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Vincent Calvez, Directeur de recherche CNRS à l’Université de Brest, Co-directeur de thèse,
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Abstract

This thesis focuses on the study of two stochastic models related to medical problems. The first
one lies on understanding infection spread of cooperating bacteriophages on a structured multi-drug
resistant bacterial host population. Motivated by this example, we introduce an epidemiological
model where infections are generated by cooperation of parasites in a host population structured on
a configuration model. We analysed the invasion probability for which we obtain a phase transition
depending on the connectivity degree of the vertices and the offspring number of parasites during
an infection of a host. At the critical scaling, the invasion probability is identified as the survival
probability of a Galton-Watson process.

With the aim to get a biological more relevant model, we analysed a similar model where a
spatial structure is added for the host population using a random geometric graph. We have shown
that such spatial structure facilitates cooperation of parasites. A similar phase transition occurs
where at the same critical scaling the invasion probability is upper and lower bounded by the
survival probabilities of two discrete branching processes with cooperation.

The second medical question deals with understanding the evolution of the genetic composition
of a tumour under carcinogenesis, using multitype birth and death branching process models on
a general finite trait space. In the case of neutral and deleterious cancer evolution, we provide
first-order asymptotics results on all mutant subpopulation sizes. In particular such results capture
the randomness of all cell trait sizes when a tumour is clinically observed, and mostly it allows to
characterise the effective evolutionary pathways, providing information on the past, present, and
future of tumour evolution.

Moving beyond this restrictive neutral and deleterious cancer evolution framework, we provide
a new method to understand the first selective mutant trait size.
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Résumé

Cette thèse porte sur l’étude de deux modèles stochastiques liés à des problèmes médicaux. Le
premier vise à comprendre le processus épidémique généré par des bactériophages coopératifs dans
une population de bactéries résistantes aux antibiotiques. Pour cela, nous introduisons un modèle
épidémiologique où les infections sont générées par la coopération de parasites dans une population
d’hôtes structurée selon un modèle de configuration. Une transition de phase est observée pour la
probabilité d’invasion dépendant du degré de connectivité des sommets et du nombre de parasites
générés lors d’une infection d’un hôte. Au seuil critique, la probabilité d’invasion est identifiée
comme la probabilité de survie d’un processus de Galton-Watson.

Dans le but d’obtenir un modèle biologiquement plus pertinent, nous avons analysé un modèle
similaire où une structure spatiale est ajoutée à la population d’hôtes en utilisant un ”random
geometric graph”. Nous avons montré qu’une telle structure spatiale facilite la coopération des
parasites. Une transition de phase similaire se produit où au seuil critique, des bornes supérieure
et inférieure sont obtenues pour la probabilité d’invasion en tant que probabilités de survie de deux
processus de branchement avec coopération.

La deuxième question médicale concerne la compréhension de l’évolution de la composition
génétique d’une tumeur en formation, en utilisant des processus de naissance et de mort multi-
types branchants sur un espace de traits fini. Considérant une évolution neutre et délétère, nous
fournissons des résultats au premier ordre asymptotique pour toutes les tailles des sous-populations
mutantes. En particulier, nous capturons la stochasticité associée aux tailles des sous-populations
mutantes lorsqu’une tumeur est observée cliniquement, et surtout nous caractérisons les chemins
évolutifs effectifs, fournissant des informations sur le passé, le présent et le futur de l’évolution
tumorale.

Au-delà de ce cadre restrictif d’évolution neutre et délétère, nous proposons une nouvelle
méthode pour comprendre le premier ordre asymptotique du premier trait mutant sélectif.
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une thèse dans ce domaine et y envisager une carrière scientifique. Pour cette raison, qui nous
dépasse tous les deux, je t’en serai jamais assez reconnaissant, notamment d’avoir pris le temps de
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avec Cornelia.
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I would like to express my deepest gratitude to Cornelia. My first steps in research were with
you. I have excellent memories of the year I spent in Frankfurt with your team, your warm welcome,
and your enthusiasm for working together. You helped me build my confidence in mathematics,
reaffirmed my decision to pursue a Ph.D., and most importantly, helped me do so with ease. I
truly enjoyed learning more about the modeling of cooperative behaviours of infectious agents, a
research topic I am particularly passionate about, inspired by your love for sharing mathematics.
I also discovered German culture for the first time alongside you, and I hope to learn even more
in the future. Thank you as well for continuing to work together throughout the Ph.D., especially
for all the trips to Frankfurt and the short stay in Bonn. I am eager to continue this wonderful
collaboration by visiting you in Lübeck.
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s’est développée. J’aime bien dire que tu es comme une grande soeur, ou ma partner in crime au
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entre mes déplacements, la rédaction, et ta présence au labo qu’on pourrait dire assez éparse (même
si je vois que tu t’y sens de mieux en mieux). Je te souhaite de continuer de t’épanouir durant tes
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Je tiens tout particulièrement à remercier mes ami.es qui m’ont soutenu pendant ces trois
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Chapter 1

Introduction

This thesis focuses on the study of two stochastic models related to medical problems, with the
aim of providing quantitative results. The first one concerns the understanding of infection spread
of cooperative bacteriophages on a multi-drug resistant bacterial host population structured on
random graphs, through analysis of the invasion probability. The second medical question deals
with understanding the evolutionary process of a tumour under carcinogenesis, using multitype
birth and death branching process models on a general finite trait space.

Invasion of Cooperative Bacteriophages

In the evolutionary arms race with CRISPR–Cas, a defence mechanism of bacteria, bacteriophages
(phages for short) have developed diverse strategies to block or evade bacterial host immunity.
One common evasion mechanism known as anti-CRISPRs relies on the cooperation of phages.
Motivated by this example we introduce an epidemiological model where infections are generated
by cooperation of parasites in a hosts population structured on random graphs. The number
of vertices and typical number of direct neighbours grow to infinity with respect to the scaling
parameter N . In the initial chapter, we study the configuration model with N vertices and dN
direct neighbours for each vertex such that dN = Θ

(︁
Nβ
)︁
, for some 0 < β < 1. This modelling

choice reflects the idea that among a host population, many hosts are accessible from any host, but
only a negligible part of the total number. However, the biological relevance of spatially structured
host populations is not reflected when considering the configuration model. In the second chapter,
we address this spatial feature by studying cases where host populations are structured on a random
geometric graph on [0, 1]n, with n ∈ N. The number of vertices is Poisson(N)-distributed and the
typical number of direct neighbours dN for any vertex is dN = Nβ . Particularly, using the same
scaling for the number of vertices and the number of direct neighbours in both chapters allows
for comparison of the results. Quite naturally, adding a spatial structure facilitates cooperation of
parasites.

The number of parasite offspring generated after the infection of a host, denoted by vN , scales
to infinity too. A host is deterministically infected when attacked by at least 2 parasites. We show
that the natural scaling for observing pairs of parasites attacking the same host occurs when the
number of parasite offspring scales as the square root of the typical number of neighbours of a
vertex (as for the birthday problem), i.e., vN ∼ a

√
dN , for some a > 0.

1
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In the second chapter, we show that a phase transition occurs at the critical scaling vN ∈
Θ
(︁√
dN
)︁
, where we use the notation fN = Θ(gN ) if fN grows asymptotically as fast as gN , i.e.

0 < lim inf
N→∞

fN
gN

≤ lim sup
N→∞

fN
gN

<∞.

More precisely, we demonstrate that when vN = o(dN ), the invasion probability is asymptotically
null, since cooperation of parasites is unlikely. At the critical scaling, the invasion probability is
identified as the survival probability of a Galton-Watson process. Above such critical scaling, when√
dN = o(vN ), the invasion probability is asymptotically 1. This chapter corresponds to the article

[1], entitled Invasion of cooperative parasites in moderately structured host populations, published
in Stochastic Processes and their Applications, and written with Cornelia Pokalyuk.

In the third chapter, we demonstrate that a phase transition also occurs at the same critical
scaling for the random geometric graph. We obtain lower and upper bounds on the invasion prob-
ability as the survival probabilities of two Discrete Branching Process with Cooperation (DBPC).
Essentially, a DBPC is defined as follows: conditioned on knowing the number of individuals at a
generation, every individual and every pair of individuals generate a certain number of new indi-
viduals according to offspring and cooperation laws, independently from each other. This Chapter
corresponds to the article [2], entitled Spatial invasion of cooperative parasites, published in The-
oretical Population Biology for the special issue for the 60th birthday of Alison Etheridge, and
written with Cornelia Pokalyuk, Marco Seiler, and Hung Tran for the simulations.

The asymptotic results for the invasion probabilities at the critical scaling differs for the complete
graph and the random geometric graph, in the sense that they are characterised using the survival
probabilities of two different classes of processes: Galton-Watson processes for the configuration
model and DBPC for the random geometric graph. This difference comes from the fact that the
spatial structure facilitates the cooperation of parasites. More precisely, cooperation of parasites
generated from different infected hosts effectively spread the infection directly at the beginning of
the epidemic process on the random geometric graph, whereas such events become likely in the
configuration model only when the invasion is already decided with high probability.

Genetic Composition of a Tumour

In a second part, we tackle another biological question that is tumour formation. More precisely, the
aim is to provide a tractable probabilistic model from which theoretical results on the evolution of
the genetic composition of a tumour during carcinogenesis can be obtained. Indeed, understanding
the evolutionary history of a tumour can be of great clinical help. It provides a lot of information
regarding its future evolution, and consequently, on clinical prognosis. Additionally, it sheds light
on decisions regarding suitable adaptive therapeutic treatments to combat resistant subpopulations
within it. The objective is, therefore, to study a simple probabilistic mathematical model taking
into account the following different mechanisms governing tumour formation: cell division and
death, in addition to mutation during cell division of one or both daughter cells towards a mutant
trait. We decided to study a continuous-time multitype branching model on NV

0 where cells are
represented by a phenotypic trait distributed as the vertices of a graph (V,E) where edges represent
mutational pathways during cell division. More precisely, during a cell division event, each daughter
cell, independently of each other, can mutate according to a probability kernel towards a neighbour
trait of their mother cell trait. Initially, the process starts with only one wild-type cell, whose trait
is supposed to be supercritical.
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Tumours are typically detected when they reach a large size of cells, depending on cancer
type, but approximately of order [106, 109] cells. The mutation rate per base pair per cell division
is generally estimated to be of order [10−9, 10−6] [3, 4, 5]. This naturally leads to consider the
framework of large population and power law mutation rates regime. It is a classical stochastic
regime studied in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. A scaling parameter n ∈ N is
employed to quantify both the decrease in mutation probabilities, as negative powers of n, and the
typical size of the population, which depends on n as a positive power, at which we are interested
in understanding the genetic composition. A label is assigned to each edge to quantify the power
law scaling of the mutation under consideration: the larger the label, the lower the probability
of mutation. The aim is to derive first-order asymptotics on all mutant subpopulation sizes as n
tends to infinity, and to mathematically characterise the effective evolutionary pathways of tumour
progression. In Chapter 4, we examine neutral and deleterious cancer evolution, while in Chapter
5, we focus on selective cancer evolution. By neutral and deleterious cancer evolution, we refer to
cases where the growth rate of any mutant trait is smaller than that of the wild-type subpopulation.
Here, mutations are biologically termed passenger mutations, as they do not confer any selective
advantage; all driver mutations, mutations conferring selective advantage, were already present in
the initiating cancer cell. Conversely, in cases allowing for selective mutation, where a mutation has
a growth rate strictly higher than that of the wild-type subpopulation, any such selective mutant
trait represents a driver mutation, along with potentially numerous passenger mutations included
in the model.

In the fourth chapter, we narrow the mutational framework to neutral and deleterious muta-
tions. We furnish first-order asymptotic results on the mutant subpopulation sizes. This approach
not only enables to capture the stochastic nature of mutant subpopulation sizes but also allows for
the characterisation of effective evolutionary pathways. We demonstrate that the first-order asymp-
totic randomness of all mutant subpopulation sizes is entirely determined by the random variable
describing the long-term behaviour of the primary subpopulation, which is the lineage of wild-type
cell issued from the initial cell. Effective evolutionary pathways are characterised based on their
lengths, defined as the sum of the labels on its edges, and their numbers of neutral mutations. This
Chapter corresponds to a major revision of the preprint [21], entitled ≪Genetic Composition of
Supercritical Branching Populations under Power Law Mutation Rates≫ for the Annals of Applied
Probability.

In the fifth chapter, we investigate the first-order asymptotics of the first-selective mutant trait.
The method developed in the previous chapter no longer applies once a selective mutation is encoun-
tered. We propose a new proof method to get asymptotic results for the first selective mutation
along a mono-directional finite graph. This method lies on breaking down the selective mutant
population into a sum of subpopulations for which different probabilistic techniques are applied.
We obtain that well renormalized, the selective mutant population behaves asymptotically as a sum
of a compound Luria-Delbrück distribution with infinite expectation and of the large-time limit of
an approximate model with less stochasticity, independent from n. This model is introduced and
studied in [22, 23, 24]. This chapter is an ongoing work in collaboration with Hélène Leman.

In the rest of the Introduction, we give more details about the biological contexts, the model def-
initions, and the mathematical results. We motivate them all using heuristics and furnish sketches
of the proofs, alongside some perspectives.
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1.1 Invasion probability of cooperative parasites in struc-
tured host populations

This work falls within the field of mathematical epidemiology on random graphs. The uniqueness
of this study lies in infections being transmitted via a population of cooperative infectious agents,
known as parasites, moving within the host population undergoing infection. Together with Cor-
nelia Pokalyuk and Marco Seiler, we have developed mathematical tools and techniques existing in
epidemiology on random graphs to adapt them to this specific context of infection via cooperation,
in order to estimate invasion probabilities. We start by giving a biological context to motivate
the microscopic model and then we give details on the quantitative results we obtained alongside
heuristics, sketches of the proofs, biological remarks and generalisations.

1.1.1 Biological context

Understanding the dynamics and mechanisms of infection processes is a highly relevant and dy-
namic research area in biology. In Chapters 2 and 3, our focus lies on modelling infections based
on observations of bacteriophage populations, viruses that infect bacteria. Interest in phages has
surged in recent years due to the rise in multi-drug resistant bacteria. Phage therapy, an alternative
to antibiotics, involves inoculating infected hosts with phages to eliminate the pathogenic bacterial
population [25]. Phages exert selective pressure on bacterial populations, prompting the develop-
ment of various defence mechanisms. One such mechanism is CRISPR-Cas (Clustered Regularly
Interspaced Short Palindromic Repeats-associated proteins), a well-studied RNA-guided adaptive
immune system. The CRISPR–Cas immune response begins with acquiring short DNA fragments,
called protospacers, from invading phages. These protospacers are inserted as spacers within the
CRISPR array to establish infection memory as well as heredity [26]. The CRISPR array is then
expressed as a long transcript, processed into small, mature CRISPR RNAs (crRNAs) carrying
spacer sequences. Interference complexes, consisting of a crRNA and one or more Cas proteins,
patrol the bacterial cell to detect and destroy complementary nucleic acid targets, often adjacent
to a short protospacer-adjacent motif, in phage genetic material previously encountered by the
bacterial cell (or one of its ancestors) and stored in the bacterial genome. This mechanism leads to
the destruction of encountered phages and is illustrated in Figure 1.1.

Figure 1.1: CRISPR-Cas defence mechanism, © Westra et al. (2012) Annu Rev Genet



1.1. INVASION PROBABILITY OF COOPERATIVE PARASITES 5

In the evolutionary arms race with CRISPR–Cas, phages have developed diverse strategies to
block or evade bacterial host immunity. One common evasion mechanism involves protein-based
CRISPR–Cas inhibitors known as anti-CRISPRs (ACRs), which mainly interact directly with Cas
proteins [27]. ACR defence mechanism relies on the cooperation of ACRs-phages [28]. Indeed, when
a CRISPR-resistant bacterium is attacked by a single ACRs-phage, the phage often dies. However,
when several phages attack a bacterium simultaneously or subsequently, they have a higher chance
of replication [29],[28]. The observation stems from the fact that the time period required for an
ACRs-phage to inhibit all interference complexes present in the bacterial host is long enough to
allow the bacterial host to destroy the phage. However, during a subsequent infection, the remaining
number of interference complexes is low enough to enable the infecting ACRs-phage to block all of
them. The ACR mechanism is illustrated in Figure 1.2.

Figure 1.2: ACRs defence mechanism, © S. van Houte

While the primary biological motivation of this study lies in understanding the cooperative
infection of phages within a bacterial population, other relevant ”host-parasite” systems with coop-
erative infectious mechanisms also exist. One such example is virotherapy, where oncolytic viruses
are emerging as potential treatment options for cancer. Both natural and genetically engineered
viruses exhibit various antitumour mechanisms, such as direct cytolysis, immune system potenti-
ation through antigen release, activation of inflammatory responses, or interference with elements
in the tumour microenvironment. They can also indirectly affect tumour cells by modifying energy
metabolism and displaying antiangiogenic action. However, a significant challenge in oncolytic vi-
rotherapy is the efficient delivery of the virus into tumour cells and its ability to bind to various
biological and non-biological vectors. Despite this challenge, oncolytic viruses have demonstrated
efficacy in eliminating cancer cells resistant to standard treatments in numerous clinical trials across
various cancers, including melanoma, lung, and hepatic cancers [30]. It is believed that infecting
cancer cells with multiple viruses simultaneously enhances effectiveness, as this strategy enables the
virus to better counteract the interferon-based antiviral response of the host, see [31].
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1.1.2 Microscopic model of Chapters 2 and 3

Consider a population of hosts and a population of parasites both located on a random graph. A
scaling parameter N ∈ N tending to infinity is used for quantifying the number of vertices bN , the
typical number of neighbours a vertex has dN , and the number of offspring parasites generated at
a host infection vN . Initially, on each vertex a single host is placed and they do not move on the
graph during the epidemic spread. The infection process starts by the infection of a host with a
parasite. We say that parasites infect a host, when the infecting parasites replicate in the host.
At replication vN ∈ N offspring parasites are generated (independent on the number of infecting
parasites) and the host as well as the infecting parasite(s) die(s). The infection process continues
in discrete generations according to the following scheme. At the beginning of each generation,
parasites move independently to nearest neighbouring vertices. If a vertex to which a parasite
moves to is still occupied with a host the parasite attacks this host. If a host is attacked by at
least two parasites, they cooperate and infect the host. If, however, a host is attacked by a single
parasite, the parasite replicates and infects the host only with a small probability ρN . Otherwise
(with probability 1− ρN ), the parasite dies and the host survives. If a parasite moves to a vertex
that is no longer occupied by a host, two options are considered depending on the random graph,
either it stays there and moves further in the next generation or it dies.

Notice that cooperative infections are of two types: either the infecting parasites comes from the
same previously infected vertex or not. We are going to see in the mathematical analysis that they
imply different epidemic spread speeds. Cooperation from parasites generated at the same vertex
infection is responsible for the exponential growth of the infection process, where cooperation from
parasites generated on different vertex infections allows super-exponential growth, provided that
such events are likely.

Given a sequence of parameters (bN , dN , vN , ρN )N∈N we denote for each N ∈ N by

I(N) =
(︂
I(N)
n

)︂
n∈N0

,

the process that counts the number of infected hosts in the generations n ∈ N0 with I
(N)
0 = 1.

Introduce also

I(N)
=
(︂
I
(N)

n

)︂
n∈N0

, with I
(N)

n :=

n∑︂
i=0

I
(N)
i

the process that counts the number of hosts infected till generation n ∈ N0. We are interested
in the probability that the parasite population invades the host population. More precisely, we
consider the following events.

Definition 1.1.1 (Invasion of parasites). Consider the above host-parasite model with parameters
(bN , dN , vN , ρN )N∈N. Let u ∈ (0, 1] and denote by

E(N)
u :=

{︂
∃n ∈ N0 : I

(N)

n ≥ u · bN
}︂
,

the event that the parasites invade the host population (at least) to a proportion u.

The different graphs under consideration are the configuration model in Chapter 2, and the
random geometric graph on [0, 1]n for n ∈ N, alongside the complete graph, on Chapter 3. The
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configuration model is constructed by pairing uniformly at random the dN half-edges of each vertex
(assuming that dNbN is even). The complete graph satisfies bN = dN . The random geometric
graph has intensity Nλn( · ), where λn denotes the Lebesgue measure on Rn. Moreover introduce
the parameter rN > 0 such that each vertex x ∈ [0, 1]n on the graph is connected to all vertices

located on B
(N)
x (rN ) ∩ [0, 1]n, the intersection between the ball centred around x of radius rN for

the L∞-norm and the considered space [0, 1]n. Choose rN that satisfies (2rN )
n
N = dN such that

the mean number of direct neighbours of a vertex, not too close to the border, is dN .

We consider the following parameter regimes:

• Number of vertices: The host population is initially large, that is bN −→
N→∞

∞. More

specifically, bN = N for the configuration model, bN ∼ Pois(N) for the random geometric
graph, and bN ∈ Θ

(︁
Nβ
)︁
, for some β ∈ (0, 1), for the complete graph.

• Typical number of neighbours: Assume dN ∈ Θ
(︁
Nβ
)︁
for the configuration model, and

dN = Nβ for the random geometric graph, for some β ∈ (0, 1), implying that rN = 1
2nN

β−1
n .

Such scaling implies that from each host many other hosts are direct neighbours but the
population is not well mixed (compared to the complete graph). In particular taking the
same scaling for the two models allows for comparison of results, i.e. understanding the
influence of a spatial structure on the epidemic spread.

• Number of offspring parasites: Many offspring parasites are produced at infection of a
host, i.e. vN → ∞. The results on the invasion probabilities will depend on the scaling of vN
compared to

√
dN .

• Single parasite infection: The contribution of parasites attacking a host alone is at most
critical in the sense that the expected number of offspring vNρN generated at such attacks
converges at most to 1, i.e. vNρN −→

N→∞
x ∈ [0, 1]. For simplicity, when the host population

is structured on the random geometric graph or the complete graph, we take ρN = 0. This
means that in the latter cases infections are generated only through cooperation of parasites.
Such restrictive choice facilitates the mathematical analysis, but it could have been possible
not to consider it without modifying the results on the invasion probability.

The choice of the initially infected vertex is done uniformly at random for the configuration model
and the complete graph. In the case of the random geometric graph, choose the infected vertex
to be the closest to the central point

(︁
1
2 , · · · , 12

)︁
. Moreover, a parasite moving to an empty vertex

(where the host has been infected and killed in a previous generation) survives for the configuration
model, whereas it dies for the random geometric graph and the complete graph. Though, results
on the invasion probability would be similar allowing survival and next movement of the parasite.

In Theorems 1.1.2, 1.1.5 and 1.1.6 we identify the phase transition that occurs at the critical
scaling vN ∈ Θ

(︁√
dN
)︁
, at which invasion of the host population turns from an unlikely to an

asymptotically almost sure event, for all the random graphs under consideration. Moreover, at the
critical scaling, the invasion probability is characterised for the configuration model, respectively the
complete graph, as the survival probability of a Galton-Watson process, respectively of a Discrete
Branching Process with Cooperation (DBPC). For the random geometric graph, upper and lower
bounds are derived for the invasion probability as the survival probabilities of two DBPCs.
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1.1.3 Results of Chapter 2

In this subsection, the results from Chapter 2 are given with explanations, heuristics, sketches of
the proofs and some generalisations. The main result deals with the invasion probability of coop-
erative parasites on host populations structured according to a configuration model, as mentioned
in the previous subsection. Under the scaling bN = N , dN ∈ Θ

(︁
Nβ
)︁
for some β ∈ (0, 1) and

ρNvN → x ∈ [0, 1], a phase transition occurs for the invasion probability at the critical scaling
vN ∈ Θ

(︁√
dN
)︁
. More precisely, below the critical scaling the invasion is unlikely, above it happens

with high probability and at the critical scaling the invasion probability is characterised as the

survival probability of a Galton-Watson process (GWP for short) with Poisson
(︂
a2

2 + x
)︂
offspring

distribution. Such critical scaling, the identification of the invasion probability as the survival
probability of a GWP, and the specific offspring distribution of this GWP can heuristically be
derived.

Heuristics

Critical scaling: To derive the critical scaling of vN with respect to dN , we take into account only
infections generated due to cooperation of parasites and forget the single parasite infection process,
i.e. ρN = 0. Cooperation of parasites becomes likely only when the critical scaling is reached, that
is vN ∈ Θ

(︁√
dN
)︁
. Indeed, consider an infected vertex such that vN parasites located on it are going

to move to one of its dN neighbours, and assume that all of these neighbours have a host located
on them. Counting the number of infections generated due to the movement of these vN parasites
is similar to the so-called birthday problem: consider the experiment where you have d days and v
persons, the questions is what is the scaling of v with respect to d for which it becomes likely that at
least two persons share a birthday, when the birthdays are distributed uniformly and independently

at random on the days. The answer is exactly v ∈ Θ
(︂√

d
)︂
. Performing computations, in the

scaling v ∼ a
√
d for some a > 0, the asymptotic distribution of the number of shared birthdays is

a Poisson
(︂
a2

2

)︂
distribution. To be even more precise, asymptotically only the days where exactly

two persons share a birthday are contributing when considering the scaling v ∈ Θ
(︂√

d
)︂
, in other

words, at the limit days with more than two people sharing a birthday disappear.

Now if you consider back the single parasite infection process, due to the scaling ρNvN → x ∈
[0, 1] this infection process is (sub)critical, in the denomination of GWP, in the sense that the
mean number of infections vNρN generated by this process converges at most to 1. That explains
why for the scaling vN ∈ o

(︁√
dN
)︁
, so when infections from cooperation are not likely, the invasion

probability is asymptotically null.

Offspring distribution of the GWP: Consider both the critical scaling vN ∼ a
√
dN for some

a > 0, and the scaling for the single parasite infection process ρNvN → x ∈ [0, 1]. Counting the
number of infections generated by vN parasites located on a vertex and moving to dN non-empty
vertices is an alternative version of the birthday problem. In this situation consider the sum of the
number of days where at least two persons share a birthday and the number of single birthdays
which are selected independently from each other with a successful probability ρN . Performing com-

putations gives that asymptotically this sum has a Poisson
(︂
a2

2 + x
)︂

distribution. Indeed, under

the scaling vN → ∞, the number of host infections triggered by pairs of parasites and the number
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of single parasite infections are asymptotically independent. They are asymptotically distributed

respectively as Poisson
(︂
a2

2

)︂
, derived by the classical birthday problem, and Poisson(x), derived as

the limit of a Bin(vN , ρN ) random variable under the scaling vNρN → x. As a consequence their

sum is Poisson
(︂
a2

2 + x
)︂
distributed.

Identification of the invasion probability as the survival probability of the previous
GWP: Moreover, the events that make the infection process deviating from a GWP are unlikely
at least up to the random generation at which a specific level, tending to infinity, is reached for the
infection process. Such events are typically cooperation from parasites generated from two different
infected vertices and re-hitting of a vertex by at least a pair of parasites or a single parasite with
(normally) successful host infection. In particular, this observation allows for comparing the infec-
tion model, up to it reaches the aforementioned level, by a coupling argument with a GWP whose

offspring distribution is sufficiently close to a Poisson
(︂
a2

2 + x
)︂
distribution such that its survival

probability is identified to the one of the GWP whose offspring distribution is exactly a Poisson

distribution with parameter a2

2 + x. In Proposition 1.1.3 we explicit the mathematical meaning of
closeness for offspring distribution allowing asymptotic identification of the survival probability for
a sequence of GWPes. That explains why the natural candidate for the invasion probability is the
survival probability of this latter GWP. To prove it, it suffices to show that the aforementioned
level grows to infinity sufficiently quickly such that the invasion of the host population is with high
probability already decided when this level is reached for the infection process.

Main Results

Now we can state the result about the invasion probability of cooperative parasites in host popu-
lations structured on a configuration model in the next Theorem.

Theorem 1.1.2 (Invasion probability for the configuration model). Assume dN ∈ Θ
(︁
Nβ
)︁
for

some 0 < β < 1, and ρNvN → x for some x ∈ [0, 1]. A phase transition for the invasion probability
occurs depending on the scaling of the parasite offspring parameter vN :

(i) Assume vN ∈ o
(︁√
dN
)︁
. Then for all 0 < u ≤ 1

lim
N→∞

P
(︂
E(N)
u

)︂
= 0.

(ii) Assume vN ∼ a
√
dN for some a > 0. Denote by π(a, x) the survival probability of a GWP

with Poisson
(︂
a2

2 + x
)︂
-offspring distribution. Then for all 0 < u ≤ 1

lim
N→∞

P
(︂
E(N)
u

)︂
= π(a, x).

(iii) Assume
√
dN ∈ o(vN ). Then

lim
N→∞

P
(︂
E

(N)
1

)︂
= 1.

Before giving some sketches of the proof, we are formulating some remarks on this theorem:
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• Invasion probability: Notice that even in the setting of Theorem 1.1.2 (ii), the invasion is

not ensured with a strictly positive probability. Indeed, for a2

2 + x ≤ 1 the considered GWP
is (sub)critical meaning that π(a, x) = 0. In the scaling vNρN → x, if we allowed x > 1,
asymptotically the single parasite infection process is supercritical, meaning that it would
have been possible for the setting of Theorem 1.1.2 (i) to see invasion with a strictly positive
probability, but not due to cooperation of parasites, explaining why we focused only on x ≤ 1.

• Population viscosity: In the model we are considering that the spatial structure of the host
population is passed on to the parasite population that profits from this structure to cooperate.
It has been shown that population viscosity, i.e. limited dispersal of individuals, is generally
beneficial for cooperation, see [32]. Thus, in host-parasite systems the host population may
on the one hand profit from a spatial structure by enhancing cooperation of hosts, but on the
other hand spatial structure may reduce the fitness of the host population because parasite
populations may benefit from the spatial structure as well, as demonstrated in Theorem 1.1.2.

• Death of parasites: In our model we assume that parasites that hit empty vertices keep
moving further and hosts are not reproducing. These parasite have only a negligible impact
on the fate of the parasite population. Hence, the statements of Theorem 2.2.2 remain valid,
if we assume that parasites die (or die with a certain probability) when hitting an empty
vertex.

• Time to invasion: During the proof of Theorem 1.1.2 (ii) we also show an upper bound
on the time till total invasion, conditioned on a parasite outbreak. We obtained the upper

bound
(1− 3

4β+ε) logN
log

(︂
a2

2 +x
)︂ for any ε > 0. Indeed to prove Theorem 1.1.2 (ii) we approximate

I(N) by a GWP from below, that is truncated from time to time but grows at the same

speed as an ordinary GWP, with (asymptotically) mean offspring number a2

2 + x, until the

infection level N1− 3
4β+ε is reached, for some ε > 0 sufficiently small. Afterwards we show

that the host population gets killed with high probability within two more generations due
to cooperation of parasites generated from infections of different vertices. From this follows

immediately that the host population is with high probability killed after time
(1− 3

4β+ε) logN

log
(︂

a2

2 +x
)︂

for any ε > 0 in case of invasion of the parasite population. With some more effort we expect
that it is possible to show that in the setting of Theorem 1.1.2 (ii), conditioned on invasion

of the host population, it happens with high probability before (1−β+ε) logN
log

(︂
a2

2 +x
)︂ generations, for

any ε > 0. Infection by cooperation of parasites generated from different vertex infections
takes over when the number of infected hosts exceeds the level N1−β+ε, subsequently the
host population should be killed with high probability in a finite number of generations.
Such efforts are actually made in Chapter 3, where they are necessary for understanding the
invasion probability.

In Chapter 2, in addition to results on the invasion probability, we are also proving interesting
results on asymptotic survival probability of sequences of GWPes. In particular the more refined
result states that reaching any arbitrary level bN tending to infinity for the total size of a sequence of
GWPes, under the condition of uniform convergence for the generating functions to the generating
function of a GWP, is asymptotically equals to the survival probability of the latter GWP. Such
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criterion comes from the identification of the extinction probability of a GWP as the fixed point of
the generating function of the offspring distribution.

Proposition 1.1.3. Consider a sequence of GWPes
(︁
Z(N)

)︁
N∈N and a GWP Z. Denote by(︁

Φ(N)
)︁
N∈N and

(︁
π(N)

)︁
N∈N the sequences of respectively the generating functions of the offspring

distributions and the survival probabilities of
(︁
Z(N)

)︁
N∈N, and by Φ and π the ones of Z. As-

sume that the generating functions
(︁
Φ(N)

)︁
N∈N converge uniformly in [0, 1] to Φ. Furthermore, let

(bN )N∈N be an N-valued sequence with bN → ∞. Then the following holds:
i)

|π(N) − π| → 0,

ii)

P
(︂
Z

(N)
bN

= 0
)︂
→ 1− π,

iii)

P
(︂
∃ n ∈ N0 : Z(N)

n ≥ bN

)︂
→ π,

iv)

P
(︂
∃ n ∈ N0 : Z

(N)

n ≥ bN

)︂
→ π,

where Z
(N)

n :=
∑︁n
i=0 Z

(N)
i for all n ∈ N.

Sketch of the Proof

We proceed by sketching the proof of Theorem 1.1.2:

• Theorem 1.1.2 (i): Under the scaling vN ∈ o
(︁√
dN
)︁
, parasites are unlikely to cooperate,

as mentioned in the heuristics with the birthday problem. Hence, invasion could only be
achieved by the single parasite infection process. But since we are considering the parameters
regime ρNvN → x ≤ 1, such process is asymptotically (sub)critical, meaning that having a
successful single parasite infection is asymptotically too rare for allowing the invasion of the
host population. Consequently, only a negligible proportion of the host population is infected
by the epidemic process before it stops. So for any u ∈ (0, 1] the invasion probability is o(1).
Concretely, we show that for any a > 0 the infection process I(N) can be coupled for N large
enough with the infection process I(N)(a) defined according to the same model but with the

scaling a
√
dN for the number of offspring parasites, such that I(N)

is bounded from above by

I(N)
(a). Then, applying the same proof techniques as in Theorem 1.1.2 (ii) one obtains that

the invasion probability of the process I(N) is asymptotically bounded from above by π(a, x)
for any a > 0. Since π(a, x) →

a→0
0, it implies that the invasion probability of the infection

process I(N) is asymptotically null.

• Theorem 1.1.2 (ii) Consider the critical scaling vN ∼ a
√
dN for some a > 0. We identify

the invasion probability as the survival probability π(a, x) of a GWP whose offspring distribu-

tion is Pois
(︂
a2

2 + x
)︂
distributed using coupling arguments from above and from below with

well-chosen sequences of upper and lower (truncated) GWPes such that both their survival
probabilities asymptotically are π(a, x).
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Upper bound: More precisely, the invasion probability is naturally upper bounded by the
probability to reach any level ℓN → ∞, satisfying ℓN ≤ N , for the total number of host
infections. Thus we couple from above with high probability the total number of infected

hosts I(N)
by the total size of an upper GWP Z

(N)

u until it reaches a certain level ℓN → ∞ or
it dies out. This level is chosen to grow to infinity sufficiently slowly such that the coupling
with a branching structure works. The sequence of offspring distributions is shown to be

sufficiently close to the Pois
(︂
a2

2 + x
)︂
distribution such that assumption of Proposition 1.1.3

is satisfied. In particular it implies, from Proposition 1.1.3 iv), that reaching the level ℓN for
the total size of this sequence of GWPes is asymptotically π(a, x). Combining these arguments
give that the invasion probability is asymptotically upper bounded by π(a, x).

Lower bound: Deriving a lower bound on the invasion probability is more complex. The
proof is done in two steps: first we show that reaching the level N1− 3

4β+ε for the total number

of infected hosts I(N)
, for ε > 0 small enough, occurs asymptotically with probability π(a, x),

then we argue that when this specific level is reached, the total population of hosts is killed
with high probability in the next two generations due to infections generated by parasites

issued from different previously infected hosts. Indeed, if I
(N)
n ∈ Θ(Nγ) in some generation

n for some γ > 0
(︂
and I

(N)

n ≪ N
)︂
, an order of Θ (vNN

γ) offspring parasites are generated.

From these parasites, Θ
(︁
N2γ+β

)︁
pairs of parasites can be formed. The majority of these

pairs consists of parasites that have been generated on different vertices. The probability
that such a pair of parasites attacks the same vertex is approximately 1

N . For γ > 1 − β
we have 2γ + β − 1 > γ. Hence, when Θ (Nγ) hosts are infected for some 1 − β < γ < 1,
more hosts get infected by pair of parasites generated from different infected hosts than by
pairs of parasites coming from the same host infection. Furthermore, for 1− 3β

4 < γ < 1− β
2 ,

after one generation, Θ
(︁
N2γ+β−1)︁ hosts get infected and since 2γ + β − 1 > 1 − β

2 and

2
(︂
1− β

2

)︂
+ β − 1 = 1, after another generation on average all hosts get killed.

For the first step of the proof, a dichotomy occurs depending on the value of β with respect
to 4

7 .

Case β > 4/7: The easiest case consists of β > 4
7 , where we couple from below with high

probability the total number of infected hosts I(N)
by the total size of a lower GWP Z

(N)

l until
no further hosts are killed or the total number of hosts that got infected exceeds the threshold
Nα, for 0 < α < β. As for the upper GWPes, the sequence of offspring distributions is shown

to be sufficiently close to the Pois
(︂
a2

2 + x
)︂
distribution such that reaching the level Nα for

the total size of this sequence of lower GWPes is asymptotically π(a, x), applying Proposition

1.1.3 iv). Hence the probability to reach the level Nβ for the total infection process I(N)

is asymptotically lower bounded by π(a, x). Moreover β > 4
7 ⇐⇒ 1 − 3

4β < β, meaning
that in particular the coupling can be applied with α = 1 − 3

4β + ε, for 0 < ε < 7
4β − 1.

Thus, combining the two steps of the proof gives the π(a, x) as a lower bound for the invasion
probability in the case β > 4

7 .

Case β ≤ 4/7: In the case β ≤ 4
7 the argument is slightly more involved, since in this case it

is not possible to approximate with high probability I(N)
from below by the total size of the

lower GWP Z(N)
l until N1− 3β

4 +ε hosts get infected (or the infection dies out), for any ε > 0.
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Indeed, if the number of infected hosts exceeds the level Nβ , then with non-trivial probability
an edge is attacked from both ends simultaneously by pairs of parasites or parasites with
successful infection probability. In this case none of these parasites cause an infection of a
host, because the vertices to which these parasites are heading to are already empty. However,
we can derive an upper bound on the number of parasites involved in such events and remove
the corresponding branches in the lower GWP. Since these parasites make up only a vanishing
proportion of the total parasite population, the growth of the corresponding truncated GWP
is asymptotically the same as that of the original GWP. Hence, for the truncated GWP
essentially the same techniques can be applied to finish the proof concerning the probability
of invasion in the case β ≤ 4

7 .

• Theorem 1.1.2 (iii): Under the scaling
√
dN ∈ o(vN ), the infection of a single host leads to

an asymptotically infinite number of further host infections. Consequently, at least one of the
infected hosts triggers the invasion of the host population with high probability. Concretely,
for any a > 0, we couple the infection process I(N) with the infection process I(N)(a) defined
according to the same model but with the scaling a

√
dN for the number of offspring parasites,

such that I(N)
is bounded from below by I(N)

(a). From this fact, we obtain that the invasion
probability of the infection process I(N) is asymptotically lower bounded by π(a, x), for any
a > 0. Since π(a, x) →

a→∞
1, it implies that the invasion probability of the infection process

I(N) is asymptotically 1.

Generalisations

The model under study is a toy model for quantitatively understanding the impact of cooperative
mechanism on the infection of host populations by parasites. Theorem 1.1.2, stating the asymptotics
of the invasion probability, can be extended to more general biological settings. Next we point out
some of these and explain why such generalisations are still tractable models from which we can
obtain similar results for the invasion probability:

(i) More randomness: In order to make the study simple we assume that the number dN of
half-edges per vertex and the number vN of parasite offspring, as well as the probability ρN
are deterministic. However, biologically such quantities could vary from vertex/host/parasite.
One could draw these numbers in an i.i.d. manner according to some distributions D(N), V(N)

and P(N), in order to add more heterogeneity in the model. If such distributions are suffi-
ciently concentrated, the model remains tractable by simple proof adaptations, and Theorem
1.1.2 remains valid in this context. For instance, a sufficient condition is to have i.i.d. ran-

dom variables
(︂
Y

(N)
i

)︂
N∈N

distributed as D(N), V(N), with corresponding expectation µN ,

satisfying that it exists some cN ∈ o (µN ) such that

P

(︄
N⋂︂
i=1

{︂⃓⃓⃓
Y

(N)
i − µN

⃓⃓⃓
≤ cN

}︂)︄
=
(︂
1− P

(︂⃓⃓⃓
Y

(N)
i − µN

⃓⃓⃓
> cN

)︂)︂N
→ 1, (1.1.1)

and given the total number of parasites that can be generated is MN , to have i.i.d. random
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variables
(︂
Y

(N)
i

)︂
N∈N

distributed as P(N) such that

P

(︄
MN⋂︂
i=1

{︂⃓⃓⃓
Y

(N)
i − µN

⃓⃓⃓
≤ cN

}︂)︄
=
(︂
1− P

(︂⃓⃓⃓
Y

(N)
i − µN

⃓⃓⃓
> cN

)︂)︂MN

→ 1.

For example, this is fulfilled for D(N) if Y
(N)
1 is distributed as a discretized normal distribution

with mean µN ∈ Θ
(︁
Nβ
)︁
and variance σ2

N ∈ o
(︁
N2β−δ)︁ for some δ > 0 or if it is Pois

(︁
Nβ
)︁

distributed. If
(︂
Y

(N)
i

)︂
N∈N

has a heavy-tailed distribution with mean µN = Nβ and Y
(N)
i −µN

has a Pareto-tail, then Equation (1.1.1) is fulfilled, if the tail is of order τ > 1
β . Similar

distributions can be chosen for V(N) and P(N).

(ii) Longer lasting blocking of bacteria: In our model we implicitly assume that bacteria get
blocked only for a single generation after a phage attack. In reality this blocking may last
for a longer time. In this case the result of the asymptotic invasion probability remains the

same. Indeed, recall that as long as I
(N)

n ≤ Nγ for some γ < 1
2 (1 − β) < 1 − β the number

of vertices attacked from parasites generated on different infected hosts is negligible with

respect to the number of newly infected vertices. Assuming I
(N)

n = Nγ for some γ < 1
2 (1−β)

we also have with high probability that I
(N)
n = Θ(Nγ) and the probability that a blocked

host (which number is of order NγvN ) is also attacked by another parasite in generation n

is of order O
(︂
NγvN

NγvN
N

)︂
. In the scaling vN ∈ Θ

(︁√
dN
)︁
, this probability is non-trivial for

γ ≥ 1
2 (1 − β). Since invasion of the host population is already decided if the frequency of

infected host reaches Nε for some ε > 0, at this stage of the epidemic invasion of the host
population occurs anyway with probability 1− o(1).

(iii) Heterogeneity of the phage population: Among the phage population, some hetero-
geneity can exist. Some phages can be ACRs-phages, and others are not. Including this
heterogeneity on the model would not change the result of Theorem 1.1.2. Indeed, phages
that are not able to block CRISPR-resistant bacteria may have a chance to replicate in bac-
teria that have been blocked by ACRs-phages before. However, by a similar reasoning as in
item (ii) of these remarks, this is only likely when the amount of this type of phages is of
order N1−β/2, that is this type of phages must be much more frequent than ACRs-phages
initially.

(iv) Dependence of offspring parasites on the number of infecting parasites: In reality
the number of offspring parasites generated during an infection could depend on the number
of parasites infecting a host. In the scaling of Theorem 1.1.2 (ii) the probability that a
host gets infected by k parasites, for k ≥ 3, from a set of parasites of size vN located on

the same vertex scales as N−
(k−2)β

2 . Consequently, such events are becoming likely when

the total infection process reaches the level Θ
(︂
N

β
2

)︂
, where cooperation of 3 parasites can

asymptotically be observed. Thus these kind of reproduction events have only a negligible

impact on the initial spread of the parasite population. Moreover when the level Θ
(︂
N

β
2

)︂
is reached, the invasion probability is already decided with high probability. Meaning that

giving v
(k)
N offspring generated at reproduction of k parasites infecting a host, such that



1.1. INVASION PROBABILITY OF COOPERATIVE PARASITES 15

vN = o
(︂
v
(k)
N

)︂
, is not enhancing the invasion probability but only speeds up the infection

spread after reaching the level Θ
(︂
N

β
2

)︂
.

(v) Reproducing hosts: Considering host reproductions during the time scale of the parasite
infection is biologically relevant. For instance, one could include in the model that hosts may
reproduce on empty nearest-neighbour spots with random offspring numbers per host that
are bounded. With this consideration, Theorem 1.1.2 remains valid. Indeed, for ε > 0 small
enough, the probability that at least N1−β+ε hosts get infected is asymptotically independent
on the state of the vertices on which hosts have been killed already, because the probability to
re-hit these vertices is small when the overall number of infected hosts is ≪ N . After reaching
the level N1−β+ε, cooperation of parasites generated on different infected hosts makes the
parasite population expands faster with every generation. It confers a super exponential
speed to the epidemic process, implying that in only a finite number of generations the host
population gets killed with high probability. Host reproduction cannot curb down this strong
parasite expansion, at least when the offspring host numbers are bounded.

1.1.4 Results of Chapter 3

In this subsection, the results from Chapter 3 are explained alongside with some sketches of the
proofs, heuristics and some simulations. Two distinct results are presented in this chapter. Both
of them deals with the invasion probability of cooperative parasites on hosts populations. The first
one considers a host population structured on a complete graph where the second one focuses on a
random geometric graph (RGG for short), as mentioned in Subsection 1.1.2.

With the RGG, we are taking the same order of vertices and typical number of direct neighbours
as for the configuration model in Chapter 2, in order to compare the two structures, where a spatial
component with more biological insights is added when considering the RGG. With the complete
graph, there is less biological relevance, but its analysis is used as an elementary brick for the study
on the RGG, and has its own mathematical interest. Before giving details on the results, we are
making a proper definition of a DBPC, which is the mathematical object arising for analysing the
invasion probability of cooperative parasites both for the complete graph and the RGG structures.

Definition 1.1.4 (Discrete-time Branching Process with Cooperation). Let Lo and Lc be two prob-
ability distributions on N0. A discrete-time branching process with cooperation Z = (Zg)g≥0 with
offspring distribution Lo and cooperation distribution Lc is recursively defined as follows. Assume
Z0 = k a.s. for some k ∈ N, then for any g ≥ 1, Zg is defined as

Zg :=

Zg−1∑︂
i=1

Xg,i +

Zg−1∑︂
i,j=1,i>j

Yg,i,j ,

where (Xg,i)(g,i)∈N2 and (Yg,i,j)(g,i,j)∈N3 are sequences of i.i.d. random variables distributed ac-

cording to Lo and Lc respectively. We denote by Z =
(︁
Zg
)︁
g≥0 the total size process, i.e.

Zg =

g∑︂
i=0

Zi.

In the following we will denote the probability weights of the distributions Lo and Lc by (pk,o)k∈N0

and (pk,c)k∈N0 respectively.
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In the case of the complete graph, under the scaling bN = dN ∈ Θ
(︁
Nβ
)︁
for some β ∈ (0, 1),

a phase transition occurs for the invasion probability at the critical scaling vN ∈ Θ
(︁√
dN
)︁
. More

precisely, below the critical scaling the invasion is unlikely, above it happens with high probability
and at the critical scaling, the invasion probability is characterised as the survival probability of a

DBPC with Pois
(︂
a2

2

)︂
and Pois

(︁
a2
)︁
offspring and cooperation distributions respectively.

In the case of the RGG, under the scaling rN = 1
2nN

β−1
n , such that the mean number of direct

neighbours a vertex (not too close to the border of [0, 1]n, in the sense with an asymptotically
non-vanishing distance to its boundary) has is dN = (2rN )

n
N = Nβ for some β ∈ (0, 1), a phase

transition also occurs for the invasion probability at the same critical scaling vN ∈ Θ
(︁√
dN
)︁
. At

the critical scaling, upper and lower bounds on the invasion probability are given. They are both
characterised as survival probabilities of two distinct DBPCs. The offspring and cooperation distri-

butions are respectively Pois
(︂
a2

2

)︂
and Pois

(︁
a2
)︁
distributed for the upper bound, and respectively

Pois
(︂

a2

2n+1

)︂
and Pois

(︂
a2

2n

)︂
distributed for the lower bound.

Such critical scaling, characterisation of the invasion probability, respectively upper and lower
bounds on the invasion probability, as the survival probability of a DBPC for the complete graph,
respectively as the survival probabilities of two distinct DBPCs for the RGG, and the offspring and
cooperation distributions of these specific DBPCs are next heuristically derived.

Heuristics for the Complete Graph

Critical scaling: Concerning the derivation of the critical scaling of vN with respect to dN , the
same heuristics as for the configuration model can be performed. Indeed, in order to spread the
epidemic, the vN parasites located on the first infected vertex needs to cooperate otherwise the
epidemic process would stop. Each vertex has dN − 1 neighbours in the complete graph, meaning
that the situation, similar to the birthday problem, implies the critical scaling vN ∈ Θ

(︁√
dN
)︁
for

allowing cooperation. Such heuristics also gives that under the subcritical scaling vN ∈ o
(︁√
dN
)︁
,

with high probability the vN parasites generated by the first infected host do not cooperate. Thus,
with high probability the epidemic process stops at the first generation, leaving bN − 1 hosts unin-
fected. Hence, the invasion probability is asymptotically null under this subcritical scaling.

Offspring and cooperation distribution of the DBPC: Under the critical scaling vN ∼ a
√
dN ,

for some a > 0, the epidemic spread on the complete graph differs from the one on the configuration
model, even at the initial phase of the infection process. Where interactions between two infected
hosts are negligible in the case of the configuration model at least as long as the epidemic process
has not reached a certain level, they are not directly from the first generation in the case of the
complete. This phenomenon comes from the share of dN − 2 ∈ Θ

(︁
Nβ
)︁
common neighbours on

the complete graph for two infected vertices, making cooperation of the two sets of the vN gen-
erated parasites on these vertices likely. Indeed, to quantify this fact, a more complex version of
the birthday problem can be used, with two distinct groups of persons. For simplicity, consider
the following experiment: assume there are d boxes and two sets of v red and blue balls that are
thrown independently and uniformly at random into the boxes. Under the scaling v ∼ a

√
d for

some a > 0, asymptotically the number of boxes with at least two blue/red balls, respectively one

of each colour, into it is distributed according to a Pois
(︂
a2

2

)︂
, respectively Pois

(︁
a2
)︁
, distribution.

More precisely, these three limited random variables are independent from each other, and asymp-
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totically only the configurations where there are no boxes with at least three balls on them are
effectively contributing. Notice in particular that the sum is Poisson

(︁
2a2
)︁
distributed, as in the

birthday problem with d days and 2v persons. Consequently, such heuristics between cooperation of
the generated parasites from two infected vertices motivate the asymptotic comparison between the
infection process and a DBPC whose offspring and cooperation distribution are Poisson distributed

with parameters a2

2 and a2 respectively.

Identification of the invasion probability as the survival probability of a DBPC: More-
over, the events that make the infection process deviating from a DBPC are unlikely at least up
to the generation at which a specific level, tending to infinity, is reached for the infection process.
Such events typically are the re-hitting of a vertex, in the sense that at least two pairs of parasites
go to the same vertex, at the same generation or not. In particular, this observation allows for
comparing the infection process, up to it reaches the aforementioned level, with a DBPC whose

offspring and cooperation distributions are asymptotically close to Poisson
(︂
a2

2

)︂
and Poisson

(︁
a2
)︁

distributions, such that its survival probability is asymptotically identified to the one of the DBPC

whose offspring and cooperation distributions are exactly Poisson distributed with parameters a2

2
and a2 respectively. That explains why the natural candidate for the invasion probability is the
survival probability of this latter DBPC. To prove it, it suffices to show that the aforementioned
level grows to infinity sufficiently quickly such that the invasion of the host population is with high
probability already decided when this level is reached for the infection process.

Heuristics for the RGG

Critical scaling: Concerning the derivation of the critical scaling, the situation is not different
from the one of the complete graph. In a ball centred around an infected vertex, there are a typical
number of vertices dN = N(2rN )n = Nβ at which this infected vertex is directly connected to
according to the definition of a RGG. Thus, cooperation of parasites becomes likely exactly at the
same critical scaling vN ∈ Θ

(︁√
dN
)︁
.

Offspring and cooperation distribution of the upper and lower DBPCs: However, co-
operation of parasites generated from different infected vertices differs from the situation on the
complete graph. Due to the distance between two infected vertices located on x and y in [0, 1]n,
the area composed of the intersection of the balls of radius rN centred around these two infected
vertices is at most of volume the one of a ball of radius rN . This area is composed exactly of the
vertices that are both direct neighbours of the two infected vertices. Hence, the number of infections
generated by cooperation of parasites generated from these two infected vertices are asymptotically
stochastically dominated by a Pois

(︁
a2
)︁
distribution, and depend on the coordinates of the vector

x − y. Such dependence on the spatial localisation implies that a direct comparison between the
infection process and a DBPC is actually not straightforward. The spatial component of the in-
fection process resulting from the spatial structure of the RGG can not asymptotically disappear.
Nevertheless, an identification could be done as the survival probability of a more complex model
than a DBPC, typically where individuals are spatially located and the cooperation distribution
depends on the distance between them.

Though, asymptotic upper and lower bounds of the invasion probability can be obtained as the
survival probabilities of two well chosen DBPCs, by constructing couplings for which the spatial
component is not an issue anymore. Indeed, cooperation of parasites from two infected vertices
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decreases with the distance between these two infected vertices. Then, naturally an upper bound
is obtained if one gives the maximal distribution for these cooperation, as if the two infected
vertices where located exactly at the same spot. With this idea, one can show that the invasion
probability is asymptotically upper bounded by the survival probability of a DBPC whose offspring

and cooperation distributions are Pois
(︂
a2

2

)︂
and Pois

(︁
a2
)︁
distributed respectively (as in the case

of the complete graph). Deriving a lower bound is a bit more tricky, where one have to use that
locally a RGG looks like a complete graph. Indeed, all the vertices located on the ball of radius
rN
2 centred around the initially infected vertex are connected altogether, because they are all at
a distance less than rN from each others. Consequently, if one consider the sub-epidemic process
resulting from infections of vertices located on this ball generated by cooperation of parasites
coming from infected vertices from this sub-epidemic process, a natural coupling from below between
the actual infection process and this sub-epidemic process can be performed. In this ball, the
typical number of vertices is ˜︁dN := rnNN = 1

2n dN . Moreover, when a vertex is infected, among
the vN generated parasites the typical number of them that are actually moving to one of the

vertices located on this ball is ˜︁vN := 1
2n vN ∼ a

2n

√
dN = a√

2n

√︂˜︁dN . Thus, infections generated

by cooperation of parasites coming from the same infected vertex is asymptotically Pois
(︂

a2

2n+1

)︂
distributed, and the ones from cooperation of parasites coming from different infected vertices is

asymptotically Pois
(︂
a2

2n

)︂
distributed. Consequently, the natural identification of the lower bound

for the invasion probability is the survival probability of a DBPC whose offspring and cooperation
distributions are the latter ones. To prove it, it suffices to show that it exists a level tending to
infinity for which the sub-epidemic process is well approximated with the aforementioned DBPC up
to it reaches this level, and that the actual invasion of the hosts population is with high probability
decided when it is reached.

Main Results

Now we can state the results about the invasion probability of cooperative parasites on hosts
populations structured on a complete graph and on a RGG in the next two theorems.

Theorem 1.1.5 (Invasion probability for the complete graph). Assume the host population is
structured on a complete graph with bN = dN ∈ Θ

(︁
Nβ
)︁
, for some 0 < β < 1, vertices. A phase

transition for the invasion probability occurs depending on the scaling of the parasite offspring
parameter vN :

(i) Assume vN ∈ o
(︁√
dN
)︁
. Then for all 0 < u ≤ 1

lim
N→∞

P
(︂
E(N)
u

)︂
= 0.

(ii) Assume vN ∼ a
√
dN for some a > 0. Denote by πc(a) the survival probability of a DBPC

with Poisson
(︂
a2

2

)︂
and Poisson

(︁
a2
)︁
offspring and cooperation distributions respectively. Then

for all 0 < u ≤ 1

lim
N→∞

P
(︂
E(N)
u

)︂
= πc(a) > 0.

(iii) Assume
√
dN ∈ o(vN ). Then

lim
N→∞

P
(︂
E

(N)
1

)︂
= 1.
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Simulations of the invasion probability at the critical scaling are presented in Figure 1.3 for a
complete graph with β = 0.7, as well as the asymptotic survival probability of the corresponding
DBPC for graphical representation of Theorem 1.1.5 (ii).
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Figure 1.3: Simulated invasion probabilities with a host population structured on a complete graph
forN = 106 and β = 0.7 as well as simulated survival probabilities πc (a). The number of simulations
per date point is 104.

Theorem 1.1.6 (Invasion probability for the RGG). Assume the host population is structured on
a RGG on [0, 1]n with intensity Nλn( · ) where λn denotes the Lebesgue measure on Rn, and where

vertices at distance smaller than rN = 1
2nN

β−1
n for the L∞-norm share an edge, for some 0 < β < 1.

Introduce the mean number of neighbours a vertex (with an asymptotically non-vanishing distance
to the boundary) has as dN = N (2rN )

n
= Nβ. A phase transition for the invasion probability

occurs depending on the scaling of the parasite offspring parameter vN :

(i) Assume vN ∈ o
(︁√
dN
)︁
. Then for all 0 < u ≤ 1

lim
N→∞

P
(︂
E(N)
u

)︂
= 0.

(ii) Assume vN ∼ a
√
dN for some 0 < a <∞. Then for all 0 < u ≤ 1

πc

(︃
a√
2n

)︃
≤ lim inf

N→∞
P
(︂
E(N)
u

)︂
≤ lim sup

N→∞
P
(︂
E(N)
u

)︂
≤ πc(a).

(iii) Assume
√
dN ∈ o(vN ). Then

lim
N→∞

P
(︂
E

(N)
1

)︂
= 1.

Moreover when vN ∼ a
√
dN for some a > 0. Denote by

T (N) := inf
{︂
g ∈ N

⃓⃓⃓
I
(N)

g = bN

}︂
.
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Then

lim
N→∞

P
(︃⌊︃

1

2rN

⌋︃
≤ T (N) ≤

⌈︃
1

2rN

⌉︃
+O

(︃
max

(︃
log(log(N)),

εN
r2N

)︃)︃ ⃓⃓⃓⃓
T (N) <∞

)︃
= 1,

with εN =

(︃
N

β
2
−1

n +δ

)︃
, for any δ > 0.

Simulations of the invasion probability at the critical scaling are presented in Figure 1.4 for a
RGG on [0, 1] and [0, 1]2 both for β = 0.7. In particular, the lower and upper bounds are also
added, for graphical representation of Theorem 1.1.6 (ii). The lower bound is not sharp at all
(and become even more worse with the increasing dimension), whereas the upper bound is a better
approximation, even if there is still not an identification with the invasion probability.
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Figure 1.4: Simulated invasion probabilities with a host population structured on a RGG on [0, 1]

(left) and [0, 1]2 (right) for N = 106 and β = 0.7 as well as simulated survival probabilities πc

(︂
a√
2n

)︂
and πc (a).

Before giving some sketch of the proof, we are formulating some remarks on this theorem:

• Strictly positive invasion probability: One shows by application of Proposition 1.1.8

that for any a > 0 the survival probability πc

(︂
a√
2n

)︂
, of a DBPC with Poisson

(︂
a2

2n+1

)︂
and

Poisson
(︂
a2

2n

)︂
offspring and cooperation distributions, is strictly positive. Therefore, in The-

orem 1.1.6 (ii), for any a > 0 the invasion probability is strictly positive. This contrasts
with the host population structured on a configuration model, as in Chapter 2, where for
a2

2 ≤ 1 (considering x = 0 to perform accurate model comparison), the invasion probability
is asymptotically 0, see Theorem 1.1.2 (ii).

• Riemannian manifold structure: In Theorem 1.1.6 we are looking at a RGG structured
on [0, 1]n with the L∞-norm. This choice comes from making the mathematical analysis the
simplest possible, although it has a limited biological modelling interest. Indeed, most of the
time, a bacterial population does not structured as the unit cube, but has a more complex
shape, that can be modelled through a Riemannian manifold. However, in Subsection 3.2.3
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of Chapter 3, we give a brief heuristic justification why our results should also carry over to a
setting where the unit cube [0, 1]n is replaced by a Riemannian manifold, and the L∞-norm by
the metric on the considered Riemannian manifold (induced by the Riemannian metric). Such
setting choice allows for a more adequate biological representation of a bacterial population.

• Generalisations: As for Chapter 2, the model on the RGG can be generalised to take into
account more biological insights, but still being tractable. In particular, as for the study
on the configuration model, a success probability ρN of infection from a single parasite can
be considered under the scaling ρNvN →

N→∞
x ∈ [0, 1]. The invasion probability under the

subcritical or supercritical scaling won’t be modified. In the case of the critical scaling,
the lower bound, respectively the upper bound, on the invasion probability would now be
identified as the survival probability of a DBPC with offspring and cooperation distributions

Poisson
(︂

a2

2n+1 + x
2n

)︂
and Poisson

(︂
a2

2n

)︂
, respectively Poisson

(︂
a2

2 + x
)︂
and Poisson

(︁
a2
)︁
. One

could also consider the case where parasites moving to an empty vertex survive and can move
again in the next generation, such a generalisation won’t change the result. And as for the
first remark of Theorem 1.1.2, some randomness on the number vN of generated parasites
could be considered.

Sketches of the Proofs

We start by sketching the proof of Theorem 1.1.5:

• Theorem 1.1.5 (i): For the subcritical scaling vN ∈ o
(︁√
dN
)︁
, as previously mentioned in

the heuristics, it is unlikely for the vN parasites generated on the first infected vertex to
cooperate such that with high probability the epidemic stops at the first generation with a
total of only one infected host. Hence the invasion probability is asymptotically null.

• Theorem 1.1.5 (ii): For the critical scaling vN ∼ a
√
dN , to arrive at an upper bound

on the invasion probability we couple with high probability the total infection process I(N)

from above with the total size of a DBPC Z
(N)

u until it remains constant or it reaches at
least the level ℓN for a sequence ℓN with ℓN → ∞ sufficiently slowly for the coupling to
hold. The offspring and cooperation distributions of the latter DBPC are sufficiently close

to Poisson distributions with parameters a2

2 and a2 respectively, such that the sequence of
the survival probabilities of these approximating DBPCs asymptotically converges to πc(a),

see Proposition 1.1.10. Moreover the probability to reach the level ℓN for the process Z
(N)

u is
asymptotically equal to πc(a), since for a DBPC reaching a level tending to infinity implies
survival with high probability. In case the level ℓN is reached for the total infection process

I(N)
, that is asymptotically upper bounded by πc(a) as just mentioned before, we upper

bound the invasion probability by 1, meaning that afterwards also the remaining hosts get
infected.

For the lower bound we couple with high probability I(N)
from below with the total size of a

DBPC Z
(N)

ℓ until it remains constant or it reaches the level Nε for ε > 0 small enough for the
coupling to hold. As for the upper bound, the offspring and cooperation distributions of the

latter DBPC are chosen sufficiently close to Poisson distributions with parameters a2

2 and a2

such that its survival probability is asymptotically equal to πc (a). As for the upper bound,



22 CHAPTER 1. INTRODUCTION

the probability to reach the level Nε for Z
(N)

ℓ is asymptotically equal to πc(a). When the

level Nε is reached for the total infection process I(N)
we show that with high probability

such process grows in a constant number of generations to a level N
β
2 +˜︁ε for some small ˜︁ε > 0,

due to the superexponential epidemic spread triggered by cooperation of parasites generated
on different infected vertices. After reaching this particular level the remaining uninfected
hosts get killed with high probability in a single generation.

• Theorem 1.1.5 (iii): Under the supercritical scaling
√
dN ∈ o (vN ), we couple from below

with high probability the total infection process I(N)
with the total size of a GWP whose

offspring distribution is approximately a Poisson distribution with parameter a2

2 , until Nα

hosts get infected or the parasite population dies out for any 0 < α < β and any a > 0. This is
done by ignoring infection due to cooperation of parasites generated on different vertices. The
offspring distribution of the latter GWP is chosen sufficiently close to a Poisson distribution

with parameter a2

2 implying that its survival probability asymptotically converges to π(a),

the survival probability of a GWP with exactly Poisson
(︂
a2

2

)︂
offspring distribution. For a

GWP, reaching any level tending to infinity implies survival with high probability. Thus
the probability for the total infection process to reach the level Nα is asymptotically lower
bounded by π(a), due to the latter property on GWPes combined with the coupling from
below. By choosing α > β

2 , we show that once the level Nα is reached for the total infection

process I(N)
, with high probability after one more generation the remaining uninfected hosts

get killed, a consequence of cooperation of parasites generated on different infected vertices
triggering superexponential epidemic spread. Since the result is obtained for any a > 0 and
that π(a) →

a→∞
1, the invasion probability is asymptotically 1.

Now we deal with a sketch of the proof of Theorem 1.1.6:

• Theorem 1.1.6 (i): Such heuristic does not differ from the one for the complete graph.

• Theorem 1.1.6 (ii): Consider the critical scaling vN ∼ a
√
dN for some a > 0. For the

derivation of the upper bound on the survival probability, we couple (as in the case of the

complete graph) the total infection process I(N)
with a DBPC with offspring and cooperation

distributions that are close to Poisson
(︂
a2

2

)︂
and Poisson

(︁
a2
)︁
respectively, until a certain level

ℓN of total infection is reached, for a sequence ℓN → ∞ sufficiently slowly for the coupling
to hold. The offspring and cooperation distributions of the latter DBPC are sufficiently close

to Poisson distributions with parameters a2

2 and a2 respectively, such that the sequence of
the survival probabilities of these approximating DBPCs asymptotically converges to πc(a).
Combining the coupling, the property that for a DBPC reaching a level tending to infinity
implies survival with high probability, and the previous argument, the probability to reach
the level ℓN for the total infection process is asymptotically upper bounded by πc(a). In

case the level ℓN is reached for the total infection process I(N)
, we upper bound the invasion

probability by 1, meaning that afterwards also the remaining hosts get infected.

For the lower bound we couple with high probability I(N)
from below with the total size of

a DBPC until it remains constant or reaches the level Nε for 0 < ε < β small enough for
the coupling to hold. The offspring and cooperation distributions of the latter DBPC are
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chosen sufficiently close to Poisson distributions with parameters a2

2n+1 and a2

2n such that its

survival probability is asymptotically equal to πc

(︂
a√
2n

)︂
, the one of the DBPC with offspring

and cooperation distribution exactly Poisson distributed with parameters a2

2n+1 and a2

2n re-
spectively. Once Nε many hosts are infected we show that with high probability after at
most O (log(log(N))) many further generations the infection process expands by a distance
rN (1− o (1)) per generation. On the other hand the invasion time is lower bounded by 1

2rN
,

since parasites can move in any generation at most at a distance rN and the infection starts
to the closest vertex of the centre of the cube.

• Theorem 1.1.6 (iii): Under the supercritical scaling
√
dN ∈ o(vN ), again as for the complete

graph, we couple with high probability from below the total infection process I(N)
with the

total size process of a GWP with approximately Poisson
(︂
a2

2

)︂
offspring distribution until Nε

hosts get infected or the parasite population dies out for any 0 < ε < β and any a > 0. In
addition we can show that when the level Nε is reached for the total infection process, there
exists a ball of diameter rN which contains at least Nε log−1(N) infected hosts. By choosing
ε > β/2 we show that once the level Nε is reached, after one more generation the remaining
hosts in this ball get infected with high probability. Afterwards with high probability the
infection expands by a distance rN (1− o(1)) in every generation (similar as in Theorem 1.1.6
(ii)) until the remaining hosts are all infected. Combining that for any GWP the probability
to reach a level tending to infinity is asymptotically equal to its survival probability, and that
the survival probability of the latter GWP is asymptotically equal to π(a), we obtain that
the invasion probability is lower bounded by π(a) for any a > 0. Hence, it is asymptotically
1 since π(a) →

a→∞
1.

Results on Discrete Branching Processes with Cooperation

For proving Theorem 1.1.5 and Theorem 1.1.6 we are deriving some useful results on DBPCs that
are interesting enough to be stated below. Remember the notation we introduced in Definition
1.1.4. We start with the extinction-explosion principle, which is well-known for GWP and also
holds for DBPCs.

Proposition 1.1.7. (Extinction-explosion principle for DBPCs) Let Z be a DBPC satisfying p1,o ̸=
1 and (p0,o, p1,c) ̸= (1, 1). Then there exists a nullset N such that

{∀g ∈ N0 : Zg > 0} ⊆ {∀i ∈ N,∃g0 ∈ N0,∀g ≥ g0 : Zg ≥ i} ∪ N .

The conditions p1,o ̸= 1 and (p0,o, p1,c) ̸= (1, 1) are necessary to exclude two pathological cases
where the statement does obviously not hold. The first case is where the process stays constant at
one individual in each generation, and the second condition ensures that the DBPC with three or
less individuals can further increase and is not stuck below three.

In contrast to GWPes, a DBPC always has a positive survival probability, except for pathological
cases. We denote the expectation and the variance of the offspring distribution by µo and νo and
for the cooperation distribution by µc and νc.

Proposition 1.1.8. Let Z be a DBPC with µo, µc, νo, νc∈ (0,∞) and p0,o + p1,o < 1. Suppose
Z0 = x ∈ N, then Z has a positive survival probability, i.e.

Px(Zg > 0 ∀ g > 0) > 0.
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The superexponential growth speed of a DBPC in case of survival can be derived. More precisely,
the next Proposition shows that for any sequence bN → ∞, reaching the level bN or dying out for
a DBPC, or a sequence of DBPCs under the next conditions, is at most of order log log(bN ), which

contrasts with GWPes. Let
(︁
Z(N)

)︁
N∈N0

be a sequence of DBPCs for which µ
(N)
o , µ

(N)
c , ν

(N)
o , ν

(N)
c

denote the expectations and the variances of the offspring and cooperation distributions. We assume
that

µ(N)
o , µ(N)

c , ν(N)
o , ν(N)

c −→
N→∞

µo, µc, νo, νc ∈ (0,∞), (1.1.2)

and we introduce µ := min(µo, µc) > 0 and ν := max(νo, νc) > 0.

Proposition 1.1.9. Let
(︁
Z(N)

)︁
N∈N0

be a sequence of DBPCs which satisfy Equation (1.1.2). As-

sume Z
(N)
0 = x for some x ∈ N. Furthermore, assume that there exists an N0 > 0 such that

inf
N≥N0

P
(︂
Z

(N)
1 > L|Z(N)

0 = x
)︂
> 0,

where L =: ⌈µ−1(8 + ν)2⌉. Let (bN )N∈N be a N-valued sequence with bN →
N→∞

∞ and denote by

τbN ,0 := inf
{︂
g ∈ N : Z(N)

g ≥ bN or Z(N)
g = 0

}︂
.

Then there exists a constant C > 0 such that

Px (τbN ,0 ≤ C log log(bN )) −→
N→∞

1.

The following Proposition states that, as for GWPes, when a DBPC, or a sequence of DBPCs
under the latter conditions, reaches a certain level tending to infinity at some generation or up to
some generation then survival is ensured with high probability, the counterpart of Proposition 1.1.3
for DBPCs.

Proposition 1.1.10. Consider a sequence of DBPC
(︁
Z(N)

)︁
N∈N with offspring and cooperation

distributions
(︂
p
(N)
k,o

)︂
k∈N0

and
(︂
p
(N)
k,c

)︂
k∈N0

respectively, which satisfies Equation (1.1.2). Further-

more, let Z∞ be a DBPC with offspring and cooperation distribution (pk,o)k∈N0
and (pk,c)k∈N0

.

Assume that p
(N)
k,o → pk,o and p

(N)
k,c → pk,c as N → ∞ for all k ≥ 0. Then for any N-valued

sequence (bN )N∈N with bN → ∞ it holds that

lim
N→∞

P
(︂
∀g ∈ N0 : Z(N)

g > 0
)︂
= lim
N→∞

P
(︂
∃g ∈ N0 : Z(N)

g ≥ bN

)︂
= lim
N→∞

P
(︂
∃g ∈ N0 : Z

(N)

g ≥ bN

)︂
= π,

where π denotes the survival probability of Z∞.
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1.1.5 Perspectives

Many refinements on the understanding of the invasion probability of cooperated parasites on struc-
tured host populations are still possible. First, we obtain that, at the critical scaling vN ∈ Θ

(︁√
dN
)︁
,

the invasion probability is identified as the survival probability φ(a) of a Galton-Watson process

with Pois
(︂
a2

2

)︂
offspring distribution when the host population is structured on a configuration

model (see Theorem 1.1.2, taking x = 0), whereas we obtain a lower bound when it is structured on
a random geometric graph as the survival probability of a DBPC whose offspring and cooperation

distributions are Pois
(︂

a2

2n+1

)︂
and Pois

(︂
a2

2n

)︂
distributed (see Theorem 1.1.6). Hence direct compar-

ison of such results can not be achieved since the offspring distributions of the limiting processes
are not the same. Nevertheless, one can show in the case of the random geometric graph that the
invasion probability is also lower bounded by φ(a). To get this lower bound, it suffices to neglect co-
operation of parasites generated by different infected hosts at the beginning of the infection process.
It implies that having a finite-dimensional spatial structure of the population increases the invasion
probability compared to scenario where the host population is structured by a configuration model
leading to an infection graph with a locally tree like structure.

Moreover, adapting the proof techniques for deriving the lower bound in the case of the random
geometric graph, one can show that the invasion probability is lower bounded by the survival prob-

ability of 2n independent DBPCs with offspring and cooperation distributions that are Pois
(︂

a2

2n+1

)︂
and Pois

(︂
a2

2n

)︂
distributed. To get such result, it suffices to consider the sub-epidemic processes

located on the 2n non-intersecting balls of radius rN
2 that are contained in the ball of radius rN

centred around the initially infected vertex. One can apply for each of the 2n balls similar reason-
ing as made in Chapter 4 when deriving the lower bound, by coupling from below each of the 2n

sub-epidemic processes with the total sizes of DBPCs whose offspring and cooperation distributions

are close to Pois
(︂

a2

2n+1

)︂
and Pois

(︂
a2

2n

)︂
distributions respectively. One has also to show that the

couplings can be made independently from each others by controlling interaction events between
the sub-epidemic processes. The last step is to prove that asymptotically the survival probability
of the sum of these lower DBPCs is identified as the survival probability of a sum of 2n indepen-

dent DBPCs with exactly Pois
(︂

a2

2n+1

)︂
and Pois

(︂
a2

2n

)︂
offspring and cooperation distributions, by

application of Proposition 1.1.10.

Another perspective concerning Chapter 3 when the host population is structured on the random
geometric graph, is to derive the exact asymptotic invasion probability (instead of different upper
and lower bounds) when the critical scaling vN ∼ a

√
dN is considered. Simulations of Figures 3.1

and 3.2 demonstrate that the invasion probability is much more closer to the upper bound compared
to the lower bound. This can be easily understood because, in deriving the lower bound, we
consider an epidemic model centred around the initially infected vertex, which considers infections
only generated within the ball of radius rN/2. This means that many infections are not considered
in this process compared to the original process, resulting in an inadequate lower bound. In the
model analysis, we show that the invasion probability is actually determined by what occurs at
the beginning of the epidemic. Once a certain minor outbreak is reached (meaning that a certain
negligible order of vertices is infected), global invasion is asymptotically achieved with probability
1. Therefore, to identify the invasion probability, one should study an approximate model that
could be referred to as branching with cooperation random walk. Then, it should be shown that
the spatial infection process behaves sufficiently close to this approximate process, at least for a



26 CHAPTER 1. INTRODUCTION

sufficient number of generations, such that the previous minor outbreak is obtained. More precisely,
by branching with cooperation random walk, we mean that at each generation, each individual (or
pair of individuals) gives birth to a random number of offspring, which are spatially distributed
around the parent (or parents), according to a certain distribution and independently from each
other. An example of study of such model is made in [33] where the authors considered a nearest
neighbour cooperative branching-coalescing random walk on Z.

Adding some dynamical behaviours to the hosts could be included in the model and being
interesting for more biological relevance. For instance, in a framework at the intersection of the two
biological themes of this thesis, such as modelling virotherapy with cooperative viruses. Indeed as
mentioned in Subsection 1.1.1, it is believed that the infection of cancer cells with oncolytic viruses
is more effective if a cancer cell is hit by several viruses simultaneously, because in this manner the
virus can cope better with the (interferon-based) anti-viral response of the host, see [31]. Here, the
parasites could represent viruses designed to recognise cancer cells, and the host population would
be a mixture of cancerous and wild-type cells with interactions between them.

1.2 Cell dynamics of multitype populations in oncology

In the next subsections we are presenting the model studied for understanding the genetic compo-
sition during cancer evolution, motivated by some biological context, as well as the results obtained
with heuristics, sketches of the proofs and some perspectives.

1.2.1 Biological context

Cancer is a genetic disease that results from accumulation of subsequent driver mutations. They
trigger activation of oncogenes conferring a selective growth advantage to tumour cells [34] resulting
in abnormal growth. Other mutations called neutral or passenger are also present in cancer evolu-
tion. Contrary to the driver ones, they do not provide any selective advantage to the growing cancer
population but are retained either because they are necessary mutations to later obtain a selective
one, such as inactivation of the first copy of a tumour suppressor gene, or either by chance during
repeated rounds of cell division and clonal expansion. The number of driver mutations triggering
cancer formation is heterogeneous across cancer types. For instance, in the case of solid tumours,
typically more than one driver mutation is required for the development of malignancy, while a
single genetic alteration may be sufficient to cause certain types of leukaemia [35].

Advanced sequencing technology applied to protein-coding genes has led to the identification
of specific driver genes implicated in carcinogenesis, including oncogenes, tumour suppressor genes,
and DNA repair genes. For instance, in colorectal cancer, commonly mutated driver genes such as
APC, TP53, and KRAS are noteworthy examples [36, 37, 38]. Similarly, the fusion gene BCR-ABL
has been linked to chronic myeloid leukaemia [39]. These studies, based on statistical analysis,
have also found that tumours mostly contain a large number of neutral mutations compared to
the number of selective ones driving the initiation, progression and maintenance of the tumour.
Historically tumour dynamics has only been seen under the prism of clonal expansion of selective
mutations, without even considering the paradigm of neutral cancer evolution. Such paradigm,
which has been considered only recently, see [40, 41, 3, 42, 43], advocates that the driver mutations
are already present in the initial cell and that the occurring mutations are neutral ones. Indeed,
the genetic heterogeneity inside a tumour could be explained only considering neutral mutations.
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Various statistical methods are developed to infer the evolutionary history of tumours, including
test of neutral evolution, see [44, 45, 46] for details about that.

Understanding the evolutionary trajectory of a tumour holds clinical significance since prog-
nosis hinges on its future evolutionary path, while the effectiveness of treatment is influenced by
the emergence of resistant subpopulations. Hence, some of the key questions in cancer research
involve uncovering the identities and the effects of mutations on tumorigenesis. Subsequently
considerable effort has been invested to quantitatively understand evolutionary dynamics in ex-
ponentially expanding populations, in order to answer the typical questions: when, how and how
may. More precisely, how many cells exist with a set of mutations, via which sequence of steps
is it most likely to emerge and how long does it take for these cells to appear? With this aim
of characterising disease progression, an increasing body of probabilistic research has been devel-
oped providing valuable insights on cancer genetic evolution. More specifically on clonal expansion
[47, 48, 22, 49, 50, 6, 23, 24, 8, 10, 51, 52, 53, 54, 55], on assessing recurrence timing and the genetic
composition of a tumour at recurrence timing [56, 18, 19, 20], on drug resistance [57, 58, 59], and
on understanding a classical summary statistics for the genetic composition of a tumour that is the
site frequency spectrum [60, 52, 46, 61, 18, 62, 63, 64].

In Chapter 4 and Chapter 5, we propose a multitype birth and death branching process model
on a general finite trait space to derive quantitative results on cancer evolution. More precisely,
under neutral (and deleterious) cancer evolution, we obtain first-order asymptotics for the mutant
subpopulation sizes capturing stochasticity on the genetic composition and allowing to characterise
effective evolutionary pathways. These results are given in Chapter 4. Concerning the selective case,
the study is made up to the first selective mutant trait and is given in Chapter 5. Generalisation to
derive the first-order asymptotics when considering selective mutations on a general finite directed
labelled graph is a work in progress in collaboration with Hélène Leman.

1.2.2 An individual-based toy model for carcinogenesis

The biological motivation of the model under study in Chapter 4 and Chapter 5 is to capture
the dynamics over time of the genetic composition of a population of cells during carcinogenesis.
Mathematically, the first-order asymptotics of all the different mutant subpopulations is captured
over time for neutral and deleterious cancer evolution in Chapter 4 and up to the first selective
mutant subpopulation in Chapter 5.

Cells are represented by a phenotypic trait, modelled through a finite set V with 0 ∈ V . Cells
with trait 0 are called wild-type cells, and all cells with trait v ∈ V \{0} are called mutant cells. For
all v ∈ V , we denote by (Zv(t))t∈R+ the number of cells of trait v at time t in the population. For
modelling carcinogenesis, we consider the initial condition

∀v ∈ V,Zv(0) = 1{v=0}, almost surely.

The evolutionary process is modelled using a continuous-time branching process on NV
0 , where cell

division, death and mutations are taking into account. More precisely, cells divide to give birth to
two daughter cells and die with rates depending only on their phenotypic trait. The birth, death
and growth rate functions are respectively

α : V −→ R+,

β : V −→ R+,

λ := α− β.
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The growth rate of the wild-type subpopulation is assumed to be strictly positive λ(0) > 0, otherwise
the wild-type subpopulation won’t survive almost surely. During a division event of a cell of trait
v ∈ V , independent mutations over the two daughter cells are considered. Mutation landscape
across traits is encoded via a graph structure (V,E) on the trait space. E ⊂ {(v, u),∀v, u ∈ V 2} is
a set of ordered pairs over V satisfying for all v ∈ V , (v, v) ∩ E = ∅, and such that for all trait v
there exists a path from 0 to v. In other words, (V,E) is a finite directed graph without self-loop
for which each vertex is on the directed-connected component of trait 0. Mutation from trait v to
trait u is possible if and only if (v, u) ∈ E. Let µ : E −→ [0, 1] be a mutation kernel satisfying

∀v ∈ V, µ(v) :=
∑︂

u∈V :(v,u)∈E
µ(v, u) ≤ 1.

A daughter cell mutates from trait v to trait u with probability µ(v, u), meaning that µ(v) is its
total mutation probability.

Finally the exact transition rates from a state z = (zv)v∈V ∈ NV
0 of the evolutionary process

are

z ↦→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z − δv, at rate zvβ(v),
z − δv + δu + δw, at rate 2zvα(v)µ(v, u)µ(v, w)1{(v,u)∈E}1{(v,w)∈E}1{u ̸=w},
z − δv + 2δu, at rate zvα(v)µ(v, u)

2
1{(v,u)∈E},

z + δv, at rate zvα(v) (1− µ(v))
2
+ 2

∑︁
u∈V :(u,v)∈E

zuα(u)µ(u, v) (1− µ(u)) ,

where ∀v ∈ V, δv =
(︁
1{u=v}

)︁
u∈V .

Following typical parameter values in cancer evolution, we consider the framework of power
law mutation rates limit. A scaling parameter n ∈ N is used to quantify both the decrease of
the mutation probabilities, as negative powers of n, and also the typical size of the population,
depending on n as positive power of n, at which we are interested in understanding the genetic
composition. We aim to obtain first-order asymptotics of all mutant subpopulation sizes when n
goes to infinity. To be more precise, let L := {ℓ(v, u) ∈ R∗+,∀(v, u) ∈ E} be a set of strictly positive
labels on the edges of the graph. Introduce a sequence of the latter model where for each n ∈ N,
the mutation kernel under consideration is µ(n) : E −→ [0, 1] satisfying

∀(v, u) ∈ E,nℓ(v,u)µ(n)(v, u) −→
n→∞

µ(v, u) ∈ R+. (1.2.1)

We are going to study the cell populations on the log(n)-accelerated time scale, the natural one for
exponentially growing models to reach powers of n, as well as the random time scales at which the
wild-type subpopulation or the total cell population reach powers of n.

1.2.3 Results of Chapter 4

In Chapter 4 we obtain first-order asymptotics of the size of the mutant subpopulations on the
deterministic log(n)/λ(0)-accelerated time scale, and on the random time scale at which the total
population, respectively the wild-type subpopulation, reaches powers of n, for neutral and delete-
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rious cancer evolution, see Theorem 1.2.4. For that, introduce for t > 0 the time scales

t
(n)
t := t

log(n)

λ0
,

η
(n)
t := inf

{︂
u ∈ R+ : Z

(n)
0 (u) ≥ nt

}︂
,

σ
(n)
t := inf

{︄
u ∈ R+ :

∑︂
v∈V

Z(n)
v (u) ≥ nt

}︄
,

ρ
(n)
t := η

(n)
t or σ

(n)
t . (1.2.2)

Under neutral and deleterious cancer evolution, the stopping times η
(n)
t and σ

(n)
t are asymptotically

the same (see Proposition 4.3.12). For simplicity, when stating the results, we introduce the notation

ρ
(n)
t . Two different biological interpretations can be made to motivate the study on the random time

scales. For instance, when considering metastasis, the wild-type subpopulation Z
(n)
0 may represent

the primary tumour, and the mutant subpopulations Z
(n)
v , for all v ∈ V \{0}, may correspond

to secondary tumours. As it is size and not age of a tumour that clinicians have access to, it is
biologically relevant to estimate the genetic composition of the secondary tumours when the primary
one has a given size. This is mathematically encoded in looking at the first-order asymptotics

of Z
(n)
v

(︂
η
(n)
t

)︂
for all v ∈ V \{0}. Another biological setting is when the total population Z

(n)
tot

represents one tumour. It is appropriate to obtain theoretical results about the size of the mutant

subpopulations Z
(n)
v for all v ∈ V \{0} when the tumour has reached a given size. This corresponds

exactly to looking at the first-order asymptotics of Z
(n)
v

(︂
σ
(n)
t

)︂
.

We also obtain asymptotic results for the stochastic exponents (or also called stochastic Hopf-
Cole transform) of the mutant subpopulations, defined as

X(n)
v (t) :=

Z
(n)
v

(︂
t
(n)
t

)︂
log(n)/λ(0)

, (1.2.3)

without imposing the framework of neutral or deleterious cancer evolution, see Theorem 1.2.5.
We are going to perform some heuristics for the results on the first-order asymptotics under the

assumption

∀v ∈ V, λ(v) ≤ λ(0). (1.2.4)

Heuristics

The heuristics for understanding Theorem 1.2.4 are constructed in three steps. The first one
aims to understand the first-order asymptotics of the size of a direct neighbour of the wild-type
subpopulation by studying the case of the simplest graph one can think of, i.e. a two-traits model
where only mutations from wild-type to the one and only mutant trait is considered. Then, we
explain how such heuristics on a two-traits model is used as an elementary brick for getting heuristics
on a finite monodirectional graph. Finally, we end by quantitatively comparing for all traits v ∈
V \{0} the asymptotic contribution to the subpopulation size of trait v of all the different walks on
the trait space graph structure linking trait 0 to v :
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• Heuristics for a two-traits model: Consider the two-traits model (V,E, L) with V =
{0, 1}, E = {(0, 1)} and L = {ℓ(0, 1)}. We start the heuristics by deriving that the first
time on the log(n)/λ(0)-accelerated time scale for mutations to be likely is actually ℓ(0, 1).
Under the power law mutation rates regime, the inner birth and death rate of the wild-type
subpopulation are so close to α(0) and β(0) (only differs by a factor of order n−ℓ(0,1)) that
the growth of the wild-type subpopulation is approximately an exponential growth with rate

λ(0). Then in case of survival, at time t
(n)
t , its size is of order Θ (nt). With a mutation

probability which scales as n−ℓ(0,1), the total mutation probability up to time t
(n)
t scales as∫︁ t

0
nun−ℓ(0,1)d

(︂
u log(n)
λ(0)

)︂
= n−ℓ(0,1)

λ(0) (nt − 1) which is of order 1 for t = ℓ(0, 1). This heuristics

is formalised by D. Cheek and T. Antal in [8, 10].

Then we explain how to predict the size of the mutant subpopulation at time t
(n)
t , for all

t ≥ ℓ(0, 1). An illustration of these heuristics can be found in Figure 1.5. Let ℓ(0, 1) ≤ u ≤ t,

the number of new mutations generated at time t
(n)
u scales as

Θ(nu · n−ℓ(0,1)) = Θ

(︃
exp

(︃
λ(0)(u− ℓ(0, 1))

log(n)

λ(0)

)︃)︃
.

The remaining time for these new mutant cells to grow exponentially at rate λ(1) until time

t
(n)
t is t

(n)
t−u. This implies that their lineages have at time t

(n)
t a size of order

Θ

(︃
exp

(︃
λ(0)(u− ℓ(0, 1))

log(n)

λ(0)

)︃
· exp

(︃
λ(1)(t− u)

log(n)

λ(0)

)︃)︃
(1.2.5)

= Θ

(︃
exp

(︃
[λ(1)t+ (λ(0)− λ(1))u− λ(0)ℓ(0, 1)]

log(n)

λ(0)

)︃)︃
.

Then two scenarios are possible depending on if the mutant trait is neutral or deleterious:

(i) If λ(1) < λ(0): Equation (1.2.5) is maximal for u = t and equal to Θ
(︁
nt−ℓ(0,1)

)︁
. This

means that the dynamics of the mutant subpopulation is driven by the mutation from
the wild-type subpopulation and not from its inner growth. More precisely, its size

order at time t
(n)
t is fully given by the mutations generated at this time -and so is of

order O
(︁
nt−ℓ(0,1)

)︁
- and not from the lineages issued from mutations generated at strictly

previous time.

(ii) If λ(1) = λ(0): Equation (1.2.5) is independent of u and equal to Θ
(︁
nt−ℓ(0,1)

)︁
for any

ℓ(0, 1) ≤ u ≤ t. This means that these lineages have the same size order at time t
(n)
t than

any other lineages of mutant cells generated from mutational events at any other time

between t
(n)
ℓ(0,1) and t

(n)
t . In the dynamics of the mutant subpopulation there is a balance

between the contribution of mutations and its inner growth. This is a consequence of
assuming λ(1) = λ(0). Hence to capture the total size of the mutant subpopulation at

time t
(n)
t , it remains to integrate all the lineages issued from mutational events over time

t
(n)
u , for ℓ(0, 1) ≤ u ≤ t. This exactly gives the order Θ

(︁
(t− ℓ(0, 1)) log(n)nt−ℓ(0,1)

)︁
.

To sum up, for this simple graph, the mutant subpopulation scales after time t
(n)
ℓ(0,1) as

Θ
(︂
nt−ℓ(0,1)

[︁
1{λ(0)>λ(1)} + 1{λ(0)=λ(1)}(t− ℓ(0, 1)) log(n)

]︁)︂
. (1.2.6)
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time with exponential growth 

 

𝟙 𝟙

Figure 1.5: Heuristics for the size of the mutant subpopulation after time t
(n)
ℓ(0,1)

In any case, the mutant subpopulation has an exponential growth at rate λ(0) after time

t
(n)
ℓ(0,1), given by the factor nt−ℓ(0,1). A supplementary multiplicative factor of order log(n) is

captured in case of neutral mutation.

• Heuristics for a finite mono-directional graph: These heuristics on this simple two-traits
model can be used as an elementary brick for getting some on a finite monodirectional graph
by iterations to get both the first-occurrence time for seeing mutations in the log(n)/λ(0)-
accelerated time scale, as well as the exponential growth and the multiplicative factor of
log(n). Consider a path from wild-type trait 0 to a trait v ∈ V \{0}. We obtained that
after the first-occurrence time for mutations to be generated for the neighboured trait of the
wild-type trait, which is the label on the edge, this mutant subpopulation has an exponential
growth at rate λ(0). Thus the time u to wait for seeing a cell of trait v, on the time scale

t
(n)
u , generated due to this specific mutational walk is the sum of the labels of the edges of
this walk, called the length of this walk. Then, after this time, this subpopulation of cells of
trait v due to this walk grows exponentially fast at rate λ(0). Moreover, as seen in (1.2.6),
when a neutral mutation is encountered a multiplicative factor of order log(n) is captured
in the asymptotic size, meaning that for any neutral mutation on the walk leading to v a
supplementary multiplicative factor of order log(n) is captured on the size order. These two
facts combined give that after time the length of this walk, the subpopulation of trait v grows
exponentially fast at rate λ(0) and has a multiplicative factor log(n) to the power the number
of neutral mutations there are on this walk.
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• Heuristics for a general finite directed labelled graph: Considering a vertex v ∈ V \{0},
there are potentially many mutational walks from the initial vertex 0 to v on the trait space
graph structure. Then one needs to understand which ones are involved in the size order of the
mutant subpopulation of trait v, by using the previous heuristics on a monodirectional graph.
First, the subpopulation of trait v starts having cells after a time which is the minimum of
the lengths over the walks from 0 to v. Second, after this time only the walks whose lengths
are equal to the latter minimum might contribute to the size order of the mutant cells of
trait v. This is due to the fact that having a time delay, on the log(n)/λ(0)-accelerated time
scale, creates an exponential delay of order a power of n in the size order. This discrimination
over the walks that might asymptotically contribute is asymptotically captured in Theorem
1.2.5 where results on the asymptotic limits of the stochastic exponents suffice. Thirdly, the
supplementary multiplicative factors of order log(n) due to the neutral mutations implies that
over the walks from 0 to v satisfying that their lengths are equal to the latter minimum, only
those with the maximal number of neutral mutations are actually contributing to the size order
of the mutant subpopulation of trait v. More specifically with a factor of log(n) at the power
this maximal number of neutral mutations. Such characterisation is asymptotically captured
by results on the first-order asymptotics, presented in Theorem 1.2.4, where results only in
the stochastic exponents are not sufficient. Moreover for any of these admissible walks, at
each neutral mutation a supplementary time integral is obtained, as seen in Equation (1.2.6).
An illustration with an example is given in Figure 1.6.

Figure 1.6: Heuristics for the contribution of walks to the size order of the plain purple mutant
subpopulation: in this example, the dashed red walk has a length of 7, while the dotted blue and
plain green walks have a length of 4. Therefore, only the two latter walks may contribute to the
size order of the plain purple mutant subpopulation, making them sub-admissible walks. However,
the dotted blue walk has only one neutral mutation, whereas the plain green walk has two neutral
mutations. As a result, only the plain green walk will ultimately contribute to the size order of

the purple mutant subpopulation. For t ≥ 4, at time t
(n)
t , it will grow as log2(n)eλ(0)t

(n)
t−4 . Notice,

in particular, that the dashed red walk has the maximal number of neutral mutations, which is 3.
However, since it is not a sub-admissible walk, the multiplicative factor of log(n) remains 2 instead
of 3.
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Definitions

Now, the natural definitions derived from these heuristics are formally established before presenting
the results.

Definition 1.2.1 (Deleterious and neutral vertices). A vertex v ∈ V is called a neutral vertex if
λ(v) = λ(0), and a deleterious vertex if λ(v) < λ(0).

The following definition provides a structured framework to analyse the contribution of evolu-
tionary pathways to the growth of mutant subpopulations. It does so by introducing the adapted
vocabulary, for the neutral and deleterious evolutionary context of the model, associated with walks
in labelled graphs. We use the term ’walk’ here according to the standard nomenclature of graph
theory.

Definition 1.2.2 (Walk in the graph). A walk γ = (v(0), · · · , v(k)) in the graph (V,E) is defined
as a sequence of vertices linking v(0) to v(k) such that for all 0 ≤ i ≤ k, v(i) ∈ V , and for all
0 ≤ i ≤ k − 1, (v(i), v(i + 1)) ∈ E. We will sometimes use the term ’path’ to refer to a walk that
visits only distinct vertices. Given a walk γ = (v(0), v(1), · · · v(k)) in the labelled graph (V,E, L),
we define:

• The sum of the labels of the edges and the sum over the first i edges of the walk γ, respectively:

t(γ) :=

k−1∑︂
i=0

ℓ(v(i), v(i+ 1)) and for all i ≤ k, tγ(i) :=

i−1∑︂
j=0

ℓ(v(j), v(j + 1)).

• The subset of neutral heads of the edges of the walk γ and its cardinality:

γneut = {v(i), 1 ≤ i ≤ k : λ(v(i)) = λ(0)} and θ(γ) := |γneut|.

• The weights wneut(γ) and wdel(γ) associated with the neutral and deleterious vertices of the
walk γ, respectively:

wneut(γ) :=
∏︂

1≤i≤k,λ(v(i))=λ(0)

2α(v(i− 1))µ(v(i− 1), v(i))

λ(0)
,

wdel(γ) :=
∏︂

1≤i≤k,λ(v(i))<λ(0)

2α(v(i− 1))µ(v(i− 1), v(i))

λ(0)− λ(v(i))
.

Along a walk, the constant of the asymptotic contribution of a vertex- depending on its pa-
rameters and those of the upstream vertex- takes a distinct form based on whether the vertex
is neutral or deleterious. This distinction motivates the use of the separate weights wneut(γ)
and wdel(γ).

• The time dependence associated with the neutral vertices: Let σ be an increasing function
from {1, · · · , θ(γ)} to {1, · · · , k}, such that v(σi) is the i-th neutral vertex of the walk γ. For
all t > 0, define the multiple integral Iγ(t) as

Iγ(t) :=

∫︂ t∨tγ(σθ(γ))

tγ(σθ(γ))

∫︂ u1

tγ(σθ(γ)−1)

· · ·
∫︂ uk

tγ(σθ(γ)−k)

· · ·
∫︂ uθ(γ)−1

tγ(σ1)

duθ(γ) · · · du1.
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Along a walk, for each neutral vertex that is visited, an additional integral over the time
parameter appears in the asymptotic limit, as described in the heuristics. This motivates the
definition of Iγ(t).

• The weight of the walk γ at time t:

wγ(t) := wdel(γ)wneut(γ)Iγ(t).

This expression captures the total weight of a walk γ at time t, accounting for both the delete-
rious and neutral visited vertices, and the integrals over the time parameters associated with
these neutral vertices.

Definition 1.2.3 (Admissible walks). For all v ∈ V , let P (v) denote the set of all walks γ in the
graph (V,E) that link the vertex 0 to the vertex v. We define the:

• The minimum total label sum among all walks from vertex 0 to vertex v:

t(v) := min
γ∈P (v)

t(γ).

• The maximum number of neutral vertices among the shortest walks from vertex 0 to vertex v:

θ(v) := max
γ∈P (v),t(γ)=t(v)

θ(γ).

• The set of admissible walks from vertex 0 to vertex v:

A(v) := {γ ∈ P (v) : t(γ) = t(v) and θ(γ) = θ(v)}.

In the previous definition, the set A(v) is referred to as the set of admissible walks because, as
indicated by the heuristics, only walks belonging to A(v) contribute to the growth dynamics of the
mutant subpopulation of trait v. This is formally established in Theorem 1.2.4.

Main results for neutral and deleterious cancer evolution

In the next theorem we state the first-order asymptotic results for the size of all the mutant
subpopulations structured on a general finite directed labelled graph for the trait space, under
neutral and deleterious cancer evolution.

Theorem 1.2.4. Assume that the general finite directed labelled graph (V,E, L) satisfies both the
power law mutation rates regime described in (1.2.1) and the non-increasing growth rate graph

condition given in (1.2.4). Let hn = log(n)
log(log(n))θmax+φn

, where φn →
n→∞

∞ such that hn →
n→∞

∞
and where θmax := maxv∈V \{0} θ(v). Let also ψn such that

√︁
log(n) = o(ψn). Define for all

(t, s) ∈ R+ × R,

d(n)v (t, s) :=1{t∈[0,t(v)−h−1
n )} + 1{t∈[t(v)−h−1

n ,t(v))}ψn log
θ(v)−1(n) (1.2.7)

+ 1{t∈[t(v),∞)}n
t−t(v) logθ(v)(n)eλ(0)s.
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Let (T,M) ∈
(︁
R∗+
)︁2

and 0 < T1 < T2. Using the mathematical definition of the model given in
Section 4.4 (see (4.4.1), (4.4.2), (4.4.3), (4.4.4) and (4.4.5)), there exists a random variable W ,
properly defined in (4.4.6), satisfying

W
law
:= Ber

(︂λ(0)
α(0)

)︂
⊗ Exp

(︂λ(0)
α(0)

)︂
,

such that for all v ∈ V \{0}, we obtain the convergence results in probability in L∞([0, T ]×[−M,M ])
for Equation (1.2.8) and in L∞ ([T1, T2]× [−M,M ]) for Equations (1.2.9), (1.2.10) and (1.2.11):

(i) Deterministic time scale:
If λ(v) = λ(0), then

Z
(n)
v

(︂
t
(n)
t + s

)︂
d
(n)
v (t, s)

−→
n→∞

W
∑︂

γ∈A(v)

wγ(t). (1.2.8)

If λ(v) < λ(0), then

Z
(n)
v

(︂
t
(n)
t(v)+t + s

)︂
nt logθ(v)(n)eλ(0)s

−→
n→∞

W
∑︂

γ∈A(v)

wγ(t(v) + t). (1.2.9)

(ii) Random time scales: Consider
(︁
ρ
(n)
t

)︁
t∈R+ as defined in (1.2.2).

If λ(v) = λ(0), then

Z
(n)
v

(︂
ρ
(n)
t + s

)︂
d
(n)
v (t, s)

−→
n→∞

1{W>0}
∑︂

γ∈A(v)

wγ(t). (1.2.10)

If λ(v) < λ(0), then

Z
(n)
v

(︂
ρ
(n)
t(v)+t + s

)︂
nt logθ(v)(n)eλ(0)s

−→
n→∞

1{W>0}
∑︂

γ∈A(v)

wγ(t(v) + t). (1.2.11)

The proof of Theorem 1.2.4 relies on a martingale approach using Doob’s and Maximal Inequal-
ities. The initial step involves controlling the growth of the lineage of wild-type cells originated
from the initial cell, for both the deterministic and random time scales. For any vertex v ∈ V \{0},
there may be several mutational walks in the graph (V,E) that start from 0 and lead to v. Un-
derstanding the contribution of each of these walks to the first-order asymptotics of the size of the
mutant subpopulation of trait v is essential. The proof proceeds in 2 steps. First, we consider
an infinite mono-directional graph under Assumption (1.2.4) and we establish the result for this
specific graph. Performing this step for an infinite graph is particularly helpful in handling cycles
(such as backward mutations) in a general finite directed graph. Then, we identify and exclude
walks from the initial vertex 0 to v that do not contribute to the first-order asymptotics of the size
of the mutant subpopulation of trait v.

Before stating the result obtained on the stochastic exponent when allowing selective mutations,
many remarks about Theorem 1.2.4 are performed:
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(i) Supplementary log(n) factor: Notice that a multiplicative factor of logθ(v)(n) is captured

after time t
(n)
t(v), see Equations (1.2.7), (1.2.8), (1.2.9), (1.2.10) and (1.2.11). Obtaining a result

on the stochastic exponents, as in Theorem 1.2.5, does not capture such a factor. For instance
with the two-traits model used for the heuristics, if λ(1) = λ(0), Theorem 1.2.4 gives that

after time ℓ(0, 1), Z
(n)
1

(︁
t
(n)
t

)︁
behaves approximately as log(n)e

λ(0)t
(n)

t−ℓ(0,1) . However, what is

captured with X
(n)
1 (t) after time ℓ(0, 1) is asymptotically λ(0)(t− ℓ(0, 1)), see Theorem 1.2.5.

(ii) Asymptotic stochasticity: The random variable W is explicitly defined as the random
variable that quantifies the randomness over the long time of the lineage of wild-type cells
issued from the initial cell. Due to the power law mutation rates regime, mutations arise
after a long time, so that the stochasticity of this lineage is already captured by W . Notice
that under Assumption (1.2.4), the randomness in the first-order asymptotics of any mu-
tant subpopulation size is described completely by W . This means that the stochasticity of
these subpopulations is driven primarily by the randomness in the growth of the wild-type
subpopulation rather than by the one of the mutational process or of any lineage of mutant
cells. In particular, if the process starts with a large number of wild-type cells instead of just
one, the first-order asymptotics of the size of the mutant subpopulations would be entirely
deterministic.

(iii) Selective mutations: It seems quite natural not to obtain such a result when considering
selective mutation (λ(v) > λ(0)). Indeed, a selective mutation imply that any time advantage
translates directly into a growth advantage. Thus, the stochasticity of the mutational process,
as well as the randomness in the lineages of the mutant cells, cannot be ignored. Therefore,
expecting to control the stochasticity of the mutant subpopulation solely by controlling the
randomness in the wild-type subpopulation, without also accounting for the randomness in
the mutational process and the mutant lineages, is vain. More precisely, using a martingale
approach to derive the first-order asymptotics cannot be successful for a selective mutation.
Technically, this is because the expected size of the selective mutant subpopulation is of a
higher order than its typical asymptotic size. Indeed, the rare event of the initial cell mutating
to the selective trait extremely quickly, an event that asymptotically vanishes, is responsible
for this discrepancy between the expected value and the typical asymptotic size of the selective
mutant subpopulation. Nevertheless, when examining the stochastic exponent, the martingale
approach allows us to obtain convergence results as given in Theorem 1.2.5. This is because
the aforementioned rare event contributes only a factor proportional to its probability to
the expected value of the stochastic exponent, meaning it actually asymptotically neither
contributes to the typical size nor to the expected value of the stochastic exponent of the
selective mutant subpopulation. Moreover, in Chapter 5 we develop another approach to get
the first-order asymptotics for the first mutant trait. Generalisation to derive the first-order
asymptotics when considering selective mutations for a general finite directed graph is a work
in progress.

(iv) Result comparison between neutral and deleterious traits: Considering the time scale

t
(n)
t , the result slightly differs depending on whether the vertex is neutral or deleterious. In-
deed, when looking at the asymptotic behaviour for a deleterious vertex v, the result holds
strictly after time t(v), whereas, in the case of a neutral vertex, the entire trajectory from
the initial time can be analysed. Mathematically, this difference arises from the additional



1.2. CELL DYNAMICS OF MULTITYPE POPULATIONS IN ONCOLOGY 37

multiplicative factor of log(n) in the first-order asymptotics when considering a neutral mu-
tation. This factor allows us to control the quadratic variation at time t(v) for the martingale
associated to the mutant subpopulation. Three distinct regimes are obtained, as indicated by
(1.2.7) and (1.2.8) :

(i) Up to time t(v) − h−1n : with high probability, no mutational pathway from 0 to v has
generated a mutant cell of trait v. Since hn → ∞ and satisfies hn = o(log(n)), t(v) can
be interpreted as the first time -when considering the time scale accelerated by log(n)-
at which it becomes asymptotically possible to observe the first occurrence of a mutant
cell of trait v. This result is also true for deleterious mutations.

(ii) For t ∈
[︁
t(v)− h−1n , t(v)

)︁
: in this time interval, some mutant cells of trait v are produced,

but the interval’s length is insufficient to achieve any power of n for the size of the mu-
tant subpopulation of trait v. We succeed to dominate its growth by ψn log

θ(v)−1(n),
with a well-chosen ψn. Heuristically, the total number of mutant cells of trait v re-
sulting from a mutational event up to time t is of order Θ

(︁
logθ(v)−1(n)

)︁
. With the

remaining time for these mutant cells’ lineages to grow, we manage to control the size
of the mutant subpopulation of trait v by at most

√︁
log(n) logθ(v)−1(n). Consequently,

dividing by any function ψn satisfying
√︁
log(n) = o(ψn) results in an asymptotic lim-

its of 0. This result also holds for deleterious mutations. The
√︁
log(n) factor in the

growth control comes from a mathematical analysis using a martingale approach, par-
ticularly considering the time scale accelerated by log(n). With further refinement, we
conjecture that the actual size of the mutant subpopulation at time t(v) is of order

Θ
(︁ (︁
1{λ(0)=λ(v)} log(log(n)) + 1{λ(0)>λ(v)}

)︁
logθ(v)−1(n)

)︁
.

(iii) For t ∈ [t(v),∞): with high probability, the number of mutant cells of trait v grows

exponentially at rate λ(0). A supplementary multiplicative factor logθ(v)(n) is present
due to the neutral mutations on the walks in A(v). Thus, the growth scales globally as

n(t−t(v)) logθ(v)(n)wv(t).

(v) Results comparison between time scales: When comparing point (i) and (ii) of Theorem

1.2.4, notice that the result transitions from the deterministic time scale t
(n)
t to the random

time scale ρ
(n)
t merely by switching W to 1{W>0}. This seemingly surprising fact can be

explained by the essential role of W . As mentioned in point (ii) of these remarks, W encodes
the long-term stochasticity of the lineage of wild-type cells originating from the initial cell. By

showing that the time scale t
(n)
t serves as the correct deterministic approximation of ρ

(n)
t , it

follows that obtaining an asymptotic result on time scale t
(n)
t also yields a result for the time

scale ρ
(n)
t . This idea is formalised using a technique similar to that in [56, Lemma 3]. The

switch fromW to 1{W>0} in the result occurs because the time scale ρ
(n)
t inherently carries the

stochasticity of the random variable W . Consequently, the only remaining randomness that
needs to be considered is the survival of the lineage from the initial cell, which is asymptotically
given by 1{W>0}.

Stochastic exponents for selective cancer evolution

The next theorem does not require the non-increasing growth rate condition of Equation (1.2.4).
Without this assumption, a martingale approach, as used for proving Theorem 1.2.4 fails to obtain
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the first-order asymptotics of the mutant subpopulation sizes. However, the stochastic exponents
of the mutant subpopulations, as defined in (1.2.3), can be uniformly tracked over time. In Chapter
5, we actually derive the first-order asymptotics of the size of the mutant subpopulations, as in
Theorem 1.2.4, but only for the very specific trait space that is mono-directional leading to the first
selective mutant trait. In the next theorem, we show for a general finite directed graph that, under
the event {W > 0}, the limits are positive deterministic non-decreasing piecewise linear continuous
functions. Such limits are defined via a recursive algorithm tracking their slopes over time. More
precisely, we show that the slopes can only increase and take values from the growth rate function λ.
This result is obtained through an adaptation of the techniques developed in the large population
and power mutation rates regime, see in particular [6, 11, 12] to the current multitype birth and
death branching process.

In the tracking algorithm, two different kinds of updates can be made:

• Birth of a new trait: The first update is the birth of a new trait which takes as its slope the
maximum between its inner growth rate and the slope of the subpopulation that gave birth to
it. In fact, it could also happen that many subpopulations give birth to it at the same time;
in this case it is the maximum of their slopes that is compared to the inner growth rate of
the born trait. Such a comparison on the growth rates indicates which mechanism is driving
the subpopulation growth: either its inner growth if this subpopulation is selective compared
to the subpopulation(s) that is/are giving birth to it, or conversely the mutational process
if it is deleterious. The neutral case corresponds to a balance of these two mechanisms, as
previously mentioned in Theorem 1.2.4.

• Growth driven by another trait: The second kind of update is when a live trait v increases
its slope because another live trait u among its incoming neighbours, with a higher slope, has
reached its typical size so that the mutational contribution from trait u now drives the growth
of trait v. Consequently trait v now takes the slope of trait u. Again potentially many traits
u among the incoming neighbours of trait v can reach at the same time the typical size for
the mutational contribution to drive the growth of trait v; in this case the growth of trait v
is driven by the trait u with the maximal slope. This kind of update encodes the possibility
in the evolutionary process that the driving mechanism of a subpopulation can change over
time, always triggering an increase in the actual growth of the subpopulation.

How these two different kinds of updates happen in the tracking algorithm is made formal in
the following theorem. Moreover, they can happen at the same time for different vertices. The
complexity of such an algorithm comes mostly from the generality both on the growth rate function
and on the trait structure. Under the non-increasing growth rate condition (1.2.4), the limiting
functions (xv)x∈V have an explicit form, see Corollary 1.2.7; this is also true when the graph
structure is mono-directional, see Corollary 1.2.6.

Theorem 1.2.5. Let 0 < T1 < T2. The stochastic exponents defined in (1.2.3) satisfy(︂(︁
X(n)
v (t)

)︁
v∈V

)︂
t∈[T1,T2]

−→
n→∞

1{W>0}
(︂(︁
xv(t)

)︁
v∈V

)︂
t∈[T1,T2]

in probability in L∞[T1, T2]. For each v ∈ V , xv is a positive deterministic non-decreasing piecewise
linear continuous function obtained via a recursive approach tracking its slope over time. In partic-
ular there exist k∗ ∈ N and 0 = ∆0 < ∆1 < · · · < ∆k∗ <∞ such that the slopes of (xv)v∈V change
only at the times (∆j)j∈{0,··· ,k∗}. For j ∈ {0, · · · , k∗}, at time ∆j two kinds of updates in the slopes
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can occur: (i) either a new trait starts to grow or (ii) an already growing trait increases its slope
due to a growth driven now by another more selective trait. The algorithm tracks the following
quantities for all j ∈ {0, · · · , k∗} at time ∆j:

• the set of alive traits, Aj,

• the set of not-yet-born traits, Uj,

• the slope of xv, λj(v),

• and the set of traits whose growth is driven by trait v, Cj(v).

Initialisation: Set A0 = {0}, U0 = V \{0} and for all v ∈ V

xv(0) = 0, λ0(v) = λ(0)1{v=0}, and C0(v) = ∅.
Induction: Let j ∈ {0, · · · , k∗ − 1}. Assume that there exist times 0 = ∆0 < ∆1 < · · · < ∆j <∞
such that (xv)v∈V are positive deterministic non-decreasing piecewise linear continuous functions
defined on [0,∆j ], where changes of slopes occur only on the discrete set {∆1, · · · ,∆j}. Also assume
that there exist λj(v), Aj, Uj, and Cj(v), respectively the slope of xv, the set of alive vertices and
not-yet-born vertices, and the set of vertices whose growth is driven by v, everything at time ∆j.

Then there exists ∆j+1 ∈ (∆j ,∞) such that (xv)v∈V are constructed during the time period
[∆j ,∆j+1] according to the following. For all v ∈ V and for all t ≥ ∆j let

yv(t) = (t−∆j)λj(v) + xv(∆j).

For all v ∈ Uj define

∀u ∈ Aj such that (u, v) ∈ E, δu,v := inf{t ≥ ∆j : yu(t) ≥ λ(0)ℓ(u, v)},
δv := inf

u∈Aj :(u,v)∈E
δu,v,

ν(v) := {u ∈ Aj : (u, v) ∈ E and δu,v = δv}.

For all v ∈ Aj define

Bj(v) := {u ∈ Aj : (v, u) ∈ E and λj(v) > λj(u)},
∀u ∈ Bj(v), δv,u := inf{t ≥ ∆j : yv(t) ≥ yu(t) + λ(0)ℓ(v, u)},
δv := inf

u∈Bj(v)
δv,u,

ν(v) := {u ∈ Bj(v) : δv,u = δv}.
Then define ∆j+1 := infv∈V δv and νj+1 := {v ∈ V : δv = ∆j+1}. Then proceed to the following
updates:

• Let Aj+1 := Aj ∪ (νj+1 ∩ Uj) and Uj+1 = Uj\ (νj+1 ∩ Uj) . Also let ∀v ∈ Uj+1, λj+1(v) =
λj(v) = 0, Cj+1(v) = Cj(v) = ∅.

• For all v ∈ νj+1 ∩ Aj, introduce the set ν(−)(v) := {u ∈ ν(v) : ∃w ∈ νj+1 ∩ Aj , λj(w) >
λj(v), and u ∈ ν(w)}.
Then let Cj+1(v) := Cj(v) ∪

⋃︁
u∈ν(v)\ν(−)(v) ({u} ∪ Cj(u)) . For all u ∈ ν(v)\ν(−)(v) and

w ∈ Cj(u), λj+1(u) = λj+1(w) = λj(v).
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• For all v ∈ Aj whose slope has not been updated yet, let λj+1(v) = λj(v). And for all v ∈ Aj
whose set Cj(v) has not been updated yet, let Cj+1(v) := Cj(v).

• For all v ∈ νj+1 ∩ Uj, let λj+1(v) := max
(︁
λ(v),maxu∈ν(v) λj+1(u)

)︁
, and

Cj+1(v) = Cj(v) = ∅. If λj+1(v) ≥ λ(v), introduce the following set ν+(v) := {u ∈ ν(v) :
λj+1(u) = maxw∈ν(v) λj+1(w)}, and for all u ∈ ν+(v), Cj+1(u) := Cj+1(u) ∪ {v}.

When considering a(n) (infinite) mono-directional graph, the structure of such a graph is suffi-
ciently simple to allow for an explicit form of the limiting functions (xv)v∈V , see the next corollary.
In particular, there is only one possible slope change that can happen at a time. More specifically,
when a not-yet-born trait becomes alive due to the previous trait reaching the typical size allowing
for mutations. When this happens, the new born trait takes the slope the maximum between its
inner growth rate or the current slope of the previous trait (as mentioned in the first point of the
heuristics preceding Theorem 1.2.5). Any alive trait cannot update its slope because no backward
mutation is permitted with this graph structure. Moreover, only a single trait becomes alive at
each time, due to the scaling labels ℓ(i, i+ 1) being positive.

Corollary 1.2.6 (Theorem 1.2.5 applied to a mono-directional graph). Assume the graph is infinite
and mono-directional, i.e. (V,E) = (N0, {(i, i+1), i ∈ N0}) and that ℓ∗ := inf{ℓ(i, i+1), i ∈ N0} > 0.
Then the limiting functions (xi)i∈N0

of Theorem 1.2.5 have the following simplified form:

∀t ∈ R+, xi(t) := λmax(i)(t− ˜︁t(i))+,
where λmax(i) = maxj∈{0,··· ,i} λ(j) and ˜︁t(i) :=∑︁i−1

j=0
ℓ(j,j+1)λ(0)
λmax(j)

.

Theorem 1.2.5 is more general than Theorem 1.2.4 in the sense that there is no assumption on
the growth rate function, but it is a less refined result. We are going to do a full comparison of
Theorem 1.2.4 and 1.2.5 on the example of Figure 1.6.

Comparison between Theorems 1.2.4 and 1.2.5:

The asymptotic function x obtained through Theorem 1.2.5 for the plain purple trait is x(t) =
1{t≥4}λ(0)(t − 4). In the caption of Figure 1.6, it is already made explicit that only the plain
green walk will contribute to the size order of the plain purple mutant subpopulation. If one
denotes respectively by 1, 2 and 3 the vertices on the plain green walk such that this walk is
exactly (0, 1, 2, 3), where 3 is the plain purple vertex, the asymptotic limits for vertex 3, captured
by Theorem 1.2.4, is for all t ≥ 4,

2α(0)µ(0, 1)

λ(0)
· 2α(1)µ(1, 2)

λ(0)
· 2α(2)µ(2, 3)
λ(0)− λ(3)

W

∫︂ t

3

(︃∫︂ u

1

ds

)︃
du · nt−4 log2(n)

=

(︃
t2

2
− t− 3

2

)︃
8α(0)α(1)α(2)µ(0, 1)µ(1, 2)µ(2, 3)

λ2(0) (λ(0)− λ(3))
Wnt−4 log2(n).

In particular, Theorem 1.2.5 captures only the power of n which is t − 4 whereas Theorem 1.2.4

captures the stochasticityW , a supplementary scaling factor log2(n), a time polynomial t
2

2 −t− 3
2 and

also a constant depending only on the parameters of the visited vertices 8α(0)α(1)α(2)µ(0,1)µ(1,2)µ(2,3)
λ2(0)(λ(0)−λ(3)) .

Now we make explicit the form of the limiting functions (xv)v∈V in the special case where
we assume the non-increasing growth rate condition. Under this condition, the limiting functions
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(xv)v∈V take a very simple form. The only quantity one has to consider is the time t(v) at which
trait v becomes alive, where t(v) is defined in Definition 1.2.3. Then after this time, trait v grows
at speed λ(0) due to the non-increasing growth rate condition. This is made formal in the next
corollary.

Corollary 1.2.7 (Theorem 1.2.5 applied with the non-increasing growth rate condition of (1.2.4)).
Assume the non-increasing growth rate condition of (1.2.4). Then the limiting functions (xv)v∈V
of Theorem 1.2.5 have the following simplified form:

∀t ∈ R+, xv(t) = λ(0) (t− t(v))+ ,

where ∀x ∈ R, x+ := x1{x∈R+}.

1.2.4 Results of Chapter 5

The scope of Chapter 5 is to extend the results of Theorem 1.2.4 to a more general cancer evolution
framework that allows for selective mutant traits. A novel approach is introduced making progress
in obtaining first-order asymptotics results for the mutant subpopulation sizes when selective mu-
tations are considered in the trait space. This chapter is an ongoing work with Hélène Leman. Up
to this point, we have achieved the case of a finite labelled mono-directional graph, where there is
a unique selective mutation corresponding to the last one. The result, stated in Theorem 1.2.12,
reveals several biologically and mathematically intriguing results, which contrast with the previous
findings in the context where only neutral and deleterious mutations are considered.

The model corresponds to the one described in Subsection 1.2.2 where we are considering the
specific case of a finite labelled mono-directional graph with k + 1 vertices, for some k ≥ 1. More
precisely, we have

(V,E, L) =
(︂{︁

0, · · · , k
}︁
,
{︁
(i, i+ 1), i ∈ {0, · · · , k − 1}

}︁
,
{︁
ℓ(i), i ∈ {0, · · · , k − 1}

}︁)︂
. (1.2.12)

We denote respectively by αv, βv, λv for the birth, death, and growth rates of a trait v ∈ V and use

the simplified notations µ
(n)
i := µ(n)(i, i+ 1) giving the following power law mutation rates regime

∀0 ≤ i ≤ k − 1, nℓ(i)µ
(n)
i −→

n→∞
µi <∞.

Assume that the first selective mutant trait is the last one, which mathematically means

∀0 ≤ i ≤ k − 1, λi ≤ λ0 and λk > λ0. (1.2.13)

With this setting three different scenarios can happen during a division event of a cell of trait
i ∈ {0, · · · , k − 1}:

• with probability
(︂
1− µ

(n)
i

)︂2
each daughter cell keeps the trait i of its mother cell,

• with probability 2µ
(n)
i

(︂
1− µ

(n)
i

)︂
exactly one of the daughter cell mutates to the next trait

i+ 1 when the second daughter cell keeps the trait i of its mother cell,

• with probability
(︂
µ
(n)
i

)︂2
both of the daughter cells mutate to the next trait i+ 1.
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For i = k, during a division event of a cell of trait k, both daughter cells keeps the trait k. Instead of
employing the deterministic log(n)/λ0-accelerated time scale, which is appropriate for neutral and
deleterious cancer evolution since all subpopulations grow exponentially fast at rate λ0 according
to Theorem 1.2.4, we opt for the log(n)-accelerated time scale t ↦→ t log(n) in this context. To be
fully consistent, we define again, for this new time scale, t(i) for all i ∈ V .

Definition 1.2.8. Define for all 1 ≤ i ≤ k

t(i) :=
1

λ0

i−1∑︂
j=0

ℓ(j),

as the sum of the labels on the edges from trait 0 to trait i renormalized by λ0.

We rewrite in the following proposition the asymptotic results from Theorem 1.2.4 in the log(n)-
accelerated time scale instead of in the log(n)/λ0-accelerated time scale, for the subpopulations of
traits i ∈ {1, · · · , k − 1}.
Proposition 1.2.9. Let (V,E, L) be a finite labelled mono-directional graph with k+1 vertices, for
some k ≥ 1 as defined in (1.2.12). Assume that the first selective mutation on the graph is the last
one as in (1.2.13). Let M > 0 and 0 < T1 < T2. Using the mathematical definition of the model
given in Section 5.3, see (5.3.2), (5.3.3) and (5.3.4), there exists a random variable W properly
defined in (5.3.10) such that for all i ∈ {1, · · · , k − 1}(︄

(t, s) ↦→ Z
(n)
i ((t(i) + t) log(n) + s)

ntλ0 logθ(i)(n)eλ0s

)︄
−→
n→∞

W ˜︁w(0,··· ,i)(t(i) + t),

in probability in L∞([T1, T2] × [−M,M ]) and with ˜︁w(0,··· ,i)(t) := w(0,··· ,i)(tλ0). For any other
mathematical description from the one of Section 5.3, the convergence is at least in distribution in
D([T1, T2]× [−M,M ]).

Main results and biological interpretation

In this subsection, the result regarding the first-order asymptotics of the first selective mutant
subpopulation size is stated. Moreover, some mathematical and biological remarks about this
result, as well as a sketch of the proof, based on heuristics, are provided.

When considering a selective mutation, the first intuitive idea that arises from the term ”se-
lective” is that potentially only the lineages of the first generated mutant cells will asymptotically
contribute. Indeed, any time delay for a lineage results in an exponential growth loss for its size,
providing some qualitative weight to this intuition. However, the challenge lies precisely in quan-
tifying this intuition. Specifically, it is necessary to determine how each lineage of the generated
mutant cells contributes asymptotically to the subpopulation size. This raises natural questions,
such as whether only a finite number of surviving lineages contribute asymptotically, and if so, how
many, as well as whether it is the first lineage to reach a certain level that contributes, among po-
tentially many other questions. Answering them is not possible solely with results on the stochastic
exponents. However, Theorem 1.2.12 quantitatively answers these natural questions on the contri-
bution of all the selective mutant cell lineages on the first-order asymptotics of the selective mutant

subpopulation size. For doing that, we are going to separate the process Z
(n)
k into 3 different

processes having different mathematical analysis, asymptotic contribution and biological meaning:
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(i) The first one, denoted by Z
(n)
k,1 , corresponds to the process composed of the mutant cells and

their lineages generated up to time

t
(n)
− (k) := t(k) log(n)− θ(k − 1)

λ0
log(log(n)).

This time corresponds exactly to the first deterministic time at which it becomes likely to
observe mutational events from trait k−1 to trait k. Indeed, the typical order of the subpop-

ulation Z
(n)
k−1 at time (t(k− 1) + t) log(n), which is ntλ0 logθ(k−1)(n) according to Proposition

1.2.9, reaches nℓ(k−1), the typical size allowing for mutations, at time t
(n)
− (k). In Chapter 5

we will show that well renormalized, the subpopulation Z
(n)
k,1 at time (t(k) + t) log(n) asymp-

totically follows a compound Luria-Delbrück distribution, in the vein of the works of Cheek
and Antal [8, 10].

(ii) The second one, denoted by Z
(n)
k,2 , corresponds to the process composed of the mutant cells

and their lineages generated between times
[︂
t
(n)
− (k), t(k) log(n)

]︂
, that is during a time scale of

order log(log(n)). Notice that this subpopulation Z
(n)
k,2 is null if there is no neutral mutation

up to trait k − 1, meaning that t
(n)
− (k) = t(k) log(n). In the case where there is at least

one neutral mutation, we will show that well renormalized, the subpopulation Z
(n)
k,2 at time

(t(k) + t) log(n) asymptotically follows the large time distribution of an approximate model
with less stochasticity, that is independent from n. This approach is inspired by the works
of Durrett and Moseley [22], Nicholson and Antal [23] and Nicholson, Cheek and Antal [24].
The previous authors directly study this approximate model. The novelty of our approach is

to show that the subpopulation Z
(n)
k,2 is sufficiently close to the previous approximate model

to allow for great control of Z
(n)
k,2 . We developed a martingale approach to get such result.

(iii) The last one, denoted by Z
(n)
k,3 , corresponds to the process composed of the mutant cells

and their lineages generated after time t(k) log(n). We will show, using a similar martingale
approach as the one of Chapter 4, that asymptotically this process becomes negligible with

respect to the total mutant population Z
(n)
k .

A graphical representation of these three processes is given in Figure 1.7. As aforementioned, for

stating the first-order asymptotics of the mutant subpopulation Z
(n)
k,1 and Z

(n)
k,2 , we introduce a

proper definition of the Luria-Delbrück distribution, the compound Luria-Delbrück distribution, as
well as the approximate model under consideration.

Definition 1.2.10 (Luria-Delbrück distribution). Let (ξi)i∈N be an i.i.d. sequence of exponen-
tially distributed random variables with parameter λ. Let (Yi)i∈N be an i.i.d. sequence of birth
and death branching processes with rates α and β respectively, satisfying almost surely the initial
condition Yi(0) = 1. Let K be a Poisson random variable with parameter ω. The random variables
and processes (ξi)i∈N , (Yi)i∈N ,K are mutually independent. The Luria-Delbrück distribution with
parameters (λ, α, β, ω), that may be chosen randomly, is defined as the distribution of

B =

K∑︂
i=1

Yi(ξi).
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Figure 1.7: Graphical representation of the 3 sub-processes composing Z
(n)
k

The compound Luria-Delbrück distribution with parameters (λ, α, β, ω) and associated with the dis-
tribution U is defined as the distribution of

Z =

B∑︂
i=1

Ui,

with (Ui)i∈N a sequence of i.i.d. random variables following U that is independent from B.

Definition 1.2.11 (Approximate Model). The approximate model with parameters (λ, µ, α, β) is
defined as the distribution of

Z(t) =

K(t)∑︂
i=1

Yi(t− Ti),

where K(t) = N
(︂∫︁ t

0
µeλsds

)︂
, with N a Poisson process with intensity 1, independent from the i.i.d.

sequence (Yi)i∈N of birth and death branching processes with rates α and β, and Ti = inf{t ≥ 0 :

K(t) ≥ i}. Notice that for all t > 0 and for all i ≤ K(t), we have t−Ti ≥ 0. Define ˜︁λ := α−β > λ,
then we have

e−
˜︁λtZ(t) −→

t→∞
Z∞, (1.2.14)
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almost surely where Z∞ ∈ L1 satisfies E [Z∞] = µ/
(︂˜︁λ− λ

)︂
and its Laplace transform follows the

equation

L(ξ, t) := E
[︂
e−ξe

−˜︁λtZ(t)
]︂
−→
t→∞

E

[︄
exp

(︄
−ξ µ˜︁λΦ

(︄
−ξ α˜︁λ , 1, ˜︁λ− λ˜︁λ

)︄)︄]︄
,

where Φ is the Lerch transcendent defined as ∀ ℜ(s) > 0, ℜ(a) > 0

Φ(z, s, a) =
1

Γ(s)

∫︂ ∞
0

ts−1e−at

1− ze−t
dt.

Equation (1.2.14) is obtained in [24], Proposition 2 for the exact same context, but similar
reasoning can be found in [22, 8]. Now we have all the material to state the result of the first order
asymptotics for the first selective mutant subpopulation size.

Theorem 1.2.12 (First-order asymptotics for the first selective mutant subpopulation size). Let
(V,E, L) be a finite labelled mono-directional graph with k + 1 vertices, for some k ≥ 1, as defined
in (1.2.12). Assume that the first selective mutation on the graph is the last one as in (1.2.13).
Let 0 < T1 < T2. Using the mathematical definition of the model given in Section 5.3, see (5.3.2),
(5.3.3), (5.3.4), (5.3.5), (5.3.6), (5.3.7), (5.3.8), and (5.3.9), there exists two random variables
Z∞k,1 and Z∞k,2 properly defined in Propositions 5.4.3 and 5.4.4 respectively, that are independent
conditioning on W (properly defined in (5.3.10)) such that(︄

Z
(n)
k ((t(k) + t) log(n))

ntλk logθ(k−1)
λk
λ0 (n)

)︄
t∈[T1,T2]

−→
n→∞

Z∞k,1 + Z∞k,2,

in probability in L∞([T1, T2]). The random variable Z∞k,1 follows a compound Luria-Delbrück dis-
tribution with parameters (︃

λ0, αk, βk,
2αk−1µk−1

λ0
wk−1W

)︃
where wk−1 := ˜︁w(0,··· ,k−1)(t(k)), and associated with Uk, the distribution of the almost sure large
limit of the natural martingale associated to a birth and death branching process with rates αk and
βk respectively. More precisely,

Uk := Ber

(︃
λk
αk

)︃
⊗ Exp

(︃
λk
αk

)︃
.

The random variable Z∞k,2 follows the distribution of the asymptotic large time limit of the population
defined by the approximate model from Definition 1.2.11 with parameters

(λ0, 2αk−1µk−1wk−1W,αk, βk) .

For any other mathematical description, the convergence is at least in distribution in D([T1, T2]).

The proof of this theorem involves employing distinct proof techniques for the three subpop-

ulations Z
(n)
k,1 , Z

(n)
k,2 and Z

(n)
k,3 that are summed up here, alongside some heuristics and biological

interpretations:
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• Heuristics concerning the convergence of Z
(n)
k,1 : The random variable Z∞k,1 is the asymp-

totic limit of the well-renormalized subpopulation Z
(n)
k,1 composed of the mutant cell lin-

eages issued from mutational events generated before time t
(n)
− (k). The analysis is made

in two steps. First we adapt a proof from [8] or [10] to demonstrate that at time t
(n)
− (k),

the number of mutant cells of trait k asymptotically follows a Luria-Delbrück distribution

with parameters
(︂
λ0, αk, βk,

2αk−1µk−1

λ0
wk−1W

)︂
, which has a infinite expectation. Such proof

uses the Poissonian structure of the process of mutation from trait k − 1 to trait k as well
as that conditioning on the number of mutant cells generated due to mutational events up

to time t
(n)
− (k), the vector of the remaining time for each of the mutant clone to grow up

to time t
(n)
− (k) is asymptotically the order statistic of a vector of i.i.d. exponential ran-

dom variables with parameter λ0. Subsequently, we establish control over the size of all

mutant cell lineages present at time t
(n)
− (k) by time (t(k) + t) log(n) using a martingale ap-

proach. These lineages experience exponential growth at rate λk over a duration of time

(t(k) + t) log(n) − t
(n)
− (k) = t log(n) + θ(k−1)

λ0
log(log(n)), resulting in a typical size of order

O
(︂
ntλk logθ(k−1)

λk
λ0 (n)

)︂
. This subpopulation corresponds to the lineages of the possible mu-

tant cells generated due to random mutational events appeared before the deterministic time

t
(n)
− (k). Due to the selectiveness of the mutation, their lineages have at time t

(n)
− (k) asymp-

totically infinite expectancies. Moreover, the fact that they asymptotically contribute to the
size order of trait k agrees with the natural intuition behind considering a selective mutation.

• Heuristics concerning the convergence of Z
(n)
k,2 : Dealing with the appropriate normal-

isation of Z
(n)
k,2 is more complex. For the mutant cells generated between times t

(n)
− (k) and

t(k) log(n), and their lineages, we approximate this subpopulation with the simpler model
of Definition 1.2.11 with the adequate parameters that are (λ0, 2αk−1µk−1wk−1W,αk, βk),
to reduce stochasticity and facilitate obtaining its asymptotic limit at time t(k) log(n). We
rigorously establish by a martingale argument using a L1 convergence that at the first-order,
this subpopulation behaves asymptotically akin to the considered approximate model up to
time t(k) log(n). In particular, such approximate model grows exponentially fast at rate λk
during a time t(k) log(n) − t

(n)
− (k) = θ(k−1)

λ0
log(log(n)), implying that at time t(k) log(n)

the subpopulation Z
(n)
k,2 is of order O

(︂
logθ(k−1)

λk
λ0 (n)

)︂
. Then we obtain its asymptotic limit

at time (t(k) + t) log(n) using a law of large numbers argument. More precisely, after time
t(k) log(n) there are no longer mutational event from trait k − 1 to trait k that are counted

in this subpopulation anymore. Because at this time we have an order of O
(︂
logθ(k−1)

λk
λ0 (n)

)︂
mutants cells, and that their lineages grow exponentially fast at rate λk during a time t log(n),

this results in a subpopulation of order O
(︂
logθ(k−1)

λk
λ0 (n)ntλk

)︂
at time (t(k)+ t) log(n). This

subpopulation encapsulates the idea that an asymptotically infinite number of lineages (but
not all of them) significantly contribute to the size of the selective mutant trait subpopulation,
despite being characterised by a finite mean random variable. However, these infinite number
of lineages are all produced on the slower log(log(n))−accelerated time scale, meaning that
they are asymptotically all condensed at the same time point for the log(n)−accelerated time
scale. Such result contrasts a bit with the first biological intuition previously mentioned, be-
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cause we obtained that an infinite number of selective mutant cell lineages are asymptotically
contributing to the selective mutant subpopulation size, but not so much in the sense that
all these contributing mutant cells are actually produced at times that are asymptotically
condensed around t(k) log(n), in agreement with the intuition under selectiveness.

• Heuristics concerning the convergence of Z
(n)
k,3 : Dealing with Z

(n)
k,3 , the subpopulation

containing solely mutant cells generated after time t(k) log(n) along with their lineages, is
done using a similar martingale method as the one used in Chapter 4, to get that it scales
as ntλk logθ(k−1)(n). Hence, asymptotically it becomes negligible and vanishes in the limit.
Heuristically, the selectiveness of the trait implies that only the one generated around time
t(k) log(n) are asymptotically contributing at time (t(k) + t) log(n). At time t(k) log(n), the
number of mutant cells of trait k generated from mutational events from trait k−1 is of order

O
(︂
logθ(k−1)(n)

)︂
. Then their lineages are growing exponentially fast at rate λk during a time

t log(n), giving a size of order O
(︂
logθ(k−1)(n)ntλk

)︂
at time (t(k) + t) log(n). Biologically

meaning, after time t(k) log(n) the generated selective mutant cells and their lineages have
too much time delay compared to the first generated mutant cells such that their contribution
appears negligible.

Some natural remarks about the result of Theorem 1.2.12 can be made:

• First-order asymptotics: In Theorem 1.2.5, one obtains that the stochastic exponent as-
sociated to the mutant subpopulation of trait k asymptotically converges, conditioning on
{W > 0}, to tλk, which corresponds to the power of n captured in Theorem 1.2.12. Notably,
such result means that in the case of a selective mutant trait, growth stems not from the
mutational process but rather from the inherent expansion of selective mutant cell lineages.
This stands in contrast to deleterious mutations, where growth is actually driven by the muta-
tional process, and neutral mutations, where growth represents a balance between mutational
process and inherent lineage expansions. Moreover the power of log(n) is also captured by
this theorem, which is a generalisation of Theorem 1.2.4 allowing for a first selective mutant
trait. An interesting pattern for such power occurs. For deleterious and neutral mutations,
we previously obtained that a neutral one increases such power by 1 where a deleterious one
has no effect. For a selective mutation, it is a bit more intricate: the power obtained for the
previous trait is accelerated by the ratio between the growth rate of the selective trait and the
actual one of the previous trait (that is the one of the wild-type subpopulation). In particular
if there are only deleterious mutations before the first selective one, then the power of log(n)
stays equal to 0 for the first selective trait.

• Time dependence: An interesting characteristic of the limit for the selective mutant trait,
that contrasts with neutral and deleterious mutations, is its independence from the time pa-
rameter t. In Theorem 1.2.4 we have shown that alongside a mono-directional graph composed
of neutral or deleterious mutations only, the asymptotic limit of a trait depends on the time
parameter t as a polynomial function of degree the number of neutral mutations up to this
considered trait. With Theorem 1.2.12 we show that this time dependence is lost when the
first selective mutant trait is encountered in the mutational pathway. In a certain sense, one
can say that it resets the time dependence. Observing such differences depending on the type
of the mutation seems more than intuitively natural. Indeed, with a neutral mutation, the
balance between the mutational process and the inherent growth makes clear that the lineages
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have equal contributions on the size order, generating a dependence on the time parameter
via an extra integral operator from the time dependence of the previous trait. For a dele-
terious mutation, driven by the mutational process, the time dependence comes from taking
into account only clones generated at the considered time, meaning that the dependence is
identically forwarded from the one of the previous trait. For a selective mutation, the inherent
growth prevails the mutational process, implying that only the lineages generated around the
typical time to observe such mutant trait are asymptotically contributing, and so all the time
dependency from the previous trait is completely lost.

• Stochasticity of the limit: In the case of neutral and deleterious cancer evolution, we
obtained in Theorem 1.2.4 that the stochasticity captured by the first order asymptotics of
the mutant subpopulation sizes is fully given by the random variable W , which quantifies the
large time stochasticity associated to the primary subpopulation. In the remarks made on
Theorem 1.2.4 point (iii), we argued that such result could not be obtained for a selective
mutation, explaining the failure of the martingale approach. In Theorem 1.2.12 we show that
the latter conjecture is true. In the limiting random variables, Z∞k,1 and Z∞k,2, the stochasticity
ofW is present, but another layer of stochasticity is also given due to the growth of the lineages
of the selective mutant cells. The independence, when conditioning onW , of these two limiting
random variables comes from the fact that they correspond to the asymptotic limits of two
subpopulations of mutant cell lineages that are independent due to the mutational process
which is Poissonian.

• Dealing with the next mutant trait: Asymptotically we obtain that the limiting ran-
dom variable Z∞k,1 has an infinite expectation, coming from the Luria-Delbrück part of the
compound random variable, a consequence of the selectiveness of the considered mutation.
Such specificity entails mathematical difficulties, explaining why the martingale approach de-
veloped in Chapter 4 fails. Indeed, taking an expectation balances the probability of an event
with the number of cells seen if the event occurs. Consequently, unlikely events, such as rapid
mutations to the selective trait, can lead to extremely large population sizes far exceeding
typical asymptotic sizes implying the expectation order is given by these unlikely event.

Moreover, it hampers from dealing with the next mutant trait. In particular the cells of

trait k + 1, and their lineages, produced by Z
(n)
k,1 are, for now, untractable. More specifically,

dealing with the latter subpopulation of trait k+1 using the same approach as for capturing
the asymptotic limit of trait k as in Chapter 5, the martingale approach developed to show

that Z
(n)
k+1,2 and the adapted approximate model are sufficiently close to transfer the limiting

behaviour from the approximate model to Z
(n)
k+1,2 fails. Indeed, a L1 approach is needed for

this step. Instead of approximating a mutant trait by its asymptotic limit to tackle the next
mutant trait, a potential solution to deal with such difficulty is to directly deal with all the
mutant subpopulations together without using the approximations given by the limits at each
step. This procedure would normally allow for overstepping the infinite expectation of Z∞k,1.

• Two steps limit: Instead of being interested in the double limit given by the large population
and power law mutation rates regime, another interesting approach is to consider a two steps
asymptotics where first the large time limit is obtained with fixed mutation rates and then
the limit when these rates tend to 0 is obtained. In [24], Nicholson, Cheek and Antal are
studying this two steps limit. An interesting fact is that the results are different, meaning
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that there is no equivalence between performing the double limit directly or in two steps. But
some similarities are actually obtained for the structure of the asymptotic limits. Notably,
both asymptotic results can be decomposed into the product of a time-independent random
variable (which are different) and a simple time-dependent deterministic function controlled
by the growth rate of the selective mutant trait (with the same deterministic function but
taken at different times). More precisely, in their case, the stochasticity of the asymptotic limit
that is captured (see [24], Theorem 1) is a Mittag-Leffler distribution with tail parameter the
ratio between the growth rate of the wild-type subpopulation and the one of the first selective
mutant trait, and a scale parameter satisfying a specific equation depending on the birth,
growth, and mutation rates of the preceding mutant traits. Such asymptotic random variable
is not captured by Theorem 1.2.12, as mentioned above. Moreover, the deterministic function
is in both cases the exponential function whose growth rate is the one of the selective mutant
trait, but taken at different times. In their case, when looking at the limit when t → ∞,
the time that is taken for the deterministic function is actually t, where in our case, at time
(t(k) + t) log(n) it is t log(n) that is taken.

1.2.5 Perspectives

Many refinements on the model of carcinogenesis developed in Chapters 4 and 5 are still possible.
Regarding Chapter 5 the immediate next step is to adapt the current approach in order to capture
the first order asymptotics when the graph is a mono-directional one allowing for more than one
selective mutant trait. Then, using an approach based on quantifying the contribution of the
mutational paths on the graph, as in Subsection 4.4 when allowing only neutral and deleterious
mutations, one can obtain the first order asymptotics for a general finite directed labelled graph.
Such result would give characterisation of evolutionary effective pathways, the ones that contribute
asymptotically. Currently, we have developed a method capable of dealing with up to the first
selective mutant trait. The next step is therefore to find a way to handle subsequent mutations
after this first selective mutant trait. We will start by looking at a simpler model with 2 mutations
where the first one is selective. The challenge in this generalisation lies in the fact that, compared to
the asymptotic limits for neutral and deleterious traits, the asymptotic limit for the selective mutant
trait has an infinite expectation. This specificity implies that all the techniques used to deal with
a new mutant trait, regardless of its selective advantage, no longer work. One potential approach
to address this singularity is to consider the asymptotic limits of mutant traits all together, rather
than relying solely on the asymptotic behaviour of the previous mutant subpopulation to deal with
the next mutant trait.

Moreover, in Theorem 1.2.12, the asymptotic limit of the first selective mutant trait is given as
the sum of two (more or less complex) random variables. One could try to get a simpler identification
of the asymptotic distribution. A promising strategy is to introduce a time parameter C > 0 such

that the selective mutant population Z
(n)
k is separated into two subpopulations Z

(n)
k,C,1 and Z

(n)
k,C,2

composed respectively of the lineages of the mutant cells generated before time t
(n)
− (k)+C (instead

of t
(n)
− (k) in the current approach), respectively after the later time. Adapting the proof techniques

of Chapter 5, one can show that both the subpopulations converge to some random variables Z∞k,C,1
and Z∞k,C,2, whose law depends on the parameter C. By identification of the limit, the distribution
of Z∞k,1+Z

∞
k,2 is the same as the distribution of Z∞k,C,1+Z

∞
k,C,2 for all C > 0, allowing to look at the

limit when C goes to infinity. Intuitively, when C is growing the contribution of Z
(n)
k,C,1 becomes
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more important since more lineages of trait k are included in this subpopulation. One could show
that when taking the limit C goes to infinity, the distribution of Z∞k,C,2 converges to 0, since all the
lineage contributions are incorporated in the limit of the distribution of Z∞k,C,1. Then, using the
Laplace transform could be an option for characterising the limiting distribution of Z∞k,C,1 when C
goes to infinity.

The main insight provided by Theorem 1.2.4 in the asymptotic limits concerns the identification
of distinct effective evolutionary pathways, a facet not previously elucidated in the literature, such
as in the stochastic exponent results outlined in Theorem 1.2.5. A natural progression would be to
leverage this newfound information to conduct inference on the graph structure, particularly in con-
texts where genetic compositions over time are accessible. This refinement holds significant appeal
for biologists as it promises insights into future tumour evolution behaviours, thereby facilitating
the development of adaptive therapeutic strategies. Furthermore, the asymptotic limits afford valu-
able insights into model parameters, offering potential avenues for parameter estimation based on
theoretical findings. Another possibility entails utilising information on neutral (and deleterious)
cancer evolution to conduct precise neutrality cancer evolution tests.

The branching hypothesis for cancer formation becomes inadequate as the cell population in-
creases, necessitating consideration of cell-cell interactions. Introducing a model that incorporates
competition between individuals, with a carrying capacity K that scales as a specific power of the
parameter n, becomes imperative. The environment’s carrying capacity is a measure of the maxi-
mal population size that the environment can sustain for a long time. The mathematical challenge
lies in obtaining first-order asymptotic results for mutant subpopulations, akin to Chapters 4 and
5. This endeavour represents an extension of [12], where the authors explore a finite directed graph
trait space within the context of large population and power law mutation rates, incorporating a
competitive kernel between individuals and deriving asymptotic results for the stochastic exponents
of mutant subpopulations. To achieve this, one must first perform the first-order asymptotic results
for growing subpopulations and the resident population around any change in slope in the algo-
rithm described in Theorem 1.2.5. Subsequently, one must address first-order asymptotics around
any change in slope, arising from either the emergence of a new trait (by a similar analysis as in
Chapters 4 and 5) or a shift in the resident population.

When investigating cancer evolution through genetic composition analysis, the ultimate aim is
to devise an adaptive therapeutic strategy. Insights gleaned from the past and present genetic com-
position of the tumour provide valuable foresight into its future evolution, enabling the formulation
of strategies to impede tumour growth. In the context of adaptive therapy, one pertinent considera-
tion involves the strategic switching between different treatments. A key biological question revolves
around determining the optimal frequency of such switches to effectively control tumour growth.
This can be achieved by incorporating various therapies into the model through the introduction
of different environments. The growth rate function becomes contingent not only on the trait but
also on the prevailing environment. One fundamental mathematical inquiry pertains to identify-
ing, given the trait space, mutational regime, and growth rate function, the optimal strategy for
switching environments to control tumour growth. One potential criterion could involve ensuring
the tumour does not exceed a certain size threshold or, if unavoidable, delaying this occurrence
for as long as possible. Consequently, the frequency of switches may not be deterministic. The
consideration of periodic switching of environment is studied in [17] for a different model but under
the large population and power law mutation rates regime.

Some criticisms can be raised regarding the mutation regime. While we typically fix the number
of genetic traits, it could be argued that the number of sites on the genome where mutations can
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occur is sufficiently high relative to the observed tumour size, thus scaling with the parameter n,
rather than remaining constant. This perspective would lead us to consider the large population,
large trait space, and power law mutation rates regime instead of solely focusing on the large popu-
lation and power law mutation rates regime. To illustrate, consider the trait space represented by
the set of vertices V = {0, 1}S , where S ∈ N denotes the number of sites on the genome, and the set
of edges E = {(u, v) ∈ V 2, u ̸= v}. In this scenario, each cell’s phenotypic traits are represented by
a finite sequence of 0s and 1s across the S sites on the genome, with each cell capable of mutating
to any other cell trait. Specifically, the mutation probability among sites could be independent of
each other, as observed in [8, 10]. In this particular context, the large population, large trait space,
and power law mutation rates regime means

∃(sn)n∈N, sn −→
n→∞

∞ and
⃓⃓⃓
S(n)

⃓⃓⃓
= sn,

∀i ∈ N,∀j ∈ {0, 1},∃ℓi,j ∈ R+, nℓi,jµ
(n)
i,j −→

n→∞
µi,j ∈ R+,

where µ
(n)
i,j represents the mutation probability on site i from trait j to trait j := {0, 1}\j. While

such considerations are mentioned in [10], the studied mutation regimes first focus on power law
mutation rate regimes before considering the scenario where the number of sites on the genome
tends to infinity.

In Theorem 1.2.5, when considering a specific trait space (V,E, L) and a given growth rate
function λ, the evolutionary pathways of the tumour observed by this theorem are entirely de-
terministic. This means that these data alone suffice to pre-determine tumour evolution from a
deterministic standpoint. The results on first-order asymptotics, as presented in Theorem 1.2.4, do
not introduce additional complexity for the evolutionary process. Instead, they precisely charac-
terise the deterministic nature of the evolutionary pathways, which are functions of (V,E, L) and
λ. The random processes captured through first-order asymptotics at the limit are deterministic
functions of the set of evolutionary pathways. To introduce a model that allows for evolutionary
processes not deterministically pre-determined by the parameters of the model, one could initially
consider introducing stochasticity into the growth rate function λ. This randomness would create
variability into the evolutionary pathways, thereby departing from strict determinism.
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Invasion of Cooperative Parasites
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Chapter 2

Invasion of cooperative parasites in
moderately structured host
populations

This chapter corresponds to the publication [1] ”Invasion of cooperative parasites in moderately
structured host populations”, written in collaboration with Cornelia Pokalyuk, which has been
published in Stochastic Processes and their Applications.

Abstract:
Certain defence mechanisms of phages against the immune system of their bacterial host rely on
cooperation of phages. Motivated by this example we analyse invasion probabilities of cooperative
parasites in moderately structured host populations. We assume that hosts occupy the vertices
of a configuration model and offspring parasites move to neighbouring sites to infect new hosts.
Parasites (usually) reproduce only when infecting a host simultaneously and then generate many
offspring. In this regime we identify and analyse the spatial scale of the population structure at
which invasion of parasites turns from being an unlikely to a highly probable event.
Keywords: host, parasite, cooperation, invasion probability, configuration model.
MSC2020: 92D30, 60J80, 92D25.

2.1 Introduction

We analyse the invasion probability of parasites in moderately structured host populations. The
motivation of this study stems from observations of phage populations. Phages are viruses infecting
bacteria. The interest in phages has been growing in recent years because of the growing incidence
of multi-drug resistant bacteria. As an alternative to antibiotics, in phage therapy the infected host
is inoculated with a population of phages to eliminate the pathogenic bacterial population [65].

Bacteria own various mechanisms to defend against phages, one of these is CRISPR-Cas. This
mechanism relies on certain complexes of proteins, that are patrolling in the bacterial cell to de-
tect (and subsequently distroy) genetic material of phages (that the bacterial cell or its ancestors
encountered previously and stored at the so called CRISPR-locus in the bacterial genome), see
[26]. Some phages can block these complexes with mechanisms called anti-CRISPR (ACR) which

55
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relies essentially on cooperation of ACR-phages [28]. Indeed, when a CRISPR-resistant bacterium
is attacked by a single ACR-phage, the phage often dies, whereas when several phages attack a
bacterium simultaneously or subsequently, they have a good chance to replicate [29], [28].
The models that have been investigated so far to understand the underlying growth dynamics of
ACR-phages and CRISPR-resistant bacterial populations are deterministic models that map the
behaviour of well-mixed phage and bacterial populations [28]. In these models one starts with a
relatively large phage population, for which simultaneous or rapid subsequent attacks of phages are
likely.

Here we consider a phage population that is initially small. In this setting stochastic effects
cannot be ignored. We are interested in the probability that the phage population manages to
invade the bacterial population, in the sense that a non-trivial proportion of the bacterial population
gets infected and subsequently killed by the phages.

We assume that offspring phages attach to neighbouring bacteria. If the bacterial population
is well-mixed, offspring numbers of phages need to be very large for simultaneous infections of
neighbouring bacteria to be likely. However, many bacterial populations are spatially structured,
e.g. in biofilms, see [25]. In this case bacteria are only adjacent to a relatively small part of
the bacterial population and co-infections of bacteria are common even when offspring numbers of
phages are moderate. Consequently, invasion of phages should be more likely in spatially structured
bacterial populations than in well-mixed populations.

Population dynamics involving cooperation have been mainly studied from the perspective of
a single population that is divided into defectors and cooperators. In these studies one often is
interested if cooperators may prevail or coexist with the population of the defectors, see e.g. [66],
[67]. Here we consider only cooperators. The survival of the population of cooperators is nonethe-
less non-trivial, because the capability of the individuals to cooperate depends on the population
structure of another population, the host population.

Even though the motivations of this project come from phages, we think that our results might
be also relevant for other host-parasite systems. For example it is believed that the infection of
cancer cells with oncolytic viruses, that is viruses that attack cancer cells, is more effective, if a
cancer cells are hit by several viruses simultaneously, because in this manner the virus can cope
better with the (interferon-based) anti-viral response of the host, see [31].

In order to put our study into a general context in the following we will consider instead of a
population of phages and bacteria a population of cooperative parasites and hosts. Even though
viruses (and in particular phages) are not regarded as parasites by biologists we think it is appro-
priate to call the involved individuals parasites and hosts, because the population dynamics of the
phage population is characterised by the fact that phages are only capable to reproduce in their
host, the main feature of parasites.

Spread of parasites or pathogens in finite host populations has been analysed mainly with
respect to epidemiological models, in which only the host population is modelled. Hosts are either
susceptible, infected or recovered and the host population is placed on the complete graph or the
configuration model, see [68], [69] or [70]. Here we consider both populations.

We model the spatial structure of the host population by placing hosts on the vertices of a
random graph of size N formed according to the configuration model. We assume that each host
is neighboured by dN hosts, where 1 ≪ dN ≪ N , and hosts are placed on vertices of a random
graph whose edges are arranged according to the configuration model. Initially a single host gets
infected by a parasite and vN offspring parasites are produced. Thereafter the populations evolve in
discrete generations. At the beginning of each generation parasites move randomly to neighbouring
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hosts. Whenever a host gets attacked by at least two parasites the parasites reproduce. If a host
gets infected only by a single parasite, the infection is successful only with some small probability
ρN . At parasite reproduction vN parasites are generated. We show that at the scale vN ∼ c

√
dN ,

for some c > 0, the number of neighbouring hosts that is attacked simultaneously by offspring
parasites is approximately Poisson distributed with parameter c2/2. Furthermore, in the regime
vNρN ∼ x, for some 0 ≤ x ≤ 1 the number of hosts that get successfully infected by single parasites
is approximately Poisson distributed as well this time with parameter x. (The assumption x ≤ 1
guarantees that invasion due to infections by single parasites is unlikely.)

We explore the spread of the parasite population within the host population (guided by the
analysis of epidemics on random graphs, see [69], Part III, as well as [68]) by couplings with
(truncated) Galton-Watson processes (GWP) until Nα hosts get infected for some α > 0 sufficiently
large. In this phase the invasion process is essentially driven by pairs of parasites originating from
the same vertex and attacking neighbouring hosts simultaneously as well as parasites attacking
hosts alone successfully in the case ρNvN → x with x > 0. Once the number of infected hosts
per generation exceeds the level Nα, with high probability in a finite number of generations the
remaining hosts get infected due to parasites attacking hosts simultaneously from different edges.
Hence, the invasion probability of the parasite population, that is the probability that the host
population eventually gets killed, is in the critical scale vN ∼ c

√
dN asymptotically equal to the

survival probability of a Galton-Watson process with an offspring distribution that is given by the
sum of independent Pois(c2/2) and Pois(x)-distributed random variables.

2.2 A host-parasite model with cooperative parasites

2.2.1 Model description and main results

Consider a population of hosts and a population of parasites both located on a random graph.
The graph has N vertices and each vertex has dN half-edges. We assume that dNN is even and
half-edges are matched according to the configuration model, i.e. half-edges are paired uniformly
at random.

Initially, on each vertex a single host is placed. We start the infection process by infecting a
randomly chosen host with a parasite. We say that parasites infect a host, when the infecting
parasites replicate in the host. At replication vN offspring parasites are generated (independent on
the number of infecting parasites) and the host as well as the infecting parasite(s) die(s).

The infection process continues in discrete generations according to the following scheme. At
the beginning of each generation, parasites move independently to nearest neighbouring vertices.
If a vertex to which a parasite moves to is still occupied with a host the parasite attacks this host.
If a host is only attacked by a single parasite, the parasite replicates only with a small probability
ρN . In this case vN offspring parasites are generated and the reproducing parasite as well as the
host die. Otherwise (with probability 1− ρN ), the parasite dies and the host survives. If, however,
at least two parasites attack a host simultaneously, the parasites cooperate, they produce (with
probability 1) in total vN offspring parasites and the infecting parasites and the host die. If a
parasite moves to a vertex that is no longer occupied by a host, it stays there and moves further in
the next generation. Hosts do not move on the graph during the infection process. See Figure 2.1
for an illustration of the infection process.

Given a sequence of parameters (N, dN , vN , ρN )N∈N we denote for each N ∈ N by



58 CHAPTER 2. INVASION OF COOPERATIVE PARASITES

Figure 2.1: Illustration of different infection types

I(N) = (I(N)
n )n∈N0

,

the process that counts the number of infected hosts in the generations n ∈ N0 and by

I(N)
= (I

(N)

n )n∈N0 ,

with

I
(N)

n :=

n∑︂
i=0

I
(N)
i ,

the process that counts the number of hosts infected till generation n ∈ N0.
We are interested in the probability that the parasite population invades the host population. More
precisely, we consider the following events.

Definition 2.2.1 (Invasion of parasites). Consider the above host-parasite model with parameters
(N, dN , vN , ρN )N∈N. Let u ∈ (0, 1] and denote by

E(N)
u :=

{︂
∃n ∈ N0 : I

(N)

n ≥ uN
}︂
,

the event that the parasites invade the host population (at least) to a proportion u.

In the following we consider parameter regimes for which the host population is initially large,

that is N → ∞. We will write → for
N→∞→ throughout the paper, unless otherwise specified. We

assume that from each host many other hosts can be reached, i.e. dN → ∞, but the population is
not well mixed, in the sense that dN ∈ o(N). Furthermore many offspring parasites are produced
at infection of a host, i.e. vN → ∞, and the contribution of parasites attacking a host alone is at
most critical, in the sense that the expected number of offspring vNρN generated at such attacks
is at most 1. In Theorem 2.2.2 we identify the critical scaling of vN and dN , at which invasion of a
non-trivial proportion of the host population turns from an improbable to a very likely event.
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Theorem 2.2.2. Assume dN ∈ Θ(Nβ) for some 0 < β < 1, and ρNvN → x for some 0 ≤ x ≤ 1.
Depending on the order of vN we obtain the following invasion regimes:
(i) Assume vN ∈ o(

√
dN ). Then for all 0 < u ≤ 1

lim
N→∞

P
(︂
E(N)
u

)︂
= 0.

(ii) Assume vN ∼ c
√
dN for c > 0. Denote by π(c, x) the survival probability of a Galton-Watson

process with Pois( c
2

2 + x)-offspring distribution. Then the invasion probability of parasites satisfies
for all 0 < u ≤ 1

lim
N→∞

P(E(N)
u ) = π(c, x).

(iii) Assume
√
dN ∈ o(vN ). Then

lim
N→∞

P
(︂
E

(N)
1

)︂
= 1.

After Remark 2.2.3 we will sketch the proof of Theorem 2.2.2 in Subsection 2.2.2 and discuss
some generalisations of the model and the results in Subsection 2.2.3. A rigorous proof of Theorem
2.2.2 will be given in Section 2.6 after preparing auxiliary results in Sections 2.3 - 2.5. In Table 2.1
notation that is frequently used in the manuscript is summarized.
We will often write whp for with high probability to indicate that an event occurs with a probability
that is asymptotically 1 as N → ∞.

Remark 2.2.3. (i) In the setting of Theorem 2.2.2 (ii) for c2

2 +x ≤ 1 we have π(c, x) = 0, which
means that whp parasites do not invade the host population.

(ii) We assume vNρN → x ≤ 1, that is the capability for reproduction of parasites hitting a host
alone is subcritical or critical (in the terminology of branching processes).

(iii) It has been shown that population viscosity, i.e. limited dispersal of individuals, is generally
beneficial for cooperation, see [32]. Here we see an example at which the spatial structure of the
host population is passed on to the parasite population that profits from this structure as well.
Consequently, in host-parasite systems the host population may on the one hand profit from
a spatial structure by enhancing cooperation of hosts, but on the other hand spatial structure
may reduce the fitness of the host population because parasite populations may benefit from
the spatial structure as well.

(iv) The proof of Theorem 2.2.2 (ii) yields that the time till the entire host population gets infected

is upper bounded by
(1− 3

4β+ε) logN

log(c2/2+x) for any ε > 0, conditioned on a parasite outbreak. Indeed

to prove Theorem 2.2.2(ii) we approximate I(N) by a Galton-Watson process from below, that
is truncated from time to time but grows at the same speed as an ordinary Galton-Watson
process (with asymptotic offspring mean c2/2 + x), until the level N1− 3

4β+δ is reached, for
some δ > 0 sufficiently small. Afterwards the host population gets killed whp within two more
generations. From this follows immediately that the host population is whp killed after time
(1− 3

4β+ε) logN

log(c2/2+x) for any ε > 0 in case of invasion of the parasite population. Similarly, in the

setting of Case (iii) it follows directly from the proof (in which couplings between infection
processes from Case (iii) and Case (ii) are established, see Section 2.6 for more details) that
the time till extinction of the host population is whp o(log(N)).
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With some more effort we expect that it is possible to show that in the setting of Theorem

2.2.2(ii) invasion of the host population ends whp after (1−β+ε) logN
log(c2/2+x) generations. Infection

by cooperation of parasites attacking vertices from different edges takes over when the number
of infected hosts exceeds the level N1−β+ε, see (the sketch of) the proof of Theorem 2.2.2
for more details, subsequently the host population should be killed whp in a finite number of
generations.

Furthermore, depending on the size of the ratio
v2N
dN

invasion of the host population is consid-
erably faster than log(N) in Case (iii). One shows for example easily that the host population

gets whp killed after finitely many generations, if
v2N
dN

∼ Nγ for some γ > 0.

2.2.2 Sketch of the proof of Theorem 2.2.2

In the following we will use an adaptation of the classical notation for SIR epidemics on a configura-

tion model (see e.g. [69], Part III). Define the set of susceptible hosts S
(N)
n as the set of hosts which

have not been infected until generation n, the set of infected hosts I
(N)
n as the set of hosts which get

infected (and killed) at generation n, and the set of removed hosts R
(N)
n as the set of hosts which

got infected (and killed) strictly before generation n. Since each host is uniquely related to a vertex,
we will sometimes also speak of susceptible vertices and infected vertices instead of susceptible and
infected hosts. In addition we will call vertices whose hosts have been removed empty vertices.

We explore the random network of hosts while the parasites are spreading in the population.
We start at the vertex that got infected initially and build up an edge between two vertices once
the edge gets occupied by at least one parasite, see Figure 2.2. Half-edges and edges along which
parasites move to neighbouring vertices we call occupied half-edges and occupied edges, respectively.
While an half-edge can get occupied only from a single side (at which it is connected to the vertex),
edges can get occupied from two sides. Half-edges and edges that have not been explored yet are
called free half-edges and free edges, respectively.

We proceed by sketching first the proof in the critical parameter regime vN ∼ c
√
dN for some

c > 0, as defined in Theorem 2.2.2 (ii). In this scaling at the beginning the number of new
infections generated by hosts that got infected in the previous generation is closely related to
the birthday problem. When the number of parasites is relatively small, offspring parasites from
different hosts whp do not interfere and hosts get mainly infected by cooperating parasites that
have been generated in the same host and move along the same edge, as well as by single parasites
attacking successfully neighbouring hosts in the case x > 0. (In the following we will refer to these
single parasites as successful single parasites.) Only at a later stage of the epidemic, when the
number of infected and removed hosts exceed the level N1−β it gets likely that hosts are infected
by parasites that attack the host from different edges. Recall that by assumption at parasite
reproduction, vN offspring parasites are generated and a host is connected over dN half-edges to
(roughly) dN different neighbours. Hence, at the beginning the number of new infections occurring
due to cooperation of parasites is for each infected host roughly given by the number of days at
which at least two persons share a birthday, when the birthdays of vN persons are independently
and randomly distributed on dN days.

If vN ∼ c
√
dN for some c > 0 the number of days at which at least two persons share a birthday

is asymptotically Pois( c
2

2 )-distributed. Furthermore, the number of infections initiated by successful
single parasites is asymptotically Pois(x)-distributed, if x > 0. Since vN → ∞, the number of host
infections triggered by pairs of parasites moving along the same edge and the number of infections
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Figure 2.2: Illustration of the graph structure

generated by successful single parasites are asymptotically independent. Hence, when the number

of infected hosts is still small by each infected host roughly Pois( c
2

2 + x) many new host infections
are generated.
Furthermore, offspring parasites of different hosts whp do not interfere at the beginning, hence,
for some time the total number of removed and infected hosts can be estimated from above and
below by the total sizes of Galton-Watson-processes with offspring distributions that are close to a

Pois
(︂
c2

2 + x
)︂
-distribution, see Definition 2.3.1 and 2.4.5 for a rigorous definition of these processes.

To obtain an upper bound on the invasion probability it suffices to prove that whp the total
number of removed and infected hosts can be stochastically dominated by the total size of the upper
Galton-Watson process until a level ℓN is reached, for some level ℓN with ℓN → ∞. Since the upper
Galton-Watson process reaches any level ℓN with ℓN → ∞ with the probability π(c, x) + o(1), see
Proposition 2.3.3, the probability to invade the host population up to level u for 0 < u ≤ 1 is upper
bounded by π(c, x) + o(1) as well.

To derive a lower bound on the invasion probability we couple first I(N) with a Galton Watson

process Z(N)
l , such that I is whp bounded from below by the total size of Z(N)

l until no further
hosts are killed or the total number of removed and infected hosts exceeds the threshold Nα, for
0 < α < β. As for the upper bound, the probability that the total size of the approximating Galton-
Watson process exceeds the threshold Nα is asymptotically equal to π(c, x) for any 0 < α < β.

In the case β > 4
7 we can choose the level to be reached as Nα with α = 1 − 3β

4 + ε for some

ε > 0 small enough such that 1− 3β
4 +ε < min

{︂
β, 1− β

2

}︂
. Once the level N1− 3β

4 +ε is crossed, whp

at most two generations later the total host population gets removed, see Proposition 2.5.1. The
final epidemic phase is so quick, since once at least N1−β hosts are infected, infections generated by
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pairs of parasites attacking a host from different edges take over. Indeed, if I
(N)
n ∈ Θ(Nγ) in some

generation n for some γ > 0 (and I
(N)

n ≪ N) Θ(vNN
γ) offspring parasites are generated. From

these parasites Θ(N2γ+β) pairs of parasites can be formed. The majority of these pairs consists
of parasites that have been generated on different vertices. The probability that such a pair of
parasites attacks the same vertex is approximately 1

N . For γ > 1 − β we have 2γ + β − 1 > γ.
Hence, when Θ(Nγ) hosts are infected for some 1−β < γ < 1, more hosts get infected by parasites
attacking a vertex from different edges than by pairs of parasites moving along the same edge.
Furthermore, for 1− 3β

4 < γ < 1− β
2 after one generation Θ(N2γ+β−1) hosts get infected and, since

2γ + β − 1 > 1 − β/2 and 2(1 − β
2 ) + β − 1 = 1, after another generation on average all hosts get

killed.

In the case β ≤ 4
7 the argument is slightly more involved, since in this case it is not possible

to approximate whp I(N) from below by the Galton-Watson process Z(N)
l until N1− 3β

4 +ε hosts get
infected. If the number of infected hosts exceeds the level Nβ , then with non-trivial probability an
edge is attacked from both ends simultaneously by pairs of parasites or single successful parasites.
In this case none of these parasites cause an infection of a host, because the vertices to which these
parasites are heading to are already empty. However, we can derive an upper bound on the number
of parasites involved in such events and remove the corresponding branches in the lower Galton-
Watson process. Since these parasites make up only a vanishing proportion of the total parasite
population, the growth of the corresponding truncated Galton-Watson process is asymptotically
the same as that of the original Galton-Watson process. Hence, for the truncated Galton-Watson
process essentially the same techniques can be applied to finish the proof concerning the probability
of invasion in the case β ≤ 4

7 .

The details of the proof can be found in Sections 2.3 to 2.6. In Section 2.3, we are dealing
with an upper bound for the invasion probability. In Section 2.4 we derive a lower bound of the
probability that Nα hosts get infected for 0 < α ≤ 1− 3

4β + ε. In Section 2.5, we show that when

N1− 3
4β+ε hosts got infected, then whp the remaining hosts will also die in at most two generations.

A detailed proof of Theorem 2.2.2 (ii) can be found in Section 2.6.

In the setting of Theorem 2.2.2(i) the number vN of offspring parasites generated at an infection
is negligible compared to

√
dN . Parasites are unlikely to cooperate. Hence, invasion could only

be achieved by successful single parasites. But since we are considering the parameters regime
vN ·ρN → x ≤ 1, successful single parasites are too rare for invasion. Hence, the parasite population
infects only a negligible proportion of the host population before it dies out and so for any u ∈ (0, 1]
the invasion probability is o(1).

On the contrary, if the number vN of offspring parasites is large compared to
√
dN , then the

infection of a single host leads to an asymptotically infinite number of further host infections. At
least one of the infected hosts triggers the invasion of the host population whp.

2.2.3 Generalisations

The results of Theorem 2.2.2 can be extended to more general settings. Next we point out some of
these and discuss how the proofs would need to be modified. We carry out detailed proofs only in
the setting of Theorem 2.2.2 to keep the notation and proofs simple.

1.) Instead of assuming that the number dN of half-edges per vertex and the number vN of
parasite offspring, as well as the probability ρN are deterministic, it would also be possible to draw
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these numbers in an iid manner per vertex/host/parasite according to some distributions D(N),
V(N) and P(N). Our proofs can be easily adapted, if the distributions are sufficiently concentrated.

More precisely, this is for example the case, if one can show that for iid random variables (Y
(N)
i )

distributed as D(N), V(N) with corresponding expectation µN we have that for some cN ∈ o(µN )

P

(︄
N⋂︂
i=1

{|Y (N)
i − µN |≤ cN}

)︄
=
(︂
1− P

(︂
|Y (N)
i − µN |> cN

)︂)︂N
→ 1, (2.2.1)

and given the total number of parasites, that can be generated, is MN if the iid random variables

(Y
(N)
i ) are distributed as P(N) we have

P

(︄
MN⋂︂
i=1

{|Y (N)
i − µN |≤ cN}

)︄
=
(︂
1− P

(︂
|Y (N)
i − µN |> cN

)︂)︂MN

→ 1.

This is for D(N) for example fulfilled if Y
(N)
1 is distributed as a discretized normal distribution

with mean µN ∈ Θ(Nβ) and variance σ2
N ∈ o(N2β−δ) for some δ > 0 or is Pois(Nβ). If (Y

(N)
i ) has

a heavy-tailed distribution with mean µN = Nβ and Y
(N)
i − µN has a Pareto-tail, then Condition

(2.2.1) is fulfilled, if the tail is of order τ > 1
β . Similar distributions can be chosen for V(N) and P(N).

2.) While for many viruses our assumption vN → ∞ might be well justified (since viruses often
generate a large number of offspring), for some host-parasite systems it might be more appropriate
to assume vN ≡ v. If dN → ∞, cooperative parasites whp won’t invade the host population, as in
Theorem 2.2.2 (i). If dN ≡ d (i.e. in a setting of a sparse graph), v ≥ 2, d > 2 (for the almost sure
existence of a giant component) and ρNv → x ∈ [0, 1], we expect that some (non zero) proportion
of the host population can be infected with some non trivial probability (that asymptotically equals
the survival probability of an appropriate GWP).
After parasite reproduction the v offspring parasites are distributed uniformly at random over the
d edges. At the beginning of invasion the parasites that do not occupy the edge, over which the
host that generated the offspring parasites got infected, are whp moving to a susceptible vertex.
Hence, a suitable candidate for a GWP, which total size approximates the number of infected and
removed hosts, should have an offspring distribution that is close to the distribution of the number
of the d− 1 edges that get occupied by at least two parasites or by single successful parasites. One
would start the GWP in generation two with a number of lines that equals the random number of
hosts that get infected in the first generation.
The asymptotic probability to invade a non-trivial proportion of the host population should be
equal to the asymptotic survival probability of these GWPes. Given invasion a certain proportion
u, u > 0 of the host population eventually gets infected. The level u should be bounded from below
by the survival probability of a suitable approximating backward branching process, see e.g. [68]
for a construction of such a backward process in the case of a Reed-Frost model. In contrast to
the setting of Theorem 2.2.2 cooperation from different edges is not sufficiently strong to accelerate
the order of the speed at which parasites spread at the end of the invasion process. Indeed, from
ℓN infected hosts by cooperation from different edges of order (ℓN )2/N further hosts get infected.
This number is of the same order as the number of host that get infected by cooperation over the
same edge if ℓN ∈ Θ(ℓ2N/N), i.e. only when already of order N hosts are infected.
While cooperation from different edges seems not to accelerate the speed of infection, it might lead
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to the infection of a non-trivial proportion of the host population, since once of order Θ(N) hosts
are infected cooperation from the same edge and cooperation from different edges contribute to the
infection process on the same order.

3.) In our model we implicitly assume that bacteria get blocked only for a single generation after
a phage attack. In reality this blocking may last for a longer time. In this case our result on the

asymptotic of the invasion probability remains the same. Indeed, recall that as long as I
(N)

n < Nγ

for some γ < 1
2 (1 − β) < 1 − β the number of vertices attacked from different edges is negligible.

Assuming I
(N)

n = Nγ for some γ < 1
2 (1 − β) we also have whp I

(N)
n = Θ(Nγ) and the probability

that a blocked vertex (which number is of order NγvN ) is attacked by another parasite in generation
n is O(NγvN

NγvN
N ). This probability is non-trivial for γ ≥ 1

2 (1 − β) (in the setting of Theorem
2.2.2(ii)). Since invasion of the host population is already decided if the frequency of infected host
reaches Nε for some ε > 0, at this stage of the epidemic invasion of the host population occurs
anyway with probability 1− o(1).

4.) In reality the number of offspring parasites generated during an infection could depend on
the number of parasites infecting a host. In the scaling of Theorem 2.2.2 (ii) the probability that a
host gets infected by k parasites, for k ≥ 3, from a set of parasites of size vN located on the same

vertex scales as N−
(k−2)β

2 . As long as v
(k)
N N−

(k−2)β
2 ∈ o(vN ), where v

(k)
N is the number of offspring

generated at reproduction of k parasites infecting a host, these kind of reproduction events have
only a negligible impact on the initial spread of the parasite population. Hence, in this case the
asymptotic of the invasion probability remains the same, since parasites generated on different ver-
tices will start to jointly infect hosts only when the frequency of parasites is so high that whp the
parasite population will invade the host population anyway.

5.) Instead of assuming that the graph on which the epidemic spreads is fixed over the whole
time period, one may want to consider evolving graphs, for which edges may be rewired over time.
We conjecture that for evolving graphs that rewire at most every generation the results of Theorem
2.2.2 remain valid at least if β > 1

2 .
Indeed the proof of Theorem 2.2.2 is to a large extent based on couplings with Galton-Watson
processes. For these couplings the number of parasites generated at infection of a host as well as
the edges, along which offspring parasites move, are assigned to the vertices independent of the
generation when a host gets infected. If the graph is changing over time such a construction could
lead to failures of the couplings. However as long as the number of infected hosts of the upper and
resp. lower Galton-Watson process coincide exactly with the actual number of infected hosts, this
construction yields couplings also for evolving graphs.
For the upper bound on the invasion probability we need the coupling to hold until time τℓN ,0 at
which the GWP dies out or its total size reaches a level ℓN , for some sequence ℓN converging to
∞ arbitrarily slowly. In the proof of Theorem 2.2.2 (ii) we show, that the upper Galton-Watson
process and the actual number of infected hosts coincide exactly whp until time τℓN ,0.
For the lower bound on the probability of invasion we need to couple the total number of infected
hosts with the total size of the lower Galton-Watson process until it reaches the level N1−β+ε for
some ε > 0 or the GWP dies out. When the level N1−β+ε is reached cooperation from different
edges already took over and completes the invasion. The actual number of infected hosts and the
number of individuals in the lower Galton-Watson process differs, when vertices get attacked from
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pairs of parasites originating from different hosts. These events start to play a role when of order√
N hosts get infected. If β > 1

2 , N
1−β ≪

√
N , i.e. the lower GWP coincides sufficiently long with

I(N).
Similarly, one can adapt the proofs of Theorem 2.2.2 (i) and (iii) to the setting of evolving graphs. In
summary, (at least) for β > 1

2 , the statements of Theorem 2.2.2 should also hold for evolving graphs.

6.) Phages that are not able to block CRISPR-resistant bacteria may have a chance to replicate
in bacteria that have been blocked by ACR-phages before. However, by a similar reasoning as in
item 3.) of this subsection and the sketch of the proof of Theorem 2.2.2(ii) this is only likely when
the amount of this type of phages is of order N1−β/2, that is this type of phages must be much
more frequent than ACR-phages initially.

7.) In our model we assume that parasites that hit empty vertices keep moving further and
hosts are not reproducing. These parasite have only a negligible impact on the fate of the parasite
population. Hence, the statements of Theorem 2.2.2 remain valid, if we assume that parasites die
(or die with a certain probability) when hitting an empty vertex.

Similarly, if hosts may reproduce (e.g. on empty nearest-neighbour spots) and the offspring
numbers per host are sufficiently bounded (e.g. uniformly bounded in N) our results remain valid.
Indeed, the probability that at least N1−β+ε hosts get infected is asymptotically independent on
the state of the vertices on which hosts have been killed already, because the probability to re-hit
these vertices is small when the overall number of infected hosts is ≪ N . After reaching the level
N1−β+ε the parasite population expands faster with every generation and in only a finite number of
generations the host population gets killed whp. Host reproduction cannot curb this strong parasite
expansion, when the offspring numbers are uniformly bounded in N .

8.) Instead of considering the above configuration models, we could have also considered random
dN -regular graphs. For these to exist we would need to assume that dN = o(

√
N). Furthermore,

biologically it seems reasonable that parasites can move from one host to another one over different
routes. If several parasites move away from the same vertex this may result in multiple edges, which
do not exist for random regular graphs, which makes it more difficult to motivate biologically the
consideration of these graphs. Nevertheless given dN = o(

√
N), we suspect the same result to hold

when the configuration model is replaced by the random dN -regular graph model since multiples
edges or self loops do not play a role in the infection process.

2.3 Upper bound on the invasion probability

Consider the setting of Theorem 2.2.2 (ii). In this section we prepare all results to show that the
invasion probability is asymptotically upper bounded by π(c, x). We first introduce the Galton-

Watson process Z(N)
u , see Definition 2.3.1. This process is constructed as follows. When the number

of infected hosts is sufficiently small and the number of susceptible hosts is still sufficiently large,
hosts most likely get infected by pairs of parasites occupying the same half-edge or by successful
single parasites. Hence, we estimate the probability that an infected host infects j other hosts, for
any j (not too large), by a lower bound on the sum over (k, ℓ) with k+ℓ = j of the probabilities that
out of vN parasites, which are originating from the same vertex, 2k parasites are distributed as pairs
onto k different half-edges, the remaining vN − 2k parasites are distributed separately on different
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half-edges and ℓ of them are successful single parasites. In all other cases we estimate the number
of infected hosts by vN which is the maximal number of hosts that can get infected by vN parasites.

We show in Proposition 2.3.2 that I(N)
can whp be estimated from above by the total size of the

Galton-Watson process Z(N)
u until it reaches some level ℓN , with ℓN → ∞ and ℓN ∈ o(N). Only

after crossing the level ℓN it gets likely that two parasites located on different half-edges attack

the same host. In this case it could happen that I(N)
is no longer dominated by the total size

of the Galton-Watson process. However, since the level ℓN tends to ∞, the probability that the

total size of Z(N)
u reaches the level ℓN is asymptotically equal to its survival probability which is

asymptotically equal to π(c, x), see Proposition 2.3.3. Consequently, the invasion probability of the
host-parasite model is asymptotically bounded from above by π(c, x).

Definition 2.3.1. (Upper Galton-Watson process)

Let 0 < δ < 1
2 , and aN → ∞ satisfying aN ∈ o

(︁√
dN
)︁
. Let Z(N)

u =
(︂
Z

(N)
n,u

)︂
n∈N0

be a Galton-

Watson process with Z
(N)
0,u = 1 almost surely, and offspring distribution

(︂
p
(N)
j,u

)︂
j∈N0

with

p
(N)
j,u :=

∑︂
k+ℓ=j

(︃
(vN − 2aN )2

2dN

)︃k
1

k!
exp

(︃
− v2N
2dN

)︃(︃
1− 1

dδN

)︃
((vN − 2aN )ρN )ℓ

ℓ!
(1− ρN )

vN ,(2.3.1)

for all 1 ≤ j < aN and

p(N)
vN ,u := 1−

aN∑︂
j=0

p
(N)
j,u . (2.3.2)

Denote by Z(N)

u =
(︂
Z

(N)

n,u

)︂
n∈N0

where Z
(N)

n,u :=
∑︁n
i=0 Z

(N)
i,u , that is Z

(N)

n,u gives the total size of Z(N)
u

accumulated till generation n.

The main results of this section are stated in the next two propositions.

Proposition 2.3.2. (Coupling from above)
Consider a sequence (ℓN )N∈N with ℓN → ∞ and ℓ3Nv

2
N ∈ o(N). Introduce the stopping time

τ
(N)
ℓN ,0

:= inf
{︂
n ∈ N0 : Z

(N)

n,u ≥ ℓN or Z(N)
n,u = 0

}︂
.

Then it exists a coupling between
(︂
I
(N)

n

)︂
n∈N0

and
(︂
Z

(N)

n,u

)︂
n∈N0

such that

lim
N→∞

P
(︂
I
(N)

n ≤ Z
(N)

n,u ∀n ≤ τ
(N)
ℓN ,0

)︂
= 1.

Proposition 2.3.3. (Probability for the total size of the upper GWP to reach a level ℓN )
Consider a sequence (ℓN )N∈N with ℓN → ∞. Then, we have

lim
N→∞

P
(︂
∃n ∈ N0 : Z

(N)

n,u ≥ ℓN

)︂
= π(c, x).

In Subsection 2.3.1, we will prove Proposition 2.3.2. In Subsection 2.3.2 we will study (in a
quite general setting) the asymptotic survival probability of a sequence of Galton-Watson processes
and afterwards give the proof of Proposition 2.3.3.
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2.3.1 Proof of Proposition 2.3.2

To prepare the proof of Proposition 2.3.2 we make temporarily two assumptions. First, we ignore
infections of hosts by parasites attacking a vertex from different edges. In Proposition 2.3.6 we will
show that this assumption is whp fulfilled as long as the number of infected and removed hosts

I
(N)

= R(N) + I(N) stays below a certain level ℓN . Secondly, we assume that all vertices that get
attacked are occupied by hosts and any vertex is connected to exactly dN different neighbouring
vertices. Under the first assumption this second assumption leads to an upper bound on the number
of infected hosts.

Consider a vertex that is occupied by vN parasites. Denote by L(N) the random number of
hosts that get removed after movement of the parasites to neighbouring vertices.
The probability distribution of L(N) is given by

P(L(N) = 0) =
dN !

dvNN (dN − vN )!
(1− ρN )vN ,

and for k ∈ N

P(L(N) = k) =

(︃
vN
k

)︃
dN !

dvNN (dN − vN )!
ρkN (1− ρN )vN−k

+

k∑︂
j=1

∑︂
k1,...,kj≥2

k1+...+kj≤vN−(k−j)

j∏︂
ℓ=1

(︃
vN − (k1 + ...+ kℓ−1)

kℓ

)︃(︃
vN − (k1 + ...+ kj)

k − j

)︃

· 1∏︁vN−(k+j)+2
s=2 |{i ∈ {1, ..., j}, ki = s}|!

· dN !

(dN − j − (vN − (k1 + ...+ kj)))!
ρk−jN (1− ρN )vN−(k−j)−(k1+...+kj),

because k hosts get infected after movement of vN parasites if either all parasites move over different
edges and exactly k vertices get infected by single successful parasites (and the remaining single
parasites are unsuccessful) or if j for 1 ≤ j ≤ k edges get occupied by at least 2 parasites and the
remaining parasites move along different edges and exactly j − k of them are successful.
We have L(N) ≤ vN a.s. and, as for the birthday problem, the probability that L(N) is zero is
asymptotically 1, if vN ∈ o(

√
dN ). In the situation of Theorem 2.2.2 (ii), i.e. for vN ∼ c

√
dN , with

c > 0, the probability that L(N) is zero is asymptotically non-trivial.

Denote by D
(N)
k,ℓ the event that (under the just stated two assumptions) after parasite movement

exactly k+ ℓ hosts get infected by k pairs of parasites moving along the same edge and ℓ successful
single parasites, and all the remaining parasites die without infecting a host. The next proposition

states that the events
(︂
D

(N)
k,ℓ

)︂
k,ℓ∈N0

are typical, while all other events occur asymptotically only

with negligible probabilities.

Proposition 2.3.4. Assume the conditions of Theorem 2.2.2 (ii) are fulfilled. Then

lim
N→∞

P

⎛⎝ ∞⋃︂
k,ℓ=0

D
(N)
k,ℓ

⎞⎠ = 1.
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Proof. Let (k, ℓ) ∈ N2
0. Denote by

w
(N)
k :=

(︁
vN
2

)︁(︁
vN−2

2

)︁
...
(︁
vN−2(k−1)

2

)︁
k!dkN

· dN !

dvN−kN (dN − (vN − k))!
(2.3.3)

the probability to create exactly k pairs of parasites out of vN parasites when placing the parasites
on dN spots. We have

P(D(N)
k,ℓ ) = w

(N)
k ·

(︃
vN − 2k

ℓ

)︃
ρℓN (1− ρN )

vN−(2k+ℓ) (2.3.4)

∼
(︃
c2

2

)︃k
1

k!
exp

(︃
−c

2

2

)︃
· x

ℓ

ℓ!
exp (−x) =: pk,ℓ,

and for all j ∈ N0

P

⎛⎝ ⋃︂
k+ℓ=j

D
(N)
k,ℓ

⎞⎠ =
∑︂
k+ℓ=j

P(D(N)
k,ℓ ) ∼

∑︂
k+ℓ=j

pk,ℓ =

(︃
c2

2
+ x

)︃j
1

j!
exp

(︃
−
(︃
c2

2
+ x

)︃)︃
:= pj , (2.3.5)

since the sum of two independent Poisson variables is again Poisson. As the Pois
(︂
c2

2 + x
)︂
-

probability masses (pj)j≥0 sum up to 1, we find for all ε > 0 a ˜︁J > 0, such that for all J ≥ ˜︁J
1− ε ≤

J∑︂
j=0

pj ≤ 1.

and by (2.3.5) for ˜︁J , there exists ˜︁N such that for all N ≥ ˜︁N
⃓⃓⃓⃓ ˜︁J∑︂
j=0

P

⎛⎝ ⋃︂
k+ℓ=j

D
(N)
k,ℓ

⎞⎠−
˜︁J∑︂

k=0

pj

⃓⃓⃓⃓
≤ ε.

Consequently

1− 2ε ≤
˜︁J∑︂

j=0

P

⎛⎝ ⋃︂
k+ℓ=j

D
(N)
k,ℓ

⎞⎠ ≤
∞∑︂
j=0

P

⎛⎝ ⋃︂
k+ℓ=j

D
(N)
k,ℓ

⎞⎠ ≤ 1,

which yields the claim since ε was arbitrary.

We show next that the offspring distribution of the upper Galton-Watson process Z(N)
u stochas-

tically dominates L(N) for N large enough, which yields that as long as we can and do ignore

infections of hosts by parasites attacking hosts from different edges, I(N)
can be upper bounded by

Z(N)

u .
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Proposition 2.3.5. Under the assumptions of Theorem 2.2.2 (ii) the random variables Z
(N)
1,u and

L(N) can be coupled such that for N large enough

P(L(N) ≤ Z
(N)
1,u ) = 1.

Proof. Recall that we denoted by (p
(N)
j,u )

j∈N0
the offspring distribution of the GWP Z(N)

u , see (2.3.1)

and (2.3.2), and we fixed a level aN for the definition of Z(N)
u . For the proof of the proposition

it suffices to show that for j ≤ aN we have p
(N)
u,j ≤ P

(︂⋃︁
k+ℓ=j D

(N)
k,ℓ

)︂
≤ P(L(N) = j), since by

definition P(Z
(N)
1,u = vN ) = 1 − P(Z(N)

1,u ≤ aN ), and L(N) ≤ vN a.s. We have P
(︂⋃︁

k+ℓ=j D
(N)
k,ℓ

)︂
=∑︁

k+ℓ=j P

(︂
D

(N)
k,ℓ

)︂
for all j ∈ N0. We use (2.3.4) and (2.3.3) to estimate the sum. The first factor

in Equation (2.3.3) can be lower bounded by(︁
vN
2

)︁(︁
vN−2

2

)︁
· · ·
(︁
vN−2(k−1)

2

)︁
k!dkN

≥
(︃
(vN − 2aN )2

2dN

)︃k
1

k!
,

and the second and forth factor of the product in Equation (2.3.4) can be lower bounded by

(︃
vN − 2k

ℓ

)︃
≥ (vN − 2aN )ℓ

ℓ!
,

(1− ρN )
vN−(2k+ℓ) ≥ (1− ρN )

vN ,

for k + ℓ ≤ aN .

It remains to estimate the second factor of Equation (2.3.3), i.e.
dN !

dvN−kN (dN − (vN − k))!
. Ex-

panding the factorials up to second order we obtain

dN !

dvN−kN (dN − (vN − k))!
= exp

(︃
− (vN − k)2

2dN

)︃
·
[︃
1 +

1

2

vN − k

dN

(︃
1− 1

3

(vN − k)2

dN

)︃
+O

(︃
1

dN

)︃]︃
.

Hence, for N large enough and 0 < δ < 1
2

dN !

dvN−kN (dN − (vN − k))!
≥ exp

(︃
− v2N
2dN

)︃(︃
1− 1

dδN

)︃
,

which concludes the proof.

So far we ignored infections of hosts by parasites attacking a vertex from different edges. Next

we find a sequence of levels ℓN , such that (i) ℓN → ∞ and (ii) as long as the number I
(N)

of infected
and removed hosts is bounded by ℓN , these kind of infections are unlikely to occur.

For any y > 0 denote by

τ (N)
y := inf{n ∈ N0 : I

(N)

n ≥ y},
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the first time at which the number of infected and removed hosts exceeds the level y and by

τ
(N)
D := inf{n ∈ N0 : a vertex of S(N)

n is hit by parasites from different edges}. (2.3.6)

In the next proposition it is shown that infections of hosts by parasites attacking a vertex from

different edges can be neglected as long as the number of infected and removed hosts I
(N)

is of
order o((N/v2N )

1
3 ).

Proposition 2.3.6. Choose a sequence (ℓN )N∈N, such that ℓN → ∞ and ℓ3Nv
2
N ∈ o(N).

Then

lim
N→∞

P
(︂
τ
(N)
D ≤ τ

(N)
ℓN

, τ
(N)
ℓN

<∞
)︂
= 0.

Proof. Recall that we denoted by S
(N)
n , I

(N)
n and R

(N)
n the sets of susceptible, infected and empty

vertices, resp., in generation n. For the proof of the proposition we need to control the probability
that a vertex is hit by at least two parasites from different edges simultaneously. We first show

that it is unlikely to re-hit an already empty vertex till generation τ
(N)
ℓN

. Hence, only parasites on
infected vertices remain as candidates for simultaneous infections of parasites from different edges.

However, as we will show below, the number of susceptible vertices till generation τ
(N)
ℓN

is large and
each susceptible vertex has roughly dN free half-edges. That makes it unlikely to hit a susceptible
vertex simultaneously from different edges.

For a rigorous proof denote by A
(N)
n the number of parasites on empty vertices in generation n and

by

τ
(N)
A := inf{n ∈ N0 : A(N)

n ≥ 1},

the first generation when at least one parasite hits a vertex of R(N).
We show next that

lim
N→∞

P(τ (N)
A ≤ τ

(N)
ℓN

, τ
(N)
ℓN

<∞) = 0. (2.3.7)

Let

τ
(N)
no inf := inf{n ∈ N0 : I(N)

n = 0},

be the first generation at which no host gets infected. Note that at generation τ
(N)
no inf the infection

process is not necessarily finished, as parasites may remain on empty vertices. However, this is whp

not the case if τ
(N)
no inf < τ

(N)
ℓN

. More precisely we claim,

lim
N→∞

P(τ (N)
A ≤ τ

(N)
no inf ∧ τ

(N)
ℓN

) = 0. (2.3.8)

Given we have shown (2.3.8), we also have (2.3.7), since
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{τ (N)
no inf < τ

(N)
A ≤ τ

(N)
ℓN

, τ
(N)
ℓN

<∞} = ∅,

and hence

lim
N→∞

P(τ (N)
A ≤ τ

(N)
ℓN

, τ
(N)
ℓN

<∞) = lim
N→∞

P(τ (N)
A ≤ τ

(N)
no inf ∧ τ

(N)
ℓN

, τ
(N)
ℓN

<∞).

So, lets prove (2.3.8). First of all we have by definition of τ
(N)
no inf that τ

(N)
no inf ∧ τ

(N)
ℓN

≤ ℓN .

Furthermore, the number of parasites generated in some generation n with n ≤ τ
(N)
no inf ∧ τ

(N)
ℓN

is

bounded by ℓNvN and the total number of half-edges formed for vertices of the set R
(N)
n is at

most ℓN · dN . The number of half-edges not yet connected to other half-edges in the graph is at

least as large as the number of free half-edges of the vertices in the set S
(N)
n , which is bounded

from below by (N − ℓN )dN − ℓNvN ≥ (N − 2ℓN )dN . (Note that the summand −ℓNvN has to be
added to account for the potential attacks that do not lead to an infection of a host). Hence, the

number of parasites that move to an empty vertex in any generation n with n ≤ τ
(N)
no inf ∧ τ

(N)
ℓN

can be estimated from above by the following iid random variables (H
(N)
n )n∈N. Assume for each n

(independently of each other), ℓNvN numbers are chosen randomly and without replacement from

the set {1, ..., (N − 2ℓN )dN}. Let H(N)
n count the numbers falling into the set {1, ..., ℓNdN}. Then

we have

P
(︂
τ
(N)
A ≤ τ

(N)
ℓN

∧ τ (N)
no inf

)︂
≤ P

(︂
∃ n ≤ ℓN : H(N)

n ≥ 1
)︂

≤ ℓNP
(︂
H

(N)
1 ≥ 1

)︂
≤ ℓN

(︃
1− N1!

(N1 − lNvN )!
· 1

((N − 2ℓN )dN )ℓNvN

)︃
,

where N1 := (N − 3ℓN )dN . Using an asymptotic expansion of the factorial, we get

N1!

(N1 − ℓNvN )!
· 1

((N − 2lN )dN )ℓNvN
= 1 +O

(︃
ℓ2Nv

2
N

N

)︃
,

so using the assumption ℓ3Nv
2
N = o(N), we have proven Equation (2.3.8).

To finish the proof of the proposition it remains to show that susceptible vertices are not hit

simultaneously by parasites from different edges before generation τ
(N)
ℓN

. Recall the definition of

τ
(N)
D in (2.3.6). If τ

(N)
ℓN

> τ
(N)
no inf, then using (2.3.7) whp τ

(N)
ℓN

= ∞ and hence it suffices to show

lim
N→∞

P
(︂
τ
(N)
D ≤ τ

(N)
ℓN

∧ τ (N)
no inf, τ

(N)
ℓN

<∞
)︂
= 0.

Denote by S
(N)
n,free the set of susceptible vertices for which all half-edges are still free. As before

the number of parasites in the graph is smaller than ℓNvN for any generation n with n < τ
(N)
ℓN

∧τ (N)
no inf

and |S(N)
n,free| ≥ N−ℓNvN . Define this time the following sequence of iid random variables (G

(N)
n )n∈N.

Consider N − ℓNvN boxes each containing dN balls. Assume (for each n independently) ℓNvN balls
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are drawn randomly and without replacement out of the boxes (that are refilled for each n). Let

G
(N)
n be the number of boxes from which at least two balls were drawn. Then we can estimate

P
(︂
τ
(N)
D ≤ τ

(N)
ℓN

∧ τ (N)
no inf, τ

(N)
ℓN

<∞
)︂
≤ P

(︂
∃ n ≤ ℓN : G(N)

n ≥ 1
)︂

≤ ℓNP
(︂
G

(N)
1 ≥ 1

)︂
= ℓN

(︃
1− dℓNvNN · N2!

(N2 − ℓNvN )!
· (N2dN − ℓNvN )!

(N2dN )!

)︃
,(2.3.9)

where N2 := N − ℓNvN . Using an asymptotic expansion of the factorial, we get

dℓNvNN · N2!

(N2 − ℓNvN )!
· (N2dN − ℓNvN )!

(N2dN )!
= 1 +O

(︃
(ℓNvN )2

N

)︃
,

which shows that the left hand side of (2.3.9) converges to 0.

Proof of Proposition 2.3.2. By Proposition 2.3.6 whp no infection of hosts by parasites attacking

from different edges occurs till I(N)
reaches the level ℓN for any sequence (ℓN )N∈N with ℓN → ∞

and ℓ3Nv
2
N ∈ o(N). Hence, it suffices to consider the case that such infections do not occur and

Proposition 2.3.5 can be applied. Consequently, as long as I(N)
has not reached the level ℓN ,

the number of hosts that get infected from an infected vertex in the next generation can whp

be estimated from above by the offspring number of the GWP Z(N)
u , which yields the claim of

Proposition 2.3.2.

2.3.2 Asymptotic survival probabilities of sequences of GWPes and the
proof of Proposition 2.3.3

Before we give the proof of Proposition 2.3.3 we establish some general results about the asymptotic
survival probability of a sequence of Galton-Watson processes.

Consider a Galton-Watson process Z = (Zn)n∈N0
with offspring distribution (pk)k∈N0

and

with Z0 = 1 almost surely, and a sequence of Galton-Watson processes Z(N) =
(︂
Z

(N)
n

)︂
n∈N0

with

offspring distributions
(︂
p
(N)
k

)︂
k∈N0

and with Z
(N)
0 = 1 almost surely, for all N ∈ N.

Denote by Φ and Φ(N), resp., the probability generating functions of the offspring distributions

(pk)k∈N0
and

(︂
p
(N)
k

)︂
k∈N0

, by π and π(N) the corresponding survival probabilities, and by q :=

1 − π and q(N) := 1 − π(N) the corresponding extinction probabilities. Denote also by Z(N)
=(︂

Z
(N)

n :=
∑︁n
i=0 Z

(N)
i

)︂
n∈N0

the process that counts the total size of the GWP Z(N) till generation

n.
Recall that Φ(N) converges uniformly to Φ, if the corresponding offspring distributions converge in
total variation distance, in particular, if

∞∑︂
k=0

|q(N)
k − qk|→ 0,
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see [71], Proposition 4.2, or as one readily checks, if there exists anN−valued sequence (KN )N∈N
with KN → ∞ such that

KN∑︂
k=0

|q(N)
k − qk|→ 0.

Lemma 2.3.7. Consider the just defined Galton-Watson processes Z and (Z(N))N∈N. Further-
more, let (aN )N∈N be an N-valued sequence with aN → ∞. Assume that the generating functions
(Φ(N))N∈N converge uniformly in [0, 1] to Φ. Then the following holds:
a)

|π(N) − π| → 0,

b)

P
(︂
Z(N)
aN = 0

)︂
→ q,

c)

P
(︂
∃n ∈ N0 : Z(N)

n ≥ aN

)︂
→ π,

d)

P
(︂
∃ n ∈ N0 : Z

(N)

n ≥ aN

)︂
→ π.

Proof. We show a detailed proof in the case π > 0, with analogous arguments one also shows the
claim in the case π = 0. Recall that the extinction probabilities q and q(N) are characterised as
the smallest fixed points in [0, 1] of the generating functions Φ and Φ(N) respectively. Consider the
function

g(s) := Φ(q + s)− (q + s),

for s ∈ [−q, 1− q]. We have g(s) = 0, iff s = 0 or s = 1− q. Furthermore g > 0 for s < 0 and g
is decreasing up to some s0 > 0.
Let 0 < ε < s0, and

η < min{g(−ε),−g(ε)}.

Since by assumption Φ(N) converges uniformly to Φ we find an N0 ∈ N such that for all N ≥ N0

|Φ(N)(s)− Φ(s)| < η, (2.3.10)

for all s ∈ [0, 1] and hence for all N ≥ N0

Φ(N)(q − ε) ≥ Φ(q − ε)− η = g(−ε) + q − ε− η > q − ε,

Φ(N)(q + ε) ≤ Φ(q + ε) + η = g(ε) + q + ε+ η < q + ε.
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Since Φ(N) is monotonically increasing on [0, 1] and continuous, the smallest non-negative fixed
point of Φ(N) is contained in the interval [q − ε, q + ε] which implies a).
Denote by (Φ±η)(s) := Φ(s)±η, and (Φ±η)n(s) := (Φ±η)◦· · ·◦(Φ±η)(s) the n-fold composition
of (Φ± η). An iterated application of (2.3.10) yields for all n ∈ N

(Φ + η)n (0) ≥ Φ(N)
n (0) ≥ (Φ− η)n (0).

The sequences ((Φ− η)n (0))n∈N and ((Φ + η)n (0))n∈N are increasing and converge for n→ ∞
to the smallest non-negative fixed point of Φ− η and Φ + η, respectively. While the fixed point of
Φ− η is larger than q − ε, by definition of η, the fixed point of Φ + η is smaller than q + ε.
In particular, we have that there exists ˜︁n ∈ N, such that for all N ≥ N0 and for all n ≥ ˜︁n

q − ε ≤ Φ(N)
n (0) ≤ q + ε.

Since aN → ∞, there exists N1 ∈ N such that ∀N ≥ N1, aN ≥ ˜︁n.
Finally we have for all N ≥ N2 := max{N0, N1}

q − ε ≤ Φ(N)
aN (0) ≤ q + ε,

which proves b).
The extinction-explosion principle for Galton-Watson processes yields

P
(︂
Z(N)
n > 0 ∀n ∈ N0

)︂
≤ P

(︂
∃ n ∈ N0 : Z(N)

n ≥ aN

)︂
.

Hence, by a)

π + o(1) ≤ P
(︂
∃ n ∈ N0 : Z(N)

n ≥ aN

)︂
. (2.3.11)

Furthermore

π(N) = P
(︂
Z(N)
n > 0 ∀n ∈ N0

)︂
= P

(︂{︂
∃ n ∈ N0 : Z(N)

n ≥ aN

}︂
∩
{︂
Z(N)
n > 0 ∀n ∈ N0

}︂)︂
≥ P

(︂
∃ n ∈ N0 : Z(N)

n ≥ aN

)︂
·
(︂
1−

(︂
q(N)

)︂aN)︂
.

By a) we have that Z(N) is supercritical for N large enough, which implies(︂
q(N)

)︂aN
→ 0.

Consequently

P
(︂
∃ n ∈ N0 : Z(N)

n ≥ aN

)︂
≤ π(N)

1−
(︁
q(N)

)︁aN = π(N) · (1 + o(1)) = π + o(1),

which, together with (2.3.11), concludes the proof of c).
For proving d), it only remains to show that
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P
(︂{︂

∃ n ∈ N0 : Z
(N)

n ≥ aN

}︂
∩
{︂
∃ n ∈ N0 : Z(N)

n = 0
}︂)︂

= o(1).

Let (cN )N∈N be a sequence with cN → ∞ and aN
cN

→ ∞ and consider the subsets

A(N) :=
{︂
∃ n ∈ N0 : Z

(N)

n ≥ aN , ∃ i ≤ n : Z
(N)
i ≥ cN

}︂
∩
{︂
∃ n ∈ N0 : Z(N)

n = 0
}︂
,

B(N) :=
{︂
∃ n ∈ N0 : Z

(N)

n ≥ aN , Z
(N)
i < cN ∀i ≤ n

}︂
∩
{︂
∃ n ∈ N0 : Z(N)

n = 0
}︂
.

By definition{︂
∃ n ∈ N0 : Z

(N)

n ≥ aN

}︂
∩
{︂
∃ n ∈ N0 : Z(N)

n = 0
}︂
= A(N) ⊔B(N).

According to c) we have

P
(︂
A(N)

)︂
≤ P

(︂{︂
∃i ∈ N0 : Z

(N)
i ≥ cN

}︂
∩
{︂
∃n ∈ N0 : Z(N)

n = 0
}︂)︂

→ 0,

Furthermore

B(N) ⊂
{︂
Z

(N)

⌊ aN
cN
⌋ > 0

}︂
∩
{︂
∃n ∈ N0 : Z(N)

n = 0
}︂
,

so according to a) and b) applied with the sequence
(︂
⌊aNcN ⌋

)︂
N∈N

we get

P
(︂
B(N)c

)︂
≥P
(︃{︂

Z
(N)

⌊ aN
cN
⌋ = 0

}︂
⊔
{︂
Z(N)
n > 0 ∀n ∈ N0

}︂)︃
= P

(︃{︂
Z

(N)

⌊ aN
cN
⌋ = 0

}︂)︃
+ P

(︂{︂
Z(N)
n > 0 ∀n ∈ N0

}︂)︂
= q + o(1) + π + o(1)

= 1− o(1),

which yields P
(︁
A(N) ⊔B(N)

)︁
→ 0.

We are now ready to prove Proposition 2.3.3.

Proof of Proposition 2.3.3. By Lemma 2.3.7 d) it suffices to show that the sequence of generating

functions Φ
(N)
u belonging to the offspring distributions

(︂
p
(N)
j,u

)︂
j∈N0

of Z(N)
u converges uniformly on

[0, 1] to the generating function Φ(c,x) of the Pois
(︂
c2

2 + x
)︂
-distribution. We will denote by (pj)j∈N0

the probability weights of the Pois
(︂
c2

2 + x
)︂
-distribution. According to the remark just before

Lemma 2.3.7 it suffices to find a sequence (KN )N∈N with KN → ∞ for which
∑︁KN

j=0|p
(N)
j,u − pj |→ 0.

We set KN = aN and use in the following calculation the asymptotics
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(︃
(vN − 2aN )2

2dN

)︃k
exp

(︃−v2N
2dN

)︃
=

(︃
c2

2

)︃k
exp

(︃−c2
2

)︃
(1− hN )

k+1
,

((vN − 2aN )ρN )ℓ(1− ρN )vN = xℓ exp(−x)(1 + o(1))ℓ+1,

where (hN )N∈N denotes some appropriate sequence of order O
(︂

max{aN ,rN}√
dN

)︂
and rN := vN −

c
√
dN . For all j ≥ 0

|p(N)
j,u − pj |≤

∑︂
k+ℓ=j

1

k!

(︃
c2

2

)︃k
xℓ

ℓ!
exp

(︃
−
(︃
c2

2
+ x

)︃)︃ ⃓⃓⃓
(1− hN )

k+1
(1 + o(1))ℓ+1 − 1

⃓⃓⃓
.

The last term can be upper bounded in the following way

| (1− hN )
k+1

(1 + o(1))ℓ+1 − 1| ≤ hN

⃓⃓⃓ k+1∑︂
i=1

(︃
k + 1

i

)︃
(−hN )i−1

⃓⃓⃓
+ o(1)

⃓⃓⃓ ℓ+1∑︂
i=1

(︃
ℓ+ 1

i

)︃
o(1)i−1

⃓⃓⃓

+ o(1)hN

⃓⃓⃓ k+1∑︂
i=1

(︃
k + 1

i

)︃
(−hN )i−1

ℓ+1∑︂
i=1

(︃
ℓ+ 1

i

)︃
o(1)i−1

⃓⃓⃓
≤ 3max{hN , o(1)}2k+ℓ+2.

It follows that

aN∑︂
j=0

|p(N)
j,u − pj | ≤

aN∑︂
j=0

12max{hN , o(1)}
∑︂
k+ℓ=j

1

k!

(︃
c2

2

)︃k
xℓ

ℓ!
exp

(︃
−
(︃
c2

2
+ x

)︃)︃
2k+ℓ

≤ 12max{hN , o(1)} exp
(︃
c2

2
+ x

)︃
→ 0,

which ends the proof.

2.4 Coupling from below with (truncated) Galton-Watson
processes

2.4.1 Establishing invasion

Consider again the setting of Theorem 2.2.2 (ii). The next proposition gives a lower bound on the
probability that the parasite population infects at least Nα hosts for 0 < α < β.

Proposition 2.4.1. Consider the setting of Theorem 2.2.2 (ii) and let 0 < α < β. Then

lim inf
N→∞

P
(︂
∃n ∈ N0 : I

(N)

n ≥ Nα
)︂
≥ π(c, x).
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Remark 2.4.2. Proposition 2.4.1 together with the results from Section 2.3 yield

lim
N→∞

P
(︂
∃n ∈ N0 : I

(N)

n ≥ Nα
)︂
= π(c, x).

The remainder of this subsection is devoted to the proof of Proposition 2.4.1, which is given at
the end of this subsection. First we introduce a simpler host-parasite model, see Definition 2.4.3,

that lower bounds the number of infected and removed hosts I
(N)

of the original host-parasite
model a.s. In this model hosts can get infected only by pairs of parasites moving along the same
edge or by successful single parasites. In the following, we will refer to either a pair of parasites
moving along the same edge or a successful single parasite as an infecting unit. We show then that
whp the simpler process can be coupled with a Galton-Watson process from below until Nα hosts
get infected, see Proposition 2.4.7. The total size of this lower Galton-Watson process reaches any
level ℓN where ℓN → ∞ with asymptotic probability π(c, x), see Lemma 2.4.6, in particular the
level Nα. This yields the claimed lower bound.

Definition 2.4.3 (A simpler model involving only infecting units). For a sequence of parameters
(N, dN , vN , ρN )N∈N introduce the following host-parasite model defined on the same random con-
figuration model (with N vertices and dN half-edges per vertex) as the original model. Initially on
each vertex a single host is placed. We start the infection process by infecting a randomly chosen
host. A random number of infecting units is generated according to the following distribution with

probability weights (p
(N)
j )j∈N0

where for all 1 ≤ j ≤ vN

p
(N)
j :=

∑︂
k+ℓ=j,k≤⌊vN/2⌋

w
(N)
k ·

(︃
vN − 2k

ℓ

)︃
ρℓN (1− ρN )

vN−(2k+ℓ) , (2.4.1)

and

p
(N)
0 := 1−

vN∑︂
j=1

p
(N)
k ,

where w
(N)
k denotes the probability defined in (2.3.3). Afterwards, the host dies and the infection

process continues in discrete generations as follows. At the beginning of each generation, infecting
units move, independently of each other, to nearest neighbour vertices along different, randomly
chosen edges. If a host is attacked by at least one infecting unit, then the host gets infected. In
each infected host, independently a random number of infecting units is produced according to the

distribution (p
(N)
j )j∈N0

. Afterwards the infected hosts and all the infecting units that infected the
hosts die. If an infecting unit moves to an empty vertex, then it dies.

Denote by J
(N)
n the number of hosts that get infected at generation n in this simpler model and

the epidemic process by J (N) = (J
(N)
n )n∈N0

. Furthermore we denote by J
(N)

n =
∑︁n
i=0 J

(N)
i the

total number of hosts infected till generation n in this simpler host-parasite model and by J (N)
=

(J
(N)

n )n∈N0 the corresponding process.

Proposition 2.4.4. For all N ∈ N it is possible to couple J (N) and I(N) such that almost surely
∀n ∈ N0

J
(N)

n ≤ I
(N)

n .
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Proof. Consider the same realisation of the configuration model for both host-parasite models and
assume that the same host gets initially infected.

Enumerate the dN half-edges of each vertex and denote by V
(N)
i ∈ {0, . . . , vN}dN the occupancy

vector of the half-edges linked to vertex i (when host i gets infected) by the vN offspring parasites
generated at its infection in the original host-parasite model. By definition, the random variables

(V
(N)
i )1≤i≤N are iid. A coupling of I(N)

and J (N)
is obtained as follows. Use the same occupancy

vector V
(N)
i when host i gets infected for the simpler host-parasite model but modify it as follows:

Assume that in the original and in the simpler model the same single parasites are chosen to be
successful and apply the subsequent rules:

• If exactly k pairs of parasites occupy k different half-edges, the remaining parasites move
separately along different half-edges, and if exactly ℓ of them are successful single parasites,
for some 0 ≤ k ≤ ⌊vN/2⌋ and 0 ≤ ℓ ≤ vN such that 0 ≤ 2k+ℓ ≤ vN , then in the simpler model
all pairs of parasites and successful single parasites are kept and the remaining parasites are
removed.

• If according to the occupancy vector V
(N)
i at least one half-edge is occupied by at least three

parasites, update V
(N)
i for the simpler host-parasite model by removing all parasites, i.e. in

particular no pairs of parasites or successful single parasite remain.

With this procedure the number of infecting units is distributed according to the distribution given
in (2.4.1). Moreover, hosts get either simultaneously infected in both host-parasite models or first
in the original model and later possibly also in the simpler model. Hence, the number of infected

hosts in the simpler model is bounded from above by I
(N)

n in any generation n.

Our next step is to couple J (N) with the Galton-Watson process Z(N)
l which is defined next.

Definition 2.4.5 (Lower Galton-Watson Process). Let 0 < δ < 1
2 and (aN )N∈N be a sequence with

aN → ∞ and aN ∈ o
(︁√
dN
)︁
. Furthermore assume (θN )N∈N is a [0, 1]-valued sequence with θN → 0.

Let Z(N)
l =

(︂
Z

(N)
n,l

)︂
n∈N0

be a Galton-Watson process with mixed binomial offspring distribution

Bin
(︂ ˜︁Z(N), 1− θN

)︂
, where the probability weights

(︂˜︁p(N)
k

)︂
k∈N0

of ˜︁Z(N) are for all 1 ≤ j ≤ aN

˜︁p(N)
j :=

∑︂
k+ℓ=j

(︃
(vN − 2aN )2

2dN

)︃k
1

k!
exp

(︃
− v2N
2dN

)︃(︃
1− 1

dδN

)︃
((vN − 2aN )ρN )ℓ

ℓ!
(1− ρN )

vN ,

and

˜︁p(N)
0 := 1−

aN∑︂
j=1

˜︁p(N)
j .

Denote by Φ
(N)
l the generating function of the offspring distribution

(︂
p
(N)
k,l

)︂
k∈N0

of Z(N)
l , and

by π
(N)
l and q

(N)
l the survival and extinction probability of Z(N)

l . Furthermore, denote by Z
(N)

n,l :=∑︁n
i=0 Z

(N)
i,l the total size of the Galton-Watson process until generation n and Zl =

(︂
Z

(N)

n,l

)︂
n∈N0

the corresponding process.
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Lemma 2.4.6. Let (ℓN )N∈N be a sequence with ℓN → ∞. Assume Z
(N)
0,l = 1 a.s. Then

lim
N→∞

P
(︂
∃n ∈ N0 : Z

(N)

n,l ≥ ℓN

)︂
= π(c, x).

Proof. We proceed as in the proof of Proposition 2.3.3 and show that

aN∑︂
j=1

|˜︁p(N)
j − pj | → 0,

where (pj)j∈N0
denote the probability weights of the Pois(c2/2 + x)-distribution. Using the

same asymptotics as in the proof of Proposition 2.3.3, we have for all j ≥ 1

|˜︁p(N)
j − pj |≤

∑︂
k+ℓ=j

1

k!

(︃
c2

2

)︃k
xℓ

ℓ!
exp

(︃
−
(︃
c2

2
+ x

)︃)︃ ⃓⃓⃓
(1− hN )

k+1
(1 + o(1))ℓ+1 − 1

⃓⃓⃓
,

where (hN )N is an appropriate sequence with hN = O
(︂

max{aN ,rN}√
dN

)︂
. As in the proof of Propo-

sition 2.3.3, the last term can be upper bounded by

| (1− hN )
k+1

(1 + o(1))ℓ+1 − 1| ≤ 3max{hN , o(1)}2k+ℓ+2.

It follows that

aN∑︂
j=1

|˜︁p(N)
j − pj | ≤

aN∑︂
j=1

12max{hN , o(1)}
∑︂
k+ℓ=j

1

k!

(︃
c2

2

)︃k
xℓ

ℓ!
exp

(︃
−
(︃
c2

2
+ x

)︃)︃
2k+ℓ

≤ 12max{hN , o(1)} exp
(︃
c2

2
+ x

)︃
→ 0,

which also implies that |˜︁p(N)
0 − p0| → 0, because aN → ∞. Furthermore, we can estimate

aN∑︂
i=1

|p(N)
i,l − ˜︁p(N)

i | ≤
aN∑︂
i=1

˜︁p(N)
i |1− (1− θN )i|+

∞∑︂
i=1

∑︂
j≥i+1

˜︁p(N)
j

(︃
j

i

)︃
(1− θN )iθj−iN

≤ θN

∞∑︂
i=1

˜︁p(N)
i 2i +

∞∑︂
j=2

˜︁p(N)
j

j−1∑︂
i=1

(︃
j

i

)︃
(1− θN )iθj−iN

≤ θN

(︄ ∞∑︂
i=0

1

i!

(︃
c2

2
+ x

)︃i
exp

(︃−c2
2

+ x

)︃
2i +

∞∑︂
i=1

|˜︁p(N)
i − pi|2i

)︄

+

∞∑︂
j=2

˜︁p(N)
j (1− (1− θN )j)

≤ θN

[︃
exp

(︃
c2

2
+ x

)︃
+ 12max{hN , o(1)} exp

(︃
c2

2
+ x

)︃]︃
+ θN

∞∑︂
j=2

˜︁p(N)
j 2j
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≤ 2θN

[︃
exp

(︃
c2

2
+ x

)︃
+ 12max{hN , o(1)} exp

(︃
c2

2
+ x

)︃]︃
→ 0,

which implies |p(N)
0,l −˜︁p0| → 0 as well. An application of the triangle inequality ends the proof.

Next we show that the process Z(N)

l indeed bounds from below the number of infected hosts

J (N)
in the simpler host-parasite model. Recall that dN ∈ Θ(Nβ).

Proposition 2.4.7. Let 0 < α < β, σ
(N)
Nα := inf{n ∈ N0 : J

(N)

n ≥ Nα} and consider Z(N)

l with

θN := 2Nα log(N)
N−Nα . Then

lim
N→∞

P

(︄
Z

(N)

n,l ≤ J
(N)

n ∀n < σ
(N)
Nα

)︄
= 1.

To prepare the proof of Proposition 2.4.7 in the next lemma we estimate in the simpler host-

parasite model the total number of infecting units M
(N)

that can maximally be generated during
the epidemic, and the total number of infecting units Mα,(N) that are generated until in total Nα

hosts get infected.

Lemma 2.4.8. Assume the conditions of Theorem 2.2.2 (ii) are fulfilled and 0 < α < 1. Then we
have

lim
N→∞

P
(︂
M

(N) ≤ N log(N)
)︂
= 1,

lim
N→∞

P
(︂
Mα,(N) ≤ Nα log(N)

)︂
= 1.

Proof. Denote by M
(N)
i the number of infecting units generated in host i if it gets infected in the

simpler model, i.e. M
(N)

=
∑︁N
i=1M

(N)
i and Mα,(N) ∼ ∑︁Nα

i=1M
(N)
i . By construction M

(N)
i is

distributed according to the probability distribution defined in (2.4.1) and the random variables

(M
(N)
i )1≤i≤N are i.i.d. An application of Markov’s inequality yields

P

(︄
N∑︂
i=1

M
(N)
i ≥ N log(N)

)︄
≤ E[M (N)

1 ]

log(N)
→ 0,

P

(︄
Nα∑︂
i=1

M
(N)
i ≥ Nα log(N)

)︄
≤ E[M (N)

1 ]

log(N)
→ 0,

because the expectations
(︂
E[M (N)

1 ]
)︂
N∈N

are uniformly bounded. Indeed, recall the definition

of the probability w
(N)
k in (2.3.3). We have

E[M (N)
i ] =

vN∑︂
j=0

j
∑︂

k+ℓ=j,k≤⌊vN/2⌋
w

(N)
k ·

(︃
vN − 2k

ℓ

)︃
ρℓN (1− ρN )

vN−(2k+ℓ)
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≤
vN∑︂
j=1

j
∑︂
k+ℓ=j

(︃
v2N
2dN

)︃k
1

k!
· (vNρN )ℓ

l!

=

vN∑︂
j=1

j

(︂
v2N
2dN

+ vNρN

)︂j
j!

≤ exp

(︃
v2N
2dN

+ vNρN

)︃
·
(︃
v2N
2dN

+ vNρN

)︃
<∞, (2.4.2)

because
v2N
2dN

→ c2

2 and vNρN → x.

Proof of Proposition 2.4.7. Using the same kind of calculations as in the proof of Proposition 2.3.5

we can show that for all 1 ≤ j ≤ aN , ˜︁p(N)
j ≤ P(

⋃︁
k+ℓ=j D

(N)
k,ℓ ), see Equations (2.3.4) and (2.3.5). In

other words whenever a host gets infected we can estimate the number of infecting units, generated
on the corresponding vertex according to the simpler model, from below by the corresponding

number of offspring in the Galton-Watson process Z(N)
l , since ˜︁p(N)

0 = 1−∑︁aN
i=1 p̃

(N)
j .

However, in the host-parasite model “ghost” infections may occur, when a) an already empty
vertex is attacked by an infecting unit over a free half-edge, b) a vertex is attacked by more than
one infecting unit or c) two infecting units attack an edge from different ends (and hence both
infecting units hit empty vertices).

We will show next that each infecting unit generated before generation σ
(N)
Nα is involved in

one of the events a) or b) (independently of the other infecting units) with probability at most

θN . Furthermore, we will show that an event of type c) occurs before generation σ
(N)
Nα only with

negligible probability o(1). Consequently, by removing infecting units with probability θN the
number of offspring of infected hosts can whp be bounded from below by the number of offspring

drawn according to the distribution with weights (p
(N)
k,l )k∈N0 from Definition 2.4.5 for any generation

n < σ
(N)
Nα . This yields the claimed coupling of (J

(N)

n )n∈N0
and (Z

(N)

n,l )n∈N0
before generation σ

(N)
Nα .

We first control the probabilities of the events a) and b).

a) Before generation σ
(N)
Nα the number of free half-edges linked to an empty vertex is bounded

by NαdN . Hence, the probability that an infecting unit on a half-edge gets connected to a half-edge

of an empty vertex is bounded from above by
NαdN

NdN −NαvN
∼ 1

N1−α , since the total number of

free half-edges is at least NdN −NαvN .

b) Before generation σ
(N)
Nα , the number of empty vertices in the graph is smaller than Nα.

Consequently, the probability that two infecting units attack the same vertex can be estimated
from above by dN

NdN−NαdN
∼ 1

N . By Lemma 2.4.8 the total number of infecting units generated

before generation σ
(N)
Nα is whp bounded by Nα log(N). Hence, each infecting unit is involved in an

event of type b) with probability at most Nα log(N) · dN
NdN −NαdN

∼ log(N)

N1−α .

In summary, θN = 2 ·Nα log(N) · dN
NdN−NαdN

yields an upper bound on the probability that an
infecting unit is involved in one of the events of type a) or b). Since α < 1 we have θN ∈ o(1).

It remains to show that whp events of type c) do not occur until generation σ
(N)
Nα . According

to Lemma 2.4.8 whp the number of infecting units that can be generated during the epidemic is

at most N log(N) and before generation σ
(N)
Nα the total number of generated infecting units can be
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estimated from above by Nα log(N). Hence, whp we can estimate the probability that before time

σ
(N)
Nα none of the infecting units moves along an edge, on which end another infecting unit is located

on, by

NdN −N log(N)

NdN − 1
· · · NdN −N log(N)− (Nα log(N)− 1)

NdN − 1− 2(Nα log(N)− 1)

=
1∏︁Nα log(N)−1

i=0 (NdN − 1− 2i)
· (NdN −N log(N))!

(NdN −N log(N)−Nα log(N))!

≥
(︃
(NdN −N log(N)−Nα log(N))

NdN

)︃Nα log(N)

=

(︃
1− (N −Nα) log(N)

NdN

)︃Nα log(N)

=1− o(1),

where the last equality holds because α < β.

We conclude this section with the proof of Proposition 2.4.1.

Proof of Proposition 2.4.1. By Proposition 2.4.4 we can show the claim of the proposition for the

event {∃n ∈ N0 : J
(N)

n ≥ Nα} instead of the event {∃n ∈ N0 : I
(N)

n ≥ Nα}. According to

Proposition 2.4.7 the process J (N)
can whp be coupled from below by Z(N)

l . By Lemma 2.4.6, the

process Z(N)

l reaches at least the level Nα with asymptotic probability π(c, x), which concludes the
proof.

2.4.2 Growing further at exponential speed

In Section 2.4.1 we showed that Nα hosts will get infected with asymptotic probability π(c, x) for
any 0 < α < β. In Section 2.5 we will see that the total host population will go extinct whp in
at most 2 generations if at least N1− 3

4β+2ε hosts get infected for any ε > 0. If β > 4
7 we have

1 − 3
4β < β and hence, with the results of the next section we can prove Theorem 2.2.2 (ii). The

aim of this section is to argue that also in the case β ≤ 4
7 whp N1− 3

4β+2ε hosts will get infected
once Nα hosts have been removed for some 0 < α < β. Hence, we assume in the remainder of this
subsection that

β ≤ 4

7
.

We will truncate the process Z(N)
l at certain time points. The resulting process Z(N)

t = (Z
(N)
n,t )n∈N0

grows asymptotically at the same speed as Z(N)
l and can be coupled with I

(N)
until the level

N1− 3
4β+2ε is reached. The coupling of Z(N)

l with I
(N)

fails if two infecting units attack an edge
from two different ends at the same generation. In this case none of the two infecting units can
reproduce because the vertices they are moving to are empty. Since in each generation, the number
of infecting units involved in these events is small we can remove from time to time (the ancestors
of) these infecting units without changing the asymptotic speed of exponential growth. Define
k0 ∈ N through k0 − 1 := sup{k ∈ N : kβ ≤ 1− 3

4β}, in particular we have
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(k0 − 1)β ≤ 1− 3

4
β < k0β.

Definition 2.4.9. Let δ < β and ε > 0 small enough such that k0(β − δ) ≥ 1 − 3
4β + 2ε. Define

Z(N)
t = (Z

(N)
n,t )n∈N0 , with Z

(N)
0,t := 1 almost surely, and let Z

(N)
t evolve as a GWP with offspring

distribution (p
(N)
k,l )k∈N0

until time σ
(N)
1 := inf{n ∈ N0 : Z

(N)

n,t ≥ Nβ−δ}. We set Z
(N)

σ
(N)
1 +1,t

:=

max{Z(N)

σ
(N)
1 ,t

−Nβ− 3
2 δ, 0}. Assume that the process Z

(N)
t is defined until generation σ

(N)
i +1 for some

i ≤ k0−1, then let the process grow as a GWP with offspring distribution (p
(N)
k,l )k∈N0 until generation

σ
(N)
i+1 := inf{n ∈ N0 : Z

(N)

n,t ≥ N (i+1)(β−δ)}. Set Z
(N)

σ
(N)
i+1+1,t

:= max{Z(N)

σ
(N)
i+1,t

−N iβ− 2i+1
2 δ, 0}.

Proposition 2.4.10. Let τ (N) := inf{n ∈ N0 : I
(N)

n ≥ N1− 3
4β+2ε}. Then

lim
N→∞

P
(︂
Z

(N)

n,t ≤ I
(N)

n ∀n ≤ τ (N)
)︂
= 1.

Proof. The coupling of Z
(N)

l and I
(N)

fails if two infecting units attack an edge from both ends,
because in this situation the corresponding branches in the Galton-Watson process have offspring
but the corresponding infecting units do not infect any host. These infecting units cannot be treated
independently and hence we cannot arrive at a coupling by thinning the Galton-Watson process.
Instead we will remove the corresponding lines in the Galton-Watson process in pairs.

If at some generation the number of infected hosts is O(Nα), then in this generation whp
O(Nα log(N)) infecting units are generated, see Lemma 2.4.8. Because whp the total number
of infecting units is at most N log(N), see Lemma 2.4.8 again, an application of Chebyshev’s

Inequality yields that whp no more than O
(︂
Nα log(N)N log(N)

dNN

)︂
= O

(︁
Nα−β log(N)2

)︁
pairs of in-

fecting units attack an edge from both ends. Within the time intervals ([σ
(N)
i + 1, σ

(N)
i+1 ])i in each

generation each individual has on average at least c2/2 + x + o(1) offspring. Since within any

time interval [σ
(N)
i + 1, σ

(N)
i+1 ] the process grows exponentially fast, for 1 ≤ i ≤ k0, whp at most

O(N (i+1)(β−δ)−β log3(N)) = o(N iβ− 2i+1
2 δ) pairs of infecting units are placed on two different ends

of an edge. If we remove this number of pairs of infecting units at time σ
(N)
i + 1 and then let the

process evolve like a GWP with offspring distribution (p
(N)
k,l )k∈N0

, the total size of the resulting

process whp lower bounds I
(N)

until generation σ
(N)
i+1 . Continuing this algorithm till generation

σ
(N)
k0

, we arrive at the desired result.

Lemma 2.4.11. Assume the process Z(N)
t is constructed by means of the probability weights

(p
(N)
k,l )k∈N0 with θN = 2Nα log(N)

N−Nα for some k0β < α < 1. Assume ε is small enough such that

1− 3
4β + 2ε < k0β. Then

lim
N→∞

P
(︂
∃n ∈ N0 : Z

(N)

n,t ≥ N1− 3
4β+2ε

)︂
= π(c, x).

Proof. Since Z(N)
t and Z(N)

l coincide until the level Nγ is reached for any γ ≤ β− δ an application
of Lemma 2.4.6 yields that the level Nβ−δ is reached with asymptotic probability π(c, x). If the
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level Nβ−δ has been reached, the level N1− 3
4β+2ε ≫ Nβ−δ will be reached whp. Indeed once a level

ℓN has been reached by a supercritical GWP for some sequence ℓN → ∞, the GWP will explode

whp. Since Z
(N)

σ
(N)
1 +1,t

∼ Z
(N)

σ
(N)
1 ,t

= Z
(N)

σ
(N)
1 ,ℓ

and between generations σ
(N)
1 +1 and σ

(N)
2 , Z(N)

t evolves

as a supercritical GWP, we have σ
(N)
2 < ∞ whp. Repeating this argument k0 − 1 times, we reach

the level N1− 3
4β+2ε whp.

From Proposition 2.4.10 and Lemma 2.4.11 it follows that I(N)
reaches the level N1− 3

4β+2ε

asymptotically with probability π(c, x). Hence, for the proof of Theorem 2.2.2 (ii) it remains to

show that I(N)
reaches the level N after hitting the level N1− 3

4β+2ε whp. This is the topic of
Section 2.5.

2.5 Final phase of the epidemic

In this section we consider again the setting of Theorem 2.2.2 (ii). We aim to show that once Nα

hosts got infected eventually whp also the remaining hosts get infected. Assume in the following
that ε > 0 is small enough such that 1− 3β

4 + 2ε < 1− β
2 . Recall

τ (N) = inf{n ∈ N0 : N1− 3
4β+2ε ≤ I

(N)

n },
and define

τ (N) := inf{n ∈ N0 : N1− 3
4β+ε ≤ I(N)

n }.
Proposition 2.5.1. For ε defined as at the beginning of this section we have

lim
N→∞

P
(︂
I
(N)

τ(N)+2 = N
⃓⃓⃓
τ (N) <∞

)︂
= 1.

The key observation for the proof of Proposition 5.1 is that infection by cooperation of parasites

that attack a host from different edges determine the infection dynamics when I
(N)
n ≫ N1−β .

Our assumptions on ε guarantee that (N1− 3β
4

+2ϵvN )2

N ≪ N . In Lemma 2.5.2 we will show that

τ (N) ≤ τ (N) whp conditioned on τ (N) < ∞. Hence, we have N1− 3
4β+ε ≤ I

(N)

τ(N) ≪ N and one

generation further we have N1−β/2+ε ≪ I
(N)

τ(N)+1 ≤ N and also N1−β/2+ε ≪ I
(N)

τ(N)+1
. Consequently,

in the following generation either the remaining hosts get infected, since N1−β/2+εvN
N ≫ N or (when

already all hosts got infected) the number of removed hosts is N .
In the following we first state and prepare for the proof of Lemma 2.5.2, then we give the proof

of this lemma and finish the section with the proof of Proposition 2.5.1.

Lemma 2.5.2. For ε, τ (N) as well as τ (N) defined as at the beginning of the section

lim
N→∞

P
(︂
τ (N) ≤ τ (N)

)︂
= 1.

To prove Lemma 2.5.2 we control the time the approximating processes (Z(N)
t )N∈N need to

reach some level Nα. We start with a rather classical result on branching processes. We give its
proof in the Appendix for the sake of completeness.



2.5. FINAL PHASE OF THE EPIDEMIC 85

Lemma 2.5.3. Let (Zn)n∈N0 be a Galton-Watson process with m := E[Z1] > 1. Introduce τNα :=
inf{n ∈ N0 : Zn ≥ Nα}. Assume Z0 = Nγ − φ(N) such that Z0 ≥ 1, where 0 ≤ γ < α and
φ(N) ∈ o(Nγ). Denote by W the almost sure limit of the non-negative martingale (Zn

Z0
m−n)n∈N0

.
Conditioning on {W > 0}

τNα logm

(α− γ) logN
→ 1, almost surely.

Next we consider a family of Galton-Watson processes ((Z
(ε)
n )n∈N0)ε>0, for which mean offspring

numbers mε are converging to some limit m > 1 when ε ↓ 0. In this case the time to reach the level

Nα from a level Nγ is, conditioned on non-extinction, also not larger than (1 + δ) (α−γ) logNlogm for ε
small enough and δ > 0.

Lemma 2.5.4. Let Z(ε) = (Z
(ε)
n )n∈N0

be a Galton-Watson Process. Denote by mε := E[Z(ε)
1 ] =

m − f(ε) the mean number of offspring, where f(ε) −→
ε→0

0, and m > 1. Introduce W (ε) the almost

sure limit of the non-negative martingale (Z
(ε)
n m−1ε )n∈N0 , and τ

(ε)
Nα := inf{n ∈ N0 : Z

(ε)
n ≥ Nα},

the first time at which Z(ε) reaches the size Nα.

If Z
(ε)
0 = Nγ − φ(N) such that Z

(ε)
0 ≥ 1, where 0 ≤ γ < α and φ(N) ∈ o(Nγ), then for all δ > 0

and for all ε > 0 small enough

lim
N→∞

P
(︃
τ
(ε)
Nα ≤ (1 + δ)

(α− γ) log(N)

log(m)

⃓⃓⃓
W (ε) > 0

)︃
= 1.

Proof. Lemma 2.5.3 gives that for all δ > 0

lim
N→∞

P
(︃
τ
(ε)
Nα ≤ (1 + δ)

(α− γ) log(N)

log(mε)

⃓⃓⃓
W (ε) > 0

)︃
= 1.

And using that mε → m when ε→ 0, it directly follows the result of this Lemma.

Finally we consider a sequence of GWPes ((Z
(N)
n )n∈N0)N∈N, whose offspring distributions de-

pend on N , and the level that we are interested to reach depends on N as well.

Lemma 2.5.5. Let

(︃(︂
Z

(N)
n

)︂
n∈N0

)︃
N∈N

be a sequence of GWPes whose offspring distributions

are denoted by (p
(N)
k )k∈N0

. Denote by Φ(N) the corresponding sequences of generating functions

of the offspring distributions. Introduce τ
(N)
Nα := inf{n ∈ N0 : Z

(N)
n ≥ Nα} and τ

(N)
Nα := inf{n ∈

N0 :
∑︁n
i=0 Z

(N)
i ≥ Nα}. Let (pk)k∈N0 be a probability distribution and Φ its generating function,

satisfying 1 < m := Φ
′
(1) <∞. Assume that

∞∑︂
k=0

|p(N)
k − pk|→ 0. (2.5.1)

If Z
(N)
0 = Nγ − φ(N) such that Z

(N)
0 ≥ 1, where 0 ≤ γ < α and φ(N) ∈ o(Nγ), then for all

δ > 0

lim
N→∞

P
(︃
τ
(N)
Nα ≤ (1 + δ)

(α− γ) log(N)

logm

⃓⃓⃓
τ
(N)
Nα <∞

)︃
= 1.
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Proof. Using Assumption (2.5.1) it follows from the remark just before Lemma 2.3.7 that the
sequence (Φ(N))N∈N converges uniformly to the generating function Φ.
Consider a family of natural numbers (Kε)ε>0 satisfying Kε −→

ε→0
∞ and K2

ε ε
γ −→
ε→0

0, where 0 <

γ < 1. We introduce the GWP
(︂
Z

(ε)
n

)︂
n∈N0

, whose offspring distribution
(︂
p
(ε)
k

)︂
k∈N0

is defined as

follows. For all 1 ≤ k ≤ Kε

p
(ε)
k := max{pk − εγ , 0},

and

p
(ε)
0 := 1−

Kε∑︂
k=1

p
(ε)
k .

This definition implies that the generating functions Φ(ε) converge uniformly in [0, 1] to Φ, as

well as the mean number of offspring mε := E[Z(ε)
1 ] converges to m, when ε → 0. Indeed, we have

for all 0 ≤ s ≤ 1

|Φ(s)− Φ(ε)(s)| ≤
Kε∑︂
k=1

skεγ +

∞∑︂
k=Kε+1

skpk +
(︂
p
(ε)
0 − p0

)︂
≤ 2Kεε

γ + 2

∞∑︂
k=Kε+1

pk

−→
ε→0

0,

since Kεε
γ −→
ε→0

0 and Kε −→
ε→0

∞. And also

|m−mε|≤
Kε∑︂
k=1

kεγ +

∞∑︂
k=Kε+1

kpk ≤ K2
ε ε
γ +

∞∑︂
k=Kε+1

kpk −→
ε→0

0,

because K2
ε ε
γ −→
ε→0

0 and m <∞.

Moreover, Assumption (2.5.1) implies that supk∈N0
|p(N)
k − pk|→ 0, so there exists Nε such that

N ≥ Nε and for all k ∈ N0

p
(N)
k ≥ max

{︃
pk −

εγ

2
, 0

}︃
.

Consequently, for all N ≥ Nε we have p
(ε)
k ≤ p

(N)
k for all k ≥ 1 and p

(ε)
0 ≥ p

(N)
0 . Hence, we can

couple
(︂
Z

(ε)
n

)︂
n∈N0

and
(︂
Z

(N)
n

)︂
n∈N0

such that for all n ∈ N

Z(ε)
n ≤ Z(N)

n ,

and
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Z
(N)
0 = Z

(ε)
0 .

Lemma 2.5.4 and the convergence mε −→
ε→0

m gives that for all δ > 0 and for all ε > 0 small

enough

lim
N→∞

P
(︃
τ
(ε)
Nα ≤ (1 + δ)

(α− γ) log(N)

log(m)

⃓⃓⃓
W (ε) > 0

)︃
= 1,

where τ
(ε)
Nα := inf{n ∈ N0 : Z

(ε)
n ≥ Nα} and W (ε) is the almost sure limit of the non-negative

martingale
(︂
Z

(ε)
n /(Z

(ε)
0 mn

ε )
)︂
n∈N0

. The coupling yields

1 ≥ P
(︃
τ
(N)
Nα ≤ (1 + δ)

(α− γ) log(N)

log(m)

⃓⃓⃓
W (ε) > 0

)︃
≥ P

(︃
τ
(ε)
Nα ≤ (1 + δ)

(α− γ) log(N)

log(m)

⃓⃓⃓
W (ε) > 0

)︃
→ 1,

which yields that for all δ > 0 and for all ε > 0 small enough

lim
N→∞

P
(︃
τ
(N)
Nα ≤ (1 + δ)

(α− γ) log(N)

log(m)

⃓⃓⃓
W (ε) > 0

)︃
= 1.

Denote by EN := {τ (N)
Nα ≤ (1+δ) (α−γ) log(N)

log(m) }, by Fε := {W (ε) > 0}, and by GN := {τ (N)
Nα <∞}.

The coupling implies that Fε ⊂ GN . Lemma 2.3.7 d) and the uniform convergence of the generating
functions Φ(N) to Φ give that limN→∞ P(GN ) = π, where π is the survival probability of the GWP
with generating function Φ. Lemma 2.3.7 a) and the uniform convergence of the generating functions
Φ(ε) give that limε→0 P(Fε) = π.
We have

P(EN |Fε) =
P(EN ∩ Fε)

P(Fε)
+

P(EN ∩ (GN\Fε))
P(Fε)

− P(EN ∩ (GN\Fε))
P(Fε)

≤ P(EN |GN ) · P(GN )

P(Fε)
,

and taking the lim infN→∞ gives that

1 ≤ lim inf
N→∞

(P(EN |GN )) · π

P(Fε)
,

and finally by taking the limit when ε→ 0, we get

lim inf
N→∞

P(EN |GN ) ≥ 1,

and since it is a sequence of probability terms, it follows that

lim
N→∞

P(EN |GN ) = 1,

which is the result of this lemma.
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We apply the last lemma iteratively to the sequence of processes (Z(N)
t )N∈N introduced in

Definition 2.4.9.

Lemma 2.5.6. Assume the process Z(N)
t is constructed by means of the offspring probability weights(︂

p
(N)
k,l

)︂
k∈N0

with θN = 2Nα log(N)
N−Nα for some k0β < α < 1. Then ∀δ > 0

lim
N→∞

P

⎛⎝τ (N)
Nα,t ≤ (1 + δ)

α log(N)

log
(︂
c2

2 + x
)︂ ⃓⃓⃓τ (N)

Nα,t <∞

⎞⎠ = 1,

where τ
(N)
Nα,t := inf{n ∈ N0 : Z

(N)

n,t ≥ Nα}.

Proof. Since Z(N)
t is, except at the time points σ

(N)
i , a GWP, we can apply iteratively Lemma 2.5.5

where Assumption (2.5.1) is obtained in the proof of Lemma 2.4.6.

Finally we come to the proof of Lemma 2.5.2.

Proof of Lemma 2.5.2. If for every generation n before τ (N), the number of infected hosts at gen-

eration n satisfies I
(N)
n ≤ N1− 3β

4 +ε, then τ (N) ≥ Nε.
But the coupling from below works whp at least until generation τ (N), and thanks to Lemma 2.5.6,

we know that the total size of the process Z(N)
t will reach N1− 3β

4 +2ε within a time of order log(N).

This implies that there exists n ≤ τ (N) for which I
(N)
n ≥ N1− 3β

4 +ε.

Lemma 2.5.7. For ε defined as at the beginning of this section

lim
N→∞

P
(︂
I
(N)

τ(N) ≤ N1− β
2 +5ε

⃓⃓⃓
τ (N) <∞

)︂
= 1.

Proof. The number of newly infected vertices is the sum of vertices that get attacked by successful
single parasites or by several parasites simultaneously. The number of vertices that get infected by
single successful parasites or pairs of parasites that move along the same edge denoted by A(N) is
whp bounded from above by N1− 3

4β+3ε. We will show that the number of vertices that get infected

by parasites attacking the vertex from different edges is whp bounded above by N1− β
2 +5ε.

At generation τ (N)−1 less than N1− 3β
4 +2ε vertices are infected, and so there are less than bN :=

vNN
1− 3β

4 +2ε available parasites. Also the number of susceptible hosts is bigger than N−N1− 3β
4 +2ε,

and as we will show below whp they all have more than dN−φ(N) free half-edges for some sequence
(φ(N))N∈N where φ(N) = O(1), see (2.5.3).

Denote by D
(N)
i the number of free half-edges of vertex i at generation τ (N)−1. Assume we have SN

boxes with box i ≤ SN containing D
(N)
i positions, and assume bN balls are distributed uniformly

on the positions of the boxes, such that each position gets occupied at most once, and let G
(N)
i be

the number of balls put into box i. Then we have whp

I
(N)

τ(N) ≤ A(N) +
∑︂
i∈SN

1{G(N)
i ≥2},

because A(N) +
∑︁
i∈SN

1{G(N)
i ≥2} ≥ N1− 3

4β+2ε whp. Denote by GN :=
∑︁
i∈SN

1{G(N)
i ≥2}. We

will show that



2.5. FINAL PHASE OF THE EPIDEMIC 89

lim
N→∞

P
(︂
GN ≤ N1− β

2 +5ε
)︂
= 1.

Denote by T :=
∑︁
j∈SN

D
(N)
j , Ti := T − D

(N)
i and Ti,j := T −

(︂
D

(N)
i +D

(N)
j

)︂
. To estimate

the expectation and variance of GN we estimate the probabilities of the events {G(N)
i ≤ 1} and

{G(N)
i ≤ 1} ∩ {G(N)

j ≤ 1} for i ̸= j conditioned on SN . Since P
(︂
{N −N1− 3β

4 +2ε ≤ SN ≤ N}
)︂
= 1

and P
(︂⋂︁SN

i=1

{︁
dN − φ(N) ≤ D(N) ≤ dN

}︁ ⃓⃓⃓
SN

)︂
→ 1, Lemma 2.6.1 can be applied whp. Hence, we

have whp

P
(︂
{G(N)

i ≤ 1}|SN
)︂
= 1− 1

2

b2N
S2
N

+
1

3

b3N
S3
N

− 1

8

b4N
S4
N

+O
(︃
b5N
S5
N

)︃
, (2.5.2)

and for all i ̸= j

P
(︂
{G(N)

i ≤ 1} ∩ {G(N)
j ≤ 1}|SN

)︂
= 1− b2N

S2
N

+
2

3

b3N
S3
N

+O
(︃
b5N
S5
N

)︃
.

Using (2.5.2) we get

E[G(N)|SN ] = SN

(︂
1− P

(︂
{G(N)

i ≤ 1}|SN
)︂)︂

=
b2N
2SN

+ o

(︃
b2N
SN

)︃
,

and because P
(︂
{N −N1− 3β

4 +2ε ≤ SN ≤ N}
)︂
= 1, it follows that E[G(N)] = O

(︂
N1− β

2 +4ε
)︂
.

The variance of G(N) conditioned on SN is estimated in Lemma 2.6.1 as

V[G(N)|SN ] = O
(︃
b4N
S2
N

· bN
SN

)︃
,

as long as SN ∼ N . The law of total variance yields

V[G(N)] = E[V[G(N)|SN ]] + V[E[G(N)|SN ]]

= O
(︃
b5N
S3
N

)︃
+ E[E[G(N)|SN ]2]− E[G(N)].

The term E[E[G(N)|SN ]2] =
∑︁N

i=N−N1− 3β
4

+2ε
P(SN = i)

(︂
b2N
2i + o

(︂
b2N
i

)︂)︂2
∼ b4N

N2 . This means

that V[E[G(N)|SN ]] can not exceed O
(︂
b4N
N2

)︂
, so an application of Chebyshev’s Inequality yields the

statement of the lemma.
It remains to show that the number of free half-edges of each susceptible vertex is sufficiently

close to dN . Denote by H
(N)
i the number of half-edges that are already formed for vertex i in

generation τ (N) − 1, for i ∈ {1, · · · , N}. We show that

lim
N→∞

P
(︂
H

(N)
i ≤ φ(N),∀i ∈ S

(N)

τ(N)−1

)︂
= 1, (2.5.3)
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for any φ(N) such that lim infN φ(N) ≥ 5. Indeed, consider the following experiment: Assume

we have N − N1− 3β
4 +2ε boxes, each with dN positions, and we distribute uniformly at random

vNN
1− 3β

4 +2ε balls on the positions, such that each position gets occupied by at most one ball.

Denote again by (G
(N)
i )i the number of balls in box i. Then we have

P
(︂
H

(N)
i ≤ φ(N),∀i ∈ S

(N)

τ(N)−1

)︂
≥ P

(︂
G

(N)
i ≤ φ(N),∀i ≤ N −N1− 3β

4 +2ε
)︂
,

and assuming w.l.o.g. φ(N) = 5, we have

P
(︂
∃i : G(N)

i ≥ φ(N)
)︂
=

(N −N1− 3β
4 +2ε)

(︁
vNN

1− 3β
4

+2ε

φ(N)

)︁
dN !(dN (N −N1− 3β

4 +2ε)− φ(N))!

(dN − φ(N))!(dN (N −N1− 3β
4 +2ε))!

≤ N · (vNN
1− 3β

4 +2ε)φ(N)

φ(N)!
· d

φ(N)
N

(dN (N −N1− 3β
4 +2ε)− φ(N))φ(N)

≤ N exp(φ(N))

(︄
vNN

1− 3β
4 +2εdN

(dN (N −N1− 3β
4 +2ε)− φ(N))φ(N)

)︄φ(N)

→ 0.

Lemma 2.5.8. In the setting of Theorem 2.2.2 (ii) there exists a constant C > 0 such that

lim
N→∞

P
(︂
I
(N)

τ(N)+1
≥ C ·N1− β

2 +ε
⃓⃓⃓
τ (N) <∞

)︂
= 1.

for ε > 0 small enough.

Proof. According to Lemma 2.5.2, τ (N) ≤ τ (N) whp. Thus using Lemma 2.5.7 the number of

empty vertices at generation τ (N) is whp at most N1− β
2 +5ε. By definition of τ (N) there are at

least N1− 3β
4 +ε infected individuals, and so at least Θ(vNN

1− 3β
4 +ε) parasites participate in new

infections.
First we are going to show that the number of pairs of parasites present on infected vertices at

generation τ (N) are negligible compared to vN . Denote by A
(N)

τ(N) the number of parasites occupying

an edge alone at generation τ (N). Then for all functions φ1, satisfying φ1(N) → ∞, we have

lim
N→∞

P
(︂
A

(N)

τ(N) ≥ N1− 3β
4 +ε(vN − φ1(N))

⃓⃓⃓
τ (N) <∞

)︂
= 1. (2.5.4)

Indeed, denote by (K
(N)
i )i∈{1,...,N} the iid random variables giving the number of half-edges

(connected to the vertices i, for i ∈ {1, ..., N}) that are occupied by at least two parasites in the
generations at which the vertices get infected. We have for all 0 ≤ k ≤ ⌊vN2 ⌋

P(K(N)
1 = k) ≤

(︁
vN
2

)︁(︁
vN−2

2

)︁
...
(︁
vN−2(k−1)

2

)︁
k! · dvNN

.

Using Markov’s inequality, we obtain that
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P

⎛⎜⎝N1− 3β
4

+ε∑︂
i=1

K
(N)
i ≥ N1− 3β

4 +εφ1(N)

⎞⎟⎠ ≤ E[K(N)
1 ]

φ1(N)
→ 0,

since E(K(N)
1 ) is uniformly bounded in N , see for a similar calculation Equation (2.4.2).

Denote by H
(N)
i the number of half-edges that have already been formed for vertex i till generation

τ (N). Using Lemma 2.5.2 and a similar computation as the one at the end of the proof of Lemma
2.5.7 we obtain

lim
N→∞

P
(︂
H

(N)
i ≤ φ2(N) ∀i ∈ I

(N)

τ(N)

)︂
= 1, (2.5.5)

where lim infN φ2(N) ≥ 5.
Thus, using (2.5.4) and (2.5.5) the number of parasites that may cooperate by infecting a host

from different edges is whp bounded from below by N1− 3β
4 +ε(vN − 2˜︁φ(N)), where ˜︁φ(N) :=

max{φ1(N), φ2(N)}.
In addition it can also happen that a parasite attacks a half-edge on which another parasite is
located. In this case, these two parasites cannot infect a host. An upper bound for the probability
that a parasite is involved in such kind of event is whp NvN

NdN−2NvN . And so a lower bound on the

number of available parasite is N1− 3β
4 +ε(vN − 2˜︁φ(N))(1− vN

dN−2vN ). With this estimate we derive
a whp lower bound on the number of infections occurring in the next generation.

Consider N boxes, assume the N1− β
2 +5ε first ones (corresponding to the empty vertices) contain

dN positions, and the remaining ones (corresponding to the susceptible vertices) have dN − φ(N)

positions, where lim infN φ(N) ≥ 5 and φ(N) = o(dN ). Assume that N1− 3β
4 +ε(vN − 2˜︁φ(N))(1 −

vN
dN−2vN ) balls are uniformly distributed on the positions. Let G(N) be the number of boxes that

contain dN − φ(N) positions and into which at least two balls are thrown. G(N) yields whp an
estimate from below for the number of new infections. Using the same kind of computations as
in the proof of Lemma 2.5.7 (using Chebyshev’s Inequality, estimating expectation and variance of
G(N)) we arrive at the statement of the lemma.

Lemma 2.5.9. Under the conditions of Theorem 2.2.2 (ii) it holds

lim
N→∞

P
(︂
I
(N)

τ(N)+2 = N
⃓⃓⃓
τ (N) <∞

)︂
= 1.

Proof. We aim to show that all hosts that have not been infected so far, get infected whp in

generation τ (N) + 2. According to Lemma 2.5.8 we have whp I
(N)

τ(N)+1
≥ C · N1− β

2 +2ε. Hence, we

have whp at least C · N1− β
2 +2εvN parasites that may infect the remaining hosts. However, some

of these parasites may be placed on already linked half-edges or occupy half-edges together with
other parasites. Hosts that got infected in generation τ (N) + 1 have been attacked by at most one
parasite in any generation n ≤ τ (N). By Lemma 2.5.6 whp τ (N) ≤ (1 + δ) α logN

log

(︃
c2

2 +x

)︃ hence the

number of formed edges is whp limited by (1 + δ) α logN

log

(︃
c2

2 +x

)︃ for any of these hosts for any δ > 0.

Furthermore in generation τ (N) we have according to Lemma 2.5.7 and because τ (N) ≤ τ (N) whp

Iτ(N) ≤ N1− β
2 +5ε. So by an application of Chebyshev’s Inequality we can estimate that a host gets
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attacked in generation τ (N) + 1 by at most N1− β
2

+6εvN
N ∼ N6ε parasites with probability 1 − 1

Nε .

Consequently, at least a proportion 1− 1
Nε of the hosts infected at generation τ (N) +1 occupy whp

a vertex with at least

eN := dN −

⎛⎝(1 + δ)
α logN

log
(︂
c2

2 + x
)︂
⎞⎠− N1− β

2 +6εvN
N

free half-edges and the probability that the parasites generated in these hosts occupy a half-edge
that has been linked before or that is occupied already by another parasite can be estimated from
above by

vN + dN − eN
dN

∼ vN
dN

,

for ε > 0 small enough.
In summary, we have whp at least

mN := C ·N1− β
2 +2ε

(︃
1− 1

Nε

)︃
vN

(︃
1− vN + dN − eN

dN

)︃
free half-edges occupied with at least one parasite that may attack so far uninfected hosts.
Similarly an up to generation τ (N) + 2 uninfected host has whp at least

fN := dN −

⎛⎝(1 + δ)
α logN

log
(︂
c2

2 + x
)︂
⎞⎠

free half-edges. So, the probability that an up to generation τ (N) + 2 uninfected host gets
attacked by at most one of the mN parasites (and hence with high probability remains uninfected)
can be estimated from above by

(︄(︃
1− fN

dNN − vNN

)︃mN

+

(︃
1− fN

dNN − vNN

)︃mN−1
mN

fN
dNN − vNN

)︄
(1 + o(1))

∼ N2ε exp(−N2ε).

The number of uninfected hosts at the beginning of generation τ (N) + 2 is at most N . Conse-
quently, the probability that at least one of these hosts remains uninfected till the end of generation
τ (N) + 2 can be estimated from above by a probability proportional to

N
(︁
exp(−N2ε)N2ε

)︁
= o(1),

which yields the claim of Lemma 2.5.9.
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Proof of Proposition 2.5.1. According to Lemma 2.5.2 once I(N)

n has reached the level N1− 3β
4 +2ε

also I(N) has reached the level N1− 3β
4 +ε. Moreover, according to Lemma 2.5.7 whp I

(N)

τ(N) ∈
O(N1− β

2 +5ε). Consequently, according to Lemma 2.5.8, the size of I(N) is at generation τ (N) + 1

whp at least C ·N1− β
2 +2ε for some appropriate constant C > 0. Finally, we can apply Lemma 2.5.9,

which yields the result.

2.6 Proof of the main Theorem

Proof of Theorem 2.2.2
We start with the proof of Theorem 2.2.2 (ii):
For the upper bound on the invasion probability consider for a given ℓN > 0 the event

F
(N)
ℓN

:= {∃n ∈ N0 : I
(N)

n ≥ ℓN}.

Then given 0 < u ≤ 1 we have for any ℓN with ℓN ≤ uN

P(E(N)
u ) ≤ P(F (N)

ℓN
).

For any sequence (ℓN )N∈N with ℓN → ∞ and ℓ3Nv
2
N ∈ o(N) we have by Proposition 2.3.2

P(F
(N)
ℓN

) ≤ P
(︂
∃n ∈ N0 : Z

(N)

n,u ≥ ℓN

)︂
,

and by Proposition 2.3.3

lim
N→∞

P

(︂
∃n ∈ N0 : Z

(N)

n,u ≥ ℓN

)︂
= π(c, x).

Since for any given 0 < u ≤ 1 and any sequence (ℓN ) with ℓ3Nv
2
N ∈ o(N) we have for N large

enough ℓN ≤ uN . Hence, in summary

lim sup
N→∞

P(E(N)
u ) ≤ π(c, x),

which yields the claimed upper bound on the invasion probability.
For the lower bound we first apply Lemma 2.4.11, which yields the lower bound π(c, x) + o(1)

on the probability that Nα hosts eventually get infected with α = 1 − 3
4β + 2ε. Furthermore we

can choose ε > 0 small enough such that α < 1− β
2 . Then the assumptions of Proposition 2.5.1 are

fulfilled and we obtain the claimed upper bound on the invasion probability, since once the level

N1− 3β
4 +2ε is reached with probability 1+ o(1) the remaining hosts get infected as well, in particular

any proportion u of the host population for 0 < u ≤ 1.

Proof of Theorem 2.2.2 (i):
The proof of Theorem 2.2.2 (i) relies on the same arguments as the proof of Theorem 2.2.2 (ii).
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Indeed, since vN = o(
√
dN ) we have for any c > 0 that the upper Galton-Watson process from

Definition 2.3.1, where vN in this Definition is replaced by c
√
dN , can be coupled with I(N), such

that I(N)
is bounded from above by Z(N)

u until I(N)
is not further increasing or is exceeding the

threshold ℓN for an appropriate sequence (ℓN )N∈N fulfilling the conditions of Proposition 2.3.2.

Consequently, by Proposition 2.3.3 for all 0 < u ≤ 1, the invasion probability satisfies P(E(N)
u ) ≤

π(c, x) + o(1). But since x ≤ 1, we have limc↓0 π(c, x) = 0 and so the statement follows, since c > 0
was arbitrary.

Proof of Theorem 2.2.2 (iii):
Trivially the invasion probability is upper bounded by 1. For the lower bound we can again rely on
results of the proof of Theorem 2.2.2 (ii). We consider, alongside the host-parasite model with the
parameters (dN , vN , ρN ) fulfilling the conditions from Theorem 2.2.2 (iii), a host-parasite model

with parameters (dN , v
(c)
N , ρN ), where we set v

(c)
N = c

√
dN , i.e. the parameters (dN , v

(c)
N , ρN ) fulfill

the conditions from Theorem 2.2.2 (ii). We couple these two host-parasite models by following,
in the second host-parasite model, at each host infection instead of all vN parasite offspring only

the first v
(c)
N parasites. In this manner the process I(N)

can be estimated from below by the

corresponding process I(N)

c of the host-parasite model with parameters (dN , v
(c)
N , ρN ). According

to Theorem 2.2.2 (ii) a lower bound on the invasion probability of this model is π(c, x) + o(1).
Since for c → ∞ we have π(c, x) → 1 and c can be chosen arbitrarily large this yields the claim of
Theorem 2.2.2 (iii).
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Appendix

Proof of Lemma 2.5.3. Using the almost sure convergence of
(︂
Zn

Z0
m−n

)︂
n∈N0

to W , it follows that

for all ω ∈ {W > 0}, for all ε > 0 there exists ñ ∈ N0, such that for all n ≥ ñ

(W − ε)mn ≤ Zn
Z0

≤ (W + ε)mn.

Introduce

τNα := inf

{︃
n ∈ N0 : (W + ε)mn ≥ Nα

Z0

}︃
,

τNα := inf

{︃
n ∈ N0 : (W − ε)mn ≥ Nα

Z0

}︃
.

We have τNα ≤ τNα ≤ τNα , for N large enough, and the following lower and upper bounds for
τNα and τNα respectively hold for ε small enough
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Notation Meaning Defined in
dN number of edges per vertex

scaling: Θ(Nβ), 0 < β < 1
Section 2.2.1

vN number of offspring parasites,
scaling in Theorem 2.2.2 (ii): vN ∼ c

√
dN

"

ρN infection probability of a single parasite,
scaling: ρNvN → x ∈ [0, 1]

"

π(c, x) survival probability of a GWP with

Pois( c
2

2 + x) offspring distribution

I(N ) =
(︂
I
(N)
n

)︂
n∈N

process counting the number of infected hosts "

I(N)
=
(︂
I
(N)

n

)︂
n∈N

process counting the total number of hosts
infected before generation n

"

Z(N)
a =

(︂
Z

(N)
n,a

)︂
n∈N

, a = u, l GWP used for approximating I
(N)

from above (a=u) and from below (a=l)
Def. 2.3.1 and
Def. 2.4.5,
resp.

Z(N)

a =
(︂
Z

(N)

n,a

)︂
n∈N

, a = u, l total size of the process Z(N)
a until generation n "(︂

p
(N)
k,a

)︂
k∈N0

, a = u, l probability weights of the offspring distribution of

Z(N)
a

"

J (N) =
(︂
J
(N)
n

)︂
n∈N

process counting the number of infected hosts
in the model from Definition 2.4.3

Def. 2.4.3

J (N)
=
(︂
J
(N)

n

)︂
n∈N

process counting the total number of hosts
infected before generation n in the model from
Definition 2.4.3

"

Table 2.1: Table of frequently used notation
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τNα ≥ (α− γ) logN

logm
− log(W + ε)

logm
−

log
(︂
1− φ(N)

Nγ

)︂
log(m)

,

τNα ≤ (α− γ) logN

logm
− log(W − ε)

logm
−

log
(︂
1− φ(N)

Nγ

)︂
log(m)

+ 1,

which finally yields the following inequality

1−
log(W + ε) + log

(︂
1− φ(N)

Nγ

)︂
(α− γ) logN

≤ τNα log(m)

(α− γ) logN
≤ 1−

log(W − ε) + log
(︂
1− φ(N)

Nγ

)︂
− log(m)

(α− γ) logN
.

Taking the limit N → ∞ concludes the proof.

For the proof of Lemma 2.5.7 we need in addition to Lemma 2.5.3 estimates on the number
of vertices that get attacked by at least two parasites. For this purpose we consider the following
experiment.

Let (SN )N∈N, (D
(N)
i )1≤i≤SN ,N∈N be deterministic sequences of integers with SN ∼ N and

D
(N)
i = dN + O(1). Assume we have SN boxes with box number i having D

(N)
i many positions,

and assume bN := vNN
1− 3β

4 +2ε ∈ Θ(N1− β
4 +2ε) balls are uniformly distributed on the positions of

the boxes, such that each position gets occupied at most once, for some ε > 0 small enough that

1− β
4+2ε < 1. Denote by G

(N)
i the number of balls in box number i, and by G(N) :=

∑︁SN

i=1 1{G(N)
i ≥2}

the number of boxes containing at least 2 balls. The following statements on the random variables

G
(N)
i and G(N) we apply in the proof of Lemma 2.5.7.

Lemma 2.6.1.

P
(︂
{G(N)

i ≤ 1}
)︂
= 1− b2N

2S2
N

+
b3N
3S3

N

− b4N
8S4

N

+O
(︃
b5N
S5
N

)︃
,

P
(︂
{G(N)

i ≤ 1} ∩ {G(N)
j ≤ 1}

)︂
= 1− b2N

S2
N

+
2

3

b3N
S3
N

+O
(︃
b5N
S5
N

)︃
,

V[G(N)] = O
(︃
b4N
S2
N

· bN
SN

)︃
.

Proof. During the computation, we are using the following asymptotic estimates 1
dN

= o
(︂
b4N
S4
N

)︂
,

1
SN

= o
(︂
b4N
S4
N

)︂
, 1
SNdN

= o
(︂
b5N
S5
N

)︂
, bN
SNdN

= o
(︂
b5N
S5
N

)︂
, bN
S2
N

= o
(︂
b5N
S5
N

)︂
,

b2N
S2
NdN

= o
(︂
b5N
S5
N

)︂
.

To prepare the proof of the three estimates we first expand a few typical factors that will arise

in the calculations of the two probability terms. Denote by T :=
∑︁SN

i=1D
(N)
i the total number of
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positions. We expand(︄
T −D

(N)
i − bN

T − bN

)︄bN
= exp

{︃
bN log

[︃
1− 1

SN
·
(︃
1 + o

(︃
b4N
S4
N

)︃)︃]︃}︃
= exp

(︃
− bN
SN

)︃(︃
1 + o

(︃
b5N
S5
N

)︃)︃
= 1− bN

SN
+

b2N
2S2

N

− b3N
6S3

N

+
b4N

24S4
N

+O
(︃
b5N
S5
N

)︃
.

and similarly we have for k ∈ N such that
bkN
Tk−1 = o

(︂
b5N
S5
N

)︂
(︁
1− bN

T

)︁T(︃
1− bN

T−D(N)
i

)︃T−D(N)
i

=exp

{︃
T

[︃
log(1− bN

T )− log

(︃
1− bN

T

[︂
1 + 1

SN
+ o

(︂
1

SNdN

)︂]︂)︃]︃}︃
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(︂
D

(N)
i log

(︂
1− bN

T

[︂
1 +O

(︂
1
SN

)︂]︂)︂)︂
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T
(︂
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T − · · · − bkN
kTk
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(︂
− bN
SN

+ o
(︂
b5N
S5
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· exp
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T
[︂
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T
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SN
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(︂
1

SNdN
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+ · · ·+ bkN

kTk

(︂
1 + 1

SN
+ o

(︂
1

SNdN

)︂)︂
+ o

(︂
bkN
Tk
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=exp

(︂
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SN
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(︂
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S5
N
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bN
SN
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(︂
b5N
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N
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(︂
b5N
S5
N

)︂
.

Using the asymptotic expansion of the factorial and the two previous estimates we get

(T −D
(N)
i )!

(T −D
(N)
i − bN )!

· (T − bN )!

T !

=
(T −D

(N)
i )T−D
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(N)
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(︃
b5N
S5
N
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= 1− bN

SN
+

b2N
2S2

N

− b3N
6S3

N

+
b4N

24S4
N

+O
(︃
b5N
S5
N
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and with similar calculations

(T −D
(N)
i −D

(N)
j )!

(T −D
(N)
i −D

(N)
j − bN )!

· (T − bN )!

T !
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.

Now we are ready to estimate the two probabilities

P({G(N)
i ≤ 1})
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The estimate on the variance is obtained using the two previous computations

V[G(N)] = V

[︄
SN∑︂
i=1

1{i≥2}

]︄
= E

⎡⎣(︄ SN∑︂
i=1

1{G(N)
i ≥2}

)︄2
⎤⎦−

(︄
E

[︄
SN∑︂
i=1

1{G(N)
i ≥2}

]︄)︄2

=
∑︂
i ̸=j

E
[︂
1{G(N)

i ≥2}1{G(N)
j ≥2}

]︂
+ E

[︄
SN∑︂
i=1

1{G(N)
i ≥2}

]︄
−
(︄
E

[︄
SN∑︂
i=1

1{G(N)
i ≥2}

]︄)︄2

= SN (SN − 1)P
(︂
{G(N)

i ≥ 2} ∩ {G(N)
j ≥ 2}

)︂
+ SNP({G(N)

i ≥ 2})− S2
NP({G(N)

i ≥ 2}2

= S2
N

(︂
P({G(N)

i ≥ 2} ∩ {G(N)
j ≥ 2})− P({G(N)

i ≥ 2})2
)︂

+ SN

(︂
P({G(N)

i ≥ 2})− P({G(N)
i ≥ 2} ∩ {G(N)

j ≥ 2})
)︂

= S2
N (P({G(N)

i ≤ 1} ∩ {G(N)
j ≤ 1})− P({G(N)

i ≤ 1})2)
+ SN (P({G(N)

i ≤ 1})− P({G(N)
i ≤ 1} ∩ {G(N)

j ≤ 1}))

= S2
N

[︄
1− b2N

S2
N

+
2

3

b3N
S3
N

+O
(︃
b5N
S5
N

)︃
−
(︃
1− b2N

2S2
N

+
b3N
3S3

N

− b4N
8S4

N

+O
(︃
b5N
S5
N

)︃)︃2
]︄

+ SN

[︃
1 +O

(︃
b2N
S2
N

)︃
−
(︃
1 +O

(︃
b2N
S2
N

)︃)︃]︃
= S2

N

[︃
1− b2N

S2
N

+
2

3

b3N
S3
N

+O
(︃
b5N
S5
N

)︃
−
(︃
1− b2N

S2
N

+
2

3

b3N
S3
N

+O
(︃
b5N
S5
N

)︃)︃]︃
+O

(︃
b2N
SN

)︃
= O

(︃
b5N
S3
N

)︃
+O

(︃
b2N
SN

)︃
= O

(︃
b4N
S2
N

· bN
SN

)︃
.



100 CHAPTER 2. INVASION OF COOPERATIVE PARASITES



Chapter 3

Spatial Invasion of Cooperative
Parasites

This Chapter corresponds to the publication [2] ”Spatial Invasion of Cooperative Parasites”, written
in collaboration with Cornelia Pokalyuk, Marco Seiler and Hung Tran for the simulations. It is
published in Theoretical Population Biology for the special issue for the 60th birthday of Alison
Etheridge.

Abstract:

In this paper we study invasion probabilities and invasion times of cooperative parasites spread-
ing in spatially structured host populations. The spatial structure of the host population is given by
a random geometric graph on [0, 1]n, n ∈ N, with a Poisson(N)-distributed number of vertices and
in which vertices are connected over an edge when they have a distance of at most rN with rN of
order N (β−1)/n for some 0 < β < 1. At a host infection many parasites are generated and parasites
move along edges to neighbouring hosts. We assume that parasites have to cooperate to infect
hosts, in the sense that at least two parasites need to attack a host simultaneously. We find lower
and upper bounds on the invasion probability of the parasites in terms of survival probabilities of
branching processes with cooperation. Furthermore, we characterise the asymptotic invasion time.

An important ingredient of the proofs is a comparison with infection dynamics of cooperative
parasites in host populations structured according to a complete graph, i.e. in well-mixed host
populations. For these infection processes we can show that invasion probabilities are asymptotically
equal to survival probabilities of branching processes with cooperation.

Furthermore, we build on proof techniques developed in [1], where an analogous invasion process
has been studied for host populations structured according to a configuration model.

We substantiate our results with simulations.

Keywords: cooperation, host-parasite population dynamics, invasion probability, invasion
time, spatial host population structure, random geometric graph.

3.1 Introduction

Understanding the dynamics of infection processes is a highly relevant and active research field.
In this study we are interested in the spread of cooperative parasites in spatially structured host

101



102 CHAPTER 3. SPATIAL INVASION OF COOPERATIVE PARASITES

populations. Cooperative behaviour is observed in many biological systems, see [72]. The main
biological motivation for our model stems from observations made on phages, that is viruses infect-
ing bacteria. Bacteria own various mechanisms to defend against phages. Defense on the basis of
CRISPR-Cas system is widespread in bacteria. Certain phages, called anti-CRISPR phages, can
overcome these defense mechanism by cooperation. Only when anti-CRISPR-phages infect simul-
taneously or subsequently a CRISPR-resistant bacterium the infection gets likely to be successful,
see [73, 74].

Besides the motivation stemming from application, models which incorporate cooperative mech-
anisms are also highly interesting from a mathematical point. For example González Casanova,
Pardo and Perez [75] show that for a branching process with cooperation the survival probability
is positive as long as the probability to generate offspring for pairs of individuals is non-zero. In
case of survival it explodes in finite time. In the papers [76], [77] and more recently [78] mean-
field limits of systems with cooperative reproduction are studied. Mach et al. find in [78] that
the mean-field equation corresponding to certain interacting particle systems with cooperation can
have more fixed points than the corresponding mean-field equations of classical infection models
such as the contact process. This can be seen as evidence that in the microscopic model there could
exist more extremal invariant laws as compared to the non-cooperative infection models. Sturm and
Swart studied in [33] such a cooperative microscopic model. To be precise they considered a nearest
neighbour cooperative branching-coalescing random walk on Z. In comparison with the classical
branching-coalescing random walk a subcritical phase exists, where the system ends up with only
one particle. Superficially, this cooperative branching-coalescing system seems to be similar to a
contact process, but a closer look reveals some apparent differences. For example [33] show that the
decay rates in the subcritical regime are polynomial and not exponential as for the contact process.

In [1] the invasion of cooperative parasites in host populations structured according to a con-
figuration model was studied. In this paper a parameter regime was considered, in which parasites
have many offspring and a parasite can reach many, but not all hosts. In the critical scale this
resulted in an invasion process which could be approximated initially by a Galton Watson process
with roughly Poisson offspring numbers.

In this manuscript we consider the spread of cooperative parasites in host populations that have
a finite-dimensional spatial structure. More precisely, we assume that the (immobile) hosts are
distributed on an n-dimensional cube [0, 1]n according to a Poisson point process. Parasites can
move in every generation up to some fixed distance in space and attack the hosts located in this
region. As in [1] we consider a parameter regime in which parasites have many offspring and can
reach many, but not all hosts, as well as hosts need to be attacked jointly by parasites for successful
parasite reproduction.

However, in contrast to the case considered in [1] the invasion process is already in the initial
phase poorly approximated by a Galton-Watson process. The reason is that parasites generated in
different hosts have in the spatial setting often a good chance to cooperate, because infected hosts
are located close to each other. To arrive at lower and upper bounds on the invasion probability we
compare the spread with infection dynamics caused by cooperative parasites spreading on complete
graphs. The number of vertices of these complete graphs yield upper and lower bounds on the
number of hosts, with which parasites generated on different hosts can cooperate. We show that
the invasion probabilities of these infection processes on complete graphs are asymptotically equal
to survival probabilities of certain branching processes with cooperation, a result that is of interest
on its own. Furthermore, we show that the spatial infection processes can be coupled from above
and below with these branching processes with cooperation until either the parasite population dies
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or a sufficiently large amount of hosts are infected so that afterwards with high probability (i.e.
asymptotically with probability 1, abbreviated as whp in the following) the parasite population will
spread through the whole host population.

Once a sufficiently large number of hosts is infected, we show that the parasite population
spreads whp at linear, almost maximal speed. As in the considered scaling the initial phase, which
is decisive for survival of the parasite population, takes place only on a negligible amount of space,
invasion time is basically determined by the time frame in which the parasite population spreads
linearly fast. This yields our asymptotic result on the invasion time. Here again a clear difference
to the model in [1] occurs, in which the final phase of invasion is finished after a constant number
of steps.

By means of simulations we study the fit of the upper and lower bound on the invasion probability
and our prediction for the invasion time. Interestingly, we find that the upper bound on the invasion
probability matches very well with simulated invasion probabilities.

3.2 Main results

3.2.1 Model definition and main results

Consider the n-dimensional cube [0, 1]n, which we will denote byM =Mn in the following. Measure
distances on M according to the maximum metric denoted by ρ, i.e. for x = (x1, ..., xn), y =
(y1, ..., yn) ∈ [0, 1]n we have ρ(x, y) = maxi=1,...,n{|xi − yi|}. Consider a homogeneous Poisson
point process with intensity measure Nλn( · ) on [0, 1]n, where λn denotes the Lebesgue measure on
Rn and N ∈ N. In particular the number of Poisson points contained in a set S ⊂ [0, 1]n of volume
s is Poisson distributed with parameter sN . Denote the set of the Poisson points by V = V(N).
Build a random geometric graph on [0, 1]n by connecting all points in V(N) over an edge which have
a distance of at most rN > 0 with respect to the metric ρ. Denote the set of edges by E = E(N)

and the random geometric graph by G = G(N) = G(rN ) = (V(N), E(N)).
On G we consider the following infection process. At the beginning place on each vertex a host.

These hosts can get infected with parasites. Choose the vertex x0 = x
(N)
0 ∈ V closest to the center

of the cube [0, 1]n, denoted by xc. We assume that the host on this vertex gets infected in the first
generation g = 0. This means that the host dies and vN∈ N offspring parasites are generated on x0.
Then the infection process continues in discrete generations. At the beginning of each generation
each parasite chooses uniformly at random and independently of all other parasites an edge, that is
adjacent to the vertex on which the parasite is located. Along this edge the parasite moves to the
neighbouring vertex and attacks the host on this vertex, if a host is still available. After movement
of parasites, offspring parasites are generated and hosts die according to the following rules. If a
vertex is occupied by a host and at least two parasites attack the host, the host on the vertex gets
infected, dies and vN parasites are generated. If only a single parasite attacks a host, it dies and
the host stays alive. If a parasite arrives at an unoccupied vertex, it dies.

If a vertex is occupied/not occupied with a host, in the following we will call this vertex occu-
pied/unoccupied vertex . Sometimes we also speak of a susceptible/so far uninfected vertex , if a host
on a vertex did not yet get infected. Similarly, we say that a vertex is infected in some generation
g, if the host on the vertex is in this generation infected.

Denote by Sg = S(N)
g ∈ V, Ig = I(N)

g and by Rg = R(N)
g , resp., the set of occupied and

uninfected, the infected and the unoccupied, resp., vertices in generation g. We set Sg := |Sg|,
Ig := |Ig| and Rg := |Rg|. Furthermore Ig

(N) =
∑︁g
i=0 Ii

(N) is the number of hosts that got infected
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till generation g. Let I = I(N) = (Ig
(N))g≥0 and I = I(N) = (Ig

(N))g≥0 be the corresponding
processes.

To state our main results about the infection process we need the definition of branching processes
with cooperation in discrete time.

Definition 3.2.1 (Branching process with cooperation in discrete time). Let Lo and Lc be two
probability distributions on N0. A discrete-time branching process with cooperation (DBPC, for
short) Z = (Zg)g≥0 with offspring distribution Lo and cooperation distribution Lc is recursively
defined as follows. Assume Z0 = k a.s. for some k ∈ N, then for any g ≥ 1, Zg is defined as

Zg :=

Zg−1∑︂
i=1

Xg,i +

Zg−1∑︂
i,j=1,i>j

Yg,i,j ,

where (Xg,i)g,i and (Yg,i,j)g,i,j are sequences of independent and identically distributed random
variables with Xg,i ∼ Lo and Yg,i,j ∼ Lc. We denote by Z = (Zg)g≥0 the total size process, i.e.

Zg =

g∑︂
i=0

Zi.

In the following we will denote the probability weights of the distributions Lo and Lc, resp. by
(pk,o)k∈N0 and (pk,c)k∈N0 .

Remark 3.2.2. Branching processes with cooperation have been mostly studied in continuous time
in more general settings, like branching process with (pairwise) interactions, see e.g. [79], [80],
[81], [75], [82] and [83]. In particular, in [80] formulas for extinction probabilities for the case of
branching processes with cooperation have been determined.

A central object for our results is a DBPC with Poisson offspring and cooperation distributions
or rather its survival probability. Therefore, we fix in the next definition some notation for these
processes.

Definition 3.2.3 (DBPC with Poisson offspring and cooperation distribution). Let a > 0. Denote
by P(a) a DBPC with offspring distribution Lo ∼ Poi(a2/2) and cooperation distribution La ∼
Poi(a2). Furthermore, we denote by π(a) the survival probability of P(a).

Denote by
dN := (2rN )nN,

which is the expected number of direct neighbours a vertex of G(N) (with an asymptotically non-
vanishing distance to the boundary of M) is connected to in dimension n. Furthermore, denote for
all u ∈ (0, 1]

E(N)
u :=

{︂
∃g ∈ N0 : I

(N)

g ≥ u ·#V(N)
}︂

the event that at least a proportion u of the host population dies during the infection process.
Our main result is the following theorem.

Theorem 3.2.4. Consider the above defined sequence of infection processes (I(N))N∈N on [0, 1]n

for some n ∈ N. Assume rN = 1
2N

(β−1)/n for some 0 < β < 1 and let 0 < u ≤ 1. Then it holds:
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1) Invasion probability

(i) If vN ∈ o
(︁√
dN
)︁
, then limN→∞ P

(︁
E

(N)
u

)︁
= 0.

(ii) If vN ∼ a
√
dN for some 0 < a <∞, then

π
(︁

a√
2n

)︁
≤ lim inf

N→∞
P
(︁
E(N)
u

)︁
≤ lim sup

N→∞
P
(︁
E(N)
u

)︁
≤ π(a).

(iii) If
√
dN ∈ o(vN ), then limN→∞ P

(︁
E

(N)
u

)︁
= 1.

2) Invasion time
Assume vN ∼ a

√
dN for some 0 < a <∞. Denote by

T (N) := inf
{︂
g ∈ N

⃓⃓
I
(N)

g = #V(N)
}︂
.

Then

P

(︄⌊︃
1

2rN

⌋︃
≤ T (N) ≤

⌈︃
1

2rN

⌉︃
+O (κN )

⃓⃓⃓⃓
T (N) <∞

)︄
→ 1 as N → ∞

with κN = max
{︂
log(log(N)), N

(β/2)−1
n +δr−2N

}︂
, for any δ > 0.

Remark 3.2.5. • In Theorem 3.2.4 1) (ii) we obtain bounds for both lim inf P(E(N)
u ) and

lim supP(E(N)
u ). We believe that the limit of P(E(N)

u ) exists.

Simulations suggest that the upper bound provides a good approximation of the actual invasion
probability, see Section 3.2.4. An analysis of the initial phase of the epidemic, when infected
parasites start to spread around the initially infected vertex, would be helpful to understand
how close the upper bound is to the asymptotic invasion probability (that we believe to exist).

• In the critical scaling vN ∼ a
√
dN with 0 < a < ∞, one can show that the invasion probabil-

ity is also lower bounded by the survival probability φ(a) of a Galton-Watson process with a
Poi(a2/2) offspring distribution. To arrive at this lower bound, it suffices to neglect coopera-
tion of parasites generated by different infected hosts at the beginning of the infection process.
In particular such a result allows for a comparison of the invasion probabilities of the infection
processes defined on the random geometric graph and on the configuration model with dN half-
edges per vertex and vN offspring parasites (which analysis is derived in [1]). It shows that
having a finite-dimensional spatial structure of the population increases the invasion proba-
bility compared to scenario where the host population is structured by a configuration model
leading to an infection graph with a locally tree like structure.

• In Lemma 3.3.2 below, we prove, that for any a > 0 the survival probability π (a) of a DBPC
P(a) as defined in Definition 3.2.3 is strictly positive. Therefore, the invasion probability is
in Case 1) (ii) of Theorem 3.2.4 for any a > 0 strictly positive.

This contrasts the situation studied in [1] where for a2/2 ≤ 1 the invasion probability is
asymptotically 0 (for a host population structured according to a configuration model instead
of a random geometric graph on [0, 1]n.
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• We assume that parasites die, if they move to an empty vertex. Our results should remain
valid, if e.g. parasites survive and move forward in the next generation.

The proof of Theorem 3.2.4 is formally given in Section 3.5, at the end of this section we will
give a sketch of the proof. The proof of the lower bound on the invasion probability is based on an
asymptotic result on the invasion probability of an analogously defined infection process when the
host population is not structured according to a random geometric graph on the cube, but according
to a complete graph. This model mimics the spread of cooperative parasites in well-mixed host
populations and is neither covered by the parameter regime considered in [1] nor by Theorem 3.2.4.
Therefore the result is of interest on its own. We state it next.

We consider the same host-parasite dynamics as previously described except for the fact that
we consider it on a complete graph with DN vertices. To avoid confusion with the other model
we denote the number of newly generated parasites in case of a successful host infection by VN .
Furthermore the corresponding infection process is denoted by J . Analogously as before the total
number of infected hosts in generation g is denoted by J

(N)
g and the total number of infected hosts

up until generation g is denoted by J
(N)

g , where similarly as before J = J(N) =
(︁
J
(N)
g

)︁
g≥0 and

J = J
(N)

=
(︁
J
(N)

g

)︁
g≥0 are the corresponding processes. We are interested in the event F

(N)
u that

eventually a proportion u, for u ∈ (0, 1], of the host population gets infected, i.e.

F (N)
u =

{︂
∃g ∈ N0 : J

(N)

g ≥ u ·DN

}︂
.

We show that the invasion probability is in the critical regime asymptotically equal to the survival
probability of a branching process with cooperation.

Before we state the result we introduce the following notation. We write that f ∈ Θ(g) if f
grows asymptotically as fast as g, i.e.

0 < lim inf
x→∞

f(x)

g(x)
≤ lim sup

x→∞

f(x)

g(x)
<∞.

Theorem 3.2.6. Assume DN ∈ Θ
(︁
Nβ
)︁
for some 0 < β < 1 and let 0 < u ≤ 1. The following

invasion regimes hold:

(i) Assume VN ∈ o
(︁√
DN

)︁
. Then

lim
N→∞

P
(︁
F (N)
u

)︁
= 0.

(ii) Assume VN ∼ a
√
DN for some 0 < a <∞. Then the invasion probability of parasites satisfies

lim
N→∞

P
(︁
F (N)
u

)︁
= π(a) > 0.

(iii) Assume
√
DN ∈ o(VN ), then limN→∞ P

(︁
F

(N)
u

)︁
= 1.

The proof of Theorem 3.2.6 is given in Section 3.4. Next we sketch the proofs of Theorem 3.2.4
and 3.2.6.

Hereinafter we will often use the following terminology. We call an infection a CoSame infection
(for cooperation from the same edge), if a host gets infected by two parasites (originating from the
same vertex) that moved along the same edge to the vertex on which the infected host is located on,
and we call an infection a CoDiff infection (for cooperation from different edges), if a host gets in-
fected by two parasites that moved along different edges to the vertex the infected host is located on.
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3.2.2 Sketches of the proofs of the main results

Sketch of the proof of Theorem 3.2.6: Case (ii): To arrive at an upper bound on the invasion
probability we couple whp the total number of currently infected and currently empty vertices J from

above with the total size of a DBPC Z
(N)

u until Z
(N)

u remains constant or reaches at least the level ℓN

for a sequence ℓN with ℓN → ∞ sufficiently slowly, see Proposition 3.4.3. The probability that Z
(N)

u

reaches the level ℓN is asymptotically equal to π(a), see Proposition 3.4.4, as the appproximating
DBPC has asymptotically the survival probability π(a). In case the level ℓN is reached we upper
bound the probability, that afterwards also the remaining hosts get infected, by 1.

For the lower bound we couple whp J from below with the total size of a DBPC Z
(N)

ℓ that has

asymptotically the survival probability π(a) of a DBPC P(a) until Z
(N)

ℓ remains constant or reaches
the level ℓN for some sequence ℓN with ℓN ∈ Θ(Nε) and ε > 0 small enough, see Proposition 3.4.6

and Proposition 3.4.7. As for the upper bound the probability to reach the level ℓN for Z
(N)

ℓ is
asymptotically equal to π(a). When J reaches the level ℓN , we show that the total number of empty

vertices grows in a constant number of generations to a level N
β
2 +δ for some small δ > 0 whp, see

Lemma 3.4.12. After reaching this particular level the remaining hosts get infected whp in a single
generation.

Case (i): We show that asymptotically with probability 1 the parasite population does not
survive the first generation.

Case (iii): We show that we can whp couple from below J with the total size process of a Galton-
Watson process with approximately Poi(a2/2) offspring distribution until Nα hosts get infected or
the parasite population dies out for any 0 < α < β and any a > 0. This can be done by ignoring
infection due to cooperation. By choosing α > β/2 we can show that once the level Nα is reached
by J whp after one more generation the remaining hosts get infected. Since the probability to
reach the level Nα for the considered Galton-Watson process is asymptotically equal to the survival
probability φa of a Galton-Watson process with Poi(a2/2) offspring distribution and φa tends to 1
for a→ ∞ the result follows.

We proceed with a sketch of the proof of Theorem 3.2.4:

Before we start recall that dN denotes the expected number of neighbours and vN the offspring
number of parasites generated at a host infection.

Claim 1) (ii) and Claim 2): For our upper bound on the survival probability we couple (as in
the case of the complete graph) I with the total size of a DBPC with offspring and cooperation
distributions that are approximately Poisson distributions until a certain number ℓN of hosts get
infected or the parasite population dies out, for a sequence ℓN → ∞ sufficiently slowly, see Propo-
sition 3.5.7. The parameter of the approximating Poisson distribution for the offspring distribution

is roughly a2

2 , since if all vertices are occupied with hosts the number of CoSame infections is on
average approximately

(︁
vN
2

)︁
1
dN

. The Poisson parameter of the cooperation distribution is roughly

a2, since cooperation is maximal if two balls centered around vertices, on which parasites have been
generated in the same generation, are completely overlapping. In case of a complete overlap the
number of cooperation events is roughly v2N

1
dN

∼ a2 on average . Then we show that the probability
to reach with the total size of the upper DBPC the level ℓN is asymptotically equal to the survival
probability of the DBPC. This yields the upper bound, since again we upper bound the probability
to infect the remaining hosts afterwards by 1.

For the lower bound we consider the spread of the parasites restricted to a certain complete
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neighbourhood C(x0) of the vertex x0, that gets initially infected. The set C(x0) contains all Poisson
points with a distance rN/2 to x0. Since any two points in C(x0) have a distance of at most rN any
two points are connected over an edge, in other words the restriction of G(N) to points in C(x0) is a
complete graph. Consequently, also the infection process restricted to C(x0) is an infection process
on a complete graph. In particular, we can apply Theorem 3.2.6 to show that the probability
to infected at least Nε vertices can be asymptotically lower bounded by the survival probability

π
(︁

a√
2n

)︁
of a DBPC P(a/

√
2n). The parameter of the offspring distribution is roughly a2

2n+1 , since(︁
vN
2

)︁
pairs of parasites can be generated per infected host and the probability that both parasites of

a pair of parasites hit the same vertex and that the vertex lies in C(x0) is roughly 1
2n

1
dN

, because the
first parasite has to attack a vertex in the complete neighbourhood, which happens with probability
approximately

(︁(︁
2 rN2

)︁n
N
)︁
/ ((2rN )

n
N) = 1/2n, and the second parasite has to attack the same

vertex. So the number of CoSame infections per host is roughly
(︁
vN
2

)︁
1
2n

1
dN

→ a2

2n+1 . Similarly the

parameter for the cooperation distribution is v2N
1
2n

1
dN

∼ a2

2n . If the infection process is successful Nε

many hosts are infected within at most O(log(log(N))) generations. Afterwards in a finite number
of generations in the complete neighbourhood the remaining hosts get infected and the infection
process expands at a distance rN (1 − o (1)) per generation, see also Figure 3.6 and Section 3.5.2
for more details. On the other hand the invasion time is lower bounded by 1/(2rN ), since parasites
can move in any generation at most at a distance rN and the infection starts in the center of the
cube. This explains our Claim 2) on the invasion time.
Case (i): As in the case of the complete graph we show that asymptotically with probability 1 the
parasite population does not survive the first generation.
Case (iii): Again as in the case of the complete graph we show that we can whp couple from below
I with the total size process of a Galton-Watson process with an approximately Poi(a2/2) offspring
distribution until Nβ′ hosts get infected or the parasite population dies out for any 0 < β′ < β
and any a > 0. In addition we can show that when the level Nβ′ is reached there exists a ball of
radius rN which contains at least Nβ′/ log(N) infected hosts. By choosing β′ > β/2 we can show
that once the level Nβ′ is reached whp after one more generation the remaining hosts in this ball
get infected. Afterwards the infection expands by a distance rN (1− o(1)) in every generation whp
(similar as in Case (ii)) until the remaining hosts are all infected. Since the probability to reach
the level Nβ′ for the total size of the considered Galton-Watson process is asymptotically equal to
the survival probability φa of a Galton-Watson process with Poi(a2/2) offspring distribution and
φa tends to 1 for a→ ∞ the result follows.

3.2.3 Invasion on Riemannian manifolds

In this section we give a brief heuristic justification why our results should also carry over to a setting
where the unit cube [0, 1]n is replaced by a Riemannian manifold. Instead of considering the spread
of the parasite population in host populations structured according to a random geometric graph
on an n-dimensional cube it is natural to assume that the host population is located on a manifold.
We can generalize our model to this setting as follows. Let (M ′, g) be a compact, connected,
orientable, n-dimensional Riemannian manifold with Riemannian metric g. Assume without loss
of generality that vol(M ′) = 1, where vol(M ′) denotes the volume of M ′ calculated according to
the volume induced by g. Denote furthermore by ρ′ the metric on M ′ induced by g. Consider a
homogeneous Poisson point process with intensity measure N · vol( · ) on M ′ (for this point process
the number of vertices contained in a set S ⊂ M ′ with volume vol(S) = s is Poisson distributed
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with parameter sN). We denote the set of the Poisson points by V ′ = V ′(N)
and build a random

geometric graph onM ′ by connecting all points in V ′ over an edge which have a distance of at most

rN with respect to the metric ρ′. Denote the set of edges by E ′ = E ′(N)
and the random geometric

graph by G′ = G′(N)
= G′(rN )

= (V ′(N)
, E ′(N)

).
Given G′ we can consider an infection process (with the components (S ′g, I ′g,R′g)) in the same

way in which we defined it on the random geometric graph on the cube.
Denote by

d′N :=
πn/2

Γ(n/2 + 1)
(rN )

n
N,

which is the expected number of vertices a vertex of G(N) is connected to in dimension n (if the
distance of the vertex to the boundary of M ′ is asymptotically non-vanishing, in case M ′ has a
boundary) and let p ∈M ′. Denote by

∆(p) := max
q∈M

{ρ′(q, p)}

the maximal distance between p and any other point q ∈M . Furthermore, denote as before by

E′
(N)
u :=

{︂
∃g ∈ N0 : I ′

(N)

g ≥ u ·#V ′(N)
}︂
.

Then we believe that the following statements hold at least for n ∈ {1, 2}.
Assume rN =

(︁Γ(n/2+1)
πn/2

)︁1/n
N

β−1
n for some 0 < β < 1, let 0 < u ≤ 1. Assume the infection

process is started in a vertex x
(N)
0 ∈ V ′(N)

that has asymptotically a positive distance to the
boundary of M ′ (if M ′ has a boundary).

1) Invasion probability

(i) If vN ∈ o
(︂√︁

d′N

)︂
, then

lim
N→∞

P
(︁
E′

(N)
u

)︁
= 0.

(ii) If vN ∼ a
√︁
d′N for some 0 < a <∞, then

π
(︁

a√
2n

)︁
≤ lim inf

N→∞
P
(︁
E′

(N)
u

)︁
≤ lim sup

N→∞
P
(︁
E′

(N)
u

)︁
≤ π(a).

(iii) If
√︁
d′N ∈ o(vN ), then limN→∞ P

(︁
E′(N)

u

)︁
= 1.

2) Invasion time: Assume vN ∼ a
√︁
d′N for some

0 < a <∞. Denote by

T ′
(N)

:= inf
{︂
g ∈ N|I(N)

g = #V ′(N)
}︂
.

Then

P
(︂⌊︂

∆
(︁
x
(N)
0

)︁
r−1N

⌋︂
≤ T ′

(N) ≤
⌈︂
∆
(︁
x
(N)
0

)︁
r−1N

⌉︂
+O (κN )

⃓⃓⃓⃓
T ′

(N)
<∞

)︂
→

N→∞
1,

with κN = max

{︃
log(log(N)), N

β
2
−1

n +δr−2N

}︃
for any δ > 0.
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The main reason why these results should hold is that the decision, if eventually invasion takes
place, is made in a neighbourhood of x0 that is asymptotically of negligible volume. Indeed, only
Nε many hosts need to be infected such that whp subsequently the whole host population gets
infected. Since Nε many hosts are directly connected to x0 for ε > 0 small enough, we need to
consider only a neighbourhood of x0 of negligible volume to decide on invasion. As a consequence at
the beginning the invasion process is essentially the same as a corresponding process on [0, 1]n with
distances measured according to the Euclidean distance due to the following relationship between
the volume of an Euclidean ball in [0, 1]n and the volume of a ball of the manifold. For any
sequence hN → 0 it holds

vol(BhN
(x))

vol(B̃hN
(0))

= 1− S

6(n+ 2)
h2N + o(h2N ),

where vol(BhN
(x)) denotes the volume of a (geodesic) ball of radius hN centered in x ∈ M ′ and

vol(B̃hN
(0)) denotes the volume of an n-dimensional Euclidean ball of radius hN centered in 0 and

S the scalar curvature in x, see [84], Section XII.8. Since M ′ is compact and the scalar curvature
is a continuous function on M ′, the scalar curvature of M ′ is bounded from above and below. In
particular, for hN = rN the number of points connected to x ∈ V ′ is Poisson distributed with

parameter N πn/2

Γ(n
2 +1)r

n
N +O(Nrn+2

N ), since

vol(B̃rN (0)) =
πn/2

Γ(n2 + 1)
rnN .

In Theorem 3.2.4 we consider the maximum metric to measure distances between two points.
With this metric we easily can cover M with balls (that are cubes as well) to control the spread
of parasites across M . A similar construction is also possible with Euclidean balls (at least in the
case n ∈ {1, 2}), the notation is just a bit more complicated. Therefore, considering the Euclidean
metric or maximum metric should not influence the invasion probability as long as the ratio of the
expected number of vertices contained in a ball and the number of offspring parasites generated at
infection is asymptotically the same. The invasion time in general differs for two different metrics,
because the function ∆(p) depends on the metric.

3.2.4 Simulating spatial invasion of cooperative parasites

We supplement our findings with simulation results for moderately sized, finite N . We simulated
invasion of parasites in host populations structured according to random geometric graphs on (i) the
interval [0, 1] with the euclidean metric (which agrees with the maximum metric, since n = 1), (ii)
the square [0, 1]2 using the maximum metric and (iii) the unit 2-sphere S2 using spherical distances
(to substantiate our conjecture given in Remark 3.2.3 at least by means of simulations).

To ease computations in the case of the 2-sphere, we generate points on the unit 2-sphere S2,
instead of the sphere with radius 1/

√
4π which would have as required in Remark 3.2.3 a surface area

(aka volume) of 1. This simplification benefits both generation and evaluation of point distances in
our implementation of the process and only requires appropriate rescaling. The distance between
two points x and y is then simply given by arccos(x · y) as the radius is of length 1. Uniform points
on S2 can be generated by a two-step scheme in which first the polar angles (θ, ϕ) are sampled
using inverse transform sampling. To this end, let U1, U2 ∼ U(0, 1). We compute θ = 2π · U1 as
well as ϕ = arccos(1− 2 · U2) and obtain Cartesian coordinates by a standard transformation.
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Figure 3.1: Simulated invasion probabilities with a host population structured by a random geo-
metric graph (RGG, for short) on [0, 1] (top) and [0, 1]2 (bottom) for N = 106 and β = 0.7 as well

as simulated survival probabilities π
(︂

a√
2n

)︂
and π (a).

In general, storing and operating on an explicit representation of G takes space in the order
of |E(N)|. In the case when NdN ∼ N1+β gets prohibitively large rendering parameter combina-
tions of N and dN = Nβ is infeasible for general-purpose compute architectures. Optimizations,
however, are possible by implicit representations of G using the coordinates of V(N). Realizations of
this are straight-forward for the interval [0, 1] and can be adapted using Quadtrees for 2-dimensional
spaces [85].

Invasion probabilities

In Theorem Theorem 3.2.4 we claim that for 0 < a <∞ and vN∼a
√
dN

π
(︁

a√
2n

)︁
≤ lim inf

N→∞
P
(︁
E(N)
u

)︁
≤ lim sup

N→∞
P
(︁
E(N)
u

)︁
≤ π(a).

In Figure 3.1 and Figure 3.2 simulation results are depicted that show the fraction of cases,
in which the host population got completely infected, for parasites spreading in host populations
structured according to random geometric graphs on the interval [0, 1], the square [0, 1]2 and the
sphere S2. The simulated survival probabilities π

(︁
a/

√
2n
)︁
and π (a) (where in the simulations we

assume that survival took place if the DBPC attains size N) appear to be appropriate upper and
lower bounds. The upper bound gives a particularly good approximation to the observed actual
invasion probability. For the upper bound one assumes that the chance for two parasites, which have
been generated on different vertices, to cooperate is roughly 1/dN , which is actually only true if the
distance of the two vertices is 0. Therefore it might be surprising that the upper bound gives such a
good fit. However, since parasites perform symmetric random walks a large part of parasites stays
in a neighbourhood of x0 and parasites that are close together have due to CoDiff infections a higher
chance to generate offspring, which implies that parasites located in densely populated regions have
in general more offspring parasites than parasites located in sparsely populated regions. This effect
remains until a significant proportion of the host population in a rN -ball gets infected, but at this
time point invasion is essentially already decided. Consequently, the probability that a typical pair
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Figure 3.2: Fraction of successful invasions for N = 106 and β = 0.7 of infection processes spreading
on host populations structured by a RGG on S2 (top) and for comparison on [0, 1], [0, 1]2 and S2

(bottom).

of parasites produces CoDiff infections could be in the initial phase pretty close to 1/dN .

Conversely, our lower bound is relatively far away from the simulated invasion probabilities. To
arrive at the lower bound we consider only parasites spreading within the complete neighbourhood
of the initially infected host. The larger n the smaller this complete neighbourhood is in comparison
to the rN - neighbourhood of a host. Therefore the larger n the worse is the lower bound.

Our asymptotic upper bound of the invasion probability does only depend on the ratio of the
number vN of parasites generated on a vertex and the (asymptotic) number of direct neighbours
of a typical vertex, but neither depends on the dimension nor (in the setting considered in Remark
3.2.3) on the curvature of the manifold. We suppose that this is also the case for the invasion
probabilities. In Figure 3.2 we present a direct comparison of simulated invasion probabilities for
infection processes on [0, 1], [0, 1]2 and S2 and see that the probabilities are very close to each other
(even for finite N).

Finally we simulated invasion probabilities of the infection processes on the complete graphs
that we use for a coupling from below. In Figure 3.3 one can observe that the simulated inva-
sion probabilities match very well with the probabilities π

(︁
a/

√
2n
)︁
and π (a) of the corresponding

DBPCs.

Invasion time

In Figure 3.4 and Figure 3.5 we present the invasion time of simulated infection processes on the
interval [0, 1], square [0, 1]2 and sphere S2, respectively. For reference we plot also the asymptotic
order of the invasion times derived in Theorem 3.2.4 and Remark 3.2.3. In Figure 3.4 we observe a
matching overlap that improves for increasing N for all considered values of a in the 1-dimensional
case.

For large β values the simulations showcase a higher invasion time than predicted. This can
be explained as follows: We show in Theorem 3.2.4 that the invasion time is asymptotically pro-
portional to N1−β . In particular, the larger β is the shorter is the invasion time. For N → ∞
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Figure 3.3: Simulated invasion probabilities with a host population structured by a complete graph

for N = 106 and β = 0.7 as well as simulated survival probabilities π
(︂
a√
2

)︂
and π (a).

invasion is dominated by the time necessary to reach from an infinitesimally small neighbourhood
of x0 points close to the boundary of [0, 1]n or in the setting of Remark 3.2.3 the point that has the
largest distance to the host that got initially infected. The initial phase until for the first time all
direct neighbours of a vertex get infected is only of order log log(N). For β close to 1 and finite N
however both time frames are of approximately the same length, which explains the deviation from
the theoretical prediction where the initial phase is ignored. In Figure 3.5 we plotted the invasion
time when the initial phase is removed. One observes that for intermediate and larger values of β
the gap between the predicted and simulated invasion time disappears. For larger values of β the
simulated invasion times lie slightly below the predicted invasion times. Probably this is caused by
parasites spreading the infection further before the initial phase is over.

Also for small β values we observe that simulated invasion times are generally higher than the
predicted ones, even when the initial phases are removed. This deviation is particularly pronounced
for invasion on [0, 1]2, where the maximum metric is used. This can be explained as follows. As we
pointed out in the sketch of the proof of Theorem 3.2.4 the parasite population expands furthest
due to parasites born at the boundary of an rN neighbourhood. When on the square the maximum
distance is used rN -squares on the diagonal can get infected fastest by parasites at the corners of
neighbouring rN -squares. However, when N is not large, the number of parasites located in the
corners is pretty small, so that they might not be able to move the front forward as quickly as
predicted for N → ∞.

This behaviour is further studied in Figure 3.6 where the progress of the infection process is
tracked along balls of radius rN/2 on the unit-square [0, 1]2 for different values of β. The smaller β
the less vertices are located at the corners leading to a decreased speed of expansion. As shown in
Figure 3.6, for β = 0.7 and β = 0.5 one observes that after the initial phase the parasite population
expands linearly (almost) by a factor 1 (as predicted), while for β = 0.3 (when in each box with
edge length rN only ≈ N0.3 ≈ 63 vertices are contained) the population expands also linearly, but
only by a factor of (almost) 2.

In the following the manuscript is structured as follows. In Section 3.3 we show several properties
(of sequences) of DBPCs that we will need in the subsequent section. Afterwards in Section 3.4 we
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Figure 3.4: Invasion time on random geometric graphs on [0, 1] for N = 106 (top) and N = 107

(bottom) with varying a and β.

will prove Theorem 3.2.6. Finally in the last section we will prepare and give the proof of Theorem
3.2.4.

3.3 Discrete branching processes with cooperation

In this section we collect properties of (sequences of) DBPCs that we need in the following. For
Galton-Watson processes some of these statements are well-known or have been proven in [1]. Since
the proof techniques are similar, we do not give all of the proofs in the main text, but provide some
of them in the supplementary material.

We start with the extinction-explosion principle, which is well-known for branching processes
and also holds for DBPCs.

Lemma 3.3.1. (Extinction-explosion principle for DBPCs) Let Z be a DBPC satisfying p1,o ̸= 1
and (p0,o, p1,c) ̸= (1, 1). Then there exists a nullset N such that

{∀g ∈ N0 : Zg > 0} ⊆ {∀i ∈ N,∃g0 ∈ N0,∀g ≥ g0 : Zg ≥ i} ∪ N .

For the proof one shows that all states but 0 are transient states. Details of the proof can be
found in the supplementary material.

Note that the conditions p1,o ̸= 1 and (p0,o, p1,c) ̸= (1, 1) are necessary to exclude two patho-
logical cases where the statement does obviously not hold. The first case is where the process stays
constant at 1 individual in each generation, and the second condition ensures that the DBPC with
3 and less individuals can further increase and is not stuck below 3.

Before we proceed we introduce some useful notation. We denote the expectation and the
variance of the offspring distribution by µo and νo and for the cooperation distribution by µc and
νc.

In contrast to a Galton-Watson process we aim to show that except for pathological cases a
DBPC always has a positive survival probability.
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Figure 3.6: Distance reached for successful invasions on [0, 1]2 with N = 106.

Lemma 3.3.2. Let Z be a DBPC with µo, µc, νo, νc ∈ (0,∞) and p0,o + p1,o < 1. Suppose Z0 =
x ∈ N, then Z has a positive survival probability, i.e.

Px(Zg > 0 ∀ g > 0) > 0.

The proof of Lemma 3.3.2 is based on the next lemma, which we immediately formulate in a
more general setting to be able to apply it also later in another context and which basically states
that if a DBPC attains a certain level, then in subsequent generations the size will up to a constant
factor (that does not depend on the size) be squared in the next generations due to cooperation
with a certain non-vanishing probability.

In the subsequent sections we will deal often with sequences of DBPCs rather than a single
process. We will often need the following assumption to be fulfilled.

Assumption 3.3.3. Let
(︁
Z(N)

)︁
N∈N0

be a sequence of DBPCs for which µo
(N), µc

(N), νo
(N), νc

(N)

denote the expectations and the variances of the offspring and cooperation distributions. We assume
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that
µ(N)
o , µ(N)

c , ν(N)
o , ν(N)

c −→
N→∞

µo, µc, νo, νc ∈ (0,∞),

and we introduce
µ := min(µo, µc) > 0, and ν := max(νo, νc) > 0.

Lemma 3.3.4. Let (Z(N))N∈N0
be a sequence of DBPCs which satisfies Assumption 3.3.3. Fur-

thermore, set fi(k) :=
k2

i
µ2i−1

82i−1
for i ≥ 1 and k ∈ N. Then there exists N0 ∈ N such that for any

N ≥ N0, g ∈ N, M ∈ N and k ≥ L := ⌈µ−1(8 + ν)2⌉ it holds that

P

(︄
M⋂︂
i=1

{︂
Z

(N)
g+i > fi(k)

}︂ ⃓⃓⃓
Z(N)
g = k

)︄
≥

M∏︂
i=1

(︃
1− 6ν

fi(k)µ

)︃
≥

M∏︂
i=1

(︃
1− 3

4(8 + ν)2i−1

)︃
.

The claim can be shown by several applications of Tchebychev’s inequality. A detailed proof
can be found in the supplementary material.

Now we can prove Lemma 3.3.2.

Proof of Lemma 3.3.2. The assumption p0,o + p1,o < 1 implies that there is a strictly positive
probability that Zg+1 > Zg for all initial values x > 0. Let us consider x ∈ {1, ..., L− 1} first. Since
L = ⌈µ−1(8 + ν))2⌉ is finite the previous observation implies that there exists a p1 > 0 such that
for any x it exists a g0 ∈ N such that

Px
(︁
Zg0 ≥ L

)︁
≥ p1.

If x ≥ L obviously we can set g0 = 0. Applying Lemma 3.3.4 for Z(N) ≡ Z one obtains

P

(︄
M⋂︂
i=1

{Zg0+i > fi(L)}
⃓⃓⃓
Zg0 = L

)︄
≥

M∏︂
i=1

(︃
1− 3

4(8 + ν)2i−1

)︃
.

Noticing that the events appearing on the left-hand side are monotone-decreasing for growing M it
follows from upper σ-continuity of the measure P that we have

P

(︄ ∞⋂︂
i=1

{Zg0+i > fi(L)}
⃓⃓⃓
Zg0 = L

)︄
≥
∞∏︂
i=1

(︃
1− 3

4(8 + ν)2i−1

)︃
> 0,

where it follows that the right-hand side is strictly positive by comparison with a geometric sum.
We have that ∞⋂︂

i=1

{Zg0+i > fi(L)} ∩ {Zg0 ≥ L} ⊂ {Zg > 0 ∀g ≥ 0},

then by Markov property and monotonicity we get

Px (Zg > 0 ∀g ≥ 0) ≥ P(Zg0+i > 0 ∀i ≥ 0 | Zg0 = L)Px(Zg0 ≥ L) > 0.

The next lemma claims that a DBPC also survives whp when a level bN , that tends to ∞
(arbitrarily slowly) with N , has been reached.
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Lemma 3.3.5. Let (Z(N))N∈N0 be a sequence of DBPCs which satisfy Assumption 3.3.3 and let
(bN )N∈N be an N-valued sequence with bN → ∞ as N → ∞. Then for all g ∈ N it holds that

P
(︂
Z

(N)
g+i > 0 ∀i ≥ 0

⃓⃓
Z(N)
g ≥ bN

)︂
−→
N→∞

1.

The proof relies on Lemma 3.3.4, we provide a detailed proof in the supplementary material.
Finally we are able to derive results on the growth speed of the population size in case of survival.

The next lemma shows that for any sequence bN → ∞, reaching the level bN or dying out is at
most of order log log(bN ).

Proposition 3.3.6. Let (Z(N))N∈N0 be a sequence of DBPCs which satisfy Assumption 3.3.3.
Assume Z0

(N) = x for some x ∈ N. Furthermore, assume that there exists an N0 > 0 such that

inf
N≥N0

P
(︂
Z

(N)
1 > L|Z(N)

0 = x
)︂
> 0, (3.3.1)

where L =: ⌈µ−1(8 + ν)2⌉. Let (bN )N∈N be a N-valued sequence with bN → ∞ as N → ∞ and
denote by

τZ
(N)

bN ,0 := inf
{︂
g ∈ N : Z(N)

g ≥ bN or Z(N)
g = 0

}︂
.

Then there exists a constant C > 0 such that

Px
(︂
τZ

(N)

bN ,0 ≤ C log log(bN )
)︂
→ 1 as N → ∞.

Proof. Set eN := log(bN ). Note that we consider N large enough such that eN ≥ L. We will first
show that there exist p0 > 0, C,N1 ∈ N independent of N , such that for all N ≥ N1 and all x ∈ N

Px
(︂
τZ

(N)

eN ,0 ≤ C log log(eN )
)︂
≥ p0. (3.3.2)

From this follows that for all m ∈ N

Px
(︂
τZ

(N)

eN ,0 ≤ mC log log(eN )
)︂
≥

m∑︂
i=1

(1− p0)
i−1p0.

In particular for m = gN := log log(bN )
log log(eN ) it follows that

Px
(︂
τZ

(N)

eN ,0 ≤ CgN log log(eN )
)︂
≥ 1− (1− p0)

⌊gN⌋ → 1, (3.3.3)

where we used that by choice of eN it follows that gN → ∞ as N → ∞. In fact we will see that
C := log(2)−1 is a suitable choice. Now we will show (3.3.2). By assumption (3.3.1) and the fact
that L does not depend on N there exists a p1 > 0 such that for any x ∈ {1, ..., L− 1}

P
(︂
Z(N)
g = 0 or Z(N)

g > L
⃓⃓
Z

(N)
g−1 = x

)︂
≥ p1.

Consequently, for any x ∈ {1, ..., L− 1} we can lower bound the time to reach the state 0 or a
state > L by a geometrically distributed random variable with success probability p1. Reasoning
as above shows that the waiting time to hit 0 or a state > L is with probability 1− o(1) bounded
by log log(eN ).
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Before we continue we briefly state two facts we need. Recall that fi(k) =
k2

i
µ2i−1

82i−1
for i ≥ 0,

where f0(k) = k. First we see that we have the relation

f2i−1(k)µ

8
=

(︃
k2

i−1

µ2i−1−1

82i−1−1

)︃2
µ

8
=
k2

i

µ2i−1

82i−1
= fi(k). (3.3.4)

Furthermore, we assumed that k > µ−1(8 + ν)2, and therefore

fi(k) >
(8 + ν)2

i+1

µ2i−1

µ2i82i−1
=

(8 + ν)2
i

(8 + ν)2
i

µ82i−1
>

8(8 + ν)2
i

µ
. (3.3.5)

We show next, that if Z
(N)
g ≥ L after C log log(eN ) further generations the level eN will be

reached with some probability p2 > 0 for any N large enough. Lemma 3.3.4 implies that for k ≥ L
and M = C log log(eN ) it follows that

P

⎛⎝C log log(eN )⋂︂
i=1

{︂
Z

(N)
g+i > fi(k)

}︂ ⃓⃓⃓
Z(N)
g = k

⎞⎠ ≥
C log log(eN )∏︂

i=1

(︃
1− 3

4(8 + ν)2i−1

)︃
> p2 > 0.

Now by (3.3.5) we know that fi(k) > µ−18(8 + ν)2
i

. Thus, by our choice C = (log(2))−1 we have
that

fC log log(eN )(k) ≥
8

µ
(eN )log(8).

Since log(8) > 1 we get that fC log log(eN )(k) ≥ eN for N large enough, i.e. this means that we in
fact reach a level higher than eN . Thus, we can conclude (3.3.2).

We again apply Lemma 3.3.4 such that we get that

P

⎛⎝C log log(bN )⋂︂
i=1

{︂
Z

(N)
g+i > fi(eN )

}︂ ⃓⃓⃓
Z(N)
g = eN

⎞⎠ ≥
C log log(bN )∏︂

i=1

(︃
1− 6ν

fi(eN )µ2

)︃
.

By an analogous calculation as before we see that

fC log log(bN )(eN ) =
8

µ
b
log( eNµ

8 )
N .

We know that log
(︁
eNµ
8

)︁
> 1 since we choose N large enough such that eN ≥ L, and thus we have

that

fC log(log(bN )) (eN ) ≥ bN .

Now we use that 1−x > exp(−2x) for x < 1 and that fi(eN ) ≥ eN for all i, which again follows
by the fact that eN ≥ L. These two observations allow us to conclude for N large enough that

C log log(bN )∏︂
i=1

(︃
1− 6ν

f2i−1(eN )µ2

)︃
≥ exp

(︃
−12νC

log log(bN )

log(bN )µ

)︃
→

N→∞
1. (3.3.6)
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Finally using the strong Markov property at the stopping time τZ
(N)

eN ,0 gives that

P
(︁
τZ

(N)

bN ,0 ≤ 2C log log(bN )
)︁
≥ P

(︁
τZ

(N)

eN ,0 ≤ C log log(bN ), Z
(N)

τZ(N)

eN ,0

= 0
)︁

+ P
(︃
τZ

(N)

eN ,0 ≤ C log log(bN ), Z
(N)

τZ(N)

eN ,0

≥ eN

)︃
· P
(︂
τZ

(N)

bN ,0 ≤ C log log(bN )
⃓⃓
Z

(N)
0 = eN

)︂
.

Now the right-hand side converges to 1 as N → ∞ according to (3.3.3) and (3.3.6). This concludes
the proof of the claim.

The following lemma states that the probability of reaching an arbitrary high level, that tends to
∞ as N → ∞, at some generation or up to some generation is asymptotically equal to the survival
probability for a sequence of DBPCs.

Proposition 3.3.7. Consider a sequence of DBPCs (Z(N))N∈N with offspring and cooperation
distributions (pk,o

(N))k∈N0
and (pk,c

(N))k∈N0
respectively, which satisfies Assumption 3.3.3. Fur-

thermore, let Z∞ be a DBPC with offspring and cooperation distribution (pk,o)k∈N0 and (pk,c)k∈N0 .
Assume that pk,o

(N) → pk,o and pk,c
(N) → pk,c as N → ∞ for all k ≥ 0. Then for any N-valued

sequence (bN )N∈N with bN → ∞ it holds that

lim
N→∞

P
(︂
∀g ∈ N0 : Z(N)

g > 0
)︂
= lim
N→∞

P
(︂
∃g ∈ N0 : Z(N)

g ≥ bN

)︂
= lim
N→∞

P
(︂
∃g ∈ N0 : Z

(N)

g ≥ bN

)︂
= π,

where π denotes the survival probability of Z∞.

We provide the proof in the supplementary material. The two first equalities are shown using
a similar method as in the proof of Lemma 3.7 of [1]. The last equality is shown by using an
exact coupling argument between the processes Z(N) and Z∞ until the total size of both processes
reaches a sufficiently high level to ensure that the processes survive whp, or they both die out. In
the supplementary materials we introduce Lemma 3.6.1 which is used for this proof.

3.4 Invasion of cooperative parasites in host populations
structured by a complete graph

In this section we prepare and give the proof of Theorem 3.2.6. Therefore, let us briefly recall the
setting. We consider a host-parasite dynamics as introduced in Section 2 on a complete graph with
DN vertices, where we assume that DN ∈ Θ(Nβ) with 0 < β < 1. In case of an host infection
VN parasites are generated. The number of infected hosts in generation g is denoted by Jg = J

(N)
g

and the total number until generation g is denoted by Jg = J
(N)

g . In Subsection 3.4.1 and 3.4.2
we do the preparatory work to show Theorem 3.2.6 (ii), and thus we consider the critical scaling
VN ∼ a

√
DN in these subsections, where a > 0.

In this and the next section we often will make use of the inequalities exp(−x) ≥ 1 − x ≥
exp(−x) exp(−x2), exp(−x) ≤ 1− x/2 for x ∈ [0, 1/2] and Bernoulli’s inequality (1 + x)i ≥ 1 + ix
for i ∈ N and x ≥ −1.



120 CHAPTER 3. SPATIAL INVASION OF COOPERATIVE PARASITES

Furthermore, we will compare the infection dynamics happening within one generation often
with balls-into-boxes experiments. The following lemma gives control about certain events happen-
ing in these experiments.

Lemma 3.4.1. Let (m′N ), (V ′N ), (h′N ), (ℓ′N ), (D′N ) be non-negative sequences with 1 ≤ m′N ≤ h′N ≤
ℓ′N , assume

ℓ′N
4V ′N

3

D′N
2 ∈ o (1), ℓ′N → ∞ for N → ∞, as well as V ′N ∼ a

√︁
D′N for some a > 0.

Consider D′N −m′N boxes (for N large enough such that D′N − h′N > 0) and m′NV
′
N balls. Assume

the balls are put independently and uniformly at random into the boxes. Consider the event C
(h′N )
k ,

that k many of the first D′N − h′N boxes contain exactly two balls and the remaining boxes contain
at most one ball. We have for all k ≤ ℓ′N and for N large enough

P(W ′N = k) exp

(︄
−ℓ
′
N

5
V ′N

3

D′N
2

)︄
≤ P

(︂
C

(h′N )
k

)︂
≤
(︃
(m′NV

′
N )2

2D′N

)︃k
1

k!
exp

(︃
− (m′NV

′
N − 2ℓ′N )2

2D′N

)︃

· exp
(︄
ℓ′N

2
V ′N

D′N

)︄
,

where W ′N is Poisson distributed with parameter
(m′NV

′
N−2ℓ′N)

2

2D′N
.

A proof can be found in the supplementary material.

Let (ℓN )N be a sequence such that ℓN ∈ o(VN ) and ℓN → ∞. Then, in the following we will

denote by W
(N)
o,m a Poisson distributed random variable with parameter m(VN−2ℓN )2

2DN
= muN with

uN :=
(VN − 2ℓN )

2

2DN

for any m ∈ N and similarly by W
(N)
c,m a Poisson distributed random variable with parameter

m(VN−2ℓN )2

DN
= 2muN .

3.4.1 Upper bound on the invasion probability on a complete graph

To derive an upper bound on the invasion probability we estimate from above the total number
of infected hosts by the total size of a branching process with cooperation with offspring and
cooperation distributions that are approximately Poisson distributed.

Definition 3.4.2. (Upper DBPC)

Let ℓN →
N→∞

∞ satisfying
ℓ7NV

3
N

D2
N

∈ o(1). Let Z
(N)
u =

(︁
Z

(N)
g,u

)︁
g∈N0

be a branching process with

cooperation with Z
(N)
0,u = 1 almost surely, and offspring and cooperation distribution with probability

weights p
(N)
u,o =

(︁
p
(N)
j,u,o

)︁
j∈N0

and p
(N)
u,c =

(︁
p
(N)
j,u,c

)︁
j∈N0

, respectively with

p
(N)
j,u,o := P

(︂
W

(N)
o,1 = j

)︂
exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
,



3.4. INVASION ON A COMPLETE GRAPH 121

for all 0 ≤ j ≤ ℓN and

p
(N)
ℓN+1,u,o := 1−

ℓN∑︂
j=0

p
(N)
j,u,o,

as well as

p
(N)
j,u,c := P(W (N)

c,1 = j) exp

(︃
−2

ℓ5NV
3
N

D2
N

)︃
,

for all 0 ≤ j ≤ ℓN and

p
(N)
ℓN+1,u,c := 1−

ℓN∑︂
j=0

p
(N)
j,u,c.

Denote by Z
(N)

u :=
(︁
Z

(N)

g,u

)︁
g∈N0

, where Z
(N)

g,u :=
∑︁g
i=0 Z

(N)
i,u , that is Z

(N)

g,u gives the total size of Z
(N)
u

accumulated till generation g.

In the next proposition, we show that the total size of the infection process J
(N)

can be coupled

whp from above with the total size of the DBPC of Definition 3.4.2 Z
(N)

u up to the first random

generation at which Z
(N)

u reaches the size ℓN (for ℓN → ∞ not too fast as considered in the definition

of the DBPC) or the process Z
(N)
u dies out.

Proposition 3.4.3. For any sequence (bN )N∈N introduce the stopping time

τZu

bN ,0
:= inf

{︂
g ∈ N0 : Z

(N)

g,u ≥ bN or Z(N)
g,u = 0

}︂
.

Let (ℓN )N∈N be the same sequence as used in Definition 3.4.2. Then

lim
N→∞

P
(︂
J
(N)

g ≤ Z
(N)

g,u ,∀n < τZu

ℓN ,0

)︂
= 1,

and

lim
N→∞

P

(︄
J
(N)

τZu
ℓN ,0

= 0

⃓⃓⃓⃓
⃓ Z(N)

τZu
ℓN ,0,u

= 0

)︄
= 1

and

lim
N→∞

P

(︄
J
(N)

τZu
ℓN ,0

≥ ℓN

⃓⃓⃓⃓
⃓ J (N)

τZu
ℓN ,0

≥ Z
(N)

τZu
ℓN ,0,u

)︄
= 1.

Proof. In order to show that J (N) and Z
(N)
u can be coupled such that J

(N)

g ≤ Z
(N)

g,u for all g < τZu

ℓN ,0

whp we show that

P
(︂
J
(N)

g+1 = k
⃓⃓
J
(N)

g = m
)︂
≤ P

(︂
Z

(N)

g+1,u = k
⃓⃓
Z

(N)

g,u = m
)︂
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for all k,m < ℓN . Then, one can use the Markov property to show that

P
(︁
{J (N)

g ≤ kg, . . . , J
(N)

1 ≤ k1} ∩ {g < τZu

ℓN ,0
}
)︁
≤ P

(︁
{Z(N)

g,u ≤ kg, . . . , Z
(N)

1,u ≤ k1} ∩ {g < τZu

ℓN ,0
}
)︁

where k1, . . . , kg ∈ N i.e. that Z
(N)

u stochastically dominates J
(N)

until Z
(N)

u reaches the level ℓN .

Having this one can deduce by Strassen’s theorem that J
(N)

and Z
(N)

u can be coupled as claimed.

Up to generation

τJℓN ,0 := inf
{︂
g ∈ N0 : J

(N)

g ≥ ℓN or J (N)
g = 0

}︂
the total number of parasites that are moving in the graph is upper bounded by ℓNVN . Consider
(for N large enough such that DN − ℓN > 0) the following experiment with DN − ℓN boxes, ℓNVN
balls. Assume that balls are thrown uniformly at random in the boxes. The probability that there
exists a box with at least 3 balls in it can be upper bounded as follows

P (∃ 1 box with more than 3 balls) ≤ DN (ℓNVN )
3 1(︁
DN − ℓN

)︁3 ∼ ℓ3NV
3
N

D2
N

→ 0.

This means that with the assumed scaling of ℓN it is unlikely that such an event occurs before

generation τZu

ℓN ,0
. Consequently for whp couplings, we can only focus on infections generated by

pairs of parasites.

Now consider a complete graph with 1 ≤ mN < ℓN infected vertices and at most ℓN−1 empty or
infected vertices. The probability that k infections are generated for 0 ≤ k ≤ ℓN can be estimated
from above by the probability that k boxes are filled with at least two balls and the remaining boxes
are filled with at most one ball in the following balls-into-boxes experiment: Consider DN −mN

boxes and mNVN balls. Place the balls uniformly at random into the boxes. Denote by C
(N)
k the

event that k boxes contain exactly two balls and all other boxes contain at most one ball.

By Lemma 3.4.1 with D′N = DN ,m
′
N = mN , V

′
N = VN , h′N = mN and ℓ

′

N = ℓN we can estimate
for mN ≥ 2

P
(︂
C

(N)
k

)︂
≥
(︄
(mNVN − 2ℓN )

2

2DN

)︄k
1

k!
exp

(︄
− (mNVN − 2ℓN )

2

2DN

)︄
exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
≥
(︁
m2
NuN

)︁k 1

k!
exp

(︃
−m2

N

V 2
N

2DN

)︃
exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
, (3.4.1)

again for N large enough, and for mN = 1

P
(︁
C

(N)
k

)︁
≥ (uN )

k 1

k!
exp (−uN ) exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
. (3.4.2)

In order to prove that J
(N)

can be coupled with Z
(N)

u such that Z
(N)

u dominates J
(N)

, we show

that the probability P
(︁
Z

(N)
n+1,u = k|Z(N)

n,u = mN

)︁
can be estimated from above by the lower bound

derived in (3.4.1) for mN ≥ 2 and by (3.4.2) for mN = 1.
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Consider independent random variables
(︁
X

(N)
i

)︁
i∈N and

(︁
Y

(N)
(i,j)

)︁
(i,j)∈N2 with probability weights

p
(N)
u,o and p

(N)
u,c respectively. We have that

P
(︂
Z

(N)
g+1,u = k|Z(N)

g,u = mN

)︂
= P

⎛⎝mN∑︂
i=1

X
(N)
i +

mN∑︂
i,j=1,i>j

Y
(N)
(i,j) = k

⎞⎠ (3.4.3)

=
∑︂
ko,kc:

ko+kc=k,ko,kc≥0

P

(︄
mN∑︂
i=1

X
(N)
i = ko

)︄
P

⎛⎝ mN∑︂
i,j=1,i>j

Y
(N)
(i,j) = kc

⎞⎠
=

∑︂
ko,kc:

ko+kc=k,ko,kc≥0

P(W (N)
o,mN

= ko) exp

(︃
−mN

ℓ5NV
3
N

D2
N

)︃
P(W (N)

c,(mN
2 )

= kc) exp

(︃
−2

(︃
mN

2

)︃
ℓ5NV

3
N

D2
N

)︃

= exp

(︃
−m2

N

ℓ5NV
3
N

D2
N

)︃ ∑︂
ko,kc:

ko+kc=k,
ko,kc≥0

P(W (N)
o,mN

= ko)P(W (N)
o,mN (mN−1) = kc)

= exp

(︃
−m2

N

ℓ5NV
3
N

D2
N

)︃
P(W

(N)

o,m2
N
= k),

where we have used that

P

(︄
mN∑︂
i=1

X
(N)
i = k

)︄
=

∑︂
(k1,...,kmN

):
k1+···+kmN

=k

[︄
mN∏︂
i=1

P(W (N)
o,1 = ki) exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃]︄

= exp

(︃
−mN

ℓ5NV
3
N

D2
N

)︃
P(W (N)

o,mN
= k)

and a similar reasoning for Y
(N)
(i,j) , as well as

P
(︂
W

(N)

c,(mN
2 )

= kc

)︂
= P

(︁
W

(N)
o,mN (mN−1) = kc

)︁
.

Since

exp

(︃
−m

2
NV

2
N

2DN

)︃
exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
≥ exp

(︃
−m2

N

ℓ5NV
3
N

D2
N

)︃
exp

(︂
−m2

NuN

)︂
for 1 ≤ mN ≤ ℓN and N large enough, we have that (3.4.1) ≥ (3.4.3) for mN ≥ 2 and (3.4.2) ≥
(3.4.3) for mN = 1 for N large enough. Thus, because of the Markov property we can successively

couple the two processes until Z
(N)
u reaches the level ℓN .

Using the results of the previous Section 3.3 we will show that for the upper DBPC defined
in Definition 3.4.2 the probability of reaching an arbitrary high number of individuals a t some
generation is asymptotically the same as the survival probability of a DBPC whose offspring and
cooperation distributions are respectively Poi

(︁
a2/2

)︁
and Poi(a2) distributed. Let X ∼ Poi(λ) with

λ > 0, then we denote the probability weight of X in j by pj(λ) = P(X = j).



124 CHAPTER 3. SPATIAL INVASION OF COOPERATIVE PARASITES

Proposition 3.4.4. (Probability for the total size of the upper DBPC to reach a level bN ).
Consider a sequence (bN )N∈N with bN →

N→∞
∞ and assume that VN ∼ a

√
DN for 0 < a < ∞.

Then, we have

lim
N→∞

P
(︂
∃g ∈ N0 : Z

(N)

g,u ≥ bN

)︂
= π(a).

Proof. The claim follows as an application of Proposition 3.3.7. Thus, we check that the sequence(︁
Z

(N)
u

)︁
N∈N satisfies the assumptions of Proposition 3.3.7. Let us first consider the convergence of

p
(N)
j,u,o → pj

(︁
a2

2

)︁
for every j ∈ N0. Note that for a given j, we can choose N large enough, such that

j ≤ ℓN and hence

p
(N)
j,u,o = P

(︂
W

(N)
o,1 = j

)︂
exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
.

By the choice of ℓN and as we assumed that VN ∼ a
√
DN we have uN → a2

2 . Thus, by continuity
it follows that

(uN )j
1

j!
exp(−uN ) exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
−→
N→∞

(︃
a2

2

)︃j
1

j!
exp

(︃
−a

2

2

)︃
= pj

(︃
a2

2

)︃
.

Thus, we showed that p
(N)
j,u,o → pj

(︁
a2

2

)︁
as N → ∞ for every j ∈ N. Analogously one can show

that p
(N)
j,u,c → pj(a

2) as N → ∞ for every j ∈ N. Next we need to check that the first and second
moment of the offspring and cooperation distribution converge.

Let X(N) be distributed according to the offspring distributions
(︁
p
(N)
j,u,o

)︁
j≥0 of the upper DBPC

Z
(N)
u . Then

E
[︂
X(N)

]︂
=

ℓN+1∑︂
j=1

jp
(N)
j,u,o

=

ℓN∑︂
j=1

(uN )
j 1

(j − 1)!
e−uN exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
+ (ℓN + 1)

(︃
1−

ℓN∑︂
j=0

p
(N)
j,u,o

)︃
.

Since ℓN → ∞ and uN →
N→∞

a2

2 , we have

lim
N→∞

e−uN

ℓN−1∑︂
j=0

(uN )j

j!
= 1.

It follows that

exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃ ℓN∑︂
j=1

(uN )
j 1

(j − 1)!
e−uN = uN exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃⎛⎝ℓN−1∑︂
j=0

(uN )
j

j!
e−uN

⎞⎠→ a2

2

and

(ℓN + 1)

⎛⎝1−
ℓN∑︂
j=0

p
(N)
j,u,o

⎞⎠ = (ℓN + 1)

(︃
1− exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
P
(︂
W

(N)
o,1 ≤ ℓN

)︂)︃
.
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Now by Markov’s inequality follows that

P
(︂
W

(N)
o,1 ≤ ℓN

)︂
= P

(︂
(W

(N)
o,1 )2 ≤ ℓ2N

)︂
≥ 1−

E[(W (N)
o,1 )2]

ℓ2N
= 1− uN + u2N

ℓ2N
.

Hence

(ℓN + 1)

⎛⎝1−
ℓN∑︂
j=0

p
(N)
j,u,o

⎞⎠ ≤ (ℓN + 1)

(︃
1− exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃)︃
+ (uN + u2N )

ℓN + 1

ℓ2N

≤ (ℓN + 1)ℓ5NV
3
N

D2
N

+ (uN + u2N )
ℓN + 1

ℓ2N
→ 0.

Consequently

E
[︂
X(N)

]︂
→ a2

2

as N → ∞. Similarly, we have for the second moment

E
[︂(︁
X(N)

)︁2]︂
=

ℓN∑︂
j=1

j2 (uN )
j 1

j!
e−uN exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
+ (ℓN + 1)2

(︃
1−

ℓN∑︂
j=0

p
(N)
j,u,o

)︃
.

The second term again vanishes in the limit by the same argument as before just that we use the
Markov inequality for the third moment such that

P
(︂
W

(N)
o,1 ≤ ℓN

)︂
≥ 1− uN + 3u2N + u3N

ℓ3N
,

which yields that

(ℓN + 1)2

⎛⎝1−
ℓN∑︂
j=0

p
(N)
j,u,o

⎞⎠ ≤ (ℓN + 1)2ℓ5NV
3
N

D2
N

+ (uN + 3u2N + u3N )
(ℓN + 1)2

ℓ3N
→ 0,

as N → ∞ and

exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃ ℓN∑︂
j=1

j2
(uN )

j

j!
e−uN = exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
uN

⎛⎝uN ℓN−2∑︂
j=0

(uN )
j

j!
e−uN +

ℓN−1∑︂
j=0

(uN )
j

j!
e−uN

⎞⎠ .

Now one can show analogously as before that

E
[︂(︁
X(N)

)︁2]︂→ a4

4
+
a2

2
.

For the expectations and the second moments of the cooperation distributions one argues analo-
gously, except that one shows convergence to a2 and a4 + a2, respectively.
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3.4.2 Lower bound on the invasion probability on a complete graph

Lower bound on the probability to infect at least Nε many hosts

We first aim to show that the total number of infected hosts until the parasite population dies out
or Nε hosts are infected for ε > 0 small enough can be lower bounded whp by the total size process
of a DBPC. This DBPC we introduce next.

Definition 3.4.5. (Lower DBPC)

Let ℓN →
N→∞

∞ satisfying
ℓ7NVN log(log(N))

DN
∈ o(1). Let Z

(N)
ℓ =

(︁
Z

(N)
g,ℓ

)︁
g∈N0

be a branching process

with cooperation with Z
(N)
0,ℓ = 1 almost surely, and offspring distribution p

(N)
ℓ,o =

(︁
p
(N)
j,ℓ,o

)︁
j∈N0

as well

as cooperation distribution p
(N)
ℓ,c =

(︁
p
(N)
j,ℓ,c

)︁
j∈N0

with

p
(N)
j,ℓ,o := P(W (N)

o,1 = j) exp

(︃
−ℓNVN

DN

)︃
,

for all 0 < j ≤ ℓN and

p
(N)
0,ℓ,o := 1−

ℓN∑︂
j=1

p
(N)
j,ℓ,o,

as well as

p
(N)
j,ℓ,c := P(W (N)

c,1 = j) exp

(︃
−ℓNVN

DN

)︃
,

for all 0 < j ≤ ℓN and

p
(N)
0,ℓ,c := 1−

ℓN∑︂
j=1

p
(N)
j,ℓ,c.

Denote by Z
(N)

ℓ :=
(︁
Z

(N)

g,ℓ

)︁
g∈N0

with Z
(N)

g,ℓ :=
∑︁g
i=0 Z

(N)
i,ℓ , that is Z

(N)

g,ℓ gives the total size of Z
(N)
ℓ

accumulated till generation g.

Proposition 3.4.6. For any sequence (bN )N∈N introduce the stopping time

τZℓ

bN ,0
:= inf

{︂
g ∈ N0 : Z

(N)

g,ℓ ≥ bN or Z
(N)
g,ℓ = 0

}︂
.

Consider a sequence (ℓN )N∈N with ℓN = Nε for ε > 0 such that
ℓ7NVN log(log(N))

DN
∈ o(1). Then

lim
N→∞

P
(︂
J
(N)

g ≥ Z
(N)

g,ℓ ,∀g ≤ τZℓ

ℓN ,0

)︂
= 1. (3.4.4)

Proof. As in the proof of Proposition 3.4.3 in the scaling ℓ7NV
3
N/D

2
N = o(1) it is unlikely, that up

to the first generation, at which the total infection process reaches size ℓN , an infection occurs due
to more than a pair of parasites. Consequently for a coupling whp we can only focus on infections
generated by pairs of parasites, and do not need to treat infections generated by at least 3 parasites.
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Now consider a complete graph with exactly mN < ℓN infected vertices and with at most ℓN − 1
empty or infected vertices. The number of new infections generated on such a graph in the next
generation can be lower bounded by the number of infections arising in the following experiment:
Consider DN boxes and mNVN balls. Distribute the balls uniformly at random into the boxes.
Assume a new infection is created for each of the first DN − ℓN boxes that contains at least two
balls. Let AmN

be the number of infections generated in this experiment and let Bk
(N) be the

event that exactly k of the DN − ℓN first boxes contain exactly two balls and all other boxes have
at most one ball. We have

P
(︁
J (N)
g ≥ AmN

⃓⃓
J
(N)
g−1 = mN

)︁
= 1

and

P
(︁
AmN

= k
)︁
≥ P

(︁
B

(N)
k

)︁
.

We will show below that there exists a constant C1 > 0 such that for N large enough

⃓⃓⃓
P

(︂
B

(N)
k

)︂
−P

(︂
Z

(N)
g+1,ℓ = k

⃓⃓
Z

(N)
g,ℓ = mN

)︂⃓⃓⃓
≤
(︃
m2
NV

2
N

2DN

)︃k
1

k!
exp

(︃
−m

2
NV

2
N

2DN

)︃(︃
C1VN ℓ

4
N

DN

)︃
+
C1ℓ

6
NVN
DN

(3.4.5)

for any k with 0 ≤ k ≤ ℓN . Since

ℓN∑︂
k=0

(︃
m2
NV

2
N

2DN

)︃k
1

k!
exp

(︃
−m

2
NV

2
N

2DN

)︃(︃
C1VNℓ

4
N

DN

)︃
+
C1ℓ

7
NVN
DN

≤ 2C1ℓ
7
NVN

DN
→ 0

we can couple (by means of Lemma 3.6.3) the balls into boxes experiment with the lower DBPC

Z
(N)
ℓ , such that given that {Z(N)

g,ℓ = mN} the event B
(N)
k occurs whp, if {Z(N)

g+1,ℓ = k} for any k ∈
{0, ...ℓN} and vice-versa. We can repeat this argument till τZℓ

ℓN ,0
whp. Indeed, by Proposition 3.3.6

it exists C2 > 0 such that P
(︁
τZℓ

ℓN ,0
≤ C2 log(log(ℓN ))

)︁
→ 1, as by analogous arguments as in the

proof of Proposition 3.4.4 it can be shown that the first and second moments of Z
(N)
1,ℓ are uniformly

bounded in N . Since (︃
1− 2C1ℓ

7
NVN

DN

)︃C2 log log(ℓN )

→ 1

it follows that we can couple whp subsequently performed balls into boxes problems and Z
(N)
ℓ for

any generation g with g ≤ τZℓ

ℓN ,0
, which implies (3.4.4).

So to finish the proof it remains to show (3.4.5).

We start by controlling the probabilities of the events B
(N)
k . By Lemma 3.4.1 with D′N = DN ,

m′N = mN , ℓ′N = ℓN , V ′N = VN and h′N = ℓN we can estimate

P
(︁
B

(N)
k

)︁
≤
(︃
(mNVN )2

2DN

)︃k
1

k!
exp

(︃
− (mNVN − 2ℓN )2

2DN

)︃
exp

(︃
ℓ2NVN
DN

)︃
, (3.4.6)
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and

P (Bk) ≥ P(W (N)
B = k) exp

(︃
−ℓ

5
NV

3
N

D2
N

)︃
(3.4.7)

for a Poisson distributed random variable W
(N)
B with parameter (mNVN−2ℓN )2

2DN
and N large enough.

Next we control the transition probabilities of Z
(N)
ℓ . Consider independent random variables

(Xi
(N))i∈N and (Y

(N)
(i,j))i<j with probability weights p

(N)
ℓ,o and p

(N)
ℓ,c , respectively. We have

P
(︂
X

(N)
1 = 0

)︂
= 1−

ℓN∑︂
j=1

p
(N)
j,ℓ,o

= 1−
ℓN∑︂
j=1

exp

(︃
−ℓNVN

DN

)︃
P
(︂
W

(N)
o,1 = j

)︂

= 1 + exp

(︃
−ℓNVN

DN

)︃
exp(−uN )−

ℓN∑︂
j=0

exp

(︃
−ℓNVN

DN

)︃
P
(︂
W

(N)
o,1 = j

)︂
= exp

(︃
−ℓNVN

DN

)︃
exp(−uN ) + 1− exp

(︃
−ℓNVN

DN

)︃
+ exp

(︃
−ℓNVN

DN

)︃
P
(︂
W

(N)
o,1 ≥ ℓN + 1

)︂
.

We define the constant

c(N)
o :=1 + exp

(︁
− ℓNVN

DN

)︁(︁
P
(︁
W

(N)
o,1 ≥ ℓN + 1

)︁
− 1
)︁
.

We have P
(︁
W

(N)
o,1 ≥ ℓN + 1

)︁
∈ O

(︂
u
ℓN
N

(ℓN )!

)︂
, in particular c

(N)
o ∈ Θ

(︂
ℓNVN

DN

)︂
, where we used that

ℓN ∼ Nε, and thus
u
ℓN
N

(ℓN )! decays exponentially fast in N . Let us recall that by definition

P
(︂
X

(N)
i = k

)︂
= (uN )k

k! exp(−uN ) exp
(︂
− ℓNVN

DN

)︂
+ c(N)

o 1{k=0},

where 0 ≤ k ≤ ℓN . We see that for 0 ≤ ko ≤ ℓN it holds that

P

(︄
mN∑︂
i=1

X
(N)
i = ko

)︄
=

∑︂
k1,...,km:

k1+...+km=ko

mN∏︂
i=1

P
(︂
X

(N)
i = ki

)︂
.

This allows us to derive the lower and upper bound

P

(︄
mN∑︂
i=1

X
(N)
i = ko

)︄
≥ exp

(︃
−mN

ℓNVN
DN

)︃
P
(︂
W (N)
o,mN

= ko

)︂
, (3.4.8)

and

P

(︄
mN∑︂
i=1

X
(N)
i = ko

)︄
≤ exp

(︃
−mN

ℓNVN
DN

)︃
P
(︂
W (N)
o,mN

= ko

)︂
+mNc

(N)
o ,
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where W
(N)
o,mN ∼ Poi(mNuN ) and if k1 + ... + kmN

= ko, then the number of ki with ki = 0 is at
most mN .

Now we obtain analogously as before that

P
(︂
Y

(N)
1,2 = 0

)︂
= exp

(︃
−ℓNVN

DN

)︃
exp(−uN ) + c(N)

c

where the constant is defined as

c(N)
c := 1 + exp

(︃
−ℓNVN

DN

)︃(︂
P
(︂
Ỹ

(N) ≥ ℓN + 1
)︂
− 1
)︂
∈ Θ

(︃
ℓNVN
DN

)︃
,

with Ỹ
(N) ∼ Poi(2uN ). Similarly as before we arrive at the lower and upper bounds

P

⎛⎝ mN∑︂
i,j=1,i<j

Y
(N)
(i,j) = kc

⎞⎠ ≥ P
(︃
W

(N)

c,(mN
2 )

= kc

)︃
exp

(︃
−
(︃
mN

2

)︃
ℓNVN
DN

)︃
(3.4.9)

P

⎛⎝ mN∑︂
i,j=1,i<j

Y
(N)
(i,j) = kc

⎞⎠ ≤ P
(︃
W

(N)

c,(mN
2 )

= kc

)︃
exp

(︃
−
(︃
mN

2

)︃
ℓNVN
DN

)︃
+

(︃
mN

2

)︃
c(N)
c .

So in summary we have

P
(︂
Z

(N)
g+1,ℓ = k|Z(N)

g,ℓ = mN

)︂
= P

⎛⎝mN∑︂
i=1

X
(N)
i +

mN∑︂
i,j=1,i<j

Y
(N)
(i,j) = k

⎞⎠
=

∑︂
ko,kc:ko+kc=k,ko,kc≥0

P

(︄
mN∑︂
i=1

X
(N)
i = ko

)︄
P

⎛⎝ mN∑︂
i,j=1,i<j

Y
(N)
(i,j) = kc

⎞⎠
and hence using (3.4.8) and (3.4.9) for any 0 ≤ k ≤ ℓN we have for an appropriate constant C > 0

P(W (N)

o,m2
N
= k) exp

(︃
−m2

N

ℓNVN
DN

)︃
≤ P

(︂
Z

(N)
g+1,ℓ = k|Z(N)

g,ℓ = mN

)︂
(3.4.10)

≤ P(W (N)

o,m2
N
= k) exp

(︃
−m2

N

ℓNVN
DN

)︃
+ ℓ3Nc

(N)
c + ℓ2Nc

(N)
o + ℓ4Nc

(N)
c c(N)

o

≤ P(W (N)

o,m2
N
= k) exp

(︃
−m2

N

ℓNVN
DN

)︃
+
Cℓ6NVN
DN

.

Subtracting upper and lower, resp., bounds of the transition probabilities of Z
(N)
ℓ from the lower

and upper, resp. bounds of P(Bk) and taking the modulus yields (3.4.5). Indeed, by (3.4.7) and
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(3.4.10) and as we can estimate

P(W (N)
B = k) =

(︃
(mnVn − 2ℓN )2

k

)︃k
1

k!
exp

(︃
− (mNVN − 2ℓN )2

2DN

)︃
=
(︂m2

N (Vn − 2ℓN )2

2Dn

)︂k 1

k!
exp

(︄
− m2

N (Vn − 2ℓN )2

2DN

)︄(︃
1 +O

(︃
ℓ3NVN
DN

)︃)︃
= P(W

(N)

o,m2
N
= k)

(︃
1 +O

(︃
ℓ3NVN
DN

)︃)︃
,

we have for a constant C > 0 that may change from line to line

P(Z(N)
g+1,ℓ = k|Z(N)

g,ℓ = mN )− P(Bk)

≤ P(W (N)

o,m2
N
= k)

(︃
exp

(︃
−m2

N

ℓNVN
DN

)︃
− exp

(︃
− ℓ5NV

3
N

D2
N

)︃)︃
+
Cℓ6NVN
DN

≤
(︃
(mNVN )2

2DN

)︃k
1

k!
exp

(︃
− (mNVN )2

2DN

)︃
ℓ4NVN
DN

+
Cℓ6NVN
DN

since

exp

(︃
−m

2
N (VN − 2ℓN )2

2DN

)︃
≤ exp

(︃
−m

2
NV

2
N

2DN

)︃
exp

(︃
2m2

NℓNVN
DN

)︃
≤ exp

(︃
−m

2
NV

2
N

2DN

)︃(︃
1 +

ℓ4NVN
DN

)︃
for N large enough. Furthermore, we have that

P(W (N)

o,m2
N
= k) =

(︃
m2
N (VN − 2ℓN )2

2DN

)︃k
1

k!
exp

(︃
−m

2
N (VN − 2ℓN )2

2DN

)︃
≥
(︃
m2
NV

2
N

2DN

)︃k (︃
1− 2ℓN

VN

)︃2k
1

k!
exp

(︃
−m

2
N (VN − 2ℓN )2

2DN

)︃
≥
(︃
m2
NV

2
N

2DN

)︃k
1

k!
exp

(︃
−m

2
N (VN − 2ℓN )2

2DN

)︃
− Cℓ4NVN

DN
,

where we used again Bernoulli’s inequality in the second inequality. Now we have for N large
enough by (3.4.6) and (3.4.10)

P(Bk)− P(Z(N)
g+1,ℓ = k|Z(N)

g,ℓ = mN )

≤
(︃
m2
NV

2
N

2DN

)︃k
1

k!
exp

(︃
−m

2
N (VN − 2ℓN )2

2DN

)︃(︃
2ℓ2NVN
DN

+
6ℓ3NVN
DN

)︃
+
Cℓ6NVN
DN

≤
(︃
m2
NV

2
N

2DN

)︃k
1

k!
exp

(︃
−m

2
NV

2
N

2DN

)︃
7ℓ3NVN
DN

+
Cℓ6NVN
DN

.

This yields the claim.
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As a counterpart of Proposition 3.4.4, we show that the total size of the lower DBPC of Definition
3.4.5 reaches a level tending to infinity with asymptotically the survival probability of a DBPC whose

offspring and cooperation distributions are respectively Poi
(︁
a2

2

)︁
and Poi(a2) distributed.

Proposition 3.4.7. (Probability for the total size of the lower DBPC to reach a level bN ).
Consider a sequence (bN )N∈N with bN →

N→∞
∞ and the scaling VN ∼ a

√
DN . Then, we have

lim
N→∞

P
(︂
∃g ∈ N0 : Z

(N)

g,ℓ ≥ bN

)︂
= π(a).

Proof. This Proposition is shown by the same line of argument as Proposition 3.4.4, i.e. basically
one applies Lemma 3.3.7.

Final phase of an epidemic on a complete graph

In this subsection we are going to show that if the total size of the infection process reaches the
level Nε for ε > 0, then in a finite number of generations, all the hosts are killed. For that we will
intensively use the following Lemma. Recall that we consider DN ∈ Θ(Nβ) and VN ∼ a

√
DN .

Lemma 3.4.8. Let φ1(N), φ2(N) and φ3(N) such that it holds φi(N) = o(DN ) for i ∈ {1, 2} and
φ3(N) = o(VN ). Let 0 < ε < β/2 and H(N) such that Nε = o(H(N)) and H(N) = o(

√
DN ).

Consider the following experiment: Assume H(N)(VN −φ3(N)) balls are distributed uniformly into
DN − φ1(N) boxes. Denote by G(N) the number of boxes among the first DN − φ1(N) − φ2(N)
boxes that contain at least 2 balls. Then it holds:

(i) Define ℓ := inf
{︂
i ≥ 2 : H(N)i+1 = o

(︁√
DN

i−1)︂}︁
<∞. Let f1(N) such that log(H(N)VN ) =

o(f1(N)). Then we have

P
(︃
H2(N)

f1(N)
≤ G(N)

)︃
≥ 1−Θ

(︄
H(N)ℓ+1

√
DN

ℓ−1

)︄
. (3.4.11)

(ii) Let f2(N) → ∞. Then we have

P
(︂
G(N) ≤ H2(N)f2(N)

)︂
≥ 1−Θ

(︂
1

f2(N)

)︂
. (3.4.12)

A proof can be found in the supplementary material.
Now, we introduce for an arbitrary sequence (bN )N with bN → ∞ the stopping times

τJbN := inf
{︂
g ∈ N0 : J

(N)

g ≥ bN

}︂
, (3.4.13)

and

τJbN := inf
{︂
g ∈ N0 : J (N)

g ≥ bN

}︂
. (3.4.14)

Proposition 3.4.9. It holds

P
(︂
τJNε log−1(N) ≤ τJNε

⃓⃓)︂
→

N→∞
1.
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Proof. If for any generation before τJNε the number of infected vertices is strictly smaller than Nε

log(N)

then this would mean that the number of generations until the total size of the infection process
reaches the level Nε is at least log(N). But this contradicts the fact that it exists a constant C > 0
such that

P
(︂
τJNε ≤ C log(log(N))

⃓⃓
τJNε <∞

)︂
→ 1,

which follows from coupling from below with the DBPC of Definition 3.4.5 and Proposition 3.3.6.

Lemma 3.4.10. We have

P
(︂
J
(N)

τJ
Nε log−1(N)

≤ N2ε

log(N)

⃓⃓⃓
τJNε <∞

)︂
−→
N→∞

1.

Proof. By definition at generation τJ
Nε log−1(N)

the number of infected vertices is at least Nε

log(N) .

At generation τJ
Nε log−1(N)

− 1, whp we have J
(N)

τJ
Nε log−1(N)

−1 ≤ Nε because otherwise we have a

contradiction to Proposition 3.4.9. Then to bound from above the total number of infected vertices
up to generation τJ

Nε log−1(N)
, it suffices to estimate the number of infections generated within one

generation, when at the beginning of this generation at most Nε hosts are infected. This estimate
is obtained by an application of Lemma 3.4.8 with H(N) = Nε

log(N) , φ1(N) = Nε, φ2(N) = 0,

φ3(N) = 0, f2(N) = 1
2 log(N) and an arbitrary function f1 satisfying the condition of Lemma

3.4.8. Indeed, since before generation τ (N) the total number of parasites on the graph is at most
Nε

log(N)vN , the number of new infections generated is controlled from above using the previous
experiment.

Next choose 0 < ε < β
2 such that for all k ∈ N, 2kε ̸= β

2 . Then define k as the largest

k ∈ N satisfying 2k+1ε < β. In particular it holds 2k+1ε > β
2 because otherwise 2k+2ε < β which

contradicts the definition of k.

Lemma 3.4.11. Let k ∈ {0, . . . , k}. We have

P
(︂
J
(N)

τJ
Nε log−1(N)

+k
≥ N2kε

logαk(N)
, J

(N)

τJ
Nε log−1(N)

+k ≤ N2k+1ε

log(N)

⃓⃓⃓
τJNε <∞

)︂
→ 1,

where we set α0 := 1 and αk := 2αk−1 + 2 for all k ≥ 1.

Proof. We prove the claim via induction over k. For k = 0 the claim follows by Lemma 3.4.10.
Next we prove the claim for k + 1 assuming the claim holds for all 0 ≤ j ≤ k.

For the lower bound on the number of infected vertices at generation τJ
Nε log−1(N)

+k+1, Lemma 3.4.8

can be applied with H(N) = N2kε

logαk (N) , φ1(N) = 0, φ2(N) = N2k+1ε

log(N) , φ3(N) = 0, f1(N) = log2(N)

and an arbitrary function f2 with f2(N) → ∞, which yields that the number of infected vertices at

generation τJ
Nε log−1(N)

+ k + 1 is whp at least of order 1
log2(N)

(︂
N2kε

logαk (N)

)︂2
= N2k+1ε

logαk+1 (N)
.

Indeed by considering DN boxes we lower bound the probability for a parasite to attack an
occupied vertex, which is 1

DN−1 in the case of the complete graph. According to the induction
hypothesis we have considered whp by Lemma 3.4.8 the minimal number of parasites which is



3.4. INVASION ON A COMPLETE GRAPH 133

N2kε

logαk (N)VN . In the balls into boxes experiment new infections are (only) counted when reaching

one of the DN − N2k+1ε

log(N) first boxes whereas in the original process there are at least this number

of occupied vertices.

To arrive at the upper bound on the number of empty vertices, apply Lemma 3.4.8 with H(N) =
N2k+1ε

log(N) , φ1(N) = H(N), φ2(N) = 0, φ3(N) = 0, f2(N) = log(N) and an arbitrary function f1
that satisfies the conditions of Lemma 3.4.8, since in the previous upper bound the number of

empty vertices is bounded by N2k+1ε

log(N) . So according to Lemma 3.4.8 the number of empty vertices

at generation τJ
Nε log−1(N)

+ k + 1 is whp at most of order log(N)
(︂
N2k+1ε

log(N)

)︂2
= N2k+2ε

log(N) .

Applying Lemma 3.4.11 with k = k we obtain

P
(︂
J
(N)

τJ
Nε log−1(N)

+k
≥ N2kε

logαk(N)
, J

(N)

τJ
Nε log−1(N)

+k
≤ N2k+1ε

log(N)

⃓⃓⃓
τJNε <∞

)︂
→ 1.

Define δ = 1
2

(︂
2k+1ε− β

2

)︂
> 0. In the next Lemma we show that at generation k + 1 the number

of infected vertices is at least of order N
β
2 +δ.

Lemma 3.4.12. It holds

P
(︃
J
(N)

τJ
Nε log−1(N)

+k+1
≥ N

β
2 +δ

⃓⃓
τJNε <∞

)︃
→ 1.

Proof. Here we apply again Lemma 3.4.8 to obtain this lower bound. More precisely with the

following set of parameters: H(N) = N2kε

log
α
k (N)

, φ1(N) = 0, φ2(N) = N2k+1ε

log(N) , φ3(N) = 0, f1(N) =

log2(N) and an arbitrary function f2. We obtain that whp JτJ
Nε log−1(N)

+k+1 ≥ N2k+1ε

log
α
k+1 (N)

≥ N
β
2 +δ,

by definition of δ.

In the next lemma we show that in one more generation whp any vertex will be reached by at
least 2 parasites, in other words each of the remaining hosts gets infected whp.

Lemma 3.4.13. We have

P
(︃
J
(N)

τJ
Nε log−1(N)

+k+2
= DN

⃓⃓
τJNε <∞

)︃
→ 1.

Proof. We aim to show that all hosts that have not been infected so far, get infected whp in

generation τJ
Nε log−1(N)

+k+2. According to Lemma 3.4.12 we have whp J
(N)

τJ
Nε log−1(N)

+k+1
≥ N

β
2 +δ.

Hence we have whp at least mN := N
β
2 +δVN parasites that may infect the remaining hosts. So, the

probability that an up to generation τJ
Nε log−1(N)

+ k + 2 uninfected host gets attacked by at most

one of the mN parasites (and hence with high probability remains uninfected) can be estimated
from above by(︃

1− 1

DN − 1

)︃mN

+

(︃
1− 1

DN − 1

)︃mN−1 mN

DN − 1
= Θ

(︁
Nδ exp

(︁
−aNδ

)︁)︁
,
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because

mN

DN
=
Nβ/2+δVN

DN
∼ Nβ/2Nδa

√
DN

DN
= aNδ N

β/2

√
DN

= Θ(Nδ).

The number of uninfected hosts at the beginning of generation τJ
Nε log−1(N)

+ k + 2 is at most DN .

Consequently, the probability that at least one of these hosts remains uninfected till the end of
generation τJ

Nε log−1(N)
+ k + 2 can be estimated from above by a probability proportional to

DNN
δ exp

(︁
−aNδ

)︁
= o(1),

which yields the claim of Lemma 3.4.13.

3.4.3 Proof of Theorem 3.2.6 (ii)

Now we have all necessary ingredients to prove Theorem 3.2.6 (ii).
The first step is to show

lim sup
N→∞

P
(︁
F (N)
u

)︁
≤ π(a). (3.4.15)

For a sequence (ℓN )N∈N introduce the event

AℓN :=
{︂
∃g ∈ N0 : J

(N)

g ≥ ℓN

}︂
.

Then it follows that for all 0 < u ≤ 1 and any sequence ℓN ≤ uDN we have

P
(︁
F (N)
u

)︁
≤ P

(︁
AℓN

)︁
. (3.4.16)

Taking a sequence ℓN satisfying both ℓN → ∞ and
ℓ7NV

3
N

D2
N

∈ o(1) we have by Proposition 3.4.3

that
P
(︁
AℓN

)︁
≤ P

(︂
∃g ∈ N0 : Z

(N)

g,u ≥ ℓN

)︂
+ o(1). (3.4.17)

Proposition 3.4.4 gives that

lim
N→∞

P
(︂
∃g ∈ N0 : Z

(N)

g,u ≥ ℓN

)︂
= π(a). (3.4.18)

In summary combining (3.4.16), (3.4.17) and (3.4.18) gives exactly (3.4.15).

The second step is to show
lim inf
N→∞

P
(︁
F (N)
u

)︁
≥ π(a). (3.4.19)

Proposition 3.4.6 combined with Proposition 3.4.7 gives that

lim inf
N→∞

P
(︂
∃g ∈ N, J (N)

g ≥ Nε
)︂
≥ π(a), (3.4.20)

for ε > 0 small enough. Then Lemma 3.4.13 yields that conditioned on the event
{︁
∃g ∈ N, J (N)

g ≥
Nε
}︁
whp all the vertices on the graph finally get infected. Combined with (3.4.20) the claim of

(3.4.19) follows.
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3.4.4 Proof of Theorem 3.2.6(i)

In this subsection we prove Theorem 3.2.6 (i). Recall that in this case VN ∈ o(
√
DN ).

We initially start with one individual, i.e. J
(N)
0 = 1. We determine the probability that the

parasite population gets extinct after one generation. For that we consider the following experiment,
where we distribute uniformly at random and independently VN balls into DN − 1 boxes. The
probability of extinction after one generation is the same as the probability of the event that all
boxes contain at most one ball. Thus, we get that

P
(︁
J
(N)
1 = 0

)︁
=

VN−1∏︂
i=0

(︃
1− i

DN − 1

)︃
≥ exp

(︄
− 1

DN − 1

VN−1∑︂
i=0

i

)︄
≥ exp

(︃
− V 2

N

2(DN − 1)

)︃
.

We assumed that VN ∈ o(
√
DN ) which implies that

V 2
N

2(DN−1) → 0 as N → ∞, and thus the right

hand side converges to 1. On the other hand for any u ∈ (0, 1] an obvious upper bound for the

invasion probability is P
(︁
F

(N)
u

)︁
≤ 1− P

(︁
J
(N)
1 = 0

)︁
. This implies that

lim
N→∞

P
(︁
F (N)
u

)︁
≤ 1− lim

N→∞
P
(︁
J
(N)
1 = 0

)︁
= 0.

3.4.5 Proof of Theorem 3.2.6 (iii)

In this subsection we are going to prove Theorem 3.2.6 (iii). In this case
√
DN ∈ o(VN ). The

proof is based on a coupling from below of the total size of the infection process with the total

size of a Galton-Watson process whose offspring distribution is close to a Poi
(︁
a2

2

)︁
distribution until

a level Nα is reached, where 0 < α < β, or until the process dies out. This coupling is possible
for any a > 0 which yields that the total size of the infection process reaches the level Nα with
asymptotically probability 1. Then by choosing α > β/2 one shows that there exists a generation in
which there are at least N ˜︁α infected individuals, for some ˜︁α > β/2. In the subsequent generation,
all remaining hosts are infected, in the same manner as in Subsection 3.4.2.

We will show

lim
N→∞

P
(︂
∃g ∈ N0 : J

(N)

g = DN

)︂
= 1,

which yields the claim of Theorem 3.2.6 (iii).
Recall that we denoted in the setting of the complete graph the infected hosts by J (N).

Analogously as in the setting of the random geometric graph we denote by S(N) the uninfected
hosts and by R(N) the dead hosts. The first step is to couple

(︁
S(N),J (N),R(N)

)︁
to a process(︁ ˜︁S(N), ˜︁J (N), ˜︁R(N)

)︁
in which infections are only generated by pairs of parasites originating from the

same vertex, but not if a host gets infected only by parasites stemming from different vertices.
For every vertex x we only need to determine once to which neighbours the VN offspring parasites

move, since afterwards the vertex cannot be used anymore. We denote by H(N)
x ⊂ {1, . . . , DN}\{x}

the set of all vertices which are occupied by at least two or more of the VN offspring parasites
generated on x after their movement. With this we can build the coupling of the two processes step
by step. We consider for both processes the initial configuration where only vertex 1 is currently
infected and all other vertices are susceptible, i.e.(︁

S(N)
0 ,J (N)

0 ,R(N)
0

)︁
=
(︁ ˜︁S(N)

0 , ˜︁J (N)
0 , ˜︁R(N)

0

)︁
= ({2, . . . , DN} , {1}, ∅) .
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Then assume that we constructed the process until generation g ≥ 0. Then from g to g + 1 the
dynamics are as follows ˜︁J (N)

g+1 =
⋃︂

x∈ ˜︁J (N)
g

H(N)
x \(˜︁I(N)

g ∪ ˜︁R(N)
g ),

˜︁S(N)
g+1 = ˜︁S(N)

g \ ˜︁J (N)
g+1 and ˜︁R(N)

g+1 = ˜︁R(N)
g ∪ ˜︁J (N)

g .

In words every vertex y ∈ H(N)
x which is attacked by at least two parasites that are originating

from a single vertex x ∈ ˜︁J (N)
g is added to ˜︁J (N)

g+1 , except for vertices which were already attacked at

a previous generation, i.e. y ∈ ˜︁J (N)
g ∪ ˜︁R(N)

g . Furthermore, all previously infected hosts ˜︁J (N)
g are

declared as removed and all vertices which were infected in this generation ˜︁J (N)
g+1 are removed from

the set of susceptible vertices.
In the process

(︁
S(N),J (N),R(N)

)︁
cooperation from different infected vertices for the spread of

the epidemic is allowed. Since we defined movement of parasites independent from the generation
at which vertices get infected, we have by construction that˜︁J (N)

g ∪ ˜︁R(N)
g ⊂ J (N)

g ∪R(N)
g ,∀g ∈ N0, (3.4.21)

almost surely. As by cooperation only more infections are generated, it is not possible that a vertex
x which is susceptible for both processes at a generation g gets infected at generation g+ 1 for the
process

(︁ ˜︁S(N), ˜︁J (N), ˜︁R(N)
)︁
but not for the process

(︁
S(N),J (N),R(N)

)︁
.

The infection process
(︁ ˜︁S(N), ˜︁J (N), ˜︁R(N)

)︁
is monotone with respect to the parameter VN , in con-

trast to the original process
(︁
S(N),J (N),R(N)

)︁
. Now let a > 0 and consider V

(a)
N = a

√
DN as well

as
(︁ ˜︁S(N,a), ˜︁J (N,a), ˜︁R(N,a)

)︁
to be the analogously defined infection process. Infections are only gen-

erated by pairs of parasites originating from the same vertex as well as the number of parasites gen-

erated at an infection event is V
(a)
N . Since we assume that DN ∈ o(V 2

N ) it follows for N large enough

that V
(a)
N ≤ VN . Thus, by monotonicity it follows that we can couple

(︁ ˜︁S(N,a), ˜︁J (N,a), ˜︁R(N,a)
)︁
and(︁ ˜︁S(N), ˜︁J (N), ˜︁R(N)

)︁
, such that ⃓⃓⃓ ˜︁R(N,a)

g ∪ ˜︁J (N,a)
g

⃓⃓⃓
≤
⃓⃓⃓ ˜︁R(N)

g ∪ ˜︁J (N)
g

⃓⃓⃓
. (3.4.22)

For the sequence of processes
(︁ ˜︁S(N,a), ˜︁J (N,a), ˜︁R(N,a)

)︁
we can show (by a coupling with Galton-

Watson processes) that the probability to infect eventually Nα host is asymptotically lower bounded

by the survival probability φa of a Galton-Watson process with Poi
(︁
a2

2

)︁
offspring distribution. The

proof of this statement can be found in the proof of Lemma 3.6.4, where this statement is formulated,
in the supplementary material (since it can be shown by very similar arguments that have been
used to show Proposition 4.7 combined with Lemma 3.7) in [1].

Because this result is true for any a > 0, taking the limit when a goes to ∞ gives, together with
(3.4.22) and (3.4.21),

lim
N→∞

P
(︂
∃g ∈ N0 : J

(N)

g ≥ Nα
)︂
= 1. (3.4.23)

Now let β
2 < α < β and recall the definition of the stopping times defined in (3.4.13) and (3.4.14).

Then one can show as in Proposition 3.4.9 that

P
(︂
τJNα log−2(N) ≤ τJNα

⃓⃓
τJNα <∞

)︂
→ 1.
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Indeed, if for any generation before τJNα the number of infected vertices is strictly smaller than
Nα

log2(N)
then this means that the number of generations to reach the level Nα for the total size of

the infection process is at least log2(N). But this is in contradiction with the couplings of (3.4.21)
and (3.6.13) and Lemma 5.5 from [1].
Then using a similar approach as in the proof of Lemma 3.4.13, one shows that

P
(︃
J
(N)

τJ
Nα log−2(N)+1

= DN

⃓⃓
τJNα <∞

)︃
→ 1. (3.4.24)

Finally combining (3.4.23) and (3.4.24) it follows that

P
(︂
∃g ∈ N0 : J

(N)

g = DN

)︂
→ 1,

which completes the proof.

3.5 Invasion on a random geometric graph

Let us recall the setting of Theorem 3.2.4. Recall that we denote by G(N) = (V(N), E(N)) a random
geometric graph, where the vertices are given by a homogeneous Poisson point process on [0, 1]n with

intensity measure Nλn( · ) and vertices share an edge if they are at a distance less than rN = 1
2N

β−1
n

apart. Thus, every vertex (sufficiently far from the boundary) has on average dN = Nβ direct
neighbours. In case of an host infection vN parasites are generated. We denote the hosts which

were infected in generation g by I(N)
g ⊂ V(N), the number of infected hosts in generation g by

Ig = I
(N)
g and the total number until generation g by Ig = I

(N)

g .
Before we start to study the behaviour of the host-parasite infection, we show some properties

of G(N), which we will need in the subsequent section. We show that G(N) is whp connected and is
fairly dense in the sense that the number of vertices contained in every ball of radius rN is of order
Nβ . We denote by Br(x) the ball of radius r around x ∈ [0, 1]n with respect to the maximum norm
ρ.

Lemma 3.5.1. Let 0 < α ≤ β, γ ∈
(︁

2
n+2α, α

)︁
and δ ∈ (0, 1].

1. The graph G(N) = (V(N), E(N)) is connected whp as N → ∞.

2. Set εN = εN (α) := 1
2N

α−1
n and Volx(δεN ) := vol(BδεN (x) ∩ [0, 1]n) ∈ Θ(Nα−1) and

UN (α) :=
{︂⃓⃓
|V(N) ∩BδεN (x)| −NVolx(δεN )

⃓⃓
≤ δn−1(n+ 1)N

(n−1)α+γ
n ∀x ∈ [0, 1]

}︂
. (3.5.1)

It holds that limN→∞ P (UN (α)) = 1.

Proof of Lemma 3.5.1. Choose 0 < γ < β and 0 < ε < γ/2. The idea of the proof is to define
disjoint balls K(l) for l = (l1, . . . , ln) ∈ Nn with side length N (γ−1)/n which cover the whole unit
ball, i.e. [0, 1]n ⊂ ⋃︁K(l). In the second step we gain control on the asymptotic number of Poisson
points contained in every ball simultaneously, i.e. we will show with the help of Lemma 3.6.6 that
every ball contains Nγ±Nγ/2+ε many points with high probability. A technical problem is that we
defined our Poisson point set V(N) only on [0, 1]n. Not for every N are we able to perfectly cover
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the unit ball with our balls K(l) such that [0, 1]n =
⋃︁
K(l). Thus, we need to extend our Poisson

point set. This can be easily done by sampling independent Poisson points with intensity measure
Ndx on [0, 2]n\[0, 1]n. We denote this Poisson point set by V ′N . Now we set V ′′N := V(N) ∪ V ′N , so
V ′′N is a Poisson point set on [0, 2]n with intensity measure Ndx.

Let us set M :=
{︂
0, . . . ,

⌈︁
N

1−γ
n

⌉︁}︂n
and M :=

{︂
0, . . . ,

⌊︁
N

1−γ
n

⌋︁}︂n
. Define balls of edge length

N
γ−1
n by setting K(l) := [0, N

γ−1
n )n +N

γ−1
n l, where l ∈M . Set k := |M | and k := |M |. For these

balls we have ⋃︂
l∈M

K(l) ⊂ [0, 1]n ⊂
⋃︂
l∈M

K(l).

Set XN := |K(0) ∩ V ′′N |, where 0 = (0, . . . , 0) ∈ Rn then

P
(︂ ⋂︂
l∈M

{Nγ −N
γ
2 +ε ≤ |B(l) ∩ V ′′N | ≤ Nγ +N

γ
2 +ε}

)︂
= P

(︂
N−

γ
2−ε |XN −Nγ | ≤ 1

)︂k
.

According to Lemma 3.6.6, where we control the size of Poisson random variables via moderate
deviations,

lim
n→∞

− 2

N2ε
log
(︁
P
(︁
N−

γ
2−ε|XN −Nγ | > 1

)︁)︁
= 1.

This implies that

log
(︁
P
(︁
N−

γ
2−ε|XN −Nγ | > 1

)︁)︁
= −N

2ε

2
(1 + h(N2ε))

where h(x) ∈ o(1) as x→ ∞. Since k = ⌈N 1−γ
n ⌉n with Bernoulli’s inequality

(︂
1− P

(︁
N−

γ
2−ε|XN −Nγ | > 1

)︁)︂k
≥ 1−

⌈︁
N

1−γ
n

⌉︁n
exp

(︁
− N2ε

2
(1 + h(N2ε))

)︁
→ 1

as N → ∞. Thus, we have shown that all balls (K(l))l∈M simultaneously contain with high

probability Nγ ±N
γ
2 +ε many Poisson points as N → ∞.

1. The first claim is a direct consequence of what we just showed. Let l ∈M , and consider a ball
K(l) ⊂ [0, 1]n, then it follows that every vertex x ∈ V(N) contained in K(l) is connected to
every other vertex contained in the same ballK(l) since γ < β. This means that the vertices in
a ball K(l) form a complete graph for every l ∈M . Furthermore, for N large enough it holds

that 2N
γ−1
n < N

β−1
n , and thus every vertex contained in a ball K(l) is connected to every

vertex contained in all adjacent balls K(l′). Thus, we have shown that the random geometric
graph with vertex set V(N) ∩⋃︁l∈M K(l) forms a connected graph with high probability.

It remains to argue that every vertex x ∈ V(N) ∩ [0, 1]n\⋃︁l∈M K(l) is connected to its neigh-

bouring ball. Since γ < β it holds BrN (x) ∩ ⋃︁l∈M K(l) ̸= ∅ for a vertex x ∈ V(N) ∩
[0, 1]n\⋃︁l∈M K(l). Hence, for N large enough these vertices are connected to its closest

ball K(l) with high probability, since with high probability every ball K(l) is non-empty for
N → ∞.
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2. Now we consider the hyperrectangle BδεN (x)∩ [0, 1], where x ∈ [0, 1]n, and we denote its edge

lengths by (κi)1≤i≤n. Note that δ
2N

1−α
n ≤ κi ≤ δN

1−α
n , and thus it holds for the volume

( δ2 )
nN1−α ≤ Volx(δεN ) ≤ δnN1−α.

Furthermore, the set BδεN (x)∩ [0, 1], contains at least
∏︁n
i=1

⌊︁
κiN

1−γ
n

⌋︁n
many balls with edge

lengthN
1−γ
n . This means that whp the setBδεN (x)∩[0, 1] contains at least

(︁∏︁n
i=1

⌊︁
κiN

1−γ
n

⌋︁n)︁
(Nγ−

N
γ
2 +ε) many vertices.

n∏︂
i=1

⌊︁
κiN

1−γ
n

⌋︁n
(Nγ −N

γ
2 +ε) ≥

n∏︂
i=1

(︁
κiN

1−γ
n − 1

)︁
(Nγ −N

γ
2 +ε)

≥ NVolx(δεN )− δn−1nN
(n−1)α+γ

n +R−(N),

where R−(N) = −δnNα− γ
2 +ε + o(Nα− γ

2 +ε). Note that we used that κi ≤ δN
1−α
n and that

Volx(δεN ) is of order N1−α. Since it holds

α− γ

2
<

(n− 1)α+ γ

n
⇐⇒ 2

(n+ 2)
α ≤ γ

for all n ≥ 1 we can choose ε small enough such that R−(N) consists only of lower order terms
with the leading order term having a negative sign. This means that for N large enough it
follows that

n∏︂
i=1

⌊︁
κiN

1−γ
n

⌋︁n
(Nγ −N

γ
2 +ε) ≥ NVolx(δεN )− δn−1(n+ 1)Nα− γ

2 +ε. (3.5.2)

On the other hand BδεN (x)∩ [0, 1] can be covered by
∏︁n
i=1

(︁⌊︁
κiN

1−γ
n

⌋︁
+1
)︁
many balls. Thus,

we obtain similarly as before that

n∏︂
i=1

(︁⌊︁
κiN

1−γ
n

⌋︁
+ 1
)︁
(Nγ +N

γ
2 +ε) ≤ NVolx(δεN ) + δn−1nN

(n−1)α+γ
n +R+(N),

where R+(N) = δnNα− γ
2 +ε + o(Nα− γ

2 +ε) and we used one more time that κi ≤ δN
1−α
n and

that Volx(δεN ) is of order N1−α. Again for N large enough we get that

n∏︂
i=1

(︁⌊︁
κiN

1−γ
n

⌋︁
+ 1
)︁
(Nγ +N

γ
2 +ε) ≤ δnNVolx(δεN ) + δn−1(n+ 1)N

(n−1)α+γ
n . (3.5.3)

Now (3.5.2) and (3.5.3) imply that⃓⃓
|V(N) ∩BδεN (x)| −NVolx(δεN )

⃓⃓
≤ δn−1(n+ 1)N

(n−1)α+γ
n .

Remark 3.5.2. Under the event UN (α) the graph G(N) is connected.
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Remark 3.5.3. The optimal choice of γ to minimize the order of the error term is to choose γ
close to 2

2+nα, which leads to an order close to

(n− 1)α+ γ

n
=
(︂n+ 1

n+ 2

)︂
α.

But the result of Lemma 3.5.1 does not allow for this choice. Thus, one reasonable choice would
for example be

γ =
3

3 + n
α >

2

2 + n
α,

then we get that the order of the error term is

(n− 1)α+ γ

n
=
(︂n+ 2

n+ 3

)︂
α,

which yields for n = 1 the value 3
4α.

For our approach we need a quite subtle control of the number of hosts on two different spatial
scales. To be precise we need to have control on how many hosts an arbitrary ball of radius

εN (β2 + ξ) = 1
2N

β/2+ξ−1
n has, where ξ ∈ (0, β4 ), as well as on how many hosts a ball of radius 1

2rN
contains. The need for this will only become apparent in Lemma 3.5.15.

Thus, we only consider realisations of the graph G(N) which are contained in the event UN (β/2+
ξ) which was defined in Lemma 3.5.1. Note that we will use the choice of γ discussed in Remark 3.5.3,
that is γ = 3

3+nα. Since Lemma 3.5.1 yields that P(UN (β/2 + ξ)) → 1 as N → ∞ this is justified.
For these realisations we know that for every x ∈ [εN , 1− εN ]n we have that

⃓⃓
|V(N) ∩BεN (x)| −N

β
2 +ξ
⃓⃓
≤ (n+ 1)N

n+2
n+3

(︁
β
2 +ξ
)︁
.

Thus, we have control on the number of vertices on fairly fine spatial scale. This allows us to
gain control on a courser scale as well. By calculations similar as (3.5.2) and (3.5.3) in the proof
of Lemma 3.5.1 one can show that there exist C(n) > 0 and c(n) ∈ (0, 1) such that for all x ∈
[ rN2 , 1− rN

2 ]n it holds that⃓⃓
|V(N) ∩B2−1rN (x)| − 2−nNβ

⃓⃓
≤ C(n)N c(n)β .

Remark 3.5.4. A precise calculation would yield that the two constants are explicitly given by

C(n) = 2−(n−1)(n+ 2) and c(n) =
(2n+ 5)

2(n+ 3)
.

One can see that the error for the courser scale would be better by a direct application of Lemma 3.5.1,
but this would not give us the control on both spatial scales simultaneously.

In Subsections 3.5.1 and 3.5.2 we lay the groundwork to show Theorem 3.2.4 1) (ii) and 2), and
thus we consider the critical scaling vN ∼ a

√
dN in these subsections.
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3.5.1 Upper bound on the invasion probability

To derive an upper bound on the invasion probability we couple whp the total number of (currently
and previously) infected hosts from above with the total size of a DBPC whose offspring and
cooperation laws are approximately Poisson distributed until the DBPC dies out or reaches at least
the level ℓN , for a well chosen ℓN .

Let

δN,ℓ := Nβ −Nβ−ε′ , (3.5.4)

δN,u := Nβ +Nβ−ε′ (3.5.5)

for some 0 < ε′ < β. According to Lemma 3.5.1 whp every ball of radius rN fully contained in
[0, 1]n contains at least δN,ℓ and at most δN,u vertices x ∈ V(N).

Definition 3.5.5. (Upper DBPC)

Let ℓN →
N→∞

∞ satisfying ℓN ∈ o(log logN). Let Z
(N)
u =

(︂
Z

(N)
g,u

)︂
g∈N0

be a branching process with

cooperation with Z
(N)
0,u = 1 almost surely, and offspring and cooperation distributions with probability

weights p
(N)
u,o =

(︂
p
(N)
j,u,o

)︂
j∈N0

and p
(N)
u,c =

(︂
p
(N)
j,u,c

)︂
j∈N0

, respectively with

p
(N)
j,u,o :=

(︃
(vN − ℓ2N )2

2δN,u

(︃
1− 3N−ε

′ − 2ℓN ℓ2N
δN,ℓ

)︃)︃j
1

j!
exp

(︃
− v2N
2δN,u

)︃
for all 0 ≤ j ≤ ℓN and

p
(N)
ℓN+1,u,o := 1−

ℓN∑︂
j=0

p
(N)
j,u,o,

as well as

p
(N)
j,u,c :=

(︃
(vN − ℓ2N )2

δN,u

(︃
1− 3N−ε

′ − 2ℓN ℓ2N
δN,ℓ

)︃)︃j
1

j!
exp

(︃
− v2N
δN,u

)︃
for all 0 ≤ j ≤ ℓN and

p
(N)
ℓN+1,u,c := 1−

ℓN∑︂
j=0

p
(N)
j,u,c.

Denote by Z
(N)

u :=
(︂
Z

(N)

g,u

)︂
g∈N0

where Z
(N)

g,u :=
∑︁g
i=0 Z

(N)
i,u , that is Z

(N)

g,u gives the total size of Z
(N)
u

accumulated till generation g.

Proposition 3.5.6. (Probability that the total size of the upper DBPC reaches a level bN ).
Consider a sequence (bN )N∈N with bN →

N→∞
∞ and assume that vN ∼ a

√
dN for 0 < a < ∞.

Then, we have

lim
N→∞

P
(︂
∃g ∈ N0 : Z

(N)

g,u ≥ bN

)︂
= π(a).

Proof. This proposition is shown by the same line of argument as Proposition 3.4.4, i.e. basically
one applies Lemma 3.3.7.
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Proposition 3.5.7. Consider a sequence (ℓN )N∈N fulfilling ℓN →
N→∞

∞ and ℓN ∈ o(log log(N)).

Introduce the stopping time

τZu

ℓN ,0
:= inf

{︂
g ∈ N0 : Z

(N)

g,u ≥ ℓN or Z(N)
g,u = 0

}︂
.

Then
lim
N→∞

P
(︂
I
(N)

g ≤ Z
(N)

g,u ,∀g < τZu

ℓN ,0

)︂
= 1

and

lim
N→∞

P
(︃
I
(N)

τZu
ℓN ,0

= 0
⃓⃓⃓
Z

(N)

τZu
ℓN ,0

= 0

)︃
= 1.

Proof. For the proof we couple the infection process with another model, that uses the same infection
rules but assumes that every generation empty vertices are reoccupied by an host. This increases
only the number of infections when one assumes (as we will do here) that the movement of the

parasites is independent of the generation in which they are generated. Denote by Ĩ
(N)

= (Ĩ
(N)

g )g∈N0

the corresponding process that counts the number of infections generated in this modified model.

We have I
(N)
g ≤ Ĩ

(N)

g for all g ∈ N0 a.s. Next we show that Ĩ
(N)

g ≤ Z
(N)
g,u whp for all g < τZu

ℓN ,0
. We

say that in generation g we have k Ĩ
(N)

infections, if Ĩ
(N)

g = k and we say that in generation g we

have k Z
(N)
u infections, if Z

(N)
g,u = k. Start with generation g = 0. Since initially only a single vertex

is infected, in the first generation only CoSame infections are possible. As in [1] we can couple Ĩ
(N)

1

with Z
(N)
1,u , such that P

(︂
Ĩ
(N)

1 ≤ Z
(N)
1,u

)︂
= 1 for N large enough, see Proposition 3.5 in [1]. Next we

proceed iteratively. Assume in generation g m = mN < ℓN vertices are Ĩ
(N)

-infected. If m = 1
we can use the coupling as in generation 0 and add independently additional CoSame and CoDiff

infections according to the DBPC distribution in Z
(N)
u , if Z

(N)
1,u > 1.

If m > 1, let w1, ..., wm be the infected vertices and denote by Di the set and by Di the number
of vertices in the ball of radius rN around vertex wi for i = 1, ...,m. For y ∈ {0, 1}m denote by Dy
the set and by Dy the number of vertices that are contained in the balls that are centered around
vertices wj , j ∈ {1, ...,m} which have a 1 at the j-th position of the vector y and are not contained
in the other balls. So for example for m = 3 D001 gives the number of vertices that are contained
only in the ball around vertex w3, but not in the balls centered around vertices w1 and w2.

For a vector x = (x1, ..., xm, x1,2, x1,3, ..., xm−1,m) ∈ Nm+(m2 ) denote by Ex the event that in the
next generation xi CoSame infections occur caused by exactly two parasites generated on vertex
wi for i = 1, ...,m, xi,j Codiff infections occur caused by exactly two parasites being generated on
vertex wi and vertex wj for i, j ∈ {1, ...,m} with i < j and all other vertices get attacked by at
most one parasite.

To determine the probability of the event Ex we distinguish different cases. Let for y ∈ {0, 1}m
denote by xoy,i the number of CoSame infections caused by parasites generated on vertex wi attacking
vertices in Dy as well as by xcy,i,j the number of CoDiff infections generated by parasites from vertices
wi and wj that are attacking vertices in Dy as well as by xri,j the number of parasites originating

from vertex wj and attacking a vertex without any other parasite in Di. The probability of Ex is
given by the sum of the probabilities of infection patterns corresponding to vectors (xoy,i)y, (x

c
y,i,j)y

and (xri,j)i>j with
∑︁
y x

o
y,i = xi where x

o
y,i = 0 if the ith coordinate of y is 0, and

∑︁
y x

c
y,i,j = xi,j

where xcy,i,j = 0, if the ith or jth coordinate of y is 0, such that Dy > xy with xy =
∑︁
i x

o
y,i +
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∑︁m−1
i=1

∑︁m
j=i+1 x

c
y,i,j for all y ∈ {0, 1}m. The probability of an infection pattern according to

the vectors xo = (xoy,i)y,i and xc = (xcy,i,j)y,i,j is given by the product of the three factors po =
po(x

o, xc), pc = pc(x
o, xc) and pr = pr(x

o, xc) representing the CoSame, CoDiff and single infections
with

po =

m∏︂
i=1

(︃
vN
2

)︃
· · ·
(︃
vN − 2 (xi − 1)

2

)︃
1

D2xi
i

∏︂
y

(Dy − xy,i)!

(Dy − xy,i − xoy,i)!

1

xoy,i!

where xy,i =
∑︁i−1
j=1 x

o
y,j . The factor

(︁
vN
2

)︁
· · ·
(︁
vN−2(xi−1)

2

)︁
gives the number of possibilities to choose

xi pairs of parasites from the vN parasites generated on vertex wi, for i = 1, ...,m,
(Dy−xy,i)!

(Dy−xy,i−xo
y,i)!

1
xo
y,i!

gives the number of possibilities to choose for xoy,i pairs of parasites a location in Dy, when we

already distributed the pairs of parasites generated on vertices wj for j = 1, ..., i − 1 on Dy.
1

D
2xi
i

is the probability to place the pairs of parasites exactly on these locations in Dy.

pc =

m∏︂
i=1

m∏︂
j=i+1

(vN − x1,i,j)!

(vN − x1,i,j − xi,j)!

(vN − x2,i,j)!

(vN − x2,i,j − xi,j)!

·
∏︂
y

(Dy − xy,i,j)!

(Dy − xy,i,j − xcy,i,j)!

(︃
1

DiDj

)︃xc
y,i,j 1

(xcy,i,j)!

with x1,i,j = 2xi+
∑︁j−1
ℓ=i+1 xi,ℓ and x2,i,j = 2xj+

∑︁i−1
ℓ=1 xℓ,j , xy,i,j =

∑︁m
k=1 x

o
y,k+

∑︁i−1
k=1

∑︁m
ℓ=k+1 x

c
y,k,ℓ+∑︁j−1

k=i+1 x
c
y,i,k. The factor

(vN−x1,i,j)!

(vN−x1,i,j−xi,j)!
gives the number of possibilities to choose xi,j parasites

from the parasites generated on vertex wi, when the parasites for the CoSame infections as well as
the parasites for the CoDiff infections of the vertex pairs (wi, wi+1), · · · , (wi, wj−1) have already

been determined. The factor
(Dy−xy,i,j)!

(Dy−xy,i,j−xc
y,i,j)!

1
(xc

y,i,j)!
gives the number of possibilities to choose in

Dy the xcy,i,j locations for the pairs of parasites generating a CoDiff infection from vertex wi and
wj , when the locations for the CoSame infections as well as for the CoDiff infections of vertex pairs

(w1, w2), · · · , (wi, wj−1) have already been determined. Finally, the factor
(︂

1
Di

)︂xc
y,i,j

(︂
1
Dj

)︂xc
y,i,j

is

the probability to place the pairs of parasites generating the CoDiff infections on exactly these
locations.

pr =

m∏︂
i=1

Di − xi −
∑︁i−1
j=1 xj,i −

∑︁m
j=i+1 xi,j −

∑︁i−1
j=1 x

r
i,j

Di
· · ·

Di + xi −
∑︁i−1
j=1 x

r
i,j − vN + 1

Di
.

pr is the probability to place the remaining parasites all onto different vertices.
To analyse the above probabilities, consider only configurations (xoy,i)y,i, (x

c
y,i,j)y,i,j with positive

entries for vectors y for which 1/Dy ∈ o(1/(dN )1−ε
′
) and only values xi, xi,j ≤ ℓN , because the sum

of the remaining probabilities is O(d−ε
′

N ). Under this assumption we can estimate

po ≥
m∏︂
i=1

∏︂
y

(︃
(vN − ℓ2N )2

2δN,u

Dy − ℓ2N
δN,u

)︃xo
y,i 1

xoy,i!
. (3.5.6)
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Then by setting tyN =
(vN−ℓ2N )2

2δN,u

Dy−ℓ2N
δN,u

we can write

(3.5.6) =

m∏︂
i=1

∏︂
y

(︃
(vN − ℓ2N )2

2δN,u

Dy − ℓ2N
δN,u

)︃xo
y,i 1

xoy,i!

=

m∏︂
i=1

∏︂
y

(tyN )x
o
y,i

1

xoy,i!
exp(−tyN ) exp(tyN )

=

m∏︂
i=1

⎛⎝ ∏︂
y:xo

y,i ̸=0

(tyN )
xo
y,i

1

xoy,i!
exp(−tyN )

⎞⎠⎛⎝ ∏︂
y:xo

y,i ̸=0

exp(tyN )

⎞⎠
≥

m∏︂
i=1

P(Yi = xi) exp(aN,i),

for Poi(aN,i) distributed random variables Yi with

aN,i =
(vN − ℓ2N )2

2δN,u

(︄∑︁
y:xo

y,i ̸=0(Dy − ℓ2N )

δN,u

)︄
.

By assumption
∑︁
y:xo

y,i ̸=0Dy ∈ [Nβ−2Nβ−ε′ , Nβ+Nβ−ε′ ] and so aN,i ≥ (vN−ℓ2N )2

2δN,u

(︂
1− 3N−ε

′ − 2ℓN ℓ2N
δN,u

)︂
=:

aN . Consequently, we have (3.5.6) ≥∏︁m
i=1 P(Yi = xi) exp(aN ).

Similarly, we have

pc ≥
m∏︂
i=1

m∏︂
j=i+1

(vN − ℓ2N )2xi,j

∏︂
y:xc

y,i,j ̸=0

(︃
Dy − ℓ2N
δN,u

)︃xc
y,i,j

(︃
1

δN,u

)︃xc
y,i,j 1

xcy,i,j !

≥
m∏︂
i=1

m∏︂
j=i+1

P(Yi,j = xi,j) exp(2aN )

with Yi,j ∼ Poi(2aN,i,j) and

aN,i,j =
(vN − ℓ2N )2

2δN,u

(︄∑︁
y:xc

y,i,j ̸=0(Dy − ℓ2N )

δN,u

)︄
.

Furthermore pr ≥ exp
(︁
−m2aN

)︁
for N large enough, since m ≥ 2. Consequently, we have

P(Ex) ≥
m∏︂
i=1

P(Yi = xi)

m∏︂
k=1

m∏︂
ℓ=k+1

P(Yk,ℓ = xk,ℓ).

Since the random variables Yi and Yk,ℓ have finite moments, we can control (e.g. with Markov’s
inequality) the probability P

(︁⋃︁
x,x≤ℓN Ex

)︁
by

P

⎛⎝ ⋃︂
x,x≤ℓN

Ex

⎞⎠ = 1− o

(︃
1

ℓN

)︃
,
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where we write x ≤ ℓN , if xi ≤ ℓN and xi,j ≤ ℓN for all i, j ∈ {1, ...,m} with j > i.
Since

exp

(︃
− v2N
2δN,u

)︃
≤ min

i,k,ℓ
{exp(−aN,i), exp(−aN,k,ℓ)},

we have for any 0 ≤ k ≤ ℓN

P
(︂
Z(N)
g,u = k

⃓⃓
Z

(N)
g−1,u = m

)︂
≤

∑︂
x∈Nm+(m2 ):∑︁m

i=1 xi+
∑︁m

i,j=1,i<j xi,j=k

P(Ex)

and hence, we can couple the processes (Ĩg) and (Zg,u)g such that Ĩg ≤ Zg,u whp for any g ≤ τZu

ℓN ,0
,

since whp τZu

ℓN ,0
≤ C log(log(ℓN )) by Proposition 3.3.6.

3.5.2 Lower bound on the invasion probability

Establishing invasion

In this section we show that in the random geometric graph the level Nε is reached with at least
the probability with which a well chosen lower DBPC reaches this level for some 0 < ε < β/4.

Let us recall the complete neighbourhood C(x) of a vertex x ∈ [0, 1]n, which we already intro-
duced in words in Subsection 3.2.2. To be precise

C(x) = C(N)(x) :=
{︁
y ∈ V(N) : d(x, y) ≤ rN

2

}︁
⊂ V(N),

i.e. the set C(x) contains all vertices of the graph G(N) lying in BrN/2(x)∩ [0, 1]n. We call this subset

a complete neighbourhood, since it forms a complete graph as a subgraph of G(N). Furthermore,
recall that we denote by xc the center of [0, 1]n and by x0 ∈ V(N) the vertex with the smallest
distance to xc. We assumed that x0 is the vertex that gets infected first, i.e. I0 = {x0}.

As already mentioned before we will only consider realisations of the underlying graph G(N)

contained in the event UN (β/2 + ξ) (see Equation (3.5.1) for a definition of UN ). Note these
realisations are in particular connected. Furthermore every complete neighbourhood C(x) contains
whp at least Nβ

2n −C(n)N c(n)β and at most Nβ

2n +C(n)N c(n)β vertices for x ∈
[︁
rN
2 , 1− rN

2

]︁n
. Since

P(UN (β/2 + ξ)) → 1 as N → ∞ we will condition on this event and introduce the notation

˜︁PN ( · ) := P( · | UN (β/2 + ξ)).

Now we analyse the probability of infecting at least Nε hosts by studying the infection process
in the complete neighbourhood C(xc) around the center point. Since we condition on UN (β/2 + ξ)
the set C(xc) contains in particular the initially infected host x0.

Definition 3.5.8. (Subinfection process) The subinfection process H(N) = (H(N)
g )g≥0 on the com-

plete neighbourhood C(xc) of xc is defined as follows.

We set H(N)
0 = {x0} ∩ C(xc) ⊂ I(N)

0 . Assume the process is defined up to generation g ≥ 0,

then conditional on σ(S(N)
m , I(N)

m ,R(N)
m ,H(N)

m : m ≤ g) set H(N)
g+1 ⊂ I(N)

g+1 to be the set of all infected

hosts contained in C(xc) generated by previously infected hosts x ∈ H(N)
g . We set H

(N)
g := |H(N)

g |
for all g ≥ 0.
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For any sequence (bN )N∈N define

τ IbN := inf
{︂
g ∈ N : I(N)

g ≥ bN

}︂
,

τ IbN := inf
{︂
g ∈ N : I

(N)

g ≥ bN

}︂
.

Lemma 3.5.9. (Coupling between H(N) and an infection process on a complete graph)

There exists a coupling between H(N) and the infection process J (N) = (J (N)
g )g≥0 on a complete

graph as defined in Section 3.4 with ˜︁dN vertices, where ˜︁dN :=
⃓⃓
C(N)(xc)

⃓⃓
, and ˜︁vN offspring parasites,

where ˜︁vN is defined in the proof of this lemma and is asymptotically equal to vN
2n , such that (H

(N)
g )g

dominates (J
(N)
g )g for all g ≤ τ INε whp, i.e.

˜︁PN(︁∀g ≤ τ INε , H(N)
g ≥ J (N)

g

)︁
−→
N→∞

1.

Proof. Since we condition on the event UN (β/2 + ξ) the complete neighbourhood C(xc) forms a

complete graph as a subgraph of G and
⃓⃓
|C(xc)| − Nβ

2n

⃓⃓
≤ C(n)N c(n)β . In particular J (N) is defined

on a complete graph of the same size as C(xc).
Now assume that some host x is currently infected according to the subinfection process H(N).

Then out of the vN parasites which are generated in host x only those parasites which are moving
to vertices in C(xc) are counted in H(N). The number of parasites which originate from x and move
to a host also contained in C(xc) is bounded from below by ˜︁vN = vN

2n − vN · pN whp, where pN is
determined by the upper and lower bound on the number of vertices in C(xc) and any ball of radius
rN conditioned on the event UN . In particular, pN ∈ O(N−u) for some sufficiently small u > 0.
Indeed, a parasite chooses uniformly at random the neighbour it is moving toward, and thus the
number of parasites moving to C(xc) is binomially distributed with parameter vN and 1

2n (1+O(pN )).
So the claimed whp lower bound follows by an application of Markov’s inequality. Repeating this
argument one can show that for each of at most Nε infections the number of generated parasites
for every single infection is bounded from below by vN

2n − vN · pN whp. Consequently, since we

choose the number of generated parasites for J (N) to be ˜︁vN only less infections can be created with
respect to the infection process J (N) in comparison to H(N).

The claimed coupling could fail when two parasites generated during the process I(N) move
from outside of C(xc) to an empty vertex contained in C(xc). In this case no infection happens at
this vertex with respect to the subinfection process H(N), and thus with respect to the infection
process J (N) potentially more infections could have been generated. However such an event is only
possible, if with respect to the infection process I(N) two pairs of parasites are attacking the same
vertex in C(xc) (at the same or different generations). So this particular event is contained in the

event that at least one vertex of C(xc) is attacked by at least four parasites up to generation τ INε .

Until generation τ INε less than Nε vertices get infected cumulatively over all generations. So
it is possible to estimate from above the probability that such an event happens before generation

τ INε by estimating the probability of the event A in the following experiment: Assume NεvN balls

placed uniformly at random into ˜︁dN boxes and we are interested in the event A that it exists (at
least) one box containing at least four balls. Indeed, the probability of the event A gives an upper
bound, all balls (corresponding to parasites in the original process) are put into dÑ boxes (parasites
have a larger choice of vertices where they can move to in the original process). This increases the
probability for one box to contain four balls.
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We upper bounded the probability of A as follows

˜︁PN (A) ≤
(︂
dN
2n + C(n)N c(n)β

)︂(︄ NεvN
dN
2n − C(n)N c(n)β

)︄4

= O
(︃
N4ε

dN

)︃
−→
N→∞

0,

because ε < β
4 .

So H
(N)
g can be coupled with J

(N)
g such that whp H

(N)
g ≥ J

(N)
g for all g ≤ τ INε .

Lemma 3.5.10. It holds that

lim inf
N→∞

˜︁PN (︂∃g ∈ N, I(N)

g ≥ Nε
)︂
≥ π

(︃
a√
2n

)︃
,

where π
(︁

a√
2n

)︁
is the survival probability of a DBPC with offspring and cooperation distribution

Poi
(︁
a2

2n+1

)︁
and Poi

(︁
a2

2n

)︁
.

Proof. The claim follows by Lemma 3.5.9 and the results of Section 3.4.

Increasing from a total number of Nε infections to N
β
2 +δ infections within a single ball

In this subsection we will show that the total number of infected hosts increases whp from Nε to
Nβ/2+δ within a single ball, with δ defined in (3.5.9).
Cover the space with non-overlapping balls, such that all balls have an edge length of at most rN
and such that all balls except of those having a non-empty intersection with the boundary of [0, 1]n

have an edge length of precisely rN . Furthermore, assume that one of the balls is centered around
xc, that is the vertex set of this ball is equal to C(xc). Label the balls and denote by K the set

of labels and by V(N)
k the set of vertices in ball k. Furthermore, denote by I

(N)
g (k) the number of

infected vertices in ball k in generation g.

Lemma 3.5.11. It holds

˜︁PN(︂∃g ≤ τ INε ,∃k ∈ K, I(N)
g (k) ≥ Nε

log(N)

⃓⃓⃓
τ INε <∞

)︂
→ 1.

Proof. For a sequence (gN )N∈N let

Γ(N)
gN :=

{︂
k ∈ K : ∃g ≤ gN , I

(N)
g (k) ≥ 1

}︂
be the set of labels of balls, in which at least one host gets infected up to generation gN . At each
generation a parasite may move a distance of at most rN . So in dimension n, in gN generations,

the number of balls of diameter rN that can be reached is (2gN + 1)n, so |Γ(N)
gN | ≤ (2gN + 1)n.

Using Lemma 3.5.9 and the coupling from below with the DBPC Z
(N)
ℓ until generation τ INε and

applying Proposition 3.3.6 to the DBPC Z
(N)
ℓ we obtain that it exists a C > 0 such that

˜︁PN (︂τ INε ≤ C log(log(N))
⃓⃓
τ INε <∞

)︂
→ 1. (3.5.7)
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Combining these two results we obtain that whp⃓⃓⃓
Γ
(N)

τI
Nε

⃓⃓⃓
≤ (2C log(log(N)) + 1)

n
.

If in any generation before generation τ INε the number of infected individuals in any ball of Γ
(N)

τI
Nε

is

smaller than Nε

log(N) , the total number of infected individuals up to generation τ INε would be upper

bounded by
Nε

log(N)
(2C log(log(N)) + 1)

n
C log(log(N)) = o(Nε),

which gives a contradiction.

Next let σ(N) be the stopping time, at which for the first time in one of the balls at least Nε

log(N)

hosts get infected

σ(N) := inf

{︃
g ∈ N : ∃k ∈ K, I(N)

g (k) ≥ Nε

log(N)

}︃
.

The last lemma exactly states that

˜︁PN (︂σ(N) ≤ τ INε

⃓⃓
τ INε <∞

)︂
−→
N→∞

1.

Now we will show that after a finite number of generations after generation σ(N), there is whp one

ball k ∈ K with at least N
β
2 +δ infected vertices for some δ > 0 which is sufficiently small.

To achieve this goal, we will argue in the same manner as we have done in Subsection 3.4.2.
Choose ε > 0 such that for all g ∈ N, 2gε ̸= β

2 . Then define g as the largest g ∈ N satisfying

2g+1ε < β. In particular it is 2g+1ε > β
2 fulfilled because otherwise we would have 2g+2ε < β which

contradicts the definition of g.
Denote by

S(N) :=

{︃
k ∈ K : I

(N)

σ(N)(k) ≥
Nε

log(N)

}︃
(3.5.8)

the set of balls that contain at least Nε

log(N) infected vertices in generation σ(N). By definition of

σ(N) the set S(N) is not empty almost surely, if σ(N) <∞.

Lemma 3.5.12. We have

˜︁PN (︃I(N)

σ(N) ≤ N2ε

log(N)

⃓⃓⃓
τ INε <∞

)︃
−→
N→∞

1.

Proof. By definition, at generation σ(N)−1 the number of infected vertices in each ball i is at most
Nε

log(N) and the total number of balls that have been infected is whp at most (2C log(log(N)) + 1)
n
.

To show that I
(N)

σ(N) ≤ N2ε

log(N) , we will control the number of infections in each ball by applying a

similar argument as in Lemma 3.4.10 in the context of the complete graph.

At generation σ(N)−1 whp we have I
(N)

σ(N)−1 ≤ Nε because otherwise we would have a contradiction

to Lemma 3.5.11. Then to bound from above at generation σ(N) the total number of infected vertices
up to this generation, it suffices to add to Nε an upper bound on the number of new infections
generated in generation σ(N).
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In each ball, there are at most Nε

log(N)vN parasites that will move. Because of the sizes of the

balls, each ball can receive infections from outside only due to its 3n − 1 neighbouring balls. To
arrive at an upper bound on the number of new infections generated in a ball, one can compare the

situation with the following balls-into-boxes experiment: Consider dN := Nβ

2n − C(n)N c(n)β − Nε

boxes. Put (3n − 1) Nε

log(N)vN balls into the boxes uniformly at random and count the number of

boxes that contain at least two balls. Applying Lemma 3.4.8 Equation (3.4.12) with H(N) =

(3n − 1) Nε

log(N) , φ1(N) = Nε, φ2(N) = 0, φ3(N) = 0 f2(N) = 1
(3n−1)2

log(N)
(2C log(log(N))+1)n , we can

estimate from above the number of infections generated in a ball by N2ε

(logN)(2C logn(log(N))) with

probability 1−Θ
(︂

logn(log(N))
log(N)

)︂
. Such result holds for each ball. Since in generation σ(N) − 1 whp

at most (2C log(log(N)) + 1)n balls have been infected we can apply this argument for all ball and

obtain that whp the total number of infected hosts does not exceed N2ε

log(N) .

Lemma 3.5.13. Let g ∈ {0, . . . , g} we have

˜︁PN(︂∀k ∈ S(N), I
(N)

σ(N)+g
(k) ≥ N2gε

logαg (N)
, I

(N)

σ(N)+g ≤
N2g+1ε

log(N)

⃓⃓⃓
τ INε <∞

)︂
→ 1,

where α0 = 1 and for all g ≥ 1, αg = 2αg−1 + 2.

Proof. The proof is obtained by induction. First for g = 0 the result is given by Lemma 3.5.12.
Then let g ≤ g−1, assume the result is obtained for 0 ≤ j ≤ g. Now we will show the result for g+1.

To derive the lower bound on the number of infected vertices in a ball k ∈ S(N) at generation
σ(N) + g + 1, one can consider only the infections generated due to infected vertices inside this

ball. According to the induction hypothesis there are at least N2gε

logαg (N) infected vertices in the ball.

Among the parasites generated on these vertices, at least N2gε

logαg (N)

(︁
1
2n vN − vn · pN

)︁
(where pN is

defined in the proof of Lemma 3.5.9) of them will move to vertices in the ball. Then it suffices to
apply Lemma 3.4.8 Equation (3.4.11) where dN in this Lemma is equal to 1

2nN
β + C(n)N c(n)β ,

with H(N) := 1
2n

N2gε

log(N) , φ1(N) = 0, φ2(N) = N2g+1ε

log(N) , φ3(N) = 2nvN · pN , f1(N) = log2(N)
2n+1 ,

which gives that the number of infected vertices at generation σ(N) + g+1 is whp at least of order

2n+1

log2(N)

(︂
1
2n

N2gε

logαg (N)

)︂2
= N2g+1ε

logαg+1 (N)
. Because there are whp at most Θ (log(log(N))) ball in S(N)

and by Equation (3.4.11) of Lemma 3.4.8, the statement holds whp for all balls in S(N).
Indeed considering 1

2nN
β+C(n)N c(n)β boxes (for the balls-into-boxes experiment) lower bounds

the probability for a parasite to move to an occupied vertex, because whp there are at most
1
2nN

β+C(n)N c(n)β many vertices in the ball. Furthermore, according to the induction assumption

we have considered the minimal number of parasites which is N2gε

logαg (N)

(︁
1
2n vN − vN · pN

)︁
and new

infections are counted when reaching one of the 1
2n dN − N2g+1ε

log(N) first boxes whereas in the original

process there are at least this number of occupied vertices.

To derive the upper bound on the number of empty vertices, we control for each ball the num-
ber of new infections generated in generation σ(N)+g+1. Since by induction the number of empty

vertices in generation σ(N)+g is N
2g+1ε

log(N) whp, we apply Lemma 3.4.8 Equation (3.4.12) withH(N) =
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(3n − 1) N
2g+1ε

log(N) , φ1(N) = N2g+1ε

log(N) , φ2(N) = 0, φ3(N) = 0, f2(N) = 1
(3n−1)2

log(N)(︃
2 log

1
n+2 (N)+g+2

)︃n to

estimate the number of new infections in generation σ(N) + g + 1 in each ball in S(N). The lemma

yields that in each ball there are at most N2g+2ε

log2(N)
log(N)(︃

2 log
1

n+2 (N)+g+2

)︃n new infections whp. Since

there are whp at most (2C log(log(N)) + g + 2)
n
balls and since f2(N) = Θ

(︂
log(N)

2
n+2

)︂
whp for

all balls the number of new infections is bounded from above by N2g+2ε

log2(N)
log(N)(︁

2 log
1

n+2 (N)+g+2
)︁n , see

Equation (3.4.12) of Lemma 3.4.8. Consequently, the total number of empty vertices at generation
σ(N) + g + 1 is whp at most

N2g+2ε

log2(N)

log(N)(︁
2 log

1
n+2 (N) + g + 2

)︁n (2C log(log(N)) + g + 2)
n ≤ N2g+2ε

log(N)
.

Applying Lemma 3.5.13 for g = g gives that

˜︁PN(︃∀k ∈ S(N), I
(N)

σ(N)+g
(k) ≥ N2gε

logαg (N)
, I

(N)

σ(N)+g ≤
N2g+1ε

log(N)

⃓⃓⃓⃓
τ INε <∞

)︃
→ 1.

Define

δ =
1

2

(︃
2g+1ε− β

2

)︃
> 0. (3.5.9)

In the next lemma we show that at generation σ(N) + g+1 the number of infected vertices in each

ball of S(N) is at least of order N
β
2 +δ.

Lemma 3.5.14. It holds˜︁PN(︂∀k ∈ S(N), I
(N)

σ(N)+g+1
(k) ≥ N

β
2 +δ|τ INε <∞

)︂
→ 1.

Proof. Here we apply again Lemma 3.4.8 to obtain this lower bound. More precisely with the

following set of parameters: H(N) = 1
2n

N2gε

logαg (N)
, φ1(N) = 0, φ2(N) = N2g+1ε

log(N) , φ3(N) = 2nvN · pN ,

f1(N) = log2(N)
2n+1 . We obtain that whp IτI

Nε+g+1 ≥ N2g+1ε

logαg+1 (N)
≥ N

β
2 +δ, by definition of δ.

”Pulled travelling wave” epidemic spread

We start with a general lemma that we will use multiple times in this subsection. It says that
when a ball of diameter εN is fully infected, then in the next generation, all the vertices in the
neighboring area of diameter 2rN − εN are visited by at least two parasites whp.

Lemma 3.5.15. Consider a ball of diameter εN centered around a point x ∈ [0, 1]n, denoted by

B2, where εN ∈ Θ
(︂
N

β/2+ξ−1
n

)︂
for ξ > 0 small enough. Assume that the proportion of currently

infected vertices in this ball is asymptotically 1. Then in the next generation all the vertices in the
ball centered around x with diameter 2rN − εN , denoted by B1, are attacked by at least 2 parasites

with probability 1−O
(︂
εnNNvN exp

(︂
− εnN

(2rN )n vN

)︂)︂
conditioned on UN (β/2 + ξ).
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Proof. We estimate from above the probability that at least one vertex is visited by at most 1
parasite in the following generation. Denote by K1 the number of vertices in B1. Due to the
conditioning on UN (β/2 + ξ) it holds

(2rN − εN )nN − C(n)N c(n)β ≤ K1 ≤ (2rN − εN )nN + C(n)N c(n)β ∈ Θ(dN ).

Denote by K1 = (2rN − εN )nN − C(n)N c(n)β . Furthermore, within B2 due to our conditioning
at least εnNNvN/2 and at most 2εnNNvN parasites are generated. Denote the number of parasites
generated in B2 by K2. Since B2 is contained in B1 and B1 has diameter 2rN − εN every vertex in
B2 is connected over an edge to any vertex in B1. Hence, the probability p that a particular vertex
in B1 gets attacked by at most one parasite generated in B2 can be estimated from above by

p ≤
(︃
1− 1

K1

)︃K2

+K2

(︃
1− 1

K1

)︃K2−1 1

K1

≤
(︃
1− 1

K1

)︃εnNNvN/2
+ 2εnNNvN

(︃
1− 1

K1

)︃εnNNvN/2−1 1

K1

.

Consequently, we can estimate from above the probability that at least one of the vertices gets
attacked by at most one parasite by

K1

(︃
1− 1

K1

)︃εnNNvN/2
+ 2εnNNvN

(︃
1− 1

K1

)︃εnNNvN/2−1 K1

K1

∈ O
(︃
εnNNvN exp

(︃
− εnN
(2rN )n

vN

)︃)︃
,

from which follows the claim.

This lemma implies that within one generation all vertices in the ball B1 get attacked by at
least two parasites whp from parasites generated on vertices in B2, since εN is chosen such that
εnNvN/r

n
N ∼ Nξ. In particular this means that if in B2 almost all the vertices that are not contained

in B1 (which is asymptotically completely infected) are still occupied by a host, then all these hosts
in B2 get infected in the next generation. This allows us to repeat the same argument subsequently.

Due to the exponential decay of the error term O
(︂
εnNNvN exp

(︂
− εnN

(2rN )n vN

)︂)︂
we can apply this

argument for many balls, in particular for the 2nN1−β many balls of diameter rN . In particular,
this implies that we can show that a pulled traveling wave in any direction is created by repeating
the argument, as long as the invasion is not stopped by a region in which no susceptible hosts are
available anymore and which cannot be crossed by parasites.
However, such a region with a non-trivial proportion of hosts killed and with a diameter of at least
rN − εN (such that it cannot be crossed by a travelling wave whp) cannot arise, because if in a
ball of size rN − εN at least kN , with kN → ∞ arbitrarily slowly, hosts get infected by couplings
with DBPCs (which have a positive survival probability) we can show that in this region either a
new infection wave is started or a travelling wave is hitting the ball. Consequently balls cannot be
slowly depleted and we will reach the boundary of [0, 1]n whp after at most

1

2(rN − εN )
=

1

2rN

(︃
1 +O

(︃
εN
rN

)︃)︃
(3.5.10)

many generations.
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3.5.3 Proof of Theorem 3.2.4 1) (ii):

Now we have all necessary materials to prove Theorem 3.2.4 1) (ii). The first step is to show

lim sup
N→∞

P
(︁
E(N)
u

)︁
≤ π(a). (3.5.11)

For a sequence (ℓN )N∈N introduce the event

AℓN :=
{︂
∃g ∈ N0 : I

(N)

g ≥ ℓN

}︂
.

Then for all 0 < u ≤ 1 and any sequence ℓN ≤ u|V(N)| we have

˜︁PN(︁E(N)
u

)︁
≤ ˜︁PN(︁AℓN )︁. (3.5.12)

Let (ℓN ) be a sequence with ℓN → ∞ as well as with ℓN ∈ o(log(log(N))). Then Proposition 3.5.7
yields

˜︁PN(︁AℓN )︁ ≤ ˜︁PN(︁∃g ∈ N0 : Z
(N)

g,u ≥ ℓN
)︁
+ o(1). (3.5.13)

Proposition 3.5.6 gives that

lim
N→∞

P
(︁
∃g ∈ N0 : Z

(N)

g,u ≥ ℓN
)︁
= π(a). (3.5.14)

In summary combining (3.5.12), (3.5.13), (3.5.14) and that UN (β/2 + ξ) occurs whp we obtain
(3.5.11).

The second step is to show

lim inf
N→∞

P
(︁
E(N)
u

)︁
≥ π

(︃
a√
2n

)︃
. (3.5.15)

Lemma 3.5.10 gives that

lim inf
N→∞

˜︁PN(︁∃g ∈ N, I(N)

g ≥ Nε
)︁
≥ π

(︃
a√
2n

)︃
. (3.5.16)

Then Lemma 3.5.14 yields that in all balls of the set S(N), see (3.5.8) for its definition, the infection
level is at least of order Nβ/2+δ in the random generation σ(N) + g + 1, i.e.

˜︁PN(︁∀k ∈ S(N), I
(N)

σ(N)+g+1
(k) ≥ N

β
2 +δ|τ INε <∞

)︁
→ 1.

Then arguing as in the proof of Lemma 3.4.13 one can show that whp all hosts on vertices contained
in the balls of the set S(N) get killed in one more generation, that is

˜︁PN(︁∀k ∈ S(N), I
(N)

σ(N)+g+2(k) = |V(N)
k |

)︁
→ 1.

And finally using the results from Subsection 3.5.2 one can show that whp every host eventually gets

infected conditioned on the event {τ INε <∞}, which combined with (3.5.16) and that UN (β/2+ ξ)
occurs whp, gives (3.5.15).



3.5. INVASION ON A RANDOM GEOMETRIC GRAPH 153

3.5.4 Proof of Theorem 3.2.4 1) (i)

Assume vN ∈ o
(︁√
dN
)︁
. Then using a similar approach as in Subsection 3.4.4 which is to show that

whp there are no infected individuals at generation 1, one obtains the result.

3.5.5 Proof of Theorem 3.2.4 1) (iii)

In this section we assume
√
dN ∈ o(vN ). We will prove that

lim
N→∞

P
(︁
∃g ∈ N0 : I

(N)

g = |V(N)|
)︁
= 1.

Proof. The proof is split into two parts. First we argue that we can reach with high probability a
level Nα for any α < β in a time of order log2(N). In the second part we show that similar as in
the critical scaling the host population is killed by a traveling wave.

We closely follow the proof of Lemma 3.6.4 and the proof strategy in Subsection 3.4.5 for the first
part. We build an infection process

(︁ ˆ︁S(N), ˆ︁I(N), ˆ︁R(N)
)︁
, in which infections are only transmitted

due to parasites originating from the same vertex and v
(a)
N = a

√
dN = aN

β
2 many parasites are

generated. This means a host is only infected if at least two parasites which originate from the
same vertex attack the host simultaneously. Note that dN ∈ o(vN ), which means that for every

a > 0 there exists an N large enough such that v
(a)
N ≤ vN . Thus, analogously as we showed

in Subsection 3.4.5, for every a > 0 we can couple this process to the original infection process(︁
S(N), I(N),R(N)

)︁
such that

ˆ︁I(N)
g ∪ ˆ︁R(N)

g ⊂ I(N)
g ∪R(N)

g ,∀g ∈ N0,

for N large enough. Denote by H
(N)
x the number of vertices which get attacked by at least two

parasites originating from x. Denote by deg(x) the degree of vertex x ∈ V(N). Then

P
(︂
H(N)
x = k

)︂
≥
∏︁k
i=1

(︁
vN−2(i−1)

2

)︁
k!deg(x)k

deg(x)!

(deg(x)− k − vN )!deg(x)vN−k
,

where we only consider infections resulting from cooperation from the same edge and ignore in-
fections generated by groups of 3 or more parasites, since these events happen with a negligible
probability. Recall the definition of δN,ℓ and δN,u in (3.5.4) and (3.5.5). Set

A(N) :=
{︁
δN,ℓ ≤ deg(x) ≤ δN,u ∀x ∈ V(N)

}︁
.

By Lemma 3.5.1 it follows that P
(︁
A(N)

)︁
→ 1 as N → ∞. Thus, δN,ℓ and δN,u act as a uniform

lower and upper bound on deg(x) for all x ∈ V(N) with high probability and we can again conclude
analogously as in Proposition 3.5 in [1] that∏︁k

i=1

(︁
vN−2(i−1)

2

)︁
k!deg(x)k

deg(x)!

(deg(x)− k − vN )!deg(x)vN−k

≥
(︃
(vN − 2aN )2

2deg(x)

)︃k
1

k!
exp

(︃
− v2N
2deg(x)

)︃(︃
1− 1

deg(x)δ

)︃
≥
(︃
(vN − 2aN )2

2δN,u

)︃k
1

k!
exp

(︃
− v2N
2δN,ℓ

)︃(︃
1− 1

δδN,ℓ

)︃
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for 0 ≤ k ≤ aN . This suggests that we can couple the process
(︁
|ˆ︁I(N)
g ∪ ˆ︁R(N)|g

)︁
g≥0 with an

appropriately chosen branching process until we reach a level Nα with α < β.

Definition 3.5.16. (Modified lower Galton-Watson Process) Let 0 < δ < 1
2 and (aN )N∈N be

a sequence with aN → ∞ and aN ∈ o
(︁
N

β
2

)︁
. Furthermore, assume (ϑN )N∈N is a [0, 1]-valued

sequence with ϑN → 0 as N → ∞. Let Y
(N)
l =

(︁
Y

(N)
g,l

)︁
g∈N0

be a Galton-Watson process with mixed

binomial offspring distribution Bin
(︁ˆ︁Y (N), 1−ϑN

)︁
, where the probability weights

(︁
p̂
(N)
k

)︁
k∈N0

of ˆ︁Y (N)

are for all 1 ≤ j ≤ aN

p̂
(N)
j :=

(︃
(vN − 2aN )2

2δN,u

)︃k
1

k!
exp

(︃
− v2N
2δN,ℓ

)︃(︃
1− 1

δδN,ℓ

)︃
,

and

p̂
(N)
0 := 1−

aN∑︂
j=1

p̂
(N)
j .

Denote by Y
(N)

g,l :=
∑︁g
i=0 Y

(N)
i,l the total size of the Galton-Watson process until generation g and

by Yl =
(︁
Y

(N)

g,l

)︁
g∈N0

the corresponding process.

Now let 0 < α < β and define

σ
(N)
Nα = inf

{︂
g ∈ N0 : |ˆ︁I(N)

g ∪ ˆ︁R(N)
g | ≥ Nα

}︂
.

One can show similarly as in proof of Lemma 3.6.4 Equation (3.6.13) that

P
(︂
|˜︁I(N)
g ∪ ˜︁R(N)

g | ≥ Y
(N)

g,l ∀ g ≤ σ
(N)
Nα

)︂
→ 1

as N → ∞. Indeed, as in the proof of Lemma 3.6.4 essentially we need to control the probability
that a) an already empty vertex is re-attacked by at least two parasites moving along the same edge
or b) a vertex gets simultaneously attacked by several pairs of parasites moving along the same
edge.

In the following we will call pairs of parasites moving along the same edge packs of parasites.
Similar as before we need to determine that each pack of parasites generated by an infected vertex

before generation σ
(N)
Nα is involved in one of the events a) or b) (independently of the other packs

of parasites) with probability at most ϑN . In this case we can remove packs of parasites with
probability ϑN such that the number of new infections generated by an infected host can with high
probability be bounded from below by the number of offspring drawn according to the distribution

with weights (p
(N)
k,l )k∈N0

from Definition 3.5.16 for any generation n ≤ σ
(N)
Nα .

Next we determine an upper bound on the probabilities of the events a) and b).

a) Before generation σ
(N)
Nα the probability that a pack of parasites originating from a vertex x

attacks an already empty vertex is bounded from above by

Nα

deg(x)
≤ Nα

δδN,ℓ
=

Nα

Nβ − (d+ 1)N
d+2
d+3β

∈ Θ
(︂ 1

Nβ−α

)︂
.
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b) Before generation σ
(N)
Nα , the number of empty vertices in the graph is smaller than Nα. The

probability that two packs of parasites coming from 2 different vertices x and y attack the
same vertex is bound by

|(Nx ∩Ny)\{x, y}|
deg(x)deg(y)

≤ 1

deg(x) ∧ deg(y)
≤ 1

δN,l
∈ Θ

(︂ 1

Nβ

)︂
,

where Nx = {y ∈ V(N) : x ∈ E(N)} denotes the neighbourhood of x ∈ V(N). An application
of Markov’s inequality yields that the total number of packs of parasites generated before

generation σ
(N)
Nα is with high probability bounded by Nα log(N), as in Lemma 4.8 in [1].

Hence, each pack of parasites is involved in an event of type b) with probability at most

Nα log(N) · (δN,l)−1 = Θ
(︂

log(N)
Nβ−α

)︂
.

Set ϑN := 2N
α log(N)
δN,l

∈ Θ
(︂

log(N)
Nβ−α

)︂
, then ϑ is an upper bound on the probability that a pack of

parasites is involved in one of the events of type a) or b). For α < β we have ϑN ∈ o(1). By the
exact same line of arguments as in Lemma 3.6.4 one can conclude that

lim
N→∞

P
(︂
∃g ∈ N0 : I

(N)

g ≥ Nα
)︂
= 1 (3.5.17)

for any α < β. Using the same approach as in the proof of Lemma 3.5.11, where the only difference
is a coupling from below with Galton-Watson processes instead of DBPC, one can show that under

the event
{︂
∃g ∈ N0 : I

(N)

g ≥ Nα
}︂
it exists a box of diameter rN , in which at least Nα

log2(N)
hosts got

infected.
Taking β

2 < α < β and using a similar approach as in the proof of Lemma 3.4.13, one shows that it
exists a box of diameter rN where all the hosts are killed and the number of infected individuals is
of the order Nβ . Then arguing as in Subsection 3.5.2 one shows that whp every vertices are killed
by the infection process. Combined with (3.5.17) the result follows.

3.5.6 Proof of Theorem 3.2.4 2)

Proof of Theorem 3.2.4 2). At each generation a parasite can move at most to a distance rN mean-

ing that the minimal number of generations the infection process I
(N)

needs for killing every host
is at least the number of boxes of diameter rN that separates the initial vertex to the boundaries
of the domain. In dimension n, using the max norm, this number is exactly 1

2rN
, giving the result

P
(︁⌊︁

1
2rN

⌋︁
≤ T (N)

)︁
= 1.

According to (3.5.7), Lemma 3.5.14 and applying a similar reasoning as in Lemma 3.4.13, and using
that UN (β/2 + ξ) occurs whp, one shows that it exists C > 0 such that

P
(︂˜︁σ(N) ≤ C log(log(N))

⃓⃓⃓ ˜︁σ(N) <∞
)︂

−→
N→∞

1,

where ˜︁σ(N) := inf
{︂
g ∈ N : ∃k ∈ K, I

(N)

g (k) = |V(N)
k |

}︂
. Moreover Equation (3.5.10) gives that after

time σ(N), under the event UN (β/2 + ξ) which in particular guarantees that the graph G(N) is

connected, the remaining time up to total infection is upper bounded by 1
2rN

(︂
1 +O

(︂
εN
rN

)︂)︂
with
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εN = N
β/2−1

n +δ for some δ > 0 (where δ = ξ
n in Lemma 3.5.15). Combining these two facts gives

that

P
(︃
T (N) ≤

⌈︃
1

2rN

⌉︃
+O (κN )

⃓⃓⃓
T (N) <∞

)︃
→ 1,

with κN := max
(︂
log(log(N)), εN

r2N

)︂
.
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3.6 Supplementary material

Proof of Lemma 3.3.1. If p0,o = 0 the result follows by applying the extinction-explosion prin-
ciple to the super-critical Galton-Watson process formed by the offspring generated by the initial
individual. Due to assumption p1,o ̸= 1 this process is super-critical.

For the remaining cases we will show that all states except 0 are transient states, which yields
the result.

Assume that p0,o > 0 and that p0,c = 0. Note that this means that we get at least one offspring

from every possible cooperation of parents. Thus if we have Zg = k parents, we get at least k(k−1)
2

many offspring due to cooperation. But it holds that k(k−1)
2 > k for k ≥ 4. Thus, if at some

generation n we have that Zg ≥ 4, then we know that Zg+1 > Zg almost surely. This implies that
Zg → ∞ as n→ ∞ almost surely, if Zg0 ≥ 4 for some g0 ∈ N. On the other hand since we exclude
that p0,o = 1 and p1,c = 1 we have

P (0 < Zg ≤ 3 | 0 < Zg−1 ≤ 3) ≤ c

for some c < 1. Consequently, the event {0 < Zg ≤ 3 ∀g ≥ 0} is a null-set and so all states but 0
are transient.

Assume that p0,o > 0 and p0,c > 0. Let us assume that in some generation g0 we have Zg0 = k
for some k ≥ 1. If the process dies out in the next generation it enters the trap 0 such that it can
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never return to k. Thus, an obvious lower bound for the probability to never hit k again is

P (Zg ̸= k∀g ≥ g0|Zg0 = k) ≥ pk0,op
(k2)
0,c > 0

for k ≥ 1. But this already implies that

P
(︁
Zg = k for some g > g0

⃓⃓
Zg0 = k

)︁
< 1,

i.e. the state k is transient.

Proof of Lemma 3.3.4. We set

E(N)(k) := E
[︂
Z(N)
g

⃓⃓
Z

(N)
g−1 = k

]︂
=
(︂
kµ(N)

o +

(︃
k

2

)︃
µ(N)
c

)︂
≥
(︃
k + 1

2

)︃
µ(N),

V (N)(k) := V
(︂
Z(N)
g |Z(N)

g−1 = k
)︂
=
(︂
kν(N)
o +

(︃
k

2

)︃
ν(N)
c

)︂
≤
(︃
k + 1

2

)︃
ν(N),

where we define µ(N) := min{µ(N)
o , µ

(N)
c } and ν(N) := max{ν(N)

o , ν
(N)
c }.

Since we assumed that the first and second moments of the offspring and cooperation distribu-
tions converge, it exists a N0 such that

1

2

(︃
k(k + 1)

2
µ

)︃
≤ E(N)(k) and V (N)(k) ≤ 3

2

(︃
k(k + 1)

2
ν

)︃
,

for N ≥ N0. By Tchebychev’s inequality for any k ≥ L we have

P
(︃
Z(N)
g ≥ k2µ

8

⃓⃓⃓
Z

(N)
g−1 = k

)︃
≥ P

(︃
Z(N)
g ≥ E(N)(k)

2

⃓⃓⃓
Z

(N)
g−1 = k

)︃
(3.6.1)

≥ P
(︃⃓⃓⃓
Z(N)
g − E(N)(k)

⃓⃓⃓
≤ E(N)(k)

2

⃓⃓⃓
Z

(N)
g−1 = k

)︃
≥ 1− 4V (N)(k)(︁

E(N)(k)
)︁2 ≥ 1− 48(k(k + 1)ν)

(k(k + 1)µ)2
≥ 1− 48ν

k2µ2
.

We choose fi(k) =
k2

i
µ2i−1

82i−1
, where f0(k) = k. Recall from (3.3.4) and (3.3.5) that we have

f2i−1(k)µ

8
= fi(k) and fi(k) >

8(8 + ν)2
i

µ
. (3.6.2)

Now applying (3.6.1) and the first part of (3.6.2) recursively implies that

P

(︄
M⋂︂
i=1

{︂
Z

(N)
g+i > fi(k)

}︂ ⃓⃓⃓
Z(N)
g = k

)︄
≥

M∏︂
i=1

(︂
1− 48ν

f2i−1(k)µ
2

)︂
=

M∏︂
i=1

(︂
1− 6ν

fi(k)µ

)︂
and by the second part of (3.6.2) it follows fi(k)µ > 8(8 + ν)2

i

, which yields that

P

(︄
M⋂︂
i=1

{︂
Z

(N)
g+i > fi(k)

}︂ ⃓⃓⃓
Z(N)
g = k

)︄
≥

M∏︂
i=1

(︃
1− 3

4(8 + ν)2i−1

)︃
,

where we used that ν(8 + ν)−1 < 1.
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Proof of Lemma 3.3.5. By Lemma 3.3.4 follows that if N0 is large enough such that bN > L =
⌈µ−1(8 + ν)2⌉ for all N ≥ N0,

P

(︄ ∞⋂︂
i=1

{︂
Z

(N)
g+i > fi(bN )

}︂ ⃓⃓⃓
Z(N)
g = bN

)︄
≥
∞∏︂
i=1

(︂
1− 6ν

fi(bN )µ

)︂
,

where fi(bN ) =
b2

i

N µ
2i−1

82i−1
and f0(bN ) = bN . Without loss of generality we can assume that bN is

monotonically increasing in N , which implies that log
(︁
1 − 6ν

fi(bN )µ

)︁
is monotonically increasing to

0 as N → ∞. Furthermore, note that for N large enough infi≥0 6ν
fi(bN )µ ≤ 1

2 , and thus

0 ≥
∞∑︂
i=1

log
(︂
1− 6ν

fi(bN )µ

)︂
≥ −

∞∑︂
i=1

12ν

fi(bN )µ
> −∞,

for all N large enough, where we used that 1− x ≥ e−2x for x ∈ [0, 12 ]. Now by using continuity of
exp(·) and log(·) and applying the monotone convergence theorem we obtain that

lim
N→∞

exp

(︃
log

(︃ ∞∏︂
i=1

(︂
1− 6ν

fi(bN )µ

)︂)︃)︃
= exp

(︃ ∞∑︂
i=1

log
(︂

lim
N→∞

(︂
1− 6ν

fi(bN )µ

)︂)︂)︃
= 1,

since 1− 6ν
fi(bN )µ → 1 as N → ∞ for all i ≥ 1.

A consequence of the extinction-explosion principle is the following lemma, which states that
for a DBPC the probability of reaching an arbitrary high level, that tends to ∞, at some generation
or up to some generation is asymptotically the same as surviving. It is a special case of Proposition
3.3.7 when Z(N) ≡ Z. We need it to prove Proposition 3.3.7 and other statements.

Lemma 3.6.1. Let Z be a DBPC with survival probability π > 0 and satisfying p1,o ̸= 1 and
(p0,o, p1,c) ̸= (1, 1). Then for any sequence (bN )N∈N satisfying bN → ∞ we have

lim
N→∞

P
(︁
∃g ∈ N0 : Zg ≥ bN

)︁
= lim
N→∞

P (∃g ∈ N0 : Zg ≥ bN )

= π.

The proof follows basically along the same arguments as the corresponding Lemma 3.7 in [1].

Proof of Lemma 3.6.1. First we will show that

P (∃g ∈ N0 : Zg ≥ bN ) → π.

By the extinction-explosion principle for DBPC, proven in Lemma 3.3.1, we have that π ≤ P (∃g ∈ N0 : Zg ≥ bN ).
Then

π = P (Zg > 0,∀g ∈ N0)

= P ({∃g ∈ N0 : Zg ≥ bN} ∩ {Zg > 0,∀g ∈ N0})
= P ({∃g ∈ N0 : Zg ≥ bN}) · P ({Zg > 0,∀g ∈ N0}|{∃g ∈ N0 : Zg ≥ bN}) .
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Using the strong Markov property, one can show that

P
(︁
{Zg > 0,∀g ∈ N0}

⃓⃓
{∃g ∈ N0 : Zg ≥ bN}

)︁
≥ P

(︁
Zg > 0,∀g ∈ N0

⃓⃓
Z0 = bN

)︁
.

Then because the interaction is a cooperative one, a DBPC starting in bN can be coupled with bN
independent DBPCs starting in 1 such that we get

P (∃g ∈ N0 : Zg = 0 | Z0 = bN ) ≤ (P (∃g ∈ N0 : Zg = 0|Z0 = 1))
bN .

Introducing q < 1 as the extinction probability of the DBPC starting in 1, we finally obtain

π ≥ P ({∃g ∈ N0 : Zg ≥ bN})
(︁
1− qbN

)︁
.

It follows that

P ({∃g ∈ N0 : Zg ≥ bN}) ≤ π

1− qbN
→ π.

Hence we have shown that

P (∃g ∈ N0 : Zg ≥ bN ) −→
N→∞

π. (3.6.3)

For proving the remaining equality it remains to show that

P
(︂{︂

∃ g ∈ N0 : Zg ≥ bN

}︂
∩
{︂
∃ g ∈ N0 : Zg = 0

}︂)︂
= o(1)

due to the extinction-explosion principle for DBPCs. Let (cN )N∈N be a sequence with cN →
N→∞

∞
and bN

cN
→

N→∞
∞ and consider the subsets

A(N) :=
{︂
∃ g ∈ N0 : Zg ≥ bN , ∃ i ≤ g, Zi ≥ cN

}︂
∩
{︂
∃ g ∈ N0 : Zg = 0

}︂
,

B(N) :=
{︂
∃ g ∈ N0 : Zg ≥ bN , ∀ i ≤ g, Zi < cN

}︂
∩
{︂
∃ g ∈ N0 : Zg = 0

}︂
.

By definition

A(N) ⊔B(N) :=
{︂
∃ g ∈ N0 : Zg ≥ bN

}︂
∩
{︂
∃ g ∈ N0 : Zg = 0

}︂
.

The extinction-explosion principle together with (3.6.3) yields that

P
(︂
A(N)

)︂
≤ P

(︂{︂
∃ g ∈ N0, Zg ≥ cN

}︂
∩
{︂
∃ g ∈ N0, Zg = 0

}︂)︂
→

N→∞
0.

Furthermore
B(N) ⊂

{︂
Z⌊ bNcN ⌋

> 0
}︂
∩
{︂
∃ g ∈ N0, Zg = 0

}︂
,

which gives

P
(︂
B(N)c

)︂
≥ P

(︃{︂
Z⌊ bNcN ⌋

= 0
}︂
⊔
{︂
∀ g ∈ N0, Zg > 0

}︂)︃
= P

(︃{︂
Z⌊ bNcN ⌋

= 0
}︂)︃

+ P
(︂{︂

∀ g ∈ N0, Zg > 0
}︂)︂

→ 1,
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because for any sequence uN tending to infinity we have P (ZuN
= 0) → 1 − π, which follows by

monotonicity of the events since {Zg+1 = 0} ⊂ {Zg = 0} for all g ≥ 0. Hence, we have

P
(︂
A(N) ⊔B(N)

)︂
→

N→∞
0.

Proof of Proposition 3.3.7. Due to Assumption 3.3.3 we have that neither p
(N)
1,o ̸= 1 nor (p

(N)
0,o , p

(N)
1,c ) ̸=

(1, 1) for N large enough. Due to Lemma 3.3.1, for an arbitrary (bN )N∈N such that bN → ∞ we
have that it exists AN such that P(AN ) = 0 and

{∀g ∈ N0 : Z(N)
g > 0}\AN ⊂ {∃g ∈ N0 : Z(N)

g ≥ bN}.

Then using Lemma 3.3.5 we obtain that

P
(︂
{∃g ∈ N0 : Z(N)

g ≥ bN} ∩ {∃g ∈ N0 : Z(N)
g = 0}

)︂
→ 0.

Consequently using that P(
⋃︁
N∈NAN ) = 0 it follows that if the limit exists it satisfies

lim
N→∞

P
(︂
∀g ∈ N0 : Z(N)

g > 0
)︂
= lim
N→∞

P
(︂
∃g ∈ N0 : Z(N)

g ≥ bN

)︂
.

Let (cN )N∈N be a sequence with cN → ∞ and bN
cN

→ ∞. In order to show, if the limit exists, that

lim
N→∞

P
(︂
∃g ∈ N0 : Z(N)

g ≥ bN

)︂
= lim
N→∞

P
(︂
∃g ∈ N0 : Z

(N)

g ≥ bN

)︂
,

it remains to show that

P
(︂
∃g ∈ N0 : Z

(N)

g ≥ bN and ∀i ≤ g, Z
(N)
i ≤ cN

)︂
→ 0. (3.6.4)

In particular for τZ
(N)

bN
:= inf{g ∈ N0 : Z

(N)

g ≥ bN} we have

P
(︂
∃g ∈ N0 : Z

(N)

g ≥ bN and ∀i ≤ g, Z
(N)
i ≤ cN

)︂
≤ P

(︃⌈︃
bN
cN

⌉︃
≤ τZ

(N)

bN <∞
)︃
.

But according to Proposition 3.3.6 it follows that

P
(︂
τZ

(N)

bN ≤ C log (log (bN ))
⃓⃓
τZ

(N)

bN <∞
)︂
→ 1.

In particular taking cN → ∞ such that log log(bN ) = o
(︁
bN
cN

)︁
implies that P

(︁
⌈ bNcN ⌉ ≤ τZ

(N)

bN
<∞

)︁
→

0, which gives (3.6.4).
To conclude the proof it only remains to show that

lim
N→∞

P
(︂
∃g ∈ N0 : Z

(N)

g ≥ bN

)︂
= π.

Note that
∑︁∞
k=0 |p

(N)
k,o − pk,o| ≤ 2, and thus by dominated convergence it follows that

lim
N→∞

∞∑︂
k=0

⃓⃓⃓
p
(N)
k,o − pk,o

⃓⃓⃓
= 0.
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Analogously follows that limN→∞
∑︁∞
k=0 |p

(N)
k,c −pk,c| = 0. From this follows that for a given sequence

(KN )N∈N ⊂ N such thatKN → ∞ as N → ∞ we find a sequence (εN )N∈N with εN → 0 as N → ∞
and with

max

(︄
KN∑︂
k=0

|p(N)
k,o − pk,o|,

KN∑︂
k=0

|p(N)
k,c − pk,c|

)︄
≤ εN , (3.6.5)

max

(︄ ∞∑︂
k=KN+1

pk,o,

∞∑︂
k=KN+1

pk,c

)︄
≤ εN .

Note that this implies

∞∑︂
k=KN+1

p
(N)
k,o ≤

⃓⃓⃓⃓
⃓

∞∑︂
k=KN+1

(p
(N)
k,o − pk,o)

⃓⃓⃓⃓
⃓+

∞∑︂
k=KN+1

pk,o

≤
⃓⃓⃓⃓
⃓
KN∑︂
k=0

(p
(N)
k,o − pk,o)

⃓⃓⃓⃓
⃓+ εN ≤ 2εN .

By the exact same calculation we get the same bound for the sum of p
(N)
k,c from KN + 1 to ∞ and

this yields that

max

(︃ ∞∑︂
k=KN+1

p
(N)
k,o ,

∞∑︂
k=KN+1

p
(N)
k,c

)︃
≤ 2εN . (3.6.6)

We know by assumption that εN → 0. Consider now a sequence (eN )N∈N such that eN → ∞ and
εNe

2
N → 0. The first step is to prove that

lim
N→∞

P
(︂
∃g ∈ N0 : Z

(N)

g ≥ eN

)︂
= π. (3.6.7)

We start by showing that whp. the sequence of DBPC
(︁
Z(N)

)︁
N∈N and the limiting DBPC Z∞

can be exactly coupled until their total size reaches the level eN or they both die out. Introduce
the stopping time of the first generation that the total size of Z∞ reaches the level eN or that it
dies out as

τZ
∞

eN ,0 = inf
{︂
g ∈ N0 : Z

∞
g ≥ eN or Z∞g = 0

}︂
.

By definition we have that almost surely Z
∞
τZ∞
eN ,0−1 < eN which means that in order to make an exact

coupling between Z(N) and Z∞ until generation τZ
∞

eN ,0, there are at most e2N offspring and coopera-
tion independent random variables to couple. Till this point we have not specified the joint distribu-

tion of the offspring and cooperation random variables (Xi, Yj,k)i∈N,j<k and (X
(N)
i , Y

(N)
j,k )i∈N,j<k.

We couple them in such a way that P
(︁
Xi ̸= X

(N)
i

)︁
and P

(︁
Yj,k ̸= Y

(N)
j,k

)︁
are minimized. For a

single random variable this can be done for each pair recursively via the maximal coupling, see
Theorem 2.9 in [86], such that

P
(︁
Xi ̸= X

(N)
i

)︁
=

1

2

∞∑︂
k=0

|p(N)
k,o − pk,o| ≤ 2εN
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and

P
(︁
Yj,k ̸= Y

(N)
j,k

)︁
=

1

2

KN∑︂
k=0

|p(N)
k,o − pk,o| ≤ 2εN ,

where we used the bounds from (3.6.5) and (3.6.6). Since these are families of independent random
variables and also the offspring and cooperation random variables across different generations are
independent, the probability that the e2N relevant offspring and cooperation independent random

variables are equal is lower bounded by (1 − 2εN )e
2
N → 1 by the choice of (eN ). In summary we

have
P
(︁
Z

(N)

g = Z
∞
g ,∀g ≤ τZ

∞

eN ,0

)︁
≥ (1− 2εN )e

2
N → 1 (3.6.8)

as N → ∞. Let us now define the event

CN :=
{︂
Z

(N)

g = Z
∞
g ,∀g ≤ τZ

∞

eN ,0

}︂
.

We see that by monotonicity and Lemma 3.6.1 that

P
(︂{︂

∃g ∈ N0 : Z
∞
g ≥ eN

}︂
∩ CN

)︂
≤ P

(︂
∃g ∈ N0 : Z

∞
g ≥ eN

)︂
→ π

as N → ∞. On the other hand, by monotonicity and Equation (3.6.8) we see that

P
(︂{︂

∃g ∈ N0 : Z
∞
g ≥ eN

}︂
∩ CcN

)︂
≤ P

(︂
∃g ≤ τZ

∞

eN ,0 : Z
(N)

g ̸= Z
∞
g

)︂
→ 0

as N → ∞. This yields that

lim
N→∞

P
(︂{︂

∃g ∈ N0 : Z
∞
g ≥ eN

}︂
∩ CN

)︂
= lim
N→∞

P
(︂
∃g ∈ N0 : Z

∞
g ≥ eN

)︂
= π.

But CN states that the Z∞ and Z(N) are coupled until τZ
∞

eN ,0, and therefore we also know that

P
(︂{︂

∃g ∈ N0 : Z
∞
g ≥ eN

}︂
∩ CN

)︂
= P

(︂{︂
∃g ∈ N0 : Z

(N)

g ≥ eN

}︂
∩ CN

)︂
for all N > 0. But this equality already implies Equation (3.6.7), i.e.

lim
N→∞

P
(︂{︂

∃g ∈ N0 : Z
(N)

g ≥ eN

}︂)︂
= π.

This concludes the proof since we have shown it for bN = eN and since we have shown it for one
specific choice it follows also for an arbitrary sequence (bN )N∈N because of the extinction-explosion
principle shown in Lemma 3.3.1.

Lemma 3.6.2. Consider sequences (DN ), (VN ), (mN ), (fN ), (gN ), (hN ), (kN ) such that VN ∼
a
√
DN for some a > 0, fN ≥ hN ≥ 0, gN ,mN ≥ 0 and assume kN ≥ max{mN , fN , gN} as well as

kN → ∞ for N → ∞ and
k4NV

3
N

D2
N

∈ o(1). Then

(DN − fN )!

(DN − fN − (mNVN − gN ))!(DN − hN )mNVN−gN ≥ exp

(︃
− (mNVN − gN )2

2DN

)︃
exp

(︃
−k

4
NV

3
N

D2
N

)︃
≥ exp

(︃
− (mNVN )2

2DN

)︃
exp

(︃
−k

4
NV

3
N

D2
N

)︃
.
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On the other hand we have

(DN − fN )!

(DN − fN − (mNVN − gN ))!(DN − hN )mNVN−gN ≤ exp

(︃
− (mNVN − gN )2

2DN

)︃
exp

(︃
mNVN
DN

)︃
.

Proof of Lemma 3.6.2. For completeness we show the inequality

1− x ≥ exp(−x) exp(−x2) (3.6.9)

for x ∈ [0, 12 ] first. We have

1− x+ x2/2 ≥ exp(−x),
so

(1− x)

(︃
1 +

x2

2(1− x)

)︃
≥ exp(−x)

which is equivalent to

1− x ≥ exp(−x) 1(︂
1 + x2

2(1−x)

)︂ .
We have

1 +
x2

2(1− x)
≤ 1 + x2 < exp(x2)

which yields

1− x ≥ exp(−x) exp(−x2).
We have

(DN − fN )!

(DN − fN − (mNVN − gN ))!(DN − hN )mNVN−gN (3.6.10)

=

(︃
1− fN − hN

DN − hN

)︃
· · ·
(︃
1− fN − hN

DN − hN
− mNVN − gN − 1

DN − hN

)︃
Since fN − hN ≥ 0 and DN − hN → ∞ as N → ∞ by assumption, we can estimate for N large

enough by inequality (3.6.9)

(3.6.10) ≥ exp

(︃−(fN − hN )(mNVN − gN )

DN − hN

)︃
· exp

(︄
−
mNVN−gN−1∑︂

i=1

i

DN − hN

)︄

· exp
(︄
−
(︃
fN − hN +mNVN

DN − hN

)︃2

mNVN

)︄
(3.6.11)

Finally, since 1
DN−hN

≤ 1
DN

(1 + 2 hN

DN
) and

(︃
(fN +mNVN )2mNVN

D2
N

+
fN (mNVN )

DN

)︃(︃
1 +

5hN
DN

)︃
+
hN (mNVN − gN )2

DN
≤ k4NV

3
N

D2
N
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for N large enough, we can estimate

(3.6.11) ≥ exp

(︄
− (mNVN − gN )

2

2DN

)︄
exp

(︃
−k

4
NV

3
N

D2
N

)︃
.

Furthermore, for the upper bound we estimate

(DN − fN )!

(DN − fN − (mNVN − gN ))!(DN − hN )mNVN−gN

≤ exp

(︃−(fN − hN )(mNVN − gN )

DN − hN

)︃
· exp

(︄
−
mNVN−gN−1∑︂

i=1

i

DN − hN

)︄

≤ exp

(︄
− (mNVN − gN − 1)

2

2DN

)︄

≤ exp

(︄
− (mNVN − gN )

2

2DN

)︄
exp

(︃
mNVN
DN

)︃
.

Proof of Lemma 3.4.1. We have that

P
(︂
C

(h′N )
k

)︂
=

∏︁k
i=1

(︁
m′NV

′
N−2(i−1)
2

)︁
k!(D′N −m′N )k

· (D′N − h′N )!

(D′N − h′N − k)!(D′N −m′N )k

· (D′N −m′N − k)!

[(D′N −m′N − k)− (m′NV
′
N − 2k)]!(D′N −m′N )m

′
NV
′
N−2k

.

In particular applying Lemma 3.6.2 with fN = m′N + k, gN = 2k, hN = m′N and kN = ℓ′N , one
obtains that

P
(︂
C

(h′N )
k

)︂
≤
(︃
m′NV

′
N

2D′N

)︃k
1

k!
exp

(︃
ℓ′N
m′N
D′N

)︃
· exp

(︃
− (m′NV

′
N − 2ℓ′N )2

2D′N

)︃
exp

(︃
m′NV

′
N

D′N

)︃
≤
(︃
m′NV

′
N

2D′N

)︃k
1

k!
exp

(︃
− (m′NV

′
N − 2ℓ′N )2

2D′N

)︃
· exp

(︄
ℓ′N

2
V ′N

D′N

)︄
.

Applying again Lemma 3.6.2 with fN = m′N + k, gN = 2k, hN = m′N and kN = ℓ′N we obtain

P
(︂
C

(h′N )
k

)︂
≥
(︄
(m′NV

′
N − 2ℓ′N )

2

2D′N

)︄k
1

k!
exp

(︄
−4

ℓ′N
2

D′N −m′N

)︄
exp

(︃
− (m′NV

′
N )2

2D′N

)︃
exp

(︄
−ℓ
′
N

4
V ′N

3

D′N
2

)︄

≥
(︄
(m′NV

′
N − 2ℓ′N )

2

2D′N

)︄k
1

k!
exp

(︃
− (m′NV

′
N − 2ℓ′N )2

2D′N

)︃
exp

(︄
−ℓ
′
N

5
V ′N

3

D′N
2

)︄
.
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Lemma 3.6.3. Let X and Y be two random variables with state spaces S = {s1, ..., sn} and
S̃ = {s̃1, ..., s̃n} of size n for some n ∈ N. Assume there exists an ε > 0 such that for all i ∈ {1, ..., n}
we have

|P (X = si)−P (Y = s̃i)| ≤ ε.

Then there exist a probability space (Ω,F , P̃) and random variables X̃ and Ỹ defined on (Ω,F , P̃),
such that X̃ ∼ X, Ỹ ∼ Y and P̃

(︂
(X̃, Ỹ ) ∈ ⋃︁ni=1{(si, s̃i)}

)︂
≥ 1− nε. By a (common) slight abuse

of notation, we will write (here and in the main text) that we can couple X and Y such that

P

(︄
(X,Y ) ∈

n⋃︂
i=1

{(si, s̃i)}
)︄

≥ 1− nε.

Proof. Denote by pi := min{P(X = si),P(Y = s̃i)}. Let U be a random variable defined on some
probability space (Ω,F , P̃) and uniformly distributed on [0, 1]. Set X̃(ω) := sk and Ỹ (ω) := s̃k,

if
∑︁k−1
i=1 pi ≤ U(ω) ≤ ∑︁k

i=1 pi, where we set
∑︁
∅ := 0. Furthermore, let pXi := P(X = si) − pi

and set X̃(ω) := sj , if
∑︁n
i=1 pi +

∑︁j−1
i=1 p

X
i ≤ U(ω) ≤ ∑︁n

i=1 pi +
∑︁j
i=1 p

X
i and analogously define

Ỹ (ω) for U(ω) >
∑︁n
j=1 pj . Then X and Y have the same distribution as X̃ and Ỹ , because e.g.

P̃(X̃ = si) = pi + pXi = P(X = si). Furthermore, P̃
(︁
(X̃, Ỹ ) ∈ ∪ni=1(si, s̃i)

)︁
≥ 1 − nε, since∑︁n

i=1 pi ≥ 1−∑︁n
i=1 |P(X = si)−P(Y = s̃i)| ≥ 1− nε.

Proof of Lemma 3.4.8. Denote by SN = DN −φ1(N)−φ2(N), bN = DN −φ1(N), and h(N) =

H(N)(vN − φ3(N)). Introduce for all i ≤ bN the random variable G
(N)
i which counts the number

of balls in box i. We have

P
(︂
G

(N)
1 ≤ 1

)︂
= P

(︂
G

(N)
1 = 0

)︂
+ P

(︂
G

(N)
1 = 1

)︂
=

(︃
1− 1

bN

)︃h(N)

+
h(N)

bN

(︃
1− 1

bN

)︃h(N)−1

= exp

(︃
h(N) log

(︃
1− 1

bN

)︃)︃[︄
1 +

h(N)

bN

1

1− 1
bN

]︄

=

[︄
1− h(N)

bN
+

1

2

(︃
h(N)

bN

)︃2

+O
(︄(︃

h(N)

bN

)︃3
)︄]︄(︃

1−O
(︃
h(N)

b2N

)︃)︃[︃
1 +

h(N)

bN
+O

(︃
h(N)

b2N

)︃]︃

= 1− 1

2

(︃
h(N)

bN

)︃2

+O
(︄(︃

h(N)

bN

)︃3
)︄
.

Combining this previous computation with the fact that SN
h2(N)
b2N

= Θ(H2(N)) gives that

E
[︂
G(N)

]︂
= E

[︄
SN∑︂
i=1

1{︂
G

(N)
i ≥2

}︂
]︄
= SN

(︂
1− P

(︂
G

(N)
1 ≤ 1

)︂)︂
= Θ

(︁
H2(N)

)︁
.

By using Markov Inequality we obtain that

P
(︂
G(N) ≥ H2(N)f2(N)

)︂
≤ E[G(N)]

H2(N)f2(N)
= Θ

(︃
1

f2(N)

)︃
,
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which gives exactly (3.4.12).
Due to the scaling of H(N) it could happen that some boxes contain more than 3 balls. In order
to deal with such a situation introduce

ℓ := inf
{︂
i ≥ 2 : H(N)i+1 = o

(︂√︁
DN

i−1)︂}︂
.

The scaling Nε = o(H(N)) ensures that ℓ <∞. Now we have

P
(︂
∃i ≤ bN , G

(N)
i ≥ ℓ+ 1

)︂
≤ bN

h(N)ℓ+1

bℓ+1
N

= Θ

(︄
H(N)ℓ+1V ℓ+1

N

Dℓ
N

)︄
= Θ

(︄
H(N)ℓ+1

√
DN

ℓ−1

)︄
→ 0,

by definition of ℓ. Then under the event{︂
∀i ≤ bN , G

(N)
i ≤ ℓ

}︂
,

getting G(N) = k is obtained for any composition of balls, in which there exist exactly k groups of
balls that consist of 2 to ℓ many balls and in which all other balls are grouped alone. The number
of different kind of compositions is upper bounded by kℓ, because for all 2 ≤ j ≤ ℓ the number
of boxes getting exactly j balls is upper bounded by k. For each composition there are at most
(H(N)VN )kℓ different possibilities to fill the k groups with (at most ℓ) balls. An upper bound on
the number of possibilities for the boxes, where the k groups of balls are placed to, is bkN . The
number of remaining balls to be placed on different boxes is lower bounded by h(N)− kℓ. We can
estimate in summary

P
(︃
G(N) ≤ H2(N)

f1(N)

⃓⃓⃓
{∀i ≤ bN , Gi ≤ ℓ}

)︃
≤
H2(N)f−1

1 (N)∑︂
k=0

kℓHkℓ(N)V kℓN

h(N)−kℓ∏︂
i=0

(︃
1− i

bN

)︃
. (3.6.12)

Also using that
h(N)−kℓ∏︂
i=0

(︃
1− i

bN

)︃
= exp

⎛⎝h(N)−kℓ∑︂
i=0

log

(︃
1− i

bN

)︃⎞⎠
and that log(1 − x) ≤ −x for all x ∈ [0, 1), one can show, using that h(N) = o(bN ), that for all
k ≤ H2(N)f−11 (N) we have

h(N)−kℓ∏︂
i=0

(︃
1− i

bN

)︃
≤ exp

⎛⎝−
h(N)−kℓ∑︂
i=0

i

bN

⎞⎠ ≤ exp

⎛⎝−
h(N)−H2(N)ℓ∑︂

i=0

i

bN

⎞⎠ .

Because
∑︁h(N)−H2(N)ℓ
i=0

i
bN

∼ H2(N)v2N
2bN

∼ H2(N)a
2

2 , it follows that for N large enough we have

exp

⎛⎝−
h(N)−H2(N)ℓ∑︂

i=0

i

bN

⎞⎠ ≤ exp

(︃
−H2(N)

a2

4

)︃
.

Then using the natural bound

kℓ (H(N)VN )
kℓ ≤ H2ℓ(N) (H(N)VN )

H2(N)f−1
1 (N)ℓ
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for all k ≤ H2(N)f−11 (N), we get that for N large enough

(3.6.12) ≤ exp

(︃
−H2(N)

a2

4

)︃
H2(ℓ+1)(N) (H(N)VN )

H2(N)f−1
1 (N)ℓ

= exp

(︃
−H

2(N)

4

[︁
a2 − 4ℓf−11 (N) log (H(N)VN )

]︁)︃
H2(ℓ+1)(N)

≤ exp

(︃
−H

2(N)a2

8

)︃
,

where for the last inequality we use that log(H(N)VN ) = o(f1(N)).
Finally to conclude the proof we have

P
(︃
G(N) ≤ H2(N)

f1(N)

)︃
≤ P

(︂
∃i ≤ bN , G

(N)
i ≥ ℓ+ 1

)︂
+ P

(︃
G(N) ≤ H2(N)

f1(N)

⃓⃓⃓
{∀i ≤ bN , Gi ≤ ℓ}

)︃
≤ Θ

(︄
H(N)ℓ+1

√
DN

ℓ−1

)︄
.

Lemma 3.6.4. Let 0 < α < β, a > 0 and consider the sequence of processes
(︁ ˜︁S(N,a), ˜︁J (N,a), ˜︁R(N,a)

)︁
N∈N

defined in Section 3.4.5. It holds

lim
N→∞

P
(︂{︂

∃g ≥ 0 :
⃓⃓⃓ ˜︁R(N,a)

g

⃓⃓⃓
≥ Nα

}︂)︂
≥ φa,

where φa denotes the survival probability of a Galton-Watson process with Poi
(︂
a2

2

)︂
offspring dis-

tribution.

In the proof of Lemma 3.6.4 we will couple(︁ ˜︁S(N,a), ˜︁J (N,a), ˜︁R(N,a)
)︁
N

with the Galton-Watson process defined next.

Definition 3.6.5. (Lower Galton-Watson Process)
Let 0 < δ < 1

2 and (bN )N∈N be a sequence which fulfills bN → ∞ and bN ∈ o
(︁√
DN

)︁
. Furthermore

assume (θN )N∈N is a [0, 1]-valued sequence with θN → 0. Let X
(N)
l =

(︁
X

(N)
g,l

)︁
g∈N0

be a Galton-

Watson process with mixed binomial offspring distribution Bin
(︁ ˜︁X(N), 1− θN

)︁
, where the probability

weights
(︁˜︁p(N)
k

)︁
k∈N0

of ˜︁X(N) are for all 1 ≤ j ≤ bN

˜︁p(N)
j :=

(︄
(V

(a)
N − 2bN )2

2DN

)︄j
1

j!
exp

(︄
−
(︁
V

(a)
N

)︁2
2DN

)︄(︃
1− 1

Dδ
N

)︃
,

and

˜︁p(N)
0 := 1−

bN∑︂
j=1

˜︁p(N)
j .
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Denote by Φ
(N)
l the generating function of the offspring distribution

(︁
p
(N)
k,l

)︁
k∈N0

of X
(N)
l , and by

X
(N)

g,l :=
∑︁g
i=0X

(N)
i,l the total size of the Galton-Watson process until generation g and Xl =(︁

X
(N)

g,l

)︁
g∈N0

the corresponding process.

Proof of Lemma 3.6.4. Introduce

η
(N)
Nα = inf

{︂
g ∈ N0 :

⃓⃓⃓ ˜︁J (N,a)
g ∪ ˜︁R(N,a)

g

⃓⃓⃓
≥ Nα

}︂
.

We are going to show that

P
(︂
| ˜︁J (N,a)
g ∪ ˜︁R(N,a)

g | ≥ X
(N)

g,l ∀ g ≤ η
(N)
Nα

)︂
→ 1 (3.6.13)

for the process X
(N)

l defined in Definition 3.6.5.
Consider DN − 1 boxes, assume VN many balls are put uniformly at random into the boxes.

Denote by C
(N)
j the event that exactly j boxes contain at least 2 balls. One can show using similar

calculations as in the proof of Proposition 3.5 of [1] that

˜︁p(N)
j ≤ P

(︂
C

(N)
j

)︂
,∀1 ≤ j ≤ bN ,

This means that whenever a vertex x gets infected one can estimate from below how many of its
neighbors are visited by at least 2 of its VN parasites, which we call a pack of parasites, by the

corresponding number of offspring in the Galton-Watson process X
(N)
l , since ˜︁p(N)

0 = 1−∑︁bN
i=1 p̃

(N)
j .

However, in the process
(︁ ˜︁S(N,a), ˜︁J (N,a), ˜︁R(N,a)

)︁
“ghost” infections may occur, when a) an al-

ready empty vertex is attacked by at least 2 parasites coming from the same infected vertex, or
when b) a vertex is attacked by at least two packs of parasites coming from different vertices.

We show next that each pack of parasites of size at least 2 generated by an infected vertex

before generation η
(N)
Nα is involved in one of the events a) or b) (independently of the other packs

of parasites) with probability at most θN . Consequently, by removing packs of parasites with
probability θN the number of new infection generated by an infected hosts can with high probability
be bounded from below by the number of offspring drawn according to the distribution with weights

(p
(N)
k,l )k∈N0

from Definition 3.6.5 for any generation n ≤ η
(N)
Nα .

Now we upper bound the probabilities of the events a) and b).

a) Before generation η
(N)
Nα the probability that a pack of parasites goes to an empty vertex is

bounded from above by Nα

DN−1 = Θ
(︁

1
Nβ−α

)︁
.

b) Before generation η
(N)
Nα , the number of empty vertices in the graph is smaller than Nα. The

probability that two packs of parasites coming from 2 different vertices attack the same vertex
is 1

DN−2 = Θ
(︁

1
Nβ

)︁
. Using Markov inequality one can show that the total number of packs of

parasites generated before generation η
(N)
Nα is with high probability bounded by Nα log(N),

as in Lemma 4.8 in [1]. Hence, each pack of parasites is involved in an event of type b) with

probability at most Nα log(N) · 1
DN−2 = Θ

(︂
log(N)
Nβ−α

)︂
.

In summary, θN = 2N
α log(N)
DN−2 = Θ

(︂
log(N)
Nβ−α

)︂
yields an upper bound on the probability that a pack

of parasites is involved in one of the events of type a) or b). Since α < β we have θN ∈ o(1). Then
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taking the Galton Watson process X
(N)
l of Definition 3.6.5 with θ = 2N

α log(N)
DN−2 we have exactly

proven (3.6.13).

As in the proof of Proposition 3.3 of [1] one can show the uniform convergence of Φ
(N)
l to the

generating function of a Poi
(︁
a2

2

)︁
distribution, such that applying Lemma 3.7 of [1] gives that

lim
N→∞

P
(︂
∃g ∈ N0 : X

(N)

g,l ≥ Nα
)︂
= φa. (3.6.14)

Combining (3.6.13) and (3.6.14) we get that

lim inf
N→∞

P
(︂
∃g ∈ N0 : | ˜︁R(N,a)

g | ≥ Nα
)︂
≥ φa.

For the proof of Lemma 3.6.6 we have to control moderate deviations of Poisson distributed
random variables.

Lemma 3.6.6. Let 0 < γ < 1, N ∈ N and XN ∼ Poi(Nγ). Then for any 0 < ε < γ/2 it holds
that

lim
N→∞

−2

N2ε
log
(︂
P
(︂
|XN −Nγ | > N

γ
2 +ε
)︂)︂

= 1.

The proof of Lemma 3.5.1 is based on the following lemma.

Lemma 3.6.7. Let X = (Xt) be a Poisson process with intensity 1 on [0,∞) and let a(t) be a

function such that t
a(t) → ∞ and a(t)√

t
→ ∞. Then for every Borel-set B ⊂ R it holds that

lim sup
t→∞

t

a(t)2
log
(︂
P
(︂ 1

a(t)
(Xt − t) ∈ B

)︂)︂
≤ − inf

x∈B

x2

2

and

lim inf
t→∞

t

a(t)2
log
(︂
P
(︂ 1

a(t)
(Xt − t) ∈ B

)︂)︂
≥ − inf

x∈B̊

x2

2
,

where B̊ denote the interior and B the closure of B.

Proof of Lemma 3.6.7. This is a direct consequence of Theorem 1.1’ found in [87]. We will now
check the conditions of this theorem. First denote by Yt = Xt− t the compensated Poisson process,
note that (Yt)t≥0 is a martingale. Let δ > 0, then it holds that

E
[︂
exp

(︁
δ sup
s≤t≤s+1

|Yt − Ys|
)︁ ⃓⃓

σ(Yu : u ≤ s)
]︂
= E

[︂
exp

(︁
δ sup
0≤t≤1

|Yt|
)︁]︂
,

where we used that the Poisson process has independent and stationary increments and that Y0 = 0.
Furthermore it holds that

E
[︂
exp

(︁
δ sup
0≤t≤1

|Yt|
)︁]︂

≤ E
[︁
exp

(︁
δX1

)︁]︁
e1 = exp(exp(δ)),
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where we used that Xt is a monotone process and that the moment generating function of a Poisson
distribution with parameter 1 is given through t ↦→ exp(et − 1). This provides (A1)′. The second
condition (A2)′ follows from the fact that

E
[︂1
t
(Ys+t − Ys)

2 − 1
⃓⃓
σ(Yu : u ≤ s)

]︂
= E

[︂1
t
Y 2
t

]︂
− 1 = 0,

where we used again that the process has stationary and independent increments. Now the claimed
moderate deviation principle follows from Theorem 1.1’ in [87].

Proof of Lemma 3.6.6. This follows from Lemma 3.6.7 by choosing a(t) = t
1
2+

ε
γ , B = [0, 1]c and

consider the subsequent (XNγ −Nγ)N≥0 instead of (Xt − t)t≥0. Then plugging the choices in we
get that

lim
N→∞

1

N2ε
log
(︂
P
(︂
|XNγ −Nγ | > N

γ
2 +ε
)︂)︂

= −1

2
.

which provides the claim.
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Chapter 4

Neutral (and Deleterious) Cancer
Evolution

This Chapter corresponds to a major revision of the preprint [21] ≪Genetic Composition of Su-
percritical Branching Populations under Power Law Mutation Rates≫ for the Annals of Applied
Probability .
Abstract:
We aim to understand the evolution of the genetic composition of cancer cell populations. To
achieve this, we consider an individual-based model representing a cell population where cells di-
vide, die and mutate along the edges of a finite directed graph (V,E). The process starts with only
one wild-type cell. Following typical parameter values in cancer cell populations we study the model
under power law mutation rates, in the sense that the mutation probabilities are parameterized by
negative powers of a scaling parameter n and the typical sizes of the population of interest are
positive powers of n. Under a non-increasing growth rate condition, we describe the time evolution
of the first-order asymptotics of the size of each subpopulation in the log(n) time scale, as well as
in the random time scale at which the wild-type population, resp. the total population, reaches the
size nt. In particular, such results allow for the perfect characterization of evolutionary pathways.
Without imposing any conditions on the growth rates, we describe the time evolution of the order
of magnitude of each subpopulation, whose asymptotic limits are positive non-decreasing piecewise
linear continuous functions.
Keywords: cancer evolution, multitype branching processes, finite graph, long time behaviour,
power law mutation rates, population genetics.
MSC2020 subject classifications: 60J80, 60J27, 60F99, 92D15, 92D25.

4.1 Introduction and presentation of the model

Consider a population of cells characterised by a phenotypic trait, where the trait space V is finite.
For all v ∈ V denote by (Zv(t))t∈R+ the number of cells of trait v at time t in the population, and(︁
Z(t) := (Zv(t))v∈V

)︁
t∈R+ the global process. Assume that 0 ∈ V and

∀v ∈ V,Zv(0) = 1{v=0}, almost surely.
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Cells with trait 0 are called wild-type cells, and all cells with trait v ∈ V \{0} are called mutant
cells. The population dynamics will follow a continuous-time branching process on NV0 . More
precisely, cells divide (giving birth to two daughter cells) and die with rates depending only on
their phenotypic trait. The birth, death and growth rate functions are respectively

α : V −→ R+, β : V −→ R+ and λ := α− β.

We use the words ”division” and ”birth” synonymously. During a division event of a cell of trait
v ∈ V , the two daughter cells may independently mutate. The mutation landscape across traits is
encoded via a directed graph structure (V,E) on the trait space, where E ⊂ {(v, u),∀v, u ∈ V 2} is
a set of ordered pairs over V such that for all v ∈ V , (v, v) ∩ E = ∅, and there exists a path from
0 to v within E. In other words, (V,E) represents a finite directed graph without self-loops, with
each vertex belonging to the connected component of 0. Mutation directly from trait v to trait u
is possible if and only if (v, u) ∈ E. Let µ : E −→ [0, 1] be a mutation kernel satisfying

∀v ∈ V, µ(v) :=
∑︂

u∈V :(v,u)∈E
µ(v, u) ≤ 1.

A daughter cell mutates from its mother trait v to trait u with probability µ(v, u), meaning that
µ(v) is its total mutation probability. Notice that backward mutations are permitted in this model.

Finally the exact transition rates from a state z = (zv)v∈V ∈ NV0 of the process Z are

z ↦→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z − δv, at rate zvβ(v),
z − δv + δu + δw, at rate 2zvα(v)µ(v, u)µ(v, w)1{(v,u)∈E}1{(v,w)∈E}1{u ̸=w},
z − δv + 2δu, at rate zvα(v)µ(v, u)

2
1{(v,u)∈E},

z + δv, at rate zvα(v) (1− µ(v))
2
+ 2

∑︁
u∈V :(u,v)∈E

zuα(u)µ(u, v) (1− µ(u)) ,

where ∀v ∈ V, δv =
(︁
1{u=v}

)︁
u∈V . Throughout the paper, the growth rate of the wild-type subpop-

ulation λ(0) is assumed to be strictly positive, to ensure that the wild-type subpopulation survives
with positive probability.

The biological motivation for this model is to capture the time dynamics of the genetic compo-
sition of a cell population during carcinogenesis. Tumors are typically detected when they reach
a large size, around 109 cells. The mutation rates per base pair per cell division are generally
estimated to be of order 10−9, see [4, 5]. Thus, the framework of a power law mutation rates limit
naturally arises. A parameter n ∈ N is used to quantify both the decrease of the mutation proba-
bilities, expressed as a negative power of n, and the typical population size, expressed as a positive
power of n, at which we are interested in understanding the genetic composition. The aim is to
obtain asymptotic results on the sizes of all the mutant subpopulations when n goes to infinity.
This is a classical stochastic regime studied in particular in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
Such a regime is referred to in [8, 10] as the large population rare mutations limit. However, we
have chosen the more precise term power law mutation rates to distinguish this regime from the
classical rare mutations limit, which is generally used in the context of adaptive dynamics to sep-
arate evolutionary and ecological scales, where the mutation probabilities µ(n) typically scale as
e−Cn ≪ µ(n) ≪ 1

n log(n) . Indeed, under the power law mutation rates limit, the mutation prob-

abilities are of a higher order compared to those under the rare mutations limit if for instance
µ(n) ∝ n−α with α ∈ (0, 1].
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To be more precise, let L := {ℓ(v, u) ∈ R∗+,∀(v, u) ∈ E} be a set of strictly positive labels on

the edges of the graph, where R∗+ := {x ∈ R, x > 0}. Introduce a sequence of models
(︁
Z(n)

)︁
n∈N,

where for each n ∈ N, Z(n) corresponds to the process described above with the mutation kernel
µ(n) : E −→ [0, 1] satisfying

∀(v, u) ∈ E,nℓ(v,u)µ(n)(v, u) −→
n→∞

µ(v, u) ∈ R+. (4.1.1)

For all t ∈ R∗+, the stopping times corresponding to the first time that the wild-type subpopulation

Z
(n)
0 , respectively the total population Z

(n)
tot :=

∑︁
v∈V Z

(n)
v , reaches the level nt, are defined as

η
(n)
t := inf

{︂
u ∈ R+ : Z

(n)
0 (u) ≥ nt

}︂
and σ

(n)
t := inf

{︂
u ∈ R+ : Z

(n)
tot (u) ≥ nt

}︂
.

These are motivated by two different biological interpretations in different scenarios. For instance,

when considering metastasis the wild-type subpopulation Z
(n)
0 may represent the primary tumor,

and the mutant subpopulations Z
(n)
v , for all v ∈ V \{0}, may correspond to secondary tumors. As

clinicians typically have access to the size rather than the age of a tumor, it is biologically relevant to
estimate the genetic composition of the secondary tumors when the primary one has reached a given

size. This is mathematically encoded by examining the first-order asymptotics of Z
(n)
v

(︁
η
(n)
t

)︁
for

all v ∈ V \{0}. Another biological scenario involves the total population Z
(n)
tot representing a single

tumor. It is appropriate to obtain theoretical results about the size of the mutant subpopulations

Z
(n)
v for all v ∈ V \{0} when the tumor has reached a given size. This corresponds exactly to looking

at the first-order asymptotics of Z
(n)
v

(︁
σ
(n)
t

)︁
. Every time that results can be stated either with η

(n)
t

or σ
(n)
t , the following notation will be used

ρ
(n)
t := η

(n)
t or σ

(n)
t . (4.1.2)

In the present work the cell population will be studied on different time scales: the random time
scale (︂

ρ
(n)
t + s

)︂
(t,s)∈R+×R

; (4.1.3)

and the following deterministic approximation(︂
t
(n)
t + s

)︂
(t,s)∈R+×R

, with t
(n)
t := t

log(n)

λ(0)
. (4.1.4)

Intuitively, the lineage of wild-type cells generated from the cancer-initiating cell constitutes the
first subpopulation that will generate mutations. Understanding its growth, therefore, provides the
natural time scale to consider for observing mutations. The birth and death rates of this lineage

are α(0)
(︁
1− µ(n)(0)

)︁2
and β(0) + α(0)

(︁
µ(n)(0)

)︁2
, respectively. Due to the power law mutation

rates regime specified in Equation (4.1.1), these rates converge to α(0) and β(0) when n grows to
∞. Consequently, this lineage should therefore behave asymptotically as a birth and death process
with rates α(0) and β(0). Indeed, such a result emerges from the natural martingale associated to
a birth and death process, see Lemma 4.3.1. In particular the growth rate of this lineage is close to

λ(0), thus this population reaches a size of order nt approximately at the deterministic time t
(n)
t ,

see Lemma 4.3.2.
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For any finite directed labelled graph (V,E, L), under the following non-increasing growth rate
condition

∀v ∈ V, λ(v) ≤ λ(0), (4.1.5)

the first-order asymptotics of the mutant subpopulation sizes Z
(n)
v are obtained on both random

and deterministic time scales (4.1.3) and (4.1.4), see Theorem 4.2.7. Assumption (4.1.5) can be
biologically motivated. Historically, tumour dynamics has been seen under the prism of clonal
expansion of selective mutations, i.e. λ(v) > λ(0). Nevertheless, the paradigm of neutral cancer
evolution has recently been considered, see [40, 41, 3, 42, 43]. This means that all the selective mu-
tations are already present in the cancer-initiating cell, and any mutations that occur subsequently
are neutral (i.e. λ(v) = λ(0)). With Assumption (4.1.5), deleterious mutations (i.e. λ(v) < λ(0))
are also permitted. This paradigm has been introduced because the genetic heterogeneity inside a
tumour could be explained by considering neutral mutations only. Various statistical methods have
been developed to infer the evolutionary history of tumours, including test of neutral evolution, see
[44, 45, 46] for details.

Without any assumption on the growth rate function λ, we study the system on the deterministic
time scale of Equation (4.1.4). As in [6, 9, 11, 12, 13, 14, 15, 17], we obtain the asymptotic behaviour
of the stochastic exponent processes

∀v ∈ V,X(n)
v (t) :=

log+
(︁
Z

(n)
v

(︁
t
(n)
t

)︁)︁
log(n)/λ(0)

. (4.1.6)

These results are presented in Theorem 4.2.9. Here we are tracking the exponent of n for each
subpopulation, whereas Theorem 4.2.7 is a more refined result that gives the size directly in terms
of n. To our knowledge, it is the first model capturing this level of refinement on the asymptotic
behaviours under the power law mutation rates regime (4.1.1). Two significant new conclusions
emerge.

First, Theorem 4.2.7 shows the remarkable result that under Assumption (4.1.5) the randomness
in the first-order asymptotics of the size of any mutant subpopulation is fully described by the
stochasticity of only one random variableW , which encodes the long-time randomness of the lineage
of wild-type cells issued from the cancer-initiating cell. More precisely, the stochasticity for any
mutant subpopulation size is fully driven, at least to first order, by the randomness in the growth
of the wild-type subpopulation and not by the dynamics of any lineage of a mutant cell nor by the
stochasticity generating the mutations.

Second, Theorem 4.2.7 characterises the exact effective evolutionary pathways, in the sense of
the pathways that asymptotically contribute to the growth of the mutant subpopulations. More
precisely, if the length of a pathway is defined as the sum of the labels of its edges, asymptotic
results on the stochastic exponent give that for any trait v, among the pathways from 0 to v,
only those of minimal length can asymptotically contribute to the growth of trait v. However,
having results on the first-order asymptotics of the size of the mutant subpopulations allows us to
see which of those minimal length pathways actually contribute to the dynamics of trait v. More
specifically, among the minimal length pathways only those with the maximal number of neutral
mutations on their edges asymptotically contribute to the growth of trait v. Indeed, for each neutral
mutation in a pathway, an additional multiplicative factor of order log(n) appears in the first-order
asymptotics. Such a theoretical result opens the door for developing new statistical methods to
infer the underlying graph structure from data, i.e. to infer the evolutionary history of tumours, as
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well as for designing new statistical estimators for biologically relevant parameters, alongside new
neutral (and deleterious) cancer evolution tests.

Moreover it is, to our knowledge, the first time that this power law mutation rates limit has
been studied on the random time scale of Equation (4.1.3). From a biological point of view, it is
more interesting to obtain results on such a random time scale rather than a deterministic one.
We find that the randomness in the first-order asymptotics of any mutant subpopulation size is
fully described by the stochasticity in the survival of the lineage of wild-type cells issued from the
cancer-initiating cell.

In [8, 10], Cheek and Antal study a model that can be seen as an application of the model of the
present work via a specific finite directed labelled graph (V,E, L), the finite-dimensional hypercube.
Among their results, they fully characterise, in distribution, the asymptotic sizes of all the mutant
subpopulations around the random time at which the wild-type subpopulation reaches the typical

size allowing mutations to occur. In their setting, it corresponds to
(︁
η
(n)
1 + s

)︁
s∈R. In particular,

they obtain that the asymptotic sizes of all the mutant subpopulations around this random time

η
(n)
1 are finite almost surely, following generalised Luria-Delbrück distributions, see [10, Theorem
5.1]. The original Luria and Delbrück model, introduced in [88], has generated many subsequent
works, see in particular [89, 90, 91, 92, 93, 8, 10]. Two major features explain the latter result.
The first one is that asymptotically only a finite number of mutant cells are generated from the

wild-type subpopulation until time η
(n)
1 , following a Poisson distribution. The second one is that all

the lineages of the mutant cells generated from mutational events of the wild-type subpopulation

have, up to time η
(n)
1 , only an asymptotically finite random time to grow, which is exponentially

distributed. We extend their results to larger times, typically when the total mutation rate from
the subpopulation of a trait v to the subpopulation of a trait u is growing as a positive power of n,
instead of remaining finite.

In [6], Durrett and Mayberry study the exponentially growing Moran model. They consider
the same mutation regime; their total population size grows exponentially fast at a fixed rate, and
new individuals in the population choose their trait via a selective frequency-dependent process.
In Theorem 4.2.9, a similar result is obtained for the case of a multitype branching population.
In particular, for this setting, the exponential speed of the total population (and of the dominant
subpopulations) growth evolves over time. More specifically, we show that the speed is a non-
decreasing piecewise constant function going from λ(0) to max

v∈V
λ(v), and taking values only from

the set {λ(v),∀v ∈ V }, see Theorem 4.2.9.

In [8, 7, 9, 11, 12, 13, 14, 15, 17], the authors consider the power law mutation rates limit of
Equation (4.1.1) in the special case where all different traits mutate with the same scaling of a fixed
order of a negative power of n. In contrast, in the present work, the power law mutation rates are
more general by allowing traits to mutate with different scalings, as in [10, 16].

As in [8, 10], compared to the different models in [6, 7, 11, 12, 13, 14, 16, 17], the initial population
Z(n)(0) is not assumed to have a macroscopic size. This introduces an additional randomness in how
the wild-type subpopulation stochastically grows to reach a macroscopic size. However, contrary
to [8, 10], we condition neither on the survival of the wild-type subpopulation nor on the finiteness
of the stopping times of Equation (4.1.2).

In [23], Nicholson and Antal study a similar model under a slightly less general non-increasing
growth rate condition. More precisely, in their case, all the growth rates of the mutant populations
are strictly smaller than the growth rate of the wild-type population: ∀v ∈ V \{0}, λ(v) < λ(0).
However, the main difference remains the mutation regime. In their case, only the last mutation is in
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the power law mutation rates regime, while all other mutations have a fixed probability independent
of n. In Theorem 4.2.7 the case where all mutations are in the power law mutation rates regime is
analysed. Additionally, Nicholson and Antal were interested in obtaining the distribution of the first
time that a mutant subpopulation gets a mutant cell, whereas in the present work, the first-order
asymptotics of the sizes of the mutant subpopulations are studied over time.

In [24], Nicholson, Cheek and Antal study the case of a mono-directional graph where time tends
to infinity with fixed mutation probabilities. In particular, they obtain the almost sure first-order
asymptotics of the mutant subpopulation sizes. Under a non-increasing growth rate condition, they
are able to characterise the distribution of the random variables they obtain in the limit. Without
any condition on the growth rates, they study the distribution of the random limit under the small
mutation probabilities limit, using the hypothesis of an approximating model with less stochasticity.
Note that the mutation regime they study is not the power law mutation rates limit of Equation
(4.1.1) as considered in the present work. Under the latter regime, both the size of the population
goes to infinity and the mutation probabilities to 0, through the parameter n.

In [62], Gunnarson, Leder and Zhang study a similar model to the one in the present work and
are also interested in capturing the time-evolution of the genetic diversity of a cell population, using
in their case the well-known summary statistic called the site frequency spectrum (SFS for short).
The main difference lies in the considered mutation regime which is not the power law mutation
rates limit. In their case, the mutation probabilities are fixed. Additionally, they restrict the study
to the neutral cancer evolution case. In particular, as in the present work, they capture the first-
order asymptotics of the SFS at a fixed time and at the random time at which the population first
reaches a certain size. Two noticeable similarities in the results are that the first-order asymptotics
of the SFS converge to a random limit when evaluated at a fixed time and to a deterministic limit
when evaluated at the previous stochastic time. One could argue that in the present work the
correct convergence in the latter case is actually a stochastic limit. But the randomness is fully
given by the survival of the wild-type lineage of the cancer-initiating cell, so conditioned on such
an event, in the end, the limit is a deterministic one. In particular the results of Gunnarson, Leder
and Zhang are all conditioned on the non extinction of the population.

In [16], Gamblin, Gandon, Blanquart and Lambert study a model of an exponentially growing
asexual population that undergoes cyclic bottlenecks under the power law mutation rates limit.
Their trait space is composed of 4 subpopulations 00, 10, 01 and 11, where two pathways of mutations
are possible: 00 ↦→ 10 ↦→ 11 and 00 ↦→ 01 ↦→ 11. They study the special case where one mutation (10)
has a high rate but is a weakly beneficial mutation whereas the other mutation (01) has a low rate
but is a strongly beneficial mutation. In particular they show the notable result that due to cyclic
bottlenecks only a unique evolutionary pathway unfolds, but modifying their intensity and period
implies that all pathways can be explored. Their work relies on a deterministic approximation
of the wild-type subpopulation 00 and some parts of the analysis of the model’s behaviour are
obtained only through heuristics. The present work, and more specifically Theorem 4.2.9, because
it considers selective mutations, can be used and adapted to consider the case of cyclic bottlenecks
in order to prove rigorously their results, both in the specific trait space that they consider and in
a general finite directed trait space.

The rest of the paper is organised as follows. In Section 4.2, we give the results and their
biological interpretations. Sections 4.3 and 4.4 are dedicated to proving Theorem 4.2.7, which
assumes Equation (4.1.5). In Section 4.3, we provide the mathematical construction of the model
for an infinite mono-directional graph using Poisson point measures, as well as the proof in this
particular case. The generalisation of the proof from an infinite mono-directional graph to a general
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finite directed graph is given in Section 4.4.

4.2 Main results and biological interpretation

In Subsection 4.2.1 the first-order asymptotics of the size of each mutant subpopulation on the time
scales (4.1.3) and (4.1.4) are provided under the non-increasing growth rate condition (4.1.5). In
Subsection 4.2.2, the asymptotic result on the stochastic exponent of each mutant subpopulation
is presented without any assumption on the growth rate function λ. In each subsection, biological
interpretations of the results are provided.

4.2.1 First-order asymptotics of the mutant subpopulation sizes under
non-increasing growth rate condition

In this subsection, we assume that the graph (V,E,L) satisfies the non-increasing growth rate
condition given by Equation (4.1.5).

Heuristics for a general finite graph

The next definitions, notations and results are initially motivated by heuristics for the simplest
possible graph: a wild-type and a mutant population where only mutations from wild-type to mutant
cells are considered. Specifically, we consider the graph (V,E, L) = ({0, 1}, {(0, 1)}, {ℓ(0, 1)}), as
illustrated in Figure 4.1. Under the power law mutation rates regime, the intrinsic birth and

Figure 4.1: Graphical representation of the model with two traits and without backward mutation

death rates of the wild-type subpopulation, α(0)
(︁
1− µ(n)(0, 1)

)︁2
and β(0) + α(0)

(︁
µ(n)(0, 1)

)︁2
,

respectively, are so close to α(0) and β(0) that its natural martingale asymptotically behaves like
that of a birth and death process with rates α(0) and β(0) (see Lemma 4.3.1). This allows us to
approximate the growth of the wild-type subpopulation as an exponential growth with parameter

λ(0). Then, if it survives, at time t
(n)
t (see (4.1.4)), its size is of order Θ (nt) (see Lemma 4.3.2),
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where we use the standard Landau notation for Θ. Given this, we understand why it is necessary to

wait until time t
(n)
ℓ(0,1) before observing any mutations. Indeed, with a mutation probability scaling

as n−ℓ(0,1), the total mutation probability up to time t
(n)
t scales as∫︂ t

0

nun−ℓ(0,1)d
(︁
u
log(n)

λ(0)

)︁
=
n−ℓ(0,1)

λ(0)

(︁
nt − 1

)︁
,

which starts to be of order 1 for t ≥ ℓ(0, 1). This is formalised by D. Cheek and T. Antal in [8, 10].
An illustration is provided in Figure 4.2. Some heuristics for the size of the mutant subpopulation

no mutation

mutations

Figure 4.2: Heuristics for the first-occurrence time of mutant cells

at time t
(n)
t , for t ≥ ℓ(0, 1), can also be derived. For ℓ(0, 1) ≤ u ≤ t, the number of new mutations

generated at time t
(n)
u scales as exp

(︁
λ(0)(u − ℓ(0, 1)) log(n)λ(0)

)︁
. The remaining time for these new

mutant cells to grow exponentially at rate λ(1) until time t
(n)
t is t

(n)
t−u. This implies that their

lineages reach a size at time t
(n)
t of order

Θ
(︂
exp

(︂
[λ(1)t+ (λ(0)− λ(1))u− λ(0)ℓ(0, 1)]

log(n)

λ(0)

)︂)︂
. (4.2.1)

Two scenarios are then possible:

• If λ(1) < λ(0): Equation (4.2.1) is maximised for u = t and equals nt−ℓ(0,1). This means
that the dynamics of the mutant subpopulation is driven by mutations from the wild-type

subpopulation rather than by its intrinsic growth. More precisely, its size order at time t
(n)
t

is determined entirely by the mutations generated at that time -and so is of order nt−ℓ(0,1)-
and not by the lineages arising from mutations at earlier times. Biologically, these mutations
are termed deleterious.

• If λ(1) = λ(0): Equation (4.2.1) is independent of u and equals Θ
(︁
nt−ℓ(0,1)

)︁
for any ℓ(0, 1) ≤

u ≤ t. This indicates that lineages of mutant cells generated from mutations at any time
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between t
(n)
ℓ(0,1) and t

(n)
t have the same order of size at time t

(n)
t . In other words, there is a

balance in the dynamics of the mutant subpopulation between the contributions of mutations
and its intrinsic growth. This is a consequence of assuming λ(1) = λ(0). These mutations are
referred to as neutral mutation, even though biologically speaking, this would more precisely
mean the restrictive condition α(1) = α(0) and β(1) = β(0). Therefore, to capture the

total size of the mutant subpopulation at time t
(n)
t , one must integrate all lineages resulting

from mutational events over the time t
(n)
u , for ℓ(0, 1) ≤ u ≤ t. This gives exactly the order

Θ
(︁
(t− ℓ(0, 1)) log(n)nt−ℓ(0,1)

)︁
.

To summarise, for this simple graph, the size of the mutant subpopulation after time t
(n)
ℓ(0,1) scales

as

Θ
(︂
nt−ℓ(0,1)

[︁
1{λ(0)>λ(1)} + 1{λ(0)=λ(1)}(t− ℓ(0, 1)) log(n)

]︁ )︂
. (4.2.2)

Notice, in particular, that in any case, the mutant subpopulation exhibits exponential growth at

rate λ(0) after time t
(n)
ℓ(0,1), as indicated by the factor nt−ℓ(0,1). An illustration of this heuristic can

be found in Figure 4.3, which visually represents the growth dynamics of the mutant subpopulation
over time.

time with exponential growth 

 

𝟙 𝟙

Figure 4.3: Heuristics for the size of the mutant subpopulation after time t
(n)
ℓ(0,1)

These heuristics on this simple graph can be used as an elementary brick for developing heuris-
tics on a general finite graph. Considering a vertex v ∈ V \{0}, there may be multiple mutational
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pathways from the initial vertex 0 to v. It is important to understand which pathways actually con-
tribute to the size order of the mutant subpopulation of trait v. Using both the previous heuristics
on the time required for mutations to occur and the fact that after this time, the mutant subpop-
ulation grows exponentially at rate λ(0), along with an additional log(n) factor if the mutation is
neutral, it seems natural to iteratively apply this reasoning to a mutational pathway, encoded via a
mono-directional graph. In the following, we will use the term ’walk’ instead of ’pathway’, favouring
the nomenclature of graph theory over the biological terminology. For any given walk from 0 to v,

the needed time u, in the time scale t
(n)
u , to observe a cell of trait v generated via this specific walk

is the sum of the labels of the edges along this walk, which is referred to as the length of the walk.
After this time, this subpopulation of cells of trait v grows exponentially at rate λ(0). Moreover,
as observed in (4.2.2), for each neutral mutation along the walk, an additional multiplicative factor
of order log(n) is included in the size order. This leads to three key observations about the total
mutant subpopulation of trait v:

• First occurrence of cells: Cells of trait v first appear after a time equal to the minimum of
the lengths of all walks from 0 to v.

• Effective evolutionary pathways: After this time, only walks whose lengths equal this min-
imum might contribute to the size order of the mutant subpopulation of trait v. This is
because any time delay creates an exponential delay in the size order. This fact is captured
asymptotically in Theorem 4.2.9.

• Neutral mutation factor: The additional multiplicative factor of log(n) due to neutral mu-
tations implies that, among the walks from 0 to v with lengths equal to the aforementioned
minimum, only those with the maximal number of neutral mutations actually contribute to
the size order of the mutant subpopulation of trait v. Specifically, these walks contribute with
a factor of log(n) raised to the power given by this maximal number of neutral mutations.
This fact is asymptotically captured in Theorem 4.2.7. Additionally, for each of these admis-
sible walks, an additional time integral is obtained at each neutral mutation, as observed in
(4.2.2).

An illustration of this reasoning is provided with an example in Figure 4.4.

Notations and definitions:

Now, the natural definitions derived from these heuristics are formally established before presenting
the results.

Definition 4.2.1 (Deleterious and neutral vertices). A vertex v ∈ V is called a neutral vertex if
λ(v) = λ(0), and a deleterious vertex if λ(v) < λ(0).

Remark 4.2.2. In the previous definition, the terms ”neutral” or ”deleterious” for a mutation are
based on comparing its growth rate to that of the wild-type subpopulation. However, it is possible to
have a mutation from a vertex v to a vertex u where λ(v) < λ(u) ≤ λ(0). Although such a mutation
could theoretically be considered selective, since λ(u) > λ(v), the previous definition categorises it
as either neutral or deleterious, depending on the value of λ(u) relative to λ(0). This nomenclature
emerges from the fact that, under Assumption (4.1.5), any mutant subpopulation grows exponentially
at rate λ(0), as developed in the earlier heuristics. Thus, this legitimates the previous definition,
assuming (4.1.5) holds.
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Figure 4.4: Heuristics for the contribution of walks to the size order of the plain purple mutant
subpopulation: in this example, the dashed red walk has a length of 7, while the dotted blue and
plain green walks have a length of 4. Therefore, only the two latter walks may contribute to the
size order of the plain purple mutant subpopulation, making them sub-admissible walks. However,
the dotted blue walk has only one neutral mutation, whereas the plain green walk has two neutral
mutations. As a result, only the plain green walk will ultimately contribute to the size order of

the purple mutant subpopulation. For t ≥ 4, at time t
(n)
t , it will grow as log2(n)eλ(0)t

(n)
t−4 . Notice,

in particular, that the dashed red walk has the maximal number of neutral mutations, which is 3.
However, since it is not a sub-admissible walk, the multiplicative factor of log(n) remains 2 instead
of 3.

The following definition provides a structured framework to analyse the contribution of evolu-
tionary pathways to the growth of mutant subpopulations. It does so by introducing the adapted
vocabulary, for the neutral and deleterious evolutionary context of the model, associated with walks
in labelled graphs. We use the term ’walk’ here according to the standard nomenclature of graph
theory.

Definition 4.2.3 (Walk in the graph). A walk γ = (v(0), · · · , v(k)) in the graph (V,E) is defined
as a sequence of vertices linking v(0) to v(k) such that for all 0 ≤ i ≤ k, v(i) ∈ V , and for all
0 ≤ i ≤ k − 1, (v(i), v(i + 1)) ∈ E. We will sometimes use the term ’path’ to refer to a walk that
visits only distinct vertices. Given a walk γ = (v(0), v(1), · · · v(k)) in the labelled graph (V,E, L),
we define:

• The sum of the labels of the edges and the sum over the first i edges of the walk γ, respectively:

t(γ) :=

k−1∑︂
i=0

ℓ(v(i), v(i+ 1)) and for all i ≤ k, tγ(i) :=

i−1∑︂
j=0

ℓ(v(j), v(j + 1)).

• The subset of neutral heads of the edges of the walk γ and its cardinality:

γneut = {v(i), 1 ≤ i ≤ k : λ(v(i)) = λ(0)} and θ(γ) := |γneut|.
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• The weights wneut(γ) and wdel(γ) associated with the neutral and deleterious vertices of the
walk γ, respectively:

wneut(γ) :=
∏︂

1≤i≤k,λ(v(i))=λ(0)

2α(v(i− 1))µ(v(i− 1), v(i))

λ(0)
,

wdel(γ) :=
∏︂

1≤i≤k,λ(v(i))<λ(0)

2α(v(i− 1))µ(v(i− 1), v(i))

λ(0)− λ(v(i))
.

Along a walk, the constant of the asymptotic contribution of a vertex- depending on its pa-
rameters and those of the upstream vertex- takes a distinct form based on whether the vertex
is neutral or deleterious. This distinction motivates the use of the separate weights wneut(γ)
and wdel(γ).

• The time dependence associated with the neutral vertices: Let σ be an increasing function
from {1, · · · , θ(γ)} to {1, · · · , k}, such that v(σi) is the i-th neutral vertex of the walk γ. For
all t > 0, define the multiple integral Iγ(t) as

Iγ(t) :=

∫︂ t∨tγ(σθ(γ))

tγ(σθ(γ))

∫︂ u1

tγ(σθ(γ)−1)

· · ·
∫︂ uk

tγ(σθ(γ)−k)

· · ·
∫︂ uθ(γ)−1

tγ(σ1)

duθ(γ) · · · du1.

Along a walk, for each neutral vertex that is visited, an additional integral over the time
parameter appears in the asymptotic limit, as described in the heuristics. This motivates the
definition of Iγ(t).

• The weight of the walk γ at time t:

wγ(t) := wdel(γ)wneut(γ)Iγ(t). (4.2.3)

This expression captures the total weight of a walk γ at time t, accounting for both the delete-
rious and neutral visited vertices, and the integrals over the time parameters associated with
these neutral vertices.

The next remark provides a recursive formula for computing the weight of a walk γ at a given
time t.

Remark 4.2.4. The weight wγ(t) of the walk γ = (v(0), · · · , v(k)) at time t can be recursively

expressed in terms of the weight w←
γ
(t) associated with the walk

←
γ := (v(0), · · · , v(k − 1)), which is

the same walk as γ up to the second-to-last vertex (i.e. without the final vertex v(k)). The recursive
equation, which considers whether the last vertex v(k) is deleterious or neutral, is given by

wγ(t) =2α(v(k − 1))µ(v(k − 1), v(k))

·
(︂
1{λ(k)<λ(0)}

1

λ(0)− λ(v(k))
w←
γ
(t) + 1{λ(k)=λ(0)}

1

λ(0)

∫︂ t∨t(←γ )

t(
←
γ )

w←
γ
(s)ds

)︂
.

Definition 4.2.5 (Admissible walks). For all v ∈ V , let P (v) denote the set of all walks γ in the
graph (V,E) that link the vertex 0 to the vertex v. We define the:
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• The minimum total label sum among all walks from vertex 0 to vertex v:

t(v) := min
γ∈P (v)

t(γ).

• The maximum number of neutral vertices among the shortest walks from vertex 0 to vertex v:

θ(v) := max
γ∈P (v),t(γ)=t(v)

θ(γ).

• The set of admissible walks from vertex 0 to vertex v:

A(v) := {γ ∈ P (v) : t(γ) = t(v) and θ(γ) = θ(v)}.

Remark 4.2.6. In the previous definition, the set A(v) is referred to as the set of admissible
walks because, as indicated by the heuristics, only walks belonging to A(v) contribute to the growth
dynamics of the mutant subpopulation of trait v. This is formally established in Theorem 4.2.7.

First-order asymptotic results

Under Assumption (4.1.5), the more refined result can now be formally stated. The model is
mathematically constructed in Section 4.4 (see (4.4.1), (4.4.2), (4.4.3), (4.4.4) and (4.4.5)) using
independent Poisson Point Measures. The following theorem provides the asymptotic results for
this specific mathematical construction of the model. The convergences are, in particular, obtained
in probability. For any mathematical construction of the model other than the one given in Section
4.4, the convergences hold at least in distribution in the appropriate Skorokhod space, see Remark

4.2.8. A motivation for the normalising term d
(n)
v (t, s), introduced in the the following theorem, is

provided below in Remark 4.2.8.

Theorem 4.2.7. Assume that the general finite directed labelled graph (V,E, L) satisfies both the
power law mutation rates regime described in (4.1.1) and the non-increasing growth rate graph

condition given in (4.1.5). Let hn = log(n)
log(log(n))θmax+φn

, where φn →
n→∞

∞ such that hn →
n→∞

∞
and where θmax := maxv∈V \{0} θ(v). Let also ψn such that

√︁
log(n) = o(ψn). Define for all

(t, s) ∈ R+ × R,

d(n)v (t, s) :=1{t∈[0,t(v)−h−1
n )} + 1{t∈[t(v)−h−1

n ,t(v))}ψn log
θ(v)−1(n) (4.2.4)

+ 1{t∈[t(v),∞)}n
t−t(v) logθ(v)(n)eλ(0)s.

Let (T,M) ∈
(︁
R∗+
)︁2

and 0 < T1 < T2. Using the mathematical definition of the model given in
Section 4.4 (see (4.4.1), (4.4.2), (4.4.3), (4.4.4) and (4.4.5)), there exists a random variable W ,
properly defined in (4.4.6), satisfying

W
law
:= Ber

(︂λ(0)
α(0)

)︂
⊗ Exp

(︂λ(0)
α(0)

)︂
,

such that for all v ∈ V \{0}, we obtain the convergence results in probability in L∞([0, T ]×[−M,M ])
for Equation (4.2.5) and in L∞ ([T1, T2]× [−M,M ]) for Equations (4.2.6), (4.2.7) and (4.2.8):
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• Deterministic time scale (4.1.4):
If λ(v) = λ(0), then

Z
(n)
v

(︂
t
(n)
t + s

)︂
d
(n)
v (t, s)

−→
n→∞

W
∑︂

γ∈A(v)

wγ(t). (4.2.5)

If λ(v) < λ(0), then

Z
(n)
v

(︂
t
(n)
t(v)+t + s

)︂
nt logθ(v)(n)eλ(0)s

−→
n→∞

W
∑︂

γ∈A(v)

wγ(t(v) + t). (4.2.6)

• Random time scale (4.1.3): Consider
(︁
ρ
(n)
t

)︁
t∈R+ as defined in (4.1.2).

If λ(v) = λ(0), then

Z
(n)
v

(︂
ρ
(n)
t + s

)︂
d
(n)
v (t, s)

−→
n→∞

1{W>0}
∑︂

γ∈A(v)

wγ(t). (4.2.7)

If λ(v) < λ(0), then

Z
(n)
v

(︂
ρ
(n)
t(v)+t + s

)︂
nt logθ(v)(n)eλ(0)s

−→
n→∞

1{W>0}
∑︂

γ∈A(v)

wγ(t(v) + t). (4.2.8)

The proof of Theorem 4.2.7 relies on a martingale approach using Doob’s and Maximal Inequali-
ties. The initial step involves controlling the growth of the lineage of wild-type cells originated from
the initial cell, for both the deterministic and random time scales (4.1.4) and (4.1.3) (see Lemma
4.4.3 and 4.4.4). For any vertex v ∈ V \{0}, there may be several mutational walks in the graph
(V,E) that start from 0 and lead to v. Understanding the contribution of each of these walks to
the first-order asymptotics of the size of the mutant subpopulation of trait v is essential. The proof
proceeds in 2 steps:

(i) Consider an infinite mono-directional graph under Assumption (4.1.5) and establish the result
for this specific graph, see Section 4.3. Performing this step for an infinite graph is particularly
helpful in handling cycles (such as backward mutations) in a general finite directed graph.

(ii) Identify and exclude walks from the initial vertex 0 to v that do not contribute to the first-
order asymptotics of the size of the mutant subpopulation of trait v, see Section 4.4.

Remark 4.2.8. 1. Mathematical construction: For any mathematical construction other
than the one given in Section 4.4, the convergences hold at least in distribution in
D ([0, T ]× [−M,M ]) for Equation (4.2.5) and in D ([T1, T2]× [−M,M ]) for Equations (4.2.6),
(4.2.7) and (4.2.8).

2. An additional log(n) factor: Notice that a multiplicative factor of logθ(v)(n) is captured

after time t
(n)
t(v), see Equations (4.2.4), (4.2.5), (4.2.6), (4.2.7) and (4.2.8). Obtaining a result
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on the stochastic exponents (see (4.1.6)) does not capture such a factor. For instance, with

the model of Figure 4.1, if λ(1) = λ(0), Theorem 4.2.7 gives that after time ℓ(0, 1), Z
(n)
1

(︁
t
(n)
t

)︁
behaves approximately as log(n)e

λ(0)t
(n)

t−ℓ(0,1) . However, what is captured with X
(n)
1 (t) after

time ℓ(0, 1) is asymptotically λ(0)(t− ℓ(0, 1)), see Theorem 4.2.9.

3. Stochasticity of the limits: The random variable W is explicitly defined as the almost
sure limit of the natural positive martingale associated to a specific birth and death branch-
ing process with rates α(0) and β(0); see (4.4.6). The martingale associated to the lineage
of wild-type cells issued from the initial cell behaves similarly to the one associated to the
aforementioned birth and death branching process (see Lemma 4.4.3). Thus, W quantifies the
randomness of this lineage over the long time. Due to the power law mutation rates regime,
mutations arise after a long time, so the stochasticity of this lineage is already captured by W .
Notice that under Assumption (4.1.5), the randomness in the first-order asymptotics of any
mutant subpopulation size is described completely by W . This means that the stochasticity
of these subpopulations is driven primarily by the randomness in the growth of the wild-type
subpopulation rather than by the one of the mutational process or of any lineage of mutant
cells. In particular, if the process starts with a large number of wild-type cells instead of just
one, the first-order asymptotics of the size of the mutant subpopulations would be entirely
deterministic.

4. Selective cancer evolution: It seems quite natural not to obtain such a result when con-
sidering selective mutation (λ(v) > λ(0)). Indeed, a selective mutation imply that any time
advantage translates directly into a growth advantage. Thus, the stochasticity of the mu-
tational process, as well as the randomness in the lineages of the mutant cells, cannot be
ignored. Therefore, expecting to control the stochasticity of the mutant subpopulation solely
by controlling the randomness in the wild-type subpopulation, without also accounting for the
randomness in the mutational process and the mutant lineages, is vain. More precisely, using
a martingale approach to derive the first-order asymptotics cannot be successful for a selective
mutation. Technically, this is because the expected size of the selective mutant subpopulation
is of a higher order than its typical asymptotic size. Indeed, the rare event of the initial cell
mutating to the selective trait extremely quickly, an event that asymptotically vanishes, is re-
sponsible for this discrepancy between the expected value and the typical asymptotic size of the
selective mutant subpopulation. Nevertheless, when examining the stochastic exponent (4.1.6),
the martingale approach allows us to obtain convergence results as given in Theorem 4.2.9.
This is because the aforementioned rare event contributes only a factor proportional to its
probability to the expected value of the stochastic exponent, meaning it actually asymptotically
neither contributes to the typical size nor to the expected value of the stochastic exponent of
the selective mutant subpopulation. Generalisation to derive the first-order asymptotics when
considering selective mutations is a work in progress.

5. Definition of neutral mutation: In view of Theorem 4.2.7, the mathematical definition
of neutral mutation, λ(v) = λ(0), is well-understood, as opposed to the more restrictive but
biologically meaningful condition of having both α(v) = α(0) and β(v) = β(0). Indeed, main-
taining the same growth rate λ(v) = λ(0), while changing the birth and death rates α(v) and
β(v) alters the distribution of any lineage of mutant cells. Consequently, one might naturally
expect that this would alter the stochasticity of the mutant subpopulation size. However, this is
not the case. The randomness in the first-order asymptotics is fully summed up by the random
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variable W . Thus, it is entirely consistent that, under the neutral assumption, the condition
pertains only to the growth rate function rather than to the birth and death rate functions.

6. Motivation of d
(n)
v (t, s): Considering the time scale t

(n)
t , the result slightly differs depend-

ing on whether the vertex is neutral or deleterious. Indeed, when looking at the asymptotic
behaviour for a deleterious vertex v, the result holds strictly after time t(v), whereas, in the
case of a neutral vertex, the entire trajectory from the initial time can be analysed. Math-
ematically, this difference arises from the additional multiplicative factor of log(n) in the
first-order asymptotics when considering a neutral mutation. This factor allows us to control
the quadratic variation at time t(v) for the martingale associated to the mutant subpopulation.
Three distinct regimes are obtained, as indicated by (4.2.4) and (4.2.5) :

(i) Up to time t(v) − h−1n : with high probability, no mutational pathway from 0 to v has
generated a mutant cell of trait v. Since hn → ∞ and satisfies hn = o(log(n)), t(v) can
be interpreted as the first time -when considering the time scale accelerated by log(n)- at
which it becomes asymptotically possible to observe the first occurrence of a mutant cell
of trait v. This result is also true for deleterious mutations, see Lemma 4.3.6.

(ii) For t ∈
[︁
t(v)− h−1n , t(v)

)︁
: in this time interval, some mutant cells of trait v are produced,

but the interval’s length is insufficient to achieve any power of n for the size of the mutant
subpopulation of trait v. We succeed to dominate its growth by ψn log

θ(v)−1(n), with a
well-chosen ψn. Heuristically, the total number of mutant cells of trait v resulting from
a mutational event up to time t is of order Θ

(︁
logθ(v)−1(n)

)︁
. With the remaining time

for these mutant cells’ lineages to grow, we manage to control the size of the mutant
subpopulation of trait v by at most

√︁
log(n) logθ(v)−1(n). Consequently, dividing by any

function ψn satisfying
√︁
log(n) = o(ψn) results in an asymptotic limits of 0. This

result also holds for deleterious mutations, see Lemma 4.3.7. The
√︁

log(n) factor in
the growth control comes from a mathematical analysis using a martingale approach,
particularly considering the time scale accelerated by log(n). With further refinement,
we conjecture that the actual size of the mutant subpopulation at time t(v) is of order

Θ
(︁ (︁
1{λ(0)=λ(v)} log(log(n)) + 1{λ(0)>λ(v)}

)︁
logθ(v)−1(n)

)︁
.

(iii) For t ∈ [t(v),∞): with high probability, the number of mutant cells of trait v grows

exponentially at rate λ(0). A supplementary multiplicative factor logθ(v)(n) is present
due to the neutral mutations on the walks in A(v). Thus, the growth scales globally as

n(t−t(v)) logθ(v)(n)wv(t).

7. Differences between the time scales: When comparing point (i) and (ii) of Theorem 4.2.7,

notice that the result transitions from the deterministic time scale t
(n)
t to the random time scale

ρ
(n)
t merely by switching W to 1{W>0}. This seemingly surprising fact can be explained by the

essential role of W . As mentioned in Remark 4.2.8 3., W encodes the long-term stochasticity
of the lineage of wild-type cells originating from the initial cell. By showing that the time scale

t
(n)
t serves as the correct deterministic approximation of ρ

(n)
t (see Lemma 4.4.4), it follows

that obtaining an asymptotic result on time scale t
(n)
t also yields a result for the time scale ρ

(n)
t .

This idea is formalised using a technique similar to that in [56, Lemma 3]. The switch from W

to 1{W>0} in the result occurs because the time scale ρ
(n)
t inherently carries the stochasticity

of the random variable W . Consequently, the only remaining randomness that needs to be
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considered is the survival of the lineage from the initial cell, which is asymptotically given by
1{W>0}.

4.2.2 Result for a general finite directed labelled graph

This subsection does not require the non-increasing growth rate condition of Equation (4.1.5).
Without this assumption, a martingale approach fails to obtain the first-order asymptotics of the
mutant subpopulation sizes. However, the stochastic exponents of the mutant subpopulations, as
defined in (4.1.6), can be uniformly tracked over time. In particular, we show that, under the event
{W > 0}, the limits are positive deterministic non-decreasing piecewise linear continuous functions.
Such limits are defined via a recursive algorithm tracking their slopes over time. More precisely, we
show that the slopes can only increase and take values from the growth rate function.

In the tracking algorithm, two different kinds of updates can be made:

• Birth of a new trait: The first update is the birth of a new trait which takes as its slope the
maximum between its inner growth rate and the slope of the subpopulation that gave birth to
it. In fact, it could also happen that many subpopulations give birth to it at the same time;
in this case it is the maximum of their slopes that is compared to the inner growth rate of
the born trait. Such a comparison on the growth rates indicates which mechanism is driving
the subpopulation growth: either its inner growth if this subpopulation is selective compared
to the subpopulation(s) that is/are giving birth to it, or conversely the mutational process
if it is deleterious. The neutral case corresponds to a balance of these two mechanisms, as
previously mentioned in Theorem 4.2.7.

• Growth driven by another trait: The second kind of update is when a live trait v increases
its slope because another live trait u among its incoming neighbours, with a higher slope, has
reached its typical size so that the mutational contribution from trait u now drives the growth
of trait v. Consequently trait v now takes the slope of trait u. Again potentially many traits
u among the incoming neighbours of trait v can reach at the same time the typical size for
the mutational contribution to drive the growth of trait v; in this case the growth of trait v
is driven by the trait u with the maximal slope. This kind of update encodes the possibility
in the evolutionary process that the driving mechanism of a subpopulation can change over
time, always triggering an increase in the actual growth of the subpopulation.

How these two different kinds of updates happen in the tracking algorithm is made formal in
the following theorem. Moreover, they can happen at the same time for different vertices. The
complexity of such an algorithm comes mostly from the generality both on the growth rate function
and on the trait structure. Under the non-increasing growth rate condition (4.1.5), the limiting
functions (xv)x∈V have an explicit form, see Corollary 4.2.12; this is also true when the graph
structure is mono-directional, see Corollary 4.2.10.

Theorem 4.2.9. Let 0 < T1 < T2. The stochastic exponents defined in (4.1.6) satisfy(︂(︁
X(n)
v (t)

)︁
v∈V

)︂
t∈[T1,T2]

−→
n→∞

1{W>0}
(︂(︁
xv(t)

)︁
v∈V

)︂
t∈[T1,T2]

in probability in L∞[T1, T2]. For each v ∈ V , xv is a positive deterministic non-decreasing piecewise
linear continuous function obtained via a recursive approach tracking its slope over time. In partic-
ular there exist k∗ ∈ N and 0 = ∆0 < ∆1 < · · · < ∆k∗ <∞ such that the slopes of (xv)v∈V change
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only at the times (∆j)j∈{0,··· ,k∗}. For j ∈ {0, · · · , k∗}, at time ∆j two kinds of updates in the slopes
can occur: (i) either a new trait starts to grow or (ii) an already growing trait increases its slope
due to a growth driven now by another more selective trait. The algorithm tracks the following
quantities for all j ∈ {0, · · · , k∗} at time ∆j:

• the set of alive traits, Aj,

• the set of not-yet-born traits, Uj,

• the slope of xv, λj(v),

• and the set of traits whose growth is driven by trait v, Cj(v).

Initialisation: Set A0 = {0}, U0 = V \{0} and for all v ∈ V

xv(0) = 0, λ0(v) = λ(0)1{v=0}, and C0(v) = ∅.

Induction: Let j ∈ {0, · · · , k∗ − 1}. Assume that there exist times 0 = ∆0 < ∆1 < · · · < ∆j <∞
such that (xv)v∈V are positive deterministic non-decreasing piecewise linear continuous functions
defined on [0,∆j ], where changes of slopes occur only on the discrete set {∆1, · · · ,∆j}. Also assume
that there exist λj(v), Aj, Uj, and Cj(v), respectively the slope of xv, the set of alive vertices and
not-yet-born vertices, and the set of vertices whose growth is driven by v, everything at time ∆j.

Then there exists ∆j+1 ∈ (∆j ,∞) such that (xv)v∈V are constructed during the time period
[∆j ,∆j+1] according to the following. For all v ∈ V and for all t ≥ ∆j let

yv(t) = (t−∆j)λj(v) + xv(∆j).

For all v ∈ Uj define

∀u ∈ Aj such that (u, v) ∈ E, δu,v := inf{t ≥ ∆j : yu(t) ≥ λ(0)ℓ(u, v)},
δv := inf

u∈Aj :(u,v)∈E
δu,v,

ν(v) := {u ∈ Aj : (u, v) ∈ E and δu,v = δv}.

For all v ∈ Aj define

Bj(v) := {u ∈ Aj : (v, u) ∈ E and λj(v) > λj(u)},
∀u ∈ Bj(v), δv,u := inf{t ≥ ∆j : yv(t) ≥ yu(t) + λ(0)ℓ(v, u)},
δv := inf

u∈Bj(v)
δv,u,

ν(v) := {u ∈ Bj(v) : δv,u = δv}.

Then define ∆j+1 := infv∈V δv and νj+1 := {v ∈ V : δv = ∆j+1}. Then proceed to the following
updates:

• Let Aj+1 := Aj ∪ (νj+1 ∩ Uj) and Uj+1 = Uj\ (νj+1 ∩ Uj) . Also let ∀v ∈ Uj+1, λj+1(v) =
λj(v) = 0, Cj+1(v) = Cj(v) = ∅.
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• For all v ∈ νj+1 ∩ Aj, introduce the set ν(−)(v) := {u ∈ ν(v) : ∃w ∈ νj+1 ∩ Aj , λj(w) >
λj(v), and u ∈ ν(w)}.
Then let Cj+1(v) := Cj(v) ∪

⋃︁
u∈ν(v)\ν(−)(v) ({u} ∪ Cj(u)) . For all u ∈ ν(v)\ν(−)(v) and

w ∈ Cj(u), λj+1(u) = λj+1(w) = λj(v).

• For all v ∈ Aj whose slope has not been updated yet, let λj+1(v) = λj(v). And for all v ∈ Aj
whose set Cj(v) has not been updated yet, let Cj+1(v) := Cj(v).

• For all v ∈ νj+1 ∩ Uj, let λj+1(v) := max
(︁
λ(v),maxu∈ν(v) λj+1(u)

)︁
, and

Cj+1(v) = Cj(v) = ∅. If λj+1(v) ≥ λ(v), introduce the following set ν+(v) := {u ∈ ν(v) :
λj+1(u) = maxw∈ν(v) λj+1(w)}, and for all u ∈ ν+(v), Cj+1(u) := Cj+1(u) ∪ {v}.

For any mathematical construction other than the one given in Section 4.4 (see (4.4.1), (4.4.2),
(4.4.3), (4.4.4) and (4.4.5)), the convergences are at least in distribution in D ([T1, T2]) .

The proof of Theorem 4.2.9 is a minor adaptation of the proofs found in [6]. Specifically, by
adapting the arguments from [6, Propositions 2 and 4] to the context of the present model, Theorem
4.2.9 follows. For this reason, and in the interest of brevity, we do not provide an explicit proof of
Theorem 4.2.9.

The only notable difference is that the process does not start from a macroscopic state. However,
it can be easily shown that, conditioned on {W = 0}, no mutant cells are generated asymptotically,
since with high probability the wild-type subpopulation can’t survive in the log(n)-accelerated time
scale. Additionally, conditioned on {W > 0}, the first phase, corresponding to the growth of the
wild-type subpopulation leading to the macroscopic state that allows for the generation of the first
mutant cell, is straightforward to capture.

When considering a(n) (infinite) mono-directional graph, the structure of such a graph is suffi-
ciently simple to allow for an explicit form of the limiting functions (xv)v∈V , see the next corollary.
In particular, there is only one possible slope change that can happen at a time. More specifically,
when a not-yet-born trait becomes alive due to the previous trait reaching the typical size allowing
for mutations. When this happens, the new born trait takes the slope the maximum between its in-
ner growth rate or the current slope of the previous trait (as mentioned in point (i) of the heuristics
preceding Theorem 4.2.9). Any alive trait cannot update its slope because no backward mutation
is permitted with this graph structure. Moreover, only a single trait becomes alive at each time,
due to the scaling labels ℓ(i, i+ 1) being positive.

Corollary 4.2.10 (Theorem 4.2.9 applied to a mono-directional graph). Assume the graph is
infinite and mono-directional, i.e. (V,E) = (N0, {(i, i+1), i ∈ N0}) and that ℓ∗ := inf{ℓ(i, i+1), i ∈
N0} > 0. Then the limiting functions (xi)i∈N0

of Theorem 4.2.9 have the following simplified form:

∀t ∈ R+, xi(t) := λmax(i)(t− ˜︁t(i))+,
where λmax(i) = maxj∈{0,··· ,i} λ(j) and ˜︁t(i) :=∑︁i−1

j=0
ℓ(j,j+1)λ(0)
λmax(j)

.

Remark 4.2.11. Using the previous corollary, the limits (xv)v∈V defined in Theorem 4.2.9 can
be rewritten by using the decomposition via walks. More specifically, let v ∈ V , then for any walk
γ ∈ P (v) define xγ as the limit obtained by applying the previous corollary to the mono-directional
graph indexed by this walk γ. Then we have xv = maxγ∈P (v) xγ . The maximum is well-defined
because for all t ∈ R+ the set {γ ∈ P (v) : xγ(t) > 0} is finite.
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Theorem 4.2.9 is more general than Theorem 4.2.7 in the sense that there is no assumption on
the growth rate function, but it is a less refined result. In Remark 4.2.8 1. we made explicit one
contribution of Theorem 4.2.7 about capturing a multiplicative factor of log(n) using the example
of Figure 4.1. Next we are going to do a full comparison of Theorem 4.2.7 and 4.2.9 on the example
of Figure 4.4.

Comparison between Theorems 4.2.7 and 4.2.9:

The asymptotic function x obtained through Theorem 4.2.9 for the plain purple trait is x(t) =
1{t≥4}λ(0)(t − 4). In the caption of Figure 4.4, it is already made explicit that only the plain
green walk will contribute to the size order of the plain purple mutant subpopulation. If one
denotes respectively by 1, 2 and 3 the vertices on the plain green walk such that this walk is
exactly (0, 1, 2, 3), where 3 is the plain purple vertex, the asymptotic limits for vertex 3, captured
by Theorem 4.2.7, is for all t ≥ 4,

2α(0)µ(0, 1)

λ(0)
· 2α(1)µ(1, 2)

λ(0)
· 2α(2)µ(2, 3)
λ(0)− λ(3)

W

∫︂ t

3

(︃∫︂ u

1

ds

)︃
du · nt−4 log2(n)

=

(︃
t2

2
− t− 3

2

)︃
8α(0)α(1)α(2)µ(0, 1)µ(1, 2)µ(2, 3)

λ2(0) (λ(0)− λ(3))
Wnt−4 log2(n).

In particular, Theorem 4.2.9 captures only the power of n which is t − 4 whereas Theorem 4.2.7

captures the stochasticityW , a supplementary scaling factor log2(n), a time polynomial t
2

2 −t− 3
2 and

also a constant depending only on the parameters of the visited vertices 8α(0)α(1)α(2)µ(0,1)µ(1,2)µ(2,3)
λ2(0)(λ(0)−λ(3)) .

To our knowledge, this is the first time that this level of refinement has been captured under the
power law mutation rates limit.

Now we make explicit the form of the limiting functions (xv)v∈V in the special case where
we assume the non-increasing growth rate condition. Under this condition, the limiting functions
(xv)v∈V take a very simple form. The only quantity one has to consider is the time t(v) at which
trait v becomes alive, where t(v) is defined in Definition 4.2.5. Then after this time, trait v grows
at speed λ(0) due to the non-increasing growth rate condition. This is made formal in the next
corollary.

Corollary 4.2.12 (Theorem 4.2.9 applied with the non-increasing growth rate condition of (4.1.5)).
Assume the non-increasing growth rate condition of (4.1.5). Then the limiting functions (xv)v∈V
of Theorem 4.2.9 have the following simplified form:

∀t ∈ R+, xv(t) = λ(0) (t− t(v))+ ,

where ∀x ∈ R, x+ := x1{x∈R+}.

4.3 First-order asymptotics of the size of the mutant sub-
populations for an infinite mono-directional graph

In this section, we consider the model described in Section 4.1 within a specific infinite mono-
directional graph setting:

(V,E) = (N0, {(i, i+ 1), i ∈ N0}) .
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Studying this special case will enable us to address cycles, particularly those generated by backward
mutations, in the more general finite graph scenario. We assume the non-increasing growth rate
condition given in (4.1.5). For simplicity of notation, we introduce the following new notations for
all i ∈ N0

µ
(n)
i := µ(n)(i, i+ 1) and ℓ(i) := ℓ(i, i+ 1).

In other words, the mutation regime is

∀i ∈ N0, n
ℓ(i)µ

(n)
i −→

n→∞
µi. (4.3.1)

Assume that ℓ∗ := inf{ℓ(i) : i ∈ N0} > 0. For all i ∈ N0, denote by αi, βi and λi the division,
death and growth rates associated to trait i instead of α(i), β(i) and λ(i). With this setting, three
different scenarios can occur during a division event of a cell of trait i ∈ N0:

• both daughter cells keep the trait i of their mother cell, with probability
(︁
1− µ

(n)
i

)︁2
,

• exactly one daughter cell mutates to the next trait i+1 when the second daughter cell keeps

the trait i of its mother cell, with probability 2µ
(n)
i

(︁
1− µ

(n)
i

)︁
,

• both daughter cells mutate to the next trait i+ 1, with probability
(︁
µ
(n)
i

)︁2
.

This model is graphically represented in Figure 4.5.

Figure 4.5: Dynamical representation of the infinite mono-directional graph

In particular, any lineage of a cell of trait i follows a birth-death branching process with birth

rate αi
(︁
1−µ(n)

i

)︁2
and death rate βi+α

(n)
i

(︁
µ
(n)
i

)︁2
. Thus, we introduce the birth, death and growth

rates of any lineage of a cell with trait i as follows

α
(n)
i := αi

(︁
1− µ

(n)
i

)︁2
, β

(n)
i := βi + α

(n)
i

(︁
µ
(n)
i

)︁2
and λ

(n)
i := α

(n)
i − β

(n)
i = λi − 2αiµ

(n)
i .

Compared to the general finite graph, for this mono-directional graph, there is only one path from
trait 0 to any trait i ∈ N, implying that

t(i) =

i−1∑︂
i=0

ℓ(i) and θ(i) = |{j ∈ {1, · · · , i} : λj = λ0}|.
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Let wi := w(0,1,··· ,i) denote the weight on the path (0, · · · , i). The sequence
(︁(︁
Z

(n)
i

)︁
i∈N0

)︁
n∈N is

mathematically constructed using independent Poisson Point Measures (PPMs). Let Qb0(ds, dθ),
Qd0(ds, dθ), (Qi(ds, dθ))i∈N, (Ni(ds, dθ))i∈N0

, and (Qmi (ds, dθ))i∈N0
be independent PPMs with in-

tensity dsdθ. The subpopulation of wild-type cells is

Z
(n)
0 (t) := 1 +

∫︂ t

0

∫︂
R+

1{︂
θ≤α(n)

0 Z
(n)
0 (s−)

}︂Qb0(ds, dθ) (4.3.2)

−
∫︂ t

0

∫︂
R+

1{︂
θ≤β0Z

(n)
0 (s−)

}︂Qd0(ds, dθ)−H
(n)
0 (t)

and for all i ∈ N the mutant subpopulation of trait i is

Z
(n)
i (t) :=

∫︂ t

0

∫︂
R+

(︂
1{︂

θ≤α(n)
i Z

(n)
i (s−)

}︂ − 1{︂
α

(n)
i Z

(n)
i (s−)≤θ≤

(︂
α

(n)
i +βi

)︂
Z

(n)
i (s−)

}︂)︂Qi(ds, dθ)
+K

(n)
i−1(t) + 2H

(n)
i−1(t)−H

(n)
i (t),

where for all i ∈ N0

K
(n)
i (t) :=

∫︂ t

0

∫︂
R+

1{︂
θ≤2αiµ

(n)
i

(︂
1−µ(n)

i

)︂
Z

(n)
i (s−)

}︂Ni(ds, dθ)
and

H
(n)
i (t) :=

∫︂ t

0

∫︂
R+

1{︃
θ≤αi

(︂
µ
(n)
i

)︂2
Z

(n)
i (s−)

}︃Qmi (ds, dθ).

The processes
(︁
K

(n)
i (t)

)︁
t∈R+ and

(︁
H

(n)
i (t)

)︁
t∈R+ count the number of mutations up to time t in the

subpopulation of trait i that result in exactly one and exactly two mutated daughter cells of trait
i+ 1.

Let (Z0(t))t∈R+ be the birth-death branching process with birth and death rates α0 and β0
constructed in the following way

Z0(t) := 1 +

∫︂ t

0

∫︂
R+

1{θ≤α0Z0(s−)}Q
b
0(ds, dθ)−

∫︂ t

0

∫︂
R+

1{θ≤β0Z0(s−)}Q
d
0(ds, dθ). (4.3.3)

Notice that with this construction, the following monotone coupling immediately holds:

∀t ≥ 0, Z
(n)
0 (t) ≤ Z0(t) a.s. (4.3.4)

Denote by

W := lim
t→∞

e−λ0tZ0(t) (4.3.5)

the almost sure limit of the positive martingale
(︁
e−λ0tZ0(t)

)︁
t∈R+ , whose law is

W
law
= Ber

(︂λ0
α0

)︂
⊗ Exp

(︂λ0
α0

)︂
, (4.3.6)

see [22, Section 1.1] or [94, Theorem 1].
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4.3.1 The wild-type subpopulation dynamics

Using the same PPMs Qb0 and Qd0 in the construction of
(︁
Z

(n)
0

)︁
n∈N and Z0 (see Equations (4.3.2)

and (4.3.3)) allows us to control the size dynamics of the previous sequence over time by comparing

it with the size of Z0. More precisely, we show that the natural martingale associated with Z
(n)
0 can

be compared to the natural one of Z0. This comparison follows from the fact that
(︁
α
(n)
0 , β

(n)
0

)︁
→

(α0, β0) as n→ ∞. The control is obtained along the entire trajectory and in probability. The rate

of convergence is quantified to be at most of order O
(︁
µ
(n)
0

)︁
.

Lemma 4.3.1. There exist C(α0, λ0) > 0 and N ∈ N such that for all ε > 0 and n ≥ N ,

P
(︂
sup
t∈R+

⃓⃓⃓
e−λ0tZ0(t)− e−λ

(n)
0 tZ

(n)
0 (t)

⃓⃓⃓
≥ ε
)︂
≤ C(α0, λ0)

ε2
µ
(n)
0 −→

n→∞
0.

Proof of Lemma 4.3.1. Let the filtration (Ft)t≥0 defined for all t ≥ 0 as

Ft := σ(Qb0((0, s]×A)), Qd0((0, s]×A), s ≤ t, A ∈ B(R+)).

Notice that
(︁
e−λ0tZ0(t) − e−λ

(n)
0 tZ

(n)
0 (t)

)︁
t∈R+ is a martingale, with respect to (Ft)t∈R+ , as the

difference between the two martingales
(︁
e−λ0tZ0(t)

)︁
t∈R+ and

(︁
e−λ

(n)
0 tZ

(n)
0 (t)

)︁
t∈R+ . Let (f(m))m∈N

be a non decreasing sequence satisfying f(m) →
m→∞

∞. Using Doob’s Inequality in L2 (see [95,

Proposition 3.15]) we derive

P
(︂

sup
t∈[0,f(m)]

⃓⃓⃓
e−λ0tZ0(t)− e−λ

(n)
0 tZ

(n)
0 (t)

⃓⃓⃓
≥ ε
)︂
≤ 4

ε2
E
[︂
e−2λ0f(m)Z0(f(m))2 (4.3.7)

+ e−2λ
(n)
0 f(m)Z

(n)
0 (f(m))2 − 2e−(λ0+λ

(n)
0 )f(m)Z0(f(m))Z

(n)
0 (f(m))

]︂
.

Ito’s formula and Equation (4.3.4) give

E
[︁
Z0(t)Z

(n)
0 (t)

]︁
= 1 +

∫︂ t

0

(︁
λ0 + λ

(n)
0

)︁
E
[︁
Z0(s)Z

(n)
0 (s)

]︁
ds+

∫︂ t

0

(︁
α
(n)
0 + β0

)︁
E
[︁
Z

(n)
0 (s)

]︁
ds.

By solving this equation, we obtain for all t ≥ 0

E
[︁
Z0(t)Z

(n)
0 (t)

]︁
=
α0 + α

(n)
0

λ0
e

(︂
λ0+λ

(n)
0

)︂
t − α

(n)
0 + β0
λ0

eλ
(n)
0 t. (4.3.8)

Similarly we have

E
[︁
(Z0(t))

2 ]︁
=

2α0

λ0
e2λ0t − α0 + β0

λ0
eλ0t ≤ 2α0

λ0
e2λ0t, (4.3.9)

E
[︁(︁
Z

(n)
0 (t)

)︁2]︁
=

2α
(n)
0

λ
(n)
0

e2λ
(n)
0 t − α

(n)
0 + β

(n)
0

λ
(n)
0

eλ
(n)
0 t ≤ 2α

(n)
0

λ
(n)
0

e2λ
(n)
0 t.

Consequently, combining (4.3.7), (4.3.8) and (4.3.9) yields

P
(︂

sup
t∈[0,f(m)]

⃓⃓⃓
e−λ0tZ0(t)− e−λ

(n)
0 tZ

(n)
0 (t)

⃓⃓⃓
≥ ε
)︂

≤ 4

ε2

(︂2α0

λ0
+

2α
(n)
0

λ
(n)
0

− 2
α0 + α

(n)
0

λ0
+ 2

α
(n)
0 + β0
λ0

e−λ0f(m)
)︂
.
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The event
{︁
supt∈[0,f(m)]

⃓⃓
e−λ0tZ0(t)− e−λ

(n)
0 tZ

(n)
0 (t)

⃓⃓
≥ ε
}︁
is increasing with respect to the param-

eter m. Therefore, taking the limit as m → ∞ and applying the monotonicity of the measure, it
follows that

P
(︂
sup
t∈R+

⃓⃓⃓
e−λ0tZ0(t)− e−λ

(n)
0 tZ

(n)
0 (t)

⃓⃓⃓
≥ ε
)︂
≤ 4

ε2

(︂2α0

λ0
+

2α
(n)
0

λ
(n)
0

− 2
α0 + α

(n)
0

λ0

)︂
.

Recalling that λ
(n)
0 = λ0 − 2α0µ

(n)
0 it easily follows that

2α
(n)
0

λ
(n)
0

= 2α0

λ0
+ 4β0α0

λ2
0
µ
(n)
0 +O

(︁(︁
µ
(n)
0

)︁2)︁
as

well as 2
α0+α

(n)
0

λ0
= 4α0

λ0
− 4α0

λ0
µ
(n)
0 +O

(︁(︁
µ
(n)
0

)︁2)︁
. Finally we have

P
(︂
sup
t∈R+

⃓⃓⃓
e−λ0tZ0(t)− e−λ

(n)
0 tZ

(n)
0 (t)

⃓⃓⃓
≥ ε
)︂
≤ 4

ε2

(︂4β0α0

λ20
+

4α0

λ0

)︂
µ
(n)
0 +O

(︁(︁
µ
(n)
0

)︁2)︁
=

16α2
0

ε2λ20
µ
(n)
0 +O

(︁(︁
µ
(n)
0

)︁2)︁
,

which concludes the proof.

The next lemma provides an asymptotic comparison between the stopping times η
(n)
t , at which

the wild-type subpopulation reaches the size nt, and the deterministic times t
(n)
t . This asymptotic

comparison is given in probability and is conditioned on {W > 0}. It clarifies why these deter-
ministic times are the natural candidates for studying the asymptotic behaviour of the mutant
subpopulations at the corresponding stopping times. The result is obtained uniformly over time
intervals whose lengths tend to infinity, but not too quickly.

Lemma 4.3.2. For all ε > 0, (T1, T2) ∈ R+ and φn such that log(n) = o(φn) and φn = o
(︁
nℓ(0)

)︁
,

we have

P
(︂

sup
t∈[T1,T2

φn
log(n) ]

⃓⃓⃓
η
(n)
t −

(︂
t
(n)
t − log(W )

λ0

)︂⃓⃓⃓
≥ ε
⃓⃓⃓
W > 0

)︂
−→
n→∞

0.

Proof of Lemma 4.3.2. Let ε > 0 and for all n ∈ N introduce the event

A(n) :=
{︂

sup
t∈[T1,T2

φn
log(n) ]

⃓⃓⃓
η
(n)
t −

(︂
t
(n)
t − log(W )

λ0

)︂⃓⃓⃓
≥ ε
}︂
.

Step 1: We begin by showing that for all 0 < δ1 < δ2

P
(︂
A(n) ∩ {δ1 < W < δ2}

)︂
−→
n→∞

0. (4.3.10)

Let ν > 0 and ε̃ < δ1
2 . Firstly, since e−λ0tZ0(t) →

t→∞
W almost surely, it immediately follows

that Y (t) := sups∈[t,∞]

⃓⃓
e−λ0sZ0(s)−W

⃓⃓
−→
t→∞

0 almost surely and as a consequence in probability.

Thus, introducing the event Bt := {Y (t) ≤ ε̃} for all t > 0, there exists t1 > 0 such that for all
t ≥ t1, P (Bt) ≥ 1− ν

3 . Secondly, using Lemma 4.3.1, there exists n1 ∈ N such that for all n ≥ n1,

P
(︁
C(n)

)︁
≥ 1− ν

3 where C(n) :=
{︁
supt∈R+

⃓⃓
e−λ0tZ0(t)− e−λ

(n)
0 tZ

(n)
0 (t)

⃓⃓
≤ ˜︁ε}︁. Combining these two

facts, we obtain the following inequality for all n ≥ n1

P
(︂
A(n) ∩ {δ1 < W < δ2}

)︂
≤ P

(︂
A(n) ∩ {δ1 < W < δ2} ∩Bt1 ∩ C(n)

)︂
+

2ν

3
. (4.3.11)
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It remains to show that P
(︁
A(n) ∩ {δ1 < W < δ2} ∩Bt1 ∩ C(n)

)︁
≤ ν

3 for sufficiently large n.
Under the event Bt1 we have

∀s ≥ t1, (W − ˜︁ε) eλ0s ≤ Z0(s) ≤ (W + ˜︁ε) eλ0s.

Given that λ
(n)
0 ≤ λ0, we obtain that under the event C(n), for all n ≥ n1

∀s ∈ R+,
(︂
e−λ0sZ0(s)− ˜︁ε)︂eλ(n)

0 s ≤ Z
(n)
0 (s) ≤

(︂
e−λ0sZ0(s) + ˜︁ε)︂eλ(n)

0 s ≤ Z0(s) + ˜︁εeλ0s.

Combining the two previous inequalities, it follows that under {δ1 < W < δ2}∩Bt1 ∩C(n), we have

∀s ≥ t1,∀n ≥ n1, (W − 2˜︁ε) eλ(n)
0 s ≤ Z

(n)
0 (s) ≤ (W + 2˜︁ε) eλ0s ≤ (δ2 + 2˜︁ε) eλ0s.

Notice that, by definition of ˜︁ε, we have W − 2˜︁ε > 0 under the event {δ1 < W}. Now, we introduce
the following quantities, which almost surely increase with time:

T
(n)
δ2,t

:= inf{s > 0 : (δ2 + 2˜︁ε)eλ0s ≥ nt} =
1

λ0
(t log(n)− log(δ2 + 2˜︁ε)) ,

T
(n)
t := inf{s > 0 : (W + 2˜︁ε)eλ0s ≥ nt} =

1

λ0
(t log(n)− log(W + 2˜︁ε)) ,

T
(n)

t := inf{s > 0 : (W − 2˜︁ε)eλ(n)
0 s ≥ nt} =

1

λ
(n)
0

(t log(n)− log(W − 2˜︁ε)) .
We have that there exists n2 ∈ N such that for all n ≥ n2, t1 ≤ T

(n)
δ2,T1

. Moreover, under the event

{δ1 < W < δ2} ∩Bt1 ∩ C(n), we have for all n ≥ max(n1, n2) and for all t ∈
[︁
T1, T2

φn

log(n)

]︁
,

T
(n)
δ2,T1

≤ T
(n)
δ2,t

≤ T
(n)
t ≤ η

(n)
t ≤ T

(n)

t .

Using that λ0/λ
(n)
0 = 1/

(︁
1 − 2α0µ

(n)
0 /λ0

)︁
, and from the previous equation, we derive that for all

t ∈
[︁
T1, T2

φn

log(n)

]︁
and for all n ≥ max(n1, n2),

t log(n)

λ0
− log(W )

λ0
− log (1 + 2ε̃/W )

λ0
≤ η

(n)
t

≤
(︂ t log(n)

λ0
− log(W )

λ0
− log(1− 2ε̃/W )

λ0

)︂(︂
1− 2α0µ

(n)
0 /λ0

)︂−1
.

From this we obtain

− log(1 + 2ε̃/W )

λ0
≤ η

(n)
t −

(︂ t log(n)
λ0

− log(W )

λ0

)︂
≤
(︂
1− 2α0µ

(n)
0 /λ0

)︂−1(︂(︂ t log(n)
λ0

− log(W )

λ0

)︂2α0µ
(n)
0

λ0
− log(1− 2ε̃/W )

λ0

)︂
.

In particular, this implies that for all n ≥ max(n1, n2),

sup
t∈[T1,T2

φn
log(n) ]

⃓⃓⃓
η
(n)
t −

(︂ t log(n)
λ0

− log(W )

λ0

)︂⃓⃓⃓
≤ max

{︂ log(1 + 2˜︁ε/W )

λ0

;
(︂
1− 2α0µ

(n)
0 /λ0

)︂−1(︂(︂T2φn
λ0

− log(W )

λ0

)︂2α0µ
(n)
0

λ0
− log(1− 2ε̃/W )

λ0

)︂}︂
.
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Denote by D(n) the right-hand side of the last inequality. Then it directly follows that

P
(︂
A(n) ∩ {δ1 < W < δ2} ∩Bt1 ∩ C(n)

)︂
≤ P

(︂
{D(n) ≥ ε} ∩ {δ1 < W < δ2}

)︂
. (4.3.12)

Because φn was defined such that φnµ
(n)
0 →

n→∞
0, it is possible to find an adequate ˜︁ε > 0 and

n3 ∈ N such that for all n ≥ n3, P
(︁
{D(n) ≥ ε} ∩ {δ1 < W < δ2}

)︁
≤ ν

3 . Together with (4.3.11) and
(4.3.12), we deduce (4.3.10).

Step 2: We are going to prove that P
(︁
A(n) ∩ {W > 0}

)︁
−→
n→∞

0. We have

P
(︂
A(n) ∩ {W > 0}

)︂
≤ P

(︂
A(n) ∩ {δ1 < W < δ2}

)︂
+ P (0 < W < δ1) + P (W > δ2) .

Using Equation (4.3.10), we obtain

lim sup
n→∞

P
(︂
A(n) ∩ {W > 0}

)︂
≤ P (0 < W < δ1) + P (δ2 < W ) .

Taking the limit as (δ1, δ2) −→
n→∞

(0,∞), and noting that W is finite almost surely (see (4.3.6)), we

conclude the proof.

Remark 4.3.3. From Lemma 4.3.2, the useful results

P
(︂

sup
t∈[T1,T2

φn
log(n) ]

⃓⃓⃓ η(n)t

log(n)
λ0 − t

⃓⃓⃓
≥ ε
⃓⃓⃓
W > 0

)︂
−→
n→∞

0

and

P
(︂

sup
t∈[T1,T2

φn
log(n) ]

⃓⃓⃓
e
−λ0

(︂
η
(n)
t −t

(n)
t

)︂
−W

⃓⃓⃓
≥ ε
⃓⃓⃓
W > 0

)︂
−→
n→∞

0 (4.3.13)

follow.

4.3.2 The mutant subpopulations dynamics in the deterministic time
scale (Theorem 4.2.7 (i))

In this subsection, Equations (4.2.5) and (4.2.6) are proven for the mono-directional graph. The
proof will be carried out in two steps. First, we will show the result for a fixed s ∈ R, uniformly in
the parameter t. Then, in the second step, we will establish the result uniformly in the parameter
s by adapting a method developed in [56, Lemma 3].

Uniform control on the time parameter t

In this subsection, we will prove the following proposition, which is a less refined result than (4.2.5)
and (4.2.6), as it is not uniform in the parameter s.
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Proposition 4.3.4. Let i ∈ N, (ψn(i), hn(i)) →
n→∞

∞ such that there exist φn(i) →
n→∞

∞ such that

hn(i) =
log(n)

log(log(n))θ(i−1)+φn(i)
and

√︁
log(n) = o(ψn(i)). For all (t, s) ∈ R+ × R define

d
(n)
i (t, s) :=1{t∈[0,t(i)−h−1

n (i))} + 1{t∈[t(i)−h−1
n (i),t(i))}ψn log

θ(i)−1(n)

+ 1{t∈[t(i),∞)}n
t−t(i) logθ(i)(n)eλ(0)s.

Let T > 0, 0 < T1 < T2, and s ∈ R. We have

• If λi = λ0 then t ↦→ Z
(n)
i

(︁
t
(n)
t + s

)︁
/d

(n)
i (t, s) converges in probability in L∞([0, T ]) to Wwi(t).

• If λi < λ0 then t ↦→ Z
(n)
i

(︁
t
(n)
t(i)+t+ s

)︁
/nt logθ(i)(n)eλ0s converges in probability in L∞([T1, T2])

to Wwi(t(i) + t).

The proof is carried out by induction on i ∈ N. For i ≥ 2, we assume that Proposition 4.3.4
holds for i − 1. In the base case, i = 1, Proposition 4.3.4 is proved without any assumptions. As
long as the proof is similar for the initialisation and the inductive step, the specific step under
consideration will not be indicated. To make the proof as clear as possible, it is divided into several
lemmas. All results are derived using a martingale approach. In the next lemma, we introduce the
martingales considered for all mutant subpopulations and compute their quadratic variations.

Lemma 4.3.5. For all i ∈ N define

M
(n)
i (t) := Z

(n)
i (t)e−λ

(n)
i t −

∫︂ t

0

2αi−1µ
(n)
i−1e

−λ(n)
i sZ

(n)
i−1(s)ds. (4.3.14)

(︁
M

(n)
i (t)

)︁
t≥0 is a martingale, with quadratic variation

⟨︁
M

(n)
i

⟩︁
t
=

∫︂ t

0

2αi−1µ
(n)
i−1e

−2λ(n)
i sZ

(n)
i−1(s)ds (4.3.15)

+
(︁
α
(n)
i + β

(n)
i

)︁ ∫︂ t

0

e−2λ
(n)
i sZ

(n)
i (s)ds.

Since the proof of this lemma is fairly standard, it can be found in the Appendix. We can now
proceed to prove Proposition 4.3.4. This proof is structures as follows:

1. Neutral case (λi = λ0): The proof begins by addressing the neutral case. This part is di-
vided into three major steps, each corresponding to a different time regime for the normalising

term d
(n)
i (t, s):

(i) First time regime (t ∈ [0, t(i) − h−1n (i)]): Lemma 4.3.6 establishes the asymptotic
result for this interval.

(ii) Second time regime (t ∈ [t(i)− h−1n (i)]): Lemma 4.3.7 covers the convergence within
this interval. The proof begins with a first step where the result is established under a
more restrictive condition on ψn(i). This step is further divided using: Lemma 4.3.8,
which handles the finite variation process associated with the mutant subpopulation,
Lemma 4.3.9, which controls the expected value of the size of the mutant subpopulation
and Lemma 4.3.10, which controls the expected value of the quadratic variation of the
martingale associated with the mutant subpopulation. The second step of the proof
proceeds by relaxing the aforementioned restrictive condition on ψ(n) from step 1.
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(iii) Third time regime (t ∈ [t(i), T ]): Lemma 4.3.11 controls the finite variation process
associated with the mutant subpopulation in this regime.

2. Deleterious case (λi < λ0): After completing the neutral case, the proof proceeds to the
deleterious case, using some of the previously proven lemmas.

Proof of Proposition 4.3.4. Let i ∈ N. For i ≥ 2 assume that Proposition 4.3.4 holds for i− 1. We
begin by proving the result when i is a neutral trait; specifically, we aim to establish Proposition
4.3.4 (i). All the lemmas mentioned in the proof are not restricted to this neutral assumption and
also apply to deleterious mutant traits.

1. Neutral case: Assume that λi = λ0. Let (ψn(i), hn(i)) as in Proposition 4.3.4 and ε > 0.
Notice that

P
(︂

sup
t∈[0,T ]

⃓⃓⃓Z(n)
i

(︂
t
(n)
t + s

)︂
d
(n)
i (t, s)

−Wwi(t)
⃓⃓⃓
≥ 3ε

)︂
≤ P

(︂
sup

t∈[0,t(i)−h−1
n (i))

Z
(n)
i

(︂
t
(n)
t + s

)︂
≥ ε
)︂

(4.3.16)

+ P
(︂

sup
t∈[t(i)−h−1

n (i),t(i))

Z
(n)
i

(︂
t
(n)
t + s

)︂
ψn(i) log

θ(i−1)(n)
≥ ε
)︂

(4.3.17)

+ P
(︂

sup
t∈[t(i),T ]

⃓⃓⃓ Z
(n)
i

(︂
t
(n)
t + s

)︂
nt−t(i) logθ(i)(n)eλ0s

−Wwi(t)
⃓⃓⃓
≥ ε
)︂
, (4.3.18)

where we used that ωi(t) = 0 for all t ≤ t(i). We will show that (4.3.16), (4.3.17) and (4.3.18)
converge to 0 as n goes to infinity.

(i) First time regime (t ∈ [0, t(i)−h−1n (i)]), convergence to 0 of (4.3.16): The characterisa-

tion of t(i) as the first time mutant cells of trait i appear on the time scale t ↦→ t
(n)
t is made explicit

in the next lemma. More precisely, we exactly show that up until time t(i)−h−1n (i), asymptotically
no mutant cells of trait i are generated. In particular, the convergence to 0 of (4.3.16) is deduced
from the next lemma.

Lemma 4.3.6. Let i ∈ N, and hn(i) = log(n)
log(log(n))θ(i−1)+φn(i)

, where φn(i) →
n→∞

∞ such that

hn(i) →
n→∞

∞, and s ∈ R. For i ≥ 2, we prove that if Proposition 4.3.4 holds for i− 1 then

P
(︂

sup
t∈[0,t(i)−h−1

n (i)]
Z

(n)
i

(︂
t
(n)
t + s

)︂
= 0
)︂

−→
n→∞

1. (4.3.19)

For i = 1, we prove (4.3.19) without any conditions.

Proof of Lemma 4.3.6. Notice first that{︂
sup

t∈[0,t(i)−h−1
n (i)]

Z
(n)
i

(︂
t
(n)
t + s

)︂
= 0
}︂
= A(n) ∩B(n), (4.3.20)

where A(n) :=
{︁
K

(n)
i−1
(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁
= 0

}︁
and B(n) :=

{︁
H

(n)
i−1
(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁
= 0

}︁
. Indeed, the

event on the left-hand side of (4.3.20) is satisfied if and only if no mutant cell of the subpopulation
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Z
(n)
i is generated from the subpopulation Z

(n)
i−1 up until time t

(n)

t(i)−h−1
n (i)

+ s. This corresponds

almost surely to A(n) ∩B(n). In what follows, we will provide the proof that P
(︁
A(n)

)︁
−→
n→∞

1. The

proof that P
(︁
B(n)

)︁
−→
n→∞

1 can be established using a similar method, so it will not be detailed

here. This will conclude the proof of Lemma 4.3.6. Therefore, we now address the proof that
P
(︁
A(n)

)︁
−→
n→∞

1, which will vary slightly depending on whether i = 1 or i ≥ 2.

Case i = 1: For all ˜︁t ∈ R+ and ε ∈ R+, let Cε,˜︁t := {︁ sups∈[˜︁t,∞]

⃓⃓
e−λ0sZ0(s) −W

⃓⃓
≤ ε
}︁
. Using

the almost sure inequality (4.3.4), under the event Cε,˜︁t, we have

K
(n)
0

(︂
t
(n)

t(1)−h−1
n (1)

+ s
)︂
≤
∫︂ ˜︁t
0

∫︂
R+

1{︂
θ≤2α0µ

(n)
0 supv∈[0,˜︁t] Z0(v)

}︂N0(du, dθ) (4.3.21)

+

∫︂ t
(n)

t(1)−h
−1
n (1)

+s

˜︁t
∫︂
R+

1{︂
θ≤2α0µ

(n)
0 eλ0u(ε+W )

}︂N0(du, dθ).

Let us set the following notations

D
(n)˜︁t :=

{︂∫︂ ˜︁t
0

∫︂
R+

1{︂
θ≤2α0µ

(n)
0 supv∈[0,˜︁t] Z0(v)

}︂N0(du, dθ) = 0
}︂
,

E
(n)

ε,˜︁t :=
{︂∫︂ t

(n)

t(1)−h
−1
n (1)

+s

˜︁t
∫︂
R+

1{︂
θ≤2α0µ

(n)
0 eλ0u(ε+W )

}︂N0(du, dθ) = 0
}︂
.

Using Equation (4.3.21) we have that

P
(︂
A(n)

)︂
≥ P

(︂
A(n) ∩ Cε,˜︁t

)︂
≥ P

(︂
Cε,˜︁t ∩D(n)˜︁t ∩ E(n)

ε,˜︁t
)︂
.

It remains to show that the right-hand side converges to 1. By the definition ofW as the almost sure
time limit of the positive martingale e−λ0tZ0(t), it follows that P

(︁
Cε,˜︁t)︁ −→˜︁t→∞ 1. We also have that

supv∈[0,˜︁t] Z0(v) is finite almost surely. Combined with the fact that Z0 and N0 are independent, we

deduce that P
(︁
D

(n)˜︁t )︁
−→
n→∞

1, because µ
(n)
0 −→

n→∞
0. Recall the distribution of W , given in (4.3.6).

Since W and N0 are independent, we have

P
(︂
E

(n)

ε,˜︁t
)︂
=
β0
α0

P
(︂∫︂ t

(n)

t(1)−h
−1
n (1)

+s

˜︁t
∫︂
R+

1{︂
θ≤2α0µ

(n)
0 eλ0uε

}︂N0(du, dθ) = 0
)︂
+
λ0
α0

(4.3.22)

·
∫︂ ∞
0

λ0
α0
e−

λ0
α0
wP
(︂∫︂ t

(n)

t(1)−h
−1
n (1)

+s

˜︁t
∫︂
R+

1{︂
θ≤2α0µ

(n)
0 eλ0u(ε+w)

}︂N0(du, dθ) = 0
)︂
dw
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=
β0
α0

exp
(︂
−
∫︂ t

(n)

t(1)−h
−1
n (1)

+s

˜︁t 2α0µ
(n)
0 eλ0uεdu

)︂
+
λ0
α0

∫︂ ∞
0

λ0
α0
e−

λ0
α0
w exp

(︂
−
∫︂ t

(n)

t(1)−h
−1
n (1)

+s

˜︁t 2α0µ
(n)
0 eλ0u(ε+ w)du

)︂
dw

≥ β0
α0

exp
(︂
−

2α0

(︂
nt(1)µ

(n)
0

)︂
λ0

εeλ0se−h
−1
n (1) log(n)

)︂
+
λ0
α0

∫︂ ∞
0

λ0
α0
e−

λ0
α0
w exp

(︂
−

2α0

(︂
nt(1)µ

(n)
0

)︂
λ0

(ε+ w)eλ0se−h
−1
n (1) log(n)

)︂
dw

−→
n→∞

1,

where we first use that for all w ≥ 0,

2α0

(︁
nt(1)µ

(n)
0

)︁
λ0

(ε+ w)eλ0se−h
−1
n (1) log(n) −→

n→∞
0.

This follows from the choice of hn(1), which ensures that h−1n (1) log(n) −→
n→∞

∞. Then, we apply

the dominated convergence theorem to obtain

∫︂ ∞
0

λ0
α0
e−

λ0
α0
we

(︂
−

2α0

(︁
nt(1)µ

(n)
0

)︁
λ0

(ε+w)eλ0se−h−1
n (1) log(n)

)︂
dw →

n→∞

∫︂ ∞
0

λ0
α0
e−

λ0
α0
wdw = 1.

Finally, we have shown that P
(︁
A(n)

)︁
−→
n→∞

1, which concludes the proof for the case i = 1.

Case i ≥ 2: Let ˜︁t(i) := t(i)+t(i−1)
2 and Ψn −→

n→∞
∞. For ε > 0, define

C(n)
ε :=

{︂
sup

t∈[0,t(i)]

⃓⃓⃓Z(n)
i−1

(︂
t
(n)
t

)︂
d(n)(t)

−W1{t≥t̃(i)}wi−1(t)
⃓⃓⃓
≤ ε
}︂
,

where

d(n)(t) = 1{t∈[0,˜︁t(i))}n˜︁t(i)−t(i−1) logθ(i−1)(n)Ψn + 1{t∈[˜︁t(i),t(i)]}nt−t(i−1) logθ(i−1)(n).
Under the event C

(n)
ε , we have

K
(n)
i−1

(︂
t
(n)

t(i)−h−1
n (i)

+ s
)︂
≤
∫︂ t

(n)˜︁t(i)
0

∫︂
R+

1{︂
θ≤2αi−1µ

(n)
i−1εn

t̃(i)−t(i−1) logθ(i−1)(n)Ψn

}︂Ni−1(du, dθ) (4.3.23)

+

∫︂ t
(n)

t(i)−h
−1
n (i)

+s

t
(n)˜︁t(i)

∫︂
R+

1{︂
θ≤2αi−1µ

(n)
i−1(ε+Wwi−1(t(i)))eλ0un−t(i−1) logθ(i−1)(n)

}︂Ni−1(du, dθ).
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Let us introduce the events

D(n)
ε :=

{︂∫︂ t
(n)˜︁t(i)

0

∫︂
R+

1{︂
θ≤2αi−1µ

(n)
i−1εn

t̃(i)−t(i−1) logθ(i−1)(n)Ψn

}︂Ni−1(du, dθ) = 0
}︂
,

E(n)
ε :=

{︂∫︂ t
(n)

t(i)−h
−1
n (i)

+s

t
(n)˜︁t(i)

∫︂
R+

1{︂
θ≤2αi−1µ

(n)
i−1(ε+Wwi−1(t(i)))eλ0un−t(i−1) logθ(i−1)(n)

}︂
·Ni−1(du, dθ) = 0

}︂
.

From (4.3.23) we obtain P
(︁
A(n)

)︁
≥ P

(︁
A(n)∩C(n)

ε

)︁
≥ P

(︁
C

(n)
ε ∩D(n)

ε ∩E(n)
ε

)︁
. It remains to show that

the right-hand side converges to 1. By assuming Proposition 4.3.4 holds for trait i − 1, it follows

that P
(︁
C

(n)
ε

)︁
−→
n→∞

1. Secondly, we have

P
(︂
D(n)
ε

)︂
= exp

(︂
− ˜︁t(i) logθ(i−1)+1(n)

λ0
2αi−1µ

(n)
i−1ε

√︁
nℓ(i−1)Ψn

)︂
−→
n→∞

1,

because ˜︁t(i) − t(i − 1) = ℓ(i − 1)/2, and Ψn can be chosen to satisfy both Ψn −→
n→∞

∞ and

logθ(i−1)+1(n)Ψn
√
nℓ(i−1)µ(n)

i−1 −→
n→∞

0. Using a similar approach as in the computation of (4.3.22),

we get

P
(︂
E(n)
ε

)︂
≥ β0
α0

exp
[︂
−

2αi−1
(︂
nℓ(i−1)µ(n)

i−1

)︂
λ0

ε logθ(i−1)(n)eλ0se−h
−1
n (i) log(n)

]︂
+
λ0
α0

∫︂ ∞
0

λ0
α0
e−

λ0
α0
w

· exp
(︂
−

2αi−1
(︂
nℓ(i−1)µ(n)

i−1

)︂
λ0

(ε+ wwi−1(t(i))) log
θ(i−1)(n)eλ0se−h

−1
n (i) log(n)

)︂
dw

−→
n→∞

1,

where, ∀w ≥ 0,

2αi−1
(︂
nℓ(i−1)µ(n)

i−1

)︂
λ0

(ε+ wwi−1(t(i))) log
θ(i−1)(n)eλ0se−h

−1
n (i) log(n) −→

n→∞
0,

because

logθ(i−1)(n)e−h
−1
n (i) log(n) = exp

(︁
θ(i− 1) log(log(n))− log(n)h−1n (i)

)︁
−→
n→∞

0

by hypothesis on hn(i). Then, we apply the dominated convergence theorem to get∫︂ ∞
0

λ0
α0
e−

λ0
α0
w exp

(︂
−

2αi−1
(︂
nℓ(i−1)µ(n)

i−1

)︂
λ0

· (ε+ wwi−1(t(i))) log
θ(i−1)(n)eλ0se−h

−1
n (i) log(n)

)︂
dw

−→
n→∞

∫︂ ∞
0

λ0
α0
e−

λ0
α0
wdw = 1.
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Finally, we have shown that P
(︁
A(n)

)︁
→

n→∞
1, which concludes the proof.

(ii) Second time regime t ∈ [t(i)− h−1n (i), t(i)], convergence to 0 of (4.3.17): In the next
lemma we show that in the time interval [t(i)−h−1n (i), t(i)], the size of the mutant subpopulation of

trait i does not achieve any power of n. We control its growth by the factor ψn(i) log
θ(i−1)(n), with

a well-chosen function ψn(i). Heuristically, the total number of mutant cells of trait i generated

from mutational events up to time t(i) is of order O
(︁
logθ(i−1)(n)

)︁
. Moreover, with the remaining

time for the lineages of these mutant cells to grow, we are able to control the size of the mutant
subpopulation of trait i by at most

√︁
log(n) logθ(i−1)(n). Consequently, by dividing by any function

ψn(i) that satisfies
√︁

log(n) = o(ψn(i)), the asymptotic limit is 0.

Lemma 4.3.7. Let i ∈ N, hn(i) = log(n)
log(log(n))θ(i−1)+φn(i)

, where φn(i) →
n→∞

∞ such that hn(i) →
n→∞

∞, ψn(i) → ∞ such that
√︁

log(n) = o(ψn(i)), s ∈ R and ε > 0. For i ≥ 2, we prove that if
Proposition 4.3.4 holds for i− 1 then

P
(︂

sup
t∈[t(i)−h−1

n (i),t(i)]

Z
(n)
i

(︂
t
(n)
t + s

)︂
ψn(i) log

θ(i−1)(n)
≥ ε
)︂

−→
n→∞

0. (4.3.24)

For i = 1, we prove (4.3.24) without any conditions.

Proof. We begin by proving the same result under the more restrictive condition log(n)eφn(i) =
o(ψ2

n(i)).

Step 1: Let ψn(i) satisfying the previous equation. For all t ∈
[︁
t(i)− h−1n (i), t(i)

]︁
, we have

Z
(n)
i

(︁
t
(n)
t + s

)︁
ψn(i) log

θ(i−1)(n)
(4.3.25)

=
Z

(n)
i

(︁
t
(n)
t + s

)︁
e−λ

(n)
i

(︁
t
(n)
t +s

)︁
− Z

(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁
e
−λ(n)

i

(︁
t
(n)

t(i)−h
−1
n (i)

+s
)︁

ψn(i) log
θ(i−1)(n)e−λ

(n)
i

(︁
t
(n)
t +s

)︁
+
Z

(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁
e
−λ(n)

i

(︁
t
(n)

t(i)−h
−1
n (i)

+s
)︁

ψn(i) log
θ(i−1)(n)e−λ

(n)
i

(︁
t
(n)
t +s

)︁

=
M

(n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁

ψn(i) log
θ(i−1)(n)e−λ

(n)
i

(︁
t
(n)
t +s

)︁ +

∫︁ t
(n)
t +s

t
(n)

t(i)−h
−1
n (i)

+s
2αi−1µ

(n)
i−1e

−λ(n)
i uZ

(n)
i−1(u)du

ψn(i) log
θ(i−1)(n)e−λ

(n)
i

(︁
t
(n)
t +s

)︁
+

Z
(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁

ψn(i) log
θ(i−1)(n)e

−λ(n)
i t

(n)

t−t(i)+h
−1
n (i)

.
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Then, we have

P
(︂

sup
t∈[t(i)−h−1

n (i),t(i)]

Z
(n)
i

(︁
t
(n)
t + s

)︁
ψn(i) log

θ(i−1)(n)
≥ 3ε

)︂

≤ P
(︂

sup
t∈[t(i)−h−1

n (i),t(i)]

⃓⃓⃓M (n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁

ψn(i) log
θ(i−1)(n)e

−λ(n)
i

(︂
t
(n)
t +s

)︂ ⃓⃓⃓
≥ ε
)︂

(4.3.26)

+ P
(︂

sup
t∈[t(i)−h−1

n (i),t(i)]

∫︁ t
(n)
t +s

t
(n)

t(i)−h
−1
n (i)

+s
2αi−1µ

(n)
i−1e

−λ(n)
i uZ

(n)
i−1(u)du

ψn(i) log
θ(i−1)(n)e

−λ(n)
i

(︂
t
(n)
t +s

)︂ ≥ ε
)︂

(4.3.27)

+ P
(︂

sup
t∈[t(i)−h−1

n (i),t(i)]

Z
(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁

ψn(i) log
θ(i−1)(n)e

−λ(n)
i t

(n)

t−t(i)+h
−1
n (i)

≥ ε
)︂
. (4.3.28)

We have (4.3.28) ≤ P
(︂
Z

(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁
≥ 1

)︂
, because a necessary condition for fulfilling the

condition of interest is that there is at least one mutant cell of trait i at time t
(n)

t(i)−h−1
n (i)

+ s.

Then, applying Lemma 4.3.6 shows that (4.3.28) converges to 0. The convergence to 0 of the term
(4.3.27) follows by applying the subsequent lemma. Note, in particular, that (ψn(i), hn(i)) satisfies
the condition of this lemma.

Lemma 4.3.8. Let i ∈ N, hn(i) = log(n)
log(log(n))θ(i−1)+φn(i)

, where φn(i) →
n→∞

∞ such that hn(i) →
n→∞

∞, ψn(i) →
n→∞

∞ such that log(n) = o(ψn(i)hn(i)), s ∈ R and ε > 0. For i ≥ 2, we prove that if

Proposition 4.3.4 holds for i− 1 then

P
(︂

sup
t∈[t(i)−h−1

n (i),t(i)]

∫︁ t
(n)
t +s

t
(n)

t(i)−h
−1
n (i)

+s
2αi−1µ

(n)
i−1e

−λ(n)
i uZ

(n)
i−1(u)du

ψn(i) log
θ(i−1)(n)e

−λ(n)
i

(︂
t
(n)
t +s

)︂ ≥ ε
)︂

−→
n→∞

0. (4.3.29)

For i = 1, we prove (4.3.29) without any conditions.

Proof of Lemma 4.3.8. Let

a
(n)
t :=

∫︁ t
(n)
t +s

t
(n)

t(i)−h
−1
n (i)

+s
2αi−1µ

(n)
i−1e

−λ(n)
i uZ

(n)
i−1(u)du

ψn(i) log
θ(i−1)(n)e

−λ(n)
i

(︂
t
(n)
t +s

)︂ .

Our aim is to prove that for all ε > 0,

P
(︂

sup
t∈[t(i)−h−1

n (i),t(i)]
a
(n)
t ≤ ε

)︂
→

n→∞
1. (4.3.30)
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Case i = 1: We have

a
(n)
t =

e
λ
(n)
1

(︂
t
(n)
t +s

)︂
ψn(1)

∫︂ t
(n)
t +s

t
(n)

t(1)−h
−1
n (1)

+s

2α0µ
(n)
0

[︂
W +

(︁
e−λ0uZ0(u)−W

)︁
+
(︂
e−λ

(n)
0 uZ

(n)
0 (u)− e−λ0uZ0(u)

)︂ ]︂
e

(︂
λ
(n)
0 −λ

(n)
1

)︂
u
du.

Let us define

B
(n)˜︁ε :=

{︂
sup
u∈R+

⃓⃓⃓
e−λ0uZ0(u)− e−λ

(n)
0 uZ

(n)
0 (u)

⃓⃓⃓
≤ ˜︁ε}︂,

Cx,˜︁ε := {︂ sup
u∈[x,∞]

|e−λ0uZ0(u)−W | ≤ ˜︁ε}︂.
According to Lemma 4.3.1 and the definition of W (see (4.3.5)) we have both that P

(︁
B

(n)˜︁ε )︁
→

n→∞
1

and P
(︁
C√

log(n),˜︁ε)︁ →
n→∞

1. Then, for sufficiently large n, under the event B
(n)˜︁ε ∩C√

log(n),˜︁ε, we have
a
(n)
t ≤ 2α0

(︂
nt(1)µ

(n)
0

)︂
(W + 2˜︁ε)In,

where In := e
λ
(n)
1 (t(n)

t +s)
ψn(1)nt(1)

∫︁ t
(n)
t +s

t
(n)

t(i)−h
−1
n (1)

+s
e

(︂
λ0−λ(n)

1

)︂
u
du. In the case where λ1 < λ0, we have that

In ≤ e
λ
(n)
1

(︂
t
(n)
t +s

)︂
ψn(1)nt(1)

e

(︂
λ0−λ(n)

1

)︂(︂
t
(n)
t +s

)︂
λ0 − λ1

=
e
−λ0t

(n)

t(1)−teλ0s

ψn(1)(λ0 − λ1)
≤ eλ0s

ψn(1)(λ0 − λ1)
. (4.3.31)

In the case where λ1 = λ0, recalling that λ
(n)
1 = λ0 − 2α1µ

(n)
1 , we obtain

In ≤ eλ0se
−2α1µ

(n)
1

(︂
t
(n)
t +s

)︂
ψn(1)

e
2α1µ

(n)
1

(︂
t
(n)
t +s

)︂
− e

2α1µ
(n)
1

(︃
t
(n)

t(1)−h
−1
n (1)

+s

)︃

2α1µ
(n)
1

(4.3.32)

=
eλ0s

ψn(1)

1− e
−2α1µ

(n)
1 t

(n)

t−t(1)+h
−1
n (1)

2α1µ
(n)
1

≤ eλ0s log(n)

ψn(1)hn(1)λ0
,

where for the last inequality, we use the fact that t
(n)

t−t(1)+h−1
n (1)

≤ log(n)/(hn(1)λ0) and apply the

following equation with a = 2α1µ
(n)
1 > 0 and x = t

(n)

t−t(1)+h−1
n (1)

∀x ≥ 0,∀a > 0,
1− e−ax

a
≤ x. (4.3.33)

In any case, since W is a finite random variable (see (4.3.6)), we find (4.3.30).
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Case i ≥ 2: Assume Proposition 4.3.4 holds for i− 1. We have P
(︂
B

(n)˜︁ε
)︂

→
n→∞

1 with

B
(n)˜︁ε :=

{︂
sup

v∈[t(i)−h−1
n (i),t(i)]

⃓⃓⃓ Z
(n)
i−1
(︁
t
(n)
v + s

)︁
nv−t(i−1)eλ0s logθ(i−1)(n)

−Wwi−1(v)
⃓⃓⃓
≤ ˜︁ε}︂.

Using the change of variable u = t
(n)
v + s and the fact that t(i− 1) = t(i)− ℓ(i− 1), notice that

a
(n)
t =

e
λ
(n)
i

(︂
t
(n)
t +s

)︂
ψn(i)nt(i)

∫︂ t

t(i)−h−1
n (i)

2αi−1
(︁
nℓ(i−1)µ(n)

i−1
)︁

· Z
(n)
i−1
(︁
t
(n)
v + s

)︁
nv−t(i−1)eλ0s logθ(i−1)(n)

e

(︂
λ0−λ(n)

i

)︂
(t(n)

v +s) log(n)

λ0
dv.

Since wi−1 is a non-decreasing function, it follows that, under the event B
(n)˜︁ε ,

a
(n)
t ≤ 2αi−1

(︁
nℓ(i−1)µ(n)

i−1
)︁
(Wwi−1(t(i)) + ˜︁ε) eλ(n)

i

(︂
t
(n)
t +s

)︂
ψn(i)nt(i)

∫︂ t
(n)
t +s

t
(n)

t(i)−h
−1
n (i)

+s

e

(︂
λ0−λ(n)

i

)︂
u
du.

By similar computations as in (4.3.31) and (4.3.32), (4.3.30) follows.

Now, we will prove that (4.3.26) converges to 0. We begin by introducing two lemmas, whose
proofs are provided in the Appendix, which allow us to control both the expected size of any mutant

subpopulation and the quadratic variation associated to the martingaleM
(n)
i . First, a natural upper

bound on the expected growth of each mutant subpopulation can be easily obtained, as stated in
the next lemma.

Lemma 4.3.9. For all i ∈ N0 and u ≥ 0,

E
[︂
Z

(n)
i (u)

]︂
≤ Ciµ

(n)
⊗,iu

θ(i)eλ0u,

where µ
(n)
⊗,i :=

i∏︁
j=1

µ
(n)
j−1 and Ci :=

∏︁i
j=1 2αj−1

(︁
1{λj=λ0} + 1{λj<λ0}

1
λ0−λj

)︁
.

Notice that there are three key components. The first is the mutational cost to produce such

mutant cells, represented by the term µ
(n)
⊗,i. The second component is the contribution over time

of all neutral mutations along the path leading to the mutant subpopulation in question. The
third component is the exponential growth at rate λ0 exhibited by the wild-type subpopulation.
Additionally, using the expression for the quadratic variation of the martingale associated to a
mutant subpopulation, given in Equation (4.3.15), and the previous Lemma 4.3.9, a natural upper
bound on its mean is derived and summarized in the next lemma.

Lemma 4.3.10. Let 0 < t
(n)
1 < t2 and s ∈ R. There exist N ∈ N and C(i) > 0 such that, for all

n ≥ N , we have

E
[︂⟨︁
M

(n)
i

⟩︁
t
(n)
t2

+s
−
⟨︁
M

(n)
i

⟩︁
t
(n)

t
(n)
1

+s

]︂
≤ C(i)µ

(n)
⊗,i

[︂
1{λi=λ0}

e−λ0s
(︁
t
(n)

t
(n)
1

+ s
)︁θ(i)

nt
(n)
1

(︁
t
(n)
t2 + s

)︁θ(i)
·
(︂
1{λ0>2λi}e

(λ0−2λi)
(︁
t
(n)
t2

+s
)︁
+ 1{λ0=2λi}

(︂
t
(n)
t2 + s

)︂
+ 1{λi<λ0<2λi}e

−(2λi−λ0)
(︁
t
(n)

t
(n)
1

+s
)︁)︂]︂

.
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Now we can prove that (4.3.26) converges to 0. Using the fact that logθ(i−1)(n) = e
λ0t

(n)

h
−1
n (i)e−φn(i),

we can rewrite for all t ∈
[︁
t(i)− h−1n (i), t(i)

]︁
⃓⃓⃓
M

(n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁⃓⃓⃓

ψn(i) log
θ(i−1)(n)e

−λ(n)
i

(︂
t
(n)
t +s

)︂

=

⃓⃓⃓
M

(n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁⃓⃓⃓

ψn(i)e−φn(i)e

(︂
λ0−λ(n)

i

)︂
t
(n)

t−t(i)+h
−1
n (i)e

−λ(n)
i

(︁
t
(n)

t(i)−h
−1
n (i)

+s
)︁
e
λ0t

(n)

t(i)−t

≤

⃓⃓⃓
M

(n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁⃓⃓⃓

ψn(i)e−φn(i)e

(︂
λ0−λ(n)

i

)︂
t
(n)

t−t(i)+h
−1
n (i)e

−λ(n)
i

(︁
t
(n)

t(i)−h
−1
n (i)

+s
)︁ .

In the case where λi = λ0, we simplify the denominator using that e

(︂
λ0−λ(n)

i

)︂
t
(n)

t−t(i)+h
−1
n (i) ≥ 1.

Then, we apply Doob’s inequality to the martingale
(︁
M

(n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁)︁
t≥t(i),

and use the property that if M is a square integrable martingale, then E[(M(t) − M(s))2] =
E[M2(t)−M2(s)] = E[⟨M⟩t − ⟨M⟩s]. It follows that

(4.3.26) ≤ P
(︂

sup
t∈[t(i)−h−1

n (i),t(i)]

⃓⃓⃓M (n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁

ψn(i)e−φn(i)e
−λ(n)

i

(︁
t
(n)

t(i)−h
−1
n (i)

+s
)︁ ⃓⃓⃓

≥ ε
)︂

≤ 4e
2λit

(n)

t(i)−h
−1
n (i)e2λ

(n)
i s

ε2ψ2
n(i)e

−2φn(i)
E
[︂⟨︁
M

(n)
i

⟩︁
t
(n)

t(i)
+s

−
⟨︁
M

(n)
i

⟩︁
t
(n)

t(i)−h
−1
n (i)

+s

]︂
.

Applying Lemma 4.3.10 at times t
(n)
1 = t(i) − h−1n (i) and t2 = t(i), there exists a constant C =

C(s, i, ε) (which may change from line to line) such that

(4.3.26) ≤ Ce2φn(i)

ψ2
n(i)

(︁
nt(i)µ

(n)
⊗,i
)︁(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁θ(i)

n−h
−1
n (i).

Note that

nt(i)µ
(n)
⊗,i =

i∏︂
j=1

nℓ(j−1)µ(n)
j−1 −→

n→∞

i∏︂
j=1

µj−1 <∞. (4.3.34)

Then, for n large enough, and recalling that θ(i) = θ(i− 1) + 1, we have

(4.3.26) ≤ C
log(n)eφn(i)

ψ2
n(i)

−→
n→∞

0,

according to the scaling of ψn(i). In the case where λi < λ0, using the Maximal inequality (see [96,
Chapter VI, page 72]) applied to the supermartingale

[︂ M
(n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)

t(i)−h−1
n (i)

+ s
)︁

ψn(i)e−φn(i)e

(︂
λ0−λ(n)

i

)︂
t
(n)

t−t(i)+h
−1
n (i)e

−λ(n)
i

(︁
t
(n)

t(i)−h
−1
n (i)

+s
)︁ ]︂

t≥t(i)−h−1
n (i)

,
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it follows that

(4.3.26) ≤ 3e
λ
(n)
i

(︁
t
(n)

t(i)−h
−1
n (i)

+s
)︁

εψn(i)e−φn(i)
sup

t∈[t(i)−h−1
n (i),t(i)]

f (n)(t), (4.3.35)

where f (n)(t) := e
−
(︂
λ0−λ(n)

i

)︂
t
(n)

t−t(i)+h
−1
n (i)E

[︁⟨︁
M

(n)
i

⟩︁
t
(n)
t +s

−
⟨︁
M

(n)
i

⟩︁
t
(n)

t(i)−h
−1
n (i)

+s

]︁ 1
2 .According to Lemma

4.3.10 applied with t
(n)
1 = t(i)− h−1n (i) and t2 = t(i), we have that

sup
t∈[t(i)−h−1

n (i),t(i)]
f (n)(t) ≤ C

(︁
µ
(n)
⊗,i
)︁ 1

2
(︁
t
(n)
t(i) + s

)︁ θ(i)
2 e

(︂
λ0−λ(n)

i

)︂
t
(n)

t(i)−h
−1
n (i) (4.3.36)

·
(︂
1{λ0>2λi}e

−λ0
2 t

(n)

t(i)e
λ0−2λi

2 s + 1{λ0=2λi}
(︁
t
(n)
t(i) + s

)︁ 1
2 e
−
(︂
λ0−λ(n)

i

)︂
t
(n)

t(i)−h
−1
n (i)

+ 1{λi<λ0<2λi}e
−λ0

2 t
(n)

t(i)−h
−1
n (i)e−

2λi−λ0
2 s

)︂
.

Combining (4.3.35), (4.3.36), (4.3.34), and using the facts that e
λ0t

(n)

t(i) = nt(i), e
λ0t

(n)

h
−1
n (i) = logθ(i−1)(n)eφn(i)

and θ(i− 1) = θ(i), it follows that

(4.3.26) ≤ Ceφn(i)

εψn(i)
eλ

(n)
i s
(︁
nt(i)µ

(n)
⊗,i
)︁ 1

2
(︁
t
(n)
t(i) + s

)︁ θi
2 e

λ0
2 t

(n)

t(i)e
−λ0t

(n)

h
−1
n (i)

·
(︂
1{λ0>2λi}e

−λ0
2 t

(n)

t(i)e
λ0−2λi

2 s + 1{λ0=2λi}
(︁
t
(n)
t(i) + s

)︁ 1
2 e
−(λ0−λi)t

(n)

t(i)−h
−1
n (i)

+ 1{λi<λ0<2λi}e
−λ0

2 t
(n)

t(i)−h
−1
n (i)e−

2λi−λ0
2 s

)︂
≤ Ceφn(i)

εψn(i)
log

θ(i)
2 (n)

(︂
1{λ0>2λi}

e−φn(i)

logθ(i−1)(n)
+ 1{λ0=2λi} log

1
2 (n)e

−λ0
2 t

(n)

h
−1
n (i)

+ 1{λi<λ0<2λi}e
−λ0

2 t
(n)

h
−1
n (i)

)︂
≤ C

εψn(i)

(︂
1{λ0>2λi}

1

log θ(i)
2 (n)

+ 1{λ0=2λi}
√︁
log(n)e

φn(i)
2 + 1{λ1<λ0<2λi}e

φn(i)
2

)︂
−→
n→∞

0,

according to the scaling of ψn(i).

Step 2: Let ψn(i) satisfy
√︁
log(n) = o(ψn(i)), but such that log(n)eφn(i) ̸= o(ψ2

n(i)). Let˜︁φn(i) be such that log(n)e˜︁φn(i) = o(ψ2
n(i)), and define ˜︁hn(i) := log(n)

log(log(n))θ(i−1)+˜︁φn(i)
. Notice, in
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particular, that ˜︁hn(i) ≥ hn(i). We have

P
(︂

sup
t∈[t(i)−h−1

n (i),t(i)]

Z
(n)
i

(︁
t
(n)
t + s

)︁
ψn(i) log

θ(i−1)(n)
≥ ε
)︂

≤ P
(︂

sup
t∈[t(i)−h−1

n (i),t(i)−˜︁h−1
n (i)]

Z
(n)
i

(︁
t
(n)
t + s

)︁
≥ ε
)︂

+ P
(︂

sup
t∈[t(i)−˜︁h−1

n (i),t(i)]

Z
(n)
i

(︁
t
(n)
t + s

)︁
ψn(i) log

θ(i−1)(n)
≥ ε
)︂
,

where the first term on the right-hand side converges to 0 according to Lemma 4.3.6, and the second
term converges from Step 1 of this proof.

(iii) Third time regime (t ∈ [t(i), T ]), convergence to 0 of (4.3.18): Applying similar
computations as in (4.3.25), notice that for all t ≥ t(i)

Z
(n)
i

(︁
t
(n)
t + s

)︁
nt−t(i) logθ(i)(n)eλ0s

=
M

(n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)
t(i) + s

)︁
n−t(i) logθ(i)(n)e

(︂
λ0−λ(n)

i

)︂(︂
t
(n)
t +s

)︂

+

∫︁ t
(n)
t +s

t
(n)

t(i)
+s

2αi−1µ
(n)
i−1Z

(n)
i−1(u)e

−λ(n)
i udu

n−t(i) logθ(i)(n)e
(︂
λ0−λ(n)

i

)︂(︂
t
(n)
t +s

)︂ +
Z

(n)
i

(︁
t
(n)
t(i) + s

)︁
logθ(i)(n)e

(︂
λ0−λ(n)

i

)︂
t
(n)

t−t(i)eλ0s

.

Then this allows to write

P
(︂

sup
t∈[t(i),T ]

⃓⃓⃓ Z
(n)
i

(︁
t
(n)
t + s

)︁
nt−t(i) logθ(i)(n)eλ0s

−Wwi(t)
⃓⃓⃓
≥ 3ε

)︂
≤ P

(︂
sup

t∈[t(i),T ]

⃓⃓⃓ M (n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)
t(i) + s

)︁
n−t(i) logθ(i)(n)e

(︂
λ0−λ(n)

i

)︂(︂
t
(n)
t +s

)︂ ⃓⃓⃓ ≥ ε
)︂

(4.3.37)

+ P
(︂

sup
t∈[t(i),T ]

⃓⃓⃓ ∫︁ t
(n)
t +s

t
(n)

t(i)
+s

2αi−1µ
(n)
i−1Z

(n)
i−1(u)e

−λ(n)
i udu

n−t(i) logθ(i)(n)e
(︂
λ0−λ(n)

i

)︂(︂
t
(n)
t +s

)︂ −Wwi(t)
⃓⃓⃓
≥ ε
)︂

(4.3.38)

+ P
(︂

sup
t∈[t(i),T ]

Z
(n)
i

(︁
t
(n)
t(i) + s

)︁
logθ(i)(n)e

(︂
λ0−λ(n)

i

)︂
t
(n)

t−t(i)eλ0s

≥ ε
)︂
. (4.3.39)

We will show that (4.3.37), (4.3.38) and (4.3.39) converge to 0 as n goes to infinity. For the term

(4.3.37), we start by using the fact that λ0 ≥ λ
(n)
i to simplify the denominator. Then, we apply

Doob’s inequality to the martingale
(︁
M

(n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)
t(i) + s)

)︁)︁
t≥t(i) to obtain

(4.3.37) ≤ P
(︂

sup
t∈[t(i),T ]

⃓⃓⃓M (n)
i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)
t(i) + s

)︁
n−t(i) logθ(i)(n)

⃓⃓⃓
≥ ε
)︂

(4.3.40)

≤ 4n2t(i)

ε2 log2θ(i)(n)
E
[︂⟨︁
M

(n)
i

⟩︁
t
(n)
T +s

−
⟨︁
M

(n)
i

⟩︁
t
(n)

t(i)
+s

]︂
.
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By applying Lemma 4.3.10 at times t
(n)
1 = t(i) and t2 = T , we obtain

E
[︂⟨︁
M

(n)
i

⟩︁
t
(n)
T +s

−
⟨︁
M

(n)
i

⟩︁
t
(n)

t(i)
+s

]︂
≤ C

e−λ0s
(︁
t
(n)
t(i) + s

)︁θ(i)
µ
(n)
⊗,i

nt(i)
. (4.3.41)

Then, combining (4.3.40) and (4.3.41), we get

P
(︂

sup
t∈[t(i),T ]

⃓⃓⃓ M (n)
(i

(︁
t
(n)
t + s

)︁
−M

(n)
i

(︁
t
(n)
t(i) + s

)︁
n−t(i) logθ(i)(n)e

(︂
λ0−λ(n)

i

)︂(︂
t
(n)
t +s

)︂ ⃓⃓⃓ ≥ ε
)︂

≤ 4Ce−λ0s

ε2 logθ(i)(n)

(︂ t(n)t(i) + s

log(n)

)︂θ(i)
nt(i)µ

(n)
⊗,i

−→
n→∞

0,

as θ(i) ≥ 1, since the vertex i is assumed to be neutral. This concludes the proof of the convergence
to 0 of (4.3.37). The term (4.3.38) also converges to 0, as shown in the following lemma.

Lemma 4.3.11. Let i ∈ N, T ≥ t(i), s ∈ R and ε > 0. For i ≥ 2, we prove that if Proposition
4.3.4 holds for i− 1, then

P
(︂

sup
t∈[t(i),T ]

⃓⃓⃓ ∫︁ t
(n)
t +s

t
(n)

t(i)
+s

2αi−1µ
(n)
i−1e

−λ(n)
i uZ

(n)
i−1(u)du

n−t(i) logθ(i)(n)e
(︂
λ0−λ(n)

i

)︂(︂
t
(n)
t +s

)︂ −Wwi(t)
⃓⃓⃓
≥ ε
)︂

−→
n→∞

0. (4.3.42)

For i = 1, we prove (4.3.42) without any conditions.

Proof of Lemma 4.3.11. Let cn(t, s) := e

(︂
λ0−λ(n)

i

)︂(︂
t
(n)
t +s

)︂
and

a
(n)
t :=

∫︁ t
(n)
t +s

t
(n)

t(i)
+s

2αi−1µ
(n)
i−1e

−λ(n)
i uZ

(n)
i−1(u)du

n−t(i) logθ(i)(n)cn(t, s)
.

Our aim is to prove that, for all ε > 0, P
(︁
supt∈[t(i),T ]

⃓⃓⃓
a
(n)
t −Wwi(t)

⃓⃓⃓
≤ ε
)︁

→
n→∞

1.

Case i = 1: We have

a
(n)
t =

nt(1)

logθ(1)(n)cn(t, s)

∫︂ t
(n)
t +s

t
(n)

t(1)
+s

2α0µ
(n)
0

[︂
W +

(︁
e−λ0uZ0(u)−W

)︁
+
(︂
e−λ

(n)
0 uZ

(n)
0 (u)− e−λ0uZ0(u)

)︂ ]︂
e

(︂
λ
(n)
0 −λ

(n)
1

)︂
u
du.

For all ε > 0, introduce the events

B
(n)˜︁ε :=

{︂
sup
u∈R+

⃓⃓⃓
e−λ0uZ0(u)− e−λ

(n)
0 uZ

(n)
0 (u)

⃓⃓⃓
≤ ˜︁ε}︂,

Cx,˜︁ε := {︂ sup
u∈[x,∞]

|e−λ0uZ0(u)−W | ≤ ˜︁ε}︂.
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According to Lemma 4.3.1 and the definition of W (see (4.3.5)), we have both that P
(︁
B

(n)˜︁ε )︁
→

n→∞
1

and P
(︁
C√

log(n),˜︁ε)︁ →
n→∞

1. Notice that when λ1 < λ0, we have the following bound

1

cn(t, s)

∫︂ t
(n)
t +s

t
(n)

t(1)
+s

e

(︂
λ0−λ(n)

1

)︂
u
du =

1

λ0 − λ
(n)
1

cn(t, s)− cn(t(1), s)

cn(t, s)
≤ 1

λ0 − λ1
, (4.3.43)

and when λ1 = λ0, we have

1

cn(t, s)

∫︂ t
(n)
t +s

t
(n)

t(1)
+s

e

(︂
λ0−λ(n)

1

)︂
u
du =

1− e
−
(︂
λ0−λ(n)

1

)︂
t
(n)

t−t(1)

λ0 − λ
(n)
1

≤ t
(n)
t−t(1), (4.3.44)

where for the last inequality, we use (4.3.33) applied with a = λ0 − λ
(n)
1 = 2α1µ

(n)
1 > 0 and

x = t
(n)
t−t(1). It follows that, for sufficiently large n (such that t

(n)
t(1) + s ≥

√︁
log(n)), under the event

B
(n)˜︁ε ∩ C√

log(n),˜︁ε, we have that

a
(n)
t ≤ nt(1)

logθ(1)(n)cn(t)

∫︂ t
(n)
t +s

t
(n)

t(1)
+s

2α0µ
(n)
0

(︁
W + 2˜︁ε)︁e(︂λ0−λ(n)

1

)︂
u
du

≤ 2α0

(︁
nt(1)µ

(n)
0

)︁
(W + 2˜︁ε)(︂1{λ1<λ0}

1

λ0 − λ1
+ 1{λ1=λ0}

1

λ0
(t− t(1))

)︂
,

since θ(1) = 1{λ1=λ0}. By definition, we have

w1(t) = 2α0µ0

(︁
1{λ1<λ0}

1

λ0 − λ1
+ 1{λ1=λ0}

1

λ0
(t− t(1))

)︁
.

This implies that

a
(n)
t −Ww1(t) ≤

w1(t)

µ0
W
(︁
nt(1)µ

(n)
0 − µ0

)︁
+ C˜︁ε,

where C > 0 is a sufficiently large constant.
Introduce the event

D
(n)˜︁ε :=

{︁
sup

t∈[t(1),T ]

⃓⃓w1(t)

µ0
W
(︁
nt(1)µ

(n)
0 − µ0

)︁⃓⃓
≤ ˜︁ε}︁.

This event satisfies P
(︁
D

(n)˜︁ε )︁
→

n→∞
1 because W is finite almost surely, nt(1)µ

(n)
0 →

n→∞
µ0 and w1(t)

is bounded from above on [t(1), T ]. Under B
(n)˜︁ε ∩ C√

log(n),˜︁ε ∩D(n)˜︁ε , we have for all t ∈ [t(1), T ],

a
(n)
t −Ww1(t) ≤ (C + 1)˜︁ε.

Similarly, it follows that under B
(n)˜︁ε ∩ C√

log(n),˜︁ε ∩D(n)˜︁ε
sup

t∈[t(1),T ]

|a(n)t −Ww1(t)| ≤ (C + 1)˜︁ε.
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By choosing ˜︁ε > 0 such that (C+1)˜︁ε ≤ ε, we deduce that under the event B
(n)˜︁ε ∩C√

log(n),˜︁ε∩D(n)˜︁ε ,

sup
t∈[t(1),T ]

|a(n)t −Ww1(t)| ≤ ε.

This concludes the proof for the case i = 1, since P
(︁
B

(n)˜︁ε ∩ C√
log(n),˜︁ε ∩D(n)˜︁ε )︁

−→
n→∞

1.

Case i ≥ 2: Assume Proposition 4.3.4 holds for i − 1. In particular, we have P
(︁
B

(n)˜︁ε )︁
−→
n→∞

1,

where

B
(n)˜︁ε :=

{︂
sup

v∈[t(i),T ]

⃓⃓⃓ Z
(n)
i−1
(︁
t
(n)
v + s

)︁
nv−t(i−1)eλ0s logθ(i−1)(n)

−Wwi−1(v)
⃓⃓⃓
≤ ˜︁ε}︂.

Using the change of variable u = t
(n)
v + s and the fact that t(i− 1) = t(i)− ℓ(i− 1) we obtain

a
(n)
t =

∫︂ t

t(i)

2αi−1
(︁
nℓ(i−1)µ(n)

i−1
)︁ Z

(n)
i−1
(︁
t
(n)
v + s

)︁
nv−t(i−1)eλ0s logθ(i)(n)

cn(v, s)

cn(t, s)

log(n)

λ0
dv.

Notice that when λi < λ0, we have θ(i− 1) = θ(i), and when λi = λ0, we have θ(i− 1) = θ(i)− 1.
Additionally, we use that v ↦→ cn(v, s) and wi−1 are non-decreasing functions, and we apply similar

computations as in (4.3.43) and (4.3.44), replacing the index 1 with i to find, under B
(n)˜︁ε , that

a
(n)
t ≤ 2αi−1

(︁
nℓ(i−1)µ(n)

i−1
)︁

·
[︂
1{λi<λ0}

Wwi−1(t) + ˜︁ε
λ0 − λi

+ 1{λi=λ0}W
1

λ0

∫︂ t

t(i)

(wi−1(v) + ˜︁ε) dv]︂.
By definition (see (4.2.3) and Remark 4.2.4), we have

wi(t) = 2αi−1µi−1
(︂
1{λi<λ0}

wi−1(t)
λ0 − λi

+ 1{λi=λ0}
1

λ0

∫︂ t

t(i)

wi−1(u)du
)︂
.

Thus, under the event C
(n)˜︁ε :=

{︂
W |nℓ(i−1)µ(n)

i−1 − µi−1| ≤ ˜︁ε}︂, we find that for all t ≤ T

a
(n)
t −Wwi(t) ≤ 2αi−1

[︂
1{λi<λ0}

1

λ0 − λ1

(︁
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(︁
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i−1
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1
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(︂∫︂ T

t(i)

wi−1(u)du+ T
(︁
nℓ(i−1)µ(n)

i−1
)︁)︂]︂˜︁ε

≤ C˜︁ε,
where C is a positive constant that depends only on the parameters and on T , but is independent

of n. Recalling that nℓ(i−1)µ(n)
i−1 converges and that W is finite almost surely (see (4.3.6)) we obtain

that the event C
(n)˜︁ε satisfies P

(︁
C

(n)˜︁ε )︁
−→
n→∞

1.

Then, by choosing ˜︁ε > 0 such that C˜︁ε ≤ ε, we have shown that under B
(n)˜︁ε ∩ C(n)˜︁ε ,

sup
t∈[t(i),T ]

a
(n)
t −Wwi(t) ≤ ε.
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With similar computations, it can also be shown that under B
(n)˜︁ε ∩ C(n)˜︁ε ,

sup
t∈[t(i),T ]

|a(n)t −Wwi(t)| ≤ ε.

We conclude the proof by noting that P
(︁
C

(n)˜︁ε )︁
→

n→∞
1 and P

(︁
B

(n)˜︁ε )︁
→

n→∞
1, as established by the

induction assumption.

Given that λ0 ≥ λ
(n)
i , the term (4.3.39) satisfies

P
(︂

sup
t∈[t(i),T ]

Z
(n)
i
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t
(n)
t(i) + s
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logθ(i)(n)e
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i
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where the convergence is obtained by applying Lemma 4.3.7 with ψn(i) = log(n)eλ0s. This is valid
because assuming the vertex i is neutral implies that θ(i) = θ(i− 1) + 1.

This completes the proof of Proposition 4.3.4 (i).We now turn to Proposition 4.3.4 (ii).

2. Deleterious case: Assume that λi < λ0. Let 0 < T1 < T2. Using similar computations as
in (4.3.25), for all t ∈ [T1, T2], we have
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Then, this allows to write
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(4.3.45)
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For the convergence to 0 of the term (4.3.45), we first use the fact that λ
(n)
i ≤ λi < λ0, to simplify

the denominator. Then, we apply the Maximal inequality to the supermartingale
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Applying Lemma 4.3.10 at the times t
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1 = t(i) and t2 = t(i) + t, we obtain√︃
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For all t ∈ [T1, T2], we perform the following auxiliary computations, which will be used to obtain
the result
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Then, combining (4.3.48), (4.3.49) and (4.3.50), we obtain
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The term (4.3.46) converges to 0 by Lemma 4.3.11. The convergence to 0 for the term (4.3.47)

is obtained by applying Lemma 4.3.7 with ψn(i) = nT1
λ0−λi

λ0 eλ0s. This completes the proof of
Proposition 4.3.4.

Uniform control on the parameter s

In this subsection, we will prove (4.2.5) and (4.2.6) for the mono-directional graph, as stated in

Proposition 4.3.4, using an approach inspired by [56, Lemma 3]. Define u
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1. Deleterious case: We begin by showing (4.2.6). We will use that
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due to (4.3.51). Let 0 < ˜︁T1 < T1. For n sufficiently large such that u
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Thus, for sufficiently large n, we have
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from which (4.2.6) is obtained. Indeed, the first term on the right-hand side converges to 0 according
to Proposition 4.3.4 (ii) and the second term converges to 0 since W is finite almost surely (see
(4.3.6)).

2. Neutral case: Now, we show (4.2.5). We have
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Finally, using (4.3.53) and (4.3.54), we obtain for all (t, s) ∈ [0, T ]× [−M,M ]⃓⃓⃓Z(n)
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Then we have
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−→
n→∞

0,

where the different convergences to 0 are obtained as follows:

• Lemma 4.3.6 gives the convergence of the first term in (4.3.55),

• Lemma 4.3.7 gives the convergence of the second term in (4.3.55) and the first term in (4.3.56);
for the latter, we apply Lemma 4.3.7 with ψn(i) = e−λ0M log(n), which is valid because
θ(i) = θ(i− 1) + 1,

• for the second term in (4.3.56), we use the fact that W is finite almost surely, see (4.3.6),

• Step 3 of the neutral case in the proof of Proposition 4.3.4 directly establishes the convergence
of (4.3.57).

Finally, we have proven Equations (4.2.5) and (4.2.6) in the specific case of the infinite mono-
directional graph.

4.3.3 First-order asymptotics of the size of the mutant subpopulations
on the random time scale (Theorem 4.2.7 (ii))

In this subsection, we will first show that the random time at which the total population reaches the
size nt behaves asymptotically as the random time at which the wild-type subpopulation reaches
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the size nt. This result is obtained uniformly on the time parameter t, conditioned on {W >
0}, and in probability. Intuitively, for any mutant trait i ∈ N, the corresponding subpopulation
grows exponentially at rate λ0 after time t(i), see Proposition 4.3.4. Due to these time delays (on
the log(n)-accelerated time scale), the total mutant subpopulation remains consistently negligible

compared to the wild-type subpopulation. Consequently the difference between η
(n)
t and σ

(n)
t

converges to 0.

Proposition 4.3.12. Assume Equation (4.3.1) holds. Then, for all ε > 0 and 0 < T1 < T2, we
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Proof. The proof will be carried out in two steps. We begin by establishing the result under a
stronger condition.

Step 1: In this step, we will show that for all 0 < δ1 < δ2 and ε > 0 we have
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Let 0 < δ1 < δ2. Then there exists M ∈ R+ such that
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(n)
t for all t > 0 almost surely, it follows that under B

(n)˜︁ε , we have σ
(n)
t < ∞ for all

t ∈ [T1, T2]. Moreover, it also follows that under B
(n)˜︁ε , we have Z

(n)
0

(︁
η
(n)
t

)︁
= nt for all t ∈ [T1, T2].

In particular, under A
(n)
ε , there exists tn ∈ [T1, T2] such that η

(n)
tn − σ

(n)
tn ≥ ε, which implies that

Z
(n)
0

(︁
σ
(n)
tn

)︁
≤ ntne−λ0

ε
2 . Otherwise, by applying the strong Markov property, it would lead to a

contradiction with A
(n)
ε . Combining these reasonings, it follows that under A

(n)
ε ∩ B(n)˜︁ε , we have

that ∑︂
i≥1

Z
(n)
i

(︁
σ
(n)
tn

)︁
= Z

(n)
tot

(︁
σ
(n)
tn

)︁
− Z

(n)
0

(︁
σ
(n)
tn

)︁
≥ ntn

(︁
1− e−λ0

ε
2

)︁
= Ω

(︁
ntn
)︁
, (4.3.60)

where we use the standard Landau notation for Ω. However, the result regarding the mutant sub-
populations indicates that, due to the power law mutation rates regime, the mutant subpopulations
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have a negligible size compared to the wild-type subpopulation. More precisely, under the event

A
(n)
ε ∩B(n)˜︁ε , using (4.3.59) and Proposition 4.3.4, we have∑︂

i≥1
Z

(n)
i

(︁
σ
(n)
tn

)︁
≤ sup
u∈[T1,tn]

∑︂
i≥1

Z
(n)
i

(︁
η(n)u

)︁
(4.3.61)

≤ sup
u∈[T1,tn]

sup
s∈[−(M+˜︁ε),M+˜︁ε]

∑︂
i≥1

Z
(n)
i

(︁
t(n)u + s

)︁
= o(ntn).

There is a contradiction between (4.3.60) and (4.3.61), so we have proven (4.3.58) for all ε > 0 and
0 < δ1 < δ2.

Step 2: Using a similar method as in Step 2 of the proof of Lemma 4.3.2, one can show that
for all ε > 0

P
(︂
A(n)
ε

⃓⃓⃓
W > 0

)︂
−→
n→∞

0,

which concludes the proof.

In the remainder of this subsection, we will prove the following proposition.

Proposition 4.3.13. Assume Equation (4.3.1) holds. Let 0 < T1 < T2, M > 0 and ε > 0.

Consider
(︁
ρ
(n)
t

)︁
t∈R+ as defined in (4.1.2). Then, we have

• If λi = λ0

P
(︂

sup
s∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓⃓Z(n)
i

(︁
ρ
(n)
t + s

)︁
d
(n)
i (t, s)

− 1{W>0}wi(t)
⃓⃓⃓
≥ ε
)︂

−→
n→∞

0.

• If λi < λ0

P
(︂

sup
s∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓⃓Z(n)
i

(︁
ρ
(n)
t(i)+t + s

)︁
nt logθ(i)(n)eλ0s

− 1{W>0}wi(t(i) + t)
⃓⃓⃓
≥ ε
)︂

−→
n→∞

0.

These results correspond to (4.2.7) and (4.2.8) for the mono-directional graph. The proof will
be carried out under the assumption that λi = λ0. The case where λi < λ0 can be addressed using
similar reasoning and is left to the reader.

Proof of Proposition 4.3.13. Estimate the quantity of interest from above as

P
(︂

sup
s∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓⃓Z(n)
i

(︁
ρ
(n)
t + s

)︁
d
(n)
i (t, s)

− wi(t)1{W>0}
⃓⃓⃓
≥ ε
)︂

≤ P
(︂
{W > 0} ∩

{︂
sup

s∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓⃓Z(n)
i

(︁
ρ
(n)
t + s

)︁
d
(n)
i (t, s)

− wi(t)
⃓⃓⃓
≥ ε
}︂)︂

(4.3.62)

+ P
(︂
{W = 0} ∩

{︂
K

(n)
0

(︁
ρ
(n)
T2

+M
)︁
≥ 1
}︂
∪
{︂
H

(n)
0

(︁
ρ
(n)
T2

+M
)︁
≥ 1
}︂)︂
, (4.3.63)
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where, for the term in (4.3.63), we use the fact that a necessary condition for the mutant subpop-
ulation of trait i to be strictly positive is that at least one mutational event from the wild-type
subpopulation must have occurred before.

Step 1: The convergence to 0 of (4.3.63) follows from proving that

P
(︂{︂

sup
t∈R+

K
(n)
0 (t) = 0

}︂
∩
{︂

sup
t∈R+

H
(n)
0 (t) = 0

}︂⃓⃓⃓
W = 0

)︂
−→
n→∞

1.

Let us first show that P
(︁
supt∈R+ K

(n)
0 (t) ≥ 1

⃓⃓
W = 0

)︁
→

n→∞
0. Notice that, almost surely, for all

t ∈ R+

K
(n)
0 (t) ≤ ˜︁K(n)(t) :=

∫︂ t

0

∫︂
R+

1{︂
θ≤2α0µ

(n)
0 Z0(s−)

}︂N0(ds, dθ),

because, almost surely, for all t ∈ R+, we have Z
(n)
0 (t) ≤ Z0(t). Then it follows that

P
(︂
sup
t∈R+

K
(n)
0 (t) ≥ 1

⃓⃓⃓
W = 0

)︂
≤ E

[︂
sup
t∈R+

˜︁K(n)(t) ∧ 1
⃓⃓⃓
W = 0

]︂
−→
n→∞

0

by dominated convergence. Indeed, for all ω ∈ {W = 0}, there exists T (ω) ∈ R+ such that for all

t ≥ T (ω), Z0(t) = 0. Combined with µ
(n)
0 →

n→∞
0, it follows that there exists N(ω) ∈ N such that

for all n ≥ N(ω), we have supt∈R+
˜︁K(n)(t) = 0. We conclude the proof of Step 1 by showing that

P
(︁
supt∈R+ H

(n)
0 (t) ≥ 1

⃓⃓
W = 0

)︁
−→
n→∞

0 using similar reasoning.

Step 2: We will show that (4.3.62) converges to 0 in three steps.
Step 2) (i): We begin by showing that for all ε > 0 and η > 0 we have

P
(︂

sup
s∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓⃓Z(n)
i

(︁
ρ
(n)
t + s

)︁
d
(n)
i (t, s)

e
−λ0

[︂
ρ
(n)
t −t

(n)
t

]︂
−Wwi(t)

⃓⃓⃓
≥ ε
⃓⃓⃓
W > η

)︂
−→
n→∞

0.

We have

P
(︂

sup
t∈[T1,T2]

⃓⃓⃓
ρ
(n)
t − t

(n)
t

⃓⃓⃓
≥M

⃓⃓⃓⃓
⃓W > η

)︂
≤ P

(︂
sup

t∈[T1,T2]

⃓⃓⃓
η
(n)
t −

(︂
t
(n)
t − log(W )

λ0

)︂⃓⃓⃓
≥ M

3

⃓⃓⃓
W > η

)︂
+ P

(︂
sup

t∈[T1,T2]

⃓⃓⃓
ρ
(n)
t − η

(n)
t

⃓⃓⃓
≥ M

3

)︂
+ P

(︂ | log(W )|
λ0

≥ M

3

⃓⃓⃓
W > η

)︂
.

Let δ > 0. Using Lemma 4.3.2, Proposition 4.3.12 and the distribution of W given in (4.3.6), there
exist M > 0 and N1 ∈ N such that for all n ≥ N1,

P
(︂

sup
t∈[T1,T2]

⃓⃓⃓
ρ
(n)
t − t

(n)
t

⃓⃓⃓
≥M

⃓⃓⃓
W > η

)︂
≤ δ

2
. (4.3.64)

Now, we can apply Theorem 4.2.7 (i) Eq. (4.2.5) to get that there exists N2 ∈ N such that for all
n ≥ N2,

P
(︂

sup
s∈[−M,M ]

sup
s1∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓⃓Z(n)
i

(︁
t
(n)
t + s+ s1

)︁
d
(n)
i (t, s+ s1)

−Wwi(t)
⃓⃓⃓
≥ ε
)︂
≤ δ

2
. (4.3.65)
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Consequently, using Equations (4.3.64) and (4.3.65), we have shown that for all δ > 0, there exists
N := max(N1, N2) ∈ N such that for all n ≥ N ,

P
(︂

sup
s∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓⃓Z(n)
i

(︁
ρ
(n)
t + s

)︁
d
(n)
i (t, s)

e
−λ0

[︂
ρ
(n)
t −t

(n)
t

]︂
−Wwi(t)

⃓⃓⃓
≥ ε
⃓⃓⃓
W > η

)︂
≤ δ,

which concludes Step 2) (i).
Step 2) (ii): Now, we are going to prove that

P
(︂

sup
s∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓⃓Z(n)
i

(︁
ρ
(n)
t + s

)︁
d
(n)
i (t, s)

− wi(t)
⃓⃓⃓
≥ ε
⃓⃓⃓
W > η

)︂
−→
n→∞

0.

Let δ > 0 and 0 < ˜︁ε < η. According to Remark 4.3.3 Equation (4.3.13) and Proposition 4.3.12, we
have

P
(︂
A

(n)˜︁ε ⃓⃓
W > η

)︂
≥ 1− δ

2
, where A

(n)˜︁ε :=
{︂

sup
t∈[T1,T2]

⃓⃓⃓
e
−λ0

(︂
ρ
(n)
t −t

(n)
t

)︂
−W

⃓⃓⃓
≤ ˜︁ε}︂.

Combined with Step 2) (i), there exists N ∈ N such that for all n ≥ N , we have P
(︁
A

(n)˜︁ε ∩B(n)˜︁ε |W >

η
)︁
≥ 1− δ, where

B
(n)˜︁ε :=

{︂
sup

s∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓⃓Z(n)
i

(︁
ρ
(n)
t + s

)︁
d
(n)
i (t, s)

e
−λ0

[︂
ρ
(n)
t −t

(n)
t

]︂
−Wwi(t)

⃓⃓⃓
≤ ˜︁ε}︂.

In particular, conditioned on {W > η}, under the event A(n)˜︁ε ∩B(n)˜︁ε , we have that for all t ∈ [T1, T2]
and for all s ∈ [−M,M ],

Z
(n)
i

(︁
ρ
(n)
t + s

)︁
d
(n)
i (t, s)

− wi(t) ≤ (˜︁ε+ wi(t)W ) e
λ0

(︂
ρ
(n)
t −t

(n)
t

)︂
− wi(t)

≤ ˜︁ε
W − ˜︁ε + wi(t)

(︂ W

W − ˜︁ε − 1
)︂

≤ (1 + wi(T2))
˜︁ε

η − ˜︁ε
−→˜︁ε→0

0,

so that we can choose ˜︁ε arbitrarily small such that this upper bound is smaller than ε. By applying
a similar approach for the lower bound, we find that, conditioned on {W > η}, under the event

A
(n)˜︁ε ∩B(n)˜︁ε , we have that for all t ∈ [T1, T2] and for all s ∈ [−M,M ],

Z
(n)
i

(︁
ρ
(n)
t + s

)︁
d
(n)
i (t, s)

− wi(t) ≥ − (1 + wi(T2))
ε̃

η − ε̃
−→
ε̃→0

0.

Consequently, by choosing an appropriate ˜︁ε > 0, we have shown that there exists N ∈ N such that
for all n ≥ N ,

P
(︂

sup
s∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓⃓Z(n)
i

(︁
ρ
(n)
t + s

)︁
d
(n)
i (t, s)

− wi(t)
⃓⃓⃓
≤ ε
⃓⃓⃓
W > η

)︂
≥ 1− δ.
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Step 2) (iii): Introduce the notation C
(n)
ε :=

{︁
sup

s∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓Z(n)
i

(︁
ρ
(n)
t +s

)︁
d
(n)
i (t,s)

−wi(t)
⃓⃓
≥ ε
}︁
. To

complete the proof of Step 2, we will show that P
(︁
C

(n)
ε ∩ {W > 0}

)︁
→

n→∞
0. We have

P
(︂
C(n)
ε ∩ {W > 0}

)︂
≤ P

(︂
C(n)
ε ∩ {W > η}

)︂
+ P (0 < W < η) .

Using Step 2) (ii), we obtain

lim sup
n→∞

P
(︂
C(n)
ε ∩ {W > 0}

)︂
≤ P (0 < W < η) .

Taking the limit as η →
n→∞

0 completes the proof.

4.4 First-order asymptotics of the size of the mutant sub-
populations for a general finite trait space (Theorem
4.2.7)

As in Section 4.3 the sequence
(︁
Z

(n)
v , v ∈ V

)︁
n∈N is mathematically constructed using independent

PPMs. In this construction, each population of trait v is decomposed as the sum of subpopulations
indexed by the walks in the graph that start from trait 0 and lead to trait v. An exact definition
will be given below. The idea is to apply the reasoning of Section 4.3 to each walk γ from trait
0 to trait v, which will provide the first-order asymptotics for the subpopulation of cells of trait
v indexed by γ. By comparing the order of distinct walks, we can then conclude the first-order
asymptotics of the size of the mutant subpopulation of trait v. However, this reasoning holds only
if there are finitely many walks from trait 0 to trait v. In particular, notice that due to cycles, there
may be countably infinitely many walks from trait 0 to trait v. Consequently, the proof requires
additional steps, introducing an equivalence relation on the walks. We argue that there are only
finitely many equivalent classes, and for each equivalent class, the result follows by adapting the
reasoning from Section 4.3. For the equivalent class with infinitely many walks, we show that, with
high probability, most of these walks do not asymptotically contribute.

Among wild-type individuals, we define the primary cell population, denoted by(︁
Z

(n)
(0) (t)

)︁
t≥0, as the set of all cells that have no mutants in their ancestry, tracing back to the initial

cell. This corresponds to Z
(n)
0 in the case of the mono-directional graph.

Definition 4.4.1 (Walks and neighbours). Define the set of all walks in the graph V starting
from trait 0 as Γ(V ). For a trait v ∈ V , the set of traits to which a cell of trait v may mutate
is defined as N(v) := {u ∈ V : (v, u) ∈ E}. For a walk γ = (0, · · · , γ(k)) ∈ Γ(V ), denote the
last trait γ(k) visited by γ as γend := γ(k), and the sub-walk that does not include this last trait

as
←
γ := (0, · · · , γ(k − 1)) . Introduce the sets of tuples of the walks in V starting from trait 0,

associated with one or two neighbours of the last trait of γ, as

NΓ := {(γ, v) : γ ∈ Γ(V ), v ∈ N(γend)},

and

MΓ := {(γ, (v, u)) : γ ∈ Γ(V ), (v, u) ∈ N(γend)×N(γend)}.
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We then introduce the birth, death and growth rates of any lineage of a cell of trait v as

α(n)(v) = α(v)
(︂
1− µ(n)(v)

)︂2
with µ(n)(v) :=

∑︂
u∈V :(v,u)∈E

µ(n)(v, u),

β(n)(v) = β(v) + α(v)
∑︂

(u,w)∈N(v)×N(v)

µ(n)(v, u)µ(n)(v, w),

λ(n)(v) = α(n)(v)− β(n)(v) = λ(v)− 2α(v)µ(n)(v).

Let Qb(0)(ds, dθ), Q
d
(0)(ds, dθ), (Qγ(ds, dθ))γ∈Γ(V ), (Qγ,v(ds, dθ))(γ,v)∈NΓ

and(︁
Qγ,(v,u)(ds, dθ)

)︁
(γ,(v,u))∈MΓ

be independent PPMs with intensity dsdθ. The subpopulation of

primary cells is

Z
(n)
(0) (t) := 1 +

∫︂ t

0

∫︂
R+

1{︂
θ≤α(n)(0)Z

(n)

(0)
(s−)

}︂Qb(0)(ds, dθ) (4.4.1)

−
∫︂ t

0

∫︂
R+

1{︂
θ≤β(0)Z(n)

(0)
(s−)

}︂Qd(0)(ds, dθ)− ∑︂
(v,u)∈N(0)×N(0)

H
(n)
(0),(v,u)(t),

and for all γ ∈ Γ(V ), the subpopulation among the cells of trait γend whose ancestry traces back
to trait 0 with mutations occurring exactly along the edges of γ is

Z(n)
γ (t) :=

∫︂ t

0

∫︂
R+

(︄
1{︂

θ≤α(n)(γend)Z
(n)
γ (s−)

}︂ (4.4.2)

− 1{︂
α(n)(γend)Z

(n)
γ (s−)≤θ≤(α(n)(γend)+β(γend))Z(n)

γ (s−)
}︂
)︄
Qγ(ds, dθ)

+K
(n)
←
γ ,γend

(t) + 2H
(n)
←
γ ,(γend,γend)

+
∑︂

v∈N(γend),v ̸=γend

(︂
H

(n)
←
γ ,(γend,v)

+H
(n)
←
γ ,(v,γend)

)︂
(t)

−
∑︂

(v,u)∈N(γend)×N(γend)

H
(n)
γ,(v,u)(t),

where for all (γ, v) ∈ NΓ,

K(n)
γ,v (t) :=

∫︂ t

0

∫︂
R+

1{θ≤2α(γend)µ(n)(γend,v)(1−µ(n)(γend))Z(n)
γ (s−)}Qγ,v(ds, dθ), (4.4.3)

and for all (γ, (v, u)) ∈MΓ,

H
(n)
γ,(v,u)(t) :=

∫︂ t

0

∫︂
R+

1{︂
θ≤α(γend)µ(n)(γend,v)µ(n)(γend,u)Z

(n)
γ (s−)

}︂Qγ,(v,u)(ds, dθ). (4.4.4)

The process
(︁
K

(n)
γ,v (t)

)︁
t∈R+ , resp.

(︁
H

(n)
γ,{v,u}(t) := H

(n)
γ,(v,u)(t) +H

(n)
γ,(u,v)(t)

)︁
t∈R+ , counts the number

of mutations up to time t from the subpopulation indexed by γ that result in exactly one mutant
daughter cell of trait v, resp. two mutant daughter cells of traits {v, u}. Hence the subpopulation
of trait v ∈ V is

Z(n)
v (t) := Z

(n)
(0) (t)1{v=0} +

∑︂
γ∈P (v)

Z(n)
γ (t), (4.4.5)
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where P (v), defined in Definition 4.2.5, is the set of all walks from trait 0 to trait v.

Definition 4.4.2 (Limiting birth-death branching process for the primary cell population). Let
(Z(0)(t))t∈R+ be the birth-death branching process with rates α(0) and β(0) respectively, constructed
as follows

Z(0)(t) = 1 +

∫︂ t

0

∫︂
R+

1{θ≤α(0)Z(0)(s−)}Q
b
(0)(ds, dθ)

−
∫︂ t

0

∫︂
R+

1{θ≤β(0)Z(0)(s−)}Q
d
(0)(ds, dθ).

Notice that with this construction, the monotone coupling

∀t ≥ 0, Z
(n)
(0) (t) ≤ Z(0)(t), a.s.

immediately follows.
Introduce the almost sure limit of the positive martingale

(︁
e−λ(0)tZ(0)(t)

)︁
t∈R+ as

W := lim
t→∞

e−λ(0)tZ(0)(t), (4.4.6)

whose law is W
law
= Ber

(︂
λ(0)
α(0)

)︂
⊗ Exp

(︂
λ(0)
α(0)

)︂
, see [22, Section 1.1], or [94, Theorem 1].

Lemma 4.4.3. There exist C(α(0), λ(0)) > 0 and N ∈ N such that for all ε > 0 and n ≥ N ,

P
(︂
sup
t∈R+

⃓⃓⃓
e−λ(0)tZ(0)(t)− e−λ

(n)(0)tZ
(n)
(0) (t)

⃓⃓⃓
≥ ε
)︂
≤ C(α(0), λ(0))

ε2
µ(n)(0) −→

n→∞
0.

Proof. The result is derived by adapting the proof of Lemma 4.3.1 with µ
(n)
0 replaced by µ(n)(0).

Introduce the stopping time of the first time that the primary cell population reaches the size
nt as

τ
(n)
t := inf

{︁
u ∈ R+ : Z

(n)
(0) (u) ≥ nt

}︁
.

Lemma 4.4.4. For all ε > 0, (T1, T2) ∈ R+ and φn such that log(n) = o(φn) and φn =

o
(︁
n

min
v∈N(0)

ℓ(0,v))︁
, we have

P
(︂

sup
t∈[T1,T2

φn
log(n) ]

⃓⃓⃓
τ
(n)
t −

(︂
t
(n)
t − log(W )

λ(0)

)︂⃓⃓⃓
≥ ε
⃓⃓⃓
W > 0

)︂
−→
n→∞

0.

Proof. By following the proof of Lemma 4.3.2, with Z
(n)
0 and η

(n)
t replaced by Z

(n)
(0) and τ

(n)
t ,

respectively, we obtain the result.

In the next definition, we introduce an equivalence relation on Γ(V ). Two walks are considered
equivalent if they are identical up to cycles (including cycles formed by backward mutations). More
precisely, two walks are equivalent if there exists a minimal walk such that both walks use all the
edges of this minimal walk, possible along with additional edges that form cycles. The purpose of
this equivalence relation is to establish that, within a class of equivalence, only the walk with the
minimal length contributes to the asymptotic size of the mutant subpopulation. In particular, this
minimal walk is actually a path, since only distinct vertices are visited.
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Figure 4.6: Example of Definition 4.4.5: here the walks γ, γ1 and γ2, represented respectively in
plain blue, dashed red and dense dotted green, respectively, are equivalent. However, the walk γ3,
represented in sparse dotted purple, is not equivalent to any of the other walks. In particular, it is
not possible to construct a function σ satisfying condition (ii) of Definition 4.4.5 for the walk γ3.
We have |γ| = 4, |γ1| = 9, |γ2| = 7, and σ1(0) = (0, 0), σ1(1) = (1, 3), σ1(2) = (4, 4), σ1(3) = (5, 8),
σ2(0) = (0, 3), σ2(1) = (4, 4), σ2(2) = (5, 5) and σ2(3) = (6, 6).

Definition 4.4.5 (Equivalence relation on Γ(V )). We say that two walks γ1 and γ2 in Γ(V )×Γ(V )
are equivalent, denoted by γ1 ∼ γ2, if and only if there exists γ ∈ Γ(V ), and for all j ∈ {1, 2} there
exists

σj : {0, · · · |γ| − 1} → {0, · · · , |γj | − 1}2
i ↦→ (σj(i), σj(i))

satisfying :

(i) ∀j ∈ {1, 2}, σj(0) = 0, and σj(|γ| − 1) = |γj | − 1,

(ii) ∀i ∈ {0, · · · |γ| − 1},∀j ∈ {1, 2}, σj(i) ≤ σj(i) and σj(i) + 1 = σj(i+ 1),

(iii) ∀i ∈ {0, · · · , |γ| − 1},∀j ∈ {1, 2}, γ(i) = γj(σj(i)) = γj(σj(i)).

Since the graph is finite, there are only a finite number of equivalence classes. For each walk
γ ∈ Γ(V ), denote by [γ] its equivalence class. In each class of equivalence, there is a natural
representative candidate which is the walk with the minimum length; we will denote this walk by ˜︁γ.
For each v ∈ V , denote by C(v) the set of representative candidates for the walks in P (v). Note
that |C(v)| <∞. An illustration of this definition can be found in Figure 4.6..

We introduce the notion of the mono-directional graph associated to a walk γ in the following
definition.
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Definition 4.4.6. The mono-directional graph associated to a walk
γ = (0, γ(1), · · · , γ(k)) is the graph (Vγ , Eγ) where

Vγ := {0, γ(1), · · · , γ(k)},
Eγ := {(0, γ(1)), (γ(1), γ(2)), · · · , (γ(k − 1), γ(k))}.

In other words, it is the graph composed of the successive subpopulations(︁
Z

(n)
(0) , Z

(n)
(0,γ(1)), · · · , Z(n)

γ

)︁
.

Now we have all the preliminary results and definitions necessary to prove Theorem 4.2.7.

Proof of Theorem 4.2.7. We prove Equations (4.2.5) and (4.2.7). The proofs of Equations (4.2.6)
and (4.2.8) are similar and are left to the reader.

Step 1: Let ˜︁γ be a representative candidate of an equivalence class. Our first step is to prove,
using the results of Section 4.3, that for all ε > 0

P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

⃓⃓⃓ ∑︂
γ∈[˜︁γ]

Z
(n)
γ

(︁
t
(n)
t + s

)︁
d
(n)˜︁γ (t, s)

−Ww˜︁γ(t)
⃓⃓⃓
≥ ε
)︂

−→
n→∞

0, (4.4.7)

where for all γ ∈ Γ(V ),

d(n)γ (t, s) :=1{t∈[0,t(γ)−h−1
n } + 1{t∈[t(γ)−h−1

n ,t(γ))}ψn log
θ(γ)−1(n)

+ 1{t∈[t(γ),∞)}n
t−t(γ) logθ(γ)(n)eλ(0)s,

and wγ is defined in (4.2.3). Notice that

P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

⃓⃓⃓ ∑︂
γ∈[˜︁γ]

Z
(n)
γ

(︁
t
(n)
t + s

)︁
d
(n)˜︁γ (t, s)

−Ww˜︁γ(t)
⃓⃓⃓
≥ ε
)︂

≤ P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

⃓⃓⃓Z(n)˜︁γ (︁
t
(n)
t + s

)︁
d
(n)˜︁γ (t, s)

−Ww˜︁γ(t)
⃓⃓⃓
≥ ε
)︂

(4.4.8)

+
∑︂

γ∈[˜︁γ]\{˜︁γ}:t(γ)≤T P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

⃓⃓⃓Z(n)
γ

(︁
t
(n)
t + s

)︁
d
(n)˜︁γ (t, s)

⃓⃓⃓
≥ ε
)︂

(4.4.9)

+ P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

∑︂
γ∈[˜︁γ]\{˜︁γ}:t(γ)>T

⃓⃓⃓Z(n)
γ

(︁
t
(n)
t + s

)︁
d
(n)˜︁γ (t, s)

⃓⃓⃓
≥ ε
)︂
. (4.4.10)

The term in (4.4.8) converges to 0 by applying Equation (4.2.5) to the mono-directional graph
defined by the walk ˜︁γ, as proven in Section 4.3. The term in (4.4.9) also converges to 0 since:

• the sum is over a finite set, as we are considering a finite graph with positive labels on the
edges ,
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• for each γ ∈ [˜︁γ]\{˜︁γ}, we have t(γ) > t(˜︁γ) by definition of the representative (see Definition
4.4.5). This implies, by applying Equation (4.2.5) to the mono-directional graph defined by
γ, that

P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

⃓⃓⃓Z(n)
γ

(︁
t
(n)
t + s

)︁
d
(n)˜︁γ (t, s)

⃓⃓⃓
≥ ε
)︂

−→
n→∞

0.

The term in (4.4.10) converges to 0 because

P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

∑︂
γ∈[˜︁γ]\{˜︁γ}:t(γ)>T Z

(n)
γ

(︁
t
(n)
t + s

)︁
= 0
)︂

→
n→∞

1. (4.4.11)

Indeed, for each γ ∈ [˜︁γ]\{˜︁γ} satisfying t(γ) > T , we have

P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

Z(n)
γ

(︁
t
(n)
t + s

)︁
= 0
)︂

−→
n→∞

1, (4.4.12)

by applying Lemma 4.3.6 to the mono-directional graph given by γ. It remains to handle the sum
over the set A˜︁γ(T ) := {γ ∈ [˜︁γ]\{˜︁γ} : t(γ) > T}. The easiest situation occurs when |A˜︁γ(T )| <∞, as
the result follows directly in this case. This situation corresponds exactly to the case where there is
no cycle in the graph structure (V,E) for the vertices of ˜︁γ. Now, consider the case |A˜︁γ(T )| = ∞. In
this case, even though Equation (4.4.12) holds for all γ ∈ A˜︁γ(T ), it does not necessary imply that
Equation (4.4.11) is automatically satisfied. The result follows if one can show that there exists a
finite subset B˜︁γ(T ) ⊂ A˜︁γ(T ) such that

P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

∑︂
γ∈A˜︁γ(T )\B˜︁γ(T )

Z(n)
γ

(︁
t
(n)
t + s

)︁
= 0
⃓⃓⃓
E

(n)˜︁γ
)︂
= 1, (4.4.13)

where E
(n)˜︁γ :=

{︁
sups∈[−M,M ] supt∈[0,T ]

∑︁
γ∈B˜︁γ(T ) Z

(n)
γ

(︁
t
(n)
t +s

)︁
= 0
}︁
.We will now show that B˜︁γ(T )

exists. The set [˜︁γ] consists of walks where, for each vertex v visited by ˜︁γ, there may be a cycle
going back to v. Since there are only a finite number of vertices visited by ˜︁γ, and the labels on the
vertices are positive, it follows that the number of walks γ ∈ A˜︁γ(T ) for which we need to control the

event that they do not have any cells up to time t
(n)
T +M is actually finite, and we denote this set

by B˜︁γ(T ). Indeed, for all walks γ ∈ A˜︁γ(T )\B˜︁γ(T ), there exists a walk γ1 ∈ B˜︁γ(T ) such that cells

in the subpopulation Z
(n)
γ result from (potentially many) mutations of cells in the subpopulation

Z
(n)
γ1 . Therefore, if one controls with high probability that no cells are generated up to time t

(n)
T +M

for the subpopulations indexed by γ ∈ B
(n)˜︁γ -which is feasible since B

(n)˜︁γ is finite-it automatically
implies by the mechanistic construction of the process that, under such an event, there are almost

surely no cells in the subpopulations indexed by γ ∈ A
(n)˜︁γ \B(n)˜︁γ . This is precisely the statement of

Equation (4.4.13).

Step 2: In this step, Equation (4.2.5) is proven. Notice that for γ ∈ A(v), where A(v) is defined

in Definition 4.2.5, we have d
(n)
γ (t, s) = d

(n)
v (t, s), and also that γ is the representative candidate˜︁γ of its equivalence class. In particular, this means that

∑︁
γ∈A(v) wγ(t) =

∑︁˜︁γ∈C(v):˜︁γ∈A(v) w˜︁γ(t),
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where C(v) is defined in Definition 4.4.5. The proof is obtained by noting that

P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

⃓⃓⃓Z(n)
v

(︁
t
(n)
t + s

)︁
d
(n)
v (t, s)

−W
∑︂

γ∈A(v)

wγ(t)
⃓⃓⃓
≥ ε
)︂

≤
∑︂

˜︁γ∈C(v):˜︁γ∈A(v)

P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

⃓⃓⃓ ∑︂
γ∈[˜︁γ]

Z
(n)
γ

(︁
t
(n)
t + s

)︁
d
(n)˜︁γ (t, s)

−Ww˜︁γ(t)
⃓⃓⃓
≥ ε
)︂

(4.4.14)

+
∑︂

˜︁γ∈C(v):˜︁γ /∈A(v)

P
(︂

sup
s∈[−M,M ]

sup
t∈[0,T ]

⃓⃓⃓ ∑︂
γ∈[˜︁γ]

Z
(n)
γ

(︁
t
(n)
t + s

)︁
d
(n)
v (t, s)

⃓⃓⃓
≥ ε
)︂
. (4.4.15)

Indeed, (4.4.14) converges to 0 by applying Equation (4.4.7) and because the sum is finite. Similarly,
(4.4.15) converges to 0 because the sum is finite and, for all ˜︁γ ∈ C(v), ˜︁γ /∈ A(v), we have either
t(˜︁γ) > t(v) or θ(˜︁γ) < θ(v).

Step 3: In this step, we are going to prove Equation (4.2.7). By following the proof of Proposi-

tion 4.3.12, replacing η
(n)
t with τ

(n)
t , and defining W as in (4.4.6) instead of (4.3.5), we obtain that

for all 0 < T1 < T2 and for all ε > 0,

P
(︂

sup
t∈[T1,T2]

(︁
τ
(n)
t − σ

(n)
t

)︁
≤ ε
⃓⃓⃓
W > 0

)︂
−→
n→∞

1.

Indeed, because the number of vertices in the graph is finite, and due to Step 2, we have shown that

the total number of mutant cells
∑︁
v∈V \{0} Z

(n)
v

(︁
t
(n)
t + s

)︁
is negligible compared to the number of

wild-type cells Z
(n)
(0)

(︁
t
(n)
t + s

)︁
for any time interval [T1, T2]. This allows us to apply the reasoning

from (4.3.60) and (4.3.61), leading to a straightforward adaptation of the proof of Proposition
4.3.12. By adapting the different proofs from Subsection 4.3.3, we obtain that for all 0 < T1 < T2,
M > 0 and ε > 0,

P
(︂

sup
s∈[−M,M ]

sup
t∈[T1,T2]

⃓⃓⃓Z(n)
v

(︁
ρ
(n)
t + s

)︁
d
(n)
v (t, s)

− 1{W>0}wv(t)
⃓⃓⃓
≥ ε
)︂

−→
n→∞

0.

Appendix

Proof of Lemma 4.3.5. For all t ≥ 0 let F (n)
i,t the σ-field generated by Z

(n)
j (s) for all 0 ≤ j ≤ i and

0 ≤ s ≤ t. For all h ≥ 0, we have

E
[︂
M

(n)
i (t+ h)−M

(n)
i (t)|F (n)

i,t

]︂
= E

[︂
Z

(n)
i (t+ h)

⃓⃓⃓
F (n)
i,t

]︂
e−λ

(n)
i (t+h) (4.4.16)

− Z
(n)
i (t)e−λ

(n)
i t −

∫︂ t+h

t

2αi−1µ
(n)
i−1e

−λ(n)
i sE

[︂
Z

(n)
i−1(s)

⃓⃓⃓
F (n)
i,t

]︂
ds.

The forward Chapman-Kolmogorov equation gives the time-differential equation

dE
[︂
Z

(n)
i (t)

]︂
dt

= λ
(n)
i E

[︂
Z

(n)
i (t)

]︂
+ 2αi−1µ

(n)
i−1E

[︂
Z

(n)
i−1(t)

]︂
,
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which leads to

E
Z

(n)
i (0)

[︂
Z

(n)
i (t)

]︂
= Z

(n)
i (0)eλ

(n)
i t +

∫︂ t

0

2αi−1µ
(n)
i−1EZ(n)

i (0)

[︂
Z

(n)
i−1(s)

]︂
eλ

(n)
i (t−s)ds.

In particular, by using the Markov property we obtain that

E
[︂
Z

(n)
i (t+ h)

⃓⃓⃓
F (n)
i,t

]︂
= Z

(n)
i (t)eλ

(n)
i h +

∫︂ t+h

t

2αi−1µ
(n)
i−1E

[︂
Z

(n)
i−1(s)|F

(n)
i,t

]︂
eλ

(n)
i (t+h−s)ds. (4.4.17)

Combining (4.4.16) and (4.4.17), it follows that
(︁
M

(n)
i (t)

)︁
t∈R+ is a martingale. Let

F (n)(t, x, y) := (e−λ
(n)
i tx− y)2.

Then, we have

∂F (n)

∂t
(t, x, y) = −2λ

(n)
i xe−λ

(n)
i t
√︂
F (n)(t, x, y) and

∂F (n)

∂y
(t, x, y) = −2

√︁
F (n).

Applying Itô’s formula with x = Z
(n)
i (t) and y =

∫︁ t
0
2αi−1µ

(n)
i−1e

−λ(n)
i sZ

(n)
i−1(s)ds, we obtain

(︂
M

(n)
i (t)

)︂2
= F (n)

(︂
t, Z

(n)
i (t),

∫︂ t

0

2αi−1µ
(n)
i−1e

−λ(n)
i sZ

(n)
i−1(s)ds

)︂
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0

2αi−1µ
(n)
i−1e

−λ(n)
i sZ

(n)
i−1(s)M

(n)
i (s)ds

− 2λ
(n)
i

∫︂ t

0

e−λ
(n)
i sZ

(n)
i (s)M

(n)
i (s)ds

+

∫︂ t

0

∫︂
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[︂(︂
M

(n)
i (s−)

+ e−λ
(n)
i s
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1{︂
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i Z

(n)
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}︂ − 1{︂
α

(n)
i Z

(n)
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(︂
α

(n)
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(n)
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}︂}︂)︂2
−
(︂
M

(n)
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+
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0
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M

(n)
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(n)
i s
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Z

(n)
i−1(s
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M

(n)
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+

∫︂ t

0
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(︂
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i sds+ ˜︂M (n)
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where (˜︂M (n)
i (t))t≥0 is a martingale. Finally, we obtain⟨︂
M

(n)
i

⟩︂
t
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Proof of Lemma 4.3.9. First, we have that E
[︁
Z

(n)
0 (u)

]︁
= eλ

(n)
0 u ≤ eλ0u, which is exactly the result

for i = 0. Then, for i ∈ N assume that the result is true for i− 1. Taking the expected value of the

martingale M
(n)
i defined in (4.3.14) at time u and using the induction assumption we obtain the

following

E
[︂
Z

(n)
i (u)

]︂
≤ eλiu

∫︂ u

0

2αi−1µ
(n)
i−1e

−λisE
[︂
Z

(n)
i−1(s)

]︂
ds

≤ Ci−1µ
(n)
⊗,i2αi−1

∫︂ u

0

e(λ0−λi)sdsuθ(i−1)eλiu

≤ Ci−1µ
(n)
⊗,i2αi−1

(︂
1{λi=λ0}u+ 1{λi<λ0}

1

λ0 − λi
e(λ0−λi)u

)︂
uθ(i−1)eλiu

= Ci−1µ
(n)
⊗,i2αi−1

(︂
1{λi=λ0} + 1{λi<λ0}

1

λ0 − λi

)︂
uθ(i)eλ0u,

which concludes the proof by induction.

Proof of Lemma 4.3.10. In the proof, C represents a positive constant that may change from line
to line.

Neutral case: Assume that λi = λ0. Applying Lemma 4.3.9, recalling that λ
(n)
i = λ0−2αiµ

(n)
i ,

and noting that there exists N1 ∈ N such that for all n ≥ N1, we have that e
4αiµ

(n)
i

(︂
t
(n)
t2

+s
)︂
≤ 2, we

obtain ∫︂ t
(n)
t2

+s

t
(n)

t
(n)
1

+s

e−2λ
(n)
i uE

[︂
Z

(n)
i (u)

]︂
du ≤ Cµ

(n)
⊗,i

∫︂ t
(n)
t2

+s

t
(n)

t
(n)
1

+s

uθ(i)e−λ0udu.
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Using integration by parts, we obtain∫︂ t
(n)
t2

+s

t
(n)

t
(n)
1

+s

uθ(i)e−λ0udu ≤ 1

λ(0)

(︁
t
(n)

t
(n)
1

+ s
)︁θ(i)

e
−λ0

(︁
t
(n)

t
(n)
1

+s
)︁
+
θ(i)

λ0

∫︂ t
(n)
t2

+s

t
(n)

t
(n)
1

+s

uθ(i)−1e−λ0udu.

Then, using θ(i) integrations by parts, there exists N2 ∈ N such that for n ≥ N2, we have

∫︂ t
(n)
t2

+s

t
(n)

t
(n)
1

+s

uθ(i)e−λ0udu ≤ C
e−λ0s

nt
(n)
1

(︁
t
(n)

t
(n)
1

+ s
)︁θ(i)

.

It follows that for n ≥ max(N1, N2),∫︂ t
(n)
t2

+s

t
(n)

t
(n)
1

+s

e−2λ
(n)
i uE

[︂
Z

(n)
i (u)

]︂
du ≤ C

e−λ0s

nt
(n)
1

µ
(n)
⊗,i
(︁
t
(n)

t
(n)
1

+ s
)︁θ(i)

.

Since vertex i is assumed to be neutral, we have θ(i− 1) = θ(i)− 1. Using similar computation as
above, there exists N3 ∈ N such that for n ≥ N3, we have∫︂ t

(n)
t2

+s

t
(n)

t
(n)
1

+s

µ
(n)
i−1e

−2λ(n)
i uE

[︂
Z

(n)
i−1(u)

]︂
du ≤ C

e−λ0s

nt
(n)
1

µ
(n)
⊗,i
(︁
t
(n)

t
(n)
1

+ s
)︁θ(i)−1

.

It follows that for all n ≥ max(N1, N2, N3), we have

E
[︂⟨︁
M

(n)
i

⟩︁
t
(n)
t2

+s
−
⟨︁
M

(n)
i

⟩︁
t
(n)

t
(n)
1

+s

]︂
≤ C

e−λ0s

nt
(n)
1

µ
(n)
⊗,i
(︁
t
(n)

t
(n)
1

+ s
)︁θ(i)

.

Deleterious case: We now address the case λi < λ0 by applying the same strategy. We obtain∫︂ t
(n)
t2

+s

t
(n)

t
(n)
1

+s

e−2λ
(n)
i uE

[︂
Z

(n)
i (u)

]︂
du ≤ Cµ

(n)
⊗,i

∫︂ t
(n)
t2

+s

t
(n)

t
(n)
1

+s

uθ(i)e(λ0−2λi)udu

≤ Cµ
(n)
⊗,i

(︂
t
(n)
t2 + s

)︂θ(i) [︂
1{λ0>2λi}e

(λ0−2λi)
(︂
t
(n)
t2

+s
)︂

+ 1{λ0=2λi}
(︁
t
(n)
t2 + s

)︁
+ 1{λi<λ0<2λi}e

−(2λi−λ0)
(︁
t
(n)

t
(n)
1

+s
)︁]︂
.

Recalling that θ(i− 1) = θ(i), we find

∫︂ t
(n)
t2

+s

t
(n)

t
(n)
1

+s

µ
(n)
i−1e

−2λ(n)
i uE

[︂
Z

(n)
i−1(u)

]︂
du ≤ Cµ

(n)
⊗,i
(︁
t
(n)
t2 + s

)︁θ(i)[︂
1{λ0>2λi}e

(λ0−2λi)(t
(n)
t2

+s)

+ 1{λ0=2λi}
(︁
t
(n)
t2 + s

)︁
+ 1{λi<λ0<2λi}e

−(2λi−λ0)
(︁
t
(n)

t
(n)
1

+s
)︁]︂
.
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Finally, we have

E
[︂⟨︁
M

(n)
i

⟩︁
t
(n)
t2

+s
−
⟨︁
M

(n)
i

⟩︁
t
(n)

t
(n)
1

+s

]︂
≤ Cµ

(n)
⊗,i
(︁
t
(n)
t2 + s

)︁θ(i) · [︂1{λ0>2λi}e
(λ0−2λi)(t

(n)
t2

+s)

+ 1{λ0=2λi}
(︁
t
(n)
t2 + s

)︁
+ 1{λi<λ0<2λi}e

−(2λi−λ0)
(︁
t
(n)

t
(n)
1

+s
)︁]︂
.
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Chapter 5

Selective Cancer Evolution

This chapter, a collaborative work in progress with Hélène Leman, aims to generalise Theorem
4.2.7 to the case where no conditions are imposed on the growth rate function. This generalization
is particularly relevant in the context of understanding cancer evolution with selective mutations,
where refined results are sought. Chapter 4 focused solely (when considering selective cancer evolu-
tion) on the stochastic exponents of the mutant subpopulations, whereas in the present chapter, we
delve into capturing the first-order asymptotics of their sizes. This endeavor enables the character-
ization of evolutionary pathways and provides a deeper understanding of the asymptotic stochastic
contributions, as already mentioned in Chapter 4.

Within this chapter, we present results on the first-order asymptotics for the case of a finite
mono-directional graph, where the last mutation corresponds to the first selective one. We compare
the first-order asymptotics of the first-selective mutant subpopulation size with the ones obtain in
Chapter 4 for neutral and deleterious mutations. More specifically on three different points: the
powers of n and of log(n) asymptotically captured, as well as the stochasticity of the limit. We also
emphasize on the difference of the proof method developed specifically to deal with such selective
mutation. Additionally, we discuss the increasing difficulty of generalizing these results to arbitrary
monodirectional graphs. A new proof method have to be developed to tackle such difficulty for first
obtaining results on any monodirectional graph and then deduce results on any general finite graph
using an effective evolutionary pathways approach, as for neutral and deleterious cancer evolution,
see Chapter 4, Section 4.4.

5.1 Introduction and microscopic model

In Chapter 4 we studied a toy model of carcinogenesis, primarily focusing on neutral (and delete-
rious) cancer evolution, where results are stated in Theorem 4.2.7. These results concerning the
first-order asymptotics of mutant subpopulation sizes compared to those in current literature re-
garding stochastic exponents offer new insights into the effective evolutionary pathways within the
trait space, as well as into the stochasticity of genetic composition when observing a tumor, but
limited to neutral and deleterious mutations only.

In Theorem 4.2.9, selective mutations are considered, enabling discrimination among evolution-
ary pathways, some of which may contribute asymptotically negligibly. However, this theorem
does not precisely characterise the non-negligible pathways, nor does it provide information on the
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stochasticity of the genetic composition. The scope of this chapter is to extend the results of The-
orem 4.2.7 to a more general cancer evolution framework that allows for selective mutant traits. A
novel approach is introduced making progress in obtaining first-order asymptotic results on mutant
subpopulation sizes when selective mutations are considered in the trait space. Up to this point,
we have achieved the case of a finite labelled mono-directional graph, where there is a unique se-
lective mutation corresponding to the last one. The result, stated in Theorem 5.2.3, reveals several
biologically and mathematically intriguing results, which contrast with our previous findings in
the context where only neutral and deleterious mutations are considered. In essence, the current
approach developed in this chapter successfully addresses scenarios involving only the first selective
mutation, but proves inadequate for handling subsequent mutations after the initial selective one.
This fact is primarily due to an infinite expectation of the limiting process. Additional work to get
the first order asymptotics of the mutant subpopulation sizes for any general finite graph allowing
for selective mutations remains to be done in the future.

The model corresponds to the one described in Chapter 4, Section 4.1, using the notations
(V,E, L) for the finite directed labelled graph structure representing the evolutionary trait space
and αv, βv, λv for the birth, death, and growth rates of a trait v ∈ V respectively. We keep the
same initial condition Zv(0) = 1{v=0} for all v ∈ V almost surely. We are considering the following
specific case of a finite labelled mono-directional graph with k + 1 vertices, for some k ≥ 1. More
precisely, we have

(V,E,L) =
(︂{︁

0, · · · , k
}︁
,
{︁
(i, i+ 1), i ∈ {0, · · · , k − 1}

}︁
,
{︁
ℓ(i), i ∈ {0, · · · , k − 1}

}︁)︂
. (5.1.1)

We use the simplified notations µ
(n)
i := µ(n)(i, i+1) giving the following power law mutation rates

regime

∀0 ≤ i ≤ k − 1, nℓ(i)µ
(n)
i −→

n→∞
µi <∞.

Assume that the first selective mutant trait is the last one, which mathematically means

∀0 ≤ i ≤ k − 1, λi ≤ λ0 and λk > λ0. (5.1.2)

With this setting three different scenari can happen during a division event of a cell of trait i ∈
{0, · · · , k − 1}:

• with probability
(︂
1− µ

(n)
i

)︂2
each daughter cell keeps the trait i of its mother cell,

• with probability 2µ
(n)
i

(︂
1− µ

(n)
i

)︂
exactly one of the daughter cell mutates to the next trait

i+ 1 when the second daughter cell keeps the trait i of its mother cell,

• with probability
(︂
µ
(n)
i

)︂2
both of the daughter cells mutate to the next trait i+ 1.

For i = k, during a division event of a cell of trait k, both daughter cells keeps the trait k.
A graphical representation of the model can be found in Figure 5.1. Instead of employing the
deterministic log(n)/λ0-accelerated time scale of (4.1.4), which is appropriate for neutral (and
deleterious) cancer evolution since all subpopulations grow exponentially fast at rate λ0 according
to Theorem 4.2.7, we opt for the log(n)-accelerated time scale t ↦→ t log(n) in this context. To be
fully consistent, we define again, for this new time scale, t(i) and θ(i) for all i ∈ V .
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Figure 5.1: Dynamical representation of the finite mono-directional graph

Definition 5.1.1. Define for all 1 ≤ i ≤ k

t(i) :=
1

λ0

i−1∑︂
j=0

ℓ(j),

θ(i) := |{1 ≤ j ≤ i : λj = λ0}| ,

as respectively the sum of the labels on the edges from trait 0 to trait i renormalized by λ0 and the
number of neutral mutations on the path from 0 to i.

We rewrite in the following proposition the asymptotic result from Chapter 4, Theorem 4.2.7
in the log(n)-accelerated time scale instead of in the log(n)/λ0-accelerated time scale, for the
subpopulations of traits i ∈ {1, · · · , k − 1}.

Proposition 5.1.2. Let (V,E, L) be a finite directed labelled mono-directional graph with k + 1
vertices, for some k ≥ 1 as defined in (5.1.1). Assume that the first selective mutation on the graph
is the last one as in (5.1.2). Let M > 0 and 0 < T1 < T2. Using the mathematical definition of
the model given in Section 5.3, see (5.3.2), (5.3.3) and (5.3.4), there exists a random variable W
properly defined in (5.3.10) such that for all i ∈ {1, · · · , k − 1}(︄

(t, s) ↦→ Z
(n)
i ((t(i) + t) log(n) + s)

ntλ0 logθ(i)(n)eλ0s

)︄
−→
n→∞

W ˜︁w(0,··· ,i)(t(i) + t),

where ˜︁w(0,··· ,i)(t) := w(0,··· ,i)(tλ0) in probability in L∞([T1, T2]× [−M,M ]). For any other mathe-
matical description, the convergence is at least in distribution in D([T1, T2]× [−M,M ]).

Remark 5.1.3. For the trait k − 1 only, the mathematical definition of Z
(n)
k−1 is slightly different

in this chapter compared to the one in Chapter 4, Section 4.3, due to different techniques used
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in the proof of the first-order asymptotic of trait k (see Subsection 5.3 for more details on the
construction). The difference does not hamper however from getting the same first-order asymptotics

result for the subpopulation size Z
(n)
k−1. Indeed, only the computation of the quadratic variation of the

martingale M
(n)
k−1, defined in Lemma 4.3.5, is modified, but this subpopulation is fully constructed

using independent Poison Point Measures, allowing to perfectly adapt the computation done in the
proof of this lemma to get the same result at the end.

5.2 Main results and biological interpretation

In this Section, the result regarding the first-order asymptotics of the first selective mutant sub-
population size is stated. Moreover, some mathematical and biological remarks about this result,
as well as a sketch of the proof, based on heuristics, are provided.

When considering a selective mutation, the first intuitive idea that arises from the term ”selec-
tive” is that only the lineages of the first generated mutant cells contribute asymptotically. Indeed,
any time delay for a lineage results in an exponential growth loss for its size, providing some qual-
itative weight to this intuition. However, the challenge lies precisely in quantifying this intuition.
Specifically, it is necessary to determine how each lineage of the generated mutant cells contributes
asymptotically to the subpopulation size. This raises natural questions for understanding, such as
whether only a finite number of surviving lineages contribute asymptotically, and if so, how many,
as well as whether it is the first lineage to reach a certain level that contributes, among potentially
many other questions. Answering them is not possible solely with results on the stochastic expo-
nents. However, Theorem 5.2.3 quantitatively answers these natural questions on the contribution
of all the lineages on the first-order asymptotics of the first selective mutant subpopulation size.

For doing that, we are going to separate the process Z
(n)
k into 3 different processes having different

mathematical analysis, asymptotic contribution and biological meaning:

(i) The first one, denoted by Z
(n)
k,1 , corresponds to the process composed of the mutant cells and

their lineages generated up to time

t
(n)
− (k) := t(k) log(n)− θ(k − 1)

λ0
log(log(n)).

This time corresponds exactly to the first deterministic time at which it becomes likely to
observe mutational events from trait k− 1 to trait k. Indeed the typical order of the subpop-

ulation Z
(n)
k−1 at time (t(k − 1) + t) log(n), that is ntλ0 logθ(k−1)(n) according to Proposition

5.1.2, reaches nℓ(k−1), the typical size allowing mutations, at time t
(n)
− (k). We will show that

well renormalized, the subpopulation Z
(n)
k,1 at time (t(k) + t) log(n) asymptotically follows a

compound Luria-Delbrück distribution, in the vein of the works of Cheek and Antal [8, 10].

(ii) The second one, denoted by Z
(n)
k,2 , corresponds to the process composed of the mutant cells

and their lineages generated between times
[︂
t
(n)
− (k), t(k) log(n)

]︂
, that is during a time scale

of order log(log(n)). We will show that well renormalized, the subpopulation Z
(n)
k,2 at time

(t(k) + t) log(n) asymptotically follows the large time distribution of an approximate model
with less stochasticity, that is independent from n. This approach is inspired by the works of
Durrett and Moseley [22], Nicholson and Antal [23] and Nicholson, Cheek and Antal [24].
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(iii) The last one, denoted by Z
(n)
k,3 , corresponds to the process composed of the mutant cells

and their lineages generated after time t(k) log(n). We will show, using a similar martingale
approach as the one of Chapter 4, that asymptotically this process becomes negligible with

respect to the total mutant population Z
(n)
k .

A graphical representation of these three processes is given in Figure 5.2.

Figure 5.2: Graphical representation of the 3 subprocesses composing Z
(n)
k

As aforementioned, for stating the first-order asymptotics of the mutant subpopulation Z
(n)
k,1 ,

we introduce a proper definition of the Luria-Delbrück distribution as well as the compound Luria-
Delbrück distribution.

Definition 5.2.1 (Luria-Delbrück distribution). Let (ξi)i∈N be an i.i.d. sequence of exponentially
distributed random variables with parameter λ. Let (Yi)i∈N be an i.i.d. sequence of birth and
death branching processes with rates α and β respectively, satisfying almost surely the initial con-
dition Yi(0) = 1. Let K be a Poisson random variable with parameter ω. The random variables
and processes (ξi)i∈N , (Yi)i∈N ,K are mutually independent. The Luria-Delbrück distribution with
parameters (λ, α, β, ω), that may be chosen randomly, is defined as the distribution of

B =

K∑︂
i=1

Yi(ξi).

The compound Luria-Delbrück distribution with parameters (λ, α, β, ω) and associated with the dis-
tribution U is defined as the distribution of

Z =

B∑︂
i=1

Ui,



240 CHAPTER 5. SELECTIVE CANCER EVOLUTION

with (Ui)i∈N a sequence of i.i.d. random variables following U that is independent from B.

In order to deal with the mathematical analysis of the process Z
(n)
k,2 , we introduce the following

approximate model with less stochasticity for which asymptotic result concerning the large time
limit of the population size is easily derived.

Definition 5.2.2 (Approximate Model). The approximate model with parameters (λ, µ, α, β) is
defined as the distribution of

Z(t) =

K(t)∑︂
i=1

Yi(t− Ti),

where K(t) = N
(︂∫︁ t

0
µeλsds

)︂
, with N a Poisson process with intensity 1, independent from the i.i.d.

sequence (Yi)i∈N of birth and death branching processes with rates α and β, and Ti = inf{t ≥ 0 :

K(t) ≥ i}. Notice that for all t > 0 and for all i ≤ K(t), we have t−Ti ≥ 0. Define ˜︁λ := α−β > λ,
then we have

e−
˜︁λtZ(t) −→

t→∞
Z∞, (5.2.1)

almost surely where Z∞ ∈ L1 satisfies E [Z∞] = µ/
(︂˜︁λ− λ

)︂
and its Laplace transform follows the

equation

L(ξ, t) := E
[︂
e−ξe

−˜︁λtZ(t)
]︂
−→
t→∞

E

[︄
exp

(︄
−ξ µ˜︁λΦ

(︄
−ξ α˜︁λ , 1, ˜︁λ− λ˜︁λ

)︄)︄]︄
, (5.2.2)

where Φ is the Lerch transcendent defined as ∀ ℜ(s) > 0, ℜ(a) > 0

Φ(z, s, a) =
1

Γ(s)

∫︂ ∞
0

ts−1e−at

1− ze−t
dt.

Equation (5.2.1) is obtained in [24], Proposition 2 for the exact same context, but similar
reasoning can be found in [22, 8]. For the sake of completeness, the proof of Equation (5.2.2) is
given in Appendix, inspired by the proof of [24], Corollary 2. Now we have all the material to state
the result of the first order asymptotics for the first selective mutant subpopulation size.

Theorem 5.2.3 (First-order asymptotics for the first selective mutant subpopulation size). Let
(V,E, L) be a finite labelled mono-directional graph with k + 1 vertices, for some k ≥ 1, as defined
in (5.1.1). Assume that the first selective mutation on the graph is the last one as in (5.1.2). Let
0 < T1 < T2. Using the mathematical definition of the model given in Section 5.3, see (5.3.2),
(5.3.3), (5.3.4), (5.3.5), (5.3.6), (5.3.7), (5.3.8), and (5.3.9), there exists two random variables
Z∞k,1 and Z∞k,2 properly defined in Propositions 5.4.3 and 5.4.4 respectively, that are independent
conditioning on W (properly defined in (5.3.10)) such that(︄

Z
(n)
k ((t(k) + t) log(n))

ntλk logθ(k−1)
λk
λ0 (n)

)︄
t∈[T1,T2]

−→
n→∞

Z∞k,1 + Z∞k,2,
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in probability in L∞([T1, T2]). The random variable Z∞k,1 follows a compound Luria-Delbrück dis-
tribution with parameters (︃

λ0, αk, βk,
2αk−1µk−1

λ0
wk−1W

)︃
where wk−1 := ˜︁w(0,··· ,k−1)(t(k)), and associated with Uk, the distribution of the almost sure large
limit of the natural martingale associated to a birth and death branching process with rates αk and
βk respectively. More precisely,

Uk := Ber

(︃
λk
αk

)︃
⊗ Exp

(︃
λk
αk

)︃
.

The random variable Z∞k,2 follows the distribution of the asymptotic large time limit of the population
defined by the approximate model from Definition 5.2.2 with parameters

(λ0, 2αk−1µk−1wk−1W,αk, βk) .

For any other mathematical description, the convergence is at least in distribution in D([T1, T2]).

The proof of this theorem involves employing distinct proof techniques for the three subpop-

ulations Z
(n)
k,1 , Z

(n)
k,2 and Z

(n)
k,3 that are summed up here, alongside some heuristics and biological

interpretations:

• Heuristics concerning the convergence of Z
(n)
k,1 : The random variable Z∞k,1 is the asymp-

totic limit of the well-renormalized subpopulation Z
(n)
k,1 composed of the mutant cell lin-

eages issued from mutational events before time t
(n)
− (k). The analysis is made in two steps.

First we adapt a proof from [8] or [10] to demonstrate that at time t
(n)
− (k), the number

of mutant cells of trait k asymptotically follows a Luria-Delbrück distribution with pa-

rameters
(︂
λ0, αk, βk,

2αk−1µk−1

λ0
wk−1W

)︂
, which has a infinite expectation. Such proof uses

the Poissonian structure of the process of mutation from trait k − 1 to trait k as well as
that conditioning on the number of mutant cells generating due to mutational events up

to time t
(n)
− (k), the vector of the remaining time for each of the mutant clone to grow up

to time t
(n)
− (k) is asymptotically the order statistic of a vector of i.i.d. exponential ran-

dom variables with parameter λ0. Subsequently, we establish control over the size of all

mutant cell lineages present at time t
(n)
− (k) by time (t(k) + t) log(n) using a martingale ap-

proach. These lineages experience exponential growth at rate λk over a duration of time

(t(k) + t) log(n) − t
(n)
− (k) = t log(n) + θ(k−1)

λ0
log(log(n)), resulting in a typical size of order

O
(︂
ntλk logθ(k−1)

λk
λ0 (n)

)︂
. This subpopulation corresponds to the lineages of the possible mu-

tant cells generated due to random mutational events appeared before the deterministic time

t
(n)
− (k). Due to the selectiveness of the mutation, their lineages have at time t

(n)
− (k) asymp-

totically infinite expectancies. Moreover, the fact that they asymptotically contribute to the
size order of trait k agrees with the natural intuition behind considering a selective mutation.

• Heuristics concerning the convergence of Z
(n)
k,2 : Dealing with the appropriate normal-

ization of Z
(n)
k,2 is more complex. For the mutant cells generated between times t

(n)
− (k) and

t(k) log(n), and their lineages, we approximate this subpopulation with the simpler model
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of Definition 5.2.2 with the adequate parameters that are (λ0, 2αk−1µk−1wk−1W,αk, βk), to
reduce stochasticity and facilitate obtaining its asymptotic limit at time t(k) log(n). We rig-
orously establish by a martingale argument using an L1 convergence that at the first-order,
this subpopulation behaves asymptotically akin to the considered approximate model up to
time t(k) log(n). In particular, such approximate model grows exponentially fast at rate λk
during a time t(k) log(n) − t

(n)
− (k) = θ(k−1)

λ0
log(log(n)), implying that at time t(k) log(n)

the subpopulation Z
(n)
k,2 is of order O

(︂
logθ(k−1)

λk
λ0 (n)

)︂
. Then we obtain its asymptotic limit

at time (t(k) + t) log(n) using a law of large numbers argument. More precisely, after time
t(k) log(n) there are no longer mutational event from trait k − 1 to trait k that are counted

in this subpopulation anymore. Because at this time we have an order of O
(︂
logθ(k−1)

λk
λ0 (n)

)︂
mutants cells, and that their lineages grow exponentially fast at rate λk during a time t log(n)

it resulted in a subpopulation of order O
(︂
logθ(k−1)

λk
λ0 (n)ntλk

)︂
at time (t(k) + t) log(n). This

subpopulation encapsulates the idea that an asymptotically infinite number of lineages (but
not all of them) significantly contribute to the size of the selective mutant trait subpopulation,
despite being characterised by a finite mean random variable. However, these infinite number
of lineages are all produced on the slower log(log(n))−accelerated time scale, meaning that
they are asymptotically all condensed at the same time point for the log(n)−accelerated time
scale. Moreover, understanding the equation governing the Laplace transform of this limiting
random variable, see Definition 5.2.2, provides valuable insights into the actual asymptotic
contributions of these lineages, depending on their generation timing.

• Heuristics concerning the convergence of Z
(n)
k,3 : Dealing with Z

(n)
k,3 , the subpopulation

containing solely mutant cells generated after time t(k) log(n) along with their lineages, is
done using a similar martingale method as the one used in Chapter 4, to get that it scales
as ntλk logθ(k−1)(n). Hence, asymptotically it becomes negligible and vanishes in the limit.
Heuristically, the selectiveness of the trait implies that only the one generated around time
t(k) log(n) are asymptotically contributing at time (t(k) + t) log(n). At time t(k) log(n), the
number of mutant cells of trait k generated from mutational events from trait k−1 is of order

O
(︂
logθ(k−1)(n)

)︂
. Then their lineages are growing exponentially fast at rate λk during a time

t log(n), giving a size of order O
(︂
logθ(k−1)(n)ntλk

)︂
at time (t(k) + t) log(n). Biologically

meaning, after time t(k) log(n) the generated selective mutant cells and their lineages have
too much time delay compared to the first generated mutant cells such that their contribution
appears negligible.

Before going into the mathematical definition of the model used to prove Theorem 5.2.3, we are
making some interesting remarks on such result.

Remark 5.2.4. • First-order asymptotics: In Chapter 4, Theorem 4.2.9, one obtains that
the stochastic exponent associated to the mutant subpopulation of trait k asymptotically con-
verges, conditioning on {W > 0}, to tλk, which corresponds to the power of n captured in
Theorem 5.2.3. Notably, such result means that in the case of the selective mutant trait,
growth stems not from the mutational process but rather from the inherent expansion of se-
lective mutant cell lineages. This stands in contrast to deleterious mutations, where growth is
actually driven by the mutational process, and neutral mutations, where growth represents a
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balance between mutational process and inherent lineage expansions. Moreover the power of
log(n) is also captured by this theorem, which is a generalization of Theorem 4.2.7 allowing
for a first selective mutation. An interesting pattern for such power occurs. For deleterious
and neutral mutations, we previously obtained that a neutral one increases such power by 1
where a deleterious one has no effect. For a selective mutation, it is a bit more intricate:
the power obtained for the previous trait is accelerated by the ratio between the growth rate
of the selective trait and the actual one of the previous trait (that is the one of the wild-type
subpopulation). In particular if there are only deleterious mutations before the first selective
one, then the power of log(n) stays equal to 0 for the first selective trait.

• Time dependence: An interesting characteristic of the limit for the selective mutant trait,
that contrasts with neutral and deleterious mutations, is its independence from the time pa-
rameter t. In Theorem 4.2.7 we have shown that alongside a mono-directional graph composed
of neutral or deleterious mutations only, the asymptotic limit of a trait depends on the time
parameter t as a polynomial function of degree the number of neutral mutations up to this
considered trait. With Theorem 5.2.3 we show that this time dependence is lost when the first
selective mutant trait is encountered in the mutational pathway. In a certain sense, one can
say that it resets the time dependence. Observing such differences depending on the type of the
mutation seems more than intuitively natural. Indeed, with a neutral mutation, the balance be-
tween the mutational process and the inherent growth makes clear that the lineages have equal
contributions on the size order, generating a dependence on the time parameter via an extra
integral operator from the time dependence of the previous trait. For a deleterious mutation,
driven by the mutational process, the time dependence comes from taking into account only
clones generated at the considered time, meaning that the dependence is identically forwarded
from the one of the previous trait. For a selective mutation, the inherent growth prevails the
mutational process, implying that only the lineages generated around the typical time to ob-
serve such mutant trait are asymptotically contributing, and so all the time dependency from
the previous trait is completely lost.

• Stochasticity of the limit: In the case of neutral (and deleterious) cancer evolution, we
obtained in Theorem 4.2.7 that the stochasticity captured by the first order asymptotics of
the mutant subpopulation sizes is fully given by the random variable W , which quantifies the
large time stochasticity associated to the primary subpopulation. In Remark 4.2.8 point 3., we
argued that such result could not be obtained for a selective mutation, explaining the failure of
the martingale approach. In Theorem 5.2.3 we show that the latter conjecture is true. In the
limiting random variables, Z∞k,1 and Z∞k,2, the stochasticity of W is present, but another layer
of stochasticity is also given due to the growth of the lineages of the selective mutant cells.
The independence, when conditioning on W , of these two limiting random variables comes
from the fact that they correspond to the asymptotic limits of two subpopulations of mutant
cell lineages that are independent due to the mutational process which is Poissonian.

• Dealing with the next mutant trait: Asymptotically we obtain that the limiting random
variable Z∞k,1 has an infinite expectation, coming from the Luria-Delbrück part of the com-
pound random variable, a consequence of the selectiveness of the considered mutation. Such
specificity entails mathematical difficulties, explaining why the martingale approach developed
in Chapter 4 fails. Indeed, taking an expectation balances the probability of an event with the
number of cells seen if the event occurs. Consequently, unlikely events, such as rapid muta-
tions to the selective trait, can lead to extremely large population sizes far exceeding typical
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asymptotic sizes implying the expectation order is given by these unlikely event. Moreover, it
hampers from dealing with the next mutant trait. In particular the cells of trait k+1, and their

lineages, produced by Z
(n)
k,1 are, for now, untractable. More specifically, dealing with the latter

subpopulation of trait k + 1 using the same approach as for capturing the asymptotic limit of

trait k, the martingale approach developed to show that Z
(n)
k+1,2 and the adapted approximate

model are sufficiently close to transfer the limiting behaviour from the approximate model to

Z
(n)
k+1,2, fails. Indeed, a L

1 approach is needed for this step. Instead of approximating a mutant
trait by its asymptotic limit to tackle the next mutant trait, a potential solution to deal with
such difficulty is to directly deal with all the mutant subpopulations together without using
the approximations given by the limits at each step. This procedure would normally allow for
overstepping the infinite expectation of Z∞k,1.

• Two steps limit: Instead of being interested in the double limit given by the large population
and power law mutation rates regime, another interesting approach is to consider a two steps
asymptotics where first the large time limit is obtained with fixed mutation rates and then
the limit when these rates tend to 0 is obtained. In [24], Nicholson, Cheek and Antal are
studying this two steps limit. An interesting fact is that the results are different, meaning that
there is no equivalence between performing the double limit directly or in two steps. But some
similarities are actually obtained for the structure of the asymptotic limits. Notably, both
asymptotic results can be decomposed into the product of a time-independent random variable
(which are different) and a simple time-dependent deterministic function controlled by the
growth rate of the selective mutant trait (with the same deterministic function but taken at
different times). More precisely, in their case, the stochasticity of the asymptotic limit that
is captured (see [24], Theorem 1) is a Mittag-Leffler distribution with tail parameter the ratio
between the growth rate of the wild-type subpopulation and the one of the first selective mutant
trait, and a scale parameter satisfying a specific equation depending on the birth, growth,
and mutation rates of the preceeding mutant traits. Such asymptotic random variable is not
captured by Theorem 5.2.3, as mentioned above. Moreover, the deterministic function is in
both case the exponential function whose growth rate is the one of the selective mutant trait,
but taken at different times. In their case, when looking at the limit when t→ ∞, the time that
is taken for the deterministic function is actually t, where in our case, at time (t(k)+t) log(n)
it is t log(n) that is taken.

5.3 Mathematical definition of the model

In this section we mathematically construct the model in the case of the finite labelled mono-

directional graph of (5.1.1). The sequence

(︃(︂
Z

(n)
i

)︂
i∈{0,··· ,k}

)︃
n∈N

is mathematically constructed

using independent Poisson Point Measures (PPMs) and birth and death branching processes. Such
construction differs from the one given in Chapter 4, Subsection 4.3, but remains obviously equal
in law. More specifically, it depends on whether θ(k − 1) = 0 or θ(k − 1) ≥ 1, biologically meaning
whether there are neutral mutation on the trait space before the first selective one or not. We start
by the more complex, but more interesting case that is θ(k − 1) ≥ 1.
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5.3.1 Case with at least one neutral mutation

Assume in this subsection that θ(k − 1) ≥ 1. In particular this case implies that k ≥ 2, because
there is at least one neutral mutation before encountering the first selective one. Consequently we

have that t
(n)
− (n) < t(k) log(n). Hence, introduce the difference between these two times as

ℓ
(n)
− (k) := t(k) log(n)− t

(n)
− (k) =

θ(k − 1)

λ0
log(log(n)) > 0. (5.3.1)

The k − 2 first subpopulations
(︂
Z

(n)
i

)︂
i∈{0,··· ,k−2}

are constructed exactly as in Chapter 4, Section

4.3. More precisely, let

Qb0(ds, dθ), Q
d
0(ds, dθ),

(Qi(ds, dθ))i∈{1,··· ,k−2} , (Ni(ds, dθ))i∈{0,··· ,k−2} , and (Qmi (ds, dθ))i∈{0,··· ,k−2} ,

be independent PPMs with intensity dsdθ. The subpopulation of wild-type cells is

Z
(n)
0 (t) := 1 +

∫︂ t

0

∫︂
R+

1{︂
θ≤α(n)

0 Z
(n)
0 (s−)

}︂Qb0(ds, dθ)−
∫︂ t

0

∫︂
R+

1{︂
θ≤β0Z

(n)
0 (s−)

}︂Qd0(ds, dθ)−H
(n)
0 (t),

(5.3.2)

and for all i ∈ {1, · · · , k − 2}

Z
(n)
i (t) :=

∫︂ t

0

∫︂
R+

(︂
1{︂

θ≤α(n)
i Z

(n)
i (s−)

}︂ − 1{︂
α

(n)
i Z

(n)
i (s−)≤θ≤

(︂
α

(n)
i +βi

)︂
Z

(n)
i (s−)

}︂)︂Qi(ds, dθ)(5.3.3)
+K

(n)
i−1(t) + 2H

(n)
i−1(t)−H

(n)
i (t),

where for all i ∈ {0, · · · , k − 2}

K
(n)
i (t) :=

∫︂ t

0

∫︂
R+

1{︂
θ≤2αiµ

(n)
i

(︂
1−µ(n)

i

)︂
Z

(n)
i (s−)

}︂Ni(ds, dθ), (5.3.4)

H
(n)
i (t) :=

∫︂ t

0

∫︂
R+

1{︃
θ≤αi

(︂
µ
(n)
i

)︂2
Z

(n)
i (s−)

}︃Qmi (ds, dθ).

The subpopulation Z
(n)
k−1 is also constructed using PPMs, but the process denoted by H

(n)
k−1 counting

the number of cell divisions of trait k − 1 where both daughter cells are mutating to trait k is
constructed in a more complex way. More precisely, we are separating this process into a sum of
three different processes, where each of them are contributing for a specific time interval: the first

one H
(n)
k−1,1 up to time t

(n)
− (k), the second one H

(n)
k−1,2 between t

(n)
− (k) and t(k) log(n), and the third

one H
(n)
k−1,3 after time t(k) log(n). Then, let Qk−1(ds, dθ),

(︂
Qmk−1,i(ds, dθ)

)︂
i∈{1,2,3}

be independent

PPMs with intensity dsdθ, that are also independent from
(︂
Z

(n)
i

)︂
i∈{0,··· ,k−2}

. The subpopulation
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Z
(n)
k−1 is

Z
(n)
k−1(t) := K

(n)
k−2(t) + 2H

(n)
k−2(t)−H

(n)
k−1(t) (5.3.5)

+

∫︂ t

0

∫︂
R+

(︂
1{︂

θ≤α(n)
k−1Z

(n)
k−1(s

−)
}︂ − 1{︂

α
(n)
k−1Z

(n)
k−1(s

−)≤θ≤
(︂
α

(n)
k−1+βk−1

)︂
Z

(n)
k−1(s

−)
}︂)︂Qk−1(ds, dθ)

H
(n)
k−1(t) := H

(n)
k−1,1 (t) +H

(n)
k−1,2

(︂(︂
t− t

(n)
− (k)

)︂
∨ 0
)︂
+H

(n)
k−1,3 ((t− t(k) log(n)) ∨ 0) ,

H
(n)
k−1,1(t) :=

∫︂ t∧t(n)
− (k)

0

∫︂
R+

1{︃
θ≤αk−1

(︂
µ
(n)
k−1

)︂2
Z

(n)
k−1(s

−)

}︃Qmk−1,1(ds, dθ),

H
(n)
k−1,2(t) :=

∫︂ t∧ℓ(n)
− (k)

0

∫︂
R+

1{︃
θ≤αk−1

(︂
µ
(n)
k−1

)︂2
Z

(n)
k−1

(︂
t
(n)
− (k)+s

)︂}︃Qmk−1,2(ds, dθ),

H
(n)
k−1,3(t) :=

∫︂ t

0

∫︂
R+

1{︃
θ≤αk−1

(︂
µ
(n)
k−1

)︂2
Z

(n)
k−1(t(k) log(n)+s)

}︃Qmk−1,3(ds, dθ).

The construction of the subpopulation Z
(n)
k is the most involved of all. In order to use different proof

techniques, we are using PPMs, birth and death branching processes and a Poisson process. In a

same way as for the construction of H
(n)
k−1, the process K

(n)
k−1, counting the number of cell divisions of

trait k−1 where exactly one of the daughter cells mutates to trait k, is constructed as a sum of three
processes, each of them contributing specifically for one of the aforementioned time interval. Then,
let Nk−1,1 be a Poisson process with intensity 1, (Nk−1,i(ds, dθ))i∈{2,3}, Q

b
k,2(ds, dθ), Q

d
k,2(ds, dθ),

and Qk,3(ds, dθ) be PPMs with intensity dsdθ and (Ui, Yi, X1,i, X2,i, Vi)i∈N be birth-death branch-
ing processes with rates αk and βk all starting with 1 individual at time t = 0 almost surely. All

such processes are independent from each others and independent from
(︂
Z

(n)
i

)︂
i∈{0,··· ,k−1}

. The

subpopulation Z
(n)
k and the process K

(n)
k−1 are constructed as

Z
(n)
k (t) := Z

(n)
k,1 (t) + Z

(n)
k,2

(︂(︂
t− t

(n)
− (k)

)︂
∨ 0
)︂
+ Z

(n)
k,3 ((t− t(k) log(n)) ∨ 0) , (5.3.6)

K
(n)
k−1(t) := K

(n)
k−1,1(t) +K

(n)
k−1,2

(︂(︂
t− t

(n)
− (k)

)︂
∨ 0
)︂
+K

(n)
k−1,3 ((t− t(k) log(n)) ∨ 0) .

The subpopulation Z
(n)
k,1 satisfies

Z
(n)
k,1 (t) :=

B
(n)
k−1,1(t)∑︂
i=1

Ui

(︂(︂
t− t

(n)
− (k)

)︂
∨ 0
)︂
, (5.3.7)

B
(n)
k−1(t) :=

K
(n)
k−1,1(t)∑︂
i=1

Yi

(︂(︂
t− T

(n)
i

)︂
∧
(︂
t
(n)
− (k)− T

(n)
i

)︂)︂
,

+

H
(n)
k−1,1(t)∑︂
i=1

Xi,1

(︂(︂
t− S

(n)
i

)︂
∧
(︂
t
(n)
− (k)− S

(n)
i

)︂)︂
+Xi,2

(︂(︂
t− S

(n)
i

)︂
∧
(︂
t
(n)
− (k)− S

(n)
i

)︂)︂
,
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K
(n)
k−1,1(t) := Nk−1,1

(︄∫︂ t∧t(n)
− (k)

0

2αk−1µ
(n)
k−1

(︂
1− µ

(n)
k−1

)︂
Z

(n)
k−1(s)ds

)︄
,

T
(n)
i := inf

{︂
t ≥ 0 : K

(n)
k−1,1 ≥ i

}︂
,

S
(n)
i := inf

{︂
t ≥ 0 : H

(n)
k−1,1 ≥ i

}︂
.

The subpopulation Z
(n)
k,2 is defined as

Z
(n)
k,2 (t) :=

B
(n)
k−1,2(t)∑︂
i=1

Vi

(︂(︂
t− ℓ

(n)
− (k)

)︂
∨ 0
)︂
, (5.3.8)

B
(n)
k−1,2(t) := K

(n)
k−1,2(t) + 2H

(n)
k−1,2(t) +

∫︂ t∧ℓ(n)
− (k)

0

∫︂
R+

1{︂
θ≤αkZ

(n)
k,2 (s)

}︂Qbk,2(ds, dθ)
−
∫︂ t∧ℓ(n)

− (k)

0

∫︂
R+

1{︂
θ≤βkZ

(n)
k,2 (s)

}︂Qdk,2(ds, dθ),
K

(n)
k−1,2(t) :=

∫︂ t∧ℓ(n)
− (k)

0

∫︂
R+

1{︂
θ≤2αk−1µ

(n)
k−1

(︂
1−µ(n)

k−1

)︂
Z

(n)
k−1

(︂
t
(n)
− (k)+s

)︂}︂Nk−1,2(ds, dθ).

And finally the subpopulation Z
(n)
k,3 is constructed as

Z
(n)
k,3 (t) := K

(n)
k−1,3(t) + 2H

(n)
k−1,3(t) (5.3.9)

+

∫︂ t

0

∫︂
R+

1{︂
θ≤αkZ

(n)
k,3 (s)

}︂ − 1{︂
αkZ

(n)
k,3 (s)≤θ≤(αk+βk)Z

(n)
k,3 (s)

}︂Qk,3(ds, dθ),
K

(n)
k−1,3(t) :=

∫︂ t

0

∫︂
R+

1{︂
θ≤2αk−1µ

(n)
k−1

(︂
1−µ(n)

k−1

)︂
Z

(n)
k−1(t(k) log(n)+s)

}︂Nk−1,3(ds, dθ).

5.3.2 Case without any neutral mutation

Assume in this subsection that θ(k− 1) = 0. For the simplicity, we give a construction when k ≥ 2,
although the case k = 1 is included in this specific case θ(k − 1) = 0, and can be mathematically

constructed in a similar way. The specificity of this case is that t
(n)
− (k) = t(k) log(n). Let

Qb0(ds, dθ), Q
d
0(ds, dθ),

(Qi(ds, dθ))i∈{1,··· ,k−2} , (Ni(ds, dθ))i∈{0,··· ,k−2} , and (Qmi (ds, dθ))i∈{0,··· ,k−2} ,

be independent PPMs with intensity dsdθ, and construct the wild-type subpopulations Z
(n)
0 , the mu-

tant subpopulations Z
(n)
i for i ∈ {1, · · · , k−2} and the processesH

(n)
i andK

(n)
i for i ∈ {0, · · · , k−2}
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as in the case θ(k − 1) ≥ 1. The subpopulation Z
(n)
k−1 is constructed as

Z
(n)
k−1(t) :=

∫︂ t

0

∫︂
R+

(︂
1{︂

θ≤α(n)
k−1Z

(n)
k−1(s

−)
}︂ − 1{︂

α
(n)
k−1Z

(n)
k−1(s

−)≤θ≤
(︂
α

(n)
k−1+βk−1

)︂
Z

(n)
k−1(s

−)
}︂)︂Qk−1(ds, dθ)

+K
(n)
k−2(t) + 2H

(n)
k−2(t)−H

(n)
k−1(t),

H
(n)
k−1(t) := H

(n)
k−1,1 (t) +H

(n)
k−1,2 ((t− t(k) log(n)) ∨ 0) ,

H
(n)
k−1,1(t) :=

∫︂ t∧t(k) log(n)

0

∫︂
R+

1{︃
θ≤αk−1

(︂
µ
(n)
k−1

)︂2
Z

(n)
k−1(s

−)

}︃Qmk−1,1(ds, dθ),

H
(n)
k−1,2(t) :=

∫︂ t

0

∫︂
R+

1{︃
θ≤αk−1

(︂
µ
(n)
k−1

)︂2
Z

(n)
k−1(t(k) log(n)+s)

}︃Qmk−1,2(ds, dθ).

Let Nk−1,1 be a Poisson process with intensity 1, Nk−1,2(ds, dθ), and Qk,2(ds, dθ) be PPMs with
intensity dsdθ and (Ui, Yi, X1,i, X2,i, Vi)i∈N be birth-death branching processes with rates αk and
βk all starting with 1 individual at time t = 0 almost surely. All such processes are independent

from each others and independent from
(︂
Z

(n)
i

)︂
i∈{0,··· ,k−1}

. We write the process Z
(n)
k as the sum

of two sub-processes Z
(n)
k,1 and Z

(n)
k,2 . For all t > 0 define

Z
(n)
k (t) := Z

(n)
k,1 (t) + Z

(n)
k,2 ((t− t(k) log(n)) ∨ 0) ,

Z
(n)
k,1 (t) :=

B
(n)
k−1(t)∑︂
i=1

Ui ((t− t(k) log(n)) ∨ 0) ,

B
(n)
k−1(t) :=

K
(n)
k−1,1(t)∑︂
i=1

Yi

(︂(︂
t− T

(n)
i

)︂
∧
(︂
t(k) log(n)− T

(n)
i

)︂)︂

+

H
(n)
k−1,1(t)∑︂
i=1

Xi,1

(︂(︂
t− S

(n)
i

)︂
∧
(︂
t(k) log(n)− S

(n)
i

)︂)︂
+Xi,2

(︂(︂
t− S

(n)
i

)︂
∧
(︂
t(k) log(n)− S

(n)
i

)︂)︂
,

K
(n)
k−1,1(t) := Nk−1,1

(︄∫︂ t∧t(n)
− (k)

0

2αk−1µ
(n)
k−1

(︂
1− µ

(n)
k−1

)︂
Z

(n)
k−1(s)ds

)︄
,

T
(n)
i := inf

{︂
t ≥ 0 : K

(n)
k−1,1 ≥ i

}︂
,

S
(n)
i := inf

{︂
t ≥ 0 : H

(n)
k−1,1 ≥ i

}︂
,

Z
(n)
k,2 (t) := K

(n)
k−1,2(t) + 2H

(n)
k−1,2(t)

+

∫︂ t

0

∫︂
R+

1{︂
θ≤αkZ

(n)
k,2 (s)

}︂ − 1{︂
αkZ

(n)
k,2 (s)≤θ≤(αk+βk)Z

(n)
k,2 (s)

}︂Qk,2(ds, dθ),
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K
(n)
k−1,2(t) :=

∫︂ t

0

∫︂
R+

1{︂
θ≤2αk−1µ

(n)
k−1

(︂
1−µ(n)

k−1

)︂
Z

(n)
k−1(t(k) log(n)+s)

}︂Nk−1,2(ds, dθ),
where Ui are birth and death branching processes with rates αk and βk, as well as Yi and Xi,1 and

Xi,2. T
(n)
i , respectively S

(n)
i , are the jumping times of the process K

(n)
k−1,1, respectively H

(n)
k−1,1.

5.3.3 Approximate primary subpopulation

Let (Z0(t))t∈R+ be the birth-death branching process with rates α0 and β0 respectively, constructed
in the following way

Z0(t) := 1 +

∫︂ t

0

∫︂
R+

1{θ≤α0Z0(s−)}Q
b
0(ds, dθ)−

∫︂ t

0

∫︂
R+

1{θ≤β0Z0(s−)}Q
d
0(ds, dθ).

Notice that with such a construction it immediately follows, independently of the value of θ(k− 1),
the monotone coupling

∀t ≥ 0, Z
(n)
0 (t) ≤ Z0(t) a.s.

Denote by

W := lim
t→∞

e−λ0tZ0(t), (5.3.10)

the almost sure limit of the positive martingale
(︁
e−λ0tZ0(t)

)︁
t∈R+ , whose law is

W
law
= Ber

(︃
λ0
α0

)︃
⊗ Exp

(︃
λ0
α0

)︃
,

see [22], Section 1.1, or [94], Theorem 1.

5.4 Proofs of the first-order asymptotics of the first-selective
mutant subpopulation size (Theorem 5.2.3)

This subsection is devoted to the proof of Theorem 5.2.3. To this aim we start by giving an
interesting result on the speed of convergence for the martingale associated to a supercritical birth
and death branching process to its asymptotic large time limit.

Lemma 5.4.1. Let (Z(t))t≥0 be a birth and death branching process with rates α and β satisfying
Z(0) = 1 almost surely. Denote by λ := α− β its growth rate and assume λ > 0. Let W the almost
sure large time limit of the martingale

(︁
e−λtZ(t)

)︁
t≥0. Let f1(n) −→

n→∞
∞ and h(n) −→

n→∞
∞. Denote

by εn := e−λ
f1(n)

2

√︁
h(n). Then we have

P

(︄
sup

t∈[f1(n),∞]

⃓⃓
e−λtZ(t)−W

⃓⃓
≥ εn

)︄
≤ Ch−1(n),

where C = 20α+βλ .
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Proof. Let f2(m) be a function tending to infinity. We have

P

(︄
sup

t∈[f1(n),f2(m)]

⃓⃓
e−λtZ(t)−W

⃓⃓
≥ εn

)︄
≤ P

(︄
sup

t∈[f1(n),f2(m)]

⃓⃓⃓
e−λtZ(t)− e−λf1(n)Z(f1(n))

⃓⃓⃓
≥ εn

2

)︄

+ P
(︂⃓⃓⃓
e−λf1(n)Z(f1(n))−W

⃓⃓⃓
≥ εn

2

)︂
.

Then using Doob’s inequality to the martingale
(︁
e−λtZ(t)− e−λf1(n)Z(f1(n))

)︁
t≥f1(n) and Cheby-

shev’s inequality for the random variable e−λf1(n)Z(f1(n))−W , we get

P

(︄
sup

t∈[f1(n),f2(m)]

⃓⃓
e−λtZ(t)−W

⃓⃓
≥ εn

)︄

≤ 4ε−2n

(︃
4E
[︃(︂
e−λf2(m)Z(f2(m))− e−λf1(n)Z(f1(n))

)︂2]︃
+ E

[︃(︂
e−λf1(n)Z(f1(n))−W

)︂2]︃)︃
≤ 20ε−2n

∫︂ ∞
f1(n)

(α+ β) e−2λsE [Z(s)] ds

= 20
α+ β

λ
ε−2n e−λf1(n).

Taking the limit when m tends to infinity, due to continuity of measure, we get

P

(︄
sup

t∈[f1(n),∞]

⃓⃓
e−λtZ(t)−W

⃓⃓
≥ εn

)︄
≤ α+ β

λ
h−1(n),

which ends the proof.

Analogously to [8], we show that at time t
(n)
− (k) only a finite number of mutants cells of trait k

are presents in the population of cells, whose law is asymptotically distributed as a Luria-Delbrück
random variable.

Lemma 5.4.2. We have

B
(n)
k−1,1

(︂
t
(n)
− (k)

)︂
−→
n→∞

B∞k−1,1,

in probability, where B∞k−1,1 follows a Luria-Delbrück distribution with parameters(︃
λ0, αk, βk,

2αk−1µk−1
λ0

wk−1W

)︃
.

In particular due to λk > λ0, we have E
[︂
B∞k−1,1

]︂
= ∞.

Proof. The proof is sufficiently close to the mathematical analysis made in [8, 10] such that we are
only giving the different steps without details:
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• One start to show that it is unlikely to observe up to time t
(n)
− (k) cell divisions of trait k − 1

whose both daughter cells mutate to trait k, that is

P
(︂
H

(n)
k−1,1

(︂
t
(n)
− (k)

)︂
= 0
)︂

−→
n→∞

1.

Then it immediately follows that

P

⎛⎜⎝H
(n)
k−1,1

(︂
t
(n)
− (k)

)︂∑︂
i=1

Xi,1

(︂
t
(n)
− (k)− S

(n)
i

)︂
+Xi,2

(︂
t
(n)
− (k)− S

(n)
i

)︂
= 0

⎞⎟⎠ −→
n→∞

1.

• Then adapting techniques from [8, 10] one shows that the number of cell divisions of trait

k − 1 whose only one daughter cell mutates to trait k up to time t
(n)
− (k) is asymptotically

Poisson distributed with parameter 2αk−1µk−1

λ0
wk−1W , that is

K
(n)
k−1,1

(︂
t
(n)
− (k)

)︂
−→
n→∞

Nk−1,1

(︃
2αk−1µk−1

λ0
wk−1W

)︃
,

in probability.

• The last step consists in showing that conditioned on K
(n)
k−1,1

(︂
t
(n)
− (k)

)︂
= j, the law of the

vector
(︂
t
(n)
− (k)− T

(n)
i

)︂
i∈{1,··· ,j}

is asymptotically distributed as the statistic order of a vector

of j i.i.d. exponential random variables with parameter λ0, which is a classical result.

We start by showing that the first order asymptotics at time (t(k) + t) log(n) of the lineages of

cells of trait k issued from mutational events up to time t
(n)
− (k) is of order ntλk logθ(k−1)

λk
λ0 (n). Such

order comes from the exponential growth of the lineages of the mutant cells at rate λk between times

[t
(n)
− (k), (t+ t(k)) log(n)]. Asymptotically, it is a compound Luria-Delbrück distribution (associated

with the distribution of the large time limit of the martingale associated to a birth and death
branching process with rates αk and βk) that is captured. Basically such result comes from Lemma

5.4.2 giving asymptotically how many mutant cells there are at time t
(n)
− (k) and then we control the

exponential growth at rate λk of each lineage for a time (t+t(k)) log(n)−t(n)− (k) = t log(n)+ℓ
(n)
− (k).

Proposition 5.4.3. For all 0 < T1 < T2(︄
Z

(n)
k,1 ((t(k) + t) log(n))

ntλk logθ(k−1)
λk
λ0 (n)

)︄
t∈[T1,T2]

−→
n→∞

⎛⎝Z∞k,1 :=

B∞k−1,1∑︂
i=1

U∞i

⎞⎠
t∈[T1,T2]

,

in probability in L∞([T1, T2]), where the sequence (U∞i )i∈N is the almost sure limits of the positive

martingales
(︁
e−λktUi(t)

)︁
i∈N. Namely U∞i

law
= Ber

(︂
λk

αk

)︂
⊗ Exp

(︂
λk

αk

)︂
.
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Proof. By definition of the process Z
(n)
k,1 , given in Equation (5.3.6), we have for all t > 0

Z
(n)
k,1 ((t+ t(k)) log(n))

ntλk logθ(k−1)
λk
λ0 (n)

=

B
(n)
k−1,1

(︂
t
(n)
− (k)

)︂∑︂
i=1

Ui

(︂
ℓ
(n)
− (k) + t log(n)

)︂
e
−λk

(︂
ℓ
(n)
− (k)+t log(n)

)︂
,

because (t+t(k)) log(n)−t(n)− (k) = t log(n)+ℓ
(n)
− (k) and ntλk logθ(k−1)

λk
λ0 (n) = e

−λk

(︂
ℓ
(n)
− (k)+t log(n)

)︂
,

by definition of ℓ
(n)
− (k) given in Equation (5.3.1). Then we have

P

⎛⎝ sup
t∈[T1,T2]

⃓⃓⃓⃓
⃓⃓Z(n)

k,1 ((t+ t(k)) log(n))

ntλk logθ(k−1)
λk
λ0 (n)

−
B∞k−1,1∑︂
i=1

U∞i

⃓⃓⃓⃓
⃓⃓ ≥ ε

⎞⎠ ≤ P
(︂
B

(n)
k−1,1

(︂
t
(n)
− (k)

)︂
̸= B∞k−1,1

)︂

+ P
(︁
B∞k−1,1 ≥ gn

)︁
+

gn∑︂
i=1

P
(︁
B∞k−1,1 = i

)︁
iP

(︄
sup

s∈[T1 log(n),∞]

⃓⃓
U1(s)e

−λks − U∞1
⃓⃓
≥ ε

i

)︄
.

According to Lemma 5.4.2, we have that P
(︂
B

(n)
k−1,1

(︂
t
(n)
− (k)

)︂
̸= B∞k−1,1

)︂
−→
n→∞

0 because they are

integer random variables.
Applying Lemma 5.4.1 to the birth and death branching process U1 with rates αk and βk one

obtain that

P

(︄
sup

s∈[T1 log(n),∞]

⃓⃓
U1(s)e

−λks − U∞1
⃓⃓
≥ ε

i

)︄
≤ C

ε
in−

λkT1
2 .

Then choosing gn −→
n→∞

∞ such that g3n = o
(︂
n

λkT1
2

)︂
we get

gn∑︂
i=1

P
(︁
B∞k−1,1 = i

)︁
iP

(︄
sup

s∈[T1 log(n),∞]

⃓⃓
U(s)e−λks − U∞

⃓⃓
≥ ε

i

)︄
≤ C

ε
g3nn

−λkT1
2 −→

n→∞
0,

which concludes the proof.

In the next proposition we capture the first-order asymptotic of the subpopulation Z
(n)
k,2 at

time t log(n) + ℓ
(n)
− (k). We first show that its first-order asymptotic at time ℓ

(n)
− (k) is of order

logθ(k−1)
λk
λ0 (n) which is obtained using the approximate model of Definition 5.2.2 combined with

a martingale approach. Then, using a law of large numbers we control the exponential growth at

rate λk of the lineages of the mutant cells present at time ℓ
(n)
− (k) during a time t log(n) giving the

renormalizing factor ntλk .

Proposition 5.4.4. For all 0 < T1 < T2⎛⎝Z(n)
k,2

(︂
t log(n) + ℓ

(n)
− (k)

)︂
ntλk logθ(k−1)

λk
λ0 (n)

⎞⎠
t∈[T1,T2]

−→
n→∞

(︁
Z∞k,2

)︁
t∈[T1,T2]

,

in probability in L∞ ([T1, T2]), where Z
∞
k,2, properly defined in (5.4.1), is the asymptotic limit of the

approximate model of Definition 5.2.2 with parameters (λ0, 2αk−1µk−1wk−1W,αk, βk).
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Proof. Introduce the following approximate model

˜︁Zk,2(t) := ˜︁Kk−1,2(t) +
∫︂ t

0

∫︂
R+

1{θ≤αk
˜︁Zk,2(s)}Q

b
k,2(ds, dθ)−

∫︂ t

0

∫︂
R+

1{θ≤˜︁Zk,2(s)}Q
d
k,2(ds, dθ),

˜︁Kk−1,2(t) :=
∫︂ t

0

∫︂
R+

1{θ≤2αk−1µk−1wk−1Weλ0s}Nk−1,2(ds, dθ),

where wk−1 = ˜︁w(0,··· ,k−1)(t(k)). According to Definition 5.2.2 we have

˜︁Zk−1,2 (︂ℓ(n)− (k)
)︂

logθ(k−1)
λk
λ0 (n)

−→
n→∞

Z∞k,2, (5.4.1)

almost surely, where the law of Z∞k,2 is given by the distribution given in this latter definition with
parameters (λ0, 2αk−1µk−1wk−1W,αk, βk). The proof is done in two steps. The first one is to show

that up to time ℓ
(n)
− (k) the processes Z

(n)
k,2 and ˜︁Zk,2 are close using a martingale method, and the

second step is applying a law of large numbers method to get the asymptotic limit.
Step 1: We are going to show that

Z
(n)
k,2

(︂
ℓ
(n)
− (k)

)︂
logθ(k−1)

λk
λ0 (n)

−→
n→∞

Z∞k,2, (5.4.2)

in probability. In the next Lemma, we are introducing the martingales that we are going to use, as
well as we compute their quadratic variations.

Lemma 5.4.5. Define

M
(n)
k,2 (t) := e−λktZ

(n)
k,2 (t)−

∫︂ t

0

2αk−1µ
(n)
k−1e

−λksZ
(n)
k−1

(︂
t
(n)
− (k) + s

)︂
ds,

˜︂Mk,2(t) := e−λkt ˜︁Zk,2(t)− ∫︂ t

0

2αk−1µk−1e
−(λk−λ0)swk−1Wds.

Then
(︂
M

(n)
k,2 (t)

)︂
t∈R+

and
(︂˜︂Mk,2(t)

)︂
t∈R+

are martingales, with quadratic variations

⟨︂
M

(n)
k,2

⟩︂
t
=

∫︂ t

0

2αk−1µ
(n)
k−1e

−2λksZ
(n)
k−1

(︂
t
(n)
− (k) + s

)︂
ds+ (αk + βk)

∫︂ t

0

e−2λksZ
(n)
k,2 (s)ds,⟨︂˜︂Mk,2

⟩︂
t
=

∫︂ t

0

2αk−1µk−1e
−(2λk−λ0)swk−1Wds+ (αk + βk)

∫︂ t

0

e−2λks ˜︁Z1,2(s)ds.

We also have that⟨︂
M

(n)
k,2 ,

˜︂Mk,2

⟩︂
t
=

∫︂ t

0

2αk−1e
−2λks

{︂
µ
(n)
k−1

(︂
1− µ

(n)
k−1

)︂
Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
∧ µk−1eλ0swk−1W

}︂
ds

+ (αk + βk)

∫︂ t

0

e−2λks
(︂
Z

(n)
k,2 (s) ∧ ˜︁Zk,2(s))︂ ds.
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Proof. The proof thatM
(n)
k,2 and ˜︂Mk,2 are martingales as well as the computation of their quadratic

variations can be obtained easily by adapting the proof of Chapter 4, Lemma 4.3.5. We are going

to compute
⟨︂
M

(n)
k,2 ,

˜︂Mk,2

⟩︂
t
. Let F (t, x, y, ˜︁x, ˜︁y) = (︁e−λktx− y

)︁ (︁
e−λkt˜︁x− ˜︁y)︁. We have that

∂F

∂t
(t, x, y, ˜︁x, ˜︁y) = −λke−λkt

[︁
x
(︁
e−λkt˜︁x− ˜︁y)︁+ ˜︁x (︁e−λktx− y

)︁]︁
,

∂F

∂y
(t, x, y, ˜︁x, ˜︁y) = −

(︁
e−λkt˜︁x− ˜︁y)︁ ,

∂F

∂˜︁y (t, x, y, ˜︁x, ˜︁y) = −
(︁
e−λktx− y

)︁
.

Applying Ito’s formula we get

M
(n)
k,2 (t)

˜︂Mk,2(t) = F

(︄
t, Z

(n)
k,2 (t),

∫︂ t

0

2αk−1µ
(n)
k−1e

−λksZ
(n)
k−1

(︂
t
(n)
− (k) + s

)︂
ds,

˜︁Zk,2(t),∫︂ t

0

2αk−1µk−1e
−(λk−λ0)swk−1Wds

)︄

= F (0, 0, 0, 0)− λk

∫︂ t

0

e−λks
(︂
Z

(n)
k,2 (s)

˜︂Mk,2(s) + ˜︁Zk,2(s)M (n)
k,2 (s)

)︂
ds

−
∫︂ t

0

˜︂Mk,2(s)2αk−1µ
(n)
k−1Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
e−λksds−

∫︂ t

0

M
(n)
k,2 (s)2αk−1µk−1wk−1We−(λk−λ0)sds

+

∫︂ t

0

∫︂
R+

[︄(︃
M

(n)
k,2 (s) + e−λks1{︂

θ≤2αk−1µ
(n)
k−1

(︂
1−µ(n)

k−1

)︂
Z

(n)
k−1

(︂
t
(n)
k−1+s

)︂}︂)︃

·
(︂˜︂Mk,2(s) + e−λks1{θ≤2αk−1µk−1wk−1Weλ0s}

)︂
−M

(n)
k,2 (s)

˜︂Mk,2(s)

]︄
Nk−1,2(ds, dθ)

+

∫︂ t∧ℓ(n)
− (k)

0

∫︂
R+

[︄(︄
M

(n)
k,2 (s) + 2e−λks1{︃

θ≤αk−1

(︂
µ
(n)
k−1

)︂2
Z

(n)
k−1

(︂
t
(n)
k−1+s

)︂}︃
)︄ ˜︂Mk,2(s)

−M
(n)
k,2 (s)

˜︂Mk,2(s)

]︄
Qmk−1,2(ds, dθ)

+

∫︂ t

0

∫︂
R+

[︄(︃
M

(n)
k,2 (s) + e−λks1{︂

θ≤αkZ
(n)
k,2 (s

−)
}︂)︃(︂˜︂Mk,2(s) + e−λks1{θ≤αk

˜︁Zk,2(s−)}
)︂

−M
(n)
k,2 (s)

˜︂Mk,2(s)

]︄
Qbk,2(ds, dθ)

+

∫︂ t

0

∫︂
R+

[︄(︃
M

(n)
k,2 (s)− e−λks1{︂

θ≤βkZ
(n)
k,2 (s

−)
}︂)︃(︂˜︂Mk,2(s)− e−λks1{θ≤βk

˜︁Zk,2(s−)}
)︂

−M
(n)
k,2 (s)

˜︂Mk,2(s)

]︄
Qdk,2(ds, dθ)
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= −λk
∫︂ t

0

e−λks
(︂
Z

(n)
k,2 (s)

˜︂Mk,2(s) + ˜︁Zk,2(s)M (n)
k,2 (s)

)︂
ds

−
∫︂ t

0

2αk−1e
−λks

(︂˜︂Mk,2(s)µ
(n)
k−1Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
+M

(n)
k,2 (s)µk−1wk−1Weλ0s

)︂
ds

+

∫︂ t

0

(︂
M

(n)
k,2 (s)2αk−1µk−1wk−1Weλ0se−λks + ˜︂Mk,2(s)2αk−1µ

(n)
k−1Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
e−λks

)︂
ds

+

∫︂ t

0

e−2λks2αk−1
(︂
µ
(n)
k−1

(︂
1− µ

(n)
k−1

)︂
Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
∧ µk−1wk−1Weλ0s

)︂
ds

+ λk

∫︂ t

0

e−λks
(︂
Z

(n)
k,2 (s)

˜︂Mk,2(s) + ˜︁Zk,2(s)M (n)
k,2 (s)

)︂
ds

+

∫︂ t

0

e−2λks (αk + βk)
(︂
Z

(n)
k,2 (s) ∧ ˜︁Zk,2(s))︂ ds

+N (n)(s),

where N (n) is a martingale. Finally we obtain that

⟨︂
M

(n)
k,2 ,

˜︂Mk,2

⟩︂
t
=

∫︂ t

0

2αk−1e
−2λks

(︂
µ
(n)
k−1

(︂
1− µ

(n)
k−1

)︂
Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
∧ µk−1eλ0swk−1W

)︂
ds

+ (αk + βk)

∫︂ t

0

e−2λks
(︂
Z

(n)
k,2 (s) ∧ ˜︁Zk,2(s))︂ ds.

In the next Lemma, we are computing the asymptotic limit of the finite variation process

associated to the subpopulation Z
(n)
k,2 .

Lemma 5.4.6. Let 0 < T1 < T2 ≤ θ(k−1)
λ0

and ε > 0. Then we have

P

(︄
sup

t∈[T1,T2]

∫︂ t log(log(n))

0

2αk−1e
−λks

⃓⃓⃓
µ
(n)
k−1Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
− µk−1e

λ0swk−1W
⃓⃓⃓
ds ≥ ε

)︄
−→
n→∞

0.

Proof. Introduce

A
(n)˜︁ε :=

⎧⎨⎩ sup
s∈[0,T2 log(log(n))]

⃓⃓⃓⃓
⃓⃓ Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
n
λ0

(︂
ℓ(k−1)

λ0
−ℓ(n)
− (k)

)︂
logθ(k−1)(n)eλ0s

− wk−1W

⃓⃓⃓⃓
⃓⃓ ≤ ˜︁ε

⎫⎬⎭ .
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We have that P
(︂
A

(n)˜︁ε
)︂

−→
n→∞

1 according to Proposition 5.1.2. Under the event A
(n)˜︁ε we have

∫︂ t log(log(n))

0

2αk−1e
−λks

⃓⃓⃓
µ
(n)
k−1Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
− µk−1e

λ0swk−1W
⃓⃓⃓
ds

=

∫︂ t log(log(n))

0

2αk−1e
−(λk−λ0)s

·

⃓⃓⃓⃓
⃓⃓(︂µ(n)

k−1n
ℓ(k−1)

)︂ Z
(n)
k−1

(︂
t
(n)
− (k) + s

)︂
n
λ0

(︂
ℓ(k−1)

λ0
−ℓ(n)
− (k)

)︂
logθ(k−1)(n)eλ0s

− µk−1wk−1W

⃓⃓⃓⃓
⃓⃓ ds

≤
∫︂ t log(log(n))

0

2αk−1e
−(λk−λ0)s

(︂⃓⃓⃓(︂
µ
(n)
k−1n

ℓ(k−1)
)︂
− µk−1

⃓⃓⃓
wk−1W +

(︂
µ
(n)
k−1n

ℓ(k−1)
)︂ ˜︁ε)︂ ds

≤ 2αk−1
λk − λ0

(︂⃓⃓⃓(︂
µ
(n)
k−1n

ℓ(k−1)
)︂
− µk−1

⃓⃓⃓
wk−1W +

(︂
µ
(n)
k−1n

ℓ(k−1)
)︂ ˜︁ε)︂

≤ ε

for n large enough and taking a well chosen ˜︁ε. So we get that under A
(n)˜︁ε we have

sup
t∈[T1,T2]

∫︂ t log(log(n))

0

2αk−1e
−λks

⃓⃓⃓
µ
(n)
k−1Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
− µk−1e

λ0swk−1W
⃓⃓⃓
ds ≤ ε,

and because P
(︂
A

(n)˜︁ε
)︂

−→
n→∞

1 the result is obtained.

Now we are going to show that well renormalized the processes Z
(n)
k,2 and ˜︁Zk,2 are closed in

probability up to time ℓ
(n)
− (k).

Lemma 5.4.7. Let 0 < T1 < T2 ≤ θ(k−1)
λ0

and ε > 0. Then we have

P

(︄
sup

t∈[T1,T2]

log−tλk(n)
⃓⃓⃓
Z

(n)
k,2 (t log(log(n)))− ˜︁Zk,2 (t log(log(n)))⃓⃓⃓ ≥ ε

)︄
−→
n→∞

0.

Proof. We have

P

(︄
sup

t∈[T1,T2]

log−tλk(n)
⃓⃓⃓
Z

(n)
k,2 (t log(log(n)))− ˜︁Zk,2 (t log(log(n)))⃓⃓⃓ ≥ 2ε

)︄

≤ P

(︄
sup

t∈[T1,T2]

⃓⃓⃓
M

(n)
k,2 (t log(log(n)))− ˜︂Mk,2 (t log(log(n)))

⃓⃓⃓
≥ ε

)︄
(5.4.3)

+ P

(︄
sup

t∈[T1,T2]

∫︂ t log(log(n))

0

2αk−1e
−λks

⃓⃓⃓
µ
(n)
k−1Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
(5.4.4)

− µk−1e
λ0swk−1W

⃓⃓⃓
ds ≥ ε

)︄
.
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The convergence to 0 of the term (5.4.4) is given by Lemma 5.4.6. For the convergence to 0 of the
term (5.4.3) we start by using Doob’s Inequality in L2 (see [95] Proposition 3.15) applied to the

martingale
(︂
M

(n)
k,2 (t)− ˜︂Mk,2(t)

)︂
t∈R+

and then we use the expression of the quadratic variations of

the martingales M
(n)
k,2 and ˜︂Mk,2, proved in Lemma 5.4.5, to get

P

(︄
sup

t∈[T1,T2]

⃓⃓⃓
M

(n)
k,2 (t log(log(n)))− ˜︂Mk,2 (t log(log(n)))

⃓⃓⃓
≥ ε

)︄

≤ 4

ε2
E
[︂
M

(n)
k,2 (T2 log(log(n)))

2
+ ˜︂Mk,2 (T2 log(log(n)))

2

− 2M
(n)
k,2 (T2 log(log(n)))˜︂Mk,2 (T2 log(log(n)))

]︂
=

4

ε2

(︄∫︂ T2 log(log(n))

0

2αk−1µ
(n)
k−1e

−2λksE
[︂
Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂]︂
ds

+ (αk + βk)

∫︂ T2 log(log(n))

0

e−2λksE
[︂
Z

(n)
k,2 (s)

]︂
ds

+

∫︂ T2 log(log(n))

0

2αk−1µk−1e
−(2λk−λ0)swk−1E [W ] ds

+ (αk + βk)

∫︂ T2 log(log(n))

0

e−2λksE
[︂ ˜︁Zk,2(s)]︂ ds

− 2

∫︂ T2 log(log(n))

0

2αk−1e
−2λksE

[︂
µ
(n)
k−1

(︂
1− µ

(n)
k−1

)︂
Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
∧ µk−1eλ0swk−1W

]︂
ds

− 2 (αk + βk)

∫︂ T2 log(log(n))

0

e−2λksE
[︂
Z

(n)
k,2 (s) ∧ ˜︁Zk,2(s)]︂ ds

)︄

=
4

ε2

(︄∫︂ T2 log(log(n))

0

2αk−1e
−2λksE

[︂⃓⃓⃓
µ
(n)
k−1

(︂
1− µ

(n)
k−1

)︂
Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
− µk−1e

λ0swk−1W
⃓⃓⃓]︂
ds

(5.4.5)

+ (αk + βk)

∫︂ T2 log(log(n))

0

e−2λksE
[︂⃓⃓⃓
Z

(n)
k,2 (s)− ˜︁Zk,2(s)⃓⃓⃓]︂ ds (5.4.6)

+

∫︂ T2 log(log(n))

0

2αk−1
(︂
µ
(n)
k−1

)︂2
e−2λksE

[︂
Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂]︂
ds

)︄
, (5.4.7)

where for the last equality we used that for all (a, b) ∈ R2
+ we have a + b − 2(a ∧ b) = |a −

b|, applied with the couples (a, b) =
(︂
µ
(n)
k−1

(︂
1− µ

(n)
k−1

)︂
Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
, µk−1eλ0swk−1W

)︂
and

(a, b) =
(︂
Z

(n)
k,2 (s),

˜︁Zk,2(s))︂. To show that the terms (5.4.5) and (5.4.6) converge to 0, we are going

to apply the dominated convergence theorem. Using that E[W ] = 1 and that for all s ∈ R+ we
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have according to Lemma 4.3.10

E
[︂
Zk−1

(︂
t
(n)
− (k) + s

)︂]︂
≤ Ck−1

(︂
µ
(n)
⊗,k−1n

t(k−1)
)︂

(5.4.8)

·
(︂
t
(n)
− (k) + s

)︂θ(k−1)
eλ0snℓ(k−1) log−θ(k−1)(n),

we get that for all s ≤ T2 log(log(n)) and for n large enough

e−2λksE
[︂⃓⃓⃓
µ
(n)
k−1

(︂
1− µ

(n)
k−1

)︂
Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
− µk−1e

λ0swk−1W
⃓⃓⃓]︂

≤ e−(2λk−λ0)s2 (t(k))
θ(k−1)

(︂
Ck−1

(︂
µ
(n)
⊗,kn

t(k)
)︂
+ µk−1wk−1

)︂
≤ C(k)e−(2λk−λ0)s,

because µ
(n)
⊗,kn

t(k) −→
n→∞

∏︁k−1
i=0 µi and where C(k) is a constant that depends on k. We obtained an

upper bound that is integrable on R+. Moreover we have for n large enough

E
[︂
e−λksZ

(n)
k,2 (s)

]︂
=

∫︂ s

0

2αk−1µ
(n)
k−1e

−λkuE
[︂
Z

(n)
k−1

(︂
t
(n)
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)︂]︂
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≤ C(k)
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µ
(n)
⊗,kn
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)︂∫︂ s

0

e−(λk−λ0)udu

≤ C(k),

where C(k) is a constant depending on k that may change from line to line, as well as

E
[︂
e−λks ˜︁Zk,2(s)]︂ = ∫︂ s

0

2αk−1µk−1e
−(λk−λ0)uwk−1du =

2αk−1µk−1wk−1
λk − λ0

(︂
1− e−(λk−λ0)s

)︂
.

It implies that it exists C(k) such that for n large enough we have

e−2λksE
[︂⃓⃓⃓
Z

(n)
k,2 (s)− ˜︁Zk,2(s)⃓⃓⃓]︂ ≤ e−2λks
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E
[︂
Z

(n)
k,2 (s)

]︂
+ E

[︂ ˜︁Zk,2(s)]︂)︂ ≤ C(k)e−λks,

which is integrable on R+. To apply the dominated convergence theorem, it suffices now to show
that for all s ∈ R+

E
[︂⃓⃓⃓
µ
(n)
k−1

(︂
1− µ

(n)
k−1

)︂
Z

(n)
k−1

(︂
t
(n)
− (k) + s

)︂
− µk−1wk−1Weλ0s

⃓⃓⃓]︂
−→
n→∞

0, (5.4.9)

E
[︂⃓⃓⃓
Z

(n)
k,2 (s)− ˜︁Zk,2(s)⃓⃓⃓]︂ −→

n→∞
0. (5.4.10)

For the convergence to 0 of the term (5.4.9) we use that

E
[︂⃓⃓⃓
µ
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1− µ
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)︂
Z

(n)
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(︂
t
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−→
n→∞

0,
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because µ
(n)
k−1n

ℓ(k−1) −→
n→∞

µk−1 and because one can get with some extra efforts the convergence

in L1 for the subpopulation of trait k-1.

For the convergence of the term (5.4.10) we use that under the event
{︂
∀u ∈ [0, s],K

(n)
k−1,2(u) =˜︁Kk−1,2(u) and H

(n)
k−1,2(u) = 0

}︂
we have that Z

(n)
k,2 (u) =

˜︁Zk,2(u),∀u ∈ [0, s] almost surely. Then we

apply the Chauchy-Schwarz inequality to get
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+ E

[︃⃓⃓⃓
Z

(n)
k,2 (s)− ˜︁Zk,2(s)⃓⃓⃓1{︂∃u∈[0,s],K(n)

k−1,2(u)̸=
˜︁Kk−1,2(u) or H

(n)
k−1,2(u)≥1

}︂]︃
≤
√︃

E
[︂⃓⃓⃓
Z

(n)
k,2 (s)− ˜︁Zk,2(s)⃓⃓⃓]︂

·
√︃

P
(︂
∃u ∈ [0, s],K

(n)
k−1,2(u) ̸= ˜︁Kk−1,2(u)

)︂
+ P
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)︂
≤ Ces
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2
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0
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+ 1− exp
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0

αk−1
(︂
µ
(n)
k−1

)︂2
E
[︂
Z

(n)
k−1

(︂
t
(n)
− (k) + u

)︂]︂
du
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2

−→
n→∞

0,

where we use the dominated convergence theorem for the last convergence. We conclude the proof
by showing that (5.4.7) converges to 0. Using the computation of (5.4.8) we obtain that

(5.4.7) ≤ Ck−1
(︂
µ
(n)
⊗,k−1n

t(k−1)
)︂
(t(k) + T2)

θ(k−1)
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂
µ
(n)
k−1

∫︂ T2 log(log(n))

0

e−(2λk−λ0)sds

−→
n→∞

0,

because µ
(n)
⊗,k−1n

t(k−1) −→
n→∞

∏︁k−2
i=0 µi <∞ and µ

(n)
k−1n

ℓ(k−1) −→
n→∞

µk−1 <∞.

Finally we obtained the convergence to 0 of the terms (5.4.5), (5.4.6) and (5.4.7) which ends the
proof.

Combining Lemma 5.4.7 and Equation (5.4.1) we obtain Equation (5.4.2).

Step 2: By construction of Z
(n)
k,2 we have that

Z
(n)
k,2

(︂
t log(n) + ℓ

(n)
− (k)

)︂
=

Z
(n)
k,2

(︂
ℓ
(n)
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)︂∑︂
i=1

Vi (t log(n)) ,

where the (Vi)i∈N are independent birth and death branching processes with rates αk and βk
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satisfying Vi(0) = 1 almost surely. So it comes that

Z
(n)
k,2

(︂
t log(n) + ℓ

(n)
− (k)

)︂
ntλk logθ(k−1)

λk
λ0 (n)

=
1

logθ(k−1)
λk
λ0 (n)

Z
(n)
k,2

(︂
ℓ
(n)
− (k)

)︂∑︂
i=1

e−λkt log(n)Yi (t log(n)) .

In order to show the result, we are going to use the following lemma, which is a variant of the law
of large numbers.

Lemma 5.4.8 (Law of Large Numbers). Let gn −→
n→∞

∞ be a deterministic function and
(︁
G(n)

)︁
n∈N

be a sequence of natural numbers valued random variables such that
(︂
G(n)

gn

)︂
n∈N

converges in prob-

ability to G∞ ∈ L1 having a density with respect to the Lebesgue measure. Let

(︃(︂
X

(n)
i

)︂
i∈N

)︃
n∈N

be a sequence of independent and identically distributed stochastic processes, independent from(︁
G(n)

)︁
n∈N. Let fn −→

n→∞
∞, hn −→

n→∞
∞ and 0 < T1 < T2, assume that for all ε > 0 and for

all i ∈ N

P

(︄
sup

t∈[T1fn,T2fn]

⃓⃓⃓
X

(n)
i (t)−X∞i

⃓⃓⃓
≥ ε

)︄
≤ h−1n ,

where X∞i ∈ L1. Then if gn = o(hn) we have

1

gn

G(n)∑︂
i=1

X
(n)
i (tfn) −→

n→∞
E[X∞]G∞,

in probability in L∞([T1, T2]), where X
∞ follows the distribution of any X∞i .

Proof. We have

P

⎛⎝ sup
t∈[T1,T2]

⃓⃓⃓⃓
⃓⃓ 1gn

G(n)∑︂
i=1

X
(n)
i (tfn)− E[X∞]G∞

⃓⃓⃓⃓
⃓⃓ ≥ 4ε

⎞⎠
≤ P

⎛⎝ sup
t∈[T1,T2]

⃓⃓⃓⃓
⃓⃓ 1gn

G(n)∑︂
i=1

(︂
X

(n)
i (tfn)−X∞i

)︂⃓⃓⃓⃓⃓⃓ ≥ 2ε

⎞⎠
+ P

⎛⎝⃓⃓⃓⃓⃓⃓ 1gn
G(n)∑︂
i=1

X∞i − E[X∞]G∞

⃓⃓⃓⃓
⃓⃓ ≥ 2ε

⎞⎠
≤ P

⎛⎝ 1

gn

⌊G∞gn⌋∑︂
i=1

sup
t∈[T1,T2]

⃓⃓⃓
X

(n)
i (tfn)−X∞i

⃓⃓⃓
≥ ε

⎞⎠ (5.4.11)

+ P

⎛⎜⎝ 1

gn

|G(n)−⌊G∞gn⌋|∑︂
i=1

sup
t∈[T1,T2]

⃓⃓⃓
X

(n)
i (tfn)−X∞i

⃓⃓⃓
≥ ε

⎞⎟⎠
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+ P

⎛⎝⃓⃓⃓⃓⃓⃓ 1gn
⌊G∞gn⌋∑︂
i=1

X∞i − E[X∞]G∞

⃓⃓⃓⃓
⃓⃓ ≥ ε

⎞⎠+ P

⎛⎜⎝ 1

gn

|G(n)−⌊G∞gn⌋|∑︂
i=1

|X∞i | ≥ ε

⎞⎟⎠ . (5.4.12)

The second term of (5.4.12) converges to 0 according to the law of large numbers because the

sequence of random variables

(︃
|G(n)−G∞gn|

gn

)︃
n∈N

converges in probability to 0. The first term of

(5.4.12) satisfies

P

⎛⎝⃓⃓⃓⃓⃓⃓ 1gn
⌊G∞gn⌋∑︂
i=1

X∞i − E[X∞]G∞

⃓⃓⃓⃓
⃓⃓ ≥ ε

⎞⎠
=

∫︂ ∞
0

P (G∞ = x)P

⎛⎝⃓⃓⃓⃓⃓⃓ 1

xgn

⌊xgn⌋∑︂
i=1

X∞i − E [X∞]

⃓⃓⃓⃓
⃓⃓ ≥ ε

x

⎞⎠ dx,

which converges to 0 according to the dominated convergence theorem, where for x > 0 we use the
law of large numbers to prove that the integrand converges to 0 when n goes to infity. The first
term of (5.4.11) satisfies

P

⎛⎝ 1

gn

⌊G∞gn⌋∑︂
i=1

sup
t∈[T1,T2]

⃓⃓⃓
X

(n)
i (tfn)−X∞i

⃓⃓⃓
≥ ε

⎞⎠
=

∫︂ ∞
0

P (G∞ = x) ⌊xgn⌋P
(︄

sup
t∈[T1,T2]

⃓⃓⃓
X

(n)
1 (tfn)−X∞1

⃓⃓⃓
≥ εgn

⌊xgn⌋

)︄
dx,

which converges to 0 according to the dominated convergence theorem, where for all x > 0 we use
the hypothesis gn = o(hn) to show that the integrand converges to 0, as well as we use that G∞ is in
L1. The second term of (5.4.11) converges to 0 using similar techniques with the assumptions.

The proof is ended by an application of Lemma 5.4.8 with gn = logθ(k−1)
λk
λ0 (n), G(n) =

Z
(n)
k,2

(︂
ℓ
(n)
−
)︂
, G∞ = Z∞k,2,

(︂
X

(n)
i

)︂
i∈N

=
(︁
e−λktYi(t)

)︁
i∈N, fn = log(n), and where we use Lemma

5.4.1 to get the scaling hn = nT1λk .

In the next proposition, we capture the first-order asymptotics of the subpopulation Z
(n)
k,3 at

time t log(n) using a martingale approach. Initially, the mutation process producing cells of trait k

is of order O
(︂
logθ(k−1)(n)

)︂
, and then the mutant cells have a time t log(n) to growth exponentially

fast at rate λk. These two heuristics combined gives that the typical order of Z
(n)
k,3 (t log(n)) is

O
(︂
ntλk logθ(k−1)(n)

)︂
.

Proposition 5.4.9. For all 0 < T1 < T2(︄
Z

(n)
k,3 (t log(n))

ntλk logθ(k−1)(n)

)︄
t∈[T1,T2]

−→
n→∞

(︁
Z∞k,3

)︁
t∈[T1,T2]

,
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in probability in L∞([T1, T2]), where Z
∞
k,3 := 2αk−1µk−1

λk−λ0
Wa0, where a0 is the constant coefficient of

the polynomial function u ↦→ ˜︁w(0,··· ,k−1)(t(k) + u).

Proof. Define the following martingale

M
(n)
k,3 (t) := e−λktZ

(n)
k,3 (t)−

∫︂ t

0

2αk−1µ
(n)
k−1e

−λksZ
(n)
k−1 (t(k) log(n) + s) ds,

whose quadratic variation is⟨︂
M

(n)
k,3

⟩︂
t
=

∫︂ t

0

2αk−1µ
(n)
k−1e

−2λksZ
(n)
k−1 (t(k) log(n) + s) ds+ (αk + βk)

∫︂ t

0

e−2λksZ
(n)
k,3 (s)ds.

These two facts follows from adapting the proof of Lemma 4.3.5 to this specific situation. Then we
have

P

(︄
sup

t∈[T1,T2]

⃓⃓⃓⃓
⃓ Z

(n)
k,3 (t log(n))

ntλk logθ(k−1)(n)
− Z∞k,3

⃓⃓⃓⃓
⃓ ≥ 2ε

)︄
≤ P

⎛⎝ sup
t∈[T1,T2]

⃓⃓⃓
M

(n)
k,3 (t)

⃓⃓⃓
logθ(k−1)(n)

≥ ε

⎞⎠ (5.4.13)

+ P

(︄
sup

t∈[T1,T2]

⃓⃓⃓⃓
⃓
∫︁ t log(n)
0

2αk−1µ
(n)
k−1e

−λksZ
(n)
k−1 (t(k) log(n) + s) ds

logθ(k−1)(n)
− Z∞k,3

⃓⃓⃓⃓
⃓ ≥ ε

)︄
. (5.4.14)

We start by dealing with the term (5.4.13), where in the computations C is a constant that may

change from line to line. By using Doob’s Inequality, Lemma 4.3.9 and that µ
(n)
⊗,kn

λ0t(k) →
n→∞

µ⊗,k =
∏︁k−1
i=0 µi <∞ as well as E

[︂
e−λksZ

(n)
k,3 (s)

]︂
≤ C logθ(k−1)(n) for all s ≤ T2 log(n) that

P

⎛⎝ sup
t∈[T1,T2]

⃓⃓⃓
M

(n)
k,3 (t)

⃓⃓⃓
logθ(k−1)(n)

≥ ε

⎞⎠ ≤ C

log2 log(k−1)(n)
E
[︃⟨︂
M

(n)
k,3

⟩︂
T2 log(n)

]︃

≤ C

log2θ(k−1)(n)

(︄∫︂ T2 log(n)

0

2αk−1µ
(n)
k−1e

−2λksE
[︂
Z

(n)
k−1 (t(k) log(n) + s)

]︂
ds

+ (αk + βk)

∫︂ T2 log(n)

0

e−2λksE
[︂
Z

(n)
k,3 (s)

]︂
ds

)︄

≤ C

log2θ(k−1)(n)

(︄∫︂ T2 log(n)

0

(︂
µ
(n)
⊗,kn

λ0t(k)
)︂
(t(k) log(n) + s)

θ(k−1)
e−(2λk−λ0)sds

+

∫︂ T2 log(n)

0

logθ(k−1)(n)e−λksds

)︄

≤ O
(︄

1

logθ(k−1)(n)

)︄
−→
n→∞

0.
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Now we are going to deal with the term (5.4.14). Using the change of variable s = u log(n) we
obtain that

∫︂ t log(n)

0

2αk−1µ
(n)
k−1e

−λks
Z

(n)
k−1 (t(k) log(n) + s)

logθ(k−1)(n)
ds

=

∫︂ t

0

2αk−1µ
(n)
k−1n

−λku
Z

(n)
k−1 ((t(k) + u) log(n))

logθ(k−1)(n)
log(n)du

=

∫︂ t

0

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂ Z

(n)
k−1 ((t(k) + u) log(n))

nλ0(u+ℓ(k−1)/λ0) logθ(k−1)(n)
n−(λk−λ0)u log(n)du.

Now introduce the event

A
(n)˜︁ε :=

{︄
sup

u∈[0,T2]

⃓⃓⃓⃓
⃓ Z

(n)
k−1 ((t(k) + u) log(n))

nλ0(u+ℓ(k−1)/λ0) logθ(k−1)(n)
− ˜︁w(0,··· ,k−1)(t(k) + u)W

⃓⃓⃓⃓
⃓ ≤ ˜︁ε

}︄
.

We have according to Proposition 5.1.2 that P
(︂
A

(n)˜︁ε
)︂

−→
n→∞

1. Moreover ˜︁w(0,··· ,k−1)(t(k) + u) is a

polynomial of degree θ(k−1), so for the sake of simplicity we will denote it by P (u) :=
∑︁θ(k−1)
i=0 aiu

i.
We have that

P

(︄
sup

t∈[T1,T2]

⃓⃓⃓⃓
⃓
∫︂ t

0

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂

· Z
(n)
k−1 ((t(k) + u) log(n))

nλ0(u+ℓ(k−1)/λ0) logθ(k−1)(n)
n−(λk−λ0)u log(n)du− Z∞k,3

⃓⃓⃓⃓
⃓ ≥ 2ε

)︄

≤ P

(︄
sup

t∈[T1,T2]

⃓⃓⃓⃓
⃓
∫︂ t

0

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂

·
(︄

Z
(n)
k−1 ((t(k) + u) log(n))

nλ0(u+ℓ(k−1)/λ0) logθ(k−1)(n)
− P (u)W

)︄
n−(λk−λ0)u log(n)du

⃓⃓⃓⃓
⃓ ≥ ε

)︄

+ P

(︄
sup

t∈[T1,T2]

⃓⃓⃓⃓∫︂ t

0

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂
P (u)Wn−(λk−λ0)u log(n)du− Z∞k,3

⃓⃓⃓⃓
≥ ε

)︄
. (5.4.15)
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Under the event A
(n)˜︁ε we have∫︂ t

0

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂(︄ Z

(n)
k−1 ((t(k) + u) log(n))

nλ0(u+ℓ(k−1)/λ0) logθ(k−1)(n)
− P (u)W

)︄
n−(λk−λ0)u log(n)du

≤
∫︂ t

0

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂ ˜︁εn−(λk−λ0)u log(n)du

= 2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂ ˜︁ε∫︂ t log(n)

0

e−(λk−λ0)sds

≤
2αk−1

(︂
µ
(n)
k−1n

ℓ(k−1)
)︂

λk − λ0
˜︁ε

≤ C˜︁ε,
where C is a constant strictly positive, that comes from the fact that µ

(n)
k−1n

ℓ(k−1) −→
n→∞

µk−1 <∞.

Due to P
(︂
A

(n)˜︁ε
)︂

−→
n→∞

1 for all ˜︁ε > 0, one obtains that

P

(︄
sup

t∈[T1,T2]

⃓⃓⃓⃓
⃓
∫︂ t

0

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂

·
(︄

Z
(n)
k−1 ((t(k) + u) log(n))

nλ0(u+ℓ(k−1)/λ0) logθ(k−1)(n)
− P (u)W

)︄
n−(λk−λ0)u log(n)du

⃓⃓⃓⃓
⃓ ≥ ε

)︄
−→
n→∞

0.

Now we have that∫︂ t

0

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂
P (u)Wn−(λk−λ0)u log(n)du

=

θ(k−1)∑︂
i=0

∫︂ t

0

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂
aiWuin−(λk−λ0)u log(n)du

For the case i = 0 we get∫︂ t

0

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂
a0Wn−(λk−λ0)u log(n)du =

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂
a0W

λk − λ0

(︂
1− n−t(λk−λ0)

)︂

−→
n→∞

2αk−1µk−1a0
λk − λ0

W.

For the case i ∈ {1, · · · , θ(k − 1)} applying i integration by part subsequently, one gets that

θ(k−1)∑︂
i=1

∫︂ t

0

2αk−1
(︂
µ
(n)
k−1n

ℓ(k−1)
)︂
aiWuin−(λk−λ0)u log(n)du −→

n→∞
0.

Combining these two previous computations, one can show with some extra efforts that the term
(5.4.15) converges to 0, which concludes the proof.
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Appendix

Proof of Equation (5.2.2). We define the following function, corresponding to the Laplace transform
of the well-renormalized population Z(t)

L(ξ, t) := E
[︂
e−ξe

−˜︁λtZ(t)
]︂
.

We have that

L(ξ, t) = E
[︃
exp

(︃∫︂ t

0

µeλs
(︂
r
(︂
ξe−

˜︁λt)︂− 1
)︂
ds

)︃]︃
,

where

r(ξ) :=

∫︂ t

0

µeλs∫︁ t
0
µeλudu

E
[︂
e−ξY (t−s)

]︂
ds,

with Y is a birth and death branching process with birth and death rates α and β respectively,
starting with one cell at time 0.
Combining the two previous equations we have

L(ξ, t) = E
[︃
exp

(︃
µ

∫︂ t

0

eλs
(︂
E
[︂
e−ξe

−˜︁λtY (t−s)
]︂
− 1
)︂
ds

)︃]︃
.

Notice that

E
[︂
e−ξe

−˜︁λtY (t−s)
]︂
= E

[︃
e
−ξe−˜︁λs

{︂
e−

˜︁λ(t−s)Y (t−s)
}︂]︃
,

which gives using the Laplace transform of the martingale associated to a birth and death process
that

E
[︂
e−ξe

−˜︁λtY (t−s)
]︂
− 1 −→

t→∞
− ξe−

˜︁λs
1 + ξe−˜︁λs α˜︁λ

.

Applying the dominated convergence theorem we obtain that

L(ξ, t) −→
t→∞

E

[︄
exp

(︄
−µξ

∫︂ ∞
0

e−(
˜︁λ−λ)s 1

1 + ξe−˜︁λs α˜︁λ
ds

)︄]︄

= E

[︄
exp

(︄
−µξ˜︁λ

∫︂ ∞
0

e−
˜︁λ−λ˜︁λ s 1

1 + ξ α˜︁λ e−s ds
)︄]︄

= E

[︄
exp

(︄
−µξ˜︁λ Φ

(︄
−ξ α˜︁λ , 1, ˜︁λ− λ˜︁λ

)︄)︄]︄
,

where Φ is the Lerch transcendent defined as ∀ ℜ(s) > 0, ℜ(a) > 0

Φ(z, s, a) =
1

Γ(s)

∫︂ ∞
0

ts−1e−at

1− ze−t
dt.
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Abstract:
This thesis focuses on the study of two stochastic models related to medical problems. The first one lies on

understanding infection spread of cooperating bacteriophages on a structured multi-drug resistant bacterial
host population. Motivated by this example, we introduce an epidemiological model where infections are
generated by cooperation of parasites in a host population structured on a configuration model. We analysed
the invasion probability for which we obtain a phase transition depending on the connectivity degree of the
vertices and the offspring number of parasites during an infection of a host. At the critical scaling, the invasion
probability is identified as the survival probability of a Galton-Watson process.

With the aim to get a biological more relevant model, we analysed a similar model where a spatial structure
is added for the host population using a random geometric graph. We have shown that such spatial structure
facilitates cooperation of parasites. A similar phase transition occurs where at the same critical scaling
the invasion probability is upper and lower bounded by the survival probabilities of two discrete branching
processes with cooperation.

The second medical question deals with understanding the evolution of the genetic composition of a tumour
under carcinogenesis, using multitype birth and death branching process models on a general finite trait space.
In the case of neutral and deleterious cancer evolution, we provide first-order asymptotics results on all mutant
subpopulation sizes. In particular such results capture the randomness of all cell trait sizes when a tumour
is clinically observed, and mostly it allows to characterise the effective evolutionary pathways, providing
information on the past, present, and future of tumour evolution.

Moving beyond this restrictive neutral and deleterious cancer evolution framework, we provide a new
method to understand the first selective mutant trait size.

Résumé:
Cette thèse porte sur l’étude de deux modèles stochastiques liés à des problèmes médicaux. Le premier

vise à comprendre le processus épidémique généré par des bactériophages coopératifs dans une population
de bactéries résistantes aux antibiotiques. Pour cela, nous introduisons un modèle épidémiologique où les
infections sont générées par la coopération de parasites dans une population d’hôtes structurée selon un modèle
de configuration. Une transition de phase est observée pour la probabilité d’invasion dépendant du degré de
connectivité des sommets et du nombre de parasites générés lors d’une infection d’un hôte. Au seuil critique,
la probabilité d’invasion est identifiée comme la probabilité de survie d’un processus de Galton-Watson.

Dans le but d’obtenir un modèle biologiquement plus pertinent, nous avons analysé un modèle similaire
où une structure spatiale est ajoutée à la population d’hôtes en utilisant un ”random geometric graph”. Nous
avons montré qu’une telle structure spatiale facilite la coopération des parasites. Une transition de phase
similaire se produit où au seuil critique, des bornes supérieure et inférieure sont obtenues pour la probabilité
d’invasion en tant que probabilités de survie de deux processus de branchement avec coopération.

La deuxième question médicale concerne la compréhension de l’évolution de la composition génétique
d’une tumeur en formation, en utilisant des processus de naissance et de mort multitypes branchants sur un
espace de traits fini. Considérant une évolution neutre et délétère, nous fournissons des résultats au premier
ordre asymptotique pour toutes les tailles des sous-populations mutantes. En particulier, nous capturons la
stochasticité associée aux tailles des sous-populations mutantes lorsqu’une tumeur est observée cliniquement,
et surtout nous caractérisons les chemins évolutifs effectifs, fournissant des informations sur le passé, le présent
et le futur de l’évolution tumorale.

Au-delà de ce cadre restrictif d’évolution neutre et délétère, nous proposons une nouvelle méthode pour
comprendre le premier ordre asymptotique du premier trait mutant sélectif.
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