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Abstract
Mean Field methods have consistently been of interest to the scientific community due to their ca-

pacity to approximate a wide array of stochastic population systems. This methodology has proven
to be a cornerstone in understanding and predicting the behavior of large-scale, complex systems.
The key idea of the mean field approximation is to replace the complex stochastic behavior of systems
with a simpler deterministic counterpart. The approximation therefore assumes that individuals be-
come increasingly independent for large system sizes. The behavior of the system is thus obtained by
replacing individual interactions with the average state of individuals. Despite its longstanding ap-
plication and the advancements made in various fields, numerous questions and challenges remain
open.

In the scope of this thesis, we present our contributions and advancements for two general types
of population models (1) heterogeneous mean field models and (2) mean field models with a fast-
changing environment.

In the first part of the thesis, we focus on stochastic systems with heterogeneous components.
We consider two types of heterogeneity, individual-level diversity as well as graph-structured interac-
tions. For both cases, we provide accuracy bounds for the expected state of finite-sized systems. The
results are supported through practical examples, including cache replacement policies, supermar-
ket models, load balancing, and bike-sharing systems, highlighting their computational tractability
and precision. In the case of individual-level diversity, we further adapt the refined mean field idea
and show that the refined approximation significantly reduces the error and provides accurate pre-
dictions for small to moderate-sized systems.

In the second part of the thesis, we turn our focus to mean field approximation techniques for
stochastic systems with a coupled, fast-changing environment. By studying the ‘average’ mean field
approximation, we obtain accuracy bounds for the expected system state. Furthermore, we derive
a bias refinement term, which increases the accuracy of the approximation. Expanding on these
results, we extend the methodology to stochastic approximation with constant step size and state-
dependent Markovian noise. We show how to adapt the ideas to obtain accuracy results and a com-
putable bias extension.
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Résumé
Les méthodes de champ moyen permettent de construire des approximations de modèles aléa-

toires d’évolution de populations. Ces méthodes sont très utilisées pour comprendre et prédire
le comportement de systèmes complexes. L’idée clé de l’approximation de champ moyen est de
remplacer le comportement stochastique d’un système par un équivalent déterministe plus simple.
L’approximation consiste à considérer que, dans un système de grande taille, les dépendances directes
entre individus sont faibles. On obtient donc un modèle plus simple en considérant qu’un individu
interagît non pas avec d’autres individus mais avec une masse d’individus qui représente leur état
moyen. Dans de nombreuses applications, l’erreur de l’approximation champ moyen est en générale
très faible lorsque la population est grande. Bien qu’il existe de nombreux travaux théoriques four-
nissant des bornes d’erreurs, de nombreuses questions et défis restent ouverts.

Dans cette thèse, nous présentons nos contributions et avancées pour deux types de modèles de
populations: (1) les modèles de population hétérogènes et (2) les populations qui évoluent dans un
environnement qui change rapidement.

Dans la première partie de la thèse, nous nous concentrons sur les populations hétérogènes. Nous
considérons deux types d’hétérogénéité : la diversité au niveau des individus ainsi que les interactions
contraintes par des graphes. Pour les deux cas, nous fournissons des bornes d’erreur pour les pop-
ulations de taille finie. Ces résultats sont étayés par des exemples pratiques, comme des politiques
de remplacement de cache, d’équilibrage de charge et des systèmes de partage de vélos. Ceci mon-
tre la faisabilité pratique du calcul des approximations ainsi que leurs précisions. Dans le cas de la
diversité au niveau des individus, nous adaptons l’idée de champ moyen raffiné et démontrons que
l’approximation raffinée réduit considérablement l’erreur et fournit des prédictions précises pour des
systèmes de petite à moyenne taille.

Dans la seconde partie de la thèse, nous orientons notre attention vers les techniques
d’approximation champ moyen pour les systèmes stochastiques qui évoluent dans un environ-
nement à changement rapide. En étudiant l’approximation de champ moyen ’moyenne’, nous
obtenons des bornes précises sur la qualité de l’approximation. De plus, nous dérivons un terme
de raffinement de biais, qui augmente la précision de l’approximation. Ces résultats sont ensuite
étendus pour étudier des algorithmes d’approximation stochastique avec un pas constant et un bruit
Markovien dépendant de l’état. Nous montrons comment adapter les idées pour obtenir des bornes
d’erreur précises et calculer le biais asymptotique de l’approximation.
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1 Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Detailed Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Motivation
The study and understanding of stochastic systems which model real world phenomena is invalu-
able to predict, optimize and analyze environmental, public and economic effects. Examples include
the spread of diseases, the transmission of information in computer systems, the reaction of chem-
ical components, the processing of work in server centers or the behavior of bike sharing systems.
Take the case of a data center which provides services to customers, understanding the performance
of the system in terms of responsiveness and power consumption can have a critical impact on its
environmental and economic sustainability. In order to better understand and capture the behav-
ior of systems consisting of large numbers of interacting individuals (e.g. machines, objects, agents)
stochastic population models are often used to describe their dynamics. The core unit of the popula-
tion model is the individual. Each individual is described by a state, which it changes either indepen-
dently or by interaction with other individuals. While population models can be suitably applied in
many cases, their analysis often suffers from what is called the curse of dimensionality. The curse of
dimensionality is characterized by an exponentially increasing complexity cause by the large num-
ber of interacting individuals. This can make its direct study time and resource consuming, if not
prohibitive. Hence, it creates the need for approximation methods which strike a balance between
the reduction of complexity and the preservation of accuracy. The mean field approximation is one
such approach that has been proven universally useful to study the behavior of stochastic popula-
tion models. Its fundamental idea is to replace interactions between the individuals of the stochastic
system by interactions with the average state of individuals to obtain a deterministic description of
the dynamics. This replacement is justified since individuals become increasingly uncorrelated in
large system.

One of the striking aspects of the mean field approach is its capability to be adapted to different
contexts and models. Its general idea has been picked up and developed in a broad range of do-
mains such as game theory [80], biological neural networks [9, 98], artificial neural networks [84],
multi-agent reinforcement learning [112, 115], load balancing [45, 89], wireless network analysis [47]
to name a few. In this work, our focus will be on the application to pure jump Markov processes
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1 Introduction

which model interacting individuals such as density dependent population processes (DDPP) as in
the work of Kurtz [76]. A classical result for DDPPs is that, for an increasing number of individuals,
the trajectories of the stochastic system converge almost surely to the mean field approximation [17,
76]. To explain the accuracy of the approximation, the same studies show that the expected distance
between the stochastic system and the approximation is inversely proportional to the square root
of the number of individuals. Yet, this does not fully characterize the often faster diminishing er-
ror of the approximation, particularly when interested in expected state of the system. To study the
accuracy of the mean field approximation and the expected state of a stochastic population system,
we rely on a set of tools with Stein’s method being one of the most prominent. Stein’s method is
used to derive bounds on the distance between distributions such as for stationary distributions of
Markov processes [12, 102]. Lately, its application in the stochastic system context has seen a resur-
gence, initiated by the works [29, 31]. In [55, 74, 113, 114], the authors successfully apply the method
to bound the difference between the generators the stochastic population model and its mean field
approximation. A second building block of our results is the bias extension proposed by the authors
of [54, 59] from which the ‘refined’ mean field approximation is obtained. Loosely speaking, the re-
fined approximation is obtained by studying an expansion of the difference between the generators
of the stochastic process and the mean field approximation. Under sufficient regularity, this allows
to deduce computable correction terms which are system-size independent and significantly increase
the accuracy of the approximation. A similar approach has been studied in mathematical biology
which is know as system size expansion [62, 63, 109]. For the analysis of the mean field accuracy,
it is often assumed [17, 55, 88, 113] that the population models fulfill two critical criteria: (1) indi-
viduals behave homogeneously, i.e., any permutation of individuals will not change the properties
of the system. This implies statistically identical behavior of the individuals and dense, symmetric
connectivity within the system. (2) There is no interference or coupling with other systems or envi-
ronments impacting the dynamics.

In real-world applications, these assumptions often fail and the mean field approximation be-
comes inaccurate up to a point where it might be rendered useless to provide any valuable insights.
We illustrate this using the well known Join-the-Shortest-Queue(d) (JSQ(d)) model for d = 2 [89,
110] as visualized in Figure 1.1. Consider customers arriving as a Poisson stream at a collection of
servers. Each customer considers a subset of two servers uniformly at random upon arrival and pro-
ceeds to the server with the fewer number of customers in their queue with ties broken at random.
At the queue, the customers are served in the first-come-first-serve manner. Such load balancing
systems can be found in a broad range of applications and become increasingly important not least
by their application to cloud networks and data centers. In order to predict and optimize their per-
formance, the mean field approximation is a common tool used to gain valuable insight into the
behavior. However, in application many systems are neither homogeneous nor act in isolation from
other systems which can lead to imprecise performance estimations. In Figure 1.2, we illustrate a load
balancing system following the same procedure as before but with queues having different service
speeds. Not considering the heterogeneity at hand e.g., using uniform queue speeds to construct
the mean field approximation, leads to under- or over-estimation of the performance which sub-
sequently creates idle or overloaded queues. In Figure 1.3, we illustrate the impact of interfering
systems. The load balancing example consists of three systems, which we call classes. Each class has
an independent decision process for arriving customers and its own separated set of queues with
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1.2 Overview

respective speed distinguished in the figure by color. To leave the system, customers needs to be
processed by a medium that is shared among the three classes. The case that different queues si-
multaneously send customers to the medium gives rise to interference and consequently the loss
of throughput. In the figure, the interference structure is illustrated by the arrows connecting the
classed to the shared medium. Ignoring the impact of interference between classes on the dynamics
leads to over-estimation of the systems performance.
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In this thesis, we present our work on the study of heterogeneous systems and systems with rapidly
changing environments which contribute towards answering the two following grand questions:

• To which population models can we adapt mean field approximation and what accuracy can
it provide?

• Can we increase the accuracy of the approximation by developing bias correction terms?

1.2 Overview
We present our results in three segments also visually presented in Figure 1.4. The introduction and
methodology span the first part of this thesis. In the latter chapter, we present the general method-
ology which is consistently used to obtain accuracy bounds between the expected state of the con-
sidered stochastic systems and the deterministic counterpart, their mean field approximations. In
the second part of the thesis, we study heterogeneous models. Chapter three presents a framework
to study individual-level heterogeneity and provide accuracy bounds for the mean field approxima-
tion and its refinement. The next chapter presents the RMF Tool, a numerical toolbox designed to
support the implementation of mean field models and their refinements. This includes the imple-
mentation of heterogeneous population models as studied in Chapter 3. The last chapter of the first
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1 Introduction

part provides new and unpublished results on graph based population models and their ‘graphon’
mean field approximation.

In the second part of the thesis, we shift the focus to systems with rapidly changing environments.
In Chapter 6 we show that the mean field approximation obtained by an averaging principle has
similar accuracy as in the homogeneous case. We further derive a new bias correction term which
decodes the error made by averaging. In the last chapter, we explore how the ideas of the aforemen-
tioned paper can be transferred to stochastic approximation with state-dependent Markovian noise
and constant stepsize. We prove new and currently unpublished accuracy results for the stochastic
approximation setting.

Chapter 1 - Introduction

Chapter 2 - Methodology

Chapter 6 - Bias and
Refinement of Multi-

scale Mean Field Models

Chapter 7 - Application to
Stochastic Approximation

Chapter 3 - Mean Field
and Refined Mean Field

Approximations for
Heterogeneous Systems

Chapter 4 - RMF Tool
- A Numerical Tool Box

Chapter 5 - Accuracy of
Graphon Mean Field Models

Part I - Introduction & Methodology

Part II - Heterogeneous Mean Field Models

Part III - Systems with Rapidly
Changing Environments

Figure 1.4: Structure of the Thesis

1.3 Detailed Contributions
Part I consists of the introduction and methodology. In this part of the document, we give an
overview of the results presented in the thesis as well as a general introduction to the methodology
used in the subsequent chapters.

Chapter 2 presents the general methodology to obtain bounds for the distance between the
expectation of the stochastic system and its mean field approximation. This methodology is a cor-
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1.3 Detailed Contributions

nerstone for the results in the following chapters. The first part of the chapter is held general and
introduces necessary tools such as generators, Poisson equations and points out properties of the
dynamic systems needed to obtain the results. We then show how accuracy bounds for general pop-
ulation systems can be obtained. In the second part, we show how the first order refinement term
for population processes can be derived. The refinement is an analytical expression used to increase
the accuracy of the mean field approximation. In this part of the Chapter, the analysis is restricted
to density dependent population processes.

Part II of this thesis presents our results for systems with heterogeneous components, in par-
ticular we focus on two distinct types of heterogeneity: In Chapter 3, we develop a framework to
handle individual-level diversity in population systems and derive accuracy bounds for the corre-
sponding mean field and refined mean field approximations. In the following Chapter 4, we present
the numerical toolbox ‘RMF Tool’ which is designed to support the implementation of (heteroge-
neous) mean field models and their refinements. The second type of heterogeneity, given by graph-
structured interactions of individuals is discussed in Chapter 5. In both settings, our motivation
stems from understanding and bounding the difference between the stochastic system and a suit-
able mean field approximation. We further reflect on the applicability of the approximation and
numerical complexity, which we underline by including examples for cache replacement policies,
load balancing and bike-sharing systems.

Chapter 3 develops a framework to handle individual-level heterogeneity in population sys-
tems. Based on this framework, mean field and refined mean field approximations are derived which
show comparable accuracy results as for homogeneous scenarios. The main differences in the het-
erogeneous setup is that the ODEs approximate the behavior of single items instead aggregate quan-
tities as the empirical measure process for the states. Our main results show that in this setting the
mean field approximations accuracy remains inversely proportional to the object count N , of or-
der O(1/N). We adapt the refinement idea to obtain computable expressions which increase the
accuracy of the approximation. The results are supported by two examples, a heterogeneous load
balancing system and a RANDOM(m) caching system. Both examples show the computational
tractability of our approach and its accuracy in application.

Chapter 4 introduces the RMF Tool, a numerical toolbox designed to ease the computation
of mean field approximations and their refinements. This chapter gives an overview of the python
toolbox which was developed to overcome the computational challenges posed by the more intri-
cate analytical expressions of the refined mean field approximation. The goal of the toolbox is that
users input the description of a system and retrieve the approximations and additional refinements
by using the functions provided by the toolbox. The RMF Tool provides this functionality for three
kinds of models: (1) homogeneous population process; (2) density dependent processes; (3) hetero-
geneous population models. Here, the last type of models is the same as the ones discussed in the
previous chapter.

Chapter 5 shifts the focus to graphon mean field models, where we consider systems of N
particles interconnected through a dense, possibly weighted graph GN . Each individual is a node

7



1 Introduction

of the graph with internal state. The state of a particle changes according to its dependency on the
states of its neighbors which is specified through the graph structure. We show that if the number of
neighbors of the node grows withN , the behavior of the system converges to a deterministic limit,
the graphon mean field approximation. In our results, we state precise convergence bounds that
depend on the cut-norm distance between GN and G. To illustrate that the convergence strongly
depends on the sampling methods ofGN , we consider two cases: First, whenGN is a random graph
obtained though sampling from the graphon G. Second, when GN is a discretization of the graph
Gwith individually weighted edges. To illustrate the applicability and numerical tractability of the
results, we give two examples: A load balancing model where each individual describes a server-
dispatcher pair with connections based on a sampled graph and a heterogeneous bike sharing system
where the graph specifies the varying popularity of the stations.

Part III focuses on mean field techniques for stochastic systems with rapidly changing envi-
ronment. In Chapter 6, we look at coupled population systems of ‘slow-moving’ populations and
rapidly changing environments. In this setting, we utilize the ‘averaged’ mean field approximation
and derive a refined ’average’ mean field approximation to study the behavior of the stochastic sys-
tem and characterize the accuracy of the approximation. In the second Chapter 7, we expand on
these results, extending the methodology to stochastic approximation with constant step size and
state-dependent Markovian noise. We show how to adapt the previous ideas to this setting to obtain
accuracy results and a computable bias extension.

Chapter6 analyzes the approximation error of the ‘average’ mean field model for a two-timescale
system (X, Y ), where the slow component X describes a population of N interacting individuals
which is fully coupled with a rapidly changing environment Y . We show that under relatively mild
conditions, the ‘average’ mean field approximation has a bias of orderO(1/N) in both, the transient
regime and the steady-state. To go a step further, we derive a bias correction term for the steady-state
from which we define a refined ‘average’ mean field approximation whose bias is of orderO(1/N2).
We illustrate the developed framework and accuracy results through an application to a random
access CSMA model.

Chapter 7 adapts the methodology and ideas of the previous chapter to the stochastic ap-
proximation setting. We show that for a stochastic approximation with constant step size and state-
dependent Markovian noise comparable accuracy results can be achieved. In particular, the chapter
we prove that given a constant step size α, the asymptotic bias of the stochastic approximation to
the equilibrium the related ‘averaged’ deterministic system is of order α. We further show how to
obtain a computable first order bias extension.
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2.1 Introduction
In this section we present the general methodology, which is used to obtain bounds for the bias
between the expectation of the stochastic system and its mean field approximation. We aim to give an
overview of the reasoning and the analytical tools developed in the papers [54, 55, 59, 114]. While the
mentioned papers predominantly focus on density dependent population processes (as introduced
in Section 2.4.1) the methodology is not limited to those. For example, in [4, 5], we show how the
framework can be extended to different setting such as heterogeneous population models or two
timescale population processes. To capture this aspect, the first part of this chapter is held fairly
general and aims to be applicable to generic population processes. In the later parts, particularly
to obtain accuracy bounds and refinement terms, we will restrict ourselves to density dependent
population processes. We decide on this step, to keep balance between readability and generality of
the later sections. To summarize, in this chapter:
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2 Methodology

1. We illustrate how to express the difference between the expected state of a stochastic
population process and its mean field approximation using the generators associated to
their dynamic system description in Section 2.3.

2. We utilize the specific generator expressions for density dependent population processes
to:

• Establish bounds on the difference between the two dynamical systems, validating
the accuracy of the mean field approximation in Section 2.4.3.

• Study the bias of the approximation and to develop refinement terms which in-
crease the accuracy of the mean field approximation in Section 2.4.4.

We start by specifying the concept of population processes before progressing to the general method-
ology and subsequent results.

2.2 CTMCs, Semi-Groups and Generators
In the following section, we recall essential properties of continuous time Markov chains, the def-
inition of strongly continuous semi-groups with their generators and show how such semi-groups
can be defined to describe the evolution of the dynamical systems in question. We also give a short
illustration of the former by applying these definition to a simple load balancing example.

2.2.1 Continuous TimeMarkov Chains (CTMC)
For the sake of readability and completeness, we briefly recall the quintessential properties of time
homogeneous continuous time Markov chains (CTMC). For a more extensive introduction, the
reader is referred to [103]. It is furthermore assumed that the reader is familiar with the Markov
property for stochastic processes. In the thesis, for all encountered frameworks and population pro-
cesses, we consider a population process with finite state space X of size K ∈ N. Here and in the
following, the stochastic process will be denoted by {X(t), t ≥ 0}. The Markov property implies
that for any states x,y, z and times s ≥ 0 and t ≥ u ≥ 0

P(X(t+ s) = x |X(t) = y,X(u) = z) = P(X(t+ s) = x |X(t) = y).

To define the transitions of a CTMC, it is more common to transition state the transition rates
between states rather than transition probabilities. In the following, we will denote by ry−x(X(t))
the rate per unit time of the CTMC to jump from state x to y. We choose this notation as it will
be convenient for the subsequent discussions to differ between rates based on the current state of
the systemX(N)(t) and a set of possible jumps of the system. The relations between the transition
rates and probabilities is given by

ry−x(X(t)) = lim
dt↓0

1

dt
P(X(t+ dt) = y |X(t) = x) for x ̸= y

12
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and therefore

P(X(t+ dt) = x |X(t) = y) = rx−y(X(t))dt+ o(dt).

We further define the rate for the process to remain in stateX by

r0(X(t)) = −
∑
x ̸=y

ry−x(X(t)).

In Section 2.2.2 we will fall back on these properties to define the semi-group linked to the expecta-
tion of the stochastic process and its generator. This in turn will ultimately allow us to deduce the
generator comparison between a deterministic differential equation, its mean field approximation,
and the stochastic process.

Population Processes

As outlined before, we denote by {X(N)(t), t ≥ 0} a stochastic population process of population
size N ∈ N. The state space of the system X(N)(t) is denoted by XN ⊂ Rd. To preserve read-
ability and explanatory intention of this chapter, we restrict the dimension of the state space to be
independent of the population size. In many cases this is a reasonable assumption and holds true
for a broad range of stochastic processes, e.g. density dependent population processes as defined in
Section 2.4.1. In later chapters however, we will discuss settings for which the dimension can vary
withN .

2.2.2 Semi-Groups and Generators for Dynamics Systems
In this subsection, we introduce the notion of semi-groups and their connected generators. We
start by giving the general definition for the latter and continue by representing the stochastic and
deterministic system using the semi-groups notation. Ultimately, the representation will allow us to
express the difference between the two dynamical systems by their generators which is discussed in
detail in Section 2.3.

Definition 1 (Definition and properties of C0 Semi-Groups and their Generators). A family of
linear operators {Ts : D → D, s ≥ 0} is called a strongly continuous semi-group (orC0-semi-group)
on a Banach space D if it has the following properties:

T0 = Id, (2.1)
Ts+t = TsTt for all s, t ≥ 0, (2.2)
lim
t↓0

Ttz = z for all z ∈ D. (2.3)

The generator of aC0-semi-group, if existent for z, is defined by

Az = lim
dt↓0

1

dt
(Tdtz − T0z). (2.4)

13
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A direct consequence of the definition of the generator and property (2.2), is its commutation
with the definingC0-semi-group, i.e.,

ATsh(z) = TsAh(z) =
d

ds
Tsh(z). (2.5)

This property can easily be proven by considering that by definition Ts(Ts − Id)h(z) = Ts(Ts −
Id)h(z), with Id being the identity map. Dividing both sides by s and letting s go to zero shows the
property. As we will be only working withC0-semi-groups they are simply referred to as semi-groups
in the following.

Semi-Group and Generator for the Stochastic System

We now want to show how to represent the stochastic system {X(N)(t), t ≥ 0} using the semi-
group notation. Recall that the dynamics of the process are given by a state independent set of
transition vectors LN and their respective transition rates rℓ(x), ℓ ∈ LN for x in the domain XN

ofX(N). Let CXN→R be the set of continuously differentiable functions from X to R where X is
the convex hull over all XN . We define the stochastic semi-group mapping on CXN→R by

ΨN
t : C1

XN→R → C1
XN→R with ΨN

t h(x) := E[h(X(N)(t)) |X(N)(0) = x]. (2.6)

Strictly speaking the Ψt can be defined for a much broader set of functions, however, we restrict the
domain of Ψt to C1

X→R as in the following our analysis and bounds are based on the differentiability
h. It is immediate by the definition of Ψt and the properties of the Markov chain that the above is
indeed a semi-group. By Definition 1 - Equation (2.4), the generator is defined as limdt↓0

1
dt
(ΨN

dth−
ΨN

0 h). For x ∈ XN we therefore have

LNh(x) := lim
dt↓0

1

dt
(ΨN

dth−ΨN
0 h)(x) = lim

dt↓0

1

dt
E[h(X(N)(dt))− h(x) |X(N)(0) = x].

We use the general properties of the Markov chain, as recalled in Section 2.2.1, to obtain a more
detailed formulation of the generator. For small times dt > 0 we have

E[h(X(N)(dt)) |X(N)(0) = x]

= h(x)P(X(N)(dt) = x |X(N)(0) = x)

+
∑
ℓ∈LN

h(x+ ℓ)P(X(N)(dt) = x+ ℓ |X(N)(0) = x)

By using the rate dependent description of the transition probabilities, we see that the generator of
the process is equal to

LNh(x) =
∑
ℓ∈LN

(
h(x+ ℓ)− h(x)

)
rℓ(x). (2.7)
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In the case that the stochastic system has a unique stationary distribution, the latter is denoted by
X(N)(∞). To ease the notations for the steady-state and if clear from context, we will refrain from
giving the initial state of the stochastic system, i.e., for Ψ∞h(x) we write equivalently

E[X(N)(∞)] instead of E[X(N)(∞) |X(N)(0) = x]. (2.8)

Semi-Group and Generator for the Deterministic System

This subsection aims to define the semi-group and generator for the mean field approximation given
by the solution to the Cauchy problem

d

dt
ϕ(t,x) = f

(
ϕ(t,x)

)
with ϕ(0,x) = x ∈ X .

We define the semi-group by

Φt : C1
X→R → C1

X→R with Φth(x) = h(ϕ(t,x)).

In words, the mapping associates to a continuously differentiable functionh its evaluation atϕ(t,x).
By definition of the deterministic system, it is directly follows that Φt is indeed a semi-group. To de-
rive the corresponding generator, by definition

Λh(x) := lim
dt↓0

1

dt
(h(ϕ(dt,x))− h(ϕ(0,x))) = Dxh(x) · f(x). (2.9)

with · being the scalar product between Dxh(x) and f(x). It is furthermore worth pointing out
that the commutation of the generator with its semi-group implies

Dxh(ϕ(t,x))f(ϕ(t,x)) = ΦtΛh(x) (2.10)
= ΛΦth(x) = Dx(h ◦ ϕ(t, .))(x)f(x). (2.11)

This property will be especially useful in the next sections as it allows to compare two introduced
generators. Similar as for the stochastic system, we denote by

ϕ∞h(x) = h(ϕ(∞,x)) (2.12)

the unique equilibrium point of the deterministic system if existent. If appropriate and clear from
context, we further abbreviate the equilibrium point byϕ∞.

2.3 GeneralMethodology
In this section, we start the discussion of the general methodology to obtain accuracy results for the
difference between the stochastic and deterministic setting. In the following, we will show how to
state the difference of the two systems using their generators for the transient regime and steady-state.
We will (informally) show:
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For the transient regime

E[h(X(N)(t)) |X(N)(0) = x]− h(ϕ(t,x)) =

∫ t

0

Ψt−τ∆
NΦτh(x)dτ.

For the steady-state

E[h(X(N)(∞))]− h(ϕ∞) = Ψ∞∆N

∫ ∞

0

Φτh(x)dτ

with ∆N = LN − Λ representing the difference between the generators of the two systems.

2.3.1 Transient Regime

We aim to reformulate the difference

E[h(X(N)(t)) |X(N)(0) = x]− h(ϕ(t,x)) (2.13)

for a sufficiently continuous differentiable function h : X → R and 0 ≤ t < ∞. To make use of
the previously introduced semi-groups, first, recall their definitions

Φth(x) = h(ϕ(t,x)) and ΨN
t h(x) := E[h(X(N)(t)) |X(N)(0) = x].

Based on ΨN and Φ we define the mapping ντ : C1
X→R → C1

X→R for τ ∈ [0, t] with

ντh(x) := ΨN
τ Φt−τh(x) = E[h

(
ϕ(t− τ,X(N)(τ))

)
|X(N)(0) = x]. (2.14)

The evaluation of the mapping ντh(x) for a statex and function h consists of two steps. First, the
expectation of the stochastic system evaluated at time τ . Second the continuation of the stochastic
trajectory by the ODE in the time frame (τ, t]with initial conditionX(N)(τ). An example trajectory
ofϕ(t− τ,X(τ)) is given in Figure 2.1. The definition of ντ now allows to rewrite

E[h(X(N)(t)) |X(N)(0) = x]− h(ϕ(t,X)) = νth(x)− ν0h(x).

To use the properties of the generators their respective semi-groups, we want to rewrite

νth(x)− ν0h(x) =

∫ t

0

d

ds
νsh(x)

∣∣∣
s=τ

dτ. (2.15)

At this point we skip over the technical explanation of the equality above. It should be noted though,
that it might need some thorough investigation and justification. Looking at the right-hand side, we
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Figure 2.1: Sample trajectory forϕ(t− τ,X(N)(τ)).

start by analyzing the derivative under the integral. We see that the difference (ντ+dτ − ντ )h(x) is
equal to

ΨN
τ+dτΦt−(τ+dτ)h(x)−ΨN

τ Φt−τh(x)

= ΨN
τ+dτΦt−(τ+dτ)h(x)−ΨN

τ+dτΦt−τh(x)

+ ΨN
τ+dτΦt−τh(x)−ΨN

τ Φt−τh(x).

Due to the assumption thatX(N) is a population process with finite state space, bounded transition
rates and bounded jumps sizes, the above term is bounded for all t, τ, dτ . Thus, we can rewrite
Equation (2.15) as

lim
dτ↓0

1

dτ
(ντ+dτ − ντ )h(x) = LNΨN

τ Φt−τh(x)−ΨN
τ ΛΦt−τh(x). (2.16)

Using the commutation of the generator for the stochastic process, i.e., LNΨN
τ = ΨN

τ L
N , as

pointed out in the Definition 1 - Equation (2.5), and linearity, we have that Equation (2.16) is equal
to ΨN

τ (L
N − Λ)Φt−τh(x).

Finally, this allows us to express the difference between the expectation of the stochastic system
and deterministic system by

E[h(X(N)(t)) |X(N)(0) = x]− h(ϕ(t,x)) =

∫ t

0

ΨN
τ

(
LN − Λ

)
Φt−τh(x)dτ. (2.17)

This reformulation serves as basis for our further discussions on the accuracy and the bias analysis.
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2.3.2 Steady-State extension

To extend the previous discussion to the steady state, assume that the stochastic process admits a
unique stationary distribution and that the ODE has a unique equilibrium state to which it con-
verges exponentially fast, see Definition 2. As given in the discussion of the semi-groups and genera-
tors the steady-state and equilibrium point, following our definitions in Equations (2.8) and (2.12),
are denoted by

ΨN
∞h(x) = E[h(X(N)(∞))] and Φ∞h(x) = h(ϕ∞).

For the steady-state we are looking at the difference E[h(X(N)(∞))] − h(ϕ∞) which is the limit
of Equation (2.17). In the next steps we will show the equality

lim
t→∞

∫ t

0

ΨN
t−τ

(
LN − Λ

)
Φτh(x)dτ =

∫ ∞

0

ΨN
∞
(
LN − Λ

)
Φτh(x)dτ. (2.18)

which then serves as a basis for the following accuracy bounds and refinement observations. To
give more intuition behind why this equality holds, define for any positive and increasing sequence
(tk)k∈N, tk → ∞ with the function

qtk(τ) := 1[0,tk](s)Ψ
N
tn−τ∆

NΦsh(x)

with ∆N := LN − Λ. Then, by the steady-state assumption onX(N), qtk(τ) converges pointwise
to q(τ) := ΨN

∞∆NΦτh(x) for k → ∞. By the regularity assumptions on the dynamical system,
we see that the quantities qtk(τ) and q(τ) are bounded by

g(τ) = sup
x∈X

∆NΦτh(x).

To apply the dominated convergence theorem justifying limn→∞
∫∞
0
qtn(τ)dτ =

∫∞
0
q(v)dτ , we

now argue that
∫∞
0
|g(τ)|dτ is finite. By assuming, without loss of generality, that h(ϕ∞) = 01

we see that for any x ∈ X the integral
∫∞
0

∆NΦτh(x)dτ is finite due to the exponentially fast
convergence of the ODE to its equilibrium point. This can be checked by using the bounded domain
and bounds on the derivative of the ODE. We further argue that the supremum in the definition of
g is attained as it is taken over the convex hull X of closed sets. This implies

∫∞
0
|g(τ)|dτ <∞ and

therefore qtn converges to ∫ ∞

0

ΨN
∞∆NΦτh(x)dτ. (2.19)

We finish by making the following informal statement which is serves as a intuitive basis for the
steady-state results of the next section. Under sufficient regularity assumptions on the expectation

1One can always replace h by h∗(x) := h(x)− h(ϕ∞) which yields the same conclusions.
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of the stochastic system as well as by the definition and properties of the generators, we can move
the integral of Equation (2.19) in front of Φs to obtain∫ ∞

0

Ψ∞∆NΦτh(x)dτ = Ψ∞∆N

∫ ∞

0

Φτh(x)dτ (2.20)

which will be especially useful for the forthcoming discussions on the accuracy bounds and remain-
der terms.

For the following, we want to point how to approach the steady-state reformulation from a dif-
ferent angle by utilizing Poisson equations. Therefore, the first component to bound the difference
between the two systems E[h(X(N)(∞))]− h(∞) is to set up the Poisson equation

ΛGh(x) = h(x)− h(ϕ∞) (2.21)

for a ‘nice’ enough function h. A function Gh which satisfies the above equation is called the so-
lution to the Poisson equation. As shown in [55, 114], a functions which satisfies the above is given
by

Gh(x) := −
∫ ∞

0

h(ϕ(τ,x))− h(ϕ∞)dτ.

Note that the right hand side is well-defined due to the exponential stability of the deterministic sys-
tem. In Lemma 3, we give a more precise justification. To verify thatGh solves the Poisson equation,
by similar steps used to obtain Equation (2.19), we can (informally) argue that

ΛGh(x) = −Λ

∫ ∞

0

(Φth− Φ∞h)(x) dt

= −
∫ ∞

0

Λ(Φth− Φ∞h)(x)dt

= −
∫ ∞

0

ΛΦth(x)dt = −
∫ ∞

0

d

dt
h(ϕ(t,x))dt

= h(x)− h(ϕ(∞,x)).

For the next step, we note that given the unique stationary distribution of the stochastic system,

ΨN
∞L

Nh(x) = E[LNh(X(N)(∞)) |X(N)(0) = x] = 0. (2.22)

Generally speaking, the above equation holds for functions of compact support. By the bounded
state space of the systems, it then also holds for the solution of the Poisson equation. Next, we use
G to rewrite

E[ΛGh(X
(N)(∞))] = E[h(X(N)(∞))]− h(ϕ∞).

lightly hidden under the notation, we implicitly assumed differentiability ofGh. As the justification
is a rather technical argument based on the exponential stability of the ODE, more details are given
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by Lemma 3. Using the property outlined in Equation (2.22), we can add E[LNGh(X
(N)(∞))] to

the equation and obtain

E[ΛGh(X
(N)(∞))] = E[(Λ− LN)Gh(X

(N)(∞))] (2.23)

= E[(LN − Λ)

∫ ∞

0

(
h(ϕ(τ,X(N)(∞)))− h(ϕ∞)

)
dτ ]. (2.24)

Definition 2 (Global Exponential Stability). A differential equation d
dt
ϕ(t,x) = f(ϕ(t,x))

is called globally exponentially stable if it has a unique attractorϕ∞ and if there exist constants
a, b ≥ 0 such that for all x ∈ X and t ≥ 0

∥ϕ(t,x)− ϕ∞∥ ≤ a exp(−bt).

2.4 Application toDensity Dependent Population
Processes

Based on the previous generator reformulation of the difference between the expected state of the
stochastic and deterministic system, summarized in Equation (2.17), we will now study this differ-
ence under the consideration of density dependent population processes (DDPP). Before we state
the definition of DDPPs in the next subsection, we give a briefly overview of what this section aims
to achive. As in the previous Subsection 2.3.2, we use the notation

∆N := LN − Λ,

to denote the difference between the generators. The study of the accuracy and refinement can be
broken down into two observations for this difference, namely

∆N = O
( 1

N

)
(2.25) and ∆N =

1

N
∆+O

( 1

N2

)
. (2.26)

The first Equation (2.25) referring to the bound on the difference of the generators and Equation
(2.26) to the approximation of the generator difference by a population size independent mapping
∆ : C2

X→R → C2
X→R which we will call the (first order) refinement.

2.4.1 Density Dependent Population Processes
Many population processes can be model using their density such as epidemic spreading [43, 90],
load balancing [87, 91] or bike sharing systems [50]. It is of little wonder that the mathematical con-
cept of density dependent population processes (DDPPs) was developed to study these type of pro-
cesses, see [76, 77]. As before, we denote by {X(N)(t), t ≥ 0} a stochastic process that represents
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the state of a population of sizeN . It is, as the name suggests, typically the case thatX(N)(t) is some
kind of density representation of the population. As for the generic population process, we restrict
the set of states XN of X(N) to be a finite subset of Rd. Furthermore, it is assumed, there exist a
finite set of transitions vectors L and corresponding rate functions rℓ : X → R≥0, ℓ ∈ L which
are both independent of the population size. Based on the jump vectors and rates, the transitions of
the process are of the type

X(N) jumps to X(N) + ℓ/N at rate Nrℓ(X
(N)).

Intuitively, the transition structure captures that the change of a single member of the population
is of order O(1/N) while the actual chance of such an event is proportional to the size of the pop-
ulation. To catch up on the previously discussed ODE and generator definition we briefly show the
typical definition of mean field approximation and the generator for this type of process. The drift
corresponding to a DDPP in state x is defined as

f(x) :=
∑
ℓ∈L

ℓrℓ(x), (2.27)

the sum over the jump vector times their rates. Under the assumption that the drift is well defined
for all states in X , we define the mean field approximation with initial condition y ∈ X by

d

dt
ϕ(t,y) = f(ϕ(t,y)) with ϕ(0,y) = y.

Lastly, we see that by definition, the generator is given by

LNh(x) =
∑
ℓ∈L

(
h(x+ ℓ/N)− h(x)

)
Nrℓ(x). (2.28)

Note, by setting h = Id the identity function, one obtains the drift directly from the generator
definition.

2.4.2 A Simple Load Balancing Example
This subsection introduces a simple load balancing example which will be used to illustrate the sub-
sequent methodology in Section 2.3. The system consists of N statistically identical servers which
can receive and process jobs. For simplicity, we restrict the servers to have a buffer capacity of one.
The dispatcher scheduling policy rules are:

• Jobs arrive at the dispatcher following a Poisson arrival stream with rateNλ > 0.

• For each arriving job, the dispatcher randomly selects two of theN servers and acts according
to one of the three cases below:

1. Both servers are idle - the job is randomly assigned to one of the servers

2. One server is idle - the job is forwarded to the IDLE server
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3. Both servers are busy - the job is discarded

• Each assigned job in the queue takes an exponentiallµ > 0 distributed processing time at the
server site after which it leaves the system.

We model the system with X(N)(t) ∈ [0, 1] being the fraction of active servers at time t ≥ 0. Let
the systemX(N)(t) be in stateX ∈ [0, 1], then the transitions of the system are:

X → X +
1

N
at rate Nλ(1−X2), (2.29)

X → X − 1

N
at rate NµX. (2.30)

In Section 2.4.1 we will see that this load balancing example falls into a broader class of population
processes, namely density dependent population processes.

Generator andODE for the Load Balancing Example

Using the transitions of the described system, for a state x ∈ XN the generator is given by

LNh(x) =
(
h(x+ 1/N)− h(x)

)
Nλ(1− x2)︸ ︷︷ ︸

Arrival

+
(
h(x− 1/N)− h(x)

)
Nµx︸ ︷︷ ︸

Departure

.

The ODE associated to the process initialized at state y ∈ X is

d

dt
ϕ(t, y) = λ(1− ϕ(t, y)2)− µϕ(t, y) with ϕ(0, y) = y.

2.4.3 Accuracy Results

Transient Regime

To obtain accuracy results, we pick up on Equation (2.17). Using the DDPP specific generators

E[h(X(N)(t)) |X(N)(0) = x]− h(ϕ(t,x)) =

∫ t

0

ΨN
τ ∆

NΦt−τh(x)dτ

=

∫ t

0

E[
∑
ℓ∈LN

(
h
(
ϕ(t− τ,X(N)(τ) + ℓ/N)

)
− h
(
ϕ(t− τ,X(N)(τ))

))
rℓ(X

(N)(τ))

(2.31)
−Dx

(
h ◦ ϕ(t− τ, .)

)
(X(N)(τ))f(X(N)(τ)) |X(N)(0) = x]dτ

To obtain bounds on the distance between the generators, we have a closer look at the stochastic gen-
erator terms. To simplify notations let us define g(x) := h

(
ϕ(t− τ,x)) such that the right-hand

term of Equation (2.31) reduces to
∑

ℓ∈LN

(
g(X(N)(τ) + ℓ/N)− g(X(N)(τ))

)
Nrℓ(X

(N)(τ)).
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By application of the Taylor expansion of first order on g(X(N)(τ) + ℓ) aroundX(N)(τ) in direc-
tion ℓ/N , the expression is equal to∑

ℓ∈LN

Dxg(X
(N)(τ))ℓ rℓ(X

(N)(τ)) +
1

N
Rg,1(X

(N)(τ))

= Dxg(X
(N)(τ))f(X(N)(τ)) +

1

N
Rg,1(X

(N)(τ))

where by Rg,1(x) we denote the collective remainder term arising from the expansion. Using this
identity for Equation (2.31) yields∫ t

0

ΨN
τ

(
LN − Λ

)
Φt−τh(x)dτ =

1

N

∫ t

0

Rh◦ϕ(t−τ,.),1(X
(N)(τ))dτ.

Under the assumption that the remainder term is bounded by some CRh◦ϕ(t−τ,.),1
> 0, it follows

immediately that the accuracy of the approximation is of orderO(t/N).

Steady-State Accuracy

For the steady-state we continue in a similar fashion. Our starting point is the previously obtained
Equation (2.24) which shows

E[h(X(N)(∞)]− h(ϕ∞) = E[(Λ− LN)Gh(X
(N)(∞))]

with Gh being the solution to the Poisson Equation (2.21). By definition of the generators for
DDPPs, we see that the right-hand side is equal to

E[
∑
ℓ∈LN

(
Gh(X

(N)(∞) + ℓ/N)−Gh(X
(N)(∞))

)
Nrℓ(X

(N)(τ)) (2.32)

−DxGh(X
(N)(∞))f(X(N)(∞))].

(2.33)

Assuming thatGh is sufficiently differentiable, which is commented on in Lemma 3, we utilize the
Taylor expansion aroundX(N)(∞) in direction ℓ as before in the transient case. Application of Tay-
lor then leaves us with E[ 1

N
RGh,1(X

(N)(∞))]. Here, RGh,1(X
(N)(∞)) arises as the sum over all

Taylor remainder terms obtained from the expansion. Bounding E[RGh,1(X
(N)(∞))] then shows

that the approximation has an accuracy of order 1/N .

2.4.4 Refinement Terms
In this section we pick up on the bias analysis and the definition of refinement terms for the mean
field approximation. The refinement concept and justification for classical mean field models was
derived by Gast et al. in a recent line of work [54, 55, 57]. The following parts aim to gather the ob-
servations from the mentioned publications. While in this section we are concerned about DDPP’s,
similar methodological steps can be apply in other settings such as the heterogeneous case described
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in [5] or two timescale setting as seen in [4]. In what follows, we restrict ourselves to the analysis of
‘first order’ refinement terms, i.e. computable expression which increase the accuracy of the mean
field approximation by one order. In particular, this includes the derivation of the refinements terms
V : [0,∞] × X → Rd andW : [0,∞] × X → Rd×d with t = ∞ being the value of V ,W at
the equilibrium point if existent. Under the assumption thath is a twice differentiable function and
the additional assumptions outlined in Section 2.4.4, we will see that the bias between the stochastic
system and the mean field approximation can be written as

E[h(X(N)(t)) |X(N)(0) = x]− h(ϕ(t,x))

=
1

N

(
Dxh(ϕ(t,x)) · V (t) +D2

xh(ϕ(t,x)) :W (t)
)
+O(1/N2)

for t ∈ [0,∞] with t = ∞ denoting the steady-state and equilibrium respectively. Here, · and :
denote the sum over the element wise multiplication between two vectors or matrices. In the fol-
lowing, we will show how to obtain the above refinement terms V ,W and deduce computable
expressions. Before we start, we recall and summarize the assumptions needed:

General Assumptions:

1. The set of jump vectors L of the stochastic process is finite and jump vectors ℓ as well as
rates rℓ are bounded.

2. The drift f is twice continuously differentiable.

Additional for Steady-State:

1. The stochastic system admits a unique steady-state distribution.

2. The ODE ϕ(t,x) has a unique attractor ϕ∞ which is exponentially stable, as defined
in Definition 2.

2.4.5 Transient Refinement Terms

To obtain the refinement terms in the transient regime, we leverage on the previously discussed gen-
erator comparison method. Recall, in Equation (2.17) we have shown the equality

E[h(X(N)(t) |X(N)(0) = x]− h(ϕ(t,x)) =

∫ t

0

Ψτ∆
NΦt−τh(x)dτ, (2.34)

i.e., expressing the difference between the stochastic and deterministic system using their genera-
tors and semi-groups where ∆N := LN − Λ. As we are interested in the study of the bias, which
vanishes as the population size N grows, we re-scale the system by a factor N . Now, looking at
N
∫ t

0
Ψτ∆

NΦt−τh(x)dτ , instead of using the first order Taylor expansion and bounding the re-
mainder term, we use the a second order expansion. To start, we have a closer look at N∆Ng(x)
under the assumption that g : X → R is twice continuously differentiable. Under consideration
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2.4 Application to Density Dependent Population Processes

of the transitions structure for density dependent processes (Section 2.4.1) and by definition of the
generators,

∆Ng(x) =
∑
ℓ∈L

(
g(x+

ℓ

N
)− g(x)

)
Nrℓ(x)−Dxg(x) · f(x)

where we use the second order Taylor representation of g(x + ℓ
N
) in direction ℓ with respective

remainder term. This yields the equality to

1

2
D2

xg(x) : Q(x) +
1

N
Rg,2(x), with Q(x) :=

∑
ℓ∈L

ℓℓT rℓ(x). (2.35)

whereA : B is the Frobenius product (
∑

k,lAk,sBk,l) andRg,2(x) is the collective remainder term
arising from the expansion. Define

∆ : C2
X→R → C2

X→R; ∆g(x) := D2
xg(x) : Q(x). (2.36)

With this definition, we see that for a sufficiently regular g

∆Ng(x) = ∆g(x) +O
( 1

N

)
where the O(1/N) hides the bound on the remainder term Rg,2 . To define the refinement terms
V andW , we start with replacing g by h ◦ ϕ(t, .) in the above equations. We further know that
X(N)(τ) converges weakly toϕ(τ,x) for every τ ∈ [0, t] asN goes to infinity in the case of DDPPs,
see for example [76]. Combing these two steps, it is sensible to look at the term

ΨN
τ ∆Φt−τh(x) = E[

1

2
D2

x(h ◦ ϕ(t− τ, .))(X(N)(τ)) : Q(X(N)(τ)) |X(N)(0) = x]

N→∞−−−→ Φτ∆Φt−τh(x) =
1

2
D2

x(h ◦ ϕ(t− τ, .))(ϕ(τ,x)) : Q(ϕ(τ,x))

under the integral to obtain the deterministic refinement terms. Based on this, in Section 2.4.7 we
give insight in how to obtain a set of differential equations to compute the quantity

∫ t

0
Φτ∆Φt−τh(x),

the bias correction for h(ϕ(t,x)).

2.4.6 Extension to the steady state
In this Section, we aim to obtain similar refinement terms as for the transient regime. We start by
recalling the additional assumptions for the steady-state, given in 2.4.4. Next, by Equation (2.20)
of Section 2.3.2 we know

E[h(X(N)(∞))]− h(ϕ∞) = Ψ∞∆N

∫ ∞

0

Φτh(x)dτ

= E[(LN − Λ)

∫ ∞

0

h(ϕ(τ,X(N)(∞)))dτ |X(N)(0) = x],
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where we assumed that h is ‘nice’ enough and, w.l.o.g, that h(ϕ∞) = 02 such that the integral term
is well defined. In fact, we will now informally show that the above term, can also be obtained by
leveraging a different line of arguments based on defining a Poisson equation. To obtain computable
expressions for the steady-state refinements, we extend on the analysis of the Poisson equation. First
however, recall that our previous analysis Equation (2.24) showed the equality

E[h(X(N)(∞)) |X(N)(0) = x]− h(ϕ∞) = E[
(
LN − Λ

)
Gh(X

(N)(∞))]

whereGh(x) is given by −
∫∞
0
h
(
ϕ(τ,x)

)
−h
(
ϕ∞
)
dτ . To study the bias and obtain steady-state

refinement terms we proceed similar as in the transient case by applying a scaling factor N to the
term. Using the generator definitions, this gives

E[N(Λ− LN)Gh(X
(N)(∞))]

= E[N
∑
ℓ∈LN

(
Gh(X

(N)(∞) +
ℓ

N
)−Gh(X

(N)(∞))

)
Nrℓ(X

(N)(τ))

−NDxGh(X
(N)(∞))f(X(N)(∞))].

Assuming that the drift f and ODE are sufficiently differentiable, Lemma 3 tell us that the same is
true for the solution to the Poisson equationGh. Thus, we can use a second order Taylor expression
ofGh(X

(N)(∞) + ℓ) aroundX(N)(∞) which shows that the above equation is equal to

E[D2
xGh(X

(N)(∞)) : Q(X(N)(∞)) +
1

N
RGh,2(X

(N)(∞)).

Using the weak convergence of the stochastic systems, we see that, by reusing the definition of ∆
(Equation (2.36)),

∆Gh(ϕ∞) = D2
xGh(ϕ∞) : Q(ϕ∞). (2.37)

we obtained a similar refinement candidate as for the transient regime. This time depending on the
solution to the Poisson equation Gh with respect to the function h evaluated at the equilibrium
point. As in this form, D2

xGh(ϕ∞) can not be solved numerically, we discuss in Section 2.4.8 how
to obtain a computable expressions of the refinement.

2.4.7 Computing the Transient Refinement Terms

In the next part, we aim to obtain a computable expression for the bias correction
∫ t

0
Φτ∆Φt−τh(x)

of h(ϕ(t,x)) with mapping ∆g(x) = D2
xg(x) : Q(x) andQ(x) as defined in Equation (2.35).

We start by looking more closely at the term ∆Φt−τh(x) = D2
x(h ◦ (ϕ(t− τ, .))(x) : Q(x). To

properly work with the second derivative of h ◦ ϕ(t− τ, .), we take a step back and notice that for

2As mentioned in Section 2.3.2 if for h(ϕ∞) ̸= 0, we can define h∗(x) := h(x) − h(ϕ∞) which then fulfills the
requirement.
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2.4 Application to Density Dependent Population Processes

twice differentiable functions g : Rd → R and m : Rd → Rd, by application of the chain and
product rule,

D2
x(g ◦m)k,l(x) =

d∑
i,j=1

∂2g

∂xi∂xj
(m(x))

∂mi

∂xk
(x)

∂mj

∂xl
(x) +

d∑
j=1

∂g

∂xj
(m(x))

∂2mj

∂xk∂xl
(x)

Replacing the functions g andm by h andϕ(t− τ, .) gives us forD2
x(h ◦ ϕ(t− τ, .))(x)

(
D2

xh ◦ ϕ(t− τ, .)
)
k,l
(x) =

d∑
i,j=1

∂2h

∂xi∂xj
(ϕ(t− τ,x))

∂ϕi

∂xk
(t− τ,x)

∂ϕj

∂xl
(t− τ,x)

+
d∑

i=1

∂h

∂xi
(ϕ(t− τ,x))

∂2ϕi

∂xk∂xl
(t− τ,x).

Under the integral and with substitution ofϕ(τ,x) forX(N)(τ) we then obtain∫ t

0

1

2
D2

x(h ◦ ϕ(t− τ, .))(ϕ(τ,x)) : Q(ϕ(τ,x))

=

∫ t

0

1

2

d∑
k,l=1

(
d∑

i,j=1

∂2h

∂xi∂xj
(ϕ(t,x))

∂ϕi

∂xk
(t− τ,ϕ(τ,x))

∂ϕj

∂xl
(t− τ,ϕ(τ,x))

)
Qk,l(ϕ(τ,x))dτ

+

∫ t

0

1

2

d∑
k,l=1

(
d∑

j=1

∂h

∂xj
(ϕ(t,x))

∂2ϕj

∂xk∂xl
(t− τ,ϕ(τ,x))

)
Qk,l(ϕ(τ,x))dτ

=
d∑

i,j=1

∂2h

∂xi∂xj
(ϕ(t,x))

∫ t

0

1

2

d∑
k,l=1

(
∂ϕi

∂xk
(t− τ,ϕ(τ,x))

∂ϕj

∂xl
(t− τ,ϕ(τ,x))

)
Qk,l(ϕ(τ,x))dτ︸ ︷︷ ︸

=:Wi,j

+
d∑

j=1

∂h

∂xj
(ϕ(t,x))

∫ t

0

1

2

d∑
k,l=1

∂2ϕj

∂xk∂xl
(t− τ,ϕ(τ,x))Qk,l(ϕ(τ,x))dτ︸ ︷︷ ︸

=:Vj

.

For the last equality, we used the elementary property ϕ
(
t − τ,ϕ(τ,X)

)
= ϕ(t,X) to take the

derivatives of h out of the integral. We define the refinement termsW ,V in their integral form at
time t by

V i(t) :=

∫ t

0

1

2
D2

xϕi(t− τ, .))(ϕ(τ,x)) : Q(ϕ(τ,x))dτ, (2.38)

W i,j(t) :=

∫ t

0

1

2
Dxϕi(t− τ, .)(ϕ(τ,x))Q(ϕ(τ,x))Dxϕj(t− τ, .)T (ϕ(τ,x))dτ. (2.39)
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To see that the integral forms of V and W are indeed the solutions of the differential equations
(2.40) and (2.41) we recall the statement of Lemma D.3 of [5]. Alternatively, the reader is referred to
[54], which also derives the differential form of the refinement terms for density dependent popula-
tion processes. It holds that the refinement terms given in their integral forms as in Equations (2.38)
and (2.39) are the solutions to the differential equations:

d

dt
Vi(t) =

d∑
j=1

∂fi
∂xj

(ϕ(t,x))Vj(t) +
d∑

j,k=1

1

2

∂2fi
∂xj∂xk

(ϕ(t,x))Wj,k(t) (2.40)

d

dt
Wi,j(t) =

d∑
k=1

∂fi
∂xk

(ϕ(t,x))Wk,j(t) +
d∑
k

dfj
dxk

(ϕ(t,x))Wk,i(t) +Qi,j(ϕ(t,x))

(2.41)

Qi,j(ϕ(t,x)) =
∑
ℓ∈L

rℓ(ϕ(t,x))ℓiℓj (2.42)

for i, j = 1..d and with initial conditions

V (0) = 0 and W (0) = 0. (2.43)

where f refers to the drift of the mean field approximationϕ.

A detailed proof can be found in [5] - Lemma D.3 p.38. For the sake of completeness we only recall
the basic ideas here. To prove the connection between the integral from and differential form, note
that for a sufficiently differentiable and bounded function g(t, s) : [0,∞)× [0,∞) → R

d

dt

∫ t

0

g(t, τ)dτ = g(t, t) +

∫ t

0

d

dt
g(t, τ)dτ.

To obtain the differential forms replace g(t, τ) by D2
xϕ(t − τ, .))(ϕ(τ,x)) : Q(ϕ(τ,x)) for V

and byDxϕ(t− τ, .))(ϕ(τ,X))Dxϕ(t− τ, .))(ϕ(τ,x)) : Q(ϕ(τ,x)) forW . Careful analysis
and rearranging of term then yields the desired derivatives.

2.4.8 Computing the Steady-State refinement Terms
In this subsection we aim to show that the refinement term for the steady-state as in Equation (2.37)
can be efficiently computed. Thus, in the following rather technical part, we will proof two key
properties:

1. The Lyapunov equation (Dxf(ϕ∞))Z + Z(Dxf(ϕ∞))T + Q(ϕ∞) = 0 has a unique
solutionW which is given by

W =

∫ ∞

0

exp(Dxf(ϕ∞)τ)Q(ϕ∞) exp(Dxf(ϕ∞)T τ)dτ.
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2. The second derivative ofGh satisfies

D2
xGh(ϕ∞) : Q(ϕ∞) = D2

xh(ϕ∞) :W +Dxh(ϕ∞) · V

with V := (−Dxf(ϕ∞))−1(D2
xf(ϕ∞))W .

The properties are originally stated and proven in Lemma 3.6 of [59]. However, as they convert
the analytical expression (2.37) into computable ones, we will successively go though the reasoning
behind the properties. To show (1), we first recall some properties about Lyapunov equations. For
real matricesQ andA, an equation of the form

AZ +ZAT +Q = 0

is called continuous Lyapunov equation. The equation admits a unique solutionW if and only ifA
is Hurwitz, i.e.,A has only negative eigenvalues. Symmetry ofQ furthermore implies symmetry of
the solutionW . If existent, it then is a standard property of Lyapunov equations is that its solution
can be written as

W =

∫ ∞

0

exp(Aτ)Q exp(AT τ)dτ. (2.44)

We see that by definitionQ(ϕ∞) =
∑

ℓ∈LN ℓℓT rℓ(ϕ∞) is symmetric and that by the assumption
of exponential stability for the differential equationDxf(ϕ∞) is indeed Hurwitz. This shows that,
by definingA := Dxf(ϕ∞),W can be computed numerically by solving the Lyapunov equation.

To show the second property (2), we split the reasoning into two parts. At first we show that
the first derivative of GId is equal to (−Dxf(ϕ∞))−1, where GId is the solution to the Poisson
equation with respect to the Identity mapping.3 In the second step, we use this property to show
that D2

xGh(ϕ∞) : Q(ϕ∞) can indeed be expressed using the derivatives of h and the numerically
tractable expressions W and V . To start, we take a step back to first look at the solution of the
differential equation

d

dt
Dxϕ(t,x) = Dx

(
f(ϕ(t,x))

)
= Dxf(ϕ(t,x))Dxϕ(t,x)

with initial condition Dxϕ(0,x) = I . Starting from steady-stateϕ∞, the above differential equa-
tion has the driftDxf(ϕ(t,ϕ∞))Dxϕ(t,x) and thus its solution at time t isDxϕ(t,x) = exp(Dxf(ϕ∞)t).
Returning back toDxGId(ϕ∞) we see, under consideration thatϕt is exponentially stable, that

DxGId(ϕ∞) =

∫ ∞

0

Dxϕ(τ,x)dτ =

∫ ∞

0

exp(Dxf(ϕ∞)τ)dτ = (−Dxf(ϕ∞))−1.

3It might appear to the reader that in the definition of the Poisson equation we restricted ourselves to function with
image inR. The extension to the multidimensional case however is straight forward by defining the Poisson equation
for each component of the function.
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The second property (2) is similarly shown. We know by Lemma 3 that D2
xGh(x) =

∫∞
0
D2

x(h ◦
ϕτ )(x)dτ , thus, we start by analyzing the time dependent termD2

x(h◦ϕ(τ, .))(x). By application
of the chain and product rule we obtain

d

dt
D2

xϕ(t,x)j,m,n =
(
D2

x

(
ϕ(t, .))f(ϕ(t, .))

)
(x)
)
j,m,n

=
∑
k

∂fj
∂xk

(ϕ(t,x))
∂2ϕk

∂xm∂xn
(t,x)

+
∑
k1,k2

∂2fj
∂xk1∂xk2

(ϕ(t,x))
∂ϕk1

∂xm
(t,x)

∂ϕk2

∂xn
(t,x).

Next, we set the initial condition to the equilibrium point ϕ∞ and keep the previously obtained
exponential form forDxϕ(t,ϕ∞) = exp(Dxf(ϕ∞)t) in mind. By application of the variation of
constants method, it is possible to obtain the solution for the above system which is given by

D2
xϕ(t,ϕ∞)j,m,n =

∑
u

∫ t

0

exp
(
Dxf(ϕ∞)(t− τ)

)
j,u

×
∑
k1,k2

∂2fu
∂xk1∂xk2

(ϕ(t,ϕ∞))× exp(Dxf(ϕ∞)τ)k1,m exp(Dxf(ϕ∞)T τ)k2,ndτ.

Taking the integral and switching the order of integration, one obtains thatD2
xG(ϕ∞) is equal to∫ ∞

0

D2
xϕ(t,ϕ∞)j,m,ndt =

∑
u

(
−Dxf(ϕ∞)

)−1

j,u

×
∑
k1,k2

∂2fu
∂xk1∂xk2

(ϕ(t,ϕ∞))

∫ ∞

0

exp(Dxf(ϕ∞)τ)k1,m exp(Dxf(ϕ∞)T τ)k2,ndτ. (2.45)

Under the consideration of the results of (1), taking the Frobenius product between equation (2.45)
andQ yields,

∑
u

(
−Dxf(ϕ∞)

)−1

j,u

∑
k1,k2

∂2fu
∂xk1∂xk2

(ϕ(t,ϕ∞))W k1,k2 .

Lastly, it remains to apply the above deductions to D2
xGh(ϕ∞) : Q(ϕ∞), i.e., the matrixQ(ϕ∞)

multiplied by the second derivative of the solution to Poisson equation w.r.t. h. Based on Lemma
3, we see that

D2
xGh(ϕ∞)m,n =

∑
i

∂h

∂xi
(ϕ∞)

∫ ∞

0

D2
xϕ(t,ϕ∞)i,m,ndt

+
∑
i,j

∂2h

∂xi∂xj
(ϕ∞)

∫ ∞

0

Dxϕ(τ,x)i,mDxϕ(τ,x)j,ndt.
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2.4 Application to Density Dependent Population Processes

Second to last, define the vectorV by

Vj =
1

2

∑
u

(
−Dxf(ϕ∞)

)−1

j,u

∑
k1,k2

∂2fu
∂xk1∂xk2

(ϕ(t,ϕ∞))Wk1,k2 . (2.46)

To see, that the initial statement indeed holds true, substitute the previously obtained, computable
expressions for

∫∞
0
D2

xϕ(t,ϕ∞)dt and that Dxϕ(t,x) = exp(Dxf(ϕ∞)t) into the equation
D2

xGh(ϕ∞) : Q(ϕ∞). By application of the identity (2.44) and the definition ofV as in Equation
(2.46) property 2 is obtained.

Lemma 3 (Differentiability of the Solution to the Poisson Equation [59]). Let ϕ(t,x) be the solu-
tion of the Cauchy problem d

dt
ϕ(t,x) = f(ϕ(t,x));ϕ(0,x) = x with drift f : X → RdimX .

Assume that bothϕ and f are k-times uniformly continuous differentiable and thatϕ has a unique
exponentially stable attractor. Further let h : X → R be a k-times differentiable function with uni-
form continuous k-th derivative. Then Gh is also k-times continuously differentiable with bounded
derivatives equal to

∫∞
0
Dk

x(h ◦ ϕτ )(x)dτ .

Proof. The proof is as in [59].

2.4.9 Higher Order Corrections
As shown in [54, 59], it is possible to extend refinement idea, given sufficient regularity of the dy-
namical system ϕ and h. Loosely speaking, for a refinement of order m, the refinement expansion
consists of a set of operators ∆i, i = 1, 2 such that

∆N =
1

N
∆1 +

1

N2
∆2 + o(

1

N2
).

In theory and under suitable differentiability assumptions, the method can be extended to obtain
even higher order expansion terms. This comes at the cost of extremely intricate expressions and
implementations which result in minor accuracy gains in applications. We also point out that in ap-
plication the first order correction usually strikes a good balance between the numerical complexity
and accuracy gain, example Section 3.5.1 - Table 3.2.
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3 Mean Field and RefinedMean
Field Approximations for
Heterogeneous Systems

In this chapter, we define an interaction model that allows obtaining asymptotic
convergence results for stochastic systems with heterogeneous object behavior, and
show that the error of the mean field approximation is of order O(1/N). We fur-
ther show how to adapt the refined mean field approximation, developed by the
authors of [54], and prove that the error of this refined approximation is reduced
toO(1/N2).

This chapter is based on our publication
S. Allmeier and N. Gast. “Mean Field and Refined Mean Field Approximations for Het-
erogeneous Systems: It Works!” Proceedings of the ACM on Measurement and Analysis of
Computing Systems 6:1, 25, 2022, 13:1–13:43. doi: 10.1145/3508033.
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3.1 Introduction
The mean field approximation method is a widely used tool to analyze large-scale and complex
stochastic models composed of interacting objects. The idea of the approximation is to assume that
objects within the system evolve independently. Following this assumption, interactions of objects
in the system are approximated by a “mean” behavior, which allows to model the system’s evolution
as a set of deterministic ordinary differential equations. Mean field approximation finds widespread
use in fields such as epidemic spreading [43, 90], load balancing strategies [87, 91], caching [60] or
SSDs [108]. Building on this approximation, a refined mean field approximation is introduced in
[54, 59] that greatly improves the accuracy of mean field approximations for populations ofN = 10
to N = 100 objects. The popularity of mean field approximation lies in the ease of defining and
solving the differential equations as well as the increasingly high accuracy for large systems.

Most of the theoretical work, however, has been done for systems where the interacting objects
have homogeneous transitions, as for density-dependent population processes of Kurtz [77], or can
be clustered into a finite number of groups with similar statistical behavior. Yet, in many models,
heterogeneity plays an important role. This is particularly relevant to model caches, where object
popularities vary broadly among contents, or epidemic spreading, where variations of sensibility
among agents can greatly influence the long-term dynamics and vaccination strategies [61]. Using a
finite number of clusters with homogeneous behavior simplifies the underlying models and essen-
tially ignores the actual heterogeneity. Up to now, there are virtually no fully heterogeneous models
with theoretical guarantees on why mean field approximation is a valid technique.

In this chapter, we generalize the notion of mean field approximation and refined mean field
approximation to stochastic systems composed of N heterogeneous objects and show that similar
asymptotic results as for the homogeneous case hold. For such a system, we show that it is possible
to construct a set of ordinary differential equations (ODEs) which approximate P(Sk(t) = s), the
probability for an objectk to be in a state s at time t. This can be used to approximate the expectation
of a function of the state of an object (such as the average queue length in a queuing system).

To give some intuition, the way we construct our approximations is to consider a scaled model
with C identical copies of each object. This allows one to define the mean field approximation
x(k,s)(t) and a1/C-expansion termv(k,s)(t)defined in [54]. These approximations are shown in [54]
to be asymptotically accurate as the number of copiesC goes to infinity. As the fully heterogeneous
system corresponds to having one copy, the heuristic reasoning is then to apply the approximation
with C = 1. Up to now, there was no theoretical foundation on why this should work because all
results assume that the number of copiesC goes to infinity.
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We provide the first rigorous justification of the validity of this approach. The main contribu-
tion of this chapter is to show that if x(k,s)(t) is the mean field approximation and v(k,s)(t) is the
expansion term defined in [54], then

P(Sk(t) = s) = x(k,s)(t) +O(1/N),

P(Sk(t) = s) = x(k,s)(t) + v(k,s)(t) +O(1/N2).

As an important corollary, if the system is composed of C copies of N heterogeneous objects, we
then haveP(Sk(t) = s) = x(k,s)(t)+(1/C)v(k,s)(t)+O(1/(CN)2). This shows that the accuracy
of the mean field and refined mean field approximation does not depend on the level of heterogeneity
of the system but only on the total number of objects (beingN orNC).

To do so, we develop a heterogeneous interaction model in which each object changes state ei-
ther unilaterally or by interacting with d− 1 other objects. The main assumption that we make in
our model is that the rate at which a given tuple of d individuals interact scales as O(1/Nd−1). As
there are O(Nd) such tuples, this guarantees a uniform bound on the interactions between tuples.
This model covers an extensive range of models with pairwise interactions, such as infection models,
load balancing strategies, or cache replacement policies. These approximations can be computed by
solving a differential equation that can be easily integrated numerically. For the mean field approx-
imation, the number of variables grows linearly with the number of different objects N . For the
refined approximation, it grows quadratically with N . Our proposed framework naturally extends
mean field models for homogeneous population processes and the results are comparable with [55,
77, 113]. Our approach does not assume any homogeneity in the system and does not cluster objects
into a finite number of classes. Hence, it can be applied to interacting systems where all objects are
different.

To illustrate our results, we provide two examples that show how the mean field and refined mean
field approximation can be applied. They also show that the hidden constants in the O(1/N) and
O(1/N2) error terms given by the theorems are small in practice. Our first example is a list-based
cache replacement algorithm studied in [60] consisting of N objects whose popularities follow a
Zipf-like distribution. We study how the cache popularities depend on the replacement policy for
the transient and steady-state regime. For transient results, we compare the mean field and refined
mean field approximation with simulations, which indicates that the refined mean field provides a
significant improvement of accuracy. The results are even more striking for the steady-state regime
for which it is possible to compute the exact steady-state distribution if the system size is small. This
allows us to compare the accuracy of the two approximations and the simulation to the exact value.
We observe that, for any reasonable computational power, the confidence intervals provided by the
simulation are higher than the error of the refined mean field approximation as soon as N exceeds
a few tens. In a second example, we apply the approximation techniques to a heterogeneous two-
choice load balancing model. The heterogeneity in the model is introduced by considering varying
server rates. As for the previous examples, we give a full description justifying the use of the mean
field models and show by numerical computation that the obtained results confirm the theoretical
statements. Numerical calculations for values such as the average queue length and queue length
tail distribution are given. We also compare the approximation results to a homogeneous variant of
the system where the server rates are set to the average server rate of the heterogeneous model. This
shows that, as expected, taking heterogeneity into account strikingly improves the accuracy of the
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results. For both examples, we adapt numerical methods from the toolbox developed by [6], which
allowed us to implement and solve the differential equations with relative ease.

3.2 RelatedWork
Generator and Stein’s method This chapter builds on the recent line of work regarding the
use of Stein’s method [102]. This method allows one to estimate precisely the distance between two
random variables by looking at the distance between the generators of two related stochastic sys-
tems. This method has seen a resurgence of interest in the stochastic network community since the
work of [31, 33]. There is still an active development in this area. For instance, this method has been
used to develop higher-order diffusion approximations [32, 33]. It is used in [66] to develop a nor-
mal approximation of a heterogeneous discrete time population process. One of the key differences
between our work and theirs is that the two aforementioned papers consider one-dimensional pro-
cesses (i.e., the state of each object of the system is either 0 or 1), and the extension to more complex
dynamics is not direct, at least from a computational point of view. One contribution of our work
is to demonstrate how to deal with multiple states, by changing the state representation.

Refined mean field methods Stein’s method has been successfully used to study the accu-
racy of mean field methods in [55, 74, 114]. These works show that the accuracy of the mean field
approximation is O(1/N) for a system with N homogeneous objects. By using an expansion of the
generator, these results have been extended in [54, 59] to propose what the authors called a refined
mean field approximation, that is similar to the system size expansion introduced in mathematical
biology [62, 63, 109].

In fact, there exists a close link between the refined approximation that we propose in the chapter
and the approach of [54, 59]. Since the results of [54, 59] only apply to systems composed of homo-
geneous objects, let us consider a hypothetical model composed ofC identical copies of each of the
N object, and let us denote by X [C copies]

(k,s) (t) the number of copies of the object k that are in state s
at time t. By [54, 59], there exists a constant v(k,s)(t) such that

E[X [C copies]
(k,s) (t)] = x(k,s)(t) +

1

C
v(k,s)(t) +O(1/C2). (3.1)

Since our original model corresponds to C = 1, the rationale behind our approximation is to use
x(k,s)(t) as a first order approximation and x(k,s)(t) + v(k,s)(t) as the refined approximation. Yet,
this is no a priori guarantee of whyO(1/C2) should be small forC equal to one. As a key technical
contribution, this chapter gives the theoretical foundation of this method.

This requires to overcome several difficulties, that are our main contributions compared to the
aforementioned papers:

1. We define an interaction model that can be dealt with by bounding the interaction rates.

2. A key idea of our work is to use the indicators Xk,s(t) ∈ {0, 1} and not the proportion of
objects in a given state. This allows us to construct the expansion terms and do the proofs.
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3. Similar to previous works [55, 74, 113], we use generators to reduce the analysis of the mean
field error to the study of the sensibility of an ODE with respect to its initial conditions (Sec-
tion 3.6.2). The extra difficulty in our case is to carefully analyze the remainder terms: while
to analyze (3.1), the error is a finite sum of O(1/C) terms, here we have a sum of N (or N2)
terms, some of them being of order O(1/N2) and others being of order O(1/N3). Dealing
with all these different cases requires quite some care and is the subject of Appendix 3.8.4.

Note that to study heterogeneous population models, it is quite common to assume that there are
N classes withC copies of the same objects of classk ∈ {1 . . . N}. This has been used for instance to
study load-balancing strategies [91] or cache replacement policies [65, 105]. Our approach generalizes
such methods as we assume that the objects can be fully heterogeneous. This is for instance what is
used in replica models [10, 86].

Heterogeneous populations andcaches In the performance evaluation community, het-
erogeneous population models are very common when studying cache replacement policies, where
the popularity of objects is typically assumed to follow a Zipf-like distribution. As the dynamics of
caches are intrinsically complicated, many mean field like approximations have been proposed, such
as the famous TTL-approximation of [48] (sometimes misleadingly called the Che-approximation
after it was rediscovered in [40]) or fixed-point approximation like [42]. Theoretical support exists
to prove that these approximations are asymptotically correct [51, 60, 71].

The generic method that we propose in this chapter has two advantages: First, we prove that
the accuracy of the mean field method is O(1/N) whereas the above papers only obtain bounds
in O(1/

√
N). Second, we develop a refined approximation that can greatly improve the accuracy

compared to the cited method, at the price of being computationally more expensive.

In particular, our result applies directly to the cache replacement model of [60] in which a mean
field approximation for the RAND(m) policy is derived. This chapter also contains a theorem that
shows that the mean field approximation isO(1/

√
N)-accurate. Yet, we do not think that the proof

of the main result of [60] is correct because of the use of a martingale inequality combined with the
infinite-norm (and not a L2-norm). More precisely, we believe that the problem in their proof is
just below their Equation (13) when Lemma 1(ii) is used. What their Lemma 1 implies is thatM(t)
is a Martingale such that E[∥M(t+ 1)−M(t)∥2] ≤ c. This is used below their Equation (13) to
imply thatE[∥M(t)∥2] ≤ ct. The problem is that this is true if the norm ∥M∥ is aL2 norm (or any
norm that can be written as a scalar product ∥M∥2 = ⟨M,M⟩ ) but not if ∥M∥ it is a supremum
norm. The norm used in [60] is a supremum norm and we do not believe it can be derived from
a scalar product. The approach that we take in this chapter is radically different as we work with a
comparison of generators. This allows us to correct the proof of [60] by obtaining a tighter bound.
Note that we do not claim that their result is false, but only that the proof is false. We explain in
Appendix 3.8.3 that their result is a consequence of ours (and that our results give a finer bound).
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3.3 TheHeterogeneous PopulationModel

3.3.1 InteractionModel
We consider a population model composed ofN interacting objects. Each object evolves in a finite1

state space S . The state of the k-th object at time t is denoted by S(N)
k (t) ∈ S and the state of the

system at time t is given byS(N)(t) = (S
(N)
1 (t), . . . , S

(N)
N (t)) ∈ SN . We assume that the stochastic

process SGN

= (S(N)(t))t≥0 is a continuous time Markov chain (CTMC) whose transitions are
the results of interactions between objects. More precisely, we assume for any tuple of d objects
k = (k1, .., kd), that these objects jump simultaneously2 from their states s = (s1, . . . , sd) to s′ =
(s′1, . . . , s

′
d) ̸= (s1, . . . , sd) at rate 1

dNd−1 r
(N)
k,s→s′ . All such interactions occur independently. We

also assume that d ≤ dmax is a constant independent ofN , i.e., the maximal amount of interacting
objects does not scale with the system size.

Throughout the chapter, we will refer to such a model as a heterogeneous population model. Note
that while a transition can affect up to dmax objects, all the examples studied in the chapter will be
with dmax = 2 for which there are two types of transitions:

• d = 1: An object jumps without interacting with others. We call this a unilateral transition.

• d = 2: Two objects interact. We call it a pairwise interaction.

The critical assumption of our model is that the interactions between d objects scale asO( 1
Nd−1 ).

In particular, the rates of unilateral transitions scale like O(1) and the one of pairwise interactions
likeO(1/N). This 1/Nd−1 factor is here because there areO(Nd−1) tuples of d objects. Hence, our
condition implies that the total rate of transitions is O(N) and that one tuple cannot have much
higher rates than other tuples.

To simplify notations, we assume that for any permutation σ of the set {1 . . . d}, the rates satisfy
r
(N)

k1,...,kd,(s1,...,sd)→(s′1,...,s
′
d)

= r
(N)

kσ(1),...,kσ(d),(sσ(1),...,sσ(d))→(s′
σ(1)

,...,s′
σ(d)

). This does not imply that ob-
jects are homogeneous but should be seen at a notation artifact. An alternative notation would be
to consider tuples such that k1 < k2 < · · · < kd and to multiply all rates by d!. This would lead to
the same model but at the price of heavier notations.

3.3.2 State Representation
The key element of our analysis is to use an alternative, binary based, representation of the state
space. For an object k ∈ {1 . . . N} and a state s ∈ S , we defineX(N)

(k,s)(t) as

X
(N)
(k,s)(t) = 1{S(N)

k (t)=s} :=

{
1 if object k is in state s at time t,
0 otherwise.

1The fact that objects share the same state space is done without loss of generality as we do not assume that Markov
chains are irreducible.

2Note that for the transitions caused by interactions, we do not impose that all objects jump: we may have si = s′i, i ∈
{1, . . . , d} in which case some objects keep their state.
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The state of the system is described byX(N)(t) = (X
(N)
(k,s)(t))k∈{1...N},s∈S withX (N) ⊂ {0, 1}N×|S|

being the set of attainable states forX(N) = (X(N)(t))t≥0. In particular, for all x ∈ X (N), one
has
∑

s∈S x(k,s) = 1 which follows from the fact that an object can only be in one state at any time.
The notationX(N) is less compact than the original representationS(N) but will allow for an easier
definition of the mean field and refined mean field approximation.

The transitions of the model can all be expressed in terms ofX(N). Let e(N)
(k,s) denote a matrix of

sizeN×|S|whose (k, s) component is equal to 1, all others being equal to 0. If object k transitions
from state s to state s′,X(N)changes intoX(N) + e

(N)
(k,s′) − e

(N)
(k,s). Hence, expressed as a function

ofX(N), the processX(N) jumps to (for k1, k2, . . . ∈ {1 . . . N} and s1, s′1, s2, s′2, . . . ∈ S):

X(N)+e
(N)

(k1,s′1)
−e(N)

(k1,s1)
at rate r

(N)

k1,(s1)→(s′1)
X

(N)
(k1,s1)

(3.2a)

X(N)+e
(N)

(k1,s′1)
−e(N)

(k1,s1)
+ e

(N)

(k2,s′2)
−e(N)

(k2,s2)

at rate
1

2N
r
(N)

k1,k2,(s1,s2)→(s′1,s
′
2)
X

(N)
(k1,s1)

X
(N)
(k1,s1)

(3.2b)

X(N)+e
(N)

(k1,s′1)
−e(N)

(k1,s1)
+ . . .+e

(N)

(kd,s
′
d)
−e(N)

(kd,sd)

at rate
1

dNd−1
r
(N)
k1,...,kd,s→s′X

(N)
(k1,s1)

. . . X
(N)
(kd,sd)

(3.2c)

In the above equations (3.2a) corresponds to a unilateral transition of object k1 from s1 to s′1,
(3.2b) corresponds to transitions caused by a pairwise interaction between object k1 and k2 and
(3.2c) describes the general form of the transitions of d interacting objects. Recall that we assume
that (s1, s2, . . .) ̸= (s′1, s

′
2, . . .) but we do not necessarily assume all states change, i.e., a pairwise

interaction might result in either one object changing state or two objects that change state simul-
taneously.

3.3.3 Main Notations

Throughout the chapter, we use bold letters (like X(N),x, . . .) to denote matrices and regular
letters (like X(N)

(k,s), x(k,s), N, . . .) to denote scalars. Capital letters (like X(N),S(N)) denote ran-
dom variables whereas lower case letters (x, v(N)

(k,s), . . .) are for deterministic values. The indices
k, k1, k

′, . . . are reserved for objects while s, s1, s′ . . . are reserved for the states.
In the results below, when we write that a quantity h satisfies h = O(1) or h = O(1/N), this

means that there exists a constant C independent of N such that h ≤ C or h ≤ C/N . In general,
these constants do depend on other parameters of the problem (like |S|, r̄, or t).

3.4 Main Results

In this section, we define the mean field and refined mean field approximation for the heterogeneous
system and formulate the corresponding theorems.
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3.4.1 Drift andMean Field Approximation

For a given state x ∈ X ⊂ {0, 1}N×|S|, we define the drift of the system in x as the expected
variation of the stochastic processX(N) at time t:

f (N)(X(N)(t)) = lim
dt→0

1

dt
E[X(N)(t+ dt)−X(N)(t) |X(N)(t) = x].

Based on the transitions (3.2), if d ≤ 2 (i.e., only unilateral and pairwise interactions)3, the (k, s)
component of the drift can be expressed as:∑

s′ ̸=s

(r
(N)
k,(s′)→(s)x(k,s′) − r

(N)
k,(s)→(s′)x(k,s)) (3.3)

+
1

N

∑
s′,k1,s1,s′1

(r
(N)

k,k1,(s′,s′1)→(s,s1)
x(k,s′)x(k1,s1) − r

(N)

k,k1,(s,s1)→(s′,s′1)
x(k,s)x(k1,s′1))

The first term corresponds to unilateral transitions while the second term corresponds to transitions
caused by pairwise interactions. Note that compared to (3.2b), there seems to be an extra factor 2
in front of the pairwise interactions. This is not an error and it is due to the fact that we fixed the
position of s in the above equation.

Note that if the conditional expectation is only defined for x ∈ X (N) ⊂ {0, 1}N×|S|, the above
expression (3.3) can be extended to a function f (N) : Conv(X (N)) ⊂ [0, 1]N×|S| → RN×|S|,
where Conv(X (N)) denotes the convex hull ofX . For a given initial conditionx ∈ X (N), we define
the mean field approximation of the heterogeneous population model as the solution of the ODE
d
dt
ϕ(N)(x, t) = f (N)(ϕ(N)(x, t)) that starts in x = X(N)(0), and we denote by ϕ(N)(x, t) the

value of this solution at time t. The solution is unique as f (N) is Lipschitz-continuous (all elements
of f (N) are polynomials) and ϕ(x, t) takes values in a bounded set. Notice, from the definition of
the ODE, that ϕ(N)

(k,s) ∈ [0, 1], and
∑

s ϕ
(N)
(k,s)(x, t) = 1 for all t and x in Conv(X (N)).

3.4.2 Accuracy of theMean Field Approximation

To obtain asymptotic properties we require that there exists a uniform bound r̄, independent ofN ,
such that for all s1, s′1, s2, s′2, ... ∈ S and k1, k2, . . . ∈ {1, . . . , N} we have:

r
(N)

k1,...,kd,(s1,...,sd)→(s′1,...,s
′
d)
≤ r̄. (3.4)

Theorem 4. Assume that the model, defined in Section 3.3.2, satisfies (3.4). Let ϕ(N)(x, t) be the
solution of the ODE introduced in Section 3.4.1 with initial condition X(N)(0) = x ∈ X (N) and
drift f (N). Then, for (k, s) ∈ {1, . . . , N} × S and t <∞,

P(Sk(t) = s) = E[X(N)
(k,s)(t)] = ϕ

(N)
(k,s)(x, t) +O(1/N). (3.5)

3We give the general drift definition in Appendix 3.8.2
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3.4 Main Results

Key ideas of the proof. A complete proof is provided in Section 3.6.3. Here we only give a brief
overview. Note that by definition of the initial value problem and the drift being a polynomial,
the differentiability of the solution ϕ w.r.t. the initial condition and time is given. In the first
part of the proof, we borrow ideas from [55, 74] and use a Taylor’s expansion ofϕ(N) to show that
P(Sk(t) = s) − ϕ

(N)
(k,s)(x, t) can be bounded by a weighted sum of ∂2ϕ(k,s)(x,t)

∂x(k′,s′)∂x(k′′,s′′)
. The key tech-

nical difficulty of the proof is then to show that these terms are small when the number of objects is
large. To do so, we distinguish the cases where k′ and k′′ refer to the same object as k or not.

The statement of the theorem can be interpreted as saying that the probability of an object k in
the Markov chainX to be in state s is approximated byϕ(k,s) with an accuracy ofO(1/N). Indeed,
with this result we can obtain similar statements as for the homogeneous case where in many cases
asymptotic results are proven for Z(N)

s (t) = 1
N

∑N
k=1X(k,s)(t), the stochastic process describing

the fraction of objects which are in state s. It should be noted that the solution of the ODEϕ(k,s),
taking values in [0, 1], is not close to the value ofX(k,s), which indicates if object k is in state s and
takes the values zero or one. Hence, single trajectories of the stochastic process are not comparable
to the approximation.

To illustrate this result, let us consider a cache model with a total of N = 4 objects and a cache
that can store 2 objects. We assume that the popularities follow a Zipf distribution of parameter
0.8, meaning that object k is requested at rate λk = 1/k0.8 and use the RANDOM replacement
policy. The policy exchanges objects the following way: When an object is requested and inserted in
the cache, we evict another object picked uniformly at random among the two objects in the cache.
Initially, the cache contains the objects 3 and 4.

In Figure 3.1, we plot the behavior of the cache as a function of time. Each plot corresponds to
a different object and contains three curves: In gray we plot one stochastic trajectory of the cache,
X(k,in)(t), where X(k,in) = 1 means that the object k is in the cache and 0 that it is not. In blue,
we plot the probability for object k to be in the cache at time t, P(object k in cache at time t) =
E[X(k,in)(t)], which is computed by averaging over 1000 trajectories. In green, we plot the solu-
tion of the mean field approximation, ϕ(N)

(k,in)(x, t). We emphasize that X(k,in)(t) is never close to
ϕ
(N)
(k,in)(x, t), because the former can only take the values 0 and 1 whereas the latter takes values be-

tween 0 and 1. Moreover, the latter, which is the mean field approximation, seems to provide a very
good approximation for the object to be in the cache.
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Figure 3.1: Behavior of the RANDOM policy for a cache of size two and a total of four objects. For each of
the four objects, we compare the stochastic system with the mean field approximations.
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3 Mean Field and Refined Mean Field Approximations for Heterogeneous Systems

3.4.3 Accuracy of the RefinedMean Field Approximation
In [54, 59], Gast et al. introduced a refined mean field approximation which provides significantly
more accurate approximations in the homogeneous case. The idea is to study higher moments of
X(k,s) − ϕ(k,s) and to derive refinement terms. Taking the refinements into account is especially
important for small to moderate system sizes, i.e. N ≈ 10−50, where the mean field approximation
does not capture the dynamics of the stochastic system well. In this section, we show how to derive
the refinement for our heterogeneous model.

To construct the refinement term, we consider an (imaginary) system in which there areC replicas
of the same object. Let us denote X [C copies]

(k,s) (t) the fraction of replicas of type k that are in state s
at time t. The process X[C copies] is a density-dependent population process and our original process
is given by X = X [1 copy]. The mean field approximation of X [C copies] is also ϕ(N). The idea of
[54] is to study the stochastic fluctuation ofX [C copies]

(k,s) (t) around its mean field approximation. The
authors show that there exists a set of deterministic values v(N)

(k,s)(t) such that

E[X[C copies]
(k,s) (t)] = ϕ

(N)
(k,s)(x, t) +

1

C
v
(N)
(k,s)(x, t) +O(1/C2). (3.6)

The values v(N)
(k,s)(t) are shown in [54] to satisfy a system of linear ordinary differential equations

whose solution can be expressed in integral form as:

v(k,s)(x, t) =
1

2

∫ t

0

∑
(k1,s1),(k2,s2)
∈{1,...,N}×S

Q(k1,s1),(k2,s2)(ϕ(x, τ))
∂2ϕ(k,s)

∂x(k1,s1)∂x(k2,s2)
(ϕ(x, τ), t− τ)dτ

where Q(k1,s1),(k2,s2)(x) corresponds to the expected change of the covariance between the values
ofX(k1,s1) andX(k2,s2) of the stochastic system at some given pointX = x. We formally introduce
and elaborate more on the refinement terms in Appendix 3.8.2.

In our heterogeneous population model, we have no replica which corresponds to settingC = 1.
Hence, the above bound does not guarantee that theO(1/C2) should be small forC = 1. The next
theorem shows that, surprisingly, using the refined approximation (3.6) with C = 1 copy leads to
an approximation that is an order of magnitude more accurate than the mean field approximation
provided before. When comparing Equation (3.5) and (3.7), what this theorem shows is that the
correction v(N)

(k,s)(x, t) is of order O(1/N) and is the leading term of the O(1/N)-term of Equa-
tion (3.5).

Note that to obtain the accuracy bound, No further assumption is needed compared to the case
of the mean field approximation. That is, we assume that the parameters r are uniformly bounded.

Theorem 5. Assume that the model, defined in Section 3.3.2, satisfies (3.4). Let ϕ(N)(x, t) be the
solution of the ODE introduced in Section 3.4.1 with initial condition X(N)(0) = x ∈ X (N) and
drift f (N). Let v(N)(x, t) be the solution of the refinement term explicitly defined in Appendix 3.8.2.
Then, for (k, s) ∈ {1, . . . , N} × S and t <∞,

P(Sk(t) = s) = ϕ
(N)
(k,s)(x, t) + v

(N)
(k,s)(x, t) +O(1/N2). (3.7)
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3.4 Main Results

Key ideas of the proof. A complete proof is provided in Section 3.6.4. The proof of Theorem 5 uses
the same methodology as the proof of Theorem 4 but refines the analysis to extract the term v.
First, we use a second-order Taylor expansion instead of the first order expansion used in the proof
of Theorem 5, this allows us to derive an expansion term in integral form. Second, we show that
this expansion term is essentially equal to the refinement term v. Last, we show that the remainder
terms are of order O(1/N2) by carefully studying how small the third and fourth derivatives of ϕ
with respect to its initial condition are.

The theorem shows that, by adding the refinement term, the error of the refined approximation
is of orderO(1/N2), which is an order of magnitude better than theO(1/N) of the classical mean
field approximation. This implies that both equations are asymptotically exact as the number of
interacting objects goes to infinity. Hence, the refinement is especially interesting to approximate
systems with few interacting objects. Note that in theory, it is possible to obtain a refined-refined
approximation that has an accuracy of O(1/N3). For that, one can adapt the 1/N2-expansion of
[54] to compute a second expansion term. This expansion depends on up to the fourth derivative
of ϕ. Yet, proving carefully that this expansion is O(1/N3)-accurate seems difficult as it requires
obtaining precise estimates of up to the sixth derivative of ϕ. Also, from a practical point of view,
computing such an expansion involves solving an ODE withO((NS)4) variables which seems dif-
ficult as soon as N grows. Hence, in this chapter, we restrict our attention to the first expansion
term.

To illustrate how this refinement improves the accuracy compared to the classical mean field, we
consider the same cache replacement policy as the one studied in Figure 3.1, with four objects and a
cache of size 2. Compared to the previous figure, we now added an orange curve that corresponds to
the refined mean field approximation. We observe that, if the mean field approximation was good,
the refined mean field approximation seems almost exact.

In fact, the refined mean field approximation lies within the confidence interval of the sample
mean which is calculated from 1000 sample trajectories of the underlying system. It is noticeable
that computing the mean field and refinement term takes about 150ms whereas simulating 1000
sample paths and calculating the sample mean takes several seconds. This suggests that for the same
computational budget, the refined mean field approximation is more accurate than the simulation.
We will elaborate more on that in Section 3.5.1.
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Figure 3.2: Behavior of the RANDOM policy for a cache of size 2 and a total of four objects. For each of
the four objects, we compare the stochastic system with the mean field and refined mean field
approximations.

45



3 Mean Field and Refined Mean Field Approximations for Heterogeneous Systems

On the applicability to partially heterogeneous systems

Consider the case that the stochastic system is not fully heterogeneous, i.e. there exists a finite num-
ber of classes (say N ), each class having C objects that have the same behavior. Such a model cor-
responds to our model of C copies. As this model is a density dependent process, the results from
[54, 59] show that the mean field approximation isO(1/C)-accurate and that the refined mean field
approximation is O(1/C2) accurate for the C-copy model. We now show that Theorems 4 and 5
can be used to obtain the following much sharper bound:

E[X[C copies]
(k,s) (t)] = ϕ

(N)
(k,s)(x, t) +

1

C
v
(N)
(k,s)(x, t) +O

(
1

(CN)2

)
. (3.8)

The (only) difference between this equation and (3.6) is that the termO(1/C2) of (3.6) is replaced
by the much smaller termO(1/(CN)2). This implies that the accuracy of the mean field interaction
model does not depend on the number of homogeneous copies but only on the total number of
objects.

To see why (3.8) works, we remark that our model withC copies ofN classes can be represented
by a fully heterogeneous model withN ′ = CN objects (one just have to use equal rates for objects
that are similar). The result of Theorem 4 and 5 imply that the mean field ϕ(N ′) and refined mean
field ϕ(N ′) + v(N

′) approximations areO(1/N ′) andO(1/(N ′)2) accurate. By replacing n′ by nC
and summing over identical objects, one obtains (3.8).

3.4.4 Numerical Complexity
From a computational point of view, the mean field and refined mean field approximations greatly
fasten the estimation of transient or steady-state values compared to a direct study of the origi-
nal Markov process S(N). Indeed, the continuous-time Markov chain S(N) has up to |S|N states
where the mean field approximation can be computed by solving a non-linear ODE withN |S| vari-
ables. As shown in Appendix 3.8.2, the refinement term v(N) is the solution of a linear ODE with
N |S|+(N |S|)2 variables. This means that both approximations can be solved by using standard nu-
merical integrators. Moreover, the number of dimensions of these ODEs grow linearly (for the mean
field) or quadratically (for the refinement) in the number of objects whereas an exact analysis grows
exponentially with the number of objects. In some cases, computing the drifts or its derivative can
be costly as it grows linearly with the total number of possible transitions at a given statex ∈ X (N):
the number of transitions can grow exponentially with the maximal number of interacting objects
dmax. Yet, it is often the case that closed form expression or simplifications are obtainable. It is also
noticeable that for dmax = 2 the second derivative of the drift becomes constant, which can be used
to speed up computations.

To study the time taken to compute the mean field and refined mean field approximation in more
detail, we consider the RANDOM model already presented in Figure 3.2 and we vary the number
of objects N from 10 to 1000. For each system size N , we measure the time to compute the four
values described next and we report them in Table 3.1.

• (Transient) The first two columns correspond to the computation of the mean field approxima-
tion x(N)

(k,·)(t), and the refined approximation (x + v)
(N)
(k,·)(t) for t ∈ [0, 1000]. The computation
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3.5 Numerical Experiments

Transient up to T = 1000 Steady-state (=Fixed point)
N mean field refined m.f. mean field refined m.f.
10 30ms 180ms 2ms 2ms
30 30ms 370ms 3ms 5ms
50 35ms 1s 2ms 6ms

100 60ms 14s 3ms 30ms
300 170ms –∗ 9ms 200ms
500 300ms –∗ 10ms 700ms

1000 970ms –∗ 30ms 9s

Table 3.1: Computation time of the mean field and refined mean field approximation for the RANDOM
model as a function of the number of objects N .

∗ “–” means that the ODE solver did not finish before 30 seconds.

is done by using a straightforward implementation of the ODEs given in Appendix 3.8.2, which is
solved by using the function solve_ivp of scipy. There is no particular optimization of the code to
use that a large number of terms are 0. We observe that computing the mean field approximation
seems to scale linearly with N and can be done for a system of more than a N = 1000 objects. For
the refined mean field approximation, the computation cost grows quickly whenN exceeds 100 (it
takes several minutes forN = 200 objects).

• (Steady-state). The last two columns correspond to the computation of the limiting value as t
goes to infinity: x(N)

(k,·)(∞) = limt→∞ x
(N)
(k,·)(t) and v(N)

(k,·)(∞) = limt→∞ v
(N)
(k,·)(t). We observe that

the computation of these values is much faster: the computation of the mean field approximation is
essentially instantaneous whereas the computation of the refined mean field is doable forN = 1000.
This is since the computation of the steady-state values corresponds to finding the fixed point of a
linear system of ODEs, which is done by solving a linear system.

The choice between the mean field and refined mean field approximation can certainly depend
on the system size as the complexity of the former grows linearly with N and quadratically for the
latter. Hence, for system sizes larger than N ≥ 100, the computation time of the refined mean
field increases rapidly. As shown in Theorem 4, for large N the mean field approximation already
gives a good estimate of the true values. This makes the refined approximation more interesting for
reasonable system sizes (say N ≤ 100). Note that for a homogeneous system, the complexity of
computing the refined approximation does not depend on the number C of replicas. For a fully
heterogeneous system, this is no longer the case because the v(N)

(k,·) depends on the object’s identity.

3.5 Numerical Experiments
In this section, we illustrate our main results with two examples, a cache replacement model and a
two-choice load balancing model. We will see that both models fulfill the requirements for Theo-
rems 4 and 5 and that the hidden constant given in the theorems is small. The two examples are
chosen to illustrate models for which the classical, homogeneous mean field approximation cannot
be used but our heterogeneous framework applies.
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3.5.1 Application to a Cache Replacement Algorithm: the
RANDOM(m)Model

As a first example we consider the list-based RANDOM(m) cache replacement policy which was
introduced in [60, 64]. List-based cache replacement policies are used to order content in a cache
separated into lists. The cache is separated into ℓ := |S|− 1 lists with sizesm(N)

1 , . . . ,m
(N)
ℓ . When

an object is requested, if it is not in the cache, it is inserted in the first list and replaces a randomly
chosen object from it. If the object is in a list s, it is promoted to list s + 1 and a randomly chosen
object from list s + 1 is moved to list s. If an object that is not in the cache is requested we call it
a ‘miss’ otherwise a ‘hit’. It is shown in [60] that list-based cache replacement policies can greatly
improve the hit rate compared to the classical RANDOM or LRU policies, at the price of being less
responsive. The authors of [60] used a mean field approximation for which some theoretical support
was given (essentially by showing that the error of the mean field approximation is O(1/

√
N)). In

this section, we push this analysis further in two directions. First, we show that our framework im-
proves on the bound of [60] by showing that the error of the mean field approximation isO(1/N)

and not O(1/
√
N). Second, we show that our refined approximation provides an extremely accu-

rate approximation (essentially more accurate than simulation). While this last fact was empirically
observed in [36], Theorem 5 provides theoretical support by showing that the error of the refined
approximation isO(1/N2).

Model and Approximations

We consider that there are N objects with identical sizes. Requests for an object k arrive according
to a Poisson process of intensity λk. In our framework, the state of object k at time t is S(N)

k (t) ∈
{0, 1 . . . ℓ}, that represents the list in which object k is ("0" means that the object is not stored in
the cache). Following our framework, we denote by X(k,s)(t) the random variable that equals 1 if
object k is in list s and 0 otherwise. According to the RANDOM(m) policy, if object k is in list
s ∈ {0, 1, . . . , ℓ − 1} and gets requested, then it is moved into list s + 1 and a randomly selected
object (say k1) from list s+1 moves into list s. The corresponding transitions for the Markov chain
X are:

X 7→X + e(k,s+1) − e(k,s) + e(k1,s) − e(k1,s+1) at rate
λk

m
(N)
s+1

X(k,s)X(k1,s+1). (3.9)

Here, λkX(k,s) is the rate at which object k is requested while being in list s, andX(k1,s+1)/m
(N)
s is

the probability that object k1 is in list s+ 1 and is chosen to be exchanged.
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3.5 Numerical Experiments

The drift of the stochastic system is the vector (f(k,s)(x))(k,s). By definition, for object k in list
s, the (k, s) component of the drift is

f(k,s)(x) =λkx(k,s−1) −
N∑

k1=1

λk1
ms

x(k1,s−1)x(k,s)

+
( N∑
k1=1

λk1
ms+1

x(k1,s)x(k,s+1) − λkx(k,s)
)
1{s<ℓ}.

The mean field approximation is the solution of the ODE ẋ = f(x). Note that this ODE is the
same as the one given in [60].

The transitions of this model are pairwise interactions with b(N)
k,k1,s,s+1,s+1,s =

λk

m
(N)
s+1/N

as defined
in (3.2b). There is no unilateral transition. To apply Theorems 4 and 5, we assume that the list sizes
m

(N)
i grow linearly withN which guarantees that b remains bounded by b̄ = maxk λk

mins(ms/N)
. Therefore,

the assumptions of the theorems are satisfied as soon as the values λk are bounded and the list sizes
grow linearly with the number of objects. This guarantees that the mean field approximation is
O(1/N) accurate whereas the refined mean field approximation isO(1/N2) accurate.

Transient Analysis

We calculate the solution of the ODEs for the mean field and refined mean field approximation
and compute the simulations by adapting the toolbox [6]. We implement the Markov chain, the
drift f , the drift derivatives and Q for the approximations based on the transitions (3.9). For our
numerical example, we consider a cache with N = 20 objects for which the request rates follows a
Zipf distribution with parameterα = 0.8, that is,λk = A/kα withAbeing a normalizing constant.
We consider a cache with three lists of sizesm1 = 5,m2 = 3, andm3 = 2.

In Figure 3.3 we compare the mean field and refined mean field approximations of the cache popu-
larities, i.e.,

∑N
k=1 λkx(k,s) and

∑N
k=1 λk(x(k,s)+v(k,s)) for s = 0, 1, . . . , 3, against the “true” value∑N

k=1 λkE[X(k,s)], s = 0, 1, . . . , 3 that is estimated by simulation. We compute the sample mean
and the 95-percent confidence interval of the cache popularities by running 2000 Markov chain
simulations. This figure shows that the mean field approximation captures the qualitative behavior
of the stochastic process very well. Quantitatively, the mean field provides a good approximation
but does not accurately capture the behavior of the system, especially for the third list. The values
of the refined mean field approximation give a considerably better approximation. It lies within the
95-percent confidence interval of the sample mean and seems to be almost exact.

Yet, evaluating how precise the refined approximation is difficult since it lies within the confidence
interval of the simulation. To study this error in more detail, Next we study the steady-state behavior
of the cache, for which an exact analysis is doable whenm is small enough.

Steady-state Analysis

The previous results show that the mean field and refined mean field can accurately approximate the
transient behavior of the RANDOM(m) policy. In Figure 3.4, we compare the steady-state values
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Figure 3.3: Transient state comparison of cache popularities.

of the simulation, mean field and refined mean field approximation against an exact solution. To
make the figure visible, we consider a case with 8 objects having a Zipf popularity with parameter
0.5 and three lists of sizes 2. This figure shows that even for the steady-state, the mean field and
refined mean field approximation are very good estimates of the true mean. As for the transient
regime, this figure shows that the refined mean field approximation captures the cache popularities
more closely than the mean field approximation: the curve provided by simulation and by refined
mean field approximation are almost indistinguishable. Note that the bound obtained in Theorem 4
and 5 are only for the transient regime. We believe that obtaining a similar bound for the steady-state
is possible but requires to precisely control how fast the mean field approximation converges to its
fixed point. We leave this for future work.
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Figure 3.4: Steady-state probabilities estimated by simulation, mean field and refined mean field approxima-
tion.

While the previous figure suggests that the refined mean field is extremely accurate, it does not
give a precise idea of how accurate the approximation is. To go one step further, we consider a cache
model with N different objects following a Zipf popularity with parameter α = 0.5, and a cache
with two lists of size m1 = m2 = ⌊0.3N⌋. We study the accuracy of the mean field and refined
mean field approximation asN grows. One difficulty to do so is that when the number of objectsN
is large, obtaining an accurate simulated estimation of P(Sk = s) for all (k, s) ∈ {1 . . . N} × S is
difficult. As we show below, the refined mean field seems more accurate than the simulation as soon
asN is more than 20.
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3.5 Numerical Experiments

Mean field Refined mean field Simulation
N Error N × Error (time) Error N2 × Error (time) Error (time)
10 0.0142 0.142 (10ms) 0.00197 0.197 (10ms) 0.00026 (4.3s)
20 0.0074 0.149 (11ms) 0.00049 0.197 (13ms) 0.00043 (4.6s)
30 0.0050 0.151 (14ms) 0.00022 0.196 (17ms) 0.00047 (4.9s)
40 0.0038 0.153 (13ms) 0.00012 0.195 (22ms) 0.00055 (6.1s)
50 0.0031 0.154 (17ms) 0.00008 0.193 (30ms) 0.00055 (5.7s)

Table 3.2: Average per-object error of three estimation methods: mean field, refined mean field and simula-
tion. We also indicate in parentheses the time taken to compute these numbers.

We show in Appendix 3.8.3 that one can use the product form of the steady-state distribution to
obtain a recurrence equation for the steady-state probability of P(Sk = s). While the complexity
of computing this is quite large for large caches (our implementation does not allow us to compute
it for more than 3 lists of size 10), it is possible to compute the exact steady-state distribution for
relatively small values of m. We call this value πexact

(k,s) . We also compute an estimation πmethod
(k,s) for

each method ∈ {mean field, refined mean field, simulation}. For the estimate computed by using
simulations, we simulated 108 requests and estimate the steady-state probability after a warp-up
period of 107 requests. The average error of a method is defined as

Error(method) =
1

N

∑
k,s

∣∣∣πmethod
(k,s) − πexact

(k,s)

∣∣∣. (3.10)

We report in Table 3.2 the error of the three estimation methods (mean field, refined mean field
and simulation). By Theorem 4 and 5, we expect the average error of the mean field to be of order
O(1/N) and the error of the refined mean field to be of orderO(1/N2). This is what we observe in
Table 3.2, in which we also show the error multiplied by N or N2 (depending on the method), to
emphasize the convergence rate. We also observe that whenN is larger than20, the simulation makes
more errors than the refined mean field. Note that, the value obtained by simulation is an unbiased
estimator of the true value, and the error that we report arises because we can only simulate a finite
number of requests. For our simulation, we choose 108 requests to have a reasonably fast method (it
takes between 5 and 10 seconds to simulate the 108 requests by using an optimized C++ simulator).
As a matter of comparison, we also indicate in parentheses the time taken by our implementation
to compute the mean field and refined mean field approximation. Since we consider a relatively
small system (at most N = 50 heterogeneous objects), the computation of the refined mean field
approximation is fast (less than 30ms). This shows forN ≥ 30, the refined mean field is much more
accurate than the simulation, while being much faster to compute. The time taken to simulate a
system ofN objects grows with the number of heterogeneous objectsN because the complexity of
sampling from a Zipf distribution with N object grows with N . Yet, this additional computation
cost is low (sampling from N objects can be done in O(logN)). For the refined mean field, the
situation is different and the computation time might be large for high values ofN . Our experiment
suggests that it is possible to compute a refined mean field approximation for a few hundred objects
in a relatively fast time (less than 5 seconds). Note that forN = 500 objects, the error of the refined
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mean field approximation is in theory 100 times smaller than the error reported in Table 3.2 for
N = 50 (i.e., extremely small).

3.5.2 Application to a Load Balancing Algorithm: The two-choice
Model

Model and Approximations

In our second example, we consider a variation of the well studied two-choice model [87]. In con-
trast to the homogeneous case, where all servers have equal service rate parameters, we consider a
heterogeneous setup in which processors can have different speeds. We study the impact of the het-
erogeneity of servers on their performance. Note that a similar analysis was done in [91] by using two
classes of servers. The purpose of this example is twofold. It illustrates that our framework can in-
corporate load balancing models with heterogeneous servers. It also shows that taking heterogeneity
into account in such systems is important if one wants to characterize the performance precisely.

The model consists of N servers with heterogeneous service rate parameters µk, k = 1, . . . , N
and a finite buffer of size b, including the job in service. Jobs arrive according to a Poisson process
of rate λn, we call λ the arrival rate. For each incoming job, we randomly pick two servers. The job
is then assigned to the server which has the least number of unfinished jobs. If both servers have
the same queue length and a full buffer, the job is discarded. Otherwise, at equal queue length, the
assignment between the two servers is done at random. The service time of a job in the queue of
server i is exponentially distributed with mean µi. The state of a server k at time t is its queue length
Sk(t) ∈ S = {0, 1, . . . , b}, state 0 is referring to the idle state.

We denote by X(k,s) the random variable that equals 1 if server k has s jobs. The processX =
(X(k,s))(k,s) is a Markov chain whose transitions are (for all k, k1 ∈ {1 . . . N}):

X 7→ X − e(k,s) + e(k,s−1) at rate µkX(k,s), (3.11a)

X 7→ X + e(k,s+1) − e(k,s) at rate (2λN1{s1≥s+1} + λN1{s1=s})
X(k,s)

N

X(k1,s1)

N
. (3.11b)

In the above equation, the first type of transition (3.11a) corresponds to the completion of a job by
server k when the queue is of size 1 ≤ s ≤ b. It reduces the queue length from s to s − 1 which
sets X(k,s) to 0 and X(k,s−1) to 1. The second type of transitions, equation (3.11b), corresponds to
adding a job to a server k having 0 ≤ s ≤ b − 1 jobs in the buffer. In this case, the queue size is
increased by one from s to s + 1. To explain the transition rate we see that the servers k, k1 can be
selected in two ways, by selecting k or k1 first and the other second. In the case that both queues
have equal length, the chance to add the job to server k is 1/2. If both buffers are full, the job is
discarded.

This model has both, unilateral transitions with r(N)
k,(s)→(s−1) = µk and pairwise interactions with

r
(N)
k,k1,(s,s1)→(s+1,s1)

= (2λ1{s1≥s+1}+λ1{s1=s})/N . The bound (3.4), required to apply Theorems
4 and 5, is verified when the values of λ and µk are bounded independently ofN .
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To simplify notations, let gs(t) =
∑N

k=1

∑
s̃≥sX(k,s̃)(t)/N be the fraction of servers at time t

with queue length at least s. By summing over all possible values of k1 and s1, the transition (3.11b)
can then be rewritten as

X 7→ X + e(k,s+1) − e(k,s) at rate λX(k,s)(gs + gs+1).

By using this notation, the drift for index (k, s) is

f(k,s)(x) =µkx(k,s+1) − λx(k,s)(gs + gs+1)−
(
µkx(k,s) − λx(k,s−1)(gs−1 + gs)

)
1{s≥1}.

Numerical Comparison

As for the caching example, we adapt methods of the toolbox [6] to perform a numerical comparison
of mean field and refined mean field approximation against an estimation of the expected value of
the system. Following the equations (3.11a) and (3.11b) we implement the Markov chain and define
the drift f , the derivatives of f and the tensor Q. To obtain the plots, we consider models with
systems sizes of N = 10, 20, 30, 40 and an arrival rate λ = 1. The heterogeneity is introduced by
the consideration of differing server rates. For every system size, we consider a model having service
rates as follows. One fifth of the server rates is equal to 2.0, one fifth is equal to 0.5 and the remaining
rates are sampled uniformly between 1.0 and 1.4. In transient state we calculate the sample mean
for the system sizes by averaging over 2000 simulations forN = 10, 20, and over 3000 simulations
forN = 30, 40. For the steady-state, the estimations are computed by calculating the independent
time-average of 19×106 events of the Markov chain after a warp-up of 5×105 events. To compute
the mean field and refined mean field approximation faster, we restricted the queue size of the system
to a maximum of 12 (for simulation, we assume unbounded queue lengths). This is justified by two
facts: First, the refined mean field seems to be very accurate even with this bounded queue size.
Second, we also show in Figure 3.7 that the queue length distribution vanishes very quickly for high
queue sizes. We collect all simulation results in Figures 3.5, 3.6 and 3.7.
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Figure 3.5: Average Queue Size of simulation mean vs. mean field vs. refined mean field approximation.

Figure 3.5 shows the average queue size of the system. We plot the sample mean of the average
queue size with a 95-percent confidence interval against the average queue size calculated from the
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mean field and refined mean field approximation. We observe that asN grows, both the mean field
and the refined mean field approximations seem to be asymptotically exact. Note that the mean
field approximation depends on N because it depends on the exact server speeds. Also, in all cases,
the mean field approximation underestimates the average queue length, whereas the refined mean
field approximation lies within the confidence interval. On each plot, we also show the steady-states
estimates (as a single point on the right of each panel). The observation is the same as for the transient
regime: the refined mean field approximation is extremely accurate also for the steady-state regime.

To demonstrate the impact of heterogeneity, we also consider an approximation (that we call the
“homogeneou” approximation) in which there are N servers with speed µ̄ = (

∑
k µk)/N . We

consider the corresponding mean field and refined mean field approximation. For these four ap-
proximation methods, we denote by Error(method) = 1

N

∑
(k,s)

∣∣∣E[X(k,s)(∞)]− πmethod
(k,s)

∣∣∣ the
mean error, where E[X(k,s)(∞)] is the steady-state of the stochastic system, approximated by sim-
ulation, and πmethod

(k,s) is the estimation of the steady-state probability for the given method. We plot
these four errors as a function of N in the Figures 3.6a and 3.6b. The setup of the first figure is as
described before, one fifth of the servers are of speed 2.0, one fifth are of speed 0.5 and the remain-
ing are uniformly chosen between 1.0 and 1.4. For the second figure, all server speeds are uniformly
chosen between 1.0 and 1.4. We observe that, as expected, the error of the heterogeneous mean field
and refined mean field approximation decrease with N (at rate O(1/N) and O(1/N2)) while the
error of the homogeneous mean field or refined mean field does not improve much with N . This
indicates that taking heterogeneity into account is necessary to obtain accurate performance metrics
in any case. We also see that for larger variance in the server rates, i.e., stronger heterogeneity, the er-
ror of the homogeneous approximation increases whereas our heterogeneous approach gives good
estimates.
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Figure 3.6: Steady-state mean error comparison of heterogeneous and homogeneous models.

Last, in Figure 3.7 we plot the queue length distribution tail. We plot 1
N

∑
k P(Sk ≥ s), the

probability that a server picked at random has a queue length larger than s as a function of s. The
top panel is in normal scale whereas the bottom figure is in log-scale, to zoom on the tail. We observe
that for all system sizes the mean field and the refined mean field predict the shape of the distribution
well. Yet, they both underestimate the actual tail distribution. The refined approximation improves
notably upon the mean field method for “small” s. It does not fully correct the tail distribution for
large s. Note that a similar observation was made in [59] for the refined mean field for homogeneous
systems.
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Figure 3.7: Queue length distribution of simulated expectation, mean field approximation and refined mean
field approximation in steady-state for system sizes N = 10, 20, 30, 40.

3.6 Proofs
This section contains the proofs of the main theorems. After recalling some notations in Section 3.6.1,
we start with a first technical lemma in Section 3.6.2 in which we show that the difference between
the stochastic and deterministic systems depends on the difference between the generator of the
stochastic systems and the one of the ODE. Then, we prove Theorem 4 in Section 3.6.3 and Theo-
rem 5 in Section 3.6.4. To ease the reading, some technical lemmas – whose proof are not compli-
cated but long and technical – are postponed to the appendix.

3.6.1 Notation
In all the proofs, to ease the reading, we drop the superscript N . It should be kept in mind that
all quantitiesX , f ,... depend on N . Also, instead of indexing the vectors by a pair (k, s), we will
use an index i ∈ I , where I = {1 . . . N} × S is the set of object-state pairs. For a function
h : X × R+ → R, we denote by Dxh the derivative of h with respect to the first coordinate x
and by Dth the derivative with respect to the second coordinate. This means that for a given pair
(y, s) ∈ X × R+, the quantity Dxh(y, s) and Dth(y, s) are the derivatives of h with respect to
x and t evaluated at the point (y, s).

For convenience, we will denote by K(N)
x,x′ the rate at which the Markov chainX jumps from x

to x′ for x,x′ ∈ X . With this notation, for intuition, the transitions (3.2a) and (3.2b) correspond
to (for x ∈ X and k, k1 ∈ {1, . . . , N}, s, s′, s1, s′1 ∈ S with (s, s1) ̸= (s′, s′1))

K
(N)
x,x+e(k,s′)−e(k,s)

= rk,(s)→(s′)X
(N)
(k,s),

K
(N)
x,x+e(k,s′)−e(k,s)+e(k1,s′1)

−e(k1,s1)
=

1

N
rk,k1,(s,s1)→(s′,s′1)

X(k,s)X(k1,s1).
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3.6.2 Comparison of the Generators
Lemma 6. LetX(t) be the continuous time Markov chain defined in Section 3.3.2. Let ϕ(x, t) be
the value at time t of the solution of the ODE d

dt
ϕ(x, t) = f(ϕ(x, t)) with initial conditionx ∈ X .

We have

E[X(t)− ϕ(X(0), t))] =

∫ t

0

E
[ ∑
x′∈X

KX(τ),x′
(
ϕ(x′, t− τ)− ϕ(X(τ), t− τ)

)
−Dxϕ(X(τ), t− τ)f(X(τ))

]
dτ.

Proof. The following calculations are based on the ideas used in the proofs of [74, Theorem 1] and
[55, Theorem 3.1]. By definingψ(τ) = E[ϕ(X(τ), t−τ)]we can rewriteE[X(t)−ϕ(X(0), t)] =
ψ(t)−ψ(0). At first, we derive the time derivative ofψ. We start by looking at the expected change
at a given time τ , d

ds
E[ϕ(X(τ + s), t− (τ + s)) | X(τ)]

∣∣
s=0

, which can be written as

lim
ds↓0

1

ds

(
E[ϕ(X(τ + ds), t− (τ + ds)) | X(τ)]− ϕ(X(τ), t− (τ + ds))

+ ϕ(X(τ), t− (τ + ds))− ϕ(X(τ), t− τ)
)
.

In the limit, the first difference corresponds to the generator ofX at τ and the second difference to
the change of ϕ due to the decrease of t − τ . By taking the expectation and explicitly writing the
limit terms, the derivative ofψ is

d

dτ
ψ(τ) = E

[ ∑
x′∈X

KX(t),x′(ϕ(x′, t− τ)− ϕ(X(τ), t− τ))−Dtϕ(X(τ), t− τ)
]
.

Note that by definition of the stochastic process the derivative with respect to time and the expecta-
tion are interchangeable. i.e., d

ds
E[E[ϕ(X(τ + s), t− (τ + s)) |X(τ)]

∣∣
s=0

] is equal to
E[ d

ds
E[ϕ(X(τ + s), t− (τ + s)) |X(τ)]

∣∣
s=0

]. Asϕ(x, ·) is the solution of the ODE starting in
x at time 0, we use4 thatDtϕ(x, t) = Dxϕ(x, t)f(x). The proof is concluded by rewriting
E[X(t)− ϕ(X(0), t)] = ψ(t)−ψ(0) =

∫ t

0
d
dτ
ψ(τ)dτ .

3.6.3 Proof of Theorem 4 (Mean Field Approximation)
By Lemma 6, we have

E[X(t)− ϕ(X(0), t)] =

∫ t

0

E[
∑
x′∈X

KX(τ),x′(ϕ(x′, t− τ)− ϕ(X(τ), t− τ))

−Dxϕ(X(τ), t− τ)f(X(τ))]dτ.

(3.12)

4To see why, for t, s ≥ 0, the solution of the ODE satisfies d
dsϕ(x, t + s) = d

dsϕ(ϕ(x, s), t). This shows that
d
dsϕ(x, t + s) = d

dsϕ(ϕ(x, s), t) = Dxϕ(ϕ(x, s), t)f(ϕ(x, s), t). Evaluating this expression at time s = 0
gives the result. Note that by definition, one also has Dtϕ(x, t) = f(ϕ(x, t)) but the latter is hard to use in the
analysis.
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The above expression involves terms of the formϕ(x′, τ)−ϕ(x, τ). By using a first order Taylor’s
expansion, we have:

ϕ(x′, τ)− ϕ(x, τ) = Dxϕ(x, τ)(x
′ − x) +R1(x,x

′, τ), (3.13)

whereR1(x,x
′, τ) is a remainder term that can be expressed in integral form as

R1(x,x
′, τ) =

∫ 1

0

(1− ν)
∑
i,j∈I

∂2ϕ

∂xi∂xj
(x+ ν(x′ − x), τ)(x′

i − xi)(x
′
j − xj)dν.

Moreover, by definition of the drift, one has
∑

x′∈X Kx,x′(x′ −x) = f(x). Combining this with
(3.13) and plugging this into equation (3.12) shows that

E[X(t)− ϕ(X(0), t)] =

∫ t

0

E[
∑
x′∈X

KX(τ),x′R1(X(τ),x′, t− τ)]dτ. (3.14)

To conclude the proof, we show in Lemma 8 that
∑

x′∈X Kx,x′R1(x,x
′, τ) is of order O(1/N).

Note that obtaining this bound is the most technical step of the proof as it requires bounding the
second derivative of ϕ as a function of the initial condition. This is where we use the assumptions
on the rates r.

3.6.4 Proof of Theorem 5 (Refined mean field approximation)

The proof of Theorem 5 uses the same methodology as the proof of Theorem 4 with two additional
ideas: The first is to use a second-order Taylor expansion instead of the first order expansion used in
(3.13). The second is to express the refinement term v as an integral of quantities that depend on
the second derivative ofϕ.

By using a second order Taylor expansion ofϕ, it holds that

ϕ(x′, τ)− ϕ(x, τ) = Dxϕ(x, τ)(x
′ − x) +

∑
i,j∈I

Qi,j(x)
∂2ϕ

∂xi∂xj
(x, τ) +R2(x,x

′, τ),

(3.15)

where the remainder termR2 is equal to

R2(x,x
′, τ) =

1

2

∫ 1

0

(1−ν)2
∑

i,j,u∈I

∂3ϕ

∂xi∂xj∂xu
(x+ν(x′−x), τ)

× (x′
i−xi)(x

′
j−xj)(x

′
u−xu)dν
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andQi,j(x) is given by
∑

x′∈X Kx,x′(x′i−xi)(x′j −xj) which we formally introduce in Appendix
3.8.2. To simplify notations, let g(x, τ) :=

∑
i,j∈I Qi,j(x)

∂2ϕ
∂xi∂xj

(x, τ). Similarly to (3.14), we
have

E[X(t)]−ϕ(X(0), t) =
1

2

∫ t

0

E[g(X(τ), t−τ)]dτ︸ ︷︷ ︸
≈ v(x, t)+O( 1

N2 ) by Lemma 9 and 10.

(3.16)

+

∫ t

0

E[
∑
x′∈X

KX(τ),x′R2(X(τ),x′, t−τ)︸ ︷︷ ︸
O(1/N2) by Lemma 8.

]dτ. (3.17)

By utilizing the approach we used forR1, we prove in Lemma 8 that the last term of the above equa-
tion (that involves a sum of R2) is of orderO(1/N2). This is quite technical and done by carefully
bounding the first, second, and third derivatives ofϕ(x, t) with respect to its initial condition. We
are then left with the first term of Equation (3.16). By Lemma 9, the refinement term v can be
expressed in integral form as v(k,s)(x, t) = 1

2

∫ t

0
g(k,s)(ϕ(x, τ), τ)dτ . This shows that

1

2

∫ t

0

E[g(k,s)(X(τ), τ)]dτ − v(k,s)(X(0), t)

=
1

2

∫ t

0

E[g(k,s)(X(τ), τ)− g(k,s)(ϕ(X(0), τ), τ)]dτ.

We show in Lemma 10 that the above term is of orderO(1/N2). This requires to bound up to the
fourth derivative ofϕwith respect to its initial condition. Plugging everything into Equation (3.16)
shows that E[X(t)]− ϕ(X(0), t)− v(X(0), t) = O(1/N2) and concludes the proof.

3.7 Conclusion
In this chapter, we show how to derive mean field and a refined mean field approximation for sys-
tems composed of N heterogeneous objects. Most of the results which guarantee that mean field
approximation is asymptotically correct assume that the system is composed of a population of N
homogeneous objects, or at least can be clustered into a finite number of classes of objects and let
the number of objects in each class goes to infinity. A possible approach to derive a (refined) mean
field approximation for a heterogeneous population is to consider a scaled model with C copies of
each of the N objects. Classical methods show that the (refined) mean field approximations are
asymptotically exact asC grows.

Our chapter is the first to show that applying this method for the original system (with C = 1
object of each of the N class) is indeed valid. The main results of our chapter, Namely Theorem 4
and 5, show that the accuracy of the mean field and refined mean field approximation is O(1/N)
andO(1/N2). We illustrate our results by considering two examples: a model of cache replacement
policies, and a load balancing model. These examples show that the proposed approximations can be
computed efficiently and are very accurate. They also show that taking heterogeneity into account
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is important to characterize precisely the quantitative behavior of such systems. While Monte Carlo
methods can be considered an alternative to the mean field approximation methods, it is not a priori
clear which one is most efficient numerically. The mean field method being deterministic, its bias is
due to its theoretical error (that grows inO(1/N) orO(1/N2) for the refinement) plus some (gen-
erally small) rounding errors due to the use of floating point arithmetic or numerical integrations of
ODEs. For Monte-Carlo’s methods, their precision is proportional to the square root of the number
of samples divided by the variance of the estimator considered. In our examples, the time to calcu-
late the sample mean and a reasonably small confidence interval can exceed the computational cost
of the mean field approximation, as for the cache example shown in Section 3.5.1. One drawback of
the mean field methods is that it computes the probabilities E[Xk,s(t)] for each object k and state
s.

When studying the performance of large computer systems, heterogeneity is often neglected since
it increases the complexity of the model and because there are few tools to analyze such systems. We
believe that our work has potential application in many models and will foster the development of
the analysis of heterogeneous systems (such as load balancing or epidemic models).
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3.8 Appendix

3.8.1 Notation List

N system size
rk,s→s′ transition parameters; Equations (3.2a), (3.2b), (3.2c)
S(N)(t) Markov chain describing the heterogeneous population model; Section 3.3.1
X(N)(t) binary based representation of the model described byS(t); Section 3.3.2
S finite state space of objects in the population model described byS andX
s, ŝ, s′, s1 notation for states
k, k̂, k′, k1 notation for objects
X(k,s)(t) entry of the Markov chainX indicating if object k is in state s at time t
f ,Q,R drift of the stochastic system and related tensors; Section 3.4.1, Appendix 3.8.2, 8
ϕ(x, t) solution to the ODE given by the drift f of the system; Section 3.4.1
v(x, t) refinement term; Section 3.4.3, Appendix 3.8.2
w(x, t) solution to the second set of differential equations of the refinement; Appendix 3.8.2
t, τ, ν time and integration variables
I, Ik sets of object-state pairs defined by {1, . . . , N} × S and {k} × S respectively
i, j, w, u, l indices used for elements of the sets I and Ik

x,y, z initial conditions for Markov chainX and corresponding mean field approximation
Kx,x′ transition rate for the Markov chainX from state x to x′, Lemma 8
L1,2 bounds for first or second partial derivatives of the drift f
x⊗ y Kronecker product of x and y
x⊗2,x⊗3 Kronecker product of xwith itself (x⊗2 = x⊗ x; x⊗3 = x⊗ x⊗ x); Lemma 8
D,D2, Dx 1st and 2Nd order derivative, derivative with respect to x
∂
∂xi

partial derivative with respect to xi
d
dt
, ∂
∂t
, ẋ(t) derivative with respect to time t

1{a>b} indicator function, e.g., indicating if a > b

3.8.2 Equation for theMean Field and RefinedMean Field
Approximations

General drift definition

For completeness, we give the general form of the drift f (N) for a heterogeneous interaction model
having up to dmax interacting objects. The drift in (k, s) is derived from interactions that imply
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either object k transitions into state s (s′ → s) or leaves state s (s → s′). By considering all these
interactions, the (k, s) component of the drift f (N)(x) is∑

s′ ̸=s

(r
(N)
k,(s′)→(s)x(k,s′) − r

(N)
k,(s)→(s′)x(k,s)) (3.18)

+
1

N

∑
s′,k1,s1,s′1

(r
(N)

k,k1,(s′,s′1)→(s,s1)
x(k,s′)x(k1,s1) − r

(N)

k,k1,(s,s1)→(s′,s′1)
x(k,s)x(k1,s′1))

+
∑

d=3,...,dmax

1

Nd−1

∑
k1,...,kd−1
s1,...,sd−1

s′,s′1,...,s
′
d−1

r
(N)

k,...,kd−1,(s′,...,s
′
d−1)→(s,...,sd−1)

x
(N)
(k,s′) . . . x

(N)

(kd−1,s
′
d−1)

− r
(N)

k,...,kd−1,(s,...,sd−1)→(s′,...,s′d−1)
x
(N)
(k,s) . . . x

(N)
(kd−1,sd−1)

In the above equation, we sum over all permutations such that the first object is fixed to k.
This counters the factor 1/d in the definition of the rates. Therefore, the sum can be written
as 1

Nd−1

∑
k1,...,kd−1
s1,...,sd−1

s′,s1,...,s′d−1

r
(N)

k,...,kd−1,(s′,...,s
′
d−1)→(s,...,sd−1)

x
(N)
(k,s′) . . . x

(N)

(kd−1,s
′
d−1)

. Without loss of general-

ity, we fix the index order k, k1, . . . to simplify the mathematical notations. This simplification
comes from the fact that we assumed for any permutation σ of the set {1 . . . d}, the rates satisfy
r
(N)

k1,...,kd,(s1,...,sd)→(s′1,...,s
′
d)
= r

(N)

kσ(1),...,kσ(d),(sσ(1),...,sσ(d))→(s′
σ(1)

,...,s′
σ(d)

).

Definition of the RefinedMean Field Approximation

In this section, we show how the definition of the refinement term v from [54] can be adapted and
how it can be computed using the rates of the model introduced in Section 3.3. In [54], the refine-
ment term is based on a density representation of the stochastic system and therefore independent
of the state of individual objects. Since our model representation takes the state of each object into
account, we extend the definition of their refinement term v to object-state pairs with the following
set of ODEs (for better readability we suppress the dependence onN in the definitions)

v̇(k1,s1)(x, t) =
∑
u∈I

∂f (k1,s1)

∂xu
(ϕ(x, t))vu(x, t) +

1

2

∑
u,l∈I

∂2f (k1,s1)

∂xl∂xu
(ϕ(x, t))wu,l(x, t),

ẇ(k1,s1),(k2,s2)(x, t) =
∑
u∈I

wu,(k2,s2)(x, t)
∂f (k1,s1)

∂xu
(ϕ(x, t))

+
∑
u∈I

wu,(k1,s1)(x, t)
∂f (k2,s2)

∂xu
(ϕ(x, t)) +Q(k1,s1),(k2,s2)(ϕ(x, t)),

with initial conditions v(x, 0) = 0,w(x, 0) = 0. The values of v andw should be interpreted as
the leading correction terms for the first moment and covariance ofX(t) − ϕ(x, t). The value of

61



3 Mean Field and Refined Mean Field Approximations for Heterogeneous Systems

Q is given by the expected change of the covariance of the stochastic system which, for a given state
x, is

Q(k,s),(k′,s′)(x) =
∑
x′∈X

Kx,x′(x′
(k,s) − x(k,s))(x

′
(k′,s′) − x(k′,s′)).

To make the definitions less abstract, we give explicit formulas ofQ and the derivative of the drift f
when considering a heterogeneous model having at most pairwise interactions. We start by charac-
terizing the elements ofQ evaluated at x (here s ̸= s′ and k ̸= k′)

Q(k,s),(k,s)(x)=
∑
s′

rk,(s)→(s′)x(k,s)+rk,(s′)→(s)x(k,s′)

+
1

N

∑
k1,s1,s′1,s

′

rk,k1,(s,s1)→(s′,s′1)
x(k,s)x(k1,s1)+rk,k1,(s′,s′1)→(s,s1)x(k,s′)x(k1,s′1),

Q(k,s),(k,s′)(x)=−rk,(s)→(s′)x(k,s)−rk,(s′)→(s)x(k,s′)

+
1

N

∑
k1,s1,s′1

−rk,k1,(s,s1)→(s′,s′1)
x(k,s)x(k1,s1)−rk,k1,(s′,s1)→(s,s′1)

x(k,s′)x(k1,s1),

Q(k,s),(k′,s1)(x)=
1

N

∑
s′,s′1

rk,k′,(s,s1)→(s′,s′1)
x(k,s)x(k′,s1) − rk,k′,(s′,s′1)→(s,s1)x(k,s′)x(k′,s′1).

The first and second partial derivatives of the drift f are given by

∂f(k,s)
∂x(k,s)

(x) = −
∑
s′

rk,(s)→(s′)−
1

N

∑
k1 ̸=k,s1,s′1,s

′ ̸=s

rk,k1,(s,s1)→(s′,s′1)
x(k1,s1) ,

∂f(k,s)
∂x(k,s̃)

(x) = rk,(s̃)→(s) +
1

N

∑
k1 ̸=k,s1,s′1

rk,k1,(s̃,s1)→(s,s′1)
x(k1,s1) s̃ ̸= s,

∂f(k,s)
∂x(k̃,s̃)

(x) =
1

N

∑
s′,s′1

rk,k̃,(s′,s̃)→(s,s′1)
x(k,s′)−rk,k̃,(s,s̃)→(s′,s′1)

x(k,s) k̃ ̸= k,
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∂2f(k,s)
∂x(k̂,ŝ)∂x(k,s)

(x) = − 1

N

∑
s′1,s

′

rk,k̂,(s,ŝ)→(s′,s′1)
k̂ ̸= k,

∂2f(k,s)
∂x(k̂,ŝ)∂x(k,s̃)

(x) =
1

N

∑
s′1

rk,k̂,(s̃,ŝ)→(s′,s′1)
k̂ ̸= k, s̃ ̸= s,

∂2f(k,s)
∂x(k,ŝ)∂x(k̃,s̃)

(x) =
1

N

∑
s′1

rk,k̃,(ŝ,s̃)→(s,s′1)
k̃ ̸= k,

∂2f(k,s)
∂x(k,ŝ)∂x(k̃,s̃)

(x) = − 1

N

∑
s′,s′1

rk,k̃,(s,s′)→(s̃,s′1)
k̃ ̸= k,

∂2f(k,s)
∂x(k̂,ŝ)∂x(k̃,s̃)

(x) = 0 k̃, k̂ ̸= k.

Note that if interactions of more than two objects occur, the above formulations include addi-
tional rates and higher order derivatives of the drift are non-zero.

3.8.3 Cache Replacement Policies

Computation of the exact steady-state probabilities

It is shown in [60] that the steady-state distribution of the RANDOM(m) cache replacement policy
has a product-form, which the authors use to derive the per-object miss probability. Here, we show
how to adapt the same methodology to compute the steady-state probability for an object to be
in list s. Our approach is very similar to the one developed in [60] but leads to a slightly different
recurrence equation.

Recall that Sk denotes the list in which object k is (where 0 means that the object is not in the
cache). We say that a state S is admissible form if the number of objects in list s is exactly ms for
all s ∈ {1, . . . , S}. Theorem 6 of [60] can be rephrased as follows: For any admissible state S, the
steady-state probability ofS is equal to

π(S) =
1

C(m, N)

N∏
k=1

(λk)
Sk ,

where C(m, N) =
∑

S admissible for m
∏N

k=1(λk)
Sk is a constant such that the probabilities π(S)

sum to one. Note that the constantC(m, N) is not the same as the constantE(m, N) defined in
[60] because our configurationS does not take into account the position in a list in which an object
is but only takes into account the list in which an object is: there is a

∏
sms! factor between the two.
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By decomposing the set of admissible configurations, depending on the list in which objectN is
(either outside the cache or in list s), we get that:

C(m, N) =
∑

S admissible for m

N∏
k=1

(λk)
Sk =

S∑
s=0

∑
S admissible for m

and object N is in list s

N∏
k=1

(λk)
Sk

= C(m, N − 1) +
S∑

s=1

(λN)
sC(m− es, N − 1),

with the convention that C(m, N) = 0 ifm = 0 or if
∑

sms > N . Indeed, there is a bijection
between the admissible configurations form with N objects in which object N is in list s and the
configurations form− es withN − 1 objects.

Similarly, the probability for objectN to be in list s is the sum over all admissible configurations
such that objectN is in list swhich corresponds to the set of admissible configurations form− es
withN − 1 objects. Hence, we have

πexact
N,s =

(λN)
sC(m− es, N − 1)

C(m, N)
. (3.19)

The above recurrence equations can be used to compute the exact value of P
(
S
(N)
k = s

)
for all

s. By reordering the objects, it can be also used to compute the recurrence equation for all ob-
jects k. The naive complexity of such an equation grows in O(N2

∏
sms) and can be lowered to

O(N logN
∏

sms) by carefully reordering the objects. This means that for relatively small values
ofm, it is possible to compute an exact value forP

(
S
(N)
k = s

)
. Note that in practice, the complex-

ity is quite large as soon as the list sizes grow. For instance, our implementation does not allow us to
calculate the values for more than 3 lists of size 10.

Theorem 6 of [60] is a consequence of our results (and can be refined)

The cache replacement policy RAND(m) that we study in Section 3.5.1 is essentially the same5 as
the one studied in [60]. In [60], the authors denote byHs(t) =

∑
k pkXk,s(t) the sum of the items’

popularity that are in list s at time t, and by ρs(t) =
∑

k pkxk,s(t) its mean field approximation,
where pk = λk/(

∑
k′ λk′) is the request probability for object k. Theorem 6 of [60] implies that

for t ≤ T

E[∥Hs(t)− ρs(t)∥2] = O(max
k
pk +max

s

1

ms

),

5One difference between the two model is that we consider a continuous time model where object k is requested at
rate λk and the authors of [60] consider a discrete-time model where object k is requested with probability pk =
λk/

∑
ℓ λℓ. Up to re-normalizing the time by

∑
ℓ λℓ, these two models are essentially equivalent.
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which implies that if the popularities of items are such that λk = O(1) and the list size are such that
ms = O(1/N), then

E[∥Hs(t)− ρs(t)∥2] = O(1/N)

This is aO(1/
√
N) convergence result because it implies that

E[∥Hs(t)− ρs(t)∥] = O(1/
√
N).

We do not think that the proof of the main result of [60] is correct. Lemma 1 implies thatM(t) is a
Martingale such that E[∥M(t+ 1)−M(t)∥2] ≤ c. Later in the proof, the authors argue that this
implies that E[∥M(t)∥2] ≤ ct. This would hold if the norm could be written as a scalar product
∥M∥22 = ⟨M,M⟩. Indeed, in such a case one would have:

E[∥M(t+ 1)∥22] = E[∥M(t)∥22 + 2 ⟨M(t+ 1)−M(t),M(t)⟩︸ ︷︷ ︸
=0

+∥M(t+ 1)−M(t)∥22]

(3.20)
≤ E[∥M(t)∥22] + c,

where the second term equals 0 because E[M(t + 1) −M(t) | M(t)] = 0. A direct recurrence
would imply that E[∥M(t+ 1)∥22] ≤ ct.

The problem is that the norm used in [60] can be written as a supremum norm (it is a supremum
norm) and we do not think that it can be written as a scalar product. This implies that one cannot
use the reasoning of Equation (3.20), which means that this inequality does not hold for their case.

Yet, we claim that the result of their Theorem 6 holds, and can in fact be refined by using our
approach. To see that, we rewrite the difference betweenH and ρ as:

E[∥Hs(t)− ρs(t)∥2] =
∑
k1,k2

pk1pk2E[(Xk1,s(t)− xk1,s(t))(Xk2,s′(t)− xk2,s′(t))] (3.21)

We claim that the proof of Theorem 5 can be adapted to show that:

E[(Xk1,s(t)− xk1,s(t))(Xk2,s′(t)− xk2,s′(t))] =

{
w(k1,s),(k2,s′) +O(1/N) if k1 = k2
w(k1,s),(k2,s′) +O(1/(N2)) if k1 ̸= k2,

wherew is defined in Appendix 3.8.2 and is such that:

w(k1,s),(k2,s′) =

{
O(1) if k1 = k2,
O(1/N) if k1 ̸= k2.

This implies that

E[∥Hs(t)− ρs(t)∥2] =
∑
k1,k2

pk1pk2W(k1,s),(k2,s)(t)︸ ︷︷ ︸
=O(1/N)

+O(1/N2).
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The above equation refines Theorem 6 of [60] by not only proving that the term is of orderO(1/N)
but also by providing the expansion term.

Cache replacement policies: time to compute the fixed point.

In Table 3.2, we show that computing the fixed point of the refined mean field approximation takes
less than 50ms for a cache replacement model with two lists and N = 50 heterogeneous objects.
To explore further how this computation time scales with N or the number of lists of the cache,
we report in Table 3.3 the time to compute the fixed point of the mean field and refined mean field
approximation for up to 1000 items and between 2 to 4 lists. The total number of values to be
computed here isN ×S where S is the number of lists. We observe that the mean field approxima-
tion is relatively fast to compute for all considered values. The refined mean field takes more time
but remains reasonable when we have at most N = 1000 objects. For N = 1000 and 2 lists, the
computation times is much larger (more than 10 times larger). We believe that this huge increase of
computation time might be due to memory contention when scipy tries to solve a very big linear
system (with |NS|2 = 4 millions of variables).

Table 3.3: Time to compute the fixed point of the mean filed and refined mean field approximation for the
RAND(m) model for various values of N andm.
N m N |S| Time (mean field) Time (Refined mean field)
30 [6, 6, 6] 90 40ms 50ms
50 [10, 10, 10] 150 50ms 72ms

100 [20, 20, 20, 20] 400 263ms 458ms
200 [40, 40, 40] 600 137ms 881ms
200 [40, 40, 40, 40] 800 370ms 2s
300 [60, 60, 60] 900 186ms 4s
500 [150, 150] 1000 121ms 6s

1000 [300, 300] 2000 222ms 71s

3.8.4 Technical lemmas
Bounds for Partial Derivatives ofϕ

In Lemma 7 we analyze the properties of the partial derivatives of ϕ(k,s)(x, t) with respect to the
initial condition x. We introduce the set I := {1, . . . , N} × S and Ik = {k} × S to sim-
plify notations for frequently appearing sums in the lemma and proof. The set I encompasses all
object-state tuples (k, s), the set Ik includes tuples (k, s)with fixed object k. We emphasize that the
bounds for the partial derivatives differ substantially depending on whether ϕ(k,s)(x, t) is derived
with respect to (k, ŝ) ∈ Ik or (k̃, s̃) ∈ I \ Ik. Our results show that if the sum over the states
of the absolute values of the partial derivatives of ϕ(k,s)(x, t),

∑
ŝ∈S

∣∣∣ϕ(k,ŝ)

x(k,ŝ)
(x, t)

∣∣∣, is derived with
respect to the same object k, i.e., in direction of a object-state pair (k, ŝ), it can be bounded inde-
pendent of N . However, if the same sum is derived with respect to a pair (k̃, s̃) ∈ I \ Ik it is of
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orderO(1/N). Subsequently, we can show similar properties for sums of higher partial derivatives
such as

∑
ŝ∈S

∣∣∣ ∂ϕ(k,ŝ)

∂x(k̃,s̃)∂x(k̂,ŝ)
(x, t)

∣∣∣. For the second partial derivatives we see that if at least one of the

derivative direction is inIk the sum is bounded byO(1/N) and otherwise, if (k̃, s̃), (k̂, ŝ) ∈ I\Ik,
the sum is of order O(1/N2). Our analysis considers partial derivatives up to the fourth order for
which we establish bounds with likewise properties. A direct consequence we frequently use is that
the absolute value of the partial derivative of ϕ(k,s)(x, t) can be bounded by the previously men-
tioned sums, for example

∣∣∣∂ϕ(k,s)

∂x(k̃,s̃)
(x, t)

∣∣∣ ≤ ∑
ŝ∈S

∣∣∣ ϕ(k,ŝ)

∂x(k̂,ŝ)
(x, t)

∣∣∣. Thus, the same bounds hold for∣∣∣∂ϕ(k,s)

∂x(k̃,s̃)
(x, t)

∣∣∣ and absolute values of higher order partial derivatives.

Lemma 7. Given the solution ϕ of the ODE defined in section 3.4.1. For the partial derivatives of
ϕ(k,s) with respect to the initial condition x ∈ X and (k, s) ∈ I = {1, . . . , N} × S the following
properties hold:

(a) If i, j, w and l are in I \ Ik = {1, . . . , k − 1, k + 1, . . . , N} × S , i.e., none of the tuples
i, j, w or l refer to object k, then

(a.1)
∑
s∈S

∣∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣∣ = O(1/N),

(a.2)
∑
s∈S

∣∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, t)

∣∣∣∣ = O(1/N2),

(a.3)
∑
s∈S

∣∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xw
(x, t)

∣∣∣∣ = O(1/N3),

(a.4)
∑
s∈S

∣∣∣∣ ∂4ϕ(k,s)

∂xi∂xj∂xw∂xl
(x, t)

∣∣∣∣ = O(1/N4).

(b) Otherwise, if any tuple i, j, w or l is in Ik = {k} × S then, for the same summations,

(b.1)
∑
s∈S

∣∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣∣ = O(1),

(b.2)
∑
s∈S

∣∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, t)

∣∣∣∣ = O(1/N),

(b.3)
∑
s∈S

∣∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xw
(x, t)

∣∣∣∣ = O(1/N2),

(b.4)
∑
s∈S

∣∣∣∣ ∂4ϕ(k,s)

∂xi∂xj∂xw∂xl
(x, t)

∣∣∣∣ = O(1/N3).

Proof. We will prove this lemma by bounding the derivative with respect to time of ϕ(k,s)

∂xi
(x, t) (and

of the derivative of the higher order terms). The result will then follow by using Grönwall’s Lemma
in differential form.
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First derivative – proof of (a.1) and (b.1) – Recall thatϕ(x, t) satisfies the differential equation
d
dt
ϕ(x, t) = f(ϕ(x, t)). Hence, the partial derivatives of ϕ(k,s)

∂xi
(x, t), i ∈ I with respect to the

time t are

d

dt

∂ϕ(k,s)

∂xi
(x, t) =

∂

∂xi

dϕ(k,s)

dt
(x, t) =

∂(f(k,s) ◦ ϕ)
∂xi

(x, t)

=
∑
u∈I

∂f(k,s)
∂ϕu

(ϕ(x, t))
∂ϕu

∂xi
(x, t).

Having a closer look at the partial derivatives of f (see Appendix 3.8.2), we see that

∣∣∣∣∂f(k,s)∂xu
(x)

∣∣∣∣ ≤ C1 for u ∈ Ik,∣∣∣∣∂f(k,s)∂xu
(x)

∣∣∣∣ ≤ C2/N for u ∈ I \ Ik.

Let L1 := max{C1, C2} and define cki :=

{
1 if i ∈ Ik

1/N otherwise
. It follows that

∑
u∈I

∂f(k,s)
∂ϕu

(ϕ(x, t))
∂ϕu

∂xi
(x, t) ≤ L1

∑
u∈I

cku

∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣.
To obtain the bound on the max term, we start by bounding the change of the max with respect

to time for the first partial derivatives.

d

dt
max

i∈I,s∈S

N∑
k=1

∣∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣∣ ≤ L1 max
i∈I,s∈S

N∑
k=1

∑
u∈I

cku

∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣
≤ L1|S| max

i∈I,s∈S

N∑
k=1

∣∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣∣+ L1
1

N
|S|(N − 1) max

i∈I,s∈S

N∑
k=1

∣∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣∣
≤ 2L1|S| max

i∈I,s∈S

N∑
k=1

∣∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣∣
Furthermore, for t equal to zero, ϕ(x, 0) = x which implies that ∂ϕ(k,s)(x,0)

∂xi
= 1 if (k, s) =

i and 0 otherwise. From this it follows directly that maxi∈I,s∈S
∑N

k=1

∣∣∣∂ϕ(k,s)

∂xi
(x, 0)

∣∣∣ = 1.

Applying Grönwalls Lemma to the obtained results yields maxi∈I,s∈S
∑N

k=1

∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣ ≤
exp
(
2L1|S|t

)
= O(1).
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We bound
∑

s∈S

∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣ in the same manner. First, for the time derivative

d

dt

∑
s∈S

∣∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣∣ ≤ L1|S|
∑
u∈I

cku

∣∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣∣
≤ L1|S|

(∑
s∈S

∣∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣∣+ 1

N
|S|2 max

i∈I,s∈S

N∑
k=1

∣∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣∣
)
.

Here we know that the second summand is O(1). By definition of ϕ, at time zero∑
s∈S

∣∣∣∂ϕ(k,s)

∂xi
(x, 0)

∣∣∣ is equal to one if i is in Ik and zero otherwise. Using Grönwalls Lemma, it
follows

∑
s∈S

∣∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣∣ = O(cki ) =

{
O(1) for i ∈ Ik,

O(1/N) otherwise.

This shows (a.1) and (b.1). Note that as an important direct consequence, the same is true for∣∣∣∂ϕ(k,s)

∂xi
(x, t)

∣∣∣.

Second derivative – proof of (a.2) and (b.2) – For the second partial derivatives we repeat the
procedure by first bounding the second derivative ofϕ with respect to time t. Deriving the second
partial derivative ofϕwith respect to time t gives

d

dt

∂2ϕ(k,s)

∂xj∂xi
(x, t) =

∂2f(k,s)
∂xj∂xi

(ϕ(x, t)) =
∂

∂xj

(∑
u∈I

∂f(k,s)
∂xu

(ϕ(x, t))
∂ϕu

∂xi
(x, t)

)
(3.22)

=
∑
u,v∈I

∂2f(k,s)
∂xu∂xv

(ϕ(x, t))
∂ϕu

∂xi
(x, t)

∂ϕv

∂xj
(x, t) +

∑
u∈I

∂f(k,s)
∂xu

(ϕ(x, t))
∂2ϕu

∂xj∂xi
(x, t).

To bound the above term, we observe that

∣∣∣∣∂2f(k,s)∂xi∂xj
(x)

∣∣∣∣ ≤
{
C3/N if i or j ∈ Ik

C4/N
2 otherwise

forC3, C4 ≥ 0. We define L2 = max{C3, C4} with which we bound the first sum by
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∑
u,v∈I

∣∣∣∣ ∂2f(k,s)∂xu∂xv
(ϕ(x, t))

∣∣∣∣∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣
≤ L2

N

(∑
u∈Ik

∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∑
v∈I

∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣+∑
v∈Ik

∣∣∣∣∂ϕv

∂xi
(x, t)

∣∣∣∣∑
u∈I

∣∣∣∣∂ϕu

∂xj
(x, t)

∣∣∣∣
)

+
L2

N2

 ∑
u,v∈I\Ik

∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣


By previous observations
∑

v∈I

∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣ = O(1) and
∑

u∈Ik

∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣ = O(cki ) which im-
plies that the first sum is 1

N
L2(O(c

k
i ) +O(ckj )) +O( 1

N2 ) = O( 1
N
(cki + ckj )). The second sum can

be bounded, similar to the first partial derivatives, by

∑
u∈I

∂f (k,s)

∂xu
(ϕ(x, t))

∂2ϕu

∂xj∂xi
(x, t) ≤ L1

∑
u∈I

cku

∣∣∣∣ ∂2ϕu

∂xj∂xi
(x, t)

∣∣∣∣.
Now we can derive bounds for maxi,j∈I,s∈S

∑
k

∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, t)

∣∣∣ and
∑

s

∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, t)

∣∣∣. The pro-
cedure is the same as before. For the max term we get

d

dt
max

i,j∈I,s∈S

N∑
k=1

∣∣∣∣∂2ϕ(k,s)

∂xj∂xi
(x, t)

∣∣∣∣
≤ max

i,j∈I,s∈S
{

N∑
k=1

O(
1

N
(cki + ckj )) + L1

N∑
k=1

∑
u∈I

cku

∣∣∣∣ ∂2ϕu

∂xj∂xi
(x, t)

∣∣∣∣}
≤ O(1/N) + 2L1|S| max

i,j∈I,s∈S

N∑
k=1

∣∣∣∣∂2ϕ(k,s)

∂xj∂xi
(x, t)

∣∣∣∣.
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Recall that ϕ(x, 0) = x which implies that ∂2ϕ(k,s)(x,0)

∂xi∂xj
= 0. Hence,

maxi,j∈I,s∈S
∑N

k=1

∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, 0)

∣∣∣ = 0 which allows concluding, by applying Grönwalls

Lemma, that maxi,j∈I,s∈S
∑N

k=1

∣∣∣∂2ϕ(k,s)

∂xj∂xi
(x, t)

∣∣∣ = O(1/N). For
∑

s∈S

∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, t)

∣∣∣we infer

d

dt

∑
s∈S

∣∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, t)

∣∣∣∣ ≤∑
s∈S

O(
1

N
(cki + ckj )) + L1

∑
s∈S

∑
u∈I

cku

∣∣∣∣ ∂2ϕu

∂xi∂xj
(x, t)

∣∣∣∣
≤ O(

1

N
(cki + ckj )) + L1|S|

∑
s∈S

∣∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, t)

∣∣∣∣
+

1

N
L1|S|2 max

i,j∈I,s∈S

N∑
k=1

∣∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, t)

∣∣∣∣
= O(

1

N
(cki + ckj )) + L1|S|

∑
s∈S

∣∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, t)

∣∣∣∣+O(1/N2).

With
∑

s∈S

∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, 0)

∣∣∣ = 0 and Grönwall, we have
∑

s∈S

∣∣∣∂2ϕ(k,s)

∂xi∂xj
(x, t)

∣∣∣ = O( 1
N
(cki + ckj )).

Third and Fourth derivatives – For the higher order partial derivatives, the proof procedure
stays the same as for the first and second partial derivatives. First, we calculate the time derivative for
the partial derivatives of third and fourth order of ϕ. In order to obtain bounds for the max term
and the sum over the states, we bound the derivatives. The time derivatives of ∂3ϕ(k,s)

∂xi∂xj∂xw
(x, t) and

∂4ϕ(k,s)

∂xi∂xj∂xw∂xl
(x, t), with i, j, w, l ∈ I , are given by

d

dt

∂3ϕ(k,s)

∂xi∂xj∂xw
(x, t)

=
∂

∂xw

(∑
u,v∈I

∂2f(k,s)
∂xu∂xv

(ϕ(x, t))
∂ϕu

∂xi
(x, t)

∂ϕv

∂xj
(x, t)

+
∑
u∈I

∂f(k,s)
∂xu

(ϕ(x, t))
∂2ϕu

∂xj∂xi
(x, t)

)

=
∑

u,v,o∈I

∂3f(k,s)
∂xu∂xv∂xo

(ϕ(x, t))
∂ϕu

∂xi
(x, t)

∂ϕv

∂xj
(x, t)

∂ϕo

∂xw
(x, t)

+
∑
u,v∈I

∂2f(k,s)
∂xu∂xv

(ϕ(x, t))

(
∂2ϕu

∂xi∂xw
(x, t)

∂ϕv

∂xj
(x, t) +

∂ϕu

∂xi
(x, t)

∂2ϕv

∂xj∂xw
(x, t)

)
+
∑
u,v∈I

∂2f(k,s)
∂xu∂xv

(ϕ(x, t))
∂2ϕu

∂xi∂xj
(x, t)

∂ϕv

∂xw
(x, t)

+
∑
u∈I

∂f(k,s)
∂xu

(ϕ(x, t))
∂3ϕu

∂xj∂xi∂xw
(x, t)
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and

d

dt

∂4ϕ(k,s)

∂xi∂xj∂xw∂xl
(x, t)

=
∂

∂xl

( ∑
u,v,o∈I

∂3f(k,s)
∂xu∂xv∂xo

(ϕ(x, t))
∂ϕu

∂xi
(x, t)

∂ϕv

∂xj
(x, t)

∂ϕo

∂xw
(x, t)

+
∑
u,v∈I

∂2f(k,s)
∂xu∂xv

(ϕ(x, t))

(
∂2ϕu

∂xi∂xw
(x, t)

∂ϕv

∂xj
(x, t) +

∂ϕu

∂xi
(x, t)

∂2ϕv

∂xj∂xw
(x, t)

)
+
∑
u,v∈I

∂2f(k,s)
∂xu∂xv

(ϕ(x, t))
∂2ϕu

∂xi∂xj
(x, t)

∂ϕv

∂xw
(x, t) +

∑
u∈I

∂f(k,s)
∂xu

(ϕ(x, t))
∂3ϕu

∂xj∂xi∂xw
(x, t)

)
.

The above expression is equal to

∑
u,v,o,p∈I

∂4f(k,s)
∂xu∂xv∂xo∂xp

(ϕ(x, t))
∂ϕu

∂xi
(x, t)

∂ϕv

∂xj
(x, t)

∂ϕo

∂xw
(x, t)

∂ϕp

∂xl
(x, t)

+
∑

u,v,o∈I

∂3f(k,s)
∂xu∂xv∂xo

(ϕ(x, t))

(
∂2ϕu

∂xi∂xl
(x, t)

∂ϕv

∂xj
(x, t)

∂ϕo

∂xw
(x, t)

+
∂ϕu

∂xi
(x, t)

∂2ϕv

∂xj∂xl
(x, t)

∂ϕo

∂xw
(x, t) +

∂ϕu

∂xi
(x, t)

∂ϕv

∂xj
(x, t)

∂2ϕo

∂xw∂xl
(x, t)

)
+
∑
u,v∈I

∂2f(k,s)
∂xu∂xv

(ϕ(x, t))

(
∂3ϕu

∂xi∂xw∂xl
(x, t)

∂ϕv

∂xj
(x, t) +

∂ϕu

∂xi
(x, t)

∂3ϕv

∂xj∂xl∂xw
(x, t)

+
∂2ϕu

∂xi∂xw
(x, t)

∂2ϕv

∂xj∂xl
(x, t) +

∂2ϕu

∂xi∂xl
(x, t)

∂2ϕv

∂xj∂xw
(x, t)

)
+
∑
u,v∈I

∂2f(k,s)
∂xu∂xv

(ϕ(x, t))

(
∂2ϕu

∂xw∂xl
(x, t)

∂2ϕv

∂xi∂xj
(x, t) +

∂ϕv

∂xw
(x, t)

∂3ϕu

∂xi∂xj∂xl
(x, t)

)
+
∑
u∈I

∂f(k,s)
∂xu

(ϕ(x, t))
∂4ϕu

∂xj∂xi∂xw∂xl
(x, t).

For the third partial derivatives, we use the above equation to show first that
maxi,j,w∈I,s∈S

∑N
k=1

∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xw
(x, t)

∣∣∣ is of orderO( 1
N2 ) and that

∑
s∈S

∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xw
(x, t)

∣∣∣ is of or-
derO

(
1
N2 (c

k
i + ckw + ckj )

)
. To obtain a bound for themax term, we use the results obtained by the

analysis of the first and second partial derivatives ofϕ. The overall aim is to apply Grönwalls Lemma.
We bound the first three sums of the derivative, which include first and second order partial deriva-
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tives of ϕ. We use previous analysis and bounds on the drift derivatives to obtain the following
asymptotic properties. The third order partial derivatives of the drift can be bounded by∣∣∣∣ ∂3f(k,s)

∂xi∂xj∂xw
(x)

∣∣∣∣ ≤
{
C5/N

2 if i, j orw ∈ Ik

C6/N
3 otherwise,

withC5, C6 ≥ 0 and we define L3 = max{C5, C6}. For the first sum

∑
u,v,o∈I

∣∣∣∣ ∂3f(k,s)
∂xu∂xv∂xo

(ϕ(x, t))

∣∣∣∣∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣
≤ L3

N3

∑
u,v,o∈I\Ik

∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣
+
L3

N2

∑
u∈Ik,v,o∈I

∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣
+
L3

N2

∑
v∈Ik,u,o∈I

∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣
+
L3

N2

∑
o∈Ik,u,v∈I

∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣
= O

( 1

N3

)
+O

(
1

N2
(cki + ckj + ckw)

)
= O

(
1

N2
(cki + ckj + ckw)

)
and for the second type of sums

∑
u,v∈I

∣∣∣∣ ∂2f(k,s)∂xu∂xv
(ϕ(x, t))

∣∣∣∣∣∣∣∣ ∂2ϕu

∂xi∂xw
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣
≤ L2

1

N2

∑
u,v∈I\Ik

∣∣∣∣ ∂2ϕu

∂xi∂xw
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣+ L2
1

N

∑
u∈Ik,v∈I

∣∣∣∣ ∂2ϕu

∂xi∂xw
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣
+ L2

1

N

∑
u∈I,v∈Ik

∣∣∣∣ ∂2ϕu

∂xi∂xw
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣
≤ O(

1

N3
) + L2

1

N

(
O
( 1
N
(cki + ckw)

)
|S|O(1) +O(ckj )|S|O(

1

N
)

)
= O

(
1

N2
(cki + ckw + ckj )

)
.

The above statement also holds for any permutation of i, j and w. By
summing the above terms over k we see, by definition of the cki ’s, that
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∑N
k=1

∑
u,v∈I

∣∣∣∂2f(k,s)
∂xu∂xv

(ϕ(x, t))
∣∣∣∣∣∣ ∂2ϕu

∂xi∂xw
(x, t)

∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣ = O( 1
N2 ). The third sum of in-

terest can be bounded by

N∑
k=1

∑
u∈I

∣∣∣∣∂f(k,s)∂xu
(ϕ(x, t))

∣∣∣∣∣∣∣∣ ∂3ϕu

∂xj∂xi∂xw
(x, t)

∣∣∣∣ ≤ 2|S|Kf max
i,j,w∈I,s∈S

{
N∑
k=1

∣∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xk
(x, t)

∣∣∣∣}.
We furthermore note that at time t=0 the third partial derivatives of ϕ(k,s) are zero. In com-
bination with the obtained bounds for the sums and by applying Grönwall it is shown that
maxi,j,w∈I,s∈S

∑N
k=1

∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xw
(x, t)

∣∣∣ = O( 1
N2 ). Next, we show that the sum over the states∑

s∈S

∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xw
(x, t)

∣∣∣ is bounded byO
(

1
N2 (c

k
i + ckw + ckj )

)
. First, we recall that the first two sums

of the corresponding derivative are bounded byO
(

1
N2 (c

k
i + ckw + ckj )

)
. Second,

∑
s∈S

∑
u∈I

∣∣∣∣∂f(k,s)∂xu
(ϕ(x, t))

∣∣∣∣∣∣∣∣ ∂3ϕu

∂xj∂xi∂xw
(x, t)

∣∣∣∣
≤ Kf

∑
s∈S

∑
u∈Ik

∣∣∣∣ ∂3ϕu

∂xj∂xi∂xw
(x, t)

∣∣∣∣+ 1

N

∑
u∈I\Ik

∣∣∣∣ ∂3ϕu

∂xj∂xi∂xw
(x, t)

∣∣∣∣


= Kf |S|
∑
s∈S

∣∣∣∣ ∂3ϕ(k,s)

∂xj∂xi∂xw
(x, t)

∣∣∣∣+O(1/N3).

Summarized, we bound
∑

s∈S

∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xw
(x, t)

∣∣∣ by

∑
s∈S

∣∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xw
(x, t)

∣∣∣∣ ≤ O

(
1

N2
(cki + ckw + ckj )

)
+O(1/N3) +

∑
s∈S

∣∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xw
(x, t)

∣∣∣∣.
Using

∑
s∈S

∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xw
(x, 0)

∣∣∣ = 0 and applying Grönwalls Lemma proofs the claim. For the max

term and the sum over the states of the fourth partial derivatives we repeat the same steps. First, we
show thatmaxi,j,w,l∈Is∈S

∑N
k=1

∣∣∣ ∂4ϕ(k,s)

∂xi∂xj∂xw∂xl
(x, t)

∣∣∣ is bounded byO(1/N3). We bound the sums
which contain first, second and third partial derivatives of ϕ. We use bounds on the derivatives of
the drift up to the fourth order, for which∣∣∣∣ ∂4f(k,s)

∂xi∂xj∂xw∂xl
(x)

∣∣∣∣ ≤
{
C7/N

3 if i, j, w or l ∈ Ik

C8/N
4 otherwise,

and define L4 = max{C7, C8}.
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The bounds are∑
u,v,o,p∈I

∣∣∣∣ ∂4f(k,s)
∂xu∂xv∂xo∂xp

(ϕ(x, t))

∣∣∣∣∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣∣∣∣∣∂ϕp

∂xl
(x, t)

∣∣∣∣
≤ L4

N4

∑
u,v,o,p∈I\Ik

∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣∣∣∣∣∂ϕp

∂xl
(x, t)

∣∣∣∣
+
L4

N3

∑
u∈Ikv,o,p∈I

∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣∣∣∣∣∂ϕp

∂xl
(x, t)

∣∣∣∣
+ . . .+

L4

N3

∑
p∈Iku,v,o∈I

∣∣∣∣∂ϕu

∂xi
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣∣∣∣∣∂ϕp

∂xl
(x, t)

∣∣∣∣
= O(

1

N4
) +O

( 1

N3
(cki + ckj + ckw + ckl )

)
,

∑
u,v,o∈I

∣∣∣∣ ∂3f(k,s)
∂xu∂xv∂xo

(ϕ(x, t))

∣∣∣∣∣∣∣∣ ∂2ϕu

∂xi∂xl
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣
≤ L3

N3

∑
u,v,o∈I\Ik

∣∣∣∣ ∂2ϕu

∂xi∂xl
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣
+
L3

N2

∑
u∈Ik,v,o∈I

∣∣∣∣ ∂2ϕu

∂xi∂xl
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣
+ . . .+

L3

N2

∑
o∈Ik,u,v∈I

∣∣∣∣ ∂2ϕu

∂xi∂xl
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣∣∣∣∣ ∂ϕo

∂xw
(x, t)

∣∣∣∣
= O(

1

N4
) +O

(
1

N3
(cki + ckj + ckw + ckl )

)
,

∑
u,v∈I

∣∣∣∣ ∂2f(k,s)∂xu∂xv
(ϕ(x, t))

∣∣∣∣∣∣∣∣ ∂3ϕu

∂xi∂xw∂xl
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣
≤ L2

1

N2

∑
u,v∈I\Ik

∣∣∣∣ ∂3ϕu

∂xi∂xw∂xl
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣
L2

1

N

( ∑
u∈Ik,v∈I

∣∣∣∣ ∂3ϕu

∂xi∂xw∂xl
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣+ ∑
u∈I,v∈Ik

∣∣∣∣ ∂3ϕu

∂xi∂xw∂xl
(x, t)

∣∣∣∣∣∣∣∣∂ϕv

∂xj
(x, t)

∣∣∣∣
)

= O(
1

N4
) + L2

1

N

(
O(

1

N2
(cki + ckw + ckl ))O(1) +O(

1

N2
)O(ckj )

)
= O(

1

N3
(cki + ckw + ckl + ckj ))
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and∑
u,v∈I

∣∣∣∣ ∂2f(k,s)∂xu∂xv
(ϕ(x, t))

∣∣∣∣∣∣∣∣ ∂2ϕu

∂xi∂xw
(x, t)

∣∣∣∣∣∣∣∣ ∂2ϕv

∂xj∂xl
(x, t)

∣∣∣∣
≤ L2

1

N2

∑
u,v∈I\Ik

∣∣∣∣ ∂2ϕu

∂xi∂xw
(x, t)

∣∣∣∣∣∣∣∣ ∂2ϕv

∂xj∂xl
(x, t)

∣∣∣∣
+ L2

1

N

( ∑
u∈Ik,v∈I

∣∣∣∣ ∂2ϕu

∂xi∂xw
(x, t)

∣∣∣∣∣∣∣∣ ∂2ϕv

∂xj∂xl
(x, t)

∣∣∣∣+ ∑
u∈I,v∈Ik

∣∣∣∣ ∂2ϕu

∂xi∂xw
(x, t)

∣∣∣∣∣∣∣∣ ∂2ϕv

∂xj∂xl
(x, t)

∣∣∣∣
)

= L2
1

N

(
O(

1

N
(cki + ckw))O(

1

N
) +O(

1

N
(ckj + ckl ))O(

1

N
)

)
= O(

1

N3
(cki + ckw + ckj + ckl )).

Note that the results hold for permutations of i, j, w, l. The remaining sum which appears in
d
dt

∂4ϕ(k,s)

∂xi∂xj∂xw∂xl
(x, t) is

∑
u∈I

∂f(k,s)
∂xu

(ϕ(x, t)) ∂4ϕu

∂xj∂xi∂xw∂xl
(x, t). We see that by summing over k

and applying the max, this term is bounded by

max
i,j,w,l∈I,s∈S

N∑
k=1

∑
u∈I

∣∣∣∣∂f(k,s)∂xu
(ϕ(x, t))

∣∣∣∣∣∣∣∣ ∂4ϕu

∂xj∂xi∂xw∂xl
(x, t)

∣∣∣∣
≤ 2|S|Kf max

i,j,w,l∈I,s∈S
{

N∑
k=1

∣∣∣∣ ∂4ϕu

∂xj∂xi∂xw∂xl
(x, t)

∣∣∣∣}.
Furthermore, maxi,j,w,l∈I,s∈S{

∑N
k=1

∣∣∣ ∂4ϕu

∂xj∂xi∂xw∂xl
(x, 0)

∣∣∣} is zero. We see that∑N
k=1O(

1
N3 (c

k
i + ckw + ckj + ckl )) = O( 1

N3 ) and, by applying Grönwall, it follows
that maxi,j,w,l∈Is∈S

∑N
k=1

∣∣∣ ∂4ϕ(k,s)

∂xi∂xj∂xw∂xl
(x, t)

∣∣∣ = O(1/N3). At last, we show that∑
s∈S

∣∣∣ ∂4ϕ(k,s)

∂xi∂xj∂xw∂xl
(x, t)

∣∣∣ is bounded by O
(

1
N3 (c

k
i + ckj + ckw + ckl )

)
. The proof follows

the same principles as before for the third partial derivatives. The term d
dt

∂4ϕ(k,s)

∂xi∂xj∂xw∂xl
(x, t) can

be separated into sums which are of order O( 1
N3 (c

k
i + ckw + ckl + ckj )) and the additional term∑

s∈S
∑

u∈I

∣∣∣∂f(k,s)∂xu
(ϕ(x, t))

∣∣∣∣∣∣ ∂4ϕu

∂xj∂xi∂xw∂xl
(x, t)

∣∣∣. The latter is bounded by

∑
s∈S

∑
u∈I

∣∣∣∣∂f(k,s)∂xu
(ϕ(x, t))

∣∣∣∣∣∣∣∣ ∂4ϕu

∂xj∂xi∂xw∂xl
(x, t)

∣∣∣∣ ≤ Kf

∑
s∈S

(∑
u∈Ik

∣∣∣∣ ∂4ϕu

∂xj∂xi∂xw∂xl
(x, t)

∣∣∣∣
+

1

N

∑
u∈I\Ik

∣∣∣∣ ∂4ϕu

∂xj∂xi∂xw∂xl
(x, t)

∣∣∣∣
 ≤ |S|

∑
s∈S

∣∣∣∣ ∂4ϕ(k,s)

∂xj∂xi∂xw∂xl
(x, t)

∣∣∣∣+ 1

N
|S|2O( 1

N3
).
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To conclude, we use the same steps as before and see that

∑
s∈S

∣∣∣∣ ∂4ϕ(k,s)

∂xi∂xj∂xw∂xl
(x, t)

∣∣∣∣ = O

(
1

N3
(cki + ckj + ckw + ckl )

)
.

Bounds for Taylor Remainders

Lemma 8 gives bounds for sums of weighted remainder terms appearing in the proofs of Theorem
4 and 5. We respectively bound the weighted sums of the first and second order Taylor remainder
term by two suprema which are of orderO(1/N) andO(1/N2).

Lemma 8. For x ∈ X and τ ∈ R+, the remainder terms satisfy

E[
∑
x′∈X

Kx,x′R1(x,x
′, τ)] ≤ sup

x,y∈Conv(X )

1

2

∑
i,j∈I

∣∣∣∣∂2ϕ(k,s)

∂xi∂xj
(y, τ)

∣∣∣∣|Qi,j(x)| = O(1/N),

E[
∑
x′∈X

Kx,x′R2(x,x
′, τ)] ≤ sup

x,y∈Conv(X )

1

6

∑
i,j,u∈I

∣∣∣∣ ∂3ϕ(k,s)

∂xi∂xj∂xu
(y, τ)

∣∣∣∣|Ri,j,u(x)| = O(1/N2).

Before starting the proof, recall that the first and second order remainder termsR1 andR2 defined
in Section 3.6 are expressed as:

R1(x,x
′, τ) =

∫ 1

0

(1−ν)
∑
i,j∈I

∂2ϕ

∂xi∂xj
(x+ ν(x′ − x), τ)(x′

i−xi)(x
′
j−xj)dν,

R2(x,x
′, τ) =

1

2

∫ 1

0

(1−ν)2
∑

i,j,u∈I

∂3ϕ

∂xi∂xj∂xu
(x+ ν(x′−x), τ)(x′

i−xi)(x
′
j−xj)(x

′
u−xu)dν,

and that, as defined in Appendix 3.8.2,Q andR are given by:

Q(x) =
∑
x′∈X

Kx,x′(x′−x)⊗2 and R(x) =
∑
x′∈X

Kx,x′(x′−x)⊗3,

where (x′−x)⊗2 and (x′−x)⊗3 are Kronecker products of (x′−x) with itself, i.e., (x′−x)⊗2
i,j =

(x′
i−xi)(x

′
j−xj) and (x′−x)⊗3

i,j,u = (x′
i−xi)(x

′
j−xj)(x

′
u−xu). The two tensorsQ andR can

be naturally extended to Conv(X ) due to their entries being polynomials.

Proof. To prove the two statements, we first introduce some simplifying notations. We define ckk1 ,
with k, k1 ∈ {1, . . . , N}, to be one if k equals k1 and 1/N otherwise. By the definition of Q it
follows that for x ∈ Conv(X ):

∣∣Q(k,s),(k1,s1)(x)
∣∣ = O(ckk1) =

{
O(1) if k = k1,

O(1/N) otherwise.
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This can be seen by writing the elements ofQ based on the two transition types (3.2a) and (3.2b),
as shown in Section 3.8.2. From Lemma 7 we know

∣∣∣ ∂2ϕ(k,s)

∂x(k1,s1)
∂x(k2,s2)

(y, τ)
∣∣∣ = O( 1

N
(ckk1 + ckk2))

which holds for any y ∈ Conv(X ). Here, the big O notation hides the dependence on τ, L1, L2

and |S|. By noting that
∑

k1,k2
ck1k2c

k
k1

= O(1), we conclude

∑
(k1,s1),(k2,s2)∈I

∣∣Q(k1,s1),(k2,s2)(x)
∣∣∣∣∣∣ ∂2ϕ(k,s)

∂x(k1,s1)∂x(k2,s2)
(y, τ)

∣∣∣∣
=

∑
(k1,s1),(k2,s2)∈I

O(ck1k2)O(
1

N
(ckk1 + ckk2)) = O(1/N),

where we hide the dependence on |S|. To prove the second statement, we define

ck1,k2,k3 =


1 if k1 = k2 = k3
1
N

if k1 = k2 ̸= k3 or k2 = k3 ̸= k1 or k1 = k3 ̸= k2
1
N2 otherwise.

By explicitly rewriting the entries ofR as done in Section 3.8.2 forQ, the tensor R is such that∣∣R(k1,s1),(k2,s2),(k3,s3)(x)
∣∣ = O(ck1,k2,k3)

Lemma 7 states that the third partial derivatives of ϕ are bounded by∣∣∣ ∂3ϕ(k,s)

∂x(k1,s1)
∂x(k2,s2)

∂x(k3,s3)
(y, τ)

∣∣∣ = O( 1
N2 (c

k
k1

+ ckk2 + ckk3)). From
∑

k1,k2,k3
ck1,k2,k3(c

k
k1

+

ckk2 + ckk3) = O(1), it follows that the sum of the two terms above behaves as

∑
(k1,s1),(k2,s2),(k3,s3)∈I

∣∣R(k1,s1),(k2,s2),(k3,s3)(x)
∣∣∣∣∣∣ ∂3ϕ(k,s)

∂x(k1,s1)∂x(k2,s2)∂x(k3,s3)
(y, τ)

∣∣∣∣ = O(1/N2).

Connection of Differential and Integral Form for the Refinement Term

The following Lemma 9 shows how to express the refinement term v andw in integral form. Both
representations are of importance since we exploit the differential form for numerical computations
whereas we use the integral form in the proofs of Theorem 5 and Lemma 10 which are related to the
accuracy of the refined mean field approximation.
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Lemma 9. The solutions to the system of ODEs

d

dt
v(k,s)(x, t) =

∑
u∈I

∂f (k,s)

∂xu
(ϕ(x, t))vu(x, t) +

1

2

∑
u,l∈I

∂2f (k,s)

∂xl∂xu
(ϕ(x, t)))wu,l(x, t),

d

dt
w(k1,s1),(k2,s2)(x, t) =

∑
u∈I

wu,(k2,s2)(x, t)
∂f (k1,s1)

∂xu
(ϕ(x, t))

+
∑
u∈I

wu,(k1,s1)(x, t)
∂f (k2,s2)

∂xu
(ϕ(x, t)) +Q(k1,s1),(k2,s2)(ϕ(x, t))

can be expressed in integral form as

v(k,s)(x, t) =
1

2

∫ t

0

∑
i,j∈I

Qi,j(ϕ(x, τ))
∂2ϕ(k,s)

∂xi∂xj
(ϕ(x, τ), t− τ)dτ,

w(k1,s1),(k2,s2)(x, t) =

∫ t

0

∑
i,j∈I

Qi,j(ϕ(x, τ))
∂ϕ(k1,s1)

∂xi
(ϕ(x, τ), t− τ)

∂ϕ(k2,s2)

∂xj
(ϕ(x, τ), t− τ)dτ.

Proof. For a sufficiently differentiable function h : R× R 7→ R we have

d

dt

∫ t

0

h(τ, t)dτ = h(t, t) +

∫ t

0

∂h

∂t
(τ, t)dτ.

We define h(τ, t) =
∑

i,j∈I Qi,j(ϕ(x, τ))
∂2ϕ(k,s)

∂xi∂xj
(ϕ(x, τ), t − τ). Recall that

∂2ϕ(k,s)

∂xi∂xj
(ϕ(x, t), 0) = 0 which implies h(t, t) = 0. To calculate ∂h

∂t
(τ, t), we use the iden-

tity

d

dt

∂2ϕ(k,s)

∂xi∂xj
(ϕ(x, τ), t− τ) =

∂2

∂xi∂xj

d

dt
ϕ(k,s)(ϕ(x, τ), t− τ)

=
∂2

∂xi∂xj
f(k,s)(ϕ(ϕ(x, τ), t− τ))

=
∂2

∂xi∂xj
f(k,s)(ϕ(x, t))

=
∑
u,l∈I

∂2f(k,s)
∂xu∂xl

(ϕ(x, t))
∂ϕu

∂xi
(ϕ(x, τ), t− τ)

∂ϕl

∂xj
(ϕ(x, τ), t− τ)

+
∑
u∈I

∂f(k,s)
∂xu

(ϕ(x, t))
∂2ϕu

∂xi∂xj
(ϕ(x, τ), t− τ),
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where the last term is the same as the one derived in (3.22). Combining these results and rearranging
terms leads to

d

dt

1

2

∫ t

0

∑
i,j∈I

Qi,j(ϕ(x, τ))
∂2ϕ(k,s)

∂xi∂xj
(ϕ(x, τ), t− τ)dτ

=
∑
u∈I

∂f(k,s)
∂xu

(ϕ(x, t))
1

2

∫ t

0

∑
i,j∈I

Qi,j(ϕ(x, τ))
∂2ϕu

∂xi∂xj
(ϕ(x, τ), t− τ)dτ︸ ︷︷ ︸

vu(x,t)

+
∑
u,l∈I

∂2f(k,s)
∂xu∂xl

(ϕ(x, t))

× 1

2

∫ t

0

∑
i,j∈I

Qi,j(ϕ(x, τ))
∂ϕu

∂xi
(ϕ(x, τ), t− τ)

∂ϕl

∂xj
(ϕ(x, τ), t− τ)dτ︸ ︷︷ ︸

wu,l

,

which is the ODE describing v(k,s)(x, t). We obtain the integral form for w(k1,s1),(k2,s2)(x, t) by
application of the same steps.

Comparison of the Refinement Term v and the Quadratic Taylor Term

In Lemma 10 below, we bound the difference of the refinement term v and the quadratic term of
the second order Taylor expansion appearing in the proof of Theorem 5. By defining g(k,s)(y, τ) =∑

i,j∈I Qi,j(y)
∂2ϕ(k,s)

∂xi∂xj
(y, t − τ) we see that the entries of the refinement term v in integral form

can be expressed as v(k,s)(x, t) = 1
2

∫ t

0
g(k,s)(ϕ(x, τ), τ)dτ . Similarly, the time integral over the

expectation of the quadratic term of the Taylor expansion is given by 1
2

∫ t

0
E[g(k,s)(X(τ), τ)]dτ .

The latter arises due to the comparison of generator approach used in the proof of Theorem 5 and
the subsequent Taylor expansion of order two. The lemma shows that the difference of the two
terms decreases quadratically with the system sizeN and allows, in combination with Lemma 8, to
obtain the accuracy bounds for the refined mean field approximation.

Lemma 10. Define g(k,s)(y, τ) =
∑

i,j∈I Qi,j(y)
∂2ϕ(k,s)

∂xi∂xj
(y, t− τ) withϕ being the solution to the

ODE defined in Section 3.4.1 andQ as defined in Appendix 3.8.2. Then

1

2

∫ t

0

E[g(k,s)(X(τ), τ)− g(k,s)(ϕ(x, τ), τ)]dτ = O(1/N2).

Proof. We follow a similar proof concept as in Theorem 4. First, we define hτ (y) = g(k,s)(y, τ)
and rewrite

1

2

∫ t

0

E[g(k,s)(X(τ), τ)− g(k,s)(ϕ(x, τ), τ)]dτ =
1

2

∫ t

0

E[hτ (X(τ))− hτ (ϕ(x, τ))]dτ.

(3.23)
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By definition of g(k,s), hτ is twice continuously differentiable. Second, using Lemma 6, we see that
E[hτ (X(τ))− hτ (ϕ(x, τ))] is equal to∫ τ

0

E[
∑
x′∈X

KX(ν),x′
(
hτ (ϕ(x

′, τ−ν))− hτ (ϕ(X(ν), τ−ν))
)

(3.24)

−Dx(hτ ◦ ϕ)(X(ν), τ−ν)f(X(ν))]dν. (3.25)

We use a second order Taylor expansion to express hτ (ϕ(x′, τ −ν)) = (hτ ◦ϕ)(x′, τ −ν) around
X(ν). The constant and linear term of the expansion are hτ (ϕ(X(ν), τ − ν)) and
Dx(hτ ◦ϕ)(X(ν), τ −ν)∆X(ν) respectively. By realizing that the sum

∑
x′∈X KX(ν),x′Dx(hτ ◦

ϕ)(X(ν), τ − ν)∆X(ν) is equal toDx(hτ ◦ϕ)(X(ν), τ − ν)f(X(ν)), it follows that equation
(3.25) is equal to the remainder of the Taylor expansion∫ τ

0

E[
∑
i,j∈I

∑
x′∈X

KX(ν),x′∆Xi(ν)∆Xj(ν)

×
∫ 1

0

(1− ω)
∂2

∂xi∂xj
(hτ ◦ ϕ)(X(ν) + ω∆X(ν), τ − ν)dω]dν.

Taking the supremum over all possible values ofX(τ) as well as x and using the definition ofQ,
the above term is bounded by

1

2

∫ τ

0

sup
y,z∈Conv(X )

∑
i,j∈I

|Qi,j(y)|
∣∣∣∣ ∂2

∂xi∂xj
(hτ ◦ ϕ)(z, τ − ν)

∣∣∣∣dν. (3.26)

The rest of the proof is then essentially a careful analysis of the above sum. For that, we use again
Lemma 7 but also need bounds on up to the second derivative ofQ (This is needed because in the
above expression the function hτ is defined as a function of Q). The latter makes the rest of the
proof long and technical but the main ideas are essentially similar to the ones used in Lemma 7. The
second derivative of h ◦ ϕ satisfies (for i, j ∈ I):

∂2

∂xi∂xj
(hτ ◦ ϕ)(z, τ−ν) =

∂

∂xj

(∑
u∈I

∂hτ
∂xu

(ϕ(z, τ−ν))∂ϕu

∂xi
(z, τ−ν)

)
=
∑
u∈I

∂hτ
∂xu

(ϕ(z, τ−ν)) ∂2ϕu

∂xi∂xj
(z, τ−ν) (3.27)

+
∑
u,r∈I

∂2hτ
∂xu∂xr

(ϕ(z, τ−ν))∂ϕu

∂xi
(z, τ−ν)∂ϕr

∂xj
(z, τ−ν). (3.28)

81



3 Mean Field and Refined Mean Field Approximations for Heterogeneous Systems

To bound the above term, we need to study ∂hτ

∂xu
(z) =

∂g(k,s)
∂xu

(z, τ) and ∂2hτ

∂xu∂xr
(z) =

∂2g(k,s)
∂xu∂xr

(z, τ).
Applying the chain rule to the definition of hτ shows that the first partial derivative of hτ is

∂hτ
∂xu

(z) =
∂

∂xu

(∑
q,l

Qq,l(z)
∂ϕ(k,s)

∂xq∂xl
(z, t−τ)

)

=
∑
q,l∈I

∂Qq,l

∂xu
(z)

∂2ϕ(k,s)

∂xq∂xl
(z, t− ν) +

∑
q,l∈I

Qq,l(z)
∂3ϕ(k,s)

∂xq∂xl∂xu
(z, t− ν).

Similarly, the second partial derivative is

∂2hτ
∂xr∂xu

(z) =
∂

∂xr

(∑
q,l∈I

∂Qq,l

∂xu
(z)

∂2ϕ(k,s)

∂xq∂xl
(z, t− ν) +

∑
q,l∈I

Qq,l(z)
∂3ϕ(k,s)

∂xq∂xl∂xu
(z, t− ν)

)

=
∑
q,l∈I

∂2Qq,l

∂xu∂xr
(z)

∂2ϕ(k,s)

∂xq∂xl
(z, t− ν) +

∂Qq,l

∂xu
(z)

∂3ϕ(k,s)

∂xq∂xl∂xr
(z, t− ν)

+
∂Qq,l

∂xr
(z)

∂3ϕ(k,s)

∂xq∂xl∂xu
(z, t− ν) +Qq,l(z)

∂4ϕ(k,s)

∂xq∂xl∂xu∂xr
(z, t− ν).

What remains is to bound the sums appearing in the above derivatives. We use the notations ckk1 and
ck1,k2,k3 , as in the proof of Lemma 8. From the representation ofQ given in Appendix 3.8.2, it can
be seen thatQ(k1,s1),(k2,s2)(z) = O(ck1k2), ∂Q(k1,s1),(k2,s2)

∂x(k3,s3)
= O(ck1,k2,k3) and

∂2Q(k1,s1),(k2,s2)

∂x(k3,s3)∂x(k4,s4)
=


O(1/N) if (k1, k2) = (k3, k4) or (k4, k3),
O(1/N2) if k1 = k3, k4 or k2 = k3, k4,

O(1/N3) otherwise.

Lemma 7 gives bounds for the partial derivatives of ϕ. This enables us to develop an upper bound
for |∂hτ

∂xu
(z)|,∣∣∣∣ ∂hτ

∂x(k′,s′)
(z)

∣∣∣∣ ≤ ∑
(k1,s1),(k2,s2)∈I

∣∣∣∣∂Q(k1,s1),(k2,s2)

∂x(k′,s′)
(z)

∣∣∣∣∣∣∣∣ ∂2ϕ(k,s)

∂x(k1,s1)∂x(k2,s2)
(z, t− ν)

∣∣∣∣
+

∑
(k1,s1),(k2,s2)∈I

∣∣Q(k1,s1),(k2,s2)(z)
∣∣∣∣∣∣ ∂3ϕ(k,s)

∂x(k1,s1)∂x(k2,s2)∂x(k′,s′)
(z, t− ν)

∣∣∣∣
=

∑
(k1,s1),(k2,s2)∈I

O
(
ck1,k2,k′

)
O
( 1
N
(ckk1 + ckk2)

)
+

∑
(k1,s1),(k2,s2)∈I

O
(
ck1k2
)
O
( 1

N2
(ckk1 + ckk2 + ckk3)

)
= O(

1

N
ckk′).
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With the above observations we bound the first sum of (3.28) by

∑
u∈I

∣∣∣∣∂hτ∂xu
(ϕ(z, τ − ν))

∣∣∣∣∣∣∣∣ ∂2ϕu

∂xi∂xj
(z, τ − ν)

∣∣∣∣
=

∑
(k′,s′)∈I

∣∣∣∣ ∂g(k,s)∂x(k′,s′)
(ϕ(z, τ − ν), τ)

∣∣∣∣∣∣∣∣ ∂2ϕ(k′,s′)

∂x(k1,s1)∂x(k2,s2)
(z, τ − ν)

∣∣∣∣
=

∑
(k′,s′)∈I

O(
1

N
ckk′)O(

1

N
(ck

′

k1
+ ck

′

k2
)) = O(

1

N2
(ckk1 + ckk2)).

For the second partial derivatives of hτ (z) = g(k,s)(z, t − τ), we note that all sums which appear
in the explicit form of the partial derivative are bounded byO( 1

N2 (c
k
k′ + ck

k̂
)). Using the bounds for

Q andϕ and their respective partial derivatives we see that

∑
(k1,s1),(k2,s2)

∣∣Q(k1,s1),(k2,s2)(z)
∣∣∣∣∣∣∣ ∂4ϕ(k,s)

∂x(k1,s1)∂x(k2,s2)∂x(k′,s′)∂x(k̂,ŝ)
(z, t− ν)

∣∣∣∣∣
=

∑
(k1,s1),(k2,s2)

O(ck1k2)O(
1

N3
(ckk1 + ckk2 + ckk′ + ck

k̂
)) = O(

1

N2
(ckk′ + ck

k̂
)),

and that

∑
(k1,s1),(k2,s2)

∣∣∣∣∣∂Q(k1,s1),(k2,s2)

∂x(k̂,ŝ)
(z)

∣∣∣∣∣
∣∣∣∣ ∂3ϕ(k,s)

∂x(k1,s1)∂x(k2,s2)∂x(k′,s′)
(z, t− ν)

∣∣∣∣
=

∑
(k1,s1),(k2,s2)

O(ck1,k2,k̂)O(
1

N2
(ckk1 + ckk2 + ckk′)) = O(

1

N2
(ckk′ + ck

k̂
)),

as well as

∑
(k1,s1),(k2,s2)

∣∣∣∣∣∂2Q(k1,s1),(k2,s2)

∂x(k̂,ŝ)∂x(k′,s′)
(z)

∣∣∣∣∣
∣∣∣∣ ∂2ϕ(k,s)

∂x(k1,s1)∂x(k2,s2)
(z, t− ν)

∣∣∣∣ = O(
1

N2
(ckk′ + ck

k̂
)).
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The last bound follows with careful case-by-case analysis for the second derivative of ∂2Q(k1,s1),(k2,s2)

∂x(k̂,ŝ)∂x(k′,s′)
.

As a direct consequence
∣∣∣ ∂2hτ

∂x(k′,s′)∂x(k̂,ŝ)
(ϕ(z, τ − ν))

∣∣∣ = O( 1
N2 (c

k
k′ + ck

k̂
)). This enables us to

establish a bound for the second sum of (3.28),∑
u,r∈I

∣∣∣∣ ∂2hτ
∂xu∂xr

(ϕ(z, τ − ν))

∣∣∣∣∣∣∣∣∂ϕu

∂xi
(z, τ − ν)

∣∣∣∣∣∣∣∣∂ϕr

∂xj
(z, τ − ν)

∣∣∣∣
=

∑
(k′,s′),(k̂,ŝ)∈I

∣∣∣∣∣ ∂2g(k,s)
∂x(k′,s′)∂x(k̂,ŝ)

(ϕ(z, τ − ν), τ)

∣∣∣∣∣
∣∣∣∣ ∂ϕ(k′,s′)

∂x(k1,s1)
(z, τ − ν)

∣∣∣∣∣∣∣∣ ∂ϕ(k̂,ŝ)

∂x(k2,s2)
(z, τ − ν)

∣∣∣∣
=

∑
(k′,s′),(k̂,ŝ)∈I

O(
1

N2
(ckk′ + ck

k̂
))O(ck

′

k1
)O(ck̂k2) = O(

1

N2
(ckk1 + ckk2)).

For the last part of the proof, we use the obtained results to bound∑
i,j∈I |Qi,j(y)|

∣∣∣ ∂2

∂xi∂xj
(hτ ◦ ϕ)(z, τ − ν)

∣∣∣. By equation (3.28) we see that (3.26) is equal
to

1

2

∫ τ

0

sup
y,z∈Conv(X )

∑
i,j∈I

|Qi,j(y)|

∣∣∣∣∣∑
u∈I

∂hτ
∂xu

(ϕ(z, τ − ν))
∂2ϕu

∂xi∂xj
(z, τ − ν)

+
∑
u,r∈I

∂2hτ
∂xu∂xr

(ϕ(z, τ − ν))
∂ϕu

∂xi
(z, τ − ν)

∂ϕr

∂xj
(z, τ − ν)

∣∣∣∣∣dν.
Indeed, we bound the supremum by the two following terms∑

(k1,s1),(k2,s2)∈I

∣∣Q(k1,s1),(k2,s2)(y)
∣∣ (3.29)

×
∑

(k′,s′)∈I

∣∣∣∣ ∂g(k,s)∂x(k′,s′)
(ϕ(z, τ − ν), τ)

∣∣∣∣∣∣∣∣ ∂2ϕ(k′,s′)

∂x(k1,s1)∂x(k2,s2)
(z, τ − ν)

∣∣∣∣
=

∑
(k1,s1),(k2,s2)

O(ck1k2)O(
1

N2
(ckk1 + ckk2)) = O(1/N2) (3.30)
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and

∑
(k1,s1),(k2,s2)∈I

∣∣Q(k1,s1),(k2,s2)(y)
∣∣ ∑
(k′,s′),(k̂,ŝ)∈I

∣∣∣∣∣ ∂2g(k,s)
∂x(k′,s′)∂x(k̂,ŝ)

(ϕ(z, τ − ν), τ)

∣∣∣∣∣
×
∣∣∣∣ ∂ϕ(k′,s′)

∂x(k1,s1)
(z, τ − ν)

∣∣∣∣∣∣∣∣ ∂ϕ(k̂,ŝ)

∂x(k2,s2)
(z, τ − ν)

∣∣∣∣
=

∑
(k1,s1),(k2,s2)

O(ck1k2)O(
1

N2
(ckk1 + ckk2)) = O(1/N2). (3.31)

The bounds (3.30) and (3.31) show that (3.26) is of order O(1/N2), where the hidden constant
depends on τ, r̄, |S|, from which the claim of the Lemma follows.
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4 RMF Tool - ANumerical Tool Box
This chapter presents the RMF Tool, a numerical toolbox that takes the descrip-
tion of a stochastic population model and numerically computes its mean field
approximations and refinement.

This chapter is based on our publication
S. Allmeier and N. Gast. “Rmf Tool - A Library to Compute (Refined) Mean Field
Approximation(s)”. ACM SIGMETRICS Performance Evaluation Review 4, 2, 2022,
pp. 35–40. issn: 0163-5999. doi: 10.1145/3543146.3543156.
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4.5.1 To which model does this apply? . . . . . . . . . . . . . . . . . . . . . 97
4.5.2 Analysis of the computation time . . . . . . . . . . . . . . . . . . . . 97

4.1 Introduction
Mean field approximation is widely applied to analyze the behavior of large stochastic systems. It ap-
plies to systems composed ofN interacting objects. The idea of the approximation is to consider that
objects within the system evolve independently. This transforms the study of a multi-dimensional
stochastic process into much smaller stochastic processes that are weakly coupled. Under mild con-
ditions, the mean field approximation is described by a finite set of deterministic ordinary differential
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equations (ODEs). As such, it can be simulated at low computational cost. Mean field approxima-
tion finds widespread use in fields such as epidemic spreading [43, 90], load balancing strategies [87,
91], the study of cache replacement strategies [60] or SSDs [108].

Classical models to which mean field approximation applies are the class of density dependent
population processes (DDPPs, [77]), whose definition is recalled in Section 4.2 – epidemic spread-
ing or load balancing models are typical examples of DDPPs. IfX is a density dependent population
process inddimensions, its mean field approximation is the solution of a system of non-linear ODEs
ẋ = f(x) where f : Rd → Rd is called the drift of the system. Computing the mean field approx-
imation can be easily automated, as the drift f can be expressed easily from the model’s definition.
Our tool incorporates this but, more importantly, allows going further.

Building on mean field approximation, the authors of [54, 56] introduce the notion of refined
mean field approximation. This approximation consists in adding an expansion term to the original
approximation. Denoting by x the value of the mean field approximation, it is shown in [55] that
there exists a deterministic quantity v(t) such that:

E[X(t)] = x(t) +
1

N
v(t)︸ ︷︷ ︸

refined m.f. approx.

+O(
1

N2
).

The quantity v(t) is the solution of a time-inhomogeneous linear ODE. As shown in the aforemen-
tioned papers, the construction of this set of ODEs is direct from the model description but involves
computing the derivatives of the drift, which can be cumbersome.

The purpose of rmf_tool – the refined mean field tool – is to make mean field and refined mean
field approximation easily computable. Our tool is composed of a Python library. The tool takes as
input a description of the system, which can be either a density dependent population process or a
heterogeneous population model, and can be used to compute the mean field and refined mean field
approximations numerically. The tool relies on standard libraries (like numpy and scipy) to construct
and solve the corresponding ODEs. The tool is provided with a series of examples to demonstrate
its expressiveness and the accuracy of the various approximations.

Related tools There exist a large number of tools that provide methods to construct and sim-
ulate stochastic population models. Yet, to the best of our knowledge, the only tool that provides
a way to analyze size expansion methods (which are essentially equivalent to our refined mean field
approximation) is the iNA software of [104]. The iNA is a complete simulation toolbox (that in-
cludes its own graphical interface). Compared to this software, we use a more lightweight approach
by providing a pure python library that can be easily integrated.

Roadmap The chapter is centered around the tool. We first describe the set of models to which
the tool applies in Section 4.2, along with examples on how they can be defined within the tool. We
then describe what are the mean field and refined mean field approximation, and how one can use
the tool to compute them in Section 4.3. We detail some technical challenges in Section 4.4 and
conclude in Section 4.5.
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Reproducibility Our tool is provided as an open-source software at https://github.com/

Ngast/rmf_tool. The code to reproduce this chapater along with all figures is available at https:

//gitlab.inria.fr/gast/toolpaper_rmf.

4.2 Models
The tool that we develop accepts three kinds of models: homogeneous population processes
(HomPP), density dependent population processes (DDPPs) and heterogeneous population mod-
els (HetPP). First, we describe the notion of the HomPP of which DDPP and HetPP are general-
izations.

4.2.1 Homogeneous population process
Population Processes are widely used to describe the evolution of a number of interacting objects (or
individuals). A homogeneous population model consists ofN interacting objects that each evolves
in a finite state space {1 . . . d}. All objects have similar transition rates which are a combination of
unilateral and pairwise interactions, i.e. objects can change their state with or without interacting
with one other member of the population. LetXs(t) be the fraction of objects that are in state s at
time t. We assume thatX = (X1 . . . Xd) is a continuous time Markov chain whose transitions are
such that for all state s, s′, s̃, s̃′:

(Uni.) An object in state smoves to state s′ at rate as,s′ .

(Pair.) A pair of objects in state (s, s̃) moves to state s′, s̃′ at rate bs,s̃,s′,s̃′/N .

Note that for pairwise interactions, the rate is scaled by 1/N as the number of pairs of objects is N
times larger than the number of objects.

Example: the SIS model One of the simplest examples of population process is the epidemic
model called the SIS model. In an SIS model, each object can be in one of the two states S (suscep-
tible) or I (infected). Susceptible objects can become infected from an external source (unilateral
transition) or when meeting an infected individual (pairwise transition). An infected individual can
recover and become susceptible again (unilateral transition). We assume that an individual becomes
infected at rate α by an external source, and recovers at rate β. Moreover, assume that the rate at
which two individuals meet is γ/N and that when a susceptible meets an infected individual, the
susceptible gets infected.

With our tool, we define a class called HomPP for which we specify the transition rates and an
initial state. For the SIS model above, with α, β, γ = 1, we write:

import rmf_tool as rmf

model = rmf.HomPP()

d, S, I = 2, 0, 1

A, B = np.zeros((d, d)), Np.zeros((d, d, d, d))

A[S, I] = 1 # \alpha
A[I, S] = 1 # \beta
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B[S, I, I, I] = 1 # \gamma
model.add_rate_tensors(A, B)

The specified model can be used to simulate stochastic trajectories of the underlying process for
various population sizes. It can also be used to compute the mean field approximation and the re-
finements (see Section 4.3). For instance, if one wants to simulate a trajectory for a population of
sizeN = 1000, where all individuals are susceptible in the initial state, one would write:

model.set_initial_state([1,0])

t, X = model.simulate(N=1000, time=2)

State representation Recall that Xs(t) is the fraction of objects in state s at time t. The
transitions of such a model can be expressed1 as:

(Uni.) When an object moves from s to s′, this changesX intoX + 1
N
(es′ −es). As nXs(t) is the

number of objects in state s, this transition occurs at rate nas,s′Xs(t).

(Pair.) When a pair moves from (s, s̃) to (s′, s̃′), this changesX intoX + 1
N
(es′ +es̃′ −es̃−es).

This transition occurs at rate nbs,s̃,s′,s̃′Xs(t)Xs̃(t).

Written in a compact way, those transitions are:

x→ x+
1

N
(es′ − es) at rate nas,s′xs (4.1)

x→ x+
1

N
(es′+es̃′−es̃−es) at rate nbs,s̃,s′,s̃′xsxs̃. (4.2)

4.2.2 Density dependent populations process

The class of homogeneous population model that we define is a subclass of density dependent pop-
ulation processes (DDPPs) that are introduced by Kurtz in the 70s [77]. For a given N , a DDPP
defines a stochastic processX ∈ Rd. The transitions of the process are specified by a finite set of
vectorsL ⊂ Rd, and a set of corresponding rate functionsβℓ : Rd → R+ for all ℓ ∈ L. The process
X jumps from x to x+ ℓ/N at rateNβℓ(x).

It should be clear from Equation (4.1)-(4.2) that HomPP is a special case of DDPP. DDPPs gen-
eralize HomPP since they allow to choose arbitrary transition rates as opposed to combinations of
unilateral and pairwise transition. In the case where nXs(t) denotes the number of individuals in
state s at time t, the vector ℓ ∈ L indicates how many individuals are created or destroyed by a tran-
sition. For instance, if d = 3, ℓ = (1,−1, 0) corresponds to having one additional individual in
state 1 and one less in state 2 (this occurs typically when one individual moves from state 2 to state
1), ℓ = (0, 0, 2) corresponds to the creation of two additional individuals in state 3.

1The notation es ∈ {0, 1}d correspond to a vector of size d whose s entry is equal to 1, all others being 0.
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The SISmodel as aDDPP To illustrate the relation between DDPPs and HomPP, consider the
SIS model defined in the previous section and recall that (XS(t), XI(t)) is the fraction of susceptible
and of infected individuals. The transitions ℓ ∈ L and their corresponding rates βℓ are:

Event Transition ℓ Rate βℓ(x)
infection from ext. source (-1,1) αxS

recovery (1,-1) βxI

infection from a meeting (-1,1) γxSxI

Within our tool, we define a class called DDPP that can be used to define DDPPs directly from their
mathematical definition. For the above SIS example, we would write:

import rmf_tool as rmf

model = rmf.DDPP()

alpha, beta, gamma = 1,1,1

model.add_transition([−1,1], lambda x: alpha*x[0])
model.add_transition([1,−1], lambda x: beta*x[1])
model.add_transition([−1,1], lambda x: gamma*x[0]*x[1])

As for the HomPP, the model can then be used to simulate the stochastic process, to compute
the mean field approximation and the refinements. The syntax is identical. If one wants to run a
simulation with a population of N = 1000 where at the beginning all individuals are in the first
state (susceptible), one would write:

model.set_initial_state([1,0])

t, X = model.simulate(N=1000, time=2)

4.2.3 Heterogeneous population process

In [5], the authors extend the notion of the HomPPs to deal with populations of heterogeneous ob-
jects. As before, the heterogeneous population model consists of N interacting objects which each
evolve in a finite state space {1 . . . d}. Each object has a specific transition rate which is a combi-
nation of unilateral or pairwise interactions. In contrast to the HomPP, transition rates are object
dependent:

• The object k moves from state s to state s′ at rate ak,s,s′ .

• The pair (k, k′) moves from states (s, s̃) to states (s′, s̃′) at rate bk,k′,s,s̃,s′,s̃′/N .

Note that the difference between a homogeneous population process and a heterogeneous popu-
lation process is that the rate tensors a and b depend on the object id k. As a result, the process
X = (X1 . . . Xd) whereXs(t) is the fraction of objects in state s is not a Markov process. Let the
stochastic processZ ∈ {0, 1}N×d describe the evolution of the population where Zk,s = 1 indi-
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cates that object k is in state s and Zk,s = 0 if it is not. The processZ is a Markov process whose
transitions are:

z 7→ z − ek,s + ek,s′ at rate ak,s,s′zk,s,

z 7→ z − ek,s + ek,s′ − ek̃,s̃ + ek̃,s̃′ at rate
1

N
bk,k̃,s,s̃,s′,s̃′zk,szk̃,s̃.

These transitions generalize (4.1)-(4.2).

Example: Heterogeneous SIS model To set up a heterogeneous version of the previous SIS
model we use the HetPP class of the toolbox. In contrast to the HomPP and DDPP class, the model
can not be defined independent of the system size, i.e., N and d have to be defined to initialize the
model. For instance, to set up a SIS model where objects are almost identical but some recover slower
than others, we can use the code:

import rmf_tool.src.heterogeneous_rmf_tool as hrmf

model = hrmf.HetPP()

N, d = 20, 2

S, I = 0, 1

A, B = np.zeros((N, d, d)), Np.zeros((N, N, d, d, d, d))

A[:, S, I] = np.ones((N))

A[:, I, S] = np.random.rand(N) # Hetero. recovery rates
B[:, :, S, I, I, I] = (1/N) * np.ones((N, N))
model.add_rate_tensors(A, B)

Here, the tensor A and B specify the transition rates where A[k,s,s’] = ak,s,s′ and B[k,k̃,s,s̃,s’,s̃’]
= 1

N
bk,k̃,s,s̃,s′,s̃′ . The corresponding transition vectors of the model are derived from the non zero

rates of the tensors. The methods of the HetPP class are coherent to the HomPP and DDPP class.

4.3 Mean field approximations and refinements

4.3.1 Mean field approximation (homogeneous)
For a given DDPP, and a given state x ∈ Rd, we define the drift in state x as

f(x) =
∑
ℓ∈L

ℓβℓ(x).

The drift corresponds to the average variation of the model, as it is the sum of state changes ℓ
weighted by the rate at which these changes occur.

For a given initial conditionx(0), the mean field approximation of a DDPP is the solution of the
ODE:

ẋ = f(x).
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The same holds true for any HomPP since the class of DDPP is essentially a scaled generalization
of the former. Thus, all methods which are available for DDPPs are available for HomPP as well.
Within our tool, the mean field approximation can be easily computed with:

t, X = model.ode(time=2)

It is known from [77] that under very general conditions (essentially that f is Lipschitz-continuous),
the stochastic trajectories ofX converge to the mean field approximationx as the scaling parameter
N goes to infinity. We illustrate the accuracy of the mean field approximation in Figure 4.1, where
we compare two stochastic trajectories of the system for populations of N = 100 and N = 1000
individuals, with the mean field approximation.
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Figure 4.1: Example: Simulation of the SIS (DDPP model)

4.3.2 The refined mean field approximation
It is shown in [54, 56] that when the drift of the DDPP is twice differentiable, there exists a time
varying vector v and a time varying matrixw such that:

E[X(t)] = x(t) +
1

N
v(t) +O(

1

N2
);

Var[X(t)] =
1

N
w(t) +O(

1

N2
),

where Var[X(t)] is the covariance matrix of the stochastic processX .
The above equation holds for any finite time. It is shown in [54] that, for the transient regime,

v andw satisfy a time-inhomogeneous linear ODEs. If there exists a point x(∞) such that for all
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initial condition x(0) ∈ Rd, the solution of the ODE converges to x(∞) exponentially fast, then
this equation holds uniformly in time and in particular is also true for the steady-state t = +∞. In
the latter case, the following linear equation (that is called a Lyapunov equation) is satisfied:

wJ + JTw + q = 0, (4.3)

where J is the Jacobian of the drift f evaluated at x(∞) and q =
∑

ℓ ℓ⊗ ℓβℓ(x(∞)). The vector
v(∞) = J−1(D · w), where D is the second derivative of f evaluated at x(∞) and · denotes a
tensor product: (D ·w)i =

∑
jkDi,jkwjk andDi,jk = (∂2f/∂xj∂xk) evaluated in x(∞).

This means that they can be easily solved numerically. The tool provides methods to automatically
compute these constants for the transient or the steady-state regime. These functions rely on scipy’s
functions: for the transient regime it uses the solve_ivp from scipy and for the steady-state the
function solve_continuous_lyapunov. An example of the tool is:

t, x, v, _ =\

model.meanFieldExpansionTransient(order=1,time=2)

x_inf, v_inf,_ =\

model.meanFieldExpansioNSteadyState(order=1)

x_simu, _ = ddpp.steady_state_simulation(N=n, time=20000)

where the last line estimatesE[X(∞)] by simulating a trajectory of 20000 events and computes the
average over the end of the trajectory.

This result is illustrated in Table 4.1, where we compare the mean field approximation, the refined
mean field approximation and an estimation of the steady-state probability E[Xs(∞)] computed
by simulation. We observe that if the mean field approximation is already very accurate, its refined
version is close to being exact.

N M-f x(∞) Refined x(∞) + 1
N
x(∞) Simulation

10 0.382 0.394 0.394± 0.004
20 0.382 0.388 0.389± 0.003
30 0.382 0.386 0.386± 0.002

Table 4.1: SIS model: Illustration of the accuracy of the mean field and refined mean field approximations for
steady-state.

Note that the tool also allows to compute the second order refinement term as defined in [54].
This can be done by changing the order=1 into order=2 in the code. The time to compute this ap-
proximation is much larger than the time to compute the refined mean field approximation (that
corresponds to a first order expansion).

4.3.3 Heterogeneous mean field approximation and refinements
The heterogeneous mean field approximation and its refinement differs from the homogeneous case
in the sense that transitions are dependent on the state of single objects. For the stochastic process
this is taking into account by considering an object dependent representation. The intuition of the
mean field approximation is as before, for the drift we consider the sum over all transitions weighted
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by their transition rate. Let the drift in state z be denoted by fhet(z), then, the mean field approx-
imation is again the solution to the ode having fhet as drift with initial condition z(0). If both,
ak,s,s′ and bk,k̃,s,s̃,s′,s̃′ are uniformly bounded, it holds, as shown in [5] that the adapted mean field
and refined mean field approximation capture the probability of the objects to be in a state with an
accuracy ofO(1/N) andO(1/N2), i.e.

E[Zk,s(t)] = P(Zk,s(t) = 1) = zk,s(t) +O(1/N), (4.4)
E[Zk,s(t)] = P(Zk,s(t) = 1) = zk,s(t) + vk,s(t) +O(1/N2).

The term vk,s(t) refers to the adapted refinement term whose precise definition can be found in [5,
Appendix B].

Simulations of stochastic trajectories, mean field and the refinement methods can be calculated by
calling the same functions as for the homogeneous case. Note that second order refinement methods
are note available for the current version since they are computationally too expensive.

Due to the setup of the heterogeneous population process, single simulation trajectories are not
close to the mean field approximation but close to the sample mean of the stochastic system, that is,
(4.4) holds butZk,s(t) does not converge to zk,s(t) asN goes to infinity (contrary to what appends
to the DDPP case for which one can show [77] that Xs(t) converges in probability to its mean
field approximation xs(t), which is what is observed in Figure 4.1). Hence, to study the accuracy
of the mean field and refined mean field approximation in the heterogeneous context, we provide
the additional methods sampleMean, sampleMeanVariance with which the sample mean and sample
variance can be calculated. To calculate an approximated mean with 100 samples, we set the initial
state to have only susceptible objects and write:
model.set_initial_state(np.ones((N,d))*np.array([1,0]))
t_mean, mean, var =\

model.sampleMeanVariance(time=2, samples=100)

In order to compare the results to a one of the homogeneous models one should consider the sum
Ys(t) =

1
N

∑N
k=1 Z(k,s)(t), which is a density representation of the heterogeneous population pro-

cess. It can be shown that Ys(t) converges in probability to its mean field approximation ys(t), as
the number of objects grows.

4.4 Implementation challenges
Most of the toolbox functionality is a direct implementation of the equations defined in [54, 59],
with the use of functions from numpy or scipy to integrate differential equations or solve linear equa-
tions. Yet, there are some implementation challenges among which we list two here: how to auto-
matically compute the drift’s derivatives (Section 4.4.1), and how to deal with model that do not
satisfy the exact assumptions of [59] needed for the steady-state (Section 4.4.2).

4.4.1 Automatic differentiation
To compute the refined mean field approximation, one needs to compute the first and second deriva-
tives of the drift function f . We implement three different methods. The first is to use a finite dif-
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ference method. ∂fi(x)/∂xj ≈ (fi(x + εej)− fi(x))/ε. This is the most robust method but is
relatively slow and has a limited precision due to the choice of ε. The second method that we imple-
ment is to use the package simpy that allows for symbolic computation and can be used to compute
derivatives. The third method is a method based on autograd from jax that uses automatic differen-
tiation. These two methods are both faster and more accurate than finite difference methods. Yet,
they cannot differentiate all functions. For instance, if the drift involves a sinus function and if the
DDPP model is defined using the numpy.sin function, then the simpy will not be able to differentiate
this function as it does not understand the numpy function. Here, autograd will work.

4.4.2 Dimension reduction
In order for the equation (4.3) to have a unique solution, the assumption used in [59] is that all
solutions of the mean field ODE ẋ = f(x) converge to the same fixed point x(∞), regardless
of the initial condition x(0) ∈ Rd. Yet, in practice, many models are naturally described as d-
dimensional DDPP but evolve in a smaller dimensional space X ⊂ Rd. This is for instance the case
for the SIS model of Section 4.2 that evolves in a space of dimension 1 because xS + xI = 1. It
further implies that the Lyapunov equation (4.3) does not have a unique solution. As such, one
cannot apply directly the theorem of [59] to this SIS model.

A mathematical solution to this is to redefine our SIS model to obtain a model in dimension 1.
By replacing the occurrences of xI by 1−xS in all equations. Yet, if this is easily done for reducing a
2D model to a 1D model, it can be cumbersome when going from a 20D to a 15D model. Our tool
allows doing this automatically. This is how we can obtain Table 4.1 while using the DDPP defined
in Section 4.2.

Our approach to this problem is to compute the rank of the set of transitions L. If this rank is
d′ < d, this means that the model evolves in a d′-dimensional state space. In particular, the jacobian
A used in Equation (4.3) has dimension at most d′. Our code uses the SVD decomposition ofA to
transform the d-dimensional Lyapunov equation (4.3) into d′-dimensional equation. This is partic-
ularly useful for heterogeneous models composed ofN objects that each evolve in a S dimensional
state: a natural description of the model is to construct aNS-dimensional DDPP, but that evolves
in a subset of dimensionN(S−1) or even smaller. For instance, the cache replacement policy stud-
ied in [5, 36, 60] withN objects and S lists is naturally described as aN(S + 1) process but evolves
in fact in a NS − S state space. Using the automated dimension reduction greatly simplifies the
definition of the model in the tool.

4.5 Conclusion andDiscussion
In this chapter, we present a tool, called rmf_tool, that can be used to define and study mean field in-
teraction models. The tool is build-in with a stochastic simulator, and methods to compute the
mean field approximation and refined approximation of a given model. The tool consists on a
Python library and models can be directly be defined as python objects. In the present chapter, we
illustrate how the tool can be used by using a simple SIS model. Below, we discuss in more detail the
applicability of the tool by giving a few examples of application, and by analyzing the computation
time.
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4.5.1 Towhich model does this apply?
The tool is provided with a number of examples that demonstrates the use of the tool and the accu-
racy of the approximation. These examples include:

• The power of two choice model of [89]. This example models a simple, yet powerful, load
balancing strategy in a system composed ofN servers.

• The bike-sharing model of [50]. It models a city where CN bikes moves in a city composed
ofN stations.

• A epidemic model called the SIR model (that is a generalization of the SIS model presented
in the chapter).

Although they are not directly provided as examples in the repository, the tool is also used in [5,
36] to analyze the performance of cache replacement policies. These cache replacement policies are
examples of non-homogeneous population models.

4.5.2 Analysis of the computation time
To give an idea of the time needed to compute the refined approximation, we report in Figure 4.2
the time taken by the tool to compute the refined mean field approximation as a function of the
system size. The first line corresponds to a homogeneous model of dimension d: in this model, we
consider the power of two choice model of [89] where we bound the queue length by d. We report
the numbers of [54]. We observe that for this model, we can solve the problem for a few hundreds of
dimension in less than a few tens of seconds. Note that for this example, the jacobian and the second
derivative can be computed in close form. Hence, the reported time does not include the time that
would be taken if one were to use symbolic differentiation.

In the second line of Figure 4.2, we report the time taken to solve the heterogeneous SIS model
defined in Section 4.2.3 withN different objects. For this example, we use the HetPP class. Note that
this class does not use symbolic differentiation since the derivative can be directly computed by using
the A and B tensors. The model here is a 2N dimensional model. We observe that the time taken
here for a model with 2N dimension is larger than the time for a homogeneous model of dimension
2N . We believe that the run time could be improved by using sparse tensor multiplications and will
consider this question for future work.
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Figure 4.2: Analysis of the computation time: for the transient regime, we compute v(t) for t ∈ [0, 10]. For
the steady-state, we compute v(∞).
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Models

In this chaper, we present accuracy results of the graphon mean field approxima-
tion for interacting particle systems with dense, graph based connections. The
chaper presents currently unpublished results.
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5.1 Introduction
Mean field approximations are ubiquitously used in the study of large scale stochastic systems. Its
origins date back to the ′60s and ′70s with the foundational papers of Kurtz [75, 76], McKean [83],
Norman [93] and others. While originating from statistical physics, the mean field methodology has
found application in many areas, such as communication networks [81], load balancing [87], and the
study of epidemics [99]. The fundamental idea of the mean field method is to represent the particle
process by a Markovian state descriptor, which is based on averaged quantities of the system. A
quantity commonly used is state occupancy processes, e.g., the averaged load of stations for a bike
sharing system [50] or the fraction of servers having at least a certain queue length in load balancing
systems [87]. For the classical mean field method to be applied, it is crucial that the particles of the
system are homogeneous and therefore exchangeable, which ensures the Markov property for the
mentioned aggregate quantities.

Yet, many systems of interest are fundamentally based on heterogeneous behavior and weaker
connectedness of particles, which can lead to greatly altered dynamics and inaccuracy of the classical
mean field approximation. One of the main implications of such systems is that the quintessential
exchangeability assumption for the classical mean field method breaks down. This further implies
the necessity to keep track of the evolution of the whole range of particles in the system, making the
analysis often prohibitive.

Contributions We provide bias bounds for the graphon mean field approximation for finite-
sized systems consisting of N ∈ N interacting particles for which the graph GN models the con-
nection of the population. Our results show that it is possible to derive bias bounds which largely
depend on the convergence properties of the graph sequenceGN and of its limiting graphonG. To
be more precise, we start from a stochastic interacting particle model of finite size N , where each
individual k is characterized by a time-varying state Sk(t). The connection of the particle to the
population is given by the edges (k, l) of a graph GN . Based on this description, we construct a
(deterministic) integro-differential equation based on the graphonG, and show that it has a unique
solutionxG(t) that we call the graphon mean field approximation. This differential equation is con-
structed such that for fixed N , xGk/N,s(t) approximates the probability of particle k ∈ [N ] to be in
state s at time t. Denoting P(SGN

k (t) = s) this probability, our main result shows that

P(SGN

k (t) = s) = xGk/N,s(t) +O(
1

N
+
∣∣∣∣∣∣GN −G

∣∣∣∣∣∣
L2
),

where
∣∣∣∣∣∣GN −G

∣∣∣∣∣∣
L2

is theL2 distance of the step graphon representation ofGN and the graphon
G, which is equivalent to the distance implied by graphon typical cut norm, see Theorem 15 for a
precise description.
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To show the extent of the result, we consider two specific graph sampling strategies forGN . In the
first case (which we denote deterministic sampling),GN is the discretization of the limiting graphon
G, with GN

kl := Gk/N,l/N ∈ (0, 1] being the strength of interaction between two particles. We
consider this case as it illustrates how our result can be used to model In the second case (that we
call stochastic sampling),GN is a random graph generated fromG, where an edge is present between
two nodes k and ℓwith probabilityG(k/N, l/N). The second case corresponds to a generalization
of Erdős–Rényi graph and stochastic block models to possibly non-uniform probabilities.

Imposing some mild assumptions such as a piecewise Lipschitz condition on the graphon G or
symmetry of G, in the case of stochastic sampling, we can bound the distance between the graph
GN and the graphonG by:

∣∣∣∣∣∣GN −G
∣∣∣∣∣∣

L2
=

{
O(N−1). (Deterministic Sampling)

O(
√

log(N)
N

) w.h.p., (Stochastic Sampling)

Here, with high probability (w.h.p) means that the right-hand side in case of the stochastic sampling
holds with probability at least 1− 2/N . The precise assumptions and results are given in the Corol-
laries 17 and 16. We point out that the main result applies to the considered cases but is not limited
to those. It is possible to consider other graph sampling strategies that satisfy our assumptions and
for which the L2 distance between the step graphon representation of GN and the graphon G can
be bounded. To illustrate our results and emphasize their applicability, we provide two examples,
one each for the stochastic and deterministic sampling method. Our first example considers a load-
balancing system with stochastically drawn connections between servers. Jobs in the load balancing
system arrive at a server site, where each server similarly acts as a dispatcher and keeps or forwards the
job according to the JSQ(2) policy based on its connected neighbors. The second example illustrates
the application of deterministic sampling for a bike sharing system, with particles being stations and
the graphon determining the popularity of the stations. In both cases, a simple discretized version of
the integro-differential equation already yields precise estimations of the system dynamics while the
numerical complexity of the approximation only slightly increases compared to the homogeneous
case.

Organization The chapter is organized as follows. In Section 5.2 we introduce the heteroge-
neous particle model. Section 5.3 defines graphon, related sampling methods and related prelimi-
nary results. Our the definition of the approximation, the main results and proofs are displayed in
Section 5.4. Last, in Section 5.5 we present the two numerical examples.

5.1.1 RelatedWork
Dynamical Systems on Random Graphs In recent years there has been growing interest
in the behavior of interacting particles that are interconnected by an underlying graph topology,
for example, [1, 14, 19, 20] and previously mentioned references. For a general introduction to the
topic of random graph networks and limiting graphon functions for dense graphs, we refer to the
works [82, 106]. The majority of papers focus on dense graphs, having edges of order N2 such as
Erdős–Rényi type graphs or graphs generated by stochastic block models. Additional related work
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can be found in the game theoretic setting for graphon mean field games, see for example [7, 35]. In
the ‘not-so-dense’ setting available results are more limited, with some newer references being [13,
44]. In the case of sparse graphs, such as d-regular graphs or random geometric graphs, the typical
mean field methods break down as they fail to capture the importance of the spatial graph structure
and its implications on the local dynamics of particles. Some recent works in this setting include [52,
53, 96].

Load Balancing on Graphs Our load balancing example is inspired by the recent works of
[34, 100, 116, 117]. Here, the authors study a variety of load balancing systems with dynamics based
on compatibility or locality constraints, which give rise to intricate connectivity between dispatchers
and servers. While not directly transferable into the framework of this paper, the authors similarly
deal with graph-based systems and limit approximations that are strongly related to the ones our
framework suggests. Note that the techniques developed in these papers are very model-specific
and allow for transitions to depend on the states of multiple queues, whereas our approach aims at
deriving results for a more general framework for transition rates with the restriction to the case of
pair interactions.

Generator and Stein’s Method For our proofs, we adapt techniques used in [5, 55, 59],
which in turn rely on the use of Stein’s method [102]. The method is used to estimate and bound the
distance between two random variables through their respective generators. Since the works [31, 33]
Stein’s method has seen an increase in the stochastic network community and is an actively evolving
area.

5.2 Heterogeneous Network Particle System

5.2.1 The interaction model
We consider particle systems with N ∈ N interacting particles. Connections between particles are
characterized by a (possibly weighted) adjacency matrixGN ∈ [0, 1]N×N of sizeN ×N , withGN

kl

indicating the connection strength between particle k and l. Each of the particles has a finite state
space S where the state of the k-th object at time t ≥ 0 is denoted by SGN

k (t). As we see later, GN

can correspond to a random graph for which GN
kl ∈ {0, 1} indicates the presence or absence of an

edge between the particles k and l or can be an arbitrary weighted matrix, see Section 5.3.
The state of the whole system is denoted bySGN

(t) :=
(
SGN

1 , . . . , SGN

N

)
(t) ∈ SN . We assume

that the process SGN

:= (SGN

(t))t≥0 is a continuous time Markov chain (CTMC) with the dy-
namics of the system described as in the following.
Each particle k ∈ [N ] changes its state from sk to s′k ∈ S in one of the two ways:

(Unilateral) The particle independently changes its state at rate rN,uni
k,sk→s′k

.

(Pairwise) The local change of states is triggered by another particle l ∈ [N ] that is in state
sl ∈ S . This occurs at rate rN,pair

k,sk→s′k,sl
GN

kl/N .
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5.2 Heterogeneous Network Particle System

Note that the rate functions are assumed to be heterogeneous, i.e., they can depend on the items k
and l. The rates have a 1/N factor, as each particle can potentially interact with allN −1 remaining
particles. Hence, our condition implies that the total rate of transitions of the particle system is of
order O(N) and that the transition rates for all particles are of the same order. As we will further
discuss in Example 5.5.1, our results can also be used if the scaling factor depends not on the system
size N but on the node degrees. We further want to point out that we restrict our framework to
the interaction of two particles, which can be utilized to model many relevant interacting particle
systems on graphs such as e.g., epidemic spreading, power-of-two-choices load-balancing, or bike
sharing systems. It is nonetheless possible to use the same underlying approach to extend the frame-
work and results to interactions of higher order. This, however, comes at the cost of increasingly
cumbersome notations and limited added theoretical insight.

5.2.2 The binary state representation
In order to ease computations and definitions, we will use a binary representation of the state based
on indicator functions. We denote the new representation byX(N) = (X

(N)
k,s (t))k∈[N ] s∈S

t≥0

, where

X
(N)
k,s (t) := 1{SGN

k (t)=s} :=

{
1 if object k is in state s at time t,
0 otherwise.

The space of attainable states is denoted by XN ⊂ {0, 1}N×S .
While this representation is less compact than the original, it allows for an easier definition of

transition rates as well as the definition of the mean field approximation. Denote by eNk,s a matrix of
size N × |S| whose (k, s) component is equal to 1, all other entries being zero. For each k ∈ [N ],
and sk, s′k ∈ S ,X(N) jumps toX(N) + eNk,sk − eNk,s′k

at rate

Xk,skr
N,uni
k,sk→s′k

+Xk,sk

∑
l∈[N ]

∑
sl∈S

r
N,pair
k,sk→s′k,sl

GN
kl

N
Xl,sl . (5.1)

In the above equation, the first term of the rate corresponds to the unilateral transition of the particle
k ∈ [N ] changing its state from sk to s′k, as this transition occurs at intensity rk,sk→s′k

if particle
k is in state sk (i.e., Xk,sk = 1). The second term describes the pairwise transitions leading to
the state change of particle k from sk to s′k. Similar to the unilateral one, the transition can only
happen if particlek is in state sk, represented in the rate by the prefactorXk,sk . The remaining factor
corresponds to the interaction with other particles, expressed by the weighted sum over all other
particles and their states. The intensity of the transition is scaled by rN,pair

k,sk→s′k,sl
and the connectivity

of the particles is given by the connectivity matrixGN ∈ [0, 1]N×N .

5.2.3 Drift of the system of sizeN
By using the state representationX(N), we define what we call the drift of the system ofN particles
as the expected change forX(N) in stateX ∈ X (N). It is equal to the sum of all possible transitions

103



5 Accuracy of Graphon Mean Field Models

of the changes induced by this transition times the rate at which the transition occurs. We denote
this quantity asFGN

(X). By using Equation (5.1), it is equal to:

FGN

(X) =
∑

k∈[N ],sk,s
′
k∈S

(eNk,s′k − e
N
k,sk

)

Xk,skr
N,uni
k,sk→s′k

+Xk,sk

∑
l∈[N ]

∑
sl∈S

r
N,pair
k,l,sk→s′k,sl

GN
kl

N
Xl,sl


The quantityFGN

(X) is a vector-valued function ofX . By reorganizing the above sum,FGN

k,s (X)
–its (k, s) component– is equal to

FGN

k,sk
(X) =

∑
s′∈S

Xk,s′r
N,uni
k,s′k→sk

−Xk,sr
N,uni
k,sk→s′k

+
∑
l∈[N ]

∑
sl∈S

(Xk,s′k
r
N,pair
k,l,s′k→sk,sl

−Xk,sr
N,pair
k,l,s→s′k,sl

)
GN

kl

N
Xl,sl

.
In the following, it will be convenient to replace the above sum by matrix multiplications. To do so,
let us denote byXk the vector (Xk,s)s∈S . The above equation can be written as:

FGN

k,s (X) = RN,uni
k,s Xk +X

T
k

∑
l∈[N ]

R
N,pair
k,l,s X l

GN
kl

N
, (5.2)

whereRN,uni
k,s is a row vector whose s′ component is rN,uni

k,s′→s if s′ ̸= s and −
∑

s̃ r
N,uni
k,s→s̃ for s = s′;

and RN,pair
k,l,s is a matrix whose (s′, sl) component is rN,pair

k,l,s′→s,sl
if s′ ̸= s and −

∑
s̃ r

N,pair
k,l,s→s̃,sl

if
s = s′.

5.2.4 Representation ofX(N),GN and FGN as function from [0, 1]

To study the limit as N goes to infinity, it will be convenient to view the functionsX(N) not as a
vector with N components (X(N)

k )k∈[N ] but as a function (XN
u )u∈[0,1], where for any state s ∈ S ,

we set

XGN

u,s := XGN

k,s ∈ {0, 1} for u ∈ ((k − 1)/N, k/N ].

By abuse of notation, we do not introduce separate notations for the discrete and continuous vari-
ables but make the distinction by reserving the subscript letters k, l ∈ [N ] for the discrete case and
u, v ∈ (0, 1] for the continuous variable.

Similarly, we also writeGN
uv = GN

kl foru ∈ ((k−1)/N, k/N ] and v ∈ ((l−1)/N, l/N ],FGN

u,s =

FGN

k,s , andRN,uni
k,s = RN,uni

u,s . By using this notation, the sum of k ∈ [N ] –for instance in (5.2)– can
be replaced by an integral, i.e., FGN

k,s (X) = FGN

u,s (X) = RN,uni
u,s Xu +XT

u

∫ 1

0
RN,pair

u,v,s XvG
N
uvdv

for u ∈ ((k − 1)/N, k/N ].

5.2.5 Notations
Throughout the paper, matrices, and vectors are written in bold letters, i.e. X,x, . . . , and regular
letters are used to denote scalars like Xu,s, r

uni
u,s→s′ . The indices s, sk, s′k, sl, ... are reserved for the
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states, k, l, ... are reserved for particles, and u, v are reserved for values in the unit interval. When we
write that a quantityh is of orderO(1/N) orh = O(1/N) equivalently, this means that there exists
a constantC such thath ≤ C

N
. Most of our results will be expressed in terms ofL2 norm (see the def-

inition in Section 5.3.3). The spaceL2(0, 1] refers to the quotient space of the square Lebesgue inte-
grable functions. Throughout we will deal with vectors ofL2(0, 1] functions, i.e., f, g ∈ L2(0, 1]

S .
We for the vectors g, f we denote the scalar product by ⟨f, g⟩L2(0,1] =

∑
s∈S
∫ 1

0
fu,sgu,s du for

and induced norm ∥f∥L2
=
√∑

s∈S
∫ 1

0
f 2
udu. For a function G : (0, 1]2 → R denote by

|||G|||L2
= sup{f∈L2(0,1],∥f∥L2(0,1]

≤1}

√∫ 1

0
(
∫ 1

0
Guvfv dv)2du the L2 operator norm.

5.3 Limiting Graph and Graphon
In this section, we specify the properties that the interaction graph GN needs to satisfy as N goes
to infinity. To do so, we introduce the notion of graphon and define the associated cut-norm. We
also introduce two sampling methods that can be used to generate a graph with N nodes from a
graphon. This section only reviews the material that is necessary for our results, and we refer to the
famous book [82] for a detailed introduction to graphons.

5.3.1 Graphons
In this chapter, what we call a graphon is a measurable function1 G : (0, 1]2 → (0, 1]. The notion
of graphon can be viewed as a generalization of the notion of graph. Indeed, for anyN , a weighted
graph GN can be viewed as a piecewise constant function defined on (0, 1]2, where the value of
this function at a point (u, v) ∈ (0, 1]2 is equal to GN

kl whenever u ∈ ((k − 1)/N, k/N ] and
v ∈ ((l − 1)/N, l/N ]. Hence, a finite graph is a graphon that has a special structure. The notion
of graphon generalizes the notion of finite graph by allowingG to be any measurable function. We
provide an illustration of a graphon and of a finite-graph viewed as a graphon on Figure 5.1.

Throughout the paper, we consider piecewise Lipschitz continuous graphons, which are defined
as follows.

Definition 11 (Piecewise Lipschitz Graphon). A graphonG is called piecewise Lipschitz if there exists
a constant LG and a finite partition of (0, 1] of non-overlapping intervals Ak = (ak−1, ak] with
0 = a0 < a1 < ... < aKG

= 0 for a finite KG ∈ N, such that for any k1, k2 ∈ [K + 1] and pairs
(u, v), (u′, v′) ∈ Ak1 ×Ak2

|Guv −Gu′v′ | ≤ LG(|u− u′|+ |v − v′|).

A particular case of a piecewise Lipschitz continuous graphon is the case of a step graphon, that
is such that the Lipschitz constant LP = 0. This implies that the function G is constant on all
intervals Ai ×Aj . For instance, all finite graphs can be seen as step graphons by using the partition
such that Ak = (k − 1/N, k/N ] withN being the number of nodes in the graph.

1In the literature, graphons are often restricted to symmetric functions, which correspond to undirected graphs. This
restriction is not needed for our case.
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Figure 5.1: Exemplary connectivity functions sampled after the methods of Section 5.3.2 and their corre-
sponding graphon.

5.3.2 Generation of a Finite GraphGN from a GraphonG
Based on a given graphon G, we consider two distinct sampling methods to generate a finite graph
GN fromG:

• In the first case, termed deterministic sampling,GN is a discretization ofG onN2 uniformly
sampled points, i.e.,GN

kl = G(k/N, l/N), k, l ∈ [N ].

• For the second case, termed stochastic sampling, and under the preliminary assumption that
the graphon is symmetric, the valuesGN are drawn according to independent Bernoulli ran-
dom variables, i.e.,GN

kl = Bernoulli
(
G(k/N, l/N)

)
, andGN

lk = GN
kl for all k < l.

In the case that the graphon is constant for all u, v ∈ (0, 1], the stochastic sampling method is
equivalent to sampling an Erdős–Rényi graph. If the graphon is block-wise constant, the sampling
is similar to the stochastic block model; see [106].

5.3.3 GraphonDistances and Convergence
To measure the distance between two graphs (and in particular to quantify how fast does a finite
graphGN converge toG), we will use theL2 operator norm. More precisely, for a measurable func-

tion f : [0, 1] → R, we denote by ∥f∥L2(0,1]
=
√∫ 1

0
f(u)2du the L2 norm of f . For a graphon

G, we denote by |||G||| the operator norm ofG in L2, that is:

|||G||| = sup
{f∈L2(0,1] such that ∥f∥L2(0,1]

≤1}
∥Gf∥L2(0,1]

.

The distance between two graphons (or finite graphs)G andG′ is measured as |||G−G′|||.
To bound theL2 distance between a piecewise Lipschitz graphon and the function associated to

a randomly sampled graph, we utilize the results displayed in [8]. The authors show that for a large
enough (see Definition 13) number N of graph nodes, in our case particles, the distance between
the graphon and the graph function can be upper bounded as follows:

Lemma 12 (Theorem 1 from [8]). Let G be a symmetric piecewise Lipschitz graphon, and let GN be
a stochastic sampling of it as defined in 5.3.2. Then, for large enough N (as in Definition 13) with
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probability as least 1− δ the distance in theL2 operator norm between the graphonG and the sampled
graphGN is bounded by

∣∣∣∣∣∣G−GN
∣∣∣∣∣∣

L2(0,1]
≤
√

4 log (2N/δ)

N
+ 2

√
(L2

G −K2
G)

N2
+
KG

N
=: ψδ,G(N). (5.3)

Definition 13 (Large EnoughN [8]). Given a piecewise Lipschitz graphonGwith partition of (0, 1]
of non-overlapping intervals Ak = (ak−1, ak] as in Definition 11 and δ < e−1. The quantity N is
called ‘large enough’, if

2

N
< min

k∈{0..KG}
(ak − ak−1), (5.4a)

1

N
log

(
2N

δ

)
+

2KG + 3LG

N
< sup

u∈(0,1]

∫ 1

0

Gu,v dv and (5.4b)

Ne−N/5 < δ. (5.4c)

Implied by Theorem 12, by setting δN = 2
N

, we see that the distance between a piecewise Lipschitz

graphon and a sampled graph is with high probability of order
∣∣∣∣∣∣G−GN

∣∣∣∣∣∣
L2(0,1]

= O
(√

log(N)
N

)
.

The meaning of ‘with high probability’ in this context is that the right-hand side holds with proba-
bility at least 1− 2/N .

5.4 Main Results

5.4.1 Assumptions
In Section 5.2, we constructed a model that depends on a scaling parameter N . We state here the
necessary assumptions that we will use in order to state the accuracy of the graphon mean field ap-
proximation.

(A1) The state space S is finite.

(A2) The graphonG is piecewise Lipschitz continuous.

(A3) There exists bounded and piecewise Lipschitz-continuous rate functions for runi
u,su→s′u

and
r

pair
u,v,su→s′u,sv

for u, v ∈ (0, 1] and su, s′u, sv ∈ S such that the rates function of the original
N particle systems have the relation:

runi
k/N,sk→s′k

= rN,uni
k,sk→s′k

and r
pair
k/N,l/N,sk→s′k,sl

= r
N,pair
k,l,sk→s′k,sl

for k, l ∈ [N ]. (5.5)

The first assumption is technical and simplifies the definition of the L2 space. The second as-
sumption is very classical regularity assumption when studying sequences of graphs that converge
to graphons [82]. In practice, our bounds will depend on the distance between the original graph

107



5 Accuracy of Graphon Mean Field Models

GN and the graphon G. The last assumption ensures that the particle transition rates for the finite
and the graphon system are equal. We point out that assumption (A3) can be generalized by replac-
ing the equality in (5.5) with bounds for the distance of rN,· and r· therefore modifying the bounds
of the theorem to include terms of the form

∥∥rN,· − r·
∥∥.

5.4.2 The GraphonMean Field Approximation
The graphon mean field approximation aims at approximating the dynamics of the original system
X . We define the graphon related drift similarly to the drift of the particle system in Equation (5.2).
For u, v ∈ (0, 1] the graphon based drift is defined by

FG
u,s(x) = R

uni
u,sxu + x

T
u

∫ 1

0

Rpair
u,v,sGu,vxvdv. (5.6)

This equation is identical to the original drift equation (5.2) with two modifications: First, the rates
do not depend onN . Second, the discrete variables k, l ∈ [N ] are replaced by continuous variables
u, v ∈ (0, 1], which notably replaces the sum over l by an integral over v.

Based on the drift function FG and the initial condition x0, we call the graphon mean field ap-
proximation the solution of the following differential equation:

xG(t,x0) = x0 +

∫ t

0

FG(xG(τ,x0))dτ. (5.7)

Lemma 14. LetFG denote the deterministic drift defined in Equation (5.6) andxG(t,x0) the solu-
tion of the graphon mean field approximation at time twith initial conditionx0 as in Equation (5.7).
It holds that xG is well-defined, has a unique solution and is differentiable with respect to its initial
condition. Furthermore, this derivative is Lipschitz continuous.

The proof is postponed to Section 5.6.1

5.4.3 Accuracy of the approximation
The following result provides a bound on the distance between the stochastic system and the graphon
mean field approximation. This bound is stated as theL2 distance betweenE[X(N)] andxG. Recall
that by definition, E[X(N)

k,s (t)] = P(Sk(t) = s) is the probability for an item k to be in state s at
time t. Hence, our theorem shows that the graphon mean field model is an accurate approximation
of the state distribution of the particles. The statement of the theorem should be interpreted as say-
ing that the distribution of the particles over the states S for any time t ≥ 0 is approximated by the
graphon mean field approximationxG with accuracy depending on the system sizeN as well as the
distance betweenGN and graphonG. In particular, ifGN converges toG (for the graphon norm),
then the graphon mean field approximation is asymptotically exact.

Theorem 15 (L2 convergence). LetX(N)(t) = (X
(N)
k,s )(t)k∈[N ],s∈S be the stochastic particle system

of size N related to a graph instance GN . Let xG(t) = (xG(t,x0))u∈(0,1],s∈S be the mean field
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approximation of the particle system as defined in (5.7) for an initial condition x0 = X(N)(0)2.
Assume additionally that conditions (A1) - (A3) are fulfilled and let t > 0 be arbitrary but fixed.
Then, there exist constantsCA, CB ≥ 0 such that∥∥∥E[X(N)(t) |X(N)(0), GN ]− xG(t,X(N)(0))

∥∥∥
L2

=
CA

N
+ CB

∣∣∣∣∣∣GN −G
∣∣∣∣∣∣. (5.8)

The proof of Theorem 15 is postponed to Section 5.6.2. The constantsCA, CB of Equation (5.8)
depend on the uniform bound of the rates, the time t and the Lipschitz constants of the graphon.
In the subsequent Corollaries 16 and 17 we will see, that if theGN is generated by one of the meth-
ods illustrated in Section 5.3.2, precise bounds on the distance

∣∣∣∣∣∣GN −G
∣∣∣∣∣∣ can be obtained. To

illustrate our results and underline that the constants are small in practice, we provide examples in
Section 5.5. We point out that Theorem 15 is applicable for a wide range of construction methods
for GN . The subsequent corollaries illustrate cases of stochastic and deterministic sampling meth-
ods. We emphasize, however, that any method that allows the construction of densely connected
graphs, for which bounds of

∣∣∣∣∣∣GN −G
∣∣∣∣∣∣ are attainable, is viable. At last, we want to point out

that by using the same framework, it seems feasible to extend our results to interactions of triplets or
higher order interactions seems feasible. Yet, due to our generic choice of transition rates, this would
be linked to increasingly heavy notations for the dynamics while only giving little more insight into
the accuracy of the graphon mean field method.

5.4.4 Case Specific Bounds for
∣∣∣∣∣∣GN −G

∣∣∣∣∣∣
L2

The subsequent corollaries, give specific bounds for the case thatGN was generated as described in
Section 5.3.2. In the first case, if GN is obtained though discretization of G, Corollary 16 shows
that the accuracy is of order O(1/N). Our second Corollary 17 specifies big-O convergence rates
if the graph GN is sampled stochastically from the graphon. In this case, the accuracy is with high
probability of order O(

√
logN
N

).

Case 1: GraphonDiscretization

The corollary give accuracy bounds for the approximation in the case that the graphGN is obtained
as a discretized version of G. The result gives bounds on the difference between the distributions
of the particles in the stochastic system and the approximate values obtained through the graphon
mean field approximation.

Corollary 16 (Dense Heterogeneous System). Assume (A1) - (A3) and letxG andX(N) be defined
as in Theorem 15. Let k ∈ [N ], s ∈ S and t ≥ 0 be arbitrary but fixed. If GN is generated by the
deterministic sampling method of 5.3.2, i.e., a discretization of the graphonG, it holds that∥∥∥E[X(N)(t) |X(N)(0), GN ]− xG(t,X(N)(0))

∥∥∥
L2

≤ CA + CBCGN

N
(5.9)

2Here,X(N)(0) is interpreted as a vector in L2(0, 1]
|S|.
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The proof is postponed to Section 5.6.3. The constants CA, CB are as in Theorem 15. The ad-
ditional constantCGN relates to the discretization error of the deterministic sampling method. For
this case, it is noteworthy that the accuracy of the approximation aligns with the results one obtains
for the homogeneous setting as described in [55, 59] while allowing for heterogeneous connectivity
and rates among the population.

Case 2: RandomGraph

Our second corollary provides accuracy bounds for interacting particle systems on dense random
graphs. By the definition of the graph sampling methods, see Section 5.3.2, with high probabil-
ity, the number of connected neighbors for each particle is of order N . This ensures that for large
enough systems that the neighborhood of each node serves as a local representation of the overall
system state. This leads to the following result:
Corollary 17 (Graphon System Approximation). Assume the conditions (A1) - (A3) as in Theorem
15 for a symmetric graphon G. LetX(N)(t) = (X

(N)
k,s )(t)k∈[N ],s∈S be a stochastic particle system of

size N with GN obtained through the stochastic sampling method as defined in 5.3.2. Let t ≥ 0 and
k ∈ [N ], s ∈ S be arbitrary but fixed. Then, with probability at least 1−2/N and for ‘large enough’
N , as defined in Definition 13, the graphGN is sampled such that∥∥∥E[X(N)(t) |X(N)(0), GN ]− xG(t,X(N)(0))

∥∥∥
L2

≤ CA

N
+ CBψG(N) (5.10)

where ψG(N) :=
√

8 log (N)
N

+ 2

√
(L2

G−K2
G)

N2 + KG

N
with LG being the Lipschitz constant of the

graphonG andKG the size of the partition as defined in 11.
The proof of the corollary is postponed to Section 5.6.3.

5.5 Numerical Experiments
In this section, we present two examples which support the statements of our theoretical results and
illustrate the applicability of the framework. For the first example, we look at a load balancing model
with communication restrictions of the servers imposed by a graph. In this example, the focus is on
the stochastically sampled graph, which imposes heterogeneous rates due to connectedness of the
servers. For the dynamics of the system, we see each node as a dispatcher / server pair applying the
JSQ(2) policy with respect to itself and connected servers whenever a job arrives. For the second
example, we consider a heterogeneous bike-sharing system. Here, the focus lies on the heterogeneity
of the popularity of the stations, which affects the flow of bikes through the system.

5.5.1 Load Balancing Example
Model

The considered load balancing model is a jump process in the Markovian setting. We consider a
system where the servers-dispatcher pairs are connected through a graph structure where each server-
dispatcher is represented by a node. All servers have a finite maximal queue length KL ∈ N. The
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connections between the server-dispatcher pairs are denoted by GN
kl and are sampled according to

Section 5.3.2 using the stochastic sampling method. The graphonG used to sample the edges is the
same as Figure 5.1a. Based on the described connectivity structure, jobs arrive to a server-dispatch
pair following a Poisson arrival process with rate λL > 0. Arriving jobs are distributed according to
the JSQ(2) policy idea, i.e., the dispatcher considers its own server state as well as another randomly
sampled but connected server and forwards the job to the server with the lesser load. In the case that
both servers have the same queue length, the job is assigned randomly among the two. In case both
servers have a full queue, the job is discarded. The service time of a job is exponentially distributed
with meanµL and jobs are handled in first come, first served order. For a system of sizeN with graph
instanceGN and stateX(N) = (X

(N)
k,s )k∈[N ],s=0..KL

the transitions of the system are

X(N) →X(N) + eNk,s+1 − eNk,s (5.11)

at rate λLX
(N)
k,s

∑
l∈[N ]

(
GN

kl

d(N)(k)
+

GN
kl

d(N)(l)
)
(1
2
Xl,s +

∑
sl≥s+1

Xl,sl

)
1s<KL

(5.12)

X(N) →X(N) + eNk,s−1 − eNk,s at rateX(N)
k,s µL1s>0 (5.13)

where ek,s is aN × |S| matrix having a one at the (k, s) entry and zero values everywhere else and
d(N)(k) is the degree of node k. Equation (5.13) corresponds to the completion of a job by server k
when the queue is of size 1 ≤ s ≤ KL. The second type of transitions, equation (5.12), corresponds
to adding a job tok having 0 ≤ s ≤ KL−1 jobs in the buffer. In this case, the queue size is increased
by one from s to s+1. To explain the transition rate we see that the servers k can be selected in two
ways. By selecting k or another connected server l first and the other second. In the case that both
queues have equal length, the chance that the job to arrives at server k is 1/2. If both buffers are full,
the job is discarded. In the case that a node associated to server l is isolated, i.e., has no edges, we
define GN

kl

d(N)(l)
to be zero.

Drift and GraphonMean Field Approximation

For the deterministic drif, we replace the values of GN

d(N)(k)
by the ones of the graphon G

d(v)
with

d(v) :=
∫ 1

0
Gv,νdν and the sums over particles by an integral over (0, 1]. For a given state x =

(xs)s=0,...,KL
with xs ∈ L2(0, 1], the drift evaluated at (u, s) ∈ (0, 1]×{0, . . . , KL} is defined by

FG
u,s(x) = xu,s1s<KL

∫ 1

0

λL

(
Gu,v

d(u)
+
Gu,v

d(v)

)(1
2
xv,s +

∑
sv≥s+1

xv,sv
)
dv − xu,sµL1s>0.

The graphon mean field approximation is then defined as in Equation (5.7).

Derivation of Accuracy Bounds

While edges between the server-dispatcher pair are sampled according to the stochastic sampling
method of Section 5.3.2, the dependence on of the rates on the node degree, prevents a direct appli-
cation of the results of Corollary 17. In particular, to apply Corrollary 17 it is assumed that the
graph edges are scaled by a factor of 1/N instead of the node degree. To resolve this issue and

111



5 Accuracy of Graphon Mean Field Models

obtain accuracy bounds similar to the one given by the Corollary, we start by defining G̃N
kl :=

(
GN

kl

d(N)(k)
+

GN
kl

d(N)(l)
)N
16

, rN,pair
k,l,s→s+1,sl

= λL(
1
2
1sl=s + 1sl>s)1s<KL

, and rN,uni
k,s→s−1 = µL1s>0 with

rN,pair being the pairwise transitions and rN,uni the uniateral transitions for s, s′, sl ∈ {0, ..., KL}.
This allows to obtain the drift of the stochastic system similar to the one introduced in Equation
(5.2) namely

FGN

k,s (X) = Xk,s

∑
sl≥s

∑
l∈[N ]

16
G̃N

kl

N
r
N,pair
k,l,s→s+1,sl

Xl,s′ −Xk,sr
N,uni
k,s→s−1.

We proceed similarly for the drift of the graphon mean field approximation by defining G̃uv :=

(Gu,v

d(u)
+ Gu,v

d(v)
) 1
16

, rpair
k,l,s→s+1,sl

:= λL(
1
2
1sl=s + 1sl>s)1s<KL

and rN,uni
k,s→s−1 := µL1s>0 to rewrite

FG
u,s(x) = xu,s

∫ 1

0

∑
sv≥s

16G̃uvr
pair
k,l,s→s+1,sv

xv,svdv − xu,sr
N,uni
k,s→s−1.

Note that for the above reformulations, the result of our main Theorem 15 is still applicable and
yields constantsCA, CB ≥ 0 such that

∥∥∥E[X(N)(t) | GN ]− xG(t)
∥∥∥
L2

≤ CA

N
+CB

∣∣∣∣∣∣∣∣∣G̃N − G̃
∣∣∣∣∣∣∣∣∣

L2

.

Using the definition of the G̃N , G̃, we obtain
∣∣∣∣∣∣∣∣∣G̃N − G̃

∣∣∣∣∣∣∣∣∣
L2

≤ 1
16

(∥∥GN −G
∥∥
L2

N
mink dN (k)

+

supu∈(0,1]

∣∣∣∑N
k=1

N
dN (k)

1u∈(k−1/N,k/N ] − 1
d(u)

∣∣∣). For
∣∣∣∣∣∣GN −G

∣∣∣∣∣∣
L2

, we can use the bound as in

Corollary 17 which is of orderO(
√

logN
N

)with probability at least 1− 2
N

and large enoughN (as in
Definition 13). To obtain similar bounds for the node degree, the multiplicative Chernoff bound can
be used, i.e., P

(
N

dN (k)
≥ N

(1−γ)E[dN (k)]

)
= P

(
dN(k) ≤ (1 − γ)E[dN(k)]

)
≤ exp(−E[dn(k)]γ2

3
).

Taking γ =
√

3 logN
E[dN (k)]

yields P
(

N
dN (k)

≥ N
(1−γ)E[dN (k)]

)
≤ 2

N
. By the triangle inequality we have∣∣∣∑N

k=1
N

dN (k)
1u∈(k−1/N,k/N ] − 1

d(u)

∣∣∣ ≤ ∣∣∣∑N
k=1(

N
dN (k)

− E[ N
dN (k)

])1u∈(k−1/N,k/N ]

∣∣∣+∣∣∣∑N
k=1 E[

N
dN (k)

]1u∈(k−1/N,k/N ] − 1
d(u)

∣∣∣.
We apply Chernoff bound the first summand to show that the difference concentrates around zero,
i.e., P

(
N

dN (k)
≤ N

(1−γ)E[dN (k)]

)
≥ 1 − 2/N and therefore N

dN (k)
− N

E[dN (k)]
≤ N( 1

(1−γ)E[dN (k)]
−

1
E[dN (k)]

) = O(
√

logN
N

) with probability at least 1− 2/N . The case N
dN (k)

≤ N
(1−γ)E[dN (k)]

follows
using the same arguments. For the second summand we use the statement of Lemma 23 to obtain
an error bound of order O(1/N). This shows that for large enough N ,

∣∣∣∣∣∣∣∣∣G̃N − G̃
∣∣∣∣∣∣∣∣∣

L2

is of order

O(
√

logN
N

).

Implementation

For the simulation, we set the parameters of the load balancing system as follows: The arrival rate
is set to λL = 1, the server rate to µL = 1.1 for all servers, and the maximal server capacity is
KL = 10. For each system size N , we sample a graph that remains fixed for all simulations and
obtain the sample mean by averaging over 2000 sampled trajectories for all system sizes. To compute
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5.5 Numerical Experiments

the solution of the graphon mean field approximation, we discretize the drift by a simple step dis-
cretization. To be more precise, let γ ∈ N be the discretization parameter and Uγ = {Uγ

i }i=1..γ

be the even partition of the interval (0, 1] with Uγ
i := (i − 1/γ, i/γ]. We define by F γ

B(x)u,s :=∑γ
i=1 1Uγ

i
(u)FB(x)i/γ,s the values of the discretized version of FB . Throughout the numerical

experiments, we set γ = 100. We choose this simple discretization method as it provides good
approximation results and low computation times, i.e., for a rudimentary implementation using a
NumPy ode solver, we are able to solve the discretization in a few seconds.3 The Figures 5.2 and 5.3
show the results of our numerical experiments. The first Figure 5.2 shows the approximation accu-
racy for a single server and different system sizes. We see that already forN = 40 the sample mean is
very close to the approximation value, which supports the statement of Corollary 17. In the second
Figure 5.3, we compare the values for the fraction of servers with at least s jobs for s = 1, ..., 4 as
described in the figure caption. Remarkably here, even for small system sizes, the values obtained by
the sample mean are close to the ones obtained by the approximation. As we observe the by Corol-
lary 17 suggested behavior for single particles inb Figure 5.2, the increased accuracy forN = 20, 30
is likely caused by an averaging effect and a well-connected graph instanceGN .
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Figure 5.2: The figure shows the evolution of P(X(N)
k,s (t) = 1) = E[X(N)

k,s (t)], the probability for a server-
dispatcher pair to have s = 0, ..., 3 jobs for t ∈ [0, 2]. In each plot the results for one system size
N = 20, 30, 40 are displayed. Throughout, the sample mean values are plotted against the values
of the graphon mean field approximation.

5.5.2 Heterogeneous Bike-Sharing System
Model

We consider a bike-sharing model following the setup used in [50, 51]. The model consists ofN ∈ N
bike stations, representing the particles in the system. Each station has finite capacity KB ∈ N.
The system has a fleet of bikes of size M := ⌊αN⌋ which, at time t = 0, is evenly distributed
amongst the stations, i.e., α bikes per station. The evolution of the system depends on the move-
ment of bikes. We differ between the two cases, bikes in the system can either be stationary or in
transit between stations. To align with the notations used in the theory part of the paper, we denote

3For intricate intensity and graphon functions it might be necessary to refine and tune the discretization approach.
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Figure 5.3: The figure compares the values for the fraction of servers with at least s jobs obtained by
the sample mean and the approximation. The quantities are calculated as E[Qs(t)] =

E[
∑

k∈[N ]
1
N

∑
s′≥sX

(N)
k,s′ ] for the sample mean and qs(t) =

∫ 1
0

∑
s′≥s x

G
u,s′du for the approx-

imation.

by SN
k (t), i ∈ [N ] the number of bikes at station i for time t ≥ 0. For the system, heterogene-

ity comes from the varying popularity of stations. Hence, we denote by pB : (0, 1] 7→ R≥0 the
popularity function. Based on the popularity function pB , we define the graphon of the bike shar-
ing system by GB(u, v) := pB(v)/

∫ 1

0
pB(ν)dν. For the system of size N , connectivity for the

stations is obtained by deterministic sampling as described in Section 5.3.2, i.e., we discretize the
graphon based on the system size N . For two stations k, l ∈ [N ] connectivity is therefore defined
by GN,B

kl := GB(k/N, l/N) = pB(l/N)/
∫ 1

0
pB(ν)dν. Based on the connectivity between sta-

tions, it remains to define the dynamics of the system. For a given state (S1, ..., SN) ∈ [KB]
N the

bikes move between stations in the following way:

• Customers arrive at a stations k ∈ [N ] with rate λB leading to the transitions

S → S − eNk at rate λB1Sk>0.

• The travel time of bikes between stations is exponentially distributed with rate µB > 0.
Hence, the for station k ∈ [N ], the arrival rate of bikes is the product of the scaled pop-
ularity of station times the traveling bikes (M −

∑
k S

N
k ) weighted by the travel time, i.e.,

pB(k/N)∫ 1
0 pB(ν)dν

(
M −

∑
k S

N
k

)
µB . This implies the transition

S → S + eNk at rate
pB(k/N)∫ 1

0
pB(ν)dν

(M −
∑
k

SN
k )µB1Sk<KB

.

For the above, the notation eNk refers to the unit vector of size N having a one at entry k and zeros
everywhere else.
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Drift & Limiting System

To define the limiting system, we derive the drift implied by the above transitions and the defined
graphon GB . We start by considering the indicator state representation as outlined in Section 5.2,
i.e., the drift is a vector of size K + 1 of L2(0, 1] functions. In contrast to the stochastic rates, for
the drift, the sum over particles is replaced by an integral over and the values of GN replaced by
the graphon values. For a state x = (xs)s=0,...,K with xs ∈ L2(0, 1], the drift of the system at
(u, s) ∈ (0, 1]× S = {0, . . . , KB} is defined by

FG
u,s(x) := xu,s

(
pB(u)∫ 1

0
pB(ν)dν

(
M −

∫ 1

0

KB∑
s=0

xv,sdv
)
µB1s<KB

− λB1s>0

)
.

By definition of the system and particularly the graphon, it is immediate that the assumptions of
Theorem 15 and Corollary 16 hold, therefore guaranteeing the accuracy of the approximation.

Implementation & Results

For our simulations, we set the popularity function of the bike sharing system to pB(v) := 1−0.5v.
The travel rate and customer arrival rate are µB = 1 and λB = 1 respectively. For the plots of Fig-
ure 5.4 and Figure 5.5 we calculate the sample mean by averaging over 7500 simulations for each
system size. For each plot in the first Figure 5.4, the mean field trajectory for single item and state
is plotted against the sample mean. Here the horizontal axis represents time t and the vertical axis
the probability for the item to be in the state. In the second Figure 5.5, a comparison of the sam-
ple mean against the values of the approximation for fixed time and state is shown. As used for the
theoretical results, the state of the stochastic system is represented as a step function with constant
value E[X(N)

k,s ] on the intervals (k − 1/N, k/N ] for k = 1..N . In accordance with our theoret-
ical results, the plot shows that with increasing system size the graphon mean field approximation
becomes more accurate and captures the state distribution of the particles well.

5.6 Proofs
This section provides the proof of the main statements of this paper.

5.6.1 Proof of Lemma 14
Proof. Proof. We prove the uniqueness and continuous differentiability of the differential equation
(5.7) as well as the Lipschitz properties of the drift. The proof is the consequence of two lemmas:

• We show in Lemma 18 below that the drift is locally Lipschitz continuous inL2. By [46], this
implies the existence of a local solution and the uniqueness of this solution.

• In Lemma 19 we show that the directional derivatives of FG are well-defined and Lipschitz
continuous. This property ensures that thexG is also continuously differentiable (for a proof
of this property in general Banach spaces see for example [46]).
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Figure 5.4: The plot shows the sample mean of E[X(N)
k,s (t)] for N = 20, 50 and the value of the graphon

mean field approximation xG
k/N,s(t) for t ∈ [0, 3]. The plots are generated for the states s =

3, 6, 10 and k = 14, 35.
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Figure 5.5: For a fixed t = 2.5 and state s = 3, the plots compare the graphon mean field approximationxG

against sample means for systems of size N = 20, 50. As for the main theorem of our results, we
represent the values of the stochastic system as step function with constant values on the intervals
(k − 1/N, k/N ], k ∈ [N ]. The figure shows that for increasing system size, the values of the
stochastic system indeed approach the trajectory of the deterministic system. In the upper plots,
the approximation is plotted against values of the sample mean for one system size N = 20, 50
each. In the lower plot, both functions are overlain for better comparison.
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Lemma 18 (Local Lipschitz Continuity of the Drift). Let LFG = 2(CR|S| + 2CR|S|2|||G|||)
whereCR is the bound on the rate functions, |||G||| the operator norm of the graphonG and |S| the size
of the finite state space. Then for all x. = (x.,s)s∈S ,y. = (y.,s)s∈S with x.,s, y.,s ∈ L2(0, 1] and
∥x∥, ∥y∥ ≤ 1 with |xs(u)|, |yu,s| ≤ 1 almost everywhere4, we have:∥∥FG(x)− FG(y)

∥∥
L2

≤ LFG∥x− y∥L2 .

Proof. Proof. Define F̂FF
G

u,s(x,y) := Runi
u,sxu + x

T
u

∫ 1

0
Rpair

u,v,sGu,vyv dv, i.e., we replace xv by yv

under the integral. Applying the triangle inequality to the L2 norm gives∥∥FG(x)− FG(y)
∥∥
L2

=
∥∥∥FG(x)− F̂FF

G
(x,y) + F̂FF

G
(x,y)− F (y)

∥∥∥
L2

≤
∥∥∥FG(x)− F̂FF

G
(x,y)

∥∥∥
L2

+
∥∥∥F̂FFG

(x,y)− FG(y)
∥∥∥
L2

.

Writing out the definitions and using the bounds of the rate vectors / matrices and the bound of the
graphon one immediately obtains

∥∥∥FG(x)− F̂FF
G
(x,y)

∥∥∥
L2

=

√√√√∑
s∈S

∫ 1

0

(
Runi

u,sxu + xT
u

∫ 1

0

Rpair
u,v,sGu,vxvdv −Runi

u,sxu − xT
u

∫ 1

0

Rpair
u,v,sGu,vyv dv

)2

du

=

√√√√∑
s∈S

∫ 1

0

(
xT
u

∫ 1

0

Rpair
u,v,sGu,v(xv − yv)dv

)2

du ≤ 2|S|3CR|||G|||∥x− y∥L2

and

∥∥∥F̂FFG
(x,y)− FG(y)

∥∥∥
L2

=

√√√√∑
s∈S

∫ 1

0

(
Runi

u,s(xu − yu) + (xu − yu)
T

∫ 1

0

Rpair
u,v,sGu,vyv dv

)2

du

≤
(
2CR|S|2 + 2|S|3CR|||G|||

)
∥x− y∥L2

.

Last, we conclude that
∥∥FG(x)− FG(y)

∥∥
L2

≤ (2(CR|S|2+2CR|S|3|||G|||))∥x− y∥L2
, where

the |S|2 and |S|3 terms come from the vector and matrix notation used for the unilateral and pair-
wise rates as well as the sum over S .

Lemma 19 (Lipschitz Continuous Directional Derivative ofFG). The directional derivative of the
drift FG for x = (xs)s∈S with xs ∈ L2(0, 1] is given by

DxF
G
u,s(x)(h) := R

uni
u,s′hu + hTu

∫ 1

0

Rpair
u,v,sGu,vxvdv + x

T
u

∫ 1

0

Rpair
u,v,sGu,vhvdv (5.14)

4Here, almost everywhere means that the property holds except on a subset of (0, 1] with measure zero.
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whereRuni
u,s,R

pair
u,v,s andG are Lebesgue integrable functions. FurthermoreDxF

G
u,s(x)(h) is Lipschitz-

continuous in x.

Proof. Proof. Recall the definition of FG(x) = Runi
u,s′xu + xT

u

∫ 1

0
R

pair
u,v,s′Gu,vxv dv. We define

DxF
G
u,s(x)(h) for (u, s) ∈ (0, 1]×S as in Equation (5.14). To see thatDxF

G(x)(h) is a directional
derivative ofFG in x ∈ L2(0, 1]

S in direction h ∈ L2, we show that it fulfills

lim
ϵ↓0

1

ϵ

∥∥FG(x+ ϵh)− FG(x)−DxF
G(x)(ϵh)

∥∥
L2

= 0.

By definition∥∥FG(x+ ϵh)− FG(x)−DxF
G(x)(h)

∥∥2
L2

=

∫ 1

0

∑
s

(
Runi

u,s(xu + ϵhu) + (xu + ϵhu)
T

∫ 1

0

Rpair
u,v,sGu,v(xv + ϵhv) dv

−Runi
u,s′xu − xT

u

∫ 1

0

R
pair
u,v,s′Gu,vxv dv

−ϵRunihu − ϵhT
u

∫ 1

0

Rpair
u,v,sGu,vxvdv − ϵxT

u

∫ 1

0

Rpair
u,v,sGu,vhvdv

)2

du

=

∫ 1

0

∑
s

(
ϵRuni

u,shu + ϵxT
u

∫ 1

0

Rpair
u,v,sGu,vhvdv + ϵhT

u

∫ 1

0

Rpair
u,v,sGu,vxv dv

+ ϵ2hT
u

∫ 1

0

Rpair
u,v,sGu,vhv dv

−ϵ(Runihu − hT
u

∫ 1

0

Rpair
u,v,sGu,vxvdv − xT

u

∫ 1

0

Rpair
u,v,sGu,vhvdv)

)2

du

=

∫ 1

0

∑
s

(
ϵ2hT

u

∫ 1

0

Rpair
u,v,sGu,vhvdv

)2

du.

Taking dividing by ϵ and taking ϵ → 0 shows that DxF
G(x)(h) is indeed a directional derivative

of FG in x. By definition, DxF
G
u,s(x)(h) is linear in x and asRuni

u,s,R
pair
u,v,s andGu,v are bounded

functions, the Lipschitz continuity in L2 follows.

5.6.2 Proof of Theorem 15
In the following, we present the proof of Theorem 15.

Proof. Proof. LetX(N)
t be theL2(0, 1]

|S| representation of the stochastic system as defined in 5.2.4.
For a fixed t ≥ 0, define

νN(τ) = E[xG
(
t− τ,X(N)(τ)

)
] (5.15)
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for which we suppress the dependence of the expectation on the graphGN and initial stateX(N)(0)
from here on. Using the definition of νN we rewrite

∥∥∥E[X(N)(t)]− xG(t,X(N)(0))
∥∥∥
L2

=

√√√√∑
s∈S

∫ 1

0

(
E[X(N)

u,s (t)]− xGu,s(t,X
(N)(0))

)2
du

=

√√√√∑
s∈S

∫ 1

0

(
νNu,s(t)− νNu,s(0)

)2
du. (5.16)

To compare the drift of the ODE against the drift of the stochastic process and ultimately bound
them, we first want to rewrite νNu,s(t)− νNu,s(0) =

∫ t

0
d
dτ
νNu,s(τ), with d

dτ
νN(τ) being the quantity

that fulfills νN(b)− νN(a) =
∫ b

a
d
dτ
νN(θ)dθ for arbitrary a, b ∈ [0, t] with a < b. In Lemma 20

we show that d
dτ
ν(θ) exists almost everywhere for θ ∈ (0, t) and is almost everywhere equal to

E

[∑
s′

∫ 1

0

[
Dxx

G(t− τ,X(N)(τ))
(
FG(X(N)(τ))− FGN

(X(N)(τ))
)]

v,s′
dv

]
(5.17)

+ E
[
R̃1(x

G(t− τ,X(N)(τ)))
]
dτ. (5.18)

In the above sum,Dxx
G(τ,X(N)(τ))

(
FG(X(N)(τ))− FGN

(X(N)(τ))
)

is the directional deriva-

tive ofxG in its initial condition in directionFG(X(N)(τ))−FGN

(X(N)(τ)). We aim to bound
the sum by using the properties of the derivative of xG and the differences between the drift of the
deterministic and stochastic system with respect to theL2 norm. The technical details to bound the
remainder term and the difference between the drifts are moved to the Lemmas 21 and 22. From
the application of the latter lemmas, one obtains the bounds

CDx(0)

(
2LRpair + 16C2

RpairKRpair

N
−

16C2
RpairK2

Rpair

N2
+ C2

Rpair|S|2
∣∣∣∣∣∣G−GN

∣∣∣∣∣∣)
for Equation (5.17) andCR̃/N for Equation (5.18). It follows by applying the bounds and rearrang-
ing terms, that ∥∥∥E[X(N)(t)]− xG(t,X(N)(0))

∥∥∥
L2

≤ CA

N
+ CB

∣∣∣∣∣∣GN −G
∣∣∣∣∣∣

for some finite constants CA, CB > 0 additionally to the previous bound also depend on t. This
concludes the proof.

5.6.3 Proof of Corollary 17 and Corollary 16
In this section, we prove the corollaries of Theorem 15. In each case, we use an additional lemma to
obtain a bound on

∣∣∣∣∣∣GN −G
∣∣∣∣∣∣.
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Proof. Proof.[Proof of Corollary 17] By the application of Theorem 15 we have∥∥∥E[X(N)(t)]− xG(t,X(N)(0))
∥∥∥
L2

=
CA

N
+ CB

∣∣∣∣∣∣GN −G
∣∣∣∣∣∣.

It therefore remains to bound theL2 distance
∣∣∣∣∣∣GN −G

∣∣∣∣∣∣ between the graphonG and graphGN .
By application of Lemma 12 with probability at least 1− δ and for ‘large enough’N

∣∣∣∣∣∣GN −G
∣∣∣∣∣∣ ≤√4 log (2N/δ)

N
+ 2

√
(L2

G −K2
G)

N2
+
KG

N
=: ψδ,G(N).

Defining and substitution δ = 2/N into the above equation concludes the proof.

Proof. Proof.[Proof of Corollary 16] The corollary is a direct implication of Theorem 17 and Lemma
23: due toGN representing a discretized version ofG it directly follows that

∣∣∣∣∣∣G−GN
∣∣∣∣∣∣ is of order

O(1/N), which concludes the proof.

5.7 Conclusion
In this paper, we study an approximation for a system of particles interacting on a graph. We show
that when the interacting graph converges to a graphon, the underlying behavior of the stochas-
tic system converges to a deterministic limit, which we call the graphon mean field approximation.
While this result is similar to other results in the literature – that show that graphon mean field
approximations are asymptotically exact in some settings –, our main contribution is to provide
precise bounds on the accuracy of this approximation. We showed indeed that the distance between
the original finite-N system and the graphon mean field approximation can be bounded by a term
O(1/N) that depends on the number of particles of the system plus a term O(

∣∣∣∣∣∣GN −G
∣∣∣∣∣∣) that

depends on the distance between the original graphGN and the graphonG, when measured as aL2

operator.
This paper aims to be methodological. It shows that it is possible to obtain bounds for a sys-

tem with a graph structure, and not mere asymptotic convergence results. To keep the presentation
reasonable, we intentionally considered a relatively simple model, for instance by restricting our at-
tention to pairwise interactions between nodes or unilateral jumps, and by considering that the rate
functions rN are discretized versions of the limiting rates r. We believe that by doing so, the proof
is easier to follow and could then be adapted to more general cases.

The focus of this paper is to study the case of dense graphs that converge to graphons. This implies
that the total number of edges per node is of order O(N). We believe that our methodology could
be applicable in the not-so-dense case when the number of edges per node goes to infinity at a sub-
linear rate. This would probably give bounds that converge more slowly to zero. Complementary to
this paper, another interesting question is the case of sparse graphs, where the number of neighbors
per node remains bounded when the number of nodes N goes to infinity. Yet, this would require
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a fundamentally different approach: studying such a problem is out of the scope of our tools since
the graphon mean field approximation is not asymptotically exact for sparse graphs.
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5.8 Lemmas

This section contains the most technical lemmas of the paper.

5.8.1 Derivative of ν (Lemma 20)

The following Lemma derives a representation of the derivative of ν, as defined in the proof of The-
orem 15, which depends on the derivative of the graphon mean field approximation with respect to
the initial condition, the transitions of the stochastic system and the deterministic drift.

Lemma 20. For νN(τ) and τ ∈ (0, t) we define

d

dτ
νN(τ) := lim

h↓0

1

h

∫ τ+h

τ

lim
r↓0

1

r

(
E[xG(t− (θ + r),X(N)(θ + r))]− E[xG(t− θ,X(N)(θ))]

)
dθ.

for which, by construction and continuity properties ofxG andX(N), it holds that for arbitrary a, b ∈
[0, T ], a < b,

∫ b

a
d
dτ
νN(τ) = νN(b)−νN(a). Furthermore, the right-hand side is almost everywhere

equal to

E[
∑
s′

∫ 1

0

[
Dxx

G(t− τ,X(N)(τ))
(
FG(X(N)(τ))− FGN

(X(N)(τ))
)]

v,s
du]

+ E[R̃1(x
G(t− τ,X(N)(τ)))].

which is well defined and bounded due to the properties of the driftsFGN

,FG and the approximation
xG. In this context, R̃1 refers to the summed Taylor remainder term defined by

R̃1

(
xG(t− τ,X(N)(τ))

)
:=
∑

k,sk,s
′
k

R1(x
G(t− τ,X(N)(τ)), eNk,s′k − e

N
k,sk

)

×

X(N)
k,sk

rN,uni
k,sk→s′k

+Xk,sk

∑
l∈[N ]

∑
sl

r
N,pair
k,l,sk→s′k,sl

GN
kl

N
Xl,sl

.
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Proof. Proof. Recall, thatX(N) is in the following handled as aL2 function as described in Section
5.2.4. We start the proof by rewriting

d

dτ
ν(τ) := lim

h↓0

1

h

∫ τ+h

τ

lim
r↓0

1

r

(
E[xG(t− (θ + r),X(N)(θ + r))]− E[xG(t− θ,X(N)(θ))]

)
dθ

= lim
h↓0

1

h

∫ τ+h

τ

lim
r↓0

1

r

(
E[xG(t− (θ + r),X(N)(θ + r))]− E[xG(t− θ,X(N)(θ + r))]

)
dθ

+ lim
h↓0

1

h

∫ τ+h

τ

lim
r↓0

1

r

(
E[xG(t− θ,X(N)(θ + r))]− E[xG(t− θ,X(N)(θ))]

)
dθ

= lim
h↓0

1

h

∫ τ+h

τ

lim
r↓0

1

r

(
E
[
xG(t− θ,xG(−r,X(N)(θ + r)))− xG(t− θ,X(N)(θ + r))]

])
dθ

+ lim
h↓0

1

h

∫ τ+h

τ

lim
r↓0

1

r

(
E
[
E[xG(t− θ,X(N)(θ + r))− xG(t− θ,X(N)(θ)) |X(N)(τ)]

])
dθ

= lim
h↓0

1

h

∫ τ+h

τ

E
[
lim
r↓0

1

r

(
xG(t− θ,xG(−r,X(N)(θ + r)))− xG(t− θ,X(N)(θ + r))

)]
dθ

+ lim
h↓0

1

h

∫ τ+h

τ

E
[
lim
r↓0

1

r

(
E[xG(t− θ,X(N)(θ + r))− xG(t− θ,X(N)(θ)) |X(N)(τ)]

)]
dθ

For the first equality, an artificial zero is added by adding and subtracting the termxG(t−θ,X(N)(θ+
r)) and using dominated convergence in combination with the boundedness of the solution of
the differential equation and the stochastic system almost everywhere. For the second equality,
we use the tower property to write the difference in the conditional expectation with respect to
X(N)(τ). The last equality, follows by dominated convergence which allows to take the limit in-
side the outer expectation and by definition of xG as well as the drift FG which allows to rewrite
xG(t − (θ + r),X(N)(θ + r)) = xG(t − θ,xG(−r,X(N)(θ + r))). By definition, xG is con-
tinuously differentiable inL2 with respect to its initial condition. The property follows by a general
version of Grönwalls inequality and the Lipschitz properties of the drift, also see [46] for a proof of
this property. Using the differentiability in combination with the Lebesgue differentiation theorem
for Lp spaces and application of the chain rule we can rewrite

lim
h↓0

1

h

∫ τ+h

τ

E
[
lim
r↓0

1

r

(
xG(t− θ,xG(−r,X(N)(θ + r)))− xG(t− θ,X(N)(θ + r))

)]
dθ

= E
[
Dxx

G(t− τ,X(N)(τ))FG(X(N)(τ))
]

(5.19)

where equality holds almost everywhere and Dxx
G(t − τ,X(N)(τ))FG(X(N)(τ)) is the direc-

tional derivative of xG in its initial condition with direction FG(X(N)(τ)). For the second inte-
gral, we apply Lebesgue differentiation theorem in combination with the definition of the transi-
tions for the stochastic system. In particular, we use that the probability for a small dτ > 0 the
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state of the stochastic system changes to X(N)(τ + dτ) = X(N)(τ) + eNk,s′k
− eNk,sk is given by

dτX
(N)
k,sk

(τ)rN,uni
k,sk→s′k

+ dτX
(N)
k,sk

(τ)
∑

l∈[N ]

∑
sl
r
N,pair
k,l,sk→s′k,sl

GN
kl

N
X

(N)
l,sl

(τ) + dτ). This shows

lim
h↓0

∫ τ+h

τ

E
[
lim
r↓0

1

r

(
xG(t− θ,X(N)(θ + r))− xG(t− θ,X(N)(θ))

)]
dθ

= E

lim
dτ↓0

1

dτ

∑
k,sk,s

′
k

(
xG(t− τ,X(N)(τ) + eNk,s′k − e

N
k,sk

)− xG(t− τ,X(N)(τ))
)

×

dτX(N)
k,sk

(τ)rN,uni
k,sk→s′k

+ dτX
(N)
k,sk

(τ)
∑
l∈[N ]

∑
sl

r
N,pair
k,l,sk→s′k,sl

GN
kl

N
X

(N)
l,sl

(τ) + o(dτ)


where equality holds almost everywhere. Lastly, by continuous differentiability of xG with respect
to its initial condition, we apply theL2 version of the Taylor expansion, see Lemma 24, forxG(t−
τ,X(N)(τ) + eNk,s′k

− eNk,sk) around xG(t − τ,X(N)(τ)). Note again, that the equality for the
expansion hold almost everywhere. This allows to rewrite

xG(t− τ,X(N)(τ) + eNk,s′k − e
N
k,sk

) =xG(t− τ,X(N)(τ)) +

∫ 1

0

∑
s′

[
Dxx

G(t− τ,X(N)(τ))
(
eNk,s′k − e

N
k,sk

)]
v,s′

+R1(x
G(t− τ,X(N)(τ)), eNk,s′k − e

N
k,sk

).

Here,Dxx
G(t−τ,X(N)(τ))

(
eNk,s′k

− eNk,sk
)

is the directional derivative ofxG in directioneNk,s′k−
eNk,sk which should be interpreted asL2 similar as for theL2 representation ofX(N). ByR1(x

G(t−
τ,X(N)(τ)), eNk,s′k

− eNk,sk) we denote the Taylor remainder term of first order defined as

R1(x
G(t− τ,X(N)(τ)), eNk,s′k − e

N
k,sk

)

=

∫ 1

0

(1− δ)

∫ 1

0

∑
s′

[(
Dxx

G(t− τ,X(N)(τ) + δ(eNk,s′k − e
N
k,sk

))−Dxx
G(t− τ,X(N)(τ))

)
×(eNk,s′k − e

N
k,sk

)
]
v,s′

dv dδ.
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Adding this into the previous right-hand side and rearranging the terms yields by using the linearity
of the directional derivative

E

 ∑
k,sk,s

′
k

(∫ 1

0

∑
s′

[
Dxx

G(t− τ,X(N)(τ))(eNk,s′k − e
N
k,sk

)
]
v,s′
dv +R1(x

G(t− τ,X(N)(τ)), eNk,s′k − e
N
k,sk

)

)

×

X(N)
k,sk

(τ)rN,uni
k,sk→s′k

+X
(N)
k,sk

(τ)
∑
l∈[N ]

∑
sl

r
N,pair
k,l,sk→s′k,sl

GN
kl

N
X

(N)
l,sl

(τ)


= E

[∫ 1

0

∑
s′

[
Dxx

G(t− τ,X(N)(τ))FGN

(X(N)(τ))
]
v,s′
dv

]
+ E

[
R̃1

(
xG(t− τ,X(N)(τ))

)]
.

with

R̃1

(
xG(t− τ,X(N)(τ))

)
:=
∑

k,sk,s
′
k

R1(x
G(t− τ,X(N)(τ)), eNk,s′k − e

N
k,sk

) (5.20)

×

X(N)
k,sk

rN,uni
k,sk→s′k

+X
(N)
k,sk

∑
l∈[N ]

∑
sl

r
N,pair
k,l,sk→s′k,sl

GN
kl

N
X

(N)
l,sl

.
Ultimately, we rewrite the initial integral by using the formulations of Equations (5.19) and (5.20)
to

lim
h↓0

1

h

∫ τ+h

τ

lim
r↓0

1

r

(
E[xG(t− (θ + r),X(N)(θ + r))]− E[xG(t− θ,X(N)(θ))]

)
dθ

= E[
∑
s′

∫ 1

0

[
Dxx

G(t− τ,X(N)(τ))
(
FG(X(N)(τ))− FGN

(X(N)(τ))
)]

v,s′
dv | GN ,X(N)(0)]

+ E[R̃1(x
G(t− τ,X(N)(τ))) | GN ,X(N)(0)]

where equality holds almost everywhere. This concludes the proof.

5.8.2 Bound on the Taylor Remainder Term (Lemma 21)

The subsequent Lemma states an upper bound for the remainder term arising in Lemma 20 which
ultimately is used to obtain the bound for Theorem 15.

Lemma 21. For any attainable stateX ∈ XN of the stochastic process and τ ≥ 0, the expectation of
the Taylor remainder term R̃1

(
xGu,s(t,X)

)
5 as defined in Equation (5.20) is of order O(1/N).

5In order for xG
t to be properly defined,X should be understood in this context as a L2(0, 1]

|S| function.
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Proof. Proof. For a stateX ∈ XN , recall the definition of Equation (5.20)

R̃1

(
xGu,s(τ,X)

)
=

∑
k∈[N ],sk,s

′
k∈S

R1(x
G
u,s(τ, .),X, e(k,s

′
k) − e(k,sk))

×
(
X

(N)
k/N,sk

rN,uni
k,sk→s′k

+X
(N)
k/N,sk

∑
sl∈S

∫ 1

0

r
pair
k/N,v,sk→s′k,sl

GN
k/N,vX

(N)
v,sl

dv
)

where we use that rN,pair
k,l,sk→s′k,sl

= r
pair
k/N,v,sk→s′k,sl

for v ∈ (l − 1/N, l] andR1 given by

R1(x
G
u,s(τ, .),X, eN(k,sk) − e

N
(k,sk)

) =∫ 1

0

(1− δ)
∑
s′

∫ 1

0

[(
Dxx

G
(
τ − δ,X + δ(eN(k,sk) − e

N
(k,sk)

)
)
−Dxx

G
(
τ,X

))
(eN(k,s′k) − e

N
(k,sk)

)
]
v,s′
dv dδ.

To be clear, as in the proof of Lemma 20,
[
Dxx

G(t,x)(y)
]
v,s′

refers to the directional derivative
of xG in its initial condition in direction y evaluated at (v, s′). By the properties of xG, as stated
in Lemma 14, Dxx

G is Lipschitz continuous in with respect to the initial condition. Thus, we can
bound∑

s′

||
(
Dxx

G
(
τ,X + δ(eN(k,sk) − e

N
(k,sk)

))−Dxx
G
u,s

(
τ,X

))
(eN(k,s′k) − e

N
(k,sk)

)||L2

≤
∑
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LDx(0)x
G

∥∥(eN(k,sk) − eN(k,sk))∥∥L2

Application of Cauchy-Schwarz then yields

R1(x
G
u,s(t, .),X, eN(k,s′k) − e

N
(k,sk)

)

≤
∑

k,sk,s
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LDxxG

∥∥(eN(k,sk) − eN(k,sk)∥∥2L2

∣∣∣∣∣(X(N)
k/N,sk

rN,uni
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+X
(N)
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∫ 1

0
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k/N,v,sk→s′k,sl
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k/N,vX

(N)
v,sl
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∣∣∣∣∣.
By the boundedness of the rates and the finite state space, it is immediate to see that terms of the
form

X
(N)
k/N,sk

runi
k,sk→s′k

+X
(N)
k/N,sk

∑
sl∈S

∫ 1

0

r
pair
k/N,v,sk→s′k,sl

GN
k/N,vX

(N)
v,sl

dv

are bounded. Additionally, by definition of e(k,sk) which are non-zero only on a sub-interval of

(0, 1] of size 1
N

,
∥∥∥eN(k,sk) − eN(k,sk)∥∥∥2L2

≤ 2/N . Lastly, application of the mentioned properties and

bounds show that there exists a constantCR̃ > 0 such that R̃1

(
xGu,s(t,X)

)
= CR̃/N = O(1/N).
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5.8.3 Bound on the Difference of Stochastic andDeterministic
Drift (Lemma 22)

Lemma 22 is concerned with bounding the difference between the drift of the stochastic and deter-
ministic system. As stated in the Lemma, the bound depends mainly on the L2 difference between
rates and between the graphon and graph of the stochastic system.

Lemma 22. LetDxx
G(t,X)(y) be the directional derivative ofxG with respect to the initial condi-

tion in direction y in L2. Then,∫ 1

0

∑
s′

[
Dxx

G(t,X)
(
FG
(
xG(t,X)

)
− FGN

(xG(t,X))
)]

v,s′
dv

is bounded by 6CDx(0)

(
2L

Rpair+16C2
RpairKRpair

N
−

16C2
RpairK

2
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N2 + C2
Rpair|S|2

∣∣∣∣∣∣G−GN
∣∣∣∣∣∣).

Proof. Proof. Implied by the finite values ofX ∈ XN

∫ 1

0

∑
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[
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G(t,X)
(
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(
xG(t,X)

)
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∑
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(
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)
− FGN
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G(t,X))

)2
dv.

where CN,DxxG is essentially obtained by taking the maximum over allX ∈ XN . To conclude it

remains to be shown that
∫ 1

0

(
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v,s′

(
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)
− FGN

v,s′ (x
G(t,X))

)2
dv is small. By definition we

are looking at∫ 1

0

∑
s′

(
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u,s′

(
xG(t,X)

)
− FGN

u,s′ (x
G(t,X))

)2
du

=
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(
Runi

u,s′x
G
u (t,X) + xG

u (t,X)T
∫ 1

0

R
pair
u,v,s′Gu,vx

G
v (t,X) dv

−RN,uni
u,s′ x

G
u (t,X)− xG

u (t,X)T
∫ 1
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R
N,pair
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N
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≤ 2

∫ 1

0
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Runi
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)
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du (5.21)

+ 2

∫ 1

0

∑
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u (t,X)T

(∫ 1
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R
pair
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G
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R
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u,v,s′G

N
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G
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(5.22)
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where the inequality follows as for f, g ∈ L2(0, 1] it holds that ∥f + g∥2 ≤ 2(∥f∥2 + ∥g∥2). We
separately bound the two summands. The application of Lemma 23 directly gives a bound for the
first

2

∫ 1

0

∑
s′

((
Runi

u,s′ −R
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)
xG
u (t,X)

)2
du ≤ 2(
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−
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RuniK2

Runi

N2
).

For the second term, first, we add and subtract the term xG
u (t,X)T

∫ 1

0
R

N,pair
u,v,s′Gu,vx

G
v (t,X)dv

and use again the previously applied inequality to get the two terms

4

∫ 1

0

∑
s′

(
xG
u (t,X)T

(∫ 1

0

R
pair
u,v,s′ −R

N,pair
u,v,s′

)
Gu,vx

G
v (t,X)dv

)2

and (i)

4

∫ 1

0

∑
s′

(
xG
u (t,X)T

∫ 1

0

R
N,pair
u,v,s′

(
Gu,v −GN

u,v

)
xG
v (t,X)

)
dv

)2

. (ii)

At its core, it remains to bound the difference of Rpair − RN,pair rate matrices and the difference
G − GN between the graphon and the graph. Similar to the bound for the unilateral rates, we use
Lemma 23 to bound Equation (i), i.e.,

(i) ≤ 4(
2LRpair + 16C2

RpairKRpair

N
−

16C2
RpairK2

Rpair

N2
).

The second Equation (ii) can be bounded by 4C2
Rpair|S|2

∣∣∣∣∣∣G−GN
∣∣∣∣∣∣. To obtain this bound, we use

the boundsCRpair forRN,pair,Rpair, the fact thatRpair is aS×S matrix, and lastly that
∥∥xG∥∥

L2
= 1.

Application of the bounds yields∑
s′

⟨Dx(0)x
G
u,s(t,X)s′ , F

G
s′

(
xG(t,X)

)
− FGN

s′ (xG(t,X))⟩L2

≤ 6CDx(0)

(
2LRpair + 16C2

RpairKRpair

N
−

16C2
RpairK2

Rpair

N2
+ C2

Rpair|S|2
∣∣∣∣∣∣G−GN

∣∣∣∣∣∣)
which concludes the proof.

5.8.4 Bound on the Approximation of a Piecewise Lipschitz
Function (Lemma 23)

In several part of the paper, the difference between a piecewise Lipschitz function and a discretized
version needs to be quantified. The next lemma states an upper bound depending on the coarseness
of the discretization as well as properties induces by the definition of piecewise Lipschitz continuity.

Lemma 23. Let B be a bounded piecewise Lipschitz function with K ∈ N blocks, Lipschitz constant
LB <∞ as defined in 11 and boundCB ≥ 0 such that |B(u, v)| ≤ CB . Furthermore, letBN be its
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discretized version defined by BN(u, v) =
∑N

i,j=1B(i/N, j/N)1INi
(u)1INj

(v). Assuming that N
is large enough as in Definition 13, it holds for f ∈ L2(0, 1] with ∥f∥L2

≤ 1 that∫ 1

0

∣∣∣∣∫ 1

0

(
B(u, v)−BN(u, v)

)
f(v)dv

∣∣∣∣du ≤ 2LB + 16C2
BK

N
− 16C2

BK
2

N2
.

Note, in the case ofB being Lipschitz continuous, i.e.,K = 0, the right-hand side reduces to the antici-
pated bound of 2LB/N .

Proof. Proof. By Cauchy-Schwarz inequality on L2(0, 1] it follows that∫ 1

0

(
B(u, v)−BN(u, v)

)
f(v)dv ≤

∫ 1

0

(
B(u, v)−BN(u, v)

)2
dv∥f∥2L2

≤
∫ 1

0

(
B(u, v)−BN(u, v)

)2
dv.

For the rest of the proof we refer to [8] as the reasoning is identical as for their proof of Theorem
1, staring at Equation (31). The sole adaptation made is to include the case that B can take values
outside of (0, 1], leading to 2CB as the bound of the difference

∣∣B(u, v)−BN(u, v)
∣∣.

5.8.5 Taylor Expansionwith Remainder for Banach Spaces
(Lemma 24)

For completeness, we reformulate the result from [22] pp. 524-525.

Lemma 24. Suppose E,F are real Banach spaces, U ⊂ E an open and nonempty subset and f ∈
Cn(U, F ) (n-times continuously differentiable). Given x0 ∈ U choose r > 0 such that x0 +Br ⊂ U ,
where Br is the open ball in E with center 0 and radius r. Then for all ℓ ∈ Br we have, using the
abbreviation (ℓ)k = (ℓ, ..., ℓ),

f(x0 + ℓ) =
n∑

k=0

1

k!
f (k)(x0)(ℓ)

k +Rn(f, x0, ℓ), (5.23)

where the remainderRn has the form

Rn(f, x0, ℓ) =
1

(n− 1)!

∫ 1

0

(1− θ)n−1
[
f (n)(x0 + θℓ)− f (n)(x0)

]
(ℓ)ndθ. (5.24)
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6 Bias and Refinement of
MultiscaleMean FieldModels

This chapter analyzes the approximation error of the ‘average’ mean field approxi-
mation for a two-timescale model (X, Y ), where the slow componentX describes
a population of interacting particles which is fully coupled with a rapidly chang-
ing environment Y . We further derive a bias correction term for the steady-state
from which we define a new approximation called the refined ‘average’ mean field
approximation with increase accuracy.

In this chapter, we present the results of our paper
S. Allmeier and N. Gast. “Bias and Refinement of Multiscale Mean Field Models”. Pro-
ceedings of the ACM on Measurement and Analysis of Computing Systems 7:1, 2023, 23:1–
23:29. doi: 10.1145/3579336.
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6.1 Introduction
The mean field approximation finds widespread application when interested in analyzing the macro-
scopic behavior of large-scale stochastic systems composed of interacting particles. Its assets lie in a
reduction of the model complexity, simplified analysis of the system due to absence of stochastic
components, and reduction of computation time compared to a stochastic simulation. The mean
field approximation can even yield closed form solutions for the steady-state, e.g., for the well known
JSQ(d) model [87]. The mean field approximation is generally given by a set of ordinary differential
equations which arise from the assumption that, for large system sizes, the evolution of the particles
are stochastically independent of another. This idea works well if the number of particles is large and
if the particles can be clustered into a few groups with statistically identical behavior [17, 58, 76, 77,
81]. The framework established by Kurtz [76] to derive (weak) convergence results for the stochastic
system justifying the use of the mean field approximations finds sustained attention in the literature.

More recently, the authors of [55, 113] showed that for finite system sizes the bias of the mean
field approximation is of order 1/N when compared to the mean behavior of the system. Here,N is
the scaling parameter, which usually refers to the number of homogeneous particles in the system.
Additional works such as [54, 59] introduced corrections, called refinement terms, which effectively
increase the rate of accuracy of the approximation and therefore the rate of convergence. The most
notable term is the first-order bias refinement, since it offers a convincing trade-off between a signif-
icant accuracy gain and additional computation cost.

While these classical mean field results hold for a broad class of models, most of the results can
not be transferred to systems with more intricate dynamics such as the two-timescale case, studied
for instance in [17, 25]. A two-timescale process consists of two coupled components, one evolving
slowly compared to the other. The slowly evolving component is often represented by a system of
interacting particles, where the state of each particle evolves as a function of the empirical distribu-
tion of all particles but also as a function of the state of the fast component, e.g., a fast changing
environment. These types of processes and their ‘averaged’ mean field adaptation have been of in-
terest since the 1960s and became increasingly relevant in the study of modern and complex systems.
We refer to [92] for an extensive literature discussion. An important area of application comes from

134



6.1 Introduction

the field of computer networks. Examples include loss networks [67], large-scale random access net-
works with interference graphs [37, 39] or storage networks [49]. Another recent field of literature
from which we draw inspiration are chemical reaction networks. The works of Kang et al. [72, 73]
and Ball et al. [11] establish central limit theorems for large multiscale models motivated by biologi-
cal and chemical processes. Another application in the field of biology is given by [98] who use the
mean field idea to study neural plasticity models.

Contributions The aforementioned papers underline that the mean field idea can be adapted
to two-timescale models and prove that the ‘average’ mean field approximation is asymptotically
exact as N goes to infinity. They do not, however, provide theoretical results which guarantee the
accuracy or performance bounds of the approximation for finite systems sizes. This chapter aims at
filling this gap. We derive accuracy bounds for the ‘average’ mean field approximation in the transient
regime and steady-state which show that its bias is of orderO(1/N),N being the scaling parameter
of the stochastic system. We further derive bias correction terms for the steady-state, from which
we define a new approximation called the refined ‘average’ mean field approximation, whose bias
is of order O(1/N2). To prove these accuracy bounds, we develop a framework for two-timescale
stochastic models whose slow component is comparable to the concept of density dependent popu-
lation processes as introduced by Kurtz [77]. Based on this representation, we utilize a combination
of generator comparison techniques, Poisson equations as well as derivative bounds on the solution
of the Poisson equation. This allows us to bound the bias with respect to the scaling parameter N .
To take it a step further, we then prove the existence of correction terms which approximate the
bias of the ‘average’ mean field and allow defining the refined ‘average’ mean field. To support the
practical application of the refinements, we provide an algorithmic way to compute the correction
terms. This includes methods to numerically solve the Poisson equation and obtain its derivatives.
We illustrate the computation of the refinement terms and confirm the accuracy of the obtained
bounds by considering a random access CSMA model. Using the example we show that even for
relatively smallN ≈ 10 the refined ‘average’ mean field approximation almost exactly indicates the
steady-state of the model.

Methodological Advances & Technical Challenges To obtain our results, we build
on the recent line of work on Stein’s method [102]. This method allows calculating the distance
between two random variables by looking at the distance between the generators of two related sys-
tems. Recently, the method reemerged in publications within the stochastic network community,
in particular the works of Braverman et al. [30, 31, 33]. In this chapter, we use the Poisson equation
idea in two ways. First and foremost, we use a Poisson equation, called the ‘fast’ Poisson equation, to
bound the distance between a function – in this case the drift – and its average version given by the
steady-state distribution of the fast process as introduced in Section 6.4.2. This step is integral to our
chapter and constitutes the building block to obtain the error bounds and closed form expressions
as it allows to analyze the distance between the coupled stochastic process and its decoupled coun-
terpart. The analysis however bears many technical intricacies one needs to overcome. This includes
solving the Poisson equation, stating its derivative bounds and deducing computable expressions
used to calculate the bias term. Second, for our steady-state results, we make use of another Pois-
son equation to compare the stochastic system to the equilibrium point of the approximation. The
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latter is related to the methods used in [59, 113] but significantly extends the ideas as the derivation
of the bias exhibits novel refinement terms which originate from the coupling and correct the error
of the ‘averaging’ method used for the mean field. The closely linked technical challenges include
obtaining numerically feasible formulas for the ‘new’ refinement terms. Here, we utilize the derived
solution of the ‘fast’ Poisson equation to further specify the fluctuations of the stochastic system
around the equilibrium point. Carefully analyzing the combination of the two Poisson equations
enables us to obtain the new refinement terms. The closed-form bias terms that we obtained from
the steady-state analysis are significantly more complicated than the ones of [59] as they further cor-
rect the error made by the averaging method.

Applicability & Numerical Difficulties In this chaper, we make use of a CSMA model
to demonstrate the applicability of our results. There are several other examples captured by our
framework, such as the Michaelis-Menten enzyme model of [73] or the storage network investigated
in [49]. For the latter, the authors observe that when looking at the right timescale the loss of the net-
work can be characterized by a local equilibrium which is obtained using the averaging method. The
biochemical Michaelis-Menten enzyme model describes the dynamics between three time-varying
species, the enzyme, a substrate and a product. Following the description of the model as in [73]
and by using the right scaling arguments, the model exhibits two timescales, the fast reacting and
state changing enzymes and the slower changing concentrations of the substrate and product. Our
framework can be used on both examples to guarantee accuracy results and can be used to compute
refined approximations.

To compute the ‘average’ mean field and refinement terms, one has to overcome numerical dif-
ficulties which arise from the averaging method. First, in order to compute the ‘average’ drift, one
needs to compute the steady-state probabilities of the fast system, which might not be available in
the closed form as for the CSMA model. For this case we provide computational notes in the ap-
pendix which aim to facilitate the computation. Another problem for the refinement term is the
need for the first and second derivatives of the ‘average’ drift. For the CSMA model we used sym-
bolic representation of the transition rates from which we define the drift and its average version.
This method allows to numerically compute the derivatives using ‘sympy’, a Python library for sym-
bolic computation. This method is relatively easy to implement but has a very large computation
time. This computation time could be reduced by implementing a faster computation of the deriva-
tives. In fact, to compute the derivative of the matrix K+ which is closely linked to the solution of
the ‘fast’ Poisson, we provide supplementary computational notes which describe how to obtain an
efficient implementation.

Roadmap The chapter is organized as follows. In Section 6.2, we formally introduce the two-
timescale model, its corresponding ‘average’ mean field approximation and make regularity assump-
tions on the system. In Section 6.3 we state the main results of this chapter. Section 6.3.1 states
the results for the transient regime, Section 6.3.2 for the steady-state and Section 6.3.3 justifies the
existence of bias correction terms. Section 6.4 holds the proofs of the aforementioned results. In
Section 6.5 we apply our theoretical results to the unsaturated random-access network model of [38,
39]. Some technical lemmas and definitions are postponed to the appendix.
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Reproducibility The code to reproduce the chapter along with all figures and the implemen-
tation of the unsaturated random-access network model is available at https://gitlab.inria.fr/

sallmeie/bias-and-refinement-of-multiscale-mean-field-models.

6.2 Stochastic System andMean Field Approximation
We consider a two-timescale, coupled, continuous time Markov chain (X(N)

s ,Y (N)
s )s≥0 parametrized

by a scaling factorN , for which we study the behavior asN tends to infinity. As we will see in the ex-
amples,N typically represents the number of objects that interact together. This section introduces
the precise model and fixes notations.

6.2.1 Model
For a fixed scaling parameterN , the stochastic process (X(N)

s ,Y (N)
s )s≥0 is a continuous time Markov

chain that evolves in a state-space X (N) ×Y . The set Y is finite and does not depend onN . We fur-
ther require that for all N , the sets X (N) are subsets of a convex and compact set X ⊂ Rdx . In
what follows, unless it is ambiguous in the context, we drop the dependence on N to lighten the
notations.

This model has two-timescales in the sense that the size order of jumps of Y s is N -times larger
than the ones of Xs. More precisely, we assume that there exists a finite number of transitions
(ℓ,y′) ∈ T with their corresponding transition rate functions αℓ,y′ ≥ 0, both being independent
ofN , such that for all possible states (Xs,Y s) ∈ X × Y :

(Xs,Y s) jumps to (Xs + ℓ/N,y′) at rateNαℓ,y′(Xs,Y s). (6.1)

The above defines continuous time Markov chains with discrete state-space whose realizations are
Càdlàg, i.e., right continuous with a left limit for every time t. Note that in Equation (6.1), we
assume that the transition rates α are defined for all x ∈ X (and not just for x ∈ X (N)).

The notion of slow-fast system comes from the fact that the jumps of the slow component X
are O(N) times smaller than the jumps of the fast component Y while transition rates are of the
same scale. As we will see later, the different timescales imply that for largeN , the slow component
Xs will ’see’ the fast componentY s as if it is stationary with distribution (πy(Xs))y∈Y which we
formally define in Section 6.2.2.

6.2.2 Drift, Average Drift andMean Field Approximation
The jumps of the stochastic system (6.1) can affect the fast and/or the slow component. In what
follows, we construct an approximation that consists (i) in considering that the slow component is
not stochastic but evolves deterministically according to its drift (which is its average change), and
(ii) in using a time-averaging method that shows the stochastic processY as being in some stationary
state given x. This leads us to two definitions:

(i) We call the drift of the slow system (or more concisely the drift) the average change ofXs. It
is the sum over all possible transitions of the rate of transition multiplied by the changes that
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such transitions induce onX t. By the form of the transitions in (6.1), if the process starts in
(X t,Y t) = (x,y), the drift is given by:

F (x,y) :=
∑
ℓ,y′

αℓ,y′(x,y)ℓ ∈ Rdx . (6.2)

This drift function depends on the state of the fast system y.

(ii) For the fast component, we define a transition kernel Ky,y′(x) that is the rate at which the
processY jumps fromy toy′ ̸= y (divided byN ), with the usual convention thatKy,y(x) =
−
∑

y′ ̸=yKy,y′(x):

Ky,y′(x) =
∑
ℓ

αℓ,y′(x,y). (6.3)

As Y is finite, for a fixed x, K(x) is a matrix that corresponds to the kernel of a continu-
ous time Markov chain. Our assumptions will imply that for all x, the process associated
with K(x) has a unique stationary distribution, which we denote by the vector π(x) =
(πy(x))y∈Y .

Based on the drift (6.2) of the stochastic system, we define its ‘average’ version F̄ by averaging
over the stationary distribution of the fast component. That is:

F̄ (x) :=
∑
y

πy(x)F (x,y).

For an initial state x and t ≥ 0, we call the mean field approximation the solution ϕt(x) of the
initial value problem

d

dt
ϕt(x) = F̄ (ϕt(x)), ϕ0(x) = x. (6.4)

Such an approximation is also called a fluid approximation.

6.2.3 Main assumptions
As we show later, under mild regularity conditions on the transition rate functionsα, the mean field
approximation captures the dynamics ofX t well and with a decreasing bias of order 1/N :

E[h(X t) |X0,Y 0 = x,y]− h(ϕt(x)) ≤
Ch(t)

N
+ o(

1

N
),

for a sufficiently regular h and equality for t = +∞. This holds for any finite t under assumption
(A1)-(A2) below. It also holds for the steady-state regime t = +∞ under the additional assumption
(A3). For the steady-state we also show thatCh can be computed numerically and use it to propose
a refined approximation. To obtain these results for finite time, we will assume that:
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(A1) The set of transitionsT is finite and for all ℓ,y′ ∈ T ,αℓ,y′ ∈ D2(X×Y), whereDk(X×Y)
the space of functions from X × Y to R for which the Hölder norm ∥h∥k,1 is finite1.

(A2) For all x ∈ X , the matrixK(x) defined in Equation (6.3) has a unique irreducible class.

(A3) The ODE (6.4) has a unique, exponentially stable equilibrium, that we denote by ϕ∞, i.e.,
there exist a, b > 0 s.t. ∥ϕt(x)− ϕ∞∥ ≤ a exp(−bt) for all x ∈ X .

Assumptions (A1) and (A3) are classical to ensure mean field convergence results. As stated in [59,
113], requiring that the transition rates are twice differentiable which is necessary to guarantee the
existence of derivatives for the drift and the differential equation needed for the proofs of the theo-
rems. Assumption (A3) ensures the existence of a unique equilibrium point to which all trajectories
of the differential equation converge. This classical assumption is essentially needed to show that
the stationary distribution of the stochastic process converges to a deterministic limit, see [17]. It
guarantees the stability of both the ODE and the ’slow’ Poisson equation used in the proof.

By Assumption (A2), we mean that for all x the Markov chain should have a unique subset of
states that is irreducible (there can be additional states, but they should all be transient). This as-
sumption is equivalent to assuming the uniqueness of the stationary distribution of the Markov
chain induced by the generator matrix K(x) which is essential to define the ‘averaged’ drift and
mean field approximation. For a given x, the stationary distribution π(x) will be non-zero for all
states that are in the irreducible component (πy(x) > 0 for suchy’s) and will be zero for the others
(πy(x) = 0 for all states that are transient forK(x)). This assumption is slightly more general than
assuming thatK(x) is irreducible because it allows for transient states.

We will show later that the assumptions (A1) and (A2) imply that F̄ is Lipschitz continuous be-
cause they imply that π(x) is Lipschitz-continuous (see Lemma 28). This implies that the mean
field approximation (6.4) is well defined.

6.3 Main Results
This section includes our main results which are threefold. In 6.3.1 we obtain accuracy results for
the mean field approximation in the transient regime. In 6.3.2 we obtain comparable results when
the stochastic system is in its steady-state. Lastly, in 6.3.3 we introduce a correction term for the
steady-state, give accuracy bounds and display closed form expressions of the corrections.

6.3.1 Transient Regime
Our model is a two timescale model, which makes it amenable to be analyzed by time-averaging
methods such as the one used in [17, 37, 39, 98]. Such methods guarantee that the stochastic process
X t converges to the solution of the ODE given by (6.4). Yet, most of the papers that use averaging
methods do not quantify the rate at which this convergence occurs. Our first result, Theorem 25,
states that the difference between the ‘average’ mean field approximation ϕ derived from the average
drift F̄ approximates the average behavior of the slow component of the two-timescale system with a

1i.e., functions that are k-times differentiable with Lipschitz continuous derivatives (see a more precise definition of
this norm in Definition 33 of Appendix 6.7.1)
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bias asymptotically bounded by C̄h/N . This result is similar to the one obtained in [54] for classical
density dependent process.

Theorem 25. Consider the two-timescale stochastic system (X(N),Y (N))t≥0 as introduced in Section
2 starting at X(N)

0 ,Y
(N)
0 = x,y. Recall that ϕ(x) is the solution of the ODE (4) with initial

condition x. Further, assume (A1) and (A2). For any h ∈ D2(X ) and t > 0, there exists a constant
C̄h(t) such that for allN ∈ N:

N
(
E[h(X(N)

t ) |X(N)
0 ,Y

(N)
0 = x,y]− h

(
ϕt(x)

))
≤ C̄h(t). (6.5)

Main element of the proofs. The full proof of this theorem is given in Section 6.4.3. It is decomposed
into two parts that correspond to the two approximations (scaling and averaging):

• The first is to approximate the infinitesimal generatorLh(X t,Y t) (defined in Section 6.4.1)
of the stochastic system by a process whose drift is Dxh(X t) · F (X t,Y t). This part uses
that the rate functions α and h are differentiable with respect to the slow variable x.

• The second is that the actual drift of the mean field approximation is F̄ (x) =∑
y πy(x)f(x,y) and not the F (x,y) obtained from the stochastic system. This leads us

to bound a term of the form F̄ (x)− F (x,y).

The first error term is bounded by using generator techniques similar to the ones used for classical
mean field models as in [55]. It is treated in Section 6.4.3. To bound the second term, we use aver-
aging ideas similar to the ones of [17] that are related to how fast the fast timescale converges to its
stationary distribution. This is dealt with in Section 6.4.3.

6.3.2 Steady-State Results
Theorem 25 guarantees that the mean field is a good approximation for any finite time interval.
In order to obtain a similar result for the stationary case, an almost necessary condition is that the
ODE (6.4) has a unique fixed point to which all trajectories converge [17]. To obtain the equivalent
of Theorem 25, we assume that this unique fixed point is exponentially stable, as is classically done
to obtain steady-state guarantees [59, 113]. This assumption is summarized in (A3) and leads to the
following result.

Theorem 26. Assume (A1) - (A3), and assume that for all N , the stochastic system has a stationary
distribution. Denote by (X(N)

∞ ,Y (N)
∞ ) a pair of variables having this stationary distribution. Then,

for h ∈ D2(X × Y) there exists a constantCh such that:

lim
N→∞

N

(
E[h(X(N)

∞ ,Y (N)
∞ )]−

∑
y

πy(ϕ∞)h(ϕ∞,y)

)
= Ch.

Main elements of the proof. A detailed proof is provided in Section 6.4.4. To prove the result, the
first essential step is to generate two Poisson equations:
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1. The first is used to studyE[h(X∞,Y ∞)−
∑

y πy(X∞)h(X∞,y)], which is the difference
between the true expectation and a hypothetical case whereY ∞ would be independent from
X∞ and distributed according to the stationary distribution π(X∞).

2. The second is used to study E[
∑

y πy(X∞)h(X∞,y) −
∑

y πy(ϕ∞)h(ϕ∞,y)], which is
the error of the ’slow’ process compared to the ‘average’ mean field.

The rest of the proof treats these Poisson equations to establish the constantCh. This is done by gen-
erator comparison techniques and application of derivative bounds for the solutions of the Poisson
equation.

We note that contrary to Theorem 25, Theorem 26 allows for functions h that can depend on
both the slow and the fast components: x and y. In fact, Theorem 25 would not be true if we
allow functions h to depend onY t as in Theorem 26, because of the fast transitions ofY t. For the
steady-state, we use that (X∞,Y ∞) starts in steady-state.

In Theorem 27 below, we will show that, for the steady-state and for functions that only depend
on x, we can go further and propose an almost closed-form expression for the term Ch. This new
bias term provides a refined accuracy of orderO(1/N2). To prove this result, we will use that The-
orem 26 allows functions h which depend on X and Y to show that this new approximation is
O(1/N2)-accurate. We show below that in fact the constant Ch can be computed by a numerical
algorithm, and can therefore be used to define a refined approximation, similarly to what is done for
classical mean field model in [59].

6.3.3 Steady-State Refinement
To obtain a refined approximation, we utilize ideas introduced in [59] and propose an almost-closed
form expression for the termCh of Theorem 26. As we will see later in the proofs, the bias correction
term is composed of two distinct components:

1. The first one (terms V andW ) is the analogue of the V andW terms of [59] and corresponds
to the difference between the stochastic jumps of the slow system versus having a ODE cor-
responding to the (non-averaged) drift f(x,y).

2. The second component (termsT ,S andU ) corresponds to approximatingY by its stationary
distribution πy(x), and its consequence on the behavior of the slow systemX .

The proofs of the expression for V and W are essentially those derived in [59]. The second cor-
rection component (terms T , S and U ) is related to the difference between drift and its average
version. It involves studying the intricate and coupled dynamics ofX and Y which, to the best of
our knowledge, has not been studied and yields novel results.

Theorem 27. Assume (A1) - (A3). Then, there exist vectors V , S, T and matricesW and U that are
solutions of linear systems of equations such that for h ∈ D2(X ), we defineCh of Theorem 26 as:

Ch =
∑
i

∂h

∂xi
(ϕ∞)(Vi + Ti + Si) +

1

2

∑
i,j

∂2h

∂xixj
(ϕ∞)

(
Wi,j + Ui,j

)
.
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6 Bias and Refinement of Multiscale Mean Field Models

Proof. This theorem is a consequence of Proposition 29 that shows the existence of the above con-
stants, combined with Proposition 30 which provides the linear equations satisfied by V and W ,
and Proposition 31 which provides the equations satisfied by T , U and V .

We would like to emphasize that the result of Theorem 27 is only valid for functions h that do
not depend on y. This shows that there exists a computable constantCh such that, in steady-state:

E[h(X∞)] = ϕ∞ +
Ch

N
+ o(1/N).

Similar to [59], we callϕ∞+ Ch

N
the refined approximation ofE[h(X∞)]. As we see in our numerical

experiment in Section 6.5, this constant is computable and can provide a more accurate approxima-
tion than the classical mean field.

In fact, combined with Theorem 26, we can show that the o(1/N) term is aO(1/N2) term. This
shows that the refined approximation is O(1/N2)-accurate. Note, for functions h that do depend
on y, the existence of such a function is guaranteed by Theorem 26 but a closed-form expression is
currently out of our reach.

6.4 Proofs

6.4.1 Stochastic Semi-Groups and Generators

Given the stochastic process of Section 6.2.1, we define the stochastic semi-group operator which
maps a pair of initial values (x,y) and a function h to the expected value of the system at time t.
This semi-groupψt associates to a functionh : X (N)×Y → R the functionψth : X (N)×Y → R
defined as:

ψth(x,y) = E[h(X t,Y t) | X0, Y0 = x, y]. (6.6)

Using the right continuity of the slow-fast system, it is easy to verify that ψt is indeed a C0-semi-
group (see a more precise definition in Definition 32 in Appendix 6.7.1).

The infinitesimal generator of the stochastic process is the operator L that maps a function h ∈
Dk(X × Y) to Lh : X × Y → R defined by:

Lh(x,y) =
∑

ℓ,y′∈T

Nαℓ,y′(x,y)(h(x+ ℓ/N,y′)− h(x,y)). (6.7)

Note thatLh is obtained by considering average infinitesimal change of the stochastic system start-
ing in (x,y), i.e.,

Lh(x,y) = lim
t↓0

(
ψth(x,y)− ψ0h(x,y)

)
/t = lim

t↓0

(
E[h(X t,Y t) | X0, Y0 = x,y]− h(x,y)

)
/t.
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Similarly to the notations of the semi-group and generator of the stochastic process, for a given
function h ∈ Dk(X ), we denote by Φth(x) := h(ϕt(x)) the C0-semi-group corresponding to
ODE (6.4). For differentiable h, the infinitesimal generator is given by

Λh(x) := Dxh(x)F̄ (x). (6.8)

To strengthen intuition, the time derivative of h(ϕt(x)) can be expressed as

d

dt
h(ϕt(x)) = Dxh(ϕt(x))F̄ (ϕt(x)) = ΦtΛh(x). (6.9)

By commuting Λ and Φt we have ΛΦth(x) = Dx(h ◦ ϕt)(x)F̄ (x) which is equal to (6.9) by the
results of Appendix 6.7.1. We will use this property to prove the theorems of the following section.

Abuse of Notations and Dependence on the Fast Component The semi-group and
generator of the stochastic system are generally defined for functionsh inDk(X×Y), i.e., functions
which depend on the slow and fast component whereas the semi-group and generator of the ODE
are defined for h in Dk(X ) that do not depend on the fast component. What we refer to as abuse of
notation is the notation we use for the mapping ψt of a function h ∈ Dk(X ). ψth still depends on
the fast component even if h does not (since the evolutionX t depends on the state of Y t and the
initial values (x,y)):

ψth(x,y) = E[h(X t) |X0,Y 0 = x,y], (6.10)

and

Lh(x,y) =
∑
ℓ,y′

Nαℓ,y′(x,y)
(
h(x+ ℓ/N)− h(x)

)
.

In essence, this allows to use the notion of the semi-group and generator to functions of the slow
process. For consistency, we do the same for the ODE: for an arbitrary y ∈ Y , ϕt(x,y) := ϕt(x)
and therefore Φth(x,y) = h(ϕt(x,y)) = h(ϕt(x)) which is motivated by the abuse of notation
in (6.10). This will merely be used in the proofs and allows focusing on integral proof ideas instead
of complex notations.

6.4.2 Generator of the Fast Process and Regularity of the Poisson
Equation

The generator L describes the changes induced by the transitions of the fast and slow process. In
our analysis, it will be useful to analyze the changes due to the jumps in Y only. We denote by Lfast
the generator of the Markov chain induced byK(x) that takes as input a functionh ∈ Dk(X ×Y)
and associates another function Lfasth defined by:

Lfasth(x,y) =
∑
y′

Ky,y′(x)(h(x,y′)− h(x,y)).
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6 Bias and Refinement of Multiscale Mean Field Models

Compared to (6.1), Lfast is independent ofN because the transition rates are rescaled by 1/N .
Under Assumption (A2), for all x, the matrix K(x) characterizes a Markov chain on the state

space Y that has a unique stationary distribution denoted by π(x). πy(x) is the stationary proba-
bility of y ∈ Y of the Markov chain induced by the kernel K(x). Subsequently, we will study the
distance between the ’true’ stochastic process Y t and an averaged system where the distribution of
Y t is replaced by the stationary distribution π(x). To quantify the error made when replacing Y t

with the stationary distribution, we consider the following Poisson equation:

h(x,y)−
∑
y∈Y

h(x,y)πy(x) = LfastG
fast
h (x,y). (6.11)

For a given function h : X × Y → Rn (n is arbitrary but finite), a functionGfast
h : X × Y → Rn

that satisfies the above equation is called a solution to this Poisson equation. We will have particular
interest in h(x,y) = F (x,y) ∈ Rdx namely when the drift F (x,y) is compared to its ‘average’
version F̄ (x) =

∑
y F (x,y)π(y).

The existence of a regular solution to this Poisson equation is guaranteed by the following Lemma 28.
Note that the solution of the above Poisson equation is not unique: If Gfast

h is a solution, then for
any constant c ∈ Rn, a function Gfast

h + c is also a solution. Later in the proofs of the theorems,
when we talk about ‘a solution of the Poisson equation’, we refer to the solution given in Lemma 28.

Lemma 28. Assume (A2). Then for all x ∈ X :

1. The Markov chain corresponding toK(x) has a unique stationary distribution that we denote
by π(x). We denote by Π(x) = 1 πT (x) the matrix where each line is equal to π(x).

2. The matrix (K(x) + Π(x)) is invertible and its inverse is a generalized inverse ofK(x).

3. DefineK+(x) = (K(x) + Π(x))−1(I − Π(x)), then, for all functions h : X × Y → Rn,
Gh(x,y) =

∑
y′ K

+
y,y′(x)h(x,y′) is a solution of the Poisson Equation (6.11).

If, in addition, Assumption (A1) holds, thenK+(x) is twice differentiable in x.

The proof is provided in Appendix 6.8.1. Note in particular, this result implies that if h is (twice)
differentiable in x then the same holds true forGfast

h .

6.4.3 Proof of Theorem 25 - Transient State Proof

The proof of Theorem 25 can be decomposed in two main parts. We first use a generator
transformation to show that the slow system is well approximated by a system whose drift is
Dxh(X t) F (X t,Y t) (6.4.3). This leads us to treat terms of the form F̄ (X t) − F (X t,Y t). To
study them, we use the solution of the Poisson equation for the fast system (6.11). The second part
is the more technical and novel. It is detailed in 6.4.3. Some technical lemmas are postponed to
Appendix 6.8.2.

144



6.4 Proofs

Error due to replacing the stochastic jumps ofX t by the drift

For h ∈ D2(X ) recall that theC0-semi-groups of the stochastic system and of the ODE are defined
as

ψsh(x0,y0) = E[h(Xs) |X0,Y 0 = x0,y0] and Φth(x0,y0) = h(ϕt(x0)).

We define νsh(x,y) := ψsΦt−sh(x,y) and rewrite

E[h(X t)− h(ϕt(x)) |X0,Y 0 = x0,y0] = νth(x0,y0)− ν0h(x0,y0) =

∫ t

0

d

ds
νsh(x0,y0)ds.

(6.12)

To show that the last equation indeed holds true, observe that

d

ds
νsh(x0,y0) =

d

ds
ψsΦt−sh(x0,y0)

= LψsΦt−sh(x0,y0)− ψsΛΦt−sh(x0,y0). (6.13)

By regularity assumptions on the transition rates and bounded state space the above equation is finite
for all (x,y) ∈ X×Y and time s ≥ 0. The dominated convergence theorem thus justifies the inter-
change of derivative and integral and validates the last equality. As pointed out in Appendix 6.7.1,
ψs and L, the stochastic semi-group and its infinitesimal generator, commute, i.e., Lψs = ψsL.
Hence,

(6.13) = ψs(L− Λ)Φt−sh(x0,y0)

= E[(L− Λ)Φt−sh(Xs,Y s) |X0,Y 0 = x0,y0], (6.14)

where the last line follows by definition of ψs. Let g(x) = h(ϕt−s(x)). g is twice differentiable
with respect to the initial condition x as it lies in D2(Rd,R) by Lemma 34. By the use of Taylor
expansion rewrite Lg as

Lg(x,y) =
∑

ℓ,y′∈T

Nαℓ,y′(x,y)(g(x+
ℓ

N
)− g(x))

=
∑

ℓ,y′∈T

αℓ,y′(x,y)Dxg(x)ℓ+
1

N

∑
ℓ,y′∈T

αℓ,y′(x,y)D2
xg(x) · (ℓ, ℓ) + o(

∥g∥2,1 supℓ|ℓ|
2

N
)

= Dg(x)F (x,y) +
1

N

∑
ℓ,y′∈T

αℓ,y′(x,y)D2
xg(x) · (ℓ, ℓ) + o(

CR∥g∥2,1 supℓ|ℓ|
2

N
),

with D2g(x) · (ℓ, ℓ) =
∑

m,n
∂2g

∂xm∂xn
(x)ℓmℓn. The convergence depends further on the Hölder

norm of h(ϕ(x)), bounds on the transition rates CR and jump sizes sup|ℓ|. The generator of the
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6 Bias and Refinement of Multiscale Mean Field Models

ODE related semi-group, Λ, introduced in Equation (6.8), maps g to Λg(x,y) = Dxg(x)F̄ (x).
Hence, we have

(L− Λ)g(x,y) = Dxg(x)(F (x,y)− F̄ (x)) +
1

N

∑
ℓ,y′∈T

αℓ,y′(x,y)D
2
xg(x) · (ℓ, ℓ) + o(1/N).

Error due to replacing the drift by the average drift

Next, we have a closer look at the first summand of the right hand side in the above equation. Denote
by Gfast

F a solution of the Poisson equation (6.11) where the function “h’ of (6.11) is set to the drift
F . SinceDxg(x) does not depend on y we have by definition of the Poisson equation and Lfast:

Dxg(x)(F (x,y)− F̄ (x)) = Dxg(x)LfastG
fast
F (x,y) = LfastDxg(x)G

fast
F (x,y). (6.15)

Combining the above with equation (6.14) and plugging everything into the integral of equa-
tion (6.12), we get:

E[h(X t)− h(ϕt(x0))] =

∫ t

0

E[LfastDx(h ◦ ϕt−s)(Xs) ·Gfast
F (Xs,Y s)]

+
1

N
E[
∑

ℓ,y′∈T

αℓ,y′(Xs,Y s)D
2
x(h ◦ ϕt−s)(Xs) · (ℓ, ℓ)]ds+ o(1/N),

(6.16)

where we suppress the conditioning on the initial values X0,Y 0 = x0,y0. Let Hs(x,y) :=
E[Dx(h ◦ ϕt−s)(Xs)G

fast
F (Xs, Ys) | X0,Y 0 = x,y]. Applying Lemma 35 with the function

gs(Xs,Y s) = Dx(h ◦ ϕt−s)(Xs)G
fast
F (Xs, Ys) implies that

0 =
1

N
Ht(x,y)−

1

N
H0(x,y)−

∫ t

0

E[
1

N
Dx

(
Dxh(ϕt−s(Xs)) · F̄ (ϕt−s(Xs))

)
·Gfast

F (Xs,Y s)]ds

+ E[
1

N
LDx(h ◦ ϕt−s)(Xs)G

fast
F (Xs, Ys)]ds. (6.17)

As h and ϕt−s are twice continuously differentiable, by compactness of X , and as Gfast
F is finite,

Dx

(
Dxh(ϕt−s(Xs))F̄ (ϕt−s(Xs))

)
Gfast

F (Xs,Y s) is bounded. Moreover, by Lemma 36 we have

(Lfast −
1

N
L)Dx(h ◦ ϕt−s)(Xs)G

fast
F (Xs, Ys)

=
1

N

∑
ℓ,y′

αℓ,y′(Xs,Y s)ℓ Dx(Dx(h ◦ ϕt−s)(Xs)G
fast
F (Xs,y

′)) + o(1/N).
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Define

Ch(t) :=

∫ t

0

E[
∑

ℓ,y′∈T

αℓ,y′(Xs,Y s)D
2
xh(ϕt−s(Xs)) · (ℓ, ℓ)]ds

+

∫ t

0

E[Dx

(
Dxh(ϕt−s(Xs)) · F̄ (ϕt−s(Xs))

)
·Gfast

F (Xs,Y s)]ds

+

∫ t

0

E[
∑
ℓ,y′

αℓ,y′(Xs,Y s)ℓ Dx(Dx(h ◦ ϕt−s)(Xs)G
fast
F (Xs,y

′))]ds+ E[Ht(X t,Y t)]−H0(x,y),

which lets us rewrite

N(E[h(X t)]− h(ϕt(x))) = Ch(t) + o(1).

By assumption, all the terms of Ch(t) are bounded. Therefore, the right-hand side of the equation
is bounded by a quantity we call C̄h(t).

6.4.4 Proof of Theorem 26 - Steady-State Proof

Adding and subtracting E[
∑

y πy(X∞)h(X∞,y)] to E[h(X∞,Y ∞) −
∑

y πy(ϕ∞)h(ϕ∞,y)]
yields:

E[h(X∞,Y ∞)−
∑
y

πy(ϕ∞)h(ϕ∞,y)] = E[h(X∞,Y ∞)−
∑
y

πy(X∞)h(X∞,y)] (A)

+ E[
∑
y

πy(X∞)h(X∞,y)−
∑
y

πy(ϕ∞)h(ϕ∞,y)].

(B)

Treating the two terms (A) and (B) separately, we defineGfast
h andGslow

h as the solutions to the Poisson
equations

LfastG
fast
h (x,y) = h(x,y)−

∑
y

πy(x)h(x,y), (‘fast’ Poisson Equation)

ΛGslow
h (x) =

∑
y

πy(x)h(x,y)−
∑
y

πy(ϕ∞)h(ϕ∞,y). (‘slow’ Poisson Equation)

Recall that the existence and regularity properties of the functionGfast
h are investigated in Lemma 28.

ForGslow
h , it is known (e.g., [55]) that the exponential stability of the unique fixed point (A3) along

with the smoothness of F guarantees thatGslow
h ∈ D2(X ).
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Next we use that taking the expectation of the generatorL applied to an arbitrary function g over
the stationary distribution of (X∞,Y ∞) is zero, i.e., E[Lg(X∞,Y ∞)] = 0. By using Lemma 36,
it follows

(A) = E[LfastG
fast
h (X∞,Y ∞)− 1

N
LGfast

h (X∞,Y ∞)]

= E[
1

N

∑
ℓ,y′

αℓ,y′(X∞,Y ∞)ℓ DxG
fast
h (X∞,y

′) + o(1/N)].

For the second term, we apply the ‘slow’ Poisson Equation equation and subtract the term
E[LGslow

h (X∞,Y ∞)] = 0 which yields

(B) = E[ΛGslow
h (X∞)− LGslow

h (X∞,Y ∞)]. (6.18)

Note that even ifGslow
h only depends onx, the functionLGslow

h does depend onx andy because the
rate functions that appear in the generatorL do depend onx andy. By using the Taylor expansion,
LGslow

h equals

LGslow
h (x,y) =

∑
ℓ,y′

Nαℓ,y′(x,y)
(
Gslow

h (x+
ℓ

N
)−Gslow

h (x)
)

=
∑
ℓ,y′

Nαℓ,y′(x,y)DxG
slow
h (x)

ℓ

N

+
1

2

∑
ℓ,y′

Nαℓ,y′(x,y)D2
xG

slow
h (x)

(ℓ, ℓ)

N2
+ o(

∥ℓ∥2

N
).

By application of the definition of F (x,y), the first term of the right hand side of this equation is
equal to F (x,y)DxG

slow
h (x). Moreover, by definition, ΛGslow

h (X∞) = DxG
slow
h (x)F̄ (x). This

shows that

E[DxG
slow
h (X∞)(F̄ (X∞)− F (X∞,Y ∞))

+
∑
ℓ,y′

αℓ,y′(X∞,Y ∞)
(1
2
D2

xG
slow
h (X∞) · (ℓ, ℓ)

N

)
+ o(

∥ℓ∥
N2

)].

AsGslow
h has a bounded second derivative, the second term is of orderO(1/N). However, to bound

the first summand we need to investigate F̄ (x) − F (x,y) =
∑

y πy′(x)F (x,y′) − F (x,y).
Falling back on (‘fast’ Poisson Equation) allows two write

DxG
slow
h (x)(F̄ (x)− F (x,y))

= −DxG
slow
h (x)LfastG

fast
F (x,y) = −LfastDxG

slow
h (x)Gfast

F (x,y).
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The last equality holds due to the definition ofLfast, andDxG
slow
h (x) which depends only onx. By

adding the zero term E[ 1
N
LDxG

slow
h (X∞)Gfast

F (X∞,Y ∞)] and using Lemma 36. We see that

E[−LfastDxG
slow
h (X∞)Gfast

F (X∞,Y ∞) +
1

N
LDxG

slow
h (X∞)Gfast

F (X∞,Y ∞)]

= E[
1

N

∑
ℓ,y′

αℓ,y′(X∞,Y ∞)ℓ Dx(DxG
slow
h (X∞)Gfast

F (X∞,y
′)) + o(1/N)].

Put together, the error term of (B) is

E
[ 1
N

∑
ℓ,y′

αℓ,y′(X∞,Y ∞)ℓ Dx(DxG
slow
h (X∞)Gfast

F (X∞,y
′))

+
1

2N

∑
ℓ,y′

αℓ,y′(X∞,Y ∞)D2
xG

slow
h (X∞)(ℓ, ℓ)

]
. (6.19)

By defining Ch as the sum of the residual term E[
∑

ℓ,y′ αℓ,y′(X∞,Y ∞)ℓ DxG
fast
h (X∞,y

′)] for
(A) and (6.19) the byN scaled, the proof concludes.

6.4.5 Proof of Theorem 27 (Refinement Theorem, and Closed form
Expressions)

In this section we first decompose the constant Ch in two terms in Proposition 29. We then study
these two terms in Proposition 30 and 31 where we obtain the closed form expressions for the cor-
rection terms which allow to numerically obtain the corrections.

We define two functionsQ(x, y) and Jh(x, y) (the latter is defined for a function h ∈ D2(X )):

Q(x,y) =
∑
ℓ,y′

αℓ,y′(x,y)ℓℓT ,

Jh(x,y) = −
∑
ℓ,y′

αℓ,y′(x,y)Dx

(
DxG

slow
h (x)Gfast

F (x,y′)
)
ℓ,

and we denote by J̄h(x) =
∑

y πy(x)J(x, y) and Q̄(x) =
∑

y πy(x)Q(x, y) their “average” ver-
sion. The following proposition holds.

Proposition 29. Assume (A1)–(A3). Then, for any h ∈ D2(X ), we have:

N
(
E[h(X∞)]− h(ϕ∞)

)
=

1

2
D2

xG
slow
h (ϕ∞)Q̄(ϕ∞) + J̄h(ϕ∞) + o(1). (6.20)

Proof. Let h ∈ D2(X ) and let us denote Gslow
h the solution of (‘slow’ Poisson Equation). As h

does not depend on y, this function is such that for any x: h(x) − h(ϕ∞) = ΛGslow
h (x) =

149



6 Bias and Refinement of Multiscale Mean Field Models

DxG
slow
h (x)F̄ (x). The following steps are similar to the ones for (B) in the proof of Theorem 26.

Hence, applying this forX∞ and taking the expectation, we get:

NE[h(X∞)− h(ϕ∞)] = NE[ΛGslow
h (X∞)] = NE[DxG

slow
h (X∞)F̄ (X∞)].

Recall that for any bounded function g ∈ D(X × Y), E[Lg(X∞,Y ∞)] = 0. Hence,

NE[DxG
slow
h (X∞)F̄ (X∞)− LGslow

h (X∞,Y ∞)].

Similarly to what we do to prove Theorem 26, we plug the definition of L in the above equation
and use a Taylor expansion to show that this equals

NE[DxG
slow
h (X∞)F̄ (X∞)−

∑
ℓ,y′

Nαℓ,y′(X∞,Y ∞)
(
Gslow

h (X∞ +
ℓ

N
)−Gslow

h (X∞)
)
]

= NE[DxG
slow
h (X∞)F̄ (X∞)−

∑
ℓ,y′

Nαℓ,y′(X∞,Y ∞)
(
DxG

slow
h (X∞)

ℓ

N

+
1

2
D2

xG
slow
h (X∞)

(ℓ, ℓ)

N2
+ o(

∥ℓ∥
N2

)
)
]

= NE[DxG
slow
h (X∞)(F̄ (X∞)− F (X∞,Y ∞))− 1

2N
D2

xG
slow
h (X∞)Q(X∞,Y ∞)] + o(1).

(6.21)

The rest of the proof follows using

• Lemma 37 to showNE[DxG
slow
h (X∞)(F̄ (X∞)− F (X∞,Y ∞))] = J̄(ϕ∞) + o(1);

• Theorem 26 which states E[1
2
D2

xG
slow
h (X∞)Q(X∞,Y ∞)] = 1

2
D2

xG
slow
h (ϕ∞)Q̄(ϕ∞) +

o(1).

Applying the above equations to (6.21) implies the statement of Proposition 29.

In the rest of the section, we show that the quantity 1
2
D2

xG
slow
h (ϕ∞)Q̄(ϕ∞)+ J̄(ϕ∞) can be easily

computed numerically by solving linear systems of equations. As shown in Proposition 30 and 31,
we obtain five different correction terms:

• The first twoV ∈ Rdx ,W ∈ Rdx×dx are closely related to the ones obtained in [59][Theorem
3.1] and derived from the term 1

2
D2

xG
slow
h (ϕ∞)Q̄(ϕ∞). This term is essentially identical to the

refinement term of [59].

• In Proposition 31 we derive three other refinement termsS, T ∈ Rdx andU ∈ Rdx×dx which
give closed form descriptions of J̄(ϕ∞). These terms are novel and take into account the
difference of the average drift F̄ and the actual drift F obtained from the stochastic system.
The proof is based on exact expressions for the Poisson equations Gfast, Gslow and relies on
Lemma 28.
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6.4 Proofs

Correction terms V andW

To obtain the first result, letA andB be the Jacobian and Hessian matrix of the ‘average’ drift, i.e.,

Ai,j =
∂F̄i

∂xj
(ϕ∞) and Bi,k1,k2 =

∂2F̄i

∂xk1xk2
(ϕ∞). (6.22)

By the exponential stability of the fixed point (Assumption (A3)), the matrixA is invertible and the
Lyapunov equation AW +WAT + Q̄ = 0 has a unique solution. We denote by W its solution
and define the vector V as

Vi = −1

2

∑
j

(A−1)i,j
∑
k1,k2

Bj,k1,k2Wk1,k2 .

Proposition 30. Assume (A1) - (A3) and h ∈ D2(X ). Then:

1

2
D2

xG
slow
h (ϕ∞)Q̄(ϕ∞) =

∑
i

∂h

∂xi
Vi +

1

2

∑
i,j

∂2h

∂xixj
Wi,j .

Proof. The proposition is a direct consequence of the results of [59][Theorem 3.1] which we apply
to the function F̄ (x) =

∑
y πy(x)F (x, y).

Correction terms T , S, U

Proposition 31. Assume (A1) - (A3) and h ∈ D2(X ). The closed form solution of J̄ at the equilib-
rium point ϕ∞ is given by

J̄h(ϕ∞) =
∑
i

∂h

∂xi
(ϕ∞)(Ti + Si) +

∑
i,j

∂2h

∂xi∂xj
(ϕ∞)Ui,j.

U is the unique solution to the Sylvester equation

AX +XAT = −O, with
O =

∑
y

πy(ϕ∞)
∑
ℓ,y′

αℓ,y′(ϕ∞, y)K
+
y′,:(ϕ∞)F (ϕ∞, :)ℓ

T ,
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where A,B are the Jacobian, Hessian of the average drift as defined in (6.22) and K+ as given in
Lemma 28. T, S are defined by

Ti :=
∑
j

A−1
i,j

∑
k1,k2

Bj,k1,k2Uk1,k2 ,

Si :=
∑
k

A−1
i,k

∑
y

πy(ϕ∞)
∑
ℓ,y′

αℓ,y′(ϕ∞, y)

×

(∑
y′

Fk(ϕ∞, y
′)∇T

xK
+
y′,y′(ϕ∞)ℓ+K+

y′,y′(ϕ∞)∇T
xFk(ϕ∞, y

′)ℓ

)
.

The proof of this proposition is given in Appendix 6.8.5.

6.5 Example: CSMAModel
To illustrate our results, we consider the unsaturated CSMA random-access networks studied in
[39]. In this paper, the authors use a two-scale model to study the performance of a CSMA algo-
rithm with many nodes. The slow process corresponds to the arrival of jobs and the fast process
corresponds to the activation and deactivation of nodes. The authors of this paper derive a mean
field approximation and show that it is asymptotically exact. With our methods, we go two steps
further:

• Theorem 25 and 26 show that not only the mean field approximation is asymptotically exact
but also that the error is only of orderO(1/N).

• By using Theorem 27, we can compute a refinement term. Our numerical example shows
that, similarly to what happens for classical one-scale mean field models [59], this refinement
term is extremely accurate. It is much more accurate than the classical mean field approxima-
tion when the studied system is not too large.

1 2 3

(a) The linear 3 Node Graph.

3

1 5

4

2

(b) The 5 Node Graph.

Figure 6.1: Two examples of interference graphs.

6.5.1 Model Description
We consider a model with C server types, with N statistically identical servers for each class. All
servers communicate through a wireless medium using a random-access protocol and have a finite
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6.5 Example: CSMA Model

buffer sizeB. TheC classes form an interference graphG = (C, E)withC = {1, . . . , C} the classes
andE the network specific edges. (see for instance Figure 6.1 for examples of graphs with three or five
classes). This interference graph indicates that two servers cannot transmit simultaneously if they
either are of the same class or belong to an adjacent class. For each class c ∈ C, we will denote by
yc ∈ {0, 1} a variable that equals 1 if a node of class c is transmitting and 0 otherwise. We denote
by Y the set of possible activation vectors y ∈ {0, 1}C . It is equal to the set of the independent
sets of the graph, i.e., all activity vectors for which an active node has only inactive neighbors. For
instance, for the graph with three classes which are linearly connected as shown in Figure 6.1a, the
set of feasible states is given by

Y = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)}.

Any node can turn active if there are no neighboring active nodes. Once its transmission is finished,
it changes back to an idle state. For a given class c, we define Y+

c := {y ∈ Y : yc = 1} as the subset
of states for which node c is active, and by Y−

c := {y ∈ Y : yc = yd = 0 ∀d s.t. (c, d) ∈ E}
the subset of states from which node c can turn active, i.e., all neighboring nodes are inactive. For
instance, for the linear 3 node graph of Figure 6.1a and the class c = 1 this yields the following sets

Y+
1 = {(1, 0, 0), (1, 0, 1)}, Y−

1 = {(0, 0, 0), (0, 0, 1)}.

As in [39], in this non-saturated model, we consider that if a node is in class c, new packets arrive to
this node at rateλc > 0. If a node has a packet to transmit and no neighboring node is transmitting,
then this node becomes active at rate νc > 0. We assume that a transmission from a node of class c
takes an exponential time of duration 1/(Nµc) > 0, after which the packet leaves the system.

To illustrate the model dynamics, we provide short videos for of the linear 3 node graph:

• Video Illustration of the Dynamics forN = 10

• Video Illustration of the Dynamics forN = 1000

6.5.2 Two-scale model representation
The model as described above fits in our two-timescale representation. To see why, for each class
c ∈ C and buffer size b ∈ {0 . . . B}, we defineX(N)

t,(c,b) as the fraction of servers of class c that have at
least b jobs in their queue at time t. We denote byX t the vector of all possibleXt,(c,b) for all c ∈ C
and b ∈ {0 . . . B}. The fast componentY t is the activation at time t: Yt,(c) = 1 if a node of class c
is transmitting at time t and 0 otherwise.

Using this representation, we characterize the possible transitions. Given a state pair (x,y), the
transitions are represented as a transition vector of the form (ℓ/N,y′) and a corresponding transi-
tion rateNαℓ,y′(x,y) such that the state (x,y) jumps to (x+ ℓ/N,y′) at rateNαℓ,y′(x,y). The
transitions can be distinguished into three types:

• Arrival of a packet to a server of class c ∈ C:

(
ec,i
N
,y) at rate Nλc(1− xc,i) for i = 1,

(
ec,i
N
,y) at rate Nλc(xc,i−1 − xc,i) for 2 ≤ i ≤ B.

153

https://gitlab.inria.fr/sallmeie/bias-and-refinement-of-multiscale-mean-field-models/-/blob/main/video_illustrations/CSMA_StructureN10.mp4?ref_type=heads
https://gitlab.inria.fr/sallmeie/bias-and-refinement-of-multiscale-mean-field-models/-/blob/main/video_illustrations/CSMA_StructureN1k.mp4?ref_type=heads
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• Back-off of a server of class c ∈ C with at least one packet if the class activity vector allows the
back-off, i.e., y ∈ Y−

c :

(− ec,i
N
,y + ec) at rate Nνc(xc,i − xc,i+1) for 1 ≤ i < B,

(− ec,i
N
,y + ec) at rate Nνcxc,i for i = B.

• Transmission completion of an active node of class c ∈ C, i.e., y ∈ Y+
c :

(0,y − ec) at rate Nµc.

We denote the set of all possible transition vectors (ℓ/N,y′) from a state pair (x,y) by T (x,y).

6.5.3 Steady-State distribution πy(x) and average drift
By using the above transition definitions, the matrixK is given by:

• If y ∈ Y−
c , thenK(y,y + ec) = Nνcxc,1,

• If y ∈ Y+
c , thenK(y,y − ec) = Nµc,

all other entries of the matrix being 0.
This representation is used by the authors of [39] to derive the product-form stationary distribu-

tion for a fixed server state x. This product form is closely related to the product-form stationary
distribution of saturated networks as found in [24, 107, 111]: The quantity πy(x) is calculated as
follows:

πy(x) :=
Z(x,y)

Z(x)
, with Z(x,y) =

∏
c∈C

( νc
µc

xc,1
)yc
, Z(x) =

∑
y∈Y

Z(x,y).

Following our definition of Section 6.2.2 the drift and its average version are generically defined
by:

F (x,y) =
∑

(ℓ,y′)∈T (x,y)

αℓ,y′(x,y)ℓ, and F̄ (x) =
∑
w∈Y

πy(x)F (x,y).

For the drift F (x,y) of the random access model this leads to the closed form expression

F (x,y) =
∑
c∈C

( ∑
1<i≤B

ec,i λc(xc,i−1 − xc,i) + ec,1 λc(1− xc,1)

− 1{y∈Y−
c }(

∑
1≤i<B

ec,i νc(xc,i − xc,i+1) + ec,B νcxc,B)
)
.

It should be clear that assumption (A1) holds in our case because the rates given in Section 6.5.2
are all continuous in x (in fact they are all linear). Moreover, the model also satisfies Assump-
tion (A2): For a given x, the set of irreducible states for K(x) contains all the feasible activation
vectors y such that yc = 0 if x(c,1) = 0. The condition xc,1 = 0 implies that the nodes of class c do
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not have any packets to transmit. The situation of Assumption (A3) is more complicated. To the
best of our knowledge, there has not been a complete stability characterization for the unsaturated
random access CSMA model. Cecchi et al. show in [39] that in the case of a complete interference
graph stability conditions can be derived which assure global exponential stability. They further
conjectured that similar results hold for general interference graphs. In our analysis, we assume that
(A3) holds.

6.5.4 Numerical results
To study the accuracy of the mean field approximation and the refined term proposed in Theo-
rem 26, we implemented a Python library2 to simulate the system and compute the mean field
approximation and the refinement term. This library is generic and can take as an input any in-
stance of the model which we defined above. For instance, in the Code Cell 6.1, we illustrate how
to use this library to construct a model where the interference graph is as in Figure 6.1b, the rates
are λ = [.5, .7, .7, .6, .4], ν = [4, 3, 3, 3, 3], µ = [3, 3, 2, 4, 2], and the buffer size is equal to 10.
This cell shows how to initialize the 5 node model and obtain the approximation and refinement
from our implementation. We also perform the same experiments with the linear 3 node model, for
which we provide the results in Appendix 6.10. Note that the results are qualitatively very similar.

Listing 6.1: Initialization and Computation of Mean Field and Refinements.
# Graph structure (this is the five node example)
G = np.array([[0,1,1,1,0],

[1,0,0,0,0],

[1,0,0,0,1],

[1,0,0,0,1],

[0,0,1,1,0]])

# rates and buffer size
_lambda = np.array([.5,.7,.7,.6,.4])

nu = np.array([4,3,3,3,3])

mu = np.array([3,3,2,4,2])

buffer_size = 10

#Wedefine the model, compute a trajectory and the refinement term.
csma = symbolic_CSMA(nu, mu, _lambda, G, buffer_size)

T, X = csma.ode(time=200) # mean field ODE
v, s, t, w, u = csma.compute_refinements(X[−1]) # steady−state refinement

In order to compute the refinement terms, the library needs to compute various derivatives (of
the drift or of the matrixK+(x)). To implement this, we rely on symbolic differentiation provided
by the sympy library [85]. As we see later in Table 6.1, the use of the symbolic differentiation is the
performance bottleneck of our implementation. In Appendix 6.9 we furthermore show how to
obtain the stationary distribution and the derivative ofK+(x) numerically.

2https://gitlab.inria.fr/sallmeie/bias-and-refinement-of-multiscale-mean-field-models
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6 Bias and Refinement of Multiscale Mean Field Models

Transient regime and illustration of Theorem 25 To illustrate the accuracy of the
mean field, we use the 5 node model described in the Code Cell 6.1. We first simulate the CSMA
model and compare it with the mean field ODE. The results are reported in Figure 6.2 where we
plot the mean field approximation against a sample mean E[X t] derived from 1000 simulations.
Initially, all servers are idle. The plot shows the share of servers of class c = 3 that have at least one
job, that isE[Xt,(3,1)]. We compare the results for a model withN = 10 servers per class (top right),
N = 20 (bottom right), orN = 50 (left). We observe that in all cases, the evolution of the stochas-
tic system is very well predicted by the mean field approximation. To quantify this more precisely,
each plot contains a zoom on the trajectory between the time t = 8 to t = 13. These zooms show
that for N = 50, the quantity E[X(N)

t,(3,1)] is almost indistinguishable from the mean field approxi-
mation. For N = 10 or N = 20, the estimated average is slightly above the mean field curve, but
the confidence intervals remain almost equal to the error.

0 2 4 6 8 10 12 14 16 18
0.0

0.5

Nr. of Servers per Class - 10

0 2 4 6 8 10 12 14 16 18
0.0

0.5

Nr. of Servers per Class - 20

0 2 4 6 8 10 12 14 16 180.0

0.1

0.2

0.3

0.4

0.5

0.6

Nr. of Servers per Class - 50

Sample Mean
Approximation
95 Conf. Interval

Class 3; Servers with at least 1 Job

Figure 6.2: Illustration of the transient behavior of the CSMA model. We compare the ‘average’ mean field
and stochastic simulations for three different scaling parameters: N = 10, N = 20 and N = 50.

Steady-state and refined accuracy While Theorems 25 and 26 provide a guarantee on
the accuracy of the mean field approximation, Theorem 27 shows that it is possible to compute an
approximation that is more accurate than the original mean field approximation. We illustrate this
in Figure 6.3 where we show the steady-state average queue lengths for the same 5 node graph. The
sample mean and confidence interval are computed from 40 steady-state samples which again are
obtained from independent time-averages of 7.5× 106 events of the Markov chain after a warm-up
of 2.5 × 106 events. For a class c and a buffer size b, the quantity

∑B
b=1 E[X(c,b)] is equal to the

steady-state average queue length of each server of class c. In Figure 6.3, we consider different values
ofN , and calculate the average queue length by the following three methods:

• By using a stochastic simulator of the original CSMA model.

• By using the fixed point of the mean field approximation:
∑B

b=1(ϕ∞)(c,b).

• By computing the refinement term, C , of Theorem 27 and using
∑B

b=1(ϕ∞)(c,b) +
(C)(c,b)/N .

When looking at the scale of the y-axis, we see that in all cases, the accuracy of the mean field ap-
proximation is already quite good. More importantly, we also observe that in all cases, the refined
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approximation seems almost exact: For all considered cases, the refined approximation lies within
the 95 percent confidence interval of the simulations and seems to work well even for a small num-
ber of servers, N ≈ 10, 20. This result is similar to the one observed for one-timescale mean field
models in [59].
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Figure 6.3: Queue Length Distribution for the 5 Node Graph of Figure (6.1b).

Computation Time While the previous figure shows that the refined approximation provides
an increase in accuracy for small values ofN , it comes at the cost of an increase in computation time
because one needs to compute the various derivatives of the rate functions and to solve a new linear
systems of equations. In order to quantify the additional computation time, we measure the time
taken by our implementation to compute the refinement terms which are reported in Table 6.1.
We compare the 5 node model studied before and a 3-node model whose interference graph is as
in Figure 6.1a. We observe that the time taken to compute the refinement term is significant, in
particular for the 5-node model. Yet, when looking more carefully at what takes time, we realize
that most of the computation time is taken by the symbolic differentiation. Indeed, to simplify
our implementation, we used the automated differentiation method of sympy. While this yields
simplifications for the implementation, we encountered that it massively slows down the refinement
computation times. Through code profiling it showed that around 95 percent of the computing
time is taken by sympy methods such as differentiation and evaluation of symbolic expressions. For
smaller interference graphs, e.g., linear 2 / 3 node graphs, this effect is not limiting. For larger graphs,
the differentiation turns out to be the restricting factor. In Table 6.1 we state the computation times
for a linear 3 node model and for the setup described before.

We would like to emphasize that the goal of our implementation is to illustrate the theoretical
statements, and thus we did not focus on efficiency. The table shows that if one wants to adapt our
implementation to work with larger graphs, it would be sufficient to implement a more efficient
differentiation method. For instance, this could be done by using closed form expression of the
derivatives, or by using automatic differentiation methods, or by using finite difference methods.
We believe that such methods would probably be much faster.

6.6 Conclusion
In this paper we investigate the accuracy of the classical averaging method that is used to study two
timescale models. We study a generic two timescale model and show that under mild regularity
conditions, the bias of this ‘average’ mean field approximation is of orderO(1/N). This result holds
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Jakobian (A) Hessian (B) v + w s + t + u Total Sympy
3 Node 6.08 (6.08) 30.71 (30.71) 0.19 (0) 5.64 (3.81) 42.63 (40.6) 95.22%
5 Node 97.09 (97.09) 897.15 (897.15) 1. (0) 122.36 (86.09) 1117.6 (1080.33) 96.66%

Table 6.1: Refinement computation times for Random Access CSMA model for a 3 node linear graph and
the 5 node graph as in Figures 6.1a, 6.1b. Times are given in seconds. In parentheses, we indicate
the time taken by differentiation and subsequent sympy methods. These numbers show that the
Sympy code takes more than 95% of the computation time.

for any finite time-horizon, and extends to the steady-state regime under the classical assumption
that the system has a unique and stable fixed point. Our results show the existence of a bound C̄h

for the bias term for any regular function h:

E[h(X t)] = h(Φt(x))︸ ︷︷ ︸
classical ‘average’ mean field

+
1

N
Ch(t)︸ ︷︷ ︸

O(1/N) expansion of the bias︸ ︷︷ ︸
refined ‘average’ mean field

+ o(1/N).

For the steady-state regime t = +∞, we propose an algorithmic method to calculate this termCh.
This correction term can be computed by solving linear systems and is therefore easily numerically
computable. We show on an example that, similarly to what was done for classical one timescale
models [59], the bias term leads to an approximation that is almost exact for small values of N like
N = 10, 20.

An interesting open question would be to obtain a characterization of Ch(t) for the transient
regime. Yet, it is not clear to us if those expressions would be usable as their size grows quickly with
the system size. From an application point of view, our examples show that the new approximation
leads to very accurate estimates for CSMA models. We believe that the same should hold for other
multiscale models.

6.7 Definitions

In this section we revise some essential definitions and properties used in the paper. As these defini-
tions are well established, we only briefly recall them to provide a self-contained paper.

6.7.1 C0-Semi-Group, Hölder Norm, ODE differentiability

Definition 32 (C0 Semi-Group [94] Definition 2.1 ). Ts is called strongly continuous semi-group (or
C0-semi-group) if

T0 = Id, Ts+t = TsTt for all s, t ≥ 0, lim
t↓0

Ttz = z for all z. (6.23)
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Since we will only work withC0-semi-groups we will simply refer to them as semi-groups.
Semi-group & Generator commutation The generator of aC0-semi-group is defined by

Az = lim
t→0

1

t
(Ttz − T0z).

A direct consequence of the definition of the generator and a standard property is that it commutes
with its definingC0-semi-group, i.e.,

ATsh(z) = TsAh(z) =
d

ds
Tsh(z).

Note, this therefore holds true for the semi-groups given by the stochastic system Ψsh(x, y) =
E[h(Xs, Ys) | X0, Y0 = x, y] with generator Lh(x, y) as in Equation (6.7) and the semi-group of
the ODE Φsh(x) = h(ϕs(x)) with generator Λh(x) = Dxh(x)F̄ (x).

Definition 33 (Hölder Norm and Space). For U ⊂ Rn and u ∈ Ck(U)

∥u∥k,γ :=
∑
k

sup
x∈U

∥∥Dku(x)
∥∥+∑

k

sup

{∥∥Dku(x)−Dku(y)
∥∥

∥x− y∥γ
| x, y ∈ U, x ̸= y

}

is called Hölder norm. The space of functions for which the norm is finite is called Hölder space and
denoted by Dk

γ(U). For the case γ = 1 the Hölder space encloses all functions who are k-times continu-
ously differentiable with bounded derivatives and who’s k-th derivatives are Lipschitz continuous. The
latter we simply denote by Dk(U).

An important implication is that all Hölder continuous functions are uniformly continuous.

Lemma 34 (Drift induced differentiability [95] Theorem 1 p.80). Let E be an open subset of Rn

containing x0 and assume that f ∈ Ck(E). Then there exists an a > 0 and δ > 0 such that for all
y ∈ Nδ(x0)

3 the initial value problem

ẋ = F (x), x(0) = y,

has a unique solutionuwhich is k-times continuously differentiable with respect to the initial condition
for t ∈ [−a, a].

Proof. Theorem 1 p.80-83 and Remark 1 p.83 of [95].

6.8 Technical Lemmas and Proofs

6.8.1 Proof of Lemma 28
By assumption (A2), the transition matrix K(x) has a unique irreducible class. As pointed out in
Section 6.2.3, the corresponding Markov chain has a unique stationary distribution that we denote

3Nδ(x0) := {x ∈ Rn : ∥x− x0∥ ≤ δ}
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by π(x). Let Π(x) := 1πT (x) be the matrix whose lines are all equal to π(x). By [68](Theorem
3.5, p.17),

(
K(x)+Π(x)

)
is non-singular and its inverse (K(x)+Π(x))−1 is a generalized inverse

toK(x), which means that it satisfiesK(x)(K(x) + Π(x))−1K(x) = K(x).
To obtain the solution to the Poisson equation (6.11) we only consider the case where h takes

values inR. The extension to a functionh that takes values inRn is straightforward as it corresponds
to n independent Poisson equations.

Let us suppress the dependence on x for clarity. Recall that K+ = (K + Π)−1(I − Π) and let
us study the productKK+:

KK+ = K(K +Π)−1(I − Π) (by definition)
= K(K +Π)−1(I +K −K − Π)

= K(K +Π)−1 +K(K +Π)−1K

−K(K +Π)−1(K +Π) (expanding the product)
= K(K +Π)−1 (the last two terms equal ±K)
= (K +Π)(K +Π)−1 − Π(K +Π)−1 (Adding and subtracting Π(K +Π)−1)
= I − Π,

where the last equality holds because πT1 = I and therefore Π Π = 1πT1πT = 1πT = Π.
Combined with ΠK = 0, this shows that Π = Π(K +Π) and therefore Π(K +Π)−1 = Π.

The above computations show that ifGfast
h (x, y) =

∑
y′ K

+
y,y′(x)h(x, y

′), then:

K(x)Gfast
h (x, y) = h(x, y)−

∑
y′

πy′(x)h(x, y
′),

which shows thatGfast
h is the solution of the Poisson equation.

The differentiability of Gfast
h follows from the differentiability of h and K+: Under Assump-

tion (A1),K(x) is continuously differentiable. By Assumption (A2),K(x) has a unique irreducible
class, this implies Π(x) is continuously differentiable, for which we refer to [70], and therefore fur-
ther implies that (I + Π(x))−1 and K+(x) are continuously differentiable. This proves that Gfast

h

is continuously differentiable in x.

6.8.2 Technical Lemmas used to prove Theorem 25 (Transient
Regime)

Lemma 35. For arbitrary but fixed t > 0, let g : (s, x, y) ∈ [0, t] × X × Y 7→ gs(x, y) ∈ R
be a continuous function that is continuously differentiable in s and let Hs(x, y) := E[gs(Xs, Ys) |
X0, Y0 = x, y]. Then:

Ht(x, y)−H0(x, y) =

∫ t

0

E[
d

dτ
gs+τ (Xs, Ys) |τ=0]ds+

∫ t

0

E[Lgs(Xs, Ys)]ds.
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Proof. By definition of the generator L, the quantity Ht(x, y) = E[gt(Xt, Yt) | X0, Y0 = x, y]

is right sided differentiable, i.e., d+

ds
f(s) = limds→0+

1
ds

(
f(s + ds) − f(s)

)
, with respect to time.

Using semi-group properties and bounds, its derivative is

d+

ds
Hs(x, y) = E[

d

dτ
gs+τ (Xs, Ys) |τ=0] + E[Lgs(Xs, Ys)].

The first term corresponds to the derivation of gs with respect to time and the second term to the
changes of the stochastic system in (Xs, Ys). The lemma therefore follows by using thatHt(x, y)−
H0(x, y) =

∫ t

0
d+

ds
Hs(Xs, Ys).

Lemma 36 (Bound forLfastg(x, y)). Take the two-timescale stochastic system as introduced in Section
6.2.1 with generator L and assume (A1) and (A2). Let Lfast be as defined in Section 6.4.2. Then, for
g ∈ D1(X × Y) and (x, y) ∈ X × Y

Lfastg(x, y)−
1

N
Lg(x, y) =

1

N

∑
ℓ,y′

αℓ,y′(x, y)ℓ Dxg(x, y
′) + o(1/N).

Proof. By definition of Lfast, for a continuous function g the values of Lfastg(x, y) and 1
N
Lg(x, y)

coincide in the limit. For finiteN , we first look at 1
N
Lg(x, y) which is given by

1

N
Lg(x, y) =

1

N

∑
ℓ,y′

Nαℓ,y′(x, y)(g(x+
ℓ

N
, y′)− g(x, y)).

Using the continuity of g in x, and definition of Lfastg(x, y) we have

Lfastg(x, y) = lim
N→∞

1

N
Lg(x, y) =

∑
ℓ,y′

αℓ,y′(x, y)( lim
N→∞

g(x+
ℓ

N
, y′)− g(x, y))

=
∑
ℓ,y′

αℓ,y′(x, y)(g(x, y
′)− g(x, y)).

Using Taylor’s theorem

Lg(x, y) = N
∑
ℓ,y′

αℓ,y′(x, y)(g(x+
ℓ

N
, y′)− g(x, y))

= N
∑
ℓ,y′

αℓ,y′(x, y)(g(x, y
′)− g(x, y) + ℓ Dxg(x, y

′) + o(∥ℓ∥))

= NLfastg(x, y) +
∑
ℓ,y′

αℓ,y′(x, y)ℓ Dxg(x, y
′) + o(1).
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6.8.3 Technical Lemma used to prove Theorem 27 (Steady-State
Refinement)

The next Lemma justifies that the first term of (6.21) is approximated in the limit by the ‘average’ ver-
sion of Jh as defined in Section 6.4.5. Second, Lemma 38 gives stability conditions for the solution
of the ‘slow’ Poisson Equation.

Lemma 37. Assume (A1)-(A3) in particular assume h ∈ D1(X ). Further assume thatGfast
F , solution

to the ‘fast’ Poisson Equation, is cont. differentiable in x andGslow
h , solution to the ‘slow’ Poisson Equa-

tion, is twice cont. differentiable in x. Let J̄(ϕ∞) =
∑

y π(ϕ∞)J(ϕ∞, y) be the ‘average’ version of
Jh(x, y) =

∑
ℓ,y′ αℓ,y′(x, y)Dx

(
DxG

slow
h (x)G

fast
F (x, y′)

)
ℓ in ϕ∞, then

NE[DxG
slow
h (X∞)

(
F̄ (X∞)− F (X∞,Y ∞)

)
] = J̄(ϕ∞) + o(1).

Proof. To prove the lemma, let Gfast
F be the solution to the Poisson equation as given in

(‘fast’ Poisson Equation). We useGfast
F to rewrite

NE[DxG
slow
h (X∞)(F̄ (X∞)− F (X∞,Y ∞))]

= −NE[DxG
slow
h (X∞)(F (X∞,Y ∞)− F̄ (X∞))]

= −NE[DxG
slow
h (X∞)(LfastG

fast
F (X∞,Y ∞))]

= −NE[LfastDxG
slow
h (X∞)(Gfast

F (X∞,Y ∞))].

Adding E[LDxG
slow(X∞)(Gfast

h (X∞,Y ∞))] = 0 and applying the steps as in the proof of
Lemma 36 we see that

−NE[LfastDxG
slow
h (X∞)(Gfast

F (X∞,Y ∞))− LDxG
slow
h (X∞)(Gfast

F (X∞,Y ∞))]

= −E[
∑
ℓ,y′

αℓ,y′(X∞,Y ∞)
(
Dx(DxG

slow
h (X∞)Gfast

F (X∞, y
′))
)
ℓ ] + o(1). (6.24)

The last equality follows directly from the definition of Lfast since Gh only de-
pends on x. Using Theorem 26 we see that E[Jh(X∞,Y ∞)] with Jh(x, y) :=
−
∑

ℓ,y′ αℓ,y′(x, y)ℓ Dx

(
DxG

slow
h (x)Gfast(x, y′)

)
of equation (6.24) is approximated by

J̄(ϕ∞) =
∑

y π(ϕ∞)J(ϕ∞, y). This concludes the proof as it implies
NE[DxG

slow
h (X∞)

(
F̄ (X∞) − F (X∞,Y ∞)

)
] = E[Jh(X∞,Y ∞)] + o(1) = J̄h(ϕ∞) +

o(1).

6.8.4 Stability ofGslow
h

Lemma 38 (Stability). Assume that F̄ and ϕ are k-times differentiable with uniformly continuous
derivatives and that ϕ has a unique exponentially stable attractor ϕ∞. Then the k-th derivative of
Gslow

h : x 7→
∫∞
0
h(ϕsx)− h(ϕ∞)ds is bounded and equal to

∫∞
0
Dk

x(h ◦ ϕs)(x)ds.

Proof. This is a consequence of [59][Lemma 3.5].
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6.8.5 Proof of Proposition 31

Proof. In the first part of the proof we find computable expressions of DxG
slow
h , D2

xG
slow
h and

DxG
fast
F . These expressions allow us to rewrite Jh and construct the closed form representation

of Jh as well as J̄h in the following steps. By definition

Jh(x, y) = −
∑
ℓ,y′

αℓ,y′(x, y)Dx

(
DxG

slow
h (x)Gfast

F (x, y′)
)
ℓ

= −
∑
ℓ,y′

αℓ,y′(x, y)
(
Gfast

F (x, y′)TD2
xG

slow
h (x) +DxG

slow
h (x)DxG

fast
F (x, y′)

)
ℓ. (6.25)

By Lemma 28 there exists a matrixK+(x) such thatGfast
F (x, y′) has the form

Gfast
F (x, y′) =

∑
y′∈Y

K+
y′,y′′(x)F (x, y

′′).

Assumption (A1) which assures differentiability of the transition rates α with respect to x, also im-
plies differentiability forGfast

F . Therefore,

DxG
fast
F (x, y′) =

∑
y′′∈Y

F (x, y′′)∇T
xK

+
y′,y′′(x) +K+

y′,y′′(x)DxF (x, y
′′),

with ∇T
x =

[
∂

∂x1
, . . . , ∂

∂xn

]
, Dxf = ( ∂

∂xj
fi)i,j=1...n.

Using the results of [59][Lemma 3.6] withA,B the first and second derivative of F̄ as defined in
(6.22), it holds that for the equilibrium point ϕ∞

DxG
slow
h (ϕ∞)i =

∑
j

∂h

∂xj
(ϕ∞)

∫ ∞

0

(
Dxϕs(ϕ∞)

)
j,i
ds =

∑
j

∂h

∂xj
(ϕ∞)(−A)−1

j,i

as well as

D2
xG

slow
h (ϕ∞)n,m =

∑
i,j

∂2h

∂xi∂xj
(ϕ∞)

∫ ∞

0

(
Dxϕs(ϕ∞)

)
j,n

(
Dxϕs(ϕ∞)

)
i,m
ds (6.26)

+
∑
i

∂h

∂xi
(ϕ∞)

∫ ∞

0

(
D2

xϕs(ϕ∞)
)
j,m,n

ds

=
∑
i,j

∂2h

∂xi∂xj
(ϕ∞)

∫ ∞

0

(
eAs
)
j,n

(
eAs
)
i,m
ds

+
∑
i

∂h

∂xi
(ϕ∞)

(∑
j

(−A)−1
i,j

∑
k1,k2

Bj,k1,k2

∫ ∞

0

(eAs
)
k1,n

(eAs
)
k2,m

ds
)
.
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Next, the above equations are used to rewrite (6.25). To obtain a closed form expression for the left
summand, we start by looking at the sum∑

y

πy(ϕ∞)
∑
ℓ,y′

αℓ,y′(ϕ∞, y)
∑
y′

K+
y′,y′Fm(ϕ∞, y

′)ℓn

∫ ∞

0

(eAs
)
k1,n

(eAs
)
k2,m

. (6.27)

A solution to the above equation is given by the following Lyapunov equation. To ease notations,
define

Om,n :=
∑
y

πy(ϕ∞)
∑
ℓ,y′

αℓ,y′(ϕ∞, y)K
+
y′,:(ϕ∞)Fm(ϕ∞, :)ℓn,

or, equivalently in matrix notation,O =
∑

y πy(ϕ∞)
∑

ℓ,y′ αℓ,y′(ϕ∞, y)K
+
y′,:(ϕ∞)F (ϕ∞, :)ℓ

T .

If a matrix U solves4 the Sylvester equation (forX)

AX +XAT = −O, (6.28)

it is equal to (6.27). Applying this identity and (6.26) to the first summand of J̄(ϕ∞) which is the
‘average’ version of (6.25), lets us rewrite∑

y

πy(ϕ∞)
∑
ℓ,y′

αℓ,y′(ϕ∞, y)G
fast
F (ϕ∞, y

′)TD2
xG

slow
h (ϕ∞)ℓ

=
∑
i,j

∂2h

∂xi∂xj
(ϕ∞)Ui,j +

∑
i

∂h

∂xi
(ϕ∞)

∑
j

(−A)−1
i,j

∑
k1,k2

Bj,k1,k2Uk1,k2 .

For the second major summand appearing in the definition of J̄(ϕ∞), writing out the solutions to
the Poisson equations and their derivatives yields∑

y

πy(ϕ∞)
∑
ℓ,y′

αℓ,y′(ϕ∞, y)DxG
slow
h (ϕ∞)DxG

fast
F (ϕ∞, y

′)ℓ

=
∑
y

πy(ϕ∞)
∑
ℓ,y′

αℓ,y′(ϕ∞, y)×

∑
j,k

(∑
i

∂h

∂xi
(ϕ∞)(−A)−1

i,k

)

×

(∑
y′

∂

∂xj
K+

y′,y′(ϕ∞)Fk(ϕ∞, y
′) +K+

y′,y′(ϕ∞)
∂

∂xj
Fk(ϕ∞, y

′)

)
ℓj.

4As A is non-singular, A and −AT don’t share any eigenvalues and therefore equation (6.28) has a unique solution.
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By using vector notation and rearranging the sums this is equal to∑
i

∂h

∂xi
(ϕ∞)

∑
k

(−A)−1
i,k

∑
y

πy(ϕ∞)
∑
ℓ,y′

αℓ,y′(ϕ∞, y)×(∑
y′

Fk(ϕ∞, y
′)∇T

xK
+
y′,y′(ϕ∞)ℓ+K+

y′,y′(ϕ∞)∇T
xFk(ϕ∞, y

′)ℓ

)
. (6.29)

Lastly, define Ti :=
∑

j A
−1
i,j

∑
k1,k2

Bj,k1,k2Uk1,k2 and

Si :=
∑
k

A−1
i,k

∑
y

πy(ϕ∞)
∑
ℓ,y′

αℓ,y′(ϕ∞, y)

×

(∑
y′

Fk(ϕ∞, y
′)∇T

xK
+
y′,y′(ϕ∞)ℓ+K+

y′,y′(ϕ∞)∇T
xFk(ϕ∞, y

′)ℓ

)
.

This concludes the proof as by definition of T ,S, and U we have:

J̄(ϕ∞) =
∑
i

∂h

∂xi
(ϕ∞)(Ti + Si) +

∑
i,j

∂2h

∂xi∂xj
(ϕ∞)Ui,j.

6.9 Computational Notes
The first note describes how to calculate the steady-state probabilities π(x) associated to the transi-
tion matrixK(x).

Note 39 (Note on the computation for the stationary probabilities.). As the finite state continuous
time Markov chain with generatorK(x) has unique irreducible class, there exists a non-trivial unique
stationary distribution π(x)5. Denote by {1, . . . ,m} the states of the Markov chain. π(x) is obtained
by solving the linear system

v K(x) = 0,
m∑
i=1

vi = 1,

with v ≥ 0 component wise. By definition, K(x) is of rank m − 1. Using its structure, i.e.,∑
y′ K(x)y,y′ = 0 ∀y, we can rewrite the above over-determined linear system by replacing the last

column of the generator with 1 = [1, . . . , 1]T yielding

v [K(x):,1, . . . , K(x):,m−1,1] = [0, . . . , 0︸ ︷︷ ︸
m−1 times

, 1],

5As the Markov chain is allowed to have transient states the stationary distribution can take zero values.
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for which the solution is the stationary distribution π(x). By K(x):,y, y = 1, . . . ,m − 1 we denote
the y-th column ofK(x).

As shows in Lemma 28 the solution to the ’fast’ Poisson Equation 6.11 has the formGfast
h (x, y) =∑

y′ K
+
y,y′(x)h(x, y

′). To compute the bias correction terms, it is necessary to calculate the first
derivative ofGfast

h with respect tox. Since the computation of the derivative of (K(x)+Π(x))−1 can
be non-trivial and time consuming, the note below elaborates how the derivative can be efficiently
obtained.

Note 40 (Computation of DxK
+(x)). By definition K+(x) = (K(x) + Π(x))−1(I − Π(x)).

Using basic matrix derivation rules one has

∂

∂xi
K+(x) =

∂

∂xi

(
(K(x) + Π(x))−1(I − Π(x))

)
=

∂

∂xi

(
K(x) + Π(x)

)−1(
I − Π(x)

)
−
(
K(x) + Π(x)

)−1 ∂

∂xi
Π(x). (6.30)

Since the numerical difficulty lies only the computation of Dx

(
K(x) + Π(x)

)−1 we focus solely on
it. Define E(x) = (K(x) + Π(x)) and let I be the identity matrix. As pointed out in Lemma 28
(K(x)+Π(x)) is indeed invertible and thus for the partials derivative ∂

∂xi
, i = 0 . . . dx the following

holds:

∂

∂xi
I =

∂

∂xi
(E(x)E−1(x))

⇔ 0 = (
∂

∂xi
E(x))E−1(x) + E(x)

∂

∂xi
E−1(x)

⇔ ∂

∂xi
E−1(x) = −E−1(x)(

∂

∂xi
E(x))E−1(x)

⇔ ∂

∂xi
(K(x) + Π(x))−1 = −(K(x) + Π(x))−1

( ∂
∂xi

(K(x) + Π(x))
)
(K(x) + Π(x))−1.

The above can now be used to compute Equation (6.30).

6.10 Numerical Results for the 3 NodeModel
For completeness, we give the numerical results of the linear 3 node model of Graph 6.1a. To obtain
the results we modify the parameters of the code of Code Cell 6.1 to match with the 3 node setup.
The new model is defined as in Code Cell 6.2.

Listing 6.2: Initialization of Mean Field for the 3 Node Model.
# Graph structure (this is the 3 node example)
G = np.array([[0,1,0],

[1,0,1],

[0,1,0]])

# rates &buffer size
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_lambda = np.array([0.4,0.2,0.5])

nu = np.array([1.2,2.,1.5])

mu = np.array([1.4,1.3,1.7])

buffer_size = 10

As seen in Figure 6.4, we obtain similar results as for the 5 node model when considering steady-
state average queue length values. The sample mean and confidence interval are computed from
40 steady-state samples in the same manner as for the 5 node example. The refined approximation
almost exactly indicates the stationary value of the stochastic process even for small N while the
mean field approximation gets more accurate asN grows.

40 5010 20 60 75 10030
Nr. of nodes per class

1.43

1.44

1.45

1.46

1.47

1.48
Class 1

40 5010 20 60 75 10030
Nr. of nodes per class

0.38

0.38

0.39

0.39

0.40

0.40
Class 2

40 5010 20 60 75 10030
Nr. of nodes per class

1.48
1.49
1.50
1.51
1.52
1.53
1.54

Class 3

Simulated Mean
95 Conf. Interval
Avg. MF
MF + Correction

Figure 6.4: Stationary Queue Length Distribution for the 3 Node Graph of Figure (6.1a).
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7 Application to Stochastic
Approximation

In this chapter, we adapt our results of [4] to the stochastic approximation setting.
We show how the methodology developed in our paper can be used to derive ac-
curacy results and a bias extension for the stochastic approximation setting with
constant stepsize and state-dependent Markovian noise data.
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7.1 Introduction
The study of stochastic approximation dates back to the seminal paper of Robbins and Monroe
published in the 1950s [97]. The basic paradigm is a stochastic difference equation

Xn+1 = Xn + αnZn,

where Xn takes values in some Euclidean space, Zn is a random variable, and αn > 0 the stepsize
which is small and possibly tends to zero asn→ ∞. In this simple form,X is a parameter of a system
and the random variableZn is a function of noisy data observed for the stateXn. Classical works on
stochastic approximation focus on settings with diminishing stepsize which satisfies

∑∞
n=1 αn =

∞ and
∑∞

n=1 α
2
n < ∞. Under suitable conditions, it has been shown that a system of this form
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converges in theL2 sense [97] as well as almost sure [23]. It is well known that (Xn)n∈N can be seen
as a noisy approximation of an ordinary differential equation (ODE)

ẋ = f(x) where f(x) := E[Zn | Xn = x].

Based on this relation, it is a classical technique to study the convergence of the stochastic iteration
using the asymptotic properties of ODE, see [26]. Over the last half-century, the theory of stochastic
approximation with vanishing stepsize has been well developed and is covered in multiple books [18,
27, 78].
In this chapter, we shift our attention to the setting of constant stepsize approximation which has
more recently seen a spark of interest in the scientific community due to its simplicity, performance,
and fast convergence. A growing line of work has been dedicated to this setting. For a few pointers
see [21, 41, 79, 101]. To set the general framework for these notes, we are interested in the case when
the dynamics of the stochastic processX(α)

n follow the evolution equation

X
(α)
n+1 := X(α)

n + αf(X(α)
n , Y (α)

n ) ∈ Rd (7.1)

for n ∈ N and fixed α. Here, (X(α)
n )n∈N takes values in a compact subset X ⊂ RD and (Y

(α)
n )n∈N

being the respective noise sequence, taking values in a finite state space Y independent of α, and
f : X × Y is assumed to be a deterministic function. For comparison, in the classical setting of
Robbins and Monro [97], Yn takes i.i.d. values such that E[f(x, Yn)] = 0, x ∈ X .

7.2 Setting

As our results are related to the work [69], in which the authors study the bias of linear stochastic
approximation with constant stepsize and Markovian noise data, we will point out the differences in
the setup and further generalizations. Before stating the main results, we introduce the underlying
framework and dynamics of the stochastic and deterministic systems. We consider the case where
the transitions of the noiseY (α)

n at time k ∈ N can depend on the state ofX(α)
n and have the Markov

property, i.e.,

P(Y (α)
n+1 = y′ | Y (α)

n = y,X(α)
n = x). (7.2)

The considered type of noise dynamics is one of the striking differences between the setup in this
chapter and the works of [69]. To illustrate this, we compare the two dependency graphs in Table
7.1. To study the asymptotic properties of Xn it is useful to introduce the ‘fixed-x’ process. This
processes is given by the Markov chain (Yn(x))k∈N which has the transitions

P(Y (α)
n+1 = y′ | Y (α)

n = y,X(α)
n = x) =: Py,y′(x), (7.3)

i.e., the Markov chain arising if the value ofX(α)
n is held constant at x. We will throughout assume

that P (x) has a unique irreducible class with stationary distribution π(x) = (πy(x))y∈Y for all
x ∈ X . This compares to the continuous-time Markov chain induced by the transition kernel given
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X0
. . . Xn Xn+1 . . .

Y0 . . . Yn Yn+1 . . .

X0
. . . Xn Xn+1 . . .

Y0 . . . Yn Yn+1 . . .

Markovian Noise, as considered in [69] state-dependent Markovian Noise,
as considered in this chapter.

Table 7.1: Dependency Graphs

in Equation (6.3) of our paper [4]. The induced Markov chain similarly depends on a fixed state of
the ‘slow’ process. The transition matrix and its corresponding steady-state distribution will become
important to obtain computable expressions for the bias later on in the proof. It is a well known fact,
e.g. see [78], that the ODE characterizing the behavior ofXn for small α is given by

d

dt
ϕt(x) = f(ϕt(x)) with ϕ0(x) = x. (7.4)

We call f(x) the average drift in xwhich is defined by

f(x) :=
∑
y∈Y

πy(x)f(x, y). (7.5)

To ensure that the ODE is well defined, we impose that the average drift f is Lipschitz continuous.
We further assume that ϕt is globally, asymptotically stable, and around its equilibrium point expo-
nentially stable. For sufficiently large n, Xn will be approximated by ϕnα. As in our case, the noise
admits Markovian and state-dependent behavior ϕt admits a non-zero asymptotic bias.

The detailed analysis of the bias is the key goal of this chapter. We study E[Xn]−ϕnα for finite n
in Theorem 41 and in the second Theorem 42 the bias ofϕ∞ given 1

N

∑N
n=1 E[h(X

(α)
n )] asN tends

to infinity. Our first results show that the bias can be bounded by a constant αC which holds for
anyn ∈ N ifα is small enough and if both systems start from the same initial condition. The second
theorem, shows that it is possible to obtain a computable bias representation Vh which depends on
P, ϕ∞, π(ϕ∞) and f but is independent of α.

At last, we point out some differences between our results and the ones obtained in [69]. First, we
allow f to be a generic function, whereas the authors of [69] consider the case of linear stochastic
approximation. Second, we consider state-dependent Markovian noise, as illustrated in Table 7.1
and allow periodicity. Finally, we consider the difference between h(Xn) and h(ϕ∞) for any thrice
differentiable function h. For this setting, we obtain accuracy results for the bias and a computable
bias first-order expression. These types of results are comparable to the ones we have obtained in [4]
and expand what has been shown in [69] to more intricate noise settings.
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7 Application to Stochastic Approximation

7.3 Assumptions
We summarize the necessary assumptions:
A1 Let h : X → R be thrice continuously differentiable, with bounded and Lipschitz continu-

ous derivatives.
A2 Let (X(α)

n )n∈N follow the dynamics as in Equation (7.1) with deterministic initial value x0 ∈
X and let it take values in X , a compact subset of Rd.

A3 Let (Yn(x))n∈N be the ‘fixed-x’ discrete time Markov chain with transition ma-
trix (Py,y′(x))y,y′∈Y as defined in Equation (7.3) and unique steady-state distribution
(πy(x))y∈Y . Furthermore, let P (x) be twice continuously differentiable in x.

A4 Let (ϕt(x))t∈N with initial condition x be globally asymptotically stable and exponentially
stable in a neighborhood N around its equilibrium point ϕ∞. Furthermore, let f , as defined
in Equation (7.5), be thrice continuously differentiable with bounded derivatives.

7.4 Main Results

Theorem 41. Assume A1 - A4 and let 0 < α ≪ 1 be small enough and n ∈ N, x0 ∈ X .
Then there exists a constant C̃ ′ > 0 such that∣∣E[h(X(α)

n )]− h(ϕαn(x0))
∣∣ ≤ αC̃ ′

withX(α)
0 = x0.

Proof. The theorem is a direct consequence of Lemma 44.

The theorem shows that the bias of the expected state of the stochastic system is of order α with
respect to ϕn.

Theorem 42. Assume that A1 - A4 hold. Then there exists a computable constant Vh indepen-
dent of α and n, and a constantsC ′ > 0 such that for small enough 0 < α≪ 1 and x0 ∈ X :

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

E[h(X(α)
n )]− h(ϕ∞)− αVh

∣∣∣∣∣ ≤ α2C ′. (7.6)

Proof. The proof is postponed to Section 7.5.

Our second theorem states that for the averaged iterates of the expectation of X(α)
n , i.e.,

1
N

∑N
n=1 E[X

(α)
n ], the bias of h(ϕ∞) has computable first order extension which, aside from the

prefactor α, is independent of the stepsize. We consider the averaged iterates as it eliminates even-
tual oscillations caused by periodic noise sequences, we illustrate this in Figure 7.1. In Lemma 46 we
state how the bias expression can be computed. To illustrate the results of Theorem 43, we consider
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Figure 7.1: A sample trajectory of X(α)
n with periodicY (α)

n illustrating the necessity of averaging the iterates.
For comparison the values of X̄(α)

N := 1
N

∑N
n=1X

(α)
n are plotted.

a short example with drift and noise transition matrix defined as

f(x, y) := −x+ 2y and P (x) =

(
sin(x)2 cos(x)2

cos(x)2 sin(x)2

)
.

X
(α)
n is as in Equation 7.1 and the transition of Y (α)

n ∈ {0, 1} are given by P (X(α)
n−1). In Figure

7.2 we plot the values of 1
N

∑N
n=1X

(α)
n for increasing N for the stochastic system with initial state

X
(α)
0 = 0, Y

(α)
0 = 0. As we expect by the statement of the theorems, for diminishing α and

increasing T , the bias of 1
N

∑N
n=1X

(α)
n approaches the value of the equilibrium ϕ∞.
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Figure 7.2: Illustration of X̄(α)
N := 1

N

∑N
n=1X

(α)
n for different values of α = 0.1, ..., 0.001. The figure

gives an impression of the relation between the stepsize α and the size of the bias of ϕ∞.
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7 Application to Stochastic Approximation

7.5 Proof of Theorem 42
For the proofs, we introduce the Euler discretization of the ODE with stepsize α

φ
(α)
n+1(x) = φ(α)

n (x) + αf(φ(α)
n (x)). (7.7)

To distinguish the discretization from the ODE, we will use k, n exclusively to denote the iterations
for discrete systems and mark the dependence on the stepsize α in the superscript.

The proof of Theorem 42 is based on the statements of Lemma 43 which we present next. Sub-
sequently, we show how the theorem is obtained from the lemma.

Lemma 43. Assume thatA1 -A4 hold. Then there exists a computable constantVh independent
of α and n, and a constantsC ′, C ′′ > 0 such that for small enough 0 < α≪ 1:

lim sup
N→∞

∣∣∣∣∣ 1T
N+T∑

n=N+1

E[h(X(α)
n )]− h(ϕ∞)− αVh

∣∣∣∣∣ ≤ α2C ′ +
1

T
C ′′. (7.8)

Proof. The statement of the theorem is a consequence of Theorem 44, Lemma 47 and Lemma 45.

Proof of Theorem 42. To proof the statement of the theorem, define

un = |E[h(Xn)]− h(ϕ∞)− αVh| − α2C ′

with h,Xn, ϕ∞, Vh as in Lemma 43. By the same lemma we have that for all T ∈ N

lim
N→∞

1

T

N+T∑
k=N+1

uk ≤
C ′′

T
. (7.9)

Define sk = 1
K

∑K
m=1 um+(k−1)K for k ≥ 1 which is average sum over K consecutive terms of

u starting in (k − 1)K . Now let ε > 0 and set K = ⌊C/ε⌋. By Equation (7.9), we have that
limk→∞ vk ≤ ε, which further implies limT→∞(1/T )

∑T
k=1 vk ≤ ε as a consequence of the Ce-

saro Lemma. To finish the proof, separate the sum

1

T

T∑
k=1

uk =
K

T

⌊T/K⌋∑
k=1

vk +
1

T

T∑
k=⌊T/K⌋+1

uk. (7.10)

The second term of the right-hand-side of (7.10) is bounded byK/T . The second quantity is smaller
than ε as T tends to infinity. As by assumption this is true for all ε > 0, it holds that

lim
T→∞

1

T

T∑
k=1

uk ≤ 0 (7.11)
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7.6 Lemmas for Bias Analysis

which proves the statement of the Theorem.

7.6 Lemmas for Bias Analysis

The lemma shows that the difference between the stochastic system and deterministic can be sepa-
rated into a bias term which is bounded and of order α and a residual term of order α2. The the-
orem furthermore gives a characterization of the bias term. In the main results, we will see that,
when considering an averaged bias expression, it is possible to obtain a computable expression that
approximates the bias.

Lemma 44. Assume A1 - A4 and let 0 < α≪ 1 be small enough and n ∈ N. Then∣∣E[h(X(α)
n )]− h(ϕαn(x))− αV α

h,n

∣∣ ≤ α2C̃

withX(α)
0 = x0 and

V
(α)
h,n :=

n∑
k=0

E[D(h ◦ φk)
(
f(Xn−k−1, Yn−k−1)− f(Xn−k−1)

− α
n∑

k=0

D2(h ◦ φk)(Xn−k−1) ·Q(Xn−k−1, Yn−k−1)].

andQ(x, y) :=
(
f(x, y)−f(x)

)⊗2. Here,φk is as defined in Equation (7.7). Under the given
assumptions, V α

h,n is bounded independent of α and n.

Proof of Lemma 44. In the proof we omit the superscriptX(α)
k , Y

(α)
k when the dependence onα is

clear from context. Next, define νn,k = E[h(φk(Xn−k))]withφk(Xn−k) denoting the value of the
k-th iteration of φ with initial state Xn−k. This is similar to the method used in Chapter 2 with ν
being comparable to the quantity defined in Equation (2.14). Using νn,k we rewrite

E[h(Xn)]− h(φn) = νn,0 − νn,n =
n−1∑
k=0

νn,k − νn,k+1. (7.12)

with the difference terms being

νn,k − νn,k+1 = h(φk(Xn−k))− h(φk+1(Xn−(k+1))) (7.13)

= h
(
φk

(
Xn−(k+1) + αf(Xn−(k+1), Yn−(k+1))

))
(7.14)

− h
(
φk

(
Xn−(k+1) + αf(Xn−(k+1))

))
. (7.15)
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7 Application to Stochastic Approximation

For the summed difference
∑n−1

k=0 νn,k − νn,k+1, we look at the Taylor expansion of the difference
νn,k − νn,k+1. For the second order Taylor expansion define

α E[D(h ◦ φk)(Xn−k−1)(f(Xn−k−1, Yn−k−1)− f(Xn−k−1))] =: α a
(α)
n,k (7.16)

from the linear part of the expansion and

α2

2
E[
∑
i,j

D2
x(h ◦ φk)ij(Xn−k−1)(fi(Xn−k−1, Yn−k−1)− f i(Xn−k−1))

× (fj(Xn−k−1, Yn−k−1)− f j(Xn−k−1))]

=
α2

2
E[D2

x(h ◦ φk)(Xn−k−1) · (f(Xn−k−1, Yn−k−1)− f(Xn−k−1))
⊗2] =:

α2

2
b
(α)
n,k (7.17)

from the quadratic part. Here, ⊗ refers to the Kronecker product and we use · to denote summed
multiplication of the components for the matrices. Using the regularity assumptions posed on φk

and its derivatives, the remainder terms have the form

α3

2

∫ 1

0

(1− ν)2
∑
i,j,k

∂3(h ◦ φk)

∂xi∂xj∂xk
(Xn−k−1 + ναf(Xn−k−1, Yn−k−1))f(Xn−k−1, Yn−k−1)i

× f(Xn−k−1, Yn−k−1)jf(Xn−k−1, Yn−k−1)kdν ≤ α3

2
CD3

x(h◦φk)3CfCR

for Equation (7.14) and similarly for the remainder of Equation (7.15) where f is replaced by f . The
constants refer to the bounds the derivative of h ◦φk, f and the finite residual term arising through
the remainder. We recall that by Lemma 49 there exists a Ĉ > 0 independent of α and n such that
α
∑n−1

k=0 CD3
x(h◦φk) ≤ C . Finally, this shows that the there exists someC0 > 0, such that sum of the

remainder terms obtained from the Taylor expansion of the Equations (7.14) and (7.15) is bounded
by α2C0. Now, define V (α)

h,n =
∑n−1

k=0(a
(α)
n,k + αb

(α)
n,k), then∣∣∣h(Xn)− h(φn)− αV

(α)
h,n

∣∣∣ ≤ α2C0

which holds for all n.
We will now show that the terms

∑n−1
k=0 a

(α)
n,k and

∑n−1
k=0 αb

(α)
n,k are bounded and of orderO(α). We

start with the bound of
∑n−1

k=0 αb
(α)
n,k. By Lemma 49,∣∣∣∣∣

n−1∑
k=0

E[D2
x(h ◦ φk)(Xn−k−1)Q(Xn−k−1, Yn−k−1)]

∣∣∣∣∣
≤ αCQ

∞∑
k=0

CD2
x(h◦φk)︸ ︷︷ ︸

O(1/(α−α2

2
))

=: C2.
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By application of the first statement of Lemma 50 we get
∑n−1

k=0 a
(α)
n,k ≤ C1 with C1 > 0 as in the

Lemma. This directly implies for C̃ ′ := C1 + C2 and by definition of V (α)
h,n

|E[h(Xn)]− h(φn)| ≤ αC̃ ′ + α2C0.

Lemma 45. Define

V α
h := α

∞∑
k=0

Dx(h ◦ φk)(ϕ∞)
∑
y,y′

DxGf (ϕ∞, y
′)f(ϕ∞, y)

T (I +K(ϕ∞))y,y′πy(ϕ∞)

+ α
∞∑
k=0

D2
x(h ◦ φk)(ϕ∞) ·

(∑
y,y′

Gf (ϕ∞, y
′)f(ϕ∞, y)

T (I +K(ϕ∞))y,y′πy(ϕ∞)

+
1

2
Q̄(ϕ∞)

)
. (7.18)

Here, φ is as defined in Equation (7.7) and depends on α. It follows from Lemma 47 that there
exist constantsC ′, C ′′ > 0 such that∣∣∣∣∣α 1

T

N+T∑
n=N+1

V
(α)
h,n − αV

(α)
h

∣∣∣∣∣ ≤ 1

T
C ′ + α2C ′′. (7.19)

Proof. To see that Lemma 47 can be applied to obtain the result, we see thatGgk of Equation (7.26)
can be rewritten as

DxGgk(ϕ∞, y)f(ϕ∞, y
′) = Gf (ϕ∞, y)

TD2
x(h ◦ φk)(ϕ∞)f(ϕ∞, y

′)

+Dx(h ◦ φk)(ϕ∞)DxGf (ϕ∞, y)f(ϕ∞, y
′)

= D2
x(h ◦ φk)(ϕ∞) ◦ (Gf (ϕ∞, y)f(ϕ∞, y

′)T

+Dx(h ◦ φk)(ϕ∞)DxGf (ϕ∞, y)f(ϕ∞, y
′).

This follows by definition of gk andGgk . To conclude, we just apply Lemma 47 with the prefactor
α.

7.6.1 Accuracy and Computation of the Asymptotic Bias Vh
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Lemma 46. Under the assumptions A1 - A4, the constant V (α)
h as defined in Equation (7.18)

of Lemma 45 is approximated by a computable constant Vh. It holds that there exists a constant
C ′ > 0 such that ∣∣∣Vh − V

(α)
h

∣∣∣ ≤ αC ′.

Vh is given as follows:
Define Ai,j :=

∂f
∂xi

(ϕ∞), the Jakobian matrix of f in ϕ∞, and Bi,jk = ∂f i

∂xi∂xj
(ϕ∞) the second

derivative. The Vh is defined by:

Vh = Dxh(ϕ∞)A−1(S +B ·W ) +D2
xh(ϕ∞) ·W (7.20)

with B · W := (
∑

j,k Bi,jkWj,k)i. Here, W is the unique solution to the Sylvester equation
AW +WAT +O = 0. O and S are defined by

O :=
∑
y,y′

πy(ϕ∞)Gf (ϕ∞, y
′)f(ϕ∞, y)

T (K(ϕ∞) + I)y,y′ +
1

2
Q̄(ϕ∞),

S :=
∑
y,y′

πy(ϕ∞)f(ϕ∞, y)(K(ϕ∞) + I)y,y′DGf (ϕ∞, y
′)T

with Q̄(ϕ∞) :=
∑

y πy(ϕ∞)(f(x, y)− f(x))(f(x, y)− f(x))T andK(x) := P (x)− I .

Proof. To start, use the definitions ofO andS from the Theorem to rewrite Equation (7.18). As we
are only interested in the computation of V (α)

h for t = ∞, we ignore the prefactor α and thus have
the equations

V
(α)
h =

( ∞∑
k=0

Dx(h ◦ φk)(ϕ∞)S +
∞∑
k=0

D2
x(h ◦ φk)(ϕ∞) ·O

)
. (7.21)

withφ as defined in Equation (7.7). To ease notation, we turn away from writing the dependence on
ϕ∞ in the next steps. Using thatφk(ϕ∞) = ϕ∞, the right hand side of (7.21) without the prefactor
α is equal to

Dx(h ◦ φk)S +D2
x(h ◦ φk) ·O (7.22)

= DxhDxφkS +D2
xh ·DxφkODxφ

T
k +DxhD

2
xφk ·O (7.23)

with DxhD
2
xφ = (

∑
i

∂h
∂xi

∂φi

∂xm∂xn
)m,n and · denoting the sum over the element wise product be-

tween the matrices. The termsS andO are computable due to Lemma 28 which gives a computable
expression for Gf and Note 40 of [4] showing how to efficiently obtain the derivative values for
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Gf .1 Both references point to our two timescale mean field paper for continuous time [4] but can
be adapted to the discrete time case. Therefore, in what follows, we are concerned about obtaining
computable expressions for the remaining infinite sums

∞∑
k=0

Dxφk;
∞∑
k=0

DxφkODxφ
T
k ;

∞∑
k=0

D2
xφk ·O.

Starting with the first sum, we recall that by definition Dxφ1 = I + αA. Using the chain rule, we
haveDxφk = Dx(φ1 ◦ φk−1) = (I + αA)Dxφk−1 = (I + αA)k. AsA is Hurwitz and for small
enoughα,

∑∞
k=0(I+αA)

k is finite and we obtain
∑∞

k=0(I+αA)
k = (αA)−1 as a standard result

for geometric series. For the second sum we apply the identity forDxφk which yields

∞∑
k=0

DxφkODxφ
T
k =

∞∑
k=0

(I + αA)kODx(I + αAT )k =: W (α).

As before, due to the Hurwitz property ofA and small enoughα, ∥I + αA∥ < 1 and which implies
well definedness of the above. As we aim to obtain a computable expression independent of α, we
look at the continuous-time Sylvester equation having the form AX − XAT + O = 0. By the
definition ofA andO the equation has a unique solution which we denoteW . Asφk is a discretized
version of the ODE (7.4), it is a standard property that the solution to the discrete time Sylvester
W (α) can be written asW (α) = W + αC̃L, where C̃L is obtained by bounding

∥∥AOAT
∥∥. For the

last sum, we see that by using the chain rule as before

D2
xφk =

(
∂φk

∂xm∂xn

)
i,mn

=

(
k∑

j=1

∑
a

(
(I + αA)k−j

)
i,a

∑
b,c

αBa,bc

(
(I + αA)j

)
b,m

(
(I + αA)j

)
c,n

)
i,mn

.

Therefore,

D2φk ·O =
k∑

j=1

(I + αA)k−jαB · (I + αA)jO(I + αAT )j.

1To see that the statement of Lemma 28 remains true for discrete time, one can simply adapt the proof by replacing
the statement of Theorem 3.5 of [68] by Theorem 3.3 with K(x) as defined before in this section. The rest of the
proof is then completed as in the continuous time case.
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7 Application to Stochastic Approximation

where we abuse notation and denote by · the sum over the element-wise multiplication of the partial
derivatives for a fixed index of B, i.e.,

∑
m,nBi,mn

(
(I + αA)jO(I + αAT )j

)
m,n

. Inserting this
into the sum from k = 0 to infinity yields

∞∑
k=0

k∑
j=1

(I + αA)k−jαB · (I + αA)jO(I + αAT )j

=
∞∑
j=1

∞∑
k=j

(I + αA)k−jαB · (I + αA)jO(I + αAT )j

=
∞∑
j=1

∞∑
k=0

(I + αA)kαB · (I + αA)jO(I + αAT )j

=
∞∑
j=1

(αA)−1αB · (I + αA)jO(I + αAT )j

= (αA)−1αB · (I + αA)
( ∞∑

j=0

(I + αA)jO(I + αAT )j
)
(I + αAT )

= (αA)−1αB · (I + αA)W (α)(I + αAT )

= A−1B ·W (α) + αC ′.

WithC ′ being a bound on the terms arising from the above formula witch have a prefactorα. Using
the connection between the discrete and continuous version of the Sylvester Equation, we can write∥∥A−1B · (W (α) −W )

∥∥ ≤ αCL.

To finalize the proof, recall the right-hand side of Equation (7.23). As we have obtained approximate
and computable expressions forDxφk, DxφkODxφk andD2

xxφk we use those to define

Vh = Dxh(ϕ∞)A−1(S +B ·W ) +D2
xh(ϕ∞) ·W. (7.24)

By the previously discussed accuracy of the solution to the Sylvester equation W , we know that∣∣∣V (α)
h − Vh

∣∣∣ ≤ α(CL + C ′) =: αC ′.

7.6.2 Expansion Term Approximation Bound
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Lemma 47 (Accuracy Bound for the Deterministic Bias Approximation). Assume A1 - A4,
0 < α ≪ 1 and T ∈ N. Define Q(x, y) := (f(x, y) − f(x))⊗2 and Q̄(x) :=∑

y πy(x)Q(x, y), then there exist constantsC ′
1, C

′′
1 , C

′′′
1 > 0 such that

lim sup
N→∞

∣∣∣∣∣α 1

T

N+T∑
n=N+1

1

2

n−1∑
k=0

E[D2
x(h ◦ φk)(Xn+τ−k) ·Q(Xn+τ−k, Yn+τ−k)]

− α
1

2

∞∑
k=0

D2
x(h ◦ φk)(ϕ∞) · Q̄(ϕ∞)

∣∣∣∣∣
≤ α2C ′

1 +
1

T
C ′′

1 + αC ′′′
1 . (7.25)

Second, there exist constantsC ′
2, C

′′
2 , C

′′′
2 > 0 such that

lim sup
N→∞

∣∣∣∣∣α 1

T

N+T∑
n=N+1

n−1∑
k=0

E[Dx(h ◦ φk)(Xn−k−1)(f(Xn−k−1, Yn−k−1)− f(Xn−k−1))]

− α
∞∑
k=0

α
∑
y,y′

DxGgk(ϕ∞, y
′)f(ϕ∞, y)(I +K(ϕ∞))y,y′πy(ϕ∞)

∣∣∣∣∣
≤ 1

T
C2 + α2C ′′

2 (7.26)

with gk(x, y) := Dx(h ◦ φk)(x)(f(x, y)− f(x)) and φ as defined in Equation (7.7).

Proof of Lemma 47. We begin with the proof of Equation (7.25). In the following, the arguments
are made for finite n. We will then show that by letting n go to infinity, the bound remains finite.
We start with Equation (7.25). The argument to obtain the bound is split into two parts: First we
show ∣∣∣∣∣ 1T

N+T∑
n=N+1

n∑
k=1

E[D2
x(h ◦ φk)(Xn−k−1) ·

(
Q(Xn−k−1, Yn−k−1)− Q̄(Xn−k−1)

)
]

≤ αC ′
1 +

1

T (α− α2

2
)
C ′′

1 . (7.27)

Second we show ∣∣∣∣∣ 1T
N+T∑

n=N+1

n−1∑
k=0

E[D2
x(h ◦ φk)(Xn−k−1) · Q̄(Xn−k−1)

− 1

T

N+T∑
n=N+1

n−1∑
k=0

D2
x(h ◦ φk)(φn−k−1) · Q̄(φn−k−1)]

∣∣∣∣∣ ≤ C ′′′
1 . (7.28)
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To show Equation 7.27, we argue similar as in Lemma 50 and extend the difference by

1

T

N+T∑
n=N+1

n−1∑
k=0

E[D2
x(h ◦ φk)(Xn−k−1)

(
Q(Xn−k−1, Yn−k−1)− Q̄(Xn−k−1)

+GQ(Xn−k−1, Yn−k−1)−GQ(Xn−k−1, Yn−k)

+GQ(Xn−k−1, Yn−k)−GQ(Xn−k, Yn−k)

+GQ(Xn−k, Yn−k)−GQ(Xn−k−1, Yn−k−1)
)
].

As discussed in the proof of the lemma,

1

T

N+T∑
n=N+1

n−1∑
k=0

E[D2
x(h ◦ φk)(Xn−k−1)

(
Q(Xn−k−1, Yn−k−1)− Q̄(Xn−k−1)

+GQ(Xn−k−1, Yn−k−1)−GQ(Xn−k−1, Yn−k)
)
] = 0.

Again by the same arguments as in Lemma 50, there exists a constantC ′ > 0 such that

1

T

N+T∑
n=N+1

n−1∑
k=0

E[D2
x(h ◦ φk)(Xn−k−1)

(
GQ(Xn−k−1, Yn−k)−GQ(Xn−k, Yn−k)

)
≤ αC ′

Lastly,

1

T

N+T∑
n=N+1

n−1∑
k=0

E[D2
x(h ◦ φk)(Xn−k−1)

(
GQ(Xn−k, Yn−k)−GQ(Xn−k−1, Yn−k−1)

)
]

≤ 1

T (α− α2

2
)
C ′′ + αC ′′′

due to Lemma 52 with C ′′, C ′′′ > 0. To obtain the bound on Equation (7.28) we use utilize the
results of Theorem 44 applied to hk(x) := D2

x(h ◦ φk)(x) · Q̄(x) which shows

1

T

N+T∑
n=N+1

n−1∑
k=0

|E[hk(Xn−k−1)− hk(φn−k−1)]| ≤
1

T

N+T∑
n=N+1

n−1∑
k=0

αCD2
xφk

C̃ ≤ C ′′′′.
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In the above, C̃ is the constant arising from Theorem 44 and we use that α
∑n−1

k=0 CD2
xφk

= O(1).
This implies the existence of a constantC ′′′′ <∞ independent ofα and n serving as upper bound.
To finish our line of arguments in order to obtain the bound in Equation (7.27), we lastly show that

∞∑
k=0

hk(ϕ∞)−
N∑
k=0

hk(φn−k)

=
N∑
k=0

hk(ϕ∞)− hk(φN−k)︸ ︷︷ ︸
=O(exp(−αN))

+
∞∑

k=N

hk(ϕ∞)︸ ︷︷ ︸
=O(exp(−αN))

.

The first property is due to the exponentially fast convergence of φn to ϕ∞ for sufficiently large
n, the second one a consequence of Lemma 49. By using the above results, and defining C ′

1 =
C ′ + C ′′′, C ′′

1 = C ′′ andC ′′′
1 = C ′′′′ finally gives

lim sup
N→∞

∣∣∣∣∣α 1

T

N+T∑
n=N+1

n−1∑
k=0

E[D2
x(h ◦ φk)(Xn+τ−k) ·Q(Xn+τ−k, Yn+τ−k)]

−
∞∑
k=0

D2
x(h ◦ φk)(ϕ∞) · Q̄(ϕ∞)

∣∣∣∣∣ ≤ α2C ′
1 +

1

T
C ′′

1 + αC ′′′
1 .

This concludes the first part of the proof.
For the second part, we start by defining

gk(x, y) = Dx(h ◦ φk)(x)(f(x, y)− f(x)).

By definition ḡk(x) :=
∑

y πy(x)gk(x, y) = 0 for all x ∈ X . We can furthermore rewrite

1

T

N+T∑
n=N+1

n−1∑
k=0

E[Dx(h ◦ φk)(Xn−k−1)
(
f(Xn−k−1, Yn−k−1)− f(Xn−k−1)

)
=

1

T

N+T∑
n=N+1

n−1∑
k=0

E[gk(Xn−k−1, Yn−k−1)− ḡk(Xn−k−1)].

Similar to what we have done for the first statement of the lemma, we look at the extended difference
of gk(Xn−k−1, Yn−k−1)− ḡk(Xn−k−1) in form of

gk(Xn−k−1, Yn−k−1)− ḡk(Xn−k−1) +Ggk(Xn−k−1, Yn−k−1)−Ggk(Xn−k−1, Yn−k)

+Ggk(Xn−k−1, Yn−k)−Ggk(Xn−k, Yn−k)

+Ggk(Xn−k, Yn−k)−Ggk(Xn−k−1, Yn−k−1).
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As before we argue that the first line is zero. Therefore, we restrict our attention to the remaining
terms. For the last line, we use that

Ggk(x, y) = D(h ◦ φk)(x)Gf (x, y).

Then by summing over 1
T

∑N+T
n=N+1

∑n−1
k=0 and using Lemma 52 we obtain∣∣∣∣∣ 1T

N+T∑
N+1

n−1∑
k=0

Ggk(Xn−k, Yn−k)−Ggk(Xn−k−1, Yn−k−1

∣∣∣∣∣ ≤ 1

T (α− α2

2
)
C̃ ′ + αC̃ ′′.

For the remaining term

Ggk(Xn−k−1, Yn−k)−Ggk(Xn−k, Yn−k)

we have a look at the Taylor expansion of Ggk(Xn−k, Yn−k) around Xn−k−1. This gives us the
identity

Ggk(Xn−k−1, Yn−k)−Ggk(Xn−k, Yn−k)]

= αDxGgk(Xn−k−1, Yn−k)f(Xn−k−1, Yn−k−1) + α2R1,Ggk
.

withR1 denoting the remainder excluding the alpha term. We have now split the equation into two
parts

1

N

T+N∑
n=T1

n−1∑
k=0

αE[DxGgk(Xn−k−1, Yn−k)f(Xn−k−1, Yn−k−1)] +
n−1∑
k=0

α2CDx(h◦φk)R1,Gf︸ ︷︷ ︸
≤αC̃′′′

.

Here, C̃ ′′′ < 0 is independent of n or α. The remaining parts of the proof concern bounding the
difference

1

T

N+T∑
n=N+1

n−1∑
k=0

E[αDxGgk(Xn−k−1, Yn−k)f(Xn−k−1, Yn−k−1)] (7.29)

−
∞∑
k=0

α
∑
y,y′

DxGgk(ϕ∞, y
′)f(ϕ∞, y)(I +K(ϕ∞))y,y′πy(ϕ∞). (7.30)

We see that for the conditional expectation

αE[DxGgk(Xn−k−1, Yn−k)f(Xn−k−1, Yn−k−1) | Xn−k−1, Yn−k−1]

= α
∑
y′

DxGgk(Xn−k−1, y
′)f(Xn−k−1, Yn−k−1)(I +K(Xn−k−1))Yn−k−1,y′ .
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To proceed, it is necessary to look closer atDxGgk(x, y) which we can rewrite by definition of gk as

DxGgk(x, y) = Dx

(
Dx(h ◦ φk)(x)Gf (x, y)

)
= D2

x(h ◦ φk)(x)Gf (x, y) +Dx(h ◦ φk)(x)Gf (x, y).

To simplify notation we introduce mk(x, y) :=
∑

y′ DxGgk(x, y
′)f(x, y)(I + K(x))y,y′ and

m̄k(x) =
∑

y πy(x)m(x, y). Considering the identity of the conditional expectation, the identity
ofGgk which lets us apply Lemma 50 and using m̄k we have

| 1
T

N+T∑
n=N+1

n−1∑
k=0

αE[DxGgk(Xn−k−1, Yn−1)f(Xn−k−1, Yn−k−1)]

− α
1

T

N+T∑
n=N+1

n−1∑
k=0

m̄k(Xn−k−1)
]
| ≤ αC̃ ′′′′.

We continue to look at the difference, and by the same argument as for the first statement of this
lemma ∣∣∣∣∣α 1

T

N+T∑
n=N+1

n−1∑
k=0

m̄k(Xn−k−1)− α
1

T

N+T∑
n=N+1

n−1∑
k=0

m̄k(φn−k−1)

∣∣∣∣∣ ≤ αC̃ ′′′′′

. Lastly and again similar to the final remarks of the first part of this proof∣∣∣∣∣α
N∑
k=0

m̄k(φn−k−1)− α
∞∑
k=0

m̄k(ϕ∞)

∣∣∣∣∣ = O(exp(−αN)).

It remains to resolve and gather the obtained bounds to conclude the proof. Define C ′
2 :=

C̃ ′, C ′′
2 := C̃ ′′ + C̃ ′′′ + C̃ ′′′′ + C̃ ′′′′′. As all the bound we obtained are either independent of n

or tend to zero exponentially fast, we obtain the asymptotic bound

lim sup
n→∞

∣∣∣ 1
T

N+T∑
n=N+1

n−1∑
k=0

E[Dx(h ◦ φk)(Xn−k−1)(f(Xn−k−1, Yn−k−1)− f(Xn−k−1))]

−α
∞∑
k=0

∑
y,y′

DxGgk(ϕ∞, y
′)f(ϕ∞, y)(I +K(ϕ∞))y,y′πy(ϕ∞)

∣∣∣
≤ 1

T (α− α2

2
)
C ′

2 + αC ′′
2 .

Multiplication with an additional α gives the desired result as in the statement of the Lemma.
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7.7 Exponentially Decaying Bounds forDi
xφk(x)

The statement of the next lemma is foundational to ensure sufficiently fast convergence of the deriva-
tive terms Dxφk(x) to zero. This critical property is continuously referenced in the proof to guar-
antee the finiteness of the resulting series.

Lemma 48 (Exponentially Small Bounds for Derivatives). Let φ(α)
k be globally asymptotically

stable and locally exponentially stable with Lipschitz continuous and continuously differentiable
drift f and corresponding Lipschitz constant Lf and α small enough. Then there exists a neigh-
borhood N ′ of the equilibrium point ϕ∞ such that φk(x)

(α)s in N ′ is Lipschitz continuous with
exponentially decaying constant Lk. Furthermore, the derivatives Di

xφk(x)
(α), i = 1, 2, 3 are

bounded with exponentially decaying bounds, i.e., there exist constantsC1,i, C2,i > 0 such that∥∥∥Di
xφ

(α)
k

∥∥∥ ≤ C1,i exp(−kαC2,i) =: CDi
xφk

. (7.31)

Proof. We extend the proof of Lemma 6.3 of [55] to the discrete time setting. Let ϕ∞ = 0 and
φ
(α)
k+1 = φ

(α)
k + αf(φ

(α)
k ). As f is continuously differentiable it admits a linear expansion in a

neighborhood N of the equilibrium, i.e., for x ∈ N

f(x) = Ax+ g(x) with A = Df(ϕ∞) = Df(0) and ∥g(x)∥/∥x∥ x→0−−→ 0.

By the stability assumption ∥I + αA∥ =: λ(α) < 1. We choose a second bounded neighborhood
N ′ ⊂ N around ϕ∞ such that g(x) ≤ δ∥x∥ and λ(α) exp(δ) < 1. We now show that φ is
Lipschitz continuous around the equilibrium point. Assume that x ∈ N ′ then, based on the linear
expansion of the drift f(φk(x)

(α)) = Aφ
(α)
k (x) + g(φ

(α)
k (x)), the solution to the ODE near its

equilibrium can be written as

φ
(α)
k (x) = (I + αA)k−1x+

k−1∑
j=0

(I + αA)k−1−jg(φ
(α)
j (x)).

For zk :=
∥∥∥φ(α)

k (x+ y)− φ
(α)
k (x)

∥∥∥with x, x+ y ∈ N ′ we have by the linear expansion

zk =

∥∥∥∥∥(I + αA)k−1y −
k−1∑
j=0

(I + αA)k−1−j
(
g(φ

(α)
j (x+ y))− g(φj(x))

)∥∥∥∥∥
≤ (λ(α))k−1∥y∥+

k−1∑
j=0

(λ(α))k−1−j∥g(φj(x+ y))− g(φj(x))∥

≤ (λ(α))k−1∥y∥+
k−1∑
j=0

(λ(α))k−1−jδzj.
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Therefore, with the use of Grönwalls inequality we obtain zk ≤
(λ(α))k∥y∥ exp(δ

∑k−1
j=0(λ

(α))k−1−j) which shows the Lipschitz continuity of φk(x) in N ′

near the equilibrium point with Lipschitz constant Lk := (λ(α))k∥y∥ exp(δ
∑k−1

j=0(λ
(α))k−1−j).

As λ < 1 and by selection of δ, the Lipschitz constant decays exponentially with increasing k.
The previous reasoning can be extended to the derivatives of φ(α)

k in order to obtain exponentially
decaying bounds forDi

xφk, i = 1, 2, 3 as in Equation (7.31).

Lemma 49. The exponentially decaying bound on the derivatives∥∥Di
xφ

α
k

∥∥ ≤ C1,i exp(−kαC2,i) =: CDi
xφk

for i = 1, 2, 3

withC2,i > 1 implies that for the infinite sums

∞∑
k=k0

CDi
xφk

=
∞∑

k=k0

C1,i exp(−αkC2,i)

= exp(−αk0C2,i)
∞∑
k=0

C1,i exp(−αkC2,i)

=
exp(−αk0C2,i)

1− exp(−αC2,i)
≤ C ′ 1

α− α2

2

for some 0 < C ′ <∞. Throughout the proofs, we will in addition use that

α
1

α− α2

2

≤ 2 for 0 < α < 1.

7.8 Technical Lemmas

In this subsection, we state the more technical lemma needed to obtain the bound on the bias
and accuracy bound for the bias approximation. Lemma 50 gives bounds on the summed dif-
ferences between a noise perturbed function and its averaged counterpart. Lemma 51 shows
that sums of the type

∑n−1
k=0 Dx(h ◦ φk)(Xn−k−1)

(
F1(Xn−k, Yn−k) − F1(Xn−k−1, Yn−k−1)

)
are bounded. Last, Lemma 52 shows that when averaging, i.e., looking at sums of the type
1
T

∑N+T
n=N+1

∑n−1
k=0 Dxφk(Xn−k−1)

(
F (Xn−k, Yn−k)−F (Xn−k−1, Yn−k−1)

)
, we can obtain more

precise bounds depending on T and α.

187



7 Application to Stochastic Approximation

Lemma 50. Under assumptions A1 - A4, there exists a constants C1, C2, C3 > 0 such that for
continuously differentiable F1 : X × Y → Rd, F2 : X × Y → Rd×d

n−1∑
k=0

Dx(h ◦ φk)(Xk)
(
F1(Xn−k−1, Yn−k−1)− F̄1(Xn−k−1)

)
≤ C̃1, (7.32)

n−1∑
k=0

D2
x(h ◦ φk)(Xk) ·

(
F2(Xn−k−1, Yn−k−1)− F̄2(Xn−k−1)

)
≤ C̃2. (7.33)

Proof. We show how to obtain the bound for the first equation. The second bound is then ob-
tained by following the same steps. For Equation (7.32), by adding and subtracting terms into the
difference to get

n−1∑
k=0

Dx(h ◦ φk)(Xk)
(
F1(Xn−k−1, Yn−k−1)− F̄1(Xn−k−1) (7.34)

+GF1(Xn−k−1, Yn−k−1)−GF1(Xn−k−1, Yn−k) (7.35)
+GF1(Xn−k−1, Yn−k)−GF1(Xn−k, Yn−k) (7.36)

+GF1(Xn−k, Yn−k)−GF1(Xn−k−1, Yn−k−1)
)
. (7.37)

By definition ofGh(x, y),

E[GF1(Xk, Yk)−GF1(Xk, Yk+1) | Xk, Yk] = −
∑
y′

(I +K(Xk))Yk,y′GF1(Xk, y
′)

= −(F1(Xk, Yk)− F̄1(Xk))

from which follows that (7.35) is equal to zero. This is similar to the property given in Section 6.4.2
of our paper [4]. To bound the difference terms (7.37) we use Lemma 51. We get∣∣∣∣∣

n−1∑
k=0

Dx(h ◦ φk)(Xk)(GF1(Xn−k, Yn−k)−GF1(Xn−k−1, Yn−k−1))

∣∣∣∣∣ ≤ C ′
1,

To bound the last sum, note that f is differentiable and bounded. By definition |Xk+1 −Xk| =
α|f(Xk, Yk)| ≤ αCf , which by application of Taylor gives

∥GF1(Xk, Yk+1)−GF1(Xk+1, Yk+1)∥ ≤ αCDxGF1
Cf .
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For Equation (7.36), this yields∥∥∥∥∥
n−1∑
k=0

Dx(h ◦ φk)(Xk) · (GF1(Xk, Yk+1)−GF1(Xk+1, Yk+1))

∥∥∥∥∥
≤ α

∞∑
k=0

CDx(h◦φk)︸ ︷︷ ︸
O(1/(α−α2

2
))

CDxGF1
Cf =: C ′′

1 .

By merging the above observations we obtain∣∣∣∣∣
n−1∑
k=0

Dx(h ◦ φk)(Xk)
(
F1(Xn−k−1, Yn−k−1)− F̄1(Xn−k−1)

)∣∣∣∣∣ ≤ C ′
1 + C ′′

1 =: C̃1 (7.38)

which proves the statement of Equation (7.32). As mentioned in the beginning, the application of
the same steps to Equation (7.33) gives the second bound.

Lemma 51. Under assumptions A1 - A4, there exist constants C1, C2, C3 > 0 such that for
continuously differentiable F1 : X × Y → Rd, F2 : X × Y → Rd×d, F3 : X × Y → Rd×d×d

||
n−1∑
k=0

Dx(h ◦ φk)(Xn−k−1)
(
F1(Xn−k, Yn−k)− F1(Xn−k−1, Yn−k−1)

)
|| ≤ C1, (7.39)

||
n−1∑
k=0

D2
x(h ◦ φk)(Xn−k−1) ·

(
F2(Xn−k, Yn−k)− F2(Xn−k−1, Yn−k−1)

)
|| ≤ C2, (7.40)

||
n−1∑
k=0

∑
i,j,k

∂3

∂i∂j∂k
(h ◦ φk)(Xn−k−1) ·

(
(F3)i,j,k(Xn−k, Yn−k)

− (F3)i,j,k(Xn−k−1, Yn−k−1)
)
|| ≤ C3. (7.41)
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Proof. We show how to obtain the constantC1. By shifting the indices of the second sum of Equa-
tion (7.39), we rewrite

n−1∑
k=0

Dxφk(Xn−k−1)F1(Xn−k, Yn−k)

−
n−1∑
k=0

Dxφk(Xn−k−1)F1(Xn−k−1, Yn−k−1)

= Dxφ0(Xn−1)F (Xn, Yn)−Dxφn−1(X0)F1(X0, Y0) (7.42)

+
n−1∑
k=1

(
Dxφk(Xn−k−1)−Dxφk−1(Xn−k)

)
F1(Xn−k, Yn−k). (7.43)

By assumption, the terms of line (7.42) are bounded independent of α. To obtain the bound for
the sum in Equation (7.43) we add an artificial zero and define

Dxφk(Xn−k−1)−Dxφk−1(Xn−k)

=
(
Dxφk(Xn−k−1)−Dxφk−1(Xn−k−1)︸ ︷︷ ︸

E1

+Dxφk−1(Xn−k−1)−Dxφk−1(Xn−k)︸ ︷︷ ︸
E2

.

Recall Xn−k = Xn−k−1 + αf(Xn−k−1, Yn−k−1) with f bounded. By expansion around Xn−k−1

and application of the bounds for the derivative terms and drift of the stochastic system f as well as
denoting byCR the residual terms which arise from the remainder term of the expansion,

∥E2∥ ≤ αCD2
xφk−1

CR,1Cf .

Using thatDx(φk)(x) = Dx(φk−1 ◦ φ1)(x), forE1 we obtain

E1 = Dx(φk−1 ◦ φ1)(Xn−k−1)−Dxφk−1(Xn−k−1)

= αDxf(Xn−k−1)Dxφk−1(Xn−k−1 + αf(Xn−k−1))︸ ︷︷ ︸
E1,1

−Dxφk−1(Xn−k−1).

Considering the expansion of E1,1 around Xn−k−1 and denoting by CR the residual terms arising
from the expansion which are independent of φk and α. We bound

|E1| ≤
∥∥(αDxf(Xn−k−1)− I)Dxφk−1(Xn−k−1)

∥∥+ α2CfCDxfCD2
xφk−1

CR

≤ α(CDxf + 1)CD2
xφk−1

+ α2CfCDxfCD2
xφk−1

CR.
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7.8 Technical Lemmas

Under consideration of Lemma 49 and by the above observations, the lines (7.42) and (7.43) are
bounded by

(CDxφ0 + CDxφn−1)CF +
n−1∑
k=1

αCD2
xφk−1

CRCfCF

+ α(CDxf + 1)
n−1∑
k=1

CD2
xφk−1

+ α2CfCDxf

n−1∑
k=1

CD2
xφk

CR := C1 <∞.

Finally, to obtain similar constants for the higher derivatives of φk, we follow the same reasoning.

Lemma 52. Given the same assumptions as in Lemma 51, the following holds:

|| 1
T

N+T∑
n=N+1

n−1∑
k=0

Dxφk(Xn−k−1)
(
F (Xn−k, Yn−k)− F (Xn−k−1, Yn−k−1)

)
|| (7.44)

≤ 1

T (α− α2

2
)
C̃1,1 + αC̃1,2 (7.45)

|| 1
T

N+T∑
n=N+1

n−1∑
k=0

D2
x(h ◦ φk)(Xn−k−1) ·

(
F2(Xn−k, Yn−k)− F2(Xn−k−1, Yn−k−1)

)
||

(7.46)

≤ 1

T (α− α2

2
)
C̃2,1 + αC̃2,2, (7.47)

|| 1
T

N+T∑
n=N+1

n−1∑
k=0

∑
i,j,k

∂3

∂i∂j∂k
(h ◦ φk)(Xn−k−1) ·

(
(F3)i,j,k(Xn−k, Yn−k)

− (F3)i,j,k(Xn−k−1, Yn−k−1)
)
|| (7.48)

≤ 1

T (α− α2

2
)
C̃3,1 + αC̃3,2. (7.49)

Proof.

1

T

N+T∑
n=N+1

n−1∑
k=0

Dxφk(Xn−k−1)
(
F (Xn−k, Yn−k)− F (Xn−k−1, Yn−k−1)

)
=

N−1∑
k=0

1

T

T∑
τ=1

Dxφk+τ−1(XN+T−(k+τ)−1)
(
F (XN+T−(k+τ), YN+T−(k+τ))

− F (XN+T−(k+τ)−1, YN+T−(k+τ)−1)
)

(7.50)
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7 Application to Stochastic Approximation

We will now look at the inner sum for fixed k. To reduce notation, define

x(k)τ := Dxφk+τ−1(XN+T−(k+τ)−1),

y(k)τ := F (XN+T−k−τ , YN+T−k−τ ).

Using the simplified notation and by application of the summation by parts identity

(7.50) = −
N−1∑
k=0

1

T

T∑
τ=1

x(k)τ (y
(k)
τ+1 − y(k)τ )

= −
N−1∑
k=0

1

T

(
x
(k)
T+1y

(k)
T+1 − y

(k)
1 y

(k)
1 −

T∑
τ=1

y
(k)
τ+1(x

(k)
τ+1 − x(k)τ )

)
.

Bounding
∑N−1

k=0
1
T
x
(k)
T+1y

(k)
T+1, we obtain

1

T

N−1∑
k=0

x
(k)
T+1y

(k)
T+1 − y

(k)
1 y

(k)
1 ≤ 1

T
2CF

N−1∑
k=0

CDφk
.

By convergence properties of the derivatives of φk, there exists a constant C̃1 such that
1
T
2CF

∑N−1
k=0 CDφk

≤ 1

T (α−α2

2
)
C̃1. Second, we argue similarly to the proof of Lemma 51, that

there exists a constant C̃2 such that

N−1∑
k=0

1

T

T∑
τ=1

(x
(k)
τ+1 − x(k)τ )y

(k)
τ+1 ≤ αC̃2.

With this we obtain the desired result. By the same line or argument, we obtain similar bound for
the time averages of the higher order derivatives.
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8 Conclusion

In this thesis, we presented our contributions towards the grand question of the applicability and
accuracy of the mean field approximation to systems with non-homogeneous properties. Starting
with an overview of the general methodology in the second chapter, we show how generator com-
parison techniques can be used to bound the distance between a stochastic population system and
its mean field approximation. We further elaborate on how to obtain the refinement terms in the
case of density dependent population systems. The methodology serves as a basis for the following
chapters in which we repeatedly fall back on these steps and adapt them to more intricate settings.

In the second part, we focus on the study of heterogeneous systems. We show that in the case
of individual-level heterogeneity, we can construct a deterministic system approximating the prob-
ability of the individuals to be in their states. We show that this mean field approximation has an
accuracy of order O(1/N). We then continue by constructing a refinement term for the individ-
uals which further reduces the error of the approximation to an order of O(1/N2). In the subse-
quent chapter, we introduce the RMF Tool, a numerical toolbox which facilitates the implemen-
tation of population models and allow the automated construction of the (refined) mean field ap-
proximation. The tool incorporates the aforementioned heterogeneous setting. In Chapter 5, we
shift to population models with graph based connections. We show that the accuracy results of the
‘graphon’ mean field approximation strongly depend on the cut norm distance between the graph
and the graphon. For graphs obtained through deterministic and stochastic sampling, we further
state precise accuracy bounds for finite system sizes.

The last part of the thesis is dedicated to coupled systems. In Chapter 6, we look at the two-
timescale systems consisting of slowly changing populations of interacting particles and a coupled
rapidly changing environment. Looking at the behavior of finite-sized systems, we show that the ‘av-
erage’ mean field approximation has a bias of order O(1/N). Moreover, we show that by carefully
studying the bias the refinement ideas can be adapted for coupled systems yielding new refinement
terms which account for the use of the averaging principle. We show how a numerically feasible ex-
tension term can be derived for the steady-state and that its utilization reduces the bias of the approx-
imation to be of orderO(1/N2). In the last chapter, we apply the mentioned results and refinement
ideas to the stochastic approximation setting with constant stepsize α and state-dependent Marko-
vian noise data. By adapting the proof procedure, we obtain comparable results as in the population
setting can be obtained. We show that for a fixed α the bias between the stochastic approximation
algorithm and the corresponding ODE is of orderO(α) and can be further refined by an extension
term.

Summarizing, the presented work shows that the idea behind the mean field approximation is
widely applicable and that the methodology provided in Chapter 2 can be universally used to provide
accuracy results. Nonetheless, the results obtained and assumptions made raise further questions as
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8 Conclusion

to what extent different and more general models can be considered. In the next section, we will sum
up some open questions and extensions for other population models.

8.1 Open Questions and FutureWork
Mean Field Approximation and Refinements for Non-Differentiable Drifts To
derive the refinement terms in this thesis as well as the ones of [54, 56], it is necessary to impose rela-
tively strict continuity assumptions on the drift of the system, e.g., twice continuously differentiable
for the first order refinement. While we think these assumptions are reasonable and fulfilled in many
cases, it is natural to ask to what extent such assumptions on the differentiability can be loosened and
replaced by other methods. Approaching the question from the stochastic approximation point of
view, it has been shown in [15, 16, 78] that the asymptotic behavior can be described using differential
inclusions. Specific applications for the mean field approximation however remain sparse, with [58]
being one of the more recent advances in the field. To the best of our knowledge, in this setting a
detailed bias analysis has not been conducted and remains an open question.

Non Markovian Dynamics In many real-world applications, state changes of a system are
not exponentially distributed. In the case of load balancing, statistical analysis suggests that service
times are not solely exponentially distributed but potentially follow Log-Normal, Gamma, or Phase-
type distributions. In [2, 3, 28] the authors propose PDE methods which generalize the mean field
approach in the load balancing context. The adaptation of the refinement idea into these settings is
an open research direction.

Extension for Not-So-Dense / Sparse Graph Based Systems In Chapter 5, we carried
out some analysis on the accuracy of ‘graphon’ mean field models with respect to population systems
on densely connected graph structures, dense meaning that the number of neighbors of individuals
is of orderN . As motivated in [96], the extension towards graphs slower increasing or even bounded
edge degrees for the individuals is non-trivial. Local interactions might have substantial influence on
the global behavior of the system due to non vanishing correlation of the individuals. Some recent
publications developing new approaches include [13, 53, 100].

Expansion of the RMF Tool In Chapter 4, we have introduced the RMF Tool which sup-
ports the implementation of the mean field and, most notably, of the refined mean field approxi-
mation. Its current functionality allows the application to homogeneous, density dependent and
heterogeneous population processes, with the latter referring to the individual level heterogeneity as
discussed in Chapter 3. Extending the toolbox’s functionality to include our results on the ‘average’
mean field and ‘graphon’ mean field approximations would represents a natural next step to extend
the scope of the toolbox.
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