ∗
c then the eigenvalues of (P1) havea negative real part. The arguments used are inspired by those of Lavi et al. (2020); Alazard

et al. (2022) and are similar to those of sections 4.2.1.2, 5.2.2 and 6.2.2.
Step 1. The following lemma gives the expression for the linearised problem around the
stationary state (7.10).
Lemma 7.2.5. The linearised problem associated to eq. (7.1) around the stationary state (7.10) is
given by:

−∆P̃ = 0 in Ω0 \N0,

∂tρ (t, θ) = −∂rP̃ (t, R0, θ) with θ ∈ (−π, π] ,

P̃ =
−γ
R2

0

(
∂2θθρ+ ρ

)
+ χcf

′
act

(
c0
)
c̃

+
δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

(x̃nucl · n− ρ) on ∂Ω0,

∇P̃ · n = −ũnucl · n on ∂N0,

∂tc̃ = ∆c̃ in Ω0 \N0,(
∇c̃− a∇P̃ c0

)
· n = 0 on ∂Ω0 ∪ ∂N0,

(7.12a)
(7.12b)

(7.12c)
(7.12d)
(7.12e)
(7.12f)

with

ũnucl (t) =
1

|N |

(∫
∂N0

P̃ (t,x)ndσ

+
δR0 (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

(
πx̃nucl (t)−

∫ 2π

0

ρ (t, θ)

(
cos θ
sin θ

)
dθ

))
, (7.13)
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and x̃nucl = (x̃nucl, ỹnucl) such that for all t ≥ 0:

d

dt
x̃nucl (t) = ũnucl.

Proof. We perform a formal expansion of the solutions of model (7.1) around the stationary
state (7.10). Let ε > 0 small. For all t ≥ 0, we set:

Ω (t) = {(r cos θ, r sin θ) s.t. 0 ≤ r < R0 + ερ (t, θ) and θ ∈ (−π, π]} .

We also set:
N (t) = B (xnucl (t) , Rnucl) ,

with
xnucl (t) = εx̃nucl (t) +O

(
ε2
)

and thus we set for all t ≥ 0:
unucl (t) = u0

nucl + εũnucl (t) +O
(
ε2
)
.

Moreover, for all t ≥ 0 and x ∈ Ω0 \N0, we set:
P (t,x) = P 0 + εP̃ (t,x) +O

(
ε2
)
,

and
c (t,x) = c0 + εc̃ (t,x) +O

(
ε2
)
.

As P0 satisfies eq. (7.10b) and P satisfies eqs. (7.1a) and (7.1b), we have that in Ω0 \N0:
−∆P̃ = 0.

In addition, using the parametrization of Ω boundary, we have that for all t ≥ 0 and θ ∈
(−π, π], the expansion of fNB, the outward normal vector n toΩ and the κ curvature are given
by:
fNB (t, θ) =

δR0

(R0 −Rnucl)
β

− ε
δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

(
x̃nucl (t) ·

(
cos θ
sin θ

)
− ρ (t, θ)

)
+O

(
ε2
)
,

n (t, θ) =

(
cos θ
sin θ

)
− ε

∂θρ (t, θ)

R0

(
− sin θ
cos θ

)
+O

(
ε2
)

and
κ (t, θ) =

1

R0
− ε

∂2θθρ (t, θ) + ρ (t, θ)

R2
0

+O
(
ε2
)
.

Since, we also have:
fact (c) = fact

(
c0
)
+ εc̃f ′act

(
c0
)
+O

(
ε2
)
,

thus as P satisfies eq. (7.1d), it leads to the following boundary condition for P̃ on ∂Ω0:
P̃ =

−γ
R2

0

(
∂2θθρ+ ρ

)
+ χcf

′
act

(
c0
)
c̃
δπR2

nucl (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

(x̃nucl · n− ρ) ,
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where in this case n denotes the outward normal vector to Ω0.
Also, we have that the expansion of the normal velocity of the boundary is given for all

t ≥ 0 and θ ∈ (−π, π] by:
Vn = ε∂tρ (t, θ) +O

(
ε2
)
.

As P satisfies eq. (7.1c), we have that P̃ satifies for all t ≥ 0 and θ ∈ (−π, π]:
∂tρ (t, θ) = −∂rP̃ (t, R0, θ) .

In addition, as P satisfies eq. (7.1f), we have that P̃ satisfies on ∂N0:
−∇P̃ · n = ũnucl · n.

Furthermore, we deduce from the expansion of fNB the one of fBN and for all t ≥ 0 we
have:

fBN (t) = ε
δR0 (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

[
πx̃nucl (t)−

∫ 2π

0

ρ (t, θ)

(
cos θ
sin θ

)
dθ

]
+O

(
ε2
)
.

Thus we have:
ũnucl (t) =

1

πR2
nucl

(∫
∂N0

P̃ (t,x)ndσ

+
δR0 (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

[
πx̃nucl (t)−

∫ 2π

0

ρ (t, θ)

(
cos θ
sin θ

)
dθ

])
.

Using the fact that c0 satisfies eq. (7.10d) and c satisfies eq. (7.1g), we deduce that inΩ0\N0:
∂tc̃ = ∆c̃.

We also have on ∂Ω0 that:
(∇c+ aucmc) · n =

(
∇c0 + ε∇c̃+ au0

cmc
0 + εau0

cmc̃+ εaũcmc
0
)
· n+O

(
ε2
)

= ε
(
∇c̃+ aũcmc

0
)
· n+O

(
ε2
)
,

which leads to the boundary condition:(
∇c̃+ aũcmc

0
)
· n = 0 on ∂Ω0.

Similarly, we obtain the boundary condition on N0:(
∇c̃+ aũnuclc

0
)
· n = 0.

The eigenvalue problem associated with eqs. (7.12) and (7.13) is given by:

−∆P̃ = 0 in Ω0 \N0,

λρ (θ) = −∂rP̃ (R0, θ) with θ ∈ (−π, π] ,

P̃ =
−γ
R2

0

(
∂2θθρ+ ρ

)
+ χcf

′
act

(
c0
)
c̃

+
δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

(x̃nucl · n− ρ) on ∂Ω0,

∇P̃ · n = −ũnucl · n on ∂N0,

λc̃ = ũnucl = ∆c̃ in Ω0 \N0,(
∇c̃− a∇P̃ c0

)
· n = 0 on ∂Ω0 ∪ ∂N0,

(7.14a)
(7.14b)

(7.14c)
(7.14d)
(7.14e)
(7.14f)
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with
λx̃nucl =

1

|N |

(∫
∂N0

P̃ (x)ndσ

+
δR0 (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

(
πx̃nucl −

∫ 2π

0

ρ (θ)

)(
cos θ
sin θ

)
dθ

)
, (7.15)

where λ ∈ C.
Step 2. Since problem (7.14) and (7.15) is radially symmetrical, we can use Fourier analysis
to study its spectra. Let λ ∈ C and let (P̃ , c̃, ρ̃, x̃nucl

) be an eigenfunction associated with λ.
In polar coordinates, for all r ∈ (Rnucl, R0) and θ ∈ (−π, π], the Fourier decomposition of P̃ is
given by:

P̃ (r, θ) =
∑
m∈N

Pcm (r) cos (mθ) +
∑
m∈N

Psm (r) sin (mθ) ,

the one of c̃ by:
c̃ (r, θ) =

∑
m∈N

ccm (r) cos (mθ) +
∑
m∈N

csm (r) sin (mθ) ,

and the one of ρ̃ by:
ρ̃ (θ) =

∑
m∈N

ρcm cos (mθ) +
∑
m∈N

ρsm sin (mθ) ,

with Ps0 = 0, cs0 = 0 and ρs0 = 0.
Thus we have: ∫

∂N0

P̃ndσ = −πRnucl

(
Pc1 (Rnucl)
Ps1 (Rnucl)

)
,

and also: ∫ 2π

0

ρ̃ (θ)

(
cos θ
sin θ

)
dθ = π

(
ρc1
ρs1

)
.

It leads to:
λx̃nucl = −R−1

nucl

(
Pc1 (Rnucl)
Ps1 (Rnucl)

)
+
δR0 (R0 (1− β)−Rnucl)

R2
nucl (R0 −Rnucl)

β+1

(
x̃nucl −

(
ρc1
ρs1

))
.

Using the independence between the cosine and sine modes and due to the the linearity
of the problem (7.14), we have that studying the spectrum of problem (7.14) is equivalent to
studying, for allm ̸= 1, the spectrum of the problem associated to each cosine and sinemode.
By symmetry, we note that, without loss of generality, we can study only the cosine modes.

As P̃ satisfies the laplacian equation (7.14a), we have that for all m ∈ N, there exists Am,
Bm, Cm andDm ∈ R such that for all r ∈ (Rnucl, R0):{

Pcm (r) = Amr
m + Cmr

−m,

Psm (r) = Bmr
m +Dmr

−m,

with B0 = C0 = D0 = 0.
Thus by linearity of the problem (7.14) and the independence of the cosine and sinemodes,

we obtain that A0 is such that:
A0 = −

(
γ

R2
0

+
δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

)
ρc0 + χcf

′
act

(
c0
)
cc0 (R0) .
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Thus the modem = 0 satisfies:
λρc0 = 0,

λcc0 (r) =

(
∂2rr +

1

r
∂r

)
cc0 (r) r ∈ (Rnucl, R0) ,

∂rcc0 (r) = 0 r ∈ {Rnucl, R0} .

(P0)

As P̃ satisfies the boundary conditions eqs. (7.14b) to (7.14d), we deduce that A1, C1 and
ρc1 satisfy:

λρc1 = −
(
A1 − C1R

−2
0

)
,

A1R0 + C1R
−1
0 = χcf

′
act

(
c0
)
cc1 (R0) +

δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

(x̃nucl − ρc1) ,

− C1R
−2
nucl = C1R

−2
nucl −

δR0 (R0 (1− β)−Rnucl)

R2
nucl (R0 −Rnucl)

β+1
(x̃nucl − ρc1) .

Thus we deduce that:

A1 =
χcf

′
act

(
c0
)
cc1 (R0)

R0
+
δ (R0 (1− β)−Rnucl)

2R0 (R0 −Rnucl)
β+1

(x̃nucl − ρc1) ,

C1 =
δR0 (R0 (1− β)−Rnucl)

2 (R0 −Rnucl)
β+1

(x̃nucl − ρc1) ,

λρc1 = −
χcf

′
act

(
c0
)
cc1 (R0)

R0
.

It follows that:
λx̃nucl = −

χcf
′
act

(
c0
)
c (R0)

R0
+
δπ
(
R2

0 −R2
nucl

)
(R0 (1− β)−Rnucl)

2R0R2
nucl (R0 −Rnucl)

β+1
(x̃nucl − ρc1) .

For the remaining part of the demonstration, we introduce the following notation:
K =

δ
(
R2

0 −R2
nucl

)
(R0 (1− β)−Rnucl)

2R0R2
nucl (R0 −Rnucl)

β+1
. (7.16)

We note thatK < 0.
Thus the modem = 1 satisfies:

λρc1 = −
χcf

′
act

(
c0
)
cc1 (R0)

R0
,

λcc1 =

(
∂2rr +

1

r
∂r −

1

r2

)
cc1 r ∈ (Rnucl, R0) ,

∂rcc1 (R0)− ac0∂rPc1 (R0) = 0,
∂rcc1 (Rnucl)− ac0∂rPc1 (Rnucl) = 0,

λx̃nucl = −
χcf

′
act

(
c0
)
c (R0)

R0
+K (x̃nucl − ρc1) ,

(P1)

with Pc1 defined for all r ∈ (Rnucl, R0) by:
Pc1 (r) =

[
χcf

′
act

(
c0
)
c (R0)

R0
+
δ (R0 (1− β)−Rnucl)

2R0 (R0 −Rnucl)
β+1

(x̃nucl − ρ)

]
r

+
δR0 (R0 (1− β)−Rnucl)

2 (R0 −Rnucl)
β+1

(x̃nucl − ρ)
1

r
. (7.17)
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Finally, whenm ≥ 2, without using the expression of Pcm we have that the modem satis-
fies:

(
∂2rr +

1

r
∂r −

m2

r2

)
Pcm = 0 r ∈ (Rnucl, R0) ,

λρcm = −∂rPcm (R0) ,

Pcm (R0) =

(
γ
(
m2 − 1

)
R2

0

− δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

)
ρcm

+χcf
′
act

(
c0
)
ccm (R0) ,

∂rPcm (Rnucl) = 0,

λccm =

(
∂2rr +

1

r
∂r −

m2

r2

)
ccm r ∈ (Rnucl, R0) ,

∂rccm (R0)− ac0∂rPcm (R0) = 0,
∂rccm (Rnucl) = 0.

(Pm)

Step 3. Here we study the eigenvalues associated to (P0). Let λ ∈ C be an eigenvalue of
(P0). There exists (ρλ, cλ) eigenfunctions satisfying (P0). If λ ̸= 0 thus ρλ = 0 and setting for all
r ∈ (Rnucl, R0) and θ ∈ (−π, π, ], c (r, θ) = cλ (r) we have that c satisfies:{

λc = ∆c in Ω0 \N0,

∇c · n = 0 on ∂Ω0 ∪ ∂N0.

We thus have:
λ

∫
Ω0\N0

|c|2 dx =

∫
Ω0\N0

∆cc̄dx = −
∫
Ω0\N0

|∇c|2 dx

and then necessary the real part of λ is negative.

Step 4. Let m ≥ 2. We demonstrate that when χc < χ∗
c then all the eigenvalues of (Pm)have negative real part. Let λ ∈ C be an eigenvalue of (Pm). There exists (Pλ, ρλ, cλ) eigen-functions satisfying (Pm). For all r ∈ (Rnucl, R0) and θ ∈ (−π, π, ], we define the function Pmby Pm (r, θ) = Pλ (r) cos (mθ), the function ρm by ρm (r, θ) = ρλ cos (mθ) and the function cmby cm (r, θ) = cλ (r) cos (mθ). As (Pλ, ρλ, cλ) satisfies (Pm), we have (Pm, ρm, cm) satisfies the

following one:

∆Pm = 0 in Ω0 \N0,

λρm = −∇Pm · n on ∂Ω0,

Pm =

(
γ
(
m2 − 1

)
R2

0

− δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

)
ρm + χcf

′
act

(
c0
)
cm on ∂Ω0,

∇Pm · n = 0 on ∂N0,

λcm = ∆cm in Ω0 \N0,(
∇cm − ac0∇Pm

)
· n = 0 on ∂Ω0,

∇cm · n = 0 on ∂N0.
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The function Qm defined by Qm = cm − ac0Pm satisfies the following problem:

∆Qm = λcm in Ω0 \N0,

∇Qm · n = 0 on ∂Ω0,

∇Qm · n = 0 on ∂N0,(
1− χc

χ∗
c

)
Pm = χcf

′
act

(
c0
)
Qm

+

(
γ
(
m2 − 1

)
R2

0

− δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

)
ρm on ∂Ω0.

Thus we have:
λ

∫
Ω0\N0

|cm|2 dx =

∫
Ω0\N0

cm∆Qm dx =

∫
Ω0\N0

(
Qm + ac0Pm

)
∆Qm dx

= −
∫
Ω0\N0

|∇Qm|2 dx− ac0
∫
Ω0\N0

∇Pm · ∇Qm dx

= −
∫
Ω0\N0

|∇Qm|2 dx− ac0
∫
∂Ω0

Qm∇Pm · n dσ.

Since:∫
∂Ω0

Qm∇Pm · n dσ

=
1

χcf ′act (c
0)

[(
1− χc

χ∗
c

)∫
∂Ω0

Pm∇Pm · n dσ

−

(
γ
(
m2 − 1

)
R2

0

− δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

)∫
∂Ω0

ρm∇Pm · ndσ

]

=
1

χcf ′act (c
0)

[(
1− χc

χ∗
c

)∫
∂Ω0

Pm∇Pm · n dσ

+λ̄

(
γ
(
m2 − 1

)
R2

0

− δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

)∫
∂Ω0

|ρm|2 dσ

]
,

we have:
λ

∫
Ω0\N0

|cm|2 dx+ λ̄ac0

(
γ
(
m2 − 1

)
R2

0

− δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

)∫
∂Ω0

|ρm|2 dσ

= −
∫
Ω0\N0

|∇Qm|2 dx− ac0

χcf ′act (c
0)

(
1− χc

χ∗
c

)∫
∂Ω0

Pm∇Pm · ndσ.

As β > 1, then −δ (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

> 0 and it follows that whenm ≥ 2 and χc < χ∗
c then

λ has a negative real part.
Step 5. Lastly, we study the eigenvalues associated with the (P1) problem. When χc > χ∗

c ,we want to exhibit an eigenvalue of (P1) with a positive real part. Conversely, when χc < χ∗
c ,we want to show that all the eigenvalues of (P1) have negative real parts. To do this, we firstcharacterise the eigenfunctions associated with the eigenvalue λ (see lemma 7.2.6). Secondly,
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we derive an explicit condition on the eigenvalues of (P1) (see lemma 7.2.7), which allows us to
exhibit a positive real part eigenvalue when χc > χ∗

c (see lemma 7.2.8) and to give a graphical
argument on the fact that all the eigenvalues of (P1) are negative real part when χc < χ∗

c .
Lemma 7.2.6. Let λ ∈ C. The eigenfunctions of eq. (P1) associated with the eigenvalue λ ∈ C are
given by: c (r)ρ

xnucl

 =

βλJ1
(
−iλ

1
2 r
)
+ γλY1

(
−iλ

1
2 r
)

ρ̂λ
x̂nucl,λ

 , (7.18)

where r ∈ (Rnucl, R0), J1 and Y1 denote respectively the Bessel function of the first kind of order 1
and that of the second kind of order 1 and (βλ, γλ, ρ̂λ, x̂nucl,λ) ∈ C4 solution of:

− iλ
1
2

(
βλJ

′
1

(
−iλ

1
2R0

)
+ γλY

′
1

(
−iλ

1
2R0

))
=
aχcc

0f ′act
(
c0
)

R0

(
βλJ1

(
−iλ

1
2R0

)
+ γλY1

(
−iλ

1
2R0

))
, (7.19)

− iλ
1
2

(
βλJ

′
1

(
−iλ

1
2Rnucl

)
+ γλY

′
1

(
−iλ

1
2Rnucl

))
=
aχcc

0f ′act
(
c0
)

R0

(
βλJ1

(
−iλ

1
2R0

)
+ γλY1

(
−iλ

1
2R0

))
− ac0

δ
(
R2

0 −R2
nucl

)
π (R0 (1− β)−Rnucl)

2R0 (R0 −Rnucl)
β+1

(x̂nucl,λ − ρ̂λ) (7.20)
and

λ (x̂nucl,λ − ρ̂λ) = K (x̂nucl,λ − ρ̂λ) , (7.21)
whereK is defined by eq. (7.16).
Proof. From the first line and the last line of eq. (P1), we deduce that:

ρ = ρ̂λ ∈ C and xnucl = x̂nucl,λ ∈ C

satisfy
λ (xnucl,λ − ρλ) = K (xnucl,λ − ρλ) .

From the definition of the Bessel functions, there exists βλ and γλ ∈ C such that the
solutions c of eq. (P1) are given, for all r ∈ (Rnucl, R0), by:

c (r) = βλJ1

(
−iλ

1
2 r
)
+ γλY1

(
−iλ

1
2 r
)
.

Since
∂rc (r) = −iλ

1
2

(
βλJ

′
1

(
−iλ

1
2 r
)
+ γλY

′
1

(
−iλ

1
2 r
))

,

the boundary conditions read eq. (7.19) and eq. (7.20).
Lemma 7.2.7. Let λ ∈ C be an eigenvalue of eq. (P1). Then either

λ = K
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or λ is such that G1 (λ) = 0 with G1 defined for all z ∈ C by:

G1 (z) = z
(
J ′
1

(
−iz

1
2R0

)
Y ′
1

(
−iz

1
2Rnucl

)
− J ′

1

(
−iz

1
2Rnucl

)
Y ′
1

(
−iz

1
2R0

))
+

iz
1
2 aχcc

0f ′act
(
c0
)

R0

[
J1

(
−iz

1
2R0

)
Y ′
1

(
−iz

1
2R0

)
− J ′

1

(
−iz

1
2R0

)
Y1

(
−iz

1
2R0

)
+J ′

1

(
−iz

1
2Rnucl

)
Y1

(
−iz

1
2R0

)
− J1

(
−iz

1
2R0

)
Y ′
1

(
−iz

1
2Rnucl

)]
.

Proof. Let λ ∈ C be an eigenvalue of eq. (P1). Then by lemma 7.2.6, λ is associate with an
eigenfunction (c, ρ, xnucl) of the form (7.18). In particular it satisfies eq. (7.21). Then either we
have

xnucl − ρ ̸= 0 and λ = K,

or
xnucl − ρ = 0 and λ ̸= 0

with λ such that
− iλ

1
2

(
βλJ

′
1

(
−iλ

1
2R0

)
+ γλY

′
1

(
−iλ

1
2R0

))
=
aχcc

0f ′act
(
c0
)

R0

(
βλJ1

(
−iλ

1
2R0

)
+ γλY1

(
−iλ

1
2R0

))
,

− iλ
1
2

(
βλJ

′
1

(
−iλ

1
2Rnucl

)
+ γλY

′
1

(
−iλ

1
2Rnucl

))
=
aχcc

0f ′act
(
c0
)

R0

(
βλJ1

(
−iλ

1
2R0

)
+ γλY1

(
−iλ

1
2R0

))
.

Combining these two conditions leads to the condition G1 (λ) = 0.
Lemma 7.2.8. If χc > χ∗

c , then the eigenvalue problem defined by eq. (P1) admits an eigenvalue
with a positive real part.

Proof. Let λ ∈ C be an eigenvalue of the problem defined by eq. (P1). From lemma 7.2.7, we
have that either λ = K or λ is such thatG1 (λ) = 0. SinceK < 0 and we are looking to exhibit
an eigenvalue with a positive real part, we assume λ ̸= K and thus λ such that G1 (λ) = 0.
We perform the expansion ofG1 around 0. Using the properties of the Bessel functions, for λ
close to zero, we have:
J1

(
−iλ

1
2R0

)
=

−iλ
1
2R0

2
+ o (λ) ,

J ′
1

(
−iλ

1
2R0

)
=

1

2
+

3R2
0λ

16
+ o (λ) ,

Y1

(
−iλ

1
2R0

)
=

−2i

πλ
1
2R0

+
i (1− 2γ)λ

1
2R0

2π
+

2

π
J1

(
−iλ

1
2R0

)
log

(
−iλ

1
2R0

2

)
+ o (λ) ,

Y ′
1

(
−iλ

1
2R0

)
=

−2

λR2
0π

+
1 + 2γ

2π
− λR2

0 (11− 12γ)

32π
+

2

π
J ′
1

(
−iλ

1
2R0

)
log

(
−iλ

1
2R0

2

)
+ o (λ) ,
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where γ denotes the Euler’s constant. Thus for λ close to zero, we have:
G1 (λ) =

(
1− aχcc

0f ′act
(
c0
))( 1

R2
0π

− 1

R2
nuclπ

)
+

3
(
R4

nucl −R4
0

)
8πR2

0R
2
nucl

λ− aχcc
0f ′act

(
c0
) 3 (R2

0 −R2
nucl

)
8πR2

0

λ

+
aχcc

0f ′act
(
c0
)
− 1

2π
ln

(
R0

Rnucl

)
λ+ o (λ) ,

= g (λ) + o (λ) .

The function g admits λ1 ∈ R as root with λ1 defined by:
λ1 = −

(
1− aχcc

0f ′act
(
c0
)) (

1
R2

0π
− 1

R2
nuclπ

)
3(R4

nucl−R4
0)

8πR2
0R

2
nucl

− aχcc0f ′act (c
0)

3(R2
0−R2

nucl)
8πR2

0
+

aχcc0f ′
act(c

0)−1
2π ln

(
R0

Rnucl

) .
With the definition of χ∗

c given by eq. (7.11), we have:(
1− aχcc

0f ′act
(
c0
))( 1

R2
0π

− 1

R2
nuclπ

)
> 0 ⇐⇒ χc > χ∗

c .

We also have:
3
(
R4

nucl −R4
0

)
8πR2

0R
2
nucl

− aχcc
0f ′act

(
c0
) 3 (R2

0 −R2
nucl

)
8πR2

0

+
aχcc

0f ′act
(
c0
)
− 1

2π
ln

(
R0

Rnucl

)
< 0

⇐⇒

aχcc
0f ′act

(
c0
)
<

3
(
R4

0 −R4
nucl

)
+ 4R2

0R
2
nucl ln

(
R0

Rnucl

)
R2

nucl

(
3 (R2

nucl −R2
0) + 4R2

0 ln
(

R0

Rnucl

))
and 3

(
R2

nucl −R2
0

)
+ 4R2

0 ln

(
R0

Rnucl

)
> 0

]
or 3 (R2

nucl −R2
0

)
+ 4R2

0 ln

(
R0

Rnucl

)
< 0.

Moreover, if 3 (R2
nucl −R2

0

)
+4R2

0 ln
(

R0

Rnucl

)
> 0, then 3

(
R4

0 −R4
nucl

)
+ 4R2

0R
2
nucl ln

(
R0

Rnucl

)
R2

nucl

(
3 (R2

nucl −R2
0) + 4R2

0 ln
(

R0

Rnucl

)) >
1. Thus λ1 changes sign from negative to positive as χc exceeds χ∗

c . We can note that when χcclose to χ∗
c then λ1 approximates well a root of G1 and that we have:

λ1 =
(
aχcc

0f ′act
(
c0
)
− 1
) 8

(
R2

0 −R2
nucl

)
3aχcc0f ′act (c

0) (R4
0 +R2

0R
2
nucl − 2R4

nucl)
+ o

(∣∣aχcc
0f ′act

(
c0
)
− 1
∣∣) .

This eigenvalue is associated with the non-trivial eigenfunction:c (r)ρ
xnucl

 =

βλ1J1

(
−iλ

1
2
1 r
)
+ γλ1Y1

(
−iλ

1
2
1 r
)

0
0

 ,

with
βλ1 =

(
iλ

1
2
1 Y

′
1

(
−iλ

1
2
1 R0

)
+
aχcc

0f ′act
(
c0
)

R0
Y1

(
−iλ

1
2
1 R0

))
,

γλ1
= −

(
iλ

1
2
1 J

′
1

(
−iλ

1
2
1 R0

)
+
aχcc

0f ′act
(
c0
)

R0
J1

(
−iλ

1
2
1 R0

))
.

229



To conclude the proof of the theorem, we need to show that when χc < χ∗
c all the eigen-values associated to (P1) have negative real part. We give only a graphical illustration here. For

several values ofR0, Rnucl and χc

χ∗
c

, we represent the functionG1 by representing its real part,
its imaginary part and its modulus (see fig. 7.1 for an example). We then observe that the root
of G1 with the largest real part seems to be a real root of G1, which is confirmed by studying
the imaginary part of G1. Indeed, we notice that if λ ∈ R then G1 (λ) ∈ R.
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y
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Representation of G1 when R0 = 1, Rnucl = 0.3 and c
*
c

= 0.8

Figure 7.1: Representation of G1 in the complex framework for R0 = 1, Rnucl = 0.3 and
χc

χ∗
c

= 0.8. Plots of the real part (left), the imaginary part (middle) and the modulus (right) of the

function G1 for λ = x + iy ∈ C with x, y ∈ [−40, 40]. We observe that the root of G1 with the
greatest real part is a real root.

We can therefore restrict the graphical study of G1 to the graphical study of G1 when
λ ∈ R. For R0 and Rnucl fixed and for different values of χc

χ∗
c

, we plotG1 as a function of λ ∈ R

(see fig. 7.2). This allows us to observe the largest real root of G1 and we notice that when
χc < χ∗

c then this one is negative.
Remark 7.2.9. If for the forces fBN and fNB we choose expressions eqs. (7.4) and (7.5), the result of
the theorem 7.2.4 is still valid. Indeed, the proof is the same with−k =

δπR0 (R0 (1− β)−Rnucl)

(R0 −Rnucl)
β+1

.

It suffices to note that the centre of mass of the perturbed domain is given for all t ≥ 0 by:

x̃cm (t) =
1

π

∫ π

−π

ρ (t, θ)

(
cos θ
sin θ

)
dθ.

Using the Fourier decomposition of ρ, we then have:

x̃cm (t) =

(
ρc1 (t)
ρs1 (t)

)
.
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Figure 7.2: Graphs of λ 7→ G1 (λ) for λ ∈ R when R0 = 1 and Rnucl = 0.3 for different
values of χc

χ∗
c
= aχcc

0f ′
(
c0
)
. Each curve corresponds to a different value of χc. The solid yellow-

orange curves correspond to the case where χc < χ∗
c , the dashed blue curves correspond to the

case where χc > χ∗
c and the dark dashdotted curve corresponds to the case where χc = 1χ∗

c . The
grey dotted lines are the lines of equation λ = 0 and y = 0. In the case where χc < χ∗

c we notice
that G1 seems to admit no positive root.

7.3 . Finite element scheme

In this section, we write a finite element scheme of the model eq. (7.1) in order to be able
to run some simulations of our model. This scheme will be implement in FreeFem ++ (Hecht,
2012). First, using a semi-implicit Euler scheme, the prolem eq. (7.1) is discretized in time. The
curvature is discretised implicitly (Lavi et al., 2023). Secondly, the discrete problem on the fluid
velocity and pressure is decomposed in three problem in order to separate the boundary
conditions. Third we write the variational formulation of the discrete problem. Finally, using
a Uzawa algorithm (Lefebvre, 2007) or a force the velocities are corrected to avoid potential
contacts between the nucleus and the cell boundary.

7.3.1 . Time discretization

We discretize in time our model eq. (7.1). Let∆t be the time step. For i ∈ {0, . . . , Nf} with
Nf ∈ N, we denote ti = i∆t, ui = u

(
ti, ·
), P i = P

(
ti, ·
) and ci = c

(
ti, ·
). We also denote

Ωi = Ω
(
ti
) and N i = N

(
ti
), f iNB and f iBN the discrete forces between the nucleus and the

cell boundary. We will use an implicit treatment of the curvature (Lavi, 2019). Let H̃i+1 be an
approximation of the vector curvature of ∂Ωi+1 expressed back in ∂Ωi.
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The implicit-curvature discretization of eq. (7.1) is given by:

ui+1 +∇P i+1 = 0 in Ωi\N i,

div
(
ui+1

)
= 0 in Ωi\N i,

P i+1n = γH̃i+1 + χcfact
(
ci
)
n− f iNB n on ∂Ωi,

ui+1 · n = ui+1
nucl · n on ∂N i,

ui+1
nucl =

1

ξnucl |N i|

(∫
∂Ni

P i+1ndσ + f iBN

)
,

(7.22a)
(7.22b)
(7.22c)
(7.22d)
(7.22e)

and 
ci+1 − ci

∆t
= div

(
∇ci+1 − (1− a)ui+1ci+1

) in Ωi\N i,(
∇ci+1 + aui+1ci+1

)
· n = 0 on ∂Ωi ∪ ∂N i,

(7.23a)
(7.23b)

with {
Ωi+1 =

(
Id+∆tui+1

) (
Ωi
)
,

N i+1 =
(
Id+∆tui+1

) (
N i
)
.

(7.24a)
(7.24b)

Let φi+1 = Id+∆tui+1. We denote ti and ti+1 the tangent vectors of respectively ∂Ωi and
∂Ωi+1. Let Ti+1 be the tangent vector of ∂Ωi+1 pulled back on ∂Ωi. We have:

Ti+1 = ti+1 ◦ φi+1 =

(
I +∆t∇ui+1

)
ti

|(I +∆t∇ui+1) ti|
. (7.25)

Let Ni+1 be the normal vector of ∂Ωi+1 pulled back on ∂Ωi then we have Ni+1 =
(
Ti+1

)⊥
and we have (Lavi et al., 2023):

H̃i+1 = −
(
ti · ∇

)
Ti+1. (7.26)

Note that the discretization chosen separates the resolution of the fluid velocity and pres-
sure at the current time from the marker concentration at the current time.

7.3.2 . Decomposition of the fluid problem
We focus on the fluid velocity and pressure problem defined by eq. (7.22). We decompose

it in three independent problems to separate the boundary conditions on ∂Ωi and ∂N i. We
define as follows the three problems:

u1 +∇P1 = 0 in Ωi\N i,

div (u1) = 0 in Ωi\N i,

P1n = γH̃i+1 + χcfact
(
ci
)
− f iNB on ∂Ωi,

u1 = 0 on ∂N i,

(7.27a)
(7.27b)
(7.27c)
(7.27d)


−∆P2 = 0 in Ωi\N i,

P2 = 0 on ∂Ωi,

∇P2 = ex on ∂N i,

(7.28a)
(7.28b)
(7.28c)
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
−∆P3 = 0 in Ωi\N i,

P3 = 0 on ∂Ωi,

∇P3 = ey on ∂N i,

(7.29a)
(7.29b)
(7.29c)

where ex = (1, 0) and ey = (0, 1). We set u2 = −∇P2 and u3 = −∇P3.
Lemma 7.3.1. If (u1, P1), P2 and P3 are respectively solutions of eqs. (7.27) to (7.29) then there
exists (µ1, µ2, µ3) ∈ R3 such that P = µ1P1 + µ2P2 + µ3P3 and u = µ1u1 + µ2u2 + µ3u3 are
solution of eq. (7.22).
Proof. Let P x

j =
∫
∂Ni Pjnx dσ and P y

j =
∫
∂Ni Pjny dσ for j ∈ {1, 2, 3}. Finding µ1, µ2 ans µ3satisfying the lemma is equivalent to solve a linear problem. A solution is given by:



µ1 = 1,

µ2 =
ξnucl

∣∣N i
∣∣ (P x

1 + fxBN) + ((P x
1 + fxBN)P

y
3 − P x

3 (P y
1 + fyBN))

−ξ2nucl |N i|2 − ξnucl |N i| (P x
2 + P y

3 ) + (P x
3 P

y
2 − P x

2 P
y
3 )

,

µ3 =
ξnucl

∣∣N i
∣∣ (P y

1 + fyBN) + (P x
2 (P y

1 + fyBN)− (P x
1 + fxBN)P

y
2 )

−ξ2nucl |N i|2 − ξnucl |N i| (P x
2 + P y

3 ) + (P x
3 P

y
2 − P x

2 P
y
3 )

.

(7.30a)
(7.30b)
(7.30c)

7.3.3 . Spatial discretization
Wediscretize in space our time-discretemodel eqs. (7.22) to (7.24). We use a finite element

discretization. Let T be a triangulation of Ωi\N i. For all triangleK ∈ T we note (λK1 , λK2 , λK3 )the barycentric coordinate functions of K. First we define the functional spaces needed. Let
Pk be the set of polynomials of R2 of degrees less or equal k. Let Hu be the functional space
define by:

Hu =
{
v ∈ H1

(
Ωi\N i

)
| ∀K ∈ T , v K ∈ P1 ⊕ Span

{
λK1 , λ

K
2 , λ

K
3

}}
and letHu,0 be the functional space define by:

Hu,0 =
{
v ∈ Hu| v = 0 on ∂N i a.e.

}
.

LetHP be the functional space define by:
HP =

{
Q ∈ H1

(
Ωi\N i

)
| ∀K ∈ T , Q K ∈ P1

}
and letHP,0 be the functional space define by:

HP,0 =
{
Q ∈ HP | Q = 0 on ∂Ωi a.e.

}
.

7.3.3.1 . Variational formulation of the fluid problem
Instead of writing the variational formulation of eq. (7.22), we use the decomposition result

and write the variational formulation of the three independent problems eq. (7.27)-eq. (7.28)-
eq. (7.29).
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The variational formulation of eq. (7.27) is given by:

Find (u1, P1) ∈ H2
u,0 ×HP such that for all v ∈ H2

u,0 and Q ∈ HP , we have :∫
Ωi\Ni

u1 · v dx−
∫
Ωi\Ni

P1 div (v) dx+

∫
∂Ωi

γH̃i+1 · v dσ

+

∫
∂Ωi

χcfact
(
ci
)
v · ndσ −

∫
∂Ωi

f iNB v · ndσ = 0,∫
Ωi\Ni

Qdiv (u1) dx = 0.

(7.31)

The variational formulation of eq. (7.28) is given by:
Find P2 ∈ HP,0 such that for all Q ∈ HP,0, we have:∫
Ωi\Ni

∇P2 · ∇Qdx−
∫
∂Ni

Qnx dσ = 0. (7.32)
The variational formulation of eq. (7.29) is given by:

Find P3 ∈ HP,0 such that for all Q ∈ HP,0, we have:∫
Ωi\Ni

∇P3 · ∇Qdx−
∫
∂Ni

Qny dσ = 0. (7.33)

7.3.3.2 . Implicit treatment of the curvature
The challenging point to solve the problem defined by eq. (7.31) is to compute H̃i+1. We

note ui+1 = u1+µ2u2+µ3u3 where u1 is solution of eq. (7.31), u2 of eq. (7.32), u3 of eq. (7.33)and µ2 and µ3 given by eq. (7.30). Denoting F the perimeter of the domain in the deformed
configuration, we have:

F
(
ui+1

)
= P

(
φi+1(Ωi)

)
=

∫
∂Ωi

∣∣(I +∆t∇ui+1
)
ti
∣∣dσ.

Assuming u2 and u3 given, we see F as a function of u1. We note it G and we have:
G (u1) =

∫
∂Ωi

∣∣(I +∆t∇ (u1 + µ2u2 + µ3u3)) t
i
∣∣dσ = F

(
ui+1

)
.

Using a Taylor expansion to the order 2, we have that for all v ∈ H1
(
Ωi\Bi

)2:
G′ (u1) (v) = ∆t

∫
∂Ωi

∇v ti ·Ti+1dσ = ∆t

∫
∂Ωi

H̃i+1 · v dσ

and we also have that for all v,w ∈ H1
(
Ωi\Bi

)2:
G′′ (u1) (v,w) = ∆t2

∫
∂Ωi

(
∇v ti ·Ni+1

)
·
(
∇wti ·Ni+1

)
|(I +∆t∇ (u1 + µ2u2 + µ3u3)) ti|

dσ.

We also remark that:
G (u1) ≤ G (u1) + ∆t

∫
∂Ωi

∇v ti ·Ti+1 dσ +
∆t2

2

∫
∂Ωi

(
∇v ti

)
·
(
∇v ti

)
|(I +∆t∇ (u1 + µ2u2 + µ3u3)) ti|

dσ

and we denote G̃ (u) (v,w) = ∆t2
∫
∂Ωi

(
∇v ti

)
·
(
∇wti

)
|(I +∆t∇ (u+ µ2u2 + µ3u3)) ti|

dσ.
Thus, we use a Newton like method to approximate the solutions of eq. (7.31). We want

to construct a sequence of functions (uk
1 , P

k
1

)
k
such that this sequence converges to (u1, P1).This sequence of functions is constructed as follows:
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1. Let u0
1 = 0 and P 0

1 = 0.
2. While ∣∣uk+1

1 − uk
1

∣∣ > η with η > 0 a small threshold, do:
(a) Compute µ2 and µ3 associate to P k

1 , P2 and P3 using the expression of eq. (7.30).
(b) Solve the following variational problem:

Find (uk+1
1 , P k+1

1 ) ∈ H2
u,0 ×HP s.t. for all v ∈ H2

u,0 and Q ∈ HP :∫
Ωi\Ni

uk+1
1 · v dx−

∫
Ωi\Ni

P k+1
1 div (v) dx+

∫
Ωi\Ni

Qdiv
(
uk+1
1

)
dx

+
γ

∆t
G′ (uk

1

)
(v) +

γ

∆t
G̃
(
uk
1

) (
uk+1
1 − uk

1 ,v
)

+

∫
∂Ωi

χcfact
(
ci
)
v · n dσ −

∫
∂Ωi

f iNB v · n dσ = 0.

(7.34)

3. Set (u1, P1) =
(
uk+1
1 , P k+1

1

).
We assume our method to converge.

We can remark that in a certain sense the variational problemdefined by eq. (7.31) is equiv-
alent to the following minimization problem:

J (u1) = min
v∈V (Ωi\Ni)

J (v)

where
J (v) =

1

2

∫
Ωi\Ni

|v|2 dx+
γ

∆t
G (v) + χc

∫
∂Ωi

fact
(
ci
)
v · ndσ −

∫
∂Ωi

f iNBv · n dσ

and
V
(
Ωi\N i

)
=
{
v ∈ H1

(
Ωi\N i

)2 such that div (v) = 0 and ∇× u = 0 in Ωi\N i a.e.
}
.

7.3.3.3 . Discretization of the concentration problem
At each step of the numerical simulations, the mesh is propagating with the velocity umeshwhich satisfies: 

∆umesh = 0 in Ωi\N i,

umesh = ui+1 on ∂Ωi,

umesh = ui+1
nucl on ∂N i.

(7.35a)
(7.35b)
(7.35c)

Thus the mesh propagation induces advection at velocity umesh of the markers concentration.
Taking it into account leads tomodify the discrete concentration problem eq. (7.23) as follows:

ci+1 − ci

∆t
+ (1− a)ui+1 · ∇ci+1 − umesh · ∇ci+1 −∆ci+1 = 0 in Ωi\N i,(

∇ci+1 + aci+1ui+1
)
· n = 0 on ∂Ωi ∪ ∂N i.

(7.36a)
(7.36b)

The variational formulation of eq. (7.36) is given by:
Find ci+1 ∈ Hc such that for all ψ ∈ Hc, we have:∫
Ωi\Ni

(
ci+1 − ci

∆t

)
ψ dx+

∫
Ωi\Ni

div (umesh) c
i+1ψ dx

−
∫
Ωi\Ni

(
(1− a)ui+1ci+1 − umeshc

i+1 −∇ci+1
)
· ∇ψ dx = 0,

(7.37)

whereHc =
{
ψ ∈ H1

(
Ωi\N i

)
| ∀K ∈ T , ψ K ∈ P1 ⊕ Span

{
λK1 , λ

K
2 , λ

K
3

}}.
235



7.3.3.4 . Numerical schemewithout taking care of the potential contacts be-
tween cell boundary and nucleus

The numerical scheme to solve the problem eq. (7.1) without taking care of the potential
contacts between cell boundary and nucleus is given by the following algorithm:
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Algorithm 7.1 : Time iteration of the numerical scheme obtained after time discretizationand space discretization with a finite element method and an implicit curvature treat-ment.
1. Compute ui+1 and P i+1 using ci and the decomposition method:

(a) Solve the following variational formulation to compute P2 and deduce from it
u2 = −∇P2:

Find P2 ∈ HP,0 such that for all Q ∈ HP,0, we have:∫
Ωi\Ni

∇P2 · ∇Qdx−
∫
∂Ni

Qnx dσ = 0.

(b) Solve the following variational formulation to compute P3 and deduce from it
u3 = −∇P3:

Find P3 ∈ HP,0 such that for all Q ∈ HP,0, we have:∫
Ωi\Ni

∇P3 · ∇Qdx−
∫
∂Ni

Qny dσ = 0.

(c) Using the Newton like method, compute u1 and P1.
i. Set u0

1 = 0 and P 0
1 = 0.

ii. While ∣∣uk+1
1 − uk

1

∣∣ > η, compute µ2 and µ3 associate to P k
1 , P2 and P3 usingthe expression of eq. (7.30) and solve the following variational problem:

Find (uk+1
1 , P k+1

1 ) ∈ H2
u,0 ×HP s.t. for all v ∈ H2

u,0 and Q ∈ HP :∫
Ωi\Ni

uk+1
1 · v dx−

∫
Ωi\Ni

P k+1
1 div (v) dx+

∫
Ωi\Ni

Qdiv
(
uk+1
1

)
dx

+
γ

∆t
G′ (uk

1

)
(v) +

γ

∆t
G̃
(
uk
1

) (
uk+1
1 − uk

1 ,v
)

+

∫
∂Ωi

χcfact
(
ci
)
v · ndσ −

∫
∂Ωi

f iNB v · ndσ = 0.

iii. Set (u1, P1) =
(
uk+1
1 , P k+1

1

).
(d) Compute µ2 and µ3 associate to P1, P2 and P3 using the expression of eq. (7.30)and deduce ui+1 = u1 + µ2u2 + µ3u3 and P i+1 = P1 + µ2P2 + µ3P3.

2. Computation of the nucleus velocity: ui+1
nucl =

1

ξnucl |N i|

(∫
∂Ni

P i+1ndσ + f iBN

)
.

3. Computation of the mesh velocity umesh.
4. Computation of the markers concentration ci+1 using ui+1 and umesh by solving thefollowing variational formulation:

Find ci+1 ∈ Hc such that for all ψ ∈ Hc, we have:∫
Ωi\Ni

(
ci+1 − ci

∆t

)
ψ dx+

∫
Ωi\Ni

div (umesh) c
i+1ψ dx

−
∫
Ωi\Ni

(
(1− a)ui+1ci+1 − umeshc

i+1 −∇ci+1
)
· ∇ψ dx = 0.

5. Update of the domain:
Ωi+1 = (Id+∆tumesh)

(
Ωi
)
,

N i+1 = (Id+∆tumesh)
(
N i
)
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7.3.4 . Contact between cell boundary and nucleus: utilization of a Uzawa algo-
rithm

Numerically, there may be contact between the nucleus and the cell boundary. To avoid
them, we use a contact algorithm based on a Uzawa algorithm. By projecting the fluid velocity
and the nucleus velocity on an well suited space, the velocities are corrected (Lefebvre, 2007).

7.3.4.1 . Notations
In this subsection, we introduce the notations needed for the Uzawa algorithm. We fix

the time and we assume to be at time ti with i ∈ {0, . . . , Nf}. We recall that we assume the
nucleus to be circular and we denote by xnucl ∈ Ωi the position of the nucleus center and
Rnucl > 0 the nucleus radius such that N i = B (xnucl, Rnucl) ⊂ Ωi.

We cover ∂Ωi with Np ∈ N circular particles. We call them βj where j ∈ {1, . . . , N}. For
all j ∈ {1, . . . , N}, we assume there exists xj ∈ ∂Ωi and rj > 0 such that when we denote
βj = B(xj , rj) we have ∂Ωi ⊂

Np⋃
j=1

βj . We noteX =
(
xnucl,x1, . . . ,xNp

) the vector with all the
particles’ positions.

The distance between the nucleus and the boundary particle j is defined by:
Dj(X) = |xnucl − xj | −Rnucl − rj .

The gradient Gj of this distanceDj is defined as follow:
Gj(X) = (ej(X), 0, . . . , 0,−ej(X), 0, . . . , 0)

where ej(X) =
xnucl − xj

|xnucl − xj |
.

These notations are summerized in Figure 7.3.
For all j ∈ {1, . . . , Np}, let vj =

1

πr2j

∫
βj∩Ωi

ui+1 dx be the velocity of the boundary particle
j. LetV be the vector with all the particle velocities:

V =
(
ui+1
nucl,v1,v2, . . . ,vNp

)
.

We remark thatV depends only of ui+1
nucl and ui+1. Let g be the function:

g : R2 ×H1
(
Ωi\N i

)2 −→ R2(Np+1)

(υ,u) 7−→

(
υ,

1

πr21

∫
β1∩Ωi

udx, . . . ,
1

πr2Np

∫
βNp∩Ωi

u dx

)

such thatV = g
(
ui+1
nucl,u

i+1
).

7.3.4.2 . Uzawa algorithm
Wewant to find an admissible velocity space for the nucleus velocity and the fluid velocity.

This space will be the space of the velocities ensuring that the nucleus is inside the cell and
not in contact with the cell boundary. Thus for all j ∈ {1, . . . , Np}, we want to have:

Dj(X+∆tV) ≥ 0.

This condition means that at the next time the nucleus is always inside the cell at least at a
distance min

j∈{1,...,Np}
rj from the cell boundary.
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Figure 7.3: Notations for the Uzawa algorithm.

By linearizing this condition, we have:
Dj(X) + ∆tGj(X) ·V ≥ 0

and thus we deduce that an admissible velocity space is given by:
K(X) =

{
(υ,u) ∈ R2 ×H1

(
Ωi\N i

)2 such that
∀j ∈ {1, . . . , Np} , Dj(X) + ∆tGj(X) · g (υ,u) ≥ 0

}
.

We want ensure that (ui+1
nucl,u

i+1
)
∈ K (X). To do it, we project the a priori velocities

(computed without taking care of the potential contact) in the admissible velocity spaceK (X).
We deduce the corrected velocities.

Let (ui+ 1
2

nucl ,u
i+ 1

2

) be the a priori velocities of the nucleus and the fluid. Thus we search(
ui+1
nucl,u

i+1
) such that:
∣∣∣(ui+1

nucl,u
i+1
)
−
(
u
i+ 1

2

nucl ,u
i+ 1

2

)∣∣∣2 = min
(υ,v)∈K(X)

∣∣∣(υ,v)− (ui+ 1
2

nucl ,u
i+ 1

2

)∣∣∣2 . (7.38)

From the appendix A of Lefebvre (2007), we know that if (ui+1
nucl,u

i+1, λ
)
∈ R2×H1

(
Ωi\N i

)2×
RNp is solution of the following problem (7.39) then (ui+1

nucl,u
i+1
) is a solution of the minimiza-

tion problem (7.38).
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

(
ui+1
nucl,u

i+1
)
+

1

2
∆t

Np∑
j=1

(
−λjej(X), λj

1{x∈βj}

πr2j
ej(X)

)
=
(
u
i+ 1

2

nucl ,u
i+ 1

2

)
,

−∆t

(
ej(X) · ui+1

nucl − ej(X) ·
∫
βj∩Ωi

ui+1

πr2j
dx

)
≤ Dj (X) ,

λj ·

(
−∆tej(X) · ui+1

nucl +∆tej(X) ·
∫
βj∩Ωi

ui+1

πr2j
dx+Dj(X)

)
= 0,

(7.39a)

(7.39b)

(7.39c)

for all j ∈ {1, . . . , Np}.
To solve eq. (7.39) and find the corrected velocities ui+1

nucl and ui+1, we use the following
Uzawa algorithm:
Algorithm 7.2 : Uzawa algorithm to correct the nucleus velocity and the fluid velocityin order to avoid contact between cell boundary and nucleus.
Assume u

i+ 1
2

nucl and ui+ 1
2 given.

1. Let υ0 ∈ R2 and v0 ∈ H1
(
Ωi\N i

)2.Let λ0 ∈ RNp .Let η > 0 small and ρ > 0 a projection step.
2. While ∣∣(υk+1,vk+1

)
−
(
υk,vk

)∣∣ > η or ∣∣λk+1 − λk
∣∣ > η do:

(a) υk+1 = u
i+ 1

2

nucl +
1

2
∆t

Np∑
j=1

λkj ej(X).

(b) vk+1 = ui+ 1
2 − 1

2
∆t

Np∑
j=1

λkj ej(X)
1{x∈βj}

πr2j
.

(c) λk+1
j =∏
R+

[
λkj + ρ

(
−∆t ej(X) · υk+1 +∆t ej(X) ·

∫
βj∩Ωi

uk+1

πr2j
dx−Dj(X)

)]
.

3. Update of nucleus and fluid velocities:
ui+1
nucl = υk+1

and
ui+1 = vk+1.

7.3.5 . Numerical scheme

Finally, a time iteration of the numerical scheme to run simulations of the model eq. (7.1)
is given by:
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Algorithm 7.3 : Time iteration of the numerical scheme obtained after time discretizationand space discretization with a finite element method and an implicit curvature treat-ment, with an Uzawa algorithm to manage potential contacts between the cell boundaryand the nucleus.
1. Compute the a priori velocity ui+ 1

2 and the pressure P i+1 using the decompositionmethod:
(a) Compute P2 and u2 by solving a variational formulation.
(b) Compute P3 and u3 by solving a variational formulation.
(c) Compute P1 and u1 using the Newton like method and solving variationalformulations.
(d) Compute µ2 and µ3 associate to P1, P2 and P3 using the expression of Equationeq. (7.30) and deduce ui+ 1

2 = u1 + µ2u2 + µ3u3 and P i+1 = P1 + µ2P2 + µ3P3.
(See Algorithm 7.1 for more details)

2. Computation of the a priori nucleus velocity:
u
i+ 1

2

nucl =
1

ξnucl |N i|

(∫
∂Ni

P i+1ndσ + f iBN

)
.

3. If the distance between the cell boundary and the nucleus is small then projection of
the a priori velocities ui+ 1

2

nucl and ui+ 1
2 in an admissible space via a Uzawa algorithm tocompute the corrected velocities ui+1
nucl and ui+1 (see Algorithm 7.2 for more details),

else ui+1
nucl = u

i+ 1
2

nucl and ui+1 = ui+ 1
2 .

4. Computation of the mesh velocity umesh.
5. Computation of the markers concentration ci+1 by solving a variational formulation(see Algorithm 7.1 for more details).
6. Update of the domain: computation of Ωi+1 and N i+1.
One drawback of this numerical scheme 7.3, which uses an Uzawa algorithm to manage

potential contacts between the cell boundary and the nucleus, is that it does not preserve
the symmetry of the problem (7.1). If the initial data is symmetrical about an axis, then this
symmetry is preserved over time. For this property to be preserved numerically, at each time
iteration the mesh must be symmetrical with respect to this axis and also the balls covering
the boundary of the cell used for the Uzawa algorithm must be arranged symmetrically. This
is restrictive and we choose another approach to manage potential contacts between the cell
boundary and the nucleus using a repulsion force.

7.3.6 . Contact between cell boundary and nucleus: utilization of a repulsion
force

Based on a repulsive force, we present another way of avoiding potential contact between
the cell boundary and the nucleus. We assume that the interaction between the cell bound-
ary and the nucleus when they are close induces a force on both the nucleus and the cell
boundary.

Let f bcont (xB) and fncont (xN ) be the force induced by the interaction between the cell
boundary and the nucleus at the point xB ∈ ∂Ω and the point xN ∈ ∂N , respectively. We
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have:

f bcont (xB) =

(∫
∂N

λ1d(xB ,x̃)<r0

(
e−

d(xB,x̃)
r1 − e−

r0
r1

)
ndσ

)
· n,

and

fncont (xN ) =

(∫
∂Ω

λ1d(xN ,x̃)<r0

(
e−

d(xN,x̃)
r1 − e−

r0
r1

)
n dσ

)
· n,

with λ > 0, r0 > 0, r1 > 0, and for all x, x̃ ∈ R2, d (x, x̃) the euclidean distance between x and
x̃. We could say that the cell boundary perceives the nucleus as an obstacle and the nucleus
perceives the cell boundary as an obstacle (see section 1.3.5.4).

This modifies the model by changing the boundary condition on the pressure (7.1d) and
velocity of the nucleus (7.1e) as follows:

P = γκ+ χcfact (c)− fNB − f bcont on ∂Ω (t) ,

and

unucl (t) =
1

ξnucl |N |

(∫
∂N(t)

P (t,x)n dσ + fBN + fncont

)
,

with fncont =
∫
∂N

fncont (x)n dσ.
Let f b,icont and fn,icont be an approximation of the forces f bcont and fncont at time ti. The discrete

boundary condition (7.22c) is then given by:

P i+1n = γH̃i+1 + χcfact
(
ci
)
n− f iNB n− f b,icont n on ∂Ωi.

The discrete nucleus velocity (7.22e) is given by:

ui+1
nucl =

1

ξnucl |N i|

(∫
∂Ni

P i+1ndσ + f iBN + fn,icont

)
.

Following exactly the same procedure as the one described in sections 7.3.2 and 7.3.3,
we obtain that with this repulsive force to take care of the potential contact between the cell
boundary and the nucleus, the numerical scheme to solve the problem eq. (7.1) is given by the
following algorithm:

242



Algorithm 7.4 : Time iteration of the numerical scheme obtained after time discretizationand space discretizationwith a finite elementmethod and an implicit curvature treatmentwith a repulsive force to prevent potential contact between the cell boundary and thenucleus.
1. Compute ui+1 and P i+1 using ci and the decomposition method:

(a) Solve the following variational formulation to compute P2 and deduce from it
u2 = −∇P2:

Find P2 ∈ HP,0 such that for all Q ∈ HP,0, we have:∫
Ωi\Ni

∇P2 · ∇Qdx−
∫
∂Ni

Qnx dσ = 0.

(b) Solve the following variational formulation to compute P3 and deduce from it
u3 = −∇P3:

Find P3 ∈ HP,0 such that for all Q ∈ HP,0, we have:∫
Ωi\Ni

∇P3 · ∇Qdx−
∫
∂Ni

Qny dσ = 0.

(c) Using the Newton like method, compute u1 and P1.
i. Set u0

1 = 0 and P 0
1 = 0.

ii. While ∣∣uk+1
1 − uk

1

∣∣ > η, compute µ2 and µ3 associate to P k
1 , P2 and P3 usingthe expression of eq. (7.30) and solve the following variational problem:

Find (uk+1
1 , P k+1

1 ) ∈ H2
u,0 ×HP s.t. for all v ∈ H2

u,0 and Q ∈ HP :∫
Ωi\Ni

uk+1
1 · v dx−

∫
Ωi\Ni

P k+1
1 div (v) dx+

∫
Ωi\Ni

Qdiv
(
uk+1
1

)
dx

+
γ

∆t
G′ (uk

1

)
(v) +

γ

∆t
G̃
(
uk
1

) (
uk+1
1 − uk

1 ,v
)

+

∫
∂Ωi

χcfact
(
ci
)
v · ndσ −

∫
∂Ωi

f iNB v · ndσ

−
∫
∂Ωi f

b,i
cont v · n dσ = 0.

iii. Set (u1, P1) =
(
uk+1
1 , P k+1

1

).
(d) Compute µ2 and µ3 associate to P1, P2 and P3 using the expression of eq. (7.30)and deduce ui+1 = u1 + µ2u2 + µ3u3 and P i+1 = P1 + µ2P2 + µ3P3.

2. Computation of the nucleus velocity: ui+1
nucl =

1

ξnucl |N i|

(∫
∂Ni

P i+1n dσ + f iBN + fn,icont

)
.

3. Computation of the mesh velocity umesh.
4. Computation of the markers concentration ci+1 using ui+1 and umesh by solving thefollowing variational formulation:

Find ci+1 ∈ Hc such that for all ψ ∈ Hc, we have:∫
Ωi\Ni

(
ci+1 − ci

∆t

)
ψ dx+

∫
Ωi\Ni

div (umesh) c
i+1ψ dx

−
∫
Ωi\Ni

(
(1− a)ui+1ci+1 − umeshc

i+1 −∇ci+1
)
· ∇ψ dx = 0.

5. Update of the domain:
Ωi+1 = (Id+∆tumesh)

(
Ωi
) and N i+1 = (Id+∆tumesh)

(
N i
)243



7.4 . Numerical results

7.4.1 . Illustration of the action of the restoring force on the nucleus
In this section, we illustrate the action of the forces induced by the nucleus on the cell

boundary and the cell boundary on the nucleus. We aim to illustrate that the force induced
by the boundary on the nucleus brings the nucleus back towards the centre of the cell. To do
this, we consider the model without coupling with the markers concentration, i.e. with χc = 0.

Figure 7.4: Illustration of the nucleus dynamic without coupling with the markers con-
centration and surface tension. On the left is the time evolution of the nucleus position in the
cell frame of reference. The cell frame of reference is centered on the cell centre of mass. We then
observe that after a certain time, the position of the nucleus coincides with that of the cell’s centre
of mass. On the right is the time evolution of the cell’s centre of mass velocity norm. We observe
that is constant and equal to zero.
The results presented here are obtained with the parameters ∆t = 0.00005, Rnucl = 0.3, xin

nucl =
(0.4; 0.2), β = 1.5, δ = 0.141372 and ξnucl = 1. See fig. 7.5 for the initial cell domain.

We then observe that the nucleus indeed returns to the centre of the cell. We also observe
the action of the force induced by the cell boundary, which deforms the initial shape of the
cell domain into a disk. We can note that the surface tension has also this effect on the cell
domain.

244



Figure 7.5: Illustration of the time evolution of the domain without coupling with the
markers concentration and surface tension. On the left is the initial cell domain. On the right
is cell domain at time t = 10. We observe that at the final time the cell domain is a disk. The pink
lines indicate the axes and the point (0, 0).
The results presented here are obtained with the parameters ∆t = 0.00005, Rnucl = 0.3, xin

nucl =
(0.4; 0.2), β = 1.5, δ = 0.141372 and ξnucl = 1.

7.4.2 . Illustration of the theorem 7.2.4
In this section, we check that the numerical schemeproposed in algorithm7.4 is consistent

with the mathematical study of the model. We therefore check that we recover the stationary
state (7.10) as well as the result on the stability of the latter stated in theorem 7.2.4.

First, we check that the model captures the stationary state. To this aim, we choose as
initial condition the stationary state. The initial geometry of the cell is given by Ωin = B (0, R0)and N in = B (0, Rnucl) with R0 > Rnucl > 0 and the initial marker concentration is given
by cin (x) =

M

|Ωin \N in|
. As illustrated in fig. 7.6, the numerical scheme captures well the

stationary state. The velocity remains zero over time, and the position of the nucleus and the
geometry of the cell remain unchanged over time.

We check that the numerical scheme gives results in accordance with theorem 6.2.2. We
therefore study the linear stability of the stationary state numerically. To do this, we choose
a perturbation of the stationary state as the initial condition and observe, depending on the
value of χc, whether the system returns to the stationary state.

The chosen stationary state perturbation is given by:
cin (x) = K (1 +X (x))11+X(x)>0 (7.40)

where for all x ∈ Ω \N we haveX (x) ∼ N (0, 1) andK such that ∫
Ω\N cin (x) dx =M .

As illustrated in fig. 7.7 for the case where R0 = 1 and Rnucl = 0.4, we correctly find the
criterion on the linear stablity of the stationary state. Indeed, when χc < χ∗

c , we have thatthe norm of the velocity decreases very quickly towards 0 then is constant equal to 0. This
illustrates that when χc < χ∗

c the stationary state is stable. Also, when χc > χ∗
c , we observethat the norm increases rapidly towards a strictly positive value and then becomes constant.

This suggests that when χc > χ∗
c there are stable travelling waves.
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Figure 7.6: Example of capturing the stationary state using the numerical scheme. The
curve on the left represents the evolution of the velocity norm of the cell’s centre of mass over time.
We observe that this remains zero throughout the study interval [0, 10]. The curves on the right
represent the evolution of the coordinates of the nucleus position over time. The nucleus position
is preserved over the study interval.
The results presented here are obtained with the parameters ∆t = 0.00005, R0 = 1, Rnucl = 0.4,
xin
nucl = (0; 0), M = π, a = 1, cin =

M

|Ω \N |
, γ = 1, χc = 0.5 , fact (c) = c(1+cs)

2

cs(c+cs)
with cs =

0.5,β = 1.5, δ = 0.141372 and ξnucl = 1.

Figure 7.7: Numerical illustration of theorem 7.2.4. Each curve represents the evolution of the
cell’s centre of mass velocity norm of a cell for different values of χc (see legend on the right). When
χc < χ∗

c the norm of the velocity decreases very rapidly towards 0 (dashdotted curves in overlapping
shades of orange), whereas when χc > χ∗

c it increases rapidly towards a non-zero value (dashed
curves in shades of blue) . The critical case χc = χ∗

c is also represented (dark curve), here the norm
of the velocity is close to zero and decreases.
The results presented here are obtained with the parameters ∆t = 0.00005, R0 = 1, Rnucl = 0.4,
xin
nucl = (0; 0),M = π, a = 1, γ = 1, cin given by eq. (7.40) andχ∗

c given by (7.11), fact (c) = c(1+cs)
2

cs(c+cs)

with cs = 0.5, β = 1.5, δ = 0.141372 and ξnucl = 1.
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7.4.3 . Capture of travelling waves
The numerical illustration of theorem 7.2.4 on the stability of the stationary state suggests

that when χc > χ∗
c , the model admits progressive waves which are captured by the numerical

scheme. We verify and illustrate this in this section.
As a remainder, a travelling wave is characterised by the cell moving at a given velocity.

The geometry of the cell and the distribution of the marker concentration in the cell reference
frame are conserved over time.

First, we plot the trajectories associated with the χc = χ∗
c + 0.1, χc = χ∗

c + 0.3 and χc =

χ∗
c +0.5 cases in the fig. 7.7. Each cell maintains its orientation over time, which, coupled with

the fact that the norm of the velocity is constant, leads to a travelling wave (see fig. 7.8).

Figure 7.8: Trajectories associatedwith the cells in fig. 6.7 in the casewhere χc > χ∗
c . Each

curve represents the trajectory of one of the cells studied in figure 3. Only those where χc > χ∗
c are

represented, keeping the same colour coding (see legend on the right). We can therefore see that
here the cells do not change orientation over time.
The results presented here are obtained with the parameters ∆t = 0.00005, R0 = 1, Rnucl = 0.4,
xin
nucl = (0; 0),M = π, a = 1, γ = 1, cin given by eq. (7.40), χ∗

c given by (7.11), fact (c) = c(1+cs)
2

cs(c+cs)

with cs = 0.5, β = 1.5, δ = 0.141372 and ξnucl = 1.

It remains to be verified that, when the velocity of the travelling wave is reached, the shape
of the cell and the distribution of the markers within the cell are unchanged. To this end, we
represent the cell at different times. We can see that initially the cell polarises, the nucleus
moves to the area that will be the rear and the concentration ofmarkers increases in this area.
Then, once polarised, the cell maintains its shape and the distribution of the concentration
of markers inside (see figs. 7.9 to 7.11). What we see is a travelling wave. We can see that,
depending on the parameters, the shape of the cell, although similar, is different.

These observations are very interesting because they are in accordance with biological
observations. They clearly show that the model allows us to reproduce in a qualitative way
the polarisation and cell migration phenomena. Indeed, the numerical results in the figs. 7.9
to 7.11 highlight that, for a range of parameters, a perturbation in the stationary distribution
of markers leads to cell polarisation and movement in a travelling wave regime.
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The initial condition models a reorganization in the cytoskeleton. The cell geometry is
symmetric, and the homogeneous distribution of markers is perturbed, leading to cell po-
larisation. Initially, the cell geometry is few altered, and the quantity of markers in the area
that will become the rear of the cell increases, this can correspond to the slow rear retraction
phase. Then, the geometry changes, defining the front and rear of the cell. It is challenging to
assert that the model captures the fast rear retraction phase. Nevertheless, the nucleus and
the rear edge of the cell move in the same direction, which will be the direction of the cell,
and the rear edge of the cell moves faster than the nucleus. This results in the nucleus being
positioned at the rear of the cell when it becomes polarised. Until the cell starts moving at a
constant speed, the quantity of markers continues to increase at the cell rear. There are few
markers at the cell leading edge. Since the markers are rear markers, they can model an in-
hibitor of actin polymerisation. The absence of markers in an area thus models a zone where
actin is polymerised. This indicates that we indeed observe actin polymerisation at the front
and the creation of the lamellipodium, which corresponds to the maturation phase. Thus the
model reproduces well the polarisation phenomenon.

By considering that the four steps of the cell migration cycle occur simultaneously, obtain-
ing a travelling wave indicates that the model accurately reproduces the phenomenon of cell
migration.
Conclusion and perspectives. The proposed model and the numerical simulations per-
formed allow us to qualitatively reproduce the phenomenon of polarisation and cell migra-
tion. In future work, we aim to define the travelling waves solutions of the model and study
their existence. By continuing this study, we aim to characterise the long-term behaviour of
the model. Finally, we hope to establish a bifurcation result from the stationary state to a
traveling wave when χc becomes greater than χ∗

c .Another perspective is to pursue the numerical study of the model to highlight the influ-
ence of each parameter on the model and the trajectory obtained. We also yearn to numeri-
cally study the heuristic approach concerning the forces acting between the nucleus and the
edge of the cell and compare the results obtained via this heuristic with those presented here.
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Figure 7.9: Illustration of the convergence to a travelling wave when χ = χ∗
c + 0.1. Snap-

shots of the cell are shown at time t ∈ {0, 1, 2, . . . , 9, 10}. We can see that for t < 6, the cell
polarises: the nucleus is placed at the rear of the cell and the concentration of markers increases
in this zone. Then, when t ≥ 6, the travelling wave velocity is reached (see fig. 7.7 ) and we observe
that the shape of the cell no longer changes, the position of the nucleus in the cell reference frame
is fixed as is the distribution of the marker concentration. The cell retains its polarisation.
The snapshots corresponds to the case χc = χ∗

c+0.1 of the fig. 7.7. The red area represents the area
with high markers concentration whereas the dark blue area represents the area with low markers
concentration. For ease of reading, the travelling wave is represented along the axis defined by its
direction. The two lines are normally aligned.
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Figure 7.10: Illustration of the convergence to a travelling wave when χ = χ∗
c + 0.3. Snap-

shots of the cell are shown at time t ∈ {0, 1, 2, . . . , 9, 10}. We can see that for t < 4, the cell
polarises: the nucleus is placed at the rear of the cell and the concentration of markers increases
in this zone. Then, when t ≥ 4, the travelling wave velocity is reached (see fig. 7.7 ) and we observe
that the shape of the cell no longer changes, the position of the nucleus in the cell reference frame
is fixed as is the distribution of the marker concentration. The cell retains its polarisation.
The snapshots corresponds to the case χc = χ∗

c+0.3 of the fig. 7.7. The red area represents the area
with high markers concentration whereas the dark blue area represents the area with low markers
concentration. For ease of reading, the travelling wave is represented along the axis defined by its
direction. The two lines are normally aligned.

250



Figure 7.11: Illustration of the convergence to a travelling wave when χ = χ∗
c + 0.5. Snap-

shots of the cell are shown at time t ∈ {0, 1, 2, . . . , 9, 10}. We can see that for t ≤ 2, the cell
polarises: the nucleus is placed at the rear of the cell and the concentration of markers increases
in this zone. Then, when t ≥ 3, the travelling wave velocity is reached (see fig. 7.7 ) and we observe
that the shape of the cell no longer changes, the position of the nucleus in the cell reference frame
is fixed as is the distribution of the marker concentration. The cell retains its polarisation.
The snapshots corresponds to the case χc = χ∗

c+0.5 of the fig. 7.7. The red area represents the area
with high markers concentration whereas the dark blue area represents the area with low markers
concentration. For ease of reading, the travelling wave is represented along the axis defined by its
direction. The two lines are normally aligned.
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8 - A 1 dimensional model of cell motility taking into account
the nucleus

In this chapter, in collaboration with Thomas Lepoutre and Nicolas Meunier, we present
a heuristic model of cell motility that includes the nucleus. The modelling of this model is in-
spired by the approach taken in chapter 1. The aimof thismodel is to highlight the properties of
the nucleus and its impact on cell motility. We derive a one-dimensional model from the two-
dimensional modelling. We study this one-dimensional model and proof that it is well-posed.
The one-dimensional model considered is a non-local, non-linear Fokker-Planck equation. We
then examine its stationary states. Finally, we write a finite volume numerical scheme for the
model, which, once implemented in Python, allows for a numerical study of the model. The
model reproduces behaviours consistent with the biological context. We emphasize that the
model captures intermittent trajectories.

8.1 . Modelling

In this section, we aim to develop a model of cell motility that includes the nucleus in
dimension 1. This model is derived from a two-dimensional model obtained through a heuris-
tic approach. We simplify the nucleus to a point and model its influence on the cell and its
boundary by acting on the markers attached to the boundary. Although different, the ideas
of modelling are similar to the modelling approach taken in chapter 1.

8.1.1 . Model in dimension 2
Let Ω (t) be a subset of R2 which models the cell. We assume the cell to be filled by a

fluid with velocity u and pressure P that models the cytoskeleton. Let XN (t) ∈ Ω (t) be the
position of the nucleus at time t ≥ 0.

We assume that the cell contains some markers of concentration c. These markers are
polarity markers. We assume them to be rear markers. This means that the rear part of the
cell is defines as the part with the most markers. We assume the markers to be transported
by the fluid and to diffuse inside the cell. Thus for t > 0 and x ∈ Ω (t), we have:

∂tc (t,x) = ∆c (t,x)− (1− a) div [u (t,x) c (t,x)] (8.1)
with 0 ≤ a ≤ 1.

We also assume these markers can attach and detach to the membrane. Let µ (t,x) be
the concentration of markers at the point x ∈ ∂Ω (t) at time t > 0. The rate of attachment
to the membrane at the point x ∈ ∂Ω (t) depends on the position of the nucleus. We denote
α (XN ,x) this rate. We assume that the closer x and XN are the smaller α (XN ,x) is. We
also assume that there exists A > ε > 0 such that for all x ∈ ∂Ω (t) and XN ∈ Ω (t), ε ≤
α (XN ,x) ≤ A. We do this assumption in order to model the fact that the nucleus acts on
the cell boundary. The rate of detachment of the membrane is constant over ∂Ω (t) and we
denote it β. Thus for t > 0 and x ∈ ∂Ω (t), the dynamic of the markers concentration at the
membrane is given by:

∂tµ (t,x) = α (XN (t) ,x) c (t,x)− βµ (t,x) . (8.2)
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We also assume the total quantity of markers to be constant in time. Thus we impose:∫
Ω(t)

c (t,x) dx+

∫
∂Ω(t)

µ (t,x) dσ =M

withM independent of the time. The following border condition ensures it:
[∇c (t,x) + au (t,x) c (t,x)] · n = −∂tµ (t,x) , x ∈ ∂Ω (t) , t > 0. (8.3)

We want to write the problem for the fluid velocity and pressure. As in Lavi et al. (2020), we
assume there is a coupling between the fluid and the marker concentration and the markers
to be rear markers. Thus we have:

u+∇P = 0 in Ω (t) ,

div (u) = 0 in Ω (t) ,

P = γκ+ χcfact (µ) on ∂Ω (t) ,

Vn = u · n on ∂Ω (t) .

(8.4a)
(8.4b)
(8.4c)
(8.4d)

To ensure the assumption of rear markers we assume that fact is such that f ′act (µ0) = 1 with
µ0 the markers concentration at the membrane associated to the mean planar concentration
steady state.

Finally, we write the dynamics on XN . We assume the nucleus to rubs against the sub-
strate, that the fluid acts on it and that the cytoskeleton imposes a restoring force to its equi-
librium positionXeq. We assume to haveXeq = Xcm the position of the center of mass. Thus
with the force balance, we have for all t > 0:

d

dt
XN (t) = −kr (XN (t)−Xeq (t))− kfu (t,XN (t)) (8.5)

with kr > 0 and kf > 0.
Thus, combining eqs. (8.1) to (8.5), the model in dimension 2 is given by:

u+∇P = 0 in Ω (t) ,

div (u) = 0 in Ω (t) ,

P = γκ+ χcfact (µ) on ∂Ω (t) ,

Vn = u · n on ∂Ω (t) ,

∂tc (t,x) = ∆c (t,x)− (1− a) div [u (t,x) c (t,x)] in Ω (t) ,

[∇c (t,x) + au (t,x) c (t,x)] · n = −∂tµ (t,x) on ∂Ω (t) ,

∂tµ (t,x) = α (XN (t) ,x) c (t,x)− βµ (t,x) on ∂Ω (t) ,

d

dt
XN (t) = −kr (XN (t)−Xeq (t))− kfu (t,XN (t)) ,

c (0,x) = c0 (x) , µ± (0,x) = µ0
± (x) , XN (0) = X0

N , x ∈ ∂Ω (0) ,

(8.6a)
(8.6b)
(8.6c)
(8.6d)
(8.6e)
(8.6f)
(8.6g)
(8.6h)
(8.6i)

with c0, µ0
± andX0

N given.
8.1.2 . Model in dimension 1

We want to write an analogous problem in dimension 1 to the model (8.6). We keep the
notations of the previous section. The cell is modeled by a segment [b− (t) , b+ (t)]. The incom-
pressibility constraint impose that the length of the cell domain b+ (t) − b− (t) is constant in
time. We assume to have [b− (0) , b+ (0)] = [−1, 1]. Thus for all t > 0, we have b+ (t)−b− (t) = 2.
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We set µ− (t) = µ (b− (t)), µ+ (t) = µ (b+ (t)) and δµ (t) = µ− (t)− µ+ (t). We also denote
α+ (XN (t)) = α (XN (t) , b+ (t)) and α− (XN (t)) = α (XN (t) , b− (t)).

Moreover, we assume there exists 0 < d < 1 such that α+ is a continuous non increasing
function such that for x < b+ (t) − d, α+ (x) = A and for x > b+ (t), α+ (x) = ε. On the
contrary, we assume α− to be a continuous non decreasing function such that for x < b− (t),
α− (x) = ε and for x > b− (t) + d, α− (x) = A. We also assume that the dynamic at the two
cell border is the same, then for all x ∈ [b− (t) , b+ (t)] α− (x) = α+ (b+ (t) + b− (t)− x). We
assume α+ and α− to be Lipschitz functions. An example of such functions is given in fig. 8.1.

Figure 8.1: Examples of the functions α+ and α−.

In dimension 1, the problem on the fluid writes as:

u+ ∂xP = 0 in ]b− (t) , b+ (t)[ ,

∂xu = 0 in ]b− (t) , b+ (t)[ ,

P = χcfact (µ) on {b− (t) , b+ (t)} ,
db−
dt

=
db+
dt

= u.

(8.7a)
(8.7b)
(8.7c)
(8.7d)

From eq. (8.7b), there exists a function K1 depending only of the time such that for all x ∈
[b− (t) , b+ (t)] and t > 0:

u (t, x) = K1 (t) .

Thus from it and eq. (8.7c), there exists a functionK2 depending only of the time such that for
all x ∈ [b− (t) , b+ (t)] and t > 0:

P (t, x) = −K1 (t)x+K2 (t) .

Thus we deduce from eq. (8.7c), that for all t > 0 and x ∈ [b− (t) , b+ (t)]:
u (t, x) =

χcfact (µ− (t))− χcfact (µ+ (t))

b+ (t)− b− (t)
.

Assuming that fact (µ) = µ, we have for all t > 0 and x ∈ [b− (t) , b+ (t)]:
u (t, x) =

χc

2
δµ (t) .

Then in dimension 1, the problem on the concentration of markers is given by:
∂tc (t, x) = ∂2xxc (t, x)− (1− a) ∂x

[χc

2
δµ (t) c (t, x)

]
x ∈ ]b− (t) , b+ (t)[ ,

∂xc (t, b+ (t)) +
aχc

2
δµ (t) c (t, b+ (t)) = − d

dt
µ+ (t) ,

∂xc (t, b− (t)) +
aχc

2
δµ (t) c (t, b− (t)) =

d

dt
µ− (t) ,

d

dt
µ± (t) = α± (XN (t)) c (t, x)− βµ± (t) x ∈ {b− (t) , b+ (t)} .
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Thus, by setting η =
aχc

2
, we have in the frame of reference of the cell:

∂tc (t, x) = ∂2xxc (t, x) + ∂x [η δµ (t) c (t, x)] x ∈ ]−1, 1[ ,

∂xc (t,±1) + η δµ (t) c (t,±1) = ∓ d

dt
µ± (t) ,

d

dt
µ± (t) = α± (XN (t)) c (t,±1)− βµ± (t) .

Finally, in the frame of reference of the substrate, the dynamic on the nucleus position
writes:

d

dt
XN (t) = −k1

(
XN (t)− b+ (t)− b− (t)

2

)
− k2δµ (t) ,

with k1 = kr and k2 =
χc

2
kf . Then, in the frame of reference of the cell, the dynamic on the

nucleus writes:
d

dt
XN (t) = −k1XN (t)− k2δµ (t) .

We can solve it explicitly and we have:
XN (t) = XN (0) e−k1t − k2

∫ t

0

δµ (s) ek1(s−t) ds.

Finally the model studied in dimension 1 is the following:


∂tc (t, x) = ∂2xxc (t, x) + ∂x [η δµ (t) c (t, x)] , x ∈ ]−1, 1[ ,

∂xc (t,±1) + η δµ (t) c (t,±1) = ∓ d

dt
µ± (t) ,

d

dt
µ± (t) = α± (XN (t)) c (t,±1)− βµ± (t) ,

XN (t) = X0
Ne

−k1t − k2

∫ t

0

δµ (s) ek1(s−t) ds,

c (0, x) = c0 (x) , µ± (0) = µ0
±, XN (0) = X0

N , x ∈ ]−1, 1[ ,

(8.8a)
(8.8b)
(8.8c)
(8.8d)
(8.8e)

with c0, µ0
± andX0

N given.

8.2 . Well-posedness of the model

In this section we prove the following result.
Proposition 8.2.1. Assume that c0 is such that

∫ 1

−1
c0 (x) log c0 (x) dx < +∞. Assume moreover

that µ0
+, µ

0
− ∈ [0,M ] are such that

∫ 1

−1
c0 (x) dx+µ0

++µ0
− =M . Assume also thatX0

N ∈ [−1, 1].
Then there exists a unique solution (c, µ+, µ−, XN ) to the problem (8.8) for all time.

To prove proposition 8.2.1, as in Lepoutre andMeunier (2022), we will first study an uncou-
pled model associate to (8.8) and then use a fixed point argument. We use ideas similar to
those in chapter 2.
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8.2.1 . An uncoupled PDE
First, we study the following uncoupled PDE system where µ+, µ− and v are given and for

all t > 0, α± (t) = α± (XN (t)) withXN given:

∂tc (t, x) = ∂2xxc (t, x) + ∂x [v (t) c (t, x)] x ∈ [−1, 1]

∂xc (t, 1) + v (t) c (t, 1) = − (α+ (t) c (t, 1)− βµ+ (t))

∂xc (t,−1) + v (t) c (t,−1) = α− (t) c (t,−1)− βµ− (t)

c (0, x) = c0 (x) x ∈ [−1, 1]

µ± (0) = µ0
±.

(8.9a)
(8.9b)
(8.9c)
(8.9d)
(8.9e)

We assume c0, µ0
+ and µ0

− to be such that:∫ 1

−1

c0 (x) dx+ µ0
− + µ0

+ =M.

We want to prove that this problem admits a global solution.
For smooth µ+, µ−, α+, α−, v and c0, (8.9) is a parabolic problem and then there exists a

local solution c defined over [0, T ].
Lemma 8.2.2. Assume c0 ≥ 0 and for all t ≥ 0, µ± (t) ≥ 0, α± (t) ≥ 0. Let c be a solution of (8.9)
define on [0, T ]× [−1, 1]. Then c is nonnegative.

Proof. Let c be a solution of (8.9). We denote c− = min (c, 0). We want to prove that c− = 0.
Using the Stampacchia argument, we have :
1

2

d

dt
∥c− (t)∥2L2 =

∫ 1

−1

∂tc (t, x) · c− (t, x) dx

= − [α+ (t) c (t, 1)− βµ+ (t)] c− (t, 1)− [α− (t) c (t,−1)− βµ− (t)] c− (t,−1)

−
∫ 1

−1

(∂xc− (t, x))
2
+ v (t) c (t, x) ∂xc− (t, x) dx

= −α+ (t) (c− (t, 1))
2 − α− (t) (c− (t,−1))

2
+ βµ+ (t) c− (t, 1)

+ βµ− (t) c− (t,−1)− ∥∂xc− (t)∥2L2 −
∫ 1

−1

v (t) c− (t, x) ∂xc− (t, x) dx

≤ −∥∂xc− (t)∥2L2 −
∫ 1

−1

v (t) c− (t, x) ∂xc− (t, x) dx

≤ 1

4
|v (t)|2 ∥c− (t)∥2L2 .

We also have ∥c− (0)∥2L2 = 0. Using Gronwall’s lemma, we have that for all t ∈ [0, T ],
∥c− (t)∥2L2 = 0. Thus for all t ∈ [0, T ] and x ∈ [−1, 1], we have c (t, x) ≥ 0.
Lemma8.2.3. Assume that c0 ∈ L1 (−1, 1) is a positive function such that

∫ 1

−1
c0 (x) log c0 (x) dx <

+∞. Assume also that µ± ∈ C0 (R+) satisfy for all t > 0, 0 < µ0
±e

−βt ≤ µ± (t) ≤ M . Assume
moreover that v ∈ C0 (R+) ∩ L∞ (R+). Then the solution of the uncoupled system (8.9) exists
globally in L∞

loc (R+, L logL (−1, 1)) ∩ L1
loc
(
R+,W

1,1 (−1, 1)
)
.
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Proof. First, for all t ≥ 0, we have:
d

dt

∫ 1

−1

c (t, x) dx =

∫ 1

−1

∂tc (t, x) dx

= − (α+ (t) c (t, 1)− βµ+ (t))− (α− (t) c (t,−1)− βµ− (t))

≤ β (µ+ (t) + µ− (t))

≤ 2βM.

Thus, for all t ≥ 0, we have:∫ 1

−1

c (t, x) dx ≤
∫ 1

−1

c0 (x) dx+ 2βMt.

Using the convexity of the function x 7→ (α± (t)x− βµ± (t)) log x, we have that for all t ≥ 0

and x ∈ [−1, 1]:
(α± (t) c (t, x)− βµ± (t)) log c (t, x)− (α± (t)− βµ± (t)) log

(
β

α± (t)
µ± (t)

)
≥ 0.

We also have:
d

dt

∫ 1

−1

c (t, x) log c (t, x)− c (t, x) dx

=

∫ 1

−1

∂tc (t, x) log c (t, x) dx

= − (α+ (t) c (t, 1)− βµ+ (t)) log c (t, 1)− (α− (t) c (t,−1)− βµ− (t)) log c (t,−1)

−
∫ 1

−1

(c (t, x) ∂x log c (t, x) + v (t) c (t, x)) ∂x log c (t, x) dx

≤ − (α+ (t)− βµ+ (t)) log

(
β

α+ (t)
µ+ (t)

)
− (α− (t)− βµ− (t)) log

(
β

α− (t)
µ− (t)

)
−
∫ 1

−1

c (t, x) |∂x log c (t, x)|2 dx−
∫ 1

−1

c (t, x) v (t) ∂x log c (t, x) dx

≤ C1 + 2Aβt− 1

2

∫ 1

−1

c (t, x) |∂x log c (t, x)|2 dx+
1

2
|v (t)|2

∫ 1

−1

c (t, x) dx

≤ C1 + 2Aβt− 1

2

∫ 1

−1

c (t, x) |∂x log c (t, x)|2 dx

+
1

2
∥v∥2L∞

(∫ 1

−1

c0 (x) dx+ 2Mβt

)
,

(8.10)

with C1 > 0.
Then, integrating the previous inequality, we have:∫ 1

−1

c (t, x) log c (t, x) dx ≤
∫ 1

−1

c0 (x) log c0 (x) dx+ C1t+Aβt2

+
1

2
∥v∥2L∞

(
t

∫ 1

−1

c0 (x) dx+Mβt2
)

≤ C2

(
1 + t2

)
,

with C2 > 0.
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We can apply lemma 2.2.2 and we have:∫ 1

−1

c (t, x) |log c (t, x)| dx ≤ C3

(
1 + t2

)
,

with C3 > 0.
Then, integrating eq. (8.10), we also have:∫ t

0

∫ 1

−1

c (s, x) |∂x log c (s, x)|2 dxds ≤ C4

(
1 + t2

)
−
∫ 1

−1

c (t, x) log c (t, x) dx

≤ C4

(
1 + t2

)
+

∫ 1

−1

c (t, x) |log c (t, x)| dx

≤ C5

(
1 + t2

)
,

with C4 > 0 and C5 > 0.
Thus, finally, we have:∫ t

0

∫ 1

−1

|∂xc (s, x)| dxds =
∫ t

0

∫ 1

−1

c (s, x) |∂x log c (s, x)| dx ds

≤
(∫ t

0

∫ 1

−1

c (s, x) dxds

) 1
2
(∫ t

0

∫ 1

−1

c (s, x) |∂x log c (s, x)|2 dx ds

) 1
2

≤ C6

(
1 + t2

)
,

with C6 > 0 and this leads to the global existence of c.
Remark 8.2.4. This prooff generalizes the onemade in section 2.2.2 to attachment rate that depend
on time.

8.2.2 . Fixed point mapping
8.2.2.1 . Useful results

Let c1 and c2 be two solutions of (8.9)with twodifferent inputs (µ1
±, X

1
N , v

1
) and (µ2

±, X
2
N , v

2
).

We denote α1
± = α± ◦X1

N and α2
± = α± ◦X2

N . As in Lepoutre and Meunier (2022) or in sec-
tion 2.2.3 to compare these two solutions, we introduce the Gajewski metric:

dG (c1, c2) =

∫ 1

−1

h (c1) + h (c2)− 2h

(
c1 + c2

2

)
dx

where h is the following function:
h (a) = a log a− a+ 1.

We define the function∆h by:
∆h (c1, c2) = h (c1) + h (c2)− 2h

(
c1 + c2

2

)
.

We recall the following lemma from Lepoutre and Meunier (2022).
Lemma 8.2.5. For all a, b > 0 and c1, c2 positive functions, the following inequalities hold

0 ≤ 1

4

(b− a)
2

a+ b
≤ 1

4

(b− a)
2

max (a, b)
≤ ∆h (a, b) ≤

1

4

(b− a)
2

min (a, b)
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and

dG (c1, c2) ≥
1

4

(∫ 1

−1
c1 dx−

∫ 1

−1
c2 dx

)2
∫ 1

−1
c1 dx+

∫ 1

−1
c2 dx

.

We introduce the following notations cm =
c1 + c2

2
, q1 =

c1
cm

and q2 =
c2
cm

.
Lemma 8.2.6. For all a1, a2 such that 0 < ε ≤ a1, a2 ≤ A and c1, c2 positive functions, there exists
a constant C (ε,A) > 0 such that:

− [a1c1 log q1 + a2c2 log q2] ≤ −∆h (a1c1, a2c2) + C (A, ε) (a1c1 + a2c2) |a2 − a1|2 .

Proof. We introduce the following notations for i ∈ {1, 2}:
qai =

2aici
a1c1 + a2c2

,

pi =
aici

a1c1 + a2c2

and thus for j ̸= i we have:
qi
qai

=
a1c1 + a2c2
ai(c1 + c2)

=
aj

a2p1 + a1p2
,

where we recall that qi = 2ci
c1+c2

. We can also notice that p1 + p2 = 1.
We have:

a1c1 log q1 + a2c2 log q2 = a1c1

(
log qa1 + log

q1
qa1

)
+ a2c2

(
log qa2 + log

q2
qa2

)
,

= ∆h(a1c1, a2c2) + (a1c1 + a2c2) (p1 log a2 + p2 log a1 − log(a2p1 + a1p2)) .

Denoting λ = log a2 − log a1, we have:
log(a2p1 + a1p2)− p1 log a2 − p2 log a1 = log(eλp1 + p2)− p1λ.

By studying the derivative the function x 7→ log(eλx+ 1− x)− xλ we found that this function
admits a maximum in x = 1

λ − 1
eλ−1

∈ [0, 1]. Thus we have:

log(a2p1 + a1p2)− p1 log a2 − p2 log a1 ≤ log

(
eλ − 1

λ

)
− 1 +

λ

eλ − 1
.

Using a Taylor-Lagrange inequality, it follows that:
log(a2p1 + a1p2)− p1 log a2 − p2 log a1 ≤ C (A, ε) |a2 − a1|2 .

Hence the result.
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Lemma 8.2.7. There exists C (A, ε) > 0 such that for all t > 0 the following inequality hold:
d

dt
dG (c1, c2) (t) ≤ β

(
∆h

(
µ1
+ (t) , µ2

+ (t)
)
+∆h

(
µ1
− (t) , µ2

− (t)
))

−∆h

(
α1
+ (t) c1 (t, 1) , α

2
+ (t) c2 (t, 1)

)
−∆h

(
α1
− (t) c1 (t,−1) , α2

− (t) c2 (t,−1)
)

+ C (A, ε)
(
α1
+ (t) c1 (t, 1) + α2

+ (t) c2 (t, 1)
) ∣∣α2

+ (t)− α1
+ (t)

∣∣2
+ C (A, ε)

(
α1
− (t) c1 (t,−1) + α2

− (t) c2 (t,−1)
) ∣∣α2

− (t)− α1
− (t)

∣∣2
− 3

4

∫ 1

−1

c1 (t, x) |∂x log q1 (t, x)|2 + c2 (t, x) |∂x log q2 (t, x)|2 dx

+
1

2

(
v1 (t)− v2 (t)

)2 ∫ 1

−1

cm (t, x) dx.

Proof. We have
d

dt
dG (c1, c2) (t) =

∫ 1

−1

∂tc1 (t, x) log q1 (t, x) + ∂tc2 (t, x) log q2 (t, x) dx

=

2∑
i=1

β
[
µi
+ (t) log qi (t, 1) + µi

− log qi (t,−1)
]

−
[
c1 (t, 1)α

1
+ (t) log q1 (t, 1) + c2 (t, 1)α

2
+ (t) log q2 (t, 1)

]
−
[
c1 (t,−1)α1

− (t) log q1 (t,−1) + c2 (t,−1)α2
− (t) log q2 (t,−1)

]
−

2∑
i=1

∫ 1

−1

cm (t, x)
(
∂x log ci (t, x) + vi (t)

)
∂xqi (t, x) dx.

We notice that the function q 7→ µ+ log q + µ− log (2− q) reaches its maximum for the
value q∗ =

2µ+

µ+ + µ−
. Then we have:

2∑
i=1

β
[
µi
+ (t) log qi (t, 1) + µi

− log qi (t,−1)
]
≤ β

(
∆h

(
µ1
+ (t) , µ2

+ (t)
)
+∆h

(
µ1
− (t) , µ2

− (t)
))
.

We also have
−
∫ 1

−1

cm (t, x)
(
v1 (t)− v2 (t)

)
∂xq1 (t, x) dx

= −1

2

∫ 1

−1

c1 (t, x)
(
v1 (t)− v2 (t)

)
∂x log q1 (t, x) dx

+
1

2

∫ 1

−1

c2 (t, x)
(
v1 (t)− v2 (t)

)
∂x log q2 (t, x) dx

≤ 1

4

∫ 1

−1

c1 (t, x)
(
v1 (t)− v2 (t)

)2
dx+

1

4
c1 (t, x) (∂x log q1 (t, x))

2
dx

+
1

4

∫ 1

−1

c2 (t, x)
(
v1 (t)− v2 (t)

)2
dx+

1

4
c2 (t, x) (∂x log q2 (t, x))

2
dx

≤ 1

2

(
v1 (t)− v2 (t)

)2 ∫ 1

−1

cm (t, x) dx

+
1

4

∫ 1

−1

c1 (t, x) |∂x log q1 (t, x)|2 + c2 (t, x) |∂x log q2 (t, x)|2 dx
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and
c1 + c2

q1 (2− q1)
|∂xq1|2 = c1 |∂x log q1|2 + c2 |∂x log q2|2 .

Finally, using the result of lemma 8.2.6, we have the following upper bound:
−
[
c1 (t, 1)α

1
+ (t) log q1 (t, 1) + c2 (t, 1)α

2
+ (t) log q2 (t, 1)

]
−
[
c1 (t,−1)α1

− (t) log q1 (t,−1) + c2 (t,−1)α2
− (t) log q2 (t,−1)

]
≤ −∆h

(
α1
+ (t) c1 (t, 1) , α

2
+ (t) c2 (t, 1)

)
−∆h

(
α1
− (t) c1 (t,−1) , α2

− (t) c2 (t,−1)
)

+ C (A, ε)
(
α1
+ (t) c1 (t, 1) + α2

+ (t) c2 (t, 1)
) ∣∣α2

+ (t)− α1
+ (t)

∣∣2
+ C (A, ε)

(
α1
− (t) c1 (t,−1) + α2

− (t) c2 (t,−1)
) ∣∣α2

− (t)− α1
− (t)

∣∣2 .
By combining all this, the desired result is obtained.

8.2.2.2 . The fixed point mapping
For a fixed T > 0, we define the following space X

X =

{
(µ+, µ−, XN ) ∈ C (0, T ) ,∀t ∈ (0, T )
0 < µ0

±e
−βt ≤ µ± (t) ≤M and − 1 ≤ XN (t) ≤ 1

}
.

We want to study (8.9) with v (t) = η (µ− (t)− µ+ (t)). From the previous section, we know
that, with this choice of velocity, (8.9) admits a global solution.

We also define:
ν± (t) = µ0

±e
−βt +

∫ t

0

α± (XN (s)) eβ(s−t)c (s,±1) ds

and the truncation function χµ such that for all x ∈ R:

χµ (x) =

 0 if x < 0,
x if 0 ≤ x ≤M,
1 if x > M.

We define the truncation function χx such that for all x ∈ R:

χx (x) =
 −1 if x < −1,

x if − 1 ≤ x ≤ 1,
1 if x > 1.

Finally we define the mapping F by:
F : X −→ X

(µ+, µ−, XN ) 7−→ (χµ (ν+) , χµ (ν−) , χx (XN )) .

We denote by Fn the function composed n times with itself, that is Fn = F ◦ F ◦ · · · ◦ F .
We assume that the two solutions c1 and c2 obtained with different inputs (µ1

±, X
1
N , v

1
) and(

µ2
±, X

2
N , v

2
) are obtained with the same initial conditions c0, µ0

+, µ0
− andXN (0).

Proposition 8.2.8. For all
(
µ1
+, µ

1
−, X

1
N

)
,
(
µ2
+, µ

2
−, X

2
N

)
∈ X , there exists C (T ) such that:

∥∥Fn
(
µ1
+, µ

1
−, X

1
N

)
− Fn

(
µ2
+, µ

2
−, X

2
N

)∥∥
X ≤ (C (T )T )

n

n!

∥∥(µ1
+, µ

1
−, X

1
N

)
−
(
µ2
+, µ

2
−, X

2
N

)∥∥
X .
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Proof. Let (µ1
+, µ

1
−, X

1
N

), (µ2
+, µ

2
−, X

2
N

) be two elements of X . For all t > 0 and i ∈ {1, 2}, we
denote αi

± (t) = α±
(
Xi

N (t)
). We have:∥∥F (µ1

+, µ
1
−, X

1
N

)
− F

(
µ2
+, µ

2
−, X

2
N

)∥∥2
X

=

∫ T

0

(
χµ

(
ν1+ (t)

)
− χµ

(
ν2+ (t)

))2
+
(
χµ

(
ν1− (t)

)
− χµ

(
ν2− (t)

))2
+
(
χx
(
X1

N (t)
)
− χx

(
X2

N (t)
))2

dt

Integrating the inequality of lemma 8.2.7, we have:
dG (c1, c2) (t)− dG (c1, c2) (0)

≤
∫ t

0

β
(
∆h

(
µ1
+ (s) , µ2

+ (s)
)
+∆h

(
µ1
− (s) , µ2

− (s)
))

ds

−
∫ t

0

∆h

(
α1
+ (s) c1 (s, 1) , α

2
+ (s) c2 (s, 1)

)
−∆h

(
α1
− (s) c1 (s,−1) , α2

− (s) c2 (s,−1)
)
ds

+

∫ t

0

C (A, ε)
(
α1
+ (s) c1 (s, 1) + α2

+ (s) c2 (s, 1)
) ∣∣α2

+ (s)− α1
+ (s)

∣∣2 ds

+

∫ t

0

C (A, ε)
(
α1
− (s) c1 (s,−1) + α2

− (s) c2 (s,−1)
) ∣∣α2

− (s)− α1
− (s)

∣∣2 ds

− 3

4

∫ t

0

∫ 1

−1

c1 (s, x) |∂x log q1 (s, x)|2 + c2 (s, x) |∂x log q2 (s, x)|2 dxds

+
1

2

∫ t

0

(
v1 (s)− v2 (s)

)2 ∫ 1

−1

cm (s, x) dxds.

Since the initial conditions are the same, we have dG (c1, c2) (t) ≥ 0 and dG (c1, c2) (0) = 0.
It leads to:∫ t

0

∆h

(
α1
+ (s) c1 (s, 1) , α

2
+ (s) c2 (s, 1)

)
+∆h

(
α1
− (s) c1 (s,−1) , α2

− (s) c2 (s,−1)
)
ds

≤
∫ t

0

β
(
∆h

(
µ1
+ (s) , µ2

+ (s)
)
+∆h

(
µ1
− (s) , µ2

− (s)
))

ds

+

∫ t

0

C (A, ε)
(
α1
+ (s) c1 (s, 1) + α2

+ (s) c2 (s, 1)
) ∣∣α2

+ (s)− α1
+ (s)

∣∣2 ds

+

∫ t

0

C (A, ε)
(
α1
− (s) c1 (s,−1) + α2

− (s) c2 (s,−1)
) ∣∣α2

− (s)− α1
− (s)

∣∣2 ds

+
1

2

∫ t

0

(
v1 (s)− v2 (s)

)2 ∫ 1

−1

cm (s, x) dxds.

Using the result of lemma 8.2.5, we have:
∆h

(
µ1
± (s) , µ2

± (s)
)
≤ eβs

4µ0
±

(
µ1
± (s)− µ2

± (s)
)2
.

Using the border condition (8.8c), we have:
d

dt

∫ 1

−1

c1 (s, x) + c2 (s, x) dx ≤ β
(
µ1
+ (s)− µ1

− (s) + µ2
+ (s)− µ2

− (s)
)

≤ 4βM.
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This leads to:∥∥α1
± (·) c1 (·,±1) + α2

± (·) c2 (·,±1)
∥∥
L∞([0,t])

≤ sup
s∈[0,t]

∣∣∣∣β (µ1
+ (s)− µ1

− (s) + µ2
+ (s)− µ2

− (s)
)
− d

dt

∫ 1

−1

c1 (s, x) + c2 (s, x) dx

∣∣∣∣
≤ sup

s∈[0,t]

[∣∣β (µ1
+ (s)− µ1

− (s) + µ2
+ (s)− µ2

− (s)
)∣∣+ ∣∣∣∣ ddt

∫ 1

−1

c1 (s, x) + c2 (s, x) dx

∣∣∣∣]
≤ 8βM.

Thus using Hölder inequality, we have:∫ t

0

(
α1
± (s) c1 (s,±1) + α2

± (s) c2 (s,±1)
) ∣∣α2

± (s)− α1
± (s)

∣∣2 ds

≤ 8βM

∫ t

0

∣∣α1
± (s)− α2

± (s)
∣∣2 ds.

Hence:∫ t

0

∆h

(
α1
+ (s) c1 (s, 1) , α

2
+ (s) c2 (s, 1)

)
+∆h

(
α1
− (s) c1 (s,−1) , α2

− (s) c2 (s,−1)
)
ds

≤ C1 (t)

∫ t

0

(
µ1
+ (s)− µ2

+ (s)
)2

+
(
µ1
− (s)− µ2

− (s)
)2

ds

+ 8βMC (A, ε)

∫ t

0

(
α1
+ (s)− α2

+ (s)
)2

+
(
α1
− (s)− α2

− (s)
)2

ds, (8.11)
with C1 (t) = max

(
eβt

4µ0
+
, eβt

4µ0
−
, η2

∫ 1

−1
c0 (x) dx+ 2η2βMt

).
Then using a Cauchy-Schwarz inequality, we have:(∫ t

0

(
α1
± (s) c1 (s,±1)− α2

± (s) c2 (s,±1)
)
eβ(s−t) ds

)2

≤
∫ t

0

(
α1
± (s) c1 (s,±1)− α2

± (s) c2 (s,±1)
)2

α1
± (s) c1 (s,±1) + α2

± (s) c2 (s,±1)
ds ·

∫ t

0

(
α1
± (s) c1 (s,±1) + α2

± (s) c2 (s,±1)
)
e2β(s−t) ds

≤
∫ t

0

(
α1
± (s) c1 (s,±1)− α2

± (s) c2 (s,±1)
)2

α1
± (s) c1 (s,±1) + α2

± (s) c2 (s,±1)
ds ·

∫ t

0

α1
± (s) c1 (s,±1) + α2

± (s) c2 (s,±1) ds

≤ 4βMt

∫ t

0

∆h

(
α1
± (s) c1 (s,±1) , α2

± (s) c2 (s,±1)
)
ds.

Which combined with eq. (8.11) leads to:(∫ t

0

(
α1
+ (s) c1 (s, 1)− α2

+ (s) c2 (s, 1)
)
eβ(t−s) ds

)2

+

(∫ t

0

(
α1
− (s) c1 (s,−1)− α2

− (s) c2 (s,−1)
)
eβ(t−s) ds

)2

≤ C2 (t)

∫ t

0

(
µ1
+ (s)− µ2

+ (s)
)2

+
(
µ1
− (s)− µ2

− (s)
)2

ds

+ C3 (t)

∫ t

0

(
α1
+ (s)− α2

+ (s)
)2

+
(
α1
− (s)− α2

− (s)
)2

ds,

where C2 (t) = C1 (t) · 4βMt and C3 (t) = 8βMC (A, ε).
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Then we have:(
χµ

(
ν1+ (t)

)
− χµ

(
ν2+ (t)

))2
+
(
χµ

(
ν1− (t)

)
− χµ

(
ν2− (t)

))2
≤
(
ν1+ (t)− ν2+ (t)

)2
+
(
ν1− (t)− ν2− (t)

)2
≤
(∫ t

0

(
α1
+ (s) c1 (s, 1)− α2

+ (s) c2 (s, 1)
)
eβ(s−t) ds

)2

+

(∫ t

0

(
α1
− (s) c1 (s,−1)− α2

− (s) c2 (s,−1)
)
eβ(s−t) ds

)2

≤ C2 (t)

∫ t

0

(
µ1
+ (s)− µ2

+ (s)
)2

+
(
µ1
− (s)− µ2

− (s)
)2

ds

+ C3 (t)

∫ t

0

(
α1
+ (s)− α2

+ (s)
)2

+
(
α1
− (s)− α2

− (s)
)2

ds.

Using the fact that α± areK-Lipschitz functions, we have:
(
χµ

(
ν1+ (t)

)
− χµ

(
ν2+ (t)

))2
+
(
χµ

(
ν1− (t)

)
− χµ

(
ν2− (t)

))2
≤ C2 (t)

∫ t

0

(
µ1
+ (s)− µ2

+ (s)
)2

+
(
µ1
− (s)− µ2

− (s)
)2

ds

+ 2KC3 (t)

∫ t

0

(
X1

N (s)−X2
N (s)

)2
ds.

Thus we have:∥∥F (µ1
+, µ

1
−, X

1
N

)
− F

(
µ2
+, µ

2
−, X

2
N

)∥∥
X

≤ K (T )

∫ T

0

∫ t

0

(
µ1
+ (s)− µ2

+ (s)
)2

+
(
µ1
− (s)− µ2

− (s)
)2

+
(
X1

N (s)−X2
N (s)

)2
dsdt,

which leads to the result.

8.3 . Stationary solutions

In this section, we compute the stationary states of the model (8.8). To do this, we set
the time derivative to zero and solve the associated spatial ODE. We obtain that there exists
one stationary state that is not in motion. Moreover, there existsm1,m2 ∈ R such that when
M ∈ ]m1,m2] there exists two stationary solutions that are in steady motion.

For the remainder of this chapter, we introduce the following function Q defined for all
x ∈

[
−k1

k2
, k1

k2

] by:

Q (x) =


β
(
1− e−2ηx

)
+ ηx

(
α−

(
−k2

k1
x
)
+ α+

(
−k2

k1
x
)
e−2ηx

)
η
(
α−

(
−k2

k1
x
)
− α+

(
−k2

k1
x
)
e−2ηx

) if x ̸= 0,

β

Aη
+

1

η
if x = 0.
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Proposition 8.3.1. The model (8.8) admits a non-polarised stationary state given by:
cs (x) =

Mβ

2 (A+ β)
,

µs
+ = µs

− =
MA

2 (A+ β)
,

Xs
N = 0.

(8.12a)
(8.12b)
(8.12c)

In addition, if M ∈
]

β
Aη + 1

η , Q
(

k1

k2

)]
, then there exists νs ∈

]
0, k1

k2

]
such that Q (νs) = M

and the model (8.8) admits two steady motion solutions given by:

cν (x) =
βνe−ην(x+1)

α− (Xν
N )− α+ (Xν

N ) e−2ην
,

µν
+ =

α+ (Xν
N ) νe−2ην

α− (Xν
N )− α+ (Xν

N ) e−2ην
,

µν
− =

α− (Xν
N ) ν

α− (Xν
N )− α+ (Xν

N ) e−2ην
,

Xν
N = −k2

k1
ν,

(8.13a)
(8.13b)
(8.13c)
(8.13d)

with ν ∈ {νs,−νs}.

Proof. If it exists, a stationary state of the model (8.8) is solution of the following problem:

c′′ (x) + η δµ c′ (x) = 0, x ∈ ]−1, 1[ ,

c′ (±1) + η δµ c (±1) = 0,

α± (XN ) c (±1)− βµ± = 0,

XN = −k2
k1
δµ,

M =

∫ 1

−1

c (x) dx+ µ− + µ+.

(8.14a)
(8.14b)
(8.14c)
(8.14d)
(8.14e)

If δµ = 0, then XN = 0 and α± (XN ) = A. We deduce from eqs. (8.14a) and (8.14b) that
for all x ∈ [−1, 1] we have:

c (x) = c (−1) .

Thus, using eq. (8.14c) it leads to:
µ± =

Ac (−1)

β

From the mass constraint (8.14e), we deduce that
c (−1) =

Mβ

2 (β +A)
,

and then
µ± =

MA

2 (β +A)
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If δµ ̸= 0, if it exists, a solution of eq. (8.14) should be of the form:

c (x) =
β δµ e−η δµ(x+1)

α− (XN )− α+ (XN ) e−2η δµ
,

µ+ =
α+ (XN ) δµ e−2η δµ

α− (XN )− α+ (XN ) e−2η δµ
,

µ− =
α− (XN ) δµ

α− (XN )− α+ (XN ) e−2η δµ
,

M =

∫ 1

−1

c (x) dx+ µ− + µ+,

XN = −k1
k2
δµ ∈ [−1, 1]

We remark that: ∫ 1

−1

c (x) dx+ µ− + µ+ = Q (δµ) .

We also remark that Q is an even function and, graphically, we have:
x

Q

−k1

k2
0 +k1

k2

Q
(

k1

k2

)
Q
(

k1

k2

)
β
ηα + 1

η
β
ηα + 1

η

Q
(

k1

k2

)
Q
(

k1

k2

)

and the equation Q (δµ) =M admits exactly two solutions ifM ∈
]

β
ηα + 1

η , Q
(

k1

k2

)].
8.4 . Numerical study

8.4.1 . Numerical scheme

In this section, we detail the numerical scheme used to simulate the model (8.8). This
numerical scheme is obtained after a semi-implicit discretisation in time and a finite volume
approximation in space. The numerical scheme is analogous to the oneobtained in section 2.4.

Grids definition Wewant to simulate eq. (8.8) over the time interval [0, T ], where T > 0. Let
∆t > 0 be the time step. We discretize [0, T ] by the set of points {tn = n∆t, n ∈ {0, . . . , N}},
where N = ⌊ T

∆t⌋.Let J ∈ N. We discretize the space interval [−1, 1] into J + 1 intervals of the same length
∆x. We denote by (xj− 1

2

)
j∈{0,...,J+1}

a regular mesh of [−1, 1] and we set:
x− 1

2
= −1,

∆x = x 1
2
− x− 1

2
,

xj =
xj− 1

2
+ xj+ 1

2

2
= −1 +

(
j +

1

2

)
∆x j ∈ {0, . . . , J} .
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Finite volume approximation For all n ∈ {0, . . . , N} and j ∈ {0, . . . , J}, we denote cnj an
approximation of the function c at the time tn and at position xj . We set:

cnj =
1

∆x

∫
Λj

c (tn, x) dx.

Similarly, we denote by µn
+ an approximation of µ+ (tn), µn

− an approximation of µ− (tn)

andXn
N an approximation ofXN (tn). We also denote δµn = µn

− − µn
+.First, we write the semi-implicit Euler scheme in time associate to eq. (8.8). For all n ∈

{0, . . . , N − 1}, we have:

c
(
tn+1, x

)
− c (tn, x)

∆t
= ∂x

[
∂xc

(
tn+1, x

)
+ η δµnc (tn, x)

]
x ∈ [−1, 1] ,

∂xc
(
tn+1,±1

)
+ η δµnc

(
tn+1,±1

)
= ∓

µn+1
± − µn

±
∆t

,

µn+1
± − µn

±
∆t

= α± (Xn
N ) c (tn,±1)− βµn+1

± ,

Xn+1
N −Xn

N

∆t
= −k1Xn+1

N − k2 δµ
n+1.

(8.15a)
(8.15b)
(8.15c)
(8.15d)

Then integrating eq. (8.15) over Λj for j ∈ {1, . . . , J − 1} and using an upwind approxima-
tion for the transport term we get:
cn+1
j = cnj +

∆t

∆x2
[
cn+1
j+1 − 2cn+1

j + cn+1
j−1

]
+ η

∆t

∆x

[
Aup

(
δµn, cnj , c

n
j+1

)
−Aup

(
δµn, cnj−1, c

n
j

)]
,

where
Aup (v, x+, x−) =

{
vx+ if v ≥ 0,
vx− if v < 0.

For j = 0 and j = J , we also integrate eq. (8.15a) and we use the boundaries condition
(8.15b) to obtain:

cn+1
0 = cn0 +

∆t

∆x2
[
cn+1
1 − cn+1

0

]
+ η

∆t

∆x
Aup (δµn, cn0 , c

n
1 )−

1

∆x

(
µn+1
− − µn

−
)
,

cn+1
J = cnJ − ∆t

∆x2
[
cn+1
J − cn+1

J−1

]
− η

∆t

∆x
Aup

(
δµn, cnJ−1, c

n
J

)
− 1

∆x

(
µn+1
+ − µn

+

)
.

Moreover we have: 

µn+1
− =

1

1 +∆t β

(
µn
− +∆t α− (Xn

N ) cn0
)
,

µn+1
+ =

1

1 +∆t β

(
µn
+ +∆t α+ (Xn

N ) cnJ
)
,

Xn+1
N =

1

1 +∆t k1

(
Xn

N − k2∆t δµ
n+1
)
.

(8.16a)
(8.16b)
(8.16c)

Towards amatrix formulation We store the approximate value of c on [−1, 1] at time tn in
a vector Cn, with n ∈ {0, . . . , N}. We have

Cn =

c
n
0...
cnJ

 .
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We introduce the following notations. LetD be the following diffusion matrix:

D =
∆t

∆x2



−1 1 0 · · · · · · 0

1 −2 1
. . . ...

0
. . . . . . . . . . . . ...... . . . . . . . . . . . . 0... . . . . . . −2 1

0 · · · · · · 0 1 −1


.

For all n ∈ {0, . . . , N − 1}, let An be the following transport matrix:

An = η
∆t

∆x
max (δµn, 0)



1 0 · · · · · · 0
−1 1 0 · · · 0

0
. . . . . . . . . ...... . . . . . . 1 0

0 · · · 0 −1 0



+ η
∆t

∆x
min (δµn, 0)



0 1 0 · · · 0

0 −1
. . . . . . ...... . . . . . . . . . 0

0 · · · 0 −1 1
0 · · · · · · 0 −1

 .

For all n ∈ {0, . . . , N − 1}, let Bn be the following vector:

Bn =
1

∆x


µn+1
− − µn

−
0...
0

µn+1
+ − µn

+

 .

Then, in the matrix formulation, eqs. (8.15) and (8.16) rewrites:
Cn+1 = Cn +D · Cn+1 +An · Cn −Bn,

which leads to:
Cn+1 = (Id−D)

−1
(Cn +An · Cn −Bn) . (8.17)

Numerical scheme The numerical scheme to simulate eq. (8.8) is given by the following
algorithm:
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Algorithm 8.1 : Numerical scheme to simulate eq. (8.8) using a semi-implicit Euler ap-proximation in time and a finite volume approximation in space.
1. Initialisation.

• c0j =
1

∆x

∫
Λj

c0 (x) dx,
• µ0

± = µ± (0),
• X0

N = XN (0).
2. Time iteration. For n ∈ {0, . . . , N − 1}, do:

(a) Computation of µn+1
− using eq. (8.16a):
µn+1
− =

1

1 +∆t β

(
µn
− +∆t α− (Xn

N ) cn0
)
.

(b) Computation of µn+1
+ using eq. (8.16b):
µn+1
+ =

1

1 +∆t β

(
µn
+ +∆t α+ (Xn

N ) cnJ
)
.

(c) Computation ofXn+1
N using eq. (8.16c):
Xn+1

N =
1

1 +∆t k1

(
Xn

N − k2∆t δµ
n+1
)
.

(d) Computation of the matrix An and the vector Bn in order to compute Cn+1 usingeq. (8.17):
Cn+1 = (Id−D)

−1
(Cn +An · Cn −Bn) .

Remark 8.4.1. We can remark that this scheme preserves the conservation of the mass. Indeed,
for all n ∈ {0, . . . , N}, we have

J∑
j=0

cnj + µn
− + µn

− =

J∑
j=0

c0j + µ0
− + µ0

−.

8.4.2 . Numerical results
Using numerical simulations, we aim to show that this dimension 1 model illustrates the

role of the nucleus in cellmotility. First, we check that the discretisation and its implementation
allow us to find the stationary states described in the proposition 8.3.1. Next, we investigate
the role of the nucleus.

For all the numerical illustrations in this section, the functions α+ and α− are defined for
all x ∈ R by:

α+ (x) = A1x<d +

[
(A− ε) (x− 1)

d− 1
+ ε

]
1d≤x≤1 + ε1x>1,

α− (x) = ε1x<−1 +

[
(A− ε) (x+ 1)

1− d
+ ε

]
1−1≤x≤−d +A1x>−d.

(8.18)
(8.19)

To begin, we verify that the numerical scheme captures the unpolarised stationary state
(8.12). To do this, we fix the discretisation by fixing the time step ∆t and the space step ∆x
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and take the following initial condition:
c0j =

Mβ

2 (A+ β)
j ∈ {0, . . . , J} ,

µ0
+ = µ0

− =
MA

2 (A+ β)
,

X0
N = 0,

(8.20a)
(8.20b)
(8.20c)

which corresponds to the discretisation of the stationary state (8.12).
Whatever the value of the other parameters, we observe that (8.20) is a stationary state

of the numerical scheme (see fig. 8.2 for an example). We observe that the velocity of the cell
remains constant over time and is equal to zero. The position of the nucleus remains stable
and stays at the center of the cell. The initial quantity of markers on the membrane is also
maintained over time.

Next, we check that the numerical schemeaccurately captures the steadymotion solutions
(8.13). To do this, first we set the discretization by fixing ∆t and ∆x and choose parameters.
Then we use a dichotomy algorithm to find ν such that Q (ν) = M with ν ∈

]
0, k1

k2

]. We then
choose as initial condition for the numerical scheme the following one:

X0
N = −k2

k1
ν,

c0j =
1

∆x

∫
Λj

βνe−ην(x+1)

α− (X0
N )− α+ (X0

N ) e−2ην
dx j ∈ {0, . . . , J} ,

µ0
+ =

α+

(
X0

N

)
νe−2ην

α− (X0
N )− α+ (X0

N ) e−2ην
,

µ0
− =

α−
(
X0

N

)
ν

α− (X0
N )− α+ (X0

N ) e−2ην
.

(8.21a)
(8.21b)
(8.21c)
(8.21d)

We observe that as soon as there exists ν such that Q (ν) = M with ν ∈
]
0, k1

k2

], then
(8.21) is a steady motion solution of the numerical scheme (see fig. 8.3 for an example). We
observe that the cell’s velocity remains constant over time and is equal to its initial value. The
nucleus’s position is maintained over time. Additionally, the initial quantity of markers on the
membrane is preserved, the cell remains polarised. Moreover the scheme also capture the
second steady motion solution associate to −ν. We can also note that the nucleus is place at
the rear of the cell.

Thus, the numerical scheme algorithm 8.1 proposed to simulate the model (8.8) correctly
reproduces the results of the equation. We now aim to illustrate the role of the nucleus in cell
motility. To this end, we find a range of parameters for which the cell exhibits intermittent
behaviour, meaning that it has phases where it is polarised and phases where it is not. We
can discern two different types of behaviour.

The first corresponds to a cell that polarises and moves in one direction, then stops, po-
larises again to move in the same direction, stops and so on. It seems that after a certain
time, the cell becomes polarised and maintains its polarisation. The fig. 8.4 illustrates this. In-
deed, we observe that, initially, the cell polarises, in absolute value the velocity increases and
the nucleus moves backwards. As soon as the nucleus reaches the boundary of the cell, the
cell depolarises, the nucleus returns towards the centre of the cell and the velocity becomes
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(a) Evolution of the cell velocity. (b) Evolution of the nucleus position in the cellframe of reference.

(c) Evolution of the markers quantity at the mem-brane. (d) Evolution of the total quantity of markers.

Figure 8.2: Example of capturing the unpolarised stationary state with the numerical
scheme. The graph on top left (figure (a)) represents the time evolution of the cell velocity. The
velocity is constant and equal to zero. The graph on the top right (figure (b)) represents the time
evolution of the nucleus position in the cell frame of reference. The nucleus remains at the centre
of the cell. The graph on the bottom left (figure (c)) represents the time evolution of the markers
quantity at the membrane. We can see that at both ends of the cell the quantity of markers is
constant over time and equal. The cell therefore remains unpolarised. The graph on the bottom right
(figure (d)) represents the time evolution of the total quantity of markers which remains conserved
over time.
The results presented here are obtained with the parameters ∆t = 0.0001, ∆x = 0.004, the initial
condition given by (8.20), M = 4, a = 1, χc = 1, β = 1, A = 1, ε = 0.001, d = 0.9, α+ and α−
given by eqs. (8.18) and (8.19), k1 = 0.2 and k2 = 0.7.
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(a) Evolution of the cell velocity. (b) Evolution of the nucleus position in the cellframe of reference.

(c) Evolution of the markers quantity at the mem-brane. (d) Evolution of the total quantity of markers.

Figure 8.3: Example of capturing the polarised steady motion solutions with the numer-
ical scheme. The graph on top left (figure (a)) represents the time evolution of the cell velocity. The
velocity is constant and equal to its initial value. The graph on the top right (figure (b)) represents
the time evolution of the nucleus position in the cell frame of reference. The nucleus remains at its
initial position. The graph on the bottom left (figure (c)) represents the time evolution of the mark-
ers quantity at the membrane. We can see that at both ends of the cell the quantity of markers is
constant over time. The cell therefore remains polarised. The graph on the bottom right (figure (d))
represents the time evolution of the total quantity of markers which remains conserved over time.
The results presented here are obtained with the parameters ∆t = 0.0001, ∆x = 0.004, the initial
condition given by (8.21) with ν = 1.4925228058,M = 2, a = 1, χc = 1, β = 1, A = 1, ε = 0.001,
d = 0.9, α+ and α− given by eqs. (8.18) and (8.19), k1 = 0.2 and k2 = 0.7.
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zero. Since the velocity is zero, the cell stops. The cell then polarises again and starts moving
again. Once the nucleus reaches the boundary of the cell, the cell depolarises once again. This
highlights a stop-and-go phenomenon.

The second corresponds to an oscillating cell. The cell polarises, stops very briefly and then
polarises again in the opposite direction. The fig. 8.5 illustrates this. Initially, the cell becomes
polarised, the velocity increases in absolute terms and the nucleusmoves backwards. As soon
as the nucleus reaches the boundary of the cell, the cell depolarises, the nucleus moves back
towards the centre of the cell and the velocity decreases. The cell then immediately polarises
in the other direction. We can note that the nucleus is located at the rear of the cell.

These numerical simulations highlight a particular limitation of this model: the nucleus
can exit the cell. However, this is not necessarily a defect. In fact, in the reference frame of the
cell,XN = 1 andXN ≥ 1 convey the same information and result in the same dynamics. This
is becausewe assume that for all x ≥ 1 and x ≤ −1, the functionsα+ andα− are constant, and
that δµ depends on the position of the nucleus through the functions α+ and α−. Moreover,
the position of the nucleus is determined solely by its initial position and δµ.
Conclusion. The numerical study of the model highlights that the proposed heuristics for
the dynamics of the nucleus give results that are consistent with the biological context. We
spontaneously observe the polarisation of the cell with the nucleus at the rear of the cell. The
attachment dynamics modified by the presence of the nucleus seem to allow the depolarisa-
tion of the cell and the observation of intermittent behaviour.
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(a) Evolution of the cell velocity. (b) Evolution of the nucleus position in the cellframe of reference.

(c) Evolution of the markers quantity at the mem-brane. (d) Evolution of the total quantity of markers.

Figure 8.4: Example of capturing an intermittent behaviour. The graph on top left (figure(a)) represents the time evolution of the cell velocity. We observe the velocity suddenly decreases
and then increases to zero, a pattern that repeats multiple times before stabilising at a constant
value. The graph on the top right (figure (b)) represents the time evolution of the nucleus position
in the cell frame of reference. Before stabilising to a position at the rear of the cell, the position
of the nucleus oscillate. The graph on the bottom left (figure (c)) represents the time evolution of
the markers quantity at the membrane. We can observe the polarisation and depolarisation. The
graph on the bottom right (figure (d)) represents the time evolution of the total quantity of markers
which remains conserved over time.
The results presented here are obtained with the parameters ∆t = 0.0001, ∆x = 0.004, the initial
condition given by c0j =

(
Mβ

2(A+β) +Xj

)
1 Mβ

2(A+β)
+Xj≥0+

Mβ
2(A+β)1 Mβ

2(A+β)
+Xj<0 withXj a realisation

of the random variable Y ∼ N (0, 0.01), X0
N = X1X∈[−1,1] with X a realisation of the random

variableY andµ0
± =

(
MA

2(A+β) +X±

)
1 MA

2(A+β)
+X±≥0+

MA
2(A+β)1 MA

2(A+β)
+X±<0 withX± a realisation

of the random variable Z ∼ N (0, 0.001),M = 4, a = 1, χc = 2, β = 1, A = 1, ε = 0.001, d = 0.9,
α+ and α− given by eqs. (8.18) and (8.19), k1 = 0.2 and k2 = 0.7.
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(a) Evolution of the cell velocity. (b) Evolution of the nucleus position in the cellframe of reference.

(c) Evolution of the markers quantity at the mem-brane. (d) Evolution of the total quantity of markers.

Figure 8.5: Example of capturing an intermittent behaviour. The graph on top left (figure (a))
represents the time evolution of the cell velocity. We notice that the velocity alternately decreases
and increases, exhibiting an oscillatory pattern. The graph on the top right (figure (b)) represents the
time evolution of the nucleus position in the cell frame of reference. The nucleus position oscillate.
The graph on the bottom left (figure (c)) represents the time evolution of the markers quantity at the
membrane. We can observe the alternance of polarisation in one direction and in the other. The
graph on the bottom right (figure (d)) represents the time evolution of the total quantity of markers
which remains conserved over time.
The results presented here are obtained with the parameters ∆t = 0.0001, ∆x = 0.004, the initial
condition given by c0j =

(
Mβ

2(A+β) +Xj

)
1 Mβ

2(A+β)
+Xj≥0+

Mβ
2(A+β)1 Mβ

2(A+β)
+Xj<0 withXj a realisation

of the random variable Y ∼ N (0, 0.01), X0
N = X1X∈[−1,1] with X a realisation of the random

variableY andµ0
± =

(
MA

2(A+β) +X±

)
1 MA

2(A+β)
+X±≥0+

MA
2(A+β)1 MA

2(A+β)
+X±<0 withX± a realisation

of the random variable Z ∼ N (0, 0.001), M = 4, a = 1, χc = 2.5, β = 1, A = 1, ε = 0.001,
d = 0.9, α+ and α− given by eqs. (8.18) and (8.19), k1 = 0.2 and k2 = 0.7.
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9 - Deformable cell with undercooling effect

In this chapter, we present and study a deformable model to investigate the effect of un-
dercooling on cell motility. This model is a specific case of the general model (1.1), where we
do not consider the dynamics of the nucleus, we assume the substrate is homogeneous with-
out obstacles or external signals and, we neglect the effect of the noise. We first present the
model under study. Then, we study the stationary states of the model and their stability. This
analysis highlights the stabilizing effect of undercooling. We prove the existence of non-trivial
traveling waves using a bifurcation argument. Finally, we present a numerical scheme in order
to simulate the model.

9.1 . Modelling

In this section, based on the general model eq. (1.1), we derive amodel of cell motility when
we neglect the effects of the nucleus but take into account the friction of the cell boundary. We
assume that the substrate is homogeneous and that the cell’s environment has no external
signals or obstacles. Keeping the notations of chapter 1, the model is given by:



u+∇P = 0 in Ω (t) ,

div (u) = 0 in Ω (t) ,

Vn = u · n on ∂Ω (t) ,

P = γκ+ χcfact (c) + χufund (Vn) on ∂Ω (t) ,

∂tc = div (∇c− (1− a)uc) in Ω (t) ,

(∇c+ auc) · n = 0 on ∂Ω (t) ,

c(0,x) = cin(x) in Ω (0) .

(9.1a)
(9.1b)
(9.1c)
(9.1d)
(9.1e)
(9.1f)
(9.1g)

We recall that fund satisfies assumptions 1.13, i.e.
fund ∈ C1

(
R+
)
,

fund is an odd and increasing function,
f ′und (0) > 0.

(9.2a)
(9.2b)
(9.2c)

Let ucm be the velocity of the centre of mass. For all t ≥ 0, we have:
ucm (t) = − 1

AΩ

∫
∂Ω(t)

(χcfact (c) + χufund (Vn))ndσ. (9.3)
The model under study can be seen as an enhancement of the model of Lavi et al. (2020):

the model of Lavi et al. (2020) is recovered when χu = 0. In Alazard et al. (2022), it is shown
that the model admits a unique stable radial stationary state if χc < χ∗ = 1

ac0f ′
act(c

0) , where
c0 is the stationary concentration, and is unstable otherwise. The existence of traveling waves
when χc > χ∗ is also demonstrated.

9.2 . Study of the stationary state
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In this section, we study the radially symmetric stationary state of the model. First, we es-
tablish the existence of a stationary state and give its expression, then study its linear stability.

9.2.1 . Stationary state and linear stability
Proposition 9.2.1. The model (9.1) admits an unique stationary state given by:

c0 (x) =
M

|Ω|
x ∈ Ω0,

P 0 (x) =
γ

R0
+ χcfact

(
c0 (x)

)
x ∈ Ω0,

u0 (x) = 0 x ∈ Ω0,

Ω0 = B (0, R0) ,

(9.4a)
(9.4b)
(9.4c)
(9.4d)

where R0 =

√
AΩ

π
. This stationary state is radially symmetric.

Proof. The stationary problem associated with the model (9.1) is given by:

u+∇P = 0 in Ω,

div (u) = 0 in Ω,

u · n = 0 on ∂Ω,
P = γκ+ χcfact (c) on ∂Ω,
div (∇c− (1− a)uc) = 0 in Ω,

(∇c+ auc) · n = 0 on ∂Ω,

(9.5a)
(9.5b)
(9.5c)
(9.5d)
(9.5e)
(9.5f)

From eqs. (9.5a) to (9.5c) P satisfies:{
−∆P = 0 in Ω,

∇P · n = 0 on ∂Ω.
Then we have that P is constant over Ω and therefore u = 0.

It follows that c satisfies:{
∆c = 0 in Ω,

∇c · n = 0 on ∂Ω.
So c is constant overΩ and usign the constraint on the total quantity of markers, we have that:

c (x) =
M

|Ω|
, x ∈ Ω

Thus, using eq. (9.5d), we deduce that necessarily the mean curvature must be constant
on ∂Ω and therefore Ω = B (0, R0), where R0 is the radius preserving the area of the cell
domain. We then have:

P (x) =
γ

R0
+ χcfact (c (x)) , x ∈ Ω.

Let χ∗
c be defined by:

χ∗
c =

R0 + χuf
′
und (0)

R0ac0f ′act (c
0)

. (9.6)
Theorem 9.2.2. If χc

χ∗
c

< 1 then the stationary state (9.4) is linearly stable. On the opposite, if
χc

χ∗
c

> 1, then the stationary state (9.4) is linearly unstable.
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9.2.2 . Proof of theorem 9.2.2
To prove the theorem 9.2.2, inspired by Alazard et al. (2022), we first linearise the prob-

lem (9.1) around the stationary state (9.4) (see lemma 9.2.3). We derive an eigenvalue prob-
lem from this linearised problem and study its spectrum. To this end, we prove that, using
Fourier analysis, we can decompose the study of the spectrum into the study of the spectrum
of simpler problems (see lemma 9.2.4). Next, we demonstrate that when χc

χ∗
c

< 1 then the
eigenvalues are all negative real parts (see lemma 9.2.6 and remark 9.2.7). Finally, from the
decomposition of the spectrum study, we derive an explicit condition on the eigenvalues (see
lemma 9.2.9). Thus, when χc

χ∗
c

> 1, we can exhibit a positive real part eigenvalue. This shows
the theorem 9.2.2.
Lemma 9.2.3. The linearised problem associated to eq. (9.1) around the stationary state (9.4) is
given by:

−∆P̃ = 0 in Ω0,

∂tρ (t, θ) = −∂rP̃ (t, R0, θ) θ ∈ (−π, π] ,

P̃ = − γ

R2
0

(
∂2θθρ+ ρ

)
+ χcc̃f

′
act

(
c0
)
− χu∂rP̃ f

′
und (0) on ∂Ω0,

∂tc̃ = ∆c̃ in Ω0,(
∇c̃− a∇P̃ c0

)
· n = 0 on ∂Ω0.

(9.7a)
(9.7b)
(9.7c)
(9.7d)
(9.7e)

Proof. We perform a formal expansion of the solution (c,u) near the stationary state (c0,u0
).

Let ε > 0 small. For all t ≥ 0 we set:
Ω (t) = {(x, y) = (r cos θ, r sin θ) s.t. 0 ≤ r < R0 + ερ (t, θ) and θ ∈ (−π, π]} , (9.8)

and for all x ∈ Ω (t):
c (t,x) = c0 + εc̃ (t,x) +O

(
ε2
)
,

P (t,x) = P 0 + εP̃ (t,x) +O
(
ε2
)
,

Using the fact that P 0 satisfies eq. (9.4b) and P satisfies eqs. (9.1a) and (9.1b), we deduce
that:

−∆P̃ = 0, in Ω0.

From eq. (9.8), we can parameterise the boundary of the domain Ω and thus we obtain
that, for all θ ∈ (−π, π] and r ∈ R+ such that (r cos θ, r sin θ) ∈ ∂Ω (t), the outward normal
vector is expressed as:

n (t, r, θ) =
∇ (r − (R0 + ερ (t, θ)))

|∇ (r − (R0 + ερ (t, θ)))|
=

1

|∇ (r − (R0 + ερ (t, θ)))|

cos θ + ε
∂θρ (t, θ)

r
sin θ

sin θ − ε
∂θρ (t, θ)

r
cos θ

 ,

which leads to the fact for all θ ∈ (−π, π] we have:
n (t, θ) =

(
cos θ
sin θ

)
− ε

∂θρ (t, θ)

R0

(
− sin θ
cos θ

)
+O

(
ε2
)
.
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Thus, on ∂Ω (t), we have:
∇P · n = ∇P 0 · n− ε∂rP̃ +O

(
ε2
)

and also:
Vn = ε∂tρ (t, θ) +O

(
ε2
)
.

Using eq. (9.1c), we can therefore deduce that, for all θ ∈ (−π, π] and t ≥ 0, we have:
∂tρ (t, θ) = −∂rP̃ (t, R0, θ)

The linearisation of the curvature is given for all θ ∈ (−π, π] and t ≥ 0 by:
κ (t, θ) =

1

R0
− ε

R2
0

(
∂2θθρ (t, θ) + ρ (t, θ)

)
+O

(
ε2
)
.

Since
fact (c) = fact

(
c0
)
+ εc̃f ′act

(
c0
)
+O

(
ε2
)

and
fund (Vn) = ε∂tρ (t, θ) f

′
und (0) +O

(
ε2
)
,

we have that eq. (9.1d) leads to that on ∂Ω0 we have:
P̃ = − γ

R2
0

(
∂2θθρ+ ρ

)
+ χcc̃f

′
act

(
c0
)
+ χu∂tρf

′
und (0) .

Moreover, using the fact that c0 satisfies eq. (9.4a) and c satisfies eqs. (9.1e) and (9.1f), we
deduce that in Ω0:

∂tc̃ = ∆c̃.

We also have on ∂Ω0 that:
(∇c− a∇P c) · n = ε

(
∇c̃− a∇P̃ c0

)
· n+O

(
ε2
)
,

which leads to: (
∇c̃− a∇P̃ c0

)
· n = 0 on ∂Ω0.

As the problem (9.7) is radially symmetric, the spectral analysis can be performed using
Fourier analysis.

The eigenvalue problem associated with the linearized problem (9.7) is given by:

−∆P̃ = 0 in Ω0,

λρ (θ) = −∂rP̃ (R0, θ) θ ∈ (−π, π] ,

P̃ = − γ

R2
0

(
∂2θθρ+ ρ

)
+ χcc̃f

′
act

(
c0
)
− χu∂rP̃ f

′
und (0) on ∂Ω0,

λc̃ = ∆c̃ in Ω0,(
∇c̃− a∇P̃ c0

)
· n = 0 on ∂Ω0,

(9.9a)
(9.9b)
(9.9c)
(9.9d)
(9.9e)

where λ ∈ C.
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Lemma 9.2.4. Let λ ∈ C. The eigenfunctions, satisfying eq. (9.9) associated with the eigenvalue λ
are of the form:

ρ (θ) =
∑
m∈N

ρcm cos (mθ) +
∑
m∈N

ρsm sin (mθ) ,

c (r, θ) =
∑
m∈N

ccm (r) cos (mθ) +
∑
m∈N

csm (r) sin (mθ) ,

P (r, θ) =
∑
m∈N

Pcm (r) cos (mθ) +
∑
m∈N

Psm (r) sin (mθ) ,

with for allm ∈ N, (ρcm, ccm, Pcm) (resp. (ρsm, csm, Psm)) satisfying:

−
(
∂2rr +

1

r
∂r −

m2

r2

)
Pcm = 0 r ∈ (0, R0) ,

λρcm = −∂rPcm (R0) ,

Pcm (R0) =
γ

R2
0

(
m2 − 1

)
ρcm + χcccm (R0) f

′
act

(
c0
)

− χu∂rPcm (R0) f
′
und (0) ,

λccm =

(
∂2rr +

1

r
∂r −

m2

r2

)
ccm r ∈ (0, R0) ,

∂rccm (R0)− a∂rPcm (R0) c
0 = 0.

(9.10a)
(9.10b)
(9.10c)

(9.10d)
(9.10e)

Proof. The result follows from the linearity of eq. (9.9), the independence of the cosine and
sine modes and the fact that for allm ∈ N:

∂2θθρmλ = −m2ρmλ.

Remark 9.2.5. We deduce from lemma 9.2.4 and the independence of the cosine and sine per-
turbations that studying the eigenvalues of eq. (9.9) is equivalent to the study, for all m ∈ N, of
those of eq. (9.10). Indeed, if λ ∈ C is an eigenvalue of eq. (9.10) associated with the eigenfunctions
(ρλ, cλ, Pλ) then λ is an eigenvalue of eq. (9.9) associated with the eigenfunctions:

ρ (θ) = ρλ cos (mθ) ,

c (r, θ) = cλ (r) cos (mθ) ,

P (r, θ) = Pλ (r) cos (mθ) .

Lemma 9.2.6. If m ≥ 1 and 0 ≤ χc ≤ 1
ac0f ′

act(c
0) , then all the eigenvalues of eq. (9.10) have

non-positive real parts.

Proof. Letm ≥ 1. Let λ ∈ C be a eigenvalue of eq. (9.10). Let ρm, cm and Pm satisfy eq. (9.10).
For all r ∈ (0, R0) and θ ∈ (−π, π], we set:

ρ (θ) = ρm cos (mθ) ,

c (r, θ) = cm (r) cos (mθ) ,

P (r, θ) = Pm (r) cos (mθ) .

We also set Q = c− ac0P . Thus Q follows the following problem:
−∆Q = ∆c in Ω0,(
1− aχcc

0f ′act
(
c0
))
P =

γ

R2
0

(
m2 − 1

)
ρ+ χcf

′
act

(
c0
)
Q+ λχuf

′
und (0) ρ on ∂Ω0,

∇Q · n = 0 on ∂Ω0.

(9.11a)
(9.11b)
(9.11c)
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Thus using eqs. (9.10) and (9.11) we compute:
λ

∫
Ω0

|c|2 dx =

∫
Ω0

c̄∆cdx =

∫
Ω0

(
Q̄+ ac0P̄

)
∆Qdx

= −
∫
Ω0

|∇Q|2 dx− ac0
∫
Ω0

∇P̄ · ∇Qdx

= −
∫
Ω0

|∇Q|2 dx− ac0
∫
∂Ω0

Q∇P̄ · ndσ.

Since∫
∂Ω0

Q∇P̄ · ndσ =
1

χcf ′act (c
0)

[∫
∂Ω0

(
1− ac0χcf

′
act

(
c0
))
P∇P̄ · n dσ

−
(
γ

R2
0

(
m2 − 1

)
+ λχuf

′
und (0)

)∫
∂Ω0

ρ∇P̄ · n dσ

]
=

1

χcf ′act (c
0)

[(
1− ac0χcf

′
act

(
c0
)) ∫

Ω0

|∇P |2 dx

+ λ̄
γ

R2
0

(
m2 − 1

) ∫
∂Ω0

|ρ|2 dσ

+χuf
′
und (0)

∫
∂Ω0

|∇P · n|2 dσ

]
.

We deduce that for all λ ∈ C eigenvalue of Am we have:
λ

∫
Ω0

|c|2 dx+
λ̄

χcf ′act (c̃)

γ

R2
0

(
m2 − 1

) ∫
∂Ω0

|ρ|2 dσ

= −
∫
Ω0

|∇Q|2 dx− ac̃
1− ac0χcf

′
act

(
c0
)

χcf ′act (c
0)

∫
Ω0

|∇P |2 dx− χuf
′
und (0)

χcf ′act (c
0)

∫
∂Ω0

|∇P · n|2 dσ.

The result follows from this equality.
Remark 9.2.7. It seems that the result holds for all χc > 0 as long as χc

χ∗
c

≤ 1. We do not prove this

here. However, the study of travelling waves in section 9.3 and the bifurcation result of theorem 9.3.3
suggest that the result may indeed extend to all χc such that

χc

χ∗
c

≤ 1.

Lemma 9.2.8. Let m ∈ N. The eigenfunctions of eq. (9.10) associated with the eigenvalue λ ∈ C
are given by:  ρ

c (r)
P (r)

 =

 ρ̂mλ

ĉmλIm

(
−rλ 1

2

)
P̂mλr

m

 ,

where 0 ≤ r < R0 and
(
ρ̂mλ, ĉmλ, P̂mλ

)
∈ C3 solution of:



λρ̂mλ = −mRm−1
0 P̂mλ,

Rm
0 P̂mλ =

(
γ

R2
0

(
m2 − 1

)
+ λχuf

′
und (0)

)
ρ̂mλ + χcf

′
act

(
c0
)
Im

(
−R0λ

1
2

)
ĉmλ,

λ
1
2

2

(
Im−1

(
−R0λ

1
2

)
+ Im+1

(
−R0λ

1
2

))
ĉmλ = λac0ρ̂mλ.

(9.12a)
(9.12b)
(9.12c)
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Proof. From lemma 9.2.4, we deduce that for all 0 ≤ r < R0 that:
ρ = ρ̂mλ ∈ C

and since P satisfies eq. (9.10a), the laplace equation:
P (r) = P̂mλr

m,

with P̂mλ ∈ C. Moreover, as c satisfies eq. (9.10d) and thus, by the definition of Bessel func-
tions, we have:

c (r) = ĉmλIm

(
−rλ 1

2

)
,

where 0 ≤ r < R0, ĉmλ ∈ C and Im is the modified Bessel function of the first kind of orderm.
As ρ and P satisfy eq. (9.10b), it follows that:

λρ̂mλ = −mP̂mλR
m−1
0 .

Likewise, since ρ, c and P satisfy eq. (9.10c), we have that:
P̂mλR

m
0 =

γ

R2
0

(
m2 − 1

)
ρ̂mλ + χcf

′
act

(
c0
)
ĉmλIm

(
−R0λ

1
2

)
−mχuf

′
und (0)R

m−1
0 P̂mλ.

Combining this with the previous equality, we obtain that:
Rm

0 P̂mλ =

(
γ

R2
0

(
m2 − 1

)
+ λχuf

′
und (0)

)
ρ̂mλ + χcf

′
act

(
c0
)
Im

(
−R0λ

1
2

)
ĉmλ.

Finally as ρ, c and P satisfy eqs. (9.10b) and (9.10e), we have:
−λ 1

2 I ′m

(
−R0λ

1
2

)
ĉmλ + λac0ρ̂mλ = 0.

Using the properties of Bessel functions, we deduce that:
λ

1
2

2

(
Im−1

(
−R0λ

1
2

)
+ Im+1

(
−R0λ

1
2

))
ĉmλ = λac0ρ̂mλ.

From the previous lemma, we derive the following result on the eigenvalues of eq. (9.10).
Lemma 9.2.9. Letm ∈ N. Let λ ∈ C be an eigenvalue of eq. (9.10), then λ is such that

Hm (λ) = 0,

withHm defined for all z ∈ C by:

Hm (z) =
z

1
2

2

[
z

(
1 +

m

R0
χuf

′
und (0)

)
+

γ

R3
0

m
(
m2 − 1

)] [
Im−1

(
−R0z

1
2

)
+ Im+1

(
−R0z

1
2

)]
+ zm

aχcc
0f ′act
R0

Im

(
−R0z

1
2

)
.

Proposition 9.2.10. 1. If 0 ≤ χc

χ∗
c

< 1, then eq. (9.9) admits λ = 0 as an eigenvalue of multi-

plicity three and all its other eigenvalues have a negative real part.
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2. If χc

χ∗
c

> 1, then eq. (9.9) admits a positive eigenvalue.
Proof. Whenm = 0, for all z ∈ C, we have:

H0 (z) = z
3
2 I1

(
−R0z

1
2

)
.

z = 0 is a solution ofH0 (z) = 0. This eigenvalue is associated with the eigenfunctions defined
for all r ∈ [0, R0) by: ρ̂100

ĉ100 (r)

P̂ 1
00 (r)

 =

 1
0

− γ

R2
0

 and
 ρ̂200
ĉ200 (r)

P̂ 2
00 (r)

 =

 0
1

χcf
′
act

(
c0
)
 .

The other roots of H0 are given by λ0k = −x2
1k

R2
0
where x1k ∈ R is the kth root of J1, theBessel function of the first kind of order 1. We have that the eigenvalue λ0k < 0 is associated

with the eigenfunction defined for all r ∈ [0, R0) by: ρ̂0k
ĉ0k (r)

P̂0k (r)

 =

 0

J0

(
x1k

R0
r
)

χcf
′
act

(
c0
)
J0(x1k)

 .

Whenm = 1, for all z ∈ C we have:
H1 (z) =

z
3
2

2

(
1 +

1

R0
χuf

′
und (0)

)[
I0

(
−R0z

1
2

)
+ I2

(
−R0z

1
2

)]
+ z

aχcc
0f ′act
R0

I1

(
−R0z

1
2

)
Thus z = 0 is a solution of H1 (z) = 0. This eigenvalue is associated with the eigenfunction
defined for all r ∈ [0, R0) by:  ρ̂10

ĉ10 (r)

P̂10 (r)

 =

1
0
0

 .

If m ≥ 2 then z = 0 is solution of Hm (z) = 0. Nevertheless, since γ > 0, from eq. (9.12)
and Im (0) = 0, we deduce that λ = 0 is associate to the zero eigenfunction defined for all
r ∈ [0, R0) by:  ρ̂m0

ĉm0 (r)

P̂m0 (r)

 =

0
0
0


and λ = 0 is not an eigenvalue of eq. (9.10) when m ≥ 2. We can therefore conclude about
item 1 using remark 9.2.7.

In order to exhibit a positive eigenvalue, we expand H1 around 0. For all z close to 0, we
have:
H1 (z) =

z
3
2

2

(
1 +

χuf
′
und (0)

R0
− ac0χcf

′
act

(
c0
)

+
R2

0z

8

(
3 +

3χuf
′
und (0)

R0
− ac0χcf

′
act

(
c0
)))

+O
(
|z|

7
2

)
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The function z 7→ 1+
χuf

′
und(0)
R0

− ac0χcf
′
act

(
c0
)
+

R2
0z
8

(
3 +

3χuf
′
und(0)
R0

− ac0χcf
′
act

(
c0
)) admits

z1 as root, with z1 defined by:

z1 =
8
(
ac0χcf

′
act

(
c0
)
− 1− χuf

′
und(0)
R0

)
R2

0

(
3
(
1 +

χuf ′
und(0)

R0

)
− ac0χcf ′act (c

0)
) .

z1 ∈ R changes sign and becomes positive when χc exceeds R0 + χuf
′
und (0)

R0ac0f ′act (c
0)

= χ∗
c . Further-

more, z1 approaches a true root λ1 of H1. Indeed, when ac0χcf
′
act

(
c0
) close to 1 +

χuf
′
und(0)
R0

,
we have:

λ1 =
4

R2
0

(
ac0χcf

′
act

(
c0
)
− 1 +

χuf
′
und (0)

R0

)
+ o

(∣∣∣∣ac0χcf
′
act

(
c0
)
− 1 +

χuf
′
und (0)

R0

∣∣∣∣)
associated with the eigenfunction defined for all r ∈ [0, R0) by:

 ρ̂1λ1

ĉ1λ1
(r)

P̂1λ1 (r)

 =



−χcf
′
actI1

(
−R0λ

1
2
1

)
R0 + χuf ′und (0)

λ1I1

(
−rλ

1
2
1

)
χcf

′
actI1

(
−R0λ

1
2
1

)
λ1

R0 + χuf ′und (0)
r


.

Thus when χc > χ∗
c , eq. (9.9) admits λ1 as positive eigenvalue.

9.3 . Existence of travelling wave

In this section, wedefine and characterise the travellingwave solutions of themodel. Using
a bifurcation argument, we prove that such solutions exist.

9.3.1 . Definition and characterisation of the travelling waves
A travelling wave is characterised by a domain with a fixed shape Ω̃moving at a constant

velocity V ∈ R in a fixed directionw ∈ R2. We then have:
Ω (t) = Ω̃ + tVw.

Without loss of generality, assume that V > 0 andw = (1, 0). In this case, the normal velocity
at the boundary of the cell satisfies Vn = V nx.Using the travelling wave ansatz:

c = c (x− V t, y) , P = P (x− V t, y) , Ω (t) = Ω̃ + (V t, 0) ,

we obtain that a solution of model (9.1), which is a travelling wave for this model, is defined as
follows in definition 9.3.1.
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Definition 9.3.1. A travelling wave of the model (9.1) is given by a domain Ω̃ ⊂ R2, V > 0 a real
velocity and two functions P and c satisfying:

−∆P = 0 in Ω̃,

P = γκ+ χcfact (c) + χufund (V nx) on ∂Ω̃,
−∇P · n = V nx on ∂Ω̃,
div ((V, 0) c+∇c+ (1− a)∇Pc) = 0 in Ω̃,

(∇c+ a (V, 0) c) · n = 0 on ∂Ω̃.

(9.13a)
(9.13b)
(9.13c)
(9.13d)
(9.13e)

Proposition 9.3.2. Let V > 0 be given. If c and P are solutions of eq. (9.13) associated with V
then c and P are of the form:

P (x, y) = p1 − V x with p1 ∈ R,

c (x, y) =
M∫

Ω̃
e−aV x′ dx′ dy′

e−aV x,

where (x, y) ∈ Ω̃ and we recall thatM ≥ 0 is the total quantity of markers.
Furthermore, ∂Ω̃ is characterised by the curvature equation:

γκ (x, y) = p1 − V x− χcfact

(
Me−aV x∫

Ω̃
e−aV x′ dx′ dy′

)
− χufund (V nx) , (x, y) ∈ ∂Ω̃. (9.14)

Proof. We set ũ = −∇P −ucm where ucm is defined by eq. (9.3). The travelling wave assump-
tion implies that ucm = (V, 0). Thus, setting ϕ = −P − V x we have:

ũ = ∇ϕ.

Moreover, from eq. (9.13a), we deduce that ϕ satisfies −∆ϕ = 0 in Ω̃ and from (9.13c) we
deduce that ϕ also satisfies∇ϕ · n = 0 on ∂Ω̃. On the one hand, we have that:∫

Ω̃

|∇ϕ|2 dx = −
∫
Ω̃

ϕ∆ϕdx+

∫
∂Ω̃

ϕ∇ϕ · ndσ = 0.

On the another hand, we have that:∫
Ω̃

|∇ϕ|2 dx =

∫
Ω̃

|ũ|2 dx.

Thus we have that ũ = 0 on Ω̃. It follows that for all (x, y) ∈ Ω̃:
P (x, y) = p1 − V x,

with p1 ∈ R.
By substituting ∇P = − (V, 0) in eqs. (9.13d) and (9.13e), the concentration of markers

satisfies the following problem:{
div (∇c+ a (V, 0) c) = 0 in Ω̃,

(∇c+ a (V, 0) c) · n = 0 on ∂Ω̃.
(9.15a)
(9.15b)
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The non-negative solutions of eq. (9.15) are given by:
c (x, y) = c1e

−aV x, (9.16)
with c1 > 0 and (x, y) ∈ Ω̃. Indeed, we can see that functions of the form (9.16) are solutions
of eq. (9.15). If we assume that c (x, y) = c1 (x, y) e

−aV x is a solution of eq. (9.15), then we have
that:

0 =

∫
Ω̃

c1 (x, y) div (∇c (x, y) + a (V, 0) c (x, y)) dxdy

=

∫
Ω̃

∇c1 (x, y) · (∇c (x, y) + a (V, 0) c (x, y)) dxdy

=

∫
Ω̃

|∇c1 (x, y)|2 e−aV x dxdy,

from which we deduce that |∇c1| = 0 on Ω̃. Finally, remember that the total number of mark-
ersM is constant, so c1 must be such that ∫

Ω̃
c1e

−aV x dxdy =M . This leads to
c1 =

M∫
Ω̃
c1e−aV x′ dx′ dy′

.

To find the curvature equation (9.14), we inject the expressions found for P and c into
equation (9.13b).
Theorem 9.3.3. Assume that fact satisfies assumptions (1.12). For all a ∈ (0, 1], γ > 0, R0 > 0

and χu > 0 there exists a one parameter family of travelling wave solutions
(
Ω̃χ, Vχ

)
of eq. (9.1),

parametrized by χ ∈ (χ∗
c ,+∞) such that

∣∣∣Ω̃χ

∣∣∣ = πR2
0.

9.3.2 . Proof of theorem 9.3.3
Since the disc of radius R0 with V = 0 is a solution of (9.13), we seek other solutions of

eq. (9.13) such that the domain Ω̃ is a perturbation of the disc. We therefore look for Ω̃ such
that:

Ω̃ = {(r cos (θ) , r sin (θ)) s.t. 0 ≤ r ≤ R0 + ρ (θ) and θ ∈ (−π, π]}

with ρ : R → (−R0,+∞) a 2π-periodic function satifying:∫ π

−π

(R0 + ρ (θ))
2 −R2

0 dθ = 0.

This latter condition ensures that ∣∣∣Ω̃∣∣∣ = πR2
0. The boundary of domain Ω̃ is parametrized by:

{(R0 + ρ (θ)) cos θ, (R0 + ρ (θ)) sin θ} for θ ∈ (−π, π] .

For all θ ∈ (−π, π], the outward normal vector to ∂Ω̃ is given by:
n (θ) =

(
n1 (θ)
n2 (θ)

)
=

1(
(R0 + ρ (θ))

2
+ ρ′ (θ)

2
) 1

2

(
(R0 + ρ (θ)) cos θ + ρ′ (θ) sin θ
(R0 + ρ (θ)) sin θ − ρ′ (θ) cos θ

)

and the mean curvature by:
κ (θ) =

(R0 + ρ (θ))
2
+ 2ρ′ (θ)

2 − (R0 + ρ (θ)) ρ′′ (θ)(
(R0 + ρ (θ))

2
+ ρ′ (θ)

2
) 3

2

. (9.17)
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The condition on the boundary domain eq. (9.14) can be expressed as:
γκ (θ) + V (R0 + ρ (θ)) cos θ + χcfact

(
c1 (V, ρ) e

−aV (R0+ρ(θ)) cos θ
)
+ χufund (V n1 (θ)) = p1,

(9.18)
where θ ∈ (−π, π] and c1 (V, ρ) = M∫ π

−π

∫ R0+ρ(θ)

0
e−aV r cos θr dr dθ

.
As we are looking for travelling waves in the x-direction, we restrict ourselves to domains

Ω̃ symmetrical about the x-axis. We then introduce the functional spaces:
X =

{
ρ ∈ C2,α

per (−π, π) : ρ (θ) = ρ (−θ) ,∀θ ∈ (−π, π)
}
,

Y =
{
ρ ∈ C0,α

per (−π, π) : ρ (θ) = ρ (−θ) ,∀θ ∈ (−π, π)
}
.

Therefore, the existence of a boundary ∂Ω̃ solving eq. (9.14) is equivalent to the existence of a
function ρ ∈ X solving eq. (9.18).

LetF : R×X×R×R → Y ×R×R the functional defined for all (χc, ρ, V, p1) ∈ R×X×R×R
by:
F (χc, ρ, V, p1) =

(
γκ (θ) + χcfact

(
c1 (V, ρ) e

−aV (R0+ρ(θ)) cos θ
)
+ χufund (V n1 (θ))

+ V (R0 + ρ (θ)) cos θ − p1 −
γ

R0
;∫ π

−π

(R0 + ρ (θ))
2 −R2

0 dθ ;

∫ π

−π

ρ (θ) cos θ dθ

)
. (9.19)

Lemma 9.3.4. The functional F defined by (9.19) satisfies the following properties:
1. F (χc, 0, 0, 0) = 0 for all χc ∈ R.

2. Ker ∂(ρ,V,p1)F (χ∗
c , 0, 0, 0) is a one dimensional subspace ofX×R×R spanned by (0, 1, 0).

3. Range ∂(ρ,V,p1)F (χ∗
c , 0, 0, 0) is a closed subspace of Y × R× R of codimension 1.

4. ∂χc
∂(ρ,V,p1)F (χ∗

c , 0, 0, 0) [0, 1, 0] /∈ Range ∂(ρ,V,p1)F (χ∗
c , 0, 0, 0).

Proof. Item 1. When ρ = 0, using the expression of the mean curvature (9.17), we have for all
θ ∈ (−π, π], κ (θ) = 1

R0
. Thus for all χc ∈ R, we have F (χc, 0, 0, 0) = 0.

Item 2. Let χc ∈ R. Let Lχc
be the linear operator defined by:

Lχc
: X × R× R → Y × R× R

(ρ, V, p1) 7→ Fρ (χc, 0, 0, 0) [ρ] + FV (χc, 0, 0, 0) [V ] + Fp1
(χc, 0, 0, 0) [p1] .

For all (ρ, V, p1) ∈ X × R× R we have:
Lχc (ρ, V, p1) =

(
−γ ρ+ ρ′′

R2
0

−
χcc

0f ′act
(
c0
)

R0

∫ π

−π

ρ (θ) dθ − ac0χcf
′
act

(
c0
)
R0V cos θ

+R0V cos θ − p1 + χuf
′
und (0)V cos θ ;

2R0

∫ π

−π

ρ (θ) dθ ;

∫ π

−π

ρ (θ) cos θ dθ

)
and thus in particular for χc = χ∗

c we have:
Lχ∗

c
(ρ, V, p1) =

(
−γ ρ+ ρ′′

R2
0

− R0 + χuf
′
und (0)

aR2
0

∫ π

−π

ρ (θ) dθ − p1 ;

2R0

∫ π

−π

ρ (θ) dθ ;

∫ π

−π

ρ (θ) cos θ dθ

)
.
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The elements (ρ, V, p1) of Ker ∂(ρ,V,p1)F (χ∗
c , 0, 0, 0) are therefore such that

ρ′′ + ρ = −R
2
0

γ
p1, (9.20)

with the conditions 

∫ π

−π

ρ (θ) dθ = 0,∫ π

−π

ρ (θ) cos θ dθ = 0,

ρ even function.
As ρ even, necessarily the condition ∫ π

−π
ρ (θ) sin θ dθ = 0 holds. The solutions to the differen-

tial equation (9.20) are given, for all θ ∈ (−π, π], by
ρ (θ) = A cos θ +B sin θ − R2

0

γ
p1

where A,B ∈ R.
We have: ∫ π

−π

ρ (θ) dθ = −2π
R2

0

γ
p1

and thus necessarily p1 = 0. This leads to:∫ π

−π

ρ (θ) cos θ dθ = Aπ,∫ π

−π

ρ (θ) sin θ dθ = Bπ

which implies A = 0 and B = 0. We then have ρ = 0 and
Ker ∂(ρ,V,p1)F (χ∗

c , 0, 0, 0) = Span {(0, 1, 0)} .

Item 3. To prove this property, we demonstrate that:
Range ∂(ρ,V,p1)F (χ∗

c , 0, 0, 0) =

{
(h,C1, C2) ∈ Y × R× R s.t.

∫ π

−π

h (θ) cos θ dθ = 0

}
.

Let (h,C1, C2) ∈ Range ∂(ρ,V,p1)F (χ∗
c , 0, 0, 0). Thus there exists ρ ∈ X and p1 ∈ R such that:

−γ ρ+ ρ′′

R2
0

− R0 + χuf
′
und (0)

aR2
0

∫ π

−π

ρ (θ) dθ − p1 = h. (9.21)
By multiplying it by cos θ and integrating it over [−π, π] we obtain that necessarily h is such
that: ∫ π

−π

h (θ) cos θ dθ = 0.

Reciprocally, let h ∈ C0,α
per (−π, π) and p1 ∈ R. The eq. (9.21) admits a soution in C2,α

per (−π, π)if and only if ∫ π

−π
h (θ) cos θ dθ =

∫ π

−π
h (θ) sin θ dθ = 0. The general solutions are of the form:

ρ (θ) = ρ (θ) + k1 cos (θ) + k2 sin (θ) ,
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where ρ is an even particular solution.
Let (h,C1, C2) ∈ Range ∂(ρ,V,p1)F (χ∗

c , 0, 0, 0). As h ∈ Y , necessarily ∫ π

−π
h (θ) sin θ dθ = 0.

Assume that ∫ π

−π
h (θ) cos θ dθ = 0. There exists ρ ∈ X solution of eq. (9.21). Taking the even

part of the general solutions, we have that:
ρ (θ) =

1

2
[ρ (θ) + ρ (−θ)] + k1 cos (θ) .

We choose k1 such that ∫ π

−π
ρ (θ) cos θ dθ = C2.Integrating eq. (9.21) with respect to θ yields to:(

− γ

R2
0

− 2π (R0 + χuf
′
und (0))

aR2
0

)∫ π

−π

ρ (θ) dθ − 2πp1 =

∫ π

−π

h (θ) dθ.

We thus choose p1 such that ∫ π

−π
ρ (θ) dθ = C1.

Item 4. For all (χc, ρ, V, p1) ∈ R×X × R× R we have:
∂χc

Lχc
(ρ, V, p1) =

(
−
c0f ′act

(
c0
)

R0

∫ π

−π

ρ (θ) dθ − ac0f ′act
(
c0
)
R0V cos θ ; 0 ; 0 ; 0

)
.

In particular, we have for χc = χ∗
c and (ρ, V, p1) = (0, 1, 0):

∂χc
Lχ∗

c
(0, 1, 0) =

(
−ac0f ′act

(
c0
)
R0 cos θ ; 0 ; 0 ; 0

)
.

By contradiction, assume that ∂χc∂(ρ,V,p1)F (χ∗
c , 0, 0, 0) [0, 1, 0] ∈ Range ∂(ρ,V,p1)F (χ∗

c , 0, 0, 0).Then there exists (ρ, V, p1) ∈ X × R× R such that:
γ
ρ+ ρ′′

R2
0

+
R0 + χuf

′
und (0)

aR2
0

∫ π

−π

ρ (θ) dθ + p1 = ac0f ′act
(
c0
)
R0 cos θ∫ π

−π

ρ (θ) dθ =

∫ π

−π

ρ (θ) cos θ dθ =

∫ π

−π

ρ (θ) sin θ dθ = 0.

By multiplying by cos (θ) and integrating the first line over [−π, π], we obtain:
γ

∫ π

−π

ρ (θ) cos θ dθ + γ

∫ π

−π

ρ′′ (θ) cos θ dθ

+

(
R0 + χuf

′
und (0)

a

∫ π

−π

ρ (θ) dθ + p1

)∫ π

−π

cos θ dθ = ac0f ′act
(
c0
)
R3

0

∫ π

−π

cos2 θ dθ.

Since ρ ∈ X , ρ is 2π-periodic and thus ∫ π

−π
ρ′′ (θ) cos θ dθ =

∫ π

−π
ρ (θ) cos θ dθ. Then we have:

ac0f ′act
(
c0
)
R3

0π = 0,

which is a contradiction as a > 0, f ′act (c0) > 0, c0 > 0 and R0 > 0.
We can therefore apply the Crandall-Rabinowitz bifurcation theorem (Crandall and Rabi-

nowitz, 1971) to the functional F around the bifurcation point (χ∗
c , 0, 0, 0). Then for any com-

plement Z = Z1 × Z2 × Z3 of KerF (χ∗
c , 0, 0, 0) inX × R× R, there exists a neighborhood N

of (χ∗
c , 0, 0, 0) in R × X × R × R, an interval I = (−ε, ε) for some ε > 0 and four continuous

functions φ : I → R, ψ1 : I → Z1, ψ2 : I → Z2 and ψ3 : I → Z3 such that for all s ∈ I :
F (φ (s) , ψ1 (s) , ψ2 (s) , ψ3 (s)) = (0, 0, 0, 0)
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and
φ (0) = χ∗

c , ψ1 (0) = 0, ψ2 (0) = 0, ψ3 (0) = 0.

We can note that for all s ∈ (−ε, ε), ψ1 (s) denotes a function.In particular, the Crandall-Rabinowitz bifurcation theorem implies that the solutions (χc, ρ, V, p1)of the equation F (χc, ρ, V, p1) = (0, 0, 0, 0) are of the form:
χc (s) = φ (s) ,

ρ (s, θ) = sψ1 (s) (θ) ,

V (s) = s+ sψ2 (s) ,

p1 (s) = sψ3 (s) ,

(9.22)
(9.23)
(9.24)
(9.25)

where s ∈ I and θ ∈ (−π, π]. In addition, they satisfy for all θ ∈ (−π, π]:
χc (0) = χ∗

c ,

ρ (0, θ) = 0 and ∂sρ (0, θ) = 0,

V (0) = 0 and V ′ (0) = 1,

p1 (0) = 0 and p′1 (0) = 0.

Thus we have for all s ∈ I :
V (s) = s+ o (s) .

As (χc, ρ, V, p1) is solution of the equationF (χc, ρ, V, p1) = (0, 0, 0, 0), we have for all s ∈ I :∫ π

−π

ρ (s, θ) cos θ dθ = 0 and
∫ π

−π

(R0 + ρ (s, θ))
2 −R2

0 dθ = 0.

Thus we deduce that for all n ∈ N we have:∫ π

−π

∂ns ρ (0, θ) cos θ dθ = 0,

and ∫ π

−π

∂2sρ (0, θ) dθ = 0.

Lemma 9.3.5. Assume

∂nθ ρ (0, θ) = ∂nθ ∂sρ (0, θ) = 0, ∀n ∈ N,∀θ ∈ (−π, π] .

Then, we have χ′
c (0) = 0.

Proof. For all s ∈ I and θ ∈ (−π, π], we set
z (s, θ) = c1 (V (s) , ρ (s, θ)) e−aV (s)(R0+ρ(s,θ)) cos θ.

We thus have:
z (0, θ) = c1 (V (0) , ρ (0, θ)) e−aV (0)(R0+ρ(0,θ)) cos θ = c0.

We differenciate with respect to s the first component of F and we have for all s ∈ I and
θ ∈ (−π, π]:
0 = γ∂sκ (s, θ) + χ′

c (s) fact (z (s, θ)) + χc (s) f
′
act (z (s, θ)) ∂sz (s, θ)

+ χuf
′
und (V (s)n1 (s, θ)) (V

′ (s)n1 (s, θ) + V (s) ∂sn1 (s, θ))

+ V ′ (s) (R0 + ρ (s, θ)) cos θ + V (s) ∂sρ (s, θ) cos θ − p′1 (s) . (9.26)
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Evaluating it at s = 0, it leads to:
0 = γ∂sκ (0, θ) + χ′

c (0) fact
(
c0
)
+ χ∗

cf
′
act

(
c0
)
∂sz (0, θ) + χuf

′
und (0)n1 (0, θ) +R0 cos θ.

As ∂θρ (s, θ) = s∂θψ1 (s, θ), we have ∂θρ (0, θ) = 0. We then have:
n1 (0, θ) =

1

R0
(R0 cos θ + ∂θρ (0, θ) sin θ) = cos θ.

Moreover, as for all s ∈ I and θ ∈ (−π, π] we have:
∂sz (s, θ) = (∂1c1 (V (s) , ρ (s, θ))V ′ (s) + ∂2c1 (V (s) , ρ (s, θ)) ∂sρ (s, θ)) e

−aV (s)(R0+ρ(s,θ)) cos θ

− a (V ′ (s) (R0 + ρ (s, θ)) + V (s) ∂sρ (s, θ)) cos θc1 (V (s) , ρ (s, θ)) e−aV (s)(R0+ρ(s,θ)) cos θ.

As ∂1c1 (0, 0) = 0, it follows that:
∂sz (0, θ) = −aR0 cos θc

0.

Finally, using the definition of χ∗
c (cf eq. (9.6)), we have for all θ ∈ (−π, π]:

0 = γ∂sκ (0, θ) + χ′
c (0) fact

(
c0
)
+
(
χuf

′
und (0) +R0 − χ∗

caR0c
0f ′act

(
c0
))

cos θ

= γ∂sκ (0, θ) + χ′
c (0) fact

(
c0
)
.

As for all θ ∈ (−π, π] we have ∂sκ (0, θ) = 0, it follows that necessarily χ′
c (0) = 0.

Lemma 9.3.6. Assume

∂nθ ρ (0, θ) = ∂nθ ∂sρ (0, θ) = ∂nθ ∂
2
sρ (0, θ) = 0, ∀n ∈ N,∀θ ∈ (−π, π] .

Then, we have

χ′′
c (0) = − (R0 + χuf

′
und (0)) aR0

2 (f ′act (c
0))

2

(
f ′′act

(
c0
)
+

M

2πR2
0

f ′′′act

(
c0
))

+
χuf

′′′
und (0)

3ac0R0f ′act (c
0)
.

Proof. We differenciate twice with respect to s eq. (9.26). We thus have for all s ∈ I and
θ ∈ (−π, π]:

0 =γ∂3sssκ (s, θ) + χ′′′
c (s) fact (z (s, θ)) + 3χ′′

c (s) f
′
act (z (s, θ)) ∂sz (s, θ)

+ 3χ′
c (s) f

′
act (z (s, θ)) ∂

2
ssz (s, θ) + 3χ′

c (s) f
′′
act (z (s, θ)) (∂sz (s, θ))

2

+ 3χc (s) f
′′
act (z (s, θ)) ∂sz (s, θ) ∂

2
ssz (s, θ) + χc (s) f

′′′
act (z (s, θ)) (∂sz (s, θ))

3

+ χc (s) f
′
act (z (s, θ)) ∂

3
sssz (s, θ)

+ χuf
′′′
und (V (s)n1 (s, θ)) (V

′ (s)n1 (s, θ) + V (s) ∂sn1 (s, θ))
3

+ 3χuf
′′
und (V (s)n1 (s, θ)) (V

′ (s)n1 (s, θ) + V (s) ∂sn1 (s, θ))V
′′ (s)n1 (s, θ)

+ 3χuf
′′
und (V (s)n1 (s, θ)) (V

′ (s)n1 (s, θ) + V (s) ∂sn1 (s, θ)) 2V
′ (s) ∂sn1 (s, θ)

+ 3χuf
′′
und (V (s)n1 (s, θ)) (V

′ (s)n1 (s, θ) + V (s) ∂sn1 (s, θ))V (s) ∂2ssn1 (s, θ)

+ χuf
′
und (V (s)n1 (s, θ)) (V

′′′ (s)n1 (s, θ) + 3V ′′ (s) ∂sn1 (s, θ))

+ χuf
′
und (V (s)n1 (s, θ))

(
3V ′ (s) ∂2ssn1 (s, θ) + V (s) ∂3sssn1 (s, θ)

)
+ V ′′′ (s) (R0 + ρ (s, θ)) cos θ + 3V ′′ (s) ∂sρ (s, θ) cos θ + 3V ′ (s) ∂2ssρ (s, θ) cos θ

+ V (s) ∂3sssρ (s, θ) cos θ − p′′′1 (s) .
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Using the fact that for all θ ∈ (−π, π] we have ∂sz (0, θ) = −ac0R0 cos θ and the result of
the previous lemma, it follows that:

0 =γ∂3sssκ (0, θ) + χ′′′
c (0) fact

(
c0
)
− 3ac0R0χ

′′
c (0) f

′
act

(
c0
)
cos θ

− 3χ∗
cac

0R0 cos θ∂
2
ssz (0, θ) f

′′
act

(
c0
)

− χ∗
cf

′′′
act

(
c0
) (
ac0R0 cos θ

)3
+ χ∗

cf
′
act

(
c0
)
∂3sssz (0, θ) + χuf

′′′
und (0) cos

3 θ

+ 3χuf
′′
und (0) cos

2 θV ′′ (0) + χuf
′
und (0)

(
V ′′′ (0) cos θ + 3∂2ssn1 (0, θ)

)
+ V ′′′ (0)R0 cos θ + 3∂2ssρ (0, θ) cos θ − p′′′1 (0) .

We multiply the previous equality by cos θ and integrate in θ over (−π, π), we thus have:
0 =γ

∫ π

−π

∂3sssκ (0, θ) cos θ dθ − 3πac0R0χ
′′
c (0) f

′
act

(
c0
)

− 3χ∗
cac

0R0f
′′
act

(
c0
) ∫ π

−π

∂2ssz (0, θ) cos
2 θ dθ

− 3

4
χ∗
cf

′′′
act

(
c0
)
π
(
ac0R0

)3
+ χ∗

cf
′
act

(
c0
) ∫ π

−π

∂3sssz (0, θ) cos θ dθ

+
3

4
χuf

′′′
und (0)π + χuf

′
und (0)V

′′′ (0)π + V ′′′ (0)R0π.

From Alazard et al. (2022) (appendix C), we have for all θ ∈ (−π, π]:∫ π

−π

∂2ssz (0, θ) cos
2 θ dθ =

a2M

2
,

∫ π

−π

∂3sssz (0, θ) cos θ dθ = −aM
R0

V ′′′ (0)− 2M

πR3
0

∫ π

−π

∂3sssρ (0, θ) cos θ dθ,

and ∫ π

−π

∂3sssκ (0, θ) cos θ dθ = 0.

It follows that:
0 = −3πac0R0χ

′′
c (0) f

′
act

(
c0
)
− 3

2
χ∗
ca

3c0R0f
′′
act

(
c0
)
M

− 1

R0
aMχ∗

cf
′
act

(
c0
)
V ′′′ (0)− 3

4
πχ∗

cf
′′′
act

(
c0
) (
ac0R0

)3
+ χuf

′′′
und (0)π + χuf

′
und (0)V

′′′ (0)π + V ′′′ (0)R0π,

= −3πac0R0f
′
act

(
c0
)
χ′′
c (0)−

3χ∗
ca

3M2

2πR0

(
f ′′act

(
c0
)
+

M

2πR2
0

f ′′′act

(
c0
))

+
3

4
πχuf

′′′
und (0) .

It leads to:
χ′′
c (0) =

−χ∗
ca

2M

2πf ′act (c
0)

(
f ′′act

(
c0
)
+

M

2πR2
0

f ′′′act

(
c0
))

+
χuf

′′′
und (0)

4ac0R0f ′act (c
0)
.

We conclude using the expressions of χ∗
c and of c0.
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Conclusion and perspectives. By studying themodel with the undercooling effect, we have
proved that this effect stabilises the model. Indeed, we can compare the threshold at which
the bifurcation towards a travelling wave occurs with and without this effect (see Alazard et al.
(2022) for the case without the undercooling effect). We have shown that this threshold is
higher when the undercooling effect is taken into account.

In a work in progress, in collaboration with Nicolas Meunier and Olivier Pantz, we are
studying different approaches for discretising the model with an implicit time discretisation
of the curvature and the undercooling effect. Finite element methods are used for the spatial
discretisations. The term added by the undercooling effect requires precautions to be taken
regarding the functional spaces chosen to discretise the model. The velocity trace on the
domain boundary must always be well defined. This work is an extension of Lavi et al. (2023).
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10 - Model in dimension 2 with an external signal

In this chapter, in the first section we introduce a model of cell motility in presence of an
external signal. Thismodel is deduce from the generalmodel (1.1) in the casewherewe assume
the substrate to be homogeneous (ξM is independent of the space), there is no obstacles
and we neglect the nucleus. We define the stationary states of the model and prove their
existence. We then study their stability. Secondly, we study the associated rigid model. We
study its stationary states and their stability. We then write a numerical scheme to simulate
the rigid model and show using numerical simulations that there is a trade-off between the
force induced at the cell boundary by the polarity markers present in the cell and the force
induced at the cell boundary by the external signal.

10.1 . Modelling

In this section, we introduce the model under study. This model is a special case of the
generalmodel (1.1). We assume that the substrate is homogeneous, i.e. that ξM is independent
of space and we set for all x ∈ R2, ξM (x) = 1. We neglect the effect of undercooling. We also
assume that there are no obstacles in the cell’s environment. Next, we neglect the dynamics of
the nucleus. We then assume that the fluid domain coincides with that of the cell. The effects
of noise are initially neglected. The model studied is given by:

u+∇P = 0 in Ω (t) ,

div (u) = 0 in Ω (t) ,

P = γκ+ χcfact (c) + χsg (∇s · n) on ∂Ω (t) ,

Vn = u · n on ∂Ω (t) ,

∂tc = div (∇c− (1− a)uc) in Ω (t) ,

(∇c+ auc) · n = 0 on ∂Ω (t) ,

c(0,x) = cin(x) in Ω (0) .

(10.1a)
(10.1b)
(10.1c)
(10.1d)
(10.1e)
(10.1f)
(10.1g)

We recall that fact statisfies the following assumptions eq. (1.12):
fact ∈ C1

(
R+
)
,

fact is an increasing function,
fact (0) = 0,

lim
x→+∞

fact (x) = Lc < +∞,

and g satisfies the following one eq. (1.14):
g ∈ C1 (R) ,
g is an odd function and a increasing function,
lim

x→+∞
g (x) = Ls < +∞.

We can observe that we retain the properties of preservation over time of the area of cell
AΩ and the total quantity of markersM . We thus have for all t ≥ 0:

AΩ =

∫
Ω(t)

1 dx,
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and
M =

∫
Ω(t)

c (t,x) dx. (10.2)
Let xcm (t) be the centre of mass of Ω (t) at time t ≥ 0. We have:

xcm (t) =
1

AΩ

∫
Ω(t)

(x, y) dx dy.

We also define the velocity of the centre of mass ucm. For all t ≥ 0, we have:
ucm (t) =

d

dt
xcm (t) .

For all ≥ 0, we have:
d

dt

∫
Ω(t)

xdxdy =

∫
∂Ω(t)

xVn dσ =

∫
∂Ω(t)

xu · ndσ =

∫
Ω(t)

div (xu) dx dy

=

∫
Ω(t)

∇x · udx dy = −
∫
Ω(t)

∇x · ∇P dxdy = −
∫
Ω(t)

div (P∇x) dxdy

= −
∫
∂Ω(t)

P∇x · n dσ = −
∫
∂Ω(t)

(γκ+ χcfact (c) + χsg (∇s · n))nx dσ,

where we used the incompresisbility constraint (10.1b), the darcy law (10.1a) and the boundary
condition (10.1c). Analogously, we have:

d

dt

∫
Ω(t)

y dxdy = −
∫
∂Ω(t)

(γκ+ χcfact (c) + χsg (∇s · n))ny dσ.

Since ∫
∂Ω(t)

κndσ = 0, it follows:
ucm (t) = − 1

AΩ

∫
∂Ω(t)

(χcfact (c) + χsg (∇s · n))n dσ. (10.3)

10.2 . Stationary state

This section is devoted to the search of the stationary radially symmetric states of the
model (10.1). We restrict our study to the case where the external signal is radially symmetrical.
Thus, we assume that there exists a function ψs : R+ −→ R such that for all x ∈ R2, the
external signal is given by:

s (x) = ψs (∥x∥) . (10.4)
In the sequel, for all x ∈ R2, s (x) is denoted simply by s (r) where r = ∥x∥. We also assume
that s is differentiable.
Proposition 10.2.1. Under the assumption (10.4), the model (10.1) admits an unique stationary
radially symmetric solution. This solution is given by:

u0 = 0 in Ω0,

P 0 =
γ

R0
+ χcfact

(
c0
)
+ χsg (s

′ (R0)) in Ω0,

c0 =
M

πR2
0

in Ω0,

Ω0 = B (0, R0) ,

(10.5a)
(10.5b)
(10.5c)
(10.5d)
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where R0 =
√

AΩ

π .

Proof. We are looking for radially symmetric solutions. Thus, necessarily, for all t ≥ 0, Ω (t) =

B (0, R0) = Ω0. Moreover, stationary radially symmetric solutions of the model (10.1) are char-
acterized by: 

u+∇P = 0 in Ω0,

div (u) = 0 in Ω0,

P =
γ

R0
+ χcfact (c) + χsg (s

′ (R0)) in Ω0,

Vn = u · n = 0 on ∂Ω0,

0 = div (∇c− (1− a)uc) in Ω0,

(∇c+ auc) · n = 0 on ∂Ω0.

(10.6a)
(10.6b)
(10.6c)
(10.6d)
(10.6e)
(10.6f)

From eqs. (10.6a), (10.6b) and (10.6d) we deduce that:{
−∆P = 0 in Ω0,

−∇P · n = 0 on ∂Ω0.

Thus, we have:
∇P = 0 in Ω0,

it follows that u = 0 in Ω0 and P is constant over Ω0.
Using this, eqs. (10.6e) and (10.6f) can be rewritten as follows:{

∆c = 0 in Ω0,

∇c · n = 0 on ∂Ω0.

This leads to c being constant over Ω0. Using the constraint on the total quantity of markers
eq. (10.2), we have:

c =
M

πR2
0

.

From the assumption (10.4), we have that g (s) is constant over ∂Ω0. Then we deduce from
eq. (10.6c) the value of P .

10.3 . Linear stability analysis

In this section, to characterise the stationary state (u0, P 0, c0,Ω0
) given by (10.5), we per-

form a linear stability analysis. We restrict our analysis to the case of monotonic external
signal. We assume that there exists a function ψs : R+ −→ R+ and η ∈ R such that for all
x ∈ R2 we have:

s (x) = η ψs (∥x∥) .

Moreover ψs is assumed to be an non-decreasing function. Thus if η > 0, the signal is said to
be attractive in 0 whereas if η < 0, the signal is said to be repulsive in 0. Therefore, in the case
of an attractive signal in 0 for all r ≥ 0 we have s′ (r) ≥ 0 and in the case of a repulsive signal
in 0 for all r ≥ 0 we have s′ (r) ≤ 0. Moreover, we assume that s is two-times differentiable.

In the remainder of this section, we prove the following theorem concerning the stability
of the stationary state when the signal is attractive.
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Theorem 10.3.1. Assume thatKs > 0. We then have:

1. If 0 < χc

χ∗
c

≤ 1 then A admits λ = 0 as eigenvalue with multiplicity two and all the others

eigenvalues have non-positive real parts.

2. If χc

χ∗
c

> 1 + 3
8KsR0 then A admits at least a positive eigenvalue λ > 0.

WhereKs is defined by:
Ks = χsg

′ (s′ (R0)) s
′′ (R0) , (10.7)

and χ∗
c by:

χ∗
c =

1

ac0f ′act (c
0)
. (10.8)

The proof follows the ideas of Alazard et al. (2022); Lavi et al. (2020).
10.3.1 . The linearized problem

Proposition 10.3.2. The problem linearised around the stationary radially symmetric state (10.5)
associated with model (10.1) is given by:

d

dt

(
ρ
c

)
= A

(
ρ
c

)
, (10.9)

where A is the operator defined onH3
(
∂Ω0

)
×H2

(
Ω0
)
by

A :

(
ρ
c

)
7→

I
[
γ

R2
0

(
∂2θθρ+ ρ

)
− χcf

′
act(c

0)c− ρKs

]
∆c


with the boundary condition

∂rc = −ac0 I
[
γ

R2
0

(
∂2θθρ+ ρ

)
− χcf

′
act(c

0)c− ρKs

]
on ∂Ω0. (10.10)

In proposition 10.3.2, I denotes the Dirichlet-to-Neumann operator. We recall from Evans
(2010) that this operator is defined as follows:
Definition 10.3.3. For ψ ∈ H1(∂Ω0), the Dirichlet-to-Neumann operator I is defined by:

I[ψ] = ∇q · n,

where q denotes the harmonic extension of ψ to the disk Ω0, that is

−∆q = 0 in Ω0, q = ψ on ∂Ω0.

Proof. Let ε > 0. We consider the following perturbation of the free boundary stationary
domain (10.5d):

Ω (t) = {(x, y) = (r cos θ, r sin θ) s.t. 0 ≤ r < R0 + ερ (t, θ) and θ ∈ (−π, π]} . (10.11)
We formally develop the solution (P, c) of the model (10.1) close to the radially symmetrical
solution (P 0, c0

) given by (10.5):
P (t, r, θ) = P 0 + εP̃ (t, r, θ) +O

(
ε2
) in Omega (t) ,

c (t, r, θ) = c0 + εc̃ (t, r, θ) +O
(
ε2
) in Ω (t) .
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From eqs. (10.1a) and (10.1b) we deduce that for all t ≥ 0, we have:
∆P̃ = 0 in Ω0. (10.12)

From eq. (10.11), we deduce that for all t ≥ 0, the perturbed domain boundary ∂Ω (t) can
be parametrized by:

φ : (−π, π] −→ ∂Ω (t)
θ 7−→ ((R0 + ερ (t, θ)) cos θ, (R0 + ερ (t, θ)) sin θ) .

Therefore, for all t ≥ 0, the outward normal vector to ∂Ω (t) at the point x = φ (θ) with
θ ∈ (−π, π], is given by:

n (θ) =



(R0 + ερ (t, θ)) cos θ + ε∂θρ (t, θ) sin θ(
(R0 + ερ (t, θ))

2
+ (ε∂θρ (t, θ))

2
) 1

2

(R0 + ερ (t, θ)) sin θ − ε∂θρ (t, θ) cos θ(
(R0 + ερ (t, θ))

2
+ (ε∂θρ (t, θ))

2
) 1

2


=

(
cos θ + ε 1

R0
∂θρ (t, θ) sin θ

sin θ − ε 1
R0
∂θρ (t, θ) cos θ

)
+O

(
ε2
)
.

(10.13)

For all t ≥ 0, θ ∈ (−π, π] and r ∈ [0, R0 + ερ (t, θ)], we have:
∇P (t, r, θ) = ∂rP (t, r, θ) er +

1

r
∂θP (t, r, θ) eθ, (10.14)

with er =

(
cos θ
sin θ

)
and eθ =

(
sin θ

− cos θ

)
. Then, combining eqs. (10.13) and (10.14), we obtain that

on ∂Ω (t):
∇P · n =

1

R0 + ερ (t, θ)
∂θP (t, R0 + ερ (t, θ) , θ)

ε

R0
∂θρ (t, θ)

+ ∂rP (t, R0 + ερ (t, θ) , θ) +O
(
ε2
)
.

Using
1

R0 + ερ (t, θ)
=

1

R0
− ε

ρ (t, θ)

R2
0

+O
(
ε2
)
,

we derive that:
∇P · n = ∂rP (t, R0, θ) + ερ (t, θ) ∂2rrP (t, R0, θ) +

ε

R2
0

∂θP (t, R0, θ) ∂θρ (t, θ) +O
(
ε2
)

which leads to
∇P · n = ε∂rP̃ (t, R0, θ) +O

(
ε2
)
. (10.15)

We denote V the boundary velocity. We have:
V =

d

dt

(
(R0 + ερ (t, θ)) cos θ
(R0 + ερ (t, θ)) sin θ

)
=

(
ε∂tρ (t, θ) cos θ
ε∂tρ (t, θ) sin θ

)
.

Then, using eq. (10.13), we have:
Vn = V · n = ε∂tρ (t, θ) +O

(
ε2
)
. (10.16)
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Combining eqs. (10.1a), (10.1d), (10.15) and (10.16) yields for all t ≥ 0 and θ ∈ (−π, π]:
∂tρ (t, θ) = −∂rP̃ (t, R0, θ) . (10.17)

Using again the fact that ∂Ω (t) can be parametrized by φ, we have that for all t ≥ 0 and
θ ∈ (−π, π], the curvature at the point x = φ (θ) is given by:

κ (θ) =
(R0 + ερ (t, θ))

2 − ε∂2θθρ (t, θ) (R0 + ερ (t, θ)) + 2ε2 (∂θρ (t, θ))
2(

(R0 + ερ (t, θ))
2
+ (ε∂θρ (t, θ))

2
) 3

2

.

Thus we have:
κ (θ) =

1

R0
− ε

R2
0

(
∂2θθρ (t, θ) + ρ (t, θ)

)
+O

(
ε2
)
.

Since
fact (c) = fact

(
c0 + εc̃+O

(
ε2
))

= fact
(
c0
)
+ εc̃f ′act

(
c0
)
+O

(
ε2
)

and
g (s′ (R0 + ερ (t, θ))) = g (s′ (R0)) + ερ (t, θ) s′′ (R0) g

′ (s (R0)) +O
(
ε2
)
,

it follows from eq. (10.1c) that for all t ≥ 0 and θ ∈ (−π, π] we have:
P̃ (t, R0, θ) = − γ

R2
0

(
∂2θθρ (t, θ) + ρ (t, θ)

)
+ χcc̃ (t, R0, θ) f

′
act

(
c0
)
+ ρKs. (10.18)

We have:
∂tc (t, r, θ) = ∂tc

0 (t, r, θ) + ε∂tc̃ (t, r, θ) +O
(
ε2
)
= ε∂tc̃ (t, r, θ) +O

(
ε2
)

and
div (∇c− (1− a)uc) = div (∇c+ (1− a)∇Pc)

= div
(
∇c0 + (1− a)∇P 0c0

)
+ ε∆c̃+O

(
ε2
)
.

Thus, using eq. (10.1e), it follows that:
∂tc̃ = ∆c̃ in Ω0. (10.19)

We also have:
(∇c+ auc) · n = (∇c− a∇Pc) · n =

(
∇c0 − a∇P 0c0

)
· n+ ε

(
∇c̃− a∇P̃ c0

)
· n+O

(
ε2
)
.

Using eq. (10.1f) we deduce that:(
∇c̃− a∇P̃ c0

)
· n = 0 on ∂Ω0. (10.20)

The linearised problem of model (10.1) around stationary state (10.5) is therefore given by
eqs. (10.12) and (10.17) to (10.20). Using the definition of the Dirichlet-to-Neumann operator, we
deduce that the linearised problem can be rewritten in the form eq. (10.9) with the boundary
condition eq. (10.10).
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10.3.2 . The eigenvalue problem for A
In this section we study the eigenvalue problem forA. To do this, as the problem is radially

symmetric, we can use Fourier analysis.
The eigenvalue problem for A is given by the search of λ ∈ C such that:

A
(
ρ
c

)
= λ

(
ρ
c

)
.

Lemma 10.3.4. Given
(
ρ
c

)
with Fourier series, then eqs. (10.9) and (10.10) describes a closed dy-

namical system for the cosine (resp. sine) perturbations.

Proof. Let (
ρ (θ)
c (r, θ)

)
=
∑
m∈N

(
ρ̂cm

ĉcm (r)

)
cos (mθ) +

∑
m∈N

(
ρ̂sm

ĉsm (r)

)
sin (mθ)

be the Fourier mode decomposition of
(
ρ
c

)
. By linearity of the operator A we have:

A
(
ρ
c

)
=
∑
m∈N

Am

(
ρ̂cm

ĉcm (r)

)
cos(mθ) +

∑
m∈N

Am

(
ρ̂sm

ĉsm (r)

)
sin(mθ),

with Am defined by

Am

(
ρ̂

ĉ (r)

)
=

I
[
− γ

R2
0

(m2 − 1)ρ̂− χcf
′
act(c

0)ĉ− ρ̂ Ks

]
(
∂2rr + r−1∂r − r−2m2

)
ĉ(r)

 . (10.21)

Furthermore, the boundary condition (10.10) on ∂Ω0 is
∂r ĉ(R0) = −ac0 I

[
− γ

R2
0

(m2 − 1)ρ̂− χcf
′
act(c

0)ĉ− ρ̂ Ks

]
.

Remark 10.3.5. Without loss of generality, by symmetry of the problem around the x-axis, we can
deduce from lemma 10.3.4 that if λ is an eigenvalue of A, then the eigenfunctions associated with
λ are of the form (

ρ (θ)
c (r, θ)

)
=
∑
m∈N

(
ρ̂mλ

ĉmλ (r)

)
cos (mθ) ,

such that for allm ∈ N,
(
ρ̂mλ

ĉmλ

)
satisfy

Am

(
ρ̂mλ

ĉmλ

)
= λ

(
ρ̂mλ

ĉmλ

)
and

∂r ĉmλ(R0) = −ac0 I
[
− γ

R2
0

(m2 − 1)ρ̂mλ − χcf
′
act(c

0)ĉmλ − ρ̂mλKs

]
,

with Am defined by eq. (10.21).
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Using the definition of theDirichlet-to-Neumann operator, we deduce the following usefull
lemma.
Lemma 10.3.6. Letm ∈ N. The eigenvalue problem on Am:

Am

(
ρ̂
ĉ

)
= λ

(
ρ̂
ĉ

)
and

∂r ĉ(R0) = −ac0 I
[
− γ

R2
0

(m2 − 1)ρ̂− χcf
′
act(c

0)ĉ− ρ̂ Ks

]
,

is equivalent to the following problem:

λρ = −∂rP on ∂Ω0,

−∆P = 0 in Ω0,

P =
γ

R2
0

(
m2 − 1

)
ρ+ χcf

′
act

(
c0
)
c+ ρKs on ∂Ω0,

λc = ∆c in Ω0,

∂rc = ac0∂rP on ∂Ω0.

(10.22a)
(10.22b)
(10.22c)
(10.22d)
(10.22e)

10.3.3 . Spectrum of A
In this section, we study the spectrum of the operator A. Thanks to remark 10.3.5, this

study can be reduced to the study of the spectrum of Am for allm ∈ N.
Proposition 10.3.7. Assume

• Ks ≥ 0,

• 0 ≤ χc

χ∗
c

≤ 1 where χ∗
c definded by eq. (10.8),

• χc > 0,

• χs > 0,

then, for allm ≥ 1, all the eigenvalues of Am have non-positive real parts.

Proof. Letm ≥ 1. Let λ ∈ C be a eigenvalue of Am.We set Q = c − ac0P where P and c satisfy eq. (10.22). Thus Q follows the following
problem:

−∆Q = ∆c in Ω0,(
1− χc

χ∗
c

)
P =

γ

R2
0

(
m2 − 1

)
ρ+ χcf

′
act

(
c0
)
Q+ ρKs on ∂Ω0,

∇Q · n = 0 on ∂Ω0,

(10.23a)
(10.23b)
(10.23c)

where P , c and ρ satisfy eq. (10.22).
Thus using eqs. (10.22) and (10.23) we compute:

λ

∫
Ω0

|c|2 dx =

∫
Ω0

c̄∆cdx =

∫
Ω0

(
Q̄+ ac0P̄

)
∆Qdx

= −
∫
Ω0

|∇Q|2 dx− ac0
∫
Ω0

∇P̄ · ∇Qdx.

304



Since ∫
Ω0

∇P̄ · ∇Qdx =

∫
∂Ω0

Q∇P̄ · n dσ

=
1

χcf ′act (c
0)

∫
∂Ω0

(
1− χc

χ∗
c

)
P∇P̄ · ndσ

+
1

χcf ′act (c
0)

∫
∂Ω0

(
γ

R2
0

(
m2 − 1

)
ρ+ ρKs

)
λ̄ρ̄dσ

=
1− χc

χ∗
c

χcf ′act (c
0)

∫
Ω0

|∇P |2 dx

+
λ̄

χcf ′act (c
0)

(
γ

R2
0

(
m2 − 1

)
+Ks

)∫
∂Ω0

|ρ|2 dσ.

We deduce that for all λ ∈ C eigenvalue of Am we have:
λ

∫
Ω0

|c|2 dx+
λ̄

χcf ′act (c
0)

(
γ

R2
0

(
m2 − 1

)
+Ks

)∫
∂Ω0

|ρ|2 dσ

= −
∫
Ω0

|∇Q|2 dx− ac0
1− χc

χ∗
c

χcf ′act (c
0)

∫
Ω0

|∇P |2 dx.

The result follows from this equality.
Lemma 10.3.8. Form ∈ N, the eigenfunctions of Am associated with the eigenvalue λ ∈ C are(

ρ(θ)
c(r, θ)

)
=

(
ρ̂mλ

ĉmλIm
(
−rλ1/2

)) cos(mθ),

with 0 < r < R0, θ ∈ (−π, π] and (ĉmλ, ρ̂mλ) ∈ C2 solutions of
(
λ+

γ

R3
0

m
(
m2 − 1

)
+
m

R0
Ks

)
ρ̂mλ = −mχc

R0
f ′act(c

0) Im

(
−R0λ

1/2
)
ĉmλ,

√
λ

2

(
Im−1

(
−R0λ

1/2
)
+ Im+1

(
−R0λ

1/2
))

ĉmλ = λac0 ρ̂mλ.

Proof. In what follows, we consider only the smooth solutions at r = 0. Let λ ∈ C be an eigen-
value ofAm and let

(
ρ(θ)
c(r, θ)

)
be the eigenfunctions associated. Thanks to the lemma 10.3.6, we

can use the representation (10.22) of the eigenvalue problem. P therefore satisfies Laplace’s
equation. There exists Amλ ∈ C such that for all 0 < r < R0 and θ ∈ (−π, π] we have:

P (r, θ) = Amλr
m cos (mθ) .

For all θ ∈ (−π, π], we set ρ (θ) = ρ̂mλ cos (mθ). Using eq. (10.22a), we get that:
λρ̂mλ = −mRm−1

0 Amλ.

We also set for all r ∈ [0, R0) and θ ∈ (−π, π], c (r, θ) = ĉmλ (r) cos (mθ). From eq. (10.22c),
we deduce that:

AmλR
m
0 =

γ

R2
0

(
m2 − 1

)
ρ̂mλ + χcf

′
act

(
c0
)
ĉmλ (R0) + ρ̂mλKs,

which leads to(
λ+

γ

R3
0

m
(
m2 − 1

)
+
m

R0
Ks

)
ρ̂mλ = −mχc

R0
f ′act

(
c0
)
ĉmλ (R0) .
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Since c satisfies equation (10.22d), we deduce that ĉmλ satisfies the following equation for
r ∈ [0, R0): (

∂2rr +
1

r
∂r −

m2

r2

)
ĉmλ (r) = λĉmλ (r) .

The solutions of this equation are known and depend of the modified Bessel function of the
first kind of orderm, denoted by Im. Thus we have for r ∈ [0, R0):

ĉmλ (r) = ĉmλIm

(
−r

√
λ
)
,

where ĉmλ ∈ C.
Using the boundary condition eq. (10.22e), we get that:

∂r ĉmλ (R0) = −λac0ρ̂mλ.

Thus, thanks to the property of the Bessel function, we deduce that:
√
λ

2

(
Im−1

(
−R0λ

1/2
)
+ Im+1

(
−R0λ

1/2
))

ĉmλ = λac0ρ̂mλ.

Form ∈ N, letHm be the function defined by:
Hm (z) =

√
z

2

(
z +

γ

R3
0

m
(
m2 − 1

)
+
m

R0
Ks

)(
Im−1

(
−R0z

1/2
)
+ Im+1

(
−R0z

1/2
))

+ zac0
mχc

R0
f ′act

(
c0
)
Im

(
−R0z

1/2
)
,

(10.24)

for z ∈ C.
We deduce from the previous lemma 10.3.8 that the eigenvalue equation is given by

Hm (z) = 0.

Hence we have the following result on the spectrum of Am.
Lemma 10.3.9. The spectrum of Am is

sp (Am) = {λ ∈ C s.t. Hm (λ) = 0} .

Finally, we prove Theorem 10.3.1, which we recall here:
Theorem 10.3.10. Assume thatKs > 0. We then have:

1. If 0 < χc

χ∗
c

≤ 1 then A admits λ = 0 as eigenvalue with multiplicity two and all the others

eigenvalues have non-positive real parts.

2. If χc

χ∗
c

> 1 + 3
8KsR0 then A admits at least a positive eigenvalue λ > 0.

Proof. From remark 10.3.5, we recall that to study the spectrum of A it is sufficient to study
the spectrum ofAm for allm ∈ N. We also recall that the eigenfunction ofAm associated with
the eigenvalue λ is given by:

vmλ (r, θ) =

(
ρ̂mλ

ĉmλIm

(
−r

√
λ
))

cos (mθ) . (10.25)
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Proof of 1.
First we study the casem = 0. In this case we have:

H0 (λ) = λ
3
2 I1

(
−R0

√
λ
)
.

We have that λ = 0 is solution of the eigenvalue equation H0 (λ) = 0. Using the result of
lemma 10.3.8 we deduce that λ = 0 is associated with the two followings eigenfunctions:

v100 (r, θ) =

(
1
0

)
and v200(r, θ) =

(
0
1

)
.

The other roots of H0 are given by λ0k = −x2
1k

R2
0
where x1k is the k-th root of J1 the Bessel

function of the first kind of order 1. Thus, since x1k > 0 for all k, we have λ0k < 0 and λ0k isassociated to the following eigenfunction:
v0k (r, θ) =

(
0

J0 (x1kr)

)
.

Secondly we study the casem ≥ 1. We observe that λ = 0 is solution of Hm (λ) = 0. The
eigenfunction associated to λ = 0 is the zero function:

vm0 (r, θ) =

(
0
0

)
cos (mθ) .

Indeed, from the result of lemma 10.3.8, we deduce that ρ̂m0 = 0. Moreover we have Im (0) =

0. Thus λ = 0 is not an eigenvalue of Am form ≥ 1.
Since Ks > 0 and 0 < χc

χ∗
c
≤ 1, we deduce from the proposition 10.3.7 that all the other

eigenvalues of Am have non-positive real parts.
Proof of 2.

We want to find a strictly positive eigenvalue of A. To do this, we expand H1 around λ = 0.
Using the properties of Bessel functions, we have:

H1 (λ) =

√
λ

2

(
Ks

R0
+

(
1 +

3

8
KsR0 − ac0χcf

′
act

(
c0
))

λ

)
+O

(
|λ|

5
2

)
.

The function λ 7→ Ks

R0
+
(
1 + 3

8KsR0 − ac0χcf
′
act

(
c0
))
λ admits

λ1 = − Ks

R0 +
3
8KsR2

0 −
χc

χ∗
c
R0

as its root. Under the assumptionKs > 0, we have:
λ1 > 0 ⇐⇒ χc

χ∗
c

> 1 +
3

8
KsR0.

when χc

χ∗
c
is close to 1+ 3

8KsR0, we cannote thatλ1 tends to not be close to 0. Weuse a graphical
argument to conclude. For a value of Ks, we plot the function H1 for different values of χc

χ∗
c(see figs. 10.1 to 10.3). We plot its real part, its imaginary part and its modulus. We see that

when χc

χ∗
c
> 1+ 3

8KsR0 then there is a root ofH1 with a positive real part. The fig. 10.2 suggests
that χc

χ∗
c
> 1 + 3

8KsR0 is indeed the criterion from which we can exhibit a positive real part
eigenvalue. Thus, when χc

χ∗
c
> 1 + 3

8KsR0 the stationary state is unstable.
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Figure 10.1: Representation of H1 in the complex framework for R0 = 1, Ks = 0.5 and
χc

χ∗
c

= 0.975. Plots of the real part (left), the imaginary part (middle) and the modulus (right) of the

functionH1 for λ = x+ iy ∈ C with x, y ∈ [−3, 3]. We are in the case where χc

χ∗
c
< 1 + 3

8KsR0, we
observe that the root ofH1 with the greatest real part have negative real part.

2 0 2
x

2

0

2

y

Real part

2 0 2
x

2

0

2

y

Imaginary part

2 0 2
x

2

0

2

y

Modulus

0.50

0.25

0.00

0.25

0.50

Representation of H1 when R0 = 1, Ks = 0.5 and c
*
c

= 1.175

Figure 10.2: Representation of H1 in the complex framework for R0 = 1, Ks = 0.5 and
χc

χ∗
c

= 1.175. Plots of the real part (left), the imaginary part (middle) and the modulus (right) of the

functionH1 for λ = x+ iy ∈ C with x, y ∈ [−3, 3]. We are in the case where χc

χ∗
c
= 1+ 3

8KsR0, we
observe that the root ofH1 with the greatest real part seems to have zero as real part.
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Figure 10.3: Representation of H1 in the complex framework for R0 = 1, Ks = 0.5 and
χc

χ∗
c

= 1.375. Plots of the real part (left), the imaginary part (middle) and the modulus (right) of the

functionH1 for λ = x+ iy ∈ C with x, y ∈ [−3, 3]. We are in the case where χc

χ∗
c
> 1 + 3

8KsR0, we
observe that the root ofH1 with the greatest real part seems to have positive real part.
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10.4 . Study of the associated rigid model

In this scetion we study the rigid model associated with model (10.1). Informally, this is
obtained when the surface tension tends towards infinity. We assume the cell to be rigid and
to have a circular shape: Ω (t) is a disk of radiusR0 > 0. We assume that the the velocity of the
centre of mass in the rigid case is the same as in the deformable one. Thus the cell boundary
moves at the velocity of the centre of mass. The rigid model associated with the deformable
model (10.1) is then given by:



∂tc = div (∇c− (1− a)uc) in Ω (t) ,

(∇c+ auc) · n = 0 on ∂Ω (t) ,

u (t) = − 1

AΩ

∫
∂Ω(t)

(χcfact (c) + χsg (∇s · n))ndσ,

Ω (t) = B (0, R0) +

∫ t

0

u (s) ds.

(10.26a)
(10.26b)
(10.26c)
(10.26d)

The eq. (10.2) remains true in the rigid case.
Under the assumption of radially symmetric signal eq. (10.4), we prove that the model

eq. (10.26) admits a unique stationary state and study its stability.
10.4.1 . Stationary state

Proposition 10.4.1. Under the assumption eq. (10.4), the model (10.26) admits an unique station-
ary radially symmetric solution. This solution is given by:

c0 =
M

πR2
0

in Ω0,

u0 = 0 in Ω0,

Ω0 = B (0, R0) .

(10.27a)
(10.27b)
(10.27c)

Proof. The stationary problem associated with the model (10.26) is given as follows:
∆c = 0 in Ω0,

∇c · n = 0 on ∂Ω0,

u0 = 0 in Ω0,

Ω0 = B (0, R0) .

Necessarily c is constant over Ω0. Using the constraint on the total quantity of markers
eq. (10.2), we deduce that for x ∈ Ω0, c (x) = M

πR2
0

.

We study the stability of the stationary state when the signal is attractive (Ks > 0).
Theorem 10.4.2. In the case where Ks defined by eq. (10.7) is positive, if χc

χ∗
c
< 1 + 3

8KsR0 the
stationary state (10.27) is linearly stable. On the opposite, if χc

χ∗
c
> 1 + 3

8KsR0 the stationary state(10.27) is linearly unstable.
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10.4.2 . Proof of theorem 10.4.2
To study the linear stability of the stationary state (10.27) and proof theorem 10.4.2, we

proceed in three steps. First, we linearise the problem (10.26) around this stationary state.
From the linearisation of the problem, we derive an eigenvalue problem. Secondly, we study
this eigenvalue problem. We study the sign of the real part of the eigenvalues: when there is
an eigenvalue with a positive real part, the stationary state is linearly unstable, whereas when
all the eigenvalues have a negative real part, the stationary state is linearly stable. To do this,
we use Fourier analysis to decompose the eigenvalue problem into simpler problems. Finally,
we derive an explicit condition on the eigenvalues. We conclude with a graphical argument.
The arguments used are inspired by those of Lavi et al. (2020); Alazard et al. (2022) and are
similar to those of sections 4.2.1.2, 5.2.2 and 6.2.2.
Step 1. The linearised problem associated with themodel (10.26) around the stationary state
(10.27) in the following lemma. Then we deduce an eigenvalue problem associated to this
linearised problem.
Lemma 10.4.3. The linearised problem associated to eq. (10.26) around the stationary state (10.27)
is given by:

∂tc̃ = ∆c̃ in Ω0,(
∇c̃+ aũc0

)
· n = 0 on ∂Ω0,

ũ (t) =
−χcf

′
act

(
c0
)

AΩ

∫
∂Ω0

c̃ (t,x)n dσ − Ks

R0
x̃cell (t) ,

(10.28a)
(10.28b)
(10.28c)

where x̃cell = (x̃cell, ỹcell) such that for all t ≥ 0:

d

dt
x̃cell (t) = ũ (t) .

Ks is defined by eq. (10.7).
Proof. We perform a formal expansion of the solutions of model (10.26) around the stationary
state (10.27). Let ε > 0 small. For all t ≥ 0, we set:

Ω (t) = B (xcell (t) , R0) ,

with
xcell (t) = εx̃cell (t) +O

(
ε2
)
.

Thus we can set for all t ≥ 0:
u (t) = u0 + εũ (t) +O

(
ε2
)
.

Moreover, for all t ≥ 0 and x ∈ Ω0, we set:
c (t,x) = c0 + εc̃ (t,x) +O

(
ε2
)
.

Using the fact that c0 satisfies eq. (10.27a) and c satisfies (10.26a), we deduce that in Ω0:
∂tc̃ = ∆c̃.
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We also have on ∂Ω0 that:
(∇c+ auc) · n =

(
∇c0 + ε∇c̃+ au0c0 + εau0c̃+ εaũc0

)
· n+O

(
ε2
)

= ε
(
∇c̃+ aũc0

)
· n+O

(
ε2
)
,

which leads to the boundary condition:(
∇c̃+ aũc0

)
· n = 0 on ∂Ω0.

Moreover, we have:∫
∂Ω(t)

fact (c)ndσ =

∫
∂Ω(t)

fact
(
c0
)
+ εc̃f ′act

(
c0
)
n dσ +O

(
ε2
)

= εf ′act
(
c0
) ∫

∂Ω(t)

c̃ndσ +O
(
ε2
)

= εf ′act
(
c0
) ∫

∂Ω0

c̃ndσ +O
(
ε2
)
.

We also have:∫
∂Ω(t)

g (∇s (x) · n)ndσ

=

∫ 2π

0

g

(
∇s
(
R0 cos θ
R0 sin θ

)
·
(
cos θ
sin θ

))(
cos θ
sin θ

)
dθ

+ ε

∫ 2π

0

g′
(
∇s
(
R0 cos θ
R0 sin θ

)
·
(
cos θ
sin θ

))
H (s)

(
R0 cos θ
R0 sin θ

)
x̃cell ·

(
cos θ
sin θ

)
dθ +O

(
ε2
)

= εg′ (s′ (R0)) s
′′ (R0)πx̃cell +O

(
ε2
)

Thus we deduce that
ũ =

−χcf
′
act

(
c0
)

AΩ

∫
∂Ω0

c̃n dσ − KsR0π

AΩ
x̃cell.

The eigenvalue problem associated with eq. (10.28) is given by:
λc̃ = ∆c̃ in Ω0,(
∇c̃+ aũc0

)
· n = 0 on ∂Ω0,

ũ = λx̃cell =
−χcf

′
act

(
c0
)

AΩ

∫
∂Ω0

c̃ (x)ndσ − Ks

R0
x̃cell.

(10.29a)
(10.29b)
(10.29c)

where λ ∈ C.

Step 2. Using Fourier analysis and the radially symmetric nature of the problem (10.29), we
show the following lemma, which reduces the spectral study of eq. (10.29) to a simpler prob-
lem.
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Lemma 10.4.4. The problem (10.29) admits an eigenvalue with a positive real part if and only if
the following problem eqs. (10.30) and (10.31) admits one.

λc =

(
∂2rr +

1

r
∂r −

1

r2

)
c r ∈ (0, R0) ,

∂rc (R0) + aũc0 = 0,

λx̃cell = ũ,

(10.30a)
(10.30b)
(10.30c)

with

ũ =
−χcf

′
act

(
c0
)

R0
c (R0)−

Ks

R0
πx̃cell. (10.31)

Proof. Since problem (10.29) is radially symmetrical, we can use Fourier analysis to study its
spectra. Let λ ∈ C and let (c̃, ũ) be an eigenfunction associated with λ. In polar coordinates,
for all r ∈ (0, R0) and θ ∈ (−π, π], the Fourier decomposition of c̃ is given by:

c̃ (r, θ) =
∑
m∈N

ccm (r) cos (mθ) +
∑
m∈N

csm (r) sin (mθ) .

Thus, we have: ∫
∂Ω

c̃ndσ = πR0

(
cc1 (R0)
cs1 (R0)

)
.

It follows that:
ũ =

−χcf
′
act

(
c0
)

R0

(
cc1 (R0)
cs1 (R0)

)
− Ks

R0
x̃cell.

By linearity of eq. (10.29) and independence of the cosine and sine modes, we deduce that
for allm ̸= 1, ccm and csm satisfy:λcm =

(
∂2rr +

1

r
∂r −

m2

r2

)
cm r ∈ (0, R0) ,

∂rcm = 0 r = R0.

(10.32a)
(10.32b)

Moreover, in the case wherem = 1, we have that cc1 satisfies:λcc1 =

(
∂2rr +

1

r
∂r −

m2

r2

)
cc1 r ∈ (0, R0) ,

∂rcc1 (R0) + aũxc
0 = 0,

(10.33a)
(10.33b)

and similarly, cs1 satisfies:λcs1 =

(
∂2rr +

1

r
∂r −

m2

r2

)
cs1 r ∈ (0, R0) ,

∂rcs1 (R0) + aũyc
0 = 0,

(10.34a)
(10.34b)

where ũx and ũy denotes the two coordinates of ũ. We can note that ũ depends only on the
modem = 1 which allows us to use the independence of the cosine and sine modes.

We then have that studying the spectrum of problem (10.29) is equivalent to studying, for
all m ̸= 1, the spectrum of problem (10.32) and those of problems (10.33) and (10.34). We
note that for all m ̸= 1, the eigenvalues of problem (10.32), which corresponds to the heat
equation, have negative real parts. Thus, if problem (10.29) has a positive real part eigenvalue,
then problem (10.33) or problem (10.34) has a positive real part eigenvalue. By symmetry, we
see that problems (10.33) and (10.34) are analogous. We therefore restrict our spectral study
of problem (10.29) to the spectral study of the problem (10.33).
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Step 3. Westudy the spectral problem (10.30) and showwith a graphical argument thatwhen
χc < χ∗

c then all the eigenvalues of eq. (10.30) are of negative real part and that if χc > χ∗
c thenthere exists an eigenvalue of eq. (10.30) of positive real part.

Lemma 10.4.5. Let λ ∈ C. The eigenfunctions of eqs. (10.30) and (10.31) associated with the
eigenvalue λ ∈ C are given by: (

c (r)
xcell

)
=

(
βλI1

(
−λ 1

2 r
)

x̂cell,λ

)
, (10.35)

where r ∈ (0, R0),H1 denotes themodified Bessel function of the first kind of order 1 and (βλ, x̂cell,λ) ∈
C2 solution of:

−λ 1
2 βλI

′
1

(
−λ 1

2R0

)
= λac0x̂cell,λ, (10.36)

and (
λ+

Ks

R0

)
x̂cell,λ =

−χcf
′
act

(
c0
)

R0
βλI1

(
−λ 1

2R0

)
. (10.37)

Proof. From eq. (10.30c), we deduce that:
xcell = x̂cell,λ ∈ C

satisfy
λxcell = ũ.

Combining it with the expression of ũ, we deduce that:
λxcell =

−χcf
′
act

(
c0
)

R0
βλI1

(
−λ 1

2 r
)
− Ks

R0
πxcell. (10.38)

From the definition of the Bessel functions, there exists βλ ∈ C such that the solutions c
of eq. (10.30a) are given, for all r ∈ (0, R0), by:

c (r) = βλI1

(
−λ 1

2 r
)
.

Then, using eq. (10.38), the the boundary condition eq. (10.30b) reads eq. (10.36).
The following lemma follows:

Lemma 10.4.6. Let λ ∈ C be an eigenvalue of eqs. (10.30) and (10.31). Then λ is such thatH1 (λ) =

0 withH1 defined for all z ∈ C by:

H1 (z) =

√
z

2

(
z +

1

R0
Ks

)(
I0

(
−R0z

1/2
)
+ I2

(
−R0z

1/2
))

+ zac0
χc

R0
f ′act

(
c0
)
I1

(
−R0z

1/2
)
.

We find the same function H1 as in the deformable case (see eq. (10.24)). By carrying
out the same graphical study as in the deformable case (see figs. 10.1 to 10.3), we observe
that the roots if χc

χ∗
c
< 1 + 3

8KsR0 the roots of H1 have negative real parts whereas when
χc

χ∗
c
> 1 + 3

8KsR0, there exists a root ofH1 with a positive real part.
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10.5 . Numerical study of the rigid model

In this section, we first design a finite element numerical scheme to perform numerical
simulations of the rigid model. Secondly, using numerical simulations, we illustrate that there
is a trade-off between the cell that listens to its polarity and the cell that is attracted by an
attractive signal source. We also show that there is a range of parameters for which the cell is
able to follow a moving attractive signal source.

10.5.1 . Numerical scheme
In this section we write a finite element scheme to run simulations of the rigid model

eq. (10.26). This scheme is obtained after an implicit time discretization and a finite element
discretization in space.

10.5.1.1 . Time discretization
We discretize in time our model eq. (10.26). Let ∆t be the time step. For i ∈ {0, . . . , Nf}with Nf ∈ N, we denote ti = i∆t, ui = u

(
ti
), ci = c

(
ti, ·
), and ΩiΩ

(
ti
). We also denote by si

the external signal at time ti.
The implicit discretization of the problem is given by:

ci+1 − ci

∆t
= div

(
∇ci+1 + aui+1ci+1

) in Ωi,(
∇ci+1 + aui+1ci+1

)
· n = 0 on ∂Ωi,

ui =
−1

AΩ

∫
∂Ωi

χcfact
(
ci
)
n+ χsg

(
∇si · n

)
ndσ,

Ωi+1 =
(
Id+∆tui+1

) (
Ωi
)
.

(10.39a)
(10.39b)
(10.39c)
(10.39d)

10.5.1.2 . Spatial discretization
We discretize in space our time-discrete model eq. (10.39). We use a finite element dis-

cretization. Let T be a triangulation of Ωi. For all triangle K ∈ T we note (λK1 , λK2 , λK3 ) thebarycentric coordinate functions of K. Let Pk be the set of polynomials of R2 of degrees less
or equal k. LetHc be the functional space define by:

Hc =
{
ψ ∈ H1

(
Ωi
)
| ∀K ∈ T , ψ K ∈ P1 ⊕ Span

{
λK1 , λ

K
2 , λ

K
3

}}
.

10.5.1.3 . Variational formulation of the discrete problem on the concentra-
tion

The variational formulation of eq. (10.39) is given by:

Find ci+1 ∈ Hc such that for all ψ ∈ Hc, we have:∫
Ωi

(
ci+1 − ci

∆t

)
ψ dx

+

∫
Ωi

(
aui+1ci+1 +∇ci+1

)
· ∇ψ dx = 0.

(10.40)

10.5.1.4 . Numerical scheme
After initialization with cin given, a time iteration of the numerical scheme to simulate the

problem (10.26) is given by the following algorithm:
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Algorithm 10.1 : Numerical scheme to simulate the model eq. (10.26) obtained after timediscretization and space discretization with a finite element method.
1. Initialisation: c0 = cin the given initial condition and definition of the mesh.
2. Time iteration:

(a) Compute ui+1 =
−1

AΩ

∫
∂Ωi χcfact

(
ci
)
n+ χsg

(
∇si · n

)
ndσ.

(b) Computation of the markers concentration ci+1 using ui+1 by solving thevariational formulation eq. (10.40).
(c) Update of the domain:

Ωi+1 =
(
Id+∆tui+1

) (
Ωi
)
.

10.5.2 . Numerical results
We implement the numerical scheme using FreeFEM++ (Hecht, 2012). Using numerical

simulations, we want to highlight that despite the presence of an attractive signal source, the
cell does not always find the signal source. To illustrate this, we assume that the cell is initially
located at (0, 0) and that a signal source is located at (4, 0). The cell is initially unpolarised. We
simulate trajectories for different values of χc and χs.

We observe that for small values of χc, whatever the value of χs, the cell finds the signalsource. These are the values for which the stationary state is stable. Once the signal source is
found, the cell stops (see figs. 10.4 and 10.5).
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0.0010

y

Trajectory of the cell
cell position
signal position

0 20 40 60 80 100
time

0.0

0.1

0.2

0.3

0.4

u c
m

Time evolution of the cell's 
 velocity norm

Figure 10.4: Trajectory and cell velocity evolution in presence of an attractive signal
source in the case where χc = 0.5 and χs = 0.5. On the left is represented the trajectory
of the cell and position of the signal source. On the right is represented the time evolution of the
cell’s velocity norm. We observe that the cell rapidly finds the signal source. Once this is found, the
cell stops.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1,M = π, a = 1,
cin =

M

|Ω \N |
, χc = 0.5, fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, χs = 0.5, s (x) = 0.25 |x− xsignal|2,

with xsignal = (0, 4), g (x) = tanh (ςsx) with ςs = 0.25.

When χc is large, we see that the cell is initially attracted towards the signal source. How-
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Figure 10.5: Trajectory and cell velocity evolution in presence of an attractive signal
source in the case where χc = 0.5 and χs = 1. On the left is represented the trajectory of
the cell and position of the signal source. On the right is represented the time evolution of the cell’s
velocity norm. We observe that the cell rapidly finds the signal source. Once this is found, the cell
stops.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1,M = π, a = 1,
cin =

M

|Ω \N |
, χc = 0.5, fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, χs = 1, s (x) = 0.25 |x− xsignal|2, with

xsignal = (0, 4), g (x) = tanh (ςsx) with ςs = 0.25.

ever, it does not stop and continues on its way. While remaining polarised and listening to its
own polarisation, the cell remains attracted by the signal. We observe a trade-off between the
two forces, that induced by the cell’s polarisation and that induced by the external signal. The
cell rotates around the signal source at a constant velocity. We can see that the larger χs is,the closer the cell is to the signal source (see figs. 10.6 and 10.7).

These observations highlight the existing trade-off between the force induced by the ex-
ternal signal and the force induced by the markers. It also highlights the fact that the chosen
modelling implies that the signal source has an influence on the cell whatever the position of
the cell. In order not to have this second effect, one possibility is to restrict the action of the
signal source to a certain area.
Conclusion and perspectives. We have thus presented a model that takes external signals
into account. We aim to continue the observations made on this model. Initially, we wish to
study the impact of the external signal when its action is restricted to a certain area. We also
aim to perform numerical simulations in the deformable case to characterise the influence of
the external signal on the shape of the cell.

Additionally, we aim to pursue an ongoing work when the cell is in the presence of an
obstacle and a source of an attractive signal. We aim to characterise the cases where the cell
finds the signal source. Numerically, we obtain situationswhere the cell finds the signal source
(see fig. 10.8), others where the cell stays behind the obstacle, and finally situations where the
cell bypasses the obstacle but does not find the signal source.
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Figure 10.6: Trajectory and cell velocity evolution in presence of an attractive signal
source in the case where χc = 1.5 and χs = 0.5. On the left is represented the trajectory
of the cell and position of the signal source. On the right is represented the time evolution of the
cell’s velocity norm. We can see that the cell is first attracted in the direction of the signal source.
The cell does not stop once it has reached the source of the signal. We observe a balance between
the forces induced by the external signal and the polarity markers on the boundary of the cell. The
cell has a circular movement around the signal source. We can see that the cell is farest to the signal
source in the case illustrated here than in the case illustrated in fig. 10.7.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1,M = π, a = 1,
cin =

M

|Ω \N |
, χc = 1.5, fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, χs = 0.5, s (x) = 0.25 |x− xsignal|2,

with xsignal = (0, 4), g (x) = tanh (ςsx) with ςs = 0.25.
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Figure 10.7: Trajectory and cell velocity evolution in presence of an attractive signal
source in the case where χc = 1.5 and χs = 1. On the left is represented the trajectory of
the cell and position of the signal source. On the right is represented the time evolution of the cell’s
velocity norm. We can see that the cell is first attracted in the direction of the signal source. The
cell does not stop once it has reached the source of the signal. We observe a balance between the
forces induced by the external signal and the polarity markers on the boundary of the cell. The cell
has a circular movement around the signal source. We can see that the cell is closest to the signal
source in the case illustrated here than in the case illustrated in fig. 10.6.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1,M = π, a = 1,
cin =

M

|Ω \N |
, χc = 1.5, fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, χs = 1, s (x) = 0.25 |x− xsignal|2, with

xsignal = (0, 4), g (x) = tanh (ςsx) with ςs = 0.25.
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Figure 10.8: Snapshots of the evolution of the cell position in presence of an external
obstacle and external attractive signal. Snapshots at time t = 0, t = 0.25, t = 0.375, t = 0.5,
t = 0.625, and t = 0.75 of the cell organisation in presence of an external obstacle and an external
signal. The red area of cell represents the area with high markers concentration and the area in
dark blue the one with low markers concentration. The gray shape represents the obstacle and the
dark dot represent the position of the attractive signal. We can observe that the cell bypasses the
obstacles and finds the signal source. The contact between the cell and the obstacle is managed by
a Uzawa algorithm.
The results presented here are obtained with the parameters ∆t = 0.005, R0 = 1, M = π, a =
1, cin (x) = K (1 +X (x))11+X(x)>0 where for all x ∈ Ω we have X (x) ∼ N (0, 1) and K
such that

∫
Ω
cin (x) dx = M , χc = 1, fact (c) = c(1+cs)

2

cs(c+cs)
with cs = 0.5, χs = 1, and s (x) =

0.25 |x− xsignal|2, with xsignal = (0, 4), g (x) = tanh (ςsx) with ςs = 0.5.

319



Bibliography

Alazard, T., Magliocca, M., and Meunier, N. (2022). Traveling wave solution for a coupled in-
compressibleDarcy’s free boundary problemwith surface tension. arXiv:2205.04365 [math].
300, 311

Evans, L. C. (2010). Partial Differential Equations: Second Edition, volume 19 of Graduate
Studies in Mathematics. American mathematical society edition. 300

Hecht, F. (2012). New development in freefem++. J. Numer. Math., 20(3-4):251–265. 316
Lavi, I., Meunier, N., Voituriez, R., and Casademunt, J. (2020). Motility and morphodynamics of
confined cells. Physical Review E, 101(2):022404. Publisher: American Physical Society. 300,
311

320



11 - Modeling Compartmentalization within Intracellular Sig-
naling Pathway

In this chapter, we present a work done during the summer school CEMRACS 2022 on
Transport in Physic, Biology and Urban traffic. This work was done in collaboration with Juan
Calvo, Erwan Hingant, Saoussen Latrach, Nathan Quiblier and Romain Yvinec. This work is
submitted and accepted.

In this work, we present a novel approach to modeling receptor-activated signaling path-
ways that take into account the compartmentalization of receptors and their effectors, both
on the cell surface and in dynamic intracellular vesicles called endosomes. The first building
block of themodel concerns compartment dynamics. It takes into account creation of de novo
endosomes, i.e. endocytosis, and further recycling of endosomes to the cell surface or degra-
dation, as well as fusion of endosomes via coagulation dynamics. The second building block
concerns biochemical reactions on the cell surface and within intra-cellular compartments.
Both building blocks are coupled by the transfer of molecules that occurs at each event that
modifies the compartments.

The model is formulated as a integro-partial differential equation, with transport and co-
agulation operators, and source terms, coupled to an integro-differential equation. In this
work, we prove sufficient conditions to obtain exponential ergodicity for the size distribu-
tion of intracellular compartments. We further design a finite volume scheme to simulate our
model. Finally, we show two application cases that show qualitative agreement with recently
published data, proving that our model can help capture the spatio-temporal complexity of
receptor-activated signaling pathway.

11.1 . Introduction

G Protein Coupled Receptors (GPCR) are a large class of transmembrane receptors: they
are proteins located at the cell surface (plasma membrane) that are specialized in receiv-
ing (binding to) extracellular molecules, called ligand. The ligand-bound receptor will sub-
sequently affect biochemical changes through the plasma membrane towards intracellular
molecules. GPCR thus play a key role in the signal transduction, which allows long range cell
communications mediated by ligand (e.g. hormones, cytokines, growth factors etc) and leads
to major changes in the metabolism and activity of a cell (Lefkowitz, 2013; Roth et al., 2015). In
addition, GPCR form an important class of targeted pharmaceutical agents in many different
physiological contexts.

A receptor-activated signalling pathway, or biochemical cascade, is a chain of biochem-
ical events activated by a receptor upon ligand binding. A series of signal transducers, or
effector molecules, are activated within a reaction network (with typically many feedbacks
and/or feedforward loops) and ultimately leads to a cell response, e.g. changes in gene ex-
pression, cell growth, metabolism (Kholodenko, 2006). Recently, it has been shown that GPCR
are pleiotropic: they are able to selectively activate different signalling pathways. Distinct bio-
chemical events can indeed bemodulated by the nature of the ligand (either native physiolog-
ical ligand or pharmaceutical agent) and the specific 3D conformational structured adopted
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by the ligand-bound receptor. This pleiotropy sheds light into important cell regulation mech-
anisms that need to be taken into account to design efficient therapeutic strategies (Kenakin,
2019).

GPCR do not permanently stay at the plasma membrane. Rather, an important desensiti-
zation mechanism of signaling pathways is receptor endocytosis. Receptor endocytosis is the
internalization inside the cell of a vesicle surrounded by an area of cell membrane which con-
tains receptor (and other) molecules. Endocytosis is an active form of transport of molecules.
The vesicles, called endosomes, and their molecular content, can further be degraded by cell
machinery through hydrolytic enzymes, or be partly recycled back to the plasma membrane.
These spatial movements induce, upon ligand binding, an heterogeneous population of re-
ceptors spread out between plasmamembrane and a dynamic population of endosomes with
distinct micro-environment. Within the context of receptor-activated signalling pathways, the
processes of endocytosis, degradation and/or recycling are commonly referred to receptor
trafficking, and provide further cell regulation mechanisms of signaling pathways (Birtwistle
and Kholodenko, 2009). Key evidence have indeed shown that the intra-cellular traffic of in-
ternalized receptors has a major impact in cell response to a given stimuli (Jean-Alphonse and
Hanyaloglu, 2011; Vilardaga et al., 2014).

In this work, we will focus our applications on a specific class of receptors that share in
common the activation of the same effector molecule, the cyclic adenosine monophosphate
(cAMP). For a number of GPCR among this class, including the Beta-2 Adrenergic Receptors
(β2AR) (Kim et al., 2021), the parathyroid hormone receptor (PTHR) (Jean-Alphonse et al., 2014),
the luteinizing hormone receptor (LHR) (Lyga et al., 2016), or the follicle-stimulating hormone
receptor (FSHR) (Sayers and Hanyaloglu, 2018), after ligand binding, the production of cAMP
occurs first at the plasma membrane and later on from a highly dynamic pool of endosomes
following internalization of the receptor by endocytosis. This spatio-temporal dimension of
signaling has been found to have a significant impact on physiological functions, such as the
control of serum calcium by PTHR signaling (White et al., 2021), or the resumption of meiosis
by LHCGR signaling (Lyga et al., 2016).

Thus, to faithfully represent the complexity of signalling pathways, we need to take into
account the dynamic of the transient pool of specialised endosomes (Sorkin and von Zastrow,
2009; Birtwistle and Kholodenko, 2009; Villaseñor et al., 2016) following receptor stimulation,
and its role on the reaction networks involved in the signalling pathways. The current biolog-
ical hypothesis is that the endosomal compartments provide a dynamic and heterogeneous
compartmentalised structure that allows specialised effector molecules to be separated from
the bulk cytoplasm (physically separated through a lipid bilayer) in order to have a proper
function of the cell response.

Classical ways to model the dynamic behaviour of signalling pathways use Chemical Re-
action Networks (Ingalls, 2013), either in a deterministic formalism using ordinary differen-
tial equations (Feinberg, 2019), or in a stochastic formalism (typically when few molecules are
present) using continuous-time Markov chains (Anderson and Kurtz, 2015). Both approaches
typically assume the law of mass action and an idealised homogeneous environment. When
spatial dynamics is important to take into account, one may use reaction-diffusion models
to represent for instance spatial gradients (Kholodenko, 2006), or compartmental models,
to physically represent segregation between static compartments (Weddell and Imoukhuede,
2017). Note that in most applied literature, like in the field of epidemiology (e.g. SIR model),
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compartmental models refers to finite-dimensional dynamical systems where one variable is
associated to each compartment, and the model described fluxes between compartments.

Up to our knowledge, relatively few works have addressed the issue of representing ex-
plicitly the segregation of molecules in a dynamic environment. The peculiarity of receptor
trafficking at play within signalling pathways is that the endosomal compartments are created
upon receptor activation, and their number, their size and their molecular content evolved
dynamically, within a similar time scale than that of the signalling pathways activation. A
first attempt of defining such models, within the context of signalling pathways, dates back
to Foret et al. (2012) and uses a deterministic population dynamics formalism to follow a pop-
ulation of compartments, structured by their size and molecular content, and which undergo
coagulation-fragmentation like dynamics, representing endocytosis, fusion, fission, recycling
and degradation. Recently, a stochastic counterpart has been proposed by Duso and Zech-
ner (2020); Pietzsch et al. (2021); Anderson and Howells (2023). To the best of our knowledge,
a model that represents the chemical reactions that take place both at plasma membrane
and within a dynamic population of endosomal compartment has never been considered and
represents a novelty of our current work.

In this work, we define and study the long-time behavior and numerical schemes of min-
imal deterministic models that can represent compartmentalised signalling pathways, taking
inspiration fromForet et al. (2012). Furthermore, we provide two simple examples of ourmodel
that show that this model is able to represent qualitatively main experimental observations
on cAMP signaling from Jean-Alphonse et al. (2014); White et al. (2021).

In section 11.2, we describe two minimal models, structured with respectively one or two
variables, that can represent the size-distribution of the endosomal compartment population
and their molecular content. In section 11.3, we study the long time behavior of the model
structured with a single variable. In section 11.4, we present a numerical scheme for the more
general model, structured with two variables. In section 11.5, we present some numerical sim-
ulations that provide qualitative comparisons with experimental observations.

11.2 . Modelling compartmentalised signalling pathways

The first objective is to be able to define a model to simulate the endosomal compart-
ment dynamics from their size structure perspective only. We adopt a deterministic popula-
tion dynamic approach, where individuals are structured by a single positive variable (their
size). From biological observations, the main processes that shape the size distribution of the
endosomal population include:

• Endocytosis: creation of a de-novo compartment from the cell membrane;
• Removal of compartment: either recycling back to the cell membrane, or degradation
through lysosomal pathways;

• Fusion: binary coagulation of compartments.
Let g = g(t, r) be the population density of endosomal compartments at time t ∈ R+ and size
(volume) r ∈ R+. The evolution equation for g, that takes into account the three mechanisms
above is given by, for all t > 0 and r > 0:
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∂g(t, r)

∂t
= Q(g, g)(t, r)︸ ︷︷ ︸

coagulation
+ α(r)︸︷︷︸

endocytosis
− γ(r)g(t, r)︸ ︷︷ ︸

removal
, (M1)

where
Q(g, g)(t, r) =

1

2

∫ r

0

κ(r − r′, r′)g(t, r − r′)g(t, r′)dr′ −
∫ ∞

0

κ(r, r′)g(t, r)g(t, r′)dr′ . (11.1)
In the sequel, we denote g(0, r) = g0(r) the initial condition of Eq. (M1). A similar equa-

tion may be found in Foret et al. (2012); Alexandrov et al. (2022). The coagulation operator is
quadratic: two compartments of respective size r, r′ fuse in one compartment of size r + r′

at rate κ(r, r′). One obtains Eq. (11.1) by considering all compartments that reach size r and
all that leave size r. The kernel κ ≥ 0 is symmetric (κ(r, r′) = κ(r′, r)), such that the coagu-
lation operator Eq. (11.1) preserves mass (∫ rQ(g, g)(r)dr = 0). In particular, we have (at least
formally),

d

dt

∫ ∞

0

rg(t, r)dr =

∫ ∞

0

rα(r)dr −
∫ ∞

0

γ(r)rg(t, r)dr . (11.2)
Endocytosis is a zero-order process at rate α (source term), compartment removal is a first-
order process and occurs at a rate γ. In the sequel, model (M1) will be referred as our 1D
model.

The second modelling step is to include molecular content into Eq. (M1). One may first
think as an additional one dimensional structure variable1. The first example we have in mind
is the quantity of (active) receptor within each compartment, which is of primary interest to
represent receptor trafficking within cells (see application in subsection 11.5.1). The second
example we have in mind is the production of cAMP effector molecules, both at the plasma
membrane and within each endosomes (see application in subsection 11.5.2). Thanks to this
second structuring variable, besides compartment dynamics, we aim to represent:

• Biochemical reactions inside each compartment. Reaction rates are dependent on local
abundances of molecular species, as well as the size (andmore generally other physical
variable like pH) of the compartment.

• Biochemical reactions that occur at the plasma membrane.
• Molecular conservation laws that may hold at each event that modifies the compart-
ments, in particular between membrane and compartments. Hence we will now distin-
guish between compartment degradation and compartment recycling.

Let f = f(t, r, a) be the population density of compartments at time t ∈ R+, size (volume)
r ∈ R+ and molecular content a ∈ R+. Let alsoM =M(t) ∈ R+ be the molecular quantity at
the plasma membrane. The joint evolution equation for f,M is , for all t > 0, r > 0 and a > 0,

1In future work, this additional structure variable could be an arbitrary finite dimensional variable torepresent other molecular actors of signalling pathways that are either physically located at the plasmamembrane, in the endosomal compartments or at the vicinity of those.
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∂f(t, r, a)

∂t
+
∂ (V (r, a)f(t, r, a))

∂a︸ ︷︷ ︸
reactions

= Q̃(f, f)(t, r, a)︸ ︷︷ ︸
coagulation

+ α(r, a,M(t))︸ ︷︷ ︸
endocytosis

− γ(r, a)f(t, r, a)︸ ︷︷ ︸
degradation

−λ(r, a)f(t, r, a)︸ ︷︷ ︸
recycling

, (M2a)

dM(t)

dt
= JM (M(t))︸ ︷︷ ︸

reactions
−
∫ ∞

0

∫ ∞

0

aα(r, a,M(t))dadr︸ ︷︷ ︸
endocytosis

+

∫ ∞

0

∫ ∞

0

aλ(r, a)f(t, r, a)dadr︸ ︷︷ ︸
recycling

, (M2b)

where
Q̃(f, f)(t, r, a) =

1

2

∫ r

0

∫ a

0

κ(r − r′, r′)f(t, r − r′, a− a′)f(t, r′, a′)da′dr′

−
∫ ∞

0

∫ ∞

0

κ(r, r′)f(t, r, a)f(t, r′, a′)da′dr′ . (11.3)
In the sequel, we denote f(0, r, a) = f0(r, a) and M(0) = M0 the initial conditions of

Eqs. (M2a)-(M2b).
In Eq. (M2a), the extension of the coagulation and endocytosis processes to include the

second structuring variable a is clear. Note that we chose the coagulation kernel to be depen-
dent on the size of the compartments (not their molecular content), for the sake of simplicity.
The removal terms are now splitted in two: the degradation occurs at rate γ, and the recy-
cling occur at rate λ. The transport term represents the biochemical reactions that modify the
molecular content within each compartment, and which occur at rate V (r, a). Also, the endo-
cytosis rate α is necessarily dependent on themolecular content of the plasmamembraneM ,
to avoid negative values forM , e.g. α(r, a, 0) = 0. In Eq. (M2b), JM represent biochemical reac-
tions that occur at the plasmamembrane, and the two integral terms represent themolecules
that are lost or gained at the plasma membrane through respectively the endocytosis or re-
cycling processes. The Eq. (M2b) on the scalar variableM was not present in Foret et al. (2012)
and, to the best of our knowledge, it is a novelty of our model. Still interpreting the molec-
ular content as a quantity of receptors, it allows to represent conservation laws of receptors
between plasma membrane and endosomal compartments, giving a satisfactory representa-
tion of the biological concept of receptor trafficking: receptors (together with other molecules)
undergo directed movement back-and-forth between plasma membrane and intra-cellular
endosomal compartments. In particular, we have (at least formally),

d

dt

(∫ ∞

0

∫ ∞

0

rf(t, r, a)drda

)
=

∫ ∞

0

∫ ∞

0

rα(r, a,M(t))drda

−
∫ ∞

0

∫ ∞

0

γ(r, a)rf(t, r, a)drda−
∫ ∞

0

∫ ∞

0

λ(r, a)rf(t, r, a)drda , (11.4)
and

d

dt

(∫ ∞

0

∫ ∞

0

af(t, r, a)drda+M(t)

)
= JM (M(t)) +

∫ ∞

0

∫ ∞

0

V (r, a)f(t, r, a)drda

−
∫ ∞

0

∫ ∞

0

γ(r, a)af(t, r)drda . (11.5)
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The choice of the rate functions α, γ, λ and κmainly governs the compartment size dynamics.
In Foret et al. (2012); Alexandrov et al. (2022), the authors consider a one-dimensional model
(M1) with constant coagulation kernel, constant first-order rate γ, and exponentially decaying
source rate α(r) = Ce−r/a0 . The choice of the rate functions V and JM will mainly impact
the molecular content at the plasma membrane and within compartments. Its choice may
be guided by the underlying chemical reactions that take place at the plasma membrane and
within compartments. Linear or polynomial functions may thus be suitable to represent mass
action kinetic law.

In the sequel, the model given by Eqs. (M2a)-(M2b) will be referred as our 2D model.
In the remaining, in Eq. (M1), Eqs. (M2a)-(M2b), all rate functions and initial conditions are

nonnegative. Further, wedonot address in this paper thewell-posedness of solutions of either
Eq. (M1) or Eqs. (M2a)-(M2b) and rather take for granted that a unique sufficiently smooth
nonnegative solution is given.

11.3 . Long time behavior of the 1D model (M1)
In this section we provide sufficient conditions so that Eq. (M1) exhibits a unique glob-

ally stable steady state. The large-time behaviour of this equation -also known as coagulation
equation with source and efflux (Chae and Dubovskii, 1995), has been studied first in Gajewski
(1983) with drift, in Dubovskii (1994); Laurençot (2020) without efflux, in Vásquez (2015) with
a bounded coagulation kernel and in Ghosh et al. (2023) with a singular coagulation kernel.
Here, we limit ourselves to give a self-contained proof of exponential stability of the steady
state in L1 with bounded coagulation kernel. We mainly use a contraction argument, taking
inspiration from Collet and Goudon (1999).
Theorem 11.3.1. Let g0, α, κ, γ nonnegative. Assume α is integrable, κ and γ are bounded and
morevover inf γ = γ0 > 0. If

3∥κ∥L∞∥α∥L1 < γ20 , (11.6)
then there exists a unique nonnegative stationary solution in L1(R+) of Eq. (M1), denoted by g∞.
Moreover,

∥g∞∥L1 ≤ ∥α∥L1

γ0
,

and for every solution g ∈ C(R+, L
1(R+)) we have
lim

t→+∞
∥g(t)− g∞∥L1 = 0 .

The convergence is at least exponential with rate γ2
0−3∥κ∥L∞∥α∥L1

γ0
> 0.

We do not expect condition (11.6) to be optimal. See the discussion in Section 11.4.2. We as-
sume here that well-posedness of a unique nonegative solution g ∈ C(R+, L

1(R+)) of Eq. (M1)
is given. We note that this implicitly imposes conditions on the rate functions and the initial
condition, which will at least need to be nonnegative and integrable. See Canizo (2006) for
more details.
Proof. First we prove existence and uniqueness of a stationary solution g∞ thanks to a Banach
fixed point argument. Let us define

X =

{
g ∈ L1(R+) : g ≥ 0, ∥g∥L1 ≤ ∥α∥L1

γ0

}
.
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Consider a constantK ≥ ∥γ∥L∞ + ∥κ∥L∞
∥α∥L1

γ0
. For g ∈ X we define

TKg =
1

K
(α− γg +Q(g, g) +Kg) .

The operator TK is well-defined sinceQ(g, g) is also well-defined for any integrable g provided
that κ is bounded (Collet and Goudon, 1999, Lemma 3). We aim to apply Banach’s fixed point
theorem for TK on X -which is a closed subset of the Banach space L1(R+); this will give astationary solution of Eq. (M1). Let g ∈ X , we have that

TKg ≥ 1

K
(K − ∥γ∥L∞ − ∥κ∥L∞∥g∥L1) g . (11.7)

Indeed, g and α are positive and κ is bounded, thus
Q(g, g) ≥ −g(r)

∫ ∞

0

κ(r, r′)g(r′)dr′≥ −∥κ∥L∞∥g∥L1g(r) ,

which leads to Eq. (11.7) thanks to the boundedness of γ. The fact that ∥g∥L1 ≤ ∥α∥L1

γ0
and the

condition onK entail the positivity of TKf . Then, because∫ ∞

0

Q(g, g) dr = −1

2

∫ ∞

0

∫ ∞

0

κ(r′, r)g(r′)g(r)dr′dr ≤ 0 ,

we deduce that
∥TKg∥L1 =

∫ ∞

0

1

K
(α(r)− γg(r) +Q(g, g)(r) +Kg(r)) dr ≤ ∥α∥L1

K
+
K − γ0
K

∥g∥ .

ButK ≥ ∥γ∥L∞ ≥ γ0, thus, for g ∈ X ,
K∥TKg∥L1 ≤ ∥α∥L1 + (K − γ0)

∥α∥L1

γ0
≤ K

∥α∥L1

γ0
,

and we conclude that TKg belongs to X . We now show that TK is a contraction on X . Let g
and h inX . It is straightforward to check that

∥TKg − TKh∥L1 ≤ (1− γ0
K

)∥g − h∥L1 +
1

K
∥Q(g, g)−Q(h, h)∥L1 .

By a simple computation (see e.g. Collet and Goudon (1999, Lemma 3) or Vásquez (2015);
Canizo (2006)),

∥Q(g, g)−Q(h, h)∥L1 ≤ 3

2
∥κ∥L∞(∥g∥L1 + ∥h∥L1)∥g − h∥L1

≤ 3∥κ∥L∞
∥α∥L1

γ0
∥g − h∥L1 . (11.8)

Thus, we have
∥TKg − TKh∥L1 ≤

(
1 +

1

K
(3∥κ∥L∞

∥α∥L1

γ0
− γ0)

)
∥g − h∥L1 .

Then the hypothesis Eq. (11.6) allows us to conclude that there exists a unique fixed point to
TK in X . Moreover, this is the unique stationary solution which is positive and belongs to
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L1. Indeed, assume we have a positive stationary solution g /∈ X i.e. in L1 satisfying γ0 ∫ g >
∥α∥L1 . Then

0 =

∫ ∞

0

(α(r)− γ(r)g(r) +Q(g, g)(r)) dr ≤ ∥α∥L1 − γ0

∫ ∞

0

g(r) dr < 0 ,

which is a contradiction.
We now turn to the proof of asymptotic stability. Let g ∈ C(R+, L

1(R+)) be a nonnegativesolution to Eq. (M1) in the sense of distributions and let g∞ ∈ L1(R+)be the stationary solution.We first provide a bound on g. We have
d

dt

∫ ∞

0

g(t, r)dr = ∥α∥L1 − γ0

∫ ∞

0

g(t, r)dr +

∫ ∞

0

Q(g, g)(t, r)dr ≤ ∥α∥L1 − γ0

∫ ∞

0

g(t, r)dr .

Thus,
∥g(t, ·)∥L1 ≤ ∥g(0, ·)∥L1e−γ0t +

∥α∥L1

γ0
.

It is a classical computation that
∂

∂t
|g − g∞| = −γ(r)|g − g∞|+ (Q(g, g)−Q(g∞, g∞)) sign(g − g∞).

Thus, using Eq. (11.8),
d

dt
∥g(t, ·)− g∞∥L1 ≤

[
−γ0 +

3

2
∥κ∥L∞

(
∥g(0, ·)∥L1e−γ0t +

∥α∥L1

γ0
+ ∥g∞∥L1

)]
× ∥g(t, ·)− g∞∥L1

≤
(
3∥κ∥L∞

∥α∥L1

γ0
− γ0 +

3

2
∥κ∥L∞∥g(0, ·)∥L1e−γ0t

)
∥g(t, ·)− g∞∥L1 .

We conclude that
∥g(t, ·)− g∞∥L1 ≤ ∥g(0, ·)− g∞∥L1e

3∥κ∥L∞

2γ0
∥g(0,·)∥L1−

γ2
0−3∥κ∥L∞∥α∥L1

γ0
t
,

which ends the proof.

11.4 . Numerical scheme for 1D and 2D models

In this section, we detail our Finite Volumenumerical schemeused to simulate ourmodels,
and numerically illustrate their properties. In order to tackle the complexity of the model, we
decided to construct a conservative scheme that preserves moments of the solution. To that,
we use of the finite volume scheme framework, after reformulating the coagulation operator
in a divergence form in the spirit of Bourgade and Filbet (2007); Hingant and Sepúlveda (2015).
The transport term is treated by an up-wind scheme. Remaining terms are approximated in a
standard way. Time is treated by a first order Euler explicit approximation.

11.4.1 . Finite volume scheme
We want to write a numerical scheme of the 2D model, Eqs. (M2a)-(M2b) using a finite

volume method.
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First we can remark that, for r > 0 and a > 0, we can rewrite our Eq. (M2a) in the following
conservative form Bourgade and Filbet (2007)

∂tf (t, r, a) =
1

ra
∂r∂aC (f) (t, r, a)− ∂a (V (r, a) f (t, r, a))

+ α (r, a,M (t))− λ (r, a) f (t, r, a)− γ (r, a) f (t, r, a) ,
(11.9)

where
C (f) (t, r, a) =

∫ r

0

∫ a

0

r′a′Q̃ (f, f) (t, r′, a′)da′dr′.

FromEq. (11.9), wewill first detail the truncationwe use (step (i)) and the discretization (step
(ii)). Then, we detail the finite volume approximation of the coagulation and first-order trans-
port operator in the right-hand side of Eq. (11.9) (step (iii)). We finally sum-up the numerical
scheme in the last step (step (iv)).

(i) Truncation As in Hingant and Sepúlveda (2015); Bourgade and Filbet (2007), to study our
equation, we will truncate the size variable to a maximal value R > 0 and the quantity of
reactants variable to a maximal value A > 0 and we will choose a truncation of the functional
C. We chose the following truncation, given by, for any r ≤ R and a ≤ A,

CRAc (f) (t, r, a) =
1

2

∫ r

0

∫ a

0

r′a′
∫ r′

0

∫ a′

0

κ (r′ − r′′, r′′) ...

...f (t, r′ − r′′, a′ − a′′) f (t, r′′, a′′) da′′dr′′da′dr′

−
∫ r

0

∫ a

0

r′a′f (t, r′, a′)

∫ R−r′

0

∫ A−a′

0

κ (r′, r′′) f (t, r′′, a′′) da′′dr′′da′dr′.

(11.10)

The truncation in Eq. (11.10) ensures that no cluster of size larger than R and molecular
content larger than A arise. It can be obtained from Eq. (11.3) using the truncated kernel
κ(r, r′)1r+r′<R1a+a′<A instead of κ(r, r′). The equation we will numerically approximate is
a truncated version of Eq. (11.9) on the time interval [0, T ], where T > 0. We then look at the
equation, for any 0 < t < T , 0 < r ≤ R and 0 < a ≤ A,

∂tf
RA (t, r, a) =

1

ra
∂r∂aCRAc

(
fRA

)
(t, r, a)− ∂a

(
V (r, a) fRA (t, r, a)

)
+ α (r, a,M (t))− λ (r, a) fRA (t, r, a)− γ (r, a) fRA (t, r, a) .

(11.11)

Heuristically, we expect fRA to be close to f as long as themass of f outside [0, R/2]× [0, A/2]

is small (so that coagulation that leads to compartment of size larger than R and molecular
content larger than A are unlikely). We call Eq. (11.11) a conservative truncation of Eq. (11.9)
because the choice of the truncation of the coagulation operator does not lead to a loss of
mass in the firstmoments. In particular, fRA satisfies, at least formally, (compare to Eqs. (11.4)-
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(11.5)),
d

dt

(∫ ∞

0

∫ ∞

0

rfRA(t, r, a)drda

)
=

∫ ∞

0

∫ ∞

0

rα(r, a,M)drda

−
∫ ∞

0

∫ ∞

0

γ(r, a)rfRA(t, r, a)drda

−
∫ ∞

0

∫ ∞

0

λ(r, a)rfRA(t, r, a)drda ,

(11.12)

and
d

dt

(∫ ∞

0

∫ ∞

0

afRA(t, r, a)drda+M(t)

)
=JM (M(t))

+

∫ ∞

0

∫ ∞

0

V (r, a)fRA(t, r, a)drda

−
∫ ∞

0

∫ ∞

0

γ(r, a)afRA(t, r)drda .

(11.13)

We choose to use a conservative truncation for our scheme in order to construct a scheme
that preserves the conservation properties (11.12)-(11.13), as we will verify it in the case of pure
coagulation.

(ii) Grids definition Let Ir ∈ N. We discretize the size interval [0, R] into Ir intervals. We
denote by (ri− 1

2

)
i∈{1,...,Ir+1}

a regular mesh of [0, R] with size step∆r and we set

ri =
ri− 1

2
+ ri+ 1

2

2
=

(
i− 1

2

)
∆r, i ∈ {1, . . . , Ir} .

Let Ia ∈ N. Wediscretize the size interval [0, A] into Ia intervals. Wedenote by(aj− 1
2

)
j∈{1,...,Ia+1}a regular mesh of [0, A] with step∆a and we set

aj =
aj− 1

2
+ aj+ 1

2

2
=

(
j − 1

2

)
∆a, j ∈ {1, . . . , Ia} .

For all i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia}, we set
Λij =

[
ri− 1

2
, ri+ 1

2

]
×
[
aj− 1

2
, aj+ 1

2

]
.

Let∆t > 0be the time step. Wediscretize [0, T ]by the set of points {tn = n∆t, n ∈ {0, . . . , N}},
where N =

⌊
T
∆t

⌋.
(iii) Finite volumeapproximation For alln ∈ {0, . . . , N}, i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia},
we denote fni,j an approximation of the function fRA at the point (tn, ri, aj). Wewill recursively
calculate fni,j such that

fni,j ≈
1

∆r∆a

∫
Λij

fRA (tn, r, a) dadr.
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Similarly, we denote by Mn an approximation of M (tn). First, we write the explicit forward
Euler scheme in time associated to the Eq. (11.11). For all n ∈ {0, . . . , N − 1}, we have

fRA
(
tn+1, r, a

)
− fRA (tn, r, a)

∆t
=

1

ra
∂r∂aCRAc

(
fRA

)
(tn, r, a)

− ∂a
(
V (r, a) fRA (tn, r, a)

)
+ α (r, a,Mn)

− λ (r, a) fRA (tn, r, a)− γ (r, a) fRA (tn, r, a)

+O(∆t).

(11.14)

For each i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia}, we will integrate Eq. (11.14) over Λij . We first
deal with the coagulation operator. Approximating ra by the constant ri− 1

2
aj− 1

2
on Λij , andintegrating, we obtain∫

Λij

1

ra
∂r∂aCRAc

(
fRA

)
(tn, r, a) dadr

≈ 1

ri− 1
2
aj− 1

2

(
CRAc

(
fRA

) (
tn, ri+ 1

2
, aj+ 1

2

)
− CRAc

(
fRA

) (
tn, ri− 1

2
, aj+ 1

2

)
− CRAc

(
fRA

) (
tn, ri+ 1

2
, aj− 1

2

)
+ CRAc

(
fRA

) (
tn, ri− 1

2
, aj− 1

2

))
. (11.15)

Using a change of variable r′ − r′′ → r′ in Eq. (11.10), and decomposing the first two integralsin telescopic sums we have,
CRAc

(
fRA

) (
tn, ri+ 1

2
, aj+ 1

2

)
=

1

2

i∑
k=1

j∑
m=1

∫ r
k+1

2

r
k− 1

2

∫ a
m+1

2

a
m− 1

2

∫ r
i+1

2
−r′

0

∫ a
j+1

2
−a′

0

(a′ + a′′) (r′ + r′′)κ (r′, r′′) ...

...fRA (tn, r′, a′) fRA (tn, r′′, a′′) da′′dr′′da′dr′

−
i∑

k=1

j∑
m=1

∫ r
k+1

2

r
k− 1

2

∫ a
m+1

2

a
m− 1

2

r′a′fRA (tn, r′, a′) ...

...

∫ R−r′

0

∫ A−a′

0

κ (r′, r′′) fRA (tn, r′′, a′′) da′′dr′′da′dr′.

Further, setting κk,k′ =
1

∆r2

∫ r
k+1

2

r
k− 1

2

∫ r
k′+1

2

r
k′− 1

2

κ (r, r′) dr′dr, and approximating again prod-
uct terms ra by their left value on Λij , we approximate CRAc by:
CRAc

(
fRA

) (
tn, ri+ 1

2
, aj+ 1

2

)
≈ 1

2
(∆r∆a)

2
i∑

k=1

j∑
m=1

i−k+1∑
k′=1

j−m+1∑
m′=1

(
am− 1

2
+ am′− 1

2

)(
rk− 1

2
+ rk′− 1

2

)
κk,k′fnk,mf

n
k′,m′

− (∆r∆a)
2

i∑
k=1

j∑
m=1

Ir−k+1∑
k′=1

Ia−m+1∑
m′=1

am− 1
2
rk− 1

2
κk,k′fnk,mf

n
k′,m′ ,

(11.16)

Plugging this latter approximation (11.16) into Eq. (11.15), we finally define the approximation
of the coagulation operator, as
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Qn
i,j (f, f) = (∆r∆a)2

(
1

2

i∑
k=1

j∑
m=1

κk,i−k+1f
n
k,mf

n
i−k+1,j−m+1

−fni,j
Ir−i+1∑
k=1

Ia−j+1∑
m=1

κi,kf
n
k,m

)
. (11.17)

Note that the approximation Qn
i,j of Q̃ (fRA, fRA

) is conservative (in the sense that it pre-
serves the first moments in r and a), as we will show in the next section. Then, we use an
upwind approximation for the transport term, together with an integration of transport veloc-
ity over r using the midpoint rule:
∫
Λij

∂a
(
V (r, a) fRA (t, r, a)

)
dadr

=

∫ r
i+1

2

r
i− 1

2

(
V
(
r, aj+ 1

2

)
fRA

(
t, r, aj+ 1

2

))
dr

−
∫ r

i+1
2

r
i− 1

2

(
V
(
r, aj− 1

2

)
fRA

(
t, r, aj− 1

2

))
dr

≈W
i,j+

1
2
fRA

(
t, ri, aj+ 1

2

)
∆r −W

i,j− 1
2
fRA

(
t, ri, aj− 1

2

)
∆r

≈ ∆r ·
[
Aup

(
W

i,j+
1
2
, fni,j , f

n
i,j+1

)
−Aup

(
W

i,j− 1
2
, fni,j−1, f

n
i,j

)]
, (11.18)

whereWi,j− 1
2
=

1

2

(
V
(
ri+ 1

2
, aj− 1

2

)
+ V

(
ri− 1

2
, aj− 1

2

)), fni,0 = fni,Ir+1 = 0, and the operator
Aup is

Aup (u, f+, f−) =
{
uf+ if u ≥ 0,
uf− if u < 0.

(iv) Finite volume scheme Finally, the scheme of the model (M2a)-(M2b) is given by:

• Initialization for i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia} we set

f0i,j =
1

∆r∆a

∫
Λij

f (0, r, a) dadr.

• Time iteration: for alln ∈ {1, . . . , N}, i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia}, using Eqs. (11.17)-
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(11.18), and using an explicit forward Euler scheme in time forM , we set:
fn+1
i,j =fni,j +

∆t

∆r∆a
Qn

i,j (f, f)

− ∆t

∆a

[
Aup

(
W

i,j+
1
2
, fni,j , f

n
i,j+1

)
−Aup

(
W

i,j− 1
2
, fni,j−1, f

n
i,j

)]
+

∆t

∆r∆a

[∫
Λij

α (r, a,Mn) dadr − fni,j

∫
Λij

λ (r, a) dadr

−fni,j
∫
Λij

γ (r, a) dadr

]
.

Mn+1 =Mn +∆t JM (Mn)−∆t

∫ R

0

∫ A

0

a′α (r′, a′,Mn) da′dr′

+∆t

Ir∑
i=1

Ia∑
j=1

fni,j

∫
Λij

aλ (r, a) dadr.

(11.19)

The remaining integrals in Eq. (11.19) are calculated using an automatic adaptive numer-
ical integration method, detailed in Genz and Malik (1980) and implemented in the Julia
package HCubature2.

Remark 11.4.1. With the same tools, we can write a scheme in dimension 1 for model (M1), noticing
that if we set h (t, r) = rg (t, r) we have

∂th (t, r) = −∂rJ (g) (t, r) + rα (r,M (t))− γ (r)h (t, r) ,

where J (g) is defined as follows

J (g) (t, r) =

∫ r

0

∫ ∞

r−r′
r′κ (r′, r′′) g (t, r′) g (t, r′′) dr′′dr′.

A conservative truncation is then given by the following:

JR
c (g) (t, r) =

∫ r

0

∫ R−r′

r−r′
r′κ (r′, r′′) g (t, r′) g (t, r′′) dr′′ dr′.

11.4.2 . Numerical tests
In this section, we will investigate the behavior of the numerical scheme given by Eq. (11.19)

in some particular cases. We aim to verify the conservation laws satisfied by the numerical
scheme, the consistency and convergence properties of the numerical scheme, as well as to
illustrate the long-time behavior we proved in Theorem 11.3.1.
Conservation laws and consistency. First, we will evaluate the numerical scheme in the
case of a pure coagulation model (α = γ = λ = V = JM = 0). We consider the pure
coagulation equation:

∂tf (t, r, a) = Q̃ (f (t) , f (t)) (r, a) , with t > 0, r > 0 and a > 0. (11.20)
2https://github.com/JuliaMath/HCubature.jl

333



The discrete equation associated to Eq. (11.20) is given by, as a special case of Eq. (11.19)
when α = γ = λ = V = JM = 0,
fn+1
i,j = fni,j +

∆t

∆r∆a
Qn

i,j (f, f) , n ∈ {1, . . . , N} , i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia} , (11.21)
and where Qn

i,j is defined in Eq. (11.17). We remark that we keep the same properties on the
moments dynamics for the two Eqs. (11.20) and (11.21). For some test function φ, we define
H (φ, t) the moment of f associated with the function φ at time t > 0,

H (φ, t) :=

∫ ∞

0

∫ ∞

0

φ (r, a) f (t, r, a) dadr ,

and Hn (φ) its discrete analogue moment, associated with the function φ at time tn with n ∈
{1, . . . , N},

Hn (φ) := ∆r∆a

Ir∑
i=1

Ia∑
j=1

φ
(
ri− 1

2
, aj− 1

2

)
fni,j . (11.22)

Then
d

dt
H (φ, t) =

d

dt

[∫ ∞

0

∫ ∞

0

φ (r, a) f (t, r, a) dadr

]
=

∫ ∞

0

∫ ∞

0

φ (r, a) Q̃ (f (t) , f (t)) (r, a) dadr

=
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

[φ (r + r′, a+ a′)− φ (r, a)− φ (r′, a′)]

κ (r, r′) f (t, r, a) f (t, r′, a′) da′dr′dadr ,

and similarly
Hn+1 (φ)−Hn (φ)

∆t
=

(∆r∆a)
2

2

Ir∑
i=1

Ia∑
j=1

Ir−i+1∑
k=1

Ia−j+1∑
m=1

[
φ
(
ri+k−1− 1

2
, aj+m−1− 1

2

)
−φ

(
ri− 1

2
, aj− 1

2

)
− φ

(
rk− 1

2
, am− 1

2

)]
κi,kf

n
i,jf

n
k,m.

Thus choosing φ (r, a) = r or φ (r, a) = a, we have that the first-order moments are con-
stant in time both at the discrete and continuous levels, consistently with Eqs. (11.4)-(11.5) and
Eqs. (11.12)-(11.13) for the pure coagulation case. We also have that the zeroth-order moments
are non-increasing functions of time in both cases.

For the pure coagulation model given by Eq. (11.20), choosing an affine kernel κ (r, r′) =

K0 +K1 (r + r′) leads to a closed moment equation in the form of an ODE system. Indeed, in
such case, it is easy to see that we have the following ODE system for the moments of order 0
and 1: 

d

dt
H (1, t) = −1

2
K0 (H (1, t))

2 −K1H (1, t)H (r, t) ,

d

dt
H (r, t) = 0,

d

dt
H (a, t) = 0.

(11.23)

Eq. (11.23) is of the form of a Bernoulli differential equation, and its analytical solution
can be computed. The pure coagulation case with an affine kernel is thus an appropriate
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setting to compare analytical solutions with moments associated to our numerical scheme
(11.21) calculated by Eq. (11.22). For this purpose, we introduce the following notation, for x > 0:

Nx(µ, σ) =
1√
2πσ

e−
1
2 (

x−µ
σ )

2

1x>0 . (11.24)
We approximate the pure coagulation Eq. (11.20) using the scheme Eq. (11.21) with the following
numerical parameters:

T = 1 ,∆t = 10−4 , R = A = 10 ,∆r = ∆a = 0.25 . (11.25)
We study two cases. The first one is the case of a constant kernel with the following model
parameters:

f0 (r, a) = 0.5 · [Nr (1.5, 0.15)×Na (0.5, 0.3) +Nr (0.5, 0.3)×Na (1.5, 0.15)] ,

κ (r, r′) = 0.5 .
(11.26)

The second one is the case of an affine kernel with the following model parameters:
f0 (r, a) = 0.5 · [Nr (1.5, 0.15)×Na (0.5, 0.3) +Nr (0.5, 0.3)×Na (1.5, 0.15)] ,

κ (r, r′) = 0.5 + 0.1 (r + r′) .
(11.27)

As expected, we recover from our numerical scheme (11.21) that the moment of order 0 is
a nonincreasing function and the moments of order 1 are constant (Figure 11.1). Moreover, we
also observed that these numerical results are very close to the analytical solutions directly
computed from Eq. (11.23) (Figures 11.2 and 11.3). Relative error of moments of order 0 are
increasing through time, as expected from the fact that the size-truncation of the numerical
scheme (11.21) implies more and more error as compartments gets bigger in pure-coagulation
dynamics.

Figure 11.1: Time evolution of the moments of order 0 and 1 (see inserted legend) computed from
our pure coagulation numerical scheme (11.21), with the constant kernel and the model parameters(11.26) for the left picture and with the constant kernel and themodel parameters (11.27) for the right
one. The results are obtained with the numerical parameters (11.25). In both cases, the moment of
order 0 is a nonincreasing function and the moments of order 1 are constant. With the choice of
our initial condition, both moments of order 1 in r and a superimposed.
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Figure 11.2: Relative error of themoments of order 0 (left panel) and 1 (right panel) betweenmoments
computed from our pure coagulation numerical scheme (11.21) and from the analytical solution of
the ODE system Eq. (11.23), in the case of a constant kernel (11.26) with the same parameters as in
the left panel of Figure 11.1.

Figure 11.3: Relative error of themoments of order 0 (left panel) and 1 (right panel) betweenmoments
computed from our pure coagulation numerical scheme (11.21) and from the analytical solution of
the ODE system Eq. (11.23), in the case of an affine kernel (11.27) with the same parameters as in the
right panel of Figure 11.1.

Convergence. Wenow investigate the convergence property of our numerical scheme given
by Eq. (11.19) in a more general setting. We want to illustrate the convergence of the numer-
ical scheme as the size steps ∆r and ∆a decreases to 0. Regarding stability, we expect the
numerical scheme to be conditionally stable for small enough ∆t

∆r∆a as our scheme is a first-
order finite volume scheme, but the proof of stability is out of the scope of this paper. See for
instance Bourgade and Filbet (2007) for stability results on the coagulation part. We thus fix
a small enough time step ∆t and choose ∆r = ∆a = h with linearly decreasing h in a log2
scale, namely hm = h0

2m for integersm from 0 to 11 and h0 = 1
2 . The finite volume size is then

decreasing from h20 to ( h0

211

)2. We choose the finest solution as reference solution and com-
pare the solutions defined on the coarser grids to this reference solution with the following
different norms, defined for a function f and k, l ∈ N as follows:

∥f∥k,l =
∫ R

0

∫ A

0

rkal |f (r, a)|dadr.
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Those moment-based norms are natural within the context of coagulation equations, see e.g.
Eqs. (11.12)-(11.13). The fact that the grids are nested allows to compute the following errors, for
m ∈ {0, ...10},

∥E(hm, t
n)∥k,l = h211

R/h11∑
i=1

A/h11∑
j=1

rki− 1
2
alj− 1

2
| fn,hm

i,j − fn,h11

i,j | , (11.28)

where the value of fn,hm

i,j are extended from the coarser grid to the finer grid by taking its
value constant over the subdomains defined by the finer grid. We compute the errors defined
in Eq. (11.28) up to second order moments (0 ≤ k + l ≤ 2) in two different cases as we detail
now. For that aim, we introduce the notation, for x > 0,

Px(x̄, ϵ) =

(
x̄+ ϵ− x

x̄+ ϵ

) 1
3 (x

x̄

) 2
3

. (11.29)

(i) Case 1 We approximate the pure coagulation case Eq. (11.20) (Figure 11.4) with the numer-
ical parameters

∆t = 0.0005 , R = A = 3 ,∆r = ∆a = hm , (11.30)
and the model parameters

f0 (r, a) = 0.5 · [Nr (1.5, 0.15)×Na (0.5, 0.3) +Nr (0.5, 0.3)×Na (1.5, 0.15)] ,

κ (r, r′) = 0.5 .
(11.31)

(ii) Case 2 We approximate the general case Eqs. (M2a)-(M2b) (Figure 11.5), with the model
parameters

f0 (r, a) = 0.5 · [Nr (1.5, 0.15)×Na (0.5, 0.3) +Nr (0.5, 0.3)×Na (1.5, 0.15)] ,

M0 = 20 ,

κ (r, r′) = 0.5 ,

α (r, a,M) = 0.1 ·M · [Nr (0.6, 0.01)×Na (0.3, 0.05) +Nr (0.3, 0.05)×Na (0.6, 0.01)] ,

γ (r, a) = 20 (r − 5)
4
1r>5 + 10−5 ,

λ (r, a) = 10−2 · Pr(10, 0) ,

V (r, a) = 0 ,

JM (M) = 0 ,

(11.32)

and the same numerical parameters as in Eq. (11.30). In both cases, we observe that the error
decreases linearly (in log-log scale) when the size of the discretization step h does. For both
cases, the order of the scheme appears to be 1.
Long-time behavior. Finally, we we illustrate the long-time behavior of the numerical solu-
tions and test the optimality of the conditions from the long time behavior given in Theorem
11.3.1 for the one dimensional model (M1), with the numerical parameters

∆t = 0.05 , R = 5 , Ir = 301 , (11.33)
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Figure 11.4: Illustration of the convergence of the numerical scheme (11.21) in the case of the pure
coagulation (case 1, numerical andmodel parameters given by Eqs. (11.30)-(11.31)) . We plot the error
as a function of the grid size h, in log-log scale, using the six different norms ∥E(hm, t

n)∥k,l defined
in Eq. (11.28) for 0 ≤ k + l ≤ 2 (see inserted legend).

Figure 11.5: Illustration of the convergence of the numerical scheme (11.19) in case 2 (numerical and
model parameters given by Eqs. (11.30)-(11.32)). See legend of Figure 11.4.
and the model parameters

f0 (r, a) = 0.5 · Nr(0.2, 0.15) ,

κ (r, r′) = 1 ,

α (r,M) =M · Nr(0.6, 0.1) .

(11.34)

We show in Figure 11.6 two cases. In the first one (left hand-side), we use γ (r) = √
3.1 together

with Eq. (11.34), for which the condition Eq. (11.6) of Theorem 11.3.1 is satisfied. In the second
one (right hand-side), we use γ (r) = 0.7 together with Eq. (11.34), for which the condition
Eq. (11.6) is not satisfied. In both cases, the curves for t = 10 and t = 50 are superimposed,
and we observe that the solution seems to converge to a stationary state. Numerically, while
we verify the conclusion of Theorem 11.3.1 holds true, it seems that the condition Eq. (11.6)
is too restrictive since the scheme stays stable in a wider range of parameters such that the
condition Eq. (11.6) is not satisfied.
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Figure 11.6: Size-distribution of the population density g of endosomal compartement for model(M1) at different times (see inserted legend) and parameters given by Eqs. (11.33)-(11.34). On the
left hand-side the condition Eq. (11.6) is satisfied (γ (r) = √

3.1) whereas on the right hand-side the
condition Eq. (11.6) is not satisfied (γ (r) = 0.7). In both cases, the curves for t = 10 and t = 50 are
superimposed.

11.5 . Applications

In this section we provide two applications of our 2Dmodel given by Eqs. (M2a)-(M2b), that
show good qualitative agreement with published experimental data on receptor-activated sig-
naling pathways. Our simulations also provide additional insight, which calls for new experi-
ments.

11.5.1 . Receptor trafficking
The 2Dmodel given by Eqs. (M2a)-(M2b) is ideally suited tomodel receptor trafficking from

plasma membrane to endocytic comparments. As detailed in the introduction, the GPCR are
typically located at the surface of the cells, on the plasma membrane. Upon ligand binding,
the GPCR activate several signalling pathways as well as their own internalization through en-
docytosis. The vesicles still carry the internalised receptors on their surface. Endosomes are
then sorted thanks to complex processes which are not yet fully understood, but that depends
both on the nature of the receptor and the ligand. Internalized receptors can indeed commit to
several endosomal compartments of different kinds, and be recycled at the cell surface, which
could impact on the kinetic profile of the receptor and its signalling pathways. Consequently,
endocytosis regulate receptor cell surface density and signaling profile, and endosomal tar-
geting of receptorsmay produce specificity in the signaling pathways. In particular, it has been
shown (Jean-Alphonse et al., 2014) that the LHR and the B2AR are twoGPCR that undergo diver-
gent trafficking to distinct endosomal compartments. B2AR trafficsmostly to early endosomes
(EEs) and LHR to pre-early endosomes (pre-EEs). In short, the authors in Jean-Alphonse et al.
(2014) demonstrate that LHR endosome sizes increased over time quickly before reaching a
plateau, producing a small endosome population (400-500 nm of diameter). The mean B2AR
endosome sizes are bigger (1200-1400 nm of diameter). They also see that B2AR was more
internalized than LHR in percentage but both receptors are equally recycled. The objective of
this section is to provide numerical simulations of our model (M2a)-(M2b) that can reproduce
these two distinct scenarios.

In order to compare qualitatively our model with the experimental results presented in
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Jean-Alphonse et al. (2014), we choose the following parametrization (we recall definitions in
Eqs. (11.24)-(11.29)):

f0 (r, a) = 0 ,

M0 = 7.2× 10−4 ,

κ (r, r′) = K0 ,

α (r, a,M) = αNr(200, 10)×Na(r, 0.5)×M ,

γ (r, a) = 10−5 + 2× 101 ×
(
r − 1950

50

)4

1{r>1950} ,

λ (r, a) = 10−2 × Pr(2000, 0) ,

V (r, a) = 0 ,

JM (M) = 0 ,

(11.35)

which we interpret as follows. Endosomes fuse at a constant coagulation kernel κ, whose
rate will depend on the receptor. Endosomes are created with a size following a Gaussian
law and with a quantity of reactant proportional to their size, and the rate α > 0 will depend
on the receptor. Small endosomes are degraded at constant (low) rate, and degradation rates
quickly increases for endosomes large enough. Endosomes recycling increasewith the surface
of endosomes and decreases with their volume ( λ ∝ r

2
3 − r). We don’t consider reactions,

e.g. V and JM are taken as null functions.
For the numerical scheme, we take

T = 30,∆t = 10−1, Ir = Ia = 30, R = A = 2000. (11.36)
To explain the qualitative differences between LHR and B2AR trafficking observed in Jean-

Alphonse et al. (2014), we tested two hypotheses here.
• (H1) In the first hypothesis (Figure 11.7), we modify only the internalization rate α > 0

between LHR and B2AR, with a higher internalization rate for the B2AR, keeping all the
remaining parameters the same. This hypothesis is in line with Jean-Alphonse et al.
(2014). LHR and B2AR affect only the endocytosis rate as follows (refer to Eq. (11.35)):

Parameters K0 αLHR 5× 10−1 8× 10−5

B2AR 5× 10−1 3× 10−4
(11.37)

• (H2) In the second hypothesis (Figure 11.8), both the internalization rate and the coagu-
lation rate are higher for the B2AR compared to the LHR (H2). LHR and B2AR affect the
internalization and the coagulation rate as follows:

Parameters K0 αLHR 5× 10−3 8× 10−5

B2AR 5× 10−1 3× 10−4
(11.38)

In Jean-Alphonse et al. (2014), mean and variance of the size of the endosomal populations are
measured at different time after ligand stimulation, as well as the internalization ratio, which
corresponds to the fraction of internalised receptors among the total number of receptors
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initially present at the plasma membrane. Consistently, we define in the model the internal-
ization ratio as ∥f∥0,1(t)

M0
. In both hypotheses the internalization ratio is well reproduced by the

model, compared to Jean-Alphonse et al. (2014). The major discrepancy of the first hypoth-
esis with the experiments is the variance in size of the endosomal population, which seems
too high compared to experimentation. Furthermore the production of large endosomes with
LHR seems too high and similar to the ones of B2AR (Figure 11.7). In the second hypothesis,
however, these two discrepancies are not present anymore (Figure 11.8). These results indi-
cate that the differences in endosome dynamics between LHR and B2AR signaling pathways
seem not only due to a difference in internalization rate, but probably also to the coagulation
dynamics inside cells. Difference in coagulation dynamics may be explained by differences
in endosomes sorting and/or differences in molecular composition of endosomes, which are
believed to be of different nature between LHR and B2AR vesicles (Jean-Alphonse et al., 2014).

Figure 11.7: Time evolution of the endosomal size (left panel) and internalization ratio (right panel).
We numerically simulate the 2D model given by Eqs. (M2a)-(M2b) with parameters given by. (11.35)-(11.36)-(11.37) (LHR and B2AR affect only the internalization rate). On the left panel, the dashed blue
(resp. dotted purple) line represents themean endosomal size for B2AR (resp. LHR), that corresponds
to ∥f∥1,0 (t)/ ∥f∥0,0 (t), and the shaded light area represents its standard deviation. On the right
panel, the dashed blue (resp. dotted purple) line represents the internalization ratio for B2AR (resp.
LHR), that corresponds to ∥f∥0,1(t)

M0
.

11.5.2 . Second effector signaling
The second application of our model we present here concerns the efficacy of second

messenger molecules production as a function of the localization of the active receptor. We
focus on the production of cAMP induced by the activation of the PTHR. Recent discoveries find
that the PTHR may engage cAMP signaling not only at the cell’s plasma membrane but also
in early endosomes after receptor internalization through endocytosis (Vilardaga et al., 2014).
Furthermore, the full-length parathyroid hormone (LA-PTH) induces through the activation of
PTHR an augmentation of production of cAMP in the endosomes, whereas the ligand PTH 7D
(PTHR peptide ligand through amino acid epimerization at position 7 of PTH1−34) induces
the production of cAMP at the plasmamembrane. In White et al. (2021), the authors show that
even if the production place is different, the total amount of cAMP stays the same after some
time, a phenomenon that could be named location-biased, and that can have implications for
the cellular response. The objective of this section is to provide numerical simulations of our
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Figure 11.8: Time evolution of the endosomal size (left panel) and internalization ratio (right panel).
We numerically simulate the 2D model given by Eqs. (M2a)-(M2b) with parameters given by. (11.35)-(11.36)-(11.38) (LHR and B2AR affect the internalization and the coagulation rate). See legend of
Figure 11.7 for details.

model (M2a)-(M2b) that can reproduce these two distinct scenarios.
We could reproducequalitatively these observationswith ourmodel following this parame-

trization:
f0 (r, a) = 0 ,

M0 = 0 ,

κ (r, r′) = 2× 10−1 ,

α (r, a,M) = Nr(200, 10)×Na(0, 0.1))×M ,

γ (r, a) = Pr(2000, 100)1{r≤1950} + 2× 102 ×
(
r − 1950

50

)4

1{r>1950} ,

λ (r, a) = 10−2 × Pr(2000, 100) ,

V (r, a) =
(
vs1{ϵ≤r≤r̄} + vl1{r̄<r}

)
×
(
1− a

pr

)
, ϵ = 10/3, r̄ = 500 ,

JM (M) = vM ×
(
M̄ −M

M̄

)
,

(11.39)

which we interpret as follows. Endosomes fuse via a constant coagulation kernel, and are cre-
ated with a size following a Gaussian law and with a quantity of reactant, independently of the
size, taken as a positive fraction of the quantityM present at the plasma membrane. Endo-
somes recycling and degradation increase with the surface of endosomes and decrease with
their volume (λ and γ ∝ r

2
3 − r). cAMP is produced at the plasma membrane at constant rate

and linearly degraded, where both the saturation M̄ , and the production rate vM may depend
on the ligand. cAMP is produced in endosomes at two different rates, vs, for the endosomes
smaller than r̄ and vl, for larger endosomes. Also the amount of saturation depends linearly
on the size of the endosomes (caracterized by a portion p of r). Here vs, vl and pmay depend
on the ligand.

For the numerical scheme, we take
∆t = 3−2, Ir = Ia = 30, R = 2000, A = 30 . (11.40)

We have two different hypotheses to explain the different qualitative behaviour of the two
ligand LA-PTH and PTH 7D described above:
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• (H1) Suppose LA-PTH and PTH 7D differs in cAMP production kinetics only in terms of
rate (Figure 11.9), with a higher rate for LA-PTH at the plasma membrane (vPTH7D

M <

vLA−PTH
M ), and a higher rate for PTH 7D in the endosomes (vLA−PTH

s < vPTH7D
s and

vLA−PTH
l < vPTH7D

l ).
Parameters vs vl p vM M̄LA-PTH 0.05 0.02 1/20 3.5 10PTH 7D 5 2 1/20 0.035 10

(11.41)

• (H2) Suppose LA-PTH and PTH 7D differs in cAMP production kinetics not only in terms
of rate but also in terms of saturation (Figure 11.10) with M̄LA−PTH > M̄PTH7D and
pPTH7D

> pLA−PTH .
Parameters vs vl p vM M̄LA-PTH 0.5 0.2 1/200 3.5 10PTH 7D 5 2 1/20 0.35 1

(11.42)

With both hypotheses, we observe a much more efficient cAMP production at the plasma
membrane with LA-PTH and a much more efficient cAMP production in the endosomes with
PTH 7D (Figures 11.9 and 11.10). Consistently with the observation in White et al. (2021), both
total responses have similar magnitude for the time period of the numerical simulation.

However, from the numerical simulation presented in figures 11.9 and 11.10, the cAMP pro-
duction has already reached a "stable" state at T = 20 for LA-PTH, while it keeps increaseasing
for PTH 7D. Therefore, a longer time measurement could discriminate between both ligands.

Also we could notice a fine kinetic difference between the responses induces by LA-PTH
and PTH 7D with the two hypotheses. Indeed, PTH 7D leads to a convex kinetic production of
cAMP during the early dynamics, which switches to a concave kinetic at later time. Whereas
with LA-PTH the production stays concave all time long. Of course this behaviourmay be quite
complicated to observe experimentally due to the accuracy of the measures.

Figure 11.9: Time evolution of the cAMP production for the LA-PTH ligand (left panel) and the PTH-7D
ligand (right panel). We numerically simulate the 2D model given by Eqs. (M2a)-(M2b) with parame-
ters given by. (11.39)-(11.40)-(11.41) (cAMP kinetic parameters differ between PTH 7D and LA-PTH only
by the production rate). In both panels, the dotted blue line shows the endosomal quantity of cAMP,
given by ∥f∥0,1 (t), the dashed blue line shows the cAMP quantity at the plasma membrane, given
byM(t), and the dashed-dotted purple line shows the total cAMP quantity (∥f∥0,1 (t) +M(t)).

343



Figure 11.10: Time evolution of the cAMP production for the LA-PTH ligand (left panel) and the PTH-7D
ligand (right panel). We numerically simulate the 2D model given by Eqs. (M2a)-(M2b) with parame-
ters given by. (11.39)-(11.40)-(11.42) (cAMP kinetic parameters differ between PTH 7D and LA-PTH both
by the production rate and capacity of production.). See legend of Figure 11.9 for details.
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