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Abstract

The thesis aims to explore the potential of empirical results in identifying urban centers

and subcenters by utilizing built-up data extracted from freely-available remote sensing

images and fractal analyses. It addresses the challenge of data unavailability in this con-

text. While various methods have been employed in literature, such as minimum cut-off

point, spatial statistical methods, and hedonic price method, these are predominantly

based on the local context of developed nations, with limited studies focused on develop-

ing nations due to data scarcity. This research seeks to fill this gap by investigating the

effectiveness of fractal geometry in explicitly identifying urban centers and subcenters,

characterizing their spatial organization for urban growth analysis, and delineating ur-

ban growth patterns based on the spatial arrangement of urban centers, subcenters, and

primary transportation networks. Understanding these dynamics is crucial for informed

urban planning and infrastructure decisions. Using the Greater Accra Metropolitan Area

(GAMA) as a case study, freely available satellite images spanning from 1991 to 2022

were downloaded and classified using various techniques including random forest, sup-

port vector machine, and simple linear iterative cluster (SLIC) with K-Means to extract

built-up patterns. A longitudinal analysis was conducted to assess the impact of urban

growth on biodiversity, revealing shifts in land cover composition with built-up areas in-

creasingly dominating over vegetation, leading to habitat fragmentation. Land cover and

landscape patterns for 2030 were successfully predicted, emphasizing the importance of

landscape connectivity and habitat fragmentation in evaluating ecological processes and

urban development impacts. Furthermore, multi-radial fractal analysis and mathemat-

ical morphology were employed to identify urban centers and subcenters from remote

sensing data, based on fractal dimensions and spatial organization. A conceptual urban

growth model was developed to visualize expected urban expansion patterns. These find-

ings contribute significantly to the identification and spatial organization of urban centers

and subcenters, particularly in cities lacking adequate statistical or geospatial data, espe-
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cially in developing countries. Replicating this methodology could contribute to a more

comprehensive global database on cities.
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Résumé en Français

Introduction

Les villes sont des organismes dynamiques qui évoluent constamment pour s’adapter à des

circonstances changeantes. Les centres et sous-centres urbains jouent un rôle crucial dans

la croissance et le développement des villes. Ils offrent des opportunités économiques,

des expériences culturelles et des interactions sociales qui enrichissent la vie des citadins.

L’une des principales caractéristiques des centres et sous-centres urbains est la forte con-

centration d’activités humaines qu’on y trouve par rapport aux zones environnantes. Il est

évident que les centres urbains et les sous-centres sont différents, mais ils sont similaires

à certains égards. Les centres urbains sont des zones densément peuplées qui servent de

pôles d’activités économiques, culturelles et sociales. Les sous-centres, quant à eux, sont

des versions à plus petite échelle des centres urbains, situés en dehors du quartier central

des affaires (CBD). Ils sont conçus pour offrir les mêmes avantages que les centres urbains,

mais à un niveau plus local. Les centres urbains et les sous-centres offrent de nombreux

avantages aux habitants et aux entreprises. En concentrant les activités économiques dans

une zone plus restreinte, ces centres peuvent favoriser une croissance économique signi-

ficative en offrant davantage d’opportunités d’emploi, en particulier dans des secteurs tels

que la finance, la technologie et les soins de santé. L’amélioration de la qualité de vie

des habitants constitue un autre avantage majeur des centres et sous-centres urbains. En

donnant accès à une série d’équipements tels que des parcs, des restaurants, des centres

commerciaux, des institutions culturelles, etc., ces centres et sous-centres offrent un cadre

de vie plus vivant et plus attrayant aux résidents.

Mais on peut se demander pourquoi il est nécessaire d’identifier les centres et les sous-

centres urbains?

L’identification des centres et sous-centres urbains peut aider à planifier un équilibre

entre les emplois et les logements. Elle peut également aider à estimer la capacité
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écologique des centres-villes. Un bon équilibre entre les emplois et les logements au

niveau local permettrait de raccourcir le temps de trajet des travailleurs, de réduire

les embouteillages, de diminuer la pollution atmosphérique et sonore due à la circula-

tion automobile et d’améliorer le bien-être général des habitants. Ces éléments con-

tribueraient grandement à rendre une ville plus durable. Deux approches principales sont

généralement utilisées pour l’identification des centres et sous-centres urbains : l’approche

morphologique et l’approche fonctionnelle. L’approche morphologique s’intéresse à la

taille et à la distribution spatiale des centres et des sous-centres, tandis que l’approche

fonctionnelle s’intéresse aux connexions entre les différents centres. Dans cette thèse,

l’approche morphologique a été utilisée. Dans la littérature, plusieurs méthodes, telles

que le point de coupure minimum, les méthodes statistiques spatiales et la méthode des

prix hédoniques, ont été adoptées pour l’identification des centres et sous-centres urbains

en utilisant des données provenant de diverses sources telles que les statistiques officielles,

la télédétection et les systèmes de big data géospatiaux. Cependant, la plupart de ces

études sur l’identification des centres et sous-centres urbains sont basées sur le contexte

local des nations développées. Les études sur l’identification des centres et sous-centres

urbains dans le contexte des pays en développement sont encore rares. Certains chercheurs

expliquent cette situation par l’absence probable ou la disponibilité partielle de données

statistiques officielles ou de big data géospatiales, telles que les POI et les inscriptions

sur les médias sociaux, que les chercheurs peuvent utiliser pour identifier les centres et

sous-centres urbains dans les villes des pays en développement.

Étant donné que les centres et sous-centres urbains se caractérisent par une forte con-

centration d’activités humaines par rapport aux zones environnantes, certains chercheurs

ont fait valoir que les images de télédétection, l’imagerie nocturne et les enregistrements

sur les médias sociaux pouvaient raisonnablement remplacer la population ou les activités

humaines dans l’identification des centres et sous-centres urbains. En effet, grâce à la

bonne résolution spatiale et temporelle des images de télédétection disponibles gratuite-

ment, telles que Landsat et Sentinel, qui sont généralement la seule source de données

spatialement cohérentes couvrant de vastes zones avec un niveau élevé de détail spatial

et de fréquence dans la plupart des pays en développement, le problème des données

inadéquates peut être résolu dans une certaine mesure. C’est dans ce contexte que cette

thèse a exploré le potentiel des résultats empiriques dans l’identification des centres et

sous-centres urbains en proposant une nouvelle approche qui utilise des données sur le

bâti extraites d’images de télédétection librement disponibles; et des analyses fractales,
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couplées à la morphologie mathématique pour traiter le problème de l’indisponibilité des

données dans l’identification des centres et sous-centres urbains, en particulier dans les

pays en voie de développement. Les questions de recherche suivantes ont été posées:

1. La géométrie fractale peut-elle être utilisée pour identifier explicitement les cen-

tres et sous-centres urbains et leur organisation spatiale à partir de données de

télédétection?

2. Est-il possible de caractériser l’organisation spatiale des centres et sous-centres ur-

bains au regard de l’objectif d’analyse de la croissance urbaine?

3. Est-il possible d’esquisser le processus de croissance urbaine à partir de l’organisation

spatiale des centres et sous-centres urbains et de la localisation de la forme des

principaux réseaux de transport?

Ces questions ont été posées parce que les objectifs de la thèse sont de:

1. Concevoir des modèles de croissance urbaine plus informatifs que les modèles en

“tache d’huile”; et

2. Identifier les centres et sous-centres urbains et leur organisation spatiale à partir de

données de télédétection uniquement en utilisant des fractales.

Zone d’étude

La région métropolitaine du Grand Accra (GAMA) a été choisie comme zone d’étude pour

cette thèse. Il s’agit de la capitale administrative du Ghana, un pays en développement

d’Afrique de l’Ouest, et de la principale ville économique du pays. En tant que capi-

tale administrative, GAMA a bénéficié d’investissements considérables, tant publics que

privés, dans le développement de ses infrastructures et de ses services. Grâce à ces in-

vestissements massifs, un ensemble d’activités économiques a prospéré dans la région,

entrâınant une augmentation de la population et une pression sur les ressources foncières

à l’intérieur de la ville et à sa périphérie. Plusieurs études ont souligné les implications

négatives de l’urbanisation incontrôlée dans la région GAMA sur l’environnement et les

régions voisines. Cependant, à ce jour, aucune recherche n’a été menée pour identifier

les centres et sous-centres urbains de la GAMA, malgré leur rôle central dans la facili-

tation d’une planification spatiale efficace, d’une allocation optimale des ressources, de

l’avancement des infrastructures et d’interventions politiques ciblées visant à favoriser une

croissance équilibrée et à améliorer la qualité de vie des résidents. GAMA étant la ville

la plus grande et à la croissance la plus rapide du Ghana, un pays en développement
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d’Afrique de l’Ouest, où il n’existe pas de données statistiques officielles adéquates pour

l’identification des centres et sous-centres urbains, elle a été identifiée comme l’endroit

idéal pour mener à bien ce travail. La réussite de ce travail permettra non seulement de

combler le manque d’études sur l’identification des centres et sous-centres urbains dans les

villes des pays en développement, mais aussi d’aborder la question de la non-disponibilité

des données nécessaires à cette fin.

Classification des images satellites

La classification des images satellite est une technique de vision par ordinateur utilisée

pour classer les pixels d’une image satellite dans leurs types d’occupation du sol respectifs

sur la base de leur contenu visuel. Il existe deux types de classification : la classification

supervisée et la classification non supervisée. La classification non supervisée est automa-

tisée et ne nécessite aucune entrée de la part de l’utilisateur (hormis la spécification du

nombre de classes). Cependant, la classification supervisée donne à l’utilisateur plus de

contrôle sur le processus de classification, car l’utilisateur sélectionne manuellement les

données d’apprentissage et les affecte à la classe appropriée. Cette méthode est plus ro-

buste et permet généralement d’obtenir une plus grande précision que la méthode non

supervisée. Afin de résoudre le problème de l’absence ou de la disponibilité partielle de

données statistiques officielles pour l’identification des centres et sous-centres urbains,

la classification d’images satellite librement disponibles a été utilisée pour préparer des

cartes d’occupation du sol qui ont servi de données primaires pour l’identification des

centres et sous-centres urbains.

Des images satellites librement disponibles de la zone d’étude pour 1991, 2002, 2013

et 2022 ont été téléchargées à partir du site web de l’United States Geological Survey

(USGS). Le fichier de forme des limites de la zone d’étude a également été téléchargé

gratuitement à partir d’OpenStreetMap. Goole Earth pro a été utilisé avec différentes

combinaisons de couleurs pour créer des données de vérité terrain pour la classification

supervisée. Certaines des bibliothèques python utilisées sont sk-learn, sk-image, gdal,

numpy, geopandas et matplotlib. Fractalyse 3-0.8.1 a été utilisé pour déterminer les di-

mensions fractales des différents types d’occupation du sol, et Fragstats 4.2 a été utilisé

pour calculer les métriques du paysage. Trois méthodes de classification d’images ont

été comparées : Random Forest (RF), Support Vector Machine (SVM) et un hybride

de Simple Linear Iterative Cluster and K-Means (SLIC K-Means). Random Forest et

Support Vector Machine sont des méthodes de classification supervisée, ce qui signi-
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fie que des échantillons d’entrâınement ont été utilisés pour définir les différents types

d’occupation du sol (végétation, bâti, transition et eau), contrairement à SLIC K-Means,

où l’algorithme affecte automatiquement les pixels dans les différentes classes spécifiées

par l’utilisateur.

La classification d’images est très orientée ; chaque projet a un objectif spécifique pour

lequel la classification est effectuée. Cet objectif influence le type de méthode de classifica-

tion d’images à utiliser, qu’elle soit supervisée ou non supervisée. Lors de la comparaison

des méthodes de classification supervisée, la comparaison est souvent basée sur les scores

kappa (c’est-à-dire une évaluation de la performance de la classification par rapport à

l’attribution aléatoire de valeurs aux cellules). Le score de Kappa est compris entre -1

et 1. Une valeur de 0 indique que la classification n’est pas meilleure qu’une classifica-

tion aléatoire, un nombre négatif indique que la classification est nettement moins bonne

qu’une classification aléatoire, et une valeur proche de 1 indique que la classification

est nettement meilleure qu’une classification aléatoire). Une valeur de 0,8 ou plus est

généralement considérée comme une classification forte. Lorsque différentes méthodes de

classification ont des scores kappa globaux similaires, il devient difficile de choisir l’une

plutôt que l’autre.

Une nouvelle approche est proposée, une approche qualitative qui implique la mesure

de caractéristiques supplémentaires représentant la forme des types de couverture ter-

restre classifiés. Ces mesures sont : la dimension fractale, la bordure totale et le nom-

bre de taches. La dimension fractale est un indicateur du caractère lacunaire des types

d’occupation du sol. Elle est comprise entre 0 et 2. Plus la valeur est proche de 2, plus

le type d’occupation du sol est homogène, et plus elle est éloignée de 2, plus il est faible-

ment réparti. La lisière totale est une mesure du paysage qui est généralement utilisée en

écologie du paysage pour quantifier les structures du paysage. Il s’agit de la somme de

toutes les arêtes horizontales et verticales entre les cellules de différents types de couver-

ture terrestre. Elle indique la quantité de détails capturés dans la classification de chaque

type de couverture terrestre. Plus la valeur de l’arête totale est élevée, plus les détails

ont été pris en compte dans la classification. Un patch peut être défini comme les qua-

tre cellules les plus proches (c’est-à-dire les voisins horizontaux et verticaux uniquement)

adjacentes à une cellule ou les huit cellules les plus proches (c’est-à-dire les voisins horizon-

taux, verticaux et diagonaux) adjacentes à une cellule. Contrairement à la comparaison

quantitative basée sur les scores kappa, cette nouvelle approche est une comparaison qual-

itative basée sur la quantité de détails qu’une méthode de classification est capable de
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produire. Il convient de noter que cette approche ne cherche pas à remplacer les mesures

quantitatives existantes déjà utilisées, mais à servir de mesure supplémentaire pour aider

les analystes à décider quelle méthode est la mieux adaptée à quel projet. Les scores

kappa des classifications RF et SVM de GAMA 2022 étaient respectivement de 0,933 et

0,929. Il s’agit d’un scénario typique dans lequel deux méthodes de classification d’images

produisent des scores kappa similaires, ce qui rend difficile le choix de l’une par rapport

à l’autre. Nous allons donc un peu plus loin en les comparant sur la base de la forme des

types d’occupation du sol classés en mesurant les dimensions fractales, le bord total et

le nombre de parcelles des types d’occupation du sol classés. Il s’agit d’indicateurs que

la précision globale et les scores kappa ne sont pas en mesure d’évaluer. En utilisant les

cartes d’occupation du sol GAMA 2022, nous avons observé que les types d’occupation

du sol identifiés par RF et SVM étaient très similaires. RF a généralement produit un

plus grand nombre de patchs que SVM et SLIC pour tous les types d’occupation du sol.

Une fois de plus, RF a produit des valeurs de bordures totales plus élevées que SVM pour

tous les types d’occupation du sol identifiés. Cela indique que les cartes d’occupation du

sol produites par RF sont plus détaillées que celles produites par SLIC K-Means et SVM.

Pour l’objectif d’étude de la croissance urbaine, la RF a été choisie car elle est capable de

capturer plus de détails.

Analyse longitudinale du paysage

La mesure de l’état de l’expansion urbaine est cruciale pour l’établissement d’une base de

référence qui peut contribuer à des préparations appropriées pour les événements futurs.

À l’aide des cartes de l’occupation du sol de la GAMA de 1991 à 2022, obtenues par

RF, et de diverses techniques telles que l’analyse des changements de l’occupation du

sol, la mesure métrique du paysage et le calcul de la dimension fractale, des informations

extraites uniquement d’images satellite librement disponibles ont été utilisées pour réaliser

une analyse longitudinale complète et fondée sur des données de la croissance urbaine de

la GAMA, et de ses effets sur la biodiversité. L’objectif était de saisir les changements

dans l’occupation des sols et les modèles de paysage dans la région GAMA entre 1991 et

2022 et de prédire les modèles de paysage pour 2030. La méthodologie mise en œuvre

a été divisée en trois phases. La première phase consistait à analyser les changements

de l’occupation du sol dans la région GAMA entre 1991 et 2022, et à déterminer le taux

de croissance urbaine au cours de cette période. La deuxième phase, la modélisation de

la croissance urbaine et la prédiction de l’occupation du sol de la GAMA pour 2030 en

utilisant Land Change Modeler (LCM), Markov Chain Cellular Automata (MCCA), et
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un modèle basé sur des agents implémenté dans NetLogo (ABM). La troisième et dernière

phase a consisté à quantifier l’évolution des modèles paysagers dans la région GAMA en

calculant des métriques paysagères.

Au cours de la première phase, l’étude a réussi à saisir les changements de la couver-

ture terrestre et le taux de croissance urbaine de la région GAMA. Les résultats ont

révélé une transformation significative de la composition de la couverture terrestre de la

région, la couverture terrestre bâtie dominant désormais la couverture terrestre végétale

qui était auparavant dominante. Un changement notable a été observé de la végétation

à la transition, avec un pic de 2002 à 2013 et une stabilisation par la suite. Le passage

de Transition à Bâti a connu une croissance constante, indiquant une conversion continue

des zones de transition en couverture terrestre bâtie. À l’inverse, la tendance du passage

de la végétation au bâti a diminué, ce qui suggère une réduction de la conversion des

zones de végétation au fil du temps. Les changements de transition vers la végétation et

de bâti vers la transition ont présenté des schémas variables, reflétant le dynamisme et

l’incohérence. Dans l’ensemble, les changements de couverture terrestre de l’étude GAMA

décrivent un paysage complexe et dynamique, avec des taux et des directions de trans-

formation variés entre les différents types de couverture terrestre. L’analyse du taux de

croissance urbaine a montré une augmentation de 0,15% (1991 à 2002) à 0,17% (2002 à

2013), puis une diminution à 0,14 % de 2013 à 2022. Un taux de croissance de 0,19% est

prévu pour 2030. La fluctuation du taux de croissance entre 2013 et 2030 pourrait être

attribuée à plusieurs facteurs dont l’identification nécessiterait une analyse approfondie.

Malheureusement, une telle analyse exhaustive dépasse le cadre de cette thèse.

Dans la deuxième phase, le LCM a été utilisé pour modéliser et prédire la croissance

urbaine de GAMA pour l’année 2030. Le score de kappa obtenu pour la prédiction

était de 0,8, ce qui est un bon score. Elle présente également l’avantage de produire

à la fois une prédiction douce, qui donne la probabilité ou la vraisemblance de chaque

classe de couverture terrestre à un endroit ou un pixel donné, et une prédiction dure,

qui attribue une classe de couverture terrestre unique et définie à chaque endroit ou

pixel. L’automate cellulaire à châıne de Markov (MCCA) combine la théorie de la châıne

de Markov et l’automate cellulaire, représentant les entités spatiales dans une grille et

utilisant les probabilités de transition pour simuler la dynamique de la croissance urbaine.

MCCA a été utilisé pour modéliser et prédire la croissance urbaine de GAMA pour l’année

2030. Le score de kappa obtenu pour la prédiction était de 0,83, ce qui est légèrement

supérieur à celui de LCM. Cependant, contrairement au LCM, le MCCA ne produit pas
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de prédiction douce et ne serait donc pas aussi utile que le LCM en cas d’incertitude dans

les processus de changement de l’occupation du sol. Les prédictions douces permettent

aux décideurs de comprendre le niveau de confiance associé à chaque classe prédite, ce qui

facilite l’évaluation des risques et la prise de décision. En revanche, les prédictions dures

sont souvent utilisées lorsqu’une classification spécifique et sans ambigüıté est nécessaire

et que la capacité du modèle à attribuer avec précision les classes d’occupation du sol fait

l’objet d’un niveau de confiance élevé. Cependant, ils peuvent ne pas saisir l’incertitude

inhérente aux processus de changement de l’occupation du sol. Le modèle basé sur les

agents, mis en œuvre dans NetLogo, offre une plateforme conviviale pour créer et observer

le comportement des agents dans un environnement simulé, ce qui le rend polyvalent pour

explorer les phénomènes émergents dans les simulations de croissance urbaine. L’avantage

de ce modèle est que la simulation de la prédiction peut être analysée en temps réel grâce

à ses puissants outils de visualisation intégrés.

Au cours de la troisième phase, l’étude s’est également penchée sur les structures paysagères

de la région GAMA à l’aide d’indicateurs paysagers. Les métriques paysagères ont révélé

une fragmentation importante du type de couverture végétale, indiquant un impact négatif

sur la conservation de la biodiversité, les mouvements d’espèces, le fonctionnement des

écosystèmes et la résilience écologique à long terme. En outre, l’étude a permis de prédire

avec succès l’occupation des sols et la configuration du paysage de la région GAMA pour

l’année 2030 à l’aide d’informations dérivées d’images satellitaires librement accessibles.

Les tendances ont mis en évidence l’importance de prendre en compte la connectivité du

paysage, la fragmentation de l’habitat et la disposition spatiale des types de couverture

terrestre pour évaluer les processus écologiques et les impacts du développement urbain

sur l’environnement. Il est essentiel de comprendre et d’identifier les zones à forte frag-

mentation pour hiérarchiser les efforts de conservation. Cette connaissance peut aider les

planificateurs et les gestionnaires du paysage à prendre des décisions éclairées concernant

l’aménagement du territoire, la restauration des habitats et les stratégies de conservation.

En s’attaquant à la fragmentation dans la région GAMA et en favorisant la connectivité

des habitats, il est possible de maintenir l’intégrité et la valeur écologique des paysages tout

en soutenant la conservation de la biodiversité et la gestion durable des écosystèmes.

Identification des centres et sous-centres urbains

Sur la base de la définition des centres urbains comme des zones à forte concentra-

tion d’activités humaines par rapport aux zones environnantes, nous avions besoin d’une
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mesure qui capturait correctement la concentration de la couverture terrestre bâtie. Cer-

taines études utilisent la densité pour déterminer cette concentration, mais il a été observé

que la densité peut conduire à des résultats trompeurs. L’urbanisation se caractérisant

par des grappes de bâtiments entrecoupées d’espaces ouverts, les fractales constituent

un descripteur idéal pour ce type de phénomène. En effet, les fractales possèdent des

caractéristiques hiérarchiques inhérentes similaires aux modèles urbains. Elles sont donc

bien adaptées pour capturer la distribution complexe observée dans les paysages urbains.

Une forme fractale est une structure géométrique qui présente des détails quelle que soit

l’échelle à laquelle elle est observée. Sur une carte bidimensionnelle, la dimension fractale

est comprise entre 1 et 2. Il s’agit d’un objet qui est moins qu’un plan, plus qu’une ligne,

et qui possède des éléments auto-similaires. Ainsi, une ligne a une dimension de 1, ce qui

signifie que lorsqu’on la double, on obtient exactement le double de sa taille d’origine.

Un carré plein a une dimension de 2, ce qui signifie qu’en le doublant, on obtient quatre

fois sa taille d’origine. Que se passe-t-il donc lorsqu’une ligne s’enroule tellement qu’elle

commence à remplir une surface, tout comme le carré, mais qu’elle n’est pas aussi solide

que le carré solide parce qu’il y a des espaces à l’intérieur de la surface qu’elle a remplie?

Nous ne pouvons pas dire que la dimension d’une telle ligne est 1, car elle occupe une

surface dont la longueur et la largeur peuvent être déterminées. Nous ne pouvons pas

non plus dire qu’elle a une dimension de 2, en raison des espaces dans la zone qu’elle

occupe. On peut donc dire que cette ligne a une dimension comprise entre 1 et 2. La

dimension d’un tel objet peut être beaucoup mieux décrite par la géométrie fractale que

par la géométrie euclidienne. Plus la dimension est proche de 2, plus elle est saturée, et

plus elle est proche de 1, moins elle est saturée. Cela peut être comparé à un modèle

de construction extrait d’une image satellite classifiée, où divers groupes de bâtiments

alternent avec des espaces vides, formant des centres et des sous-centres.

Deux méthodes de détermination des dimensions fractales ont été utilisées ici : la méthode

de comptage des bôıtes et la méthode multiradiale. La dimension fractale dérivée des

méthodes de comptage de bôıtes donne une idée globale de la manière dont l’espace

est rempli dans une zone donnée. La zone bâtie est couverte par une grille uniforme

composée de carrés de taille S, et les carrés non vides, N (carrés qui sont complètement

ou partiellement remplis par les pixels représentant la zone bâtie) sont comptés. La taille

des carrés S qui forment la grille est modifiée progressivement et le nombre de carrés N

requis pour couvrir la zone bâtie dans chaque scénario est déterminé. Les séries de points

(Si, Ni) sont représentées sur un graphique à deux dimensions, où l’axe Y correspond
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au nombre de carrés, Ni, et l’axe X à la taille des carrés, Si, qui changent tous deux à

chaque étape. Il est donné par: N = CS−D

La méthode de comptage des bôıtes a été utilisée pour estimer la dimension fractale de la

zone bâtie de GAMA pour 1991, 2002, 2013 et 2022 ; voici les résultats obtenus. En 1991,

la dimension fractale était de 1,581, elle est passée à 1,687 en 2002, à 1,738 en 2013 et enfin

à 1,777 en 2022. Considérant que sur une carte bidimensionnelle, la dimension fractale

a une limite supérieure et une limite inférieure définies, avec un taux de croissance non

uniforme, la croissance pourrait être modélisée par une courbe de croissance logistique.

On estime que la limite maximale de la dimension fractale pour GAMA sera atteinte en

2232.

Il y a ensuite l’analyse fractale multiradiale. Elle est utilisée pour obtenir des infor-

mations sur le comportement fractal local et l’organisation spatiale autour d’un point

sélectionné. Pour effectuer une analyse radiale, un cercle de rayon r est tracé autour du

point sélectionné et le nombre de points N à l’intérieur du cercle est déterminé. Le rayon,

r , est progressivement augmenté tout en comptant le nombre de points, N , à l’intérieur

du cercle à chaque étape. Ensuite, les séries de points (ri, Ni) sont représentées sur un

graphique à deux dimensions, où l’axe Y correspond au nombre de points (Ni) et l’axe

X à la taille du rayon (ri), qui changent tous deux à chaque étape. La relation entre les

deux variables est similaire à celle exprimée pour la méthode de comptage de bôıtes, S

étant remplacé par r .

L’analyse multiradiale a été appliquée avec un rayon de 300 mètres et a généré des cartes

dont chaque pixel est caractérisé par sa dimension fractale locale. Cela a permis d’obtenir

des estimations correctes de la loi de puissance, même dans les zones peu denses, ce

qui constitue une information importante à traiter pour révéler des structures spatiales

significatives. Avec une taille de pixel au sol de 30 m, chaque analyse radiale locale a

été effectuée sur environ 196 pixels, ce qui a permis d’estimer correctement chaque loi de

puissance. Dans la présente étude, une classification manuelle des dimensions fractales

locales a été adoptée, avec des seuils déterminés sur la base de l’avis d’experts. Les

pixels du motif construit ont été regroupés en quatre classes en fonction de la dimension

fractale de chaque pixel. Les pixels dont les dimensions étaient comprises entre 0 et 1,25

ont été classés au stade 1, car ils étaient considérés comme se trouvant au premier stade

du processus d’urbanisation. Au stade 1, les constructions sont peu nombreuses et la

couverture végétale prédomine dans la zone. Les pixels dont les dimensions fractales sont
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comprises entre 1,25 et 1,5 ont été classés dans le stade 2, représentant la deuxième étape

du processus d’urbanisation. Ce stade se caractérise par la transition entre le modèle

de construction peu dense et la croissance urbaine, généralement le long des réseaux de

transport, reliant les centres et les sous-centres. Les pixels dont les dimensions fractales

sont comprises entre 1,5 et 1,75 ont été classés au stade 3. Ces pixels sont principalement

situés à la périphérie des zones saturées, qui n’ont plus d’espace pour s’étendre, c’est-à-

dire au stade 4. Les zones de stade 4 comprenaient des pixels dont les dimensions fractales

étaient comprises entre 1,75 et 2. Ces zones sont les plus saturées et dominent dans les

centres et sous-centres de la ville.

La morphologie mathématique offre des outils précieux pour l’analyse d’images, en partic-

ulier dans le contexte de la classification des images de télédétection. Cette théorie facilite

la suppression des détails indésirables tout en conservant les caractéristiques essentielles

de la forme. Son avantage réside dans l’utilisation d’opérations axées sur la forme, qui

simplifient efficacement les données d’image. Les deux opérations fondamentales de la

morphologie mathématique sont l’érosion et la dilatation. L’érosion consiste à retirer

des pixels des limites de l’objet, tandis que la dilatation ajoute des pixels aux limites de

l’objet.

Les pixels de niveau 4, c’est-à-dire les pixels dont la dimension fractale est comprise entre

1,75 et 2 pour chaque année (1991, 2002, 2013 et 2022), ont été extraits et traités à l’aide de

la morphologie mathématique afin de mettre en évidence les centres/sous-centres urbains

en éliminant les détails indésirables. Sur la base de la définition d’un centre/sous-centre

urbain comme un lieu à forte concentration d’activités humaines, les zones présentant de

grands groupes de pixels de niveau 4 ont été classées comme centres/sous-centres urbains.

En utilisant les deux principaux noyaux urbains de la GAMA observés pour l’année 1991,

Accra Metropolitan Area (AMA) et Tema Metropolitan Area (TMA) comme normes, les

amas plus petits que ces centres ont été classés comme sous-centres, tandis que les amas

plus grands ou égaux à ces normes ont été classés comme centres.

Conclusion

La présente étude a combiné avec succès des analyses fractales multiradiales avec des

opérations de morphologie mathématique pour révéler les centres et sous-centres urbains

qui étaient autrement cachés dans les modèles de construction extraits des images de

télédétection. La modélisation de la croissance logistique des dimensions fractales et

l’analyse de la région GAMA ont révélé qu’en moins de 10 ans, l’ensemble de la région est

14



susceptible d’atteindre le type de modèle urbain habituellement présent dans les centres-

villes, tant en termes de densité que d’organisation spatiale. En outre, l’analyse fractale

locale a révélé des changements significatifs dans la hiérarchie des centres et des sous-

centres, avec l’émergence d’une grande région connectée le long du bord de mer et de

centres secondaires situés de plus en plus loin au nord. Enfin, l’urbanisation le long

des routes semble être le nouveau modèle émergent en ce qui concerne la saturation des

terres. Le processus de remplissage de la croissance urbaine semble avoir atteint un

point de saturation. Par rapport aux études précédentes dans ce domaine, cette étude

apporte une contribution unique en intégrant des analyses fractales multiradiales à la

morphologie mathématique pour identifier les centres et sous-centres urbains à partir

d’images de télédétection uniquement. À ma connaissance, aucune recherche n’a été ef-

fectuée et publiée en utilisant la télédétection, les dimensions fractales et la morphologie

mathématique pour identifier l’organisation spatiale des centres et sous-centres urbains.

Les futures recherches sur la prévision de la croissance urbaine utiliseront toutes les infor-

mations structurelles extraites dans de nouvelles méthodes combinant des changements

continus et des événements discrets, tels que l’émergence de nouveaux centres et sous-

centres.

Mesurer l’homogénéité du développement urbain et identifier les centres et sous-centres

urbains sont des étapes cruciales pour comprendre la croissance et le développement des

villes. Cependant, l’identification de ces informations structurelles peut s’avérer difficile,

en particulier dans les villes où la disponibilité des données est limitée. L’objectif de cette

étude était de relever le défi de la disponibilité limitée des données dans l’identification

des centres et sous-centres urbains en proposant une nouvelle approche qui utilise des

données de télédétection librement disponibles et l’analyse fractale. Alors que plusieurs

études antérieures se sont penchées sur la croissance et le développement urbains dans la

région GAMA, la présente étude se distingue par le fait qu’elle se concentre spécifiquement

sur l’identification des centres et sous-centres urbains à l’aide de fractales et de données

de télédétection. Contrairement aux études précédentes qui ont pu utiliser des méthodes

différentes ou se concentrer sur d’autres aspects de l’urbanisation, cette recherche visait à

combler une lacune dans la littérature sur l’identification des centres et des sous-centres

dans les villes des pays en développement et à fournir des informations plus complètes

pour la modélisation de la croissance urbaine tout en relevant le défi de la disponibilité

limitée des données. Pour combler cette lacune, seules des données de télédétection libre-

ment accessibles ont été utilisées pour identifier les centres et sous-centres urbains. La
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méthodologie utilisée est facile à reproduire et ne nécessite pas une connaissance appro-

fondie de la zone d’étude. Les résultats de cette recherche apportent des contributions

significatives non seulement à l’identification mais aussi à l’organisation spatiale des cen-

tres et sous-centres urbains dans les villes qui ne disposent pas de données statistiques

adéquates telles que le recensement de la population, les données économiques ou les big

data géospatiales, en particulier dans les pays en voie de développement. La reproduc-

tion de la méthodologie utilisée permettrait de contribuer à la constitution d’une base de

données solide et complète sur les villes du monde.
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Chapter 1

Introduction

1.1 Background

Cities are market places, and thus central for economic development, but also host es-

sential functions linked to residential, health, education, culture, among many others.

They are the most dominant mode of housing on earth, and it is predicted by the United

Nations (UN) that by 2050 70% of the world’s population would live in cities. This could

be attributed to factors such as changes in economic structures, rural exodus, uniformity

of lifestyles, etc. [151, 63]. The growth of cities, i.e. urbanization, is the key to modern-

ization, economic growth, and development of any country, however, it also affects the

livelihoods of people and the environment. Recent studies have shown a strong correlation

between physical growth of cities and ecological consequences [128, 77].

The high rate of uncontrolled urbanization which is being experienced all over the world

has given rise to increased automobile travel and congestion, elevated levels of pollution,

loss of farmlands, duplicative infrastructure at high cost to society, limited employment ac-

cessibility and concentrated poverty [77, 76]. However, since urbanization is inevitable in

the economic development of any country, especially, when one considers the several ben-

efits that are associated with it such as: convenience, efficiency, economic improvement,

better social integration and overall improvement in the standard of living of inhabitants,

it is essential that efforts are made to make the urbanization process sustainable. This

is because the benefits of urbanization such as the social and economic development of

a country can only be achieved if the positive effects far outweigh the negative effects

[79, 110, 52]. As urbanization occurs, more often than not, the functions of urban areas

become different from what they were originally planned to be. These changes increasingly
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put pressure on the natural environment as well as human welfare; and this is a major

global concern [128, 110]. It is therefore very prudent to have an in-depth understanding

of the changes that occur in the functions of urban areas that lead to urban growth. This

would be beneficial for effective urban development planning, natural resources allocation

and ecosystem management [62]. To understand the changes in the functions of urban

areas, an appreciation of the structure of the urban area and its evolution is vital.

There are at least three main forms of urban growth: infilling, extension and leapfrog.

Infilling refers to new developments in areas that were previously unused or being re-

developed to new uses within an urban area. Extension refers to developments directly

adjacent to existing urban areas. Leapfrog refers to new developments occurring at a

distance from an existing urban area, bypassing vacant parcels located closer to already

urbanized areas. Monitoring urban growth, studying it, and understanding the dynamics

associated with it is an important step in appreciating the urban structure of any city.

Unfortunately, monitoring urban growth is not an easy task because the concept of city

itself is not so clearly defined. Since many countries lack adequate statistical systems

which provide information on population, employment or mobility, which can be used to

study urban growth, landuse and land cover information derived from satellite imagery

(remote sensing) is the only dependable data source for urban growth analysis in such

countries. Landcover, i.e., the way land is occupied (buildings, roads, forests, pastures,

etc.) is only a characteristic of urban development, and is partly correlated with landuse,

i.e., the way land is used by humans and ecosystems (populations, employment, mobility,

ecosystemic services, etc.).

Analyzing urban growth from satellite images requires first to extract landuse/landcover

information, and then model the arrangement and evolution of the urban patterns. This is

what is performed in several landcover databases such as Corine Land Cover, an European

database created by human photo interpretation of remote sensing images, and contains

several classes describing urbanization, or in the Urban Atlas, constituted with similar

techniques but focusing only on cities. However, these databases are expensive to produce,

they do not cover the entire world, and they provide little information on the way cities are

structured. For instance, they lack explicit information on how a city center is spatially

connected to suburban areas and to industrial areas. Nevertheless, the capacity of a city

to withstand further development depends on its structure. The 11th goal of the UN

sustainable development goals is to make cities and human settlements inclusive, safe,

resilient and sustainable. A sustainably developed city would provide access to utility
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services, energy, transportation, housing, and green public spaces for all, while minimizing

resource consumption and negative environmental impacts [17].

Geographic information system (GIS) and remote sensing have been successfully incorpo-

rated in urban modelling processes and have improved the analytical capabilities of GIS

techniques as well as provided modelers with a platform for data management and visual-

ization [92, 110]. Remote sensing provides a rich source of spatially consistent data that

covers large areas with both high spatial detail and frequency. With the availability of

remote sensing data coupled with GIS techniques, various land covers such as settlement,

industrial, recreational and agricultural can be identified. The morphology of an urban

area refers to the main physical elements that structure its shape and size. Using GIS and

remote sensing to model the morphology of an urban area, certain key concepts in spatial

analysis, such as: boundary (to define the extent of the study area); density (number

of built-up pixels per area); centrality (identification of large clusters of built-up pixels);

and proximity (the distance between built-up clusters) are used to formalize the concept

of urban morphology. The morphological evolution of a city can therefore be observed

on a remotely sensed image as a sprawl, i.e., growth towards the peripheries of the city,

leapfrog or as densification, i.e., space filling within the boundary. By performing a land

cover change analysis using historical data from remotely sensed images, metrics such as

the rate of urban growth (to determine the speed of the urban growth), the evolution

of fractal dimension over the years (to have an idea of how space is being filled in the

growth process) and the conversion of non-urban land cover types to urban landcover can

be calculated. Urban growth trends can also be studied to identify the possible social

processes that led to such growth. Armed with this knowledge, policymakers can make

well informed decisions when putting in measures to direct future development towards

sustainability, especially, where there is inadequate statistical data to provide vital infor-

mation for decision making [53]. Consequently, remote sensing has been used extensively

in mapping urban areas and as a data source for the analysis and modelling of urban

growth and land cover change [69, 128, 121, 122]. The challenge, however, is that at

a city scale it becomes quite difficult to use classical image classification techniques to

explicitly identify different urban structures [30]. This thesis makes the hypothesis that,

to be effective and informative to policy makers, the analysis and the simulation of urban

growth from remote sensing data requires an explicit modeling of urban structures. This

explicit modeling needs to be across scales, and simple enough to be adapted to different

contexts of urbanization.
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Cities are not just randomly distributed buildings and people in a defined area. There is

some kind of uniformity, an inherent structure, in the way various land uses are arranged

and function in a city. The spatial arrangement of the functions of an urban area is

referred to as its urban structure. Although every city is unique in its own way, there are

some fundamental similarities in the way cities are structured all over the world. This

has made possible for the application of the several models that have been developed over

the years to help in understanding the urban structure of cities and their evolution in

different urban settings.

Some of the most popular models are:

i. the concentric ring model by Burges (1925) - it is made up of a series of concentric

circles that vary in size and expand away from the city center. Burgess used this

model to describe how different social groups are located in a metropolitan area.

Figure 1.1 is an image of the concentric ring model.

Figure 1.1: Concentric zone model

The innermost circle (1), around which the city grows, the urban core, is known

as the central business district (CBD). There are usually only a few residential ac-

tivities in this zone because of the high commercial activities concentrated there.

The second circle (2), transition zone, has mixed residential and commercial char-

acteristics. Because of the proximity of this zone to the CBD, it is continuously

experiencing changes due to the expansion of businesses in the CBD. The third

circle (3), inner suburb, is also known as the zone of independent workers’ home. It

is purposely for residential activities as it consists of houses built to accommodate

workers, but it has better conditions than the transition zone. Also, it is mostly

occupied by single workers. The fourth circle (4), outer suburb, also known as the

zone of better residences, has bigger and better housing and developmental facilities.

It is mostly occupied by the middle class. Unlike the inner suburb which is mostly

occupied by single workers, the residents of the outer suburb are mostly families.
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Although there are better facilities available to residents in this zone, such as: parks,

open spaces, shops, large gardens, etc., there is an increased commuting cost to the

CBD. People who live in this zone appear to have better standards of living. The

outermost circle (5), known as the commuter’s zone, is the farthest from the CBD.

It has the highest commuting cost and lacks public transit options as compared to

the other zones, hence its name, “commuter zone”. This zone is mostly occupied by

the high class, i.e. the highest income group in the society that can afford the high

commuting charges, bigger houses, alternative modes of transportation, modern fa-

cilities and the highest standards of living to enjoy better quality of life. This ring

results in urban expansion. As time passed by and urban areas became more and

more complex, the concentric ring model could no longer define the development of

existing cities due to limitations such as:

• the ability of many CBDs to exist in a city;

• the non-existence of distinct boundaries that define urban zones. In reality,

there are overlaps in the zones in every city;

• political and government interference which can tailor urban growth in a par-

ticular direction for better living conditions; and

• as transportation and communication technology advanced, the way people

commuted changed and the preference of people living in particular zones also

changed.

Nevertheless, it still gives a simplified and generalized insight into the development

of cities.

ii. the sectorial model by Hoyt (1939) was built on the basis that the development of

cities were not in the form of simple rings as described by Burges (1925), rather,

they do so in the form of sectors which grow along the main travel links. Transport

routes were very important in the development of urban land use for Hoyt. In the

Hoyt’s model, activities within a sector were assumed to be the same throughout

the sector because of the function they served. This assumption was based on the

notion that land use within a sector would remain the same because similar functions

attracted one another, i.e., the high class sector would remain high class throughout

because it would be the most sought after sector to reside, which would make it

expensive, such that, only the rich could afford to live there. The industrial sector
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would also remain industrial throughout because of the strategic advantage of a

railway or a river. Hoyt’s model has five components: the central business district

(CBD), factories/industry, low class residential, middle class residential and high

class residential.Figure 1.2 is an image of the Hoyt’s sector model.

Figure 1.2: Hoyt’s Sector Model

The CBD is the located geographically at the center of the city, and it is character-

ized by high rise buildings. It represents historic growth of many generations, city

development and culture. Factories/industries are represented in the form of sectors

radiating out of the center. This is so because of transport networks along which

the activities emanate. Low class residential sector is where the low-income groups

reside. In this sector, roads are narrower and often connects to the industries where

most of the people work. They choose to live in this sector because of the proximity

to their workplace, which translates into lower commuting cost and high air and

noise pollution. The middle class residential sector is a spacious, green and clean

environment. Middle income groups who can afford relatively higher commuting

cost and prefer better living conditions reside in this area. The activities of the

people who reside here are mixed, and are not dominated by the industry as the

low class residential sector. The roads connects mostly to the CBD along with some

branches to the industries. The high class residential sector is the most desirable

part of the city. Wealthy people and people who are well-off reside in this area. The

area is clean, there is less traffic, quiet and has bigger houses. The best housing in

the city can be found in this sector and the road network leads to the CBD. In as

much as Hoyt’s model represents urban growth to some extent and builds on the

concentric zone model, there are still limitations such as:

• multiple CBDs were not represented;

• physical features may restrict direct growth of the sectors; and
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• only railway lines were considered, as there were no room for privately owned

cars or other modes of transportation in the model.

iii. independently from the two previous models, the central place theory by Christaller

(1933) explains why urban centers are geographically located where they are and

how they serve the surrounding smaller settlements (subcenters) with specialized

goods and services. It makes the assumption that: all areas have flat surfaces;

population and resources are evenly distributed; consumers have similar purchasing

power and would purchase at the nearest market; transportation cost is proportional

to travel distance; and there are uniform travel networks that allow transportation

from one settlement to the other. These assumptions were used to create a place

where different types of services, i.e. higher order and lower order services, were

offered. Basic services such as groceries were considered to be lower order services

whereas specialized services such as universities were considered to be higher order

services. Consequently, settlements that provided lower order services were said to

be lower order settlements and settlements that provided higher order services were

said to be higher order settlements. The services, whether higher or lower order,

were distributed on the basis of a population threshold. This is because a minimum

number of people were required to sustain a particular service. Although the central

place theory is widely appreciated, it has certain limitations such as: the unrealistic

nature of its assumptions. Resources are never equally distributed, people do not

have the same purchasing power, and it is highly impossible to have a large flat

terrain in reality. Figure 1.3 is an image depicting the rank order of the central

places.

Figure 1.3: Rank order of central places

iv. the multiple nuclei model by Harris and Ullman (1945), explained that contrary to

the monocentric models developed by Burgess (1925) and Hoyt (1939), cities grow

33



and evolve based on the presence of multiple nuclei or centers of activity rather

than a single CBD. This is a widely accepted model since it is much more applica-

ble to modern cities than the previous models. It suggests that cities have multiple

specialized nuclei or activity centers, each with its distinct functions and land use

patterns. These nuclei interact and evolve based on transportation networks, acces-

sibility, and economic dynamics. Unlike the traditional concentric zone model, this

theory acknowledges that cities adapt and change over time, with various nuclei

driving growth and development. It offers a more flexible framework for under-

standing the complexity of urban land use and the interactions among different city

elements, fostering a richer and more accurate portrayal of urban structure and evo-

lution. The urban activities listed under this model are: CBD, light manufacturing,

low-class residential, upper-class residential, heavy manufacturing, outlying busi-

ness district, residential suburb and industrial suburb. In this model, while some

business activities are attracted to other businesses, others try to avoid some busi-

nesses, and some similar activities also form clusters in particular areas. Although

the multiple nuclei model was considered better than the previous models, it also

has its limitations since it could not be applied to many cities; and did not entirely

explain the structure of urban areas. Figure 1.4 is an image of the multiple nuclei

model.

Figure 1.4: Multiple Nuclei Model

Cities typically start with a central hub where administrative, religious, economic, and

educational functions converge in their early development. Over time, this central area,
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often referred to as the central business district (CBD), can shift away from its historical

core, evolving into a focal point for administrative and economic activities. This CBD

is intricately connected to the surrounding suburbs, where residents live and commute

to the center for their daily needs. When a city revolves around only one such center or

CBD, it’s termed a monocentric city. However, as economic growth and population swell,

the central core of a monocentric city can expand, giving rise to new suburban settle-

ments. These suburbs, in turn, develop their own centers as businesses naturally spring

up nearby, catering to the needs of the local residents. This localized service provision not

only reduces commuting expenses but also strengthens the link between the suburbs and

the primary center. This phenomenon leads to the emergence of polycentric urbanization,

where multiple centers take shape and grow into conurbations. While earlier urban de-

velopment typically followed a monocentric pattern, the current trend is leaning towards

polycentricity. This shift occurs as smaller neighboring settlements naturally integrate

into expanding cities. Urban geographers are avidly studying this trend, employing vari-

ous approaches to gain deeper insights into this evolving urban landscape.

Kloosterman and Musterd [78] were concerned with the diverse views on the concept of

polycentrism based on the backgrounds of practitioners. They stated that while spatial

planners had a particular way of looking at it, human and economic geographers also had

another way of looking at it. Volgmann and Munter [141] were particularly interested

in how urbanization externalities, i.e., size, density and diversity, take effect in German

polycentric urban regions and how they influence the growth of metropolitan functions.

Wang [144] examined the relationship between polycentricity and the provision of urban

amenities by asking questions such as: whether polycentric cities provided more quantities

of urban consumption amenities. The research concluded that a higher degree of intra-

urban polycentricity is associated with a larger number of urban amenities.

There are conflicting views on the impacts of polycentricity on the society. Some studies

claim that it is advantageous to the society because socioeconomic competitiveness and

environmental sustainability are associated with polycentricity. This is because there is

strong correlation between increased levels of productivity, per capita income and urban

size. Again, the expansion of spatial layout could ease congestion, reduce environmental

pollution, control pricing of houses, reduce the frequency of crime occurrences and increase

urban vibrancy. On the other hand, certain studies also suggest that it is not so advan-

tageous because of the poor developmental foundation of these newly formed centers, the

lack of infrastructural facilities and the lagging behind of public services. All these factors
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reduce the attraction of highly skilled labor in newly formed centers [145, 93]. In order

to have an in-depth understanding of the advantages and disadvantages of polycentricity,

there should be a system to facilitate its identification for it to be easily studied. Iden-

tifying and studying it would enable city/urban planners to make the most out of the

positive impacts and reduce its negative impacts. Studying the causes of the formation of

centers and subcenters in a city, the sizes of these centers and subcenters, their locations,

and how they relate with one another, will provide a clear and detailed understanding

of the spatial structure of the city [78, 147, 91]. The knowledge obtained will serve as a

reference for a rational and optimized urban development model [145].

There are two perspectives when it comes to the identification of centers and subcen-

ters, functional or morphological [88, 154]. From the functional perspective, centers and

subcenters are identified by the mobility of people, exchange of goods and services, com-

munication and cooperation from one location to the other within the city [83]. This

requires the collection of data that represents the connections and interactions between

different spatial units in the urban system. This kind of data is however difficult to obtain

with good quality. Some researchers have used diverse data sources such as GPS data

from taxis, check-ins on social media and knowledge cooperation among different urban

units in a given urban system [106, 34, 145]. For example, Roth et al. [123] used data col-

lected from the Oyster Card, an electronic ticketing system used to record public transport

passenger movement and fare tariffs within London to reveal the polycentric structure of

the city. The morphological perspective also focuses on the size and spatial distribution

of urban areas in the identification of centers and subcenters [93, 120]. Census and so-

cioeconomic statistical data have been used in certain studies to determine morphological

centers and subcenters. Unfortunately, statistical data can only depict urban distribution

to a certain spatiotemporal scale and are often limited to administrative boundaries. This

leads to modifiable areal unit problem (MAUP) which results in questionable identification

of urban spatial characteristics [145]. Burger and Meijers [33] explored the relationship

between morphological and functional polycentricity and concluded that most cities are

more morphologically polycentric than functionally polycentric, using Netherlands as a

case study.
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1.2 Problem Statement

In modelling built-up areas, traditional measures used in urban planning considers built-

up areas as homogeneous surfaces, which are not so, because in reality, built-up areas

exhibit some kind of continuity and fragmentation as diverse clusters of buildings alternate

with empty spaces, forming centers and subcenters with different levels of “densities”

[27, 57, 31]. In the field of spatial analysis, density as a measure is not able to adequately

capture the spatial distribution of elements in space. For example, Figure 1.5 [31] is

an image depicting areas of the same size and of the same density but having different

spatial distributions.

Figure 1.5: a and b have the same density but different mass distributions

Even though Figure 1.5 shows different blocks with the same density, it is clear that the

spatial distribution of the elements in both cases are different.Therefore, relying solely on

the density measure is not sufficient, particularly when the spatial distribution of elements

in space is integral to understanding the phenomenon under study. When this is related

to the morphology of built-up areas, it is evident that such complex forms that result from

the heterogeneity existing in the spatial distribution of urban activities are characterized

by alternating patterns of continuity, fragmentation, and varying degrees of concentration.

The same can be observed on any land use map, demonstrating that the density measure

alone cannot be used to suitably describe such complex forms since it does not consider

the spatial distribution of elements in the built-up pattern. Such complex forms may,

however, be described using fractal dimensions due to the inherent hierarchical features

of fractals that are also exhibited in urban patterns [59, 102, 73].

Fractal measures have been used for a long time to characterize urban forms, with Batty

[27] and Frankhauser [56, 59] known for pioneering this field of study, among others.

Since then, the approach has developed further, although limited to the academic sphere.

According to McAdams [103], this could be because the application of fractal methods

in investigating actual urbanizations is a complex process, which results in conflicting

measurements in certain instances. Nonetheless, fractal analysis has been recognized as
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a relevant method for analyzing urban forms [26]. The idea of this thesis to use remote

sensing data and GIS techniques to: measure the phenomenon of urban growth by finding

suitable methods and indicators to put this phenomenon into evidence from the data;

characterize the phenomenon by giving indicators to help understand its extent, its pace,

its homogeneity, its direction, etc.; interpret the phenomenon by introducing meaningful

concepts that are not directly present in the data, such as the city center, fringes, etc.;

typify the phenomenon by raising the level of generality of the analysis by proposing

mechanisms, regularities in the process itself, etc.; and finally, model the phenomenon.

This research aims to come up with novel techniques to explicitly classify remotely sensed

data at a city scale for the purpose of urban modelling. Particular attention will be paid

to the analysis of the urban hierarchy in centers and sub-centers, as well as to the spatial

organization of these elements. The semantic analysis of urban patterns will eventually

make it possible to model them with a multi-scale primitive such as fractals.

1.3 Research Questions

The research questions this thesis seeks to address are:

i. can fractal geometry be used to explicitly identify urban centers, sub-centers and

their spatial organization from remote sensing data?

So far, fractal geometry has been used to estimate the fractal dimension of cities by

analysis of the spatial distribution of buildings [130, 39] to develop multiscale cellular

automata [134], or to support land planning design [57]. In this thesis, the idea is

to use the fractal decomposition used in the computation of dimensions to identify

urban hierarchies and help to add structure to patterns obtained by classification

of remote sensing imagery;

ii. is it possible to characterize the spatial organization of urban centers and sub-centers

with respect to the objective of analyzing urban growth?

Most urban growth models focus on the consumption of natural and agricultural

areas by the urbanization process, leading to the ubiquitous urban sprawl model

where a city is an oil stain that diffuses everywhere. These models are created

mainly because of the lack of information on the structure of cities. Explicit fractal

models should enable the proposal of fractal growth models in which cities do have

differentiated functions; and
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iii. is it possible to sketch urban growth processes based on the spatial organization of

urban centers and sub-centers and the localization of the shape of the main transport

networks?

Sketching the urban growth process in a simple and generalized manner would

facilitate the communication of findings, especially, to non-technical audience.

1.4 Objectives

The objectives of this thesis are to:

i. design urban growth models that are more informative than “oil stain” models; and

ii. identify urban centers, subcenters and their spatial organization from only remote

sensing data using fractals.

1.5 Methodology

The methodology used in this thesis are:

i. identification of classification algorithms that can adequately classify built-up and

non-built-up areas for the analysis of urban growth;

ii. longitudinal analysis of urban growth;

iii. fractal analysis of urban patterns; and

iv. identification of centers and subcenters.

1.6 Significance of Thesis

Urban centers and subcenters are very significant in the future development of any city

[106]. They are essential policy tools in the decentralization of population and improving

standards of living with better environmental quality [147]. Identifying urban centers

and subcenters is important because it helps in planning jobs-housing balance and the

ecological capacity of city centers [147]. Proper local jobs-housing balance can shorten

commuting time for workers, reduce traffic congestion, decrease air and noise pollution

caused by automobile movement, and improve the overall well-being of inhabitants [89].

It also helps in better understanding urban expansion and provides town planners with in-
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formation needed to evaluate effectiveness of planning layouts [34]. Unfortunately, there

is not enough studies on the identification of urban centers and subcenters of cities in

developing countries as most studies on the topic are based on the local context of de-

veloped countries [154]. This could probably be due to the lack or partial availability of

official statistical data or geospatial big data such as POIs and social media check ins

that have been used by several researchers in identifying urban centers and subcenters

[101, 94].

To bridge this gap, this thesis rely on only freely available remote sensing data, which is

usually the only source of consistent spatial data that covers large areas with high spatial

detail and frequency in most developing nations, to identify urban centers and subcen-

ters. The methodology used is easy to replicate and it does not require one to have ample

knowledge of the study area. The findings in this research provides significant contribu-

tions to not only the identification but also the spatial organization of urban centers and

subcenters in cities that do not have adequate statistical data such as: population census,

economic data or geospatial big data, especially in developing counties. Replication of

the methodology used would help contribute to a robust and comprehensive database on

the cities in the world.

Compared with previous studies in this field, this thesis makes the unique contribution of

integrating multiradial fractal analyses with mathematical morphology to identify urban

centers and subcenters from only remote sensing images. To the best of my knowledge,

no research has been done and published using remote sensing, fractal dimensions and

mathematical morphology to identify the spatial organization of urban centers and sub-

centers.

1.7 Facilities Used

The facilities used in this thesis are:

i. library and internet facilities at Université Gustave Eiffel;

ii. landsat images from United States Geological Surveys (USGS);

iii. ArcGIS Desktop from Laboratoire Ville Mobilité Transport (LVMT);

iv. Google Earth;

v. Fractalyse 3 – 0.81;
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vi. Fragstats 4.2; and

vii python libraries such as: Scikit-learn, SciPy, OpenCV, gdal, geopandas, matpotlib,

numpy.

1.8 Organisation of Thesis

The thesis is organized into six chapters. Chapter 1 is the introduction, where a general

overview of the entire thesis is presented: the background, problem statement, research

questions, objectives, methodology, significance of the thesis and the facilities used. Chap-

ter 2 is a brief history and description of the study area chosen for the application of the

methodology. The land tenure system of the study area and its effect on the planning of

the city is discussed. Urban sprawl in the region is also discussed as well as a literature

review on some previous studies concerning urban growth in the region. Finally a justifi-

cation of why the study area was chosen is presented. Chapter 3 is a review of the image

classification methods used in this thesis. How the satellite images used in the thesis were

acquired, preprocessed, classified, assessment of the accuracy of the classification and the

preparation of land cover maps of the study area are demonstrated with a case study. In

Chapter 4, the future growth of the study area is predicted using Markov’s chain cellular

automata, Land change modeler (LCM), and an agent based model in NetLogo. A longi-

tudinal analysis of some landscape metrics on the evolution of urban growth of the study

area and another coastal region in Ghana, Sekondi Takoradi Metropolitan Area (STMA)

are compared. Chapter 5 is on the characterization of the land cover maps produced

in chapter 3. The spatial organization of the built-up areas are analyzed using fractal

methods. Mathematical morphology is used to extract inherent functions such as centers

and subcenters within the built up area which otherwise would have been hidden within

the built-up pixels. A schematic diagram is used to represent the urban growth process

of the study area based on the concept of chorems. Chapter 6 is a conclusion of the entire

thesis and some recommendations.
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Chapter 2

Relevant Information on Study

Area

2.1 Location and Size

Ghana is a very fast growing country in West Africa. It shares borders with Togo to the

East, La Cote d’Ivoire to the West, Burkina Faso to the North and Gulf of Guinea to

the South. With over 30 million inhabitants, Ghana is the second most populous country

in West Africa, after Nigeria. Currently divided into 16 administrative regions, Greater

Accra Region, which is the smallest, is also the densest among all the regions. The length

of Ghana’s coastline is approximately 550 km [21], and Greater Accra Region occupies

approximately 121.73 km, i.e. roughly a third of the country’s coastline. This makes the

region a very important one for the country. Situated between longitudes 0◦30′ W and

0◦45′ E; and latitudes 5◦30′ N and 6◦10′ N, it has a total land surface area of 3 548 km2.

Figure 2.1 is a map showing the Greater Accra Region of Ghana.

The topography of the region varies from flat to gently undulating lowlands with pockets of

inselbergs. There are coastal savannah shrubs interspersed with thickets, coastal scrubs,

grassland and mangrove swamp. Small portions of guinea savannah and moist semi-

deciduous forest mainly cover the region. The grasses are short and barely grow beyond

one meter, with the trees growing to an average height of five meters. Sadly, all of these

vegetation are currently being threatened by urban land expansion. It is believed that

much of the area was once covered with dense forest, but has been lost due to climate

change and human activities [9, 10].
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Figure 2.1: Greater Accra Region of Ghana

There is wide variation in communities and living standards in the region, which ranges

from reasonably high and middle-income urban communities to deprived urban slums and

typically deprived rural farming communities. Figure 2.2 are photos of some areas in

Greater Accra Region. The photos, obtained on google images, were chosen to represent

the diversity of landscapes in the region. They show highly urbanised areas (Figure 2.2a

and 2.2b), infrastructure such as airport, roads, harbor and market (Figure 2.2c, 2.2d,

2.2e and 2.2f), deprived communities (Figure 2.2g, 2.2h, 2.2i) and residential new

districts (Figure 2.2j). They demonstrate how steep the urbanisation in Greater Accra

Region is, and the different forms it manifests itself. Like most urbanizations, the diversity

in the urbanisation of Greater Accra Region can be attributed to economic, socio-cultural

and technological factors.

For development planning and administrative purposes, 12 municipalities within the

Greater Accra Region (Accra Metropolitan Area (AMA), Tema Metropolitan Area (TMA),

Ga South, Ga East, Ga West, Sowutuom, La Dadekotopon, Madina, Adenta, LEKMA,

Ashiaman, Kpone Katamaso), together referred to as Greater Accra Metropolitan Area

(GAMA), which is the study area for this thesis, is referred to as the administrative

capital of Ghana. The spatial extent of the study area, based on the WGS 1984 UTM

Zone 30 N coordinate system and Transverse Mercator projection is: 650095.255310 m

North; 605158.239929 m South; 841614.953308 m East; and 774978.788696 m West. As

the administrative capital and also the major economic hub of the country, GAMA has
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(a) North Ridge (b) Cantoments

(c) Airport City (d) Kwame Nkrumah Circle

been the beneficiary of a lot of investments (both public and private) in infrastructural

and service developments [119]. Due to these massive investments, there is a cluster of

economic activities in the region, which has resulted in increased population and pres-

sure on land resources within and at the peripheries of GAMA, causing an urban sprawl.

Figure 2.3 is a map of the study area, GAMA.

The evidence of urban sprawl in the study area is revealed through the results of NDVI

(normalized differential vegetation index) and NDBI (normalized differential built-up in-

dex) calculation of the study area (figure 2.4a and 2.4b). Basically, NDVI indicates the

presence of vegetation in a specific area, while NDBI represents the presence of built-up

structures in a specific area. Both indicators range from +1 to -1. For NDVI, a value of +1

signifies highly vegetated areas, whereas a value of -1 indicates areas with less vegetation.

On the other hand, a value of +1 for NDBI corresponds to highly urbanized areas, whereas

a value of -1 indicates less urbanized areas. These two indicators complement each other

and confirm the transition from vegetation to urbanization in the study area. In terms
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(e) Tema Harbor (f) Tudu

(g) Teshie (h) Ashaiman

(i) Nungua (j) Community 1, Tema

Figure 2.2: Photos of some areas in Greater Accra Region

of biodiversity conservation, the analysis of NDVI values reveals a significant amount of

vegetated areas, particularly in the northern sector of GAMA, in 1991. However, over the

years (1991, 2002, 2013, and 2022), these vegetated areas have progressively decreased.

The loss of vegetation can be attributed to several factors. However, in this case, based

on the NDBI values observed, it can be stated that the land previously covered with veg-

etation has been transformed into built-up areas. The results from NDBI highlight the

alarming expansion of built-up structures in GAMA. By comparing the NDBI values of

1991 and 2022, it becomes evident that almost the entire surface of GAMA is now covered

by built-up areas.
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Figure 2.3: Map of study area, GAMA

(a) GAMA NDVI 1991-2022 (b) GAMA NDVI 1991-2022

Figure 2.4: Evidence of urban sprawl in GAMA

Although administratively defined as independent, the municipalities that make up GAMA,

which a few decades ago were purely rural, are now geographically, economically and func-

tionally part and parcel of the built-up area of the Accra Metropolis. Studies have shown

that the built-up in the surrounding municipalities is largely attributed to the spillover

of the population of the Accra Metropolis [119, 81].

2.2 Brief History and Description

Strategically situated along the coast, the sea facilitated the transaction of business with

European merchants. This made Accra gain a reputation as a trade post, where the

indigenous merchants acted as middlemen between European merchants and inland res-

idents. The booming maritime trade with Europeans from the 15th century and the
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subsequent establishment of castles and forts caused the then fishing village, Accra, to

rise from a trading post to a major urban center [7].

The decision by the colonial British government to relocate the administrative capital

of Ghana (then Gold Coast) from Cape Coast to Accra is one of the most important

factors in the development of GAMA. Accra’s reputation as a business center and its

dominance over other Ghanaian towns was asserted in 1877 when it became the head-

quarters of the British colonial administration, and subsequently the capital of the British

Crown Colony, Gold Coast, which later became known as Ghana. In effect, missionary

organizations, government agencies, as well as international and private firms established

their headquarters there, gradually transforming it into the center of trade and consular

businesses in the country. Accra has gone on to attract significant public and private

investments towards its infrastructural and services development over the years, making

it the ‘most developed’ region in Ghana [119]. By 1962, Tema, located some 25 km east

of Accra had been developed into the country’s largest seaport and industrial node. The

development of the Tema seaport drew rural migrants to the new Accra-Tema corridor,

that became the new economic center, as is evidenced by the rapid increase in population

from 0.14 million in 1948 to 1.07 million in 1984 [61].

Much of Accra’s growth align with the introduction of liberalization policies in 1983. Dur-

ing this time the economic efforts of the urban economy shifted from the old colonial city

to a diffused spatial organization form which is also associated with uneven economic and

residential development [67, 119]. Accra and Tema not only emerged as the economic nu-

clei of the region but also became the industrial and service hubs of the country, attracting

both domestic and foreign investments. Successive governments prioritized infrastructure

development in the region with the aim of making it a growth pole in anticipation to

trickle down the benefits to other parts of the country [67]. However, the region con-

tinuously plays an increasingly dominant role as the preferred destination of rural-urban

migration in Ghana.

Present day Accra is characterized by fragmented economic and residential geographies

which are developing independently of any spatial urban planning. Thus, development

is happening at such a fast rate that it has overwhelmed the planning department of

the city. Individual housing developments typically take place even before infrastructural

and service provision are implemented because there are no laid out plans to guide the

development processes. This puts the sustainable urban development of the city into

47



question [109].

2.3 Evolution of the Demographic and Territorial Char-

acteristics of GAMA

After the Second World War, rural-urban migration intensified. This resulted in the

emergence of squatter settlements and slums in the region. Even though Accra’s growth

dates back several decades, the growth of the city picked up steam during the last three

decades of economic liberalization and increased the intensity of engagement with global

capital. Like many cities in Sub-Saharan Africa, Accra is experiencing a very rapid urban

growth in terms of both spatial extent and population [108].

The population of the region increased from 491 817 to 1 431 099 from 1960 to 1984. Then

it moved up from 2 905 726 in 2000 to 4 010 054 in 2010. Figure 2.5 is a map showing

a population distribution of the 12 municipalities in 2010 and 2021. A table showing the

population of each municipality in 2010 and 2021 is presented in Appendix A [20].

Figure 2.5: Map showing the population distribution of GAMA in 2010 and
2021.

Greater Accra Region is the second most populous region in Ghana, behind Ashanti

Region, however, it is the region with the highest population density. With an average

growth rate of 3.5% per annum, the projected growth shows that by 2040, the population

of GAMA will increase to 10.5 million [119]. While the population of the Accra Metropolis

was about 77% of the total population of GAMA in 1970, it declined to 72% in 1984 and
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about 50% in 2010. The growth rate of the metropolis was just 1.1% for the period 2000-

2010, compared to 3.3% for 1984-2000. In 2010, approximately 41% of the residents who

lived in the Accra were migrants [61]. Increasingly, much of the population of the region

is settling outside the Accra Metropolis. The built-up of the surrounding municipalities

is largely attributed to the spillover of the population of the Accra Metropolis hence the

urban sprawl being experienced in the metropolitan area [119, 10, 7].

GAMA covers a total area of 1 583.8 km2 and houses the capital city of Ghana (Accra), the

country’s most prominent seaport (Tema), and the country’s only international airport,

Kotoka International Airport; making it the major economic and political hub of the

country [10]. As the most economically significant metropolitan area in Ghana, GAMA

accounts for almost a quarter of the national gross domestic product (GDP). It also serves

as the headquarters of several national and international industries such as manufacturing,

banking and finance, telecommunication, oil and gas, health, education, etc. Although

manufacturing is the most dominant industrial type in GAMA, recent economic growth

is accelerated by service sectors.

As a result of the economic liberalization in the 1980s, investment-friendly environments

have been created in Ghana and the vast majority of the foreign direct investments (FDI)

have been directed to GAMA. Central government policies such as the Accra Gateway

Project and the Ghana Free Zones Programme (GFZP) strengthened the influx of FDI

into GAMA. These initiatives facilitated infrastructure construction such as upgrading

the Tema seaport and the Kotoka International Airport (KIA); and promoted export-

led production through tax incentives and administrative advancement in licensing and

customs procedures, all of which further encouraged FDI inflows [67, 61]. According to the

Ghana Investment Promotion Center (GIPC) quarterly report for 2020, GAMA was the

beneficiary of 85.51% of registered projects during the first half of the year, i.e., January

to June 2020 [23]. Economic growth in GAMA is also characterized by an explosion of

commercial and retail businesses. Since the growth in the retail sector has largely been

in the informal sector, this has not demonstrated any drastic changes in the traditional

CBD. New retail spaces have been concentrated along major roads, a phenomenon, partly

driven by and partly influencing urban sprawl in GAMA [81, 61]. The traditional CBD

contains old markets for petty trading (including Makola and Kantamanto markets),

small craft businesses, and established companies. However, the district largely contains

old structures with residential functions owned communally by families who wish for them

to remain as “family houses”. With new businesses and other organizations coming to
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Accra to leverage agglomeration economies and benefit from proximity to the Kotoka

International Airport, new economic centers are emerging. These new centers contain

large firms capable of affording the high land value areas, particularly, along the Oxford

Street in Osu and Cantonments.

The government’s creation of the Accra Airport City, aimed at promoting a high-density

mixed-use development zone with the intention of addressing political problems asso-

ciated with the redevelopment of the traditional Central Business District (CBD), has

encouraged the establishment of a new center. Gradually, the airport city is becoming

the financial hub of the country: major banking, finance and insurance companies, hotels,

entertainment, and mega shopping centers can be found there. Generally, these invest-

ments have brought positive economic outcomes in the region, as seen in the decline in

the poverty rate from 25.8% in 1992 to 2.5% in 2017 [41, 61]. Unfortunately, in spite

of the positive economic outlook, governance in GAMA has not been very effective at

handling the urban issues associated with economic growth such as: environmental haz-

ards, exponential growth of informal settlements, infrastructural problems, uncoordinated

development and urban sprawl.

2.4 Land Tenure System in GAMA (Ghana)

Land tenure refers the rules, regulations and institutional structures, both customary

and enacted legislations, which influence the holding and appropriation of land and its

resources for socioeconomic development. Generally, it is the set of relations among people

concerning the use of land [107]. Land tenure in Ghana is generally communal in nature;

and this has determined the nature of land administration over the years. Prior to the

arrival of European settlers in Ghana, the land tenure system that was practiced was the

customary land tenure system. Customary land tenure system is a land relation in which

the ownership of land is vested in the whole family, lineage or a clan, while individuals

enjoy unrestricted rights of usage. The main idea of customary tenure is that the land

belongs to the whole social group and not just an individual. There is a belief that land

is an ancestral trust committed to the living for the benefit of themselves and the unborn

generation yet to come [13]. Initially, local leaders often received substantial revenues from

granting land concessions to European settlers while they retained their inalienable rights

under the local tradition. However, when the Europeans became colonial rulers, they

found the communal ownership to one tract of land intolerable and decided to regularize
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what they saw as a chaotic state of affairs.

These attempts were fiercely opposed by the chiefs and the people because of the influ-

ence of land on the concepts of kinship, the family system and the entire field of social

relationships to them. The first attempt by government to intervene in the customary

system of land tenure was made in 1894 when the Crown’s Lands Bill was introduced by

the colonial government with the intention of vesting all lands of the then Gold Coast

Colony (now Ghana) in the English Crown. The chiefs and people of the colony con-

stituted themselves into the Aborigines Right Protection Society to serve as a pressure

group against the enforcement of the law. The idea was therefore abandoned on the direc-

tion of the Queen of England. This was subsequently followed by several other attempts

and by 1927, the colonial government, realizing the strong opposition of the chiefs and

people against any attempt to intervene in the system of land holding, had to greatly

modify its land policy into one of minimal government intervention. Towards the end of

the colonial period, indigenous land tenure systems were operating in parallel with the

European based system, which has led to a dual system of land tenure - this has created

a lot of ambiguity surrounding land policies and objectives [66, 107, 29]. The colonial

trace of legal duality is prominently reflected in the customary and statutory legal land

systems in Ghana [29]. Today, the land tenure system in Ghana is defined by the 1992

Constitution of the Republic of Ghana. The Constitution recognizes two tenure systems

namely: customary and public lands [107, 13, 80].

2.4.0.1 Customary Lands

Section 36 (8) of the 1992 Constitution of the Republic of Ghana recognizes customary

ownership of land. Customary lands consist of all the various interests and rights held

under the traditional system involving skin lands, stool lands, clan lands, and family

lands. Customary lands are communally owned and are vested in chiefs and family heads

who act as custodians on behalf of their subjects including the living, the dead, and the

unborn. Customary lands account for about 80% of all lands in Ghana and constitute the

main source of land released for development in GAMA [13, 96, 80]. Private ownership of

customary land can be acquired by way of a grant, sale, lease, gift or marriage. Ownership

is by way of outright purchase from customary land owners or private individuals. For

land tenure security, the title of this land must be registered under the statutory law after

acquisition.
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2.4.1 Public Lands

Public lands belong to the state and are managed on the principle that the market may

not always be effective in terms of safeguarding public interest. They are vested in the

President, on behalf of, and in trust for the people of Ghana based on the relevant

provisions of the Administration of Lands Act, 1962 (Act 123). Public lands also include

any other land acquired through the State Lands Act, 1962 (Act 125) or through any other

statutes, in the public interest. Public lands are administered by the Lands Commission

and its secretariats, as provided in the Lands Commission Act, 1994 (Act 483) [13].

2.4.1.1 State Lands

State lands refer to lands that the Government has compulsorily acquired for a specific

public purpose or in the interest of the general public - such as: road construction, urban

planning, military installation, health facilities and schools - by the lawful exercise of its

constitutional or statutory power of eminent domain. All previous interests in such lands

are extinguished and persons who previously held recognizable interests in the lands are

entitled by law to compensation, either monetary or replacement with land of equivalent

value. Many a time, the compensation does not happen, and this undermines the equity,

fairness and tenure security for those affected. This makes the people question the state’s

legitimacy to exercise control over acquired lands and emboldens the people to encroach

on state lands [13, 42, 80].

2.4.1.2 Vested Lands

Vested lands are a hybrid of public lands and customary lands. Vested lands are customary

lands which are held by the state in trust for the land-owning family or community. While

the state manages such lands, the family or community retain their interest in the land

and enjoy the proceeds that may accrue in the form of rent or lease. The management

responsibilities cover legal (e.g. prosecution), financial (e.g. rent assessment, collection,

disbursement) and estate management e.g. physical planning and its enforcement and

administration of the property. Vested lands are administered under the Administration

of Lands Act, 1962 (Act 123) and the Lands Commission Act, 2008 (Act 767) [42, 80].
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2.4.2 Urban Developmental Planning in GAMA

In Ghana, urban planning is primarily the responsibility of local government authorities,

including the metropolitan, municipal, and district assemblies (MMDAs). These bodies

are responsible for developing and implementing plans for their respective areas. Each

municipality has an independent physical planning office that is in charge of preparing

plans and controlling physical development by processing developmental permit applica-

tions. There is a municipal chief executive officer in each municipality, who is responsible

for overseeing the day-to-day operations of the municipality, and approves development

projects and programs in the municipality. The independence of the municipalities of

GAMA has a significant impact on urban planning. It creates challenges for coordinated

urban planning across the entire metropolitan area as each municipality has its own

plans and priorities. This makes it difficult to implement regional plans and to address

cross-municipality issues such as transportation and environmental management. Addi-

tionally, the financial and human resource capacities of the different municipalities vary,

which leads to disparities in the quality of urban planning and service delivery across the

metropolitan area.

In spite of these challenges, projects such as the Greater Accra Metropolitan Area -

Sanitation and Water Project has been developed in an effort to support coordinated

planning and management of water and sanitation services across the metropolitan area

[15]. There is also the GAMA Structure Plan, a twenty-year African Development Bank

Project that is meant to develop a spatial plan to guide the development of GAMA. The

final draft report on the project indicated that the plan would transform Accra into an

economic powerhouse. It includes policies and strategies to promote sustainable land use,

transportation, housing, and environmental management in Accra [112]. However, there

have always been challenges in the implementation of developmental plans in Accra. Some

of these challenges are: inadequate participation of the public in the planning process,

the lack of political will, and limited financial and human resources. There is therefore

the need for concerted efforts to address the challenges in the implementation of plans so

as to promote sustainable urban development in the city [7].
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2.4.3 Effects of Land Tenure System in GAMA on Urban De-

velopmental Planning

The existence of contradictory legal land systems in Ghana engenders conflict within

the land delivery system; individuals who are aware of this conflict exploit subsequent

opportunities in their land use actions. Boamah and Walker [29] argued that the dualism

of legal land systems in Accra offers the opportunity to make land use decisions which

are paradoxically legal and illegal at the same time. In spite of all the modernizations in

GAMA, traditional rule and authority play an integral role in the evolution of the city,

i.e., directing how the city grows and what form that growth takes. Because there is

no data readily available on how much land in the city is still owned by the community

until the point of purchase, there is difficulty when it comes to land acquisition in GAMA

through chiefs or family heads. One has to go through a lot of hurdles to get a land

title that reflects the buyer’s details without any petitions from the community. This has

contributed to Accra being among the regions with the highest number of land disputes

in the country [96].

Ghana’s land tenure system, which comprises of a blend of customary and state tenure

systems, is viewed as complex networks of interrelationships characterized by social, po-

litical and human activities [42]. There is no doubt that the plural and complex nature of

land ownership in Ghana has influenced the spatial planning and development outcomes

in GAMA. Planning has become a complicated process due to the presence of conflicting

interests, the promotion of self-serving ideas, involvement of diverse stakeholders, and

ongoing power struggles. There is therefore always the need for a greater collaboration

in order for a consensus to be reached in designing plans for developmental purposes.

GAMA’s unique land tenure system makes the implementation of land use policies a bit

of a challenge. The typical models of land use policies under the English common law sys-

tem do not necessarily fit the customary land tenure system, and they were not designed

to do so either [137]. There is a clear disconnect between spatial plans and local land use

decisions. Planning schemes of the city which are prepared by metropolitan assemblies

are expected to be implemented on customary lands which are administered by chiefs

and family heads. This creates enforcement challenges. For example, many plans be-

come outdated before implementation, resulting in fragmented and unsustainable urban

development patterns [80].
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2.4.4 Urban Development and Sprawl in GAMA

As the administrative capital of Ghana, GAMA has been the beneficiary of a lot of

investments (both public and private) in infrastructural and service developments. Due

to these investments, there has been a cluster of economic activities in the region, which

has resulted in increased population and pressure on land resources within and also at

its peripheries, resulting in an urban sprawl [118, 82]. Urban planning in GAMA has not

been able to keep up with the rapid rate of development, resulting in an uncoordinated

growth of the city. The rapid outward expansion of the city has engulfed rural areas

and encroached on agricultural lands for the development of residential and commercial

services which are characterized by low density buildings [119, 2]. Low density housing

brews urban sprawl. According to Adam-Smith [8], every farm that is converted to a

building reduces the possibilities of growing food, and food is needed to live. While low

density neighborhoods give an assurance of privacy, quietness and less traffic to residents,

it is essential to bear in mind that land is a finite commodity, hence the efficiency of

its usage is very vital. Currently, the segregation between rural and urban areas in

GAMA has disappeared due to urban sprawl. This has significant implications on the

livelihood of inhabitants, especially, when it comes to food security and other ripple effects

such as issues relating to the environment, climate, public health, transport and energy

[151].

According to Owusu [119], containment strategies were developed by Accra Planning and

Development Programme (APDP) in association with the United Nations Development

Programme (UNDP) and the United Nations Center for Human Settlement (UN-Habitat)

for GAMA. The strategic plan looked at five options:

i. urban consolidation – putting a hold on all developmental projects at the peripheries

of the city to focus on developing lands effectively within the existing boundaries;

ii. multi-city structure – establishment of several cities within the metropolitan area,

each with its own central business district and servicing population of 250 000 – 300

000 to bring about decentralisation;

iii. twin city - the development of Accra and Tema was to be coordinated and har-

monised. The strategy envisaged merging of Accra and Tema by making the two

cities grow towards each other;

iv. satellite towns - restrict the growth of Accra by directing future urban development
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consciously to potential growth centers such as: Dodowa, Nsawam, Amasaman,

Kasoa, etc. (all within commuting distance from Accra); and

v. laissez-faire - continue with what is already happening until natural or economic

constraints prevent further expansion.

After several deliberations on the advantages and disadvantages of each of the options as

well as taking into consideration social and environmental impacts, transport inefficiencies,

administrative difficulties, cost effectiveness, land economics and flexibility to meet future

needs, it was concluded that no single concept would be able to contain the sprawl of

GAMA, instead, a mixed-concept plan involving three concepts (urban consolidation,

twin-city and multi-city structure) was proposed for GAMA [119]. Decades after the

formulation of the GAMA Strategic Plan, the shape and size of GAMA has been seen to

be growing and expanding in all directions except to the south which is occupied by the

ocean. The failure of the strategies could be attributed to:

i. existing land management systems where land is held under customary institutions

and planning is done by the local government. The custodians of the lands often

give lands out for purposes not intended by the planners. This is due to the fact

that there is no coordination between the land owners and the town planners;

ii. weak planning and development control institutions due to the inadequate number

and quality of staff. Many of the municipalities do not have planning schemes and

where they exist, they are outdated because development is happening at a faster

pace than implementation of the plans; and

iii. GAMA is fragmented into separate autonomous local government areas. When the

GAMA strategic plan was being prepared, the region consisted of Accra Metropoli-

tan Assembly (AMA), Tema Municipal Assembly and the Ga District but now they

have been subdivided into 12 municipal assemblies (Section 2.1). Because of the

independence and autonomous nature of all these municipal assemblies, there is

little cooperation between them and they all develop their lands as they see fit.

2.5 Literature Review on Urban Growth in GAMA

Several studies have been conducted concerning the urban growth in GAMA. Yankson

and Gough [149] studied the impact of the rapid urbanization on the physical and res-

idential environment of peri-urban Accra and the implications of these changes on the
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environmental management of the urban fringe areas. They pointed out that the peri-

urban areas are being ignored by the planning agencies which is not advantageous to

the environment. Forests are increasingly being converted for residential purposes, which

is leading to the diversion of water courses, drying up of ponds and an increase in soil

erosion. According to the study, a resident lamented in an interview, saying. . .

“. . . in the past there was forest and big trees but now the forest is no longer here. The

big trees too are missing. The land is becoming grassland. The strangers who have

acquired the land also develop their sites and have cut the trees to build their houses.

Bush fires are also destroying the forests. There is pressure on farmers. In the past the

farmers were shifting from place to place thus leaving the land to fallow because there

was more land. The place was left for 6 to 7 years so that by the time you returned to

the old place, the trees had grown and there was always forests. Now more farmers are

using the same site continuously.”

They recommended to the then district assemblies, the various communities in the peri-

urban areas and NGOs to help deal with the environmental degradation by embarking on

educational campaigns to address the need to protect the environment. Another research

by Osei et al. [118] also attempted to identify and quantify the urban sprawl in Greater

Accra Region between 1985 and 2014 based on Shannon’s entropy indices of the various

years. They concluded that the urban area is mainly sprawled around city centers and

along the main road, which means the major road that cuts across the region as well as

the city centers were the main causes of sprawl in the region. Owusu, [119] attributed the

urban sprawl and uncoordinated development in the region to the land tenure system,

the lack of cooperation between the various municipalities that make up the region, and

failure of institutions in charge of planning.

Oduro et al. [115] used sustainable livelihood framework as an analytical tool to ex-

plore the livelihood strategies adopted by the residents of peri-urban Accra as a response

to the city’s physical expansion. It was established that while some of the indigenous

people benefited from the urban growth and took advantage of the economic opportuni-

ties created by it, others were also unfavorably affected by it. Those who benefit from

the physical expansion of the region were the chiefs and family heads who capitalize on

the increasing demand for land by allocating plots of land to developers. Other wealthy

people also acquire lands at a cheaper rate from the chiefs and later sell their leasehold

interests to developers at higher rates. Those who are affected the most are the resource-
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poor indigenes and long term settlers whose main source of livelihood is farming on these

lands. They lose their farmlands to developers as a result of tenure insecurity, especially,

in the customary land tenure system; and they do not have the means to acquire new

lands nor invest in alternative livelihoods. It was recommended in the study that local

government authorities should incorporate peri-urban livelihood issues into their planning

activities.

Addae and Oppelt [9] analyzed the land-use/land-cover change in GAMA and modelled

its urban growth. Their objective was to provide a better understanding of the extent, rate

and pattern of urban land use change within the region in order to obtain an overview

of the factors that influence the urban expansion. Landsat images from 1991 to 2015

were classified using maximum likelihood image classification algorithm and predicted

the urban extent of 2025 using a hybrid of neural network and markov’s chain. At the

end of the studies, they concluded that main land cover change in the region was the

expansion of built-up area at the expense of vegetation. It was also anticipated that

urban extent would spill to the adjoining districts, mainly to the western and eastern

sides of the region by 2025. Akubia and Bruns [11], also did similar research by analyzing

the spatiotemporal dynamics of landuse change and urban expansion in GAMA using

Quickbird/Worldview-2 images of 2008 and 2017. The objectives of the research were to:

analyze the spatio-temporal patterns of land-use change; quantify the rate, intensity and

spatial patterns of urban expansion at sub-regional and district levels; and explore the

implications of land use change dynamics and patterns of urban expansion for regional

spatial planning development. The study revealed that the expansion in GAMA occurred

in municipalities located within the peripheries, particularly, the western and eastern

directions, which turned out to be the hotspots of the urbanization.

In an attempt to get more understanding on the impacts of the rapid urban growth in

GAMA on the environment and nearby regions, Yiran et al. [151] analyzed the household

energy consumption patterns in relation to land-use change in peri-urban Accra. They

concluded that majority of the populace relied on wood as the main source of energy for

cooking. Owing to the rapid conversion of vegetation to built-up areas within the region,

it had become necessary to import wood from other parts of the country. They cautioned

that if this trend persists, it could lead to deforestation in the source regions, potentially

resulting in desertification. Thus, the uncontrolled urbanization in GAMA is not just a

GAMA problem but has negative implications in nearby regions and other parts of the

country as a whole.
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2.6 Justification of Chosen Study Area

The thesis focuses on using the concept of fractals and remote sensing data to detect

the spatial arrangement of urban centers and subcenters. It aims to create urban growth

models that provide more comprehensive insights compared to traditional models like the

oil stain model. The study is motivated by the lack of research on the identification of

urban centers and subcenters in developing countries, as highlighted by Yu et al. [154]

and the challenge posed by the absence or partial availability of official statistical data to

do so, as noted by [101, 94].

The choice of the Greater Accra Metropolitan Area (GAMA) in Ghana, the largest and

fastest-growing city in the country, was deliberate. GAMA serves as an ideal location for

this research due to its status as the fastest-growing city in a developing country with

limited official statistical data for the identification of urban centers and subcenters. This

study aims to bridge the research gap in the identification of urban centers and subcenters

in developing countries while addressing the challenge of data unavailability. This would

help to contribute to a better understanding of urban growth in such contexts.
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Chapter 3

Satellite Image Classification

3.1 Introduction

Land is a non-renewable resource, and as such, it must be used sustainably. One way to

go about this is to incorporate better land use planning and land management strategies

in the utilization of land [74]. To develop better land use plans and land management

strategies which are geared towards sustainability, information on land use and land cover

(LULC) cannot be left out of the equation. This is because, fundamentally, the way land

is distributed, owned, and utilized is a defining characteristic of modern societies, as it

involves the idea of ownership and how space is partitioned for various functions. Land

use refers to how land is used by humans while land cover refers to what lies on the surface

of the land as a result of land use [4]. Land use usually results in land cover changes,

which can alter water quality, soil quality, air quality, etc.; and all these in turn affect the

quality of human lives. This is the reason why it is important that LULC changes are

studied, quantified and incorporated into land planning and management strategies.

Although information on LULC can be obtained from traditional field surveys and aerial

surveys, these approaches have been found to become time consuming and expensive as the

size of the study area increases. However, with remote sensing, which is the art and science

of measuring the reflective response of the earth’s surface after it has been hit with a source

of light, LULC data can be collected in a relatively less expensive and timely manner [45].

Data obtained from remote sensing has proven to be spatially consistent, and covers large

areas with both high spatial detail and frequency at a relatively lower cost. The downside

is that it can only be used to make direct observations on land cover and not land use,

and also there is only so much information one can obtain on the third dimension. To
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obtain information on the third dimension or on land use from remote sensing, it must be

inferred by associating the measured land cover information obtained with supplementary

information such as: already established vertical datums, socio-economic data or expert

knowledge [132]. Once remote sensing data has been obtained, the individual pixels in

the data need to be classified into their respective land cover types according to their

visual content and the purpose of the classification. Manually checking and classifying

images can be a difficult task, especially, when the number of pixels involved is huge. It

is therefore very practical that the entire process is automated using a computer vision

technique like image classification. This is one of the reasons why image classification is

considered a very important task in the field of computer vision [126]. There are several

image classification techniques such as maximum likelihood, random forest, support vector

machine, artificial neural network, etc. that can be used to classify the individual pixels

in the data into their respective land cover types [132, 98, 1].

Generally, image classification methods can be categorized into two: supervised and un-

supervised. Unsupervised image classification is where each pixel in an image is identified

to be a member of one of the inherent categories present in the image without the use of

labeled training samples; and is based on machine learning algorithms for its implemen-

tation. Abass et al. [116] acknowledged clustering algorithms and dimension reduction

algorithms as the two main classes of unsupervised machine learning algorithms needed

for unsupervised image classification. Their review discussed the applications of these

algorithms in the context of unsupervised image classification. On the other hand, su-

pervised image classification requires training samples (i.e., representative data points

collected from a known class of interest to the analyst) for each class. The classification

is based on how similar a pixel is to each point in the training sample [14]. There is

also another category called object based image classification. In this category, individual

pixels are aggregated into spectrally homogenous objects using image segmentation algo-

rithms. These spectrally homogeneous objects are then classified using either supervised

or unsupervised techniques [90].

Image classification is very purpose oriented, hence, there is no such thing as a universal

classification scheme. Even deciding on which classification method is better than the

other is very subjective because one must be able to establish in what way, say, method

A is better than method B. It all boils down to the purpose for which the classification is

being carried out. The purpose of this research is to utilize satellite image classification

techniques in the studying of urban growth. Therefore, the main interests of the classifica-
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tion that would be done in this research would be on the urban extent of newly urbanized

areas, evolution of the boundaries of the urbanization front, and transformations in al-

ready urbanized areas. Hence, the image classification as applied here would consider

fewer classes (basically, urban and non-urban) than most applications, while particular

attention is paid to the form of the identified objects, not just the area they cover.

Several studies have been done on the applications and comparisons of different image clas-

sification methods for detecting LULC changes. Smiths and Schowengerdt [131] assessed

the quality of image classification algorithms and the economic effects of misclassification.

Lui and Xia [90] published a paper on the advantages and limitations of object-based

classification algorithms relative to pixel based algorithms. Ma et al. [97] reviewed some

object-based supervised land cover image classification methods and concluded that Ran-

dom Forest shows the best performance in object-based image classification. Aburas et al.

[4] reviewed some conventional and machine learning models for modelling, simulating,

and predicting land use change to determine the best approach that can accurately sim-

ulate land use changes. Przemyslaw [85] compared different methods of texture analysis

for their efficacy in land use classification of satellite imagery. Toosi et al. [138] evaluated

and compared four supervised classification algorithms for the monitoring of mangrove

cover changes. Basheer et al. [25] evaluated some satellite image classification methods as

implemented in ArcGIS Pro and Google Earth Engine. What all these studies had in com-

mon is that the comparison of the classification methods were based on overall accuracies

and kappa scores. Overall accuracy and kappa score are widely used quantitative mea-

sures that serve as indicators of the predictive ability of a classification method. They are

derived from confusion matrices, which rely on the existence of a so-called ground truth

that is difficult to define, especially, for a relatively fuzzy concept such as urbanization.

For instance, one can’t really tell when an inhabited rural area becomes an urbanized

area: is it the number of inhabitants; the built up density; or the infrastructure present

there? Also, in instances where different classification methods have similar overall ac-

curacies and kappa scores, so far, there are no scientific basis for selecting one over the

other.

Although different classification methods are compared in this chapter, the aim is not

just to check the accuracies of the various methods, but to also identify their effects on

land cover maps. The objective of this chapter is to investigate the effects of a chosen

classification method on resulting land cover maps in spite of similar overall accuracies and

kappa scores. This would involve measuring additional characteristics that represent the
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form and shape of the classified land cover types, characteristics that are not accounted

for by the overall accuracy and kappa score. Unlike the usual quantitative comparison of

the overall accuracies and kappa scores, this novel approach is a qualitative comparison

which is based on the how much details the classification method is able to produce.

This approach does not seek to replace the existing quantitative measures already used

in comparing different classification methods but to serve as supplementary measures to

help analysts decide on which method is best suited for specific projects.

3.2 Materials Used

The boundary of the study area was freely downloaded from OpenStreetMap (https://

www.openstreetmap.org/relation/1991849#map=10/5.8524/0.1978; retrieved on 13/01/2022).

Landsat images of the study area for the years 1991, 2002, 2013, and 2022 were also freely

downloaded from the United States Geological Survey (USGS) website, spanning from

Landsat 4 to Landsat 9. With a spatial resolution of 30 m, extra care was taken to certify

that all the downloaded images had cloud cover of less than 5%. This was done to reduce

issues of misclassification. The downloaded images were then processed to convert them

from digital numbers to top of atmosphere (TOA) reflectance. It is important to covert

digital number values to TOA reflectance values so that the atmospheric impacts on the

reflected wavelengths are removed for desired indices to be obtained and used for analysis

[16]. The variables used for the conversions were obtained from the calibration coefficients

provided in the metadata file that comes along with the Landsat image when it is down-

loaded. These computations were implemented with the raster calculator tool from the

spatial analyst toolbox in ArcMap. ArcMap was used to prepare the images for classifi-

cation. The bands in each downloaded image were clipped to the boundary of the study

area and stacked together to create a composite band, i.e., single raster dataset from the

multiple bands [153]. This was done using the “composite bands” and “extract by mask”

tools in ArcMap to enable visualization of the image in different color combinations.

By visualizing it in different color combinations, it becomes easier to identify different

land cover types when creating ground truth data for supervised classification. Ground

truth data refers to accurate and reliable reference data that serves as a benchmark for

evaluating the performance of automated classification algorithms. It typically involves

manually labeling or annotating specific objects or land cover types in satellite images,

allowing for the validation of the algorithm’s results. Ground truth data plays a crucial
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role in assessing the accuracy and effectiveness of satellite image classification models.

Ground truth data was carefully selected based on firsthand knowledge of the region.

This selection involved visual interpretation of the satellite images through several color

combinations and comparison with Google Earth imagery and Atlas of urban expansion

maps of Accra (http://www.atlasofurbanexpansion.org/cities/view/Accra) to rep-

resent the following land cover types: ‘Vegetation,’ ‘Built-up,’ ‘Transition,’ and ‘Water.’

Vegetation refers to thick forest cover with trees, dense bushes and grass lands. Built-up

area refers to all man-made features such as: buildings, roads, bridges, ports and harbor,

etc. Transition refers to vegetated areas gradually changing into built-up areas. They

represent mixed land cover comprising bare lands, areas cleared for construction pur-

poses, isolated buildings, and shrubs. Water refers to all water bodies such as: streams,

lakes, rivers, lagoons etc. The cell values at the location of each ground truth point for

all the bands in the composite bands were extracted and attached to their respective

ground truth points in the attribute table using the “extract multi values to point” tool

in ArcMap. 70% of the ground truth data were randomly selected as train data and the

remaining were kept as test data to check the accuracy of the results that were obtained.

The data and software used are presented in Table 3.1.

Table 3.1: Data and Software Used

DATA
Product ID Spacecraft ID Date Acquired Source
LT04 L1TP 193056 19910110 20200915 02 T1 Landsat 4 10/01/1991 USGS
LE07 L1TP 193056 20021226 20200916 02 T1 Landsat 7 26/12/2002 USGS
LE07 L1TP 193056 20131224 20200906 02 T1 Landsat 7 24/12/2013 USGS
LC09 L2SP 193056 20220131 20220202 02 T1 Landsat 9 31/01/2022 USGS
GAMA Boundary Shapefile OpenStreetMap
SOFTWARE
ArcMap 10.8
Python Libraries: Scikit-learn, GDAL
Google Earth
Fractalyse 3 - 0.8.1
Fragstats 4.2

3.3 Methods Used

Two supervised image classification methods, Random Forest and Support Vector Ma-

chine, were employed. Additionally, a hybrid approach using simple linear iterative clus-

tering (SLIC) and K-Means was used for unsupervised object-based image classification.

These methods were used to assess the impact of the chosen classification technique on
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the resulting land cover map. Apart from the fact that random forest and support vec-

tor machine are popular choices for supervised land cover modelling, Random forest was

chosen due to its multi-scale robustness. It is well suited for multi class problems, and

works well with features of different scales, which makes it interesting for studying urban

forms. Support vector machine was chosen because it is most suited for binary classi-

fication problems, performs well on sparse data, and introduces the concept of distance

between points. The issue of urban growth is likewise mostly binary (urban/ non-urban)

and the data can be sparse at certain places. SLIC is also known to be good at preserving

the contours of features. The contours would represent the urbanization front, which is

important in studying urban sprawl.

For the supervised classification methods, confusion matrices were generated, with which

their overall accuracies, recall, precision, f1 scores and kappa scores were determined.

This was not done for the unsupervised classification because there were no ground truth

data with which to generate a confusion matrix. In measuring the additional character-

istics that represented the form and shape of the classified land cover types but were not

accounted for by the overall accuracy and kappa score, several methods were employed.

The box counting method was used to assess the lacunarity of each land cover type. The

total edge of each land cover type was calculated to determine the limits of its perimeter,

and the number of patches of each land cover type was calculated to assess the level of

heterogeneity in the spatial distribution of the land cover types.

3.3.1 Random Forest

Random forest (RF) is a classification algorithm that consists of a large number of de-

cision trees that function together. Decision trees are building blocks of the random

forest algorithm. They consider all the possible features of an object and select one that

produces the most separation between the observations to classify them, such that, the

resulting classes are as different form each other as possible while the members of each

class are as similar to each other as possible. However, decision trees are very sensitive

to training data as very little changes in the training data can result in a significantly

different tree structure. This inconsistency makes it impossible for the algorithm to make

generalizations [152]. To resolve this problem, random forest is used [70]. Random forest

is a group of decision tree classifiers that are individually trained on different random

subsets of the training data to ensure diversity in the classifiers. The random subsets of

the training data are obtained by either bootstrap aggregation (bagging) or pasting. Bag-
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ging is the process where samples uniformly taken from the training data for training the

classifiers are done with replacement whereas with pasting, the sampling is done without

replacement. This creates an uncorrelated forest of trees whose collective prediction is

more accurate than that of any individual decision tree. After the classifiers have been

trained, each decision tree in the random forest produces a class prediction. The class

with the highest vote, which could be hard voting or soft voting, becomes the model’s

prediction. In hard voting, the predicted class is the class most predicted class by the

individual decision trees; if there is a tie, a random one is picked. In soft voting the

individual class probabilities are averaged over individual classifiers. The class with the

highest probability is the predicted class. Random Forest is much less sensitive to the

training data as compared to individual decision trees [136, 152, 138].

3.3.2 Support Vector Machine

A Support Vector Machine (SVM) is a powerful, yet flexible supervised machine learning

algorithm that can detect patterns and information in data for classification and regres-

sion. This is achieved by categorizing the dataset into various classes by constructing

margins (hyperplanes) between the classes obtained to find a maximum marginal hy-

perplane. The hyperplane is generated in an iterative manner so that the error can be

minimized. The real power of this algorithm depends on the kernel function being used.

The kernel function plays an important role in SVM, i.e., it makes it possible to solve

non-linear problem using linear classifiers [138]. It provides shortcuts to avoid complex

mathematical computations as one goes up to a higher dimension where it is impos-

sible to have a hyperplane [19]. The most commonly used kernels are: linear kernel,

Gaussian kernel, polynomial kernel and radial base function (RBF) [124, 126]. SVM has

been successfully applied in several land-use applications such as: land use modelling,

land used classification, land slide susceptibility studies and flood susceptibility studies

[4]. The primary advantage of SVM is that it has good generalization capabilities with

limited training samples, i.e., they can handle outliers and overlapping classes very well

[129, 45].

3.3.3 SLIC K-Means

Simple linear iterative clustering (SLIC) is an algorithm used to generate superpixels

by clustering pixels based on the similarity of their color and proximity in the image

plane. Superpixels contain more information than pixels since they are made up of several
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pixels; and they provide convenient and compact representation of images. Generating

superpixels is very useful for object detection, cutting images and for reducing the amount

of data to be processed to help reduce computational time. According to Achanta et al.

[6] SLIC operates in a five-dimensional [labxy] space, where [lab] is the pixel color vector

in CIELAB color space and [xy] is the color pixel position. For an image with N pixels,

if the desired number of superpixels is K, the approximate size of each superpixel will

be N/K pixels. Using the centers of the superpixels as grid intervals, for approximately

equal sized superpixels, the grid interval can be given by S =
√

N/K. To generate the

superpixels, a special method of distance estimation, Ds, is used, equation 3.3. This is

because regular Euclidean distance in this 5D space would not suffice without normalizing

the spatial distances. Ds is given by the sum of the lab distance, equation 3.1, and xy

plane distance, equation 3.2, normalized by the grid interval, S.

dlab =
√

(lk − li) + (ak − ai)2 + (bk − bi)2 (3.1)

dxy =
√

(xk − xi)2 + (yk − yi)2 (3.2)

Ds = Dlab + m

s
dxy (3.3)

Where m is a variable which controls the compactness of the superpixels. The higher the

value of m, the more spatial proximity is emphasized, making the cluster more compact.

Ds enforces color similarity as well as pixel proximity in the 5D space such that the ex-

pected cluster sizes and their spatial extent are approximately equal. After the image

has been segmented into superpixels, similar superpixels are further grouped into various

classes using K-Means clustering method. K-Means partitions n observations into k clus-

ters based on Euclidean mean value. It is fast and simple to use, however, it requires the

analyst to have prior knowledge of the number of classes. Using K-Means, the number of

clusters, K, is defined in advance, and the algorithm assigns each observation to exactly

one of these clusters. The objective of the K-Means clustering is to minimize the inertia,

i.e., the within cluster variation, such that the sum of the inertia across all the clusters is

as small as possible.
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3.4 Case Study

To ascertain the effects of a chosen image classification method on the resulting land

cover model, the methods discussed in Section 3.3 were used to determine the land

cover changes in GAMA from 1991 to 2022. The study area was classified in to four

classes: “Vegetation”, “Built-up”, “Transition”, and “Water”. The same training dataset

was used to train models for the supervised classifications, i.e., random forest and support

vector machine. Confusion matrices were calculated, with which the overall accuracies

and kappa scores were derived to make a quantitative comparison. For each classification

method, the global fractal dimension, the total edge values and the number of patches of

the classified land cover types were determined. These metrics (fractal dimension, total

edge and number of patches) were the basis on which the qualitative comparison of the

classification methods were made.

3.4.1 Image Classification Using Random Forest (RF) - GAMA

The following python libraries were used: numpy, matplotlib, gdal, geopandas and sklearn.

Geopandas was used to read the ground truth data as a geodataframe. The land cover

names (class names) were extracted and assigned class ids. The class ids were added to

the geodataframe and the data was divided into two: 70% for training the model and

30% to test the model. Gdal was used to open the composite band as a gdal dataset.

The gdal dataset was read as an array, stacked and then reshaped into a 2d array to

match the training data. From sklearn, random forest was used to train and fit a model

to classify each cell in the satellite image into its associated land cover type. The results

were written as tiff files using gdal and exported to ArcMap to prepare the land cover

maps of GAMA. Figure 3.1 are the land cover maps of GAMA for 1991, 2002, 2013 and

2022 obtained using random forest. The python script for the RF classification can be

found in Appendix B.1.

3.4.2 Image Classification Using Support Vector Machine (SVM)

- GAMA

The same procedure that was used to read the images, the ground truth data and assign

class ids for the RF classification was used for the SVM. However, here, the classifier used

was support vector machine with a linear kernel from sklearn. The result was written as

a tiff file using gdal and exported to ArcMap to prepare the land cover maps of GAMA.
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(a) RF GAMA 1991 (b) RF GAMA 2002

(c) RF GAMA 2013 (d) RF GAMA 2022

Figure 3.1: RF land cover maps of GAMA (1991, 2002, 2013 and 2022)

Figure 3.2 are the land cover maps of GAMA for 1991, 2002, 2013 and 2022 obtained

using support vector machine. The python script for the SVM image classification can be

found in Appendix B.2.

3.4.3 Image Classification Using SLIC K-Means (SLIC) - GAMA

Gdal was used to open the composite bands for the various years as gdal datasets. The

images appeared darker, so a histogram was computed using skimage to know the limits

of the RGB bands. The RGB bands were then stretched to their limits, to enhance

the image brightness. Gamma adjustments were also done to further enhance the image

brightness. The images were then converted to grayscale and smoothened to reduce

noise in them. The smoothened images were then segmented into superpixels using the

simple linear iterative clustering (SLIC) algorithm by clustering the pixels based on their

color similarity and proximity in the image plane. Region properties of the superpixels

were measured to determine the intensity of the superpixels. The mean intensities of

the superpixels were computed and plotted on a histogram to get an idea of the range

of variation of the various intensities. K-means was then used to create a model of 5

clusters to fit the mean intensities. The model was then used to predict labels for the
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(a) SVM GAMA 1991 (b) SVM GAMA 2002

(c) SVM GAMA 2013 (d) SVM GAMA 2022

Figure 3.2: SVM land cover maps of GAMA (1991, 2002, 2013 and 2022)

clusters. The images were then labeled appropriately by taking a combination of the

predicted labels of the different clusters to relabel them according to the coordinates of

each cluster. The results were written as tiff files using gdal and exported to ArcMap. The

tiff files were reclassified into four classes to match the land cover types chosen for this

thesis (“Vegetation”, “Built-up”, “Transition”, and “Water”). SLIC K-Means could not

identify water bodies, as it misclassified them as vegetation. To address this, a shapefile

of the water bodies was rasterized and mosaicked into the reclassified tiff files to obtain

the water bodies on the resulting land cover maps. Figure 3.3 are the land cover maps of

GAMA for 1991, 2002, 2013 and 2022 obtained using SLIC K-Means. The python script

for the SLIC image classification can be found in Appendix B.3.

3.4.4 Comparison of Image Classification Methods

In comparing different classification methods, what most researchers use is the accuracy

assessment. They do this by analyzing confusion matrices to ascertain how well the

algorithms performed [39]. A confusion matrix is a table that defines the correspondence

between land cover types classified by a classifier and the ground truth data. From

the confusion matrix, accuracy indicators such as the overall accuracy, recall, precision,
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(a) SLIC K-Means GAMA 1991 (b) SLIC K-Means GAMA 2002

(c) SLIC K-Means GAMA 2013 (d) SLIC K-Means GAMA 2022

Figure 3.3: SLIC K-Means land cover maps of GAMA (1991, 2002, 2013 and
2022)

f1 score and kappa score can be computed. Overall accuracy is a ratio of the total

number of correctly classified observations to the total number of observations. It is a

measure of how well the classifier performed. This is a general measure of the classification

accuracy, however, it does not indicate which classes were poorly classified. To know

how well the classification worked on each class, recall (producer accuracy) and precision

(user accuracy) are used. Recall is the ratio of the correctly predicted observations of a

particular land cover type to total observations of that land cover type. It is a measure of

how many points in the test data that actually belong a to a particular land cover type

are predicted to belong to that land cover type. On the other hand, precision is the ratio

of correctly predicted observations of a particular land cover type to the total predicted

observations of that land cover type. It is a measure of how many points in the test

data that have been predicted to belong to a particular land cover type actually belong

to that land cover type. Both precision and recall measure the predictive performance of

the model in different ways. Precision measures the extent to which predictions made by

the classifier are correct whereas recall measures the extent to which actual observations

made are predicted correctly. These two measures can be combined to form a single metric

71



called F1 score. F1-Score is the harmonic mean of the performance of the model on each

land cover type based on the precision and recall. It is used to assess the relative impact

of recall and precision on the model. F1 score ranges between 0 and 1, the closer it is

to 1 the better the model. Another important accuracy indicator is the kappa score. It

essentially evaluates how well the classification performed as compared to just randomly

assigning values to cells, i.e., whether or not the classification did better than randomly

assigning values to cells in the image. The kappa score can range from -1 to 1. A value

of 0 indicates that the classification is no better than a random classification. A negative

number indicates the classification is significantly worse than a random classification. A

value close to 1 indicates that the classification is significantly better than a random

classification [140]. The standard scale follows the following set of rules: a value of

0.8 or higher is considered strong, 0.4–0.8 is moderate, and less than 0.4 suggests a

poor agreement. The overall accuracy, recall, precision, f1 score and kappa score are

given by equation 3.4, equation 3.5, equation 3.6, equation 3.7 and equation 3.8

respectively.

Overall Accuracy = Number of correctly predicted pixels

Number of reference pixels
(3.4)

Recall = Number of correctly classified samples of a class

Column total
(3.5)

Precision = Number of classified samples of a class

Row total
(3.6)

F1 Score = 2 × precision × recall

precision + recall
(3.7)

kappa Coefficient = (TS × TCS) − ∑(Column Total × Row Total)
TS2 − ∑(Column Total × Row Total) (3.8)
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where:

TS = Total Sample

TCS = Total Correct Samples

The confusion matrices and classification reports for GAMA 1991, 2002, 2013 and 2022,

indicating the overall accuracy, precision, recall, f1-score and kappa score of the RF and

SVM classifications are presented in Appendix C.1 and C.2 respectively. From the

kappa scores, it was observed that both RF and SVM performed very well. They all had

kappa scores of more than 0.8 for all the years considered. Table 3.2 is a table showing

the kappa scores obtained when RF and SVM were used to model the land cover of GAMA

for 1991, 2002, 2013 and 2022. No kappa score was computed for SLIC K-Means because

it is an unsupervised classification, hence there was no reference data with which to make

the comparison.

Table 3.2: Kappa scores for RF and SVM, GAMA 1991, 2002, 2013 and 2022

Kappa Score RF Kappa Score SVM
1991 0.928 0.925
2002 0.906 0.913
2013 0.881 0.849
2022 0.933 0.929

Both RF and SVM produced satisfactory results. This is a typical scenario of two image

classification methods producing similar overall accuracies and kappa scores, making it

difficult to choose one over the other. However, the interest of this chapter is not just

to compare classification methods based on only overall accuracies and kappa scores, but

also based on the form and shape of the classified land cover types. These are indicators

which the overall accuracies and kappa scores are unable to assess. In this chapter,

fractal dimension, total edge and number of patches are proposed as measures to quantify

the shape and form of classified land cover types. Fractal dimension is an indicator

of the lacunarity of the land cover types. It is used in landscape ecology to measure

the complexity of landscape patterns [139]. Several definitions for fractal dimension exist:

Hausdorff dimension, Minkowski dimension, correlation dimension, etc., but in this thesis,

the Minkowski dimension, also known as the box counting dimension is what would be

used. On a two dimensional surface, fractal dimension ranges from 0 to 2, the closer the

value is to 2, the more regular the land cover type. Total edge is a landscape metric

that is typically used in landscape ecology in quantifying landscape patterns. It is the

sum of all the horizontal and vertical edges between cells of different land cover types
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[139, 105]. It is an indicator of how much details were captured in the classification of

each land cover type. The higher the value of the total edge, the more details there are

in the land cover type. A patch could be defined as the four nearest neighbor cells (i.e.,

horizontal and vertical neighbors only) adjoining a cell or the eight nearest neighbor cells

(i.e., horizontal, vertical and diagonal neighbors) adjoining a cell. Based on the definition

of a patch by the analyst, PN refers to the total number of patches in the landscape

[139, 105]. Fractal dimension, total edge and patch number are given by equation 3.9,

equation 3.10 and equation 3.11 respectively.

N = S−D (3.9)

where:

N= Number of boxes

S= Scale

D= Fractal Dimension

Total Edge =
m∑

k=1
eik (3.10)

where:

eik= edge length in meters between land cover type i and k

Number of Patches = N (3.11)

Table 3.3, 3.4, 3.5 and 3.6 are tables comparing random forest, support vector ma-

chine and SLIC K-Means based on the fractal dimension, total edge values and number

of patches of the various land cover types classified for GAMA 1991, 2002, 2013 and

2022.

Appendix D is a map comparing the land cover maps obtained with each method for

each year considered in this study. Since the aim of this thesis is to study urban growth,
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Table 3.3: Comparison between RF, SVM, and SLIC, GAMA 1991

Landcover Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.590 5 228 100 8 250 1.581 4 718 820 7 675 1.547 1 412 760 268
Transition 1.636 10 067 910 15 021 1.625 7 551 090 9 416 1.583 2 163 030 573
Vegetation 1.814 7 643 910 7 555 1.807 5 939 010 5 429 1.821 1 061 640 420

Water 1.205 378 060 440 1.225 534 180 879 1.227 333 990 173

Table 3.4: Comparison between RF, SVM, and SLIC, GAMA 2002

Landcover Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.683 7 864 860 10 941 1.681 7 260 480 10 410 1.567 2 040 870 502
Transition 1.679 11 576 190 20 142 1.671 8 986 020 13 647 1.625 1 441 770 466
Vegetation 1.777 7 840 920 7 765 1.771 6 696 570 5 967 1.802 3 085 410 790

Water 1.188 399 270 521 1.19 373 590 391 1.227 333 990 173

Table 3.5: Comparison between RF, SVM, and SLIC, GAMA 2013

Landcover Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.743 9 258 480 9 161 1.743 9 243 900 9 783 1.654 4 062 270 1 115
Transition 1.703 14 851 290 20 963 1.704 13 379 520 17 784 1.682 2 079 870 499
Vegetation 1.721 8 601 810 9 325 1.708 6 841 920 7 291 1.728 2 340 120 648

Water 1.194 276 780 264 1.197 295 260 237 1.227 333 990 173

Table 3.6: Comparison between RF, SVM, and SLIC, GAMA 2022

Landcover Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.772 8 972 370 10 618 1.775 7 241 040 6 998 1.667 3 485 550 613
Transition 1.704 12 769 860 14 382 1.705 11 844 030 12 512 1.709 1 871 160 431
Vegetation 1.646 5 360 040 6 400 1.631 5 122 500 6 332 1.688 1 855 680 615

Water 1.199 306 150 215 1.216 364 470 452 1.227 333 990 173
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the focus of the analysis would be on the built-up area. The other land cover types, i.e.:

transition, vegetation and water, would be classified as non-built-up areas.

From Table 3.3, 3.4, 3.5, and 3.6, it was observed that the difference between the

values obtained for fractal dimensions of the built-up area with respect to RF and SVM

were not significant. This means that fractal dimension could not clearly distinguish

between RF and SVM. The fractal dimension values obtained for SLIC, however, were

lower than those of RF and SVM. Typically, if there are more patches in a particular land

cover type, automatically, the total edge values would be high. This was confirmed by

the similar trend observed in the total edge values and patch numbers obtained for RF,

SVM and SLIC. Generally the built-up areas identified with RF had the highest patch

number and total edge values, followed by SVM and then SLIC. Appendix E are charts

summarizing the fractal dimension, total edge and patch number values of the various

land cover types classified using RF, SVM and SLIC K-Means for GAMA 1991, 2002,

2013 and 2022 respectively.

The high TE and PN values observed on the built-up areas classified with RF indicates

that RF is able to show more details in a land cover map than SVM and SLIC. The TE

and PN values observed on the SLIC land cover maps were the least among the three

methods. This was not very surprising because SLIC is a cluster of pixels based on the

similarity of their color and proximity in the image plane. What this implies is that if

the interest of the analyst is to obtain a detailed land cover map, the best option among

the three methods used in this case study is RF. Also if the interest of the analyst is to

produce a more generalized land cover map, SLIC is the best method to use.

3.4.4.1 Subsections

Since urbanization in GAMA is not uniformly distributed, the study area was divided into

three subsections (Section A, Section B and Section C), as shown in Figure 3.4, to get

a closer look at the differences between the land cover maps obtained with the different

classification methods at the various sections. From the land cover maps obtained with

the different classification methods for all the years under study, Section A, Section B and

Section C were extracted and studied by calculating their fractal dimension, total edge

and patch numbers. Appendix F are maps showing Section A, Section B and Section

C respectively. Appendix G are tables showing the fractal dimension, total edge and

patch numbers of Section A, Section B and Section C.
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Figure 3.4: Map of GAMA divided into three sections, Section A, B and C

Section A: Based on visual inspection of Appendix F.1, with emphasis on the built-up

areas, it was observed that the results obtained with RF and SVM were quite similar for

all the years, in terms of the spatial distribution of the built-up pixels. Visually, SLIC was

very different from RF and SVM as it appears to amplify the spaces in the built-up areas

identified by RF and SVM. While the fractal dimensions of the built-up areas classified

with RF and SVM were fairly the same, the total edge values of RF were slightly higher

than those of SVM from 1991 to 2013, but were more pronounced in 2022. This difference

can be seen when the top right corner of the built up area is observed. The patch numbers

of the built-up areas classified with RF and SVM were also fairly the same for all the years

until 2022 where RF was significantly higher than SVM. Appendix H.1, H.2 and H.3

are charts showing the fractal dimensions, total edge values and patch numbers of the

land cover maps obtained with RF, SVM and SLIC of section A in 1991, 2002, 2013 and

2022.

Section B: Based on visual inspection of Appendix F.2, with emphasis on the built-up

areas, it was observed that the results obtained with RF and SVM were not as similar

as what was observed in Section A. In 1991, some built-up areas were identified in the

central parts of the map obtained with RF which were not present on the map obtained

with SVM. As the years progressed, the differences became smaller. The built-up areas

identified with SLIC appeared scattered because of the exaggeration of the spaces in

the built-up areas, however, in 2022, the built-up area identified in the central part was

similar to what was identified with RF and SVM. This could be because the central part
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was very saturated, such that, there was very little space to be exaggerated. The fractal

dimensions and total edge values showed the same trend as what was observed in section

A. The patch numbers of RF from 1991 to 2013 were slightly higher than SVM, but was

quite pronounced on 2022. As compared to the patch numbers obtained with RF and

SVM, those of SLIC were very low. Appendix H.4, H.5 and H.6 are charts showing the

fractal dimensions, total edge values and patch numbers of the land cover maps obtained

with RF, SVM and SLIC of section B in 1991, 2002, 2013 and 2022.

Section C : Based on visual inspection of Appendix F.3, with emphasis on the built-up

areas, it was observed that the results obtained with RF and SVM were very similar in

terms of the spatial distribution of the built-up areas. The fractal dimensions showed the

same trend as what was observed in section A and Section B. The total edge values of

RF were higher than those of SVM and SLIC, except in 2013 where the total edge value

of the built up identified with SVM was slightly higher than that of the RF. In 1991 and

2002, the patch number for RF was higher than that of SVM. In 2013 and 2022, the

patch numbers for SVM was slightly higher than RF. The total edge values and patch

number for SLIC were the least throughout. Appendix H.7, H.8 and H.9 are charts

showing the fractal dimensions, total edge values and patch numbers of the land cover

maps obtained with RF, SVM and SLIC of section C in 1991, 2002, 2013 and 2022.

3.5 Conclusion and Recommendations

The aim of this chapter was to analyze how a particular classification method impacts the

spatial distribution of identified land cover types in land cover maps, even when accuracy

and kappa scores are similar. Upon conclusion of the study, it was observed that although

different classification methods may possess similar overall accuracies and kappa scores,

subtle differences in qualities such as lacunarity and edge length of identified land cover

types can be detected. These differences serve as important factors in guiding analysts to

choose a more suitable classification method for their specific project requirements. Along

with commonly used quantitative measures such as overall accuracy, recall, precision, f1

score, and kappa score, additional qualitative measures were proposed such as fractal

dimension, total edge, and patch number. These measures are not meant to replace the

quantitative measures, but rather to supplement them and enhance the comparison of

classification algorithms.

Three classification methods were tested: random forest (RF), support vector machine
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(SVM) and SLIC K-Means. RF and SVM classification methods displayed similar overall

accuracy, recall, precision, f1 score, and kappa score values. On the other hand, as an

unsupervised classification method, SLIC K-Means had no confusion matrix to compute

these measures. The fractal dimensions, total edge values, and patch numbers of the

different land cover types resulting from each classification method were computed and

compared.

Despite the similarities in accuracy measures, the qualitative measures, particularly to-

tal edge values and patch numbers, revealed that land cover maps resulting from RF

classification were more detailed than those of SVM and SLIC K-Means. However, for

those interested in obtaining a more generalized land cover map, SLIC K-Means would

be the optimal choice. By incorporating qualitative measures such as fractal dimensions,

total edge, and patch number into studies for comparing image classification methods,

analysts will be able to select classification methods based on both accuracy and texture

of resulting land cover maps.

Future research can focus on developing and evaluating additional qualitative measures

beyond fractal dimension, total edge, and patch number to enhance the assessment of

land cover mapping methods. This could involve investigating other textural, structural,

or spatial characteristics of land cover maps for a more comprehensive understanding of

their quality. Researchers can explore ways to effectively integrate these qualitative mea-

sures with traditional quantitative metrics, such as overall accuracy and kappa scores, to

create a more robust evaluation framework. This integrated approach provides a more

holistic view of classification method performance. Since visualisation plays a crucial role

in conveying the richness of the land cover data, additionally, researchers could investigate

advanced visualisation techniques for land cover maps, highlighting the unique features

and information provided by different classification methods. Additionally, researchers

should investigate advanced visualization techniques for land cover maps, highlighting

the unique features and information provided by different classification methods. Visual-

ization plays a crucial role in conveying the richness of land cover data.

79



Chapter 4

Longitudinal Landscape Analysis of

Urban Growth in GAMA

4.1 Introduction

Urbanization offers improved living standards and access to various services such as edu-

cation and recreation, however, it also exposes people to various environmental challenges

such as air pollution, noise, water contamination, waste disposal problems, and exces-

sive heat [71, 104]. According to Dong et al. [46], the United Nations’ World Charter

for Nature from 1982 emphasized the importance of considering the sustainable capacity

of ecosystems in long-term economic development planning, so as to prevent irreversible

damage. It is therefore very essential that effective spatial governance measures are put in

place to promote regional sustainable development while urbanizing. It is also important

to monitor the state of urban growth over time to facilitate natural resource management,

ecosystem protection, and mitigate unbalanced regional development [46].

Urbanization is significantly linked to industrialization, modernization, and the sociolog-

ical process of rationalization, all of which are important factors for regional economies

[128]. Measuring the state of urban expansion is crucial to the establishment of a baseline

which can aid in appropriate preparations for future occurrences. This has significant

effects on the ecosystem [77, 110]. According to McGarigal [105], a landscape refers to a

varied land area consisting of a collection of interconnected ecosystems that repeat in a

similar pattern throughout the observed region. As the backdrop for all human activities

on earth, landscapes serve as habitats for both human beings and other life forms [72].

Due to the interaction between humans and other living organisms, landscapes are con-
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stantly evolving. As urban areas develop, landscape patterns are altered, with forest and

agricultural uses being transformed into industrial, commercial, and residential uses [71].

Gökyer [65] identified five primary factors that contribute to landscape changes, namely:

socio-economic, political, natural, cultural, and technological advancements. Over the

years, there have been several small-scale changes in landscapes aimed at improving the

living conditions of humans. Although these changes may seem insignificant when viewed

individually, their cumulative impact on the ecosystem is substantial.

Generally, a landscape can be modelled as a matrix, corridor, patch, and mosaic [24, 65].

The landscape matrix is typically the most dominant and interconnected land cover type

within the landscape. When the landscape composition (i.e., the non-spatial character-

istics of the landscape) and the landscape configuration (i.e., the spatial characteristics

of the landscape) are disturbed, the landscape matrix becomes fragmented, a process re-

ferred to as fragmentation. According to Flowers et al.[55] the process of fragmentation

can be summarized into four phases: perforation, dissection, dissipation, and shrinkage

as shown in figure 4.1.

Figure 4.1: The four stages of fragmentation: a) perforation – initial small
openings forming patches (i.e., non-linear areas found within the matrix differ-
ing from its surroundings) within the matrix; b) dissection – larger intrusions
of patches, often along with physical features; c) dissipation – the spread and
merging of patches; and d) shrinkage – reduction in patch size and attrition.
Source:[55]

Fragmentation can cause negative impacts such as: deforestation; alteration of water

courses leading to flooding; reduced availability of food; urban sprawl; and increased

pollution from automobile usage including exhaust fumes, noise, and dust [72]. While it

may not be possible to completely prevent landscape fragmentation due to the unending

human interactions with the environment, understanding the process of fragmentation

can help in anticipating and preparing for its effects before it eventually occurs. This

knowledge can inform the decisions of land use policy makers and authorities, enabling

them to act in the best interests of future generations. Since fragmentation is a spatial
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process that occurs over time, a spatiotemporal analysis can be employed to measure it.

Simply examining land cover maps is insufficient for measuring fragmentation. Additional

quantitative information is required. Such information can be derived from the numerous

landscape metrics that have been developed to describe landscape patterns [148, 125,

105].

Landscape metrics are measurable units that allow for the qualitative and quantitative

description of spatial patterns and ecological processes over time in space. The qualitative

description of the land cover types present in the landscape is provided by the landscape

composition, whereas the quantitative description of the spatial arrangements of the land

cover types present in the landscape is provided by the landscape configuration. Many

landscape metrics are strongly correlated, which makes them redundant if they all are

chosen for a particular analysis. Selecting a relevant subset from the numerous metrics

available can be quite challenging. According to Turner et al. [139], landscape metrics

must be chosen to achieve specific objectives, minimize redundancy, explain pattern vari-

ability across the landscape, and cover a substantial portion of the range of their potential

values. Flowers et al. [55], also stated that when utilizing landscape metrics to analyze

urban growth patterns, it is recommended to select metrics that capture the characteris-

tics of the landscape area, its edge effects, and shape complexity. In this chapter, drawing

inspiration from previous works on the quantification of landscape patterns for urban

growth management [68, 3, 143, 5, 113, 99, 91, 35], Class Area (CA), Number of Patches

(NUMP), Edge Density (ED), and Proportion of like Adjacency (PLADJ) have been cho-

sen for the quantification of the fragmentation process of Greater Accra Metropolitan

Area (GAMA) from 1991 to 2022.

The aim of this chapter is to provide a comprehensive and data-driven longitudinal anal-

ysis on the urban growth of GAMA, and its effects on biodiversity. Using the land cover

maps of GAMA from 1991-2022 that were obtained with RF in Chapter 3, and various

techniques such as land cover change analysis, landscape metric measurement, and multi-

radial fractal dimension calculation, information extracted solely from freely available

satellite images are used to achieve this objective. The idea is to capture the changes

in land cover and landscape patterns in GAMA from 1991 to 2022 and predict the land-

scape patterns for 2030. The results of this analysis can be used to understand the drivers

and impacts of urban growth in GAMA and to inform urban planning and management

strategies for the region’s future development. Additionally, the prediction of future land

cover and landscape metrics can provide valuable insights for decision-makers in terms of
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managing and adapting to the region’s urban growth.

4.2 Materials and Methodology

4.2.1 Materials used

The data and software used in this chapter are presented in table 4.1

Table 4.1: Data and software used

Data used
Land cover maps of GAMA 1991, 2002, 2013 and 2022
Software used
ArcGIS Desktop
Fragstats 4.2
Python Libraries: SciPy
IDRISI 17.0 The Selva Edition
Fractalyse 3 - 0.81
Netlogo 6.3.0

4.2.2 Methodology

The methodology implemented in this chapter is categorized into three phases. The ini-

tial phase involves analyzing the land cover changes in GAMA from 1991 to 2022, and

determining the rate of urban growth during this period. The second phase is urban

growth modelling and prediction of the land cover of GAMA for 2030 using Land Change

Modeler (LCM), Markov Chain Cellular Automata (MCCA), and an Agent Based Model

implemented in NetLogo (ABM). The third and final phase is a quantification of the evo-

lution of the landscape patterns in GAMA by calculating landscape metrics. Additionally,

the evolution of the landscape pattern of Sekondi Takoradi Metropolitan Area (STMA),

a coastal city about 280 km west of GAMA, would be analysed.

4.2.2.1 Phase 1 - GAMA land cover change analysis (1991-2022)

The land cover maps of GAMA were converted from raster to polygon using ‘From Raster’

from the ‘Conversion Tools’ in the ArcToolbox. To ensure distinct codes for each land

cover type, the attribute table was accessed. Next, the ‘Dissolve’ function from the geo-

processing tab was utilized to merge similar features into a single feature using ‘gridcode’

as the dissolve field. The different classes were labeled within the attribute table, and

the area covered by each class was computed using the ‘calculate geometry’ option. This
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process was carried out for all the years under examination, namely 1991, 2002, 2013,

and 2022. To identify changes that have occurred over time, the ‘Intersect’ tool from

the geoprocessing tab was employed. This operation involved calculating the geometric

intersection between consecutive years (1991-2002, 2002-2013, and 2013-2022). The more

recent land cover map was superimposed on the previous one, adopting the changes where

they occurred while keeping unchanged areas consistent. To facilitate this analysis, a new

field named ‘Change’ with a text data type was added to the attribute table. A VB Script

was composed in the field calculator to label the changes according to the format “Change

= Land cover type Yr 1 + ‘-’ + Land cover type Yr 2”. Additionally, another field named

‘Area Change’ with a double data type was created to calculate the area affected by each

land cover change. The area calculations were performed using the ‘calculate geometry’

function within the attribute table. Finally, the attribute table was exported to Excel in

order to generate charts illustrating the various changes that occurred over the specified

period.

4.2.2.1.1 Rate of urban growth The calculation of urban growth rate involves

comparing the land cover classification of a specific area during different time periods.

This analysis focused on examining the changes in the extent of land categorized as

“Built-up” over time. To determine the rate of urban growth, the area occupied by urban

land cover (i.e., Built-up) was calculated for each time period. Subsequently, the difference

in area between the two consecutive periods was determined. Dividing the change in area

by the time period yielded the annual rate of change in urban land cover. The growth

rate is given by equation 4.1.

Morphological growth rate = ((UrbanArea(t2) − UrbanArea(t1))
Y ear(t2) − Y ear(t1) × 0.01 (4.1)

4.2.2.2 Phase 2 - Urban growth modelling and prediction

Three urban growth models (Land Change Modeler, Markov Chain Cellular Automata

and NetLogo) were used to model and predict the future land cover of GAMA. The best

model was determined by comparing the Kappa score of the result of each model and how

much details it was able to capture.
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4.2.2.2.1 Land change modeler The Land Change Modeler (LCM) in Idrisi is a

tool used for land change modeling and prediction. It integrates data sources, performs

statistical and spatial analysis, and simulates land cover changes over time. LCM follows

a stepwise approach, starting with change analysis and transition potential modeling, and

progressing to change prediction based on historical data. In change analysis, alterations

between two land cover maps are identified as transitions from one state to another.

Transition potential modeling groups these transitions into sub-models with transition

variables. The transition variables provide valuable information about the conditions and

characteristics associated with the transitions between different land cover states. By in-

corporating transition variables into the modeling process, LCM enables a more accurate

representation of the relationships between explanatory factors and land cover change

patterns. This process generates a transition potential map indicating change potential

at a specific time. The transition sub-models are modeled using the multi-layer percep-

tron (MLP) neural network, which automatically adjusts parameters and learning rates

to improve the model. Markov chain analysis is employed during change prediction to

quantify the amount of change in each transition, considering an end date. The resulting

models include a hard prediction model that provides a single realization of predicted

change based on competitive land allocation, and a soft prediction model that assesses

vulnerability to change for selected transitions, offering a comprehensive understanding

of change potential. LCM is valuable for land management, urban planning, and envi-

ronmental assessment purposes.

4.2.2.2.1.1 Transition variables This study employed specific transition variables,

namely evidence likelihood (evlilkelihood), multiradial fractal dimensions (frac), distance

from vegetation (Dist veg), and distance from the central business district (Dist CBD).

i. Evidence likelihood: In IDRISI, the evidence likelihood is obtained by combining

a changes map and a land cover map. The changes map represents the transitions

between land cover classes over time, while the land cover map shows the initial

state of the landscape. Using a probabilistic approach, the conditional probabilities

of transitioning between land cover classes are calculated from the changes map.

These probabilities are then applied to the land cover map to assign evidence likeli-

hood values to each pixel based on the neighboring pixel’s conditional probabilities.

This process considers spatial relationships to estimate the likelihood of a pixel be-

longing to a specific land cover class. The evidence likelihood approach in IDRISI
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provides a more accurate and probabilistic assessment of land cover classification

by incorporating observed changes and their spatial patterns.

ii. Multiradial fractal dimension: Multiradial fractal dimension is a measure used to

quantify the complexity or irregularity of a shape or pattern. It is derived from

the concept of fractals, which are mathematical objects that exhibit self-similarity

at different scales. The multiradial fractal dimension specifically focuses on the

dimensionality of a shape or pattern when viewed from different radial directions

[58]. In the context of land cover analysis, the multiradial fractal dimension is

often applied to quantify the complexity of built-up areas or urban landscapes. By

calculating the fractal dimension at multiple radial directions around a point or

region, it provides insights into the spatial structure and arrangement of built-up

features. Higher values of the multiradial fractal dimension indicate more regular or

homogeneous patterns while lower values indicate greater complexity or irregularity

in the distribution of built-up areas. The multiradial fractal dimension is a useful

tool in understanding urban morphology and spatial patterns, as it captures the

inherent complexity and heterogeneity of urban landscapes. It can be employed

to analyze the changes in urban form over time, compare different urban areas,

or assess the impact of urbanization on the landscape. The multiradial fractal

dimension of the built-up area of GAMA was calculated using Fractalyse 3 - 0.8.1

after the built-up area was extracted from the land cover map using ArcMap 10.8.

iii. Distance from Vegetation: The distance from Vegetation refers to the spatial prox-

imity from areas with natural or planted vegetation, such as forests, parks, gardens,

or green spaces. It is a measure used to understand the relationship between built-

up areas and vegetated areas. The distance from vegetation can be an important

factor in various environmental and ecological studies. It can provide insights into

the availability of green spaces and natural habitats, urban heat island effects, air

quality, biodiversity, and overall ecosystem health in urban environments. Ana-

lyzing the distance from vegetation can help researchers and policymakers assess

the accessibility and distribution of green spaces within a city, identify areas with

limited access to nature, and evaluate the potential impacts of urbanization on nat-

ural habitats and wildlife. The distance from vegetation was calculated using the

Euclidean distance tool in ArcMap 10.8.

iv. Distance from CBD: The distance from CBD refers to the physical distance between
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a particular location and the central commercial and economic hub of a city or ur-

ban area. The CBD is typically characterized by a concentration of commercial

activities, office buildings, retail centers, and transportation hubs. The distance

from the CBD is an important factor in urban planning, transportation, and land

use studies as it can influence various aspects of urban development. The distance

from the CBD can impact land values, with properties closer to the CBD often

being more expensive due to their proximity to business and employment opportu-

nities. It can also affect transportation patterns, as areas closer to the CBD may

experience higher traffic volumes and greater accessibility to public transportation

options. Additionally, the distance from the CBD can influence the distribution

of land uses and the intensity of development. Typically, areas closer to the CBD

tend to have a higher concentration of commercial and residential buildings, while

areas farther away may consist of more suburban or rural land uses. Understand-

ing the distance from the CBD is crucial for urban planners, policymakers, and

researchers to assess patterns of urban growth, plan transportation networks, allo-

cate resources, and develop strategies to manage urban development effectively. It

helps in identifying areas of potential urban expansion, determining the need for

infrastructure development, and implementing policies to promote balanced growth

and sustainable development across the city or urban area. The distance from CBD

was computed from the center of the identified CBD to the edge of the study area.

These transition variables were derived exclusively from land cover maps prepared by the

classification of freely available satellite images.

4.2.2.2.2 Markov Chain Cellular Automata (MCCA) Markov Chain Cellular

Automata is another approach used for predictive modelling. It utilizes a Markovian

process where the future state of a system at a particular time can be predicted based on

the present state of the system and the matrix of transition probabilities between each

land cover class. The MARKOV module in IDRISI enables the generation of a transition

probability matrix. This matrix allows for the estimation of the probability of land cover

class changes or persistence between two specific time periods. This module requires two

land cover maps as input and generates the following outputs:

i. Transition probability matrix: this indicates the probability of a pixel in a particular

class changing to any other class or staying the same in the subsequent time period.
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ii. Transition areas matrix: this provides the expected total area in cells that will

undergo change in the next time period.

A cellular automaton is a type of cellular entity that alters its state autonomously based

on its previous state and the states of its adjacent neighbors, following a defined set of

rules. The CA MARKOV module requires three inputs to project changes in land cover:

the current landcover map, the transition areas file generated by the MARKOV analysis

of the current and an earlier map, and a collection of suitability images indicating the

suitability of each pixel for different land cover types. The module performs an iterative

reallocation of land cover to match the predicted area totals from the MARKOV analysis.

The iteration process is determined by a user-defined number of time steps. In each

iteration, land cover classes lose and gain land, and suitability is adjusted by a filtering

stage to reduce suitability away from existing areas of that type. The Cellular Automaton

component arises from both the iterative reallocation process and the suitability filtering

stage.

4.2.2.2.3 Agent Based Model NetLogo is a programming language and integrated

modeling environment that is widely used to simulate complex systems, including urban

growth. In the context of urban growth modeling, NetLogo provides a range of tools

for simulating land use changes, population dynamics, transportation systems, and other

factors that influence the spatial structure of cities. The software provides an interface

for building and running simulations, and offers a wide range of visualization and analysis

tools to explore the results of the simulations. One common approach to using NetLogo

for urban growth modeling is to develop agent-based models (ABMs) that simulate the

behavior of individual actors (such as households, businesses, or local governments) within

a larger system. These models can incorporate a range of spatial and non-spatial variables

that influence urban growth, such as land use regulations, transportation infrastructure,

and demographic changes. ABMs developed using NetLogo can be calibrated and val-

idated using real-world data, and used to explore different scenarios for urban growth

under various policy and environmental conditions. For example, a NetLogo-based model

of urban growth could be used to evaluate the impact of zoning regulations on land use

patterns, or to explore the potential consequences of different transportation investment

strategies. Overall, NetLogo is a powerful tool for simulating urban growth and exploring

the complex dynamics that drive the evolution of cities over time. The model simulates

urban growth with rules for spontaneous, new spreading center, edge, and road-influenced
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growth. It initializes by loading raster datasets for slope, urban areas, roads, excluded

zones, and land use. Suitability for urbanization is determined based on slope and exclu-

sion criteria. During growth processes, patches randomly urbanize, initiate new growth

around spreading centers, expand at edges, and extend along road networks. Suitability

is checked, and the model visualizes results through various displays. Key parameters

include dispersion, road gravity, and search distance. The rules collectively emulate ur-

banization influenced by terrain, roads, and land suitability.

4.2.2.3 Phase 3 - Landscape metrics of GAMA

In this thesis, Fragstats 4.2 was used to analyse the spatial pattern of the landscapes of

STMA and GAMA by computing various landscape metrics. The landscape metrics that

were chosen for the analysis are:

i. Class Area (CA): CA is a fundamental measure of landscape composition which

indicates how much of the landscape is comprised of a particular patch type. It is

the sum of the areas (m2) of all patches of a particular patch type, divided by 10

000 to convert it to hectares. It is calculated using equation 4.2 [105].

CA =
n∑

j=1
aij

( 1
10000

)
(4.2)

Where, aij = area (m2)

ii. Number of Patches (NP): A patch could be defined as the four nearest neighbor

cells (i.e., horizontal and vertical neighbors only) adjoining a cell or the eight near-

est neighbor cells (i.e., horizontal, vertical and diagonal neighbors) adjoining a cell.

Based on the definition of a patch by an analyst, NP refers to the total number

of patches in the landscape. The number of patches provides valuable informa-

tion about habitat fragmentation, species diversity, and habitat quality within a

landscape. Understanding this metric aids in evaluating the spatial distribution

of habitats, assessing the impacts of fragmentation on biodiversity, and guiding

conservation and land management decisions to promote ecological integrity and

sustainable use of landscapes. It is calculated using equation 4.3 [139, 105].
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NP = N (4.3)

Where, N = Total number of patches in the landscape

iii. Edge Density (ED): ED is the sum of all horizontal and vertical edges between cells

of corresponding patch types multiplied by the length unit of the cell divided by the

total area of the landscape. Edge density is crucial for assessing landscape struc-

ture, habitat fragmentation, and their implications for biodiversity conservation

and ecosystem functioning. It aids in making informed decisions regarding land-use

planning, habitat restoration, and conservation strategies aimed at maintaining the

integrity and ecological value of landscapes. It is calculated using equation 4.4

[139, 105].

ED =
∑m

k=1 eik

A
× 10000 (4.4)

Where, eik = Total length of all edges of a particular cover type A = Total landscape

area

iv. Proportion of Like Adjacencies (PLADJ): PLADJ equals the number of like ad-

jacencies involving the focal class, divided by the total number of cell adjacencies

involving the focal class; multiplied by 100 (to convert to a percentage). Assessing

the proportion of like adjacency is valuable for land management and conservation

planning. It helps identify areas with high or low proportions of like adjacency,

guiding decisions on habitat restoration, creation of corridors, and prioritization of

conservation efforts. By promoting connectivity and appropriate spatial arrange-

ments of land cover types, land managers can enhance habitat quality, maintain

ecological processes, and support sustainable land use practices. PLADJ is given

by equation 4.5 [105].

PLADJ =
[

gii∑m
k=1 gik

]
× 100 (4.5)

Where, gii = number of like adjacencies between pixels of a particular patch type
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gik = number of adjacencies between pixels of different patch types

4.3 Results and Discussion

4.3.1 Phase 1- GAMA Land cover change analysis (1991-2022)

The trend observed in the land cover changes of GAMA from 1991 to 2022 indicates

several patterns. The most notable change is the increasing trend in the change from

Vegetation to Transition, with a peak at 224.79 km2 from 2002 to 2013; and a slight

decrease to 169.83 km2 from 2013 to 2022. This suggests a conversion of Vegetation

areas into Transition land cover during the earlier period, followed by a relatively stable

Transition in the later years. Similarly, the Transition to Built-up change demonstrates an

increasing trend from 102.05 km2 (1991 to 2002) to 151.54 km2 (2002 to 2013), remaining

relatively stable at 147.54 km2 (2013 to 2022). This indicates a consistent growth in

Transition areas converting into Built-up land cover, which then maintains its extent in

the later years. On the other hand, the Vegetation to Built-up change shows a declining

trend, decreasing from 107.54 km2 (1991 to 2002) to 77.56 km2 (2002 to 2013) and further

decreasing to 46.37 km2 (2013 to 2022). This suggests a reduction in the conversion of

Vegetation areas into Built-up land cover over time. The Transition to Vegetation and

Built-up to Transition changes exhibit varying patterns with fluctuating values across the

three time periods, indicating some level of dynamism and inconsistency in these specific

land cover changes. Overall, the trend in land cover changes highlights the dynamic nature

of the studied area, with varying rates of changes between different land cover types over

the analyzed time span. Figure 4.2 is chart comparing the land cover changes between

1991 and 2022.

4.3.2 Phase 2 – Urban growth modelling and prediction of GAMA

4.3.2.1 Land Change Modeller

Initially, the required data, including land cover maps of GAMA 1991-2022 (shown in fig-

ure 3.1), the transition variables, and excluded areas were prepared in ArcMap 10.8 and

converted to ASCII for easy importation into IDRISI 17.0. The transition variables and

excluded areas are shown in Appendix J.1 and Appendix J.2 respectively. The land

cover images of GAMA for 2002 and 2013 were used as inputs to predict the land cover of

2022 using the LCM model, which included modeling transition variables using MLP to

91



0

50

100

150

200

250

1991-2002 2002-2013 2013-2022

Figure 4.2: A chart comparing the various land cover changes between 1991
and 2022

determine transition potentials. Two sub-models, namely “urbanization” and “afforesta-

tion” were developed to model land use change. The “urbanization” sub-model accounted

for land use changes from Vegetation to Transition, Vegetation to Built-up, and Transi-

tion to Built-up. On the other hand, the “afforestation” sub-model represented land use

changes from Transition to Vegetation and Built-up to Transition. These changes were

the most dominant changes in GAMA from 1991 to 2022 based on the land cover change

analysis. The MLP for modelling the transition potential of the 2022 land cover of GAMA

produced an accuracy of 93.83% and 85.03% for “urbanization” and “afforestation,” re-

spectively. The MLP results are shown in Appendix K. Transition potential maps were

created and a Markov chain was used to predict the land cover map of GAMA for 2022.

The predicted map was compared with the actual land cover map of 2022, resulting in a

kappa score of 0.80. Figure 4.3a and figure 4.3b depict the hard and soft prediction of

the land cover map of GAMA 2022. The high kappa score obtained instilled confidence

in forecasting the land cover map of GAMA for 2030 using the 2013 and 2022 land cover

maps of GAMA. Figure 4.4a and figure 4.4b showcases the hard and soft predicted

land cover maps of GAMA for 2030.

4.3.2.2 Markov Chain Cellular Automata (MCCA)

First, the land cover maps of GAMA for 2002 and 2013 were used as inputs in the

Markovian transition estimator. The number of time period between them, i.e, 11 years,
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(a) Hard Prediction GAMA 2022 (b) Soft Prediction GAMA 2022

Figure 4.3: Hard and soft prediction of GAMA 2022 using LCM

(a) Hard Prediction GAMA 2030 (b) Soft Prediction GAMA 2030

Figure 4.4: Hard and soft prediction of GAMA 2030 using LCM

and the number of time periods to project forward from the latest land cover map, i.e., 8

years, were specified. A transition probability matrix and a transition area matrix were

then produced. Using the 2013 land cover map of GAMA as the basis land cover image,

the land cover of GAMA for 2022 was predicted with the help of the transition area matrix

and a transition suitability image collection. The transition suitability image collection

was made up of evlilkelihood, multiradial fractal dimensions, distance from vegetation,

and distance from the central business district. The number of cellular automata iterations

were set to 10; and a 5 × 5 contiguity filter was used as the cellular automata filter type.

The predicted land cover map of 2022 was compared with the actual landcover map of

GAMA for 2022. The validation produced a kappa score of 0.83. The high kappa score

obtained instilled confidence in forecasting the land cover map of GAMA for 2030 using

the original land cover maps of GAMA for 2022 as the basis land cover image. Figure

4.5a and figure 4.5b are the predicted landcover maps of GAMA for 2022 and 2030

respectively.
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(a) MCCA GAMA 2022 Prediction (b) MCCA GAMA 2030 Prediction

Figure 4.5: Land cover prediction of GAMA Using MCCA

4.3.2.3 Agent Based Model in Netlogo

The Netlogo model for simulating the urban growth of GAMA was fashioned from the par-

tial re-implementation of the SLEUTH Urban Growth Model (UGM) that was developed

by Clarke, Hoppen and Gaydos [155]. It is a work done by Yang Zhou, who has made the

code available on GitHub (https://github.com/YangZhouCSS/Urban_Growth_Model).

It represents a complex spatial simulation model designed for studying urban growth and

land-use changes. It operates as an agent-based simulation of urban growth, focusing on

the interplay between terrain characteristics, road networks, and land suitability. The

code defines several global variables, including datasets for slope, urbanization, road net-

works, land use, and exclusion criteria. The ‘setup’ procedure initializes the model by

loading raster datasets for slope, urban areas, roads, excluded zones, and land use. It also

processes these spatial datasets and setting up the simulation environment. It checks the

suitability of patches for urbanization and displays road patches if required. Suitability for

urbanization is determined by checking slope conditions and exclusion criteria. It also es-

tablishes parameters such as dispersion values, road gravity values, and probability tables

based on slope. The ‘go’ procedure is the main simulation loop and orchestrates differ-

ent growth processes, including spontaneous growth, new spreading center growth, edge

growth, and road-influenced growth. Spontaneous growth randomly urbanizes patches

based on a dispersion value. New spreading center growth initiates urbanization around

patches marked as newly urbanized. Edge growth induces urbanization on the edges of ex-

isting urban areas, dependent on certain probabilities. The road-influenced growth process

simulates urban expansion along road networks. During this, the model seeks nearby road

pixels and extends urbanization based on road connectivity. Suitability is continuously

checked, and the model visualizes the results through various displays. It updates the
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visualization of the patches to represent urbanized and non-urbanized areas and roads.

The ‘load data’ procedure loads various spatial datasets and applies them to patches,

while the other procedures like ‘spontaneous growth’, ‘new spreading center growth’, and

‘road influenced growth’ handle different aspects of urban growth based on the defined

parameters and conditions. One advantage of this model is the built-in visualization tools

that allow researchers to observe and analyze simulation results in real-time. This feature

is invaluable for gaining insights into the evolving urban landscape and patterns. This

makes NetLogo model is a valuable tool for analyzing urbanization processes and their

dependencies on factors such as slope, road networks, and exclusion criteria. It allows

for the exploration of urban growth patterns and can provide insights into urban plan-

ning and land-use management. Key parameters such as dispersion, road gravity, and

search distance influence the growth dynamics, collectively emulating the complexity of

urbanization patterns influenced by topography, roads, and land suitability.

Figure 4.6 and Figure 4.7 are maps showing the simulation results after 8 periods, i.e.,

2022 to 2030.

Figure 4.6: UGM Model in Netlogo GAMA 2022

Urban growth modeling involves various approaches to simulate and predict changes in

land cover and spatial configurations over time. The Land Change Modeler (LCM), part

of the TerrSet software suite, integrates statistical and machine learning algorithms for

comprehensive landscape analysis. LCM was used to model and predict the urban growth

of GAMA for the year 2030. The kappa score achieved for the prediction was 0.8, which

is a good score. It also has the advantage of producing both a soft prediction, which
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Figure 4.7: UGM Model in Netlogo GAMA 2030

gives the probability or likelihood for each land cover class at a given location and hard

prediction, which assigns a single, definite land cover class to each location or pixel.

Markov Chain Cellular Automata (MCCA) combines Markov chain theory with Cellular

Automata, representing spatial entities in a grid and utilizing transition probabilities to

simulate urban growth dynamics. MCCA was used to model and predict the urban growth

of GAMA for the year 2030. The kappa score achieved for the prediction was 0.83, which

is slightly higher than that of LCM. However, unlike LCM, MCCA does not produce a soft

prediction, therefore it would not be as useful as LCM when dealing uncertainty in land

cover change processes. Soft prediction allows decision makers to understand the level

of confidence associated with each predicted class, aiding in risk assessment and decision

making. Hard predictions on the other hand are often used when a specific, unambiguous

classification is required, and there is a high level of confidence in the model’s ability

to accurately assign land cover classes. However, they may not capture the inherent

uncertainty in land cover change processes. Agent based model implemented in NetLogo,

offers a user-friendly platform for creating and observing the behavior of agents within a

simulated environment, making it versatile for exploring emergent phenomena in urban

growth simulations. The advantage of this model is that simulation of the prediction can

be analyzed in real time due to its powerful built in visualization tools.
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4.3.3 Phase 3 - Landscape metrics, GAMA 1991-2022

4.3.3.1 Class area (CA)

Class area demonstrates changes in the extent and distribution of land cover types within

the landscape over time. From the results obtained, it was observed that the class area

varied for each land cover type over time. In 1991, Vegetation had the highest class area

(983.40 km2), followed by Transition (287.98 km2), Built-up (271.05 km2), and Water

(41.46 km2). Between 1991 and 2022, Built up experienced a significant increase at the

expense of vegetation. There was a steady reduction in the class area for Vegetation

(from 983.40 km2 to 369.56 km2) as well as a steady increase in the class area for Built-

up land cover class (from 271.05 km2 to 758.69 km2). Transition also showed slight

increases in class area (from 287.98 km2 to 417.19 km2), while Water exhibited relative

stability in class area. Looking ahead to the projected year of 2030, Vegetation and

Built-up are expected to continue on the same trend. The class area for Transition on

the other hand is expected to reduce to 355.5 km2. Water is also projected to increase

in class area (from 32.99 km2 to 43.10 km2). The fluctuations in class area indicate

shifts in land use, land cover changes, and potential impacts on ecosystem services and

biodiversity. The decrease in vegetation and the expansion of built-up areas reflect ongoing

urbanization and land transformation processes. This emphasizes the need for sustainable

land management practices to mitigate further land cover changes and promote ecosystem

conservation. Table 4.2 provides information on the class area for the different land cover

types (Vegetation, Transition, Built-up, and Water) in the years under study (1991, 2002,

2013, 2022, and predicted 2030). Figure 4.8 is a chart showing the area covered by the

various land cover types in GAMA from 1991-2030 (predicted).

Table 4.2: Table showing the area covered by each land cover type

Class Area (km2)
1991 2002 2013 2022 2030 (Predicted)

Vegetation 983.40 761.81 543.77 369.56 274.53
Transition 287.98 343.37 374.73 417.19 355.50
Built-up 271.05 440.98 632.41 758.69 909.88
Water 41.46 37.73 32.99 38.46 43.10

4.3.3.2 Number of patches (NP)

Increase or decrease in number of patches causes disruption in the landscape matrix.

This typically occurs as a result of anthropogenic activities. If the number of patches of a

landcover increases, it is an indication of fragmentation, whereas if it decreases, it indicates
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Figure 4.8: Chart showing the area covered by various land cover types from
1991 to 2030 (predicted)

uniformity or a reduction in the area it covers due to land cover change. Analyzing the

obtained results, it becomes evident that the number of patches varies for each land

cover type over time. In 1991, Transition had the highest number of patches (15 021),

followed by Built-up (8 250), Vegetation (7 555), and Water (440). However, significant

fluctuations were observed in these values over the years. Between 1991 and 2013, there

were changes in the number of patches for each land cover type. Vegetation experienced an

increase in the number of patches (from 7 555 to 9 325), indicating potential fragmentation

or subdivision of vegetated areas. Transition and Built-up areas also showed increases in

the number of patches, suggesting increased subdivision and expansion of these land cover

types. Water, on the other hand, exhibited a decrease in the number of patches (from

440 to 264), indicating potential amalgamation or reduction in the number of distinct

water bodies. Looking ahead to the projected year of 2030, changes are expected in the

number of patches. Vegetation is projected to decrease significantly (from 6 400 to 2 300),

indicating a potential reduction in the number of vegetated patches. Built-up is projected

to experience a significant reduction in the number of patches (from 10 618 to 1 848). On

the other hand, the number of patches for Transition are expected to increase from 14 382

to 18 354 and those of Water are also expected to increase from 311 to 1 172. The results

highlight changes in the spatial configuration and fragmentation of land cover types within

the landscape over time. The fluctuations in the number of patches suggest alterations in

the size, shape, and distribution of patches, which can impact ecological processes, habitat

98



connectivity, and biodiversity patterns. Table 4.3 provides information on the number

of patches for the different land cover types (Vegetation, Transition, Built-up, and Water)

in the years under study (1991, 2002, 2013, 2022, and predicted 2030). Figure 4.9 is a

chart showing the number of patches of the various land cover types in GAMA from 1991

– 2030 (predicted).

Table 4.3: Table showing the number of patches for each land cover type in
GAMA

Number of Patches
1991 2002 2013 2022 2030 (predicted)

Vegetation 7555 7765 9325 6400 2300
Transition 15021 20142 20963 14382 18354
Built-up 8250 10941 9161 10618 1848
Water 440 521 264 311 1172
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Figure 4.9: Chart showing the number of patches of land cover types from
1991 2030 (predicted)

4.3.3.3 Edge Density

Edge density refers to the amount of edge or boundary between different land cover types

relative to the total area. Edge density for different land cover types over time provides

insights into the spatial patterns and fragmentation of the landscape. As landscapes

become more and more patchy, the edge density value increases, indicating that the land-

scape is becoming more fragmented. However, edge density is equal to 0 when there is

only one patch, i.e, only one land cover type. From the results obtained, it was observed
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that in 1991, Transition had the highest edge density value (33.67), followed by Vegeta-

tion (25.56), Built-up (17.48), and then Water (1.26). As the years progressed, significant

fluctuations were observed in these values. Between 1991 and 2013, there was an increase

in edge density for Vegetation (from 25.56 to 28.77) and Transition (from 33.67 to 49.66),

indicating a higher fragmentation or subdivision of these land cover types. Built-up areas

also experienced an increase in edge density (from 17.48 to 30.96), suggesting increased

fragmentation of urban areas. On the other hand, Water exhibited a decrease in edge

density (from 1.26 to 0.93), indicating a reduction in the extent of water edges within the

landscape. Looking ahead to the projected year of 2030, there are expected changes in

edge density values. Vegetation is projected to decrease significantly (from 17.92 to 8.43),

indicating a potential decrease in fragmentation or aggregation of vegetated areas. Tran-

sition and Built-up are also expected to decrease (from 42.70 to 30.76) and (from 30.96 to

27.70) respectively. Water is projected to have relatively stable edge density values. The

results reveal changes in the fragmentation and connectivity of land cover types within

the landscape over time. The fluctuations in edge density values suggest alterations in the

spatial configuration of patches, which can have implications for habitat fragmentation,

ecological processes, and biodiversity patterns. Table 4.4 provides information on the

edge density values for different land cover types (Vegetation, Transition, Built-up, and

Water) for the years 1991, 2002, 2013, 2022, and predicted 2030. Figure 4.10 is a chart

showing the edge density of the various land cover types in GAMA from 1991 – 2030

(predicted).

Table 4.4: Table showing the edge density of each land cover type

Edge Density
1991 2002 2013 2022 2030 (predicted)

Vegetation 25.56 26.22 28.77 17.92 8.43
Transition 33.67 38.71 49.66 42.70 30.76
Built-up 17.48 26.30 30.96 30.00 27.67
Water 1.26 1.34 0.93 1.02 1.89

4.3.3.4 Proportion of like adjacency

The Proportion of Like Adjacency metric measures the proportion of like adjacent pixels in

a given land cover type, with higher values indicating greater clustering of patches. From

the results obtained, it can be observed that the proportion of like adjacency varies across

the different land cover classes and time periods. In 1991, the highest proportion of like

adjacency was observed for Vegetation (94.05%), followed by Water (92.55%), Built-up
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Figure 4.10: Chart showing the edge density of the various land cover types
from 1991 to 2022

(85.39%), and Transition (73.74%). However, over the years, there have been fluctuations

in these values. Between 1991 and 2013, all land cover types experienced a decline in the

proportion of like adjacency with the exception of Transition, which experienced a slight

increase of 0.93% from 1991 to 2002; and Built-up which experienced steady increment

throughout the years observed. Vegetation decreased from 94.05% to 87.97%, Transition

decreased from 73.74% to 70.21% and Water increased insignificantly from 92.55% to

92.95%. However, from 2013 to the projected year of 2030, there was an overall increase

in the proportion of like adjacency for all the land cover classes with the exception of

Water. From the projections, Vegetation is expected to increase to 92.84%, Transition

to 80.51%, Built-up to 93.11%, however, Water is expected to decrease to 89.51%. The

results suggest that there have been changes in the spatial configuration of land cover

types within the landscape over time. The proportion of like adjacency provides insights

into the degree of aggregation or dispersion of patches of the same land cover class.

The fluctuations in these values indicate potential changes in landscape fragmentation,

connectivity, and potential impacts on ecological processes and biodiversity. Table 4.5

provides information on the proportion of like adjacency for the different land cover types

(Vegetation, Transition, Built-up, and Water) for the years 1991, 2002, 2013, 2022, and

predicted 2030. Figure 4.11 is a chart showing the proportion of like adjacency of the

various land cover types in GAMA from 1991 – 2030 (predicted).
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Table 4.5: Table showing the proportion of like adjacency of each land cover
type

Proportion of Like Adjacency (%)
1991 2002 2013 2022 2030 (predicted)

Vegetation 94.05 92.14 87.97 88.91 92.84
Transition 73.74 74.66 70.21 76.96 80.51
Built-up 85.39 86.52 88.94 91.06 93.11
Water 92.55 91.44 92.95 93.36 89.51
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Figure 4.11: Chart showing the proportion of like adjacency of the various
land cover types from 1991 to 2022

4.3.3.4.1 Rate of Urban Growth

The initial urban area in 1991 measured 271.05 km2 indicating a relatively moderate

level of urbanization. Over the following years, the rate of urban growth increased sig-

nificantly. By 2002, the urban area had risen to 440.98 km2, representing a growth rate

of 0.15, indicating a rapid pace of urban development. Between 2002 and 2013, there

was a continuation of the upward trend in urban growth, with the urban area reaching

632.41 km2, corresponding to a growth rate of 0.17. This indicates that urbanization was

progressing at a relatively fast pace during this period as well. However, in 2022, there

was a notable reduction in the urban growth rate, which decreased to 0.14. It suggests

that the rate of urban expansion slowed down as compared to previous years, indicating

a relatively less rapid pace of urbanization. This reduction could be attributed to several

factors such as economic fluctuations, government policies, demographic changes, or other

local circumstances. Looking ahead to the predicted year 2030, the data indicates an in-
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crease in the urban growth rate. The projected growth rate for 2030 is 0.19, corresponding

to an urban area of 909.88 km2. This suggests a resurgence in the rate of urbanization,

indicating a faster pace of urban growth compared to the reduced rate observed in 2022.

The increase in the predicted urban growth rate for 2030 could be influenced by various

factors such as population growth, economic development, infrastructure investments, ur-

ban planning strategies, and government policies aimed at promoting urban expansion.

It’s important to note that these deductions are based solely on the analysis of satellite

images, a comprehensive analysis of the specific context and factors influencing urban

growth would require a more in-depth examination.Table 4.6 shows the area and the

rate of urban growth from 1991-2022.

Table 4.6: Table showing the rate of urban growth in GAMA from 1991-2022.

Rate of Urban Growth
Year Area (km2) Rate (%)
1991 271.05
2002 440.98 0.15
2013 632.41 0.17
2022 758.69 0.14

2030 (predicted) 909.88 0.19

4.4 Conclusion

The study successfully captured the land cover changes and the urban growth rate of

the GAMA region. The findings revealed a significant transformation in the land cover

composition of the region, with the Built-up land cover now dominating over the pre-

viously dominant Vegetation land cover. A notable shift was observed from Vegetation

to Transition, peaking from 2002 to 2013 and stabilizing thereafter. The Transition to

Built-up change showed consistent growth, indicating an ongoing conversion of Transi-

tion areas into Built-up land cover. Conversely, the trend from Vegetation to Built-up

demonstrated a decline, suggesting a reduction in the conversion of Vegetation areas over

time. The Transition to Vegetation and Built-up to Transition changes exhibit varying

patterns, reflecting dynamism and inconsistency. Overall, GAMA’s land cover changes

depict a complex and dynamic landscape with diverse rates and directions of transfor-

mation between different land cover types. The analysis of urban growth rate showed an

increase from 0.15% (1991 to 2002) to 0.17% (2002 to 2013), but then a decrease to 0.14%

from 2013 to 2022. A projected growth rate of 0.19% is expected in 2030. The fluctua-

tion in growth rate from 2013 to 2030 could be attributed to several factors which would
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require a comprehensive analysis to identify. Unfortunately, such comprehensive analysis

is beyond the scope of this thesis. The study also captured the landscape patterns of the

GAMA region using landscape metrics. The landscape metrics further revealed extensive

fragmentation of the Vegetation land cover type, indicating a negative impact on biodi-

versity conservation, species movements, ecosystem functioning, and long-term ecological

resilience. Additionally, the study successfully predicted the land cover and landscape

pattern of GAMA for the year 2030 using information derived from freely available satel-

lite imagery. The trends highlight the importance of considering landscape connectivity,

habitat fragmentation and spatial arrangement of land cover types for assessing ecolog-

ical processes and urban development impacts on the environment. Understanding and

identifying areas with high fragmentation is crucial for prioritizing conservation efforts.

This knowledge can assist landscape planners and managers in making informed deci-

sions regarding land-use planning, habitat restoration, and conservation strategies. By

addressing fragmentation in GAMA and promoting habitat connectivity, the integrity

and ecological value of the landscapes can be maintained while supporting biodiversity

conservation and sustainable ecosystem management.

GAMA was selected as the study area due to its rapid growth in a developing country

where data for urban center identification is limited. Sekondi Takoradi Metropolitan Area

(STMA), while smaller and not as fast-paced than GAMA, bears similarities and has the

potential for similar growth. With a national airport, harbor, and proximity to mining

and petroleum companies, STMA offers an intriguing comparative study to understand

its relation to GAMA, given their coastal city nature.

4.5 Landscape Pattern Analysis of STMA

Another important coastal city in Ghana is Sekondi Takoradi Metropolitan Area (STMA).

STMA is located between latitudes 4◦52′30′′ N and 5◦4′0′′ N; and longitudes 1◦37′0′′ W and

1◦52′30′′ W at the southern part of the Western Region of Ghana. It is about 280 km west

from Accra and 130 km east from La Cote d’Ivoire. It is bordered to the north by Mpohor

District, Shama District to the east, Effia-Kwesimintsim Municipal to the west and south

by the Gulf of Guinea. The capital of the Metropolis is the Twin-City, Sekondi/Takoradi,

which is also the capital of the Western Region [18]. Its coastal location, proximity to

mining towns, presence of a commercial airport and the role of Sekondi-Takoradi as a

port city makes it an important city in Ghana [49].
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The discovery of oil in commercial quantities off the coast of the Western Region in 2007

has significantly impacted the spatial and socio-economic profile of STMA, making it the

most industrialized urban settlement closest to the oil fields [54]. As a result, influx of

migrants as well as the presence of international oil companies have boosted investments

in the city’s real estate market and other major commercial developments [48]. With the

Takoradi port expanding strategically to accommodate the demands of the oil industry,

there have been accelerated economic development and population increase in the region.

These have caused some changes in the landcover patterns of STMA which are worth

studying [84]. One of the effects of these accelerated developments is that residential

buildings in STMA are being lost to commercial and civic activities as more offices are

coming in due to the oil discovery [114]. This situation has led to the creation of new

sites outside the limits of the existing built-up area; and increased development of more

informal settlements. Most ejected tenants find their way into already existing slum areas

in parts of Efiekuma, New Takoradi and Kwesimintsim because they do not want to live

so far away from the central business district (CBD) [114, 54, 150]. This is a source of

worry for urban managers as these areas are already characterized by high population

densities, substandard housing and poor infrastructural services. Figure 4.12 is a map

of the STMA.

Figure 4.12: Map of STMA
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STMA and GAMA share coastal locations, providing economic opportunities tied to mar-

itime activities. While GAMA is larger and serves as the capital region with a higher

population, STMA, though smaller, plays a crucial role in Ghana’s economy, focusing

on mining and petroleum. Both areas are influenced by national and regional policies

affecting urban planning and economic development.

To study the evolution of the landscape pattern of STMA, and predict its future state

(2030), satellite images of STMA for the years 2016 and 2022 were downloaded from

United States Geological Surveys (USGS) to achieve this objective. The satellite image

classification was done using Random Forest; and the resulting land cover maps of STMA

for 2016 and 2022 are shown in figure 4.13a and figure 4.13b respectively. The error

matrix, showing the accuracy obtained can also be found in Appendix L. Information on

the downloaded satellite images are presented in Table 4.7. MCCA was used to predict

the land cover of STMA for 2030 using the land cover maps of STMA 2016 and 2022 with

a 5 × 5 contiguity filter. Figure 4.14 is a map showing the 2030 predicted land cover

map of STMA.

Table 4.7: Satellite Images of STMA

DATA
Product ID Spacecraft ID Date Acquired Source

LE07 L2SP 194057 20160106 20200903 02 T1 Landsat 7 06/01/2016 USGS
LC09 L2SP 194057 20220122 20220124 02 T1 Landsat 9 22/01/2022 USGS

(a) Land cover map of STMA, 2016 (b) Land cover map of STMA, 2022

Figure 4.13: Land cover maps of STMA 2016-2022
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Figure 4.14: Land cover of map of STMA,2030 (Predicted)

4.5.1 Landscape Metrics, STMA

4.5.1.1 Class Area

In 2016, Vegetation had the highest class area (80.51 km2), followed by Transition (47.34

km2), Built-up (42.19 km2), and Water (4.70 km2). However, there were notable changes

in these values over the years. Between 2016 and 2030 (projected), Vegetation experi-

enced a significant reduction, decreasing from 80.51 km2 to 37.78 km2, indicating potential

loss or conversion of vegetated areas. Transition areas showed relatively stable or slight

changes in class area over the years while Built-up showed a steady increase from 42.19

km2 to 81.05 km2. Water exhibited only a slight decrease in class area, from 4.70 km2

to 3.64 km2. The decreasing class area values for Vegetation land cover and the increas-

ing class area values for Built-up land cover indicate potential land use changes such as

urbanization, or other factors leading to the increase in Built-up at the expense of Vege-

tation. These changes can have implications for ecosystem services, biodiversity, and the

overall landscape composition and function. Table 4.8 provides information on the area

occupied by different land cover types (Vegetation, Transition, Built-up, and Water) for

various years (2016, 2022, and predicted 2030). Figure 4.15 is a chart showing the area

occupied by the various land cover types in GAMA from 2016 – 2030 (predicted).

Table 4.8: Table showing the area covered by each land cover type, STMA

Class Area (km2̂)
2016 2022 2030 (predicted)

Vegetation 80.5104 58.2165 37.7775
Transition 47.3373 53.9316 52.2765
Built-up 42.1884 58.3893 81.0522
Water 4.7025 4.2012 3.6423
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Figure 4.15: Chart showing the area covered by the various land cover types
from 2016 to 2030 (predicted)

4.5.1.2 Number of patches

Analyzing the data, it is evident that the number of patches varies for each land cover

type over time. In 2016, Transition had the highest number of patches (1 133), followed

by Built-up (642), Vegetation (388), and Water (25). Between 2016 and 2030 (predicted),

there was a substantial decrease in the number of patches for most land cover Types.

Vegetation experienced a drastic reduction, decreasing from 388 patches to 23 patches,

indicating potential loss or conversion of vegetated areas. Transition also showed a notable

decrease from 1 133 patches to 138 patches, while Built-up and Water exhibited relatively

smaller reductions in the number of patches. The substantial reduction in the number

of patches suggests a decrease in the size, shape, and distribution of patches, potentially

indicating land conversion, urbanization, or other land use changes. These changes can

have implications for habitat fragmentation, biodiversity, and ecological processes within

the landscape. Table 4.9 provides information on the number of patches of the different

land cover types (Vegetation, Transition, Built-up, and Water) for various years (2016,

2022, and predicted 2030). Figure 4.16 is a chart showing the number of patches of the

various land cover types in GAMA from 2016 – 2030 (predicted).

4.5.1.3 Edge Density

In 2016, Transition had the highest edge density value (40.25), followed by Built-up

(25.52), Vegetation (14.99), and Water (1.05). However, there were notable changes in
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Table 4.9: Table showing the number of patches for each land cover types in
STMA

Number of Patches
2016 2022 2030 (predicted)

Vegetation 388 142 23
Transition 1133 1019 138
Built-up 642 525 165
Water 25 20 15
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Figure 4.16: Chart showing the number of patches of land cover types from
2016 to 2030 (predicted)

these values over the years. Between 2016 and 2030 (predicted), there was an overall

decreasing trend in edge density for most land cover types. Vegetation showed a substan-

tial decrease from 14.99 to 4.80, indicating a potential reduction in the fragmentation of

vegetated areas. Transition also exhibited a decrease from 40.25 to 11.90, suggesting im-

proved connectivity or reduced fragmentation within this land cover type. Built-up areas

showed relatively stable edge density values for 2016 and 2022 indicating a consistent level

of fragmentation or aggregation. However, the edge density values of built-up showed a

sharp decrease from 25 to 8 in 2030 (predicted). Water exhibited a slight decrease in edge

density from 1.05 to 0.70 throughout the period studied, indicating potential changes

in the extent or shape of water bodies. The decreasing edge density values indicate a

reduction in fragmentation and potentially increased aggregation or connectivity of land

cover patches. Table 4.10 provides information on the edge density of different land

cover types (Vegetation, Transition, Built-up, and Water) for various years (2016, 2022,

and predicted 2030). Figure 4.17 is a chart showing the edge density of the various land

cover types in GAMA from 2016 – 2030 (predicted).
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Table 4.10: Table showing the edge density for each land cover types in STMA

Edge Density
2016 2022 2030 (predicted)

Vegetation 14.9969 10.2741 4.7998
Transition 40.2493 35.4903 11.8951
Built-up 25.5168 25.6421 8.7125
Water 1.0475 0.9269 0.7024
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Figure 4.17: Chart showing the edge density of land cover types from 2016 to
2030 (predicted)

4.5.1.4 Proportion of Like Adjacency

In 2016, Vegetation had the highest proportion of like adjacency (95.03%), followed by

Water (91.16%), Built-up (85.23%), and Transition (79.18%). Between 2016 and 2030

(predicted), there was an overall increasing trend in the proportion of like adjacency for

most land cover types. Vegetation showed a gradual increase from 95.03% to 96.31%,

indicating potential aggregation or clustering of vegetated areas. Transition experienced

a significant increase from 79.18% to 94.16%, suggesting a substantial improvement in the

adjacency of patches within this land cover class. Built-up areas also showed a notable

increase in the proportion of like adjacency from 85.23% to 97.23%, indicating increased

connectivity or aggregation of built-up patches. Water exhibited relatively stable values,

remaining around 91% for the entire period. The increasing proportion of like adjacency

indicates a potential reduction in fragmentation and improved patch aggregation within

the land cover classes. This can have implications for habitat quality, ecological processes,

and biodiversity patterns, with potential positive effects on ecosystem functioning and

resilience. Table 4.11 provides information on the proportion of like adjacency of the
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various land cover types (Vegetation, Transition, Built-up, and Water) for the years 2016,

2022, and predicted 2030. Figure 4.18 is a chart showing the proportion of like adjacency

of the various land cover types in GAMA from 2016 – 2030 (predicted).

Table 4.11: Table showing the proportion of like adjacency for each land cover
types in STMA

Proportion of Like Adjacency (%)
2016 2022 2030 (predicted)

Vegetation 95.0322 95.1844 96.3085
Transition 79.1804 83.8128 94.1603
Built-up 85.2312 89.2096 97.234
Water 91.1579 91.2061 91.4752
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Figure 4.18: Chart showing the proportion of like adjacency of land cover
types from 2016 to 2030 (predicted)

4.5.2 Conclusion of the STMA Study

In STMA, the various landscape metrics calculated provide insights into the changes in

land cover dynamics over time. In terms of class area, Vegetation dominated in 2016

with 80.51 km2, followed by Transition (47.34 km2), Built-up (42.19 km2), and Water

(4.70 km2). However, by the projected year 2030, there is a significant reduction in

Vegetation class area, potentially indicating land use changes such as urbanization, with

Built-up showing a steady increase. The number of patches for each land cover type

reduced over the years, reflecting potential changes in the size, shape, and distribution

of patches. Similarly, edge density values demonstrated variations, suggesting alterations

in landscape fragmentation and connectivity. Proportion of like adjacency increased for
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most land cover types, confirming the potential reduction in fragmentation and increased

patch aggregation. These changes have implications for ecosystem services, biodiversity,

and overall landscape structure.

STMA holds a pivotal position within Ghana, distinct from the Greater Accra Metropoli-

tan Area (GAMA), which is approaching urban saturation. STMA represents a city

with the potential to experience substantial growth and development in the near future.

Therefore, it is crucial to manage this expansion with great care to avoid compromis-

ing sustainability standards, particularly with regards to biodiversity conservation. The

impending saturation of STMA underscores the need for a comprehensive, multifaceted

approach to control urban sprawl, given the intricate interplay of social, economic, and

environmental factors that drive urban growth.

Several strategies can be employed to manage and control urban sprawl in STMA effec-

tively:

i. Comprehensive Urban Planning: A well-thought-out urban development plan is es-

sential to guide the city’s growth, ensuring that land is allocated for various purposes

efficiently, and infrastructure is developed in a sustainable manner.

ii. Strengthening Land Use Regulations: Enforcing and enhancing land use regulations

can prevent haphazard development and ensure that land is used in ways that align

with the city’s long-term goals.

iii. Investment in Public Transport: Developing and improving public transportation

options can reduce the reliance on private vehicles, curbing the need for extensive

road networks and lowering the environmental impact of urban sprawl.

iv. Encouragement of Green Infrastructure: Incorporating green spaces, parks, and

urban forests into the city’s fabric can mitigate the environmental effects of urban

expansion, preserve natural habitats, and enhance the quality of life for residents.

v. Promotion of Sustainable Housing: Encouraging the construction of eco-friendly

and energy-efficient housing options not only reduces the environmental footprint

but also provides residents with sustainable and comfortable living environments.

vi. Strengthening Community Participation: Involving the local community in the

decision-making process can help ensure that development aligns with their needs

and values, fostering a sense of ownership and accountability.
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By employing these strategies, STMA can manage its urban growth in a sustainable

and responsible manner, ensuring that the city’s potential for development is harnessed

without compromising the long-term well-being of its residents and the surrounding en-

vironment.
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Chapter 5

Characterization of Land Cover

Maps: Towards the Identification of

Urban Centers and Sub-centers

5.1 Introduction

Urban form is defined as the patterns and layout in the space of physical urban features.

It has an influence on the typology of buildings, mobility, and other urban functions,

thereby becoming a potential cause of a huge impact on the environmental footprint

of a city. Such impacts are becoming increasingly preeminent as most cities develop

further. Most of the existing urban growth models focus on the consumption of natural

and agricultural areas through the urbanization process, which leads to the ubiquitous

urban sprawl model, where a city is an oil stain that diffuses everywhere. In this modeling

approach, the spatial extent, i.e., the size of the city, is used as the main parameter.

The compact city model, which was introduced by Dantzig and Saaty [43], largely favors

higher density for urban areas. That notwithstanding, in order to have cities with higher

sustainability, the morphology of the city has to be understood and described much better

beyond density. The morphology of built-up areas is usually intertwined with develop-

mental factors, such as the cultural, economic, political, and technological conditions of

the period in which these areas were constructed. However, these factors do not remain

constant and are always changing due to several reasons [26, 102, 58].

Density and fractal dimensions are two distinct concepts used in different contexts, includ-
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ing urban planning and spatial analysis. Density refers to the concentration or amount

of something within a given area. In the context of urban planning, density commonly

refers to the number of people or buildings per unit of land area [47]. It is a measure

of how closely packed or concentrated a population or urban development is within a

specific space. Density is an important consideration in urban planning as it influences

various aspects of urban life, including transportation, infrastructure, resource consump-

tion, and social dynamics. High density often indicates a higher number of people or

buildings within a given area, while low density suggests a more spread-out or less popu-

lated environment [60]. Higher population densities generally require more efficient public

transportation systems, compact development patterns, and mixed land uses to promote

walkability and reduce car dependence [12]. A fractal form, on the other hand, is ge-

ometric structure that presents details at whichever scale it is observed. A usual class

of fractals comprises self-similar objects, i.e., objects that replicate themselves at finer

scales through iterative function systems. All fractal objects can be characterized by a

non-integer fractal dimension which describes the rate as well as the degree to which

space is being filled by the fractal object. This reveals important aspects of the structure

through quantification of the degree of irregularity or fragmentation within the object

being modeled [26, 86, 73]. It is noteworthy that fractal objects are abstract idealized

shapes that are not actually observed in reality, similar to a square or a circle. In mea-

suring the fractality of a built-up area, the objective is to determine its fractal dimension

(in fact, several definitions for fractal dimension exist: Hausdorff dimension, Minkowski

dimension, correlation dimension, etc.), which can be obtained by using several methods,

such as: box counting, dilation analysis, and correlation analysis. These methods are used

to obtain global information on a built-up pattern to understand how it occupies space.

They are applied to an urban pattern, considering it as one texture during the analysis.

Another method for determining fractal dimension is radial analysis. Unlike the methods

mentioned earlier (box counting, dilation analysis, and correlation analysis), this method

is used for obtaining local information on the spatial organization around a selected point

within the built-up pattern. It is therefore more of a local than a global approach for

the determination of fractal dimensions [56, 86, 58, 39]. A higher fractal dimension cor-

responds to a highly dense built-up area with very few open spaces interspersed within

the urban fabric, therefore, it is associated with poor environmental conditions. On the

contrary, a lower fractal dimension corresponds to a sparsely distributed built-up area.

Since built-up areas with open green spaces contribute positively to the health of cities
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and their residents, lower fractal dimension of a city is indicative of its good environmental

conditions [100, 73]. While both density and fractal dimensions are valuable for analyzing

built-up areas, fractal dimensions are better suited for studying the spatial organiza-

tion of clusters of buildings in an area because of their inherent hierarchical properties.

Fractal analysis explores the complexity, irregularity, and self-similar patterns within a

system, enabling an understanding of the spatial organization and relationships among

its elements. On the contrary, density provides a vague indication of the amount of space

occupied per unit area, as illustrated in Figure 1.5.

Land cover maps aid in land use planning by conveying information on current land use

patterns and guiding future land use decisions. Analyzing the spatial organization of

land use patterns can help in the identification of suitable areas for specific land uses

like residential, commercial, or industrial zones. This information is crucial for formulat-

ing zoning regulations, determining infrastructure requirements, and advancing sustain-

able development practices. Analyzing the spatial organization of land cover maps offers

valuable insights for urban planning, environmental management, and sustainable devel-

opment. Understanding patterns, fragmentation, connectivity, and distribution of land

cover categories empowers planners to make informed decisions, enhancing ecological in-

tegrity, optimizing land use, and promoting livable, resilient cities [28]. There are several

benefits for studying the spatial organization of urban forms. Regarding environmental

management, spatial organization aids in identifying areas where proposed development

projects may pose risks to sensitive ecosystems, critical habitats, or natural resources

[50]. By understanding the spatial relationships between land cover categories and their

ecological significance, planners can minimize environmental impacts and encourage sus-

tainable land management. Spatial organization analysis also facilitates the examination

of patterns and arrangements of various land cover categories within a landscape. By

studying the distribution and adjacency of land cover types, important insights can be

gained about urban form, ecological connectivity, and the impact of human activities on

landscape and biodiversity [87]. Furthermore, spatial organization assessment enables

the evaluation of fragmentation or connectivity in land cover. Fragmentation refers to

the division of continuous natural areas into smaller, isolated patches, which can have

adverse ecological consequences. Conversely, connectivity refers to the extent to which

different land cover patches are connected, facilitating species movement and ecological

processes. Understanding these characteristics helps identify areas that may require in-

terventions to enhance connectivity or mitigate fragmentation effects [127]. Within the
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context of studying urban sprawl, spatial organization analysis assists in assessing the

extent and spatial patterns of the sprawl. Urban sprawl denotes the uncontrolled expan-

sion of urban areas into surrounding rural or undeveloped land. By examining land cover

maps over a period, urban planners can identify the direction, rate, and form of urban

growth, enabling informed decisions regarding infrastructure development, resource allo-

cation, and environmental conservation to be made [75]. Also, green spaces such as parks,

forests, and recreational areas provide significant ecological, social, and aesthetic benefits

to cities. Analyzing the distribution and accessibility of green spaces on land cover maps

helps in the identification of areas with limited access to nature, guiding efforts to improve

equitable distribution and enhance urban livability.

Besides their complex morphology, cities have a spatial organization that reflects functions

such as urban centers and subcenters and implies another kind of spatial heterogeneity

than the one captured using global fractal dimensions. Batty and Xie [26] concluded

that the ultimate objective of their work was to provide a certain means of classifying

cities according to their physical forms in terms of urban and land use development. The

authors argued that the geometry of urban residential development was fractal since both

the degree and the rate at which space is filled in an urban setting followed the scaling

laws, which implied self-similarity of the urban forms across different scales. However,

these authors restricted their analysis to just one point in the city, the central business

district (CBD), and suggested the possibility of treating all points in the city as origins

when conducting this kind of analysis. Encarnacao et al. [51] extended this a little further

and digitized the built-up area of the metropolitan area of Lisbon into a matrix of square

cells of size 1 km2. The authors then used the box-counting method to determine the

fractal dimension of each cell in the matrix. As stated by the authors, this approach

was adopted because just a single box-counting analysis would provide global information

on the characterization of the built-up area. However, the authors wished to realize the

complete characterization of the built-up area to demonstrate the heterogeneous fractal

property of the built-up areas. In the end, the matrix was classified into five classes based

on the fractal dimension of each cell. The cells with higher fractal dimensions indicated

areas closer to saturation, while the cells with lower fractal dimensions indicated isolated

areas. This classification enabled the identification of areas requiring immediate planning

and regulation based on their urban form.

However, because Encarnacao et al. [51] used the box-counting method, the fractal di-

mension obtained for each cell described how space had generally been occupied in that
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particular cell. In the present study, a method introduced by Frankhauser to classify

urban textures [58] that he named the multi-radial approach was adopted. This method

does not compute an alternate fractal dimension, but rather attributes a local fractal

dimension to each pixel in the analyzed texture. Unlike the box-counting method, the

multi-radial approach considers local effects, such as the distance from a point to its neigh-

boring points. This method is used for obtaining information regarding the local fractal

behavior and spatial organization around a selected point. This approach would provide

greater insight into the urban form than that provided by the traditional density-based

measures, as the former measures the hierarchy and describes the structure of the urban

patterns. A stronger hierarchy would be a high concentration of mass in large clusters

and a large number of buildings with little mass. This kind of local concentration of mass

is inconsistent with a homogeneous distribution, in which all elements are assumed to

have identical sizes [59]. The areas with a stronger hierarchy would then be classified as

urban centers and subcenters.

Urban centers and subcenters are quite significant in the future development of any city

[106]. These centers are essential policy tools in the decentralization of the population and

improving the standards of living with better environmental quality [147]. One prominent

feature of urban centers and subcenters is the high concentration of human activities

compared to the surrounding areas [88]. However, the definition of an urban centers

and subcenters could be subjective because it is always based on the objective of the

research. In any research, urban centers and subcenters may be identified using two

main approaches: the morphological approach or the functional approach [88, 83, 154].

The morphological approach is concerned with the size and spatial distribution of the

centers and subcenters, while the functional approach is concerned with the linkages

between different centers [154]. Various methods, such as minimum cut-off point, spatial

statistical methods, and hedonic price method have been adopted to identify urban centers

and subcenters using data from official statistics, remote sensing, and geospatial big data

systems [106, 89, 34, 88, 95, 154, 94]. The identification of urban centers and subcenters

is important because it assists in planning the balance between jobs and housing and the

ecological capacity of the city centers [146]. Appropriate local jobs–housing balance would

allow for a shortened commuting time of workers, reduced traffic congestion, decreased

air and noise pollution due to automobile movement, and improved overall well-being of

the inhabitants [89]. In addition, a better understanding of urban expansion would be

achieved, which would provide town planners with the information necessary to evaluate
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the effectiveness of the planning layouts [34].

However, unfortunately, studies on the identification of urban centers and subcenters in

cities are scarce, particularly in developing nations, with most such studies reported so

far based on the local context of developed nations only [154]. This could probably be

due to the lack or partial availability of official statistical data or geospatial big data,

such as POIs and social media check-ins, for use by researchers to identify urban centers

and subcenters [101, 94]. Nevertheless, due to the good spatial and temporal resolutions

of freely-available remote sensing images, such as Landsat and Sentinel, the challenge of

inadequate data for the identification of urban centers and subcenters could be dealt with

to a certain extent. Taubenböck et al. [135] used 3D building models derived from remote

sensing data and identified urban centers as areas with high urban mass concentration.

The authors argued that this could be a reasonable substitute for the density data when

identifying the urban centers. Cai et al. [34] combined night-time light imagery with

social media check-in data to locate urban centers and also argued that these data could

serve as valid substitutes for population or human activities in the identification of urban

centers. Li et al. [88] indicated that from empirical results, it is believed that there

is much more potential to be explored by examining the built-environment for research

related to urban structure. In this context, the present study explored the potential of

empirical results in the identification of urban centers and subcenters by attempting to

use built-up data extracted from freely-available remote sensing imagery datasets, which

are usually the only source of consistent spatial data that covers large areas with high

spatial detail and frequency in most developing nations.

The aim of this chapter is to explore the potential of fractal geometry in explicitly iden-

tifying urban centers and sub-centers, as well as understanding their spatial organization

using remote sensing data. This approach aims to design urban growth models that are

more informative compared to the oil-stain models, with GAMA serving as the study area.

The idea is to use the fractal decomposition used in the computation of dimensions to

identify urban hierarchies and facilitate adding structure to the patterns obtained through

the classification of remote-sensing imagery. Morphological image analysis is used as a

complementary image processing technique to highlight the identified urban centers and

subcenters. It is noteworthy that the present study aims only to describe the evolution

of the spatial structure of the built-up patterns and not to explain the underlying rea-

sons for it. This aim requires information and data on population distribution, transport

networks, land prices, land use policies, etc., which are partially unavailable, causing the
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explanation part to be beyond the scope of the present work.

In comparison to the relevant previous studies, the present study offers the unique con-

tribution of integrating multi-radial fractal analyses with mathematical morphology to

identify urban centers and subcenters using only remote sensing images. No study con-

ducted so far, to the best of my knowledge, has used remote sensing, fractal dimensions,

and mathematical morphology for the identification of urban centers and subcenters. The

findings in this study would contribute significantly to the identification of urban centers

and subcenters in cities that do not have adequate statistical data, such as population

census, economic data, and geospatial big data, especially in developing nations.

5.2 Methodology

To explicitly identify urban centers and subcenters of GAMA, and understand their spatial

organization from remote sensing data, the following methodology was employed.

5.2.1 Global Organization

The box-counting method (estimating the Minkowski dimension) was adopted to obtain

global information on the spatial organization of the built-up pattern of GAMA for the

years 1991, 2002, 2013, and 2022. Box counting is a grid-based analysis of an object

(in this case, the built-up area of GAMA), the fractal dimension of which has to be

determined. It provides an estimate of the Minkowski dimension. The built-up area is

covered by a uniform grid composed of squares of size S, and the non-empty squares, N

(squares that are completely or partly filled with the pixels representing the built-up area)

are counted. The size of the squares, S, that form the grid is varied progressively, and the

number of squares, N , required to cover the built-up area in each scenario is determined.

The series of points, (Si, Ni), are plotted on a two-dimensional graph, where the Y-axis

corresponds to the number of squares, Ni, and the X-axis corresponds to the size of the

squares, Si, both of which change in each step [86, 58, 142]. The relationship between the

two variables is then expressed as follows:

N = CS−D (5.1)
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where:

C = Total size of the grid

D = Box counting fractal dimension

The estimation of D is based on a logarithmic transformation of equation 5.1, which

has the form of an equation of a straight line, where D is the slope of the line.

logN = −Dlog(S) + log(C) (5.2)

D is then estimated using an ordinary least square (OLS) regression.

5.2.2 The Curve of Scaling Behavior

The curve of scaling behavior is a chart that illustrates the changes in the fractal dimension

with scale. This curve is a unique way of visualizing the empirical results of fractal analysis

by providing detailed information regarding the spatial organization of urban patterns

[38]. In equation 5.2, which is the equation of a straight line, the fractal dimension is

the value of the slope of the straight line. However, assuming that the fractal dimension

D and the constant C depended on the size of the square S, and based on the fact that the

real-world phenomena do not strictly obey the fractal law, and rather the fractal relation

itself, a sequence of local slope values, α(loc), may be obtained from the relationship, as

follows [59, 58]:

α(loc) = logN(Si−1) − logN(Si)
log(Si) − log(Si−1) (5.3)

The series of points (Si, α
(loc)
i ) may then be plotted on a graph to illustrate the scaling

behavior of the urban pattern under study.

5.2.3 Logistic Growth Model

A logistic function is a common type of sigmoid function that has applications in numerous

fields, including ecology, demography, geoscience, sociology, and artificial neural networks.

The function was first proposed as a population growth model by Verhulst in 1838 and
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has since been used in several biological and economic growth modeling processes [22].

According to Chen [37], any system with distinct upper and lower limits and a non-

uniform growth rate presents a growing course that has an S-shaped curve, which may be

abstracted as a logistic function. On a two-dimensional map, the fractal dimension of the

built-up area ranges between 0 and 2, and the growth rate is non-uniform, which renders it

possible to model the evolution of the fractal dimension with a logistic function. Xiaoming

and Chen [100] modeled the fractal dimension values of a time series in Shenzhen using

logistic function modeling. According to Chen [36], the logistic function for the evolution

of fractal dimension is as follows:

D(t) = Dmax

1 + Aek(t−t0) (5.4)

where:

t = year

t0 = first year to be considered

D(t) = fractal dimension at time t

D0 = fractal dimension at time t = 0

Dmax ≤ 2 = maximum fractal dimension

A = Dmax

D0
− 1

k = growth rate of the fractal dimension

5.2.4 Multi-Radial Analysis

Radial analysis is another method for determining fractal dimensions, which plays a par-

ticular role in urban pattern analysis [59]. This method provides a local estimate of the

correlation dimension and is adopted to obtain information on the local fractal behavior

and spatial organization around a selected point. In order to perform a radial analysis, a

circle with a radius r is drawn around the selected point, and the number of points, N ,

within the circle is determined. The radius, r, is gradually increased while counting the

number of points, N , inside the circle at each step. Next, the series of points, (ri, Ni),

are plotted on a two-dimensional graph, where the Y-axis corresponds to the number of

points Ni, and the X-axis corresponds to the size of the radius, ri, both of which change

in each step. The relationship between the two variables is similar to that expressed in

equation 5.1, with just S replaced with r [86, 58, 142]. The multi-radial analysis is a
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generalization of the radial analysis method, which allows for extracting information on

the spatial organization around a selected cell, i.e., basically, a radial analysis performed

on each pixel in the built-up pattern over a specified range.

5.2.5 Morphological Image Analysis

Mathematical morphology is a theory that provides useful tools for image analysis. This

theory may be applied to eliminate unwanted details from classified remote-sensing im-

ages. The advantage of using mathematical morphology is that it comprises shape-

oriented operations that simplify image data while preserving their essential shape char-

acteristics and eliminating irrelevances [133]. Erosion and dilation are the two basic oper-

ations of mathematical morphology. Basically, erosion removes pixels from the boundaries

of objects, while dilation adds pixels to the boundaries of objects. One important element

in mathematical morphology operations is the structuring element. The size and shape of

the structuring element determine the number of pixels that could be added or removed

in a mathematical morphology operation. The two secondary mathematical morphology

operations are opening and closing. In order to perform the opening operation, the im-

age is first eroded and then dilated. In the closing operation, the image is first dilated

and then eroded. The main difference between the basic operations and the secondary

operations is as follows: the basic operations clean the image and leave the image either

smaller or larger than its original size; and the secondary operations perform the same

function while maintaining the same size of the image as that of the original image prior

to the operation [111].

5.3 Results and Discussion

5.3.1 Global Organisation

The box-counting method (estimating the Minkowski dimension) was adopted to obtain

global information on the spatial organization of the built-up pattern of GAMA for the

years 1991, 2002, 2013, and 2022. The extracted built-up pattern of GAMA for 1991,

2002, 2013 and 2022 is shown in figure 5.1 a-d respectively. The obtained results are

presented in Table 5.1. A general increase in the fractal dimension was observed from

1991 to 2022, as visible in figure 5.2. This indicated a continuous decrease in the number

of open spaces in GAMA, causing the region to be more saturated as the fractal dimension
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approached 2.

Figure 5.1: Extracted built-up pattern of GAMA from the 1991 to 2022.

Table 5.1: Box counting fractal dimension for GAMA during different years

Year Fractal Dimension
1991 1.581
2002 1.687
2013 1.738
2022 1.777

5.3.2 The Curve of Scaling Behavior

The box-counting method provides an overall average of the fractal dimension of the built-

up pattern in the study region, while the scaling behavior is an average of the fractal

dimension at sections along the built-up pattern. In the case of a perfect fractal, the

curve of scaling behavior is a straight line as no variations occur in the fractal dimension.

Figure 5.3 depicts a chart representing the curve of scaling behavior of the built-up

area of GAMA from the year 1991 to 2022. The intercepts of the curves follow the same

increasing order as followed by the fractal dimensions and characterize the repartition of
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Figure 5.2: Evolution of the fractal dimension of built-up area in GAMA from
1991 to 2022.

the smallest boxes. On the right-hand side, the dramatic drop toward zero is because

of the boundary effect, reinforced by the fact that GAMA is a coastal agglomeration.

The shapes of the curves revealed meaningful information on the possibility to model the

entire agglomeration as a single fractal object, i.e., a horizontal curve, indicating that the

texture was homogeneous.

In 1991, the curve of scaling behavior descended gently from 60 m to 330 m and began

undulating in the mid-section from 330 m to around 1.74 km, where it began rising again

until it leveled and then declined again due to boundary effects. The undulations in the

mid-sections on the curve during 1991 were due to the gaps in that section of the study

region in 1991. Therefore, the self-similarity of the 1991 texture was not totally observed

at all scales, thereby revealing the main scales of urban centers. In 2002, when those

gaps were filled, the undulations were not as pronounced as those in the previous year.

The curve for 2002 was fairly-straight until it reached 780 m, where it began rising and

then declined. The characteristic size of the urban centers had increased, and the centers

had begun connecting, resulting in an urban pattern more uniformly covering the entire

agglomeration. The curves for 2013 and 2022 were quite similar, while the curve for 2022

was relatively smoother as compared to the curve for the year 2013. The changes in the

scaling behavior of the 2022 curve were not that sharp due to the saturation of the built-

up pattern this year. The values used for plotting the graph are provided in Appendix

I.
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Figure 5.3: The curve of scaling behavior for GAMA fom 1991–2022

5.3.3 Logistic Growth Model

In order to predict the fractal dimension of GAMA in the future, a logistic growth model

was developed. As presented in table 5.1, the rate of increase in the fractal dimension

from the year 1991 to 2002 (0.106) was nearly twice the rate of increase from 2002 to

2013 (0.051). In the 2013–2022 period, the rate of increase reduced again, compared to

that during 2002–2013. This non-uniformity in the growth rate, coupled with the distinct

upper and lower limits of the fractal dimensions of built-up patterns on a two-dimensional

map, made it possible to model the evolution of fractal dimensions over the period with

a logistic growth function to facilitate the prediction of the future growth [36, 100]. The

evolution of fractal dimension was successfully modeled, and the parameters of the logistic

equation were estimated by identifying the set of parameters that minimized the sum of

squared residuals using the ‘fmin’ optimization tool in the Optimize package of SciPy,

which is based on the Nelder-Mead Simplex Algorithm [117]. The logistic equation for

the evolution of fractal dimension in GAMA is as follows:

D(t) = 1.817
1 + 0.149e0.055(t−1991) (5.5)

With an R2 value of 0.9981, it was estimated that the maximum limit of the fractal

dimension would be reached in 2232. Figure 5.4 presents a chart depicting the logistic

growth pattern of the fractal dimensions in GAMA. Using this model to forecast the
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fractal dimension in the year 2032 yielded a dimension of 1.79, which was similar to the

one obtained for AMA for the year 2022. With a high rate of growth observed in the

GAMA region, the model enabled the assumption that if the urban expansion remains

uncontrolled, the entire region would reach the uniformity of the administrative center

within 10 years.

Figure 5.4: Logistic growth pattern of fractal dimensions for GAMA from
1991–2022

5.3.3.1 Multi-Radial Fractal Analysis

Multi-radial analysis was applied with a radius of 300 meters and generated maps with

each pixel characterized by its local fractal dimension. This ensured correct estimates

of the power law, even in sparse areas, which is important information required to be

processed to reveal meaningful spatial structures. With a ground pixel size of 30 m,

each local radial analysis was performed on approximately 196 pixels, which ensured that

each power law was estimated correctly. In the present study, a manual classification of

the local fractal dimensions was adopted, with thresholds determined based on expert

opinion.

The pixels in the built-up pattern were grouped into four classes according to the fractal

dimension of each pixel. The pixels with dimensions between 0 and 1.25 were classified as

stage 1 because they were considered to be in the first stage of the urbanization process.

In stage 1, the built-up pattern is sparsely distributed and the land cover predominant

in the area is vegetation. The pixels with fractal dimensions between 1.25 and 1.5 were

classified as stage 2, representing the second stage in the urbanization process. This stage
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is characterized by the transition from the sparsely distributed built-up pattern to urban

growth, typically along transport networks, connecting centers and subcenters. The pixels

with fractal dimensions between 1.5 and 1.75 were classified as stage 3. These pixels were

mostly located on the fringes of the saturated areas, which did not have any further space

for expansion, i.e., stage 4. Stage 4 areas comprised pixels with fractal dimensions ranging

between 1.75 and 2. These areas were the most saturated and dominant in the centers

and subcenters of the city. Figure 5.5 a, b, c and d present the maps depicting the

multi-radial fractal dimensions of the study region for the years 1991, 2002, 2013, and

2022, respectively.

Figure 5.5: Multi-radial Fractal Dimensions of GAMA from 1991–2022

In figure 5.5a, which is a map depicting the multi-radial fractal dimensions of the built-

up area of GAMA in the year 1991, the two main centers of GAMA, i.e., AMA and TMA,

could be explicitly identified along with the two subcenters, Madina and LEKMA depicted

in figure 5.6a. Until 2002, these centers and subcenters had expanded (figure 5.6b) and

a new subcenter had emerged in the southwestern corner of the city, GA South. The

north of AMA, which has been expanding in the southwestern direction, had a cluster of

pixels dominated by Stage 1 and Stage 2. This cluster was referred to as a seed as it was

128



attracting new settlements due to its proximity to AMA and was thus expected to grow

into a subcenter. Until 2013, Madina, LEKMA, and AMA had grown so much toward

each other that they had merged to form one big center (figure 5.6c). The seed identified

in figure 5.6b had attracted a lot of settlers and was now considered a subcenter. TMA

had also expanded eastward, contrary to 2002, when very little growth was observed.

In 2022, the center consisting mainly of AMA, Madina, and LEKMA had engulfed the

subcenter at the southwestern corner of the study region to form an even bigger center.

TMA had also become further saturated, for the most part, due to in-filling. Two new

subcenters and several seeds were observed at the peripheries of the two main centers

(figure 5.6d).

5.3.3.2 Morphological Image Analysis

The stage 4 pixels, i.e., the pixels with fractal dimensions ranging from 1.75 to 2 for each

year (1991, 2002, 2013, and 2022), were extracted and processed further using mathemat-

ical morphology to highlight the urban centers and subcenters through the elimination

of unwanted details. According to the definition of an urban center/subcenter as a place

with a high concentration of human activities [88], the areas with large clusters of stage

4 pixels were classified as urban centers and subcenters. Using the two main urban cores

of GAMA observed for the year 1991, AMA and TMA, as standards, clusters smaller

than these centers were classified as subcenters, while the clusters bigger or equal to these

standards were classified as centers. In each year, an appropriate structuring element

was selected for each morphological operation. The morphological operations of opening,

closing, and erosion were performed using OpenCV in python. Figure 5.6a depicts a

map with the centers and subcenters of GAMA in the year 1991. It may be observed

that the two main urban centers,i.e. AMA and TMA, could be explicitly identified in

the map along with a subcenter LEKMA between them. In 2002, as depicted in Figure

5.6b, the centers and subcenter identified in Figure 5.6a had increased in size, and a

few settlements had emerged in the east of AMA and the north of LEKMA. In 2013, as

depicted in Figure 5.6c, the centers had increased in size, as usual, while the subcenter

observed in Figure 5.6a and Figure 5.6b had increased so much in size that it was

comparable to the two main urban centers. Therefore, it was classified as a center now.

New agglomeration settlements were observed toward the east of AMA and the west of

TMA, which were identified as subcenters. Until 2022, as depicted in Figure 5.6d, the

subcenter east of AMA had merged with AMA, forming one big center. The other two
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centers had also merged with the subcenter on the west of TMA, forming another big

center with quite a little space separating them. The multi-radial fractal analyses and

the observed evolution of the urban centers and subcenters in GAMA from 1991 to 2022

revealed a likelihood of the two centers identified in Figure 5.6d merging and forming an

even bigger center, with its subcenters forming in the north and northeast of AMA.

Figure 5.6: Schematic map of Urban Centers and Subcenters in GAMA,
1991–2022

5.3.4 Graphical Modelling with Chorems

A map is a communication tool; and communication is basically a process of successfully

getting information from one party to another. For a map to be able to communicate

effectively, users must be able to understand the meaning of what the cartographer is

sharing. Using symbology closer to how humans reason about commonsense knowledge

can help overcome some of the challenges of language barriers that can result from verbal

communication or communicating through text [44]. Maps are useful in understanding

terrains and the dynamics of events that occur in these terrains, identifying patterns,

and making predictions of future occurrences. However, in as much as maps are useful,

sometimes not all the details displayed in maps are relevant to decision making. Only

sections pertaining to the reason for which the map is being used are useful for decision

making at any given time. Therefore in decision making, generalized maps which stress
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on the most important aspects relevant to the issue being tackled are more informative

to a broader audience than a highly detailed map [40].

In running the affairs of a geographic area, just as business intelligence is helpful in the

success of businesses, territorial intelligence is equally helpful in the understanding and

governing of geographic areas [40]. Territorial intelligence is a multidisciplinary knowledge

that improves the understanding of the connections between socio-ecological transition

and growth. It involves communities, stakeholders and researchers with the aim of pro-

moting inclusiveness and coordinated governance to allow territorial actors to elaborate,

manage and evaluate projects for sustainable development [64]. Due to its participatory

nature which allows several stakeholders to participate in decision making, information

that would be shared must be simple enough to be easily understood, yet detailed enough

to facilitate effective decision making.

This is where the concept of chorems comes into play. Chorems are schematic represen-

tations of geographic spaces which eliminates unwanted details that do not aid in map

comprehension [44]. Using chorems in map making makes communication so efficient

that even nontechnical users of the map are able to easily understand the message being

delivered [32]. Chorems constitute a visual vocabulary for the description of the main

characteristics of a territory, and can therefore be a solid basis for decision making be-

cause they highlight the salient aspects of the map by leaving aside other aspects not so

relevant to the matter being addressed. Visual models based on chorems can interpret

and represent spaces, their geographic distributions and their dynamics [40]. Figure 5.7

is a map showing the schematic representation of the urban growth process of GAMA

based on the spatial organization of the urban centers, subcenters, and the localization of

the major transport networks.

5.3.5 Conclusion

Measuring the homogeneity of urban development as well as identifying urban centers and

subcenters are crucial steps to understand the growth and development of cities. However,

identifying such structural information can be challenging, especially in cities where data

availability is limited. The objective of this study was to address the challenge of limited

data availability in the identification of urban centers and subcenters by proposing a novel

approach that utilizes freely available remote sensing data and fractal analysis. While

several previous studies have investigated urban growth and development in GAMA, this
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Figure 5.7: Schematic representation of urban growth in GAMA

study differs in its specific focus on the identification of urban centers and subcenters using

fractals and remote sensing data. Unlike previous studies that may have used different

methods or focused on other aspects of urbanization, this research aims to fill a gap in

the literature on identifying centers and subcenters in cities in developing countries and

provide more comprehensive insights for urban growth modeling while addressing the

challenge of limited data availability.

To bridge this gap, only freely available remote sensing data were used to identify urban

centers and subcenters. The methodology used is easy to replicate and it does not require

one to have ample knowledge of the study area. The findings in this research provides

significant contributions to not only the identification but also the spatial organization

of urban centers and subcenters in cities that do not have adequate statistical data such

population census, economic data or geospatial big data, especially in developing counties.

Replication of the methodology used would help contribute to a robust and comprehensive

database on the cities in the world. The present study successfully combined multi-radial

fractal analyses with mathematical morphology operations to reveal the urban centers

and subcenters that were otherwise hidden in the built-up patterns extracted from remote

sensing images.

The logistic growth modelling of the fractal dimensions and analysis of the GAMA re-

gion revealed that in less than 10 years, the whole region is likely to reach the kind of

urban pattern that is usually present in the city centers, in terms of both density and

spatial organization. Moreover, the local fractal analysis revealed significant changes in
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the hierarchy of the centers and subcenters, with the emergence of a large connected re-

gion along the seashore and secondary centers that are located farther and farther to the

north. Lastly, urbanization along the roads appears to be the new emerging pattern as

far as land saturation is concerned (Figure 5.8). The in-filling process of urban growth

appears to have reached a saturation point.

Figure 5.8: Emerging urbanization along the roads in GAMA, 2022

Compared with previous studies in this field, this study makes the unique contribution of

integrating multiradial fractal analyses with mathematical morphology to identify urban

centers and subcenters from only remote sensing images. To the best of my knowledge, no

research has been done and published using remote sensing, fractal dimensions and math-

ematical morphology to identify the spatial organization of urban centers and subcenters.

Future research on urban growth forecasting will use all the structural information ex-

tracted in new methods combining continuous change and discrete events, such as the

emergence of new centers and subcenters.
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Chapter 6

Conclusion and Recommendations

6.1 Conclusion

6.1.1 Methodological

A novel approach was proposed to compare three satellite image classification methods:

random forest(RF), support vector machine (SVM), and simple linear iterative clustering

(SLIC). This comparison was based primarily on the effects of a classification method

on the resulting land cover map, in spite of similarities in their kappa scores and overall

accuracies. This was done by measuring certain characteristics of the identified land cover

types such as: total edge, number of patches and fractal dimension. These characteristics

are not captured by the overall accuracies and kappa scores, yet, they represent the form

and shape of the classified land cover types. It was concluded that although different

classification methods may possess similar overall accuracies and kappa scores, subtle dif-

ferences in qualities such as lacunarity and edge length of identified land cover types could

be detected. These differences serve as important factors in guiding analysts to choose

a more suitable classification method for their specific project requirements. Among the

image classification methods compared, it was observed that land cover maps resulting

from RF classification produced the most detailed land cover maps. However, for a more

generalized land cover map, SLIC was the best option. Using random forest to classify

satellite images of GAMA (1991-2022), different forms of urban growth such as:

i. extension - the expansion of the urban area outward, essentially increasing the urban

footprint by adding new developments;

ii. leapfrog - urban growth that has occurred sporadically, with certain areas being
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developed while leaving gaps or undeveloped spaces in between; and

iii. infilling - urban growth has occurred by filling in or developing areas within the

existing urban footprint, rather than expanding outward

were captured in the urban growth pattern of the study area, demonstrating an urban

hierarchy.

Urban hierarchy typically refers to a system in which urban areas are ranked or organized

based on their size, importance, and functions. The study area, GAMA, being charac-

terized by a mixture of developed areas with buildings and undeveloped or open spaces,

kept changing as the years progressed resulting in an evolution of the urban hierarchy.

The evolution of the urban hierarchy was successfully tracked by analyzing spatial pat-

terns using landscape metrics. The findings revealed a significant transformation in the

land cover composition of the region, with the Built-up land cover type now dominating

over the previously dominant Vegetation land cover type. The landscape metrics further

revealed extensive fragmentation of the Vegetation land cover type, indicating a negative

impact on biodiversity conservation, species movements, ecosystem functioning, and long-

term ecological resilience. Additionally, the study successfully predicted the land cover

and landscape pattern of GAMA for the year 2030 using information extracted from the

satellite images. Information on the urban hierarchy was used as an explanatory vari-

able in conjunction with a predictive modelling techniques such as Land change modeler,

Markov chain cellular automata, and Netlogo to forecast how the spatial organization

of the landscape pattern of GAMA in the future. The trends observed highlighted the

importance of considering landscape connectivity, habitat fragmentation and spatial ar-

rangement of land cover types in assessing ecological processes and urban development

impacts on the environment. While the research focused on vegetation, which is a critical

component of the natural ecosystem, it is important to note that data on species richness

were not incorporated. Unfortunately, data availability constraints and the scope of the

work prevented this valuable aspect from being included in the analysis.

The goal of this thesis was to address the challenge of the lack or partial availability of

data in the identification of urban centers and subcenters, therefore, no additional data

was used aside freely available remote sensing data. That notwithstanding, an additional

method, mathematical morphology, was adopted. Mathematical morphology is a field of

mathematical theory and image processing that deals with the analysis and processing of

images or other spatial structures. It was applied to eliminate unwanted details from the
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processed remote sensing images. By successfully combining mathematical morphology

with multiradial fractal analysis, a method used to obtain information on the local fractal

behavior and spatial organization around a selected point, sections of the built up pattern

extracted from the freely available remote sensing data where of higher fractal dimensions

were identified and classified as urban centers and subcenters. These centers are morpho-

logical centers, which are characterized by high concentration of human activities present

there as compared to surrounding areas. The presence of human activities were equated

to the presence of built up land cover type. The intensity of the human activities were

equated to the fractal dimensions, therefore, the higher the fractal dimension, the higher

the intensity of human activities present there.

The urban growth process was sketched based on the spatial organization of urban cen-

ters, subcenters, and the localization of the main transport networks. This was done by

first identifying the existing urban centers and subcenters within the city. The major

transportation networks were then plotted on the sketch. Arrows were used to repre-

sent the expected directions of urban growth from the existing centers and subcenters

considering how growth is likely to radiate from the city center and how transportation

networks might facilitate this expansion. Concentric circles were used to represent poten-

tial areas for future urban development. Creating such a sketch, often referred to as an

urban growth model or a conceptual diagram, helps visualize and understand how a city

or urban area is likely to evolve over time. This kind of sketch can be a valuable tool for

urban planners, policymakers, and stakeholders to visualize and communicate expected

urban growth process. It can also serve as a foundation for more detailed urban planning

and development strategies.

6.1.2 Thematic

Urban growth refers to the expansion of urban areas, which includes an increase in the

physical size and population of cities and towns. It is a fundamental aspect of urban

development and is often measured in terms of the expansion of built-up areas, the increase

in the number of buildings and infrastructure, and the growth of the urban population.

Urban growth can result from various factors, including natural population growth (births

exceeding deaths), rural-to-urban migration, and the reclassification of rural areas into

urban ones. In this thesis, urban growth was measured based on the expansion of built-

up areas as identified on freely available remote sensing data (satellite images). The

current research aimed to design urban growth models that were more informative than
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“oil stain” models; and identify urban centers, subcenters and their spatial organization

from only freely available remote sensing data. This is because, despite the importance of

the identification of urban centers and subcenters in the sustainable development of cities,

there are not enough studies on the subject within the context of developing countries

owing to the lack or partial availability of data to do so. To bridge the gap of there not

being enough studies on the subject within the context of developing countries and address

the challenge of data unavailability in the identification of urban centers and subcenters,

the current research sought to ascertain whether or not:

i. fractal geometry could be used to explicitly identify urban centers, subcenters, and

their spatial organization from remote sensing data;

ii. it were possible to characterize the spatial organization of urban centers and sub-

centers while analyzing urban growth; and

iii. it were possible to sketch urban growth process based it the spatial organization

of urban centers, subcenters, and the localization of the shape of main transport

networks.

Based on the findings of the research, it can be concluded that while fractal geometry

can provide valuable insights into the complexity and organization of urban areas, it is

just one component of a broader toolkit for urban analysis. To explicitly identify urban

centers, subcenters, and their spatial organization from remote sensing data, additional

methods and data sources will be required. Here, urban centers and subcenters were

defined as areas with high concentration of human activities as compared to surrounding

areas. The difference between them is that urban centers are densely populated areas

that serve as hubs for social, cultural and economic activities, whereas subcenters are

smaller scale versions of the urban centers, designed to provide many of the same benefits

as urban centers but on a more localized level. While urban centers are typically lo-

cated in the central business district (CBD) of a city, characterized by high rise buildings,

busy streets, and a diverse mix of people and businesses, subcenters are located outside

of the CBD. Also, the research has demonstrated that it is possible to characterize the

spatial organization of urban centers and subcenters with the objective of analyzing ur-

ban growth. Characterizing the spatial organization of urban centers and subcenters is

a crucial aspect of urban planning and management. With this novel technology, prac-

titioners can easily make preliminary studies of the evolution of urban areas to get an

idea of where future growth is likely to happen at a cheaper and faster rate. It helps
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in understanding the dynamics of urban growth, infrastructure needs, and the allocation

of resources for sustainable development. These analyses are often performed by urban

planners, geographers, and researchers to inform policy decisions and urban development

strategies. This can be achieved through a combination of geographic information system

(GIS) techniques, remote sensing data, and spatial analysis.

6.2 Recommendations

Further research is needed to explore the use of machine learning and artificial intelligence

techniques to automate the identification and classification of urban centers and subcen-

ters from remote sensing data. This could involve developing algorithms that can adapt

to different urban contexts and improve accuracy. Also, additional case studies should be

conducted in different urban areas to validate the methodology developed in this research.

This will help assess the applicability of the combination of mathematical morphology and

multi-radial fractal analysis in various urban contexts and geographic regions. Compar-

ative studies should be conducted between developed and developing countries to assess

the transferability of the methodology and to identify unique challenges and opportunities

in different urbanization contexts. Also, interdisciplinary collaboration should be encour-

aged between urban planners, geographers, remote sensing experts, and data scientists.

This can lead to a more comprehensive approach to urban analysis and help bridge the

gap between research and practical applications. Open data initiatives and increased ac-

cessibility to high resolution remote sensing data should be advocated for in developing

countries. Collaboration with local and international organizations to make such data

available can facilitate further research in this field. These recommendations will help

to build on the findings of the research and contribute to the advancement of urban

planning and sustainable development practices, particularly in the context of developing

nations.
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Appendix A

Population of GAMA, 2010 and

2021

A.1 Population of GAMA, 2010 and 2021

Municipality Population 2010 Population 2021
Ga South 234 191 350 121
Ga West 205 351 549 591
Sowutuom 117 220 332 232
AMA 1 665 086 1 281 570
La Dadekotopon 183 528 140 264
Ga East 147 742 283 379
Madina 111 926 244 676
Adenta 78 215 237 546
LEKMA 125 873 217 304
Ashiaman 190 972 208 060
TMA 292 773 374 148
Kpone Katamanso 109 864 417 334
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Appendix B

Python Scripts for Image

Classification

B.1 Image Classification Script - RF

# write classified image as a tiff file

def createGeotiff(outRaster, data, geo_transform, projection):

# Create a GeoTIFF file with the given data

driver = gdal.GetDriverByName(’GTiff’)

rows, cols = data.shape

rasterDS = driver.Create(outRaster, cols, rows, 1, gdal.GDT_Int32)

rasterDS.SetGeoTransform(geo_transform)

rasterDS.SetProjection(projection)

band = rasterDS.GetRasterBand(1)

band.WriteArray(data)

rasterDS = None

# Display map

def color_image_show(img, title):

fig = plt.figure(figsize=(15,15))

fig.set_facecolor(’white’)

plt.imshow(img)

plt.title(title)

plt.show()
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import numpy as np

import gdal

import pandas as pd

import geopandas as gpd

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import cohen_kappa_score

import joblib

# define input raster and output raster path

inpRaster = ’Images/2013_cmpst_filledc.tif’

outRaster = ’Classified/RF_GAMA_2013.tif’

# Read Raster Data

ds = gdal.Open(inpRaster)

# Retrieve raster attributes

rows = ds.RasterYSize

cols = ds.RasterXSize

bands = ds.RasterCount

gt = ds.GetGeoTransform()

proj = ds.GetProjection()

# Read Raster as Array

array = ds.ReadAsArray() #(bands, rows, cols)

#modify structure by stacking bands to dorm one element

array = np.stack(array,axis=2) #(rows, cols, bands)

# reshape to a 2d array so that it can match with the training data

array = np.reshape(array, [rows*cols,bands])
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# convert array to dataframe to keep both test and training

# data in the same structure

array_df = pd.DataFrame(array, dtype=’int16’)

# Read training data

gdf = gpd.read_file("ground_truth/2013_truth.shp")

class_names = gdf[’Label’].unique() # get class names

print ("class names", class_names)

class_ids = np.arange(class_names.size)+1 # assign ids to class names

print(’class ids’, class_ids)

#create a dataframe of the class names and class ids

#df.to_csv("GAMA_2020 data/class_lookup.csv")

# save dataframe as csv for future reference

df = pd.DataFrame({’Label’: class_names, ’id’: class_ids})

print(’gdf without ids’, gdf.head())

#add class ids to the shapefile

gdf[’class_id’] = gdf[’Label’].map(dict(zip(class_names, class_ids)))

print(’gdf with ids’, gdf.head())

# divide truth data data into test and train data

gdf_train = gdf.sample(frac=0.7)

gdf_test = gdf.drop(gdf_train.index)

print(’gdf shape’, gdf.shape, ’training shape’,

gdf_train.shape, ’test’, gdf_test.shape)

gdf_train.to_file("ground_truth/GAMA_2013_train.shp")

gdf_test.to_file("ground_truth/GAMA_2013_test.shp")

#enter features to used for training according
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#how they are named in the columns of training data

data = gdf_train[[’b1_GAMA_13’, ’b2_GAMA_13’, ’b3_GAMA_13’,

’b4_GAMA_13’, ’b5_GAMA_13’,’b6_GAMA_13’,

’b7_GAMA_13’, ’b8_GAMA_13’, ’b9_GAMA_13’]]

#enter training label according to your csv column name

label = gdf_train[’class_id’]

data_test = gdf_test[[’b1_GAMA_13’, ’b2_GAMA_13’, ’b3_GAMA_13’,

’b4_GAMA_13’, ’b5_GAMA_13’, ’b6_GAMA_13’, ’b7_GAMA_13’,

’b8_GAMA_13’, ’b9_GAMA_13’]]

label_test = gdf_test[’class_id’]

####no need to modify the code below###

#######################################

#set classifier parameters and train classifier

clf = RandomForestClassifier(n_jobs=-1)

clf.fit(data,label)

#predict classes

y_pred = clf.predict(array_df)

#reshape predicted classes into a 2d array

classification = y_pred.reshape((rows,cols))

#export classified image

createGeotiff(outRaster,classification,gt,proj)
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#Accuracy assessment

#check performance of classifier on test data

clf.score(data_test,label_test)

#check performance of classifier on train data

clf.score(data,label)

# classification report

x_pred= clf.predict(data_test)

print(classification_report(label_test, x_pred,

target_names=class_names))

#confusion matrix

cm = confusion_matrix(label_test, x_pred)

pd.DataFrame(cm, index=class_names, columns=class_names)

kappa= cohen_kappa_score(label_test, x_pred)

kappa

#joblib.dump(clf, "RF_GAMA_13")

#mj = joblib.load("C:/Users/kbons/Desktop/Classification Scripts/RF_GAMA_13")

B.2 Image Classification Script - SVM

# write classified image as a tiff file

def createGeotiff(outRaster, data, geo_transform, projection):

# Create a GeoTIFF file with the given data

driver = gdal.GetDriverByName(’GTiff’)

rows, cols = data.shape

rasterDS = driver.Create(outRaster, cols, rows, 1, gdal.GDT_Int32)

rasterDS.SetGeoTransform(geo_transform)

rasterDS.SetProjection(projection)
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band = rasterDS.GetRasterBand(1)

band.WriteArray(data)

rasterDS = None

# Display map

def color_image_show(img, title):

fig = plt.figure(figsize=(15,15))

fig.set_facecolor(’white’)

plt.imshow(img)

plt.title(title)

plt.show()

# import necessary libraries

import numpy as np

import gdal

import pandas as pd

import geopandas as gpd

import matplotlib.pyplot as plt

from sklearn.svm import SVC

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import cohen_kappa_score

import joblib

# define input raster and output raster path

inpRaster = ’Images/2013_cmpst_filledc.tif’

outRaster = ’Classified/SVM_GAMA_2013.tif’

# Read Raster Data

ds = gdal.Open(inpRaster)

# Retrieve raster attributes

rows = ds.RasterYSize
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cols = ds.RasterXSize

bands = ds.RasterCount

gt = ds.GetGeoTransform()

proj = ds.GetProjection()

# Read Raster as Array

array = ds.ReadAsArray() #(bands, rows, cols)

#modify structure by stacking bands to dorm one element

array = np.stack(array,axis=2) #(rows, cols, bands)

# reshape to a 2d array so that it can match with the training data

array = np.reshape(array, [rows*cols,bands])

# convert array to dataframe to keep both test and training

# data in the same structure

array_df = pd.DataFrame(array, dtype=’int16’)

# Read training data

gdf = gpd.read_file("ground_truth/2013_truth.shp")

class_names = gdf[’Label’].unique() # get class names

print ("class names", class_names)

class_ids = np.arange(class_names.size)+1 # assign ids to class names

print(’class ids’, class_ids)

#create a dataframe of the class names and class ids

#df.to_csv("GAMA_2020 data/class_lookup.csv")

# save dataframe as csv for future reference

df = pd.DataFrame({’Label’: class_names, ’id’: class_ids})

print(’gdf without ids’, gdf.head())

#add class ids to the shapefile

gdf[’class_id’] = gdf[’Label’].map(dict(zip(class_names, class_ids)))
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print(’gdf with ids’, gdf.head())

# divide truth data data into test and train data

gdf_train = gdf.sample(frac=0.7)

gdf_test = gdf.drop(gdf_train.index)

print(’gdf shape’, gdf.shape, ’training shape’,

gdf_train.shape, ’test’, gdf_test.shape)

gdf_train.to_file("ground_truth/GAMA_2013_train.shp")

gdf_test.to_file("ground_truth/GAMA_2013_test.shp")

#enter features to used for training according

#how they are named in the columns of training data

data = gdf_train[[’b1_GAMA_13’, ’b2_GAMA_13’, ’b3_GAMA_13’,

’b4_GAMA_13’, ’b5_GAMA_13’,’b6_GAMA_13’,

’b7_GAMA_13’, ’b8_GAMA_13’, ’b9_GAMA_13’]]

#enter training label according to your csv column name

label = gdf_train[’class_id’]

data_test = gdf_test[[’b1_GAMA_13’, ’b2_GAMA_13’, ’b3_GAMA_13’,

’b4_GAMA_13’, ’b5_GAMA_13’, ’b6_GAMA_13’, ’b7_GAMA_13’,

’b8_GAMA_13’, ’b9_GAMA_13’]]

label_test = gdf_test[’class_id’]

####no need to modify the code below###

#######################################

#set classifier parameters and train classifier
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#set classifier parameters and train classifier

clf = SVC(kernel = ’linear’)

clf.fit(data,label)

#predict class

y_pred = clf.predict(array_df)

#reshape predicted classes into a 2d array

classification = y_pred.reshape((rows,cols))

# display image

color_image_show(classification, ’GAMA Support Vector Machine 2022’)

#export classified image

createGeotiff(outRaster,classification,gt,proj)

#Accuracy assessment

#check performance of classifier on test data

clf.score(data_test,label_test)

#check performance of classifier on train data

clf.score(data,label)

# classification report

x_pred= clf.predict(data_test)

print(classification_report(label_test, x_pred, target_names=class_names))

#confusion matrix

cm = confusion_matrix(label_test, x_pred)

pd.DataFrame(cm, index=class_names, columns=class_names)

kappa= cohen_kappa_score(label_test, x_pred)

kappa

#joblib.dump(clf, "SVM_GAMA_13")
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#mj = joblib.load("C:/Users/kbons/Desktop/Classification Scripts/SVM_GAMA_13")

B.3 Image Classification Script - SLIC K-Means

def color_image_show(img, title):

fig = plt.figure(figsize=(15,15))

fig.set_facecolor(’white’)

plt.imshow(img)

plt.title(title)

plt.show()

import gdal

import numpy as np

import matplotlib.pyplot as plt

img = gdal.Open(’C:/Users/kbons/Desktop/Anibere/2020/Corrections/2020_cmpst_ps.tif’)

driverTiff = gdal.GetDriverByName("Gtiff")

rows = img.RasterYSize

cols = img.RasterXSize

gt = img.GetGeoTransform()

proj = img.GetProjection()

n = img.RasterCount

import numpy as np

B1m = img.GetRasterBand(4).ReadAsArray()

B2m = img.GetRasterBand(3).ReadAsArray()

B3m = img.GetRasterBand(2).ReadAsArray()

import numpy.ma as ma

B1 = ma.masked_less_equal(B1m,0)

B2 = ma.masked_less_equal(B2m,0)

B3 = ma.masked_less_equal(B3m,0)
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B1 = B1/B1.max()

B2 = B2/B2.max()

B3 = B3/B3.max()

img432 = np.dstack((B1,B2,B3))

color_image_show(img432, "RGB")

from skimage import exposure

fig= plt.figure(figsize= (15,15))

fig.set_facecolor(’white’)

for color, channel in zip(’rgb’, np.rollaxis(img432, axis = -1)):

counts, centers = exposure.histogram(channel)

plt.plot(centers[1::], counts[1::], color=color)

plt.show()

RGB_ha_m = np.empty(img432.shape,dtype="float32")

lims =[(0.37,0.47),(0.15,0.24),(0.11,0.19)]

for lim, channel in zip(lims, range(3)):

RGB_ha_m[:, :, channel] = exposure.rescale_intensity(img432[:, :,

channel], lim)

color_image_show(RGB_ha_m, "RGB Stretched")

RGB_ha_m[:,:,0] = exposure.adjust_gamma(RGB_ha_m[:,:,0], 0.82)

RGB_ha_m[:,:,1] = exposure.adjust_gamma(RGB_ha_m[:,:,1], 0.87)

RGB_ha_m[:,:,2] = exposure.adjust_gamma(RGB_ha_m[:,:,2], 0.92)

RGB_ha = ma.masked_less_equal(RGB_ha_m,0)

color_image_show(RGB_ha, "Stretched RGB gamma adjusted")

from skimage.color import rgb2gray

RGB_graym = rgb2gray(RGB_ha)

plt.figure(figsize=(15,15))

plt.imshow(RGB_graym)
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RGB_gray = RGB_graym

RGB_gray = ma.masked_less_equal(RGB_gray, 0) #mask

plt.figure(figsize=(15,15))

plt.imshow(RGB_gray)

import time

from skimage.segmentation import slic

segments_f = slic(RGB_gray, n_segments= 50000, mask=B1)

start = time.time()

print("it took", ((time.time()-start)), "seconds for segmentation")

from skimage import color

plt.figure(figsize=(15,15))

plt.imshow(color.label2rgb(segments_f, RGB_ha, kind=’avg’))

print("it took", ((time.time()-start)/60), "mins for segmentation/plotting")

from skimage import measure

regions = measure.regionprops(segments_f, intensity_image=RGB_gray)

region_means = [r.mean_intensity for r in regions]

plt.hist(region_means, bins=20)

from sklearn.cluster import KMeans

model = KMeans(n_clusters = 5)

region_means = np.array(region_means).reshape(-1,1)

# fit model

model.fit(region_means)

print(model.cluster_centers_)

# predict labels

features_labels = model.predict(region_means)

features_labels
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# label raster appropriately

classified_labels = segments_f.copy()

for features, region in zip(features_labels, regions):

classified_labels[tuple(region.coords.T)]=features

plt.figure(figsize=(15,15))

plt.imshow(color.label2rgb(classified_labels, image=RGB_ha,

bg_label=0))

#save

driver = gdal.GetDriverByName("GTiff")

driver.Register()

output = driver.Create("2020.tif", cols, rows, 1, gdal.GDT_Float32)

output.SetGeoTransform(gt)

output.SetProjection(proj)

output.GetRasterBand(1).SetNoDataValue(-99999)

output.GetRasterBand(1).WriteArray(classified_labels)

output.FlushCache()

output = None
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Appendix C

Classification Report, GAMA

C.1 Image Classification Report - RF

Table C.1: RF Classification Report, GAMA 1991

Precision Recall F1-Score Support
Built-up 0.96 0.97 0.96 132
Water 1 0.99 0.99 76
vegetation 0.95 0.95 0.95 104
Transition 0.82 0.79 0.81 39

Confusion Matrix
Built-up Water vegetation Transition

Built-up 128 0 1 3
Water 0 75 1 0
vegetation 1 0 99 4
Transition 5 0 3 31
Overall Accuracy 0.9487179
Kappa Score 0.927807
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Table C.2: RF Classification Report, GAMA 2002

Precision Recall F1-Score Support
Built-up 0.94 0.97 0.95 153
Water 1 1 1 60
Vegetation 0.94 0.93 0.93 111
Transition 0.85 0.82 0.83 77

Confusion Matrix
Built-up Water Vegetation Transition

Built-up 148 0 1 4
Water 0 60 0 0
Vegetation 1 0 103 7
Transition 8 0 6 64
Overall Accuracy 0.906074
Kappa Score 0.906074

Table C.3: RF Classification Report, GAMA 2013

Precision Recall F1-Score Support
Built-up 0.97 0.93 0.95 100
Water 1 1 1 37
Vegetation 0.88 0.95 0.92 87
Transition 0.8 0.74 0.77 47

Confusion Matrix
Built-up Water Vegetation Transition

Built-up 93 0 2 5
Water 0 37 0 0
Vegetation 0 0 83 4
Transition 3 0 9 35
Overall Accuracy 0.915129
Kappa Score 0.880653

Table C.4: RF Classification Report, GAMA 2022

Precision Recall F1-Score Support
Built-up 0.93 0.95 0.94 109
Water 1 0.98 0.99 64
Vegetation 0.98 0.99 0.99 117
Transition 0.86 0.8 0.83 45

Confusion Matrix
Built-up Water Vegetation Transition

Built-up 104 0 0 5
Water 1 63 0 0
Vegetation 0 0 116 1
Transition 7 0 2 36
Overall Accuracy 0.916417
Kappa Score 0.933241
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C.2 Image Classification Report - SVM

Table C.5: SVM Classification Report, GAMA 1991

Precision Recall F1-Score Support
Built-up 0.97 0.94 0.95 120
Water 0.99 1 0.99 97
Vegetation 0.97 0.93 0.95 102
Transition 0.71 0.84 0.77 32

Confusion Matrix
Built-up Water Vegetation Transition

Built-up 113 0 1 6
Water 0 97 0 0
Vegetation 1 1 95 5
Transition 3 0 2 27
Overall Accuracy 0.945869
Kappa Score 0.924596

Table C.6: SVM Classification Report, GAMA 2002

Precision Recall F1-Score Support
Built-up 0.97 0.94 0.95 154
Water 1 1 1 57
Vegetation 0.96 0.93 0.95 120
Transition 0.81 0.89 0.84 70

Confusion Matrix
Built-up Water Vegetation Transition

Built-up 145 0 1 8
Water 0 57 0 0
Vegetation 1 0 112 7
Transition 4 0 4 62
Overall Accuracy 0.93765586
Kappa Score 0.912842761
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Table C.7: SVM Classification Report, GAMA 2013

Precision Recall F1-Score Support
Built-up 0.92 0.98 0.95 98
Water 0.97 1 0.99 35
Vegetation 0.9 0.85 0.87 92
Transition 0.75 0.72 0.73 46

Confusion Matrix
Built-up Water Vegetation Transition

Built-up 96 0 1 1
Water 0 35 0 0
Vegetation 3 1 78 10
Transition 5 0 8 33
Overall Accuracy 0.8929889
Kappa Score 0.848752

Table C.8: SVM Classification Report, GAMA 2022

Precision Recall F1-Score Support
Built-up 0.96 0.88 0.92 104
Water 1 1 1 68
Vegetation 1 0.99 1 124
Transition 0.73 0.9 0.8 39

Confusion Matrix
Built-up Water Vegetation Transition

Built-up 92 0 0 12
Water 0 68 0 0
Vegetation 0 0 123 1
Transition 4 0 0 35
Overall Accuracy 0.94925373
Kappa Score 0.929248506
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Appendix D

Map comparing RF, SMV and SLIC

K-Means
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Figure D.1: Map comparing RF, SMV and SLIC K-Means
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Appendix E

Fractal Dimension, Total Edge and

Patch Number charts

E.1 Fractal Dimension, GAMA 1991, 2002, 2013

and 2023
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Figure E.1: FD GAMA 1991, 2002, 2013 and 2022
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E.2 Total Edge, GAMA 1991, 2002, 2013 and 2022
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Figure E.2: TE GAMA 1991, 2002, 2013 and 2022
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E.3 Patch Number, GAMA 1991, 2002, 2013 and

2022
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Figure E.3: TE GAMA 1991, 2002, 2013 and 2022
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Appendix F

Map of Section A, B and C

F.1 Section A, GAMA 1991, 2002, 2013 and 2022

(a) Section A GAMA 1991 (b) Section A GAMA 2002

(c) Section A GAMA 2013 (d) Section A GAMA 2022

Figure F.1: FD GAMA 1991, 2002, 2013 and 2022
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F.2 Section B, GAMA 1991, 2002, 2013 and 2022

(a) Section B GAMA 1991 (b) Section B GAMA 2002

(c) Section B GAMA 2013 (d) Section B GAMA 2022

Figure F.2: FD GAMA 1991, 2002, 2013 and 2022
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F.3 Section C, GAMA 1991, 2002, 2013 and 2022

(a) Section C GAMA 1991 (b) Section C GAMA 2002

(c) Section C GAMA 2013 (d) Section C GAMA 2022

Figure F.3: FD GAMA 1991, 2002, 2013 and 2022
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Appendix G

Fractal Dimension, Total Edge, and

Patch numbers of Section A, Section

B and Section C
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Table G.1: FD, TE, and PN of Section A

Section A 1991
Land Cover Type Random Forest Support Vector Machine SLIC K-Means

FD TE PN FD TE PN FD TE PN
Built-up 1.693 1226610 1573 1.693 1157460 1563 1.661 392640 230

Transition 1.506 1758000 3787 1.465 1298160 2642 1.519 573240 303
Vegetation 1.822 1558740 1471 1.824 1278240 1113 1.833 359250 82

Water 1.414 170370 124 1.4 219480 294 1.435 221010 123
Section A 2002

Land Cover Type Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.81 2499210 2591 1.813 2215080 2520 1.68 631170 203
Transition 1.618 2876580 6760 1.6 2169210 4444 1.675 1028010 335
Vegetation 1.722 2175930 2651 1.711 1925340 2167 1.72 601530 283

Water 1.388 150900 132 1.394 144090 105 1.435 221010 123
Section A 2013

Land Cover Type Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.847 2435760 1729 1.848 2298930 1758 1.76 757110 262
Transition 1.624 2801400 5008 1.63 2647110 4345 1.694 1064010 327
Vegetation 1.608 1267170 1937 1.585 1143060 1649 1.595 449040 190

Water 1.436 123030 84 1.444 130380 70 1.436 221340 123
Section A 2022

Land Cover Type Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.865 2067390 1170 1.869 1419840 726 1.765 686820 315
Transition 1.59 2498940 4243 1.576 1848180 3246 1.726 892470 217
Vegetation 1.499 785550 1023 1.419 579390 675 1.535 317520 96

Water 1.456 135720 80 1.413 167130 194 1.435 221010 123
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Table G.2: FD, TE, and PN of Section B

Section B 1991
Land Cover Type Random Forest Support Vector Machine SLIC K-Means

FD TE PN FD TE PN FD TE PN
Built-up 1.719 3388650 4659 1.71 2968470 4318 1.63 667590 171

Transition 1.77 5519070 7327 1.761 3999390 4629 1.723 1271580 206
Vegetation 1.8 3616620 4646 1.784 2550420 3046 1.818 659910 134

Water 0.889 66360 128 0.986 131760 275 0.945 53280 51
Section B 2002

Land Cover Type Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.791 3751020 4126 1.785 3428460 3692 1.623 726750 241
Transition 1.749 5137350 9019 1.743 4024410 6296 1.724 1522980 264
Vegetation 1.756 3177000 3887 1.745 2670120 2909 1.808 900510 164

Water 0.933 72510 121 0.948 72150 108 0.945 53280 51
Section B 2013

Land Cover Type Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.858 4390020 4222 1.851 4096500 4101 1.717 1142670 295
Transition 1.747 5388300 8630 1.777 5114040 6835 1.801 1900170 291
Vegetation 1.648 2688030 4180 1.576 2009430 3242 1.652 837240 203

Water 0.913 42570 56 0.938 45870 61 0.945 53100 50
Section B 2022

Land Cover Type Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.878 3821520 3869 1.883 3119580 2665 1.761 706290 148
Transition 1.733 4892070 5093 1.711 4286370 4597 1.771 1258230 151
Vegetation 1.545 1521300 2439 1.536 1364850 2173 1.629 578700 148

Water 0.923 43410 90 0.932 63600 132 0.945 53280 51
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Table G.3: FD, TE, and PN of Section C

Section C 1991
Land Cover Type Random Forest Support Vector Machine SLIC K-Means

FD TE PN FD TE PN FD TE PN
Built-up 1.685 1671300 2917 1.671 1521750 2630 1.599 278310 74

Transition 1.793 3203190 3529 1.793 2570880 2073 1.713 733590 120
Vegetation 1.731 2279250 2703 1.706 1893480 2245 1.791 499020 87

Water 1.1 78540 122 1.167 137250 218 1.173 39540 8
Section C 2002

Land Cover Type Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.698 1626000 2627 1.682 1456170 2002 1.555 319380 99
Transition 1.813 2495670 2472 1.817 2008680 1758 1.681 793590 178
Vegetation 1.622 1185840 1556 1.609 953190 1138 1.803 533070 90

Water 1.058 89370 176 1.08 76920 99 1.173 39540 8
Section C 2013

Land Cover Type Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.833 2350590 1878 1.832 2490570 1940 1.724 638160 124
Transition 1.727 2812980 4786 1.755 2886390 4001 1.745 960420 171
Vegetation 1.58 1310910 2066 1.489 904770 1584 1.6 393450 128

Water 1.055 50280 44 1.08 53430 56 1.173 39330 8
Section C 2022

Land Cover Type Random Forest Support Vector Machine SLIC K-Means
FD TE PN FD TE PN FD TE PN

Built-up 1.847 1791300 1329 1.857 1773030 1341 1.699 452820 104
Transition 1.73 2188260 2547 1.716 2083740 2304 1.782 748050 95
Vegetation 1.361 511470 887 1.309 454530 902 1.572 328830 131

Water 1.092 57870 67 1.083 74460 99 1.173 39540 8
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Appendix H

Fractal Dimension, Total Edge and

Patch Number charts

H.1 Fractal Dimension, Section A 1991, 2002, 2013

and 2022
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Figure H.1: FD, Section A 1991, 2002, 2013 and 2022
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H.2 Total Edge, Section A 1991, 2002, 2013 and

2022
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Figure H.2: TE, Section A 1991, 2002, 2013 and 2022
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H.3 Patch Number, Section A 1991, 2002, 2013 and

2022
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Figure H.3: PN, Section A 1991, 2002, 2013 and 2022

186



H.4 Fractal Dimension, Section B 1991, 2002, 2013

and 2022
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Figure H.4: FD, Section B 1991, 2002, 2013 and 2022
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H.5 Total Edge, Section B 1991, 2002, 2013 and

2022
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Figure H.5: TE, Section B 1991, 2002, 2013 and 2022
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H.6 Patch Number, Section B 1991, 2002, 2013 and

2022
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Figure H.6: PN, Section B 1991, 2002, 2013 and 2022
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H.7 Fractal Dimension, Section C 1991, 2002, 2013

and 2022
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Figure H.7: FD, Section C 1991, 2002, 2013 and 2022

190



H.8 Total Edge, Section C 1991, 2002, 2013 and

2022
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Figure H.8: TE, Section C 1991, 2002, 2013 and 2022
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H.9 Patch Number, Section C 1991, 2002, 2013 and

2022
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Figure H.9: PN, Section C 1991, 2002, 2013 and 2022
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Appendix I

Box Counting Scaling Behavior

Table I.1: Scaling Behavior, 1991

Input: GAMA 1991 Built-up.tif-bin
Method: Box counting
Parameters: coef1.50000 min30.0000 max19710.0
Dimension: 1.581
b: 17.8991

R2: 0.999846
p-value: 0.00000
Confidence (95%): [1.569 - 1.592]
Bootstrap confidence: [1.569 - 1.591]

X Y Scaling behavior Estim
30 288274 1.63046 274627
60 93108 1.63675 91819.8
90 47948 1.61778 48373.4
150 30983 1.60146 21575.1
240 9885 1.58245 10264.1
330 5972 1.56399 6204.7
510 3023 1.48426 3118.17
780 1609 1.53973 1593.09
1140 897 1.50344 874.464
1740 475 1.63964 448.202
2580 249 1.66786 240.481
3900 125 1.65102 125.156
5850 64 1.71676 65.9358
8760 32 1.28568 34.831
13140 19 1.58301 18.35
19710 10 NaN 9.66735
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Table I.2: Scaling Behavior, 2002

Input: GAMA 2002 Built-up.tif-bin
Method: Box counting
Parameters: coef1.50000 min30.0000 max19710.0
Dimension: 1.687
b: 18.8766

R2: 0.999752
p-value: 0.00000
Confidence (95%): [1.672 - 1.703]
Bootstrap confidence: [1.673 - 1.707]

X Y Scaling behavior Estim
30 499410 1.66195 507617
60 157819 1.67317 157609
90 80081 1.68091 79514.8
150 33933 1.68199 33581.8
240 15392 1.67325 15194.1
330 9034 1.68781 8877.77
510 4333 1.66035 4258.86
780 2140 1.71797 2079.36
1140 1115 1.7234 1096.05
1740 538 1.75968 536.971
2580 269 1.81643 276.242
3900 127 1.69017 137.561
5850 64 1.71676 69.4004
8760 32 1.28568 35.1141
13140 19 1.58301 17.7153
19710 10 NaN 8.93745
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Table I.3: Scaling Behavior, 2013

Input: GAMA 2013 Built-up.tif-bin
Method: Box counting
Parameters: coef1.50000 min29.9900 max19703.4
Dimension: 1.738
b: 19.2875

R2: 0.999431
p-value: 0.00000
Confidence (95%): [1.714 - 1.762]
Bootstrap confidence: [1.710 - 1.768]

X Y Scaling behavior Estim
29.99 677082 1.72432 645201
59.98 204913 1.75427 193443
89.97 100614 1.77393 95617.1
149.95 40655 1.80099 39354.8
239.92 17438 1.79361 17388.8
329.89 9850 1.79704 9998.21
509.83 4505 1.77629 4692.16
779.74 2118 1.77722 2242.33
1139.62 1079 1.70363 1159.54
1739.42 525 1.77423 556.085
2579.14 261 1.76249 280.445
3898.7 126 1.67067 136.774
5848.05 64 1.79539 67.6058
8757.08 31 1.20737 33.5164
13135.6 19 1.58301 16.5668
19703.4 10 NaN 8.1888
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Table I.4: Scaling Behavior, 2022

Input: GAMA 2022 Built-up.tif-bin
Method: Box counting
Parameters: coef1.50000 min30.0000 max19710.0
Dimension: 1.777
b: 19.6394

R2: 0.999238
p-value: 0.00000
Confidence (95%): [1.748 - 1.805]
Bootstrap confidence: [1.744 - 1.816]

X Y Scaling behavior Estim
30 870550 1.79232 803585
60 251335 1.80916 234545
90 120691 1.82833 114126
150 47431 1.84189 46052.5
240 19957 1.84157 19981
330 11102 1.83564 11347.8
510 4993 1.83151 5236.44
780 2293 1.80934 2461.57
1140 1154 1.7698 1254.34
1740 546 1.82563 591.771
2580 266 1.7703 293.923
3900 128 1.78781 141.07
5850 62 1.56191 68.6425
8760 33 1.36157 33.5021
13140 19 1.58301 16.3016
19710 10 NaN 7.93214
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Appendix J

Transition Variables

(a) Distance to CBD 2013 (b) Distance to CBD 2022

(c) Distance to vegetation 2013 (d) Distance to vegetation 2022

(e) Fractal Dimension 2013 (f) Fractal Dimension 2022
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(g) Evlikelihood 2013 (h) Evlikelihood 2013

Figure J.1: Transition areas

Figure J.2: Excluded areas
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Appendix K

Land Change Modeler MLP Model

Results

K.1 Urbanisation Sub model

1. General Model Information

1) Input Files

Table K.1: Input Files

Independent variable 1 Evlikelihood2002-2013
Independent variable 2 2013 frac
Independent variable 3 Dist veg 2013
Independent variable 4 Dist urb 2013
Training site file ch4 pred Train Urbanisation

2) Parameters and performance

3) Model Skill Breakdown by Transition and Persistence

2. Weights Information of Neurons across Layers

1) Weights between Input Layer Neurons and Hidden Layer Neurons

2) Weights between Hidden Layer Neurons and Output Layer Neurons

3. Sensitivity of Model to Forcing Independent Variables to be Constant

1) Forcing a Single Independent Variable to be Constant
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Table K.2: Parameters and performance

Input layer neurons 4
Hidden layer neurons 5
Output layer neurons 5
Requested samples per class 10000
Final learning rate 0
Momentum factor 0.5
Sigmoid constant 1
Acceptable RMS 0.01
Iterations 10000
Training RMS 0.2123
Testing RMS 0.2101
Accuracy rate 86.78%
Skill measure 0.8347

Table K.3: Model skill breakdown by transition and persistence

Class Skill measure
Transition : Vegetation to Transition 0.8974
Transition : Vegetation to Built-up 1
Transition : Transition to Built-up 0.7916
Persistence : Vegetation 0.6285
Persistence : Transition 0.8555

Table K.4: Weights between input layer neurons and hidden layer neurons

Neuron h-Neuron 1 h-Neuron 2 h-Neuron 3 h-Neuron 4 h-Neuron 5
i-Neuron 1 -15.0064 11.979 11.0173 -15.1586 0.5081
i-Neuron 2 -7.301 -1.0642 1.0303 4.4292 0.1636
i-Neuron 3 -1.6095 0.546 -1.6145 5.2878 -0.5174
i-Neuron 4 13.4831 -0.6015 -3.3518 -3.4671 3.0182

Table K.5: Weights between hidden layer neurons and output layer neurons

Neuron o-Neuron 1 o-Neuron 2 o-Neuron 3 o-Neuron 4 o-Neuron 5
h-Neuron 1 9.7176 8.6705 -11.3918 5.5396 -11.822
h-Neuron 2 0.3593 -12.9177 2.5852 -3.6545 2.9132
h-Neuron 3 -6.803 -13.3452 -1.621 3.0526 4.9523
h-Neuron 4 -12.5072 6.7141 7.289 -10.7864 -0.2356
h-Neuron 5 -3.9226 -2.4568 -3.5285 -1.7953 -3.0675
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Table K.6: Forcing a Single Independent Variable to be Constant

Model Accuracy (%) Skill measure Influence order
With all variables 86.78 0.8347 N/A
Var. 1 constant 34.91 0.1863 1 (most influential)
Var. 2 constant 40.33 0.2542 2
Var. 3 constant 86.78 0.8347 4 (least influential)
Var. 4 constant 75 0.6876 3

Figure K.1: Variation in model skill forcing a single independent variable to
be constant

2. Forcing All Independent Variables Except One to be Constant

Table K.7: Forcing All Independent Variables Except One to be Constant

Model Accuracy (%) Skill measure
With all variables 86.78 0.8347
All constant but var. 1 40.1 0.2512
All constant but var. 2 34.91 0.1863
All constant but var. 3 20.04 0.0005
All constant but var. 4 12.07 -0.0991

Figure K.2: Variation in model skill forcing all independent variables except
one to be constant

3) Backwards Stepwise Constant Forcing
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Table K.8: Backwards Stepwise Constant Forcing

Model Variables included Accuracy (%) Skill measure
With all variables All variables 86.78 0.8347
Step 1: var.[3] constant [1,2,4] 86.78 0.8347
Step 2: var.[3,4] constant [1,2] 75 0.6876
Step 3: var.[3,4,2] constant [1] 40.1 0.2512

Figure K.3: Variation in model skill using backwards stepwise constant forcing

K.2 Afforestation Sub model

1. General Model Information

1) Input Files

Table K.9: Input Files

Independent variable 1 Evlikelihood2002-2013
Independent variable 2 2013 frac
Independent variable 3 Dist veg 2013
Independent variable 4 Dist urb 2013
Training site file ch4 pred Train Afforestation

2) Parameters and performance

3) Model Skill Breakdown by Transition and Persistence

202



Table K.10: Parameters and Performance

Input layer neurons 4
Hidden layer neurons 4
Output layer neurons 4
Requested samples per class 10000
Final learning rate 0.0001
Momentum factor 0.5
Sigmoid constant 1
Acceptable RMS 0.01
Iterations 10000
Training RMS 0.229
Testing RMS 0.2285
Accuracy rate 86.15%
Skill measure 0.8154

Table K.11: Model Skill Breakdown by Transition and Persistence

Class Skill measure
Transition : Transition to Vegetation 0.7494
Transition : Built-up to Transition 0.8083
Persistence : Transition 0.7856
Persistence : Built-up 0.9181

2. Weights Information of Neurons across Layers

1) Weights between Input Layer Neurons and Hidden Layer Neurons

Table K.12: Weights between input layer neurons and hidden layer neurons

Neuron h-Neuron 1 h-Neuron 2 h-Neuron 3 h-Neuron 4
i-Neuron 1 -11.0221 -0.7713 7.4612 1.9104
i-Neuron 2 -0.9747 -0.6502 -3.482 0.3592
i-Neuron 3 2.8321 -7.5729 -15.206 16.2359
i-Neuron 4 1.2936 8.0707 15.7859 -17.795

2) Weights between Hidden Layer Neurons and Output Layer Neurons

3. Sensitivity of Model to Forcing Independent Variables to be Constant

1) Forcing a Single Independent Variable to be Constant
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Table K.13: Weights between hidden layer neurons and output layer neurons

Neuron o-Neuron 1 o-Neuron 2 o-Neuron 3 o-Neuron 4
h-Neuron 1 6.7628 8.6903 -10.0777 -8.3956
h-Neuron 2 3.2304 -3.892 0.5528 -7.6366
h-Neuron 3 -0.5786 -15.8761 7.8819 -5.2153
h-Neuron 4 -15.8032 0.1971 -6.4455 6.5447

Table K.14: Forcing a Single Independent Variable to be Constant

Model Accuracy (%) Skill measure Influence order
With all variables 86.15 0.8154 N/A
Var. 1 constant 44.74 0.2632 1 (most influential)
Var. 2 constant 61.37 0.4849 2
Var. 3 constant 81.37 0.7516 3
Var. 4 constant 84.94 0.7992 4 (least influential)

Figure K.4: Variation in model skill forcing a single independent variable to
be constant

2. Forcing All Independent Variables Except One to be Constant

Table K.15: Forcing All Independent Variables Except One to be Constant

Model Accuracy (%) Skill measure
With all variables 86.15 0.8154
All constant but var. 1 50.03 0.3337
All constant but var. 2 44.39 0.2586
All constant but var. 3 37.12 0.1617
All constant but var. 4 38.12 0.1749

Figure K.5: Variation in model skill forcing all independent variables except
one to be constant
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3) Backwards Stepwise Constant Forcing

Table K.16: Backwards Stepwise Constant Forcing

Model Variables included Accuracy (%) Skill measure
With all variables All variables 86.15 0.8154
Step 1: var.[4] constant [1,2,3] 84.94 0.7992
Step 2: var.[4,3] constant [1,2] 69.4 0.592
Step 3: var.[4,3,2] constant [1] 50.03 0.3337

Figure K.6: Variation in model skill using backwards stepwise constant forcing
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Appendix L

Classification Report, STMA

L.1 Image Classification Report - RF

Table L.1: Error Matrix, Random forest classification, STMA 2016

Water Vegetation Built-up Transition User Accuracy
Water 33 0 1 0 0.970588235
Vegetation 0 103 0 1 0.990384615
High Urban 0 0 81 1 0.987804878
Low Urban 0 0 0 17 1
Producer Accuracy 1 1 0.987805 0.8947368
Overall Accuracy 0.987342
Kappa Coefficient 0.980932

Table L.2: Error Matrix, Random forest classification, STMA 2022

Water Vegetation Built-up Transition User Accuracy
Water 35 0 0 0 1
Vegetation 0 33 0 0 1
High Urban 0 0 131 0 1
Low Urban 0 0 1 82 0.987951807
Producer Accuracy 1 1 0.992424 1
Overall Score 0.996454
Kappa Coefficient 0.99469
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