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ABSTRACT

Mean Field methods have consistently been of interest to the scientific community due to their ca-
pacity to approximate a wide array of stochastic population systems. This methodology has proven
to be a cornerstone in understanding and predicting the behavior of large-scale, complex systems.
Thekey idea of the mean field approximation is to replace the complex stochastic behavior of systems
with a simpler deterministic counterpart. The approximation therefore assumes that individuals be-
come increasingly independent for large system sizes. The behavior of the system is thus obtained by
replacing individual interactions with the average state of individuals. Despite its longstanding ap-
plication and the advancements made in various fields, numerous questions and challenges remain
open.

In the scope of this thesis, we present our contributions and advancements for two general types
of population models (1) heterogeneous mean field models and (2) mean field models with a fast-
changing environment.

In the first part of the thesis, we focus on stochastic systems with heterogeneous components.
We consider two types of heterogeneity, individual-level diversity as well as graph-structured interac-
tions. For both cases, we provide accuracy bounds for the expected state of finite-sized systems. The
results are supported through practical examples, including cache replacement policies, supermar-
ket models, load balancing, and bike-sharing systems, highlighting their computational tractability
and precision. In the case of individual-level diversity, we further adapt the refined mean field idea
and show that the refined approximation significantly reduces the error and provides accurate pre-
dictions for small to moderate-sized systems.

In the second part of the thesis, we turn our focus to mean field approximation techniques for
stochastic systems with a coupled, fast-changing environment. By studying the ‘average’ mean field
approximation, we obtain accuracy bounds for the expected system state. Furthermore, we derive
a bias refinement term, which increases the accuracy of the approximation. Expanding on these
results, we extend the methodology to stochastic approximation with constant step size and state-
dependent Markovian noise. We show how to adapt the ideas to obtain accuracy results and a com-
putable bias extension.






RESUME

Les méthodes de champ moyen permettent de construire des approximations de modeles aléa-
toires dévolution de populations. Ces méthodes sont tres utilisées pour comprendre et prédire
le comportement de systtmes complexes. L’idée clé de 'approximation de champ moyen est de
remplacer le comportement stochastique d’un systeme par un équivalent déterministe plus simple.
L’approximation consiste 4 considérer que, dans un systeme de grande taille, les dépendances directes
entre individus sont faibles. On obtient donc un mode¢le plus simple en considérant qu’un individu
interagit non pas avec d’autres individus mais avec une masse d’individus qui représente leur état
moyen. Dans de nombreuses applications, I'erreur de 'approximation champ moyen est en générale
tres faible lorsque la population est grande. Bien qu'’il existe de nombreux travaux théoriques four-
nissant des bornes d’erreurs, de nombreuses questions et défis restent ouverts.

Dans cette these, nous présentons nos contributions et avancées pour deux types de modeles de
populations: (1) les modeles de population hétérogenes et (2) les populations qui évoluent dans un
environnement qui change rapidement.

Dans la premiere partie de la these, nous nous concentrons sur les populations hétérogenes. Nous
considérons deux types d’hétérogénéité : la diversité au niveau des individus ainsi que les interactions
contraintes par des graphes. Pour les deux cas, nous fournissons des bornes d'erreur pour les pop-
ulations de taille finie. Ces résultats sont étayés par des exemples pratiques, comme des politiques
de remplacement de cache, déquilibrage de charge et des systémes de partage de vélos. Ceci mon-
tre la faisabilité pratique du calcul des approximations ainsi que leurs précisions. Dans le cas de la
diversité au niveau des individus, nous adaptons I'idée de champ moyen raffiné et démontrons que
approximation raffinée réduit considérablement l'erreur et fournit des prédictions précises pour des
systemes de petite 2 moyenne taille.

Dans la seconde partie de la these, nous orientons notre attention vers les techniques
d’approximation champ moyen pour les syst¢mes stochastiques qui évoluent dans un environ-
nement a changement rapide. En étudiant I'approximation de champ moyen ’moyenne’, nous
obtenons des bornes précises sur la qualité de l'approximation. De plus, nous dérivons un terme
de raffinement de biais, qui augmente la précision de 'approximation. Ces résultats sont ensuite
étendus pour étudier des algorithmes d’approximation stochastique avec un pas constant et un bruit
Markovien dépendant de I’état. Nous montrons comment adapter les idées pour obtenir des bornes
d’erreur précises et calculer le biais asymptotique de l'approximation.
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1.1 MOTIVATION

The study and understanding of stochastic systems which model real world phenomena is invalu-
able to predict, optimize and analyze environmental, public and economic effects. Examples include
the spread of diseases, the transmission of information in computer systems, the reaction of chem-
ical components, the processing of work in server centers or the behavior of bike sharing systems.
Take the case of a data center which provides services to customers, understanding the performance
of the system in terms of responsiveness and power consumption can have a critical impact on its
environmental and economic sustainability. In order to better understand and capture the behav-
ior of systems consisting of large numbers of interacting individuals (e.g. machines, objects, agents)
stochastic population models are often used to describe their dynamics. The core unit of the popula-
tion model is the individual. Each individual is described by a state, which it changes either indepen-
dently or by interaction with other individuals. While population models can be suitably applied in
many cases, their analysis often suffers from what is called the curse of dimensionality. The curse of
dimensionality is characterized by an exponentially increasing complexity cause by the large num-
ber of interacting individuals. This can make its direct study time and resource consuming, if not
prohibitive. Hence, it creates the need for approximation methods which strike a balance between
the reduction of complexity and the preservation of accuracy. The mean field approximation is one
such approach that has been proven universally useful to study the behavior of stochastic popula-
tion models. Its fundamental idea is to replace interactions between the individuals of the stochastic
system by interactions with the average state of individuals to obtain a deterministic description of
the dynamics. This replacement is justified since individuals become increasingly uncorrelated in
large system.

One of the striking aspects of the mean field approach is its capability to be adapted to difterent
contexts and models. Its general idea has been picked up and developed in a broad range of do-
mains such as game theory [80], biological neural networks [9, 98], artificial neural networks [84],
multi-agent reinforcement learning [112, 115], load balancing [45, 89], wireless network analysis [47]
to name a few. In this work, our focus will be on the application to pure jump Markov processes
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which model interacting individuals such as density dependent population processes (DDPP) as in
the work of Kurtz [76]. A classical result for DDPPs is that, for an increasing number of individuals,
the trajectories of the stochastic system converge almost surely to the mean field approximation [17,
76]. To explain the accuracy of the approximation, the same studies show that the expected distance
between the stochastic system and the approximation is inversely proportional to the square root
of the number of individuals. Yet, this does not fully characterize the often faster diminishing er-
ror of the approximation, particularly when interested in expected state of the system. To study the
accuracy of the mean field approximation and the expected state of a stochastic population system,
we rely on a set of tools with Stein’s method being one of the most prominent. Stein’s method is
used to derive bounds on the distance between distributions such as for stationary distributions of
Markov processes [12, 102]. Lately, its application in the stochastic system context has seen a resur-
gence, initiated by the works [29, 31]. In [55, 74, 113, 114], the authors successfully apply the method
to bound the difference between the generators the stochastic population model and its mean field
approximation. A second building block of our results is the bias extension proposed by the authors
of [54, 59] from which the ‘refined’ mean field approximation is obtained. Loosely speaking, the re-
fined approximation is obtained by studying an expansion of the difference between the generators
of the stochastic process and the mean field approximation. Under sufficient regularity, this allows
to deduce computable correction terms which are system-size independent and significantly increase
the accuracy of the approximation. A similar approach has been studied in mathematical biology
which is know as system size expansion [62, 63, 109]. For the analysis of the mean field accuracy,
it is often assumed [17, 55, 88, 113] that the population models fulfill two critical criteria: (1) indi-
viduals behave homogeneously, i.e., any permutation of individuals will not change the properties
of the system. This implies statistically identical behavior of the individuals and dense, symmetric
connectivity within the system. (2) There is no interference or coupling with other systems or envi-
ronments impacting the dynamics.

In real-world applications, these assumptions often fail and the mean field approximation be-
comes inaccurate up to a point where it might be rendered useless to provide any valuable insights.
We illustrate this using the well known Join-the-Shortest-Queue(d) (JSQ(d)) model for d = 2 [89,
110] as visualized in Figure 1.1. Consider customers arriving as a Poisson stream at a collection of
servers. Each customer considers a subset of two servers uniformly at random upon arrival and pro-
ceeds to the server with the fewer number of customers in their queue with ties broken at random.
At the queue, the customers are served in the first-come-first-serve manner. Such load balancing
systems can be found in a broad range of applications and become increasingly important not least
by their application to cloud networks and data centers. In order to predict and optimize their per-
formance, the mean field approximation is a common tool used to gain valuable insight into the
behavior. However, in application many systems are neither homogeneous nor act in isolation from
other systems which can lead to imprecise performance estimations. In Figure 1.2, we illustrate aload
balancing system following the same procedure as before but with queues having different service
speeds. Not considering the heterogeneity at hand e.g., using uniform queue speeds to construct
the mean field approximation, leads to under- or over-estimation of the performance which sub-
sequently creates idle or overloaded queues. In Figure 1.3, we illustrate the impact of interfering
systems. The load balancing example consists of three systems, which we call classes. Each class has
an independent decision process for arriving customers and its own separated set of queues with



1.2 Overview

respective speed distinguished in the figure by color. To leave the system, customers needs to be
processed by a medium that is shared among the three classes. The case that different queues si-
multaneously send customers to the medium gives rise to interference and consequently the loss
of throughput. In the figure, the interference structure is illustrated by the arrows connecting the
classed to the shared medium. Ignoring the impact of interference between classes on the dynamics

leads to over-estimation of the systems performance.
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Figure 1.2: Heterogeneous System
tems

Figure 1.1: Homogeneous System

In this thesis, we present our work on the study of heterogeneous systems and systems with rapidly
changing environments which contribute towards answering the two following grand questions:

¢ To which population models can we adapt mean field approximation and what accuracy can
it provide?

¢ Can we increase the accuracy of the approximation by developing bias correction terms?

1.2 OVERVIEW

We present our results in three segments also visually presented in Figure 1.4. The introduction and
methodology span the first part of this thesis. In the latter chapter, we present the general method-
ology which is consistently used to obtain accuracy bounds between the expected state of the con-
sidered stochastic systems and the deterministic counterpart, their mean field approximations. In
the second part of the thesis, we study heterogeneous models. Chapter three presents a framework
to study individual-level heterogeneity and provide accuracy bounds for the mean field approxima-
tion and its refinement. The next chapter presents the RMF Tool, a numerical toolbox designed to
support the implementation of mean field models and their refinements. This includes the imple-
mentation of heterogeneous population models as studied in Chapter 3. The last chapter of the first
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part provides new and unpublished results on graph based population models and their ‘graphon’
mean field approximation.

In the second part of the thesis, we shift the focus to systems with rapidly changing environments.
In Chapter 6 we show that the mean field approximation obtained by an averaging principle has
similar accuracy as in the homogeneous case. We further derive a new bias correction term which
decodes the error made by averaging. In the last chapter, we explore how the ideas of the aforemen-
tioned paper can be transferred to stochastic approximation with state-dependent Markovian noise
and constant stepsize. We prove new and currently unpublished accuracy results for the stochastic
approximation setting.

Part I - Introduction & Methodolog

[ Chapter 1 - Introduction }

[ Chapter 2 - Methodology }

-------------------------------------------------------------------------

Chapter 3 - Mean Field
and Refined Mean Field
Approximations for

Chapter 6 - Bias and
Refinement of Multi-
scale Mean Field Models

Heterogeneous Systems

~
~
~

~

N ( Chapter 7 - Application to
Chapter 4 - RMF Tool Stochastic Approximation
- A Numerical Tool Box

-----------------------------------------------

Part III - Systems with Rapidly
Changing Environments

Chapter 5 - Accuracy of
i| Graphon Mean Field Models

Part II - Heterogeneous Mean Field Models

Figure 1.4: Structure of the Thesis

1.3 DETAILED CONTRIBUTIONS

PARTI consists of the introduction and methodology. In this part of the document, we give an
overview of the results presented in the thesis as well as a general introduction to the methodology
used in the subsequent chapters.

CHAPTER 2 presents the general methodology to obtain bounds for the distance between the
expectation of the stochastic system and its mean field approximation. This methodology is a cor-
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nerstone for the results in the following chapters. The first part of the chapter is held general and
introduces necessary tools such as generators, Poisson equations and points out properties of the
dynamic systems needed to obtain the results. We then show how accuracy bounds for general pop-
ulation systems can be obtained. In the second part, we show how the first order refinement term
for population processes can be derived. The refinement is an analytical expression used to increase
the accuracy of the mean field approximation. In this part of the Chapter, the analysis is restricted
to density dependent population processes.

PART II  of this thesis presents our results for systems with heterogeneous components, in par-
ticular we focus on two distinct types of heterogeneity: In Chapter 3, we develop a framework to
handle individual-level diversity in population systems and derive accuracy bounds for the corre-
sponding mean field and refined mean field approximations. In the following Chapter 4, we present
the numerical toolbox ‘RMF Tool’ which is designed to support the implementation of (heteroge-
neous) mean field models and their refinements. The second type of heterogeneity, given by graph-
structured interactions of individuals is discussed in Chapter 5. In both settings, our motivation
stems from understanding and bounding the difference between the stochastic system and a suit-
able mean field approximation. We further reflect on the applicability of the approximation and
numerical complexity, which we underline by including examples for cache replacement policies,
load balancing and bike-sharing systems.

CHAPTER 3 develops a framework to handle individual-level heterogeneity in population sys-
tems. Based on this framework, mean field and refined mean field approximations are derived which
show comparable accuracy results as for homogeneous scenarios. The main differences in the het-
erogeneous setup is that the ODEs approximate the behavior of single items instead aggregate quan-
tities as the empirical measure process for the states. Our main results show that in this setting the
mean field approximations accuracy remains inversely proportional to the object count N, of or-
der O(1/N). We adapt the refinement idea to obtain computable expressions which increase the
accuracy of the approximation. The results are supported by two examples, a heterogeneous load
balancing system and a RANDOM(m) caching system. Both examples show the computational
tractability of our approach and its accuracy in application.

CHAPTER 4 introduces the RMF Tool, a numerical toolbox designed to ease the computation
of mean field approximations and their refinements. This chapter gives an overview of the python
toolbox which was developed to overcome the computational challenges posed by the more intri-
cate analytical expressions of the refined mean field approximation. The goal of the toolbox is that
users input the description of a system and retrieve the approximations and additional refinements
by using the functions provided by the toolbox. The RMF Tool provides this functionality for three
kinds of models: (1) homogeneous population process; (2) density dependent processes; (3) hetero-
geneous population models. Here, the last type of models is the same as the ones discussed in the
previous chapter.

CHAPTER 5 shifts the focus to graphon mean field models, where we consider systems of N
particles interconnected through a dense, possibly weighted graph G™. Each individual is a node
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of the graph with internal state. The state of a particle changes according to its dependency on the
states of its neighbors which is specified through the graph structure. We show that if the number of
neighbors of the node grows with IV, the behavior of the system converges to a deterministic limit,
the graphon mean field approximation. In our results, we state precise convergence bounds that
depend on the cut-norm distance between G and G. To illustrate that the convergence strongly
depends on the sampling methods of G™N, we consider two cases: First, when G is a random graph
obtained though sampling from the graphon G. Second, when G is a discretization of the graph
G with individually weighted edges. To illustrate the applicability and numerical tractability of the
results, we give two examples: A load balancing model where each individual describes a server-
dispatcher pair with connections based on a sampled graph and a heterogeneous bike sharing system
where the graph specifies the varying popularity of the stations.

PART III focuses on mean field techniques for stochastic systems with rapidly changing envi-
ronment. In Chapter 6, we look at coupled population systems of ‘slow-moving’ populations and
rapidly changing environments. In this setting, we utilize the ‘averaged’ mean field approximation
and derive a refined “average’ mean field approximation to study the behavior of the stochastic sys-
tem and characterize the accuracy of the approximation. In the second Chapter 7, we expand on
these results, extending the methodology to stochastic approximation with constant step size and
state-dependent Markovian noise. We show how to adapt the previous ideas to this setting to obtain
accuracy results and a computable bias extension.

CHAPTERG  analyzes the approximation error of the ‘average’ mean field model for a two-timescale
system (X, Y'), where the slow component X describes a population of NV interacting individuals
which is fully coupled with a rapidly changing environment Y. We show that under relatively mild
conditions, the ‘average’ mean field approximation has a bias of order O(1/N) in both, the transient
regime and the steady-state. To go a step further, we derive a bias correction term for the steady-state
from which we define a refined ‘average’ mean field approximation whose bias is of order O(1/N?).

We illustrate the developed framework and accuracy results through an application to a random
access CSM A model.

CHAPTER 7 adapts the methodology and ideas of the previous chapter to the stochastic ap-
proximation setting. We show that for a stochastic approximation with constant step size and state-
dependent Markovian noise comparable accuracy results can be achieved. In particular, the chapter
we prove that given a constant step size «, the asymptotic bias of the stochastic approximation to
the equilibrium the related ‘averaged’ deterministic system is of order cv. We further show how to
obtain a computable first order bias extension.
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2.1 INTRODUCTION

In this section we present the general methodology, which is used to obtain bounds for the bias
between the expectation of the stochastic system and its mean field approximation. We aim to give an
overview of the reasoning and the analytical tools developed in the papers [54, 55,59, 114]. While the
mentioned papers predominantly focus on density dependent population processes (as introduced
in Section 2.4.1) the methodology is not limited to those. For example, in [4, 5], we show how the
framework can be extended to different setting such as heterogeneous population models or two
timescale population processes. To capture this aspect, the first part of this chapter is held fairly
general and aims to be applicable to generic population processes. In the later parts, particularly
to obtain accuracy bounds and refinement terms, we will restrict ourselves to density dependent
population processes. We decide on this step, to keep balance between readability and generality of
the later sections. To summarize, in this chapter:
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2 Methodology

1. We illustrate how to express the difference between the expected state of a stochastic
population process and its mean field approximation using the generators associated to
their dynamic system description in Section 2.3.

2. We utilize the specific generator expressions for density dependent population processes
to:

* Establish bounds on the difference between the two dynamical systems, validating
the accuracy of the mean field approximation in Section 2.4.3.

* Study the bias of the approximation and to develop refinement terms which in-
crease the accuracy of the mean field approximation in Section 2.4.4.

We start by specifying the concept of population processes before progressing to the general method-
ology and subsequent results.

2.2 CTMCs, SEMI-GROUPS AND GENERATORS

In the following section, we recall essential properties of continuous time Markov chains, the def-
inition of strongly continuous semi-groups with their generators and show how such semi-groups
can be defined to describe the evolution of the dynamical systems in question. We also give a short
illustration of the former by applying these definition to a simple load balancing example.

2.2.1 CoNTINUOUS TIME MARKOV CHAINS (CTMC)

For the sake of readability and completeness, we briefly recall the quintessential properties of time
homogeneous continuous time Markov chains (CTMC). For a more extensive introduction, the
reader is referred to [103]. It is furthermore assumed that the reader is familiar with the Markov
property for stochastic processes. In the thesis, for all encountered frameworks and population pro-
cesses, we consider a population process with finite state space X of size K € N. Here and in the
following, the stochastic process will be denoted by { X (¢),t > 0}. The Markov property implies
that for any states @, ¢, z and times s > Oandt > u > 0

PX(t+s)=x | X({t)=y,X(u)=2)=P(X(t+s)=x| X(t) =y).

To define the transitions of a CTMC, it is more common to transition state the transition rates
between states rather than transition probabilities. In the following, we will denote by 7y, (X (1))
the rate per unit time of the CTMC to jump from state & to y. We choose this notation as it will
be convenient for the subsequent discussions to differ between rates based on the current state of
the system X (N)(t) and a set of possible jumps of the system. The relations between the transition
rates and probabilities is given by

na(XO) =l SP(X(rd) =y | X()=2)  for oy

12
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and therefore
PX(t+dt) =x | X(t) =y) =1rz_y(X(t))dt + o(dt).

We turther define the rate for the process to remain in state X by

ro(X(8) = =Y ry-a(X (1)

T#Y

In Section 2.2.2 we will fall back on these properties to define the semi-group linked to the expecta-
tion of the stochastic process and its generator. This in turn will ultimately allow us to deduce the
generator comparison between a deterministic differential equation, its mean field approximation,
and the stochastic process.

PoruLATION PROCESSES

As outlined before, we denote by { X ™) (¢),# > 0} a stochastic population process of population
size N € N. The state space of the system X (M) () is denoted by XV C R? To preserve read-
ability and explanatory intention of this chapter, we restrict the dimension of the state space to be
independent of the population size. In many cases this is a reasonable assumption and holds true
for a broad range of stochastic processes, e.g. density dependent population processes as defined in
Section 2.4.1. In later chapters however, we will discuss settings for which the dimension can vary

with V.

2.2.2 SEMI-GROUPS AND GENERATORS FOR DYNAMICS SYSTEMS

In this subsection, we introduce the notion of semi-groups and their connected generators. We
start by giving the general definition for the latter and continue by representing the stochastic and
deterministic system using the semi-groups notation. Ultimately, the representation will allow us to
express the difference between the two dynamical systems by their generators which is discussed in
detail in Section 2.3.

Definition 1 (Definition and properties of Cj Semi-Groups and their Generators). A family of
linear operators {Ts : D — D, s > 0} is called a strongly continuous semi-group (or Co-semi-group)
on a Banach space D if it has the following properties:

Ty = Id, (2.1)
T3+t = TsTt f‘O}"dlZ S,t 2 0, .
ltijgl Tiz==z forall =z e€D. (2.3)

The generator of a Cy-semi-group, if existent for z, is defined by

1
Az = }iltlfé E(Tdtz —Toz). (2.4)

13
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A direct consequence of the definition of the generator and property (2.2), is its commutation
with the defining Cy-semi-group, i.e.,

ATh(z) = TsAh(z) = d%Tsh(z). (2.5)

This property can easily be proven by considering that by definition T (T — Id)h(z) = T(Ts —
Id)h(z), with Id being the identity map. Dividing both sides by s and letting s go to zero shows the
property. As we will be only working with C-semi-groups they are simply referred to as semi-groups
in the following.

SEMI-GROUP AND GENERATOR FOR THE STOCHASTIC SYSTEM

We now want to show how to represent the stochastic system { X (N) (t),t > 0} using the semi-
group notation. Recall that the dynamics of the process are given by a state independent set of
transition vectors £V and their respective transition rates r¢(x), ¢ € L" for  in the domain X
of XM LetC v~ _r be the set of continuously differentiable functions from & to R where X’ is
the convex hull over all XY We define the stochastic semi-group mapping on Cyn _,g by

TN Chnv g — Chong  with  UNh(z) :=ER(XM@1) | XM0)==]. (26)

Strictly speaking the W, can be defined for a much broader set of functions, however, we restrict the
domain of ¥ to C}_, as in the following our analysis and bounds are based on the differentiability
h. It is immediate by the definition of W; and the properties of the Markov chain that the above is
indeed a semi-group. By Definition 1 - Equation (2.4), the generator is defined as lim é (\I!é\;h -
U h). Forx € XN we therefore have

LV h(a) = L (W — W) () = lim EI(X ) (d0)) = h) | XN(0) = a,

We use the general properties of the Markov chain, as recalled in Section 2.2.1, to obtain a more
detailed formulation of the generator. For small times d > 0 we have

E[h(X™(dt)) | X™(0) = 2]
= h(@)P(X"(dt) =« | XM(0) = x)

+ ) e+ OPXN(dt) =z + 0| XN(0) = )
LelN

By using the rate dependent description of the transition probabilities, we see that the generator of
the process is equal to

LNh(@) = > (h(@ +€) — h(z))r(z). (2.7)

LeLN
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In the case that the stochastic system has a unique stationary distribution, the latter is denoted by
X M) (00). To ease the notations for the steady-state and if clear from context, we will refrain from
giving the initial state of the stochastic system, i.e., for U, h(x) we write equivalently

E[X ™ (c0)] instead of E[X™(c0) | X™M(0) = x]. (2.8)

SEMI-GROUP AND GENERATOR FOR THE DETERMINISTIC SYSTEM

This subsection aims to define the semi-group and generator for the mean field approximation given
by the solution to the Cauchy problem

d

aqb(t,a:) = f(¢(t,w)) with ¢(0,x) =x € X.
We define the semi-group by

D, : Cyop — Chir with ®d,h(x) = h(p(t, z)).

In words, the mapping associates to a continuously differentiable function R its evaluation at ¢ (¢, x).
By definition of the deterministic system, it is directly follows that ®; is indeed a semi-group. To de-
rive the corresponding generator, by definition

1

Ah(z) = lim = (h(¢(dt, x)) — h(p(0, x))) = Doh(x) - (). (2.9)

with - being the scalar product between D, h(x) and f(x). It is furthermore worth pointing out
that the commutation of the generator with its semi-group implies

Duh(@(t, @) F((t, @) = B Ah() (2.10)
— A®h(@) = Dy(ho (t,.))(@)f (). (2.11)

This property will be especially useful in the next sections as it allows to compare two introduced
generators. Similar as for the stochastic system, we denote by

b h(x) = h(p(c0, x)) (2.12)

the unique equilibrium point of the deterministic system if existent. If appropriate and clear from
context, we further abbreviate the equilibrium point by ¢ .

2.3 GENERAL METHODOLOGY

In this section, we start the discussion of the general methodology to obtain accuracy results for the
difference between the stochastic and deterministic setting. In the following, we will show how to
state the difference of the two systems using their generators for the transient regime and steady-state.
We will (informally) show:
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For the transient regime
EHXY(0) | XV(0) = o] = hg(t,2) = [ 018" 0-h(o)ir
For the steady-state
E[b(X™(00))] = hdw) = Un” [ @:h(a)r

0

with AN = LN — A representing the difference between the generators of the two systems.

2.3.1 TRANSIENT REGIME

We aim to reformulate the difference
E[R(X™(t)) | XM (0) = ] — h(e(t,z)) (2.13)

for a sufficiently continuous differentiable function » : X — Rand 0 < ¢ < oo. To make use of
the previously introduced semi-groups, first, recall their definitions

Ooh(x) = h(¢(t,x))  and  UVh(x) = E[R(XM(1) | XM(0) = x].
Based on U and ® we define the mapping v, : C}_,zg — Ch_g for 7 € [0, ¢] with
v h(z) = UN®,_ h(z) =Eh(e(t — 7, XN (7)) | XM(0) = z]. (2.14)

The evaluation of the mapping v-h(x) for a state & and function h consists of two steps. First, the
expectation of the stochastic system evaluated at time 7. Second the continuation of the stochastic
trajectory by the ODE in the time frame (7, t] with initial condition X ™Y)(7). An example trajectory
of ¢(t — 7, X (7)) is given in Figure 2.1. The definition of v/, now allows to rewrite

ER(X™M (1)) | X™(0) = 2] — h(e(t, X)) = vih(z) — voh().

To use the properties of the generators their respective semi-groups, we want to rewrite

S=T

vih(x) — voh(x) = /0 d%Vsh(w) dr. (2.15)

At this point we skip over the technical explanation of the equality above. It should be noted though,
that it might need some thorough investigation and justification. Looking at the right-hand side, we
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e
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Figure 2.1: Sample trajectory for ¢p(t — 7, X M) (7).

start by analyzing the derivative under the integral. We see that the difference (V14 — v-)h(2) is
equal to

\Ijiv-&-dT(btf(TerT)h(m) - \IJiV(I)t_Th(m)
= \Ijiv-i—drq)tf(TerT)h(m) - \I/iv_‘_dT(I)t_Th(:I:)
+ N P h(z) — U D, h(z).
Due to the assumption that X ) is a population process with finite state space, bounded transition

rates and bounded jumps sizes, the above term is bounded for all ¢, 7, d7. Thus, we can rewrite
Equation (2.15) as

1
lim — (Vyy4r — v )h(x) = LYUN D, h(z) — UVNAD,  h(x). (2.16)
drlo dt
Using the commutation of the generator for the stochastic process, i.e, LYY = WNLN ag

pointed out in the Definition 1 - Equation (2.5), and linearity, we have that Equation (2.16) is equal
to WN(LN — A)®,_ h(x).

Finally, this allows us to express the difference between the expectation of the stochastic system
and deterministic system by

t

E[L(XM (1)) | XM (0) = z] — h(op(t,x)) = / UN(LN — A) @y, h(z)dr. (2.17)
0

This reformulation serves as basis for our further discussions on the accuracy and the bias analysis.
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2.3.2 STEADY-STATE EXTENSION

To extend the previous discussion to the steady state, assume that the stochastic process admits a
unique stationary distribution and that the ODE has a unique equilibrium state to which it con-
verges exponentially fast, see Definition 2. As given in the discussion of the semi-groups and genera-
tors the steady-state and equilibrium point, following our definitions in Equations (2.8) and (2.12),
are denoted by

U h(x) = E[h(X™)(00))] and Ddoh(x) = h(g,).

For the steady-state we are looking at the difference E[h(X ) (00))] — h(¢,,) which is the limit
of Equation (2.17). In the next steps we will show the equality

t

lim [ U (LY — A)®. h(z)dr = / h U (LY — N) @, h(z)dr. (2.18)

t—o00 0 0

which then serves as a basis for the following accuracy bounds and refinement observations. To
give more intuition behind why this equality holds, define for any positive and increasing sequence
(tkz)keN> tp — 00 with the function

G, (T) = Lo 4 (5)¥) _ AND h()

with AN := LY — A. Then, by the steady-state assumption on X ), g1, (T) converges pointwise
to ¢(7) := WY AN® h(x) for k — o0o. By the regularity assumptions on the dynamical system,
we see that the quantities ¢, (7) and ¢(7) are bounded by

g(1) = sup AN®_h(x).

xreX

To apply the dominated convergence theorem justifying lim,,_, fooo q, (T)dT = fooo q(v)dr, we
now argue that fooo| g(7)|dr is finite. By assuming, without loss of generality, that h(¢,,) = 0'
we see that for any € X the integral [° AN®_h(2)dr is finite due to the exponentially fast
convergence of the ODE to its equilibrium point. This can be checked by using the bounded domain
and bounds on the derivative of the ODE. We further argue that the supremum in the definition of
g is attained as it is taken over the convex hull X of closed sets. This implies [;|g(7)|dT < oo and
therefore ¢, converges to

/ YN AND h(x)dr. (2.19)
0

We finish by making the following informal statement which is serves as a intuitive basis for the
steady-state results of the next section. Under sufficient regularity assumptions on the expectation

'One can always replace h by h*(x) := h(x) — h(¢d,) which yields the same conclusions.
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of the stochastic system as well as by the definition and properties of the generators, we can move
the integral of Equation (2.19) in front of ® to obtain

/ U AN h(x)dr = U AN / ®, h(x)dr (2.20)
0 0

which will be especially useful for the forthcoming discussions on the accuracy bounds and remain-
der terms.

For the following, we want to point how to approach the steady-state reformulation from a dif-
ferent angle by utilizing Poisson equations. Therefore, the first component to bound the difference
between the two systems E[h(X V) (00))] = h(o0) s to set up the Poisson equation

AGy(x) = h(m) — h(¢.,) (2.21)

for a ‘nice’ enough function h. A function ), which satisfies the above equation is called the so-
lution to the Poisson equation. As shown in [55, 114], a functions which satisfies the above is given

by

Note that the right hand side is well-defined due to the exponential stability of the deterministic sys-
tem. In Lemma 3, we give a more precise justification. To verify that G}, solves the Poisson equation,
by similar steps used to obtain Equation (2.19), we can (informally) argue that

AGy(x) = —A/ (Pih — Dh)(x) dt
0
_ _/ A(Bh — Do) (a)dt
0
= —/ ADh(x)dt = —/ —h(ep(t,x))dt
= h(z) — h(¢(oc0, z)).
For the next step, we note that given the unique stationary distribution of the stochastic system,
U LNh(x) = E[LV (XM (00)) | XM (0) = x] = 0. (2.22)

Generally speaking, the above equation holds for functions of compact support. By the bounded
state space of the systems, it then also holds for the solution of the Poisson equation. Next, we use
G to rewrite

E[AGH(X ™ (00))] = E[A(X ™ (00))] — h(¢s,)-

lightly hidden under the notation, we implicitly assumed differentiability of Gj,. As the justification
is a rather technical argument based on the exponential stability of the ODE, more details are given
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by Lemma 3. Using the property outlined in Equation (2.22), we can add E[LY G (X M (0))] to
the equation and obtain

E[AGA(X™(0))] = EI(A — LV)G(X ™) (c0))] (223)
=BILY =) [ (htr XW(00) ~ H@))drl. (224

Definition 2 (Global Exponential Stability). 4 differential equation L¢(t, x) = f(p(t, x))
is called globally exponentially stable if it has a unique attractor ¢, and if there exist constants
a,b > 0such that forall x € X andt > 0

16t @) — o || < aexp(=bt).

2.4 APPLICATION TO DENSITY DEPENDENT POPULATION
PROCESSES

Based on the previous generator reformulation of the difference between the expected state of the
stochastic and deterministic system, summarized in Equation (2.17), we will now study this difter-
ence under the consideration of density dependent population processes (DDPP). Before we state
the definition of DDPPs in the next subsection, we give a briefly overview of what this section aims
to achive. As in the previous Subsection 2.3.2, we use the notation

AN = LN A,

to denote the difference between the generators. The study of the accuracy and refinement can be
broken down into two observations for this difference, namely

AN = 0(%) (225) and AN = %A + o(%). (2.26)

The first Equation (2.25) referring to the bound on the difference of the generators and Equation
(2.26) to the approximation of the generator difference by a population size independent mapping
A : Ci g — C% ., which we will call the (first order) refinement.

2.4.1 DENsSITY DEPENDENT POPULATION PROCESSES

Many population processes can be model using their density such as epidemic spreading [43, 90],
load balancing [87, 91] or bike sharing systems [50]. It is of little wonder that the mathematical con-
cept of density dependent population processes (DDPPs) was developed to study these type of pro-
cesses, see [76, 77]. As before, we denote by { X ™) (), > 0} a stochastic process that represents
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the state of a population of size N. Itis, as the name suggests, typically the case that X (V) (t) is some
kind of density representation of the population. As for the generic population process, we restrict
the set of states X of X ™) to be a finite subset of R%. Furthermore, it is assumed, there exist a
finite set of transitions vectors £ and corresponding rate functions 7, : X — R, ¢ € L which
are both independent of the population size. Based on the jump vectors and rates, the transitions of
the process are of the type

X W) jumps to XN 4 ¢/N at rate Nry( X)),

Intuitively, the transition structure captures that the change of a single member of the population
is of order O(1/N) while the actual chance of such an event is proportional to the size of the pop-
ulation. To catch up on the previously discussed ODE and generator definition we briefly show the
typical definition of mean field approximation and the generator for this type of process. The drift
corresponding to a DDPP in state @ is defined as

flx) =) try(x), (2.27)

the sum over the jump vector times their rates. Under the assumption that the drift is well defined
for all states in X', we define the mean field approximation with initial condition y € X" by

d
59t y) = flo(t.y)) with #(0.y) =y.
Lastly, we see that by definition, the generator is given by
LNh(@) =) (h(a@ + L/N) — h(z)) Nry(). (2.28)
lel

Note, by setting h = Id the identity function, one obtains the drift directly from the generator
definition.

2.4.2 A SimpPLE LOAD BALANCING EXAMPLE

This subsection introduces a simple load balancing example which will be used to illustrate the sub-
sequent methodology in Section 2.3. The system consists of V statistically identical servers which
can receive and process jobs. For simplicity, we restrict the servers to have a buffer capacity of one.
The dispatcher scheduling policy rules are:

* Jobs arrive at the dispatcher following a Poisson arrival stream with rate NA > 0.

* For each arriving job, the dispatcher randomly selects two of the [V servers and acts according
to one of the three cases below:

1. Both servers are idle - the job is randomly assigned to one of the servers

2. One server is idle - the job is forwarded to the IDLE server
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3. Both servers are busy - the job is discarded

* Each assigned job in the queue takes an exponentiall /1 > 0 distributed processing time at the
server site after which it leaves the system.

We model the system with X ™) (¢) € [0, 1] being the fraction of active servers at time t > 0. Let
the system X ™) (¢) be in state X € [0, 1], then the transitions of the system are:

1

X=X+ N atrate NA(1 - X?), (2.29)
1

X —=X- N at rate NpX. (2.30)

In Section 2.4.1 we will see that this load balancing example falls into a broader class of population
processes, namely density dependent population processes.

GENERATOR AND ODE FOR THE LoAD BALANCING EXAMPLE

Using the transitions of the described system, for a state x € X'V the generator is given b
g Yy g g Y

LNh(z) = \(h(x +1/N) — h(z))NA(1 — z7) —|—\(h(x —1/N) — h(z))Npuz .

Arrival Departure

The ODE associated to the process initialized at state y € X is

d

Egb(t y) = A(l - ¢(t7 y)2) - M¢(t7 y) with d)(()u y) =Y.

2.4.3 Accuracy REsULTS
TRANSIENT REGIME

To obtain accuracy results, we pick up on Equation (2.17). Using the DDPP specific generators

BV (1) | XV(0) = ) - ho(2) = [ WA D h(o)ir

_ /0 E[Y" (h(o(t =7 XN () + ¢/N)) = h(g(t — 7. X V(7)) )re( XN (7))

teLN
(2.31)

— Da(hoo(t —7,)) (XM () f(XN(r)) | X(0) = a]dr

To obtain bounds on the distance between the generators, we have a closer look at the stochastic gen-
erator terms. To simplify notations let us define g(x) := h(¢(t — 7, )) such that the right-hand

term of Equation (2.31) reduces to ) . .~ <g(X(N) (1) 4+ ¢/N) — g(X (T))> Nry(X™N(7)).
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By application of the Taylor expansion of first order on g(X ™) (7) + £) around X ™) (7) in direc-
tion //N, the expression is equal to

> Dag(X V) (XD (7)) + 1Ry (X V()

=QmXWWwﬂXmﬁ»+%&AXWUD

where by R, 1 (x) we denote the collective remainder term arising from the expansion. Using this
identity for Equation (2.31) yields

t
/ UV (LY — A)®,_.h / Rpoa(i—r1 (XN (7))dr.
0 N

Under the assumption that the remainder term is bounded by some Ck, .. ;> 0, it follows
immediately that the accuracy of the approximation is of order O(t/N).

STEADY-STATE ACCURACY

For the steady-state we continue in a similar fashion. Our starting point is the previously obtained
Equation (2.24) which shows

E[h(X ™ (00)] — h(ds.) = E[(A — LY)Gn(X ™ (00))]

with G}, being the solution to the Poisson Equation (2.21). By definition of the generators for
DDPPs, we see that the right-hand side is equal to

E[ Y (Gu(XM(00) + £/N) = Gu(X N (00)) ) N X (7)) (2.32)
LeLnN

= DaGi(X ™ (00)) F(X M (00))].

Assuming that Gy, is sufficiently differentiable, which is commented on in Lemma 3, we utilize the
Taylor expansion around X Y)(c0) in direction £ as before in the transient case. Application of Tay-
lor then leaves us with E[ R, 1 (XM (00))]. Here, Re, 1 (X ™) (00)) arises as the sum over all
Taylor remainder terms obtained from the expansion. Bounding E[Rg, 1(X (V) (0))] then shows
that the approximation has an accuracy of order 1 /N.

2.4.4 REFINEMENT TERMS

In this section we pick up on the bias analysis and the definition of refinement terms for the mean
field approximation. The refinement concept and justification for classical mean field models was
derived by Gast et al. in a recent line of work [54, 55, 57]. The following parts aim to gather the ob-
servations from the mentioned publications. While in this section we are concerned about DDPP’s,
similar methodological steps can be apply in other settings such as the heterogeneous case described
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in [S] or two timescale setting as seen in [4]. In what follows, we restrict ourselves to the analysis of
“first order’ refinement terms, i.e. computable expression which increase the accuracy of the mean
field approximation by one order. In particular, this includes the derivation of the refinements terms
V 0,00 x X = R%and W : [0,00] x X — R™?with ¢t = oo being the value of V., W at
the equilibrium point if existent. Under the assumption that /2 is a twice differentiable function and
the additional assumptions outlined in Section 2.4.4, we will see that the bias between the stochastic
system and the mean field approximation can be written as

E[R(X™(1)) | X™(0) = ] — h(¢(t, x))
1

= 5 (Dah(B(t, @) - V() + Dih((t, ) : W (1)) + O(1/N?)

fort € [0, 00] with ¢ = oo denoting the steady-state and equilibrium respectively. Here, - and :
denote the sum over the element wise multiplication between two vectors or matrices. In the fol-
lowing, we will show how to obtain the above refinement terms V', W and deduce computable
expressions. Before we start, we recall and summarize the assumptions needed:

General Assumptions:

1. The set of jump vectors L of the stochastic process is finite and jump vectors £ as well as
rates 1y are bounded.

2. The drift f is twice continuously differentiable.
Additional for Steady-State:
1. The stochastic system admits a unique steady-state distribution.

2. The ODE ¢(t, ) has a unique attractor ¢, which is exponentially stable, as defined
in Definition 2.

2.4.5 TRANSIENT REFINEMENT TERMS

To obtain the refinement terms in the transient regime, we leverage on the previously discussed gen-
erator comparison method. Recall, in Equation (2.17) we have shown the equality

E[L(XM () | XM (0) = ] — h(o(t,x)) = /0 t U AN, __h(x)dr, (2.34)

i.e., expressing the difference between the stochastic and deterministic system using their genera-
tors and semi-groups where AN := LY — A. As we are interested in the study of the bias, which
vanishes as the population size N grows, we re-scale the system by a factor N. Now, looking at
N fot U AN®,__h(x)dr, instead of using the first order Taylor expansion and bounding the re-
mainder term, we use the a second order expansion. To start, we have a closer look at NAN g(x)
under the assumption that g : X — R is twice continuously differentiable. Under consideration
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2.4 Application to Density Dependent Population Processes

of the transitions structure for density dependent processes (Section 2.4.1) and by definition of the
generators,

AVg(z) =3 (g<az N g<w>) Nri(x) - Dagle) - f(z)

el

where we use the second order Taylor representation of g(x + %) in direction ¢ with respective
remainder term. This yields the equality to

%Dig(a}) :Q(x) + %Rg,g(w), with Q(x) = ;E; 00 ry(). (2.35)

where A : B is the Frobenius product (3, ; Ay s Bi,) and Ry »() is the collective remainder term
arising from the expansion. Define

A:Cy g — Chig Ag(x) := Dig(x) : Q(x). (2.36)

With this definition, we see that for a sufficiently regular g

ANg(z) = Ag(a) + o(%)

where the O(1/N) hides the bound on the remainder term R, 5 . To define the refinement terms
V and W, we start with replacing g by h o ¢(t, .) in the above equations. We further know that
X M)(7) converges weakly to (7, ) for every 7 € [0, ] as N goes to infinity in the case of DDPPs,
see for example [76]. Combing these two steps, it is sensible to look at the term

UNAD,_ h(z) = E[%Di(h ot — 7, )NXM (1) : QIXM(7)) | XM (0) = ]
2% 3 AR () = SDAho Bt — 7, ))(6(7,2) - Q(r. @)

under the integral to obtain the deterministic refinement terms. Based on this, in Section 2.4.7 we

give insightin how to obtain a set of differential equations to compute the quantity |, Ot O, AP, h(x),
the bias correction for h(¢(t, x)).

2.4.6 EXTENSION TO THE STEADY STATE

In this Section, we aim to obtain similar refinement terms as for the transient regime. We start by
recalling the additional assumptions for the steady-state, given in 2.4.4. Next, by Equation (2.20)
of Section 2.3.2 we know

E[A( XM (00))] — h(g,,) = oo AV /OOO O h(x)dr

—E[(LY — A) / " h((r, XM (c0)))dr | XV(0) = ],
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2 Methodology

where we assumed that / is ‘nice’ enough and, w.l.o.g, that h(¢.,) = 07 such that the integral term
is well defined. In fact, we will now informally show that the above term, can also be obtained by
leveraging a different line of arguments based on defining a Poisson equation. To obtain computable
expressions for the steady-state refinements, we extend on the analysis of the Poisson equation. First
however, recall that our previous analysis Equation (2.24) showed the equality

E[R(X™(00)) [ X™(0) = @] — h(y.) = E[(LY — A)Gr(X™(c0))]

where G}, () is given by — fooo h ((]5(7’, zc)) —h (¢Oo) dr. To study the bias and obtain steady-state
refinement terms we proceed similar as in the transient case by applying a scaling factor IV to the
term. Using the generator definitions, this gives

E[N(A — L¥)Gy(X ™ (c0))]

=BV 3 (X (o0) + 1)~ G X (o) | (XN (r)
LeLhN

— ND,G(X ™ (00)) f(X ™M (00))):

Assuming that the drift f and ODE are sufficiently differentiable, Lemma 3 tell us that the same is
true for the solution to the Poisson equation G,. Thus, we can use a second order Taylor expression
of G (XM (00) + £) around X ™) (00) which shows that the above equation is equal to

E[D2Gh(X M) (00)) : QXM (00)) + 1R (XM (00)).

Using the weak convergence of the stochastic systems, we see that, by reusing the definition of A
(Equation (2.36)),

AGH(9x) = D3G1(9) : Qo). (2.37)

we obtained a similar refinement candidate as for the transient regime. This time depending on the
solution to the Poisson equation G, with respect to the function / evaluated at the equilibrium
point. As in this form, D2G},(¢,,) can not be solved numerically, we discuss in Section 2.4.8 how
to obtain a computable expressions of the refinement.

2.4.7 COMPUTING THE TRANSIENT REFINEMENT TERMS

In the next part, we aim to obtain a computable expression for the bias correction f(f O, AD;  h(x)
of h(¢(t, z)) with mapping Ag(x) = D?g(x) : Q(x) and Q(x) as defined in Equation (2.35).
We start by looking more closely at the term A®,_,h(x) = DZ(ho (¢(t — 7,.))(x) : Q(x). To
properly work with the second derivative of h o ¢(t — 7, .), we take a step back and notice that for

2 As mentioned in Section 2.3.2 if for h(¢.,) # 0, we can define h*(x) := h(x) — h(¢,) which then fulfills the

requirement.
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2.4 Application to Density Dependent Population Processes

twice differentiable functions g : R? — Rand m : R? — R by application of the chain and
product rule,

DX(gom)(w) =

4,j=1

0%g (9mZ 8mj d g 82mj
0,0z (m(@ )Gazk 83:1 z:: 8_

Replacing the functions g and m by h and ¢(¢t — 7, .) gives us for D2(ho ¢(t — 7,.))(x)

00 99,
2 — (¢ —
(DZho ¢(t — Z axla% -, w))ﬁxk (t—T1,@) o, (t—71,2)
d
oh 0%,
+ 2 oz, (ot -, m))axkaxl t—7,)

Under the integral and with substitution of ¢(7, 2) for X ) (7) we then obtain
t1
| srime st = r ) @(re) : Qi)

¢ 8¢j
/ kzz:l (ZZ 8:}6,89:] ))8xk (t — 1, (T, ‘”))a_a:l(t — 7, (T, :1:))) Qua(o(r, x))dr

iy

k=1

- Z axlaxj ))/0 % > (gf; - ¢(T>w))%(t —T, ¢(T,$))>Qk7l(¢('f’aj))d7—

- /

(Z 5— PO (¢t —r. p(r. w») Qui(B(7,x))dr

i 5 tq P26,
" ; 3_%(¢(t’ ) /0 2 ,; 8$kajxl (t =7, ¢(7,2))Qui(P(7, ))dT
:?/J J

For the last equality, we used the elementary property qb(t —71,¢(r, X )) = ¢(t, X) to take the
derivatives of h out of the integral. We define the refinement terms W, V' in their integral form at
time ¢ by

- [ 3D2 - r @) Qlrw)r (2.38)
Wis(t) = / SDebit — 7, ) (S, 2))QUS(r, @) Dachy(t — 7. ) (. @))dr. (239)
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To see that the integral forms of V' and W are indeed the solutions of the differential equations
(2.40) and (2.41) we recall the statement of Lemma D.3 of [5]. Alternatively, the reader is referred to
[54], which also derives the differential form of the refinement terms for density dependent popula-
tion processes. It holds that the refinement terms given in their integral forms as in Equations (2.38)
and (2.39) are the solutions to the differential equations:

d %, 9f; 1 8%
—Vilt) = ; 5, (P ENVi() +§_j1§ Fr o, PEEIWiRE)  (240)
d =l <. df
V0 = 20 G0 )i ) + 3 T G(-)War() + Qus(900,2)
2.41)
Q”(QS(t,ZB)) - TK(QS(t,CB))&f] (2 42)
lel
for i, 7 = 1..d and with initial conditions
V(0)=0 and W (0) = 0. (2.43)
where f refers to the drift of the mean field approximation ¢.

A detailed proof can be found in [5] - Lemma D.3 p.38. For the sake of completeness we only recall
the basic ideas here. To prove the connection between the integral from and differential form, note
that for a sufficiently differentiable and bounded function ¢(¢, s) : [0, 00) x [0,00) = R

t

L - (tt)+/td (1, 7)dr
g | 9T =gt (T

To obtain the differential forms replace g(t,7) by D2¢(t — 7,.))(¢(7, ) : Q(¢p(T,@)) for V
and by D, ¢(t — 7,.))(¢p(7, X)) D, p(t — ))(¢( x)): Q(o(r, )) for W. Careful analysis

and rearranging of term then yields the desired derivatives.

2.4.8 COMPUTING THE STEADY-STATE REFINEMENT | ERMS

In this subsection we aim to show that the refinement term for the steady-state as in Equation (2.37)
can be efficiently computed. Thus, in the following rather technical part, we will proof two key
properties:

1. The Lyapunov equation (D, f(¢.))Z + Z(D.f(¢..))" + Q(¢.) = 0 has a unique
solution W which is given by

W= / " exp(Da (o)) Q) exp(D. f b))
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2. The second derivative of (&}, satisfies
with V' := (=D, f(¢o)) (D3 f (o)) W

The properties are originally stated and proven in Lemma 3.6 of [59]. However, as they convert
the analytical expression (2.37) into computable ones, we will successively go though the reasoning
behind the properties. To show (1), we first recall some properties about Lyapunov equations. For
real matrices  and A, an equation of the form

AZ+ZAT+Q=0

is called continuous Lyapunov equation. The equation admits a unique solution W if and only if A
is Hurwitz, i.e., A has only negative eigenvalues. Symmetry of Q furthermore implies symmetry of
the solution W If existent, it then is a standard property of Lyapunov equations is that its solution
can be written as

W = /OO exp(AT)Q exp(ATT)dr. (2.44)
0

We see that by definition Q () = >, v (0T 1¢(p..) is symmetric and that by the assumption
of exponential stability for the differential equation D, f (¢ ) is indeed Hurwitz. This shows that,
by defining A := D, f(¢,), W can be computed numerically by solving the Lyapunov equation.

To show the second property (2), we split the reasoning into two parts. At first we show that
the first derivative of G, is equal to (— D, f(¢,,)) "', where Gy, is the solution to the Poisson
equation with respect to the Identity mapping.’ In the second step, we use this property to show
that D2G1,(¢..) : Q(@.) can indeed be expressed using the derivatives of i and the numerically
tractable expressions W and V. To start, we take a step back to first look at the solution of the
differential equation

SD(1,2) = Da(F(6(1,))) = Def (910 2)) Dep(t,)

with initial condition D,¢(0, ) = I. Starting from steady-state ¢, the above differential equa-
tion has the drift D, f (¢ (t, ¢, )) D, (t, x) and thusits solution at time tis D, ¢(t, ) = exp(D, f (. )t).
)

Returning back to D, G 4(¢.) we see, under consideration that ¢, is exponentially stable, that

D.Cralo / D, (r,)dr = / " exp(D, (o )7)dr = (— Dy (o))"

e might appear to the reader that in the definition of the Poisson equation we restricted ourselves to function with
image in R. The extension to the multidimensional case however is straight forward by defining the Poisson equation
for each component of the function.
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2 Methodology

The second property (2) is similarly shown. We know by Lemma 3 that D2Gy,(x) = [~ D2(h o
¢, )(z)dT, thus, we start by analyzing the time dependent term D2 (h o ¢(, .)) (). By application

of the chain and product rule we obtain

%Dw )jmn = (D3, ) (L)) @),
=Y Lot .)

k
82fj agblﬁ 8¢k2
Tl (0t G 1) 5 1 ).

+
k1,k2

Next, we set the initial condition to the equilibrium point ¢ and keep the previously obtained
exponential form for D, ¢(t, ¢ ) = exp(D, f(¢p.,)t) in mind. By application of the variation of

constants method, it is possible to obtain the solution for the above system which is given by
D2p(t, o) jmm = Z/ expr )(t—T))

Z o O fu ?(t, Do) X exp(Dyf (Do) T)irm €XP(Di f (Doe) )iy nd.

T OT
keiko k1 k2

Taking the integral and switching the order of integration, one obtains that D2G(¢,. ) is equal to

/0 " D2t byt = 3 (~Duf (b))

X Z 0 fu (d)(t? q,)oo))/o eXp(Dxf(¢m>T)k1,m eXp<D$f(¢OO)TT)k27ndT' (245)

O0xy. Ox
kyky Rk

Under the consideration of the results of (1), taking the Frobenius product between equation (2.45)
and Q yields,

Z<_D1f(¢oo))_,l %@b(t? d)m))Wkl;kQ'

Lastly, it remains to apply the above deductions to D2G1,(¢,.) : Q(¢..), i-e., the matrix Q(¢..)
multiplied by the second derivative of the solution to Poisson equation w.r.t. h. Based on Lemma
3, we see that

) — Oh
j 822 / D,p(7,x);mD. (T, x); ndt.
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2.4 Application to Density Dependent Population Processes

Second to last, define the vector V' by

1 0*fu
V=52 (-Daf(@n)), Z 5 (Bt o)) Wi i (2.46)

Ly E)xk2

To see, that the initial statement indeed holds true, substitute the previously obtained, computable
expressions for [ D2¢(t, ¢, )dt and that Dy ¢(t, ) = exp(D, f(¢p.,)t) into the equation
D2Gh(d) : Q). By application of the identity (2.44) and the definition of V" as in Equation
(2.46) property 2 is obtained.

Lemma 3 (Dinerentiability of the Solution to the Poisson Equation [59]). Let ¢(t, x) be the solu-
tion of the Cauchy problem Lo (t, @) = f(¢(t,x)); #(0,x) = @ with drift f : X — RI™Y,
Assume that both ¢ and f arc‘ k-times uniformly continuous differentiable and that ¢ has a unique
exponentially stable attractor. Further let h : X — R be a k-times differentiable function with uni-
form continuous k-th derivative. Then G}, is also k-times continuously differentiable with bounded

derivatives equal to [ D%(h o ¢, )(x)dr.
Proof. The proofis as in [59]. 0

2.4.9 HiGHER ORDER CORRECTIONS

As shown in [54, 59], it is possible to extend refinement idea, given sufficient regularity of the dy-
namical system ¢ and h. Loosely speaking, for a refinement of order m, the refinement expansion
consists of a set of operators A;, 7 = 1, 2 such that

1

1
AN:NAl—f- A2+0(N2)

In theory and under suitable differentiability assumptions, the method can be extended to obtain
even higher order expansion terms. This comes at the cost of extremely intricate expressions and
implementations which result in minor accuracy gains in applications. We also point out that in ap-
plication the first order correction usually strikes a good balance between the numerical complexity
and accuracy gain, example Section 3.5.1 - Table 3.2.
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3 MEAN F1IELD AND REFINED MEAN
FIELD APPROXIMATIONS FOR
HETEROGENEOUS SYSTEMS

In this chapter, we define an interaction model that allows obtaining asymptotic
convergence results for stochastic systems with heterogeneous object behavior, and
show that the error of the mean field approximation is of order O(1/N). We fur-
ther show how to adapt the refined mean field approximation, developed by the
authors of [54], and prove that the error of this refined approximation is reduced

to O(1/N?).

This chapter is based on our publication
S. Allmeier and N. Gast. “Mean Field and Refined Mean Field Approximations for Het-
erogeneous Systems: It Works!” Proceedings of the ACM on Measurement and Analysis of
Computing Systems 6:1, 25,2022, 13:1-13:43. DOI: 10.1145/3508033.
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3.1 INTRODUCTION

The mean field approximation method is a widely used tool to analyze large-scale and complex
stochastic models composed of interacting objects. The idea of the approximation is to assume that
objects within the system evolve independently. Following this assumption, interactions of objects
in the system are approximated by a “mean” behavior, which allows to model the system’s evolution
as a set of deterministic ordinary differential equations. Mean field approximation finds widespread
use in fields such as epidemic spreading [43, 90], load balancing strategies [87, 91], caching [60] or
SSDs [108]. Building on this approximation, a refined mean field approximation is introduced in
[54, 59] that greatly improves the accuracy of mean field approximations for populations of N = 10
to N = 100 objects. The popularity of mean field approximation lies in the ease of defining and
solving the differential equations as well as the increasingly high accuracy for large systems.

Most of the theoretical work, however, has been done for systems where the interacting objects
have homogeneous transitions, as for density-dependent population processes of Kurtz [77], or can
be clustered into a finite number of groups with similar statistical behavior. Yet, in many models,
heterogeneity plays an important role. This is particularly relevant to model caches, where object
popularities vary broadly among contents, or epidemic spreading, where variations of sensibility
among agents can greatly influence the long-term dynamics and vaccination strategies [61]. Using a
finite number of clusters with homogeneous behavior simplifies the underlying models and essen-
tially ignores the actual heterogeneity. Up to now, there are virtually no fully heterogeneous models
with theoretical guarantees on why mean field approximation is a valid technique.

In this chapter, we generalize the notion of mean field approximation and refined mean field
approximation to stochastic systems composed of N heterogeneous objects and show that similar
asymptotic results as for the homogeneous case hold. For such a system, we show that it is possible
to construct a set of ordinary differential equations (ODEs) which approximate P(Sk(t) = s), the
probability for an object £ to be in a state s at time ¢. This can be used to approximate the expectation
of a function of the state of an object (such as the average queue length in a queuing system).

To give some intuition, the way we construct our approximations is to consider a scaled model
with C identical copies of each object. This allows one to define the mean field approximation
() (t) and a 1/ C-expansion term vy, ) (t) defined in [S4]. These approximations are shown in [54]
to be asymptotically accurate as the number of copies C' goes to infinity. As the fully heterogeneous
system corresponds to having one copy, the heuristic reasoning is then to apply the approximation
with C' = 1. Up to now, there was no theoretical foundation on why this should work because all
results assume that the number of copies C' goes to infinity.
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We provide the first rigorous justification of the validity of this approach. The main contribu-
tion of this chapter is to show that if 2 ) (t) is the mean field approximation and v 4 (t) is the
expansion term defined in [54], then

P(Sk(t) = ) = z(r,5(t) + O(1/N),
P(Sk(t) = ) = Z(k,s)(t) + V(i) (1) + O(1/N?).

As an important corollary, if the system is composed of C' copies of N heterogeneous objects, we
then have P(Si(t) = s) = 24,5 (£)+(1/C)v (k.5 (t)+O(1/(CN)?). This shows that the accuracy
of the mean field and refined mean field approximation does not depend on the level of heterogeneity
of the system but only on the total number of objects (being N or NC').

To do so, we develop a heterogeneous interaction model in which each object changes state ei-
ther unilaterally or by interacting with d — 1 other objects. The main assumption that we make in
our model is that the rate at which a given tuple of d individuals interact scales as O(1/N%~1). As
there are O(N?) such tuples, this guarantees a uniform bound on the interactions between tuples.
This model covers an extensive range of models with pairwise interactions, such as infection models,
load balancing strategies, or cache replacement policies. These approximations can be computed by
solving a differential equation that can be easily integrated numerically. For the mean field approx-
imation, the number of variables grows linearly with the number of different objects V. For the
refined approximation, it grows quadratically with /N. Our proposed framework naturally extends
mean field models for homogeneous population processes and the results are comparable with [55,
77,113]. Our approach does not assume any homogeneity in the system and does not cluster objects
into a finite number of classes. Hence, it can be applied to interacting systems where all objects are
different.

To illustrate our results, we provide two examples that show how the mean field and refined mean
field approximation can be applied. They also show that the hidden constants in the O(1/N) and
O(1/N?) error terms given by the theorems are small in practice. Our first example is a list-based
cache replacement algorithm studied in [60] consisting of N objects whose popularities follow a
Zipf-like distribution. We study how the cache popularities depend on the replacement policy for
the transient and steady-state regime. For transient results, we compare the mean field and refined
mean field approximation with simulations, which indicates that the refined mean field provides a
significant improvement of accuracy. The results are even more striking for the steady-state regime
for which it is possible to compute the exact steady-state distribution if the system size is small. This
allows us to compare the accuracy of the two approximations and the simulation to the exact value.
We observe that, for any reasonable computational power, the confidence intervals provided by the
simulation are higher than the error of the refined mean field approximation as soon as N exceeds
a few tens. In a second example, we apply the approximation techniques to a heterogeneous two-
choice load balancing model. The heterogeneity in the model is introduced by considering varying
server rates. As for the previous examples, we give a full description justifying the use of the mean
field models and show by numerical computation that the obtained results confirm the theoretical
statements. Numerical calculations for values such as the average queue length and queue length
tail distribution are given. We also compare the approximation results to a homogeneous variant of
the system where the server rates are set to the average server rate of the heterogeneous model. This
shows that, as expected, taking heterogeneity into account strikingly improves the accuracy of the
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results. For both examples, we adapt numerical methods from the toolbox developed by [6], which
allowed us to implement and solve the differential equations with relative ease.

3.2 RELATED WORK

GENERATOR AND STEIN’S METHOD  This chapter builds on the recent line of work regarding the
use of Stein’s method [102]. This method allows one to estimate precisely the distance between two
random variables by looking at the distance between the generators of two related stochastic sys-
tems. This method has seen a resurgence of interest in the stochastic network community since the
work of [31,33]. There is still an active development in this area. For instance, this method has been
used to develop higher-order diffusion approximations [32, 33]. It is used in [66] to develop a nor-
mal approximation of a heterogeneous discrete time population process. One of the key differences
between our work and theirs is that the two aforementioned papers consider one-dimensional pro-
cesses (i.c., the state of each object of the system is either 0 or 1), and the extension to more complex
dynamics is not direct, at least from a computational point of view. One contribution of our work
is to demonstrate how to deal with multiple states, by changing the state representation.

REFINED MEAN FIELD METHODS  Stein’s method has been successfully used to study the accu-
racy of mean field methods in [55, 74, 114]. These works show that the accuracy of the mean field
approximation is O(1/N) for a system with N homogencous objects. By using an expansion of the
generator, these results have been extended in [54, 59] to propose what the authors called a refined
mean field approximation, that is similar to the system size expansion introduced in mathematical
biology [62, 63,109].

In fact, there exists a close link between the refined approximation that we propose in the chapter
and the approach of [54, 59]. Since the results of [54, 59] only apply to systems composed of homo-
geneous objects, let us consider a hypothetical model composed of C'identical copies of each of the
N object, and let us denote by X ([i)sc;) pies] (t) the number of copies of the object k that are in state s
at time ¢. By [54, 59], there exists a constant v(; 5 (¢) such that

E[X G 5P (1) = 2 (t) + %v(k,s) (t) + O(1/C?). (3.1)
Since our original model corresponds to C' = 1, the rationale behind our approximation is to use
T (r,5)(t) as a first order approximation and (x5 (t) + vV(x,s)(t) as the refined approximation. Yet,
this is no a priori guarantee of why O(1/C?) should be small for C' equal to one. As a key technical
contribution, this chapter gives the theoretical foundation of this method.

This requires to overcome several difficulties, that are our main contributions compared to the
aforementioned papers:

1. We define an interaction model that can be dealt with by bounding the interaction rates.

2. A key idea of our work is to use the indicators X}, 5(t) € {0, 1} and not the proportion of
objects in a given state. This allows us to construct the expansion terms and do the proofs.
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3.2 Reélated Work

3. Similar to previous works [55, 74, 113], we use generators to reduce the analysis of the mean
field error to the study of the sensibility of an ODE with respect to its initial conditions (Sec-
tion 3.6.2). The extra difficulty in our case is to carefully analyze the remainder terms: while
to analyze (3.1), the error is a finite sum of O(1/C') terms, here we have a sum of N (or N?)
terms, some of them being of order O(1/N?) and others being of order O(1/N?). Dealing
with all these different cases requires quite some care and is the subject of Appendix 3.8.4.

Note that to study heterogeneous population models, it is quite common to assume that there are
N classes with C' copies of the same objects of class k € {1... N'}. Thishasbeen used for instance to
study load-balancing strategies [91] or cache replacement policies [65,105]. Our approach generalizes
such methods as we assume that the objects can be fully heterogeneous. This is for instance what is
used in replica models [10, 86].

HETEROGENEOUS POPULATIONS AND CACHES  In the performance evaluation community, het-
erogeneous population models are very common when studying cache replacement policies, where
the popularity of objects is typically assumed to follow a Zipf-like distribution. As the dynamics of
caches are intrinsically complicated, many mean field like approximations have been proposed, such
as the famous TTL-approximation of [48] (sometimes misleadingly called the Che-approximation
after it was rediscovered in [40]) or fixed-point approximation like [42]. Theoretical support exists
to prove that these approximations are asymptotically correct [51, 60, 71].

The generic method that we propose in this chapter has two advantages: First, we prove that
the accuracy of the mean field method is O(1/N) whereas the above papers only obtain bounds
in O(1/v/N). Second, we develop a refined approximation that can greatly improve the accuracy
compared to the cited method, at the price of being computationally more expensive.

In particular, our result applies directly to the cache replacement model of [60] in which a mean
field approximation for the RAND(m) policy is derived. This chapter also contains a theorem that
shows that the mean field approximation is O(1/v/N)-accurate. Yet, we do not think that the proof
of the main result of [60] is correct because of the use of a martingale inequality combined with the
infinite-norm (and not a Ly-norm). More precisely, we believe that the problem in their proof is
just below their Equation (13) when Lemma 1(ii) is used. What their Lemma 1 implies is that M (t)
is a Martingale such that E[||M (¢ + 1) — M(t)||*] < c. This is used below their Equation (13) to
imply that E[|| M (t) I”] < ct. The problem is that this is true if the norm || M| is a Lo norm (or any
norm that can be written as a scalar product || M||* = (M, M) ) but not if || M || it is a supremum
norm. The norm used in [60] is a supremum norm and we do not believe it can be derived from
a scalar product. The approach that we take in this chapter is radically different as we work with a
comparison of generators. This allows us to correct the proof of [60] by obtaining a tighter bound.
Note that we do not claim that their result is false, but only that the proof is false. We explain in
Appendix 3.8.3 that their result is a consequence of ours (and that our results give a finer bound).

39



3 Mean Field and Refined Mean Field Approximations for Heterogeneous Systems

3.3 THE HETEROGENEOUS POPULATION MODEL

3.3.1 INTERACTION MODEL

We consider a population model composed of IV interacting objects. Each object evolves in a finite'

state space S. The state of the k-th object at time ¢ is denoted by S ,iN) (t) € S and the state of the

system at time t is given by S (¢) = (S§N) (t),..., SJ(VN) (t)) € SV. We assume that the stochastic

N . . . . . .
process S = (S™)(t)),50 is a continuous time Markov chain (CTMC) whose transitions are
the results of interactions between objects. More precisely, we assume for any tuple of d objects

k = (ki, .., ka), that these objects jump simultancously” from their states s = (s1,...,54) to 8’ =
N . . .
(sh,-..,8Yy) # (s1,...,5q4) at rate Wld_lfr,(e,s)_)s,. All such interactions occur independently. We

also assume that d < dyyax is a constant independent of N, i.e., the maximal amount of interacting
objects does not scale with the system size.

Throughout the chapter, we will refer to such a model as a beterogeneous population model. Note
that while a transition can affect up to dpax objects, all the examples studied in the chapter will be
with diax = 2 for which there are two types of transitions:

* d = 1: An object jumps without interacting with others. We call this a unilateral transition.
* d = 2: Two objects interact. We call it a pairwise interaction.

The critical assumption of our model is that the interactions between d objects scale as O (57— ).
In particular, the rates of unilateral transitions scale like O(1) and the one of pairwise interactions
like O(1/N). This 1 /N9 factor is here because there are O (N ') tuples of d objects. Hence, our
condition implies that the total rate of transitions is O(/V) and that one tuple cannot have much
higher rates than other tuples.

To simplify notations, we assume that for any permutation o of the set {1 . . . d}, the rates satisfy
(N) _ (N)
kl7~-"kd7(517'~~75d)*>(5/17~~~7s/d) - Tko'(l)7"'7k0'(d)7(30'(1)7"'7'50'(d))*>(s;— 1 7~-'»3:,- d ).
. . (-) ( ) . .
jects are homogeneous but should be seen at a notation artifact. An alternative notation would be
to consider tuples such that ky < ko < - -+ < kg and to multiply all rates by d!. This would lead to

the same model but at the price of heavier notations.

This does not imply that ob-

3.3.2 STATE REPRESENTATION

The key element of our analysis is to use an alternative, binary based, representation of the state

space. Foran object k € {1... N} and astate s € S, we define X((,i\;?) (t)as

(N) 1\ | 1 ifobjectk isin state s at time ¢,
X(k,S) (t) = l{SéN)(t):S} T { 0 otherwise.

"The fact that objects share the same state space is done without loss of generality as we do not assume that Markov
chains are irreducible.

*Note that for the transitions caused by interactions, we do not impose that all objects jump: we may have s; = s},7 €
{1,...,d} in which case some objects keep their state.
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3.4 Main Results

The state of the system is described by X ™V (¢) = (X((,ivs)) (t))keqr...ny.ses with X {0, 1}V<IS]
being the set of attainable states for X ™) = (X™)(t)),>0. In particular, for all 2 € X™), one
has " s Ts) = 1 which follows from the fact that an object can only be in one state at any time.
The notation X ™ is less compact than the original representation S™) but will allow for an easier
definition of the mean field and refined mean field approximation.

The transitions of the model can all be expressed in terms of X ™) Lec e (ks denote a matrix of
size N x |\S| whose (k, s) component is equal to 1, all others being equal to 0. If object k transitions

from state s to state s, xXW changes into X + eggz,) - eggi). Hence, expressed as a function

of X theprocessX ]umps to (for k1, ko, ... € {1... N}and sq, 8], s2,85,... € S):

(N N (V) (N) (N)
X +e(k1’s,1) €(ky,s) ALTate rkh(81)_>(s,1)X(khsl) (3.2a)
(N, ,N) () (N) eN)
X +e(k175/1) € (k1,51) + € (ka,s5) " E(ka,52)
1
(N) (N) (N) (3.2b)

atrateQNTkl,km(Sl,Sz)H(S'l,S/g) (k1,81)* " (k1,81)

(N) | (N) _(N) (N) ()
XUt ) T ) T T k) T kgisa)
Lo (N) (N)
ALTAE g Ty g 5 X)) X (ksa) (3.2¢)

In the above equations (3.2a) corresponds to a unilateral transition of object k; from s; to ),
(3.2b) corresponds to transitions caused by a pairwise interaction between object k; and ks and
(3.2¢) describes the general form of the transitions of d interacting objects. Recall that we assume
that (s1, s2,...) # (s}, 85, ...) but we do not necessarily assume all states change, i.c., a pairwise
interaction might result in either one object changing state or two objects that change state simul-
taneously.

3.3.3 MAIN NOTATIONS

Throughout the chapter, we use bold letters (like X N g, .. .) to denote matrices and regular
letters (like X ((,iv s)), T(k,s), IV, . ..) to denote scalars. Capital letters (like X M) 8y denote ran-
dom variables whereas lower case letters (x, UEIQE), ...) are for deterministic values. The indices
k, ki, k', ... arereserved for objects while s, 51, 5" . . . are reserved for the states.

In the results below, when we write that a quantity & satisfies h = O(1) or h = O(1/N), this
means that there exists a constant C' independent of N such that b < C'or h < C//N. In general,
these constants do depend on other parameters of the problem (like |S|, 7, or ¢).

3.4 MAIN RESULTS

In this section, we define the mean field and refined mean field approximation for the heterogeneous
system and formulate the corresponding theorems.
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3 Mean Field and Refined Mean Field Approximations for Heterogeneous Systems

3.4.1 DRIFT AND MEAN FIELD APPROXIMATION

Foragivenstate x € X C {0, 1}V*I5 we define the drift of the system in z as the expected

(N)

variation of the stochastic process X"/ at time ¢:

1
FOO X)) = i ZEIX (4 dr) — X V() | X 1) = ]
Based on the transitions (3.2), if d < 2 (i.¢., only unilateral and pairwise interactions)’, the (k, s)
component of the drift can be expressed as:

(N) (N)
Z(rk,(s’)—%s)x(k#’) = Th ()= (s) T kss)) (3.3)
s'#s

1 (V) (N)
+ N Z (rk,k’l,(s’,s’l)—)(s,sl)x(k’sl)x(kl,31) - Tk,kl,(s,sl)%(s’,sg)x(k:s)x(kl75,1))

!
s'k1,81,8]

The first term corresponds to unilateral transitions while the second term corresponds to transitions
caused by pairwise interactions. Note that compared to (3.2b), there seems to be an extra factor 2
in front of the pairwise interactions. This is not an error and it is due to the fact that we fixed the
position of s in the above equation.

Note that if the conditional expectation is only defined for & € X™) < {0, 1}*I5], the above
expression (3.3) can be extended to a function f™¥) : Conv(X™)) [0, 1]V*ISI — RNxISI
where Conv(X (M) denotes the convex hull of X' Fora given initial conditionx € X (V) we define
the mean field approximation of the heterogeneous population model as the solution of the ODE
4 M, t) = fN (@™ (2,1)) that starts in & = X M) (0), and we denote by ¢V (x, t) the
value of this solution at time ¢. The solution is unique as f (V) js Lipschitz-continuous (all elements
of f™) are polynomials) and ¢)(, ) takes values in a bounded set. Notice, from the definition of

the ODE, that qﬁgi\g) € [0,1],and >, ¢Ei\2)<$7 t) = 1forall t and  in Conv(X ™).

3.4.2 ACCURACY OF THE MEAN FIELD APPROXIMATION

To obtain asymptotic properties we require that there exists a uniform bound 7, independent of N,
such that forall sq, 8/, s2, 85, ... € Sand k1, ko, ... € {1,..., N} we have:

(N)
k17~~~7kd’(slr“:sd)*)(s,l’“wszl)

<. (3.4)

Theorem 4. Assume that the model, defined in Section 3.3.2, satisfies (3.4). Let PN (x,t) be the
solution of the ODE introduced in Section 3.4.1 with initial condition X M) =z € XM gnd
drift fN). Then, for (k,s) € {1,...,N} x Sandt < o,

P(Sk(t) = s) = E[X () (1)] = é{p ) (@, 1) + O(1/N). (3.5)

3We give the general drift definition in Appendix 3.8.2
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3.4 Main Results

Key ideas of the proof. A complete proof is provided in Section 3.6.3. Here we only give a brief
overview. Note that by definition of the initial value problem and the drift being a polynomial,
the differentiability of the solution ¢ w.r.t. the initial condition and time is given. In the first
part of the proof, we borrow ideas from [55, 74] and use a Taylor’s expansion of (],’)(N) to show that

P(Sk(t) = s) — qbgivi) (x, t) can be bounded by a weighted sum of _Powa@h) o, key tech-

O (1 \OT 11 11

(W5 IT (11 57
nical difficulty of the proofis then to show that these terms are small when the number of objects is
large. To do so, we distinguish the cases where &’ and k" refer to the same object as k or not. O

The statement of the theorem can be interpreted as saying that the probability of an object k in
the Markov chain X to be in state s is approximated by @, ) with an accuracy of O(1/N). Indeed,

with this result we can obtain similar statements as for the homogeneous case where in many cases
1

asymptotic results are proven for Z8M () = v SN X(k.s)(t), the stochastic process describing
the fraction of objects which are in state s. It should be noted that the solution of the ODE ¢ ),
taking values in [0, 1], is not close to the value of X (4, ), which indicates if object & is in state s and
takes the values zero or one. Hence, single trajectories of the stochastic process are not comparable
to the approximation.

To illustrate this result, let us consider a cache model with a total of N' = 4 objects and a cache
that can store 2 objects. We assume that the popularities follow a Zipf distribution of parameter
0.8, meaning that object k is requested at rate A\, = 1/k"® and use the RANDOM replacement
policy. The policy exchanges objects the following way: When an object is requested and inserted in
the cache, we evict another object picked uniformly at random among the two objects in the cache.
Initially, the cache contains the objects 3 and 4.

In Figure 3.1, we plot the behavior of the cache as a function of time. Each plot corresponds to
a different object and contains three curves: In gray we plot one stochastic trajectory of the cache,
Xkn) (1), where X530y = 1 means that the object & is in the cache and 0 that it is not. In blue,
we plot the probability for object k to be in the cache at time ¢, P(object & in cache at time t) =

E[X (k,in)(t)], which is computed by averaging over 1000 trajectories. In green, we plot the solu-
tion of the mean field approximation, <bgi)n) (a,t). We emphasize that X () is never close to

gbgivi)n) (x, 1), because the former can only take the values 0 and 1 whereas the latter takes values be-

tween 0 and 1. Moreover, the latter, which is the mean field approximation, seems to provide a very
good approximation for the object to be in the cache.
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it i o214 i ! 021 | i il e Ny Ph
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O oo o —d o] oot i 0.0 bomimiet =l—] 0] imimm s — L
= 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Time (t) Time (t) Time (t) Time (t)

—-= One stochastic trajectory X, in) P(item k in cache), (estimated by simulation) ~ ----- Mean field approximation

Figure 3.1: Behavior of the RANDOM policy for a cache of size two and a total of four objects. For each of
the four objects, we compare the stochastic system with the mean field approximations.
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3 Mean Field and Refined Mean Field Approximations for Heterogeneous Systems

3.4.3 AcCCURACY OF THE REFINED MEAN FIELD APPROXIMATION

In [54, 59], Gast et al. introduced a refined mean field approximation which provides significantly
more accurate approximations in the homogeneous case. The idea is to study higher moments of
X(k,s) — O(k,s) and to derive refinement terms. Taking the refinements into account is especially
important for small to moderate system sizes, i.e. N &~ 10— 50, where the mean field approximation
does not capture the dynamics of the stochastic system well. In this section, we show how to derive
the refinement for our heterogeneous model.

To construct the refinement term, we consider an (imaginary) system in which there are C' replicas

of the same object. Let us denote X ([kcspies} (t) the fraction of replicas of type k that are in state s

at time ¢. The process X[© P s a density-dependent population process and our original process
is given by X = X (<opy] “The mean field approximation of X [Ceopied] i5 2150 ™). The idea of

opies]

[54] is to study the stochastic fluctuation of X ([kC; (t) around its mean field approximation. The

. o N
authors show that there exists a set of deterministic values UEk‘ 2) (t) such that

C copies 1
E[X (o™ (0)] = ¢ (@.1) + Fo(o (@, 1) + O(1/C?). (3.6)

The values v((,ivs))(t) are shown in [54] to satisfy a system of linear ordinary differential equations

whose solution can be expressed in integral form as:

1 t a2§b(l~c,s)
U(k,s) (wa t) = § / Z Q(kl,sl),(k2,52)(¢(w, T))a a ((b(w’ T),t — T)dT
0 (kp,51),(k2,52) L (k1,51) O (ka,s2)
€{1,.,N}xS

where Q k, s,),(ks,s2) (&) corresponds to the expected change of the covariance between the values
of X (1, s;) and X1, s,) of the stochastic system at some given point X = x. We formally introduce
and elaborate more on the refinement terms in Appendix 3.8.2.

In our heterogeneous population model, we have no replica which corresponds to setting C' = 1.
Hence, the above bound does not guarantee that the O(1/C?) should be small for C' = 1. The next
theorem shows that, surprisingly, using the refined approximation (3.6) with C' = 1 copy leads to
an approximation that is an order of magnitude more accurate than the mean field approximation
provided before. When comparing Equation (3.5) and (3.7), what this theorem shows is that the
correction vg,i\g) (x,t) is of order O(1/N) and is the leading term of the O(1/N)-term of Equa-
tion (3.5).

Note that to obtain the accuracy bound, No further assumption is needed compared to the case
of the mean field approximation. That is, we assume that the parameters " are uniformly bounded.

Theorem 5. Assume that the model, defined in Section 3.3.2, satisfies (3.4). Let gb(N) (x,t) be the
solution of the ODE introduced in Section 3.4.1 with initial condition X M) =2 € &M and
drift fN). Let v\ (z,t) be the solution of the refinement term explicitly defined in Appendix 3.8.2.
Then, for (k,s) € {1,...,N} x Sandt < o,

P(Sk(t) = s) = ¢ (. ) + vy ) (2, 1) + O(1/N?). (3.7)
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3.4 Main Results

Key ideas of the proof. A complete proof is provided in Section 3.6.4. The proof of Theorem 5 uses
the same methodology as the proof of Theorem 4 but refines the analysis to extract the term v.
First, we use a second-order Taylor expansion instead of the first order expansion used in the proof
of Theorem 5, this allows us to derive an expansion term in integral form. Second, we show that
this expansion term is essentially equal to the refinement term v. Last, we show that the remainder
terms are of order O(1/N?) by carefully studying how small the third and fourth derivatives of ¢
with respect to its initial condition are. l

The theorem shows that, by adding the refinement term, the error of the refined approximation
is of order O(1/N?), which is an order of magnitude better than the O(1/N) of the classical mean
field approximation. This implies that both equations are asymptotically exact as the number of
interacting objects goes to infinity. Hence, the refinement is especially interesting to approximate
systems with few interacting objects. Note that in theory, it is possible to obtain a refined-refined
approximation that has an accuracy of O(1/N?). For that, one can adapt the 1/N?-expansion of
[54] to compute a second expansion term. This expansion depends on up to the fourth derivative
of ¢. Yet, proving carefully that this expansion is O(1/N?)-accurate seems difficult as it requires
obtaining precise estimates of up to the sixth derivative of ¢. Also, from a practical point of view,
computing such an expansion involves solving an ODE with O((/N S)*) variables which seems dif-
ficult as soon as IV grows. Hence, in this chapter, we restrict our attention to the first expansion
term.

To illustrate how this refinement improves the accuracy compared to the classical mean field, we
consider the same cache replacement policy as the one studied in Figure 3.1, with four objects and a
cache of size 2. Compared to the previous figure, we now added an orange curve that corresponds to
the refined mean field approximation. We observe that, if the mean field approximation was good,
the refined mean field approximation seems almost exact.

In fact, the refined mean field approximation lies within the confidence interval of the sample
mean which is calculated from 1000 sample trajectories of the underlying system. It is noticeable
that computing the mean field and refinement term takes about 150ms whereas simulating 1000
sample paths and calculating the sample mean takes several seconds. This suggests that for the same
computational budget, the refined mean field approximation is more accurate than the simulation.
We will elaborate more on that in Section 3.5.1.
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Figure 3.2: Behavior of the RANDOM policy for a cache of size 2 and a total of four objects. For each of
the four objects, we compare the stochastic system with the mean field and refined mean field
approximations.
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3 Mean Field and Refined Mean Field Approximations for Heterogeneous Systems

ON THE APPLICABILITY TO PARTIALLY HETEROGENEOUS SYSTEMS

Consider the case that the stochastic system is not fully heterogeneous, i.e. there exists a finite num-
ber of classes (say V), each class having C' objects that have the same behavior. Such a model cor-
responds to our model of C' copies. As this model is a density dependent process, the results from
[54,59] show that the mean field approximation is O(1/C')-accurate and that the refined mean field
approximation is O(1/C?) accurate for the C-copy model. We now show that Theorems 4 and 5
can be used to obtain the following much sharper bound:

copies 1 1
The (only) difference between this equation and (3.6) is that the term O(1/C?) of (3.6) is replaced
by the much smaller term O(1/(C'N)?). This implies that the accuracy of the mean field interaction
model does not depend on the number of homogeneous copies but only on the total number of
objects.

To see why (3.8) works, we remark that our model with C' copies of IV classes can be represented
by a fully heterogeneous model with N' = C'N objects (one just have to use equal rates for objects
that are similar). The result of Theorem 4 and S imply that the mean field (v ") and refined mean
field o) + vV approximations are O(1/N") and O(1/(N")?) accurate. By replacing n’ by nC

and summing over identical objects, one obtains (3.8).

3.4.4 NUMERICAL COMPLEXITY

From a computational point of view, the mean field and refined mean field approximations greatly
fasten the estimation of transient or steady-state values compared to a direct study of the origi-
nal Markov process S (V) Indeed, the continuous-time Markov chain S™) has up to S|V states
where the mean field approximation can be computed by solving a non-linear ODE with N |S| vari-
ables. As shown in Appendix 3.8.2, the refinement term v®) is the solution of a linear ODE with
N|S|+(N|S|)? variables. This means that both approximations can be solved by using standard nu-
merical integrators. Moreover, the number of dimensions of these ODEs grow linearly (for the mean
field) or quadratically (for the refinement) in the number of objects whereas an exact analysis grows
exponentially with the number of objects. In some cases, computing the drifts or its derivative can
be costly as it grows linearly with the total number of possible transitions at a given state x € X' (V):
the number of transitions can grow exponentially with the maximal number of interacting objects
dmax- Yet, it is often the case that closed form expression or simplifications are obtainable. It is also
noticeable that for d,,,.x = 2 the second derivative of the drift becomes constant, which can be used
to speed up computations.

To study the time taken to compute the mean field and refined mean field approximation in more
detail, we consider the RANDOM model already presented in Figure 3.2 and we vary the number
of objects N from 10 to 1000. For each system size N, we measure the time to compute the four
values described next and we report them in Table 3.1.

* (Transient) The first two columns correspond to the computation of the mean field approxima-

tion xgiv)) (t), and the refined approximation (z + U)giv)) (t) fort € [0,1000]. The computation
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3.5 Numerical Experiments

Transient up to 7" = 1000 | Steady-state (=Fixed point)
N | meanfield | refined m.f. | meanfield | refined m.f.
10 30ms 180ms 2ms 2ms
30 30ms 370ms 3ms Sms
50 3Sms 1s 2ms 6ms
100 60ms 14s 3ms 30ms
300 170ms —* 9ms 200ms
500 300ms —* 10ms 700ms
1000 970ms =* 30ms 9s

Table 3.1: Computation time of the mean field and refined mean field approximation for the RANDOM
model as a function of the number of objects V.
* “_” means that the ODE solver did not finish before 30 seconds.

is done by using a straightforward implementation of the ODE:s given in Appendix 3.8.2, which is
solved by using the function solve_ivp of scipy. There is no particular optimization of the code to
use that a large number of terms are 0. We observe that computing the mean field approximation
seems to scale linearly with NV and can be done for a system of more than a N' = 1000 objects. For
the refined mean field approximation, the computation cost grows quickly when N exceeds 100 (it
takes several minutes for N = 200 objects).

* (Steady-state). The last two columns correspond to the computation of the limiting value as ¢
goes to infinity: JJE,]CV)) (00) = limy 00 xgg)) (t) and U((g,))(oo) = limy 0o UE,JC\’[.)) (t). We observe that
the computation of these values is much faster: the computation of the mean field approximation is
essentially instantaneous whereas the computation of the refined mean field is doable for N' = 1000.
This is since the computation of the steady-state values corresponds to finding the fixed point of a

linear system of ODEs, which is done by solving a linear system.

The choice between the mean field and refined mean field approximation can certainly depend
on the system size as the complexity of the former grows linearly with N and quadratically for the
latter. Hence, for system sizes larger than N > 100, the computation time of the refined mean
field increases rapidly. As shown in Theorem 4, for large N the mean field approximation already
gives a good estimate of the true values. This makes the refined approximation more interesting for
reasonable system sizes (say N < 100). Note that for a homogeneous system, the complexity of
computing the refined approximation does not depend on the number C' of replicas. For a fully

. N i
heterogeneous system, this is no longer the case because the vék .)) depends on the object’s identity.

3.5 NUMERICAL EXPERIMENTS

In this section, we illustrate our main results with two examples, a cache replacement model and a
two-choice load balancing model. We will see that both models fulfill the requirements for Theo-
rems 4 and 5 and that the hidden constant given in the theorems is small. The two examples are
chosen to illustrate models for which the classical, homogeneous mean field approximation cannot
be used but our heterogeneous framework applies.
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3 Mean Field and Refined Mean Field Approximations for Heterogeneous Systems

3.5.1 ArPPLICATION TO A CACHE REPLACEMENT ALGORITHM: THE
RANDOM/(m) MopEL

As a first example we consider the list-based RANDOM(m) cache replacement policy which was
introduced in [60, 64]. List-based cache replacement policies are used to order content in a cache

separated into lists. The cache is separated into ¢ := |S| — 1 lists with sizes mgN), e ,méN). When
an object is requested, if it is not in the cache, it is inserted in the first list and replaces a randomly
chosen object from it. If the object is in a list s, it is promoted to list 5 4- 1 and a randomly chosen
object from list s 4 1 is moved to list s. If an object that is not in the cache is requested we call it
a ‘miss’ otherwise a ‘hit’. It is shown in [60] that list-based cache replacement policies can greatly
improve the hit rate compared to the classical RANDOM or LRU policies, at the price of being less
responsive. The authors of [60] used a mean field approximation for which some theoretical support
was given (essentially by showing that the error of the mean field approximation is O(1/ VN)). In
this section, we push this analysis further in two directions. First, we show that our framework im-
proves on the bound of [60] by showing that the error of the mean field approximation is O(1/N)
and not O(1/+/N). Second, we show that our refined approximation provides an extremely accu-
rate approximation (essentially more accurate than simulation). While this last fact was empirically
observed in [36], Theorem 5 provides theoretical support by showing that the error of the refined
approximation is O(1/N?).

MODEL AND APPROXIMATIONS

We consider that there are V objects with identical sizes. Requests for an object k arrive according
to a Poisson process of intensity \j. In our framework, the state of object k at time ¢ is S ]iN) (t) €
{0,1...¢}, that represents the list in which object & is ("0" means that the object is not stored in
the cache). Following our framework, we denote by X4 +)(t) the random variable that equals 1 if
object k is in list s and 0 otherwise. According to the RANDOM(m) policy, if object £ is in list
s € {0,1,...,¢ — 1} and gets requested, then it is moved into list s 4+ 1 and a randomly selected
object (say k1) from list s 4- 1 moves into list s. The corresponding transitions for the Markov chain

X are:

A
X = X + €st1) — €(ks) T €(k1,s) — €(kr,5+1) at rate %X(k,s)x(kl,s—kl)- (3.9)
ms+1

Here, A\x X () is the rate at which object k is requested while being in list 5, and X1, 541)/ mgN) is
the probability that object £ is in list s 4+ 1 and is chosen to be exchanged.
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3.5 Numerical Experiments

The drift of the stochastic system is the vector ( f(xs)(Z))k,s). By definition, for object k in list
s, the (k, s) component of the drift is

N
firs) (T) =Mk (k51 Z

L(k1,5—1)T(k,s)
k:1:1
AR
k
+ (Z (k) T (ks 1) — ML(h,s)) Ls<t)
ki=1 m5+1

The mean field approximation is the solution of the ODE & = f (). Note that this ODE is the
same as the one given in [60].

. . . . .1 1 (N) B
The transitions of this model are pairwise interactions with by ;- oy o4y = — 7~ Ni s as defined
My

in (3.2b). There is no unilateral transition. To apply Theorems 4 and 5, we assume that the list sizes
mEN) grow linearly with /N which guarantees that b remains bounded by b= % Therefore,
the assumptions of the theorems are satisfied as soon as the values \;, are bounded and the list sizes
grow linearly with the number of objects. This guarantees that the mean field approximation is

O(1/N) accurate whereas the refined mean field approximation is O(1/N?) accurate.

TRANSIENT ANALYSIS

We calculate the solution of the ODEs for the mean field and refined mean field approximation
and compute the simulations by adapting the toolbox [6]. We implement the Markov chain, the
drift f, the drift derivatives and @ for the approximations based on the transitions (3.9). For our
numerical example, we consider a cache with /N = 20 objects for which the request rates follows a
Zipf distribution with parameter v = 0.8, thatis, A\, = A/k* with A being a normalizing constant.
We consider a cache with three lists of sizes m; = 5, my = 3, and msz = 2.

In Figure 3.3 we compare the mean field and refined mean field approximations of the cache popu-
larities, z.e., Z,]CVZI Ak (k,s) and E]kvz1 Ae(Z k) Fk,s)) fors = 0,1, ..., 3, against the “true” value
Eivzl ME[Xks)], s =0,1,...,3 thatis estimated by simulation. We compute the sample mean
and the 95-percent confidence interval of the cache popularities by running 2000 Markov chain
simulations. This figure shows that the mean field approximation captures the qualitative behavior
of the stochastic process very well. Quantitatively, the mean field provides a good approximation
but does not accurately capture the behavior of the system, especially for the third list. The values
of the refined mean field approximation give a considerably better approximation. It lies within the
95-percent confidence interval of the sample mean and seems to be almost exact.

Yet, evaluating how precise the refined approximation is difficult since it lies within the confidence
interval of the simulation. To study this error in more detail, Next we study the steady-state behavior
of the cache, for which an exact analysis is doable when 1 is small enough.

STEADY-STATE ANALYSIS

The previous results show that the mean field and refined mean field can accurately approximate the
transient behavior of the RANDOM(m) policy. In Figure 3.4, we compare the steady-state values
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Figure 3.3: Transient state comparison of cache popularities.

of the simulation, mean field and refined mean field approximation against an exact solution. To
make the figure visible, we consider a case with 8 objects having a Zipf popularity with parameter
0.5 and three lists of sizes 2. This figure shows that even for the steady-state, the mean field and
refined mean field approximation are very good estimates of the true mean. As for the transient
regime, this figure shows that the refined mean field approximation captures the cache popularities
more closely than the mean field approximation: the curve provided by simulation and by refined
mean field approximation are almost indistinguishable. Note that the bound obtained in Theorem 4
and S are only for the transient regime. We believe that obtaining a similar bound for the steady-state
is possible but requires to precisely control how fast the mean field approximation converges to its
fixed point. We leave this for future work.
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Figure 3.4: Steady-state probabilities estimated by simulation, mean field and refined mean field approxima-
tion.

While the previous figure suggests that the refined mean field is extremely accurate, it does not
give a precise idea of how accurate the approximation is. To go one step further, we consider a cache
model with N different objects following a Zipf popularity with parameter o = 0.5, and a cache
with two lists of size m; = my = 0.3V ]. We study the accuracy of the mean field and refined
mean field approximation as /N grows. One difficulty to do so is that when the number of objects V
is large, obtaining an accurate simulated estimation of P(Sy, = s) forall (k,s) € {1... N} x S'is
difficult. As we show below, the refined mean field seems more accurate than the simulation as soon
as N is more than 20.
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3.5 Numerical Experiments

Mean field Refined mean field Simulation
N | Error N x Error (time) | Error  N? x Error  (time) Error  (time)
10 | 0.0142 0.142 (10ms) | 0.00197 0.197 (10ms) | 0.00026 (4.3s)
20 | 0.0074 0149  (1lms) | 0.00049 0197  (13ms) | 0.00043 (4.6s)
30 | 0.0050 0151  (l4ms) | 0.00022  0.196  (17ms) | 0.00047 (4.9s)
40 1 0.0038 0153 (13ms) | 0.00012 0195  (22ms) | 0.00055 (6.1s)
50 | 0.0031  0.54  (17ms) | 0.00008  0.93  (30ms) | 0.00055 (5.7s)

Table 3.2: Average per-object error of three estimation methods: mean field, refined mean field and simula-
tion. We also indicate in parentheses the time taken to compute these numbers.

We show in Appendix 3.8.3 that one can use the product form of the steady-state distribution to
obtain a recurrence equation for the steady-state probability of P(S), = s). While the complexity
of computing this is quite large for large caches (our implementation does not allow us to compute
it for more than 3 lists of size 10), it is possible to compute the exact steady-state distribution for
relatively small values of m. We call this value W?,’;i“)t We also compute an estimation ﬂzrlfthc’d for
each method € {mean field, refined mean field, simulation}. For the estimate computed by using
simulations, we simulated 10% requests and estimate the steady-state probability after a warp-up

period of 107 requests. The average error of a method is defined as

Error(method) = Z ’ meth"d Tihs)|- (3.10)

We report in Table 3.2 the error of the three estimation methods (mean field, refined mean field
and simulation). By Theorem 4 and 5, we expect the average error of the mean field to be of order
O(1/N) and the error of the refined mean field to be of order O(1/N?). This is what we observe in
Table 3.2, in which we also show the error multiplied by N or N? (depending on the method), to
emphasize the convergence rate. We also observe that when NV islarger than 20, the simulation makes
more errors than the refined mean field. Note that, the value obtained by simulation is an unbiased
estimator of the true value, and the error that we report arises because we can only simulate a finite
number of requests. For our simulation, we choose 108 requests to have a reasonably fast method (it
takes between 5 and 10 seconds to simulate the 10® requests by using an optimized C++ simulator).
As a matter of comparison, we also indicate in parentheses the time taken by our implementation
to compute the mean field and refined mean field approximation. Since we consider a relatively
small system (at most N = 50 heterogeneous objects), the computation of the refined mean field
approximation is fast (less than 30ms). This shows for N' > 30, the refined mean field is much more
accurate than the simulation, while being much faster to compute. The time taken to simulate a
system of [N objects grows with the number of heterogeneous objects N because the complexity of
sampling from a Zipf distribution with N object grows with N. Yet, this additional computation
cost is low (sampling from N objects can be done in O(log N)). For the refined mean field, the
situation is different and the computation time might be large for high values of V. Our experiment
suggests that it is possible to compute a refined mean field approximation for a few hundred objects
in a relatively fast time (less than 5 seconds). Note that for N = 500 objects, the error of the refined
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mean field approximation is in theory 100 times smaller than the error reported in Table 3.2 for

N = 50 (z.e., extremely small).

3.5.2 APPLICATION TO A LOAD BALANCING ALGORITHM: THE TWO-CHOICE
MODEL

MODEL AND APPROXIMATIONS

In our second example, we consider a variation of the well studied two-choice model [87]. In con-
trast to the homogeneous case, where all servers have equal service rate parameters, we consider a
heterogeneous setup in which processors can have different speeds. We study the impact of the het-
erogeneity of servers on their performance. Note that a similar analysis was done in [91] by using two
classes of servers. The purpose of this example is twofold. It illustrates that our framework can in-
corporate load balancing models with heterogeneous servers. It also shows that taking heterogeneity
into account in such systems is important if one wants to characterize the performance precisely.

The model consists of IV servers with heterogeneous service rate parameters pi, k = 1,..., N
and a finite bufter of size b, including the job in service. Jobs arrive according to a Poisson process
of rate An, we call A the arrival rate. For each incoming job, we randomly pick two servers. The job
is then assigned to the server which has the least number of unfinished jobs. If both servers have
the same queue length and a full buffer, the job is discarded. Otherwise, at equal queue length, the
assignment between the two servers is done at random. The service time of a job in the queue of
server % is exponentially distributed with mean p;. The state of a server £ at time ¢ is its queue length
Si(t) € S ={0,1,...,b},state 0 is referring to the idle state.

We denote by X4, ) the random variable that equals 1 if server £ has s jobs. The process X =
(X(k,5)) (k,s) is a Markov chain whose transitions are (forall k, ky € {1... N}):

X=X €(k,s) T €(k,s—1) atrate ,ukX(;ﬁs), (3.11a)

X = X +e(sq1) — €s atrate (2)\]\]1{31254_1} + )\Nl{slzs})%%. (3.11b)
In the above equation, the first type of transition (3.11a) corresponds to the completion of a job by
server k when the queue is of size 1 < s < b. It reduces the queue length from s to s — 1 which
sets X (1 5) to O and X ,_1) to 1. The second type of transitions, equation (3.11b), corresponds to
adding a job to a server k having 0 < s < b — 1 jobs in the buffer. In this case, the queue size is
increased by one from s to s + 1. To explain the transition rate we see that the servers k, k; can be
selected in two ways, by selecting k or £ first and the other second. In the case that both queues
have equal length, the chance to add the job to server & is 1/2. If both buffers are full, the job is
discarded.

This model has both, unilateral transitions with r,(c (S)) L(s—1) = Mk and pairwise interactions with

N .
Tl(e,k)l,(s,sl)a(erl,sl) = (2A\1{5, 35113 + AL, =5} ) /N. The bound (3.4), required to apply Theorems

4 and 5, is verified when the values of A and p, are bounded independently of N.
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3.5 Numerical Experiments

To simplify notations, let g(t) = S°0 | 3" s>s X(k,3)(t)/N be the fraction of servers at time ¢
with queue length at least s. By summing over all possible values of £ and s1, the transition (3.11b)
can then be rewritten as

X=X+ €(k,s+1) — €(k,s) atrate A X(k,s) (gs + gs_H).

By using this notation, the drift for index (&, ) is
Foes) () =152 (o,541) — AZ(1es) (G5 + Gs+1) — (BeT(hs) — AT(ks—1)(gs—1 + 95)) Lis>1}-

NuMERICAL COMPARISON

As for the caching example, we adapt methods of the toolbox [6] to perform a numerical comparison
of mean field and refined mean field approximation against an estimation of the expected value of
the system. Following the equations (3.11a) and (3.11b) we implement the Markov chain and define
the drift f, the derivatives of f and the tensor Q. To obtain the plots, we consider models with
systems sizes of N = 10, 20, 30, 40 and an arrival rate A = 1. The heterogeneity is introduced by
the consideration of differing server rates. For every system size, we consider a model having service
rates as follows. One fifth of the server rates is equal to 2.0, one fifth is equal to 0.5 and the remaining
rates are sampled uniformly between 1.0 and 1.4. In transient state we calculate the sample mean
for the system sizes by averaging over 2000 simulations for N = 10, 20, and over 3000 simulations
for N = 30, 40. For the steady-state, the estimations are computed by calculating the independent
time-average of 19 x 10 events of the Markov chain after a warp-up of 5 x 10° events. To compute
the mean field and refined mean field approximation faster, we restricted the queue size of the system
to a maximum of 12 (for simulation, we assume unbounded queue lengths). This is justified by two
facts: First, the refined mean field seems to be very accurate even with this bounded queue size.
Second, we also show in Figure 3.7 that the queue length distribution vanishes very quickly for high
queue sizes. We collect all simulation results in Figures 3.5, 3.6 and 3.7.
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Figure 3.5: Average Queue Size of simulation mean vs. mean field vs. refined mean field approximation.

Figure 3.5 shows the average queue size of the system. We plot the sample mean of the average
queue size with a 95-percent confidence interval against the average queue size calculated from the
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mean field and refined mean field approximation. We observe that as [NV grows, both the mean field
and the refined mean field approximations seem to be asymptotically exact. Note that the mean
field approximation depends on /N because it depends on the exact server speeds. Also, in all cases,
the mean field approximation underestimates the average queue length, whereas the refined mean
field approximation lies within the confidence interval. On each plot, we also show the steady-states
estimates (as a single point on the right of each panel). The observation is the same as for the transient
regime: the refined mean field approximation is extremely accurate also for the steady-state regime.

To demonstrate the impact of heterogeneity, we also consider an approximation (that we call the
“homogeneou” approximation) in which there are N servers with speed i = (>, p)/N. We
consider the corresponding mean field and refined mean field approximation. For these four ap-

proximation methods, we denote by Error(method) = + > (ks | B[ X (k9 (00)] — Wﬁi?‘)d the

mean error, where E[X;, 5)(00)] is the steady-state of the stochastic system, approximated by sim-
ulation, and Wﬁ‘fﬁ?"d is the estimation of the steady-state probability for the given method. We plot
these four errors as a function of NV in the Figures 3.6a and 3.6b. The setup of the first figure is as
described before, one fifth of the servers are of speed 2.0, one fifth are of speed 0.5 and the remain-
ing are uniformly chosen between 1.0 and 1.4. For the second figure, all server speeds are uniformly
chosen between 1.0 and 1.4. We observe that, as expected, the error of the heterogeneous mean field
and refined mean field approximation decrease with NV (at rate O(1/N) and O(1/N?)) while the
error of the homogeneous mean field or refined mean field does not improve much with N. This
indicates that taking heterogeneity into account is necessary to obtain accurate performance metrics
in any case. We also see that for larger variance in the server rates, i.e., stronger heterogeneity, the er-
ror of the homogeneous approximation increases whereas our heterogeneous approach gives good
estimates.

P mean-field ~#- Homogeneous MF 2.3in v mean-field ~#%=- homogeneous mean-field
~~~~~ - refined mean-field ~ -®- Homogeneous refined MF 12/n? refined mean-field  -@- homogeneous refined mean-field

] e e
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Mean Error
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(a) Mean error for strongly varying server rates. (b) Mean error for lightly varying server rates.

Figure 3.6: Steady-state mean error comparison of heterogeneous and homogeneous models.

Last, in Figure 3.7 we plot the queue length distribution tail. We plot + >, P(S; > s), the
probability that a server picked at random has a queue length larger than s as a function of s. The
top panel is in normal scale whereas the bottom figure is in log-scale, to zoom on the tail. We observe
that for all system sizes the mean field and the refined mean field predict the shape of the distribution
well. Yet, they both underestimate the actual tail distribution. The refined approximation improves
notably upon the mean field method for “small” s. It does not fully correct the tail distribution for
large s. Note that a similar observation was made in [59] for the refined mean field for homogeneous
systems.
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Figure 3.7: Queue length distribution of simulated expectation, mean field approximation and refined mean
field approximation in steady-state for system sizes N = 10, 20, 30, 40.

3.6 PROOFS

This section contains the proofs of the main theorems. After recalling some notationsin Section 3.6.1,
we start with a first technical lemma in Section 3.6.2 in which we show that the difference between
the stochastic and deterministic systems depends on the difference between the generator of the
stochastic systems and the one of the ODE. Then, we prove Theorem 4 in Section 3.6.3 and Theo-
rem S in Section 3.6.4. To ease the reading, some technical lemmas — whose proof are not compli-
cated but long and technical - are postponed to the appendix.

3.6.1 NoTATION

In all the proofs, to ease the reading, we drop the superscript N. It should be kept in mind that
all quantities X, f,... depend on N. Also, instead of indexing the vectors by a pair (k, s), we will
use an index i € Z, where Z = {1... N} x S is the set of object-state pairs. For a function
h : X x Rt — R, we denote by Dh the derivative of h with respect to the first coordinate @
and by D, h the derivative with respect to the second coordinate. This means that for a given pair
(y,s) € X x RY, the quantity D,h(y, s) and D;h(y, s) are the derivatives of i with respect to
x and ¢ evaluated at the point (y, s).

For convenience, we will denote by K 9(3]’\;), the rate at which the Markov chain X jumps from x
to ' forx, &’ € X. With this notation, for intuition, the transitions (3.2a) and (3.2b) correspond

to(forx € Xand k,ky € {1,...,N},s,5, 51,8 € Swith (s,1) # (5,5]))

(N)

(N) _
K = Thy(s) ()X (0>

m,ere(k,S/) —€(k,s)

(V) _ 1
m,m“’-e(k,sl)—E(k,s)+8(k17sll)—8(k17sl) = NTk,kl,(s,sl)—>(3/75’1)X(k,s)X(k1,sl).
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3.6.2 COMPARISON OF THE GENERATORS

Lemma 6. Ler X (t) be the continuous time Markov chain defined in Section 3.3.2. Let ¢p(x,t) be
the value at time t of the solution of the ODE %qﬁ(m, t) = f(@(x,t)) with initial condition x € X.
We have

BX() = (X (0).0)] = | B[ X Kx (6@t = 7) = $(X (7). = 7)

r'eX

Do (X (1)t — T)f(X(T))] dr.

Proof. The following calculations are based on the ideas used in the proofs of [74, Theorem 1] and
[55, Theorem 3.1]. By defining 1 (7) = E[¢p(X (7),t—7)] we can rewrite E[ X () — (X (0), )] =
(t) —1p(0). At first, we derive the time derivative of 9. We start by looking at the expected change

atagiven time 7, LE[p(X (7 + 5),t — (T + 5)) | X(7)] ’5:0’ which can be written as

li —- (BIB(X (7 + ds), ¢ = (r + ds)) | X(7)] = (X (7).t — (r + d)
L (X ()t — (7 +ds)) — p(X(7), £ — 7).

In the limit, the first difference corresponds to the generator of X at 7 and the second difference to
the change of ¢ due to the decrease of t — 7. By taking the expectation and explicitly writing the
limit terms, the derivative of ) is

L) = E[ 3 Kxio @l =) — (X (7).1 = 7)) — Dp(X (7).~ 7)].

r'eX

Note that by definition of the stochastic process the derivative with respect to time and the expecta-
tion are interchangeable. i.e., LE[E[¢p(X (T + 5),t — (T + 5)) | X (7)] ’820] is equal to
E[LE[¢(X (T +s),t — (T+5)) | X(7)] ‘3:0]' As ¢(x, -) is the solution of the ODE starting in
@ at time 0, we use” that D;¢p(x, t) = Dyep(x, t) f(x). The proof is concluded by rewriting

E[X (1) — ¢(X(0),1)] = (t) — p(0) = [y sap(7)dr. O

3.6.3 PrROOF OF THEOREM 4 (MEAN FIELD APPROXIMATION)

By Lemma 6, we have

arex ’ (3.12)
— Dy (X (7),t — 7) f(X(7))]dr.

#To see why, for t,s > 0, the solution of the ODE satisfies di(b x,t+5) = Lp(p(x,s),t). This shows that

s ds
Lp(x,t+s) = L@z, s),t) = Dpp(P(x, s),t) f(@(x, s), t). Evaluating this expression at time s = 0
gives the result. Note that by definition, one also has Dy¢p(x,t) = f(¢p(x,t)) but the latter is hard to use in the
analysis.
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The above expression involves terms of the form ¢(x’, 7) — ¢p(x, 7). By using a first order Taylor’s
expansion, we have:

o(x',7) — Pz, 7) = Dpp(x,7) (' — x) + Ri(x, x', 7), (3.13)

where Ry (z, ', 7) is a remainder term that can be expressed in integral form as

1 52
Ri(x,x',7) = /0 (1-v) Z 6x0m<w +v(x —x), 7)(x; — ®;)(x) — z5)dv.
igjez v

Moreover, by definition of the drift, one has ) __, ., K.
(3.13) and plugging this into equation (3.12) shows that

o (€' —x) = f(z). Combining this with

BX () - $(X(0).0] = [ BIY. Kxoha(X(0).2t = ldr. (14

x'eX

To conclude the proof, we show in Lemma 8 that ), Ky o Ri(, &', 7) is of order O(1/N).
Note that obtaining this bound is the most technical step of the proof as it requires bounding the
second derivative of ¢ as a function of the initial condition. This is where we use the assumptions
on the rates 7.

3.6.4 PROOF OF THEOREM S (REFINED MEAN FIELD APPROXIMATION)

The proof of Theorem 5 uses the same methodology as the proof of Theorem 4 with two additional
ideas: The first is to use a second-order Taylor expansion instead of the first order expansion used in
(3.13). The second is to express the refinement term v as an integral of quantities that depend on
the second derivative of ¢.

By using a second order Taylor expansion of ¢, it holds that

>’ )
d(x', 1) — ¢p(x,7) = Dap(x,7)(x' — ) + ijZEZQi,j(w)m(%T) + Ry(z, @', 7),
(3.15)
where the remainder term R is equal to
RQ(ma 33/77—) / Z 81. al'jal‘u m+y($,_w)a 7—)

X (w;—wi)(m;—wj)(w;—wu)dl/
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and Q; () isgiven by D e v Ko (2] — 2;) (2 — 1;) which we formally introduce in Appendix
3.8.2. To simplify notations, let g(x,7) = >, .. Qi (w)%(w’ 7). Similarly to (3.14), we
have

E[X (1) (X (0),1) = / Elg(X(r), t—7))dr (3.16)

-

~ v(x, t)+0(%) by Lemma 9 and 10.

/ Y KxowBo(X(r), 2 t—)dr.  (317)

meX

J/

-

O(1/N?) by Lemma 8.

By utilizing the approach we used for I, we prove in Lemma 8 that the last term of the above equa-
tion (that involves a sum of Ry) is of order O(1/N?). This is quite technical and done by carefully
bounding the first, second, and third derivatives of ¢(x, t) with respect to its initial condition. We
are then left with the first term of Equation (3 16). By Lemma 9, the refinement term v can be

expressed in integral form as vy ) (€, 1) = 5 fo 9(k,s)(@(x, 7), 7)d7. This shows that
1 t
3 | B0 (X0 7 — 0 (X001

1

B 5/0 Elgins) (X (7). 7) = gir) (@(X(0), 7). 7)]dT.

We show in Lemma 10 that the above term is of order O(1/N?). This requires to bound up to the

fourth derivative of ¢ with respect to its initial condition. Plugging everything into Equation (3.16)
shows that E[ X ()] — ¢(X (0),¢) — v(X(0),t) = O(1/N?) and concludes the proof.

3.7 CONCLUSION

In this chapter, we show how to derive mean field and a refined mean field approximation for sys-
tems composed of N heterogeneous objects. Most of the results which guarantee that mean field
approximation is asymptotically correct assume that the system is composed of a population of N
homogeneous objects, or at least can be clustered into a finite number of classes of objects and let
the number of objects in each class goes to infinity. A possible approach to derive a (refined) mean
field approximation for a heterogeneous population is to consider a scaled model with C' copies of
each of the NV objects. Classical methods show that the (refined) mean field approximations are
asymptotically exact as C' grows.

Our chapter is the first to show that applying this method for the original system (with C' = 1
object of each of the N class) is indeed valid. The main results of our chapter, Namely Theorem 4
and 5, show that the accuracy of the mean field and refined mean field approximation is O(1/N)
and O(1/N?). We illustrate our results by considering two examples: a model of cache replacement
policies, and aload balancing model. These examples show that the proposed approximations can be
computed efficiently and are very accurate. They also show that taking heterogeneity into account
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is important to characterize precisely the quantitative behavior of such systems. While Monte Carlo
methods can be considered an alternative to the mean field approximation methods, it is not a priori
clear which one is most efficient numerically. The mean field method being deterministic, its bias is
due to its theoretical error (that grows in O(1/N) or O(1/N?) for the refinement) plus some (gen-
erally small) rounding errors due to the use of floating point arithmetic or numerical integrations of
ODEs. For Monte-Carlo’s methods, their precision is proportional to the square root of the number
of samples divided by the variance of the estimator considered. In our examples, the time to calcu-
late the sample mean and a reasonably small confidence interval can exceed the computational cost
of the mean field approximation, as for the cache example shown in Section 3.5.1. One drawback of
the mean field methods is that it computes the probabilities E[ X}, 5(¢)] for each object k and state
s.

When studying the performance of large computer systems, heterogeneity is often neglected since
it increases the complexity of the model and because there are few tools to analyze such systems. We
believe that our work has potential application in many models and will foster the development of
the analysis of heterogeneous systems (such as load balancing or epidemic models).
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3.8 APPENDIX

3.8.1 NOTATION LisT

system size

transition parameters; Equations (3.2a), (3.2b), (3.2c)

Markov chain describing the heterogeneous population model; Section 3.3.1
binary based representation of the model described by S (#); Section 3.3.2

finite state space of objects in the population model described by S and X
notation for states

notation for objects

entry of the Markov chain X indicating if object & is in state s at time ¢

drift of the stochastic system and related tensors; Section 3.4.1, Appendix 3.8.2, 8
solution to the ODE given by the drift f of the system; Section 3.4.1

refinement term; Section 3.4.3, Appendix 3.8.2

solution to the second set of differential equations of the refinement; Appendix 3.8.2
time and integration variables

sets of object-state pairs defined by {1,..., N} x Sand {k} X S respectively
indices used for elements of the sets Z and Z;,

initial conditions for Markov chain X and corresponding mean field approximation
transition rate for the Markov chain X from state  to &/, Lemma 8

bounds for first or second partial derivatives of the drift f

Kronecker product of  and y

Kronecker product of & with itself (x®? = x @ x; 2®° = ® * ® x); Lemma 8
Ist and 2Nd order derivative, derivative with respect to &

partial derivative with respect to z;

derivative with respect to time ¢

indicator function, e.g., indicating if a > b

3.8.2 EQUATION FOR THE MEAN FIELD AND REFINED MEAN FIELD
APPROXIMATIONS

GENERAL DRIFT DEFINITION

For completeness, we give the general form of the drift f¥) for a heterogeneous interaction model
having up to dpax interacting objects. The drift in (k, s) is derived from interactions that imply
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either object £ transitions into state s (s — s) or leaves state s (s — s’). By considering all these
interactions, the (k, s) component of the drift ) (z) is

(N) (N)
Z(Tk,(s/)a(s)x(kzs/) — T () () Tlhss)) (3.18)
s'#s
1 () (N)
+ N Z (Tk’kl7(3'75’1)%(s’sl)x(k’sl)x(kl’sl) - rk‘,lﬂ,(5781)H(s’,SE)x(kys)x(khsﬁ))
s’ k1,81,8)
1 (V) (N) (N)
+ Z Nd—1 Z Phreeka1,(8 sy )= (reessa1) L less) *** Flloa_1,8),_)
d=3,...,dmax ki,enkg_1
EERTTT Sd—1
s/,s/1 AAAAA 5:171
(N) (N) (N)

T hpeenskao1,(yeeessam )= (s )T (ky5) L (kam1,5a-1)

In the above equation, we sum over all permutations such that the first object is fixed to k.
This counters the factor 1/d in the definition of the rates. Therefore, the sum can be written

1 () (N) () :
as =t > b1k P et (5 sty )= (5remssa ) Tl ** Dgor sty )" Without loss of general
S/,Sl AAAAA 35171
ity, we fix the index order k, k1, . .. to simplify the mathematical notations. This simplification

comes from the fact that we assumed for any permutation o of the set {1...d}, the rates satisfy
(V) —
kl7~~~7kd7(517~"a3d)4)(8l17"~7521) ko’(l)7"'7ko'(d)7(30'(1)7"'750'(d))4>(5;(1)7~~'73:,-<d)).

DEFINITION OF THE REFINED MEAN FIELD APPROXIMATION

In this section, we show how the definition of the refinement term v from [54] can be adapted and
how it can be computed using the rates of the model introduced in Section 3.3. In [54], the refine-
ment term is based on a density representation of the stochastic system and therefore independent
of the state of individual objects. Since our model representation takes the state of each object into
account, we extend the definition of their refinement term v to object-state pairs with the following
set of ODE:s (for better readability we suppress the dependence on NV in the definitions)

10T
uel la w

. af 1,81 ]- a2f 1,81
g (@) = Y = (Gl )o@, 1) + 5 Y Ll )i, 1),
v wleT

w(k1781),(k2,82)(w7 t) = Z wu7(k2,82)(w> t)#((ﬁ(w? t))

Xz
uel g u

af 2,52
D Wt (@ )= (B(@, 1)) + Qi o, . (B, 1),

uel 9

with initial conditions v(, 0) = 0, w(x,0) = 0. The values of v and w should be interpreted as
the leading correction terms for the first moment and covariance of X (t) — ¢(x, t). The value of
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Q is given by the expected change of the covariance of the stochastic system which, for a given state
T, is

Q(ks (k' ,s") Z Koy (T ks) Lk, S))(wl(k’,s’) — (k1))

x'eX

To make the definitions less abstract, we give explicit formulas of € and the derivative of the drift f
when considering a heterogeneous model having at most pairwise interactions. We start by charac-
terizing the elements of  evaluated at « (here s # s’ and k # k')

Q(k,s),(k,s) (T)= Z Tl ()= (") L (k,s) Tk, ()= (5) T (k')

1
+N Z Tk, (s,51)—(57,80) T (ky8) T (k1,s1) Tk Jer,(s7,8,)— (5,81) L (k,s') T (8, »

!/
k1751751 78/

Q(,5),(k,5") (L) = =Tk ()= (") T (k) =Tk (") (5) T (k,")

1
+N Z_Tk’kl’(3751)H(slvsll)'r(kvs)x(kl751) _Tk:kl7(5/781)H(S,Sﬁ)m(k,sl)x(kl751)7

!
k1751781

Q(k s), (K, 51) Z Tk (s,51)—(s",85) L (k)T (K ,s1) — Thk! (s',84)—(s,51) T (k,s") T (K',s")-

881

The first and second partial derivatives of the drift f are given by

af(k,s) 1
——(x) = — Z Th(s) () " Z Tk, (s51)—(s",8,) L (k1 ,51)

ax(kvs) k1#k,s1,s],8'#s
af(k s) 1 ~
s (%) = Th(5)=(s) T N Z Tk (5,51)— (5,5)) T (k1,51) 5 # s,
k1#£k,s1,s]
af(k s) ~
o Z Tk (s87,8) = (5,8 L (k,s )_Tk,ff,(s,é)%(s’,s’l)‘T(kvs) k 7& k’
(k,3)

881
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M ) = 1 Z . N Lk
O (1, 50 1) N £ k(59 51) ,
81,8
0% fk.s) 1 -
W(CD) - N Z Tk e (3,8) > (s',8) k#k,§#s,
51
0% fk.s) 1 )
L She A — _ o / k k’
8x(k7§)8x(,~€7§) (w> N ; rk,k,(s,s)—>(5751) 7£
0% fk.s) 1 )
Drgndigg ) T N b (35) (5.5 k#k,
0% fir s B
L (k,5) 97 (k,3)

Note that if interactions of more than two objects occur, the above formulations include addi-
tional rates and higher order derivatives of the drift are non-zero.

3.8.3 CACHE REPLACEMENT POLICIES
COMPUTATION OF THE EXACT STEADY-STATE PROBABILITIES

Itis shown in [60] that the steady-state distribution of the RANDOM(m) cache replacement policy
has a product-form, which the authors use to derive the per-object miss probability. Here, we show
how to adapt the same methodology to compute the steady-state probability for an object to be
in list s. Our approach is very similar to the one developed in [60] but leads to a slightly different
recurrence equation.

Recall that S}, denotes the list in which object & is (where 0 means that the object is not in the
cache). We say that a state S’ is admissible for m if the number of objects in list s is exactly m for
alls € {1,...,S}. Theorem 6 of [60] can be rephrased as follows: For any admissible state S, the
steady-state probability of S is equal to

(81 = g L™

_ N Sy Jeps
where C(m, N) = > g e [ [ (Ak)7* is a constant such that the probabilities 7(S)
sum to one. Note that the constant C'(m, N) is not the same as the constant F/(m, N) defined in
[60] because our configuration S does not take into account the position in a list in which an object
is but only takes into account the list in which an object s: thereisa [ [, m! factor between the two.
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By decomposing the set of admissible configurations, depending on the list in which object IV is
(either outside the cache or in list s), we get that:

S N

CmN)= > JIow*=> > JIow™

S admissible for m k=1 s=0 S admissible form k=1
and object IV is in list s

S
=C(m,N—1)+ > (A)’C(m — e, N — 1),

with the convention that C'(m, N) = 0if m = O orif ), m, > N. Indeed, there is a bijection
between the admissible configurations for m with N objects in which object V is in list s and the
configurations for m — e, with N — 1 objects.

Similarly, the probability for object N to be in list s is the sum over all admissible configurations
such that object V is in list s which corresponds to the set of admissible configurations for m — e,
with N — 1 objects. Hence, we have

exact __ (/\N)SC'(m B eS? N B 1)
Ns C(m,N)

(3.19)

The above recurrence equations can be used to compute the exact value of P° <S ,iN) = 8> for all
s. By reordering the objects, it can be also used to compute the recurrence equation for all ob-
jects k. The naive complexity of such an equation grows in O(N?[], m;) and can be lowered to
O(N log N ], ms) by carefully reordering the objects. This means that for relatively small values
of m, itis possible to compute an exact value for P <S ,(gN) = s) . Note that in practice, the complex-

ity is quite large as soon as the list sizes grow. For instance, our implementation does not allow us to
calculate the values for more than 3 lists of size 10.

THEOREM 6 OF [6011S A CONSEQUENCE OF OUR RESULTS (AND CAN BE REFINED)

The cache replacement policy RAND(1m2) that we study in Section 3.5.1 is essentially the same’ as
the one studied in [60]. In [60], the authors denote by H(t) = >, pp Xy, s(t) the sum of the items’
popularity that are in list s at time ¢, and by ps(t) = >, prak,s(t) its mean field approximation,
where pr, = A\,/(D_ 4 Aw) is the request probability for object k. Theorem 6 of [60] implies that
fort <T

1
E[[| Hy(t) — po(t)|] = O(max py. + max —),

5>One difference between the two model is that we consider a continuous time model where object k is requested at
rate Ay, and the authors of [60] consider a discrete-time model where object k is requested with probability p,, =
Ak/ Y ¢ Ae. Up to re-normalizing the time by ), A¢, these two models are essentially equivalent.
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which implies that if the popularities of items are such that A, = O(1) and the list size are such that
ms = O(1/N), then

E[[| Hs(t) - ps(8)]*] = O(1/N)
Thisisa O(1/v/'N) convergence result because it implies that
E[||Hy(t) = ps(D)]] = O(1/VN).

We do not think that the proof of the main result of [60] is correct. Lemma 1 implies that M/ (t) is a
Martingale such that E[|| M (t + 1) — M (¢ )I”] < ¢ Later in the proof, the authors argue that this
1mpl1es that E[|| M (t)|”] < ct. This would hold if the norm could be written as a scalar product
|M||3 = (M, M). Indeed, in such a case one would have:

E[||M(t+ 1)lls) = E[|M(#)ll; +2 (M(¢ + 1) — M), M) HIM(E+1) M(t)];]

=0

(3.20)
<E[|M(@D)[f3] +c

where the second term equals 0 because E[M (t + 1) — M(t) | M(t)] = 0. A direct recurrence
would imply that E[||[ M (t + 1)||5] < ct.

The problem is that the norm used in [60] can be written as a supremum norm (it is a supremum
norm) and we do not think that it can be written as a scalar product. This implies that one cannot
use the reasoning of Equation (3.20), which means that this inequality does not hold for their case.

Yet, we claim that the result of their Theorem 6 holds, and can in fact be refined by using our
approach. To see that, we rewrite the difference between H and p as:

E[HHS(t) - ps(t)Hz] = Z pk1pk2E[(Xk1,S(t) - xk175(t))<Xk275, (t) - kaS’(t))] (3'21)
k1,k2

We claim that the proof of Theorem 5 can be adapted to show that:

Wi hasy + OL/N)  ifky = k
Bl(X0(8) 00,0 (X1 (1) — ity (0)] = { o) OO, 0

where w is defined in Appendix 3.8.2 and is such that:

[ o) if ky = ko,
W) k2 =\ O(1/N) iy # k.

This implies that

E[|| H(#) = > PPl Wikr 90,02, (£) FO(1/N?).

k1 ko

-~

=0(1/N)
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The above equation refines Theorem 6 of [60] by not only proving that the term is of order O(1/N)
but also by providing the expansion term.

CACHE REPLACEMENT POLICIES: TIME TO COMPUTE THE FIXED POINT.

In Table 3.2, we show that computing the fixed point of the refined mean field approximation takes
less than 50ms for a cache replacement model with two lists and N = 50 heterogeneous objects.
To explore further how this computation time scales with N or the number of lists of the cache,
we report in Table 3.3 the time to compute the fixed point of the mean field and refined mean field
approximation for up to 1000 items and between 2 to 4 lists. The total number of values to be
computed hereis N x S where S is the number of lists. We observe that the mean field approxima-
tion is relatively fast to compute for all considered values. The refined mean field takes more time
but remains reasonable when we have at most N' = 1000 objects. For N = 1000 and 2 lists, the
computation times is much larger (more than 10 times larger). We believe that this huge increase of
computation time might be due to memory contention when scipy tries to solve a very big linear
system (with | NS|? = 4 millions of variables).

Table 3.3: Time to compute the fixed point of the mean filed and refined mean field approximation for the
RAND(m) model for various values of NV and m.

N m N|S| | Time (mean field) | Time (Refined mean field)
30 [6, 6, 6] 20 40ms 50ms
50 (10, 10, 10] 150 SOms 72ms

100 [20,20,20,20] 400 263ms 458ms

200 [40,40,40] 600 137ms 881ms

200 [40, 40, 40,40] 800 370ms 2s

300 [60,60,60] 900 186ms 4s

500 [150,150] 1000 121ms Gs

1000 [300, 300] 2000 222ms 71s

3.8.4 TECHNICAL LEMMAS
BoUNDs FOR PARTIAL DERIVATIVES OF ¢

In Lemma 7 we analyze the properties of the partial derivatives of @1 5) (2, t) with respect to the
initial condition . We introduce the set Z := {1,...,N} x Sand Z;, = {k} X S to sim-
plify notations for frequently appearing sums in the lemma and proof. The set Z encompasses all
object-state tuples (k, s), the set Zy, includes tuples (k, s) with fixed object k. We emphasize that the
bounds for the partial derivatives differ substantially depending on whether ¢, 5 (2, t) is derived

with respect to (k,3) € T or (k,3) € T\ Zy. Our results show that if the sum over the states

m(:L‘, t) ‘, is derived with
Z(k,3)

respect to the same object k, i.e., in direction of a object-state pair (k, §), it can be bounded inde-

of the absolute values of the partial derivatives of ¢ ;) (€, 1), Y ;s

pendent of N. However, if the same sum is derived with respect to a pair (k,§) € Z \ Zj itis of
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order O(1/N). Subsequently, we can show similar properties for sums of higher partial derivatives

such as 2568‘81?(1)%
(k,3) (k,3)

derivative direction is in Zj, the sum is bounded by O(1/N ) and otherwise, if (%, 3), (/%, s) € I\ Iy,

the sum is of order O(1/N?). Our analysis considers partial derivatives up to the fourth order for

which we establish bounds with likewise properties. A direct consequence we frequently use is that

the absolute value of the partial derivative of ¢ ) (x,t) can be bounded by the previously men-

tioned sums, for example |5 9tks) (x, t)‘ < D ses|am ¢(k ) ( ,t)|. Thus, the same bounds hold for
(kvs)
0P(k,s)

(T, t) ‘ and absolute values of higher order partlal derivatives.
(k.3)

Lemma 7. Given the solution ¢ of the ODE defined in section 3.4.1. For the partial derivatives of
D (1,,5) with respect to the initial condition x € X and (k,s) € T = {1,...,N} x § the following
properties hold:
(@) Ifi,jywandlarein T\ T, = {1,....k — 1,k+1,...,N} xS, i.e, none of the tuples
i, J, w orl refer ro object k, then

(x,t) ‘ For the second partial derivatives we see that if at least one of the

@) X |7 | = o/

seS

@2) Y |52 | - o),

ses (9%8%
a:Sgb(lc,s) 3
(EID> T (a.1) = O(1/N°),
a4¢(k,s) 4

(b) Otherwise, if any tuple i, j, w orlisin I, = {k} X S then, for the same summations,

1) 3|7 w0 = o)

seS

02 3|5 @ )| =01/

seS

03 3 Mw)' — 0(1/N?),

T 0x;0x;0x,,

(b4) > 9 9(1s) (a:,t)’:O(l/Ng).

ses 8xi(‘3xj6xw8xl

Proof. We will prove this lemma by bounding the derivative with respect to time of —* ¢(k 2 (z,t) (and
of the derivative of the higher order terms). The result will then follow by using Gronwall s Lemma
in differential form.
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First derivative — proof of (a.1) and (b.1) - Recall that ¢p(, t) satisfies the differential equation

dt (x,t) = f(¢(x,1)). Hence, the partial derivatives of %(w, t), i € Z with respect to the
time ¢ are

d 09 s) 0 dogs) ~ Ofw, s) o )
afks agbu
= uezz 3¢u )&T,- (x,1).

Having a closer look at the partial derivatives of f (see Appendix 3.8.2), we see that

Of(k,s
‘_f(k)(a;)‘ < foru € 7,
0w,
Ofk,s
‘%(m)‘gCg/N foru € I\ I
Ty
1ifi € 7,
Let L; := max{C}, C5} and define c¥ := ifi € I . It follows that
‘ 1/N otherwise

5 2D g, ) 1) < 1 Y

uel 8¢u uel

To obtain the bound on the max term, we start by bounding the change of the max with respect
to time for the first partial derivatives.

N
i max g a(b(k’s) < L; max E E
dt i€Z,ses p ox; licT.ses

P (k,s)
< )
Ll"S'zé%%?s (@ >!+L1 ISIN = 1) max 2| =5y, (&)
N
0Pk,
< 2L4|S| max i )(a:,t)’
1€Z,s€S P a.il}l

Furthermore, for ¢ equal to zero, ¢(x,0) = x which implies that %(k,as—;i(mﬂ) = lif (k,s) =

i and 0 otherwise. From this it follows directly that maxicz scs 3 o p adgg’;js) (z, 0)‘ = 1.
Applying Grénwalls Lemma to the obtained results yields maxicz ses S op 8(1(5;575) (x, t)‘ <

exp(2L;|S]t) = O(1).
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We bound )¢ %(;; ) (¢, 1) | in the same manner. First, for the time derivative

d OP(,s) k| OP(k,s)

£Z‘a—xi(w,t) < LyS|) ek G—z(w’t)

seS u€l
OP(,s) L oo al OP(1.s)
< LS| (Z Po. (@,1)] + IS max, oy (z, 1)
s€S k=1

Here we know that the second summand is O(1). By definition of ¢, at time zero

Y oses 8%(; =) (g, 0)| is equal to one if 4 is in Z and zero otherwise. Using Grénwalls Lemma, it

follows

OP(k,s) (@ t)‘ _0(h) = O(1) fori € Iy,
ox; ! O(1/N) otherwise.

D

seS

This shows (a.1) and (b.1). Note that as an important direct consequence, the same is true for

OP(k,s
25 (1)

Second derivative — proof of (a.2) and (b.2) — For the second partial derivatives we repeat the
procedure by first bounding the second derivative of ¢ with respect to time . Deriving the second
partial derivative of ¢ with respect to time ¢ gives

d 82¢(k,8) . a2f(k,s) . 0 af(kﬁ) 0oy,
il 0,0, (x,t) = 9,0z (p(z,t)) = o, ; D, (p(x,t)) B, (x,1) (3.22)
8 f s a¢u a¢v 8]" s a2¢u
Z axuﬁkxl t))a%( )+ Z 5;; )833 Or (x,1).
ue’l J 7

To bound the above term, we observe that

0? f(ks)( )‘ < C3/Nifiorj € Iy
0z,0x, C4/N? otherwise

for C3, Cy > 0. We define Ly = max{C', Cy} with which we bound the first sum by
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O?fins toloM P,
||| 5w o)

<3(Zf5ees] Sfie] -2

00, 'WU )

By previous observations Zuez‘gﬁ (x, t)‘ = O()and ) 7 %ou (g5, ) ‘ = O(cF) which im-

plies that the first sum is 37 Lo (O(cf) + O(c%)) + O(7z) = O(5(cF + ¢%)). The second sum can
be bounded, similar to the first partial derivatives, by

2.

u,ve

99,
3. (z, t)‘ uz

af(k,s) 82¢u k a2¢u
t t) < L t
> G @) g (@) < Lyl ()
u€el ez
Now we can derive bounds for max; jez ses ) 5 %29?59’“;) (x,t)|and >, aj(k;) (x,t) ) The pro-
cedure is the same as before. For the max term we get
N
d 82¢(k s)
t
dt ijetacs Z Fs0m: % >‘
Yoo
< —(cF
< s (D OG + )+ 1Y Yo 2 ey
k=1 k=1 ueZ
82¢ k,s)

O(1/N) +2L,|S| max

1,J€L, 568

| 00 (@, t)‘
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Recall that ¢(x,0) = x which implies that M;;;—B)S’O) = 0. Hence,
Max; je7,scs Ziv:l %2;2%2’; (a:,O)’ = 0 which allows concluding, by applying Grénwalls

2 P(k,s)

N | bwp.s .
Lemma, that max; ;ez,ses Zk—l Oti.s) W(CB, t) ‘ we infer

: m(az,t}‘ — O(1/N). For Y.
d
0 2

82¢ k,s) ‘ Z
O (cF + c )+ Ly Z Z )‘
81‘ al‘] seS seS uEZ 8ZE ax]
1 k
N
1 82¢(k s)
* NL1|S| ernIafGS 8513 8l‘j (CE t>‘
1 5)
— O(N(cf+c ) + Ly qb(’“ '+O(1/N2)
With | Fegi (@, 0)| = 0.and Gronwall, we have 3, fx"jgg (,6)] = Ok (ck + b)),

Third and Fourth derivatives — For the higher order partial derivatives, the proof procedure
stays the same as for the first and second partial derivatives. First, we calculate the time derivative for
the partial derivatives of third and fourth order of ¢. In order to obtain bounds for the max term

and the sum over the states, we bound the derivatives. The time derivatives of - dd;(kas; (x,t)and
0" (x,5)

m(w, t), with i,j, w, l e I, are given by

(a1
= % (u gzg;i(d)(fv,t))gﬁ:‘ (fv,t)%(m,t)
o5 e g o)
uel u 7 i
Za aig;';g% <x,t>>§ﬁj<x,t>gj:<m,t>§¢:@,t)
* uge:z gxf(g;l (&(@,1)) <aij§;w (z,1) gi: (x,t) + %(m, t)az—g;;ﬂ(m’ t))
Z gxfg; z,1)) ai?iéj (a:,t)gf: (2, 1)
+3 el e
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and

d s
dt &Cﬁxjﬁxwaxl (1)

Z a 03 f(k s) (CL’,t))a¢u (Q?,t) 8¢U (Q?,t) 8¢O ((E, t)

2,02, 8350 ox; oz, 0y,

8 s 02 » 0 v o " 92 )
axfng_w(w, >>< o g aj(a:,t) n 83 (@1 amgx (a:,t))
u,vEL u v ? w i i j w
a fks 82¢u 6¢U a3¢

u,veELT u€el

The above expression is equal to

84 s a w 8 v a o 8 P
S e () 5 o) 5 )5 o) S )

&, 00,00,00,01, 9z; 0 92, 0 Vo, Y o

+u;ﬂ%ww»(ai‘g;l(w,t)%(m,t)g—f(w,w

e 2 B 20

P> Sxf%“; )G @ e )+ G )
L P 9, 0%,

P,
ax 0%y, (@,1) 0z ;0 (@, ) + Ox;0x; (@, t)axjaxw (@, t))

n Z 0? f(ks t))( aQ(bu (m,t) 82¢v (:B,t) + 99, (a:,t) 83¢u (wvt)>

o 8%8% 0x,01; O0x;0x; 0%y O0x;02,;0x
k s) a4¢u
t).
+ ;I (‘)xu )6%(% 02,01, (@,?)

For the third partial derivatives, we use the above equation to show first that

B, . 1 03P k.s .
MAX; jweT,seS D het axiam]_(;;w (x,t)]is of order O(5z) and that ) ¢ m (x,t)|is of or-

der O (% (cF+ck + c;? )) . To obtain a bound for the max term, we use the results obtained by the
analysis of the first and second partial derivatives of ¢. The overall aim is to apply Gronwalls Lemma.
We bound the first three sums of the derivative, which include first and second order partial deriva-

72



3.8 Appendix

tives of ¢. We use previous analysis and bounds on the drift derivatives to obtain the following
asymptotic properties. The third order partial derivatives of the drift can be bounded by

83f(k,s) (m)‘ < Cs/N?%ifi,jorw € I,
0x;07;07,, Cs/N? otherwise,

with Cy, Cs > 0 and we define L3 = max{C}, Cg}. For the first sum

agf(k,s) a¢u 6¢v a¢o
> G (o) 5 ][5 w0 | 52 o)
< =
D D |t [
0,06\ L},
L 8% 8(bv o,
BT e
uEIk,U,oEI
L I9u 99,
DS ”H @) [ n)
vEL u,0€L
L I9u 99,
DS 0| 52 ][5 )
0€Ty , u,vEL

—O(]\173)+O< S(dF+c+e )) :O(;Q(c +d+c ))

and for the second type of sums

an(k s)

: %y olo8
S |G ote )| g e | )
1 2. Oy 1 82, Oébs
< — —_r° _
< Ly N2 Z 01,07, (x,1) ’axj (x,t)| + L2N Z 01,07, mvt)H ‘(:B,t)‘
u,0ET\Z}, u€ly,vel
1 D Py,
+ Loy > g a:,t)H (a:,t)‘
ueL veLy

<0(;3,)+L2]1V(o(%(cf+cfu>)|5\0(1) O(c)|S10(= )) o@z(c T+ —i—c))

The above statement also holds for any permutation of 4,7 and w. By
summing the above terms over &k we see, by definition of the ck’s, that
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N O fk,s
S Vs T (@, )|

terest can be bounded by

We furthermore note that at time ¢=0 the third partial derivatives of ¢ ) are zero. In com-
bination with the obtained bounds for the sums and by applying Gronwall it is shown that

2 (@,0)[| 32 (2.0)] = Olsk). The third sum of in-

8 Qb k,s)
&L'laxj&xk t)‘}

B, al
(x,t)| <2|S|K; max {Z

O0x;0x;0x,, i,j,wEL,5ES

#(z.)

~—

u

N | 8¢k, _
MAX; jweT,seS D het m(az, t)| = O(xz). Next, we show that the sum over the states
0> (1,s) : 1 N
> scs Dwidz; e (2, t)|isbounded by O (W (cF+ b+ ¢ )) First, we recall that the first two sums

of the corresponding derivative are bounded by O (5 (cf + ¢k, + c¥)). Second,

Ofth.s By,
22

— (x, t)‘
== 0z ;0x;0z,,

SN

seS \ueZy

—Kf\5|z

#(z.0)

3y 1
02;02;,01, (a:,t)‘ + N Z

uEI\Ik
8 ¢ k,s)
0z ;0x;0x

.
02;02;,0T, (1) ‘

t)' +O(1/N3).

Summarized, we bound )

Z a3¢(k s)
se

Pow
[ S e — < 1 N3 ¢ .
< (91:1-(9%-8%,( )’ O(N2 (cf +cut ¢ >> +O/N7) + ; 02,0202, (a:,t)‘

S€ES | 02,0z ;0w

T ()| by

oo ;;(fas;w (x,0) ‘ = 0 and applying Grénwalls Lemma proofs the claim. For the max

Using Y s
term and the sum over the states of the fourth partial derivatives we repeat the same steps. First, we

o4
show thatmax; ; u 1czses 25:1 ‘ #ﬁ% (x,t) ‘ is bounded by O(1/N?). We bound the sums
10T ;0T w

which contain first, second and third partial derivatives of ¢». We use bounds on the derivatives of

the drift up to the fourth order, for which

and define L, = max{C7, Cs}.

84]?(]{75) C7/N3 ifi,j,worl S Ik
— (x| <
0x;01,;0x,,01, Cg/N* otherwise,
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The bounds are
84 f(k:,s) a(bu aQbU a¢o a¢p
Z 02,0x,0x,01, H zc,t)H H ’ oz, o @ t)‘
u,v,0,pEL
L4 a¢u a¢v a¢o a¢p
< 22 _rp
SIS H ‘ By, ("”t)’ Jay )
u,v,0,pEL\Ty,
L4 a¢u a¢v a¢o a¢p
u€Zv, opGZ
L 001, 120, )| 2 5, ) 22
s H gzt
pEIkuver
1
—O(N4)+O( S+ G+ + ),
o? f(k,s) 82 ¢u a¢v a¢o
> T gl 5ot 50| 52 )
L3 82¢u 6¢v a¢o
< 23
A Z Ox;0x a:,t)H z; (@.1) Oy (@.1)

u,v,0€Z\Ty,
82¢u 8¢fu agbo

L
+ -
N* uGIZv()GI Ozi0z;
82¢u agby a¢0
el

++%Z

0€Ty ,uweL

20(%)“)(]&3(0 Fkd +cl))

e (w052 @)

Z a2f(k,s) (¢(£I: t)) O Qu
wveT axuazv ’ 8xi8xw6$l
1 83q§u agbv
< — - ®
< L N2 Z 0x;01,,01; (@.1) z; (z,1)
u,UEI\Ik
1 P, H8¢v ‘ P, 96,
Ly— ———(x,1) (x,1)] + — w,t)’ (a:,t)‘
2N <u€;€ 1 02:02,01) 0x; ueZ,ZveIk 01,07 ,01; ox;
1 1/ 1 1 1
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and
an(k:,s) aQ(bu 82¢v
MZEZ 02,02, (qﬁ(w,t))’ 0x,;0% (@, )‘ Oz ;0w (a:,t)‘
1 %y %,
L2N2 Z axiéa:w@’t)‘ 8xj8xl<m’t)‘
w,v€I\Ty,
1 %P, ¢y ¢y D’y
+ L2N(u€l§%€l’ 0x;0x,, (w,t)‘ Oz ;0x, (m,t)‘ +u€;vezk 0x;0xy, (@,?) Ox;0x, (@,?)
Lo (O (e + ¢))O() + O (e + )O()
-y \MIva T )Yy NG T aVEy
1
= Oyl 4kt + ).

Note that the results hold for permutations of 7, j, w, . The remaining sum which appears in

d__ 9, - 0f(k,s) ' -
&t D107, 00uD) (@, 1) is D yer 5, (&(, 1)) 37300109 a0m (x,t). We see that by summing over k

and applying the max, this term is bounded by

0"y
0z ;0x;0z,,0x; (@, t)'

0" ¢.
02 ;07;02,,07) (=, t)‘}

max
i,j,w,lGI,sGS

#(z.0)

<2|S|K; max {Z

1,5,w,l€L,s€S

¢y
0x;02;0Tw 35131

Z]kvle(%(cf + b + &+ ) = O(3s) and, by applying Grénwall, it follows

b, s
Wf%(w’t)’ = O(1/N3). At last, we show that

is bounded by O(gs(cf +c¥ 4 ¢k +¢f)). The proof follows

d ' B(k,s)
dt 0z; 102014, 01

be separated into sums which are of order O(5z (¢} + ¢f, + ¢ + ¢¥)) and the additional term
Y oses Qouet agg?:) (o(z, t))’ ¢y (x, t)‘ The latter is bounded by

Furthermore, max; ]wlezseg{zk 1 ‘} is  zero. We see that

N
that max; jwiczses Y ey

Pk, s
ZSES ) (a:,t)

0x;0x ;02,0
the same principles as before for the third partial derivatives. The term

(z,t) can

E g af(ks a4¢u 34%
))’ w?t) < Kf —(:r:,t)
s€ES uel 0x;01,0x,,0x SGZS 1;% 0z ;0x;0x,,0x;
1 a4¢u 6 ¢(ks 1 ) 1
N A A A < 1 1
+N €I\Z 0201:02.,0z1 (®.2) ’ ‘S|Z 0z ;0x;07,,0x; (=, )‘ * N|S’ O<N3>
w k
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To conclude, we use the same steps as before and see that

2

seS

O ks (z,t)| =0 i(c’-C ++ 4+ o)
8@8@8%,8@ ’ N3 ! J v ! .

BounDs FOR TAYLOR REMAINDERS

Lemma 8 gives bounds for sums of weighted remainder terms appearing in the proofs of Theorem
4 and 5. We respectively bound the weighted sums of the first and second order Taylor remainder

term by two suprema which are of order O(1/N) and O(1/N?).

Lemma 8. Forx € X and T € R, the remainder terms satisfy

1 a2¢(k,s)
E[S KpwRi(z, @', 7)< sup - (5, 7)||Qis ()] = O(1/N),
::3’26;( x,y€Conv(X) 2 lge:f axﬁxj J
83¢(k,s)

B[S KpwRo(w, @, 7)) < sip = 3 Riju(@)| = O(1/N?).

2EX x,y€Conv(X) 6 ijueT

0z;0z;0,, (y.7)

Before starting the proof, recall that the first and second order remainder terms R and 12 defined
in Section 3.6 are expressed as:

/ ! a2¢ ! / /
Ri(x,x',7) = /0 (l—y)ijez i, (x4 vz — m),T)(wi—mi)(mj—wj)dy,
Bear) = [0 Y 208 @ @), el @)@
2(@, 2, 7) = 3 i i]uezamiaxja%w x'—x), 7)(x;—x;) () —x;) (2, — T, )dv,

and that, as defined in Appendix 3.8.2, Q and R are given by:

Q(x) = Z Ky o (' —x)®? and R(z) = Z Ky oz (' —x)®,

x'eX xr'eX

where (' —x)®? and (z'—x)®? are Kronecker products of (x'—z) with itself; i.e., (x'—x)57 =

Z?]
(x;—x;)(x;—x;) and (m’—ac)f?ﬁu = (x;—x;)(x;—x;) (T, —x,). The two tensors Q and R can

be naturally extended to Conv(X’) due to their entries being polynomials.

Proof. To prove the two statements, we first introduce some simplifying notations. We define ¢ ,
with k, k1 € {1,..., N}, to be one if k equals k1 and 1/N otherwise. By the definition of @ it
follows that for x € Conv(X):

0(1) ifk =k
S 51 = O ; - ’
|Q(k, ):(k1, )(:c)| (ex,) {0(1/]\/) otherwise.
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This can be seen by writing the elements of @ based on the two transition types (3.2a) and (3.2b),
T )| = O (eh, + )

81(’%’1731)81:(/%2782)

which holds for any y € Conv(&X'). Here, the big O notation hides the dependence on 7, L1, L
and |S|. By noting that } J, c],:; g = O(1), we conclude

as shown in Section 3.8.2. From Lemma 7 we know

62¢(k,s)
813(161751)81'(;62752)

D Qs ()] (y,7)

(k‘l,sl),(kQ,SQ)GI

=Y OWOGH(d, + ) = 0/N),

(k1,51),(k2,82)€T

where we hide the dependence on |S|. To prove the second statement, we define

1 ifkl = k’g = ]{?3
Cky,ko ks = % lfkl = k’z 7& lﬂg or k’z = lﬂg 7é kl or kl = kg 7£ ]fz
% otherwise.

By explicitly rewriting the entries of R as done in Section 3.8.2 for @, the tensor R is such that

|R(k1 ,51),(k2,52),(k3,53) (w) | - O(Ckhkz,ks)

Lemma 7 states that the third partial derivatives of ¢ are bounded by

33 p(ks) _ 1 (.k k k k
0T (k) 51) 0% (kg 59) O (k3,53) (y,7)| = O(gzles, + o, + ). From 3 op b g Chukoks (G, +

¢, +ci,) = O(1), it follows that the sum of the two terms above behaves as

a3¢(k,s)

.7)| = O(1/N?).
&E(kl,51)a$(k2782)8$(k3753)(y ) (/ )

Z ‘R(k1751)7(k2782),(k3753)(m>‘

(k1,51),(k2,s2),(k3,s3) €L

]

CONNECTION OF DIFFERENTIAL AND INTEGRAL FORM FOR THE REFINEMENT TERM

The following Lemma 9 shows how to express the refinement term v and w in integral form. Both
representations are of importance since we exploit the differential form for numerical computations
whereas we use the integral form in the proofs of Theorem 5 and Lemma 10 which are related to the
accuracy of the refined mean field approximation.
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Lemma 9. The solutions to the system of ODEs

8 k.s 82 k,s
L@ ) = 3 T (g o) + 2 S IO g ) (),

dt ~ ox, 2 e 001,
d afk s
dt (k1 s1),(k2, 52) Z, t Zwu ko, 52) T, t ( LSy <¢( t))
uel

f 2,52
+ Z Wy, (K1, 81) T, t a(k ) (¢(ma t)) + Q(k1,81)7(7€2,82)(¢<$> t))

uel

can be expressed in integral form as

3 Pk,s)
/ Z]ZGI Qz] 6’@8% (¢(w> T>7t - T>d7—>
8¢ 1, 81 a(b 2,52
W(ky,s1),(k2,52) / Z ng 8]; <¢(w7 T)7 l— T) 8];‘] ) (¢($, T)7 l— T)dT'
1,j€L !

Proof. For a sufficiently differentiable function i : R x R + R we have

d
E h(Tt tt / 8 Tt
We define h(rt) = Yy Qui@@ )@@ = 0. Rel du
ff;—gg(qb(x’t)’ 0) = 0 which implies h(t,#) = 0. To calculate Z*(7,t), we use the iden-
tity
d i) 0 d
T e, @@ Tt =) = 5 b (@ 7).t = 7)
52
o 81318.%] f(k,s) (¢(¢(w7 T>7t - T))
52
- 8:67,(91:] f(k,s)(¢($,t))
— 8 fks) ¢u 8@
Z 3xu8$l ))axl (p(x,7),t T)axj(qb(:v,r),t 7)
u,l€T
"2 o0, oz, (@@ ) g o (B 7).t =)
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where the last term is the same as the one derived in (3.22). Combining these results and rearranging
terms leads to

a ¢ (k,s)
dt2 / ”ZEIQ” axzaxj (¢(@,7), ¢ = r)dr
af(k: ) 1 t a2¢u
- Y e / 3 Qui@le ) g g (Bl 7t =
vuzar:,t) 3

(9 fks
+ Z 8%8901 t))

u,leT
< [ Z Qu((a )G 0.7t~ 1) S ) )

which is the ODE describing v, ) (2, t). We obtain the integral form for wk, s,),(ks,s.) (€, t) by
application of the same steps.

[]

COMPARISON OF THE REFINEMENT TERM v AND THE QUADRATIC TAYLOR TERM

In Lemma 10 below, we bound the difference of the refinement term v and the quadratic term of
the second order Taylor expansion appearing in the proof of Theorem 5. By defining g4, ) (y,7) =

D2k : .
>ijer Qij(y )W(y, t— T) we see that the entries of the refinement term v in integral form

can be expressed as V(x5 (€,1) = 3 fo 9(k,s)(P(x, 7), 7)d7. Similarly, the time integral over the
expectation of the quadratic term of the Taylor expansion is given by % f(f Elg(k,s)(X (1), 7)]dT.
The latter arises due to the comparison of generator approach used in the proof of Theorem 5 and
the subsequent Taylor expansion of order two. The lemma shows that the difference of the two
terms decreases quadratically with the system size N and allows, in combination with Lemma 8, to
obtain the accuracy bounds for the refined mean field approximation.

2
Lemma 10. Define g(.5)(y,7) = Zm.el Qi,j(y)%i—g";j_)(y, t — ) with ¢ being the solution to the

ODE defined in Section 3.4.1 and Q as defined in Appendix 3.8.2. Then

1

5 | Blon (X(7).7) = g (@l 7). mldr = O(/N?)

Proof. We follow a similar proof concept as in Theorem 4. First, we define h-(y) = g(r.5)(y,7)
and rewrite

1/0 E[g(t,s)(X(T), T) = Grs)(P(x, 7), 7)]dT = %/0 E[h-(X (7)) — h-(¢(x, 7))]dT.

2
(3.23)
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By definition of g s), b~ is twice continuously differentiable. Second, using Lemma 6, we see that

Elh (X (7)) — hr(¢p(,7))] is equal to

/ (32 Koxto o (0@ 7=0) = o (X (), 7)) (3.24)
—Dy(h: 0 @) (X (v), 7—v) [(X (v))]dv. (3.25)

We use a second order Taylor expansion to express h(¢p(x', 7 —v)) = (h; o ¢)(x’, 7 —v) around
X (v). The constant and linear term of the expansion are h, (¢(X (v), 7 — v)) and
Dy(hr0¢)(X(v), T —v)AX(v) respectively. By realizing that thesum ) __, ., Kx ()2 Do (hr 0
¢) (X (v), T —v)AX(v)isequalto D, (h; 0 @)(X (v), T —v)f(X (v)), it follows that equation
(3.25) is equal to the remainder of the Taylor expansion

/ 33 Kxw AXi (1) AX, ()

1,jEL x'eX

X/o (l_w)aaj@as](h 0) (X (V) +wAX(v), T — v)dwl]dv.

Taking the supremum over all possible values of X (7) as well as & and using the definition of @,
the above term is bounded by

%/0 sup Z|Q” 615 (h o)z, T —v)|dv. (3.26)

y,zE€Conv(X z jeT

The rest of the proof is then essentially a careful analysis of the above sum. For that, we use again
Lemma 7 but also need bounds on up to the second derivative of @ (This is needed because in the
above expression the function A is defined as a function of Q). The latter makes the rest of the
prooflong and technical but the main ideas are essentially similar to the ones used in Lemma 7. The
second derivative of h o ¢ satisfies (for i, j € Z):

02 5 oh. -
Fogm; (0 BNz T = 7 (ue oo (@2 7)) 5z, 7))
_ Ok D¢,
= 2o, (d)(Z,T—V))M(Z,T—V) (3.27)
02h, 00, 96,
+ u;z a$u8$r (d)(za 7'—7/)) 8!El (Z, T—l/)a—xj(z, T—V)‘ (328)

81



3 Mean Field and Refined Mean Field Approximations for Heterogeneous Systems

Ohr (N _ O9(ks) 9%h, _ 9909)
To bound the above term, we need tostudy 5.7 (z) = 5% (2, 7) and 55— (2) = 7,52 (2, 7).

Applying the chain rule to the definition of h, shows that the first partial derivative of h is
8h’7’ a¢ k s)
t_
a0, = B (Z QualZ) g gy 5 177)

Z@qu a¢(k,s)(z t_y)+Zqu( )M( ,t—V).

o 0z, 8xq8xl O0xy0x,0z,

Similarly, the second partial derivative is

Ohy 0 Qg1 Pdus) Pk
(%Taxu(z) = o <qlzejz or. (2) D0, (zt—v)+ > Qulz )m( t—)

*Qqi , b, 0Qq, Pdr.s)
s ’ t— > ? t —
8xu8:vr z 0x,0x) (2t =v)+ O, (2 02,020, (z.t=v)
9, PP.s O bies
+ o ) z,t—v)+ Qu(2) 4L

ox, (2 8mq8xlaxu( 02,02,07,0x, (2t =v).

What remains is to bound the sums appearing in the above derivatives. We use the notations ¢} and
Cky ko k3> s in the proof of Lemma 8. From the representation of @ given in Appendix 3.8.2, it can

8 S S
be seen that Q(k1751)7(k2782)(z) O(cﬁi) % = O(Chy ko k5) 2a0d
O(l/N) if(kl, kg) = (k’g, k’4) or (]{?4, ]{?3),
= O(l/N2> lfkl = ]{]3, k’4 or kz = k'g, k’4,
O(1/N3)  otherwise.

Qi 1), (ka,s2)
O (1g,55) OT (kg 54)

Lemma 7 gives bounds for the partial derivatives of ¢. This enables us to develop an upper bound

for | 5= ()],

Oh, > Z OQ (1,51, (k2,52) . ‘ a2¢(k,s) (2t — 1)
017(k17s/) (k1751)7(k:2732)61 ax(k/78/) ax(lﬁ,sl ax ]{:2 82)
a ¢ k,s)
+ Z ‘Q(k1,81)7(k2,82)( )‘ ax(kl 81 aﬁ[;(}m 82 ax k/ ) (Z,t - I/)

(k1,51),(k2,82)€L

1
= Z O(Ckl,kz,k/)o(ﬁ(czl + 622))

(k1,51),(k2,52)€L

1
* Z O(C%)O(NQ (chy + by T ¢)) = O(ch,).
(k1,51),(k2,52)€T

82



3.8 Appendix

With the above observations we bound the first sum of (3.28) by

oh, 9%,
S| g @t o
ag ,8 62¢ s’
- Z ax(kj 3 (QZ’)(Z,T—V),T) 8ZE (gx) (Z,T—l/)
(k' ,s)eT (K',s") (k1,51)Y L (k2,s2)
1 1 / / 1
= (k/Z;EIO(NCZ/)O(N(Cil _I_ Cig)) = O(m(cﬁl + C]kcg))'

For the second partial derivatives of h-(2) = g, (2,1 — T), we note that all sums which appear
in the explicit form of the partial derivative are bounded by O( x5 (¢}, + c’;) ). Using the bounds for
Q and ¢ and their respective partial derivatives we see that

" P(k,s)
6x(k1,sl)8:6(,62,82)@35(;6/73/)&zc(,m

> Q) ko (2)]

(k1,81),(k2,52)

1 1
= > OE)O(FE(e, + i, + i+ ) = Oz (dh + ),
(k1,81),(k2,s2)

(z,t —v)

and that

2.

(k1,81),(k2,52)

83¢(1€,s)

OQ (ky 51, (ka,s2) .
8x(k1,51)8x(k2752)8x(k/,y)

(z,t —v)

1 1
= Y 00k, + ek, + ) = Ol ek + ).
(k1,81),(k2,s2)

as well as

2.

(k1781),(k/‘2782)

a2¢(k,s)
aﬁ(kl,sl)gx(k%sz)

aQQ(kl ,51),(k2,52)
z
Oz 4, 50 (1 )
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aQQ(k17S1),(k2,S2)
8x<f€7§)8$(kl,sl) -

As a direct consequence axw‘f—)}gxm(d)(z, T — V))’ = O(%(Cﬁl + CZ)) This enables us to

establish a bound for the second sum of (3.28),

The last bound follows with careful case-by-case analysis for the second derivative of

h, 09y, 9o,
)y g 00 =) G )| |5
829 s a¢ /s 8¢A§
= > g <¢<z,f—v>,r>‘ A (7 — )| |5 (27— )
) gzl O IT (k) Lk1,1) L (ko s2)

1 / 7 1
= Y Ozl +dOC)0(e,) = O35 ek, + k).
(k' ,s"),(k,8)eT

For the last part of the proof, we wuse the obtained results to bound

> ijerl@ii(y)l %{;j(hT o)z, T — 1/)‘ By equation (3.28) we see that (3.26) is equal
to
; / T Oh, 6.
— sup Qij(y bz, 71—V zZ,T—U
2 0 y,z€Conv(X) zJZeIl J( )| wel 82L'u ( ( )) 8@6% ( )
9%h.. Dy, O,
+UTZ€I 0,0, (¢(z.7 =) ox; (7= v) ox; (2,7 = v)|dv.

Indeed, we bound the supremum by the two following terms

Z |Q(k’1781)7(k2782) (y) ’ (3.29)

(k1,51),(k2,82)€Z

ag(k s) 82¢(k’ s')
—(p(z, 7 —v),T) : (z,7—v)
(k’,sz’)ez Oz (1 s O (k1,51) 0T (hy,52)
1
= Y 0ld)O(5(eh + k) = 00/NY) (3:30)

(k1,51),(k2,52)
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and

a2g(k,s)

Z ‘Q(kl,sl),(kg,sg)(y” Z W<¢(z’ T—V),T)

(k1,51),(k2,52)€L (k’,s'),(l;ﬁ)ez (K',s") (k,3)
8 /gl a¢ 7 H
y ¢(k,)(z’7_y) (k,)<z77__y)
ax(khsl) (%(,%52)
1
= Y OWO(g(ck + ) = O(/N?). (3.31)
(k1,51),(k2,52)

The bounds (3.30) and (3.31) show that (3.26) is of order O(1/N?), where the hidden constant
depends on 7, 7, | S|, from which the claim of the Lemma follows. O
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4

RMF TooL - ANuMERICAL TooL Box

This chapter presents the RMF Tool, a numerical toolbox that takes the descrip-
tion of a stochastic population model and numerically computes its mean field
approximations and refinement.

This chapter is based on our publication
S. Allmeier and N. Gast. “Rmf Tool - A Library to Compute (Refined) Mean Field
Approximation(s)”. ACM SIGMETRICS Performance Evaluation Review 4, 2, 2022,
pp- 35—40. 1SN: 0163-5999. DOLI: 10.1145/3543146.3543156.
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4.1 INTRODUCTION

Mean field approximation is widely applied to analyze the behavior of large stochastic systems. It ap-
plies to systems composed of NV interacting objects. The idea of the approximation is to consider that
objects within the system evolve independently. This transforms the study of a multi-dimensional
stochastic process into much smaller stochastic processes that are weakly coupled. Under mild con-
ditions, the mean field approximation is described by a finite set of deterministic ordinary differential
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equations (ODEs). As such, it can be simulated at low computational cost. Mean field approxima-
tion finds widespread use in fields such as epidemic spreading [43, 90], load balancing strategies [87,
91], the study of cache replacement strategies [60] or SSDs [108].

Classical models to which mean field approximation applies are the class of density dependent
population processes (DDPDPs, [77]), whose definition is recalled in Section 4.2 — epidemic spread-
ing or load balancing models are typical examples of DDPPs. If X is a density dependent population
process in d dimensions, its mean field approximation is the solution of a system of non-linear ODEs
i = f(x) where f : R? — R?is called the drift of the system. Computing the mean field approx-
imation can be easily automated, as the drift f can be expressed easily from the model’s definition.
Our tool incorporates this but, more importantly, allows going further.

Building on mean field approximation, the authors of [54, 56] introduce the notion of refined
mean field approximation. This approximation consists in adding an expansion term to the original
approximation. Denoting by x the value of the mean field approximation, it is shown in [55] that
there exists a deterministic quantity v(¢) such that:

E[X(t)] = ! O !
X(0] = 2(0) + 10(0) +O( ).

refined m.f. approx.

The quantity v(?) is the solution of a time-inhomogeneous linear ODE. As shown in the aforemen-
tioned papers, the construction of this set of ODEs is direct from the model description but involves
computing the derivatives of the drift, which can be cumbersome.

The purpose of 7mf" tool — the refined mean field tool - is to make mean field and refined mean
field approximation easily computable. Our tool is composed of a Python library. The tool takes as
input a description of the system, which can be either a density dependent population process or a
heterogeneous population model, and can be used to compute the mean field and refined mean field
approximations numerically. The tool relies on standard libraries (like numpy and scipy) to construct
and solve the corresponding ODEs. The tool is provided with a series of examples to demonstrate
its expressiveness and the accuracy of the various approximations.

RELATED ToOLs  There exist a large number of tools that provide methods to construct and sim-
ulate stochastic population models. Yet, to the best of our knowledge, the only tool that provides
a way to analyze size expansion methods (which are essentially equivalent to our refined mean field
approximation) is the iNA software of [104]. The iNA is a complete simulation toolbox (that in-
cludes its own graphical interface). Compared to this software, we use a more lightweight approach
by providing a pure python library that can be easily integrated.

Roapmapr  The chapter is centered around the tool. We first describe the set of models to which
the tool applies in Section 4.2, along with examples on how they can be defined within the tool. We
then describe what are the mean field and refined mean field approximation, and how one can use
the tool to compute them in Section 4.3. We detail some technical challenges in Section 4.4 and
conclude in Section 4.5.
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ReproDUCIBILITY Our tool is provided as an open-source software at https://github.com/
Ngast/rmf_tool. The code to reproduce this chapater along with all figures is available at https:
//gitlab.inria.fr/gast/toolpaper_rmf.

4.2 MODELS

The tool that we develop accepts three kinds of models: homogeneous population processes
(HomPP), density dependent population processes (DDPPs) and heterogeneous population mod-
els (HetPP). First, we describe the notion of the HomPP of which DDPP and HetPP are general-

izations.

4.2.1 HOMOGENEOUS POPULATION PROCESS

Population Processes are widely used to describe the evolution of a number of interacting objects (or
individuals). A homogeneous population model consists of [V interacting objects that each evolves
in a finite state space {1 . .. d}. All objects have similar transition rates which are a combination of
unilateral and pairwise interactions, i.e. objects can change their state with or without interacting
with one other member of the population. Let X(#) be the fraction of objects that are in state s at
time t. We assume that X = (X ... X}) is a continuous time Markov chain whose transitions are

such that for all state s, ', 3, ':
(Uni.) An object in state s moves to state s’ at rate a; .
(Pair.) A pair of objects in state (s, §) moves to state ', § at rate by 5 & 57 /N.

Note that for pairwise interactions, the rate is scaled by 1/N as the number of pairs of objects is N
times larger than the number of objects.

ExaMmPLE: THE SIS MODEL  One of the simplest examples of population process is the epidemic
model called the SIS model. In an SIS model, each object can be in one of the two states .S (suscep-
tible) or I (infected). Susceptible objects can become infected from an external source (unilateral
transition) or when meeting an infected individual (pairwise transition). An infected individual can
recover and become susceptible again (unilateral transition). We assume that an individual becomes
infected at rate o by an external source, and recovers at rate 3. Moreover, assume that the rate at
which two individuals meet is /N and that when a susceptible meets an infected individual, the
susceptible gets infected.

With our tool, we define a class called HomPP for which we specify the transition rates and an
initial state. For the SIS model above, with o, 5, v = 1, we write:

import rmf_tool as rmf

model = rmf.HomPP ()

d, S, I =2,0,1

A, B = np.zeros((d, d)), Np.zeros((d, d, d, d))
AlS, I1 = 1 # \alpha

A[I, S] = 1 # \beta
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B[S, I, I, IJ = 1 # om

model.add_rate_tensors(A, B)

The specified model can be used to simulate stochastic trajectories of the underlying process for
various population sizes. It can also be used to compute the mean field approximation and the re-
finements (see Section 4.3). For instance, if one wants to simulate a trajectory for a population of
size N = 1000, where all individuals are susceptible in the initial state, one would write:

model.set_initial_state([1,0])

t, X = model.simulate(N=1000, time=2)

STATE REPRESENTATION Recall that X,(¢) is the fraction of objects in state s at time ¢. The
transitions of such a model can be expressed1 as:

(Uni.) When an object moves from s to &', this changes X into X + ~ (ey — €;). AsnX(t) is the
number of objects in state s, this transition occurs at rate na, ¢ X (t).

(Pair.) When a pair moves from (s, §) to (', §'), this changes X into X + 1 (ey + €y — €5 — €;).
This transition occurs at rate nbs ; ¢ Xs(t) X HOR

Written in a compact way, those transitions are:

1
T — T+ N(esl — es) atrate Nas,s'Ts (41)

r— T+ N(es/—i—eg/—eg—es) at rate nbs 5,5 5TsT5. (4.2)

4.2.2 DENSITY DEPENDENT POPULATIONS PROCESS

The class of homogeneous population model that we define is a subclass of density dependent pop-
ulation processes (DDPPs) that are introduced by Kurtz in the 70s [77]. For a given N, a DDPP
defines a stochastic process X € R9. The transitions of the process are specified by a finite set of
vectors £ C R% and a set of corresponding rate functions 3y : R — R forall ¢ € L. The process
X jumps from x to x + /N atrate N 3¢(x).

It should be clear from Equation (4.1)-(4.2) that HomPP is a special case of DDPP. DDPPs gen-
eralize HomPP since they allow to choose arbitrary transition rates as opposed to combinations of
unilateral and pairwise transition. In the case where n.X(¢) denotes the number of individuals in
state s at time ¢, the vector £ € £ indicates how many individuals are created or destroyed by a tran-
sition. For instance, if d = 3,¢ = (1, —1,0) corresponds to having one additional individual in
state 1 and one less in state 2 (this occurs typically when one individual moves from state 2 to state
1), £ = (0,0, 2) corresponds to the creation of two additional individuals in state 3.

!"The notation e, € {0, 1} correspond to a vector of size d whose s entry is equal to 1, all others being 0.
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4.2 Models

THE SISMODEL As A DDPP  To illustrate the relation between DDPPs and HomPP, consider the
SIS model defined in the previous section and recall that (Xg(¢), X;(t)) is the fraction of susceptible
and of infected individuals. The transitions ¢ € £ and their corresponding rates 3, are:

Event Transition ¢ | Rate 5;(x)
infection from ext. source (-1,1) axg
recovery (1,-1) Bx
infection from a meeting (-1,1) o A

Within our tool, we define a class called bopp that can be used to define DDPPs directly from their
mathematical definition. For the above SIS example, we would write:

import rmf_tool as rmf

model = rmf.DDPP()

alpha, beta, gamma = 1,1,1
model.add_transition([—1,1], lambda x: alpha*x[@])
model.add_transition([1,—1], lambda x: beta*x[l])

model.add_transition([—1,1], lambda x: gamma*x[@]*x[l])

As for the HomPP, the model can then be used to simulate the stochastic process, to compute
the mean field approximation and the refinements. The syntax is identical. If one wants to run a
simulation with a population of N' = 1000 where at the beginning all individuals are in the first
state (susceptible), one would write:

model .set_initial_state([1,0])

t, X = model.simulate(N=1000, time=2)

4.2.3 HETEROGENEOUS POPULATION PROCESS

In [5], the authors extend the notion of the HomPPs to deal with populations of heterogeneous ob-
jects. As before, the heterogeneous population model consists of IV interacting objects which each
evolve in a finite state space {1 ...d}. Each object has a specific transition rate which is a combi-
nation of unilateral or pairwise interactions. In contrast to the HomPDP, transition rates are object

dependent:
* The object k moves from state s to state s at rate Gy, s 5.
* The pair (k, k") moves from states (s, §) to states (s, §') at rate by, 7 5 5,5 5 /N

Note that the difference between a homogeneous population process and a heterogeneous popu-
lation process is that the rate tensors @ and b depend on the object id k. As a result, the process
X = (X ...X4) where X(t) is the fraction of objects in state s is not a Markov process. Let the
stochastic process Z € {0, 1}7*4 describe the evolution of the population where Z, ; = 1 indi-
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cates that object k is in state s and Zj, s = 0 if it is not. The process Z is a Markov process whose
transitions are:

ZzZ—€epst ey at rate Qk,s,s' ks

1
Zrrz—€pst ey — €5t epy at rate ka7]}757§75175/2k,32157g-

These transitions generalize (4.1)-(4.2).

ExamPLE: HETEROGENEOUS SIS MODEL  To set up a heterogeneous version of the previous SIS
model we use the HetPDP class of the toolbox. In contrast to the HomPP and DDPP class, the model
can not be defined independent of the system size, z.¢., N and d have to be defined to initialize the
model. For instance, to set up a SIS model where objects are almost identical but some recover slower
than others, we can use the code:

import rmf_tool.src.heterogeneous_rmf_tool as hrmf

model = hrmf.HetPP()

N, d = 20, 2

S, I=9,1

A, B = np.zeros((N, d, d)), Np.zeros((N, N, d, d, d, d))
A[:, S, I] = np.ones((N))

A[:, I, S] = np.random.rand(N) #Ha‘c‘m VECOUW’")/ rates

*

B[:, :, S, I, I, I] = (1/N) np.ones ((N, N))

model.add_rate_tensors(A, B)

Here, the tensor A and B specify the transition rates where A[k,s,s’] = ay s+ and B[k,k,s,5,5’,5’]

= %bk is sz Thecorresponding transition vectors of the model are derived from the non zero

rates of the tensors. The methods of the HetPP class are coherent to the HomPP and DDPP class.

4.3 MEAN FIELD APPROXIMATIONS AND REFINEMENTS

4.3.1 MEAN FIELD APPROXIMATION (HOMOGENEOUS)
For a given DDPP, and a given state © € R, we define the drift in state a as
fl@) = Bi(x).
Lel

The drift corresponds to the average variation of the model, as it is the sum of state changes ¢
weighted by the rate at which these changes occur.

For a given initial condition (0), the mean field approximation of a DDPP is the solution of the
ODE:

x = f(x).
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The same holds true for any HomPP since the class of DDPP is essentially a scaled generalization
of the former. Thus, all methods which are available for DDPPs are available for HomPP as well.
Within our tool, the mean field approximation can be easily computed with:

t, X = model.ode(time=2)

Itis known from [77] that under very general conditions (essentially that f is Lipschitz-continuous),
the stochastic trajectories of X converge to the mean field approximation @ as the scaling parameter
N goes to infinity. We illustrate the accuracy of the mean field approximation in Figure 4.1, where
we compare two stochastic trajectories of the system for populations of N = 100 and N = 1000
individuals, with the mean field approximation.

1.0+ —— Simulation, n=100
Simulation, n=1000

0.9 - —==- Mean field approximation
0.8 A

0.7 A

State Y(t)

0.6

0.5 - ha "

0.4

0.3

0.00 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00
Time t

Figure 4.1: Example: Simulation of the SIS (DDPP model)

4.3.2 THE REFINED MEAN FIELD APPROXIMATION

It is shown in [S4, 56] that when the drift of the DDPP is twice differentiable, there exists a time
varying vector v and a time varying matrix w such that:

EIX(0)] = 2(t) + 1o() + O(3);
1 1

Var[X (t)] = Nw(t) + O(m%

where Var[ X ()] is the covariance matrix of the stochastic process X.
The above equation holds for any finite time. It is shown in [54] that, for the transient regime,
v and w satisfy a time-inhomogeneous linear ODEs. If there exists a point & (00) such that for all
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initial condition z(0) € R4, the solution of the ODE converges to (00) exponentially fast, then
this equation holds uniformly in time and in particular is also true for the steady-state t = +00. In
the latter case, the following linear equation (that is called a Lyapunov equation) is satisfied:

wJ+ J'w+q =0, (4.3)

where J is the Jacobian of the drift f evaluated at x(co) and g = ), ¢ ® £f;(x(00)). The vector
v(oo) = J (D - w), where D is the second derivative of f evaluated at «(00) and - denotes a
tensor product: (D - w); = Y, Di jxwjy, and D; j = (0° f /0 ;0xy,) evaluated in z(00).

This means that they can be easily solved numerically. The tool provides methods to automatically
compute these constants for the transient or the steady-state regime. These functions rely on scipy’s
functions: for the transient regime it uses the solve_ivp from scipy and for the steady-state the
function solve_continuous_lyapunov. An example of the tool is:

t, x, v, _ =\

model .meanFieldExpansionTransient (order=1, time=2)
x_inf, v_inf,_ =\

model .meanFieldExpansioNSteadyState (order=1)

x_simu, _ = ddpp.steady_state_simulation(N=n, time=20000)

where the last line estimates E[X (00)] by simulating a trajectory of 20000 events and computes the
average over the end of the trajectory.

This result s illustrated in Table 4.1, where we compare the mean field approximation, the refined
mean field approximation and an estimation of the steady-state probability E[X(0c0)] computed
by simulation. We observe that if the mean field approximation is already very accurate, its refined
version is close to being exact.

N | Mfz(co) Refined@(oco) + y&(o0)  Simulation

10 0.382 0.394 0.394 + 0.004
20 0.382 0.388 0.389 £ 0.003
30 0.382 0.386 0.386 = 0.002

Table 4.1: SIS model: Illustration of the accuracy of the mean field and refined mean field approximations for
steady-state.

Note that the tool also allows to compute the second order refinement term as defined in [54].
This can be done by changing the order=1 into order=2 in the code. The time to compute this ap-
proximation is much larger than the time to compute the refined mean field approximation (that
corresponds to a first order expansion).

4.3.3 HETEROGENEOUS MEAN FIELD APPROXIMATION AND REFINEMENTS

The heterogeneous mean field approximation and its refinement differs from the homogeneous case
in the sense that transitions are dependent on the state of single objects. For the stochastic process
this is taking into account by considering an object dependent representation. The intuition of the
mean field approximation is as before, for the drift we consider the sum over all transitions weighted
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by their transition rate. Let the drift in state z be denoted by f"“!(z), then, the mean field approx-
imation is again the solution to the ode having f"° as drift with initial condition 2(0). If both,
a5 s and bla 5.5 5 Are uniformly bounded, it holds, as shown in [5] that the adapted mean field
and refined mean field approximation capture the probability of the objects to be in a state with an

accuracy of O(1/N) and O(1/N?), i.e.

E[Zk,s(t)] = ]P(Zk:,s(t) = ) = Zk,s(t) + O(l/N)a (44)

The term vy, 4(t) refers to the adapted refinement term whose precise definition can be found in [5,
Appendix BJ.

Simulations of stochastic trajectories, mean field and the refinement methods can be calculated by
calling the same functions as for the homogeneous case. Note that second order refinement methods
are note available for the current version since they are computationally too expensive.

Due to the setup of the heterogeneous population process, single simulation trajectories are not
close to the mean field approximation but close to the sample mean of the stochastic system, that is,
(4.4) holds but Zj, 4(t) does not converge to zj 5(t) as N goes to infinity (contrary to what appends
to the DDPP case for which one can show [77] that X(¢) converges in probability to its mean
field approximation x4(t), which is what is observed in Figure 4.1). Hence, to study the accuracy
of the mean field and refined mean field approximation in the heterogeneous context, we provide
the additional methods sampleMean, sampleMeanvariance with which the sample mean and sample
variance can be calculated. To calculate an approximated mean with 100 samples, we set the initial
state to have only susceptible objects and write:

model.set_initial_state(np.ones((N,d))*np.array([l,o]))
t_mean, mean, var =\

model .sampleMeanVariance(time=2, samples=100)

In order to compare the results to a one of the homogeneous models one should consider the sum
Yi(t) =+ SV Z (k,s) (t), which is a density representation of the heterogeneous population pro-
cess. It can be shown that Y} () converges in probability to its mean field approximation y,(t), as
the number of objects grows.

4.4 IMPLEMENTATION CHALLENGES

Most of the toolbox functionality is a direct implementation of the equations defined in [54, 59],
with the use of functions from numpy or scipy to integrate differential equations or solve linear equa-
tions. Yet, there are some implementation challenges among which we list two here: how to auto-
matically compute the drift’s derivatives (Section 4.4.1), and how to deal with model that do not
satisfy the exact assumptions of [59] needed for the steady-state (Section 4.4.2).

4.41 AUTOMATIC DIFFERENTIATION

To compute the refined mean field approximation, one needs to compute the first and second deriva-
tives of the drift function f. We implement three different methods. The first is to use a finite dif-

95



4 RMTF Tool - A Numerical Tool Box

ference method. Of;(x)/0z; ~ (fi(x + ce;) — fi(x))/e. This is the most robust method but is
relatively slow and has a limited precision due to the choice of €. The second method that we imple-
ment is to use the package simpy that allows for symbolic computation and can be used to compute
derivatives. The third method is a method based on autograd from jax that uses automatic differen-
tiation. These two methods are both faster and more accurate than finite difference methods. Yet,
they cannot differentiate all functions. For instance, if the drift involves a sinus function and if the
DDPP model is defined using the numpy . sin function, then the simpy will not be able to differentiate
this function as it does not understand the numpy function. Here, autograd will work.

4.4.2 DIMENSION REDUCTION

In order for the equation (4.3) to have a unique solution, the assumption used in [59] is that all
solutions of the mean field ODE & = f () converge to the same fixed point & (00), regardless
of the initial condition (0) € R? Yet, in practice, many models are naturally described as d-
dimensional DDPP but evolve in a smaller dimensional space X C R9. This is for instance the case
for the SIS model of Section 4.2 that evolves in a space of dimension 1 because zg + z; = 1. It
turther implies that the Lyapunov equation (4.3) does not have a unique solution. As such, one
cannot apply directly the theorem of [59] to this SIS model.

A mathematical solution to this is to redefine our SIS model to obtain a model in dimension 1.
By replacing the occurrences of 27 by 1 — g in all equations. Yet, if this is easily done for reducing a
2D model to a 1D model, it can be cumbersome when going from a 20D to a 15D model. Our tool
allows doing this automatically. This is how we can obtain Table 4.1 while using the DDPP defined
in Section 4.2.

Our approach to this problem is to compute the rank of the set of transitions £. If this rank is
d' < d, this means that the model evolves in a d’-dimensional state space. In particular, the jacobian
A used in Equation (4.3) has dimension at most d’. Our code uses the SVD decomposition of A to
transform the d-dimensional Lyapunov equation (4.3) into d’-dimensional equation. This is partic-
ularly useful for heterogeneous models composed of N objects that each evolve in a .S dimensional
state: a natural description of the model is to construct a [NV .S-dimensional DDPP, but that evolves
in a subset of dimension N (S — 1) or even smaller. For instance, the cache replacement policy stud-
ied in [5, 36, 60] with IV objects and S lists is naturally described as a V(.S + 1) process but evolves
in factin a NS — S state space. Using the automated dimension reduction greatly simplifies the
definition of the model in the tool.

4.5 CONCLUSION AND DIscussioN

In this chapter, we present a tool, called 7mf r00l, that can be used to define and study mean field in-
teraction models. The tool is build-in with a stochastic simulator, and methods to compute the
mean field approximation and refined approximation of a given model. The tool consists on a
Python library and models can be directly be defined as python objects. In the present chapter, we
illustrate how the tool can be used by using a simple SIS model. Below, we discuss in more detail the
applicability of the tool by giving a few examples of application, and by analyzing the computation
time.
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4.5 Conclusion and Discussion

4.5.1 To WHICH MODEL DOES THIS APPLY?

The tool is provided with a number of examples that demonstrates the use of the tool and the accu-
racy of the approximation. These examples include:

* The power of two choice model of [89]. This example models a simple, yet powerful, load
balancing strategy in a system composed of IV servers.

* The bike-sharing model of [50]. It models a city where C'N bikes moves in a city composed
of N stations.

* A epidemic model called the SIR model (that is a generalization of the SIS model presented
in the chapter).

Although they are not directly provided as examples in the repository, the tool is also used in [5,
36] to analyze the performance of cache replacement policies. These cache replacement policies are
examples of non-homogeneous population models.

4.5.2 ANALYSIS OF THE COMPUTATION TIME

To give an idea of the time needed to compute the refined approximation, we report in Figure 4.2
the time taken by the tool to compute the refined mean field approximation as a function of the
system size. The first line corresponds to a homogeneous model of dimension d: in this model, we
consider the power of two choice model of [89] where we bound the queue length by d. We report
the numbers of [54]. We observe that for this model, we can solve the problem for a few hundreds of
dimension in less than a few tens of seconds. Note that for this example, the jacobian and the second
derivative can be computed in close form. Hence, the reported time does not include the time that
would be taken if one were to use symbolic differentiation.

In the second line of Figure 4.2, we report the time taken to solve the heterogeneous SIS model
defined in Section 4.2.3 with N difterent objects. For this example, we use the HetPP class. Note that
this class does not use symbolic differentiation since the derivative can be directly computed by using
the A and B tensors. The model here is a 2/V dimensional model. We observe that the time taken
here for a model with 2V dimension is larger than the time for a homogeneous model of dimension
2N. We believe that the run time could be improved by using sparse tensor multiplications and will
consider this question for future work.
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4 RMF Tool - A Numerical Tool Box
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Figure 4.2: Analysis of the computation time: for the transient regime, we compute v(t) for t € [0, 10]. For
the steady-state, we compute v(00).
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5

AccuracYy OF GRAPHON MEAN FieLD
MODELS

In this chaper, we present accuracy results of the graphon mean field approxima-
tion for interacting particle systems with dense, graph based connections. The
chaper presents currently unpublished results.
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S.1 INTRODUCTION

Mean field approximations are ubiquitously used in the study of large scale stochastic systems. Its
origins date back to the '60s and '70s with the foundational papers of Kurtz [75, 76], McKean [83],
Norman [93] and others. While originating from statistical physics, the mean field methodology has
found application in many areas, such as communication networks [81], load balancing [87], and the
study of epidemics [99]. The fundamental idea of the mean field method is to represent the particle
process by a Markovian state descriptor, which is based on averaged quantities of the system. A
quantity commonly used is state occupancy processes, €.g., the averaged load of stations for a bike
sharing system [50] or the fraction of servers having at least a certain queue length in load balancing
systems [87]. For the classical mean field method to be applied, it is crucial that the particles of the
system are homogeneous and therefore exchangeable, which ensures the Markov property for the
mentioned aggregate quantities.

Yet, many systems of interest are fundamentally based on heterogeneous behavior and weaker
connectedness of particles, which can lead to greatly altered dynamics and inaccuracy of the classical
mean field approximation. One of the main implications of such systems is that the quintessential
exchangeability assumption for the classical mean field method breaks down. This further implies
the necessity to keep track of the evolution of the whole range of particles in the system, making the
analysis often prohibitive.

CoNTRIBUTIONS  We provide bias bounds for the graphon mean field approximation for finite-
sized systems consisting of N € N interacting particles for which the graph G* models the con-
nection of the population. Our results show that it is possible to derive bias bounds which largely
depend on the convergence properties of the graph sequence G* and of its limiting graphon G. To
be more precise, we start from a stochastic interacting particle model of finite size /N, where each
individual & is characterized by a time-varying state Sy, (). The connection of the particle to the
population is given by the edges (k, 1) of a graph G*. Based on this description, we construct a
(deterministic) integro-difterential equation based on the graphon (7, and show that it has a unique
solution % (t) that we call the graphon mean field approximation. This differential equation is con-
structed such that for fixed NV, xf/ (1) approximates the probability of particle & € [N] to be in

state s at time ¢. Denoting P(SS™ (t) = s) this probability, our main result shows that
1
N
P(S (1) = s5) = ka/N,s(t) + (’)(N + H|GN — G|HL2),

where ‘HGN -G ‘ ‘ | Ly is the Ly distance of the step graphon representation of G" and the graphon
G, which is equivalent to the distance implied by graphon typical cut norm, see Theorem 15 for a
precise description.
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5.1 Introduction

To show the extent of the result, we consider two specific graph sampling strategies for GN . Inthe
first case (which we denote deterministic sampling), G" is the discretization of the limiting graphon
G, with G = Gy /nyn € (0,1] being the strength of interaction between two particles. We
consider this case as it illustrates how our result can be used to model In the second case (that we
call stochastic sampling), G" isarandom graph generated from G, where an edge is present between
two nodes k and ¢ with probability G(k/N,{/N). The second case corresponds to a generalization
of Erd8s—Rényi graph and stochastic block models to possibly non-uniform probabilities.

Imposing some mild assumptions such as a piecewise Lipschitz condition on the graphon G or
symmetry of (G, in the case of stochastic sampling, we can bound the distance between the graph

G" and the graphon G by:

O(N7Y. (Deterministic Sampling)
O(4/ bg](VN)) w.h.p., (Stochastic Sampling)

Here, with high probability (w.h.p) means that the right-hand side in case of the stochastic sampling
holds with probability at least 1 — 2/N. The precise assumptions and results are given in the Corol-
laries 17 and 16. We point out that the main result applies to the considered cases but is not limited
to those. It is possible to consider other graph sampling strategies that satisfy our assumptions and
for which the Ly distance between the step graphon representation of GV and the graphon G can

o -l - {

be bounded. To illustrate our results and emphasize their applicability, we provide two examples,
one each for the stochastic and deterministic sampling method. Our first example considers a load-
balancing system with stochastically drawn connections between servers. Jobs in the load balancing
system arrive at a server site, where each server similarly acts as a dispatcher and keeps or forwards the
job according to the JSQ(2) policy based on its connected neighbors. The second example illustrates
the application of deterministic sampling for a bike sharing system, with particles being stations and
the graphon determining the popularity of the stations. In both cases, a simple discretized version of
the integro-differential equation already yields precise estimations of the system dynamics while the
numerical complexity of the approximation only slightly increases compared to the homogeneous
case.

OrGANIZATION  The chapter is organized as follows. In Section 5.2 we introduce the heteroge-
neous particle model. Section 5.3 defines graphon, related sampling methods and related prelimi-
nary results. Our the definition of the approximation, the main results and proofs are displayed in
Section 5.4. Last, in Section 5.5 we present the two numerical examples.

5.1.1 RELATED WORK

DyNaMIcAL SYSTEMS ON RANDOM GRAPHS  In recent years there has been growing interest
in the behavior of interacting particles that are interconnected by an underlying graph topology,
for example, [1, 14, 19, 20] and previously mentioned references. For a general introduction to the
topic of random graph networks and limiting graphon functions for dense graphs, we refer to the
works [82, 106]. The majority of papers focus on dense graphs, having edges of order N2 such as
Erd8s-Rényi type graphs or graphs generated by stochastic block models. Additional related work
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can be found in the game theoretic setting for graphon mean field games, see for example [7, 35]. In
the ‘not-so-dense’ setting available results are more limited, with some newer references being [13,
44]. In the case of sparse graphs, such as d-regular graphs or random geometric graphs, the typical
mean field methods break down as they fail to capture the importance of the spatial graph structure
and its implications on the local dynamics of particles. Some recent works in this setting include [52,
53, 96].

LoaDp BALANCING ON GraPHS  Our load balancing example is inspired by the recent works of
[34, 100, 116, 117]. Here, the authors study a variety of load balancing systems with dynamics based
on compatibility or locality constraints, which give rise to intricate connectivity between dispatchers
and servers. While not directly transferable into the framework of this paper, the authors similarly
deal with graph-based systems and limit approximations that are strongly related to the ones our
framework suggests. Note that the techniques developed in these papers are very model-specific
and allow for transitions to depend on the states of multiple queues, whereas our approach aims at
deriving results for a more general framework for transition rates with the restriction to the case of
pair interactions.

GENERATOR AND STEIN’S METHOD  For our proofs, we adapt techniques used in [5, 55, 59],
which in turn rely on the use of Stein’s method [102]. The method is used to estimate and bound the
distance between two random variables through their respective generators. Since the works 31, 33]
Stein’s method has seen an increase in the stochastic network community and is an actively evolving
area.

S.2 HETEROGENEOUS NETWORK PARTICLE SYSTEM

5.2.1 THE INTERACTION MODEL

We consider particle systems with NV € N interacting particles. Connections between particles are
characterized by a (possibly weighted) adjacency matrix GV € [0, 1]V*V of size N x N, with Gy
indicating the connection strength between particle k and [. Each of the particles has a finite state
space S where the state of the k-th object at time ¢ > 0 is denoted by S¢ ¥ (t). As we see later, GV
can correspond to a random graph for which G4y € {0, 1} indicates the presence or absence of an
edge between the particles £ and [ or can be an arbitrary weighted matrix, see Section 5.3.

The state of the whole system is denoted by S (t) == (SIGN, e SﬁN) (t) € SV. We assume
that the process S = (S GN (t))i=0 is a continuous time Markov chain (CTMC) with the dy-
namics of the system described as in the following.

Each particle & € [N] changes its state from sy, to s}, € S in one of the two ways:

N,uni

(Unilateral) The particle independently changes its state at rate Tk s,

(Pairwise) The local change of states is triggered by another particle [ € [N] that is in state

. N pai
51 € 8. This occurs at rate 7, SZ:S/ SZG,]C\;/N.
) k>
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5.2 Heterogeneous Network Particle System

Note that the rate functions are assumed to be heterogeneous, i.e., they can depend on the items £
and . The rates have a 1 /N factor, as each particle can potentially interact with all N — 1 remaining
particles. Hence, our condition implies that the total rate of transitions of the particle system is of
order O(N) and that the transition rates for all particles are of the same order. As we will further
discuss in Example 5.5.1, our results can also be used if the scaling factor depends not on the system
size IV but on the node degrees. We further want to point out that we restrict our framework to
the interaction of two particles, which can be utilized to model many relevant interacting particle
systems on graphs such as e.g., epidemic spreading, power-of-two-choices load-balancing, or bike
sharing systems. It is nonetheless possible to use the same underlying approach to extend the frame-
work and results to interactions of higher order. This, however, comes at the cost of increasingly
cumbersome notations and limited added theoretical insight.

5.2.2 THE BINARY STATE REPRESENTATION

In order to ease computations and definitions, we will use a binary representation of the state based

on indicator functions. We denote the new representation by X ") = (X ,EZ) (£))keN] ses> where
0

X}g)@) 1 1 if object & is in state s at time ,

{s¢" ()=s} 0 otherwise.

The space of attainable states is denoted by X < {0, 1}V*S.

While this representation is less compact than the original, it allows for an easier definition of
transition rates as well as the definition of the mean field approximation. Denote by e}, a matrix of
size N x |S| whose (k, s) component is equal to 1, all other entries being zero. For each k € [N],

N): N N N
and s, 5}, € S, X jumps to XN 4-¢ff | — €, AL TAtE

N
N,uni N ,pair kl
Xkyska,sk—)s’ +X k,sk E : E : ksk—>sk st N X : (51)
le[N] 51€S8

In the above equation, the first term of the rate corresponds to the unilateral transition of the particle
k € [N] changing its state from sy, to s, as this transition occurs at intensity Tk, if particle
k is in state sy, (i.e., X5, = 1). The second term describes the pairwise transitions leading to
the state change of particle & from sy, to ). Similar to the unilateral one, the transition can only
happen if particle k is in state sy, represented in the rate by the prefactor X, 5, . The remaining factor

corresponds to the interaction with other particles, expressed by the weighted sum over all other
N, pair

particles and their states. The intensity of the transition is scaled by r A ,
»Sk—>8}»S1

and the connectivity

of the particles is given by the connectivity matrix GV € [0, 1]V*¥.

5.2.3 DRIFT OF THE SYSTEM OF SIZE N

By using the state representation X "), we define what we call the d7ift of the system of N particles
as the expected change for X ™) in state X € X'™). Ttis equal to the sum of all possible transitions
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S Accuracy of Graphon Mean Field Models

of the changes induced by this transition times the rate at which the transition occurs. We denote

this quantity as F’ o (X). By using Equation (5.1), it is equal to:

N
GN _ § N N N,uni z : N, pair le
F (X) - (ek’,sgg - ek,sk) Xkysk/r’k skﬁs’ + Xkask Tk:,l,skﬁs;wsl N Xl75l
ke[N],sk,s;GS le[N] s1€S

The quantity F' o (X) isa vector-valued function of X. By reorganizing the above sum, £, k,G M(X)
—its (k, s) component- is equal to

N
GN _ N,uni N,uni N, pair N pair le
Fk75k(X) - Z Xk Slrks — Sk Xk s ksk—>s’ + 2 : § : Xk Skrkls —Spys1 Xkasrk,l,s_,s;,sl) N lesl
s'eS l€[N] s;€S8

In the following, it will be convenient to replace the above sum by matrix multiplications. To do so,
let us denote by X, the vector (X, 5)ses. The above equation can be written as:

alr G
FE(X)=R)™X + XY RX =2 (5.2)

N
l€[N]

N,uni N,uni N,uni
where R, ;™ is a row vector whose s" component is 7, s if s # sand — ) .10 for s =

N, pair

N ,pair
and R " is a matrix whose (', s;) component is rkls 'y £ 8T # sand =3 . T

s =5

5.2.4 REPRESENTATION OF X V), GN anD F¢" As FuNcTION FROM [0, 1]

To study the limit as /V goes to infinity, it will be convenient to view the functions X (M) not as a

vector with N components (X ,EN))kG[ ~) but as a function (X[

+ Juelo,1)> Where for any state s € S,

we set

N

X&' = XZ € {0,1} foru € ((k — 1)/N, k/N].
By abuse of notation, we do not introduce separate notations for the discrete and continuous vari-
ables but make the distinction by reserving the subscript letters &, I € [IN] for the discrete case and
u, v € (0, 1] for the continuous variable.
Similarly, we also write G = G foru € ((k—1)/N,k/N]andv € ((I-1)/N,l/N], FUG;V =

FE, ", and RN o = R.™. By using this notation, the sum of k € [N] ~for instance in (5.2)~ can
be replaced by an integral, i.e., F,f;v(X) = Ff:(X) Rf:]S“mX + X7 fo Rivvpzer GN dv
foru € (k—1)/N,k/N].

5.2.5 NOTATIONS

Throughout the paper, matrices, and vectors are written in bold letters, i.e. X, @, ..., and regular

letters are used to denote scalars like X, 4, 7" The indices s, S, S}, 51, ... are reserved for the

u,s» us—>s
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5.3 Limiting Graph and Graphon

states, k, [, ... are reserved for particles, and u, v are reserved for values in the unit interval. When we
write that a quantity his of order O(1/N) or h = O(1/N ) equivalently, this means that there exists
aconstant C' such thath < % Most of our results will be expressed in terms of Ly norm (see the def-
inition in Section 5.3.3). The space Lo(0, 1] refers to the quotient space of the square Lebesgue inte-
grable functions. Throughout we will deal with vectors of Ly (0, 1] functions, i.e., f, g € Lo(0,1]°.

We for the vectors g, f we denote the scalar product by (f, 9) 1,01 = D .es fol fu,sGu,s du for

and induced norm || f|l,, = \/> .cs fol f2du. For a function G : (0,1]*> — R denote by
1, (1
IGIll,, = SUDY fe Lo(0,1], 111, 0.1y <1} \/fo (Jy Guvfos dv)?du the Ly operator norm.

5.3 LIMITING GRAPH AND GRAPHON

In this section, we specify the properties that the interaction graph G™ needs to satisfy as [V goes
to infinity. To do so, we introduce the notion of graphon and define the associated cut-norm. We
also introduce two sampling methods that can be used to generate a graph with /N nodes from a
graphon. This section only reviews the material that is necessary for our results, and we refer to the
famous book [82] for a detailed introduction to graphons.

5.3.1 GRAPHONS

In this chapter, what we call a graphon is a measurable function' G : (0, 1]> — (0, 1]. The notion
of graphon can be viewed as a generalization of the notion of graph. Indeed, for any IV, a weighted
graph G" can be viewed as a piecewise constant function defined on (0, 1]?, where the value of
this function at a point (u,v) € (0,1]? is equal to G2 whenever u € ((k — 1)/N,k/N] and
v € ((I = 1)/N,l/N]. Hence, a finite graph is a graphon that has a special structure. The notion
of graphon generalizes the notion of finite graph by allowing G to be any measurable function. We
provide an illustration of a graphon and of a finite-graph viewed as a graphon on Figure 5.1.

Throughout the paper, we consider piecewise Lipschitz continuous graphons, which are defined
as follows.

Definition 11 (Piecewise Lipschitz Graphon). A graphon G is called piecewise Lipschitz if there exists
a constant L and a finite partition of (0, 1] of non-overlapping intervals Ay, = (ay_1, ay| with

=ap < a1 < ... < ag, = 0 fora finite K € N, such that for any ky, ks € [K + 1] and pairs
(u,v), (u',v") € Ax, X Ag,

|G — Guror| < Lg(Ju — | + v — 0']).

A particular case of a piecewise Lipschitz continuous graphon is the case of a step graphon, that
is such that the Lipschitz constant Lp = 0. This implies that the function G is constant on all
intervals A; x A;. For instance, all finite graphs can be seen as step graphons by using the partition

such that Ay, = (k — 1/N, k/N] with N being the number of nodes in the graph.

Tn the literature, graphons are often restricted to symmetric functions, which correspond to undirected graphs. This
restriction is not needed for our case.
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Figure 5.1: Exemplary connectivity functions sampled after the methods of Section 5.3.2 and their corre-

sponding graphon.

5.3.2 GENERATION OF A FINITE Graru G FROM A GRAPHON G

Based on a given graphon G, we consider two distinct sampling methods to generate a finite graph

GN from G-

* In the first case, termed deterministic sampling, GY is a discretization of G on N2 uniformly

sampled points, i.e, Gy = G(k/N,l/N),k,l € [N].

* For the second case, termed stochastic sampling, and under the preliminary assumption that
the graphon is symmetric, the values G" are drawn according to independent Bernoulli ran-

dom variables, i.e., Gy = Bernoulli(G(k/N,1/N)),and Gj} = Gy forallk < L.

In the case that the graphon is constant for all u,v € (0, 1], the stochastic sampling method is
equivalent to sampling an Erd8s—Rényi graph. If the graphon is block-wise constant, the sampling
is similar to the stochastic block model; see [106].

5.3.3 GRAPHON Di1STANCES AND CONVERGENCE

To measure the distance between two graphs (and in particular to quantify how fast does a finite
graph GN converge to (), we will use the Ly operator norm. More precisely, for a measurable func-

tion f : [0,1] = R, wedenote by || f||,, 0, = \/fo u)2du the Ly norm of f. For a graphon
G, we denote by [||G||| the operator norm of G in Lo, that is:

G = sup 1G]y 0,

{f€L2(0,1] such that ||f||L2(0,1]§1}

The distance between two graphons (or finite graphs) G and G’ is measured as ||G — G|

To bound the L, distance between a piecewise Lipschitz graphon and the function associated to
a randomly sampled graph, we utilize the results displayed in [8]. The authors show that for a large
enough (see Definition 13) number /N of graph nodes, in our case particles, the distance between
the graphon and the graph function can be upper bounded as follows:

Lemma 12 (Theorem 1 from [8]). Let G be a symmetric piecewise Lipschitz graphon, and let GV be
a stochastic sampling of it as defined in 5.3.2. Then, for large enough N (as in Definition 13) with
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probability asleast 1 — 0 the distance in the Ly operator norm between the graphon G and the sampled
graph G is bounded by

4log (2N/6 L% — K? K
16 = Gl < BN o UG Koy vy )

Definition 13 (Large Enough N [8]). Given a piecewise Lipschitz graphon G with partition of (0, 1]
of non-overlapping intervals Ay, = (ay—_1, ay) as in Definition 11 and § < e L. The quantity N is
called large enough’, if

S < min ) (5.4a)
R U .
1 2N 2Ke +3L¢ !
— 10g<—> + ——" < sup / Guvdv and (5.4b)
N d N ue(0,1] Jo
Ne N5 < 6. (5.4c¢)
Implied by Theorem 12, by setting d 5 = %, we see that the distance between a piecewise Lipschitz
graphon and a sampled graph is with high probability of order | |G -GN | | La(0] = @) ( %)

The meaning of ‘with high probability’ in this context is that the right-hand side holds with proba-
bility at least 1 — 2/NV.

5.4 MAIN RESULTS

5.4.1 ASSUMPTIONS

In Section 5.2, we constructed a model that depends on a scaling parameter /N. We state here the
necessary assumptions that we will use in order to state the accuracy of the graphon mean field ap-
proximation.

(A;) The state space S is finite.
(Az) The graphon G is piecewise Lipschitz continuous.

(A3) There exists bounded and piecewise Lipschitz-continuous rate functions for 73" _ , and
191 u

q}fg’su st s foru,v € (0,1] and s, 5,,, 5, € S such that the rates function of the original
N particle systems have the relation:

uni _N,uni pair __N,pair
Tk/N,sk—w;C - T.k,sk%s;C and rk/N,l/N,skHs;c,sl - rk:,l,sk%s;,sl for k’l = [N] (55)

The first assumption is technical and simplifies the definition of the Ly space. The second as-
sumption is very classical regularity assumption when studying sequences of graphs that converge
to graphons [82]. In practice, our bounds will depend on the distance between the original graph
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G" and the graphon G. The last assumption ensures that the particle transition rates for the finite
and the graphon system are equal. We point out that assumption (A3) can be generalized by replac-
ing the equality in (5.5) with bounds for the distance of 7" and 7~ therefore modifying the bounds
of the theorem to include terms of the form HTN = H

5.4.2 THE GRAPHON MEAN FIELD APPROXIMATION

The graphon mean field approximation aims at approximating the dynamics of the original system
X. We define the graphon related drift similarly to the drift of the particle system in Equation (5.2).
For u, v € (0, 1] the graphon based drift is defined by

FuGs(ac) = Rz, + x, / REY Gy pydu. (5.6)
This equation is identical to the original drift equation (5.2) with two modifications: First, the rates
do not depend on N. Second, the discrete variables k, I € [IN] are replaced by continuous variables
u,v € (0, 1], which notably replaces the sum over [ by an integral over v.

Based on the drift function F'¢ and the initial condition z, we call the graphon mean field ap-
proximation the solution of the following differential equation:

xC(t, xo) = 2o + /t FC(xC(1,20))dr. (5.7)
0

Lemma 14. Let F denote the deterministic drift defined in Equation (5.6) and € (t, %) the solu-
tion of the graphon mean field approximation at time t with initial condition xo as in Equation (5.7).
It holds that x€ is well-defined, has a unique solution and is differentiable with respect to its initial
condition. Furthermore, this derivative is Lipschitz continuous.

The proof is postponed to Section 5.6.1

5.4.3 ACCURACY OF THE APPROXIMATION

The following result provides a bound on the distance between the stochastic system and the graphon
mean field approximation. This bound is stated as the Ly distance between E[ X (M]and €. Recall
that by definition, E[X ,g]\sf) (t)] = P(Sk(t) = s) is the probability for an item k to be in state s at
time ¢. Hence, our theorem shows that the graphon mean field model is an accurate approximation
of the state distribution of the particles. The statement of the theorem should be interpreted as say-
ing that the distribution of the particles over the states S for any time ¢ > 0 is approximated by the
graphon mean field approximation ¢ with accuracy depending on the system size NV as well as the
distance between G and graphon G. In particular, if GV converges to G (for the graphon norm),
then the graphon mean field approximation is asymptotically exact.

Theorem 15 (L, convergence). Ler X ™) () = ( Ig (t) k[N ses be the stochastic particle system
of size N related to a graph instance GV. Let © (t) = (x (t x0))uc(0,1],ses be the mean field
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2

approximation of the particle system as defined in (5.7) for an initial condition Ty = X M) (0)2.
Assume additionally that conditions (A;) - (A3) are fulfilled and let t > 0 be arbitrary but fixed.
Then, there exist constants C' 4, Cg > 0 such that

HE[X(N)(t) | XM (0), N — 2€(¢, X(N)(O))HL2 - % +Osl|eY =q|. 58)

The proof of Theorem 15 is postponed to Section 5.6.2. The constants C'4, C' of Equation (5.8)
depend on the uniform bound of the rates, the time ¢ and the Lipschitz constants of the graphon.
In the subsequent Corollaries 16 and 17 we will see, that if the GV is generated by one of the meth-
ods illustrated in Section 5.3.2, precise bounds on the distance HlGN - G|H can be obtained. To
illustrate our results and underline that the constants are small in practice, we provide examples in
Section 5.5. We point out that Theorem 15 is applicable for a wide range of construction methods
for GN. The subsequent corollaries illustrate cases of stochastic and deterministic sampling meth-
ods. We emphasize, however, that any method that allows the construction of densely connected
graphs, for which bounds of HlG’N - G|H are attainable, is viable. At last, we want to point out
that by using the same framework, it seems feasible to extend our results to interactions of triplets or
higher order interactions seems feasible. Yet, due to our generic choice of transition rates, this would
be linked to increasingly heavy notations for the dynamics while only giving little more insight into
the accuracy of the graphon mean field method.

5.4.4 CASE SPECIFIC BOUNDS FOR !HGN — G}HL2

The subsequent corollaries, give specific bounds for the case that G was generated as described in
Section 5.3.2. In the first case, if GV is obtained though discretization of G, Corollary 16 shows
that the accuracy is of order O(1/N). Our second Corollary 17 specifies big-O convergence rates
if the graph GV is sampled stochastically from the graphon. In this case, the accuracy is with high

probability of order O(4/ %)

CASE 1: GRAPHON DISCRETIZATION

The corollary give accuracy bounds for the approximation in the case that the graph GG N is obtained
as a discretized version of GG. The result gives bounds on the difference between the distributions
of the particles in the stochastic system and the approximate values obtained through the graphon
mean field approximation.

Corollary 16 (Dense Heterogeneous System). Assume (A,)-(A;)and let €% and X (N) pe defined
as in Theorem 15. Letk € [N|,s € Sandt > 0 be arbitrary but fixed. If GV is generated by the
deterministic sampling method of 5.3.2, i.e., a discretization of the graphon G, it holds that

o Ca+CrCon

|BX ) | X(0),6Y] -2 XM )] N

(5.9)

2Here, X ™) (0) is interpreted as a vector in L (0, 1]15,
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The proof is postponed to Section 5.6.3. The constants C'y, C'p are as in Theorem 15. The ad-
ditional constant C;n relates to the discretization error of the deterministic sampling method. For
this case, it is noteworthy that the accuracy of the approximation aligns with the results one obtains
for the homogeneous setting as described in [55, 59] while allowing for heterogeneous connectivity
and rates among the population.

CASE 2: RanpDoM GRAPH

Our second corollary provides accuracy bounds for interacting particle systems on dense random
graphs. By the definition of the graph sampling methods, see Section 5.3.2, with high probabil-
ity, the number of connected neighbors for each particle is of order V. This ensures that for large
enough systems that the neighborhood of each node serves as a local representation of the overall
system state. This leads to the following result:

Corollary 17 (Graphon System Approximation). Assume the conditions (A;) - (A3) as in Theorem
15 for a symmetric graphon G. Let XM (t) = (X lgj\s[)) (1) k(N ses be a stochastic particle system of
size N with GN obtained through the stochastic sampling method as defined in 5.3.2. Lett > 0 and
k € [N], s € S bearbitrary but fixed. Then, with probability at least 1 —2 /N and for large enough’
N, as defined in Definition 13, the graph G N s sampled such that

<S4 CpialN) (a0)

HE[X<N>(t) | X™(0),GN] - mG(t,X(N)(O))‘ N

L

where Yo (N) = 4/ 81%(]\[) + 2 (L%"];—Z,Ké) + % with L being the Lipschitz constant of the

graphon G and K the size of the partition as defined in 11.

The proof of the corollary is postponed to Section 5.6.3.

5.5 NUMERICAL EXPERIMENTS

In this section, we present two examples which support the statements of our theoretical results and
illustrate the applicability of the framework. For the first example, we look at a load balancing model
with communication restrictions of the servers imposed by a graph. In this example, the focus is on
the stochastically sampled graph, which imposes heterogeneous rates due to connectedness of the
servers. For the dynamics of the system, we see each node as a dispatcher / server pair applying the
JSQ(2) policy with respect to itself and connected servers whenever a job arrives. For the second
example, we consider a heterogeneous bike-sharing system. Here, the focus lies on the heterogeneity
of the popularity of the stations, which affects the flow of bikes through the system.

S5.5.1 Loap BALANCING EXAMPLE
MoDEL

The considered load balancing model is a jump process in the Markovian setting. We consider a
system where the servers-dispatcher pairs are connected through a graph structure where each server-
dispatcher is represented by a node. All servers have a finite maximal queue length K € N. The
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connections between the server-dispatcher pairs are denoted by G and are sampled according to
Section 5.3.2 using the stochastic sampling method. The graphon G used to sample the edges is the
same as Figure 5.1a. Based on the described connectivity structure, jobs arrive to a server-dispatch
pair following a Poisson arrival process with rate A\, > 0. Arriving jobs are distributed according to
the JSQ(2) policy idea, i.e., the dispatcher considers its own server state as well as another randomly
sampled but connected server and forwards the job to the server with the lesser load. In the case that
both servers have the same queue length, the job is assigned randomly among the two. In case both
servers have a full queue, the job is discarded. The service time of a job is exponentially distributed
with mean f¢7, and jobs are handled in first come, first served order. For a system of size NV with graph

. N ..
instance GV and state X V) = (X ,E, 5))ke[ N],s=0..K, the transitions of the system are

X = XV + el — e, (5.11)
aeree XL Y (s + et (3t Y )1 512
L ks dM (k) dN(1)"\2 Ls Ls ) Ls<Kyp .
L] sp2s+1

where e, ; isa N X |S| matrix having a one at the (k, s) entry and zero values everywhere else and
d™) (k) is the degree of node k. Equation (5.13) corresponds to the completion of a job by server k
when the queueisof size1 < s < K. Thesecond type of transitions, equation (5.12), corresponds
toaddingajob to k having0 < s < K, —1jobsin the buffer. In this case, the queue size is increased
by one from s to s + 1. To explain the transition rate we see that the servers £ can be selected in two
ways. By selecting k or another connected server [ first and the other second. In the case that both
queues have equal length, the chance that the job to arrives at server & is 1 /2. If both buffers are full,
the job is discarded. In the case that a node associated to server [ is isolated, i.e., has no edges, we

GN
define <A ( j to be zero.

DRIFT AND GRAPHON MEAN FIELD APPROXIMATION

For the deterministic drif, we replace the values of — =

Feoren N>(k) by the ones of the graphon W1th

d(v) := fo Gy, dv and the sums over particles by an integral over (0, 1]. For a given state x =
(%s)s—o0.... 5, withxs € Lo(0, 1], the drift evaluated at (u, s) € (0, 1] x {0, ..., K} is defined by

1
G G
FUGS:I: = Tusls /)\ <ﬂ—|——) Tys + g xvs“ — Tusitrlesg.
,( ) s Ls<Ky o L d(u) d( et sHLLs>0

The graphon mean field approximation is then defined as in Equation (5.7).

DERIVATION OF ACCURACY BOUNDS

While edges between the server-dispatcher pair are sampled according to the stochastic sampling
method of Section 5.3.2, the dependence on of the rates on the node degree, prevents a direct appli-
cation of the results of Corollary 17. In particular, to apply Corrollary 17 it is assumed that the
graph edges are scaled by a factor of 1/N instead of the node degree. To resolve this issue and
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obtain accuracy bounds similar to the one given by the Corollary, we start by defining C;’N =

G{c\; G{c\; N N, pair _ 1 N,uni .
( N)(k) + N)())E’ Tkl s—stls — )‘L(§]181=S + ]13l>5)]13<KL’ and Tk s—s—1 :uL]lS>0 with

N,uni

N:pait being the pairwise transitions and r the uniateral transitions for s, ', s; € {0, ..., K }.
This allows to obtain the drift of the stochastic system similar to the one introduced in Equation
(5.2) namely

k[ Npalr N,uni
F st E : E : 16—+ kls—)s—i—l,lelaS/ - Xkasrk,s—m—l'

5128 I€[N]

We proceed similarly for the drift of the graphon mean field approximation by defining Gy =

Gu,v Guwy 1 . pair L 1 N,uni . :
(W + W)E’ Trtsossits ‘= AL(5Le=s + Lgse)Lscr, and ry ) 1= pyp s to rewrite
G pair N,uni
Fu,s( = Ty,s / E : 16Gm,7“k Js—s+1, svxvvsvdv Ly srk ,8—s—1"

Sp>8

Note that for the above reformulations, the result of our main Theorem 15 is still applicable and
XM () | GY] - a0()|| < G+ G -
L2 L2

: . AN A AN A 1 N N
Using the definition of the G, G, we obtalan —G‘HLz < E(”G —G||L2m +

yields constants C'y, Cp > Osuch that ‘

N

). For |HGN — GH‘L , we can use the bound as in

Corollary 17 which is of order O(4/ log N ) with probability at least 1 — 2 and large enough N (asin
Definition 13). To obtain similar bounds for the node degree, the multlphcatwe Chernoffbound can

be used, i.e.,IP’( N> ) - P(dN(k;) < —y)E[dN(k;)D < exp(—E 1)

Z T EEN ()
Taking v = | /]Egicll%;N yields IP’( ) > a V)]é\[f I )}> < % By the triangle inequality we have

’Zk 1 dN(k)]‘“E(k 1/N,k/N] — ‘ ‘Zk 1(dN(k E[dN]\ék)])lue(kfl/N,k/N] Zk 1 [dN(k ]1u€(k71/N,k/
We apply Chernoff bound the ﬁrst summand to show that the difference concentrates around zero,

. N N N N 1
1.e.,IF’<dN(k) < = [dN(k)]> > 1 — 2/N and therefore N~ BV < N(W _

m) = O(4/ 10gN) with probability at least 1 — 2/N. The case dN]\(fk) < (1—7)Ié\[de(k)] follows
using the same arguments. For the second summand we use the statement of Lemma 23 to obtain

an error bound of order O(1/N). — CNJH .

0(\/5%).

IMPLEMENTATION

is of order

For the simulation, we set the parameters of the load balancing system as follows: The arrival rate
is set to A\, = 1, the server rate to pi, = 1.1 for all servers, and the maximal server capacity is
K1 = 10. For each system size IV, we sample a graph that remains fixed for all simulations and
obtain the sample mean by averaging over 2000 sampled trajectories for all system sizes. To compute
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the solution of the graphon mean field approximation, we discretize the drift by a simple step dis-
cretization. To be more precise, let ¥ € N be the discretization parameter and U" = {U;' }i—1
be the even partition of the interval (0, 1] with U, := (i — 1/7,i/7]. We define by F}(x), s :=

=1 Ly (u) Fp(@)i/ s the values of the discretized version of Fp. Throughout the numerical
experiments, we set 7y = 100. We choose this simple discretization method as it provides good
approximation results and low computation times, i.e., for a rudimentary implementation using a
NumPy ode solver, we are able to solve the discretization in a few seconds.” The Figures 5.2 and 5.3
show the results of our numerical experiments. The first Figure 5.2 shows the approximation accu-
racy for a single server and different system sizes. We see that already for NV = 40 the sample mean is
very close to the approximation value, which supports the statement of Corollary 17. In the second
Figure 5.3, we compare the values for the fraction of servers with at least s jobs for s = 1,...,4 as
described in the figure caption. Remarkably here, even for small system sizes, the values obtained by
the sample mean are close to the ones obtained by the approximation. As we observe the by Corol-
lary 17 suggested behavior for single particles inb Figure 5.2, the increased accuracy for N = 20, 30
is likely caused by an averaging effect and a well-connected graph instance G*.

System size N=20, System size N=30, System size N=40,
Particle k=2 Particle k=3 Particle k=4
L) — Load s=0 —— Load s=2
'2'10.8 —— Load s=1 Load s=3
. 5
© 506
$ c
220,
Sada
P9y
o 0.2
0.0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
time (t) time (t) time (t)

Figure 5.2: The figure shows the evolution of P(X ,S,As[) (t)=1)=E[X IEJZ) (t)], the probability for a server-
dispatcher pair to have s = 0, ..., 3 jobs fort € [0,2]. In each plot the results for one system size
N = 20, 30, 40 are displayed. Throughout, the sample mean values are plotted against the values
of the graphon mean field approximation.

5.5.2 HETEROGENEOUS BIKE-SHARING SYSTEM
MobpEL

We consider a bike-sharing model following the setup used in [50, 51]. The model consistsof N € N
bike stations, representing the particles in the system. Each station has finite capacity Kp € N.
The system has a fleet of bikes of size M := |V | which, at time t = 0, is evenly distributed
amongst the stations, i.e., & bikes per station. The evolution of the system depends on the move-
ment of bikes. We differ between the two cases, bikes in the system can either be stationary or in
transit between stations. To align with the notations used in the theory part of the paper, we denote

3For intricate intensity and graphon functions it might be necessary to refine and tune the discretization approach.
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Figure 5.3: The figure compares the values for the fraction of servers with at least s jobs obtained by

the sample mean and the approximation.

The quantities are calculated as E[Qs(t)]

E> ken + Der>s X,Sz,)] for the sample mean and ¢, (t) = fol doer>s xis/du for the approx-

imation.

by S¥(t),7 € [N] the number of bikes at station 7 for time ¢ > 0. For the system, heterogene-
ity comes from the varying popularity of stations. Hence, we denote by pg : (0, 1] — R the
popularity function. Based on the popularity function pg, we define the graphon of the bike shar-
ing system by Gp(u,v) = pg(v)/ fol pp(v)dv. For the system of size N, connectivity for the
stations is obtained by deterministic sampling as described in Section 5.3.2, i.e., we discretize the
graphon based on the system size N. For two stations k, [ € [IN] connectivity is therefore defined
by Giy® == Gp(k/N,1/N) = pg(l/N)/ fol pp(v)dv. Based on the connectivity between sta-
tions, it remains to define the dynamics of the system. For a given state (51, ..., Sn) € [K B]N the
bikes move between stations in the following way:

* Customers arrive at a stations k& € [IV] with rate Ap leading to the transitions

S —S—e) at rate Aglg, 0.

* The travel time of bikes between stations is exponentially distributed with rate ugp > 0.
Hence, the for station k& € [INV], the arrival rate of bikes is the product of the scaled pop-
ularity of station times the traveling bikes (A — >, S ,iv ) weighted by the travel time, i.e.,

pB(k/N) . N .. . ..
m (M — %, SY) pp. This implies the transition
k/N
S — S+ e,]gv at rate —%B( /N) (M — ZSéV)MB]lSk<KB'
fo pB(V)dV L

For the above, the notation el refers to the unit vector of size IV having a one at entry k and zeros
k y
everywhere else.
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DRIFT & LIMITING SYSTEM

To define the limiting system, we derive the drift implied by the above transitions and the defined
graphon G'g. We start by considering the indicator state representation as outlined in Section 5.2,
i.e., the drift is a vector of size K + 1 of L (0, 1] functions. In contrast to the stochastic rates, for
the drift, the sum over particles is replaced by an integral over and the values of G* replaced by
the graphon values. For a state ® = (24)s=0,. k With z, € Lo(0, 1], the drift of the system at

(u,s) € (0,1] x S ={0, ..., Kp} is defined by

1 KB

qus(m) = Tys < u M / Zwv sdv ,UB]15<KB - >\B]ls>0)

fopBV

By definition of the system and particularly the graphon, it is immediate that the assumptions of
Theorem 15 and Corollary 16 hold, therefore guaranteeing the accuracy of the approximation.

IMPLEMENTATION & RESULTS

For our simulations, we set the popularity function of the bike sharing system to pp (v) := 1—0.5v.
The travel rate and customer arrival rate are 1p = 1 and Ag = 1 respectively. For the plots of Fig-
ure 5.4 and Figure 5.5 we calculate the sample mean by averaging over 7500 simulations for each
system size. For each plot in the first Figure 5.4, the mean field trajectory for single item and state
is plotted against the sample mean. Here the horizontal axis represents time ¢ and the vertical axis
the probability for the item to be in the state. In the second Figure 5.5, a comparison of the sam-
ple mean against the values of the approximation for fixed time and state is shown. As used for the
theoretical results, the state of the stochastic system is represented as a step function with constant
value E[ X o )] on the intervals (k — 1/N, k/N] for k = 1..N. In accordance with our theoret-
ical results, the plot shows that with increasing system size the graphon mean field approximation
becomes more accurate and captures the state distribution of the particles well.

5.6 PROOFS

This section provides the proof of the main statements of this paper.

5.6.1 PrROOF OoF LEMMA 14

Proof. Proof. We prove the uniqueness and continuous differentiability of the differential equation
(5.7) as well as the Lipschitz properties of the drift. The proof is the consequence of two lemmas:

* We show in Lemma 18 below that the drift is locally Lipschitz continuous in Lo. By [46], this
implies the existence of a local solution and the uniqueness of this solution.

* In Lemma 19 we show that the directional derivatives of F'“ are well-defined and Lipschitz
continuous. This property ensures that the % is also continuously differentiable (for a proof
of this property in general Banach spaces see for example [46]).
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Figure 5.4: The plot shows the sample mean of E[.X Ig{\s[) (t)] for N = 20,50 and the value of the graphon

mean field approximation asz/ N s(t) fort € [0,3]. The plots are generated for the states s
3,6,10and k — 14, 35.

116



5.6 Proofs

1 —— EIXS"] for N=20, 5=3 0.14]
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Figure 5.5: For a fixed ¢ = 2.5 and state s = 3, the plots compare the graphon mean field approximation xC
against sample means for systems of size N = 20, 50. As for the main theorem of our results, we
represent the values of the stochastic system as step function with constant values on the intervals
(k —1/N,k/N],k € [N]. The figure shows that for increasing system size, the values of the
stochastic system indeed approach the trajectory of the deterministic system. In the upper plots,
the approximation is plotted against values of the sample mean for one system size N = 20, 50
each. In the lower plot, both functions are overlain for better comparison.
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]

Lemma 18 (Local Lipschitz Continuity of the Drift). Let Ly = 2(Cg|S| + 2CxISIPIIGIN
where C', is the bound on the rate functions, || G| the operator norm of the graphon G and |S| the size
of the finite state space. Then forall x. = (v 5)ses,Y. = (Y.s)ses withx 5,y s € L2(0,1] and
Nzl |l < 1with |zs(w)], |yus| < 1almost everywhere*, we bave:

| F () — F°(y)

HL2 < Lgc|lx — y||L2'

e
Proof. Proof. Define Fu7s(a;, y) = Rumwu + xl fo R G, Y, dv, ie., we replace x, by y,

u,v,8

under the integral. Applying the triangle mequahty to the Ly norm gives

|F¥(x) - F9(y)||,, = HFG )~ F (@) + F(ay) - F(y)‘

F(a,y) - FG(y)‘

Lo

<||Fé(@) - Fow,y)| +

2

Ly

Writing out the definitions and using the bounds of the rate vectors / matrices and the bound of the
graphon one immediately obtains

|Fé(@) - F¥ ()|

1
_ uni T pair _ uni _ 2T pair
L - \ Z / (Ru,swu " T / Ru v SGuﬂ)mvdv Ruvsmu Ly / Ru v, sGuﬂJyv
2

seS

2
“\Z [ (a1 [ Bt Gt v} du < 2isPCulGll i,

seS

and

2
F(z,y) - F%y) L= Z/( Yu) T (Tu — ) /RE“‘iﬁs uvyvdv) du

seS

< (2CxISI” +2ISPCRIIGI) Iz — yll -

~ G ‘

Last, we conclude that HFG(:B) — FG(y)HL2 < (2(Cr|S|* +2CRISPIIGIN) || — yl|,» where

2 3 . . . :
the |S|” and |S|” terms come from the vector and matrix notation used for the unilateral and pair-
wise rates as well as the sum over S.

O

Lemma 19 (Lipschitz Continuous Directional Derivative of F¢). The directional derivative of the
drift FC forx = (x4)ses with xs € Lo(0, 1] 45 given by

u,v,s u,v,s

1
D,FS (2)(h) = R"h, + hT / R G vaody + @7 / R Guohudo (5.14)
0

*Here, almost everywhere means that the property holds except on a subset of (0, 1] with measure zero.

118



5.6 Proofs

where Ry, R and G are Lebesgue integrable functions. Furthermore Do F () (h) is Lipschitz-

u,s9 YU,
continuous in x.

Proof. Proof. Recall the definition of F’ G(m) Rum,a}u + xl fo R™ .G Gy, dv. We define

UUS

D, F{ (x)(h)for (u, s) € (0,1]xSasin Equation (5.14). To see that D FG( )(h)isadirectional
derivative of F¢ in x € L(0, 1]5 in direction h € Lo, we show that it fulfills

161%12‘}F (x + eh) — F¢(x) — D,F°(x)(ch HL2

=0.
By definition
|FC(@ + ch) — F¢(z) — D,FC(z)(h)|;

/ Z(Rum (€, + €hy) + (z, + €hy,)T / R Gyo(xy + chy,) dv
0

- Rz, —x, / RPalr G, dv

2
_ERunihu o th/ RgagsGummvdv / Rzag sGU vh dl}) dU

1
— / Z<ER5};hu+emf / R Gyohodv+ ch] / R Gty dv
0 S

+hl / R Guoh, dv
0

u,v,8

U, S U, S

1 1
_ / Z(&hf / R G, dv> du.
0 0

Taking dividing by € and taking € — 0 shows that D, F' “(x)(h) is indeed a directional derivative
of F€ in z. By definition, D, F' fs(az) (h) is linear in @ and as R}, R  and G, are bounded
functions, the Lipschitz continuity in L follows.

1 2
—e(R*"h, — h? / RX Gy ydv — / R Gl dv)) du
0

]

5.6.2 PrOOF OoF THEOREM 15

In the following, we present the proof of Theorem 15.

Proof. Proof. Let X )bethe Ly (0, 1]1! representation of the stochastic system as defined in 5.2.4.
Forafixedt > 0, deﬁne

vV (1) = E[z¢ (t -, X(N)(T)>] (5.15)
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for which we suppress the dependence of the expectation on the graph GV and initial state X ™ (0)
from here on. Using the definition of ¥ we rewrite

[Bx o -« xon|, - |3 | (B (0] - 6,0 X0

L
2 \ seS

=2 /0 (v (t) = v, (0)) *du. (5.16)

\ seES

To compare the drift of the ODE against the drift of the stochastic process and ultimately bound

them, we first want to rewrite v (t) — v (0) = Ot Lyl (1), with L1V (7) being the quantity

that fulfills vV (b) — v¥ (a) = fb L yN(9)d for arbitrary a, b € [0,¢] with a < b. In Lemma 20

a dr
we show that L 1/(6) exists almost everywhere for § € (0, t) and is almost everywhere equal to

E

3 / 1 [Dza:G(t X (T))(FG(X<N>(T)) e (X(N)(T))ﬂvs/dv] (5.17)
S + ]E[Rl(aca(t - X<N>(T)))} dr. (5.18)

In the above sum, D,z (1, X ™ (7)) <FG (XM (7)) — F" (X M) (T))) is the directional deriva-

tive of ¥ in its initial condition in direction F&(X ™ (1)) — F& (X ™) (7)). We aim to bound
the sum by using the properties of the derivative of £“ and the differences between the drift of the
deterministic and stochastic system with respect to the Ly norm. The technical details to bound the
remainder term and the difference between the drifts are moved to the Lemmas 21 and 22. From
the application of the latter lemmas, one obtains the bounds

RP . Rpair Rpair 2 )
N N 2 + CRP&H’

2L air+16C2 i K papaic 1602 K2
e - slle -6

for Equation (5.17) and C'z /N for Equation (5.18). It follows by applying the bounds and rearrang-
ing terms, that

|Ex ™) - 296, x00))|, < M [<ael

L

for some finite constants C'y, Cp > 0 additionally to the previous bound also depend on ¢. This
concludes the proof.

O
5.6.3 PROOF OF COROLLARY 17 AND COROLLARY 16

In this section, we prove the corollaries of Theorem 15. In each case, we use an additional lemma to

obtain a bound on ‘HGN - GH|
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5.7 Conclusion

Proof. Proof.[Proof of Corollary 17] By the application of Theorem 15 we have

[BX ™ 0] - 2%, xM0))|| = % +Ogll|GY =@
It therefore remains to bound the L5 distance |HGN -G { H between the graphon G and graph GN.
By application of Lemma 12 with probability at least 1 — ¢ and for ‘large enough’ N

4log (2N/6 L2, — K2 K,
lle™ — Gl < |/ RECN) Ly [ —KE) Koy v,

Defining and substitution § = 2/ into the above equation concludes the proof.
O

Proof. Proof.[Proof of Corollary 16] The corollary is a directimplication of Theorem 17 and Lemma
23: due to G" representing a discretized version of G it directly follows that H|G -GN ! ‘ ‘ is of order
O(1/N), which concludes the proof.

O

5.7 CONCLUSION

In this paper, we study an approximation for a system of particles interacting on a graph. We show
that when the interacting graph converges to a graphon, the underlying behavior of the stochas-
tic system converges to a deterministic limit, which we call the graphon mean field approximation.
While this result is similar to other results in the literature — that show that graphon mean field
approximations are asymptotically exact in some settings —, our main contribution is to provide
precise bounds on the accuracy of this approximation. We showed indeed that the distance between
the original finite- NV system and the graphon mean field approximation can be bounded by a term
O(1/N) that depends on the number of particles of the system plus a term O( H|GN -G |H) that
depends on the distance between the original graph G" and the graphon GG, when measured asa Lo
operator.

This paper aims to be methodological. It shows that it is possible to obtain bounds for a sys-
tem with a graph structure, and not mere asymptotic convergence results. To keep the presentation
reasonable, we intentionally considered a relatively simple model, for instance by restricting our at-
tention to pairwise interactions between nodes or unilateral jumps, and by considering that the rate
functions 7 are discretized versions of the limiting rates 7. We believe that by doing so, the proof
is easier to follow and could then be adapted to more general cases.

The focus of this paper is to study the case of dense graphs that converge to graphons. This implies
that the total number of edges per node is of order O (V). We believe that our methodology could
be applicable in the not-so-dense case when the number of edges per node goes to infinity at a sub-
linear rate. This would probably give bounds that converge more slowly to zero. Complementary to
this paper, another interesting question is the case of sparse graphs, where the number of neighbors
per node remains bounded when the number of nodes IV goes to infinity. Yet, this would require
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S Accuracy of Graphon Mean Field Models

a fundamentally different approach: studying such a problem is out of the scope of our tools since
the graphon mean field approximation is not asymptotically exact for sparse graphs.
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5.8 LEMMAS

This section contains the most technical lemmas of the paper.

5.8.1 DERIVATIVE OF v (LEMMA 20)

The following Lemma derives a representation of the derivative of v/, as defined in the proof of The-
orem 15, which depends on the derivative of the graphon mean field approximation with respect to
the initial condition, the transitions of the stochastic system and the deterministic drift.

Lemma 20. For v™ (1) and T € (0,1) we define

L) = lim TT i~ (B[t — 0+ 1), X0 + 7)) — B[zt — 0, XV(0))]) o,

for which, by construction and continuity properties of xC and XN ) it holds that for arbitrary a,b €
0,T],a < b, f: LyN(7) = vN(b) — v (a). Furthermore, the right-hand side is almost everywhere
equal to

v,S

B [ [Pl — 7 X0 (FOXN0) - F XV (e)]
+ E[Rl(:vG(t — T, X(N)(T)))].

which is well defined and bounded duc to the properties of the drifis F° G , FY and the approximation
xC. In this context, Ry refers to the summed Taylor remainder term defined by

Ry(zC(t — 7, XN =) Ri(@(t -7, XM(r)), €ins, ~ Chuse)

k,Sk, sk

(N) N,uni N pair
X Xk Skrk Sp—>s), + Xk’ »Sk § : 2 : klsk—mk s N Xl »S1
lE[N] s
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Proof. Proof. Recall, that X (M) is in the following handled as a L function as described in Section
5.2.4. We start the proof by rewriting

d 1 T+h 1 a
- — lim = im = _ (N) _ Gt _ (N)
) =tme | lim ~ (Bfa®(t — (0 +r), X (6 4 1)) ~ El®(t — 9, X" (6))] ) o
it [ tim (B2 (1 — 0+ ), X0 + 1))~ El2S(t 0. X0+ 1))])do
noh ) — ror ’ ’
ctimd [ hm1<E[mG(t — 0, XN (0 4 1)) - E[z°(t — 0 X<N>(9))]>d9
noh ) ror ’ ’
—lim T T+hlim1(E[ch(t— 0,2 (—r, X0+ 1)) — 25t — 0, X0+ 1))]] ) s
noh )  wor ’ ’ ’
1 T+h 1 c
im — im = _ (N) — 29t — (N) (N)
tlimg [ i (B[EC -0, X0+ 1) 26— 0. XN(0)) | XV ()] )do

L [ G
= lim = im = — — (N) _ G+ _ (N)
l}g{)lh E{lﬁglr(m (t—0,z"(—r, X"V O+1))—x"(t—0,X (0+T))>}d9

T

T+h
+lim % E {lim ! (E[mG(t — 0, XMO+ 7)) — zC(t — 0, XN (0)) | X<N>(T)])} do

rl0 T

For the first equality, an artificial zero is added by adding and subtracting the term % (t—0, X ) (g+
7)) and using dominated convergence in combination with the boundedness of the solution of
the differential equation and the stochastic system almost everywhere. For the second equality,

we use the tower property to write the difference in the conditional expectation with respect to

XM(7). The last equality, follows by dominated convergence which allows to take the limit in-

side the outer expectation and by definition of & as well as the drift F'“ which allows to rewrite

xC(t— O +7), XN 0 + 7)) = 2%t — 0,25(—r, XN (0 + 1))). By definition, 2 is con-

tinuously differentiable in L, with respect to its initial condition. The property follows by a general

version of Gronwalls inequality and the Lipschitz properties of the drift, also see [46] for a proof of
this property. Using the differentiability in combination with the Lebesgue differentiation theorem

for L,, spaces and application of the chain rule we can rewrite

li 1 T+hE 5 1 Gt _ g xC XM (p G _ g XM(p "
w0 h i rlg)l;(w (t =6,z (—r, O+r))) —="(t -0, ( +T))>
=B [Dzwg(t =7 XM () FC(X™N (7)) (5.19)

where equality holds almost everywhere and D, 2% (t — 7, XM (7)) FE(X™) (1)) is the direc-
tional derivative of € in its initial condition with direction F¢(X®™)(7)). For the second inte-
gral, we apply Lebesgue differentiation theorem in combination with the definition of the transi-
tions for the stochastic system. In particular, we use that the probability for a small d7 > 0 the
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state of the stochastic system changes to XM (r +dr) = XM (1) + e,iv ;= is given by

€Ly,

dr X (e b dr X (1) e S e G )+d¢) This shows

rks —)S S klsk—>$ 51 N

T+h 1
lim E [hm - (a:G(t — 0, XM @ +7) -zt -0, X(N)(Q)))} de

hl0 0 T
1 G (N) N N G (N)
=F 1111Tr¢r(1) o kz, (az (t—7, XW(r)+ €5, — ehsk) —x"(t—1,X (T))>
18k S},

N
N N,uni N N, pair G N
X dTXlg s;z( )Tk ,Sk—+5); + dTXlg 52 ) E : 2 : rk,lf)sk%s;,sl ]Vkl Xl(,sl) (T> + O(dT)

lE[N] si

where equality holds almost everywhere. Lastly, by continuous differentiability of % with respect
to its initial condition, we apply the Ly version of the Taylor expansion, see Lemma 24, for wG(t —
7, XM (1) + egsk — ey, ) around 2 (t — 7, X M) (7)). Note again, that the equality for the
expansion hold almost everywhere. This allows to rewrite

2t — 7, XV(r) + e, —el,) =aS(t —7, XN (7 / Z |Daat(t = 7, XN (1)) (el el )]
+ Rl (mG(t -7, X(N) (T))’ eﬁs% - e{f\{sk)'

Here, D, x% (t—7, XM (7)) <e£{s;§ - e]k\;k) is the directional derivative of % in direction e]kvsk —
efc\f o which should be interpreted as Ly similar as for the L, representation of X ), By R, (2 (t—

7, XM (1)), ey o ey, ) we denote the Taylor remainder term of first order defined as
Rl (wG<t -7, X(N) (T))7 eﬁs; - e;c\{sk>
1 1
- / (1-4) / S [(Datt — 7. XN (7) + 8(elly, — ell,) —~ Dot — 7, X (7))
0 (U

N N
O e,wk)} o dv d.
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Adding this into the previous right-hand side and rearranging the terms yields by using the linearity
of the directional derivative

1
E Z (/0 Z[wac(t—T,X(N)(T))(eﬁS; _egsk)}%ydv—i-Rl(CCG(t—T,X(N)(T)),G{XS; —e]k\fs]c)>

/

k55,5, s

(N) N,uni N, pair (N)
X Xk sk( )rk,sk—m Z Z k lpsk—>sk S1 N Xl,sl (7->
lE[N] si

=E /1Z[Dx:cc(t—T,X(N)(T))FGN(X(N)(T))} dv

v,s’

+E [Rl (2t — . X<N>(T)))} .

with
Ri(z(t — 7, XM (7)) == Y Ri(@(t — 7, XM (7)), eryy —€f),,) (5.20)
k,sk,8),
- N Gl (V)
uni Palr
X Xk ,Sk k:sk—>s’ + ch \Sk Z Z klsk—wk st N Xl,sl

lE[N] s
Ultimately, we rewrite the initial integral by using the formulations of Equations (5.19) and (5.20)
to
1 T+h

tim [ tim (Bl = (0. X0+ 7)) ~ Ela(t — 0. X(0))] )b

— B[} /1 | DaaC(t =, X)) (FO(XN(r) = FE(XW(r))]  dv | &Y, XN(0)

+ B[Ry (€t — 7, XN (1))) | GN, XM (0)]

where equality holds almost everywhere. This concludes the proof.

5.8.2 BoUND ON THE TAYLOR REMAINDER TERM (LEMMA 21)

The subsequent Lemma states an upper bound for the remainder term arising in Lemma 20 which
ultimately is used to obtain the bound for Theorem 15.

Lemma 21. For any attainable state X € X N of the stochastic process and T > 0, the expectation of
the Taylor remainder term R, (25 ,(t, X)) as defined in Equation (5.20) is of order O(1/N).

>In order for £ to be properly defined, X should be understood in this context as a L (0, 1]1°! function.
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Proof. Proof. For astate X € X%, recall the definition of Equation (5.20)

Ri(zS,(r, X)) = > R, (r,), X, eb) —elhw))

kE[N],sk,5,,€S

(N) N,uni pair N
X (Xk/N skrk s8], +X k/N Sk Z / k/N,U,skﬁsk,sle/N UXTE,Sl)d/U)

SIES

N ,pair _pair . .
where we use that 7, ; skrslos = Th/Nywssusslos forv € (I —1/N,l] and R, given by

R (7)), X, €(i0) — €ls) =

k,s
/ (1-4 Z/ [ 7—5 X+<5( (ks) eé\,QSk))) — D,z (T X))(e( k) — e%sk)) »

To be clear, as in the proof of Lemma 20, [ D,z (¢, z)(y)] .. Tefers to the directional derivative

of % in its initial condition in direction y evaluated at (v, s'). By the properties of £, as stated
in Lemma 14, D, 2% is Lipschitz continuous in with respect to the initial condition. Thus, we can

bound

Z (Do (7, X + 6(efis) — €lks)) — Do (7. X)) (k) — €fs))ll 2
< ZLDx(O)zGH (€0hs) — ksk))”

Application of Cauchy-Schwarz then yields

Ry (xfis(t, ), X, e%sz) — egc’sk))

<3 Loc|l(efn) — el

/
kyskzsk

s1ES

By the boundedness of the rates and the finite state space, it is immediate to see that terms of the
form

(N) uni pair N
Xk:/N,ska S8, + X k/N Sk Z / k/N,v,skﬁs;C,sl G{IC/N in(; sl)dl)
s1€S
are bounded. Additionally, by definition of e®:s5k) which are non-zero only on a sub-interval of
(0,1] of size +, eé\,i ) eéi o)

bounds show that there exists a constant C'z; > 0 such that R, ( St X )) Cp/N =O(1/N).

< 2/N. Lastly, application of the mentioned properties and
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5.8.3 BOUND ON THE DIFFERENCE OF STOCHASTIC AND DETERMINISTIC
DrirT (LEMMA 22)

Lemma 22 is concerned with bounding the difference between the drift of the stochastic and deter-
ministic system. As stated in the Lemma, the bound depends mainly on the L difference between
rates and between the graphon and graph of the stochastic system.

Lemma 22. Let D,x%(t, X ) (y) be the directional derivative of £© with respect to the initial condi-
tion in divection Yy in L. Then,

v,s’

/01 Z[DxxG(t’X)<FG<mG(t’X)) . FGN(mG(t,X))>] o

QLRPaz'V‘FlGC}Q?Pm-rKR}M,y 160 K

air =~ ppair 2
N + CRpmr

is bounded by 6Cp, (

sPlle-a|)).

Proof. Proof. Implied by the finite values of X € X N

/01 Z[DxxG(th)<FG(mG(t, X)) . FGN(wG(t,X))>] o

1
gON,mec/ Z(Fﬁs,(ggG(t,X)) FS(x G(t,X)))de.
O S/

where C'y p, . is essentially obtained by taking the maximum over all X € X'V To conclude it

2
remains to be shown that fo ( v (x9(t, X)) - F, (@ (t, X ))) dv is small. By definition we

v,s’

are looking at

N 2
A > (i (w10, ) = FE (0. 50))
/Z(R“‘“,w X)+ wf(t,X)T/ R Gzl (t, X) dv
0
1 2
R X) oS0 X)" [ RUFEGYa%( X)) du
0

1 ) ) 2
<2 / Z((R;yj;, —RfX;‘i“‘)wS(t,X}) du (5.21)

1 2
w2 [V3 (s x0 [ REGae X000 [ RUGY a6 X000))
0

(5.22)
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where the inequality follows as for f, g € Ly (0, 1] it holds that || f + g[|* < 2(||f]I* + [lg]I*). We
separately bound the two summands. The application of Lemma 23 directly gives a bound for the
first

. 2 2L unl+16C2umK uni 16O2u11 uni
/Z Rum - ff;“‘)mf(t,m) du < 2= e 2 ).

For the second term, first, we add and subtract the term € (¢, X )7 f Rgvpll,r Gzl (t, X)dv
and use again the previously applied inequality to get the two terms

2

/ Z( (t, X)T / R™  — R ™G, xS(t, X)d) and (i)
2

/Z( (t, X) /Rffv"jr uv—Gﬁv)mf(t,X))dv). (i)

At its core, it remains to bound the difference of RP** — R™P" rate matrices and the difference
G — G" between the graphon and the graph. Similar to the bound for the unilateral rates, we use
Lemma 23 to bound Equation (i), i.e.,

QLRpalr + 1602 KRpalr 1602

. < 4 Rpalr Rpalr RPalr ]
(i) < 4( N Nz )
The second Equation (ii) can be bounded by 4C RP““' S \ H|G GN | ‘ ‘ . To obtain this bound, we use

the bounds C'gpar for RYPH* | RP the fact that RP" isa S X S matrix, and lastly that H:BG H L= 1.
Application of the bounds yields

Y (Dayrl (8, X ), FF (2°(t, X)) — FS" (@°(t, X)) 1,

S/

QLRP ‘I— 1602 ir KRpair 1602 i air
< 6CD ( N RE - R]IVQ R} Cilpair

stjle - )

which concludes the proof.

5.8.4 BOUND ON THE APPROXIMATION OF A PIECEWISE LIPSCHITZ
FuncTioN (LEMMA 23)

In several part of the paper, the difference between a piecewise Lipschitz function and a discretized
version needs to be quantified. The nextlemma states an upper bound depending on the coarseness
of the discretization as well as properties induces by the definition of piecewise Lipschitz continuity.

Lemma 23. Let B be a bounded piecewise Lipschitz function with K € N blocks, Lipschitz constant
Lp < 00 asdefined in 11 and bound Cp > 0 such that | B(u,v)| < Cp. Furthermore, let BN be its
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discretized version defined by BN (u,v) = SN _ B(i/N, J/N)L (u)]ljjz_v (v). Assuming that N

ij=1
is large enough as in Definition 13, it holds for f € Ly(0, 1] with || f||,, < 1 that

1
/
Note, in the case of B being Lipschitz continuous, i.c., K = 0, the right-hand side reduces to the antici-
pated bound of 2L/ N.

2L+ 16C3K  16C% K2
N NZ

du <

/0 (B(u,v) — BN(u,v))f(v)dv

Proof. Proof. By Cauchy-Schwarz inequality on Lo (0, 1] it follows that

/0 (B(u,v) — B (u,0)) f (v)dv < / (Blu,v) — B (u,0) o] ]2
< /0 (B(u,v) — BN (u, v))de.

For the rest of the proof we refer to [8] as the reasoning is identical as for their proof of Theorem
1, staring at Equation (31). The sole adaptation made is to include the case that B can take values
outside of (0, 1], leading to 2C' as the bound of the difference |B(u, v) — BN (u,v) ’

O

5.8.5 TAYLOR EXPANSION WITH REMAINDER FOR BANACH SPACES
(LEMMA 24)

For completeness, we reformulate the result from [22] pp. 524-525.

Lemma 24. Suppose E, F" are real Banach spaces, U C E an open and nonempty subset and f &
C™(U, F) (n-times continuously differentiable). Given xg € U chooser > 0such that xo + B, C U,
where B, is the open ball in E with center O and radius v. Then for all { € B, we have, using the
abbreviation (0)* = (¢, ..., (),

Flao+ )= Y O (OF + Rl 0,0), 523)
k=0 """

where the remainder R, bas the form

i /0 (1= 0)" [ f") (o + 0€) — f™) (20)] (€)"d0. (5.24)

Rn(f, Zo, 6) = (nT
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ENVIRONMENTS
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6

Bias AND REFINEMENT OF
MurTtiscALE MEAN FIELD MODELS

This chapter analyzes the approximation error of the ‘average’ mean field approxi-
mation for a two-timescale model (X, Y'), where the slow component X describes
a population of interacting particles which is fully coupled with a rapidly chang-
ing environment Y. We further derive a bias correction term for the steady-state
from which we define a new approximation called the refined ‘average’ mean field
approximation with increase accuracy.

In this chapter, we present the results of our paper
S. Allmeier and N. Gast. “Bias and Refinement of Multiscale Mean Field Models”. Pro-
ceedings of the ACM on Measurement and Analysis of Computing Systems 7:1, 2023, 23:1-
23:29. DOI: 160.1145/3579336.
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6.1 INTRODUCTION

The mean field approximation finds widespread application when interested in analyzing the macro-
scopic behavior of large-scale stochastic systems composed of interacting particles. Its assets lie in a
reduction of the model complexity, simplified analysis of the system due to absence of stochastic
components, and reduction of computation time compared to a stochastic simulation. The mean
field approximation can even yield closed form solutions for the steady-state, e.g., for the well known
JSQ(d) model [87]. The mean field approximation is generally given by a set of ordinary differential
equations which arise from the assumption that, for large system sizes, the evolution of the particles
are stochastically independent of another. This idea works well if the number of particles is large and
if the particles can be clustered into a few groups with statistically identical behavior [17, 58, 76, 77,
81]. The framework established by Kurtz [76] to derive (weak) convergence results for the stochastic
system justifying the use of the mean field approximations finds sustained attention in the literature.

More recently, the authors of [55, 113] showed that for finite system sizes the bias of the mean
field approximation is of order 1/N when compared to the mean behavior of the system. Here, N is
the scaling parameter, which usually refers to the number of homogeneous particles in the system.
Additional works such as [54, 59] introduced corrections, called refinement terms, which effectively
increase the rate of accuracy of the approximation and therefore the rate of convergence. The most
notable term is the first-order bias refinement, since it offers a convincing trade-off between a signif-
icant accuracy gain and additional computation cost.

While these classical mean field results hold for a broad class of models, most of the results can
not be transferred to systems with more intricate dynamics such as the two-timescale case, studied
for instance in [17, 25]. A two-timescale process consists of two coupled components, one evolving
slowly compared to the other. The slowly evolving component is often represented by a system of
interacting particles, where the state of each particle evolves as a function of the empirical distribu-
tion of all particles but also as a function of the state of the fast component, e.g., a fast changing
environment. These types of processes and their ‘averaged’ mean field adaptation have been of in-
terest since the 1960s and became increasingly relevant in the study of modern and complex systems.
We refer to [92] for an extensive literature discussion. An important area of application comes from
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the field of computer networks. Examples include loss networks [67], large-scale random access net-
works with interference graphs [37, 39] or storage networks [49]. Another recent field of literature
from which we draw inspiration are chemical reaction networks. The works of Kang et al. [72, 73]
and Ball et al. [11] establish central limit theorems for large multiscale models motivated by biologi-
cal and chemical processes. Another application in the field of biology is given by [98] who use the
mean field idea to study neural plasticity models.

CoNTRIBUTIONS  The aforementioned papers underline that the mean field idea can be adapted
to two-timescale models and prove that the ‘average’ mean field approximation is asymptotically
exact as [V goes to infinity. They do not, however, provide theoretical results which guarantee the
accuracy or performance bounds of the approximation for finite systems sizes. This chapter aims at
filling this gap. We derive accuracy bounds for the ‘average’ mean field approximation in the transient
regime and steady-state which show that its bias is of order O(1/NN), N being the scaling parameter
of the stochastic system. We further derive bias correction terms for the steady-state, from which
we define a new approximation called the refined ‘average’ mean field approximation, whose bias
is of order O(1/N?). To prove these accuracy bounds, we develop a framework for two-timescale
stochastic models whose slow component is comparable to the concept of density dependent popu-
lation processes as introduced by Kurtz [77]. Based on this representation, we utilize a combination
of generator comparison techniques, Poisson equations as well as derivative bounds on the solution
of the Poisson equation. This allows us to bound the bias with respect to the scaling parameter N.
To take it a step further, we then prove the existence of correction terms which approximate the
bias of the ‘average’ mean field and allow defining the refined ‘average’ mean field. To support the
practical application of the refinements, we provide an algorithmic way to compute the correction
terms. This includes methods to numerically solve the Poisson equation and obtain its derivatives.
We illustrate the computation of the refinement terms and confirm the accuracy of the obtained
bounds by considering a random access CSMA model. Using the example we show that even for
relatively small NV ~ 10 the refined ‘average’ mean field approximation almost exactly indicates the
steady-state of the model.

METHODOLOGICAL ADVANCES & TECHNICAL CHALLENGES To obtain our results, we build
on the recent line of work on Stein’s method [102]. This method allows calculating the distance
between two random variables by looking at the distance between the generators of two related sys-
tems. Recently, the method reemerged in publications within the stochastic network community,
in particular the works of Braverman et al. [30, 31, 33]. In this chapter, we use the Poisson equation
idea in two ways. First and foremost, we use a Poisson equation, called the ‘fast’ Poisson equation, to
bound the distance between a function — in this case the drift — and its average version given by the
steady-state distribution of the fast process as introduced in Section 6.4.2. This step is integral to our
chapter and constitutes the building block to obtain the error bounds and closed form expressions
as it allows to analyze the distance between the coupled stochastic process and its decoupled coun-
terpart. The analysis however bears many technical intricacies one needs to overcome. This includes
solving the Poisson equation, stating its derivative bounds and deducing computable expressions
used to calculate the bias term. Second, for our steady-state results, we make use of another Pois-
son equation to compare the stochastic system to the equilibrium point of the approximation. The
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latter is related to the methods used in [59, 113] but significantly extends the ideas as the derivation
of the bias exhibits novel refinement terms which originate from the coupling and correct the error
of the ‘averaging’ method used for the mean field. The closely linked technical challenges include
obtaining numerically feasible formulas for the ‘new’ refinement terms. Here, we utilize the derived
solution of the ‘fast’ Poisson equation to further specify the fluctuations of the stochastic system
around the equilibrium point. Carefully analyzing the combination of the two Poisson equations
enables us to obtain the new refinement terms. The closed-form bias terms that we obtained from
the steady-state analysis are significantly more complicated than the ones of [59] as they further cor-
rect the error made by the averaging method.

APPLICABILITY & NUMERICAL DIFFICULTIES In this chaper, we make use of a CSMA model
to demonstrate the applicability of our results. There are several other examples captured by our
framework, such as the Michaelis-Menten enzyme model of [73] or the storage network investigated
in [49]. For the latter, the authors observe that when looking at the right timescale the loss of the net-
work can be characterized by a local equilibrium which is obtained using the averaging method. The
biochemical Michaelis-Menten enzyme model describes the dynamics between three time-varying
species, the enzyme, a substrate and a product. Following the description of the model as in [73]
and by using the right scaling arguments, the model exhibits two timescales, the fast reacting and
state changing enzymes and the slower changing concentrations of the substrate and product. Our
framework can be used on both examples to guarantee accuracy results and can be used to compute
refined approximations.

To compute the ‘average’ mean field and refinement terms, one has to overcome numerical dif-
ficulties which arise from the averaging method. First, in order to compute the ‘average’ drift, one
needs to compute the steady-state probabilities of the fast system, which might not be available in
the closed form as for the CSMA model. For this case we provide computational notes in the ap-
pendix which aim to facilitate the computation. Another problem for the refinement term is the
need for the first and second derivatives of the ‘average’ drift. For the CSMA model we used sym-
bolic representation of the transition rates from which we define the drift and its average version.
This method allows to numerically compute the derivatives using ‘sympy’, a Python library for sym-
bolic computation. This method is relatively easy to implement but has a very large computation
time. This computation time could be reduced by implementing a faster computation of the deriva-
tives. In fact, to compute the derivative of the matrix K which is closely linked to the solution of
the ‘fast’ Poisson, we provide supplementary computational notes which describe how to obtain an
efficient implementation.

Roapmapr  The chapter is organized as follows. In Section 6.2, we formally introduce the two-
timescale model, its corresponding ‘average’ mean field approximation and make regularity assump-
tions on the system. In Section 6.3 we state the main results of this chapter. Section 6.3.1 states
the results for the transient regime, Section 6.3.2 for the steady-state and Section 6.3.3 justifies the
existence of bias correction terms. Section 6.4 holds the proofs of the aforementioned results. In
Section 6.5 we apply our theoretical results to the unsaturated random-access network model of [38,
39]. Some technical lemmas and definitions are postponed to the appendix.
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RepropUCIBILITY  The code to reproduce the chapter along with all figures and the implemen-
tation of the unsaturated random-access network model is available at https://gitlab.inria.fr/

sallmeie/bias-and-refinement-of-multiscale-mean-field-models.

6.2 STOCHASTIC SYSTEM AND MEAN FIELD APPROXIMATION

We consider a two-timescale, coupled, continuous time Markov chain (X gN) , YgN) )s>0 parametrized
by a scaling factor IV, for which we study the behavior as N tends to infinity. As we will see in the ex-
amples, N typically represents the number of objects that interact together. This section introduces

the precise model and fixes notations.

6.2.1 MODEL

For a fixed scaling parameter N, the stochastic process (X ™), Y (*)) .- ¢ isa continuous time Markov
chain that evolves in a state-space X (V) ). The set ) is finite and does not depend on N. We fur-
ther require that for all IV, the sets X (N) are subsets of a convex and compact set X' C R% . In
what follows, unless it is ambiguous in the context, we drop the dependence on N to lighten the
notations.

This model has two-timescales in the sense that the size order of jumps of Y, is N-times larger
than the ones of X ;. More precisely, we assume that there exists a finite number of transitions
(¢,y') € T with their corresponding transition rate functions cv s > 0, both being independent

of N, such that for all possible states (X5, Y5) € X x V-
(X5, Y)jumpsto (X s+ £/N,y’) atrate Nay, (X, Y ). (6.1)

The above defines continuous time Markov chains with discrete state-space whose realizations are
Cadlag, i.e., right continuous with a left limit for every time ¢. Note that in Equation (6.1), we
assume that the transition rates o are defined for all z € X (and not just for z € X)),

The notion of slow-fast system comes from the fact that the jumps of the slow component X
are O(N) times smaller than the jumps of the fast component ) while transition rates are of the
same scale. As we will see later, the different timescales imply that for large V, the slow component
X ; will ’see’ the fast component Y as if it is stationary with distribution (7, (X 5))4ey which we
formally define in Section 6.2.2.

6.2.2 DRIFT, AVERAGE DRIFT AND MEAN FIELD APPROXIMATION

The jumps of the stochastic system (6.1) can affect the fast and/or the slow component. In what
follows, we construct an approximation that consists (i) in considering that the slow component is
not stochastic but evolves deterministically according to its drift (which is its average change), and
(ii) in using a time-averaging method that shows the stochastic process Y as being in some stationary
state given . This leads us to two definitions:

(i) We call the drift of the slow system (or more concisely the drift) the average change of X ;. It
is the sum over all possible transitions of the rate of transition multiplied by the changes that
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such transitions induce on X ;. By the form of the transitions in (6.1), if the process starts in

(X, Y,) = (x,y), the drift is given by:
F(z,y):=) ayy(w y)l € R (6.2)
Ly’

This drift function depends on the state of the fast system y.

(ii) For the fast component, we define a transition kernel K, . () that is the rate at which the
process Y jumps fromy toy’ # y (divided by V), with the usual convention that K, ,(x) =

- Zy’;ﬁy Ky ():

Kyy(x) = Zo%y/(a:, Y). (6.3)
¢

As Y is finite, for a fixed &, K () is a matrix that corresponds to the kernel of a continu-
ous time Markov chain. Our assumptions will imply that for all &, the process associated
with K (x) has a unique stationary distribution, which we denote by the vector w(x) =

(7y())yey-

Based on the drift (6.2) of the stochastic system, we define its ‘average’ version F' by averaging
over the stationary distribution of the fast component. That is:

F(z):=) m(2)F(z.y).

For an initial state « and ¢ > 0, we call the mean field approximation the solution ¢;(x) of the
initial value problem

d _
0@ = F(ou@)). () =z, (6.4)

Such an approximation is also called a fluid approximation.

6.2.3 MAIN ASSUMPTIONS

As we show later, under mild regularity conditions on the transition rate functions v, the mean field
approximation captures the dynamics of X, well and with a decreasing bias of order 1/

Out) 1

Eh(X:) | Xo, Yo =z,y] — h(¢:(x)) < N T O(N)’

for a sufficiently regular h and equality for ¢ = 4-00. This holds for any finite ¢ under assumption
(A;)-(A,) below. It also holds for the steady-state regime ¢ = +o00 under the additional assumption
(As). For the steady-state we also show that C}, can be computed numerically and use it to propose
a refined approximation. To obtain these results for finite time, we will assume that:
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(A;) Thesetof transitions 7 is finite and forall ¢, y' € T, iy, € D?(X X Y), where DF (X x ))
the space of functions from X’ X ) to R for which the Holder norm || /||y, 1 is finite'.

(A,) Forallx € X, the matrix K (x) defined in Equation (6.3) has a unique irreducible class.

(A3) The ODE (6.4) has a unique, exponentially stable equilibrium, that we denote by ¢, i.c.,
there exist a,b > O0s.t. ||¢i (@) — ¢ || < aexp(—bt) forallx € X.

Assumptions (A;) and (A3) are classical to ensure mean field convergence results. As stated in [59,
113], requiring that the transition rates are twice differentiable which is necessary to guarantee the
existence of derivatives for the drift and the differential equation needed for the proofs of the theo-
rems. Assumption (A3) ensures the existence of a unique equilibrium point to which all trajectories
of the differential equation converge. This classical assumption is essentially needed to show that
the stationary distribution of the stochastic process converges to a deterministic limit, see [17]. It
guarantees the stability of both the ODE and the ’slow’ Poisson equation used in the proof.

By Assumption (A,), we mean that for all  the Markov chain should have a unique subset of
states that is irreducible (there can be additional states, but they should all be transient). This as-
sumption is equivalent to assuming the uniqueness of the stationary distribution of the Markov
chain induced by the generator matrix K (x) which is essential to define the ‘averaged’ drift and
mean field approximation. For a given @, the stationary distribution 7 () will be non-zero for all
states that are in the irreducible component (7, () > 0 for such y’s) and will be zero for the others
(my(2) = 0 for all states that are transient for K (a)). This assumption is slightly more general than
assuming that K (z) is irreducible because it allows for transient states.

We will show later that the assumptions (A,) and (A,) imply that F is Lipschitz continuous be-
cause they imply that 7(a) is Lipschitz-continuous (see Lemma 28). This implies that the mean
field approximation (6.4) is well defined.

6.3 MAIN RESULTS

This section includes our main results which are threefold. In 6.3.1 we obtain accuracy results for
the mean field approximation in the transient regime. In 6.3.2 we obtain comparable results when
the stochastic system is in its steady-state. Lastly, in 6.3.3 we introduce a correction term for the
steady-state, give accuracy bounds and display closed form expressions of the corrections.

6.3.1 TRANSIENT REGIME

Our model is a two timescale model, which makes it amenable to be analyzed by time-averaging
methods such as the one used in [17, 37, 39, 98]. Such methods guarantee that the stochastic process
X, converges to the solution of the ODE given by (6.4). Yet, most of the papers that use averaging
methods do not quantify the rate at which this convergence occurs. Our first result, Theorem 25,
states that the difference between the ‘average’ mean field approximation ¢ derived from the average
drift F’ approximates the average behavior of the slow component of the two-timescale system with a

lie., functions that are k-times differentiable with Lipschitz continuous derivatives (see a more precise definition of
this norm in Definition 33 of Appendix 6.7.1)
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6 Bias and Refinement of Multiscale Mean Field Models

bias asymptotically bounded by Cj, /N. This result is similar to the one obtained in [54] for classical
density dependent process.

Theorem 25. Consider the two-timescale stochastic system (X N) Y N)),2 o as introduced in Section
2 starting at X (()N), Y(()N) = x,y. Recall that ¢(x) is the solution of the ODE (4) with initial
condition . Further, assume (A1) and (As). Forany h € D*(X) and t > 0, there exists a constant

Ch(t) such that for all N € N:
N (B | X5, YY) = 2,y] - h(o(@) ) < Culd). (65)

Main element of the proofs. The tull proof of this theorem is given in Section 6.4.3. Itis decomposed
into two parts that correspond to the two approximations (scaling and averaging):

* The first is to approximate the infinitesimal generator Lh(X, Y;) (defined in Section 6.4.1)
of the stochastic system by a process whose drift is D, h(X}) - F(X;, Y ). This part uses

that the rate functions v and h are differentiable with respect to the slow variable .

* The second is that the actual drift of the mean field approximation is F(x) =
>, Ty(@) f(2, y) and not the F'(z, y) obtained from the stochastic system. This leads us
to bound a term of the form F'(x) — F(z, y).

The first error term is bounded by using generator techniques similar to the ones used for classical
mean field models as in [55]. It is treated in Section 6.4.3. To bound the second term, we use aver-
aging ideas similar to the ones of [17] that are related to how fast the fast timescale converges to its
stationary distribution. This is dealt with in Section 6.4.3. O

6.3.2 STEADY-STATE RESULTS

Theorem 25 guarantees that the mean field is a good approximation for any finite time interval.
In order to obtain a similar result for the stationary case, an almost necessary condition is that the
ODE (6.4) has a unique fixed point to which all trajectories converge [17]. To obtain the equivalent
of Theorem 25, we assume that this unique fixed point is exponentially stable, as is classically done
to obtain steady-state guarantees [59, 113]. This assumption is summarized in (A3) and leads to the
following result.

Theorem 26. Assume (A;) - (A3), and assume that for all N, the stochastic system bas a stationary
distribution. Denote by (X (V) y W )) a pair of variables having this stationary distribution. Then,

oo ) o0

for h € D*(X x V) there exists a constant Cy, such that:

N—oo

lim N(E[h(XééV%YéiY’ﬂ - Zwyww)h(cﬁw,y)) = Cj.

Main elements of the proof. A detailed proof is provided in Section 6.4.4. To prove the result, the
first essential step is to generate two Poisson equations:
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1. Thefirstisused tostudy E[A(X , Y o) — Zy Ty(X s ) (X o, ¥)], which is the difference
between the true expectation and a hypothetical case where Y o, would be independent from
X « and distributed according to the stationary distribution 7 (X o).

2. The second is used to study E[ -, 7y (X oo)2(X oo, y) — >, Ty(Poc)e(Poc; y)], which is

the error of the ’slow’ process compared to the ‘average’ mean field.

The rest of the proof treats these Poisson equations to establish the constant Cj,. This is done by gen-
erator comparison techniques and application of derivative bounds for the solutions of the Poisson
equation. O]

We note that contrary to Theorem 25, Theorem 26 allows for functions / that can depend on
both the slow and the fast components: @ and y. In fact, Theorem 25 would not be true if we
allow functions h to depend on Y'; as in Theorem 26, because of the fast transitions of Y. For the
steady-state, we use that (X «, Y o) starts in steady-state.

In Theorem 27 below, we will show that, for the steady-state and for functions that only depend
on &, we can go further and propose an almost closed-form expression for the term Cj,. This new
bias term provides a refined accuracy of order O(1/N?). To prove this result, we will use that The-
orem 26 allows functions i which depend on X and Y to show that this new approximation is
O(1/N?)-accurate. We show below that in fact the constant C, can be computed by a numerical
algorithm, and can therefore be used to define a refined approximation, similarly to what is done for
classical mean field model in [59].

6.3.3 STEADY-STATE REFINEMENT

To obtain a refined approximation, we utilize ideas introduced in [59] and propose an almost-closed
form expression for the term C, of Theorem 26. As we will see later in the proofs, the bias correction
term is composed of two distinct components:

1. The first one (terms V' and W) is the analogue of the V' and W terms of [59] and corresponds
to the difference between the stochastic jumps of the slow system versus having a ODE cor-
responding to the (non-averaged) drift f(z, y).

2. Thesecond component (terms 7", S'and U) corresponds to approximating Y by its stationary
distribution 7, (), and its consequence on the behavior of the slow system X.

The proofs of the expression for V' and W are essentially those derived in [59]. The second cor-
rection component (terms 7, S and U) is related to the difference between drift and its average
version. It involves studying the intricate and coupled dynamics of X and Y which, to the best of
our knowledge, has not been studied and yields novel results.

Theorem 27. Assume (A;)-(As). Then, there exist vectors V, S, T and matrices W and U that are
solutions of linear systems of equations such that for h € D*(X), we define Cy, of Theorem 26 as:

oh 1 9%h

O, —
& 2 i (%:ixj

(¢) (Wij + Usj).
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Proof. This theorem is a consequence of Proposition 29 that shows the existence of the above con-
stants, combined with Proposition 30 which provides the linear equations satisfied by V' and W,
and Proposition 31 which provides the equations satisfied by 7', U and V. O

We would like to emphasize that the result of Theorem 27 is only valid for functions % that do
not depend on y. This shows that there exists a computable constant C}, such that, in steady-state:

Eh(X )] = ¢ + % +o(1/N).

Similar to [59], we call ¢, + % the refined approximation of E[h(X ,)]. As we see in our numerical
experiment in Section 6.5, this constant is computable and can provide a more accurate approxima-
tion than the classical mean field.

In fact, combined with Theorem 26, we can show that the o(1/N) term isa O(1/N?) term. This
shows that the refined approximation is O(1/N?)-accurate. Note, for functions & that do depend
on Y, the existence of such a function is guaranteed by Theorem 26 but a closed-form expression is
currently out of our reach.

6.4 PROOFS

6.4.1 StocHASTIC SEMI-GROUPS AND GENERATORS

Given the stochastic process of Section 6.2.1, we define the stochastic semi-group operator which
maps a pair of initial values (x, y) and a function h to the expected value of the system at time ¢.
This semi-group v, associates to a function h : XN x Y — Rthefunctionyph : YN xY - R
defined as:

Uvh(z,y) = EMX,,Y,) | Xo, Yy =,y (6.6)

Using the right continuity of the slow-fast system, it is easy to verify that 1), is indeed a Cy-semi-
group (see a more precise definition in Definition 32 in Appendix 6.7.1).

The infinitesimal generator of the stochastic process is the operator L that maps a function i €

DF(X x Y)to Lh: X x Y — R defined by:

Lh(w’ y) = Z Naﬁ,y’(w’ y)(h($ + E/Nv y/) - h(w’ y)) (67)

Ly’ €T

Note that Lh is obtained by considering average infinitesimal change of the stochastic system start-
ingin (z,y), ie.,

Lh(z.y) = lim(dih(@, y) = doh(@, y)) /t = Im(ER(X: Ye) | Xo. Yo = z.y] - bz, y)) /1.
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Similarly to the notations of the semi-group and generator of the stochastic process, for a given
function h € D*(X), we denote by ®,;h(x) := h(¢(x)) the Cp-semi-group corresponding to
ODE (6.4). For differentiable h, the infinitesimal generator is given by

Ah(z) := D, h(z)F(x). (6.8)
To strengthen intuition, the time derivative of h(¢;(2)) can be expressed as
d
—h
dt
By commuting A and ®; we have A®;h(x) = D, (h o ¢;)(z) F(x) which is equal to (6.9) by the
results of Appendix 6.7.1. We will use this property to prove the theorems of the following section.

(¢e(x)) = Doh(pn(@)) F(r(x)) = P Ah(). (6.9)

ABUSE OF NOTATIONS AND DEPENDENCE ON THE FAsT CoMPONENT  The semi-group and
generator of the stochastic system are generally defined for functions i in D*(X x )), i.e., functions
which depend on the slow and fast component whereas the semi-group and generator of the ODE
are defined for h in D*(X') that do 7ot depend on the fast component. What we refer to as abuse of
notation is the notation we use for the mapping v, of a function h € D¥(X). ¢} still depends on
the fast component even if i does not (since the evolution X; depends on the state of Y; and the
initial values (x, y)):

wth(wa y) = E[h(Xt) ’ X07 YO = T, y]> (610)
and

Lh(z,y) =Y  Noyy(@,y)(h(x + (/N) — h(z)).
Ly

In essence, this allows to use the notion of the semi-group and generator to functions of the slow
process. For consistency, we do the same for the ODE: for an arbitrary y € Y, ¢i(x,y) = ¢i(x)
and therefore ®,h(x,y) = h(¢i(x,y)) = h(¢¢(x)) which is motivated by the abuse of notation
in (6.10). This will merely be used in the proofs and allows focusing on integral proof ideas instead
of complex notations.

6.4.2 GENERATOR OF THE FAST PROCESS AND REGULARITY OF THE POISSON
EQuaTioN

The generator L describes the changes induced by the transitions of the fast and slow process. In
our analysis, it will be useful to analyze the changes due to the jumpsin Y only. We denote by Ly,
the generator of the Markov chain induced by K () that takes as input a function h € D¥(X x )
and associates another function Lg,h defined by:

Ligh(z,y) = Y Kyy(@)(h(2,y') — h(z.y)).
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Compared to (6.1), Lgg is independent of IV because the transition rates are rescaled by 1/V.

Under Assumption (A,), for all @, the matrix K () characterizes a Markov chain on the state
space ) that has a unique stationary distribution denoted by (). 7, () is the stationary proba-
bility of y € Y of the Markov chain induced by the kernel K (). Subsequently, we will study the
distance between the ’true’ stochastic process Yy and an averaged system where the distribution of
Y, is replaced by the stationary distribution (). To quantify the error made when replacing Y,
with the stationary distribution, we consider the following Poisson equation:

Wz, y) = hz, y)m,(x) = LeeGi (. y). (6.11)

yey

For a given function b : X x Y — R" (n is arbitrary but finite), a function Gf** : X x J — R"
that satisfies the above equation is called a solution to this Poisson equation. We will have particular
interest in h(z,y) = F(z,y) € R% namely when the drift F'(x, y) is compared to its ‘average’
version F(z) = > F(z,y)m(y).

The existence of a regular solution to this Poisson equation is guaranteed by the following Lemma 28.
Note that the solution of the above Poisson equation is not unique: If G%S‘ is a solution, then for
any constant ¢ € R", a function G + ¢ is also a solution. Later in the proofs of the theorems,

when we talk about ‘a solution of the Poisson equation’, we refer to the solution given in Lemma 238.
Lemma 28. Assume (A;). Then forall x € X:

1. The Markov chain corresponding to K (x) has a unique stationary distribution that we denote
by 7(x). We denote by l(x) = 1 w” (x) the matrix where cach line is equal to 7(x).

2. The matrix (K (x) + I1(x)) is invertible and its inverse is a generalized inverse of K ().

3. Define K™ (x) = (K (x) + Il(x)) Y (I — IL(x)), then, for all functionsh : X x Y — R",
Gu(z,y) =2, K;r’y,(:c)h(:c, y') is a solution of the Poisson Equation (G.11).

If; in addition, Assumption (A;) bolds, then K (x) is twice differentiable in x.

The proof is provided in Appendix 6.8.1. Note in particular, this result implies that if / is (twice)
differentiable in & then the same holds true for Gf**.

6.4.3 PROOF OF THEOREM 25 - TRANSIENT STATE PROOF

The proof of Theorem 25 can be decomposed in two main parts. We first use a generator
transformation to show that the slow system is well approximated by a system whose drift is
D.h(X;) F(Xy,Y) (6.4.3). This leads us to treat terms of the form FI(X;) — F(X;,Y). To
study them, we use the solution of the Poisson equation for the fast system (6.11). The second part
is the more technical and novel. It is detailed in 6.4.3. Some technical lemmas are postponed to

Appendix 6.8.2.
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ERROR DUE TO REPLACING THE STOCHASTIC JUMPS OF Xt BY THE DRIFT

For h € D?(X) recall that the Cp-semi-groups of the stochastic system and of the ODE are defined

as

¢sh($0,yo) = E[h(Xs) | X0, Y= wOuyO] and (Dth(w07y0) = h(ﬁbt(wo))-

We define vsh(x, y) := 5P h(x, y) and rewrite

t
d
]E[h(Xt) - h(gbt(m)) | X07 YO = Xy, y[)] = Vth(m()a yO) - Voh(mOa yO) = / %Vsh(m()a yO)dS'
0

(6.12)
To show that the last equation indeed holds true, observe that
d d
%Vsh(wm yo) = Eqﬁsq)t—sh(mm yO)
= stq)t—sh(wOJ yO) - ¢5Aq)t—sh(w07 yO) (613)

By regularity assumptions on the transition rates and bounded state space the above equation is finite
forall(x,y) € X x)Yandtimes > 0. The dominated convergence theorem thus justifies the inter-
change of derivative and integral and validates the last equality. As pointed out in Appendix 6.7.1,
s and L, the stochastic semi-group and its infinitesimal generator, commute, i.., L1y = 1)sL.
Hence,

(613) = %(L - A)(I)tfsh(:cm yo)
= E[(L - A)CDt—sh(Xw YS) | Xo,Y o = o, ?/0]7 (6.14)

where the last line follows by definition of 9. Let g() = h(¢i—s(x)). g is twice differentiable
with respect to the initial condition @ as it lies in D?(R¢, R) by Lemma 34. By the use of Taylor
expansion rewrite Lg as

Lo@.y) = Y Nauy(e.9)(o( + 1)~ o(@))
Ly’ €T

1 1915 suplel?
= Y auyl@ 9 Dagl@)+ 5o S auy (@ y)Diglw) - (10) + oL

Ly’ €T Ly eT

= Dyl@)F(y) + 1 D vyl y)D2gle) - (60 +of
Ly eT

2
Crllglls,1 supel¢| )
N Y

with D%g(x) - ((,0) = > Py ()10, The convergence depends further on the Hélder

m,n 0xm0Tn
norm of h(¢(x)), bounds on the transition rates Cr and jump sizes sup|¢|. The generator of the
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6 Bias and Refinement of Multiscale Mean Field Models

ODE related semi-group, A, introduced in Equation (6.8), maps g to Ag(x,y) = Dyg(x)F(x).
Hence, we have

(L = Ng(z,y) = Dog(z)(F(z,y) — F(z)) + % Y ay(@,y)Dig(@) - (£,0) +o(1/N).
Ly €T

ERROR DUE TO REPLACING THE DRIFT BY THE AVERAGE DRIFT

Next, we have a closer look at the first summand of the right hand side in the above equation. Denote
by G'** a solution of the Poisson equation (6.11) where the function “h’ of (6.11) is set to the drift
F. Since D, g(x) does not depend on y we have by definition of the Poisson equation and Lig:

Dyg()(F(z,y) — F(x)) = Dog(x) L GF (2, y) = LuwDag(®)GE (2, y).  (6.15)

Combining the above with equation (6.14) and plugging everything into the integral of equa-
tion (6.12), we get:

E[L(X,) - h(éy(zo)] = / E{LieDa(h 0 61_) (X.) - G (X, Y]

+ %E[ Dy (X, Y )Di(ho¢—o)(X,) - (£,0)]ds + o(1/N),
Ly €T
(6.16)

where we suppress the conditioning on the initial values X, Yy = xo,y,. Let Hy(x,y) =
E[D,(h o ¢r_)(Xs)GE (X, Y,) | Xo,Yo = @,y]. Applying Lemma 35 with the function
9s(X, Y ) = Dy(ho¢p_s)(Xs) G (X, Ys) implies that

0= %Ht(ﬂf,y) - %Ho(«’lf,y> o /0 E[%Dz (th((btfs(XS)) ) F((bth(XS))) ) G%St(XS’Ys)]dS

FE[LD.(h o 60)(X)GE(X,, Vo)lds. (6.17)

As h and ¢;_, are twice continuously differentiable, by compactness of X, and as G%St is finite,

D, (th(qﬁt_s(Xs))F’(d)t_s(XS))) G'™(X ,Y ) is bounded. Moreover, by Lemma 36 we have

1
(Lfast - NL>Dx(h o (Zst—s)(Xs)G%*St(X& Y:e)
1
N Z Oy (X5, Y )l Dy (Dy(h o (bth)(XS)G%St(Xsa y')) +o(1/N).
Ly’
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Define

Cu(t) == / LS any (Xo ¥ D2h(6,0(X.) - (¢, 0)]ds

Ly’ €T

T / E[D, (Doh(6r+(X.)) - F(6y (X)) - G2(X,, Y,)]ds

+ /0 B[S 0 (X, Y0 Do Do 0 610) (X GE(X 0 /) ds + E[H,(X,, Y)] — Ho(, ),

Ly’

which lets us rewrite

N(E[R(X )] = h(dr(2))) = Cu(t) + o(1).

By assumption, all the terms of Cﬁ (t) are bounded. Therefore, the right-hand side of the equation
is bounded by a quantity we call C}, ().

6.4.4 PROOF OF THEOREM 26 - STEADY-STATE PROOF

Adding and subtracting E[> ) 7, (X oo )M X w0, Y)] t0 E[(X 00, Y o) — D2, Ty (000) P Dc, Y]
yields:

E[2(X o0, Y o) Zwy )b, )] = E[(X oo, Y o) Zwy X, y)  (A)
E[) 1y (X o)X oo, ) Zwycz»w (6or ).
(B)

Treating the two terms (A) and (B) separately, we define G5 and G§°™ as the solutions to the Poisson
equations

LfasthaSt(a: y) = h(x,y) Zﬂ'y (‘fast’ Poisson Equation)

Gslow Z ﬂ-y Z 7Ty gboo ¢oo’ y) (‘SIOW, Poisson Equation)

Recall that the existence and regularity properties of the function G%“ areinvestigated in Lemma 28.
For G§°¥, it is known (e.g., [55]) that the exponential stability of the unique fixed point (A45) along
with the smoothness of F' guarantees that G;iow e D? (X).
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6 Bias and Refinement of Multiscale Mean Field Models

Next we use that taking the expectation of the generator L applied to an arbitrary function g over
the stationary distribution of (X «, Y ) is zero, i.e., E[Lg(X o, Y o) = 0. By using Lemma 36,
it follows

1
(A) = E[LfastG%St<XOOa YOO) - NLG%St(Xwa Ym)]

1 /
=E[ > 0ty (Xoo, Yoo )l DoG (X oo, y') + 0(1/N)].

Ly’

For the second term, we apply the ‘slow’ Poisson Equation equation and subtract the term

E[LG*"(X o, Y «)] = 0 which yields
(B) = E[AG™(X o) — LGY™(X 0, Y o)) (6.18)

Note that even if G5 only depends on @, the function LG5°" does depend on & and y because the

rate functions that appear in the generator L do depend on @ and y. By using the Taylor expansion,
LGS*Y equals

l
LGiow(m7y> — ZNag?y,(w7y> (G%OW(SE' + N) o G;iow(CC))

Ly’
12
= 3 Nayy (@.9) DG @)+
ly!
1 2 slow (676) ||£||2
F 13 Noyyeypiaia) D o llh)

Ly’

By application of the definition of F'(, y), the first term of the right hand side of this equation is
equal to F(z,y) D, G5 (x). Moreover, by definition, AG5*¥(X o) = D,G5°¥(x)F (x). This
shows that

E[D,Gy™(Xoo)(F(X o) = F(X o0, Y )

Ly’

As G5°¥ has a bounded second derivative, the second term is of order O(1/N ). However, to bound
the first summand we need to investigate F'(z) — Fl(z,y) = >, my(x)F(z,y') — F(z,y).
Falling back on (‘fast” Poisson Equation) allows two write
D,Gy™(x)(F () — F(z,y))
= _DmG%ow(m)LfastG%St(wa y) = _LfaStDwGiow(w)G%St(ma y)
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The last equality holds due to the definition of Lg,, and D, Gﬁow(a:) which depends only on «. By
adding the zero term E[ LD, G5 (X o) G (X «, Y )] and using Lemma 36. We see that

1
B[~ LaaDaGi™ (X o) G (X o0, Y oo) + LD G (X o) G (X e, Vo)
1 /
— B[ Dty (Xoo, Yoo )l Dol DaGi™ (X o) G (X, ) + 0(1/N)]
Ly’

Put together, the error term of (B) is

1 t /
B[ 13 (X ¥ ) DL (DG (X )GE (X )

Ly’
1 2 ryslow
5 2 Gty (X, Vo) DEGI™ (X o0) (1) (6.19)

Ly’

By defining C}, as the sum of the residual term E[Zg’y, Uy (X oo, Yoo )l DG X o, y')] for
(A)and (6.19) the by N scaled, the proof concludes.

6.4.5 PrROOF OF THEOREM 27 (REFINEMENT THEOREM, AND CLOSED FORM
EXPRESSIONS)

In this section we first decompose the constant C}, in two terms in Proposition 29. We then study

these two terms in Proposition 30 and 31 where we obtain the closed form expressions for the cor-
rection terms which allow to numerically obtain the corrections.

We define two functions Q(z, y) and J,(x, y) (the latter is defined for a function h € D?(X)):

Q(«’D, y) = Z aﬂ,y' (CU, y)€€T7

Ly’

Jh(w’ y) = - Z Qlp 4y (JZ, y)Dac (Dsz;low(w)G%“(a:, y,))é,
Ly

and we denote by J, (7) = >, Ty(®)J (2, y) and Q(r) = >, Ty(®)Q(z,y) their “average” ver-

sion. The following proposition holds.

Proposition 29. Assume (A;)-(As). Then, for any h € D*(X), we have:
N(ER(X )] — h(6.)) = DG (0.0Q0-) + Ju(0) + o). (620)

Proof. Let h € D?(X) and let us denote G°* the solution of (‘slow’ Poisson Equation). As h
does not depend on y, this function is such that for any z: h(z) — h(¢,,) = AGI™(z) =
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6 Bias and Refinement of Multiscale Mean Field Models

D,G5¥(z) F'(z). The following steps are similar to the ones for (B) in the proof of Theorem 26.
Hence, applying this for X o and taking the expectation, we get:

NE[M(X &) = M(6..)] = NE[AG™ (X )] = NE[D,G}™ (X o) F(X o0 )].
Recall that for any bounded function g € D(X x )), E[Lg(X o, Y )] = 0. Hence,
NE[D,G™(X o) F(X o) — LG (X o, Y o))

Similarly to what we do to prove Theorem 26, we plug the definition of L in the above equation
and use a Taylor expansion to show that this equals

l

NE[D.G*™(X o) F(X o) = > Ny (X oo, Yoo) (Gh™ (X oo + ~) - G™(X o))
Ly’
= NE[D,G5""(X o) F(X ZN%, XY )(DxG;?W(XOO)%
0,0 ¢
T e LS EC )}
= NE[D,G3*"(X o) (F(X o) — F(X 5, Y &) — %D@‘W( 00)Q(X 50, Y oo)] 4+ 0(1).
(6.21)

The rest of the proof follows using
¢ Lemma 37 to show NE[D, G5 (X ) (F(X ) — F(X 00, Y o)) = J(ds) + 0(1);

* Theorem 26 which states E[1 D2G5™ (X »)Q(X o, Y oo)] = 2D2G5%(¢..)Q(¢..) +
o(1).

Applying the above equations to (6.21) implies the statement of Proposition 29. [

In the rest of the section, we show that the quantity $ D2G5°" (¢ )Q(¢.) + J (¢ ) can be easily
computed numerically by solving linear systems of equations. As shown in Proposition 30 and 31,
we obtain five different correction terms:

 Thefirsttwo V € R% W € R%*X% are closely related to the ones obtained in [59][ Theorem
3.1] and derived from the term % D2G8%(¢..)Q(¢h.. ). This term is essentially identical to the
refinement term of [S9].

* In Proposition 31 we derive three other refinement terms S, 7" € R% and U € R% *9= which
give closed form descriptions of .J(¢..). These terms are novel and take into account the
difference of the average drift F' and the actual drift I’ obtained from the stochastic system.
The proof is based on exact expressions for the Poisson equations G, G°¥ and relies on
Lemma 28.
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CORRECTION TERMS V AND W

To obtain the first result, let A and B be the Jacobian and Hessian matrix of the ‘average’ drift, i.c.,

O*F,

A=
"I 89%%

((/500) and Bi,kl,kgz

OF;
o (6)- (6.22)

By the exponential stability of the fixed point (Assumption (A;)), the matrix A is invertible and the
Lyapunov equation AW + W AT + @ = 0 has a unique solution. We denote by W its solution
and define the vector V' as

1 .
Vi= =52 (A5 Y Bk Wi o

J k1,k2
Proposition 30. Assume (A;)-(A3)and h € D*(X). Then:

L o iow - B oh 1 9%h
EDth (02)Q(0s) = i 8_:@‘/; + 5 Zz]: —@{Eixj Wi, .

Proof. The proposition is a direct consequence of the results of [59][ Theorem 3.1] which we apply
to the function F'(x) = 3, m,(z)F(z, ). O

CORRECTION TERMS 1", S, U

Proposition 31. Assume (A;)-(A;) and h € D*(X). The closed form solution of J at the equilib-
rium point ¢, is given by

_ oh 0*h
Jn(¢s) = A %(Qﬁm)(Tz‘ +5;) + Z r(@bm)Ui,j-

U is the unique solution to the Sylvester equation

AX + XAT = -0, with
0= "my(0) Dty (bue, ) K5 (6 F(pra, )T,
Y Ly’
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6 Bias and Refinement of Multiscale Mean Field Models

where A, B are the Jacobian, Hessian of the average drift as defined in (6.22) and K™ as given in
Lemma 28. T, S are defined by

L -1
1= E A E Bj ki ks Uk ko
j

k1,k2

Si=Y AR m(0n) Y ary (. y)
k Y Ly’
X (Z Fi(¢w Y )VLE S (0 )0+ K (6.) V7 Fr(¢oe, ;/)e) .
y/
The proof of this proposition is given in Appendix 6.8.5.

6.5 ExamprLE: CSMA MODEL

To illustrate our results, we consider the unsaturated CSMA random-access networks studied in
[39]. In this paper, the authors use a two-scale model to study the performance of a CSMA algo-
rithm with many nodes. The slow process corresponds to the arrival of jobs and the fast process
corresponds to the activation and deactivation of nodes. The authors of this paper derive a mean
field approximation and show that it is asymptotically exact. With our methods, we go two steps
further:

* Theorem 25 and 26 show that not only the mean field approximation is asymptotically exact
but also that the error is only of order O(1/N).

* By using Theorem 27, we can compute a refinement term. Our numerical example shows
that, similarly to what happens for classical one-scale mean field models [59], this refinement
term is extremely accurate. It is much more accurate than the classical mean field approxima-
tion when the studied system is not too large.

9,0,0 O,0N0

(a) The linear 3 Node Graph.

ONO

(b) The S Node Graph.

Figure 6.1: Two examples of interference graphs.

6.5.1 MoODEL DESCRIPTION

We consider a model with C' server types, with N statistically identical servers for each class. All
servers communicate through a wireless medium using a random-access protocol and have a finite
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6.5 Example: CSMA Model

buffersize B. The C classes form an interference graph G = (C, ) withC = {1, ..., C} theclasses
and € the network specific edges. (see for instance Figure 6.1 for examples of graphs with three or five
classes). This interference graph indicates that two servers cannot transmit simultaneously if they
either are of the same class or belong to an adjacent class. For each class ¢ € C, we will denote by
ye € {0, 1} avariable that equals 1 if a node of class ¢ is transmitting and 0 otherwise. We denote
by ) the set of possible activation vectors y € {0,1}“. It is equal to the set of the independent
sets of the graph, i.e., all activity vectors for which an active node has only inactive neighbors. For
instance, for the graph with three classes which are linearly connected as shown in Figure 6.1a, the
set of feasible states is given by

Y =1{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1)}.

Any node can turn active if there are no neighboring active nodes. Once its transmission is finished,
it changes back to an idle state. For a given class ¢, we define Y\ := {y € )V : y. = 1} as the subset
of states for which node c is active, and by YV, '={y € YV : y. = yg = 0Vds.t. (¢,d) € &}
the subset of states from which node ¢ can turn active, i.c., all neighboring nodes are inactive. For
instance, for the linear 3 node graph of Figure 6.1a and the class ¢ = 1 this yields the following sets

Vi ={(1,0,0),(1,0,1)}, Vi ={(0,0,0),(0,0,1)}.

Asin [39], in this non-saturated model, we consider that if a node is in class ¢, new packets arrive to
this node atrate A, > 0. If a node has a packet to transmit and no neighboring node is transmitting,
then this node becomes active at rate v, > (. We assume that a transmission from a node of class ¢
takes an exponential time of duration 1/(N i) > 0, after which the packet leaves the system.

To illustrate the model dynamics, we provide short videos for of the linear 3 node graph:

¢ Video Illustration of the Dynamics for N = 10

* Video Illustration of the Dynamics for N = 1000

6.5.2 TWO-SCALE MODEL REPRESENTATION

The model as described above fits in our two-timescale representation. To see why, for each class
¢ € Candbuffersizeb € {0... B}, wedefine X t(f(vc?b) as the fraction of servers of class c that have at
least b jobs in their queue at time . We denote by X; the vector of all possible X (.3 forallc € C
and b € {0... B}. The fast component Y, is the activation at time ¢: Y () = 1 if anode of class
is transmitting at time ¢ and 0 otherwise.

Using this representation, we characterize the possible transitions. Given a state pair (, y), the
transitions are represented as a transition vector of the form (¢/N, y’) and a corresponding transi-
tion rate Nay 5 (@, y) such that the state (z, y) jumps to (x + /N, y') atrate Nay o (@, y). The
transitions can be distinguished into three types:

* Arrival of a packet to a server of class ¢ € C:

(ej\f,y) atrate NA.(1—z.;) fori =1,
(ef\}i,y) atrate NAo(Tei-1 — Tey) for2 <i < B.
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* Back-off of aserver of class ¢ € C with at least one packet if the class activity vector allows the

back-off, ie.,y € V. :

(—eji}i,y +e.) atrate Nvg(x.; —2.;41) forl <i < B,

(-t y—+e) atrate Nuete; fori = B.

* Transmission completion of an active node of class ¢ € C, i.e., y € YV

(0,y —e.) atrate Np..
We denote the set of all possible transition vectors (¢/N, y') from a state pair (z, y) by T (x, y).

6.5.3 STEADY-STATE DISTRIBUTION 7, (Z) AND AVERAGE DRIFT

By using the above transition definitions, the matrix K is given by:
s Ify €)Y ,then K(y,y +e.) = Nv.z.,
e Ify € VI, then K(y,y —e.) = Ny,

all other entries of the matrix being 0.

This representation is used by the authors of [39] to derive the product-form stationary distribu-
tion for a fixed server state . This product form is closely related to the product-form stationary
distribution of saturated networks as found in [24, 107, 111]: The quantity 7, (z) is calculated as
follows:

Ty(x) = Z(:c))’ with  Z(x,y) = H(&xcﬂl)yc, Z(x) = ZZ(m,y).

cec € yey

Following our definition of Section 6.2.2 the drift and its average version are generically defined

by:

Flz,y)= Y. ay@y)l, and F(z) =) my(x)F(z,y).

(Ly")eT (z,y) wey

For the drift F'(z, y) of the random access model this leads to the closed form expression

F(m7 y) = Z( Z €c,i Ac(xc,i—l - 'Ic,i) + €e,1 >\c(1 - xc,l)

ceC 1<i<B

- 1{yeyg}( Z €ci Ve(Tei — Teiv1) + € VC:EQB)).
1<i<B

It should be clear that assumption (A;) holds in our case because the rates given in Section 6.5.2
are all continuous in & (in fact they are all linear). Moreover, the model also satisfies Assump-
tion (A,): For a given @, the set of irreducible states for K () contains all the feasible activation
vectors y such that . = 0 if x(. 1) = 0. The condition x.; = 0 implies that the nodes of class ¢ do
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not have any packets to transmit. The situation of Assumption (A;) is more complicated. To the
best of our knowledge, there has not been a complete stability characterization for the unsaturated
random access CSMA model. Cecchi et al. show in [39] that in the case of a complete interference
graph stability conditions can be derived which assure global exponential stability. They further
conjectured that similar results hold for general interference graphs. In our analysis, we assume that

(A;) holds.

6.5.4 NUMERICAL RESULTS

To study the accuracy of the mean field approximation and the refined term proposed in Theo-
rem 26, we implemented a Python library” to simulate the system and compute the mean field
approximation and the refinement term. This library is generic and can take as an input any in-
stance of the model which we defined above. For instance, in the Code Cell 6.1, we illustrate how
to use this library to construct a model where the interference graph is as in Figure 6.1b, the rates
are \ = [.5,.7,.7,.6, 4],v = [4,3,3,3,3], u = [3,3,2,4, 2], and the buffer size is equal to 10.
This cell shows how to initialize the 5 node model and obtain the approximation and refinement
from our implementation. We also perform the same experiments with the linear 3 node model, for
which we provide the results in Appendix 6.10. Note that the results are qualitatively very similar.

Listing 6.1: Initialization and Computation of Mean Field and Refinements.

# Gph structure (this is the five node example)

G = np.array([[0,1,1,1,0],

[1,0,0,0,0],
[1,0,0,0,1],
[1,0,0,0,1],
[0,0,1,1,011)

# rates and buffer size

_lambda = np.array([.5,.7,.7,.6,.4])

nu = np.array([4,3,3,3,3])

mu = np.array([3,3,2,4,2])

buffer_size = 10

# Wedefine the mode, compute a trajectory and the refinement term.

csma = symbolic_CSMA(nu, mu, _lambda, G, buffer_size)

T, X = csma.ode(time=200) #Wﬁé‘[dﬂ

v, s, t, w, u = csma.compute_refinements (X[—1]) #StEddy—defe rq‘z‘nement

In order to compute the refinement terms, the library needs to compute various derivatives (of
the drift or of the matrix K" (x)). To implement this, we rely on symbolic differentiation provided
by the sympy library [85]. As we see later in Table 6.1, the use of the symbolic differentiation is the
performance bottleneck of our implementation. In Appendix 6.9 we furthermore show how to
obtain the stationary distribution and the derivative of K (z) numerically.

thtps ://gitlab.inria.fr/sallmeie/bias-and-refinement-of-multiscale-mean-field-models
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TRANSIENT REGIME AND ILLUSTRATION OF THEOREM 25 To illustrate the accuracy of the
mean field, we use the 5 node model described in the Code Cell 6.1. We first simulate the CSMA
model and compare it with the mean field ODE. The results are reported in Figure 6.2 where we
plot the mean field approximation against a sample mean E[X ;] derived from 1000 simulations.
Initially, all servers are idle. The plot shows the share of servers of class ¢ = 3 that have at least one
job, thatis E[X; (3 1)]. We compare the results for a model with N = 10 servers per class (top right),
N = 20 (bottom right), or N = 50 (left). We observe that in all cases, the evolution of the stochas-
tic system is very well predicted by the mean field approximation. To quantify this more precisely,
each plot contains a zoom on the trajectory between the time ¢ = 8 to ¢t = 13. These zooms show

that for N = 50, the quantity E[.X f’](\g)l)] is almost indistinguishable from the mean field approxi-
mation. For N = 10 or N = 20, the estimated average is slightly above the mean field curve, but
the confidence intervals remain almost equal to the error.

Class 3; Servers with at least 1 Job

Nr. of Servers per Class - 50 Nr. of Servers per Class - 10
e |
0.6 A — 0.5 ]
— e H T / -
>’ — / E
’ 0.0
0.4 ;
—— Sample Mean 0 2 4 6 8 10 12 14 16 18
0.3 / /W,_,V/“’/ Approximation Nr. of Servers per Class - 20
/ et 95 Conf. Interval —
0.2 = 0.5 -

/

/
[ 0.0 Z
0.0-—

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

0.1{ |/ gt

Figure 6.2: Illustration of the transient behavior of the CSMA model. We compare the ‘average’ mean field
and stochastic simulations for three different scaling parameters: N = 10, N = 20 and N = 50.

STEADY-STATE AND REFINED ACCURACY While Theorems 25 and 26 provide a guarantee on
the accuracy of the mean field approximation, Theorem 27 shows that it is possible to compute an
approximation that is more accurate than the original mean field approximation. We illustrate this
in Figure 6.3 where we show the steady-state average queue lengths for the same 5 node graph. The
sample mean and confidence interval are computed from 40 steady-state samples which again are
obtained from independent time-averages of 7.5 x 10° events of the Markov chain after a warm-up
of 2.5 x 10° events. For a class ¢ and a buffer size b, the quantity Zszl E[X(cp) is equal to the
steady-state average queue length of each server of class c. In Figure 6.3, we consider different values
of N, and calculate the average queue length by the following three methods:

* By using a stochastic simulator of the original CSMA model.
* By using the fixed point of the mean field approximation: 3. () (c.)-

* By computing the refinement term, C, of Theorem 27 and using 2511(92500)(@1;) +
(C) (Crb) /N'

When looking at the scale of the y-axis, we see that in all cases, the accuracy of the mean field ap-
proximation is already quite good. More importantly, we also observe that in all cases, the refined
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6.6 Conclusion

approximation seems almost exact: For all considered cases, the refined approximation lies within
the 95 percent confidence interval of the simulations and seems to work well even for a small num-
ber of servers, N ~ 10, 20. This result is similar to the one observed for one-timescale mean field
models in [59].

Class 1 Class 2 Class 3 Class 4 Class 5
0791% 0.66{% 208X 061l ¥ 058{% ‘S ated M
Imulate ean
0.78 066 .06 0.61 0.58
0.77 0.57 95 Conf. Interval
° 2.04 0.60
0.65 X 057 Avg. MF
0761 % b3 2.02 060| X ¥ i
o : 0.56 MF + Correction
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x % % 0.59 4 0.56 X
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0.74 X x it 0.64 % x X x| 198 X x % 5| 0.59 X x % |0-55 * x X
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Figure 6.3: Queue Length Distribution for the 5 Node Graph of Figure (6.1b).

CompruTATION TIME ~ While the previous figure shows that the refined approximation provides
an increase in accuracy for small values of [V, it comes at the cost of an increase in computation time
because one needs to compute the various derivatives of the rate functions and to solve a new linear
systems of equations. In order to quantify the additional computation time, we measure the time
taken by our implementation to compute the refinement terms which are reported in Table 6.1.
We compare the 5 node model studied before and a 3-node model whose interference graph is as
in Figure 6.1a. We observe that the time taken to compute the refinement term is significant, in
particular for the 5-node model. Yet, when looking more carefully at what takes time, we realize
that most of the computation time is taken by the symbolic differentiation. Indeed, to simplify
our implementation, we used the automated differentiation method of sympy. While this yields
simplifications for the implementation, we encountered that it massively slows down the refinement
computation times. Through code profiling it showed that around 95 percent of the computing
time is taken by sympy methods such as differentiation and evaluation of symbolic expressions. For
smaller interference graphs, e.g., linear 2 / 3 node graphs, this effect is not limiting. For larger graphs,
the differentiation turns out to be the restricting factor. In Table 6.1 we state the computation times
for a linear 3 node model and for the setup described before.

We would like to emphasize that the goal of our implementation is to illustrate the theoretical
statements, and thus we did not focus on efficiency. The table shows that if one wants to adapt our
implementation to work with larger graphs, it would be sufficient to implement a more efficient
differentiation method. For instance, this could be done by using closed form expression of the
derivatives, or by using automatic differentiation methods, or by using finite difference methods.
We believe that such methods would probably be much faster.

6.6 CONCLUSION

In this paper we investigate the accuracy of the classical averaging method that is used to study two
timescale models. We study a generic two timescale model and show that under mild regularity
conditions, the bias of this ‘average’ mean field approximation is of order O(1/N). This result holds
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6 Bias and Refinement of Multiscale Mean Field Models

‘ Jakobian (A) ‘ Hessian (B) ‘ v+ w ‘ s+t+u ‘ Total ‘ Sympy
3Node | 6.08(6.08) | 30.71(30.71) | 0.19(0) | 5.64(3.81) | 42.63(40.6) | 9522%
5 Node | 97.09(97.09) | 897.15(897.15) | 1.(0) | 122.36(86.09) | 1117.6 (1080.33) | 96.66%

Table 6.1: Refinement computation times for Random Access CSMA model for a 3 node linear graph and
the 5 node graph as in Figures 6.1a, 6.1b. Times are given in seconds. In parentheses, we indicate
the time taken by differentiation and subsequent sympy methods. These numbers show that the
Sympy code takes more than 95% of the computation time.

for any finite time-horizon, and extends to the steady-state regime under the classical assumption
that the system has a unique and stable fixed point. Our results show the existence of a bound C},
for the bias term for any regular function h:

1
ER(Xy)] = h(®(x)) + ~ () + o(1/N).
o , ——
classical ‘average’ mean field O(1/N) expansion of the bias

vV
refined ‘average’ mean field

For the steady-state regime ¢ = 400, we propose an algorithmic method to calculate this term Cj,.
This correction term can be computed by solving linear systems and is therefore easily numerically
computable. We show on an example that, similarly to what was done for classical one timescale
models [59], the bias term leads to an approximation that is almost exact for small values of NV like
N =10, 20.

An interesting open question would be to obtain a characterization of Cj,(t) for the transient
regime. Yet, it is not clear to us if those expressions would be usable as their size grows quickly with
the system size. From an application point of view, our examples show that the new approximation
leads to very accurate estimates for CSMA models. We believe that the same should hold for other
multiscale models.

6.7 DEFINITIONS

In this section we revise some essential definitions and properties used in the paper. As these defini-
tions are well established, we only briefly recall them to provide a self-contained paper.

6.7.1 Cy-SEM1-GrouP, HOLDER NORM, ODE DIFFERENTIABILITY

Definition 32 (C Semi-Group [94] Definition 2.1). T is called strongly continuous semi-group (or
Co-semi-group) if

Ty = Id, Tsre =TT, forall s,t > 0, l}f{l)l Tiz = z forall z. (6.23)
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6.8 Technical Lemmas and Proofs

Since we will only work with Cy-semi-groups we will simply refer to them as semi-groups.
Semi-group & Generator commutation The generator of a Cy-semi-group is defined by

1
Az = 11_{% ;(th —Toz).

A direct consequence of the definition of the generator and a standard property is that it commutes
with its defining Cp-semi-group, i.c.,

AT h(z) = TsAR(z) = %Tsh(z).

Note, this therefore holds true for the semi-groups given by the stochastic system W h(z,y) =
E[h(Xs, Ys) | Xo, Yo = , y] with generator Lh(x, y) as in Equation (6.7) and the semi-group of
the ODE ®,h(z) = h(¢s(z)) with generator Ah(x) = D h(x)F(x).

Definition 33 (Holder Norm and Space). For U C R" and u € C*(U)

||u||,w = ZSEEHDku(x)H + Zsup{
r k

k

HDku(x) — Dku(y)H
|z —yl]”

revon)

is called Holder norm. The space of functions for which the norm is finite is called Holder space and
denoted by D%(U). For the case~y = 1 the Hilder space encloses all functions who are k-times continu-
ously differentiable with bounded derivatives and who’s k-th derivatives are Lipschitz continuous. The
Latter we simply denote by D*(U).

An important implication is that all Holder continuous functions are uniformly continuous.

Lemma 34 (Drift induced differentiability [95] Theorem 1 p.80). Let E be an open subset of R"
containing xo and assume that f € C*(E). Then there existsan a > 0 and 6 > 0 such that for all
y € Ns(xo)’ the initial value problem

& =F(z), x(0)=y,

has a unique solution w which is k-times continuously differentiable with respect to the initial condition
fort € [—a,al.

Proof. Theorem 1 p.80-83 and Remark 1 p.83 of [95]. [

6.8 TECHNICAL LEMMAS AND PROOFS

6.8.1 Proor oF LEMMA 28

By assumption (A,), the transition matrix & (x) has a unique irreducible class. As pointed out in
Section 6.2.3, the corresponding Markov chain has a unique stationary distribution that we denote

3Ns(xo) := {x € R" : ||z — x0|| < 6}
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6 Bias and Refinement of Multiscale Mean Field Models

by w(z). Let II(z) := 1x” () be the matrix whose lines are all equal to 7r( ). By [68](Theorem
3.5,p.17), (K (z) + II(x)) is non-singular and its inverse (K (z) -+ II(x)) " is a generalized inverse
to K (z), which means that it satisfies K (z)(K (z) + [I(z)) ' K (z) = K ().

To obtain the solution to the Poisson equation (6.11) we only consider the case where h takes
valuesin R. The extension to a function h that takes values in R™ is straightforward as it corresponds
to n independent Poisson equations.

Let us suppress the dependence on z for clarity. Recall that K+ = (K + II)~*(/ — IT) and let
us study the product K K

KK" = K(K+1)"(I —1I) (by definition)

=KK+I) Y (I+K-K-TI)
=KK+I) '+ K(K+1)'K

— K(K+1I)"YK +1I) (expanding the product)
= K(K+1)™! (the last two terms equal £K)
= (K+I)(K+I)"'—I(K + )" (Adding and subtracting TI(K + 11)7")
"
where the last equality holds because 771 = [ and therefore [T II = 177 1xT = ]l = IL
Combined with IT K = 0, this shows that IT = II( K + II) and therefore IT(K + IT)~* = 1IL.
The above computations show that if G (x, y) = > K ( Yh(z, '), then:

K(2)G% (x,y) = h(z,y) Zﬂ'y

which shows that G is the solution of the Poisson equation.

The differentiability of G follows from the differentiability of h and K*: Under Assump-
tion (A;), K (z) is continuously differentiable. By Assumption (A,), K () has a unique irreducible
class, this implies I1() is continuously differentiable, for which we refer to [70], and therefore fur-
ther implies that (I + II(x))~! and K" (x) are continuously differentiable. This proves that G
is continuously differentiable in .

6.8.2 TECHNICAL LEMMAS USED TO PROVE THEOREM 25 (TRANSIENT
REGIME)

Lemma 35. For arbitrary but fixedt > 0,let g : (s,x,y) € [0,t] x X x Y > gs(z,y) € R
be a continnous function that is continuously differentiable in s and let Hy(x,y) = E[gs(Xs, Ys) |
Xo, Yo = x,y|. Then:

t d t
Hila,y) = Hofe,) = [ BLEgeer (X V) |omalds + [ EILg.(X,,Y2))ds.
0 0
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6.8 Technical Lemmas and Proofs

Proof. By definition of the generator L, the quantity Hy(x,y) = E[g:,(X,,Y}) | Xo, Yo = z,y]
is right sided differentiable, i.c., % f(s) = limgsyo+ 52 (f(s + ds) — f(s)), with respect to time.
Using semi-group properties and bounds, its derivative is

d+

O H(r.y) = El -

dTgs+T(X57 YS) |7-=0} + E[LQS(XS7 YS)]

The first term corresponds to the derivation of g5 with respect to time and the second term to the

changes of the stochastic system in (X, Y;). The lemma therefore follows by using that Hy(x, y) —
Hy(z,y) = [y S H,(X,,Y). O

0 ds

Lemma 36 (Bound for Ly g(x,y)). Take the two-timescale stochastic system as introduced in Section
6.2.1 with generator L and assume (A;) and (As). Let L, be as defined in Section 6.4.2. Then, for
g E€DYX x V) and (z,y) € X x Y

1
Liwg(z,y) — NLg(x ) ZOégy (x,y)l Dyg(x,y") + o(1/N).
@y

Proof. By definition of Ly, for a continuous function ¢ the values of L g(z, y) and %Lg(m, Y)
coincide in the limit. For finite IV, we first look at ~ Lg(x, y) which is given by

1 12
~Lo(.v) ZNazy 2.9 + 55.9) = 9z, 9)).

Using the continuity of g in z, and definition of Lggg(, y) we have

1 . 14
Lasg(z,y) = lim —Lg(z,y) = > gy (z, y)(Jim (e + . y') = 9(z,y)

= KZ ary (z,y)(g(z,y') — g(z, ).
Using Taylor’s theorem |
7,y) = N> any(r,y) (gl + % y) = g(z,y))
= N3 _any(@.9)(9(,y) = g(@.v) + { Daglay') + o(ll))

= NLfastg(xa y) + Z af,y/(x7 y)g ng(x, y/) + 0(1)

Ly’
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6 Bias and Refinement of Multiscale Mean Field Models

6.8.3 TECHNICAL LEMMA USED TO PROVE THEOREM 27 (STEADY-STATE
REFINEMENT)
The next Lemma justifies that the first term of (6.21) is approximated in the limit by the ‘average’ ver-

sion of .Jj, as defined in Section 6.4.5. Second, Lemma 38 gives stability conditions for the solution
of the ‘slow’ Poisson Equation.

Lemma 37. Assume (A;)-(A3)in particular assume h € DX ). Further assume that Gj?t, solution
to the ‘fast’ Poisson Equation, is cont. d{ﬁk‘refztmble inxand G‘}f"“’, solution to the slow’ Poisson Equa-
tion, is twice cont. differentiable in x. Let J(¢.) = D, T(¢o) S (Do, Y) be the ‘average’ version of

Tn(@,y) = Y20y oy (2,y) Do (DoGe ()G (2,y)) Lin b, then
NE[D,G(X o) (F(X o) = F(X oo, Yoo))] = J(6) + 0(1).

Proof. To prove the lemma, let G%St be the solution to the Poisson equation as given in
(‘fast’ Poisson Equation). We use G to rewrite

NE[D, G (X ) (F(X o) = F(X 0, Y o))l
= ~NE[D,G™ (X o) (F(X 0, Y o0) — F( )]
= —NE[D,G3"(X ) (L G2 X 00, Y o0))]
= —NE[Lg D, Gov (X )(Gf"‘“(Xoo,Y ).

Adding E[LD,G""(X o) (G (X »,Y »))] = 0 and applying the steps as in the proof of

Lemma 36 we see that

- NE[LfaSthG%OW(XOO)(G%St(Xoov YOO)) - LD;EGSIOW( )(GfaSt(Xom Y ))]
—E[) 00y (X oo, Yoo) (Da(DaG™ (X o) G (X oy ) ) £] + 0(1). (6.24)
Ly’

The last equality follows directly from the definition of Lgg since Gp only de-
pends on z.  Using Theorem 26 we see that E[J,(X«,Y )] with Jy(z,y) =
=0y ey (T, y)l D, (D,G*"(2)G™(z,y')) of equation (6.24) is approximated by
J(¢s) = >y T(0s)J (¢, y). This concludes the proof as it implies
NE[D, G (X 50) (F(X o) = F(X oo, Yo))] = E[Jn(X oo, Yoo)] + 0(1) = Ju(¢n) +
o(1). O

6.8.4 STABILITY OF G?LLOW

Lemma 38 (Stability). Assume that F and ¢ are k-times differentiable with uniformly continuous
derivatives and that ¢ has a unique exponentially stable attractor ¢.,. Then the k-th derivative of
G x v [° h(dsw) — h(¢)ds is bounded and equal to [ DE(h o ¢5)(x)ds

Proof. This is a consequence of [S9][Lemma 3.5]. ]
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6.8.5 PROOF OF PROPOSITION 31

Proof. In the first part of the proof we find computable expressions of D,G%, D2G§*™ and
DxG%“. These_expressions allow us to rewrite J;, and construct the closed form representation
of Jj, as well as Jj, in the following steps. By definition

Zafy T y D Gslow( )G%st(x,y/))g

= - Z ey (2,y) (Gi(, )T DAGE () + DoGi™(2) D, G (2,y)) €. (6.25)

Ly’

By Lemma 28 there exists a matrix K (z) such that G%(x, y/) has the form

Gfast ZE’ y Z K ” )

y'ey

Assumption (A;) which assures differentiability of the transition rates v with respect to z, also im-

plies differentiability for G%*. Therefore,

DG (w,yf) = Y Flay")ViK (@) + K o (1) DaF (3,y"),
y"ey

Wlth VZ = [%7 ey %} s D;Uf = (%fz)%]iln

Using the results of [59][Lemma 3.6] with A, B the first and second derivative of F as defined in
(6.22), it holds that for the equilibrium point ¢,

oh o0 oh
DxG;"lbow<¢oo)i = a_xj(¢00)/0 (Dx¢s<¢oo))j’ids = a_x]<¢oo)(_f4);zl
J j

as well as
9*h
DG (doc)nm = > B0, Ao (0x) / (D2s(0)) ., (Datbs(9)), (6.26)
oh
= g (02) | 6.,
9*h o
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6 Bias and Refinement of Multiscale Mean Field Models

Next, the above equations are used to rewrite (6.25). To obtain a closed form expression for the left
summand, we start by looking at the sum

Zﬂ'y bs) Zoézy Pocs Y) Z (G ¥ ) /OO(GAS)khn(eAs)k%m. (6.27)

0

A solution to the above equation is given by the following Lyapunov equation. To ease notations,

define

= 1 (02) >y (b V) K () P )y
y Ly’

or, equivalently in matrix notation, O = 37 7, () >y Uy (Goo, Y) Ky (Go0) F (D, )"
If a matrix U solves* the Sylvester equation (for X)
AX + X AT = -0, (6.28)

it is equal to (6.27). Applying this identity and (6.26) to the first summand of J(¢.,) which is the

‘average’ version of (6.25), lets us rewrite

> my(n) Zaz,y/ww,y) G poe, v )T D2GI (9, )1

0211 oh B
- Z O0x;0x; (¢=)Ui . a_xiww) Z(—A)m.l Z Bj k1 ks Uk s -
2,] (A

J k1,k2

For the second major summand appearing in the definition of .J(¢., ), writing out the solutions to
the Poisson equations and their derivatives yields

Zwy 6. Z% Ooer Y) DaG™ (020) DaGE (hocs y' )

—Zwy ¢oo Z% )
Z( ‘ a—xi(%o)(—A)ui)

.k

(Z 3K 0P t)) + Ky (05 Py >> -

*As A is non-singular, A and —A” don’t share any eigenvalues and therefore equation (6.28) has a unique solution.
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By using vector notation and rearranging the sums this is equal to

Oh _
T (0=) D (A D Ty (0) D ey (6, 9) %
! k y Ly
(Z Fu(Gr ¥ )VIKE (6)0+ K (6.)VE Fi(6, y')€> . (6.29)
y/
Lastly, define T} := Zj A;jl ka Bj iy ks Uy ki, and
Sii=Y> A my(6.) Y ary (du,y)
k Yy Ly’
X (Z Fi(¢oa V)V K (004 K (0.)V] Fi(¢we, y’)é) :
yl

This concludes the proof as by definition of 7,5, and U we have:

T60) =3 P00+ 8) + Y s (o)

6.9 COMPUTATIONAL NOTES

The first note describes how to calculate the steady-state probabilities () associated to the transi-
tion matrix K ().

Note 39 (Note on the computation for the stationary probabilities.). As the finite state continunons
time Markov chain with generator K (x) has unigue irreducible class, there exists a non-trivial unique
stationary distribution w(x)’. Denote by {1, ..., m} the states of the Markov chain. 7(x) is obtained
by solving the linear system

with v > 0 component wise. By definition, K(x) is of rank m — 1. Using its structure, i.e.,
>y K(2)yy = 0y, we can rewrite the above over-determined linear system by replacing the last
column of the generator with 1 = [1, ..., 1] yielding

v[K(x).1,..., K(x).mo1,1] =10,...,0,1],

m—1 times

> As the Markov chain is allowed to have transient states the stationary distribution can take zero values.

165



6 Bias and Refinement of Multiscale Mean Field Models

for which the solution is the stationary distribution m(x). By K(x).,, y = 1,...,m — 1 we denote
the y-th column of K ().

As shows in Lemma 28 the solution to the ’fast’ Poisson Equation 6.11 has the form G (x, y) =
Zy, K zj Y (x)h(x,y"). To compute the bias correction terms, it is necessary to calculate the first
derivative of G with respect to x. Since the computation of the derivative of (K (x)+II(x)) ! can
be non-trivial and time consuming, the note below elaborates how the derivative can be efficiently
obtained.

Note 40 (Computation of D, K+ (x)). By definition K*(z) = (K (x) + II(x))"*(I — II(z)).
Using basic matrix derivation rules one has

o . . 0 »
oz, (x)—azi((K(:rHH(x)) (I —TI(z)))

Since the numerical difficulty lies only the computation of D, (K (z) + II(z)) " we focus solely on
it. Define E(x) = (K (x) + Il(x)) and let I be the identity matrix. As pointed out in Lemma 28
(K (x)+11(x)) is indeed invertible and thus for the partials derivative 8%, i =0...d,thefollowing
holds:

ol = (BB (@)
& 0=( 8iE(x))E—l(ac) + E(x) aii E~(z)
& B ) = — B @) (- B @) B )
& o (R L)+ )™ = ~(K (@) + T1(0) ™ (- (K () + 1)) (K () + ()

The above can now be used to compute Equation (6.30).

6.10 NUMERICAL RESULTS FOR THE 3 NODE MODEL

For completeness, we give the numerical results of the linear 3 node model of Graph 6.1a. To obtain
the results we modify the parameters of the code of Code Cell 6.1 to match with the 3 node setup.
The new model is defined as in Code Cell 6.2.

Listing 6.2: Initialization of Mean Field for the 3 Node Model.
# Guaph structure (this is the 3 node example)

G = np.array([[0,1,0],

[1,0,1],
[0,1,011)
# rates & buffer size
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6.10 Numerical Results for the 3 Node Model

_lambda = np.array([0.4,0.2,0.5])

nu = np.array([1.2,2.,1.5])
mu = np.array([1.4,1.3,1.7])

buffer_size = 10

As seen in Figure 6.4, we obtain similar results as for the 5 node model when considering steady-
state average queue length values. The sample mean and confidence interval are computed from
40 steady-state samples in the same manner as for the 5 node example. The refined approximation
almost exactly indicates the stationary value of the stochastic process even for small N while the

mean ﬁeld approxirnation gCtS more accurate as [V grows.

Class 1 " Class 2 Class 3

1.481 % e ™ 54y ‘

1.47 0.40 1.53 x  Simulated Mean
1.52 95 Conf. Interval

1.46 0.39
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145 ¢ 0.39 1.50 +  MF + Correction
x %
1.44 L3 ¥ ¥
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Figure 6.4: Stationary Queue Length Distribution for the 3 Node Graph of Figure (6.1a).
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7 APPLICATION TO STOCHASTIC
APPROXIMATION

In this chapter, we adapt our results of [4] to the stochastic approximation setting.
We show how the methodology developed in our paper can be used to derive ac-
curacy results and a bias extension for the stochastic approximation setting with
constant stepsize and state-dependent Markovian noise data.
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7.1 INTRODUCTION

The study of stochastic approximation dates back to the seminal paper of Robbins and Monroe
published in the 1950s [97]. The basic paradigm is a stochastic difference equation

Xn+1 - Xn + anZny

where X, takes values in some Euclidean space, Z,, is a random variable, and cv,, > 0 the stepsize
which is small and possibly tends to zero asn — oo. In this simple form, X is a parameter of a system
and the random variable Z,, is a function of noisy data observed for the state .X,. Classical works on
stochastic approximation focus on settings with diminishing stepsize which satisfies >~ | a,, =
oo and Y °7 a2 < 0o. Under suitable conditions, it has been shown that a system of this form
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7 Application to Stochastic Approximation

converges in the L? sense [97] as well as almost sure [23]. It is well known that (X, ),en can be seen
as a noisy approximation of an ordinary differential equation (ODE)

= f(x) where f(z) :=E[Z,]| X, = 7).

Based on this relation, it is a classical technique to study the convergence of the stochastic iteration
using the asymptotic properties of ODE, see [26]. Over the last half-century, the theory of stochastic
approximation with vanishing stepsize has been well developed and is covered in multiple books [18,
27,78].

In this chapter, we shift our attention to the setting of constant stepsize approximation which has
more recently seen a spark of interest in the scientific community due to its simplicity, performance,
and fast convergence. A growing line of work has been dedicated to this setting. For a few pointers
see [21, 41,79, 101]. To set the general framework for these notes, we are interested in the case when

the dynamics of the stochastic process Xﬁfx) follow the evolution equation

X = X9 4 af(X@ v(@) e RY (7.1)

n

forn € N and fixed . Here, (Xf(la))neN takes values in a compact subset X' C RP and (Yn(a))neN

being the respective noise sequence, taking values in a finite state space ) independent of «, and

f & x Yisassumed to be a deterministic function. For comparison, in the classical setting of
Robbins and Monro [97], Y,, takes i.i.d. values such that E[f(z,Y,,)] = 0,z € X.

7.2 SETTING

As our results are related to the work [69], in which the authors study the bias of linear stochastic
approximation with constant stepsize and Markovian noise data, we will point out the differences in
the setup and further generalizations. Before stating the main results, we introduce the underlying
framework and dynamics of the stochastic and deterministic systems. We consider the case where
the transitions of the noise YTEQ) attime k € N can depend on the state of X. T(La) and have the Markov
property, i.e.,

P, =y |V =y XY = ). (7.2)

The considered type of noise dynamics is one of the striking differences between the setup in this
chapter and the works of [69]. To illustrate this, we compare the two dependency graphs in Table
7.1. To study the asymptotic properties of X, it is useful to introduce the ‘fixed-2’ process. This
processes is given by the Markov chain (Y,,())ken which has the transitions

P(Y,\) =y | V) =y, X[ =2) = P, (2), (73)
i.e., the Markov chain arising if the value of Xy(La) is held constant at z. We will throughout assume

that P(z) has a unique irreducible class with stationary distribution 7(z) = (my(x)),ey for all
x € X. This compares to the continuous-time Markov chain induced by the transition kernel given
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7.2 Setting

X0—>'..—>XnﬁXn+1_>.“ --.>—><X —)Xn+1—>.--
%—>"'4Yn_)yn+l_>"' — Y, s Y —
Markovian Noise, as considered in [69] state-dependent Markovian Noise,

as considered in this chapter.

Table 7.1: Dependency Graphs

in Equation (6.3) of our paper [4]. The induced Markov chain similarly depends on a fixed state of
the ‘slow’ process. The transition matrix and its corresponding steady-state distribution will become
important to obtain computable expressions for the bias later on in the proof. Itisa well known fact,
e.g. see [78], that the ODE characterizing the behavior of X, for small «v is given by

d - :
S oi(w) = [(on(x)) with  do(a) = . (7.4)

We call f(z) the average drift in z which is defined by

F@) =Y (@) f(z,y). (7.5)

yeY

To ensure that the ODE is well defined, we impose that the average drift ? is Lipschitz continuous.
We further assume that ¢, is globally, asymptotically stable, and around its equilibrium point expo-
nentially stable. For sufficiently large n, X, will be approximated by ¢,,. As in our case, the noise
admits Markovian and state-dependent behavior ¢, admits a non-zero asymptotic bias.

The detailed analysis of the bias is the key goal of this chapter. We study E[X,]| — ¢, for finite n

in Theorem 41 and in the second Theorem 42 the bias of ¢« given - S E[h(Xéa))] as N tends
to infinity. Our first results show that the bias can be bounded by a constant aC' which holds for
anyn € Nif ovis small enough and if both systems start from the same initial condition. The second
theorem, shows that it is possible to obtain a computable bias representation V}, which depends on

P, ¢, T(¢o) and f but is independent of av.

Atlast, we point out some differences between our results and the ones obtained in [69]. First, we
allow f to be a generic function, whereas the authors of [69] consider the case of linear stochastic
approximation. Second, we consider state-dependent Markovian noise, as illustrated in Table 7.1
and allow periodicity. Finally, we consider the difference between h(X,,) and h(¢w) for any thrice
differentiable function h. For this setting, we obtain accuracy results for the bias and a computable
bias first-order expression. These types of results are comparable to the ones we have obtained in [4]
and expand what has been shown in [69] to more intricate noise settings.
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7 Application to Stochastic Approximation

7.3 ASSUMPTIONS

We summarize the necessary assumptions:

A; Leth : X — R be thrice continuously differentiable, with bounded and Lipschitz continu-
ous derivatives.

Ay Let (Xfla))neN follow the dynamics as in Equation (7.1) with deterministic initial value 2 €
X and let it take values in X', a compact subset of R<,

Ajs Let (Y, (x))nen be the ‘fixed-x’ discrete time Markov chain with transition ma-
trix (P, (x))y ey as defined in Equation (7.3) and unique steady-state distribution
(my(z))yey. Furthermore, let P(z) be twice continuously differentiable in .

Ay Let (¢(2))en with initial condition x be globally asymptotically stable and exponentially
stableina neighborhoodN around its equilibrium point ¢. Furthermore, let ?, as defined
in Equation (7.5), be thrice continuously differentiable with bounded derivatives.

7.4 MAIN RESULTS

Theorem 41. Assume A, —~A4 and let 0 < a < 1 be small enough andn € N, xy € X.
Then there exists a constant C' > 0 such that

with Xo(a) = Zo.

Proof. The theorem is a direct consequence of Lemma 44. ]

The theorem shows that the bias of the expected state of the stochastic system is of order a with
respect to ¢y,.

Theorem 42. Assume that A, - A hold. Then there exists a computable constant Vy, indepen-
dent of o and n, and a constants C' > 0 such that for small enough 0 < o < 1and xy € X:

N
lim sup % D ERX)] — h(¢s) — aVi| < a2C'. (7.6)
n=1

N—oo

Proof. The proof is postponed to Section 7.5. ]

Our second theorem states that for the averaged iterates of the expectation of XY(LO‘)

% SV E[X "], the bias of h(¢s) has computable first order extension which, aside from the
prefactor q, is independent of the stepsize. We consider the averaged iterates as it eliminates even-
tual oscillations caused by periodic noise sequences, we illustrate this in Figure 7.1. In Lemma 46 we
state how the bias expression can be computed. To illustrate the results of Theorem 43, we consider

, ie.,
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7.4 Main Results

100 === = e
S=
! 0.95
S — X{©, a=0.05
> 090 X®, a=0.05
--- Equilibirum ¢,
0.85 A |
0 20 40 60 80 100 120 140

N

Figure 7.1: A sample trajectory of X\ with periodic Y™ illustrating the necessity of averaging the iterates.

For comparison the values of X](\(,X) =4 22;1 X\ are plotted.

a short example with drift and noise transition matrix defined as
p

o ~ (sin(z)* cos(x)?
fx,y) = —x+2y and P(z) = (COS(I‘)Q sin(z)? )

X' is as in Equation 7.1 and the transition of v e {0, 1} are given by P (X,(i)l). In Figure

7.2 we plot the values of + ij:l X5 for increasing NV for the stochastic system with initial state

Xéa) = 0, Yo(a) = 0. As we expect by the statement of the theorems, for diminishing o and
increasing 7', the bias of % 25:1 X,(f) approaches the value of the equilibrium ¢.

— X\, a=0.1 — X\, @=0.005
— X, a=0.05 — X, a=0.001
— X\, a=0.01 -== Equilibirum ¢
0 10000 20000 30000 40000 50000 60000

N

Figure 7.2: Illustration of X'](\?) = % 25:1 X,(La) for different values of « = 0.1,...,0.001. The figure

gives an impression of the relation between the stepsize o and the size of the bias of .
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7 Application to Stochastic Approximation

7.5 PROOF OF THEOREM 42

For the proofs, we introduce the Euler discretization of the ODE with stepsize o

P (@) = ol (2) + af (¢(x)). (7.7)

To distinguish the discretization from the ODE, we will use k, n exclusively to denote the iterations
for discrete systems and mark the dependence on the stepsize o in the superscript.

The proof of Theorem 42 is based on the statements of Lemma 43 which we present next. Sub-
sequently, we show how the theorem is obtained from the lemma.

Lemma 43. Assume that A | - A bold. Then there exists a computable constant Vi, independent
of ccand n, and a constants C', C" > 0 such that for small enough 0 < o < 1:

N+T
1
lim sup| — E[A( XN — h(ds) — aVi| < o2C" + =C". 7.8
msup Tn:%vﬂ [R(X5)] = M(doo) | < T (7.8)

Proof. The statement of the theorem is a consequence of Theorem 44, Lemma 47 and Lemma 45.

[
Proof of Theorem 42. To proof the statement of the theorem, define
un = |B[(X,)] = "(¢o) — aVi| — a*C”
with h, X, oo, V}, as in Lemma 43. By the same lemma we have that forall " € N
N+T "
lim % k;NH uy, < % (7.9)

Define s;, = % Zﬁ:l Um+(k—1)K for & > 1 which is average sum over K consecutive terms of
u starting in (k — 1) K. Now lete > 0and set K = |[C/e]. By Equation (7.9), we have that
limy,_,00 vx < €, which further implies limy_,(1/7") 25:1 v < € as a consequence of the Ce-
saro Lemma. To finish the proof, separate the sum

1 <& rE 1 g
? Zuk = T Vi + ? Z U - (7.10)
k=1 k=1 k=|T/K]+1

The second term of the right-hand-side of (7.10) is bounded by K'/T". The second quantity is smaller
than ¢ as T tends to infinity. As by assumption this is true for all € > 0, it holds that

T
1
N <
:’lgl;lo ,;1 up < 0 (7.11)
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7.6 Lemmas for Bias Analysis

which proves the statement of the Theorem. O

7.6 LEMMAS FOR Bras ANALYSIS

The lemma shows that the difference between the stochastic system and deterministic can be sepa-
rated into a bias term which is bounded and of order @ and a residual term of order a®. The the-
orem furthermore gives a characterization of the bias term. In the main results, we will see that,

when considering an averaged bias expression, it is possible to obtain a computable expression that
approximates the bias.

Lemma 44. Assume A - Ay andlet0 < o < 1 be small enough andn € N. Then
[E[A(X()] = h($an(®)) — aVi2,| < a*C

with Xéa) = xgand

Vh(;:). ZE hotpk f(Xn b1, Yoh1) — F(Xnk1)
- Z D2<h 0 ) (Xn—t-1) - Q(Xn—p—-1, Yn—r-1)]-

and Q(z,y) = (f(z,y) — f(z)) “% Here, oy, 15 as defined in Equation (7.7). Under the given
assumptions, V', is bounded independent of o and n.

Proof of Lemma 44. In the proof we omit the superscript X ,ga), Yk(a) when the dependence on o is
clear from context. Next, define v, , = E[h(pr(X—k))] with ¢x(X,,—x) denoting the value of the
k-th iteration of ¢ with initial state X,,_;. This is similar to the method used in Chapter 2 with v
being comparable to the quantity defined in Equation (2.14). Using v, 1, we rewrite

n—1
E[h(Xn)] - h(@n) =Vno = Vnn = Z Unk — VUn,k+1- (7.12)
k=0

with the difference terms being

Vnje = Vngor1 = h(or(Xnr)) = h(@r1(Xn-41))) (7.13)
= h(@% (X o) + af (Xn—er1), Y, —(k+1)))> (7.14)
— h(on(Xu-ny + T (X i) ) (7.15)
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7 Application to Stochastic Approximation

. -1 . .
For the summed difference ZZZO Unk — Vn,k+1, we look at the Taylor expansion of the difference
Uk — Vnk+1. For the second order Taylor expansion define

E[D(h 0 o) (Xn-t-1) ([ (Xnto1s Yogo1) = F(Xnopor))] = @al®)  (7.16)

from the linear part of the expansion and

ZD2 howr)ij(Xn—k—1)(fi( Xn—k—1, Yat—1) — Fi(Xn_i—1))

12

X (f;(Xn—k-1, Yooko1) = [;(Xng-1))]

2
= SE[D2(h o 0 KXnmit) - (f Kot Yomios) = F(Xnmim) ™) = S0 (717)

from the quadratic part. Here, ® refers to the Kronecker product and we use - to denote summed
multiplication of the components for the matrices. Using the regularity assumptions posed on ¢,
and its derivatives, the remainder terms have the form

83 h
/ (%Ea;jg;i (Xn—p—1 +vaf(Xn—k—1, Ynr—1)) [ (Xn-p—1, Ynk—1)i

3
a
X f(Xnk—1, Yn-r—1).[ (Xn—p—1, Ynp—1)rdv < 7CD§(ho<pk)3OfCR

for Equation (7.14) and similarly for the remainder of Equation (7.15) where f is replaced by f. The
constants refer to the bounds the derivative of i 0 ¢y, f and the finite residual term arising through
the remainder. We recall that by Lemma 49 there exists a C>0 independent of o and n such that
« Zz;é Cp3(hogy) < C. Finally, this shows that the there exists some Cy > 0, such that sum of the
remainder terms obtained from the Taylor expansion of the Equations (7.14) and (7.15) is bounded

by a?Cj. Now, define Vh(,?z) = Z;é (afla; + ch;o";), then
h(X,) — h(pn) — aV| < a2Cy

which holds for all n.
We will now show that the terms Z o a k ) and Y o Lab® k are bounded and of order O(«). We

start with the bound of > ;' —, ab By Lemma 49,

> E[D2(h o or)(Xnk-1)Q(Xn—k-1, Ynp1)]

k=0

n—1 ‘

< OéCQ ZCD%(hOSDk) =: Cg.
k=0

0(1/(a—<2))
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7.6 Lemmas for Bias Analysis

By application of the first statement of Lemma 50 we get Sz e 0 a, k < C) with C] > O asin the
Lemma. This directly implies for C' = C; + Cyand by definition of th

IE[R(X,)] — h(en)| < al' + &2C.

Lemma 45. Define

(e.e]

Z (h o @) (doo) Z D Gf Poo, Y )f(¢00, y)T(I + K(¢00>)y,y’7ry(¢00)
=0 Y,y
+ D (h © (pk: gboo <Z Gf ¢007 gboo, y) (I + K(Qboo))y,y’ﬂ—y(qboo)
k=0

1
5@(%)) (7.18)

Here, @ is as defined in Equation (7.7) and depends on o. It follows from Lemma 47 that there
exist constants C', C" > 0 such that

N+T

= > V-

n N+1

< C’ o*C". (7.19)

Proof. To see that Lemma 47 can be applied to obtain the result, we see that G, of Equation (7.26)
can be rewritten as

DoGy, (b0, ) f (do0,y') = Gp(do0, ¥)" D2(h 0 01) (o) f (Po0r )
+ Dy (h 0 9r)(¢s0) DaG §(do0, ) f (000, Y)
= D2(h o @) (¢o0) © (G f(oos Y) f(¢hoos ¥') T
+ Dy (h 0 1) (Poo) DG (Boos Y) f(Poo ¥)-

This follows by definition of g5 and G, . To conclude, we just apply Lemma 47 with the prefactor
Q. L]

7.6.1 AccuracY AND COMPUTATION OF THE ASYMPTOTIC B1as V),
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7 Application to Stochastic Approximation

Lemma 46. Under the assumptions A - A4, the constant Vh(a) as defined in Equation (7.18)
of Lemma 45 is approximated by a computable constant V. It holds that there exists a constant
C" > 0 such that

Vi = V| < aC”.

Vi, is given as follows: -
Define A; j = g—i(%o); the Jakobian matrix of f in Goo, and B jr = %ij(gboo) the second
derivative. The V}, is defined by:

Vio = Dyh(¢oo) AHS + B - W) + D2h(¢so) - W (7.20)

with B- W = (3., BijxWik)i- Here, W is the unique solution to the Sylvester equation
AW + WAL + O = 0. O and S are defined by

+5Q(0c0),

l\DI»—t

0= my(60)G (S0 Y ) f (900, y) (K (do0) + D)y +

S = "y (o0) [ (So0r U)K (fs0) + 1)y DG (b0, ¢ )

with Q(boo) = 32, my(beo) (f(,y) — F(2))(f(2,9) — F(2))T and K (2) := P(z) - I.

Proof. 'To start, use the definitions of O and S from the Theorem to rewrite Equation (7.18). As we

are only interested in the computation of Vh(a) for ¢ = oo, we ignore the prefactor aw and thus have
the equations

= (> Da(ho i) (6o S+ZD2 hogi)(¢e) - O). (7.21)
k=0 k=0

with  as defined in Equation (7.7). To ease notation, we turn away from writing the dependence on
$oo in the next steps. Using that ¢y (¢) = Poo, the right hand side of (7.21) without the prefactor
acis equal to

Dy(ho@p)S + D*(ho ) - O (7.22)
— DohDyoiS + D*h - DyprODyot + DyhD2 gy - O (7.23)

with D,hD3o = (32, 5.5 5252 )m,n and - denoting the sum over the element wise product be-
tween the matrices. The terms S and O are computable due to Lemma 28 which gives a computable

expression for Gy and Note 40 of [4] showing how to efficiently obtain the derivative values for
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7.6 Lemmas for Bias Analysis

G';." Both references point to our two timescale mean field paper for continuous time [4] but can
be adapted to the discrete time case. Therefore, in what follows, we are concerned about obtaining
computable expressions for the remaining infinite sums

> Dapi; > DaprOD.gf Z Dy - O.
k=0

Starting with the first sum, we recall that by definition D¢ = I 4+ aA. Using the chain rule, we
have D1, = Dy(01 0 pp_1) = (I + @A) Dypp_1 = (I + aA)k. As A is Hurwitz and for small
enough a, Y77 (I + @A) is finite and we obtain Yo (I + «A)* = (@A) ! asa standard result
for geometric series. For the second sum we apply the identity for D¢, which yields

> DuprODof = (I +aA)*OD,(I + aA”™)F = W),
k=0 k=0

Asbefore, due to the Hurwitz property of A and small enough a, || + oA|| < 1and which implies
well definedness of the above. As we aim to obtain a computable expression independent of «, we
look at the continuous-time Sylvester equation having the form AX — X AT +0 = 0. By the
definition of A and O the equation has a unique solution which we denote W. As ¢y, is a discretized
version of the ODE (7.4), 1t is a standard property that the solution to the discrete time Sylvester
W@ can be written as W@ = W + aC, where C}, is obtained by bounding HAOAT H For the

last sum, we see that by using the chain rule as before

i
D2py = | ———
=Pk = (8xm8xn> —

(ZZ ((I +ad) ) ZaBabc (I +ad)), ((I—l—aA)j)w)

be i,mn

Therefore,

k
D’p- 0= (I+aA)}7aB - (I+aAYO(I +aA”).

j=1

I'To see that the statement of Lemma 28 remains true for discrete time, one can simply adapt the proof by replacing
the statement of Theorem 3.5 of [68] by Theorem 3.3 with K (z) as defined before in this section. The rest of the
proof is then completed as in the continuous time case.
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7 Application to Stochastic Approximation

where we abuse notation and denote by - the sum over the element-wise multiplication of the partial
derivatives for a fixed index of B, i.e, > . Bimn (I +aA)O(I + OzAT)j)m - Inserting this
into the sum from £ = 0 to infinity yields

oo k
> ) (I +aA)fTaB (I +aAyYO(I +aA”)y

k=0 j

Nk

<
Il
-
ol
I

(I 4+ aA)*aB - (I 4+ aAPO + aAT)

J

M
NE

<

i
I
i
o

(I +aA)aB - (I+aAYO(I +aAT)

() aB - (I +aAYO(I + aAT)

o

1

.
Il

= (@A) aB - (I +ad) (Z (I +aAYO(I + aATY )([—i—aAT)
= (aA)'aB - (I + aA)W( (I + aAT)
= A'B- W@ .

With C” being a bound on the terms arising from the above formula witch have a prefactor . Using
the connection between the discrete and continuous version of the Sylvester Equation, we can write

|A7'B - (W —W)]|| < aCr.

To finalize the proof, recall the right-hand side of Equation (7.23). As we have obtained approximate
and computable expressions for D¢y, Dy0rO D), and D2xp;, we use those to define

Vi, = Dyh(¢o) AH(S + B - W) + D2h(¢s) - W. (7.24)
By the previously discussed accuracy of the solution to the Sylvester equation W, we know that
’Vh(a) —Vhl < a(Cp+ ") = al". O

7.6.2 ExrANSION TERM APPROXIMATION BOUND
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7.6 Lemmas for Bias Analysis

Lemma 47 (Accuracy Bound for the Deterministic Bias Approximation). Assume A - A,

0 < a < landT € N. Define Q(z,y) = (f(z,y) — f(x))®* and Q(x)
>y Ty(@)Q(2,y), then there exist constants C, CF, CY' > 0 such that

N+T n—1
limsup a— > ZE [D2(h 0 0x)(Xntr—r) * QXnr—t, Ytr—t)]
n= N+l k=0

- ag Z D (h o o1)($s0) + Q(¢0)
k=0
1
<o’ + =0 +aCY'. (7.25)

Second, there exist constants Ch, CY, CY > 0 such that

N+T n-—1
lim sup CY— Z ZE 2(h 0 08) (Xn—k—1) (f (Xn-b-1, Ynk-1) — F(Xn—k-1))]
Nooo | T < N+1 k=0

- aZ ZD Cor (Do ¥') f (Do Y) I + K ($00))yr Ty (P00

—_

Cy + a2CY (7.26)

with gy (2,y) := Dy(h o @i)(2)(f(2,y) — f(2)) and @ as defined in Equation (7.7).

Proof of Lemma 47. We begin with the proof of Equation (7.25). In the following, the arguments
are made for finite n. We will then show that by letting n go to infinity, the bound remains finite.
We start with Equation (7.25). The argument to obtain the bound is split into two parts: First we

show
N+T n .
Z ZE D2 hoﬁpk ankfl) : (Q(Xn k-1, Y, ) Q( n— kfl))]
n N+1 k=1
1
<al]+ ——-C". (7.27)
T(a—%)
Second we show
N+T n—1 ~
Z ZE hOSOk n—k— 1) Q( n— k71)
n N+1 k=0
N4T n—1 )
—— Z > D2(ho i) (n-i1) - Qln—r-1)]| < CY. (7.28)
n N+1 k=0
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7 Application to Stochastic Approximation

To show Equation 7.27, we argue similar as in Lemma 50 and extend the difference by

= Z_:E[Di(h ° i) (Xn—k-1) (Q(ankfb Yok1) = Q(Xn k1)

n=N+1 k=0
+GQ( n—k— 1aY ) - GQ( n—k—lyYn—k)
+ GQ( n—k— 17 ) GQ( n— k?Yn—k)

 GolXe aVere) Gl -

As discussed in the proof of the lemma,

N+T n—1

- Z ZE[Dg(hOgpk)(Xn—k—l)(Q<Xn—k—la k1) — Q( n—k1)

n=N+1 k=0

+ Go(Xnt-1,Ynt1) — Go(Xn_1, yn_k)>] —0.

Again by the same arguments as in Lemma 50, there exists a constant C’ > 0 such that

N+T n-—1

= S SEIDh o 0) (Xami) (GolXamior, Yark) — C(Xuok, Yas)) < aC
n N+1 k=0
Lastly,
1 N+T n—1
= 2 DCEIDA(h o) (Xamiet) (GolXamks Yark) = Go(Xnmkt, Yarkn) )]
n=N+1 k=0
S 1 C//+ C///
T(@—T)

due to Lemma 52 with C”, C" > 0. To obtain the bound on Equation (7.28) we use utilize the
results of Theorem 44 applied to hy () := D2(h o ) (x) - Q(x) which shows

N+T n-—1 N+T n-1

= > SRR Xaio) el ) € 2 D S aCp, € <O

n=N+1 k=0 n=N+1 k=0
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In the above, C'is the constant arising from Theorem 44 and we use that o S 1—, C' p2g, = O(1).
This implies the existence of a constant C"""" < 0o independent of o and 7 serving as upper bound.
To finish our line of arguments in order to obtain the bound in Equation (7.27), we lastly show that

D h(doe) = D ha(n i)
k=0

k=0

(¢00) hk(@N—k) + Z hk(¢00) :

k=N
S N -~

—O(exp(—aN)) —O(exp(—aN))

Mz

(=
Il
o

The first property is due to the exponentially fast convergence of ¢,, to ¢, for sufhiciently large
n, the second one a consequence of Lemma 49. By using the above results, and defining C] =

C"+ C",C = C"and C7" = C" finally gives

N+T n—1
lim sup Oé— Z Z E D2 h o Spk Xn—i—T—k) : Q(Xn-l—T—lcy Yn+T—k)]
Noeo | T ST

S 9 / 1 " "
= Y Diho@i)(6x) - Qée)| < @°Ch + CY + aCy.
k=0

This concludes the first part of the proof.
For the second part, we start by defining

gk(x,y) = De(h o wi)(2)(f(2,y) = f(2)).
By definition gx(z) := >~ m,(z)gx(z,y) = Oforallz € X'. We can furthermore rewrite

N+T n—1

— Z ZE 2(h o) anszl)(f(Xn 1y Yooro1) = F(Xoo k*1)>
I Fus
N+T n-—1

:— Z Z]Egk n—k—15 Yn-k-1) = Gr(Xn_r-1)]-

n N+1 k=0

Similar to what we have done for the first statement of the lemma, we look at the extended difference

Ofgk (Xn—k—la Yn—k—l) — gk (Xn—k—l) in form of

I(Xn—k—1, Yok-1) — Ge(Xn—k-1) + Go (Xn—t-1, Ynt-1) — Go (Xn—k-1, Yo—s)
+ ng (X’ﬂ*kifly Ynfk) - ng (anka Ynfk)
+ ng (Xn—k> Yn—k) - ng (Xn—k—la Yn—kz—l)-
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As before we argue that the first line is zero. Therefore, we restrict our attention to the remaining
terms. For the last line, we use that

Gy (2, y) = D(h o @) ()G y(x, y).

N+T

Then by summing over 7 zz;é and using Lemma 52 we obtain

n=N+1
1 N+T n—1 1 ~ ~
T Z Z ng (anka Ynfk) - ng (ankfla Ynfkfl < 2 Cl + OéCH.
N+1 k=0 Tl — 5

For the remaining term
ng (X"_k_l’ Yn_k) - ng (Xn—k’v Yn—k)

we have a look at the Taylor expansion of Gy, (X,,_k, Y,,—j) around X,,_;_1. This gives us the
identity

ng (ankfb Ynfk) - ng (anka Ynfk)]
- aDachk (Xn—k—h Yn—k:)f(Xn—k—la Yn—k—l) + a2R1,GQk .

with Ry denoting the remainder excluding the alpha term. We have now split the equation into two
parts

T+N n—1 n—1
1
N Z Z AE[D, Gy, (Xn——1, Yoi) [ (Xn—k-1, Yo-p—1)] + Z OCQCDm(hocpk)Rl,Gf :
n=Ty k=0 k=0
S;gw/

Here, C" < 0is independent of n or cv. The remaining parts of the proof concern bounding the
difference

N+T n—1

% Z Z ElaD,G g (Xp—t—1, Yn—) f (Xn—k—1, Yn_r—1)] (7.29)
n=N+1 k=0
> ) DGy (o0 ) f(do0r YT + K (600) )y my(o0)- (7.30)
k=0 yy'

We see that for the conditional expectation

aE[D,Gy (Xn—k—1, Yoi) f (Xn—t—1, Yos—1) | Xo—k—1, Yo——1]
=Y DuGy (Xop—1,¥) f(Xnote1, Vako)) (L + K (X)), ov

Y
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7.6 Lemmas for Bias Analysis

To proceed, it is necessary to look closer at D, G, (-, y) which we can rewrite by definition of g, as

DGy, (x,y) = Do (De(ho o) ()G, y)) = Di(h o o) (2)Gy(x,y) + Da(h o @) (x)Gy(,y).

To simplify notation we introduce my(z,y) = >_,, DGy, (z,y') f(2,y)(I + K(x)),,, and
mg(z) = >, my(x)m(z,y). Considering the identity of the conditional expectation, the identity
of Gy, which lets us apply Lemma 50 and using 7, we have

N+T n-—1

|_ Z ZQED ng n—k— la )f(Xn—k—hYn—k—l)]
n=N+1 k=0
N+T n-—1
—Oé— Z ka nk1:|‘<040””
n N+1 k=0

We continue to look at the difference, and by the same argument as for the first statement of this
lemma

N+T n—1 N+T n—1
a— > D m(Xaim) —a— > D mu(pnim)| < al™
n N+1 k=0 n=N-+1 k=0
. Lastly and again similar to the final remarks of the first part of this proof
N
oS o) —azmk (60)| = Olexp(—al),
k=0

It remains to resolve and gather the obtained bounds to conclude the proof. Define C; :=
C,CY = C"+ C" 4+ C" + C"". As all the bound we obtained are either independent of n
or tend to zero exponentially fast, we obtain the asymptotic bound

N+T n-1
11msup‘ Z ZE w(h o o) (Xp—k1) (f(Xnoke1, Yoowe1) — F(Xnoke))]
nreo n=N+1 k=0
03 DG (600s ) (G )+ K (60))r o (6)
k=0 y,y’

S ;C/ +OCC”
T(a— %)

2

Multiplication with an additional c gives the desired result as in the statement of the Lemma. [
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7 Application to Stochastic Approximation

7.7 EXPONENTIALLY DECAYING BOUNDS FOR D' ()

The statement of the next lemma is foundational to ensure sufficiently fast convergence of the deriva-
tive terms D, ¢y () to zero. This critical property is continuously referenced in the proof to guar-
antee the finiteness of the resulting series.

Lemma 48 (Exponentially Small Bounds for Derivatives). Let gp,(f) be globally asymptotically
stable and locally exponentially stable with Lipschitz continuous and continunously differentiable
drift f and corrvesponding Lipschitz constant Ly and o small enough. Then there exists a neigh-
borhood N of the equilibrium point ¢, such that i ()@ s in N is Lipschitz continuons with
exponentially decaying constant Ly. Furthermore, the derivatives D oy ()i = 1,2,3 are
bounded with exponentially decaying bounds, i.e., there exist constants C1 ;, Co; > O such that

S Cl,i exp(—kaCzi) = CchsOk' (731)

[Pt

Proof. We extend the proof of Lemma 6.3 of [55] to the discrete time setting. Let ¢o, = 0 and
gp,(coj_)l gpk )+ aof (¢ (a)). As f is continuously differentiable it admits a linear expansion in a

neighborhood AV of the equilibrium, i.e., forz € N/

f(zr)=Az+g(z) with A=Df(¢)=DF(0) and [g(x)|/||z]| = 0.

By the stability assumption ||I + a Al =: A® < 1. We choose a second bounded neighborhood
N’ C N around ¢ such that g(x) < §||x|| and A(® exp(§) < 1. We now show that ¢ is
Lipschitz continuous around the equilibrium point. Assume that x € N then, based on the linear
expansion of the drift f(px(z) @) = Ago,(fa)(x) + g(cp,(f) (x)), the solution to the ODE near its
equilibrium can be written as

A7 @) = (14 @) Y1+ ad) gl (w)

For z;, := Hcpk Tty — go( H with z, z + y € N’ we have by the linear expansion

— ||+ as)1y - Z (I 4+ ad)* ' (g} (@ + y)) —g(soj(x)))H

< (A@)E Ny +Z Y gl (x +y)) — g(;(@))l

< (@)l +Z A
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7.8 Technical Lemmas

Therefore, with the wuse of Gronwalls inequality we obtain 2 <
(AOYE |y exp(& Zk s (A@NE=1=7) which shows the Lipschitz continuity of ¢y (2) in N’
near the equilibrium point with Lipschitz constant Ly := (A®))||y|| exp(§ E;:é (A(@))k=1=7),
As A < 1 and by selection of 9, the Lipschitz constant decays exponentially with increasing k.

The previous reasoning can be extended to the derivatives of 90,(:‘) in order to obtain exponentially
decaying bounds for D%y, i = 1,2, 3 as in Equation (7.31). [

Lemma 49. The exponentially decaying bound on the derivatives
| Dioi|| < Cuiexp(—kaCa;) =: Cpiy, for i=1,2,3

with Cy; > 1 implies that for the infinite sums

Z Cpig, = Z Ch,iexp(—akCy,)

k=ko k=ko

= exp(—akoCy,;) Z Ch,iexp(—akCsy,)
k=0
_ exp(—akOC’Qﬂ-) < C, 1
1 —exp(—aCy;) =  a-— %2

forsome ) < C" < oo. Throughout the proofs, we will in addition use that

o) — <2 for 0<a<l.

7.8 TECHNICAL LEMMAS

In this subsection, we state the more technical lemma needed to obtain the bound on the bias
and accuracy bound for the bias approximation. Lemma 50 gives bounds on the summed dif-
ferences between a noise perturbed function and its averaged counterpart. Lemma 51 shows

that sums of the type ZZ;& D,(h o ) (Xn—k_1) <F1 (X, Ynok) — F1(Xp—k-1, Yn_k_1)>
are bounded. Last Lemma 52 shows that when averaging, i.e., looking at sums of the type

T Ziv+§+1 o Dwgok(Xn_k_l) (F(Xn_k, Yor)— F(Xn_k-1, Yn_k_l)),we can obtain more
precise bounds depending on 7" and .
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7 Application to Stochastic Approximation

Lemma 50. Under assumptions A\ - A, there exists a constants Cy, Co, Cs > 0 such that for
continuously differentiable Fy : X x Y — RLFy: X x )Y — Rxd

[y

n—

Da(h o o) (Xi) (Fi(Xn k1, Yooit) = Fi(Xap 1)) <G (732)

ol

D2(ho ) (X) - (Fa(Xn i1, Yokt) = Fo(Xogt)) S o (733)

k=0

3
|

Proof. We show how to obtain the bound for the first equation. The second bound is then ob-
tained by following the same steps. For Equation (7.32), by adding and subtracting terms into the
difference to get

—_

3

Da(h 0 1) (Xe) (Fu(Xot1, Yaok1) = Fi(Xog1) (7.34)
k=0

+Gp (Xn—k-1, Yn-r-1) — Gr (Xp—p—1, Yn—k) (7.35)

+ GF1 (Xn—k—la Yn—k;) - GF1 (Xn—ka Yn—k) (736)

+ G (Xt Vo) = Gr (X k1, Yarin)). (737)

By definition of G} (z, y),

E[Gr, (Xk, Vi) = G, (Xi, Yer) | Xi, Vil = =Y (1 + K(Xi))v pGr (X, o)
y/

= —(F(X), Y2) — F1(X3))

from which follows that (7.35) is equal to zero. This is similar to the property given in Section 6.4.2
of our paper [4]. To bound the difference terms (7.37) we use Lemma 51. We get

n—1

Z D,(ho o) (Xe)(Gr (Xn—k, Yok) — Gr (Xp—g—1, Yk-1))| < C,
k=0

To bound the last sum, note that f is differentiable and bounded. By definition | Xy — Xji| =
alf(Xk, Yi)| < aC}, which by application of Taylor gives

|G R (Xk, Yir1) — Gr (Xpr1, Yan)|| < aCp,ay, Oy
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7.8 Technical Lemmas

For Equation (7.36), this yields

i Dy (ho o) (Xk) - (Gr (Xk, Yirr) — Gr (X, Yk+1))H

k=0
o0
<) Cp,(hegy) Cp,cr, Cr =: CF.
k=0
~——_— ———

O(1/(a—22))

By merging the above observations we obtain

n—1

> Dalho o) (Xe) (i (X b1, Yi1) = Fi(Xns1))

k=0

<O +C!=C, (7.38)

which proves the statement of Equation (7.32). As mentioned in the beginning, the application of
the same steps to Equation (7.33) gives the second bound. ]

Lemma 51. Under assumptions A - A, there exist constants Cy, Cy, Cs > 0 such that for
continuously differentiable Fy : X x ) — RLF, : X xY — R>XFy: X x Y — Rixdxd

n—1
1" Dalt 0 1) (Xnk1) (Fu (X, Ya) = Fa(Xnopo, Yok 1) )| S Cr, - (7:39)
k=0

n—1
1D D2(h 0 1) (Xnk1) - (B Xk Yak) = o Xp1, Yaoin) )| < G, (7.40)
k=0

ISy

k=0 4,5,k

83
618]816 (h ° (pk)(Xn_k_l) ) <(F3>i,j7k (Xn—ka Yn—k)

— ()i (Xnpo1, Yas1) ) < G (7.41)
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7 Application to Stochastic Approximation

Proof. We show how to obtain the constant C. By shifting the indices of the second sum of Equa-
tion (7.39), we rewrite

n—1
Z Dmgpk(Xn—k—l)Fl(Xn—kv Yn—k)
k=0
n—1
- Z Do (Xn—k—1)F1 (Xn—k—1, Yn—k—1)
k=0
= DmSOO(Xn—l)F(Xm Yn) - Dx@n—l(XO)Fl (X0> }/E)) (742)
n—1
+ 3 (Der(Xnir) = Depp s (Ko ) ) B (Xu o Yoi). (7:43)
k=1

By assumption, the terms of line (7.42) are bounded independent of . To obtain the bound for
the sum in Equation (7.43) we add an artificial zero and define

Dx(Pk(ank71> - ngpkfl(anlQ
= <D190k(ank71> - ngokfl(ankfl)

[

-~

E4
+ p$¢k—1(Xn—k—1) - Dw@k—l(Xn—k) .

g

Es

Recall X, = X1 + af (Xn—k—1, Yn—k—1) with f bounded. By expansion around X,,_j_1
and application of the bounds for the derivative terms and drift of the stochastic system f as well as
denoting by C'r the residual terms which arise from the remainder term of the expansion,

12 < aCpzg, , CraCr-
Using that D, () (x) = Dy (-1 © ¢1)(x), for E} we obtain
Ey = Do(pr-10901)(Xn-k-1) = Depr—1(Xn—p-1)

- OéD:v?(Xn—k—l) Dmgpk—l(Xn—k—l + a?(Xn—k—I»I_ngpk—l(Xn—k—l)-

N

Ei

Considering the expansion of £ ; around X,,_;_1 and denoting by C the residual terms arising
from the expansion which are independent of ¢, and o. We bound

|E1| < ||(@Dy f(Xn—k-1) — 1) Dopp—1(Xn—t-1)| + &*CCp,sCp2y, ,Cr

< a(Cp,s +1)Cp2,_, +a*CtCp,Cp2y, ,Ch.
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7.8 Technical Lemmas

Under consideration of Lemma 49 and by the above observations, the lines (7.42) and (7.43) are
bounded by

n—1

(CDIQ"O _'_ CDI‘Pn—l)CF + Z aCD%¢k,10RCfCF
k=1

n—1 n—1

Oé(Csz + 1) Z CD%SOk—l + OKZOfCDIf ZCD%S%CR = Cl < 0.

k=1 k=1

Finally, to obtain similar constants for the higher derivatives of ¢y, we follow the same reasoning.

O
Lemma 52. Given the same assumptions as in Lemma 51, the following bolds:
N+T n—1
H— > Deor(Xnk-1) (F( X, Ynk) = F(Xn-k—1, Yog1)) (7.44)
n=N+1 k=0
1
< —Cl 1+ aCy 2 (7.45)
T(a—%)
N4+T n-1
H_ Z ZDQ (h o @r)(Xn—k-1) - (FQ(Xn—k7Yn—k) — Fo(Xn—k—1, Y- 1))||
n=N+1 k=0
(7.46)
1
é —CQ 1+ CKCQ 125 (747)
T(a—%)
N4+T n-1
H— )IDIIP a (10 9) (Xami1) - ()i (Xomts Yas)
n=N+1 k=0 i,jk &
— (By)i (X1, Yoin) ) I (7.48)
1
< —03 1+ CYCg 2. (7-49)
T(a—%)
Proof.
N+T n—1
f Z Dxﬂpk n—k— 1>(F(ank7Ynfk) _F<Xn7k717Ynfk71))
n=N+1 k=0
N1y T
ZDz¢k+T V(XN (o) =1) (B (XN = (tr)s YNAT—(htr))
k=0 T:l
— F(XN+T—(ktr)—1, YN4T—(htr)-1)) (7.50)
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7 Application to Stochastic Approximation

We will now look at the inner sum for fixed k. To reduce notation, define

xsk) = ngpk+771(XN+Tf(k+T)f ),

Y% = P(XNir—her, YNAT—kr)-

Using the simplified notation and by application of the summation by parts identity

N-1 1 T

(7.50) = 72w )
k=0 =1
N—

1
T
0

Il

|
-
[l
A

(), (k) k
(TJ)rly(TJ)rl ) ( Z yT+1 T+1 ! ))> :
Bounding SN ' L gﬁlyr}ll, we obtain

N—
2 Z $T+1yT+1 - ?A )yl S Z Cbgy.-
k=0

By convergence properties of the derivatives of (o, there exists a constant C) such that
1

o )C'l Second, we argue similarly to the proof of Lemma 51, that

there exists a constant C’g such that

=

el

T
T+1 — y'(r-gl < aCh.

e
i

0 T=1

With this we obtain the desired result. By the same line or argument, we obtain similar bound for
the time averages of the higher order derivatives. O

192



8 CONCLUSION

In this thesis, we presented our contributions towards the grand question of the applicability and
accuracy of the mean field approximation to systems with non-homogeneous properties. Starting
with an overview of the general methodology in the second chapter, we show how generator com-
parison techniques can be used to bound the distance between a stochastic population system and
its mean field approximation. We further elaborate on how to obtain the refinement terms in the
case of density dependent population systems. The methodology serves as a basis for the following
chapters in which we repeatedly fall back on these steps and adapt them to more intricate settings.

In the second part, we focus on the study of heterogeneous systems. We show that in the case
of individual-level heterogeneity, we can construct a deterministic system approximating the prob-
ability of the individuals to be in their states. We show that this mean field approximation has an
accuracy of order O(1/N). We then continue by constructing a refinement term for the individ-
uals which further reduces the error of the approximation to an order of O(1/N?). In the subse-
quent chapter, we introduce the RMF Tool, a numerical toolbox which facilitates the implemen-
tation of population models and allow the automated construction of the (refined) mean field ap-
proximation. The tool incorporates the aforementioned heterogeneous setting. In Chapter 5, we
shift to population models with graph based connections. We show that the accuracy results of the
‘graphon’ mean field approximation strongly depend on the cut norm distance between the graph
and the graphon. For graphs obtained through deterministic and stochastic sampling, we further
state precise accuracy bounds for finite system sizes.

The last part of the thesis is dedicated to coupled systems. In Chapter 6, we look at the two-
timescale systems consisting of slowly changing populations of interacting particles and a coupled
rapidly changing environment. Looking at the behavior of finite-sized systems, we show that the ‘av-
erage’ mean field approximation has a bias of order O(1/N'). Moreover, we show that by carefully
studying the bias the refinement ideas can be adapted for coupled systems yielding new refinement
terms which account for the use of the averaging principle. We show how a numerically feasible ex-
tension term can be derived for the steady-state and thatits utilization reduces the bias of the approx-
imation to be of order O(1/N?). In the last chapter, we apply the mentioned results and refinement
ideas to the stochastic approximation setting with constant stepsize o and state-dependent Marko-
vian noise data. By adapting the proof procedure, we obtain comparable results as in the population
setting can be obtained. We show that for a fixed « the bias between the stochastic approximation
algorithm and the corresponding ODE is of order O(«) and can be further refined by an extension
term.

Summarizing, the presented work shows that the idea behind the mean field approximation is
widely applicable and that the methodology provided in Chapter 2 can be universally used to provide
accuracy results. Nonetheless, the results obtained and assumptions made raise further questions as
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8 Conclusion

to what extent different and more general models can be considered. In the next section, we will sum
up some open questions and extensions for other population models.

8.1 OPEN QUESTIONS AND FUTURE WORK

MEAN FIELD APPROXIMATION AND REFINEMENTS FOR NON-DIFFERENTIABLE DRrIFTs To
derive the refinement terms in this thesis as well as the ones of [54, 56], it is necessary to impose rela-
tively strict continuity assumptions on the drift of the system, e.g., twice continuously differentiable
for the first order refinement. While we think these assumptions are reasonable and fulfilled in many
cases, it is natural to ask to what extent such assumptions on the differentiability can be loosened and
replaced by other methods. Approaching the question from the stochastic approximation point of
view, it has been shown in [15, 16, 78] that the asymptotic behavior can be described using differential
inclusions. Specific applications for the mean field approximation however remain sparse, with [58]
being one of the more recent advances in the field. To the best of our knowledge, in this setting a
detailed bias analysis has not been conducted and remains an open question.

NoN MarkovIAN Dynamics In many real-world applications, state changes of a system are
not exponentially distributed. In the case of load balancing, statistical analysis suggests that service
times are not solely exponentially distributed but potentially follow Log-Normal, Gamma, or Phase-
type distributions. In [2, 3, 28] the authors propose PDE methods which generalize the mean field
approach in the load balancing context. The adaptation of the refinement idea into these settings is
an open research direction.

EXTENSION FOR NOT-S0-DENSE / SPARSE GRAPH BASED SysTEMs In Chapter S, we carried
outsome analysis on the accuracy of ‘graphon’ mean field models with respect to population systems
on densely connected graph structures, dense meaning that the number of neighbors of individuals
is of order V. As motivated in [96], the extension towards graphs slower increasing or even bounded
edge degrees for the individuals is non-trivial. Local interactions might have substantial influence on
the global behavior of the system due to non vanishing correlation of the individuals. Some recent
publications developing new approaches include [13, 53, 100].

ExpansioN oF THE RMF TooLr In Chapter 4, we have introduced the RMF Tool which sup-
ports the implementation of the mean field and, most notably, of the refined mean field approxi-
mation. Its current functionality allows the application to homogeneous, density dependent and
heterogeneous population processes, with the latter referring to the individual level heterogeneity as
discussed in Chapter 3. Extending the toolbox’s functionality to include our results on the ‘average’
mean field and ‘graphon’ mean field approximations would represents a natural next step to extend
the scope of the toolbox.

194



8.1 Open Questions and Future Work

195



8 Conclusion

196



BIBLIOGRAPHY

1.

10.

11.

E. Abbe. “Community Detection and Stochastic Block Models”. Foundations and Trends®
in Communications and Information Theory14:1-2, 2018, pp. 1-162. 1ssN: 1567-2190, 1567-
2328. DOI: 10.1561/0100000067.

R. Aghajani, X. Li, and K. Ramanan. Mean-Field Dynamics of Load-Balancing Networks
with General Service Distributions. 22, 2015. arXiv: 1512.05056 [math]. URL: http://arxiv.
org/abs/1512.605056. preprint.

R. Aghajani and K. Ramanan. “The Hydrodynamic Limit of a Randomized Load Balancing
Network”. The Annals of Applied Probability 29:4, 2019, pp. 2114-2174. 1ssN: 1050-5164,
2168-8737.DOI: 10.1214/18-AAP1444.

S. Allmeier and N. Gast. “Bias and Refinement of Multiscale Mean Field Models”. Proceed-
ings of the ACM on Measurement and Analysis of Computing Systems7:1,2023, 23:1-23:29.
DOI: 10.1145/3579336.

S. Allmeier and N. Gast. “Mean Field and Refined Mean Field Approximations for Hetero-
geneous Systems: It Works!” Proceedings of the ACM on Measurement and Analysis of Com-
puting Systems 6:1, 25, 2022,13:1-13:43. DOI: 10.1145/3508033.

S. Allmeier and N. Gast. “Rmf Tool - A Library to Compute (Refined) Mean Field Approx-
imation(s)”. ACM SIGMETRICS Performance Evaluation Review 4, 2, 2022, pp. 35-40.
ISSN: 0163-5999. DOI: 10.1145/3543146.3543156.

A. Aurell, R. Carmona, G. Dayanikli, and M. Lauriére. “Finite State Graphon Games with
Applications to Epidemics”. Dynamic Games and Applications12:1,1,2022, pp. 49-81. IsSN:
2153-0793. DOI: 10.1007/513235-021-00410-2.

M. Avella-Medina, F. Parise, M. T. Schaub, and S. Segarra. Centrality Measures for Graphons:
Accountz'ngfor Uncertainty in Networks. 28, 2018. DOI: 10.1109/TNSE.2018.2884235. arXiv:
1707.09350 [physics, stat]. preprint.

F. Baccelli, M. Davydov, and T. Taillefumier. “Replica-Mean-Field Limits of Fragmentation-
Interaction-Aggregation Processes”. Journal of Applied Probability 59:1, 2022, pp. 38-59.
1ssN: 0021-9002, 1475-6072. DOI: 16.1017/jpr.2021.31.

F. Baccelli and T. Taillefumier. “Replica-Mean-Field Limits for Intensity-Based Neural Net-
works”. SIAM Journal on Applied Dynamical Systems 18:4, 2019, pp. 1756-1797.

K. Ball, T. G. Kurtz, L. Popovic, and G. Rempala. “Asymptotic Analysis of Multiscale Ap-
proximations to Reaction Networks”. The Annals of Applied Probability 16:4, 1, 2006. 1SSN:
1050-5164. DOI: 10.1214/105051606000000420.

197


http://dx.doi.org/10.1561/0100000067
https://arxiv.org/abs/1512.05056
http://arxiv.org/abs/1512.05056
http://arxiv.org/abs/1512.05056
http://dx.doi.org/10.1214/18-AAP1444
http://dx.doi.org/10.1145/3579336
http://dx.doi.org/10.1145/3508033
http://dx.doi.org/10.1145/3543146.3543156
http://dx.doi.org/10.1007/s13235-021-00410-2
http://dx.doi.org/10.1109/TNSE.2018.2884235
https://arxiv.org/abs/1707.09350
http://dx.doi.org/10.1017/jpr.2021.31
http://dx.doi.org/10.1214/105051606000000420

Bibliography

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

198

A.D. Barbour. “Stein’s Method and Poisson Process Convergence”. Journal of Applied Prob-
ability 25:A, 1988, pp. 175-184. 1ssN: 0021-9002, 1475-6072. DOI: 10.2307/3214155.

E.Bayraktar, S. Chakraborty, and R. Wu. Graphon Mean Field Systems.S,2022. arXiv: 2003.
13180 [math].IJRL:http://arxiv.org/abs/2003.13180.preprhlt

E. Bayraktar and R. Wu. “Mean Field Interaction on Random Graphs with Dynamically
Changing Multi-Color Edges”. Stochastic Processes and their Applications 141, 2021, pp. 197-
244, 1SSN: 0304-4149. DOI: 160.1016/j.5pa.2021.07.005.

M. Benaim, J. Hofbauer, and S. Sorin. “Stochastic Approximations and Difterential Inclu-
sions”. SIAM Journal on Control and Optimization 44:1, 2005, pp. 328-348. 1ssN: 0363-
0129, 1095-7138. DOI: 16.1137/50363012904439301.

M. Benaim, J. Hofbauer, and S. Sorin. “Stochastic Approximations and Differential Inclu-
sions, Part II: Applications”. Mathematics of Operations Research 31:4, 2006, pp. 673-695.
ISSN: 0364-765X,1526-5471. DOI: 16.1287/moor .1060.0213.

M. Benaim and J.-Y. Le Boudec. “A Class of Mean Field Interaction Models for Computer
and Communication Systems”. Performance Evaluation 65:11, 2008, pp. 823-838.

A. Benveniste, M. Metivier, and P. Priouret. Adaptive Algorithms and Stochastic Approxima-
tions. Springer Science & Business Media, 6, 2012. 373 pp. 1sBN: 978-3-642-75894-2. Google
Books: KF7scAAAQBAT.

G. Bet, F. Coppini, and F. R. Nardi. Weakly Interacting Oscillators on Dense Random Graphs.
24,2022. arXiv: 2006.07670 [math]. URL: http://arxiv.org/abs/2006.07670. preprint.

S. Bhamidi, A. Budhiraja, and R. Wu. “Weakly Interacting Particle Systems on Inhomoge-
neous Random Graphs”. Stochastic Processes and their Applications 129:6, 2019, pp. 2174—
2206. 1sSN: 0304-4149. DOI: 10.1016/j .5pa.2018.06.014.

J. Bhandari, D. Russo, and R. Singal. “A Finite Time Analysis of Temporal Difference Learn-
ing With Linear Function Approximation”. In: Proceedings of the 31st Conference On Learn-
ing Theory. Conference On Learning Theory. PMLR, 3, 2018, pp. 1691-1692. URL: https:
//proceedings.mlr.press/v75/bhandarii8a.html

P. Blanchard and E. Briining. Mathematical Methods in Physics: Distributions, Hilbert Space
Operators, Variational Methods, and Applications in Quantum Physics. Vol. 69. Progress in
Mathematical Physics. Springer International Publishing, Cham, 2015. 1sBN: 978-3-319-14044-
S.DOI: 10.1007/978-3-319-14045-2.

J. R. Blum. “Approximation Methods Which Converge with Probability One”. The Annals
of Mathematical Statistics 25:2,1954, pp. 382-386.15sN: 0003-4851. JSTOR: 2236739. URL:
https://www.jstor.org/stable/2236739.

R. Boorstyn, A. Kershenbaum, B. Maglaris, and V. Sahin. “Throughput Analysis in Mul-
tihop CSMA Packet Radio Networks”. IEEE Transactions on Communications 35:3, 1987,
pp- 267-274.1ssN: 0090-6778. DOI: 10.1109/TCOM. 1987.1096769.

C. Bordenave, D. McDonald, and A. Proutiere. “A Particle System in Interaction with a
Rapidly Varying Environment: Mean Field Limits and Applications”. 16, 2009. arXiv: math/
0701363. URL: http://arxiv.org/abs/math/0701363.


http://dx.doi.org/10.2307/3214155
https://arxiv.org/abs/2003.13180
https://arxiv.org/abs/2003.13180
http://arxiv.org/abs/2003.13180
http://dx.doi.org/10.1016/j.spa.2021.07.005
http://dx.doi.org/10.1137/S0363012904439301
http://dx.doi.org/10.1287/moor.1060.0213
http://books.google.com/books?id=KF7sCAAAQBAJ
https://arxiv.org/abs/2006.07670
http://arxiv.org/abs/2006.07670
http://dx.doi.org/10.1016/j.spa.2018.06.014
https://proceedings.mlr.press/v75/bhandari18a.html
https://proceedings.mlr.press/v75/bhandari18a.html
http://dx.doi.org/10.1007/978-3-319-14045-2
http://www.jstor.org/stable/2236739
https://www.jstor.org/stable/2236739
http://dx.doi.org/10.1109/TCOM.1987.1096769
https://arxiv.org/abs/math/0701363
https://arxiv.org/abs/math/0701363
http://arxiv.org/abs/math/0701363

Bibliography

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

V.S. Borkar and S. P. Meyn. “The O.D.E. Method for Convergence of Stochastic Approx-
imation and Reinforcement Learning”. SIAM Journal on Control and Optimization 38:2,
2000, pp. 447-469. 1sSN: 0363-0129. DOI: 16.1137/S0363012997331639.

V.S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge Univer-
sity Press ; Hindustan Book Agency, Cambridge, UK : New York : New Delhi, 2008. 164 pp.
I1SBN: 978-0-521-51592-4.

M. Bramson, Y. Lu, and B. Prabhakar. “Randomized Load Balancing with General Service
Time Distributions”. ACM SIGMETRICS Performance Evaluation Review 38:1, 14, 2010,
pp- 275-286. 1sSN: 0163-5999. DOI: 10.1145/1811099.1811071.

A. Braverman. “Stein’s Method for Steady-State Diftusion Approximations”. 26, 2017. arXiv:
1704.08398 [math]. URL: http://arxiv.org/abs/1704.08398.

A. Braverman. “The Prelimit Generator Comparison Approach of Stein’s Method”. 7, 2021.
arXiv: 2102.12027 [math]. URL: http://arxiv.org/abs/2102.12027.

A. Braverman and J. G. Dai. “Stein’s Method for Steady-State Diffusion Approximations
of M/Ph/n+M Systems”. The Annals of Applied Probability 27:1,1, 2017. 1ssN: 1050-5164.
DOI: 10.1214/16-AAP1211.

A. Braverman, J. G. Dai, and X. Fang. “High Order Steady-State Diffusion Approximations”.
7,2020. arXiv: 2012.02824 [math]. URL: http://arxiv.org/abs/2012.02824.

A. Braverman, . G. Dai, and J. Feng. “Stein’s Method for Steady-State Diffusion Approxi-
mations: An Introduction through the Erlang-A and Erlang-C Models”. Stochastic Systems
6:2, 2017, pp. 301-366.

A. Budhiraja, D. Mukherjee, and R. Wu. “Supermarket Model on Graphs”. The Annals of
Applied Probability 29:3,1, 2019. 1ssN: 1050-5164. DOI: 10.1214/18-AAP1437.

P. E. Caines and M. Huang. “Graphon Mean Field Games and Their Equations”. SIAM Jour-
nal on Control and Optimization 59:6, 2021, pp. 4373-4399. 1ssN: 0363-0129, 1095-7138.
DOI: 160.1137/20M136373X.

G. Casale and N. Gast. “Performance Analysis Methods for List-Based Caches With Non-
Uniform Access”. IEEE/ACM Transactions on Networking 29:2, 2021, pp. 651-664. ISSN:
1558-2566. DOI: 10.1169/TNET.2020.3042869.

E. Castiel, S. Borst, L. Miclo, F. Simatos, and P. Whiting. “Induced Idleness Leads to De-
terministic Heavy Traffic Limits for Queue-Based Random-Access Algorithms”. The Annals
of Applied Probability 31:2, 1, 2021. 1ssN: 1050-5164. DOI: 10 . 1214 / 20 - AAP1609. arXiv:
1904.03980 [math].

F. Cecchi. Mean-Field Limits for Ultra-Dense Random-Access Networks. Technische Univer-
siteit Eindhoven, 1, 2018. 1SBN: 978-90-386-4415-8.

F. Cecchi, S. C. Borst, J. S. H. van Leeuwaarden, and P. A. Whiting. “Mean-Field Limits for
Large-Scale Random-Access Networks”. 24, 2019. arXiv: 1611 . 09723 [math]. URL: http :
//arxiv.org/abs/1611.09723.

199


http://dx.doi.org/10.1137/S0363012997331639
http://dx.doi.org/10.1145/1811099.1811071
https://arxiv.org/abs/1704.08398
http://arxiv.org/abs/1704.08398
https://arxiv.org/abs/2102.12027
http://arxiv.org/abs/2102.12027
http://dx.doi.org/10.1214/16-AAP1211
https://arxiv.org/abs/2012.02824
http://arxiv.org/abs/2012.02824
http://dx.doi.org/10.1214/18-AAP1437
http://dx.doi.org/10.1137/20M136373X
http://dx.doi.org/10.1109/TNET.2020.3042869
http://dx.doi.org/10.1214/20-AAP1609
https://arxiv.org/abs/1904.03980
https://arxiv.org/abs/1611.09723
http://arxiv.org/abs/1611.09723
http://arxiv.org/abs/1611.09723

Bibliography

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

52.

200

H. Che, Z. Wang, and Y. Tung. “Analysis and Design of Hierarchical Web Caching Systems”.
In: IEEE INFOCOM. Vol. 3. IEEE, Anchorage, AK, USA, 2001, pp. 1416-1424. 1SBN: 978-
0-7803-7016-6. DOI: 16.1109/INFCOM.2001.916637.

Z. Chen, S. T. Maguluri, S. Shakkottai, and K. Shanmugam. 4 Lyapunov Theory for Finite-
Sample Guarantees of Asynchronous Q-Learning and TD-Learning Variants. 4,2023.DOI: 10.
48550/arXiv.2102.01567. arXiv: 2102.01567 [cs, math, stat].preprint.

A. Dan and D. Towsley. “An Approximate Analysis of the LRU and FIFO Buffer Replace-
ment Schemes”. In: Proceedings of the 1990 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems. SSIGMETRICS ’90. Association for Computing
Machinery, New York, NY, USA, 1, 1990, pp- 143-152. 1sBN: 978-0-89791-359-1. DOI: 10.
1145/98457.98525.

G.F. de Arruda, F. A. Rodrigues, and Y. Moreno. “Fundamentals of Spreading Processes
in Single and Multilayer Complex Networks”. Physics Reports 756, 2018, pp. 1-59. 1ssN:
03701573. DOI: 10.1016/7 .physrep.2018.06.007. arXiv: 1804.08777.

J.-E. Delmas, P. Frasca, F. Garin, V. C. Tran, A. Velleret, and P.-A. Zitt. Individual Based SIS
Models on (Not so) Dense Large Random Networks. 2023. arXiv: 2302.13385 [math, g-bio].

M. V. Der Boor, S. C. Borst, J.S. H. Van Leeuwaarden, and D. Mukherjee. “Scalable Load
Balancing in Networked Systems: A Survey of Recent Advances”. SIAM Review 64:3,2022,
pp- 554-622. 1sSN: 0036-1445,1095-7200. DOI: 10.1137/20M1323746.

B. K. Driver. “Analysis Tools with Applications”. Lecture notes, 2003.

K. R. Dufty. “Mean Field Markov Models of Wireless Local Area Networks”. Markov Pro-
cesses and Related Fields 16:2, 2010, pp. 295-328. 1sSN: 1024-2953. URL: https://eprints.

maynoothuniversity.ie/6221/.

R. Fagin. “Asymptotic Miss Ratios over Independent References”. Journal of Computer and
System Sciences 14:2,1977, pp. 222-250.

M. Feuillet and P. Robert. “A Scaling Analysis of a Transient Stochastic Network”. Advances
in Applied Probability 46:2, 2014, pp. 516-535. 15sN: 0001-8678, 1475-6064. DOI: 10.1239/
aap/1401369705.

C. Fricker and N. Gast. “Incentives and Redistribution in Homogeneous Bike-Sharing Sys-
tems with Stations of Finite Capacity”. EURO Journal on Transportation and Logistics 5:3,
2016, pp. 261-291. 1SsN: 2192-4384. DOI: 10.1007/513676-014-0053-5.

C. Fricker, N. Gast, and H. Mohamed. “Mean Field Analysis for Inhomogeneous Bike Shar-
ing Systems”. In: AofA. Vol. DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Proba-
bilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA’12).
DMTCS, Montreal, Canada, 2012. DOI: 10.46298/dmtcs. 3006.

A. Ganguly. “Non-Markovian Interacting Particle Systems on Large Sparse Graphs: Hydro-
dynamic Limits and Marginal Characterizations”. Brown Univerity, 2022. 208 pp. URL: https:
//repository.library.brown.edu/studio/item/bdr:pfzykyap/.


http://dx.doi.org/10.1109/INFCOM.2001.916637
http://dx.doi.org/10.48550/arXiv.2102.01567
http://dx.doi.org/10.48550/arXiv.2102.01567
https://arxiv.org/abs/2102.01567
http://dx.doi.org/10.1145/98457.98525
http://dx.doi.org/10.1145/98457.98525
http://dx.doi.org/10.1016/j.physrep.2018.06.007
https://arxiv.org/abs/1804.08777
https://arxiv.org/abs/2302.13385
http://dx.doi.org/10.1137/20M1323746
https://eprints.maynoothuniversity.ie/6221/
https://eprints.maynoothuniversity.ie/6221/
http://dx.doi.org/10.1239/aap/1401369705
http://dx.doi.org/10.1239/aap/1401369705
http://dx.doi.org/10.1007/s13676-014-0053-5
http://dx.doi.org/10.46298/dmtcs.3006
https://repository.library.brown.edu/studio/item/bdr:pfzykyap/
https://repository.library.brown.edu/studio/item/bdr:pfzykyap/

Bibliography

53.

54.

55.

56.
57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

A. Ganguly and K. Ramanan. Hydrodynamic Limits of Non-Markovian Interacting Particle
Systems on Sparse Gmphs. S,2022. arXiv: 2205.01587 [math]. URL: http://arxiv.org/abs/

2205.01587. preprint.

N. Gast, L. Bortolussi, and M. Tribastone. “Size Expansions of Mean Field Approximation:
Transient and Steady-State Analysis”. Performance Evaluation 129, 2019. DOI: 10.1016/7 .

peva.2018.09.005.

N. Gast. “Expected Values Estimated via Mean-Field Approximation Are 1/N-Accurate”.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 1:1, 13, 2017,

pp- 1-26. 1SSN: 24761249. DOI: 10.1145/3084454.

N. Gast. “Refined Mean Field Tool”, 2018. URL: https://github.com/ngast/rmf_tool.

N. Gast. “Refinements of Mean Field Approximation”. 30, 2020. URL: http: / /polaris .

imag.fr/nicolas.gast/pdfs/hdr_gast.pdf.

N. Gast and B. Gaujal. “Markov Chains with Discontinuous Drifts Have Differential Inclu-
sion Limits”. Performance Evaluation} 69:12, 2012, pp. 623-642. 1ssN: 0759-1063, 2070-

2779.DOI: 10.1177/075910639203700105.

N. Gastand B. Van Houdt. “A Refined Mean Field Approximation”. Proceedings of the ACM
on Measurement and Analysis of Computing Systems 1:2, 2017, 33:1-33:28. DOI: 10. 1145/

3154491.

N. Gast and B. Van Houdt. “Transient and Steady-state Regime of a Family of List-based
Cache Replacement Algorithms”. In: Proceedings of the 2015 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems - SIGMETRICS ’IS.
The 2015 ACM SIGMETRICS International Conference. ACM Press, Portland, Oregon,

USA, 2015, pp. 123-136. 1SBN: 978-1-4503-3486-0. DOI: 10.1145/2745844.2745850.

M. G. M. Gomes, R. Aguas, R. M. Corder, J. G. King, K. E. Langwig, C. Souto-Maior, J.
Carneiro, M. U. Ferreira, and C. Penha-Gongalves. Individual Variation in Susceptibility or
Exposure to SARS-CoV-2 Lowers the Herd Immunity Threshold. preprint. Epidemiology, 2,

2020. DOI: 10.1101/2020.04.27.20081893.

R. Grima. “An Effective Rate Equation Approach to Reaction Kinetics in Small Volumes:
Theory and Application to Biochemical Reactions in Nonequilibrium Steady-State Condi-

tions”. The Journal of chemical physics 133:3, 2010, 07B604.

R. Grima, P. Thomas, and A. V. Straube. “How Accurate Are the Nonlinear Chemical Fokker-
Planck and Chemical Langevin Equations?” The Journal of Chemical Physics 135:8, 2011.

M. Hazewinkel, F. Calogero, Y. I. Manin, A. H. G. Rinnooy Kan, and G.-C. Rota. Stochastic
Analysis of Computer Storage. Springer Netherlands, Dordrecht, 1987. 1sBN: 978-90-277-

2515-8. URL: https://doi.org/16.1007/978-0-585-27373-0.

R. Hirade and T. Osogami. “Analysis of Page Replacement Policies in the Fluid Limit”. Op-
erations Research 58, 2010, pp. 971-984. 1ssN: 0030-364X. DOI: 10.1287/0pre.1090.0761.

L. Hodgkinson, R. McVinish, and P. K. Pollett. “Normal Approximations for Discrete-Time
Occupancy Processes”. 10, 2018. arXiv: 1801 . 00542 [math]. URL: http: //arxiv.org/abs/

1801.00542.

201


https://arxiv.org/abs/2205.01587
http://arxiv.org/abs/2205.01587
http://arxiv.org/abs/2205.01587
http://dx.doi.org/10.1016/j.peva.2018.09.005
http://dx.doi.org/10.1016/j.peva.2018.09.005
http://dx.doi.org/10.1145/3084454
https://github.com/ngast/rmf_tool
http://polaris.imag.fr/nicolas.gast/pdfs/hdr_gast.pdf
http://polaris.imag.fr/nicolas.gast/pdfs/hdr_gast.pdf
http://dx.doi.org/10.1177/075910639203700105
http://dx.doi.org/10.1145/3154491
http://dx.doi.org/10.1145/3154491
http://dx.doi.org/10.1145/2745844.2745850
http://dx.doi.org/10.1101/2020.04.27.20081893
https://doi.org/10.1007/978-0-585-27373-0
http://dx.doi.org/10.1287/opre.1090.0761
https://arxiv.org/abs/1801.00542
http://arxiv.org/abs/1801.00542
http://arxiv.org/abs/1801.00542

Bibliography

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

202

P. Huntand T. Kurtz. “Large Loss Networks”. Stochastic Processes and their Applications S3:2,
1994, pp. 363-378. 1SsN: 03044149. DOI: 10.1016/0304-4149(94)90071-X.

J.J. Hunter. “Generalized Inverses and Their Application to Applied Probability Problems”.
Linear Algebra and its Applications 45,1982, pp. 157-198. 1ssN: 00243795. DOI: 10. 1016/
0024-3795(82)90218-X.

D. Huo, Y. Chen, and Q. Xie. Bias and Extrapolation in Markovian Linear Stochastic Ap-
proximation with Constant Stepsizes. 19, 2022. arXiv: 2210 . 00953 [cs, math, stat]. URL:
http://arxiv.org/abs/2216.00953. preprint.

I. C.F. Ipsen and C.D. Meyer. “Uniform Stability of Markov Chains”. SIAM Journal on
Matrix Analysis and Applications 15:4, 1994, pp. 1061-1074. 1ssN: 0895-4798, 1095-7162.
DOL: 10.1137/50895479892237562.

B. Jiang, P. Nain, and D. Towsley. “On the Convergence of the TTL Approximation for
an LRU Cache under Independent Stationary Request Processes”. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS) 3:4, 2018, pp. 1-
31.

H.-W. Kangand T. G. Kurtz. “Separation of Time-Scales and Model Reduction for Stochas-
tic Reaction Networks”. The Annals of Applied Probability 23:2, 1, 2013. 1ssN: 1050-5164.
DOI: 10.1214/12-AAP841.

H.-W. Kang, T. G. Kurtz, and L. Popovic. “Central Limit Theorems and Diffusion Approx-
imations for Multiscale Markov Chain Models”. The Annals of Applied Probability 24:2, 1,
2014. 1sSN: 1050-5164. DOI: 16.1214/13-AAP934.

V. N. Kolokoltsov, J. Li, and W. Yang. “Mean Field Games and Nonlinear Markov Processes”.
6,2012. arXiv: 1112.3744 [math]. URL: http://arxiv.org/abs/1112.3744.

T. G. Kurtz. “Limit Theorems for Sequences of Jump Markov Processes Approximating Or-
dinary Differential Processes”. Journal of Applied Probability 8:2,1971, pp. 344-356. 1SSN:
0021-9002, 1475-6072. DOI: 16.2307/3211904.

T. G. Kurtz. “Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov
Processes”. Journal of Applied Probability7:1,1970, pp. 49-58.1ssN: 0021-9002, 1475-6072.
DOI: 10.2307/3212147.

T. G. Kurtz. “Strong Approximation Theorems for Density Dependent Markov Chains”.
Stochastic Processes and their Applications 6:3,1978, pp. 223-240. 1ssN: 03044149. DOLI: 10.
1016/0304-4149(78)90020-0.

H.]. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and Appli-
cations. Vol. 35. Stochastic Modelling and Applied Probability. Springer-Verlag, New York,
2003. 1sBN: 978-0-387-00894-3. DOI: 10.1007/b97441.

C. Lakshminarayanan and C. Szepesvari. “Linear Stochastic Approximation: How Far Does
Constant Step-Size and Iterate Averaging Go?” In: Proceedings of the Twenty-First Interna-
tional Conference on Artificial Intelligence and Statistics. International Conference on Artifi-
cial Intelligence and Statistics. PMLR, 31, 2018, PpP: 1347-1355. URL: https://proceedings.

mlr.press/v84/lakshminarayanani8a.html.


http://dx.doi.org/10.1016/0304-4149(94)90071-X
http://dx.doi.org/10.1016/0024-3795(82)90218-X
http://dx.doi.org/10.1016/0024-3795(82)90218-X
https://arxiv.org/abs/2210.00953
http://arxiv.org/abs/2210.00953
http://dx.doi.org/10.1137/S0895479892237562
http://dx.doi.org/10.1214/12-AAP841
http://dx.doi.org/10.1214/13-AAP934
https://arxiv.org/abs/1112.3744
http://arxiv.org/abs/1112.3744
http://dx.doi.org/10.2307/3211904
http://dx.doi.org/10.2307/3212147
http://dx.doi.org/10.1016/0304-4149(78)90020-0
http://dx.doi.org/10.1016/0304-4149(78)90020-0
http://dx.doi.org/10.1007/b97441
https://proceedings.mlr.press/v84/lakshminarayanan18a.html
https://proceedings.mlr.press/v84/lakshminarayanan18a.html

Bibliography

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

J.-M. Lasry and P.-L. Lions. “Mean Field Games”. Japanese Journal of Mathematics 2:1,2007,
pp- 229-260. 1ssN: 0289-2316, 1861-3624. DOI: 10.1007/511537-007-0657-8.

J.-Y. Le Boudec, D. McDonald, and J. Mundinger. “A Generic Mean Field Convergence Re-
sult for Systems of Interacting Objects”. In: Fourth International Conference on the Quanti-
tative Evaluation of Systems (QEST 2007). Fourth International Conference on the Quanti-
tative Evaluation of Systems (QEST 2007). IEEE, Edinburgh, Scotland, UK, 2007, pp. 3-18.
ISBN: 978-0-7695-2883-0. DOI: 10.1109/QEST.2007. 8.

L. Lovész. Large Networks and Graph Limits. Vol. 60. Colloquium Publications. Ameri-
can Mathematical Society, Providence, Rhode Island, 12, 2012. 1sBN: 978-0-8218-9085-1.
DOI: 10.1090/coll/060.

H. P. McKean. “Propagation of Chaos for a Class of Non-Linear Parabolic Equations”. Stochas-
tic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ.,
1967),1967, pp. 41-57.

S. Mei, A. Montanari, and P.-M. Nguyen. “A Mean Field View of the Landscape of Two-
Layers Neural Networks”. 28, 2018. arXiv: 1804 . 06561 [cond-mat, stat]. URL: http: //
arxiv.org/abs/1804.06561.

A. Meurer, C. P. Smith, M. Paprocki, O. Certik, S. B. Kirpichev, M. Rocklin, Am. Kumar, S.
Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi,
H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, S. Roucka, A. Sa-
boo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz. “SymPy: Symbolic Computing in
Python”. Peer] Computer Science 3, 2, 2017, €103. 1SSN: 2376-5992. DOI: 10. 7717/ peeri -

Ccs.103.

M. Mézard, G. Parisi, and M. A. Virasoro. “Spin Glass Theory and beyond: An Introduction
to the Replica Method and Its Applications”. World Scientific Publishing Company, 1987,
pp- 232-237.

M. Mitzenmacher. “The Power of Two Choices in Randomized Load Balancing”. IEEE Trans-
actions on Parallel and Distributed Systems 12:10, 2001, pp. 1094-1104. 1ssSN: 10459219.
DOI: 10.1109/71.963420.

M. Mitzenmacher. “Analyzing Distributed Join-Idle-Queue: A Fluid Limit Approach”. In:
Commaunication, Control, and Computing (Allerton), 2016 S4th Annual Allerton Conference
On. IEEE, 2016, pp. 312-318.

M. D. Mitzenmacher. “The Power of Two Random Choices in Randomized Load Balanc-
ing”. PhD thesis. PhD thesis, Graduate Division of the University of California at Berkley,
1996.

A. Montalbdn, R. M. Corder,and M. G. M. Gomes. “Herd Immunity under Individual Vari-
ation and Reinfection”. 2020. arXiv: 2008.00098 [physics, gq-bio].

A. Mukhopadhyay and R. R. Mazumdar. “Analysis of Load Balancing in Large Heteroge-
neous Processor Sharing Systems”. 2015. arXiv: 1311.5806 [cs, math].

Multiscale Methods. Vol. 53. Texts Applied in Mathematics. Springer New York, New York,
NY, 2008. 1sBN: 978-0-387-73828-4. DOI: 16.1007/978-0-387-73829-1.

203


http://dx.doi.org/10.1007/s11537-007-0657-8
http://dx.doi.org/10.1109/QEST.2007.8
http://dx.doi.org/10.1090/coll/060
https://arxiv.org/abs/1804.06561
http://arxiv.org/abs/1804.06561
http://arxiv.org/abs/1804.06561
http://dx.doi.org/10.7717/peerj-cs.103
http://dx.doi.org/10.7717/peerj-cs.103
http://dx.doi.org/10.1109/71.963420
https://arxiv.org/abs/2008.00098
https://arxiv.org/abs/1311.5806
http://dx.doi.org/10.1007/978-0-387-73829-1

Bibliography

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

10S.

106.

204

M. F. Norman. Markov Processes and Learning Models. Vol. 84. Academic Press New York,
1972. 1sBN: 0-12-521450-2.

A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations.
Red. by J. E. Marsden, L. Sirovich, and F. John. Vol. 44. Applied Mathematical Sciences.
Springer New York, New York, NY, 1983. 1sBN: 978-1-4612-5563-5. DOI: 10.1007/978- 1~
4612-5561-1.

L. Perko. Differential Equations and Dynamical Systems. 3rd ed. Texts in Applied Mathe-
matics 7. Springer, New York, 2001. 553 pp. 1sBN: 978-0-387-95116-4.

K. Ramanan. “Beyond Mean-Field Limits for the Analysis of Large-Scale Networks”. Quexue-
ing Systems100:3-4,2022, pp. 345-347.1sSN: 0257-0130,1572-9443. DOI: 10.1007 /511134~
022-09845-9.

H. Robbins and S. Monro. “A Stochastic Approximation Method”. The Annals of Mathe-
matical Statistics 22:3,1951, pp. 400-407. 1ssN: 0003-4851. JSTOR: 2236626. URL: https:
//www.jstor.org/stable/2236626.

P.Robertand G. Vignoud. “Stochastic Models of Neural Synaptic Plasticity”. 9, 2021. arXiv:
2010.08195 [math, g-bio]. URL: http://arxiv.org/abs/2010.08195.

A.Roy, C. Singh, and Y. Narahari. “Recent Advances in Modeling and Control of Epidemics
Using a Mean Field Approach”. Sadband 48:4, 27,2023, p. 207.18sN: 0973-7677. DOI: 16.

1007/s12046-023-02268~-z.

D. Rutten and D. Mukherjee. “Mean-field Analysis for Load Balancing on Spatial Graphs”.
In: Abstract Proceedings of the 2023 ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems. SIGMETRICS *23. Association for Comput-
ing Machinery, New York, NY, USA, 19, 2023, pp. 27-28. DOI: 10.1145/3578338.3593552.
URL: https://doi.org/10.1145/3578338.3593552 (visited on 03/22/2024).

R. Srikant and L. Ying. “Finite-Time Error Bounds For Linear Stochastic Approximation
and TD Learning”.

C. Stein. “Approximate Computation of Expectations”. Lecture Notes-Monograph Series 7,
1986, pp. i-164.

W.J. Stewart. Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis
of Performance Modeling. Princeton University Press, Princeton, N.J, 2009. 758 pp. 1SBN:
978-0-691-14062-9.

P. Thomas, H. Matuschek, and R. Grima. “Intrinsic Noise Analyzer: A Software Package for
the Exploration of Stochastic Biochemical Kinetics Using the System Size Expansion”. PLoS

ONE 7:6, 12, 2012. Ed. by J. Peccoud, €38518. 1ssN: 1932-6203. DOI: 16 . 1371/ journal .
pone.0038518.

N. Tsukada, R. Hirade, and N. Miyoshi. “Fluid Limit Analysis of FIFO and RR Caching for
Independent Reference Models”. Performance Evaluation 69:9, 2012, pp. 403-412. 1sSN:
01665316. DOI: 16.1016/7 .peva.2012.05.008.

R. Van Der Hofstad. Random Graphs and Complex Networks. Cambridge University Press,
Cambridge, 2017. 1sBN: 978-1-316-77942-2. DOI: 16.1017/9781316779422.


http://dx.doi.org/10.1007/978-1-4612-5561-1
http://dx.doi.org/10.1007/978-1-4612-5561-1
http://dx.doi.org/10.1007/s11134-022-09845-9
http://dx.doi.org/10.1007/s11134-022-09845-9
http://www.jstor.org/stable/2236626
https://www.jstor.org/stable/2236626
https://www.jstor.org/stable/2236626
https://arxiv.org/abs/2010.08195
http://arxiv.org/abs/2010.08195
http://dx.doi.org/10.1007/s12046-023-02268-z
http://dx.doi.org/10.1007/s12046-023-02268-z
http://dx.doi.org/10.1145/3578338.3593552
https://doi.org/10.1145/3578338.3593552
http://dx.doi.org/10.1371/journal.pone.0038518
http://dx.doi.org/10.1371/journal.pone.0038518
http://dx.doi.org/10.1016/j.peva.2012.05.008
http://dx.doi.org/10.1017/9781316779422

Bibliography

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

P. M. vande Ven, S. C. Borst, J. S. H. van Leeuwaarden, and A. Proutiere. “Insensitivity and
Stability of Random-Access Networks”. Performance Evaluation. Performance 2010 67:11,
1, 2010, pp. 1230-1242. 1ssN: 0166-5316. DOI: 10.1016/j .peva.2010.08.011.

B. Van Houdt. “A Mean Field Model for a Class of Garbage Collection Algorithms in Flash-
Based Solid State Drives”. ACM SIGMETRICS Performance Evaluation Review 41:1, 14,
2013, pp. 191-202. 18sN: 0163-5999. DOI: 10.1145/2494232.2465543.

N. G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam; Boston;
London, 2007. 1SBN: 978-0-444-52965-7.

N. Vvedenskaya, R. Dobrushin, and F. Karpelevich. “A Queueing System with a Choice of
the Shorter of Two Queues - an Asymptotic Approach”. Problemy Peredachi Informatsii,
32(1):20-34 1996.

X. Wang and K. Kar. “Throughput Modelling and Fairness Issues in CSMA/CA Based Ad-
Hoc Networks”. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer
and Commaunications Societies. Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Vol. 1. 2005, 23-34 vol. 1. DOI: 10.1109/INFCOM.
2005.1497875.

Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang. “Mean Field Multi-Agent Rein-
forcement Learning”. In: Proceedings of the 35th International Conference on Machine Learn-
ing. International Conference on Machine Learning. PMLR, 3, 2018, pp. 5571-5580. URL:
https://proceedings.mlr.press/v80/yangi8d.html

L. Ying. “On the Approximation Error of Mean-Field Models”. In: Proceedings of the 2016
ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Science - SIGMETRICS ’16. The 2016 ACM SIGMETRICS International Conference. ACM
Press, Antibes Juan-les-Pins, France, 2016, pp. 285-297. 1sBN: 978-1-4503-4266-7. DOI: 16.
1145/2896377.2901463.

L.Ying. “Stein’s Method for Mean Field Approximationsin Light and Heavy Traffic Regimes”.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 1:1, 13, 2017,
pp- 1-27. 1SSN: 2476-1249, 2476-1249. DOL: 10.1145/3084449.

K.Zhang, Z. Yang, and T. Bagar. “Multi-Agent Reinforcement Learning: A Selective Overview
of Theories and Algorithms”. In: Handbook of Reinforcement Learning and Control. Ed. by
K. G. Vamvoudakis, Y. Wan, F. L. Lewis, and D. Cansever. Studies in Systems, Decision and
Control. Springer International Publishing, Cham, 2021, pp. 321-384. 1sBN: 978-3-030-
60990-0. DOI: 16.1007/978-3-030-60990-0_12.

Z. Zhao and D. Mukherjee. “Optimal Rate-Matrix Pruning For Heterogeneous Systems”.
ACM SIGMETRICS Performance Evaluation Review 51:4, 2024, pp. 26-27. 1ssN: 0163-
5999. DOL: 10.1145/3649477.3649492.

Z. Zhao, D. Mukherjee, and R. Wu. “Exploiting Data Locality to Improve Performance of
Heterogeneous Server Clusters”. Stochastic Systems, 2024. 1SSN: 1946-5238. DOI: 10. 1287/
stsy.2022.0040.

205


http://dx.doi.org/10.1016/j.peva.2010.08.011
http://dx.doi.org/10.1145/2494232.2465543
http://dx.doi.org/10.1109/INFCOM.2005.1497875
http://dx.doi.org/10.1109/INFCOM.2005.1497875
https://proceedings.mlr.press/v80/yang18d.html
http://dx.doi.org/10.1145/2896377.2901463
http://dx.doi.org/10.1145/2896377.2901463
http://dx.doi.org/10.1145/3084449
http://dx.doi.org/10.1007/978-3-030-60990-0_12
http://dx.doi.org/10.1145/3649477.3649492
http://dx.doi.org/10.1287/stsy.2022.0040
http://dx.doi.org/10.1287/stsy.2022.0040

	Titlepage
	Acknowledgments
	Abstract / Résumé
	Contents
	Introduction & Methodology
	Introduction
	Motivation
	Overview
	Detailed Contributions
	List of Publications

	Methodology
	Introduction
	CTMCs, Semi-Groups and Generators
	Continuous Time Markov Chains (CTMC)
	Semi-Groups and Generators for Dynamics Systems

	General Methodology
	Transient Regime
	Steady-State extension

	Application to Density Dependent Population Processes
	Density Dependent Population Processes
	A Simple Load Balancing Example
	Accuracy Results
	Refinement Terms
	Transient Refinement Terms
	Extension to the steady state
	Computing the Transient Refinement Terms
	Computing the Steady-State refinement Terms
	Higher Order Corrections



	Heterogeneous Mean Field Models
	Mean Field and Refined Mean Field Approximations for Heterogeneous Systems
	Introduction
	Related Work
	The Heterogeneous Population Model
	Interaction Model
	State Representation
	Main Notations

	Main Results
	Drift and Mean Field Approximation
	Accuracy of the Mean Field Approximation
	Accuracy of the Refined Mean Field Approximation
	Numerical Complexity

	Numerical Experiments
	Application to a Cache Replacement Algorithm: the RANDOM(m) Model
	Application to a Load Balancing Algorithm: The two-choice Model

	Proofs
	Notation
	Comparison of the Generators
	Proof of Theorem 4 (Mean Field Approximation)
	Proof of Theorem 5 (Refined mean field approximation)

	Conclusion
	Appendix
	Notation List
	Equation for the Mean Field and Refined Mean Field Approximations
	Cache Replacement Policies
	Technical lemmas


	RMF Tool - A Numerical Tool Box
	Introduction
	Models
	Homogeneous population process
	Density dependent populations process
	Heterogeneous population process

	Mean field approximations and refinements
	Mean field approximation (homogeneous)
	The refined mean field approximation
	Heterogeneous mean field approximation and refinements

	Implementation challenges
	Automatic differentiation
	Dimension reduction

	Conclusion and Discussion
	To which model does this apply?
	Analysis of the computation time


	Accuracy of Graphon Mean Field Models
	Introduction
	Related Work

	Heterogeneous Network Particle System
	The interaction model
	The binary state representation
	Drift of the system of size N
	Representation of XN, GN and FGN as function from [0,1]
	Notations

	Limiting Graph and Graphon
	Graphons
	Generation of a Finite Graph GN from a Graphon G
	Graphon Distances and Convergence

	Main Results
	Assumptions
	The Graphon Mean Field Approximation
	Accuracy of the approximation
	Case Specific Bounds for |||GN - G|||

	Numerical Experiments
	Load Balancing Example
	Heterogeneous Bike-Sharing System

	Proofs
	Proof of Lemma 14
	Proof of Theorem 15
	Proof of Corollary 17 and Corollary 16

	Conclusion
	Lemmas
	Derivative of ν (Lemma 20)
	Bound on the Taylor Remainder Term (Lemma 21)
	Bound on the Difference of Stochastic and Deterministic Drift (Lemma 22)
	Bound on the Approximation of a Piecewise Lipschitz Function (Lemma 23)
	Taylor Expansion with Remainder for Banach Spaces (Lemma 24)



	Systems with Rapidly Changing Environments
	Bias and Refinement of Multiscale Mean Field Models
	Introduction
	Stochastic System and Mean Field Approximation
	Model
	Drift, Average Drift and Mean Field Approximation
	Main assumptions

	Main Results
	Transient Regime
	Steady-State Results
	Steady-State Refinement

	Proofs
	Stochastic Semi-Groups and Generators
	Generator of the Fast Process and Regularity of the Poisson Equation
	Proof of Theorem 25 - Transient State Proof
	Proof of Theorem 26 - Steady-State Proof
	Proof of Theorem 27 (Refinement Theorem, and Closed form Expressions)

	Example: CSMA Model
	Model Description
	Two-scale model representation
	Steady-State distribution π(x) and average drift
	Numerical results

	Conclusion
	Definitions
	C0-Semi-Group, Hölder Norm, ODE differentiability

	Technical Lemmas and Proofs
	Proof of Lemma 28
	Technical Lemmas used to prove Theorem 25 (Transient Regime)
	Technical Lemma used to prove Theorem 27 (Steady-State Refinement)
	Stability of the `slow' Poisson equation
	Proof of Proposition 31

	Computational Notes
	Numerical Results for the 3 Node Model

	Application to Stochastic Approximation
	Introduction
	Setting
	Assumptions
	Main Results
	Proof of Theorem 42
	Lemmas for Bias Analysis
	Accuracy and Computation of the Asymptotic Bias Vh
	Expansion Term Approximation Bound

	Exponentially Decaying Bounds for Derivatives of φk
	Technical Lemmas


	Conclusion
	Open Questions and Future Work

	Bibliography

