
HAL Id: tel-04756903
https://theses.hal.science/tel-04756903v1

Submitted on 28 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robustness Analysis of Classifiers Against
Out-of-Distribution and Adversarial Inputs

Samy Chali

To cite this version:
Samy Chali. Robustness Analysis of Classifiers Against Out-of-Distribution and Adversarial Inputs.
Artificial Intelligence [cs.AI]. Université Paris-Saclay, 2024. English. �NNT : 2024UPAST012�. �tel-
04756903�

https://theses.hal.science/tel-04756903v1
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

024
UPA

ST0
12

Robustness Analysis of ClassifiersAgainst Out-of-Distribution andAdversarial Inputs
Analyse de la robustesse de classifieurs aux données

hors distribution et adverses

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 575 Electrical, Optical, Bio : physics and engineering (EOBE)Spécialité de doctorat : Sciences de l’Information et de la CommunicationGraduate School : Sciences de l’ingénierie et des systèmes.Référent : Faculté des sciences d’Orsay
Thèse préparée au Centre de Nanosciences et de Nanotechnologies (Université

Paris-Saclay, CNRS), sous la direction de Jacques-Olivier KLEIN, professeur desuniversités, le co-encadrement de Inna KUCHER, ingénieur-chercheur et duco-encadrement deMarc DURANTON, ingénieur-chercheur.

Thèse soutenue à Paris-Saclay, le 28 Mars 2024, par

Samy CHALI

Composition du jury
Membres du jury avec voix délibérative
Damien QUERLIOZ PrésidentDirecteur de recherche, CNRS, Université Paris-Saclay
Maria ZULUAGA Rapporteur & ExaminatriceMaître de conférence HDR, Eurecom
Ronan FABLET Rapporteur & ExaminateurProfesseur des universités, IMT Atlantique
Eiji KAWASAKI ExaminateurChargé de recherche, CEA List, Université Paris-Saclay

Titre : Analyse de la robustesse de classifieurs aux données hors distribution et adverses.
Mots clés : Apprentissage automatique, apprentissage profond, modèles génératifs, robustesse,classification, mémoires associatives
Résumé : De nombreux problèmes traités parl’IA sont des problèmes de classification dedonnées d’entrées complexes qui doivent êtreséparées en différentes classes. Les fonctionstransformant l’espace complexe des valeursd’entrées en un espace plus simple, linéaire-ment séparable, se font soit par apprentis-sage (réseaux convolutionels profonds), soitpar projection dans un espace de haute dimen-sion afin d’obtenir une représentation non-linéaire ’riche’ des entrées puis un appariementlinaire entre l’espace de haute dimension etles unités de sortie, tels qu’utilisés dans les

Support Vector Machines (travaux de Vapnik1966-1995). L’objectif de la thèse est de réali-ser une architecture optimisée, générique dansun domaine d’application donné, permettantde pré-traiter des données afin de les pré-parer pour une classification en un minimumd’opérations. En outre, cette architecture aurapour but d’augmenter l’autonomie du modèleen lui permettant par exemple d’apprendre encontinu, d’être robuste aux données corrom-pues ou d’identifier des données que lemodèlene pourrait pas traiter.

Title : Robustness Analysis of Classifiers Against Out-of-Distribution and Adversarial Inputs.
Keywords : Machine learning, deep learning, generative models, robustness, classification, as-sociative memories
Abstract :Many issues addressed by AI involvethe classification of complex input data thatneeds to be separated into different classes.The functions that transform the complex in-put values into a simpler, linearly separablespace are achieved either through learning(deep convolutional networks) or by projec-ting into a high-dimensional space to obtaina ’rich’ non-linear representation of the in-puts, followed by a linearmapping between thehigh-dimensional space and the output units,

as used in Support Vector Machines (Vapnik’swork 1966-1995). The thesis aims to create anoptimized, generic architecture capable of pre-processing data to prepare them for classifi-cation with minimal operations required. Addi-tionally, this architecture aims to enhance themodel’s autonomyby enabling continuous lear-ning, robustness to corrupted data, and theidentification of data that the model cannotprocess.

mstarek
Rectangle

mstarek
Rectangle

Remerciements
Je tiens à remercier à mon équipe encadrante, comprenant Jacques-Olivier Klein, Marc Duranton,

Inna Kucher ainsi que Johannes Thiele. Ils ont sume donner les clés pour réussir ma thèse tout enme
laissant cette marge de liberté créative qui m’a permis de m’épanouir en tant que chercheur tout au
long de ma thèse. Je veux particulièrement remercier Inna qui a assuré la reprise de l’encadrement
de ma thèse et a tout de suite su se distinguer comme une encadrante d’exception, engagée et se
dépassant tous les jours pour ses thésards. Je veux également mentionner l’aide d’autres personnes
qui m’ont donné des conseils avisés pendant ma thèse. Pour cela, j’adresse ma gratitude à Daniel
Brunner, Olivier Sentieys, Eiji Kawasaki et à tant d’autres.

J’adresse aussi mes remerciements à mes collègues du LIAE, thésards, ingénieurs, stagiaires ou
alternants, qui étaient toujours là pour me conseiller et m’épauler. Nos moments d’échange m’ont
particulièrement stimulé et permis une ouverture qui a été cruciale dans mon développement. Les
amitiés que nous avons nouées me tiennent à cœur et j’espère leur avoir appporté un soutien à la
hauteur de celui qu’ils m’ont donné.

Enfin, millemercis àma famille qui a sumontrer sa fierté et son soutien tout au long demon aven-
ture. Ils n’ont jamais douté de moi et mes accomplissements leur ont donné raison. Je suis conscient
de leurs efforts et de la patience investis dans mon éducation afin deme fournir les meilleures condi-
tions possibles pour ma réussite. Leur intérêt pour mes travaux était un moteur qui m’a aidé à per-
sévérer. Pour ce soutien inconditionnel, je les remercie du fond du cœur.

3

Table des matières

Glossary 7

1 Goal of this work 15
1.1 Context of the thesis . 15
1.2 Structure of the document . 17

2 Introduction 19
2.1 History and overview of AI . 19

2.1.1 Symbolic AI and machine learning . 19
2.2 Background on machine learning and deep learning . 20

2.2.1 The learning problem . 20
2.2.2 Discussion and extension of the optimization process to deep learning 22
2.2.3 Training stability, overfitting and regularization 24

2.3 Types of neural network . 28
2.3.1 Multilayer Perceptron (MLP) . 29
2.3.2 Convolutional neural networks . 33
2.3.3 Transformers . 37
2.3.4 Variational autoencoder (VAE) . 40
2.3.5 Normalizing flows . 42
2.3.6 Score-based models . 47
2.3.7 Diffusion models . 48
2.3.8 Generative adversarial networks (GAN) . 50

2.4 Memory-augmented models and associative memories 51
2.4.1 Hyperdimensional computing . 52
2.4.2 Hopfield networks . 54
2.4.3 Memory-augmented neural models . 56

3 Out-of-distribution detection 63
3.1 The general problem of out-of-distribution detection . 63
3.2 Problems of naive approaches in out-of-

distribution detection . 65
3.3 State-of-the-art . 67

3.3.1 ODIN . 68
3.3.2 Generalized ODIN . 68
3.3.3 Mahalanobis-distance . 70
3.3.4 Energy-based . 72
3.3.5 GradNorm . 74
3.3.6 GradCon . 75
3.3.7 OCGAN . 77

5

3.4 Experimental methodology . 79
3.4.1 Definition of the problem and the choice of dataset 80
3.4.2 Evaluation measures and experimental precautions 80
3.4.3 Frameworks . 82

3.5 The approximate mass . 83
3.6 Contributions : Regularization of the approximate mass 85

3.6.1 First contribution : regularizing the likelihood with the approximate mass 85
3.6.2 Second idea : regularizing the likelihood with a VAT-inspired loss 88
3.6.3 Entropic issues with the likelihood for OOD detection : the likelihood is not ap-

propriate . 93
3.6.4 Observation on the behavior of the approximate mass 95
3.6.5 Fixing the overfitting of the approximate mass . 95
3.6.6 Results on OOD detection . 99
3.6.7 Results on class anomaly detection . 102

3.7 Conclusion of this chapter . 103
4 Adversarial defense 107

4.1 Adversarial machine learning : introduction . 107
4.2 State-of-the-art : adversarial attacks . 108
4.3 State-of-the-art : adversarial defenses . 112

4.3.1 Adversarial detection . 112
4.3.2 Adversarial restoration . 114

4.4 Contributions . 116
4.4.1 Detecting adversarial samples . 117
4.4.2 Projecting reconstructed samples onto the neighborhood of the attacked sample 119

4.5 Experimental methodology . 121
4.5.1 Choice of datasets . 121
4.5.2 Evaluation metrics . 122
4.5.3 Python frameworks . 122

4.6 Experiments . 123
4.6.1 Experiment : results in adversarial detection . 123
4.6.2 Experiment : results in classification . 124
4.6.3 Experiment : results for the full defense . 125
4.6.4 Experiment : results of the full defense with an adaptive attack 125

4.7 Conclusion of this chapter . 126
5 Conclusion and future perspectives 129

6

Glossary

∇xf or ∂f
∂x Gradient of the function f with respect to the va-riable x. Corresponds to the vector formed by thepartial derivatives of the function with respect toeach components of the variable x.∫

S f(x)dx Integral of a function f over a set S.∑
i = 1Nui Sum of a sequence of elements ui, i = 1...N .∏N
i=1 ui Product of a sequence of elements ui, i = 1...N .
∥ x ∥ Norm of a vector x.
AT Transpose of a vector or a matrix A
|S| Cardinal of a set S , i.e;: number of elements in theset.
minx f(x) Minimum of a function f with respect to a variable x(over the set of definition of f).
maxx f(x) Maximum of a function f with respect to a variable

x (over the set of definition of f).
argminxf(x) Value that minimizes a function f with respect to avariable x (over the set of definition of f).
argmaxxf(x) Value that maximizes a function f with respect to avariable x (over the set of definition of f).
supx,x∈Sf(x) Supremum value of a function f with respect to avariable x, x being in a set S.
X Ambient space/input space/feature space, i.e.: spaceof the input x to a model.
Y Label space, i.e.: space of the labels y associated toan input with features x.
x ∼ p x is sampled/drawn from the distribution paramete-rized by the density p.
N Normal or Gaussian distribution.
log Logarithm function.
ex or exp(x) Exponential function at an input x.
det(M) Determinant of a matrixM .
p(x|y) Conditional probability of the variable x knowing thevariable y.
Ep[X] The expectation of a random variableX with respectto the distribution p.
E(x|y) Conditional Expectation of the variable x knowingthe variable y. Expectation taken with respect to theconditional distribution.
H(X) Entropy of the random variableX .

7

DKL(p||q) KL divergence of the distribution p relatively to thedistribution q.
Bϵ(x) Ball of radius ϵ centered around a point x. It is oftendefined relative to a given norm. Corresponds to theset of points such that thy are at a radius ϵ of x.
L(x) Refers to the log-likelihood of a data point x.
L Refers to a general loss function of a function.

8

Résumé étendu en français

Le domaine de l’intelligence artificielle est aujourd’hui largement dominé
par le deep learning (ou apprentissage profond) où l’on cherche à faire ap-
prendre à un réseaux de neurones, avec des données d’entraînement, la réa-
lisation d’une tâche. L’une de ces tâches, la classification, consiste à assigner
une classe (ou label) à une données d’entrée, par exemple une image. Un
réseau de neurones a connaissance de l’ensemble des classes qu’il peut as-
signer à une donnée d’entrée. En dehors de son entraînement (phase d’infé-
rence) il est supposé classer correctement une nouvelle donnée réelle. Cette
hypothèse de généralisation se fonde sur la représentativité des données
d’entraînement, c’est-à-dire que les données rencontrées auront une distri-
bution de classes et une distribution des données d’entrée similaires aux dis-
tributions des données d’entraînement. Cependant, en pratique, la distribu-
tion des données peut changer au cours du temps et des données erronées
peuvent également être rencontrées par le modèle. Ces données hors-distri-
bution (ou out-of-distribution, OOD) peuvent être caractérisées par un chan-
gement dans la distribution des données d’entrées (p(x), x représentant les
données d’entrées) ou dans la distribution des labels (p(y), y représentant un
label). Les données fournies au modèle en inférence peuvent alors être as-
sociées à des classes que le modèle n’a pas vues pendant l’entraînement ou
des données d’entrée dont la distribution diffère par rapport à l’entraînement,
trompant ainsi le modèle.

Lorsque les distributions des données x et des labels y changent, on dit
que les nouvelles données sont OOD. Le modèle ne connaît dans ce cas ni
les données d’entrée (les attributs ont été modifiées) ni les labels. Bien que la
tâche soit toujours de la classification, assigner un label à ces données OOD
n’aurait plus de sens. Il pourrait être problématique pour un modèle de trai-
ter ces données sans prendre de précautions supplémentaires. Le modèle
devrait alors détecter les éléments qu’il ne peut pas traiter correctement afin
de les déléguer rapidement à un humain qui serait capable prendre une déci-
sion, par exemple. Cette tâche s’appelle de la détection OOD. Il s’agit d’un type
de classification binaire (deux classes), où le modèle assigne un label "ID" (in-
distribution) à une donnée qui est tirée suivant la distribution d’entraînement
ou "OOD" lorsque cette donnée est hors-distribution.

Un réseaudeneurones, dans une tâchede classification, associe un label à
une donnée en associant une probabilité p(y|x) à chaque label possible. Le la-
bel assigné à la donnée fournie en entrée correspond à la classe ayant la plus
forte probabilité calculée par le modèle. Un moyen de détecter des données
OOD serait alors d’utiliser cette distribution de probabilité, car on s’attendrait
intuitivement à ce qu’un modèle incertain de sa prédiction (et donc étant face

9

à une donnée OOD) assigne une distribution uniforme sur tous les labels,
c’est-à-dire que tous les labels seraient équiprobables pour une donnée d’en-
trée OOD. Cependant, une observation courante en deep learning est que les
réseaux de neurones ont tendance à montrer un excès de confiance en clas-
sification sur des données OOD en associant des probabilités plus élevées
sur une classe sur des données OOD que ce qu’il calculerait habituellement
sur une donnée ID. D’autres modèles, dits modèles génératifs, fournissent
aussi unemesure de vraisemblance des données, permettant d’avoir uneme-
sure de la distribution p(x). Cette mesure pourrait également constituer une
bonnemanière de détecter des données OOD. Cependant, cette mesure pré-
sente également des risques en détection OOD. En effet, des données OOD
avec une entropie plus faible que les données ID se voient associer une vrai-
semblance plus élevée, indiquant donc que pour lemodèle, les données OOD
sont plus vrai semblables que ses données ID. Ce problème serait possible-
ment lié à l’entropie des distributions ID et OOD en jeu. Utiliser des estima-
tions des distributions de probabilité pourrait donc poser problème dans le
domaine de la détection OOD. D’autres métriques doivent donc être explo-
rées pour pallier à ce problème.

Dans cette thèse, la première partie de mon étude se focalise sur le pro-
blème de la détectionOOD, définit plus haut, où l’on suppose que les données
en inférence peuvent à la fois présenter une déviation de la distribution des
labels p(y) ainsi que des attributs (ou features) en entrées p(x). J’étudie dans
un premier temps une métrique, l’approximate mass, qui est une métrique
liée à la vraisemblance. Celle-ci quantifie les variations relatives de vraisem-
blance dans le voisinage d’une donnée et doit être plus élevée pour des don-
nées OOD. Cette métrique a été introduite dans le contexte des modèles à
énergies, qui sont des modèles permettant l’évaluation de la vraisemblance
de données, à une constante de normalisation près. Cette métrique semble
fournir de très bon résultats en détection OOD avec des modèles à éner-
gie. Cependant, d’aprèsmes expériences, desmodèles génératifs comme des
normalizing flows, ayant la capacité d’estimer complètement la vraisemblance
(sans constante de normalisation), semblent démontrer un comportement
inverse aux attentes en assignant des valeurs plus faible d’approximate mass
aux données OOD et plus élevées aux données ID. Après analyse empirique,
ce phénomène ne semble pas tout le temps être présent chez ces modèles.
En entraînant un normalizing flow, je constate que ce phénomène ne s’ob-
serve que vers la fin de l’entraînement mais pas au début. Il y a donc eu une
inversion des valeurs d’approximate mass au cours de l’entraînement. Ce phé-
nomène est donc lié à un manque de généralisation du modèle, à savoir que
le modèle n’arrive pas à s’adapter à de nouvelles données de test. J’ai donc eu
l’idée d’incorporer dans l’objectif d’entraînement d’un normalizing flow unemi-
nimisation de l’approximatemass afin de contrôler ses valeurs sur les données

10

ID. Cette méthode fournit des normalizing flows présentant le comportement
désiré en détection OOD. Ce modèle a également été testé et a montré des
performances supérieures en détection OOD par rapport à des modèles de
l’état de l’art. Cependant, il semblerait que le modèle soit plus sensible à des
déviations sur la distribution des attributs en entrée x que sur les labels y car
les résultats en détection d’anomalie (tâche où p(x) reste stable mais p(y) va-
rie) sont plusmitigés. Cette contribution a également contribué à améliorer la
méthodologie d’évaluation deméthodes de détection OOD en apportant plus
de rigueur dans les tests. En effet, la littérature en détection OOD présentait
des manières de tester les performances de plusieurs façons, sans standard
et parfois sans justifications sur les métriques utilisées et sans prendre de
précautions sur l’équilibrage entre les données OOD et ID en test. Ces travaux
ontmené à une publication dans les proceedings de CVPR 2023, contenant les
contributions suivantes :

• Observation de l’évolution de l’approximate mass lors de l’entraînement
d’un normalizing flow ;

• Développement d’un nouvel objectif d’entraînement pour les normali-
zing flows, alternatif au maximum de vraisemblance ;

• Apports méthodologiques pour l’évaluation et la comparaison de mo-
dèles en détection OOD;

• Établissement de résultats dans l’état de l’art en détection OOD;
• Détermination des types de déviations de distribution (attributs ou la-
bels) pour lesquelles le modèle est le plus sensible.

Dans une deuxième partie, la thèse s’est concentrée sur la défense d’un
modèle de classification face à des données adverses, qui sont des données
perturbées par un attaquant. Ces perturbations sont imperceptibles par un
humain mais permettent de tromper le classifieur en lui faisant associer une
autre classe à cette donnée corrompue. Ces attaques sont générées en trou-
vant des attributs x ayant un faible score pour le modèle et en contraignant
ce nouveau point à être dans un rayon proche de l’originale, de sorte à ce que
la perturbation soit imperceptible.

La meilleure méthode de défense dans l’état de l’art face à ce genre de
corruption est l’adversarial training où l’on entraîne un modèle en l’exposant
à des données attaquées. Cette méthode présente le désavantage de direc-
tement classer les données sans signaler si celle-ci est corrompue. Ceci rend
la classification dangereuse, en particulier face à un attaquant réalisant des
attaques plus fortes que ce qui a été observé en entraînement. Pour pallier
ce problème, une autre solution consisterait à détecter les données adverses
puis à les restaurer. Ceci permettrait de savoir en cas d’échec lors de la classi-
fication par le modèle par quoi cela aurait pu être causé, à savoir une donnée
corrompue. L’étude réalisée sur la détection OOD montre que l’approximate
mass serait un bon candidat pour détecter les exemples adverses, notamment

11

grâce à sa sensibilité aux déviation sur la distribution des attributs. En effet, la
distribution de données adverses fournie par un attaquant peut être considé-
rée comme une distribution altérée de la distribution des attributs originaux.
Ainsi, le problème de détection d’attaques adverses peut donc être considéré
comme un problème de détection OOD. De la même manière que pour les
données OOD, une donnée est considérée comme adverse lorsqu’elle pré-
sente une approximate mass élevée.

Afin de calculer une approximate mass, il est nécessaire que le classifieur
soit équipé d’une mesure de vraisemblance afin de calculer cette approxi-
mate mass. Ceci est réalisée en utilisant un modèle DIGLM[1], qui est une ar-
chitecture basée sur un normalizing flow qui pré-traite les données d’entrée
en vue d’une classification par un classifieur linéaire par la suite. La classi-
fication se réalise sur la représentation fournie par le normalizing flow dans
son espace latent. Ce type de modèle s’appelle un modèle hybride car il four-
nit à la fois une mesure de la vraisemblance des données p(x) ainsi qu’une
mesure de classification, comme pour un réseau de neurones en tâche de
classification, avec p(y|x). Ce modèle peut à la fois classer des données et cal-
culer l’approximatemass sur ces données, permettant de détecter si la donnée
en entrée est malicieuse. En m’inspirant de mon étude sur la détection OOD,
j’ai donc décidé d’intégrer l’approximate mass dans l’objectif d’en traînement
du DIGLM afin de contraindre le modèle à attribuer des valeurs plus faible
d’approximate mass aux données saines (données sans corruptions) qu’aux
données adverses.

Une fois l’attaque détectée, il est intéressant de restaurer le contenu ori-
gnal des données. Ceci peut s’effectuer par unprocessus appelé Langevin sam-
pling (ou échantillonnage de Langevin) qui est une marche aléatoire ayant la
propriété de produire des échantillons suivant la distribution des données
d’entraînement. Cette propriété permettrait de rapprocher un échantillon ad-
verse de la distribution d’entraînement du modèle, qui est une distribution
fiable car connue par le modèle et par les utilisateurs humains. Ce proces-
sus, inspiré de la physique, dépend d’une estimation d’une grandeur, le score
(∇x log p(x)), dont la norme correspond à l’approximate mass. Le score est di-
rectement accessible pour un modèle à énergie, un normalizing flow ou un
DIGLM. Cette procédure a déjà été utilisée dans la littérature en défense aux
attaques adverse pour la restauration de données, cependant certains pro-
blèmes ont été rencontrés :

• Les échantillons obtenus par Langevin sampling doivent être tirés sur un
grand nombre d’itérations du processus de Langevin ;

• on observe dans la littérature scientifique que les échantillons obtenus
sur une longue chaîne de calcul, bien que théoriquement appartenant
à la distribution d’entraînement, ne sont pas ressemblant aux données
de cette dernière ;

12

• aucune approche ne prend en compte le fait que les données adverses
sont dans un rayon proche des données originales.

J’ai donc apporté à l’étape du Langevin sampling une étape finale de projec-
tion sur une boule centrée autour de la donnée adverse. Cette projection se
fait sur une boule L∞ car, à rayon égal, elle englobe toutes les autres boules
Lp avec p un entier. Les résultats des expériences réalisées sur le jeu de don-nées MNIST [2] en détection et en classification sont encourageants et dé-
montrent que l’approche

• a un potentiel d’apporter une défense modulable car on peut modifier
à tout moment le rayon de projection pour s’adapter à de nouvelles
spécifications ;

• permet de créer une défense interprétable, où les données attaquées
sont détectées au préalable, permettant de signaler et d’expliquer des
manques de performance à un utilisateur humain ;

Les résultats de cette analyse démontrent que les performances en détec-
tion constituent une autre preuve de la sensibilité de l’approximate mass aux
déviations de la distribution p(x) des attributs. La défense complète quant
à elle bénéficie des résultats en détection ainsi qu’en restauration des don-
nées et en classification sur les données saines. Enfin, la dernière expérience
portait sur la résistance de la défense à une attaque adaptative, c’est-à-dire
une attaque visant à déjouer le système de défense d’un classifieur, et qui en
l’occurrence consisterait à tromper le classifieur en classification et en détec-
tion. Il semblerait, d’après les résultats, qu’il est difficile pour un attaquant de
créer une attaque qui soit suffisamment furtive pour ne pas être détectée par
le classifieur et à la fois suffisamment puissante pour tromper le classifieur.

Enfin, les idées explorées dans cette thèse peuvent ouvrir de nouvelles
perspectives d’études à l’avenir. Notamment, un lien peut être établi entre les
méthodes exposées dans ce manuscrit et les mémoires associatives puisque
ces modèles permettent de corriger des erreurs dans un code stocké dans
sa mémoire. Cette restauration des données corrompues se fait par une mé-
thode itérative se rapprochant d’une donnée saine stockée en mémoire par
mesure de proximité. Une donnée corrompue est fournie au modèle, le mo-
dèle cherche la donnée la plus similaire et répète cette étape jusqu’à se rap-
procher de la donnée la plus similaire possible. Cette méthode itérative se
rapproche de la technique présentée précédemment basée sur du Langevin
sampling en restauration d’attaques adverses. La différence se situe sur le fait
que les modèles classiques demémoires associatives cherchent des données
enmémoire ayant été stockées au préalable alors qu’une technique comme le
Langevin sampling est probabiliste et échantillonne dans ce cas une donnée à
partir d’une distribution de probabilité. Cette propriété offre plus de flexibilité
étant donné que lamémoire ne repose pas sur le stockage d’un nombre limité
d’éléments en mémoire mais ne dépend que de l’expressivité du modèle.

13

Les modèles à base de mémoire sont fréquemment mobilisés en deep
learning et apportent souvent des améliorations aux modèles classiques de
réseaux de neurones en leur permettant de résoudre de nouvelles tâches et
en les rendant plus robustes. Cependant, ces modèles font appel à une mé-
moire externe, nécessitant des échanges entre ce dernier et le réseau de neu-
rones principal. L’utilisation d’un modèle basé sur des mémoires associatives
permettrait de se passer de modules externes, augmentant la complexité du
modèle à cause du nombre de paramètres ainsi que les échanges et les cal-
culs entre le module de mémoire et le réseau contrôleur. Considérer l’espace
latent d’unmodèle probabiliste comme unemémoire permettrait d’améliorer
la robustesse dumodèle (comme démontré lors de cette thèse) mais aussi de
réaliser de nouvelles tâches, comme de l’apprentissage continu (mettre à jour
le modèle sur de nouvelles classes sans oublier ce qui a précédemment été
appris).

14

1 - Goal of this work

1.1 . Context of the thesis

The original inspiration for this thesis comes from the observation that
somemachine learning techniques rely on a high-dimensional representation
of their input or their parameters. High-dimensional spaces have unfavorable
properties generally in statistical learning because of the so-called "curse of
dimensionality" where the amount of data necessary to cover a space in-
creases exponentially with the dimension of the space [3]. The idea can be
explained with the illustration in figure 1.1 where the number of points one
can fit in a hypercube increases with the dimension. Therefore, fitting data in
this space requires a bigger coverage, thus a bigger sample of data.

Figure 1.1 – Illustration of the curse of dimensionality from [4]. Adding dimen-sions adds distance between data points across those dimensions. As dimen-sions are added, points spread even further making high dimensional dataextremely sparse.
Some algorithms, however, use the properties of high-dimensional spaces

to discriminate data. It is the case ofHDC (High-Dimensional Computing)where
the high-dimensional mapping learned by the model is used to cluster data
into their respective classes. In the context of HDC, a high number of dimen-
sions is usually defined as being higher than 10,000 in a binary space. The
rationale of mapping data to a higher dimensional space is also found in the
kernel trick [3] where a kernel function is used to add supplementary dimen-
sions to the input of an SVM (Support Vector Machine) model for example [3]
in order to feedmore information into themodel. An illustration of the kernel
trick with SVMs is given in figure 1.2. The approach of HDC is often interpreted
as associative memory [5] which is a kind of memory where objects act like
addresses as well, as opposed to traditional memory schemes where the ad-
dress space is separate from the data space. It seems that the clustering effect

15

associated with the projection of data to a high-dimensional space produces
attractors which correspond to the class-centroids of the clusters.

Figure 1.2 – Example of the kernel trick from [6]. The kernel functionmaps datafrom a lower dimensional space to a higher-dimensional space making themlinearly separable (a hyperplane can be found such that both types of pointscan be separated).
For more than a decade now, neural networks have started dominating

the field of machine learning. Whereas before, the design of feature extractor
was made "by hand" with functions such as kernel and learn only the classi-
fication part of the model, the modern approach of deep learning indicates
that learning the whole processing pipeline of the data yields better results.
A trained neural network is composed of a stack of layers each processing
the output of the previous layer. It learns a hierarchical representation of the
input data as illustrated in figure 1.3 1, which is a composition of several re-
presentations, each focusing on a different level of detail. These representa-
tions extracted by themodel aggregate more subtle features about the input.
Modern deep learning often relies on models with a high number of parame-
ters (overparameterization) which seems to correlate with better results in
the problems they are applied in. This overparameterization has been shown
to be beneficial to some extent to the learning process and not overfit [7].
The addition of a high number of parameters does not generally add extra
dimensions to the input.

I hypothesize that similarly to HDC, the high-dimensional embedding of
data might benefit downstream tasks thanks to an emerging property of as-
sociative memory. My intuition led me to study the robustness of a family of
classifiers in a classification task, more precisely in detecting bad inputs such
as out-of-distribution inputs in chapter 3 and adversarial inputs in chapter 4.
More precisely, I hypothesize that neural networks may benefit in robustness

1. From https ://pantelis.github.io/cs677/docs/common/lectures/deep-learning-introduction/
16

Figure 1.3 – Illustration of the hierarchical representations learned by a deepneural network.

by creating attractors around training data and comparing how close data
points are to those learned attractors. Regularizing those attractors may lead
to better generalization and robustness from themodel. This local smoothing
may also allow better interpretability of classifiers.

1.2 . Structure of the document

To introduce my work, I will first start an overview of the domain of ar-
tificial intelligence, where I will mainly introduce some notions about deep
learning and some models that will be useful for the rest of the thesis. Then,
I will start addressing the issue of robustness of classifiers by introducing
the concept of out-of-distribution detection along with my contributions to
the domain. Next, I will introduce the reader to the field of adversarial ma-
chine learning and present my ideas and contributions to the field. Finally,
the conclusion will tie all the work introduced in this manuscript and help un-
derstanding the full scope of my work as well as the future perspectives for

17

new developments I have that would bring new contributions.
The structure of the document is displayed in figure 1.4. The reader may

follow the natural order of the parts of the document although some other
order is possible andwould not impede understanding of themanuscript. Ho-
wever, it is crucial for the reader to first read chapter 3 before chapter 4, as
some notions laid in the former are important to understand contributions
and ideas in the latter, especially about distribution shifts and the approxi-
mate mass.

Figure 1.4 – Structure of this thesis. The red sections correspond to the partswhere contributions of the thesis are explained in details.

18

2 - Introduction

2.1 . History and overview of AI

Artificial intelligence (AI) is a domain at the crossroad of computer science
andmathematics and other scientific fields such as neuroscience and physics
that aims at solving complex problems that have high algorithmic cost or may
be loosely formalized or too complicated. Yet some of these problems are still
solvable by the human brain. Indeed, some tasks, such as image classification,
image segmentation or text generation, deal with such a high number of inter-
connected variables (a space of pixels in a fixed-size image, a space of vocabu-
lary in a language) that exploring the different configurations of the problem
would be prohibitively huge. Furthermore, a problem as loose as "what is this
image? A cat or a dog?" is too loose to be handled by a program and requires
answering sub-questions such as "what is a dog or a cat?". In this chapter, I
make an overview of the field of AI key ideas that will help understand the
subject and will be helpful for the rest of the manuscript.

2.1.1 . Symbolic AI and machine learning
The history ofmodern AI can be traced as far back to 1950with Alan Turing

in his article "Can Machines Think?" [8]. The ideas in this article mainly dealt
with simulating consciousness in a computer but were still precursor of the
whole domain.

The two main approaches for AI were statistical learning and symbolic AI.
In symbolic AI, a system uses symbols, explicitly embedding human know-
ledge, and a set of rules in order to perform logical reasoning [9], with the
example of the Logic Theorist [10] which was the first system to be similar
to AI and which would be able to prove 38 theorems out of 52 in the Princi-
pia Mathematica of Russel And Whitehead. The interest of symbolic AI comes
from its low computational requirements compared to statistical learning as
well as its transparency (rules and decisions derived from the system are un-
derstandable by a human). The symbolic AI approach is an example of the
computationalist school of thought in computational theory of mind which
assumes the mind is an automatic formal system [11].

On the other hand, statistical learning or machine learning aims to learn a
solution to a problem, by fitting a function, from a dataset. The two fields were
seen as contradictory for a long part of the development of AI. Currently, the
field of AI is mostly dominated bymachine learning, more specifically by deep
learning since the evolution of hardware capacity ended up catching up to the
computational requirements of such algorithms formodern applications. The
power of deep learning lies in its capacity to work on high-dimensional, com-

19

plex and unstructured data like graphs, images or text [12] [13]. Still, some
tasks in machine learning remain dominated by traditional machine learning
methods, such as tree-basedmodels on tabular data [14]. Deep learning emer-
ged as a representative of the connectionist school of thought in the compu-
tational theory of mind [11].

Symbolic AI and statistical learning may be different in their paradigm
but they are not seemingly irreconcilable, as proposed by Marvin Minsky and
other important actors of AI [9]. Some modern approaches try to merge the
advantages of both connectionism and symbolic AI, such as hyperdimensio-
nal computing (HDC) [12] for example. In the next section, I will introduce
examples some background inmachine learning in section 2.2 before presen-
ting some neural networks architectures that are fundamental to the domain
today and that would help understand better the rest of this document.

2.2 . Background on machine learning and deep learning

2.2.1 . The learning problem
Generally, a learning problem is defined as an optimization problem over

the set of parameters of the machine learning model considered. More pre-
cisely, the goal is for the model to minimize the risk function, which is the ex-
pectation of a loss function over a data distribution in order to solve a given
task. The end goal is not only for the loss of themodel to be low over the given
dataset during the "learning" phase but also to generalize well to never-seen
data that are drawn from the same data distribution as the training dataset.
Theoretically, the problem can be written as in equation 2.1.

min
θ

Ez∼p(z)[L(z, θ)] = min
θ

∫
L(z, θ)dP (z) (2.1)

In particular in an image classification task, where the goal is to identify
the associated label to a given image, a common loss defined to train a neu-
ral network is the cross-entropy loss E(x,y)∼p(x,y)[−log(fθ(x))] where fθ is theclassification function outputting the probability of an image x having label
y. A problem where we both have an input and its label is called supervised
learning, was opposed to unsupervised learning where only the input is avai-
lable to the model learned. These objectives may however be intractable in a
lot of cases, mainly because the integral in equation 2.1 may be too hard to
compute or because the set X of the input data, called the "ambient space",
may be too complicated to describe. For example, the set of all natural images
of dogs is not formally describable so that an integral can be defined. There-
fore, some approximations need to be made in order to compute the risk
Ez∼p(z)[L(z, θ)], typically through Monte-Carlo estimation. Indeed, the way to
approach the evaluation of such integrals is to feed somedata froma "training

20

set" zi ∼ D, then compute the average loss of the model over this training set
as per equation 2.2 thenminimize it. The term defined in equation 2.2 is called
the empirical risk.

Ez∼p(z)[L(z, θ)] ≃
1

|D|
∑
zi∼D

L(zi, θ) = Rempirical(θ,D) (2.2)
Once this new approximation is defined, the optimization problem may

still not be easily solvable, as the empirical risk function may be too complex.
A general learning framework, most notably in deep learning, uses gradient
descent algorithms to solve the problem of equation 2.1 with the approxima-
tion defined in equation 2.2. The gradient descent is an algorithm that ite-
ratively updates the value of the parameter of our problem to minimize a
function. The algorithm starts from a parameter θ0 (often random) and suc-
cessively updates the parameter following equation 2.3, leading to algorithm
1. In equation 2.3, the parameter ηi is the step size of the algorithm, whichmay
or may not be updated every iteration.

θi+1 = θi − ηi∇θRemp(θ
i,D) (2.3)

Algorithm 1 Gradient descent algorithm
i← 0
θ ← θ0

η ← η0

for i = 1 : N do
θ ← θ − η∇θRempirical(θ,D)Update η
i← i+ 1

end for

An illustration of the algorithm and its convergence to a minima is given
in figure 2.1. The gradient descent algorithm only works for convex functions
to find a global minima. With other functions, we have no guarantee that the
given result is a global minima, but can be only a local minima. Nonetheless,
this optimization technique is the most widely used in deep learning and a
number of algorithms derived from it are currently used to train neural net-
works.

21

Figure 2.1 – Illustration of the gradient descent procedure. The red arrowsrepresent the successive gradient computed by the algorithm at each step,bringing the parameter closer to a local minima. Credit to Olegalexandrov atEnglish Wikipedia, Public domain, via Wikimedia Commons.

2.2.2 . Discussion and extension of the optimization process to
deep learning

Some notes can be made from algorithm 1. First, although the risk is for-
mally minimized over the whole datasetD, it is usually preferable tominimize
the risk over mini-batches of a few samples of data, drawn from the dataset
D. This way, the algorithm can estimate the gradient of the empirical risk over
the small batch which accelerates its computation while adding some noise
to the estimates of θ which helps generalizing to new data points [15]. This
way of performing the gradient descent algorithm is called stochastic gradient
descent (SGD) and is the preferred way to train a neural network in deep lear-
ning. Some enhancement of this technique, made to accelerate learning, are
adaptive methods which update the gradient at each step of training using
information about the gradient descent during previous steps, like the Adam
optimizer [16] and the RMSprop optimizer 1. These adaptive optimizers follow
equation 2.4. The RMSprop optimizer divides the learning rate during training
by a running average of the parameter values in previous steps, updating the
weights following equation 2.4 where gt is an estimate of the running ave-
rage of the parameter values and vt is an estimate of the running variance of

1. First described in a course by Geoffrey Hinton, no paper published to this day.
22

the parameter values, ϵ is a hyperparameter used for numerical stability. The
Adam optimizer on the other hand uses equation 2.4 where gt is an estimate
of the running average of the gradient and vt is an estimate of the running
variance of the gradient computed the previous steps.

θt+1 = θt − ηt
gt√
vt + ϵ

(2.4)
The steps described in this section, where a model is fed input data from

the training dataset in mini-batches then performs the gradient descent algo-
rithm described in algorithm 1 make up an "epoch" of training. It is common
to repeat these steps several times, as the model further decreases its loss
after every epoch. A typical training of a neural network therefore involves
repeating the gradient descent algorithm for every mini-batches of a training
dataset Dtrain, making up an epoch, then test the model after the end of the
epoch on a test datasetDtest, distinct from the training one in order to assess
the generalization capability of the model, then repeat these steps for seve-
ral epochs. A separate validation set Dval, also distinct from both the training
and the test set, can be made in order to validate the overall performance of
the model with different hyperparameters and initial configuration, such as
the network architecture, the step size (or learning rate described in the next
paragraph).

The step size ηi, also called learning rate in the context of deep learning,
generally changes at each iteration in order to make the algorithm converge.
Indeed, a constant step size may make the model stuck in a region without
ever converging to a single point. Some scheduling functions exist to reduce
the step size while training the model. They can either decrease the step size
depending on the value of the risk or simply decrease it by a function of the
time step. Some examples of learning rate scheduling are cosine annealing
[17] and the exponential scheduling where the learning rate decreases expo-
nentially.

Finally, the initialization of the parameters is a very important topic espe-
cially concerning the speed of convergence and the stability of the training
procedure. Some initialization schemes exist in deep learning that make use
of some prior knowledge on the distribution of parameters in the neural net-
work, such as the He initialization [18] or the Xavier initialization [19].

For neural networks trained with algorithm 1, the gradient of the risk is
computed by an operation called "backpropagation", which first appeared in
[20] but then reemerged in Hinton’s work [21] and Lecun’s work [22]. In order
to update the parameters of the network, the algorithmneeds to compute the
gradients of the loss with respect to the weights and the biases of each layer.
However, this gradient is not directly accessible for intermediary layers as the
value of the loss function at the end of the network depends on the value
of the last layer, which itself depends on the value at the previous layer and

23

so on. Because of this composition of functions, the chain rule, introduced
in equation 2.5, must be applied in order to get the gradient of the loss with
respect to the parameters of one layer. Thus, the idea of the gradient of the
loss being "backpropagated" through the layers of the network. Generally, we
separate the training of a neural network into two steps : a "forward pass",
where the model is fed data in input and outputs its corresponding values in
order to compute the loss, followed by a "backward pass" where the model’s
gradient is backpropagated.

d

dx
f(g(x)) =

dg(x)

dx

df

dx
(g(x)) (2.5)

Explicit formulas may be derived to compute the gradient of a loss with
respect to the parameters of any layer. However it is more usual on modern
architectures, which can be very deep and make the computation of the gra-
dients much more complex and prone to human error, to use automatic dif-
ferentiation [23] which is usually implemented in most deep learning frame-
works. Automatic differentiation differs from a finite difference calculation
which only yield an estimate of the gradient of a function at a given point.
Automatic differentiation outputs the exact value of the gradient at the given
point. Automatic differentiation instantiates a graph of computation during
the forward pass to keep track of every primitive calculations performed du-
ring this step. Then it backpropagates the gradient by reading the graph back
from the end to the beginning and applying the chain rule in equation 2.5
knowing the derivatives of the primitive operations.

2.2.3 . Training stability, overfitting and regularization
As we have covered in section 2.2.2, training a neural networks can be a

complex task as it involves several factors from the choice of the training al-
gorithm, the initialization for the parameters and the different values of the
hyperparameters. Some other problems still arise though during training. For
example, during the training of a deep neural network, a phenomenon called
the "vanishing gradient" may happen, especially with networks using the sig-
moid activation function introduced in section 2.3.1. Indeed, the gradient of
the sigmoid function, illustrated in figure 2.2 converges to 0 very quickly for
values of the input further from the origin. These small values, although not
mathematically equal to 0, are rounded to 0 by computers which stalls the
training because the backpropagated gradient used in equation 2.3 is equal
to 0. The problem is circumvented by the ReLU (Rectified Linear Unit) activa-
tion function [24] [25], introduced in section 2.3.2, which is not everywhere
differentiable (irregularity at x = 0) but shows the behavior desired for an ac-
tivation function such as exciting the neurons in the next layer if the input of
the function is positive and inhibiting (or rather not exciting) the next neurons
if its input is negative. The ReLU activation function is illustrated in figure 2.3

24

along with its derivative, which does not vanish for positive inputs.

Figure 2.2 – Plot of the gradient of the sigmoid activation function. Taken fromthe book "Dive into Deep Learning" [26].
Other methods, such as some architectural changes in the neural net-

works through the addition of skip layers as introduced in section 2.3.2 has
the effect of backpropagating the gradient of a layer to a much earlier one in
the network thusmitigating the effect of the vanishing gradient. The initializa-
tion is also very important as keeping the weights close to 0 can help keeping
the activations of each layer in the linear regime and to avoid getting in the
vanishing regime of the sigmoid.

Another problem encountered in training neural networks is the "explo-
ding gradient", as opposed to the vanishing gradient, where the backpropa-
gated gradient takes high magnitude values. This has the effect of assigning
too high values for the weights in the network during training, resulting in
NaN values (Not a Number). This problem is usually fixed by clipping the gra-
dient values, that is to say by normalizing the magnitude of the gradient to a
maximum value. The initialization can also impact the values reached by the
gradient similarly to the vanishing gradient problem. The exploding gradient
may also be caused by the choice of the ReLU function or the Leaky ReLU [27],
illustrated in figure 2.4, as the activation function, the depth of the chosen
neural network architecture (deep networks are ore likely to yield exploding
gradients), or the optimizer (the Adamoptimizer [16] yieldsmore stability than
the classic SGD optimizer).

Wewill see in section 2.3 that the architecture of a neural network includes
some inductive biases on the data distribution to model. A prior can also be
added to the model by regularizing the model with new terms added to the
loss function used in training. The goal of regularization is originally to make
the model generalize better to unseen data. The most common example of
regularization in machine learning is the L2 regularization on the weights of

25

(a) ReLU function.

(b) Derivative of the ReLU function.
Figure 2.3 – Plot of the ReLU activation function and its derivative. Credit toDive into Deep Learning book [26].

the model, also called Ridge regularization [3] in the context of linear regres-
sion or weight decay [26] in the context of deep learning. Weight decay adds
a term proportional to the L2 norm of the weights of the model to the loss
function, in order tominimize it, the goal being tomake themodelmore parsi-
monious. Indeed, according to the principle of Occam’s razor [28], a preferred
model is one that combines fewer variables for the same overall result. This
parsimony makes the model select only the decisive variables of the input to
make a decision. Another similar regularization is the Lasso regularization or
L1 regularization [3] which constraints the L1 norm of the weights of the net-
work, with the effect of bringing some weights to have exact 0 value. Other
forms of regularization, such as dropout [26] which randomly drops connec-
tions between the neurons of two consecutive layers during training, or data

26

Figure 2.4 – Plot of the leaky ReLU activation function compared to the ReLUfunction (in blue). Credit to Dive into Deep Learning book [26].

augmentation [26], where the dataset is augmented by transforming the ori-
ginal images in the dataset in several ways (rotating images or changing the
color space for example).

As we saw, the goal of regularization is to make the model generalize bet-
ter. Inmachine learning, generalization performance ismeasured through the
overfitting of themodel. All the regularization techniques introduce in the last
paragraph aim at avoiding the overfitting of themodel on the training dataset.
Overfitting happens when the gap between the model’s loss on the training
set and on the test set increases during training, as illustrated in figure 2.5.

If the model’s loss increases on the test set while it decreases on the train
set, it means themodel is starting to "memorize" the patterns of the individual
data points of the training set instead of learning general pattern that would
be transferable from the training set to the test set. Figure 2.6 2 illustrates the
difference between models depending on how well they fit the data points. A
line that perfectly fits the training data, the small red and blue points in figure
2.5, like the green line, is not flexible enoughwhichmakes generalizing harder.
On the other hand, a more regularized and smoother line, like the black line,
is more flexible for new data points (thick red and blue points in figure 2.6),
although less representative of the training dataset than the green line.

Finally, it also seems to be the case that adding more parameters to the
modelmay increase the overfitting of themodel.We call the space of hypothe-
sis H the space of all possible configuration of the parameters of the model

2. Credit to Chabacano, CC BY-SA 4.0 <https ://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons.
27

Figure 2.5 – Plots of the train (blue curve) and test (orange curve) loss for amodel with respect to the epochs of training. The gap between both lossesincreases as the training increases, showing that the model begins to overfitand stops generalizing well.

we are fitting on the training dataset. As the capacity of H increases, obser-
vations used to be that the model have poorer generalization performance.
However, in the recent years and as computational power increased, it was
observed that increasing even more the number of parameters would start
to decrease again the overfitting of the model, as explained in [7] by an illus-
tration in figure 2.7.

2.3 . Types of neural network

An artificial neural network, or simply neural network, is a machine lear-
ning model that is the composition of successive elementary operations, cal-
led layers, parameterized by weightsW and biases b and that depend on an
activation function σ which is a non-linear function. Similarly to natural neu-
rons, a layer of neurons can either excite of inhibit the neurons in the next
layer through the values of the activation function.

28

Figure 2.6 – Learning curves of models separating data points in a two-dimensional space (red and blue points). The green line is an overfitted mo-del because it learned to fit the training data perfectly, therefore when a newpoint arises in the future that happens to be slightly off, the green line wouldmisclassify it. The black line on the other hand is well-fitted and regularized asit separates most of the training data and is flexible enough to adapt to newpoints on test time.

2.3.1 . Multilayer Perceptron (MLP)

An MLP (MultiLayer Perceptron), also sometimes called a fully-connected
neural network, is the most basic type of neural network. They are a type of
feed-forward neural network architecture (the input goes into one layer and
the output of each layer is the input of the next one) where several layers of
fully-connected neurons (each neuron of a layer is connected to every neuron
of the next layer) are stacked. TheMLP architecture is illustrated in figure 2.8 3.

Historically, this architecture used a sigmoid activation function σ(x) =
1

1+e−x whose graph is illustrated in figure 2.9 4. The sigmoid activation func-
tion was originally chosen as an activation function because it is everywhere
differentiable and continuous. It also has the property of continuously ap-
proximating a step function. Indeed, if the slope of the function reaches ∞
for inputs near 0, then the graph becomes a Heaviside step function which is
a binary function that outputs values in 0, 1 whose graph is provided in figure

3. Credit to Sky99, CC BY-SA 3.0 <https ://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons.4. Credit to Dive into Deep Learning book [26].
29

Figure 2.7 – The interpolation regime reported in [7]. The more complex themodel, the more sensitive it is to overfitting, until a threshold where the testrisk decreases again.

Figure 2.8 – Illustration of the architecture of an MLP. The arrows representthe flow of data within the network, showing why this type of architecture isclassified as a feed-forward neural network.

2.10 5. This behavior mimics neurons by either inhibiting the next layer (when
the activation function is at 0) or exciting it (activation at 1).

MLPs are proved to be universal approximators [29] [30], that is to say
for any given function, there exists an MLP that can get arbitrarily close to
this given function according to some error function. However, the universal
approximation theorems only state the existence of such networks but not
their construction, making the development of neural network architectures
difficult. Therefore, the choice of the depth and the width of neural networks
often rely on heuristics.

The hyperbolic tangent tanh has also been used for the same purpose as
the sigmoid activation function. They share a similar shape only differing in
their offset with respect to the x-axis. A plot of the tanh function is given in
figure 2.11 6 where it is compared to the sigmoid activation.

5. Credit to Omegatron, CC BY-SA 3.0 <https ://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons.6. Taken from https ://towardsdatascience.com/activation-functions-neural-
30

Figure 2.9 – Illustration of the sigmoid activation function.

Figure 2.10 – Illustration of the Heaviside step function.

The goal of the activation functions is to add some non-linearity to the
network, as it would be equivalent to a piece-wise linear function in their ab-
sence. These activation functions are used to simulate the behavior of a bio-
logical neuron, with the neuron on one layer firing when its input is positive
and inhibiting (with the tanh) or not firing (with the sigmoid) when its input is
negative.

Each layer of the MLP performs the operation described in equation 2.6
where W is the weight matrix of the layer, b is the bias vector of the layer,
σ is the activation function of the layer, and x is the input of the layer. This
operation is represented here in vector form but can be written in a similar
way for scalar inputs and outputs.

output = σ(Wx+ b) (2.6)
In equation 2.6, the transformation inside the activation function σ is a li-

networks-1cbd9f8d91d6.
31

Figure 2.11 – Illustration of the tanh function compared to the sigmoid func-tion.

near transformation with intercept b and slope W . As we saw in section 2.2,
those two parameters are learned by the model. A general architecture of
neural network has a set of learnable parameters θ. All the following models
that we will introduce rely on this paradigm and have a similar shape to the
MLP, although the operations performedmay differ in order to bemore adap-
ted to the data to model.

Finally, the output of the linear transformation of the last layer, called lo-
gits,are usually used for a given task. In particular, in classification, this out-
put is fed into a softmax function, described in equation 2.7 for a vector input
x = (x1, x2, ..., xi, ..., xK). This function represents the vector of probability
of the input being in class i ∈ 1...K. The exponential functions in this ex-
pression are meant to make the input positive. The sum over all the other
inputs are used to normalize the softmax so that the function can describe a
probability distribution with the logits x = (x1, x2, ..., xi, ..., xK). Indeed, the
sum of all softmax outputs over the input logits x = (x1, x2, ..., xi, ..., xK) is∑K

i=1
expxi∑K

j=1 expxj
=

∑K
i=1 expxi∑K
j=1 expxj

= 1.
softmax(x)i =

expxi∑K
j=1 expxj

(2.7)

32

2.3.2 . Convolutional neural networks
ACNN (Convolutional Neural Network) is an architecture that is specifically

designed for the images manipulation, although they can also be applied on
time series data. The CNN was fundamental in the history of deep learning,
as it was the first family of models in deep learning in recent years to beat
methods thatwere dominating the field of computer vision, namely SVMswith
explicitly engineered feature transformations, with the AlexNet architecture
[31] in 2012 on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[32]. This model marked the resurgence of CNNs since the 1990s.

A CNN relies on a feed-forward architecture but uses some fundamental
operations that are more adapted to the type of data it is made for. The first
one is the convolution operation, with a square convolution filter (or kernel)
K of size H ×H , described with equation 2.8 for an input image I or recep-
tive field, which corresponds to the input of a convolution layer. Note that
the dimension of the kernel K (height and width) has to be smaller than the
dimension of the input image I . The output of the convolution is called the
feature map. The operation defined in 2.8 is only defined for images with a
single channel. A channel in an image is a replica of the original image made
of just one primary colors, these colors depending on the type of image. For
example, an RGB color image will have a red, green and blue channel as in
illustration 2.12. A grayscale image has just one channel corresponding to va-
riations of grey in the image for each pixel.

[K ∗ I]i,j =
H∑

h=1

H∑
w=1

Kh,w × Ih+i,w+j (2.8)

Figure 2.13 7 gives an illustration of the convolution operation. Note that
the kernel on one convolution layer "slides" on the input image column by
column then row by row, such that it yields several outputs for a single input.

Note that there exist several ways to perform the convolution operation in
CNNs (for example, 1×1 convolutions, depthwise convolutions, cross-channel
convolutions), but the one introduced here is the most basic one. It is usually
applied channel-wise for a multi-channel image such as an RGB image (color
image). The kernel itself may be split into several channels and each channel
of the kernel is respectively applied to each channel of the image.

The second important operation in CNNs is the pooling operation which
is a downsampling operation used to reduce the size of the image, with the
most popular type being the max pooling layer. The max pooling operation
typically follows a convolution, in order to get the most important output of
the feature map and further reduce computation cost on the input image. An

7. Credit to Dive into Deep Learning [26].
33

Figure 2.12 – Illustration of channels in an RGB image. Each channel encodesthe intensity of its assigned color for each pixel. For example, the red channelassigns high value for pixelswhere the color red should be high and low valueswhen it should be low. The combination of these three primary colors allowsthe creation of other colors.

Figure 2.13 – Illustration of the convolution operation.

illustration of the max pooling operation is given in figure 2.14 8 with a kernel
of size (2, 2).

Finally, after successively repeating these operations several times, the
flattened output of the last pooling layer is fed into an MLP architecture, des-
cribed in section 2.3.1.

The activation function used in a CNN architecture also differ form the
original MLP as the sigmoid or the tanh functions are placed by a ReLU (Rec-
tified Linear Unit or rectifier) activation function, defined in equation 2.9. The
advantages of this function is that it is easier to compute as it only requires a
comparison between the input and 0, while the sigmoid and tanh activation
functions require the computation of exponential functions and inversions.
The second advantage of the ReLU is that it allows to fix the vanishing gra-
dient problem, a phenomenon explained in section 2.2.3. Indeed, the gradient

8. Credit to Aphex34, CC BY-SA 4.0 <https ://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons.
34

Figure 2.14 – Illustration of the max pooling operation.

of the ReLU function is a Heaviside step function, represented in figure 2.10,
which doesn’t vanish to 0 for high magnitude inputs. It only outputs a 0 for
negative inputs, and 1 for positive inputs. Therefore, the backpropagated gra-
dient will not easily reach 0. The usage of the ReLU is especially important for
deeper architectures (more layers stacked) [33].

ReLU(x) = max(0, x) (2.9)
Some other operations are commonly added to the CNN architecture,

such as the batch normalization (batchnorm layer) [34] which have the effect
of speeding up training by making the model converge faster. The operation
performed by batchnorm layers is illustrated in equation 2.10. In this equation,
µ is amean parameter of the input features of the layer that is computed over
the dataset for inference but is calculated over themini-batch during training,
σ2 is the variance parameter of the input features of the layer on the mini-
batch, ϵ is a constant used for numerical stability, γ is the scaling parameter
(learned as well) and β is the shifting parameter (learned as well).

BN(x) = γ
x− µ√
(σ2 + ϵ)

+ β (2.10)
An important contribution of CNNs was the introduction of skip connec-

tions which allowed training very deep architectures while avoiding the ef-
fect of vanishing or exploding gradients, which was developed in section 2.2.3.
The first paper introducing such a mechanism was the Highway network pa-
per [35], which enhanced a CNN architecture with skip connections with ga-
ting mechanisms. The skip connection was then further simplified to the skip
connection in the ResNet architecture, also called the residual connection (or
residual layer) [36]. An abstract illustration of a residual connection is given
in figure 2.15 9. We see the skip connection sending the output of layer l − 2

9. Credit to Jeblad, CC BY-SA 4.0 <https ://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons.
35

directly to layer l, effectively skipping the transformation in layer l.

Figure 2.15 – Illustration of the skip connection. layer l-2 directly sends its acopy of its output to layer l, while another copy of this information is also sentto layer l-1.
The transformation performed by a layer of a regular feed-forward neural

network is denoted by y = H(x,WH), where y is the output, x the input, H
the non-linear transformation, usually an affine transformation 10 followed by
an activation function, parameterized by the weightWH (omitting the bias for
simplicity). The Highway network has an extramechanism, called a gatingme-
chanism, which adds two non-linear transformations to the traditional ope-
ration performed by the usual network : the transform gate T and the carry
gate C. Thus, the transformation of a Highway network is turned into equa-
tion 2.11. For simplicity, the operation C can be set to be equal to 1−T . In this
configuration, the two operations clearly appear as erasing information from
a give layer to the next one or letting some of the information pass through. A
Highway network can smoothly vary its behavior between that of the original
transformationH and a simple linear layer which lets all the information pass
through with no non-linearity. The transformation described in equation 2.11
forms a Highway block, which can be composed several times.

y = H(x,WH)× T (x,WT) + x× (1− T (x,WT)) (2.11)
10. A transformation of the form ax + b where a and b are constants and x is theinput.

36

An illustration of the highway block is given in figure 2.16.

Figure 2.16 – Illustration of the Highway network block. The circled multipli-cation symbol represents a multiplication operation (element-wise) while thecircled sum symbol represents a sum.

2.3.3 . Transformers
Transformers are a widely used family of neural architectures, introduced

in 2017 in [37]. Although originally their use was mainly intended for natu-
ral language processing, they were quickly adapted to the computer vision
domain with the ViT (Vision Transformer) architecture [38]. ViTs in computer
vision increased performance several times in different tasks, often beating
previous state-of-the-art posed by CNNs. Transformers introduced a drastic
change in architecture compared to CNNs and MLPs.

The key idea of a transformer architecture is the attention mechanism
[39]. The attention mechanism aims at reproducing the process by which hu-
mans focus on objects in images or certain words in a text. The attention vec-
tor over an input x is defined in equation 2.12 where q is the query vector, k
the key vector, v the value vector, and the function softmax(input√

d
) is a simi-

larity function, the scaled dot-product. The scalar value d is the dimension of
the key vector, used for scaling the softmax dot-product in equation 2.12 for
stabilizing the model during training. Keys represent what the model should
look for in the input while the queries represent what the model is trying to
look for. The value vector corresponds to the input data x.

Attention(q, k, v) = softmax(
q × kT√

d
)× v (2.12)

Intuitively, the attention layer computes the similarity between thequeries
and keys to focus on the parts of the value vector that are the most relevant.
Each of these vectors are computed by matrix multiplication of the input data
x : k = Wkx, q = Wqx, v = Wvx. The weight matricesWk,Wq andWv are the

37

Figure 2.17 – Illustration of the original transformer architecture.

learned parameters of the attention layer. Figure 2.17 11 shows an illustration
of the transformer. The architecture of the model relies on positional embed-
dings, which indicate to the model the position of each token/element in the
input.

Someadaptation of the original transformer canbeused to process images
instead of text data. The ViT architecture slices the input image into patches
that are flattened then fed into the encoder architecture shown in figure 2.18 12
to obtain a global representation of the image.

The activation function of the MLP component of the ViT architecture is a
Gaussian error linear unit GeLU, a smoother version of the ReLU described in
section 2.3.2. The model also applies dropout to the output of each layer of
the MLP.

Now that I essentially introduced some important general purpose archi-
tectures, I will now move on to another category of models, based on these
previous models for the most part. In the next sections of this chapter, I will
11. Credit to Yuening Jia, CC BY-SA 3.0 <https ://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons.12. Credit to Dive into Deep Learning [26].

38

Figure 2.18 – Illustration of the ViT architecture for classification.

39

Figure 2.19 – Illustration of the autoencoder architecture.

introduce some important generative models. Generative models aim at mo-
deling the distribution of the features of the data p(x), where x represents
the input (for instance, an image). The aim is to ultimately generate data fol-
lowing this same distribution or to model the input. Data generation differs
from data classification as the goal in this task is to model the distribution of
labels of data conditioned by the features p(y|x) where y is a label assigned
to the data point, selected from a set of classes.

2.3.4 . Variational autoencoder (VAE)
Variational autoencoders (VAE) [40], introduced in 2014, are a type of gene-

rative model that allows data generation, denoising and representation and
compression. The VAE is an adaptation of the autoencoder architecture

An autoencoder (AE) [41] is an architecture that consists in an encoder,
which compresses the input data x into a latent code z (a compressed re-
presentation) and a decoder which decompresses this latent code to repro-
duce the original input. Both the encoder and the decoder can be an MLP or
a CNN. An illustration of the autoencoder architecture is given in figure 2.19 13.
Autoencoder are not inherently designed for sampling data points from the
training distribution.

In VAEs, the latent space is not deterministic but probabilistic and para-
meterized to follow a Gaussian distribution parameterized by a latent mean
vector zmean and a latent log-variance zlog−variance. Sampling from the latent
space then simply amounts to sampling following themultivariateNormal dis-
13. Credit to Chervinskii, CC BY-SA 4.0 <https ://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons.

40

Figure 2.20 – Illustration of the variational autoencoder (VAE) architecture.

tribution with the parameters zmean and
zlog−variance. The decoder then performs similarly to vanilla AE by mapping
the latent code z back to the original space of the input into a vector x′ as
close as possible to the original point x.

Autoencoders are generally trained with a reconstruction loss, which can
be for example the L2 reconstruction loss defined in equation 2.13 where x isthe original input sample from the training dataset and x′ is the reconstructed
sample as defined in the previous paragraphs.

Lreconstruction(x, x
′) =∥ x− x′ ∥22 (2.13)

The encoder network in VAEs is represented by a posterior distribution
qϕ(z|x) called the approximate posterior. This distribution is given by a neu-
ral network parameterized by the vector ϕ and assigns a latent code z from
a given input x. Sampling a latent element z is done by first sampling from
the multivariate Gaussian distribution ϵ ∼ N (0, I) then scaling and shifting
this distribution with zmean and zlog−variance with the formula in equation 2.14.
This allows the parameters zlog−variance and zmean to stay differentiable and
not be attached to the random variable ϵ. This step is commonly called the
reparameterization trick. We note the prior over the latent space p(z).

z = zlog−variance × ϵ+ zmean (2.14)
The decoder networkmaps the latent samples z to x′, a reconstructed ver-

sion of the original input x by sampling from the distribution pθ(x|z). This dis-tribution is called the likelihood. An illustration of the VAE architecture, slightly
different from the autoencoder architecture in figure 2.19, is given in figure
2.20 14.

In the case of VAEs, the reconstruction loss defined in equation 2.13 is
jointly optimized with an extra term, the ELBO (Evidence Lower Bound) loss
14. Credit to EugenioTL, CC BY-SA 4.0 <https ://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons.

41

which is a Kullback-Leibler (KL) divergence between the distribution of the
sampled latent variables and a prior distribution, usually a Gaussian distribu-
tion. The KL divergence is defined in equation 2.15. As its name suggests, the
KL divergence is a measure of divergence between two distributions.

DKL(p||q) =
∫
x∈X

p(x) log(
p(x)

q(x)
)dx (2.15)

The ELBO encourages certain properties in the latent space and is equi-
valent to maximizing the log-likelihood of input data pθ(x) while minimizing
the divergence between the true posterior distribution of the code z knowing
the input x, pθ(z|x), with its approximation qϕ(z|x) (the encoder). The approxi-mation qϕ(z|x) is important as pθ(z|x) is intractable as we only have access to
pθ(x|z), hence the qualification of this autoencoder as "variational". The ELBOis defined in equation 2.16. Both the reconstruction loss and the ELBO are op-
timized during training with respect to the parameters θ and ϕ.

LELBO(x, θ, ϕ) = Ez∼qϕ(.|x)(
qϕ(z|x)
pθ(z|x)

) = − log pθ(x) +DKL(qϕ(.|x)||pθ(.|x))

(2.16)
2.3.5 . Normalizing flows

Similarly to VAEs, a normalizing flow [42] [43] maps an input x to a latent
space z, also called base space [44] to sample data from the distribution of the
input noted p(x) and compute its exact values. Its architecture is similar to the
VAE although the dimension of the latent space is the same as the ambient
space (the input space). It relies on the change of variable formula from pro-
bability theory, written in equation 2.17 where pX(x) is the distribution of the
input data, pZ(z) is the distribution of the latent space and f is a diffeomor-
phism (invertible and differentiable transformation) of inverse f−1 mapping
values of the random variableX to the random variable Z : f(x) = z.

pX(x) = pZ(f(x))× |det(
df

dx
)| (2.17)

In the formulation of normalizing flows, the distribution pZ is generally
fixed to a Gaussian distribution of mean 0 and unit variance, similarly to the
VAE, although the mean and variance parameters can be learned as well. The
invertible transformation, which we note fθ, is the key component of the nor-
malizing flowmodel. It has to be both invertible and differentiable in order for
the change of variable theorem to be applicable, expressive enough to suc-
cessfully transform the variable x ∼ pX(x) into the variable z ∼ pZ(z), andthe determinant of its Jacobian (the term |det(dfdx)| in equation 2.17) must be
tractable for fast inference and training. The transformation may be expres-
sed as the composition of several simpler transformations whose Jacobians

42

have tractable determinant. Composing successively several of these trans-
formations may progressively make the transformation more expressive as
the number of transformations increases. The determinant of a composition
of functions f1...fn is given in equation 2.18, where each function fi+1 receivesas input the output of zi = fi(zi−1), with z0 = x.

det(
d(f1 ◦ f2 ◦ ... ◦ fn)(x)

dx
) = det(

df1(x)

dx
)× det(

df2(z1)

dx
)× ...× det(

dfn(zn−1)

dx
)

(2.18)
These formulas in equations 2.17 and 2.18 are often manipulated in loga-

rithmic form in order to transform products into sums, thus making compu-
tations easier.

Once the transformation fθ and the base transformation pZ are defined,
the normalizing flow is learned by minimizing the KL divergence between the
estimated log-likelihood log pθ and the true log-likelihood log pX , written in
equation 2.19.

DKL(p(x)||pθ(x)) = Ex∼pX (log pθ(x))− Ex∼pX (log pX(x)) (2.19)
Maximizing the KL divergence is equivalent to maximizing the first term,

Ex∼pX (ptheta(x)), which is equivalent to a maximum likelihood objective. Ho-
wever this objective is intractable, therefore it is replaced by an approximate
objective by Monte-Carlo computation, defined in equation 2.20 where the xiare true samples drawn from the distribution pX .

Ex∼pX (log pθ(x)) ≈
1

N

N∑
i=1

log pθ(xi) (2.20)
The training objective of a normalizing flow is therefore defined in expres-

sion 2.21.

max
θ

N∑
i=1

log pθ(xi) (2.21)
An illustration of the general scheme of a normalizing flow is given in fi-

gure 2.21 15. In this figure, we can see that an input (represented by a signal)
is successively transformed by each function composing the flow until it is
transformed into a base signal with a simpler distribution such as a Gaussian
distribution.

Some relaxations can be given however on the bijectivity of the transfor-
mation fθ [45]. A broader conception of the normalizing flow family can be
15. Credit to janosh, MIT <http ://opensource.org/licenses/mit-license.php>, viaWi-kimedia Commons.

43

Figure 2.21 – Illustration of the principle of a normalizing flow.
described to turn neural architectures using fully-connected layers, convolu-
tional layers and some activation functions into a normalizing flow [46].

From this general description, several models can be defined. They gene-
rally use neural networks combined in some invertible operations in order to
obtain expressive and differentiable transformations fθ while staying inver-tible. We will now see some normalizing flows architectures, especially those
that will be important for the rest of the manuscript.

The RealNVP (Non-Volume Preserving) model [47] is a normalizing flow
model with an invertible transformation defined by the elementary transfor-
mation in equation 2.22. This transformation is defined over an input x, split
into two parts xid and xtransf such that x =

(
xid

xtransf

)
. In equation 2.22, the

⊙ operator represents the Hadamard or element-wise product. This type of
elementary transformation is called a coupling layer.

(
yid

ytransf

)
= fθ(

(
xid

xtransf

)
) =

(
xid

xtransf ⊙ esθ(xid) + tθ(xid)

)
(2.22)

The transformation in equation 2.22 can be reversed like in equation 2.23.
Its Jacobian determinant is given in equation 2.24 where L is the number of
coupling layers in the model.

(
xid

xtransf

)
= f−1

θ (

(
yid

ytransf

)
) =

(
yid

(ytransf − tθ(yid)⊙ e−sθ(yid)

)
(2.23)

det(
dfθ
dx

) =

L∏
l=1

esθ(zl−1) (2.24)
The transformationdefinedby theRealNVPmodel (in equation 2.22)makes

use of two neural networks sθ and tθ, which are called the st-network (scalingand translation networks). The choice of these networks does not influence
the invertibility of the transformation although they are generally chosen to
be differentiable 16. Generally, the s and t networks are chosen to be identi-
16. Operators such as the rounding operator, used in quantization, is non-differentiable although some approximation can be made.

44

Figure 2.22 – Illustration of the squeezing operation from the original paper[47]. On the left the checkerboard mask, on the right the channel-wise mask.

Figure 2.23 – Illustration of the RealNVPmodel from the original paper [47]. Onthe left, the two blank squares represent the input split into two parts. Theyare transformed following the rest of the illustration. the "=" sign signifies thatthe input of the block is left unchanged.

cal. Finally, the coupling layers are generally stacked, by alternating at each
layer the part of the input which will be transformed and which will remain
identical.

In order to capture information at different scales in the input, the RealNVP
model introduces a multi-scale architecture, where at each scale the model
combines three coupling layers with alternating checkerboard masks, then a
squeezing operation where the height and width of the input is halved while
quadrupling the channel dimension, before finally applying another set of
three coupling layers with alternating channel-wise masks this time. Figure
2.22 illustrates the two types of masks, namely checkerboard and channel-
wise masks, used in the multi-scale architecture as well as the squeezing ope-
ration where an s× s× c image is turned into an s

2 ×
s
2 × 4c image.

An illustration of the RealNVP architecture is given in figure 2.23.
This model is the one I chose to use in my experiments in the next chap-

45

Figure 2.24 – Illustration of the Glow model from the original paper [49].

ters as it gives enough stability during training to train a large model, as well
as enough representation power to model input data. Furthermore, previous
papers like [48] use this model in their experiments, therefore it would make
a fair comparison.

The Glowmodel (Generative flow) [49] is an evolution of the RealNVP mo-
del that has a coupling layer made of an actnorm layer (normalization over
the activations, the inputs) followed by an invertible 1 × 1 convolution layer
then an affine coupling layer defined in equation 2.22. The Glow architecture
simplifies however the RealNVP architecture by removing the checkerboard
mask operation and keeping only the channel-wise one.

A complete representation of the architecture is given in figure 2.24.
This model is important as it shows an evolution of the already existing

RealNVP architecture but is hard to train as the model often explode during
training.

It is also possible to formulate normalizing flows by a continuous dynamic
instead of a composition of functions [50], with the transformation defined
in equation 2.25 where f(zt, t) is a continuous map depending on a time pa-
rameter t, zT is the equivalent of the latent variable in discrete composition
flows (defined above) and z0 the input data point x.

zT = F (z0) = z0 +

∫ T

0
f(zt, t)dt (2.25)

Finally, normalizing flows can be used outside of unsupervised learning
for generative modeling as hybrid models, such as with the DIGLM (Deep In-
vertible Generalized Linear Model) [1], used for supervised learning in classifi-
cation tasks. TheDIGLMuses a normalizing flowas a backbone and adds to it a
generalized linear model [51] that takes as input the values of the latent space

46

Figure 2.25 – Illustration of the DIGLM model from the original paper [1].

to output softmax probabilities for classification. A generalized linear model
is a simple linear regression with a "link function". A general linear model can
be described with equation 2.26 where y is the label, z the latent variable from
the normalizing flow, g−1 the link function and β the parameter of the model.
I used this model in my experiments in chapter 4.

E(y|z) = g−1(βz) (2.26)
Therefore, themodel can output both the probability distribution p(x) (in-

put distribution) through the generativemodel part and the probability p(y|x)
(label distribution conditionally to the input) through the linearmodel and the
softmax function. An illustration of the model is given in figure 2.25.

2.3.6 . Score-based models
Score-based models are another family of generative models that focus

on estimating the gradient of the log-likelihood of the distribution we wish
to sample from, that is to say ∇x log p(x) [52] [53] instead of estimating the
log-likelihood directly or via a surrogate. This model is important as it helped
define later on denoising diffusion models, defined in section 2.3.7. They are
also important in this manuscript as the underlying principles of score-based
models are used in chapter 4.

The gradient∇x log p(x) is coined the "score" and can be directly used fordata generation, typically with Langevin sampling. It is a sampling technique
similar to a gradient ascent described by the dynamic in equation 2.27 where
η is a fixed parameter and zt ∼ N (0, I) is a random Gaussian noise. The dy-
namic can be initialized with a random point x0. It models a system evolving

47

when subjected to deterministic and random forces, such as the dynamics of
grains of pollen put atop of a water surface, where the pollen interacts with
water molecules (Brownian motion, mathematically described by Albert Ein-
stein in [54]).

xt+1 = xt +
η

2
∇x log p(x) +

√
ηzt (2.27)

Langevin sampling has some properties that makes sampling with this
technique interesting, among which the fact that asymptotically (when the
number of time steps of the Langevin dynamic reaches infinity), the samples
generated by this process follow the distribution p(x). Also, having direct ac-
cess to the distribution p(x) can be hard, as some methods only give an es-
timation up to a multiplicative constant, such as with energy-based models
[55]. For example, in RBM (Restricted BoltzmannMachines) [56] [57], the joint
probability of an observation x and the hidden state of the model h is given
by equation 2.28 where E(x, h) is an energy function evaluated at the points
x and h and Z is a normalization constant such that the sum over all possible
states (x, h) of the probability distribution is 1.

p(x, h) =
e−E(x,h)

Z
(2.28)

This constant Z can be intractable, making the computation of p(x, h)
hard. However, the score of the model ∇x log p(x, h) is easy to compute as
long as the energy function can be differentiated since∇x log p(x, h)

= −∇x logE(x, h).
Score-based generativemodels are reckonedmainly for their applications

in diffusion models which are generative models that successfully beat GANs
(described in section 2.3.8) in the recent years especially in the domain of
image generation where they produce highly realistic data samples.

2.3.7 . Diffusion models
Diffusion models [58] are models based on statistical physics where the

aim is to learn a diffusion process which is a process that progressively adds
noise to an image. The noise repeatedly added to the input is a Gaussian noise
N (0, I)making the portion of the space of naturally occurring images (wewish
tomodel) progressively "diffuse" to the rest of the space of images (even noisy
ones). This final distribution, the equilibrium distribution, is indistinguishable
from Gaussian noise. Therefore, a model that can cancel this diffusion pro-
cess can be used to sample from the original space of images of interest. This
reverse diffusion process relies on score matching methods.

Denoising diffusion probabilistic models [59] are especially regarded as
the method that greatly improved on existing diffusion models. The forward
diffusion process, which progressively adds noise to the image x0 at each time

48

step t producing a new noisy version xt, is defined with the dynamic in equa-
tion 2.29 where β1...βT are fixed parameters in]0, 1[and zt ∼ N (0, I).

xt+1 =
√
1− βtxt +

√
βtzt (2.29)

At step t, the distribution of the image xt conditionally to x0 is xt|x0 ∼
N (
√
ᾱtx0,

√
1− ᾱtx0) where ᾱt =

∏t
i=1(1 − βi), which stays a normal dis-

tribution. Then, the backward diffusion process, which seeks to cancel the
forward diffusion process described above, estimates the mean and cova-
riance parameters of the Gaussian such that the forward diffusion can be
approximately cancelled by xt−1 ∼ N (µθ(xt, t),Σθ(xt, t)). Here, µθ(xt, t) and
Σθ(xt, t) are the mean and covariance parameters given by a neural network
parameterized by θ and given the noisy input xt and the time step t as in-
puts. This yields a backward process defined by pθ(xT) = N (xT ; 0, I) and
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).Knowing these two processes, the goal of the DDPM is to train a neural
network with parameters θ such that pθ(x0) is as close as possible to the truedistribution of the original sample which we note p(x0). This is done throughvariational inference, similarly to the training mode in VAEs in section 2.3.4.
The loss function used to train a diffusionmodel is described in equation 2.30
where x1:T is the sequence of elements xt for t varying between 1 ans T (the
length of the diffusion sequence). This loss term translates the discrepancy
between the original diffusion process p(x1:T |x0).

L(θ, (xt)t=0:T) = Ex0:T∼p(x)(log(pθ(x0:T))− log(p(x1:T |x0))) (2.30)
This loss is optimized by stochastic gradient descent, described in section

2.2.2. This loss can be further simplified for training on a dataset with the ex-
pression in equation 2.31.

L(θ, (xt)t=0:T) = −
T∑
t=1

Ext−1,xt∼p log pθ(xt−1|xt) (2.31)
DDPM and score-based generative models are equivalent [60] and one

can see that both methods are in fact closely related, especially since both
methods use a stochastic iterative sampling method.

An illustration of the principle of the DDPM is given in figure 2.26.

49

Figure 2.26 – Illustration of the DDPM from the original paper [59]. The dif-fusion process q iteratively adds noise to the image on the right to yield aGaussian random noise on the left at the end of its diffusion. The denoisingdiffusion process p iteratively inverts this process to yield an image close tothe one from the original space.

2.3.8 . Generative adversarial networks (GAN)
Generative adversarial networks or GANs [61] are a type of generativemo-

del that are based on two neural networks that compete against each other in
a zero-sum game in order to be trained. One of them is called the generator,
whose goal is to generate data as close as possible to the original data dis-
tribution, the other is the discriminator whose goal is to discriminate images
from the original distribution and and images from the generator. Hence the
name "adversarial".

The objective used to train both networks is the loss described in equation
2.32. In this equation,G refers to the generator network,D to the discrimina-
tor and p to the reference distribution the networkG aims to imitate. The label
y assigned to the input x by the discriminator is equal to 1 if x is real or 0 if it is
fake. This loss is supposed to be minimized by the generator and maximized
by the discriminator, leading to the min-max gameminGmaxD L(G,D, p).

L(G,D, p) = Ex∼p,y∼D(x)(log y) + Ex∼G,y∼D(x)(log 1− y) (2.32)
As opposed to previously introduced generative models, GANs do not ex-

plicitly train the likelihood of the model or try to optimize some proxy of the
probability distribution. Instead, they use a min-max optimization objective
to indirectly train a generator to fool a discriminator, which is also trained to
distinguish fake data from real data. This approach is hoped to yield good
samples.

In practice, the generator takes as input some noise from a known fixed
random distribution one can sample from (for example, Gaussian) and com-
poses it with the generator network : sample z ∼ pZ and generate the new
samples with G(z).

Several issues arise when training GANs, amongwhich the convergence of
trainingwhichmay be unstable [62] leading to no solution for the optimization
objective defined above, and mode collapse [61] [63] where a GAN trained on
diverse instances in a training set fails to catch all themodes of the distribution
and may only generate images from one mode (one class of the dataset).

50

Figure 2.27 – Illustration of the GANmodel with the discriminator on the rightand the generator on the left.

I provide in figure 2.27 17 an illustration of a GAN model.

2.4 . Memory-augmented models and associative memories

In this last section, I will introduce a field of machine learning that uses
memory structures as a basis or as an enhancement of machine learning ar-
chitectures. The interest of such models is that they provide a way that may
help to understand the construction of modes around training data in pro-
babilistic models like normalizing flows, previously introduced. These models
based on memory also have easy interpretations and can be used to make
models more robust as some of them can be used in reconstructing corrup-
ted inputs by finding a pattern in their memory that is the closest to a given
corrupted input.

The models introduced in this last section will not be used in the rest of
the manuscript in scientific contributions. However, they will be used in the
conclusion as a way to open perspectives for future research. They will give
insights on how the thesis was conceived. Chapters 3 and 4 cover different
aspects of the problem of robustness. Chapter 4 in particular covers an idea
to restore corrupted input data that was partly inspired by the mechanism of
pattern restoration in hyperdimensional computing, which will be introduced
in section 2.4.1.

These memory-based models can be traced back to Hopfield networks,
which is a model we will introduce in section 2.4.2. The concept of adding me-
mory to a model also gained more importance in the recent years through
several works wee will cover in section 2.4.3. In this chapter, we separate two
types of memories, one being the address-based memory and the other one
being the content-addressablememory (CAM). The address-basedmemory is
the traditional memory type we are used to manipulating in a computer for
example where objects and numbers are stored at a given address. In this
17. Credit to Mtanti, CC BY-SA 4.0 <https ://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons.

51

case, the address space (the set of possible addresses) is distinct from the in-
put space (the set of values that can be processed). Content-addressable me-
mory or associative memory [5] on the other hand is a type of memory where
stored objects can also act as addresses themselves. In associativememories,
addressing an element given an address is an iterative process where at each
step a similarity measure is used to find the nearest element of the address.
The most similar element then becomes the new address that is used to find
another close element. The algorithm converges once the iterative process
stabilizes, that is to say once the addressed element is equal to the address.
Associative memory is often used in applications where the goal is to restore
a corrupted or partially masked input. Restoring the input is equivalent to fin-
ding the most similar pattern, given the input query.

2.4.1 . Hyperdimensional computing
Hyperdimensional computing (HDC) [64] [65] is a paradigm of computa-

tion where objects such as numbers, categories or features, are represen-
ted as high-dimensional vectors called hypervectors. These vectors are often
randomly drawn from a binary space with a high dimension (generally above
10,000 dimensions) and each of them represent a given symbol.

The idea behind the use of a high-dimensional space for representing ob-
jects is that any object can be associated with any given random vector. These
vectors being high-dimensional and random, they can be expected to be dis-
tant from each other on average. This allows for separation of the vectors,
and thus the underlying object being represented. This step of assigning a
random vector to a given object is called the symbolic encoding step. The use
of randomness in assigning a vector to an object allows the vector representa-
tion to be approximately orthogonal between each other as a random binary
vector in a high-dimensional space is sparse and is therefore likely to have 0s
in places where another randomly drawn vector has 1s. This enables the re-
presentation of distinct objects as orthogonal vectors, the goal being to have
similar objects having similar representations and dissimilar objects having
dissimilar representations. The interest of embedding these objects in a vec-
tor space comes from the fact that these objects can then be manipulated
following some algebraic rules to combine them with each other.

There are two fundamental operations described inHDC. The first one, the
binding operation, combines vectors between them in order to form a new
vector with a meaning being the result of the composition of the underlying
concepts of the composed vectors. For example, combining the words "King
- Man + Woman" results in the concept "Queen". An illustration of such an
embedding can be found in illustration 2.28 18.
18. Credit to Singerep, CC BY-SA 4.0 <https ://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons.

52

Figure 2.28 – Illustration of embeddings of words, similar to a Word2Vec em-bedding [66]. Vectors, representing the semantic meaning of words such as"King" or "Woman" can be combined to form new concepts.

The second operation in HDC is superposition. This operation represents
the simultaneous occurrence of two concepts. For example, superposing the
vectors for "Queen" and "King" would result in a vector that represents the
union of both concepts. Superposition captures mostly the co-occurrence of
objects while the binding operation captures the relation between these ob-
jects.

Hypervectors are often interpreted as associative memories as it is pos-
sible, given a query hypervector, to find the closest hypervector representing
through similarity search. The query vector may have no particular meaning
but would be close to one of the embeddings. This interpretation of hyper-
vectors enables the implementation of error correcting codes [67]. They are
also associated with the vector symbolic architecture (VSA) [65] which is a fra-
mework where objects are represented in a distributed way, like in HDC, ma-
king the representation more robust by distributing information across seve-
ral components of the representation.

HDC and VSA approaches are methods that are seen as bridging the gap
between symbolic and connectionist paradigms. Indeed, their use of symbols
to represent objects in order to manipulate them in a semantically meaning-

53

ful way makes them obviously symbolic AI approaches. Furthermore, the way
HDC represents information in a distributed waymakes it an approach that is
also close to how neural networks distribute information in their representa-
tion across different layers, composed of activation patterns. HDC also takes
its roots in how brains perform computations [67] by working with associati-
vity and composition of symbols on a distributed way, making the brain fault
tolerant.

The associative memory property of the HDC paradigm also manages to
create a memory module that is implicit in the architecture and the represen-
tation of the represented objects. This is opposed to models we will see in
section 2.4.3 that use an external dedicated memory module to store infor-
mation about dependence between data points.

HDC is close in principle to the Sparse Distributed Memory, or SDM, mo-
del [68] which is a long-termmemory model that works as an associative me-
mory/CAM. It is very similar to HDC as it uses high-dimensional binary ad-
dresses to efficiently store and retrieve data patterns. HDC can be seen as a
broader framework than SDM, with the difference that SDM requires sparse
high-dimensional vectors to store patterns.

2.4.2 . Hopfield networks
AHopfield network [69] is a type of neural network inspired by physics. It is

made of binary neurons/units connected with each other where the connec-
tions are parameterized by a symmetric weightmatrixW which represent the
strength of the connection between every pairs of units. An illustration of a
Hopfield network is given in figure 2.29 19.

"Training" a Hopfield network is a process that allows the storage of pat-
terns in the network’s weight matrix. The weight matrix is set to the value in
equation 2.33, whereN is the number of units in the network, P the number
of patterns to store and V p

i is the ith component of the pth pattern.

Wi,j =
1

N

P∑
p=1

V p
i V

p
j (2.33)

An energy function is associated with the network. The energy function is
defined in equation 2.34 where si is the state of the ith unit,Wi,j the element
of the weight matrixW representing the strength between units i and j.

E = −1

2

∑
(i,j),i ̸=j

Wi,jsisj −
∑
i

θisi (2.34)
This energy function is updated through the update rule given in equa-

tion 2.35 when a change in the state si of the unit i of the network occurs. The
19. Credit to Zawersh, CC BY-SA 3.0 <https ://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons.

54

Figure 2.29 – Illustration of a Hopfield network.

aim for the network is to minimize this energy function. A low energy function
is associated with a stable state of the overall network and therefore corres-
ponds to a stored pattern in the memory of the network.

∆E = −∆si
∑

(i,j),i ̸=j

Wi,jsj (2.35)
The state of the units of the network are updated according to the state

of each unit and the connection weights through an update rule inspired by
Hebbian learning [70]. This update rule is shown in equation 2.36 where θi isa threshold value associated with the ith neuron. This update allows the net-
work to converge to a new state associated with a new energy, corresponding
to a stored pattern.

si =

{
1 if∑j Wi,jsj ≥ θj

−1 otherwise (2.36)
Hopfield networks are mostly used for storing patterns, thus forming a

content-addressable memory. A pattern can be retrieved in the memory of
the network by updating the state of the network following equation 2.36 un-
til the energy defined in equation 2.34 is minimized, corresponding to a stable
state. Hopfield networks can also be used in combinatorial optimization pro-
blems, such as the travelling salesman problem, where, given a list of cities

55

and the distances between each pair of cities, find the shortest route that vi-
sits each city exactly once and returns to the starting point.

Hopfield networks have recently gained more popularity, especially since
some equivalence can be found between them and attention layers [71]. This
new model relies on an extension of Hopfield networks to a continuous case
with dense associative memories, also called modern Hopfield networks [72]
[73]. These extensions of Hopfield networks use a new energy function in or-
der to increase the storage capacity of the model. The general form of this
energy function can be found in equation 2.37 whereN is the number of pat-
terns to store, x is the patterns to store and ξ is the state of the network,
written in vector form for convenience. The function F , called an interaction
function, can take several form but is assigned to a polynomial in [72] and an
exponential in [73].

E = −
N∑
i

F (xTi ξ) (2.37)
The work in [71] showing how a Hopfield model can be made equivalent

to an attention layer led to the development of Hopfield layers, which can
be used in existing models for applications in multiple instance learning, set-
based and permutation invariant learning, and associative learning.

2.4.3 . Memory-augmented neural models
In this section, we will cover some memory-augmented models that rely

on an external memory module in order to enhance the capacity of neural
architectures and enable dynamic storage and retrieval of information during
inference for example.
Neural Turing Machine

TheNeural TuringMachine orNTM [74] is amodel equippedwith a control-
ler, which can be a feed-forward neural network, introduced in section 2.3.1
or an LSTM network [75], that processes inputs to interact with an external
memory, which is a large storage matrix that can be read from and written
to by the controller through differentiable read and write operations. Figure
2.30 illustrates the NTM architecture. The architecture is similar to a Turing
Machine because of the read and write heads as well as a Von Neumann ar-
chitecture for its external memory module that the controller (similar to an
arithmetic and logic unit) interacts with.

Each component of theNTMbeing differentiable, it can be trained through
backpropagation. The training of themodelminimizes the difference between
the NTM’s predicted outputs and the ground truth in order to optimize the
memory matrix as well as make the controller better at manipulating the me-
mory.

56

Figure 2.30 – Illustration of the NTM architecture from the original paper [74].

This model is especially interesting in tasks where the model needs to use
algorithmic reasoning or dynamic data processing. It can be applied to seve-
ral tasks such as natural language processing, computer vision or or sequence
processing. The memory module allows the model to memorize patterns in
the data distribution in order to better inform its decisions. Thanks to the dy-
namic memory module the NTM is adaptable during inference : the model
can store information in the matrix during inference as part of the proces-
sing of the inputs to retrieve them later, memory having an important role in
reasoning in the human brain. The model can also perform well on noisy or
masked inputs thanks to the possibility of finding similar patterns in memory.

Kanerva machine

The Kanerva machine [76] is a model based on the Kanerva’s SDMmodel,
mentioned in section 2.4.1. It is a model that is similar in principle to the NTM
as it works with an external memory, but this time for data generation. It is
composed of three parts : the generative model, the reading inference model
(to read from the memory), and the writing inference model (to write to the
memory). The generativemodel generates dataX using information provided
by amemorymatrixM which is a global latent variable that captures statistics
about the dataset x1...xT , and local latent variables yt and zt that captureinformation about xt, with the joint distribution provided in equation 2.38.
In this equation, θ represents the parameters of the model, xt represents aninstance of the dataset, composed of T samples and yt and zt are the latentvariable corresponding to the observed variables xt.

57

pθ(X,Y, Z|M) =

T∏
t=1

pθ(xt, yt, zt|M) =

T∏
t=1

pθ(xt|zt)pθ(zt|yt,M)pθ(yt) (2.38)
The generative model is a VAE model (introduced in section 2.3.4) with

a prior p(z) on the latent code z and a conditional distribution pθ(x|z). Theinference part of the model is the approximate posterior qϕ(z|x). The trainingobjective of the Kanerva machine here is to maximize themutual information
between the memory matrixM and the input dataX to store.

The memory M is a random matrix under which the distribution X,Y, Z

is independent between each samples of the episode. The addresses are sto-
red in an address matrix A, optimized through backpropagation as well. The
addressing latent variable yt corresponds to an addressing variable with prior
pθ(yt), an isotropic Gaussian distribution. This latent variable is projected withamapping f (an MLP) to yield a key vector bt = f(yt)which allows to compute
a weight vector wt = bTt A.The code zt is a representation of xt that allows to generate samples with
the distribution pθ(xt|zt). The distribution of zt itself depends both on theme-
mory matrixM and the latent variable yt through the weight wt.Sampling from the model requires first sampling the memory M once,
then for each data samples, sampling latent variables yt and zt, and then sam-
pling xt.The reading inferencemodel is a conditional distribution, defined in equa-
tion 2.39 where ϕ represents the parameters of the model. For a given in-
put xt in the dataset, it provides the corresponding latent variables yt and
zt by reading from the given memory matrix M . Kanerva’s SDM uses an ite-
rative reading mechanism to read samples from the memory, which itera-
tively feeds back into the model the previous sample. Kanerva proved that
this dynamic decreases error when the initial error is within a certain range,
thus creating a stored memory asymptotically. The authors here propose a
Gibbs-like sampling which also iteratively reconstructs data through a feed-
back loop. This process relies the computation of qϕ(yt|xt,M) for addressing,
which can be costly during training. It is however known in coding theory
that such an intractable posterior can be approximated efficiently with loopy
belief-propagation.

qϕ(Y,Z|M,X) =

T∏
t=1

qϕ(yt, zt|M,xt) =

T∏
t=1

qϕ(zt|xt, yt,M)qϕ(yt|xt) (2.39)
The writing inference model has the role of finding a trade-off that allows

it to update the memory given some input X while maintaining old informa-
tion. The writing mechanism is based on Bayes’ rule where p(M |X) is propor-

58

tional to the likelihood of the observed data p(X|M) times the prior distribu-
tion ofmemory p(M) (a Gaussian distribution). The likelihood of the observed
data p(X|M) is computed using the generative model, which is a hierarchical
conditional generative model that generates samples from the memory vec-
tors.
Differentiable Neural Computer

The DNC (Differentiable Neural Computer) [77]. The DNC is an extension
of the NTM with memory attention mechanisms that control where the me-
mory is stored, and temporal attention that records the order of events. This
makes the DNC be more robust and abstract than an NTM. The DNCmodel is
similar to the Von Neumann architecture and is Turing complete. An illustra-
tion if the DNC is provided in figure 2.31 20.

Figure 2.31 – Illustration of the DNC architecture.
The DNC differs from the NTM neural memory frameworks as the me-

mory can be selectively written to and read from by an iterative modification
of memory content thanks to an attention mechanism. The DNC uses a diffe-
rentiable attention mechanism to define weightings over locations memory
matrix M . The weightings represent the degree to which each location is in-
volved in the read or write operation. The read vector r overM is a weighted
sum of the matrix rows and the reading weights wr. The write operation on
the other hand uses a weighting ww to erase with a vector e then add v to the
matrix. Each of these operation are performed by a read and a write heads.
20. Credit to Kjerish, CC BY-SA 4.0 <https ://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons.

59

The heads use 3 forms of differentiable attention :
1. The first one performs content lookup where a key vector is created by
the controller and is compared to the content of each location with a
similarity measure allowing to perform associative recall with the read
head or modify vectors in memory with the write head.

2. The second attentionmechanism records transitions between consecu-
tively written locations in a temporal link matrix L where each element
Li,j of the matrix gets closer to one if i is the next location written after
j, and 0 otherwise. For every write vectorw, L×w smoothly shifts focus
forward to the location written after those emphasized in w. LTw shifts
the focus backward on the other hand thus giving the ability to recover
sequences in the order in which they were written.

3. The third mechanism allocates memory for writing. The usage of a loca-
tion is a number between 0 and 1 and the weighting picks out unused
locations to deliver to the write head. The usage increases after a write
operation and decreases after a read. The allocation mechanism is in-
dependent of the size of the memory, allowing to increase the size of
the memory without needing to retrain the DNC.

In other words, the content lookup forms an associative memory data
structure, the temporal links allows for sequential retrieval of inputs similarly
to a human “free-recall”, and the memory allocation provides unused loca-
tions to the writing head. An illustration of the whole model with each sub-
components and memory modules can be found in figure 2.32.

The DNC is capable of performing some reasoning tasks by combining
supporting facts and make deductions from them in a text format. It The mo-
del also performs well on reasoning tasks on graphs, such as finding the shor-
test path in an underground network. It can also apply logical planning tasks
on a block puzzle game where it was observed that the DNC was able to plan
several steps ahead before acting upon it.

This section shows some possibilities of howmemory can enhance the ca-
pacity of a model. The idea can be traced back to the origins of AI and can be
found even in recent works [78]. In particular, recent models make use of ex-
ternal memory modules in order to increase the processing power of neural
models. However, making a shift towards associative memory modules may
help prevent a bottleneck in those neural models similar to a Von Neumann
bottleneck both in algorithmic complexity (need to store a huge memory ma-
trix) and in channel capacity (howmuch information can be transmitted from
the memory back to the main neural controller).

60

Figure 2.32 – Illustration of the DNC architecture with each memory modulefrom the original paper [77]. In a, a recurrent neural network, the controllernetwork, receives inputs to produce two outputs, ne of them parameterizinghe the write head the read heads in b, c. The write head outputs a write (boxarea) and an erase vector (shading) that are used to edit the memory matrix.A write key is spots previously written locations to edit and can contribute todefining aweighting that selectively focuses thewrite operation over the rows,or locations, in the memory matrix. The read heads can use gates called readmodes to switch between content lookup using a read key (‘C’) and readingout locations either forwards (‘F’) or backwards (‘B’) in the order they werewritten. In d, the locations which have been used so far are recorded with ausage vector, and a temporal link matrix records the order in which locationswere written (the order is represented with the directed arrows.

61

3 - Out-of-distribution detection

3.1 . The general problem of out-of-distribution detection

When a model is deployed after being trained on curated training dataset
and tested on the test set, problems may arise when the model is confron-
ted to data that differ from the training distribution. A vision system should
either be able to filter out or hand out this new piece of unusual data to a hu-
man to process it. We call "closed-world assumption" [79] the setting where a
machine learning model is trained without awareness of data outside drawn
from the same distribution as the training distribution. I note this distribution
p(x, y) where x are the features and y is the label of the data point. The aim
is to make models more reliable and robust as well as to be able to interpret
more easily failures in their detection when they are caused by an outlier. In a
real open-world scenario where any data can arise, out-of-distribution (OOD)
samples should however be handled with caution. Data points, when they are
not drawn from p(x, y) are called OOD data as opposed to in-distribution (ID)
data drawn from p(x, y). Indeed, models faced with data belonging to ano-
ther class than those it was trained on cannot assign a label to it as it would
not make sense. In this section, I will introduce the general problem of OOD
detection as defined in [79]. OOD detection aims at detecting this data that
does not belong to the underlying distribution themodel is tuned for in order
to filter it out before the true classification process.

We usually consider OOD data to be drawn from a distribution which is
shifted from the in-distribution. This distribution shift can either be caused
by a semantic shift or a covariate shift. A semantic shift or label shift is a shift
in the label distribution p(y) but p(x|y) stays the same. This shift causes the
nature of the problem to change. For example, a new class that was not seen
in the training set appears may appear on inference (when the model is de-
ployed). A covariate shift is a shift in the features of the input data p(x) while
p(y|x) stays the same. This shift does not change the problem but rather the
distribution of the features the model was trained on and therefore is mostly
related to the generalization capabilities of the model (can it classify data that
was taken in different conditions?). These distribution shifts are illustrated in
figure 3.1 1. Other types of shifts exist, such as the concept shift where the de-
finition of labels changes over time. For example, a definition may change in
the fashion industry where the problem is to determine what garments pass
as trendy, or in mental health screening where the definition of mental illness

1. Illustration of the original data and the covariate shift are taken from the book"Dive into Deep Learning" [26]. Illustration of the label shift is taken from the CIFAR-10dataset [80].
63

may also evolve. The problem of OOD detection arises whenever one cannot
guarantee that the data distribution is stationary or that input data may be
taken from sources that are not related to the problem the model is trained
on [26].

(a) Original data the model was trained on

(b) Covariate shift from the original data

(c) Label shift from the original data
Figure 3.1 – Illustration of semantic and covariate distribution shifts.
Depending on the type of distribution shift considered in the underlying

problem, the task may be called differently. The paper [79] created a frame-
work called "generalized out-of-distribution detection" in order to classify pro-
blems that relied on the open-world assumption. The problems covered in the
survey in [79] are mainly focused on semantic shifts. The lack of understan-
ding in the relations between those problems (open-set recognition, outlier
detection, anomaly detection, novelty detection) often brings confusion by
mixing datasets and terms.

In the next sections of this chapter, the reader can refer to [79] when stu-
dying a specific problem in the generalized OOD detection framework. Spe-
cifically, "OOD detection" refers to a problem where the ID and OOD dataset
differ both from covariate and semantic shift. "Class anomaly detection" or
"anomaly detection" is when both datasets differ only semantically.

64

3.2 . Problems of naive approaches in out-of-
distribution detection

In deep learning, in a classification task, a model outputs a probability dis-
tribution for any given input thanks to the softmax function described in chap-
ter 2. This softmax distribution {σk}k∈{1...K} corresponds to the probability ofthe input being classified as class k ∈ {1...K}. The input is labeled with the
class of the highest softmax probability.

Intuitively, one should be able to think of this probability output as the
confidence of themodel in its classification. For example, if the assigned label
to an inputxby amodel is label kwith probabilityσk = 0.6, then intuitively one
would think the model is confident at 60% that the label of x is k. Therefore,
using the softmax distribution seems like an obvious solution to problems in
the generalized OOD detection framework, as an OOD output should have a
softmax distribution "close" to a uniform distribution U(J1,KK).

However, several problems arise when using the softmax distribution,
which have been reported in the literature on uncertainty in deep learning
[81]. It has been noted for example that classifiers can be overconfident in
their classification, even when they are wrong (which is often observed espe-
cially in adversarial machine learning) [81] or when the input does not corres-
pond at all to the distribution they were trained on or even unrecognizable
[82] [83] [84]. This phenomenon of bad softmax predictions may be explai-
ned by the softmax function being a smooth approximation of the indicator
function which tends to give a spiky distribution instead of a uniform one over
the class set. This problem ofmisalignment between the actual uncertainty of
the neural network and its predicted softmax probability distribution is called
a "calibration" problem [81], i.e. : ensuring the model’s predicted uncertainty
(its output softmax distribution) is aligned with its measured accuracy. A well-
calibrated model has a softmax distribution similar to what is represented in
figure 3.2 2. We can see that, a JEMmodel (Joint Energy-basedModel) [85] (right
histogram) is well calibrated as its level of accuracy is close to its measured
accuracy, as opposed to the baselinemodel on the left (the same architecture
as the JEM model without an energy-based model training). The ECE (Expec-
ted Calibration Error) [86] of the well-calibrated model is lower than the ECE
of the naive model.

Therefore, the softmax output of a classifier for OOD detection should be
used with caution in order to avoid side effects from the overconfidence of
the model. Some techniques though do utilize the softmax output to detect
OOD inputs. For example, a common baseline is to use the maximum soft-
max output of the model (maxk{σk}k∈{1...K} and classify as OOD any input
data whose maximum softmax is lower than a given threshold. More sophis-

2. Taken from [85].
65

Figure 3.2 – Histogram of the accuracy level of the model with respect toits probability of classification. The x-axis represents the value of the log-likelihood, the y-axis the number of occurrence in the dataset for each binof value (group of values). A well-calibratedmodel is expected to have a confi-dence close to its accuracy level, therefore an ideal model has a histogramsuch that the accuracy is equal to the confidence.

ticated techniques using the divergence (Kullback-Leibler divergence [87] or
Bregman divergence [88]) between the model’s softmax output and a uni-
form distribution exist as well. The rationale behind these divergence-based
approaches is that the more uncertain a well-calibrated model is, the closer
its softmax distribution should be to a uniform distribution (no single class
should be more likely than another). These techniques however would only
work correctly if the model is already well-calibrated.

On the other hand, some othermethods relying on unsupervised learning
can be thought about, such as techniques relying on the likelihood of the input
computed by a generative model. Indeed, the likelihood measure p(x) seems
like a good candidate for OOD detection as it directly translates how likely, or
how "in the distribution", a piece of data is compared to what was seen during
training (assumed to be in the in-distribution). However, problems also arise
when using the likelihood on OOD detection. Particularly, it was previously
observed that training a likelihood model on some in-distribution and testing
it on an out-distribution that is less complex, the assigned likelihood (or log-
likelihood) is smaller for the in-distribution than for the out-distribution [89].
For example, if the likelihood model is a normalizing flow, the in-distribution
the CIFAR-10 dataset [80] and the out-distribution the SVHN dataset [90], we
observe a consistently lower log-likelihood on the in-distribution than on the
out-distribution. This phenomenon is illustrated in figure 3.3.

We see that using a likelihood measure to filter out OOD data is not a
reliable method. Directly using the probability a model yields as an output
seems not to work as efficiently as expected. Othermethods andmetrics exist

66

Figure 3.3 – Log-likelihood distribution of a RealNVP model [47] trained onCIFAR-10 (red) and tested on SVHN (blue). On the x-axis, the values of the log-likelihood, on the y-axis the number of occurrences of each bins (group ofvalues) of log-likelihood. The log-likelihood is on average smaller for the in-distribution than for the out-distribution.

to circumvent the problems linked to using "naive" metrics, which will be co-
vered in this chapter.

3.3 . State-of-the-art

As explained in the previous section, the problem of OOD detection can-
not be covered by naïve methods relying on the probability distribution given
by amodel. In this section, I will introduce severalmethods of the state-of-the-
art in OOD detection. The methods introduced here will be used later in this
chapter to evaluate my method. During the bibliography phase, several me-
thods recurrently appeared in the literature in OOD detection. The methods
described in this section, which are also the ones used in the evaluations,
are state-of-the-art methods that were that appeared in most OOD detection
works as a comparison baseline.

Two big families of models were noticeable at the time of the bibliogra-
phy, mostly output-based methods and gradient methods. The output-based
methods base their approach on the output of the model to detect deviation
in the input from the learned in-distribution. Gradient methods use informa-
tion provided by the gradient of some output of the network (for example the
output of the penultimate layer of the neural network) with respect to the net-
work parameters to assess the deviation of the input from the in-distribution.

67

3.3.1 . ODIN
The ODIN method [91] (Out-of-DIstribution detector for Neural networks)

relies on a model trained on the in-distribution (for a classification task), wi-
thout adding any modification to it. The method first adds noise to the input
x, thus yielding a preprocessed data point x̃, according to equation 3.7. This
preprocessing is inspired by adversarial attacks, more specifically the FGSM
attack [92]. The softmax score used here is defined in equation 3.2 and cor-
responds to the temperature scaled softmax distribution with temperature
parameter T.

x̃ = x− ϵsign(−∇x log(Sỹ(x, T))) where Sỹ(x, T) = max
i

Si(x, T) (3.1)
Then the preprocessed input is fed into the network to calculate the cali-

brated softmax score S(x̃, T) which corresponds to the softmax distribution
returned by the model scaled by a temperature parameter T as specified in
equation 3.2.

Si(x, T) =
exp(fi(x)/T)∑N
j=1 exp(fj(x)/T)

(3.2)
Finally, this calibrated softmax is compared to a threshold delta in order to

classify as ID or OOD the input according to the following decision rule based
on the function g defined in 3.3 : if g(x, T, δ, ϵ) is equal to 1 the input is ID, if it
is equal to 0 it is OOD.

g(x, T, δ, ϵ) =

{
0 if Sỹ(x̃, T) ≤ δ
1 else (3.3)

In this model, the parameters T , δ, ϵ are chosen such that the true positive
rate is at 95% on a validation set composed in part of OOD and ID data.

3.3.2 . Generalized ODIN
TheODINmethodwas further developed to lead to GeneralizedODIN [93]

(abbreviated as G-ODIN) which does not rely onOODdata to search for hyper-
parameters. Although the temperature parameter T in the softmax equation
3.2 is originally tuned with OOD data, a later work [94] suggested that setting
it to a high value was enough, the gain being saturated after T = 1000, which
the authors of [93] follow. Furthermore, in order to tackle the limitations of
the uncertainty on the softmax distribution exposed in section 3.2, the au-
thors consider the output probability distribution of the network differently,
this time by including in the variable conditioned on the domain d of data. Im-
plicitly, other methods condition the distribution p(y|x) on d = din where dinis the in-distribution domain, which is based on the closed-world assumption

68

as defined in section 3.1. The new output distribution in G-ODIN is changed
for the conditional probability distribution defined in equation 3.4.

p(y|din, x) =
p(y, din|x)
p(din|x)

(3.4)
For an input x pout, both probabilities (called "decomposed confidence

scores") p(y, din|x) and p(din|x) are expected to be low. Depending on their
respective values however, the ratio in equation 3.4 may be arbitrarily high,
which explains how softmax classifiers can be overconfident.

In order to learn p(y|x, din) without any OOD data, the authors use the
prior knowledge on the distribution given by equation 3.4 by writing the lo-
gits fi(x) for class i as a ratio of two functions given by equation 3.5. This ratiois then normalized by the softmax function to get a class probability. Training
p(y|x, din) with a cross-entropy loss means it can be minimized either by mi-
nimizing hi(x) or maximizing g(x). This prior encourages the function hi(x) tobehave closer to p(y, din|x) and g(x) to behave like p(din|x).

fi(x) =
hi(x)

g(x)
(3.5)

The function g uses the features fp(x) from the penultimate layer of neu-
ral networks as in equation 3.6. In this equation, BN is the batch normali-
zation operator. This function can be seen as a learned temperature scaling
function while providing a probabilistic view for its effect. The function hi may
be chosen among several similarity measures (the authors tested the inner-
product, the negative euclidean distance and the cosine similarity), but the
cosine similarity yields the best results.

g(x) = σ(BN(wgf
p(x) + bg)) (3.6)

The preprocessing step provided in equation 3.7 is also slightly modified
in order to remove the dependence on the tuning of the ϵ parameter on OOD
data and remove the log function, as shown in equation 3.7. In G-ODIN, the
ϵ value in equation 3.7 is computed by maximizing the score S(x) on the
preprocessed in-distribution validation setDval

in , solving the optimization pro-
blem 3.8 with a grid search on 6 values. It is argued that an ϵ parameter that
makes the score S(x) sufficiently large is enough to discriminate OOD and ID
data.

x̃ = x− ϵsign(−∇x(S(x)) (3.7)

ϵ∗ = argmax
ϵ

∑
x∈Dval

in

S(x̂) (3.8)

69

An illustration of the Generalized ODIN method is provided in figure 3.4 3.

Figure 3.4 – Illustration of the Generalized ODIN method.

3.3.3 . Mahalanobis-distance
For a softmax classifier expressed in equation 3.9 where f(x) is the output

of the penultimate layer of the neural network, the authors in [95] show how
to turn it into a generative model by assuming a Gaussian class-conditional
distribution with a mutual covariance for every class with equation 3.10.

p(y = c|x) = exp(wcf(x) + bc)∑
c′=1 exp(wc′f(x) + bc′)

(3.9)

p(f(x)|y = c) = N (f(x)|µc,Σ) (3.10)
The parameters of the Gaussian in definition 3.10 are estimated with the

estimators 3.11 whereNc is the number of training samples with in class c and
N the total number of samples.

µ̂c =
1

Nc

∑
i,yi=c

f(xi) ,
Σ =

1

N

∑
c

∑
i,yi=c

(f(xi)− µ̂c)(f(xi)− µ̂c)
T

(3.11)

In [95], the Mahalanobis distance-based confidence score, defined in 3.12,
uses the class-conditional Gaussian distribution. The metric in 3.12 corres-
ponds to measuring the log probability density of the tested sample.

3. From the original paper [93]
70

M(x) = max
c
−(f(x)− µ̂c)

T Σ̂−1(f(x)− µ̂c) (3.12)
The Mahalanobis distance is argued to be more effective than the Eucli-

dean distance in various tasks, the latter being used in previous works by
other authors [96] [97]. TheMahalanobis distance takes into account the cova-
riance structure of the data,which is important for detecting out-of-distribution
samples. The Mahalanobis distance is a measure of the distance between
a point and a distribution, making this method able to capture the corre-
lations between features and adjust the distance metric accordingly, which
leads to better performance in detecting out-of-distribution samples compa-
red to other distancemetrics such as Euclidean distance. An illustration of the
difference between the Euclidean and theMahalanobis distance can be found
in figure 3.5 4.

Figure 3.5 – Illustration of the Euclidean and theMahalanobis distance.We cansee that theMahalanobis distance takes into account the covariance structureof the data by considering the scattering direction of the points.

In order to make ID and OOD data more separable, the model also adds
noise to the input as part of a preprocessing step following equation 3.13
where ĉ is the closest class. Here the noise aims at increasing the confidence
score, as opposed to ODIN [94] as exposed in paragraph 3.3.1.

4. From https ://towardsdatascience.com/multivariate-outlier-detection-in-python-e946cfc843b3.
71

x̂ = x+ ϵsign(∇x(M(x))

= x− ϵsign(∇x(f(x)− µ̂ˆc)
T Σ̂−1(f(x)− µ̂ˆc))

(3.13)
Finally, the performance of in OOD detection are further improved by

combining the confidence scores from the final features as well as other lo-
wer level features in the DNN. Each layer has its own covariancematrix Σ̂l andclassmeans µ̂l,c. The scores are then aggregated by the weighted average for-mula in equation 3.14 where αl parameter is the weight of the lth layer. The
parameterαl is foundby logistic regression detector using validation samples.

Maggregated(x) =
∑
l

αlMl(x) (3.14)

3.3.4 . Energy-based
In [98], the authors show it is possible to design an energy function from

a softmax classifier that has the same shape as in equation 3.2 with equation
3.15.

E(x, f) = −T log
K∑
i

exp(
fi(x)

T
) (3.15)

The authors of this paper propose to detect OOD samples with this energy
function in order tomitigate the problems in the softmax confidence score ex-
posed in section 3.2. Naturally, from this energy score, one can derive a den-
sity p(x) through equation 3.16. The denominator Z is intractable, however
its absence does not influence the performance in OOD detection as higher
probability of occurrence is interpreted as a lower energy level in equation
3.16. Indeed, the rationale behind the use of an energy score for OOD detec-
tion is that it is theoretically aligned with the probability density of the inputs
and is less susceptible to the overconfidence issue that can occur with soft-
max confidence scores. Additionally, the energy score can be flexibly used as
a scoring function for any pre-trained neural classifier.

p(x) =
exp(f(x)T)∫
x exp(

f(x)
T)

=
exp(f(x)T)

Z
(3.16)

Therefore, the authors of this paper propose a decision rule directly based
on the energy function, which is presented in equation 3.17. If G(x, τ, f) = 0

then the sample is OOD, ifG(x, τ, f) = 1 the sample is ID. In 3.17, τ is defined
as the energy threshold which is the threshold that correctly classifies the
highest fraction of in-distribution inputs with detector G.

G(x, τ, f) =

{
0 if − E(x, f) ≤ τ
1 else (3.17)
72

The energy metric allows to perform OOD detection without having to
compute the normalization constant Z in equation 3.16. It acts as a replace-
ment of the softmax confidence score for a trained neural network as seen in
the final decomposition in 3.19 (when temperature T = 1).

max
y

p(y|x) = max
y

exp(fy(x))∑
i exp(fi(x))

=
1∑

i exp(fi(x)− fymax(x))
(3.18)

logmax
y

p(y|x) = E(x, f(x)− fymax(x)) = E(x, f(x))− fymax(x) (3.19)
Equation 3.19 shows that the softmax confidence score is a version of the

energy score biased by the fymax(x) term which is the highest softmax output
value. The authors argue that working in the original logit space (the energy
score) rather than the shifted logit space (the softmax score) givesmore useful
information for each sample.

However, despite the energy score being already showing good results
compared to the softmax confidence score inOODdetection, the authors pro-
pose to enlarge the gap between the in-distribution and the out-distribution.
To this end, the authors propose an energy bounded learning objective 3.20
involving a regularization loss Lenergy defined in 3.21 to fine-tune the energy
function to explicitly expand the energy gap by assigning lower energy to ID
data and higher energy to OOD data. In equation 3.21, the termsmin andmoutaremargin hyperparameters that are used to penalized in two separate hinge
square loss terms in-distribution samples that produce higher energy levels
than min and out-of-distribution samples that produce energy values lower
than mout. The model is thus constrained to keep its energy function within
the segment [min,mout]. These hyperparameters are free to choose and not
found with a grid search on a validation set for example.

min
θ

E(x,y)∼Dval
in

[− logFy(x)] + λLenergy (3.20)

Lenergy =E(x,y)∼Dtrain
in

[max(0, E(xin)−min]
2+

Exout∼Dtrain
out

[max(0,mout − E(xout)]
2

(3.21)
One important thing to highlight from this OOD detection method is that

the training of the model relies on OOD detection like in paragraph 3.3.1 al-
though in this case the ODINmodel relied on a validation out-distribution da-
taset in order to find optimal hyperparameters while here the OOD dataset
directly intervenes in finding the model’s parameters in equation 3.21.

An illustration of the principle of the energy-basedOODdetectionmethod
is given in figure 3.6 5.

5. Taken from the original paper [98]
73

Figure 3.6 – Illustration of the energy-based OOD detection : an energy func-tion is derived from the output of a CNN and yields good OOD detection re-sults.

3.3.5 . GradNorm
The GradNormmethod [99] is a gradient-based OOD detection technique

that can be directly used on a pre-trained classifier. From the classifier, one
can compute the KL divergence between the softmax distribution and a re-
ference uniform distribution over the labels u = [1K , 1

K , ..., 1
K], as described

in section 3.2. For a softmax distribution parameterized by a temperature pa-
rameter T (similarly to paragraph 3.3.1), this KL divergence term is written in
equation 3.22 where H(u) is the entropy of the uniform random variable u

(constant).

DKL(u||softmax(f(x))) = − 1

K

K∑
i=1

log
exp(fi(x)/T)∑K
j=1 exp(fj(x)/T)

−H(u) (3.22)

The idea behind GradNorm is to detect OOD samples from the gradient
with respect to the model’s parameters of the KL divergence in equation 3.22,
as written in equation 3.23. In equation 3.23, w is a component of the model’s
parameters θ and LCE(f(x), i) the cross-entropy loss of the model f from
label i. Naturally , the entropy termH(u) has a gradient of 0.

∂DKL(u||softmax(f(x)))

∂w
= − 1

K

K∑
i=1

∂LCE(f(x), i)

∂w
(3.23)

Equation 3.23 shows that taking the gradient of the KL divergence is equi-
valent to averaging the derivative of the categorical cross-entropy loss across
all labels, therefore simplifying the computation of the GradNorm score S(x).
The score used to detect OOD samples is derived from this gradient term by
taking its p-norm, as exposed in equation 3.24 and by taking the gradient with

74

respect to all the parameters of themodel θ, which correspond to the parame-
ters w concatenated into a single vector. However, it is also shown that using
only the last layer for taking the gradient is sufficiently informative. Moreover,
an L1 norm is shown to be the most effective.

S(x) =∥ ∂DKL(u||softmax(f(x)))

∂θ
∥p (3.24)

Similarly to previous paragraphs, a decision rule is derived from this term
in 3.25 where γ is a threshold parameter.

g(x) =

{
out if S(x) ≤ γ
in else (3.25)

The gradient of the KL divergence is argued to be more powerful for OOD
detection than the direct use of the KL divergence. Furthermore, GradNorm is
label-agnostic (does not require OOD data) and it captures uncertainty across
all labels which empirically shows better results than using only the dominant
label (maximum softmax value in the output).

Finally, a mathematical study of this method shows that the GradNorm
metric captures joint informationbetween the feature and the output. Indeed,
it can be shown that the score S(x) is proportional to the product of a variable
U , which is solely dependent on the input features, and a variable V which
depends on the output of the model. Multiplying those two terms results in a
supposedly stronger separability between ID and OOD data.

An illustration of the difference between the input space and the gradient
space can be observed in figure 3.7 6.

3.3.6 . GradCon
Another model based on a gradient metric is GradCon (for Gradient

Constraint) [100]. As opposed to previous methods introduced in this part,
the GradCon model was not introduced nor tested in the context of OOD de-
tection. Rather, this model was introduced in the context of class anomaly
detection, where one class in a dataset is the ID class while the remaining
classes are OOD (further details in section 3.6.7). Furthermore, it relies on an
unsupervised generative model instead of a classifier trained in supervised
learning context.

Autoencoders such as VAEs (Variational Autoencoders) or AAEs (Adversa-
rial Autoencoders) encode inputs to their latent space which is constrained to
follow a normal distribution generally. Deviations of the input’s representa-
tion from the normal distribution characterizes abnormalities. The GradCon
model adds a directional gradient constraint during the training of an autoen-
coder to further discriminate ID and OOD data. This constraint forces ID data

6. From the original paper [99].
75

Figure 3.7 – Illustration of a two-dimensional input space. Input data is depic-ted in the xy-plane. Gradient norm for each input is depicted in the z dimen-sion. The magnitude of gradients is higher for ID data (light green) than forOOD data (deep blue).

to have gradients aligned with each other. The gradient of OOD data on the
other hand will not be aligned with the other gradients.

The gradient constraint is added with a regularization term, Lgrad to the
loss of the autoencoder, J . The cosine similarity between the gradient of each
layer i at iteration k and the average of the training gradients of the same layer
i until iteration k − 1 is computed. The regularization term takes the form in
equation 3.26. The average term is explicitly written in equation 3.27.

Lgrad = −Ei[cosSIM(
∂J k−1

∂ϕiavg

,
∂Lk

∂ϕi
)] (3.26)

∂J k−1

∂ϕiavg

=
1

k − 1

k−1∑
t=1

∂J t

∂ϕi
(3.27)

The loss J of the autoencoder is defined as in equation 3.28 whereLgrad isintroduced in equation 3.26, L is the reconstruction error ensuring the sam-
pled output of the autoencoder is similar to its input, and Ω is the latent loss
ensuring the latent space of the autoencoder follows a Gaussian distribution.
Their respective definition depends on the autoencoder architecture. The hy-
perparameter α is a weight defining the importance of the gradient loss 3.26.

76

This hyperparameter is set sufficiently small to ensure gradients actively ex-
plore the optimal weights until the reconstruction error and the latent loss
become small enough. Only the decoder layers are constrained while leaving
the encoder layers unconstrained.

J = L+Ω+ αLgrad (3.28)
An anomaly score is defined through the combination of the loss terms by

the term Lgrad + βL with a β parameter different than the α weight used du-
ring training in equation 3.28. The gradient loss is found to be often more ef-
fective than the reconstruction error in anomaly detection. The two loss terms
in the anomaly detection metric are balanced by setting β = 4α.

This anomaly detectionmethod is mostly used in the context of class ano-
maly detection (further explanations in section 3.6.7) and anomalous condi-
tion detection. This last task mostly detects covariate shifts due to conditions
on the acquisition of data differing from theoriginal dataset (blurry lens, rain...).
As a personal note, this task may be unnatural in the context of OOD detec-
tion as it raises the question of what anOODdetectionmodel should filter out
as these out-distributions are technically OOD but should not be filtered out
and instead should be classified by a model. This mostly enters in the context
of generalization.

3.3.7 . OCGAN
OCGAN (One-Class GAN) [101] is a model made specifically for the task of

one-class novelty detection where the goal is to determine if a query example
is from the same class the model is trained on (equivalent to class anomaly
detection). The idea behind OCGAN is to make the model learn a latent re-
presentation that would only make it possible for the model to reconstruct
images that are similar to the ID class. Thus, the latent representation of an
OOD sample (from a novel class) would get a worse reconstruction loss than
inputs from the ID class. This intuition is illustrated in figure 3.8.

The OCGAN method uses four components : a denoising autoencoder, a
latent discriminator, a visual discriminator and a classifier.

The denoising autoencoder learns a representation for the given class by
minimizing the distance between the input and the output of the networkwith
the loss denoted in equation 3.29, where n is a Gaussian noiseN (0, 0.2). The
latent space has a lower dimension than the input space in order to retain
only essential information for reconstruction. The support of the latent space
is bounded by introducing a tanh activation in the output layer of the encoder
to ensure the output is in (−1, 1)d, where d is the dimension of the latent
space.

lMSE =∥ x−De(En(x+ n)) ∥22 (3.29)
77

Figure 3.8 – Illustration of the idea behind OCGAN : on the left the latent spaceof a vanilla autoencoder and on the right the latent space of the OCGAN mo-del. Both models have ID class "8" in the MNIST dataset. However, given acertain path in the latent space, the vanilla model may be able to give a repre-sentation that yields an image close to a "1". On the other hand, the OCGANmodel still outputs an "8" from the latent representation of an input "1". Creditto the original paper [101].
The latent discriminator Dl forces the latent representation of ID class

examples to be evenly distributed across the latent space. It is trained to diffe-
rentiate between latent representations of real images of the given class and
samples drawn from a uniform distribution U[(−1, 1)d] with the loss defined
in equation 3.29. In equation 3.30, px is the distribution of the ID class. The loss
llatent is similar to the training objective of a GAN [61], hence the termOCGAN.
Indeed, a GAN is trained by making a generator network fool a discriminator
network to classify generated images as natural. Here, the rationale is similar
in that the encoder is trained to generated latent code that is similar to a uni-
form distribution to fool the latent discriminator. The encoder and the latent
discriminator are jointly trainedwith amin-max objectivemaxE nminDl

llatent.

llatent = −(Es∼U[(−1,1)d][logDl(s)] + Ex∼px [log 1−Dl(En(x+ n))]) (3.30)
The visual discriminator Dv enforces the constraint that all images gene-

rated from the latent space are similar to the ID class without any negative
class available during training. The visual discriminator is trained to differen-
tiate between images of the given class and images generated from random
latent samples using the decoder. The training procedure here is also similar
to that of a GAN [61] as the goal is also for the generator (the decoder and the

78

latent space structure) to fool the visual discriminator. The adversarial loss is
defined in equation 3.31. The visual discriminator is learned jointly with the
autoencoder with the min-max objectivemaxDeminDv lvisual.

lvisual = −(Es∼U[(−1,1)d][logDv(De(s))] + Ex∼pl [log 1−Dv(x)]) (3.31)
However, this training procedure still outputs samples that do not look

like the ID class because sampling from the whole space is impossible. To ta-
ckle this issue, the authors decide to actively seek out regions in the latent
space that produce negative samples. These samples are called informative-
negative samples. They are used to train the decoder so that it learns to pro-
duce good quality samples even in these regions. These samples are found by
using a classifier to assess the quality of image generated from the samples.
The loss of the classifier, the cross-entropy loss, is backpropagated to the la-
tent space. The backpropagated gradient is then used to take a small step in
the direction of the gradient to move to a new point in the latent space where
the classifier is confident about the generated image. The classifier does not
take part to the min-max games in the GAN training, therefore it is not requi-
red to balance it.

The discriminators are trained by minimizing the loss lvisual + llatent, theautoencoder is trained with informative negative examples and latent pro-
jections (real samples injected with noise) of the given class using the loss
10lMSE + lvisual + llatent, with a larger empirical term given to lMSE to get
good reconstruction results.

It is assumed the novelty detection strategy uses the reconstruction loss
lMSE defined in equation 3.29 to discriminate novel/OOD samples from ID
samples, although this was not explicitly written by the authors in their paper.

3.4 . Experimental methodology

Some efforts have been made in the past few years by the OOD detection
community to standardize and make testing and comparison easier for new
methods of OOD detection. In the experiments in section 3.6.6 and 3.6.7, I
encountered several issues when trying to reuse results from previous state-
of-the-art models to compare my approach against them in the benchmarks.
In this section, I will cover some new points of methodology I introduced in
order to make the comparisons more fair between models. These points in-
clude the choice of the datasets, the choice of the models and their number
of parameters, the balance between classes and the choice of metrics.

79

3.4.1 . Definition of the problem and the choice of dataset
The first problem I noticed was the lack of standardization in the defini-

tion of the problem of OOD detection. This was covered in section 3.1 by a
previous study [79] which defines in clear terms the differences between each
sub-problem in OOD detection. In my experiments, I followed this standardi-
zation by choosing datasets accordingly. In OOD detection, I chose datasets
that presented no label overlap (no common labels between ID and OOD da-
tasets) while ensuring that the visual features of the imageswere not too close
to each other from a qualitative point of view. As such, I did not use the CIFAR-
100 dataset [80] in the experimentations when I trained a model on CIFAR-10
[80] for example, as opposed to other papers in the domain. In anomalous
class detection, I used the standard approach which involved selecting a class
in a dataset as ID and the other classes as OOD.

3.4.2 . Evaluation measures and experimental precautions
The second problem encountered was methodological. I studied several

implementations in order to use them on new datasets (that would better fit
the problem setting defined in [79] and in section 3.1) would misuse conven-
tional metrics. Usually, when dealing with a binary classification problem, a
model that outputs a raw score needs to turn this score into a binary label
(0 or 1) by comparing the score to a threshold : if the score is above the thre-
shold, the label is 1, else it is 0. The most common metrics used in OOD de-
tection are generally non-thresholded, that is to say metrics they directly use
the raw score given by the model as an output instead of a binary value (0 or
1). The most common non-thresholdedmetric is the AUROC [102] (Area Under
the Receiver-Operating Characterstic curve). An illustration of the ROC curve
is given in figure 3.9 7. It represents the probability that the model assigns a
higher score to the positive class A than to the negative class B. The higher
the value, the better the results (the highest value is 1 and the lowest value
is 0). However, this metric is sensitive to class imbalance : in a binary classifi-
cation problem, if a class A is more represented than class B and the model
has better classification accuracy on A than B, then the AUROC will be higher.
Therefore, it is important to balance appropriately the ID and OOD classes in
the test datasets used in experiments in order for the AUROC to stay inter-
pretable. This was however not always respected in some experimentation
implementation nor was it mentioned in their respective papers.

Along with the AUROC, other metrics can complement the classification
results of the model. For instance, I decided to add the AUPR in the experi-
ments, at first because it has the property of being robust to class imbalance,
therefore complementing the AUROC [103]. It is also a standard metric in the

7. Credit to Wikimedia Commons (Roc curve.svg by cmglee and MartinThoma, li-censed under CC BY-SA 4.0).
80

Figure 3.9 – Illustration of the ROC (Receiver-Operating Characterstic) curve.The AUROC is the area under this curve. The diagonal line represents a ran-dom classifier : in binary classification with balanced classes, this amounts toflipping a fair coin and classify data according to the coin flip. Any curve abovethe random line is a better classifier. Any curve below that line is not necessa-rily a bad classifier but may be due to label inversion (in binary classification).The ideal classifier shows a True Positive Rate of 1 for any level of False Posi-tive Rate.

OOD detection literature. While the AUROC ismostly sensitive to classification
the overall accuracy, the AUPR ismostly sensitive to the classification accuracy
of the positive class. An illustration of the precision and the recall metrics is
given in figure 3.10 8. The AUPR is the area under the curve of the precision-
recall plot. The higher the value, the better the results (the highest value is 1
and the lowest value is 0).

Finally, the TNR@95%TPR (True Negative Rate at 95% True Positive Rate)
which is simply a point on the ROC curve which gives a better understanding
of the classification performance of the model, efficiently complementing the
AUROCmetric. As the AUROC is the area under the ROC curve, in the absence
of an explicit ROC plot, one may need some extra information in the form of
certain data points. Particularly, knowing the values of the TPR at a high FPR
value can be very informative. It is to be noted though that this metric is also
sensitive to potential class imbalance like the AUROC.

8. Credit to Wikimedia Commons (Precisionrecall.svg by Walber, licensed underCC BY-SA 4.0).

81

Figure 3.10 – Illustration of the precision and the recall metrics.

3.4.3 . Frameworks
Efforts to standardize evaluation in OOD detection also lead to the crea-

tion of frameworks to efficiently compare OOD detection approaches against
standard or state-of-the-art methods. These frameworks centralize into one
library the most used models in the literature in benchmarks and the most
common datasets in this task with code to quickly compare implement an
OOD detection experiment with a new model.

An example of such frameworks include openOOD [104] 9. This frame-
work reproduces methods within the Generalized Out-of-Distribution Detec-
tion methodology developed in section 3.1, aiming to make a fair comparison
across methods that were initially developed for various tasks such as ano-
maly detection, novelty detection, open set recognition, andout-of-distribution
detection.

The Pytorch-OOD [105] repository is also an interesting initiative with the
intent to make the development and experimentation of OOD detection al-

9. With the associated Github repository at https ://gi-thub.com/Jingkang50/OpenOOD.
82

gorithms quicker. It is a PyTorch-based library that gives access to several
modular, tested, and well-documented implementations of OOD detection
methods. This library is designed to provide users with a unified interface,
pre-trained models, utility functions, and benchmark datasets for OOD de-
tection.

These frameworks however did not come to my knowledge during my ex-
perimentations and therefore I did not rely on them.

3.5 . The approximate mass

Alternatively to the metrics introduced in section 3.3, other metrics can
be found in the literature on OOD detection. In [85], the approximate mass,
defined in equation 3.32 is the L2-norm of the gradient with respect to the
input x of the log-likelihood given by a model parameterized by parameters
θ, L(x, θ).

AM =∥ ∂L(x; θ)
∂x

∥ (3.32)
As exposed in section 3.2, directly using the log-likelihood L in OOD de-

tection exposes the model to some risks as the measure might sometimes
assign larger log-likelihood values to OOD data than to ID data. The approxi-
mate mass is another derived from the log-likelihood that seem to be well
suited for OOD detection in the paper where it is introduced [85].

The approximate mass is expected to be higher for OOD data than for ID
data for an energy model in [85] but seems to behave the other way around
on tractable likelihood models such as normalizing flows. I reproduced this
behavior observed on a normalizing flow (RealNVP model [47]) with the same
training setting as in [48]. I trained the model on CIFAR-10 as the ID class and
test it both on CIFAR-10 [80] (ID) and SVHN [90] (OOD).

Figure 3.11 shows the distribution of the approximate mass computed at
the end of the training of the normalizing flow.We can observe that themodel
is indeed able to discriminateOODand ID data but does so in away thatmight
not be robust. Indeed, the intuition behind the definition of the approximate
mass given in equation 3.32 shows that the larger the approximatemass is for
ID data, themore the log-likelihood changes, which indicates a fragile system.
A slight variation in the input may lead to high variations around ID data while
intuitively, for a well-trained model that generalizes well, the log-likelihood
should not change much for close samples. This experimental confirmation
raises question about whether this observed behavior on tractable likelihood
model may not be caused by a lack of generalization capacity by the model,
in other words overfitting.

The approximate mass still presents interesting properties as the metric
should be exactly the same for energy-based models an exact likelihood mo-

83

Figure 3.11 – Approximate mass distribution for a RealNVP model trained onCIFAR10 at the end of training (epoch 100). The x-axis represents the value ofthe approximate mass, the y-axis the number of occurrence in the datasetfor each bin of value (group of values). In red, approximate mass values on IDdata (CIFAR10), in blue on OOD data (SVHN). The red values should be smallerthan the blue values.

dels. Indeed, in equation 3.33 we can find the likelihood formula given by an
energy-based model whereE(x, θ) is the energy function of the model and Z

its normalization (intractable). Taking the gradient of the log-likelihood of such
amodel cancels the constantZ leading to equation 3.34. In this energy-based
interpretation of the probability learned by themodel, the approximate mass
may have a direct physical interpretation as a conservative force derived from
some energy level E(x, θ).

p(x, θ) =
e−E(x,θ)

Z
(3.33)

AM =∥ ∇xL(x; θ) ∥=∥ ∇xE(x; θ) ∥ (3.34)
Furthermore, recent advances in generative models showed the impor-

tance of metrics based on the gradient of the log-likelihood. More specifically,
denoising diffusion models [59] are models that rely on the estimation of the
gradient of the log-likelihood of the noise in the noising process in order to
generate an image through a diffusion process. These models imply an inter-
pretation of the gradient of the log-likelihood as being equivalent to the noise
level estimated in the image. Themodel then uses a Langevin sampling proce-
dure to move the image in a direction that minimizes this noise (the diffusion

84

process) to generate a realistic image.

3.6 . Contributions : Regularization of the approximate mass

3.6.1 . First contribution : regularizing the likelihood with the ap-
proximate mass

My first approach for fixing the issue of OOD detection with normalizing
flows involved regularizing the log-likelihood computed by a normalizing flow
with the approximatemass. Indeed, I noticed that in the literature on normali-
zing flows, sampling is accomplished by temperature annealing on the proba-
bility distribution [49], therefore sampling from (pθ(x))

T 2 instead of pθ(x), asillustrated in figure 3.12. This method was argued to bring data points closer
to the learnt distribution modes.

Figure 3.12 – Illustration of the effect of temperature annealing when sam-pling images. The higher the temperature parameter (close to 1, moving tothe images on the right) the more diverse but less qualitative they will be ; thelower the temperature (close to 0, moving to the images on the left), the lessdiverse but the more qualitative.
Furthermore, in [106], OOD data is detected with a typicality test. In this

paper, the authors argue that data in a training set is sampled from the ty-
pical set which is a set distinct from the set of highest probability density, as
illustrated in figure 3.13.

This assumption is interpreted in [85] where they introduce the approxi-
mate mass ∥ ∂L(x;θ)

∂x ∥ as a measure of "in-distributionality". Intuitively, they
interpret the typical set hypothesis [106] (TSH) as meaning that OOD regions
may show higher likelihood values but they also show sharper variations
around samples. The approximate mass translates this fact by measuring the
gradient of the log-likelihood of data. In their paper, this measure is argued to
yield better results than the log-likelihood with energy-based models. The ra-
tionale behind these techniquesmadeus hypothesize that if the log-likelihood

85

Figure 3.13 – Illustration of the typical set with a Gaussian distribution. Thetypical set is the annulus located at a distance proportional to √d from themean of the distribution, while the highest probability set should intuitivelyinclude the mean.
learned by the model varies sharply but still has some peaks in OOD regions,
a regularization which "flattens" the peaks in the OOD regions to increase the
likelihood in ID regions might benefit for likelihood estimation in the context
of OOD detection.

Indeed, we know the learned density is constrained by construction to be
normalized (∫X p(x)dx = 1) and positive (p(x)>0 for all x ∈ X). Therefore, in-
creasing the likelihood locally in ID regionswhile smoothing variations around
them so that the neighboring points are assigned higher likelihood should
move the probability mass over the input space. This intuition is similar to a
Wasserstein regularization where we aim to "move" some probability distri-
bution from some parts of the space to place it somewhere else in the same
space.

Increasing the likelihood can be accomplished by a regular maximum li-
kelihood training and smoothing values by adding a regularization term pro-
portional to the approximate mass. The idea is to push likelihood values high
in ID regions and, thanks the normalization and positivity constraints, push
likelihood values down in OOD regions. Therefore, I introduced a new loss in
equation 3.35 to train a normalizing flow that would encode both constraints.

−L(x; θ)→ −L(x; θ) + α ∥ ∂L(x; θ)
∂x

∥ (3.35)
In equation 3.35, the term L(x; θ) is the log-likelihood of the data point x

computed by the model parameterized by θ. In order for to effectively move
probability mass around the space X , the loss should be formulated in terms
of p(x; θ) rather than L(x; θ) = log p(x; θ) as the negative log-likelihood does
not fulfill the normalization constraint. However, the typical negative log-
-likelihood values returned by a normalizing flow by the end of its training
were of the order of 1000, which means that the model would suffer from an
underflow problem if the exponential was directly computed. Instead, I kept
the objective described in equation 3.35 as it already encompasses all the

86

properties we need for my objective function. Indeed, by breaking down the
approximate mass term in equation 3.36, we get :

∥ ∂ log p(x; θ)

∂x
∥= 1

p(x; θ)
∥ ∂p(x; θ)

∂x
∥ (3.36)

In other words, minimizing the approximate mass alone is equivalent to
maximizing the likelihood and minimizing the term ∥ ∂p(x;θ)

∂x ∥. Intuitively, this
term can be interpreted as a measure of the amount of probability density
around an input x as measured by the likelihood with parameter θ. However,
in order to control the trade-off between maximum likelihood and likelihood
smoothing, we need to work with both terms and introduce the parameter α
to control the emphasis of the smoothing term in comparison to the likelihood
term in the loss function.

In order to test this intuition, I trained a normalizing flowwith the new loss
function. The training setting as well as the architecture of themodel were the
same as in [48] : I trained a RealNVP model [47] with 3 scales, 8 blocks in the
st-network, a learning rate of 10−4, batch size of 32, weight decay of 5.10−5 for
100 epochs on CIFAR-10 [80]. On FashionMNIST [107], the model is a 2 scale-
RealNVPmodel with 6 blocks in the st-network, a learning rate of 5.10−5, batch
size 32 trained for 80 epochs.

Results on likelihood regularization are illustrated in figure 3.14. The his-
tograms depict the distribution of the log-likelihood assigned by the model
on the test set on ID data (in red, CIFAR-10) and on OOD data (in blue, SVHN).
As we can see, the log-likelihood of the ID data assigned by the penalized
RealNVPmodel is still lower than the log-likelihood of the OODdata. The over-
lap also indicates that discrimination of both classes stays a hard task.

Conclusion from this part show that penalizing the gradient of the log-
likelihood may not be enough to constraint the log-likelihood of the model,
possibly due to the dimensionality of the problem or the optimization pro-
blem which may not translate the previously built intuition. Indeed, working
on the log-likelihood might lead indirectly to constraints on the likelihood but
the log scaling might hurt performance. Therefore, in the next section I try
another way of exploiting this intuition based on a method that was introdu-
ced in the scientific literature.

87

(a) End of the first epoch

(b) End of training
Figure 3.14 – Evolution of the log-likelihood with a RealNVP model trained onCIFAR-10 (red) and tested on SVHN (blue) with my regularization of the log-likelihood with the approximate mass. On the x-axis, the values of the log-likelihood, on the y-axis the number of occurrences of each bins (group ofvalues) of log-likelihood.

3.6.2 . Second idea : regularizing the likelihoodwithaVAT-inspired
loss

In [108], the authors introduce the notion of virtual adversarial training
(VAT). This method is inspired by the original concept of adversarial training.
Adversarial training is a supervised learning technique which requires the la-
bel of both the sane and the perturbed samples in the training set to train the
model on both natural and adversarial examples in order to make it more
robust. The idea of VAT allows to generalize adversarial training to a self-
supervised training setting, where we may not have the label of all data ins-
tances. In order to train on unlabeled data, the model assigns to the data ins-
tance its most likely label (assign a "virtual label"), similarly to label propaga-
tion [109]. I will further describe adversarial training in a subsequent chapter
4.

88

The authors of [108] develop a regularization term that aims at isotropi-
cally smoothing the softmax output probability distribution learned by a clas-
sifier. This term, the LDS (Local Distribution Smoothness), is added to the cross
entropy or negative log-likelihood loss and is proportional to the Kullback-
Leibler divergence (defined in 3.37) between the learned softmax distribution
and the same distribution taking perturbed inputs, as specified in equation
3.38.

DKL(p||q) =
∫
x∈X

p(x) log(
p(x)

q(x)
)dx (3.37)

LDS(x, θ) = DKL(p(y|x, θ)||p(y|x+ rvadv, θ)) (3.38)
In equation 3.38, the term rvadv is computed by approximating the direc-

tion of the highest perturbation of the KL divergencewith the formula in equa-
tion 3.39.

rvadv ≈
g

∥ g ∥2
(3.39)

The formula in equation 3.39 is the result of a finite difference approxima-
tion with step size ξ and a one-step power iteration computation initialized
with a random unit vector d. The finite difference approximation allows to cir-
cumvent the computational complexity of computing the exact gradient of the
KL divergence. The power iteration allows to compute the largest eigenvalue
of the Hessian of the KL divergence∇2

rDKL(p(y|x, θ)||p(y|x+ rvadv, θ)), whichcorresponds to the perturbation rvadv . This correspondence to an eigenvaluecomes from a second order Taylor approximation of the KL divergence.

Where g = ∇rDKL(p(y|x, θ)||p(y|x+r, θ)) at r = ξd with d a random unit vector.
As the LDS regularization term is applicable in self-supervised training, one

could also extend it to an unsupervised training setting. This idea joins the in-
tuition we worked with in section 3.6.1 where I attempted to smooth the likeli-
hood function directly with an approximatemass penalization during training.
As the idea failed to yield the expected results, that is to say reducing the like-
lihood of OOD data and increasing that of ID data, I decided to try it out again
with the VAT approach. This time, I added to the loss function of the model a
modified LDS term, written in equation 3.40.

−L(x; θ)→ −L(x; θ)− αDKL(p(x, θ)||p(x+ rvadv, θ)) (3.40)
Where

DKL(p(x, θ)||p(x+ r, θ)) =

∫
x∈X

p(x, θ) log(
p(x, θ)

p(x+ r, θ)
)dx (3.41)

89

In my case, in order to compute the KL divergence, we would need to
have access to the exact value of pθ(x) for a sample x drawn from the target
distribution p(x). However, the normalizing flow gives by default access to a
log-likelihood because it eases computations, making a maximum likelihood
training simply optimizing a sum of log-probabilities instead of a product of
probabilities. Typical values of negative log-likelihood reach the order of ma-
gnitude of 10,000 which means that computing pθ(x), which requires taking
the exponential of− log pθ(x), would be rounded to 0 in a computer. This un-
derflow makes evaluation of the loss, and thus optimization, impossible by
direct computation of the KL divergence. Instead, I tried to approximate the
quantity pθ(x) with power series. Indeed, we can rewrite pθ(x) as in equation3.42.

pθ(x) = exp log pθ(x) =
∞∑
n=0

log pθ(x)
n

n!
(3.42)

This power series can be estimated with a truncation (stopping the sum
at a fixed index). However, this is a biased estimation of the exponential and
there is little control one can have over its accuracy, the only choice to improve
being to increase the number of iterations. However, if the terms in the sum
donot decrease fast enough, choosing the right stopping index can add errors
to the loss. Instead, I chose to use a statistical estimator of this power series,
the Russian roulette estimator [110], in order to have an unbiased estimate of
the series and some control over its variance. The Russian roulette estimator
works by truncating the sum at a random index : at each iteration a Bernoulli
sample s ∼ B(p) of probability p ∈ [0, 1[is drawn, if the outcome is 0 then the
sum stops, otherwise it continues, as detailed in algorithm 2 where zi is the
ith element of the series.
Algorithm 2 Russian Roulette Algorithm
SUM ← z0
i← 0
STOP ← 0
while do STOP = 0

SUM ← SUM + zi
1−p

i← i+ 1
STOP ∼ B(p)

end while

This method of computing the penalization term was also not conclusive
as the computation of the power series displayed a high variance, always sho-
wing too high values (in absolute scale) of the KL divergence term. Further-
more, although the model could learn, the log-likelihood showed weird beha-

90

vior, far from what I expected to happen (displacement of the in-distribution
to higher values of log-likelihood than out-distribution) but also from the re-
gular behavior. The log-likelihood histograms in figure 3.15 show that the mo-
del’s log-likelihood can evolve in an erratic way during training, due to the high
variance of the Russian roulette estimator. This makes this loss term particu-
larly hard to deal with.

(a) End of the first epoch

(b) End of training
Figure 3.15 – An example of the evolution of the log-likelihood with a RealNVPmodel trained on CIFAR-10 (red) and tested on SVHN (blue) with the DKL pe-nalization. On the x-axis, the values of the log-likelihood, on the y-axis thenumber of occurrences of each bins (group of values) of log-likelihood.

The biggest issue with approximating the KL divergence term in the loss
defined in equation 3.41 comes from the intractability of the integral. AMonte-
Carlo approximation would be suitable in that case by turning the integral
in equation 3.41 into equation 3.43. In this equation, one would draw the N

samples from pθ(x)with the sampling procedure provided by any normalizing
flow. This approximation would however split training into two steps :

1. first, compute and make a gradient descent step to lower the negative
91

log-likelihood,
2. then, use the newly updated likelihood function to sample data from

and calculate equation 3.43 over.
Thiswould be very costly for a suitable approximationof the integral (which

requires a lot of samples) as it would require N + 1 forward passes (1 for the
likelihood computation and N for the samples in the KL divergence Monte-
Carlo approximation) and N inverse passes, along with two separate back-
propagations per batch. Furthermore, the number of parameters needed to
make this algorithm work increases its complexity too much, between the α

parameter in the loss, the ξ parameter in the finite difference step, the num-
ber of steps in the power iteration algorithm, the p parameter in the Bernoulli
random variable in case we perform a Russian roulette estimation of the po-
wer series or the parameter N if we perform the DKL estimation with the
Monte-Carlo algorithm exposed above.

DKL(p(x, θ)||p(x+ r, θ)) ≈
N∑
i=1

log pθ(x)− log pθ(x+ r) (3.43)
Visual results of the experiments training thenormalizing flowmodel (RealNVP

with similar parameters and hyperparameters as in section 3.6.1) are repre-
sented in figure 3.16). I trained a model with my new loss with a penalty para-
meter α = 2 for 100 epochs.

The histograms in figure 3.16 show that the log-likelihood the model assi-
gns to the in-distribution still seems to be smaller than the log-likelihood of
the out-distribution.

From these results in section 3.6.1 and 3.6.2, I concluded that regulari-
zing the log-likelihood of a normalizing flow in order to introduce a bias in
the learned distribution that would shift the assigned values between the in-
distribution and out-distribution may not work. This is possibly due to the
dimensionality of the problem as we are working on a probability space with
values that can be very low because we are working on p(x) instead of p(y|x).
The complexity of the problem in this case is huge since the number of dimen-
sions of X (the feature space) is itself huge (working on image data). Meanw-
hile, the dimension ofY (the label set) is relatively smallmakingmanipulations
on the probability density p(y|x)more practical.

However, other elements in the scientific literature seem to challenge the
fundamental limitations of likelihood-based OOD detection, as we will see in
section 3.6.3.

92

(a) End of the first epoch

(b) End of training
Figure 3.16 – Evolution of the log-likelihood with a RealNVP model trained onCIFAR-10 (red) and tested on SVHN (blue) with theDKL penalization. On the x-axis, the values of the log-likelihood, on the y-axis the number of occurrencesof each bins (group of values) of log-likelihood.

3.6.3 . Entropic issues with the likelihood for OOD detection : the
likelihood is not appropriate

In section 3.6, I presented several ideas I had to regularize the log-likelihood
of the models in order to make OOD detection more practical and avoid limi-
tations observed in the scientific literature as introduced in section 3.2. Ho-
wever, what if fundamentally the likelihood, as a metric for OOD detection,
was not suitable for this task? The paper [111] questions this metric which in-
tuitively seems natural, in the context of OOD detection, showing that the
log-likelihood estimated by any model is fundamentally limited by a constant
term, independent of the model’s parameters, the entropy.

Equation 3.44 shows a decomposition of the log-likelihood of a model on
average. Note that a perfectmodel has a KL divergence termDKL(pθ||p) equalto 0, naturally making the average log-likelihood equal to the entropy of the

93

random variable (matching the definition of the entropy). This equation in-
dicates that fundamentally, the log-likelihood of any model, as perfect as it
can be, will be influenced by the entropy of the source data. In equation 3.45,
we replaced the distribution p(x) we take the expectation over (in equation
3.44) by an out-distribution q(x). This shows that a complex distribution p(x),
which shows a higher entropyH(p) than a less complex distribution q(x), may
be assigned on average a lower log-likelihood.

Ex∼p(x)(log pθ(x)) = H(p)−DKL(p||pθ) (3.44)

Ex∼q(x)(log pθ(x)) = H(q)−DKL(q||pθ) (3.45)
Thismathematical explanationmatcheswith empirical observationswhere

less complex images (SVHN [90] orMNIST [2]) in comparison to the in-distribu-
tion (CIFAR-10 [80] or FashionMNIST [107]) are assigned lower likelihood. This
mathematical formulation also explains why methods like likelihood ratios
seem to work for OOD detection. In those methods, the entropy of the in-
distribution or out-distribution is cancelled out by the entropy of an alterna-
tive distribution (which we take the ratio with). Equation 3.46 shows this phe-
nomenon with a difference of log-likelihoods which is equivalent to a ratio of
likelihoods. The density rϕ is the density of an alternative model called a re-
ference model which is carefully chosen depending on the task (model of the
background, or image compression technique). Equation 3.46 clearly shows
that a likelihood ratio test depends only on the KL divergence between the
reference distribution rϕ and the distribution being tested (q(x) or p(x)).

Ex∼q(x)(log pθ(x))− Ex∼q(x)(log rϕ(x)) = DKL(q||rϕ) (3.46)
All these elements hint that the idea of OOD detection with log-likelihood

is fundamentally limited by a natural phenomena, which is the entropy as
a fundamental upper-bound for the log-likelihood. One could alternatively
think about training or tuning the model in order for the KL divergence to
compensate this entropy term. Using divergence terms to detect OOD data
would be a good choice as explained in section 3.2 where we covered a few
models using such terms. However, based on 3.3.5 and 3.3.6, it seems that
OOD detection techniques based on the gradient space surpass those relying
on feature space. Alternative methods relying on the gradient of a certain me-
tric with respect to the model’s parameters seemed to be successful. There-
fore, I oriented the thesis using alternative metrics in order to make models
more robust and not rely on themodel’s likelihood directly for OODdetection.

94

3.6.4 . Observation on the behavior of the approximate mass
The approximatemass 3.36 is a gradient-space basedmetric, althoughnot

taken over the model’s parameters. It is natural to test out the performance
of this metric on OOD detection with flow-based models. Authors in [85] re-
port that this metric works better for OOD detection than the likelihood of
their energy-based model. However, it is also reported that this metric seems
not to work appropriately with tractable likelihood models (e.g. : flow-based
models) as the values of approximatemass seem to adopt the opposite beha-
vior than energy-based models. This behavior is not desirable as ideally, the
model should not have higher likelihood variations around ID data than OOD
data.

I tested these claims by training a RealNVP model [47] on the CIFAR10 [80]
and FashionMNIST [107] datasets following the same configuration (number
of epochs, batch size, model architecture, optimizer etc.) as in [48]. What I ac-
tually observed during the experiments was more complex than the behavior
reported in [85]. Indeed, by the end of the training, the approximate mass
showed the problems mentioned above. However, this behavior only appea-
red in the last epochs and was not apparent at the beginning of training. This
seems to indicate that the problem does not come from the family of model
but rather the type of training, that is to say maximum likelihood training. It is
therefore possible to perform OOD detection with normalizing flow in a sui-
table way, instead of assuming that approximate mass values for ID data will
be greater than approximate mass values for OOD data. All one needs is to
control the variations of the log-likelihood around input data in order for the
approximate mass not to take too high values compared to OOD data.

3.6.5 . Fixing the overfitting of the approximate mass
A previous paper [112] performed double backpropagation of the model’s

loss with respect to themodel’s inputs to control its variations. The typical trai-
ning objective introduced in this paper includes a loss and its gradient with
respect to the inputs, as represented in equation 3.47. This objective is ar-
gued to be better for the generalization capabilities of models and to avoid
sensitivity by reducing variations of the loss around input data points.

L(x; θ) = l(x; θ) + α ∥ ∇xl(x; θ) ∥ (3.47)
My training objective 3.35 in section 3.6.1 follows the same equation as in

3.47. We can also observe that during training, the approximate mass does
not evolve in the same way as in the vanilla trained model. The likelihood
does not seem to overfit around ID data points and does not assign higher
approximate mass values for ID data than for OOD data, matching the beha-
vior observed on energy-based models in [85] 3.17.

My training objective bears some resemblance to other similar training
95

(a) Epoch 60

(b) Epoch 85

(c) Epoch 100
Figure 3.17 – Approximate mass distribution for a RealNVP model trained onCIFAR10 at three training epochs (epochs 60, 85 and 100). On the x-axis, thevalues of the approximate mass, on the y-axis the number of occurrences ofeach bins (group of values) of approximate mass. In red, approximate massvalues on ID data (CIFAR10), in blue on OOD data (SVHN). The approximatemass should be like in epoch 60 for OOD detection.

96

objectives such as GradCon [100] and GradNorm [99]. These two training me-
thods involve computing the gradient of a loss term with respect to model’s
parameters. On inference time, the gradient metric part corresponds to the
OOD detection metric. In my case, in section 3.6.1 I first tried to use the first
loss term (the log-likelihood) as an OOD detection metric. However now, si-
milarly to [100] and [99], the second term in the optimization objective is my
OOD detection metric.

This family of objective functions is however problematic because of the
computational complexity involved in the double backpropagation operation.
Indeed, two backpropagation operations per training iteration can be extre-
mely costly. Some mathematical study already analyzed the family of double
backpropagation loss functions [113] and found a way to reduce calculations
by a third for Frobenius-normpenalties on Jacobian (i.e. : first-order derivative
penalizations). Future works on my method could exploit the results derived
in [113] for the specific case of unsupervised normalizing flows training (which
rely on a specific architecture that may not be covered by the mathematical
analysis in this paper).

Intuitively, this regularization technique can be seen as a generalization of
data augmentation. Indeed, a first-order penalty is expected to isotropically
smooth the loss around input data. Data augmentation on the other hand
aims at minimizing the loss function on a finite amount of data sampled by
modifying data from the training set (by adding noise, rotating, flipping...). As
the first-order constraint penalizes the model to smooth the loss isotropically
around each training data point, this has the effect of bringing loss values
closer to each other for close data points.

Further investigations can also test few-shot learning capabilities [114] (or
more generally, meta-learning [115]) of this training approach in an unsuper-
vised context. In few-shot learning, the goal is for a model to learn a new
class from few instances of this task. Several methods exist to tackle this is-
sue [116], some of them including memory-augmented neural networks [117]
which have the ability to store information about new instances within their
internal memory module to reuse later in inference. Some other methods,
prototypical networks [118], use "prototypes" and a similarity measure to de-
cide if a new instance on test time belongs to one of those new classes. A
prototype is a class centroid of the latent representation of data instances of
the same class. When a neural network learns to classify instances, the latent
representation of these classes can be separated from the latent space, which
can be illustrated with a t-SNE [119] visualization (example in figure 3.18). The
idea behind protypical networks is that the new class instances will have their
own clusters during training, as such on inference one can discriminate data
instances by assigning to an undetermined input the class of the "nearest"
prototype (a class-cluster centroid). In other words, on inference, the model :

97

1. takes the distance between the input latent representation and the lear-
ned prototypes with a similarity measure (e.g. : Mahalanobis distance,
cosine similarity) ;

2. assigns to the input the class of the closest prototype/cluster

Figure 3.18 – Illustration of a projection with the t-SNE algorithm for a neuralnetwork trained on the MNIST dataset. We can clearly see clusters formedfor each class, indicating that the model efficiently separated the input space.Credit to the original paper on t-SNE [119].
In the training procedure, smoothing the loss around input data is expec-

ted to naturally yield homogeneous clusters, where each data point of a given
class is expected to lie in a hypersphere centered around the prototype. I ex-
pect this method to give a latent representation for new classes that would
be more exploitable by the model on inference as the natural similarity mea-
sure, the log-likelihood, is smoothed out for latent points near the learned
centroid. In order to work, the new training method should include the log-
likelihood augmented by the label information, for example by penalizing the
log-posterior of a DIGLM [1] model.

Aside from those two point which are left for future work of my approach,
we focus now on the results in OOD detection, testing two different settings.
Each setting corresponds to different configurations of distribution shifts. We
want to ensure first that themodel classifies data correctly between OOD and

98

ID and also whether the method is sensitive to specific distribution shifts, as
introduced in section 3.1.

3.6.6 . Results on OOD detection
My paper [120] 10 exposes my results in OOD detection,as defined in sec-

tion 3.1, that is when ID and OOD data show both in covariate and semantic
shifts.

I test my approach in a classic OOD detection setting with the CIFAR-10
[80] and FashionMNIST [107] datasets as in-distribution sets. For the models
trained on FashionMNIST, I use the MNIST[2] KMINST [121] and EMNIST [122]
datasets asOODdistributionswhile themodels trained onCIFAR-10 are tested
against the SVHN [90], DTD [123], GTSRB [124], Places365 [125] and iNaturalist
[126] (split into "Animalia" and "Plantae" parts) datasets as out-of-distribution
sets. I chose these datasets as they show no overlapping in their labels.

Commonmetrics in OOD detection, that I chose to use as well in my study
include AUROC (area under the ROC curve), AUPR (area under the precision-
recall curve) and TNR at 95% TPR (True Negative Rate at a fixed level of 95%
True Positive Rate).

I comparemy results to state-of-the-art methods that are commonly used
in OOD detection benchmarks : Generalized ODIN [93], an extension of the
original ODIN [91], Mahalanobis [95] and Energy-based OOD detection [98].
The ODIN family of methods rely on adversarial perturbations and smoothing
the output distribution. The Mahalanobis uses Gaussian discriminant analy-
sis on the feature space to detect OOD samples. The energy-based method
uses an energy-based interpretation (different from Joint Energy-based Mo-
del [85]). The energy-based model also requires the use of OOD data to train
its upper energy bound. The energy-based model is trained with both CIFAR-
10/FashionMNIST as ID data and SVHN/MNIST as OOD data.

The models used here are RealNVP models trained on the ID datasets.
For grayscale images (FashionMNIST andMNIST), the model is a RealNVPmo-
del with 4 blocks and 2 scales (≈10 million parameters) and for color pictures
(CIFAR-10 and SVHN) it is a RealNVP model with 6 blocks and 3 scales (≈60
million parameters).

Thosemethods are initialized with a similar number of parameters, which
changes with the dimension of data. I kept the same models as the ones trai-
ned in section 3.6.1 and make the other models in the benchmark match this
number of parameters.

Finally, the number of OOD and ID data is equal in order to have mea-
ningful AUROC and TNR measures as the ROC curve is sensitive to class im-
10. Titled "Improving Normalizing Flows With the Approximate Mass for Out-of-

Distribution Detection", accepted at the Generative Computer Vision workshop ofCVPR 2023 and available in the proceedings of the conference.
99

balance [103]. This attention I brought on the class balance and the number
of parameters is rarely done in the field of OOD detection. If this balance is
not present, the models are not strictly comparable with each other and the
values of AUROC can not be interpreted easily.

Results of the experiments can be found in table 3.1, where I report, for
each model and pairs of datasets, measured scores for each metric.

Table 3.1 shows state-of-the-art performance for the penalizedmodel. The
average AUROC is of 97.0% on the CIFAR-10 benchmarks, 98.7% on the Fa-
shionMNIST benchmarks and a global average AUROC of 97.6% on all data-
sets. On the other hand, the average AUROC is of 62.4% for Generalized ODIN,
83.8% for Mahalanobis and 84.0% for Energy (or 79.44% when not taking into
account MNIST and SVHN as these datasets are used during training to tune
the energy bounds).

The results show state-of-the-art performance on OOD detection. The ap-
proximate mass regularization performs well when there is both a covariate
shift and a semantic shift between the in-distribution and theout-distributions.
The results surpass by 16% on average the AUROC of the best baseline, Energy
(with its OOD datasets included). Furthermore, the model shows a more con-
-sistent behavior than the baselines as my penalized training yields good per-
formance on all datasets in the benchmark while other models are more ir-
regular in their classification performance depending on the OOD dataset.
Finally, a gap can be observed between TNR@95%TPR values and the AUROC
values for the other models in the benchmark. I investigated this discrepancy
by plotting their respective ROC curve where we can observe that lowering
the value of the TPR increases the TNR (for example, TNR@95%TPR is greater
than TNR@99%TPR but lower than TNR@90%TPR).

These excellent results in OOD detection add further understanding on
the approximatemassmetric developed in section 3.5. Indeed, recalling equa-
tion 3.36, we see that the approximate mass can be interpreted as the lo-
cal rate of change of the likelihood around an input x, relatively to the value
of the likelihood at this point. In other words, the approximate mass weighs
the variations of likelihood by the value of the likelihood itself. We observed
in section 3.6.1 that the log-likelihood (and therefore the likelihood) distribu-
tion does not seem to change its distribution between OOD and ID data in fi-
gure 3.14 even after adding the penalization term. Therefore, the approximate
mass regularization did not change the relative distribution of likelihood va-
lues between ID and OOD data. However, the approximate mass distribution
between ID andOODdatawas affected by the regularization term. Thismeans
that the "concentration term" ∥ ∂p(x;θ)

∂x ∥ had an impact during training. On the
one hand, the concentration term of the approximate mass should indeed be

100

Model Training dataset OOD dataset AUROC AUPR TNR @95%TPRG-ODIN CIFAR-10 SVHN 0.810 0.804 0.355Mahalanobis CIFAR-10 SVHN 0.936 0.926 0.758Energy CIFAR-10 SVHN 0.999 1.0 1.0
Approximate mass CIFAR-10 SVHN 0.969 0.969 1.0G-ODIN CIFAR-10 iNaturalist 0.581 0.552 0.124Mahalanobis CIFAR-10 iNaturalist 0.745 0.715 0.290Energy CIFAR-10 iNaturalist 0.647 0.902 0.872
Approximate mass CIFAR-10 iNaturalist 0.968 0.906 0.994G-ODIN CIFAR-10 iNaturalist (plants) 0.581 0.552 0.124Mahalanobis CIFAR-10 iNaturalist (plants) 0.731 0.706 0.166Energy CIFAR-10 iNaturalist (plants) 0.587 0.881 0.077
Approximate mass CIFAR-10 iNaturalist (plants) 0.968 0.799 0.991G-ODIN CIFAR-10 DTD 0.882 0.887 0.53Mahalanobis CIFAR-10 DTD 0.857 0.788 0.576Energy CIFAR-10 DTD 0.734 0.912 0.341
Approximate mass CIFAR-10 DTD 0.978 0.979 1.0G-ODIN CIFAR-10 Places365 0.616 0.577 0.157Mahalanobis CIFAR-10 Places365 0.522 0.518 0.08Energy CIFAR-10 Places365 0.753 0.937 0.177
Approximate mass CIFAR-10 Places365 0.968 0.936 0.978G-ODIN CIFAR-10 GTSRB 0.411 0.450 0.072Mahalanobis CIFAR-10 GTSRB 0.764 0.681 0.356Energy CIFAR-10 GTSRB 0.890 0.975 0.582
Approximate mass CIFAR-10 GTSRB 0.970 0.970 1.0

G-ODIN FashionMNIST MNIST 0.535 0. 611 0.008Mahalanobis FashionMNIST MNIST 0.995 0.995 0.994Energy FashionMNIST MNIST 1.0 1.0 1.0
Approximate mass FashionMNIST MNIST 0.994 0.971 1.0G-ODIN FashionMNIST EMNIST 0.870 0.885 0.425Mahalanobis FashionMNIST EMNIST 0.995 0.995 0.982Energy FashionMNIST EMNIST 0.990 0.998 0.955
Approximate mass FashionMNIST EMNIST 0.969 0.969 1.0G-ODIN FashionMNIST KMNIST 0.328 0.391 0.019Mahalanobis FashionMNIST KMNIST 0.990 0.990 0.948Energy FashionMNIST KMNIST 0.981 0.995 0.917
Approximate mass FashionMNIST KMNIST 1.0 0.996 1.0

Table 3.1 – Results on OOD classification for different state-of-the-artmodels. The energymodel is trainedwith the CIFAR-10 (resp. FashionM-NIST) as ID data and SVHN (resp. MNIST) datasets as OOD data.

101

low for inputs x that are seen (or close to data seen during training) by themo-
del as variations are controlled by the regularization term around this input.
On the other hand, unseen data or rather data that does not seem to follow
the training distribution have high variations as themodel did not explore this
part of the input space. As such, despite a larger average value of likelihood on
the OOD dataset compared to the ID dataset, the values of the concentration
term weigh in by taking even higher values. On the other hand the ID dataset
may have smaller values of likelihood but since the model partially explored
the ID data space, it assigns to these inputs a smaller concentration term.Ove-
rall, this behavior explains why the approximate mass is almost consistently
lower for ID data than for OOD data.

Due to the nature of the OODdetection problemwhich includes two sepa-
rate types of distribution shifts, I now aim to find out what distribution shift
affects performance in OOD detection more. In the next part, I will test out
whether the approximate mass is suitable for semantic shift by experimen-
ting how this metric performs in anomaly detection.

3.6.7 . Results on class anomaly detection
In class anomaly detection (or anomaly detection or anomalous class de-

tection), the goal is to train the model on a single class in a dataset (corres-
ponding to its in-distribution) while the remaining classes of the dataset are
treated as the out-distribution. For example, if we trained amodel on the class
"1" of the MNIST dataset, the ID data on inference time would be data drawn
from the "1" class in the MNIST distribution while all the other classes would
be the OOD distribution.

Themethodology is to split a dataset in an ID set made of only one class of
the dataset while the other classes are OOD. In order to evaluate the model,
it is trained on a single class of the MNIST (or CIFAR-10) training data then
tested on a split of the test set between the ID class and anomalous classes
(the remaining classes).

I compare my approach to two state-of-the-art models in the domain :
OCGAN and GradCon. OCGAN [101] is based on the features extracted in the
latent space by a GAN [61]. GradCon [100] is based on a gradient metric with
respect to the model’s features (instead of the input) of the reconstruction
loss of a VAE [40]. The compared models are the same as in the previous
study in section 3.6.6 with the number of parameters kept the same for their
respective settings (grey-level images or RGB images).

Similarly to [100], I use the MNIST [2] and CIFAR-10 [80] datasets to test
performance in an anomalous class setting.

The reported metric is the AUROC, as is usually done in this setting, in
table 3.2 and table 3.3.

102

Model 0 1 2 3 4 5 6 7 8 9GradCon 0.995 0.999 0.952 0.973 0.969 0.977 0.994 0.979 0.919 0.973OCGAN 0.998 0.999 0.942 0.963 0.975 0.980 0.991 0.981 0.939 0.981
Approximate mass 0.969 0.064 0.629 0.924 0.796 0.946 0.977 0.682 0.969 0.572

Table 3.2 – AUROC results on anomalous class detection on MNIST fordifferent models.
Model Airplane Automobile Bird Cat Deer Dog Frog Horse Ship TruckGradCon 0.760 0.598 0.648 0.586 0.733 0.603 0.684 0.567 0.784 0.678OCGAN 0.757 0.531 0.640 0.620 0.723 0.620 0.723 0.575 0.820 0.554

Approximate mass 0.855 0.605 0.756 0.835 0.574 0.801 0.797 0.862 0.871 0.656
Table 3.3 – AUROC results on anomalous class detection on CIFAR-10for different models.

The averagemeasuredAUROC is of 75.2%onMNIST and 76.1%onCIFAR-10
withmy penalized RealNVP approach. The results reported in [100] are an ave-
rage AUROC of 97.3% on MNIST and 66.4% CIFAR-10 for GradCon, and 97.5%
onMNIST and 65.7% CIFAR-10 for OCGAN. This experiment shows that the ap-
proximate mass penalized model is sensitive to the semantic of data to some
extent as it is able to detect label shifts. The gap in performance between
the MNIST and CIFAR-10 datasets is much lower than the one measured for
OCGAN or GradCon, consistently with results in section 3.6.6. However, the
AUROC is distributed unevenly across classes in the datasets, some classes
being seemingly less distinguishable by the model than others (e.g. : class 1 in
the MNIST dataset in Table 3.2).

3.7 . Conclusion of this chapter

In this chapter, we saw how the use of likelihood-based metrics in OOD
detection has limitations. I attempted several methods of circumventing the
issue of the likelihood in OOD detection :

1. I first attempted to use the approximate mass in an way to fix this issue
by adding constraints on the likelihood that would make it smoother,
expecting the likelihood to increase in the neighborhood of ID data at
the cost of the likelihood on OOD data neighborhood, thus decreasing
on these subsets. I used the approximate mass as a regularizer of the
smoothness of the likelihood function. This approach did not seem to
yield the expected results.

2. Then, I built on the same intuition a regularizer inspired by the VAT me-
thod, that also did not yield expected results.

103

3. The seemingly impossibility to regularize the likelihood in a way that
wouldmake it suitable in OOD detectionmight be due to the complexity
of the space we are working on, the feature spaceX instead of the label
space Y which is countable and finite.

After more research in the literature on OOD detection, it turned out that
the likelihood was no suited for OOD detection. Further investigation of the
approximate mass led to the following contributions :

1. The creation a new methodological standard to test OOD detection al-
gorithms.

2. The discovery of a property of the approximate mass during training.
This metric seems to behave in an inconvenient way during training,
ending up overfitting.

3. The introduction of a newmethodof regularizing normalizing flowswhich
controls this metric to behave correctly.

4. The observation of the limits of this metric : it performs excellently on
OOD detection but had more mitigated results on anomaly detection,
suggesting that the metric is more suitable for covariate shift detection
than semantic shift detection.

The approximate mass seems to be related on the local smoothness of
the likelihood relatively to the value of the likelihood. This allows to enrich
the likelihood metric with a measure of the regularity of the model on certain
parts of the image space. Therefore, if amodel hasn’t seen a certain part of the
image space (i.e. : OOD data), it will be less regular on this part thus assigning
a higher approximate mass.

In order to test performance of the approximate mass on covariate shift,
we will follow this study in the next chapter by looking at the behavior of the
model in adversarial attack detection. as we will see in the next chapter, the
inputs generated by adversarial attacks can be seen as a certain type covariate
shift.

Future works on my method exposed in this chapter could exploit the re-
sults derived in [113] for the specific case of unsupervised normalizing flows
training (which rely on a specific architecture that may not be covered by the
mathematical analysis in this paper). The method could also be extended to
supervised learning where the new training method should include the log-
likelihood augmented by the label information, for example by penalizing the
log-posterior log p(y|x) of a DIGLM [1] model, which is a model that will be co-
vered in the next chapter. Finally, some mathematical analysis would make
the understanding of the approximate mass easier, notably through the lens
of information geometry as the minimization of the approximate mass might

104

be equivalent to finding a geodesic 11, or measure theory by assimilating the
approximate mass to a Wasserstein distance.

11. Shortest path in a general space.
105

4 - Adversarial defense

Chapter 3 introduced a background on OOD detection. As a reminder, an
OOD input is an input that comes from outside the target distribution one
wishes to model (the same distribution as the training dataset of the model).
The domain of adversarial machine learning emerged in the last few years
and may be interpreted as a form of OOD input. This section introduces the
domain of adversarial machine learning by giving some background on the
domain by presenting common attacks and defense mechanisms, problems
in the domain as well as my own contributions.

4.1 . Adversarial machine learning : introduction

The domain of adversarial machine learning is a branch of machine lear-
ning that is concerned with studying the robustness of machine learning al-
gorithms, specifically deep learningmodels, against inputs that have been ad-
ded with noise specifically crafted to perturb the model. Indeed, some obser-
vations were made [127] that it is possible to tailor perturbations to images
in order to fool the model into misclassifying it. The perturbation is often
designed in such a way that the difference between the original image and
the perturbed image is unnoticeable for the human eye. Themisclassification
may often result in overconfidence from themodel, in other words themodel
assigns a high softmax probability to the wrong label. An illustration of an ad-
versarial attack is represented in figure 4.1. In this figure, we can see that even
though the originalmodel successfully classifies the imagewith the right label,
"panda", adding a noise with small magnitude results in a misclassification as
the model classifies the perturbed image as a "gibbon" with an even higher
confidence (99.3% instead of the original 57.7%) and despite the difference
between both images being barely noticeable for the human eye.

The adversarially perturbed input is modified only on its features, making
adversarial attacks a type of covariate shift. The shift is due to noise added
to the image, making the problem of classification of adversarial images a
problem of generalization. Indeed, the adversary mainly exploits the lack of
generalization of the model as a way to craft its noise.

Some criticismmay be made about adversarial machine learning, such as
whether the perturbations added to the images can really be computed in a
real-time environment, whether the model’s parameters may be accessed by
the attacker or whether the perturbation may be injected into the image. It
is critical to understand that as the domain of deep learning quickly moves
towards the extensive use of "foundation models" [130] [131], which are self-

107

Figure 4.1 – Illustration of an adversarial attack performed on a GoogLeNetnetwork [128] trained on the ImageNet dataset [129]. A small imperceptiblenoise was added with the FGSM attack [92]. It resulted in the model misclas-sifying the image with more confidence (higher softmax score) than its classi-fication results on the original image. From the FGSM paper [92].

supervised often open-sourced models trained on a vast amount of data in
order to beused later on in downstream tasks [132] [133], and knowing that ad-
versarial perturbations can be transferable [134], it is essential to make deep
learning models more robust. Indeed, knowing that these models can be ac-
cessed by anyone can makes the discovery of potential backdoors [135] [136]
and attacks on models derived from them more likely in deployed models.
The domain also remains important as it allows one to quickly find images
the model does not generalize on, instead of exhaustively finding noise that
efficiently perturbs the model.

4.2 . State-of-the-art : adversarial attacks

The state-of-the-art in adversarialmachine learning starts with adversarial
attacks. In the adversarial machine learning setting, a threat model must first
be established. The threat model is dependent on what information the ad-
versary has access to. Threat models are mostly divided into the "black box"
threat model and the "white box" threat model [137]. Another information
level called "gray box" also exists but is rarely seen in the literature.

In the black box threat model, the adversary does not have access to the
parameters of the model. It is not always clear though if the model has ac-
cess to the network’s architecture, loss function or generally to the model’s
learning algorithm. Generally speaking, implementations have no knowledge
about the training of the classifier and simply assume a classic training with
a cross-entropy loss. The adversary usually has the possibility to query the
network and get the output, however some restrictions can be given on the
nature of the output, whether the model has access to the label output (the
decision of the model or a one-hot, binary encoding of the label output) or
the raw output (logits or softmax output).

108

In the white box threat model on the other hand, the adversary has ac-
cess to the parameters of the model and potentially other information on the
network. More accurately, the attacker not only get access to the architecture
and the weights of the network but also has the possibility to query it, get its
output andmake computations on themodel such as gradient computations.

Information level between both threat models falls in the gray box threat
model [137]. In this threat model, knowledge on the classifier is limited to the
structure of the target model.

This section covers the state-of-the-art methods in adversarial attacks,
mainly the ones that I used in my experiments. Efforts to standardize eva-
luations in adversarial machine learning in the previous years have lead to
the development of several repositories to make testing of new defense algo-
rithms on previous attacks easier. I settled on the AutoAttack [138] 1 as it eva-
luates models by using a set of four attacks to reliably evaluate robustness,
selected to represent a variety of threat levels fromblack-box attacks towhite-
box attacks with various loss functions in their objective. The attacks are also
implemented in away thatmost hyperparameters of the attacks are fixed the-
refore no tuning is required to test a new classifier, thus making evaluations
homogeneous. This Python library implements the APGD-CE [138] (Automa-
tic PGD attack [138] with Cross-Entropy loss), APGD-DLR [138] (Automatic PGD
attack [138] with Difference of Logits Ratio loss), Square Attack [139] and FAB
[140] attacks, which I will introduce in the next paragraphs.

The Automatic PGD attack (APGD) is a variant of the PGD (Projected Gra-
dient Descent) attack with momentum [141] [142] and was introduced in the
AutoAttack paper [138] in order to fix issues in the PGD attack and let as few
hyperparameters free as possible. The PGD attack is a white-box attack that
uses the projected gradient descent optimization technique. In equation 4.1,
we see the iteration process starting from a benign input x0 that is progres-
sively transformed to an adversarial example by taking a step of size η in the
direction of the gradient of the loss function L and then projecting the result
in the ϵ-ball centered around the original benign input x0. An illustration of
the PGD attack is provided in figure 4.2 2.

xk+1 = PBϵ(x0)(x
k + ηk∇xL(x

k)) (4.1)
APGD aims at tackling the suboptimal step size η which does not guaran-

tee convergence and performance, its lack of sensitivity to budget (the num-
ber of iterations does not translate into better attack results), and the blind-
ness of the attack to the trend of the evolution of the loss during the search of
the perturbation. It separates the iteration process into an exploration step to

1. https ://github.com/fra31/auto-attack/tree/master2. Taken from https ://towardsdatascience.com/know-your-enemy-7f7c5038bdf3
109

Figure 4.2 – Illustration of the PGD attack. The sample x in the middle of thecircle is the clean sample. The first red arrow converges to a region of low losswithin the circle while the second arrow converges to a high-loss region insidethe same circle, thus producing samples that are mislabeled by the model.

search for a good set of initial points, then an exploitation step where the at-
tacker maximizes the knowledge accumulated so far. The transition between
both phases is done by progressively reducing the step size. APGD follows
the original PGD algorithm but adds a momentum term. For every step k, the
algorithm updates its terms following equation 4.2. The step ηk is updated
by halving its value at some fixed checkpoints. The parameter ρ represents
the fraction of the total update step we want the algorithm to successfully
increase the loss.

xk+1
temp = PBϵ(x0)(x

k + ηk∇L(xk))
xk+1 = PBϵ(x0)(x

k + ρ(k+1
temp−xk) + (1− ρ)(xk − xk−1))

(4.2)
In equation 4.2 is typically the cross-entropy loss (CE) as it is assumed to

be the most common training objective for a neural network trained on a
classification task. However, in the context of an attacker searching for a per-
turbation through optimization techniques, the gradient of the cross-entropy
∇xCE(x, y)with y the label of themodel reaches 0 when themodel’s softmax
output reaches 1 for the true label (and subsequently 0 for the wrong ones).
The authors of [138] propose the DLR (Difference of Logits Ratio Loss), defined
in equation 4.3, as a new loss where π is the ordering of the components of

110

the logits z (activation before the softmax) in decreasing order. This loss is still
in [0, 1] even when x is correctly classified.

DLR(x, y) = −
zy −maxi ̸=yzi

zπ1 − zπ2

(4.3)
The DLR loss can be modified in the APGD-DLR objective to make it a tar-

geted attack as shown in equation 4.4. This objective aims at getting zt > zyand ensure the loss is not constant.
Targeted−DLR(x,) = − zy − zt

zπ1 −
(zπ3+zπ4)

2

(4.4)
The FAB attack [139], or Fast Adaptive Boundary attack, produces mini-

mally distorted adversarial examples with respect to any Lp-norm, p ∈ 1, 2 inf

for a given point x0 initially correctly classified by the classifier f as c. This at-
tack is close in principle to DeepFool [143] but has a higher quality as it has no
incentive to find an adversarial perturbation close to the point x0. Indeed, the
DeepFool attack has an objective tominimize the Euclidean distance between
the original sample and the adversarial sample. The FAB attack finds the point
that is closest to the decision boundary between the true class and the tar-
get class of the attack while respecting the box constraint of the attack, that
is to say the distance between the original point x0 and the corrupted point
xk has to be lower than a threshold δ. It linearizes the classifier f at the point
xk at iteration k to compute the box-constrained projections of xk respecti-
vely to x0 onto the approximated decision hyperplane then makes a convex
combination of these projections depending on the distance from xk and x0

to the decision hyperplane. Finally, the attack makes an extrapolation step
to find the adversarial sample. The iteration process to generate adversarial
samples is written in equation 4.5 whereC is the box constraint ∥ x0−xi ∥< δ,
πs is the decision hyperplane separating the true label l and the target label cof the attack, α ∈ [0, 1] is the convex combination hyperparameter.

xi+1 = (1− α)projp(x
i, πs, C) + αprojp(x

i, πs, C) (4.5)
Finally, the Square attack [140] is a black box attack that uses random

search to optimize the loss function within a given radius of attack. Random
search is a greedy optimization method that randomly samples a value in the
given set and selects this value if it minimizes/maximizes the loss compared
to the previous value. For the Square attack however, sampled images x̂ are
constructed such that they remain on the boundary of the Lp-norm ball at
every iteration before projecting them onto the segment [0, 1]d. This way, the
changes are localized in the image so that at each step only a small fraction
of neighboring pixels shaped into squares is modified. The side length of the

111

square decreases at each iteration following a fixed schedule. Then, the algo-
rithm picks a new perturbation δ randomly and adds it to the current sample
x̂. The updated sample is kept only if it decreases the loss. The algorithm stops
when an adversarial example is found.

4.3 . State-of-the-art : adversarial defenses

Themost efficient state-of-the-art method in adversarial defense is adver-
sarial training [92]. This mode of training uses adversarial samples to train the
model in order to make the model generalize on these instances. However,
the lack of "awareness" coming with this technique, due to the fact that the
model still classifies data irrespective of its adversarial nature, wouldn’t allow
raising alarms in a deployed system or understanding failures of the classi-
fier. Furthermore, some evidence from previous works [144] seem to show
that increasing robust accuracy through adversarial training may also lead
to a decrease in clean accuracy. It can be proved that there is an underlying
trade-off between generalization for better robustness and generalization for
better accuracy. This is argued in [144] to be due to the differing nature of the
features that robust classifiers learn compared to those a standard classifier
learn. Therefore, detection algorithms started being explored in the recent
works.

4.3.1 . Adversarial detection
Adversarial detection algorithms are able to detect whether an input is

clean or perturbedby adversarial noise and therefore filter out the latter ones.
However, some benchmarks on adversarial detection methods [145] showed
that papers on detection algorithms may conflate their results and it can be
showed that a detector with radius of detection ϵ ismathematically equivalent
to a classifier of radius of robustness 2ϵ. Therefore, this work implies that ef-
forts in adversarial detection may be vain or replaced by stronger algorithms.
However, the paper also proves that detectors can be transformed into classi-
fiers. However, their theorems only state the existence and how to construct
such a classifier but isn’t specific about the metrics to use or the actual sam-
pling method to use.

Some state-of-the-artworks in adversarial detection includemultiLID [146],
MetaAdvDet [147] and Maximum Mean Discrepancy (MMD)-based test [148].

The multiLID method [146] uses an approximation of the LID (Local Intrin-
sic Dimensionality) metric [149] [150]. The LID locally measures the properties
of data distributions by assessing the growth rates of the cumulative distri-
bution function within this neighborhood. The multiLID computes a vector of
LID values, the multiLID vector, instead of computing an aggregated value
(such as the mean of this vector). Its ith component is given in equation 4.6

112

where di(x) is the euclidean distance between the representation by a care-
fully chosen neural network of a sample x and its ith nearest-neighbor. The
collection di(x)i∈[1,k] is sorted with d1 < ... < dk where k is a hyperparameter.

multiLID(x)i = − log(
di(x)

dk(x)
) (4.6)

This vector is then fed into a random forest model to decide whether the
input data x is benign or an adversarial example. A random forest is amethod
that combines multiple decision trees to improve the accuracy and robust-
ness of the model.

The MetaAdvDet [147] is based on meta-learning and aims at adapting to
new attacks based on experience accumulated with previous state-of-the-art
attacks. It uses a network T that focuses on learning the new attack, conside-
red as a task in the meta-learning framework, and a networkM, the master
network, which learns a general strategy over all the tasks from the accumula-
ted gradient in T . The learning task relies on a dataset sampled from various
attacks, each attack corresponding to a task of the meta-learning problem.
The meta-learner experiences several scenarios thanks to the large amount
of tasks/attacks allowing adaptation to new attacks rapidly. The training data-
set is organized in tasks, each task being split into a support set to learn the
basic capability of detecting old attacks and a query set to act as new attacks.
The networks T andM output a probability that the input sample is benign
or adversarial. The algorithm tests a sample similarly to a few-shot testing
procedure [151] by fine-tuning the test model with few-shot examples.

The MMD (Maximum Mean Discrepancy) test [152], which is usually ap-
plied to detect distributional discrepancy between two datasets, uses a test
statistic, theMMD. The equation of thismetric iswritten in equation 4.7, where
f is a function that can be expressed in the RKHS (Restricted Kernel Hilbert
Space)Hk with kernel k, P andQ are the two distribution for which we wish to
test the equality, X and Y are the random variables corresponding respecti-
vely to these distributions and µP = E(k(., X)) and µQ = E(k(., Y)) are kernel
mean embeddings of P and Q respectively.

MMD(P,Q;Hk) = sup
f∈Hk,∥f∥Hk

≤1
|E(f(X))− E(f(Y))|

=∥ µP − µQ ∥Hk

(4.7)

It was demonstrated that the MMD test is aware of differences between
adversarial and benign samples in [148], despite previous claims showing that
adversarial examples may not be easily detected [153]. The authors of [148]
contradict the study in [153] by fixing three caveats to increase the power of
the test :

113

1. The test power, which is the detection rate of adversarial attacks, of the
MMD test is dependent on the form of the kernel. The Gaussian ker-
nel looks at data uniformly instead of focusing on key areas. A deep,
semantic-aware kernel would be more suitable by adding expressivity.
The MMD test with this kernel is called SAMMD (semantic-aware MMD).

2. The test power is also very dependent on the optimization of the ker-
nel bandwidth. This parameter of the deep kernel can be optimized by
maximizing the approximate test power which is computed by asymp-
totic analysis of the SAMMD when detecting adversarial attacks.

3. Finally, the MMD test relies on the input data being independent and
identically distributed (IID), which may not be the case for adversarial
attacks. The wild bootstrap [154] is a technique used to resample the va-
lue of SAMMDwith the optimized kernel in order to get correct p-values
similarly to an IID scenario as the non-IID scenario makes the test mea-
ningless. Adversarial data may show dependence when the adversary
attacks the data used for training the model (such as in adversarial trai-
ning) or when an adversary attacks an instance many times to generate
several adversarial samples. The disadvantage of this method is that it
cannot be deployed in a real-time setting but instead needs a dataset
to be collected and run the test against sane data to assess whether the
new dataset (and not individual points inside the dataset) is corrupted.

However, simply filtering out adversarial data samples may not be suffi-
cient to make a model robust and autonomous once deployed. If the model
"knows" what clean data look like, one may expect from it to restore adversa-
rial samples to a clean state that would be useful for the classifier.

4.3.2 . Adversarial restoration
In recent years, some methods aiming to restore the original information

from corrupt samples have emerged. Some of these methods use Langevin
dynamics, introduced in section 2.3.6, to find a new sample from an original
corrupted adversarial sample so that a downstream classifier would process
the restored input correctly. From the Langevin dynamic described by the dis-
cretized stochastic differential equation in equation 4.8, a sample from the
distribution of p(x) can be found. In equation 4.8, the term xt represents thevalue of the sample at iteration t, η is a step size in the gradient descent, zt isa Gaussian noise with 0mean and unit variance. Langevin sampling has some
properties that make it useful in adversarial machine learning as the Markov
chain yields a sample from the learned distribution asymptotically.

xt+1 = xt +
η

2
∇x log p(x) +

√
ηzt (4.8)

In [155], the authors introduce a way to reconstruct original samples from
114

an adversarial image with an energy-based model (EBM). Energy-based mo-
dels [55] aremodels that rely on the optimization of an energymetricE(x, y; θ)

where x is the feature vector of the input data, y is the label and θ the parame-
ters of themodel. The training of an EBM aims at minimizing the energy value
associated to an input x and its corresponding label y. A long-run energy-
based Langevin sampling, as performed in [155], creates unrealistic images
whichmaymake classification irrelevant. On the other hand, short-run Lange-
vin sampling is not enough to converge to a good sample for classification. The
authors in [155] therefore train themodel with two different optimizers in two
phases : first the Adamoptimizer [16] which allows themodel to sample realis-
tic images on short-run Langevin dynamics, and then the SGD (Stochastic Gra-
dient Descent) optimizer to update the parameters of the EBM so that long-
run samples align with short-run ones. This effectively results inmore realistic
samples, making classification by the downstream classifier more reasonable
in long-run Langevin sampling, although the results are qualitatively different
from the initial short-run.

Anothermethod relying on Langevin sampling to recover original samples
from adversarial examples is introduced in [156]. A denoising autoencoder
(DAE) [157] minimizes the reconstruction error on input data corrupted with
Gaussian noise ν N (0, σ2I) defined in equation 4.9 where p′ denotes the em-
pirical estimation of the target distribution p.

Ep′(x)p′(ν)(∥ r(x+ ν)− r(x) ∥) (4.9)
It was proved in some earlier work [158] that, under the condition that

r(x) = x+ o(1), then r(x)− x = σ2∇x log p(x) + o(σ2) when σ2 converges to
0. Therefore, a DAE can be used to estimate the gradient of the log-likelihood
of input data. Using this estimate, similarly to the previous paragraph, the
authors use the MALA (Metropolis-Adjusted Langevin Algorithm) to sample
from the distribution p(x) with the same iteration described in equation 4.8.
The authors choose to train a supervised denoising autoencoder (sDAE) [159]
[160] by minimizing the loss defined in 4.10 made of a reconstruction error
term and a cross-entropy term J .

Ep′(x,y)p′(ν)(∥ r(x+ ν)− x ∥2 +2σ2J(r(x+ ν), y)) (4.10)
Then, theminimizer of equation 4.10 satisfies equation 4.11 where p̃(y|x) =

yT ŷ(x) and ˜p(x, y) = p̃(y|x)p(x).
r(x)− x = σ2Ep(y|x)(∇x log p̃(x, y)) +O(σ3) (4.11)

Finally, the authors add further contribution to the reconstruction of ad-
versarial samples by altering the MALA reconstruction procedure defined by

115

equation 4.8 and introduce the MALADE procedure (MALA with sDAE for De-
fense). In order to circumvent issues arising with MALA which may drive the
input to high-density regions that are not labeled correctly, the MALADE al-
gorithm drives samples into high-density regions of the conditional training
distribution p(x|y) instead of the prior p(x). Therefore, equation 4.8 is repla-
ced by the dynamic defined by equation 4.12. An illustration of the MALADE
algorithm is given in figure 4.3.

xt+1 = xt + ηEp(y|xt)(∇x log p(xt|y)) + κ (4.12)

Figure 4.3 – Illustration of the MALADE algorithm from [156].
However, the intuition that the MALADE procedure being guided by the

posterior p(x|y) brings samples closer to the true class cluster may be erro-
neous. Indeed, this idea fails to take into account that the attacker may use a
targeted attack which would waste any attempt to use the label information
given by the classifier.

4.4 . Contributions

This section covers my contribution in adversarial defense, based on the
state-of-the-art developed in the previous sections. My approach of adversa-
rial defense relies on making a hybrid classifier, introduced in section 2.3.5,
more robust to adversarial attacks. This system would detect incoming at-
tacks, thanks to the detectionmetric introduced in chapter 3, the approximate
mass. The generative part of the hybrid model would be biased towards assi-
gning higher approximate mass values to clean samples by reusing the regu-
larization term introduced in section 3. Once a sample has been identified as

116

adversarial, the model purifies it, similarly to approaches introduced in sec-
tion 4.3. Once the sample is cleansed, it is fed again to the system in order to
be classified.

The advantage of mymethod relies on the fact that there is no need to ge-
neratemultiple adversarial samples during training and that it is attack agnos-
tic. Indeed, in adversarial training, generalization over adversarial samples is
done by training the model on adversarial samples generated through a par-
ticular attack. However, training on a weaker but faster attack such as FGSM
[92] may improve the model’s robustness to adversarial samples on FGSM
attacks but PGD attacks may still be able to beat the model’s accuracy [161].
Furthermore, the defense can be adapted to stronger attack radius without
a need for retraining the model, as we will see in section 4.4.2. Finally, it cor-
responds to an implementation of the detector-classifier model introduced
theoretically in the paper [145].

4.4.1 . Detecting adversarial samples
Adversarial samples detection can be seen similarly to the OOD detec-

tion framework developed in chapter 3. This idea relies on the assumption
that clean and adversarial samples are not drawn from the same distribu-
tion. Indeed, the adversarial distribution is a distribution similar to the clean
distribution, only differing by covariate shift (see chapter 3 for a definition).

First, the model is fed the data as input then computes the approximate
mass of this sample. The value is then compared to a threshold computed
on a validation set containing both clean and adversarial samples. If the ap-
proximate mass is smaller than the given threshold, the sample is considered
clean and is directly classified. Otherwise, it is filtered out as adversarial and
restored, as will be explained in section 4.4.2.

Algorithm 3 details the steps of the detection model, if it used alone wi-
thout any classification step afterward. The goal here is a binary classification,
similar to OOD detection where themodel classifies input x0 as adversarial orclean data, given a threshold τ computed on a validation set.
Algorithm 3 Adversarial detection with the approximate mass algo-rithm
if ∥ ∇x log pθ(x0) ∥< τ then

REJECT = True
else

REJECT = False
end if

The advantage of the adversarial detection approach is that even when
the input is cleansed and fed back into the model for classification, the model
can still raise an alarm, independently of the classification result. That way, if

117

the input was successfully detected as adversarial, the model may be able to
delegate its classification to a human supervisor or add some uncertainty to
the prediction.

The threshold τ , as mentioned above, is calculated on a validation set,
separate from the train and test sets as defined in section 2.2.2. This validation
set is augmented with some adversarial data, making up the dataset of half
of clean data and half of adversarial data. The threshold is computed as the
one that yields the highest accuracy to separate clean data from adversarial
data. It is computed following algorithm 4 with a validation dataset V .
Algorithm 4 Compute Optimal Threshold
Input Validation set with true labels : {(xi, yi)}
Output Optimal threshold : τ
best_accuracy← 0best_threshold← 0

for threshold← 0.55 ... 1 by 0.01 do correct_predictions← 0

for i← 1 ... n do predicted_label← (∥ ∇x log pθ(x0) ∥< τ)

if predicted_label = true_labeli then correct_predictions ←correct_predictions+ 1

end if accuracy← correct_predictions
n

if accuracy > best_accuracy then best_accuracy ← accuracy
τ ← threshold

end if
end for

return τ

In order for the model to assign as low as possible an approximate mass
to benign data samples, I add the regularization introduced in section 3.6.
Similarly to what was done in OOD detection, I expect the approximate mass
to have lower values on sane data samples that way and consistently assign a
higher approximate mass on adversarial data. The training loss of the DIGLM
model is defined in equation 4.13 where the hyperparameterα represents the
trade-off between themaximum likelihood objectiveminθ− log pθ(x) and thenew objectiveminθ∇x log pθ(x).

L(x, θ) = − log pθ(y|x) + β[− log pθ(x) + α∇x log pθ(x)] (4.13)

118

4.4.2 . Projecting reconstructed samples onto the neighborhood
of the attacked sample

As introduced in section 4.3, adding a cleaning step after the detection
step helps getting better adversarial classification results. Using a method
such as the Langevin sampling process has the advantage of making the ad-
versarial sample converge to the training distribution of the model when the
length of theMarkov chain increases, or at least what is modeled by the distri-
bution pθ computed by the normalizing flow in the hybrid model. Therefore,
a cleaning technique like Langevin sampling acts more like a resampling pro-
cess that aims at bringing adversarial samples closer to the original distribu-
tion p (or rather an estimation of it through pθ).However, the papers [162] and [155] show that although short run Lange-
vin sampling may produce samples that are close to the original distribution,
longer runs produce samples that do not make sense and that, paradoxically,
do not look like the original distribution. A fix is to change the optimizer du-
ring training in order to yield samples that are close to the original distribu-
tion. During the first training epochs of the model, the optimizer is the Adam
optimizer to then be changed to a simple SGD optimizer (regular stochastic
gradient descent). Some other papers try to augment the power of the Lange-
vin sampling, such as with the MALADE procedure [156] introduced in section
4.3. As a reminder, instead of sampling from the distribution p(x), they sample
from p(x|y) supposedly in order not to avoid converging to the wrong class
domain. However, this approach specifically relies on the evaluation of the
label y during Langevin sampling, which already shifts the distribution. Fur-
thermore, attacks may be targeted, which means that the attacker can assign
any desired label to the data sample. That way, an attacker may want to give
a label that is far away from the original label domain.

In my approach however, I take into account the prior that the attacker
has a specified radius of attack when forging malicious inputs. This radius
should be such that the perturbation would be imperceptible for a human.
This is illustrated in figure 4.4. Knowing the maximum desirable perturbation
is therefore a good piece of information to give the model in order for it to
get closer to the original clean data sample. In order to do that, I add a projec-
tion step at the end of the Langevin sampling on the ball for radius ϵspec (thespecified radius of attack). This projection step has two advantages :

1. bringing the Langevin sample closer to the original clean sample ;
2. avoiding the caveats reported in [162] and [155]where the Langevin sam-

pling procedure yields outputs that do not look like the original distri-
bution for long iterations.

In order to make the projection more effective, the final sample of the
Langevin process is projected onto anL∞-ball. Indeed, for a given radius ϵspec,

119

Figure 4.4 – Illustration of the information a defender may have against anadversary : the original sample is in a ball of radius ϵ centered around theadversarial sample.

the L∞-ball with this radius centered around the adversarial sample xadv hasthe largest volume out of all the Lp-balls, as illustrated in figure 4.5 3.
Furthermore, the L∞-norm is commonly used in a lot of attacks along

with the L2-norm to search for the optimal perturbation. Thus a defense that
matches the norm used by the attacker, or at least an upper bound of it, is
more likely to successfully locate the original sample given that prior infor-
mation.

3. Credit to Quartl, CC BY-SA 3.0 <https ://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons.

120

Figure 4.5 – Illustration of different Lp-balls and the L∞-ball in 2 dimensions.The x-axis represents the first coordinate of a vector in R2, the y-axis the se-cond coordinate. The L∞-ball surrounds every other ball therefore if an atta-cker perturbs the input relatively to this norm, the perturbation may be out-side of every other Lp-balls.

4.5 . Experimental methodology

Testing defenses in adversarial machine learning is also a complex task
similarly to the evaluation of OOD detection models. In this section, I will in-
troduce themethodology I use in order to evaluatemymodel. I will cover here
the choice of datasets, attacks and libraries, and metrics.

4.5.1 . Choice of datasets
Datasets used in adversarial machine learning are common across bench-

marks. In section 4.6, the dataset I will be focusing on in order to evaluate my
approach will be the MNIST dataset [2]. Further experimentations on other
datasets will be conducted but the MNIST dataset allows to provide a proof of
concept to demonstrate how the method fares in different settings.

These datasets show the advantage of covering different semantics (la-
bels) and different types of images (gray scale and color images).

I decide to split the test set into a validation and a new test set, where the
121

validation set is made of 20% of the total test set, randomly sampled. The rest
of the test set is then shortened to 1000 samples in order to accelerate testing.

4.5.2 . Evaluation metrics
The metrics used in the experiments differ between the given task. In de-

tection, I chose the samemetrics as the ones introduced in chapter 3, section
3.4. Thesemetrics are the AUROC, the AUPR, the TNR@95%TPR (TrueNegative
Rate at 95% True Positive Rate). They are further described in chapter 3.

However, as opposed to the previous chapter, I also add the accuracy of
themodel in the detection task as it will be important in order to later evaluate
the full defense (detection, cleansing, classification). This accuracy is compu-
ted as the fraction of adversarial samples correctly classified as corrupted.
Further explanations are given in section 4.6.1. In essence, the model first
computes a threshold of approximate mass on a validation set, then classi-
fies as adversarial any data whose approximate mass is above this threshold
and classifies as clean any data with a lower approximate mass than the thre-
shold.

4.5.3 . Python frameworks
As mentioned in section 4.2, the choice of library that implemented ad-

versarial attacks settled on the AutoAttack library. However, it is important to
note that many other Python libraries, compatible with the Pytorch library,
were created in the recent years to make implementation of adversarial at-
tacks easier. Examples include Torchattacks [163] 4, cleverhans [164] 5, andART
(Adversarial Robustness Toolbox) [165] 6which implementwidely used attacks
in the domain.

The attacks implemented in several of these adversarial evaluation libra-
ries include the PGD attack [141] [142] and the Carlini-Wagner (CW) attack [166].
Indeed, both attacks are known for being robust against gradient obfusca-
tionmethods [167]. Thesemethods are defensemechanisms that prevent the
computation of adversarial attacks by making gradients in the model hard or
impossible to compute through the use of randomness or non-differentiable
operators (such as rounding operators). A wider diversity of attacks, including
black box attacks which are insensitive to gradient obfuscation, allows the li-
brary to make fairer comparisons.

The choice of hyperparameters may also be detrimental to a fair evalua-
tion. For example, the number of steps in the PGD attack [141] is an important
hyperparameter but some papers may set it to a value that is too low to ac-
tually produce relevant samples for the evaluation. This is why the AutoAttack
library sets to a default valuemost hyperparameters, apart from the radius of

4. https ://github.com/Harry24k/adversarial-attacks-pytorch5. https ://github.com/cleverhans-lab/cleverhans6. https ://github.com/Trusted-AI/adversarial-robustness-toolbox
122

attack ϵ, and even implements attacks that require as few hyperaparameters
as possible (such as the APGD attacks [138], described in section 4.2).

Furthermore, the AutoAttack library is associated with the RobustBench
[168] 7 benchmark which is a website registering defenses evaluated on the
AutoAttack library. It references the results of these defenses with respect
to the dataset used for the benchmark (CIFAR-10 [80], CIFAR-100 [80], MNIST
[2]...), the distance to measure perturbation radius (L∞ or L2 distance), andthe radius of attack ϵ.

4.6 . Experiments

In this section, I report experimental results on 3 experiments to test out
the capacity of the defense method in detection, classification and with the
full defense (detection + classification).

These evaluations are performed for DIGLMmodels (described in chapter
2) trained with an approximate mass penalization (α = 2 penalization factor
in the loss defined in equation 4.13, to take a similar value as what work in
chapter 3), and on a simple model trained with maximum likelihood (α = 0,
referred to as the "naive" model in this section). The β value in equation 4.13
is set to 0.1 in order to give more importance to the classification accuracy of
the model so that the clean accuracy 8 is as high as possible.

Adversarial attacks are generated with the APGD-CE attack, described in
section 4.2, with a radius of attack of ϵ = 8

255 ∼ 0.032 which corresponds to
the highest radius of perturbation on this dataset in benchmarks.

4.6.1 . Experiment : results in adversarial detection
The first experiment aims at demonstrating the power of the detection

module of my defense mechanism. In order to do that, the detection is eva-
luated similarly to what was done in section 3.6.6. The test dataset is compo-
sed of half of clean data and half of adversarially generated data, with one
attack mentioned in the column "Attack". The test is ran for all attacks in the
AutoAttack library. The metrics used are the AUROC, the AUPR as well as the
TNR at 95% TPR (refer to section 3.6.6 for further details on these metrics).
The accuracy is also added as a thresholded metric, where the threshold of
classification τ is computed as explained in section 4.5 on a validation set
composed of a set of a subset of the test set along with the same samples
attacked.

The results can be found in table 4.1. One may observe that on the MNIST
dataset, the detection of adversarial attacks with a penalized model is on par
with what we observed in OOD detection. The non-thresholded metrics (AU-

7. https ://robustbench.github.io/8. Accuracy on clean samples.
123

ROC, AUPR, TNR@95%TPR) show that the model clearly detects adversarial
samples. Furthermore, the accuracy indicates that the threshold computed
on the validation set by the model is good enough to detect the samples with
high accuracy. On the other hand, it can be deduced from the AUROC value
that the naive model seems to invert the labels of the adversarial and the
clean, which also explains the low TNR value. The accuracy of 50% shows that
themodel didn’t manage to compute a threshold that would classify data cor-
rectly because of the inverted labels assigned by the model on the validation
set.

α Dataset Attack AUROC AUPR TNR@95%TPR Accuracy2 MNIST APGD-CE 1.0 1.0 1.0 0.9220 MNIST APGD-CE 0.056 0.318 0 0.5
Table 4.1 – Results on detection of adversarial attacks for the penalizedversion (α = 2) and the naive version (α = 0).

4.6.2 . Experiment : results in classification
The second experiment is concernedwith the classification accuracy of the

classifier when it is given an adversarial input. The goal of this experiment is
to clean an adversarial sample andmeasure the accuracy of the module once
the cleaning step is done. In order to do that, the experiment is conducted
by building a test set of adversarial samples. The model cleans them with the
Langevin sampling procedure then feeds it back into the classifier to assign
a label to it. The length of the chain is of 106 steps (a long chain is necessary
to converge to a good sample), the step size is of 10−3. The Langevin dyna-
mic may however not need to be run for such a long time for every samples.
Therefore, it can be stopped sooner with a stopping criterion, by calculating
a reference approximate mass such that the Langevin sampling provides the
highest accuracy on a given validation set, built similarly to the detection ex-
periment in section 4.6.1.

The reported metric is the accuracy in table 4.2. Note that the accuracy
on the adversarial sample (before restoration) is very close to 0%. The results
indicate here that the Langevin restoration method with projection yields ex-
cellent results on the penalized model and manages to increase the accuracy
for eithermodel, although the increase ismuchmore significant on the penali-
zedmodel. We can deduce here that the Langevin sampling procedure can be
helped by the penalization to provide a smoother likelihood landscape locally
around adversarial data whichmaymake the Gradient ascent less susceptible
from being stuck in high-loss regions.

124

α Dataset Attack Accuracy2 MNIST APGD-CE 0.4810 MNIST APGD-CE 0.107
Table 4.2 – Results on classification of adversarial samples after Lan-gevin cleaning for the penalized version (α = 2) and the naive version(α = 0).

4.6.3 . Experiment : results for the full defense
In this experiment, the performance of the overall defense is measured.

The model is given a test set of half clean samples and another half of ad-
versarial samples. Each sample is first filtered by the detection module then
if the sample is judged as adversarial by the detection module it is cleansed
and fed back again for classification.

Results of the experiment can be found in table 4.3. The results show that
the model with approximate mass penalization benefits both from a better
detection rate (from the detection experiment) and a better accuracy after
recovery on adversarial samples. This suggests that the full defense benefits
from both the good results on detection and those on Langevin restoration.

α Dataset Attack Accuracy2 MNIST APGD-CE 0.6080 MNIST APGD-CE 0.329
Table 4.3 – Results on detection and classification of adversarial attacksand clean samples after detection and cleansing for the penalized ver-sion (α = 2) and the naive version (α = 0).

4.6.4 . Experiment : results of the full defense with an adaptive
attack

Finally, this experiment aims at testing the defense on an adaptive adver-
sarial attacks, following the recommendations in [169]. An adaptive attack is
an attack that is specifically aimed at breaking a given defense method. In
order to build a suitable adaptive attack for this defense method, an approxi-
mate mass term is included in the loss so that the objective of the attacker is
at the same time to fool the model while minimizing the approximate mass
of the sample in order to make it undetectable.

To realize this attack, the APGD-CE attack from the AutoAttack library is
modified to include the approximate mass of the model to the loss.

The results of the experiment can be found in table 4.4. The accuracy of
both models here benefit from a huge boost compared to the previous ex-
periment. This might be evidence that the objective of finding a sample that

125

is hard to detect as adversarial is contradictory to the objective of finding a
sample that is hard to find, thus producing bad quality adversarial samples.

α Dataset Attack Accuracy2 MNIST APGD adaptive 0.6190 MNIST APGD adaptive 0.331
Table 4.4 – Results on on the full defense against an adaptive attack forthe penalized version (α = 2) and the naive version (α = 0).

4.7 . Conclusion of this chapter

This chapter introduced two uses of the score ∇x log p(x) in adversarial
defense. The contributions of this section are as follow :

1. I confirmed the sensitivity of the approximate mass to adversarial at-
tacks and therefore to covariate shifts.

2. Results in adversarial detection with the approximate mass show that
the metric is particularly suitable for detecting adversarial samples.

3. I also demonstrated the use of Langevin sampling methods in adversa-
rial sample restoration with the addition of a projection step.

4. I found that producing hard to detect adversarial samplesmaybe contra-
dictory with the objective of finding a good adversarial samples that
fools the classifier.

The rationale behind the use of the approximate mass in adversarial de-
tection is that, from the results in chapter 3, the approximatemass being sen-
sitive to OOD samples (covariate and semantic shifts) but not as much to se-
mantic shifts, the model might perform well on covariate shifts.

On the other hand, the use of Langevin sampling to restore corrupted data
is not new and has been explored in many different ways in the scientific lite-
rature, not only in adversarial defense but also in denoising diffusion models
[59] for example. The advantage of Langevin sampling is that it samples data
that asymptotically belongs to the distribution used for the sampling. Howe-
ver, the estimation log pθ(x) of the log-likelihood log p(x) is flawed. Therefore,
sampling from pθ would not guarantee having a sample from p. Nonetheless,
the classifier is only familiar with training data, that is to say the very same
data used to estimate pθ. In other words, it is sufficient to sample from the
estimate pθ in order to have a satisfying sample for the classifier. My contribu-
tion came by noticing that most methods using Langevin sampling for image
reconstruction suffer from a problem that the sample is not realistic or close

126

to the original sample. Some fixes have been introduced but none of them
uses the a priori information that the corrupted sample is in the vicinity of the
original sample, or at least a sample that would be handled correctly by the
classifier.

Future research based on these ideas may study the implementation of a
Langevin sampling procedure in the latent space. Indeed, the algorithm may
be simplified by avoiding to compute many forward passes to compute the
log-likelihood of input data and backpropagation passes to compute the score
∇x log pθ(x). Instead, performing the Langevin sampling in the latent space,
by mapping the input once to the latent space and then computing only the
gradient of the log-likelihood in the latent spacemight drastically reduce com-
putational costs. Indeed, the latent space is, in general, parameterized by a
normal distribution, therefore the gradient of the log-likelihood (the score) is
easily tractable as an analytic form can be derived for the score, therefore
sparing computations with a backpropagation algorithm.

More experiments will be conducted on other datasets, specifically the
CIFAR-10 dataset [80] and the CIFAR-100 dataset [80] to cover other data dis-
tributions (different labels spaces and features).

Further analysis will also be performed on the integration of the defense
technique introduced here with adversarial training to see how the defense
described in this chapter further fits with other defense techniques as one
would intuitively think that the combination of several defenses benefits the
model even more. The idea would be to train the model with the approxi-
mate mass penalization as well as adversarial training where the model is fed
adversarial data. Also, a comparison between the model and other defense
models will be useful, especially in detection, as the experiments shown here
can be seen as proof of concept of the defense method.

127

5 - Conclusion and future perspectives

The problem of the robustness of neural networks can be defined in seve-
ral ways. It is mostly dependent on the type of distribution shift on the input
data we aim to characterize. The problem of robustness in classifiers can be
assimilated to error detection and error correction in coding theory. These
tasks amount to finding errors in a code sent in a noisy canal and then res-
tore the original code from the deteriorated one. In this manuscript, we co-
vered two subfields of AI that relate to these issues, namely OOD detection
and adversarial machine learning. In the case of OOD detection, the problem
was assimilated in this thesis to error detection while adversarial machine
learning was tackled both from the point of view of error detection and cor-
rection. Both tasks are crucial in order to deploy models in an autonomous
way.

In this thesis, I studied the use of generative models, specifically norma-
lizing flows, because of their flexibility as they can be used in an unsupervi-
sed and a supervised context, to solve these problems of robustness. Intui-
tively, normalizing flows were a good choice as their tractable log-likelihood
would make a good measure for detecting and restoring data. However, we
saw that, because of entropic issues associated with the likelihood, this me-
tric might not be adapted in every cases. Instead, I decided to cover the tasks
described above with a new metric, called the approximate mass, argued to
present better behavior in OOD detection. However, my experiments showed
that the approximate mass behaves correctly at the beginning of training but
ends up overfitting by the end of training on tractable likelihood models. This
issue means that OOD detection cannot be performed the same way as for
another model like an energy-based model. In order to fix this issue, I chan-
ged the training of normalizing flows by adding to their training objective a
term proportional to the approximate mass. This training objective success-
fully makes themodel adopt a consistent behavior during training and avoids
this overfitting. Moreover, the results obtained in my benchmarks show that
the approximate mass is well adapted for OOD detection, even beating state-
of-the-art models on standard benchmarks. I tested my approach with a new
methodological approach that took into account the balance in data classes,
the metrics to measure the quality of OOD detection as well as the number
of parameters of the models I compared my model to. This level of detail is
rarely given attention in previous paper in the domain. I further showed that
this metric had some limitations on other typed of distributional shifts than
the types encountered in OOD detection. More specifically, the approximate
mass might be adapted to mostly detect covariate shifts instead of semantic
shifts.

129

In the context of adversarial machine learning, I decided to use a DIGLM
model as a classifier, which is an architecture that relies on a normalizing flow
as a feature extractor. The idea this timewas to integrate both error detection
and correction in one model. Therefore, I decided to explore the use of the
approximate mass in the detection of adversarial attacks and their restora-
tion. This part also aimed at testing the hypothesis that the approximatemass
might be mostly sensitive to covariate shifts. My experiments showed that
the approximate mass allows the detection of such samples. Furthermore,
the use of the approximate mass can be extended to restore adversarial data
through Langevin sampling. Some a priori information can also be added to
the Langevin sampling procedure by adding a projection step which gives a
better aspect to the restored images than with naive Langevin sampling.

These results show that the approximate mass is a versatile metric as it
allows for the detection and the restoration of data. The score, which is the
gradient of the log-likelihood ∇x log p(x), is a quantity that may embed a lot
of information about the data distribution. It may be related to other infor-
mation theoretic and information geometric quantities such as the Fisher in-
formation 1.

Future works on the double backpropagation loss introduced in chapter
3 may improve computational efficiency by drawing ideas from [113]. The ap-
proximate mass as a regularization termmay also be extended to supervised
learning where the log-likelihood is replaced by the log-posterior log p(y|x) of
a DIGLM [1] model. Some theoretical improvements may be found in analy-
zing the approximate mass with information geometry, measure theory by
assimilating the approximate mass to a Wasserstein distance or even diffe-
rential equations.

Future research based on the approach introduced in chapter 4 may ex-
plore the Langevin sampling procedure in the latent space to simplify many
forward and backward passes. Instead, performing the Langevin sampling in
the latent space, by mapping the input once to the latent space and then
computing only the gradient of the log-likelihood in the latent space might
drastically reduce computational costs. Indeed, the latent space is, in gene-
ral, parameterized by a normal distribution, therefore the gradient of the log-
likelihood (the score) is easily tractable as an analytic form can be derived for
the score, therefore sparing computations with a backpropagation algorithm.
Some other experiments will be performed to assess the improvements ad-
ded by the method introduced in 4, such as an ablation study on the addition
of the projection step after the Langevin sampling, the integration of the me-
thod with adversarial training. Finally, some method to distinguish between
OOD data and adversarial data with the approximate mass should be studied

1. Defined by the gradient ∇θ log pθ(x). It measures the amount of informationthat an input (modeled by a random variable) carries about the parameter θ.
130

in order for the model to be completely autonomous.
Theworks in chapter 4 canbe extended to the idea ofmemory-augmented

models introduced in section 2.4. The Langevin restoration technique intro-
duced in chapter 4 can be seen as an associative memory process here the
model uses a probabilistic model to find a similar pattern to the input. The
approximate mass detection on the other hand is an error detection mecha-
nism. Thus the contributions covered in chapters 3 and 4 perform a robust
encoding of a data distribution (instead of individual patterns) to implement
a robust error detection and correction system.

Furthermore, performing memory queries directly in the latent space of a
model may increase the capacity of suchmodels and add some desirable pro-
perties such as associativity whichmay help bridge the gap between symbolic
AI and deep learning. This would allow designing neural models in a more in-
terpretableway, for example by adding compositionality tomodels, where the
symbols manipulated by the model. Moving the external memory module to
the "computing unit" (the equivalent of the neural controller) is inspired by
current trends in embedded AI where some embedded systems now move
computations directly inside the memory (in-memory computing) instead of
relying on the traditional Von Neumann architecture.

Finally, modern debates around the opposition between energy-based
models and contrastive learning approaches 2 seem toopposeboth approaches.
Here, the use of likelihood-based models may help bridging the gap between
bothmethods as the likelihood can be assimilated to an energymeasure with
the relation E = − log p(x) − logZ. Furthermore, the likelihood and the ap-
proximatemass are natural metrics for measuring the similarity between two
objects.

2. A training method where two modalities (e.g.. : an image and a text associatedto the image) are used to train a latent space. If both modalities are related (positivepair), their latent representation are brought closer in the representation space. Ifthey are not related (negative pair), their distance is maximized.
131

132

Bibliographie

[1] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and
Balaji Lakshminarayanan. Hybrid Models with Deep and Invertible
Features. arXiv :1902.02767 [cs, stat], May 2019.

[2] Li Deng. The MNIST Database of Handwritten Digit Images for Machine
Learning Research [Best of the Web]. IEEE Signal Processing Magazine,
29(6) :141–142, November 2012.

[3] Sami Tibshirani and Harry Friedman. Valerie and Patrick Hastie.
[4] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering

for high dimensional data : A review. ACM SIGKDD Explorations
Newsletter, 6(1) :90–105, June 2004.

[5] G. Palm. On associative memory. Biological Cybernetics, 36(1) :19–31,
February 1980.

[6] Gokmen Zararsiz, Ferhan Elmali, and Ahmet Ozturk. Bagging Support
Vector Machines for Leukemia Classification. 9(6), 2012.

[7] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal.
Reconciling modern machine learning practice and the bias-variance
trade-off. Proceedings of the National Academy of Sciences,
116(32) :15849–15854, August 2019.

[8] A. M. TURING. I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind,
LIX(236) :433–460, October 1950.

[9] Yoshihiro Maruyama. Symbolic and Statistical Theories of Cognition :
Towards Integrated Artificial Intelligence. In Loek Cleophas and Mieke
Massink, editors, Software Engineering and Formal Methods. SEFM 2020
Collocated Workshops, volume 12524, pages 129–146. Springer
International Publishing, Cham, 2021.

[10] A. Newell and H. Simon. The logic theory machine–A complex
information processing system. IRE Transactions on Information Theory,
2(3) :61–79, September 1956.

[11] Brian P. McLaughlin. Computationalism, Connectionism, and the
Philosophy of Mind. In Luciano Floridi, editor, The Blackwell Guide to the
Philosophy of Computing and Information, pages 135–151. Wiley, 1
edition, January 2004.

[12] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković.
Geometric Deep Learning : Grids, Groups, Graphs, Geodesics, and
Gauges, May 2021.

133

[13] Henry W. Lin, Max Tegmark, and David Rolnick. Why does deep and
cheap learning work so well ? Journal of Statistical Physics,
168(6) :1223–1247, September 2017.

[14] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do
tree-based models still outperform deep learning on typical tabular
data?

[15] Dominic Masters and Carlo Luschi. Revisiting Small Batch Training for
Deep Neural Networks, April 2018.

[16] Diederik P. Kingma and Jimmy Ba. Adam : A Method for Stochastic
Optimization, January 2017.

[17] Ilya Loshchilov and Frank Hutter. SGDR : Stochastic Gradient Descent
with Warm Restarts, May 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep
into Rectifiers : Surpassing Human-Level Performance on ImageNet
Classification. In 2015 IEEE International Conference on Computer Vision
(ICCV), pages 1026–1034, Santiago, Chile, December 2015. IEEE.

[19] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics,
pages 249–256. JMLR Workshop and Conference Proceedings, March
2010.

[20] Seppo Linnainmaa. Taylor expansion of the accumulated rounding
error. BIT, 16(2) :146–160, June 1976.

[21] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning representations by back-propagating errors. Nature,
323(6088) :533–536, October 1986.

[22] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert
Müller. Efficient BackProp. In Grégoire Montavon, Geneviève B. Orr,
and Klaus-Robert Müller, editors, Neural Networks : Tricks of the Trade :
Second Edition, Lecture Notes in Computer Science, pages 9–48.
Springer, Berlin, Heidelberg, 2012.

[23] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
and Jeffrey Mark Siskind. Automatic Differentiation in Machine
Learning : A Survey. Journal of Machine Learning Research, 18(153) :1–43,
2018.

[24] Kunihiko Fukushima. Cognitron : A self-organizing multilayered neural
network. Biological Cybernetics, 20(3) :121–136, September 1975.

[25] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th International

134

Conference on International Conference on Machine Learning, ICML’10,
pages 807–814, Madison, WI, USA, June 2010. Omnipress.

[26] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive
into Deep Learning, February 2023.

[27] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier
Nonlinearities Improve Neural Network Acoustic Models.

[28] Marco Gori, Alessandro Betti, and Stefano Melacci. Chapter 2 -
Learning principles. In Marco Gori, Alessandro Betti, and Stefano
Melacci, editors, Machine Learning (Second Edition), pages 53–111.
Morgan Kaufmann, January 2024.

[29] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural Networks,
2(5) :359–366, January 1989.

[30] Balázs Csáji. Approximation with Artificial Neural Networks. PhD thesis,
June 2001.

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In Advances in
Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012.

[32] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
ImageNet : A large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 248–255,
June 2009.

[33] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse
Rectifier Neural Networks. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pages 315–323. JMLR
Workshop and Conference Proceedings, June 2011.

[34] Sergey Ioffe and Christian Szegedy. Batch Normalization : Accelerating
Deep Network Training by Reducing Internal Covariate Shift, March
2015.

[35] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber.
Training Very Deep Networks, November 2015.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is
All you Need. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

135

[38] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An Image is Worth 16x16 Words : Transformers for Image
Recognition at Scale. In International Conference on Learning
Representations, October 2020.

[39] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
Machine Translation by Jointly Learning to Align and Translate, May
2016.

[40] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes,
May 2014.

[41] Nathalie Japkowicz, Stephen José Hanson, and Mark A. Gluck.
Nonlinear Autoassociation Is Not Equivalent to PCA. Neural
Computation, 12(3) :531–545, March 2000.

[42] Esteban G. Tabak and Eric Vanden-Eijnden. Density estimation by dual
ascent of the log-likelihood. Communications in Mathematical Sciences,
8(1) :217–233, 2010.

[43] Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference
with Normalizing Flows.

[44] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir
Mohamed, and Balaji Lakshminarayanan. Normalizing Flows for
Probabilistic Modeling and Inference. arXiv :1912.02762 [cs, stat], April
2021.

[45] Keegan Kelly, Lorena Piedras, Sukrit Rao, and David Roth. Variations
and Relaxations of Normalizing Flows, September 2023.

[46] Bálint Máté, Samuel Klein, Tobias Golling, and François Fleuret.
Flowification : Everything is a normalizing flow. In Advances in Neural
Information Processing Systems, May 2022.

[47] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density
estimation using Real NVP. arXiv :1605.08803 [cs, stat], February 2017.

[48] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Why
Normalizing Flows Fail to Detect Out-of-Distribution Data.
arXiv :2006.08545 [cs, stat], June 2020.

[49] Diederik P. Kingma and Prafulla Dhariwal. Glow : Generative Flow with
Invertible 1x1 Convolutions. arXiv :1807.03039 [cs, stat], July 2018.

[50] Will Grathwohl, Ricky T Q Chen, Jesse Bettencourt, Ilya Sutskever, and
David Duvenaud. FFJORD : FREE-FORM CONTINUOUS DYNAMICS FOR
SCALABLE REVERSIBLE GENERATIVE MODELS. 2019.

[51] J A Nelder and R W MWedderburn. Generalized Linear Models. 2022.
136

[52] Yang Song and Stefano Ermon. Generative Modeling by Estimating
Gradients of the Data Distribution. arXiv :1907.05600 [cs, stat], October
2020.

[53] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar,
Stefano Ermon, and Ben Poole. SCORE-BASED GENERATIVE
MODELING THROUGH STOCHASTIC DIFFERENTIAL EQUATIONS. 2021.

[54] Albert Einstein - On the Movement of Small Particles Suspended in.
https ://einstein.academicwebsite.com/publications/7-on-the-
movement-of-small-particles-suspended-in-stationary-liquids-
required-by-the-molecular-kinetic-theory-of-heat.

[55] Yee Whye Teh, Max Welling, Simon Osindero, and Geoffrey E. Hinton.
Energy-Based Models for Sparse Overcomplete Representations.
Journal of Machine Learning Research, 4(Dec) :1235–1260, 2003.

[56] Paul Smolensky. Information Processing in Dynamical Systems :
Foundations of Harmony Theory.

[57] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of
Data with Neural Networks. Science, 313(5786) :504–507, July 2006.

[58] Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya
Ganguli. Deep Unsupervised Learning using Nonequilibrium
Thermodynamics.

[59] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion
Probabilistic Models. In Advances in Neural Information Processing
Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[60] Calvin Luo. Understanding Diffusion Models : A Unified Perspective,
August 2022.

[61] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative Adversarial Nets. In Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc., 2014.

[62] Farzan Farnia and Asuman Ozdaglar. Do GANs always have Nash
equilibria? In Proceedings of the 37th International Conference on
Machine Learning, pages 3029–3039. PMLR, November 2020.

[63] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, Xi Chen, and Xi Chen. Improved Techniques for Training
GANs. In Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

[64] Pentti Kanerva. Hyperdimensional Computing : An Introduction to
Computing in Distributed Representation with High-Dimensional
Random Vectors. Cognitive Computation, 1(2) :139–159, June 2009.

137

[65] Denis Kleyko, Dmitri Rachkovskij, Evgeny Osipov, and Abbas Rahimi. A
Survey on Hyperdimensional Computing aka Vector Symbolic
Architectures, Part I : Models and Data Transformations. ACM
Computing Surveys, May 2022.

[66] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
Estimation of Word Representations in Vector Space, September 2013.

[67] Tony F. Wu, Haitong Li, Ping-Chen Huang, Abbas Rahimi, Gage Hills,
Bryce Hodson, William Hwang, Jan M. Rabaey, H.-S. Philip Wong,
Max M. Shulaker, and Subhasish Mitra. Hyperdimensional Computing
Exploiting Carbon Nanotube FETs, Resistive RAM, and Their Monolithic
3D Integration. IEEE Journal of Solid-State Circuits, 53(11) :3183–3196,
November 2018.

[68] Sparse Distributed Memory.
https ://mitpress.mit.edu/9780262514699/sparse-distributed-memory/.

[69] J J Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy
of Sciences, 79(8) :2554–2558, April 1982.

[70] R. G. Morris. D.O. Hebb : The Organization of Behavior, Wiley : New
York ; 1949. Brain Research Bulletin, 50(5-6) :437, 1999.

[71] Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl,
Michael Widrich, Thomas Adler, Lukas Gruber, Markus Holzleitner,
Milena Pavlović, Geir Kjetil Sandve, Victor Greiff, David Kreil, Michael
Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp
Hochreiter. Hopfield Networks is All You Need, April 2021.

[72] Dmitry Krotov and John J. Hopfield. Dense Associative Memory for
Pattern Recognition. In Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

[73] On a Model of Associative Memory with Huge Storage Capacity |
SpringerLink.
https ://link.springer.com/article/10.1007/s10955-017-1806-y.

[74] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines,
December 2014.

[75] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory.
Neural computation, 9 :1735–80, December 1997.

[76] Yan Wu, Greg Wayne, Alex Graves, and Timothy Lillicrap. THE
KANERVA MACHINE : A GENERATIVE DISTRIBUTED MEMORY. 2018.

[77] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo
Danihelka, Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo,
Edward Grefenstette, Tiago Ramalho, John Agapiou,

138

Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg
Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil
Blunsom, Koray Kavukcuoglu, and Demis Hassabis. Hybrid computing
using a neural network with dynamic external memory. Nature,
538(7626) :471–476, October 2016.

[78] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski.
Vision Transformers Need Registers, September 2023.

[79] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized
Out-of-Distribution Detection : A Survey. arXiv :2110.11334 [cs], October
2021.

[80] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny
Images. page 60.

[81] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali,
Jongseok Lee, Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph
Triebel, Peter Jung, Ribana Roscher, Muhammad Shahzad, Wen Yang,
Richard Bamler, and Xiao Xiang Zhu. A Survey of Uncertainty in Deep
Neural Networks. arXiv :2107.03342 [cs, stat], January 2022.

[82] Dan Hendrycks and Kevin Gimpel. A Baseline for Detecting
Misclassified and Out-of-Distribution Examples in Neural Networks. In
International Conference on Learning Representations, November 2016.

[83] Joan Bruna, Christian Szegedy, Ilya Sutskever, Ian Goodfellow,
Wojciech Zaremba, Rob Fergus, and Dumitru Erhan. Intriguing
properties of neural networks. December 2013.

[84] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are
easily fooled : High confidence predictions for unrecognizable images.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 427–436, Boston, MA, USA, June 2015. IEEE.

[85] Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David
Duvenaud, Mohammad Norouzi, and Kevin Swersky. Your Classifier is
Secretly an Energy Based Model and You Should Treat it Like One.
arXiv :1912.03263 [cs, stat], September 2020.

[86] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On
Calibration of Modern Neural Networks. In Proceedings of the 34th
International Conference on Machine Learning, pages 1321–1330. PMLR,
July 2017.

[87] Yufeng Zhang, Jialu Pan, Wanwei Liu, Zhenbang Chen, Ji Wang, Zhiming
Liu, Kenli Li, and Hongmei Wei. Kullback-Leibler Divergence-Based
Out-of-Distribution Detection with Flow-Based Generative Models,
March 2023.

139

[88] Xixi Liu, Yaroslava Lochman, and Christopher Zach. GEN : Pushing the
Limits of Softmax-Based Out-of-Distribution Detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 23946–23955, 2023.

[89] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and
Balaji Lakshminarayanan. Do Deep Generative Models Know What
They Don’t Know? arXiv :1810.09136 [cs, stat], February 2019.

[90] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Ng. Reading Digits in Natural Images with Unsupervised
Feature Learning. NIPS, January 2011.

[91] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing The Reliability of
Out-of-distribution Image Detection in Neural Networks.
arXiv :1706.02690 [cs, stat], August 2020.

[92] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and Harnessing Adversarial Examples, March 2015.

[93] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized
ODIN : Detecting Out-of-Distribution Image Without Learning From
Out-of-Distribution Data. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10948–10957, Seattle, WA,
USA, June 2020. IEEE.

[94] Shiyu Liang, R Srikant, and Yixuan Li. ENHANCING THE RELIABILITY OF
OUT-OF-DISTRIBUTION IMAGE DETECTION IN NEURAL NETWORKS.
2018.

[95] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A Simple Unified
Framework for Detecting Out-of-Distribution Samples and Adversarial
Attacks. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

[96] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B.
Gardner. Detecting Adversarial Samples from Artifacts, November
2017.

[97] Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi
Wijewickrema, Grant Schoenebeck, Dawn Song, Michael E. Houle, and
James Bailey. Characterizing Adversarial Subspaces Using Local
Intrinsic Dimensionality, March 2018.

[98] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based
Out-of-distribution Detection. In Advances in Neural Information
Processing Systems, volume 33, pages 21464–21475. Curran Associates,
Inc., 2020.

[99] Rui Huang, Andrew Geng, and Yixuan Li. On the Importance of
Gradients for Detecting Distributional Shifts in the Wild. In Advances in

140

Neural Information Processing Systems, volume 34, pages 677–689.
Curran Associates, Inc., 2021.

[100] Gukyeong Kwon, Mohit Prabhushankar, Dogancan Temel, and
Ghassan AlRegib. Backpropagated Gradient Representations for
Anomaly Detection. In Andrea Vedaldi, Horst Bischof, Thomas Brox,
and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, volume
12366, pages 206–226. Springer International Publishing, Cham, 2020.

[101] Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. OCGAN :
One-Class Novelty Detection Using GANs With Constrained Latent
Representations. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2898–2906, 2019.

[102] Andrew P. Bradley. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition,
30(7) :1145–1159, July 1997.

[103] Takaya Saito and Marc Rehmsmeier. The Precision-Recall Plot Is More
Informative than the ROC Plot When Evaluating Binary Classifiers on
Imbalanced Datasets. PLoS ONE, 10(3) :e0118432, March 2015.

[104] Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding,
Wenxuan Peng, Haoqi Wang, Guangyao Chen, Bo Li, Yiyou Sun,
Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Dan Hendrycks, Yixuan Li,
and Ziwei Liu. OpenOOD : Benchmarking Generalized
Out-of-Distribution Detection. Advances in Neural Information
Processing Systems, 35 :32598–32611, December 2022.

[105] Konstantin Kirchheim, Marco Filax, and Frank Ortmeier.
PyTorch-OOD : A Library for Out-of-Distribution Detection Based on
PyTorch. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4351–4360, 2022.

[106] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji
Lakshminarayanan. Detecting Out-of-Distribution Inputs to Deep
Generative Models Using Typicality. page 15.

[107] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST : A Novel
Image Dataset for Benchmarking Machine Learning Algorithms.
arXiv :1708.07747 [cs, stat], September 2017.

[108] Takeru Miyato, Shin-Ichi Maeda, Masanori Koyama, and Shin Ishii.
Virtual Adversarial Training : A Regularization Method for Supervised
and Semi-Supervised Learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 41(8) :1979–1993, August 2019.

[109] Xiaojin Zhu and Zoubin Ghahramani. Learning from Labeled and
Unlabeled Data with Label Propagation.

141

[110] Anne-Marie Lyne, Mark Girolami, Yves Atchadé, Heiko Strathmann,
and Daniel Simpson. On Russian Roulette Estimates for Bayesian
Inference with Doubly-Intractable Likelihoods. Statistical Science,
30(4) :443–467, November 2015.

[111] Anthony L. Caterini and Gabriel Loaiza-Ganem. Entropic Issues in
Likelihood-Based OOD Detection. In I (Still) Can’t Believe It’s Not Better !
Workshop at NeurIPS 2021, pages 21–26. PMLR, February 2022.

[112] H. Drucker and Y. Le Cun. Improving generalization performance using
double backpropagation. IEEE Transactions on Neural Networks,
3(6) :991–997, November 1992.

[113] Christian Etmann. A Closer Look at Double Backpropagation, June 2019.
[114] Yisheng Song, Ting Wang, Puyu Cai, Subrota K. Mondal, and

Jyoti Prakash Sahoo. A Comprehensive Survey of Few-shot Learning :
Evolution, Applications, Challenges, and Opportunities. ACM Computing
Surveys, 55(13s) :271 :1–271 :40, July 2023.

[115] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos
Storkey. Meta-Learning in Neural Networks : A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
44(09) :5149–5169, September 2022.

[116] Kai He, Nan Pu, Mingrui Lao, and Michael S. Lew. Few-shot and
meta-learning methods for image understanding : A survey.
International Journal of Multimedia Information Retrieval, 12(2) :14, June
2023.

[117] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra,
and Timothy Lillicrap. Meta-Learning with Memory-Augmented Neural
Networks. In Proceedings of The 33rd International Conference on
Machine Learning, pages 1842–1850. PMLR, June 2016.

[118] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical Networks
for Few-shot Learning, June 2017.

[119] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using
t-SNE. Journal of Machine Learning Research, 9(86) :2579–2605, 2008.

[120] Samy Chali, Inna Kucher, Marc Duranton, and Jacques-Olivier Klein.
Improving Normalizing Flows With the Approximate Mass for
Out-of-Distribution Detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 750–758, 2023.

[121] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb,
Kazuaki Yamamoto, and David Ha. Deep Learning for Classical
Japanese Literature, 9999.

[122] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik.
EMNIST : An extension of MNIST to handwritten letters, March 2017.

142

[123] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed,
and Andrea Vedaldi. Describing Textures in the Wild. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pages
3606–3613, June 2014.

[124] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel.
The German Traffic Sign Recognition Benchmark : A multi-class
classification competition. In The 2011 International Joint Conference on
Neural Networks, pages 1453–1460, July 2011.

[125] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio
Torralba. Places : A 10 Million Image Database for Scene Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(6) :1452–1464, June 2018.

[126] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex
Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. The
iNaturalist Species Classification and Detection Dataset. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8769–8778, Salt Lake City, UT, June 2018. IEEE.

[127] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties
of neural networks, February 2014.

[128] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going Deeper With Convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[129] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer
Vision, 115(3) :211–252, December 2015.

[130] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
Estimation of Word Representations in Vector Space. January 2013.

[131] Yang Yuan. On the Power of Foundation Models. In Proceedings of the
40th International Conference on Machine Learning, pages 40519–40530.
PMLR, July 2023.

[132] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,
and Björn Ommer. High-Resolution Image Synthesis With Latent
Diffusion Models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[133] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D.
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish

143

Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language Models are Few-Shot Learners. Advances in Neural
Information Processing Systems, 33 :1877–1901, 2020.

[134] Futa Waseda, Sosuke Nishikawa, Trung-Nghia Le, Huy H. Nguyen, and
Isao Echizen. Closer Look at the Transferability of Adversarial
Examples : How They Fool Different Models Differently. In 2023
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pages 1360–1368, Waikoloa, HI, USA, January 2023. IEEE.

[135] Shafi Goldwasser, Michael P. Kim, Vinod Vaikuntanathan, and
Or Zamir. Planting Undetectable Backdoors in Machine Learning
Models : [Extended Abstract]. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pages 931–942, October 2022.

[136] Bolun Wang. Improving and Securing Machine Learning Systems. 2018.
[137] Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. Adversarial Attacks

and Defenses in Deep Learning. Engineering, 6(3) :346–360, March
2020.

[138] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free attacks. In
Proceedings of the 37th International Conference on Machine Learning,
pages 2206–2216. PMLR, November 2020.

[139] Francesco Croce and Matthias Hein. Minimally distorted Adversarial
Examples with a Fast Adaptive Boundary Attack. In Proceedings of the
37th International Conference on Machine Learning, pages 2196–2205.
PMLR, November 2020.

[140] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and
Matthias Hein. Square Attack : A Query-Efficient Black-Box Adversarial
Attack via Random Search. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020,
Lecture Notes in Computer Science, pages 484–501, Cham, 2020.
Springer International Publishing.

[141] Jiakai Wang. Adversarial Examples in Physical World. In Twenty-Ninth
International Joint Conference on Artificial Intelligence, volume 5, pages
4925–4926, August 2021.

[142] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards Deep Learning Models Resistant to
Adversarial Attacks, September 2019.

144

[143] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard. DeepFool : A Simple and Accurate Method to Fool Deep
Neural Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2574–2582, 2016.

[144] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner,
and Aleksander Madry. Robustness May Be at Odds with Accuracy. In
International Conference on Learning Representations, September 2018.

[145] Florian Tramer. Detecting Adversarial Examples Is (Nearly) As Hard As
Classifying Them. In Proceedings of the 39th International Conference on
Machine Learning, pages 21692–21702. PMLR, June 2022.

[146] Peter Lorenz, Margret Keuper, and Janis Keuper. Unfolding Local
Growth Rate Estimates for (Almost) Perfect Adversarial Detection,
December 2022.

[147] Chen Ma, Chenxu Zhao, Hailin Shi, Li Chen, Junhai Yong, and Dan Zeng.
MetaAdvDet : Towards Robust Detection of Evolving Adversarial
Attacks. In Proceedings of the 27th ACM International Conference on
Multimedia, MM ’19, pages 692–701, New York, NY, USA, October 2019.
Association for Computing Machinery.

[148] Ruize Gao, Feng Liu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu,
and Masashi Sugiyama. Maximum Mean Discrepancy Test is Aware of
Adversarial Attacks. In Proceedings of the 38th International Conference
on Machine Learning, pages 3564–3575. PMLR, July 2021.

[149] Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard,
Michael E. Houle, Ken-ichi Kawarabayashi, and Michael Nett.
Estimating Local Intrinsic Dimensionality. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’15, pages 29–38, New York, NY, USA, August 2015.
Association for Computing Machinery.

[150] Michael E. Houle. Local Intrinsic Dimensionality I : An
Extreme-Value-Theoretic Foundation for Similarity Applications. In
Christian Beecks, Felix Borutta, Peer Kröger, and Thomas Seidl, editors,
Similarity Search and Applications, Lecture Notes in Computer Science,
pages 64–79, Cham, 2017. Springer International Publishing.

[151] Sachin Ravi and Hugo Larochelle. Optimization as a Model for
Few-Shot Learning. In International Conference on Learning
Representations, November 2016.

[152] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard
Schölkopf, and Alexander Smola. A Kernel Two-Sample Test. Journal of
Machine Learning Research, 13(25) :723–773, 2012.

145

[153] Nicholas Carlini and David Wagner. Adversarial Examples Are Not
Easily Detected : Bypassing Ten Detection Methods. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security, AISec ’17,
pages 3–14, New York, NY, USA, November 2017. Association for
Computing Machinery.

[154] C. F. J. Wu. Jackknife, Bootstrap and Other Resampling Methods in
Regression Analysis. The Annals of Statistics, 14(4) :1261–1295, December
1986.

[155] Mitch Hill, Jonathan Mitchell, and Song-Chun Zhu. STOCHASTIC
SECURITY : ADVERSARIAL DEFENSE USING LONG-RUN DYNAMICS OF
ENERGY-BASED MODELS. 2021.

[156] Vignesh Srinivasan, Csaba Rohrer, Arturo Marban, Klaus-Robert
Müller, Wojciech Samek, and Shinichi Nakajima. Robustifying models
against adversarial attacks by Langevin dynamics. Neural Networks,
137 :1–17, May 2021.

[157] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent.
Generalized Denoising Auto-Encoders as Generative Models. In
Advances in Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013.

[158] Guillaume Alain and Yoshua Bengio. What Regularized Auto-Encoders
Learn from the Data-Generating Distribution.

[159] Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic
Non-Autoregressive Neural Sequence Modeling by Iterative
Refinement. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1173–1182, Brussels, Belgium,
October 2018. Association for Computational Linguistics.

[160] Eric P. Lehman, Rahul G. Krishnan, Xiaopeng Zhao, Roger G. Mark, and
Li-wei H. Lehman. Representation Learning Approaches to Detect
False Arrhythmia Alarms from ECG Dynamics. In Proceedings of the 3rd
Machine Learning for Healthcare Conference, pages 571–586. PMLR,
November 2018.

[161] Tianjin Huang, Vlado Menkovski, Yulong Pei, and Mykola Pechenizkiy.
Bridging the Performance Gap between FGSM and PGD Adversarial
Training, October 2022.

[162] Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu.
On the Anatomy of MCMC-Based Maximum Likelihood Learning of
Energy-Based Models. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(04) :5272–5280, April 2020.

[163] Hoki Kim. Torchattacks : A PyTorch Repository for Adversarial Attacks,
February 2021.

146

[164] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow,
Reuben Feinman, Alexey Kurakin, Cihang Xie, Yash Sharma, Tom
Brown, Aurko Roy, Alexander Matyasko, Vahid Behzadan, Karen
Hambardzumyan, Zhishuai Zhang, Yi-Lin Juang, Zhi Li, Ryan Sheatsley,
Abhibhav Garg, Jonathan Uesato, Willi Gierke, Yinpeng Dong, David
Berthelot, Paul Hendricks, Jonas Rauber, Rujun Long, and Patrick
McDaniel. Technical Report on the CleverHans v2.1.0 Adversarial
Examples Library, June 2018.

[165] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser,
Ambrish Rawat, Martin Wistuba, Valentina Zantedeschi, Nathalie
Baracaldo, Bryant Chen, Heiko Ludwig, Ian M. Molloy, and Ben
Edwards. Adversarial Robustness Toolbox v1.0.0, November 2019.

[166] Nicholas Carlini and David Wagner. Towards Evaluating the
Robustness of Neural Networks, March 2017.

[167] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated
Gradients Give a False Sense of Security : Circumventing Defenses to
Adversarial Examples, July 2018.

[168] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo
Debenedetti, Nicolas Flammarion, Mung Chiang, Prateek Mittal, and
Matthias Hein. RobustBench : A standardized adversarial robustness
benchmark, October 2021.

[169] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel,
Jonas Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and
Alexey Kurakin. On Evaluating Adversarial Robustness, February 2019.

147

	Glossary
	Goal of this work
	Context of the thesis
	Structure of the document

	Introduction
	History and overview of AI
	Symbolic AI and machine learning

	Background on machine learning and deep learning
	The learning problem
	Discussion and extension of the optimization process to deep learning
	Training stability, overfitting and regularization

	Types of neural network
	Multilayer Perceptron (MLP)
	Convolutional neural networks
	Transformers
	Variational autoencoder (VAE)
	Normalizing flows
	Score-based models
	Diffusion models
	Generative adversarial networks (GAN)

	Memory-augmented models and associative memories
	Hyperdimensional computing
	Hopfield networks
	Memory-augmented neural models

	Out-of-distribution detection
	The general problem of out-of-distribution detection
	Problems of naive approaches in out-of-distribution detection
	State-of-the-art
	ODIN
	Generalized ODIN
	Mahalanobis-distance
	Energy-based
	GradNorm
	GradCon
	OCGAN

	Experimental methodology
	Definition of the problem and the choice of dataset
	Evaluation measures and experimental precautions
	Frameworks

	The approximate mass
	Contributions: Regularization of the approximate mass
	First contribution: regularizing the likelihood with the approximate mass
	Second idea: regularizing the likelihood with a VAT-inspired loss
	Entropic issues with the likelihood for OOD detection: the likelihood is not appropriate
	Observation on the behavior of the approximate mass
	Fixing the overfitting of the approximate mass
	Results on OOD detection
	Results on class anomaly detection

	Conclusion of this chapter

	Adversarial defense
	Adversarial machine learning: introduction
	State-of-the-art: adversarial attacks
	State-of-the-art: adversarial defenses
	Adversarial detection
	Adversarial restoration

	Contributions
	Detecting adversarial samples
	Projecting reconstructed samples onto the neighborhood of the attacked sample

	Experimental methodology
	Choice of datasets
	Evaluation metrics
	Python frameworks

	Experiments
	Experiment: results in adversarial detection
	Experiment: results in classification
	Experiment: results for the full defense
	Experiment: results of the full defense with an adaptive attack

	Conclusion of this chapter

	Conclusion and future perspectives

