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Abstract

This thesis focuses on the study of two stochastic models related to medical problems. The first
one lies on understanding infection spread of cooperating bacteriophages on a structured multi-drug
resistant bacterial host population. Motivated by this example, we introduce an epidemiological
model where infections are generated by cooperation of parasites in a host population structured on
a configuration model. We analysed the invasion probability for which we obtain a phase transition
depending on the connectivity degree of the vertices and the offspring number of parasites during
an infection of a host. At the critical scaling, the invasion probability is identified as the survival
probability of a Galton-Watson process.

With the aim to get a biological more relevant model, we analysed a similar model where a
spatial structure is added for the host population using a random geometric graph. We have shown
that such spatial structure facilitates cooperation of parasites. A similar phase transition occurs
where at the same critical scaling the invasion probability is upper and lower bounded by the
survival probabilities of two discrete branching processes with cooperation.

The second medical question deals with understanding the evolution of the genetic composition
of a tumour under carcinogenesis, using multitype birth and death branching process models on
a general finite trait space. In the case of neutral and deleterious cancer evolution, we provide
first-order asymptotics results on all mutant subpopulation sizes. In particular such results capture
the randomness of all cell trait sizes when a tumour is clinically observed, and mostly it allows to
characterise the effective evolutionary pathways, providing information on the past, present, and
future of tumour evolution.

Moving beyond this restrictive neutral and deleterious cancer evolution framework, we provide
a new method to understand the first selective mutant trait size.
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Résumé

Cette these porte sur I’étude de deux modeles stochastiques liés a des probléemes médicaux. Le
premier vise a comprendre le processus épidémique généré par des bactériophages coopératifs dans
une population de bactéries résistantes aux antibiotiques. Pour cela, nous introduisons un modele
épidémiologique ou les infections sont générées par la coopération de parasites dans une population
d’hoétes structurée selon un modele de configuration. Une transition de phase est observée pour la
probabilité d’invasion dépendant du degré de connectivité des sommets et du nombre de parasites
générés lors d’une infection d’'un hote. Au seuil critique, la probabilité d’invasion est identifiée
comme la probabilité de survie d’un processus de Galton-Watson.

Dans le but d’obtenir un modele biologiquement plus pertinent, nous avons analysé un modele
similaire ol une structure spatiale est ajoutée a la population d’hotes en utilisant un “random
geometric graph”. Nous avons montré qu’une telle structure spatiale facilite la coopération des
parasites. Une transition de phase similaire se produit ou au seuil critique, des bornes supérieure
et inférieure sont obtenues pour la probabilité d’invasion en tant que probabilités de survie de deux
processus de branchement avec coopération.

La deuxieme question médicale concerne la compréhension de I’évolution de la composition
génétique d’'une tumeur en formation, en utilisant des processus de naissance et de mort multi-
types branchants sur un espace de traits fini. Considérant une évolution neutre et délétere, nous
fournissons des résultats au premier ordre asymptotique pour toutes les tailles des sous-populations
mutantes. En particulier, nous capturons la stochasticité associée aux tailles des sous-populations
mutantes lorsqu’une tumeur est observée cliniquement, et surtout nous caractérisons les chemins
évolutifs effectifs, fournissant des informations sur le passé, le présent et le futur de 1’évolution
tumorale.

Au-dela de ce cadre restrictif d’évolution neutre et délétere, nous proposons une nouvelle
méthode pour comprendre le premier ordre asymptotique du premier trait mutant sélectif.
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Chapter 1

Introduction

This thesis focuses on the study of two stochastic models related to medical problems, with the
aim of providing quantitative results. The first one concerns the understanding of infection spread
of cooperative bacteriophages on a multi-drug resistant bacterial host population structured on
random graphs, through analysis of the invasion probability. The second medical question deals
with understanding the evolutionary process of a tumour under carcinogenesis, using multitype
birth and death branching process models on a general finite trait space.

Invasion of Cooperative Bacteriophages

In the evolutionary arms race with CRISPR—Cas, a defence mechanism of bacteria, bacteriophages
(phages for short) have developed diverse strategies to block or evade bacterial host immunity.
One common evasion mechanism known as anti-CRISPRs relies on the cooperation of phages.
Motivated by this example we introduce an epidemiological model where infections are generated
by cooperation of parasites in a hosts population structured on random graphs. The number
of vertices and typical number of direct neighbours grow to infinity with respect to the scaling
parameter N. In the initial chapter, we study the configuration model with N vertices and dy
direct neighbours for each vertex such that dy = © (N B), for some 0 < 8 < 1. This modelling
choice reflects the idea that among a host population, many hosts are accessible from any host, but
only a negligible part of the total number. However, the biological relevance of spatially structured
host populations is not reflected when considering the configuration model. In the second chapter,
we address this spatial feature by studying cases where host populations are structured on a random
geometric graph on [0,1]", with n € N. The number of vertices is Poisson(V)-distributed and the
typical number of direct neighbours dy for any vertex is dy = N?. Particularly, using the same
scaling for the number of vertices and the number of direct neighbours in both chapters allows
for comparison of the results. Quite naturally, adding a spatial structure facilitates cooperation of
parasites.

The number of parasite offspring generated after the infection of a host, denoted by vy, scales
to infinity too. A host is deterministically infected when attacked by at least 2 parasites. We show
that the natural scaling for observing pairs of parasites attacking the same host occurs when the
number of parasite offspring scales as the square root of the typical number of neighbours of a
vertex (as for the birthday problem), i.e., vy ~ ay/dy, for some a > 0.
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In the second chapter, we show that a phase transition occurs at the critical scaling vy €
(C) (\/dN), where we use the notation fy = ©(gn) if fy grows asymptotically as fast as gy, i.e.

0< liminff—N < limsupf—N < 0.
N—oo gN N—oo 9N

More precisely, we demonstrate that when vy = o(dy), the invasion probability is asymptotically
null, since cooperation of parasites is unlikely. At the critical scaling, the invasion probability is
identified as the survival probability of a Galton-Watson process. Above such critical scaling, when
Vdy = o(vy), the invasion probability is asymptotically 1. This chapter corresponds to the article
[1], entitled Invasion of cooperative parasites in moderately structured host populations, published
in Stochastic Processes and their Applications, and written with Cornelia Pokalyuk.

In the third chapter, we demonstrate that a phase transition also occurs at the same critical
scaling for the random geometric graph. We obtain lower and upper bounds on the invasion prob-
ability as the survival probabilities of two Discrete Branching Process with Cooperation (DBPC).
Essentially, a DBPC is defined as follows: conditioned on knowing the number of individuals at a
generation, every individual and every pair of individuals generate a certain number of new indi-
viduals according to offspring and cooperation laws, independently from each other. This Chapter
corresponds to the article [2], entitled Spatial invasion of cooperative parasites, published in The-
oretical Population Biology for the special issue for the 60th birthday of Alison Etheridge, and
written with Cornelia Pokalyuk, Marco Seiler, and Hung Tran for the simulations.

The asymptotic results for the invasion probabilities at the critical scaling differs for the complete
graph and the random geometric graph, in the sense that they are characterised using the survival
probabilities of two different classes of processes: Galton-Watson processes for the configuration
model and DBPC for the random geometric graph. This difference comes from the fact that the
spatial structure facilitates the cooperation of parasites. More precisely, cooperation of parasites
generated from different infected hosts effectively spread the infection directly at the beginning of
the epidemic process on the random geometric graph, whereas such events become likely in the
configuration model only when the invasion is already decided with high probability.

Genetic Composition of a Tumour

In a second part, we tackle another biological question that is tumour formation. More precisely, the
aim is to provide a tractable probabilistic model from which theoretical results on the evolution of
the genetic composition of a tumour during carcinogenesis can be obtained. Indeed, understanding
the evolutionary history of a tumour can be of great clinical help. It provides a lot of information
regarding its future evolution, and consequently, on clinical prognosis. Additionally, it sheds light
on decisions regarding suitable adaptive therapeutic treatments to combat resistant subpopulations
within it. The objective is, therefore, to study a simple probabilistic mathematical model taking
into account the following different mechanisms governing tumour formation: cell division and
death, in addition to mutation during cell division of one or both daughter cells towards a mutant
trait. We decided to study a continuous-time multitype branching model on N} where cells are
represented by a phenotypic trait distributed as the vertices of a graph (V, E') where edges represent
mutational pathways during cell division. More precisely, during a cell division event, each daughter
cell, independently of each other, can mutate according to a probability kernel towards a neighbour
trait of their mother cell trait. Initially, the process starts with only one wild-type cell, whose trait
is supposed to be supercritical.



Tumours are typically detected when they reach a large size of cells, depending on cancer
type, but approximately of order [10%,10°] cells. The mutation rate per base pair per cell division
is generally estimated to be of order [107,107%] [3, 4, 5]. This naturally leads to consider the
framework of large population and power law mutation rates regime. It is a classical stochastic
regime studied in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. A scaling parameter n € N is
employed to quantify both the decrease in mutation probabilities, as negative powers of n, and the
typical size of the population, which depends on n as a positive power, at which we are interested
in understanding the genetic composition. A label is assigned to each edge to quantify the power
law scaling of the mutation under consideration: the larger the label, the lower the probability
of mutation. The aim is to derive first-order asymptotics on all mutant subpopulation sizes as n
tends to infinity, and to mathematically characterise the effective evolutionary pathways of tumour
progression. In Chapter 4, we examine neutral and deleterious cancer evolution, while in Chapter
5, we focus on selective cancer evolution. By neutral and deleterious cancer evolution, we refer to
cases where the growth rate of any mutant trait is smaller than that of the wild-type subpopulation.
Here, mutations are biologically termed passenger mutations, as they do not confer any selective
advantage; all driver mutations, mutations conferring selective advantage, were already present in
the initiating cancer cell. Conversely, in cases allowing for selective mutation, where a mutation has
a growth rate strictly higher than that of the wild-type subpopulation, any such selective mutant
trait represents a driver mutation, along with potentially numerous passenger mutations included
in the model.

In the fourth chapter, we narrow the mutational framework to neutral and deleterious muta-
tions. We furnish first-order asymptotic results on the mutant subpopulation sizes. This approach
not only enables to capture the stochastic nature of mutant subpopulation sizes but also allows for
the characterisation of effective evolutionary pathways. We demonstrate that the first-order asymp-
totic randomness of all mutant subpopulation sizes is entirely determined by the random variable
describing the long-term behaviour of the primary subpopulation, which is the lineage of wild-type
cell issued from the initial cell. Effective evolutionary pathways are characterised based on their
lengths, defined as the sum of the labels on its edges, and their numbers of neutral mutations. This
Chapter corresponds to a major revision of the preprint [21], entitled «Genetic Composition of
Supercritical Branching Populations under Power Law Mutation Rates> for the Annals of Applied
Probability.

In the fifth chapter, we investigate the first-order asymptotics of the first-selective mutant trait.
The method developed in the previous chapter no longer applies once a selective mutation is encoun-
tered. We propose a new proof method to get asymptotic results for the first selective mutation
along a mono-directional finite graph. This method lies on breaking down the selective mutant
population into a sum of subpopulations for which different probabilistic techniques are applied.
We obtain that well renormalized, the selective mutant population behaves asymptotically as a sum
of a compound Luria-Delbriick distribution with infinite expectation and of the large-time limit of
an approximate model with less stochasticity, independent from n. This model is introduced and
studied in [22, 23, 24]. This chapter is an ongoing work in collaboration with Hélene Leman.

In the rest of the Introduction, we give more details about the biological contexts, the model def-
initions, and the mathematical results. We motivate them all using heuristics and furnish sketches
of the proofs, alongside some perspectives.
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1.1 Invasion probability of cooperative parasites in struc-
tured host populations

This work falls within the field of mathematical epidemiology on random graphs. The uniqueness
of this study lies in infections being transmitted via a population of cooperative infectious agents,
known as parasites, moving within the host population undergoing infection. Together with Cor-
nelia Pokalyuk and Marco Seiler, we have developed mathematical tools and techniques existing in
epidemiology on random graphs to adapt them to this specific context of infection via cooperation,
in order to estimate invasion probabilities. We start by giving a biological context to motivate
the microscopic model and then we give details on the quantitative results we obtained alongside
heuristics, sketches of the proofs, biological remarks and generalisations.

1.1.1 Biological context

Understanding the dynamics and mechanisms of infection processes is a highly relevant and dy-
namic research area in biology. In Chapters 2 and 3, our focus lies on modelling infections based
on observations of bacteriophage populations, viruses that infect bacteria. Interest in phages has
surged in recent years due to the rise in multi-drug resistant bacteria. Phage therapy, an alternative
to antibiotics, involves inoculating infected hosts with phages to eliminate the pathogenic bacterial
population [25]. Phages exert selective pressure on bacterial populations, prompting the develop-
ment of various defence mechanisms. One such mechanism is CRISPR-Cas (Clustered Regularly
Interspaced Short Palindromic Repeats-associated proteins), a well-studied RNA-guided adaptive
immune system. The CRISPR—Cas immune response begins with acquiring short DNA fragments,
called protospacers, from invading phages. These protospacers are inserted as spacers within the
CRISPR array to establish infection memory as well as heredity [26]. The CRISPR array is then
expressed as a long transcript, processed into small, mature CRISPR RNAs (crRNAs) carrying
spacer sequences. Interference complexes, consisting of a ctRNA and one or more Cas proteins,
patrol the bacterial cell to detect and destroy complementary nucleic acid targets, often adjacent
to a short protospacer-adjacent motif, in phage genetic material previously encountered by the
bacterial cell (or one of its ancestors) and stored in the bacterial genome. This mechanism leads to
the destruction of encountered phages and is illustrated in Figure 1.1.
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Figure 1.1: CRISPR-Cas defence mechanism, (©) Westra et al. (2012) Annu Rev Genet
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In the evolutionary arms race with CRISPR—Cas, phages have developed diverse strategies to
block or evade bacterial host immunity. One common evasion mechanism involves protein-based
CRISPR~Cas inhibitors known as anti-CRISPRs (ACRs), which mainly interact directly with Cas
proteins [27]. ACR defence mechanism relies on the cooperation of ACRs-phages [28]. Indeed, when
a CRISPR-resistant bacterium is attacked by a single ACRs-phage, the phage often dies. However,
when several phages attack a bacterium simultaneously or subsequently, they have a higher chance
of replication [29],[28]. The observation stems from the fact that the time period required for an
ACRs-phage to inhibit all interference complexes present in the bacterial host is long enough to
allow the bacterial host to destroy the phage. However, during a subsequent infection, the remaining
number of interference complexes is low enough to enable the infecting ACRs-phage to block all of
them. The ACR mechanism is illustrated in Figure 1.2.

l
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Figure 1.2: ACRs defence mechanism, (C) S. van Houte

While the primary biological motivation of this study lies in understanding the cooperative
infection of phages within a bacterial population, other relevant ”host-parasite” systems with coop-
erative infectious mechanisms also exist. One such example is virotherapy, where oncolytic viruses
are emerging as potential treatment options for cancer. Both natural and genetically engineered
viruses exhibit various antitumour mechanisms, such as direct cytolysis, immune system potenti-
ation through antigen release, activation of inflammatory responses, or interference with elements
in the tumour microenvironment. They can also indirectly affect tumour cells by modifying energy
metabolism and displaying antiangiogenic action. However, a significant challenge in oncolytic vi-
rotherapy is the efficient delivery of the virus into tumour cells and its ability to bind to various
biological and non-biological vectors. Despite this challenge, oncolytic viruses have demonstrated
efficacy in eliminating cancer cells resistant to standard treatments in numerous clinical trials across
various cancers, including melanoma, lung, and hepatic cancers [30]. It is believed that infecting
cancer cells with multiple viruses simultaneously enhances effectiveness, as this strategy enables the
virus to better counteract the interferon-based antiviral response of the host, see [31].
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1.1.2 Microscopic model of Chapters 2 and 3

Consider a population of hosts and a population of parasites both located on a random graph. A
scaling parameter N € N tending to infinity is used for quantifying the number of vertices by, the
typical number of neighbours a vertex has dy, and the number of offspring parasites generated at
a host infection vy . Initially, on each vertex a single host is placed and they do not move on the
graph during the epidemic spread. The infection process starts by the infection of a host with a
parasite. We say that parasites infect a host, when the infecting parasites replicate in the host.
At replication vy € N offspring parasites are generated (independent on the number of infecting
parasites) and the host as well as the infecting parasite(s) die(s). The infection process continues
in discrete generations according to the following scheme. At the beginning of each generation,
parasites move independently to nearest neighbouring vertices. If a vertex to which a parasite
moves to is still occupied with a host the parasite attacks this host. If a host is attacked by at
least two parasites, they cooperate and infect the host. If, however, a host is attacked by a single
parasite, the parasite replicates and infects the host only with a small probability py. Otherwise
(with probability 1 — py), the parasite dies and the host survives. If a parasite moves to a vertex
that is no longer occupied by a host, two options are considered depending on the random graph,
either it stays there and moves further in the next generation or it dies.

Notice that cooperative infections are of two types: either the infecting parasites comes from the
same previously infected vertex or not. We are going to see in the mathematical analysis that they
imply different epidemic spread speeds. Cooperation from parasites generated at the same vertex
infection is responsible for the exponential growth of the infection process, where cooperation from
parasites generated on different vertex infections allows super-exponential growth, provided that
such events are likely.

Given a sequence of parameters (by, dn,vn, pn)Nven we denote for each N € N by

().,
n€Ng

the process that counts the number of infected hosts in the generations n € Ng with ISN) =1.

Introduce also
, with TLN) = ZIZ-(N)
i=0

7 _ (Tle))
nelNg

the process that counts the number of hosts infected till generation n € INyg. We are interested
in the probability that the parasite population invades the host population. More precisely, we
consider the following events.

Definition 1.1.1 (Invasion of parasites). Consider the above host-parasite model with parameters
(bn,dn,vN, pN)Nen- Let u € (0,1] and denote by

EgN) = {Eln € Ny :TibN) > u~bN},

the event that the parasites invade the host population (at least) to a proportion u.

The different graphs under consideration are the configuration model in Chapter 2, and the
random geometric graph on [0,1]" for n € N, alongside the complete graph, on Chapter 3. The
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configuration model is constructed by pairing uniformly at random the d half-edges of each vertex
(assuming that dyby is even). The complete graph satisfies by = dy. The random geometric
graph has intensity NA"(-), where A" denotes the Lebesgue measure on R™. Moreover introduce
the parameter rny > 0 such that each vertex x € [0,1]™ on the graph is connected to all vertices
located on B (rn) N[0,1]™, the intersection between the ball centred around z of radius ry for
the L>°-norm and the considered space [0, 1]". Choose 7y that satisfies (2rn)" N = dx such that
the mean number of direct neighbours of a vertex, not too close to the border, is dy .
We consider the following parameter regimes:

e Number of vertices: The host population is initially large, that is by N—> oco. More
— 00

specifically, by = N for the configuration model, by ~ Pois(/N) for the random geometric
graph, and by € © (Nﬁ)7 for some 8 € (0,1), for the complete graph.

e Typical number of neighbours: Assume dy € © (N '6) for the configuration model, and
dy = NP for the random geometric graph, for some 3 € (0, 1), implying that 7y = %N%.
Such scaling implies that from each host many other hosts are direct neighbours but the
population is not well mixed (compared to the complete graph). In particular taking the
same scaling for the two models allows for comparison of results, i.e. understanding the
influence of a spatial structure on the epidemic spread.

e Number of offspring parasites: Many offspring parasites are produced at infection of a
host, i.e. vy — co. The results on the invasion probabilities will depend on the scaling of vy
compared to v/dy.

e Single parasite infection: The contribution of parasites attacking a host alone is at most
critical in the sense that the expected number of offspring vy py generated at such attacks
converges at most to 1, i.e. vypN N—> x € [0,1]. For simplicity, when the host population

—00

is structured on the random geometric graph or the complete graph, we take py = 0. This
means that in the latter cases infections are generated only through cooperation of parasites.
Such restrictive choice facilitates the mathematical analysis, but it could have been possible
not to consider it without modifying the results on the invasion probability.

The choice of the initially infected vertex is done uniformly at random for the configuration model
and the complete graph. In the case of the random geometric graph, choose the infected vertex
to be the closest to the central point (%, e %) Moreover, a parasite moving to an empty vertex
(where the host has been infected and killed in a previous generation) survives for the configuration
model, whereas it dies for the random geometric graph and the complete graph. Though, results
on the invasion probability would be similar allowing survival and next movement of the parasite.
In Theorems 1.1.2, 1.1.5 and 1.1.6 we identify the phase transition that occurs at the critical
scaling vy € © (Vdy), at which invasion of the host population turns from an unlikely to an
asymptotically almost sure event, for all the random graphs under consideration. Moreover, at the
critical scaling, the invasion probability is characterised for the configuration model, respectively the
complete graph, as the survival probability of a Galton-Watson process, respectively of a Discrete
Branching Process with Cooperation (DBPC). For the random geometric graph, upper and lower
bounds are derived for the invasion probability as the survival probabilities of two DBPCs.
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1.1.3 Results of Chapter 2

In this subsection, the results from Chapter 2 are given with explanations, heuristics, sketches of
the proofs and some generalisations. The main result deals with the invasion probability of coop-
erative parasites on host populations structured according to a configuration model, as mentioned
in the previous subsection. Under the scaling by = N, dy € © (NB) for some 8 € (0,1) and
pnuny — x € [0,1], a phase transition occurs for the invasion probability at the critical scaling
vy € © (\/ﬂ) More precisely, below the critical scaling the invasion is unlikely, above it happens
with high probability and at the critical scaling the invasion probability is characterised as the

survival probability of a Galton-Watson process (GWP for short) with Poisson(% + a:) offspring
distribution. Such critical scaling, the identification of the invasion probability as the survival

probability of a GWP, and the specific offspring distribution of this GWP can heuristically be
derived.

Heuristics

Critical scaling: To derive the critical scaling of v with respect to dy, we take into account only
infections generated due to cooperation of parasites and forget the single parasite infection process,
i.e. py = 0. Cooperation of parasites becomes likely only when the critical scaling is reached, that
isvy € © (\/ﬂ) Indeed, consider an infected vertex such that vy parasites located on it are going
to move to one of its dy neighbours, and assume that all of these neighbours have a host located
on them. Counting the number of infections generated due to the movement of these vy parasites
is similar to the so-called birthday problem: consider the experiment where you have d days and v
persons, the questions is what is the scaling of v with respect to d for which it becomes likely that at
least two persons share a birthday, when the birthdays are distributed uniformly and independently

at random on the days. The answer is exactly v € © (\/&) Performing computations, in the

scaling v ~ aV/d for some a > 0, the asymptotic distribution of the number of shared birthdays is
a Poisson(%) distribution. To be even more precise, asymptotically only the days where exactly

two persons share a birthday are contributing when considering the scaling v € © (\/E), in other

words, at the limit days with more than two people sharing a birthday disappear.

Now if you consider back the single parasite infection process, due to the scaling pyvy — x €
[0,1] this infection process is (sub)critical, in the denomination of GWP, in the sense that the
mean number of infections vy py generated by this process converges at most to 1. That explains
why for the scaling vy € o (\/@)7 so when infections from cooperation are not likely, the invasion
probability is asymptotically null.

Offspring distribution of the GWP: Consider both the critical scaling vy ~ av/dy for some
a > 0, and the scaling for the single parasite infection process pyvy — = € [0,1]. Counting the
number of infections generated by vy parasites located on a vertex and moving to dy non-empty
vertices is an alternative version of the birthday problem. In this situation consider the sum of the
number of days where at least two persons share a birthday and the number of single birthdays
which are selected independently from each other with a successful probability py. Performing com-

putations gives that asymptotically this sum has a Poisson(%2 + :z:) distribution. Indeed, under

the scaling vy — 00, the number of host infections triggered by pairs of parasites and the number
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of single parasite infections are asymptotically independent. They are asymptotically distributed

respectively as Poisson(%)7 derived by the classical birthday problem, and Poisson(z), derived as

the limit of a Bin(vy, py) random variable under the scaling vypny — . As a consequence their

sum is Poisson(% + :z:) distributed.

Identification of the invasion probability as the survival probability of the previous
GWP: Moreover, the events that make the infection process deviating from a GWP are unlikely
at least up to the random generation at which a specific level, tending to infinity, is reached for the
infection process. Such events are typically cooperation from parasites generated from two different
infected vertices and re-hitting of a vertex by at least a pair of parasites or a single parasite with
(normally) successful host infection. In particular, this observation allows for comparing the infec-
tion model, up to it reaches the aforementioned level, by a coupling argument with a GWP whose
offspring distribution is sufficiently close to a Poisson(% + a?) distribution such that its survival
probability is identified to the one of the GWP whose offspring distribution is exactly a Poisson

distribution with parameter % + z. In Proposition 1.1.3 we explicit the mathematical meaning of

closeness for offspring distribution allowing asymptotic identification of the survival probability for
a sequence of GWPes. That explains why the natural candidate for the invasion probability is the
survival probability of this latter GWP. To prove it, it suffices to show that the aforementioned
level grows to infinity sufficiently quickly such that the invasion of the host population is with high
probability already decided when this level is reached for the infection process.

Main Results

Now we can state the result about the invasion probability of cooperative parasites in host popu-
lations structured on a configuration model in the next Theorem.

Theorem 1.1.2 (Invasion probability for the configuration model). Assume dy € O (N p ) for
some 0 < B < 1, and pyvy — x for some x € [0,1]. A phase transition for the invasion probability
occurs depending on the scaling of the parasite offspring parameter vy :

(i) Assume vy € o (Vdy). Then for all 0 <u <1

lim P (E;M) =0.

N —oc0

(i) Assume vy ~ a/dyn for some a > 0. Denote by w(a,x) the survival probability of a GWP
with Poisson(% + x) -offspring distribution. Then for all 0 <u <1

, ™) _
A}gnooIP’ (Eu ) 7(a,x).
(iii) Assume \/dy € o(vyn). Then

lim P (EYV)) ~1.

N—o00

Before giving some sketches of the proof, we are formulating some remarks on this theorem:
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e Invasion probability: Notice that even in the setting of Theorem 1.1.2 (ii), the invasion is
a

not ensured with a strictly positive probability. Indeed, for 72 + 2 < 1 the considered GWP
is (sub)critical meaning that 7(a,z) = 0. In the scaling vypn — z, if we allowed z > 1,
asymptotically the single parasite infection process is supercritical, meaning that it would
have been possible for the setting of Theorem 1.1.2 (i) to see invasion with a strictly positive

probability, but not due to cooperation of parasites, explaining why we focused only on = < 1.

e Population viscosity: In the model we are considering that the spatial structure of the host
population is passed on to the parasite population that profits from this structure to cooperate.
It has been shown that population viscosity, i.e. limited dispersal of individuals, is generally
beneficial for cooperation, see [32]. Thus, in host-parasite systems the host population may
on the one hand profit from a spatial structure by enhancing cooperation of hosts, but on the
other hand spatial structure may reduce the fitness of the host population because parasite
populations may benefit from the spatial structure as well, as demonstrated in Theorem 1.1.2.

e Death of parasites: In our model we assume that parasites that hit empty vertices keep
moving further and hosts are not reproducing. These parasite have only a negligible impact
on the fate of the parasite population. Hence, the statements of Theorem 2.2.2 remain valid,
if we assume that parasites die (or die with a certain probability) when hitting an empty
vertex.

e Time to invasion: During the proof of Theorem 1.1.2 (ii) we also show an upper bound

on the time till total invasion, conditioned on a parasite outbreak. We obtained the upper
_3 log N

bound wm for any e > 0. Indeed to prove Theorem 1.1.2 (ii) we approximate
og| G+

Z(N) by a GWP from below, that is truncated from time to time but grows at the same

speed as an ordinary GWP, with (asymptotically) mean offspring number % + z, until the
infection level N1=38+¢ is reached, for some ¢ > 0 sufficiently small. Afterwards we show
that the host population gets killed with high probability within two more generations due
to cooperation of parasites generated from infections of different vertices. From this follows
(1—32B+e)log N
log(%-ﬁ—r)
for any € > 0 in case of invasion of the parasite population. With some more effort we expect
that it is possible to show that in the setting of Theorem 1.1.2 (ii), conditioned on invasion

of the host population, it happens with high probability before (=p+e)log N

immediately that the host population is with high probability killed after time

3 generations, for
log ( % +z

any € > 0. Infection by cooperation of parasites generated from different vertex infections
takes over when the number of infected hosts exceeds the level N1=A*¢ subsequently the
host population should be killed with high probability in a finite number of generations.
Such efforts are actually made in Chapter 3, where they are necessary for understanding the
invasion probability.

In Chapter 2, in addition to results on the invasion probability, we are also proving interesting
results on asymptotic survival probability of sequences of GWPes. In particular the more refined
result states that reaching any arbitrary level by tending to infinity for the total size of a sequence of
GWPes, under the condition of uniform convergence for the generating functions to the generating
function of a GWP, is asymptotically equals to the survival probability of the latter GWP. Such
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criterion comes from the identification of the extinction probability of a GWP as the fixed point of
the generating function of the offspring distribution.

Proposition 1.1.3. Consider a sequence of GWPes (Z(N))

((I)(N))NelN and (W(N)>N€1N

distributions and the survival probabilities of (Z(N))

Nen and a GWP Z. Denote by
the sequences of respectively the generating functions of the offspring
NeN? and by ® and 7 the ones of Z. As-

sume that the generating functions (<I>(N)) converge uniformly in [0,1] to ®. Furthermore, let

NeN
(bN)nNen be an N-valued sequence with by — oo. Then the following holds:

i)
(N)

|7 — 7| — 0,

P(Z) =0) > 1-m,
]P’(EInGINO:Z,(LN)sz)Hw,

]P(EInelNO:Z;N) sz> — M,
where ZilN) =30, Zi(N) for alln € N.

Sketch of the Proof
We proceed by sketching the proof of Theorem 1.1.2:

e Theorem 1.1.2 (i): Under the scaling vy € o (\/E), parasites are unlikely to cooperate,
as mentioned in the heuristics with the birthday problem. Hence, invasion could only be
achieved by the single parasite infection process. But since we are considering the parameters
regime pyvy — x < 1, such process is asymptotically (sub)critical, meaning that having a
successful single parasite infection is asymptotically too rare for allowing the invasion of the
host population. Consequently, only a negligible proportion of the host population is infected
by the epidemic process before it stops. So for any u € (0, 1] the invasion probability is o(1).
Concretely, we show that for any a > 0 the infection process ZY) can be coupled for N large

enough with the infection process Z(V) (a) defined according to the same model but with the

)

scaling a~/dy for the number of offspring parasites, such that T(N is bounded from above by

T(N)(a). Then, applying the same proof techniques as in Theorem 1.1.2 (ii) one obtains that

the invasion probability of the process Z(N) is asymptotically bounded from above by 7(a,x)

for any a > 0. Since 7(a,x) =, 0, it implies that the invasion probability of the infection
a—

process ZV) is asymptotically null.

e Theorem 1.1.2 (ii) Consider the critical scaling vy ~ av/dy for some a > 0. We identify
the invasion probability as the survival probability m(a, z) of a GWP whose offspring distribu-

tion is Pois(%2 + :1:) distributed using coupling arguments from above and from below with

well-chosen sequences of upper and lower (truncated) GWPes such that both their survival
probabilities asymptotically are 7(a, ).
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Upper bound: More precisely, the invasion probability is naturally upper bounded by the
probability to reach any level /n — oo, satisfying ¢y < N, for the total number of host
infections. Thus we couple from above with high probability the total number of infected

=(N —(N
hosts 7 ) by the total size of an upper GWP Z i ) until it reaches a certain level £ — oo or
it dies out. This level is chosen to grow to infinity sufficiently slowly such that the coupling
with a branching structure works. The sequence of offspring distributions is shown to be

sufficiently close to the Pois(%2 + x) distribution such that assumption of Proposition 1.1.3
is satisfied. In particular it implies, from Proposition 1.1.3 iv), that reaching the level ¢y for

the total size of this sequence of GWPes is asymptotically 7(a, z). Combining these arguments
give that the invasion probability is asymptotically upper bounded by 7 (a, x).

Lower bound: Deriving a lower bound on the invasion probability is more complex. The
proof is done in two steps: first we show that reaching the level N 1-35+¢ for the total number
of infected hosts f(N), for € > 0 small enough, occurs asymptotically with probability 7 (a, =),
then we argue that when this specific level is reached, the total population of hosts is killed
with high probability in the next two generations due to infections generated by parasites
issued from different previously infected hosts. Indeed, if NMeeo (N7) in some generation

n for some v > 0 (and TiN) < N ), an order of © (vyN7) offspring parasites are generated.

From these parasites, © (N 2’“‘5) pairs of parasites can be formed. The majority of these
pairs consists of parasites that have been generated on different vertices. The probability
that such a pair of parasites attacks the same vertex is approximately % Foryv>1-p
we have 2v + 8 — 1 > ~. Hence, when © (N7) hosts are infected for some 1 — f < v < 1,
more hosts get infected by pair of parasites generated from different infected hosts than by
pairs of parasites coming from the same host infection. Furthermore, for 1 — % <y <1l-— g,

after one generation, © (NQV‘*‘B_l) hosts get infected and since 2y + 8 -1 > 1 — g and
2 (1 — g) + B — 1 =1, after another generation on average all hosts get killed.

For the first step of the proof, a dichotomy occurs depending on the value of g with respect
to 2.
7

Case 8 > 4/7: The easiest case consists of 8 > %, where we couple from below with high
(N)

probability the total number of infected hosts T(N) by the total size of a lower GWP Z,"’ until

no further hosts are killed or the total number of hosts that got infected exceeds the threshold
N, for 0 < o < 3. As for the upper GWPes, the sequence of offspring distributions is shown

to be sufficiently close to the Pois(%2 + x) distribution such that reaching the level N for
the total size of this sequence of lower GWPes is asymptotically 7(a, x), applying Proposition

1.1.3 iv). Hence the probability to reach the level N? for the total infection process f(N)
is asymptotically lower bounded by 7(a,x). Moreover 5 > % — 1- %B < B, meaning
that in particular the coupling can be applied with a = 1 — %5 +e for0<e< %6 - 1.
Thus, combining the two steps of the proof gives the 7(a, x) as a lower bound for the invasion

probability in the case 5 > %.
Case § < 4/7: In the case § < % the argument is slightly more involved, since in this case it

is not possible to approximate with high probability T(N) from below by the total size of the
lower GWP ZZ(N) until N1=*%+¢ hosts get infected (or the infection dies out), for any £ > 0.
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Indeed, if the number of infected hosts exceeds the level N, then with non-trivial probability
an edge is attacked from both ends simultaneously by pairs of parasites or parasites with
successful infection probability. In this case none of these parasites cause an infection of a
host, because the vertices to which these parasites are heading to are already empty. However,
we can derive an upper bound on the number of parasites involved in such events and remove
the corresponding branches in the lower GWP. Since these parasites make up only a vanishing
proportion of the total parasite population, the growth of the corresponding truncated GWP
is asymptotically the same as that of the original GWP. Hence, for the truncated GWP
essentially the same techniques can be applied to finish the proof concerning the probability
of invasion in the case 8 < %.

e Theorem 1.1.2 (iii): Under the scaling v/dy € o(vy), the infection of a single host leads to
an asymptotically infinite number of further host infections. Consequently, at least one of the
infected hosts triggers the invasion of the host population with high probability. Concretely,
for any a > 0, we couple the infection process ZY) with the infection process Z(N )(a) defined
according to the same model but with the scaling av/dy for the number of offspring parasites,

such that 7 is bounded from below by T(N)(a). From this fact, we obtain that the invasion

probability of the infection process ZV) is asymptotically lower bounded by 7 (a, z), for any

a > 0. Since w(a,x) — 1, it implies that the invasion probability of the infection process
a— o0

ZW) is asymptotically 1.

Generalisations

The model under study is a toy model for quantitatively understanding the impact of cooperative
mechanism on the infection of host populations by parasites. Theorem 1.1.2, stating the asymptotics
of the invasion probability, can be extended to more general biological settings. Next we point out
some of these and explain why such generalisations are still tractable models from which we can
obtain similar results for the invasion probability:

(i) More randomness: In order to make the study simple we assume that the number dy of
half-edges per vertex and the number vy of parasite offspring, as well as the probability py
are deterministic. However, biologically such quantities could vary from vertex/host/parasite.
One could draw these numbers in an i.i.d. manner according to some distributions D), P¥)
and PW) | in order to add more heterogeneity in the model. If such distributions are suffi-
ciently concentrated, the model remains tractable by simple proof adaptations, and Theorem

1.1.2 remains valid in this context. For instance, a sufficient condition is to have i.i.d. ran-
y @)

dom variables ( g

) distributed as DW)| VIN) | with corresponding expectation pix,
NEN

satisfying that it exists some ¢y € o () such that

P(ﬁ{ﬁ”—m‘@ﬂ) - (1-#(

i=1

N
Y™ uN’ > cN)) S, (1.1.1)

and given the total number of parasites that can be generated is My, to have i.i.d. random
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(i)

(iii)

(iv)
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variables (Y(N))N N distributed as PY) such that
€

1
] <o} ) = (1

My
P (ﬂ {
i=1
For example, this is fulfilled for DX if Yl(N) is distributed as a discretized normal distribution
with mean py € © (N?) and variance 0% € o (N?#7?) for some § > 0 or if it is Pois (N?)
distributed. If (Y;(N)> Nex has a heavy-tailed distribution with mean py = N? and YZ-(N) —UN
€
has a Pareto-tail, then Equation (1.1.1) is fulfilled, if the tail is of order 7 > L. Similar

B
distributions can be chosen for V&) and P(Y),

M
Yi(N) fuN‘ > CN>) " — 1.

Longer lasting blocking of bacteria: In our model we implicitly assume that bacteria get
blocked only for a single generation after a phage attack. In reality this blocking may last
for a longer time. In this case the result of the asymptotic invasion probability remains the

same. Indeed, recall that as long as TiN) < N7 for some v < %(1 — B) < 1— B the number
of vertices attacked from parasites generated on different infected hosts is negligible with
respect to the number of newly infected vertices. Assuming T;N) = N for some v < 3(1—f3)
we also have with high probability that N = e (N7) and the probability that a blocked
host (which number is of order N7vy) is also attacked by another parasite in generation n
is of order O (N’Y’UN N;\}’N ) In the scaling vy € © (\/(E), this probability is non-trivial for

v > %(1 — B). Since invasion of the host population is already decided if the frequency of

infected host reaches N¢ for some € > 0, at this stage of the epidemic invasion of the host
population occurs anyway with probability 1 — o(1).

Heterogeneity of the phage population: Among the phage population, some hetero-
geneity can exist. Some phages can be ACRs-phages, and others are not. Including this
heterogeneity on the model would not change the result of Theorem 1.1.2. Indeed, phages
that are not able to block CRISPR-resistant bacteria may have a chance to replicate in bac-
teria that have been blocked by ACRs-phages before. However, by a similar reasoning as in
item (ii) of these remarks, this is only likely when the amount of this type of phages is of
order N'=#/2 that is this type of phages must be much more frequent than ACRs-phages
initially.

Dependence of offspring parasites on the number of infecting parasites: In reality
the number of offspring parasites generated during an infection could depend on the number
of parasites infecting a host. In the scaling of Theorem 1.1.2 (ii) the probability that a
host gets infected by k parasites, for k& > 3, from a set of parasites of size vy located on

(k=2)8 . .
the same vertex scales as N— 2. Consequently, such events are becoming likely when

the total infection process reaches the level © (N g), where cooperation of 3 parasites can
asymptotically be observed. Thus these kind of reproduction events have only a negligible
impact on the initial spread of the parasite population. Moreover when the level © (N %)
is reached, the invasion probability is already decided with high probability. Meaning that

giving v](\’;) offspring generated at reproduction of k parasites infecting a host, such that
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UN = 0 (vg\];)), is not enhancing the invasion probability but only speeds up the infection

spread after reaching the level © (N %)

(v) Reproducing hosts: Considering host reproductions during the time scale of the parasite
infection is biologically relevant. For instance, one could include in the model that hosts may
reproduce on empty nearest-neighbour spots with random offspring numbers per host that
are bounded. With this consideration, Theorem 1.1.2 remains valid. Indeed, for € > 0 small
enough, the probability that at least N'~5%¢ hosts get infected is asymptotically independent
on the state of the vertices on which hosts have been killed already, because the probability to
re-hit these vertices is small when the overall number of infected hosts is <« N. After reaching
the level N'=8%¢ cooperation of parasites generated on different infected hosts makes the
parasite population expands faster with every generation. It confers a super exponential
speed to the epidemic process, implying that in only a finite number of generations the host
population gets killed with high probability. Host reproduction cannot curb down this strong
parasite expansion, at least when the offspring host numbers are bounded.

1.1.4 Results of Chapter 3

In this subsection, the results from Chapter 3 are explained alongside with some sketches of the
proofs, heuristics and some simulations. Two distinct results are presented in this chapter. Both
of them deals with the invasion probability of cooperative parasites on hosts populations. The first
one considers a host population structured on a complete graph where the second one focuses on a
random geometric graph (RGG for short), as mentioned in Subsection 1.1.2.

With the RGG, we are taking the same order of vertices and typical number of direct neighbours
as for the configuration model in Chapter 2, in order to compare the two structures, where a spatial
component with more biological insights is added when considering the RGG. With the complete
graph, there is less biological relevance, but its analysis is used as an elementary brick for the study
on the RGG, and has its own mathematical interest. Before giving details on the results, we are
making a proper definition of a DBPC, which is the mathematical object arising for analysing the
invasion probability of cooperative parasites both for the complete graph and the RGG structures.

Definition 1.1.4 (Discrete-time Branching Process with Cooperation). Let L, and L. be two prob-
ability distributions on No. A discrete-time branching process with cooperation Z = (Zy)g>0 with
offspring distribution L, and cooperation distribution L. is recursively defined as follows. Assume
Zy =k a.s. for some k € N, then for any g > 1, Z, is defined as

Zg_1 Zg_1
Zg = E :ngi"‘ E Yyi4,
i=1 i,j=1,i>j

where (Xgi)(, nene @nd (Yg,ij) i ens are sequences of i.i.d. random variables distributed ac-

cording to L, and L. respectively. We denote by Z = (Zq)g

g
Zg=Y_ 7.
=0

In the following we will denote the probability weights of the distributions L, and L. by (Pko)keN,
and (pk,c)kE]NO respectively.

<o the total size process, i.e.
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In the case of the complete graph, under the scaling by = dy € © (N'B) for some 3 € (0,1),
a phase transition occurs for the invasion probability at the critical scaling vy € © (\/CE) More
precisely, below the critical scaling the invasion is unlikely, above it happens with high probability
and at the critical scaling, the invasion probability is characterised as the survival probability of a

DBPC with Pois(%) and Pois (a2) offspring and cooperation distributions respectively.

In the case of the RGG, under the scaling ry = %N %, such that the mean number of direct
neighbours a vertex (not too close to the border of [0,1]", in the sense with an asymptotically
non-vanishing distance to its boundary) has is dy = (2ry)" N = N? for some 8 € (0,1), a phase
transition also occurs for the invasion probability at the same critical scaling vy € © (\/E) At
the critical scaling, upper and lower bounds on the invasion probability are given. They are both
characterised as survival probabilities of two distinct DBPCs. The offspring and cooperation distri-

2
a_

butions are respectively Pois( 5 ) and Pois (az) distributed for the upper bound, and respectively

Pois(ﬂ%) and Pois(?—j) distributed for the lower bound.

Such critical scaling, characterisation of the invasion probability, respectively upper and lower
bounds on the invasion probability, as the survival probability of a DBPC for the complete graph,
respectively as the survival probabilities of two distinct DBPCs for the RGG, and the offspring and
cooperation distributions of these specific DBPCs are next heuristically derived.

Heuristics for the Complete Graph

Critical scaling: Concerning the derivation of the critical scaling of vy with respect to dy, the
same heuristics as for the configuration model can be performed. Indeed, in order to spread the
epidemic, the vy parasites located on the first infected vertex needs to cooperate otherwise the
epidemic process would stop. Each vertex has dy — 1 neighbours in the complete graph, meaning
that the situation, similar to the birthday problem, implies the critical scaling vy € © (\/ﬂ) for
allowing cooperation. Such heuristics also gives that under the subcritical scaling vy € o (\/E),
with high probability the vy parasites generated by the first infected host do not cooperate. Thus,
with high probability the epidemic process stops at the first generation, leaving by — 1 hosts unin-
fected. Hence, the invasion probability is asymptotically null under this subcritical scaling.

Offspring and cooperation distribution of the DBPC: Under the critical scaling vy ~ av/dy,
for some a > 0, the epidemic spread on the complete graph differs from the one on the configuration
model, even at the initial phase of the infection process. Where interactions between two infected
hosts are negligible in the case of the configuration model at least as long as the epidemic process
has not reached a certain level, they are not directly from the first generation in the case of the
complete. This phenomenon comes from the share of dy — 2 € © (N B ) common neighbours on
the complete graph for two infected vertices, making cooperation of the two sets of the vy gen-
erated parasites on these vertices likely. Indeed, to quantify this fact, a more complex version of
the birthday problem can be used, with two distinct groups of persons. For simplicity, consider
the following experiment: assume there are d boxes and two sets of v red and blue balls that are
thrown independently and uniformly at random into the boxes. Under the scaling v ~ av/d for
some a > 0, asymptotically the number of boxes with at least two blue/red balls, respectively one

of each colour, into it is distributed according to a Pois(“;), respectively Pois(aQ), distribution.

More precisely, these three limited random variables are independent from each other, and asymp-
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totically only the configurations where there are no boxes with at least three balls on them are
effectively contributing. Notice in particular that the sum is Poisson(?az) distributed, as in the
birthday problem with d days and 2v persons. Consequently, such heuristics between cooperation of
the generated parasites from two infected vertices motivate the asymptotic comparison between the
infection process and a DBPC whose offspring and cooperation distribution are Poisson distributed
with parameters % and a? respectively.

Identification of the invasion probability as the survival probability of a DBPC: More-
over, the events that make the infection process deviating from a DBPC are unlikely at least up
to the generation at which a specific level, tending to infinity, is reached for the infection process.
Such events typically are the re-hitting of a vertex, in the sense that at least two pairs of parasites
go to the same vertex, at the same generation or not. In particular, this observation allows for
comparing the infection process, up to it reaches the aforementioned level, with a DBPC whose

o
2

distributions, such that its survival probability is asymptotically identified to the one of the DBPC
whose offspring and cooperation distributions are exactly Poisson distributed with parameters “2—2
and a? respectively. That explains why the natural candidate for the invasion probability is the
survival probability of this latter DBPC. To prove it, it suffices to show that the aforementioned
level grows to infinity sufficiently quickly such that the invasion of the host population is with high

probability already decided when this level is reached for the infection process.

offspring and cooperation distributions are asymptotically close to Poisson( ) and Poisson(aZ)

Heuristics for the RGG

Critical scaling: Concerning the derivation of the critical scaling, the situation is not different
from the one of the complete graph. In a ball centred around an infected vertex, there are a typical
number of vertices dy = N(2ry)" = N? at which this infected vertex is directly connected to
according to the definition of a RGG. Thus, cooperation of parasites becomes likely exactly at the
same critical scaling vy € © (Vdn).

Offspring and cooperation distribution of the upper and lower DBPCs: However, co-
operation of parasites generated from different infected vertices differs from the situation on the
complete graph. Due to the distance between two infected vertices located on z and y in [0, 1],
the area composed of the intersection of the balls of radius ry centred around these two infected
vertices is at most of volume the one of a ball of radius r. This area is composed exactly of the
vertices that are both direct neighbours of the two infected vertices. Hence, the number of infections
generated by cooperation of parasites generated from these two infected vertices are asymptotically
stochastically dominated by a Pois (a2) distribution, and depend on the coordinates of the vector
x — y. Such dependence on the spatial localisation implies that a direct comparison between the
infection process and a DBPC is actually not straightforward. The spatial component of the in-
fection process resulting from the spatial structure of the RGG can not asymptotically disappear.
Nevertheless, an identification could be done as the survival probability of a more complex model
than a DBPC, typically where individuals are spatially located and the cooperation distribution
depends on the distance between them.

Though, asymptotic upper and lower bounds of the invasion probability can be obtained as the
survival probabilities of two well chosen DBPCs, by constructing couplings for which the spatial
component is not an issue anymore. Indeed, cooperation of parasites from two infected vertices
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decreases with the distance between these two infected vertices. Then, naturally an upper bound
is obtained if one gives the maximal distribution for these cooperation, as if the two infected
vertices where located exactly at the same spot. With this idea, one can show that the invasion
probability is asymptotically upper bounded by the survival probability of a DBPC whose offspring

a2
2
of the complete graph). Deriving a lower bound is a bit more tricky, where one have to use that
locally a RGG looks like a complete graph. Indeed, all the vertices located on the ball of radius
= centred around the initially infected vertex are connected altogether, because they are all at
a distance less than ry from each others. Consequently, if one consider the sub-epidemic process
resulting from infections of vertices located on this ball generated by cooperation of parasites
coming from infected vertices from this sub-epidemic process, a natural coupling from below between
the actual infection process and this sub-epidemic process can be performed. In this ball, the
typical number of vertices is dy = r{F N = 2%dN. Moreover, when a vertex is infected, among

the vy generated parasites the typical number of them that are actually moving to one of the

and cooperation distributions are Pois( ) and Pois (a2) distributed respectively (as in the case

vertices located on this ball is 7y = %UN ~ %\/dN = \/% (IN. Thus, infections generated

by cooperation of parasites coming from the same infected vertex is asymptotically Pois(sz%)

distributed, and the ones from cooperation of parasites coming from different infected vertices is
2
a

on

for the invasion probability is the survival probability of a DBPC whose offspring and cooperation
distributions are the latter ones. To prove it, it suffices to show that it exists a level tending to
infinity for which the sub-epidemic process is well approximated with the aforementioned DBPC up
to it reaches this level, and that the actual invasion of the hosts population is with high probability
decided when it is reached.

asymptotically Pois( ) distributed. Consequently, the natural identification of the lower bound

Main Results

Now we can state the results about the invasion probability of cooperative parasites on hosts
populations structured on a complete graph and on a RGG in the next two theorems.

Theorem 1.1.5 (Invasion probability for the complete graph). Assume the host population is
structured on a complete graph with by = dy € © (NB), for some 0 < B < 1, vertices. A phase
transition for the invasion probability occurs depending on the scaling of the parasite offspring
parameter vy :

(i) Assume vy € 0 (\/dN). Then for all 0 <u <1

lim P (Ef/V)) = 0.

N—o0
(i) Assume vy ~ av/dy for some a > 0. Denote by w.(a) the survival probability of a DBPC
with Poisson(%) and Poisson(az) offspring and cooperation distributions respectively. Then
forall0<u<1

] (M) —
Jim P (Eu ) e(a) > 0.
(i1i) Assume \/dy € o(vn). Then

lim P (E§N>) ~1.

N —oc0
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Simulations of the invasion probability at the critical scaling are presented in Figure 1.3 for a
complete graph with 8 = 0.7, as well as the asymptotic survival probability of the corresponding
DBPC for graphical representation of Theorem 1.1.5 (ii).
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n e
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Figure 1.3: Simulated invasion probabilities with a host population structured on a complete graph
for N = 106 and 8 = 0.7 as well as simulated survival probabilities 7. (a). The number of simulations
per date point is 10%.

Theorem 1.1.6 (Invasion probability for the RGG). Assume the host population is structured on
a RGG on [0,1]™ with intensity NA"(-) where \™ denotes the Lebesgue measure on R™, and where

B—1
n

vertices at distance smaller than ry = 2%N for the L*°-norm share an edge, for some 0 < § < 1.
Introduce the mean number of neighbours a vertex (with an asymptotically non-vanishing distance
to the boundary) has as dy = N (2ry)" = NP. A phase transition for the invasion probability
occurs depending on the scaling of the parasite offspring parameter vy :

(i) Assume vy € 0 (\/dN). Then for all0 < u <1

lim P (E;M) =0.

N —oc0

(i1) Assume vy ~ av/dy for some 0 < a < co. Then for all 0 <u <1

. <\/C;7) < liminf P (E&N)) < limsup P (E5N>) < me(a).

(#ii) Assume \/dy € o(vyn). Then
lim P (EYV)) —1.

N —oc0

Moreover when vy ~ av/dy for some a > 0. Denote by

TW) .= inf {g € IN‘TEIN) = bN}.
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Then
1 1 €
lim P |—| <7®™ < | — log(log(N)), X} ) [7™™) -1
Jim_ QamJ— _[QTN%o(max(og(og( e <oo) =1,

84
with ey = (N = +5), for any § > 0.

Simulations of the invasion probability at the critical scaling are presented in Figure 1.4 for a
RGG on [0,1] and [0,1]? both for 3 = 0.7. In particular, the lower and upper bounds are also
added, for graphical representation of Theorem 1.1.6 (ii). The lower bound is not sharp at all
(and become even more worse with the increasing dimension), whereas the upper bound is a better
approximation, even if there is still not an identification with the invasion probability.

0.819 —-- DBPC (Upper Bound) 0.84 ——- DBPC (Upper Bound)
— = DBPC (Lower Bound) — = DBPC (Lower Bound)
0.64 — RGGon [0,1] 06d — RGG on [0,1]%

e
o
1
<
o
1

fraction of successful invasions
o
=~
1
.
fraction of successful invasions
o
=
1

o
o
1
o
o
1

Figure 1.4: Simulated invasion probabilities with a host population structured on a RGG on [0, 1]
a

(left) and [0, 1]? (right) for N = 10° and 8 = 0.7 as well as simulated survival probabilities . e

and 7. (a).

Before giving some sketch of the proof, we are formulating some remarks on this theorem:

e Strictly positive invasion probability: One shows by application of Proposition 1.1.8
that for any a > 0 the survival probability . (\/%) of a DBPC with Poisson<23%) and

Poisson g—z offspring and cooperation distributions, is strictly positive. Therefore, in The-

orem 1.1.6 (ii), for any a > 0 the invasion probability is strictly positive. This contrasts

with the host population structured on a configuration model, as in Chapter 2, where for
2

% < 1 (considering = 0 to perform accurate model comparison), the invasion probability

is asymptotically 0, see Theorem 1.1.2 (ii).

e Riemannian manifold structure: In Theorem 1.1.6 we are looking at a RGG structured
on [0,1]"™ with the L>-norm. This choice comes from making the mathematical analysis the
simplest possible, although it has a limited biological modelling interest. Indeed, most of the
time, a bacterial population does not structured as the unit cube, but has a more complex
shape, that can be modelled through a Riemannian manifold. However, in Subsection 3.2.3
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of Chapter 3, we give a brief heuristic justification why our results should also carry over to a
setting where the unit cube [0, 1]™ is replaced by a Riemannian manifold, and the L*-norm by
the metric on the considered Riemannian manifold (induced by the Riemannian metric). Such
setting choice allows for a more adequate biological representation of a bacterial population.

e Generalisations: As for Chapter 2, the model on the RGG can be generalised to take into
account more biological insights, but still being tractable. In particular, as for the study
on the configuration model, a success probability py of infection from a single parasite can
be considered under the scaling pyvy N € [0,1]. The invasion probability under the

subcritical or supercritical scaling won’t be modified. In the case of the critical scaling,
the lower bound, respectively the upper bound, on the invasion probability would now be
identified as the survival probability of a DBPC with offspring and cooperation distributions

a®

271,
could also consider the case where parasites moving to an empty vertex survive and can move
again in the next generation, such a generalisation won’t change the result. And as for the
first remark of Theorem 1.1.2, some randomness on the number vy of generated parasites
could be considered.

Poisson(fo% + %) and Poisson( ), respectively Poisson(az—2 + x) and Poisson(aQ). One

Sketches of the Proofs
We start by sketching the proof of Theorem 1.1.5:

e Theorem 1.1.5 (i): For the subcritical scaling vy € o (v/dy), as previously mentioned in
the heuristics, it is unlikely for the vy parasites generated on the first infected vertex to
cooperate such that with high probability the epidemic stops at the first generation with a
total of only one infected host. Hence the invasion probability is asymptotically null.

e Theorem 1.1.5 (ii): For the critical scaling vy ~ av/dy, to arrive at an upper bound
=(N
on the invasion probability we couple with high probability the total infection process 7 )

from above with the total size of a DBPC ZiN) until it remains constant or it reaches at
least the level /)y for a sequence ¢ with {5y — oo sufficiently slowly for the coupling to
hold. The offspring and cooperation distributions of the latter DBPC are sufficiently close
to Poisson distributions with parameters %2 and a? respectively, such that the sequence of
the survival probabilities of these approximating DBPCs asymptotically converges to m.(a),

see Proposition 1.1.10. Moreover the probability to reach the level ¢ for the process ZELN) is
asymptotically equal to 7.(a), since for a DBPC reaching a level tending to infinity implies
survival with high probability. In case the level £ is reached for the total infection process
(N . . . .

I( ), that is asymptotically upper bounded by 7.(a) as just mentioned before, we upper
bound the invasion probability by 1, meaning that afterwards also the remaining hosts get
infected.

For the lower bound we couple with high probability T(N) from below with the total size of a
DBPC ZEN) until it remains constant or it reaches the level N¢ for € > 0 small enough for the
coupling to hold. As for the upper bound, the offspring and cooperation distributions of the

latter DBPC are chosen sufficiently close to Poisson distributions with parameters %2 and a®
such that its survival probability is asymptotically equal to 7. (a). As for the upper bound,
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the probability to reach the level N¢ for ZEN) is asymptotically equal to m.(a). When the

level N¢ is reached for the total infection process f(N) we show that with high probability
such process grows in a constant number of generations to a level N £+€ for some small & > 0,
due to the superexponential epidemic spread triggered by cooperation of parasites generated
on different infected vertices. After reaching this particular level the remaining uninfected
hosts get killed with high probability in a single generation.

e Theorem 1.1.5 (iii): Under the supercritical scaling v/dy € o (vy), we couple from below

with high probability the total infection process T(N) with the total size of a GWP whose

offspring distribution is approximately a Poisson distribution with parameter %2, until N¢
hosts get infected or the parasite population dies out for any 0 < o < 8 and any a > 0. This is
done by ignoring infection due to cooperation of parasites generated on different vertices. The

offspring distribution of the latter GWP is chosen sufficiently close to a Poisson distribution

with parameter %2 implying that its survival probability asymptotically converges to m(a),

the survival probability of a GWP with exactly Poisson(

a
2

GWP, reaching any level tending to infinity implies survival with high probability. Thus
the probability for the total infection process to reach the level N is asymptotically lower
bounded by 7(a), due to the latter property on GWPes combined with the coupling from

below. By choosing o > g, we show that once the level N¢ is reached for the total infection
)

) offspring distribution. For a

process T(N , with high probability after one more generation the remaining uninfected hosts
get killed, a consequence of cooperation of parasites generated on different infected vertices
triggering superexponential epidemic spread. Since the result is obtained for any a > 0 and
that 7(a) T 1, the invasion probability is asymptotically 1.

Now we deal with a sketch of the proof of Theorem 1.1.6:

e Theorem 1.1.6 (i): Such heuristic does not differ from the one for the complete graph.

e Theorem 1.1.6 (ii): Consider the critical scaling vy ~ av/dy for some a > 0. For the
derivation of the upper bound on the survival probability, we couple (as in the case of the

complete graph) the total infection process f(N) with a DBPC with offspring and cooperation

2
{n of total infection is reached, for a sequence ¢ — oo sufficiently slowly for the coupling
to hold. The offspring and cooperation distributions of the latter DBPC are sufficiently close

to Poisson distributions with parameters %2 and a? respectively, such that the sequence of
the survival probabilities of these approximating DBPCs asymptotically converges to m.(a).
Combining the coupling, the property that for a DBPC reaching a level tending to infinity
implies survival with high probability, and the previous argument, the probability to reach

the level ¢y for the total infection process is asymptotically upper bounded by m.(a). In

distributions that are close to Poisson<ﬁ> and Poisson(aQ) respectively, until a certain level

=(N
case the level £y is reached for the total infection process 7 ( ), we upper bound the invasion
probability by 1, meaning that afterwards also the remaining hosts get infected.

For the lower bound we couple with high probability T(N) from below with the total size of

a DBPC until it remains constant or reaches the level V¢ for 0 < ¢ < [ small enough for
the coupling to hold. The offspring and cooperation distributions of the latter DBPC are
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chosen sufficiently close to Poisson distributions with parameters 255% and ‘21—: such that its

survival probability is asymptotically equal to 7. (\/%), the one of the DBPC with offspring

a®

and cooperation distribution exactly Poisson distributed with parameters 2“% and g7 re-
spectively. Once N¢ many hosts are infected we show that with high probability after at
most O (log(log(N))) many further generations the infection process expands by a distance
rn(1 —o(1)) per generation. On the other hand the invasion time is lower bounded by ﬁ,
since parasites can move in any generation at most at a distance ry and the infection starts
to the closest vertex of the centre of the cube.

e Theorem 1.1.6 (iii): Under the supercritical scaling v/dy € o(vn), again as for the complete

graph, we couple with high probability from below the total infection process T(N) with the
) offspring distribution until N¢

2
a_

2
hosts get infected or the parasite population dies out for any 0 < € < 8 and any a > 0. In
addition we can show that when the level N¢ is reached for the total infection process, there
exists a ball of diameter r which contains at least N log_l(N ) infected hosts. By choosing
€ > [3/2 we show that once the level N¢ is reached, after one more generation the remaining
hosts in this ball get infected with high probability. Afterwards with high probability the
infection expands by a distance rxy(1 —o(1)) in every generation (similar as in Theorem 1.1.6
(ii)) until the remaining hosts are all infected. Combining that for any GWP the probability
to reach a level tending to infinity is asymptotically equal to its survival probability, and that
the survival probability of the latter GWP is asymptotically equal to 7(a), we obtain that
the invasion probability is lower bounded by m(a) for any a > 0. Hence, it is asymptotically

1 since w(a) — 1.
a— o0

total size process of a GWP with approximately Poisson(

Results on Discrete Branching Processes with Cooperation

For proving Theorem 1.1.5 and Theorem 1.1.6 we are deriving some useful results on DBPCs that
are interesting enough to be stated below. Remember the notation we introduced in Definition
1.1.4. We start with the extinction-explosion principle, which is well-known for GWP and also
holds for DBPCs.

Proposition 1.1.7. (Eztinction-explosion principle for DBPCs) Let Z be a DBPC satisfying p1,0 #
1 and (po,o, p1,c) # (1,1). Then there exists a nullset N such that

{VQGINOZg>0}g{VZEN,E|gOeN0,ngQOZgZ’L}UN

The conditions p1 , # 1 and (po,0, P1,c) # (1,1) are necessary to exclude two pathological cases
where the statement does obviously not hold. The first case is where the process stays constant at
one individual in each generation, and the second condition ensures that the DBPC with three or
less individuals can further increase and is not stuck below three.

In contrast to GWPes, a DBPC always has a positive survival probability, except for pathological
cases. We denote the expectation and the variance of the offspring distribution by u, and v, and
for the cooperation distribution by p. and v..

Proposition 1.1.8. Let Z be a DBPC with pig, fic, Vo, Vc€ (0,00) and poo + p1,0 < 1. Suppose
Zy=x € N, then Z has a positive survival probability, i.e.

P.(Zy; >0¥g > 0) > 0.
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The superexponential growth speed of a DBPC in case of survival can be derived. More precisely,
the next Proposition shows that for any sequence by — oo, reaching the level by or dying out for
a DBPC, or a sequence of DBPCs under the next conditions, is at most of order log log(by ), which
contrasts with GWPes. Let (Z(N))NelNo be a sequence of DBPCs for which pu5™, u™, v, )
denote the expectations and the variances of the offspring and cooperation distributions. We assume

that

(N)

SN, )

i) N N ey Ve, ve € (0, 00), (1.1.2)
N—o00

and we introduce p := min(u,, i) > 0 and v := max(v,,v.) > 0.

Proposition 1.1.9. Let (Z(N))
)

NeEN, be a sequence of DBPC's which satisfy Fquation (1.1.2). As-

sume Z(()N =z for some x € N. Furthermore, assume that there exists an Ny > 0 such that

inf P2 > 1)7" =) >0,
N>No

where L =: [p=1(8 4 v)?]. Let (bn)nen be a N-valued sequence with by N X and denote by
—00

Tpy,0 := inf {g eN: Z;N) > by or Z;N) = 0} .
Then there exists a constant C > 0 such that

Py (b0 < Cloglog(bn)) N:)X) 1.

The following Proposition states that, as for GWPes, when a DBPC, or a sequence of DBPCs
under the latter conditions, reaches a certain level tending to infinity at some generation or up to

some generation then survival is ensured with high probability, the counterpart of Proposition 1.1.3
for DBPCs.

NeN with offspring and cooperation

Proposition 1.1.10. Consider a sequence of DBPC (Z(N))

distributions (p,(c]?)k and (p,(cj\?)k respectively, which satisfies Equation (1.1.2). Further-
’ €Ng ! €Ny

more, let Z°° be a DBPC with offspring and cooperation distribution (pk’o)ke]N0 and (pkvc)ke]Ng'

Assume that p,(ﬁ)) — Dko and p,(i\? — Die a8 N — oo for all k > 0. Then for any N-valued

sequence (by)Nen with by — oo it holds that

. . N _ : . N
Jim P(VgeJNO.Zg )>0)f1\}gréoIP’<Eg€No.Zé >sz)
. —(N)
]Vll_IgOIP’@gENO.Zg 7bN>
=T

)

where m denotes the survival probability of Z°.
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1.1.5 Perspectives

Many refinements on the understanding of the invasion probability of cooperated parasites on struc-
tured host populations are still possible. First, we obtain that, at the critical scaling vy € © (\/dN)7
the invasion probability is identified as the survival probability ¢(a) of a Galton-Watson process

with Pois(%) offspring distribution when the host population is structured on a configuration

model (see Theorem 1.1.2; taking x = 0), whereas we obtain a lower bound when it is structured on
a random geometric graph as the survival probability of a DBPC whose offspring and cooperation

distributions are Pois 25}% and Pois(%—i) distributed (see Theorem 1.1.6). Hence direct compar-

ison of such results can not be achieved since the offspring distributions of the limiting processes
are not the same. Nevertheless, one can show in the case of the random geometric graph that the
invasion probability is also lower bounded by p(a). To get this lower bound, it suffices to neglect co-
operation of parasites generated by different infected hosts at the beginning of the infection process.
It implies that having a finite-dimensional spatial structure of the population increases the invasion
probability compared to scenario where the host population is structured by a configuration model
leading to an infection graph with a locally tree like structure.

Moreover, adapting the proof techniques for deriving the lower bound in the case of the random
geometric graph, one can show that the invasion probability is lower bounded by the survival prob-

ability of 2" independent DBPCs with offspring and cooperation distributions that are Pois(%)

and Pois(g—i) distributed. To get such result, it suffices to consider the sub-epidemic processes

located on the 2™ non-intersecting balls of radius TTN that are contained in the ball of radius ry
centred around the initially infected vertex. One can apply for each of the 2™ balls similar reason-
ing as made in Chapter 4 when deriving the lower bound, by coupling from below each of the 2"

sub-epidemic processes with the total sizes of DBPCs whose offspring and cooperation distributions

2’!1
couplings can be made independently from each others by controlling interaction events between
the sub-epidemic processes. The last step is to prove that asymptotically the survival probability
of the sum of these lower DBPCs is identified as the survival probability of a sum of 2" indepen-

are close to Pois(ﬁ%) and Pois(“i) distributions respectively. One has also to show that the

dent DBPCs with exactly Pois(%) and Pois(‘;—z) offspring and cooperation distributions, by
application of Proposition 1.1.10.

Another perspective concerning Chapter 3 when the host population is structured on the random
geometric graph, is to derive the exact asymptotic invasion probability (instead of different upper
and lower bounds) when the critical scaling vy ~ av/dy is considered. Simulations of Figures 3.1
and 3.2 demonstrate that the invasion probability is much more closer to the upper bound compared
to the lower bound. This can be easily understood because, in deriving the lower bound, we
consider an epidemic model centred around the initially infected vertex, which considers infections
only generated within the ball of radius 7 /2. This means that many infections are not considered
in this process compared to the original process, resulting in an inadequate lower bound. In the
model analysis, we show that the invasion probability is actually determined by what occurs at
the beginning of the epidemic. Once a certain minor outbreak is reached (meaning that a certain
negligible order of vertices is infected), global invasion is asymptotically achieved with probability
1. Therefore, to identify the invasion probability, one should study an approximate model that
could be referred to as branching with cooperation random walk. Then, it should be shown that
the spatial infection process behaves sufficiently close to this approximate process, at least for a
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sufficient number of generations, such that the previous minor outbreak is obtained. More precisely,
by branching with cooperation random walk, we mean that at each generation, each individual (or
pair of individuals) gives birth to a random number of offspring, which are spatially distributed
around the parent (or parents), according to a certain distribution and independently from each
other. An example of study of such model is made in [33] where the authors considered a nearest
neighbour cooperative branching-coalescing random walk on Z.

Adding some dynamical behaviours to the hosts could be included in the model and being
interesting for more biological relevance. For instance, in a framework at the intersection of the two
biological themes of this thesis, such as modelling virotherapy with cooperative viruses. Indeed as
mentioned in Subsection 1.1.1, it is believed that the infection of cancer cells with oncolytic viruses
is more effective if a cancer cell is hit by several viruses simultaneously, because in this manner the
virus can cope better with the (interferon-based) anti-viral response of the host, see [31]. Here, the
parasites could represent viruses designed to recognise cancer cells, and the host population would
be a mixture of cancerous and wild-type cells with interactions between them.

1.2 Cell dynamics of multitype populations in oncology

In the next subsections we are presenting the model studied for understanding the genetic compo-
sition during cancer evolution, motivated by some biological context, as well as the results obtained
with heuristics, sketches of the proofs and some perspectives.

1.2.1 Biological context

Cancer is a genetic disease that results from accumulation of subsequent driver mutations. They
trigger activation of oncogenes conferring a selective growth advantage to tumour cells [34] resulting
in abnormal growth. Other mutations called neutral or passenger are also present in cancer evolu-
tion. Contrary to the driver ones, they do not provide any selective advantage to the growing cancer
population but are retained either because they are necessary mutations to later obtain a selective
one, such as inactivation of the first copy of a tumour suppressor gene, or either by chance during
repeated rounds of cell division and clonal expansion. The number of driver mutations triggering
cancer formation is heterogeneous across cancer types. For instance, in the case of solid tumours,
typically more than one driver mutation is required for the development of malignancy, while a
single genetic alteration may be sufficient to cause certain types of leukaemia [35].

Advanced sequencing technology applied to protein-coding genes has led to the identification
of specific driver genes implicated in carcinogenesis, including oncogenes, tumour suppressor genes,
and DNA repair genes. For instance, in colorectal cancer, commonly mutated driver genes such as
APC, TP53, and KRAS are noteworthy examples [36, 37, 38]. Similarly, the fusion gene BCR-ABL
has been linked to chronic myeloid leukaemia [39]. These studies, based on statistical analysis,
have also found that tumours mostly contain a large number of neutral mutations compared to
the number of selective ones driving the initiation, progression and maintenance of the tumour.
Historically tumour dynamics has only been seen under the prism of clonal expansion of selective
mutations, without even considering the paradigm of neutral cancer evolution. Such paradigm,
which has been considered only recently, see [40, 41, 3, 42, 43], advocates that the driver mutations
are already present in the initial cell and that the occurring mutations are neutral ones. Indeed,
the genetic heterogeneity inside a tumour could be explained only considering neutral mutations.
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Various statistical methods are developed to infer the evolutionary history of tumours, including
test of neutral evolution, see [44, 45, 46] for details about that.

Understanding the evolutionary trajectory of a tumour holds clinical significance since prog-
nosis hinges on its future evolutionary path, while the effectiveness of treatment is influenced by
the emergence of resistant subpopulations. Hence, some of the key questions in cancer research
involve uncovering the identities and the effects of mutations on tumorigenesis. Subsequently
considerable effort has been invested to quantitatively understand evolutionary dynamics in ex-
ponentially expanding populations, in order to answer the typical questions: when, how and how
may. More precisely, how many cells exist with a set of mutations, via which sequence of steps
is it most likely to emerge and how long does it take for these cells to appear? With this aim
of characterising disease progression, an increasing body of probabilistic research has been devel-
oped providing valuable insights on cancer genetic evolution. More specifically on clonal expansion
[47, 48, 22, 49, 50, 6, 23, 24, 8, 10, 51, 52, 53, 54, 55], on assessing recurrence timing and the genetic
composition of a tumour at recurrence timing [56, 18, 19, 20], on drug resistance [57, 58, 59], and
on understanding a classical summary statistics for the genetic composition of a tumour that is the
site frequency spectrum [60, 52, 46, 61, 18, 62, 63, 64].

In Chapter 4 and Chapter 5, we propose a multitype birth and death branching process model
on a general finite trait space to derive quantitative results on cancer evolution. More precisely,
under neutral (and deleterious) cancer evolution, we obtain first-order asymptotics for the mutant
subpopulation sizes capturing stochasticity on the genetic composition and allowing to characterise
effective evolutionary pathways. These results are given in Chapter 4. Concerning the selective case,
the study is made up to the first selective mutant trait and is given in Chapter 5. Generalisation to
derive the first-order asymptotics when considering selective mutations on a general finite directed
labelled graph is a work in progress in collaboration with Hélene Leman.

1.2.2 An individual-based toy model for carcinogenesis

The biological motivation of the model under study in Chapter 4 and Chapter 5 is to capture
the dynamics over time of the genetic composition of a population of cells during carcinogenesis.
Mathematically, the first-order asymptotics of all the different mutant subpopulations is captured
over time for neutral and deleterious cancer evolution in Chapter 4 and up to the first selective
mutant subpopulation in Chapter 5.

Cells are represented by a phenotypic trait, modelled through a finite set V with 0 € V. Cells
with trait 0 are called wild-type cells, and all cells with trait v € V\{0} are called mutant cells. For
all v € V, we denote by (Z,(t))scr+ the number of cells of trait v at time ¢ in the population. For
modelling carcinogenesis, we consider the initial condition

Vv €V, Z,(0) = 14,—o}, almost surely.

The evolutionary process is modelled using a continuous-time branching process on NY', where cell
division, death and mutations are taking into account. More precisely, cells divide to give birth to
two daughter cells and die with rates depending only on their phenotypic trait. The birth, death
and growth rate functions are respectively

a:V — R,

B:V — RT,

Ai=a-—0.
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The growth rate of the wild-type subpopulation is assumed to be strictly positive A(0) > 0, otherwise
the wild-type subpopulation won’t survive almost surely. During a division event of a cell of trait
v € V, independent mutations over the two daughter cells are considered. Mutation landscape
across traits is encoded via a graph structure (V, E) on the trait space. E C {(v,u),Vv,u € V?} is
a set of ordered pairs over V satisfying for all v € V, (v,v) N E = @, and such that for all trait v
there exists a path from 0 to v. In other words, (V, E) is a finite directed graph without self-loop
for which each vertex is on the directed-connected component of trait 0. Mutation from trait v to
trait w is possible if and only if (v,u) € E. Let u: E — [0,1] be a mutation kernel satisfying

Yo e V,a(v) == Z (v, u) < 1.
ueV:(v,u)EE

A daughter cell mutates from trait v to trait « with probability u(v,u), meaning that f(v) is its
total mutation probability.

Finally the exact transition rates from a state z = (z,),ev € NY of the evolutionary process
are

z — by, at rate z,6(v),
Z =0y + 0y + O, at rate 22,a(v)p(v, w) (v, w) L wery Lww)er) Liuzw};

z z — 0y + 20y, at rate zya(v) (v, u)?L{wwer)
z40,, at rate z,a(v) (1 —7@)*+2 5 zea(w)p(u,v) (1 —7(w)),
ueV:(u,v)EE

where Yv € V, 6§, = (l{uzv})ue\/'

Following typical parameter values in cancer evolution, we consider the framework of power
law mutation rates limit. A scaling parameter n € N is used to quantify both the decrease of
the mutation probabilities, as negative powers of n, and also the typical size of the population,
depending on n as positive power of n, at which we are interested in understanding the genetic
composition. We aim to obtain first-order asymptotics of all mutant subpopulation sizes when n
goes to infinity. To be more precise, let L := {{(v,u) € RY,V(v,u) € E} be a set of strictly positive
labels on the edges of the graph. Introduce a sequence of the latter model where for each n € IN|
the mutation kernel under consideration is (™ : E — [0, 1] satisfying

V(v,u) € E,n' @Y™ (v u) — p(v,u) € RY. (1.2.1)

n— oo

We are going to study the cell populations on the log(n)-accelerated time scale, the natural one for
exponentially growing models to reach powers of n, as well as the random time scales at which the
wild-type subpopulation or the total cell population reach powers of n.

1.2.3 Results of Chapter 4

In Chapter 4 we obtain first-order asymptotics of the size of the mutant subpopulations on the
deterministic log(n)/A(0)-accelerated time scale, and on the random time scale at which the total
population, respectively the wild-type subpopulation, reaches powers of n, for neutral and delete-
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rious cancer evolution, see Theorem 1.2.4. For that, introduce for ¢t > 0 the time scales

(n) log(n)
7 =t——=
t AO )

nt(") := inf {u eRT: Zé")(u) > nt} ,

inf{u eRY: Y ZM(u) > nt} ,

veV

)

p,(fn) = nt(n) or O't(n). (1.2.2)
Under neutral and deleterious cancer evolution, the stopping times n§”> and O't(n) are asymptotically
the same (see Proposition 4.3.12). For simplicity, when stating the results, we introduce the notation
pi”). Two different biological interpretations can be made to motivate the study on the random time

scales. For instance, when considering metastasis, the wild-type subpopulation Z(gn) may represent

the primary tumour, and the mutant subpopulations Z,Sn), for all v € V\{0}, may correspond
to secondary tumours. As it is size and not age of a tumour that clinicians have access to, it is
biologically relevant to estimate the genetic composition of the secondary tumours when the primary
one has a given size. This is mathematically encoded in looking at the first-order asymptotics

of z{™ <77t(n)) for all v € V\{0}. Another biological setting is when the total population Zt(:t)
represents one tumour. It is appropriate to obtain theoretical results about the size of the mutant
subpopulations Zl(,”) for all v € V\{0} when the tumour has reached a given size. This corresponds

exactly to looking at the first-order asymptotics of Zq,") (U,En)).

We also obtain asymptotic results for the stochastic exponents (or also called stochastic Hopf-
Cole transform) of the mutant subpopulations, defined as

XM= — 2 1.2.3
" Log) /30 (123
without imposing the framework of neutral or deleterious cancer evolution, see Theorem 1.2.5.
We are going to perform some heuristics for the results on the first-order asymptotics under the
assumption

Yo € V, A(v) < A(0). (1.2.4)

Heuristics

The heuristics for understanding Theorem 1.2.4 are constructed in three steps. The first one
aims to understand the first-order asymptotics of the size of a direct neighbour of the wild-type
subpopulation by studying the case of the simplest graph one can think of, i.e. a two-traits model
where only mutations from wild-type to the one and only mutant trait is considered. Then, we
explain how such heuristics on a two-traits model is used as an elementary brick for getting heuristics
on a finite monodirectional graph. Finally, we end by quantitatively comparing for all traits v €
V\{0} the asymptotic contribution to the subpopulation size of trait v of all the different walks on
the trait space graph structure linking trait 0 to v :
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e Heuristics for a two-traits model: Consider the two-traits model (V, E,L) with V =

{0,1}, E = {(0,1)} and L = {¢(0,1)}. We start the heuristics by deriving that the first
time on the log(n)/A(0)-accelerated time scale for mutations to be likely is actually £(0,1).
Under the power law mutation rates regime, the inner birth and death rate of the wild-type
subpopulation are so close to a(0) and 3(0) (only differs by a factor of order n=¢(®:1)) that
the growth of the wild-type subpopulation is approximately an exponential growth with rate

A(0). Then in case of survival, at time t,E”), its size is of order © (n*). With a mutation

probability which scales as n=¢(1 the total mutation probability up to time tg") scales as
fg ntn =404 (uﬂ%@) = "_/\Z((OO)‘D (n* — 1) which is of order 1 for ¢ = £(0,1). This heuristics

is formalised by D. Cheek and T. Antal in [8, 10].

Then we explain how to predict the size of the mutant subpopulation at time tﬁ”), for all

t > ¢(0,1). An illustration of these heuristics can be found in Figure 1.5. Let £(0,1) < u <,

the number of new mutations generated at time t&n) scales as

On* - n~tO) = @ <eXp <)\(O)(u — 40, 1))1(;%7;))) .

The remaining time for these new mutant cells to grow exponentially at rate A(1) until time

) a size of order

0 (exp <>\(O)(u — (0, 1))1‘;%)7;‘)) . exp (A(l)(t — ) l‘fig;))) (1.2.5)

=6 (eXp (M(l)t + (A0) = A(L))u — A0)4(0, 1)] l‘ig(g”)‘)» .

tﬁ”) is tgﬁ)u This implies that their lineages have at time tg"

Then two scenarios are possible depending on if the mutant trait is neutral or deleterious:

(i) If A(1) < A(0): Equation (1.2.5) is maximal for u = ¢ and equal to © (n‘=#(:1)). This
means that the dynamics of the mutant subpopulation is driven by the mutation from
the wild-type subpopulation and not from its inner growth. More precisely, its size
order at time t§”> is fully given by the mutations generated at this time -and so is of
order O (nt_é(o’l))- and not from the lineages issued from mutations generated at strictly
previous time.

(ii) If A(1) = A(0): Equation (1.2.5) is independent of u and equal to © (n'=“%1)) for any
£(0,1) < u < ¢t. This means that these lineages have the same size order at time tgn) than
any other lineages of mutant cells generated from mutational events at any other time

té?o),n and tg"). In the dynamics of the mutant subpopulation there is a balance

between the contribution of mutations and its inner growth. This is a consequence of
assuming A(1) = A(0). Hence to capture the total size of the mutant subpopulation at

between

time tﬁ”), it remains to integrate all the lineages issued from mutational events over time
) for £(0,1) < u < t. This exactly gives the order © ((t — £(0,1))log(n)n=*0:1)).

n)

To sum up, for this simple graph, the mutant subpopulation scales after time {2(0 1

as

O (n'~ OV [Ln@amy + Lpno=acy (¢ = £(0,1)) log(n)] ) (1.2.6)
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tt@l time with exponential growth A(1)

Figure 1.5: Heuristics for the size of the mutant subpopulation after time t%o) 1

In any case, the mutant subpopulation has an exponential growth at rate A(0) after time
té?&l), given by the factor n*~¢(%1) A supplementary multiplicative factor of order log(n) is

captured in case of neutral mutation.

e Heuristics for a finite mono-directional graph: These heuristics on this simple two-traits
model can be used as an elementary brick for getting some on a finite monodirectional graph
by iterations to get both the first-occurrence time for seeing mutations in the log(n)/A(0)-
accelerated time scale, as well as the exponential growth and the multiplicative factor of
log(n). Consider a path from wild-type trait 0 to a trait v € V\{0}. We obtained that
after the first-occurrence time for mutations to be generated for the neighboured trait of the
wild-type trait, which is the label on the edge, this mutant subpopulation has an exponential
growth at rate A(0). Thus the time u to wait for seeing a cell of trait v, on the time scale
t&”), generated due to this specific mutational walk is the sum of the labels of the edges of
this walk, called the length of this walk. Then, after this time, this subpopulation of cells of
trait v due to this walk grows exponentially fast at rate A(0). Moreover, as seen in (1.2.6),
when a neutral mutation is encountered a multiplicative factor of order log(n) is captured
in the asymptotic size, meaning that for any neutral mutation on the walk leading to v a
supplementary multiplicative factor of order log(n) is captured on the size order. These two
facts combined give that after time the length of this walk, the subpopulation of trait v grows
exponentially fast at rate A(0) and has a multiplicative factor log(n) to the power the number
of neutral mutations there are on this walk.
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e Heuristics for a general finite directed labelled graph: Considering a vertex v € V\{0},
there are potentially many mutational walks from the initial vertex 0 to v on the trait space
graph structure. Then one needs to understand which ones are involved in the size order of the
mutant subpopulation of trait v, by using the previous heuristics on a monodirectional graph.
First, the subpopulation of trait v starts having cells after a time which is the minimum of
the lengths over the walks from 0 to v. Second, after this time only the walks whose lengths
are equal to the latter minimum might contribute to the size order of the mutant cells of
trait v. This is due to the fact that having a time delay, on the log(n)/A(0)-accelerated time
scale, creates an exponential delay of order a power of n in the size order. This discrimination
over the walks that might asymptotically contribute is asymptotically captured in Theorem
1.2.5 where results on the asymptotic limits of the stochastic exponents suffice. Thirdly, the
supplementary multiplicative factors of order log(n) due to the neutral mutations implies that
over the walks from 0 to v satisfying that their lengths are equal to the latter minimum, only
those with the maximal number of neutral mutations are actually contributing to the size order
of the mutant subpopulation of trait v. More specifically with a factor of log(n) at the power
this maximal number of neutral mutations. Such characterisation is asymptotically captured
by results on the first-order asymptotics, presented in Theorem 1.2.4, where results only in
the stochastic exponents are not sufficient. Moreover for any of these admissible walks, at
each neutral mutation a supplementary time integral is obtained, as seen in Equation (1.2.6).
An illustration with an example is given in Figure 1.6.

o)
3,’, \\\\1

Figure 1.6: Heuristics for the contribution of walks to the size order of the plain purple mutant
subpopulation: in this example, the dashed red walk has a length of 7, while the dotted blue and
plain green walks have a length of 4. Therefore, only the two latter walks may contribute to the
size order of the plain purple mutant subpopulation, making them sub-admissible walks. However,
the dotted blue walk has only one neutral mutation, whereas the plain green walk has two neutral
mutations. As a result, only the plain green walk will ultimately contribute to the size order of
the purple mutant subpopulation. For ¢ > 4, at time tﬁ”), it will grow as 10g2(n)e)‘(0)t5i)4. Notice,
in particular, that the dashed red walk has the maximal number of neutral mutations, which is 3.
However, since it is not a sub-admissible walk, the multiplicative factor of log(n) remains 2 instead
of 3.
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Definitions

Now, the natural definitions derived from these heuristics are formally established before presenting
the results.

Definition 1.2.1 (Deleterious and neutral vertices). A vertex v € V is called a neutral vertex if
A(v) = A(0), and a deleterious vertex if A(v) < A(0).

The following definition provides a structured framework to analyse the contribution of evolu-
tionary pathways to the growth of mutant subpopulations. It does so by introducing the adapted
vocabulary, for the neutral and deleterious evolutionary context of the model, associated with walks
in labelled graphs. We use the term ’walk’ here according to the standard nomenclature of graph
theory.

Definition 1.2.2 (Walk in the graph). A walk v = (v(0),--- ,v(k)) in the graph (V, E) is defined
as a sequence of vertices linking v(0) to v(k) such that for all 0 < i < k,v(i) € V, and for all
0<i<k-—1,(v@i),v(i+1)) € E. We will sometimes use the term ’path’ to refer to a walk that
visits only distinct vertices. Giwen a walk v = (v(0),v(1),---v(k)) in the labelled graph (V,E, L),
we define:

e The sum of the labels of the edges and the sum over the first i edges of the walk -y, respectively:

k—1 i—1
t(y) := Zf(v(i),v(i +1)) and for all i < k,t,(i) == Zﬁ(v(j),v(j +1)).
i=0 §=0
o The subset of neutral heads of the edges of the walk v and its cardinality:
Yneut = {0(1),1 <i <k : Av(i)) = A0)} and 0(7) := | Vneut]-

o The weights Wpeut(Y) and wae () associated with the neutral and deleterious vertices of the
walk 7y, respectively:

2a(v(t — 1 v(i—1),v(i
wneut('y) = H ( ( ))5((0)( ) ( ))’
1<i<k,A(v(3))=X(0)
20(v(i — 1)) p(v(i — 1), v(i))
11 A(0) = Av(i)) '

Waer (7) =
1<i<k,A(v(4))<A(0)

Along a walk, the constant of the asymptotic contribution of a vertex- depending on its pa-
rameters and those of the upstream vertex- takes a distinct form based on whether the vertex
is neutral or deleterious. This distinction motivates the use of the separate weights Wyeut(7Y)
and wae (Y)-

e The time dependence associated with the meutral vertices: Let o be an increasing function
from {1,--- ,0()} to {1, -+, k}, such that v(o;) is the i-th neutral vertez of the walk ~. For
all t > 0, define the multiple integral I1,(t) as

t\/t,y(o'e(.y)) w1y Uk WY () —1
ty(oa(y)) ty(oa(y)—1) ty(oa(y)—k) ty(o1)
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Along a walk, for each neutral verter that is visited, an additional integral over the time

parameter appears in the asymptotic limit, as described in the heuristics. This motivates the
definition of L, (t).

o The weight of the walk v at time t:

Wey (t) ‘= Wqel ('Y)wneut (’7)]7 (t) .

This expression captures the total weight of a walk v at time t, accounting for both the delete-
rious and neutral visited vertices, and the integrals over the time parameters associated with
these neutral vertices.

Definition 1.2.3 (Admissible walks). For all v € V, let P(v) denote the set of all walks v in the
graph (V, E) that link the vertex O to the vertex v. We define the:

o The minimum total label sum among all walks from vertex 0 to verter v:

t(v) := min t(vy).
()= min 1(7)

e The maximum number of neutral vertices among the shortest walks from vertex O to vertex v:

O(v) := max
YEP(v),t(v)=t(v)

o The set of admissible walks from vertex 0 to vertex v:
A(v) = {y € P(v) : t(7) = H(v) and 6(7) = 6(v)}.

In the previous definition, the set A(v) is referred to as the set of admissible walks because, as
indicated by the heuristics, only walks belonging to A(v) contribute to the growth dynamics of the
mutant subpopulation of trait v. This is formally established in Theorem 1.2.4.

Main results for neutral and deleterious cancer evolution

In the next theorem we state the first-order asymptotic results for the size of all the mutant
subpopulations structured on a general finite directed labelled graph for the trait space, under
neutral and deleterious cancer evolution.

Theorem 1.2.4. Assume that the general finite directed labelled graph (V, E, L) satisfies both the
power law mutation rates regime described in (1.2.1) and the non-increasing growth rate graph

condition given in (1.2.4). Let h, = m, where o, e such that h,, .

and where Opar = max,ev\(o} 0(v). Let also ¢, such that \/log(n) = o(vn). Define for all
(t,s) e RT x R,
A 9) =Leoa-ny} + Leeltto)-nat ey ¥nlo8” ™ () (12.7)

+ ]]-{te[t(v)7oo)}nt7t(v) loge(v)(n)e)\(o)s.
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Let (T, M) € (Rj_)Q and 0 < Ty < Ty. Using the mathematical definition of the model given in
Section 4.4 (see (4.4.1), (4.4.2), (4.4.3), (4.4.4) and (4.4.5)), there exists a random variable W,
properly defined in (4.4.6), satisfying

%4 l:ciu Ber(iigi) ® Exp((;\ggi»

such that for allv € V\{0}, we obtain the convergence results in probability in L ([0, T] x [—M, M])
for Equation (1.2.8) and in L ([Ty,Ts] x [-M, M]) for Equations (1.2.9), (1.2.10) and (1.2.11):

(i) Deterministic time scale:
If M(v) = X(0), then

Zf;n) (tﬁ”) + s)

— e W > wy (). (1.2.8)
dy" (t,s) SEAW)

If AM(v) < X(0), then

(n) (((n)
v (tt(”)H N S) —
nt loge(“) (n)e/\(O)s n—o0

W > w (o) +1). (1.2.9)

YEA(v)

(ii)) Random time scales: Consider (pgn))t@R+ as defined in (1.2.2).
If M(v) = X(0), then

Zf,n) (pﬁ") + s)

g 2 Lwsay D ws(®). (1.2.10)
dv (t78) 'yeA(U)
If AM(v) < X(0), then
Z(n) (,O,En) + s)
v (v)+t
— 1 w (E(V) + ). 1.2.11
nt loge(v)(n)ek(o)s n— o0 {w>03} ’YGEA;U) ’Y( ( ) ) ( )

The proof of Theorem 1.2.4 relies on a martingale approach using Doob’s and Maximal Inequal-
ities. The initial step involves controlling the growth of the lineage of wild-type cells originated
from the initial cell, for both the deterministic and random time scales. For any vertex v € V\{0},
there may be several mutational walks in the graph (V) E) that start from 0 and lead to v. Un-
derstanding the contribution of each of these walks to the first-order asymptotics of the size of the
mutant subpopulation of trait v is essential. The proof proceeds in 2 steps. First, we consider
an infinite mono-directional graph under Assumption (1.2.4) and we establish the result for this
specific graph. Performing this step for an infinite graph is particularly helpful in handling cycles
(such as backward mutations) in a general finite directed graph. Then, we identify and exclude
walks from the initial vertex 0 to v that do not contribute to the first-order asymptotics of the size
of the mutant subpopulation of trait v.

Before stating the result obtained on the stochastic exponent when allowing selective mutations,
many remarks about Theorem 1.2.4 are performed:
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(i)

(i)

(iii)

(iv)
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Supplementary log(n) factor: Notice that a multiplicative factor of logg(”)(n) is captured
after time ti?v)), see Equations (1.2.7), (1.2.8), (1.2.9), (1.2.10) and (1.2.11). Obtaining a result
on the stochastic exponents, as in Theorem 1.2.5, does not capture such a factor. For instance

with the two-traits model used for the heuristics, if A(1) = A(0), Theorem 1.2.4 gives that

(0){(n)

after time £(0,1), Zf") (tg")) behaves approximately as log(n)e)‘ t—¢0,1), However, what is

captured with Xl(") (t) after time £(0, 1) is asymptotically A(0)(t —¢(0, 1)), see Theorem 1.2.5.

Asymptotic stochasticity: The random variable W is explicitly defined as the random
variable that quantifies the randomness over the long time of the lineage of wild-type cells
issued from the initial cell. Due to the power law mutation rates regime, mutations arise
after a long time, so that the stochasticity of this lineage is already captured by W. Notice
that under Assumption (1.2.4), the randomness in the first-order asymptotics of any mu-
tant subpopulation size is described completely by W. This means that the stochasticity of
these subpopulations is driven primarily by the randomness in the growth of the wild-type
subpopulation rather than by the one of the mutational process or of any lineage of mutant
cells. In particular, if the process starts with a large number of wild-type cells instead of just
one, the first-order asymptotics of the size of the mutant subpopulations would be entirely
deterministic.

Selective mutations: It seems quite natural not to obtain such a result when considering
selective mutation (A(v) > A(0)). Indeed, a selective mutation imply that any time advantage
translates directly into a growth advantage. Thus, the stochasticity of the mutational process,
as well as the randomness in the lineages of the mutant cells, cannot be ignored. Therefore,
expecting to control the stochasticity of the mutant subpopulation solely by controlling the
randomness in the wild-type subpopulation, without also accounting for the randomness in
the mutational process and the mutant lineages, is vain. More precisely, using a martingale
approach to derive the first-order asymptotics cannot be successful for a selective mutation.
Technically, this is because the expected size of the selective mutant subpopulation is of a
higher order than its typical asymptotic size. Indeed, the rare event of the initial cell mutating
to the selective trait extremely quickly, an event that asymptotically vanishes, is responsible
for this discrepancy between the expected value and the typical asymptotic size of the selective
mutant subpopulation. Nevertheless, when examining the stochastic exponent, the martingale
approach allows us to obtain convergence results as given in Theorem 1.2.5. This is because
the aforementioned rare event contributes only a factor proportional to its probability to
the expected value of the stochastic exponent, meaning it actually asymptotically neither
contributes to the typical size nor to the expected value of the stochastic exponent of the
selective mutant subpopulation. Moreover, in Chapter 5 we develop another approach to get
the first-order asymptotics for the first mutant trait. Generalisation to derive the first-order
asymptotics when considering selective mutations for a general finite directed graph is a work
in progress.

Result comparison between neutral and deleterious traits: Considering the time scale
tﬁ”), the result slightly differs depending on whether the vertex is neutral or deleterious. In-
deed, when looking at the asymptotic behaviour for a deleterious vertex v, the result holds
strictly after time t(v), whereas, in the case of a neutral vertex, the entire trajectory from
the initial time can be analysed. Mathematically, this difference arises from the additional
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multiplicative factor of log(n) in the first-order asymptotics when considering a neutral mu-
tation. This factor allows us to control the quadratic variation at time ¢(v) for the martingale
associated to the mutant subpopulation. Three distinct regimes are obtained, as indicated by
(1.2.7) and (1.2.8) :

(i) Up to time t(v) — h,': with high probability, no mutational pathway from 0 to v has
generated a mutant cell of trait v. Since h,, — co and satisfies h,, = o(log(n)), t(v) can
be interpreted as the first time -when considering the time scale accelerated by log(n)-
at which it becomes asymptotically possible to observe the first occurrence of a mutant
cell of trait v. This result is also true for deleterious mutations.

(ii) Fort € [t(v) — hy*,t(v)): in this time interval, some mutant cells of trait v are produced,
but the interval’s length is insufficient to achieve any power of n for the size of the mu-
tant subpopulation of trait v. We succeed to dominate its growth by v, logg(v)fl(n)7
with a well-chosen 1,. Heuristically, the total number of mutant cells of trait v re-
sulting from a mutational event up to time ¢ is of order @(loge(“)_l(n)). With the
remaining time for these mutant cells’ lineages to grow, we manage to control the size
of the mutant subpopulation of trait v by at most y/log(n) logo(”)fl(n). Consequently,
dividing by any function v, satisfying 1/log(n) = o(t,) results in an asymptotic lim-
its of 0. This result also holds for deleterious mutations. The y/log(n) factor in the
growth control comes from a mathematical analysis using a martingale approach, par-
ticularly considering the time scale accelerated by log(n). With further refinement, we
conjecture that the actual size of the mutant subpopulation at time ¢(v) is of order

O (Lx0)=r(0)y log(log(n)) + Lix@)>aqwy) log””) 7 (n).
(iii) For t € [t(v),00): with high probability, the number of mutant cells of trait v grows
exponentially at rate A(0). A supplementary multiplicative factor loge(v)(n) is present

due to the neutral mutations on the walks in A(v). Thus, the growth scales globally as
n=t @) 16g? ™) (), (¢).

(v) Results comparison between time scales: When comparing point (i) and (ii) of Theorem

1.2.4, notice that the result transitions from the deterministic time scale t§”) to the random

time scale p§") merely by switching W to Ly ~oy. This seemingly surprising fact can be

explained by the essential role of W. As mentioned in point (ii) of these remarks, W encodes
the long-term stochasticity of the lineage of wild-type cells originating from the initial cell. By
showing that the time scale tgn) serves as the correct deterministic approximation of pE"), it

)

follows that obtaining an asymptotic result on time scale tt(" also yields a result for the time

scale pin). This idea is formalised using a technique similar to that in [56, Lemma 3]. The

switch from W to 1y 0} in the result occurs because the time scale pE") inherently carries the
stochasticity of the random variable W. Consequently, the only remaining randomness that

needs to be considered is the survival of the lineage from the initial cell, which is asymptotically
given by 1iwso}-
Stochastic exponents for selective cancer evolution

The next theorem does not require the non-increasing growth rate condition of Equation (1.2.4).
Without this assumption, a martingale approach, as used for proving Theorem 1.2.4 fails to obtain
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the first-order asymptotics of the mutant subpopulation sizes. However, the stochastic exponents
of the mutant subpopulations, as defined in (1.2.3), can be uniformly tracked over time. In Chapter
5, we actually derive the first-order asymptotics of the size of the mutant subpopulations, as in
Theorem 1.2.4, but only for the very specific trait space that is mono-directional leading to the first
selective mutant trait. In the next theorem, we show for a general finite directed graph that, under
the event {W > 0}, the limits are positive deterministic non-decreasing piecewise linear continuous
functions. Such limits are defined via a recursive algorithm tracking their slopes over time. More
precisely, we show that the slopes can only increase and take values from the growth rate function A.
This result is obtained through an adaptation of the techniques developed in the large population
and power mutation rates regime, see in particular [6, 11, 12] to the current multitype birth and
death branching process.
In the tracking algorithm, two different kinds of updates can be made:

e Birth of a new trait: The first update is the birth of a new trait which takes as its slope the
maximum between its inner growth rate and the slope of the subpopulation that gave birth to
it. In fact, it could also happen that many subpopulations give birth to it at the same time;
in this case it is the maximum of their slopes that is compared to the inner growth rate of
the born trait. Such a comparison on the growth rates indicates which mechanism is driving
the subpopulation growth: either its inner growth if this subpopulation is selective compared
to the subpopulation(s) that is/are giving birth to it, or conversely the mutational process
if it is deleterious. The neutral case corresponds to a balance of these two mechanisms, as
previously mentioned in Theorem 1.2.4.

e Growth driven by another trait: The second kind of update is when a live trait v increases
its slope because another live trait v among its incoming neighbours, with a higher slope, has
reached its typical size so that the mutational contribution from trait u now drives the growth
of trait v. Consequently trait v now takes the slope of trait u. Again potentially many traits
u among the incoming neighbours of trait v can reach at the same time the typical size for
the mutational contribution to drive the growth of trait v; in this case the growth of trait v
is driven by the trait u with the maximal slope. This kind of update encodes the possibility
in the evolutionary process that the driving mechanism of a subpopulation can change over
time, always triggering an increase in the actual growth of the subpopulation.

How these two different kinds of updates happen in the tracking algorithm is made formal in
the following theorem. Moreover, they can happen at the same time for different vertices. The
complexity of such an algorithm comes mostly from the generality both on the growth rate function
and on the trait structure. Under the non-increasing growth rate condition (1.2.4), the limiting
functions (z,).cv have an explicit form, see Corollary 1.2.7; this is also true when the graph
structure is mono-directional, see Corollary 1.2.6.

Theorem 1.2.5. Let 0 < Ty < Ty. The stochastic exponents defined in (1.2.3) satisfy

X000 T ((e®))
(( v ( ))UGV €Ty, Ts) n—00 {W>0} ( v( ))UEV te[TT]
in probability in L>°[Ty,T3]. For eachv € V, x, is a positive deterministic non-decreasing piecewise
linear continuous function obtained via a recursive approach tracking its slope over time. In partic-
ular there exist k* € N and 0 = Ay < Ay < -+ < Ap« < 00 such that the slopes of (xy)vev change
only at the times (Aj)jeqo,... k- Forj € {0,---  k*}, at time A; two kinds of updates in the slopes



1.2. CELL DYNAMICS OF MULTITYPE POPULATIONS IN ONCOLOGY 39

can occur: (i) either a new trait starts to grow or (ii) an already growing trait increases its slope
due to a growth driven now by another more selective trait. The algorithm tracks the following
quantities for all j € {0,--- ,k*} at time A;:

o the set of alive traits, A;,
e the set of not-yet-born traits, U;,
e the slope of x,, A\j(v),
e and the set of traits whose growth is driven by trait v, C;(v).
Initialisation: Set Ay = {0}, Uy =V \{0} and for allv eV
2,(0) = 0, Xo(v) = AN(0)L{y=0}, and Co(v) = 0.

Induction: Let j € {0,--- ,k* — 1}. Assume that there exist times 0 = Ay < Ay <--- < A; < 0
such that (x,),c\ are positive deterministic non-decreasing piecewise linear continuous functions
defined on [0, A;], where changes of slopes occur only on the discrete set {Aq,--- ,A;}. Also assume
that there exist \j(v), A;, U;, and C;(v), respectively the slope of x,, the set of alive vertices and
not-yet-born vertices, and the set of vertices whose growth is driven by v, everything at time A;.

Then there exists Ajy1 € (Aj,00) such that (), are constructed during the time period
[Aj, Aj1] according to the following. For allv € V and for allt > A; let

Yo(t) = (t = Aj)A; (v) + 20 (4;).
For all v € U; define

Yu € A; such that (u,v) € E, 0y, = 1inf{t > A, : y,(t) > A0){(u,v)},

Oy := inf Ouvs
u€A;:(u,v)EE

v(v)={ueA;: (u,v) € E and by, = 0y}

For all v € Aj define

Bj(v) :=={u€ A, : (v,u) € E and \;(v) > \;(u)},
Yu € Bj(v), 0y = nf{t > Aj 1y, (t) > yu(t) + A(0)(v,u)},

Oy := inf &y,
u€B;(v)

v(v) :=={u € B;(v) : 6pu = 0p}.
Then define Ajiq = inf,ev 6, and vjyq1 == {v € V : 6, = A;11}. Then proceed to the following
updates:
o Let Aj+1 = Aj U (I/j+1 N Uj) and Uj+1 = Uj\(l/j_H n UJ) AZSO let Vv S Uj+1, /\j.:,_l(U) =
)\j(v) = O, Cj_H(U) = Oj(v) = (Z)
e For all v € vji1 N Aj, introduce the set v(7)(v) == {u € v(v) : Jw € vz N A; N\ (w) >
Aj(v), and u € v(w)}.
Then let Cjy1(v) = Cj(v) UUyepopu-r ) {ut UC;(w)). For all u € v()\v ) (v) and
w € Cj(u), Ajpa(u) = Ajp1(w) = A;(v).
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e For all v € Aj whose slope has not been updated yet, let Xj11(v) = A;j(v). And for all v € A,
whose set C;j(v) has not been updated yet, let Cjyq(v) = Cj(v).

o For allv € vjy1 NUj, let Nj1(v) := max (A(v), maxy,e, (o) Aj+1(w)), and
Cit1(v) = Cj(v) = 0. If Njs1(v) > A(v), introduce the following set vT(v) := {u € v(v) :
Ajp1(w) = maxy,ep o) Ajr1(w)}, and for allu € vt (v), Cjp1(u) == Cjy1(u) U{v}.

When considering a(n) (infinite) mono-directional graph, the structure of such a graph is suffi-
ciently simple to allow for an explicit form of the limiting functions (z,).cv, see the next corollary.
In particular, there is only one possible slope change that can happen at a time. More specifically,
when a not-yet-born trait becomes alive due to the previous trait reaching the typical size allowing
for mutations. When this happens, the new born trait takes the slope the maximum between its
inner growth rate or the current slope of the previous trait (as mentioned in the first point of the
heuristics preceding Theorem 1.2.5). Any alive trait cannot update its slope because no backward
mutation is permitted with this graph structure. Moreover, only a single trait becomes alive at
each time, due to the scaling labels £(i,i 4+ 1) being positive.

Corollary 1.2.6 (Theorem 1.2.5 applied to a mono-directional graph). Assume the graph is infinite
and mono-directional, i.e. (V,E) = (No,{(i,i4+1),7 € Ng}) and that £* := inf{l(i,i+1),7 € No} > 0.
Then the limiting functions (x;)ien, of Theorem 1.2.5 have the following simplified form:

Vt € RY, 2i(t) := Amax(4)(t — (1)) 4,

where Apax (i) = max;eo,... i} A(j) and t~(z) = Z; B %.

Theorem 1.2.5 is more general than Theorem 1.2.4 in the sense that there is no assumption on

the growth rate function, but it is a less refined result. We are going to do a full comparison of
Theorem 1.2.4 and 1.2.5 on the example of Figure 1.6.

Comparison between Theorems 1.2.4 and 1.2.5:

The asymptotic function x obtained through Theorem 1.2.5 for the plain purple trait is z(t) =
L{>43A(0)(t — 4). In the caption of Figure 1.6, it is already made explicit that only the plain
green walk will contribute to the size order of the plain purple mutant subpopulation. If one
denotes respectively by 1, 2 and 3 the vertices on the plain green walk such that this walk is
exactly (0,1,2,3), where 3 is the plain purple vertex, the asymptotic limits for vertex 3, captured
by Theorem 1.2.4, is for all t > 4,

20(0)u(0,1) 20(a(1,2) 2a(2u(23) AV
A0) 0 30 A3>W/ (/ d>d log’(n)

2 3\ 8a(0)a (1)a(2)u( DuL2pR.3) )y
(2 ! 2) RO N0 Ay e (),

In particular, Theorem 1.2.5 captures only the power of n which is ¢ — 4 whereas Theorem 1.2.4

captures the stochasticity W, a supplementary scaling factor log2 (n), a time polynomial % —t—3 5 and

also a constant depending only on the parameters of the visited vertices 80‘(0)0‘()\1%‘(10()2())‘\‘((00) 1)“((1))2)“(2 :3)

Now we make explicit the form of the limiting functions (z,),cy in the special case where
we assume the non-increasing growth rate condition. Under this condition, the limiting functions
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(2y)vev take a very simple form. The only quantity one has to consider is the time ¢(v) at which
trait v becomes alive, where t(v) is defined in Definition 1.2.3. Then after this time, trait v grows
at speed A(0) due to the non-increasing growth rate condition. This is made formal in the next
corollary.

Corollary 1.2.7 (Theorem 1.2.5 applied with the non-increasing growth rate condition of (1.2.4)).
Assume the non-increasing growth rate condition of (1.2.4). Then the limiting functions (Ty)yev
of Theorem 1.2.5 have the following simplified form.:

vt € RF, 2, (t) = A(0) (t — t(v)),

where Vr € R, x4 1= 2l ,cr+y-

1.2.4 Results of Chapter 5

The scope of Chapter 5 is to extend the results of Theorem 1.2.4 to a more general cancer evolution
framework that allows for selective mutant traits. A novel approach is introduced making progress
in obtaining first-order asymptotics results for the mutant subpopulation sizes when selective mu-
tations are considered in the trait space. This chapter is an ongoing work with Hélene Leman. Up
to this point, we have achieved the case of a finite labelled mono-directional graph, where there is
a unique selective mutation corresponding to the last one. The result, stated in Theorem 1.2.12,
reveals several biologically and mathematically intriguing results, which contrast with the previous
findings in the context where only neutral and deleterious mutations are considered.

The model corresponds to the one described in Subsection 1.2.2 where we are considering the
specific case of a finite labelled mono-directional graph with k£ 4 1 vertices, for some k > 1. More
precisely, we have

(V,E,L) ({0 k(i 1), € {0,k — 1}, {£(i),i € {0, -, —1}}) (1.2.12)

We denote respectively by a,, 8y, A, for the birth, death, and growth rates of a trait v € V and use
the simplified notations ME") = p(i,i 4 1) giving the following power law mutation rates regime

VO<i<k-— 1,n£(i)ugn) — f; < 00.
n— o0

Assume that the first selective mutant trait is the last one, which mathematically means
VO<i<k—1,) < Apand A\ > Ap. (1213)

With this setting three different scenarios can happen during a division event of a cell of trait

i€f{0,-- k—1}

2
e with probability (1 — u(-n)) each daughter cell keeps the trait i of its mother cell,

K2

() (1 _

e with probability 2u, 1 exactly one of the daughter cell mutates to the next trait

1+ 1 when the second daughter cell keeps the trait ¢ of its mother cell,

e with probability ( (")) both of the daughter cells mutate to the next trait 7 + 1.
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For ¢ = k, during a division event of a cell of trait k, both daughter cells keeps the trait k. Instead of
employing the deterministic log(n)/\g-accelerated time scale, which is appropriate for neutral and
deleterious cancer evolution since all subpopulations grow exponentially fast at rate Ag according
to Theorem 1.2.4, we opt for the log(n)-accelerated time scale ¢ — tlog(n) in this context. To be
fully consistent, we define again, for this new time scale, ¢(7) for all i € V.

Definition 1.2.8. Define for all1 <i <k

as the sum of the labels on the edges from trait 0 to trait i renormalized by Ag.

We rewrite in the following proposition the asymptotic results from Theorem 1.2.4 in the log(n)-
accelerated time scale instead of in the log(n)/\g-accelerated time scale, for the subpopulations of
traits i € {1,--- ,k — 1}.

Proposition 1.2.9. Let (V, E, L) be a finite labelled mono-directional graph with k+ 1 vertices, for
some k > 1 as defined in (1.2.12). Assume that the first selective mutation on the graph is the last
one as in (1.2.13). Let M > 0 and 0 < Ty < Ty. Using the mathematical definition of the model
given in Section 5.5, see (5.3.2), (5.3.3) and (5.3.4), there exists a random variable W properly
defined in (5.3.10) such that for all i € {1, -+ ,k—1}

(n) 7 og(n)+s ~
((LS) — Z; ;tgo(llg‘:g(lnfi/\o)s'i' )) = Wq,... 4)(t(i) + 1),

in probability in L*>([T1, T3] x [-M,M]) and with w,... ;y(t) = w,... ;y(tXo). For any other
mathematical description from the one of Section 5.3, the convergence is at least in distribution in
D([TIaTQ] X [_M7 MD

Main results and biological interpretation

In this subsection, the result regarding the first-order asymptotics of the first selective mutant
subpopulation size is stated. Moreover, some mathematical and biological remarks about this
result, as well as a sketch of the proof, based on heuristics, are provided.

When considering a selective mutation, the first intuitive idea that arises from the term ”se-
lective” is that potentially only the lineages of the first generated mutant cells will asymptotically
contribute. Indeed, any time delay for a lineage results in an exponential growth loss for its size,
providing some qualitative weight to this intuition. However, the challenge lies precisely in quan-
tifying this intuition. Specifically, it is necessary to determine how each lineage of the generated
mutant cells contributes asymptotically to the subpopulation size. This raises natural questions,
such as whether only a finite number of surviving lineages contribute asymptotically, and if so, how
many, as well as whether it is the first lineage to reach a certain level that contributes, among po-
tentially many other questions. Answering them is not possible solely with results on the stochastic
exponents. However, Theorem 1.2.12 quantitatively answers these natural questions on the contri-
bution of all the selective mutant cell lineages on the first-order asymptotics of the selective mutant
subpopulation size. For doing that, we are going to separate the process Z,En) into 3 different
processes having different mathematical analysis, asymptotic contribution and biological meaning:
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i) The first one, denoted by Z ("), corresponds to the process composed of the mutant cells and
k,1
their lineages generated up to time

o(k — 1)

17 (k) = t(k) log(n) — =

log(log(n)).

This time corresponds exactly to the first deterministic time at which it becomes likely to
observe mutational events from trait k — 1 to trait k. Indeed, the typical order of the subpop-
ulation Z,Si)l at time (£(k — 1) + t) log(n), which is n'* log? =Y (n) according to Proposition
1.2.9, reaches n‘*~1 the typical size allowing for mutations, at time ¢ (k). In Chapter 5

we will show that Well renormalized, the subpopulation Z,g 1) at time (t(k) + ¢t) log(n) asymp-

totically follows a compound Luria-Delbriick distribution, in the vein of the works of Cheek
and Antal [8, 10].

(ii) The second one, denoted by Z,i"Q), corresponds to the process composed of the mutant cells

and their lineages generated between times ¢ (k),t(k)log(n)|, that is during a time scale of

order log(log(n)). Notice that this subpopulation Z, (n 2) is null if there is no neutral mutation

up to trait k — 1, meaning that ¢ )(k) = t(k)log(n). In the case where there is at least

one neutral mutation, we will show that well renormalized, the subpopulation Z,gnQ) at time

(t(k) + t)log(n) asymptotically follows the large time distribution of an approximate model
with less stochasticity, that is independent from n. This approach is inspired by the works
of Durrett and Moseley [22], Nicholson and Antal [23] and Nicholson, Cheek and Antal [24].
The previous authors directly study this approximate model. The novelty of our approach is

to show that the subpopulation Z (n2) is sufficiently close to the previous approximate model

to allow for great control of Z; (") . We developed a martingale approach to get such result.

(iii) The last one, denoted by Z,(€ 3), corresponds to the process composed of the mutant cells
and their lineages generated after time t(k)log(n). We will show, using a similar martingale
approach as the one of Chapter 4, that asymptotically this process becomes negligible with
respect to the total mutant population Z,(C").

A graphical representation of these three processes is given in Figure 1.7. As aforementioned, for
stating the first-order asymptotics of the mutant subpopulation Z; (n 1) and Zéng, we introduce a
proper definition of the Luria-Delbriick distribution, the compound Lurla—Delbruck distribution, as
well as the approximate model under consideration.

Definition 1.2.10 (Luria-Delbriick distribution). Let (£;);c be an i.i.d. sequence of exponen-
tially distributed random variables with parameter X. Let (Y;);cy be an i.i.d. sequence of birth
and death branching processes with rates o and [ respectively, satisfying almost surely the initial
condition Y;(0) = 1. Let K be a Poisson random variable with parameter w. The random variables
and processes (§;);cn » (Yi);ew » K are mutually independent. The Luria-Delbriick distribution with
parameters (A, «, B,w), that may be chosen randomly, is defined as the distribution of

K
B:ZYA&)-
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\ 4

T T

t(,n)(k) := t(k) log(n) — e(k)‘i;l)log(log(n)) t(k) log(n) t

Figure 1.7: Graphical representation of the 3 sub-processes composing Z,gn)

The compound Luria-Delbriick distribution with parameters (A, a, §,w) and associated with the dis-
tribution U is defined as the distribution of

with (Us);cn @ sequence of i.i.d. random variables following U that is independent from B.

Definition 1.2.11 (Approximate Model). The approzimate model with parameters (X, u, «, 3) is
defined as the distribution of

K(1)

Z(t)= Y Yilt—To),
i=1

where K(t) = N (fg ,ue/\sds) , with N a Poisson process with intensity 1, independent from the i.i.d.
sequence (Y;),cn of birth and death branching processes with rates o and 3, and T; = inf{t > 0 :

K (t) > i}. Notice that for allt > 0 and for all i < K(t), we have t —T; > 0. Define X := a—f > X,
then we have

eMZ(t) — 2%, (1.2.14)

t—o0
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almost surely where Z>° € L' satisfies E[Z>] = u/ <X - )\) and its Laplace transform follows the

equation
I o . A=A
€ex —€=d | — i,]., e~ s

where ® is the Lerch transcendent defined as ¥V R(s) > 0, £(a) > 0

1 00 tsflefat
O(z,s,a) = ) /0 = ze—tdt

L(£,t) = E [e%emz(f)] —E

Equation (1.2.14) is obtained in [24], Proposition 2 for the exact same context, but similar
reasoning can be found in [22, 8]. Now we have all the material to state the result of the first order
asymptotics for the first selective mutant subpopulation size.

Theorem 1.2.12 (First-order asymptotics for the first selective mutant subpopulation size). Let
(V,E, L) be a finite labelled mono-directional graph with k + 1 wvertices, for some k > 1, as defined
in (1.2.12). Assume that the first selective mutation on the graph is the last one as in (1.2.13).
Let 0 < Ty < Ty. Using the mathematical definition of the model given in Section 5.3, see (5.3.2),
(5.3.3), (5.3.4), (5.3.5), (5.3.6), (5.3.7), (5.3.8), and (5.3.9), there exists two random variables
Zgy and Zi5 properly defined in Propositions 5.4.5 and 5.4.4 respectively, that are independent
conditioning on W (properly defined in (5.3.10)) such that

( Z5 ((t(k) + 1) log<n>>>
te[Th,Ts]

— Zga+ Zp,

it loga(k—l);—g(n) n—00

in probability in L°°([Ty,Ts]). The random variable Zyy follows a compound Luria-Delbrick dis-

tribution with parameters
201 b1
<)\O;O‘k7ﬂka )\ILL wk—lw
0

where wy_1 = Wo,... k—1)(t(k)), and associated with Uy, the distribution of the almost sure large
limit of the natural martingale associated to a birth and death branching process with rates oy, and

B respectively. More precisely,
A A
U, := Ber (k) ® Exp <k> .
AL Qe

The random variable Z7% follows the distribution of the asymptotic large time limit of the population
defined by the approrimate model from Definition 1.2.11 with parameters

(Aos 20k -1 pg 1wk 1 W, g, Br) -
For any other mathematical description, the convergence is at least in distribution in D([T1, T5]).

The proof of this theorem involves employing distinct proof techniques for the three subpop-
ulations Z,gnl) , Z,En; and Z,ins) that are summed up here, alongside some heuristics and biological
interpretations:
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(

e Heuristics concerning the convergence of 7 knl) : The random variable Z° is the asymp-

totic limit of the well-renormalized subpopulation Z,E,nl) composed of the mutant cell lin-

eages issued from mutational events generated before time t(_n)(k). The analysis is made

in two steps. First we adapt a proof from [8] or [10] to demonstrate that at time t(_”)(k:),

the number of mutant cells of trait k asymptotically follows a Luria-Delbriick distribution

200k 1K —1
Ao

uses the Poissonian structure of the process of mutation from trait k — 1 to trait k& as well
as that conditioning on the number of mutant cells generated due to mutational events up

with parameters ()\0, ak, Bk, wk_1W), which has a infinite expectation. Such proof

to time t(_n)(k;), the vector of the remaining time for each of the mutant clone to grow up

to time t(f)(k:) is asymptotically the order statistic of a vector of i.i.d. exponential ran-
dom variables with parameter \g. Subsequently, we establish control over the size of all
mutant cell lineages present at time t(_")(k) by time (¢t(k) + t)log(n) using a martingale ap-
proach. These lineages experience exponential growth at rate A; over a duration of time
(t(k) + t)log(n) — t(,n)(k:) = tlog(n) + 9(’17;1) log(log(n)), resulting in a typical size of order

o (n”‘k 1og6(k71)% (n)) This subpopulation corresponds to the lineages of the possible mu-
tant cells generated due to random mutational events appeared before the deterministic time
t(_n)(k). Due to the selectiveness of the mutation, their lineages have at time t(_n)(k) asymp-
totically infinite expectancies. Moreover, the fact that they asymptotically contribute to the
size order of trait k agrees with the natural intuition behind considering a selective mutation.

Heuristics concerning the convergence of Z](an): Dealing with the appropriate normal-

isation of ZlinQ) is more complex. For the mutant cells generated between times t(f)(k) and
t(k)log(n), and their lineages, we approximate this subpopulation with the simpler model
of Definition 1.2.11 with the adequate parameters that are (Ao, 201 pk—1wr—1W, ag, Bk),
to reduce stochasticity and facilitate obtaining its asymptotic limit at time ¢(k)log(n). We
rigorously establish by a martingale argument using a L' convergence that at the first-order,
this subpopulation behaves asymptotically akin to the considered approximate model up to
time t(k)log(n). In particular, such approximate model grows exponentially fast at rate Ay

during a time t(k)log(n) — t(,n)(k) = e(iigl)log(log(n)), implying that at time ¢(k)log(n)
Ak

the subpopulation Z,g"z) is of order O (loge(k_l)ﬁ(n)) Then we obtain its asymptotic limit

at time (t(k) + t)log(n) using a law of large numbers argument. More precisely, after time

t(k)log(n) there are no longer mutational event from trait k — 1 to trait k that are counted

G(k—l)i—’g(

in this subpopulation anymore. Because at this time we have an order of O <log n))

mutants cells, and that their lineages grow exponentially fast at rate Ay during a time ¢ log(n),
AL
(k=155 (n)n”‘k) at time (t(k) +t)log(n). This
subpopulation encapsulates the idea that an asymptotically infinite number of lineages (but
not all of them) significantly contribute to the size of the selective mutant trait subpopulation,
despite being characterised by a finite mean random variable. However, these infinite number
of lineages are all produced on the slower log(log(n))—accelerated time scale, meaning that
they are asymptotically all condensed at the same time point for the log(n)—accelerated time
scale. Such result contrasts a bit with the first biological intuition previously mentioned, be-

this results in a subpopulation of order O <log9
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cause we obtained that an infinite number of selective mutant cell lineages are asymptotically
contributing to the selective mutant subpopulation size, but not so much in the sense that
all these contributing mutant cells are actually produced at times that are asymptotically
condensed around ¢(k)log(n), in agreement with the intuition under selectiveness.

e Heuristics concerning the convergence of Z,(Cng) Dealing with Zéng) , the subpopulation
containing solely mutant cells generated after time ¢(k)log(n) along with their lineages, is
done using a similar martingale method as the one used in Chapter 4, to get that it scales
as ntt loge(k_l)(n). Hence, asymptotically it becomes negligible and vanishes in the limit.
Heuristically, the selectiveness of the trait implies that only the one generated around time
t(k)log(n) are asymptotically contributing at time (t(k) + ¢)log(n). At time t(k)log(n), the
number of mutant cells of trait k£ generated from mutational events from trait k—1 is of order
o (logo(kfl) (n)) Then their lineages are growing exponentially fast at rate Ay during a time

tlog(n), giving a size of order O <log9(k_1)(n)n”‘k) at time (t(k) + t)log(n). Biologically
meaning, after time ¢(k)log(n) the generated selective mutant cells and their lineages have

too much time delay compared to the first generated mutant cells such that their contribution
appears negligible.

Some natural remarks about the result of Theorem 1.2.12 can be made:

e First-order asymptotics: In Theorem 1.2.5, one obtains that the stochastic exponent as-
sociated to the mutant subpopulation of trait k asymptotically converges, conditioning on
{W > 0}, to tAg, which corresponds to the power of n captured in Theorem 1.2.12. Notably,
such result means that in the case of a selective mutant trait, growth stems not from the
mutational process but rather from the inherent expansion of selective mutant cell lineages.
This stands in contrast to deleterious mutations, where growth is actually driven by the muta-
tional process, and neutral mutations, where growth represents a balance between mutational
process and inherent lineage expansions. Moreover the power of log(n) is also captured by
this theorem, which is a generalisation of Theorem 1.2.4 allowing for a first selective mutant
trait. An interesting pattern for such power occurs. For deleterious and neutral mutations,
we previously obtained that a neutral one increases such power by 1 where a deleterious one
has no effect. For a selective mutation, it is a bit more intricate: the power obtained for the
previous trait is accelerated by the ratio between the growth rate of the selective trait and the
actual one of the previous trait (that is the one of the wild-type subpopulation). In particular
if there are only deleterious mutations before the first selective one, then the power of log(n)
stays equal to 0 for the first selective trait.

e Time dependence: An interesting characteristic of the limit for the selective mutant trait,
that contrasts with neutral and deleterious mutations, is its independence from the time pa-
rameter . In Theorem 1.2.4 we have shown that alongside a mono-directional graph composed
of neutral or deleterious mutations only, the asymptotic limit of a trait depends on the time
parameter ¢ as a polynomial function of degree the number of neutral mutations up to this
considered trait. With Theorem 1.2.12 we show that this time dependence is lost when the
first selective mutant trait is encountered in the mutational pathway. In a certain sense, one
can say that it resets the time dependence. Observing such differences depending on the type
of the mutation seems more than intuitively natural. Indeed, with a neutral mutation, the
balance between the mutational process and the inherent growth makes clear that the lineages
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have equal contributions on the size order, generating a dependence on the time parameter
via an extra integral operator from the time dependence of the previous trait. For a dele-
terious mutation, driven by the mutational process, the time dependence comes from taking
into account only clones generated at the considered time, meaning that the dependence is
identically forwarded from the one of the previous trait. For a selective mutation, the inherent
growth prevails the mutational process, implying that only the lineages generated around the
typical time to observe such mutant trait are asymptotically contributing, and so all the time
dependency from the previous trait is completely lost.

Stochasticity of the limit: In the case of neutral and deleterious cancer evolution, we
obtained in Theorem 1.2.4 that the stochasticity captured by the first order asymptotics of
the mutant subpopulation sizes is fully given by the random variable W, which quantifies the
large time stochasticity associated to the primary subpopulation. In the remarks made on
Theorem 1.2.4 point (iii), we argued that such result could not be obtained for a selective
mutation, explaining the failure of the martingale approach. In Theorem 1.2.12 we show that
the latter conjecture is true. In the limiting random variables, Z° and Z%, the stochasticity
of W is present, but another layer of stochasticity is also given due to the growth of the lineages
of the selective mutant cells. The independence, when conditioning on W, of these two limiting
random variables comes from the fact that they correspond to the asymptotic limits of two
subpopulations of mutant cell lineages that are independent due to the mutational process
which is Poissonian.

Dealing with the next mutant trait: Asymptotically we obtain that the limiting ran-
dom variable Z39 has an infinite expectation, coming from the Luria-Delbriick part of the
compound random variable, a consequence of the selectiveness of the considered mutation.
Such specificity entails mathematical difficulties, explaining why the martingale approach de-
veloped in Chapter 4 fails. Indeed, taking an expectation balances the probability of an event
with the number of cells seen if the event occurs. Consequently, unlikely events, such as rapid
mutations to the selective trait, can lead to extremely large population sizes far exceeding
typical asymptotic sizes implying the expectation order is given by these unlikely event.

Moreover, it hampers from dealing with the next mutant trait. In particular the cells of
trait k + 1, and their lineages, produced by Z,gnl) are, for now, untractable. More specifically,
dealing with the latter subpopulation of trait k + 1 using the same approach as for capturing
the asymptotic limit of trait k£ as in Chapter 5, the martingale approach developed to show

that Z\™)

441 and the adapted approximate model are sufficiently close to transfer the limiting

behaviour from the approximate model to Z 12121,2 fails. Indeed, a L' approach is needed for

this step. Instead of approximating a mutant trait by its asymptotic limit to tackle the next
mutant trait, a potential solution to deal with such difficulty is to directly deal with all the
mutant subpopulations together without using the approximations given by the limits at each
step. This procedure would normally allow for overstepping the infinite expectation of Z7.

Two steps limit: Instead of being interested in the double limit given by the large population
and power law mutation rates regime, another interesting approach is to consider a two steps
asymptotics where first the large time limit is obtained with fixed mutation rates and then
the limit when these rates tend to 0 is obtained. In [24], Nicholson, Cheek and Antal are
studying this two steps limit. An interesting fact is that the results are different, meaning



1.2. CELL DYNAMICS OF MULTITYPE POPULATIONS IN ONCOLOGY 49

that there is no equivalence between performing the double limit directly or in two steps. But
some similarities are actually obtained for the structure of the asymptotic limits. Notably,
both asymptotic results can be decomposed into the product of a time-independent random
variable (which are different) and a simple time-dependent deterministic function controlled
by the growth rate of the selective mutant trait (with the same deterministic function but
taken at different times). More precisely, in their case, the stochasticity of the asymptotic limit
that is captured (see [24], Theorem 1) is a Mittag-Leffler distribution with tail parameter the
ratio between the growth rate of the wild-type subpopulation and the one of the first selective
mutant trait, and a scale parameter satisfying a specific equation depending on the birth,
growth, and mutation rates of the preceding mutant traits. Such asymptotic random variable
is not captured by Theorem 1.2.12, as mentioned above. Moreover, the deterministic function
is in both cases the exponential function whose growth rate is the one of the selective mutant
trait, but taken at different times. In their case, when looking at the limit when ¢ — oo,
the time that is taken for the deterministic function is actually ¢, where in our case, at time
(t(k) + t)log(n) it is tlog(n) that is taken.

1.2.5 Perspectives

Many refinements on the model of carcinogenesis developed in Chapters 4 and 5 are still possible.
Regarding Chapter 5 the immediate next step is to adapt the current approach in order to capture
the first order asymptotics when the graph is a mono-directional one allowing for more than one
selective mutant trait. Then, using an approach based on quantifying the contribution of the
mutational paths on the graph, as in Subsection 4.4 when allowing only neutral and deleterious
mutations, one can obtain the first order asymptotics for a general finite directed labelled graph.
Such result would give characterisation of evolutionary effective pathways, the ones that contribute
asymptotically. Currently, we have developed a method capable of dealing with up to the first
selective mutant trait. The next step is therefore to find a way to handle subsequent mutations
after this first selective mutant trait. We will start by looking at a simpler model with 2 mutations
where the first one is selective. The challenge in this generalisation lies in the fact that, compared to
the asymptotic limits for neutral and deleterious traits, the asymptotic limit for the selective mutant
trait has an infinite expectation. This specificity implies that all the techniques used to deal with
a new mutant trait, regardless of its selective advantage, no longer work. One potential approach
to address this singularity is to consider the asymptotic limits of mutant traits all together, rather
than relying solely on the asymptotic behaviour of the previous mutant subpopulation to deal with
the next mutant trait.

Moreover, in Theorem 1.2.12, the asymptotic limit of the first selective mutant trait is given as
the sum of two (more or less complex) random variables. One could try to get a simpler identification
of the asymptotic distribution. A promising strategy is to introduce a time parameter C' > 0 such

that the selective mutant population Z]i") is separated into two subpopulations Z,gng ; and Z,i"g_g

composed respectively of the lineages of the mutant cells generated before time ) (k) + C (instead

of t&n)(k) in the current approach), respectively after the later time. Adapting the proof techniques
of Chapter 5, one can show that both the subpopulations converge to some random variables Zyon
and ZZ°% o, whose law depends on the parameter C'. By identification of the limit, the distribution
of Zp%) + Z%, is the same as the distribution of Zp% | + Zp% 5 for all C' > 0, allowing to look at the

limit when C' goes to infinity. Intuitively, when C' is growing the contribution of Z,i”()j , becomes
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more important since more lineages of trait k£ are included in this subpopulation. One could show
that when taking the limit C' goes to infinity, the distribution of 2 c,2 converges to 0, since all the
lineage contributions are incorporated in the limit of the distribution of Zp% ;. Then, using the
Laplace transform could be an option for characterising the limiting distribution of Z;-; when C'
goes to infinity.

The main insight provided by Theorem 1.2.4 in the asymptotic limits concerns the identification
of distinct effective evolutionary pathways, a facet not previously elucidated in the literature, such
as in the stochastic exponent results outlined in Theorem 1.2.5. A natural progression would be to
leverage this newfound information to conduct inference on the graph structure, particularly in con-
texts where genetic compositions over time are accessible. This refinement holds significant appeal
for biologists as it promises insights into future tumour evolution behaviours, thereby facilitating
the development of adaptive therapeutic strategies. Furthermore, the asymptotic limits afford valu-
able insights into model parameters, offering potential avenues for parameter estimation based on
theoretical findings. Another possibility entails utilising information on neutral (and deleterious)
cancer evolution to conduct precise neutrality cancer evolution tests.

The branching hypothesis for cancer formation becomes inadequate as the cell population in-
creases, necessitating consideration of cell-cell interactions. Introducing a model that incorporates
competition between individuals, with a carrying capacity K that scales as a specific power of the
parameter n, becomes imperative. The environment’s carrying capacity is a measure of the maxi-
mal population size that the environment can sustain for a long time. The mathematical challenge
lies in obtaining first-order asymptotic results for mutant subpopulations, akin to Chapters 4 and
5. This endeavour represents an extension of [12], where the authors explore a finite directed graph
trait space within the context of large population and power law mutation rates, incorporating a
competitive kernel between individuals and deriving asymptotic results for the stochastic exponents
of mutant subpopulations. To achieve this, one must first perform the first-order asymptotic results
for growing subpopulations and the resident population around any change in slope in the algo-
rithm described in Theorem 1.2.5. Subsequently, one must address first-order asymptotics around
any change in slope, arising from either the emergence of a new trait (by a similar analysis as in
Chapters 4 and 5) or a shift in the resident population.

When investigating cancer evolution through genetic composition analysis, the ultimate aim is
to devise an adaptive therapeutic strategy. Insights gleaned from the past and present genetic com-
position of the tumour provide valuable foresight into its future evolution, enabling the formulation
of strategies to impede tumour growth. In the context of adaptive therapy, one pertinent considera-
tion involves the strategic switching between different treatments. A key biological question revolves
around determining the optimal frequency of such switches to effectively control tumour growth.
This can be achieved by incorporating various therapies into the model through the introduction
of different environments. The growth rate function becomes contingent not only on the trait but
also on the prevailing environment. One fundamental mathematical inquiry pertains to identify-
ing, given the trait space, mutational regime, and growth rate function, the optimal strategy for
switching environments to control tumour growth. One potential criterion could involve ensuring
the tumour does not exceed a certain size threshold or, if unavoidable, delaying this occurrence
for as long as possible. Consequently, the frequency of switches may not be deterministic. The
consideration of periodic switching of environment is studied in [17] for a different model but under
the large population and power law mutation rates regime.

Some criticisms can be raised regarding the mutation regime. While we typically fix the number
of genetic traits, it could be argued that the number of sites on the genome where mutations can
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occur is sufficiently high relative to the observed tumour size, thus scaling with the parameter n,
rather than remaining constant. This perspective would lead us to consider the large population,
large trait space, and power law mutation rates regime instead of solely focusing on the large popu-
lation and power law mutation rates regime. To illustrate, consider the trait space represented by
the set of vertices V = {0,1}°, where S € N denotes the number of sites on the genome, and the set
of edges E = {(u,v) € V2, u # v}. In this scenario, each cell’s phenotypic traits are represented by
a finite sequence of Os and 1s across the S sites on the genome, with each cell capable of mutating
to any other cell trait. Specifically, the mutation probability among sites could be independent of
each other, as observed in [8, 10]. In this particular context, the large population, large trait space,
and power law mutation rates regime means

3(s$n)neN; Sn — 00 and ‘S(")
n—oo

= Sn,

Vie N,¥j € {0,1},3;; € RT,nfipl™ — 1;; € RY,
n— oo

1,
where MEZ) represents the mutation probability on site ¢ from trait j to trait j := {0,1}\j. While
such considerations are mentioned in [10], the studied mutation regimes first focus on power law
mutation rate regimes before considering the scenario where the number of sites on the genome
tends to infinity.

In Theorem 1.2.5, when considering a specific trait space (V,FE,L) and a given growth rate
function A, the evolutionary pathways of the tumour observed by this theorem are entirely de-
terministic. This means that these data alone suffice to pre-determine tumour evolution from a
deterministic standpoint. The results on first-order asymptotics, as presented in Theorem 1.2.4, do
not introduce additional complexity for the evolutionary process. Instead, they precisely charac-
terise the deterministic nature of the evolutionary pathways, which are functions of (V, E, L) and
A. The random processes captured through first-order asymptotics at the limit are deterministic
functions of the set of evolutionary pathways. To introduce a model that allows for evolutionary
processes not deterministically pre-determined by the parameters of the model, one could initially
consider introducing stochasticity into the growth rate function A. This randomness would create
variability into the evolutionary pathways, thereby departing from strict determinism.
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Chapter 2

Invasion of cooperative parasites in
moderately structured host
populations

This chapter corresponds to the publication [1] ”Invasion of cooperative parasites in moderately
structured host populations”, written in collaboration with Cornelia Pokalyuk, which has been
published in Stochastic Processes and their Applications.

Abstract:
Certain defence mechanisms of phages against the immune system of their bacterial host rely on
cooperation of phages. Motivated by this example we analyse invasion probabilities of cooperative
parasites in moderately structured host populations. We assume that hosts occupy the vertices
of a configuration model and offspring parasites move to neighbouring sites to infect new hosts.
Parasites (usually) reproduce only when infecting a host simultaneously and then generate many
offspring. In this regime we identify and analyse the spatial scale of the population structure at
which invasion of parasites turns from being an unlikely to a highly probable event.
Keywords: host, parasite, cooperation, invasion probability, configuration model.
MSC2020: 92D30, 60J80, 92D25.

2.1 Introduction

We analyse the invasion probability of parasites in moderately structured host populations. The
motivation of this study stems from observations of phage populations. Phages are viruses infecting
bacteria. The interest in phages has been growing in recent years because of the growing incidence
of multi-drug resistant bacteria. As an alternative to antibiotics, in phage therapy the infected host
is inoculated with a population of phages to eliminate the pathogenic bacterial population [65].
Bacteria own various mechanisms to defend against phages, one of these is CRISPR-Cas. This
mechanism relies on certain complexes of proteins, that are patrolling in the bacterial cell to de-
tect (and subsequently distroy) genetic material of phages (that the bacterial cell or its ancestors
encountered previously and stored at the so called CRISPR-locus in the bacterial genome), see
[26]. Some phages can block these complexes with mechanisms called anti-CRISPR (ACR) which

95



56 CHAPTER 2. INVASION OF COOPERATIVE PARASITES

relies essentially on cooperation of ACR-phages [28]. Indeed, when a CRISPR-resistant bacterium
is attacked by a single ACR-phage, the phage often dies, whereas when several phages attack a
bacterium simultaneously or subsequently, they have a good chance to replicate [29], [28].

The models that have been investigated so far to understand the underlying growth dynamics of
ACR-phages and CRISPR-resistant bacterial populations are deterministic models that map the
behaviour of well-mixed phage and bacterial populations [28]. In these models one starts with a
relatively large phage population, for which simultaneous or rapid subsequent attacks of phages are
likely.

Here we consider a phage population that is initially small. In this setting stochastic effects
cannot be ignored. We are interested in the probability that the phage population manages to
invade the bacterial population, in the sense that a non-trivial proportion of the bacterial population
gets infected and subsequently killed by the phages.

We assume that offspring phages attach to neighbouring bacteria. If the bacterial population
is well-mixed, offspring numbers of phages need to be very large for simultaneous infections of
neighbouring bacteria to be likely. However, many bacterial populations are spatially structured,
e.g. in biofilms, see [25]. In this case bacteria are only adjacent to a relatively small part of
the bacterial population and co-infections of bacteria are common even when offspring numbers of
phages are moderate. Consequently, invasion of phages should be more likely in spatially structured
bacterial populations than in well-mixed populations.

Population dynamics involving cooperation have been mainly studied from the perspective of
a single population that is divided into defectors and cooperators. In these studies one often is
interested if cooperators may prevail or coexist with the population of the defectors, see e.g. [66],
[67]. Here we consider only cooperators. The survival of the population of cooperators is nonethe-
less non-trivial, because the capability of the individuals to cooperate depends on the population
structure of another population, the host population.

Even though the motivations of this project come from phages, we think that our results might
be also relevant for other host-parasite systems. For example it is believed that the infection of
cancer cells with oncolytic viruses, that is viruses that attack cancer cells, is more effective, if a
cancer cells are hit by several viruses simultaneously, because in this manner the virus can cope
better with the (interferon-based) anti-viral response of the host, see [31].

In order to put our study into a general context in the following we will consider instead of a
population of phages and bacteria a population of cooperative parasites and hosts. Even though
viruses (and in particular phages) are not regarded as parasites by biologists we think it is appro-
priate to call the involved individuals parasites and hosts, because the population dynamics of the
phage population is characterised by the fact that phages are only capable to reproduce in their
host, the main feature of parasites.

Spread of parasites or pathogens in finite host populations has been analysed mainly with
respect to epidemiological models, in which only the host population is modelled. Hosts are either
susceptible, infected or recovered and the host population is placed on the complete graph or the
configuration model, see [68], [69] or [70]. Here we consider both populations.

We model the spatial structure of the host population by placing hosts on the vertices of a
random graph of size N formed according to the configuration model. We assume that each host
is neighboured by dy hosts, where 1 < dy < N, and hosts are placed on vertices of a random
graph whose edges are arranged according to the configuration model. Initially a single host gets
infected by a parasite and vy offspring parasites are produced. Thereafter the populations evolve in
discrete generations. At the beginning of each generation parasites move randomly to neighbouring
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hosts. Whenever a host gets attacked by at least two parasites the parasites reproduce. If a host
gets infected only by a single parasite, the infection is successful only with some small probability
pn. At parasite reproduction vy parasites are generated. We show that at the scale vy ~ cvdy,
for some ¢ > 0, the number of neighbouring hosts that is attacked simultaneously by offspring
parasites is approximately Poisson distributed with parameter ¢?/2. Furthermore, in the regime
unpN ~ x, for some 0 < z < 1 the number of hosts that get successfully infected by single parasites
is approximately Poisson distributed as well this time with parameter z. (The assumption = < 1
guarantees that invasion due to infections by single parasites is unlikely.)

We explore the spread of the parasite population within the host population (guided by the
analysis of epidemics on random graphs, see [69], Part III, as well as [68]) by couplings with
(truncated) Galton-Watson processes (GWP) until N hosts get infected for some a > 0 sufficiently
large. In this phase the invasion process is essentially driven by pairs of parasites originating from
the same vertex and attacking neighbouring hosts simultaneously as well as parasites attacking
hosts alone successfully in the case pyvy — x with x > 0. Once the number of infected hosts
per generation exceeds the level N%, with high probability in a finite number of generations the
remaining hosts get infected due to parasites attacking hosts simultaneously from different edges.
Hence, the invasion probability of the parasite population, that is the probability that the host
population eventually gets killed, is in the critical scale vy ~ cv/dy asymptotically equal to the
survival probability of a Galton-Watson process with an offspring distribution that is given by the
sum of independent Pois(c?/2) and Pois(x)-distributed random variables.

2.2 A host-parasite model with cooperative parasites

2.2.1 Model description and main results

Consider a population of hosts and a population of parasites both located on a random graph.
The graph has N vertices and each vertex has dy half-edges. We assume that dy N is even and
half-edges are matched according to the configuration model, i.e. half-edges are paired uniformly
at random.

Initially, on each vertex a single host is placed. We start the infection process by infecting a
randomly chosen host with a parasite. We say that parasites infect a host, when the infecting
parasites replicate in the host. At replication vy offspring parasites are generated (independent on
the number of infecting parasites) and the host as well as the infecting parasite(s) die(s).

The infection process continues in discrete generations according to the following scheme. At
the beginning of each generation, parasites move independently to nearest neighbouring vertices.
If a vertex to which a parasite moves to is still occupied with a host the parasite attacks this host.
If a host is only attacked by a single parasite, the parasite replicates only with a small probability
pn- In this case vy offspring parasites are generated and the reproducing parasite as well as the
host die. Otherwise (with probability 1 — px ), the parasite dies and the host survives. If, however,
at least two parasites attack a host simultaneously, the parasites cooperate, they produce (with
probability 1) in total vy offspring parasites and the infecting parasites and the host die. If a
parasite moves to a vertex that is no longer occupied by a host, it stays there and moves further in
the next generation. Hosts do not move on the graph during the infection process. See Figure 2.1
for an illustration of the infection process.

Given a sequence of parameters (N, dy,vn, pn)Nen we denote for each N € N by
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Figure 2.1: Illustration of different infection types

I = (1) nen,

the process that counts the number of infected hosts in the generations n € Ny and by

N —(N
N~ @) nens

T
with
N _ v
= N
I, =>"1™,
i=0
the process that counts the number of hosts infected till generation n € INj.
We are interested in the probability that the parasite population invades the host population. More
precisely, we consider the following events.

Definition 2.2.1 (Invasion of parasites). Consider the above host-parasite model with parameters
(N,dn,vn, pN)NeN- Let u € (0,1] and denote by

(N)

E&N)::{HHEJNO:T ZuN},

the event that the parasites invade the host population (at least) to a proportion u.

In the following we consider parameter regimes for which the host population is initially large,

that is N — co. We will write — for " 5 throughout the paper, unless otherwise specified. We
assume that from each host many other hosts can be reached, i.e. dy — oo, but the population is
not well mixed, in the sense that dy € o(N). Furthermore many offspring parasites are produced
at infection of a host, i.e. vy — oo, and the contribution of parasites attacking a host alone is at
most critical, in the sense that the expected number of offspring vy pyn generated at such attacks
is at most 1. In Theorem 2.2.2 we identify the critical scaling of vy and dp, at which invasion of a
non-trivial proportion of the host population turns from an improbable to a very likely event.
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Theorem 2.2.2. Assume dy € O(N?) for some 0 < 8 < 1, and pyvy — x for some 0 < z < 1.
Depending on the order of vy we obtain the following invasion regimes:

(i) Assume vy € o(\/dn). Then for all0 <u <1

lim P (Efj”) =0.

N —oc0

(i) Assume vy ~ cv/dn for ¢ > 0. Denote by w(c,x) the survival probability of a Galton-Watson

process with Pois(é + x)-offspring distribution. Then the invasion probability of parasites satisfies
forall0<u<1
lim P(EM) = 7(c, ).

u
N —o0

(i11) Assume /dn € o(vy). Then

lim P (E(M) =1,
N —oc0

After Remark 2.2.3 we will sketch the proof of Theorem 2.2.2 in Subsection 2.2.2 and discuss
some generalisations of the model and the results in Subsection 2.2.3. A rigorous proof of Theorem
2.2.2 will be given in Section 2.6 after preparing auxiliary results in Sections 2.3 - 2.5. In Table 2.1
notation that is frequently used in the manuscript is summarized.
We will often write whp for with high probability to indicate that an event occurs with a probability
that is asymptotically 1 as N — oo.

Remark 2.2.3. (i) In the setting of Theorem 2.2.2 (i) for %Jr:c < 1 we have w(c,x) = 0, which
means that whp parasites do not invade the host population.

(i) We assume vnypn — x < 1, that is the capability for reproduction of parasites hitting a host
alone is subcritical or critical (in the terminology of branching processes).

(iii) It has been shown that population viscosity, i.e. limited dispersal of individuals, is generally
beneficial for cooperation, see [32]. Here we see an example at which the spatial structure of the
host population is passed on to the parasite population that profits from this structure as well.
Consequently, in host-parasite systems the host population may on the one hand profit from
a spatial structure by enhancing cooperation of hosts, but on the other hand spatial structure
may reduce the fitness of the host population because parasite populations may benefit from
the spatial structure as well.

(iv) The proof of Theorem 2.2.2 (ii) yields that the time till the entire host population gets infected

_3
is upper bounded by %

to prove Theorem 2.2.2(ii) we approzimate T by a Galton- Watson process from below, that
is truncated from time to time but grows at the same speed as an ordinary Galton-Watson
process (with asymptotic offspring mean ¢®/2 + x), until the level NI-4B8+8 g reached, for
some 0 > 0 sufficiently small. Afterwards the host population gets killed whp within two more

generations. From this follows immediately that the host population is whp killed after time
(1—2B+4¢)log N
log(c?/2+x)
setting of Case (i) it follows directly from the proof (in which couplings between infection
processes from Case (1ii) and Case (ii) are established, see Section 2.6 for more details) that

the time till extinction of the host population is whp o(log(N)).

for any € > 0, conditioned on a parasite outbreak. Indeed
(N)

for any € > 0 in case of invasion of the parasite population. Similarly, in the
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With some more effort we expect that it is possible to show that in the setting of Theorem
2.2.2(i1) invasion of the host population ends whp after % generations. Infection
by cooperation of parasites attacking vertices from different edges takes over when the number
of infected hosts exceeds the level N'=P+¢ see (the sketch of) the proof of Theorem 2.2.2
for more details, subsequently the host population should be killed whp in a finite number of

generations.

2
Furthermore, depending on the size of the ratio % inwvasion of the host population is consid-

erably faster than log(N) in Case (iii). One shows for example easily that the host population
2
gets whp killed after finitely many generations, if Z—x ~ N7 for some v > 0.

2.2.2 Sketch of the proof of Theorem 2.2.2

In the following we will use an adaptation of the classical notation for SIR epidemics on a configura-

tion model (see e.g. [69], Part III). Define the set of susceptible hosts S as the set of hosts which

Y

have not been infected until generation n, the set of infected hosts as the set of hosts which get

infected (and killed) at generation n, and the set of removed hosts R as the set of hosts which
got infected (and killed) strictly before generation n. Since each host is uniquely related to a vertex,
we will sometimes also speak of susceptible vertices and infected vertices instead of susceptible and
infected hosts. In addition we will call vertices whose hosts have been removed empty vertices.

We explore the random network of hosts while the parasites are spreading in the population.
We start at the vertex that got infected initially and build up an edge between two vertices once
the edge gets occupied by at least one parasite, see Figure 2.2. Half-edges and edges along which
parasites move to neighbouring vertices we call occupied half-edges and occupied edges, respectively.
While an half-edge can get occupied only from a single side (at which it is connected to the vertex),
edges can get occupied from two sides. Half-edges and edges that have not been explored yet are
called free half-edges and free edges, respectively.

We proceed by sketching first the proof in the critical parameter regime vy ~ cy/dy for some
¢ > 0, as defined in Theorem 2.2.2 (ii). In this scaling at the beginning the number of new
infections generated by hosts that got infected in the previous generation is closely related to
the birthday problem. When the number of parasites is relatively small, offspring parasites from
different hosts whp do not interfere and hosts get mainly infected by cooperating parasites that
have been generated in the same host and move along the same edge, as well as by single parasites
attacking successfully neighbouring hosts in the case > 0. (In the following we will refer to these
single parasites as successful single parasites.) Ounly at a later stage of the epidemic, when the
number of infected and removed hosts exceed the level N1=7 it gets likely that hosts are infected
by parasites that attack the host from different edges. Recall that by assumption at parasite
reproduction, vy offspring parasites are generated and a host is connected over dy half-edges to
(roughly) dy different neighbours. Hence, at the beginning the number of new infections occurring
due to cooperation of parasites is for each infected host roughly given by the number of days at
which at least two persons share a birthday, when the birthdays of vy persons are independently
and randomly distributed on dy days.

If vy ~ cy/dy for some ¢ > 0 the number of days at which at least two persons share a birthday
is asymptotically Pois(%)—distributed. Furthermore, the number of infections initiated by successful
single parasites is asymptotically Pois(x)-distributed, if © > 0. Since vy — 0o, the number of host
infections triggered by pairs of parasites moving along the same edge and the number of infections
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Figure 2.2: Tllustration of the graph structure

generated by successful single parasites are asymptotically independent. Hence, when the number
of infected hosts is still small by each infected host roughly Pois(% + x) many new host infections
are generated.

Furthermore, offspring parasites of different hosts whp do not interfere at the beginning, hence,
for some time the total number of removed and infected hosts can be estimated from above and
below by the total sizes of Galton-Watson-processes with offspring distributions that are close to a

Pois (% + x) -distribution, see Definition 2.3.1 and 2.4.5 for a rigorous definition of these processes.

To obtain an upper bound on the invasion probability it suffices to prove that whp the total
number of removed and infected hosts can be stochastically dominated by the total size of the upper
Galton-Watson process until a level £y is reached, for some level £y with £y — oco. Since the upper
Galton-Watson process reaches any level ¢y with £y — oo with the probability m(c, z) + o(1), see
Proposition 2.3.3, the probability to invade the host population up to level u for 0 < v < 1 is upper
bounded by 7 (¢, z) + o(1) as well.

To derive a lower bound on the invasion probability we couple first ZV) with a Galton Watson
process Zl(N), such that Z is whp bounded from below by the total size of ZZ(N) until no further
hosts are killed or the total number of removed and infected hosts exceeds the threshold N¢, for
0 < a < f. As for the upper bound, the probability that the total size of the approximating Galton-

Watson process exceeds the threshold N¢ is asymptotically equal to m(c,z) for any 0 < a < 3.

In the case 8 > % we can choose the level to be reached as N® with a =1 — % + ¢ for some

38
€ > 0 small enough such that 1— % +& < min {B, 1-— g} Once the level N1~ ¢ is crossed, whp

at most two generations later the total host population gets removed, see Proposition 2.5.1. The
final epidemic phase is so quick, since once at least N'=7 hosts are infected, infections generated by
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pairs of parasites attacking a host from different edges take over. Indeed, if IT(LN) € O(N7) in some

generation n for some v > 0 (and TEZN) < N) O(vyN7) offspring parasites are generated. From
these parasites ©(N27+7) pairs of parasites can be formed. The majority of these pairs consists
of parasites that have been generated on different vertices. The probability that such a pair of
parasites attacks the same vertex is approximately % For v > 1— 3 we have 2y 4+ 3 —1 > 7.
Hence, when ©(N7) hosts are infected for some 1— 8 < v < 1, more hosts get infected by parasites
attacking a vertex from different edges than by pairs of parasites moving along the same edge.
Furthermore, for 1 — % <y <1l-— g after one generation ©(N?7+5~1) hosts get infected and, since
2v+pB8—-1>1—/2and 2(1 — g) + 8 —1 =1, after another generation on average all hosts get
killed.

In the case 8 < % the argument is slightly more involved, since in this case it is not possible
to approximate whp ZU") from below by the Galton-Watson process Zl(N) until N1~ +¢ hosts get
infected. If the number of infected hosts exceeds the level N?, then with non-trivial probability an
edge is attacked from both ends simultaneously by pairs of parasites or single successful parasites.
In this case none of these parasites cause an infection of a host, because the vertices to which these
parasites are heading to are already empty. However, we can derive an upper bound on the number
of parasites involved in such events and remove the corresponding branches in the lower Galton-
Watson process. Since these parasites make up only a vanishing proportion of the total parasite
population, the growth of the corresponding truncated Galton-Watson process is asymptotically
the same as that of the original Galton-Watson process. Hence, for the truncated Galton-Watson
process essentially the same techniques can be applied to finish the proof concerning the probability
of invasion in the case 8 < %.

The details of the proof can be found in Sections 2.3 to 2.6. In Section 2.3, we are dealing
with an upper bound for the invasion probability. In Section 2.4 we derive a lower bound of the
probability that N® hosts get infected for 0 < o < 1 — %ﬂ + ¢. In Section 2.5, we show that when

N1=35+¢ hosts got infected, then whp the remaining hosts will also die in at most two generations.
A detailed proof of Theorem 2.2.2 (ii) can be found in Section 2.6.

In the setting of Theorem 2.2.2(i) the number vy of offspring parasites generated at an infection
is negligible compared to /dy. Parasites are unlikely to cooperate. Hence, invasion could only
be achieved by successful single parasites. But since we are considering the parameters regime
vy -pN — = < 1, successful single parasites are too rare for invasion. Hence, the parasite population
infects only a negligible proportion of the host population before it dies out and so for any u € (0, 1]
the invasion probability is o(1).

On the contrary, if the number vy of offspring parasites is large compared to v/dy, then the
infection of a single host leads to an asymptotically infinite number of further host infections. At
least one of the infected hosts triggers the invasion of the host population whp.

2.2.3 (Generalisations

The results of Theorem 2.2.2 can be extended to more general settings. Next we point out some of
these and discuss how the proofs would need to be modified. We carry out detailed proofs only in
the setting of Theorem 2.2.2 to keep the notation and proofs simple.

1.) Instead of assuming that the number dy of half-edges per vertex and the number vy of
parasite offspring, as well as the probability px are deterministic, it would also be possible to draw
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these numbers in an iid manner per vertex/host/parasite according to some distributions DIV,

VW) and PMY). Our proofs can be easily adapted, if the distributions are sufficiently concentrated.
More precisely, this is for example the case, if one can show that for iid random variables (Yi(N))
distributed as D), VV) with corresponding expectation iy we have that for some ¢y € o(un)

P (ﬁ{IE(N) — un|< CN}) - (1 P (|Yi(N) — un|> cN))N S, (2.2.1)

i=1

and given the total number of parasites, that can be generated, is My if the iid random variables
(Yi(N)) are distributed as P") we have

A ) ) My
P(D{Yi —MN|ch}>=(1—P(m —MN|>CN)) Sl

This is for DY) for example fulfilled if YI(N) is distributed as a discretized normal distribution
with mean py € ©(N?) and variance 0%, € o(N?979) for some § > 0 or is Pois(N?). If (Yi(N)) has
a heavy-tailed distribution with mean py = N? and YZ-(N) — pn has a Pareto-tail, then Condition
(2.2.1) is fulfilled, if the tail is of order 7 > 1. Similar distributions can be chosen for VIN) and PtV).

2.) While for many viruses our assumption vy — oo might be well justified (since viruses often
generate a large number of offspring), for some host-parasite systems it might be more appropriate
to assume vy = v. If dy — 00, cooperative parasites whp won’t invade the host population, as in
Theorem 2.2.2 (i). If dy = d (i.e. in a setting of a sparse graph), v > 2, d > 2 (for the almost sure
existence of a giant component) and pyv — x € [0, 1], we expect that some (non zero) proportion
of the host population can be infected with some non trivial probability (that asymptotically equals
the survival probability of an appropriate GWP).

After parasite reproduction the v offspring parasites are distributed uniformly at random over the
d edges. At the beginning of invasion the parasites that do not occupy the edge, over which the
host that generated the offspring parasites got infected, are whp moving to a susceptible vertex.
Hence, a suitable candidate for a GWP, which total size approximates the number of infected and
removed hosts, should have an offspring distribution that is close to the distribution of the number
of the d — 1 edges that get occupied by at least two parasites or by single successful parasites. One
would start the GWP in generation two with a number of lines that equals the random number of
hosts that get infected in the first generation.

The asymptotic probability to invade a non-trivial proportion of the host population should be
equal to the asymptotic survival probability of these GWPes. Given invasion a certain proportion
u,u > 0 of the host population eventually gets infected. The level u should be bounded from below
by the survival probability of a suitable approximating backward branching process, see e.g. [68]
for a construction of such a backward process in the case of a Reed-Frost model. In contrast to
the setting of Theorem 2.2.2 cooperation from different edges is not sufficiently strong to accelerate
the order of the speed at which parasites spread at the end of the invasion process. Indeed, from
¢y infected hosts by cooperation from different edges of order (¢x)?/N further hosts get infected.
This number is of the same order as the number of host that get infected by cooperation over the
same edge if £ € ©((%,/N), i.e. only when already of order N hosts are infected.

While cooperation from different edges seems not to accelerate the speed of infection, it might lead
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to the infection of a non-trivial proportion of the host population, since once of order ©(N) hosts
are infected cooperation from the same edge and cooperation from different edges contribute to the
infection process on the same order.

3.) In our model we implicitly assume that bacteria get blocked only for a single generation after
a phage attack. In reality this blocking may last for a longer time. In this case our result on the

asymptotic of the invasion probability remains the same. Indeed, recall that as long as TiN) < N7
for some vy < %(1 — f) < 1 — B the number of vertices attacked from different edges is negligible.

Assuming TiN) = N7 for some v < 3(1 — j3) we also have whp I = ©(N7) and the probability
that a blocked vertex (which number is of order N7vy) is attacked by another parasite in generation
n is O(N’Y’UN%). This probability is non-trivial for v > (1 — ) (in the setting of Theorem
2.2.2(ii)). Since invasion of the host population is already decided if the frequency of infected host
reaches N¢ for some £ > 0, at this stage of the epidemic invasion of the host population occurs
anyway with probability 1 — o(1).

4.) In reality the number of offspring parasites generated during an infection could depend on
the number of parasites infecting a host. In the scaling of Theorem 2.2.2 (ii) the probability that a
host gets infected by k parasites, for £ > 3, from a set of parasites of size vy located on the same
vertex scales as N~ "2 . As long as UJ(\I;)N’W € o(vy), where vj(\]f) is the number of offspring
generated at reproduction of k parasites infecting a host, these kind of reproduction events have
only a negligible impact on the initial spread of the parasite population. Hence, in this case the
asymptotic of the invasion probability remains the same, since parasites generated on different ver-
tices will start to jointly infect hosts only when the frequency of parasites is so high that whp the
parasite population will invade the host population anyway.

5.) Instead of assuming that the graph on which the epidemic spreads is fixed over the whole
time period, one may want to consider evolving graphs, for which edges may be rewired over time.
We conjecture that for evolving graphs that rewire at most every generation the results of Theorem
2.2.2 remain valid at least if 3 > %

Indeed the proof of Theorem 2.2.2 is to a large extent based on couplings with Galton-Watson
processes. For these couplings the number of parasites generated at infection of a host as well as
the edges, along which offspring parasites move, are assigned to the vertices independent of the
generation when a host gets infected. If the graph is changing over time such a construction could
lead to failures of the couplings. However as long as the number of infected hosts of the upper and
resp. lower Galton-Watson process coincide exactly with the actual number of infected hosts, this
construction yields couplings also for evolving graphs.

For the upper bound on the invasion probability we need the coupling to hold until time 7, o at
which the GWP dies out or its total size reaches a level £y, for some sequence £y converging to
oo arbitrarily slowly. In the proof of Theorem 2.2.2 (ii) we show, that the upper Galton-Watson
process and the actual number of infected hosts coincide exactly whp until time 7, o.

For the lower bound on the probability of invasion we need to couple the total number of infected
hosts with the total size of the lower Galton-Watson process until it reaches the level N'=8+¢ for
some € > 0 or the GWP dies out. When the level N'=5%¢ is reached cooperation from different
edges already took over and completes the invasion. The actual number of infected hosts and the
number of individuals in the lower Galton-Watson process differs, when vertices get attacked from
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pairs of parasites originating from different hosts. These events start to play a role when of order
v/ N hosts get infected. If 8 > %, N'8 « /N, i.e. the lower GWP coincides sufficiently long with
W,

Similarly, one can adapt the proofs of Theorem 2.2.2 (i) and (iii) to the setting of evolving graphs. In
summary, (at least) for 8 > 7, the statements of Theorem 2.2.2 should also hold for evolving graphs.

6.) Phages that are not able to block CRISPR-resistant bacteria may have a chance to replicate
in bacteria that have been blocked by ACR-phages before. However, by a similar reasoning as in
item 3.) of this subsection and the sketch of the proof of Theorem 2.2.2(ii) this is only likely when
the amount of this type of phages is of order N'=#/2 that is this type of phages must be much
more frequent than ACR-phages initially.

7.) In our model we assume that parasites that hit empty vertices keep moving further and
hosts are not reproducing. These parasite have only a negligible impact on the fate of the parasite
population. Hence, the statements of Theorem 2.2.2 remain valid, if we assume that parasites die
(or die with a certain probability) when hitting an empty vertex.

Similarly, if hosts may reproduce (e.g. on empty nearest-neighbour spots) and the offspring
numbers per host are sufficiently bounded (e.g. uniformly bounded in N) our results remain valid.
Indeed, the probability that at least N'=#1¢ hosts get infected is asymptotically independent on
the state of the vertices on which hosts have been killed already, because the probability to re-hit
these vertices is small when the overall number of infected hosts is < N. After reaching the level
N1=B+¢ the parasite population expands faster with every generation and in only a finite number of
generations the host population gets killed whp. Host reproduction cannot curb this strong parasite
expansion, when the offspring numbers are uniformly bounded in N.

8.) Instead of considering the above configuration models, we could have also considered random
dy-regular graphs. For these to exist we would need to assume that dy = 0(\/ﬁ ). Furthermore,
biologically it seems reasonable that parasites can move from one host to another one over different
routes. If several parasites move away from the same vertex this may result in multiple edges, which
do not exist for random regular graphs, which makes it more difficult to motivate biologically the
consideration of these graphs. Nevertheless given dy = o(m ), we suspect the same result to hold
when the configuration model is replaced by the random dy-regular graph model since multiples
edges or self loops do not play a role in the infection process.

2.3 Upper bound on the invasion probability

Consider the setting of Theorem 2.2.2 (ii). In this section we prepare all results to show that the
invasion probability is asymptotically upper bounded by (¢, z). We first introduce the Galton-
Watson process Z&N), see Definition 2.3.1. This process is constructed as follows. When the number
of infected hosts is sufficiently small and the number of susceptible hosts is still sufficiently large,
hosts most likely get infected by pairs of parasites occupying the same half-edge or by successful
single parasites. Hence, we estimate the probability that an infected host infects j other hosts, for
any j (not too large), by a lower bound on the sum over (k, £) with k+¢ = j of the probabilities that
out of vy parasites, which are originating from the same vertex, 2k parasites are distributed as pairs
onto k different half-edges, the remaining vy — 2k parasites are distributed separately on different
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half-edges and ¢ of them are successful single parasites. In all other cases we estimate the number
of infected hosts by v which is the maximal number of hosts that can get infected by vy parasites.

We show in Proposition 2.3.2 that T(N) can whp be estimated from above by the total size of the
Galton-Watson process Z&N) until it reaches some level £y, with £y — oo and £ € o(NN). Only
after crossing the level £ it gets likely that two parasites located on different half-edges attack
the same host. In this case it could happen that f(N) is no longer dominated by the total size
of the Galton-Watson process. However, since the level ¢ tends to oo, the probability that the
total size of Z&N) reaches the level £ is asymptotically equal to its survival probability which is
asymptotically equal to 7(c, z), see Proposition 2.3.3. Consequently, the invasion probability of the
host-parasite model is asymptotically bounded from above by 7(c, x).

Definition 2.3.1. (Upper Galton-Watson process)

Let 0 < § < %, and ay — 00 satisfying ay € 0(\/@). Let Zi(LN) = (Zr(f\i)) N be a Galton-

n 0

Watson process with Z(()IX) =1 almost surely, and offspring distribution (p§ u)) N with
’ jE€Ng

2 5 (50) b (45) () 2 s

k+e=j

foralll1 <j<an and

pN), =1 Zp(N). (2.3.2)
Denote by Z(N) (Z(N)> N where Z => " ZZ(];[), that is Z( : o gtves the total size on
nelNg

accumulated till generation n.
The main results of this section are stated in the next two propositions.

Proposition 2.3.2. (Coupling from above)
Consider a sequence ({N)nen with €y — 0o and {303 € o(N). Introduce the stopping time

(N

TZ(N) mf{ne]No Zny, >€N orZ(N)—O}

Then it exists a coupling between (TilN)) and (75\2) such that

n€Ng n€Ng

lim P (1, <7, v <7 {00) = 1.
N—o0
Proposition 2.3.3. (Probability for the total size of the upper GWP to reach a level £y )
Consider a sequence ({n)nen with £ — 0o. Then, we have

lim P (3n ENy: 200 > eN) = (e, z).

N—oc0

In Subsection 2.3.1, we will prove Proposition 2.3.2. In Subsection 2.3.2 we will study (in a

quite general setting) the asymptotic survival probability of a sequence of Galton-Watson processes
and afterwards give the proof of Proposition 2.3.3.
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2.3.1 Proof of Proposition 2.3.2

To prepare the proof of Proposition 2.3.2 we make temporarily two assumptions. First, we ignore
infections of hosts by parasites attacking a vertex from different edges. In Proposition 2.3.6 we will
show that this assumption is whp fulfilled as long as the number of infected and removed hosts

T(N) = RM) 4 I(N) stays below a certain level £. Secondly, we assume that all vertices that get
attacked are occupied by hosts and any vertex is connected to exactly dy different neighbouring
vertices. Under the first assumption this second assumption leads to an upper bound on the number
of infected hosts.

Consider a vertex that is occupied by vy parasites. Denote by L") the random number of
hosts that get removed after movement of the parasites to neighbouring vertices.
The probability distribution of L) is given by

dy!
P(LY) —0)= — ON° (1 _ )N
( 0) dl]]\/N(dN _UN)!( pN) ’
and for £k € N
PO = b = () gk (- )
k) d (dy —on )N

k .
UN—(IC1+...+]€@_1) UN—(]{il—F...—ij)
> 2 11 ( ke k—3j
j=1 k1,....k;>2 (=1

ki+...4+k;<vn—(k—j)
1
1Y, 210G e {1, ) b = s}
dn!

. (dnv —j—(ony — (k14 ... + ]gj))>!p§c\f_j(1 — pN)

vN*(k*j)*(lir»-~+kJ‘)7

because k hosts get infected after movement of vy parasites if either all parasites move over different
edges and exactly k vertices get infected by single successful parasites (and the remaining single
parasites are unsuccessful) or if j for 1 < j < k edges get occupied by at least 2 parasites and the
remaining parasites move along different edges and exactly j — k of them are successful.
We have L(N) < vy a.s. and, as for the birthday problem, the probability that L) is zero is
asymptotically 1, if vy € o(v/dy). In the situation of Theorem 2.2.2 (ii), i.e. for vy ~ ev/dy, with
¢ > 0, the probability that LV) is zero is asymptotically non-trivial.

Denote by D,(ﬁ) the event that (under the just stated two assumptions) after parasite movement
exactly k4 ¢ hosts get infected by k pairs of parasites moving along the same edge and ¢ successful
single parasites, and all the remaining parasites die without infecting a host. The next proposition

states that the events (D,(CJ\?) , are typical, while all other events occur asymptotically only
’ keNg

with negligible probabilities.
Proposition 2.3.4. Assume the conditions of Theorem 2.2.2 (ii) are fulfilled. Then

oo

I M =1
NgnooIED U Dk,é 1
k,¢=0
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Proof. Let (k,¢) € N3. Denote by

Lo () Y) dy!
k kldk A3 M(dn — (vy — k))!

(2.3.3)

the probability to create exactly k pairs of parasites out of vy parasites when placing the parasites
on dy spots. We have

vy — 2k o —
P00 = - () ) oty 1= v (234

2 § 1 2 xt )
~ D) HGXP D) E' exp (— )—-Pk,b

and for all j € Ny

J 1 2
P U Dl(c],\l{) = Z D(N) Z pu—( +x> ﬁeXp <— (2—1—3:)) =pj, (2.3.5)

k+e=j k+t=j k+l=j

since the sum of two independent Poisson variables is again Poisson. As the Pois(% + 33)-

probability masses (p;);>0 sum up to 1, we find for all ¢ > 0 a J > 0, such that for all J > J

J
l—e<) pi<l.

§=0
and by (2.3.5) for J, there exists N such that for all N > N

J

7
2P| U D | - m|<e
k=0

§=0  \k+t=j

Consequently
J oo
1-2:<> P | DV | <Xl U DY | <1,
=0  \k+t=j J=0  \k+t=j
which yields the claim since € was arbitrary. O

We show next that the offspring distribution of the upper Galton-Watson process Zi(LN) stochas-
tically dominates L) for N large enough, which yields that as long as we can and do ignore
infections of hosts by parasites attacking hosts from different edges, f(N) can be upper bounded by
=(N)

Z

u
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Proposition 2.3.5. Under the assumptions of Theorem 2.2.2 (ii) the random variables ZSX) and
LN) can be coupled such that for N large enough

P(LN) < z{")) =1.

Proof. Recall that we denoted by (p(N) the offspring distribution of the GWP Z&N), see (2.3.1)

Jou )jENo

and (2.3.2), and we fixed a level ay for the definition of Z&N). For the proof of the proposition

it suffices to show that for j < ay we have pfivj) <P (Uksz D,i?) < P(LWN) = j), since by

definition ]P(Z{fz) =uy)=1- ]P(Zfz) <ay), and LN) < vy a.s. We have P (Uk+e:j D,g?) =

dkre=i P (D,gy) for all j € Nog. We use (2.3.4) and (2.3.3) to estimate the sum. The first factor
in Equation (2.3.3) can be lower bounded by

()% (%) oy =200\ 1
kdk, - 2dy K

and the second and forth factor of the product in Equation (2.3.4) can be lower bounded by

vy — 2k < (vny — 2an)*
i4 - 1l ’

(1= pn)" "D > (1= py)™,

fork+/4<ay.
dn!
It remains to estimate the second factor of Equation (2.3.3), i.e. — N . Ex-
dT;VN (dN - (UN - k’))'

panding the factorials up to second order we obtain

d}’v”‘deN!(vN e P <‘(de_Nk)2> ' {1 * %W\il; : (1 B é(de;W) +0 (di)] ,

Hence, for N large enough and 0 < § < %

() (%)
>exp (-2 ) (1—— ),
ay (v —(on =) =T\ 2w ) U

which concludes the proof. [

So far we ignored infections of hosts by parasites attacking a vertex from different edges. Next

we find a sequence of levels ¢, such that (i) {5 — oo and (ii) as long as the number ™ of infected
and removed hosts is bounded by £, these kind of infections are unlikely to occur.
For any y > 0 denote by

7Z(JN) :=inf{n € Ny :T;N) >y},
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the first time at which the number of infected and removed hosts exceeds the level y and by

T(DN) = inf{n € Ny : a vertex of SO*) is hit by parasites from different edges}. (2.3.6)

In the next proposition it is shown that infections of hosts by parasites attacking a vertex from

different edges can be neglected as long as the number of infected and removed hosts T(N) is of
order o((N/v%)3).

Proposition 2.3.6. Choose a sequence ({x)nen, such that £ — oo and (3,v3; € o(N).
Then

tim P (709 < 700,70 < o) = .
N—oc0 N N

Proof. Recall that we denoted by S,(LN), I,gN) and R%N) the sets of susceptible, infected and empty
vertices, resp., in generation n. For the proof of the proposition we need to control the probability
that a vertex is hit by at least two parasites from different edges simultaneously. We first show
that it is unlikely to re-hit an already empty vertex till generation ?gj). Hence, only parasites on
infected vertices remain as candidates for simultaneous infections of parasites from different edges.
However, as we will show below, the number of susceptible vertices till generation ?gN) is large and
each susceptible vertex has roughly dy free half-edges. That makes it unlikely to hit a susceptible
vertex simultaneously from different edges.

For a rigorous proof denote by A%N ) the number of parasites on empty vertices in generation n and
by

T[E‘N) :=1inf{n € Ny : A;N) > 1},

the first generation when at least one parasite hits a vertex of R(Y).
We show next that

; (N)  =(N) =(N) —
]\}gnoo P(ry <7y, s Ty, <00)=0. (2.3.7)

Let
Trgivi)nf = inf{n € Ny : I(V) =0},
be the first generation at which no host gets infected. Note that at generation Tr(ljovi)nf the infection

process is not necessarily finished, as parasites may remain on empty vertices. However, this is whp

not the case if Téivi)nf < Fég). More precisely we claim,

. (N
W P

V<M ATy =0, (2.3.8)

— 'no in In

Given we have shown (2.3.8), we also have (2.3.7), since
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(7 < <N FN <o) =,

and hence

hm P(r, (V) <*(N), ( ) < o0) = hm P(r, (V) < ) /\’T(N) (N) < 0).

no inf

So, lets prove (2.3.8). First of all we have by definition of Téo l)nf that éivl)nf A ?g) < Uy.
Furthermore, the number of parasites generated in some generation n with n < T(ivi)nf A ?2:) is

bounded by ¢yvy and the total number of half-edges formed for vertices of the set R& ) is at

most ¢y - dy. The number of half-edges not yet connected to other half-edges in the graph is at
least as large as the number of free half-edges of the vertices in the set S,(LN), which is bounded
from below by (N — ¢n)dy — {nyvn > (N — 2y )dy. (Note that the summand —¢yvy has to be
added to account for the potential attacks that do not lead to an infection of a host). Hence, the

number of parasites that move to an empty vertex in any generation n with n < TIEi)Vl)nf N T;N)

can be estimated from above by the following iid random variables (H,(IN))n@N. Assume for each n
(independently of each other), {yvy numbers are chosen randomly and without replacement from
the set {1,...,(N — 2¢x)dn}. Let HYN count the numbers falling into the set {1,...,{ydx}. Then
we have

P(TAN) 7 A )<]P’<E|n<€N N>>1>

no inf

< (NP (HfN) > 1)

</ (1 M! 1 )
= (N1 —Iyon)! (N = 205)dy)invs )7

where Ny := (N — 3¢y )dy. Using an asymptotic expansion of the factorial, we get

| 2 .2
Nl- . 1 - — 1+O (MV)’
(N1 76]\/1)]\])! ((N* QZN)dN) NUN N

so using the assumption ¢3v% = o(N), we have proven Equation (2.3.8).
To finish the proof of the proposition it remains to show that susceptible vertices are not hit

simultaneously by parasites from different edges before generation T( ). Recall the definition of
T,g ) in (2.3.6). If T(N) > 7'][(1 ) ., then using (2.3.7) whp TEN) = 0o and hence it suffices to show

o inf?

lim ]P’( (N) <7 *(N) /\T(N) ?g\\lr) < oo) =0.

N—oo no inf?

Denote by s

. free the set of susceptible vertices for which all half-edges are still free. As before

the number of parasites in the graph is smaller than ¢yvy for any generation n with n < Tg a7 )

no inf
and |,S’T(f\£r)ee\ > N—{nvp. Define this time the following sequence of iid random variables (G%N))nE]N.

Consider N — ¢ ~NUN boxes each containing dy balls. Assume (for each n independently) ¢yvy balls
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are drawn randomly and without replacement out of the boxes (that are refilled for each n). Let
G%N) be the number of boxes from which at least two balls were drawn. Then we can estimate

P <7 At 7 <o) SP(3n< iy iGN 2 1)

no inf?

< onp (G1Y) > 1)

No! Nody — ¢ !
€N<1d%WN. 2 (Nady N”N)gz&%

(Ny — Cyon)! (Nady)!

where Ny := N — ¢yvy. Using an asymptotic expansion of the factorial, we get

d%va ) No! ) (Nody — Envn)! 140 M ’
(NQ —(NUN)! (NQdN)' N
which shows that the left hand side of (2.3.9) converges to 0. O

Proof of Proposition 2.5.2. By Proposition 2.3.6 whp no infection of hosts by parasites attacking
from different edges occurs till ™) reaches the level ¢ n for any sequence ({n)nen With £y — 0o
and €303 € o(N). Hence, it suffices to consider the case that such infections do not occur and
Proposition 2.3.5 can be applied. Consequently, as long as f(N) has not reached the level £y,
the number of hosts that get infected from an infected vertex in the next generation can whp
be estimated from above by the offspring number of the GWP Z&N), which yields the claim of
Proposition 2.3.2. O

2.3.2 Asymptotic survival probabilities of sequences of GWPes and the
proof of Proposition 2.3.3

Before we give the proof of Proposition 2.3.3 we establish some general results about the asymptotic
survival probability of a sequence of Galton-Watson processes.
Consider a Galton-Watson process Z = (Zy),cy, With offspring distribution (py),cy, and

with Zy = 1 almost surely, and a sequence of Galton-Watson processes Z(N) = (Z,(IN)> with
n€lNg

offspring distributions (p,gN)) and with Z(()N) = 1 almost surely, for all N € N.
kEN

0

Denote by ® and ®) | resp., the probability generating functions of the offspring distributions

keNy
(N)

Pk and p( ) , by © and 7™ the corresponding survival probabilities, and by ¢ :=
kEN, k
1 — 7 the corresponding extinction probabilities. Denote also by Z =

1 — 7 and ¢N) =
(Z;N) =, ZiN)) the process that counts the total size of the GWP Z(V) till generation
n€Ng

n.
Recall that ®(N) converges uniformly to @, if the corresponding offspring distributions converge in
total variation distance, in particular, if

N
E |q](§ )_qk|_> Oa
k=0
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see [71], Proposition 4.2, or as one readily checks, if there exists an N—valued sequence (Ky)nen
with K — oo such that

Ky

N
E |q,(€ )—Qk|—> 0.
k=0

Lemma 2.3.7. Consider the just defined Galton-Watson processes Z and (ZN))yen. Further-
more, let (an)nen be an N-valued sequence with any — oo. Assume that the generating functions
(®N)) yen converge uniformly in [0,1] to ®. Then the following holds:

a)
|7 — 7| = 0,
b)
P (zyp - o) 4,
¢)
P(HHENOIZ,(IN) ZaN) — T,
d)

]P(EInEINozfilN)ZaN)%W.

Proof. We show a detailed proof in the case w > 0, with analogous arguments one also shows the
claim in the case m = 0. Recall that the extinction probabilities ¢ and ¢¥) are characterised as
the smallest fixed points in [0, 1] of the generating functions ® and ®@) respectively. Consider the
function

g(s) == @(q+s) — (¢ +s),

for s € [—¢,1 — ¢q]. We have g(s) =0, iff s =0 or s =1 — ¢g. Furthermore g > 0 for s < 0 and ¢
is decreasing up to some sg > 0.
Let 0 < € < 50, and

n < min{g(—¢), —g(e)}.

Since by assumption ®(Y) converges uniformly to ® we find an Ny € N such that for all N > Ny

DN (5) — B(s)| < 1, (2.3.10)
for all s € [0,1] and hence for all N > N,

Mg —¢)

Y

(—e)+q—e—n>q—c¢,

®(g—¢)—n=
) n=gle)+q+e+n<q+e.

g
(g+e)+n=g
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Since ®™) is monotonically increasing on [0,1] and continuous, the smallest non-negative fixed
point of ®W) is contained in the interval [¢ — ¢, ¢ + €] which implies a).
Denote by (®+n)(s) := ®(s)+n, and (D+n),(s) := (P+n)o---o(®=+n)(s) the n-fold composition
of (® £ 7). An iterated application of (2.3.10) yields for all n € N

(@ +n), (0) > &M (0) > (@ — 1), (0).

The sequences ((® —7),, (0))nen and ((® +n),, (0)),en are increasing and converge for n — oo
to the smallest non-negative fixed point of & — n and ® + 7, respectively. While the fixed point of
® — 7 is larger than ¢ — e, by definition of 7, the fixed point of ® + 7 is smaller than g + ¢.

In particular, we have that there exists n € N, such that for all N > Ny and for all n > n

g—e<dMN(0) < q+e.

Since ay — o0, there exists N1 € N such that VN > Ny,any > .
Finally we have for all N > Ny := max{Ny, N1}

g—e<®MN(0)<q+e,

which proves b).
The extinction-explosion principle for Galton-Watson processes yields

}P’(Z,SN) >0‘v’ne]NO> gp(ane]No:Z,gM ZaN).
Hence, by a)
7+ o0(1) gP(Hne]NO:ZgN) zaN). (2.3.11)

Furthermore

) = p (Z}jV) >0Vne NO)
=P ({3 neNg: ZM > aN} N {Zﬁf“ >0Vne JNO})
> P(H n € Ny : ZT(LN) > aN) . (1 — (q(N))aN) .
By a) we have that Z (N) is supercritical for N large enough, which implies

(1) 0

Consequently

(N)
IE”(EI neNg: ZM zaN) <— =M. (140(1) =7 +o0(1),
L= (¢™)
which, together with (2.3.11), concludes the proof of c).
For proving d), it only remains to show that
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P({EneN0:7le) ZaN}ﬁ{HneJNO:Zle)zo}) =o(1).

Let (cn)nen be a sequence with ¢y — oo and ‘;—g — oo and consider the subsets

AN {EInE]No:fle)zaN, aign:Z§N)ch}m{aneNO:Z,gM:o},

B™) .— {aneNO ZWN > ay, 2™ < ey Vi gn}m{aneNo . Z(N) :o}.
By definition
{aneNO:Z;N’zaN}m{anelNo; Z}LN>=0}=A(N)uB<N>.

According to ¢) we have

P (A<N>) <P ({Hz eNg: z™M > cN} {an eNg: ZM = 0}) 0,

Furthermore

BW) ¢ {Z@J > o} N {an eNg: ZM = 0},
°N

cN

IP(B(N)C> Zp({z({fg - }u{z N>>0vne1NO})

so according to a) and b) applied with the sequence <L“—NJ) L get
Ne

:]P’( Z%QJ: )+ N)>0VneJN0})
=q+o(l)+7m+o(1)
=1-o0(1),

which yields P (AN b B™)) — 0.

We are now ready to prove Proposition 2.3.3.

(0]

Proof of Proposition 2.3.3. By Lemma 2.3.7 d) it suffices to show that the sequence of generating

functions @gN) belonging to the offspring distributions (pS?) of Z&N) converges uniformly on

JjENg

0, 1] to the generating function ®(©*) of the Pois < + z)-distribution. We will denote by (p;j)jen
2 j)i€No

the probability weights of the Pois (ﬁ )—distribution According to the remark just before

Lemma 2.3.7 it suffices to find a sequence (Ky)nyen with Ky — oo for which Z |p(N)

We set Ky = an and use in the following calculation the asymptotics

—pil—= 0.
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() e (555) = (5) oo (5 0omr
(o = 2a3)px)' (1 = p)"™ = 2’ exp(=2)(1 + o(1))"*",

where (hy)ven denotes some appropriate sequence of order O (W) and ry := vy —

cvdy. Forall j >0

PS5 — il < > (< kx—zexp - iJr:I? ‘(1—hN)k“(1+o(1))”171’.
e = K\2) o 2

k+l=j

The last term can be upper bounded in the following way

{+1

0= )™ o) =1 < 1] 3 (") o X (ot

+ o(l)hN‘ %:1 <k ;L 1) (=hn)"! Zii (Z jZL 1) 0(1>i71‘
< 3max{hN,0(1z)_}2k+”2. -

It follows that

ijp(.m —p;| < §N: 12max{hn,o(1)} Z E (02>k ﬁ—e exp (— <62 + x>) ok+t
perii = = ’ vl K\2)/) # 2
< 12max{hn,o(1)} exp <622 + :z:>
— 0,
which ends the proof. O

2.4 Coupling from below with (truncated) Galton-Watson
processes

2.4.1 Establishing invasion

Consider again the setting of Theorem 2.2.2 (7). The next proposition gives a lower bound on the
probability that the parasite population infects at least N® hosts for 0 < a < S.

Proposition 2.4.1. Consider the setting of Theorem 2.2.2 (i) and let 0 < oo < 8. Then

liminf P (Eln € Ny : YiLN) > N“) > m(c,x).

N—o0
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Remark 2.4.2. Proposition 2.4.1 together with the results from Section 2.3 yield

lim P (Eln € Ny : TiN) > NO‘) =m(c,x).
N—o0

The remainder of this subsection is devoted to the proof of Proposition 2.4.1, which is given at
the end of this subsection. First we introduce a simpler host-parasite model, see Definition 2.4.3,

that lower bounds the number of infected and removed hosts T(N) of the original host-parasite
model a.s. In this model hosts can get infected only by pairs of parasites moving along the same
edge or by successful single parasites. In the following, we will refer to either a pair of parasites
moving along the same edge or a successful single parasite as an infecting unit. We show then that
whp the simpler process can be coupled with a Galton-Watson process from below until N hosts
get infected, see Proposition 2.4.7. The total size of this lower Galton-Watson process reaches any
level £y where ¢y — oo with asymptotic probability 7(c, z), see Lemma 2.4.6, in particular the
level N*. This yields the claimed lower bound.

Definition 2.4.3 (A simpler model involving only infecting units). For a sequence of parameters
(N,dn,vN, pN)NeN introduce the following host-parasite model defined on the same random con-
figuration model (with N vertices and dy half-edges per vertex) as the original model. Initially on
each vertex a single host is placed. We start the infection process by infecting a randomly chosen
host. A random number of infecting units is generated according to the following distribution with
probability weights (pgN))jE]NO where for all 1 < j <oy

vy — 2k on—
Bl (e, (24.1)
k+t=j,k<|vn /2]

and

UN
N N
py) =1y p,
j=1

where w,gN) denotes the probability defined in (2.3.3). Afterwards, the host dies and the infection

process continues in discrete generations as follows. At the beginning of each generation, infecting
units move, independently of each other, to nearest neighbour vertices along different, randomly
chosen edges. If a host is attacked by at least one infecting unit, then the host gets infected. In
each infected host, independently a random number of infecting units is produced according to the
distribution (pg-N))jelNO. Afterwards the infected hosts and all the infecting units that infected the
hosts die. If an infecting unit moves to an empty vertex, then it dies.

Denote by Jy(LN) the number of hosts that get infected at generation n in this simpler model and

the epidemic process by TN = ( ,(LN))nG]NO. Furthermore we denote by TN o Jl-(N) the

total number of hosts infected till generation n in this simpler host-parasite model and by 7(N) =
(jsz))nelNo the corresponding process.

Proposition 2.4.4. For all N € N it is possible to couple JN) and TN) such that almost surely
Vn € Ny

TN <7,
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Proof. Consider the same realisation of the configuration model for both host-parasite models and
assume that the same host gets initially infected.

Enumerate the dy half-edges of each vertex and denote by Vi(N) € {0,...,vn}% the occupancy
vector of the half-edges linked to vertex ¢ (when host ¢ gets infected) by the vy offspring parasites
generated at its infection in the original host-parasite model. By definition, the random variables

(Vi(N))lgigN are iid. A coupling of T(N) and 7(N) is obtained as follows. Use the same occupancy
vector Vi(N) when host ¢ gets infected for the simpler host-parasite model but modify it as follows:
Assume that in the original and in the simpler model the same single parasites are chosen to be

successful and apply the subsequent rules:

e If exactly k pairs of parasites occupy k different half-edges, the remaining parasites move
separately along different half-edges, and if exactly £ of them are successful single parasites,
for some 0 < k < |vy /2] and 0 < £ < vy such that 0 < 2k+¢ < vy, then in the simpler model
all pairs of parasites and successful single parasites are kept and the remaining parasites are
removed.

(N)

e If according to the occupancy vector V"'’ at least one half-edge is occupied by at least three

parasites, update Vi(N) for the simpler host-parasite model by removing all parasites, i.e. in
particular no pairs of parasites or successful single parasite remain.

With this procedure the number of infecting units is distributed according to the distribution given
in (2.4.1). Moreover, hosts get either simultaneously infected in both host-parasite models or first

in the original model and later possibly also in the simpler model. Hence, the number of infected

(N)

hosts in the simpler model is bounded from above by I, in any generation n. O

Our next step is to couple J) with the Galton-Watson process ZZ(N) which is defined next.

Definition 2.4.5 (Lower Galton-Watson Process). Let 0 < § < % and (an)NenN be a sequence with
ay — oo anday € o (\/dN). Furthermore assume (On)nen is a [0, 1]-valued sequence with O — 0.

Let ZZ(N) = (Z(N)) be a Galton-Watson process with mized binomial offspring distribution
n&ElNg

n,l

Bin (Z(N),l — 9N>, where the probability weights (;BffN)>k N of ZWN) gre foralll <j<apn
€No

k 2 ¢
~N) (UN72CLN)2 l _ Un _ 1 ((’UN72CLN)pN) _ N
B = ( 2y P\ aay ) U 0 (1=pn)™

k+4=j

and

Denote by <I>l(N) the generating function of the offspring distribution (pg\l])

)

of Zl(N), and

. Furthermore, denote by 72\;) =

Z?:o Zi(]lv) the total size of the Galton-Watson process until generation n and 2Z; = (7(N))
s n€Ng

n,l

) keNg

by WZ(N) and ql(N) the survival and extinction probability of Zl(N

the corresponding process.
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Lemma 2.4.6. Let ({y)nen be a sequence with {n — co. Assume Zéy) =1 a.s. Then

lim P(3n€N0 Z(l >€N) =m(c,x).

N—oc0

Proof. We proceed as in the proof of Proposition 2.3.3 and show that

anN

S —pil o,

J=1

where (p;)jen, denote the probability weights of the Pois(c?/2 + z)-distribution. Using the
same asymptotics as in the proof of Proposition 2.3.3, we have for all j > 1

57 nis 5w (S) e (- (5 )0 m @ oty -1,

kt4=j

max{an,rn}
Vdn

where (hy)y is an appropriate sequence with hy = O ( ) As in the proof of Propo-

sition 2.3.3, the last term can be upper bounded by

[(1—hn)* (1 4+ 0(1))F! — 1] < 3max{hy, o(1)}25H+2,

It follows that

an an k 2t 2

~(N) _ oy T c k+e
El|pj —p;l < E 12max{hn,o(1)} E o (2> exp( (2 +x>)2
=

j=1 k+l=j5

2
< 12max{hn,0(1)} exp <C2 + z) — 0,

which also implies that |]3§)N) — po| — 0, because ay — oo. Furthermore, we can estimate

ZW AIED S USRI ITS 3 SR (Z)(l—ezv)ie?v‘i

i=1 i=1 j>i+1

e T (oo
1 ' —c? i = ~(N) i
l— — x> exp <2+x>2 +Z|pi — pil2

i=1

—|—Zp (1—(1—0x))

<Oy [exp <62 +x) + 12max{hy, o(1 )}exp< ﬂ +9NZ piN)9i

[\v]
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2 2
< 20N {exp <02 + x) + 12max{hy,0(1)} exp <02 + ;p):|
— 0,

which implies | pé{\l]) —po| — 0 as well. An application of the triangle inequality ends the proof. [J

Next we show that the process Z(N) indeed bounds from below the number of infected hosts
™ in the simpler host-parasite model. Recall that dy € ©(N?).

Proposition 2.4.7. Let 0 < a < (3, EE\J,\Q := inf{n € Ny : jle)

Oy := %. Then

J
N N
> N%} and consider Z; ' with

lim IP’(Z( b )Vn<(N)> 1.

N—o0

To prepare the proof of Proposition 2.4.7 in the next lemma we estimate in the simpler host-

. . . o AN . .
parasite model the total number of infecting units M ) that can maximally be generated during
the epidemic, and the total number of infecting units M (V) that are generated until in total N
hosts get infected.

Lemma 2.4.8. Assume the conditions of Theorem 2.2.2 (ii) are fulfilled and 0 < o < 1. Then we
have

lim JP(M( )<Nlog(N)) 1,

N —o0

lim P (Ma=(N> < N log(N)> =1

N—o00

Proof. Denote by Mi(N) the number of infecting units generated in host 7 if it gets infected in the

simpler model, i.e. Y = Zi\; Mi(N) and M) ~ Z i1 M(N). By construction M(N)
distributed according to the probability distribution defined in (2. 4 1) and the random Varlables
(Mi(N))lgiS n~ are i.i.d. An application of Markov’s inequality yields

N (N)
(N) E[M; ]

P> MM > Nlog(N) | < =24 0,
<i_1 log(N)

Ne (V)
E[M
P <§ MM > Ne 1og(N)> < k[)g(lN)] 0,
=1

because the expectations (E[Ml(N)})N i e uniformly bounded. Indeed, recall the definition
€
of the probability w,(CN) in (2.3.3). We have

oy — 2k on—
M(N) Zj Z w](CN) . < N , >P§v (1 *PN) ~N—(2k+0)

5=0  k+t=jk<|vn/2]
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v vy
< exp <2d1v + UNPN) <2d + UNPN> 0, ( )
because —;j‘}’v — % and vypN — . O

Proof of Proposition 2.4.7. Using the same kind of calculations as in the proof of Proposition 2.3.5
we can show that for all 1 < j <ap, f){ ) < P(Upso=; D,(Cj\g)), see Equations (2.3.4) and (2.3.5). In
other words whenever a host gets 1nfected we can estimate the number of infecting units, generated
on the corresponding vertex according to the simpler model, from below by the corresponding
number of offspring in the Galton-Watson process ZZ(N), since %N) =1-> f)E-N).

However, in the host-parasite model “ghost” infections may occur, when a) an already empty
vertex is attacked by an infecting unit over a free half-edge, b) a vertex is attacked by more than
one infecting unit or ¢) two infecting units attack an edge from different ends (and hence both
infecting units hit empty vertices).

We will show next that each infecting unit generated before generation EE\I,\Q is involved in
one of the events a) or b) (independently of the other infecting units) with probability at most
On. Furthermore, we will show that an event of type c) occurs before generation ES\J,\Q only with
negligible probability o(1). Consequently, by removing infecting units with probability 6y the
number of offspring of infected hosts can whp be bounded from below by the number of offspring
drawn according to the distribution with weights (p,(cj\l[)) keN, from Definition 2.4.5 for any generation

n < GSVQ). This yields the claimed coupling of (J( ))nelNo and (75,\;))"611\10 before generation o( ).

We first control the probabilities of the events a) and b).

a) Before generation a( ) the number of free half- edges linked to an empty vertex is bounded

by N%dy. Hence, the probablhty that an infecting unit on a half-edge gets connected to a half-edge
N*dpn

NdN —NO‘UN ~ N1-

of an empty vertex is bounded from above by

free half-edges is at least Ndy — N®vy.

b) Before generation 55\1,\{,)7 the number of empty vertices in the graph is smaller than N¢.

Consequently, the probability that two infecting units attack the same vertex can be estimated
from above by m ~ % By Lemma 2.4.8 the total number of infecting units generated

before generation ES\J,\Q is whp bounded by N*log(N). Hence, each infecting unit is involved in an

dy log(N)
Ndy — Nedy ~ Ni-a~
In summary, Oy = 2- N*log(N) - m yields an upper bound on the probability that an
infecting unit is involved in one of the events of type a) or b). Since o < 1 we have GN € o(1).

—, since the total number of

event of type b) with probability at most N*log(N) -

It remains to show that whp events of type c¢) do not occur until generation 7 Na . According
to Lemma 2.4.8 whp the number of infecting units that can be generated during the epidemic is

at most N log(N) and before generation EE\J,\Q the total number of generated infecting units can be
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estimated from above by N®log(N). Hence, whp we can estimate the probability that before time
Eg\],\;) none of the infecting units moves along an edge, on which end another infecting unit is located

on, by

Ndy — Nlog(N)  Ndy — Nlog(N) — (N“log(N) — 1)

Ndy —1 Ndy —1—2(Nelog(N) — 1)
B 1 (Ndy — Nlog(N))!
[V e M= (Ndy —1 —2i) (Ndy — Nlog(N) — N*log(N))!
_ ((Vdy — N log(N) — N log(N)) N log(N)
- Ndpy
(¥ = N log() \ M EY)
Ndy
=1- 0(1)7
where the last equality holds because a < . O

We conclude this section with the proof of Proposition 2.4.1.

Proof of Proposition 2.4.1. By Proposition 2.4.4 we can show the claim of the proposition for the
event {In € Ny : 7 > N%} instead of the event {In € Ny : Tle) > N%}. According to
Proposition 2.4.7 the process 7(N) can whp be coupled from below by EZ(N). By Lemma 2.4.6, the

n

process ?l(N) reaches at least the level N with asymptotic probability (¢, ), which concludes the
proof. O

2.4.2 Growing further at exponential speed

In Section 2.4.1 we showed that N hosts will get infected with asymptotic probability 7(c, x) for
any 0 < a < B. In Section 2.5 we will see that the total host population will go extinct whp in
at most 2 generations if at least NV 1-38+2¢ hosts get infected for any € > 0. If 5 > % we have
1 — 28 < B and hence, with the results of the next section we can prove Theorem 2.2.2 (ii). The
aim of this section is to argue that also in the case 8 < % whp N 1-38+2¢ Josts will get infected
once N hosts have been removed for some 0 < o < 3. Hence, we assume in the remainder of this
subsection that

4
< -
/8_7

We will truncate the process Zl(N) at certain time points. The resulting process Zt(N) = (ZT(L],\;))neNO

grows asymptotically at the same speed as ZI(N) and can be coupled with T(N)

N1=3P+2¢ is reached. The coupling of ZZ(N) with 7™ fails if two infecting units attack an edge
from two different ends at the same generation. In this case none of the two infecting units can
reproduce because the vertices they are moving to are empty. Since in each generation, the number
of infecting units involved in these events is small we can remove from time to time (the ancestors
of) these infecting units without changing the asymptotic speed of exponential growth. Define
ko € N through kg — 1 :=sup{k e N: k5 <1 -— %[3}, in particular we have

until the level
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(ko ~ )8 <126 < hop.

Definition 2.4.9. Let 6 < 8 and & > 0 small enough such that ko(8 —96) > 1 — %ﬁ + 2¢. Define
Zt(N) = (Z,,(l])\ll;))nelNo, with Z(()f,\[) =1 almost surely, and let Zt(N) evolve as a GWP with offspring
(™)

distribution (p](c{\l’))kENo until time E%N) = inf{n € No : Z,, > NP7} We set Z(("2>+1t =

maX{ZﬁVN)) t—Nﬁ*%‘;, 0}. Assume that the process Zt(N) is defined until generation EE )—|—1 for some
a7,
1 < ko—1, then let the process grow as a GWP with offspring distribution (p,(cj\l[))keNo until generation
) = int{n € Ny : 20y > NGTDG-0} get Z(<N)+1t = max{Z\), — N30 0},
Tit1r

2i41
2

Proposition 2.4.10. Let 7¥) := inf{n € Ny : Tle) > N1=86+25)  Thep

lim IP’(Z( bW )vn<*(N>) ~1.

N—o0

Proof. The coupling of Z(N) and T fails if two infecting units attack an edge from both ends,
because in this situation the corresponding branches in the Galton-Watson process have offspring
but the corresponding infecting units do not infect any host. These infecting units cannot be treated
independently and hence we cannot arrive at a coupling by thinning the Galton-Watson process.
Instead we will remove the corresponding lines in the Galton-Watson process in pairs.

If at some generation the number of infected hosts is O(N®), then in this generation whp
O(N*log(N)) infecting units are generated, see Lemma 2.4.8. Because whp the total number
of infecting units is at most N log(N), see Lemma 2.4.8 again, an application of Chebyshev’s

Inequality yields that whp no more than O (W) = O (N°Plog(N)?) pairs of in-
—(N)

fecting units attack an edge from both ends. Within the time intervals ([a( )41 ,04+1])i in each

generation each individual has on average at least ¢?/2 + z + o(1) offspring. Since within any

time interval [, () + 1, oa +1)} the process grows exponentially fast, for 1 < ¢ < kg, whp at most

O(NHDB=0)=B1og3(N)) = o(N#~*379) pairs of infecting units are placed on two different ends
of an edge. If we remove this number of pairs of infecting units at time EEN) + 1 and then let the

process evolve like a GWP with offspring distribution (pé{\;))ken\ro, the total size of the resulting

process whp lower bounds T( until generation 05 +1) Continuing this algorithm till generation

Egov), we arrive at the desired result. O

Lemma 2.4.11. Assume the process Zt(N) is constructed by means of the probability weights

(p,(:\l[))keNO with O = % for some ko8 < a < 1. Assume e is small enough such that

1— fﬂ+25 < koB. Then

lim P (Hn ENo: 7Y > Nl_’B“E) = (e, ).

N—o00

Proof. Since Z ) and Z, (M) coincide until the level N7 is reached for any v < 8 — ¢ an application
of Lemma 2.4.6 yields that the level N8~9 is reached with asymptotic probability (c,z). If the
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level N#~? has been reached, the level N 1-28+2¢ 5, NA=9 will be reached whp. Indeed once a level
£x has been reached by a supercritical GWP for some sequence £ — oo, the GWP will explode

whp. Since Z (( N)) e ZSQ) = Z;(;V)),e and between generations ESN) + 1 and EéN), Zt(N) evolves
as a supercritical GWP, we have EéN) < oo whp. Repeating this argument ko — 1 times, we reach
the level N1=38+2¢ whp. O

From Proposition 2.4.10 and Lemma 2.4.11 it follows that T(N) reaches the level N1—38+2¢
asymptotically with probability 7(c,z). Hence, for the proof of Theorem 2.2.2 (ii) it remains to
show that T reaches the level N after hitting the level N1=18+2¢ whp. This is the topic of
Section 2.5.

2.5 Final phase of the epidemic

In this section we consider again the setting of Theorem 2.2.2 (ii). We aim to show that once N¢
hosts got infected eventually whp also the remaining hosts get infected. Assume in the following
that € > 0 is small enough such that 1 — % +2e<1— g Recall

7V = inf{n € Ny : N1-2B+2¢ < TfLN)},

and define

7™ = inf{n € No : N*~#5+¢ < [(M}.

Proposition 2.5.1. For ¢ defined as at the beginning of this section we have

Jim P (ITW)H - N‘ ™) < oo) =1

The key observation for the proof of Proposition 5.1 is that infection by cooperation of parasites
that attack a host from different edges determine the infection dynamics when 1N s N1-8,

1-38 4o 2
Our assumptions on € guarantee that w < N. In Lemma 2.5.2 we will show that

(V) < 7(N) whp conditioned on 7V < 0. Hence, we have N1-i8+e < I(<13> < N and one

generation further we have N1=8/2+¢ « I( (Z\2)+1 < N and also N1=8/2+e « I N)>+1

uj\?ﬂw > N or (when

Consequently,

in the following generation either the remaining hosts get infected, since
already all hosts got infected) the number of removed hosts is V.

In the following we first state and prepare for the proof of Lemma 2.5.2, then we give the proof
of this lemma and finish the section with the proof of Proposition 2.5.1.

Lemma 2.5.2. For e, 7™) as well as TN) defined as at the beginning of the section

lim P (7 < 7)< 1.
N—o0

To prove Lemma 2.5.2 we control the time the approximating processes (Zt(N)) NenN heed to
reach some level N®*. We start with a rather classical result on branching processes. We give its
proof in the Appendix for the sake of completeness.
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Lemma 2.5.3. Let (Z,,)nen, be a Galton-Watson process with m := E[Z1] > 1. Introduce Ty« :=
inf{n € Ny : Z, > N*}. Assume Zy = NY — o(N) such that Zy > 1, where 0 < v < « and
@(N) € o(N7). Denote by W the almost sure limit of the non-negative martingale (%m_”)neNo.
Conditioning on {W > 0}

Tna logm

———=—— — 1, almost surely.
(@ —=7)log N

Next we consider a family of Galton-Watson processes ((Zy(f))nelNo)Do, for which mean offspring
numbers m. are converging to some limit m > 1 when ¢ | 0. In this case the time to reach the level

N from a level N7 is, conditioned on non-extinction, also not larger than (1 + 5)% for e
small enough and ¢ > 0.

Lemma 2.5.4. Let Z(6) = (Zy(f))nelNo be a Galton-Watson Process. Denote by m. = E[Zig)] =
m — f(e) the mean number of offspring, where f(g) = 0, and m > 1. Introduce W) the almost
sure limit of the non-negative martingale (Z,(f)me_l)nelNo, and TJ(\,E(Z = inf{n € Ny : Z > Ne},
the first time at which Z'€) reaches the size N.

If Z(()E) = N7 — ¢p(N) such that Z(()E) > 1, where 0 < v < a and ¢(N) € o(N7), then for all § > 0
and for all € > 0 small enough

. ) < (a—7) 10g(N)’ () _
ngnoo]P’ <TNQ <1+ 5)—10g(m) Wi >0 1.

Proof. Lemma 2.5.3 gives that for all § > 0

— ) log(N
lim P () < (1+5)wlw@ >0)=1.
N0 log(me)
And using that m. — m when € — 0, it directly follows the result of this Lemma. O

Finally we consider a sequence of GWPes ((ZT(lN))ne]NO) NenN, whose offspring distributions de-
pend on N, and the level that we are interested to reach depends on N as well.

Lemma 2.5.5. Let <<Z,(LN)) ) be a sequence of GWPes whose offspring distributions
n€No / yeN
are denoted by (p,(vN))keNo. Denote by ®N) the corresponding sequences of generating functions

of the offspring distributions. Introduce M= inf{n € Ny : zNv > N%} and ?S\J,\Q = inf{n €

No: >, Zi(N) > N}, Let (pr)ken, be a probability distribution and ® its generating function,
satisfying 1 < m := <I>/(1) < 00. Assume that

oo
S — pil— 0. (2.5.1)
k=0

If ZéN) = N7 — o(N) such that ZSN) > 1, where 0 < v < a and p(N) € o(N7), then for all
0>0

i ) (@ =) log(N) |_w) _
A}gnOOIP’ (TNQ < (1+9) Togm T o < 00 1.
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Proof. Using Assumption (2.5.1) it follows from the remark just before Lemma 2.3.7 that the
sequence (<I>(N )) ~Nen converges uniformly to the generating function ®.
Consider a family of natural numbers (K;)c~q satisfying K. o and KZ2e7 " 0, where 0 <
E—r E—r
, whose offspring distribution (p,(f)) is defined as
keN

0

v < 1. We introduce the GWP (Z,(f))
follows. For all 1 <k < K,

n€Ng

pgf) = max{py — ", 0},

and

Ks
pgs) —1_ Zpl(:)
k=1

This definition implies that the generating functions ®) converge uniformly in [0,1] to @, as
well as the mean number of offspring m. := IE[Z{E)] converges to m, when ¢ — 0. Indeed, we have
forall0<s<1

[@(s) = 2(s |<Zsa+ S st (o - )

k=K.+1

<2K.e" +2 Z Pr

k=K.+1
— 0,
e—0
since K. —>0 0 and K. —> oo. And also
E—
K.
|m — me|< Zke'y—k Z kpp < K267 + Z kpp = 0,
k=1 k=K.+1 k=K.+1

because KZ2e7 — 0 and m < oo,
E—r

Moreover, Assumption (2.5.1) implies that sup,cn, |p,(€N) — pr|— 0, so there exists N, such that
N > N, and for all k € Ny

7
A e~ 5.0

Consequently, for all N > N, we have p,(c) < p(N) for all £ > 1 and pge) > p(()N). Hence, we can

couple (Z,(f)) and (ZS,N)) such that for all n € N

n€Ng n€Ng

Zﬁbs) < Z;;,N)v

and
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Z\N = 7).

Lemma 2.5.4 and the convergence m. —m gives that for all § > 0 and for all € > 0 small
E—r

enough
1
lim P lg(1+5)¢’wd >0) =1,
N—oo log(m)

where T( °) = inf{n € Ny : A% > N°} and W) is the almost sure limit of the non-negative
martingale (Z,(LE)/(Z(()E)mg)> I, The coupling yields
nelNg
— ) log(N)
1>P (V<1 5%‘1/{/(5) 0
(% <000 g
>IP’< ©) <(1+5)()IOg)W8>>0>
log(m)
— 1,

which yields that for all § > 0 and for all £ > 0 small enough

(V) o (a— )log ’ ©) _
lim P <7Na <040y WO >0) =1
Denote by Ey = {7 < (1+6)2520080} by Fi= (W) > 0}, and by Gy := {7y, < oo}

The coupling implies that F. C Gy. Lemma 2.3.7 d) and the uniform convergence of the generating
functions ®(N) to ® give that limy_,oc P(Gx) = 7, where 7 is the survival probability of the GWP
with generating function ®. Lemma 2.3.7 a) and the uniform convergence of the generating functions
) give that lim,_,oP(F.) = .

We have
P(Ex NF:)  P(ExN(GN\FL)) P(ENN(GN\F))
P(Ex|F.) = _
ENE =" ¥ r) B(F)

P(Gn)

P(EN|GN) B(E)

and taking the liminfy_.., gives that
. T
1< lim inf(P(En|Gr)) - (R’

and finally by taking the limit when € — 0, we get
hmmf]P(EN|GN) Z ].,
N—o0
and since it is a sequence of probability terms, it follows that
lim P(ENIGN) = 1,
N—o0

which is the result of this lemma. O
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We apply the last lemma iteratively to the sequence of processes (Zt(N)) NeN introduced in
Definition 2.4.9.

Lemma 2.5.6. Assume the process Zt(N) 18 constructed by means of the offspring probability weights

(p&”)k N with O = % for some ko8 < a< 1. ThenV§ >0
) peNo

log(N
tim P70, < (146208 _l2m ) g,
N—o0 ’ C ’
log (7 + x)
where ?S\J,\QJ :=1inf{n € Ny : ZSZ) > N*}.
Proof. Since Zt(N) is, except at the time points EEN), a GWP, we can apply iteratively Lemma 2.5.5
where Assumption (2.5.1) is obtained in the proof of Lemma 2.4.6. O

Finally we come to the proof of Lemma 2.5.2.

Proof of Lemma 2.5.2. If for every generation n before 7V)| the number of infected hosts at gen-
eration n satisfies Iy(LN) < N1_¥+5, then 7&) > Ne.

But the coupling from below works whp at least until generation 7(N) | and thanks to Lemma 2.5.6,
we know that the total size of the process Zt(N) will reach N1=*F 2% within a time of order log(N).
This implies that there exists n < 7N) for which IY(LN) > N1-=F+e, O
Lemma 2.5.7. For e defined as at the beginning of this section

N)
(

lim P (Too) < N'-5+5

N—oc0

7N <oo) =1.

Proof. The number of newly infected vertices is the sum of vertices that get attacked by successful
single parasites or by several parasites simultaneously. The number of vertices that get infected by
single successful parasites or pairs of parasites that move along the same edge denoted by AM) is
whp bounded from above by NV 1-38+3¢ We will show that the number of vertices that get infected
by parasites attacking the vertex from different edges is whp bounded above by N 1= 545e,

At generation 7V) —1 less than N 1-2242¢ yertices are infected, and so there are less than by :=
UNN1_¥+2E available parasites. Also the number of susceptible hosts is bigger than N — N1_¥+25,
and as we will show below whp they all have more than dy —@(N) free half-edges for some sequence
(p(N))nen where p(N) = O(1), see (2.5.3).

Denote by DgN) the number of free half-edges of vertex i at generation 7(™) —1. Assume we have Sy

)

boxes with box i < Sy containing DZ(N positions, and assume by balls are distributed uniformly

on the positions of the boxes, such that each position gets occupied at most once, and let GEN) be
the number of balls put into box 7. Then we have whp

(N
I;U\z) S A(N) + Z ]]-{GE;N)ZQ}7
1€ESN
because AN + 37 o L5y 2 N'=16+2¢ whp. Denote by Gy == 3 We

will show that

i€Sn 1{021\”32}'
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lim P (GN < N1—§+5f) —1.

N—o0

Denote by T := > D§-N), T =T — DZ(N) and T; ; =T — (DEN) + D§-N)). To estimate

JESN
the expectation and variance of G we estimate the probabilities of the events {GEN) < 1} and

(¢ <13n {G§-N) < 1} for i # j conditioned on Sy. Since P ({N — N-%H2 < gy < N}) =1

and P (72 {dy — ¢(N) < DO < dy}
have whp

SN) — 1, Lemma 2.6.1 can be applied whp. Hence, we

163 1063 103 b3
P({Gﬁm < 1}|SN) =1- 5% + 5% - §% + 0O (Sva) : (2.5.2)

and for all ¢ # j
(V) (V) b 2Dy by
P<{Gi <130 {G; §1}|SN):1*f+f—+O :

Using (2.5.2) we get

b3 b3
E[G™)|Sy] = S (1 _P ({G,(N) < 1}|SN)) = ge to (Sm :

and because P ({N _ NI AHE < gy < N}) = 1, it follows that E[GN)] = O <N1—§+45)_

The variance of GV conditioned on Sy is estimated in Lemma 2.6.1 as

VG |Sy] =0 & oy
N S% SN )

as long as Sy ~ N. The law of total variance yields

VIG™M] =E[V[G™)|Sy]] + VIE[G™N)|SN]]

=0 (g?Nv) + E[E[GM|SN]?] — E[GM)].

N b2\ bl .
-3 P(Sy = 1) (W +o0 (T)) ~ #%. This means

The term E[E[GN)|Sy]?] = ZALN

that V[E[G™)|Sy]] can not exceed O (%), so an application of Chebyshev’s Inequality yields the

statement of the lemma.

It remains to show that the number of free half-edges of each susceptible vertex is sufficiently

close to dy. Denote by Hi(N) the number of half-edges that are already formed for vertex i in

generation 7N) — 1, for i € {1,---,N}. We show that

lim P (H§N> < o(N),Vi e Sﬁ?_l) —1, (2.5.3)

N—o00
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for any (V) such that liminfy ¢(N) > 5. Indeed, consider the following experiment: Assume
we have N — N1=%+2¢ hoxes, each with dy positions, and we distribute uniformly at random
o IN 1=2242¢ balls on the positions, such that each position gets occupied by at most one ball.
Denote again by (GEN))i the number of balls in box i. Then we have
P(H™ < p(N),Vie s ) 2P (G < p(N),vi < N - N1-F32)

K3
and assuming w.l.o.g. p(N) =5, we have

_38
'UNNl 1 +2e

(V = N1-%+20) )yl (dn (N = N'=542) — o(N))!

P Hi:GZ(-N)zgoN = (M) .
( ( )) (dn — @(N)(dn (N — N1=5+22))]
N (,UNle%ﬁJrQE)ga(N) d}f,(N)
- P(N)! (dn (N — NI=%F+28) — o(N))e(V)

_38
’UNNl 1 +28dN

»(N)
(dn(N — N'=5+2) - <P(N))90(N)>

< Nesp(e(0) o

Lemma 2.5.8. In the setting of Theorem 2.2.2 (ii) there exists a constant C > 0 such that

lim ]P’(I(N) >(C. N5t

N—o0 TN 41

7(N) < oo) =1.
for e >0 small enough.

Proof. According to Lemma 2.5.2, 7(V) < 7(N) whp. Thus using Lemma 2.5.7 the number of

empty vertices at generation 7() is whp at most N1-5+5e, By definition of 7(V) there are at

least N1=*7+¢ infected individuals, and so at least ©(vy N 1_%“‘5) parasites participate in new
infections.
First we are going to show that the number of pairs of parasites present on infected vertices at

generation 7(") are negligible compared to vy. Denote by A(T](VA% the number of parasites occupying

(N)

an edge alone at generation 7Y). Then for all functions @1, satisfying ¢1(N) — oo, we have

lim P (A%)) > N1+ (py — wl(N))]#N) < oo) — 1. (2.5.4)

N—oc0

Indeed, denote by (Ki(N))ie{L..., ~y the iid random variables giving the number of half-edges
(connected to the vertices i, for ¢ € {1,..., N}) that are occupied by at least two parasites in the
generations at which the vertices get infected. We have for all 0 < k < L”TNJ

’UN) (UN—Z) (vN—2(k—1))

P(KfN)Zk)S(Q Qk'-d”N 2
: N

Using Markov’s inequality, we obtain that
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38

N (N)
_ss B[K ]

P KM > N'-Frep (V) | < =21 o,
; ! ( 1(IV)

since E(K{N)) is uniformly bounded in N, see for a similar calculation Equation (2.4.2).
Denote by H fN) the number of half-edges that have already been formed for vertex ¢ till generation
7(N) | Using Lemma 2.5.2 and a similar computation as the one at the end of the proof of Lemma
2.5.7 we obtain

Jim P (Hi“” < pa(N) Vi € Ijﬁfv))) —1, (2.5.5)

where liminfy po(N) > 5.

Thus, using (2.5.4) and (2.5.5) the number of parasites that may cooperate by infecting a host
from different edges is whp bounded from below by N1*¥+E(UN — 2p(N)), where (N) =
max{1(N), ¢2(N)}.

In addition it can also happen that a parasite attacks a half-edge on which another parasite is
located. In this case, these two parasites cannot infect a host. An upper bound for the probability

that a parasite is involved in such kind of event is whp % And so a lower bound on the

number of available parasite is N1_¥+E(’UN —2p(N))(1 — 7725, ). With this estimate we derive

a whp lower bound on the number of infections occurring in the next generation.

Consider N boxes, assume the N 1—3+5¢ first ones (corresponding to the empty vertices) contain
dx positions, and the remaining ones (corresponding to the susceptible vertices) have dy — (V)
positions, where liminfx ¢(N) > 5 and ¢(N) = o(dy). Assume that N17¥+E(UN —2¢(N))(1 —
leiAéUN) balls are uniformly distributed on the positions. Let GV) be the number of boxes that
contain dy — o(N) positions and into which at least two balls are thrown. GV) yields whp an
estimate from below for the number of new infections. Using the same kind of computations as
in the proof of Lemma 2.5.7 (using Chebyshev’s Inequality, estimating expectation and variance of
GWM)) we arrive at the statement of the lemma. O

Lemma 2.5.9. Under the conditions of Theorem 2.2.2 (ii) it holds

. —(N) —(N
1\}E>noop (IT(N>+2 = N‘T( ) < oo) =1.
Proof. We aim to show that all hosts that have not been infected so far, get infected whp in

generation 7(V) 4 2. According to Lemma 2.5.8 we have whp Iif\;,))ﬂ > . N'=2+2¢ Hence, we

have whp at least C - N l’g”%N parasites that may infect the remaining hosts. However, some
of these parasites may be placed on already linked half-edges or occupy half-edges together with
other parasites. Hosts that got infected in generation 7() 4 1 have been attacked by at most one

parasite in any generation n < 7). By Lemma 2.5.6 whp 7(™) < (1+ (5)?1225]\[) hence the
log 5tz

—alogN _ for any of these hosts for any § > 0.
log(%—&-m)

Furthermore in generation 7™ we have according to Lemma 2.5.7 and because V) < 7(V) whp
I

T

number of formed edges is whp limited by (1 4 §)

) <N L-5+5_ Qo by an application of Chebyshev’s Inequality we can estimate that a host gets
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B g
attacked in generation 7(N) 4 1 by at most % ~ NO parasites with probability 1 —

1
Ne -
Consequently, at least a proportion 1 — ﬁ of the hosts infected at generation 7() + 1 occupy whp
a vertex with at least

alog N N1=3+6eyy
log (% + x) N
free half-edges and the probability that the parasites generated in these hosts occupy a half-edge

that has been linked before or that is occupied already by another parasite can be estimated from
above by

en :=dny — (1+5)

oy +dy —en UN
dn dn’
for € > 0 small enough.
In summary, we have whp at least

o 1- 2 yoc 1 vy +dy —en
e (2

free half-edges occupied with at least one parasite that may attack so far uninfected hosts.
Similarly an up to generation 7(N) 4 2 uninfected host has whp at least

alog N

fni=dn — (1+6)10g(§+x>

free half-edges. So, the probability that an up to generation 7(N) + 2 uninfected host gets
attacked by at most one of the my parasites (and hence with high probability remains uninfected)
can be estimated from above by

<1—fN )mN+<1—fN )lem I (1+0(1))
dvN — oy N dyN — oy N NAvN —oyN

~ N% exp(—N?).

The number of uninfected hosts at the beginning of generation 7(™) 4 2 is at most N. Conse-
quently, the probability that at least one of these hosts remains uninfected till the end of generation
7(N) 42 can be estimated from above by a probability proportional to

N (exp(—N*)N*) = o(1),

which yields the claim of Lemma 2.5.9. O
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Proof of Proposition 2.5.1. According to Lemma 2.5.2 once fiN) has reached the level N1~ +2¢
also ZY) has reached the level N1—%+¢ Moreover, according to Lemma 2.5.7 whp T;J(VN)) €
(’)(Nl_§+55). Consequently, according to Lemma 2.5.8, the size of ZV) is at generation 7(N) + 1

whp at least C'- N 1-342¢ for some appropriate constant C' > 0. Finally, we can apply Lemma 2.5.9,
which yields the result. O

2.6 Proof of the main Theorem

Proof of Theorem 2.2.2
We start with the proof of Theorem 2.2.2 (ii):
For the upper bound on the invasion probability consider for a given £ > 0 the event

FY = Bn e No: T4 > ty)

Then given 0 < u < 1 we have for any {5 with £y < ulN

P(EM) < P(FY).

For any sequence ({x)nen with £y — 0o and ¢3,v3; € o(N) we have by Proposition 2.3.2

In

P(FNM) <P (Eln ENg:Z0) > €N> ,

and by Proposition 2.3.3

lim P (Eln € Ny : 75\2 > €N) =m(c, x).
N—o00 ’

Since for any given 0 < u < 1 and any sequence ({x) with £3v% € o(IN) we have for N large
enough ¢/ < uN. Hence, in summary

limsup P(EM)) < n(e, z),
N—o00

which yields the claimed upper bound on the invasion probability.

For the lower bound we first apply Lemma 2.4.11, which yields the lower bound = (¢, ) + o(1)
on the probability that N® hosts eventually get infected with o = 1 — % B + 2¢. Furthermore we
can choose € > 0 small enough such that a < 1— g Then the assumptions of Proposition 2.5.1 are
fulfilled and we obtain the claimed upper bound on the invasion probability, since once the level
N1=#+2¢ i5 reached with probability 1+ o(1) the remaining hosts get infected as well, in particular
any proportion u of the host population for 0 < u < 1.

Proof of Theorem 2.2.2 (i):
The proof of Theorem 2.2.2 (i) relies on the same arguments as the proof of Theorem 2.2.2 (ii).
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Indeed, since vy = o(v/dy) we have for any ¢ > 0 that the upper Galton-Watson process from
Definition 2.3.1, where vy in this Definition is replaced by ¢v/dy, can be coupled with Z(), such

that T(N) is bounded from above by Z(f\” until f(N) is not further increasing or is exceeding the
threshold ¢y for an appropriate sequence ({y)nyen fulfilling the conditions of Proposition 2.3.2.
Consequently, by Proposition 2.3.3 for all 0 < u < 1, the invasion probability satisfies P( &N)) <
7(c, x) +0(1). But since x < 1, we have lim. o 7(c,z) = 0 and so the statement follows, since ¢ > 0
was arbitrary.

Proof of Theorem 2.2.2 (iii):

Trivially the invasion probability is upper bounded by 1. For the lower bound we can again rely on
results of the proof of Theorem 2.2.2 (ii). We consider, alongside the host-parasite model with the
parameters (dy,vn, pn) fulfilling the conditions from Theorem 2.2.2 (iii), a host-parasite model
with parameters (dN,v](\f),pN), where we set vj(\?) = ¢v/dy, i.e. the parameters (dN,vg\f),pN) fulfill
the conditions from Theorem 2.2.2 (ii). We couple these two host-parasite models by following,

in the second host-parasite model, at each host infection instead of all vy parasite offspring only
—(N
the first vg\?) parasites. In this manner the process I( ) can be estimated from below by the

. =(N . . .
corresponding process IE ) of the host-parasite model with parameters (dy, vg\?), pn). According

to Theorem 2.2.2 (ii) a lower bound on the invasion probability of this model is 7 (c,x) + o(1).
Since for ¢ — oo we have 7(c,x) — 1 and ¢ can be chosen arbitrarily large this yields the claim of
Theorem 2.2.2 (iii).
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Appendix

Proof of Lemma 2.5.3. Using the almost sure convergence of (%m’”) to W, it follows that
nelNg

for all w € {W > 0}, for all € > 0 there exists 7 € Ny, such that for all n > n

Zn
(W—eym" < — < (W +¢)m".
Zo
Introduce
. N&
Tne = inf {n eNg: (W4+e)m" > Z} ,
0

TNe :—inf{nGINO (W —¢g)m™ > N}.

We have Tya < Tya < 7o, for N large enough, and the following lower and upper bounds for
Tne and 7o respectively hold for € small enough



0 = (V)
neN

=(N) (TSV)>
neN

2V = (2%)

N
|

Pois(% + z) offspring distribution

process counting the number of infected hosts

process counting the total number of hosts
infected before generation n

GWP used for approximating T(N)

from above (a=u) and from below (a=l)

total size of the process Zt(lN) until generation n

probability weights of the offspring distribution of
zM

process counting the number of infected hosts
in the model from Definition 2.4.3

process counting the total number of hosts
infected before generation n in the model from
Definition 2.4.3

Table 2.1: Table of frequently used notation
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Notation Meaning Defined in
dn number of edges per vertex Section 2.2.1
scaling: O(N?),0< B < 1

UN number of offspring parasites, i —
scaling in Theorem 2.2.2 (ii): vy ~ ¢v/dn

PN infection probability of a single parasite, S
scaling: pyuny — z € [0,1]

(¢, x) survival probability of a GWP with

Def. 2.3.1 and
Def. 2.4.5,
resp.

Def. 2.4.3
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(V)
(0-logN  logW +2) 1o (1-57)
TNe 2 - - ;
= logm logm log(m)
e(V)
(a—7)logN log(W —¢) log (1 N )
Tﬁa S — — + 1,
logm log m log(m

which finally yields the following inequality

log(W + ¢) + log (1 - "’;,@) e log(m) log(W —€) + log (1 - “’ﬁf?) — log(m)
1- < <1- .
(@ —7)log N ~ (a—7)logN ~ (@ —7)log N
Taking the limit N — oo concludes the proof. O

For the proof of Lemma 2.5.7 we need in addition to Lemma 2.5.3 estimates on the number
of vertices that get attacked by at least two parasites. For this purpose we consider the following
experiment.

Let (Sn)nen, (DEN))lgiSSN,NG]N be deterministic sequences of integers with Sy ~ N and
DEN) =dy + O(1). Assume we have Sy boxes with box number 7 having DZ(N) many positions,
and assume by 1= vy N1~ %12 ¢ @(N1—§+25) balls are uniformly distributed on the positions of
the boxes, such that each position gets occupied at most once, for some € > 0 small enough that

17§+25 < 1. Denote by GEN) the number of balls in box number 4, and by G(V) := Zsiv

i=1 Lig(va)
the number of boxes containing at least 2 balls. The following statements on the random variables

Gl(-N) and GV we apply in the proof of Lemma 2.5.7.

Lemma 2.6.1.

b3 b3 b} b3
(e <) =g+ ey 0 (5)

2 3 5
(N) (N) by 2 by by
P{G:y" <1 <1 ) =1 A4 =
({ v= }Q{GJ - }) SJQ\, 35?\, O(va ’

ViG] =0 ﬁbl
S% Sn )’

4
Proof. During the computation, we are using the following asymptotic estimates ﬁ =o0 (b—if>,

o) () e (B by (B b (o
Sn 54 ) Sndn 53 ) Sndn 58, ) sz 5%, ) SZdn 53 )

To prepare the proof of the three estimates we first expand a few typical factors that will arise
in the calculations of the two probability terms. Denote by T := Zf:’\’l DEN) the total number of
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positions. We expand

_ N _ b 4
(T Jl“):bN bN) :exp{leog {1— SlN . (1—&-0(2@[))}}
N
_ by by
—o(-g7) (1+0(32))

by BB, b by
_1_§+2512V_65§V+2454+O 5% )

5
and similarly we have for k£ € N such that k =0 (g{i’ )
N

04"

7-pW)
by ’
(1 B TD(’“)
i

=exp {T [bg(l— bTN)—log (1—17111\] [1—|— el (

exp (Dfm 1og( [1+O( N)
—exp (T (—4 = - %))exp( ”N+o( )

Using the asymptotic expansion of the factorial and the two previous estimates we get

(T =DM (T by)!

(T — DM —by)! T!
_@—pMyr-o r-p™ \*
(T — DY) — b)) b \ T — DIV — by

e () (1 ()

b 1
_ (1-%)" . T-D" —by\ " 1__ b ’
7—DM) T — by 7 _ p@W

(%) (1 (5))

by B B, b b,
—1-2N _ N
Sy T 2527 69 Taast "9\ sy )

N




98 CHAPTER 2. INVASION OF COOPERATIVE PARASITES

and with similar calculations

N N
(T—Dg),Dghl .U¥WNN:1_%@; 203 4b} | 2b% O(&%>.
(- D™ — DI ~py) T! Sy | S2, 383 " 354 5%
Now we are ready to estimate the two probabilities
PG <1)
_ @-D)t (T-b) (T — D,)! (T — by)!
(T = D; — by)! T! NYi (T =Dy = (by — 1)) T!
(T—D)!  (T—by)! [, by D)
(T — D; — by)! T! T—D;— (by —1)
(T—D;)! (T —by)! by b3,
= . 14+ 22 N
T D — by T oy TSy
by by B b4 b3, by b3,
=(1-X - o= 1+ - s
( Sy 25% 655 T 2ast PO\ Sy oy To\sy
b2 b3 b b3
. — NN o2,
252 T353 g5t Y\ 53
(V) (M)
PHG;™ < 1}n{G;" <1})
(T—by)! (T =D — D)
T! (T — DN — DN —p)!
N N
) (T — by)! (T — D} )*D§' )
+on D r ™ _ ™
T (T —D;") = D;" — (by —1))!
) (T = by)! (r— DN —D§N))!
+onD; T ™ 5
T (T —D;™ = D;") — (by — 1))!
PR T - D™ — ptMy
b (by — I)Dl(N)D;N) (T ?N)- . ( - i - )
T! (T - D) — DY) — (by — 2))!
@by (=DM =DM T by D™
T! (T — DM — DN — b)) T - DN — DY) — (by — 1)
by D)

+
T - D™ — DY) — (by — 1)
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by (by — 1)DN D) 1
(T — DN — DN — (b — )T — DY) — DV — (by — 2))
(Tt (T- D™ — DMy
T (- D™ = D™ _py).

(o2 (o (5)) + B (10 ()

My 2% AL 20 B, Wy B2 B,
— (12NN 20N | 20N IN V) (142N 4 ON N
< Sy T2 358 T35t 9% Ty T T\ s

B2, 203 b3,
1++0(515V>.

+

The estimate on the variance is obtained using the two previous computations

S 2 s 2
N N
Z ]].{7,>2}‘| |:<Z I{GEN)22}> ] — (]E Z 1{0?”22}] >
=1 =1
Sn 2
= ZE [ (M) >2) {G(N)>2}} +E (E Z IL{GEN)ZQ}‘|>
i#£] i=1

— Sn(Sy — 1)P ({GEN) >21n{G™ > 2}) + SyPUGN) > 9}) — S2P({GWY) > 232

VG

SN

Z IL{G<N>>2}

i=1

= 8% (PUG™ 22 {6V = 2)) - PG = 2)2)
+ 8y (PUGE 2 21) = PUG™M 2 21 n {6V > 2}))
= S} (PUGTN < 13n {6V <1} —P{GY <1})?)
+Sn(PUGY <1} PG <13 n {6 <1}))

2
1‘g+§§%+0<§§)‘(*2§%+3§§‘8@”@%)) ]
ran[ro(g) - (1+o ()]

—sifi-g i o) - (s i o () ro(S)
o(5t) vo(sh)

b by
O(s%V'av)-

= 5%
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Chapter 3

Spatial Invasion of Cooperative
Parasites

This Chapter corresponds to the publication [2] ” Spatial Invasion of Cooperative Parasites”, written
in collaboration with Cornelia Pokalyuk, Marco Seiler and Hung Tran for the simulations. It is
published in Theoretical Population Biology for the special issue for the 60th birthday of Alison
Etheridge.

Abstract:

In this paper we study invasion probabilities and invasion times of cooperative parasites spread-
ing in spatially structured host populations. The spatial structure of the host population is given by
a random geometric graph on [0,1]", n € N, with a Poisson(N)-distributed number of vertices and
in which vertices are connected over an edge when they have a distance of at most ry with ry of
order NB=D/" for some 0 < § < 1. At a host infection many parasites are generated and parasites
move along edges to neighbouring hosts. We assume that parasites have to cooperate to infect
hosts, in the sense that at least two parasites need to attack a host simultaneously. We find lower
and upper bounds on the invasion probability of the parasites in terms of survival probabilities of
branching processes with cooperation. Furthermore, we characterise the asymptotic invasion time.

An important ingredient of the proofs is a comparison with infection dynamics of cooperative
parasites in host populations structured according to a complete graph, i.e. in well-mixed host
populations. For these infection processes we can show that invasion probabilities are asymptotically
equal to survival probabilities of branching processes with cooperation.

Furthermore, we build on proof techniques developed in [1], where an analogous invasion process
has been studied for host populations structured according to a configuration model.

We substantiate our results with simulations.

Keywords: cooperation, host-parasite population dynamics, invasion probability, invasion
time, spatial host population structure, random geometric graph.

3.1 Introduction

Understanding the dynamics of infection processes is a highly relevant and active research field.
In this study we are interested in the spread of cooperative parasites in spatially structured host
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populations. Cooperative behaviour is observed in many biological systems, see [72]. The main
biological motivation for our model stems from observations made on phages, that is viruses infect-
ing bacteria. Bacteria own various mechanisms to defend against phages. Defense on the basis of
CRISPR-Cas system is widespread in bacteria. Certain phages, called anti-CRISPR phages, can
overcome these defense mechanism by cooperation. Only when anti-CRISPR-phages infect simul-
taneously or subsequently a CRISPR-resistant bacterium the infection gets likely to be successful,
see [73, 74].

Besides the motivation stemming from application, models which incorporate cooperative mech-
anisms are also highly interesting from a mathematical point. For example Gonzilez Casanova,
Pardo and Perez [75] show that for a branching process with cooperation the survival probability
is positive as long as the probability to generate offspring for pairs of individuals is non-zero. In
case of survival it explodes in finite time. In the papers [76], [77] and more recently [78] mean-
field limits of systems with cooperative reproduction are studied. Mach et al. find in [78] that
the mean-field equation corresponding to certain interacting particle systems with cooperation can
have more fixed points than the corresponding mean-field equations of classical infection models
such as the contact process. This can be seen as evidence that in the microscopic model there could
exist more extremal invariant laws as compared to the non-cooperative infection models. Sturm and
Swart studied in [33] such a cooperative microscopic model. To be precise they considered a nearest
neighbour cooperative branching-coalescing random walk on Z. In comparison with the classical
branching-coalescing random walk a subcritical phase exists, where the system ends up with only
one particle. Superficially, this cooperative branching-coalescing system seems to be similar to a
contact process, but a closer look reveals some apparent differences. For example [33] show that the
decay rates in the subcritical regime are polynomial and not exponential as for the contact process.

In [1] the invasion of cooperative parasites in host populations structured according to a con-
figuration model was studied. In this paper a parameter regime was considered, in which parasites
have many offspring and a parasite can reach many, but not all hosts. In the critical scale this
resulted in an invasion process which could be approximated initially by a Galton Watson process
with roughly Poisson offspring numbers.

In this manuscript we consider the spread of cooperative parasites in host populations that have
a finite-dimensional spatial structure. More precisely, we assume that the (immobile) hosts are
distributed on an n-dimensional cube [0,1]™ according to a Poisson point process. Parasites can
move in every generation up to some fixed distance in space and attack the hosts located in this
region. As in [1] we consider a parameter regime in which parasites have many offspring and can
reach many, but not all hosts, as well as hosts need to be attacked jointly by parasites for successful
parasite reproduction.

However, in contrast to the case considered in [1] the invasion process is already in the initial
phase poorly approximated by a Galton-Watson process. The reason is that parasites generated in
different hosts have in the spatial setting often a good chance to cooperate, because infected hosts
are located close to each other. To arrive at lower and upper bounds on the invasion probability we
compare the spread with infection dynamics caused by cooperative parasites spreading on complete
graphs. The number of vertices of these complete graphs yield upper and lower bounds on the
number of hosts, with which parasites generated on different hosts can cooperate. We show that
the invasion probabilities of these infection processes on complete graphs are asymptotically equal
to survival probabilities of certain branching processes with cooperation, a result that is of interest
on its own. Furthermore, we show that the spatial infection processes can be coupled from above
and below with these branching processes with cooperation until either the parasite population dies
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or a sufficiently large amount of hosts are infected so that afterwards with high probability (i.e.
asymptotically with probability 1, abbreviated as whp in the following) the parasite population will
spread through the whole host population.

Once a sufficiently large number of hosts is infected, we show that the parasite population
spreads whp at linear, almost maximal speed. As in the considered scaling the initial phase, which
is decisive for survival of the parasite population, takes place only on a negligible amount of space,
invasion time is basically determined by the time frame in which the parasite population spreads
linearly fast. This yields our asymptotic result on the invasion time. Here again a clear difference
to the model in [1] occurs, in which the final phase of invasion is finished after a constant number
of steps.

By means of simulations we study the fit of the upper and lower bound on the invasion probability
and our prediction for the invasion time. Interestingly, we find that the upper bound on the invasion
probability matches very well with simulated invasion probabilities.

3.2 Main results

3.2.1 Model definition and main results

Consider the n-dimensional cube [0, 1], which we will denote by M = M,, in the following. Measure
distances on M according to the maximum metric denoted by p, i.e. for z = (1,...,2,),y =
(Y15, yn) € [0,1]™ we have p(x,y) = max;=1,. n{|z; — y;|}. Consider a homogeneous Poisson
point process with intensity measure NA"(-) on [0, 1], where A\™ denotes the Lebesgue measure on
R™ and N € N. In particular the number of Poisson points contained in a set S C [0,1]™ of volume
s is Poisson distributed with parameter sN. Denote the set of the Poisson points by V = V(N),
Build a random geometric graph on [0, 1] by connecting all points in V¥ ) over an edge which have
a distance of at most ry > 0 with respect to the metric p. Denote the set of edges by & = £0V)
and the random geometric graph by G = V) = grv) = (P(V) g(V)),

On G we consider the following infection process. At the beginning place on each vertex a host.
These hosts can get infected with parasites. Choose the vertex zo = x(()N) € V closest to the center
of the cube [0, 1]™, denoted by x.. We assume that the host on this vertex gets infected in the first
generation g = 0. This means that the host dies and vy € N offspring parasites are generated on zg.
Then the infection process continues in discrete generations. At the beginning of each generation
each parasite chooses uniformly at random and independently of all other parasites an edge, that is
adjacent to the vertex on which the parasite is located. Along this edge the parasite moves to the
neighbouring vertex and attacks the host on this vertex, if a host is still available. After movement
of parasites, offspring parasites are generated and hosts die according to the following rules. If a
vertex is occupied by a host and at least two parasites attack the host, the host on the vertex gets
infected, dies and vy parasites are generated. If only a single parasite attacks a host, it dies and
the host stays alive. If a parasite arrives at an unoccupied vertex, it dies.

If a vertex is occupied/not occupied with a host, in the following we will call this vertex occu-
pied/unoccupied vertex. Sometimes we also speak of a susceptible/so far uninfected vertex, if a host
on a vertex did not yet get infected. Similarly, we say that a vertez is infected in some generation
g, if the host on the vertex is in this generation infected.

Denote by S, = S_(SN) eV, 1, = Is(,N) and by Ry, = RéN), resp., the set of occupied and
uninfected, the infected and the unoccupied, resp., vertices in generation g. We set S, =[Sy,
I, = |Z,| and R, := |R,|. Furthermore T,(") = 39 I,(") is the number of hosts that got infected
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till generation g. Let I = I®™) = (I,(M));5g and T = I™) = (I,(M),~( be the corresponding
processes.

To state our main results about the infection process we need the definition of branching processes
with cooperation in discrete time.

Definition 3.2.1 (Branching process with cooperation in discrete time). Let £, and L. be two
probability distributions on Ng. A discrete-time branching process with cooperation (DBPC, for
short) Z = (Zy)g>0 with offspring distribution L, and cooperation distribution L. is recursively
defined as follows. Assume Zg =k a.s. for some k € N, then for any g > 1, Z, is defined as

Zg_1 Zg_1
Zg = E :ngi"‘ E Yyi4,
i=1

1,j=1,i>j

where (Xg.i)gi and (Yyij)gij are sequences of independent and identically distributed random
variables with Xy ; ~ L, and Yy, ; ~ L.. We denote by Z = (Z ;) 4>0 the total size process, i.e.

g
Zg=Y_ 7.

i=0
In the following we will denote the probability weights of the distributions L, and L., resp. by
(Pr,0)keny and (Pr,c)ren,-

Remark 3.2.2. Branching processes with cooperation have been mostly studied in continuous time
in more general settings, like branching process with (pairwise) interactions, see e.g. [79], [80],
[81], [75], [82] and [83]. In particular, in [80] formulas for extinction probabilities for the case of
branching processes with cooperation have been determined.

A central object for our results is a DBPC with Poisson offspring and cooperation distributions
or rather its survival probability. Therefore, we fix in the next definition some notation for these
processes.

Definition 3.2.3 (DBPC with Poisson offspring and cooperation distribution). Let a > 0. Denote
by P(®) o DBPC with offspring distribution L, ~ Poi(a®/2) and cooperation distribution Lo ~
Poi(a?). Furthermore, we denote by m(a) the survival probability of P(*).

Denote by
dN = (27"1\/)”]\7,

which is the expected number of direct neighbours a vertex of G(V) (with an asymptotically non-
vanishing distance to the boundary of M) is connected to in dimension n. Furthermore, denote for
all u € (0,1]

EW .= {ag ENg: TV > u- #V<N>}

the event that at least a proportion u of the host population dies during the infection process.
Our main result is the following theorem.

Theorem 3.2.4. Consider the above defined sequence of infection processes (I™))yex on [0, 1]
for somen € IN. Assume ry = %N(B’l)/” for some 0 < 8 <1 and let 0 <u < 1. Then it holds:
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1) Invasion probability

(i) If vn € o(Vdx), then limy o0 P(E(Y)) = 0.
(ii) If vy ~ ay/dyx for some 0 < a < oo, then

(=) < 1}@&@@9)) < limsupP(E(M) < 7(a).

N—o0

(iii) If Vi € o(o), then limy o P(ESY)) = 1.

2) Invasion time
Assume vy ~ av/dn for some 0 < a < co. Denote by

T —inf{ge N [T, = ™},

Then

P({ ! J <TW < [lw +0(HN)’T<N> <oo>
27‘]\/ 21"]\]

—+1as N — o0
) B/2=1 5 _o
with Ky = max { log(log(N)), N = : }, for any 6 > 0.

Remark 3.2.5. e In Theorem 3.2.4 1) (i) we obtain bounds for both liminf]I”(quN)) and
lim sup IP’(E&N)). We believe that the limit of IP’(E&N)) exists.

Simulations suggest that the upper bound provides a good approrimation of the actual invasion
probability, see Section 3.2.4. An analysis of the initial phase of the epidemic, when infected
parasites start to spread around the initially infected vertex, would be helpful to understand
how close the upper bound is to the asymptotic invasion probability (that we believe to exist).

e In the critical scaling vy ~ av/dy with 0 < a < oo, one can show that the invasion probabil-
ity is also lower bounded by the survival probability p(a) of a Galton-Watson process with a
Poi(a?/2) offspring distribution. To arrive at this lower bound, it suffices to neglect coopera-
tion of parasites generated by different infected hosts at the beginning of the infection process.
In particular such a result allows for a comparison of the invasion probabilities of the infection
processes defined on the random geometric graph and on the configuration model with dyn half-
edges per vertex and vy offspring parasites (which analysis is derived in [1]). It shows that
having a finite-dimensional spatial structure of the population increases the invasion proba-
bility compared to scenario where the host population is structured by a configuration model
leading to an infection graph with a locally tree like structure.

e In Lemma 5.5.2 below, we prove, that for any a > 0 the survival probability = (a) of a DBPC
P as defined in Definition 3.2.3 is strictly positive. Therefore, the invasion probability is
in Case 1) (i) of Theorem 3.2.4 for any a > 0 strictly positive.

This contrasts the situation studied in [1] where for a?/2 < 1 the invasion probability is
asymptotically 0 (for a host population structured according to a configuration model instead
of a random geometric graph on [0,1]".
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o We assume that parasites die, if they move to an empty vertex. Our results should remain
valid, if e.g. parasites survive and move forward in the next generation.

The proof of Theorem 3.2.4 is formally given in Section 3.5, at the end of this section we will
give a sketch of the proof. The proof of the lower bound on the invasion probability is based on an
asymptotic result on the invasion probability of an analogously defined infection process when the
host population is not structured according to a random geometric graph on the cube, but according
to a complete graph. This model mimics the spread of cooperative parasites in well-mixed host
populations and is neither covered by the parameter regime considered in [1] nor by Theorem 3.2.4.
Therefore the result is of interest on its own. We state it next.

We consider the same host-parasite dynamics as previously described except for the fact that
we consider it on a complete graph with Dy vertices. To avoid confusion with the other model
we denote the number of newly generated parasites in case of a successful host infection by V.
Furthermore the corresponding infection process is denoted by 7. Analogously as before the total
number of infected hosts in generation g is denoted by JéN) and the total number of infected hosts
up until generation g is denoted by jgN), where similarly as before J = JV) = (J;N)) -0
J = j(N) = (j;N))gN) are the corresponding processes. We are interested in the event FuN) that
eventually a proportion u, for u € (0, 1], of the host population gets infected, i.e.

)

and

FISN):{EIgeJNO:jéN 2u~DN}.

We show that the invasion probability is in the critical regime asymptotically equal to the survival
probability of a branching process with cooperation.

Before we state the result we introduce the following notation. We write that f € ©(g) if f
grows asymptotically as fast as g, i.e.

0< liminfM < 1imsup® < 00.
e g(z) T ameo g(x)

Theorem 3.2.6. Assume Dy € © (NB) for some 0 < <1 and let 0 < u < 1. The following
invasion regimes hold:

(i) Assume Vi € o(v/Dy). Then
lim P(F{M) = o0.
N—o00

(i) Assume Vy ~ a\/Dy for some 0 < a < oco. Then the invasion probability of parasites satisfies
; (N)y —
A}gnOOIP’(Fu ) =m(a) > 0.

(iii) Assume /Dy € o(Vy), then limy o0 ]P)(FzSN)) =1

The proof of Theorem 3.2.6 is given in Section 3.4. Next we sketch the proofs of Theorem 3.2.4
and 3.2.6.

Hereinafter we will often use the following terminology. We call an infection a CoSame infection
(for cooperation from the same edge), if a host gets infected by two parasites (originating from the
same vertex) that moved along the same edge to the vertex on which the infected host is located on,
and we call an infection a CoDiff infection (for cooperation from different edges), if a host gets in-
fected by two parasites that moved along different edges to the vertex the infected host is located on.
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3.2.2 Sketches of the proofs of the main results

Sketch of the proof of Theorem 3.2.6: Case (ii): To arrive at an upper bound on the invasion
probability we couple whp the total number of currently infected and currently empty vertices J from
above with the total size of a DBPC ZiN) until ZiN) remains constant or reaches at least the level /5
for a sequence ¢ with ¢y — oo sufficiently slowly, see Proposition 3.4.3. The probability that ZELN)
reaches the level ¢y is asymptotically equal to 7(a), see Proposition 3.4.4, as the appproximating
DBPC has asymptotically the survival probability 7(a). In case the level ¢y is reached we upper
bound the probability, that afterwards also the remaining hosts get infected, by 1.

For the lower bound we couple whp J from below with the total size of a DBPC ZEN) that has

asymptotically the survival probability 7(a) of a DBPC P(@) until ZEN) remains constant or reaches
the level ¢ for some sequence £y with £y € O(N®) and € > 0 small enough, see Proposition 3.4.6
and Proposition 3.4.7. As for the upper bound the probability to reach the level ¢x for ZﬁN) is
asymptotically equal to 7(a). When J reaches the level £, we show that the total number of empty
vertices grows in a constant number of generations to a level N 548 for some small § > 0 whp, see
Lemma 3.4.12. After reaching this particular level the remaining hosts get infected whp in a single
generation.

Case (1): We show that asymptotically with probability 1 the parasite population does not
survive the first generation.

Case (iii): We show that we can whp couple from below J with the total size process of a Galton-
Watson process with approximately Poi(a?/2) offspring distribution until N hosts get infected or
the parasite population dies out for any 0 < o < 8 and any a > 0. This can be done by ignoring
infection due to cooperation. By choosing o > (3/2 we can show that once the level N is reached
by J whp after one more generation the remaining hosts get infected. Since the probability to
reach the level N¢ for the considered Galton-Watson process is asymptotically equal to the survival
probability ¢, of a Galton-Watson process with Poi(a?/2) offspring distribution and ¢, tends to 1
for a — oo the result follows.

We proceed with a sketch of the proof of Theorem 3.2.4:

Before we start recall that dy denotes the expected number of neighbours and vy the offspring
number of parasites generated at a host infection.

Claim 1) (ii) and Claim 2): For our upper bound on the survival probability we couple (as in
the case of the complete graph) I with the total size of a DBPC with offspring and cooperation
distributions that are approximately Poisson distributions until a certain number ¢ of hosts get
infected or the parasite population dies out, for a sequence ¢y — oo sufficiently slowly, see Propo-
sition 3.5.7. The parameter of the approximating Poisson distribution for the offspring distribution
is roughly 22, since if all Vertlces are occupied with hosts the number of CoSame infections is on

average approximately ( ) . The Poisson parameter of the cooperation distribution is roughly

a?, since cooperation is maxnnal if two balls centered around vertices, on which parasites have been

generated in the same generation, are completely overlapping In case of a complete overlap the
number of cooperation events is roughly v d— ~ a? on average . Then we show that the probability
to reach with the total size of the upper DBPC the level £ is asymptotically equal to the survival
probability of the DBPC. This yields the upper bound, since again we upper bound the probability
to infect the remaining hosts afterwards by 1.

For the lower bound we consider the spread of the parasites restricted to a certain complete
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neighbourhood C(x) of the vertex xo, that gets initially infected. The set C(zo) contains all Poisson
points with a distance ry /2 to xg. Since any two points in C(zg) have a distance of at most ry any
two points are connected over an edge, in other words the restriction of GV) to points in C(z¢) is a
complete graph. Consequently, also the infection process restricted to C(xg) is an infection process
on a complete graph. In particular, we can apply Theorem 3.2.6 to show that the probability
to infected at least N¢ vertices can be asymptotically lower bounded by the survival probability
( ’;) of a DBPC P(¢/V2"), The parameter of the offspring distribution is roughly 2,‘}%, since
(”é"%airs of parasites can be generated per infected host and the probability that both parasites of
a pair of parasites hit the same vertex and that the vertex lies in C(z¢) is roughly 2*1” ﬁ, because the
first parasite has to attack a vertex in the complete neighbourhood, which happens with probability
approximately ((22)" N) /((2ry)" N) = 1/2", and the second parasite has to attack the same

vertex. So the number of CoSame infections per host is roughly (“év )2%,% — 2;‘% Similarly the
11

parameter for the cooperation distribution is vaﬁ v~ ;—j If the infection process is successful V¢
many hosts are infected within at most O(log(log(N))) generations. Afterwards in a finite number
of generations in the complete neighbourhood the remaining hosts get infected and the infection
process expands at a distance ry(1 — 0 (1)) per generation, see also Figure 3.6 and Section 3.5.2
for more details. On the other hand the invasion time is lower bounded by 1/(2ry), since parasites
can move in any generation at most at a distance ry and the infection starts in the center of the
cube. This explains our Claim 2) on the invasion time.

Case (i): As in the case of the complete graph we show that asymptotically with probability 1 the
parasite population does not survive the first generation.

Case (iii): Again as in the case of the complete graph we show that we can whp couple from below
I with the total size process of a Galton-Watson process with an approximately Poi(a?/2) offspring
distribution until N®" hosts get infected or the parasite population dies out for any 0 < ' < 3
and any a > 0. In addition we can show that when the level NV A" is reached there exists a ball of
radius ry which contains at least N#'/log(N) infected hosts. By choosing 3 > 3/2 we can show
that once the level N#' is reached whp after one more generation the remaining hosts in this ball
get infected. Afterwards the infection expands by a distance rn (1 — o(1)) in every generation whp
(similar as in Case (ii)) until the remaining hosts are all infected. Since the probability to reach
the level NA' for the total size of the considered Galton-Watson process is asymptotically equal to
the survival probability ¢, of a Galton-Watson process with Poi(a?/2) offspring distribution and
g tends to 1 for a — oo the result follows.

3.2.3 Invasion on Riemannian manifolds

In this section we give a brief heuristic justification why our results should also carry over to a setting
where the unit cube [0, 1]™ is replaced by a Riemannian manifold. Instead of considering the spread
of the parasite population in host populations structured according to a random geometric graph
on an n-dimensional cube it is natural to assume that the host population is located on a manifold.
We can generalize our model to this setting as follows. Let (M’,g) be a compact, connected,
orientable, n-dimensional Riemannian manifold with Riemannian metric g. Assume without loss
of generality that vol(M') = 1, where vol(M’) denotes the volume of M’ calculated according to
the volume induced by g. Denote furthermore by p’ the metric on M’ induced by g. Consider a
homogeneous Poisson point process with intensity measure N -vol(-) on M’ (for this point process
the number of vertices contained in a set S C M’ with volume vol(S) = s is Poisson distributed
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with parameter sN). We denote the set of the Poisson points by V' =V’ (M) and build a random
geometric graph on M’ by connecting all points in V' over an edge which have a distance of at most
ry with respect to the metric p’. Denote the set of edges by & = &™) and the random geometric
graph by G’ = g/(N) _ g/(rN) _ (V/(N)75/(N))_

Given G’ we can consider an infection process (with the components (Sg,Z;,Ry)) in the same
way in which we defined it on the random geometric graph on the cube.

Denote by
y 7.l.n/2

N = W(TN)nN,

which is the expected number of vertices a vertex of G is connected to in dimension n (if the
distance of the vertex to the boundary of M’ is asymptotically non-vanishing, in case M’ has a
boundary) and let p € M’. Denote by

A(p) = ggg{p’(q,p)}

the maximal distance between p and any other point ¢ € M. Furthermore, denote as before by

(N)

J ol {Elg eENg:I'y " >u- #V’(N)} :

Then we believe that the following statements hold at least for n € {1,2}.
F("/QH))U“N% for some 0 < 8 < 1, let 0 < w < 1. Assume the infection

n/2

Assume ry = (

process is started in a vertex x((JN) e V™) that has asymptotically a positive distance to the
boundary of M’ (if M’ has a boundary).

1) Invasion probability

(i) foy € O(M), then

lim P(E'(Y) =o0.

N—o0

(ii) If vy ~ ay/d)y for some 0 < a < oo, then

7o) < lminf P(E") <limsupP(E'")) < w(a).

N—oo
(iii) If \/dy € o(vw), then imy_, o IP(E’&N)) =1

2) Invasion time: Assume vy ~ ay/d, for some
0 < a < 0. Denote by
7N = inf {g e NIV = #v’(N)} .

Then

P({A(méN))rﬁlJ <7™ < [A(xéN))r;,l—‘ + O (ky) ‘T’(N) < oo) — 1,

N—oc0

51
with kK = max { log(log(NV)), N2n+57“N2} for any § > 0.
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The main reason why these results should hold is that the decision, if eventually invasion takes
place, is made in a neighbourhood of xg that is asymptotically of negligible volume. Indeed, only
N°¢ many hosts need to be infected such that whp subsequently the whole host population gets
infected. Since N® many hosts are directly connected to xg for € > 0 small enough, we need to
consider only a neighbourhood of x( of negligible volume to decide on invasion. As a consequence at
the beginning the invasion process is essentially the same as a corresponding process on [0, 1]” with
distances measured according to the Euclidean distance due to the following relationship between
the volume of an Euclidean ball in [0,1]™ and the volume of a ball of the manifold.  For any
sequence hy — 0 it holds
vol(Bp, (x)) S

ol (B (0) Sy N o),

where vol(By,, (x)) denotes the volume of a (geodesic) ball of radius hy centered in x € M’ and
vol(By,,, (0)) denotes the volume of an n-dimensional Euclidean ball of radius hy centered in 0 and
S the scalar curvature in z, see [84], Section XII.8. Since M’ is compact and the scalar curvature
is a continuous function on M’, the scalar curvature of M’ is bounded from above and below. In
particular, for hy = 7y the number of points connected to x € V' is Poisson distributed with

/2 n n+2 :
parameter Nmﬁv + O(Nry"™), since

~ ,n_n/2 .
vol(B,(0)) = 7F(ﬂ n 1)7‘N.
2

In Theorem 3.2.4 we consider the maximum metric to measure distances between two points.
With this metric we easily can cover M with balls (that are cubes as well) to control the spread
of parasites across M. A similar construction is also possible with Euclidean balls (at least in the
case n € {1,2}), the notation is just a bit more complicated. Therefore, considering the Euclidean
metric or maximum metric should not influence the invasion probability as long as the ratio of the
expected number of vertices contained in a ball and the number of offspring parasites generated at
infection is asymptotically the same. The invasion time in general differs for two different metrics,
because the function A(p) depends on the metric.

3.2.4 Simulating spatial invasion of cooperative parasites

We supplement our findings with simulation results for moderately sized, finite N. We simulated
invasion of parasites in host populations structured according to random geometric graphs on (i) the
interval [0, 1] with the euclidean metric (which agrees with the maximum metric, since n = 1), (ii)
the square [0, 1) using the maximum metric and (iii) the unit 2-sphere S? using spherical distances
(to substantiate our conjecture given in Remark 3.2.3 at least by means of simulations).

To ease computations in the case of the 2-sphere, we generate points on the unit 2-sphere S?2,
instead of the sphere with radius 1/v/4m which would have as required in Remark 3.2.3 a surface area
(aka volume) of 1. This simplification benefits both generation and evaluation of point distances in
our implementation of the process and only requires appropriate rescaling. The distance between
two points « and y is then simply given by arccos(x -y) as the radius is of length 1. Uniform points
on S? can be generated by a two-step scheme in which first the polar angles (f,¢) are sampled
using inverse transform sampling. To this end, let Uy, Uy ~ U(0,1). We compute 0 = 27 - U; as
well as ¢ = arccos(1l — 2 - Us) and obtain Cartesian coordinates by a standard transformation.
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Figure 3.1: Simulated invasion probabilities with a host population structured by a random geo-
metric graph (RGG, for short) on [0, 1] (top) and [0,1]? (bottom) for N = 10° and 3 = 0.7 as well

as simulated survival probabilities 7 ( \/afn) and 7 (a).

In general, storing and operating on an explicit representation of G takes space in the order
of |€ (v )|. In the case when Ndy ~ N't# gets prohibitively large rendering parameter combina-
tions of N and dy = N# is infeasible for general-purpose compute architectures. Optimizations,
however, are possible by implicit representations of G using the coordinates of VV). Realizations of
this are straight-forward for the interval [0, 1] and can be adapted using Quadtrees for 2-dimensional
spaces [85].

Invasion probabilities

In Theorem Theorem 3.2.4 we claim that for 0 < a < co and vy~av/dy

m(%) < 1}613&@(139)) < lglljélopp(EfLN)) < 7(a).

In Figure 3.1 and Figure 3.2 simulation results are depicted that show the fraction of cases,
in which the host population got completely infected, for parasites spreading in host populations
structured according to random geometric graphs on the interval [0, 1], the square [0,1]? and the
sphere 5%, The simulated survival probabilities 7(a/v/2") and 7 (a) (where in the simulations we
assume that survival took place if the DBPC attains size N) appear to be appropriate upper and
lower bounds. The upper bound gives a particularly good approximation to the observed actual
invasion probability. For the upper bound one assumes that the chance for two parasites, which have
been generated on different vertices, to cooperate is roughly 1/dy, which is actually only true if the
distance of the two vertices is 0. Therefore it might be surprising that the upper bound gives such a
good fit. However, since parasites perform symmetric random walks a large part of parasites stays
in a neighbourhood of xg and parasites that are close together have due to CoDiff infections a higher
chance to generate offspring, which implies that parasites located in densely populated regions have
in general more offspring parasites than parasites located in sparsely populated regions. This effect
remains until a significant proportion of the host population in a ry-ball gets infected, but at this
time point invasion is essentially already decided. Consequently, the probability that a typical pair
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Figure 3.2: Fraction of successful invasions for N = 10% and 8 = 0.7 of infection processes spreading
on host populations structured by a RGG on S? (top) and for comparison on [0, 1], [0, 1]? and S?
(bottom).

of parasites produces CoDiff infections could be in the initial phase pretty close to 1/dy.

Conversely, our lower bound is relatively far away from the simulated invasion probabilities. To
arrive at the lower bound we consider only parasites spreading within the complete neighbourhood
of the initially infected host. The larger n the smaller this complete neighbourhood is in comparison
to the rxy- neighbourhood of a host. Therefore the larger n the worse is the lower bound.

Our asymptotic upper bound of the invasion probability does only depend on the ratio of the
number vy of parasites generated on a vertex and the (asymptotic) number of direct neighbours
of a typical vertex, but neither depends on the dimension nor (in the setting considered in Remark
3.2.3) on the curvature of the manifold. We suppose that this is also the case for the invasion
probabilities. In Figure 3.2 we present a direct comparison of simulated invasion probabilities for
infection processes on [0, 1], [0, 1]? and S? and see that the probabilities are very close to each other
(even for finite N).

Finally we simulated invasion probabilities of the infection processes on the complete graphs
that we use for a coupling from below. In Figure 3.3 one can observe that the simulated inva-
sion probabilities match very well with the probabilities 7r(a/ \/27”) and 7 (a) of the corresponding
DBPCs.

Invasion time

In Figure 3.4 and Figure 3.5 we present the invasion time of simulated infection processes on the
interval [0, 1], square [0, 1]? and sphere S?, respectively. For reference we plot also the asymptotic
order of the invasion times derived in Theorem 3.2.4 and Remark 3.2.3. In Figure 3.4 we observe a
matching overlap that improves for increasing N for all considered values of a in the 1-dimensional
case.

For large [ values the simulations showcase a higher invasion time than predicted. This can
be explained as follows: We show in Theorem 3.2.4 that the invasion time is asymptotically pro-
portional to N'=#. In particular, the larger § is the shorter is the invasion time. For N — oo
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Figure 3.3: Simulated invasion probabilities with a host population structured by a complete graph

for N =105 and 3 = 0.7 as well as simulated survival probabilities 7 (%) and 7 (a).

invasion is dominated by the time necessary to reach from an infinitesimally small neighbourhood
of g points close to the boundary of [0, 1]™ or in the setting of Remark 3.2.3 the point that has the
largest distance to the host that got initially infected. The initial phase until for the first time all
direct neighbours of a vertex get infected is only of order loglog(N). For 8 close to 1 and finite N
however both time frames are of approximately the same length, which explains the deviation from
the theoretical prediction where the initial phase is ignored. In Figure 3.5 we plotted the invasion
time when the initial phase is removed. One observes that for intermediate and larger values of 3
the gap between the predicted and simulated invasion time disappears. For larger values of [ the
simulated invasion times lie slightly below the predicted invasion times. Probably this is caused by
parasites spreading the infection further before the initial phase is over.

Also for small 8 values we observe that simulated invasion times are generally higher than the
predicted ones, even when the initial phases are removed. This deviation is particularly pronounced
for invasion on [0, 1]2, where the maximum metric is used. This can be explained as follows. As we
pointed out in the sketch of the proof of Theorem 3.2.4 the parasite population expands furthest
due to parasites born at the boundary of an 75 neighbourhood. When on the square the maximum
distance is used r-squares on the diagonal can get infected fastest by parasites at the corners of
neighbouring ry-squares. However, when N is not large, the number of parasites located in the
corners is pretty small, so that they might not be able to move the front forward as quickly as
predicted for N — oo.

This behaviour is further studied in Figure 3.6 where the progress of the infection process is
tracked along balls of radius 7 /2 on the unit-square [0, 1] for different values of 3. The smaller 3
the less vertices are located at the corners leading to a decreased speed of expansion. As shown in
Figure 3.6, for 8 = 0.7 and 8 = 0.5 one observes that after the initial phase the parasite population
expands linearly (almost) by a factor 1 (as predicted), while for 5 = 0.3 (when in each box with
edge length ry only ~ N°3 a~ 63 vertices are contained) the population expands also linearly, but
only by a factor of (almost) 2.

In the following the manuscript is structured as follows. In Section 3.3 we show several properties
(of sequences) of DBPCs that we will need in the subsequent section. Afterwards in Section 3.4 we
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invasion time

Figure 3.4: Invasion time on random geometric graphs on [0,1] for N = 105 (top) and N = 107
(bottom) with varying a and S.

will prove Theorem 3.2.6. Finally in the last section we will prepare and give the proof of Theorem
3.2.4.

3.3 Discrete branching processes with cooperation

In this section we collect properties of (sequences of) DBPCs that we need in the following. For
Galton-Watson processes some of these statements are well-known or have been proven in [1]. Since
the proof techniques are similar, we do not give all of the proofs in the main text, but provide some
of them in the supplementary material.

We start with the extinction-explosion principle, which is well-known for branching processes
and also holds for DBPCs.

Lemma 3.3.1. (Extinction-explosion principle for DBPCs) Let Z be a DBPC satisfying p1,, # 1
and (po,o,p1,c) # (1,1). Then there exists a nullset N such that

{Vge]NoZg>O}Q{V26]N,EIQOEINO,VngOZgZz}U./\/

For the proof one shows that all states but 0 are transient states. Details of the proof can be
found in the supplementary material.

Note that the conditions p1, # 1 and (po,0, p1,c) # (1,1) are necessary to exclude two patho-
logical cases where the statement does obviously not hold. The first case is where the process stays
constant at 1 individual in each generation, and the second condition ensures that the DBPC with
3 and less individuals can further increase and is not stuck below 3.

Before we proceed we introduce some useful notation. We denote the expectation and the
variance of the offspring distribution by u, and v, and for the cooperation distribution by u. and
Ve.

In contrast to a Galton-Watson process we aim to show that except for pathological cases a
DBPC always has a positive survival probability.
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Figure 3.5: Invasion time on random geometric graphs on [0, 1]? (top) and S? (bottom) for N = 106
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Figure 3.6: Distance reached for successful invasions on [0, 1] with N = 106.

Lemma 3.3.2. Let Z be a DBPC with fio, tic, Vo, Ve € (0,00) and po,o + P10 < 1. Suppose Zy =
x € N, then Z has a positive survival probability, i.e.

P.(Zy >0Vg>0) > 0.

The proof of Lemma 3.3.2 is based on the next lemma, which we immediately formulate in a
more general setting to be able to apply it also later in another context and which basically states
that if a DBPC attains a certain level, then in subsequent generations the size will up to a constant

factor (that does not depend on the size) be squared in the next generations due to cooperation
with a certain non-vanishing probability.

In the subsequent sections we will deal often with sequences of DBPCs rather than a single

process. We will often need the following assumption to be fulfilled.

Assumption 3.3.3. Let (Z(N))NG]ND be a sequence of DBPCs for which pio™), ue™), 1,V 1, (V)
denote the expectations and the variances of the offspring and cooperation distributions. We assume
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that
(N)

Iuo ?MEN)7V(SN)7VC(N) —> :LLOMLLC?VO?VCe(O)OO),

N —o0
and we introduce
= min(po, i) > 0, and v := max(v,, v.) > 0.
Lemma 3.3.4. Let (Z(N))NENo be a sequence of DBPCs which satisfies Assumption 3.3.3. Fur-
thermore, set f;(k) := K fori>1 and k € N. Then there exists Ny € N such that for any

827 —1

N >Ny, g€ N, MeN and k> L:= [u~1(8 + v)?] it holds that

(- n) |2 =) =1 (- 785) = 1 (- etem)

i=1 i=1

The claim can be shown by several applications of Tchebychev’s inequality. A detailed proof
can be found in the supplementary material.
Now we can prove Lemma 3.3.2.

Proof of Lemma 3.3.2. The assumption po, + p1,, < 1 implies that there is a strictly positive
probability that Z,,1 > Z, for all initial values « > 0. Let us consider z € {1, ..., L — 1} first. Since
L = [p~(8 + v))?] is finite the previous observation implies that there exists a p; > 0 such that
for any z it exists a go € IN such that

]P)m(Zgg Z L) Z p1-

If > L obviously we can set go = 0. Applying Lemma 3.3.4 for Z() = Z one obtains

M M 5
# (e = 100 2= 1) 2 11 g s

Noticing that the events appearing on the left-hand side are monotone-decreasing for growing M it
follows from upper o-continuity of the measure P that we have

P @ s > 1)} | 2 = L) L1 ) 0

where it follows that the right-hand side is strictly positive by comparison with a geometric sum.
We have that

({Zgo+i > £i(L)} N {Zg, = L} C {Z, > 0 Vg >0},
=1

then by Markov property and monotonicity we get
P, (Zg >0Vg>0)>P(Zyy4i >0Vi >0 | Zyy = L)P,(Z,, > L) > 0.
O

The next lemma claims that a DBPC also survives whp when a level by, that tends to oo
(arbitrarily slowly) with N, has been reached.
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Lemma 3.3.5. Let (ZN))yen, be a sequence of DBPCs which satisfy Assumption 3.3.3 and let
(bn)nen be an N-valued sequence with by — 0o as N — oco. Then for all g € N it holds that

P(Z) >0viz0 |z >by) — 1.

N—o00

The proof relies on Lemma 3.3.4, we provide a detailed proof in the supplementary material.

Finally we are able to derive results on the growth speed of the population size in case of survival.
The next lemma shows that for any sequence by — oo, reaching the level by or dying out is at
most of order loglog(by).

Proposition 3.3.6. Let (Z(N))NeNO be a sequence of DBPCs which satisfy Assumption 3.3.3.
Assume ZoN) = for some x € N. Furthermore, assume that there exists an Ny > 0 such that

inf P (Z§N> > 1|7 = x) >0, (3.3.1)
N2>Ny

where L =: [p=*(8 + v)?]. Let (bn)nen be a N-valued sequence with by — 0o as N — oo and
denote by

TbZNU,Y; = inf {g eN: Zg(zN) > by or ZéN) _ 0}.
Then there exists a constant C' > 0 such that

P, (Tb 0 < C’loglog(bN)) =1 as N — .

Proof. Set en :=log(by). Note that we consider N large enough such that ey > L. We will first
show that there exist pg > 0,C, N1 € N independent of N, such that for all N > N; and all x € N

P$ ( eN 0 < Cloglog(el\/)) Z Po- (332)

From this follows that for all m € N

P, (TeN o <mClog log(eN)) > Z(l — o) po.
i=1

In particular for m = gy := % it follows that

P, (747 < Conloglog(en)) = 1= (1—po)\ o) =1, (3.3.3)

where we used that by choice of ey it follows that gy — oo as N — oco. In fact we will see that
C :=log(2)~! is a suitable choice. Now we will show (3.3.2). By assumption (3.3.1) and the fact
that L does not depend on N there exists a p; > 0 such that for any z € {1,...,L — 1}
N)
P(ZM =00r zM > L] 2N =) > .

Consequently, for any « € {1,...,L — 1} we can lower bound the time to reach the state 0 or a
state > L by a geometrically distributed random variable with success probability p;. Reasoning
as above shows that the waiting time to hit 0 or a state > L is with probability 1 — o(1) bounded
by loglog(en).
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2t ot
Before we continue we briefly state two facts we need. Recall that f;(k) = & i fori >0,

where fo(k) = k. First we see that we have the relation

Efl(k):u' _ (in1M2i1_1)2M B inMQi_l

3 g2 11 8 g1 T fi(k). (3.3.4)
Furthermore, we assumed that k > p~1(8 + v)?, and therefore

3 Qi+l oi_q 3 o 8 o 3(3 oi
fi(k)>< +Z) - LR ( v 8@ Y7 (3.3.5)
7 82 —1 ,u82 —1 1

We show next, that if Z_(SN) > L after C'loglog(ey) further generations the level ey will be
reached with some probability ps > 0 for any N large enough. Lemma 3.3.4 implies that for k > L
and M = Cloglog(en) it follows that

C'loglog(en) N C'loglog(en) 3
P N {Zé+3>fi(k)}‘ zM=k]> ] (1—4(

i=1 i=1

8—|—V)211) >p2>0.

Now by (3.3.5) we know that f;(k) > = *8(8 + v)2". Thus, by our choice C' = (log(2))~! we have
that
8

(eN)log(S) )
I

fC log log(en) (k) >

Since log(8) > 1 we get that foioglog(en)(k) > en for N large enough, i.e. this means that we in
fact reach a level higher than ey. Thus, we can conclude (3.3.2).
We again apply Lemma 3.3.4 such that we get that

C'loglog(bn) C'loglog(bn)

Pl N {2l el 2V —ev) > T (- )

Il 1 (en)n?

By an analogous calculation as before we see that

fCloglog(bN) (eN) = ;bN

We know that log (%) > 1 since we choose N large enough such that ey > L, and thus we have
that

fClog(log(bN)) (eN) > bN

Now we use that 1 —x > exp(—2x) for x < 1 and that f;(en) > ey for all ¢, which again follows
by the fact that ey > L. These two observations allow us to conclude for N large enough that

C'loglog(bn)

6v log log(b
H (1 — 2)M2) > exp (121/0(1\[)) Njoo 1. (3.3.6)

i=1 ’L‘*l(eN log(bN)M
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Finally using the strong Markov property at the stopping time 72 gives that

€N,

P(TIJZNU,\Q < 2Cloglog(by)) > ]P’(TZ(N> < Cloglog(bN),Z(]Zv()N) =0)

en,0
TeN,O

+P (TGZN(iVO) < Cloglog(bN),Zfzv()N) > €N> P (szzji\(’; < Cloglog(bn) ’ ZéN) - eN) .

en,0

Now the right-hand side converges to 1 as N — oo according to (3.3.3) and (3.3.6). This concludes
the proof of the claim. O

The following lemma states that the probability of reaching an arbitrary high level, that tends to
oo as N — 00, at some generation or up to some generation is asymptotically equal to the survival
probability for a sequence of DBPCs.

Proposition 3.3.7. Consider a sequence of DBPCs (Z(N))NE]N with offspring and cooperation
distributions (pr.o ™ ren, and (pr. ™ ren, respectively, which satisfies Assumption 3.3.3. Fur-
thermore, let Z*° be a DBPC with offspring and cooperation distribution (pk.o)ken, and (Pk.c)keN, -
Assume that p;w(N) — Pk,o and p;m(N) — Pk, a8 N — oo for all k > 0. Then for any N-valued
sequence (by)ven with by — oo it holds that

lim P (vg €Ng: ZN) > 0) = lim P (Eig € No: ZN > bN)
= lim P (39 eNg: 2V > bN>
=,

where m denotes the survival probability of Z°.

We provide the proof in the supplementary material. The two first equalities are shown using
a similar method as in the proof of Lemma 3.7 of [1]. The last equality is shown by using an
exact coupling argument between the processes Z(™) and Z* until the total size of both processes
reaches a sufficiently high level to ensure that the processes survive whp, or they both die out. In
the supplementary materials we introduce Lemma 3.6.1 which is used for this proof.

3.4 Invasion of cooperative parasites in host populations
structured by a complete graph

In this section we prepare and give the proof of Theorem 3.2.6. Therefore, let us briefly recall the
setting. We consider a host-parasite dynamics as introduced in Section 2 on a complete graph with
Dy vertices, where we assume that Dy € @(Nﬂ) with 0 < 8 < 1. In case of an host infection
Vn parasites are generated. The number of infected hosts in generation g is denoted by J, = JéN)
and the total number until generation g is denoted by jg = 79 . In Subsection 3.4.1 and 3.4.2
we do the preparatory work to show Theorem 3.2.6 (ii), and thus we consider the critical scaling
VN ~ ay/Dy in these subsections, where a > 0.

In this and the next section we often will make use of the inequalities exp(—z) > 1 —z >
exp(—z) exp(—2?), exp(—z) < 1 — /2 for z € [0,1/2] and Bernoulli’s inequality (1 + x)* > 1 + iz
for i € N and x > —1.
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Furthermore, we will compare the infection dynamics happening within one generation often
with balls-into-boxes experiments. The following lemma gives control about certain events happen-
ing in these experiments.

Lemma 3.4.1. Let (m/y), (V). (Rly), (), (DY) be non-negative sequences with 1 < m'y, < hly <
1 Ay,

Uy, assume L]NDZQ’ € o(1), &y = oo for N — o0, as well as Vi, ~ ay/D)y for some a > 0.

Consider D)y —m/y bozes (for N large enough such that Dy, — hly > 0) and m\V, balls. Assulme

the balls are put independently and uniformly at random into the boxes. Consider the event C,ghN),

that k many of the first Dy — hly bozes contain exactly two balls and the remaining bozes contain

at most one ball. We have for all k <l and for N large enough

1 5yr1 3 , 12N\ K 1Y opr \2
P(Wy = k) exp (EJE,VJQV ) <P (C';ihN)) < <(mNVN) ) lexp <(mNVN 26y) )

3 2D, ) & 2D

(miy Vi —20%)°

where W}, is Poisson distributed with parameter 57
N

A proof can be found in the supplementary material.

Let ({n)n be a sequence such that £ € o(Vy) and £y — oo. Then, in the following we will

denote by W(SJ,\Q a Poisson distributed random variable with parameter WJQVD;W = muy with
b (Vv — 20y
N 2Dy

for any m € IN and similarly by WC(];IH) a Poisson distributed random variable with parameter

’ITL(VN72EN)2

Dn = QmuN.

3.4.1 Upper bound on the invasion probability on a complete graph

To derive an upper bound on the invasion probability we estimate from above the total number
of infected hosts by the total size of a branching process with cooperation with offspring and
cooperation distributions that are approximately Poisson distributed.

Definition 3.4.2. (Upper DBPC)

Let In N satisfying 57%%‘3 € o(1). Let AR (Zé%))
)

geN, be a branching process with

cooperation with Zéz =1 almost surely, and offspring and cooperation distribution with probability

. N N N N ‘ .
weights pgw) = (p§'-,u?0)je1N0 and p&,c) = (pg',u?c)je]No’ respectively with

) 03V3
= (W) =) e (-5 )
N
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for all0 < j <ty and

5%
(N) (N)
pr-‘rluo'_ ijuw
j=0

as well as

oV
N N .
pg u)c = IP’(WC(J) = j)exp (2 ];)JQVN> ,

for all0 < j <ty and

InN
(N) . (N)
Poptiue = 1 - ijﬂhc'

Denote by Z(JN) = (Z;J#\L))gGNQ’

accumulated till generation g.

where 7;{\;) = ?:0 7N that is Z ) gives the total size of Zq(AN)

'L’LI.7 U

—(N
In the next proposition, we show that the total size of the infection process J ) can be coupled

whp from above with the total size of the DBPC of Definition 3.4.2 ZiN)

H(N
generation at which ZT(L ) reaches the size £ n (for £ — oo not too fast as considered in the definition

of the DBPC) or the process Z,(LN) dies out.

up to the first random

Proposition 3.4.3. For any sequence (by)nen introduce the stopping time
_ . e
Thyn = inf {9 € No: Z_E,,u) > by or Z0) = 0}.

Let (Un)nen be the same sequence as used in Definition 3.4.2. Then

. *(N) ( )

n < Tf;o) =1,

and

Zy
Tin 00t

lim P(JY) =0 |20 =o0)=1
N—o00 721\1;0

and

79 57 >:1.

£n .0 Ten,00%

lim IP’(J( ) >N
N—oo ZNO

Proof. In order to show that J®) and ZgN) can be coupled such that 7§N) ( ) for all g < Te 0
whp we show that

P70 =k | 7 =m) <P(Z5, =k | Z,)) = m)
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for all k,m < £5. Then, one can use the Markov property to show that

—(N) —(N) Z =(N) =(N) Z
P({J,  <kg....Jdy7 <k}n{g<tied)<P({Z,, <kg....,Zy, <k}n{g<ties})
where ki,...,k; € N ie. that ZiN) stochastically dominates j(N) until Z(fv) reaches the level /.

Having this one can deduce by Strassen’s theorem that 7™ and Z(LN) can be coupled as claimed.
Up to generation

Tg\ho = inf {g €Ny : jgN)

>ty or IV =0}

the total number of parasites that are moving in the graph is upper bounded by ¢ V. Consider
(for N large enough such that Dy — ¢y > 0) the following experiment with Dy — £ boxes, {xVy
balls. Assume that balls are thrown uniformly at random in the boxes. The probability that there
exists a box with at least 3 balls in it can be upper bounded as follows

1 5%
PP (3 1 box with more than 3 balls) < Dy ({xVy)® 5~ N 0.
(DN - KN) DN

This means that with the assumed scaling of ¢y it is unlikely that such an event occurs before
generation TZZNu,o- Consequently for whp couplings, we can only focus on infections generated by
pairs of parasites.

Now consider a complete graph with 1 < my < £y infected vertices and at most ¢,y —1 empty or
infected vertices. The probability that k infections are generated for 0 < k < £ can be estimated
from above by the probability that k& boxes are filled with at least two balls and the remaining boxes
are filled with at most one ball in the following balls-into-boxes experiment: Consider Dy — my
boxes and myVy balls. Place the balls uniformly at random into the boxes. Denote by O,gN) the
event that k& boxes contain exactly two balls and all other boxes contain at most one ball.

By Lemma 3.4.1 with D\, = Dy, m/y = my, V5 = Vi, by = my and E;\, = {x we can estimate
for my > 2
k

Vv —208)* 1 (mNVn — 20xn)° BVE

p(cf™) > (myVy —205)"\ L [ (myVy —208)° AR

BO)= 2Dy K1 P 2Dy P\ "Dz

k1 V2 0”33

> (m?qu) 71 €XP (—m?\, 2DNN> exp (— JZVDJQVN> , (3.4.1)

again for NV large enough, and for my =1

1 0BV
B(CE) > (un)* 1 exp (~ux) exp (— y)?vN). (3.4.2)

In order to prove that j(N) can be coupled with ZiN) such that ZI(LN) dominates j(N), we show

that the probability IF’(Z,(LJX)Lu = k\Zr(L],\L) = my) can be estimated from above by the lower bound
derived in (3.4.1) for my > 2 and by (3.4.2) for my = 1.
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Consider independent random variables (X (N)) and (Y((ZA;;) (i.j)EN? with probability weights
(N) (V)

Du,o and py, respectively. We have that
P (Zﬁ{u k|2 = mN) =P ZX(N) + Z v =k (3.4.3)
=1 1,j=1,1>7
S ) ™) _
- x r(Taen)r( 3 o-
ko ke: =1 1,j=1,1>j

ko +kr_k ko,kc>0

5 173 5 3
Z IP’(WO(fVm)N = ko) exp ( —mn gN‘Q/N IP’(W(N%N =k.)exp | —2 my éN‘Q/N
DN 07( 5 ) 2 DN

ko ke:
ko+kc=k,ko,kc>0

5 V3 POV — e ypw @) -k
exp mN D2 2 : ( omN — o)P( omn(my—1) )
ko,k

olhe-

/2 V3
exp | —miy 22 ]P(T/V(N)2 =k),
DN 0,m3%;

where we have used that

P(%X}N)=k>

i=1

b))

(k1,eskm )
Kbt ko =k

oy BV (N) _
exp | —mN =55 P(Wynly = k)
N

s o3V
HIP’(W(S,]Y) = k;) exp (— %2N>
N

i=1

and a similar reasoning for Y((ZAJI; , as well as

(W(IEQLN) = ke) = PWN) (1) = Ke)-

m2, V2 0oV 0oV
exp <_2]1V)]\jv> exp <— %2N> > exp <—m?\, ]lv)zN> exp ( . m?VuN)
N N

for 1 < my < ¢y and N large enough, we have that (3.4.1) > (3.4.3) for my > 2 and (3.4.2) >
(3.4.3) for my =1 for N large enough. Thus, because of the Markov property we can successively

Since

couple the two processes until ng) reaches the level £ . O

Using the results of the previous Section 3.3 we will show that for the upper DBPC defined
in Definition 3.4.2 the probability of reaching an arbitrary high number of individuals a t some
generation is asymptotically the same as the survival probability of a DBPC whose offspring and
cooperation distributions are respectively Poi(a?/2) and Poi(a?) distributed. Let X ~ Poi()) with
A > 0, then we denote the probability weight of X in j by p;(A) = P(X = j).
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Proposition 3.4.4. (Probability for the total size of the upper DBPC to reach a level by ).
Consider a sequence (bN)NelN with by —> oo and assume that Viy ~ av/Dy for 0 < a < oo.

Then, we have

lim P (Elg €Ng:Zo) > bN) = 7(a).

Proof. The claim follows as an application of Proposition 3.3.7. Thus, we check that the sequence

N
((Z<) ) wen

Pjuo — pj( ) for every j € INg. Note that for a given j, we can choose N large enough, such that
j <{n and hence

satisfies the assumptions of Proposition 3.3.7. Let us first consider the convergence of

A%
Pil, =P (W(N) J) exp < JBQN) :
N

By the choice of /5 and as we assumed that Vy ~ a/Dy we have uy — % Thus, by continuity
it follows that

1 nV3 a2\’ 1 a? a?
Jj_— _ _N'N - - JE i o
oo (-5) o (T) 7o (-7) = (7):

Thus, we showed that pg u)o — p;(% 2) as N — oo for every j € N. Analogously one can show

that p5 u)c — pjla 2) as N — oo for every j € N. Next we need to check that the first and second
moment of the offspring and cooperation distribution converge.

Let X() be distributed according to the offspring distributions (p
(N)
Z,, '’ . Then

(V)

j,u,o)j>0 of the upper DBPC

In+1

N (N)
{X( >} Zﬂpju,o

1 Vi
J —uN _ N g 1— (N) .
G- eXp( D%) v ( ZPW

=_ (un)’

Since £y — oo and uy —> %, we have

N—oo
In—1 .
lim e "V E (un )’ =1.
Jj=0

It follows that

and
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Now by Markov’s inequality follows that

E[(Wh)?) un + 1
(V) _ (N) 0,1 _ N
R R e
Hence
(In+1) ijuo Un+1)1—exp|— D?V + (un + u) [?V
Iy + 1), V3 Iy +1
< DRI 1 uy +3) 2 0
N N
Consequently
2
(N) a
E[X }% 2

as N — oo. Similarly, we have for the second moment

) In 1 £5 VS N
E[(X(N)) ] = Zf (un)’ ﬁef’”v exp ( ]l\;?N) (n+1) < ZP(,u)())'
! N

Jj=1

The second term again vanishes in the limit by the same argument as before just that we use the
Markov inequality for the third moment such that

N un + 3u3, + ud
(W) <in)>1- SN
N
which yields that

(In +1)?

+(uN+3u?V+u§’\,) 7
N

(In +1)?

"Z o O+ )RVE
= Dy

as N — oo and
BV & BV In— 2 In—1 (u )j
N 2 —un _ N)
exp< )Z N_exp( e ) i Z e

Now one can show analogously as before that

4 2
2 a a
E[ X ] 242
For the expectations and the second moments of the cooperation distributions one argues analo-
gously, except that one shows convergence to a? and a* + a2, respectively. O
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3.4.2 Lower bound on the invasion probability on a complete graph
Lower bound on the probability to infect at least N° many hosts

We first aim to show that the total number of infected hosts until the parasite population dies out
or N¢ hosts are infected for € > 0 small enough can be lower bounded whp by the total size process
of a DBPC. This DBPC we introduce next.

Definition 3.4.5. (Lower DBPC)

Vi logllosN)) ¢ (1), Let 2 = (2

0.0 >g€No be a branching process

Let Iy — o0 satisfying
N—o0

with cooperation with Z(g]z) = 1 almost surely, and offspring distribution pzo) (pgjz)o)]elN as well
as cooperation distribution p( ) = (png)C)JelN with
N Ny . INVN
P;,e,)o =P(W.Y = j)exp (— 5 )
N
forall0 < j <ty and
) &
N N
pg@o = _ij,@,)(ﬂ
as well as
N N) . NV
) =P = j)exp (— D )
N
forall0 < j <{In and
N
p()@c' Zpgf,)c'
Denote by Z( ), (Z( )) geNo with Z( ) = 1?:0 Zi(iy), that is 72{\2) gives the total size of ZE,N)

accumulated till genemtzon g.

Proposition 3.4.6. For any sequence (by)nen introduce the stopping time
Ze . ; . 7() (N) _
TbN70.—lnf gENo:Z,, >bN0rZ =0¢.

Consider a sequence ({N)yen with £y = N¢ for e > 0 such that Ww € o(1). Then

(N) _ =(N)
J\}gnOOIP’(J > 70 g < 72 0) = 1. (3.4.4)
Proof. As in the proof of Proposition 3.4.3 in the scaling (3, V3 /D%, = o(1) it is unlikely, that up
to the first generation, at which the total infection process reaches size £, an infection occurs due
to more than a pair of parasites. Consequently for a coupling whp we can only focus on infections
generated by pairs of parasites, and do not need to treat infections generated by at least 3 parasites.
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Now consider a complete graph with exactly my < ¢x infected vertices and with at most { — 1
empty or infected vertices. The number of new infections generated on such a graph in the next
generation can be lower bounded by the number of infections arising in the following experiment:
Consider Dy boxes and myVy balls. Distribute the balls uniformly at random into the boxes.
Assume a new infection is created for each of the first Dy — £x boxes that contains at least two
balls. Let A,,, be the number of infections generated in this experiment and let Bi:™) be the
event that exactly k of the Dy — £y first boxes contain exactly two balls and all other boxes have
at most one ball. We have

PN > Ay | I =my) =1
and
P (A, = k) > P(BMM).

We will show below that there exists a constant C; > 0 such that for IV large enough

2 12\ k 2 172 4
N . N m2.V. 1 m3V, C1Vnt
P (s0) - (itt=h1 20 =) < () e (50 ()

L Gl Vy

b (3.4.5)

for any k£ with 0 < k < {x. Since

% <m§VV13>’“ L (_m§VV1§> (OlVNEj*V) L OV 2G4V

22\ 2Dy P\ " ap, Dn Dn Dn

we can couple (by means of Lemma 3.6.3) the balls into boxes experiment with the lower DBPC
ZEN), such that given that {Zéf\? = my} the event B,gN) occurs whp, if {Z;ﬁl =k} for any k €

{0, ...¢x} and vice-versa. We can repeat this argument till TZ\f’O whp. Indeed, by Proposition 3.3.6

it exists Cy > 0 such that P(Tz\f,o < Oy log(log(fn))) — 1, as by analogous arguments as in the

proof of Proposition 3.4.4 it can be shown that the first and second moments of ijz) are uniformly

bounded in N. Since
7 Cs loglog(€n)
(1 B WV) 1

Dy

it follows that we can couple whp subsequently performed balls into boxes problems and ZEN) for
any generation g with g < TEZN“’O, which implies (3.4.4).
So to finish the proof it remains to show (3.4.5).

We start by controlling the probabilities of the events B,(fN). By Lemma 3.4.1 with D%, = Dy,
m/y =mp, Uy =N, Vi =V and hly = {n we can estimate

P(BM) < <W>k %exp (—(mNVN_%N)Q) exp (e?VVN> : (3.4.6)

- 2D N 2Dy Dy
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and

() _ AV
P(By) > P(Wy ' =k)exp 2 (3.4.7)
N

for a Poisson distributed random variable W( ) with parameter %772”)2 and N large enough.
Next we control the transition probablhues of Z€ M) Consider independent random variables
(X;M);en and (Y((f\;g)lq with probability weights pe,o) and pg\cf), respectively. We have

LN
P(x(M =0)=1- ;pﬂ{)

=1+4exp (—EJZVDVN> exp(— Zex ( gNVN) P (W(EIY) = j)
N

LNV LNV INVi
= exp _ NN exp(—un) + 1 — exp ERSAS + exp _NN ]P’(W(SJY) 2€N+1>.
DN DN DN ’
We define the constant

o =1 exp (— LX) B 2 by +1) 1),
N

We have ]P’(W(N) >IN + 1) € (’)( T~ ),), in particular cON € @(“’VN), where we used that
£n ~ N¢, and thus (u—) decays exponentially fast in N. Let us recall that by definition
k
P (Xi(N) = k) = 7(“;:!) exp(—uy) exp (——Z%XN> C(N Lik=0},

where 0 < k < £p. We see that for 0 < k, < ¢ it holds that

P(%X}N):k(,): Z HIE”(X(N )

i=1

This allows us to derive the lower and upper bound
o (V) INVN (
_ . ENVN N) _
P (;Zl X, = k‘o) > exp ( my - ) P (Womm = k;o) , (3.4.8)
and

my )
P (Z Xi(N) = ko) <exp <mN ]lV)VN) (chjynN = ko) +mye™,
N

i=1
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where WLSIXL)N ~ Poi(myun) and if k1 + ... + kpm, = ko, then the number of k; with k; = 0 is at
most my.

Now we obtain analogously as before that
L
P (Y1(12V) = O) = exp (NVN> exp(—un) + V)
5 DN
where the constant is defined as

M) =1+ exp (—K%ZN> (]P’ (Y(N) > Uy + 1) - 1) co (K%ZN) |

~ Poi(2uy). Similarly as before we arrive at the lower and upper bounds

with Y/(N)

P Z YN =k | 2P <W(7]E[)2 oy =k > exp ( (77121\/) ZJZ)?) (3.4.9)

1,7=1,1<g

mN
(N) Ny _(mn\{NVN MmN\ (N)
P Z Vi = ke §P<Wc7(m2]\,) —kc> exp( ( 5 ) D >+( 5 >cc )

ij=1,i<j

So in summary we have

mn mN
)y _ — (V) (N) _
P(Zgﬂe k|Z N —mN) =P ZXi + Z Yijp =k

4,J=1,i<y

— > P(%Xi(m:ko)P Z YJ)_

koske:kotke=k,ko,ke>0 =1 1,7=1,i<g

and hence using (3.4.8) and (3.4.9) for any 0 < k < £y we have for an appropriate constant C' > 0

P(W(EJZBN = k) exp ( my EJZ)ZN) <P (Z,EH = k|2 = mN) (3.4.10)

NV
< ]P’(VV(N)2 = k)exp (—m?\, ]lv) N) 4+ 63, 4 03N 4 A eV (V)

o, m
WU N N

<PV, = be -
’ N

) ENVN) L OBV

Subtracting upper and lower, resp., bounds of the transition probabilities of ZgN) from the lower
and upper, resp. bounds of P(By;) and taking the modulus yields (3.4.5). Indeed, by (3.4.7) and
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(3.4.10) and as we can estimate

ol exp

= (m?\/(vn - 2€N)2>kl exp | — LTL?V(Vni* QKN)Q 1+0 L?VVN
2D, k! 2Dy Dy
3
=P, =k (1 +0 (EIZV)VN» :
m ~

we have for a constant C' > 0 that may change from line to line

(Vo =20\ L (maViv = 26n)?
k 2Dy

s =30 =

N N
Pz}, =K 2%} = my) —P(By)

(N) o INVN Ve CeSVn
< = — — —
< IP( Wo,mﬁv k) <exp ( my D ) exp < D2, + Dn

<(mNVN)2)k 1 (_ (mNVN)Q) éz}VVN T CK?VVN

< =
2Dy i 2Dy Dy Dy

since

2(Vn —20n)? V2 2m3% ANV
o (A2 o ) ()

m3, V32 A%
< _MNYR Y (4 YN
_exp( 2D N ) ( + Dy

for N large enough. Furthermore, we have that

m2, (Vy — 205)%\" LI ~m} (Vi — 2n)?
2Dy k! 2Dy

o (mRVEN" 2w\ L mR (Ve — 2)”
- 2Dy VN k! P 2Dn
mVE\" 1 o (MR (Vi = 20802 OOV
k! 2Dy Dy '’

PW N, =) = (

o,m%;

where we used again Bernoulli’s inequality in the second inequality. Now we have for N large
enough by (3.4.6) and (3.4.10)

N N
P(By) — P(Z\) , = k|2 = m)
_ (M VR klexp _mA (Ve —20n)* (23 V| 6 Vi) | OV
- 2D N k! 2D N Dy Dy Dy
< m?\fv]% k leXp _m?VV]% 76}?'VVN " CE?VVN
=\ 2Dy k! 2Dy Dy Dy

This yields the claim. O
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As a counterpart of Proposition 3.4.4, we show that the total size of the lower DBPC of Definition
3.4.5 reaches a level tending to infinity with asymptotically the survival probability of a DBPC whose
2
offspring and cooperation distributions are respectively Poi(%) and Poi(a?) distributed.

Proposition 3.4.7. (Probability for the total size of the lower DBPC to reach a level by ).
Consider a sequence (bN)Ne]N with by N—> oo and the scaling Vy ~ av/Dy. Then, we have
—00

lim P (Elg € Ng :7;]\;) > bN) = m(a).
N —o00 ’

Proof. This Proposition is shown by the same line of argument as Proposition 3.4.4, i.e. basically
one applies Lemma 3.3.7. O

Final phase of an epidemic on a complete graph

In this subsection we are going to show that if the total size of the infection process reaches the
level N¢ for € > 0, then in a finite number of generations, all the hosts are killed. For that we will
intensively use the following Lemma. Recall that we consider Dy € ©(N B ) and Vy ~ av/Dy.

Lemma 3.4.8. Let ¢1(N), p2(N) and @3(N) such that it holds ¢;(N) = o(Dy) fori € {1,2} and
©3(N) = o(Vy). Let 0 < & < 3/2 and H(N) such that N° = o(H(N)) and H(N) = o(v/Dy).
Consider the following experiment: Assume H(N)(Vn —@3(N)) balls are distributed uniformly into
Dy — ¢1(N) bozes. Denote by GIY) the number of bozes among the first Dy — @1(N) — @a(N)
bozes that contain at least 2 balls. Then it holds:

(i) Define £ := inf {z >2: H(N)* = o(\/DNFl) } < oo. Let f1(N) such that log(H(N)Vy) =
o(f1(N)). Then we have

Hz(N) H(N)€+1
P ( NI G(N)) >1-0 (\/mé_l> . (3.4.11)
(ii) Let fo(N) — oo. Then we have
P (G<N> < HQ(N)fQ(N)> >1-6 (ﬁ) . (3.4.12)

A proof can be found in the supplementary material.
Now, we introduce for an arbitrary sequence (by )y with by — oo the stopping times

2 = inf {g ENg: T > bN} , (3.4.13)
and
7= inf {g €N : JM > bN} . (3.4.14)

Proposition 3.4.9. It holds

J J
< € .
P (e <70 1) (2,1
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Proof. If for any generation before Tg,g the number of infected vertices is strictly smaller than %
then this would mean that the number of generations until the total size of the infection process
reaches the level N¢ is at least log(N). But this contradicts the fact that it exists a constant C' > 0
such that

P (rﬁ,g < Clog(log(N)) | Tgs < oo) —1,
which follows from coupling from below with the DBPC of Definition 3.4.5 and Proposition 3.3.6. [

Lemma 3.4.10. We have

—(N) N2 3
IP’( < } e ) — 1.
JT}{]E log—1(N) log(N) TNe <00 N—oo
Proof. By definition at generation TJ{,E log—1(N) the number of infected vertices is at least %.

. —(N .
At generation 73 — 1, whp we have J_(I_J) 1 < N°¢ because otherwise we have a

Nelog™H(N) Ne log—1(N)
contradiction to Proposition 3.4.9. Then to bound from above the total number of infected vertices
up to generation 73 log=1(N)? it suffices to estimate the number of infections generated within one
generation, when at the beginning of this generation at most N¢ hosts are infected. This estimate
is obtained by an application of Lemma 3.4.8 with H(N) = %, ©1(N) = N, ¢3(N) = 0,

@3(N) = 0, fo(N) = 3log(N) and an arbitrary function f; satisfying the condition of Lemma
3.4.8. Indeed, since before generation 7(V) the total number of parasites on the graph is at most
loirVWUN’ the number of new infections generated is controlled from above using the previous

experiment. O

Next choose 0 < ¢ < g such that for all k € N, 2Fe £ g Then define k as the largest
k € N satisfying 28t1e < 8. In particular it holds 2F*1e > g because otherwise 2¥+2¢ < 8 which

contradicts the definition of k.

Lemma 3.4.11. Let k € {0,...,k}. We have

N2ke —(N) N2k+1e _
IP’(J(N) > 7 < ’ J. < ) 1,
e oa—1(ayTF 7 log®* (N) e og—tnyTF = log(N) ™ *) =

where we set ag :=1 and ap := 2a_1 + 2 for allk > 1.

Proof. We prove the claim via induction over k. For k = 0 the claim follows by Lemma 3.4.10.
Next we prove the claim for k£ + 1 assuming the claim holds for all 0 < j < k.

For the lower bound on the number of infected vertices at generation T];\']E log~1(N) +k+1, Lemma 3.4.8

N2k€ ok+1,

can be applied with H(N) = 5z, ¢1(N) = 0, p2(N) = 1wy, ¢3(N) = 0, f1(N) = log*(N)
and an arbitrary function fo with fo(IN) — oo, which yields that the number of infected vertices at

¢ 2 k41
J . 1 N2Fe N2t
TN log—1 (N) + k + 1 is whp at least of order o2 (V) (logo‘k(N)) = g RN

Indeed by considering Dy boxes we lower bound the probability for a parasite to attack an
occupied vertex, which is ﬁ in the case of the complete graph. According to the induction
hypothesis we have considered whp by Lemma 3.4.8 the minimal number of parasites which is

generation
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kE
log]\fWVN. In the balls into boxes experiment new infections are (only) counted when reaching
2k+1€

one of the Dy — Jl\gng) first boxes whereas in the original process there are at least this number
of occupied vertices.

To arrive at the upper bound on the number of empty vertices, apply Lemma 3.4.8 with H(N) =

k41,
Jl\gng? ©1(N) = H(N), ¢2(N) = 0, ¢3(N) = 0, fo(N) = log(N) and an arbitrary function f;

that satisfies the conditions of Lemma 3.4.8, since in the previous upper bound the number of
k‘+1E
empty vertices is bounded by II\Z;W' So according to Lemma 3.4.8 the number of empty vertices

. . N2k+15 2 N2k+25
at generation Tg]a log—1(v) T k + 1 is whp at most of order log(N) ( o2 (W) ) = Tog(N - O

Applying Lemma 3.4.11 with k = k we obtain

N2k5 —(N)
IP’(J(N) > J D Qe
T og—1 vy TF — 10g®F(N)" " TRe og=1m) TF = log(N)

N2E+ls

T]{/e <oo) — 1.

Define 6 = % (2E+15 — g) > 0. In the next Lemma we show that at generation k + 1 the number
of infected vertices is at least of order N5+3.

Lemma 3.4.12. It holds

5 _
P(J(ﬂv) S 2N < oo) — 1.
TNslogfl(N)Jr +

Proof. Here we apply again Lemma 3.4.8 to obtain this lower bound. More precisely with the

2k+1,

?E
following set of parameters: H(N) = MJ\ETM’ ©1(N) =0, p2(N) = JIV%YW, w3(N) =0, f1(N) =

2 . . . B N2E+15 85
log“(N) and an arbitrary function fo. We obtain that whp JT]JvE ot (TR > Tor " (V) > Nzt

by definition of 4. O

In the next lemma we show that in one more generation whp any vertex will be reached by at
least 2 parasites, in other words each of the remaining hosts gets infected whp.

Lemma 3.4.13. We have

—(N) _ J
F (JTJJVE 1og*1(N)+%+2 =Dy | e < OO) -l
Proof. We aim to show that all hosts that have not been infected so far, get infected whp in

: J T : (N) 545
generation Ty, log—1 () +k+2. According to Lemma 3.4.12 we have whp J O > Nz21t9,

Hence we have whp at least my := IV g““SVN parasites that may infect the remaining hosts. So, the
probability that an up to generation 7']‘{,5 log—1(N) T k + 2 uninfected host gets attacked by at most
one of the my parasites (and hence with high probability remains uninfected) can be estimated
from above by

LI D PR T _m =0 (N%exp (—aN?))
Dn — 1 Dy —1 Dy—1 P ’
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because

my  NP/2Hyy  NB2NSa/Dy N6N5/2

MmN _ = O(N?).
Dy Dy Dy ¢ VDn o)

The number of uninfected hosts at the beginning of generation TJ{,E log~1(N) + k42 1is at most Dy.
Consequently, the probability that at least one of these hosts remains uninfected till the end of
generation TJ{,E log—1(v) T k + 2 can be estimated from above by a probability proportional to

Dy N®exp (—aN‘s) =o(1),

which yields the claim of Lemma 3.4.13. O

3.4.3 Proof of Theorem 3.2.6 (ii)

Now we have all necessary ingredients to prove Theorem 3.2.6 (ii).
The first step is to show
limsup P(F{M)) < n(a). (3.4.15)

N—oo
For a sequence ({y)nen introduce the event

Ay ={3geNo: 7" >t}

Then it follows that for all 0 < v < 1 and any sequence {y < uDy we have

P(F{M) < P(Agy). (3.4.16)
Taking a sequence ¢y satisfying both £ — oo and Z%?‘iﬁ’ € o(1) we have by Proposition 3.4.3
that _
P(Ap,) <P (ag eENg: Zyy > EN) +o(1). (3.4.17)
Proposition 3.4.4 gives that
lim P (39 €Ny : 7o) > EN) = n(a). (3.4.18)

In summary combining (3.4.16), (3.4.17) and (3.4.18) gives exactly (3.4.15).

The second step is to show
lim inf P(FN)) > 7(a). (3.4.19)
N—o00

Proposition 3.4.6 combined with Proposition 3.4.7 gives that
lim inf P (ag eN, 7V > Nf) > (a), (3.4.20)
N—o00

for € > 0 small enough. Then Lemma 3.4.13 yields that conditioned on the event {Elg € ]N,j(gN) >

N 5} whp all the vertices on the graph finally get infected. Combined with (3.4.20) the claim of
(3.4.19) follows.
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3.4.4 Proof of Theorem 3.2.6(i)

In this subsection we prove Theorem 3.2.6 (i). Recall that in this case Viy € o(yv/Dy).

We initially start with one individual, i.e. JéN) = 1. We determine the probability that the
parasite population gets extinct after one generation. For that we consider the following experiment,
where we distribute uniformly at random and independently Vi balls into Dy — 1 boxes. The
probability of extinction after one generation is the same as the probability of the event that all
boxes contain at most one ball. Thus, we get that

( ) VN—1 ’L 1 Vn—1 V2
N) _ . N
P =0 = 1T (- 5,"5) ZeXp(‘DN—l 2 ’) > o0 (g5

=0 =0

We assumed that Vy € o(v/Dy) which implies that 2(%13’_1) — 0 as N — oo, and thus the right

hand side converges to 1. On the other hand for any u € (0,1] an obvious upper bound for the
invasion probability is P(Fi")) <1 —P(J") = 0). This implies that

lim P(F{V) <1- lim P(J;") =0) =0.

N—o00

3.4.5 Proof of Theorem 3.2.6 (iii)

In this subsection we are going to prove Theorem 3.2.6 (iii). In this case /Dy € o(Vy). The
proof is based on a coupling from below of the total size of the infection process with the total
size of a Galton-Watson process whose offspring distribution is close to a Poi(%) distribution until
a level N is reached, where 0 < a < f, or until the process dies out. This coupling is possible
for any @ > 0 which yields that the total size of the infection process reaches the level N with
asymptotically probability 1. Then by choosing o > 3/2 one shows that there exists a generation in
which there are at least N infected individuals, for some @ > 3/2. In the subsequent generation,
all remaining hosts are infected, in the same manner as in Subsection 3.4.2.
We will show
lim P (3 TN Zpy) =
im (gE]No.Jg —DN)—I,

N—oc0
which yields the claim of Theorem 3.2.6 (iii).

Recall that we denoted in the setting of the complete graph the infected hosts by JW).
Analogously as in the setting of the random geometric graph we denote by S®) the uninfected
hosts and by R™W) the dead hosts. The first step is to couple (S(N),J(N),’R(N)) to a process
(5‘ (), JWw ), RN )) in which infections are only generated by pairs of parasites originating from the
same vertex, but not if a host gets infected only by parasites stemming from different vertices.

For every vertex x we only need to determine once to which neighbours the Vi offspring parasites
move, since afterwards the vertex cannot be used anymore. We denote by HN {1,...,Dn\{z}
the set of all vertices which are occupied by at least two or more of the Vi offspring parasites
generated on x after their movement. With this we can build the coupling of the two processes step
by step. We consider for both processes the initial configuration where only vertex 1 is currently
infected and all other vertices are susceptible, i.e.

(8, T RN = (S, T REVY = ({2, Da}, {1}, 0).
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Then assume that we constructed the process until generation g > 0. Then from g to g + 1 the
dynamics are as follows

x =
Tl = U HINE UR(),

.’.L‘ej;N)

S =EMNTE wd R = REO LT,

In words every vertex y € HgN) which is attacked by at least two parasites that are originating

(

from a single vertex x € jgN) is added to jg(ivl) , except for vertices which were already attacked at

a previous generation, i.e. y € jg(N) u ﬁéN). Furthermore, all previously infected hosts jg(N) are
declared as removed and all vertices which were infected in this generation jg(ivl) are removed from
the set of susceptible vertices.

In the process (S (V) g RN )) cooperation from different infected vertices for the spread of
the epidemic is allowed. Since we defined movement of parasites independent from the generation
at which vertices get infected, we have by construction that

TN URN ¢ M URLN, Vg € Ny, (3.4.21)

almost surely. As by cooperation only more infections are generated, it is not possible that a vertex
x which is susceptible for both processes at a generation g gets infected at generation g + 1 for the
process (S(N), j(N),R(N)) but not for the process (S(N), j(N),R(N)).

The infection process (S(N), TN R(N)) is monotone with respect to the parameter Vi, in con-
trast to the original process (S(N), J(N),R(N)). Now let a > 0 and consider Vji,a) = av/ Dy as well

as (g(N’“), j(N’“), ﬁ(N’a)) to be the analogously defined infection process. Infections are only gen-
erated by pairs of parasites originating from the same vertex as well as the number of parasites gen-
erated at an infection event is V"), Since we assume that Dy € o(V2) it follows for N large enough
that Vlsfa) < Vn. Thus, by monotonicity it follows that we can couple (g(N’a), j(N*“),ﬁ(N’“)) and
(g’(N), j(N),ﬁ(N)), such that

5 (N,a 7(N,a
[R{N) U G

< |REV UM, (3.4.22)

For the sequence of processes (§(N’“), j(N’“), ﬁ(N’“)) we can show (by a coupling with Galton-
Watson processes) that the probability to infect eventually N host is asymptotically lower bounded
by the survival probability ¢, of a Galton-Watson process with Poi(%) offspring distribution. The
proof of this statement can be found in the proof of Lemma 3.6.4, where this statement is formulated,
in the supplementary material (since it can be shown by very similar arguments that have been
used to show Proposition 4.7 combined with Lemma 3.7) in [1].

Because this result is true for any a > 0, taking the limit when a goes to co gives, together with
(3.4.22) and (3.4.21),

. —(N)
Jim P (ag €Ng: 7
Now let g < o < B and recall the definition of the stopping times defined in (3.4.13) and (3.4.14).
Then one can show as in Proposition 3.4.9 that

> NC‘) — 1. (3.4.23)

J J J
P (TNa log—2(N) < TN | Tya < OO) — 1.
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Indeed, if for any generation before TEQ the number of infected vertices is strictly smaller than
logﬁfw then this means that the number of generations to reach the level N for the total size of
the infection process is at least log?(N). But this is in contradiction with the couplings of (3.4.21)
and (3.6.13) and Lemma 5.5 from [1].

Then using a similar approach as in the proof of Lemma 3.4.13, one shows that

i (Jﬁﬁv) = Dy | ha < oo> S (3.4.24)

N log—=2(N)+1

Finally combining (3.4.23) and (3.4.24) it follows that
P(Eg eENg: T :DN) S,

which completes the proof.

3.5 Invasion on a random geometric graph

Let us recall the setting of Theorem 3.2.4. Recall that we denote by GINV) = (V(N) £(V)) 3 random
geometric graph, where the vertices are given by a homogeneous Poisson point process on [0, 1] with
intensity measure NA™( - ) and vertices share an edge if they are at a distance less than ry = %N =
apart. Thus, every vertex (sufficiently far from the boundary) has on average dy = N? direct
neighbours. In case of an host infection vy parasites are generated. We denote the hosts which
were infected in generation g by IéN) c V)| the number of infected hosts in generation g by
I, = Is(,N) and the total number until generation g by Tg = T;N).

Before we start to study the behaviour of the host-parasite infection, we show some properties
of G| which we will need in the subsequent section. We show that G™) is whp connected and is
fairly dense in the sense that the number of vertices contained in every ball of radius ry is of order
N?. We denote by B,.(x) the ball of radius r around = € [0, 1]" with respect to the maximum norm

p.
Lemma 3.5.1. Let0 < a < f3, v € (%Ha,a) and § € (0,1].

1. The graph GN) = (VN €D s connected whp as N — oo.

2. Seteny =en(a) = %N%1 and Vol,(den) := vol(Bse, (x) N[0,1]") € O(N*~1) and

(n—1)a+~y

Un(a) == {Hv(N) M By (2)] — N Vol (den)| < 6" (n+ N2 Vo € [0, 1]}. (3.5.1)

It holds that limpy oo P (Un () = 1.

Proof of Lemma 8.5.1. Choose 0 < v <  and 0 < ¢ < /2. The idea of the proof is to define
disjoint balls K (1) for I = (I1,...,1,) € N™ with side length NO=1/" which cover the whole unit
ball, i.e. [0,1]" € UK (). In the second step we gain control on the asymptotic number of Poisson
points contained in every ball simultaneously, i.e. we will show with the help of Lemma 3.6.6 that
every ball contains N & N?/2+¢ many points with high probability. A technical problem is that we
defined our Poisson point set V) only on [0,1]™. Not for every N are we able to perfectly cover
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the unit ball with our balls K(I) such that [0,1]" = |J K(I). Thus, we need to extend our Poisson
point set. This can be easily done by sampling independent Poisson points with intensity measure
Ndz on [0,2]™\[0,1]™. We denote this Poisson point set by Vi. Now we set V7, := VIN) UV}, so
Vi is a Poisson point set on [0, 2] with intensity measure Ndz.

Let us set M := {O, cee (Nl%zw }n and M = {0, ey Lva_zWJ }n. Define balls of edge length

N by setting K (1) := [O,N%)" + N1, where | € M. Set k := |M| and k := |M]|. For these
balls we have

U K@ clogc | K.

leM leM
Set Xy :=|K(0) NV} |, where 0 = (0,...,0) € R" then
. ) 1 k
IP( M {NT = N¥* < [BO) N VY| < N7 + Nf+€}) - ]P’(N’ff Xy — N7| < 1) .
leM
According to Lemma 3.6.6, where we control the size of Poisson random variables via moderate
deviations,

lim fllog (]P’(N_%_ﬂXN - N7 >1)) =1

n—oo [N2¢

This implies that

2e

log (B(N™ %[ Xx — N7| > 1)) =~~~ (14 h(N*))

where h(z) € o(1) as x — oco. Since k = fNFTW]" with Bernoulli’s inequality

ol k 1-v-n 2e
(1-P(N"27 Xy = N> 1)) 21— [N ] exp (-

2

(14 h(N%*))) — 1

as N — oo. Thus, we have shown that all balls (K(I)),c3; simultaneously contain with high
probability N7 + N2 ¢ many Poisson points as N — oc.

1. The first claim is a direct consequence of what we just showed. Let | € M, and consider a ball
K() C [0,1]™, then it follows that every vertex z € V™) contained in K(I) is connected to
every other vertex contained in the same ball K (1) since v < . This means that the vertices in
a ball K () form a complete graph for every I € M. Furthermore, for N large enough it holds
that 2N 7 < N %, and thus every vertex contained in a ball K () is connected to every
vertex contained in all adjacent balls K (I'). Thus, we have shown that the random geometric

graph with vertex set V(V) N Uie u K (1) forms a connected graph with high probability.

It remains to argue that every vertex z € V&V N[0, 1]*\ Uicar K (1) is connected to its neigh-
bouring ball. Since v < A it holds B, () N U;cp K(I) # 0 for a vertex z € V) N
[0, 1]"\U,cps K(1). Hence, for N large enough these vertices are connected to its closest
ball K (I) with high probability, since with high probability every ball K(I) is non-empty for
N — oo.
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2. Now we consider the hyperrectangle Bs., (x) N[0, 1], where = € [0,1]™, and we denote its edge
lengths by (k;)i1<i<n. Note that gNl%La <k < §N1%¥, and thus it holds for the volume

($)"N'~* < Vol,(dey) < 6"N'~.

Furthermore the set Bs., (2)N[0,1], contains at least [\, [k N FTWJn many balls with edge

1—

length N+, This means that whp the set Bs. . (2)N[0, 1] contains at least (7, [r:N 7 |")(N7—
N=2+¢) many vertices.

HWN“T”J”( — N#+e ZH mN T 1)(NY = N3t
i=1 i=1
(n—1)a+~y

> NVol,(den) — 6" 'nN— = — + R_(N),

where R_(N) = —6" N3+ 4 o(N*~3+¢). Note that we used that r; < SN=* and that
Vol, (dey) is of order N1~ Since it holds

¥ (n—1Da+ry 2
- = — <
@ 2< n (n+2)a K

for all n > 1 we can choose € small enough such that R_(N) consists only of lower order terms
with the leading order term having a negative sign. This means that for IV large enough it
follows that

[T [6:N = " (N = N3+€) > NVol,(bew) — 6" (n + 1)N~F . (3.5.2)
=1

On the other hand By, () N[0, 1] can be covered by [];-, (LmiNl
we obtain similarly as before that

ZWJ + 1) many balls. Thus,

(m—Da+t~y 1)a+’v

[T (L6 =" + 1) (N7 + N3+) < NVol,(den) + 8" 1N """ + Ry (N),

i=1

where Ry (N) = 6" N®~3%¢ 4 o(N*~3%¢) and we used one more time that ; < SN=* and
that Vol,(dex) is of order N'=®. Again for N large enough we get that

5 1= I+ n n—1 (n—Doty
[T ([N ] +1)(NY + N2¥) < 6"NVol,(den) + 6" '(n+ )N = . (3.5.3)
i=1
Now (3.5.2) and (3.5.3) imply that
(mn—Doa+ty

[V 0 By (2)] = NVol,(dew)| < 6"~ H(n+ N+ =

Remark 3.5.2. Under the event Uy (a) the graph GN) is connected.
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Remark 3.5.3. The optimal choice of v to minimize the order of the error term is to choose y
close to Z.J%na, which leads to an order close to

(n—1a+y (n+1)a
n C\n+2/7

But the result of Lemma 3.5.1 does not allow for this choice. Thus, one reasonable choice would
for example be

3 2
34 na ~ 2+n

Y «,

then we get that the order of the error term is

(n—1a+y (n+2)
n “\nt3/®

which yields for n =1 the value %a.

For our approach we need a quite subtle control of the number of hosts on two different spatial
scales. To be precise we need to have control on how many hosts an arbitrary ball of radius
sN(g +¢) = %N% has, where £ € (0, g), as well as on how many hosts a ball of radius 3ry
contains. The need for this will only become apparent in Lemma 3.5.15.

Thus, we only consider realisations of the graph G(V) which are contained in the event Uy (8/2+
&) which was defined in Lemma 3.5.1. Note that we will use the choice of y discussed in Remark 3.5.3,
that is v = 3%104. Since Lemma 3.5.1 yields that P(Uy(5/2 4+ &)) — 1 as N — oo this is justified.
For these realisations we know that for every = € [en, 1 — en]™ we have that

n IB
IV A B, (2)] - N5+ < (n+ )NFS (556

Thus, we have control on the number of vertices on fairly fine spatial scale. This allows us to
gain control on a courser scale as well. By calculations similar as (3.5.2) and (3.5.3) in the proof
of Lemma 3.5.1 one can show that there exist C'(n) > 0 and c¢(n) € (0,1) such that for all €

(75,1 — ZX]™ it holds that

V™) N Byoi, ()] = 27" NP| < C(n) NP,
Remark 3.5.4. A precise calculation would yield that the two constants are explicitly given by

(2n+5)

Cn)=2"""Y(n+2) and cn)= T3

One can see that the error for the courser scale would be better by a direct application of Lemma 3.5.1,
but this would not give us the control on both spatial scales simultaneously.

In Subsections 3.5.1 and 3.5.2 we lay the groundwork to show Theorem 3.2.4 1) (ii) and 2), and
thus we consider the critical scaling vy ~ av/dy in these subsections.



3.5. INVASION ON A RANDOM GEOMETRIC GRAPH 141

3.5.1 Upper bound on the invasion probability

To derive an upper bound on the invasion probability we couple whp the total number of (currently
and previously) infected hosts from above with the total size of a DBPC whose offspring and
cooperation laws are approximately Poisson distributed until the DBPC dies out or reaches at least
the level £y, for a well chosen /.

Let

Sy = NP — NO= (3.5.4)
SN = NP 4 NO= (3.5.5)

for some 0 < ¢ < 8. According to Lemma 3.5.1 whp every ball of radius ry fully contained in
[0,1]™ contains at least dn,¢ and at most dn,, vertices x € Yy,

Definition 3.5.5. (Upper DBPC)
Let N, satisfying n € o(loglog N). Let zN) = (Zé(,{\; ) N be a branching process with
—00 9€No

cooperation with Z((J,JX)

weights '3 = (p{1}),

= 1 almost surely, and offspring and cooperation distributions with probability
and pg,\Q = (p(N) ) , respectively with
.

) ex, foee)

p<N) = (o = Oy ) — )’ 1-3N— — 2l j lexp - Uy
Juo 20N, One J! 20N,u

for all0 < j </ln and

LN
(V) .7 (N)
Pin o = 1= D Pjuo
=0

V) (vy — €% O AN vy
N (N ZINDT (g gy —exp |-
Piue ( ONu One J! P ONu

for all0 < j </{n and

as well as

In
(N) — (V)
Dontiue = L- ij,u,c‘
=0

Denote by ZELN) = (Z(N)> N where Z0) .= 59 7N that is 7({\;) gives the total size of AR
g&No

gu gu - i=0 Ziu g
accumulated till generation g.
Proposition 3.5.6. (Probability that the total size of the upper DBPC reaches a level by ).
Consider a sequence (bN)NelN with by N—> oo and assume that vy ~ av/dy for 0 < a < oo.
—00

Then, we have

lim P (ﬂg € Ny :7;1\;) > bN) = m(a).
N—o00 ’

Proof. This proposition is shown by the same line of argument as Proposition 3.4.4, i.e. basically
one applies Lemma 3.3.7. O
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Proposition 3.5.7. Consider a sequence ({n)ycn fulfilling {n Nl and {yn € o(loglog(N)).
—00

Introduce the stopping time
TezNu,o = inf {9 €Ny : 7;]7\;) > Uy or ZIN) = 0} ,

Then ™) =) _
lim P(T," <7, vg < of,) =1

N—oc0

and
lim IE”(I(N) =0| 2z —0):1

N—o00 TZN’O T[N' 0

Proof. For the proof we couple the infection process with another model, that uses the same infection
rules but assumes that every generation empty vertices are reoccupied by an host. This increases

only the number of infections when one assumes (as we will do here) that the movement of the
N ~(N
parasites is independent of the generation in which they are generated. Denote by I i = ; ))gelNo

the correspondlng process that counts the number of infections generated in this modified model.

We have I(N) < I for all g € Ny a.s. Next we show that I( ) < Zéz) whp for all g < TZ\;‘;O. We

N)

say that in generation g we have k [ i infections, if I g =k and we say that in generation g we

have k ZSJN) infections, if Zéff) = k. Start with generation g = 0. Since initially only a single vertex

~(N
is infected, in the first generation only CoSame infections are possible. As in [1] we can couple T 5 )

with Z™) such that P (jgN) < Z{ﬁ?) =1 for N large enough, see Proposition 3.5 in [1]. Next we

1,u

proceed iteratively. Assume in generation g m = my < {y vertices are I (N)—infected. Ifm=1
we can use the coupling as in generation 0 and add independently additional CoSame and CoDiff
infections according to the DBPC distribution in ZgN), if Ziz) > 1.

If m > 1, let wy, ..., w,, be the infected vertices and denote by D; the set and by D; the number
of vertices in the ball of radius ry around vertex w; for ¢ = 1,...,m. For y € {0,1}™ denote by D,
the set and by D, the number of vertices that are contained in the balls that are centered around
vertices w;, j € {1,...,m} which have a 1 at the j-th position of the vector y and are not contained
in the other balls. So for example for m = 3 Dyg1 gives the number of vertices that are contained
only in the ball around vertex ws, but not in the balls centered around vertices w; and ws.

For a vector © = (L1, ..., Tm, T1,2, 1,3, s Tm—1,m) € N™*+(%) denote by E, the event that in the
next generation x; CoSame infections occur caused by exactly two parasites generated on vertex
w; for i = 1,...,m, x; ; Codiff infections occur caused by exactly two parasites being generated on
vertex w; and vertex w; for 4,j € {1,...,m} with ¢ < j and all other vertices get attacked by at
most one parasite.

To determine the probability of the event F, we distinguish different cases. Let for y € {0,1}™
denote by z§ ; the number of CoSame infections caused by parasites generated on vertex w; attacking
vertices in ’D as well as by xy ; ; the number of CoDiff infections generated by parasites from vertices
w; and w; that are attacking vertices in D, as well as by z; ; the number of parasites originating
from vertex w; and attacking a vertex without any other parasite in D;. The probability of E, is
given by the sum of the probabilities of infection patterns corresponding to vectors (. 7)y, (5 i)y
and (z! ])DJ with }° @y ; = x; where xf ; = 0 if the ith coordinate of y is 0, and }_ a7 ; ; = z;

where zy ; ;= 0, if the zth or jth coordinate of y is 0, such that D, > z, with z, = >, 2y, +
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Oy ZJ i1 wg, i for all y € {0,1}™. The probability of an infection pattern according to
the Vectors x° = (xw)y,l and ¢ = (z ; ;)y.i,; is given by the product of the three factors p, =
Do(2°,2°), pe = pe(2°, 2¢) and p, = p,-(2°, 2¢) representing the CoSame, CoDiff and single infections
with

7 (VN oy —2(z; — 1) 1 (Dy —Ty.0)! 1
pOH<2>< 9 D?rlg[(D _Ey,i_xg )'J?O'

Yy Y,

where T, ; = Z; 11 zy ;. The factor (UN) e (“N_Qéwi_l)) gives the number of possibilitief to‘ choose
x; pairs of parasites from the vy parasites generated on vertex w;, fori = 1,...,m, % %

y Ly, i Ty ) Ty 4t
gives the number of possibilities to choose for zf ; pairs of parasites a location in Dy, when we
already distributed the pairs of parasites generated on vertices w; for j = 1,...,4 — 1 on D,. ﬁ

is the probability to place the pairs of parasites exactly on these locations in D,,.

m (’UN - gl,i,j)! (UN - gZ,i,j)!
re=11 11

(vn — L145 zi ) (vv — Lo — z;5)!

PCER B
(Dy —z, ; ; —x€ D,D; (z€ .

y Yo =2y Ysis J) ymj)!

with 301 i = 2%"‘2@ i1 Tigand Ty ; = 225 "‘Ez V20 Ty i = Dopey L9, k+Z 1Dl T ot
(vn =2y 4 5)!
N~=Zy 45 _Jzivj
from the parasites generated on vertex w;, when the parasites for the CoSame infections as well as
the parasites for the CoDiff infections of the vertex pairs (w;, wit1), -+ , (w;, wj—1) have already

(D
(Dy— Ly i~ y i J) (yy i,
D, the zj ; ; locations for the pairs of parasites generatmg a CoDiff infection from vertex w; and
w;, when the locations for the CoSame infections as well as for the CoDiff infections of vertex pairs

Zk i+1Ly,i k- Lhe factor a Il gives the number of possibilities to choose x; ; parasites

— 1
been determined. The factor v Ly ])

Bl gives the number of possibilities to choose in

(w1, ws),- -+, (ws,w;—1) have already been determined. Finally, the factor (%) o (D%) s
the probability to place the pairs of parasites generating the CoDiff infections on exactly these

locations.

m 1—1 m 1—1 1—1
by — Di—wi =325 0% — D jmia Tig — 21 %y Ditai—Y i jai;—unv+1
=11 .

; D; D;
=1

Py is the probability to place the remaining parasites all onto different vertices.

To analyse the above probabilities, consider only configurations (z{ ;)y,i, (2} ; ;)y,i,; With positive
entries for vectors y for which 1/D,, € o(1/(dy)'~¢") and only values z;, z; ; < £, because the sum
of the remaining probabilities is O(d]_\,al). Under this assumption we can estimate

mor oy = 3)2 Dy — 3\ 1
pozl—[ ( ~)- Dy = by = (3.5.6)

2(SN u 5N,u Y,
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Then by setting t%, = %Tﬁ we can write
s (ox = 3)* Dy — B\ 1
3.5.6
@56 =] H ( YT . P
m
= [T Tt == exp(—th) exp(t})

y,l'

«
Il
ol

ég

1

.
Il

° Yt Yyl 0

y
. y y
e Lot | [ T e
yw '
P(Y;

\%
,’:]s

= ;) exp(an ),

.
Il
-

for Poi(an,;) distributed random variables Y; with

(on —£3%)? (Z ;éo( — ))

aN,; =

25N,u 5N,u

/ ’ ’ 4 2
By assumption Ey:z;ﬁeo D, € [N?P—2NP#~<' NP4+ NF~<|andsoay,; > (“1;6741\7) <1 _3N—< _ %) =

an. Consequently, we have (3.5.6) > [[/~, P(Y; = z;) exp(an).
Similarly, we have

i=1j=i+1 yias . #0 5N,u 5N,u Lo igr
m m

> H H P(Y;; = x; ;) exp(2an)
i=1j=i+1

with }/i,j ~ Poi(ZaN%j) and

aN,ij =

(on —0%)? (Zy;x;mﬂéo(Dy - E?v))

25N,u 6N,u

Furthermore p, > exp (—m2a N) for N large enough, since m > 2. Consequently, we have

m m

ﬁ _l‘ln HPYkE—mkf)

k=1{¢=k+1

Since the random variables Y; and Y} ¢ have finite moments, we can control (e.g. with Markov’s
inequality) the probability P( U o<t E,) by

P U E, :1—0(61),

x,a;SZN N
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where we write < ly, if ; < ¢y and x; j < £y for all 4,5 € {1,...,m} with j > .
Since

’U2 .
exp ([ —=2— | < min{exp(—an,),exp(—an,ke)},
20N ik, 0

we have for any 0 < k < {y

Pz =k| 2N, =m) < Y PE)

] m
xe]N'”Jr( ) :
m m
YA ey T =k

and hence, we can couple the processes (jg) and (Zg,,)g such that jg < Zg., whp for any g < TZ\?O,

since whp TZ\;"O < C'log(log(¢x)) by Proposition 3.3.6. O

3.5.2 Lower bound on the invasion probability
Establishing invasion

In this section we show that in the random geometric graph the level N¢ is reached with at least
the probability with which a well chosen lower DBPC reaches this level for some 0 < & < 8/4.

Let us recall the complete neighbourhood C(z) of a vertex = € [0, 1]™, which we already intro-
duced in words in Subsection 3.2.2. To be precise

Clx) =CM(x) = {y e V™) d(w,y) < £} c VM),

i.e. the set C(z) contains all vertices of the graph GIV) lying in B, /2(x) N[0, 1]". We call this subset
a complete neighbourhood, since it forms a complete graph as a subgraph of G™). Furthermore,
recall that we denote by z. the center of [0,1]" and by zo € V™) the vertex with the smallest
distance to x.. We assumed that xz( is the vertex that gets infected first, i.e. Zop = {zo}.

As already mentioned before we will only consider realisations of the underlying graph G
contained in the event Un(8/2 + &) (see Equation (3.5.1) for a definition of Uy). Note these
realisations are in particular connected. Furthermore every complete neighbourhood C(z) contains
whp at least g]—f — C(n)N™B and at most g]—f + C(n) N8 vertices for z € [, 1 — TTN]“ Since
P(Un(B/2+€)) — 1 as N — oo we will condition on this event and introduce the notation

(N)

Py(-):=P(- |Un(B/2+€)).

Now we analyse the probability of infecting at least N hosts by studying the infection process
in the complete neighbourhood C(z.) around the center point. Since we condition on Uy (5/2 + &)
the set C(z.) contains in particular the initially infected host zg.

Definition 3.5.8. (Subinfection process) The subinfection process HV) = ('HéN))gzo on the com-
plete neighbourhood C(x..) of x. is defined as follows.

We set ’H(()N) = {xo} NC(x.) C IéN). Assume the process is defined up to generation g > 0,

then conditional on a(SﬁlN),Ian),Rﬁiv),H%V) :m < g) set ’H;J_X)l C I;]_:_q to be the set of all infected

hosts contained in C(x.) generated by previously infected hosts x € "HgN). We set Hg(N) = |’H§,N)|
for all g > 0.
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For any sequence (by)nyen define
TgN = inf{g eNN: IéN) > bN},
beN ;= inf {g eN: T;N) > bN}.

Lemma 3.5.9. (Coupling between HWN) and an infection process on a complete graph)
There exists a coupling between HN) and the infection process JN) = (jg(N))gzo on a complete
, and vy offspring parasites,

graph as defined in Section 3.4 with JN vertices, where JN = ’C(N)(a:c)

where vy is defined in the proof of this lemma and is asymptotically equal to %, such that (H;N))g

dominates (J;N))g for all g < L. whp, i.e.

@N(Vg < TJTVE,HS(,N) > Jg(N)) N:Zo 1.

Proof. Since we condition on the event Uy (8/2 + £) the complete neighbourhood C(z.) forms a
complete graph as a subgraph of G and ||C(z.)| — g—ﬂ < C(n)N¢™PB In particular ) is defined
on a complete graph of the same size as C(z.).

Now assume that some host z is currently infected according to the subinfection process HV).
Then out of the vy parasites which are generated in host = only those parasites which are moving
to vertices in C(z.) are counted in H(N). The number of parasites which originate from x and move
to a host also contained in C(z.) is bounded from below by vy = ;—Q’ — vn - py Whp, where py is
determined by the upper and lower bound on the number of vertices in C(z.) and any ball of radius
rny conditioned on the event Uy. In particular, py € O(N~*) for some sufficiently small v > 0.
Indeed, a parasite chooses uniformly at random the neighbour it is moving toward, and thus the
number of parasites moving to C(.) is binomially distributed with parameter vy and 5= (1+O(py)).
So the claimed whp lower bound follows by an application of Markov’s inequality. Repeating this
argument one can show that for each of at most V¢ infections the number of generated parasites
for every single infection is bounded from below by % — vy - py whp. Consequently, since we
choose the number of generated parasites for J (V) t6 be Ty only less infections can be created with
respect to the infection process J®) in comparison to HV).

The claimed coupling could fail when two parasites generated during the process Z
from outside of C(z.) to an empty vertex contained in C(z.). In this case no infection happens at
this vertex with respect to the subinfection process H"), and thus with respect to the infection
process J V) potentially more infections could have been generated. However such an event is only
possible, if with respect to the infection process Z(Y) two pairs of parasites are attacking the same
vertex in C(x.) (at the same or different generations). So this particular event is contained in the

) move

event that at least one vertex of C(x.) is attacked by at least four parasites up to generation TJIVE.

Until generation 7%. less than N¢ vertices get infected cumulatively over all generations. So
it is possible to estimate from above the probability that such an event happens before generation
L. by estimating the probability of the event A in the following experiment: Assume N¢vy balls
placed uniformly at random into c’iVN boxes and we are interested in the event A that it exists (at
least) one box containing at least four balls. Indeed, the probability of the event A gives an upper
bound, all balls (corresponding to parasites in the original process) are put into dy boxes (parasites
have a larger choice of vertices where they can move to in the original process). This increases the
probability for one box to contain four balls.
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We upper bounded the probability of A as follows

4
_ o(n N¢v
Py (4) < (%% +C(n)N ( )B) <dN _ C(n;VNC(n)ﬁ>

on

because ¢ < %.

So H_(SN) can be coupled with J_(SN) such that whp H;N) > JéN) for all g < T]TVE. O

Lemma 3.5.10. It holds that

L —(N) 8) a
> >
liminf Py (agelN,Ig >N 7r<\/27>

where W(\/%) is the survival probability of a DBPC with offspring and cooperation distribution
Poi(ﬁ%) and Poi(g—:).
Proof. The claim follows by Lemma 3.5.9 and the results of Section 3.4. O

Increasing from a total number of N°¢ infections to N2+9 infections within a single ball

In this subsection we will show that the total number of infected hosts increases whp from N°¢ to
NPA/2H3 within a single ball, with & defined in (3.5.9).

Cover the space with non-overlapping balls, such that all balls have an edge length of at most ry
and such that all balls except of those having a non-empty intersection with the boundary of [0, 1]"
have an edge length of precisely ry. Furthermore, assume that one of the balls is centered around
Z, that is the vertex set of this ball is equal to C(z.). Label the balls and denote by K the set
of labels and by V,EN) the set of vertices in ball k. Furthermore, denote by I!SN)(k) the number of
infected vertices in ball £ in generation g.

Lemma 3.5.11. It holds

Py <3g < 7he, Tk € K, I (k) >
Proof. For a sequence (gn)nen let
rV) = {k e K: 39 < gn, IV (k) 2 1}

be the set of labels of balls, in which at least one host gets infected up to generation gy. At each
generation a parasite may move a distance of at most ry. So in dimension n, in gy generations,
the number of balls of diameter ry that can be reached is (295 + 1), so \Fg]\v[)| < (2gn +1)™.

Using Lemma 3.5.9 and the coupling from below with the DBPC ZiN) until generation TJTVE and

applying Proposition 3.3.6 to the DBPC ZE,N) we obtain that it exists a C' > 0 such that

Py (T]TVE < Clog(log(N)) | TITVE < oo) — 1. (3.5.7)
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Combining these two results we obtain that whp

N
Tt
NE

< (2C log(log(N)) +1)".

If in any generation before generation TITVE the number of infected individuals in any ball of F(JTV) is
- TNE
smaller than %, the total number of infected individuals up to generation 7%. would be upper

bounded by

()

(2C log(log(NV)) + 1)" C'log(log(N)) = o(N*),

log(NV)
which gives a contradiction. O
Next let o) be the stopping time, at which for the first time in one of the balls at least %

hosts get infected

. N#
o) = 1nf{g eN:IkeK, IM(k) > oa(™) }

The last lemma exactly states that

I?’N (O'(N) < T]IVE T]{]s < oo) — 1.
N —o0
Now we will show that after a finite number of generations after generation (™), there is whp one
ball k € K with at least N2+9 infected vertices for some § > 0 which is sufficiently small.

To achieve this goal, we will argue in the same manner as we have done in Subsection 3.4.2.
Choose € > 0 such that for all g € N, 29¢ # g Then define g as the largest ¢ € IN satisfying
29+1e < B. In particular it is 29+1e > g fulfilled because otherwise we would have 2972¢ < 3 which
contradicts the definition of g.

Denote by

(N) . ) gy s Y
SV {keK.IU(N)(k)_log(N)} (3.5.8)

the set of balls that contain at least % infected vertices in generation ¢(™). By definition of

o) the set S®) is not empty almost surely, if (V) < co.

Lemma 3.5.12. We have

= (=) N ’ 7
<7 £ .
Py <I”<N)_log(N) Tne <o) o 1

Proof. By definition, at generation o) — 1 the number of infected vertices in each ball 7 is at most
—N-_ and the total number of balls that have been infected is whp at most (2C log(log(N)) +1)".

log(N)
- N =
To show that [ f,< 1\);) < %, we will control the number of infections in each ball by applying a
similar argument as in Lemma 3.4.10 in the context of the complete graph.
—(N
At generation ¢(N) —1 whp we have T S,( 1\)”71 < N¥¢ because otherwise we would have a contradiction

to Lemma 3.5.11. Then to bound from above at generation (™) the total number of infected vertices
up to this generation, it suffices to add to N¢ an upper bound on the number of new infections
generated in generation o(¥).
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In each ball, there are at most %U}V parasites that will move. Because of the sizes of the

balls, each ball can receive infections from outside only due to its 3™ — 1 neighbouring balls. To
arrive at an upper bound on the number of new infections generated in a ball, one can compare the
situation with the following balls-into-boxes experiment: Consider dy := —B — O(n)NemB — N=
boxes. Put (3" — 1) loé\é Ny UN balls into the boxes uniformly at random and count the number of
boxes that contain at least two balls. Applying Lemma 3.4.8 Equation (3.4.12) with H(N) =
(3" —1) oty P1(N) = N°, 9a2(N) = 0, p3(N) = 0 fo(N) = 5ty (2Clogl(?§éévl\)/))+1)”7 we can

estimate from above the number of infections generated in a ball by oz N)(2C]Yog Tlog (™)) with

probability 1 — © (%). Such result holds for each ball. Since in generation o) — 1 whp

at most (2C log(log(N)) + 1)™ balls have been infected we can apply this argument for all ball and
2e

obtain that whp the total number of infected hosts does not exceed hgw~ O

Lemma 3.5.13. Let g € {0,...,g} we have

g 9+1g
() ) NZE v N?

- - VT <
PN (Vk S S (N)+g(k) = logay(N)’I‘T<N)+g - lOg(N)

7'1{/5 <oo> — 1,

where o =1 and for all g > 1,0y = 20041 + 2.

Proof. The proof is obtained by induction. First for g = 0 the result is given by Lemma 3.5.12.
Then let g < g—1, assume the result is obtained for 0 < j < g. Now we will show the result for g+1.

To derive the lower bound on the number of infected vertices in a ball k € SV) at generation
o) 4+ g+ 1, one can consider only the infections generated due to infected vertices inside this

ball. According to the induction hypothesis there are at least W infected vertices in the ball.

Among the parasites generated on these vertices, at least W (%v N —Un D N) (where py is

defined in the proof of Lemma 3.5.9) of them will move to vertices in the ball. Then it suffices to
apply Lemma 3.4.8 Equation (3.4.11) where dy in this Lemma is equal to 5= N? + C(n)N<(5,

. 29 29+1e n og2
with H(N) = Qink)]\;w, @1(N) = 07 SOQ(N) = %Wa @3(]\]) =2 UN * PN, fl(N) = lggnJ(rJIV)v

which gives that the number of infected vertices at generation o) + g +1 is whp at least of order

n+1 29¢ 2 29+1le .
102g2(N) (2%10é\£tg(N)) = 1ogxg+1(N). Because there are whp at most © (log(log(N))) ball in StV

and by Equation (3.4.11) of Lemma 3.4.8, the statement holds whp for all balls in S(V)
Indeed considering o N +C/(n) N5 boxes (for the balls-into-boxes experiment) lower bounds
the probability for a parasite to move to an occupied vertex, because whp there are at most

= NP+C(n)N (M8 many vertices in the ball. Furthermore, according to the induction assumption
e
we have considered the minimal number of parasites which is bg,]'\‘/jTN) (2%1;1\; —uN -pN) and new

. . . 2g+1£ . . .
infections are counted when reaching one of the Q%d N — leogW first boxes whereas in the original
process there are at least this number of occupied vertices.

To derive the upper bound on the number of empty vertices, we control for each ball the num-
ber of new infections generated in generation o™ + g+ 1. Since by induction the number of empty

g+1,
’ whp, we apply Lemma 3.4.8 Equation (3.4.12) with H(N) =

vertices in generation A +gis le (V)
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N29Tte N29T e

n_ 1\NT ¢ _ N* e _ _ _ 1 log(N)
(3" = 1) oy » 1 (V) = Ty w2 (V) = 0, 93(N) = 0, fo(N) = gz (210872 (W) +9+2)" v

estimate the number of new infections in generation o™) 4+ g + 1 in each ball in S?¥). The lemma
20+ log(N)

2 1
log?(N) <2 log 7 +2 (N)+g+2>

yields that in each ball there are at most = new infections whp. Since

there are whp at most (2C log(log(N)) + g + 2)" balls and since fo(N) = © (log(N)n%i’) whp for

g+2,
all balls the number of new infections is bounded from above by 11;7;2(1\[) ( 1log;(N) )m
2logn+2 (N)+g+2

Equation (3.4.12) of Lemma 3.4.8. Consequently, the total number of empty vertices at generation
oN) + g+ 1 is whp at most

see

N29+2€ 1 N N29+25
5 . og(N) — (2Clog(log(N)) + g +2)" <
log™(N) (2log7™ (N) + g + 2)

~ log(N)’

O
Applying Lemma 3.5.13 for g = g gives that
29¢ 29+1e
5 (N) (V) N F(N) N 7
Py (Vk es ,IU(N)Jrg(k) > ]ogag(N)7Ia<N)+§ < Tog(IV) Tne <00 | =1
Define
1 (5 p
=_ (29t - C . 5.
) 5 ( € 2) >0 (3.5.9)

In the next lemma we show that at generation ™) 4+ g+ 1 the number of infected vertices in each
ball of S@) is at least of order N+9.

Lemma 3.5.14. It holds

Py (Vk: e SM I (k) > N3k, < oo) 1

Proof. Here we apply again Lemma 3.4.8 to obtain this lower bound. More precisely with the

75 +15
following set of parameters: H(N) = %%, P1(N) =0, p2(N) = Jl\gzggw, w3(N) =2"vnN DN,
g+1,
fi(N) = IOngJ(rllv). We obtain that whp ITllva tg1 > MI\(@W > N§+57 by definition of 4. O

”Pulled travelling wave” epidemic spread

We start with a general lemma that we will use multiple times in this subsection. It says that
when a ball of diameter €y is fully infected, then in the next generation, all the vertices in the
neighboring area of diameter 2ry — en are visited by at least two parasites whp.

Lemma 3.5.15. Consider a ball of diameter ey centered around a point x € [0,1]", denoted by

By, where ey € @(Nﬁ/ﬁgfl) for &€ > 0 small enough. Assume that the proportion of currently

infected vertices in this ball is asymptotically 1. Then in the next generation all the vertices in the
ball centered around x with diameter 2ry — cn, denoted by By, are attacked by at least 2 parasites

with probability 1 — O (E%N’UN exp (—%UN)) conditioned on Un (/2 4+ £).
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Proof. We estimate from above the probability that at least one vertex is visited by at most 1
parasite in the following generation. Denote by K; the number of vertices in By. Due to the
conditioning on Un (B/2 + €) it holds

(2ry —en)"N — C(n)N°™F < K) < (2ry —en)"N + C(n)N°™WP € O(dy).

Denote by K, = (2ry — en)"N — C(n)N¢™B. Furthermore, within By due to our conditioning
at least ey Nuy /2 and at most 2e%, Nvy parasites are generated. Denote the number of parasites
generated in By by K. Since Bs is contained in By and Bj has diameter 2ry — ey every vertex in
B> is connected over an edge to any vertex in By. Hence, the probability p that a particular vertex
in By gets attacked by at most one parasite generated in Bs can be estimated from above by

Ko Ko—1
1 1 1
<(1-— K (1- — -
P= < K1> M ( K1> K,
1 E”;{INUN/2 1 ET&N’UN/Q*l 1
=21

K,
Consequently, we can estimate from above the probability that at least one of the vertices gets
attacked by at most one parasite by

1 E%NUN/2 1 E?{INUN/271 Kl ER,
Ki(1l—— 2e™" N 1— — — cO|(evN —_
! ( Kl) v ( Kl) K, © (EN NP ( (QTN)nUN>> ’

K,

from which follows the claim. O

This lemma implies that within one generation all vertices in the ball B; get attacked by at
least two parasites whp from parasites generated on vertices in Bs, since ey is chosen such that
eRun /% ~ N&. In particular this means that if in By almost all the vertices that are not contained
in By (which is asymptotically completely infected) are still occupied by a host, then all these hosts
in By get infected in the next generation. This allows us to repeat the same argument subsequently.

Due to the exponential decay of the error term O (E}(,NUN exp (—%’UN)) we can apply this
argument for many balls, in particular for the 2" N'=# many balls of diameter r. In particular,
this implies that we can show that a pulled traveling wave in any direction is created by repeating
the argument, as long as the invasion is not stopped by a region in which no susceptible hosts are
available anymore and which cannot be crossed by parasites.

However, such a region with a non-trivial proportion of hosts killed and with a diameter of at least
ry — en (such that it cannot be crossed by a travelling wave whp) cannot arise, because if in a
ball of size ry — en at least ky, with ky — oo arbitrarily slowly, hosts get infected by couplings
with DBPCs (which have a positive survival probability) we can show that in this region either a
new infection wave is started or a travelling wave is hitting the ball. Consequently balls cannot be
slowly depleted and we will reach the boundary of [0, 1]™ whp after at most

many generations.
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3.5.3 Proof of Theorem 3.2.4 1) (ii):

Now we have all necessary materials to prove Theorem 3.2.4 1) (ii). The first step is to show

limsupIE”(Eq(lN)) < m(a). (3.5.11)

N—o0
For a sequence (¢x)nen introduce the event

N)

Agy = {EIgE]NO 7! zeN}.

Then for all 0 < u < 1 and any sequence £ < u|V®Y)| we have
Py (EXY)) < Py (Aey). (3.5.12)

Let (¢x) be a sequence with £y — oo as well as with £y € o(log(log(NN))). Then Proposition 3.5.7
yields

Py (Ary) <Py (3g € No: Z0%) > £y) +o(1). (3.5.13)
Proposition 3.5.6 gives that

lim P(Jg € No: Z' )

(
N —oc0 g,u

> Un) = 7(a). (3.5.14)

In summary combining (3.5.12), (3.5.13), (3.5.14) and that Un(5/2 + &) occurs whp we obtain
(3.5.11).
The second step is to show

.. N a
1}\I]ri>1£10f]P(Eq(L )) > W<\/27> (3.5.15)
Lemma 3.5.10 gives that
© e e TS =(N) = a
l}\gglofPN(ngN,Ig >N ) 27T<\/27>' (3.5.16)

Then Lemma 3.5.14 yields that in all balls of the set SV), see (3.5.8) for its definition, the infection
level is at least of order N#/2%9 in the random generation c™) +G +1, i.e.

= N 8 7
Py (Y€ S™, IR, (k) > N*H|rl. < 00) > 1.
Then arguing as in the proof of Lemma 3.4.13 one can show that whp all hosts on vertices contained
in the balls of the set S(N) get killed in one more generation, that is

Py (k€ SM T o a(k) = V) > 1.
And finally using the results from Subsection 3.5.2 one can show that whp every host eventually gets

infected conditioned on the event {7f;. < 0o}, which combined with (3.5.16) and that Uy (3/2+ £)
occurs whp, gives (3.5.15).



3.5. INVASION ON A RANDOM GEOMETRIC GRAPH 153

3.5.4 Proof of Theorem 3.2.4 1) (i)

Assume vy € 0(\/dN). Then using a similar approach as in Subsection 3.4.4 which is to show that
whp there are no infected individuals at generation 1, one obtains the result.

3.5.5 Proof of Theorem 3.2.4 1) (iii)
In this section we assume v/dy € o(vy). We will prove that

; 7Ny
Jim P(3geNo: T, = [V =1.

Proof. The proof is split into two parts. First we argue that we can reach with high probability a
level N for any a < 3 in a time of order log? (N). In the second part we show that similar as in
the critical scaling the host population is killed by a traveling wave.

We closely follow the proof of Lemma 3.6.4 and the proof strategy in Subsection 3.4.5 for the first
part. We build an infection process (S (V) Z(N) RV )), in which infections are only transmitted
due to parasites originating from the same vertex and vj(\';) = av/dy = aN 2 many parasites are
generated. This means a host is only infected if at least two parasites which originate from the

same vertex attack the host simultaneously. Note that dy € o(vy), which means that for every
a > 0 there exists an N large enough such that ’UE\?) < wvy. Thus, analogously as we showed
in Subsection 3.4.5, for every a > 0 we can couple this process to the original infection process
(SW), (M) RIN)) such that

F(N) || BN N N

I ORI < N U RN g € Ny,
for N large enough. Denote by HJ(CN) the number of vertices which get attacked by at least two
parasites originating from z. Denote by deg(z) the degree of vertex x € VW) Then
o (M) deg(a)!

NI
P (HM =k) 2 Hdeg()  (dea(a) —F — v Meg()n F"

where we only consider infections resulting from cooperation from the same edge and ignore in-
fections generated by groups of 3 or more parasites, since these events happen with a negligible
probability. Recall the definition of dx ¢ and 0y, in (3.5.4) and (3.5.5). Set

AN = {6N,g < deg(z) <dn Yz € V(N)}.

By Lemma 3.5.1 it follows that IP(A(N)) — 1 as N — oo. Thus, dy and dx,, act as a uniform
lower and upper bound on deg(z) for all z € VN) with high probability and we can again conclude
analogously as in Proposition 3.5 in [1] that

[T (" 5Y) deg()!
kldeg(z)®  (deg(x) — k — vy )!deg(z)vn—F

> (“m ) e (s ) (o)
(

"

k!

> (’UN — 2(1]\/)2 k i
= 20N k!

exp
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for 0 < k < an. This suggests that we can couple the process (|f§N) U 7€(J\f)|g)g>O with an
appropriately chosen branching process until we reach a level N* with a < . B

Definition 3.5.16. (Modified lower Galton-Watson Process) Let 0 < § < % and (an)yen be
a sequence with ay — oo and ay € O(Ng). Furthermore, assume (9n)nen s a [0, 1]-valued
sequence with 95 — 0 as N — co. Let Y(N) (Y(N))geN

binomial offspring distribution Bm(Y , 1—19N) where the probability weights ( pY )) kENo of ym)
are for all1 < j<apn

k
s (v =208\ L R Y (L
J 20N k! 200 A

be a Galton-Watson process with mixed

and
ORI oo,
j=1
Denote by Y( ) = f:(]Y(N) the total size of the Galton-Watson process until generation g and
by Y, = ( _E;l)) geNo the corresponding process.

Now let 0 < a < 8 and define
E%\Q = inf{g € Ng : |f;N) UﬁgN)\ > NO‘}.
One can show similarly as in proof of Lemma 3.6.4 Equation (3.6.13) that
p(ﬁ_gm URM| > 7 Vg < a(N>> —1

as N — oo. Indeed, as in the proof of Lemma 3.6.4 essentially we need to control the probability
that a) an already empty vertex is re-attacked by at least two parasites moving along the same edge
or b) a vertex gets simultaneously attacked by several pairs of parasites moving along the same
edge.

In the following we will call pairs of parasites moving along the same edge packs of parasites.
Similar as before we need to determine that each pack of parasites generated by an infected vertex
before generation E%\Q is involved in one of the events a) or b) (independently of the other packs
of parasites) with probability at most ¥. In this case we can remove packs of parasites with
probability ¥ such that the number of new infections generated by an infected host can with high
probability be bounded from below by the number of offspring drawn according to the distribution
with weights (pl,(C z))kelNo from Definition 3.5.16 for any generation n < J( 0.

Next we determine an upper bound on the probabilities of the events a) and b).

a) Before generation 7 No M) the probability that a pack of parasites originating from a vertex z
attacks an already empty vertex is bounded from above by

N < N N« 6@( 1 )
deg(x) = 0%, NP —(d+1)N@Hs7 o/
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b) Before generation ES\J,\Q, the number of empty vertices in the graph is smaller than N®. The

probability that two packs of parasites coming from 2 different vertices x and y attack the
same vertex is bound by

(N NN\, )] 1 EIVEY
deaests) < doaywden) < op < O(F9):

where N, = {y € VIV) : 2 € £} denotes the neighbourhood of z € V(N). An application
of Markov’s inequality yields that the total number of packs of parasites generated before
generation E%\Q is with high probability bounded by N*log(N), as in Lemma 4.8 in [1].
Hence, each pack of parasites is involved in an event of type b) with probability at most

N log(N) - (dn,)* = © ().

Set I = 2w €0 (1;%3(]\@ ), then 9 is an upper bound on the probability that a pack of

parasites is 1nvolved in one of the events of type a) or b). For a < 8 we have ¥y € o(1). By the
exact same line of arguments as in Lemma 3.6.4 one can conclude that

, N e _
Jim P (ag ENg: TV >N ) =1 (3.5.17)

for any a < . Using the same approach as in the proof of Lemma 3.5.11, where the only difference
is a coupling from below with Galton-Watson processes instead of DBPC, one can show that under

the event {Hg € Ny : I( )

infected.

Taking g < a < 8 and using a similar approach as in the proof of Lemma 3.4.13, one shows that it
exists a box of diameter rny where all the hosts are killed and the number of infected individuals is
of the order N¥. Then arguing as in Subsection 3.5.2 one shows that whp every vertices are killed
by the infection process. Combined with (3.5.17) the result follows. O

>N a} it exists a box of diameter rp, in which at least ) hosts got

log (

3.5.6 Proof of Theorem 3.2.4 2)

Proof of Theorem 3.2.4 2). At each generation a parasite can move at most to a distance ry mean-

ing that the minimal number of generations the infection process v needs for killing every host
is at least the number of boxes of diameter ry that separates the initial vertex to the boundaries
of the domain. In dimension n, using the max norm, this number is exactly ﬁ, giving the result
P(lgy) <TW) =

Accordlng to (3.5.7), Lemma 3.5.14 and applying a similar reasoning as in Lemma 3.4.13, and using
that Un(B/2 + &) occurs whp, one shows that it exists C' > 0 such that

P (E(N) < C'log(log(N)) ‘ PARRIRS oo) — 1,

N—o00

where ¢(V) := inf {g eN:3ke K,T;N)(k) = |V,5N) |} Moreover Equation (3.5.10) gives that after
time o™, under the event Uy (3/2 + &) which in particular guarantees that the graph G(N) is

connected, the remaining time up to total infection is upper bounded by 27, (1 + O ( )) with
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EN = NZEZ+5 for some § > 0 (where 6 = % in Lemma 3.5.15). Combining these two facts gives

that

P <T<N> < {1w + O (kn) ‘T(N) < oo) -1,
QTN

with ky = max (log(log(N))7 iTZ) O
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3.6 Supplementary material

Proof of Lemma 3.3.1. If pg, = 0 the result follows by applying the extinction-explosion prin-
ciple to the super-critical Galton-Watson process formed by the offspring generated by the initial
individual. Due to assumption p; , # 1 this process is super-critical.

For the remaining cases we will show that all states except 0 are transient states, which yields
the result.

Assume that pg, > 0 and that py . = 0. Note that this means that we get at least one offspring

from every possible cooperation of parents. Thus if we have Z, = k parents, we get at least k1)

2
many offspring due to cooperation. But it holds that @ > k for k > 4. Thus, if at some
generation n we have that Z, > 4, then we know that Z,,1 > Z,; almost surely. This implies that
Zg4 — 00 as n — 0o almost surely, if Z;, > 4 for some go € IN. On the other hand since we exclude

that pg, = 1 and p; . = 1 we have
PO<Z;,<3|]0<Z4_1<3)<c

for some ¢ < 1. Consequently, the event {0 < Zg < 3Vg > 0} is a null-set and so all states but 0
are transient.

Assume that pg, > 0 and pg . > 0. Let us assume that in some generation gy we have Z,, =k
for some k > 1. If the process dies out in the next generation it enters the trap 0 such that it can
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never return to k. Thus, an obvious lower bound for the probability to never hit k£ again is

i
P (7, # K9 > 0| Zy = ) > Pl > 0
for k > 1. But this already implies that
P(Zg:kforsomeg>go } Zgozk) <1

i.e. the state k is transient.

Proof of Lemma 3.3.4. We set

k k+1
s 48— -+ (i) (13

k k+1
VI (k) =V (Z;N)|Z;]f{ = k) — (kV(()N) I (2)V£N)) < ( ;f )V(N),

where we define p(N) = min{u((,N),,ugN)} and ) .= HlaX{V(EN), VéN)}.
Since we assumed that the first and second moments of the offspring and cooperation distribu-

tions converge, it exists a Ny such that

;(’“’“;”u) < E®) (k) and VY (k) < 2(’“(’“;%)

for N > Ny. By Tchebychev’s inequality for any £ > L we have

2 (N)
p (Z;N) > %’Zﬂ _ k) > P <Z§N> > ETU“)‘Z;]_V{ — k) (3.6.1)
E(N)(k:) N
or (-] 220 )
LAV 8y s
(EM@k)? — R+ Dp)?> kP

We choose f;(k) = kzl“-2t71, where fo(k) = k. Recall from (3.3.4) and (3.3.5) that we have

82 —1

2 (R 8(8 + )
IT = fi(k) and f;(k) > e

Now applying (3.6.1) and the first part of (3.6.2) recursively implies that

(3.6.2)

M

(N (a0 ) 2 o) = TT0- %) - T (- 60)

i=1

and by the second part of (3.6.2) it follows f;(k)u > 8(8 + V) which yields that

P(ﬁ{%%ﬂ(k)ﬂzw > H( W)

i=1

where we used that v(8 + )7t < 1. O
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Proof of Lemma 3.3.5. By Lemma 3.3.4 follows that if Ny is large enough such that by > L =
[n=1(8 4+ v)?] for all N > Ny,

P (ﬁ (200> row)}| 24 :bw) =110 )

i=1 —

21 2l
where f;(by) = bf;fifl and fo(by) = by. Without loss of generality we can assume that by is
6

monotonically increasing in N, which implies that log (1 — m) is monotonically increasing to

0 as N — oco. Furthermore, note that for IV large enough inf;> f-(gi;)u < %, and thus

0>Zlog( ) Zfz 0,

for all N large enough, where we used that 1 —z > e~2* for z € [0, %] Now by using continuity of
exp(-) and log(-) and applying the monotone convergence theorem we obtain that

Jim e (108 (TT (1= 75550 ) ) = o0 (e (i, (1= 752))) =

since 1 — —1as N — oo for all 4 > 1. O

6v
fi(bn)p

A consequence of the extinction-explosion principle is the following lemma, which states that
for a DBPC the probability of reaching an arbitrary high level, that tends to oo, at some generation
or up to some generation is asymptotically the same as surviving. It is a special case of Proposition
3.3.7 when Z(Y) = Z. We need it to prove Proposition 3.3.7 and other statements.

Lemma 3.6.1. Let Z be o DBPC with survival probability 7 > 0 and satisfying p1, # 1 and
(Po,0,P1,c) # (1,1). Then for any sequence (by)nen satisfying by — oo we have

hm ]P’(Elg ENg:Zy>by) = hm P(3g € No:Z,; > bn)
=.
The proof follows basically along the same arguments as the corresponding Lemma 3.7 in [1].
Proof of Lemma 3.6.1. First we will show that
P(3g e No:Z; > bn) —

By the extinction-explosion principle for DBPC, proven in Lemma 3.3.1, we have that 7 <P (3g € Ny : Z, > bn).
Then

=P (Zy >0,Yg € Noy)
=P({3geNy:Z, >by}N{Z, >0,Yg € No})
P{3g€eNy:Z;, >bn}) - P({Z; >0,Vg € No}|{3g € No: Z, > bn}).
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Using the strong Markov property, one can show that
P({Zy > 0,Yg € No} |[{3g € No: Zy > bn}) >P(Z, > 0,¥g € No | Zo =bn) .

Then because the interaction is a cooperative one, a DBPC starting in by can be coupled with by
independent DBPCs starting in 1 such that we get

P(3geNo:Zy,=0| Zy=by) < (P(3g €Ny : Z, =0]Zo = 1))"~.
Introducing ¢ < 1 as the extinction probability of the DBPC starting in 1, we finally obtain
T>P({3g €Ng:Zy;>by}) (1—¢").

It follows that
T

P({3g€No: Z, 2 bv}) < 7=

Hence we have shown that

P(3geNg:Zy >by) — . (3.6.3)

N—o0

For proving the remaining equality it remains to show that
P({ageNO:Zqsz}m{ageNoz Zg:o}) — o(1)

due to the extinction-explosion principle for DBPCs. Let (¢y)nyen be a sequence with ¢y N—> 00
—00

and 2X o0 and consider the subsets
CN N—oo

A(N);:{agemo;?gzb]v, Ji<y, Zich}m JgeNy: Zg:0}7

{
BW) .— {ElgE]NO:ZgaN, Vi<yg, Zi<cN}ﬂ{E|g€]N0: Zg:O}.
By definition

AN | BIN) {ageJNO;Zgsz}m{ageNO; Zg:o}.
The extinction-explosion principle together with (3.6.3) yields that

IP(A(N))SIP’({ng]NO, ZQZCN}H{HgE]NO, Zgzo}) = 0.

N —o0

Furthermore
BW) {ZLbNJ > 0} n {3 g€No, Zy = 0},
°N

which gives
P(BM) =P ({ZLIWJ —obu{vgen, z,> 0})
°N

:IP’({ZU;NJ :0}) —HP’({VgeJNO, Zg>0}) S,
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because for any sequence uy tending to infinity we have P(Z,, =0) — 1 — 7, which follows by
monotonicity of the events since {Z441 = 0} C {Z,; = 0} for all g > 0. Hence, we have

P (A(N) ¥ B<N>) 0.

N —o0

O

Proof of Proposition 3.3.7. Due to Assumption 3.3.3 we have that neither pgf\([)) # 1 nor (pé{\é),p(lf\;)) #*

(1,1) for N large enough. Due to Lemma 3.3.1, for an arbitrary (by)nyen such that by — oo we
have that it exists Ay such that P(Ax) =0 and

{Vg € No: Z{™ > 0N\Ax € {3g € Ng: ZIV) > by}
Then using Lemma 3.3.5 we obtain that
P ({Elg €Ng: ZM > by} {3g e Ng: 2V = 0}) 0.
Consequently using that P(|Jycn An) = 0 it follows that if the limit exists it satisfies
. (N g . (N
A}gnooﬂ”(VgEINo.Zé ) >0) 71\;gnOOP(EIgG]I\IO.Z§ )sz).

Let (en)nen be a sequence with ¢y — oo and % — o0o. In order to show, if the limit exists, that
lim P(3g€No: Z{™ > by) = lim P(3geNo:Z, > by),
N—00 N —o0

it remains to show that

P (39 €No: 7Y > by and Vi < g,z < en) = 0. (3.6.4)
In particular for TZV(N) :=1inf{g € Ny : 7;N) > by} we have
_ b =
P (ag €Ng: 2 > by and Vi < g, 2™ < cN) <P UN} <2V < oo) .
CN

But according to Proposition 3.3.6 it follows that
Z(N) Z(N)
P (sz N < Clog (log (b)) | szNN < oo) — 1.

In particular taking ¢y — oo such that loglog(by) = 0(
0, which gives (3.6.4).
To conclude the proof it only remains to show that

by
CN

) implies that }P’([g—x] < TE\;N) < 00) =

. () _
Jim P (Elg eENg: Z0) > bN) —

Note that ZZ’;O |p,(cj\2) — Pk,ol < 2, and thus by dominated convergence it follows that

oo

. N

tim 3 oY)~ i
k=0

N—o00

=0.
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Analogously follows that limy 00 D pep |p§€{\£) —Phc| =
(Kn)nen C Nsuch that Ky — 0o as N — oo we find a sequence (en) yen Withey — 0as N — oo
and with

KN KN
N N
max <Z ) — prol, Y 1Y) ~ pk,c|> <en, (3.6.5)
k=0

k=0
oo o0
X E Dk,o0) E Dk, | SEN-
k=Kn+1 k=Kn-+1

Note that this implies

Z p;(f?ﬁ Z (p;(cj,?—pk,o) + Z DPk,o

k=Kn+1 k=Kn+1 k=Kn+1
Kn
N
< Z(Pz(c D) Do) +en < 2en.
k=0

By the exact same calculation we get the same bound for the sum of p,(cj’\? from Ky + 1 to oo and

this yields that
max ( Z pg\g), Z p,(ﬁ)) < 2ep. (3.6.6)
k=Kn+1 k=Kn+1

We know by assumption that ey — 0. Consider now a sequence (ey ),y such that ey — oo and
ened — 0. The first step is to prove that

. () _
Jim P (ag eENg: Z0) > eN) _ (3.6.7)

We start by showing that whp. the sequence of DBPC (Z(N))N€1N and the limiting DBPC Z*
can be exactly coupled until their total size reaches the level ey or they both die out. Introduce
the stopping time of the first generation that the total size of Z°° reaches the level ey or that it
dies out as .

z" _
TeN,O -

inf{gE]Nm?EOZeNongO:O}.

By definition we have that almost surely 70%00 _1 < en which means that in order to make an exact

coupling between Z(N) and Z* until generatlon TZ (0> there are at most e3; offspring and coopera-
tion independent random variables to couple. Till thls point we have not specified the joint distribu-

tion of the offspring and cooperation random variables (X;, Y r)ien,j<x and (X »(N), Yj(g))zelN,Kk

We couple them in such a way that ]P’( # X(N)) and ]P( k F Y( )) are minimized. For a
single random variable this can be done for each pair recurswely Vla the maximal coupling, see
Theorem 2.9 in [86], such that

( #X(N) Z|pko_pk0|<25N
2
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and
Kn

N 1 N
P(Yjk # ijk ) = 5 > DY) = prol < 2en,
k=0

where we used the bounds from (3.6.5) and (3.6.6). Since these are families of independent random
variables and also the offspring and cooperation random variables across different generations are
independent, the probability that the €%, relevant offspring and cooperation independent random
variables are equal is lower bounded by (1 — 25N)6?V — 1 by the choice of (ey). In summary we

have
(V)

P(Z, =7, ¥g<7E ) > (1—2en)N =1 (3.6.8)

as N — oco. Let us now define the event
Cn = {7;1\[) = 7;0,Vg < TZ:O}.
We see that by monotonicity and Lemma 3.6.1 that
P({3geNo:Zy 2enfnCn) <P(IgeNo: 7y 2en) o
as N — oo. On the other hand, by monotonicity and Equation (3.6.8) we see that
P({Hg € Ny :7;0 > eN}ﬁC’fV) SIP’(EIg STZVOTO :ZEN) 7&7:0) —0
as N — oo. This yields that

lim P({ageNO;Z;"zeN}ch) = lim P(ﬂge}NO;Z;"zeN) — .
— 00

N —o0

But Cy states that the Z> and Z™) are coupled until T;Zl:fo, and therefore we also know that
P({3geNo:Zy 2 enfncon) =P ({3geNo: Z," > ex} nCw)
for all N > 0. But this equality already implies Equation (3.6.7), i.e.
Jim P ({ag eNg: 20" > eN}) —

This concludes the proof since we have shown it for by = ey and since we have shown it for one
specific choice it follows also for an arbitrary sequence (by)nen because of the extinction-explosion
principle shown in Lemma 3.3.1. O

Lemma 3.6.2. Consider sequences (Dy), (Vn), (mn), (fn), (gn), (hn), (kn) such that Vi ~
av/Dy for some a >0, fy > hy >0, gn,mn > 0 and assume ky > max{my, fn,gn} as well as

kn — oo for N — oo and XV ¢ o(1). Then

D%,
o N2 41,3
(Dn — fn)! > (_ (mnVN —gn) )exp (_ kN‘Q/N)
(Dy — fnv — (mNVN — gn))(DN — hy)my VN —9n 2DN Dz,

2 4 3
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On the other hand we have

(Dn — fn)! < ex (_(mNVN —QN)2> ox <mNVN>
(Dn — fn — (maVix — gn){(Dyy — hy)aVa—ow = &P 2Dy P\"Dby )

Proof of Lemma 3.6.2. For completeness we show the inequality
1 — 2 > exp(—z) exp(—z?) (3.6.9)

for z € [0, 3] first. We have
1—x+2%/2> exp(—x),

SO
2

(1-1) (1 + M) > exp(—z)

which is equivalent to
1

l—2>exp(—2)7—
(1 + 2(1$—r))

We have )

x
1+ —<1 2 < 2
—&—2(1_23)7 + 2% < exp(x?)

which yields
1 —z > exp(—z) exp(—x?).
We have
(Dn — fn)!
(Dn — fn — (mnVy = gn))N(Dn — hy)mvVn—on

= 1_M 1_fN_hN_mNVN_gN—1
Dy —hy Dy — hy Dy — hx

(3.6.10)

Since fy —hy > 0and Dy —hy — o0 as N — oo by assumption, we can estimate for N large
enough by inequality (3.6.9)

myVN—gn—1 .

—(fN—hN)(mNVN—gN)> ?
3.6.10) > ex - ex — _
(3.610) > exp (=)l P X nw

2
- exp <— <fN ~ I mNVN) mNVN> (3.6.11)

Dy — hy

Finally, since 5—5— < 5—(1+ 2%) and

(fn + mnVn)*my Vi N fn(mnVi) - 5hy n hn(myVn — gn)? < kyVa
D2, Dy Dy Dy - D%
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for N large enough, we can estimate

(mnVy — gn)* ( k?v%%)
3.6.11) > ex ——— = |ex — .
( ) > exp ( 2D p Dz

Furthermore, for the upper bound we estimate

(Dn — fn)!
(DN — fv — (myVN — gn))(Dn — hy)mN VN —9n
myVN—gn—1 i >

—(fn —hn)(mNVN — gn)
< exp ( Dn —hin ) - exp (— l:zl 7171\/ .

2
< exp ( (mNVN2Z)f[N —1) )

< ex _(mNVN*QN)2 ox myVn
= &xp 2D N P Dy ’

Proof of Lemma 3.4.1. We have that

k m/y Vi —2(i—
p(cfs) = = (VR (D — hiy)!
¢ KDy —miy)k (Dl — by — KD}y —miy)*
(D —m/y — k)!

(Dl = mly = k) = (miy VX = 2R) D)y — mly )" Va 2

In particular applying Lemma 3.6.2 with fy = m/y + k, gy = 2k, hy = m/y and ky = )y, one
obtains that

, /V/kl ’ IV 9 )2 Ty
()= (o) on(857) o (55570 e (557)

B N S G G T e W (4
—\ 2Dy ) K 2D, Dy )

Applying again Lemma 3.6.2 with fy = m/y + k, gn = 2k, hy = m/y and ky = ¢y we obtain

k
, ryV 9 )2 1 0.2 VY VSV
P (C’ghm) = <(mN 2D ) ) P <_4D’ S )eXp <_ (mﬁ)'N) )eXp (‘N =i
N : N My N Dy

1Y op \2 k I o \2 , 51,3
(I o () o (S55).
N : N Dy
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Lemma 3.6.3. Let X and Y be two random variables with state spaces S = {s1,...,5,} and
S ={51,...,8,} of sizen for somen € N. Assume there exists ane > 0 such that for alli € {1,...,n}
we have

IP(X=s)-P{¥ =3) <e.
Then there exist a probability space (Q, F, ]P) and random variables X and Y defined on (Q,F, If’),
such that X ~ X, Y ~Y and P ((5(,{/) € Uzl:l{(sz,él)}) > 1—mne. By a (common) slight abuse

of notation, we will write (here and in the main text) that we can couple X andY such that

P ((X,Y) S 0 {(SZ,S’IL)}> >1—ne.

i=1
Proof. Denote by p; := min{P(X = s;),P(Y = 3;)}. Let U be a random variable defined on some
probability space (§2, F,IP) and uniformly distributed on [0,1]. Set X(w) := s and Y (w) := 3y,
it S p < Uw) < 58, pi, where we set >y := 0. Furthermore, let pX = P(X = s;) — p;
and set X (w) == s;, if 20 pi + S0 pX <UW) < S, pi + 320, p¥ and analogously define
Y (w) for U(w) > Z?:l pj. Then X and Y have the same distribution as X and Y, because e.g.
P(X = s;) = p; + p = P(X = s;). Furthermore, P((X,Y) € U™ (s;,3)) > 1 — ne, since
Srpi>1=>" P(X=s)-PY =5)] >1—ne. O
Proof of Lemma 3.4.8. Denote by Sy = Dy —p1(N) —p2(N), by = Dy —¢1(N), and h(N) =

H(N)(vy — ¢3(N)). Introduce for all i < by the random variable GgN) which counts the number
of balls in box i. We have

P (Ggm < 1) =P (Ggm = 0) +P (GgN) = 1)

R(N) R(N)—1
(oY kL
by bn by

[0 (MY o ((H0)Y] (-0 (M) [1+ 20 o (100
LM o (M),

Combining this previous computation with the fact that Sy h2b(2N) = ©(H?%(N)) gives that
N

E[¢™]=E [i;l{cg”bz}] = sy (1-P(6Y <1)) =0 (H3(N).

By using Markov Inequality we obtain that

P (G(N) > HQ(N)fz(N)) = }J[j?][\cf;)(;;)(]]\]) = (fz(lN)> 7
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which gives exactly (3.4.12).
Due to the scaling of H(N) it could happen that some boxes contain more than 3 balls. In order
to deal with such a situation introduce

c=inf{iz2: BN =0 (\/EH)} .

The scaling N¢ = o(H(N)) ensures that £ < co. Now we have

N+ H(N)H1y et H(N)¢+H!
P(HiSbN,GEN)Zerl)SbNh(bH)l=®<()DZVN _o (AW L,
N N VDN~

by definition of /. Then under the event
{¥i<on, ¢V <},

getting GV) = £ is obtained for any composition of balls, in which there exist exactly k groups of
balls that consist of 2 to £ many balls and in which all other balls are grouped alone. The number
of different kind of compositions is upper bounded by k*, because for all 2 < j < ¢ the number
of boxes getting exactly j balls is upper bounded by k. For each composition there are at most
(H(N)Vy)k¢ different possibilities to fill the k groups with (at most £) balls. An upper bound on
the number of possibilities for the boxes, where the k groups of balls are placed to, is b’fv. The
number of remaining balls to be placed on different boxes is lower bounded by h(N) — k¢. We can
estimate in summary

P <G<N> < @‘ {Vi < by, G < e}) < HQ(Nfl(N) KEHR (N)VE Wﬁu <1 - 1) (3.6.12)
= TN S ON, Gy < < 2 N 1 o ) B
Also using that
h(N)—ket ; h(N)—ke ;
Ej <1 — bN) = exp lz:; log <1 — bN)

and that log(1 — z) < —z for all z € [0,1), one can show, using that h(N) = o(by), that for all
k< H*(N)f;'(N) we have

h(N)—ke ; h(N)—ke ; h(N)—H?(N)¢ ;
1—— ) < — — 1 < — —

Because Z?ig)fH%N)z % ~ Hgébij\gv?v ~ H2(N)“—22, it follows that for N large enough we have

h(N)—H?(N)¢ ; a2
exp |- Y o <exp(—H2(N)4>~
i=0

Then using the natural bound

K (H(N)Va)™ < HX(N) (H(N)Vy) T 05008
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for all k < H2(N)f; '(N), we get that for N large enough
2 _
(3.6.12) < exp (—HQ(N)C;> HQ(Z'H)(N) (H(N)VN)H2(N)f1 L(V)e

= exp (_I{ii]V) [CLQ _ 4£f1_1(N) log (H(N)VN)]> HQ(EJrl)(N)

< exp (W) )

where for the last inequality we use that log(H (N)Vx) = o(f1(N)).
Finally to conclude the proof we have

2 2
IP’(G(N) <H (N)> <P (3 <tw, 6N = 041) +1P><G<N> < M) i < by, <£})

— () J1(N)
S@<H<N>>
vVDn

Lemma 3.6.4. Let0 < a < 3, a > 0 and consider the sequence of processes (g(N7“), j(N7a), ﬁ(Nﬂ))
defined in Section 3.4.5. It holds

O

NeN

lim P ({Elg >0: ’ﬁgN,a)

N—o00

> N“}) > Pa,

where @, denotes the survival probability of a Galton-Watson process with Poi(%) offspring dis-
tribution.

In the proof of Lemma 3.6.4 we will couple
S(N,a) F(N,a) p»(N,a
(3( ), FWa) R ))N
with the Galton-Watson process defined next.

Definition 3.6.5. (Lower Galton-Watson Process)

Let 0 < 6 < % and (by)nen be a sequence which fulfills by — co and by € o (\/DN), Furthermore
assume (On)nen is a [0,1]-valued sequence with @ — 0. Let XZ(N) = (X;fy))ge]No be a Galton-
Watson process with mixzed binomial offspring distribution Bin()?(N)7 1— GN), where the probability

weights (ﬁcN))ke]Ng of XM gre foralll <j<by

a J a)y 2
s (W =2\ O )T (L
i 2Dy 5! 2Dy Dy )’

bn
N N
T )
j=1

and
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(

Denote by <I>(N) the generating function of the offspring distribution (pk]\lf of XZ(N), and by

))k‘GINo

(N) = Z z]zV) the total size of the Galton-Watson process until generation ¢ and X; =
(N)

(XgJ )gelNo the corresponding process.
Proof of Lemma 3.6.4. Introduce
175\,(, 1nf{g€IN0 ‘j(Na)UR(N“) >NO‘}
We are going to show that
(\j(N“ URM| > X vy < #N)) o (3.6.13)

for the process Xl ) defined in Definition 3.6.5.

Consider Dy — 1 boxes, assume Vy many balls are put uniformly at random into the boxes.
Denote by C’;N) the event that exactly j boxes contain at least 2 balls. One can show using similar
calculations as in the proof of Proposition 3.5 of [1] that

B <P () Vi< <oy,

This means that whenever a vertex x gets infected one can estimate from below how many of its
neighbors are visited by at least 2 of its Vy parasites, which we call a pack of parasites, by the

corresponding number of offspring in the Galton-Watson process XZ(N), since ]3{ =1- wa 1D ~§N)

However, in the process (‘SN"(N’“)7 j(N’“),ﬁ(N’“)) “ghost” infections may occur, when a) an al-
ready empty vertex is attacked by at least 2 parasites coming from the same infected vertex, or
when b) a vertex is attacked by at least two packs of parasites coming from different vertices.

We show next that each pack of parasites of size at least 2 generated by an infected vertex
before generation ﬁgva) is involved in one of the events a) or b) (independently of the other packs
of parasites) with probability at most 6. Consequently, by removing packs of parasites with
probability 6 the number of new infection generated by an infected hosts can with high probability
be bounded from below by the number of offspring drawn according to the distribution with weights
(p,g l))kE]NU from Definition 3.6.5 for any generation n < 775\[(,).

Now we upper bound the probabilities of the events a) and b).

a) Before generation 775\,(3 the probability that a pack of parasites goes to an empty vertex is

bounded from above by pN— =0 (=)

b) Before generation 775\, the number of empty vertices in the graph is smaller than N®. The
probablhty that two packs of parasites coming from 2 different vertices attack the same vertex

=0 ( ) Using Markov inequality one can show that the total number of packs of

is

DN
parasrces generated before generation ﬁg\I[\Q is with high probability bounded by N“log(N),
as in Lemma 4.8 in [1]. Hence, each pack of parasites is involved in an event of type b) with

probability at most N*log(N) - 52— = © (11%% AQ)
In summary, Oy = 2% =0 (logﬁ( J) yields an upper bound on the probability that a pack

of parasites is involved in one of the events of type a) or b). Since o < 8 we have 0n € o(1). Then
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taking the Galton Watson process XZ(N) of Definition 3.6.5 with 6 = 2% we have exactly

proven (3.6.13).
As in the proof of Proposition 3.3 of [1] one can show the uniform convergence of CIJZ(N) to the
generating function of a Poi(%) distribution, such that applying Lemma 3.7 of [1] gives that

lim P(3g€No: Xy > N°) = (3.6.14)

N—o00

Combining (3.6.13) and (3.6.14) we get that
lim inf P (Elg € Ny : |7€§N’a)| > NO‘) > Vq-
N—00
O

For the proof of Lemma 3.6.6 we have to control moderate deviations of Poisson distributed
random variables.

Lemma 3.6.6. Let 0 < v <1, N € N and Xy ~ Poi(N7). Then for any 0 < & < v/2 it holds
that

—2 5

; 3+ _
Jim — log (IP’ (\XN ~ N> N3 )) -1
The proof of Lemma 3.5.1 is based on the following lemma.

Lemma 3.6.7. Let X = (X;) be a Poisson process with intensity 1 on [0,00) and let a(t) be a
function such that ﬁ — 0o and % — 00. Then for every Borel-set B C R it holds that

2

t 1 T

li —1 Pl— (X —t)eB)) <—inf —

TSP 2 Og( (a(t)( 1=t € )) )

and )
t 1 T

e b 1 > g T

htrggclf a(t)? log (P(a(t) (X —t) € B)) - ;22 27

where B denote the interior and B the closure of B.

Proof of Lemma 3.6.7. This is a direct consequence of Theorem 1.1’ found in [87]. We will now
check the conditions of this theorem. First denote by Y; = X; — ¢ the compensated Poisson process,
note that (Y3);>0 is a martingale. Let § > 0, then it holds that

E[exp (6 sup |V;-Y;]) ’ oYy :u< s)} = ]E{exp (6 sup \Yt|)},
s<t<s+1 0<t<1

where we used that the Poisson process has independent and stationary increments and that Yy = 0.
Furthermore it holds that

E[exp ((5 OS<%I<)1 |Yt|)} < E[exp ((5)(1)]61 = exp(exp(9)),
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where we used that X; is a monotone process and that the moment generating function of a Poisson
distribution with parameter 1 is given through ¢ — exp(e’ — 1). This provides (A1)’. The second
condition (A2)’ follows from the fact that

1 1
E[E(YSH —Y) -1 o(Y, u< s)} :Ebe] —1=o,

where we used again that the process has stationary and independent increments. Now the claimed
moderate deviation principle follows from Theorem 1.17 in [87]. O

Proof of Lemma 3.6.6. This follows from Lemma 3.6.7 by choosing a(t) = t%+%, B = [0,1]¢ and

consider the subsequent (Xy~ — N7)n>¢ instead of (X; — ¢);>0. Then plugging the choices in we
get that

lim

Ngnoc Nz

which provides the claim. O

1
log (IP (|XN7 N[ > N%+6)) -2
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Chapter 4

Neutral (and Deleterious) Cancer
Evolution

This Chapter corresponds to a major revision of the preprint [21] «Genetic Composition of Su-
percritical Branching Populations under Power Law Mutation Rates> for the Annals of Applied
Probability .

Abstract:

We aim to understand the evolution of the genetic composition of cancer cell populations. To
achieve this, we consider an individual-based model representing a cell population where cells di-
vide, die and mutate along the edges of a finite directed graph (V| E). The process starts with only
one wild-type cell. Following typical parameter values in cancer cell populations we study the model
under power law mutation rates, in the sense that the mutation probabilities are parameterized by
negative powers of a scaling parameter n and the typical sizes of the population of interest are
positive powers of n. Under a non-increasing growth rate condition, we describe the time evolution
of the first-order asymptotics of the size of each subpopulation in the log(n) time scale, as well as
in the random time scale at which the wild-type population, resp. the total population, reaches the
size n'. In particular, such results allow for the perfect characterization of evolutionary pathways.
Without imposing any conditions on the growth rates, we describe the time evolution of the order
of magnitude of each subpopulation, whose asymptotic limits are positive non-decreasing piecewise
linear continuous functions.

Keywords: cancer evolution, multitype branching processes, finite graph, long time behaviour,
power law mutation rates, population genetics.

MSC2020 subject classifications: 60J80, 60J27, 60F99, 92D15, 92D25.

4.1 Introduction and presentation of the model

Consider a population of cells characterised by a phenotypic trait, where the trait space V' is finite.
For all v € V denote by (Z,(t))ier+ the number of cells of trait v at time ¢ in the population, and
(2(t) == (Zv(t))vEV)te]R+ the global process. Assume that 0 € V' and

Vv €V, Z,(0) = 14,—o}, almost surely.

173
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Cells with trait 0 are called wild-type cells, and all cells with trait v € V\{0} are called mutant
cells. The population dynamics will follow a continuous-time branching process on NY. More
precisely, cells divide (giving birth to two daughter cells) and die with rates depending only on
their phenotypic trait. The birth, death and growth rate functions are respectively

a:V—R"B:V—R"and A\ :=a - 8.

We use the words ”division” and ”birth” synonymously. During a division event of a cell of trait
v € V, the two daughter cells may independently mutate. The mutation landscape across traits is
encoded via a directed graph structure (V, E) on the trait space, where E C {(v,u),Vv,u € V?} is
a set of ordered pairs over V such that for all v € V, (v,v) N E = (), and there exists a path from
0 to v within E. In other words, (V, E) represents a finite directed graph without self-loops, with
each vertex belonging to the connected component of 0. Mutation directly from trait v to trait w
is possible if and only if (v,u) € E. Let p: E — [0, 1] be a mutation kernel satisfying

Yo € V,a(v) == Z w(v,u) < 1.
uweV:(v,u)€E

A daughter cell mutates from its mother trait v to trait «w with probability u(v,u), meaning that
7i(v) is its total mutation probability. Notice that backward mutations are permitted in this model.
Finally the exact transition rates from a state z = (2,),ey € N of the process Z are

z — by, at rate z,6(v),
z — 0y + 0y + 0y, at rate 2z,a(v)p(v, u)pu(v, w)]].{(,u7u)eE}]].{(»U,w)eE}]].{u#w},

z z — 0y + 204, at rate z,a(v)p(v, u)21{(7,71L)€E},
z40,, at rate z,a(v) (1 —7@)*+2 S zea(w)p(u,v) (1 —7(w)),
ueV:i(u,v)eER

where Yo € V. §, = (]l{u:v})u v Throughout the paper, the growth rate of the wild-type subpop-
ulation A(0) is assumed to be strictly positive, to ensure that the wild-type subpopulation survives
with positive probability.

The biological motivation for this model is to capture the time dynamics of the genetic compo-
sition of a cell population during carcinogenesis. Tumors are typically detected when they reach
a large size, around 10° cells. The mutation rates per base pair per cell division are generally
estimated to be of order 1079, see [4, 5]. Thus, the framework of a power law mutation rates limit
naturally arises. A parameter n € N is used to quantify both the decrease of the mutation proba-
bilities, expressed as a negative power of n, and the typical population size, expressed as a positive
power of n, at which we are interested in understanding the genetic composition. The aim is to
obtain asymptotic results on the sizes of all the mutant subpopulations when n goes to infinity.
This is a classical stochastic regime studied in particular in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
Such a regime is referred to in [8, 10] as the large population rare mutations limit. However, we
have chosen the more precise term power law mutation rates to distinguish this regime from the
classical rare mutations limit, which is generally used in the context of adaptive dynamics to sep-
arate evolutionary and ecological scales, where the mutation probabilities p(™) typically scale as
e " <« M« #g(n). Indeed, under the power law mutation rates limit, the mutation prob-
abilities are of a higher order compared to those under the rare mutations limit if for instance
p™ o n=® with a € (0,1].



4.1. INTRODUCTION AND PRESENTATION OF THE MODEL 175

To be more precise, let L := {{(v,u) € R ,V(v,u) € E} be a set of strictly positive labels on

the edges of the graph, where R := {z € R,z > 0}. Introduce a sequence of models (Z(”))neN,

where for each n € N, Z(") corresponds to the process described above with the mutation kernel
p™ : E — [0, 1] satisfying

V(v,u) € B,n @ u (v, u) — p(v,u) € RT. (4.1.1)

For all t € R%, the stopping times corresponding to the first time that the wild-type subpopulation

Zén), respectively the total population Zt(;lt) =Y ey 7™ veaches the level nt, are defined as

nt(n) := inf {u cR": Z(()n)(u) > nt} and agn) := inf {u €R": Zt(;lt) (u) > nt} .
These are motivated by two different biological interpretations in different scenarios. For instance,
when considering metastasis the wild-type subpopulation Z(()n) may represent the primary tumor,
and the mutant subpopulations Zl(,n), for all v € V\{0}, may correspond to secondary tumors. As
clinicians typically have access to the size rather than the age of a tumor, it is biologically relevant to
estimate the genetic composition of the secondary tumors when the primary one has reached a given
size. This is mathematically encoded by examining the first-order asymptotics of Zq()") (ngn)) for

all v € V\{0}. Another biological scenario involves the total population Zt(ft) representing a single
tumor. It is appropriate to obtain theoretical results about the size of the mutant subpopulations

Z,En) for all v € V\{0} when the tumor has reached a given size. This corresponds exactly to looking

at the first-order asymptotics of Zq(,n) (a,gn)). Every time that results can be stated either with n,gn)

or Ut("), the following notation will be used

pﬁ") = nt(n) or oﬁ"). (4.1.2)
In the present work the cell population will be studied on different time scales: the random time
scale
(n) ) . 4.1.3
(pt T (t,5)ER+ xR’ (4.1.3)
and the following deterministic approximation
(n) ) RO N ()
t tht,” =t . 4.1.4
(t ts (t,s)ER+ xR’ wBA R A(0) ( )

Intuitively, the lineage of wild-type cells generated from the cancer-initiating cell constitutes the
first subpopulation that will generate mutations. Understanding its growth, therefore, provides the
natural time scale to consider for observing mutations. The birth and death rates of this lineage
are o(0) (1 — ﬁ(”)(O))2 and S(0) + «(0) (™ (O))27 respectively. Due to the power law mutation
rates regime specified in Equation (4.1.1), these rates converge to a(0) and S(0) when n grows to
o0o. Consequently, this lineage should therefore behave asymptotically as a birth and death process
with rates «(0) and £(0). Indeed, such a result emerges from the natural martingale associated to
a birth and death process, see Lemma 4.3.1. In particular the growth rate of this lineage is close to
A(0), thus this population reaches a size of order n' approximately at the deterministic time t§“),
see Lemma 4.3.2.
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For any finite directed labelled graph (V, E, L), under the following non-increasing growth rate
condition

Yo € V,\(v) < A(0), (4.1.5)

the first-order asymptotics of the mutant subpopulation sizes ZS”) are obtained on both random
and deterministic time scales (4.1.3) and (4.1.4), see Theorem 4.2.7. Assumption (4.1.5) can be
biologically motivated. Historically, tumour dynamics has been seen under the prism of clonal
expansion of selective mutations, i.e. A(v) > A(0). Nevertheless, the paradigm of neutral cancer
evolution has recently been considered, see [40, 41, 3, 42, 43]. This means that all the selective mu-
tations are already present in the cancer-initiating cell, and any mutations that occur subsequently
are neutral (i.e. A(v) = A(0)). With Assumption (4.1.5), deleterious mutations (i.e. A(v) < A(0))
are also permitted. This paradigm has been introduced because the genetic heterogeneity inside a
tumour could be explained by considering neutral mutations only. Various statistical methods have
been developed to infer the evolutionary history of tumours, including test of neutral evolution, see
[44, 45, 46] for details.

Without any assumption on the growth rate function A\, we study the system on the deterministic
time scale of Equation (4.1.4). Asin [6, 9, 11, 12, 13, 14, 15, 17], we obtain the asymptotic behaviour
of the stochastic exponent processes

o (2"
Yo e V, XM(t) = : glog((i)/ﬁo) :

These results are presented in Theorem 4.2.9. Here we are tracking the exponent of n for each
subpopulation, whereas Theorem 4.2.7 is a more refined result that gives the size directly in terms
of n. To our knowledge, it is the first model capturing this level of refinement on the asymptotic
behaviours under the power law mutation rates regime (4.1.1). Two significant new conclusions
emerge.

First, Theorem 4.2.7 shows the remarkable result that under Assumption (4.1.5) the randomness
in the first-order asymptotics of the size of any mutant subpopulation is fully described by the
stochasticity of only one random variable W, which encodes the long-time randomness of the lineage
of wild-type cells issued from the cancer-initiating cell. More precisely, the stochasticity for any
mutant subpopulation size is fully driven, at least to first order, by the randomness in the growth
of the wild-type subpopulation and not by the dynamics of any lineage of a mutant cell nor by the
stochasticity generating the mutations.

Second, Theorem 4.2.7 characterises the exact effective evolutionary pathways, in the sense of
the pathways that asymptotically contribute to the growth of the mutant subpopulations. More
precisely, if the length of a pathway is defined as the sum of the labels of its edges, asymptotic
results on the stochastic exponent give that for any trait v, among the pathways from 0 to v,
only those of minimal length can asymptotically contribute to the growth of trait v. However,
having results on the first-order asymptotics of the size of the mutant subpopulations allows us to
see which of those minimal length pathways actually contribute to the dynamics of trait v. More
specifically, among the minimal length pathways only those with the maximal number of neutral
mutations on their edges asymptotically contribute to the growth of trait v. Indeed, for each neutral
mutation in a pathway, an additional multiplicative factor of order log(n) appears in the first-order
asymptotics. Such a theoretical result opens the door for developing new statistical methods to
infer the underlying graph structure from data, i.e. to infer the evolutionary history of tumours, as

(4.1.6)
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well as for designing new statistical estimators for biologically relevant parameters, alongside new
neutral (and deleterious) cancer evolution tests.

Moreover it is, to our knowledge, the first time that this power law mutation rates limit has
been studied on the random time scale of Equation (4.1.3). From a biological point of view, it is
more interesting to obtain results on such a random time scale rather than a deterministic one.
We find that the randomness in the first-order asymptotics of any mutant subpopulation size is
fully described by the stochasticity in the survival of the lineage of wild-type cells issued from the
cancer-initiating cell.

In [8, 10], Cheek and Antal study a model that can be seen as an application of the model of the
present work via a specific finite directed labelled graph (V, E, L), the finite-dimensional hypercube.
Among their results, they fully characterise, in distribution, the asymptotic sizes of all the mutant
subpopulations around the random time at which the wild-type subpopulation reaches the typical
size allowing mutations to occur. In their setting, it corresponds to (n§"> + s)s R’ In particular,
they obtain that the asymptotic sizes of all the mutant subpopulations around this random time
n§"> are finite almost surely, following generalised Luria-Delbriick distributions, see [10, Theorem
5.1]. The original Luria and Delbriick model, introduced in [88], has generated many subsequent
works, see in particular [89, 90, 91, 92, 93, 8, 10]. Two major features explain the latter result.
The first one is that asymptotically only a finite number of mutant cells are generated from the
wild-type subpopulation until time ngn), following a Poisson distribution. The second one is that all
the lineages of the mutant cells generated from mutational events of the wild-type subpopulation
have, up to time ngn)7 only an asymptotically finite random time to grow, which is exponentially
distributed. We extend their results to larger times, typically when the total mutation rate from
the subpopulation of a trait v to the subpopulation of a trait u is growing as a positive power of n,
instead of remaining finite.

In [6], Durrett and Mayberry study the exponentially growing Moran model. They consider
the same mutation regime; their total population size grows exponentially fast at a fixed rate, and
new individuals in the population choose their trait via a selective frequency-dependent process.
In Theorem 4.2.9, a similar result is obtained for the case of a multitype branching population.
In particular, for this setting, the exponential speed of the total population (and of the dominant
subpopulations) growth evolves over time. More specifically, we show that the speed is a non-
decreasing piecewise constant function going from A(0) to rglea‘gc)\(v), and taking values only from

the set {A(v), Vv € V'}, see Theorem 4.2.9.

In [8, 7,9, 11, 12, 13, 14, 15, 17], the authors consider the power law mutation rates limit of
Equation (4.1.1) in the special case where all different traits mutate with the same scaling of a fixed
order of a negative power of n. In contrast, in the present work, the power law mutation rates are
more general by allowing traits to mutate with different scalings, as in [10, 16].

Asin [8,10], compared to the different modelsin [6, 7, 11, 12, 13, 14, 16, 17], the initial population
Z(™)(0) is not assumed to have a macroscopic size. This introduces an additional randomness in how
the wild-type subpopulation stochastically grows to reach a macroscopic size. However, contrary
to [8, 10], we condition neither on the survival of the wild-type subpopulation nor on the finiteness
of the stopping times of Equation (4.1.2).

In [23], Nicholson and Antal study a similar model under a slightly less general non-increasing
growth rate condition. More precisely, in their case, all the growth rates of the mutant populations
are strictly smaller than the growth rate of the wild-type population: Vv € V\{0}, A(v) < A(0).
However, the main difference remains the mutation regime. In their case, only the last mutation is in
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the power law mutation rates regime, while all other mutations have a fixed probability independent
of n. In Theorem 4.2.7 the case where all mutations are in the power law mutation rates regime is
analysed. Additionally, Nicholson and Antal were interested in obtaining the distribution of the first
time that a mutant subpopulation gets a mutant cell, whereas in the present work, the first-order
asymptotics of the sizes of the mutant subpopulations are studied over time.

In [24], Nicholson, Cheek and Antal study the case of a mono-directional graph where time tends
to infinity with fixed mutation probabilities. In particular, they obtain the almost sure first-order
asymptotics of the mutant subpopulation sizes. Under a non-increasing growth rate condition, they
are able to characterise the distribution of the random variables they obtain in the limit. Without
any condition on the growth rates, they study the distribution of the random limit under the small
mutation probabilities limit, using the hypothesis of an approximating model with less stochasticity.
Note that the mutation regime they study is not the power law mutation rates limit of Equation
(4.1.1) as considered in the present work. Under the latter regime, both the size of the population
goes to infinity and the mutation probabilities to 0, through the parameter n.

In [62], Gunnarson, Leder and Zhang study a similar model to the one in the present work and
are also interested in capturing the time-evolution of the genetic diversity of a cell population, using
in their case the well-known summary statistic called the site frequency spectrum (SFS for short).
The main difference lies in the considered mutation regime which is not the power law mutation
rates limit. In their case, the mutation probabilities are fixed. Additionally, they restrict the study
to the neutral cancer evolution case. In particular, as in the present work, they capture the first-
order asymptotics of the SFS at a fixed time and at the random time at which the population first
reaches a certain size. Two noticeable similarities in the results are that the first-order asymptotics
of the SFS converge to a random limit when evaluated at a fixed time and to a deterministic limit
when evaluated at the previous stochastic time. One could argue that in the present work the
correct convergence in the latter case is actually a stochastic limit. But the randomness is fully
given by the survival of the wild-type lineage of the cancer-initiating cell, so conditioned on such
an event, in the end, the limit is a deterministic one. In particular the results of Gunnarson, Leder
and Zhang are all conditioned on the non extinction of the population.

In [16], Gamblin, Gandon, Blanquart and Lambert study a model of an exponentially growing
asexual population that undergoes cyclic bottlenecks under the power law mutation rates limit.
Their trait space is composed of 4 subpopulations 00, 10,01 and 11, where two pathways of mutations
are possible: 00 — 10 — 11 and 00 — 01 — 11. They study the special case where one mutation (10)
has a high rate but is a weakly beneficial mutation whereas the other mutation (01) has a low rate
but is a strongly beneficial mutation. In particular they show the notable result that due to cyclic
bottlenecks only a unique evolutionary pathway unfolds, but modifying their intensity and period
implies that all pathways can be explored. Their work relies on a deterministic approximation
of the wild-type subpopulation 00 and some parts of the analysis of the model’s behaviour are
obtained only through heuristics. The present work, and more specifically Theorem 4.2.9, because
it considers selective mutations, can be used and adapted to consider the case of cyclic bottlenecks
in order to prove rigorously their results, both in the specific trait space that they consider and in
a general finite directed trait space.

The rest of the paper is organised as follows. In Section 4.2, we give the results and their
biological interpretations. Sections 4.3 and 4.4 are dedicated to proving Theorem 4.2.7, which
assumes Equation (4.1.5). In Section 4.3, we provide the mathematical construction of the model
for an infinite mono-directional graph using Poisson point measures, as well as the proof in this
particular case. The generalisation of the proof from an infinite mono-directional graph to a general
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finite directed graph is given in Section 4.4.

4.2 Main results and biological interpretation

In Subsection 4.2.1 the first-order asymptotics of the size of each mutant subpopulation on the time
scales (4.1.3) and (4.1.4) are provided under the non-increasing growth rate condition (4.1.5). In
Subsection 4.2.2, the asymptotic result on the stochastic exponent of each mutant subpopulation
is presented without any assumption on the growth rate function A. In each subsection, biological
interpretations of the results are provided.

4.2.1 First-order asymptotics of the mutant subpopulation sizes under
non-increasing growth rate condition

In this subsection, we assume that the graph (V| F, L) satisfies the non-increasing growth rate
condition given by Equation (4.1.5).

Heuristics for a general finite graph

The next definitions, notations and results are initially motivated by heuristics for the simplest
possible graph: a wild-type and a mutant population where only mutations from wild-type to mutant
cells are considered. Specifically, we consider the graph (V,E, L) = ({0,1},{(0,1)},{¢(0,1)}), as
illustrated in Figure 4.1. Under the power law mutation rates regime, the intrinsic birth and

+1 a(0) (1™ (0,1))

a(0) (1 — ™0, 1))2

Figure 4.1: Graphical representation of the model with two traits and without backward mutation

death rates of the wild-type subpopulation, a(0) (1 — u(™ (0, 1))2 and B(0) + a(0) (u™(0, 1))2,
respectively, are so close to «(0) and £(0) that its natural martingale asymptotically behaves like
that of a birth and death process with rates a(0) and 5(0) (see Lemma 4.3.1). This allows us to
approximate the growth of the wild-type subpopulation as an exponential growth with parameter
A(0). Then, if it survives, at time tgn) (see (4.1.4)), its size is of order © (n') (see Lemma 4.3.2),
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where we use the standard Landau notation for ©. Given this, we understand why it is necessary to

wait until time ty(g 1 before observing any mutations. Indeed, with a mutation probability scaling

as n~ 401 the total mutation probability up to time tg") scales as

tnun_[(oyl) ulog(n) :n—i(o,l) nt_
/o S0 )~ 0 @Y

which starts to be of order 1 for ¢t > £(0,1). This is formalised by D. Cheek and T. Antal in [8, 10].
An illustration is provided in Figure 4.2. Some heuristics for the size of the mutant subpopulation

A ()
Zén) ~ e)\(())tt
e (né(o’l)) .....................................
A
o (nt0) |
mutations
O (') ||
v no mutation
- > (n)
t £(0,1) t by

Figure 4.2: Heuristics for the first-occurrence time of mutant cells

at time t§")7 for t > £(0,1), can also be derived. For £(0,1) < u < t, the number of new mutations

generated at time t{") scales as exp (A(0)(u — £(0, 1))1(;\%7;)). The remaining time for these new

mutant cells to grow exponentially at rate A\(1) until time tg") is tg@u This implies that their

lineages reach a size at time t,E") of order

@(exp ( A(L)E+ (M0) — A(1))u — A0)£(0,1)] kf(g)‘) )) (4.2.1)

Two scenarios are then possible:

e If \(1) < X\(0): Equation (4.2.1) is maximised for u = t and equals n*~*(®1). This means

that the dynamics of the mutant subpopulation is driven by mutations from the wild-type
subpopulation rather than by its intrinsic growth. More precisely, its size order at time tg")
is determined entirely by the mutations generated at that time -and so is of order nt—¢0:1)-
and not by the lineages arising from mutations at earlier times. Biologically, these mutations

are termed deleterious.

e If A(1) = A\(0): Equation (4.2.1) is independent of u and equals © (nt_z(o’l)) for any £(0,1) <
u < t. This indicates that lineages of mutant cells generated from mutations at any time
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between téng 1) and tE") have the same order of size at time ttn).

In other words, there is a
balance in the dynamics of the mutant subpopulation between the contributions of mutations
and its intrinsic growth. This is a consequence of assuming A(1) = A(0). These mutations are
referred to as neutral mutation, even though biologically speaking, this would more precisely

mean the restrictive condition a(l) = «(0) and (1) = B(0). Therefore, to capture the
total size of the mutant subpopulation at time tg"), one must integrate all lineages resulting

from mutational events over the time tg"), for £(0,1) < u < t. This gives exactly the order
O ((t —€(0,1)) log(n)nt=#O:D),

o

£(0,1) scales

To summarise, for this simple graph, the size of the mutant subpopulation after time
as

@(nt’l(o’l) [Ty + Lia=aayy (= €0, 1)) log(n)] ) (4.2.2)

Notice, in particular, that in any case, the mutant subpopulation exhibits exponential growth at

rate A\(0) after time té?g 1)+ as indicated by the factor nt=40.1) " An illustration of this heuristic can
be found in Figure 4.3, which visually represents the growth dynamics of the mutant subpopulation

over time.

A Zé”)
(C] (nt) ....................................................
O(N") | 0 nv 0 . exp (A(l)t,f(z) >
e (nf“”l)) ............ w00 =0 (exp {‘%H(A(m—m))u—A(owo,n }>
>t tt(")

£(0,1) u = >t

tt(f)u time with exponential growth \(1)

N

Figure 4.3: Heuristics for the size of the mutant subpopulation after time 2(0,1)

These heuristics on this simple graph can be used as an elementary brick for developing heuris-
tics on a general finite graph. Considering a vertex v € V\{0}, there may be multiple mutational
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pathways from the initial vertex 0 to v. It is important to understand which pathways actually con-
tribute to the size order of the mutant subpopulation of trait v. Using both the previous heuristics
on the time required for mutations to occur and the fact that after this time, the mutant subpop-
ulation grows exponentially at rate A(0), along with an additional log(n) factor if the mutation is
neutral, it seems natural to iteratively apply this reasoning to a mutational pathway, encoded via a
mono-directional graph. In the following, we will use the term "walk’ instead of ’pathway’, favouring
the nomenclature of graph theory over the biological terminology. For any given walk from 0 to v,
the needed time u, in the time scale tSj‘), to observe a cell of trait v generated via this specific walk
is the sum of the labels of the edges along this walk, which is referred to as the length of the walk.
After this time, this subpopulation of cells of trait v grows exponentially at rate A(0). Moreover,
as observed in (4.2.2), for each neutral mutation along the walk, an additional multiplicative factor
of order log(n) is included in the size order. This leads to three key observations about the total
mutant subpopulation of trait v:

e First occurrence of cells: Cells of trait v first appear after a time equal to the minimum of
the lengths of all walks from 0 to v.

e Effective evolutionary pathways: After this time, only walks whose lengths equal this min-
imum might contribute to the size order of the mutant subpopulation of trait v. This is
because any time delay creates an exponential delay in the size order. This fact is captured
asymptotically in Theorem 4.2.9.

e Neutral mutation factor: The additional multiplicative factor of log(n) due to neutral mu-
tations implies that, among the walks from 0 to v with lengths equal to the aforementioned
minimum, only those with the maximal number of neutral mutations actually contribute to
the size order of the mutant subpopulation of trait v. Specifically, these walks contribute with
a factor of log(n) raised to the power given by this maximal number of neutral mutations.
This fact is asymptotically captured in Theorem 4.2.7. Additionally, for each of these admis-
sible walks, an additional time integral is obtained at each neutral mutation, as observed in
(4.2.2).

An illustration of this reasoning is provided with an example in Figure 4.4.

Notations and definitions:

Now, the natural definitions derived from these heuristics are formally established before presenting
the results.

Definition 4.2.1 (Deleterious and neutral vertices). A vertex v € V is called a neutral vertex if
A(v) = A(0), and a deleterious vertex if A(v) < A(0).

Remark 4.2.2. In the previous definition, the terms "neutral” or ”deleterious” for a mutation are
based on comparing its growth rate to that of the wild-type subpopulation. However, it is possible to
have a mutation from a vertex v to a vertexr u where A(v) < AMu) < A(0). Although such a mutation
could theoretically be considered selective, since A\(u) > A(v), the previous definition categorises it
as either neutral or deleterious, depending on the value of A(u) relative to A(0). This nomenclature
emerges from the fact that, under Assumption (4.1.5), any mutant subpopulation grows exponentially
at rate X\(0), as developed in the earlier heuristics. Thus, this legitimates the previous definition,
assuming (4.1.5) holds.
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O OO
3 .7 RN

Figure 4.4: Heuristics for the contribution of walks to the size order of the plain purple mutant
subpopulation: in this example, the dashed red walk has a length of 7, while the dotted blue and
plain green walks have a length of 4. Therefore, only the two latter walks may contribute to the
size order of the plain purple mutant subpopulation, making them sub-admissible walks. However,
the dotted blue walk has only one neutral mutation, whereas the plain green walk has two neutral
mutations. As a result, only the plain green walk will ultimately contribute to the size order of
the purple mutant subpopulation. For ¢ > 4, at time tg"), it will grow as logQ(n)e)‘(O)tiﬁll. Notice,
in particular, that the dashed red walk has the maximal number of neutral mutations, which is 3.
However, since it is not a sub-admissible walk, the multiplicative factor of log(n) remains 2 instead
of 3.

The following definition provides a structured framework to analyse the contribution of evolu-
tionary pathways to the growth of mutant subpopulations. It does so by introducing the adapted
vocabulary, for the neutral and deleterious evolutionary context of the model, associated with walks
in labelled graphs. We use the term ’walk’ here according to the standard nomenclature of graph
theory.

Definition 4.2.3 (Walk in the graph). A walk v = (v(0),--- ,v(k)) in the graph (V,E) is defined
as a sequence of vertices linking v(0) to v(k) such that for all 0 < i < k,v(i) € V, and for all
0<i<k-—1,(v(i),v(i+1)) € E. We will sometimes use the term ’path’ to refer to a walk that
visits only distinct vertices. Given a walk v = (v(0),v(1),---v(k)) in the labelled graph (V, E, L),
we define:

o The sum of the labels of the edges and the sum over the first i edges of the walk v, respectively:

k—1 i—1
t(y) =Y l(w(i),v(i + 1)) and for all i < k,t,(i) ==Y £(v(j),v(j + 1)).
i=0 Jj=0

o The subset of neutral heads of the edges of the walk v and its cardinality:

Aneut = {0(i),1 <i <k : M) = A0)} and 0(7) = [Yneut]-
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o The weights Wneut(Y) and wae(y) associated with the neutral and deleterious vertices of the
walk ~y, respectively:

2c0(v(z — 1 v(t—1),v(2
wneut(’y) = H ( ( ))5((0)( ) ( ))’
1<i<k,A(v(i))=A(0)
20(v(i — 1)p(v(i - 1), v()
Waer(Y) = H , )
1<i<kA(0(i))<A(0) A(0) = A(v(4))

Along a walk, the constant of the asymptotic contribution of a vertex- depending on its pa-
rameters and those of the upstream vertex- takes a distinct form based on whether the vertex
is neutral or deleterious. This distinction motivates the use of the separate weights wpeyt(Y)
and wae (Y)-

e The time dependence associated with the neutral vertices: Let o be an increasing function
from {1,--- ,0(y)} to {1, -, k}, such that v(o;) is the i-th neutral vertez of the walk ~. For
allt > 0, define the multiple integral I,(t) as

t\/t,y(o'e(.y)) w1y Uk UY(y)—1
ty(Ta(y)) ty(oa(y)—1) ty(oa(y)—k) ty(o1)

Along a walk, for each neutral verter that is visited, an additional integral over the time

parameter appears in the asymptotic limit, as described in the heuristics. This motivates the
definition of L, (t).

e The weight of the walk v at time t:

Wey (t) = Wael (V) Wneut ('7)]7 (t). (4.2.3)

This expression captures the total weight of a walk v at time t, accounting for both the delete-
rious and neutral visited vertices, and the integrals over the time parameters associated with
these neutral vertices.

The next remark provides a recursive formula for computing the weight of a walk v at a given
time ¢.

Remark 4.2.4. The weight w,(t) of the walk v = (v(0),--- ,v(k)) at time t can be recursively
expressed in terms of the weight w, (t) associated with the walk vy = (v(0),- -+ ,v(k—1)), which is

the same walk as v up to the second-to-last vertex (i.e. without the final vertex v(k)). The recursive
equation, which considers whether the last vertex v(k) is deleterious or neutral, is given by

wn () =2a(v(k — D)pu(o(k — 1), v(k))

1 L)
' (ﬂ{A(k)d(O)}mw;(t) + ]I{A(k)—A(O)}/\(O)/tm w;(S)dS)

Definition 4.2.5 (Admissible walks). For all v € V, let P(v) denote the set of all walks v in the
graph (V, E) that link the vertez O to the vertex v. We define the:
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o The minimum total label sum among all walks from vertex O to vertex v:

t(v) ;= min t(v).
(v) in (")

e The maximum number of neutral vertices among the shortest walks from vertex 0 to vertex v:

O(v) :=

= max
YEP(v),t(7)=t(v)

o The set of admissible walks from vertex 0 to vertex v:
A(v) :={y € P(v) : t(y) = t(v) and () = 6(v)}.

Remark 4.2.6. In the previous definition, the set A(v) is referred to as the set of admissible
walks because, as indicated by the heuristics, only walks belonging to A(v) contribute to the growth
dynamics of the mutant subpopulation of trait v. This is formally established in Theorem 4.2.7.

First-order asymptotic results

Under Assumption (4.1.5), the more refined result can now be formally stated. The model is
mathematically constructed in Section 4.4 (see (4.4.1), (4.4.2), (4.4.3), (4.4.4) and (4.4.5)) using
independent Poisson Point Measures. The following theorem provides the asymptotic results for
this specific mathematical construction of the model. The convergences are, in particular, obtained
in probability. For any mathematical construction of the model other than the one given in Section
4.4, the convergences hold at least in distribution in the appropriate Skorokhod space, see Remark
4.2.8. A motivation for the normalising term dg,")(t, s), introduced in the the following theorem, is
provided below in Remark 4.2.8.

Theorem 4.2.7. Assume that the general finite directed labelled graph (V, E, L) satisfies both the
power law mutation rates regime described in (4.1.1) and the non-increasing growth rate graph
log(n)
log(log(n))Omax+¢n ’
and where Opaz = max,ev\(o) 0(v). Let also ¢, such that \/log(n) = o(yn). Define for all

(t,s) e RT x R,

condition given in (4.1.5). Let h, = where @, — o0 such that h, — o0
n— oo n— o0

! = O(v)—1
A (8,5) =L greo.00)nn'y} T Lisefoco)—nn ooy} ¥ 108" 7 () o)
+ Livepi()on '™ log? ™) (n)er s,

Let (T, M) € (Ri)2 and 0 < Ty < Ty. Using the mathematical definition of the model given in
Section 4.4 (see (4.4.1), (4.4.2), (4.4.3), (4.4.4) and (4.4.5)), there exists a random variable W,
properly defined in (4.4.6), satisfying

W Ber(ig) ® Ea?p(i:g(é;)v

such that for allv € V\{0}, we obtain the convergence results in probability in L ([0, T] x [—M, M])
for Equation (4.2.5) and in L™ ([Ty, Ts] x [-M, M]) for Equations (4.2.6), (4.2.7) and (4.2.8):
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e Deterministic time scale (4.1.4):
If AM(v) = X(0), then

AR (t§”> + s)

A (t, s) S WD w0, (4.2.5)

YEA(v)

If M(v) < X(0), then

(n) [ ((n)
Zy (tt(v)+t+s)

nt logg(”) (n)ex\(O)s n—o0

WS w (o) +1). (4.2.6)

YEA(v)

e Random time scale (4.1.3): Consider (pﬁn))teRJr as defined in (4.1.2).
If M(v) = X(0), then

200 (4 +5)

= = Lawsoy Y wy (). (4.2.7)
dy (t,S) n—00 JeAw)
If AM(v) < X(0), then
Z(n) (P,En) +s)
v (v)+t
— 1 wa~ (E(V) + 1). 4.2.8
ntlog?™®) (n)e0)s n—oo {w>0} We%%) 5 (t(v) + 1) ( )

The proof of Theorem 4.2.7 relies on a martingale approach using Doob’s and Maximal Inequali-
ties. The initial step involves controlling the growth of the lineage of wild-type cells originated from
the initial cell, for both the deterministic and random time scales (4.1.4) and (4.1.3) (see Lemma
4.4.3 and 4.4.4). For any vertex v € V\{0}, there may be several mutational walks in the graph
(V, E) that start from 0 and lead to v. Understanding the contribution of each of these walks to
the first-order asymptotics of the size of the mutant subpopulation of trait v is essential. The proof
proceeds in 2 steps:

(i) Consider an infinite mono-directional graph under Assumption (4.1.5) and establish the result
for this specific graph, see Section 4.3. Performing this step for an infinite graph is particularly
helpful in handling cycles (such as backward mutations) in a general finite directed graph.

(ii) Identify and exclude walks from the initial vertex 0 to v that do not contribute to the first-
order asymptotics of the size of the mutant subpopulation of trait v, see Section 4.4.

Remark 4.2.8. 1. Mathematical construction: For any mathematical construction other
than the one given in Section 4.4, the convergences hold at least in distribution in
D([0,T] x [-M, M]) for Equation (4.2.5) and in D ([T1, Tz] x [-M, M]) for Equations (4.2.6),
(4.2.7) and (4.2.8).

2. An additional log(n) factor: Notice that a multiplicative factor of logo(”)(n) is captured
after time tg?g), see Equations (4.2.4), (4.2.5), (4.2.6), (4.2.7) and (4.2.8). Obtaining a result
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on the stochastic exponents (see (4.1.6)) does not capture such a factor. For instance, with
the model of Figure 4.1, if A(1) = A(0), Theorem 4.2.7 gives that after time £(0,1), an) (tﬁ”))

(n)
behaves approximately as log(n)e)‘(o)tt—mvl). However, what is captured with X{")(t) after

time £(0,1) is asymptotically A(0)(t — £(0,1)), see Theorem 4.2.9.

3. Stochasticity of the limits: The random variable W is explicitly defined as the almost
sure limit of the natural positive martingale associated to a specific birth and death branch-
ing process with rates o(0) and 5(0); see (4.4.6). The martingale associated to the lineage
of wild-type cells issued from the initial cell behaves similarly to the one associated to the
aforementioned birth and death branching process (see Lemma 4.4.3). Thus, W quantifies the
randomness of this lineage over the long time. Due to the power law mutation rates regime,
mutations arise after a long time, so the stochasticity of this lineage is already captured by W.
Notice that under Assumption (4.1.5), the randomness in the first-order asymptotics of any
mutant subpopulation size is described completely by W. This means that the stochasticity
of these subpopulations is driven primarily by the randomness in the growth of the wild-type
subpopulation rather than by the one of the mutational process or of any lineage of mutant
cells. In particular, if the process starts with a large number of wild-type cells instead of just
one, the first-order asymptotics of the size of the mutant subpopulations would be entirely
deterministic.

4. Selective cancer evolution: It seems quite natural not to obtain such a result when con-
sidering selective mutation (A(v) > A(0)). Indeed, a selective mutation imply that any time
advantage translates directly into a growth advantage. Thus, the stochasticity of the mu-
tational process, as well as the randomness in the lineages of the mutant cells, cannot be
ignored. Therefore, expecting to control the stochasticity of the mutant subpopulation solely
by controlling the randomness in the wild-type subpopulation, without also accounting for the
randommness in the mutational process and the mutant lineages, is vain. More precisely, using
a martingale approach to derive the first-order asymptotics cannot be successful for a selective
mutation. Technically, this is because the expected size of the selective mutant subpopulation
is of a higher order than its typical asymptotic size. Indeed, the rare event of the initial cell
mutating to the selective trait extremely quickly, an event that asymptotically vanishes, is re-
sponsible for this discrepancy between the expected value and the typical asymptotic size of the
selective mutant subpopulation. Nevertheless, when examining the stochastic exponent (4.1.6),
the martingale approach allows us to obtain convergence results as given in Theorem 4.2.9.
This is because the aforementioned rare event contributes only a factor proportional to its
probability to the expected value of the stochastic exponent, meaning it actually asymptotically
neither contributes to the typical size nor to the expected value of the stochastic exponent of
the selective mutant subpopulation. Generalisation to derive the first-order asymptotics when
considering selective mutations is a work in progress.

5. Definition of neutral mutation: In view of Theorem 4.2.7, the mathematical definition
of neutral mutation, A(v) = A(0), is well-understood, as opposed to the more restrictive but
biologically meaningful condition of having both a(v) = «(0) and B(v) = 5(0). Indeed, main-
taining the same growth rate A(v) = X(0), while changing the birth and death rates a(v) and
B(v) alters the distribution of any lineage of mutant cells. Consequently, one might naturally
expect that this would alter the stochasticity of the mutant subpopulation size. However, this is
not the case. The randomness in the first-order asymptotics is fully summed up by the random
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variable W. Thus, it is entirely consistent that, under the neutral assumption, the condition
pertains only to the growth rate function rather than to the birth and death rate functions.

Motivation of dg,") (t,s): Considering the time scale tg"), the result slightly differs depend-
ing on whether the vertex is neutral or deleterious. Indeed, when looking at the asymptotic
behaviour for a deleterious vertex v, the result holds strictly after time t(v), whereas, in the
case of a meutral vertex, the entire trajectory from the initial time can be analysed. Math-
ematically, this difference arises from the additional multiplicative factor of log(n) in the
first-order asymptotics when considering a neutral mutation. This factor allows us to control
the quadratic variation at time t(v) for the martingale associated to the mutant subpopulation.
Three distinct regimes are obtained, as indicated by (4.2.4) and (4.2.5) :

(i) Up to time t(v) — hyt: with high probability, no mutational pathway from 0 to v has
generated a mutant cell of trait v. Since h, — oo and satisfies h,, = o(log(n)), t(v) can
be interpreted as the first time -when considering the time scale accelerated by log(n)- at
which it becomes asymptotically possible to observe the first occurrence of a mutant cell
of trait v. This result is also true for deleterious mutations, see Lemma 4.3.6.

(ii) Fort € [t(v) — hyt,t(v)): in this time interval, some mutant cells of trait v are produced,
but the interval’s length is insufficient to achieve any power of n for the size of the mutant
subpopulation of trait v. We succeed to dominate its growth by v, 1og9(”)71(n), with a
well-chosen v, . Heuristically, the total number of mutant cells of trait v resulting from
a mutational event up to time t is of order @(loge(v)_l(n)). With the remaining time
for these mutant cells’ lineages to grow, we manage to control the size of the mutant
subpopulation of trait v by at most \/log(n) loge(“)_l(n), Consequently, dividing by any
function 1, satisfying /log(n) = o(w,) results in an asymptotic limits of 0. This
result also holds for deleterious mutations, see Lemma 4.3.7. The +/log(n) factor in
the growth control comes from a mathematical analysis using a martingale approach,
particularly considering the time scale accelerated by log(n). With further refinement,
we conjecture that the actual size of the mutant subpopulation at time t(v) is of order

O( (La)=r(0)} log(log(n)) + Lixy=ace)y) log? =1 (n)).
(iii) For t € [t(v),00): with high probability, the number of mutant cells of trait v grows
exponentially at rate A(0). A supplementary multiplicative factor logo(”)(n) 18 present

due to the neutral mutations on the walks in A(v). Thus, the growth scales globally as
nE=t @) 106 (n)w, (t).

Differences between the time scales: When comparing point (i) and (ii) of Theorem 4.2.7,

notice that the result transitions from the deterministic time scale t§”) to the random time scale
pE") merely by switching W to 1ywoy. This seemingly surprising fact can be explained by the
essential role of W. As mentioned in Remark 4.2.8 3., W encodes the long-term stochasticity
of the lineage of wild-type cells originating from the initial cell. By showing that the time scale
tﬁ”) serves as the correct deterministic approximation of p§") (see Lemma 4.4.4), it follows
that obtaining an asymptotic result on time scale tg") also yields a result for the time scale p§”>

This idea is formalised using a technique similar to that in [56, Lemma 3]. The switch from W

to Lywsoy in the result occurs because the time scale pi") inherently carries the stochasticity
of the random variable W. Consequently, the only remaining randomness that needs to be
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considered is the survival of the lineage from the initial cell, which is asymptotically given by
Liwsoy-

4.2.2 Result for a general finite directed labelled graph

This subsection does not require the non-increasing growth rate condition of Equation (4.1.5).
Without this assumption, a martingale approach fails to obtain the first-order asymptotics of the
mutant subpopulation sizes. However, the stochastic exponents of the mutant subpopulations, as
defined in (4.1.6), can be uniformly tracked over time. In particular, we show that, under the event
{W > 0}, the limits are positive deterministic non-decreasing piecewise linear continuous functions.
Such limits are defined via a recursive algorithm tracking their slopes over time. More precisely, we
show that the slopes can only increase and take values from the growth rate function.
In the tracking algorithm, two different kinds of updates can be made:

e Birth of a new trait: The first update is the birth of a new trait which takes as its slope the
maximum between its inner growth rate and the slope of the subpopulation that gave birth to
it. In fact, it could also happen that many subpopulations give birth to it at the same time;
in this case it is the maximum of their slopes that is compared to the inner growth rate of
the born trait. Such a comparison on the growth rates indicates which mechanism is driving
the subpopulation growth: either its inner growth if this subpopulation is selective compared
to the subpopulation(s) that is/are giving birth to it, or conversely the mutational process
if it is deleterious. The neutral case corresponds to a balance of these two mechanisms, as
previously mentioned in Theorem 4.2.7.

e Growth driven by another trait: The second kind of update is when a live trait v increases
its slope because another live trait « among its incoming neighbours, with a higher slope, has
reached its typical size so that the mutational contribution from trait u now drives the growth
of trait v. Consequently trait v now takes the slope of trait u. Again potentially many traits
u among the incoming neighbours of trait v can reach at the same time the typical size for
the mutational contribution to drive the growth of trait v; in this case the growth of trait v
is driven by the trait u with the maximal slope. This kind of update encodes the possibility
in the evolutionary process that the driving mechanism of a subpopulation can change over
time, always triggering an increase in the actual growth of the subpopulation.

How these two different kinds of updates happen in the tracking algorithm is made formal in
the following theorem. Moreover, they can happen at the same time for different vertices. The
complexity of such an algorithm comes mostly from the generality both on the growth rate function
and on the trait structure. Under the non-increasing growth rate condition (4.1.5), the limiting
functions (x,)zecv have an explicit form, see Corollary 4.2.12; this is also true when the graph
structure is mono-directional, see Corollary 4.2.10.

Theorem 4.2.9. Let 0 < Ty < Ty. The stochastic exponents defined in (4.1.6) satisfy

XM (t ) — 1 ( . (t )
(0D aer) g,y o Tovso (@) v )
in probability in L>°[Ty,Ts]. For each v € V, x, is a positive deterministic non-decreasing piecewise
linear continuous function obtained via a recursive approach tracking its slope over time. In partic-
ular there exist k* € N and 0 = Ag < Ay < -+ < Ap« < 00 such that the slopes of (xy)vev change
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only at the times (Aj) cqo,... k. Forj €{0,---  k*}, at time A; two kinds of updates in the slopes
can occur: (i) either a new trait starts to grow or (ii) an already growing trait increases its slope
due to a growth driven now by another more selective trait. The algorithm tracks the following
quantities for all j € {0,--- ,k*} at time A;:

o the set of alive traits, A;,
o the set of not-yet-born traits, Uj,
o the slope of z,, Aj(v),
o and the set of traits whose growth is driven by trait v, C;(v).
Initialisation: Set Ay = {0}, Uy =V \{0} and for allv eV
2,(0) = 0, Xo(v) = AN(0)L{y—0}, and Co(v) = 0.

Induction: Let j € {0,--- ,k* — 1}. Assume that there exist times 0 = Ay < Ay <--- < A; < 0
such that (x,),cy are positive deterministic non-decreasing piecewise linear continuous functions
defined on [0, A;], where changes of slopes occur only on the discrete set {Aq,--- ,A;}. Also assume
that there exist \;j(v), A;, U;, and C;(v), respectively the slope of x,, the set of alive vertices and
not-yet-born vertices, and the set of vertices whose growth is driven by v, everything at time A;.

Then there exists Aj 1 € (Aj,00) such that (x,),cy are constructed during the time period
[Aj, Ajy1] according to the following. For allv € V and for allt > Aj let

Yo(t) = (t = Aj)A;(v) + 20 (By).
For all v € U; define

Vu € A; such that (u,v) € E, 6y = 1inf{t > Aj 1y, (t) > X(0)l(u,v)},

Oy = inf Ou,vs
u€A;:(u,v)EE

v(v):=={u € A;: (u,v) € E and §,,, = 0y }.

For allv € A;j define

Bj(v) :={u € A;: (v,u) € E and \j(v) > \;(u)},
Vu € Bj(v), 0y = 1nf{t > Aj : y,(t) > yu(t) + A(0)l(v,u)},

Oy :=inf Gy u,
u€B;(v)

v(v) :=={u € B;(v) : 6pu = 0p}.

Then define Ajq = inf,ev 8, and vjy1 == {v € V : 6, = Aj11}. Then proceed to the following
updates:

o Let Aj+1 = Aj U (I/j+1 U

n ) and Uj+1 = Uj\(Vj.H ﬂUj). Also let Yv € Uj+1, /\j.:,_l(U) =
Aj(w) =0, Cja(v) = Cj(v)

0.

<.
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e For all v € vji1 N Aj, introduce the set v(7)(v) == {u € v(v) : Jw € vjp1 N A, \j(w) >
Aj(v), and u € v(w)}.

Then let Cjy1(v) = Cj(v) UUyepopu-r ) {ut UC;(w)). For all u € v()\v ) (v) and
w € Cylu), Agpa (1) = Ay () = Ay (0):

e For all v € Aj whose slope has not been updated yet, let Xj11(v) = A;j(v). And for all v € A,
whose set Cj(v) has not been updated yet, let Cjyq(v) := Cj(v).

e For allv € vj41 NU;, let Nj11(v) := max (A(v), maxye, (o) Aj+1(u)), and
Cit1(v) = Cj(v) = 0. If Njs1(v) > A(v), introduce the following set vT(v) := {u € v(v) :
Aj1(u) = maxyey () Aj+1(w)}, and for all u € v (v), Cjp1(u) := Cjyr(u) U {v}.

For any mathematical construction other than the one given in Section 4.4 (see (4.4.1), (4.4.2),
(4.4.3), (4.4.4) and (4.4.5)), the convergences are at least in distribution in D ([T1,Tz]) .

The proof of Theorem 4.2.9 is a minor adaptation of the proofs found in [6]. Specifically, by
adapting the arguments from [6, Propositions 2 and 4] to the context of the present model, Theorem
4.2.9 follows. For this reason, and in the interest of brevity, we do not provide an explicit proof of
Theorem 4.2.9.

The only notable difference is that the process does not start from a macroscopic state. However,
it can be easily shown that, conditioned on {W = 0}, no mutant cells are generated asymptotically,
since with high probability the wild-type subpopulation can’t survive in the log(n)-accelerated time
scale. Additionally, conditioned on {W > 0}, the first phase, corresponding to the growth of the
wild-type subpopulation leading to the macroscopic state that allows for the generation of the first
mutant cell, is straightforward to capture.

When considering a(n) (infinite) mono-directional graph, the structure of such a graph is suffi-
ciently simple to allow for an explicit form of the limiting functions (x,),cv, see the next corollary.
In particular, there is only one possible slope change that can happen at a time. More specifically,
when a not-yet-born trait becomes alive due to the previous trait reaching the typical size allowing
for mutations. When this happens, the new born trait takes the slope the maximum between its in-
ner growth rate or the current slope of the previous trait (as mentioned in point (i) of the heuristics
preceding Theorem 4.2.9). Any alive trait cannot update its slope because no backward mutation
is permitted with this graph structure. Moreover, only a single trait becomes alive at each time,
due to the scaling labels £(i,7 4+ 1) being positive.

Corollary 4.2.10 (Theorem 4.2.9 applied to a mono-directional graph). Assume the graph is
infinite and mono-directional, i.e. (V,E) = (No,{(i,i4+1),i € No}) and that £* := inf{l(i,i+1),i €
No} > 0. Then the limiting functions (z;)ien, of Theorem 4.2.9 have the following simplified form:

Vt € RT, 2i(t) := Amax (1) (t — ()4,

where Amax(i1) = max;eqo,... iy A(j) and (i) == Z;;E W

Remark 4.2.11. Using the previous corollary, the limits (x,)vev defined in Theorem 4.2.9 can
be rewritten by using the decomposition via walks. More specifically, let v € V', then for any walk
v € P(v) define x as the limit obtained by applying the previous corollary to the mono-directional
graph indezed by this walk ~v. Then we have T, = maX,ep(y) T~. The mazimum is well-defined
because for allt € RT the set {y € P(v) : z(t) > 0} is finite.
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Theorem 4.2.9 is more general than Theorem 4.2.7 in the sense that there is no assumption on
the growth rate function, but it is a less refined result. In Remark 4.2.8 1. we made explicit one
contribution of Theorem 4.2.7 about capturing a multiplicative factor of log(n) using the example
of Figure 4.1. Next we are going to do a full comparison of Theorem 4.2.7 and 4.2.9 on the example
of Figure 4.4.

Comparison between Theorems 4.2.7 and 4.2.9:

The asymptotic function x obtained through Theorem 4.2.9 for the plain purple trait is z(t) =
T>43A(0)(t — 4). In the caption of Figure 4.4, it is already made explicit that only the plain
green walk will contribute to the size order of the plain purple mutant subpopulation. If one
denotes respectively by 1, 2 and 3 the vertices on the plain green walk such that this walk is
exactly (0,1,2,3), where 3 is the plain purple vertex, the asymptotic limits for vertex 3, captured
by Theorem 4.2.7, is for all t > 4,

20(0)u(0.1) 20(u(1,2) 20(u(23) ' [ [* e
00 0w, </ ds)d“'” tog”(n)
<t2 L 3) 8a(0)a(1)a(2)u(0, (1, 2u(2.3)

X2(0) (A0) — A(3)

2 2
In particular, Theorem 4.2.9 captures only the power of n which is ¢ — 4 whereas Theorem 4.2.7

captures the stochasticity W, a supplementary scaling factor log2(n)7 a time polynomial %—t—% and
8a(0)a(1)a(2)p(0,1)p(1,2) u(2,3)

AZ(0)(A(0)—A(3)) :
To our knowledge, this is the first time that this level of refinement has been captured under the
power law mutation rates limit.

Now we make explicit the form of the limiting functions (z,),cy in the special case where
we assume the non-increasing growth rate condition. Under this condition, the limiting functions
(zy)vey take a very simple form. The only quantity one has to consider is the time ¢(v) at which
trait v becomes alive, where ¢(v) is defined in Definition 4.2.5. Then after this time, trait v grows
at speed A(0) due to the non-increasing growth rate condition. This is made formal in the next
corollary.

Wn'~*log?(n).

also a constant depending only on the parameters of the visited vertices

Corollary 4.2.12 (Theorem 4.2.9 applied with the non-increasing growth rate condition of (4.1.5)).
Assume the non-increasing growth rate condition of (4.1.5). Then the limiting functions (z,)vev
of Theorem 4.2.9 have the following simplified form:

vt € RY,y(t) = A(0) (t — t(v)) .,

where Vr € R, x4 1= 2l cr+)-

4.3 First-order asymptotics of the size of the mutant sub-
populations for an infinite mono-directional graph

In this section, we consider the model described in Section 4.1 within a specific infinite mono-
directional graph setting:

(V,E) = (No, {(4,7+ 1),i € No}).
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Studying this special case will enable us to address cycles, particularly those generated by backward
mutations, in the more general finite graph scenario. We assume the non-increasing growth rate
condition given in (4.1.5). For simplicity of notation, we introduce the following new notations for
all i € Ny

p™ = ™ (i + 1) and £() = (i, + 1).
In other words, the mutation regime is

Vi € No,n/@p™ — 4. (4.3.1)

n—oo

Assume that * := inf{{(i) : ¢ € No} > 0. For all i € Ny, denote by «;, §; and A; the division,
death and growth rates associated to trait ¢ instead of «(i), 5(7) and A(7). With this setting, three
different scenarios can occur during a division event of a cell of trait ¢ € Ny:

e both daughter cells keep the trait ¢ of their mother cell, with probability (1 — ,ugn))Q,
e exactly one daughter cell mutates to the next trait ¢ + 1 when the second daughter cell keeps

the trait ¢ of its mother cell, with probability 2,u7(;") (1- ,ugn)),

e both daughter cells mutate to the next trait ¢« + 1, with probability ( (n ))
This model is graphically represented in Figure 4.5.

-1
n 2 ﬂl n 2 2 " 2
i) " ) o) " o)
1 +2’ (n) -1 +2 -1 +2 +2
Z = = = LI
! > —> —
s (1) T 2 (8 ()T ) (1)

2 2 2
(i) () w(i7F)

Figure 4.5: Dynamical representation of the infinite mono-directional graph

In particular, any lineage of a cell of trait 7 follows a birth-death branching process with birth
rate q; (1 — ,uin))2 and death rate f3; + agn) (M(,"))2. Thus, we introduce the birth, death and growth

K3
rates of any lineage of a cell with trait ¢ as follows

af") = a1 = ), 67 = i+ ol (1) and A = ol - B = s~ 2aap”

Compared to the general finite graph, for this mono-directional graph, there is only one path from
trait 0 to any trait ¢ € N, implying that

Zz yand 0(i) = |{j € {1,--- ,i} : \j = Ao}

1=0
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Let w; := w(,1,... ;) denote the weight on the path (0,---,i). The sequence ((Zi(n))ieNo)neN

mathematically constructed using independent Poisson Point Measures (PPMs). Let QY (ds, df),
Qi (ds, db), (Qi(ds,dh)),cy, (Ni(ds,db)),cy,, and (Q7"(ds,df));cy, be independent PPMs with in-
tensity dsdf. The subpopulation of wild-type cells is

is

t
n) 4y . b
ZO (t) =1 + /0 /R+ l{egaén)Zén)(s*)}QO(ds’ d9) (432)

t
- /0 /]R+ 1{925025“(8—)}Qg(d8, de) — H(gn) (t)

and for all ¢ € N the mutant subpopulation of trait ¢ is

t
(n) .f _ )
2 (t) = /0 /R (l{ega;">z;"><r>} 1{a§">zs"><swges(agn>+m)z;”><sw})Qz<d’>’vd‘”
+ K" (6) + 2H") (t) — H" (¢),

where for all 1 € N

t
KM (1) = /0 e H{o<200 (1200 2 o=y Vil d6)

and

t
H() = /0 /R+ ﬂ{egm (ui"))QZE")(s*)}Qi (ds, d6).

The processes (Kl(n) (t))teR+ and (Hz(n) (t))te]R+ count the number of mutations up to time ¢ in the
subpopulation of trait 7 that result in exactly one and exactly two mutated daughter cells of trait
i+ 1.

Let (Zo(t))ier+ be the birth-death branching process with birth and death rates agy and Sy
constructed in the following way

t t
Zot) =1+ [ [ Locamn@bdsdd)~ [ [ LipcazinQidsd). (433
0 JRt 0 JRt

Notice that with this construction, the following monotone coupling immediately holds:

vt >0, Z5 (1) < Zo(t) as. (4.3.4)
Denote by
W= lim e ! Zy(t) (4.3.5)
t—o0
the almost sure limit of the positive martingale (e*AotZo(t))teRM whose law is
aw >\ )\
WL Ber(fo) ® E:Ep(—o), (4.3.6)
Qo Qo

see [22, Section 1.1] or [94, Theorem 1].
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4.3.1 The wild-type subpopulation dynamics

Using the same PPMs Qf and Q¢ in the construction of (Zén))neN and Z; (see Equations (4.3.2)
and (4.3.3)) allows us to control the size dynamics of the previous sequence over time by comparing
it with the size of Zy. More precisely, we show that the natural martingale associated with Zén) can

be compared to the natural one of Zo. This comparison follows from the fact that (", 8{") —
(g, Bo) as n — oo. The control is obtained along the entire trajectory and in probability. The rate

of convergence is quantified to be at most of order O(u(()")).

Lemma 4.3.1. There exist C(ag, Ag) > 0 and N € N such that for alle >0 and n > N,

Clag, A n
(oo O)u()

]P( sup > 0

teRT

Proof of Lemma 4.3.1. Let the filtration (F;);>o defined for all ¢ > 0 as
Fr = o(Q5((0, 8] x A)),Qa((0,s] x A),s < t, A€ BR")).

e Zy(t) N2 ()] 2 ) <

Notice that (e=*'Zy(t) — €_Ag’n)tZ(()n)(t))teR+

difference between the two martingales (e=**Zo(t)), . and (e”\(OTL)tZ(()TL)(t))teR+. Let (f(m))men

be a non decreasing sequence satisfying f(m) — oo. Using Doob’s Inequality in L? (see [95,
m— o0

is a martingale, with respect to (F;)icp+, as the

Proposition 3.15]) we derive

]P’( sup ‘e_)‘OtZo(t) - e‘*f’n)tZén) (t)‘ > 5) <
t€[0,£(m))]

NI 200 f(m))? — 2=t 74 (£m)) 287 (£ (m))].

éE[e‘Q)‘Of(m)Zo(f(m))Q (4.3.7)

Ito’s formula and Equation (4.3.4) give

E[Zo(t) 25" (1)] =1+ / t (Ao + ASV)VE[Zo(5) 257 (s)]ds + / t (a5 + Bo)E[Z5™ (s)] ds.

By solving this equation, we obtain for all ¢ > 0

(n) (n) (n) n
E(Zo(t) 25" ()] = O‘Ot\i%e@(’“o )e_ %)\7—%@)‘8 't (4.3.8)
0 0
Similarly we have
2 2
E[(Zo(t))Q] = 2020t 0T H + o et < ﬂe””t, (4.3.9)
Ao Ao Ao

)\(()n) )\én) - /\E)n)
Consequently, combining (4.3.7), (4.3.8) and (4.3.9) yields

(n) (n) | ) . .
E[(Zén) (t))ﬁ = 720[0 e”‘gn)t B b eA(U’)t < 20 62)\8 )t.

IP’( sup ’e*A"tZo(t)—e*Aén)tZé")(t)’Zs)
te(0.f(m)]
(n)

< i(@ Qagn) _ 990 + g n Zaén) + o efAOj'(m)).
- 52 )\0 Aén) )\0 )\0
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The event {Supt6 0,f(m |e Mot Zo(t) — *)‘((Jth(()n) (t)| > e} is increasing with respect to the param-
eter m. Therefore takmg the limit as m — oo and applying the monotonicity of the measure, it
follows that

(n) (n)

Mot M) ’ ) i(%ﬂ 20 500t ag )
e Zp(t) —e o Zy(t)| > € §€2 o + )\én) 2 " .

IP’( sup

teRT

n)
Recalling that A (M) — Ny — 2a0u(() ") it easily follows that 26?‘;) = 20‘0 + wfga‘) M(()n) + O((M(()n))g) as

")
well as 2a°+2‘° = 4)% - 4)?;0 o ) 4 O((n (")) ). Finally we have

“Aot At ) ‘ 4 (4Boao | 4oy (n) (n)y2
P(tsel%g e Zo(t) =NV (1)) > ) < 5 ( N )\O)No +0((1")")
1602 (, 2
— L300+ (")),
which concludes the proof. O

The next lemma provides an asymptotic comparison between the stopping times né"), at which
the wild-type subpopulation reaches the size n’, and the deterministic times tﬁ"). This asymptotic
comparison is given in probability and is conditioned on {W > 0}. It clarifies why these deter-
ministic times are the natural candidates for studying the asymptotic behaviour of the mutant
subpopulations at the corresponding stopping times. The result is obtained uniformly over time
intervals whose lengths tend to infinity, but not too quickly.

Lemma 4.3.2. For all e > 0, (T1,T5) € RY and ¢, such that log(n) = o(py,) and ¢, = o (n"?),

we have
(- B s o) o

0 n—o0

IP’( sup
te[T1, T2 ity |

Proof of Lemma 4.3.2. Let € > 0 and for all n € N introduce the event

= (-0

[mQ ety o /1T

Step 1: We begin by showing that for all 0 < d; < d9
P (A(") N{6 <W < 52}) — 0. (4.3.10)
n o0

01

Let v > 0 and &€ < 5. Firstly, since et Zy(t) t—) W almost surely, it immediately follows
—00

that Y (?) 1= sup,ep,o0) le=20%Zy(s) — W| = 0 almost surely and as a consequence in probability.

Thus, introducing the event B, := {Y(¢t) < &} for all ¢ > 0, there exists ¢; > 0 such that for all
t > ty, P(By) > 1 — %. Secondly, using Lemma 4.3.1, there exists n; € N such that for all n > n,

P (C™) >1—% where C™) := { sup,cp+ [e7 ! Zy(t) — e‘Af(Jthén)(tﬂ < &}. Combining these two
facts, we obtain the following inequality for all n > n,

2
P (AN {5 <W <8}) <P(AWN {6 <W <6} B, NCW) + 2 (4.3.11)
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It remains to show that P (A™ N {6; < W < &} N By, N C™) < ¥ for sufficiently large n.
Under the event B;, we have

Vs > t1, (W —8) eM® < Zo(s) < (W + &) eMos.

Given that )\én) < Ag, we obtain that under the event C("), for all n > ny

Vs € RY, (e Z0(s) — ) N* < 2§ (5) < (7297 Zo(s) +2) N < Zo(s) + 2,

Combining the two previous inequalities, it follows that under {0; < W < d,} N By, NC™) | we have

Vs > t1,Vn > nq, (W — 2¢ eAgn)S SZ(”) s) < (W + 28) €M% < (85 + 28) oo,
0

Notice that, by definition of &, we have W — 2& > 0 under the event {§; < W}. Now, we introduce
the following quantities, which almost surely increase with time:

1
Ifsz)t i=inf{s > 0: (65 + 28)e™® > n'} = W (tlog(n) — log(d2 + 2¢))
, 0

n . 1
L(t ) = inf{s > 0: (W + 28)eM* >n'} = W (tlog(n) — log(W + 2g)),
0
—(n n ].
T = inf{s > 0: (W — 28)eN"* > nt} = oy (tlog(n) — log(W — 28))..
0

We have that there exists no € N such that for all n > no, t; < I((;Z?Tl. Moreover, under the event
{61 < W < 83} N B, N O™, we have for all n > max(ny,ns) and for all ¢ € [T17T210Sg0%:|7

( ) n) (n) (n) *(n)
I5Z,T1 < I((Sz,t < It < un < Tt .

Using that A/ )\8") =1/(1- 2a0u8”)/ Xo), and from the previous equation, we derive that for all
te [Tl,Tglogﬁ] and for all n > max(ny,ns),

tlog(n) log(W) log(1+2&/W) < )
Ao Ao Ao =
< (tlog(n) log(W)  log(1 —28/W)
- Ao Ao Ao

) (1 — 2a0ué")/)\0>_1.

From this we obtain

_log(1 4+ 28/W) o () _ (tlog(n) 3 1og(W))
Ao = Ao Ao

< (1= ((Hopl — o) 2o _ oL 2

In particular, this implies that for all n > max(ni,n2),

sup

t€[T1, T g2ty ]

(n)  (tlog(n) log(W) < log(1 + 2e/W)
e ( Ao Ao )‘ = max{ o

: (1 _ 2040/‘(()”)/)\0)71 ((ngon B log(W)) 2a0u(()n) ~ log(1 — 2§/W))}

Ao Ao Ao Ao
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Denote by D™ the right-hand side of the last inequality. Then it directly follows that
P (A<”> N{6 <W <&} N By, N C(”)) <P ({D<"> >eln{o < W< 52}) . (4.3.12)

Because ¢,, was defined such that @nug") — 0, it is possible to find an adequate £ > 0 and
n—r oo

n3 € N such that for all n > ng, P ({D™ > e} N {6 < W < &}) < %. Together with (4.3.11) and
(4.3.12), we deduce (4.3.10).
Step 2: We are going to prove that P (A(”) N{W >0}) — 0. We have
n—oo

IP’(A(”) N{W > 0}) < ]P’(A(”) {6 <W < 52}) FP0<W <) +P(W > 6).
Using Equation (4.3.10), we obtain

lim sup P (A<"> AW > 0}) <SPO<W <8)+P(d < W).

n— oo

Taking the limit as (41,d2) — (0, 00), and noting that W is finite almost surely (see (4.3.6)), we

n—oo

conclude the proof. O

Remark 4.3.3. From Lemma 4.5.2, the useful results

(n)
]P’( sup e )\O—t‘ 25‘W>0) — 0
te[n Tergps] | 108(7) e
and
_ (n)_ (n)
P sup ‘e )\“(n‘ b ) — W‘ > €’W > 0) — 0 (4.3.13)

te[T1, T 205 ] oo

follow.

4.3.2 The mutant subpopulations dynamics in the deterministic time
scale (Theorem 4.2.7 (i))

In this subsection, Equations (4.2.5) and (4.2.6) are proven for the mono-directional graph. The
proof will be carried out in two steps. First, we will show the result for a fixed s € R, uniformly in
the parameter t. Then, in the second step, we will establish the result uniformly in the parameter
s by adapting a method developed in [56, Lemma 3].

Uniform control on the time parameter t

In this subsection, we will prove the following proposition, which is a less refined result than (4.2.5)
and (4.2.6), as it is not uniform in the parameter s.
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Proposition 4.3.4. Leti € N, (¢, (%), hy, (7)) - > such that there exist v, (i) — oo such that
n oo n— oo
h (i) = log(log(n)lg)ﬂg((irbjl)+¢n(i) and /log(n) = o(¢y,(i)). For all (t,s) € RT x R define

(n) — 0(i)—1
4 (t5) =1 i -na ) T Lot -nit @y Yo 108" ()

+ ]]-{te[t(i),oo)}ntit(i) logé’(i) (n)e)\(o)s.

LetT >0,0< Ty <T5, and s € R. We have
o If\;= Mg thent — Zi(n) (tﬁn) +5) /dgn)(t, s) converges in probability in L>°(]0,T]) to Ww;(t).

o If \i < )Xo thent — Zi(n) (t%))H +5)/nt log? @ (n)e*os converges in probability in L ([Ty, T])
to Ww; (t(i) +t).

The proof is carried out by induction on ¢ € N. For ¢ > 2, we assume that Proposition 4.3.4
holds for ¢ — 1. In the base case, i = 1, Proposition 4.3.4 is proved without any assumptions. As
long as the proof is similar for the initialisation and the inductive step, the specific step under
consideration will not be indicated. To make the proof as clear as possible, it is divided into several
lemmas. All results are derived using a martingale approach. In the next lemma, we introduce the
martingales considered for all mutant subpopulations and compute their quadratic variations.

Lemma 4.3.5. For all i € N define

t
MM (t) = 27 (B N - / 205 1" e N 20 (s)ds. (4.3.14)
0
(Mi(n)(t))t>0 is a martingale, with quadratic variation

t [

t
(M), = [ o2 o (43,15
0

t
a4 [z s
0

Since the proof of this lemma is fairly standard, it can be found in the Appendix. We can now
proceed to prove Proposition 4.3.4. This proof is structures as follows:

1. Neutral case (\; = \g): The proof begins by addressing the neutral case. This part is di-
vided into three major steps, each corresponding to a different time regime for the normalising

term dgn) (t,s):

(i) First time regime (¢t € [0,¢(i) — h,(i)]): Lemma 4.3.6 establishes the asymptotic
result for this interval.

(i) Second time regime (¢ € [t(i) — h, '(i)]): Lemma 4.3.7 covers the convergence within
this interval. The proof begins with a first step where the result is established under a
more restrictive condition on ¥, (¢). This step is further divided using: Lemma 4.3.8,
which handles the finite variation process associated with the mutant subpopulation,
Lemma 4.3.9, which controls the expected value of the size of the mutant subpopulation
and Lemma 4.3.10, which controls the expected value of the quadratic variation of the
martingale associated with the mutant subpopulation. The second step of the proof

proceeds by relaxing the aforementioned restrictive condition on t(n) from step 1.
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(iii) Third time regime (¢ € [¢t(¢),T]): Lemma 4.3.11 controls the finite variation process
associated with the mutant subpopulation in this regime.

2. Deleterious case (\; < \g): After completing the neutral case, the proof proceeds to the
deleterious case, using some of the previously proven lemmas.

Proof of Proposition 4.3.4. Let i € N. For i > 2 assume that Proposition 4.3.4 holds for ¢ — 1. We
begin by proving the result when ¢ is a neutral trait; specifically, we aim to establish Proposition
4.3.4 (i). All the lemmas mentioned in the proof are not restricted to this neutral assumption and
also apply to deleterious mutant traits.

1. Neutral case: Assume that \; = \g. Let (¢,(2), hn(i)) as in Proposition 4.3.4 and € > 0.
Notice that

2" (47 + 5)
]P)<tes[%?T] dgn)t(t, s)

: P(te[o,t(is)u_inl(i)) " (ttn) ’ S) ; E) -

~ W (t)‘ > 35)

ZZ-(n) (t§”> + s)
+P sup D) > 5) (4.3.17)
te[t()—hi ' (),t()) ¥n(i)log (n)

2" (67 + )

te[t(i),T] ‘nt—t(i) log?@ (n)eros

+ 1}»( - Wwi(t)‘ > 5)7 (4.3.18)
where we used that w;(t) = 0 for all t < ¢(i). We will show that (4.3.16), (4.3.17) and (4.3.18)
converge to 0 as n goes to infinity.

(i) First time regime (¢ € [0,¢(i)—h,,'(i)]), convergence to 0 of (4.3.16): The characterisa-
tion of ¢(4) as the first time mutant cells of trait ¢ appear on the time scale ¢ — tgn) is made explicit
in the next lemma. More precisely, we exactly show that up until time ¢(i) — h,, 1 (i), asymptotically
no mutant cells of trait i are generated. In particular, the convergence to 0 of (4.3.16) is deduced
from the next lemma.

. N log(n) .
Lemma 4.3.6. Let i € N, and h,(i) = log(log(n))g(i_1)+wn(i), where (1) A such that

h () j o0, and s € R. Fori > 2, we prove that if Proposition 4.5.4 holds for i — 1 then
n oo
IP’( sup 2™ (tﬁ") +s) = 0) L (4.3.19)
te[0,t(i)—hy ()] oo
For i =1, we prove (4.3.19) without any conditions.

Proof of Lemma 4.3.6. Notice first that

{ sup Zi(n) (tﬁ”) + s) = 0} =A™ nBm, (4.3.20)
te[0,t(i)—hn " (3)]

n) . [ () (D) — n) . L r(n) () —
where A = {Kiﬁl(tt?i)—h;l(i) + s) = 0} and B .= {Hl_l1 (ttz)_h#(i) + s) = ()}. Indeed, the
event on the left-hand side of (4.3.20) is satisfied if and only if no mutant cell of the subpopulation
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n)
t(i)—hn ' (3)
almost surely to A N B In what follows, we will provide the proof that P (A(”)) — 1. The

n—oQ

proof that P (B(”)) — 1 can be established using a similar method, so it will not be detailed

n—oo
here. This will conclude the proof of Lemma 4.3.6. Therefore, we now address the proof that

P (A(”)) — 1, which will vary slightly depending on whether i =1 or ¢ > 2.

n—roo

Case i = 1: For all t € RT and ¢ € RT, let C.;= {supse[;m] 23 Z0(s) — W| < e}. Using
the almost sure inequality (4.3.4), under the event C. 7, we have

Zi(n) is generated from the subpopulation Z; (n )1 up until time t( + s. This corresponds

7
(n) (((n)
Ko (tt(l)fh#(l) +3) S/ /]R+ I{QSQQOILén)Sllpve[O,{] Zo(v)}NO(du’de) (4.3.21)
()

i-nly
+ /; /R+ l{agzaouén)exou(yrw)}NO(dua do).

Let us set the following notations

(n) .
08 L[ [ im0 1),
( )

+s
g . t(1)—hyt(1)
Fer = {/{ {9<2aou("’e*oﬂ(a+W)}N0 (du, df) = 0}

Using Equation (4.3.21) we have that
P(A™) > (4" nC,7) > P(C.zn D N ED).

It remains to show that the right-hand side converges to 1. By the definition of W as the almost sure
time limit of the positive martingale e=**Zy(t), it follows that P(C. ;) — 1. We also have that
’ t—o0
SUP,e(0,7] Zo(v) is finite almost surely. Combined with the fact that Zy and Ny are independent, we
deduce that ]P’(D%n)) — 1, because u( ") 0. Recall the distribution of W, given in (4.3.6).
n—oo n—oo

Since W and Ny are independent, we have

n) +s
n t n A
P(EL?) = 2op( / Mg ) Nold ) = 0) + 22 (4322

@ (&7s]

(n)
> Ao — 2oy, tt(l)—h;1(1)+s
./0 a—oe 0 ]P’(/? {0<2a0u(n) Ao (ap )}No (du,df) = O)
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/8 ¢ 1, ts

0 HW—hg (1)

= —exp ( - / " 2a0uén)e)‘°“€du)
7

Qg
(n)
A A _ 204, t,l—,’11+s n
0 Ao, 22 exp ( B / t(1)—hy ' (1) 2040#(() )e’\‘)”(a—i—w)du)dw
(7)) 0 (7)) f
2a (n M (n)>
> @exp ( oot H e)\osefhgl(l)log(n)>
(7)) )\0
(1y,,(n)
A Xo 2oy 20y (nt Lo ) o
+ —0/ Oe Otg exp ( — —(5 + w)e)‘osefhn (1)10g(n))dw
ap Jo o Ao
— 1,
n—o0

where we first use that for all w > 0,

(1),,(n)
20[0(—’M)<5 + w)e)‘ﬂse—hgl(l) log(n) __ .
/\0 n—00

This follows from the choice of h, (1), which ensures that h,'(1)log(n) — oo. Then, we apply

n—oo
the dominated convergence theorem to obtain
2apn [nt(D) (n>) 1
DY 2 _ 0( Ho Xos,—hy (1) log(n) DY
0 _2a ( ——— > (etw)e 0% 0
—e % 0 dw — e % Ydw = 1.
0 (XO n— oo 0 ao

Finally, we have shown that P (A(”)) — 1, which concludes the proof for the case i = 1.

Case i > 2: Let £(i) := % and ¥,, — oo. For & > 0, define

n—oo

)
o) = sup ‘;—Wll i Wwi—1(t ‘ <ey,
c {tG[O,t(i)] dm(t) iy iz (f) }

where
A" (t) = ]1{tG[O,f(i))}nt(i)_t(i_l) log”= D (n) W, + ﬂ{te[?(i),t(i)]}nt_t(i_l) log” ™Y (n).

Under the event C’E(n), we have

(o
(n) (((n) )
K1 (tt( ) + S / /RJr ]1{9<2a71—1#5?15712(")4(“1) loge(i_l)(n)‘lln}]\fi_l(du7 d@) (4'3'23)

t(l) hpn (1)
+/t /]R+ {9<2aL e (e+Wwi,1(t(i)))ekoun—m—n1og9<i71>(n)}Ni*1(d“’de)'
o
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Let us introduce the events

n) . t(4)
Dé ) . / - ]]'{9<2a1 L™ end(D=4G=1) 1ogf (i=1) (n) W, } i—1(du, df) = }

+s
(n) ._ t(i)—hy ' (0)
Ee = {/tw / {o<20i 10" (4 Wwi1 (4())) 0% =t (=1 log? (=1 (n) }
i)
- Ni_1 (du, df) = 0}.

From (4.3.23) we obtain IP’(A(”)) > ]P’(A(") ﬂCg(n)) > P(C’E(n) ﬂDén) ﬂEén)). It remains to show that
the right-hand side converges to 1. By assuming Proposition 4.3.4 holds for trait ¢ — 1, it follows
that ]P( E(")) — 1. Secondly, we have

n— oo
 og?—D+1
P(Dg")) = exp ( — (1) o8 (n)
Ao
because t(i) — t(i — 1) = K(i — 1)/2, and ¥,, can be chosen to satisfy both ¥,, — oo and
n—oo

log? =D+ ()W, V/nt(i-1) ,u 1 — 0. Using a similar approach as in the computation of (4.3.22),
n— o0
we get

200 1u s\/n“ 1\11) — 1,

n— oo

2%_1( o(i— 1)M(n) )

P(Eén)) Po ~exp [ elog? =D (n)erose () log(”)}

Ao
+ & &e*%w
(7)) 0 (7))
201 ( 0(i— 1)M(n)) | .

- exp ( - 3 (e + ww;_1 (£(i))) log? =V (n)erose (D log<n>> dw
0

— 1,

n— oo

where, Yw > 0,

2ai-1 (ne(iil)’ugﬁ)l) 0(i—1 Nos . —h=1(i)1
(e + ww;—1(t(4))) log (@ )(n)e 0sg=hy (D)log(n) __

)\0 n—o00

because

log? D (n)e~ " (1980 — oxp (6(i — 1) log(log(n)) — log(n)hy, (i) — 0

n— oo

by hypothesis on A, (i). Then, we apply the dominated convergence theorem to get

/Oo No e 2ai71<né(i—1)ugi)l)
20 o5 exp ( _
0

Ao
(e +wwi—1(t(4))) 10g9(i_1)(n)e’\ose*h;1(i) log(")>du;

0
— —e % Ydw = 1.
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Finally, we have shown that P (A(")) — 1, which concludes the proof. O

n—o0

(ii) Second time regime t € [t(i) — h;, ' (i), t(i)], convergence to 0 of (4.3.17): In the next
lemma we show that in the time interval [t(i) — h. (i), ()], the size of the mutant subpopulation of
trait ¢ does not achieve any power of n. We control its growth by the factor ¢, (i) loge(i*l)(n)7 with
a well-chosen function 1, (7). Heuristically, the total number of mutant cells of trait ¢ generated
from mutational events up to time #(i) is of order O(log” """ (n)). Moreover, with the remaining
time for the lineages of these mutant cells to grow, we are able to control the size of the mutant
subpopulation of trait ¢ by at most 1/log(n) logg(i_l) (n). Consequently, by dividing by any function
1 (1) that satisfies y/log(n) = o(1, (7)), the asymptotic limit is 0.

‘ N log(n) ‘ ‘
Lemma 4.3.7. Leti € N, h,(i) = log(log(n))g(i_1)+¢n(i), where @y, (1) @ such that hy,(7) 2

00, Pn(i) = oo such that \/log(n) = o(,(i)), s € R and € > 0. For i > 2, we prove that if
Proposition 4.3.4 holds for i — 1 then

AR (ttn) + 8)
P( sup > g) — 0. (4.3.24)
te[t(i)—hn (i),t()] ¥n(i)log (n) noree

For i =1, we prove (4.3.24) without any conditions.

Proof. We begin by proving the same result under the more restrictive condition log(n)e*”"(i) =
o(¥5 (i)
Step 1: Let v, (i) satisfying the previous equation. For all ¢ € [t(i) — h,, ' (i), ¢(i)], we have

n

Z (6 + s)

| 4.3.25
(i) 1og? = (n) | :
(n) (((m) AP (M 45) ) () A )
24+ s)e (67+2) _ g (t)—ngie) T9)¢ @=hi’ (@
- . (n) ((((n)
(i) log i () (47+)
(n) (((n) A )
Z; (tt(i)—hil(i) +S)€ D=t )
(i) gD (e (67+)
" +s (n) My y(n)
(n) (4(n) () (4 (n) & 201y ye” N M Z 7 (u)du
7Mi ("t +5) M; (tt(i)—hﬁl(i)+s)+ Yanglo T
(i) log i )N (477+) (i) log? ) (m)e N (47 +)
() (,(n)
™

(i) 10?0V (n)e 7 r@ento)
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Then, we have

7 (6 + s)

IP’( sup - — > 35)
e[t —ny (0).(0)] V(i) 1og” "V (n)
M (Y 4s) =M ts)
<P su ' Lt ha (@) > 5) (4.3.26)
S . }i o i1 G (t(”)Jrs) =z 3.
te[t(i)—hn ' (i),t(3)] Y (i) log (@ )(n)e i\t
() .
EARN 20‘1‘—1.‘%@16_/\§ )uZi(E(“)dU
(i) —hp ' ()
+P sup o o (t<”>+s) > 5) (4.3.27)
te[t(i)—hn ' (i),t(3)] ¥ (i) log (@ )(n)e ik
7 (t(”) +3)
CNVt@)—ha (D)
+P sup ENONG > 5). (4.3.28)

tet@=ha' @D] g (1) log? "V (n)e " e-trnnt@

We have (4.3.28) < P AN _1,.+8) > 1), because a necessary condition for fulfilling the
vV =Ry (4)
)

condition of interest is that there is at least one mutant cell of trait ¢ at time tiZ_)ih,l i + s.
Then, applying Lemma 4.3.6 shows that (4.3.28) converges to 0. The convergence to 0 of the term
(4.3.27) follows by applying the subsequent lemma. Note, in particular, that (¢, (¢), h,(i)) satisfies

the condition of this lemma.

Lemma 4.3.8. Leti € N, h,(i) = log(log(n)h))eg((ng%(i) , where (%) e such that hy (i) 2

00, Pn(i) — oo such that log(n) = o(n(i)hn(i)), s € R and € > 0. For i > 2, we prove that if
n— oo
Proposition 4.3.4 holds for i — 1 then

(n) " "
o T 2o e Nz (w)du
. —1,.
P sup t(i)—hi () _ — > 5) — 0. (4.3.29)
bl —h 0] (i) log? D (e N (47 9) noes
For i =1, we prove (4.3.29) without any conditions.
Proof of Lemma 4.3.8. Let
tin)Jrs n _ <")u n
) 82‘11'—1”1(‘7)16 N Zz;)l(U)du
aE") @)=kl )
: , IO
(i) log? =D (m)e " (57 +9)
Our aim is to prove that for all € > 0,
P sup agn) SE) - 1 (4.3.30)
n—oo

te[t(i)—hn (i),t(9)]
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Case ¢ = 1: We have

" 6){”’ (tim—&-s) ™t
n
a P

k ’(/)n(l) {(n) +s

(V) —hpt (1)

QOéouén) {W + (e7 " Zy(u) — W)

(M) _ (MY
e )“Zé")(u)—e*AO“ZO(u))}e(*o M) g
Let us define

(n) ._
B: .—{ sup

ueR+

e Zy(u) - Nz ()| < ),

Cpz:i= { sup e % Zy(u) — W| < EN}.

UE [z,00]

According to Lemma 4.3.1 and the definition of W (see (4.3.5)) we have both that ]P’(Bén)) - 1

n—oo
and P(Cm,g) n—_>>oo 1. Then, for sufficiently large n, under the event Bén) N C\/M,g’ we have
af" < 200 (n Oy ) (W + 29)1,

AP () () 4 ™Yy,
where I, := % ;’;L) M N e(/\o A) du. In the case where \; < \g, we have that
" £(i)—hj; L (1) s
6)\571) (tﬁn)‘h@) e(AO*Agn)> (tfcn)JrS) e—)\oti?l))_te)\gs ehos ( )
I, < = < . 4.3.31
T ()t Mo = i Un(1)(Ao = A1) = Pa(1)(ho = A1)
In the case where A\ = g, recalling that )\gn) =)Ao — 2041,u§n), we obtain
e’\‘)se_%”“gn) (67+s) e“”‘gn) (67+s) _ e2aw§"> (t:l))fh;lu)—ks)
I, < : o (4.3.32)
Pn (1) 2001 144
(n) ¢((n)
eros l—eizawl RESTRITESI
(1) 2a1ugn)
e*os log(n)
“ o (Dha (DA’
where for the last inequality, we use the fact that tii1(1)+h,l(1) < log(n)/(hn,(1)Ag) and apply the
following equation with @ = 2a1p7 * > 0 and z = ttft(l)Jrh;l(l)
1— e
Ve >0,Ya>0,— <. (4.3.33)
a

In any case, since W is a finite random variable (see (4.3.6)), we find (4.3.30).
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Case i > 2: Assume Proposition 4.3.4 holds for i — 1. We have P (Bé")> — 1 with

n—oo

‘ Z{" (6" + 5)

(n) ._
Bei= { Sup nv—t(i—l)e/\oslogf?(ifl)(n)

~ Wi (v)] <€}
ve[t(i)—ha (),4(1)]

Using the change of variable u = " + s and the fact that t(i — 1) = t(i) — £(i — 1), notice that

e)\E") (tE")—&-s) t

my_e" ' ) 2(i—1) , (n)
a = " - 20{271 n 22
t qpn(l)nt(z) {6 —ha (0) ( i 1)
| 72 (6 + ) (Ro=A() (e +5) log(n)
nv—ti-1)eros Jog? =) () Ao

Since w;_; is a non-decreasing function, it follows that, under the event Bé"),

A (6 +s) s ()
agn) <2044 (nf(ifl)ul(i)l) (szfl(t(l)) + g) 677[} /( ) e<)\0—/\i )Udu
(9 +s

NGEIO
(i) —hp L ()
By similar computations as in (4.3.31) and (4.3.32), (4.3.30) follows. O

Now, we will prove that (4.3.26) converges to 0. We begin by introducing two lemmas, whose
proofs are provided in the Appendix, which allow us to control both the expected size of any mutant
subpopulation and the quadratic variation associated to the martingale Mi(n). First, a natural upper
bound on the expected growth of each mutant subpopulation can be easily obtained, as stated in
the next lemma.

Lemma 4.3.9. For alli € Ng and u >0,
B[27(w)] < O,

where p) = l_[lﬂfi)l and C; =[5y 205-1 (L, =x0) + Ly <rod oo )-
J:

Notice that there are three key components. The first is the mutational cost to produce such
mutant cells, represented by the term ug)i. The second component is the contribution over time
of all neutral mutations along the path leading to the mutant subpopulation in question. The
third component is the exponential growth at rate Ag exhibited by the wild-type subpopulation.
Additionally, using the expression for the quadratic variation of the martingale associated to a
mutant subpopulation, given in Equation (4.3.15), and the previous Lemma 4.3.9, a natural upper

bound on its mean is derived and summarized in the next lemma.

Lemma 4.3.10. Let 0 < ti’“ <ty and s € R. There exist N € N and C(i) > 0 such that, for all
n > N, we have

e*’\f’s(t(?)) +S)9(2')
E[<Mi(n)>t§2)+s - <Mi(n)>t(12)+s} < C(Z’)“g,z |:]1{>\i:)‘0} ::tg") (tg) + 3)6(2)

—oa) (€M) s " —(2>\i—>\0)("(?¢3>+3)
. (1{)‘0>2>\i}6(>\0 2A1)(tt2 - ) + 1{>\0=2Ai} (t§2) + S) + ]]'{M<)\(J<2Ai}e " )i| '
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- 0(i-1) Mt (0
Now we can prove that (4.3.26) converges to 0. Using the fact that log (n) =¢ ha'he ¥n

we can rewrite for all ¢ € [t(i) — hy, ' (), t(4)]

‘ M (€ 4 5) — M" )("% et )‘

(i) 1og? @D ()N (47 +9)

‘M,(") (4" +s) = MM (6 (,)+s)‘

() ,(n) ERNCONICD)
wn(i)efSon(i)e()\ i >tt t(i)+hy (1)6 A (t() hp (1)+S) Aott(z)) t

‘Mi(”) (£" + ) — M™ (fiz?)—h;l(i) + S)’
wn(l‘)B*‘Pn (De (Aofkgn)>fii)t(i)+h;1 (1) ei/\in) (ti:;)fhﬁl (i)+8)

)\("))t(")

Ao
In the case where \; = )y, we simplify the denominator using that e( A O O

Then, we apply Doob’s inequality to the martingale (Mi(") (tin) +5) — M( )(ti?)) oty T 3))t>t(i)7

and use the property that if M is a square integrable martingale, then E[(M(t) — M (s))?]
E[M?2(t) — M?(s)] = E[(M); — (M),]. Tt follows that

MY +5) = MM (g L +s)
i ()= (i) ’ > 8)
*/\5“)( (n) +S) =

(i) —hy t (D)

(4.3.26) < P( sup ’
te[t(i)—hn ' (),£(5)] Un(i)e—onlie

(n) (n)
4@ t( )—hi t (i) 2N |:<

PP @)e 70

]\41-(n)>t(n)Jrs <Mi(n)> (n) +S} .

) t(i)—hn (i)
Applying Lemma 4.3.10 at times tg") = t(i) — h,,;1(i) and ty = t(i), there exists a constant C' =
C(s,4,e) (which may change from line to line) such that

Ce2<pn (1)

i W ORED ) gy )T,

(4.3.26) < ®:1) (i) —hi ()

Note that

z) (n) Hn j—1) (n) n:go 1_[1#] 1 < 00. (4.3.34)
J

Then, for n large enough, and recalling that 6(i) = 6(i — 1) + 1, we have

1 en (i)
og(n)e. o
Pp(i)  moeo
according to the scaling of 1, (¢). In the case where A; < Ao, using the Maximal inequality (see [96,
Chapter VI, page 72]) applied to the supermartingale
(n) (¢(n) (n) (((n)
M;™ (4™ + s) — M, (tt(i)ih#(i) + 3)

Ao—Am )¢ ) (¢ L>t Dht()
0— )tt ornsio e (t() =10 +s) >t(i) (i)

(4.3.26) < C

(s (i)e—%(i)e<
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it follows that

3 MO ot
(4.3.26) < =< — sup F™ @), (4.3.35)
e (i)eenl teft(i)—ha (3),1(0)]
—(x )\(") (n) 1
where f(™)(t ( o ) t—t(i)+hn (L)E[(M( )>t(n)+ 7<M( >t(n) +S] 2. According to Lemma

t(D—hp ' (0)
4.3.10 applied with t(ln) =t(i) — h,; (i) and 5 = t(i), we have that

i (n) (n)
s {0 < 0@ () ) Fe T (13:3)

te[t(i)—hn ' (i),t(3)]

_ Ao () xg—2X); ( 1 Ao— >\(" (n)
i S n)
: (1{,\o>2,\i}e 2 te” 2 + ]l{,\(,:zxi}(tt(i) +s)2 ( ) t(i)—hy ! (0)
_ 2o (m) 23— Ag
+ 1x<xo<2n3€ 2 u-rntheT T2 3).

(n

(n) S aptt™ X )
Combining (4.3.35), (4.3.36), (4.3.34), and using the facts that X% = n@®, ¢"*h7'® = 10g?i=D ()e#n
and (i — 1) = 0(1), it follows that

ol 9 m At
(4.3.26) < sz 5 M *(n t(z)’u(n)) (t(?))+s)7630fi<>>e Mot
n (2

Ap (n)  Xg—2X; —(Xo— /\)

1
(Lpngsange T 4 Ty s (H]) + ) e -t

_204(m) 2X; —Ag
+ Lia,<xo<2ni)€ : ‘(“*Wl(“e_fs)

e ‘Pn( ) ,&t(m

Cen( o) 1 R
10g”@ D (n) + Lpyg=ang log?(n)e * o

Wlog > (n )(11{/\0>2>\}

_ 2o (n)
p)
+ ]]'{)\i<)\0<2>\i}e ho G ))

C LPn()
< o) (]1{/\0>2>\ }1 9( )< ) + Lyng=2x; }\/10? + Lo <ro<2xn}e 2 )
— 0,

n—oo

according to the scaling of v, (7).
Step 2: Let 1, (i) satisfy \/log(n) = o(,(i)), but such that log(n)e#»(® # o(2(i)). Let

log(n)

?n(i) be such that log(n)e?(®) = o(w%( )), and deﬁne I (1) = log(log(n))g(i_1)+$n(i). Notice, in
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particular, that Ay, (i) > hy(i). We have

Z" (€™ +
(o A
te[t()—hn (),t()] ¥n(i)log (n)

< ]P’( sup Zi(n) (tﬁ”) + 8) > 5)
te[t(@)—hnt (i)t (i) —hn ' (i)

(n) (¢(n)
+ IF’( sup Zi' (tte(ij—lf) > 5),
te[t(i)—ha (i),4(5)] Yn(i)log (n)

where the first term on the right-hand side converges to 0 according to Lemma 4.3.6, and the second
term converges from Step 1 of this proof. O

(iii) Third time regime (¢t € [t(i),T]), convergence to 0 of (4.3.18): Applying similar
computations as in (4.3.25), notice that for all ¢ > ¢(4)

2O ) MO +s) MO+ )
T logT M 1o g 0o ) (472)
IR (n) (n) A
t 2061, 1 Z; 1 (u)e™ N “du (n) ((n)
ft§,<i))+s i1 Zim (W) 2" (4 +9)

+ .
) )Y (1) } ()Y ¢ (m)
=t 1og?® () (P02 ) (£7+2) 100000 (1) (B0 =2 ) 6000 a0
Then this allows to write

IP( su ‘ 2" (4" +5)
nt—t() loge(i) (n)eros

- Wwi(t)‘ > 35)
te(t(i),T)

(n) (4(n) () £o(n)
<P( . ‘Mi (6" + ) = M™ (67 + 5) >€> s
T Nielt(i),T) n_t(i)loge(i)(n)e(xo,kgrm)(tgn)ﬂ) >
¢t n n )y,
f:(t”?:s 20 11"y 2, (w)e N v du
+B( sup | ~Wuwi(t)] 2 ¢) (4.3.39)

1 0 10g?0 o) (75)

(n) (((n)
+ IP’( sup % (tt(i) +9) > E). (4.3.39)
te(t(i),T) 10g9(i) (n)e()‘o_’\gn))tgi)t(i)e)\os N

We will show that (4.3.37), (4.3.38) and (4.3.39) converge to 0 as n goes to infinity. For the term
(4.3.37), we start by using the fact that Ao > )\En) to simplify the denominator. Then, we apply
Doob’s inequality to the martingale (Mi(") (tg") + s) - Mi(") (tiz)) + s)))t>t(i) to obtain

<o g EII
te[t(d),T] n—t) log (z)(n)
4An2t@) - o
= e210g20) () [<Ml >t<T”)+s —(M; >t57&_>)+5]
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By applying Lemma 4.3.10 at times t§”) =t(i) and ¢t = T, we obtain

_Aos(t(n,) +8)9(2) (n)
(n) (n) € £(i) He,i
]ERM@ >t(T"’+s = (M; >t§?i))+s} =C nt() : (4.3.41)
Then, combining (4.3.40) and (4.3.41), we get
(n) (¢(n) VIO
. ( . M (™ +s) — M; (tt(i) + 5) N 6)
teft(i),T] n—t) IOgG(z) (n)e(/\r)*)\g”)) <{in)+s)

ne)

V) ,

o _ACe f“ (tt(i) +8>9(’)nt(i)
= 221og?@(n) \ log(n)

— 0,

n—oo

as 0(i) > 1, since the vertex i is assumed to be neutral. This concludes the proof of the convergence
to 0 of (4.3.37). The term (4.3.38) also converges to 0, as shown in the following lemma.

Lemma 4.3.11. Leti € N, T > t(i), s € R and ¢ > 0. For i > 2, we prove that if Proposition
4.8.4 holds for i — 1, then

(n) n
ft(‘n) *s Qai_lugﬁ)le_Ai Juy ")1(u)du

71—

Ly ts
P( sup ‘ © e - Wwi(t)’ >e) — 0. (4342)
telt(i).T] | —t(i) loga(i)(n)e(AO_Ai NCEED) n—00
For i =1, we prove (4.3.42) without any conditions.
A ()

Proof of Lemma 4.3.11. Let ¢,(t,s) := e(/\o & )(tt +S) and

" +s () Ay, (n)

() 21 fty e Z; 21 (u)du

(n) t(i) TS

a = -
' n=t@ 1og’® (n)ey (t, 5)

Our aim is to prove that, for all ¢ > 0, ]P’(supte[t(i)’T] aﬁ”’ - le(t)’ <e) — 1

Case i = 1: We have

t(1) € s
agn) - n—/ 2a0,u(()") [W + (e Zo(u) — W)

log?™ (n)en(t, s) Je) +s

n (m) _ (M,
+ (e_)‘(() )“Zén) (u) — e_AO“ZO(u)) }e(AO A7) du.
For all € > 0, introduce the events

Bén) = { sup
u€R+

Crz:= { sup e % Zo(u) — W| < 5}.

' wE [x,00]

e zy(u) — Nz ()] < ),
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According to Lemma 4.3.1 and the definition of W (see (4.3.5)), we have both that ]P’(Bén)) - 1

n—o0
and IF’(C o) g) — 1. Notice that when A; < Ay, we have the following bound
0g(n),€/ n—oo
(n) 4 g
; /tt T o N g, 1 ealbs) —ent(M)s) 1 (4.3.43)
calt:8) Jum 1 Ao — A cn(t, s) oA
and when A1 = )\g, we have
(n) —(\ _/\("))t(")
1 Lt Ao—A" ) w l1—e ( 07 t—t(1) (n)
m/(n) 6( 0 1 ) du = ) S ttit(l)’ (4344)
n\b tt(1>+s )\0 — )\1
where for the last inequality, we use (4.3.33) applied with a = X\ — )\gn) = 2a1u§n) > 0 and

n)

z=t" It follows that, for sufficiently large n (such that J‘iu) + s > 4/log(n)), under the event

t—t(1)"
(n)
BN C\/@,E’ we have that

t(1) (" +s ()
e [ i
1og?® (n)en (t) te) +s
t(1),,(n) 1 1
< 20&0 (n Ko )(W + 25) (]l{)\1<>\o}ﬁ + ]l{)q:)\o})\i(t - t(l)))7
0 1 0

since (1) = 1¢x,—x,}- By definition, we have

1 1
wi (t) = QO‘ONO(I{/\1<>\0}W + ]1{>\1=)\o}/\70(t —t(1))).

This implies that

w1 (t)
Ho

al™ — Wwi(t) < W (nt @™ = o) + CE,
where C > 0 is a sufficiently large constant.
Introduce the event

n wi (T n ~
D = { sup |y () )| <2},
te[t(1),T] Mo
This event satisfies P(Dén)) — 1 because W is finite almost surely, n*() ,u(()n) . Ho and wy (t)

n—o0

is bounded from above on [t(1),T]. Under Bé”) N C’m =N Dé"), we have for all ¢ € [t(1), T,
al™ — Ww,(t) < (C + 1)z

Similarly, it follows that under Bén) N C\/7( =N D

log(n g

sup  |al™ — Wwi (t)] < (C + 1)&
te(t(1),T]
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By choosing £ > 0 such that (C'+1)g < e, we deduce that under the event Bén) N C\/i =N Dé"),

log(n

sup \agn) —Wuwy(t)| <e.
tet(1),T)

This concludes the proof for the case ¢ = 1, since ]P’(Bé") N C’\/—) =N Dé")) — 1.

log(n n—oo

Case i > 2: Assume Proposition 4.3.4 holds for ¢ — 1. In particular, we have P(Bé")) — 1,

n—oo
where .
n Z;" (0" + .
Bé ) = { sup ‘ Zi 1( 95') - _ Wwi_l(v)’ < 6}.
velt(i),T] | nv—ti=1)elos Jog (i— )(n)

Using the change of variable v = " + s and the fact that t(i —1) = t(i) — £(i — 1) we obtain

: | 2 + 1
agn) — / 201 (nf(l—l)ugﬁ)l) '171 ( (:21) Cn(vv 8) Og(n) dv.
(i) nv=ti=Deros log? V) (n) cn(t,s) Ao

Notice that when A; < Ao, we have 8(i — 1) = 0(4), and when \; = Ao, we have 0(i — 1) = 0(i) — 1.
Additionally, we use that v — ¢, (v, s) and w;_; are non-decreasing functions, and we apply similar
computations as in (4.3.43) and (4.3.44), replacing the index 1 with i to find, under B, that

ai(tn) < 2ai71(n€(i—1)u§ﬁ)1)

W’U}i_l(t) +& i ¢

. |:]l{)\i<)\0}ﬁ + H{Ai:AO}WAO o) (’wifl('l)) + g) dU:| .

By definition (see (4.2.3) and Remark 4.2.4), we have

Wi — t 1 ¢
'LUZ(t) = 2ai_1pi_1 (1{A1<)\0}F1()\i + ]].{Ai:AO})TO Z() wi_l(u)du>.

Thus, under the event Cé") = {W|n€(i_1)ugﬁ)1 — pi—1]| < 5}, we find that for all t < T
") Wy (t) < 2051 |1 (i (T) + (D)
Ay wz( ) S 2061 LN <o} )\0 — )\1 (wl—l( ) + (Tl szl))

+1x=a i( Tw', (u)du+T(nf(i—1)M(”)))}g
o 0}/\0 t(i) i-1 i—1

< Ck,

where C' is a positive constant that depends only on the parameters and on 7', but is independent
gﬁ)l converges and that W is finite almost surely (see (4.3.6)) we obtain

that the event Cén) satisfies ]P’(Cén)) — 1.

n—oo

Then, by choosing € > 0 such that Ce < e, we have shown that under Bén) N C’én),

of n. Recalling that nfCG—1

sup aE") —Wuw;(t) <e.
te(t(i),T)
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With similar computations, it can also be shown that under B N Cx n)

sup \agn) —Wuw;(t)| <e.
telt(s),T)

We conclude the proof by noting that ]P’(C(n)) — 1 and P(B(n)) = 1, as established by the

n—roo
induction assumption. O

Given that Ag > )\gn)7 the term (4.3.39) satisfies

Zm (4 AN
IP’( sup S 1 )(n) ()n) >e) = ]P’(’g((i)t’)) > 5) 0,
telt(i),T] 10g9(i)(n)e( - )ft t()) gAos log”*" (n)eros n—00

where the convergence is obtained by applying Lemma 4.3.7 with 1, (i) = log(n)e*°*. This is valid
because assuming the vertex 4 is neutral implies that (i) = 6(i — 1) + 1.

This completes the proof of Proposition 4.3.4 (i).We now turn to Proposition 4.3.4 (ii).

2. Deleterious case: Assume that \; < A\g. Let 0 < T7 < Ts. Using similar computations as
n (4.3.25), for all t € [T1, Ts], we have

(n) (((n)
Zz (tt( i)+t

ntlog?@ (n)eros

+s) MOE

_ t(i)+t T s) — Mi(n)( 1(6?1)) +3)

n- A;(‘o ‘ e<’\°7A§n)) G log”® (n)

) s ()
t(i)+t 20@_7 (n) e—)\ sz(n) ds (n) 7,(n)
fti?)"’ 1M1 i— ( ) Z,L (tt(z) + S)
A NN

n- t(z) ()\o*)\g”)) (tS/"H»s) 1Og9(i) (’I’L) ntT (3)‘03 logG(z) (n)

Then, this allows to write

" (fEZ’)+t +5)

(n) (((n) (n) (¢(n)
< ]P’( sup M (tt(i)ﬂ ) - ML 1) +) ‘ > a) (4.3.45)
te(T1,Tz] 7$t(i)e<)\o*)\§")) (tg")%*s) 1Og9(1) (n)

P(te[s%m W () + t)‘ > 35)

(n)

() s ()

t(i)+t (n) —A! (n)

ft(">+ 20,114 e SZ,"(s)ds
@

— W (i) + t)‘ > 5)(4.3.46)

+P( sup N BN o
te[T,Ts] n- ;\0 t(z)nt o e(AO_Ai )glogg(l)(n)

> ¢

(4.3.47)

(n) (n)
T *O’Agm (i .
nT1 T %0 edos log (’)(n)
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For the convergence to 0 of the term (4.3.45), we first use the fact that )\Z(-n) < A < Ao, to simplify
the denominator. Then, we apply the Maximal inequality to the supermartingale
(n) (¢(n) (n) (,(n)
M; (tt(i)—i-t +s) = M; (tt(i) + )
oy () ,
(D) o2 (67 45) log?® (n) /120

to obtain

A1 (¢
]P( sup i ( t(i)+t

. . (4.3.48)
telh T2 n~ o t(z)e()\o_Ai )(tt +s) loge(i)(n)

+3) = MO +5) | )
> e

(n) /,(n) (n) (¢(n)
) P( . M (40 +8) — M (6 + 5) ‘ S 5)
=P n,%t(i)e(/\o—/\i)(tﬁ"us) 10g”® (n) >

e e C T T
= clog?@(n) te[Ty, T2 EERATO R EERATO R

36—(>\0—)\i)5

Applying Lemma 4.3.10 at the times t(ln) = t(4) and t5 = t() + ¢, we obtain

E[ MY o (M) } 4.3.49
\/ (M >ti(2>+,,+s (M; >*i(7¢)>+5 ( )
" 0(i) " 20=2X; (10 Ap=2X;
< C(tff(i))+t +5) 7 \@ [1{A0>2>\7~,}n 7o (D) =
o) 2NNy _2hizAo
T Loo=2x3\/ fi)+e T8+ Lnicao<aagn 2o e }

For all t € [T}, Ty], we perform the following auxiliary computations, which will be used to obtain
the result

gy [ (n) —420"Xi A2Ni ()4 ”t(l)ﬂg,)i
n*o Hg i Y0 n o < ——, (4.3.50)
n=
X yqn Ag—X; \/nt(i)u(n)-
]1{/\0:2/\1}”mt(1) ngn_t ED ST&lv
nz
Xips Ao—2X; 2X; =g,/ nt(i)u(n)-
n3Lt) Mggn_to*ion_ 2AUot(z)S leoff);,z.
n 20

Then, combining (4.3.48), (4.3.49) and (4.3.50), we obtain

(n) (((n)
Mi (ttzbi)+t

IP’( sup RD)
te[Th,Ts] n" ;‘O t(i)e(,\o—,\gm) (tgn)+s) loge(i)(n)

(n) (4(n)
+5) — M;" (ft?i)+5) 25)

¢

3Ce” (oA ti)+T T8 7 Ni (s Ao—X; A0=2Xi 1y
= ‘ ( Tog( ) sup n%t(l)nitT\/ﬂTn)i{]l I e sranl O
Eloge(z)/2(n) log(n) te [Ty T] @i | L{o>2x:}
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A0—2>\is (n) _2X;—Xo 72>‘i*>*05
e 2 + Lpno=2x3 V j‘t(i)—&-t +s+Lpgan<angn oo ’ }

(n) 0(i
—(Ro=Ai)s b n o sy 2
_ 3Ce” (t(1)+T2 ) : nt(i)ug’l

B elog?@/2(n) log(n)
e 0Tt tg?i))-s-TQ +s e~ izLs
: <]]'{A0>2)\i}7T1 +1ne=2r)—7 — + ]1{>\,;<>\0<2>\¢}W)
n? nz 5t
— 0.
n— 00

The term (4.3.46) converges to 0 by Lemma 4.3.11. The convergence to 0 for the term (4.3.47)
Ao—Xg
is obtained by applying Lemma 4.3.7 with ¢, (i) = nT1 75 "eros. This completes the proof of

Proposition 4.3.4. O
Uniform control on the parameter s

In this subsection, we will prove (4.2.5) and (4.2.6) for the mono-directional graph, as stated in
(n)

Proposition 4.3.4, using an approach inspired by [56, Lemma 3]. Define ugs ' =t + 1‘?);(1‘5) Ao such
that t,(fn) +s= t(rfi) + M. Notice that
2M
0<t—u™< Ao (4.3.51)
7 log(n)
1. Deleterious case: We begin by showing (4.2.6). We will use that
nt logf)(i)(n)e)\os _ nug") logg(i)(n)e)\oM.
This gives that
(n) (((n)
AR (t(”.) + s) zZ;V (" M)
i t(i)+t ) . t(i)tus ) . (n)
.——letz—ktlg‘ — — Ww,; (t(3) + ug ‘
o e~ Wt + 0| < | (#0) + )

nus loge(i) (n)eroM

+ W‘wi(t(i) +t) —w; (t(i) + ugm)\.

Since w;(t(7) + -) is a polynomial function, there exists a constant C; > 0 such that, for all ¢ < T5
and s € [-M, M], we have

’wi (t(3) + 1) — w; (£(3) + u™) ’ < (4.3.52)

due to (4.3.51). Let 0 < T, < Ty. For n sufficiently large such that ugn) > T, for all (t,s) €
[Ty, T3] x [-M, M], we have

i (i) +a

ne 10g9(i) (n)eroM
C;

log(n)

2 20y
‘1(;@”)—Wwi(t(i)+t) S sup ‘ . )
nt log (3) (n)ekos z€[Th,T)]

+ W
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Thus, for sufficiently large n, we have

Zz‘(n) (tE?)Ht + )

ntlog?¢ )( )edos

]P’( sup sup
s€[—M,M] te[Ty,Tx]

ZM M 1
<P( sup ) ‘ (2((?)” ) —le(t(z)—&—x)‘ >5) —HP’(W> = log( )),
wefi,m) | n* log” (n)eroM Ci

from which (4.2.6) is obtained. Indeed, the first term on the right-hand side converges to 0 according
to Proposition 4.3.4 (ii) and the second term converges to 0 since W is finite almost surely (see
(4.3.6)).

2. Neutral case: Now, we show (4.2.5). We have

275" + 5) (n) ()
Zi T )| < ) ‘
‘ A (,5) le(t)( Liseloui-ni @)y 2 (Gim + M)+ Lielu—nzt (i) (-3-53)
ZM ™4 v 20 4 M
I3 ( ug") ) ( (71) )e(t(l)—ugn)) log(n) _ le (t)‘

. ,(/Jn(z) 1Og9(i*1)( ) + ]l{t>t z)}]l{u(n)<t( )}‘ logg( )( )eAOM
A0,

?

s
{u(s >Zt(1)} nus™ —t() log )(n)eAOM

+ ]l{u‘" W‘wl(t) — w; (ug"))‘

M2t}
As in (4.3.52), there exists a constant C; such that, for all (¢,s) € [0,T] x [-M, M], we have

o)~ ) <

In the case where ¢ > ¢(i) and ul < < t(i), we have that (i) — ul” < Ao, which, in particular,

1og(n)
implies that e(*()=4")108(m) < (2MXo_ Noreover, since w; (ug )) 0 (because w;(s) = 0 for all
s € [0,t(z)]), it follows from the previous inequality that w;(t) < W Combining these arguments,
we obtain

2 (%, + )

20 (0, + )
‘ log?C? )(n)e,\oM

log”™ (n)
Ci
log(n)

O ]

eroM (4.3.54)
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Finally, using (4.3.53) and (4.3.54), we obtain for all (¢,s) € [0,T] x [-M, M]

A

- Wwi(t)’ < sup Z(") ) 4 M
4" 5) e

z€[0,t(i)—hn ' (i)

7
+ sup ( 9(2 ) )
ze[om]wn( ) log (n)

Z(n( )+M) XM 4 7 2C;

+ sup

sefoi)]  log? @ (n) log(n)
(n) (((n)
Z; + M
+ sup ‘ (t ) — Ww;(z)].
weft(i), 7] | nF—t0) log? @ (n)eroM

Then we have

Z (4" + s)

]P’( sup  sup ’ - Wwi(t)‘ > 55)

s€[—M,M] t€[0,T] dE”) (t,s)
ZM (Y + M
< IP’( sup Zi(") (t;") +M) > 5) + IP’( sup — ( 5D ) > E) (4.3.55)
w€[0,4(1)— () z€[0.4(0)] Yn (i) log™" ™ (n)
Z(n)( ) 4 M) elog(n)
—_— 7| > P 4.3.
+]P’($€%1£>( )]’e 1o ] s) + (W_ 5 ) (4.3.56)
(n) (((n)
Z; (e + M
+]P< sup ‘ ( — ) owi(m)‘ > 5) (4.3.57)
eet(@), 1) | =t 1og? ) (n)eroM
— 0,
n—oo

where the different convergences to 0 are obtained as follows:

e Lemma 4.3.6 gives the convergence of the first term in (4.3.55),

e Lemma 4.3.7 gives the convergence of the second term in (4.3.55) and the first term in (4.3.56);
for the latter, we apply Lemma 4.3.7 with 1, (i) = e M log(n), which is valid because
(i) =6(i—1)+1,

o for the second term in (4.3.56), we use the fact that W is finite almost surely, see (4.3.6),

e Step 3 of the neutral case in the proof of Proposition 4.3.4 directly establishes the convergence
of (4.3.57).

Finally, we have proven Equations (4.2.5) and (4.2.6) in the specific case of the infinite mono-
directional graph.

4.3.3 First-order asymptotics of the size of the mutant subpopulations
on the random time scale (Theorem 4.2.7 (ii))

In this subsection, we will first show that the random time at which the total population reaches the
size n! behaves asymptotically as the random time at which the wild-type subpopulation reaches
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the size n'. This result is obtained uniformly on the time parameter ¢, conditioned on {W >

0}, and in probability. Intuitively, for any mutant trait ¢ € N, the corresponding subpopulation
grows exponentially at rate Ao after time ¢(i), see Proposition 4.3.4. Due to these time delays (on
the log(n)-accelerated time scale), the total mutant subpopulation remains consistently negligible
compared to the wild-type subpopulation. Consequently the difference between nt(n) and Ut(n)
converges to 0.

Proposition 4.3.12. Assume Equation (4.3.1) holds. Then, for alle > 0 and 0 < T} < Ty, we
have
IP’( sup (nt(n) — crt(")) < s‘W > 0) — 1.

te[T1,T)] n—roo

Proof. The proof will be carried out in two steps. We begin by establishing the result under a
stronger condition.
Step 1: In this step, we will show that for all 0 < §; < d2 and € > 0 we have

P(t sup (1™ — o) > 5151 < W< 52) 0. (4.3.58)
S

[T17T2] n— oo
Let 0 < 81 < 65. Then there exists M € Rt such that

P(‘@] < M’él <W < 52) —1. (4.3.59)

For all € > 0 introduce the event Ag") = {Supte[Tl,Tz] (nt(n) - a§”)) > 5}. Assume that there

exists € > 0 such that the sequence (P(Aé")lél < W < 52))n€N does not converge to 0. This
means that there exists 1 > 0 for which there is an infinite subset NV € N such that for all n € N,

]P’(Aén) |51 <W< 52) > n. For all € > 0 introduce the event

o — (4 280 <y

(n) ._ X
Bz .—{ sup o

te[Ty,Tz]

which satisfies P(Bén)lél < W < 52) — 1, according to Lemma 4.3.2. From this fact, and
n—oo

since Jt(") < n,g") for all t > 0 almost surely, it follows that under Bgl), we have Ut(") < oo for all

t € [T, T5]. Moreover, it also follows that under Bé"), we have Z\" (nt(")) =n! for all t € [T1, T3]

(n) )

In particular, under Aén), there exists t, € [T, T3] such that 7, — Jt(: > €, which implies that

Z(()n) (Jg)) < ntre=?3. Otherwise, by applying the strong Markov property, it would lead to a

()
I

contradiction with Agn). Combining these reasonings, it follows that under Aén) N Bz, we have

that

3 20 (M) = 2 (6i) — Z5 (6)) > ntn (1 — e70F) = Q ('), (4.3.60)

i>1

where we use the standard Landau notation for {2. However, the result regarding the mutant sub-
populations indicates that, due to the power law mutation rates regime, the mutant subpopulations



220 CHAPTER 4. NEUTRAL (AND DELETERIOUS) CANCER EVOLUTION

have a negligible size compared to the wild-type subpopulation. More precisely, under the event
A" A B using (4.3.59) and Proposition 4.3.4, we have

g

Z Zi(") (aﬁf)) < sup Z Zi(n) (7778")) (4.3.61)
i>1 we[Ty,ty] i>1
< sup sup Y Z () + )
WE[T1 tn] s€[~(M+8),M+8] {57
=o(n'").

There is a contradiction between (4.3.60) and (4.3.61), so we have proven (4.3.58) for all € > 0 and
0 <61 < 0s.

Step 2: Using a similar method as in Step 2 of the proof of Lemma 4.3.2, one can show that
for alle >0

P(A§”>

W>0) 0,

n—oo
which concludes the proof. [
In the remainder of this subsection, we will prove the following proposition.

Proposition 4.3.13. Assume Equation (4.3.1) holds. Let 0 < Ty < To, M > 0 and ¢ > 0.

Consider (pg"))tew as defined in (4.1.2). Then, we have

[ ] IfAl:)\Q

20 ()™ 4 5
d(gﬁt(t ) - Lovsoput)] > €) =3 0
i 68

n— oo

]P( sup sSup
s€[—M,M] te[Ty,Ts]

o If \; < \o

Zz‘(n) (pi?i))—&-t +5)

ntlog?® (n)eros

— Tqwsoywi(t(i) + t)‘ > 5) — 0.

n— oo

]P’( sup sup
s€[—M,M] te[Th,T?]

These results correspond to (4.2.7) and (4.2.8) for the mono-directional graph. The proof will
be carried out under the assumption that A\; = Ag. The case where \; < )¢ can be addressed using
similar reasoning and is left to the reader.

Proof of Proposition 4.5.13. Estimate the quantity of interest from above as

2" (o™ + 5)

—w;i () Lo ‘26
d™ (¢, 5) w0 2¢)

]P’( sup sup
s€[—M,M] te[T1,T>]

z (o +s)
di" (¢, s)
+ IP({W —0}n {Ké") (o) + M) > 1} U {Hé") () + M) > 1}) (4.3.63)

< IP’({W >0} N { sup sup
SE[—M,M] tG[T17T2]
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where, for the term in (4.3.63), we use the fact that a necessary condition for the mutant subpop-
ulation of trait i to be strictly positive is that at least one mutational event from the wild-type
subpopulation must have occurred before.

Step 1: The convergence to 0 of (4.3.63) follows from proving that

]P({ sup K(()")(t) = 0} N { sup Hén)(t) = OHW = 0) — L

tER+ teER+ n—roo

Let us first show that P(sup,cp+ Ké") (t) > 1‘W =0) = 0. Notice that, almost surely, for all
n—oo

t e RT

¢
(n) () (4) .—
KM () < KM (1) = /0 /]R+ o 25y Nold5, 00,
because, almost surely, for all ¢ € RT, we have Z(()") (t) < Zy(t). Then it follows that
IP’( sup K(()n)(t) > 1‘W = O) < E[ sup K™ (t) A 1‘W = 0} — 0
teR+ teR+ nreo

by dominated convergence. Indeed, for all w € {W = 0}, there exists T'(w) € R* such that for all
t > T(w), Zo(t) = 0. Combined with u(gn) — 0, it follows that there exists N(w) € N such that
n—oo

for all n > N(w), we have sup,cp+ K™ (t) = 0. We conclude the proof of Step 1 by showing that
P(supycp+ H(()") (t) > 1|W =0) — 0 using similar reasoning.
n—oo
Step 2: We will show that (4.3.62) converges to 0 in three steps.
Step 2) (i): We begin by showing that for all € > 0 and 1 > 0 we have

(n)/ (n) n "
Mefko[lﬁ ) >] —Wwi(t)‘ > g‘W > 77) — 0.

IP’( sup sup

SE[—M,M] tE[Ty,Tx] d,(n) (t,s) o
We have
p( sup |p\™ — €| > MW > n)
te[Ty, T3]
n n  log(W M
gIP( sup |n{™ — (’ci )_Mﬂ Z—‘W>n)
te[T1,Ts] Ao 3
. N M log(W M
te[Ty,Ts] 3 A0 5

Let § > 0. Using Lemma 4.3.2, Proposition 4.3.12 and the distribution of W given in (4.3.6), there

exist M > 0 and N; € N such that for all n > Ny,
n n )

pM )| > M‘W > ) < o (4.3.64)

IP’( sup
te[Tl,TZ]

Now, we can apply Theorem 4.2.7 (i) Eq. (4.2.5) to get that there exists Ny € N such that for all
n 2 N27
Zi(") (tﬁ") +s+ 51)

(4.3.65)
dgn) (t, s+ s1)

|

]P’( sup sup sup — le(t)‘ > 5) <

s€[—M,M] s1€[—M,M] te[Ty,T>]
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Consequently, using Equations (4.3.64) and (4.3.65), we have shown that for all § > 0, there exists
N := max(N7, N2) € N such that for all n > N,

2 (0" + ) ook
di" (¢, )

]P’(Se[sup sup - le-(t)‘ > e‘W > 77) <9,

— M, M] t€[T},Ts]
which concludes Step 2) (i).
Step 2) (ii): Now, we are going to prove that
2080+
4 (t,5)

Let 6 > 0 and 0 < € < 1. According to Remark 4.3.3 Equation (4.3.13) and Proposition 4.3.12, we
have

—wi(t)‘ 25‘W>77) — 0.

n—oo

IF’( sup sup
s€[—M,M] te[Ty,T>]

n 1) " _ (n) _(n)
IP(A;)|W>77> 21—5, where Aé) ::{ sup )‘U(p‘ b

te[T1,Ts]

>—W‘§§}.

e

Combined with Step 2) (i), there exists N € N such that for all n > N, we have P(Aé”) ﬂBé") W >
77) > 1— 0, where

Zi(n) (pin) + 5) e_/\o [pﬁn)_tgn,)}

B .= sup sup
{ d;" (t,5)

g
s€[—M,M] te[T1,T%]

- Wwi(t)’ < g}.

In particular, conditioned on {W > n}, under the event Aén) N Bén), we have that for all ¢ € [T, T5]
and for all s € [-M, M],

Zi(n) (p](sn) + S)

(">_t§">)
d™(t,5)

—w;(t) < (E+ w;(t)W) ™ (pt — w;(t)

so that we can choose & arbitrarily small such that this upper bound is smaller than . By applying
a similar approach for the lower bound, we find that, conditioned on {W > n}, under the event

Ag’) N Bé"), we have that for all ¢ € [T}, T»] and for all s € [—M, M],
200 () _
AT s (4 w(T) —— —o.

dz(”) (t,s) n—¢& &0

Consequently, by choosing an appropriate € > 0, we have shown that there exists N € N such that
forallm > N,

Zi(n) (pgn) + S)
d" (¢, )

P(Se[sup sup —wi(t)‘ §5‘W>77) >1-6.

— M, M] t€|Ty, 5]
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200 ()
Step 2) (iii): Introduce the notation o = { sup sup |M
sel-M,MJte[Ty,To] % (59

complete the proof of Step 2, we will show that P(Cg(n) N{W > 0}) T 0. We have

—w;(t)| > e}. To

P(Cs(") ﬂ{W>0}) SIE”<C§") O{W>n}> +PO<W <n).
Using Step 2) (ii), we obtain

lim sup P (C§“> N{w > 0}) <PO<W<n).

n—oo

Taking the limit as 7 — 0 completes the proof. O
n—oo

4.4 First-order asymptotics of the size of the mutant sub-

populations for a general finite trait space (Theorem
4.2.7)

As in Section 4.3 the sequence (Zl(,n), v E V) nen 18 mathematically constructed using independent
PPMs. In this construction, each population of trait v is decomposed as the sum of subpopulations
indexed by the walks in the graph that start from trait 0 and lead to trait v. An exact definition
will be given below. The idea is to apply the reasoning of Section 4.3 to each walk + from trait
0 to trait v, which will provide the first-order asymptotics for the subpopulation of cells of trait
v indexed by 7. By comparing the order of distinct walks, we can then conclude the first-order
asymptotics of the size of the mutant subpopulation of trait v. However, this reasoning holds only
if there are finitely many walks from trait 0 to trait v. In particular, notice that due to cycles, there
may be countably infinitely many walks from trait 0 to trait v. Consequently, the proof requires
additional steps, introducing an equivalence relation on the walks. We argue that there are only
finitely many equivalent classes, and for each equivalent class, the result follows by adapting the
reasoning from Section 4.3. For the equivalent class with infinitely many walks, we show that, with
high probability, most of these walks do not asymptotically contribute.
Among wild-type individuals, we define the primary cell population, denoted by

(Z ((g)) (t)) i as the set of all cells that have no mutants in their ancestry, tracing back to the initial

cell. This corresponds to Z(()") in the case of the mono-directional graph.

Definition 4.4.1 (Walks and neighbours). Define the set of all walks in the graph V starting
from trait 0 as T'(V). For a trait v € V, the set of traits to which a cell of trait v may mutate
is defined as N(v) == {u € V : (v,u) € E}. For a walk v = (0,---,v(k)) € T'(V), denote the
last trait (k) visited by v as Yena := y(k), and the sub-walk that does not include this last trait

as ? = (0,--- ,v(k—=1)). Introduce the sets of tuples of the walks in V starting from trait 0,
associated with one or two neighbours of the last trait of v, as

Nr = {(v,v) : vy €T(V),v € N(Yena)},

and

Mr = {(v,(v,u)) : vy € I(V), (v,u) € N(Yend) X N(Yena)}-
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We then introduce the birth, death and growth rates of any lineage of a cell of trait v as

() = a(w)(1 -7 W) with 7@ = Y a®(w,u),

ueV:(v,u)eEE

B (v) = B(v) + a(v) > u™ (0, u)u™ (v, w),

(u,w)EN (v)x N (v)
AP ) = al ) — 50(e) = Aw) — 20 (1)

Let Ql(’o)(ds,dﬂ), (0)(ds, db), (Qw(ds,dQ))veF )7 (Q+.0(ds, de))(v,v)eNr and
(Q%(v,u)(d&d@))(%(%u))e]\/[F be independent PPMs with intensity dsdf. The subpopulation of
primary cells is

20 ,1+//R+ (1za 01253} Ul (d5:0) (4.4.1)

d (n)
_/0 /]R+ l{egﬁ(o)zg))(r)}Q(O) (ds, df)) — Z H(O),(v,u)(t)7

(v,u)EN(0)x N(0)

and for all v € I'(V), the subpopulation among the cells of trait .,q4 whose ancestry traces back
to trait 0 with mutations occurring exactly along the edges of v is

(n) (¢
A / /]R+< {6<a™ (rena) 24 (57) } (4.4.2)

T 00 (rena) 29 (57) <0< (00 () + B rena) ) 257 (5= })Q”(ds d9)

(n) (n) ( (n) () )
+ K"‘?a’)’and( ) A 2H'Y ('chd”and) + _ Z H’Y ('Ys'wd"”) + Hg’(vﬂ/end) (t)
UEN(’Yend)vll’7é’Yend
(n)
- Z H’W(”)“) (t),

(v,u)EN (Yenda) X N(Vend)

where for all (y,v) € Np,

(n)
KW / /R+ {9<2a("/cnd)u(">(’Yendﬂ))(l H(n)(%nd))z(n) }Q'y v(dS d@) (443)

and for all (v, (v,u)) € Mr,

t
(n) —
H,Y,(v’u) (t) = A /R+ ]]'{Gga(’yend),u(")(’Yendﬂ))/‘(n)(’Yendy’“f)z-(yn)(57)}QW’(U’u) (ds, dg). (4.4.4)

The process (K% (t))t€R+, resp. (H’(Yn{)v u}(t) = Hitl()wu)( )+ Hi”()u v)(t))t€R+’ counts the number
of mutations up to time ¢ from the subpopulation indexed by ~ that result in exactly one mutant
daughter cell of trait v, resp. two mutant daughter cells of traits {v,u}. Hence the subpopulation

of trait v e V is

ZI () = Z) Lm0y + > Z5(0), (4.4.5)
YEP(v)
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where P(v), defined in Definition 4.2.5, is the set of all walks from trait 0 to trait v.

Definition 4.4.2 (Limiting birth-death branching process for the primary cell population). Let
(Z(0)(t))ter+ be the birth-death branching process with rates a(0) and 3(0) respectively, constructed
as follows

t
Z(O)(t) =1 +/0 /RJr ]I{GSQ(O)Z(())(S*)}QZ()O) (dS,da)

t
_ d
/0 /]R+ Lf0<5(0) 20y ()} Qo) (5, dO).

Notice that with this construction, the monotone coupling

Wt >0, Z() (1) < Zo)(1), a.s.

immediately follows.

Introduce the almost sure limit of the positive martingale (e*A(O)tZ(O) (t)) as

teRT

W= lim e 2007 (1), (4.4.6)

t—o0

whose law is W ' Ber (%) ® FExp (%) , see [22, Section 1.1], or [94, Theorem 1].

Lemma 4.4.3. There exist C(a(0),\(0)) >0 and N € N such that for alle >0 andn > N,

n n 0),A(0))_
e—,\(o)tZ(O) (t) — oA ’(o)tZ((O)) (t)’ > 5) < Mu(n)(o) — 0.

e2 n—oo

IP( sup

teERT

Proof. The result is derived by adapting the proof of Lemma 4.3.1 with ugn) replaced by (") (0). O

Introduce the stopping time of the first time that the primary cell population reaches the size

nt as

7" = inf {ueR": Z((g))(u) >n'}.

Lemma 4.4.4. For all € > 0, (T1,T2) € Rt and ¢, such that log(n) = o(pn) and ¢, =
min £(0,v)

o(n'UEN(‘” ), we have

P<te sup }‘Tt(”)— (tﬁ”)—w)’ 26‘W>0> )

[T it MO) ”*“

(") and Ty ) ,

Proof. By following the proof of Lemma 4.3.2, with Zén) and nt(n) replaced by Z(o)

respectively, we obtain the result.

In the next definition, we introduce an equivalence relation on I'(V'). Two walks are considered
equivalent if they are identical up to cycles (including cycles formed by backward mutations). More
precisely, two walks are equivalent if there exists a minimal walk such that both walks use all the
edges of this minimal walk, possible along with additional edges that form cycles. The purpose of
this equivalence relation is to establish that, within a class of equivalence, only the walk with the
minimal length contributes to the asymptotic size of the mutant subpopulation. In particular, this
minimal walk is actually a path, since only distinct vertices are visited.
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71(0) 71(1) am(3) 71(4) (5)r & 71(8)
120) Q) ‘__'__'__'__‘__'_.'..'..'.T@.T.T.ifjjj.ﬁ.i@

Figure 4.6: Example of Definition 4.4.5: here the walks v,v; and 79, represented respectively in
plain blue, dashed red and dense dotted green, respectively, are equivalent. However, the walk ~s,
represented in sparse dotted purple, is not equivalent to any of the other walks. In particular, it is
not possible to construct a function o satisfying condition (ii) of Definition 4.4.5 for the walk ;.
We have |y| =4, |71| =9, |y2| =7, and 01(0) = (0,0), o1(1) = (1,3), 01(2) = (4,4), 01(3) = (5,8),
a2(0) = (0,3), o2(1) = (4,4), 02(2) = (5,5) and 02(3) = (6,6).

Definition 4.4.5 (Equivalence relation on I'(V')). We say that two walks 1 and 2 in T' (V) xT'(V)
are equivalent, denoted by 1 ~ 72, if and only if there exists v € T(V), and for all j € {1,2} there
erists

o {0,y =1} = {0, |yl = 1}
i (a;(i),75(i))
satisfying :
(i) Vi €{1,2},0;(0) =0, and 7;(]7| — 1) = || — 1,
(ii) Vi € {0, |y| = 1},Yj € {1,2},0,(i) < 7;(i) and 7;(i) + 1 = o, (i + 1),
(iii) Vi € {0, |y| = 1},Vj € {1, 2}, 7(2) = v;(g;(2)) = v;(c;(3))-

Since the graph is finite, there are only a finite number of equivalence classes. For each walk
v € T(V), denote by [v] its equivalence class. In each class of equivalence, there is a natural
representative candidate which is the walk with the minimum length; we will denote this walk by 7.
For each v € V', denote by C(v) the set of representative candidates for the walks in P(v). Note
that |C(v)| < co. An illustration of this definition can be found in Figure 4.6..

We introduce the notion of the mono-directional graph associated to a walk ~ in the following
definition.
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Definition 4.4.6. The mono-directional graph associated to a walk
v =(0,7(1),--- ,v(k)) is the graph (V,, E) where

V, = {0,7(1),- -+ ,v(k)},
Ey = {(0,7(1)), (v(1),7(2), -+, (v(k = 1), v(k))}.

In other words, it is the graph composed of the successive subpopulations

(n) (n) n
(Z(o ’Z(O,'y(l))"“ ,Zf, ))~

Now we have all the preliminary results and definitions necessary to prove Theorem 4.2.7.

Proof of Theorem 4.2.7. We prove Equations (4.2.5) and (4.2.7). The proofs of Equations (4.2.6)
and (4.2.8) are similar and are left to the reader.

Step 1: Let 7 be a representative candidate of an equivalence class. Our first step is to prove,
using the results of Section 4.3, that for all € > 0

sup sup

B( 25 (4" + 5)
sel-M,M]te[0,T] | ) d%") (t,s)

- Ww;(t)‘ > 5) 0, (4.4.7)

n— oo

where for all v € I'(V),

n . 0 B
al(7 )(t, s) .—]l{tE[O,t(’Y)*hfll} + ﬂ{te[t(fy)fh;l,t(»y))}wn log 60) (n)
+ Liep(y).connt "t 10g? @ (n)er O3,

and w, is defined in (4.2.3). Notice that

Z5 (67 + 5)

IP’( sup  sup - - Ww:;(t)‘ >e
s€[-M,M]telo,T] | S5 d% )(t,s) )
Z (6" + 5)
< IP’( sup sup ’77 o) — qu(t)‘ > 5) (4.4.8)
s€[—M,M] t€[0,T] d; (t,s)

70 (¢

+ Z P sup  sup ‘%‘ > a) (4.4.9)
~EFNF () <T s€E[—M,M] t€[0,T] dﬁ (t,s)

20 1)
(n)
dz"(t, s)

+ IP’( sup sup

> g). (4.4.10)
s€[—M,M] t€[0,T]

YN} :t()>T

The term in (4.4.8) converges to 0 by applying Equation (4.2.5) to the mono-directional graph
defined by the walk 7, as proven in Section 4.3. The term in (4.4.9) also converges to 0 since:

e the sum is over a finite set, as we are considering a finite graph with positive labels on the
edges ,
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o for each v € [¥]\{7}, we have t(y) > ¢(7) by definition of the representative (see Definition
4.4.5). This implies, by applying Equation (4.2.5) to the mono-directional graph defined by

v, that
200 () 4
IP’( sup sup ‘w’26> — 0.
s€[—M,M] te[0,T] de (t,5) n—o0
The term in (4.4.10) converges to 0 because
]P’( sup sup Z Zg") (tﬁ") + s) = 0) — 1. (4.4.11)
SEL-MMIEDT] e 5y a(3)>T B
Indeed, for each v € [J]\{7} satisfying ¢(v) > T, we have
IP’( sup  sup 2z (t(n) +s) = O) — 1 (4.4.12)
Rl t n—roo ’ o

se[—M,M] te[0,T]

by applying Lemma 4.3.6 to the mono-directional graph given by +. It remains to handle the sum
over the set A5(T') := {y € [(Y]\{7} : t(y) > T'}. The easiest situation occurs when |A5(T)| < oo, as
the result follows directly in this case. This situation corresponds exactly to the case where there is
no cycle in the graph structure (V, E) for the vertices of 7. Now, consider the case |A5(T)| = co. In
this case, even though Equation (4.4.12) holds for all v € A5(T), it does not necessary imply that
Equation (4.4.11) is automatically satisfied. The result follows if one can show that there exists a
finite subset B5(T') C A5(T) such that

IP’( sup  sup Z Zg") (tﬁ”) +5) = O‘E%")) =1, (4.4.13)
s€[—M,M] t€[0,T] ~EAS (T)\B5(T)

where E;(;") = { SUpye(_ v, 00 SUDse (0,7 e B (T) z{m (tﬁ”’ +5) = 0}. We will now show that B5(T)
exists. The set [}] consists of walks where, for each vertex v visited by 7, there may be a cycle
going back to v. Since there are only a finite number of vertices visited by 7, and the labels on the
vertices are positive, it follows that the number of walks v € A5(T") for which we need to control the

event that they do not have any cells up to time tgfl )4 M is actually finite, and we denote this set
by B5(T). Indeed, for all walks v € A5(T)\B5(T), there exists a walk v; € B5(T') such that cells
in the subpopulation ZA(,") result from (potentially many) mutations of cells in the subpopulation
Z%L). Therefore, if one controls with high probability that no cells are generated up to time t(T" )M
for the subpopulations indexed by ~ € B%n)—which is feasible since B is finite-it automatically
implies by the mechanistic construction of the process that, under such an event, there are almost
surely no cells in the subpopulations indexed by v € A%")\B%")
Equation (4.4.13).

Step 2: In this step, Equation (4.2.5) is proven. Notice that for v € A(v), where A(v) is defined

in Definition 4.2.5, we have dgyn)(t, s) = am (t,s), and also that ~ is the representative candidate
7 of its equivalence class. In particular, this means that }°_ . 4,y wy(t) = Y 5cc(m)F5eaw) wi(t),

. This is precisely the statement of
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where C'(v) is defined in Definition 4.4.5. The proof is obtained by noting that

200 (6 4 s
P ( sup sup ‘ #
€l

—mmeeio,ry ! d (t,s) YEA(v)
20 (" 4
< Z P sup  sup ‘ Z 2 (n) S) —qu(t)‘ > 5) (4.4.14)
FecwyAeAw) EMMIEOTI IR d5(E )

(n) (¢(n)
+ Z ]P’( sup  sup M‘ > 6). (4.4.15)

FeC (v):AEA(v) s€[-M,M] t€[0,T] e[ dg") (t, 8)

Indeed, (4.4.14) converges to 0 by applying Equation (4.4.7) and because the sum is finite. Similarly,
(4.4.15) converges to 0 because the sum is finite and, for all ¥ € C(v),7 ¢ A(v), we have either
t(¥) > t(v) or 8(7) < O(v).

Step 3: In this step, we are going to prove Equation (4.2.7). By following the proof of Proposi-
tion 4.3.12, replacing 77( ") with Tt(n), and defining W as in (4.4.6) instead of (4.3.5), we obtain that
for all 0 < T} < Ty and for all € > 0,

IP’( sup (Tt(n) — O’t(n)) < €‘W > O) — 1.
te

[Tl ’T2] n—oo

Indeed, because the number of vertices in the graph is finite, and due to Step 2, we have shown that
the total number of mutant cells EUEV\{O} z{m (tﬁ") + s) is negligible compared to the number of

wild-type cells Z((g))( n) + s) for any time interval [Ty, Ts]. This allows us to apply the reasoning

from (4.3.60) and (4.3.61), leading to a straightforward adaptation of the proof of Proposition
4.3.12. By adapting the different proofs from Subsection 4.3.3, we obtain that for all 0 < T} < T5,
M >0 and e > 0,

Zl()n)( (n) +s)
P sup sup |——F5 "
<se[—M,M1 e (¢, s)

— 1{W>0}wv(t)‘ > E) — 0.

n— oo

Appendix

Proof of Lemma 4.3.5. For all t > 0 let ]-"i(;) the o-field generated by Z;n)(s) for all 0 < j < i and
0 <s <t Forall h >0, we have

E[M"(t+1) = MPOVFS] = E[20 4+ n)|FP |0 (44.16)
t+h
20 (e Nt / 20, 1"y e B2 (5)| L] ds.
t

The forward Chapman-Kolmogorov equation gives the time-differential equation

dE [Zf”) (t)}
—a

K2

= XE[200(0)] + 20,10 E[20,1)]
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which leads to
(m) m gy At [ (n) (m) ()] A
]Ezf"')(()) [Zi (t)} =7, (0)er ! —I—/O 20@_1/11-711{32571)(0) [Zifl(s)}e&' (t=9)ds.
In particular, by using the Markov property we obtain that

t+h
E[Zf")(t + h)‘]—”l,(fz)} = ZM ()N / 2ai,1u(ﬁ)1]E{Zi(f)l(sﬂfi(f)}e’\g Y(t+h=9) s (4.4.17)
t

7

Combining (4.4.16) and (4.4.17), it follows that (M.™(#)), ., is a martingale. Let

teR+t
FO(t,a,) = (e N te — y)*.
Then, we have

OF ™) n n OF ™)
T(t,x,y) = —2)! Ve Nt F®)(t,z,y) and 5 (t,z,y) = =2V F™),
Y

Applying It6’s formula with z = Zi(n) (t) and y = f(f 2041',1/12@16_)‘5”)5%(?1(s)ds, we obtain

() ()2 (n) ! (n) A0 (n)
(Mi (t)) =™ (t,ZZ- (t),/ 20[1‘_1/,61-716_)\1' SZifl(s)ds)
0

t
= F™(0,0,0) — 2 / 2011 e 3 2, ()M (5)ds
0

¢
—2/\§”)/ e N )San)(s)Mi(n)(s)ds
0

o[ Lo

A 2
LN {n{egaE")Zf")(s—)} — l{ag")zf")(s—)geg(a§”)+ﬂi)zf"')(s—)}})
- (Mi(")(s_)>2]Qi(ds,d9)
K M(n) — 7)\@)5]]_ 2
+ /o /1R+ [( i (sT)+e ™ {9§2a1_1u§’i)1(1—#53)1)252(5*)})

- (M}")(s*))z}m,l(ds,de)
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t 2
(n) — 7)\5")5 )
+ /0 /]R+ [(MZ (s7)+e 2]1{0<a1 1( () ) Z,Sf)l(S’)}

— (M) )@y s, do)

¢ n
+/0 /]R+ (M) = e )sl{e<ai(#;">)225n>(s)})2 — (M) }Qm(ds do)
- / t (20018, 2 (5) + A2 (s)) e N0 (s)ds

0

+2 / (20010, 2 () + A2 (s)) e 0 M s

0
+/0 2021 6) + (f +57) 27 ()] €N 0 ds 4 M (1)

— t " t N
30+ [ 20ne 02 Gds + (a4 57) [P o 2 (s,
0 0

where (Z\Z(n) (t))e>0 is a martingale. Finally, we obtain

t t
n n) —oxMgs (n n n —oaAMg (n
(] )>t:/ 2051 N0 2 (s)ds + (o + B ’)/ e~ 20" (5)ds.
0 0

O

Proof of Lemma 4.3.9. First, we have that E[Z(()n)(u)] — N < e which is exactly the result

for ¢ = 0. Then, for i € N assume that the result is true for i — 1. Taking the expected value of the
martingale Mi(n) defined in (4.3.14) at time u and using the induction assumption we obtain the
following

]E{Zz(n)(u)} < et /Ou Qai,l,ug " e SE[ Z(f)l(s)] ds

< Ci- 1M®)2az 1/ e(RomAi)s ggq 0(=1) gAin
0

1 —Xi)u i— X3
< Ci—lﬂgt)iQOéi—l (IL{/\i:)\O}U + ]]‘{)\7:</\0} py )\‘6()\0 i) )uo( l)ez\z

n 1 0(¢ u
= i—l#E@7)i2CJéi_1 (]l{Ai:XO} + 1{>\i</\0}>\0 _ )\i)u (D ¢ho )
which concludes the proof by induction. O

Proof of Lemma 4.3.10. In the proof, C represents a positive constant that may change from line
to line.

Neutral case: Assume that A\; = Ag. Applying Lemma 4.3.9, recalling that )\(n) = Xo—20 L,
das () (((m s
and noting that there exists N1 € N such that for all n > N7, we have that e M (t‘2 + ) <2, we

obtain

(n )

t(n)+9

) 45 SR
/( ’ e‘”gn)“E{Zf (u )}du<0u(n)/ CyfDehougy,

n) ()
mte tmTs
1
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Using integration by parts, we obtain

€ 4s o n g o et s
/2 WD) g rou gy, < 1 (tin))+s)6(l) /\o(t >+)+9(Z)/( 2 WP~ =Aou gy,

™ = \0) Ao S g
(™ (™

Then, using 6(¢) integrations by parts, there exists No € N such that for n > Ns, we have

— (n)
(?)) +s

4 10 g—Hou e (n) 0(3)
e MMdu < C (t(n)+) .
It follows that for n > max (N1, Na),

)+ —ox™ [ (n) e (n) (,(m) 0(1)
e E[Zz‘ (u )}dU<C o) /‘®t(t<")+ ) ’

(n)
tt(") +s
1

Since vertex i is assumed to be neutral, we have 0(: — 1) = 6(i) — 1. Using similar computation as
above, there exists N3 € N such that for n > N3, we have

tin)+ .
Ll NE 2 (u )]du<C’ e ugi(ﬁzg )07

(n)
t )Jr

It follows that for all n > max(Ny, Na, N3), we have

" n e hos n o(i
E[<Mi( )>t§;‘)+s - (M )>t(?ﬁ>+s} =C o Néa)z("( ), + ) .
51

Deleterious case: We now address the case A\; < Ag by applying the same strategy. We obtain

tf(';)Jrs (n) tgn)Jrs .

/(n) e N UUE {Z(n (u )} du < C’u(n) /(n) D ePo=2X)ugy,
t +s +s
,&n) ( )

n n 0(1) — i () £}
<ou) (tgz) +8) [1{A0>2Ai}e(k° 220 (5 +s)

. —(2)\i—/\0)(t(" +s)
+ Ln=2x} (f§2) +5) + Lin<ag<ar € }

Recalling that 6(i — 1) = 0(i), we find
B (n) —2A(™y (n) n) 0(i) (ho—22) (M +5)
/(") Hi—1€ ‘ E|:Z’L ( ):| du < C/’[’ (ttz + 8) |:]1{)\0>2/\i}e e
tt(") +s
1

" —@x20) (400 +)
+]l{)\022)\i}(’£§2) —|—S) +]l{>\,i<)\0<2>\i}€ B }
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Finally, we have

n n n n 01 _ X (n) s
]E|:<Mz( )>t£;1)+s - <M( )>t(?))+s:| S O/J’((X),?L (t£2) + 8) © : |:]1‘{)\O>2>\i}e(>\0 2>\1)(tt2 )
6"

" —@xi=20) (7)) +5)
+ IL{)\0:2>\i} (tlgg) + S) + ]]'{)\i<>\o<2)\1:}6 a i| :

O
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Chapter 5

Selective Cancer Evolution

This chapter, a collaborative work in progress with Hélene Leman, aims to generalise Theorem
4.2.7 to the case where no conditions are imposed on the growth rate function. This generalization
is particularly relevant in the context of understanding cancer evolution with selective mutations,
where refined results are sought. Chapter 4 focused solely (when considering selective cancer evolu-
tion) on the stochastic exponents of the mutant subpopulations, whereas in the present chapter, we
delve into capturing the first-order asymptotics of their sizes. This endeavor enables the character-
ization of evolutionary pathways and provides a deeper understanding of the asymptotic stochastic
contributions, as already mentioned in Chapter 4.

Within this chapter, we present results on the first-order asymptotics for the case of a finite
mono-directional graph, where the last mutation corresponds to the first selective one. We compare
the first-order asymptotics of the first-selective mutant subpopulation size with the ones obtain in
Chapter 4 for neutral and deleterious mutations. More specifically on three different points: the
powers of n and of log(n) asymptotically captured, as well as the stochasticity of the limit. We also
emphasize on the difference of the proof method developed specifically to deal with such selective
mutation. Additionally, we discuss the increasing difficulty of generalizing these results to arbitrary
monodirectional graphs. A new proof method have to be developed to tackle such difficulty for first
obtaining results on any monodirectional graph and then deduce results on any general finite graph
using an effective evolutionary pathways approach, as for neutral and deleterious cancer evolution,
see Chapter 4, Section 4.4.

5.1 Introduction and microscopic model

In Chapter 4 we studied a toy model of carcinogenesis, primarily focusing on neutral (and delete-
rious) cancer evolution, where results are stated in Theorem 4.2.7. These results concerning the
first-order asymptotics of mutant subpopulation sizes compared to those in current literature re-
garding stochastic exponents offer new insights into the effective evolutionary pathways within the
trait space, as well as into the stochasticity of genetic composition when observing a tumor, but
limited to neutral and deleterious mutations only.

In Theorem 4.2.9, selective mutations are considered, enabling discrimination among evolution-
ary pathways, some of which may contribute asymptotically negligibly. However, this theorem
does not precisely characterise the non-negligible pathways, nor does it provide information on the

235
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stochasticity of the genetic composition. The scope of this chapter is to extend the results of The-
orem 4.2.7 to a more general cancer evolution framework that allows for selective mutant traits. A
novel approach is introduced making progress in obtaining first-order asymptotic results on mutant
subpopulation sizes when selective mutations are considered in the trait space. Up to this point,
we have achieved the case of a finite labelled mono-directional graph, where there is a unique se-
lective mutation corresponding to the last one. The result, stated in Theorem 5.2.3, reveals several
biologically and mathematically intriguing results, which contrast with our previous findings in
the context where only neutral and deleterious mutations are considered. In essence, the current
approach developed in this chapter successfully addresses scenarios involving only the first selective
mutation, but proves inadequate for handling subsequent mutations after the initial selective one.
This fact is primarily due to an infinite expectation of the limiting process. Additional work to get
the first order asymptotics of the mutant subpopulation sizes for any general finite graph allowing
for selective mutations remains to be done in the future.

The model corresponds to the one described in Chapter 4, Section 4.1, using the notations
(V, E, L) for the finite directed labelled graph structure representing the evolutionary trait space
and «,, By, A\, for the birth, death, and growth rates of a trait v € V respectively. We keep the
same initial condition Z,(0) = 1y,—gy for all v € V almost surely. We are considering the following
specific case of a finite labelled mono-directional graph with k + 1 vertices, for some k£ > 1. More
precisely, we have

(V,E, L) ({0 kb AGi+1)i {0, k= 13}, {0(), i € {0, fl}}> (5.1.1)

We use the simplified notations ™ :

regime

= ™ (4,74 1) giving the following power law mutation rates

VO<i<k-— 1,n£(i),ul(-n) — p; < 00.
n— o0

Assume that the first selective mutant trait is the last one, which mathematically means
Y0 < < k— ].7)\1' < )\0 and )\k > )\0. (512)

With this setting three different scenari can happen during a division event of a cell of trait ¢ €

{0, k—1}

2
e with probability (1 — u(-n)) each daughter cell keeps the trait i of its mother cell,

K2

e with probability 2,{™ (1 ( uz(.n)) exactly one of the daughter cell mutates to the next trait

i+ 1 when the second daughter cell keeps the trait ¢ of its mother cell,

e with probability ( (n)) both of the daughter cells mutate to the next trait 7 + 1.

For ¢ = k, during a division event of a cell of trait k, both daughter cells keeps the trait k.
A graphical representation of the model can be found in Figure 5.1. Instead of employing the
deterministic log(n)/Ag-accelerated time scale of (4.1.4), which is appropriate for neutral (and
deleterious) cancer evolution since all subpopulations grow exponentially fast at rate Ag according
to Theorem 4.2.7, we opt for the log(n)-accelerated time scale ¢t — tlog(n) in this context. To be
fully consistent, we define again, for this new time scale, ¢(7) and 6(i) for all i € V.
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zakflﬂi.n]l (1 - ”Ln_ll

N2 a2
an(l B “:,]nj) - (1 B Mn;) o
Figure 5.1: Dynamical representation of the finite mono-directional graph

Definition 5.1.1. Define for all 1 <i <k

o1&,
i) = 5 ;::OKU),
0(i) = {1 <j<i:)\j =N},

as respectively the sum of the labels on the edges from trait O to trait © renormalized by Ao and the
number of neutral mutations on the path from 0 to i.

We rewrite in the following proposition the asymptotic result from Chapter 4, Theorem 4.2.7
in the log(n)-accelerated time scale instead of in the log(n)/Ap-accelerated time scale, for the
subpopulations of traits ¢ € {1,--- ,k — 1}.

Proposition 5.1.2. Let (V,E,L) be a finite directed labelled mono-directional graph with k + 1
vertices, for some k > 1 as defined in (5.1.1). Assume that the first selective mutation on the graph
is the last one as in (5.1.2). Let M > 0 and 0 < Ty < Ty. Using the mathematical definition of
the model given in Section 5.3, see (5.3.2), (5.3.3) and (5.3.4), there exists a random variable W
properly defined in (5.3.10) such that for alli € {1,--- ,k —1}

((t, 5) s Z" ((t(i) + ) log(n) + s)>

nt)\o 1Og0(2) (n)erS

n—oo

where Wo,... 4)(t) := wo,... 4)(tXo) in probability in L>°([T1, T3] x [-M, M]). For any other mathe-
matical description, the convergence is at least in distribution in D([Ty, Tz] x [—M, M]).

Remark 5.1.3. For the trait k — 1 only, the mathematical definition of Z,gi)l is slightly different
in this chapter compared to the one in Chapter 4, Section 4.3, due to different techniques used
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in the proof of the first-order asymptotic of trait k (see Subsection 5.3 for more details on the

construction). The difference does not hamper however from getting the same first-order asymptotics

)

result for the subpopulation size Z,gn 1- Indeed, only the computation of the quadratic variation of the

martingale M,gy_L)l, defined in Lemma 4.3.5, is modified, but this subpopulation is fully constructed
using independent Poison Point Measures, allowing to perfectly adapt the computation done in the
proof of this lemma to get the same result at the end.

5.2 Main results and biological interpretation

In this Section, the result regarding the first-order asymptotics of the first selective mutant sub-
population size is stated. Moreover, some mathematical and biological remarks about this result,
as well as a sketch of the proof, based on heuristics, are provided.

When considering a selective mutation, the first intuitive idea that arises from the term ”selec-
tive” is that only the lineages of the first generated mutant cells contribute asymptotically. Indeed,
any time delay for a lineage results in an exponential growth loss for its size, providing some qual-
itative weight to this intuition. However, the challenge lies precisely in quantifying this intuition.
Specifically, it is necessary to determine how each lineage of the generated mutant cells contributes
asymptotically to the subpopulation size. This raises natural questions for understanding, such as
whether only a finite number of surviving lineages contribute asymptotically, and if so, how many,
as well as whether it is the first lineage to reach a certain level that contributes, among potentially
many other questions. Answering them is not possible solely with results on the stochastic expo-
nents. However, Theorem 5.2.3 quantitatively answers these natural questions on the contribution
of all the lineages on the first-order asymptotics of the first selective mutant subpopulation size.
For doing that, we are going to separate the process Z ,gn) into 3 different processes having different
mathematical analysis, asymptotic contribution and biological meaning:

i e first one, denoted by , corresponds to the process composed of the mutant cells an
i) The first one, denoted by Z." ds to th d of the mutant cells and
their lineages generated up to time

ok —1)

t(,n)(k) = t(k)log(n) — T

log(log(n)).

This time corresponds exactly to the first deterministic time at which it becomes likely to
observe mutational events from trait k — 1 to trait k. Indeed the typical order of the subpop-
ulation Z,g@l at time (t(k — 1) + t)log(n), that is n** log?*~Y(n) according to Proposition

o(k—1)

5.1.2, reaches n , the typical size allowing mutations, at time t(_”)(k:). We will show that

n)

well renormalized, the subpopulation Z,(c’1 at time (t(k) + t) log(n) asymptotically follows a
compound Luria-Delbriick distribution, in the vein of the works of Cheek and Antal [8, 10].

(ii) The second one, denoted by ZIE"Q) , corresponds to the process composed of the mutant cells
and their lineages generated between times [t(_”)(k:),t(k) log(n)}7 that is during a time scale

of order log(log(n)). We will show that well renormalized, the subpopulation Z,E"Q) at time
(t(k) + t)log(n) asymptotically follows the large time distribution of an approxinfate model
with less stochasticity, that is independent from n. This approach is inspired by the works of
Durrett and Moseley [22], Nicholson and Antal [23] and Nicholson, Cheek and Antal [24].
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(iii) The last one, denoted by Zéng), corresponds to the process composed of the mutant cells
and their lineages generated after time ¢(k)log(n). We will show, using a similar martingale
approach as the one of Chapter 4, that asymptotically this process becomes negligible with
respect to the total mutant population Z,gn)

A graphical representation of these three processes is given in Figure 5.2.

A

Z\" =

\4

T T

") (k) = t(k) log(n) — e(k)\i;l)log(log(n)) t(k) log(n) ¢

Figure 5.2: Graphical representation of the 3 subprocesses composing Z,in)
As aforementioned, for stating the first-order asymptotics of the mutant subpopulation Z,g?l),

we introduce a proper definition of the Luria-Delbriick distribution as well as the compound Luria-
Delbriick distribution.

Definition 5.2.1 (Luria-Delbriick distribution). Let (&), be an i.i.d. sequence of exponentially
distributed random variables with parameter X. Let (Y;),cn be an i.i.d. sequence of birth and
death branching processes with rates o and B respectively, satisfying almost surely the initial con-
dition Y;(0) = 1. Let K be a Poisson random variable with parameter w. The random variables
and processes (§;);cn » (Yi);en » K are mutually independent. The Luria-Delbriick distribution with
parameters (A, «, B,w), that may be chosen randomly, is defined as the distribution of

K
B:Zn(&»

The compound Luria-Delbrick distribution with parameters (A, «, 8, w) and associated with the dis-
tribution U is defined as the distribution of
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with (U;),c @ sequence of i.i.d. random variables following U that is independent from B.

In order to deal with the mathematical analysis of the process Z 12"2) , we introduce the following
approximate model with less stochasticity for which asymptotic result concerning the large time
limit of the population size is easily derived.

Definition 5.2.2 (Approximate Model). The approzimate model with parameters (A, p, o, 8) is
defined as the distribution of

K(t)

Z(t) =Y Yi(t - Ty),

where K(t) = N (fot ,ue/\sds), with N a Poisson process with intensity 1, independent from the i.i.d.
sequence (Y;),cn of birth and death branching processes with rates o and 3, and T; = inf{t > 0 :

K(t) > i}. Notice that for allt > 0 and for all i < K(t), we have t—T; > 0. Define = a—p> A\,
then we have

eMZ(t) — 7%, (5.2.1)

t—o00

almost surely where Z>° € L' satisfies E[Z>°] = u/ (X — A) and its Laplace transform follows the

equation
iy _.a A=A
ep( §~)\<I>< §~)\,1, 3 ))], (5.2.2)

where ® is the Lerch transcendent defined as ¥ R(s) > 0, R(a) >0

1 0 ts—le—at
d = dt.
(z,5,0) I'(s) /0 1—zet

= [o—ge 21
L(€,t) = [e } —E

Equation (5.2.1) is obtained in [24], Proposition 2 for the exact same context, but similar
reasoning can be found in [22, 8]. For the sake of completeness, the proof of Equation (5.2.2) is
given in Appendix, inspired by the proof of [24], Corollary 2. Now we have all the material to state
the result of the first order asymptotics for the first selective mutant subpopulation size.

Theorem 5.2.3 (First-order asymptotics for the first selective mutant subpopulation size). Let
(V,E, L) be a finite labelled mono-directional graph with k + 1 vertices, for some k > 1, as defined
in (5.1.1). Assume that the first selective mutation on the graph is the last one as in (5.1.2). Let
0 < Ty < Ty. Using the mathematical definition of the model given in Section 5.3, see (5.3.2),
(5.3.3), (5.3.4), (5.3.5), (5.3.6), (5.3.7), (5.3.8), and (5.3.9), there exists two random variables
2y and Zp%, properly defined in Propositions 5.4.3 and 5.4.4 respectively, that are independent
conditioning on W (properly defined in (5.3.10)) such that

(zfﬁ’ ((t(k) + 1) log<n>>>
te[Th,T5)

A
ntie log‘)(kfl)rg (n)

Z}?:?l + ZI??%

n—oo
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in probability in L°°([Ty,Tz]). The random variable Zyy follows a compound Luria-Delbrick dis-

tribution with parameters
20[]6, k—
<)\Oa g, ﬂka )\Lulwklw)
0
where wy_1 = Wo,... k—1)(t(k)), and associated with Uy, the distribution of the almost sure large
limit of the natural martingale associated to a birth and death branching process with rates oy, and

B respectively. More precisely,
Ak A
U := Ber ( ) ® Ex < k)
af Qe

The random variable Zi%, follows the distribution of the asymptotic large time limit of the population
defined by the approzimate model from Definition 5.2.2 with parameters

(Nos 20— 1 pg—1wr—1 W, g, Br) -
For any other mathematical description, the convergence is at least in distribution in D([T1, T5]).

The proof of this theorem involves employing distinct proof techniques for the three subpop-
ulations Z,(fl), Z,E"; and Z,ing) that are summed up here, alongside some heuristics and biological
interpretations:

e Heuristics concerning the convergence of Z ,inl) : The random variable Z; is the asymp-

totic limit of the well-renormalized subpopulation Zénl) composed of the mutant cell lin-

eages issued from mutational events before time t(n)(k) The analysis is made in two steps.

First we adapt a proof from [8] or [10] to demonstrate that at time ¢ )(k), the number

of mutant cells of trait k asymptotically follows a Luria-Delbriick distribution with pa-

Qa1 ik . P .
rameters ()\o,ak, B, %wqu), which has a infinite expectation. Such proof uses

the Poissonian structure of the process of mutation from trait kK — 1 to trait k£ as well as
that conditioning on the number of mutant cells generating due to mutational events up
to time t(f)(k), the vector of the remaining time for each of the mutant clone to grow up
to time t(_")(k) is asymptotically the order statistic of a vector of i.i.d. exponential ran-
dom variables with parameter \g. Subsequently, we establish control over the size of all
mutant cell lineages present at time t&n)(k) by time (t(k) + t)log(n) using a martingale ap-
proach. These lineages experience exponential growth at rate A\; over a duration of time
(t(k) + t)log(n) — t&n)(k) = tlog(n) + e(k ) log(log(n)), resulting in a typical size of order

@ (nt’\k 1og9(k_1)% (n)) This subpopulatlon corresponds to the lineages of the possible mu-
tant cells generated due to random mutational events appeared before the deterministic time
t(f)(k). Due to the selectiveness of the mutation, their lineages have at time t(f)(k) asymp-
totically infinite expectancies. Moreover, the fact that they asymptotically contribute to the
size order of trait k agrees with the natural intuition behind considering a selective mutation.

e Heuristics concerning the convergence of Zk 5 Dealing with the appropriate normal-

ization of Z,E; is more complex. For the mutant cells generated between times ¢ )(k) and

t(k)log(n), and their lineages, we approximate this subpopulation with the simpler model



242 CHAPTER 5. SELECTIVE CANCER EVOLUTION

of Definition 5.2.2 with the adequate parameters that are (Ao, 2ax—1pk—1wk—1 W, ag, Bi), to
reduce stochasticity and facilitate obtaining its asymptotic limit at time ¢(k) log(n). We rig-
orously establish by a martingale argument using an L' convergence that at the first-order,
this subpopulation behaves asymptotically akin to the considered approximate model up to
time ¢(k)log(n). In particular, such approximate model grows exponentially fast at rate A

during a time t(k)log(n) — t&n)(k) = e(iigl)log(log(n)), implying that at time ¢(k)log(n)

AL
the subpopulation Z,g"Q) is of order O (logg(k_l)ﬁ(n)) Then we obtain its asymptotic limit

at time (t(k) 4 t)log(n) using a law of large numbers argument. More precisely, after time
t(k)log(n) there are no longer mutational event from trait k — 1 to trait k that are counted
A
in this subpopulation anymore. Because at this time we have an order of O (loge(kfl)Tg (n))
mutants cells, and that their lineages grow exponentially fast at rate A\; during a time ¢ log(n)
1) 2k

it resulted in a subpopulation of order O (loga(k Do (n)nt)"“> at time (t(k) +t)log(n). This
subpopulation encapsulates the idea that an asymptotically infinite number of lineages (but
not all of them) significantly contribute to the size of the selective mutant trait subpopulation,
despite being characterised by a finite mean random variable. However, these infinite number
of lineages are all produced on the slower log(log(n))—accelerated time scale, meaning that
they are asymptotically all condensed at the same time point for the log(n)—accelerated time
scale. Moreover, understanding the equation governing the Laplace transform of this limiting
random variable, see Definition 5.2.2, provides valuable insights into the actual asymptotic
contributions of these lineages, depending on their generation timing.

e Heuristics concerning the convergence of Z,g"g): Dealing with Z,(Cng) , the subpopulation
containing solely mutant cells generated after time t(k)log(n) along with their lineages, is
done using a similar martingale method as the one used in Chapter 4, to get that it scales
as nihr loga(kfl)(n). Hence, asymptotically it becomes negligible and vanishes in the limit.
Heuristically, the selectiveness of the trait implies that only the one generated around time
t(k)log(n) are asymptotically contributing at time (¢(k) + t) log(n). At time t(k)log(n), the
number of mutant cells of trait k£ generated from mutational events from trait £ —1 is of order

@) (loga(k_l) (n)) Then their lineages are growing exponentially fast at rate A\, during a time

tlog(n), giving a size of order O <log9(k_1)(n)nt)‘k) at time (¢t(k) + t)log(n). Biologically
meaning, after time ¢(k)log(n) the generated selective mutant cells and their lineages have
too much time delay compared to the first generated mutant cells such that their contribution
appears negligible.

Before going into the mathematical definition of the model used to prove Theorem 5.2.3, we are
making some interesting remarks on such result.

Remark 5.2.4. e First-order asymptotics: In Chapter 4, Theorem 4.2.9, one obtains that
the stochastic exponent associated to the mutant subpopulation of trait k asymptotically con-
verges, conditioning on {W > 0}, to tAr, which corresponds to the power of n captured in
Theorem 5.2.3. Notably, such result means that in the case of the selective mutant trait,
growth stems not from the mutational process but rather from the inherent expansion of se-
lective mutant cell lineages. This stands in contrast to deleterious mutations, where growth is
actually driven by the mutational process, and neutral mutations, where growth represents a
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balance between mutational process and inherent lineage expansions. Moreover the power of
log(n) is also captured by this theorem, which is a generalization of Theorem 4.2.7 allowing
for a first selective mutation. An interesting pattern for such power occurs. For deleterious
and neutral mutations, we previously obtained that a neutral one increases such power by 1
where a deleterious one has no effect. For a selective mutation, it is a bit more intricate:
the power obtained for the previous trait is accelerated by the ratio between the growth rate
of the selective trait and the actual one of the previous trait (that is the one of the wild-type
subpopulation). In particular if there are only deleterious mutations before the first selective
one, then the power of log(n) stays equal to 0 for the first selective trait.

e Time dependence: An interesting characteristic of the limit for the selective mutant trait,
that contrasts with neutral and deleterious mutations, is its independence from the time pa-
rametert. In Theorem 4.2.7 we have shown that alongside a mono-directional graph composed
of neutral or deleterious mutations only, the asymptotic limit of a trait depends on the time
parameter t as a polynomial function of degree the number of neutral mutations up to this
considered trait. With Theorem 5.2.8 we show that this time dependence is lost when the first
selective mutant trait is encountered in the mutational pathway. In a certain sense, one can
say that it resets the time dependence. Observing such differences depending on the type of the
mutation seems more than intuitively natural. Indeed, with a neutral mutation, the balance be-
tween the mutational process and the inherent growth makes clear that the lineages have equal
contributions on the size order, generating a dependence on the time parameter via an extra
integral operator from the time dependence of the previous trait. For a deleterious mutation,
driven by the mutational process, the time dependence comes from taking into account only
clones generated at the considered time, meaning that the dependence is identically forwarded
from the one of the previous trait. For a selective mutation, the inherent growth prevails the
mutational process, implying that only the lineages generated around the typical time to ob-
serve such mutant trait are asymptotically contributing, and so all the time dependency from
the previous trait is completely lost.

e Stochasticity of the limit: In the case of neutral (and deleterious) cancer evolution, we
obtained in Theorem 4.2.7 that the stochasticity captured by the first order asymptotics of
the mutant subpopulation sizes is fully given by the random variable W, which quantifies the
large time stochasticity associated to the primary subpopulation. In Remark 4.2.8 point 3., we
argued that such result could not be obtained for a selective mutation, explaining the failure of
the martingale approach. In Theorem 5.2.3 we show that the latter conjecture is true. In the
limiting random variables, Zg% and Zp5, the stochasticity of W is present, but another layer
of stochasticity is also given due to the growth of the lineages of the selective mutant cells.
The independence, when conditioning on W, of these two limiting random variables comes
from the fact that they correspond to the asymptotic limits of two subpopulations of mutant
cell lineages that are independent due to the mutational process which is Poissonian.

e Dealing with the next mutant trait: Asymptotically we obtain that the limiting random
variable Z% has an infinite expectation, coming from the Luria-Delbrick part of the com-
pound random variable, a consequence of the selectiveness of the considered mutation. Such
specificity entails mathematical difficulties, explaining why the martingale approach developed
in Chapter 4 fails. Indeed, taking an expectation balances the probability of an event with the
number of cells seen if the event occurs. Consequently, unlikely events, such as rapid muta-
tions to the selective trait, can lead to extremely large population sizes far exceeding typical
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asymptotic sizes implying the expectation order is given by these unlikely event. Moreover, it
hampers from dealing with the next mutant trait. In particular the cells of trait k+1, and their
lineages, produced by Z,(Cfbl) are, for now, untractable. More specifically, dealing with the latter
subpopulation of trait k + 1 using the same approach as for capturing the asymptotic limit of
trait k, the martingale approach developed to show that Z,(CZLF)LQ and the adapted approximate
model are sufficiently close to transfer the limiting behaviour from the approzimate model to
Z,(;j_)m, fails. Indeed, a L' approach is needed for this step. Instead of approxzimating a mutant
trait by its asymptotic limit to tackle the next mutant trait, a potential solution to deal with
such difficulty is to directly deal with all the mutant subpopulations together without using
the approximations given by the limits at each step. This procedure would normally allow for
overstepping the infinite expectation of Z7.

Two steps limit: Instead of being interested in the double limit given by the large population
and power law mutation rates regime, another interesting approach is to consider a two steps
asymptotics where first the large time limit is obtained with fixed mutation rates and then
the limit when these rates tend to 0 is obtained. In [24], Nicholson, Cheek and Antal are
studying this two steps limit. An interesting fact is that the results are different, meaning that
there is no equivalence between performing the double limit directly or in two steps. But some
similarities are actually obtained for the structure of the asymptotic limits. Notably, both
asymptotic results can be decomposed into the product of a time-independent random variable
(which are different) and a simple time-dependent deterministic function controlled by the
growth rate of the selective mutant trait (with the same deterministic function but taken at
different times). More precisely, in their case, the stochasticity of the asymptotic limit that
is captured (see [24], Theorem 1) is a Mittag-Leffler distribution with tail parameter the ratio
between the growth rate of the wild-type subpopulation and the one of the first selective mutant
trait, and a scale parameter satisfying a specific equation depending on the birth, growth,
and mutation rates of the preceeding mutant traits. Such asymptotic random variable is not
captured by Theorem 5.2.3, as mentioned above. Moreover, the deterministic function is in
both case the exponential function whose growth rate is the one of the selective mutant trait,
but taken at different times. In their case, when looking at the limit when t — oo, the time that
is taken for the deterministic function is actually t, where in our case, at time (t(k)+t)log(n)
it is tlog(n) that is taken.

5.3 Mathematical definition of the model

In this section we mathematically construct the model in the case of the finite labelled mono-

directional graph of (5.1.1). The sequence ((Zz(n)) © k}) is mathematically constructed
i€{0,,

neN

using independent Poisson Point Measures (PPMs) and birth and death branching processes. Such
construction differs from the one given in Chapter 4, Subsection 4.3, but remains obviously equal
in law. More specifically, it depends on whether (k — 1) = 0 or §(k — 1) > 1, biologically meaning
whether there are neutral mutation on the trait space before the first selective one or not. We start
by the more complex, but more interesting case that is 6(k — 1) > 1.
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5.3.1 Case with at least one neutral mutation

Assume in this subsection that 6(k — 1) > 1. In particular this case implies that k& > 2, because
there is at least one neutral mutation before encountering the first selective one. Consequently we
have that t(_”)(n) < t(k)log(n). Hence, introduce the difference between these two times as

n n Ok —1
0" (k) = t(k) log(n) — t™ (k) = % log(log(n)) > 0. (5.3.1)
0
The k — 2 first subpopulations (Zi(n)) O 2} are constructed exactly as in Chapter 4, Section
1€ -

4.3. More precisely, let

Q5 (ds,dd), Qi (ds,ds),
(Qi(ds7d9))i€{1,---,k72} ) (Ni(ds’de))ie{o,m,ku}7 and (sz(d&de))ie{o,m,kfﬂ7

be independent PPMs with intensity dsdf. The subpopulation of wild-type cells is

t t
(n) . b _ d _ )
ZO (t) =1 —|—/O - ]l{egaé")zén)(s*)}QO(dS’de) /0 /]R+ 1{9@023")@*)}@0(‘15"[‘9) HO (t)7
(5.3.2)

and for all ¢ € {1,--- ,k — 2}

Z(n / /]R+ {o<a™z ()} T { ™ 2™ (s=)<0< (M +8:) 2 (5~ )}) i(ds,df)(5.3.3)

+ KM () + 2H§2< t) — H™ (1),

where for all i € {0,--- ,k — 2}

(")
/ /]R+ {9<2a #(n) (”)>Z(n)( ,)} dS de (534)
) _
t) _/0 /RJr]l{gSai(ugn))?an)(s)}an(ds,de).
(n) n)

The subpopulation Z, ", is also constructed using PPMs, but the process denoted by H ,271 counting
the number of cell divisions of trait & — 1 where both daughter cells are mutating to trait k is
constructed in a more complex way. More precisely, we are separating this process into a sum of
three different processes, where each of them are contributing for a specific time interval: the first
one ngi)l,l up to time t(_n)(k;), the second one H,gri)l’z between ™) (k) and t(k)log(n), and the third

one ngi)l,B after time ¢(k)log(n). Then, let Q;_1(ds,dd), ( wp4(ds, cl(?))ze{1 - be independent

14y

PPMs with intensity dsdf, that are also independent from (Zi(n)) . oy The subpopulation
i€{0, k=2
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Z ,5@1 is

200 (0) = K0 + 2H, (1) — HP (1) (5:3.5)

/ /R+ {0< (m 7 (o= }— ]l{a(”) 20 (s~ )<9<( ™ 4B, 1)Z(n) })Qk 1(ds, df)
HY @) o= B3 1)+ B, (6= 1) v 0) + B, 4 (= 1) log(m) v 0),

) tAt™ (k)

"™ (t :=/ / 1 71 (ds,df),
k—l,l() o - {Hgakfl(uﬁf”)l) Z;(Ji)l(s—)}Qk 1,1( )
) Al (k)

"™ (1) = 1 m ds, df),
k—l,z( ) / /R+ {0<ak 1(u(") ) 2, (tin)(k)+s)}Qk71,2( )

1, / / ™ o(ds, do).
h 13 R+ 9<0tk 1 Mén)l) Z,(Jl)l(t(k) log(n)Jrs)}Qk 1’3( )

The construction of the subpopulation Z ,gn) is the most involved of all. In order to use different proof
techniques, we are using PPMs, birth and death branching processes and a Poisson process. In a
same way as for the construction of H ]gri)l, the process K ,81)1, counting the number of cell divisions of
trait k—1 where exactly one of the daughter cells mutates to trait &, is constructed as a sum of three
processes, each of them contributing specifically for one of the aforementioned time interval. Then,
let Ni_1,1 be a Poisson process with intensity 1, (Nk_u(ds,dﬂ))ie{zg}, Qi)Q(dS, de), zz(ds, de),
and Qy 3(ds, df) be PPMs with intensity dsdf and (U;,Y;, X1 4, Xo ,, Vi)z‘e]N be birth-death branch-
ing processes with rates aj and [ all starting with 1 individual at time ¢ = 0 almost surely. All

such processes are independent from each others and independent from (Zi(”)) O ) The
i€{0,+ k—
subpopulation Z](Cn) and the process K ,g’i)l are constructed as
Z0() = 2 (1) + 20 (( t(_")(k)> v o) + 2 ((t = t(k) log(n)) V 0), (5.3.6)
K () = K )+ K (8= 8700) v 0) + KL, (¢ t(k) log(n)) v 0).
The subpopulation Z,g?l) satisfies
B(n)l l(t)
A0 Z Ui (( — ™ (k )) vo), (5.3.7)
K,ﬁ’il,l(t)
B = Y vi((t-1) A (1w - 1)),
i1
H, 4 (8)

: —gm ™) (k) — 5™ (= s™ ™ (k) — 5™
+ ; Xz,l((t S\ )/\(t (k) — 5! ))+Xz, ((t S )/\(t (k) — 8! ))
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=) tAt™ (k)
K () == N1 /0 2%—1#/(@”_)1 (1 - ﬂ/(;l_)1> Z/(Ji)l(S)ds )
Ti(n) := inf {t >0: K,(Cri)l’l > z} ,
S =it {t=0: 1", > i}

K3

The subpopulation Z ,(JLQ) is defined as

B, ()

Znw =3 v ((t - 6(_”)(k)) v o) , (5.3.8)

i=1

Al (k)
Blg@l,Q(t) = Kl&)l,z(t) + 2ng7i)1,2(t) "‘_/0 /R+ 1{9gakz,(€”2’(s)}Qi,2(dSa de)

tAlt™ (k) .
B /0 /]R+ 1{9§6k2;i?2(s)}@’“72(d3’ d0),

Al (k)
(n) — h
Ky () = /0 - 1{0§2ak,1u(") (17#,&’?1)4’91 (tgl)(k)+s)}Nk—1,2(dS,d@).

o1
And finally the subpopulation Z,gna) is constructed as
Z3(0) = Ky (1) + 2, (1) (5.3.9)
t
+/0 /R+ Locorzyo) ~ ]l{akZ,i’fg(s)segmwk)Z;@?(s)}Q’“?’(ds’da)’

t
(M) () e
im0 '_/0 o o200, (1=, 200, (40 o))} k-1,3(ds, dB)-

k—1

5.3.2 Case without any neutral mutation

Assume in this subsection that 8(k — 1) = 0. For the simplicity, we give a construction when k > 2,
although the case k = 1 is included in this specific case 6(k — 1) = 0, and can be mathematically

constructed in a similar way. The specificity of this case is that t(f)(k’) = t(k)log(n). Let

Q5 (ds, d6), Qf (ds, dO),
(Qi(ds»de))ie{L--- =2} (Ni(ds, de))ie{o,u- k—2y» and (Q" (ds, de))ie{o,m =2}

be independent PPMs with intensity dsdf, and construct the wild-type subpopulations Zén), the mu-
tant subpopulations Zi(") fori € {1,--- ,k—2} and the processes HZ-(n) and Ki(") fori e {0,--- , k—2}
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as in the case §(k — 1) > 1. The subpopulation Z,g’i)l is constructed as

t
= /0 /R+ (H{Oﬁaﬁlz;gi)l(s_)} - ]l{@;(c@1zl(ci)1(5_)§9§ (a;?1+6k71>zéi)1(s_)})Qk—l(ds,d9)
+ K + 2H, () — H™, (1),
H" (1) = H", | () + H, L, ((t— t(k) log(n)) v 0),

(n) tAt(k) log(n)
Hy- I ™ (ds,df),
k-1, 1( ) / /]R+ {0<ak 1( (m ) Z,(!i)l(S’)}Qk 1,1( )

H / / " 1 o(ds,d).
k— 12 R+ «9<o¢k 1 “k")1) Z<"> t(k)log(n)-‘,—s)}Qk 1,2( )

Let Nj_1,1 be a Poisson process with intensity 1, Ny_12(ds, df), and Qy 2(ds,df) be PPMs with
intensity dsdf and (U;,Y:, X1, Xa2,i, Vi)ie]N be birth-death branching processes with rates aj and
Bk all starting with 1 individual at time ¢ = 0 almost surely. All such processes are independent

from each others and independent from (Zi(n)) . A We write the process Z,in) as the sum
i€{0, k—1

of two sub-processes Z ,grfl) and Z ,E,"Q) For all ¢ > 0 define

Z(t) = 23" (8) + 2 (¢ — t(k) log(n)) V 0)

B, (1)
Zl(cnl) Z Ui ((t —t(k)log(n)) v 0),
K;’11,1<t>
Bli@1(t) = Z Y; ((t - Ti(n)) A (t(k) log(n) — Ti(")>)
i=1

H(")l | (t)

5 () (o) 4 (- 587) 1 517,

(n) Nt () (n) () \ n)
Kknl () == Ni_121 (/0 2ak71/~‘knf1 (1 Nkn 1) Zk 1(3)d5> )
T(n) = inf {t >0: K,(C")1 L > z}
S(n) = inf {t> 0: H,in)ll Zz}

Z(t) = K, () + 2H", L (t)

i
+/O /R+ Jl{ggakz;ﬁg(s)} - ]l{akz,gjg(s)geg(aﬁﬁk)zxg(s)}Qk,z(ds,d8)7
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t
() 4y
Fimralt) = /0 /R+ oo, (1) 20, 106 gy oy} Vi1,2(485 08),

where U; are birth and death branching processes with rates oy, and fy, as well as Y; and X, ; and
Xio. Ti(n), respectively Si(”)7 are the jumping times of the process K,(Ji)l 1, respectively H,ii)l 1

5.3.3 Approximate primary subpopulation

Let (Zo(t))scr+ be the birth-death branching process with rates o and fy respectively, constructed
in the following way

t t
Zo(t) =1+ / / Lig<anze(oy3 @b (ds, d6) — / / Lgo< o0 2oy Q2 (ds, d6).
0 R+ 0 R+

Notice that with such a construction it immediately follows, independently of the value of §(k — 1),
the monotone coupling

vt >0, Z5 (1) < Zo(t) as.
Denote by

W= lim e ! Zy(t), (5.3.10)

t—o0

the almost sure limit of the positive martingale (e*A"tZo(t)) whose law is

teR+?

W 'Y Ber (/\O) ® Exp ()\0> )
Qo Qo

see [22], Section 1.1, or [94], Theorem 1.

5.4 Proofs of the first-order asymptotics of the first-selective
mutant subpopulation size (Theorem 5.2.3)

This subsection is devoted to the proof of Theorem 5.2.3. To this aim we start by giving an
interesting result on the speed of convergence for the martingale associated to a supercritical birth
and death branching process to its asymptotic large time limit.

Lemma 5.4.1. Let (Z(t))i>0 be a birth and death branching process with rates a and B satisfying
Z(0) = 1 almost surely. Denote by X := o — B its growth rate and assume X\ > 0. Let W the almost
sure large time limit of the martingale (e~ Z(t)) Let f1(n) —2 00 and h(n) — oo. Denote

20" n—00
by ey, = e i Vh(n). Then we have

t€[f1(n),o00]

P ( sup |e*)‘tZ(t) -Ww| > sn> < Ch™(n),

where C = 20#.
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Proof. Let fa(m) be a function tending to infinity. We have

P sup |e*)‘tZ(t) — W} >en | <P sup ‘e*)‘tZ(t) - e*’\fl(")Z(fl(n))‘ > n
te[f1(n), f2(m)] te[f1(n), f2(m)]

+P(

MO Z (i) - W = ).

Then using Doob’s inequality to the martingale (e=*Z(t) — e 1M Z( f1(n)))
shev’s inequality for the random variable e=*/1(") Z(f;(n)) — W, we get

£ f1 () and Cheby-

P sw ez -w]ze,
te[fi(n),f2(m)]

< 205n2/f ( )(a+ﬂ) e MR [Z(s)] ds

= 2070[ j\_ 55;26_”1(”).

Taking the limit when m tends to infinity, due to continuity of measure, we get
P sup |e_>‘tZ(t) —W|>en| < L—’—ﬁh_l(n),
t€lf1(n),00] A

which ends the proof. O

Analogously to [8], we show that at time t(f)(k) only a finite number of mutants cells of trait &
are presents in the population of cells, whose law is asymptotically distributed as a Luria-Delbriick
random variable.

Lemma 5.4.2. We have
Bl(ci)l,l (t(—n)(k)) — B2,

n—00

in probability, where Bp2 , 4 follows a Luria-Delbriick distribution with parameters

20[;6, k—
<)\07 Qp, Bkﬁ )\1ulwklw) .
0

In particular due to A\, > Ao, we have E {Bg‘il)l] = 0.

Proof. The proof is sufficiently close to the mathematical analysis made in [8, 10] such that we are
only giving the different steps without details:
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e One start to show that it is unlikely to observe up to time t(f)(k:) cell divisions of trait £k — 1
whose both daughter cells mutate to trait k, that is

P(HM, (10) =0) — 1.

n—oo

Then it immediately follows that

=, (W)
P Z Xin (tgn)(k) - Si(n)) + X2 (t@)(k) - S-(n)) =0 — 1

: v n—o0
=1

e Then adapting techniques from [8, 10] one shows that the number of cell divisions of trait
k — 1 whose only one daughter cell mutates to trait £ up to time t(f)(k:) is asymptotically
Poisson distributed with parameter M'g%wk_lw, that is

n n 200 _
K, (1900) — N (ka_1W),

n—00 Ao
in probability.

e The last step consists in showing that conditioned on K,Ei)l’l (t(_n) (kj)) = j, the law of the

vector (t(_”)(k) - Ti(n)>
ie{l, 5}

of j i.i.d. exponential random variables with parameter Ay, which is a classical result.

is asymptotically distributed as the statistic order of a vector

O

We start by showing that the first order asymptotics at time (¢(k) + t) log(n) of the lineages of
cells of trait k issued from mutational events up to time £ (k) is of order n'*« loge(k_l)% (n). Such
order comes from the exponential growth of the lineages of the mutant cells at rate A, between times
[t(f)(kL (t+t(k))log(n)]. Asymptotically, it is a compound Luria-Delbriick distribution (associated
with the distribution of the large time limit of the martingale associated to a birth and death
branching process with rates o, and (i) that is captured. Basically such result comes from Lemma

5.4.2 giving asymptotically how many mutant cells there are at time t(_") (k) and then we control the
exponential growth at rate A of each lineage for a time (t+t(k)) log(n) —t™ (k) = tlog(n)+€(_n)(k).

Proposition 5.4.3. For all0 < Ty < Ty

n B L,
(ZIE:,1) ((t(k) + 1) 10g(n))> P E .
6(k—1)3k oo | Pe1 = i ,
nt)\k IOg ( ))\o (n) tE[T1,T] — — o

in probability in L>°([T1, Ts]), where the sequence (Uf);en is the almost sure limits of the positive
. _ l
martingales (e /\ktUi(t))ie]N' Namely U "2’ Ber (2—’;) ® Exp (2—’;)
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Proof. By definition of the process Zlitll)’ given in Equation (5.3.6), we have for all ¢ > 0
B (17 (k)

= Z U, (é(_") (k’) + tlog(n)) e—Ak (Z(Jb)(k;)"rt log(n))’

n) i=1

2" ((t + t(k)) log(n))
G(k—l)i—’g (

nt e log

A (n)
because (t+t(k)) log(n) —t™ (k) = tlog(n)+£™ (k) and nt* log?* V30 (n) = ¢ (€2 ty+t10g(m)
by definition of Egn)(k) given in Equation (5.3.1). Then we have

)

(n) B 14
Pl sup Zrt ({0 1(R)) log () _ Z Ux|l>e <IP>(B(n) (t(n)(k))?éBoo )
g 1o f(F—1) 32 _ i | =8 = k—1,1 \ 1= el

R T e (1) B

gn
, €
+P (B, > gn) + Y P(BY,, =i)iP sup  |Ur(s)e™™* = U > = .
i=1 s€([T1 log(n),00] 7
According to Lemma 5.4.2, we have that P (B,(;i)l)l (t(_")(k:)) # B,‘z‘iM) — 0 because they are

integer random variables.
Applying Lemma 5.4.1 to the birth and death branching process U; with rates ay and [j one
obtain that

C
P sup |U1(s)ef)"“S — Uf°| > § < —in~ A .
s€[T log(n),o0) 1 €

A
Then choosing g, — oo such that g3 = o (n kZTl) we get
n—oo

gn
ZH” (B2, =1i)iP < sup |U(5)e*)"€5 -U>| > E
sE|

C AT
S 79?;,77’7 kz ' ? Oa
i=1 T1 log(n),o00] 7 £

which concludes the proof. O

In the next proposition we capture the first-order asymptotic of the subpopulation Zl(ch) at
time tlog(n) + Egn)(k). We first show that its first-order asymptotic at time E@)(k) is of order

10g9<k71)%(n) which is obtained using the approximate model of Definition 5.2.2 combined with
a martingale approach. Then, using a law of large numbers we control the exponential growth at
rate A\ of the lineages of the mutant cells present at time E(_")(k) during a time tlog(n) giving the
renormalizing factor n* .

Proposition 5.4.4. For all0 < T} < T5

z{") (t log(n) + é(,”)(k))

n:; (Zg%)te[ThTz] ’

O(k—l)’)\\—ﬁ (
te[Ty,Ts]

ntAr log n)

in probability in L* ([T1, Tz]), where Z3%,, properly defined in (5.4.1), is the asymptotic limit of the
approximate model of Definition 5.2.2 with parameters (A, 2ak—1 pp—1wk—1 W, ag, Bi)-
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Proof. Introduce the following approximate model

t t
~ I _ b _ _ d
Znalt) = R1a(t) + /O /]R a7 a0} Qalds, d0) /O /R oz ) @ alds, o),

t
Ky 1,2(1) ::/O /]R+ 1{9S2%71M71W71W6A03}Nk,l,z(ds,da),

where wy,_1 = W(o,... x—1)(t(k)). According to Definition 5.2.2 we have

—ZH’Z <£(_n)<k)> Z (5.4.1)
BN — I?Za e
logQ(k—l)ﬁ (n) n—oo

almost surely, where the law of Z k2 1s given by the distribution given in this latter definition with
parameters (Mg, 2a—1 ik —1wi—1 W, ag, Br). The proof is done in two steps. The first one is to show

that up to time E(ll)(k:) the processes Z,ing and Z}c,g are close using a martingale method, and the
second step is applying a law of large numbers method to get the asymptotic limit.
Step 1: We are going to show that

283 (4 )
S P (5.4.2)

A
loge(k—l)ﬁ (’ﬂ) n—oo

in probability. In the next Lemma, we are introducing the martingales that we are going to use, as
well as we compute their quadratic variations.

Lemma 5.4.5. Define
t
M) = 20 — [ e 2, (100 +5) ds
N ~ t
My 2(t) == G_AktZkﬁg(t) —/ 2ak,1,uk,16_(’\’“_)‘O)ka,1st.
0

Then (M,gnQ) (t)) and (Mk’g(t)) | are martingales, with quadratic variations
: teR

teRT

t t
<M’£Z)>t — / 201 e Z{) (t(,n)(k) + s) ds + (o + ﬁk)/ 6_2/\'“821&72)(3)055,
0 0
t t
<Mk72>t = / 2Ozk_1/Lk_167(2)\k7)\0)5wk_1Wd8 + (Otk + ﬂk)/ 672)%82172(8)618.
0 0
We also have that

<M;£72), Mk,2>t = /Ot 200p_1e M {Min,)l (1 - Mgi)l) Z,(Ji)l (t(,n)(k) + 8) A uk,le’\"swk,lW} ds

t ~
+ (o + B) /0 e~ Pes (z,gfg(s> A Zm(s)) ds.
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Proof. The proof that M, lgnz) and M, k,2 are martingales as well as the computation of their quadratic
variations can be obtained easily by adapting the proof of Chapter 4, Lemma 4.3.5. We are going

to compute <M,EnQ), Mk72> . Let F(t,z,y,7,9) = (e 'z —y) (e~*'Z — y). We have that
: ¢

oF

E(t, T,Y,T,Y) = —A\pe Mt [x (e_)"“tf — ﬂ) + (e_”\’“tx - y)] ,

oF - i~ ~
@(ta$7y7$7@:_(e At _y)7

OF - _
a—g(t,x,ym,ﬂ) =— (e Akty —y) .

Applying Ito’s formula we get
N t
M) ()M 2(t) = F<t, 2 (8), / 20ujp_q ™ e s Z(M) (t@(k) +5> ds,
0
_ t
Zk,z(t),/ Q001 pu—re” MRS Wds
0

t

= F(0.0,0.0) = A [ e (200(6)Ma(s) + Zuals) M (5)) ds
0

t t
- / Mk,g(s)Zozk_lufcn_)lZ,&)l (t(_")(k) + s) e M3ds — / M]gg)(s)2ak_1uk_1wk_1W67()"“7)‘°)5d5
0 0

t
(n) —AgS
“f L Ww O i i, (1))

(M2 () + € Uiy e werns)) — M;Q(S)Mk,g(s)] Ni—12(ds, df)

Al (k) - R -
n — Ak s
- 0 /R+ [ (Mk’Q (8) 2 1{0§ak71 (Hl(:>1)2Z1(971)1 (tl(gn)l-ﬁ-s)}) Mk’Q(s)

- M,Sf;)(s)z\”jm(s)} QY1 5(ds, do)
t (n) A _ \
+/O /R+ [ (ng (e) +e” k81{0<akzl(c7fz)(5_)}) (Mk’Q(S) te ké]l{egakzc,z(s_)})

- Mé@’(s)ﬂk,xs)] Qb o (ds, do)

t
(n) — ks A7 — ks ~
+/o /w MM“ (8) e 1{9<Bk22’,’£<8>}> <M’“’2(S) e l{egﬁkzk,xs*)})

_ Még)(S)Mk,z (s)] Qz,z(ds, dh)
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t
_ —Ak/ o~ (ZZZQ(S)MM( )+ Zy2(s) M) (s )) ds
0
t —_—
—/ 200 1e "Mk (M ()/;,&3 Z(n) (t(f)(k)—ks) +M,§72)( Vi —1Wh— 1We)‘05) s
0
t —
+/ (M,gg)(s)Qak_1uk_1wk_1We>‘°Se_)‘ks + Mk72(s)2ak_1u,(gi)1Z(n) (t(n)(k) + 8) e_)"“s> ds
0
t
+/ e 2820y, (N;(:;)l (1 - H;@l) Z,i”_‘)l (t(_n)(k) + 3) A pg—1Wg— 1W€/\°S) s
0
t —~— ~
[ e (20060 Ma(s) + a9 MR (o)) ds
0

+ /0 2 (g + Be) (2405(5) A Zuals)) ds
+ N (s),

where N(™) is a martingale. Finally we obtain that

t
(M) M) = /O 2, 1e 2% () (1= ™)) 287 (£ () + 8) A s wn W) ds

t ~
+ (ag + Br) / e 2Aks (Z,EHQ)(S) A Zk’2(5)> ds.

0

In the next Lemma, we are computing the asymptotic limit of the finite variation process

associated to the subpopulation Z ,inz) .

(’f 1)

Lemma 5.4.6. Let 0 < T} <15 < and € > 0. Then we have

tlog(log(n))
P sup / 20051 e AS
te[T1,T2] Jo

n—oQ

(n) Z,gn)l ( (n)(k) + s) — uk_lekoswqu’ ds > 5> — 0.

Proof. Introduce

— wk,1W S g

(n) 7", ( £ (k) + 8)
Ay = sup

s€[0,T; log(log(n))] n)‘o(m;;l) _Z(*n)(k)) loge(k_l) (n)elros
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We have that P (Aé")) — 1 according to Proposition 5.1.2. Under the event A( ") we have

n—o0
tlog(log(n))
/ 20 _1e” S u,(c") Z,i”)l ( £ (k) + s) — uk_le’\oswk_lW‘ ds
0

tlog(log(n))
= / 20[]6,16_()\’“_)\0)5
0

zZ" (t(") (k) + s)

(™ e(;H)) _ wld
n W — S
(U;g_1 n/\o(e(lz\gl)ie(_n)(k) . 1) Joros Hk—1Wk—1
tlog(log(n))
< / S0y e k205 (\(Mgglnak 1> ‘wk W +< (m) ) (h 1>>5) s
0
200 n _
< () e+ ) )
Ak — Ao
<e

for n large enough and taking a well chosen €. So we get that under Aén) we have

tlog(log(n))
sup / 201 (") Z,gri)l (t(,n)(k) + S) — g1 w,_ W | ds < ¢,
te[T1,T2] JO
and because P (Ag”) —— 1 the result is obtained. O
n— oo

Now we are going to show that well renormalized the processes Z,(ch) and ka72 are closed in
probability up to time E(_")(k:).

Lemma 5.4.7. Let 0 < T} <15 < (kol) and € > 0. Then we have

P ( sup log™ ™+ (n) ‘ZIE”Q) (tlog(log(n))) — Zm (t log(log(n)))‘ 2 5) — 0.

te([Th,Ts] n—»00

Proof. We have
P( suplog™(n) |27 (tlog(log(n)) — Zi.» (¢log(log(n))| > 2e>

te[T1,Tz]
<P sup
te(T1,T:)

tlog(log(n))
+P sup / 200, _1e NS
te[Th,T>] JO

M) (tlog(log(n))) — My (t 10g(10g(n)))’ > 5) (5.4.3)

i 2 (€ () + 5) (5.4.4)

— uk_w)‘gswk_lW’ds > s) .



5.4. FIRST-ORDER ASYMPTOTICS OF THE FIRST SELECTIVE MUTANT 257

The convergence to 0 of the term (5.4.4) is given by Lemma 5.4.6. For the convergence to 0 of the
term (5.4.3) we start by using Doob’s Inequality in L? (see [95] Proposition 3.15) applied to the

martingale (M ,2"2) (t) — Mka(t)) . and then we use the expression of the quadratic variations of
: teR

n)

5 and Mk’z, proved in Lemma 5.4.5, to get

the martingales M, ,i

P ( sup MY (tlog(log(n))) — My (tlog(log(n)))‘ > 8)
tE[ThTZ]

< ;%E [M,E"Q) (T log(log(n)))2 + Mk,g (T log(log(n)))2

— 2M,£g) (T3 log(log(n))) Mk’g (T log(log(n)))}

4 T5 log(log(n))
=3 (/ 2ak,1u,(€"_)1e*2>‘ks]E {Z,g@l (t(_n)(k) + s)} ds
0

T log(log(n)) ()
+ (ag + Bk)/o e 2 [Zk,2 (s)} ds
Tz log(log(n))
—|—/ 20{]6,1,11,]6,167(2)\’“7/\0)ka,11€ [W]ds
0
T log(log(n)) _
+ (g + Bk)/ e RS [Zkg(s)] ds
0
T, log(log(n))
— 2/ 201 SR [u,(j_)l (1 — /1,81_)1) Z,Si)l (t(,")(k) + s) A ukfle)‘oswk,lW} ds
0

T3 log(log(n)) o () ~
— 2 (an + B / e P [Zm (s) A Zk,g(s)] ds
0

4 [Telosllostn)) () 1)\ () (4(n)
_ 4 / 20010 |ufy (1= 1) 200 (K200 + 5) = pere w1 W] | ds
0

22
(5.4.5)
T3 log(log(n)) o () -
+ (o + 5k)/ e R HZ’C’Z (s) — Z]{;,Q(S)H ds (5.4.6)
0

T log(log(n)) )

+ / 2041 () e 2B 207 (1 (k) + 5] ds>, (5.4.7)
0

where for the last equality we used that for all (a,b) € RY we have a + b — 2(a A b) = |a —
b|, applied with the couples (a,b) = (ugl_)l (1 — ué"_)l) Z,(;i)l (t(_n)(k) + s) ,;Lk_lekoswk_ﬂ/V) and

(a,b) = (Z,E"Q) (s), ZkQ(S)) To show that the terms (5.4.5) and (5.4.6) converge to 0, we are going
to apply the dominated convergence theorem. Using that E[W] = 1 and that for all s € R* we
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have according to Lemma 4.3.10
E [ZH (t@(k) + s)} < Ot (ugi_ln“’f—l)) (5.4.8)
. (t@(k) + s)g(k_l)
we get that for all s < T log(log(n)) and for n large enough
e [y (1= ) 20 (87 () +5) = proae ||
< =2 (1) Y (Ot (1" ) + i)
< O(k)e~ =205,

e)\osnﬂ(k—l) log79(k71) (TL),

because ug)knt(k) — Hi:ol w; and where C'(k) is a constant that depends on k. We obtained an
’ n—oo

upper bound that is integrable on RT. Moreover we have for n large enough
E e_)"*‘SZ,gg)(s)} = / Qak_lu,(;i)le_hk“E [Z,gri)l (t&n)(k) + u)} du
0
< C(k) (ugﬁint(k)) / e o)y,
0
< C(k),
where C(k) is a constant depending on k that may change from line to line, as well as

~ s 200, —1 fbk— -
. {eﬂkszm(s)} :/ Dvp_ypip—ye” NNy dy = SRR LT (1 - ei(AkiAO)S> '
0 Ak — Ao

It implies that it exists C'(k) such that for n large enough we have
e SR HZ,%) (s) — Zk2(S)H < e s (IE [Z,(ch) (s)} +E [2}62(8)}) < C(k)e s,

which is integrable on R*. To apply the dominated convergence theorem, it suffices now to show
that for all s € RT

E{|u (1= ) 2% (K00 + 5) = meaweawe|] — o, (5.4.9)
E Hz,gf;)(s) - Z,M(S)H 0. (5.4.10)

For the convergence to 0 of the term (5.4.9) we use that
E | (1= i) 207 (K00 + ) = iy wede||

< ‘(u,irl_)lne(k_l)) (1 — ,u,(cn_)1> — uk,l’ E [n_e(k_l)Z,iri)l (t(,n)(k) + s)}

zm (t(_") (k) + s)

o (S (k) log? =1 (n)eos

+ /J/k_l(i)\oSE

— wk_1W

— 0,
n— oo
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(n)
1

because pi;, nf®=1 ;1 and because one can get with some extra efforts the convergence

n—oo

in L' for the subpopulation of trait k-1.
For the convergence of the term (5.4.10) we use that under the event {Vu € [O,s],Ké@Lz(u) =

IN(;.C_Lg(u) and H,g’i)m(u) = O} we have that Z,ing (u) = Zk,g(u),Vu € [0, s] almost surely. Then we
apply the Chauchy-Schwarz inequality to get

n) > n >
E HZIE’Q (S) N Zk’Q(S)H =k |:‘Z]E,’2) (S) B Zk72(8)‘ ]l{vue[Ovs]vKl(cTi)l_z(u)zf?k—lz(u) and H)(CT:>1 Q(U)ZO}:|

+E “Z(" Em(s)‘ 1

< e[l 7]

¢ (3u € [0, ), Ky () # Kio1,2(w)) + P (3u € [0, ), HYY, () = 1)

< Ce* e {1 — exp </ 20,1 E Hu(") ( u,(:_)l) Z,i’i)l (t(_")(k) + u) - uk_le’\°“ka—1H du>
0

+1—exp </05 Q1 (u,(cnjlfﬂi [Z]g’i)l (t(_”)(k;) + u)} du) }2

{EIuE[O,s],K,iTLQ(u)#I?k,1’2( ) or H{™, ,( )21}}

— 0,

n—oo
where we use the dominated convergence theorem for the last convergence. We conclude the proof
by showing that (5.4.7) converges to 0. Using the computation of (5.4.8) we obtain that

() t(k—1) 0-1) () ey ) [ s
(5.4.7) < Cr—1 (“@,k—ln ) (t(k) + Tz) (ukiln ) ukﬂ/ e~ (2Ak=20)s g ¢
0

— 0,

n— oo

because ué;) pte=1) ]_[Z o Hi < oo and u( )

n— oo

Finally we obtained the convergence to 0 of the terms (5.4.5), (5.4.6) and (5.4.7) which ends the
proof. [

ptk=1) Mr—1 < OQ.
n—oo

Combining Lemma 5.4.7 and Equation (5.4.1) we obtain Equation (5.4.2).
Step 2: By construction of ZIEHQ) we have that

Z{ (¢ )
71 (flog(n) + (P (0) = 30 Viltlog(n)),

=1

where the (V;);en are independent birth and death branching processes with rates aj and S
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satisfying V;(0) = 1 almost surely. So it comes that

. . 2 (6 (1
2% (1og(n) + €7 k) ! SEE)
AL = Ak Z ¢ * ¢ K (tlog(n)) ’
nt e log? F=V3s (n) log?* Y30 (n) i=1

In order to show the result, we are going to use the following lemma, which is a variant of the law

of large numbers.

Lemma 5.4.8 (Law of Large Numbers). Let g, — oo be a deterministic function and (G(”))
n—00 nelN

am
9n

be a sequence of natural numbers valued random variables such that ( ) g converges in prob-
ne

ability to G € L' having a density with respect to the Lebesque measure. Let ((Xi(”)) >
€N/ L en
be a sequence of independent and identically distributed stochastic processes, independent from

(G(”))neN. Let fp 200 hp, — o0 and 0 < Ty < Ty, assume that for all € > 0 and for

n— 00
alli e N
1
> s) <h,",
G(n)

g—n ZX(" (tfa) — E[X*]G™,

te[T1 fr, T2 fn]

P < sup ’Xi(") (t) —

where X2 € L*. Then if g, = o(h,) we have

in probability in L ([Ty,Ts]), where X°° follows the distribution of any X °.

Proof. We have

G(")
P sup Z X (tf) — E[X®]G®| > 4e
te[Ty,Ts] | In
1 g
<P| sup (Xi(n)(tfn) - Xfo) > 2¢
te[T1,Tz] | In ;
G'(")
+P ZX‘X’— [X®]G*| > 2¢
lG=gn]

x™(tf,) — X

<Pl — sup
In ; te[Ty, 1]

>e€ (5.4.11)

|G —|G®g.]|

+P 1 Z sup

XM (tfn) = X7°| >
9n o1 te[T1,Tz]
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[G=gn] |G(n)7LGoog"J‘
+P Z XX —E[X®|G®|>c | +P o > IX®|>el|. (5.4.12)
n i=1

The second term of (5.4.12) converges to 0 according to the law of large numbers because the

sequence of random variables ( |G(n)gfoog"|> converges in probability to 0. The first term of
(5.4.12) satisfies neN
[G=gn]
P Z Xoo - XOO]GOO >e
,/Wp(Goofx)P L%JXOO x| > € | de
0 > — 7

which converges to 0 according to the dominated convergence theorem, where for > 0 we use the
law of large numbers to prove that the integrand converges to 0 when n goes to infity. The first
term of (5.4.11) satisfies

[G™gn]

P iz sup

X"(tf,) —Xfo‘ >
In T €[, T

= /OOOIP(GOO =) |zg,|P (tesup

[T1,T2]

n 0o Egn
XMtf,) - X3 ’ > m) da,

n

which converges to 0 according to the dominated convergence theorem, where for all z > 0 we use
the hypothesis g,, = o(h,,) to show that the integrand converges to 0, as well as we use that G* is in
L'. The second term of (5.4.11) converges to 0 using similar techniques with the assumptions. [J

A
The proof is ended by an application of Lemma 5.4.8 with g, = loge(k_l)ﬁ(n)7 G =
Z,inz) (E(_n)), G™ = 7%, (XZ-(")) N (e71Y;(1)), .en fn = log(n), and where we use Lemma
) ) 7/6 1

5.4.1 to get the scaling h,, = nT1 k.

O

In the next proposition, we capture the first-order asymptotics of the subpopulation Z,i 4 at
time ¢ log(n) using a martingale approach. Initially, the mutation process producing cells of trait k

is of order O (loge(k_l)(n)>, and then the mutant cells have a time ¢log(n) to growth exponentially
fast at rate A\g. These two heuristics combined gives that the typical order of Z (n)(t log(n)) is

0O (nt’\’“ loge(kfl)(n)) .

Proposition 5.4.9. For all0 < T} < T5

Z™ (tlog(n
k,3 (0 kg(l )) SN (Z]C;og) o
ntAe log (k— )(n) [T ] n—oo te[T1,Ts]’
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in probability in L>([T1, To]), where Z7% = %W@O, where ag is the constant coefficient of

the polynomial function u — w,... —1y(t(k) 4+ u).

Proof. Define the following martingale
M) = etz @) — [ 2010\, e 20 (k) log(n) + s) ds
k3 : k3 ) k—1Hg 1 k-1 g )
whose quadratic variation is
t t
<M,§7§)>t = / 2ak,1u§:)16_2>‘k82181)1 (t(k)log(n) + s)ds + (ag + Bk)/ e_QAkSZ,EQ(s)ds.
0 0

These two facts follows from adapting the proof of Lemma 4.3.5 to this specific situation. Then we
have

(n)
7™ (tlog(n ‘Mk (t)’
P{ sup £ 0 kg(l ) —Zp3| =2 ) <P sup % 2€ (5-4.13)
tE[T1,T2] nt/\k IOg ( B )(n) ’ te[Tl’Tz] log ( - )(n)
tlog(n) () —xys (1)

20 e k87 t(k)log(n) + s)ds

P sup fo E—1Hg_q e(kfll;_l( (k) log(n) ) — 75| > e . (5.4.14)
te(T1,Tz] log (n)

We start by dealing with the term (5.4.13), where in the computations C' is a constant that may
change from line to line. By using Doob’s Inequality, Lemma 4.3.9 and that ué;)kn)‘ot(}“) —

n— oo

Uk = Hf;ol pi < oo as well as E [e_/\klegg) (8)} < Clog?*=Y(n) for all s < Ty log(n) that

’Mé?(t)‘ C
Pl sup ——— 1 >el<——~ g (MW }
te[Tll,)TQ] log?®~V(n) ~ ] 7 log?e* N (n) [< k’3>T2 log(n)

C Ts log(n) () o (n)
< — Qap_1pty e 2 MSE | 2™ (t(K) log(n) + s)| ds
102D () /0 k=11 [ r—1 (t(k)log(n) )}

T log(n) o (n)
+ (o + 5k)/ e R {Zk,S (S)} ds
0

s

T log(n)
—|—/ log? =Y (n)e= 4 ds
0

C Ts log(n) () > -
< - - n ot(k) O(k—1) —(2Ar—Xo)s
g ([ () s e

IA

1
O -
<10g0(k1) (n) )
0.

—
n—oo
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Now we are going to deal with the term (5.4.14). Using the change of variable s = ulog(n) we
obtain that

tlog(n) Z(") (t(k) log(n) + S)
20{ . 'u/(n_) 67}\;@8 k—1 dS
/o k—1Hg—1 log‘g(k_l)(n)
= /t 2001 ™ n—AkuZIEi)l ((t(k) + u) log(n))
0 k—1 1og?® =1 ()

(n)
_ /t %1 (u(n) ng(k_1)> 7,7 ((t(k) + u) log(n)) (k= Ao)u
0 k-1 no(ute(k—1)/X0) 10g9(k71)(n>

log(n)du

log(n)du.

Now introduce the event

237 (k) + w)log(m)
nAo(ut€(k—1)/Xo) 1Og9(k71)(n)

Aén) = sup
u€[0,T5]

We have according to Proposition 5.1.2 that P (Aén)) — 1. Moreover wq,... —1)(t(k) +u) is a

n—oo
polynomial of degree §(k—1), so for the sake of simplicity we will denote it by P(u) := Zfi%_l) a;u’.

We have that

t
/ 2001 (ufﬁ)me(k*”)
0

2 ((t(k) + w) log(n))
Ao (ute(k—1)/Xo) logG(k—l) (n)

t
/ 201 (ugﬁ)lnz(’“l))
0

. ( 2y, ((t(k) + u) log(n))

nAo(ut€(k—1)/Xo) loge(k_l)(n)

P sup
te [T1 ,Tz]

n~Ae=20) log(n)du — Z5s

> 25)

- P(u)W) n~Ae=20)U oo (n)du

<P sup
te(Th,Ts)

)

t
/ 2001 (,u,(;i)ln[(kflo P(u)Wn~Pe=20) og(n)du — Ve 5) . (5.4.15)

0

+ P sup
te[Th,Ts)
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Under the event A(n) we have

g

t zm ((t(k) + u)log(n))
(n) _e(k—1) k-1 g —(Ak—Xo)u
20— P(u)W I d
/0 Qg1 (ukqn ) (nxo(uM(k—l)/Ao)loge(’“1)(n) (u) n og(n)du

t
S/ 2001 (uén_)lne(kfl)) gn~(Ak—do)u log(n)du
0
tlog(n)
= 2ap_1 (Mgi)lné(k_l)) g/ e~ Au=20)s g
0

2051 (ué’i’lnﬂk—l)) B
< £
- A — Ao

< C,

where C' is a constant strictly positive, that comes from the fact that u,(cnjlnak_l) — pp—1 < 00.
n—oo

Due to P (Aé")> — 1 for all £> 0, one obtains that

n—oo

t
IP’( sup /2ak_1 (u,(cnjlné(k_l)>
te[T1,12]) | JO
Z™ ((H(k) +u)]
. k-1 (t(k) + v log(n)) — P(w)W | n= P20 og(n)du| > e
nAo(u+L(k—1)/Xo) loga(k_l)(n)
— 0.
n—oo

Now we have that

t
/ 2051 (u](vn_)lne(k*l)) P(u)Wn~ Q=20 og(n)du
0

O(k—1) .
_ Z / s, (ul(i)lne(kflg aWuin~ =200 log (n)du
i=0 70

For the case i = 0 we get

(n)  e(k—1)
t 20,1 (uk_ln ) agW
/ 201 (,Uf](:_)1ne(k71)) aOWn*()\k,f)\o)u log(n)du _ X : (1 N n*t()\kf)\o))
0 k — Ao

201 Hk—100

w.
n—oo A — Ag
For the case ¢ € {1,--- ,6(k — 1)} applying i integration by part subsequently, one gets that

0(k—1) ¢
Z / 20051 (ugi)lne(kfl)) aiWuinf(A’“f)‘O)ulog(n)du — 0.
i=1 Y0

n— oo

Combining these two previous computations, one can show with some extra efforts that the term
(5.4.15) converges to 0, which concludes the proof. O
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Appendix

Proof of Equation (5.2.2). We define the following function, corresponding to the Laplace transform
of the well-renormalized population Z(t)

He = B [e 0]
We have that
t -
L) =E {exp </ M (r (e ™M) =1 ds)},
(€0 e (r () -1)
where
t ILL€>\S
r(§) ::/ ———E {e‘fy(t_s)} ds,
0 [, nerdu

with Y is a birth and death branching process with birth and death rates @ and [ respectively,
starting with one cell at time 0.
Combining the two previous equations we have

L(6,t) =E [exp (u /Ot s (E [e—fe’i‘m—s)} - 1) ds)} .

E [efgefhy(tfs)} =K [ege_ilg{e_i(tﬂ)y(ts)}} ,

Notice that

which gives using the Laplace transform of the martingale associated to a birth and death process
that

- —Xs
E |:e—§e*MY(t—s):| 1 _ 56 _ ]
t—oo 14 ge—)\s%

Applying the dominated convergence theorem we obtain that

* 5 1
_ —A=Ns__ &
exp( u{/o e 1+€exs§d5>]
,Lllé. o —Xiks 1
eXp | ——= e A ﬁds
( A Jo L+ eSe™ )]

o a A=A
(o502

where ® is the Lerch transcendent defined as V $(s) > 0, R(a) > 0

1 0 ts—le—at
d = dt.
(2,3,0) T'(s) /0 1—zet

L(&t) —E

=E

=E
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Abstract:

This thesis focuses on the study of two stochastic models related to medical problems. The first one lies on
understanding infection spread of cooperating bacteriophages on a structured multi-drug resistant bacterial
host population. Motivated by this example, we introduce an epidemiological model where infections are
generated by cooperation of parasites in a host population structured on a configuration model. We analysed
the invasion probability for which we obtain a phase transition depending on the connectivity degree of the
vertices and the offspring number of parasites during an infection of a host. At the critical scaling, the invasion
probability is identified as the survival probability of a Galton-Watson process.

With the aim to get a biological more relevant model, we analysed a similar model where a spatial structure
is added for the host population using a random geometric graph. We have shown that such spatial structure
facilitates cooperation of parasites. A similar phase transition occurs where at the same critical scaling
the invasion probability is upper and lower bounded by the survival probabilities of two discrete branching
processes with cooperation.

The second medical question deals with understanding the evolution of the genetic composition of a tumour
under carcinogenesis, using multitype birth and death branching process models on a general finite trait space.
In the case of neutral and deleterious cancer evolution, we provide first-order asymptotics results on all mutant
subpopulation sizes. In particular such results capture the randomness of all cell trait sizes when a tumour
is clinically observed, and mostly it allows to characterise the effective evolutionary pathways, providing
information on the past, present, and future of tumour evolution.

Moving beyond this restrictive neutral and deleterious cancer evolution framework, we provide a new
method to understand the first selective mutant trait size.

Résumé:

Cette these porte sur I’étude de deux modeles stochastiques liés a des problemes médicaux. Le premier
vise & comprendre le processus épidémique généré par des bactériophages coopératifs dans une population
de bactéries résistantes aux antibiotiques. Pour cela, nous introduisons un modele épidémiologique ou les
infections sont générées par la coopération de parasites dans une population d’hotes structurée selon un modele
de configuration. Une transition de phase est observée pour la probabilité d’invasion dépendant du degré de
connectivité des sommets et du nombre de parasites générés lors d’une infection d’un hote. Au seuil critique,
la probabilité d’invasion est identifiée comme la probabilité de survie d’un processus de Galton-Watson.

Dans le but d’obtenir un modele biologiquement plus pertinent, nous avons analysé un modele similaire
ou une structure spatiale est ajoutée a la population d’hétes en utilisant un ”random geometric graph”. Nous
avons montré qu'une telle structure spatiale facilite la coopération des parasites. Une transition de phase
similaire se produit ou au seuil critique, des bornes supérieure et inférieure sont obtenues pour la probabilité
d’invasion en tant que probabilités de survie de deux processus de branchement avec coopération.

La deuxiéme question médicale concerne la compréhension de 1’évolution de la composition génétique
d’une tumeur en formation, en utilisant des processus de naissance et de mort multitypes branchants sur un
espace de traits fini. Considérant une évolution neutre et délétere, nous fournissons des résultats au premier
ordre asymptotique pour toutes les tailles des sous-populations mutantes. En particulier, nous capturons la
stochasticité associée aux tailles des sous-populations mutantes lorsqu’une tumeur est observée cliniquement,
et surtout nous caractérisons les chemins évolutifs effectifs, fournissant des informations sur le passé, le présent
et le futur de I’évolution tumorale.

Au-dela de ce cadre restrictif d’évolution neutre et délétére, nous proposons une nouvelle méthode pour
comprendre le premier ordre asymptotique du premier trait mutant sélectif.
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