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MAÏDA, Mylène P.U. Univ. de Lille Rapporteuse
DUMAZ, Laure C.R. ENS Ulm Examinatrice
DUITS, Maurice Professor KTH Stockholm Examinateur
GRAVA, Tamara Professor Univ. of Bristol Examinatrice
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H., Nelly, Noémie, Pierre, Quentin D., Quentin M., Sacha. Je remercie aussi Maëlie pour son
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Abstract

This thesis develops techniques to extract the large-N behavior of N -fold multiple integrals. There
are two main motivations for developing such techniques. First, mulitple integrals can arise as
integral representations of special functions. Similar to the integral representation for the Euler’s Γ
function, having powerful tools to extract information from these expressions, such as the regularity
of the function, asymptotic behaviors, or explicit expression for specific parameter values, is crucial.
Second, multiple integrals appear in statistical mechanics, such as partition functions of multi-
particle systems in the classical picture or as building blocks of correlation functions in a quantum
framework.

Techniques from large deviations theory, Riemann-Hilbert problems and the transport- based meth-
ods form the basic arsenal to access their asymptotic behavior. Currently, one of the rare model in
the existing literature that can be dealt with in a large generality, is the partition function of the
β-ensembles [APS01, EM03, BI05b, BG13a, BG13b, CGM15] which can be seen as the law of the
spectrum of certain random matrix models. The understanding of this model follows from more
than fifty years of extensive study and surprising links with various fields such as the enumeration
of maps [BIPZ78], random tilings [Joh02], integrable systems [GM22], statistics [PA14], or quantum
mechanics [GMGW98] were discovered. However, there is interest in exploring generalization of
this model, and this is the main subject of this thesis.

This thesis focuses on two models that go beyond the classical β-ensembles. The first one concerns
the β-ensembles in the high temperature, viz when β scales with N as β = P/N with P constant.
The major difference compared to the constant β-case is that one has to account for entropic effects
due to the high temperature. These effects are due to the contributions of the Lebesgue integration
measure which is here of the same order in N as the energy. The second model of interest is the so-
called sinh-model, introduced in [BGK16] to study the type of integrals introduced in [Luk01] which
are conjectured to be linked with some form factor in quantum field theory. This model involves a
hyperbolic Vandermonde determinant as well as an unscaled potential term, which makes certain
nice properties of the usual β-ensembles inaccessible. Additionally, for interesting applications in
physics, one has to deal with potentials which depend in N in a more involved way, resulting in a
more sophisticated analysis.

This manuscript is divided into five parts::

• The first part of this thesis is an introduction to the field of multiple integrals analysis. It
describes links to special functions, classical and quantum integrable models and random ma-
trix theory. It also provides a brief overview of the various existing methods in the literature
as well as a presentation of the models that we consider in this thesis. A rec of each chapter
can be found at the end of this introduction.

• Based on [DGM23]1, this chapter establishes a central limit theorem for the linear statis-
tics of a β-ensemble in the high temperature regime. The result goes beyond the setting
of quadratic potentials considered earlier in the litterature [NT18]. The proof is based on

1The bold notation is used for the contributions of the author.
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the inversion of the so-called master operator, which is done by establishing a link with a
Schrödinger operator. This result is a generalization of existing techniques developped for
the circular case [HL21] to a non-compact setting where more care is needed.

• Based on [DG24], this chapter establishes the existence of an asymptotic expansion for the
partition function of the model studied in Chapter 1 for potentials given by the sum of a
quadratic potential and a bounded smooth function. The proof is based on the analysis of
the loop equations in the setting where the equilibrium measure is supported on the whole
real line. Our proof includes continuity results for the master operator, from which the large-
N behavior of the linear-satistics is deduced. To conclude about the partition function, a
continuity result for the equilibrium measure with respect to the potential dependance is also
shown.

• Based on [DGK24], this chapter deals with the sinh-model. Working with a N -dependent
potential, the explicit form of the leading asymptotic for Lukyanov’s conjecture for the vacuum
expectation value of the exponential of the field operator of the quantum sinh-Gordon model
[Luk01] is argued. The conjecture is valid under the very natural hypothesis that a certain
remainder term is negligible. This chapter heavily relies on the explicit expression for the
equilibrium measure found in [BGK16], allowing for explicit computations.

• The last part is a conclusion summarizing the content of this thesis. We also address some
natural questions following our results.

• The appendices contain general facts about unbounded operators, large deviation principles,
and Riemann-Hilbert problems.
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Introduction

“The problem with identity is that it
wrecks your ability to think clearly. Iden-
tifying with a belief makes you feel like
you have to be ready to defend it, which
motivates you to focus your attention on
collecting evidence in its favor. Iden-
tity makes you reflexively reject arguments
that feel like attacks on you or the status
of your group.” Julia Galef
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I.1 Integral representations

I.1.1 The Birth of Integration theory

In the XVI-th and XVII-th century, significant work about integrals was independently achieved
by Leibniz and Newton, respectively, in their seminal books Nova Methodus pro Maximis et Min-
imis and Philosophiæ Naturalis Principia Mathematica, see the excellent reviews [Edw12, Ham16].
Since the mathematical rigor was not yet developped and the logical revolution of the XIX-XX-th
centuries had not yet occurred, the manipulations were very speculative and more philosophical in
nature. It is commonly accepted that, more or less at the same period, these two mathematicians
created the theory of calculus independently of each other. The advances of the XVII-th century
followed millennia of investigation into “quadrature2 and tangent” problems by Greek, Chinese and
Arabic mathematicians.

Often in science, big discoveries and paradigms shifts arise from joint efforts. In the early XVII-
th century, Fermat manipulated quantities like derivatives, although he didn’t present it as an
important tool nor introduced a notation for it. Moreover, mathematicians like Torricelli and
Barrow, Newton’s teacher, understood the inverse relationship between tangents and quadrature,
or in modern terms, between differentiation and integration. Barrow, in his Geometrical Lectures
published in 1670, even explicitly stated a geometric theorem about this inverse relationship. It was
noticed at this time, from the works of Galileo, for example, that representing the velocity versus
time of a moving object on a graph allowed one to deduce the distance traveled by computing the
area under the curve. The contributions of Newton and Leibniz was not so much in their discovery
of the fundamental theorem of calculus, namely that:

f(x)− f(a) =

ˆ x

a
f ′(t)dt (1)

whatever these symbols mean, but rather by stressing the importance of these concepts and ex-
ploring the consequences of these formulas.

The techniques and discoveries of the XVII-th century were formalized by Riemann in 1854 in his
Habilitationsschrift, where he posed “What is one to understand by

´ b
a f(x)dx ?”. His formalization

employed the rigorous notion of limit and the so called ε-δ techniques developed by Bolzano,
Weierstrass and Cauchy in the early XIX-th century. Riemann’s approach involved approximating

2The problem of the quadrature of a surface has to be understood as the attempt of computing its area. The
intuition behind it was almost always to divide the surface into small pieces for which the corresponding area could
be computed, with the hope that the total area could then be determined.
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the area under the curve using small rectangles. By successively choosing smaller and smaller
rectangles (thus taking the limit), he could determine the exact value of the area under the curve.

With the development, among many other fields, of thermodynamics with physicists like Gibbs
and Boltzmann and probability theory with the works by Gauss and Laplace, the integral became
a central object in both mathematics and physics. Riemann’s approach was quite successful in
providing a solid foundation for calculus, the use of Fourier series and more generally the ability
to integrate discontinuous functions.

In 1902, Lebesgue introduced a new theory of integration in his doctoral thesis. In his framework,
equation (1) held for a broader3 class of functions compared to Riemann’s framework. Although
Lebesgue’s theory was later extended to provide meaning to more integrals of functions, such as the
Henstock–Kurzweil integral and Pfeffer’s integral [SK11, Pfe92], it became the standard method
for integrating functions. One reason for that is the convenience of the Lebesgue spaces and the
fact that most of the theorems can be shown easily in this framework. Its construction involves a
measure, which is the central object of measure theory, providing a solid foundation for probability
theory.

I.1.2 Integral representations

In Lebesgue’s theory, theorems which were already available in Riemann’s framework could be
demonstrated more easily. One example is the Arzela’s dominated convergence theorem [Lux71].
Some of these theorems allow for the handling of functions in the form of parameter-dependent
integrals, namely,

g : x 7→
ˆ b(x)

a(x)
f(x, t)dt. (2)

These theorems established that, under certain natural hypotheses on f , g is a continuous/differentiable
function. The fundamental theorems of Lebesgue’s theory imply that when solving a differential
equation, one could, in principle, be satisfied with finding a solution of the form (2). This is be-
cause, assuming that f satisfies certain hypotheses, one could recover all the information obtained
from an explicit expression. Therefore, an expression can be considered ’explicit’ if one can extract
all the desired information from it. This information can include regularity properties, exact values
at certain parameter values, and asymptotic behavior.

Together with other tools, such as the Laplace’s method or its generalization the saddle-point
method [AF03, Chapter 6], there is a sufficiently strong arsenal that one can use in many cases to
deal with one-dimensional integrals of the form

z 7→
ˆ

C
f(z, ζ)dζ

where C is a curve in the complex plane. For example, one is able to deduce the regularity of this
function assuming f is regular enough or its limit when z → z0, assuming the knowledge on the
same limit about f . Many of the so-called special functions admit expressions of such a form.

An example of a special function is the celebrated Euler’s Gamma function Γ, defined by

Γ(z)
(def)
=

ˆ +∞

0
e−ttzdt for <(z) > 0.

This defines a holomorphic function in the right half-plane. From this expression, one is able
to find limits, demonstrate smoothness properties and algebraic relations as well as compute Γ’s

3Although, Riemann-integrability on bounded intervals imply Lebesgue integrability, this is not the case for the
improper Riemann integral. However, one can argue that functions which are only Lebesgue integrable have a much
more general form than the improper Riemann integrable ones.
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values at specific points. The Gamma function belongs to a broad class of functions called higher
transcendental functions which generalizes the transcendental functions, such as exp or cos. The
latter are themselves generalizations of the simplest possible functions, namely the polynomials.
They constitute generalizations in the sense that to move from one class to a higher one, one
needs to take a limit (from polynomial functions to transcendental functions) or integrate (from
transcendental to higher transcendental functions) which also ammounts to take a limit. With
an extensive literature on the subject, the higher transcendental class is considered now very well
understood. The next natural step is then to try to understand the next class of special functions
i.e. the generalization of the previous class. A class of functions that generalizes the higher
transcendental functions is the so-called Painlevé class of functions.

In the early XX-th-century, Painlevé and his school studied second order nonlinear rational differ-
ential equations. Specifically, they focused on a subclass of these equations, namely those for which
the only singularities of the solutions depending on the initial data are poles. Painlevé and Gambier
showed that there exists only fifty equations of such a type. Furthermore, they demonstrated that
fourty-four of these equations could be reduced to the remaining six (or to trivial ones), yielding
the famous Painlevé equations I-VI. Their solutions, known as Painlevé transcendents play a sig-
nificant role in mathematical physics and many other areas today. The corresponding equations
can be seen as reductions of the so-called integrable partial differential equations (PDE) such as
the Korteweg-de Vries equation, the non-linear Schrödinger equation or the sine-Gordon equation
[FIKN23]. Their solutions also appear in random matrix theory in the so-called Gaussian Unitary
Ensemble, i.e. the probability distribution on Hermitian matrices proportional to:

exp
(
−Tr(H2)

)
dH (3)

where dH
(def)
=
∏N
i=1 dHii

∏
1≤i<j≤N dRe(Hij)dIm(Hij) stands for the Lebesgue measure on RN ×

CN(N−1)/2, the space of Hermitian matrices. For a random matrix sampled from this distribution,
the probability of finding no eigenvalues in an interval of the type [0, x] for x > 0, as the size N of
the matrix goes to infinity, is given by an expression of the form [PS97]:

exp

(ˆ πx

0

σ(t)

t
dt

)
where σ is a solution of Painlevé V. This limiting probability can be represented by a Fredholm
determinant, i.e. the determinant of the operator id − Ksine,x acting on L2([0, x]) where Ksine,x

is the so-called Sine-kernel operator [BGK16, (1.1.3)]. One may also obtain an expression for
the asymptotic distribution of the law of the fluctuations of the largest eigenvalue, known as
the Tracy-Widom law, of the cumulative distribution function F [TW94]. F (x) is given by the
Fredholm determinant of id − KAiry,x acting on L2 (]x,+∞[) where KAiry,x is the so-called Airy-
kernel operator [BGK16, (1.1.4)]. This determinant can also be expressed in terms of a Painlevé
transcendent. Namely, we have,

det (id− KAiry,x) = exp

(ˆ +∞

x
(x− t)u(t)2dt

)
(4)

where u is a solution of Painlevé II. Painlevé transcendents also appear in other probabilistic inte-
grable models such as in the computation of the correlation functions in the 2D-Ising model [Bot18]
or in random growth processes [For03].

These functions allow for obtaining “explicit” expressions for sophisticated objects. However, these
quantities do not admit finite-order integral representations. They are generally expressed as series
whose n-th summand is given by a n-fold integral of a simple combination of simple transcendental
functions. To turn them into powerful mathematical tools, one must be able to extract all the
knowledge out of such representations.
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Although maps like x 7→ det (id− Kx) for a general x-dependent operator Kx are in general hard
to study, there is a subclass of operators called integrable integral operators [IIKS90] for which it is
possible to extract a lot of information. These operators are integral operators whose kernels are
of the following form:

kx(ξ, η) =

∑N
a=1 fa(ξ)ga(η)

ξ − η
, with

N∑
a=1

fa(ξ)ga(ξ) = 0.

For this class of operators, a strong link with the so-called Riemann-Hilbert theory exists, the basic
theory is described in Appendix C or in the reference [Dei19] where the link is described. This
connection has been explored in the literature in [Sak68, JMMS80, IIKS90].

Riemann-Hilbert theory includes powerful method and effective tools to investigate such operators,
such as the Deift-Zhou nonlinear steepest-descent method [DZ92, DZ93] or the concept of local
parametrix [Its81]. The Riemann-Hilbert theory is even able to handle the layer of Painlevé tran-
scendents. Indeed, the latter can be expressed as some function of a matrix entry of the solution
of a 2× 2 matrix Riemann-Hilbert problem (RHP). With the present tools in this theory, one can
extract all the information about the Painlevé transcendents [FIKN23].

We have argued that there exist tools to study the various mentionned special functions. However,
a natural question arises “What is the next layer of special functions ?” Such a layer should be a
class of functions such that their asymptotic behavior is described in terms of the previous layer of
functions. For example, the asymptotic behavior the Painlevé II transcendent u appearing in (4),
is given by u(x) ∼ Ai(x) as x→ +∞ [BBD08] where Ai stands for the Airy-function given on the
real line by:

Ai(x)
(def)
=

1

π

ˆ +∞

0
cos

(
t3

3
+ xt

)
dt.

To construct the next layers of special functions, one might be interested in studying representa-
tions of sophisticated algebraic structures. Indeed, it was first noticed by Bargmann in the 40’s
[Bar47] that classical special functions can arise as matrix elements of representations of elements
of certain Lie groups [KV95]. A simple example of such a link is given by specific representations
of the Euclidean group of the plane E(2), which consists of all the transformations that preserve
the Euclidean distance, namely translations and rotations. The elements of this group can be
parametrized by three real numbers r, θ, ϕ in the following manner:

g(r, θ, ϕ)
(def)
=

cos θ − sin θ r cosϕ
sin θ cos θ r sinϕ

0 0 1

 ∈ E(2).

Moreover, there exists a specific representation Tρ, depending on a real parameter ρ, of E(2) on
L2(S), the space of square integrable functions on the unit sphere of the plane, that allows one to
express the Bessel function of the first kind Jn as a matrix element. It arises as a solution of a
second order linear differential equation and can be defined for all integer n by

Jn(z)
(def)
=

ˆ π

−π
eiz sin ζ−inζ dζ

2π
.

By taking the orthonormal basis of L2(S) composed of functions en : z 7→ 1√
2π
einz, one can prove

that
Jn−m(ρr) = einθ+i(m−n)(ϕ+π

2 ) 〈Tρ[g(r, θ, ϕ)]en, em〉L2(S) .

This picture also includes, the hypergeometric functions 2F1(a, b, c, z) (respectively the Gegenbauer

polynomials C
(α)
n (z)) which arises as matrix elements of a representation of the special linear group
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SL2(C) (resp. the special orthogonal group SON (R)) [KV95, Chapter 7 & 9]. Additionally, the
relationships between special functions, such as summation identities or addition formulas, stem
from this algebraic structure. Such formulas can arise from the fact that the representation verifies
the homorphism property or by writing a change of basis formula in the representation space. The
parameters labelling a special function often arise as the parameters labelling the representation or
a certain group element.

To consider a higher layer composed of more sophisticated functions, one can consider matrix
elements of algebraic structures more subtle than groups, namely the quantum groups [Dri86],
[Isa23]. Such structures appeared in the 80’s, in the study of quantum integrable systems and more
precisely in the context of the quantum inverse scattering method [Yan67, Bax72, STF79]. They
are not groups, but they can still be considered as encoding the symmetries of a physical system.

I.1.3 Large-N behavior of multiple N-fold integrals

This thesis aims at developing techniques to capture more information about certain special func-
tions that are given in terms of N -fold multiple integrals. More precisely, our goal in this thesis is
to extend the techniques allowing one to capture the large-N behaviour of integrals of the generic
form:

ZN =

ˆ
RN

N∏
i,j=1

kN (xi, xj).

N∏
i=1

wN (xi)dxi (5)

where kN is a N -dependent kernel and wN a weight making the integral convergent which may
also depend on N . These integrals arise in quantum integrable models as in Lukyanov’s conjecture
[Luk01] about the quantum sinh-Gordon model, see Section I.7 for more details. Indeed, by applying
the classical separation of variables method, it was conjectured that the vacuum expectation value
of the exponential of the field operator was given in terms of a ratio of integrals given under the
general form:

ZLuk
N =

ˆ
RN

∏
1≤i<j≤N

sinh
[
ω1|xi − xj |

]
ω1

sinh
[
ω2|xi − xj |

]
ω2

.

N∏
i=1

e−V (xi)dxi, ω1, ω2 ≥ 0.

Above V is a function growing sufficiently fast at infinity. They can also be given as building blocks
of volumes appearing in asymptotic geometric analysis. In [KMP98, GP07], the authors showed
that these integrals arise as building blocks of the volume of the unit ball of self-adjoint matrices
for the p-Schatten norm, p > 3. These integrals take the form:

ZScha
N =

ˆ
RN

∏
1≤i<j≤N

|xai − xaj |b.
N∏
i=1

|xi|ce−abN |xi|
p
dxi, a, b, c ≥ 0.

Such integrals also arise as normalizing constant in probabilistic models also known as partition
functions. This terminology is due to the statistical mechanics approach to study these models.
An example of such a model is the partition function of the law of the spectrum of certain ran-
dom matrices. The spectrum of a random matrix sampled from the Gaussian Unitary Ensemble,
introduced in (3), is given by the following p.d.f.

∏
1≤i<j≤N

|xi − xj |2.
N∏
i=1

e−|xi|
2
dxi

ZGUE
N

, ZGUE
N =

ˆ
RN

∏
1≤i<j≤N

|xi − xj |2.
N∏
i=1

e−|xi|
2
dxi.

Other examples of random matrix models give rise to similar expressions with different domains
(the real half-line, or a bounded interval) or potentials. Surprisingly, the double product can also
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contain hyperbolic sines such as in (5). In the work [CW14], the authors showed that the spectrum
of a Hermitian matrix sampled from the distribution proportional to

exp (−NTr (V (M)−AM)) dM, with A
(def)
= diag (1/N, . . . , (N − 1)/N) ,

admits the following partition function:

ZC,W
N =

ˆ
RN

∏
1≤i<j≤N

|xi − xj | sinh |xi − xj |.
N∏
i=1

e−NV (xi)dxi.

Finally, these integrals also appear in statistical mechanics, such as in the Coulomb gas setting
[Ser18]. This model represents confined electrically charged particles interacting with one another.
In this setting, the partition function is very important as it’s possible to recover the average of
observables from it and detect the presence of phases transitions.

There already exist techniques to extract the large N -behaviour designed for certain integral [EM03,
BG13a, BG13b, BGK15, CGM15, BGK16, CKM23, Ser23] . Nonetheless, the general case remains
largely open. In order to make these integral representations really explicit, one needs to design
techniques to extract all the information from them. Before expliciting the considered type of
integrals in this thesis, we review some of the cases where one is able to grasp this information.
This review will allow us to give an overview of the existing methods such as large deviation
principles, Riemann-Hilbert techniques or the loop equations analysis.

I.2 A simple case using large deviation techniques

A simple case where one is able to capture the asymptotic behaviour of a N -fold integral is the
following case:

JN [V,W ]
(def)
=

ˆ
RN

N∏
i,j=1

eW (λi,λj).

N∏
i=1

e−NV (λi)dλi. (6)

with W a smooth bounded function and V a function growing sufficiently fast at infinity so that
the integral converges. This integral can be seen as the partition function of a classical statistical
mechanics system with N particles on the real line, confined by a potential V and interacting
through a two-body interaction W . Unless V and W are chosen very specifically, one cannot
expect to compute explicitly the integral JN [V,W ]. However, one can ask the following question:
“Does there exist coefficients F2[V,W ], F1[V,W ]... such that

logJN [V,W ] = N2F2[V,W ] +NF1[V,W ] + ...”

To show such an asymptotic expansion (AE), a probilistic point of view on JN [V,W ] is useful and
for this purpose, we define the following probability measure:

dPVN (λ1, . . . , λN )
(def)
=

N∏
i=1

e−NV (λi)

IN [V ]
dλi, with IN [V ]

(def)
=

ˆ
RN

N∏
a=1

e−NV (λa)dNλ.

In the following, it will be useful to consider the empirical measure, namely, the random measure
given by

µ̂N
(def)
=

1

N

N∑
i=1

δλi .
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In this picture, the particles λi are considered random variables whose joint law is PVN . The empirical
measure is an important quantity as it describes the density of particles for a given configuration
(λ1, . . . , λN ). It is also useful as it can be seen that the following equation holds:

JN [V,W ] = IN [V ]EVN
[
eN

2FW [µ̂N ]
]
, where FW [µ]

(def)
=

¨
R2

W (s, t)dµ(s)dµ(t). (7)

The first term in the RHS, IN [V ], can be easily managed, as by Fubini’s theorem, it can be recast
as

IN [V ] =

(ˆ
R
e−NV (λ)dλ

)N
.

This one-dimensional integral is of Laplace type hence the eponymous method allows one to capture
its leading asymptotic behaviour. Indeed, assuming that the function V is strictly convex and hence
attains its minimizer at a unique point x0, an application of the Laplace method demonstrates that:

1

N2
log IN [V ] −→

N→∞
−minV = −V (x0). (8)

The second term can be dealt with the theory of large deviation principles (LDP) which we recall
briefly here and in Appendix B. A sequence of probability measures (νN ) on a Polish space S
satisfies a LDP if there exists a function I, called the rate function and a positive sequence vN
going to infinity, called the speed, such that:

∀F closed set of S, lim inf
N

1

vN
log νN (F ) ≥ − inf

x∈F
I(x),

∀O open set of S, lim sup
N

1

vN
log νN (O) ≤ − inf

x∈O
I(x).

We stress, that the function I should be lower semi-continuous and positive. This definition can
be non-rigorously summarized as:

νN (A) ≈ e−vN infA I as N →∞,

which asserts the exponential decay of the probability of rare events (or large deviations from the
expected behavior at large N). We say in that case that a LDP(vN , I) holds. The advantage of
this theory is that it admits theorems allowing one to capture the large-N behaviour of terms like

EVN
[
eN

2FW [µ̂N ]
]

when FW satisfies certain properties.

One can show, by the boundedness and continuity of W , that FW is bounded and continuous
on M1(R), the space of probability measures on R, equipped with its weak topology. Further-
more, it can be proven without too much effort that the sequence of probability measures PN
on M1 (M1(R)), defined as the law of µ̂N seen as a probability measure-valued random variable
under PVN , satisfies LDP(N2, IV ) for a certain rate function IV . Therefore one is able, by applying
Varadhan’s lemma 3.0.5, to deduce the following asymptotic behaviour

1

N2
logEVN

[
eN

2FW [µ̂N ]
]
−→
N→∞

sup
µ∈M1(R)

{FW (µ)− IV (µ)}. (9)

To rigorously show the following asymptotic behaviour, via (7), (8) and (9):

1

N2
logJN [V,W ] −→

N→∞
sup

µ∈M1(R)
{FW (µ)− IV (µ)} − V (x0),

it is necessary to prove that the law of µ̂N indeed satisfies a LDP(N2, IV ). It might be tempting to
use the famous Sanov’s theorem for the law of the empirical measure of iid random variables but
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the N -dependence of each law prevents one from applying this theorem. This can be however done
by hand and it can be shown that for every µ ∈M1(R):

IV (µ)
(def)
=

ˆ
R
V (x)dµ(x).

Computing, the limit of N−2 logJN [V,W ] amounts to minimize the following quantity

ˆ
R
V (x)dµ(x)−

¨
R2

W (x, y)dµ(x)dµ(y).

Without specifying the functions of V and W , this functional is non-trivial to minimize with respect
to µ hence doesn’t provide an easy computation of the limit limN→∞N

−2 logJN [V,W ]. However,
this allows at least to show the existence of the limit under reasonable assumptions on V and W .

This machinery works for all integrals involving a two-body interaction which is bounded and
continuous. This class of integrals is well-understood and there exists techniques to deal with
them. However, one can also consider showing this type of result for more involved interactions
such as the singular ones, i.e. unbounded or discontinuous interaction W . These integrals are way
more difficult to handle as it requires a lot of effort to adapt the techniques. An instance of such
an integral is the partition function of the so-called β-ensembles.

I.3 The β-ensembles

The partition function of the so-called β-ensembles given by:

Z(β)
N [V ]

(def)
=

ˆ
RN

pV,βN (λ1, . . . , λN )dNλ, with pV,βN (λ1, . . . , λN )
(def)
=

N∏
i<j

|λi−λj |β.
N∏
i=1

e−NV (λi).

(10)
Above V is a confining potential growing fast enough at infinity, i.e. faster than logarithmically,
making this integral convergent.

The integral Z(β)
N [V ] is equal to JN [V,W ] with W (x, y)

(def)
= β log |x− y|1x<y. This function is not

bounded and thus the function FW , introduced in (7) is not bounded either. Indeed, one can see it
by showing that the sequence

(
FW

(
U([0, N−1])

))
N

, where U([0, N−1]) is the uniform measure on
[0, N−1], is not bounded. Indeed,

−β
¨
x<y

log |x− y|dU([0, N−1])(x)dU([0, N−1])(y) =
3

4
β +

β

2
logN −→

N→∞
+∞.

This argument shows that Varadhan’s lemma cannot be applied. One must then use new tools in

order to capture the asymptotic behavior of Z(β)
N [V ].

I.3.1 Definition and links to random matrix theory

The probability measure associated to this partition function is the so-called β-ensembles, given
by:

dPV,βN (λ1, . . . , λN )
(def)
= pV,βN (λ1, . . . , λN )

dNλ

Z(β)
N [V ]

. (11)

Excellent reviews about this probabilistic model are available in [Meh04, DG09, AGZ10a, For10,

PS11, BGK16, FGRV16, Gui19].The probability measure PV,βN arose historically as the joint-law of

the eigenvalues of certain N ×N random matrices. Indeed for β = 1, 2, 4 and V (x) = βx2/4, PV,βN ,
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called the Gaussian β-ensemble (GβE) arises as the joint-law of the eigenvalues of the following
random matrix

M =
A+ †A√

2
, with (Ai,j)1≤i,j≤N

law
=

N⊗
i,j=1

NF(0, 1), ∀i, j ∈ J1, NK.

Above, β = 1 (resp. 2, resp. 4), † denotes the real transpose (resp. complex conjugate transpose,
resp. quaternionic conjugate transpose), F denotes the field R (resp. C, resp. H). These matrix
ensembles are called respectively the Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary
Ensemble (GUE) and Gaussian Symplectic Ensemble (GSE). The names of these ensembles refer to
the fact that the law of a random matrix sampled from this ensemble is invariant under deterministic

conjugaison by an element of this group. Namely, for the GOE it reads: M
law
= O>MO, for all

O ∈ ON (R).

To establish the explicit form for the law of the spectrum, the idea, see [AGZ10a, Theorem 2.5.2],
is to check that such a random matrix M decomposes into †UDU where U is orthogonal (resp.
hermitian, resp. symplectic) when β = 1 (resp. 2, resp. 4) and D real diagonal. Heuristically,
a random matrix in this ensemble can thus be identified with its preimage with respect to the
“bijective”4 map (U,D) 7→ M . By a change of variables, since U can be, at least heuristically,
parametrized by βN(N − 1)/2 parameters, one can show that the Jacobian must a polynomial in
the eigenvalues. Furthermore, by degree considerations and the fact that this map fails to be a
bijection as soon as Dii = Djj for i 6= j, the Jacobian must be proportionnal to |∆(λ1, . . . , λN )|β,
where ∆(λ1, . . . , λN ) is the Vandermonde determinant associated with the numbers (λ1, . . . , λN ).

Integrating with respect to U yields the form of PV,βN .

These three ensembles correspond, when interpreting real symmetric (resp. complex hermitian,
resp. quaternionic self-dual) matrices as hamiltonian operators, to three types of quantum systems.
In 1962, Dyson [Dys62] in a very important paper established a link between the GOE (resp. GUE,
resp. GSE) and systems presenting time and spin-reversal symmetry (resp. with no time reversal
symmetry, resp. with time-reversal symmetry) [Haa01]. There exists nine others type of random
matrices modeling quantum systems with symmetries [Iva02]. In this picture, β seems to play the
role of the dimension over the field of the reals and it has been an important question whether or
not the β-ensemble arises as the law of the spectrum of certain interesting random matrix models
for general β ≥ 0 and more general V , see [Ede10].

In an important work [DE02a], Dumitriu and Edelman managed to find a tridiagonal matrix
ensemble with independent coefficients (up to symmetry). Namely, by exploiting the fact that
for β = 1, 2, 4, the law of the matrix was invariant under conjugation by certain group elements,
they managed to exhibit an explicit random matrix Mβ, with independent entries up to symmetry,
whose spectrum follows the distribution of the β-ensembles. The law of Mβ is given by:

Mβ =
1√
2


N (0, 2) χβ(N−1) 0 . . .

χβ(N−1) N (0, 2) χβ(N−2) 0

0 χβ(N−2)
. . .

. . .
. . . χβ
χβ N (0, 2)

 (12)

with the χα distribution defined by the following p.d.f.

fχα(x)
(def)
=

21−a/2

Γ(a/2)
xa−1e−x

2/2

4This map is clearly not bijective since M can have eigenvalues with multiplicities and U is not unique. However,
this map can be made bijective by throwing away hermitian matrices forming a set of null Lebesgue measure, i.e. by
restricting to matrices with distinct eigenvalues.
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and where all the coefficients are independent up to the symmetry. This representation makes
sense for all β ≥ 0 and the spectrum of Mβ follows the GβE. This tridiagonal representation was
later generalized to polynomial potentials, as discussed in [KRV16]. Although the coefficients are
no longer independent, the matrix does exhibit a kind of Markov field property.

The β-ensemble for β = 2 and quadratic potential can also be seen as the law of the ground state
of a system composed of N free fermions confined in a quadratic potential [DLDMS15]. There
also exist some discrete version of the β-ensemble which arise in the context of lozenge tilings of
hexagons [Gui19].

Finally, explicit expressions exist for the law of the spectrum of other random matrix models,
such as the Laguerre-ensemble or the Jacobi ensemble. These expressions are quite similar in the
sense that they also contain a Vandermonde and a confining term. The main difference lies in the
domain of integration, which must be changed to [0,+∞[ for the Laguerre-ensemble and [0, 1] for
the Jacobi-ensemble. In the first case, one usually chooses a potential which present a singularity
at 0 such as V (x) = −α log |x|+ |x| for α > 0.

Having introduced the β-ensembles and shown several links it has with many other models, we now

review the existing techniques to obtain the asymptotic behavior of its partition function Z(β)
N [V ].

I.3.2 Large deviation principle and leading order for Z(β)
N [V ]

The β-ensembles can be viewed as an interacting particle system, or more precisely a log-gas with
N particles subject to a confining potential V , which prevents them from escaping to infinity. It
also involves a 2-body repulsive (singular) interaction that makes more likely for these particles to

be well-spaced. With this point of view, PV,βN introduced in (11), can be interpreted as a Gibbs
measure at inverse temperature β > 0:

pV,βN (λ1, . . . , λN ) = e−βN
2HN (λ1,...,λN )

with Hamiltonian H given by, when the λi are distinct,

HVN (λ1, . . . , λN )
(def)
=

ˆ
R
V (x)dµ̂N (x)−

¨
x 6=y

log |x− y|dµ̂N (x)dµ̂N (y)5.

Here, the empirical measure is defined as µ̂N = N−1
∑N

i=1 δλi . This object encodes the macroscopic

behavior of the system and provides important information about pV,βN and Z(β)
N [V ] since HVN solely

depends on µ̂N . It is known since Wigner [Wig55] that, when V is quadratic, µ̂N converges to

the semi-circle law µsc given by dµsc(x)
(def)
=

1

2π

√
4− x21[−2,2](x)dx. Moreover, the convergence of

the empirical measure of the β-ensembles for general V has been obtained via the LDP theory, see
[AGZ10a, Theorem 2.6.1] for a recent proof.
Theorem I.3.1 ([BAG97]) The family of random measures (µ̂N )N≥1 satisfies, inM1(R) equipped

with the weak topology, a LDP(N2, IβV ) with strictly convex, good rate function IβV given by

IβV (µ)
(def)
= EV,β(µ)− inf

ν∈M1(R)
EV,β(ν).

The functional EV,β is given for all µ ∈M1(R) by

EV,β(µ)
(def)
=

¨
R2

(
V (x)

2
+
V (y)

2
− β

2
log |x− y|

)
dµ(x)dµ(y). (13)

5This double integral can be seen as the one fold-integral of the log of the characteristic polynomial of the
“associated” random matrix against µ̂N .
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The unique minimizer is attained at a Lebesgue absolutely continuous probability measure dµV,β(x)
(def)
=

ρV,β(x)dx. It is called the equilibrium measure and is characterized by the following Euler-Lagrange
equations:

V (x)− β
ˆ
R

log |x− y|dµV,β(y)

{
≥ CV,β outside supp µV,β

= CV,β µV,β − as
. (14)

µV,β is compactly supported. Finally, under PV,βN , µ̂N converges weakly towards µV,β almost surely
and the free energy reads

lim
N→∞

1

N2
logZ(β)

N [V ] = −
ˆ
R
V (x)dµV,β(x) + β

¨
R2

log |x− y|dµV,β(x)dµV,β(y). (15)

Several comments need to be made about this theorem. First, for all β ≥ 0 and V quadratic, one
recovers the semi-circle distribution

dµV,β(x) =
√
β − 4x21

[−
√
β

2
,
√
β

2
]
(x)

dx

βπ
.

Though, only in few other cases, is the equilibrium measure explicitly known such as the potential
V (x) = x2n and β = 2 [Dei99, Section 6] in which the equilibrium measure reads:

ρV,2(x) =
n

π

√
a2 − x2.

x2n−2 +
n−1∑
j=1

x2n−2−2ja2j
j∏
l=1

2l − 1

2l

1[−a,a](x)dx, (16)

with explicit endpoints given by:

a
(def)
=

(
n

n∏
l=1

2l − 1

2l

)− 1
2n

. (17)

Another case where the equilibrium density is explicit is for the potential V (x) = x4

20−
4
15x

3+ 1
5x

2+ 8
5x

and β = 1, [CKI10, Example 1.2] where ρV,1 is given by

ρV,1(x) =
1

10π
(x+ 2)1/2(2− x)5/21[−2,2](x). (18)

In this example, one can see that the density ρV,1 doesn’t vanish like a square-root at the endpoint 2.
In general, one usually resorts a one-dimensional integral representation for µV,β which is obtained
by solving a scalar RHP [Dei99, Section 6] which we will detail below. Also, note that µV,β plays
a significant role in the analysis of orthogonal polynomials by Riemann-Hilbert and the non-linear
steepest descent method, see the previous reference for a review and Subsection I.3.4. The properties
have been extensively studied [Lan72, DKM98, ST13].

Secondly, from the Euler-Lagrange characterization (14), one can deduce that, if V is analytic, µV,β
is supported on a finite union of segments

⋃m
l=1[al, bl] with m ≥ 1 and −∞ < a1 < b1 < a2 < · · · <

bm < +∞ [DKM98, Theorem 1.38]. The case m = 1 is called the one-cut regime while the case
m > 1 is called the multi-cut regime. Strict convexity and smoothness hypotheses on V ensures
that m = 1 [Joh98, Prop 3.1], but there is no clear characterization of all potentials leading to the
one-cut regime. Furthermore, it might happen that for a point x0 ∈ supp µV,β, the p.d.f. of µV,β
might vanish like (x−x0)2k for an integer k. When this situation occurs, we say that we are in the

critical case. An instance of this class is µV,β when V = x4

4 − x
2. Indeed, the equilibrium measure

admits the following expression, see [CK06]

dµV,β(x) =
1

2π

√
|x− 2|.|x+ 2|x21[−2,2](x)dx.
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For general V , one may obtain an integral representation or the equilibrium density ρV,β by solving
a scalar RHP. Indeed, assuming the one-cut regime, one differentiates the Euler-Lagrange equation
(14) to get:

 b

a

ρV,β(y)dy

x− y
= V ′(x) ∀x ∈ [a, b], F (z)

(def)
=

1

(z − a)1/2(z − b)1/2

ˆ b

a

ρV,β(y)dy

z − y
. (19)

where
ffl

denotes the Cauchy principal value with the choice of the principal branch of the logarithm.
It follows from a direct computation that, for all x ∈ [a, b]:

F+(x) + F−(x) = −2π
ρV,β(x)√

(b− x)(x− a)
and F+(x)− F−(x) =

−2iV ′(x)√
(b− x)(x− a)

.

Above F± denotes the boundary value of F from the ± side and is defined by:

F±(x)
(def)
= lim

z→x
z∈± side non−tangentially

F (z),

where the ± side is defined as the . Since F decays sufficiently fast at infinity, F (z) verifies for all
z ∈ C \ [a, b],

F (z) =

ˆ b

a

dy

2iπ

2V ′(y)

(z − y)
√

(b− y)(y − a)
.

Thus, one finally obtains the following expression for ρV,β:

ρV,β(x) =

 b

a

√
(b− x)(x− a)√
(b− y)(y − a)

V ′(y)

y − s
dy

2π2
. (20)

Thirdly, it seems that the expression obtained in (13) for the rate function is very similar to the
one associated with the integral JN [V,W ] for a bounded continuous 2-body interaction W . The
fact that the logarithmic interaction is singular, and more precisely that

µ ∈M1(R) 7→
¨

R2

log |x− y|dµ(x)dµ(y)

fails to be a bounded continuous function, implies that Varadhan’s lemma doesn’t apply. The main
achievement of the proof was to overcome this singularity.

LDP techniques allow one to capture the leading behavior of logZ(β)
N [V ] when N goes to infinity,

but to go beyond this leading order, one must use more involved techniques such as the study of
the fluctuations of the eigenvalues.

I.3.3 Fluctuations and subleading order for Z(β)
N [V ]

Once one knows about the limiting behavior of µ̂N , one is interested in the fluctuations around this
limit, namely whether a central limit theorem (CLT) for linear statistics holds. More precisely, a
result of this type has been proven first, for β = 2 and polynomial V (of even degree and positive
leading coefficient) in [Joh98],

N

ˆ
R
f(x)d (µ̂N − µV,β) (x)

law−→
N→∞

N
(
m(f), σ2(f)

)
(21)

for m(f), σ(f) ∈ R and f smooth such that f and f ′ don’t grow too fast at infinity. It was later
generalized to all β and a large class of V in [BG13a] and to more general settings in [BG13b,
Shc13, BLS18, LLW19]. It was proven that the size of these fluctuations does not change when
changing β and V . However, the size of fluctuations has been shown to be very dependent of the
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regularity of the test-function. Indeed for indicator functions f = 1[a,b], which are very singular,
[Kil07, BMP22] show that the fluctuations are again Gaussian but of size

√
logN/N . Mesoscopic

CLT’s i.e. results of the type:

N

ˆ
R
f

(
x− x0

vN

)
d (µ̂N − µV,β) (x)

law−→
N→∞

N
(
m(f), σ2(f)

)
; vN −→

N→+∞
0, NvN −→

N→+∞
+∞

where f is a compactly supported function have also been shown in [BL18, Lam21a, Pei24]. One can
choose vN = N−α where α ∈ (0, 1) for example. CLT’s for individual particles at an intermediate
distance from the edge, i.e. for the k-th particle λk with k = k(N) → +∞ as N → +∞, were
shown in [Gus05, BEY14a, BMP22]. These results show that the fluctuations of this k-th particle
around the k-th quantile γk of µV,β, defined by:

ˆ γk

−∞
dµV,β(x) =

k

N
,

are of typical size
√

logN/N .

These results can be seen as a second order asymptotic expansion (AE) for the partition function
in the sense that one usually shows (21) by proving the convergence of Laplace transforms. In the
following, we denote by Hs(O), the s-th Sobolev subspace of functions supported on an open set
O ⊂ Rm, defined by which belongs to:

Hs(Rm)
(def)
=
{
u ∈ L2(Rm), ‖u‖Hs(Rm) < +∞

}
,

where

‖u‖2Hs(Rm)

(def)
=

ˆ
Rm

(1 + ‖t‖2)2s |F [u](t1, . . . , tm)|2 dmt.

Above, ‖.‖2 denotes the Euclidean norm on Rm. Then we are able to state the following celebrated
theorem in random matrix theory:
Theorem I.3.2 ([Joh98]) For h ∈ H2+α(O) where O ⊂ R is some open neighborhood of suppµV,2,
α > 0, such that |h(x)| = O(V (x)) at infinity and |h′(x)| ≤ q(x) for some polynomial q, there exists
a quadratic form σ2 such that the following holds:

logEV,βN
[
e
∑N
i=1 h(λi)

]
=

N→∞
N

ˆ
R
h(x)dµV,β(x) +

(
2

β
− 1

) ˆ
R
h(x)dνV,β(x) + σ2(h) + o(1). (22)

The quadratic form σ2(h) can be written as:

σ2(h)
(def)
=

−1

2π2β

ˆ b

a
dth(t)

ˆ b

a

√
(b− s)(s− a)√
(t− a)(b− t)

h′(s)

s− t
ds

and admits a form of 1/2-Sobolev norm type given by:

σ2(h) =
1

4β

+∞∑
k=1

|k1/2ak(h)|2, with ak(h)
(def)
=

2

π

ˆ π

0
h

(
a+ b

2
+
b− a

2
cos θ

)
cos kθdθ.

(23)
The signed measure νV,β is given by for β = 2 and quadratic V by

dνx2,2(x)
(def)
=

1

2
(δ−2 + δ2)−

1[−2,2]

π
√

4− x2
dx. (24)
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Furthermore, there exists established expansions for the partition function associated to the quadratic

potential VG(x)
(def)
= x2/2, logZ(β)

N [VG], namely the Mehta’s formula [Meh04, Formula 17.6.7] which

expresses Z(β)
N [VG] as a Selberg integral. It reads

Z(β)
N [VG] = (2π)N/2N−

β
4
N2+N(β

4
− 1

2
)

N∏
a=1

Γ

(
1 +

aβ

2

)
Γ

(
1 +

β

2

)N . (25)

From there, one can obtain the following asymptotic expansion:

logZ(β)
N [VG] =

N→∞

{
β

4
log

(
β

2

)
− 3β

8

}
N2 +

β

2
N logN +

{(
1

2
+
β

4

)
log

(
β

2e

)
+ log(2π)− log Γ

(
1 +

β

2

)}
N

+
1

12

{
3 +

β

2
+

2

β

}
logN + ∂1χ

(
0,

2

β
, 1

)
+

log(2π)

2
+ o(1). (26)

Above, the function χ (s, z1, z2) is a special case of the general Barnes ζ function which is the
meromorphic continuation (with respect to s) of the function defined for Re(s) > 2 by the formula

χ (s, z1, z2)
(def)
=

∑
(n1,n2)∈N2\{(0,0)}

1

(n1z1 + n2z2)s
. (27)

From (22) and (26), one can deduce the AE of the partition function for modified potentials
Vh(x) = x2/2 +N−1h(x):

logZ(β)
N [Vh] =

N→∞
logZ(β)

N [VG] +N

ˆ
R
h(x)dµVh,β(x) +

(
2

β
− 1

)ˆ
R
h(x)dµVh,β(x) + σ2(h) + o(1).

While the picture in the one-cut case is simple, it is much more subtle in the multi-cut case.
Indeed, it is possible in that case that the fluctuations are not Gaussian as it was noticed in
[Pas06, Shc11, Shc13, BG13b]. Indeed in the multi-cut case, one should add a bounded oscillatory
term in N to the above equation.

CLTs allow one to go beyond the leading order behavior of the partition function. One can wonder
if it possible to access its AE even beyond that ? We review some of the existing methods. We
first start with the β = 2 case and the orthogonal polynomials method.

I.3.4 The asymptotic expansion of the partition function at β = 2

The case β = 2 for the partition function Z(β)
N [V ] enjoys a particular expression. Indeed, in

this case, the corresponding β-ensemble enjoys a so-called determinantal property, i.e. its n-th
correlation function ρ(x1, . . . , xn) is given by a n × n determinant det [K(xi, xj)]. Similarly, the

partition function Z(2)
N [V ] can be recast in terms of the following monic orthogonal polynomials

(πNk )k defined as follows:

πNk (x) = xk + . . . and ∀k, l,
〈
πNk , π

N
l

〉 (def)
=

ˆ
R
πNk (x)πNl (x)e−NV (x)dx =

δk,l

γ
(N)
k

.

With these definitions, the partition function Z(2)
N [V ] admits the following expression:

Z(2)
N [V ] = N ! det

1≤i,j≤N

ˆ
R
xi+j−1wN (x)dx = N !

N−1∏
i=0

(
γ

(N)
i

)−1
, wN (x)

(def)
= e−NV (x). (28)



22 CONTENTS

In principle, this relation just transports the difficulty of extracting the asymptotics of Z(2)
N [V ]

towards the one of computing the γ
(N)
i ’s. The idea is that these orthogonal polynomials are

integrable, meaning that, in principle, every question about their asymptotics can be answered.
The existence of an asymptotic expansion for potentials leading to one-cut equilibrium measures
have been obtained in [EM03] and [BI05a] as well as for the two-cut case [CGM15]. In a recent

work [CKM23], this AE has been obtained for singular potentials, i.e., for logZ(2)
N [|x|γ ], with γ > 0,

up to o(1). This analysis relies on the following RHP [FIK92].
Theorem I.3.3 The following 2× 2 RHP:

• Y = Y(N) ∈ O (C \ R) .

• Y admits continuous ± boundary-value Y± on R.

• For all x ∈ R, Y+(x) = Y−(x)

(
1 wN (x)
0 1

)
• Y(z) =

(
I2 +O(z−1)

)(zN 0
0 z−N

)
admits a unique solution Y which is given by

∀z ∈ C, Y(N)(z)
(def)
=

(
πNN (z) CR

[
πNNwN

]
(z)

−2iπγ
(N)
N−1π

N
N−1(z) −2iπγ

(N)
N−1CR

[
πNN−1wN

]
(z)

)
.

We recall that the boundary values of a function haave been defined in (C.1) and we refer to
Appendix C for basic definitions about RHPs.

This very important result allows one to use the vast literature of RHPs to extract the large N

behavior of the coefficients γ
(N)
i . The main tool for this procedure is the so-called Deift-Zhou

non-linear steepest descent method [DZ92, DZ93], see [DLW96, Dei99] for reviews. It consists of
performing invertible transformations from the unique solution Y of the above RHP

Y! T ! S! R

until the RHP for R is such that the jump matrix is close to the identity. This implies that its
solution is asymptotically close to the identity. Before explaining the different transformations
occurring in this method, we make the assumption that V is an analytic potential leading to the
one-cut regime. This implies that the equilibrium density ρV,2, supported on [a, b] can be continued
analytically in a complex neighborhood of its support.

The first transformation is explicitly given by

T (z)
(def)
= eN

CV,2
2

σ3Y(z)e−Ng(z)σ3e−N
CV,2

2
σ3 , g(z)

(def)
=

ˆ
R

log(z − t)dµV,2(t), Im(z) 6= 0.

with

σ3
(def)
=

(
1 0
0 −1

)
.

The function T solves the following RHP

• T ∈ O (C \ R).

• T admits continuous ± boundary-value T± on R.

• For all x ∈ R, T+(x) = T−(x)GT (x) with

GT (x)
(def)
=

(
eN(g−(x)−g+(x)) eN(g−(x)+g+(x)−V (x)+C2,V )

0 e−N(g−(x)−g+(x))

)
. (29)
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• T (z) = I2 +O(z−1) as z →∞.

This transformation has the effect of normalizing the first RHP. Indeed, one gets T (z) = I2+O(z−1)
at infinity as an asymptotic condition for T . Furthermore, one can notice that GT admits the
following factorization:

GT (x) = e−Nϕ−(x)σ3

(
1 1
1 0

)
eNϕ+(x)σ3 with ϕ(z)

(def)
= iπ

ˆ z

a
dµV,2(ζ).

One can show that g+(x)−g−(x) = 2ϕ(x) for all x ∈ (a, b). This leads to the second step. One uses
the unique solution T to construct the unique solution S of a new RHP with a modified contour
ΣS given in Figure I.1:

• S ∈ O (C \ ΣS).

• S admits continuous ± boundary-value S± on ΣS (the + (resp. − ) side is always on the left
(resp. right) side as one traverses the contour).

• S+(z) = S−(z)GS(z) for all z ∈ ΣS where GS is given in Figure I.1.

• S(z) = I2 +O(z−1) as z →∞.

a b

(
0 1
−1 0

)(
1 0

e2Nϕ(z) 1

)

(
1 e−2Nϕ(z)

0 1

)

Figure I.1: Piecewise definition of the jump matrix GS on the contour ΣS . Note that the specific
shape of ΣS is not important.

Without entering into too many details, one can show that the function

x ∈ C 7→ g+(x)− g−(x),

appearing in (29), is purely imaginary on [a, b] and of real part positive above (a, b) and negative
below. Thus GT contains rapidly oscillating terms on [a, b]. The transformation T  S transforms
these oscillatory terms into exponentially fast decaying terms. This allows one to deal with a RHP
whose jump matrix satisfies

GS(z) −→
N→∞

G
∞
S (z)

(def)
=

(
0 1

−1 0

)
if z ∈ [a, b],

I2 otherwise.

Thus when N goes to infinity, one can expect that the solution S converges to the unique solution
S∞ of the below RHP:

• S∞ ∈ O (C \ [a, b]),
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• S∞+ (z) = S∞− (z)

(
0 1
−1 0

)
for all z ∈ [a, b],

• S∞(z) = I2 +O(z−1) as z →∞.

Indeed, since the jump matrix of S, GS converges pointwise towards the identity oustide of [a, b],
we expect that the other jumps will disappear. This RHP can be explicitly solved (it is done by
diagonalizing G∞S ) but proving that S −→

N→∞
S∞ (for some appropriate norms) is delicate. When

two jump matrices G1, G2, corresponding to two RHP on some contour of the complex plane Σ,
are such that ‖G1 − G2‖L2(Σ)∩L∞(Σ) −→

N→∞
0, then the corresponding solutions X1, X2 also satisfy

‖X1 −X2‖L2(Σ) −→
N→∞

0 [Dei99, Corollary 7.108]. The problem arises near the endpoints a and b,

where GS may not converge uniformly to G∞S .

To overcome this issue, one has to perform a last transformation S  R by constructing a so-called
local parametrix Spar which is a the solution of a RHP on a contour ΣSpar . The construction of this
2× 2 matrix-valued function is quite sophisticated so we do not recall it here. Nonetheless, its role
is to solve explicitly the previous RHP in the neighborhoods of the endpoints a and b such that

after setting R (def)
= SS−1

par, one can show that U is a holomorphic function on ΣSpar with jumps
given by a matrix GR. One can finally show that ‖GR − I2‖L∞(ΣSpar ) −→

N→∞
0. This allows one

to solve uniquely the RHP for R and by performing the inverse transformations one gets [Dei99,
Theorem 7.171]:
Theorem I.3.4 It holds that T (z) = (I2 + o(1))S∞(z) uniformly for |Im(z)| ≥ ε.

This theorem is sufficient to determine the asymptotic behavior of γi’s and concludes about the AE

of Z(2)
N [V ]. Applying this method, the authors of [EM03] obtained the following AE for polynomials

potentials of the form V (., t1, . . . , tn) : λ 7→ λ2/2 +
∑n

i=1 tiλ
i:

N−2 log
Z(2)
N [V (., t1, . . . , tn)]

Z(2)
N [V (., 0, . . . , 0)]

=
M∑
k=0

ek(t1, . . . , tn)N−2k +O(N−2M−2). (30)

This expansion holds for all M > 0. The numbers ek(t1, . . . , tn) are analytic functions of t
(def)
=

(t1, . . . , tn) and possess a combinatorial interpretation. There exists a connection between asymp-

totics of multiple integrals, such as the partition function Z(2)
N [V ] and the enumeration of maps.

As argued in [BIPZ78, Bou11, E+16], there is a link between the so-called formal matrix integrals
and generating functions of maps. This statement can be seen at the level of equation (30) by the
following result:
Theorem I.3.5 The numbers ek(t) appearing in (30) admit the following expression:

ek(t) =
∑

(m1,...,mn)∈(N∗)n
κk(m1, . . . ,mn)

n∏
i=1

(−ti)mi
mi!

.

The coefficient κk(m1, . . . ,mn) is the number of k-maps with mj j-valent vertices for j ∈ J1, nK.

A map is a combinatorial object that can be defined as a graph embedded in a Riemann surface
so that: (i) the images of the edges do not intersect, and (ii) the connected components of the
embedding are simply connected. A k-map is then a map embedded in a surface of genus k.

This connection was first observed by the seminal works [BIPZ78, tH93]. The previous theorem
can be seen as a motivation for computing the AE of certain integrals, as one may recover some
combinatorial species in the coefficients.

After having addressed the special case β = 2, we conclude this section by summarizing several
results about the β-ensembles. This will lead us to consider generalizations of this model.
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I.3.5 Universality

The concept of universality refers to the phenomenon observed experimentally that there are fea-
tures of many physical systems that do not depend on the details of such systems. An example of
universality is that a large class of systems exhibit the same so-called critical exponents at phase
transitions points. This observation also holds mathematically in many random models, where they
tend to exhibit the same limiting behavior as their complexity (often represented by a size param-
eter N) tends to infinity. Remarkably, this limiting behavior appears to depend very little on the
initial parameters of the model [Dei06]. Classic examples of this phenomenon include the famous
law of large numbers and the central limit theorem for independent variables. The emergence of the
Tracy-Widom law in systems with high correlation, such as the six-vertex model, the β-ensembles,
or the random growth models, can also be interpreted as instances of universality [BG16].

The renormalization group theory à la Wilson provides a mathematical explanation for this phe-
nomenon [LL75, CCEF10, Ott23]. In this framework, the limiting behavior arises as an attractive
fixed point of the renormalization operator. This operator coarse-grains the system as its complex-
ity increases, bringing the system closer to this attractor.

In the realm of random matrix theory, universality results are well-established. While Wigner’s
theorem serves as the most evident illustration, universal features also emerge when investigating
the local behavior of eigenvalues.

It has been proven that the local statistics within the bulk of β-ensembles converge towards the
so-called Sineβ process, initially demonstrated for Gaussian β-ensembles [VV09]. Analogous results
can be found in the literature concerning the two-dimensional Coulomb case, such as the Ginibre
point process [BS09], and the Riesz-β process in Riesz gases [Bou22].

For β-ensembles, this result is considered universal as it ultimately does not depend on the choice
of the potential, as shown in [BEY12, BEY14b]. Other universality results have been shown
using orthogonal polynomials in [PS97, Wid99, BI99, DKM+99a, DKM+99b, DGKV07, DG07b,
PS08, Shc11]. Instead, it solely depends on the inverse temperature β. This universality class
even encompasses general interactions that exhibit logarithmic local behavior, as demonstrated
in [Ven13]. Thus, one may wonder what happens when modifying the model more substantially,
specifically the N -dependence of the temperature, the interaction, or scaling of the potential. These
issues will be addressed in Sections I.5 and I.7.

In Section I.5, we will remove the scaling of the potential and make β N -dependent such that Nβ
is constant. In Section I.7, we will use a different interaction and eliminate the scaling by N of
the potential. This involves relinquishing certain convenient properties inherent in the β-ensembles
that enable the analysis. Despite the significant implications of these changes, we expect that most
of the results and heuristics in the β-ensembles will remain valid. However, proving these results
will require addressing a substantial technical gap arising from these modifications.

Having addressed the special case β = 2 for the AE of logZ(β)
N [V ], we now give details about

a general method for deriving the complete AE (up to any finite order N−k) for Z(β)
N [V ]. This

method, called the loop equations analysis, will play a significant role in this thesis.

I.4 The asympotic expansion of Z(β)
N [V ] by the loop equations anal-

ysis

I.4.1 Overview of the method

For the general case, let V be a general potential, Vref be a reference potential such that the large-

N behavior of Z(β)
N [Vref ] is known (the quadratic potential is a good example because of Mehta’s
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formula (25)), and define

Vt
(def)
= tV + (1− t)Vref , ∀t ∈ [0, 1], (31)

then one has

log

(
Z(β)
N [V ]

Z(β)
N [Vref ]

)
=

ˆ 1

0
∂t logZ(β)

N [Vt]dt = −N2

ˆ 1

0
EVtN

[ˆ
R

(V (x)− Vref(x)) dµ̂N (x)

]
dt. (32)

This equation links the partition function with the linear statistics i.e. expressions given, for an
integer n ≥ 1 and a smooth function fn by

〈fn〉Wn⊗µ̂N
(def)
= EWN

[ˆ
R
fn(x1, . . . , xn)d⊗

n
µ̂N (x1, . . . , xn)

]
. (33)

The computation (32) allows one, in principle, to deduce the large-N behavior of the partition
function from an integration of the asymptotics linear statistics. Suppose one has:

〈V − Vref〉Vtµ̂N =
K∑
a=0

ca(t)

Na
+O

(
N−(K+1)

)
,

logZ(β)
N [Vref ] = aN2 + bN logN + cN + d logN +

K∑
a=0

da
Na

+O
(
N−(K+1)

)
,

one might hope to obtain the N−1 expansion for N−2 logZ(β)
N [V ] in the form:

logZ(β)
N [V ] =

(
a−

ˆ 1

0
c0(t)dt

)
N2 + bN logN +

(
c−

ˆ 1

0
c1(t)dt

)
N + d logN

+

K∑
a=0

da −
ˆ 1

0
ca+2(t)dt

Na
+O

(
N−(K+1)

)
. (34)

Since the asymptotics of logZ(β)
N [Vref ] can be obtained by dealing only with properties of the Γ

function by (25), the main step in this procedure is to obtain the asymptotics of 〈V − Vref〉Vtµ̂N and
make the integration step rigorous.

To obtain the AE of the linear-satistic 〈V − Vref〉Vtµ̂N , one relies on a technique called the analysis
of the loop or Schwinger-Dyson equations. It consists of a tower of equations indexed by n ∈ N∗
which makes it possible to extract the large-N behavior of the linear statistics. These equations

can be proven by integration by parts or by using the fact that Z(β)
N [V ] is invariant under change

of variables. The first one takes the following form:

β

2
〈D[f ]〉µ̂N⊗µ̂N +

β − 2

N
〈f ′〉µ̂N − 〈V

′f〉µ̂N = 0, with D[f ]
(def)
=

f(x)− f(y)

x− y
. (35)

This first loop equation links the 2-linear statistic 〈D[f ]〉µ̂N⊗µ̂N with 1-linear statistics. Taking the
formal limit of (35) as N →∞, one obtains the following equation:

β

2

ˆ
R2

D[f ](x, y)dµV,β(x)dµV,β(y) =

ˆ
R
V ′(x)f(x)dµV,β(x). (36)

This equation can be derived rigorously, by differentiating the Euler-Lagrange equation (14) and
then integrating against f(x)dµV,β(x). To explain the mechanism behind extracting the large-N
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asymptotic of the linear statistics out of the loop equations, we need to recenter (35) using (36).

Explicitly, by using the recentred measure LN
(def)
= µ̂N − µV,β one obtains:

〈K[f ]〉LN +
β

2
〈D[f ]〉LN⊗LN +

1− β/2
N

〈f ′〉LN = −1− β/2
N

〈f ′〉µV,β . (37)

Above, the operator K is called the master-operator and is defined by:

K[f ](x)
(def)
= β

ˆ
R

f(x)− f(y)

x− y
dµV,β(y)− V ′(x)f(x). (38)

This operator is well-known to appear in this context, see [BG13a, BG13b, Shc13, BLS18]. Inverting
this operator and obtaining sufficiently good controls on it with respect to appropriate norms are
the technical requirements for analyzing the loop equations. This was achieved in [BFG15] relying
on techniques developed in [Tri85] and we will present the idea to demonstrate its inversion. Once
it is inverted, equation (37) can be recast as:

〈f〉LN = −β − 2

N
〈K−1[f ]′〉µV,β −

β − 2

N
〈K−1[f ]′〉LN −

β

2

〈
D ◦ K−1[f ]

〉
LN⊗LN

. (39)

For the following, it is also useful to state the n-th loop equation. For that, we need several
notations, let fn a function of n variables then we set:

K−1
1 [fn](x1, . . . , xn)

(def)
= K−1 [fn(., x2, . . . , xn)] (x1),

D1[fn](x1, . . . , xn+1)
(def)
= D [fn(., x3, . . . , xn+1)] (x1, x2)

Θ(a)[fn](x1, . . . , xn−1)
(def)
= fn(x1, . . . , xa−1, x1, xa, . . . , xn−1) (40)

With the operators defined previously, we can state the n-th loop equation for a bounded smooth
function fn of n > 1 variables:

〈fn〉n⊗LN
=

1

N2

n∑
a=2

〈Θ(a) ◦ K−1
1 [∂afn]〉n−1

⊗ LN
+
β

2
〈D1 ◦ K−1

1 [fn]〉n+1
⊗ LN

+
1− β
N
〈∂1K−1

1 [fn]〉
µV,β

n−1
⊗ LN

+
1

N2

n∑
a=2

〈Θ(a) ◦ K−1
1 [∂afn]〉

µV,β
n−2
⊗ LN

+
1− β
N
〈∂1K−1

1 [fn]〉n
⊗LN

. (41)

One of the main feature of the above equation is that it relates n-linear statistics with n+ 1, n− 1
and n−2 linear statistics. An other point is that the inverse of the master operator appears in every
linear statistics of the RHS. But, the method of the loop equations analysis consists in estimating
every term of the RHS. To identify if a term is, with respect to a fixed order O(N−K), either a
remainder or a contribution, one needs a bound on the linear-statistics called an a priori bound.

I.4.2 The a priori bound

This bound takes the following form:

| 〈fn〉n⊗LN
| ≤ C

N
n
2
−ε ‖Rκ[fn]‖W∞n (Rn), (42)

where C > 0 is a positive constant indedpendent of fn and where the W∞n -norm and the regular-
ization Rκ, κ > 0, are defined by:

‖g‖W∞n (Rn)
(def)
= max

0≤i≤n
‖g(i)‖L∞(Rn), Rκ[g](x1, . . . , xn)

(def)
=

n∏
a=1

e−κV (xa).g(x1, . . . , xn).

(43)
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This bound can be proven by concentration of measure and was first shown in [BdMPS95] and is
legit for all function fn such that Rκ[fn] ∈W∞n (Rn).

Under convenient assumptions on the growth of the potential, it is possible to bound the p.d.f.

Z(β)
N [V ]−1pV,βN , introduced (10), as follows:

∀(λ1, . . . , λN ) ∈ RN , Z(β)
N [V ]−1pV,βN (λ1, . . . , λN ) ≤ exp

{
−N2D2[µ̂N,reg, µV,β] +O(N logN)

}
(44)

where the pseudo-distance D2 (possibly infinite) is defined for all µ, ν ∈M1(R) by:

D2(µ, ν)
(def)
= −

¨
R2

log |x− y|d(µ− ν)(x)d(µ− ν)(y) =

ˆ +∞

0

∣∣F [µ− ν](t)
∣∣2

t
dt, (45)

where F denotes the Fourier transform of a measure. One can notice that for atomic measures,

this quantity is infinite. Therefore, if one wants to prove that Z(β)
N [V ]−1pV,βN (λ1, . . . , λN ) is small

as soon as µ̂N is far from µV,β with respect to D, it is convenient to regularize µ̂N into µ̂N,reg

following a procedure developed in [MMS14]. The regularized empirical measure µ̂N,reg consists of
a convolution of µ̂N with the uniform measure on very small intervals, [0, e−N ] for example. Thus,

since µ̂N is close to µ̂N,reg, Z(β)
N [V ]−1pV,βN (λ1, . . . , λN ) is small as soon as µ̂N is far from µV,β. To

start, one can show that for a general bounded continuous function fn,

〈fn〉n⊗LN
= 〈fn|c〉n⊗LN

+ exponential errors

where fn|c
(def)
= fn.φc with φc a compactly supported smooth function whose support is sufficiently

large. We can thus suppose in the rest of this section that fn is a compactly supported function.
To conclude on the a priori bound, one can use the fact that LN = (µ̂N − µ̂N,reg) + (µ̂N,reg−µV,β).
By choosing a sufficiently close regularization µ̂N,reg, one can see that for fn ∈W∞n (Rn):

〈fn〉n⊗LN
= 〈fn〉n⊗µ̂N,reg−µV,β

+ exponential errors.

Furthermore, for the linear statistic on the RHS, particles in the event:

Ω
(def)
= {D2(µN,reg, µV,β) > M/N1−ε}, ε > 0

(such that the empirical measure is far from the equilibrium measure) will only yield exponential
errors O(e−cMN1+ε

) for a constant c > 0 because of (44).

〈fn〉n⊗µ̂N,reg

=

∣∣∣∣∣EV,PN
[
1Ωc

ˆ
Rn
fn(x1, . . . , xn)

n∏
i=1

d(µ̂N,reg − µV,β)(xi)

] ∣∣∣∣∣+ exponential errors.

By Plancherel formula and Cauchy-Schwarz inequality, one gets the following inequalities:∣∣∣∣∣EV,PN
[
1Ωc

ˆ
Rn
fn(x1, . . . , xn)

n∏
i=1

d(µ̂N,reg − µV,β)(xi)

] ∣∣∣∣∣
≤

(ˆ
Rn
|F [fn] (ϕ1, . . . , ϕn)|2

n∏
a=1

|ϕa|
dnϕ

(2π)n

)1/2

.EV,PN
[
1ΩcN

2
n
2Dn(µ̂N,reg, µV,β)

]

≤ (2M)
n
2

N
n
2

(1−ε)

ˆ
Rn
|F [fn] (ϕ1, . . . , ϕn)|2

1 +

(
n∑
a=1

|ϕa|2
)1/2


n

dnϕ

(2π)n

1/2

≤ (2M)
n
2

‖fn‖Hn/2(Rn)

N
n
2

(1−ε) .

Finally, by using the fact that fn is a compactly supported function, we can bound the Hn/2-
norm of fn by C‖Rκ[fn]‖W∞n (R) with C > 0 independent of fn. Note that, in order to control the
exponential errors, one had to rely on the fact that ‖Rκ[fn]‖W∞1 (Rn) is finite. Since ε > 0 can be
taken as small as needed, this establishes (42).
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I.4.3 The inversion the of the master operator

To estimate each term in (39) and (41) via the a priori bound, it is necessary to verify that it
is applicable i.e. that the test-function fn of every linear statistics involved in these equations
are such that Rκ[fn] ∈ W∞n -norm for n sufficiently large. In order to prove that, it is necessary
to obtain controls on the operators involved in (41). One then needs to show the continuity of
the operators K−1, D ◦ K−1 and Θ(a) ◦ K−1 with respect to the norm ‖Rκ[.]‖W∞1 (Rn). Since the
controls on the other operators can be proven quite directly, the only non-trivial thing to prove
is the continuity of K−1. It follows from the integral representation of K−1[f ] that one can show
when inverting K, see [BFG15, Lemma 3.2]. Indeed, once an integral representation for K−1[f ] is
found, the standard tools of functional analysis allow one to obtain the desired continuity results.

It can be derived as follows, let g be a smooth function such that K[f ] = g. One first notes that it
is possible to recast K[f ](x) by

K[f ](x) = −V ′eff(x)f(x)−β
 
R

f(y)

x− y
dµV,β(y), Veff(x)

(def)
= V (x)−β

ˆ
R

log |x−y|dµV,β(y)−CV,β.

The effective potential appearing here is such that, by the Euler-Lagrange equations (14), one has
Veff(x) = 0 on suppµV,β and is positive elsewhere. In the following, we assume that the potential V
leads to the one-cut regime and set supp µV,β = [a, b]. Let x ∈]a, b[, one gets the following singular
integral equation:

−β
 
R

f(y)

x− y
dµV,β(y) = g(x). (46)

By setting:

F(z)
(def)
=

−β
(z − a)

1
2 (z − b)

1
2

ˆ b

a

f(y)

x− y
dµV,β(y),

where we use the principal determination of the logarithm, one can verify from (46) that F is the
unique solution of the following scalar RHP:

• F ∈ O (C\]a, b[) and admits continuous ± boundary values on ]a, b[.

• For all s ∈]a, b[, F+(s)− F−(s) =
−2ig(s)√

(b− s)(s− a)
.

• F(z) = O(z−2) as z →∞.

Provided that: ˆ b

a

g(u)√
(b− u)(u− a)

du = 0, (47)

the unique solution of the above RHP is known. This leads to:

F(z) =

ˆ b

a

du

2iπ

−2ig(u)

(u− z)
√

(b− u)(u− a)
.

If constraint (47) is not satisfied, F(z) 6= O(z−2) as z →∞. Finally, from the definition of F, it can
be seen that:

F+(z) + F−(z) =
2πβf(s)ρV,β(s)√

(b− s)(s− a)
.

This leads to the following expression for f(s) with s ∈ [a, b]:

f(s) = − β

ρV,β(s)

 b

a

√
(b− s)(s− a)√
(b− u)(u− a)

g(u)

u− s
du

2π2

(def)
= − β

ρV,β(s)
V[g](s). (48)
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For s /∈ [a, b], one can find that:

f(s) = − g(s)− 2πV[g](s)

V ′(s)− 2πV[V ′](s)
. (49)

From these integral representations, it is not hard to read the regularity as well as obtaining a
control of the form ‖RκK−1[g]‖W∞n (R) ≤ C‖Rκ′ [g]‖W∞n+2(R) for κ′ > κ > 0 which is exactly what is
needed to conduct the loop equation analysis.

I.4.4 The loop equations analysis

In order to identify the first leading order term, which is of the order N−1 for 〈f〉LN , we start
by examining (39). The first term of the RHS of (39) clearly contributes to this order, while the
second is evidently a o(N−1). For the third one, the a priori bound is only able to say that:〈

D ◦ K−1[f ]
〉
LN⊗LN

= O(N−1+2ε).

This is not precise enough so we need to investigate the loop equation at level 2. Setting f2
(def)
=

D ◦ K−1[f ], it reads:

〈f2〉 2
⊗LN

=
1

N2
〈Θ(2) ◦ K−1

1 [∂2f2]〉LN +
β

2
〈D1 ◦ K−1

1 [f2]〉 3
⊗LN

+
1− β
N
〈∂1K−1

1 [f2]〉µV,β⊗LN

+
1

N2
〈Θ(2) ◦ K−1

1 [∂2f2]〉µV,β +
1− β
N
〈∂1K−1

1 [f2]〉 2
⊗LN

. (50)

By applying the a priori bound (42) to the first term of the RHS of (50), we get the following
estimate:

1

N2
〈Θ(2) ◦ K−1

1 [∂2f2]〉LN = O
(
N−

5
2

+ε
)
. (51)

Hence by picking ε > 0 small enough, we can conclude that it is negligible and doesn’t contribute
to the expansion up to o(N−1). The same application of the a priori bound for the second, third

and fifth term of (50) predicts the respective estimates O
(
N−

3
2

+3ε
)

, O
(
N−

3
2

+ε
)

and O
(
N−2+2ε

)
.

The fourth one is a deterministic term so we can finally conclude that:

〈f2〉LN⊗LN = O
(
N−

3
2

+2ε
)
, (52)

and hence that:

〈f〉LN = −β − 2

N
〈K−1[f ]′〉µV,β +O

(
N−

3
2

+ε
)
. (53)

This allows us to improve the a priori bound into an a posteriori bound for the one linear statistics.
The 1-linear statistic are indeed more precisely a O(N−1) rather than an imprecise O(N−

1
2

+ε).

We now explain how to get the subleading order of 〈f〉LN namely its AE up to o(N−2). The first

loop equation (39) contains the 1-linear statistic −β − 2

N
〈K−1[f ]′〉LN . By (53), we know its AE up

to o(N−2), namely:

−β − 2

N
〈K−1[f ]′〉LN =

(β − 2)2

N2
〈K−1

[
K−1[f ]′

]′〉LN + o(N−2). (54)

It thus remains to obtain the AE of
〈
D ◦ K−1[f ]

〉
LN⊗LN

up to o(N−2). The first term in (50) is

clearly a o(N−2). So is the fifth term by (52). The third term is a 1-linear statistic preceded by a
factor N−1 so by (53), we know its AE up to o(N−2). The fourth one is also clearly a contribution
of the right order so we collect it. The application of the a priori bound for the 3-linear statistic
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β

2
〈D1 ◦ K−1

1 [f2]〉 3
⊗LN

yields an imprecise O(N−
3
2

+3ε). To capture more precisely its N -behavior, it

is necessary to investigate the third loop equation.

Skipping some details, we will repeat the same analysis in this equation. The a posteriori bound
on the 1-linear statistic and the a priori bound on the 2 and 3-linear statistics will be enough to
show that all the terms will be o(N−2) except for the 4-th linear statistic:

β

2
〈D1 ◦ K−1

1 ◦ D1 ◦ K−1
1 [f2]〉 4

⊗LN
.

The latter is estimated by the a priori bound as a O(N−2+4ε) which is too imprecise. It will thus be
necessary to investigate the fourth loop equation to improve this estimate and get the right order.
In this fourth equation, the estimates we currently have on the k-linear statistics for k ∈ J1, 5K
wil be precise enough to show that all these terms are of order O(N−

5
2

+5ε). This is then enough
to conclude to conclude about the AE of 〈f〉LN up to o(N−2) and get the following improved a
posteriori bounds:

〈f4〉 4
⊗LN

= O
(
N−

5
2

+5ε
)
, 〈f3〉 3

⊗LN
= O

(
N−

5
2

+5ε
)
, 〈f2〉 2

⊗LN
=

c

N2
+O

(
N−

5
2

+5ε
)
,

where c comes from collecting the contributions coming from the third and fourth terms in (50).

This allows us to find the AE of 〈f〉LN up to O(N−
5
2

+5ε). This machinery allows one to push the
AE of k-linear statistics up to any order by investigating enough loop equations and at each step
improving the a priori bounds into a posteriori bounds. This is enough to conclude about the AE
in powers of N−1 of k-linear statistics up to any order and this for any k ≥ 1. In particular, the
loop equations analysis provides an AE for the 1-linear-statistic involved in (32), which takes the
following form for all M > 0,

〈V − Vref〉VtLN =
M∑
k=1

ck(V − Vref , Vt)

Nk
+O

(
N−(M+1)

)
. (55)

I.4.5 Integration of the asymptotic expansion of linear statistics

The last step of this method consists of integrating this AE as in (32) in order to deduce the AE for

Z(β)
N [V ]. To achieve this, one needs to be able to make the integrals of each coefficient well-defined.

Indeed, using the notations of the beginning of this Subsection, one gets:

ˆ 1

0
〈V − Vref〉Vtµ̂N dt =

ˆ 1

0
〈V − Vref〉µVt,β dt+

M∑
k=1

´ 1
0 ck(V − Vref , Vt)dt

Nk
+

ˆ 1

0
O(N−(M+1))dt. (56)

These integrals might not be well-defined and could even be infinite if the corresponding integrands
are not integrable. However, it can be shown that each coefficient ck(V − Vref , Vt) is a finite sum
of linear statistics with respect to products of µVt,β. The kind of result that is needed here is a
continuity property for the map t ∈ [0, 1] 7→ µVt,β. Following [BG13a, Lemma 5.1], one can show
that starting from a potential Vref such that the corresponding equilibrium measure µVref ,β has the
same support as µV,β, the equilibrium measure associated with the interpolating potential Vt is
given by:

µVt,β = tµV,β + (1− t)µVref ,β. (57)

This can be proven by using that the characterization of the equilibrium measure (14), which is
affine in µV,β and V . With this result, one can integrate the coefficients t 7→ ck(V −Vref , Vt) as well
as the remainder appearing in (56). The latter is composed of all the linear statistics that we were
able to neglect and can be controled by:

|O(N−(M+1))| ≤ Ct
‖Rκ[V − Vref ]‖W∞

c(M)
(R)

NM+1
,
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where Rκ is the regularization appearing in (42), Ct is a t-dependent constant composed of the
continuity constants of the different operators involved in the loop equations and c(M) is a large
enough integer. By the interpolating form of µVt,β, it is straightforward to show that these constants
are continuous with respect to t, yielding a finite integral. This results in the fact that the integral
of the remainder

´ 1
0 O(N−(M+1))dt is itself a remainder O(N−(M+1)), allowing us to conclude about

(34). This constitutes the method of the analysis of the loop equations.

We now introduce the model that will be the main focus of Chapters 1 and 2, namely the β-
ensembles at high temperature.

I.5 The β-ensembles at high temperature

I.5.1 The model

The β-ensembles at high temperature is described by the following probability measure

dPV,PN (λ1, . . . , λN )
(def)
= pV,PN (λ1, . . . , λN )

dNλ

ZN [V ]
(58)

with

pV,PN (λ1, . . . , λN )
(def)
=

N∏
i<j

|λi − λj |
2P
N .

N∏
i=1

e−V (λi), ZN [V ]
(def)
=

ˆ
RN

pV,PN (λ1, . . . , λN )dNλ.

(59)
The primary difference from the classical β-ensembles is the replacement of a constant β ≥ 0
with an N -dependent vanishing coefficient of 2P/N . In a statistical mechanics approach, this
coefficient is interpreted as the inverse temperature. Therefore, when N is large, it corresponds to
a high-temperature regime. It can also be viewed as a parameter that tunes the strength of the
two-body interaction. Consequently, in this regime, the particles are less correlated compared to
the β-constant regime. This statement will be formalized later by presenting results that assert the
presence of disorder in this regime.

Another difference is that NV is replaced by V , which places the confining contribution on the
same scale with respect to N as the repulsive interaction. Explicitly, pV,PN can be rewritten as:

pV,PN (λ1, . . . , λN ) = e−NH
P
N (µ̂N ) with HPN (µ)

(def)
=

ˆ
R
V (x)dµ(x)−2P

¨
x 6=y

log |x−u|dµ(x)dµ(y).

We know, by Sanov’s theorem 3.0.4 and the AE of the partition function of the classical β-ensemble,
that the entropy6, regardless of the potential, is of magnitude order N . In the classical regime, the
Hamiltonian was scaled by N2, making the entropy negligible in the description of the macroscopic
behaviour of the system. Indeed in the classical regime, we have seen in Theorem I.3.1 that the
empirical measure µ̂N , converges to an equilibrium measure µV,β which is the minimizer of a certain
functional EV,β. This functional only depends on the potential V and the logarithmic interaction
between the particles. However, since the leading scale in the high temperature regime is N , we
will observe the entropy coming into play, which is one reason why this regime is particularly
interesting.

I.5.2 Global behavior and fluctuations

As in the β-constant case, one is first interested in the global behavior of the particles, which can
be understood by the study of the asymptotics of µ̂N . Similar to Theorem I.3.1, LDP provide tools
to access this information. The following theorem holds:

6Indeed in[Shc13, Formula (1.20)] one can see the entropy appearing as a subleading term.
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Theorem I.5.1 The family of random measures (µ̂N )N≥1 satisfies, in M1(R) equipped with the
weak topology, a LDP(N, IPV ) with strictly convex, good rate function IPV given by:

IPV (µ)
(def)
= EV,P (µ)− inf

ν∈M1(R)
EV,P (ν). (60)

The functional EV,P is defined for all µ ∈M1(R) by

EV,P (µ)
(def)
=


ˆ
R

(
V (x) + log

dµ(x)

dx

)
dµ(x)− P

¨
R2

log |x− y|dµ(x)dµ(y) if dµ� dx,

+∞ otherwise.

(61)
The unique minimizer is attained at a Lebesgue absolutely continuous probability measure µV,P
which is called the equilibrium measure. Its p.d.f. is denoted by ρV,P and µV,P is characterized by
the following Euler-Lagrange equations:

V (x)− 2P

ˆ
R

log |x− y|dµV,P (y) + log
dµV,P (x)

dx

{
> CV,P outside supp µV,P

= CV,P µV,P − as
. (62)

Moreover, µV,P is supported on the whole real line. Finally, under PV,PN , µ̂N converges weakly
towards µV,P almost surely and the free energy reads:

lim
N→∞

1

N
logZN [V ] = −

ˆ
R

(
V (x) + log

dµV,P (x)

dx

)
dµV,P (x)+P

¨
R2

log |x−y|dµV,P (x)dµV,P (y).

The LDP was established in [GZ19], see [CGZ14, 1.2] for a discussion about this regime. It was
also proven in [BGP15], that for the Gaussian β-ensembles as long as β � N−1, so for smaller
temperatures than the regime of our interest, the structure of the LDP in Theorem I.3.1 remains the
same, and entropy doesn’t play any role. If the logarithmic interaction was not singular, this result
would follow from a successive application of Sanov’s theorem 3.0.4 and Varadhan’s lemma 3.0.5.
Overcoming the singularity of the logarithm is the main difficulty in this proof. The second part
of the theorem, namely the study of the equilibrium measure µV,P , was adressed in [GM22]. The
authors established, in the continuation of [Spo20], a connection between µV,P and the equilibrium
measure of the Toda chain νToda

V,P , see Section I.6. The authors also showed a continuity result for
µV,P with respect to the P -dependence.

Several comments have to be made about the previous theorem. First, the LDP holds at a lower
speed compared to the classical regime, since the scaling of the Hamiltonian has been decreased
from N2 to N .

Secondly, the form of the rate function IPV given in (60), has also changed, and entropic effects
start to kick in. These effects automatically make the equilibrium measure, absolutely continuous
with respect to Lebesgue and supported on the whole real line. The latter is the main difference
with the classical regime, where µV,β is compactly supported. Since the mathematical entropy
is equal, by convention, to minus the physical entropy, minimizing IPV amounts to compromise
between minimizing the energy with respect to µ

ˆ
R
V (x)dµ(x)− P

¨
R2

log |x− y|dµ(x)dµ(y)

while at the same time, maximizing its physical entropy. Hence, µV,P is the result of a simultaneous
competition between energy minimization and entropy maximization.

Finally, due to the presence of the entropy, the Euler-Lagrange equation has a different form than
the one found in Theorem I.3.1. While the same equation in the classical β-ensemble was affine in
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µ, it is non-linear in the high temperature regime. This has the effect of making way more difficult
the understanding of the dependence of ρV,P with respect to V . As explained in Subsection I.4.5,
to perform the method of the loop equations analysis, one has to obtain a continuity result for
t 7→ ρVt,P where Vt is the interpolating potential defined in (31). This can be proven for t 7→ ρVt,β
in the classical regime without too much effort but the same proof doesn’t work at all in the
high temperature regime. Indeed, one cannot rely anymore on the linearity of the Euler-Lagrange
equation (14) with respect to µ. We were however able to prove this result in this case, see
Theorem I.8.6 relying on Banach fixed-point theorem. We will explain the basic idea of this proof
in Subsection I.8.2.

Equation (62) can solved explicitly in the case of a quadratic potential [ABG12] and reads:

ρVG,P (x) =
e−

x2

2

√
2π

1

|f̂α(x)|2
, f̂α(x)

(def)
=

√
P

Γ(P )

ˆ +∞

0
tP−1e−

t2

2
+ixtdt.

It was also shown that this density interpolates between the case P → 0, where one recovers the
Gaussian distribution and P → +∞ where one recovers the semi-circle law. This phenomenon,
discovered in [ABG12], is sometimes called the Gauss-Wigner crossover and was generalized to
more general V [NT20a, Remark 2.1]. This density is also explicit in other models, namely the
Jacobi and Laguerre ensembles, involving hypergeometric functions, see [Maz22]. This measure
was also studied in the framework of Coulomb gases, it is called the thermal equilibrium measure
in [AS22]. A general explicit form for ρV,P can be obtained by taking the exponential of (62). This
leads to the following epxression:

ρV,P (x) = exp

(
−V (x) + 2P

ˆ
R

log |x− y|dµV,P (y) + CV,P

)
x− ae. (63)

Furthermore, it can be shown that the logarithmic potential, as expressed above, exhibits the
following asymptotic behavior as |x| → ∞:

ˆ
R

log |x− y|dµV,P (y) = log |x|+O(1/x).

This leads to the following asymptotic behavior for ρV,P :

ρV,P (x) ∼
|x|→∞

|x|2P exp (−V (x) + CV,P ) . (64)

We thus observe that ρV,P decays exponentially fast at infinity.

I.5.3 Fluctuations in the high temperature regime

Once the law of large numbers is established i.e. the convergence of the empirical measure, one
becomes interested in the fluctuations around the limit, namely a CLT. For N−1 � β � logN , it
was shown in [BGP15] that for quadratic potentials VG(x) = x2 and smooth test functions h:

Nβ

ˆ
R
h(x)d(µ̂N − µsc)(x)

law−→
N→∞

δ´
R h(t)dνx2,2(t)

The measure νx2,2 is the one appearing in (24). This result motivates the understanding of the
form of the fluctuations when β = 2P/N for P > 0, namely the high temperature regime. In this
regime, several results exist to describe the fluctuations of linear statistics. All of them involve a
rescaling by

√
N in order to observe the Gaussian fluctuations:

• for quadratic potentials and test-functions with polynomial growth was first proven in [NT18].
This result is a natural extension of [BGP15] as it allowed to deal with a higher temperature.
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• In the circular case, for smooth enough test-functions and general smooth enough potential
V , a CLT was proven in [HL21]. The authors successfully inverted the master operator and
provided an explicit description of the limiting variance in terms of this inverse. This result
is very general and allows for non-quadratic potentials. Furthermore, they demonstrated
that the Gauss-Wigner crossover is valid at the level of the limiting variance.Specifically,
they showed that as the parameter P , on which the limiting variance depends, approaches
0 (respectively, +∞), the variance converges to that of the CLT for independent and iid
particles (respectively, for the constant β case).

• On the real line with general potential V smooth enough and growing fast enough at infinity
for bounded smooth enough functions, a CLT was shown in [DGM23]. This result, which is
a contribution of the author of this manuscript and their co-author, is discussed in Chapter
1. It extends the techniques used in the circular case to a non-compact setting, specifically
the real line. Additionally, we successfully inverted the master operator Ξ in this context and
obtained an explicit description of the limiting variance φ 7→ σ2

β−ens,HT(V, P, φ).

• A CLT on the real line, polynomial potentials and test-functions with polynomial growth
followed was established in [MM24]. This result, however, is limited to polynomial potentials
and does not extend to other types of potentials. Nevertheless, it encompasses a broader class
of test functions beyond merely sufficiently smooth and bounded functions.

To highlight the contribution of this thesis, we present our result explicitly:
Theorem I.5.2 Assume that V satisfies Assumptions 1.1.1 and Assumption 1.1.2. Then for all

φ ∈ C2(R) with φ, φ′ and φ′′ bounded such that

ˆ
R
φ(x)dµV,P (x) = 0, we have the following

convergence:
√
N

ˆ
R
φ(x)d(µ̂N − µV,P )(x)

law−→
N→∞

N
(
0, σ2

β−ens,HT(V, P, φ)
)

(65)

where the limiting variance σ2
β−ens,HT(V, P, φ) is given by

σ2
β−ens,HT(V, P, φ)

(def)
= 〈φ′,Ξ−1[φ]〉L2(µV,P ) =

ˆ
R

(
Ξ−1[φ]′(x)2 + V ′′(x)Ξ−1[φ](x)2

)
dµV,P (x)

+ P

¨
R2

(
Ξ−1[φ](x)− Ξ−1[φ](y)

x− y

)2

dµV,P (x)dµV,P (y) . (66)

We will give more details about the proof in Subsection I.8.1. A common approach to proving this
type of result, developped in [Joh98] and used in [BLS18], is based on the following convergence of
Laplace transforms:

EV,PN

[
exp

(√
Nt

ˆ
R
φ(x)d(µ̂N − µV,P )(x)

)]
−→
N→∞

exp

(
− t

2

2
σ2
β−ens,HT(V, P, φ)

)
.

I.5.4 Local behavior

The local behavior of the particles have also been understood in this model, namely the convergence
of local statistics. It was proven in [BGP15] that the local statistics

∑N
i=1 δN(λi−E) for any E ∈

R and when the λi are distributed according to the Gaussian β-ensemble at high temperature,
converge to a Poisson point process with density ρV,P (E) > 0. An alternative proof was also
presented later in [NT18]. This result was later generalized to general potential V in [NT20a].
Finally, this result was extended to more general geometric settings and interactions in [Lam21b].
These results are consistant with the fact that in the constant β-case, the bulk local statistics
converges toward a Sine-β process. Indeed, it was proven in [AD14a] that this process converges
toward a Poisson point process as β goes to 0.
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Regarding the edge, the question of the local behavior was first raised in [AD14b] where it was
shown that the Tracy Widom law TWβ, i.e. the properly rescaled limiting law of the fluctuations of
the largest eigenvalue of the β-ensembles, converges to a Gumbel distribution as β → 0. The latter
describes the behavior of the maximum of multiple identically independently distributed particles.
It was later proven in [Pak18] that for quadratic potentials and β � 1

logN the edge of the spectrum
i.e. the law of max

1≤i≤N
λi, when properly rescaled, converges to a Gumbel law. The convergence

of the local statistics at the edge was also demonstrated in this paper. At the level of stochastic
operators, this convergence was also shown to hold [DL22]. This result was finally generalized to
βN → cste and for general V in [Lam21b]. The result goes as follows:

Theorem I.5.3 For V (x) = |x|α, there exists ηN > 0 which behaves like (logN)
1
α such that the

following convergence holds:

αηα−1
N

(
max

i=1,...,N
xi − ηN

)
law−→

N→∞
Gumbel(0, 1).

The precise result for V (x) = |x|α yields the following formula for the speed ηN :

ηN = (logN)1/α

(
1 +

2P − α+ 1

α2

log logN

logN
−

log(α)− CV,P
α logN

)
with CV,P given as (62). In Chapter 1, we will use the localization of the spectrum for general V
[Lam21b]7, in order to say that for φ a smooth enough test-function and with high probability:

ˆ
R
φ(x)dµ̂N (x) ≈

ˆ
R
φ1[−EN ,EN ](x)dµ̂N (x)

with EN −→
N→∞

+∞. This truncation argument will be crucial in showing the CLT for β-ensemble

at high temperature [DGM23].

I.5.5 The master operator and the differences with the classical regime

Due to the change in leading scale in the high temperature regime compared to the constant β
regime (N versus N2), the master operator K, introduced in (38), governing the fluctuations of
the empirical measure around the equilibrium measure µV,P , also changes. The main difference,
except that one has to replace µV,β by µV,P and add a recentring term, is that one has to add a
differential term. It is defined as:

Ξ[φ](x)
(def)
= 2P

ˆ
R

φ(x)− φ(y)

x− y
dµV,P (y)− V ′(x)φ(x) + φ′(x)− 2P

ˆ
R
H[φρV,P ](y)dµV,P (y) . (67)

Above H denotes the Hilbert transform defined by:

H[f ](x)
(def)
=

 
R

f(y)

y − x
dy

and satisfies (ˆ
R

log |.− y|dµV,P (y)

)′
(x) = H[ρV,P ](x).

The first two terms, upon replacing µV,P → µV,β constitutes the master operator K introduced in
(38). The fourth term is a constant recentring term such that

´
R Ξ[φ](x)dµV,P (x) = 0, while the

third term is the differential term in question. The effect of that term makes Ξ an unbounded
operator which must be inverted on an appropriate domain, requiring some technicalities.

7The result for general V , although not presented as a result, can be directly derived from the arguments presented
in this paper.
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As explained in Subsection I.4.3, the main task when analyzing the loop equations, as will be the
case in Chapter 2, is to invert this master operator Ξ and obtain continuity results with respect to
appropriate norms. In practice, it is much easier to invert this operator K in the classical regime
than Ξ in the high temperature regime. Another setup where the inversion of the master operator
is more involved than the classical regime of β-ensembles is [BGK15].

In the high temperature regime, the inversion of the master operator, see Subsection I.4.3 for
details, turns out to be different. Indeed, using the Euler-Lagrange equations (62), one can see
that the analogue of the derivative of the effective potential, namely:

V HT
eff
′
(x) = V ′(x) + 2P

ˆ
R

dµV,P (y)

y − x
,

is not equal to 0 on the support of µV,P but rather equal to −
ρ′V,P (x)

ρV,P (x)
which doesn’t vanish on an

interval. This allows one to recast the operator Ξ as:

Ξ[φ](x) = φ′(x) +
ρ′V,P (x)

ρV,P (x)
φ(x) + 2PH[φρV,P ](x)− 2P

ˆ
R
H[φρV,P ](y)dµV,P (y) . (68)

As it will be explained in Subsection I.8.1 and Chapter 1 Section 1.6, this operator can be inverted
on some subspace H of the weighted Sobolev space [CL20, Zhi98]:

H1(µV,P )
(def)
=
{
u ∈ L2(µV,P ), u′ ∈ L2(µV,P )

}
.

We were able to prove its inversion in [DGM23]:
Theorem I.5.4 (Inversion of the master operator) Ξ : D(Ξ) −→ H is invertible. Further-
more there exists C > 0, such that for all f ∈ H,∥∥Ξ−1[f ]

∥∥
L2(µV,P ) ≤ C‖f

′‖L2(µV,P ). (69)

Above D (Ξ) denotes the domain of Ξ, a functional space which we don’t explicit here. The idea
of the proof of such a result is explained in Subsection I.8.1.

The advantage of such an invertible differential operator is that, in principle, the inverse is regular-
izing. This means that while Ξ[φ] is defined only for smooth enough function due to the differential
term, which is encoded in the definition of D (Ξ), the inverse Ξ−1[ψ] will be smooth and admit
an integral representation. This integral representation is very useful to derive the continuity re-
sults that we need in order to conduct the loop equation analysis. We were able to prove these in
[DG24]:
Theorem I.5.5 Let n ≥ 1, there exists a C > 0 such that for all f ∈ Hn+1(R):

‖Ξ−1[f ]‖Hn(R) ≤ C‖f‖Hn+1(R).

Moreover, there exists C ′ > 0, such that for all g ∈W∞n+1(R),

‖Ξ−1[g]‖W∞n (R) ≤ C ′‖g‖W∞n+1(R).

We present the idea of the proof in Subsection I.8.2.

Finally, the differences between the constant β case and the high temperature regime are summa-
rized in Figure I.2.

Besides being an interesting generalization of the classical-case, the high-temperature regime has
connections with physics through the so-called integrable systems. One instance of such a physical
system is the Toda chain and the next section is dedicated to it.
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β constant β ∼ N−1

LDP speed N2 -energy LDP speed N - energy +entropy

supp µeq = [a, b] supp µeq = R; exponential decay at ∞
CLT speed N CLT speed

√
N

Sine-β/Airy β local statistics Poisson statistics

Fluct(maxxi) ∼ Fβ (Tracy Widom) Fluct(maxxi) ∼ Gumbel

Master operator φ→ K[φ] φ→ K[φ] + φ′

Figure I.2: Summary of the differences between the classical regime and the high temperature
regime for the β-ensembles.

I.6 The Toda chain

This section introduces the so-called Toda chain. This physical model is integrable and admits a
link with the previous β-ensembles as it was discovered in [Spo20]. In that work, the author aims
at establishing a so-called hydrodynamic equation for the Toda chain. The main result of Chapter
1 has a link with this research line. We will briefly describe the model and its main features, as
well as its link with the result of Chapter 1.

I.6.1 Definition of the system

First introduced in 1967 in [Tod67], the Toda chain or Toda lattice is a one-dimensional many-body

system composed of N particles at positions q
(def)
= (qi)1≤i≤N and momenta p

(def)
= (pi)1≤i≤N . By

imposing periodic boundary conditions, namely qN+j = qj + ` with ` ∈ R, these particles interact

through a potential U(q1, . . . , qN )
(def)
=
∑N

i=1 e
qi−qi+1 , so that the Hamiltonian of the system is given

by:

H(q,p)
(def)
=

1

2

N∑
i=1

p2
i + e−ri , rj

(def)
= qj+1 − qj .

An important feature of this Hamiltonian is the form of the two-body interaction. Particle j
interacts only with particles j − 1 and j + 1, in a sense it is a “nearest label interaction”. In this
setup, if {., .} denotes the Poisson bracket defined for two functions f(p,q, t), g(p,q, t), by:

{f, g} (def)
=

N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
,

the equations of motion read, with the notation ẋ(t)
(def)
=

d

dt
x(t):

• {qk, pj} = δj,k, {qk, qj} = {pk, pj} = 0 for all j, k ∈ J1, NK,

• q̇k = pk, ṗk = e−rk−1 − e−rk for all k ∈ J1, NK.

Since

d

dt

N∑
i=1

pi =
N∑
i=1

e−rj−1 − e−rj = e−r0 − e−rN = 0,

the total momentum is a conserved quantity together with the Hamiltonian. Flaschka [Fla74]
and Manakov [Man75] independently showed, after it was conjectured in the literature following
numerical simulations, that the system is integrable. Indeed, they showed that the system exhibits
N integrals of motion, namely N local conserved quantities (other than the total momentum and
energy).

The Toda chain can be thought either as the discretization of a continuous fluid (q(x, t), p(x, t)) or
as a chain with a fixed number of particles.
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I.6.2 Integrability and the Lax pair

We now introduce a new set of dependent variables, called the Flaschka variables, to express these
conserved quantities:

ak = e
qk−qk+1

2 , 1 ≤ k ≤ N.

With the 2N variables a
(def)
= (ak)

N
k=1 and p, the evolution equations given previously can be recast

as:
ȧk = −(pk+1 − pk)ak, 1 ≤ k ≤ N. (70)

The integrability of the Toda chain can be seen via the existence of a Lax pair (LN , BN ). The very
existence of this pair of matrices is sufficient to exhibit N independent integrals of motion, as we
will see below. We set:

LN
(def)
=

1

2



−p1 a1 0 . . . aN
a1 −p2 a2 0 . . . 0
0 a2 −p3 a3 . . . 0
...

. . .
. . .

. . .
...

0 . . . aN−2 −pN−1 aN−1

aN . . . 0 aN−1 −pN


, (71)

BN
(def)
=



0 −a1 0 . . . aN
a1 0 −a2 0 . . . 0
0 a2 0 −a3 . . . 0
...

. . .
. . .

. . .
...

0 . . . aN−2 0 −aN−1

−aN . . . 0 aN−1 0


.

Again, the dynamics of the system can be recast as L̇N (t) = [BN (t), LN (t)]. A Lax pair is simply
a pair of matrices (or operators in some contexts) that satisfies this relationship.

The fact that such a pair provides the appropriate number of integrals of motion can be seen from
the fact that LN (t) is isospectral, i.e. its eigenvalues do not evolve in time. Indeed, let t, t0 ≥ 0
and consider UN (t, t0) as the solution of the Cauchy problem

∀t ≥ 0,
d

dt
UN (t, t0) = BN (t)UN (t, t0), UN (t0, t0) = IN ,

it can be seen that MN (t)
(def)
= LN (t)UN (t, t0) and ON (t)

(def)
= UN (t, t0)L(t0) verify the same Cauchy

problem

∀t ≥ 0,
d

dt
PN (t) = B(t)PN (t), PN (t0) = L(t0).

From this, we conclude that LN (t) = UN (t, t0)LN (t0)UN (t, t0)−1, thus the characteristic polynomial

of LN is constant over time and so do its roots, i.e. the eigenvalues λN
(def)
= (λNi )Ni=1 of LN .

In general, there is no hope to expect that λNi of LN are local quantities (in the sense that it would
depend only on a susbset of the variables a and b). Physically, what is more relevant is defining a
set of local conserved quantities as follows:

Q[n],N (def)
=

N∑
i=1

(
λNi
)n

=

N∑
i=1

(LnN )i,i =

N∑
i=1

Q
[n],N
i .

The first equality shows that Q[n],N is indeed a conserved quantity while the third one allows to
show that its corresponding density is local:

Q
[n],N
i

(def)
=

N∑
j1=1

. . .
N∑

jn−1=1

(LN )i,j1 (LN )j1,j2 . . . (LN )jn−1,i
. (72)
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Indeed, one can observe from (71) that the above equation involves only variables ai+k, pi+k for
k ∈ J0, n− 1K modulo N .

The three first local conserved quantities are interpreted as stretches, momenta and the energy
density:

Q
[0]
i

(def)
= ri, Q

[1]
i = pi, Q

[2]
i =

1

2
(p2
i + a2

i + a2
i−1)

As we will see, these local conserved quantities can be used to describe the state of the system at
long times.

I.6.3 Statistical description of the system and GGE

Most books on statistical mechanics begin with the assumption that the physical system of interest
thermalizes in the sense that it reaches a thermal equilibrium state (a state of maximal entropy
and equirepartied energy). The Gibbs ensemble or canonical ensemble (GE) is a description of a
physical system at thermal equilibrium. It is represented by a probability distribution over the
system’s microstates. The probability of a microstate having an energy Ei is given by:

PGE(Ei)
(def)
=

e−βEi∑
j e
−βEj

where β ≥ 0 is the inverse temperature and acts as a Lagrange multiplier ensuring that this
distribution maximizes entropy under fixed constraints [RAS15]. This distribution is invariant over
the system’s dynamics, since energy is conserved over time.

The long-time behavior of integrable systems can be modelled using the so-called Generalized
Gibbs Ensemble (GGE), introduced in [Jay57]. Subsequent experiments [RDYO07, VR16] have
shown that this model fits well with certain experiments. Like the GE, the GGE is a probabilistic
description given by:

PGGE(Q1, Q2, . . . )
(def)
=

e−
∑
n µnQn

ZGGE

where the Qn’s represent the local conserved charges of the system (including energy and many
others). The Lagrange multipliers µn are, just like β, tuning parameters. They are often referred
as chemical potentials. This measure is also invariant under the dynamic.

For the Toda chain, the GGE depends on a potential V , which grow faster than x2 at infinity, and
a parameter P > 0, and is given by:

dTV,PN (p, a)
(def)
=

e−Tr(V (LN ))
N∏
i=1

a2P−1
i dpidai

ZPN,Toda[V ]
. (73)

Choosing a polynomial V =
∑n

k=0 µkX
k, we find that Tr (V (LN )) =

∑n
k=0 µkQ

[k],N . Here, P is a
parameter called the pressure which can be seen as the Lagrange multiplier corresponding to the
constraint that

∑n
j=0 rj is conserved. For the choice of VG = X2/2, we obtain:

Tr (VG(LN )) =
1

2

N∑
k=1

p2
k +

N∑
k=1

a2
k,

and thus

dTVG,PN (a, p) =

N∏
k=1

e−p
2
k/2dpk

N∏
k=1

a2P−1
k e−a

2
kdak

ZPN,Toda[VG]
.
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This measure is the joint law of N standard Gaussian random variables and N χ variable with
parameter 2P , all independent of each other. Under this distribution, LN is a random Jacobi
matrix with extra coefficients in the top-right and bottom-left corners, which takes the following
form:

LN
law
=



N (0, 1)
χ2P√

2
0 . . .

χ2P√
2

χ2P√
2

N (0, 1)
χ2P√

2
0 . . . 0

0
χ2P√

2
N (0, 1)

χ2P√
2

. . . 0

...
. . .

. . .
. . .

...

0 . . .
χ2P√

2
N (0, 1)

χ2P√
2

χ2P√
2

. . . 0
χ2P√

2
N (0, 1)


.

This matrix looks like the Jacobi matrix given by Dumitriu and Edelamn [DE02a] and forms the
basis for comparing it with the β-ensembles.

Following partial proofs of [Spo20], the authors of [GM22] managed to establish rigorously the
comparison between the GGE of the Toda chain and the β-ensembles at high temperature. They

proved that the empirical measure of the eigenvalues of LN satisfies, under TV+x2/2,P
N defined in

(73), a LDP with good rate function admitting a unique minimizer νToda
V,P . As a consequence, they

showed that this unique minimizer is then the weak-limit of this empirical measure. The meausre
νToda
V,P can be linked to the equilibrium measure of the β-ensembles at high temperature by the

following theorem, which was first conjectured in [Spo20]:
Theorem I.6.1 [GM22] For any bounded continuous function f , it holds that:

ˆ
R
f(x)dνToda

V,P (x) = ∂P

(
P

ˆ
R
f(x)dµV,P (x)

)
. (74)

Understanding the limiting behavior of the eigenvalues of LN under the GGE allows in principle
to justify a coarse-grained description for the Toda chain, namely the hydrodynamic description.

I.6.4 Hydrodynamic equation: the computation of the currents

For the Toda chain, it is believed that a hydrodynamic equation holds. A hydrodynamic description
corresponds to a coarser description of the system which is supposed to hold at intermediate
large time scales. For integrable systems, this description is called the generalized hydrodynamic
description, see the review [Doy20, BBDV22, Ess22]. More explicitly, after many collisions between
the particles which leads to mixing, the description of the system via Boltzmann equations becomes
accurate. This description leads to the relaxation of the system and entropy maximization. This
maximization holds at large spatial scales but also at intermediate mesoscopic scales. This scale
corresponds to a partition of the space into smaller parts named fluid cells which are considered big
thermodynamically speaking. Each cell is supposed to have reach equilibrium at long enough times.
Indeed in each fluid cell, after a certain relaxation time, the local state is supposed to approach a
GGE distribution.

In one-dimensional systems, the hydrodynamic equations have the following form:∂tρ(x, t) + ∂x.(vρ)(x, t) = 0

∂tv(x, t) + v(x, t)∂xv(x, t) =
−1

ρ(x, t)
∂xP(ρ(x, t))

(75)

where ρ is the local density of the fluid, v is its velocity and P(ρ) is the pressure of the fluid.

The basic assumption for a hydrodynamic description to hold is the local entropy maximization also
called local thermodynamic equilibrium property. This means that at mesoscopic scale i.e. in fluid
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cells, the distribution of the system maximizes the entropy. Formally, it states that the average of a
local observable o(x, t) at position x and time t can be, after long enough time, well approximated
by the GGE-average 〈o(0, 0)〉β(x,t). The subscript β(x, t) denotes the Lagrange multiplier(s), which

depends on x and t, which determines the local (Generalized) Gibbs distribution of maximum
entropy. In the case of the Toda chain, let o ((ai+k, pi+k)−K≤i≤K) be an observable depending only
on finite subset of particles whose indices are in Ji −K, i + KK ⊂ J1, NK for some i ∈ J1, NK. Let
x ∈ [0, 1], t ∈ R, such that i/N −→

N→∞
x, the local entropy maximization assumption reads explicitly:

1

Nt

ˆ Nt

0
o

((
ai+k(s), pi+k(s)

)
−K≤i≤K

)
ds −→

N→∞
EVx,t,Px,tN

[
o

((
ai+k, pi+k

)
−K≤i≤K

)]
.

The conservation laws and the computations of the limit of the averages of the conserved charges and
its corresponding currents represent the basis for deriving a generalized hydrodynamic description.

Since the charges Q
[n],N
i , defined in (72), are local and QNi is conserved, there must exist local

currents J
[n],N
i , which satisfy the following conservation law:

d

dt
Q

[n]
i (t) + ∂iJ

[n]
i (t) = 0. (76)

where we have set ∂if(i)
(def)
= f(i+ 1)− f(i). By differentiating Q

[n]
i with respect to t, we get:

d

dt
Q

[n],N
i (t) = (BN (t)LnN (t)− LnN (t)BN (t))i,i = ai−1(t) (LnN (t))i,i−1 − ai(t) (LnN (t))i+1,i .

The conservation law (76), corresponds to setting J
[n],N
i (t)

(def)
= ai−1(t) (LnN (t))i,i−1. To derive a

hydrodynamic equation of type (75), it is necessary to compute the limits of the average of the

density of the conserved charges at time 0, lim
N→∞

EV,PN [Q
[n],N
i (0)], and of the average current at time

0 lim
N→∞

EV,PN [J
[n],N
i (0)] for generic parameters P and V . Indeed, to write (75), one has to make

sense of the local density of particles ρ and its local velocity v. While the GGE-averages of the
local conserved charge densities provide a definition for ρ, the GGE-averages of the currents are
enough to define v.

To derive these limits one uses the links with the β-ensembles at high temperature. For the
conserved charges, this can be done via:

EV,PN [Q
[n],N
i (0)] = EV,PN [TrLN (0)n] = EV,PN

[ˆ
R
xndµ̂N (x)

]
−→
N→∞

ˆ
R
xndνToda

V,P (x)

= ∂P

(
P

ˆ
R
xndµV,P (x)

)
, (77)

where µV,P is the equilibrium measure of the β-ensembles at high temperature introduced in The-
orem I.5.1. The measure νToda

V,P is the weak-limit of the empirical measure of the spectrum of the

Lax matrix L of the Toda chain when distributed by the GGE TV,PN and the last equality comes
from Theorem I.6.1.

Furthermore, to deal with the currents, we define the matrix L↓N by

(L↓N )i,j = (δj<i + δi=1,j=N )(LN )i,j .

With this definition, the currents can be recast as J
[n],N
i (0) = Tr(LN (0)L↓N (0)). The knowledge of

the limiting behavior of the eigenvalues of LN is not sufficient anymore to compute EV,PN
[
J

[n],N
i (0)

]
.
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However, it was argued in [Spo21, (6.10)] that the limit of the average of the currents was linked
to the fluctuations of the spectrum of LN by

∂P lim
N→∞

EV,PN [J
[n],N
i (0)] = lim

N→∞

1

N
CovV,PN (TrLN (0),TrLnN (0)) (78)

with covariance taken with respect to TV,PN . Furthermore, by replacing the traces by integrals
against the empirical measure, equation (78) can be rewritten as:

∂P lim
N→∞

EV,PN [J
[n],N
i (0)] = lim

N→∞
CovV,PN

(√
N

ˆ
R
xdµ̂N (x),

√
N

ˆ
R
xndµ̂N (x)

)
. (79)

It was shown in [MM24], that a CLT holds for the linear statistics

ˆ
R
xkdµ̂N (x), namely:

ˆ
R
xkd(µ̂N − νToda

V,P )(x)
law−→

N→∞
N
(

0, σ2
Toda(V, P, xk)

)
.

Extracting the variance σ2
Toda(V, P, xk) allows one to compute the derivative of the limits of the

currents. The authors showed that the limiting variances of the CLT’s for the Toda chain and the
high temperature regime of β-ensembles are linked through:

σ2
Toda(V, P, xk) = ∂P

(
Pσ2

β−ens,HT(V, P, xk)
)
.

Unfortunately, they didn’t manage to find an explicit form for any of these variances. As explained
before, in [DGM23] we showed a central limit theorem for the linear statistics with bounded
test functions in the β-ensembles at high temperature but with an explicit8 form for the limiting
variance σ2

β−ens,HT(V, P, f) but our expression is only valid for bounded smooth enough functions.

Nonetheless, we expect that this expression remains valid when f(x) = xk. Our expectation is based
on the fact that the CLT, at least for polynomial potentials V , holds for polynomial test-functions
by [MM24]. The previous reasoning establishes a conjecture for the computation of σ2

Toda(V, P, xk)

and thus for the averaged currents lim
N→∞

EV,PN [J
[n],N
i (0)].

Having reviewed the theory of β-ensembles at high temperature and presented one motivation for
studying this regime, we now present another model which is more involved than the classical
β-ensembles: the so-called sinh-model.

I.7 The sinh-model

I.7.1 Motivations from quantum integrable systems

A quantum integrable system is a class of quantum systems such that, in principle, one is able to
compute most quantities of interest. There exists four types of such systems:

• quantum spin chains: 1+1 dimensional systems such as the XXX Heisenberg spin-chain

• quantum many-body systems: the Calogero-Sutherland model an example of this class.

• quantum field theories:for instance the sinh-Gordon in 1+1 dimensions. We are going to
present it in the following.

• 2D lattice systems: the six-vertex model represents one of them.

8The reader might have understood by now that this word is very fuzzy.



44 CONTENTS

It is given by a Hilbert space h, the state space and a Hamiltonian H which is, in this setting, a self-
adjoint operator. In this quantum picture, observables are also realized as self-adjoint operators.
on h.

The main quantities of interest in a quantum integrable system are the finite temperature correlation
functions, namely thermal expectation values of products of local operators Oi(xi, ti) at inverse
temperature β ≥ 0 given by:

〈O1(x1, t1) . . .On(xn, tn)〉β
(def)
=

Tr
[
O1(x1, t1) . . .On(xn, tn)e−βH

]
Tr [e−βH]

.

The main reason for the interest in these quantities is that they can be directly observed in ex-
periments. Assuming that the Hamiltonian H possesses a unique ground state |Ψgs〉9, namely an
eigenstate for the lowest eigenvalue of H, then the zero temperature (i.e. β = ∞) correlation
functions are the simplest case among all β ≥ 0. Indeed, in that case,

〈O1(x1, t1) . . .On(xn, tn)〉∞ = 〈Ψgs | O1(x1, t1) . . .On(xn, tn) |Ψgs〉 .

This fact is analogous as in the classical setting of Gibbs ensembles where in the limit β → +∞,
this measure simplifies in a uniform law over the ground states.

By picking, an orthonormal basis of h, (|Ψi〉)i≥0, one is able to define the form factors for a local
operator O, which is a great tool to compute the correlation functions. They are defined as matrix
elements for general operators O by:

FO(Ψk,Ψl)
(def)
= 〈Ψk | O |Ψl〉 .

Under certain conditions, such as the translational invariance of the model, one is able to relate the
n-point correlation functions at zero temperature to the form factors by a so-called form-factors
expansion, namely for space-time points (xi, ti)1≤i≤n:

〈O1(x1, t1) . . .On(xn, tn)〉∞ =
∑

i1,...in−1≥0

n∏
a=2

{
FOa(Ψia−1 ,Ψia)

}
.
n−1∏
j=1

ei(xa+1−xa)P̂ia−i(ta+1−ta)Êia .

The correlations functions of a model are often computed through a procedure called the alge-
braic Bethe ansatz or the quantum inverse scattering method (QISM), see [Yan67, Bax72, STF79].
However there exists a class of model such that this machinery is not feasible namely the models
which don’t possess a particular state called the vacuum state. The quantum Toda chain is one
instance of these models. To overcome the failure of this method, a generalization was developed
by Sklyanin in [Skl89, Skl95]. It allows one to determine the spectrum, eigenvectors and correlation
functions in quantum integrable models and can be thought as a way to map multi-parameter mul-
tidimensional spectral problems into multi-parameter one-dimensional spectral problem which is in
principle considerably easier. This method is called the quantum separation of variables method.

The method also allows one to obtain expressions for the form factors associated to generic operators
O of the form:

〈Ψ | O |Φ〉 =

ˆ
RN

FO(y1, . . . , yN ).

N∏
a=1

qΨ(ya)qΨ(ya)dµN (yN ). (80)

9In the sense that its lowest eigenvalue is non-degenerate.
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where the q-function are solutions of some finite difference one dimensionnal equations and the
measure µN admits the following general form:

dµN (x1, . . . , xN )
(def)
=

N∏
i<j

sinh[ω1(xi − xj)]
ω2

sinh[ω2(xi − xj)]
ω2

.

N∏
i=1

dxi.

Writing equation (80) explicitly and supposing that qΨ(ya)qΨ(ya) can be written as exp(−WΦ,Ψ(ya)),

one obtain an expression close to the partition function of the β-ensembles Z(β)
N [WΦ,Ψ]:

zN [WΦ,Ψ, FO]
(def)
=

ˆ
RN

FO(y1, . . . , yN )
N∏
i<j

sinh[ω1(xi − xj)]
ω2

sinh[ω2(xi − xj)]
ω2

N∏
a=1

e−WΦ,Ψ(ya)dNy.

(81)
This method is very general and was applied to many models such as the sinh-Gordon quantum
field theory in 1+1 dimensions. In the next Subsection, we briefly describe the model and state a
conjecture about the form factors in this model.

I.7.2 An integrable quantum field theory: the sinh-Gordon model

Developed during the XX-th century by physicists like Feynman, Tomonaga, Dirac, Schwinger and
Dyson among others, quantum field theory is the quantum analogue for classical field theory in
classical physics. It is an approach to model the evolution of particles during interactions, and it
is the foundation of the so-called standard-model, one of the experimentally most accurate theory
of physics ever written. This model is incredibly efficient in predicting most of the phenomenons
surrounding us and led to many Nobel Prizes. It has been given a rigorous construction in some
cases, namely in the free-case also known as the Klein-Gordon equation or in the so-called φ4 model.
Nevertheless, in the full generality, most of the questions remain open, and it is fair to say that
this theory lacks a rigorous mathematical foundation when dealing with non-trivial interactions.
It is therefore a challenge to make these theories well-defined and one could choose to tackle first
the simplest ones (even though incredibly hard), namely the one admitting an integrable structure.
An instance of this class is the sinh-Gordon model.

The classical sinh-Gordon model describes the evolution of a scalar field φ(x, t) by the following
partial differential equation:

(
∂2
t − ∂2

x

)
φ(x, t) +

m2

g
sinh

(
φ(x, t)

)
= 0

where m is the mass of the field and g is a coupling constant. This equation is associated with the
extremalization of the action Ssinh given by density the L(φ, ∂µφ):

Ssinh[φ]
(def)
=

ˆ
R2

Lsinh(φ, ∂µφ)dxdt, Lsinh(φ, ∂µφ)
(def)
=

1

2
∂µ∂

µφ(x, t)− m2

g2
cosh

(
φ(x, t)

)
.

(82)
In the classical picture, it can be shown that this equation is integrable in the sense that it admits
a Lax pair [DF19, Section 3.2.1]. It is well known that the quantum analogue of this theory is
integrable using the fact that the scattering matrix is scalar [ZZ79]. We refer to [KLM21] for a
review on the quantum sinh-Gordon model. In the finite volume case (namely on a torus of radius
R > 0), by applying the QSVM, Lukyanov [Luk01] conjectured an expression for the form factors
associated to the exponential of the field operator, namely:

∀a ∈ R,
〈

Ψgs

∣∣∣ eaφ ∣∣∣Ψgs

〉
(def)
= lim

N∞

[(
N

mR

)θ IN (R, a)

IN (R, 0)

]
, with θ

(def)
=

a2

2(1 + b2)(1 + b−2)
,

(83)
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where b
(def)
= g2/(16π + 2g2) and

IN (R, a)
(def)
=

ˆ
RN

N∏
i<j

sinh
[
(1 + b−2)(γi − γj)

]
sinh

[
γi − γj
1 + b2

] N∏
i=1

e−Wa(γi)dNγ. (84)

In this definition, the function Wa is defined by:

Wa(γ)
(def)
= r cosh(γ)− αγ −

ˆ
R

g(γ′)

cosh(γ − γ′)
dγ′

2π
with g(λ)

(def)
= log

(
1 + e−ε(γ

′)
)

(85)

Above, the function ε verifies the following equation:

ε(γ) +

ˆ
R

dγ′

2π
K(γ − γ′) log

(
1 + e−ε(γ

′)
)

= 2πmR cosh(γ) (86)

where

K(λ)
(def)
=

4 cosh (λ) sin

(
π

1 + b2

)
cosh(2λ)− cos

(
2π

1 + b2

) and τ
(def)
=

π(b2 − b−2)

4 + 2b2 + 2b−2
.

It was shown in [FKS99] that (86) admits a unique soluution in L∞(R). Several years later, a
lattice discretization of the sinh-Gordon model in finite volume was proposed in [BT06]. The
discretized field is defined over N sites, and it was shown that when ~ → 0+ and N → ∞, one
recovers the classical sinh-Gordon model. In this sense, one can consider that the limit N →
∞ of the discretization provides a definition of a quantum sinh-Gordon model in finite volume.
This discretization was also shown to be integrable, in the sense that N integrals of motion were
exhibited. Recently, in [GGV24], a construction based on the Gaussian free field was also proposed.

In Chapter 3, we will try to follow the path developed in [BGK16] to make progress by studying
the limit (83), see Subsection I.8.3 for a brief description.

We now introduce the sinh-model which is a probabilistic model which arises when tackling the
study of the multiple integrals defined in (81) with FO(y1, . . . , yN ) =

∏N
a=1 e

−αya . We will introduce
this model and discuss some of its properties before presenting the results we have obtained.

I.7.3 Definition of the model and comparison with β-ensembles

The sinh-model is the probabilistic model introduced in [BGK16], ω1, ω2 > 0 and a potential V
growing sufficiently fast at infinity, by

dPV
N,sinh(λ1, . . . , λN )

(def)
= zN,sinh[V ]−1P VN,sinh(λ1, . . . , λN )dNλ (87)

with

P VN,sinh(λ1, . . . , λN )
(def)
=

N∏
i<j

[
sinh (πω1|λi − λj |) sinh (πω2|λi − λj |)

]
.
N∏
i=1

e−V (λi).

This model is interesting because by applying the loop equations method (Subsection I.4) in PV
N,sinh,

one can access the AE of the corresponding partition function. The latter represents the general
form of the multiple integral obtained by applying the QSVM to certain quantum integrable models
(81). Additionally, it can be seen as a generalization of the β-ensembles.

Indeed, these two systems share several commonalities. They both represent an interacting system
of N particles on the real line subjected to a confining potential V with a repulsive two-body
interaction. However, there are some important differences between these two models. The most
obvious difference is the form of the interaction. Although they exhibit the same singular behavior
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when particles are close, the hyperbolic sine function arising in (87) makes the model less compu-
tationally tractable in principle. An illustration of this fact is the loss of homogeneity when the
interaction is changed:

|x| sinh (πω1|λi − λj |) sinh (πω2|λi − λj |) .

This makes rescaling changes of variables of the type λi = τNµi, less efficient when studying the
distribution PV,β

N,sinh compared to the β-ensemble case where one can just discard the scaling τN .

This will lead to major complications in the analysis of zβN,sinh[V ].

A second important difference is the absence of scaling by N of the potential, this type of interacting
particle systems is said to have non-varying weights (see [BGK16, Section 1.4] for a discussion). It is
worth reminding the reader that the presence of such a scaling resulted in the confining and repulsive
terms having the same magnitude in terms of N . Consequently, at large N , the system exhibited
a global behavior where particles remained, with overwhelming probability, within a bounded N -
independent region [a, b]. Without this scaling, and with a repulsive interaction (of strength N2)
stronger than the confinement (of strength N), it is expected that the particles will primarily
experience repulsion until the effect of the potential becomes significant. As a result, when N is
large, the particles are more likely to localize within an N -dependent region [aN , bN ], where aN and
bN tend to infinity. Introducing a change of variables λi = τNµi, with τN →∞ as N →∞, allows
us to rebalance these contributions in terms of N and ensures that the particles remain within an
interval [a, b] with high probability. The cost of this procedure is that one must retain this scaling
throughout the entire analysis due to the loss of homogeneity of the sinh interaction. One must then
proceed with caution due to the increased complexity resulting from the additional N -dependence
and multiple scales in the problem, namely N and τN . Indeed, by performing an integration by
parts, it can be observed that the first loop equation of the model [BGK16, Proposition 3.2.3]
involves N -dependent operators, significantly increasing the technicalities involved in analyzing
the loop equations.

To determine the appropriate scaling, assuming the configuration (µ1, . . . , µN ) is sufficiently typical,
we find:

N∑
i=1

V (τNµi) ∼
N→∞

NV (τN )

and
N∑
i<j

log
[

sinh (πω1τN |µi − µj |) sinh (πω2τN |µi − µj |)
]
∼

N→∞
CN2τN .

Thus, to get NV (τN ) ∼
N→∞

CN2τN , we need, for V growing like |x|q as x → ∞, τN = N
1
q−1 and

for V growing like e|x| at infinity, one finds the following hyperbolic equation eτN = NτN which at
the first order leads to τN = logN . We therefore consider the following particle system:

dPVN,sinh(λ1, . . . , λN )
(def)
= ZN,sinh[V ]−1pVN,sinh(λ1, . . . , λN )dNλ (88)

with

pVN,sinh(λ1, . . . , λN )
(def)
=

N∏
i<j

sinh (πω1τN |λi − λj |) sinh (πω2τN |λi − λj |) .
N∏
i=1

e−NτNVN (λi) (89)

and τN adapted to V . In the above expression, we have set VN (x)
(def)
= (NτN )−1V (τNx). In

[BGK16], the authors considered a general, strictly convex, smooth, N -independent potential
VN = V , with τN = Nα and managed to show via the loop equations analysis, a large-N AE
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for logZβN,sinh[V ] up to o(1). The appropriate framework for the study of Lukyanov’s conjecture,

is to establish such a development for logZ1
N,sinh[V ] up to o(1) with V as in (85). In the following,

we will consider such V . Since the potential V grows exponentially fast at infinity, we choose the
scaling τN = logN in the rest of this section. We now explain some features of the model and
describe the global behavior of the particles as N tends to infinity.

I.7.4 Global behavior of the particles

Just as for the β-ensembles, the strategy for understanding the global behavior of the particles is
to analyze the limiting behavior for large N of the empirical measure µ̂N = N−1

∑N
i=1 δλi . This is

summarized by the following result.
Theorem I.7.1 The family of random measures (µ̂N )N≥1 satisfies, in M1(R) equipped with the
weak topology, a LDP(N2 logN, IV,sinh) with strictly convex, good rate function:

IV,sinh
(def)
= EV,sinh − inf

ν∈M1(R)
EV,sinh(ν).

The functional EV,sinh is defined for all µ ∈M1(R) by:

EV,sinh(µ)
(def)
=

−
π(ω1 + ω2)

2

¨
R2

|x− y|dµ(x)dµ(y) if µ ([−1, 1]c) = 0,

+∞ if µ ([−1, 1]c) > 0.
(90)

The unique minimizer is attained at the Rademacher probability measure, i.e. at Rad
(def)
=

1

2
(δ−1 +

δ1). Finally, under PVN,sinh, µ̂N converges weakly towards Rad almost surely and the free energy
reads

lim
N→∞

1

N2 logN
logZN,sinh[V ] =

π(ω1 + ω2)

2

¨
R2

|x− y|dRad(x)dRad(y) =
π(ω1 + ω2)

2
.

This theorem can be proved following a similar approach to [BGK16, Appendix B]. The rate
function IV,sinh in this LDP is a bit different to the one obtained in [BGK16, Theorem 2.1.1] which
is valid for potentials growing like a|x|q at infinity. In our case, choosing the stronger confining
potential V growing exponentially fast at infinity corresponds, heuristically, to taking q → +∞.
As a result, IV,sinh does not depend on the parameters defining (85). One reason for this is that, at
large N , it is extremely unlikely to have a substantial number of particles outside of [−1, 1] due to
the strong confining effect of V . Moreover, within [−1, 1], the particles only “feel” the confinement
as a correction to the repulsion. Concretely, the contribution of the potential within [−1, 1] is equal
to N2τNVN (λ) ∼ N1+|λ| for |λ| ≤ 1, while the repulsive effect is proportional to N2 logN .

In our case, it is convenient to work with a N -dependent equilibrium measure that approaches the
Rademacher law as N grows large, while still enjoying some useful properties. Another instance

where one uses a N -dependent equilibrium measure is [BF06, Section 5]. The idea is that µ
(N)
eq and

E(N)
V,sinh absorb much more the N dependence of ZβN,sinh[V ] than Rad and EV,sinh.

A more suitable choice to capture the large-N behavior of the particles is the minimizer of the
following functional:

E(N)
V,sinh[µ]

(def)
=

ˆ
R
VN (x)dµ(x)− 1

2τN

¨
R2

log
2∏

a=1

sinh [πωaτN (x− y)] dµ(x)dµ(y).

It satisfies the following theorem.
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Theorem I.7.2 E(N)
V,sinh is strictly convex. Its unique minimizer denoted µ

(N)
eq and called the equi-

librium measure, is absolutely continuous with respect to the Lebesgue measure with p.d.f. ρ
(N)
eq ,

and it is characterized by the following Euler-Lagrange equations:

VN (x)− 1

2τN

ˆ
R

log

2∏
a=1

sinh [πωaτN (x− y)] dµ(N)
eq (y)

{
> Csinh

VN
outside supp µ

(N)
eq ,

= Csinh
VN

µ
(N)
eq − as.

(91)

Finally, it is compactly supported on [aN , bN ] and has a vanishing square-root behavior at the
endpoints.

Figure I.3: The equilibrium density ρ
(N)
eq .

This measure whose general form is represented in Figure I.3, is very similar to µV,β introduced
in Theorem I.3.1. Indeed, it is Lebesgue-continuous, compactly supported and also exhibits the

vanishing square-root behavior at the endpoints. Furthermore, to capture more properties of ρ
(N)
eq ,

by differentiating equality (91), one finds that it satisfies the following singular integral equation:

∀x ∈ [aN , bN ], SN [ρ(N)
eq ](x) = V ′N (x), SN [φ](x)

(def)
=

 bN

aN

S (τN (x− y))φ(y)dy (92)

where S(x)
(def)
=

∑2
a=1

πωa
2

coth (πωax). We stress that in the singular equation (92), which is

analogous to (19), the unknown is the triplet (ρ
(N)
eq , aN , bN ). As previously explained, one would

like to solve this equation in order to have a manageable expression for the density and access the
knowledge of linear statistics and, hence the partition function ZN,sinh[V ].

While in the classical β-ensemble case, this equation can be easily solved by means of a scalar RHP,
the situation here is much more involved. The operator SN belongs to the class of so-called truncated
Wiener-Hopf operators. When defined on sufficiently irregular Sobolev spaces, this operator can be
inverted by using a Wiener-Hopf factorization involving the solution χ of an auxiliary 2× 2 RHP.
This method is greatly inspired by the technique developed in [Kre62, Nov80].

More explicitly, to solve equation SN [ϕ](ξ) = H(ξ), it is convenient to first solve the regularized
equation

∀x ∈ [aN , bN ], SN,γ [φ](x) = H(x), SN [φ](x)
(def)
=

 bN

aN

Sγ (τN (x− y))φ(y)dy (93)

where Sγ(x)
(def)
= S(x)1[−γxN ,γxN ] and xN

(def)
= τN (bN − aN ). To obtain the final answer, one can

send the parameter γ → +∞ once that all the computations are made. Furthermore, equation (93)
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can be recasted as

SN,γ [ϕ](ξ)
(def)
=

 xN

0
Sγ(ξ − η)ϕ(η)

dη

2iπ
= h(ξ), with


ϕ(η)

(def)
= φ

(
η + aNτN

τN

)
,

h(ξ)
(def)
=

τN
2iπ

H

(
η + aNτN

τN

)
.

(94)
The solutions of SN,γ [ϕ] = h can be mapped to a solution Φ of a 2× 2 RHP.
Lemma I.7.3 [BGK16, Lem 4.1.1] Let h ∈ Hs([0, xN ]), s < 0. For any solution ϕ ∈ Hs([0, xN ]),
of SN,γ [ϕ] = h. There exists a two-dimensional vector function Φ ∈ O (C \ R) such that ϕ =
F−1 [(Φ1)+] and Φ is a solution to the boundary value problem:

• (Φa)± ∈ F [Hs(R±)] for a ∈ {1, 2}, and there exists C > 0 such that:

∀µ > 0, ∀a ∈ {1, 2},
ˆ
R
|Φa(λ± iµ)|2. (1 + |λ|+ |µ|)2s dλ < C,

• We have the jump equation for Φ+(λ) = Gχ(λ).Φ−(λ) + H(λ) for λ ∈ R, with:

Gχ(λ)
(def)
=

 eiλxN 0
1

2iπβ
F [Sγ ] (λ) −e−iλxN

 and H(λ)
(def)
=

(
0

−e−iλxNF [he](λ)

)
. (95)

It turns out that this boundary value problem can be solved by constructing a factorization of Gχ.
This leads to the formulation of the following 2× 2, RHP for χ which can be solved:
Theorem I.7.4 [BGK16, Prop 4.2.1] For N sufficiently large, there exists a unique solution to
the 2× 2 RHP:

• χ ∈M2 (O (C \ R)),

• χ admits continuous ±-boundary values on R,

• χ(λ) = A(λ)

(
I2 +

B(λ)

λ
+O(λ−2)

)
as λ goes to infinity.

• For all ξ ∈ R, χ+(ξ) = Gχ(ξ)χ−(ξ), where Gχ has been introduced in (95).

In the above theorem, we do not provide the exact expressions of A and B as they are not needed
for the purpose of this discussion. However, they can be found in the corresponding reference. The
RHP above can be solved by using the Deift-Zhou non-linear steepest descend method. This allows
us to invert the operator SN,γ on Hs([0, xN ]) for s big enough and obtain an integral representation
in terms of χ for the inverse. After letting γ → +∞, we obtain the following result:
Theorem I.7.5 [BGK16, Prop 4.3.8] Let 0 < s < 1/2, the operator SN : Hs([aN , bN ]) → Xs(R)
is continuous and invertible where

Xs(R)
(def)
=

{
h ∈ Hs(R),

ˆ
R+iε

χ11(µ)F [h](τNµ)e−iτNµbNdµ = 0

}
.

The inverse WN is given for all φ ∈ Xs(R) by

WN [φ] (ξ)
(def)
=

(τN )2

2π

ˆ
R+2iε

dλ

2iπ
e−iτNλ(ξ−aN )

ˆ
R+iε

dµ

2iπ

KN (λ, µ)e−iµτN bN

µ− λ
F
[
φ1[aN ,bN ]

]
(τNµ) (96)

for a N -dependent kernel KN given in terms of χ and a fixed ε > 0.

In [BGK16, Section 4], the authors were able to deduce many properties about the large-N behavior
of χ, which translates into knowledge of the operator WN for large N . This enables us to find the
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solution of (92) for choices of aN < bN such that bN − aN > η uniformly in N for some η > 0.
Imposing the following constraints on aN and bN ,
ˆ bN

aN

ρ(N)
eq (ξ)dξ = 1,

ˆ
R+iε

χ11(µ)F [V ′N1[aN ,bN ]](τNµ)e−iτNµbNdµ = 0 (97)

allows one to uniquely determine aN and bN such that the following holds:

ρ(N)
eq =WN [V ′N ]. (98)

The first equation guarantees that µ
(N)
eq has mass 1, while the second ensures, using the linear form

in the definition of Xs(R), that it vanishes as a square root at the endpoints.

Compared to the derivation of an explicit expression for the equilibrium measure in the classical
β-ensemble case which leads to (20), it is fair to say that the above procedure is considerably more
sophisticated. Indeed, in the first case, by solving a scalar RHP, one is rewarded with an explicit
expression, in the parameters (except for the endpoints) for the equilibrium density. This provides
a lot of knowledge on this function such as: its regularity, its vanishing behavior at the endpoints
or its dependence on additional parameters introduced in the model. In the sinh-model, it requires
to solve a 2 × 2 RHP which is, in general, considerably harder than dealing with a scalar RHP.
Furthermore, while the formula found in (98) which involves the operator WN , introduced in (96),
is very satisfying on many aspects as it allows one to understand the regularity, the N -dependence
or again the behavior at the endpoints, it is way more involved than (20). Indeed, the expression is
now a triple integral and it depends on the entries of χ which are non-explicit functions. These facts
imply that it requires way more efforts to extract the information out of this expression. Indeed,
it is necessary to extract the large-N behavior of χ(λ) , which requires a lot of effort in order to

undestand the behavior in N and ξ of ρ
(N)
eq (ξ).

We will now explain the strategies used to obtain the asymptotics of ZN,sinh[V ].

I.7.5 The partition function

Several strategies exist to obtain an AE for logZN,sinh[V ] up to o(1). The first strategy is the loop
equations analysis, described for the classical β-ensembles in Subsection I.4. By using this method
for a N -independent potential V , the authors of [BGK16], managed to obtain an explicit expression

for the coefficients of the AE of logZN,sinh[V ] up to o
((logN)α

Nγ

)
for α, γ > 0. To conduct the loop

equations analysis, the authors identified the master operator UN (which is then N -dependent)
which has the following expression:

UN [φ]
(def)
= φ

{
V ′ − SN

[
ρ(N)

eq

]}
+ SN

[
φρ(N)

eq

]
. (99)

By exploiting the inversion of the singular integral transform SN from Theorem I.7.5, the authors
managed to invert UN and obtain an integral representation for U−1

N [BGK16, Prop 5.2.1]. This
expression is similar to the one found for the classical β-ensembles (48) and (49). On [aN , bN ],
since the first term of (99) vanishes by (91), this representation reads, for a smooth φ in Xs(R)
with 0 < s < 1/2, and x ∈ [aN , bN ]:

U−1
N [φ](x) =

WN [φ](x)

ρ
(N)
eq (x)

(100)

Since ρ
(N)
eq vanishes like a square-root at the endpoints, andWN is the inverse of the singular integral

transform SN , (100) is very similar to (48). Outside [aN , bN ], it reads U−1
N [φ](x) = `sinh(x)−1ksinh(x)

with

`sinh(x)
(def)
= SN ◦WN [V ′](x)− V ′(x), ksinh(x)

(def)
= SN ◦WN [φ](x)− φ(x),
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which is again very similar to (49). One also needs to obtain controls with respect to the W∞n -norm
to apply the a priori bound and conduct the loop equations analysis. However, this representation
is not completely satisfying for extracting this control, as one has to take care of a vanishing
denominator when N goes to infinity in (100). Indeed, in the case of a N -dependent potential VN

introduced in (85), we know that ρ
(N)
eq approaches the Rademacher measure. Thus, we expect that

ρ
(N)
eq (±1) −→

N→∞
+∞ and that for x 6= ±1, ρ

(N)
eq (x) −→

N→∞
0.

Moreover, from the form of the density found by computing WN [V ′N ], it is expected that the
convergence to 0 far from the endpoints is polynomially fast. However, for sufficiently smooth
functions φ one can expect that the numerator will also vanish exponentially fast in the bulk.
Using the explicit form of WN (96), along with the knowledge on the asymptotics of χ and the
residue theorem, it is possible to obtain a sufficiently explicit representation of that term. From
this expression, the exponential decay in the bulk becomes apparent. One can deduce from it that
a linear statistic like 〈U−1

N [φ]〉
µ

(N)
eq

is of order 1, and its explicit limit can be obtained.

The second approach can be pursued via the asymptotics of the so-called bi-orthogonal polynomials.
A good reference for the theory of such polynomials is [Bor98]. Inspired by the orthogonal polyno-
mials approach for obtaining the partition function of the β-ensembles for β = 2, as explained in
Subsection I.3.4, there exists a generalization for other models whose interaction can be written as
a product of two different Vandermonde determinants, as is the case here, namely:

N∏
i<j

2∏
p=1

sinh [πωpτN (λi − λj)] =

N∏
i=1

e−π(ω1+ω2)τN (N−1)λi

2N−1
.

2∏
p=1

det
1,≤i,j≤N

(
e2πωpλi(j−1)

)
. (101)

Thus, similarly as in (28), it is possible to recast the partition function as:

ZN,sinh[V ] =
N∏
i=1

γ−1
i (102)

where the γi’s correspond to the normalization with respect to orthogonality conditions for a system
of polynomials (Pi, Qi)i≥0 called the bi-orthogonal polynomials. In [CR13], the authors managed
to prove that such polynomials admita RH formulation in the same spirit as in Theorem I.3.3.
From this RHP, one can expect to extract, again using the Deift-Zhou non-linear steepest descent
method, the large-N behavior of the γi’s and hence the AE of ZN,sinh[V ].

However, currently, the literature only contains the formalization of this approach in the case of
varying-weights. The generalization to the non-varying-weights case implies rescaling the integral.
As we have argued before, this would introduce another scale τN into the large-N analysis of this
RHP. Extending the proof to this setup would require a significant effort.

We now state the results obtained in this thesis as well as summarize Chapters 1, 2 and 3.

I.8 Summary of research results

I.8.1 Chapter 1: CLT for real β-ensembles at high temperature

This result is derived from joint work with Ronan Memin [DGM23]. We establish for the β-
ensembles at high temperature, under very general conditions on the potential V , a central limit
theorem for linear statistics with bounded smooth enough functions.

We consider the probability measure PV,PN on RN , as introduced in (58), where V is quite general,
i.e., it grows sufficiently fast at infinity and is smooth enough. Examples of such potentials include
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polynomials of even degree with positive leading coefficient or the hyperbolic cosine function. The
goal of this article is to study the fluctuations of the linear statistics, rescaled by

√
N , namely:

√
N

ˆ
R
φ(x)d(µ̂N − µV,P )(x), φ smooth and bounded

where µ̂N is the empirical measure and µV,P is the equilibrium measure introduced in Theorem I.5.1.
More precisely, we demonstrate that as N tends to infinity, this quantity converges in distribution
to a normal distribution N (0, σ2(φ)) for some σ2(φ) > 0.

A common approach to proving this type of result, first developped in [Joh98] and used in [BLS18],
is based on the following convergence of Laplace transforms:

EV,PN

[
exp

(√
Nt

ˆ
R
φ(x)d(µ̂N − µV,P )(x)

)]
−→
N→∞

exp

(
− t

2

2
σ2(φ)

)
.

Our strategy is based on a well-known change of variables in the partition function ZN [V ] defined in
(59), see [Joh98, Shc14b, BFG15, BLS18]. Take a compactly supported smooth function φ : R→ R
and perform the following change of variables in ZN [V ],

xi → yi +
t√
N
φ(yi) 1 ≤ i ≤ N.

This yields:

ZN [V ] =

ˆ
RN

∏
i<j

∣∣∣yi− yj +
t√
N

(φ(yi)−φ(yj))
∣∣∣ 2P
N
.e
−
∑N
i=1 V

(
yi+

t√
N
φ(yi)

)
.

N∏
i=1

(
1 +

t√
N
φ′(yi)

)
dNy .

Expanding the different terms in this integral, we obtain:

ZN [V ] =

ˆ
RN

pV,PN (y1, . . . , yN ). exp

{
t√
N

2P

N

∑
i<j

φ(yi)− φ(yj)

yi − yj
+

N∑
i=1

(
φ′(yi)− V ′(yi)φ(yi)

)
− t2

2
σ2
N (φ) +O

(
N−

3
2 t3‖φ‖W∞1 (R)

)}
dNy, (103)

where σ2
N (φ) is a quadratic form in φ converging to a limiting variance σ2(φ). Recalling the defini-

tion of the master operator Ξ defined in (67), one can observe that in (103), the term proportional
to t is almost

√
N
´
R Ξ[φ]dµ̂N (x). Therefore, we can set the error term as follows:

error term
(def)
= −t

√
N

ˆ
R

Ξ[φ](x)dµ̂N (x)− 2P

N

∑
i<j

φ(yi)− φ(yj)

yi − yj
−

N∑
i=1

(
φ′(yi)− V ′(yi)φ(yi)

)
− σ2

N (φ) + σ2
N (φ) +O(t3N−

3
2 )

After dividing both parts of the equation by ZN [V ], and because of the identity
´
R Ξ[φ](x)dµV,P (x) =

0 (coming from (62)), we deduce from (103) the following convergence:

EV,PN

[
exp

[
t
√
N

ˆ
R

Ξ[φ](x)d(µ̂N − µV,P )(x) + error term
]]
−→
N→∞

exp
(
− t2

2
σ2(φ)

)
. (104)

The error term can be managed by using large deviation principle and concentration of measure
type techniques to argue that µ̂N is close to µV,P as N → ∞ with high probability. The proof
proceeds as follows: define the following distance d by

d(µ, µ′)
(def)
= sup
‖f‖Lip≤1
‖f‖1/2≤1

{∣∣∣∣ˆ f(x)dµ(x)−
ˆ
f(x)dµ′(x)

∣∣∣∣} ,
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where ‖f‖Lip denotes the Lipschitz constant of f , and ‖f‖21/2
(def)
=

ˆ
R
|t| |F [f ](t)|2 dt, with F being

the Fourier transform on L2(R). By using a regularization of the empirical measure µ̂N developped
in [MMS14], we obtain the following concentration result:
Proposition I.8.1 There exists K ∈ R (depending on P and on V ), such that for any N ≥ 1 and
r > 0,

PV,PN (d(µ̂N , µV,P ) > r) ≤ e−Nr2 Pπ2

2
+5P logN+K . (105)

Since some building blocks of the error term arising in equation (104) also appear in the classical
β-ensembles, it is well-known that this type of concentration result allows one to neglect this term
(see [Gui19, Cor. 4.16]).

Once this term is handled and shown to be negligible, equation (104) demonstrates the central limit
theorem for test functions of the form Ξ[φ], where φ is compactly supported and satisfies certain
regularity conditions. To extend this result to functions φ supported on the entire real line, more
precise information about the size of the spectrum10 is required.

In the constant β-ensembles, particles will localize in a bounded interval [a, b], namely the
smallest interval containing the support of µV,β. Therefore, one can expect the contribution of φ
outside of a compact set to be negligible. Specifically, it is expected that the following probability

PV,βN

(∣∣∣∣ˆ
R
φ(x)dµ̂N (x)−

ˆ
R
φ(x)1[a,b](x)dµ̂N (x)

∣∣∣∣ > t

)
is really small.

However, in the high-temperature regime, since the support of µV,P is the entire real line,
more precise estimates on the size of the spectrum are required. In the works [Pak18, Lam21b], the
authors managed to localize the spectrum in an interval of the form [−EN , EN ], where EN ∼

N→∞
V −1(logN). This allows for the proof of the central limit theorem of the form Ξ[φ], where φ is
smooth enough and decays fast enough at infinity, i.e.:

√
N

ˆ
R

Ξ[φ](x)d(µ̂N − µV,P )(x)
law−→

N→∞
N
(
0, σ2(φ)

)
for σ2(φ) ≥ 0. To complete the proof and obtain a central limit theorem for the linear statistics, and
this for an explicit and general class of functions ψ, one must invert the operator Ξ and repeat the

previous procedure with φ
(def)
= Ξ−1[ψ]. The analog of this operator was inverted in [HL21], where

the particles lie on the unit circle. However, due to the fact that, in the circular case, this operator
then acts on compactly supported functions, the techniques do not generalize easily. Inverting this
unbounded operator, which acts on functions defined on an unbounded domain, is therefore one of
the main obstacles in the proof, and more involved techniques are required. We now explain how
we managed to overcome this difference from the circular case.

To invert Ξ, it is enough to invert the operator L, defined as L[φ]
(def)
= Ξ[φ′], since Ξ−1[φ] = (L−1[φ])′.

The heuristic is that the operator L is a second-order differential operator that is positive on
a certain Hilbert space. Following [HL21], this operator can be analyzed using Hilbert space
techniques. To use this set of tools, we must restrict ourselves to the class of potentials V such
that the associated equilibrium measure µV,P satisfies the Poincaré inequality:

∃CV,PPoin > 0,∀f ∈ C1
c (R), VarµV,P (f) ≤ CV,PPoin

ˆ
R
|f ′(x)|2dµV,P (x).

10The set of integration variables (y1, . . . , yN ) is heuristically thought as the spectrum of a random matrix
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Polynomial potentials of even degree with positive leading coefficient or the hyperbolic cosine are
example of such potentials. This is verified for any smooth potential that is strictly convex outside
of a compact set. With this inequality, one can show that the pair (H, 〈., .〉H), where

H
(def)
=

{
u ∈ L2(µV,P )

∣∣∣ u′ ∈ L2(µV,P ),

ˆ
R
u(x)dµV,P (x) = 0

}
, 〈u, v〉H

(def)
=
〈
u′, v′

〉
L2(µV,P )

,

defines a Hilbert space. In particular, the operator L, seen as an unbounded operator on the
previous weighted Sobolev space can be decomposed as

−L = A+ 2PW , (106)

where A and W are given for all φ ∈ C∞c (R) by:

A[φ]
(def)
= −

(φ′ρV,P )′

ρV,P
, W[φ]

(def)
= −H[φ′ρV,P ] +

ˆ
R
H[φ′ρV,P ](y)dµV,P (y) (107)

where H denotes the Hilbert transform. It is possible to show that A and W are symmetric,
positive semi-definite operators on this space and that their respective kernels are given by the
one-dimensionnal vector space of constant functions. Furthermore, by exploiting that A is a Sturm-

Liouville operator i.e. an oeprator of the form
d

dx

(
p
d

dx

)
+ q, one can show that A is conugated

to a Schrödinger operator of the form −∆ + wV via:

1
√
ρV,P
A√ρV,P = −∆ + wV ,

where wV is a potential such that wV (x)→ +∞ as |x| → ∞. It is a standard fact from the theory
of such operators that such a Schrödinger operator is diagonalizable, and thus, so is A. From this,
one can deduce that A is positive on a domain D(A), i.e. there exists c > 0 such that for all
φ ∈ D(A),

〈A[φ], φ〉H > c‖φ‖2H.
Above, c can be taken equal to λ1(A), the smallest eigenvalue of A. Thus, by (106), −L is also
positive. This fact allows us to extend L to a domain D(L), known as the Friedrichs extension see
Appendix A, such that it is invertible on this space.
Theorem I.8.2 (Inversion of the master operator) −L : D(L) −→ H is bijective. Further-
more, (−L)−1 is positive, continuous from (H, ‖.‖H) to (D(L), ‖.‖H). More precisely, for all f ∈ H,

‖L−1[f ]‖H ≤ λ1(A)−1/2‖f‖H. (108)

By construction, it remains obvious that its inverse L−1 satisfies (108). This continuity result will
be crucial for Chapter 2 to get controls on Ξ−1 with respect to L2 and L∞ norms.

Once this operator is inverted, it is necessary to show that there exists a class of functions φ
such that Ξ−1[φ] satisfies the regularity and decay conditions required to consider non-compactly
supported functions. We showed that the class of functions, denoted by T , defined by:

T (def)
=

{
f ∈ C2(R) | f, f ′, f ′′ are bounded,

ˆ
R
f(x)dµV,P (x) = 0

}
. (109)

is such that for every φ ∈ T , Ξ−1[φ] is smooth and decay fast enough to make rigorous the heuristic
change of variables in ZN [V ] detailed above. This can be shown by using the regularity conditions
on the domain D(L) and the integral representation for Ξ−1

Ξ−1[φ](x) =
1

ρV,P (x)

+∞ˆ

x

dµV,P (t)

[
φ(t) + 2P

{
H[Ξ−1[φ]ρV,P ](t)−

ˆ
R
H[Ξ−1[φ]ρV,P ](y)dµV,P (y)

}]
.

(110)
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which comes from the following resolvent formula:

L−1[φ] = −A−1
[
φ+ 2PW ◦ L−1[φ]

]
.

This integral representation allows one to capture the growth of Ξ−1[φ] and its derivatives and
verify that if φ ∈ T , then Ξ−1[φ] is smooth enough and decays rapidly enough at infinity so that
the CLT is valid for φ. All these ingredients allowed us to conclude about Theorem I.5.2.

I.8.2 Chapter 2: Asymptotics of the partition function for β-ensembles at high
temperature

This result is based on the following article [DG24]. We establish the existence of an all-order AE
of the partition function ZN [VG,φ] defined in (59) and VG,φ(x) = x2/2 +φ(x) where φ is a bounded
smooth function.
Theorem I.8.3 (AE of the partition function) Let φ ∈ L2(R), such that φ(k) ∈ L2(R) for all
k ≥ 0. There exists a unique sequence (ci)i≥0 ∈ RN depending on φ and P , such that for all K ≥ 0,

1

N
logZN [VG,φ] =

K∑
i=0

ci
N i

+O
(
N−(K+1)

)
.

The strategy is based on the analysis of the loop equations, see Subsection I.4. In order to make
the previous scheme work, one needs to be able to obtain the following results:

(i) An a priori bound on the linear statistics, namely

| 〈fn〉n⊗LN
| ≤ C

N c(n)
N (mn)
n (fn)

where (c(n)), (mn) are increasing sequences going to ∞ as n→∞, C > 0 a positive constant

and N (m)
n a norm on functions of n variables which admit derivatives of order m.

(ii) Continuity inequalities for the inverse of the master operator on the functional spaces sug-

gested by N (m)
n namely:

N (m)
n

(
Ξ−1

1 [f ]
)
≤ CN (m+1)

n (f)

(iii) A control on the dependence in t of integrals against µVG,φ,t,P where VG,φ,t(x) = x2/2+ tφ(x).

These results are the main requirements that allow one to perform the loop equations analysis, and
therefore to first deduce an AE for the linear statistics.

For the point (i), we follow the scheme used in [BGK16, Corollary 3.1.10]. When the particles
concentrate on a compact set, i.e. when the limiting measure is compactly supported (such as

µV,β for the classical β-ensembles, or µ
(N)
eq for the sinh-model), one can show that

〈f〉n
⊗LN

= 〈f|c〉n⊗LN
+ exponential errors (111)

where f|c(ξ1, . . . , ξn)
(def)
= f(ξ1, . . . , ξn)

∏n
i=1 χ(ξi) where χ is a compactly supported function equal

to 1 on a set containing the support of the equilibrium measure. Thus, in this framework, following
the scheme explained in Subsection I.4, deriving an a priori bound on 〈f〉n

⊗LN
for general f amounts

to show it for the truncated function fc as our estimates are much more imprecise than exponential
errors. By the procedure detailled in Subsection I.4, one obtains a control in terms of ‖fc‖Hn/2(Rn).

Since this function is compactly supported, it is possible to transform the Hn/2-norms in terms of
a W∞n -norm, namely:

‖fc‖Hn/2(Rn) ≤ ‖fc‖W∞n (Rn) ≤ ‖f‖W∞n (Rn).
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These bounds allow to only require a finite W∞n -norm property on the functions for which the a
priori bound is admissible. We were however not able to reproduce this procedure in the high
temperature regime.

Indeed, showing that 〈f〉n
⊗LN
−〈f|c〉n⊗LN

goes to zero exponentially fast as N goes to infinity, even if

ones takes a N -dependent truncation, namely chooses a smooth function χN such that, it is equal to
1 on [−EN , EN ] and 0 on [−EN −1, EN +1]c where EN −→

N→∞
+∞ is difficult here. The unability to

construct a convenient truncation which would produce (111) leads to the requirement to deal with
several norms: (Hn/2 and W∞1 ) at the same time. The a priori bound is supposed to be applied
to the linear statistics involved in the loop equations, i.e. linear statistics with test-functions of
the form A ◦Ξ−1[f ], where Ξ−1 is the inverse of the master operator and A ∈ {D,Θ(a)} which were
defined in (35) and (40). In order to apply it for this type of linear-statistics, one must then obtain
the continuity with respect t o two norms, for the different operators involved and especially the
master operator. This requirement increases considerably the complexity and technicality of the
proof. Point (i) is still completed.

For the point (ii), the main difficulty is to obtain continuity results with respect to W∞n and Hn/2

norms, for the master operator Ξ−1. We obtained them namely:
Theorem I.8.4 (Controls on the master operator) Let n ≥ 1, there exists a C > 0 such that
for all f ∈ Hn+1(R):

‖Ξ−1[f ]‖Hn(R) ≤ C‖f‖Hn+1(R).

Moreover, there exists C ′ > 0, such that for all g ∈W∞n+1(R),

‖Ξ−1[g]‖W∞n (R) ≤ C ′‖g‖W∞n+1(R).

They follow by obtaining a convenient integral representation for the inverse Ξ−1[φ]. Our strategy
is based on the resolvent formula. By recalling (68), we get:

f(x)ρV,P (x) = −(Ξ−1[f ]ρV,P )′(x)− 2PρV,P (x)H[Ξ−1[f ]ρV,P ](x)

+ 2PρV,P (x)

ˆ
R
H[Ξ−1[f ]ρV,P ](y)dµV,P (y). (112)

and thus by integrating on [x,+∞[, we get:

Ξ−1[f ](x) =
1

ρV,P (x)

+∞ˆ

x

dµV,P (t)

[
f(t) + 2P

{
H[Ξ−1[f ]ρV,P ](t)−

ˆ
R
H[Ξ−1[f ]ρV,P ](y)dµV,P (y)

}]
.

(113)
This integrand is composed of two terms: the term in f(t), which can be handled by standard
techniques, and the term proportional to 2P . The latter involves the master operator Ξ−1 which
makes this formula circular. However, because of the L2-isometry property of the Hilbert transform
and, crucially, the continuity result (108), one can show the continuity of this expression in f with
respect to L2 and L∞ norms. Furthermore, to show the continuity with stronger norms namely
Hn or W∞n , one must differentiate and manage the diverging parts appearing. This can be done
by using integration by parts. This can be seen at the level of the operator A which is a building
block of L (107), we have:

A−1[f ]′(x) =
1

ρV,P (x)

ˆ +∞

x
f(t)dµV,P (t) (114)
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which implies by differentiating and integrating by parts:

A−1[f ]′′(x) =
−ρ′V,P (x)

ρV,P (x)2

ˆ +∞

x
f(t)dµV,P (t)− f(x)

=
−ρ′V,P (x)

ρV,P (x)2

[
f(t)

ρV,P (t)

ρ′V,P (t)
ρV,P (t)

]+∞

x

+
ρ′V,P (x)

ρV,P (x)2

ˆ +∞

x

(
f
ρV,P
ρ′V,P

)′
(t)dµV,P (t)− φ(x)

=
ρ′V,P (x)

ρV,P (x)2

ˆ +∞

x

(
f
ρV,P
ρ′V,P

)′
(t)dµV,P (t). (115)

Since, in the last integral, ρ′V,P , which vanishes at least once, appears in the denominator, this
formula can only hold in a neighborhood of +∞ (the same can be done near −∞). Even though,
the prefactor of the integral diverges strongly, the order of this prefactor being roughly V ′(x)e2V (x),
the integrand decay at the inverse same speed and by integrating, a factor 1/V ′(x) must be added
which allow obtaining an integrable decaying behavior at infinity. This procedure can be applied
to deal with every derivative of A−1[f ]′ and all the derivatives of Ξ−1[f ]. To deal with the behavior
of A−1[f ]′′ in a compact set, the first equality in (115) is convenient and doesn’t exhibit any
singularity. These formulations allow obtaining sufficiently good controls with respect to the two
norms involved in the problem. This completes point (ii).

Points (i) and (ii), make the loop equations analysis possible. This leads to the existence of the
AE for the linear statistics for general potential V :
Theorem I.8.5 (AE of linear statistics) Under assumptions 2.1.1 on the potential V , for all
φ ∈ L2(Rk), such that φ(j) ∈ L2(Rk) for all j ≥ 0, there exists a unique sequence (bi)i≥dk/2e
depending on V , φ and P such that forall K > 0:

〈φ〉V⊗kLN =

K∑
i=dk/2e

bi
N i

+O
(
N−(K+1)

)
.

Once the AE is obtained up to any order for the linear statistics and this, for smooth bounded
functions, one can try to integrate this AE into one for the partition function via the following
formula:

logZN [VG,φ] = logZN [VG]−N
ˆ 1

0
〈φ〉VG,φ,tµ̂N

dt

∼
K∑
k=0

cG,k
Nk

+O(N−(K+1)) +
K∑
k=0

´ 1
0 ck(φ, t)dt

Nk
+

ˆ 1

0
O(N−(K+1))dt (116)

Since the AE of logZN [VG] can be obtained up to any order in N−1 as in (26), in order to make
this integration-step rigorous, one needs to integrate each term ck(φ, t) arising in the AE of the
linear statistics as well as the remainder term which also depends on t. One can show that proving
that these integrals are well-defined boils down to realize point (iii).

Let φ smooth and bounded, V a general potential and define Vφ,t : x 7→ V (x)+tφ(x) where t ∈ [0, 1].
One can show that every quantity that we need to integrate depend on t only via ρVφ,t . Showing
that the map t 7→ ρVφ,t ∈ W∞n (R) is continuous for all n ∈ N is enough to integrate all of these
terms depending on t and conclude about the AE for logZN [VG,φ].

For the classical β-ensemble, this continuity result is easy to show. We argued in Subsection
I.4.5, following [BG13a], that if V and W are such that µV,β and µW,β have the same support [a, b],
then the equilibrium measure associated to the convex combination of potentials tV + (1 − t)W
is the convex combination of the equilibrium measure tµV,β + (1 − t)µW,β, (57). For the high
temperature regime, this step turns out to be way more involved.
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First it is easy to see, taking two potentials V and W , that

ρtV+(1−t)W,P 6= tρV,P + (1− t)ρW,P . (117)

Indeed, the above equation isn’t compatible with the asymptotic behavior at infinity found in (64).
To show that ρVφ,t,P converges uniformly to ρVφ,t0 ,P when t→ t0, we set the following definition:

ut
(def)
=

ρVφ,t,P − ρVφ,t0 ,P
δt

1

ρVφ,t0 ,P
, δt

(def)
= t− t0. (118)

By using (63), one can show that ut solves the following equation:

1 + δtut(x) = exp

{
δt
(
− φ(x) +

ˆ
R
φ(y)dµVφ,t0 ,P (y) + 2P

ˆ
R

log |x− y|ut(y)dµVφ,t0 ,P (y)

−2P

¨
R2

log |y−z|ut(z)dµVφ,t0 ,P (z)dµVφ,t0 ,P (y)+
1

δt

ˆ
R

[log (1 + δtut(y))− δtut(y)] dµVφ,t0 ,P (y)
)}

.

By linearizing the exponential in the above equation, one can show that there exists a continuous

invertible operator T (def)
= −L◦A−1, and some t-continuous operators Ut, Vt such that ut is a fixed

point of the following equation:

ut = T −1 ◦ Vt[ut], with Vt[u]
(def)
= −φ+

ˆ
R
φ(y)dµVφ,t0 (y) + δtUt[u]. (119)

One can show that the operator T −1 is continuous and that Vt is Lipschitz-continuous with respect
to L∞ norms, with Lipschitz constant proportional to δt. Thus, by picking t close enough to t0,
which amounts to take δt small enough, an application of Banach fixed-point theorem leads to the
fact that ut is the unique fixed point of the t-continuous operator T −1 ◦ Vt. It is then a standard
fact that the unique fixed point of a contractive operator continuous in t is itself continuous in t.
This reasoning allows us prove the following theorem:
Theorem I.8.6 Under assumptions 2.1.1 on the potential V , for all i ∈ N and for all φ ∈ L2(R),
such that φ(k) ∈ L2(R) for all k ≥ 0,

‖ρVφ,t − ρVφ,t′‖W∞i (R) →
t→t′

0

where Vφ,t : x 7→ V (x) + tφ(x) where t ∈ [0, 1]. The W∞i (R)-norm is defined as ‖f‖W∞n (R)
(def)
=

max
k∈J0,nK

‖f (k)‖L∞(R). Furthermore, for all x ∈ R, t 7→ ρVφ,t(x) ∈ C∞(R) and satisfies the following

integro-differential equation for all t ≥ 0 and x ∈ R:

∂tρVφ,t(x) =

(
−φ(x) +

ˆ
R
φ(s)ρVφ,t(s)ds

)
ρVφ,t(x).

I.8.3 Chapter 3: On the equilibrium measure for the Lukyanov integral

This article is based on the preprint [DGK24] which gives an explicit form for the leading order

term in the AE of log
Zsinh
N [Vα]

Zsinh
N [V0]

, in terms of the parameters α, ω1 and ω2. This result allows

justifying that the limit in Lukyanov’s conjecture about the vacuum expectation value of the
exponential of the field operator, introduced in (83), exists.
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The starting point is the interpolation equation, namely

log
Zsinh
N [Vb]

Zsinh
N [V0]

= −N logN

ˆ b

0
∂t logZsinh

N [Vt]dt = N logN

ˆ b

0
〈id〉Vtµ̂N dt

=
N→∞

N logN

ˆ b

0
〈id〉

µ
(N)
eq,t

dt+ RN . (120)

While we are only able to show that the remainder term is of order O(
√
N log2N), we make the

following assumption:
Assumptions I.8.7

RN =
N→∞

O(1). (121)

We know that the limiting measure of µ̂N is the singular measure
1

2
(δ−1 + δ1). Since this measure

doesn’t capture enough of the N -dependence of µ̂N , it is more convenient to use the N -dependent

equilibrium measure µ
(N)
eq . The first step that one needs to take care is the construction of this

measure. We rely on the equation SN [ρ
(N)
eq ] = V ′N , where SN and VN have been introduced in (92)

and (85), and on the inversion of this operator, see Theorem I.7.5. The potential is explicit, and
we recall its coarse form:

VN (ξ) =
r

NτN
cosh(ξτN )− α

N
ξ + negligible errors.

The exponential errors come from the integral term in (85) which decreases like O(e−2|x|) at infinity.

With the rescaling in τN , it can be seen that this term decreases in
1

N3τN
. This term will only

contributes to the remainders and for this heuristic, we can neglect its effects.

By the explicit form of VN , using the residue theorem and growth conditions at infinity of the

Riemann-Hilbert solution χ, one is able to obtain the following explicit expression for ρ
(N)
eq and this

for general aN < bN :

ρ(N)
eq (ξ) =

iτN
2πN

ˆ

R+2iε

dλe−iτNλ(ξ−aN )

2iπ

(
r

2

[K(λ, i)eτN bN

λ− i
− K(λ,−i)e−τNaN

λ+ i

]
− bχ11(λ)χ12,+(0)

λ

)
+ negligible errors, (122)

where the kernel K is defined as follows:

K(λ, µ)
(def)
= χ11(λ)χ12(µ)− µ

λ
χ11(µ)χ12(λ).

As explained in Subsection I.7.4, to construct ρ
(N)
eq , one needs to find the endpoints aN and bN .

It is done by exploiting the constraints. The first constraint considered is the one ensuring the

square-root like vanishing behavior of ρ
(N)
eq , namely C1,N = 0 with

C1,N
(def)
=

ˆ
R+iε

dµ

2iπ
e−iτN bNµχ11(µ)F

[
V ′N1[aN ,bN ]

]
(τNµ). (123)

By the residue theorem and the knowledge on the asymptotics of χ, we get:

C1,N =
i

NτN

( r
2

(
−eτN bNχ11(i) + e−τNaNχ11(−i)

)
+ bχ11,+(0)

)
+ error term. (124)

The second constraint on the mass C2,N = 1 where

C2,N
(def)
=

ˆ bN

aN

ρ(N)
eq (ξ)dξ (125)
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can also be computed by using Fubini’s theorem and the form found in (122) to get:

2πNC2,N = bχ′11,+(0)χ12,+(0) +
r

2

{(
eτN bN + e−τNaN

)[
iχ11,+(0)χ12(i)− iχ11(i)χ12,+(0)

]
+ χ11(i)χ11,+(0)eτN bN − χ11(i)χ′12,+(0)

(
eτN bN − e−τNaN

)}
.

Using the local inversion theorem, one is able to find a unique couple (aN , bN ) solving these equa-

tions and then conclude on the construction of ρ
(N)
eq . Before trying to compute

´ bN
aN

ξρ
(N)
eq (ξ)dξ, one

needs to obtain the asymptotic behavior of aN and bN , this can be done by solving explicitly the
two constraints which leads to

bN = 1 +
1

logN
log
(2πβR↑(i)

√
ω1 + ω2

r

)
+ error

aN = −1− 1

logN
log
(2πβR↑(i)

√
ω1 + ω2

r

)
+ error

where R↑ is an explicit special function depending on the parameter ω1, ω2. Finally, using Fubini
and all the asymptotics that we computed, this is enough to obtain the following leading order

term for the expectation value of µ
(N)
eq :

〈id〉
µ

(N)
eq,t

=
N→∞

t

π(ω1 + ω2)N
+O

(
1

N logN

)
. (126)

This leads to the following conjecture:
Conjecture I.8.8 Under the assumption (121)

log
Zsinh
N [Vb]

Zsinh
N [V0]

=
N→∞

b2

2π(ω1 + ω2)
logN +O(1). (127)
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Chapter 1

CLT for real β-ensembles at high
temperature

“When it is asked, What is the foundation
of all conclusions from experience? we can
give no satisfactory answer but must re-
turn to the same point, and confess that
the empirical evidence of cause and effect
is ultimately based on habit or custom, not
on logical reasoning or any form of neces-
sary connection.” David Hume
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1.1 Introduction and main result

The β-ensemble of dimension N ≥ 1 with parameter β > 0 and potential V is the probability
measure on RN given by

dPβ,V
N (x1, . . . , xN ) =

1

ZN (V, β)

∏
i<j

|xi − xj |βe−
∑N
i=1 V (xi)dx1 . . . dxN . (1.1)

The potential V has to be chosen so that the partition function

ZN (V, β) =

ˆ
RN

∏
i<j

|xi − xj |βe−
∑N
i=1 V (xi)dx1 . . . dxN

is finite. This is the case for example if for some β′ > max(1, β),

lim inf
|x|→∞

V (x)

Nβ′ log |x|
> 1 , (1.2)
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see [AGZ10b, equation (2.6.2)]. The parameter β, which is allowed to depend on N , is the so-called
inverse temperature.

Under the special choice of VG(x) =
x2

2
, the measure (1.1) can be seen as the joint law of the

(unordered) eigenvalues of certain matrix models:

• For β = 1 (resp. β = 2), it is the law of the eigenvalues of the Gaussian Orthogonal Ensemble
(resp. Gaussian Unitary Ensemble), [AGZ10b, Theorem 2.5.2].

• For general β > 0, potentially depending on N , it is the law of the spectrum of certain
tri-diagonal random matrices as shown by Dumitriu and Edelman in [DE02b].

We consider here the high temperature regime where β scales as 1/N , and write β = 2P
N for some

P > 0. The corresponding measure is therefore

dPV,PN (x1, . . . , xN ) =
1

ZPN [V ]

∏
i<j

|xi − xj |
2P
N e−

∑N
i=1 V (xi)dx1 . . . dxN , (1.3)

with partition function

ZPN [V ] =

ˆ
RN

∏
i<j

|xi − xj |
2P
N e−

∑N
i=1 V (xi)dx1 . . . dxN . (1.4)

It was shown in [GZ19] that under PV,PN , the sequence of empirical measures

µ̂N =
1

N

N∑
i=1

δxi

satisfies a large deviation principle at speed N with strictly convex, good rate function. As a
consequence, µ̂N converges almost surely in distribution towards a deterministic measure µV as N
goes to infinity, meaning that almost surely, for every bounded continuous f : R→ R,

ˆ
R
f(x)dµ̂N (x) −→

N→∞

ˆ
R
f(x)dµV (x) .

The limiting measure µV can be seen to have a density ρV which satisfies for almost every x ∈ R

V (x)− 2P

ˆ
R

log |x− y|ρV (y)dy + log ρV (x) = CV,P , (1.5)

where CV,P is constant (see [GM22, Lemma 3.2] for example).

The β-ensemble in the regime βN −→
N→∞

2P > 0 has drawn a lot of attention from the random

matrix and statistical physics communities lately. This regime was first considered by [CL97] with

the study of Dyson Brownian motion with vanishing repulsive coefficient scaled like
1

N
. Gases of

vortices were also studied with temperature proportional to N in [BG99]. The limiting density
was then described in the case of the quadratic potential in [ABG12], as a crossover between the
Wigner semicircle law (fixed β > 0 case) and the Gaussian density (case β = 0). The fluctuations
of the eigenvalues in the bulk and at the edge of a configuration were studied for example in
[BGP15, NT18, NT20b, Pak18, Lam21b]. These fluctuations were shown to be described by Poisson
statistics in this regime. Recently, Spohn uncovered in [Spo20] a link between the study of the
Classical Toda chain and the β-ensemble in the high temperature regime, showing that the limiting
density of states of the classical Toda chain, distributed according to the generalized Gibbs ensemble
with polynomial potential, can be computed by means of the limiting empirical measure of the β-
ensemble at high temperature. In [Maz22], the author established this relation using the matrix
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representation of the β-ensemble and a moment method, and in [GM22] the authors proved a large
deviation principle for the empirical measure of the Toda chain, establishing the previous result
for potentials with polynomial growth. See also [Spo22, GM23, MM22] for a similar link between
the Ablowitz-Ladik lattice and the circular β-ensemble at high temperature. This relation can
be further pushed to compute the limiting currents of the Toda chain through the central limit
theorem for the empirical measure in the β ensemble. The computation of these currents is a crucial
step to the derivation of a hydrodynamic equation for the Toda chain, and to the analysis of the
correlations of the locally conserved quantities at equilibrium through linearized hydodynamics, see
[Spo21]. The derivation of the currents via the central limit theorem is justified in the recent paper
[MM24].

The Central Limit Theorem for the fluctuations of the linear statistics of β-ensembles was first
established by [Joh98] for β = 2 and polynomial potential, then generalized and further developed
in the regime where β is fixed in [Shc13, BG13a, BG13b, BLS18, LLW19]. Also an optimal local
law was found in this regime in [BMP22]. The CLT was obtained in the high-temperature regime
βN → 2P > 0 by Nakano and Trinh in [NT18, Theorem 4.9] for quadratic V , relying on the
tridiagonal representation for the β-ensemble with quadratic potential in [DE02b]. In [HL21], the
authors prove the CLT in the case of the circular β-ensemble at high temperature with general
potential, using a normal approximation method involving the spectral analysis of an operator
associated to the limiting covariance structure. Their method allowed them to derive a Berry-
Esseen bound, i.e. a speed of convergence of the fluctuations towards a Gaussian variable.

In this paper, we adapt part of the arguments of [HL21] to our setup. More precisely, we show that
for a class of regular, convex potentials V satisfying a growth condition of the type

lim
|x|→∞

V ′′(x)

V ′(x)2
= 0 ,

denoting νN = µ̂N − µV and considering test functions f belonging to the range of a certain
integro-differential operator, the scaled fluctuations of µ̂N , defined by

√
NνN (f)

(def)
=
√
N

(ˆ
R
f(x)dµN (x)−

ˆ
R
f(x)dµV (x)

)
,

converge in law towards centered Gaussian law with variance depending on f .

When considering the fixed temperature regime, i.e. β fixed, one has to renormalize the xi’s by√
N . It is shown in [AGZ10b, Theorem 2.6.1] that the measure

1

N

N∑
i=1

δxi/
√
N

satisfies a large deviation principle, and the limiting measure is characterized in [AGZ10b, Lemma
2.6.2] by an equation similar to (1.5). In fact, the term log ρV in the left-hand side of (1.5) is the
only difference in the equation characterizing the limiting measure in the fixed β case. We point
out the very similar characterization of the equilibrium measure corresponding to the minimization
problem arising in [BGK16]. There again, the limiting measure is compactly supported. The term
log ρV is of prime importance because its presence implies that the support of ρV is the whole
real line. It leads to technicalities to deal with the behavior at infinity of most of the associated
objects, namely dealing with weighted Lebesgue spaces L2(µV ) and the corresponding Sobolev
spaces Hk(µV ).

Our strategy is based on a change of variables in the partition function ZPN [V ] (1.4), used for the β-
ensemble at fixed temperature introduced in [Joh98, BFG15, Shc14b], and used in [Gui19, BGK16]
to derive the loop equations and in [BLS18] to derive a CLT in the β-ensemble with β fixed. The
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outline of the argument goes as follows: Take φ : R→ R smooth, vanishing fast enough at infinity,
and do the change of variables in ZPN [V ], xi = yi + tN−1/2φ(yi), 1 ≤ i ≤ N , to get

ZPN [V ] =

ˆ
RN

∏
i<j

∣∣∣∣yi − yj +
t√
N

(
φ(yi)− φ(yj)

)∣∣∣∣ 2P
N

. exp

(
−

N∑
i=1

V

(
yi +

t√
N
φ(yi)

))

×
N∏
i=1

(
1 +

t√
N
φ′(yi)

)
dNy .

Expanding the different terms in this integral, one gets:

ZPN [V ] =

ˆ
RN

∏
i<j

|yi − yj |
2P
N .e−

∑N
i=1 V (yi). exp

{
t√
N

[
2P

N

∑
i<j

φ(yi)− φ(yj)

yi − yj

+
N∑
i=1

(
φ′(yi)− V ′(yi)φ(yi)

)]}
. exp

(
− t2

2
σ2
N (φ)

)
dNy ,

where the term σ2
N (φ) converges towards a limiting variance σ2(φ) depending on φ, P and V . After

dividing both parts of the equation by ZPN [V ], and because of equation (1.5) characterizing µV , one
can deduce from the last equation the convergence of the Laplace transform

E
[
et
√
N(νN (Ξ[φ])+error term)

]
−→
N→∞

exp
( t2

2
σ2(φ)

)
, (1.6)

where Ξ is a linear operator acting on test functions and defined by

Ξ[φ](x)
(def)
= 2P

ˆ
R

φ(x)− φ(y)

x− y
dµV (y) + φ′(x)− V ′(x)φ(x)− 2P

ˆ
R
H[φρV ](y)dµV (y) . (1.7)

Once the error term is taken care of, (1.6) shows the central limit theorem for test functions of the
form Ξ[φ]. Following [HL21], the operator L given by

L[φ]
(def)
= Ξ[φ′] (1.8)

can be analyzed using Hilbert space techniques. In particular, the operator L, seen as an unbounded
operator of the Hilbert space

H =

{
u ∈ L2(µV )

∣∣∣ u′ ∈ L2(µV ),

ˆ
R
u(x)dµV (x) = 0

}
, 〈u, v〉H =

〈
u′, v′

〉
L2(µV )

,

can be decomposed as

−L = A+ 2PW ,

where A is a positive Sturm-Liouville operator and W is positive and self-adjoint. Such a writing
allows us to show that −L is invertible, see Theorem 1.6.7.

We now state the assumptions we make on the potential V . Recall that a probability measure µ
supported on R satisfies the Poincaré inequality if there exists C > 0 such that for all f ∈ C1(R)
with compact support:

Varµ(f)
(def)
=

ˆ
R

(
f(x)−

ˆ
R
f(y)dµ(y)

)2

dµ(x) ≤ C
ˆ
R
f ′(x)2dµ(x) . (1.9)

Assumptions 1.1.1 The potential V satisfies:
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i) V ∈ C3(R), V (x) −→
|x|→+∞

+∞, |V ′(x)| −→
|x|→+∞

+∞ and is such that µV satisfies the Poincaré

inequality (1.9).

ii) For all polynomial Q ∈ R[X] and α > 0, Q (V ′(x)) e−V (x) = o
|x|→∞

(x−α) .

iii) Furthermore, for any sequence (xN )N such that |xN | goes to infinity, and for all real a < b,
we have, as N goes to infinity,

1

V ′(xN )2
sup
a≤x≤b

|V ′′(xN + x)| −→
N→∞

0 .

iv) The function
1

V ′2
is integrable at infinity,

V ′′(x)

V ′(x)
= O
|x|→∞

(1) and
V (3)(x)

V ′(x)
= O
|x|→∞

(1).

Since we need another assumption to state our result, we postpone to Remark 1.1.3 explicit exam-
ples of potentials admissible for our main result. We now discuss the previous assumptions.

• Because i) implies that V goes to infinity faster than linearly, we will see that it ensures
exponential decay at infinity of ρV . Recalling the sufficient condition for PV,PN of equa-
tion (1.2) to be defined, this first assumption implies that there exists α > 0 such that

lim inf |x|→∞
V (x)
|x| > α. This guarantees in particular that the β-ensemble (1.3) is well-defined

for all N ≥ 1 and P ≥ 0. We will use the fact that µV satisfies the Poincaré inequality to
ensure that H endowed with 〈·, ·〉H is a Hilbert space.

• The second assumption ensures that any power of V ′ (and of V ′′ by iv)) is in L2(µV ) and
that ρV , which behaves like e−V up to a sub-exponential factor, belongs to the Sobolev space
H2(R) ⊂ C1(R). Indeed, for k ≤ 2, using iv), ρV

(k) behaves at infinity like (V ′)kρV as shown
in Lemma 1.2.2 which is in L2(R) by assumption ii).

• Assumption iii) will be used to localize the minimum/maximum point of a typical configura-
tion (x1, . . . , xN ) following the law PV,PN : this will be done in Corollary 1.4.2, which comes as
a consequence of [Lam21b, Theorem 3.4]. More precisely, Corollary 1.4.2 establishes that for
some sequences (α+

N )N , (α
−
N )N and (E−N )N , (E

+
N )N , all going to infinity, the random variables

α+
N

(
max

1≤j≤N
xj − E+

N

)
and α−N

(
max

1≤j≤N
xj − E−N

)
converge in distribution. For large N , the scalars E+

N and E−N can thus be seen as the edges
of a typical configuration. Furthermore,

V (E±N ) ∼ logN . (1.10)

We refer to Section 1.4 for detailed statements, which we use to lift the result of Proposition
1.5.1 from compactly supported functions to more general functions.

• We use Assumption iv) to control integral remainders in the proof of Theorem 1.7.1, ensuring
that L−1 is regular enough i.e. that for sufficiently smooth functions f , L−1[f ]′ ∈ H2(R).

We will need another technical assumption to ensure that Taylor remainders arising in the proof
of Theorem 1.5.2 are negligible.
Assumptions 1.1.2 With the notations of Theorem 1.4.1, we have

sup
d(x,IN )≤1

∣∣∣V (3)(x)
∣∣∣ = o(N1/2) ,

where IN =
[
E−N − 2;E+

N + 2
]
.
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Remark 1.1.3 Taking V = Vconv + φ with Vconv, φ ∈ C3(R) such that φ(k) is bounded for k =
0, . . . , 3, Vconv is convex with |V ′conv| → +∞ at infinity, satisfying hypotheses ii), iii), iv) and
Assumption 1.1.2, such that there exists ε > 0 such that Vconv−2Pfε is convex (see Lemma 1.2.4),
then V satisfies Assumptions 1.1.1 and 1.1.2. The main point that needs to be checked is that the
measure µV satisfies the Poincaré inequality, this will be done in Proposition 1.2.6. The function
fε is introduced as a function that behaves like log |x| at infinity, but has second derivative which
is as small as desired.

The type of functions Vconv that one can consider is typically the convex polynomials or cosh(αx).
On the other hand a scaled potential like ex

2
has a faster growing derivative at infinity and doesn’t

satisfy assumptions iii) and iv).

We are now able to state the main result, i.e. the central limit theorem for functions belonging to
the image of the operator L introduced in (1.8).
Theorem 1.1.4 Assume that V satisfies Assumptions 1.1.1 and Assumption 1.1.2. Then for all

φ ∈ C2(R) with φ, φ′ and φ′′ bounded such that

ˆ
R
φ(x)dµV (x) = 0, we have the convergence:

√
NνN (φ)

law−→
N→∞

N
(
0, (σVP )2(φ)

)
(1.11)

where the limiting variance (σVP )2(φ) is given by

(σVP )2(φ) = 〈φ,L−1[φ]〉H =

ˆ
R

(
L−1[φ]′′(x)2 + V ′′(x)L−1[φ]′(x)2

)
dµV (x)

+ P

¨
R2

(
L−1[φ]′(x)− L−1[φ]′(y)

x− y

)2

dµV (x)dµV (y) . (1.12)

Remark 1.1.5 In particular, let φ1, . . . , φd ∈ C1(R), all satisfying the hypotheses of Theorem 1.1.4.
Considering for t = (t1, . . . , td) ∈ Rd the function φ =

∑d
j=1 tjφj , φ also satisfies the hypotheses.

Then we have
E
[
ei
√
N(t1νN (φ1)+...+tdνN (φd)

]
= E

[
ei
√
NνN (φ)

]
,

and the last expectation converges towards the characteristic function of a centered Gaussian vari-
able. Thus, we see that the vector

√
N(νN (φ1), . . . , νN (φd)) converges towards a centered Gaussian

vector whose covariance matrix is given by
(
〈φi,L−1[φj ]〉H

)
1≤i,j≤d.

Remark 1.1.6 In Theorem 1.1.4, it’s possible to consider functions such that
´
R φ(x)dµV (x) 6= 0

if one replaces φ by φ−
´
R φ(x)dµV (x). Also, the assumption 1.1.1 iv) is restrictive. In the setting of

a polynomial potential V , by a more careful analysis, one might improve the result, by considering
less regular test-functions φ.

As a tool to deal with the error term of equation (1.6), we establish a concentration inequality for
the empirical measure. This inequality is stated in terms of the following distance over the set of
probability distributions P(R).

For µ, µ′ ∈ P(R) we define the distance

d(µ, µ′) = sup
‖f‖Lip≤1
‖f‖1/2≤1

{∣∣∣∣ˆ f(x)dµ(x)−
ˆ
f(x)dµ′(x)

∣∣∣∣} , (1.13)

where ‖f‖Lip denotes the Lipschitz constant of f , and ‖f‖21/2 =

ˆ
R
|t| |F [f ](t)|2 dt, where F denotes

the Fourier transform on L2(R) which takes the following expression F [f ](t) =

ˆ
R
f(x)e−itxdx for

f in L1(R) ∩ L2(R).
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We then have:
Theorem 1.1.7 There exists K ∈ R (depending on P and on V ), such that for any N ≥ 1 and
r > 0,

PV,PN (d(µ̂N , µV ) > r) ≤ e−Nr2 Pπ2

2
+5P logN+K . (1.14)

This result is the analog of [HL21, Theorem 1.4].

The paper is organized as follows. In Section 1.2 we discuss the regularity of the equilibrium
density ρV under Assumption 1.1.1. In Section 1.3 we prove Theorem 1.1.7. Section 1.4 is dedicated
to the localization of the edge of a typical configuration, mentioned in the discussion preceding the
statement of Assumption 1.1.2. We next prove in Section 1.5 the convergence of the Laplace
transform of

√
NνN (Lφ) for general functions φ which establishes Theorem 1.1.4 for functions of

the form Lφ. Section 1.6 is dedicated to the diagonalization and inversion of L given by (1.8). In
Section 1.7, we show regularity properties of L−1 to establish Theorem 1.1.4. We detail in Appendix
1.8 elements of proof for the spectral theory of Schrödinger operators, used in Section 1.6.

Acknowledgements The authors wish to thank Alice Guionnet, Karol Kozlowski and an anony-
mous referee for their helpful suggestions. We also thank Arnaud Debussche for pointing out the
link with Schrödinger operators theory and Gautier Lambert for pointing out [Lam21b]. We would
also like to thank Jeanne Boursier, Corentin Le Bihan and Jules Pitcho for their intuition about
the regularity of the inverse operator. We would like to thank Jean-Christophe Mourrat for telling
us about a more general framework for Poincaré inequalities.

1.2 Regularity of the equilibrium measure and Hilbert transform

In this section, we discuss the regularity properties of the equilibrium density ρV , namely its decay
at infinity and its smoothness, and give formulas for its two first derivatives.

The Hilbert transform, whose definition we recall, plays a central role in the analysis of the equi-
librium measure. It is first defined on the Schwartz class through ∀φ ∈ S(R), ∀x ∈ R,

H[φ](x)
(def)
=

 
R

φ(t)

t− x
dt = lim

ε↓0

ˆ
|t−x|>ε

φ(t)

t− x
dt =

ˆ +∞

0

φ(x+ t)− φ(x− t)
t

dt, (1.15)

where

 
denotes the Cauchy principal value integral, and then extended to L2(R) thanks to

property ii) of Lemma 1.2.1: ‖f‖L2(dx) =
1

π
‖H[f ]‖L2(dx). The last expression in (1.15) is a definition

where the integral converges in the classical sense. We also recall the definition of the logarithmic
potential Uf of a density of probability f : R→ R, given for x ∈ R by

Uf (x)
(def)
= −

ˆ
R

log |x− y|f(y)dy . (1.16)

Because we assume f ∈ L1(R) to be nonnegative, Uf takes values in [−∞,+∞). If f integrates
the function log, i.e

´
R log |x|f(x)dx < +∞, then Uf takes real values. Additionally, one can check

that the logarithmic potential and the Hilbert transform of f are linked through the distributional
identity

(
Uf
)′

= H[f ].

We recall in the next lemma some properties of the Hilbert transform that we will use in the rest
of the paper.
Lemma 1.2.1 (Properties of the Hilbert transform)

i) Fourier transform: For all φ ∈ L2(R), F
[
H[φ]

]
(ω) = iπsgn(ω)F [φ](ω) for all ω ∈ R.



70 CHAPTER 1. CLT FOR REAL β-ENSEMBLES AT HIGH TEMPERATURE

ii) As a consequence,
1

π
H is an isometry of L2(R), and H satisfies on L2(R) the identity H2 =

−π2I.

iii) Derivative: For any f ∈ H1(R), H[f ] is also H1(R) and H[f ]′ = H[f ′].

iv) For all p > 1, the Hilbert transform can be extended as a bounded operator H : Lp(R)→ Lp(R).

v) Skew-self adjointness: For any f, g ∈ L2(R), 〈H[f ], g〉L2(R) = −〈f,H[g]〉L2(R).
Proof We refer to [Kin09] for the proofs of these properties. �

As a consequence of [GZ19], µ̂N converges almost surely under PV,PN towards the unique minimizer
of the energy-functional EV,P , defined for µ ∈ P(R) by

EV,P (µ)
(def)
=


ˆ
R

[
V (x) + log

(dµ(x)

dx

)]
dµ(x)− P

¨
R2

log
∣∣x− y∣∣dµ(x)dµ(y) if µ� dx

+∞ otherwise
.

(1.17)
Here we wrote µ� dx for ”µ is absolutely continuous with respect to Lebesgue measure”.

Consequently, following [GM22, Lemma 3.2], the density ρV of µV satisfies equation (1.5), which
we rewrite here for convenience.

V (x)− 2P

ˆ
R

log |x− y|ρV (y)dy + log ρV (x) = CV,P , (1.18)

where CV,P is a constant (depending on V and P ). Using this equation, we will show in the next
lemma that ρV decays exponentially and is twice continuously differentiable via the representation:

∀x ∈ R, ρV (x) = exp
(
− V (x)− 2PUρV (x)− CV,P

)
.

In the Gaussian potential case i.e. VG(x) =
x2

2
, an explicit formula has been found first in [ABG12],

and in [TS15] via a different method:

ρVGP (x) =
Γ(P )

P
√

2π

exp
(
− x2

2

)
ˆ +∞

0
tP−1e−

t2

2
+ixtdt

.

It has been established in [BGP15] that
√
P + 1ρVGP (

√
P + 1x) converges to the Gaussian distribu-

tion when P goes to zero and the semi-circle law when P goes to infinity. So in the Gaussian case,
µV can be seen as an interpolation between the Gaussian distribution and the semi-circular one.
In fact, this interpolation result holds true for general potentials, see [NT20b, Remark 2.1].

In the next lemma, we prove that ρV has the same regularity as V .
Lemma 1.2.2 Under Assumption 1.1.1,

• The support of µV is R and there exists a constant CVP such that for all x ∈ R,

ρV (x) ≤ CVP (1 + |x|)2P e−V (x) .

• The density ρV is in C3(R) and we have

ρ′V = −
(
V ′ + 2PH[ρV ]

)
ρV (1.19)

and
ρ′′V =

(
− 2PH[ρV ]′ − V ′′ + V ′2 + 4P 2H[ρV ]2 + 4PV ′H[ρV ]

)
ρV . (1.20)
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Proof For the first point, [GM22, Lemma 3.2] establishes that the support of µV is the whole real
axis, and that under the first condition of Assumptions 1.1.1, we have the bound, valid for all x ∈ R

ρV (x) ≤
KV
P

(1 + |x|)2
, (1.21)

with KV
P a positive constant. Using (1.18) and the fact that

log |x− y| ≤ log
(
1 + |x|

)
+ log

(
1 + |y|

)
,

we see that for all x ∈ R,

ρV (x) ≤ CVP exp
(
− V (x) + 2P log(1 + |x|)

)
, (1.22)

with

CVP = exp
(

2P

ˆ
R

log(1 + |y|)ρV (y)dy + CV,P

)
which is indeed finite by (1.21).

For the second point, we use that
(
UρV

)′
= H[ρV ] weakly and equation (1.18) to conclude on the

distributional identity

ρ′V =
(
− V ′ − 2PH[ρV ]

)
ρV .

By the second point of Assumption 1.1.1, V ′(x)e−V (x)+2P log(1+|x|) = o(x−1) as |x| → ∞, thus by
(1.22), V ′ρV ∈ L2(R). Also since ρV is L2(R) and bounded, we deduce, by using that H

[
L2(R)

]
=

L2(R), thatH[ρV ]ρV ∈ L2(R). Adding up these terms we get ρV ∈ H1(R). BecauseH[ρV ]′ = H[ρ′V ]
in a weak sense by Lemma 1.2.1, H[ρV ] ∈ H1(R). By the classical fact that H1(R) is contained in
the set of 1/2-Hölder functions C1/2(R), we have H[ρV ] ∈ C1/2(R) and so UρV ∈ C1,1/2(R), the set
of functions in C1(R) with derivative of class 1/2-Hölder.
Using the fact that V is continuously differentiable, the previous equation for the weak derivative
of ρV then ensures that ρV ∈ C1(R) and equation (1.19) holds in the strong sense.

Differentiating (in a weak sense) equation (1.19) we obtain

ρ′′V =
(
− 2PH[ρV ]′ − V ′′ + V ′2 + 4P 2H[ρV ]2 + 4PV ′H[ρV ]

)
ρV .

The three first terms belong to L2(R) for the same reasons as before. Since ρV ∈ H1(R)n by Lemma
1.2.1iii) so is H[ρV ] ∈ H1(R), it is then bounded over R hence the two last term are in L2(R) when
multiplied by ρV . Finally, we can conclude that ρV ∈ H2(R) and so that H[ρV ] ∈ H2(R) with
H[ρV ]′′ = H[ρ′′V ] (in a weak sense). As before, we conclude that ρV ∈ C2(R) and that equation
(1.20) holds in a strong sense. By the exact same method, we can show that ρV ∈ C3(R). �

We next show that the Hilbert transform of ρV is continuous and decays at infinity.

Lemma 1.2.3 Let u ∈ L2(R) such that
´
R u(t)dt

(def)
= limA→∞

´ A
−A u(t)dt exists and f : t 7→ tu(t) ∈

H1(R) then

H[u](x) ∼
|x|→∞

−
´
R u(t)dt

x
.

Moreover if

ˆ
R
u(t)dt = 0,

´
R f(t)dt exists and g : t 7→ t2u(t) ∈ H1(R), then

H[u](x) ∼
|x|→∞

−
´
R tu(t)dt

x2
.

As a consequence, we obtain that H[ρV ](x) ∼
|x|→∞

−x−1 and the logarithmic potential UρV is Lips-

chitz bounded, with bounded derivative H[ρV ].
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Proof Let u ∈ L2(R), such that
´
R u(t)dt exists and f : t 7→ tu(t) ∈ H1(R). Then

xH[u](x) +

ˆ
R
u(t)dt =

ˆ
R

[xu(x+ t)− xu(x− t)
2t

+
u(x+ t)

2
+
u(x− t)

2

]
dt = H[f ](x).

Since f ∈ H1(R), so is H[f ], proving that it goes to zero at infinity. Hence

H[u](x) ∼
|x|→∞

−
´
R u(t)dt

x

Moreover if

ˆ
R
u(t)dt = 0,

´
R f(t)dt exists and g : t 7→ t2u(t) ∈ H1(R), then by the same argument:

x2H[u](x) = xH[f ](x) = H[g](x)−
ˆ
R
f(t)dt

where g(t) = t2u(t). We deduce thatH[u](x) ∼
|x|→∞

−
´
R tu(t)dt

x2
sinceH[g] goes to zero at infinity.�

The following Lemmas will be useful to show that if V = Vconv + φ with Vconv such that there
exists α > 0 such that for |x| big enough, V ′′conv(x) > α and φ bounded then V satisfies Poincaré
inequality.
Lemma 1.2.4 (Asymptotic of the logarithmic potential) We have the following asymptotic
expansion at infinity UρV (x) = − log |x|+ O

|x|→∞
(x−1).

Proof Since H[ρV ](x) = −x−1 + O
|x|→∞

(x−2), and recalling that UρV (defined by (1.16)) satisfies

(UρV )′(x) = H[ρV ](x), we deduce the result by integrating t 7→ H[ρV ](t) + 1/t in a neighborhood
of infinity. �

We conclude this section by stating the Poincaré inequality for the measure µV under the assump-
tion that V is a bounded perturbation of a strictly convex potential Vconv.
Lemma 1.2.5 Let ε > 0, there exists a function f ∈ C2(R) such that fε(x) + log |x| = O

|x|→∞
(1),

and ‖f ′′ε ‖∞ ≤ ε.
Proof Indeed, for fixed ε > 0, let

fε(x)
(def)
= − log

(√
ε−1 + x2

)
.

It is straightforward to verify that for all x ∈ R,

|f ′′ε (x)| =
∣∣∣∣ ε−1 − x2

(ε−1 + x2)2

∣∣∣∣ ≤ ε . �

Proposition 1.2.6 Assume that V = Vconv + φ, where Vconv ∈ C3(R) with Vconv convex and φ
bounded. Assume that there exists ε > 0 such that Vconv−2Pfε is convex (fε being given by Lemma
1.2.5). Then, the measure µV satisfies the Poincaré inequality: there exists a constant C > 0 such
that for all f ∈ C1

c (R),

VarµV (f) =

ˆ
R

(
f(x)−

ˆ
R
f(y)dµV (y)

)2

dµV (x) ≤ C
ˆ
R
|f ′(x)|2dµV (x) . (1.23)

Proof We use the fact that if µ1, µ2 are two absolutely continuous probability measures supported

on R such that
1

C
≤ dµ1

dµ2
≤ C for some C > 0 and µ1 satisfies Poincaré inequality with constant

C1 then so does µ2 for some other constant. Indeed, in that case let f ∈ C1
c (R), we have:

Varµ2(f) = inf
a

ˆ
R

(f(x)− a)2 dµ2(x) ≤ C Varµ1(f) ≤ C2C1

ˆ
R
|f ′(x)|2dµ2(x).
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Here we take dµ2(x)
(def)
= ρV (x)dx and we want to compare it to a measure µ1 supported on R

defined by dµ1(x) =
1

Z
exp

(
−W (x)

)
dx for some convex function W . The measure µ1 then clearly

verifies the Poincaré inequality: this fact comes as a direct consequence of [BBCG08, Corollary
1.9], which states that if a probability measure µ has a log-concave density on R, then it satisfies

(1.23). With the definition W
(def)
= Vconv − 2Pfε with ε > 0 such that Vconv − 2Pfε is convex,

W − V − 2PUρV is bounded on R. It is then not hard to see that
1

C
≤ dµ1

dµV
≤ C for some C > 0

which allows to conclude that µV satisfies the Poincaré inequality. �
Remark 1.2.7 The previous proof is easily extended to potentials V = Vconv + φ, with Vconv

satisfying: there exists α > 0 such that for |x| big enough, V ′′conv(x) > α; such as V (x) = x2n+φ(x)
with φ bounded and n ≥ 1. This potential indeed fails to satisfy the condition V ′′−2Pf ′′ε ≥ 0, and
we need another trick.
On the other side, one can notice that x 7→ V (x)− 2Pfε(x+ x0) for x0 big enough will be convex.
Indeed, the ”lack of convexity” of −fε will be compensated since f ′′ε (x+ x0) > 0 will occur in the
region where V ′′conv(x) > α. Therefore we can use the same argument as the one of Proposition
1.2.6 to conclude that µV satisfies Poincaré inequality.
Remark 1.2.8 We will apply later inequality (1.23) to more general functions than C1

c (R), namely
functions of the weighted Sobolev space H1(µV ), defined in Section 1.6; which can be seen as the
completion of C∞c (R) with respect to the norm ‖u‖L2(µV ) + ‖u′‖L2(µV ).

1.3 Concentration inequality, proof of Theorem 1.1.7

We prove in this section the concentration Theorem 1.1.7. Its proof is a direct adaptation of
Theorem 1.4 of [HL21], which shows the analogous estimate in the circular setup. It is inspired
by [MMS14] and based on a comparison between a configuration xN = (x1, . . . , xN ) sampled with
PV,PN and a regularized version yN = (y1, . . . , yN ), which we describe here.

Definition 1.3.1 y1
(def)
= x1, and for 0 ≤ k ≤ N − 1, yk+1

(def)
= yk + max{xk+1 − xk, N−3}.

Note that the configuration yN given by the previous definition satisfies yk+1− yk ≥ N−3, and yN
is close to xN in the sense that

N∑
k=1

|xk − yk| ≤
1

2N
. (1.24)

Indeed, by construction we have |xk − yk| = yk − xk ≤ (k − 1)N−3, and we get the bound by
summing these inequalities.
The key point of the proof of Theorem 1.1.7 is comparing the empirical measure µ̂N = 1

N

∑N
i=1 δxi ,

where xN follows PV,PN , to the regularized measure

µ̃N
(def)
= λN−5 ∗

1

N

N∑
i=1

δyi , (1.25)

i.e. the convolution of λN−5 and the empirical measure, where λN−5 is the uniform measure on
[0, N−5]. The interest of introducing the measure µ̃N is that it is close to µ̂N , while having a finite
energy EV,P (µ̃N ), given by (1.17). Finally, notice that the empirical measure doesn’t change when
reordering x1, . . . , xN , and thus we do not lose in generality for our purposes in assuming that
x1 ≤ . . . ≤ xN in Definition 1.3.1.

We now introduce a distance on P(R) which is well-suited to our context.
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Definition 1.3.2 For µ, µ′ ∈ P(R) we define the distance (possibly infinite) D(µ, µ′) by

D(µ, µ′)
(def)
=

(
−
ˆ

log |x− y|d(µ− µ′)(x)d(µ− µ′)(y)

)1/2

(1.26)

=

(ˆ +∞

0

1

t

∣∣F [µ− µ′](t)
∣∣2dt)1/2

,

where the Fourier transform of a signed measure ν is defined by F [ν](x)
(def)
=

ˆ
R
e−itxd(µ− µ′)(x).

Let f : R → R with finite 1/2 norm ‖f‖1/2
(def)
=

(´
R |t| |F [f ](t)|2 dt

)1/2
. By Plancherel theorem

and Hölder inequality, for any µ, µ′ ∈ P(R), setting ν = µ− µ′,

∣∣∣∣ˆ
R
f(x)dµ(x)−

ˆ
R
f(x)dµ′(x)

∣∣∣∣2 =

∣∣∣∣∣ 1

2π

ˆ
R
|t|1/2F [f ](t)

F [ν](t)

|t|1/2
dt

∣∣∣∣∣
2

≤ 1

2π2
‖f‖21/2D

2(µ, µ′).

Therefore the metric d defined in (1.13) is dominated by D:

d(µ, µ′) ≤ 1√
2π
D(µ, µ′). (1.27)

The following lemma shows how the distance D is related to the energy-functional EV,P defined in
(1.17), we will write E for simplicity.
Lemma 1.3.3 We have for any absolutely continuous µ ∈ P(R) with finite energy E(µ),

E(µ)− E(µV ) = PD2(µ, µV ) +

ˆ
R

log
dµ(x)

dµV (x)
dµ(x) . (1.28)

Proof (of Lemma 1.3.3) Subtracting E(µ)− E(µV ) we find

E(µ)− E(µV ) =

ˆ
R
V (x)d(µ− µV )(x) +

ˆ
R

log
dµ(x)

dx
dµ(x)−

ˆ
R

log ρV (x)dµV (x)

− P
¨

R2

log |x− y|dµ(x)dµ(y) + P

¨
R2

log |x− y|dµV (x)dµV (y) . (1.29)

Now, if ν is a signed measure of mass zero, integrating (1.18) we get

ˆ
R
V (x)dν(x)− 2P

¨
R2

log |x− y|dν(x)dµV (y) +

ˆ
R

log ρV (x)dν(x) = 0 .

We take ν = µ− µV , and get

ˆ
R
V (x)d(µ− µV )(x) = 2P

¨
R2

log |x− y|dµ(x)dµV (y)− 2P

¨
R2

log |x− y|dµV (x)dµV (y)

−
ˆ
R

log ρV (x)dµ(x) +

ˆ
R

log ρV (x)dµV (x) .

Plugging this last identity in (1.29), we find

E(µ)− E(µV ) = −P
¨

R2

log |x− y|dν(x)dν(y) +

ˆ
R

log
dµ(x)

dµV (x)
dµ(x)

which establishes the result. �
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Proof (Proof of Theorem 1.1.7) We first give a lower bound for the partition function ZPN [V ]

(1.4) of PV,PN . We rewrite it as

ZPN [V ] =

ˆ
RN

exp

(
2P

N

∑
i<j

log |xi − xj | −
N∑
i=1

[
V (xi) + log ρV (xi)

])
dµV (x1) . . . dµV (xN ) ,

and apply Jensen inequality to obtain:

logZPN [V ] ≥
ˆ
RN

(
2P

N

∑
i<j

log |xi − xj | −
N∑
i=1

[
V (xi) + log ρV (xi)

])
dµV (x1) . . . dµV (xN )

≥ P (N − 1)

¨
R2

log |x− y|dµV (x)dµV (y)−N
ˆ
R

[
V (x) + log ρV (x)

]
dµV (x)

≥ −NE
(
µV
)
− P

¨
R2

log |x− y|dµV (x)dµV (y).

Using this estimate and the fact that for 1 ≤ i, j ≤ N we have |xi − xj | ≤ |yi − yj |, with yN =
(y1, . . . , yN ) of definition 1.3.1, we deduce the bound on the density of probability

dPV,PN
dNx

(x1, . . . , xN ) ≤ exp
{
NE(µV ) + P

¨
R2

log |x− y|dµV (x)dµV (y)

+
P

N

∑
i 6=j

log |yi − yj | −
N∑
i=1

V (xi)
}
. (1.30)

Recalling (1.25), we now show the following estimate:

∑
i 6=j

log |yi − yj | ≤ 2 +N2

¨
R2

log |x− y|dµ̃N (x)dµ̃N (y) + 5N logN +
3

2
N . (1.31)

Let i 6= j and u, v ∈ [0, N−5]. Since for x 6= 0 and |h| ≤ |x|2 , we have
∣∣ log |x + h| − log |x|

∣∣ ≤ 2|h|
|x| ,

we deduce that:

∣∣ log |yi − yj + u− v| − log |yi − yj |
∣∣ ≤ 2|u− v|
|yi − yj |

≤ 2N−5

N−3
=

2

N2
.

Thus, summing over i 6= j and integrating with respect to u and v, we get:

∑
i 6=j

log |yi − yj | ≤ 2 +
∑
i 6=j

¨
R2

log |yi − yj + u− v|dλN−5(u)dλN−5(v)

= 2 +N2

¨
R2

log |x− y|dµ̃N (x)dµ̃N (y)−N
¨

R2

log |u− v|dλN−5(u)dλN−5(v) .

The last integral is equal to −3
2 − 5 logN , so we deduce (1.31). We now combine (1.30) and (1.31).

Recall (1.17) and set

cN
(def)
= P

(¨
R2

log |x− y|dµV (x)dµV (y) + 3/2 + 2/N

)
.
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Then, we get:

dPV,PN
dNx

(x1, . . . , xN ) ≤ ecNN5P exp
{[
N

{
E(µV )− E(µ̃N ) +

ˆ
R

(
V (x) + log

dµ̃N (x)

dx

)
dµ̃N (x)

}
−

N∑
i=1

V (xi)
]}

= ecNN5P exp
{
−NPD2(µ̃N , µV ) +N

ˆ
R

(V (x) + log ρV (x)) dµ̃N (x)

−
N∑
i=1

V (xi)
}
,

where we used equation (1.28) in the last equality. Using again equation (1.18) we then see that

the density
dPV,PN
dNx

(x1, . . . , xN ) is bounded by

ecNN5P exp

[
−NPD2(µ̃N , µV ) + 2PN

¨
R2

log |x− y|d(µ̃N − µ̂N )(x)dµV (y)

] N∏
i=1

ρV (xi) .

Recalling (1.16), we used that

¨
R2

log |x− y|d(µ̃N − µ̂N )(x)dµV (y) = −
ˆ
R
UρV (x)d(µ̃N − µ̂N )(x).

As a consequence of the bound on the density
dPV,PN
dNx

(x1, . . . , xN ) we established, we have for all

r > 0

PV,PN
(
D2(µ̃N , µV ) > r

)
≤ e−NPr+cN+5P logN

ˆ
RN

exp

{
−2PN

ˆ
R
UρV d(µ̃N − µ̂N )

} N∏
i=1

ρV (xi)dxi .

(1.32)

Next, we show that −N
ˆ
R
UρV d(µ̃N − µ̂N ) is bounded. By Lemma 1.2.3, UρV is differentiable with

bounded derivative H[ρV ] on R. As a consequence,∣∣∣∣N ˆ
R
UρV d(µ̃N − µ̂N )

∣∣∣∣ ≤ N∑
i=1

ˆ
R
|UρV (yi + u)− UρV (xi)| dλN−5(u)

≤ ‖H[ρV ]‖∞

(
N∑
i=1

|yi − xi|+N

ˆ
R
udλN−5(u)

)

≤ ‖H[ρV ]‖∞
( 1

2N
+N−4/2

)
,

where we used (1.24) in the last inequality. Therefore, we deduce from (1.32)

PV,PN
(
D2(µ̃N , µV ) > r

)
≤ e−NPr+cN+5P logN+ 2P

N
‖H[ρV ]‖∞ = e−NPr+5P logN+KN (1.33)

with KN
(def)
= cN +

2P

N
‖H [ρV ] ‖∞. Since (cN )N is bounded, so is (KN )N .

Finally, let f be a Lipschitz bounded function with ‖f‖Lip ≤ 1, then, we have (as we did for UρV )∣∣∣∣ˆ
R
f(x)dµ̂N (x)−

ˆ
R
f(x)dµ̃N (x)

∣∣∣∣ ≤ N−2 .

Thus by (1.27)

d(µ̂N , µV ) ≤ d(µ̂N , µ̃N ) + d(µ̃N , µV ) ≤ N−2 +
1√
2π
D(µ̃N , µV ) ,
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and for any N such that r −N−2 ≥ r/2 (in particular r −N−2 > 0) we get

PV,PN (d(µ̂N , µV ) > r) ≤ PV,PN

(
1

2π2
D2(µ̃N , µV ) > (r −N−2)2

)
≤ PV,PN

(
1

2π2
D2(µ̃N , µV ) > r2/4

)
,

and the last term is bounded by e−Nr
2 Pπ2

2
+5P logN+K for some K large enough, which concludes

the proof. �

As a consequence of Theorem 1.1.7, we are able to control the quantities

ζN (φ)
(def)
=

¨
R2

φ(x)− φ(y)

x− y
d(µ̂N − µV )(x)d(µ̂N − µV )(y) (1.34)

for a certain class of test functions φ.
Corollary 1.3.4 There exists C,K > 0 such that for all φ ∈ C2(R) ∩H2(R) with bounded second
derivative, we have for ε > 0 and N large enough,

PV,PN
(√

N |ζN (φ)| ≤ N−1/2+ε
)
≥ 1− exp

{
− PN ε

2C‖ψ‖H2(R)
+ 5P logN +K

}
with N2(φ) = ‖φ′‖L2(dx) + ‖φ′′‖L2(dx).
Proof We follow the proof given in [Gui19, Cor. 4.16] and adapt it to our setting. Let us denote

by ζ̃N (φ) the quantity ¨
R2

φ(x)− φ(y)

x− y
d(µ̃N − µV )(x)d(µ̃N − µV )(y) .

We have the almost sure inequality, by a Taylor estimate

|ζN (φ)− ζ̃N (φ)| ≤ 2N−2‖φ′′‖∞ . (1.35)

Thus, for any δ > 0,

PV,PN (|ζN (φ)| > δ) ≤ PV,PN
(
|ζN (φ)− ζ̃N (φ)| > δ/2

)
+ PV,PN

(
|ζ̃N (φ)| > δ/2

)
≤ PV,PN

(
2N−2‖φ′′‖∞ > δ/2

)
+ PV,PN

(
|ζ̃N (φ)| > δ/2

)
,

where the first term of the right-hand side is either 0 or 1. With δ = N−1+ε, ε > 0, it is zero for
N large enough. For such a choice of δ, and for N large enough,

PV,PN
(
|ζN (φ)| > N−1+ε

)
≤ PV,PN

(
|ζ̃N (φ)| > 1

2
N−1+ε

)
.

We next show that, for some C > 0 independent of φ, we have

|ζ̃N (φ)| ≤ CD2(µ̃N , µV )‖φ‖H2(R) . (1.36)

We begin by showing this inequality for ψ ∈ S(R). By using the inverse Fourier transform we have

ζ̃N (ψ) =
1

2π

¨
R2

´
R dtF [ψ](t)eitx −

´
R dtF [ψ](t)eity

x− y
d
(
µ̃N − µV

)
(x)d

(
µ̃N − µV

)
(y)

=
1

2π

ˆ
R
dtitF [ψ](t)

¨
R2

eity e
it(x−y) − 1

it(x− y)
d
(
µ̃N − µV

)
(x)d

(
µ̃N − µV

)
(y)

=
1

2π

ˆ
R
dtitF [ψ](t)

¨
R2

eity

ˆ 1

0
dαeiαt(x−y)d

(
µ̃N − µV

)
(x)d

(
µ̃N − µV

)
(y)

=
1

2π

ˆ
R
dtitF [ψ](t)

ˆ 1

0
dα

ˆ
R
eiαtxd

(
µ̃N − µV

)
(x)

ˆ
R
ei(1−α)tyd

(
µ̃N − µV

)
(y)
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We then apply in order the triangular inequality, Cauchy-Schwarz inequality, a change of variable
and the fact that |F [µ̃N − µV ]|2 is an even function.

|ζ̃N (ψ)| ≤ 1

2π

ˆ
R
dt |tF [ψ](t)|

ˆ 1

0
dα |F [µ̃N − µV ] (αt)| .

∣∣F [µ̃N − µV ]
(
(1− α)t

)∣∣
≤ 1

2π

ˆ
R
dt |tF [ψ](t)|

(ˆ 1

0
dα |F [µ̃N − µV ] (αt)|2

) 1
2
( ˆ 1

0
dα
∣∣F [µ̃N − µV ]

(
(1− α)t

)∣∣2 ) 1
2

≤ 1

2π

ˆ
R
dt |tF [ψ](t)|

ˆ 1

0
dα |F [µ̃N − µV ] (αt)|2

≤ 1

2π

ˆ +∞

0
dt |tF [ψ](t)|

ˆ 1

0

tdα

tα
|F [µ̃N − µV ] (αt)|2

+
1

2π

ˆ 0

−∞
dt |tF [φ](t)|

ˆ 1

0

−tdα
−tα

|F [µ̃N − µV ] (αt)|2

≤ 1

2π

ˆ
R
dt |tF [ψ](t)|D2(µ̃N , µV )

≤ 1

2π

( ˆ
R
dt |tF [ψ](t)|2 (1 + t2)

) 1
2
(ˆ

R

dt

1 + t2

) 1
2
D2(µ̃N , µV )

≤ 1

2
√
π
D2(µ̃N , µV )N2(ψ)

≤ 1

2
√
π
D2(µ̃N , µV )‖ψ‖H2(R)

By density of S(R) in H2(R), and since ζ̃N :
(
H2(R), ‖ · ‖H2(R)

)
→ R is continuous, the inequality

still holds for φ. Thus, using equation (1.33),

PV,PN

(
|ζ̃N (φ)| > 1

2
N−1+ε

)
≤ PV,PN

(
D2(µ̃N , µV ) >

N−1+ε

2C‖φ‖H2(R)

)

≤ exp

{
−P N ε

2C‖φ‖H2(R)
+ 5P logN +K

}
,

which concludes the proof. �

1.4 Localization of the edge of a configuration

In [Lam21b, Theorem 1.8, Theorem 3.4], Lambert was able to control the edge (i.e the minimum
and the maximum) of a typical configuration (x1, . . . , xN ) distributed according to PV,PN , by showing
that the random measure

ΞN
(def)
=

N∑
j=1

δϕ−1
N (xj)

converges in distribution towards a Poisson point process for a function ϕN which takes the form

ϕN (x)
(def)
= EN + α−1

N x .

Before being more precise on the construction of (EN )N and (αN )N , we explain, following [Lam21b],
how one can use this convergence to localize the edge of a typical configuration (x1, . . . , xN ). Let us
assume for a moment that ΞN converges towards a Poisson point process with intensity θ(x) = e−x,
with EN → +∞. In particular, the random variable

ΞN (t,+∞)
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converges in distribution towards a Poisson random variable with mean

ˆ +∞

t
e−xdx. Combined

with the equalities

PV,PN

(
ΞN (t,+∞) = 0

)
= PV,PN

(
∀ 1 ≤ j ≤ N, ϕ−1

N (xj) = αN (xj − EN ) ≤ t
)

= PV,PN

(
αN

(
max

1≤j≤N
xj − EN

)
≤ t
)
,

we deduce that for all t ∈ R

PV,PN

(
αN

(
max

1≤j≤N
xj − EN

)
≤ t
)
−→
N→∞

exp(−e−t) .

Therefore, the random variable

αN

(
max

1≤j≤N
xj − EN

)
converges in distribution to the Gumbel law, showing that the maximum of a configuration is of
order EN . Furthermore, as will be clear from the construction of αN and EN , αN is positive, and
goes to infinity as N goes to infinity.

Replacing in the previous analysis θ(x) = ex and EN → −∞, we would have deduced in the same
fashion that

αN

(
min

1≤j≤N
xj − EN

)
converges in law.

With the above notations, we can apply [Lam21b, Theorem 3.4] to our context.
Theorem 1.4.1 Let v = ±. There exists (EvN )N , (αvN )N sequences of real numbers with |EvN | →
+∞, αvN > 0 for large enough N , satisfying V ′(EvN ) = αvNv, such that:

a)
Ne−V (EvN )+2P log |EvN |+λ

P
V

αvN
−→
N→∞

1 (recall CV,P is defined through equation (1.5)),

b)
log(αvN )

N −→
N→∞

0 and αvN |EvN | −→
N→∞

+∞ ,

c) For all compact K ⊂ R,

(αvN )−2 sup
x∈K

∣∣V ′′(ϕN (x))
∣∣ −→
N→∞

0 .

As a consequence, the random measure ΞN converges in distribution as N →∞ to a Poisson point
process with intensity θ(x) = e−vx.
Proof We prove it in the case v = +, the case where v = − being similar. We show that there
exists a sequence (E+

N )N going to +∞ satisfying f(E+
N ) = − logN , where we defined the function

f by

f(x) = −V (x) + 2P log |x|+ CV,P − log |V ′(x)| .

Recalling Assumption 1.1.1 i), |V ′| goes to infinity at infinity, thus α+
N = V ′(E+

N ) → +∞ (in the
case v = −1 we would have looked for a sequence (E−N )N going to −∞ and α−N = −V ′(E−N )).
As a consequence of Assumptions 1.1.1,ii), one shows that log |V ′| is negligible with respect to V

at infinity. Therefore, because
log |x|
V (x)

−→
|x|→∞

0,

f(x) = −V (x) + o
x→+∞

(V (x)) . (1.37)
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Because f(x) −→
x→+∞

−∞ there exists (E+
N )N going to infinity such that for all N ≥ 1, f(E+

N ) =

− logN . Setting x = E+
N in (1.37), we obtain that −V (E+

N ) ∼ f(E+
N ) = − logN . Property c)

follows from Assumptions 1.1.1, point iii), along with the fact that α−1
N stays bounded.

It remains to show that
log(α+

N )

N
=

log |V ′(E+
N )|

N
−→
N→∞

0. By construction, we have

log |V ′(E+
N )|

N
=

log
(
Ne−V (E+

N )+2P logE+
N+λP

)
N

= −
V (E+

N )

N
+ o(1) .

Using that V (E+
N ) ∼ logN , we can conclude that log |V ′(E+

N )| = o(N) which concludes the proof.�

By the discussion preceding Theorem 1.4.1, we deduce the following corollary.

Corollary 1.4.2 (Edge of a configuration) Let E±N , α±N
(def)
= |V ′(E±N )| be the sequences of The-

orem 1.4.1 associated with v = ±1. Then, both random variables

α+
N

(
max

1≤j≤N
xj − E+

N

)
and

α−N

(
min

1≤j≤N
xj − E−N

)
converge to a Gumbel law, whose distribution function is given for t ≥ 0 by G([0, t]) = exp(e−t).
Furthermore, V (E±N ) ∼ logN and α±N −→N→∞

±∞.

Remark 1.4.3 Note that[Lam21b, Theorem 3.4] applies for V of class C2 outside of a compact set,
allowing to take V (x) = |x|a for a > 1. In this case, we find E±N ∼ ±(logN)1/a. If V (x) = cosh(x),
we find E+

N ∼ −E
−
N ∼ arg cosh(logN) ∼ log logN .

The next lemma will be convenient in the proof of Theorem 1.5.2 when dealing with error terms.
Lemma 1.4.4 With the notations of Corollary 1.4.2, we have

µV ([E−N , E
+
N ]c) = o(N−1/2) .

Proof Let 0 < δ < 1, to be specified later. We have
ˆ +∞

E+
N

dµV (x) =

ˆ +∞

E+
N

ρV (x)δρV (x)1−δdx ≤
ˆ
R
ρV (x)δdx sup

[E+
N ,+∞[

ρ1−δ
V .

By the first inequality of Lemma 1.2.2, the integral is finite. Also from the same inequality, we
have for some constant C ′ and x big enough ρV (x) ≤ C ′e−

3
4
V (x). Because V is increasing in a

neighborhood of +∞, we get for N large enough

sup
[E+
N ,+∞[

ρ1−δ
V ≤ C ′1−δe−(1−δ) 3

4
V (E+

N ) .

Taking δ > 0 such that 1
2 − (1 − δ)3

4

(def)
= −γ < 0 and using that V (E+

N ) = logN + o(logN)
(established in the proof of Theorem 1.4.1),

√
N

ˆ +∞

E+
N

dµV (x) ≤ Ke−γ logN+(1−δ) 3
4
o(logN) ,

and the right-hand side goes to zero as N goes to infinity. The integral

ˆ E−N

−∞
dµV (x) can be handled

in the same way. �
Remark 1.4.5 We could improve the proof to show that µV ([E−N , E

+
N ]c) ∼ N−1+ε for any ε > 0,

but showing that it is o(N
1
2 ) is sufficient for what we need and requires less carefulness.
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1.5 Laplace transform for smooth test functions, proof of Theorem
1.1.4

Section 1.3 allows us to justify in Proposition 1.5.1 the heuristics we gave in equation (1.6) for φ
having compact support. We will then extend in Theorem 1.5.2 this result to a more general set
of functions, by an approximation by compactly supported functions, using Corollary 1.4.2.
Proposition 1.5.1 For φ ∈ C1(R,R) with compact support, we have for any real t, as N goes to
infinity,

EV,PN
[
exp

(
t
√
NνN (Ξ[φ])

)]
−→
N→∞

exp

{
t2

2
qP (φ)

}
, (1.38)

where Ξ[φ] is given by equation (1.7), and qP (φ) is given by

qP (φ)
(def)
=

ˆ
R

(
φ′(x)2 + V ′′(x)φ(x)2

)
dµV (x) + P

¨
R2

(φ(x)− φ(y)

x− y

)2
dµV (x)dµV (y) . (1.39)

Proof Let φ ∈ C1
c (R,R), and let t ∈ R. We perform in equation (1.4) the change of variables

xi = yi + t√
N
φ(yi), 1 ≤ i ≤ N , which is a diffeomorphism for N big enough. We thus have

ZPN [V ] =

ˆ
RN

∏
1≤i<j≤N

∣∣∣∣yi − yj +
t√
N

(
φ(yi)− φ(yj)

)∣∣∣∣ 2P
N

. exp
[
−

N∑
i=1

V
(
yi +

t√
N
φ(yi)

)]

.
N∏
i=1

(
1 +

t√
N
φ′(yi)

)
dNy, (1.40)

and we develop separately the different terms of this integral. The first term can be written as:

∏
i<j

|yi − yj |2P/N
∏
i<j

∣∣∣∣1 +
t√
N

φ(yi)− φ(yj)

yi − yj

∣∣∣∣2P/N ,
The second product above, setting ∆φi,j

(def)
=

φ(yi)− φ(yj)

yi − yj
and using Taylor-Lagrange theorem,

equals:

exp

(
2P

N

∑
i<j

log

∣∣∣∣1 +
t√
N

φ(yi)− φ(yj)

yi − yj

∣∣∣∣ )

= exp

(
2P

N

∑
i<j

(
t√
N

∆φi,j −
t2

2N
(∆φi,j)

2 +RN,1(i, j)

))
, (1.41)

where we noticed that 1 +
t√
N

∆φi,j ≥ 1− t√
N
‖φ′‖∞ > 0 if N is big enough, and where

|RN,1(i, j)| ≤ |t|3

3N3/2
‖φ′‖3∞.

Again by Taylor-Lagrange theorem, the second term in (1.40) equals

exp

(
−

N∑
i=1

(
V (yi) +

t√
N
V ′(yi)φ(yi) +

t2

2N
V ′′(yi)φ(yi)

2 +RN,2(i)

))
,
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where RN,2(i) =
t3

6N3/2
V (3)

(
yi +

tθi√
N
φ(yi)

)
φ(yi)

3 for some θi ∈ [0, 1]. This remainder thus

verifies, for N large enough:

|RN,2(i)| ≤ |t|3

6N3/2
‖φ‖3∞ sup

d(x,supp φ)≤1
|V (3)(x)|.

The last term reads

N∏
i=1

(
1 +

t√
N
φ′(yi)

)
= exp

( N∑
i=1

(
t√
N
φ′(yi)−

t2

2N
φ′(yi)

2 +RN,3(i)

))
,

with |RN,3(i)| ≤ t3

3N3/2
‖φ′‖3∞. Dividing both sides of equation (1.40) by ZPN [V ], we get:

EV,PN

[
exp

{
t
√
N

(
P

¨
R2

φ(x)− φ(y)

x− y
dµ̂N (x)dµ̂N (y) +

ˆ
R

(φ′(x)− V ′(x)φ(x))dµ̂N (x)

)}
× exp

{
t2

2

(
−P

¨
R2

(
φ(x)− φ(y)

x− y

)2

dµ̂N (x)dµ̂N (y)−
ˆ
R

(V ′′(x)φ2(x) + φ′(x)2)dµ̂N

)}

× exp {KN (t, φ)}
]

= 1,

with |KN (t, φ)| ≤ c(t, φ)√
N

where c(t, φ) ≥ 0 is independent of N . This bound implies that, taking

the limit N →∞, we can get rid of KN :

lim
N→∞

EV,PN

[
exp

{
t
√
N

(
P

¨
R2

φ(x)− φ(y)

x− y
dµ̂N (x)dµ̂N (y) +

ˆ
R

[
φ′(x)− V ′(x)φ(x)

]
dµ̂N (x)

)}
×exp

{
t2

2

(
−P

¨
R2

(
φ(x)− φ(y)

x− y

)2

dµ̂N (x)dµ̂N (y)−
ˆ
R

(V ′′(x)φ2(x) + φ′(x)2)dµ̂N (x)

)}]
= 1.

Using Fubini’s theorem (the function (x, y) 7→ φ(x)− φ(y)

x− y
being bounded continuous on R2), the

first line in the expectation value can be rewritten as et
√
NΛN with:

ΛN
(def)
= 2P

¨
R2

φ(x)− φ(y)

x− y
dµV (x)d(µ̂N−µV )(y)+

ˆ
R

[
φ′(x)−V ′(x)φ(x)

]
d(µ̂N−µV )(x)+PζN (φ)

(1.42)
where ζN (φ) is given by (1.34), and where we differentiated Equation (1.5) — every term involved
being differentiable by the results of Section 1.2— to deduce

ˆ
R

[
V ′(x)φ(x)− φ′(x)

]
dµV (x)− P

¨
R2

φ(x)− φ(y)

x− y
dµV (x)dµV (y) = 0 .

Let F : P(R)→ R be defined by

F (µ)
(def)
= −P

¨
R2

(
φ(x)− φ(y)

x− y

)2

dµ(x)dµ(y)−
ˆ
R

[
V ′′(x)φ(x)2 + φ′(x)2

]
dµ(x) . (1.43)

It is continuous for the topology of weak convergence since all the functions in the integrals are
bounded continuous. So far we have established that:

lim
N→∞

EV,PN

[
exp

(
t
√
NΛN +

t2

2
F (µ̂N )

)]
= 1, (1.44)
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with ΛN given by (1.42). We now replace in the latter equation the term F (µ̂N ) by its limiting
expression, F (µV ). Fix a metric that is compatible with the weak convergence of probability
measures on R. For example,

dLip(µ, ν)
(def)
= sup

∣∣∣∣ˆ
R
f(x)dµ(x)−

ˆ
R
f(x)dν(x)

∣∣∣∣ , (1.45)

where the supremum runs over f : R → R bounded and Lipschitz with ‖f‖∞ ≤ 1 and Lipschitz
constant |f |Lip ≤ 1. By the large deviations principle for (µ̂N )N under the probability (1.3)

established by [GZ19, Theorem 1.1], for all δ > 0 the event AN (δ)
(def)
= {dLip(µ̂N , µV ) > δ} has (for

N big enough) probability smaller than e−Ncδ where cδ > 0. Hence, it is convenient to decompose
the expectation of equation (1.44) into:

EV,PN

[
1AN (δ) exp

(
t
√
NΛN +

t2

2
F (µ̂N )

)]
+EV,PN

[
1AN (δ)c exp

(
t
√
NΛN +

t2

2
F (µ̂N )

)]
(def)
= I(1)+I(2).

We can bound the second term by using Cauchy-Schwarz inequality:

0 ≤ I(2) ≤ P(AN (δ)c)
1
2EV,PN

[
exp

(
t
√
NΛN +

t2

2
F (µ̂N )

)]1/2

= e−Ncδ/2 O
N→+∞

(
e
√
NC(φ,V,t)

)
;

where we used the rough bound

|
√
NΛN +

t2

2
F (µN )| ≤

√
Nc1(φ, V ) +

t2

2
c2(V, φ)

for some c1(φ, V ), c2(φ, V ) > 0 independent of N . By taking the limit N → +∞, we conclude that:

1 = lim
N→∞

EV,PN

[
exp

(
t
√
NΛN +

t2

2
F (µ̂N )

)]
= lim

N→∞
EV,PN

[
1{dLip(µ̂N ,µV )≤δ} exp

(
t
√
NΛN +

t2

2
F (µ̂N )

)]
.

By continuity of F there is some ε(δ) which goes to 0 as δ → 0 such that, for dLip(ν, µV ) ≤ δ, we
have |F (ν)− F (µV )| ≤ ε(δ). Taking the (decreasing) limit as δ goes to zero, we deduce that:

lim
N→∞

EV,PN

[
exp

(
t
√
NΛN +

t2

2
F (µ̂N )

)]
= lim

δ→0
lim
N→∞

EV,PN
[
1{dLip(µ̂N ,µV )≤δ}e

t
√
NΛN

]
e
t2

2
F (µV ).

But the same large deviations argument shows that:

lim
δ→0

lim
N→∞

EV,PN
[
1{dLip(µ̂N ,µV )≤δ} exp

(
t
√
NΛN

)]
= lim

N→∞
EV,PN

[
exp

(
t
√
NΛN

)]
.

Thus, we have shown that:

lim
N→∞

EV,PN

[
exp

{
t
√
N
(

2P

¨
R2

φ(x)− φ(y)

x− y
dµV (x)d(µ̂N − µV )(y) + PζN (φ)

+

ˆ
R

(φ′(x)− V ′(x)φ(x))d(µ̂N − µV )(x)
)}]

= exp
(
− t2

2
F (µV )

)
, (1.46)

which establishes that
√
NΛN =

√
N
(
νN (Ξ[φ]) + PζN (φ)

)
converges in law towards a centered

Gaussian random variable with announced variance. We finally get rid of the remaining term ζN (φ),
using Corollary 1.3.4: taking ε = 1/4 for example, we see in particular that

√
NζN (φ) converges in

probability towards zero. The conclusion follows from Slutsky’s lemma. �
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We now extend the result of Proposition 1.5.1 to a more general set of functions. With the notations
of Proposition 1.5.1, the following theorem holds:
Theorem 1.5.2 Let φ ∈ H2(R)∩C2(R) such that φ′′ is bounded. Additionally, suppose that V (3)φ2,
V ′′φφ′, V ′′φ2 and V ′φ are bounded. Then, recalling (1.39) we have the convergence as N goes to
infinity √

NνN (Ξ[φ])
law−→

N→∞
N (0, qP (φ)) .

Proof For N ≥ 1, let E−N , E
+
N be given by Corollary 1.4.2. Let χN : R→ [0, 1] be C2 with compact

support such that:

χN (x) = 1 for x ∈ [E−N − 1, E+
N + 1] and χN (x) = 0 for x ∈ [E−N − 2, E+

N + 2]c

and such that, denoting φN = φχN , supN ‖φ
(k)
N ‖∞ + ‖φ(k)

N ‖L2(R) < +∞ for k = 0, 1, 2 (we assumed
φ ∈ H2(R) and ‖φ′′‖∞ < +∞, in particular φ, φ′ and φ′′ are bounded and such a χN exists). The
point of cutting φ outside the set [E−N − 1, E+

N + 1] is that with high probability, the empirical
measure µ̂N doesn’t see the difference between φ and φN .

The support of φN is then contained in [E−N − 2, E+
N + 2], and we now argue that the proof of

Proposition 1.5.1 can be adapted so that:

√
NνN (Ξ[φN ])

law−→
N→∞

N (0, qP (φ)) . (1.47)

Similarly as in Proposition 1.5.1, we perform, in ZPN [V ], the change of variables xi = yi+
t√
N
φN (yi),

1 ≤ i ≤ N , which is the same as before, but with φ replaced by φN . First, with IN
(def)
= [E−N −

2, E+
N + 2], the error term

KN (t, φN ) ≤ 2
t3

3N1/2
‖φ′N‖3∞ +

t3

6N1/2
‖φN‖∞ sup

d(x,IN )≤1
|V (3)(x)|

of the proof of Proposition 1.5.1 is still going to zero, because of our choice of χN and Assumption
1.1.2. As previously, we then have:

lim
N→∞

EV,PN

[
exp

(
t
√
NΛN (φN ) +

t2

2
FN (µ̂N )

)]
= 1 (1.48)

with

ΛN (φN )
(def)
= 2P

¨
R2

φN (x)− φN (y)

x− y
dµV (x)d(µ̂N − µV )(y) + PζN (φN )

+

ˆ
R

[
φ′N (x)− V ′(x)φN (x)

]
d(µ̂N − µV )(x) ,

where ζN is given by (1.34), and

FN (µ̂N )
(def)
= −P

¨
R2

(
φN (x)− φN (y)

x− y

)2

dµ̂N (x)dµ̂N (y)−
ˆ
R

[
V ′′(x)φN (x)2 + φ′N (x)2

]
dµ̂N (x) .

Taking again the distance dLip defined in (1.45), one can check that for µ, ν probability measures
over R:

|FN (µ)− FN (ν)| ≤ CNdLip(µ, ν) ,

where CN is a term depending on the norms ‖φ′N‖∞, ‖φ′′N‖∞, ‖V ′′φ2
N‖∞ and ‖(V ′′φ2

N )′‖∞. The
choice of χN and the fact that φ is chosen so that V (3)φ2 and V ′′φφ′ are bounded, guarantee that
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‖(V ′′φ2
N )′‖∞ is bounded in N . The other norms are easily bounded by hypothesis. Therefore CN

can be seen to be uniformly bounded in N , and we find some C ≥ 0 independent of N such that

|FN (µ)− FN (ν)| ≤ CdLip(µ, ν) .

As in proposition 1.5.1, we use the large deviation principle for (µ̂N ) to deduce that:

lim
N→+∞

EV,PN

[
exp

(
t
√
NΛN (φN ) +

t2

2
FN (µ̂N )

)]
= lim

N→+∞
EV,PN

[
exp

(
t
√
NΛN (φN )

)]
e
t2

2
FN (µV ) .

By dominated convergence, FN (µV ) converges to F (µV ), the function F being given by (1.43).
This shows the convergence as N goes to infinity

lim
N→+∞

EV,PN
[
exp

(
t
√
NΛN (φN )

)]
= exp

(
− t2

2
F (µV )

)
,

and we deduce that
√
N
(
νN (Ξ[φN ]) + PζN (φN )

)
converges towards a centered Gaussian variable

with variance −F (µV ) = qP (φ). Because supN ‖φN‖H2(R) is finite, we can again apply Corollary
1.3.4 to deduce the convergence in law (1.47). We now have the ingredients to conclude, by showing
that the characteristic function

EV,PN
[
exp

(
it
√
NνN (Ξ[φ])

)]
converges to the characteristic function of a Gaussian variable with appropriate variance. Denoting

Ξ̃[φ](x)
(def)
= 2P

ˆ
R

φ(x)− φ(y)

x− y
dµV (y) + φ′(x)− V ′(x)φ(x) = Ξ[φ](x) + 2P

ˆ
R
H[φρV ](y)dµV (y) ,

we have:

νN (Ξ[φ]) = νN (Ξ̃[φ]).

We aim at establishing that:

EV,PN
[
exp

(
it
√
NνN (Ξ̃[φ])

)]
= EV,PN

[
exp

(
it
√
N

ˆ
R

Ξ̃[φ](x)dµ̂N (x)
)]

× exp
(
− it
√
N

ˆ
R

Ξ̃[φ](x)dµV (x)
)

converges towards the appropriate characteristic function.

By Corollary 1.4.2, the probability under PV,PN of the event EN =

{
x1, . . . , xN ∈ [E−N − 1, E+

N + 1]

}
converges to 1. Along with the convergence (1.47), we deduce that:

exp
(
− t

2

2
qP (φ)

)
= lim

N
EV,PN

[
exp

(
it
√
N

ˆ
R

Ξ̃[φN ](x)dµ̂N (x)
)]

exp
(
−it
√
N

ˆ
R

Ξ̃[φN ](x)dµV (x)
)

= lim
N

EV,PN

[
1EN exp

(
it
√
N

ˆ
R

Ξ̃[φN ](x)dµ̂N (x)
)]

exp
(
− it
√
N

ˆ
R

Ξ̃[φN ](x)dµV (x)
)
,

where we used that:∣∣∣∣EV,PN [
1EcN exp

(
it
√
N

ˆ
R

Ξ̃[φN ](x)dµ̂N (x)
)]

exp
(
− it
√
N

ˆ
R

Ξ̃[φN ](x)dµV (x)
)∣∣∣∣ ≤ PV,PN (EcN )

−→
N→+∞

0 .
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Using that φN = φ on JN = [E−N − 1, E+
N + 1],

ˆ
R

Ξ̃[φN ](x)dµV (x) = 2P

¨
R2

φN (x)− φN (y)

x− y
dµV (x)dµV (y) +

ˆ [
φ′N (x)− V ′(x)φN (x)

]
dµV (x)

= 2P

¨
J2
N

φ(x)− φ(y)

x− y
dµV (x)dµV (y) + 2P

¨
(J2
N )c

φN (x)− φN (y)

x− y
dµV (x)dµV (y)

+

ˆ
JN

[
φ′(x)− V ′(x)φ(x)

]
dµV (x) +

ˆ
JcN

[
φ(x)χ′N (x) + φ′(x)χN (x)− V ′(x)φ(x)χN (x)

]
dµV (x) .

By boundedness of (‖φ′N‖∞)N , the second term is bounded by

CP

¨
(J2
N )c

dµV (x)dµV (y) ≤ 2CPµV (JcN ) = o(N−1/2) ,

where we used the union bound and Lemma 1.4.4. By the same estimate and the fact that χN can
be chosen so that (‖χ′N‖∞)N is bounded, and because φ′, V ′φ are bounded, the last integral term
is also o(N−1/2). By the previous arguments, we also conclude that

2P

¨
(J2
N )c

φ(x)− φ(y)

x− y
dµV (x)dµV (y) +

ˆ
JcN

[
φ′(x)− V ′(x)φ(x)

]
dµV (x) = o(N−1/2) ,

thus ˆ
R

Ξ̃[φN ](x)dµV (x) =

ˆ
R

Ξ̃[φ]dµV (x) + o(N−1/2) ,

and so far we have :

exp
(
− t

2

2
qP (φ)

)
= lim

N
EV,PN

[
1EN exp

(
it
√
N

ˆ
R

Ξ̃[φN ](x)dµ̂N (x)
)]

exp
(
−it
√
N

ˆ
R

Ξ̃[φ](x)dµV (x)
)
.

Finally, using that on EN the measure µ̂N is supported on JN (because each xi ∈ JN ), using φN = φ
on JN , we get:
ˆ
R

Ξ̃[φN ](x)dµ̂N (x) = 2P

¨
J2
N

φ(x)− φ(y)

x− y
dµV (x)dµ̂N (y) + 2P

¨
(J2
N )c

φN (x)− φN (y)

x− y
dµV (x)dµ̂N (y)

+

ˆ
JN

[
φ′(x)− V ′(x)φ(x)

]
dµ̂N (x)

= 2P

¨
J2
N

φ(x)− φ(y)

x− y
dµV (x)dµ̂N (y) +

ˆ
R

[
φ′(x)− V ′(x)φ(x)

]
dµ̂N (x) + o(N−1/2) ,

Where in the second line we used, using Lemma 1.4.4 again, that
¨

(J2
N )c

φN (x)− φN (y)

x− y
dµV (x)dµ̂N (y) =

¨
JN×JcN

φN (x)− φN (y)

x− y
dµV (x)dµ̂N (y) = o(N−1/2) ,

and the same estimate holds for φN replaced by φ. Therefore,

logEV,PN

[
1EN exp

(
it
√
N

ˆ
R

Ξ̃[φ](x)dµ̂N (x)
)]

exp
(
− it
√
N

ˆ
R

Ξ̃[φ](x)dµV (x)
)
−→
N→∞

− t
2

2
qP (φ) .

This establishes that:

lim
N

EV,PN

[
exp

(
it
√
N

ˆ
R

Ξ[φ](x)dµ̂N (x)
)]

= exp
(
− t2

2
qP (φ)

)
,

which concludes the proof. �
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Remark 1.5.3 Taking φ such that φ′ satisfies the conditions of Theorem 1.5.2, we have:

EV,PN
[
exp

(
t
√
NνN (L[φ])

)]
−→
N→∞

exp

{
t2

2
qP (φ′)

}
, (1.49)

where the operator L is defined as L[φ]
(def)
= Ξ[φ′], i.e.

L[φ](x) = 2P

ˆ
R

φ′(x)− φ′(y)

x− y
dµV (y) + φ′′(x)− V ′(x)φ′(x)− 2P

ˆ
R
H[φ′ρV ](y)dµV (y) . (1.50)

Note that qVP (φ′) =
(
σVP
)2

(L[φ]) where σVP is defined in (1.12). By Theorem 1.7.1, the class of
functions in L−1[T ] where

T (def)
=

{
f ∈ C2(R) | f, f ′, f ′′ are bounded,

ˆ
R
f(x)dµV (x) = 0

}
(1.51)

satisfies (1.49). This proves Theorem 1.1.4.

1.6 Inversion of L

This section is dedicated to the definition of L given by (1.8) and its domain and then we focus on
its inversion. We rely heavily on results of Appendix 1.8: the diagonalization of the operator A by
the use of the theory of Schrödinger operators.

Let P > 0 be fixed. We introduce the operators A and W, acting on sufficiently smooth functions
of L2(µV ), by

A[φ]
(def)
= −

(
φ′ρV

)′
ρV

= −
(
φ′′ +

ρ′V
ρV
φ′
)

and W[φ]
(def)
= −H

[
φ′ρV

]
+

ˆ
R
H
[
φ′ρV

]
(y)dµV (y) .

(1.52)
One can show that the operator A corresponds to the operator verifying:

〈φ, ψ〉H =

ˆ
R
φ′(x)ψ′(x)dµV (x) =

ˆ
R
φ(x)A[ψ](x)dµV (x) = 〈φ,A[ψ]〉L2(µV )

We first show the following decomposition of L.
Lemma 1.6.1 For φ twice differentiable we have the following pointwise identity

−L[φ] = A[φ] + 2PW[φ] . (1.53)

Proof We write for x ∈ R

2P

ˆ
R

φ′(x)− φ′(y)

x− y
ρV (y)dy = −2Pφ′(x)H[ρV ](x) + 2PH[φ′ρV ](x) . (1.54)

Then,

L[φ] = φ′′ − V ′φ′ − 2Pφ′H[ρV ] + 2PH
[
φ′ρV

]
− 2P

ˆ
R
H[φ′ρV ](y)dµV (y) .

By (1.19) we have −V ′ − 2PH[ρV ] =
ρ′V
ρV

, which concludes the proof. �

In order to state the next theorem, whose proof we detail in the Appendix, we introduce the
following Sobolev-type spaces. Let

H1
V ′(R)

(def)
=
{
u ∈ H1(R), uV ′ ∈ L2(R)

}
.
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As explained in the Appendix, A, defined in (1.52), is linked to a Schrödinger operator S (def)
=

−∆ + wV via A[φ] = ρ
−1/2
V S[ρ

1/2
V φ]. Here wV is defined in (1.70), continuous bounded by below

and grows at infinity like
V ′ 2

4
. This operator S is defined on the following space:

D(S) =
{
u ∈ H1

V ′(R),
√
ρVA

[
1
√
ρV
u

]
∈ L2(R)

}
.

Now, let

DL2(R)(A)
(def)
= ρ

−1/2
V D(S)

and its homogeneous counterpart

DL2(R),0(A)
(def)
=
{
u ∈ DL2(R)(A),

ˆ
R
u(x)dµV (x) = 0

}
.

Finally, we let L2
0(µV ) be the subset of L2(µV ) of zero mean functions with respect to ρV .

We detail the proof of the following theorem in Appendix 1.8 which is based on Schrödinger oper-
ators theory.
Theorem 1.6.2 (Diagonalization of A in L2

0(µV )) There exists a sequence 0 < λ1 < λ2 < . . .
going to infinity, and a complete orthonormal set (φn)n≥1 of L2

0(µV ) of associated eigenfunctions
for A, meaning that

• span{φn, n ≥ 1} is dense in L2
0(µV ),

• For all i, j, 〈φi, φj〉L2(µV ) = δi,j,

• For all n ≥ 1, A[φn] = λnφn.

Furthermore, each φn is in DL2(R),0(A), A : DL2(R),0(A) → L2
0(µV ) is bijective, and we have the

writing, for u ∈ L2
0(µV )

A−1[u] =
∑
n≥1

λ−1
n 〈u, φn〉L2(µV ) φn .

We see the operators A and W as unbounded operators on the space

H =
{
u ∈ H1(µV ) |

ˆ
R
u(x)dµV (x) = 0

}
endowed with the inner product 〈u, v〉H = 〈u′, v′〉L2(µV ). This defines an inner product on H and

makes it a complete space: it can be seen that H1(µV ) is the completion of C∞c (R) with respect
to the inner product 〈u, v〉L2(µV ) + 〈u′, v′〉L2(µV ), see [Zhi98]. The space H is then the kernel of the

bounded (with respect to ‖ · ‖H) linear form, 〈1̃, ·〉L2(µV ) on H1(µV ), and both inner products are
equivalent on H because of the Poincaré inequality, Proposition 1.2.6. The use of H is motivated
by the fact that both A and W are self-adjoint positive on this space as we show in Lemma 1.6.4.

In the next proposition, we deduce from Theorem 1.6.2 the diagonalization of A in H.
Proposition 1.6.3 (Diagonalization of A in H) With the same eigenvalues 0 < λ1 < λ2 < . . .
as in Theorem 1.6.2, there exists a complete orthonormal set (ψn)n≥1 of H formed by eigenfunctions
of A.
Proof With (φn)n≥1 of Theorem 1.6.2,

δi,j = 〈φi, φj〉L2(µV ) =
1

λj
〈φi,A[φj ]〉L2(µV )

=
1

λj
〈φ′i, φ′j〉L2(µV )

=
1

λj
〈φi, φj〉H.
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With ψn = 1√
λn
φn, (ψn)n≥1 is then orthonormal with respect to the inner product of H. To show

that span{ψn, n ≥ 1} is dense in H, let u ∈ H be such that for all j ≥ 1, 〈u, φj〉H = 0. In the last
series of equalities, replace φi by u: we see that u is orthogonal to each φj in L2(µV ), thus u is a
constant as shown in the proof of Lemma 1.8.10, and because u ∈ H it has zero mean against µV .
This shows that u = 0. �

We set for what follows D(A)
(def)
= {u ∈ H | A[u] ∈ H} and D(W)

(def)
= {u ∈ H |W[u] ∈ H}.

Lemma 1.6.4 The following properties hold:

• The operator W : D(W)→ H is positive: for all φ ∈ D(W),

〈W[φ], φ〉H =
1

2
‖φ′ρV ‖21/2 ≥ 0 ,

with equality only for φ = 0, where the 1/2-norm of u is given by

‖u‖21/2
(def)
=

ˆ
R
|x|. |F [u](x)|2 dx .

• Both A and W are self-adjoint for the inner product of H.
Proof To prove the first point, let φ ∈ D(W). Then,

2π 〈W[φ], φ〉H = −2π
〈
H[φ′ρV ]′, φ′ρV

〉
L2(dx)

= −
〈
ixF

[
H[φ′ρV ]

]
,F [φ′ρV ]

〉
L2(dx)

= π
〈 ∣∣x ∣∣F [φ′ρV ],F [φ′ρV ]

〉
L2(dx)

= π‖φ′ρV ‖21/2 ≥ 0 ,

and because φ is in H, this last quantity is zero if and only if φ vanishes.
For the second point, note that both D(A) and D(W) contain C∞c (R)∩H, so A and W are densely
defined. Let ψi, ψj ∈ span(ψn, n ≥ 1), then by orthonormality

〈A[ψi], ψj〉H = δi,jλi = 〈ψi,A[ψj ]〉H

hence A is symmetric. Furthermore, we notice that we have

D(A) = {u ∈ H,
∑
n≥1

λ2
n| 〈u, ψn〉H |

2 < +∞}.

Indeed, we extend A on the space of the RHS by for all v ∈ {u ∈ H,
∑

n≥1 λ
2
n| 〈u, ψn〉H |2 < +∞},

A[v]
(def)
=
∑
n≥1

λn 〈v, ψn〉H ψn.

It is then clear that A[v] ∈ H. The converse is straightforward. Moreover, it is standard that D(A)

is therefore the completion of span (ψn, n ≥ 1) under the graph norm ‖u‖2A
(def)
= ‖u‖2H + ‖A[u]‖2H

which makes
(
A,D(A)

)
a closed operator. Moreover,

(
A,D(A)

)
is self-adjoint since for v ∈ D(A∗),

there exists fv ∈ H, such that for all u ∈ C∞c (R) ∩ H,

〈(A[u])′, ρV v
′〉L2(R) = 〈u′, ρV f ′v〉L2(R) .

This implies that, in the sense of distributions, (A[v])′ = f ′V ∈ L2(µV ) and therefore A[v] = fV +C
for a constant C. Finally, since we necessarily have,

´
RA[v](x)dµV (x) = 0, A[v] ∈ H i.e. v ∈ D(A).

Now let u, v ∈ D(W), using Plancherel’s isometry and i) of Lemma 1.2.1, we see that

〈W[u], v〉H =
〈
(W[u])′, v′ρV

〉
L2(dx)

=
1

2

〈 ∣∣x ∣∣F [u′ρV ],F [v′ρV ]
〉
L2(dx)

,
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and this last expression is symmetric in (u, v), so W is symmetric. To see that W is self-adjoint,
one must show that D(W∗) ⊂ D(W). Let v ∈ D(W∗), then the map u ∈ D(W) 7→ 〈W[u], v〉H
can be extended to a continuous linear functional on H, so there exists fv ∈ H such that for all
u ∈ C∞c (R) ∩ H,

〈−H[u′ρV ]′, v′ρV 〉L2(R) = 〈u′ρV , f ′v〉L2(R) .

Therefore, in the sense of distributions −H[v′ρV ]′ = f ′v ∈ L2(µV ). Since for all f ∈ H, W[f ] ∈
L2

0(µV ), we just showed that W[v] ∈ H ie v ∈ D(W). This concludes the proof. �
Definition 1.6.5 (Quadratic form associated to −L) We define for all u, v ∈ H∩C∞c (R) the
quadratic form associated to −L by

q−L(u, v) = 〈A[u],A[v]〉L2(µV ) + P 〈F [u′ρV ],F [v′ρV ]〉L2(|x|dx) .

We also define the form domain of L by

Q(L) =
{
u ∈ H, q−L(u, u) < +∞

}
.

Note that for all u, v ∈ H∩ C∞c (R), q−L(u, v) = 〈−L[u], v〉H and that whenever u ∈ D(A)∩D(W),

q−L(u, u) = 〈A[u], u〉H + 2P 〈W[u], u〉H ≥ λ1(A)‖u‖2H (1.55)

by Proposition 1.6.3 and Lemma 1.6.4. We can now extend q−L to its form domain Q(L) which is

equal to
{
u ∈ H,A[u] ∈ L2(µV ), F [u′ρV ] ∈ L2(|x|dx)

}
= DL2(R),0(A). The equality comes from

the fact that A−1
(
L2

0(µV )
)

= DL2(R),0(A), that DL2(R),0(A) ⊂ H and that F [u′ρV ] ∈ L2(|x|dx)

whenever u ∈ DL2(R),0(A), indeed u′ρV ∈ H1(R) because (u′ρV )′ = −ρVA[u] ∈ L2(R). We now
define D(L) the domain of definition of −L by:

D(L)
(def)
=
{
u ∈ Q(L), v 7→ q−L(u, v) can be extended to a continuous linear functional on H

}
.

Proposition 1.6.6 D(L) = D(A).
Proof Let u ∈ D(L), by Riesz’s theorem there exists fu ∈ H, such that q−L(u, v) = 〈fu, v〉H
for all v ∈ Q(L), we set −Lu (def)

= fu, it is called the Friedrichs extension of −L. Then for all
v ∈ H ∩ C∞c (R), by integration by part and anti selft-adjointness of H, we get:

〈−L[u], v〉H = q−L(u, v) = 〈u,A[v]〉H + 2P 〈u,W[v]〉H ,

hence we deduce the distributional identity −L[u] = A[u] + 2PW[u]. Since u ∈ H, u′ρV ∈ L2(R),
hence H[u′ρV ] ∈ L2(R) so W[u] ∈ L2(R). Furthermore u ∈ D(L) ⊂ Q(L) = DL2(R),0(A), so

(W[u])′ = H
[
ρVA[u]

]
∈ L2(R) which implies that W[u] ∈ H. Finally, since L[u] ∈ H, A[u] ∈ H so

u ∈ D(A).

Similarly, if u ∈ D(A), for the same reasons as before W[u] ∈ H thus L[u] = −A[u]− 2PW[u] ∈ H
ie u ∈ D(L). �

We are now ready to state the main theorem of this section, that is the inversion of L on D(L).
Theorem 1.6.7 (Inversion of L) −L : D(L) −→ H is bijective. Furthermore, (−L)−1 is posi-
tive, continuous from (H, ‖.‖H) to (D(L), ‖.‖H). More precisely, for all f ∈ H,

‖L−1[f ]‖H ≤ λ1(A)−1/2‖f‖H.

Proof Let f ∈ H, since 〈f, .〉H is a linear form onQ(L) = DL2(R),0(A) which is, by (1.55), continuous
with respect to q−L, one can applies Riesz’s theorem so there exists a unique uf ∈ DL2(R),0(A),
such that for all v ∈ Q(L), 〈f, v〉H = q−L(uf , v). Since, uf is clearly in D(L) by definition of the
Friedrichs extension of −L, we have −L[uf ] = f . Finally, the continuity of L−1 with respect to
‖.‖H follows from (1.55). �
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Remark 1.6.8 We can diagonalize L by the same argument we used in Appendix 1.8 to diagonalize
A in L2

0(µV ).

We now prove, following Remark 1.5.3, a more compact formula for the variance such as the one
appearing in [HL21]. With T defined in (1.51), we have
Lemma 1.6.9 The following equality holds for all φ ∈ T

〈L−1[φ], φ〉H =
(
σVP
)2

(φ)
(def)
=

ˆ
R

(
L−1[φ]′′(x)2 + V ′′(x)L−1[φ]′(x)2

)
dµV (x)

+ P

¨
R2

(
L−1[φ]′(x)− L−1[φ]′(y)

x− y

)2

dµV (x)dµV (y) (1.56)

Proof It suffices to show that
(
σVP
)2

(L[φ]) = 〈L[φ], φ〉H for all φ ∈ D(L).

〈L[φ], φ〉H = −
ˆ
R

((φ′ρV )′

ρV

)′
(x)φ′(x)dµV (x)− 2P

ˆ
R
H[φ′ρV ]′(x)φ′dµV (x).

Integration by parts in the first integral leads to:

−
ˆ
R

((φ′ρV )′

ρV

)′
(x)φ′(x)dµV (x) =

ˆ
R

((φ′ρV )′

ρV

)
(x)2dµV (x)

=

ˆ
R

{
φ′′2 − φ′(x)2 ρ

′′
V

ρV
(x) + φ′(x)2

(
ρ′V
ρV

)2

(x)

}
dµV (x).

Since

ρ′′V
ρV

=
(
− V ′′ − 2PH[ρV ]′ + V ′2 + 4P 2H[ρV ]2 + 4PV ′H[ρV ]

)
= −V ′′ − 2PH[ρV ]′ +

(ρ′V
ρV

)2
,

we obtain

〈L[φ], φ〉H =

ˆ
R

(
φ′′(x)2 + V ′′(x)φ′(x)2

)
dµV (x)− 2P

ˆ
R
H[φ′ρV ]′(x)φ′(x)dµV (x)

+ 2P

ˆ
R
H[ρV ]′(x)φ′(x)2dµV (x).

We conclude using the fact that for all φ ∈ D(L), we have:

¨
R2

(φ′(x)− φ′(y)

x− y

)2
dµV (x)dµV (y) = 2

ˆ
R

(
H[ρV ]′(x)φ′(x)2 −H[φ′ρV ]′(x)φ′(x)

)
dµV (x).

We now state a result that could allow one to obtain an explicit formulation for L−1 by the help
of Fredholm determinant theory for Hilbert-Schmidt operators. The reader can refer to [GGK12]
for more details.
Definition 1.6.10 (Fredholm determinant) Let K be a kernel Hilbert-Schmidt operator on
L2(µV ), we define the Fredholm 2-determinant of id +K by

det
2

(id +K)
(def)
= 1 +

∑
n≥1

1

n!

ˆ
Rn

∣∣∣∣∣∣∣∣∣
0 k(t1, t2) . . . k(t1, tn)

k(t2, t1) 0 . . . k(t2, tn)
...

...
k(tn, t1) k(tn, t2) . . . 0

∣∣∣∣∣∣∣∣∣
n∏
i=1

dµV (ti).

where |M | is the usual determinant for a matrix M .
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Theorem 1.6.11 (Explicit expression for L−1) For all u ∈ H, such that

x 7→ 1

ρV (x)

ˆ +∞

x
u(t)ρV (t)dt

is integrable at +∞, we have:

−L−1[u] = A−1[u]−A−1 ◦ R
[
u
]
.

In this expression A−1[u] is given by

A−1[u](x) = −
ˆ +∞

x

ds

ρV (s)

ˆ +∞

s
u(t)ρV (t)dt+ C,

where C
(def)
=

ˆ
R
ρV (y)dy

ˆ +∞

y

ds

ρV (s)

ˆ +∞

s
u(t)ρV (t)dt. The operator R is the kernel operator

defined for all v ∈ L2(µV ) by:

R[v](x)
(def)
=

ˆ
R
r(x, y)v(y)dµV (y),

where

r(x, y)
(def)
=

1

det
2

(id−K)

∑
n≥1

(−1)n

n!

ˆ
Rn

∣∣∣∣∣∣∣∣∣
k(x, y) k(x, t1) . . . k(x, tn)
k(t1, y) 0 . . . k(t1, tn)

...
...

k(tn, y) k(tn, t1) . . . 0

∣∣∣∣∣∣∣∣∣
n∏
i=1

dµV (ti), (1.57)

where K is the kernel operator defined for all w ∈ L2(µV ) by:

K[w](x)
(def)
=

ˆ
R
k(x, y)w(y)dy, (1.58)

with

k(x, y)
(def)
= 2P log |x− y| − 2P

ˆ
R

log |z − y|dµV (z). (1.59)

Finally, 2PW ◦A−1 = −K.
Proof Let f ∈ H, there exists a unique u ∈ D(A) such that A[u] = f . Since (u′ρV )′ = −ρVA[u] ∈

L2(R), we get u′ρV ∈ H1(R), so u′(x)ρV (x) −→
|x|→+∞

0. By definition, −(u′ρV )′

ρV
= f hence

A−1[f ]′(x)ρV (x) = u′(x)ρV (x) =

ˆ +∞

x
f(t)ρV (t)dt. (1.60)

Using the fact that

ˆ
R
u(x)ρV (x)dx = 0, integrating again we get:

u(x) = −
ˆ +∞

x

ds

ρV (s)

ˆ +∞

s
f(t)ρV (t)dt+ C

where C =

ˆ
R
ρV (x)dx

ˆ +∞

x

ds

ρV (s)

ˆ +∞

s
f(t)ρV (t)dt. Now using that that for all g ∈ H

−L−1 =
(
A+ 2PW

)−1
= A−1 ◦

(
id + 2PW ◦A−1

)−1
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We only need to compute the expression of
(
id+2PW◦A−1

)−1
. Using (1.60), let v ∈ A

[
D(L)

]
= H.

We obtain:

W ◦A−1[v](x) = −
 
R

ds

s− x

ˆ +∞

s
dtv(t)ρV (t) +

ˆ
R
dµV (y)

 
R

ds

s− y

ˆ +∞

s
dtv(t)ρV (t).

By Sokhotski-Plejmel formula, we have:

 
R

ds

s− x

ˆ +∞

s
dtv(t)ρV (t) = lim

ε→0+
lim

M→+∞

ˆ M

−M

ds

2

{ 1

s− x+ iε
+

1

s− x− iε

}ˆ +∞

s
dtv(t)ρV (t).

We then proceed to an integration by part:

 
R

ds

s− x

ˆ +∞

s
dtv(t)ρV (t) = lim

ε→0+
lim

M→+∞

[ log
(
(s− x)2 + ε2

)
2

ˆ +∞

s
dtv(t)ρV (t)

]M
−M

+

ˆ
R
ds log |x− s|v(s)ρV (s).

To conclude that:

W ◦A−1[v](x) = −
ˆ
R
ds log |x− s|v(s)ρV (s) +

ˆ
R
dµV (y)

ˆ
R
ds log |y − s|v(s)ρV (s),

we just need to show that

log |x|
ˆ +∞

x
dtv(t)ρV (t) −→

|x|→∞
0.

The latter can be seen by Cauchy-Schwarz inequality:∣∣∣ log(x)

ˆ +∞

x
dtv(t)ρV (t)

∣∣∣ ≤ | log(x)|‖v‖L2(µV ).ρV (x)1/4
( ˆ

R
ρV (t)1/2dt

)1/2
.

In this inequality, we used that ρV is decreasing exponentially fast in a neighborhood of +∞, hence

log(x)

ˆ +∞

x
dtv(t)ρV (t) −→

x→+∞
0.

Using that

ˆ
R
v(t)ρV (t)dt = 0, we have

ˆ +∞

x
v(t)ρV (t)dt = −

ˆ x

−∞
v(t)ρV (t)dt, therefore the exact

same argument allows us to conclude when x goes to −∞. We obtain the following equality:

(id+2PW◦A−1)[v](x) = v(x)−2P

ˆ
R
ds log |x−s|v(s)ρV (s)+2P

ˆ
R
dµV (y)

ˆ
R
ds log |y−s|v(s)ρV (s).

With the operator K given in (1.58), by [GGK12, Section XII.2], we can conclude that the inverse
of the kernel operator id−K is id−R where R is given in (1.57). This concludes the proof. �

1.7 Regularity of the inverse of L and completion of the proof of
Theorem 1.1.4

Since we have proven the central limit theorem for functions of the type Lφ with φ regular enough
and satisfying vanishing asymptotic conditions at infinity, we exhibit a class of functions f for
which L−1f is regular enough to satisfy conditions of Theorem 1.5.2. Define the subset T of H by

T (def)
=

{
f ∈ C2(R) | f, f ′, f ′′ are bounded,

ˆ
R
fdµV = 0

}
.
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Theorem 1.7.1 For f ∈ T , there exists a unique u ∈ C3(R) such that u′ ∈ H2(R) with u(3)

bounded which verifies:

• u′(x) = O
|x|→∞

(
V ′(x)−1

)
• u′′(x) = O

|x|→∞

(
V ′(x)−1

)
• u(3)(x) = O

|x|→∞

(
V ′(x)−1

)
and such that f = L[u].
Proof Let f ∈ T ⊂ H, then since −L : D(L)→ H is bijective, there exists a unique u ∈ D(L) such
that −L[u] = f i.e.:

−u′′ −
ρ′V
ρV
u′ − 2PH[u′ρV ] + 2P

ˆ
R
H[u′ρV ](t)dµV (t) = f. (1.61)

Hence we have

−(u′ρV )′ = ρV

(
f + 2PH[u′ρV ]− 2P

ˆ
R
H[u′ρV ](t)dµV (t)

)
. (1.62)

Since u ∈ D(L) = D(A) = {u ∈ H | Au ∈ H}, the functions u′ρV and its distributional derivatives

(u′ρV )′ = −ρVAu and (u′ρV )′′ = −
ρ′V
ρV
ρ

1/2
V .
(
ρ

1/2
V Au

)
− ρV

(
Au
)′

are in L2(R). In particular u′ρV

goes to zero at infinity, and H[u′ρV ] ∈ H2(R) ⊂ C1(R). So we can integrate (1.62) on [x,+∞[ ,
since by Lemma 1.2.3, the right-hand side is a O

|x|→∞
(ρV (x)), to get the following expression for x

large enough:

u′(x)ρV (x) =

ˆ +∞

x

ρV (t)

ρ′V (t)

(
f + 2PH[u′ρV ]− 2P

ˆ
R
H[u′ρV ](s)dµV (s)

)
.ρ′V (t)dt. (1.63)

From this expression, we see that u′ ∈ C2(R). We now check the integrability condition at infinity
and the claimed boundedness properties of u′, u′′, u(3). After proceeding to an integration by parts,
which is permitted by the previous arguments, we obtain:

u′(x) = −ρV (x)

ρ′V (x)

(
f(x) + 2PH[u′ρV ](x)− 2P

ˆ
R
H[u′ρV ](t)dµV (t)

)
−R1(x), (1.64)

where we set R1(x)
(def)
=

1

ρV (x)

ˆ +∞

x

[
ρV (t)

ρ′V (t)

(
f + 2PH[u′ρV ]− 2P

ˆ
R
H[u′ρV ](s)dµV (s)

)]′
ρV (t)dt.

We will need to show that R1 is a remainder of order O
x→+∞

(
V ′(x)−2

)
at infinity. In this case, we

will have u′(x) = O
x→+∞

(
V ′(x)−1

)
which will be useful for the following. If we reinject (1.64) in

(1.61), we find:

u′′ = −
(
f + 2PH[u′ρV ]− 2P

ˆ
R
H[u′ρV ](t)dµV (t)

)
−
ρ′V
ρV

[
− ρV
ρ′V

(
f + 2PH[u′ρV ]− 2P

ˆ
R
H[u′ρV ](t)dµV (t)

)
−R1

]
=
ρ′V
ρV
R1. (1.65)
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Hence

u′′(x) =
ρ′V
ρ2
V

(x)

ˆ +∞

x
ρV (t)dt

{ (ρV
ρ′V

)′
(t)︸ ︷︷ ︸

= O
t→+∞

(
V ′′(t)
V ′(t)2

)
[
f + 2PH[u′ρV ]− 2P

ˆ
R
H[u′ρV ](s)dµV (s)

]
(t)︸ ︷︷ ︸

= O
t→+∞

(1)

+
ρV
ρ′V

(t)︸ ︷︷ ︸
= O
t→+∞

(
V ′(t)−1

)
(
f ′ − 2PH[ρVAu]

)
(t)︸ ︷︷ ︸

= O
t→+∞

(1)

}
.

We recall that because of Assumptions 1.1.1 iv), O
t→+∞

( V ′′(t)
V ′(t)2

)
= O

t→+∞

(
V ′(t)−1

)
. The fact that

H[ρVAu] is bounded comes again from lemma 1.2.3. Differentiating yields

u(3)(x) =
(ρ′V
ρV

)′
(x)R1(x)−

(ρ′V
ρV

(x)
)2
R1(x)−

ρ′V
ρV

(x)g(x),

where we have set g
(def)
=

[
ρV
ρ′V

(
f + 2PH[u′ρV ] − 2P

ˆ
R
H[u′ρV ](t)dµV (t)

)]′
. Now, by the same

integration by parts argument as in (1.65), we obtain:

−
(ρ′V (x)

ρV (x)

)2
R1(x)−

ρ′V (x)

ρV (x)
g(x)

= −
ρ′V (x)2

ρV (x)3

[
g(t)

ρV (t)

ρ′V (t)
ρV (t)

]+∞

x
+
ρ′V (x)2

ρV (x)3

ˆ
R

(
g
ρV
ρ′V

)′
(t)ρV (t)dt−

ρ′V (x)

ρV (x)
g(x)

=
(ρ′V (x)

ρV (x)

)2
R2(x),

where

R2(x)
(def)
=

1

ρV (x)

ˆ +∞

x

{[(
f+2PH[u′ρV ]−2P

ˆ
R
H[u′ρV ](t)dµV (t)

)ρV
ρ′V

]′
ρV
ρ′V

}′
(t)ρV (t)dt. (1.66)

The above integration by part is justified by the fact that g goes indeed to zero at +∞. Hence

u(3)(x) =
(ρ′V
ρV

)′
(x)R1(x) +

(ρ′V
ρV

(x)
)2
R2(x).

Since

(
ρ′V
ρV

)′
(x) = O

x→+∞

(
V ′(x)

)
, using Lemma 1.2.2 and Assumptions 1.1.1 iv), and

ρ′V
ρV

(x) =

O
x→+∞

(
V ′(x)

)
, it just remains to check that

R1(x) = O
x→+∞

(
V ′(x)−2

)
and that R2(x) = O

x→+∞

(
V ′(x)−3

)
.

Since the integrand in R1 is a O
t→+∞

(
V ′(t)−1

)
, by a comparison argument, we get:

R1(x) = O
x→+∞

(
I1(x)

)
where I1(x)

(def)
=

1

ρV (x)

ˆ +∞

x

ρV (t)

V ′(t)
dt.
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Furthermore, by integration by parts:

I1(x)
(def)
= − ρV (x)

V ′(x)ρ′V (x)
− 1

ρV (x)

ˆ +∞

x
ρV (t)

( ρV
V ′ρ′V

)′
(t)dt

= O
x→+∞

(
V ′(x)−2

)
− 1

ρV (x)

ˆ +∞

x
ρV (t)dt

{
− V ′′(t)

V ′(t)2

ρV
ρ′V

+
1

V ′(t)

(ρV
ρ′V

)′
(t)

}
. (1.67)

By the same argument as before, the last integral is of the form
1

ρV (x)

ˆ +∞

x
O

t→+∞

( ρV (t)

V ′(t)2

)
dt so

we can conclude that:

1

ρV (x)

ˆ +∞

x
ρV (t)dt

{
− V ′′(t)

V ′(t)2

ρV
ρ′V

+
1

V ′(t)

(ρV
ρ′V

)′
(t)

}
= O

x→+∞

(
1

ρV (x)V ′(x)2

ˆ +∞

x
ρV (t)dt

)
,

where we used that t 7→ V ′(t)−2 is decreasing on [x,+∞[ for x big enough. In order to conclude

that R1(x) = O
x→+∞

(
V ′(x)−2

)
, one just needs to check that

1

ρV (x)

ˆ +∞

x
ρV (t)dt = o

x→+∞
(1). By

two integration by parts, we obtain:

1

ρV (x)

ˆ +∞

x
ρV (t)dt = −ρV (x)

ρ′V (x)
+
(ρV
ρ′V

)′
(x)

ρV (x)

ρ′V (x)
+

1

ρV (x)

ˆ +∞

x
ρV (t)

[(ρV
ρ′V

)′ ρV
ρ′V

]′
(t)dt

= o
x→+∞

(1) +
1

ρV (x)

ˆ +∞

x
O

t→+∞

( ρV (t)

V ′(t)2

)
dt

= o
x→+∞

(1) + O
x→+∞

(
1

ρV (x)

ˆ +∞

x

ρV (t)

V ′(t)2
dt

)
= o

x→+∞
(1)

since t 7→ ρV (t) is decreasing on [x,+∞[ for x big enough and that t 7→ V ′(t)−2 is integrable at

infinity by assumption iv). This allows to conclude indeed that R1(x) = O
x→+∞

(
V ′(x)−2

)
.

Now, we have to check that R2(x) = O
x→+∞

(
V ′(x)−3

)
. By differentiating (1.66), by the same

arguments as before,

R2(x)
(def)
= O

x→+∞

(
I2(x)

)
where I2(x)

(def)
=

1

ρV (x)

ˆ +∞

x

ρV (t)

V ′(t)2
dt.

Moreover, by integration by part, we get just as before:

I2(x)
(def)
= − ρV (x)

V ′(x)2ρ′V (x)
− 1

ρV (x)

ˆ +∞

x
ρV (t)

( ρV
V ′2ρ′V

)′
(t)dt

= O
x→+∞

(
V ′(x)−3

)
− 1

ρV (x)

ˆ +∞

x
O

t→+∞

( ρV (t)

V ′(t)3

)
dt

}

= O
x→+∞

(
V ′(x)−3

)
− O
x→+∞

(
1

ρV (x)V ′(x)3

ˆ +∞

x
ρV (t)dt

)
= O

x→+∞

(
V ′(x)−3

)
. (1.68)

Finally, we can conclude that, by doing the same thing near −∞,

u′(x) = O
|x|→+∞

(
V ′(x)−1

)
, u′′(x) = O

|x|→+∞

(
V ′(x)−1

)
and u(3)(x) = O

|x|→+∞

(
V ′(x)−1

)
,

(1.69)
which establishes that these functions are in L2 in a neighborhood of ∞, again by assumption iv).
Since we already showed that u ∈ C3(R) ⊂ H3

loc(R), it establishes that u ∈ H3(R)∩C3(R) with u(3)

bounded. To complete the proof we just have to show that (u′)2V (3), u′u′′V ′′, (u′)2V ′′ and u′V ′

are bounded which is easily checked by (1.69) and assumption 1.1.1 iv). �
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1.8 Appendix: proof of Theorem 1.6.2

In order to analyze A, we let, for u ∈ L2(R),

S[u]
(def)
= ρ

1/2
V A[ρ

−1/2
V u] .

Note that u ∈
(
L2(R), ‖.‖L2(dx)

)
7→ ρ

−1/2
V u ∈

(
L2(µV ), ‖.‖L2(µV )

)
is an isometry. It turns out that

it will be easier to study first the operator S in order to get the spectral properties of A.
Proposition 1.8.1 The operator S is a Schrödinger operator: it admits the following expression
for all u ∈ C2

c (R): S[u] = −u′′ + wV u with

wV
(def)
=

1

2

(
1

2
V ′2 − V ′′ + 2PV ′H[ρV ]− 2PH[ρ′V ] + 2P 2H[ρV ]2

)
=

1

2

[
(log ρV )′′ +

1

2
(log ρV )′2

]
.

(1.70)

Furthermore, wV is continuous and we have wV (x) ∼
∞

V ′(x)2

4
−→
|x|→∞

+∞.

Proof We compute directly(
ρV
(
ρ
−1/2
V u

)′)′
ρV

=
(
ρ
−1/2
V u

)′′
+
ρ′V
ρV

(
ρ
−1/2
V u

)′
=
(
ρ
−1/2
V u′ − 1

2
ρ
−3/2
V ρ′V u

)′
+ ρ′V ρ

−3/2
V u′ − 1

2
ρ
−5/2
V

(
ρ′V
)2
u

= ρ
−1/2
V u′′ +

1

4
ρ
−5/2
V

(
ρ′V
)2
u− 1

2
ρ
−3/2
V ρ′′V u

= ρ
−1/2
V

[
u′′ +

1

4
ρ−2
V

(
ρ′V
)2
u− 1

2
ρ−1
V ρ′′V u

]
= ρ

−1/2
V

(
u′′ − 1

2

[(ρ′′V
ρV

)
− 1

2

(ρ′V
ρV

)2]
u

)

= ρ
−1/2
V

(
u′′ − 1

2

[
(log ρV )′′ +

1

2
(log ρV )′2

]
u

)
= ρ

−1/2
V

(
u′′ − wV u

)
.

Now, using Lemma 1.2.2, we have

wV =
1

2

(
1

2
V ′2 − V ′′ + 2PV ′H[ρV ]− 2PH[ρ′V ] + 2P 2H[ρV ]2

)
.

Notice that H[ρ′V ] and H[ρV ] are bounded since they belong to H1(R), as we showed in Lemma
1.2.2 that ρV is H2(R). Along with Assumption 1.1.1 iii) and Lemma 1.2.3, we deduce wV (x) ∼

∞
1

4
V ′2(x). �

Remark 1.8.2 Note that the function wV need not be positive on R. In fact, neglecting the terms
involving the Hilbert transforms of ρV and ρ′V , wV would only be positive outside of a compact set.
However, using the positivity of A, which will be shown further in the article, we can show that
the operator −u′′ + wV u is itself positive on L2(R). It can also be checked that, by integration by
parts, S is self-adjoint on C∞c (R) with the inner product of L2(R).

We now introduce an extension of S by defining its associated bilinear form.
Definition 1.8.3 (Quadratic form associated to S)
Let α ≥ 0 such that wV + α ≥ 1. We define the quadratic form associated to S + αid, defined for
all u ∈ C∞c (R) by

qα(u, u)
(def)
=

ˆ
R
u′(x)2dx+

ˆ
R
u2(x)(wV (x) + α)dx
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This quadratic form can be extended to a larger domain denoted by Q(S + αid), called the form
domain of the operator S + αid. By the theory of Schrödinger operators, it is well-known (see
[Dav96, Theorem 8.2.1]) that such a domain is given by

Q(S + αid) =
{
u ∈ H1(R), u(wV + α)1/2 ∈ L2(R)

}
=
{
u ∈ H1(R), uV ′ ∈ L2(R)

} (def)
= H1

V ′(R) .

The space H1
V ′(R) can be seen to be the completion of C∞c (R) under the norm qα. Now that the

quadratic form associated to S + αid has been extended to its form domain, it is possible to go
back to the operator and extend it by its Friedrichs extension.
Theorem 1.8.4 (Friedrichs extension of S + αid)
There exists an extension (S + αid)F of the operator S + αid, called the Friedrichs extension of

S + αid defined on D
(

(S + αid)F

)
=
{
u ∈ H1

V ′(R),−u′′ + (wV + α)u ∈ L2(R)
}

.

Proof We denote

D
(

(S + αid)F

)
(def)
=
{
v ∈ H1

V ′(R), u ∈ H1
V ′(R) 7→ qα(u, v)

can be extended to a continuous linear functional on L2(R)
}

If v ∈ D
(

(S + αid)F

)
, by Riesz’s theorem there exists a unique fv ∈ L2(R) such that qα(u, v) =

〈u, fv〉L2(dx) holds for all u ∈ L2(R) and we can set (S + αid)F [v]
(def)
= fv. Note that it is indeed a

way of extending S + αid since for all u, v ∈ C∞c (R), qα(u, v) = 〈u, (S + αid)[v]〉L2(dx).

We want to show that D
(

(S + αid)F

)
=
{
u ∈ H1

V ′(R),−u′′ + (wV + α)u ∈ L2(R)
}

. Let f ∈

D
(

(S + αid)F

)
and g

(def)
= (S + αid)F [f ] ∈ L2(R). By definition of qα, for all u ∈ C∞c (R):

ˆ
R
gudx =

ˆ
R
f ′(x)u′(x)dx+

ˆ
R

(wV (x)+α)f(x)u(x)dx = −
ˆ
R
f(x)u′′(x)dx+

ˆ
R

(wV (x)+α)f(x)u(x)dx

Therefore in the sense of distributions, we get −f ′′ + (wV + α) = g which is a function in L2(R),

hence f ∈
{
u ∈ H1

V ′(R),−u′′ + (wV + α)u ∈ L2(R)
}

. Conversely, if f ∈ H1
V ′(R) such that

−f ′′ + (wV + α)f ∈ L2(R), it is possible to extend u 7→ qα(f, u) to a continuous linear form on
L2(R) by

u 7→
ˆ
R
u
(
− f ′′(x) + f(x)(wV (x) + α)

)
dx

which concludes the fact that D
(

(S + αid)F

)
=
{
u ∈ H1

V ′(R),−u′′ + (wV + α)u ∈ L2(R)
}

. �

In the following, we will only deal with (S + αid)F : D
(
(S + αid)F

)
−→ L2(R) and

denote it S + αid : D(S + αid) −→ L2(R).
Remark 1.8.5 Note that in the previous proof, the application of Riesz’s theorem doesn’t allow

to say that (S + αid) : v ∈
(
D(S + αid), ‖.‖qα

)
7→ fv ∈

(
L2(R), ‖.‖L2(dx)

)
, where ‖.‖qα stands for

the norm associated to the bilinear positive definite form qα, is continuous. It can be seen by the
fact that
v ∈

(
D(S + αid), ‖.‖qα

)
7→ q(., v) ∈

(
L2(R)′, ‖.‖L2(dx)′

)
, where L2(R)′ stands for the topological

dual of L2(R) equipped with its usual norm, is not continuous. Indeed the ‖.‖qα norm doesn’t
control the second derivative of v and hence doesn’t provide any module of continuity for the
L2(R)-extended linear form q(., v).

Also note that, even though it would be convenient that D
(

(S+αid
)

= L2(R, (wV +α)2dx)∩H2(R)

it is not true without more properties on wV . Such a result holds, for example when wV belongs
to B2, the class of reverse Hölder weights, see [ABA07, Theorem 1.1].
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Theorem 1.8.6 (Inversion of S + αid)

For every f ∈ L2(R), there exists a unique u ∈ D
(
S+αid

)
such that (S+αid)[u] = f . Furthermore,

the map (S + αid)−1 is continuous from
(
L2(R), ‖.‖L2(dx)

)
to
(
D(S + αid), ‖.‖qα

)
.

Proof Let f ∈ L2(R), the map u 7−→ 〈u, f〉L2(dx) is continuous on
(
H1
V ′(R), ‖.‖qα

)
which is a

Hilbert space. Therefore by Riesz’s theorem, there exists a unique vf ∈ H1
V ′(R) such that for

all u ∈ H1
V ′(R), 〈f, u〉L2(dx) = qα(vf , u) from which we deduce that, in the sense of distributions,

f = −v′′f + (wV + α)vf which implies that vf ∈ D(S + αid). Since vf ∈ D(S + αid), we have then

for all u ∈ L2(R), 〈f, u〉L2(dx) = qα(vf , u) = 〈(S + α)[vf ], u〉L2(dx), hence (S +αid)[vf ] = f . Finally,

by Riesz’s theorem, f ∈ L2(R) 7→ vf ∈ H1
V ′(R) is continuous hence so is (S + αid)−1. �

Remark 1.8.7 It would be tempting to use Banach’s isomorphism theorem to say that since
(S + αid)−1 is bijective and continuous, so must be S + αid. But since

(
D(S + αid), ‖.‖qα

)
is not a

Banach space (it’s not closed in H1
V ′(R)) we can’t apply it.

We are now able to diagonalize the resolvent of S.
Theorem 1.8.8 (Diagonalization of (S + αid)−1)
There exists a complete orthonormal set (ψn)n≥0 of L2(R) (meaning that

span{ψn, n ≥ 0}‖.‖L2(dx) = L2(R)

and 〈ψi, ψj〉L2(dx) = δi,j), where each ψn ∈ D(S +αid) and
(
µn(α)

)
n≥0
∈ [0, 1]N with µn(α) −→

N→∞
0

such that (S + αid)−1[ψn] = µn(α)ψn for all n ≥ 0. We also have∣∣∣∣∣∣∣∣∣(S + αid
)−1
∣∣∣∣∣∣∣∣∣
L2(dx)

(def)
= sup
‖f‖L2(dx)=1

‖
(
S + αid

)−1
f‖L2(dx) ≤ 1.

Proof By Proposition 1.8.1, wV + α is continuous and goes to infinity at infinity. By Rellich
criterion [RS78, Theorem XIII.65], the unit ball of D(S + αid), i.e. the set{

u ∈ D(S + αid),

ˆ
R
u′(x)2dx+

ˆ
R

(wV (x) + α)u2(x)dx ≤ 1
}

considered as a subset of L2(R) is relatively compact in
(
L2(R), ‖.‖L2(dx)

)
. Hence, we can conclude

that the injection ι :
(
D(S + αid), ‖.‖qα

)
−→

(
L2(R), ‖.‖L2(dx)

)
is a compact operator. Since

(S + αid)−1 :
(
L2(R), ‖.‖L2(dx)

)
−→

(
D(S + αid), ‖.‖qα

)
is continuous then (S + αid)−1 is compact

from
(
L2(R), ‖.‖L2(dx)

)
to itself. The fact that (S + αid)−1 is self-adjoint and positive allows us to

apply the spectral theorem to obtain
(
µn(α)

)
n≥0

positive eigenvalues verifying µn(α) −→
N→∞

0 by

compactness and a Hilbertian basis (ψn)n≥0 ∈ L2(R)N, such that for all n ≥ 0, (S + αid)−1[ψn] =
µn(α)ψn. It is then easy to see that for all n, ψn ∈ D(S + αid) since they belong to the range of
(S + αid)−1. Finally, since for all φ ∈ L2(R), 〈(S + αid)[φ], φ〉L2(dx) ≥ ‖φ‖2L2(dx), the spectrum of

(S + αid)−1 is contained in [0, 1]. It allows us to conclude that
∣∣∣∣∣∣(S + αid)−1

∣∣∣∣∣∣
L2(dx)

≤ 1. �

Since for all u ∈ H1
V ′(R), (S + α)[u] ∈ L2(R) iff S[u] ∈ L2(R), if we define D(S) in the same

manner that we did before, D(S) = D(S+αid). It is now straightforward to see how to extend A =

ρ
−1/2
V Sρ1/2

V on DL2(R)(A)
(def)
= ρ

−1/2
V D(S) equipped with the norm ‖.‖qα,ρV to

(
L2(µV ), ‖.‖L2(µV )

)
.

The norm ‖.‖qα,ρV is defined for all u ∈ DL2(R)(A) by

‖u‖qα,ρV =

ˆ
R
u′(x)2dµV (x) +

ˆ
R
u2(x)(wV (x) + α)dµV (x) .

It is easy to see that (A+ αid)−1 is continuous.
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Remark 1.8.9 The kernel of A is generated by the function 1̃. Indeed if φ ∈ DL2(R)(A) is in the
kernel of A then

0 = −
(
φ′ρV

)′
ρV

⇒ ∃c ∈ R, φ′ =
c

ρV

But since φ′ is in L2(µV ) then c = 0 which implies that φ is constant. We must restrict A to the
orthogonal of KerA with respect to the inner product of L2(µV ), i.e.

DL2(R),0(A)
(def)
=

{
u ∈ DL2(R)(A) |

ˆ
R
u(x)dµV (x) = 0

}
.

Doing so makes A injective.

Before inverting A, we need the following lemma:
Lemma 1.8.10 The following equality holds

(A+ αid)
(
DL2(R),0(A)

)
= L2

0(µV )
(def)
=
{
u ∈ L2(µV ),

ˆ
R
u(x)dµV (x) = 0

}
.

Proof Let φ = c̃ for c ∈ R, (A + αid)[φ] = α̃c then (A + αid)[R.1̃] = R1̃. Hence since A + αid
is self-adjoint with respect to the inner product of L2(µV ) and that R1̃ is stable by A+ αid, then

(A+αid)
[
(R.1̃)⊥∩DL2(R)(A)

]
⊂ (R.1̃)⊥. For the converse, let u ∈ (R.1̃)⊥, since A+αid is bijective,

there exists v ∈ DL2(R)(A) such that u = (A+ αid)[v]. For all w ∈ R.1̃,

0 = 〈u,w〉L2(µV ) = 〈(A+ αid)[v], w〉L2(µV ) = 〈v, (A+ αid)[w]〉L2(µV )

Hence v ∈
(
(A+ αid)[R1̃]

)⊥
= R1̃⊥ and so (R.1̃)⊥ ⊂ (A+ αid)

[
(R.1̃)⊥

]
. �

It is easy to see that L2
0(ρV ) is a closed subset of L2(µV ) as it is the kernel of the linear form

φ ∈ L2(µV ) 7→
〈
φ, 1̃
〉
L2(µV )

, making it a Hilbert space.

Proposition 1.8.11 (Diagonalization and invertibility of A) There exists a complete orthonor-

mal set of
(
L2

0(ρV ), 〈., .〉L2(µV )

)
, (φn)n∈N ∈ DL2(R),0(A)N such that A[φn] = λnφn (meaning that

span{φn, n ≥ 0}‖.‖L2(µV ) = L2
0(µV )

and 〈φi, φj〉L2(µV ) = δi,j). Furthermore, A : DL2(R),0(A) −→ L2
0(µV )

(def)
=
{
u ∈ L2(µV ),

´
R u(x)dµV (x) =

0
}

is bijective, A−1 is continuous when considered as an operator of L2
0(µV ).

Proof Since (S + αid)−1 considered as an operator of L2(R), is compact so is (A + αid)−1 on
L2(µV ) and since A is self-adjoint, by the spectral theorem, (A + αid)−1 is diagonalizable. With
the notations of Theorem 1.8.8, (A+ αid)−1 has eigenvalues

(
µn(α)

)
n≥0

and corresponding eigen-

functions φn = ρ
−1/2
V ψn ∈ DL2(R)(A). Hence for all n ∈ N, A[φn] = λnφn with λn

(def)
=
( 1

µn(α)
−α
)
.

Now,

λn‖φn‖2L2(µV ) =

ˆ
R
A[φn](x)φn(x)dµV (x) = −

ˆ
R

(ρV φ
′
n)′(x)φn(x)dx =

ˆ
R
φ′n(x)2dµV (x) ≥ 0 .

Furthermore, the kernel ofA is R.1̃, thus the spectrum ofA restricted to DL2(R),0(A) is positive. But

since (A+αid)−1 is a compact operator of L2(µV ) and that (A+αid) maps R.1̃⊥ to R.1̃⊥ with respect

to the inner product of L2(µV ) (see lemma 1.8.10), then
(
A + αid

)−1
is compact as an operator

from L2
0(µV ) to itself. By Fredholm alternative, for every λ ∈ R λ 6= 0, either (A+ αid)−1 − λid is
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bijective either λ ∈ Sp
(
(A + αid)−1

)
. These conditions are equivalent to: either A + (α − 1

λ
)id is

bijective as an operator from DL2(R),0(A) to L2
0(µV ), either −α+

1

λ
∈ Sp

(
A
)
. If we set λ =

1

α
then

either A is bijective either 0 ∈ Sp(A), since the latter is wrong then A : DL2(R),0(A) → L2
0(µV ) is

bijective. The spectrum of A is

(
1

µn(α)
− α

)
n≥0

⊂ (λ1,+∞) ⊂ (0,+∞), where λ1 is the smallest

eigenvalue, hence we deduce that
∣∣∣∣∣∣A−1

∣∣∣∣∣∣
L2(µV )

≤ λ−1
1 . �
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Chapter 2

Asymptotics of the partition function
for β-ensembles at high temperature

“In the end, “what counts as science” is
less important than how science gets done.
Science is about what is true. Any pro-
posal about how the world truly is should
be able to be judged by the methods of
science, even if the answer is “we don’t
know and never will.” Excluding a possi-
ble way the world could be on the basis of
a philosophical predisposition is contrary
to the spirit of science. The real question
is, how should scientific practice accom-
modate this possibility?” Sean M. Carroll
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2.1 Introduction

2.1.1 Setting of the problem

Let P > 0 and V be a function growing sufficiently fast at infinity. The real β-ensemble at high
temperature is the particle system on R, {xi}Ni=1 with the following distribution:

dPVN (x) = pVN (x)dx1 . . . dxN with pVN (x)
(def)
=

1

ZN [V ]

N∏
i<j

|xi − xj |2P/N
N∏
i=1

e−V (xi) (2.1)

where ZN [V ] > 0 is the partition function that ensures that PVN is a probability measure on RN ,
namely

ZN [V ] =

ˆ
RN

N∏
i<j

|xi − xj |2P/N
N∏
i=1

e−V (xi)dxi. (2.2)

Here, the factor 2 in the two-body interaction is irrelevant and just makes the equations ”nicer”.
The main goal of this article is to establish the existence of the large N -asymptotic expansion of
logZN [V ] under some assumptions on V using the technique first used in [ACM92, ArM90] and
later developed in [BG13a, BG13b]. Note that when 2P/N is replaced by a N -independent β ≥ 0
(that one can interpret as a coupling constant that measures the strength of the interaction), the
distribution is known as the real β-ensemble in the fixed temperature regime and represents for
polynomial potential the joint law of eigenvalues of the so-called Orthogonal (resp. Unitary, resp.
Symplectic ) ensemble for β = 1 (resp. β = 2, resp. β = 4) (see [AGZ10a]). For general β ≥ 0
and quadratic V , the β-ensemble was expressed as the law of the spectrum of tridiagonal random
matrices with independent entries [DE02a]. The result was then extended to general polynomial V
in [KRV16].

When β is fixed, a great deal is known about this model because of twenty years of intensive study.
First, central limit theorems were proven in [Joh98, BG13a, Shc14a, BLS18, Lam21a, LLW19],
asymptotic of the partition function in [BG13a, BG13b, BGK15], local laws [BYY14, BEY14b,
CFLW21, BMP22, Pei24] and universality results [PS97, DKM+99c, DG07a, DGKV07]. For β = 2
constant and V polynomial, the asymptotic expansion of the partition function has the form

N−2 logZ
(2)
N [V ] ∼

∑
g≥0

N−2gcg
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where the previous equality has to be understood in the sense of an asymptotic expansion. The
coefficients (cg)g≥0 of this expansion correspond to enumerations of maps and, more generally, the

asymptotic expansion of logZβN [V ] gives information on the enumerations of graphs embedded in
surfaces [Mar14, MTY05]. In [DFGZ23], the authors were able to establish the asymptotics for
the moments of Hilbert-Schmidt norms of matrices uniformly distributed on unit balls. They were
able to link these moments with the partition function of β-ensembles with singular potential, for
which it is possible to obtain the leading asymptotics.

The study of the β-ensembles at high temperature has attracted a lot of attention recently since
links were discovered with integrable systems, including the famous classical Toda chain [Tod67].
The integrable structure of this system, namely the existence of a sufficient number of conserved
quantities, can be established by the existence of a so-called Lax matrix, whose spectrum is in-
variant under the dynamics. At long times, the model doesn’t thermalize, i.e. it doesn’t reach
thermal equilibrium but is rather described by a more sophisticated probability measure called
the Generalized Gibbs Ensemble (GGE) [Jay57]. This is due to the existence of a set of locally
conserved quantities, which highly constrains the dynamics. In the context of the Toda chain, the
GGE has been studied in [Spo20] and a link was established with the Gaussian β-ensembles. In the
case of a Gaussian potential, it was shown that the distribution of the Lax matrix under the GGE
was similar to the law of the tridiagonal representation of the Gaussian β-ensembles of Dumitriu
and Edelman. This link was explored in [GM22] for more general potentials via large deviation
techniques.

However, the high temperature regime had already been the subject of research with the pioneering
works [CL97, BG99, ABG12]. More recently, large deviation principles (LDP) [Pak20, GZ19] and
central limit theorems for β-ensembles at high temperature were shown in the circular case [HL21].
In the real case [NT18], such a result was obtained for quadratic potentials and polynomial test-
functions, for general potentials with smooth bounded functions in [DGM23] and for polynomial
potentials and polynomial test-functions in [MM24]. Convergence results of bulk local statistics
to Poisson point-processes were established, first in [BGP15] and later in [NT18], for Gaussian
potential, then generalized to general potentials in [NT20a] and finally to general interactions,
potentials and geometric settings in [Lam21b]. The latter work, includes the convergence of the
edge statistics and the asymptotic law of the fluctuations of the edge of the spectrum, namely
a Gumbel distribution which was first discovered in the quadratic case by [Pak18]. This is in
adequation with the fact that this law can be seen as the limit of the β-Tracy Widom law when
β → 0 [AD14b]. Finally, in [FM21], the authors analyzed the so-called loop equations to deduce the
moments of the subdominant correction of the equilibrium measures corresponding to Gaussian,
Laguerre and Jacobi ensembles. A natural extension of all these results is to obtain the large N

asymptotic expansion of the n−linear statistics 〈f〉Vn
⊗LN

for general test-functions f where LN
(def)
=

N−1
∑N

a=1 δxa is the empirical distribution, LN
(def)
= LN − µV and

〈f〉Vµ1⊗...⊗µk
(def)
= EVN

[ˆ
R
f(x1, . . . , xk)

k∏
i=1

dµi(xi)

]
. (2.3)

By [GZ19], the sequence of random probability measures (LN )N satisfies a large deviation principle

at speed N with a strictly convex, good rate function IPV . The latter is defined by IPV
(def)
= E −

infµ∈M1(R) E(µ) where, for all absolutely continuous probability measures µ with respect to the
Lebesgue measure:

E(µ)
(def)
=

ˆ
R
V dµ− 2P

¨
R2

log |x− y|dµ(x)dµ(y) +

ˆ
R

log

(
dµ

dx

)
dµ

and +∞ for other probability measures on R. In this functional, the last term is called the entropy
of the measure µ, and because of conventions, it represents the negative physical entropy. This
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term is negligible when the inverse temperature β is constant and the potential is scaled by N
(it doesn’t appear in the corresponding good rate function [AGZ10a]) but has the same order of
magnitude as the energy when the correlation between particles is small/the temperature is high
(see [Dea08, (34)] for a discussion). Minimizing the functional E amounts to minimizing the energy
while maximizing the (physical) entropy.

We call the unique minimizer of E and denote it µV (we omit the P -dependence since this parameter
is fixed throughout the entire article) the equilibrium measure which is Lebesgue continuous with
p.d.f. ρV characterized by

V (x)− 2P

ˆ
R

log |x− y|ρV (y)dy + log ρV (x) = λV x− ae (2.4)

where λV is a constant (see [GM22, Lemma 3.2]). In this context, ρV is supported on R because
of the presence of the entropy in the minimizing equation. This is a major difference with the
β-constant case and N -scaled potential, where the equilibrium measure is compactly supported.
This equation can be rewritten, assuming ρV is continuous (which is true as long as V is smooth;
see [DGM23, Lemma 2.2]), as

∀x ∈ R, ρV (x) = exp
(
−V (x)−2PUρV (x)+λV

)
, UρV (x)

(def)
= −

ˆ
R

log |x−y|ρV (y)dy. (2.5)

One observes that UρV diverges logarithmically to −∞ at infinity [DGM23, Lemma 2.4]. Hence,
assuming that V grows fast enough at infinity, instead of a compactly supported measure as in the
constant β case, the equilibrium density is an exponentially fast decaying function at infinity in the
case βN = 2P . Furthermore, this measure can be seen as an interpolation (with the appropriate
scaling in P ) called originally the Gauss-Wigner crossover [ABG12] between the equilibrium of the
classical β-ensembles (when P goes to +∞) and the measure dµ(x) = e−V (x)dx/Z (when P goes to
0) [NT20a]. Note that under the choice of VG(x) = x2/2, the density has an explicit form [ABG12]:

ρVG(x) =
e−

x2

2

√
2π

1

|f̂α(x)|2
, f̂α(x)

(def)
=

√
P

Γ(P )

ˆ +∞

0
tP−1e−

t2

2
+ixtdt.

This density is also explicit in some other models, namely the Laguerre and Jacobi ensembles,
involving hypergeometric functions [Maz22].

Our goal here is to follow a strategy introduced in [BG13a, BG13b] and used in [BGK15, BGK16]
to establish the existence of the large N -asymptotic of logZN [V ] for a general potential of the form

VG,φ(x)
(def)
= x2/2 + φ where φ is a bounded smooth function. Namely we wish to show that for all

K ≥ 0, there exists c0, . . . , cK ∈ R depending on φ and P such that:

1

N
logZN [VG,φ] =

K∑
i=0

ci
N i

+O
(
N−(K+1)

)
.

Before stating the main results and explaining how to obtain them, we need to introduce some
objects. An object that appears naturally when tackling this model is the so-called master operator
Ξ defined, for sufficiently smooth φ, by:

∀x ∈ R, Ξ[φ](x)
(def)
= φ′(x) +

(
log ρV

)′
(x)φ(x) + 2P

(
H[φρV ](x)−

ˆ
R
H[φρV ](y)dµV (y)

)
(2.6)

where H denotes the Hilbert transform, which is defined by H[f ](x) =

 
R

f(y)

y − x
dy and where the

integral has to be understood as a Cauchy principal value. The main difference between Ξ and
the master operator K that arises in the classical β-ensembles is the first derivative term of the
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RHS in (2.6). Because of this term, Ξ is then an unbounded operator. While in the classical
β-ensembles, K is easily invertible and controled, see [BFG15] dealing such an operator demands
lot of technicalities in general. In particular, inverting and obtaining controls is much more difficult
in this case.

One can understand the operator Ξ as controlling the fluctuations of the empirical measure LN
with respect to µV in the sense that when one writes, for a sufficiently smooth function φ,

〈φ〉VLN = 〈φ〉µV +RN ,

the remainder RN is expressed as a sum of linear statistics of functions involving Ξ−1[φ] and goes
to zero when N is large. Above, the superscript for the expectation value with respect to µV can
be omitted since the measure is deterministic. Furthermore, as we will show in the present work,
if V1 and V2 are two potentials, Ξ−1 appears naturally when one wants to study the variation
between the two corresponding equilibrium measures, namely µV1 −µV2 . Finally, by exploiting the
fact that the partition function ZN [V ], introduced in (2.2), is invariant under the transformation
λi → λi + tN−1/2φ(λi) for φ sufficiently smooth, the authors showed a central limit theorem in
[DGM23] i.e. that

√
N

ˆ
Ξ[φ]d (LN − µV )

law⇒ N
(
0, σ2(φ)

)
for σ2 a positive quadratic form. It has been shown in this same article that this operator is
invertible and that when φ is smooth, so is Ξ−1[φ]. This was done by inverting the operator L,

defined by L[φ]
(def)
= Ξ [φ′], on the Hilbert space:

H
(def)
=

{
u ∈ L2 (µV )

∣∣∣ u′ ∈ L2 (µV ) ,

ˆ
R
udµV = 0

}
, 〈u, v〉H

(def)
=
〈
u′, v′

〉
L2(µV )

. (2.7)

Once the operator L is inverted, this straightforwardly implies that Ξ is invertible with inverse
Ξ−1[ψ] =

(
L−1[ψ]

)′
.

The establishment of the large-N behavior of the 1-linear statistics is based on the so-called loop
equations or Schwinger-Dyson equations introduced in [ACM92, ArM90]; see [BGK16] for a more
precise state of the art.

2.1.2 Assumptions

For the rest of the paper, we use the following list of assumptions on the potential V :
Assumptions 2.1.1 The potential V satisfies:

(i) V ∈ C∞(R),

(ii) V (x) −→
|x|→+∞

+∞ and |V ′(x)| −→
|x|→+∞

+∞,

(iii) The measure µV satisfies the Poincaré inequality i.e. there exists CPoinc > 0 (depending on
V and P ) such that for all f ∈ C1

c (R):

VarµV (f)
(def)
=

ˆ
R

(
f(x)−

ˆ
R
f(y)dµV (y)

)2

dµV (x) ≤ CPoinc

ˆ
R
f ′(x)2dµV (x) . (2.8)

(iv) For all polynomial Q ∈ R[X] and α > 0, all p ≥ 0, Q
(
V (p)(x)

)
e−V (x) = o

|x|→∞
(x−α) .

(v) The function
1

V ′2
is integrable at infinity, and

V (k)(x)

V ′(x)
= O
|x|→∞

(1) for k ≥ 2.
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Assumption (i) is necessary to ensure that µV and Ξ−1[φ] for φ smooth are smooth (its derivatives
involve derivatives of V ).

Assumption (ii) is sufficient condition for ZN [V ] to be well-defined. Indeed, the assumption on
V ′ implies that V grows faster than linearly at infinity, which implies that the β-ensemble is well-
defined. Another consequence is that ρV has exponential decay at infinity. The fact that V ′ goes to
infinity is also necessary to ensure that Ξ−1[φ](k)(x) −→

|x|→∞
0 for all k ≥ 0 and for bounded smooth

φ.

Assumption (iii) implies that Ξ defined in (2.6), is invertible; see [DGM23, Proposition 2.6]. The
authors showed that for any potential of the form V = Vconv + φ, where Vconv is a strictly convex
potential outside of a compact set and φ a bounded function, µV satisfies the Poincaré inequality.

Assumption (iv) is necessary to ensure that the equilibrium density ρV is smooth.

Assumption v) allows one to prove that Ξ−1 is continuous with respect to the appropriate norms.
Indeed, when differentiating Ξ−1[φ], for φ a smooth function, quantities behaving at infinity like
V (k)(x)V ′(x)−1 will naturally arise. On the other hand, we will integrate some functions that
behave like V ′(x)−2 at infinity.

These conditions are satisfied, for example, for every V in the following class{
x 7→ anx

2n+φ(x), n > 0, an > 0, ai ∈ R, φ(k) bounded ∀k ∈ N
}
∪
{
x 7→ eγx + e−γx

α
, α > 0, γ ∈ R

}
.

These potentials satisfy assumptions (iii); see [DGM23, Proposition 2.6, Remark 2.7]for a discus-
sion about it. On the other hand, potentials like V (x) = ex

2
violate assumption (v), therefore they

do not fit in our analysis.

2.1.3 Main results

To state the next result, we recall that LN
(def)
= LN − µV .

Theorem 2.1.2 (Asymptotic expansion of linear statistics) Under assumptions 2.1.1 on the
potential V , for all smooth function φ ∈ L2(Rk), such that φ(j) ∈ L2(Rk) for all j ≥ 0, there exists
a unique sequence (bi)i≥dk/2e depending on V , φ and P such that forall K > 0:

〈φ〉V⊗kLN =
K∑

i=dk/2e

bi
N i

+O
(
N−(K+1)

)
.

Our goal is to obtain the existence of an asymptotic expansion for ZN [VG,φ] where VG,φ(x)
(def)
=

x2/2 +φ(x) and φ is a smooth function. As will be explained further, one would like to deduce the

asymptotic expansion of logZN [VG,φ] from an integration of the one for t ∈ [0, 1] 7→ 〈φ〉VG,φ,tLN where

VG,φ,t(x)
(def)
= x2/2 + tφ(x) . In order to make this step rigorous, we need the following continuity

result with respect to t.
Theorem 2.1.3 Under assumptions 2.1.1 on the potential V , for all i ∈ N and for all smooth
function φ ∈ L2(R), such that φ(k) ∈ L2(R) for all k ≥ 0,

‖ρVφ,t − ρVφ,t′‖W∞i (R) →
t→t′

0

where Vφ,t : x 7→ V (x) + tφ(x) where t ∈ [0, 1]. The W∞i (R)-norm is defined as ‖f‖W∞n (R)
(def)
=

max
k∈J0,nK

‖f (k)‖L∞(R). Furthermore, for all x ∈ R, t 7→ ρVφ,t(x) ∈ C∞(R) and satisfies the following
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integro-differential equation for all t ≥ 0 and x ∈ R:

∂tρVφ,t(x) =

(
−φ(x) +

ˆ
R
φ(s)ρVφ,t(s)ds

)
ρVφ,t(x).

Theorem 2.1.2 together with Theorem 2.1.3 allow us to deduce the following theorem.
Theorem 2.1.4 (Asymptotic expansion of the partition function) Let φ ∈ L2(R) be a
smooth function, such that φ(k) ∈ L2(R) for all k ≥ 0. There exists a unique sequence (ci)i≥0 ∈ RN

depending on φ and P , such that for all K ≥ 0,

1

N
logZN [VG,φ] =

K∑
i=0

ci
N i

+O
(
N−(K+1)

)
.

The leading term c0 is given by:

c0
(def)
= −

ˆ
R
VG,φ(x)dµVG,φ(x)+P

¨
R2

log |x−y|dµVG,φ(x)dµVG,φ(y)−
ˆ
R

log

(
dµVG,φ(x)

dx

)
dµVG,φ(x).

(2.9)
The first subleading term c1 is given in terms of the Euler-Mascheroni constant γ and Ξ−1

t the
inverse of the master operator associated with the potential VG,φ,t. It can be written as

c1
(def)
= γ

P

2
+

log(1 + P )

2
+

1

2

∑
j≥1

(
log

(
1 +

P + 1

j

)
− log

(
1 +

1

j

)
− P

j

)

− P
ˆ 1

0

[〈
∂1Ξ̃−1

t [φ]
〉
µVG,φ,t

+
〈

Θ(2) ◦ Ξ̃−1
t,1

[
∂2D ◦ Ξ̃−1

t φ
] 〉

µVG,φ,t

]
dt. (2.10)

Above, Θ(2) and D are explicit operators given in Section 2.3 while

Ξ−1
t [φ](x) =

1

ρVG,φ,t(x)

ˆ +∞

x
Tt[φ](y)dµVG,φ,t(y)

where Tt is an explicit kernel operator given in (2.77). The symbol Ξ̃−1
1 is also defined in Sections

2.3 and 2.4. It is a standard fact (see for example [GZ19, Theorem 1.2]) that the leading term c0

is the free energy of the model i.e., c0 = limN→∞N
−1 logZN [VG,φ] = −inf

µ
E(µ) = −E(µVG,φ) where

the infimum runs over probability measures on R.

2.1.4 Outline of the proof

This strategy is based on the following interpolation equation of the form:

logZN [VG,φ] = logZN [VG]−N
ˆ 1

0
〈φ〉VG,φ,tLN

dt. (2.11)

On the RHS, it is convenient to have logZN [VG] since, by Mehta’s formula [Meh04, 17.6.7], one can
extract its asymptotic expansion at large N . Once this identity is obtained, the derivation of the
asymptotic expansion of the free energy of the model logZN [V ] follows from a similar expnasion for
the 1-linear statistics as soon as one has sufficiently precise controls on the remainder’s dependence
on the data of the problem.

We now explain how to derive Theorem 2.1.2 for a general potential V satisfying assumptions 2.1.1.
The proof is based on the analysis of the Schwinger-Dyson equations (SDE). It consists of a tower
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of equations that link linear statistics of different orders together. The simplest equation is the one
at level 1, which reads for any φ smooth enough:

〈φ〉VLN =
P

N

〈(
Ξ−1[φ]

)′〉
µV

+
P

N

〈(
Ξ−1[φ]

)′〉V
LN
− P

〈
D ◦ Ξ−1[φ]

〉V
LN⊗LN

(2.12)

where D is the operator defined for all x 6= y by D[φ](x, y)
(def)
=

φ(x)− φ(y)

x− y
. This equation links the

1-linear statistic and the 2-linear statistic
〈
D ◦ Ξ−1[φ]

〉V
LN⊗LN

. The deduction of the asymptotic
expansion for linear statistics from the SDE is based on a so-called a priori bound, which we will
assume for now, of the following form:

| 〈φ〉 k
⊗LN
| ≤ C ‖φ‖

Nk/2
(2.13)

for a norm ‖.‖ that we don’t make precise here. Note however, that in the high temperature, one
has a to deal with a more complex norm which requires integrability conditions on the functions
we apply this bound to. Assuming we know that〈

D ◦ Ξ−1[φ]
〉V
LN⊗LN

=
α1(φ)

N
+ o(N−1) and that 〈ψ〉VLN = o(1),

for some α(φ) ∈ R, then (2.12) allows one to obtain the leading order asymptotic for the 1-statistic:

〈φ〉VLN = N−1
(
P
〈(

Ξ−1[φ]
)′〉

µV
− α1(φ)P + o(1)

)
(def)
= γ1(φ)N−1 + o(N−1).

Assuming now that for n = 2

〈
D ◦ Ξ−1[φ]

〉V
LN⊗LN

=

n∑
i=1

αi(φ)

N i
+ o(N−n), (2.14)

it is not hard to see that one can iteratively derive the expansion of 〈φ〉VLN and get:

〈φ〉VLN =

n∑
i=1

γi(φ)

N i
+ o(N−n), γ2(φ) = Pα1

((
Ξ−1[φ]

)′)− Pαi(φ).

By the same procedure, one can see that the extraction of the asymptotic expansion up to order
n > 2 of the 1-linear statistics boils down to extracting the one for the 2-linear statistics.

To achieve that, one needs to investigate the loop equation at level 2, which has the following form
for a smooth function φ2 of 2 variables

〈φ2〉VLN⊗LN =
1

N
〈U [φ2]〉VLN + 〈V[φ2]〉V3

⊗LN
+

1

N
〈W[φ2]〉VLN⊗LN +

1

N
〈Y[φ2]〉µV

with U , V, W and Y some operators. From estimate (2.13) that we assumed at the beginning, we
know that

〈U [φ2]〉VLN = O(N−1/2), 〈V[φ2]〉V3
⊗LN

= O(N−3/2), 〈W[φ2]〉VLN⊗LN = O(N−1).

It is straightforward to see that only the term N−1 〈Y[φ2]〉µV yields a non-negligible contribution

to the expansion of 〈φ2〉VLN⊗LN at precision o(N−1). In order to push it up to o(N−2), one needs
to obtain the asymptotic expansion for the 3-linear statistics and so on. Each additional order in
the asymptotic expansion requires analysing a higher level SDE. Hopefully, each time only a finite
number of equations need to be analyzed in order to get all the contributions, and the estimate
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allows one to neglect all the other terms. Finally, in order to apply the estimate to neglect the
remainders, one needs to show that the operators involved in the SDE preserve enough of the
regularity of the function they act on, especially for the inverse of the master operator Ξ−1. In this
setting, one has to obtain way more subtle controls compared to the constant β-setting. This is
due to the fact that (2.13) involves a more complex norm than just a L∞-norm. Moreover, finding
a manageable integral representation for Ξ−1[φ] in order to extract controls out of it, is a highly
non-trivial step. This makes the proof of the continuity of Ξ−1[φ] with respect to φ quite technical.
Finding such a form and proving continuity results for Ξ−1 is one of the main technical contribution
of this article.

When integrating the asymptotic expansion of the 1-linear statistics 〈φ〉VG,φ,tLN
, one needs to justify

that the resulting integrals are finite, i.e. that the integrands are integrable. Justifying that
t 7→ ρVG,φ,t is continuous with respect to the uniform convergence norm (of the function and all its
derivatives) is enough to conclude this. A transport-based approximation of an analogue of ρVG,φ,t
was constructed in [LS17] in the case of the 2D Coulomb gas. While for the classical β-ensembles,
it is not hard to show, under some hypotheses on the supports of V and W , that

µtV+(1−t)W = tµV + (1− t)µW ,

and deduce the continuity of t 7→ µtV+(1−t)W , to analog result in the high temperature regime is
much more involved. This is due to the non-linearity of (2.4).

To show this result, our method is based on an application of the Banach fixed-point theorem to
(2.5). In the model with fixed β the analogous step may be done easily because of the linearity,
with respect to the equilibrium measure, of the characterizing equation (the analogue (2.4)). Due
to the presence of entropy, ρV is the solution of a non-linear integral equation.

2.1.5 Notations and conventions

• Let X be a open set of Rp, we denote by Ck(X) (resp. Lp(X)) the space of functions
differentiable k-times for which the k-th derivative is continuous (resp. pth-power integrable
functions) on X. Ckc (X) denotes the space of functions of class k on X with compact support.
For p ∈ J1,+∞K, we denote by Lp(X) the usual Lebesgue spaces on X and by Lp(µ) the
Lebesgue spaces with respect to a borelian measure µ on R. Furthermore, we define L2

0(µ)
by
{
u ∈ L2(µ),

´
R udµ = 0

}
. For a function of several variables f , we denote the derivative

operator with respect to its i-th variable by ∂if .

• The space of functions f such that f (k) ∈ L∞(R) for all k = 0, . . . , n will be denoted W∞n (R).

Its norm is classically ‖f‖W∞n (R)
(def)
= max

k∈J0,nK
‖f (k)‖L∞(R).

• Let f ∈ L2(R), we denote by H[f ] the Hilbert transform of f defined by

H[f ](x)
(def)
=

 
R

f(y)

y − x
dy

where

 
stands for the Cauchy principal value integral.

• We denote the Fourier transform of f ∈ L1(R) ∩ L2(R) by

F [f ](t)
(def)
=

ˆ
R
f(x)e−itxdx.

When µ is a signed measure over R, we shall denote its Fourier transform by the same symbol
F [µ].
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• The 1/2-norm is defined for any function f which makes this quantity finite

‖f‖21/2
(def)
=

ˆ
R
|t| |F [f ](t)|2 dt.

• We denote by M1(R) the set of probability measures over R. For µ, µ′ ∈ M1(R) we define
the distance (possibly infinite) D by

D(µ, µ′) :=

(ˆ +∞

0

1

t

∣∣F [µ− µ′](t)
∣∣2dt)1/2

. (2.15)

• We define the Sobolev spaces for all m ≥ 0 by

Hm(Rn)
(def)
=
{
u ∈ L2(Rn), ‖u‖Hm(Rn) < +∞

}
where

‖u‖2Hm(Rn)

(def)
=

ˆ
Rn

(1 + ‖t‖2)2m |F [u](t1, . . . , tn)|2 dnt.

Above, ‖.‖2 denotes the Euclidean norm on Rn. If µ ∈M1(R), we also define

Hk(µ)
(def)
=
{
u ∈ L2(µ), u(k) ∈ L2(µ)

}
.

Outline of the paper. In Section 2.2, we establish an a priori bound on the n-linear statistics
that will be crucial in order to analyze the loop equations. To prove this bound, we first prove
a concentration inequality for the empirical measure. In Section 2.3, we establish controls on the
operators that appear as building blocks of the loop equations. In Section 2.4, we prove controls on
the so-called master operator. These will play a crucial role in the analysis of the loop equations.
We then state the loop equations and establish the large N asymptotic expansion of the linear
statistics in Section 2.5. In Section 2.6, we establish the continuity of the equilibrium density
associated with the interpolation between the Gaussian potential and the potential considered in
this paper, and this with respect to the interpolation parameter. Section 2.7 is dedicated to the
expansion of the partition function and an explicit form for the free energy associated with the
Gaussian potential, as well as the interpolation formula. We conclude with Theorem 2.1.4 thanks
to the results shown in Section 2.6, including Theorem 2.1.3. This allows us to integrate the
asymptotic expansion obtained in Theorem 2.1.2. We detail in Appendix 2.9 some results obtained
in [DGM23] upon which this article largely relies. In Appendix 2.10, we prove the continuity and
the integrability of the constants that appear in our problem.

Acknowledgements: The author wishes to thank Alice Guionnet, Gaultier Lambert and Trinh
Khanh Duy for useful suggestions and interesting discussions about this article. I also thank Karol
Kozlowski for his valuable advice and his idea for showing the continuity of the equilibrium density
with respect to the interpolation.

2.2 A priori bound on the linear statistics

As explained in the introduction, before analyzing the loop equations, one needs a bound that
quantifies how small is a function integrated n times against the recentred empirical measure

LN
(def)
= LN − µV . Before addressing this, let us recall certain properties enjoyed by µV and the

concentration results established in [DGM23].
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2.2.1 Equilibrium measure

We recall the definition of the logarithmic potential (or sometimes called Symm’s operator) Uf of
a function f : R→ R. When it is defined, the latter is given for all x ∈ R by

Uf (x) = −
ˆ
R

log |x− y|f(y)dy . (2.16)

One can check that
(
Uf
)′

= H[f ].

We now describe the regularity of the equilibrium density ρV characterized by (2.4).
Lemma 2.2.1 [DGM23, Lemma 2.2]

• The support of µV is R and there exists a P -dependent constant CV such that for all x ∈ R,

ρV (x) ≤ CV (1 + |x|)2P e−V (x) .

• The density ρV ∈ C∞(R) and it holds

ρV
′ = −

(
V ′ + 2PH[ρV ]

)
ρV , (2.17)

as well as

ρV
′′ =

(
− 2PH[ρV ]′ − V ′′ + V ′2 + 4P 2H[ρV ]2 + 4PV ′H[ρV ]

)
ρV . (2.18)

2.2.2 Concentration inequality

We now use an idea introduced by [MMS14] and based on a comparison between a configuration
x = (x1, . . . , xN ) sampled with PV,PN and a regularized version y = (y1, . . . , yN ), which we describe
here.
Definition 2.2.2 Let x = (x1, . . . , xN ) ∈ RN and suppose (up to reordering) that x1 ≤ x2 ≤ . . . ≤
xN . We define y ∈ RN by:

y1
(def)
= x1 and ∀k ∈ J0, N − 1K, yk+1

(def)
= yk + max

{
xk+1 − xk, e−(logN)2

}
.

We denote by L
(y)
N

(def)
=

1

N

n∑
a=1

δya and also define L
(y)
N,u

(def)
= L

(y)
N ∗ UN the convolution between L

(y)
N

and UN the uniform measure on
[
0, N−2e−(logN)2

]
.

Note that the configuration y given by the previous definition satisfies yk+1 − yk ≥ e−(logN)2
, and

y is close to x in the sense that

N∑
k=1

|xk − yk| ≤ N2e−(logN)2
. (2.19)

One can note that we have |xk − yk| = yk − xk ≤ (k − 1)e−(logN)2
, and we get (2.19) by summing

these inequalities. As in the proof of [DGM23, Theorem 1.5], we obtain a bound on the density:
Theorem 2.2.3 For all N ≥ 1 and x =

(
x1, . . . , xN

)
∈ RN ,

pV,PN
(
x
)
≤ exp

(
−NPD2

(
L

(y)
N,u, µV

)
+KV + 2P (logN)2

) N∏
i=1

ρV (xi) (2.20)

where KV
(def)
= 2P‖H[ρV ]‖∞+C +P

∣∣∣¨
R2

log |x− y|dµV (x)dµV (y)
∣∣∣ for some fixed, V -independent

constant C and with D as given in (2.15).

Note that we have to keep the dependance on V in all of the constants involved in our problem.
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2.2.3 A priori bound on linear statistics

Thanks to the bound given in Theorem 2.2.3, we can prove the below a priori bound on the linear
statistics. This bound is a priori in the sense that it is not optimal, namely, we will show later
that for the n-linear statistics are O(N−dn/2e) versus O(N−n(1−ε)/2) as predicted by the a priori
bound. Anyway, this will allow us to neglect, in the loop equations, the terms that are integrated

with respect to
⊗n LN , where LN

(def)
= LN − µV . The following theorem and its proof are just

adaptations of [BGK16, Corollary 3.1.10].
Theorem 2.2.4 (A priori bound on linear statistics) Let ε > 0, there exits Cn,ε > 0 such
that for all f in W∞1 (Rn) ∩Hn/2(Rn), it holds

∣∣∣〈f〉⊗n LN

∣∣∣ ≤ Cn,εe
KV

N
n
2

(1−ε)

(
‖f‖W∞1 (Rn) + ‖f‖Hn/2(Rn)

)
.

where KV is defined in Theorem 2.2.3.

Proof We use the decomposition LN =
(
LN −L(y)

N,u

)
+L(y)

N,u where L(y)
N,u = L

(y)
N,u−µV and obtain:

〈f〉⊗nLN =
n−1∑
l=0

n∑
i1<···<il

EV,PN

ˆ
Rn
f(ξ1, . . . , ξn)

l∏
a=1

dL(y)
N,u(ξia)

n∏
a=1
6=i1,...,il

d
(
LN − L(y)

N,u

)
(ξa)


+ 〈f〉⊗nL(y)

N,u

. (2.21)

Since the xi’s are not far from the yi’s, we have the following bound by the mean value theorem
and the fact that all the involved measures are probability measures:

EV,PN

ˆ
Rn
f(ξ1, . . . , ξn)

l∏
a=1

dL(y)
N,u(ξia)

n∏
a=1
6=i1,...,il

d
(
LN − L(y)

N,u

)
(ξa)


≤ Cn ‖f‖W∞1 (Rn)Ne

−(logN)2
(2.22)

for some constant Cn > 0 only depending on n.

Let’s focus now on 〈f〉⊗nL(y)
N,u

. We know by Theorem 2.2.3 that

PV,PN (ΩN ) = eKV O
(
e−cN

ε)
where ΩN

(def)
=

{
λ ∈ RN , D2

[
L

(y)
N,u, µV

]
>

1

N1−ε

}

for some c > 0 independent of V and for a remainder controlled V -independently. It ensures that:

∣∣∣∣〈f〉⊗nL(y)
N,u

∣∣∣∣ ≤ CeKV e−cNε ‖f‖W∞0 (Rn) + RN [f ]

where

RN [f ]
(def)
= EV,PN

[
1ΩcN

ˆ
Rn
f(ξ1, . . . , ξn)dL(y)

N,u
⊗n(ξ1, . . . , ξn)

]
.
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By Plancherel formula and Cauchy-Schwarz inequality, one gets:

RN [f ] = EV,PN

[
1ΩcN

ˆ
Rn
F [f ] (ϕ1, . . . , ϕn)

n∏
a=1

F
[
L(y)
N,u

]
(−ϕa)

dnϕ

(2π)n

]
(2.23)

≤

(ˆ
Rn
|F [f ] (ϕ1, . . . , ϕn)|2

n∏
a=1

|ϕa|
dnϕ

(2π)n

)1/2

.EV,PN
[
1ΩcN

2
n
2Dn

[
L

(y)
N,u, µV

]]

≤ 2
n
2

N
n
2

(1−ε)

ˆ
Rn
|F [f ] (ϕ1, . . . , ϕn)|2

1 +

(
n∑
a=1

|ϕa|2
)1/2


n

dnϕ

(2π)n

1/2

≤ 2
n
2

‖f‖Hn/2(Rn)

N
n
2

(1−ε)

which concludes the proof. �

2.3 Properties and control of the operators involved

In this section, we will set some definitions of operators which arise as building blocks of the loop
equations. After defining them, we will prove their continuity on appropriate spaces. This will
ultimately allow to apply the a priori bounds given in Theorem 2.2.4.

2.3.1 Definitions

The operators that will appear in the loop equations at level n ≥ 2 will be constructed via the
following extension procedure, allowing one to extend operators acting on l variables into operators
acting on n+ l variables.
Definition 2.3.1 (Extension of operators) Given an operator O that acts on functions of one
variable and yields a function of l variables, φ a function of n variables, we define O1 by:

O1[φ](ξ1, . . . , ξn+l−1) = O [φ(., ξl+1, . . . , ξn+l−1)] (ξ1, . . . , ξl) (2.24)

2.3.2 Control on the non-commutative derivative operator

A first example of an operator appearing in the loop equations is the non-commutative derivative
(NCD) operator.
Definition 2.3.2 Let f ∈ C1(R), we define the NCD operator D[f ] by:

∀x, y ∈ R, D[f ](x, y) =


f(x)− f(y)

x− y
if x 6= y

f ′(x) if x = y
.

In the following, p ≥ 2 is fixed.
Theorem 2.3.3 (Control for the NCD operator) Let n ≥ 1, there exists C(n) > 0 such that
for all f ∈ Cn(Rp−1) ∩Hn+1(Rp−1),

‖D1[f ]‖Hn(Rp) ≤ C(n)‖f‖Hn+1(Rp−1).

Before showing this inequality, we need to show a general form of the derivatives of D1[f ].
Lemma 2.3.4 (General form for derivatives of D1[f ]) Let m = (m1, . . . ,mp) ∈ Np satisfy
m1 ≥ m2 and

∑p
i=1mi ≤ n. Let x1, . . . , xp ∈ R be such that x1 6= x2, then one has:

∂mD1[f ](x1, . . . , xn) =

m2∑
j=0

Cm1,m2,j

(
g(j)(x2)−

m1−j∑
k=0

g(k+j)(x1)

k!
(x2 − x1)k

)
(x2 − x1)m1+m2+1−j (2.25)
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with Cm1,m2,j
(def)
=
(
m2

j

)
(m1 +m2 − j)!(−1)m2−j and g = ∂m3

2 . . . ∂
mp
p−1f(., x3, . . . , xp).

Proof First, it is easy to verify that D1[f ] ∈ Cn(Rp) for x1 6= x2. Secondly, when n ≥ 2, by the
Schwarz theorem, the order of the partial derivatives does not matter. It is only the derivatives
with respect to x1 and x2 that are non-trivial to compute. Indeed, let x = (x1, . . . , xp) ∈ Rp be
such that x1 6= x2, then

∂m3
3 . . . ∂

mp
p D1[f ](x1, . . . , xp) =

g(x1)− g(x2)

x1 − x2

with g
(def)
= ∂m3

2 . . . ∂
mp
p f(., x3, . . . , xp). By applying the Leibniz formula when differentiating m1

times with respect to x1, one gets:

∂m1
x1
∂m3
x3

. . . ∂
mp
xp D1[f ](x1, . . . , xp) =

m1!

(x2 − x1)m1+1

(
g(x2)−

m1∑
k=0

g(k)(x1)

k!
(x2 − x1)k

)
.

Again, we differentiate m2 times with respect to x2 and apply the Leibniz formula to get (2.25).�

We proved Lemma 2.3.4 for m1 ≥ m2. Since D1[f ] is symmetric under the exchange of the two
first variables, we can always assume that m1 ≥ m2. The idea of the proof of Theorem 2.3.3 is to
prove separately the L2 control on ∂mD1[f ] close to the singularity (the diagonal) and far from it.
To do so, we will use the Taylor formula with integral remainder to deal with the singularity and
Lemma 2.3.4 when we are at a fixed distance from the diagonal.

Proof (of Theorem 2.3.3) Let m
(def)
= (m1, . . . ,mp) ∈ Np be such that m

(def)
=

∑p
i=1mi ≤ n.

Without loss of generality, we can assume that m1 ≥ m2. Let’s show that∥∥∂m1
1 ∂m2

2 . . . ∂
mp
p D1[f ]

∥∥
L2(Rp)

≤ C‖f‖Hm+1(Rp−1)

with C > 0 independent of f . We first show this inequality on the subspace {x ∈ Rn, |x1 − x2| ≤ 1}.
First note that

D1[f ](x1, x2, . . . , xp) =

ˆ 1

0
∂1f (x1 + t(x2 − x1), x3, . . . , xp) dt

an so by differentiating under the integral sign and by Jensen’s inequality, we obtain:

∣∣∂m1
1 ∂m2

2 . . . ∂
mp
p D1[f ](x1, x2, . . . , xp)

∣∣2
≤
ˆ 1

0
(1− t)2m1t2m2∂m1+m2+1

1 ∂m3
2 . . . ∂

mp
p−1f (x1 + t(x2 − x1), x3, . . . , xp)

2 dt.

Hence, by integrating with respect to x, changing x2 − x1 into x̃2, and using Fubini, we get:

ˆ
Rn

∣∣∂m1
1 ∂m2

2 . . . ∂
mp
p D1[f ](x1, x2, . . . , xp)

∣∣2 1|x2−x1|<1d
nx

≤
ˆ 1

0
dt(1−t)2m1t2m2

ˆ 1

−1
dx̃2

ˆ
R
dx1

ˆ
R
dx3 . . .

ˆ
R
dxp∂

m1+m2+1
1 ∂m3

2 . . . ∂
mp
p−1f(x1 +tx̃2, x3, . . . , xp)

2

≤ C(m1,m2)‖∂m1+m2+1
1 ∂m3

2 . . . ∂
mp
p−1f‖

2
L2(Rp−1)

≤ C(m1,m2)‖f‖2Hm+1(Rp−1).

Now we deal with the subset {x ∈ Rn, |x1 − x2| ≥ 1}. By Jensen’s inequality and Lemma 2.3.4, we
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get:

ˆ
R
dx1

ˆ
|x2−x1|>1

dx2

∣∣∂m1
1 ∂m2

2 . . . ∂
mp
p D1[f ](x1, x2, . . . , xp)

∣∣2 ≤ (m2 + 1)

m2∑
j=0

C2
m1,m2,j

×
ˆ
R
dx1

ˆ
|x2−x1|>1

dx2

(
g(j)(x2)−

m1−j∑
k=0

g(k+j)(x1)

k!
(x2 − x1)k

)
|x2 − x1|2m1+2m2+2−2j

2

with g = ∂m3
2 . . . ∂

mp
p−1f(., x3, . . . , xp). Again by Jensen’s inequality, we get:

ˆ
R
dx1

ˆ
|x2−x1|>1

dx2

∣∣∂m1
1 ∂m2

2 . . . ∂
mp
p D1[f ](x1, x2, . . . , xp)

∣∣2 ≤ (m2 + 1)

m2∑
j=0

C2
m1,m2,j(m1 − j + 1)

×
ˆ
R
dx1

ˆ
|x2−x1|>1

dx2

g(j)(x2)2 +

m1−j∑
k=0

g(k+j)(x1)2

k!2
(x2 − x1)2k

|x2 − x1|2m1+2m2+2−2j
.

For all j ∈ J0,m2K, the double integral in the last line can be estimated with another constant
C(m1,m2) depending only on m1 and m2. For that, we use Fubini’s theorem:

ˆ
R
dx1

ˆ
|x2−x1|>1

dx2

g(j)(x2)2 +

m1−j∑
k=0

g(k+j)(x1)2

k!2
(x2 − x1)2k

|x2 − x1|2m1+2m2+2−2j

=

ˆ
R
dx2g

(j)(x2)2

ˆ
|x2−x1|>1

dx1

|x2 − x1|2m1+2m2+2−2j

+

m1−j∑
k=0

1

k!2

ˆ
R
dx1g

(k+j)(x1)2

ˆ
|x2−x1|>1

dx2

|x2 − x1|2m1+2m2+2−2(j+k)
≤ C(m1,m2)

∥∥g∥∥2

Hm1 (R)
.

Hence, after suming over j and changing the constant appropriately, we integrate over x3, . . . , xp
to obtain:ˆ

Rp−2

dx3 . . . dxp

ˆ
R
dx1

ˆ
|x2−x1|>1

dx2

∣∣∂m1
1 ∂m2

2 . . . ∂
mp
p D1[f ](x1, x2, . . . , xp)

∣∣2
≤ C(m1,m2) sup

l∈J1,m1K

∥∥∥∂l1 . . . ∂mpp−1f
∥∥∥2

L2(Rp−1)
≤ C(m1,m2) ‖f‖2Hm+1(Rp−1) .

This is enough to conclude. �

Since in Theorem 2.2.4, the bound on the linear statistic involves the W∞1 (Rp)-norm, we state the
following result.
Proposition 2.3.5 There exists a C > 0 such that for all f ∈ Cn(Rp−1) ∩W∞n (Rp−1),

‖D1[f ]‖W∞n (Rp) ≤ C(n)‖f‖W∞n+1(Rp−1).

Proof This follows from Lemma 2.3.4 together with the Taylor formula with integral remainder.�

2.4 Control on the master operator Ξ

In this section, we study the so-called master operator which will play an essential role in the
following. Indeed, proving continuity of this operator is a crucial step if one wants to analyze the
loop equations.
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2.4.1 Definition

We recall the definition of the operator L.
Definition 2.4.1 We define, for a sufficiently smooth function f , the operator

L[f ]
(def)
= Ξ

[
f ′
]

= −A[f ]− 2PW[f ]

where

A[f ]
(def)
= −(f ′ρV )′

ρV
, W[f ]

(def)
= −H

[
f ′ρV

]
+

ˆ
R
H
[
f ′ρV

]
(y)dµV (y).

L is an unbounded operator on the space H defined in (2.7). This space is indeed a Hilbert-space
by the fact that µV verifies the Poincaré inequality (see assumption (iii)). Its domain is defined

by D(L) = D(A)
(def)
= {u ∈ H, A[u] ∈ H} by [DGM23, Theorem 6.7]. We show that the functions

belonging to this set are smooth.
Lemma 2.4.2 (Regularity of the inverse of the derivative) [DGM23, Theorem 7.1] Let v ∈
D(L), then v′ ∈ C1(R).

For the next theorem, we recall that A : D(A) → H is a diagonalizable operator with positive
countable spectrum. We denote by λ1(A) > 0 its smallest eigenvalue. This quantity has a role in
our problem since for all f ∈ H, ‖L−1[f ]‖H ≤ λ1(A)−1/2‖f‖H see [DGM23, Theorem 6.7].
Theorem 2.4.3 (Inversion of the master operator) Ξ : D(Ξ) −→ H is invertible, of inverse
defined for all g ∈ H by:

Ξ−1[g]
(def)
=
(
L−1[g]

)′
where D(Ξ)

(def)
=
{
f ∈ C0(R), ∃v ∈ D(L), f = v′

}
. Furthermore for all f ∈ H,∥∥Ξ−1[f ]

∥∥
L2(µV )

≤ CL‖f ′‖L2(µV ) (2.26)

where CL
(def)
= λ1(A)−1/2.

Proof To prove that Ξ is invertible on D(Ξ), the only thing to prove is that for all v ∈ D(L),
v′ ∈ C0(R) which is true by Lemma 2.4.2. The estimate comes from the fact that given f ∈ H, one
has Ξ−1[f ] =

(
L−1[f ]

)′
. Then∥∥Ξ−1[f ]

∥∥
L2(µV )

=
∥∥L−1[f ]

∥∥
H
≤ CL‖f‖H. �

The crucial step when one wants to analyze the loop equations, is to obtain controls on the master
operator which we will show in this section. These bounds will allow us to apply the bound obtained
in Theorem 2.2.4 to functions like Ξ−1[φ].

2.4.2 Preliminaries

We define an operator O whose iterations will appear in the derivatives of the inverse of the master
operator (which exists because of Lemma 2.4.8 ).
Definition 2.4.4 Let O be the operator defined on smooth enough functions by:

O[f ](x)
(def)
=

(
fρV
ρ′V

)′
(x) x− a-e (2.27)

In order to give a more precise description of Ok, which will allow us to analyse its asymptotics at
infinity, we need the following definition.
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Definition 2.4.5 (Differential degree) Let f be a function of one variable defined on R differ-

entiable n times, we define the differential degree denoted by df∂ with respect to f by

df∂

(
n∏
k=0

(
f (k)

)αk) (def)
=

n∑
k=0

kαk

For example the differential degree with respect to f of (f ′)2 and f ′′f is 2, while df∂

((
f (3)

)2)
= 6.

Remark 2.4.6 For example, with α
(def)
=

ρV
ρ′V

, it holds that:

• O[f ] = α′f + αf ′.

• O2[f ] = (αα′)′f + 3αα′f ′ + α2f ′′.

• O3[f ] =
(
α (αα′)′

)′
f +

(
4α2α′′ + 7αα′2

)
f ′ +

(
6α′α2

)
f ′′ + α3f (3).

Using the notion of differential degree, we are now able to state the next theorem.
Theorem 2.4.7 Let k ≥ 1, f ∈ Ck(R), there exists a family of polynomials (P ka )0≤a≤k such that

Ok[f ] =

k∑
j=0

f (k−j)P kj (α, . . . , α(j)), with α
(def)
=

ρV
ρ′V

(2.28)

In fact, P kj
(
α, . . . , α(j)

)
, j ∈ J0, kK, is the unique homogeneous polynomial in j + 1 variables, with

differential degree with respect to α equal to j, degree k and with coefficients independent of V
satisfying the following reccurence relations:

• P k+1
0 (α) = αP k0 (α) = αk+1

• ∀j ∈ J1, kK, P k+1
j

(
α, . . . , α(j)

)
=
(
αP kj−1(α, . . . , α(j−1))

)′
+ αP kj

(
α, . . . , α(j)

)
• P k+1

k+1

(
α, . . . , α(k+1)

)
=
(
αP kk

(
α, . . . , α(k)

))′
=
(
(α′α)′ . . . α

)′
Proof Let’s prove it by induction. For k = 1, O[f ] = α′f+αf ′ and so by setting P 1

0 (α) = α, which
is homogeneous, of degree 1 and of differential degree 0, and P 1

1 (α, α′) = α′ which is of degree 1
and differential degree 1, this proves the claim. Suppose that (2.28) holds at rank k ∈ N∗, then:

Ok+1[f ] =
(
αOk[f ]

)′
=

k∑
j=0

f (k−j)
[
αP kj (α, . . . , α(j))

]′
+

k∑
j=0

f (k−j+1)αP kj
(
α, . . . , α(j)

)
=
[
αP kk

(
α, . . . , α(k)

)]′
f +

k−1∑
j=0

f (k−j)
{[
αP kj

(
α, . . . , α(j)

)]′
+ αP kj+1

(
α, . . . , α(j+1)

)}
+ αP k0 (α)f (k+1)

Hence by setting P k+1
0 (α)

(def)
=

(
αP k0 (α)

)′
, P k+1

k+1

(
α, . . . , α(k+1)

) (def)
=

(
αP kk

(
α, . . . , α(k)

))′
and for

all j ∈ J0, k − 1K, P k+1
j+1

(
α, . . . , α(j+1)

) (def)
=
(
αP kj (α, . . . , α(j))

)′
+ αP kj

(
α, . . . , α(j)

)
, we obtain the

desired form of (2.28) and the recurrence relations. It remains to check that the homogeneity and
degree conditions hold at rank k + 1. This follows from the recurrence relations for the P kj ’s. �

2.4.3 Closed form for Ξ−1

Before showing a closed form for the derivatives of Ξ−1
1 [f ] and their L2 properties, we first prove

that, if f is sufficiently smooth, they indeed exist.
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Lemma 2.4.8 (Regularity of the inverse) Let f ∈ H such that fρV ∈ Hn(R) with n ≥ 2, then
ρV Ξ−1[f ] ∈ Hn+1(R). Furthermore if f ∈ H ∩ Cn(R) is such that fρV ∈ Hn(R), then one also has
Ξ−1[f ] ∈ Cn+1(R).

Note that the last condition is verified whenever f and its derivatives are continuous and grow
slower than e−V at infinity. The proof uses the operators L and A introduced in Definition 2.4.1.
Proof We recall that Ξ−1[f ] =

(
L−1[f ]

)′
. When f ∈ H, we know that ρV

(
L−1[f ]

)′ ∈ H2(R). This

is because L−1[f ] ∈ D (L) ⊂ {u ∈ H, A[u] ∈ H} and
(
ρV
(
L−1[f ]

)′)′
= ρVA

[
L−1[f ]

]
∈ H1(R). We

want to show that ρV
(
L−1[f ]

)′′ ∈ Hn(R), let’s show first that H
[
ρV
(
L−1[f ]

)′] ∈ Hn(R). First

observe that

ρVAL−1[f ] = −ρV f + 2PρVH
[
ρV
(
L−1[f ]

)′]− 2PρV

ˆ
R
H
[
ρV
(
L−1[f ]

)′]
(y)dy

Hence, since ρV
(
L−1[f ]

)′ ∈ H2(R), so is H
[
ρV
(
L−1[f ]

)′]
. Moreover, the function

2PρV
´
RH

[
ρV
(
L−1[f ]

)′]
(y)dy clearly belongs to Hn(R) for all n ∈ N hence ρVA ◦ L−1[f ] =(

ρV
(
L−1[f ]

)′)′ ∈ H2(R) and hence ρV
(
L−1[f ]

)′ ∈ H3(R). By induction, this shows that
(
L−1[f ]

)′
=

Ξ−1[f ] ∈ 1

ρV
Hn+1(R) ⊂ Cn(R) by Sobolev-Hölder embedding theorem and hence we can conclude

that H
[
ρV
(
L−1[f ]

)′] ∈ Hn+1(R). Since

(
L−1[f ]

)′′
= f −

ρ′V
ρV

(
L−1[f ]

)′ − 2P

(
H
[
ρV
(
L−1[f ]

)′]− ˆ
R
H
[
ρV
(
L−1[f ]

)′]
(y)dµV (y)

)
(2.29)

and that
ρ′V
ρV
∈ C∞(R), we can then conclude that, under the assumption that f ∈ Cn(R),(

Ξ−1[f ]
)′

= L−1[f ] ∈ Cn(R), hence Ξ−1[f ] ∈ Cn+1(R). �

Lemma 2.4.9 There exists MV > 0 such that ∀|x| ≥MV ,
∣∣∣ρ′V
ρV

(x)
∣∣∣ ≥ 1.

Proof From Lemma 2.9.2, H[ρV ] is bounded and by assumption (ii), V ′(x) goes to infinity, the

conclusion follows from the fact that
ρ′V
ρV

(x) = −V ′(x)− 2PH[ρV ]. �

We are now able to prove that a closed form holds for the derivatives of Ξ−1. The idea is to use
the resolvant formula which gives that for all f ∈ H,

L−1[f ] = −A−1
[
f + 2PW ◦ L−1[f ]

]
(2.30)

and for all x ∈ R,

A−1[f ](x) =
1

ρV (x)

ˆ ±∞
x

f(t)ρV (t)dt. (2.31)

It doesn’t matter if one chooses +∞ or −∞ in (2.31) since
´
R f(t)ρV (t)dt = 0 but it will be

convenient to make the choice sgn(x)∞ for reasons that will appear further. Before establishing

the continuity for Ξ−1, we need to introduce an operator X that takes a function in
1

ρV
Hn(R) and

produces one belonging to
1

ρV
Hn(R) ∩ H by means of a recentring.

Definition 2.4.10 Let φ ∈ 1

ρV
Hn(R), we define the operator X by

X [φ](ξ) = φ(ξ)−
ˆ
R
φ(t)dµV (t).
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For any φ ∈ 1

ρV
Hn(R), it is clear that ρV X [φ] ∈ Hn(R) i.e. X [φ] ∈ 1

ρV
Hn(R). We denote by

Ξ̃1
(def)
= Ξ1 ◦ X1, Ξ̃−1

1

(def)
= Ξ1 ◦ X1

and, given a general operator U , we adopt the notation Ũ for the operator U ◦ X .

Theorem 2.4.11 Let f ∈ Cn(R)∩
(

1

ρV
Hn(R)

)
, for all |x| > MV with MV given in Lemma 2.4.9,

for all k ∈ J1, n+ 1K it holds that

(
Ξ̃−1[f ]

)(k)
=

k−1∑
a=0

Qka

(
θ, . . . , θ(a)

)
βk−a, where θ

(def)
=

ρ′V
ρV

(2.32)

with the convention that Ξ̃−1[f ]
(def)
= β0. The βi’s are defined, for all |x| > MV , for all i ∈ J1, kK,

by:

βi(x)
(def)
=

−1

ρV (x)

sgn(x)∞ˆ

x

dtρV (t)Oi
[
X [f ] + 2PW ◦ L̃−1[f ]

]
(t)

(see (2.27)). Above Qka denotes the unique homogeneous polynomial in a+ 1 variables with degree
k − a, with differential degree with respect to θ a and with coefficients independent of V satisfying
the following induction relations:

Qk+1
0 (θ) = θQk0(θ) = θk (2.33)

∀a ∈ J1, k − 1K, Qk+1
a

(
θ, . . . , θ(a)

)
= θQka

(
θ, . . . , θ(a)

)
+Qka−1

(
θ, . . . , θ(a)

)′
(2.34)

Qk+1
k

(
θ, . . . , θ(k)

)
= Qkk−1

(
θ, . . . , θ(k−1)

)′
= θ(k−1) (2.35)

Proof We prove this statement by induction. For k = 1, by (2.30) and (2.31), by setting

g
(def)
= −X [f ]− 2PW ◦ L̃−1[f ],

we get for all x ∈ R,

Ξ̃−1[f ](x) =
(
L̃−1[f ]

)′
(x) =

(
A−1[g]

)′
(x) =

1

ρV (x)

sgn(x)∞ˆ

x

dtρV (t)g(t) = β0(x). (2.36)

For k = 2, differentiating again, which is allowed by Lemma 2.4.8, we get for |x| large enough:

(L̃−1[f ])′′(x) = (A−1[g])′′(x) = −g(x)−
ρ′V
ρV

(x)
(
A−1[g]

)′
(x).

After performing an integration by parts in the last integral, we obtain

(
Ξ̃−1[f ]

)′
(x) =

(
L̃−1[f ]

)′′
(x) =

ρ′V
ρ2
V

(x)

sgn(x)∞ˆ

x

dtρV (t)

(
g
ρV
ρ′V

)′
(t) = (θβ1)(x).

By defining Q1
0(θ)

(def)
= θ, it is readily seen that its degree is 1 and its differential degree with respect

to θ is 0. Let k ∈ J2, nK and suppose that (2.32) is true at rank k, then by differentiating we get:

(
Ξ̃−1[f ]

)(k+1)
=

k−1∑
a=0

Qka

(
θ, . . . , θ(a)

)
β′k−a +Qka

(
θ, . . . , θ(a)

)′
βk−a. (2.37)



122 CHAPTER 2. ASYMPTOTICS OF THE PARTITION FUNCTION

First, let i ∈ J1, kK and |x| be large enough,

β′i(x) = −Oi[g](x)−
ρ′V
ρ2
V

(x)

sgn(x)∞ˆ

x

dtρV (t)Oi[g](t) =
ρ′V
ρ2
V

(x)

sgn(x)∞ˆ

x

dtρV (t)Oi+1[g](t) = (θβi+1)(x).

The second equality follows from an integration by parts and the fact that
ρ′V
ρ2
V

ρV
ρV
ρ′V
Oi[g] goes to

zero at infinity. Hence (2.37) becomes

(
Ξ̃−1[f ]

)(k+1)
=

k−1∑
a=0

θQka

(
θ, . . . , θ(a)

)
βk+1−a +Qka

(
θ, . . . , θ(a)

)′
βk−a

= θQk0(θ)βk+1 +

k−1∑
a=1

(
θQka

(
θ, . . . , θ(a)

)
+Qka−1

(
θ, . . . , θ(a−1)

)′)
βk+1−a

+Qkk−1

(
θ, . . . , θ(k−1)

)′
β1.

By the definitions of (Qk+1
a )a, it is clear that (2.32) is true at rank k + 1. The fact that Qk+1

a

are homogeneous and have degree k − a and differential degree a can be checked directly from the
induction relations (2.33), (2.34), (2.35). �
Remark 2.4.12 When V (x) = xm with m even, it can be checked from (2.17) that for every a ∈
J0, n−2K, Qna(θ, . . . , θ(a)) is of the form ca,nx

m(n−1−a)−(n−1)+Tna (x)+Rna

(
x,H[ρV ], . . . ,H

[
ρ

(a)
V

])
(x)

where ca,n is a real number, Tna is polynomial of degree strictly lower than m(n− 1− a)− (n− 1)
and Rna is also a polynomial of degree greater than 1. Since all these Hilbert transform vanish at
infinity, such a polynomial expression goes to zero at infinity. This decomposition holds as long as
the degree of the monomial is non-negative, otherwise it is zero. We give the first decompositions

for
(

Ξ̃−1[f ]
)(k)

for k ∈ J0, 3K:

Ξ̃−1[f ] = β0,
(

Ξ̃−1[f ]
)′

= θβ1,
(

Ξ̃−1[f ]
)′′

= θ′β1 + θ2β2,

and (
Ξ̃−1[f ]

)(3)
= θ′′β1 +

(
θθ′ + (θ2)′

)
β2 + θ3β3.

With the choice of potential V (x) = xm with m even, choosing a bounded function f with
bounded derivatives at all orders and integrating by parts, it holds that for allk ≥ 0, there ex-

ists γ
(k)
0 , . . . , γ

(k)
k ∈ R,

|βk(x)| ∼
|x|→∞

Ok[g](x)

xm−1
∼

|x|→∞

1

xm−1

k∑
j=0

g(j)(x)

(
γ

(k)
j

xkm−j
+ o
|x|→∞

(
1

xkm−j

))
.

When V (x) = cosh(αx), by the same computation, we get for different γ
(k)
j

|βk(x)| ∼
|x|→∞

e−α|x|
k∑
j=0

γ
(k)
j g(j)(x)

(
e−kα|x| + o

|x|→∞

(
e−kα|x|

))
.

2.4.4 Controls on the inverse of the master operator

Since we are going to use the polynomials, P kj and Qkj defined previously in Theorem 2.4.7 and

2.4.11, a lot in our estimates on Ξ̃−1
1 , we first need the following lemma. With α =

ρV
ρ′V
θ−1, the

following result holds.
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Lemma 2.4.13 For all k ≥ 1, for all j ∈ J0, kK

(i) P kj
(
α, . . . , α(j)

)
(x) = O

|x|→∞

(
V ′(x)−k

)
,

(ii) P kj
(
α, . . . , α(j)

)′
(x) = O

|x|→∞

(
V ′(x)−k

)
,

(iii) Qkj
(
θ, . . . , θ(j)

)
(x) = O

|x|→∞

(
V ′(x)k−j

)
.

Proof For i), by the Faà di Bruno’s formula, for all n ≥ 0,

α(n) =

(
−1

V ′ + 2PH[ρV ]

)(n)

= −
∑
λ`n

(−1)|λ||λ|!
(V ′ + 2PH[ρV ])|λ|+1

n∏
i=1

(
V (i+1) + 2PH[ρV ](i)

)λi
λi!(i!)λi

.

where the sum is over λ
(def)
= (λ1, . . . , λn) such that

∑n
i=1 iλi = n. From assumption v) and Lemma

2.9.2, we see that

|α(n)(x)| ≤
∑
λ`n

Cλ O
|x|→∞

(
V ′(x)−1

)
= O
|x|→∞

(
V ′(x)−1

)
.

Hence P kj , as a homogeneous polynomial in
(
α, . . . , α(j)

)
of degree k, is a O

|x|→∞

(
V ′(x)−k

)
.

For the point ii), one has to notice that for each monomial

An
(def)
=

[
n∏
i=1

(
α(i)
)li]′

=
n∑
j=1

ljα
(j+1)

(
α(j)

)lj−1
n∏
i 6=j

(
α(i)
)li

.

But, we have proven that for all i ∈ N, α(i) = O
|x|→∞

(
V ′(x)−1

)
, so by denoting l

(def)
=

∑n
i=1 li =

deg(An), An(x) = O
|x|→∞

(
V ′(x)−l

)
. Therefore, any homogeneous polynomial of degree k such as

P kj in the variables
(
α, . . . , α(j)

)
is a O

|x|→∞

(
V ′(x)−k

)
. Finally for the point iii), it is clear that for

all j ≥ 0,

θ(j)(x) = V (j+1)(x)− 2PH [ρV ](j) (x) = O
|x|→∞

(
V ′(x)

)
.

Thus Q
(k)
j

(
θ, . . . , θ(j)

)
as a homogeneous polynomial of degree k − j, is a O

|x|→∞

(
V ′(x)k−j

)
. �

Theorem 2.4.14 (Hn(R)-continuity of Ξ̃−1
1 ) There exists a constant C(Ξ̃−1

1 , Hn) > 0 depend-
ing only on n and V such that for all f ∈ Hn+1(Rp),∥∥∥Ξ̃−1

1 [f ]
∥∥∥
Hn(Rp)

≤ C(Ξ̃−1
1 , Hn)‖f‖Hn+1(Rp).

Under the choice of potential Vφ,t defined in Theorem 2.1.3, for φ ∈ ∩k≥0H
k(R) the map t ∈ [0, 1] 7→

C(Ξ̃−1
1 , Hn) is continuous.

The idea of the proof is to use the closed form for the operator Ok defined in 2.4.4, found in

Theorem 2.4.7 and inject it in the βk which appear in the closed form for Ξ̃−1
(n)

in Theorem 2.4.11.
Proof Let m ≤ n and (m1, . . . ,mp) ∈ Np be such that

∑p
i=1mi = m. Let x2, . . . , xp ∈ Rp−1 be

fixed, we define h : x1 7→ ∂m2
2 . . . ∂

mp
p f(x1, . . . , xp) and g = −X [h] − 2PW ◦ L̃−1[h]. With these

notations,

∂mΞ̃−1
1 [f ](x1, . . . , xp) = Ξ̃−1 [h](m1) (x1).
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We can then apply Theorem 2.4.11 and Theorem 2.4.7, so for |x1| large enough, we get

Ξ̃−1[h](m1)(x1) =

m1−1∑
a=0

Qm1
a

(
θ, . . . , θ(a)

)
(x1)βm1−a(x1)

=

m1−1∑
a=0

Qm1
a

(
θ, . . . , θ(a)

)
(x1)

1

ρV (x1)

sgn(x1)∞ˆ

x1

dtρV (t)Om1−a[g](t)

=

m1−1∑
a=0

m1−a∑
b=0

Qm1
a

(
θ, . . . , θ(a)

)
(x1)

1

ρV (x1)

sgn(x1)∞ˆ

x1

dtρV (t)g(m1−a−b)(t)Pm1−a
b (α, . . . , α(b))(t).

(2.38)

Moreover an integration by parts yields:

Ξ̃−1[h](m1)(x1) =

m1−1∑
a=0

m1−a∑
b=0

Qm1
a

(
θ, . . . , θ(a)

)
(x1)

(
− g(m1−a−b)(x1)α(x1)Pm1−a

b (α, . . . , α(b))(x1)

+
1

ρV (x1)

sgn(x1)∞ˆ

x1

dtρV (t)

[
g(m1−a−b+1)(t)α(t)Pm1−a

b

(
α, . . . , α(b)

)
(t)

+ g(m1−a−b)(t)
[
αPm1−a

b

(
α, . . . , α(b)

)]′
(t)

])
. (2.39)

We now use MV > 0 from Lemma 2.4.9 so that P ab
(
α, . . . , α(b)

)
that appear above are well-

defined on [−MV ,MV ]c i.e. don’t have any singularity. Hence by integrating with respect to x1,(
Ξ−1[h](m1)

)2
on [MV ,+∞[, we get, by Jensen’s inequality, for a constant C(n1) > 0 depending

only on m1:

ˆ +∞

MV

dx1

(
Ξ̃−1[h](m1)(x1)

)2

≤ C(m1)

m1−1∑
a=0

m1−a∑
b=0

+∞ˆ

M

dx1Q
m1
a

(
θ, . . . , θ(a)

)
(x1)2

{
g(m1−a−b)(x1)2α(x1)2Pm1−a

b (α, . . . , α(b))(x1)2

+
1

ρV (x1)2

 sgn(x1)∞ˆ

x1

dtρV (t)g(m1−a−b+1)(t)α(t)Pm1−a
b

(
α, . . . , α(b)

)
(t)


2

+
1

ρV (x1)2

 sgn(x1)∞ˆ

x1

dtρV (t)g(m1−a−b)(t)
[
αPm1−a

b

(
α, . . . , α(b)

)]′
(t)


2}

.

We want to bound this expression by ‖g‖2
Hm1+1(R)

, but since g = −h+ 2PH
[
ρV Ξ−1[h]

]
+ c, where

c =
´
R h(y)dµV (y) − 2P

´
RH

[
ρV Ξ−1[h]

]
(y)dµV (y), the constant terms will fail to be in L2(R).

We thus have to treat these terms separately. In the previous sum, g is differentiated everywhere
except in the term b = m1 − a so this is the only value of b where we have to deal with c. By
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defining:

f
(1),V
n1,a,b

: x 7→ Qn1
a

(
θ, . . . , θ(a)

)
(x)α(x)Pn1−a

b (α, . . . , α(b))(x) (2.40)

f
(2),V
n1,a,b

: x 7→
Qn1
a

(
θ, . . . , θ(a)

)
(x)

ρV (x)

sgn(x)∞ˆ

x

dtρV (t)
[
αPn1−a

b

(
α, . . . , α(b)

)]′
(t), (2.41)

by using Jensen’s inequality and inequality (2.26) we get :

c2C(m1)

m1−1∑
a=0

ˆ +∞

MV

dx1

[
f
(1),V
m1,a,m1−a(x1)2 + f

(2),V
m1,a,m1−a(x1)2

]
≤ C(m1) sup

0≤a<m1

(
‖f(1),V
m1,a,m1−a‖

2
L2([−MV ,MV ]c) + ‖f(2),V

m1,a,m1−a‖
2
L2([−MV ,MV ]c)

)
×
(
‖h‖2L2(µV ) +

∥∥H [ρV Ξ−1[h]
]∥∥2

L2(µV )

)
≤ C(V,m1)‖ρV ‖L∞(R)

(
‖h‖2L2(R) + ‖ρV ‖L∞(R)π

2‖Ξ−1[h]‖2L2(µV )

)
≤ C(V,m1)

(
‖h‖2L2(R) + ‖ρV ‖L∞(R)π

2C2
L‖h′‖2L2(µV )

)
≤ C1(V,m1)‖∂m2

2 . . . ∂
mp
p f(., x2, . . . , xp)‖2H1(R)

where at the end, the constant C1(V,m1) is defined by:

C1(V, n1)
(def)
= C(n1) max

0≤a<n1

(
‖f(1),V
n1,a,n1−a‖

2
L2([−MV ,MV ]c) + ‖f(2),V

n1,a,n1−a‖
2
L2([−MV ,MV ]c)

)
× ‖ρV ‖L∞(R)

(
1 + ‖ρV ‖2L∞(R)π

2C2
L

)
. (2.42)

Above, the first integral that appears is well-defined, since by Lemma 2.4.13, one can check by

assumption (v) that f
(1)
m1,a,m1−a(x1) and f

(2)
m1,a,m1−a(x1) behave like O

|x1|→∞

(
V ′(x1)−2

)
which is inte-

grable by assumption (v) again.

In the following, we set g
(def)
= g − c. We can now replace g′ by g′ since we handled all the terms

involving c. By Cauchy-Schwarz inequality, with C2(V,m1) defined by:

C2(V, n1) = C(n1) max
0≤a<n1

0≤b≤n1−a

(∥∥∥f(1),V
n1,a,b

∥∥∥2

L∞([−MV ,MV ]c)

+ ‖f(3),V
n1,a,b

‖2L2([−MV ,MV ]c) +
∥∥∥f(4),V
n1,a,b

∥∥∥2

L2([−MV ,MV ]c)

)
, (2.43)

with

f
(3),V
n1,a,b

: x 7→
Qn1
a

(
θ, . . . , θ(a)

)
(x)

ρV (x)

∣∣∣∣∣
sgn(x)∞ˆ

x

dtρV (t)2α(t)2Pn1−a
b

(
α, . . . , α(b)

)
(t)2

∣∣∣∣∣
1/2

, (2.44)

f
(4),V
n1,a,b

: x 7→
Qn1
a

(
θ, . . . , θ(a)

)
(x)

ρV (x)

∣∣∣∣∣
sgn(x)∞ˆ

x

dtρV (t)2
[
αPn1−a

b

(
α, . . . , α(b)

)]′
(t)

∣∣∣∣∣
1/2

, (2.45)
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we get

m1−1∑
a=0

m1−a∑
b=0

ˆ +∞

MV

dx1Q
m1
a

(
θ, . . . , θ(a)

)
(x1)2

{
g(m1−a−b)(x1)2α(x1)2Pm1−a

b (α, . . . , α(b))(x1)2

+
1

ρV (x1)2

 sgn(x1)∞ˆ

x1

dtρV (t)g(m1−a−b+1)(t)α(t)Pn1−a
b

(
α, . . . , α(b)

)
(t)


2

+
1

ρV (x1)2

 sgn(x1)∞ˆ

x1

dtρV (t)g(m1−a−b)(t)
[
αPm1−a

b

(
α, . . . , α(b)

)]′
(t)


2}

≤ C2(V,m1)‖g‖2Hm1+1(R).

Finally, by using that g = −h− 2PH
[
ρV Ξ−1[h]

]
, that π−1H is an isometry in L2(R) and that for

all u ∈ H1(R), H[u]′ = H[u′], we obtain:∥∥∥Ξ−1[h](m1)
∥∥∥
L2([MV ,+∞[)

≤ 2 max
i=1,2

Ci(V,m1)1/2
(
‖h‖Hm1+1(R) + 2Pπ‖ρV Ξ−1[h]‖Hm1+1(R)

)
.

We now use the form stated in Lemma 2.9.3, to conclude that∥∥∥Ξ−1
1 [h](m1)

∥∥∥
L2([MV ,+∞[)

≤ 2 max
i=1,2

Ci(V,m1)1/2 (2PπC3(V,m1) + 1) ‖h‖Hm1+1(R).

where C3(V,m1) is explicitly given in Lemma 2.9.3. By the exact same bounds, on ] −∞,−MV ],
we finally obtain∥∥∥Ξ−1 [h](m1)

∥∥∥
L2([−MV ,MV ]c)

≤ 4 max
i=1,2

Ci(V,m1)1/2 (2PπC3(V,m1) + 1) ‖h‖Hm1+1(R).

Now relaxing the dependance on x2, . . . , xp ∈ R and integrating with respect to these variables, we
get∥∥∂mΞ−1

1 [f ]
∥∥
L2([−MV ,MV ]c×Rp−1)

≤ 4 max
i=1,2

Ci(V,m1)1/2 (2PπC3(V,m1) + 1)

×
(ˆ

Rp−1

‖∂m2
2 . . . ∂

mp
p f(., x2, . . . , xp)‖2Hm1+1(R)dx2 . . . dxp

)1/2

.

Thus we deduce that for a constant C(n) > 0 only depending on n such that∥∥Ξ−1
1 [f ]

∥∥
Hn([−MV ,MV ]c×Rp−1)

≤ C(n) max
m1≤n

max
i=1,2

Ci(V,m1)1/2 (2PπC3(V,m1) + 1) ‖f‖Hn+1(Rp).

(2.46)
Now, we prove the control on [−MV ,MV ] × Rp−1, we fix x2, . . . , xp ∈ R. By Cauchy-Schwarz
inequality:

ˆ MV

−MV

∣∣∣Ξ−1 [h](m1) (x)
∣∣∣2 dx ≤ ∥∥ρ−1

V

∥∥2

L∞([−MV ,MV ])

∥∥∥ρV Ξ−1 [h](m1)
∥∥∥2

L2(R)

≤ C3(V,m1)2
∥∥ρ−1

V

∥∥2

L∞([−MV ,MV ])
‖h‖2Hm1 (R)

where the last inequality comes from Lemma 2.9.3. Again relaxing the dependance on x2, . . . , xp ∈ R
and integrating with respect to these variables, we get for a constant C(n) > 0 independent of n:∥∥Ξ−1

1 [f ]
∥∥
Hn([−MV ,MV ]×Rp−1)

≤ C(n) max
m1≤n

C3(V,m1)
∥∥ρ−1

V

∥∥
L∞([−MV ,MV ])

‖f‖Hn+1(Rp).
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Collecting the last bound, using that C3(V,m) is increasing in m and (2.46) leads to the conclusion
for

C(Ξ̃−1
1 , Hn)

(def)
= C(n)

[
C3(V, n)

∥∥ρ−1
V

∥∥
L∞([−MV ,MV ])

+ (2PπC3(V, n) + 1) max
n1≤n

max
i=1,2

Ci(V, n1)
1
2

]
(2.47)

The fact that, upon choosing the potential Vφ,t with φ ∈ ∩k≥0H
k(R), t 7→ C(Ξ̃−1

1 , Hn) is continuous
is shown in Proposition 2.10.8. �

Theorem 2.4.15 (W∞n (R)-continuity of Ξ̃−1
1 ) Let n ≥ 1, for all f ∈W∞n+1(Rp),∥∥∥Ξ̃−1

1 [f ]
∥∥∥
W∞n (Rp)

≤ C(Ξ̃−1
1 ,W∞n )‖f‖W∞n+1(Rp ).

Under the choice of potential Vφ,t defined in Theorem 2.1.3, for φ ∈ ∩k≥0H
k(R) the map t ∈ [0, 1] 7→

C(Ξ̃−1
1 ,W∞n ) is continuous.

Proof Let f ∈ Wn+1(Rp), let m ≤ n and (m1, . . . ,mp) ∈ Np be such that
∑p

i=1mi = m, let
x2, . . . , xp ∈ Rp−1, we set h : x1 7→ ∂m2

2 . . . ∂
mp
p f(x1, . . . , xp) we know by theorem 2.4.11 that

Ξ̃−1[h](x1) =
1

ρV (x1)

sgn(x1)∞ˆ

x1

dtρV (t)g(t),

where g
(def)
= −X [h] + 2PX ◦ H

[
ρV Ξ̃−1[h]

]
. For the following we define

IV1 : x 7→ 1

ρV (x)

∣∣∣∣∣∣∣
sgn(x)∞ˆ

x

ρV (t)dt

∣∣∣∣∣∣∣ , IV2 : x 7→ 1

ρV (x)

∣∣∣∣∣∣∣
sgn(x)∞ˆ

x

ρV (t)2dt

∣∣∣∣∣∣∣
1/2

. (2.48)

By integration by parts, one can see that IV1 (x) = O
|x|→∞

(
V ′(x)−1

)
is bounded on R. So for the

first and third term, by direct bounds:∣∣∣∣∣ 1

ρV (x1)

sgn(x1)∞ˆ

x1

dtρV (t)

(
−h(t) +

ˆ
R
h(s)dµV (s)

) ∣∣∣∣∣ ≤ 2‖IV1 ‖∞‖h‖∞ ≤ 2‖IV1 ‖∞‖f‖W∞n (Rp).

For the two last terms, we want to use that π−1H is an isometry on L2(R), so we use Cauchy-
Schwarz inequality and the fact that IV2 (x) = O

|x|→∞

(
V ′(x)−1/2

)
is bounded on R so that:

sup
x1∈R

∣∣∣∣∣ 2P

ρV (x1)

sgn(x1)∞ˆ

x1

dtρV (t)X ◦ H
[
ρV Ξ̃−1[h]

]
(t)

∣∣∣∣∣ ≤ C4(V )
∥∥h′∥∥∞ ≤ C4(V )‖f‖W∞n+1(Rp).

with

C4(V )
(def)
= 2P

(
‖IV2 ‖∞ + ‖IV1 ‖∞‖ρV ‖1/2∞

)
π‖ρV ‖1/2∞ CL. (2.49)

Thus, by taking the supremum of x2, . . . , xp ∈ Rp−1, we conclude that for m1 = 0,∥∥∥∂mΞ̃−1
1 [f ]

∥∥∥
L∞(Rp)

≤
(
2‖IV1 ‖∞ + C4(V )

)
‖f‖W∞n+1(Rp). (2.50)

For m1 6= 0y (2.38), for all |x| > MV , cf Lemma 2.4.9:

Ξ̃−1[h](m1)(x1) =

m1−1∑
a=0

m1−a∑
b=0

Qm1
a

(
θ, . . . , θ(a)

)
(x1)

ρV (x1)

sgn(x1)∞ˆ

x1

g(m1−a−b)(t)Pm1−a
b (α, . . . , α(b))(t)dµV (t)
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where g
(def)
= −X [h]− 2PW ◦ L̃−1[h]. Furthermore, setting

c
(def)
=

ˆ
R
h(t)dµV (t)− 2P

ˆ
R
H
[
ρV Ξ̃−1[h]

]
(t)dµV (t)

and

f
(5),V
l,a,b : x 7→

Qla
(
θ, . . . , θ(a)

)
(x)

ρV (x)

sgn(x)∞ˆ

x

∣∣∣P l−ab (α, . . . , α(b))(t)
∣∣∣ρV (t)dt, (2.51)

we can bound every term in the previous sum, involving c, namely taking b = m1 − a:

|cf(5)
m1,a,m1−a(x1)| ≤ (1 + 2Pπ‖ρV ‖∞CL)‖h‖W∞1 (R)‖f

(5)
m1,a,m1−a‖L∞([−MV ,MV ]c).

We directly bound c in the LHS, while to bound f
(5)
m1,a,m1−a(x1), we successfully applied Jensen’s

inequality, used the isometry property of π−1H on L2(R) and used the inequality (2.26). Further-

more, the fact that f
(5)
m1,a,m1−a is bounded on [−MV ,MV ]c comes from Lemma 2.4.13. Finally, by

setting g
(def)
= g − c, it only remains to establish the following bounds:

∣∣∣m1−1∑
a=0

m1−a∑
b=0

Qm1
a

(
θ, . . . , θ(a)

)
(x1)

1

ρV (x1)

sgn(x1)∞ˆ

x1

g(m1−a−b)(t)Pm1−a
b (α, . . . , α(b))(t)ρV (t)dt

∣∣∣
≤

m1−1∑
a=0

m1−a∑
b=0

{∥∥∥∥∥
∣∣∣Qm1

a

(
θ, . . . , θ(a)

) ∣∣∣
ρV

sgn(.)∞ˆ

.

∣∣∣∣∣H
[(
ρV Ξ̃−1[h]

)(m1−a−b)
]

(t)

∣∣∣∣∣
.
∣∣∣Pm1−a
b (α, . . . , α(b))(t)

∣∣∣ρV (t)dt

∥∥∥∥∥
L∞([−MV ,MV ]c)

+ ‖h‖W∞m1
(R)‖f

(5)
m1,a,b

‖L∞([−MV ,MV ]c)

}

≤
m1−1∑
a=0

m1−a∑
b=0

{
‖h‖W∞m1

(R)‖f
(5),V
m1,a,b

‖L∞([−MV ,MV ]c)

+ ‖f(6),V
m1,a,b

‖L∞([−MV ,MV ]c)

∥∥∥∥H [(ρV Ξ̃−1[h]
)(m1−a−b)

]∥∥∥∥
L2(R)

}
with

f
(6),V
l,a,b : x 7→

∣∣∣Qla (θ, . . . , θ(a)
)

(x)
∣∣∣ 1

ρV (x)

√√√√√ sgn(x)∞ˆ

x

∣∣∣P l−ab (α, . . . , α(b))(t)
∣∣∣2ρV (t)2dt. (2.52)

For each a, b, f
(6),V
m1,a,b

is bounded on [−MV ,MV ]c because of Lemma 2.4.13 and Lemma 2.9.2. By
Cauchy-Schwarz inequality and Lemma 2.9.3, we get:∥∥∥∥H [(ρV Ξ̃−1[h]

)(m1−a−b)
]∥∥∥∥

L2(R)

≤ π
∥∥∥(ρV Ξ̃−1[h]

)(m1−a−b) ∥∥∥
L2(R)

≤ πC6(V,m1)‖h‖W∞m1
(R).

Finally by the same reasonnings as before, we get

∣∣∣m1−1∑
a=0

m1−a∑
b=0

Qm1
a

(
θ, . . . , θ(a)

)
(x1)

ρV (x1)

sgn(x1)∞ˆ

x1

g(m1−a−b)(t)Pm1−a
b (α, . . . , α(b))(t)ρV (t)dt

∣∣∣
≤ C7(V,m1)‖h‖W∞m1

(R)
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where C7(V,m1) is defined by

C7(V,m1)
(def)
= max

1≤l≤m1

l2

 max
0≤a<l

0≤b≤l−a

‖f(5),V
l,a,b ‖L∞([−MV ,MV ]c) + πC6(V, l) max

0≤a<l
0≤b≤l−a

‖f(6),V
l,a,b ‖L∞([−MV ,MV ]c)

 .

(2.53)
Thus, we deduce that

‖Ξ̃−1[h](m1)‖L∞([−MV ,MV ]c)

≤
[
m1(1 + 2Pπ‖ρV ‖∞CL) max

0≤a<m1

‖f(5),V
m1,a,m1−a‖L∞([−MV ,MV ]c) + C7(V,m1)

]
‖h‖W∞m1

(R). (2.54)

Now let x ∈ [−MV ,MV ], by differentiating m1 times (2.36), the Leibniz formula ensures that there
exists polynomials Rm1

m1−a depending on (θ, . . . , θ(m1−1−a)) and a polynomial Sm1 of degree m1 − 1

depending on (θ, . . . , θ(m1)), whose coefficients are independent of V such that

Ξ̃−1[h](m1)(x) =
Sm1(θ, . . . , θ(m1))(x)

ρV (x)

sgn(x)∞ˆ

x

g(t)ρV (t)dt

+

m1−2∑
a=0

Rm1
m1−a

(
θ, . . . , θ(m1−1−a)

)
(x)g(a)(x)− g(m1−1)(x). (2.55)

We recall that the function g is defined by

g
(def)
= −h+

ˆ
R
h(t)dµV (t) + 2P

(
H
[
ρV Ξ̃−1[h]

]
−
ˆ
R
H
[
ρV Ξ̃−1[h]

]
(t)dµV (t)

)
.

Then, for all, x ∈ [−MV ,MV ], by the same bounds as before with C8(V,m1) defined by

C8(V,m1)
(def)
= max

1≤l≤m1

(
‖Sl(θ, . . . , θ(l))‖L∞([−MV ,MV ])‖ρ−1

V ‖L∞([−MV ,MV ])

+ l max
0≤a≤l−2

‖Rll−a
(
θ, . . . , θ(l−1−a)

)
‖L∞([−MV ,MV ]) + 1

)
, (2.56)

we obtain:

∣∣∣Sm1(θ, . . . , θ(m1))(x1)

ρV (x1)

sgn(x1)∞ˆ

x1

X [h](t)ρV (t)dt+

m1−2∑
a=0

Rm1
m1−a

(
θ, . . . , θ(m1−1−a)

)
(x1)X [h](a)(x1)

−X [h](m1−1)(x1)
∣∣∣ ≤ 2C8(V,m1)‖h‖W∞m1−1(R)

and

2P
∣∣∣Sm1(θ, . . . , θ(m1))(x1)

ρV (x1)

sgn(x1)∞ˆ

x1

ρV (t)dt+Rm1
m1

(
θ, . . . , θ(m1−1)

)
(x1)

∣∣∣ ˆ
R
|H
[
ρV Ξ̃−1[h]

]
(t)|dµV (t)

≤ 2Pπ‖ρV ‖1/2∞ CLC8(V,m1)‖h‖W∞1 (R).

It remains to bound the terms involving the Hilbert-transform. For that, we use that for all
φ ∈ Hm1(R) and a ∈ J0,m1 − 1K,

|H[φ](a)(x)| =
√
H[φ(a)](x)2 =

√ˆ x

+∞
2H[φ(a)](t)H[φ(a+1)](t)dt ≤ π

√
2‖φ(a)‖L2(R)‖φ(a+1)‖L2(R).
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Applying those results for φ = ρV Ξ̃−1[h] ∈ Hm1(R), Lemma 2.4.8 allows us to conclude that:

‖|H[φ]‖W∞m1−1(R) ≤
√

2π‖φ‖Hm1 (R).

We conclude by Lemma 2.9.3 that:

‖|H[φ]‖W∞m1−1(R) ≤
√

2πC6(V,m1)‖h‖W∞m1
(R)

and thus, with C8(V,m1) defined in (2.56) we get:

2P
∣∣∣Sm1(θ, . . . , θ(m1))(x1)

ρV (x1)

sgn(x1)∞ˆ

x1

H
[
ρV Ξ̃−1[h]

]
(t)ρV (t)dt

+

m1−2∑
a=0

Rm1
m1−a

(
θ, . . . , θ(m1−1−a)

)
(x1)H

[
ρV Ξ̃−1[h]

](a)
(x1)−H

[
ρV Ξ̃−1[h]

](m1−1)
(x1)

∣∣∣
≤ 2P

√
2πC6(V,m1)C8(V,m1)‖h‖W∞m1−1(R).

All the previous bounds yield∥∥∥Ξ̃−1[h](m1)
∥∥∥
L∞([−MV ,MV ])

≤
(

2 + 2Pπ‖ρV ‖1/2∞ CL + 2P
√

2πC6(V,m1)
)
C8(V,m1)‖h‖W∞m1

(R).

Upon taking the supremum over x2, . . . , xp ∈ Rp−1 in (39), and over m ≤ n we conclude that∥∥∥Ξ̃−1
1 [f ]

∥∥∥
W∞n (Rp)

≤ C(Ξ̃−1
1 ,W∞n )‖f‖W∞n+1(Rp),

with C(Ξ̃−1
1 ,W∞n ) defined as

C(Ξ̃−1
1 ,W∞n ) = max

m1≤n

[
m1(1 + 2Pπ‖ρV ‖∞CL) max

0≤a<l
‖f(5),V
m1,a,m1−a‖L∞([−MV ,MV ]c) + C7(V,m1)

]
+ max
m1≤n

(
2 + 2Pπ‖ρV ‖1/2∞ CL + 2P

√
2πC6(V,m1)

)
C8(V,m1) + 2‖IV1 ‖∞ + C4(V ). (2.57)

The fact that, upon choosing the potential Vφ,t with φ ∈ ∩k≥0H
k(R), t 7→ C(Ξ̃−1

1 ,W∞n ) is continuous
is shown in Proposition 2.10.8. �

Finally, we define the variable insertion operators which will also be involved in the loop equations.
Definition 2.4.16 If φ is a function in n variables, we define the n-th variable insertion operator
Θ(p) as

Θ(p)[φ](ξ1, . . . , ξn−1) = φ(ξ1, . . . , ξp−1, ξ1, ξp, . . . , ξn−1) (2.58)

Corollary 2.4.17 Let n, p ≥ 1, a ∈ J2, p+ 1K, for all f ∈W∞n+1(Rp+1),∥∥∥Θ(a) ◦ Ξ̃−1
1 [f ]

∥∥∥
W∞n (Rp)

≤ 2C(Ξ̃−1
1 ,W∞n )‖f‖W∞n+1(Rp+1)

where the constant C(Ξ̃−1
1 ,W∞n ) was introduced in Theorem 2.4.15.

Proof Let f ∈W∞n+1(Rp+1), x1, . . . , xp ∈ R, m
(def)
= (m1, . . . ,mp) ∈ Np such that m

(def)
=
∑p

i=1mi ≤
n.

∂mΘ(a) ◦ Ξ̃−1
1 [f ] (x1, . . . , xp) = ∂m1

1 ∂m2
2 . . . ∂

ma−1

a−1 ∂maa+1 . . . ∂
mp
p+1Ξ̃−1

1 [f ] (x1, . . . , xa−1, x1, xa . . . , xp)

+ ∂m2
2 . . . ∂

ma−1

a−1 ∂m1
a ∂maa+1∂

mp
p+1Ξ̃−1

1 [f ] (x1, . . . , xa−1, x1, xa . . . , xp).

Thus
∥∥∥∂mΘ(a) ◦ Ξ̃−1

1 [f ]
∥∥∥
L∞(Rp)

≤ 2
∥∥∥Ξ̃−1

1 [f ]
∥∥∥
W∞n (Rp+1)

≤ 2C(Ξ̃−1
1 ,W∞n )‖f‖W∞n+1(Rp+1). �
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The last control that we need is on Θ(a) ◦ Ξ̃1
−1

in Hn-norm. Θ(a) was defined in Definition 2.4.16.

Theorem 2.4.18 (Hn-continuity for Θ(a) ◦ Ξ̃1
−1

) Let n ∈ N, p ∈ J1,+∞J, let a ∈ J2, p+ 1K,

there exists a constant C(Θ(a) ◦ Ξ̃−1
1 , Hn) > 0, such that for all f ∈ Hn+1(Rp+1),

‖Θ(a) ◦ Ξ̃1
−1

[f ]‖Hn(Rp) ≤ C(Θ(a) ◦ Ξ̃−1
1 , Hn)‖f‖Hn+1(Rp+1).

Under the choice of potential Vφ,t defined in Theorem 2.1.3, for φ ∈ ∩k≥0H
k(R) the map t ∈ [0, 1] 7→

C(Θ(a) ◦ Ξ̃−1
1 , Hn) is continuous.

Proof Let f ∈ Hn+1(Rp+1), Let f ∈ W∞n+1(Rp+1), x1, . . . , xp ∈ R, m
(def)
= (m1, . . . ,mp) ∈ Np such

that m
(def)
=
∑p

i=1mi ≤ n. We set

h : (x, y) 7→ ∂m2
2 . . . ∂

ma−1

a−1 ∂maa+1 . . . ∂
mp
p+1f(x, x2, . . . , xa−1, y, xa, . . . , xp)

and

g(x, y)
(def)
= −h(x, y) + 2PH

[
ρV Ξ̃−1 [h(., y)]

]
(x) + c(y)

where we have set c(y) =

ˆ
R
h(s, y)dµV (s)− 2P

ˆ
R
H
[
ρV Ξ̃−1 [h(., y)]

]
(s)dµV (s). Let x ∈ R,

∂mΘ(a) ◦ Ξ̃−1
1 [f ] (x1, . . . , xp) = Ξ̃−1[∂m1

2 h(., x1)](x1) + Ξ̃−1[h(., x1)](m1)(x1). (2.59)

The first term is easy to control by Theorem 2.4.11,

Ξ̃−1[∂m1
a h(., x1)](x1) =

1

ρV (x1)

sgn(x1)∞ˆ

x1

dtρV (t)

{
− ∂m1

2 h(t, x1) +

ˆ
R
∂m1

2 h(s, x1)dµV (s)

+ 2PH
[
ρV Ξ̃−1 [∂m1

a h(., x1)]
]

(t)− 2P

ˆ
R

2PH
[
ρV Ξ̃−1 [∂m1

a h(., x1)]
]

(s)dµV (s)

}
.

From the standart arguments that we used before,

ˆ
R

Ξ̃−1[∂m1
2 h(., x1)](x1)2dx1 ≤ 4(1 + 4P 2π2‖ρV ‖2L∞(R)C

2
L)

{
‖IV2 ‖2L∞(R)‖h‖

2
Hm1+1(R2)

+ ‖ρV ‖L∞(R)

∥∥∥IV1 ∥∥∥2

L∞(R)
‖h‖2Hm1+1(R2)

}
(2.60)

where IV1 and IV2 have been defined in (2.48).

We now deal with the second term in (2.59). By (2.39), we have for a constant C(m1) > 0 depending
only on m1:
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ˆ +∞

MV

Ξ−1[h(., x1)](m1)(x1)2dx1 ≤ C(m1)

m1−1∑
a=0

m1−a∑
b=0

ˆ +∞

MV

dx1Q
m1
a

(
θ, . . . , θ(a)

)
(x1)2

×

{
[∂m1−a−b

1 g(x1, x1)]2α(x1)2Pm1−a
b (α, . . . , α(b))(x1)2

+
1

ρV (x1)2

 sgn(x1)∞ˆ

x1

dtρV (t)∂m1−a−b+1
1 g(t, x1)α(t)Pm1−a

b

(
α, . . . , α(b)

)
(t)


2

+
1

ρV (x1)2

 sgn(x1)∞ˆ

x1

dtρV (t)∂m1−a−b
1 g(t, x1)

[
αPm1−a

b

(
α, . . . , α(b)

)]′
(t)


2}

.x (2.61)

We first deal with the presence of c in the sum. This term only arises in the sum when b = m1− a.

By using the functions f
(j),V
m1,a,b

defined in (2.40), we can bound these terms, for all a ∈ J0,m1 − 1K,
by

ˆ +∞

MV

dx1c(x1)2
(
f
(1)
m1,a,m1−a(x1)2 + f

(2),V
m1,a,m1−a(x1)2

)
≤ 2

 ∑
j∈{1,2}

‖f(j),Vm1,a,m1−a‖
2
L∞([−MV ,MV ]c)


×
ˆ
R
dx1

(ˆ
R
h(t, x1)2dµV (t) + 4P 2

ˆ
R
H
[
ρV Ξ̃−1 [h(., x1)]

]
(t)2dµV (t)

)

≤ 2

 ∑
j∈{1,2}

‖f(j),Vm1,a,m1−a‖
2
L∞([−MV ,MV ]c)

 (‖ρV ‖L∞(R) + 4P 2π2‖ρV ‖3L∞(R)C
2
L)‖h‖2H1(R2).

Since we handled all the therms involving c, it just remains to bound (2.61) with the substitution

g(x, y) g(x, y)
(def)
= g(x, y)− c(y), namely:

ˆ +∞

MV

dx1Q
m1
a

(
θ, . . . , θ(a)

)
(x1)2

{
∂m1−a−b

1 g(x1, x1)2α(x1)2Pm1−a
b (α, . . . , α(b))(x1)2

+
1

ρV (x1)2

 sgn(x1)∞ˆ

x1

dtρV (t)∂m1−a−b+1
1 g(t, x1)α(t)Pm1−a

b

(
α, . . . , α(b)

)
(t)


2

+
1

ρV (x1)2

 sgn(x1)∞ˆ

x1

dtρV (t)∂m1−a−b
1 g(t, x1)

[
αPm1−a

b

(
α, . . . , α(b)

)]′
(t)


2}

.

For the first term, we use the fact that for fixed x ∈ R, t 7→ ∂m1−a−b
1 g(t, x) goes to zero at infinity

as an element of H1(R) and by Cauchy-Schwarz inequality, we get:

|∂m1−a−b
1 g(x1, x1)| =

√ˆ x1

+∞
2∂m1−a−b

1 g(t, x1)∂m1−a−b+1
1 g(t, x1)dt ≤

√
2‖g(., x1)‖Hm1−a−b+1(R).

Furthermore, for all x1 > MV , f
(1),V
m1,a,b

: x 7→ Qm1
a

(
θ, . . . , θ(a)

)
(x)α(x)Pm1−a

b (α, . . . , α(b))(x) is

bounded since it is continuous and a O
|x|→∞

(
V ′(x)−2

)
by Lemma 2.4.13. We conclude, by Lemma
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2.9.3 that, with f
(1),V
m1,a,b

being given in (2.40),

m1−1∑
a=0

m1−a∑
b=0

ˆ +∞

MV

dx2
1∂

m1−a−b
1 g(x1, x1)2f

(1),V
m1,a,b

(x1)2

≤ C(m1) max
0≤a<m1

0≤b≤m1−a

‖f(1),V
m1,a,b

‖2L∞([−MV ,MV ]c)

ˆ +∞

MV

‖g(., x1)‖2
Hm1−a−b+1(R)

dx1

≤ C(m1) max
0≤a<m1

0≤b≤m1−a

‖f(1),V
m1,a,b

‖2L∞([−MV ,MV ]c)‖g‖
2
Hm1+1(R2)

≤ C(m1)
[
1 + 4P 2π2‖ρV ‖L∞(R)C3(V, n)

]
max

0≤a<m1
0≤b≤m1−a

‖f(1),V
m1,a,b

‖2L∞([−MV ,MV ]c)‖∂
m3
3 f(., z)‖2Hm1+1(R2).

It just remains to bound

+∞ˆ

MV

dx1
Qm1
a

(
θ, . . . , θ(a)

)
(x1)2

ρV (x1)2

{ sgn(x1)∞ˆ

x1

dtρV (t)∂m1−a−b+1
1 g(t, x1)α(t)Pm1−a

b

(
α, . . . , α(b)

)
(t)


2

+

 sgn(x1)∞ˆ

x1

dtρV (t)∂m1−a−b
1 g(t, x1)

[
αPm1−a

b

(
α, . . . , α(b)

)]′
(t)


2}

.

For the first term, we use Cauchy-Schwarz inequality, Lemma 2.4.13 and the function f
(3),V
m1,a,b

defined
in (2.44) to get

|Qm1
a

(
θ, . . . , θ(a)

)
(x1)|2

ρV (x1)2

∣∣∣∣∣
sgn(x1)∞ˆ

x1

dtρV (t)∂m1−a−b+1
1 g(t, x1)α(t)Pm1−a

b

(
α, . . . , α(b)

)
(t)

∣∣∣∣∣
2

≤ ‖f(3),V
m1,a,b

‖2L∞([−MV ,MV ]c)‖g(., x1)‖2Hn1+1(R)

≤ 2‖f(3),V
m1,a,b

‖2L∞([−MV ,MV ]c)

(
1 + 4P 2π2‖ρV ‖L∞(R)C3(V, n)

)
× ‖∂m2

2 . . . ∂
ma−1

a−1 ∂maa+1 . . . ∂
mp
p+1f(., x2, . . . , xa−1, x1, xa, . . . , xp)‖2Hm1+1(R).

We proceed in the exact same way for the second term and do the same thing on ]−∞,−MV ], for
every term we dealt with. Finally, by integrating with respect to x1, collecting all the terms and
then integrating over x1 ∈ [−MV ,MV ]c and over x2, . . . , xp ∈ R, we get∥∥∥Θ(a)

[
Ξ̃−1[∂m2

2 . . . ∂
ma−1

a−1 ∂maa+1 . . . ∂
mp
p+1f ](m1)

]∥∥∥
L2([−MV ,MV ]c×Rp−1)

≤ C10(V, n)‖f‖Hn+1(Rp+1)

with C10(V, n) defined by

C10(V, n)2 (def)
= C(n) max

m1≤n

{(
‖ρV ‖L∞(R)+4P 2π2‖ρV ‖3L∞(R)C

2
L) max

0≤a<m1
j∈{1,2}

‖f(j),Vm1,a,m1−a‖
2
L∞([−MV ,MV ]c)

+
[
1 + 4P 2π2‖ρV ‖L∞(R)C3(V, n)

]
max

0≤a<m1
0≤b≤m1−a
j∈{1,3}

‖f(j),Vm1,a,b
‖2L∞([−MV ,MV ]c)

}
. (2.62)
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It just remains to bound

ˆ MV

−MV

Ξ̃−1[h(., x1)](m1)(x1)2dx1. For that, we use (2.55)

MVˆ

−MV

Ξ̃−1[h(., x1)](m1)(x1)2dx1

≤ C(m1)

MVˆ

−MV

dx1

{
Sm1(θ, . . . , θ(m1))(x1)2

ρV (x1)2

 sgn(x1)∞ˆ

x1

g(t, x1)ρV (t)dt


2

+

m1−2∑
a=0

Rm1
m1−a

(
θ, . . . , θ(m1−1−a)

)
(x1)2[∂a1g(x1, x1)]2 + [∂m1−1

1 g(x1, x1)]2

}
.

By the same procedure as before, we first deal with c defined at the beginning of the proof, this
yields, with Ia defined in Theorem 2.4.15

MVˆ

−MV

c(x1)2dx1

[
Sm1(θ, . . . , θ(m1))(x1)2

ρV (x1)2

 sgn(x1)∞ˆ

x1

ρV (t)dt


2

+Rm1
m1

(
θ, . . . , θ(m1−1−a)

)
(x1)2

]

≤ C(m1)‖h‖2H1(R2)‖ρV ‖L∞(R)

(
1 + 4P 2π2‖ρV ‖2L∞(R)C

2
L

){
‖IV1 ‖2∞

∥∥∥Sm1(θ, . . . , θ(m1))
∥∥∥2

L∞([−MV ,MV ])

+
∥∥∥Rm1

m1

(
θ, . . . , θ(m1−1)

)∥∥∥2

L∞([−MV ,MV ])

}
.

Hence as before, we can replace g by g and conclude with the last bounds:

MVˆ

−MV

Sm1(θ, . . . , θ(m1))(x1)2

ρV (x1)2

 sgn(x1)∞ˆ

x1

g(t, x1)ρV (t)dt


2

dx1

≤ ‖g‖2L2(R2)

∥∥∥IV2 Sm1(θ, . . . , θ(m1))
∥∥∥2

L∞([−MV ,MV ])

and by Cauchy-Schwarz inequality,

MVˆ

−MV

dx1

(m1−2∑
a=0

Rm1
m1−a

(
θ, . . . , θ(m1−1−a)

)
(x1)2∂a1g(x1, x1)2 + ∂m1−1

1 g(x1, x1)2
)

≤

{
1 + max

a∈J0,m1−2K

∥∥∥Rm1
m1−a

(
θ, . . . , θ(m1−1−a)

)∥∥∥2

L∞([−MV ,MV ])

}

×
m1−1∑
a=0

MVˆ

−MV

dx1

x1ˆ

+∞

dt∂a+1
1 g(t, x1)∂a1g(t, x1)

≤ C(m1)

{
1 + max

a∈J0,m1−2K

∥∥∥Rm1
m1−a

(
θ, . . . , θ(m1−1−a)

)∥∥∥2

L∞([−MV ,MV ])

}
‖g‖2Hm1 (R2).

Moreover, by Lemma 2.9.3

‖g‖Hm1 (R2) ≤ ‖h‖Hm1 (R2) + 2Pπ
∥∥∥ρV Ξ̃−1

1 [h]
∥∥∥
Hm1 (R2)

≤ [1 + 2PπC3(V, n)] ‖h‖Hm1 (R2).
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We can then conclude that

MVˆ

−MV

dx1

(m1−2∑
a=0

Rm1
m1−a

(
θ, . . . , θ(m1−1−a)

)
(x1)2∂a1g(x1, x1)2 + ∂m1−1

1 g(x1, x1)2
)

≤ C(m1) [1 + 2PπC3(V, n)]

{
1+ max

a∈J0,m1−2K

∥∥∥Rm1
m1−a

(
θ, . . . , θ(m1−1−a)

)∥∥∥2

L∞([−MV ,MV ])

}
‖h‖2Hm1 (R2).

Thus by integrating with respect to z ∈ R, we get,∥∥∥Θ(a)
[
Ξ̃−1[∂m2

2 . . . ∂
ma−1

a−1 ∂maa+1 . . . ∂
mp
p+1f ](m1)

]∥∥∥
L2([−MV ,MV ]×Rp−1)

≤ C11(V, n)‖∂m3
3 f‖Hm1+1(Rp+1)

with C11(V, n) > 0 defined by

C11(V, n)2 (def)
= max

m1≤n
C(m1)

{
‖ρV ‖L∞(R)

(
1 + 4P 2π2‖ρV ‖2L∞(R)C

2
L

)
×
{
‖IV1 ‖2∞

∥∥∥Sm1(θ, . . . , θ(m1))
∥∥∥2

L∞([−MV ,MV ])
+
∥∥∥Rm1

m1

(
θ, . . . , θ(m1−1)

)∥∥∥2

L∞([−MV ,MV ])

+ [1 + 2PπC3(V, n)]2
(
‖IV2 ‖2∞

∥∥∥Sm1(θ, . . . , θ(m1))
∥∥∥2

L∞([−MV ,MV ])

+ 1 + max
a∈J0,m1−2K

∥∥∥Rm1
m1−a

(
θ, . . . , θ(m1−1−a)

)∥∥∥2

L∞([−MV ,MV ])

)}
. (2.63)

Collecting the bounds on the L2-norms of Θ(a)
[
Ξ̃−1[∂m2

2 . . . ∂
ma−1

a−1 ∂maa+1 . . . ∂
mp
p+1f ](m1)

]
on [−MV ,MV ]c×

R and [−MV ,MV ]× R, we obtain:∥∥∥Θ(a)
[
Ξ̃−1[∂m2

2 . . . ∂
ma−1

a−1 ∂maa+1 . . . ∂
mp
p+1f ](m1)

]∥∥∥
L2(Rp)

≤ 2 max
i∈{10,11}

Ci(V, n)‖h‖Hm1+1(Rp+1).

By combining the above equation together with (2.60) and taking the supremum over m ≤ n, we
get ∥∥∥Θ(a) ◦ Ξ̃−1

1 [f ]
∥∥∥
Hn(Rp)

≤ C(Θ(a) ◦ Ξ̃−1
1 , Hn)‖f‖Hn+1(Rp+1)

with, C10 and C11 being given in (2.62) and (2.63), IVa being given in (2.48);

C(Θ(a) ◦ Ξ̃−1
1 , Hn)

(def)
= 2 max

i∈{10,11}
Ci(V, n)

+ 2

√√√√(1 + 4P 2π2‖ρV ‖2L∞(R)C
2
L)

(
‖IV2 ‖2L∞(R) + ‖ρV ‖L∞(R)

∥∥∥IV1 ∥∥∥2

L∞(R)

)
. (2.64)

This yields the conclusion. The fact that, upon choosing the potential Vφ,t with φ ∈ ∩k≥0H
k(R),

t 7→ C(Θ(a) ◦ Ξ̃−1
1 , Hn) is continuous is shown in Proposition 2.10.8. �

2.5 Asymptotic expansion of the linear statistics

2.5.1 Loop equations for general functions

We are now ready to state the loop equations, we recall the definition of a linear statistic was
defined in (2.3).
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Theorem 2.5.1 (Dyson-Schwinger equations) The level 1 Schwinger-Dyson equation holds
for all ψ1 ∈ ∩k≥0H

k(R) and takes the form:

〈ψ1〉LN =
P

N

〈
∂1Ξ̃−1[ψ1]

〉
µV

+
P

N

〈
∂1Ξ̃−1[ψ1]

〉
LN
− P

〈
D ◦ Ξ̃−1[ψ1]

〉
LN⊗LN

. (2.65)

For all ψn ∈ ∩k≥0H
k(Rn), the level n > 1 Schwinger-Dyson equations reads:

〈ψn〉 n⊗
LN

=
P

N

〈
∂1Ξ̃−1

1 [ψn]
〉
µV

n−1⊗
LN

+
P

N

〈
∂1Ξ̃−1

1 [ψn]
〉
n⊗
LN
− P

〈
D1 ◦ Ξ̃−1

1 [ψn]
〉
n+1⊗
LN

− 1

N

n∑
a=2

(〈
Θ(a) ◦ Ξ̃−1

1

[
∂aψn

]〉
n−1⊗
LN

+
〈

Θ(a) ◦ Ξ̃−1
1

[
∂aψn

]〉
µV

n−2⊗
LN

)
. (2.66)

Proof See for example [BGK16, Prop 3.2.3] done in a similar context. �

2.5.2 Asymptotic expansion of linear statistics

The a priori bound on the linear statistics of Theorem 2.2.4, provides a starting point for obtaining
the existence of their large-N asymptotic expansion in powers of N−1 up to any order through an
analysis of the loop equations.

Theorem 2.5.2 Let ψk ∈
⋂
m≥0

Hm(Rk), then for all integer K, there exists a sequence (d
(k),V
a )a≥dk/2e ∈

RN such that

〈ψk〉 k⊗
LN

=
K∑

a=dk/2e

d
(k),V
a (ψk)

Na
+O

(
N−(K+1)

)
with

d
(1),V
1 [ψ1] = P

〈
∂1Ξ̃−1[ψ1]

〉
µV

+ P
〈

Θ(2) ◦ Ξ̃−1
1

[
∂2D ◦ Ξ̃−1[ψ1]

]〉
µV
.

Furthermore, there exists a sequence (mK,k) > 0, increasing in K, such that for all k ≥ 1 and

K ≥ 0, all ψk ∈
⋂
m≥0

Hm(Rk),

∣∣∣∣∣ 〈ψk〉 k⊗LN −
K∑

a=dk/2e

d
(k),V
a (ψk)

Na

∣∣∣∣∣ ≤ Crem(V,K, k)

NK+1
N (k)
mK,k

(ψk). (2.67)

Above N (n)
m (ψm)

(def)
= max

(
‖ψn‖W∞n (Rm), ‖ψn‖Hn(Rm)

)
, while Crem(V,K, k) > 0 is a constant de-

pending on V , K and k. Finally, under the choice of potential Vφ,t defined in Theorem 2.1.3, for
φ ∈ ∩k≥0H

k(R) the map t ∈ [0, 1] 7→ Crem(Vφ,t,K, k) is continuous.
Proof Using the first loop equation given in Theorem 2.5.1, we get:

〈ψ1〉LN =
P

N

〈
∂1Ξ̃−1[ψ1]

〉
µV

+
P

N

〈
∂1Ξ̃−1[ψ1]

〉
LN
− P

〈
D ◦ Ξ̃−1[ψ1]

〉
LN⊗LN

. (2.68)

where we recall that Ξ̃−1 = Ξ−1 ◦ X defined in 2.4.10. The idea is to verify the hypotheses of
Theorems 2.2.4 for each function involved in the Dyson-Schwinger equations. By Proposition 2.3.5
and Theorem 2.3.3, 2.4.14, 2.4.15, 2.4.17 and 2.4.18 and the fact that ψk ∈ ∩m≥0H

m(Rk), we’re

ensured that all the norms are finite and that a n-linear statistic will be a O
(
N−

n
2

(1−ε)
)

where

ε > 0 is fixed but can be chosen arbitrarly small.

We show by induction on K that there exists an asymptotic expansion up to o(N−K) for any
function ψk ∈ ∩m≥0H

m(Rk) for all k ≤ 2K.
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For K = 1, since the first term in (2.68) clearly contributes to the asymptotic expansion of 〈ψ1〉LN
up to o(N−1) so we focus on the two other terms. In (2.68), the second term is clearly a o(N−1)
since by Theorem 2.2.4, Theorem 2.4.14 and Theorem 2.4.15

|
〈
∂1Ξ̃−1[ψ1]

〉
LN
| ≤ C1,εe

KVN−(1−ε)/2
(
‖∂1Ξ̃−1[ψ1]‖H1/2(R) + ‖∂1Ξ̃−1[ψ1]‖W∞1 (R)

)
≤ C1,εe

KVN−(1−ε)/2
(
C(Ξ̃−1

1 , H2) + C(Ξ̃−1
1 ,W∞2 )

)
N3(ψ1).

To obtain the expansion of the 2-linear statistic up to o(N−1), we will need to use the loop equation

at level 2 with ψ2
(def)
= D◦ Ξ̃−1[ψ]. Let ψ2 ∈ ∩k≥0H

k(R2) be arbitrary for now. The level 2 equation
reads:

〈ψ2〉 2⊗
LN

=
P

N

〈
∂1Ξ̃−1

1 [ψ2]
〉
µV
⊗
LN

+
P

N

〈
∂1Ξ̃−1

1 [ψ2]
〉

2⊗
LN
− 1

N

〈
Θ(2) ◦ Ξ̃−1

1

[
∂2ψ2

]〉
LN

− P
〈
D1 ◦ Ξ̃−1

1 [ψ2]
〉

3⊗
LN
− 1

N

〈
Θ(2) ◦ Ξ̃−1

1

[
∂2ψ2

]〉
µV
. (2.69)

The first term is a o(N−1) as a 1-linear statistic 〈ψ〉LN where ψ(x)
(def)
=

ˆ
R
∂1Ξ̃−1

1 [ψ2](x, y)dµV (y).

This function is indeed in H1(R) because of Theorem 2.4.14

‖ψ‖2H1(R) ≤ ‖ρV ‖∞‖∂1Ξ̃−1
1 [ψ2]‖2H1(R2) ≤ ‖ρV ‖∞C(Ξ̃−1

1 , H2)2‖ψ2‖2H3(R2)

and in W∞1 (R) by Theorem 2.4.15

‖ψ‖W∞1 (R) ≤ ‖∂1Ξ̃−1
1 [ψ2]‖W∞1 (R2) ≤ C(Ξ̃−1

1 ,W∞2 )‖ψ2‖W∞3 (R2).

Thus by the a priori bound Theorem 2.2.4, we get∣∣∣P
N

〈
∂1Ξ̃−1

1 [ψ2]
〉
µV
⊗
LN

∣∣∣ ≤ PC1,εe
KV

N1+(1−ε)/2

[
C(Ξ̃−1

1 ,W∞2 ) + ‖ρV ‖1/2∞ C(Ξ̃−1
1 , H2)

]
N (2)

3 (ψ2). (2.70)

The following two terms in (2.69) are also a o(N−1) by the same reasons as before. By Theorem
2.2.4, the 3-linear statistics is a o(N−1) for ε > 0 small enough. Hence, we obtain the expansion:

〈ψ〉LN =
d

(1)
1 (ψ1)

N
+ o(N−1) and 〈ψ2〉LN⊗LN =

d
(2)
1 (ψ2)

N
+ o(N−1)

where

d
(1)
1 (ψ1)

(def)
= P

〈
∂1Ξ̃−1[ψ1]

〉
µV

+ P
〈

Θ(2) ◦ Ξ̃−1
1

[
∂2D ◦ Ξ̃−1[ψ1]

]〉
µV

and

d
(2)
1 (ψ2)

(def)
= −

〈
Θ(2) ◦ Ξ̃−1

1

[
∂2ψ2

]〉
µV
.

More generally, suppose the desired expansion for 〈ψk〉 k⊗
LN

holds up to o(N−n) for all k ∈ J0, 2nK

and for any function ψk ∈ ∩m≥0H
m(Rk). Additionnaly, suppose that (2.67) is true for all k ∈

J1,K − 2K. Then, taking a general function ψ2n+2 ∈ ∩m≥0H
m(R2n+2), the (2n + 2)-th equation

involves the 2n+ 3 linear statistic
〈
D1 ◦ Ξ−1

1 [ψ2n+2]
〉

2n+3⊗
LN

(see (2.66)). By Theorem 2.2.4, it will

be a o
(
N−(n+1)

)
for ε small enough. The other terms will be either, 2n + 1-linear statistics with

a N−1 prefactor and therefore behave like O(N−(n+1)) for ε small enough, or either be 2n-linear
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statistics with a prefactor N−1. For the latter, by hypothesis, we know the asymptotic expansion
up to O(N−n), thus with the prefactor N−1, we deduce the following expansion for 〈ψ2n+2〉2n+2⊗

LN

〈ψ2n+2〉2n+2⊗
LN

=
d

(2n+2)
n+1 (ψ2n+2)

Nn+1
+ o

(
N−(n+1)

)
We will deduce from that, the asymptotic expansion of 〈ψ2n+1〉2n+1⊗

LN
for a general ψ2n+1 belonging

to ∩k≥0H
k(R2n+1). In the (2n+ 1)-th loop equation (2.66), the 2n+ 2 linear statistic will yield a

non-trivial term of order N−(n+1) i.e.

〈
D1 ◦ Ξ−1

1 [ψ2n+1]
〉

2n+2⊗
LN

=
d

(2n+2)
n+1

(
D1 ◦ Ξ̃−1

1 [ψ2n+1]
)

Nn+1
+ o

(
N−(n+1)

)
.

Again, the (2n + 1)-linear statistics with a prefactor N−1 will be o(N−(n+1)). Finally for the 2n
and 2n− 1 linear statistics with the prefactor N−1 appearing in the (2n+ 1)-th loop equation, we
know the asymptotic expansion up to o(N−(n+1)) by hypothesis.

To conclude on the asymptotic expansion up to o(N−(n+1)) for the 2n-linear statistics, just notice
that for each term appearing in the 2n equation each term will either be a 2n+1-linear statistics for
which we know the asymptotic expansion up to o(N−(n+1)), or a linear statistic for which we know,
by hypothesis, the asymptotic expansion up to o(N−n) (of order 2n,2n − 1 or 2n − 2), preceded
by a factor N−1. We can therefore conclude on the existence of the asymptotic expansion up to
o(N−(n+1))for the 2n-linear statistics. Then applying the same arguments for 2n − 1,. . . 1-linear
statistics allows us to conclude that the induction step is established.

Finally, to conclude on (2.67), one just has to notice that for all n ≥ 1 and ψn ∈ ∩k≥0H
k(Rn), for

all K ≥ dn/2e,

〈ψn〉 n⊗
LN
−

K∑
a=dn/2e

d
(n)
a (ψn)

Na
=
d

(n)
K+1(ψn)

NK+1
+ R

(n)
K+1(ψn) and R

(n)
K+1(ψn) = o(N−(K+1)).

Above, the remainder R
(n)
K+1(ψn) contains all the negligible (by the a priori bound) statistics in-

volving the operators Ξ̃−1
1 , D1 ◦ Ξ̃−1

1 and Θ(a) ◦ Ξ̃−1
1 , thus just as in (2.70), by using continuity of

the different operators involved in each of the statistics, there exists m
(1)
K,n > 0, a polynomial Q

(1)
K,n

in eKV , ‖ρV ‖1/2∞ ,
(
C(Ξ̃−1

1 , H i)
)

0≤i≤m(1)
K,n

(
C(Ξ̃−1

1 ,W∞i )
)

0≤i≤m(1)
K,n

and
(
C(Θ(a) ◦ Ξ̃−1

1 , Hn)
)

0≤i≤m(1)
K,n

with coefficients independent of V and a constant C(K,n) > 0 such that

∣∣∣∣R(n)
K+1[ψn]

∣∣∣∣ ≤ C(1)(K,n)

NK+1
Q

(1)
K,nN

(n)

m
(1)
K,n

(ψn).

To bound, d
(n)
K+1(ψn) and extract the V -dependance, one just notices that it is a sum of linear

statistics, involving as before the previous operators. By contintuity of the operators, there exists

a polynomial Q
(2)
K,n in the previous operator norms and ‖ρV ‖1/2∞ with coefficients independent of V

such that ∣∣∣∣d(n)
K+1(ψn)

∣∣∣∣ ≤ C(2)(K,n)Q
(2)
K,nN

(n)

m
(2)
K,n

(ψn).

Thus setting Crem(V,K, n) = C(1)(K,n)Q
(1)
K,n + C(2)(K,n)Q

(2)
K,n and mK,n

(def)
= max

(
m

(1)
K,n,m

(2)
K,n

)
allows us to conclude about 2.67. The fact that t ∈ [0, 1] 7→ Crem(Vφ,t,K, n) is continuous follows
from the fact it is a polynomial in building blocks which are continuous as it is shown in Appendix
2.10, Lemma 2.10.10, Proposition 2.10.8. �
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2.6 Parameter continuity of the equilibrium measure

We want to conclude about the asymptotic expansion of logZN [VG,φ] for a smooth φ, by inserting
the asymptotic expansion of the linear statistics of Theorem 2.5.2 in Lemma 2.7.3. In order to
make that step rigorous, it is necessary to prove that all the linear statistics integrated with respect

to the probability measure PVG,φ,tN with t ∈ [0, 1], when integrating them with respect to t, yield
a definite and finite integral. Since all the quantities depend on t through µVG,φ,t , we first prove
a continuity result for t 7→ ρVG,φ,t . The result that we are going to prove does not depend on the
specificity of the Gaussian potential so in the following, we set Vφ,t : x 7→ V (x) + tφ(x) with V
satisfying the assumptions 2.1.1.

While from the measure point of view, it is easy to show that t 7→ µVφ,t is continuous for the weak
topology of measures, it is not sufficient to deduce the continuity of the quantities involved in our
problem. Indeed, in the controls we showed in Section 2.4 quantities like L∞-norm of derivatives
of ρVt and CL, it will be necessary to show that ‖ρVφ,t − ρVφ,t0‖W∞i (R) −→

t→t0
0 for all t0 ∈ [0, 1].

2.6.1 Setting for Banach fixed-point theorem

Let φ ∈ C∞(R), such that for all k ∈ N, φ(k) ∈ L2(R), let t0 ∈ [0, 1], we define the function ut by:

ρVφ,t = (1 + δtut)ρVφ,t0 ie ut =
ρVφ,t − ρVφ,t0

δt

1

ρVφ,t0
(2.71)

where t 6= t0 and δt
(def)
= t − t0. We will show, by Banach fixed-point theorem, that x 7→ ut(x) ∈

C∞(R), by Lemma 2.2.1, is the unique fixed-point of a t continuous operator. This will allow us
to deduce that t 7→ ut is continuous for the

⋂
k∈NW

∞
k -norm. The continuity of t 7→ ρVt will then

follow.

In order to construct the operator of interest, we start with the following lemma.
Lemma 2.6.1 Let t, t0 ∈ [0, 1],

λVφ,t = λVφ,t0 + δt

ˆ
R
φ(x)dµVφ,t0 (x)− 2Pδt

¨
R2

log |x− y|ut(x)dµVφ,t0 (x)dµVφ,t0 (y)

+

ˆ
R

[
log
(
1 + δtut(x)

)
− δtut(x)

]
dµVφ,t0 (x). (2.72)

Here λVφ,t denotes the constant appearing in (2.4) with potential Vφ,t.
Proof We integrate with respect to µVφ,t0 (2.4) to get

λVφ,t =

ˆ
R
Vφ,t0(x)dµVφ,t0 (x) + δt

ˆ
R
φ(y)dµVφ,t0 (y)− 2P

¨
R2

log |x− y|dµVφ,t(x)dµVφ,t0 (y)

+

ˆ
R

log ρVφ,t(x)dµVφ,t0 (x).

After using the fact that

ˆ
R
utdµVφ,t0 = 0, that ρVφ,,t = (1 + δtut)ρVφ,t0 and the characterization

(2.4) of µVφ,t0 , this yields the result. �

To show that ut is a fixed point of a t-continuous operator, we need to invert and control the

operator T (def)
= L ◦ A−1 (these operators were inroduced in Definition 2.4.1)which will appear

naturally when comparing ρVφ,t to ρVφ,t0 .

Proposition 2.6.2 We define the operator T by T [v]
(def)
= v −K[v] for all v ∈ L2(µVφ,t0 ), where

K[v](x)
(def)
= 2P

ˆ
R
k(x, y)v(y)ρVφ,t0 (y)dy
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and

k(x, y)
(def)
=

(
log
|x− y|
1 + |x|

−
ˆ
R

log
|z − y|
1 + |z|

ρVφ,t0 (z)dz

)
.

T : L2(µVφ,t0 ) → L2(µVφ,t0 ) is bijective and for all n ≥ 0, T [W∞n (R)] = W∞n (R). Finally, for all
n ∈ N, there exists CT ,n > 0 such that for any v ∈W∞n (R),∥∥T −1[v]

∥∥
W∞n (R)

≤ CT ,n‖v‖W∞n (R). (2.73)

Proof It was shown in [DGM23] that T [v] = −L◦A−1[v]. A and L are unbounded operators on
H, it was also shown there that:

A : D(A)
(def)
= {φ ∈ H, A[φ] ∈ H} → H and L : D(A)→ H

are bijective, thus so is T : H→ H.

The fact that k verifies ‖k(x, y)‖L2(µVφ,t0
⊗µVφ,t0 ) < +∞ implies that K : L2(µVφ,t0 )→ L2(µVφ,t0 ) is

an Hilbert-Schmidt operator thus compact and so T is a Fredholm operator. We now show that the
kernel of T is trivial. Let v ∈ L2(µVφ,t0 ) such that T [v] = 0 so v = K[v]. The RHS is in H1(µVφ,t0 ),
indeed we have:

K[v]′(x) = −H[vρVφ,t0 ](x)− sgn(x)

1 + |x|

ˆ
R
v(y)dµVφ,t0 (y) ∈ L2(µVφ,t0 ).

Moreover since
´
RK[v]dµVφ,t0 = 0, we conclude that v ∈ H. We can now conclude that v = 0 by

the bijectivity of T on H. Finally, by Fredhom alternative, T is invertible on L2(µVφ,t0 ) since it is
injective.

We now prove that for all n ∈ N, T [W∞n (R)] = W∞n (R). We proceed by induction. For n = 0, let
f ∈ L∞(R) ⊂ L2(µVφ,t0 ). There exists a unique v ∈ L2(µVφ,t0 ) such that T [v] = f so v = f +K[v]
but since f and K[v] are bounded, so is v ∈ L∞(R). Reciprocally, if v ∈ L∞(R) so is T [v], hence
T [L∞(R)] = L∞(R). Finally let v ∈ L∞(R),

∥∥∥T [v]
∥∥∥
L∞(R)

≤
(

1 + 2P max
x∈R

ˆ
R
|k(x, y)|dµVφ,t0 (y)

)
‖v‖L∞(R). (2.74)

Now suppose T [W∞n (R)] = W∞n (R) is true and let’s show it for n+1. Let f ∈W∞n+1(R) ⊂W∞n (R),
so by hypothesis, there exists v ∈W∞n (R) such that:

f (n)(x) = v(n)(x) + 2P (log(1 + |.|))(n) (x)

ˆ
R
v(y)dµVφ,t0 (y)− 2P

ˆ
R

log |x− y|(vρVφ,t0 )(n)(y)dy

+ 2Pδn,0

¨
R2

log |z − y|
1 + |z|

v(y)dµVφ,t0 (y)dµVφ,t0 (z). (2.75)

We deduce that v(n) is differentiable of derivative:

v(n+1)(x) = f (n+1)(x)− 2P (log(1 + |.|))(n+1) (x)

ˆ
R
v(y)dµVφ,t0 (y)− 2PH

[
(vρVφ,t0 )(n)

]
(x), (2.76)

where (log(1 + |.|))(n) (x) =
n!sgn(x)

(1 + |x|)n
if n is odd and

n!

(1 + |x|)n
if n is even. Since the two first

terms in the RHS of (2.76) are clearly bounded, we just have to show that H
[
(vρVφ,t0 )(n)

]
∈ H1(R).
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By boundedness of f (n+1) and v(i) for all i ≤ n, we have:

(vρVφ,t0 )(n+1) = ρVφ,t0

v(n+1) +
n∑
k=0

(
n+ 1

k

)ρ(n+1−k)
Vφ,t0

ρVφ,t0
v(k)


= ρVφ,t0

(
f (n+1) − 2P (log(1 + |.|))(n+1)

ˆ
R
v(y)dµVφ,t0 (y)− 2PH

[
(vρVφ,t0 )(n)

]

+

n∑
k=0

(
n+ 1

k

)ρ(n+1−k)
Vφ,t0

ρVφ,t0
v(k)

)
∈ L2(R).

Thus, it holds that H
[
(vρVφ,t0 )(n)

]
∈ H1(R) and that it is bounded. Hence it proves that v(n+1) ∈

L∞(R) and hence W∞n+1(R) ⊂ T
[
W∞n+1(R)

]
. Conversely, if v ∈ W∞n+1(R), then f ∈ W∞n (R) by

hypothesis and just as before, we show that (2.76) holds. We conclude that f (n+1) ∈ L∞(R) again

by showing that H
[
(vρVφ,t0 )(n)

]
is bounded by the fact that v ∈ W∞n+1(R). This establishes that

W∞n+1(R) = T
[
W∞n+1(R)

]
.

Thus for all n ∈ N, T : W∞n (R) → W∞n (R) is a bijective operator. Furthermore, it is a bounded
operator by the fact that for all 1 ≤ i ≤ n, there exists C > 0 such that for all v ∈ W∞n (R), by
Leibniz formula:∣∣T [v](i)(x)

∣∣ ≤ ‖v(i)‖L∞(R) + 2P
∥∥ (log(1 + |.|))(i)

∥∥
L∞(R)

‖v‖L∞(R)

+ 2P‖v‖W∞i (R)

i∑
k=0

(
i

k

)
sup
z∈R

ˆ
R

∣∣∣ log
|z − y|
1 + |z|

∣∣∣.∣∣∣∣∣ρ
(k)
Vφ,t0

ρVφ,t0
(y)

∣∣∣∣∣dµVφ,t0 (y) ≤ C‖v‖W∞i (R).

Above we used (2.75) and the fact that
´
R(vρVφ,t0 )(i)(y)dy = 0 so:

ˆ
R

log |x− y|(vρVφ,t0 )(i)(y)dy =

ˆ
R

log |x− y|(vρVφ,t0 )(i)(y)dy − log(1 + |x|)
ˆ
R

(vρVφ,t0 )(i)(y)dy

=

ˆ
R

log
|x− y|
1 + |x|

(vρVφ,t0 )(i)(y)dy.

Thus we conclude that supi∈J1,nK
∥∥T [v](i)

∥∥
L∞(R)

≤ C‖v‖W∞n (R). The bound on
∥∥T [v]

∥∥
L∞(R)

was

shown in (2.74). We finally conclude that T : W∞n (R) → W∞n (R) is bounded bijective between
Banach spaces and by Banach isomorphism theorem so is T −1, this establishes (2.73) and completes
the proof. �
Remark 2.6.3 An explicit expression for T −1 is available Fredholm determinant theory for in-
vertible Hilbert-Schmidt operators, see [GGK12, Section XII]. For all v ∈ L2

0(µVφ,t0 ),

T −1[v](x)
(def)
= v(x)

+
1

det
2

(I −K)

∑
n≥1

(−1)n

n!

ˆ
Rn+1

∣∣∣∣∣∣∣∣∣
k(x, s) k(x, t1) . . . k(x, tn)
k(t1, s) 0 . . . k(t1, tn)

...
...

k(tn, s) k(tn, t1) . . . 0

∣∣∣∣∣∣∣∣∣ v(s)dµVφ,t0 (s)

n∏
i=1

dµVφ,t0 (ti).

(2.77)

Above det
2

stands for the 2-determinant. This formula was established in [DGM23, Theorem 6.11].

We are now able to show that ut is a fixed point of a certain operator. We recall that φ was
introduced in the beginning of Subsection 2.6.1.
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Proposition 2.6.4 For all t ∈ [0, 1], ut defined in (2.71) is the unique measurable function such
that

´
R ut(x)dµVφ,t0 (x) = 0 and which satisfies:

ut = T −1 ◦ Vt[ut]

where Vt[u]
(def)
= −φ+

´
R φ(y)dµVφ,t0 (y) + δtUt[u], and

Ut[v](x)
(def)
=

−φ(x) +

ˆ
R
φ(y)dµVφ,t0 (y) +K[v](x) +

ˆ
R

log
(

1 + δtv(y)
)
− δtv(y)

δt
dµVφ,t0 (y)

2

×
ˆ 1

0
(1− s)ds exp

{
sδt

(
−φ(x) +

ˆ
R
φ(y)dµVφ,t0 (y) +K[v](x)

)

+

ˆ
R

log
(

1 + δtv(y)
)
− δtv(y)

δt
dµVφ,t0 (y)

}
+

ˆ
R

log
(

1 + δtv(y)
)
− δtv(y)

(δt)2
dµVφ,t0 (y).

Proof Lemma 2.6.1 allows one to substitute λVφ,t in the representation for ρVφ,t by (2.72) hence
leading to

ρVφ,t = (1+δtut)ρVφ,t0 = exp

(
−Vφ,t0−2PU

ρVφ,t0 +λVφ,t0−δtφ+δt

ˆ
R
φ(y)dµVφ,t0 (y)−2PδtU

utρVφ,t0

− 2Pδt

¨
R2

log |y − z|ut(z)dµVφ,t0 (z)dµVφ,t0 (y) +

ˆ
R

[
log
(

1 + δtut(y)
)
− δtut(y)

]
dµVφ,t0 (y)

)
.

Recognizing ρVφ,t0 via the first three terms in the exponential, ut has to satisfy the following relation
for all x ∈ R,

1 + δtut(x) = exp

{
δt
(
− φ(x) +

ˆ
R
φ(y)dµVφ,t0 (y) + 2P

ˆ
R

log
|x− y|
1 + |x|

ut(y)dµVφ,t0 (y)

− 2P

¨
R2

log
|y − z|
1 + |y|

ut(z)dµVφ,t0 (z)dµVφ,t0 (y) +
1

δt

ˆ
R

[log (1 + δtut(y))− δtut(y)] dµVφ,t0 (y)
)}

.

Above, we have used that −UutρVφ,t0 (x) =

ˆ
R

log
|x− y|
1 + |x|

ut(y)dµVφ,t0 (y) which is justified by the

fact that

ˆ
R
u(y)dµVφ,t0 (y) = 0. Conversely, any u such that

´
R u(y)dµVφ,t0 (y) = 0 and satisfying

the previous relation, verifies for all x ∈ R,

Vt(x) + 2PUw(x) + logw(x) =

ˆ
R

{
Vt(y) + 2PUw(y) + logw(y)

}
dµVφ,t0 (y)

where we have set w
(def)
= (1 + δtu)ρVφ,t0 . Because of this equation, w can be written in exponential

form as in (2.5), it is thus positive and of mass 1 which makes dµ(x)
(def)
= w(x)dx a probability

measure which satisfies the equation characterizing µVφ,t , hence, by unicity of the solution of (2.4),
µVφ,t = µ and thus u = ut.
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We now expand exp into its Taylor-integral series of order 2, i.e. ex = 1 + x + x2
´ 1

0 (1 − s)esxds.
By using that

K[v] = 2P

ˆ
R

log
|x− y|
1 + |x|

u(y)dµVφ,t0 (y)− 2P

¨
R2

log
|y − z|
1 + |y|

v(z)dµVφ,t0 (z)dµVφ,t0 (y)

and T [v] = v −K[v], we get:

T [ut](x) = −φ(x) +

ˆ
R
φ(y)dµVφ,t0 (y)

+ δt

[(
−φ(x) +

ˆ
R
φ(y)dµVφ,t0 (y) +K[ut](x) +

1

δt

ˆ
R

[log (1 + δtut(y))− δtut(y)] dµVφ,t0 (y)

)2

×
ˆ 1

0
exp

(
sδt
(
− φ(x) +

ˆ
R
φ(y)dµVφ,t0 (y) +K[ut](x)

+

ˆ
R

log (1 + δtut(y))− δtut(y)

δt
dµVφ,t0 (y)

))
(1− s)ds+

ˆ
R

log (1 + δtut(y))− δtut(y)

(δt)2 dµVφ,t0 (y)

]
.

We next use the invertibility of T to conclude. �

The next theorem shows that for each t sufficiently close to t0, T −1 ◦ Vt is contractive on a ball
of fixed radius. Let n ≥ 0, denote for all R > 0, Bn(0, R) the closed ball of radius Rn for the
W∞n (R)-norm.
Theorem 2.6.5 For all εn > 0 small enough, there exists Rn > 0, such that for all t ∈]t0−εn, t0 +
εn[, the operator

T −1 ◦ Vt :
(
Bn(0, Rn), ‖.‖W∞n (R)

)
−→

(
Bn(0, Rn), ‖.‖W∞n (R)

)
is well-defined and continuous. Furthermore it is contractive, i.e. there exists kn ∈]0, 1[, such that
for all v, w ∈ Bn(0, Rn),∥∥T −1 ◦ Vt[v]− T −1 ◦ Vt[w]

∥∥
W∞n (R)

≤ kn‖v − w‖W∞n (R).

Moreover kn is independent of t on ]t0 − εn, t0 + εn[ for εn > 0 small enough.

Proof Let ε > 0, t ∈]t0 − ε, t0 + ε[, v ∈ B0(0, R) for an arbitrary 0 < R <
1

δt
(because otherwise

the term
´
R log(1 + δtv)ρVφ,t0 in Vt[v] might be ill-defined). We first show that ‖Vt[v]‖L∞(R) < +∞.

First, by Taylor-Lagrange inequality, we deduce that

∣∣∣ˆ
R

log [1 + δtv(y)]− δtv(y)

δt
dµVφ,t0 (y)

∣∣∣ ≤ ‖v‖2L∞(R)δt

2
sup

x∈[−‖v‖∞,‖v‖∞]

1

(1 + δtx)2
≤ R2δt

2(1− δtR)2
.

By recalling the definition of Vt in Proposition 2.6.4 and using the convexity of x 7→ x2, we get:

‖Vt[v]‖L∞(R) ≤ δt

[
3

(
4‖φ‖2L∞(R) +R2

∥∥∥∥ˆ
R

∣∣∣∣log
|.− y|
1 + |.|

∣∣∣∣ dµVφ,t0 (y)dy

∥∥∥∥2

L∞(R)

+ δt2
R4

4(1− δtR)4

)

×exp

{
δt

(
2‖φ‖L∞(R) +R

∥∥∥∥ˆ
R

∣∣∣∣log
|.− y|
1 + |.|

∣∣∣∣ dµVφ,t0 (y)dy

∥∥∥∥
L∞(R)

+ δt
R2

2(1− δtR)2

)}
+

R2

2(1− δtR)2

]
+ 2‖φ‖L∞(R).
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The RHS is of the form 2‖φ‖∞ + δtg0(δt) where g0 is a positive function and with these notations∥∥T −1 ◦ Vt[v]
∥∥
L∞(R)

≤ CT ,0
(
2‖φ‖L∞(R) + δtg0(δt)

)
.

Therefore, by choosing t such that |t − t0| < ε0 for ε0 > 0 small enough, there exists R0 > 0 such

that 2‖φ‖∞CT ,0 < R0 <
1

ε0
and

T −1 ◦ Vt
(
B0(0, R0)

)
⊂ B0(0, R0).

This makes the operator T −1 ◦Vt :
(
Bn(0, Rn), ‖.‖W∞n (R)

)
−→

(
Bn(0, Rn), ‖.‖W∞n (R)

)
well-defined

for all |t− t0| < ε0. For the contractivity, let u, v ∈ B(0, R0), we get by Proposition 2.6.2,∥∥∥T −1
[
Vt[u]− Vt[v]

]∥∥∥
L∞(R)

≤ CT ,0 ‖Ut[u]− Ut[v]‖L∞(R) .

where Ut was defined in Proposition 2.6.4. We now want to control
∣∣Ut[u](x)−Ut[v](x)

∣∣. We have,
by decomposing the sum∣∣Ut[u](x)− Ut[v](x)

∣∣ ≤ δt (∆1 + ∆2(x)E[u](x) + ∆3(x)h[v](x)2
)

where

h[w](x)
(def)
= −φ(x) +

ˆ
R
φ(y)dµVφ,t0 (y) +K[w](x) +

ˆ
R

log (1 + δtw(y))− δtw(y)

δt
dµVφ,t0

E[w](x)
(def)
=

ˆ 1

0
exp

[
sδth[w](x)

]
(1− s)ds

∆1
(def)
=

ˆ
R

∣∣∣∣ log(1 + δtu(y))− δtu(y)− log(1 + δtv(y)) + δtv(y)

(δt)2

∣∣∣∣ dµVφ,t0 (y)

∆2(x)
(def)
=
∣∣h[u](x)2 − h[v](x)2

∣∣
∆3(x)

(def)
=
∣∣E[u](x)− E[v](x)

∣∣.
First, Taylor Lagrange inequality leads to:

∆1 ≤ sup
y∈[−R0,R0]

|y|
1 + δty

‖u− v‖L∞(R) ≤
R0

1− δtR0
‖u− v‖L∞(R).

Furthermore, by using a2 − b2 = (a+ b)(a− b), that h[u] and h[v] are bounded

∆2 ≤ 2 max
(
‖h[u]‖L∞(R), ‖h[v]‖L∞(R)

)[∣∣∣K[u− v](x)
∣∣∣+ δt∆1

]

≤

(
4‖φ‖L∞(R) + 8PR0

∥∥∥∥ˆ
R

∣∣∣∣log
|.− y|
1 + |.|

∣∣∣∣ dµVφ,t0 (y)

∥∥∥∥
L∞(R)

+
δtR2

0

(1− δtR0)2

)
‖u− v‖L∞(R)

×

(
R0δt

1− δtR0
+ 4P

∥∥∥∥ˆ
R

∣∣∣∣log
|.− y|
1 + |.|

∣∣∣∣ .ρVφ,t0 (y)dy

∥∥∥∥
L∞(R)

)
≤ C(R0)‖u− v‖L∞(R)

Similarly, there exists C(R0) > 0 such that:

∆3‖h[v]‖L∞(R) ≤ C(R0)δt‖u− v‖L∞(R)
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which finally leads to the existence of C0 > 0 such that:∥∥Ut[u]− Ut[v]
∥∥
L∞(R)

≤ C0δt‖u− v‖L∞(R).

We now choose ε0 again small enough such that k0
(def)
= δtC0CT ,0 < 1, this concludes the proof

that T −1 ◦ Vt is contractive on B0(0, R0) with contractivity constant k0.

To get the contractivity property for T −1 ◦ Vt on W∞n (R), we adapt a similar strategy. Let u ∈
Bn(0, R) with δtR < 1, by Proposition 2.6.2,

‖T −1[Vt[u]]‖W∞n (R) ≤ CT ,n‖Vt[u]‖W∞n (R).

Furthermore, it is clear that every term appearing in the definition of Vt[u] belongs to Wn(R), thus
by the same argument as before there exists a positive function gn such that,

‖T −1 ◦ Vt[u]‖Wn(R) ≤ CT ,n
(

2‖φ‖W∞n (R) + δtgn(R)
)
.

We conclude just as before that by taking δt small enough, T −1 ◦ Vt : Bn(0, R) → Bn(0, R) is
well-defined. Finally, just as before since for all u, v ∈W∞n (R)

Ut[u](n)(x) = δt

n∑
k=0

(
n

k

)(
h[u]2

)(k)
(x)E[u](n−k)(x)

= δt
∑

0≤i≤k≤n

(
n

k

)(
k

i

)
h[u](i)(x)h[u](k−i)(x)E[u](n−k)(x).

Moreover, by the same controls as before it is easy to derive that for all 0 ≤ i ≤ k ≤ n, for all
u, v ∈ Bn(0, Rn),

‖h[u](i)h[u](k−i)E[u](n−k) − h[v](i)h[v](k−i)E[v](n−k)‖L∞(R) ≤ C(Rn, n, i, k)‖u− v‖W∞n (R).

This is enough to conclude that∥∥T −1 ◦ Vt[u]− T −1 ◦ Vt[v]
∥∥
W∞n (R)

≤ δtCT ,nC(Rn, n, i, k)‖u− v‖W∞n (R).

Finally, by taking δt small enough, we conclude that T −1 ◦ Vt is contractive on Bn(0, Rn) with

contractivity constant kn
(def)
= δtCT ,nC(Rn, n, i, k) < 1. �

Remark 2.6.6 Note that the definition of ut as an element of W∞n (R) depends on t0 and that we
only proved the characterization of ut as a fixed point for t ∈]t0 − εn, t0 + εn[\{t0} with εn > 0
small enough (we stress that we successively lowered δt when increasing i.) Furthermore, since for
all v ∈ L∞(R)

T −1 ◦ Vt0 [v] = −φ+

ˆ
R
φdµVφ,t0 ,

then we can set ut0
(def)
= −φ+

ˆ
R
φdµVφ,t0 which is obviously the unique fixed point in

⋂
n∈N

W∞n (R)

of T −1 ◦ Vt0 .

2.6.2 Regularity of the equilibrium measure

We now prove the continuity of t 7→ ut ∈W∞n (R).
Lemma 2.6.7 Let n ∈ N, εn > 0 and Rn > 0 be as in Theorem 2.6.5. For all v ∈ Bn(0, Rn), for
all (tp)p ∈ (]t0 − εn, t0 + εn[)N such that tp −→

p→∞
t ∈]t0 − εn, t0 + εn[ then

‖T −1 ◦ Vtp [v]− T −1 ◦ Vt[v]‖W∞n (R) −→
p→∞

0.
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Proof The proof is based on the fact that there exists a neighboorhood Un of t0 such that for
all v ∈ Bn(0, Rn), t ∈ Un 7→ Vt[v] ∈ W∞n (R) is continuous. Since T −1 is also continuous in
W∞n (R)-norm, we can conclude. �
Corollary 2.6.8 (Continuity of the fixed-point) Let n ∈ N, for all t, t′ ∈]t0 − εn, t0 + εn[,

‖ut − ut′‖W∞n (R) −→
t→t′

0.

Proof Let (tn)n ∈ (]t0 − ε, t0 + ε[)N such that tn −→
n→∞

t ∈]t0 − εn, t0 + εn[. First

∥∥utn − T −1 ◦ Vtn [ut]
∥∥
W∞n (R)

=
∥∥T −1 ◦ Vtn [utn ]− T −1 ◦ Vtn [ut]

∥∥
W∞n (R)

≤ ki ‖utn − ut‖W∞n (R)

and by the triangle inequality, we obtain:∥∥ut − T −1 ◦ Vtn [ut]
∥∥
W∞n (R)

≥ ‖utn − ut‖∞−
∥∥utn − T −1 ◦ Vtn [ut]

∥∥
W∞n (R)

≥ (1−kn) ‖utn − ut‖W∞n (R) .

Nevertheless by Lemma 2.6.7,
∥∥ut − T −1 ◦ Vtn [ut]

∥∥
W∞n (R)

−→
n→∞

0 because ut is the fixed point of

T −1 ◦ Vt which is a continuous operator with respect to t hence ‖utn − ut‖W∞n (R) −→n→∞ 0. �

Theorem 2.6.9 Let t, t0 ∈ [0, 1], ∥∥∥ρVt − ρVφ,t0∥∥∥W∞n (R)
−→
t→t0

0.

Furthermore, for all x ∈ R, k ∈ N, t 7→ ∂kxρVt(x) ∈ C∞(R) and satisfies the following partial
differential equation:

∂t∂
k
xρVt(x) = ∂kx

[(
−φ+

ˆ
R
φ(s)ρVt(s)ds

)
ρVt

]
(x).

Proof By setting ut
(def)
=

ρVt − ρVt′
t− t′

1

ρVt′
,

‖ρVt − ρVt′‖W∞n (R) = |t− t′|
∥∥ρVt′ut∥∥W∞n (R)

≤ 2n|t− t′|
∥∥ρVt′∥∥W∞n (R)

. ‖ut‖W∞n (R) .

By Corollary 2.6.8, ‖ut‖W∞n (R) −→
t→t′
‖ut′‖W∞n (R), thus the right-hand side goes to zero proving the

claim.

For the second point, we notice that∥∥∥∥ρVt − ρVφ,t0δt
− ρVφ,t0ut0

∥∥∥∥
W∞n (R)

=
∥∥∥(ut − ut0)ρVφ,t0

∥∥∥
W∞n (R)

≤ 2n‖ut − ut0‖W∞n (R)‖ρVφ,t0‖W∞n (R).

Since the RHS goes to zero as t→ t0, ut0 = −φ+

ˆ
R
φdµVφ,t0 and n is arbitrary, we conclude that,

x ∈ R, t 7→ ρVt(x) is differentiable at every t ∈ [0, 1] of derivative

∂tρ
(k)
Vt

(x) = − (ρVtφ)(k) (x) + ρ
(k)
Vt

(x)

ˆ
R
φ(y)dµVt(y).

Since the above expression is again differentiable in t (one deals with the integral by dominated
convergence theorem with the domination |φ(x)∂tρVt(x)| ≤ 2‖φ‖2∞(1 + maxs∈[0,1] ‖us‖∞)ρVφ,t0 (x)
for an arbitrary t0), we conclude that for all x ∈ R, t 7→ ρVt(x) ∈ C∞(R). �
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Corollary 2.6.10 (Convergence of moments) Let h ∈ N, t ∈ [0, 1] by denoting

m(t, h)
(def)
=

ˆ
R
xhdµVt(x),

we have for all t0 ∈ [0, 1]

m(t, h) →
t→t0

m(t0, h).

Proof For all t ∈ [0, 1], for all x ∈ R, ρVt(x) ≤ (1+maxs∈[0,1] ‖us‖∞)ρVφ,t0 (x), hence by dominated
convergence theorem |m(t, h)−m(t0, h)| →

t→t′
0. �

2.7 Proof of Theorem 2.1.4

2.7.1 Asymptotic expansion of the partition function for the Gaussian potential

The asymptotic behaviour of ZN [VG] can be deduced from Mehta’s formula [Meh04, 17.6.7]

ZN [VG] = (2π)N/2
N∏
a=1

Γ

(
1 +

aP

N

)
Γ

(
1 +

P

N

) . (2.78)

This will allow us to use this formula in our interpolating integration formula to deduce the asymp-
totic expansion of logZN [Vφ]. From the previous equation, we can deduce the asymptotic behaviour
of logZN [VG]. It is given by the following theorem:
Theorem 2.7.1 There exists a sequence (gk)k≥0 ∈ RN , such that for all K ≥ 0,

1

N
logZN [VG] =

K∑
k=0

gk
Nk

+O
(
N−(K+1)

)
(2.79)

with

g1
(def)
= γ

P

2
+

log(1 + P )

2
+

1

2

∑
j≥1

(
log

(
1 +

P + 1

j

)
− log

(
1 +

1

j

)
− P

j

)
.

Above γ denotes the Euler-Mascheroni constant.
Proof We first use (2.78) to deduce

logZN [VG] =
N log(2π)

2
+

N∑
a=1

Γ

(
1 +

aP

N

)
−N log Γ

(
1 +

P

N

)
. (2.80)

Let K > 0, using the Taylor series expansion of log Γ around 1 (see [GR14, 8.342]), one has

−N log Γ

(
1 +

P

N

)
= γP −

+∞∑
k=1

ζ(k + 1)

k + 1

(−P )k+1

Nk
. (2.81)

where ζ denotes the Riemann ζ function. The second term in (2.80) can be estimated by using the

Weierstrass product formula for
1

Γ
:

1

Γ(z)
= eγzz

+∞∏
j=1

(1 +
z

j
)e−z/j (2.82)
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which is valid for any z ∈ C. Hence we deduce that:

N∑
k=1

log Γ

(
1 +

kP

N

)
= −

N∑
k=1

(
γ
(

1 +
kP

N

)
+ log

(
1 +

kP

N

)
− SN (k)

)

= −γN − γ (N + 1)P

2
−

N∑
k=1

log

(
1 +

kP

N

)
+

N∑
k=1

SN (k) (2.83)

where SN (k)
(def)
= −

+∞∑
j=1

[
log

(
1 +

1

j
+
kP

Nj

)
− 1

j
− kP

Nj

]
. By the Euler-Maclaurin formula, we have

the following identity for any K > 0:

N∑
k=1

log

(
1 +

kP

N

)
=

ˆ N

0
fN (t)dt+

K+2∑
k=1

Bk
k!

(
f

(k−1)
N (N)− f (k−1)

N (0)
)

+R
(N)
K+2 (2.84)

where fN (x)
(def)
= log

(
1 +

xP

N

)
and Bk is the k-th Bernoulli number. The remainder R

(N)
K+2

is defined by R
(N)
K+2

(def)
= (−1)K+1

ˆ N

0
f

(K+2)
N (t)

B̃K+2(t− btc)
(K + 2)!

dt, where B̃K+2 is the (K + 2)-th

Bernoulli polynomial. By using the following bound on Bernoulli polynomials,

∀x ∈ [0, 1],∀k > 0, |B̃k(x)| ≤ 2
k!

(2π)k
ζ(k)

where ζ is the Riemann zeta function, R
(N)
K+2 can be controlled by the following inequalities:

|R(N)
K+2| ≤

2ζ(K + 2)

(2π)K+2

ˆ N

0
|f (K+2)
N (t)|dt =

2ζ(K + 2)

(2π)K+2

ˆ N

0

PK+2

NK+2

(K + 1)!(
1 +

P

N
t

)K+2
dt

=
2ζ(K + 2)(K + 1)!

(2π)K+2

PK+1

NK+1

ˆ P

0

du

(1 + u)K+2
= O

(
N−(K+1)

)
.

Extracting the large N -behaviour in (2.84) leads to

N∑
k=1

log

(
1 +

kP

N

)
=
N

P

ˆ P

0
log(1 + t)dt+B1 log(1 + P )

+
K+2∑
k=2

Bk
k!

(−1)k(k − 2)!
P k−1

Nk−1

(
1

(1 + P )k−1
− 1

)
+O

(
N−(K+1)

)
= Nc−1 +

K∑
k=0

ck
Nk

+O
(
N−(K+1)

)
(2.85)

where c−1
(def)
= (1 + P−1) log(1 + P )− 1, c0

(def)
=

log(1 + P )

2
and for all k ∈ J1,KK,

ck =
−Bk+1(−P )k

k(k + 1)

(
1

(1 + P )k
− 1

)
.

Also by Fubini’s theorem, we get,
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N∑
k=1

SN (k) = −
+∞∑
j=1

{
N∑
k=1

log

(
1 +

1

j
+
kP

Nj

)
− 1

j
− kP

Nj

}

=

+∞∑
j=1

{
N

j
+

(N + 1)P

2j
+

N∑
k=1

gN,j(k)

}

where gN,j(x) = log

(
1 +

1

j
+

P

jN
x

)
. The first equality clearly shows that the RHS is a serie of

general term bounded by O
(
j−2
)
, so it converges and justifies the application of Fubini’s theorem.

Again by Euler-Maclaurin formula, we get:

N∑
k=1

gN,j(k) = −
ˆ N

0
log

(
1 +

1

j
+ t

P

Nj

)
dt− 1

2

[
log

(
1 +

P + 1

j

)
− log

(
1 +

1

j

)]

−
K+2∑
k=2

(−1)kBk
k(k − 1)

{(
1 +

P + 1

j

)1−k
−
(

1 +
1

j

)1−k
}(

P

Nj

)k−1

+R
(N)
K+2(j) (2.86)

where again the new remainder R
(N)
K+2(j) can be controlled via

|R(N)
K+2(j)| ≤ 2ζ(K + 2)

(2π)K+2

ˆ N

0

(K + 1)!

(
P

Nj

)K+2

(
1 +

1

j
+ t

P

jN

)K+2
dt

=
2ζ(K + 2)

(2π)K+2

(
P

Nj

)K+1
{(

1 +
P + 1

j

)−(K+1)

−
(

1 +
1

j

)−(K+1)
}

= O

(
1

(Nj)K+1

)

where O

(
1

jK+1

)
depends on K and P but not on N . Hence we deduce that

N∑
k=1

gN,j(k) = −N
ˆ 1

0
log

(
1 +

1 + sP

j

)
ds− 1

2

[
log

(
1 +

P + 1

j

)
− log

(
1 +

1

j

)]

+
K∑
k=1

(−P )kBk+1

k(k + 1)

{(
1 +

P + 1

j

)−k
−
(

1 +
1

j

)−k} 1

(Nj)k
+O

(
(jN)−(K+1)

)
.

This leads to:

N∑
k=1

SN (k) =
+∞∑
j=1

[
N

j
+

(N + 1)P

2j
+

N∑
k=1

gN,j(k)

]
=

+∞∑
j=1

(
u

(1)
j N +

K∑
k=0

u
(k)
j N−k

)
+O(N−(K+1))

= d1N +

K∑
k=0

d−kN
−k +O

(
N−(K+1)

)
(2.87)

where for all k = −1, 0 . . .K,
(
u

(k)
j

)
j>0
∈ `1(N∗) and d−k ∈ R. This establishes the existence of

the asymptotic expansion of logZN [VG] up to O
(
N−(K+1)

)
. Collecting the different terms, leads

to the formula for g1. �
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2.7.2 Free energy of the model

Only, in this Subsection, since the parameter P varies, we include the P -dependance of ZN [V ] in
the notation and write ZPN [V ] instead.
Theorem 2.7.2 (Free energy formula for Gaussian Potential) Let P > 0, the free energy
associated with the Gaussian potential is

F (P )
(def)
= lim

N→∞
N−1 logZPN [2PVG] = −1 + P

2
log(2P ) +

log(2π)

2
+

ˆ 1

0
log Γ (1 + Px) dx (2.88)

As P goes to +∞, we have:

F (P ) = −P
(

3 + log 2

2

)
− 1 + log 2

2
+ log(2π) +

logP

12P
+O

(
P−1

)
(2.89)

Proof By a change of variable, it holds that ZPN [2PVG] =
(√

2P
)−N−P (N−1)

ZPN [VG] . Hence by

Mehta’s formula (2.78),

F (P )
(def)
= lim

N→∞
N−1 logZPN [2PVG] = −1 + P

2
log(2P ) +

log(2π)

2
+

ˆ 1

0
log Γ (1 + Px) dx.

We can replace the last term by its asymptotic expansion so that

ˆ 1

0
log Γ (1 + Px) dx =

(P + 1)

2
logP − 3P

2
+

log(2π)− 1

2
+

1

12P
logP +O

(
P−1

)
.

We used the classic formula to conclude

log Γ(1+Px) = (1+Px) log(1+Px)−1−Px− log(1 + Px)− log(2π)

2
+

1

12(1 + Px)
+O

(
1

(1 + Px)3

)
.

2.7.3 Interpolation with general potential

We first establish the link between the 1-linear statistics and the partition function with general
potential and the one with Gaussian potential.
Lemma 2.7.3 Let Vt(x) = tV (x) + (1− t)VG(x) with t ∈ [0, 1]. We have

log
ZN [V ]

ZN [VG]
= −N

ˆ 1

0
〈V − VG〉VtLN dt (2.90)

Proof By the fundamental theorem of calculus:

log
ZN [V ]

ZN [VG]
=

ˆ 1

0
∂t logZN [Vt]dt = −

ˆ 1

0
dt

ˆ
RN

pVtN (x)

N∑
i=1

∂tVt(xi)d
Nx.

Since
N∑
i=1

∂tVt(xi) = N

ˆ
R

[V (x)− VG(x)] dLN (x), where LN is the empricial measure associated to

the external potential Vt, it concludes the proof. �
Theorem 2.7.4 For all φ ∈ ∩k≥0H

k(R), there exists a sequence (ci)i≥0 ∈ RN depending on φ and
P such that for all K ≥ 0

1

N
logZN [VG,φ] =

K∑
i=0

ci
N i

+O
(
N−(K+1)

)
.
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The leading term c0 is equal to the following expression:

ˆ
R
VG,φ(x)dµVG,φ(x)− P

¨
R2

log |x− y|dµVG,φ(x)dµVG,φ(y) +

ˆ
R

log

(
dµVG,φ(x)

dx

)
dµVG,φ(x).

The subleading term c1 can be written as

c1
(def)
= γ

P

2
+

log(1 + P )

2
+

1

2

∑
j≥1

(
log

(
1 +

P + 1

j

)
− log

(
1 +

1

j

)
− P

j

)

− P
ˆ 1

0

[〈
∂1Ξ̃−1φ

〉
µVG,φ,t

+
〈

Θ(2) ◦ Ξ̃−1
1

[
∂2D ◦ Ξ̃−1φ

]〉
µVG,φ,t

]
dt. (2.91)

Proof By Lemma 2.7.3 and Theorem 2.7.1, to establish the asymptotic expansion of ZN [VG,φ], it

suffices to obtain the one for

ˆ 1

0
〈φ〉VG,φ,tLN

dt. By Theorem 2.5.2, we get

ˆ 1

0
〈φ〉VG,φ,tLN

dt =

ˆ 1

0
〈φ〉µVG,φ,t dt+

K∑
a=1

ˆ 1

0
d

(1),VG,φ,t
a (φ)dt

Na
+

ˆ 1

0

(
〈φ〉VG,φ,tLN −

K∑
a=1

d
(1),VG,φ,t
a (φ)

Na

)
dt.

Finally, we conclude that the last integral is a O
(
N−(K+1)

)
by (2.67) and the continuity on

t 7→ PVtK,k obtained in Proposition 2.10.11. Furthermore, by collecting order 1 for logZN [VG]

and

ˆ 1

0
d

(1),VG,φ,t
a (φ)dt for a = 1 in Theorem 2.5.2, we infer on the value ofc1. �

2.8 Conclusion

This work adapted the analysis of the loop equations method to prove the existence of a N−1

asymptotic expansion for a general class of potential. This class include all potentials given by
x2 + φ where φ is a smooth bounded function. An immediate continuation of this result would
be to extend it to more general confining potentials like x4 for example. Our method relied on
new controls on the equilibrium measures resulting from an energy minimization and entropy
maximization. A natural question would be to extend these ideas to more general interactions.

2.9 Appendix: Lemmas and technical results

Lemma 2.9.1 (Properties of the Hilbert transform)

i) As a consequence, π−1H is an isometry of L2(R), and H satisfies on L2(R) the identity
H2 = −π2I.

ii) Derivative: For any f ∈ H1(R), H[f ] is also H1(R) and H[f ]′ = H[f ′].

iii) For all p > 1, the Hilbert transform can be extended as a bounded operator H : Lp(R)→ Lp(R).

iv) Skew-self adjointness: For any f, g ∈ L2(R), 〈H[f ], g〉L2(R) = −〈f,H[g]〉L2(R).

v) For all δ > 0, for all f ∈ L1(R) such that f ′ ∈ L∞(R), ‖H[f ]‖∞ ≤ (δ−1‖f‖1 + 2δ‖f ′‖∞)
Proof We refer to [Kin09] for the proofs of properties i)-iv). To prove v), let f be such a function,

|H[f ](x)| ≤ lim
ε→0

∣∣∣ˆ
ε≤|x−y|≤δ

f(y)dy

y − x

∣∣∣+ lim
ε→0

∣∣∣ ˆ
δ≤|x−y|≤ε−1

f(y)dy

y − x

∣∣∣.
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The second term in the RHS can be bounded by δ−1‖f‖L1(R) while the first term verifies

lim
ε→0

∣∣∣ ˆ
ε≤|x−y|≤δ

f(y)dy

y − x
| ≤ lim

ε→0

ˆ
ε≤|x−y|≤δ

∣∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣∣dy + lim
ε→0

∣∣∣∣∣
ˆ
ε≤|x−y|≤δ

dy

y − x

∣∣∣∣∣.

The first term in the RHS can be bounded by 2δ‖f ′‖∞ while the second is equal to 0. This allows
to conclude. �

We recall some results obtained in [DGM23].
Lemma 2.9.2 Let u ∈ L2(R) be such that

´
R u(t)dt exists and let f : t 7→ tu(t) ∈ H1(R) then

H[u](x) ∼
|x|→∞

−
ˆ
R
u(t)dt

x
.

Moreover, if

ˆ
R
u(t)dt = 0,

ˆ
R
f(t)dt exists and g : t 7→ t2u(t) ∈ H1(R), then:

H[u](x) ∼
|x|→∞

−
ˆ
R
tu(t)dt

x2
.

As a consequence, we obtain that H[ρV ](x) ∼
|x|→∞

−x−1 and the logarithmic potential UρV is Lips-

chitz bounded, with bounded derivative H[ρV ].
Lemma 2.9.3 Let n ≥ 1, and h ∈ Hn(R),

‖ρV Ξ̃−1[h]‖Hn(R) ≤ C3(V, n)‖h‖Hn(R).

with a constant C3(V, n), only depending on V and n. For the choice of potentiel V = Vφ,t, for
φ ∈ C∞(R) with φ(k) ∈ L2(R) for all k ∈ N and t ∈ [0, 1], t 7→ C3(Vφ,t, n) is a continuous function.
Moreover, for all h ∈ Hn(R) ∩W∞n (R),

‖ρV Ξ̃−1[h]‖Hn(R) ≤ C5(V, n)‖h‖W∞n (R)

with a constant C5(V, n), only depending on V and n. The function t 7→ C5(Vφ,t, n) is also contin-
uous.

Proof We first prove that for all k ≥ 0, h ∈ 1

ρV
Hk(R), there exists finite sets of indices Ikl,a,

Jkl and Kkl independent of V and polynomials pka,1,1 ,pka,b,c,d, q
k
a,b,c in θ, . . . , θ(k−1), with coefficients
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independent of V and of degree at most k, such that for all x ∈ R,

Ξ̃−1[h](k) =
k−1∑
a=0

pka,1,1h
(a) +

k−1∑
a=0

∑
b∈Ik2,a

pka,b,2,1H
[
ρV p

k
a,b,2,2h

(a)
]

+ . . .

+

k−1∑
a=0

∑
b∈Ikk,a

pka,b,k,1H

[
ρV p

k
a,b,k,2H

[
ρV p

k
a,b,k,3H

[
. . .H

[
ρV p

k
a,b,k,kh

(a)
]]
. . .

]
︸ ︷︷ ︸
k−1

+qk1,1Ξ̃−1[h]

+
∑
b∈Jk2

qkb,2,1H
[
ρV q

k
b,2,2Ξ̃−1[h]

]
+ . . .+

∑
b∈Jkk+1

qkb,k+1,1H

[
ρV q

k
b,k+1,2H

[
. . .H

[
ρV q

k
b,k+1,k+1Ξ̃−1[h]

]
. . .

]
︸ ︷︷ ︸

k

+

rk1,1 +
∑
b∈Kk2

rkb,2,1H
[
ρV r

k
b,2,2

]
+ . . .+

∑
b∈Kkk

rkb,k,1H

[
ρV r

k
b,k,2H

[
. . .H

[
ρV r

k
b,k,k

]
. . .

]
︸ ︷︷ ︸
k−1


×
(

2P

ˆ
R
H
[
ρV Ξ̃−1[h]

]
dµV −

ˆ
R
hdµV

)
. (2.92)

We prove it by induction, where for n = 1 one just uses the definition of Ξ for the initial case i.e.

(
Ξ̃−1[h]

)′
= h−

ˆ
R
hdµV −

ρ′V
ρV

(
Ξ̃−1[h]

)′
− 2PH

[
ρV Ξ̃−1[h]

]
+ 2P

ˆ
R
H
[
ρV Ξ̃−1[h]

]
dµV .

For the induction step, use a bootstrap argument. Suppose (2.92) holds at rank k, then differentiate

and replace
(

Ξ̃−1[h]
)′

by the RHS of the above relation to show that (2.92) holds at rank k + 1.

Now, by the Leibniz formula, for all k ∈ J0, nK, it holds that

(
ρV Ξ−1[h]

)(k)
=

k∑
i=0

(
k

i

)
ρ

(k−i)
V Ξ−1[h](i).

Furthermore by (2.92), by using successively that π−1H is an isometry of L2(R), inequality (2.26)
and Jensen’s inequality, we obtain:

max
0≤k≤n

‖
(
ρV Ξ−1[h]

)(k)
(x)‖L2(R) ≤ C3(V, n)‖h‖Hk(R)
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with C3(V, n) given by

C3(V, n)
(def)
= C(n)

× max
i≤k≤n

{
i max

0≤a<i

∥∥∥ρ(k−i)
V pia,b,1,1

∥∥∥
∞

+ iπ max
0≤a<i

|Ii2,a| max
b∈Ii2,a

(∥∥∥ρ(k−i)
V pia,b,2,1

∥∥∥
∞
‖ρV pia,b,2,2‖∞

)
+ . . .

+ iπi−1 max
0≤a<i

|Iii,a| max
b∈Iii,a

(∥∥∥ρ(k−i)
V pia,b,i,1

∥∥∥
∞
.
i∏
l=2

‖ρV pia,b,i,l‖∞

)
+ CL

∥∥∥ρ(k−i)
V qi1,1

∥∥∥
∞
‖ρ1/2

V ‖∞

+ CLπ|Ji2|max
b∈Ji2

∥∥∥ρ(k−i)
V qib,2,1

∥∥∥
∞
‖ρ1/2

V qib,2,2‖∞‖ρ
1/2
V ‖∞ + . . .

+ CLπ
i|Jii+1| max

b∈Jii+1

∥∥∥ρ(k−i)
V qib,i+1,1

∥∥∥
∞

i∏
l=2

‖ρV qib,i+1,l‖∞‖ρ
1/2
V qib,i+1,i+1‖∞‖ρ

1/2
V ‖∞

+ 2‖ρV ‖∞ (1 + 2PπCL)
[
‖ri1,1

ρ
(k−i)
V

ρV

√
ρV ‖∞ + π|Ki2|max

b∈Ki2
‖ρ(k−i)

V rib,2,1‖∞‖
√
ρV r

i
b,2,1‖∞ + . . .

+ πi−1|Kii|max
b∈Kii
‖ρ(k−i)

V rib,i,1‖∞
i−1∏
l=2

‖ρV rib,i,l‖∞‖
√
ρV r

i
b,i,i‖∞

]}
(2.93)

For the second inequality, if h ∈ Hn(R) ∩W∞n (R), we use the fact the same inequalities but we

use the following integrals at the end

ˆ
R

(
pia,b,i,lh

(a)ρV (t)
)2
dt ≤ ‖h‖2W∞a (R)

ˆ
R

(pia,b,i,lρVt)
2dt. This

leads to

‖ρV Ξ̃−1[h]‖Hn(R) ≤ C5(V, n)‖h‖W∞n (R)

with C5(V, n) given by

C5(V, n)
(def)
= C(n)

× max
i≤k≤n

{
i max

0≤a<i

∥∥∥∥∥ρ
(k−i)
V

ρV
pia,b,1,1

√
ρV

∥∥∥∥∥
∞

+iπ max
0≤a<i

|Ii2,a| max
b∈Ii2,a

(∥∥∥ρ(k−i)
V pia,b,2,1

∥∥∥
∞
‖√ρV pia,b,2,2‖∞

)
+. . .

+ iπi−1 max
0≤a<i

|Iii,a| max
b∈Iii,a

(∥∥∥ρ(k−i)
V pia,i,1

∥∥∥
∞
.
i−1∏
l=2

‖ρV pia,i,l‖∞‖
√
ρV p

i
a,i,i‖∞

)
+ CL

∥∥∥ρ(k−i)
V qi1,1

∥∥∥
∞
‖ρV ‖1/2∞ + CLπ|Ji2|max

b∈Ji2

∥∥∥ρ(k−i)
V qib,2,1

∥∥∥
∞
‖ρ1/2

V qib,2,2‖∞ + . . .

+ CLπ
i|Jii+1| max

b∈Jii+1

∥∥∥ρ(k−i)
V qib,i+1,1

∥∥∥
∞

i∏
l=2

‖ρV qib,i+1,l‖∞‖ρ
1/2
V qib,i+1,i+1‖∞

+ 2
(

1 + 2Pπ‖ρV ‖1/2∞ CL

) [
‖ri1,1

ρ
(k−i)
V

ρV

√
ρV ‖L2(R) + π|Ki2|max

b∈Ki2
‖ρ(k−i)

V rib,2,1‖∞‖
√
ρV r

i
b,2,1‖∞ + . . .

+ πi−1|Kii|max
b∈Kii
‖ρ(k−i)

V rib,i,1‖∞
i−1∏
l=2

‖ρV rib,i,l‖∞‖
√
ρV r

i
b,i,i‖∞

]}
. (2.94)

The fact that t 7→ Ci(Vφ,t, n) is shown in Appendix 2.10. �
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Remark 2.9.4 With θ =
ρ′V
ρV

, g
(def)
= Ξ̃−1[f ] and c

(def)
=

ˆ
R

(2PH [ρV g] (y)− f(y)) dµV (y) we have

g′ = f − θg − 2PH [ρV g] + c

g′′ = −θf + f ′ − 2PH [ρV f ] +
(
θ2 − θ′

)
g + 2PθH [ρV g] + 4P 2H [ρVH [ρV g]]

+ (−θ − 2PH[ρV ]) c.

g(3) =
(
θ2 − 2θ′

)
f − θf ′ + f ′′ + 2PθH [ρV f ]− 2PH [ρV θf ]− 2PH

[
ρV f

′]+ 4P 2H
[
ρVH [ρV f ]

]
+
[(
θ2 − θ′

)′ − (θ3 − θθ′
)]
g + 2P

(
θ2 − 2θ′

)
H[ρV g]− 4P 2θH [ρVH [ρV g]] + 4P 2H [ρV θH [ρV g]]

+ 4P 2H [ρVH [ρV θg]]− 8P 3H
[
ρVH

[
ρVH [ρV g]

]]
+
(

(θ2 − 2θ′) + 2PθH[ρV ]− 2PH[ρV θ] + 4P 2H
[
ρVH[ρV ]

] )
c

2.10 Appendix: Integrability of the constants

2.10.1 Parameter continuity of norms of certain functions

In this appendix, we work with V = VG,φ,t, t ∈ [0, 1] and φ ∈ ∩k≥0H
k(R). We will show, that the

constant Ci(VG,φ,t, n) appearing in our problem, see Theorem 2.4.14, Theorem 2.4.15 and 2.4.18
will be continuous in t hence integrable on [0, 1]. In this section, we denote for all t ∈ [0, 1],

αt
(def)
=

ρVG,φ,t
ρ′VG,φ,t

and θt
(def)
=

ρ′VG,φ,t
ρVG,φ,t

.

First of all, by Theorem 2.6.9, the map t 7→ ‖ρVG,φ,t‖W∞n (R) is continuous for all n ∈ N. This allows
to conclude that
Lemma 2.10.1 Let t, t0 ∈ [0, 1], for all n ∈ N,∥∥∥H[ρVG,φ,t − ρVG,φ,t0 ]

∥∥∥
W∞n (R)

−→
t→t0

0.

Proof We prove it by induction and use Lemma 2.9.1 and Theorem 2.6.9. For n = 0, we know
that there exists C > 0, such that:∥∥∥H[ρVG,φ,t − ρVG,φ,t0 ]

∥∥∥
∞
≤ C

(
‖ρVG,φ,t − ρVG,φ,t0

∥∥∥
L1(R)

+ ‖ρ′VG,φ,t − ρ
′
VG,φ,t0

‖∞).

By Scheffé’s lemma, the L1 norm goes to zero and by Theorem 2.6.9 goes also to zero as t goes to

t0. Now suppose that
∥∥∥H[ρVG,φ,t − ρVG,φ,t0 ]

∥∥∥
W∞n (R)

−→
t→t0

0 for some n ≥ 0. We have that

∥∥∥H[ρ
(n+1)
VG,φ,t

− ρ(n+1)
VG,φ,t0

]
∥∥∥
∞
≤ C

(
‖ρ(n+1)

VG,φ,t
− ρ(n+1)

VG,φ,t0

∥∥∥
L1(R)

+ ‖ρ(n+2)
VG,φ,t

− ρ(n+2)
VG,φ,t0

‖∞).

Since for all x ∈ R, ρ
(n+1)
VG,φ,t0

(x) goes to zero and we have the following domination by Leibniz formula

|ρ(n+1)
VG,φ,t

(x)| ≤ (1 + max
s∈[0,1]

‖us‖W∞n+1(R))

n+1∑
k=0

|ρ(k)
VG,φ,t0

(x)|.

By dominated convergence theorem, the L1-norm goes to zero and the last term also trivially goes
to zero by theorem 2.6.9. �
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Secondly, we can set MVG,φ,t (see Lemma 2.4.9) equal to any value M such that

M > max

(
1 + ‖φ′‖∞ + 2P max

t∈[0,1]
‖H[ρVG,φ,t ]‖∞, 2

(
‖φ′‖∞ + 2P max

t∈[0,1]
‖H[ρVG,φ,t ]‖∞

))
.

We choose such a M , it is well-defined because of Lemma 2.10.1.
Lemma 2.10.2 For all t ∈ [0, 1], for all i, j ∈ N, for all |x| ≥M ,

∣∣∣∣ρ′VG,φ,tρVG,φ,t
(x)

∣∣∣∣ ≥ 1 and
∣∣∣(ρVG,φ,t

ρ′VG,φ,t

)(i)

(x)j
∣∣∣ ≤ δi,0C0,j

|x|j
+
Ci,j
|x|2j

for constants Ci,j > 0 independent of t.

Proof Let x ∈ R, −
ρ′VG,φ,t
ρVG,φ,t

(x) = x+ tφ′(x) + 2PH[ρVG,φ,t ](x). Thus if |x| ≥M ,

∣∣∣∣ρ′VρV (x)

∣∣∣∣ ≥ 1 +
(
‖φ′‖∞ − t|φ′(x)|

)
+ 2P

(
max
s∈[0,1]

‖H[ρVG,φ,s ]‖∞ − |H[ρVG,φ,t ](x)|
)
≥ 1.

For the second point, one notices by differentiation and (2.17) that there exists polynomials Pk
with coefficients independent of t such that

(
ρVG,φ,t
ρ′VG,φ,t

)(i)

(x) =
i∑

k=1

Pk

(
tφ′(x), . . . , tφ(i+1)(x),H[ρVG,φ,t ](x), . . . ,H

[
ρ

(i)
VG,φ,t

]
(x)
)

(
x+ tφ′(x) + 2PH[ρVG,φ,t ](x)

)k+1
.

Furthermore, since |x| ≥ 2
(
‖φ′‖∞ + 2P maxt∈[0,1] ‖H[ρVG,φ,t ]‖∞

)
we have

∣∣∣x+ tφ′(x) + 2PH[ρVG,φ,t ](x)
∣∣∣ ≥ |x|

2
+

(
|x|
2
− ‖φ′‖∞ − 2P max

s∈[0,1]
‖H[ρVs ]‖∞

)
≥ |x|

2
.

Finally, the whole dependence in t and x of the numerator are in the entries which are bounded
uniformly in t and x, we can conclude that each numerator in the sum is bounded by a constant

Ck > 0. We can conclude that
∣∣∣(ρVG,φ,t

ρ′VG,φ,t

)(i)

(x)
∣∣∣ ≤ 4imaxk≤iCk|x|−2, raising to the power j leads

to the conclusion. �
Lemma 2.10.3 The map t 7→ ‖ρ−1

VG,φ,t
‖L∞([−M,M ]) is continuous.

Proof Let x ∈ [−M,M ],

|ρVG,φ,t(x)−1 − ρVG,φ,t0 (x)−1| =

∣∣∣∣∣ δtut(x)ρVG,φ,t0 (x)

ρVG,φ,t0 (x)ρVG,φ,t(x)

∣∣∣∣∣ ≤ |δt|‖ut‖∞‖ρ
−1
VG,φ,t0

‖L∞([−M,M ])

(1− |δt|‖ut‖∞)
.

Taking the supremum over x ∈ [−M,M ] and let t goes to t0 establishes the result. �

Now it remains to bound the L2 or L∞ norms of the functions f(i),VG,φ,t and IVG,φ,ta appearing in
Theorem 2.4.14, 2.4.15 and 2.4.18.

Lemma 2.10.4 t 7→ ‖IVG,φ,ta ‖∞ for all a ∈ {1, 2} is continuous where IVG,φ,ta is defined in (2.52).
Proof Let x > 0, t, t0 ∈ [0, 1], by the mean-value theorem and with ut defined in Section 2.6, we
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get

|IVG,φ,t1 (x)− IVG,φ,t01 (x)| =

∣∣∣∣∣ 1

ρVG,φ,t(x)

ˆ +∞

x
ρVG,φ,t(s)ds−

1

ρVG,φ,t0 (x)

ˆ +∞

x
ρVG,φ,t0 (s)ds

∣∣∣∣∣
≤ 1

ρVG,φ,t0 (x)

ˆ +∞

x
ρVG,φ,t0 (s)ds

∣∣∣∣ 1 + δtut(s)

1 + δtut(x)
− 1

∣∣∣∣
=

|δt|
ρVG,φ,t0 (x)(1− |δt|‖ut‖∞)

ˆ +∞

x
ρVG,φ,t0 (s)ds |ut(s)− ut(x)|

≤ |δt|‖u′t‖∞
(1− |δt|‖ut‖∞)

1

ρVG,φ,t0 (x)

ˆ +∞

x
(s− x)ρVG,φ,t0 (s)ds. (2.95)

One thus concludes by showing that x ∈]0,+∞[7→ 1

ρVG,φ,t0 (x)

ˆ +∞

x
(s− x)ρVG,φ,t0 (s)ds is bounded,

since, in (2.95), δt goes to zero and t 7→ ‖ut‖W∞1 (R) is bounded.

This can be proven by integration by parts

1

ρVG,φ,t0 (x)

ˆ +∞

x
(s− x)ρVG,φ,t0 (s)ds =

1

ρVG,φ,t0 (x)

[
ρVG,φ,t0
ρ′VG,φ,t0

(s)ρVG,φ,t0 (s)s

]+∞

x

− 1

ρVG,φ,t0 (x)

ˆ +∞

x

[
ρVG,φ,t0
ρ′VG,φ,t0

(s) +

(
ρVG,φ,t0
ρ′VG,φ,t0

)′
(s)s

]
ρVG,φ,t0 (s)ds.

The first term in the right hand side is bounded, while by assumption v), the last term is a

1

ρVG,φ,t0 (x)

ˆ +∞

x
O

x→+∞

(
ρVG,φ,t0 (s)

s

)
ds = O

x→+∞

(
1

ρVG,φ,t0 (x)

ˆ +∞

x

ρVG,φ,t0 (s)

s
ds

)
.

Again by an integration by parts, the last integral in the remainder is equal to

ρVG,φ,t0 (x)

ρ′VG,φ,t0
(x)x

+ O
x→+∞

(
1

ρVG,φ,t0 (x)

ˆ +∞

x

ρVG,φ,t0 (s)

s2
ds

)
.

Since ρVG,φ,t0 is decreasing in a neighborhood at infinity the last remainder is a o
x→+∞

(1) while the

first is behaves like x−2 at infinity. Finally, x 7→ x

ρVG,φ,t0 (x)

ˆ +∞

x
ρVG,φ,t0 (s)ds is bounded by the

same exact technique.

Doing the same thing over ]−∞, 0] establishes that t 7→ ‖IVG,φ,t1 ‖∞ is continuous.

Just as before, we get by the mean-value theorem,

|IVG,φ,t2 (x)2 − IVG,φ,t02 (x)2| ≤ 1

ρV 2
G,φ,t0

(x)

ˆ +∞

x
ρV 2

G,φ,t0

(s)ds

∣∣∣∣ (1 + δtut(s))
2

(1 + δtut(x))2
− 1

∣∣∣∣
≤ |δt|‖u

′
t‖∞(2 + ‖ut‖∞)

(1− |δt|‖ut‖∞)2

1

ρVG,φ,t0 (x)2

ˆ +∞

x
(s− x)ρVG,φ,t0 (s)2ds. (2.96)

We conclude by showing that x ∈ [0,+∞[7→ 1

ρVG,φ,t0 (x)2

ˆ +∞

x
(s − x)ρVG,φ,t0 (s)2ds is bounded

which can again be proven by the same integration by parts and by doing the exact same thing on
]−∞, 0]. Therefore by the fact that

0 ≤
∣∣∣∣‖IVG,φ,t2 ‖2∞ − ‖I

VG,φ,t0
2 ‖2∞

∣∣∣∣ ≤ ‖(IVG,φ,t2

)2
−
(
IVG,φ,t02

)2
‖∞ −→

t→t0
0
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we conclude that t 7→ ‖IVG,φ,t2 ‖∞ is continuous. �

Next, we show that any polynomial in θt
(def)
=

ρ′VG,φ,t
ρVG,φ,t

and its derivatives yield a continuous depen-

dance in t.
Lemma 2.10.5 Let P a polynomial in θt, . . . , θ

(k)
t for some k ≥ 0 with coefficients independent of

t, let l ∈ N then then the two following maps are continuous:

(i) t 7→ ‖P
(
θt, . . . , θ

(k)
t

)
‖L∞([−M,M ])

(ii) t 7→ ‖
√
ρ

(l)
VG,φ,t

P
(
θt, . . . , θ

(k)
t

)
‖L∞(R)

(iii) t 7→ ‖ρ(l)
VG,φ,t

P
(
θt, . . . , θ

(k)
t

)
‖L∞(R).

Proof Proving these continuity results for any monomial in those variables is enough. Furthermore,

since by continuity x ∈ [−M,M ] 7→ θ
(i)
t is bounded for all i ≤ k, thus this monomial in (θ

(i)
t )0≤i≤k

converges uniformly to the monomial in (θ
(i)
t0

)0≤i≤k as t goes to t0. The arguments are that the
product of two bounded, uniformly converging sequences of functions converges to the product

of the limits and that for all i > 0, θ
(i)
t (x) − θ

(i)
t0

(x) = −δtφ(i+1)(x) − 2PH
[
ρ

(i)
VG,φ,t

− ρ(i)
VG,φ,t0

]
.

The latter, when taking the supremum over x ∈ [−M,M ], goes to zero by Lemma 2.10.1. This

establishes (i). Furthermore, notice that (iii) implies (ii) since ‖
√
ρ

(l)
VG,φ,t

P
(
θt, . . . , θ

(k)
)
‖L∞(R) =

‖ρ(l)
VG,φ,t

P
(
θt, . . . , θ

(k)
t

)2
‖1/2L∞(R) and P is arbitrary so we only prove (iii). Moreover since by Faà

di Bruno’s formula ρ
(l)
VG,φ,t

= exp(log ρVG,φ,t)
(l) can be written as Q

(
θ, . . . , θ(l)

)
ρV where Q is a

polynomial with coefficients independent of t, it suffices to prove the result for l = 0.

For all i ∈ N, we have θ
(i)
t (x) = −δi,0x − tφ(i+1)(x) − 2PH

[
ρ

(i)
VG,φ,t

]
. Noticing that by Leibniz

formula and the mean value theorem that for all j ∈ N, for all 0 < α < 1

∣∣∣∣xjρVG,φ,t(x)α − xjρVG,φ,t0 (x)α
∣∣∣∣ ≤ ∣∣∣∣xjρVG,φ,t0 (x)α

∣∣∣∣.∣∣∣ (1 + δtut(x))α − 1
∣∣∣

≤
α|δt|maxs∈[0,1] ‖us‖W∞l (R)(

1− |δt|maxs∈[0,1] ‖us‖W∞l (R)

)1−α

∥∥∥x 7→ xjρVG,φ,t0 (x)α
∥∥∥
∞

where the existence of the max is justified by Corollary 2.6.8. Taking the supremum over x ∈ R
and let t goes to t0 shows that t 7→

(
x 7→ xjρVG,φ,t(x)α

)
∈ L∞(R) is continuous. By boundedness

and continuity with respect to the t parameter of t 7→ φ(i+1)(x) + 2PH
[
ρ

(i)
VG,φ,t

]
, we deduce that

for all i ∈ N and α > 0,

‖θ(i)
t ρVG,φ,t(x)α − θ(i)

t0
ρVG,φ,t0 (x)α‖∞ −→

t→t0
0.

From this last uniform convergence result, we show that by taking a monomial
∏k
i=0

(
θ

(i)
t

)li
such

that
∑k

i=0 li = m, we deduce that ρVG,φ,t
∏k
i=0

(
θ

(i)
t

)li
=
∏k
i=0

(
θ

(i)
t

m
√
ρVG,φ,t

)li
, as a product of

bounded, uniformly converging t-sequences of functions, it converges uniformly. This concludes the
proof. �

Lemma 2.10.6 (Continuity of uniform norms) For all j ∈ {1, 2, 3, 5, 6}, t 7→ ‖f(j),VG,φ,tn1,a,b
‖L∞([−M,M ]c)
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is continuous where we recall that

f
(1),VG,φ,t
l,a,b : x 7→ Qla

(
θt, . . . , θ

(a)
t

)
(x)αt(x)P l−ab (αt, . . . , α

(b)
t )(x),

f
(2),VG,φ,t
l,a,b : x 7→

Qla

(
θt, . . . , θ

(a)
t

)
(x)

ρVG,φ,t(x)

sgn(x)∞ˆ

x

[
αtP

l−a
b

(
αt, . . . , α

(b)
t

)]′
(y)ρVG,φ,t(y)dy,

f
(3),VG,φ,t
l,a,b : x 7→

Qla

(
θt, . . . , θ

(a)
t

)
(x)

ρVG,φ,t(x)

∣∣∣∣∣
sgn(x)∞ˆ

x

αt(y)2P l−ab

(
αt, . . . , α

(b)
t

)
(y)2ρVG,φ,t(y)2dy

∣∣∣∣∣
1/2

,

f
(5),VG,φ,t
l,a,b : x 7→

Qla

(
θt, . . . , θ

(a)
t

)
(x)

ρVG,φ,t(x)

sgn(x)∞ˆ

x

∣∣∣P l−ab (αt, . . . , α
(b)
t )(y)

∣∣∣ρVG,φ,t(y)dy,

f
(6),VG,φ,t
l,a,b : x 7→

∣∣∣Qla (θt, . . . , θ(a)
t

)
(x)
∣∣∣

ρVG,φ,t(x)

∣∣∣∣∣
sgn(x)∞ˆ

x

∣∣∣P l−ab (αt, . . . , α
(b)
t )(y)

∣∣∣2ρVG,φ,t(y)2dy

∣∣∣∣∣
1/2

.

Proof First, one can check that, from Lemma 2.4.13, f
(1),VG,φ,t
n1,a,b

(x) = O
|x|→∞

(x−1) for all t ∈ [0, 1].

Noticing that since α(x) = (−x − tφ′(x) − 2PH[ρVG,φ,t ](x))−1 = θ(x)−1, there exists n > 0 and a
polynomial expression P with coefficients independent of t such that

f
(1),VG,φ,t
n1,a,b

(x) =
P
(
x−1, tφ′, . . . , tφ(k), PH[ρVG,φ,t ], . . . , PH[ρ

(k−1)
VG,φ,t

]
)

(1 + tφ′(x)x−1 + 2PH[ρVG,φ,t ](x)x−1)n
.

In the above expression, the numerator must be a O
|x|→∞

(x−1). We conclude from this closed form,

that f
(1),VG,φ,t
n1,a,b

converges uniformly to f
(1),VG,φ,t0
n1,a,b

when t goes to t0 on [−M,M ]c. Indeed, f
(1),VG,φ,t
n1,a,b

is
a bounded rational function such that the denominator is bounded from below uniformly in t (see
Lemma 2.10.2) and such that both the numerator and denominator converges uniformly. Thus,

t 7→ ‖f(1),VG,φ,t
n1,a,b

‖L∞([−M,M ]c) is continuous.

We only prove the continuity of t 7→ ‖f(j),VG,φ,tn1,a,b
‖L∞([−M,M ]c) in the case j = 5, since the same argu-

ments also prove the cases j ∈ {2, 3, 6}. Since |ρVG,φ,t(x)−ρVG,φ,t0 (x)| ≤ |δt|maxs∈[0,1] ‖us‖∞|ρVG,φ,t0 (x)
and that the following map is uniformly bounded in t ∈ [0, 1] and x > M

gt : x 7→
Qla

(
θt, . . . , θ

(a)
t

)
(x)

ρVG,φ,t(x)

+∞ˆ

x

∣∣∣P l−ab (αt, . . . , α
(b)
t )(y)

∣∣∣ρVG,φ,t0 (y)dy,

we can just show that gt converges uniformly to t0 as t goes to t0. Moreover since

|ρVG,φ,t(x)−1 − ρVG,φ,t0 (x)−1| ≤ |δt|
maxs∈[0,1] ‖us‖∞

1− |δt|maxs∈[0,1] ‖us‖∞
ρVG,φ,t0 (x)−1,

it is enough to show the uniform convergence for
ρVG,φ,t
ρVG,φ,t0

gt. One can also notice that, for constants

Cl,a and Cl,a,b independents of t,

|Qla
(
θt, . . . , θ

(a)
t

)
(x)| ≤ Cl,a|x|l−a and

∣∣∣P l−ab (αt, . . . , α
(b)
t )(y)

∣∣∣ ≤ Cl,a,b|x|−(l−a).

Finally, by writing |x−(l−a)
Qla

(
θt, . . . , θ

(a)
t

)
(x)| as polynomial in x−1, tφ(i+1)(x) and H[ρ

(i)
VG,φ,t

] for

i ≥ 0 and xl−aP l−ab (αt, . . . , α
(b)
t )(x) as a rational function in those same variables, we conclude that
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these functions converge uniformly towards the same functions at t0. Therefore

x 7→ x−(l−a)Qla

(
θt, . . . , θ

(a)
t

)
(x)

xl−a

ρVG,φ,t0 (x)

+∞ˆ

x

ρVG,φ,t0 (y)dy

yl−a

∣∣∣yl−aP l−ab (αt, . . . , α
(b)
t )(y)

∣∣∣
converges uniformly to the same functions at t0. This establishes the proposition. �

Lemma 2.10.7 (Continuity L2-norms) For all j ∈ J1, 4K, the maps t 7→ ‖f(j),VG,φ,tn1,a,b
‖L2([−M,M ]c)

are continuous where

f
(4),VG,φ,t
n1,a,b

: x 7→
Qn1
a

(
θt, . . . , θ

(a)
t

)
(x)

ρVG,φ,t(x)

∣∣∣∣∣
sgn(x)∞ˆ

x

[
αtP

n1−a
b

(
αt, . . . , α

(b)
t

)]′
(y)ρVG,φ,t(y)2dy

∣∣∣∣∣
1/2

.

(2.97)

Proof For the continuity of t 7→ ‖f(1),VG,φ,t
n1,a,b

‖L2([−M,M ]c), we use dominated convergence theorem.

Since, we showed uniform convergence and that ‖f(1),VG,φ,t
n1,a,b

‖L∞([−M,M ]c) < +∞, we conclude that
for all x ∈ [−M,M ]c,

f
(1),VG,φ,t
n1,a,b

(x)2 −→
t→t0

f
(1),VG,φ,t0
n1,a,b

(x)2.

The domination follows from the fact f
(1),VG,φ,t
n1,a,b

(x) = O
|x|→∞

(x−2) and that all the dependance in t is

bounded, hence there exists a constant Cn1,a,b > 0 independent of t such that, for all x ∈ [−M,M ]c

and all t ∈ [0, 1],

|f(1),VG,φ,t
n1,a,b

(x)| ≤ C

x2
.

This establishes that ‖f(1),VG,φ,t
n1,a,b

‖L2([−M,M ]c) −→
t→t0
‖f(1),VG,φ,t0
n1,a,b

‖L2([−M,M ]c).

We now establish the continuity for t 7→ ‖f(3),VG,φ,t
n1,a,b

‖L2([−M,M ]c), the case j ∈ {2, 4} is done with

the exact same arguments. We want to use dominated convergence theorem, for
(
f
(3),VG,φ,t
n1,a,b

)2
. The

latter, when t → t0 ∈ [0, 1], also converges uniformly since it is uniformly bounded and that we

proved that f
(3),VG,φ,t
n1,a,b

converges uniformly. It just remains to verify the domination hypothesis. By

Lemma 2.4.13, we know that α(y)2Pn1−a
b

(
αt, . . . , α

(b)
t

)
(y)2 = O

|y|→∞
(y−2(n1−a+1)). We conclude by

Lemma 2.10.2 that there exists a constant Cn1,a,b > 0 such that for all y > M ,

αt(y)2Pn1−a
b

(
αt, . . . , α

(b)
t

)
(y)2 ≤

Cn1,a,b

y2(n1−a+1)
.

Similarly
∣∣∣Qn1

a

(
θt, . . . , θ

(a)
t

)
(y)2

∣∣∣ ≤ Cn1,a|x|2(n1−a) for all y > M and for Cn1,a > 0 a constant

independent of t and y. Finally, we get the following domination for an arbitrary t0 and all y > M

Qn1
a

(
θt, . . . , θ

(a)
t

)
(x)2

ρVG,φ,t(x)2

+∞ˆ

x

αt(y)2Pn1−a
b

(
αt, . . . , α

(b)
t

)
(y)2ρVG,φ,t(y)2dy

≤ Cn1,a|x|2(n1−a)

ρVG,φ,t0 (x)(1−maxs∈[0,1] ‖us‖∞)

ˆ +∞

x

Cn1,a,b(1 + maxs∈[0,1] ‖us‖∞)ρVG,φ,t0 (y)dy

y2(n1−a+1)
.

The RHS is in L1([M,+∞[) by integration by parts as it was done in the proof of Lemma 2.10.4.
We conclude by doing the same on ]−∞,−M ]. �
Proposition 2.10.8 With the choice of potential Vφ,t, the following map is continuous

t ∈ [0, 1] 7→
(
C(Ξ̃−1

1 , Hn), C(Ξ̃−1
1 ,W∞n ), C(Θ(a) ◦ Ξ̃−1

1 , Hn)
)
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Proof By recalling the expression of those constants in (2.47), (2.57), (2.64), since in this appendix,
all the building blocks in these constants were shown to be continuous we can conclude. �

2.10.2 Parameter-continuity of CLt and KVG,φ,t

In [DGM23, App. A], the authors showed that for a general potential V , the operator A considered
as an unbounded operator on H has the same spectrum as the Schrödinger operator S : D(S) →
L2(R),defined by

S (def)
= −∆+wV with D(S)

(def)
=

{
u ∈ H1(R), uV ′ ∈ L2(R),−u′′ + wV u ∈ L2(R),

ˆ
R
u(x)dx = 0

}
and

wV
(def)
=

1

2

(
1

2
V ′2 − V ′′ + 2PV ′H[ρV ]− 2PH[ρ′V ] + 2P 2H[ρV ]2

)
=

1

2

[
(log ρV )′′ +

1

2
(log ρV )′2

]
.

(2.98)
Since CL = λ1(A)−1/2 = λ1(S)−1/2 by Theorem 2.4.3, we just have to show that when choosing
the potential V = VG,φ,t, the t-dependent Schrödinger operator St with potential wVG,φ,t produces a
continuous smallest eigenvalue λ1(St). Before that, we recall the essential material for manipulating
St.
Proposition 2.10.9 The map t 7→ CLt = λ1(St)−1/2 is continuous.
Proof First for all t > 0, λ1(St) > 0. Secondly, we have the following equalities:

Et = min
u∈D(St)
‖u‖2=1

〈u,St[u]〉L2(R) = inf
u∈C∞c (R)
‖u‖2=1

ˆ
R

(u′)2(y)dy +

ˆ
R
u2(y)wVG,φ,t(y)dy.

From the previous section wVt′ converges uniformly to wVG,φ,t when t′ goes to t. Hence for all
t, t′ ∈ [0, 1], u ∈ C∞c (R) with ‖u‖2 = 1∣∣∣∣ˆ

R
(u′)2(y)dy +

ˆ
R
u2(y)wVG,φ,t(y)dy −

ˆ
R

(u′)2(y)dy +

ˆ
R
u2(y)wVt′ (y)dy

∣∣∣∣ ≤ ‖wVG,φ,t − wVt′‖L∞(R)

hence supu∈C∞c (R)
‖u‖2=1

∣∣∣∣ˆ
R

(u′)2(y) +

ˆ
R
u2(y)wVt(y)−

ˆ
R

(u′)2(y)dy +

ˆ
R
u2(y)wVt′ (y)dy

∣∣∣∣ goes to zero as

t′ goes to t. Since uniform convergence is enough to ensure convergence of infinimums we get the
result. �

We know prove the continuity of the constant KVG,φ,t introduced in Theorem 2.2.3.
Lemma 2.10.10 The following map is continuous

t 7→ KVG,φ,t = 2P‖H[ρVG,φ,t ]‖∞ + C + P
∣∣∣¨

R2

log |x− y|dµVG,φ,t(x)dµVG,φ,t(y)
∣∣∣

for C some fixed constant.
Proof We already proved the continuity of the map t 7→ ‖H[ρVG,φ,t ]‖L∞(R) in Lemma 2.10.1 so
it just remains to show that the double integral is continuous with respect to t. We prove this
by dominated convergence theorem. The function (x, y) 7→ log |x− y|ρVG,φ,t(x)ρVG,φ,t(y) converges
almost everywhere to

(x, y) 7→ log |x− y|ρVG,φ,t0 (x)ρVG,φ,t0 (y)

as t goes to t0. Furthermore we have the following domination (x, y)-almost everywhere∣∣∣ log |x− y|
∣∣∣ρVG,φ,t(x)ρVG,φ,t(y) ≤

∣∣∣ log |x− y|
∣∣∣(1 + max

s∈[0,1]
‖us‖∞)2ρVG,φ,t0 (x)ρVG,φ,t0 (y).

This allows us to conclude on the continuity of t 7→ KVG,φ,t . �
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Proposition 2.10.11 The map t 7→ P
VG,φ,t
K,k where PVK,k appears in (2.67) is integrable on [0, 1].

Proof By the bounds on
∣∣∣∣∣∣∣∣∣Ξ̃1

−1
∣∣∣∣∣∣∣∣∣
Hi

,
∣∣∣∣∣∣∣∣∣Ξ̃1

−1
∣∣∣∣∣∣∣∣∣
W∞i

and
∣∣∣∣∣∣∣∣∣Θ(a) ◦ Ξ̃1

−1
∣∣∣∣∣∣∣∣∣
W∞i

for 0 ≤ i ≤ mK,k in

Theorem 2.4.14, 2.4.15 and 2.4.17 plus the continuity results of Appendix 2.10, we conclude on the

finitness of
´ 1

0 P
VG,φ,t
K,k dt. �



Chapter 3

On the equilibrium measure for the
Lukyanov integral

“Mathematics, rightly viewed, possesses
not only truth, but supreme beauty—a
beauty cold and austere, like that of sculp-
ture, without appeal to any part of our
weaker nature, without the gorgeous trap-
pings of painting or music, yet sublimely
pure, and capable of a stern perfection
such as only the greatest art can show.”
Bertrand Russell
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3.1 Introduction and statement of results

3.1.1 The separation of variable integral for the exponent of the field

The seminal works of Al. Zamolodchikov [Zam90], following the pioneering considerations of Yang-
Yang [YY69], introduced the concept of Thermodynamic Bethe Ansatz (TBA) as a key tool allowing
one to describe the ground state energies of integrable quantum field theories in finite volume. The
construction, as an input, utilises the model’s S-matrix and describes the per-volume ground state
energy in terms of a solution to a non-linear integral equation. In the case of the Sinh-Gordon
1+1 dimensional quantum field theory, the TBA description was conjectured simultaneously and
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independently by Al. Zamolodchikov [Zam06] and Lukyanov [Luk01]. In that case, there is a
unique TBA equation which takes the form

ε(λ) = 2r sin
[

π
1+b2

]
cosh(λ) +

ˆ
R
K(λ−µ) log

[
1 + e−ε(µ)

]
with K(λ) =

4 cosh(λ) sin
[

π
1+b2

]
cosh(2λ) − cos

[
2π

1+b2

] .
(3.1)

This equation involves two parameters r, b > 0. r = CmR with C > 0 some constant, R the model’s
volume and m the mass parameter. Finally, b > 0 measures the interaction strength.

It was rigorously shown in [FKS99] that, for any r > 0, the non-linear integral equation (3.1) admits
a unique solution in L∞(R). With the solution at hand, the per-volume ground state energy admits
the integral representation

−m
ˆ
R

dλ

2π
cosh(λ) log

[
1 + e−ε(λ)

]
. (3.2)

These TBA-like considerations were backed up by Bethe Ansatz calculations carried out for the
lattice discretisation of the finite-volume Sinh-Gordon quantum field theory in [BT06, Tes08].

By invoking an analogy with the classical method of separation of variables, Lukyanov [Luk01]
conjectured that the ground state expectation value of the exponential of the quantum Sinh-Gordon
field eαϕ may be deduced from the data contained in the large-N behaviour of the below integral

zN
[
Vα] =

ˆ
RN

dNλ
N∏
k<`

{
sinh

[
(1 + b2)(λk − λ`)

]
· sinh

[
(1 + b−2)(λk − λ`)

]} N∏
k=1

e−Vα(λk) . (3.3)

The potential Vα appearing above was expressed in terms of the solution ε to the TBA equation
for the Sinh-Gordon model (3.1) as

Vα(λ) = r cosh(λ) − αλ −
ˆ
R

dµ

2π
· g(µ)

cosh(λ− µ)
with g(µ) = 2 log

[
1 + e−ε(λ)

]
. (3.4)

It was conjectured in [Luk01] that, as N → +∞,

zN
[
Vα(b+b−1)]

zN
[
V0]

=

(
N

r

)α2

2

·
〈
eαϕ
〉
r
·
(

1 + o(1)
)
. (3.5)

The constant term in these asymptotics
〈
eαϕ
〉
r

was conjectured to coincide with the ground state
expectation value of the exponent of the properly normalised Sinh-Gordon quantum field in the
finite volume R theory. In this description, the fields were normalised so that, as r → +∞,
the two-point functions of the fields have trivial CFT-like normalisation in the short space-like
Minkowski-distance regime, see [Luk01] for more details.

In fact, Lukyanov’s integral falls into a much large class of N -fold integrals describing so-called
form factor -i.e. matrix elements- of local operators in numerous quantum integrable models
solvable by the quantum separation of variables method, see e.g. [Bab03, DKM03, DKM19, DM14,
GMN12, KKN13, Koz13, Koz15, Nic13]. In such a setting the form factors are expressed as a ratio
Z [WN ]/Z [VN ] for certain potentials VN ,WN and where

Z [VN ] =

ˆ
CN

dNλ
N∏
k<`

{
sinh

[
πω1(λk − λ`)

]
· sinh

[
πω2(λk − λ`)

]} N∏
k=1

e−VN (λk) . (3.6)
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Above ω1, ω2 are related to a given model’s coupling constants, and C is a model dependent curve in
C. The curve may or may not be compact or closed. Also, the potential VN may or may not depend
on N . However, typically, it is not varying with N as VN (λ) = NU(λ) for some N independent
function U . For such multiple integrals, one is usually interested in the N → +∞ regime which
allows one either to reach the thermodynamic or the continuum limit of the model. Thus, on top
of testing Lukyanov’s conjecture, the possibility to study of the large-N behaviour of this class of
integrals will have numerous applications in the field of quantum integrable models. We should
mention that the above integral falls into the class of bi-orthogonal ensembles [Bor98].

It is clear that the class of quantum separation of variables integrals Z [VN ] bears a strong structural
ressembles with the spectral partition function of a random Hermitian matrix M sampled from a
measure ∝ e−NTr[V (M)]dM , with M being the Lebesgue measure on the statistically independent
entries. Indeed, the latter takes the form

ZN ;Herm[V ] =

ˆ
RN

dNλ

N∏
k<`

|λk − λ`|2
N∏
k=1

e−NV (λk) (3.7)

In both cases, there appears a one-body confining potential and a repulsive two-body interaction
vanishing as the square of the spacing between the integration variables. In fact, the two-body
interaction is given by Vandermonde determinants in both cases: the square of a usual Vandermonde
in the random matrix case (3.7) and the product of two-hyperbolic Vandermondes in the quantum
separation of variables case (3.6). One could thus hope that the techniques allowing one to deal
with large-N behaviour of the random matrix ensemble will also be fit for tackling the large-
N behaviour of quantum separation of variables issued integrals. Unfortunately, the situation is
way more intricate and takes its origin in crucial differences between these two types of integrals.
Genuinely, the potentials arising in the quantum separation of variables case are not† varying with
N as VN (λ) = NU(λ) for some N independent function U . Thus, the two-body and the one-body
interactions in Z [VN ] evolve on different scales and one needs to dilatate the integration variables, in
an appropriate fashion, so that both rescaled interactions equilibrate. While in the random matrix
case the two-body interaction was behaving trivially under rescalings, this is not anymore the case
in the quantum separation of variables setting. This introduces several additional scales in N to
the problem what makes numerous of the steps developed for the random matrix case very tricky,
technically speaking, to set in. We would like to mention that, in fact, certain instances of integrals
of the type (3.6) did in fact appear directly in the random matrix literature. More precisely, the
spectral part of a random Hermitian matrix’s sampled from a measure ∝ e−NTr[V (M)−AM ]dM with
A = diag(a1, . . . , aN ), ak = (k − 1)/N , admits the integral representation [CW14]

ZN ;Source[V ] =

ˆ
RN

dNλ
N∏
k<`

{
(λk − λ`) sinh

(
λk − λ`

)} N∏
k=1

e−NV (λk) . (3.8)

The asymptotic expansion of such integrals may be deal with by using the techniques developed in
[BGK15]. The work [CW14] proposed a Riemann–Hilbert approach for bi-orthogonal polynomials
that could, in principle, allow one to extract the large-N behaviour of (3.8) and, more generally,
(3.6). However, in the case of the quantum separation of variables issued integral, the necessity for
rescaling the integration variables would introduce numerous technical complications to the large-N
analysis technique outlined in [CW14]. In particular, it would demand to have a highly detailed
control on the N -dependent equilibrium measure that will be obtained in the present paper.

The first progress in this direction of achieving a large-N analysis of multiple integrals of the form
(3.6) was achieved in [BGK16] where techniques allowing one to deal with N -dependent two-body

†Else, indeed, the study of the large-N behaviour of quantum separartion of variables issued multiple integrals
would follow from the application of techniques developed [BGK15]
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interactions were developed. The aim of this work is to push further the results obtained in [BGK16]
and lay the ground for rigorously justifying the presence of the the power-law term in N in (3.5),
sand in a second stage for obtaining rigorously the whole expansion up to o(1). In order to apply
concentration of measure techniques which were first developed for β-ensembles in [BG97] and,
later, extended so as to allow to deal with more complex integrals in [BG13a, BG13b, BGK16], one
first needs to have a good grasp on the so-called equilibrium measure. As explained in [BGK16],
in the case of the partition function (3.3), the latter corresponds to the unique minimiser of an N -
dependent functional on M1(R), the space of probability measures on R. The construction of the
equilibrium measure is the main achievement of this work. As mentioned, this may also pave the
way to the Riemann–Hilbert analysis of the large-N behaviour of (3.3) by means of bi-orthogonal
polynomials. Our result allows us to back up the prediction on the leading large-N behaviour given
in (3.5), although the lack of certain estimates does not allow us to turn our findings into a rigorous
proof.

The paper is organised as follows.

3.1.2 The main results

It is easy to see that the repulsive nature of the sinh two-body interaction and the confining nature
of the potential are of the same order of magnitude in N on a scale logN . Hence, so as to deal
with finite quantities, it appears convenient to rescale the integration variables in (3.3) by logN .

Then, it holds zN
[
Vα] =

[
logN

]NZN[VN ;α] with

ZN
[
VN ;α] =

ˆ
RN

dNλ
N∏
a<b

{
sinh

[ω1

2
(λa − λb)

]
· sinh

[ω2

2
(λa − λb)

]} N∏
a=1

e−NτNVN ;α(λa) . (3.9)

The two periods ωa grow with N as

ωa = 2πτNωa with τN = logN . (3.10)

The rescaled confining potential takes the form

VN ;α(λ) =
r

NτN
cosh

[
τNλ

]
− αλ

N
−

ˆ
R

dµ

2πN
· g(τNµ)

cosh
[
τN (λ− µ)

] . (3.11)

The connection to the Lukyanov integral imposes the following from for the periods

ω1 =
1 + b2

π
and ω2 =

1 + b−2

π
. (3.12)

Following the techniques of [BG97] and their adaptation to the N -dependent setting developed in
[BGK16], one may show that

ZN
[
VN ;α] = exp

{
−N2τN inf

µ∈M1(R)
EN [µ] + O

(
Nτ2

N

)}
, (3.13)

in which the N -dependent functional on M1(R) takes the form

EN [µ] =

ˆ
R

dµ(s)VN ;α(s) − 1

2τN

ˆ
R2

dµ(s)dµ(t) log

{
2∏

a=1

sinh
(
ωa
s− t

2

)}
. (3.14)

EN is strictly convex, lower-continuous and has compact level sets, see [BGK16] for more details.
As such, it admits a unique minimiser onM1(R) denoted by µ̂eq;α. Our main result is gathered in
the
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Theorem 3.1.1 The equilibrium measure is Lebesgue continuous with a density %̂eq;α given by the
square root of an analytic function. There exists r0 such that, for any N and r ≥ r0, it is supported
on the segment σN ;α = [aN ;α ; bN ;α]. Moreover, there exists N0 such that, for any N ≥ N0 it is
given by

%̂eq;α = WN

[
V ′N ;α1σN ;α

]
|
aN ↪→aN ;α

bN ↪→bN ;α

. (3.15)

where WN is an explicit integral transform introduced in (3.46) in which one should specify the
periods ωa as in (3.12).

The endpoints aN ;α, bN ;α of the support admit the large-N expansion

τNbN ;α = log

(
d0N

2

)
+

α

N(1 + b2)(1 + b−2)

+
1

N2

{
d1

(
1 +

2F [g](i)

πr
11<ζ

(
1 + α

π

))
− α2

2(1 + b2)2(1 + b−2)2

}
+ O

(
1

N3−η

)
(3.16)

and

τNaN ;α = − log

(
d0N

2

)
+

α

N(1 + b2)(1 + b−2)

− 1

N2

{
d1

(
1 +

2F [g](i)

πr
11<ζ

(
1 + α

π

))
+

α2

2(1 + b2)2(1 + b−2)2

}
+ O

(
1

N3−η

)
(3.17)

where η > 0 is fixed but can be taken as small as need be. The two constants d0, d1 arising in this
expansion take the form

d0 =
2

r
√
π

∏
υ=±

{(
1+b2υ

) −1

2(1+b2υ) ·Γ
(

1

2(1 + b2υ)

)}
and d1 =

r2

π

∏
υ=±

{sin
[

π
2(1+b2υ)

]
1 + b2υ

}
. (3.18)

The hardest part of the theorem consists in proving the form of the endpoints, the rest of its content
follows from the techniques already developed in [BGK16].

We now explain one way to obtain the large-N behaviour of the ratio: zN
[
Vα]/zN

[
V0], i.e.

ZN
[
VN ;α]/ZN

[
VN ;0]. It is direct to see that

∂α logZN
[
VN ;α] = NτNEN ;α

[ˆ
R
ξdL

(λN )
N (ξ)

]
with L

(λN )
N =

1

N

N∑
a=1

δλa (3.19)

being the empirical distribution of the integration variables, λN =
(
λ1, . . . , λN

)
, and EN ;α referring

to the expectation in respect to the probability measure PN ;α on RN with density

pN ;α

(
λN
)

=
1

ZN
[
VN ;α]

N∏
a<b

{
sinh

[ω1

2
(λa − λb)

]
· sinh

[ω2

2
(λa − λb)

]} N∏
a=1

e−NτNVN ;α(λa) . (3.20)

Using concentration of measure techniques, one may show that under PN ;α the empirical measure
concentrates around the equilibrium measure in the sense that for smooth functions growing at
most polynomially at infinity it holds∣∣∣∣EN ;α

[ˆ
R
φ(ξ)d

(
µ̂eq;α − L

(λN )
N

)
(ξ)

]∣∣∣∣ ≤ C
τN√
N
. (3.21)
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for some constant depending on φ. This reasoning then entails that

∂α logZN
[
VN ;α] = NτN

ˆ
R
ξdµ̂eq;α(ξ) + O

(√
Nτ2

N

)
. (3.22)

The remainder is uniform in α. However the bounds issuing from the concentration are only a
priori bounds and these may be improved by using the machinery of loop equations which allow
one to improve the rigidity of the fluctuations, see [BG13a] for an implementation of the method in
the case of β-ensembles, and compute the subdominant corrections contained in the O remainder
above. However, in the case of the present multiple, there arise several technical difficulties in
the analysis of the associated system of loop equations which go beyond the scope of the present
analysis. We would however like to point out that under the specialisation (3.12), it holds

NτN

ˆ
R
ξdµ̂eq;α(ξ) =

α logN

(1 + b2)(1 + b−2)
+ O

(
1
)
, (3.23)

with a remainder that is uniform in α.

This leads to the suggestive results

log

(ZN[VN ;α(b+b−1)2 ]

ZN
[
VN ;0]

)
=

α2

2
logN + RN (3.24)

with RN a remainder that we are able only to estimate as O
(√

Nτ2
N

)
. However, we expect that

this is an overestimate and that eventually, the machinery of loop equations will allow us to prove
that RN = O(1). Thus, while not being a rigorous proof thereof, the above provides a strong check
of Lukyanov’s conjecture.

3.2 The N-dependent equilibrium measure

3.2.1 General properties of the equilibrium measure

Consider the multiple integral

XM =

ˆ
RM

dMλ
M∏
a<b

{
sinh

[
πω1τN (λa − λb)

]
· sinh

[
πω2τN (λa − λb)

]} 1
τN

N∏
a=1

e−MVN ;α(λa) . (3.25)

There N is fixed and to be considered as an outer parameter. This kind of integral has been studied
in [BGK16]. It was shown there that

lim
M→+∞

{ 1

M2
logXM

}
= − inf

µ∈M1(R)
EN [µ] (3.26)

with EN as defined in (3.14). The minimum is attained at a unique measure µ̂eq;α that has compact
support given by a finite union of segments and is Lebesgue continuous with a density %̂eq;α given
by the square root of an function analytic in an open neighbourhood of the support†. In particular,
the density is smooth in the interior of the support and vanishes at least as a square root at the
edges of the support.
Lemma 3.2.1 There exists r0 > 0 such that, for any r ≥ r0, the equilibrium measure has connected
support

σN ;α = supp
[
µ̂eq;α

]
= [aN ;α ; bN ;α] . (3.27)

†In our N dependent setting, the size of this neighbourhood will naturally depend on N



3.2. THE N -DEPENDENT EQUILIBRIUM MEASURE 169

Proof —

It follows from Appendix C of [BGK16] that the support of the equilibrium measure will be con-
nected, viz. of the form (3.27), as soon as VN ;α is strictly convex.

A direct calculation starting from (3.11) yields

V ′′N ;α(λ) =
rτN
N

cosh
[
τNλ

]
−
ˆ
R

dµ

2πN
·

{
1

cosh
[
τN (λ− µ)

] − 2
sinh2

[
τN (λ− µ)

]
cosh3

[
τN (λ− µ)

]}·g(τNµ) . (3.28)

It is easy to infer from the form of the non-linear integral equation satisfied by ε, that there exist
r-independent cε, c

′
ε > 0 such that

e−ε(λ) ≤ cεe
−rc′ε cosh(λ) . (3.29)

One thus gets the lower bound

V ′′N ;α(λ) ≥ rτN
N

cosh
[
τNλ

]
− cετ

2
Ne−rc

′
ε

ˆ
R

dµ

2πN
·

∣∣∣∣∣ 1

cosh
[
τN (µ)

] − 2
sinh2

[
τN (λ− µ)

]
cosh3

[
τN (µ)

] ∣∣∣∣∣
≥ τN

N

{
r − Ce−rc

′
ε

}
> 0 (3.30)

where the last bound follows provided that r ≥ r0 for some r0 > 0.

Further, it is a standard fact, see e.g. [Dei99] that µ̂eq;α corresponds to the unique solution to the
variational problem

VN ;α(λ) − 1

τN

ˆ
R

dµ̂eq;α(s) log

[
2∏

a=1

sinh
(
ωa
λ− s

2

)]  = C
(N)
eq;α λ ∈ σN ;α

> C
(N)
eq;α λ ∈ R \ σN ;α

. (3.31)

First of all, due to the smoothness of the equilibrium’s measure density and its square root vanishing
at the edges, we could formulate this problem in the strong sense, i.e. pointwise, and not a.e.. Also,
we stress that due to the strict convexity of VN ;α for r ≥ r0, the second condition is immediately
satisfied, see Appendix C of [BGK16] for more details.

This variational characterisation of the equilibrium measure allows one to obtain upper/lower
bounds on the endpoints aN ;α/bN ;α.
Lemma 3.2.2 There exists N0 > 0 and ς > 0 such that, for any N ≥ N0,

aN ;α ≤ −ς and bN ;α ≥ ς . (3.32)

Proof —

The proof goes by contradiction. Thus assume that for any ς > 0 and N0 there exists N ≥ N0 such
that

aN ;α ≥ −ς or bN ;α ≤ ς . (3.33)

One may take σ < 1/4 and extracting sub-sequences if need be, one thus has a sequence Nk → +∞
such that, for any k, bNk;α ≤ ς or, for any k, aNk;α ≥ −ς. We discuss in detail the first case
scenario, the second one can be excluded in the same fashion.

We start by introducing the so-called effective potential

Veff(λ) = VN ;α(λ) +

ˆ
R
dµ̂eq;α(s)fN (λ, s) with fN (λ, s) =

−1

τN
log

[ 2∏
a=1

sinh
(
ωa

λ−s
2

)]
.

(3.34)
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One has that

∂λfN (λ, s) = −
2∑

a=1

πωa coth
[
πωaτN (λ− s)

]
< for λ ≥ s . (3.35)

which entails that fN (λ, s) − fN (µ, s) < 0 for any λ, µ > s. One may thus decompose for any
1/2 > λ > 1/4

Veff(λ) − Veff

(
bNk;α

)
= VNk;α(λ) − VNk;α

(
bNk;α

)
+

ˆ bN

aN

d µ̂eq;α(s)
(
fNk
(
λ, s
)
− fNk

(
1
4 , s
))

+

ˆ bN

aN

d µ̂eq;α(s)
(
fNk
(

1
4 , s
)
− fNk

(
bNk;α, s

))
. (3.36)

One may then bound each term as follows. Since 1/4 > ς > bNk;α, the last line produces a purely
negative contribution. Further, it is direct to estimate that VNk;α(λ) = o(1) as k → +∞. Likewise,
if −3/4 ≤ bNk;α ≤ σ then one has that VNk;α

(
bNk;α

)
= o(1), while for bNk;α ≤ −3/4 it holds for k

large enough that VNk;α

(
bNk;α

)
≥ VNk;α(λ). Thus, whatever the regime, it holds

VNk;α

(
bNk;α

)
− VNk;α(λ) ≤ o(1) . (3.37)

Finally, one has, for λ > s that

fN (λ, s) = −π(ω1 + ω2)(λ− s) + O
( 1

τN

2∑
a=1

e−ωa(λ−s)
)
. (3.38)

Thus, since λ, 1/4 are uniformly away from s in the integral arising in the first line of (3.36), one
gets that

Veff(λ) − C(N)
eq;α = Veff(λ) − Veff

(
bNk;α

)
≤ o(1) − π(ω1 + ω2)

(
λ− 1

4

)
< 0 . (3.39)

Since λ 6∈ σN ;α, this contradicts the variational equation (3.31).

One knows from Lemma 3.2.1 that the equilibrium measure is supported on the segment [aN ;α ; bN ;α].
Since %̂eq;α is smooth on ]aN ;α ; bN ;α[ and admits at worst square root singularities at the edges
aN ;α, bN ;α, one has that %̂eq;α ∈ Hs([aN ;α ; bN ;α]) for any 0 < s < 1/2. In particular, one may
differentiate the first relation given in (3.31) what yields the singular-integral equation satisfied by
the equilibrium measure’s density

2∑
a=1

πωa

 bN ;α

aN ;α

ds %̂eq;α(s) coth
[
ωa

λ−s
2

]
= V ′N ;α(λ) . (3.40)

Now, Lemma (3.2.2) ensures that bN ;α − aN ;α ≥ 2σ > 0, so that %̂eq;α solves a truncated Wiener-
Hopf equation in which the renormalised difference of boundaries satisfies

τNbN ;α − τNaN ;α −→
N→+∞

+∞ . (3.41)

This allows one to invoke Riemann–Hilbert techniques so as to solve the equation in the large-N
regime and will provide the starting starting point for characterising the measure and its support
thoroughly in the large-N regime.
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3.2.2 A truncated Wiener-Hopf based representation for the equilibrium mea-
sure

It was established in [BGK16] that, provided that bN − aN > η and that N is large enough, the
singular integral operator SN : Hs([aN ; bN ]) → Hs(R) with 0 < s < 1/2 defined for sufficiently
regular functions by

SN [h](λ) =
2∑

a=1

πωa

 
R
dµh(µ) coth

[
ωa

λ−µ
2

]
(3.42)

is invertible on the co-dimension 1 subspace of Hs(R)

Xs(R) =

{
g ∈ Hs(R) : J

[
g
]

= 0
}

with J
[
g
]

=

ˆ
R+iε′

dµ

2iπ
χ11(µ)e−ibNµF

[
g
]
(τNµ) .

(3.43)
Above and in the following we agree upon

xN = bN − aN , xN = τNxN , bN = τNbN and aN = τNaN . (3.44)

Moreover, without further notice we shall assume in this subsection that the lower bound holds
bN−aN > η and that N is large enough. Finally, the Fourier transform F is defined, for g ∈ L1(R),
as

F [g](µ) =

ˆ
R

dη g(η)eiµη . (3.45)

The closed subspace Xs(R) along with the inverse WN are both described in terms of a piecewise
holomorphic 2×2 matrix valued function χ that we shall discuss below. First, however, we provide
the expression for the inverse WN . For any sufficiently regular g ∈ Xs(R), the latter takes the form
of an integral transform

WN

[
g
]
(ξ) =

τ2
N

2π

ˆ
R+2iε′

dλ

2iπ

ˆ
R+iε′

dµ

2iπ

e−iτNλ(ξ−aN )

µ− λ

{
χ11(λ)χ12(µ) − µ

λ
χ11(µ)χ12(λ)

}
e−ibNµ

×F
[
g
]
(τNµ) . (3.46)

in which ε′ > 0 can be taken as small as need be.

WN and J are both expressed in terms of the unique solution χ to the 2 × 2 Riemann–Hilbert
problem

• χ ∈ O
(
C \ R

)
and admits continuous ± boundary values on R;

• χ+(λ) = Gχ(λ)χ−(λ), with a jump matrix

Gχ(λ) =

(
eiλxN 0
R(λ) −e−iλxN

)
where R(λ) =

sinh
[
λ
2

(
1
ω1

+ 1
ω2

)]
2 sinh

[
λ

2ω1

]
sinh

[
λ

2ω2

] (3.47)

• as λ→∞

χ(λ) =



(
−sgn

[
<(λ)

]
eiλxN 1

−1 0

)
·
[
− iλ

]−σ3
2 ·
(
I2 +

χ1

λ
+ O

( 1

λ2

))
, λ ∈ H+

(
−1 sgn

[
<(λ)

]
e−iλxN

0 1

)
·
[
iλ
]−σ3

2 eiπ
2
σ3 ·

(
I2 +

χ1

λ
+ O

( 1

λ2

))
, λ ∈ H−

.

(3.48)
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It was established in [BGK16] that χ satisfies the variable reflection relation

χ(−λ) =

(
χ11(λ) −λχ11(λ) + χ12(λ)
−χ21(λ) λχ21(λ)− χ22(λ)

)
(3.49)

the complex conjugation property(
χ(λ∗)

)∗
=

(
−χ11(−λ) χ12(−λ)
χ21(−λ) −χ22(−λ)

)
(3.50)

and that it holds

det
[
χ(λ)

]
= sgn

[
=λ
]
, λ ∈ C \ R . (3.51)

Again, it follows from [BGK16] that χ admits the large-N asymptotic behaviour valid as soon as
bN −aN is bounded away from zero uniformly in N . Below, we list the uniform large-N asymptotic
expansions in the regions of C which are pertinent for our needs. These regions are delimited by
the real axis and the curves Γ↑/↓ as depicted in Fig. 3.1. First, however, we point out that R

R

R + iǫ

Γ↑

Γ↓

⊛

⊛

⊛

⊛

⊛

⊛

1

Figure 3.1: : Contour Γ↑/↓ delimiting regions of uniform asymptotic expansion of χ.

admits a Wiener-Hopf-like factorisation

R(λ) = R↑(λ)R↓(λ) (3.52)

where

R↑(λ) =
i

λ
·
√
ω1 + ω2 ·

(
ω2

ω1 + ω2

) iλ
2πω1

·
(

ω1

ω1 + ω2

) iλ
2πω2

·

2∏
p=1

Γ

(
1− iλ

2πωp

)
Γ

(
1− iλ(ω1 + ω2)

2πω1ω2

) (3.53)
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and

R↓(λ) =
λ

2π
√
ω1 + ω2

·
(

ω2

ω1 + ω2

)− iλ
2πω1

·
(

ω1

ω1 + ω2

)− iλ
2πω2

·

2∏
p=1

Γ

(
iλ

2πωp

)
Γ

(
iλ(ω1 + ω2)

2πω1ω2

) . (3.54)

Note that

R↓(0) = −i
√
ω1 + ω2 and

(
λR↑(λ)

)
|λ=0

= i
√
ω1 + ω2 . (3.55)

Also, R↑ and R↓ satisfy to the relations

R↑(−λ) = λ−1 ·R↓(λ) and
(
R↑(λ

∗)
)∗

= λ−1 ·R↓(λ) . (3.56)

Furthermore, R↑/↓ admit the asymptotic behaviour

R↑(λ) =
(
− iλ

)− 1
2 ·
(

1 + O
(
λ−1

))
for λ −→

λ∈H+
∞ (3.57)

R↓(λ) = −i
(
iλ
) 1

2 ·
(

1 + O
(
λ−1

))
for λ −→

λ∈H−
∞ . (3.58)

The notation ↑ and ↓ indicates the direction, in respect to R + iε in the complex plane where R↑/↓
have no pole nor zeroes.

The mentioned uniform asymptotic expansions involves an auxiliary, piecewise analytic, matrix

Π(λ) = I2 + O
(e−ζ(1−η)xN

1 + |λ|

)
with ζ =

2πω1ω2

ω1 + ω2
(3.59)

for any η > 0 as small as need be and uniformly on C. Moreover, the remainder is smooth in aN
and bN with derivatives controlled as

∂kaN∂b`N
Π(λ) = I2δk;0δ`;0 + O

(
τk+`
N

e−ζ(1−η)xN

1 + |λ|

)
(3.60)

Finally, one has

PR(λ) = I2 +
ϑ̃R
λ

Π−1(0)σ−Π(0) with ϑ̃R =
1

1 −
[
Π′(0)Π−1(0)

]
12

. (3.61)

The entries χ11, χ12 admit holomorphic continuations from H∓ into some small tubular neighbour-
hood of R in H±. In particular, χ11;±(λ), χ12;±(λ) are regular at λ = 0. In their turn, χ11, χ12

admit meromorphic continuations from H∓ into some small tubular neighbourhood of R in H±.
They admit only one pole, which is simple at λ = 0, and one has the behaviour

χ21;−(λ) = R↓(0)ϑ̃RΠ11(0) · 1
λ

+ O(1) and χ22;−(λ) = R↓(0)ϑ̃RΠ12(0) · 1
λ

+ O(1) (3.62)

as λ→ 0+.
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• λ between R + iε and Γ↑

In this region, it holds that
χ(λ) = χ∞(λ) + δχ(λ) (3.63)

where

χ∞(λ) =

(
1/[λR↑(λ)] − eiλxN ;α/R↓(λ) 1/R↑(λ)

−R↑(λ) 0

)
, (3.64)

while

δχ(λ) =

 {
1

λR↑(λ) −
e
iλxN ;α

R↓(λ)

}
·
[
δ(ΠPR)(λ)

]
11

+ [δ(ΠPR)(λ)]21

R↑(λ)

−R↑(λ)
[
δ(ΠPR)(λ)

]
11{

1
λR↑(λ) −

e
iλxN ;α

R↓(λ)

}
·
[
δ(ΠPR)(λ)

]
12

+ [δ(ΠPR)(λ)]22

R↑(λ)

−R↑(λ)
[
δ(ΠPR)(λ)

]
12

 . (3.65)

The formulae for the remainder matrix involve

δ(ΠPR)(λ) =

(
1 0
−1/λ 1

)
·

[
ΠPR(λ) −

(
1 0

1/λ 1

)]
. (3.66)

Finally, one has the uniform estimate on the remainder

δχ(λ) = O
(

e−ζ(1−η)xN
)
. (3.67)

• λ between Γ↓ and R

In this region, it holds that
χ(λ) = χ∞(λ) + δχ(λ) (3.68)

where

χ∞(λ) =

 −1
R↓(λ)

(
1 − R↓(λ)

λR↑(λ)e−iλxN ;α

)
e
−iλxN ;α

R↑(λ)

R↓(λ)
λ R↓(λ)

 , (3.69)

while

δχ(λ) =

 −1
R↓(λ)

(
1 − R↓(λ)

λR↑(λ)e−iλxN ;α

)
·
[
δ(ΠPR)(λ)

]
11

+ e
−iλxN ;α

R↑(λ) · [δ(ΠPR)(λ)]21

R↓(λ)
λ ·

[
δ(ΠPR)(λ)

]
11

+R↓(λ)
[
δ(ΠPR)(λ)

]
21

−1
R↓(λ)

(
1 − R↓(λ)

λR↑(λ)e−iλxN ;α

)
·
[
δ(ΠPR)(λ)

]
12

+ e
−iλxN ;α

R↑(λ) · [δ(ΠPR)(λ)]22

R↓(λ)
λ ·

[
δ(ΠPR)(λ)

]
12

+R↓(λ)
[
δ(ΠPR)(λ)

]
22

 . (3.70)

One has the uniform estimate on the remainder

δχ(λ) = O
(

e−ζ(1−η)xN
)
. (3.71)

Moreover, one infers that

χ21(λ) =
R↓(0)ϑ̃RΠ11(0)

λ
+ O(1)

χ22(λ) =
R↓(0)ϑ̃RΠ12(0)

λ
+ O(1)

as λ→ 0 with Im(λ) < 0 . (3.72)



3.2. THE N -DEPENDENT EQUILIBRIUM MEASURE 175

and that χ11(λ) and χ12(λ) admit bounded limits.

A remark is in order: while both the subspace constraint functional J and the inverse WN involve
the Fourier transform of g, their values only depend on the values of g on [aN ; bN ]. This follows
from the jump conditions of χ.
Lemma 3.2.3 Let g1, g2 ∈ Hs(R), 0 < s < 1/2 be such that g1 = g2 on [aN ; bN ]. Then,

J [g1] = J [g2] and WN [g1] = WN [g2] . (3.73)

Proof —

Since g1[aN ;bN ] ∈ Hs(R), 0 < s < 1/2 as soon as g ∈ Hs(R), it is enough to show that J [g] and
WN [g] only depend on g1[aN ;bN ]. We discuss the proof only in the case of sufficiently regular g
having fast decay at infinity although this can be done in full generality within the distributional
setting of Hs(R) functions.

One may decompose J in the form

J [g] = JL[g] + Jc[g] + JR[g] (3.74)

with

JL[g] =

ˆ
R+iε′

dµ

2iπ
χ11(µ)

ˆ aN

−∞
dηg(η)eiτNµ(η−bN ) , JR[g] =

ˆ
R+iε′

dµ

2iπ
χ11(µ)

ˆ +∞

bN

dηg(η)eiτNµ(η−bN )

(3.75)
and Jc[g] = Jc

[
g1[aN ;bN ]

]
.

We now show the vanishing of JL[g] and JR[g]. Indeed, by using that χ11 is analytic in the upper
half plane, that

χ11(µ) ≤ C

|µ|1/2
and

ˆ +∞

bN

dηg(η)eiτNµ(η−bN ) =
−g(bN )

iµτN
− 1

iµτN

ˆ +∞

bN

dηg′(η)eiτNµ(η−bN ) ,

(3.76)
one observes that one has the uniform bound on H+∣∣∣∣χ11(µ)

ˆ +∞

bN

dηg(η)eiτNµ(η−bN )

∣∣∣∣ ≤ C

|µ|3/2
(3.77)

and that the bounded functions are analytic in H+. This allows one to deform the integrations
from R + iε to R + iM with M > 0 as large as desired by virtue of Morera’s theorem. Then, one
has that∣∣JR[g]∣∣ =

∣∣∣∣ˆ
R+iM

dµ

2iπ
χ11(µ)

ˆ +∞

bN

dηg(η)eiτNµ(η−bN )

∣∣∣∣ ≤ C

ˆ
R

ds[
s2 +M2

] 3
2

=
C√
M

ˆ
R

ds[
s2 + 1

] 3
2

−→
M→+∞

0 . (3.78)

One carries out a similar reasoning regarding to JL[g]. The µ−1 decay rate of the Fourier transform
at infinity and the existence of continuous + boundary values of χ11 on R ensure that

JL[g] =

ˆ
R

dµ

2iπ
χ11;+(µ)

ˆ aN

−∞
dηg(η)eiτNµ(η−bN ) =

ˆ
R

dµ

2iπ
χ11;−(µ)

ˆ aN

−∞
dηg(η)e−iτNµ(aN−η)

=

ˆ
R−iM

dµ

2iπ
χ11(µ)

ˆ aN

−∞
dηg(η)e−iτNµ(aN−η) −→

M→+∞
0 . (3.79)

This entails the claim relative to J [g]. The results relative to WN [g] are obtained in a very similar
fashion.
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3.2.3 A convenient representation for the inverse acting on V ′N ;α

In the general case, one may not expect to be able to simplify WN [g] beyond its two-dimensional
integral representation. However, since the potential of interest to us takes a very simple and
specific form, such simplifications are possible in the case of WN [V ′N ;α].

We first observe that the expression (3.63) for χ on the line R+iε′, ε′ > ε leads to the representation

χ11(λ) =
Q↑(λ)

λR↑(λ)
− eiλxN

Q↓(λ)

R↓(λ)
with

{
Q↑(λ) = 1 + δ

(
ΠPR

)
11

(λ) + λδ
(
ΠPR

)
21

(λ)

Q↓(λ) = 1 + δ
(
ΠPR

)
11

(λ)
(3.80)

There, the functions Q↑/↓ are holomorphic and bounded in the region enclosed by the curves Γ↑
and Γ↓. Similarly,

χ12(λ) =
Q̃↑(λ)

λR↑(λ)
− eiλxN

Q̃↓(λ)

R↓(λ)
with

{
Q̃↑(λ) = λ+ δ

(
ΠPR

)
12

(λ) + λδ
(
ΠPR

)
22

(λ)

Q̃↓(λ) = δ
(
ΠPR

)
12

(λ)
(3.81)

For further purpose, it is convenient to introduce the vectors

EL(λ) =

 χ11(λ)

−χ12(λ)

λ

 , ER(λ) =

(
χ12(λ)
λχ11(λ)

)
(3.82)

so that (
EL(λ),ER(µ)

)
= χ11(λ)χ12(µ) − µ

λ
χ11(µ)χ12(λ) . (3.83)

The decomposition for χ11 and χ12 entail that ER(λ) = E
(↑)
R (λ) − eiλxNE

(↓)
R (λ) with

E
(↑)
R (λ) =

1

λR↑(λ)

(
Q̃↑(λ)

λQ↑(λ)

)
, E

(↓)
R (λ) =

1

R↓(λ)

(
Q̃↓(λ)

λQ↓(λ)

)
, (3.84)

and similarly EL(λ) = 1
λ ·E

(↑)
L (λ) − eiλxN

λ ·E(↓)
L (λ)

E
(↑)
L (λ) =

1

λR↑(λ)

(
λQ↑(λ)

−Q̃↑(λ)

)
, E

(↓)
L (λ) =

1

R↓(λ)

(
λQ↓(λ)

−Q̃↓(λ)

)
. (3.85)

Finally, we also set

U12(λ) =
NuNλ+ ivN

1 + λ2
iχ11(i) (3.86)

U11(λ) =
−χ12(i)

1 + λ2
·
(

iNuN + λvN

)
− iχ11(i)

i + λ

NuN − vN
2

, (3.87)

in which we have introduced the shorthand notations

NuN = ebN + e−aN and vN = ebN − e−aN , (3.88)

Proposition 3.2.4 One has the decomposition WN [V ′N ;α] =
3∑

a=1
$

(a)
N where

$
(1)
N (ξ) =

rτN
4iπN

ˆ
R+2iε′

dλ

2iπ
e−iτNλ(ξ−aN )

{χ12(λ)

λ
U12(λ) + χ11(λ)U11(λ)

}
, (3.89)
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and

$
(2)
N (ξ) =

ατN
2iπN

ˆ
R+2iε′

dλ

2iπ
e−iτNλ(ξ−aN )χ11(λ)χ12;−(0)

λ
. (3.90)

Finally, it holds that $
(3)
N (ξ) = $

(3)
N ;↑(ξ) + $

(3)
N ;↓(ξ) + $

(3)
N ;0(ξ). The building blocks of this decom-

position take the form, for υ ∈ {↑, ↓},

$
(3)
N ;υ(ξ) =

ευτN
4iπN

ˆ
R+2iε′

dλ

2iπ
e−iτNλ(ξ−aN )

(
EL(λ),E(υ)(λ)

)
with ευ =

{
1 υ =↑
−1 υ =↓ .(3.91)

Here, we have set

E(↑)(λ) = e−bN
2F [g](i)

π(λ+ i)
E

(↑)
R (−i)11<ζ +

ˆ
R−iκη

dµ

2iπ

µF [g](µ) e−ibNµ

(µ− λ) cosh
[
πµ
2

]E(↑)
R (µ) (3.92)

E(↓)(λ) = eaN
2F [g](i)

π(i− λ)
E

(↓)
R (i)11<ζ +

ˆ
R+iκη

dµ

2iπ

µF [g](µ) e−iaNµ

(µ− λ) cosh
[
πµ
2

]E(↓)
R (µ) (3.93)

while

$
(3)
N ;0(ξ) =

−τN
4iπN

ˆ
R+2iε′

dλ

2iπ
e−iτNλξ

(
EL(λ),E

(↓)
R (λ)

) λF [g](λ)

cosh
[
πλ
2

] . (3.94)

Above, we have introduced

κη = (1− η) min
{

2, ζ
}

with ζ = 2π
ω1ω2

ω1 + ω2
. (3.95)

Proof —

Owing to Lemma 3.2.3, one may choose V ′N ;α to take any values outside of [aN ; bN ] so as to
compute the Fourier transform occurring in the expression for WN , provided the function belongs
to Hs(R) with 0 < s < 1/2. Thus, we choose to extend V ′N ;α from [aN ; bN ] to R as VN ;α(λ) =
vN ;α(λ)1[aN ;bN ](λ) + wN (λ), where

vN ;α(λ) =
r

NτN
cosh

[
τNλ

]
− αλ

N
and wN (λ) =

ˆ
R

dµ

2πNτN
· g(τNµ)

cosh
[
τN (λ− µ)

] . (3.96)

A direct calculation yields

ˆ bN

aN

dη eiµτN (η−bN )v′N ;α(η) =
r

2τNN i

∑
σ=±

σ
eσbN − e−iµxN eσaN

µ− iσ
− α

1 − e−iµxN

iµNτN
. (3.97)

Further, one has that
ˆ
R

dηeiµτNηw′N (η) = −iµτN

ˆ
R

dηwN (η)eiµτNη

= − iµτN
2πN

ˆ
R

dη
eiµτNη

cosh(τNη)
·
ˆ
R

dηeiµτNηg(τNη) = − iµF [g](µ)

2τNN cosh
[πµ

2

] . (3.98)

As a result, one obtains a decomposition WN [V ′N ;α] =
3∑

a=1
$

(a)
N ;α where

$
(1)
N (ξ) =

τN r

4iπN

ˆ
R+2iε′

−2mm
dλ

2iπ

ˆ
R+iε′

dµ

2iπ

e−iτNλ(ξ−aN )

µ− λ

{
χ11(λ)χ12(µ) − µ

λ
χ11(µ)χ12(λ)

}
×
∑
σ=±

σ
eσbN − e−iµxN eσaN

µ− iσ
,
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$
(2)
N (ξ) = − τNα

2iπN

ˆ
R+2iε′

dλ

2iπ

ˆ
R+iε′

dµ

2iπ

e−iτNλ(ξ−aN )

µ− λ

{
χ11(λ)χ12(µ) − µ

λ
χ11(µ)χ12(λ)

}
× 1 − e−iµxN

µ
,

and

$
(3)
N (ξ) = − iτN

4πN

ˆ
R+2iε′

dλ

2iπ

ˆ
R+iε′

dµ

2iπ

e−iτNλ(ξ−aN )

µ− λ

{
χ11(λ)χ12(µ) − µ

λ
χ11(µ)χ12(λ)

}
× e−iµbN

µF [g](µ)

cosh
[πµ

2

] .
We first compute the µ-integral arising in $

(1)
N and $

(2)
N . For such a purpose, one starts by observing

that χ1a admits an analytic continuation from H− to H+. Denoting this analytic continuation as
χ1a;−, one has the relation

χ1a;−(λ) = χ1a(λ)e−iλxN with =[λ] > 0 . (3.99)

Then, one may express $
(1)
N in the form

$
(1)
N (ξ) =

τN r

4iπN

ˆ
R+2iε′

dλ

2iπ

ˆ
R+iε′

dµ

2iπ

e−iτNλ(ξ−aN )

µ− λ

{
χ11(λ)χ12(µ) − µ

λ
χ11(µ)χ12(λ)

}∑
σ=±

σeσbN

µ− iσ

− τN r

4iπN

ˆ
R+2iε′

dλ

2iπ

ˆ
R+iε′

dµ

2iπ

e−iτNλ(ξ−aN )

µ− λ

{
χ11(λ)χ12;−(µ) − µ

λ
χ11;−(µ)χ12(λ)

}∑
σ=±

σeσaN

µ− iσ

(3.100)

We could split the integral in two pieces since each integrand behaves at infinity as O
(
|µ|−3/2

)
.

Then, because of these bounds, one may take the first µ-integral by means of the residues of the
poles located above the line R + iε′ and take the second µ-integral by means of the residues of the
poles located below the line R+ iε′. Note that there is no pole at µ− λ in the first integral so that
only the pole at µ = i contributes, while, in the second case, only the pole at µ = −i does. This
yields

$
(1)
N (ξ) =

rτN
4iπN

ˆ
R+2iε′

dλ

2iπ
e−iτNλ(ξ−aN )

∑
σ=±

eb
(σ)
N
χ11(λ)χ12(σi) − σiχ11(σi)χ12(λ)/λ

i− σλ
(3.101)

in which we have used the shorthand notations

b
(+)
N = bN and b

(−)
N = −aN . (3.102)

Then, it is a matter of direct calculation to observe that owing to the inversion relation (3.49) one
gets ∑

σ=±
eb

(σ)
N ;α

χ11(λ)χ12(σi) − σiχ11(σi)χ12(λ)/λ

i− σλ
=

χ12(λ)

λ
U12(λ) + χ11(λ)U11(λ) (3.103)

with U1a as given in (3.86)-(3.87). This was the last step before reaching (3.89).

The same reasoning yield (3.90): the part of the integral deformed up to +i∞ produces 0 while the
part deformed to −i∞ picks a simple pole at µ = 0.
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We now turn on to rewriting $
(3)
N , which can be recast as

$
(3)
N (ξ) =

τN
4iπN

ˆ
R+2iε′

dλ

2iπ

ˆ
R+iε′

dµ

2iπ

e−iτNλ(ξ−aN )

µ− λ

{
e−iµbN

(
EL(λ),E

(↑)
R (µ)

)
− e−iµaN

(
EL(λ),E

(↓)
R (µ)

)} µF [g](µ)

cosh
[πµ

2

] . (3.104)

One then splits the integral in two pieces, one containingE
(↑)
R and the other oneE

(↓)
R . Both integrals

are well defined due to the O(µ−k) behaviour at infinity of F [g](µ) ensured by the O
(
e−

r
2

cosh(ξ)
)

control on g(k)(ξ) for any k ≥ 0 and the O
(
|λ|−3/2

)
behaviour pointwise in µ. Then, in the integral

involving E
(↑)
R , one moves the µ integration from R+iε′ to R− iκη. There are four potential sources

of poles in the integrand

1

R↑(λ)
poles at λ = −iζn ,

1

R↓(λ)
poles at λ = iζn ,

1

cosh
[
πλ
2

] poles at λ = ±i(1 + 2n)

(3.105)
with n ∈ N∗, and λ = µ. Thus, in deforming the integration contour, provided that 1 < ζ, one

picks up a pole at µ = −i. This then yields $
(3)
N ;↑(ξ)

Similarly, in the second integral involving E
(↓)
R , one moves the µ-integration contour from R + iε′

to R+ iκη. This produces one contribution stemming from the pole at µ = λ and one contribution
stemming from the pole at µ = i. The last contribution is only present if 1 < ζ. The terms obtained

in this way correspond to $
(3)
N,↑(ξ) for the µ-integrals over R − iκη and $

(3)
N,0(ξ) for the residue at

µ = λ part.

3.2.4 Support of the equilibrium measure

When constructing the equilibrium measure, on top of determining its density, one also needs to
fix its support. Since the density belongs to Hs(R), see [BGK16], with 0 < s < 1/2, and satisfies
the singular integral equation (3.40) throughout its support [aN ;α ; bN ;α] which satisfies owing to
Lemma 3.2.2 the lower-bound bN ;α − aN ;α ≥ 2ς > 0, one gets that, for any N large enough, one
has the representation

%̂eq;α = WN

[
V ′N ;α

]
|aN ,bN ↪→aN ;α,bN ;α

. (3.106)

We stress that the inverse operator WN given in (3.46) is now subordinate to the yet unknown
pair of points aN ;α, bN ;α delimiting the support. One then gets two additional constraints, one
translating the fact that V ′N ;α ∈ SN

[
Hs([aN ;α ; bN ;α])

]
with 0 < s < 1/2, and the second one

expressing the unit mass property of the measure

0 = J
[
V ′N ;α

]
|aN ,bN ↪→aN ;α,bN ;α

and 1 =

ˆ bN ;α

aN ;α

{
WN

[
V ′N ;α

]
(ξ)
}
|aN ,bN ↪→aN ;α,bN ;α

. (3.107)

In this Sub-Section, we shall establish that the constraints (3.107) admit a unique solution, for
N large enough, provided that aN ;α ≤ −ς and bN ;α ≥ ς, a property that is ensured by Lemma
3.2.2. This thus ensures that this solution does provide one with the support of the equilibrium
measure. We close the subsection by establishing the explicit form of the first few terms in the
large-N expansion of aN ;α and bN ;α. This ends the proof of Theorem 3.1.1.
Proposition 3.2.5 For given endpoints aN , bN satisfying xN > η for some η > 0, the constraint
functional I1

[
V ′N ;α

]
defined in (3.43) admits the large-N asymptotic expansion

J
[
V ′N ;α

]
=

rχ11(i)

2iNτN

(
ebN − e−aN

)
− αχ11;−(0)

iNτN
− F [g](i)

πNτNR↑(−i)

{
e−bN − eaN

}
11<ζ + RJ (aN , bN )

(3.108)
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with a remainder that is smooth in aN , bN and controlled as

∂kaN∂
`
bN

RJ (aN , bN ) = O

(
τk+`
N

e−bNκη + eaNκη

NτN

)
. (3.109)

Finally, κη is as introduced in (3.95) .

Proof —

Now one consecutively computes each of the contributions to J . The one of vN ;α can be obtained
in closed form. Indeed, one has

J
[
v′N ;α

]
=

ˆ
R+iε′

dµ

2iπNτN
χ11(µ)e−iµbN

{∑
σ=±

rσeσbN

2i(µ− iσ)
− α

iµ

}
−
ˆ
R+iε′

dµ

2iπτNN
χ11(µ)e−iµxN e−iµbN

{∑
σ=±

rσeσaN

2i(µ− iσ)
− α

iµ

}
. (3.110)

Note that, each integrand is a O
(
µ−3/2

)
at ∞. The first integral can be computed by taking the

residues of the poles located above of R + iε′. There is a simple pole at µ = i. To compute the
second integral, one observes that χ11 admits an analytic continuation from H− to H+. Denoting
this analytic continuation as χ11;−, it holds χ11;−(λ) = χ11(λ)e−iλxN with =[λ] > 0. Thus, in the
second integral, one replaces χ11 with χ11;− and then takes the integral in terms of the residues at
the poles located below of R + iε′. This yields

J
[
v′N ;α

]
=

r

2iτNN

(
χ11(i)e−bN − χ11(−i)e−aN

)
− αχ11;−(0)

iτNN
(3.111)

=
rχ11(i)

2iτNN

(
e−bN − e−aN

)
− αχ11;−(0)

iτNN
. (3.112)

Here, we have simplified the expression owing to (3.50).

Further, observe that integrations by parts and the O
(
e−r cosh(ξ)

)
decay of g(k)(ξ) for any k ≥ 0

ensure that F [g](µ) = O
(
µ−k

)
. Then, recalling the representation (3.80) and inserting into the

expression for the constraint functional leads to

J
[
w′N
]

=

ˆ
R+iε′

dµ

4i2πNτN

Q↑(µ)F [g](µ)

R↑(µ) cosh
[πµ

2

]e−iµbN −
ˆ
R+iε′

dµ

4i2πNτN

µQ↓(µ)F [g](µ)

R↓(µ) cosh
[πµ

2

]e−iµaN

=

ˆ
R−iκη

dµ

4i2πNτN

Q↑(µ)F [g](µ)

R↑(µ) cosh
[πµ

2

]e−iµbN −
ˆ
R+iκη

dµ

4i2πNτN

µQ↓(µ)F [g](µ)

R↓(µ) cosh
[πµ

2

]e−iµaN

− F [g](i)

πNτNR↑(−i)

{
Q↑(−i)e−bN − Q↓(i)e

aN
}

11<ζ . (3.113)

In the second line we have deformed the integration contour to R − iκη for the first integral and
to R + iκη. Note that, in the process, one only picks poles of 1/ cosh

[πµ
2

]
at ±i, and this provided

that 1 < ζ. This generates the contribution of the last line.

Owing to the O(µ−k) for any k ≥ 0 decay of the integrand at infinity, one readily then estimates

the first integral to be O
(

e−κηbN /NτN

)
and the second one to be O

(
eκηaN /NτN

)
. Finally, one

has Q↑/↓(µ) = 1 + O
(
e−ζ(1−η)xN

)
uniformly in µ ∈ R± iκη. Thus, all-in-all,

J
[
w′N
]

= − F [g](i)

πNτNR↑(−i)

{
e−bN − eaN

}
11<ζ +

1

NτN
O
([

e−bN + eaN
]
e−ζ(1−η)xN + e−κηbN + eκηaN

)
.

(3.114)
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It is clear from the previous handlings and the properties of Q↑/↓ that the remainder is smooth in
aN , bN and that each aN or bN derivative of the remainder worsens the control by a factor of τN .

The result then follows upon putting together all the estimates and exact expressions.
Proposition 3.2.6 It holds

ˆ bN

aN

dξWN

[
V ′N ;α

]
(ξ) =

−α
2πN

[
χ′11;−(0)χ12;−(0) − χ′12;−(0)χ11;−(0)

]
− r

4iπN

{(
ebN + e−aN

)[
χ11;−(0)χ12(i) − χ12;−(0)χ11(i) − i

2
χ11;−(0)χ11(i)

]
+ iχ11;−(0)χ11(i)

ebN − e−aN

2

}
+

F [g](i)

2π2NR↓(i)R↓(0)

(
e−bN + eaN

)
11<ζ + O

(
eκηaN + e−κηbN

N

)
.

(3.115)

Proof —

One starts from the partially integrated expression for WN

[
V ′N ;α

]
obtained in Proposition 3.2.4.

Then, with the notation of that proposition, one has

ˆ bN

aN

dξWN

[
V ′N ;α

]
(ξ) =

3∑
a=1

ˆ bN

aN

dξ $
(a)
N (ξ) . (3.116)

Since, ˆ bN

aN

dξe−iλτN (ξ−aN ) =
1 − e−iλxN

iλτN
, (3.117)

one gets that

ˆ bN

aN

dξ $
(2)
N (ξ) = −αχ12;−(0)

2πN

ˆ
R+2iε′

dλ

2iπ

χ11(λ) − χ11;−(λ)

λ2
. (3.118)

There, we have used that χ1a admits and analytic continuation from H− to H+ denoted χ1a;−(λ) =
e−iλxNχ1a(λ) for =(λ) > 0. The integral is well defined in that the integrand behaves as O(|λ|−5/2

at ∞. Splitting it in two pieces and taking the integral involving χ11 by means of the residues at
the poles located above R + 2iε′ -there are none- and the integral involving χ11;− by means of the
residues at the poles located below of R + 2iε′ -there is only one at λ = 0- one gets that

ˆ bN

aN

dξ $
(2)
N (ξ) = −αχ12;−(0)

2πN
∂λχ11;−(0) . (3.119)

We next focus on the contribution involving $
(1)
N . One gets

ˆ bN

aN

dξ $
(1)
N (ξ) = − r

4πN

ˆ
R+2iε′

dλ

2iπ

{
χ12(λ)− χ12;−(λ)

λ
U12(λ) +

(
χ11(λ)− χ11;−(λ)

)
U11(λ)

}
.

(3.120)
Splitting it in two pieces and taking the integral involving χ11 by means of the residues at the poles
located above R + 2iε′ -there are none- and the integral involving χ11;− by means of the residues
at the poles located below of R + 2iε′ -there is only one at λ = 0- one gets that

ˆ bN

aN

dξ $
(1)
N (ξ) = − r

4πN

{
∂λ
(
χ12;−U12

)
(0) + χ11;−(0)U11(0)

}
. (3.121)
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A direct calculation leads to

U11(0) = −iNuNχ12(i)−χ11(i)
NuN − vN

2
, U12(0) = −vNχ11(i) and U ′

12(0) = iNuNχ11(i).

(3.122)
Here, we remind that uN and vN have been introduced in (3.88). Upon inserting the above into

the closed expression for the integral of $
(1)
N , one eventually gets

ˆ bN

aN

dξ $
(1)
N (ξ) =

r

4πN

{
iNuN

[
χ11;−(0)χ12(i) − χ12;−(0)χ11(i) − i

2
χ11;−(0)χ11(i)

]
− vN

[1

2
χ11;−(0)χ11(i) − χ′12;−(0)χ11(i)

]}
. (3.123)

Finally, we focus on estimating the contribution issuing from $
(3)
N . Starting from the expression

for the integrand provided in Proposition 3.2.4 along with (3.117), one gets that

ˆ bN

aN

dξ $
(3)
N (ξ) = I(3)

↓ + I(3)
↑ + I(3)

0 . (3.124)

There, one has

I(3)
↓ =

1

4πN

ˆ
R+2iε′

dλ

2iπλ2

([
E

(↑)
L (λ) +

(
1− eiλxN

)
E

(↓)
L (λ)

]
− e−iλxNE

(↑)
L (λ),E(↓)(λ)

)
=

1

4πN

ˆ
R+iκη′

dλ

2iπλ2

(
E

(↑)
L (λ) +

(
1− eiλxN

)
E

(↓)
L (λ),E(↓)(λ)

)
+ 11<ζ

eaNF [g](i)

2π2N

(
E

(↑)
L (i),E(↓)(i)

)
+

1

4πN
∂λ

{
e−iλxN

(
E

(↑)
L (λ),E(↓)(λ)

)}
|λ=0

− 1

4πN

ˆ
R−iκη′

dλ

2iπλ2
e−iλxN

(
E

(↑)
L (λ),E(↓)(λ)

)
.

(3.125)

Above, η′ > η, and is taken small enough. Also, we have made use of the relation
(
E

(↓)
L (i),E(↓)(i)

)
=

0.

To estimate the various contributions more precisely, one needs the auxiliary estimates(
E

(↑)
L (λ),E

(↓)
R (µ)

)
=

−µ
R↑(λ)R↓(µ)

+ O
(√

(1 + |λ|)(1 + |µ|) · e−ζ(1−η)xN
)

(3.126)

and (
E

(↑)
L (λ),E

(↓)
R (µ)

)
= O

(√
(1 + |λ|)(1 + |µ|) · e−ζ(1−η)xN

)
. (3.127)

Note that the remainders are holomorphic in λ located between Γ↑ and Γ↓ and smooth in aN , bN ,
with each derivative adding a τN factor to the control. From that and the fact that F [g] ∈ S(R),
one infers the bounds(

E
(↑)
L (λ),E(↓)(λ)

)
= −eaN

2iF [g](i)

π(i− λ)R↑(λ)R↓(i)
11<ζ + O

(
eaNκη√
1 + |λ|

)
(3.128)

and (
E

(↑)
L (λ),E(↓)(λ)

)
= O

(
eaNκη√
1 + |λ|

)
. (3.129)

There, the remainders enjoy the same properties as above. Inserting these bounds inside of the

obtained representation for I(3)
↑ , one gets

I(3)
↑ = eaN

F [g](i)

2π2NR↓(i)
11<ζ

{
1

iR↑(i)
+

1

R↓(0)

}
+ O

(
eaNκη

N

)
. (3.130)
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The remainder is now only C1 in respect to aN , bN and partial aN or bN derivatives thereof enjoy
the same control with a τN additional factor.

Similarly, one obtains

I(3)
↑ =

−1

4πN

ˆ
R+2iε′

dλ

2iπλ2

([
E

(↑)
L (λ) +

(
1− eiλxN

)
E

(↓)
L (λ)

]
− e−iλxNE

(↑)
L (λ),E(↑)(λ)

)
=
−1

4πN

ˆ
R+iκη′

dλ

2iπλ2

(
E

(↑)
L (λ) +

(
1−eiλxN

)
E

(↓)
L (λ),E(↑)(λ)

)
+ 11<ζ

e−bN−xNF [g](i)

2π2N

(
E

(↑)
L (i),E(↓)(i)

)
− 1

4πN
∂λ

{
e−iλxN

(
E

(↑)
L (λ),E(↑)(λ)

)}
|λ=0

− 1

4πN

ˆ
R−iκη′

dλ

2iπλ2
e−iλxN

(
E

(↑)
L (λ),E(↑)(λ)

)
.

(3.131)

As before, one gets the auxiliary estimates(
E

(↑)
L (λ),E

(↑)
R (µ)

)
= O

(√
(1 + |λ|)(1 + |µ|) · e−ζ(1−η)xN

)
(3.132)

and (
E

(↑)
L (λ),E

(↑)
L (µ)

)
=

λ

R↓(λ)R↑(µ)
+ O

(√
(1 + |λ|)(1 + |µ|) · e−ζ(1−η)xN

)
. (3.133)

Again, the remainders are holomorphic in λ located between Γ↑ and Γ↓ and smooth in aN , bN , with
each derivative adding a τN factor to the control. Thus,(

E
(↑)
L (λ),E(↑)(λ)

)
= O

(
e−bN−ζ(1−η)xN√

1 + |λ|

)
(3.134)

and (
E

(↑)
L (λ),E(↑)(λ)

)
=

2λF [g](i) e−bN

π(i + λ)R↓(λ)R↑(−i)
11<ζ + O

(
e−bNκη√
1 + |λ|

)
. (3.135)

There, the remainders enjoy the same properties as above. Hence, one gets that

I(3)
↑ = − F [g](i) e−bN

2π2NR↑(−i)
11<ζ

ˆ
R+iκη

dλ

2iπλR↓(λ)(i + λ)
+ O

(
e−κηbN

N

)
. (3.136)

The remainder is C1 in respect to aN , bN and partial aN or bN derivatives thereof enjoy the same
control with a τN additional factor. The remaining integral can be computed by means of taking
the residues at λ = 0 and λ = −i located below of R + iκη, leading eventually to

I(3)
↑ = e−bN

F [g](i)

2π2NR↓(i)
11<ζ

{
1

iR↑(i)
+

1

R↓(0)

}
+ O

(
e−κηbN

N

)
. (3.137)

It remains to focus on I(3)
0 which takes the form

I(3)
0 =

1

4πN

ˆ
R+2iε′

dλ

2iπλ

(
e−iλaN

[
E

(↑)
L (λ) +

(
1−eiλxN

)
E

(↓)
L (λ)

]
− e−iλbNE

(↑)
L (λ),E

(↓)
R (λ)

) F [g](λ)

cosh
[
πλ
2

]
=

1

4πN

ˆ
R+iκη

dλ

2iπλ
e−iλaN

(
E

(↑)
L (λ),E

(↓)
R (λ)

) F [g](λ)

cosh
[
πλ
2

] − eaN
F [g](i)

2π2N

(
E

(↑)
L (i),E

(↓)
R (i)

)
11<ζ

+
F [g](0)

4πN

(
E

(↑)
L (0),E

(↓)
R (0)

)
− e−bN

F [g](i)

2π2N

(
E

(↑)
L (−i),E

(↓)
R (−i)

)
11<ζ

− 1

4πN

ˆ
R−iκη

dλ

2iπλ
e−iλbN

(
E

(↑)
L (λ),E

(↓)
R (λ)

) F [g](λ)

cosh
[
πλ
2

] . (3.138)
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It is then enough to invoke the previous auxiliary bounds to infer that
(
E

(↑)
L (0),E

(↓)
R (0)

)
= O

(
LN
)

while the two integral terms are a N−1O
(
e−κηbN + eκηaN

)
. Those auxiliary bounds also allow one

to simplify the explicit contributions so that, up to subdominant corrections,

I(3)
0 =

iF [g](i)

2π2NR↑(i)R↓(i)
11<ζ

(
e−bN + eaN

)
+ O

(
e−κηbN + eκηaN

N

)
. (3.139)

The remainder is C1 in respect to aN , bN and partial aN or bN derivatives thereof enjoy the same
control with a τN additional factor. By putting the three estimates together, we get

ˆ bN

aN

dξ $
(3)
N (ξ) =

F [g](i)11<ζ

2π2NR↓(0)R↓(i)

(
e−bN + eaN

)
+ O

(
e−κηbN + eκηaN

N

)
. (3.140)

This entails the claim.

Below, we establish the unique solvability of the constraints (3.107) on the endpoints aN , bN under
the hypothesis that bN − aN ≥ η, for some fixed η > 0. Later, we will establish that these unique
solutions do correspond to the endpoints of the support of the equilibrium measure.
Proposition 3.2.7 Consider the subset of R2

Dς = [ς ; +∞[× ]−∞ ;−ς] , (3.141)

with ς > 0 and small. For any η > 0 there exists N0 such that, for any N ≥ N0, there exists a
unique solution

(
bN ;α, aN ;α

)
∈ Dς to the constraint equations (3.107). Moreover, it holds that

bN ;α = 1 + o(1) and aN ;α = −1 + o(1) . (3.142)

Proof —

It follows from Propositions 3.2.5-3.2.6 and the expansion χ11(i) = −i/R↑(i) + O
(
e−xNκη

)
with a

differentiable remainder, that the constraints (3.107) are equivalent to the system of equations for
aN , bN :

ebN − e−aN = 2
αχ11;−(0)

rχ11(i)
+ O

(
e−bN κ̃η + eaN κ̃η

NτN

)
, (3.143)

and

ebN + e−aN =
4πN

i r
·

1 +
α

2πN

[
χ′11;−(0)χ12;−(0) − χ′12;−(0)χ11;−(0) +

1

2
χ2

11;−(0)
]

χ11;−(0)χ12(i) − χ12;−(0)χ11(i) − i

2
χ11;−(0)χ11(i)

+ O

(
xN

(
eκ̃ηaN + e−κ̃ηbN

))
. (3.144)

There, we agree upon κ̃η = min
{

1, (1− η)ζ
}

.

A direct calculation based on the expansions (3.63) and (3.68) leads to

χ11;−(0)χ12(i)−χ12;−(0)χ11(i)− i

2
χ11;−(0)χ11(i) =

−1

R↓(0)R↑(i)

(
1 + ie−xN

R↑(i)

R↓(i)
+ O

(
e−ζ(1−η)xN

))
(3.145)

and

χ′11;−(0)χ12;−(0) − χ′12;−(0)χ11;−(0) +
1

2
χ2

11;−(0) = O
(
xN e−ζ(1−η)xN

)
. (3.146)
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This allows one to recast the second constraint in the form

ebN + e−aN = Nc0
1 + xNO

(
eκ̃ηaN + e−κ̃ηbN + e−ζ(1−η)xN

)
1 + ie−xN

R↑(i)

R↓(i)
+ O

(
e−ζ(1−η)xN

)
= Nc0 ·

(
1 + O

(
xNeκ̃ηaN + xNe−κ̃ηbN

))
. (3.147)

There, we have set

c0 =
4π

r

√
ω1 + ω2R↑(i) . (3.148)

Finally, owing to

2
αχ11;−(0)

rχ11(i)
=

αc0
π(ω1 + ω2)

1 + O
(

e−ζ(1−η)xN
)

1 − ie−xN
R↑(i)

R↓(i)
+ O

(
e−ζ(1−η)xN

) (3.149)

one recasts the first constrain in the form

ebN − e−aN =
αc0

π(ω1 + ω2)

1 + O
(

e−ζ(1−η)xN
)

1 − ie−xN
R↑(i)

R↓(i)

+ O

(
e−bN κ̃η + eaN κ̃η

)

=
αc0

π(ω1 + ω2)
+ O

(
eκ̃ηaN + e−κ̃ηbN

)
. (3.150)

In order to prove more efficiently the existence and uniqueness for N large enough of the system’s
solutions on the domain Dς introduced in (3.141), it is convenient to pass to the finite in N -variables(
uN , vN

)
defined through (3.88).

Note that upon defining

Ψ
(
x, y
)

=

(
eτNx + e−τNy

N
, eτNx − e−τNy

)
, (3.151)

one has that

D̂ς = Ψ
(
Dς
)

=

{
(u, v) ∈ R+ × R : u ≥ 1

N1−ς and Nu− 2N ς ≥ |v|
}
. (3.152)

Then, one may recast the constraints in the form

uN = c0 + δΦ1

(
uN , vN

)
and vN =

αc0
π(ω1 + ω2)

+ δΦ2

(
uN , vN

)
. (3.153)

The functions δΦa are smooth on D̂ς since the remainders in (3.147) and (3.150) are smooth on
Dς . Moreover, it is direct to estimate that throughout D̂ς , it holds

δΦa

(
u, v
)

= O

((
2

Nu+v

)κ̃η(1−η′)
+
(

2
Nu−v

)κ̃η(1−η′)
)

= O
(
N−ςκ̃η(1−η′)

)
, (3.154)

with η′ > 0 and small enough. Taken that the remainder’s estimates also hold for the first deriva-
tives up to additional τN factors, one gets that∣∣∂uδΦa

(
u, v
)∣∣ +

∣∣∂vδΦa

(
u, v
)∣∣ = O

(
N−ςκ̃η(1−η′)

)
, (3.155)
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by slightly increasing η′. Thus, introducing the C1 diffeomorphism on D̂ς

Φ(u, v) =

(
c0 − u+ δΦ1

(
u, v
)

αc0
π(ω1+ω2) − v + δΦ2

(
u, v
) ) (3.156)

one has, uniformly throughout D̂ς , that DΦ = −I2 + O
(
N−ςκ̃η(1−η′)

)
. One is thus in the setting

where one can invoke the local inversion theorem so as to ensure that Φ, as soon as N is large
enough, is a local C1 diffeomorphism on D̂ς such that, for any (u, v) ∈ D̂ς , there exist N -independent
s, s′ > 0 such that

Φ : B(u,v),s → Φ
(
B(u,v),s

)
⊃ BΦ(u,v),s′ (3.157)

is a diffeomorphism.

This is enough so as to ensure that Φ is a C1 diffeomorphism on D̂ς . Indeed, assume that there exist(
u, v
)
,
(
u′, v′

)
∈ D̂ς ,

(
u, v
)
6=
(
u′, v′

)
such that Φ

(
u, v
)

= Φ
(
u′, v′

)
. Then, one has the relation{

u′ − u = δΦ1

(
u, v
)
− δΦ1

(
u′, v′

)
= O

(
N−ςκ̃η(1−η′))

v′ − v = δΦ2

(
u, v
)
− δΦ2

(
u′, v′

)
= O

(
N−ςκ̃η(1−η′)) . (3.158)

However, Φ is injective on B(u,v),s 3 (u′, v′) what entails
(
u, v
)

=
(
u′, v′

)
, a contradiction. This

entail that Φ is a diffeomorphism on D̂ς .

Finally, by the estimates on δΦ, it holds that Φ
(
c0 ,

αc0
π(ω1+ω2)

)
= O

(
N−ςκ̃η(1−η′)). However, since

there exists s, s′ > 0 such that

Φ
(
B(

c0 ,
αc0

π(ω1+ω2)

)
,s

)
⊃ B

Φ
(
c0 ,

αc0
π(ω1+ω2)

)
,s′
, (3.159)

it follows that (0, 0) ∈ Φ
(
D̂ς
)
, what ensures the existence and uniqueness of solutions to the system

(3.107) on Dς .

The form of the leading large-N behaviour for aN ;α, bN ;α then follows readily.
Lemma 3.2.8 The following large-N asymptotics hold

ebN ;α =
c0N

2
+

αc0
2π(ω1 + ω2)

−
2iR↑(i)

Nc0R↓(i)

(
1 +

2F [g](i)

πr
11<ζ

(
1 + α

π

))
+ O

( 1

Nκη

)
(3.160)

and

e−aN ;α =
c0N

2
− αc0

2π(ω1 + ω2)
−

2iR↑(i)

Nc0R↓(i)

(
1 +

2F [g](i)

πr
11<ζ

(
1 + α

π

))
+ O

( 1

Nκη

)
(3.161)

These asymptotic expansions involve the constant

c0 =
4π

r

√
ω1 + ω2R↑(i) (3.162)

while κη is as introduced in (3.95).

Moreover, it also holds that

bN ;α = log

(
c0N

2

)
+

α

πN(ω1 + ω2)

− 1

N2

{
4iR↑(i)

c20R↓(i)

(
1 +

2F [g](i)

πr
11<ζ

(
1 + α

π

))
+

α2

2π2N2(ω1 + ω2)2

}
+ O

( 1

Nκη+1

)
(3.163)
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and

aN ;α = − log

(
c0N

2

)
+

α

πN(ω1 + ω2)

+
1

N2

{
4iR↑(i)

c20R↓(i)

(
1 +

2F [g](i)

πr
11<ζ

(
1 + α

π

))
− α2

2π2N2(ω1 + ω2)2

}
+ O

( 1

Nκη+1

)
(3.164)

Proof —

The result follows from direct calculations based on (3.69) and (3.64).

3.3 Large-N behaviour of the interpolating integral

Proposition 3.3.1 It holds

ˆ bN ;α

aN ;α

dξ ξ %̂eq;α(ξ) =
α

π(ω1 + ω2)NτN

[
log
(
Nc0

2

)
+ i log′R↓(0)

]
+ O

(
τN
N

[
N−111<ζ + N−κη

])
(3.165)

Proof —

One starts by observing that

ˆ bN ;α

aN ;α

dξe−iλτN (ξ−aN ;α) =
aN ;α − bN ;αe−iλxN ;α

iλτN
+

e−iλxN ;α − 1

(λτN )2
. (3.166)

Here, we agree that xN ;α = bN ;α − aN ;α. Thus, according to the partially integrated expression
for WN

[
V ′N ;α

]
obtained in Proposition 3.2.4, one may decompose the integral into three terms

ˆ bN ;α

aN ;α

dξ ξ %̂eq;α(ξ) =
3∑

a=1

H(a) (3.167)

where

H(1) =
rτN

4iπN

ˆ
R+2iε′

dλ

2iπ

{
χ12(λ)

λ
U12(λ) + χ11(λ)U11(λ)

}
·
{
aN ;α − bN ;αe−iλxN ;α

iλτN
+

e−iλxN ;α − 1

(λτN )2

}
,

(3.168)

H(2) =
ατN
2iπN

ˆ
R+2iε′

dλ

2iπ
χ11(λ)χ12;−(0) ·

{
aN ;α − bN ;αe−iλxN ;α

iλ2τN
+

e−iλxN ;α − 1

λ3τ2
N

}
, (3.169)

and, by employing the notations introduced in Proposition 3.2.4

H(3) = H(3)
↑ + H(3)

↓ + H(3)
0 with H(3)

υ =

ˆ bN ;α

aN ;α

dξ ξ$
(3)
N ;υ(ξ) , υ ∈ {↑, ↓, 0} . (3.170)

We stress that now, all the above quantities involve the solution χ subordinate to the choice of
endpoints aN ;α, bN ;α.

The first two contributions can be computed in closed form. Indeed, by applying the previously
introduced notations, one gets

H(2) =
ατN
2iπN

χ12;−(0)

ˆ
R+2iε′

dλ

2iπ
·
{
aN ;αχ11(λ) − bN ;αχ11;−(λ)

iλ2τN
+
χ11;−(λ) − χ11(λ)

λ3τ2
N

}
. (3.171)

Due to the O
(
λ−5/2

)
decay of the integrand at ∞
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i) the contribution of the integrand involving χ11 can be evaluated by taking the residues of the
integrand’s poles located above R + 2iε′. Since there are no poles, this part produces 0.

ii) The contribution of the integrand involving χ11;− can be evaluated by taking the residues of
the integrand’s poles located below R+ 2iε′. The only poles present are the third and second
order poles at 0.

All-in-all, one gets that

H(2) = − ατN
2iπN

χ12;−(0) ·
{
−
bN ;α

iτN
χ′11;−(0) +

1

2τ2
N

χ′′11;−(0)

}
. (3.172)

The large-N behaviour of χ1a given in (3.68), allows one to infer that

χ12;−(0) = O
(

e−ζ(1−η)xN ;α

)
and χ

(k)
11;−(0) = O

(
xkN ;α

)
with k ∈ N. (3.173)

This entails that

H(2) = O

(
|α|τN
N
· e−ζ(1−η)xN ;α

)
= O

(
|α|τN

N1+2ζ(1−η)

)
. (3.174)

Similar handlings lead to

H(1) = − rτN
4iπN

{
−
bN ;α

iτN
∂λ

(
χ12;−U12

)
(0) +

1

2τ2
N

∂2
λ

(
χ12;−U12

)
(0)

−
bN ;α

iτN

(
χ11U11

)
(0) +

1

τ2
N

∂λ

(
χ11;−U11

)
(0)

}
. (3.175)

A long but straightforward calculation utilising the expansion (3.68) yields

H(1) =
rτN

4iπNR↓(0)R↑(i)

{
bN ;αebN ;α + aN ;αe−aN ;α −

(
ebN ;α − e−aN ;α

)
·
(
1− i log′R↓(0)

)
+ i

R↑(i)

R↓(i)
·
[
bN ;αe−bN ;α + aN ;αeaN ;α − e−xN ;α

(
ebN ;α − e−aN ;α

)
·
(
1 + i log′R↓(0)

)]}
×
(

1 + O
(
τNe−ζ(1−η)xN ;α

))
. (3.176)

Observe that, for large N, one has

bN ;αebN ;α + aN ;αe−aN ;α = vN ;α log
(NuN ;αe

2

)
+ O

(
N−2

)
(3.177)

and

bN ;αe−bN ;α + aN ;αeaN ;α = O

(
vN ;ατN

(NuN ;α)2

)
. (3.178)

Finally, by inserting the large-N expansion of the endpoints obtained in Lemma 3.2.8, one gets

H(1) =
α

π(ω1 + ω2)NτN

[
log
(
Nc0

2

)
+ i log′R↓(0)

]
− 2α2

π2(ω1 + ω2)2N3τN
+ O

(
1

N3
+

e−ζ(1−η)xN ;α

N

)
.

(3.179)

Hence, to conclude, it remains to estimate H(3). We estimate separately each of the H(3)
υ . For υ ∈

{↑, ↓}, by taking the expressions for $
(3)
N ;↑/↓ obtained in Proposition 3.2.4 one gets the representation

H(3)
υ =

ευ
4iπNτN

ˆ
R+2iε′

dλ

2iπλ3

(
F↑(λ) + e−iλxNF↓(λ),E(υ)(λ)

)
, (3.180)
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where we have introduced

F↓(λ) =
(
ibN ;αλ+ 1

)
E

(↑)
L (λ) (3.181)

F↑(λ) = −
(
iaN ;αλ+ 1

)
E

(↑)
L (λ) −

(
ibN ;αλ+ 1

)
E

(↓)
L (λ) + eiλxN ;α

(
iaN ;αλ+ 1

)
E

(↑)
L (λ) . (3.182)

Thus, upon introducing κ̃η = (1− η)min
{

1, ζ
}

and deforming the integration contours, one gets

H(3)
υ =

ευ
4iπNτN

ˆ
R+iκ̃η

dλ

2iπλ3

(
F↑(λ),E(υ)(λ)

)
− 1

2
∂2
λ

{
e−iλxN

(
F↓(λ),E(υ)(λ)

)}
|λ=0

+
ευ

4iπNτN

ˆ
R−iκ̃η

dλ

2iπλ3
e−iλxN

(
F↓(λ),E(υ)(λ)

)
(3.183)

Then, using that within the band |=(λ)| ≤ κ̃η one has the bounds

|E(υ)(λ)| ≤ C

1 + |λ|

(
N−111<ζ + N−κη

)
, (3.184)

one readily gets that ∣∣∣H(3)
υ

∣∣∣ ≤ CτN
N

(
N−111<ζ + N−κη

)
. (3.185)

Finally, we focus on H(3)
0 which, upon using that

(
E

(↓)
L (λ),E

(↓)
L (λ)

)
= 0, may be recast as

H(3)
0 =

1

4iπNτN

ˆ
R+2iε′

dλ

2iπλ2

F [g](λ)

cosh
[
πλ
2

](E(↑)
L (λ),E

(↓)
R (λ)

)
×
{(

iaN ;αλ+ 1
)
e−iλaN ;α + e−iλbN ;α

(
ibN ;αλ+ 1

)}
. (3.186)

Then, it is enough to observe that throughout the strip |=(λ)| ≤ κ̃η(
E

(↑)
L (λ),E

(↓)
R (λ)

)
= − λ

R(λ)
+ RN (λ) with RN (λ) = O

(
(1+|λ|)e−ζ(1−η)xN ;α

)
. (3.187)

In particular, the leading term has a second order zero at λ = 0. This leads to

H(3)
0 =

ˆ
R+iκ̃η

dλ

2iπλ2

F [g](λ)

cosh
[
πλ
2

](E(↑)
L (λ),E

(↓)
R (λ)

) iaN ;αλ+ 1

4iπNτN
e−iλaN ;α

+

ˆ
R−iκ̃η

dλ

2iπλ

F [g](λ)

cosh
[
πλ
2

]
R(λ)

ibN ;αλ+ 1

4iπNτN
e−iλbN ;α +

ˆ
R+2iε′

dλ

2iπλ2

F [g](λ)

cosh
[
πλ
2

]RN (λ)
ibN ;αλ+ 1

4iπNτN
e−iλbN ;α .

(3.188)

Upon deforming further the integrals along R± iκ̃η and picking the residues of the simple pole at
±iζ and then applying direct bounds, one eventually gets

∣∣∣H(3)
0

∣∣ ≤ C

NτN

{
τN

[
N−111<ζ +N−κη

]
+ τNe−ζ(1−η)xN ;α+2ε′bN ;α

}
≤ C

N

[
N−111<ζ +N−κη

]
.

(3.189)
The claim then follows by putting the various estimates together.
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Conclusion

In this work, we have provided a full characterisation of the equilibrium measure which governs
the leading asymptotic expansion of the logarithm of the Lukyanov integral. This allowed us to
check by means of explicit calculations the predictions relative to the leading term of the Lukyanov
conjecture describing the large-N behaviour of a multiple-integral supposed to provide the lattice
regularisation of the vacuum expectation value of the exponential of the field operator in the
quantum Sinh-Gordon finite volume R field theory. Our calculations confirm this part of the
conjecture. However, a lack of sharp bounds on the remainder, issuing from our incapacity to
control, on sufficiently fine scales, the inverse of the master operator arising in the system of loop
equations, does not allow us to prove that indeed the other corrections which could contribute to
the asymptotics of the derivative ∂α logZN

[
VN ;α

]
will not do so on a stronger than logN scale. It

would be extremely interesting to develop a much better understanding of the scaling regimes of
the master operator appropriate for this setting.

We plan to address these questions, in full rigour, by alternative methods in further works.



Conclusion

“Space and time are the pure forms of sen-
sible intuition; for they are represented,
prior to all actual perception, as the con-
ditions of the possibility of external phe-
nomena.” Immanuel Kant
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We now give a conclusion and summarize some of the questions that arise from our work.

3.4 Central limit theorem

In Chapter 1, we managed to show a CLT for the real β-ensembles at high temperature. This was
done by using some of the tools developped in [HL21] and extending them to a non-compact case.
This required some technicalities and some new ideas. An example is the inversion of the master
operator shown by using a link between the latter and a Schrödinger operator.

Question 1: Would it be possible to extend the class of test functions allowed by Theorem 1.1.4 ?

Since Theorem 1.1.4 only includes bounded functions while the other CLT’s in the high temperature
regime [NT18, HL21, MM24] allow for test-functions with polynomial growth, it seems likely that
our approach could lead to the same type of conclusion. A possible way to achieve this task would
be by specifying a potential (for example, a polynomial with a fixed even degree), but proving this
extension with a general V could be challenging. Another way to improve the result could involve
reproducing the change of variables in the partition function with finer estimates on the remainders,
requiring less regularity on the test function φ of the change of variables xi 7→ yi + tN−1/2φ(yi).
Finally, when extending the set of functions for which the central limit theorem holds, the growth
conditions we require on φ may not be optimal, and finer estimates could lead to less stringent
conditions on the test functions.

Achieving such a task could lead to an explicit expression for the GGE-averages of the currents as
it was argued in Subsection I.6.4. Indeed, currently we only know that this expression is valid for
bounded functions but the averages of the currents requires the knowledge on the limiting variance
σ2
β−ens,HT(V, P, .) for polynomials test-functions.

As it is the case in the classical regime, the size of the fluctuations of linear statistics are expected
to be different for singular test-function. It would be interesting to understand the fluctuations
under the choice of indicator functions as test-functions.

Question 2: Could this analysis be reproduced for singular potentials V ?

191
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It would be interesting to see if it would be possible to include some potentials V which present
a singularity at some point. One could think of the potentials of the type V : x 7→ |x|γ for
1 < γ < 2. These potentials and their first derivative are continuous but their second derivative
admit a singularity at the origin. Doing so would require to invert the master operator in that case
which is not trivial.

Question 3: Would it be possible to understand the continuity of the variance with respect to the
parameter P as in [HL21] ?

We recall that in this article, the authors obtained a CLT similar to our result in the circular
case. Although their result allow for a broader class of test-functions, we obtained the same
limiting variance σ2

β−ens,HT(V, P, .) [DGM23] as in their result. They managed to understand the
asymptotic behaviour in P of the limiting variance. For all test-functions ψ regular and integrable,
their result goes as follows:

σ2
β−ens,HT(V, P, ψ) −→

P→0
‖ψ‖2L2(µV,0)

(def)
=

ˆ
T
ψ(x)2 e−V (x)´

T e
−V (y)dy

dx.

This variance corresponds to the limiting variance of the classical CLT for iid particles of law given

by
e−V (x)´

T e
−V (y)dy

dx. They also managed to show that, under certain hypotheses on the equilibrium

measure; µV,P , that one recovers the 1/2-Sobolev norm when P → +∞, i.e.:

σ2
β−ens,HT(V, P, ψ) −→

P→+∞
‖ψ‖2

H1/2

(def)
= 2

+∞∑
k=1

k|ψ̂k|2 ψ̂k
(def)
=

ˆ
T
ψ(x)e−ikx dx

2π
.

As was shown in [Joh90], this corresponds to the limiting variance of the classical β-ensemble. This
can be seen as a consequence of the Gauss-Wigner crossover as one expects that in the P −→ 0
limit, one recovers the equilibrium measure for iid particles, while in the P → +∞ limit, one should
recover the equilibrium measure corresponding to the β-ensemble in the classical regime.

Showing this type of result in our case of the real line would require to have a control on the
P -dependence of the equilibrium measure µV,P . This dependence of µV,P has been understood in
[GM22] and it would be interesting to see if this knowledge would be enough to adapt the arguments
of [HL21, Section 8].

3.5 Asymptotic of the partition function

The inversion of the master operator in Chapter 1 paved the way for the applicabilty of the loop
equations analysis method. In Chapter 2, to show the existence of a N−1 asymptotic expansion for
the logarithm of the partition function for potentials of the form x2 + φ with φ a bounded smooth
function. Since the a priori bound shown there is different from the usual ones and includes a
stronger norm, it was necessary to obtain more subtle continuity controls on the inverse of the
master operator. This allowed me to derive the existence of an asymptotic expansion for the
linear statistics. I was finally able to control the dependence with respect to the potential of the
equilibrium measure which led to the final result.

Question 4: Would it be possible to adapt the proof of Chapter 2 in order to get more potentials
than just the sum of a quadratic potential and a bounded smooth function ?

This is very likely that this AE holds for more general potentials. In many cases, the loop equations
analysis was sufficient to include many more potentials like strictly convex polynomial potentials
in the classical β-ensemble case [BG13a] or in the sinh-model [BGK16].



3.5. ASYMPTOTIC OF THE PARTITION FUNCTION 193

Extending this procedure to the class of strictly convex polynomial potentials, V (x) = x2p + x2/2
for example, would require to be able to obtain the AE of the following linear statistics

EV,PN

[ˆ
R
x2pdLN (x)

]
. (3.190)

While the a priori bound obtained in [DG24] allowed to deal only with bounded functions, it
would be necessary to obtain a similar one for unbounded functions. To state things in a clearer
way, we introduce the following exponential regularization, let φn a function in n real variables,

Kκ[φ](ξ1, . . . , ξn)
(def)
=

n∏
a=1

e−κV (ξa).φn(ξ1, . . . , ξn).

Obtaining an a priori bound of the form:

| 〈φn〉n⊗LN
| ≤ C

N
n
2
−ε

{
N (n),∞
κ [φn] +N (n),2

κ [φn]
}

where

N (n),∞
κ [φn]

(def)
= ‖Kκ[φn]‖W∞n (Rn), N (n),∞

κ [φn]
(def)
= ‖Kκ[φn]‖Hn/2(Rn),

would represent a major step towards proving the existence of an AE for linear statistics with
unbounded functions. Even though it does seem reasonable to expect that such a bound hold, I
was not able to prove this in [DG24].

The inverse of the master operator should also be continuous with respect to these norms. Indeed,
the method that I used to prove the controls with respect to the Hn/2 and W∞n norms consisted on
relying on an integral representation for the inverse Ξ−1. Furthermore, by performing integration
by parts and estimating the growth of every building blocks that appear in this description of the
derivatives of the inverse, I managed to prove the desired expression. It seems that this procedure

could be adapted to show continuity with respect to the norms N (n),∞
κ and N (n),2

κ .

The two steps would be enough to prove the existence of a large-N expansion for the linear statistic
(3.190). To conclude about the large-N expansion of ZPN

[
x2p + x2/2

]
, one must be able to prove

that, setting Vt(x)
(def)
= tx2p + x2/2, the map t 7→ ρVt is continuous with respect to the W∞n -norm.

Our proof in the case where x2p is replaced by a bounded smooth function φ, relied on the fact that

ut
(def)
=

ρVt − ρVt0
t− t0

1

ρVt0
is the fixed point of a contractive operator with respect to the W∞n -norm.

The proof for the contractivity property heavily relied on the fact that φ was bounded and it would
certainly not work anymore when φ is replaced by an unbounded function. Perhaps, it is still
possible to prove that this operator is contractive but with some other norm, namely a weighted

norm of the form N[f ]
(def)
=

∥∥∥∥ f

1 + |V |

∥∥∥∥
W∞n (R)

.

Solving these 3 problems would again allow one to prove the existence of an all-order AE for
logZPN [V ] for V in larger class that just a the sum of a quadratic potential and a bounded smooth
function.

Question 5: Would it be possible to apply these techniques to grasp the asymptotic behaviour of
the partition function of β-ensembles in the classical regime but for singular potentials ?

An obstacle for establishing the existence of an AE for logZ(β)
N [V ] is often the lack of regularity

of the potential. For example, when V (x) = |x|γ for 1 < γ < 2, one can show that V ′′ will admit
a singularity at zero. This will translate in the fact that the derivative of the equilibrium density
ρ′V,β has a singularity at zero.
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To see why it is an obstacle, one needs to write the first loop equation:

〈D[φ]〉µ̂N⊗µ̂N − 〈V
′φ〉µ̂N +

β−1 − 1/2

N
〈h′〉µ̂N = 0. (3.191)

The obstruction in conducting the loop equations analysis comes from the presence of the derivative
term, namely the third one. Indeed, when recentring around the usual equilibrium measure µV,β,
as explained in the introduction, the master operator K, introduced in (38), will appear. After
using φ = K−1[ψ] as the test-function in the recentred version (3.191), one will have to deal with

a problematic 1-linear statistic given by 〈K−1[ψ]′〉LN where LN
(def)
= µ̂N − µV,β is the recentred

empirical measure. The singularity of the equilibrium measure at zero wil imply a singularity for
the inverse of the master operator acting on any function. This can be seen via (48). It will thus
not be possible to apply the a priori bound for this function.

One way to overcome this difficulty is to recenter against a N -dependent measure µ
(N)
V,β with C1

p.d.f. which ρ
(N)
V,β which satisfies for all h sufficiently regular:

0 =
1

2

¨
[a,b]2

h(x)− h(y)

x− y
dµ

(N)
V,β (x)dµ

(N)
V,β (y)−

ˆ b

a
h(x)V ′(x)dµ

(N)
V,β (x)− β

−1 − 1/2

N

ˆ b

a
h′(x)dµ

(N)
V,β (x).

This measure includes entropic effects just as the equilibrium measure of the β-ensembles in the
high temperature regime but with a N−1 ponderation for the entropy. This recentring induces the
following change on the loop equation at level 1:

0 =
1

2
〈D[h]〉L̃N⊗L̃N + 〈KN [φ]〉L̃N , L̃N

(def)
= µ̂N − µ(N)

V,β , (3.192)

where the N -dependent master operator KN is defined by:

KN [φ](x)
(def)
=

ˆ
R

h(x)− h(y)

x− y
dµ

(N)
V,β (y)− h(x)V ′(x) +

β−1 − 1/2

N
h′(x). (3.193)

This operator can be seen as the master operator in the high temperature Ξ, introduced in (67),
but admitting an explicit dependence in N . It could in principle be inverted and controled using
the same techniques developped in [DGM23, DG24].

Working with this more involved N -dependent equilibrium measure has the advantage of producing
a first loop equation (3.192) which doesn’t contain problematic terms anymore, i.e. a linear statistic
involving a derivative.

It is an open question whether one would be able to conduct the loop equations analysis method
for singular potentials with this new equilibrium measure and new master operator.

3.6 On the equilibrium measure for the Lukyanov integral

In Chapter 3, we were able to give a strong check of Lukyanov’s conjecture. Indeed, relying on
[BGK16], we obtain the main properties for the equilibrium measure relative to a specific N -
dependent potential including an explicit asymptotic expansion for its endpoints aN , bN . This
allowed us, under the natural hypothesis that a remainder termis sufficiently small, to see that
the renormalization N−θ for a certain θ in Lukyanov’s conjecture is necessary in order to have
a well-defined limit leading to an expression for the vacuum expectation value associated to the
exponential of the field operator in the sinh-Gordon model in 1 + 1 dimension and finite volume.

Question 6: Would it be possible to get rid of the assumption (121)?
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We believe that this is doable by using the bi-orthogonal polynomials approach for the sinh-model.
Following the RHP approach to bi-orthogonal polynomials developped in [CR13], it would be nec-
essary to adapt the Deift-Zhou non-linear steepest descent in this case, namely with the hyperbolic
Vandermonde as well the non-varying weight case. Having obtained several properties about the
equilibrium measure, this would allow us to show in a future work that we can indeed get rid of
this assumption.
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Index of notations

Matrices, operators and transforms

• Tr refers to the usual trace of a matrix or of a trace-class operator.

• det refers to the usual determinant on matrices or to a Fredholm determinant according to
context.

• id refers to the identity operator. IN denotes the N ×N indentity matrix.

• MN (C) denotes the space of N ×N matrices with complex entries.

• ON (R) denotes the orthogonal group of dimension N .

• UN (C) denotes the unitary group of dimension N .

• HN (C) denotes the space of Hermitian N ×N matrices.

• SLN (C) denotes the special linear group of dimension N with complex coefficients.

• SON (R) denotes the special orthogonal group of dimension N .

• E(2) denotes the Euclidean group of dimension 2.

• F refers to the Fourier transform which is defined for all f ∈ L1(R) ∩ L2(R), by

F [f ](x)
(def)
=

ˆ
R
f(t)e−itxdt.

Note that the minus sign convention is changed into a + sign in Chapter 3.

•
 
I

denotes the Cauchy principal-value on an interval I.

• H denotes the Hilbert transform and is defined for a function f ∈ L2(R), by

H[f ](x)R
(def)
=

 
f

y − x
dy.

• CΣ denotes the Cauchy-transform on a contour Σ ⊂ C and is defined by

CΣ[f ](z)
(def)
=

ˆ
Σ

f(s)

s− z
ds

2iπ
∈ O (C \ Σ) .

Sets, functional spaces, norms and distances

• N denotes the set of natural numbers.

• N∗ denotes the set of positive natural numbers.

197



198 CHAPTER 3. ON THE EQUILIBRIUM MEASURE FOR THE LUKYANOV INTEGRAL

• Z denotes the set of integers.

• R denotes the field of the real numbers.

• C denotes the field of the complex numbers.

• H± denotes the set of complex numbers of imaginary part (strictly) positive/negative.

• S1 denotes the unit circle in the plane.

• O(U), where U is an open set of C, denotes the space of holomorphic functions on U .

• Ck(U), where U is an open set of Rn and k ∈ J0,+∞K, denotes the space of functions
differentiable k times whose k-th derivative is continuous.

• M1(R) stands for the space of probability measures on R.

• Let X be a Borelian set, we denote by Lp(X) the space of p-th power integrable functions on
X with its borelian σ-algebra and the Lebesgue measure. In case of another measure µ on
R, we write Lp(µ) space. The corresponding norms are defined by:

‖u‖Lp(X)
(def)
=

(ˆ
X
|u(x)|pdx

)1/p

, ‖u‖Lp(µ)
(def)
=

(ˆ
R
|u(x)|pdµ(x)

)1/p

• W∞n (Rp) denotes the space of functions f such that f (k) ∈ L∞(Rp) for all k = 0, . . . , n. Its

norm is defined by ‖f‖W∞n (R)
(def)
= max

k∈J0,nK
‖f (k)‖L∞(R).

• We define the Sobolev spaces for all m ≥ 0 by

Hm(Rn)
(def)
=
{
u ∈ L2(Rn), ‖u‖Hm(Rn) < +∞

}
where

‖u‖2Hm(Rn)

(def)
=

ˆ
Rn

(1 + ‖t‖2)2m |F [u](t1, . . . , tn)|2 dnt.

Above, ‖.‖2 denotes the Euclidean norm on Rn. If µ ∈ M1(R), we also define the weighted
Sobolev space: with respect to µ by

Hk(µ)
(def)
=
{
u ∈ L2(µ), u(k) ∈ L2(µ)

}
.

• D2 denotes the “distance” on the space of measures defined by (45).

Special functions

• Γ denotes the Euler’s Gamma function.

• ζ denotes the Zeta function.

• Ai denotes the Airy function.

• χ denotes a special case of the general Barnes ζ function in the Introduction defined in (27)
and the solution of the Riemann-Hilbert problem relative to the sinh-model.

• Bn denotes the n-th Bernoulli polynomial.

• VG denotes the Gaussian potential VG(x) = x2/2.
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Constants

• γ denotes the Euler-Mascheroni constant.

• CV,β denotes the constant appearing in the characterization of µV,β (14).

• CV,P denotes the constant appearing in the characterization of µV,P (62).

Multiple integrals

• Z(β)
N [V ] denotes the partition function of the classical β-ensembles with at inverse temperature

β ≥ 0 and potential V defined in (10).

• ZN [V ] denotes the partition function of the β-ensembles in the high temperature regime with
potential V defined in (59). The dependence in P ≥ 0 is implicit here.

Measures

• dNλ denotes the Lebesgue measure on RN with integration variables (λ1, . . . , λN ).

• µV,β denotes the equilibrium measure of the classical β-ensembles with parameter β and
potential V defined in Theorem I.3.1. Its p.d.f. is denoted by ρV,β.

• µV,P denotes the equilibrium measure of β-ensembles in the large temperature regime with
parameter P and potential V defined in Theorem I.5.1. Its p.d.f. is denoted by ρV,P . The
measure is denoted by µV and its p.d.f. ρV in Chapter 1 and 2.

• µsc denotes the semi-circle distribution whose pdf is given in Subsection I.3.2.

• µ
(N)
eq denotes the N -dependent equilibrium measure in the sinh-model.

• According to context, LN denotes the recentred distribution µ̂N−µV,β, µ̂N−µV,P or µ̂N−µ(N)
eq .

•
n⊗
i=1
µi denotes the product measure of the µi’s.

• N (m,σ2) denotes the normal distribution with mean m ∈ R and variance σ2 > 0.

• χα denotes the χ-distribution of parameter α > 0.

Functionals

• EV,β is the functional defined in (13) involved in the LDP for the classical β-ensembles.

• EV,P is the functional defined in (61) involved in the LDP for the β-ensembles in the high
temperature regime. It is sometimes simply denoted E .
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Appendix A

Functional analysis

This appendix is based on the following references [Ree12, RS03, RS78, Kat12, HS12].

3.1 Unbounded operators

3.1.1 First definitions

The theory of unbounded operators has been developed in the 1920-30’s by Von Neumann and Stone
to overcome functional analysis developed by Banach, Hahn, Helly etc... One reason for developing
this theory comes from putting the ground for a mathematically rigorous framework for quantum
mechanics.
Definition 3.1.1 Let X and Y two Banach spaces, an unbounded operator is a linear T :
D(T ) −→ Y where D(T ) is a vector subspace of X and is called the domain of T . If D(T ) is
dense in X, we say that T is densely defined.

Typical unbounded operators are differential operator, for example T
(def)
=

d

dx
, which deteriorate

the smoothness of the function it acts on.

A notion that is very useful when considering unbounded operators is the closed property. For that
we define the graph Γ(T ) of an unbounded T : X −→ Y as follows:

Γ(T )
(def)
= {(x, T (x)) ∈ X × Y, x ∈ D(T )}

Definition 3.1.2 Let T : X −→ Y an unbounded operator, we say that T is closed if its graph

Γ(T ) is closed for the product norm ‖(x, y)‖X×Y
(def)
= ‖x‖X + ‖y‖Y .

Namely this tells us that for each (xn, yn) ∈ XN × Y N, such that there xn −→
n→∞

x and Txn −→
n→∞

y,

then x ∈ D(T ) and Tx = y. It is also equivalent to D(T ) being complete for the graph norm

defined by ‖x‖T
(def)
=
√
‖x‖2X + ‖Tx‖2Y . Furthermore, if T is not closed but closable , in the sense

that Γ(T ) is the graph a of an unbounded operator T (therefore automatically closed), we call T
the closure of T .

It can be seen that for a closable operator T , the domain of its closure D
(
T
)

is exactly the
completion of Γ(T ) with respect to its graph norm ‖.‖T .
Example 3.1.3 • We take X = Y = Lp(Rd) for p ≥ 1, d ∈ N∗ and f ∈ X. We define the

multiplication operator Mf : g ∈ D(Mf ) −→ fg where

D(Mf )
(def)
= {g ∈ X, fg ∈ X} = Lp

(
Rd, 1 + |f |p

)
.
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By the last equality, it is direct to conclude that D(Mf ) with its graph norm is complete
hence Mf is closed.

• The second example is about the Laplacian in Rd. With the following notations, we take
X = Y = L2(Rd) and we define:

T0u
(def)
= ∆u for all u ∈ D(T0)

(def)
= C∞c (R)

T1u
(def)
= ∆u for all u ∈ D(T1)

(def)
= H2(Rd)

One can show that T1 is the closure of T0 using that H2(Rd) can be seen as the completion
of C∞c (Rd) with respect to the H2(Rd)-norm.

The following property is obvious.
Proposition 3.1.4 Let T : X −→ Y an unbounded closed operator, then

T is a bounded operator iff D(T ) = X.

3.1.2 Adjoint

Now, we would like to state an unbounded version of the spectral theorem. To do so, we need to
put ourselves in an Hilbert space H with its inner product 〈., .〉 and define a notion of adjointness
for an operator that is not defined everywhere.
Definition 3.1.5 Let T : H −→ H an unbounded operator, we say the unbounded operator T ∗ :
H −→ H is the adjoint of T if for all x ∈ D(T ) and y ∈ D(T ∗) it holds that

〈Tx, y〉 = 〈x, T ∗y〉 .

The domain of T ∗ is defined as follows

D(T ∗)
(def)
=
{
y ∈ H, x ∈ D(T ) 7−→ 〈Tx, y〉 ∈ H′

}
where H′ is the topological dual of H.

We need to make several comments. First, one should notice that this is exactly the same definition
as in the bounded case (i.e., we define T ∗y as the Riesz’s representant of the linear form x 7→ 〈Tx, y〉,
except that in our case Riesz’s theorem would fail to be applied for every x ∈ H.) Secondly, in
the definition of D(T ), we wrote “ ∈ ” for ”“can be extended into a continuous linear form on
H‘. Thirdly, one should notice that the adjoint T ∗ of a unbounded closed operator T exists if and
only if T is densely defined since otherwise T ∗y is not uniquely determined. Indeed, one could
add to definition of T ∗y, any z ∈ D(T )⊥. Thus in the following, we only consider densely defined
unbounded operators T .
Proposition 3.1.6 Let T a densely defined unbounded operator on H, then T ∗ is a closed densely
defined operator. Furthermore if T is closable then, T ∗ is densely defined.

Now that we reviewed the basic construction of adjoints for unbounded operators, we can state the
subtleties that arise when considering self-adjoint unbounded operators.
Definition 3.1.7 Let T be a densely defined unbounded operator on H, we say that T is symmet-
ric if for all u, v ∈ D(T ),

〈Tu, v〉 = 〈u, Tv〉 .

This definition is equivalent to T ∗ being an extension of T in the sense that D(T ) ⊂ D(T ∗) and that
on D(T ), T ∗ = T . Furthermore, we say that T is self-adjoint if D(T ) = D(T ∗) and T = T ∗, then
if T is self-adjoint, it is necessary closed. When it is only the closure of T , T that is self-adjoint
then T is said to be essentially self-adjoint.
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Example 3.1.8 • The multiplication operator Mf on L2(Rd) defined above is self-adjoint if
and only if f takes real values almost everywhere.

• For the Laplacian on Rd, it is direct to see that T0 is symmetric and that T1 is self-adjoint.
T1 being the closure of T0 allows us to conclude that T0 is only essentially self-adjoint.

Proposition 3.1.9 Let T be a self-adjoint injective unbounded operator on H, then T−1 : T (D(T )) −→
D(T ) is also self-adjoint.

3.1.3 Spectral theorem for unbounded operators

In the following H denotes a Hilbert space.
Definition 3.1.10 A projection-valued measure on (R,B(R)) is a map ν : B(R) −→ B (H) such
that

i) For all A ∈ B(R), ν(A) is a projection on H.

ii) ν(∅) = 0, ν(R) = IdH.

iii) Let (An)n∈N a sequence of disjoint sets in B(R), then

ν

(⋃
n∈N

An

)
=
∑
n∈N

ν(An).

The spectral theorem in the bounded compact case states that there exists an orthonormal basis
(ψj)j∈N composed of eigenfunctions for the operator T with corresponding real eigenvalues (λj)j∈N
such that

T =
∑
j∈N

λj 〈., ψj〉ψj .

This can be seen as an integral over the spectrum of T with respect to a projection-valued measure
νT such that νT (λj) = 〈., ψj〉ψj which is indeed the orthogonal projection on C.ψj . We state the
general version, when the spectrum might be continuous and hence the support of the projection-
valued measure being non-discrete, below.
Theorem 3.1.11 Let T be an unbounded self-adjoint operator on H, then there exists projection-
valued measure νT such that

T =

ˆ
R
xdνT (x).

The projection-valued measure νT is called the spectral measure of T .

3.2 Form domains and Friedrichs extensions

This Section is dedicated to the description of a technique in operator theory called the Friedrichs
extension and is based on a [Non21]. The technique can be heuristically explained as below.

If (T,D(T )) is a symmetric, bounded by below operator on a Hilbert-space H, then one can define
an associated closable quadratic form (q,D(q)) which is also bounded by below. By closable, we
mean that there exist an extension, (q,D(q)) of (q,D(q)) which is closed. Finally, from this closed
form one can, by Riesz’s theorem, obtain an extension, (T ,D(T )), of (T,D(T )), which is self-adjoint.
This procedure is summarized as below:

(T,D(T )) −→ (q,D(q)) −→ (q,D(q)) −→ (T ,D(T )).
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3.2.1 Preliminaries

Definition 3.2.1 A quadratic form (q,D(q)) is said to be closed if the quadratic form is symmetric
and bounded from below, i.e. there exists C ∈ R, such that for all u ∈ D(q),

q(u, u) ≥ C‖u‖2H,

and such that D(q) equipped with the scalar product

〈u, v〉q
(def)
= q(u, v) + (C + 1) 〈u, v〉H

is a Hilbert-space. (q,D(q)) is said to be closable if there exists a closed form (q,D(q)) which
extends it. In that case, we say that the latter is the closure of (q,D(q)).
Definition 3.2.2 A quadratic form (q,D(q)) is said to be bounded on H if D(q) = H and such
that there exists C > 0 such that for all u, v ∈ H,

|q(u, v)| ≤ C.‖u‖H.‖v‖H.

Furthermore, such a form is said to be coercive if it is bounded and there exists α > 0, such that
for all u ∈ H,

|q(u, u)| ≥ α.‖u‖2H.

Furthermore, one can associate a quadratic form qT associated to a general operator T
Proposition 3.2.3 If (T,D(T )) is a symmetric, bounded from below operator, then (qT ,D(T )) its

associated quadratic form defined for all u, v ∈ D(T ), by qT (u, v)
(def)
= 〈T [u], v〉, is bounded from

below and closable.

3.2.2 Extension of unbounded operators

In the present appendix, although the method is very general, one can think of T as the one-
dimensional Schrödinger operator, i.e. for all u ∈ C∞c (R), T [u](x) = −u′′(x) + (x2 + 1)u(x).
Suppose H is a dense Hilbert-space in a bigger Hilbert-space H. We define the following Hilbert-
space H = L2(R).
Definition 3.2.4 A symmetric operator (T,D(T )) is said to be bounded by below if there exists
c ∈ R, such that for all u ∈ D(T ),

〈T [u], u〉H ≥ c‖u‖
2
H.

One can verify that, our example is indeed bounded by below:

〈T [u], u〉H
(def)
= −

ˆ
R
u′′(x)u(x)dx+

ˆ
R
x2u(x)2dx = ‖u′‖2L2(R) +

ˆ
R

(x2 + 1)u(x)2dx ≥ ‖u‖2L2(R).

One thus considers its associated quadratic form defined for all u ∈ D(q)
(def)
= C∞c (R) by

q(u, u)
(def)
= 〈T [u], u〉L2(R) = ‖u′‖L2(R) +

ˆ
R

(x2 + 1)u(x)2dx.

Furthermore, (T,D(T )) is symmetric and bounded from below, hence (q,D(q)) is closable and we

can consider its closure (q,D(q)) by Proposition 3.2.3. One can show that in our case, D(q)
(def)
={

u ∈ H1(R), |x|u ∈ L2(R)
}

. In the following, we set H (def)
= D(q) equipped with its scalar product

〈u, v〉H
(def)
= q(u, v). q is indeed a scalar product it is coercive and symmetric.

We are now able to extend the initial operator (T,D(T )) into a new operator (T ,D(T )).
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Definition 3.2.5 Let (q,D(q)) be a quadratic form on H. Then, there exists an operator (Tq,D(Tq))
associated to q such that

D(Tq)
(def)
=
{
u ∈ H, v 7→ q(u, v) can be extended into a continuous linear form on H

}
For all u ∈ D(Tq), Tq[u] is defined as the Riesz’s representant of the extension v 7→ q(u, v) in a
continuous linear form.

Thus one is able to
Theorem 3.2.6 Let (T,D(T )) be a symmetric operator on H, consider (q,D(q)) the closure of the
quadratic form (qT ,D(qT )) associated to (T,D(T )) as in Proposition 3.2.3. The domain D(qT ) is
called the form domain of T and is denoted Q(T ). Finally, the self-adjoint operator (T ,D(T ))
associated to (q,D(q)) is called the Friedrichs extension of T.

Furthermore, by enoying the coercivity of q, it is possible to state nice properties about its Friedrichs
extension. It is summarized in the following theorem.
Theorem 3.2.7 Suppose that (q,D(q)) is a closed coercive quadratic form on H and that for all
u ∈ H, ‖u‖H ≥ ‖u‖H. Then, the operator (Tq,D(Tq)) constructed in Definition 3.2.5 satisfies:

• D(Tq) is dense in H.

• Tq : D(Tq)→ H is bijective.

• T−1
q is a bounded operator on H.
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Appendix B

Large deviation principles

One can find more details in the excellent books [RAS15, DZ98]. In this appendix, we fix (Ω,F ,P)
a probability space.
Definition 3.0.1 Let X be a topological space. A function f : X → [−∞,+∞] is lower semi-
continuous if for all c ∈ R, {f ≤ c} is a closed susbet of X .
Definition 3.0.2 Let I : X → [0,+∞] be a lower semi-continuous function and (rN ) be a positive
sequence such that rN −→

N→∞
+∞. A sequence of probability measures (µN )N in M1(X ) is said to

satisfy a large deviation principle at speed rN with rate function I if the following inequalities hold
for all A ⊂ X :

− inf
x∈Ȧ

I(x) ≤ lim inf
N→∞

1

rN
logµN (Ȧ) ≤ lim sup

N→∞

1

rN
logµN (A) ≤ − inf

x∈A
I(x). (B.1)

We will just denote it by LDP(µN , rN , I) in such a case.
Definition 3.0.3 (Exponential tightness) We say that a sequence of probability measures (µN )N
of M1(X ) is exponentially tight at scale uN if for all M > 0, there exists a compact set KM of X
such that

lim
N→+∞

1

uN
logµN (Kc

M ) < −M. (B.2)

The first result that we recall is the famous Sanov’s theorem. The statement is a LDP for the law

of the empirical distribution µ̂N =
1

N

∑N
i=1 δXi for a sequence of iid S-valued random variables.

We denote by ρN the law of the random element µ̂N , i.e. for all Borel subset B ⊂M1(S)1,

ρN (B)
(def)
= P (µ̂N ∈ B) . (B.3)

Theorem 3.0.4 (Sanov’s theorem) Let S be a Polish space, λ ∈ M1(S) and a sequence of iid
S-valued random variables (Xi)i≥1 of law λ. Then LDP(ρN , N,H) holds on the space M1(S) with

the convex rate function defined for all ν ∈M1(S) by H(ν)
(def)
= H(ν|λ) where H(ν|λ) is the relative

enropy of ν with respect to λ defined by

H(ν|λ)
(def)
=


ˆ
S

log
dν

dλ
(x)dν(x) if ν � λ,

+∞ otherwise.
(B.4)

Theorem 3.0.5 (Varadhan’s lemma) Let (µN ) be a sequence inM1(X ) such that LDP(µN , rN , I)
for rN −→

N→∞
+∞ and I a rate function. Let f : X → [−∞,+∞] be a bounded continuous function

then,

lim
N→∞

1

rN
log

ˆ
X
erNf(x)dµN (x) = sup

x,f(x)∧I(x)<+∞

(
f(x)− I(x)

)
. (B.5)

1This set is itself a Polish space when equipped the weak topology generated by Cb(S)
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The next result is about a sort of converse of Varadhan’s lemma.
Theorem 3.0.6 (Bryc’s inverse lemma) Let (µN )N be an exponentially tight at scale uN se-
quence of probability measures of M1(S) such that for all bounded continuous function f ,

Λf
(def)
= lim

N→∞

1

uN
log

ˆ
S
euNf(x)dµN (x) exists. (B.6)

Then LDP(µN , uN , I) holds with

I(x)
(def)
= sup

f
{f(x)− Λf} (B.7)

where the supremum runs over all bounded continuous functions.



Appendix C

Riemann-Hilbert problems

Excellent reviews can be found in [Dei99, Chapter 1], [AF03, Chapter 7] and [Gak90]. We recall
that given an oriented contour Σ ⊂ C, we call the plus (respectively minus) side , the left (resp.
right) side as one traverses the contour in the direction of the arrow. We define the boundary
values of a function f defined in a neighborhood of Σ, when these objets are well-defined by,

∀z ∈ Σ, f±(z)
(def)
= lim

z′→z
z′∈± side

f(z′). (C.1)

Definition 3.0.1 (Riemann-Hilbert problem) A scalar Riemann-Hilbert problem (RHP) re-
quires in the data of an oriented contour Σ ⊂ C and a function g defined on Σ. This determines a
RHP as follows: Seek for the set of solutions f satisfying the following conditions:

• f ∈ O (C \ Σ)

• f+(z) = f−(z)g(z) for all z ∈ Σ (Jump condition)

The definition above is scalar but it is often the case that one seeks for matrix valued solutions. Also
the jump condition we gave is multiplicative but one could also take an additive jump condition.
One usually adds an asymptotic condition at infinity such as f(z) = h(z) + o(z−1). This condition
usually ensures the uniqueness of solution of the RHP.

The next definition concerns the so-called standard RHP, the ones that are easier to solve.
Definition 3.0.2 A standard RHP is of the following form, given (Σ, g)

• f ∈ O (C \ Σ),

• f+(z) = f−(z) + g(z) for all z ∈ Σ,

• f(z) = O(z−1) as z →∞.
Definition 3.0.3 (Hilbert transform) The Hilbert transform defined for all f ∈ C∞c (Σ) by

∀x ∈ R, H[f ](x)
(def)
=

 
Σ

f(s)

s− x
ds (C.2)

and extended as a bounded operator on L2(Σ, ds).
Definition 3.0.4 (Cauchy operator,[Cal77]) Let Σ be a self-intersecting Lipschitz curve in C,
we define the Cauchy operator CΣ acting on L2(Σ, ds) by

∀f ∈ L2(Σ, ds) CΣ[f ](z)
(def)
=

ˆ
Σ

f(s)

s− z
ds

2iπ
∈ O (C \ Σ) (C.3)
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For any f ∈ L2(Σ, ds), CΣ[f ] admits L2(Σ, ds) boundary values CΣ,±[f ]. The operators CΣ,± are
bounded operators on L2(Σ, ds) which satisfies the Sokhotski–Plemelj formulas, namely

CΣ,+[f ]− CΣ,−[f ] = f, CΣ,+[f ] + CΣ,−[f ] =
1

iπ
H[f ]. (C.4)

Proposition 3.0.5 A standard RHP admits a unique solution given by f
(def)
= CΣ[g].
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