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Titre: Changements de représentation pour l’inférence contrefactuelle
Mots clés: inférence causale, apprentissage de représentations, intelligence artificielle, appren-tissage profond
Résumé: Quelques éloignées puissent-ellesparaitre, les notions de prise de décisionalgorithmique, d’évaluation des politiquespubliques ou de personnalisation des soinsmédicaux reposent sur une même questionfondamentale : que se serait-il passé, que sepasserait-il si la décision était autre ? Parce quel’apprentissage causal fonde par essence desraisonnements contrefactuels sur les donnéesdisponibles, il constitue le cadre théorique etpratique idoine de ces problématiques.Depuis l’introduction de méthodes fondéessur des réseaux de neurones, les progrès eninférence causale ont été portés principale-ment par le raffinement de l’équilibrage entreles représentations apprises des individus con-trôles, et traités. Prenant constat des limites decette approche, nous opérons un changementde paradigme. Des contraintes asymétriques

dans l’espace des représentations permettent,au prix de la dégradation de la modélisationfactuelle d’une population, l’amélioration de lamodélisation contrefactuelle de l’autre. La com-binaison d’un modèle favorable à la populationtraitée avec son pendant relatif à la populationcontrôle cumule leurs avantages, sans leurs in-convénients.Cette nouvelle architecture est incarnée par
ALRITE, un modèle dont nous démontronsla pertinence sur un plan théorique, avantde le soumettre à des expériences pratiques.Un soin tout particulier est porté à la sélec-tion rigoureuse de ses hyper-paramètres, tâcheréputée délicate dans le domaine de l’inférencecausale. Une comparaison favorable avec lesmodèles concurrents de l’état de l’art confirmefinalement le bien-fondé de l’approche.
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Title: Changes of representation for counter-factual inference
Keywords: causal inference, representation learning, artificial intelligence, deep learning
Abstract: Causal learning defines a new fron-tier for supervised machine learning, offer-ing better robustness w.r.t. out-of-distributionprediction, and directly answering -at least inprinciple- the policymakers’ questions: whatwill happen upon making interventions? whatwould have happened if these interventionshad not occurred?This manuscript focuses on ConditionalAverage Treatment Effect estimation (CATE),aimed to assess the direct impact of an inter-vention at the level of a subpopulation, basedon observational data. While there are grow-ing applicative needs for CATE estimation, e.g.from the field of personalized medicine or mar-keting, it faces two intertwined challenges froma supervised learning viewpoint. Firstly, causallearning is notorious for leveraging few data.Secondly and most importantly, the observa-tional data consists of two distinct distributions,the control and the treated one, usually drawnfrom different covariate distributions. In otherwords, the goal is to infer "what would havehappened" if the intervention had or had nottaken place in this particular case (counter-factual estimation), i.e. to solve a problem oflearning with missing not-at-random data.The state of the art has long relied on theflexibility of neural network-basedmodel learn-ing, fuelled by the search for latent represen-tations that enforce an appropriate balance be-tween the control and the treated distributions.The proposed approach is based on theclaim, first formulated by Zhang et al. (2020),that balance in the latent space is not the most

relevant property. Instead, the counter-factualestimate for say control samples requires thatcontrol samples have treated neighbors thatare sufficiently close (in latent space); and sym-metrically, treated samples must have closecontrol neighbors.
The key contribution of the approach liesin the formulation of constraints that enforcethese properties, and their consequence interms of model architecture: the two require-ments can be better addressed by two latentspaces, respectively enforcing the quality of thefactual and counter-factual outcome modelsfor control and treated samples.
The proposed architecture is instantiatedby Asymmetrical Latent Representation for In-dividual Treatment Effect (ALRITE), acknowledg-ing the asymmetrical constraints related to thecontrol and treated distributions. The ALRITErelevance is grounded in theory through a com-prehensive analysis, bounding the estimationerror in a way that is both related with theterms of the compound loss, and accessible tothe practitioner. Themerits of the approach arealso established by extensive experimental val-idation and comparison with the state-of-the-art baselines.
Another contribution of the proposedwork is related with the selection of hyper-parameters for the (own and other) ap-proaches: this problem, widely acknowledgedin the field of Machine Learning, raises addi-tional and subtle difficulties in the causal infer-ence setting.
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I - Introduction

I.1 . Context

In parallel with the amazing achievements of Machine Learning (Bojarski
et al., 2016; Brown et al., 2020; Jumper et al., 2021), concerns are increasingly
voiced about the multiple challenges it faces. Some of them regard the
robustness of the learned models per se, for instance in an out of distribution
setting (Hendrycks et al., 2021), in the presence of corrupted data (Horowitz
and Manski, 1995), or when confronted with adversarial examples (Madry
et al., 2017). Other ones regard the societal impact of machine learning
and more generally artificial intelligence: using predictive models to achieve
decision-making entails risks of unethical consequences (O’Neil, 2016; Hardt
and Recht, 2022)1.

Along what seems to be an utterly different line, the demand for data-
driven policies (Athey, 2017) and personalized recommendations (Ozer
et al., 2020) grows. Surely Randomized Control Trials (Rubin, 1978; Meldrum,
2000) constitute the gold standard for studying causal links, albeit their scope
is limited by numerous limitations such as ethics, cost, or even feasibility
(Pearl, 2009). Approaches that do not rely on interventions in the real
world are however confronted with the intrinsic difficulty of drawing causal
conclusions from observations alone. Cum hoc ergo propter hoc2 warns
against a common fallacy. Without great care and specific attention, reverse
causality (Rivera and Currais, 1999), spurious relationships (Simon, 1954),
bidirectional causality (Richardson, 1996), and mere coincidences (Sapsford
and Jupp, 2006) are difficult to distinguish from true causal phenomena.

At the crossroad of both perspectives lies the field of causality (Pearl,
2009; Peters et al., 2017). Causality intends to model causal links from the
observation of data and, under reasonable assumptions, can guarantee the
robustness of its findings. As such, causal models are meant to represent
a phenomenon at three levels of abstraction (Pearl, 2009). The first level
coincides with predictive reasoning, imputing missing information in a

1acknowledging the existence of many other challenges, including but not limitedto: fairness (Mehrabi et al., 2021), privacy (Carlini et al., 2021), impact on employment(Makridakis, 2017; Ernst et al., 2019), sovereignty (Calderaro and Blumfelde, 2022), eco-logical impact (Dhar, 2020), wealth concentration (Allen, 2017), cybersecurity (Zhanget al., 2022), intellectual property (Fernandez et al., 2023), disinformation (Zellers et al.,2019), lethal autonomous weapons (De Ganay and Gouttefarde, 2020), etc.2with this, therefore because of this
9
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distribution-agnostic way (e.g., predicting labels, though causal models
are not the most efficient ones to achieve prediction). The second level,
referred to as interventional reasoning, aims to estimate the effects of
an intervention ("what-if"); the contrast with predictive reasoning is that the
intervention modifies the input distribution in complex ways. The third level,
referred to as counter-factual reasoning, aims to estimate the effects of
another type of distribution modification ("what-if-not"). To achieve these
goals, causal modeling aims to retain the most robust elementary relations
among the domain variables, explaining an effect variable from its direct
cause variables. By design, such modular and distribution-agnostic models
are robust w.r.t. well-defined operations on the joint variable distribution
(e.g., freezing a variable value, a.k.a. intervening on this variable).

So far, the framework of causal modeling has proposed new principles in
machine learning and opened new research avenues motivated by endless
applications3. A question of crucial interest lies in the causal effects of binary
treatments. Suppose we consider a given measurable quantity of interest
and that the intervention consists in assigning treatment to some individuals
while others do not. At the scale of a population, a group, or an individual:
what is the causal impact of the treatment?

I.2 . Illustration

The renowned Simpson paradox illustrates the pitfalls of hasty inference
from observational data. Simpson (1951) reports the results of amedical study
comparing two protocols aimed at kidney stone removal. The first one, percu-
taneous nephrolithotomy, is minimally invasive, while the second one, open
surgery, is a much heavier procedure.

opensurgery percutaneousnephrolithotomy
Success rate 78%(273/350) 83%(289/350)

Table I.1: Simpson paradox data, reported values are (Total success /Group size).
3including (non-exhaustive list): medicine (Höfler, 2005; Kapelner et al., 2021), en-vironment (Hannart et al., 2016), development economics (Chernozhukov et al., 2017),social sciences (Chandra and Krishna, 2021), political sciences (Peterson and Spirling,2018), epidemiology (Wong and Sabanayagam, 2019), education (Athey and Wager,2019), marketing (Bottou et al., 2013).
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The results as displayed in Table I.1 may suggest at first glance that per-

cutaneous nephrolithotomy constitutes the best option: it apparently offers
the best success rate. Formally, the probability of success conditionally to the
assignment to percutaneous nephrolithotomy (289∕350 ≈ 83%) is greater than
its open surgery counterpart (273∕350 ≈ 78%).

However, this intuition is ill-informed. Not all kidney stone patients are the
same: assignment to a given protocol might itself hint at the severity of the
situation. In this specific example, a coarse dichotomy distinguishes between
smaller and larger stones (more severe cases).

opensurgery percutaneousnephrolithotomy
Smaller stones 93%(81/87) 87%(234/270)
Larger stones 73%(192/263) 69%(55/80)

Table I.2: Simpson paradox data, reported values are (total suc-cess/group size).

With the additional perspective of Table I.2, open surgery appears as the
option with the highest success rate, no matter how large the kidney stones
are. This observation may seem to contradict the previous one.

A closer look at the data lifts the paradox: the proportion of patients
oriented toward percutaneous nephrolithotomy is higher in the smaller
stones cohort (234∕357 ≈ 66%) than in the larger stones one (55∕343 ≈ 16%).
Indeed, the size of the stone itself affects the success rate of a given protocol.
Abstaining from considering this influence leads to erroneous conclusions.

Note that in this case andwithout a physician’s opinion, it is still impossible
to conclude that open surgery offers the highest probability of success to a
given patient affected by kidney stones. Consider the imaginary extension of
the Simpson data in Table I.3. Here, big hospitals outperform small ones in all
situations, no matter the stone size or chosen protocol. The simple fact that
they tend to orient their patient toward open surgery, while the small ones
resort more frequently to percutaneous nephrolithotomy, swaps the success
advantages again. Maybe other factors should be taken into consideration,
but no such conclusion may be drawn from the observation of the data alone.
Expert knowledge is essential to ensure that all parameters of interest have
been considered.
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opensurgery percutaneousnephrolithotomy

Smaller stones
Small hospital 80%(8/10) 83%(173/208)
Big hospital 95%(73/77) 98%(61/62)

Larger stones
Small hospital 57%(44/77) 63%(41/65)
Big hospital 80%(148/186) 93%(14/15)

Table I.3: Imaginary extension of the Simpson paradox data.

I.3 . Contributions

The contributions presented in the manuscript are related to causal esti-
mation from observational data; they aim to answer the question of whether
a (binary) intervention, referred to as treatment, is beneficial at the popula-
tion, group, or individual level.

This goal, investigated by Rubin (1974); Angrist et al. (1996); Shalit et al.
(2017), can be formulated as the modeling of the potential outcomes: what
happens if the intervention takes place, and what if-not. These models can
indeed be learned using Machine Learning from the observational data, gath-
ering the two sets of so-called control and treated samples. The problem is
that the control and treated distributions do not coincide in general, and hasty
estimations may be flawed.

For this reason, since (Johansson et al., 2016) many approaches have been
developed to enforce the balance of the control and treated distributions,
i.e., to ensure that they are similar in some representational space. A com-
mon method consists in considering and minimizing the statistical distance
between the latent distributions of the control and the treated populations.

The presented approach, Asymmetrical Latent Representation for Individ-
ual Treatment Effect (ALRITE), operates a paradigm shift and escapes symmet-
rical constraints. Specifically, it designs an asymmetrical regularization term,
unevenly handling the control and treated populations. The overall ALRITE
architecture simultaneously focuses on the counter-factual estimation of the
treated population (what if they had not been treated) and that of the treated
population (what if they had). To stand out on both tasks,ALRITE relies on two
neural modules (pipelines), respectively enforcing that control (resp. treated)
samples are not isolated from their nearest treated (resp. control) neighbors
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in latent space. The relevance of the whole approach is theoretically estab-
lished, and the provided theorems justify the original terms of the loss.

Lastly, and importantly for practitioners, the key issue of the hyper-
parameter selection is tackled and a detailed methodology is proposed
(Chapter VI). This issue, referred to as AutoML in the supervised learning
framework Hutter et al. (2019), is likewise essential in the causal estimation
framework, all the more than the final result (what would have happened if
the treatment assignment had been different) is unknown by design.

I.4 . Organization of the manuscript

This manuscript is divided into six main chapters.
Formal background. First is presented the Neyman-Rubin potential out-
comes framework, which constitutes the formal basis underlying the remain-
der of the manuscript. The objectives of causal inference, the assumptions
that permit their pursuit, and the procedures devoted to assessing the ap-
proach performance are detailed and discussed. Auxiliary quantities are also
introduced, for they ease the formalization and clarity of this manuscript.
State of the art. This chapter first briefly situates the field of causal dis-
covery, aimed at identifying the causal relations that link the observed covari-
ates. Closer to our topic of interest, the chapter presents the field of causal
inference aimed at quantifying the average effects of a given treatment at the
scale of a whole population. Lastly, we focus on the estimation of causal ef-
fects at the individual scale, where the extensive literature can be divided into
multiple protocols. ALRITE builds upon the latest ones.
Asymmetrical Latent Representation for Individual Treatment Ef-
fect. The chapter delves into the very motivations underlying the develop-
ment of ALRITE, and inspiring the proposedmechanisms. Themain principles
and core components are formalized, then the procedure itself is examined:
how to define, train, and combine pipelines. A thorough analysis grounds the
approach in theory.
Experimentation. Experiments validate the merits of ALRITE in practice.
After detailing the considered benchmark and the practical implementation,
the chapter presents anddiscusses theALRITE performance compared to that
of state-of-the-art baselines. The discussion is supported by complementary
experiments, illustrating the specifics of the (few) benchmarks in the litera-
ture.
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Hyper-parameter selection in causal inference. In opposition
to the common routine of supervised learning, the selection of adequate
hyper-parameters in the field of causal learning is a prickly exercise. The
problem is formalized through the concepts of use in the related literature,
and put into application in the context of ALRITE.
Conclusion. The main contributions of this manuscript are finally put in
perspective. Their versatility opens diverse perspectives for further research,
which are finally outlined.



II - Formal background

This chapter introduces the framework of causal inference (Section II.1),
aimed atmodeling the effect of interventions (e.g. prescribing amedication to
a person), contrasting it with causal discovery (where the goal is to determine
the causal relations among variables).

The goal of causal inference is to estimate some quantities of interest (Sec-
tion II.2), focusing on the average or conditional (person-dependent) effects
of interventions.

The chapter presents and discusses the general assumptions (Section II.3)
of the literature supporting the estimation of the above quantities of inter-
est. The performance indicators, i.e. the metrics used to measure and com-
pare the performance of causal inference models, are thereafter introduced
(Section II.5), alongside statistical tools that facilitate the formalization of the
problem (Section II.6).
Notations. Following common usage, capital letters denote random vari-
ables (e.g.,𝑋), script letters denote their domain (𝑋 ranges in  ), while lower-
case letters denote observations. 𝐴̂ denotes an estimate of quantity 𝐴.

II.1 . Potential outcomes framework

The setting considered in the manuscript is based on the famed Neyman-
Rubin causal model (Rubin, 2005), also known as potential outcome frame-
work1.

Most generally, the effects of interventions are measured from observa-
tional data = {(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)}𝑖∈J1,𝑛K, involving 𝑛 triples, with each triple describingone sample or individual, where:

1. 𝐱𝐢 stands for the description of the 𝑖-th individual, consisting of the con-tinuous or discrete values of 𝑑 features referred to as observed covari-
ates (e.g., age, blood pressure, comorbidities);

2. 𝐭𝐢 is the value of the treatment assignment, e.g. 𝑡𝑖 = 1 if the physician de-
cided to prescribe the considered drug to the 𝑖-th individual; this sample
then belongs to the treated group. Otherwise, 𝑡𝑖 = 0, and the individual
is said to belong to the control group;

1The main alternative lies in Pearl’s Structural Causal Framework (Pearl, 2009), in-troducing the do-operator to model interventions. Despite the recurrent confusionbetween Neyman-Rubin’s and Pearl’s, they are strictly distinct (Lara, 2023). A slightvariant, the Functional Causal Model framework, is developed in Section III.1.1.
15
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3. 𝐲𝐢 is the observed outcome for the 𝑖-th individual, e.g. their survival,
which naturally depends on the treatment 𝑡𝑖. The observed outcome
is referred to as factual outcome. Of utmost interest is the counter-
factual outcome, that is, the outcome that would have been observed
if 𝑡𝑖 had been different; naturally, the counter-factual outcome is not
observed.

Figure II.1: The causal graph underlying causal inference: Covariate 𝑋 causestreatment 𝑇 and potential outcome 𝑌 ; treatment 𝑇 determines the factualoutcome.
Most generally, the so-called potential outcome noted 𝑦0𝑖 (respectively

𝑦1𝑖 ) denotes the value that the outcome variable would take for the 𝑖-th indi-
vidual if treatment 𝑡𝑖 = 0 (resp. 𝑡𝑖 = 1) were chosen. Accordingly, the potential
outcomes consist of the factual, observed outcome, and the counter-factual,
unobserved, outcome. The fundamental problem of causal inference
(Holland, 1986) is that only one of the outcome values 𝑦0𝑖 and 𝑦1𝑖 is observedfor each 𝑖-th sample. Causal inference can thus be cast as an inference
problem with (not at random) missing values (Ding and Li, 2018).

Note that the treatment variable does not need to be binary. Outside
the scope of the Neyman-Rubin framework, the treatment variable can
take values in a continuous interval (Schwab et al., 2019; Nie et al., 2020), be
multi-valued (Lopez and Gutman, 2017; Hu et al., 2020), sequential (Bica et al.,
2020; Melnychuk et al., 2022) or structured (Pawlowski et al., 2020; Kaddour
et al., 2021). For instance, a practitioner may select a combination of drugs
in a given pharmacopeia and the corresponding dosages depending on the
evolution of a patient’s condition. The case of continuous, structured or
sequential outcomes is outside the scope of the presented work. Only the
binary treatment case will be considered hereunder.

As said, causal inference differs from the causal discovery setting, where
the goal is to infer the causal relationships among the covariates (Section III.1).
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Causal inference instead considers a very simple, known, causal graph where
the set of covariate variables noted𝑋 causes the potential outcomes noted 𝑌 .
𝑋 also generally causes the treatment variable 𝑇 (i.e. the physician decides
on the drug depending on the individual’s case). Lastly, 𝑇 governs which one
of the potential outcomes 𝑌 0, 𝑌 1 is observed (Fig. II.1). Additional assumptions
(Section II.3) notably enforce that the outcomes of the samples are indepen-
dent ("no spillover").

In supervised machine learning terms, the goal of causal inference is to
model both potential outcomes 𝑌 0 and 𝑌 1 (or functions thereof) from the
covariate 𝑋, based on observational dataset  = {(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)}𝑖∈J1,𝑛K.

II.2 . Quantities of interest

Informally, causal inference aims to estimate the treatment effect de-
fined as the difference between the two potential outcomes, either at the
population level (Average Treatment Effect) or at the subpopulation/sample
level (Conditional Average Treatment Effect). In the Neyman-Rubin potential
outcome framework, the ATT, CATE, ITE and ATE are defined as follows2 (The
said quantities are illustrated in the context of the Simpson paradox in
Appendix C.).

The Average Treatment Effect (ATE) is the average difference of out-
come among the treated and the control populations:

ATE = 𝔼[𝑌 1 − 𝑌 0] (II.1)
The Conditional Average Treatment Effect (CATE) is defined by the
expected difference between the treated and untreated outcomes, condition-
ally on a given value of the covariate vector X:

CATE(𝑥) = 𝔼[𝑌 1 − 𝑌 0
|𝑋 = 𝑥] (II.2)

Building upon the CATE the ATE may be rephrased as 𝔼[CATE(𝑋))].
CATE is often denoted 𝜏 (CATE(𝑥) = 𝜏(𝑥)), and constitutes the central quan-

tity of interest in the following; our contributions (Chapters IV and V) focus
on building accurate estimators thereof. It is commonly mistaken with the
individual treatment effect.

2In the following, all expectations are implicitly defined with respect to the poten-tials outcomes distribution ℙ𝑋,𝑇 ,𝑌 0,𝑌 1 that entails the observational one ℙ𝑋,𝑇 ,𝑌 . Thisis referred to as the "generalizability assumption" in (Doutreligne and Varoquaux,2023).
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The Individual Treatment Effect (ITE) is by definition no distributional
quantity, but is specifically associated with a given individual: ITE𝑖 = 𝑌 1

𝑖 − 𝑌 0
𝑖 .Although it is often mistaken with CATE, the two quantities differ, as dis-

cussed by Vegetabile (2021). If 𝑦𝑖 is known and under additional assumptions,
it is possible3 to build ITE𝑖 estimates more accurate than CATE(𝑥𝑖).

The estimation sometimes focuses on the treated population, and the dif-
ference between the (factual) treatment effect and the (counter-factual) con-
trol effect, either at the population or at the individual level
The Average Treatment effect on the Treated (ATT) is similar to
ATE, but conditioned on the treated population:

ATT = 𝔼[𝑌 1 − 𝑌 0
|𝑇 = 1] (II.3)

Other metrics. Causal inference literature also evokes metrics such
as Conditional Average Treatment on the Treated (CATT), which differs
from CATE as it is conditioned on the treated subset of the population, and
Average Treatment on the Control (ATC) which differs from ATT as it is
conditioned on the control subset of the population. These quantities will
not be considered in the remainder of the manuscript.

When considering a finite observational dataset = {(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)}𝑖∈J1,𝑛K, em-
pirical ATE and ATT are sometimes referred to as Sample Average Treatment

3Consider the following setting:
𝜂 ∶  → {0, 1}, 𝜇0, 𝜇1 ∶  → ℝ
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋 ∼ Unif([0, 1]𝑑)
𝑇 ∼ Ber(𝜂(𝑋))
𝑁𝑌 ∼  (0, 1)
(𝑌 0, 𝑌 1) =

(

𝜇0(𝑋) +𝑁𝑌 , 𝜇1(𝑋) −𝑁𝑌
)

Here the individual treatment effect for individual 𝑖 may be expressed using factualdata only:
ITE𝑖 = 𝑦1𝑖 − 𝑦

0
𝑖

= 𝜇1(𝑥𝑖) − 𝜇0(𝑥𝑖) − 2𝑛𝑌 ,𝑖
= 𝜇1(𝑥𝑖) − 𝜇0(𝑥𝑖) − 2(𝑡𝑖(𝜇1(𝑥𝑖) − 𝑦1𝑖 ) + (1 − 𝑡𝑖)(−𝜇0(𝑥𝑖) + 𝑦0𝑖 ))

= 𝜇1(𝑥𝑖) − 𝜇0(𝑥𝑖) − 2(𝑡𝑖(𝜇1(𝑥𝑖) − 𝑦𝑖) + (1 − 𝑡𝑖)(−𝜇0(𝑥𝑖) + 𝑦𝑖))

= (2𝑡𝑖 − 1) × (2𝑦𝑖 − 𝜇0(𝑥𝑖) − 𝜇1(𝑥𝑖))

while the CATE given covariate vector 𝑥𝑖 is CATE(𝑥𝑖) = 𝜇1(𝑥𝑖) − 𝜇0(𝑥𝑖).
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Effect (SATE) and Sample Average Treatment effect on the Treated (SATT):

SATE = 1
𝑛

𝑛
∑

𝑖=1
(𝑦1𝑖 − 𝑦

0
𝑖 )

SATT =
(

∑

𝑡𝑖=1
1
)−1 ∑

𝑡𝑖=1
(𝑦1𝑖 − 𝑦

0
𝑖 )

Note that CATT and CATE are equal under the conditional exchangeability as-
sumption, detailed in Section II.3.1 (although ATT and ATE are not necessarily
equal).

For the sake of simplicity and when clear from the context, we shall use
same notations for the distributional and empirical quantities in the following.

II.3 . Assumptions

The causal inference literature aims to estimate the above quantities of in-
terest from observational data and to assess the accuracy of these estimates.
The feasibility of the estimation and its accuracy depend on the relations be-
tween the covariate and the treatment variables, and more specifically on
their conditional independence. Most work related to causal inference (Shalit
et al., 2017; Alaa and Schaar, 2018; Du et al., 2021) are based on the following
three assumptions.

II.3.1 . Conditional Exchangeability
The conditional exchangeability assumption states that for any 𝑡 ∈ {0, 1},

the treatment assignment 𝑇 and the potential outcome 𝑌 𝑡 are conditionally
independent4 given the observed covariates 𝑋.

∀𝑡 ∈ {0, 1}, 𝑌 𝑡 ⟂⟂ 𝑇 | 𝑋

As said, most related work assumes conditional exchangeability; the im-
portance of this assumption will be illustrated in the example below. Still, this
assumption remains fundamentally untestable. As such, and without further
knowledge concerning the data generation process, this assumption often
amounts to a leap of faith. Domain-expert knowledge is usually required
in real-life situations. Notably, in the Simpson paradox case (Section I.2), a
physicianmay confirmwhether conditioning on the kidney stone size ensures
conditional exchangeability.

4Conditional Exchangeability is sometimes referred to as exchangeability (Wu andFukumizu, 2021), weak unconfoundedness (Hirano and Imbens, 2005), or conditional
independence in the econometrics field (Lechner, 1999; Angrist et al., 2009).
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The state of the art sometimes involves a strictly stronger assumption5.
This increased strength is however unneeded in general.

(𝑌 0, 𝑌 1) ⟂⟂ 𝑇 | 𝑋

variant of Conditional Exchangeability, referred to as Strong Unconfounded-
ness (Imbens, 2000).

II.3.2 . Positivity
The Positivity assumption, also referred to asOverlap assumption, states

that any treatment may be applied to any individual:
ℙ(𝑋 ∈ Ω) > 0 ⟹ 0 < ℙ(𝑇 = 0|𝑋 ∈ Ω),ℙ(𝑇 = 1|𝑋 ∈ Ω) 𝑎.𝑠. (II.4)

A stronger assumption, referred to as Strict Overlap assumption (see e.g.
D’Amour et al. (2021)) states the existence of bounds on the conditional prob-
ability ℙ(𝑇 = 𝑡|𝑋).

∃ 0 < 𝑐inf,𝑐sup < 1 s.t.
ℙ(𝑋 ∈ Ω) > 0 ⟹ ∀𝑡 ∈ {0, 1}, 𝑐inf < ℙ(𝑇 = 𝑡|𝑋 ∈ Ω) < 𝑐sup

Some theoretical results presented in Chapter III invoke the strict overlap as-
sumption.

Figure II.2: Distributions of the control and treated populations. Left: normaldistribution setting. Right: Cauchy distribution setting.
5Let us suppose that 𝑌 0 and 𝑇 are sampled after two independent Bernoulli dis-tributions, with 𝑌 1 = 𝑇 + 𝑌 0. Then

{

𝑌 0 ⟂⟂ 𝑇 |𝑋, 𝑌 1 ⟂⟂ 𝑇 |𝑋
ℙ
(

(𝑌 0, 𝑌 1) = (1, 1)|𝑋, 𝑇 = 1
)

= 0 ≠ ℙ
(

(𝑌 0, 𝑌 1) = (1, 1)|𝑋, 𝑇 = 0
)
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The Positivity assumption only requires the density to be strictly greater

than 0 for the treated and control populations over the support of both dis-
tributions. While quantifying the actual discrepancy between the treatment
assignment of both distributions is of crucial importance, there is no consen-
sus concerning the most appropriate way to measure it.

Fig. II.2, inspired from Zhang et al. (2020), compares two settings. In
the first one, the generated control and target populations are normally
distributed; in the second one, both are sampled after Cauchy distributions.
The Wasserstein distance (Cuturi, 2013) and the MaximumMean Discrepancy
(MMD) (Gretton et al., 2012) between control and treated populations, two
common discrepancy measures in the field of causal inference, are reported
for both first and second settings.

It is argued that themost favorable setting is the secondone (Fig. II.2, right),
though it is associated with a higher Wasserstein distance andMMD. We shall
return to this in Section IV.1.2.

II.3.3 . Stable Unit Treatment Value Assumption
The Stable Unit Treatment Value Assumption (SUTVA) firstly states that

there exists no interaction6 between units (Cox, 1958), i.e that the treatment
assignment of individuals 𝑗 ≠ 𝑖 has no impact on the potential outcome of
individual 𝑖. This property is typically violated in settings where individuals
compete for a finite resource. For instance, treating candidates by delivering
mentoring hours satisfies SUTVA if candidates are prepared for an examina-
tion; but it does not (admissions are of a fixed number and as such constitute
a finite resource) if candidates are prepared for a competition.

Additionally, SUTVA states that the outcome verifies consistency (Rubin,
1978), meaning that if treatment is assigned to value 𝑇 , then the observed
outcome 𝑌 is 𝑌 𝑇 . In particular in the Neyman-Rubin framework,

𝑌 = (1 − 𝑇 ) 𝑌 0 + 𝑇 𝑌 1

II.3.4 . Discussion
II.3.4.1 . Ignorability

Ignorability holds when Conditional Exchangeability and Positivity both
hold. As noted by D’Amour et al. (2021), these properties might be antag-
onistic. Typically, Conditional Exchangeability is more likely to hold when
the dimension of the covariate vector 𝑋 increases7. In counterpart, Positiv-
ity is less likely as the number of dimensions increases, everything else being
equal. Without additional hypotheses concerning the data generation pro-
cess in high dimensional settings, the support of a treatment (respectively

6this is sometimes referred to as the "no spillover" hypothesis7With notable restrictions, as noted by Pearl (2011); Wooldridge (2016).
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control) subgroup might become so thin that it eventually excludes any con-
trol (resp. treatment) sample.

II.3.4.2 . Assumptions relaxation
Conditional exchangeability A significant body of work (Manski, 1990;
Díaz and Laan, 2013; Oprescu et al., 2023) analyze the sensitivity of causal es-
timates to covariate perturbations, that may create controlled levels of con-
founding. This analysis makes it possible to bound the error on the predicted
outcomes.

Along a different line of work and outside the Neyman-Rubin framework,
Chen et al. (2022) establishes an experimental setting to refute some erro-
neous causal estimates. This setting assesses the model robustness condi-
tioned using a random subset of covariates.
Positivity Assessing the robustness of the model w.r.t. violations of the
overlap assumption is of crucial importance in large dimensional covariate
spaces (D’Amour et al., 2021). Several approaches are proposed in the liter-
ature: i) building metrics insensitive to positivity breaches, such as Li (2019)’s
generalized overlap weights; or, ii) trimming non-overlap regions (Yang and
Ding, 2018).

Hong et al. (2019) establish convergence results for average and local
treatment effects in the Instrumental Variable setting (more in Section III.2.1).
Rothe (2017) and Armstrong and Kolesár (2021) study the estimates robust-
ness w.r.t. decreasing levels of overlap, providing confidence intervals.
Finally, Wu and Fukumizu (2021)’s 𝛽-Intact-VAEmodel provides accurate causal
estimates in situations where the latent representation is identifiable.
SUTVA As SUTVA is often violated in real-world applications (e.g., when in-
dividuals compete for a finite resource (Li et al., 2022) or influence each others
(Sinclair et al., 2012)), a comprehensive body of work has explored the esti-
mate robustness w.r.t. the interaction between units: Sobel (2006) sets the
partial interference framework, where samples are divided into groups that
do not interact with each other. Laffers and Mellace (2020) provide bounds
on ATE estimates depending on the share of units affected by SUTVA viola-
tion. Forastiere et al. (2021) establish analytical expressions measuring bias
for naive estimates that do not consider interactions.

II.4 . Causal effects identifiability

As already said, the central difficulty of causal inference is that, in super-
vised learning terms, the counter-factual data are unavailable. The feasibility
of causal inference, and the identification of the sought quantities of interest
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(Section II.2) thus relies on specific assumptions.

Causal effect identifiability is a property that holds in settings such that
there exists a single couple (

𝑥 ↦ 𝔼[𝑌 0
|𝑋 = 𝑥], 𝑥 ↦ 𝔼[𝑌 1

|𝑋 = 𝑥]
) explaining

the observed control and treatment distributions in the large sample limit8
(see Maclaren and Nicholson (2020) for a formal definition and Neal (2010) for
an application to causal inference). In other words, for any two admissible
potential outcomes distributions ℙ𝑋,𝑇 ,𝑌 0,𝑌 1 , ℙ̃𝑋,𝑇 ,𝑌 0,𝑌 1 of the setting,

(

𝑥 ↦ (𝔼ℙ𝑋,𝑇 ,𝑌 0 ,𝑌 1
[𝑌 0

|𝑋 = 𝑥],𝔼ℙ𝑋,𝑇 ,𝑌 0 ,𝑌 1
[𝑌 1

|𝑋 = 𝑥])
)

≠
(

𝑥↦ (𝔼ℙ̃𝑋,𝑇 ,𝑌 0 ,𝑌 1
[𝑌 0

|𝑋 = 𝑥],𝔼ℙ̃𝑋,𝑇 ,𝑌 0 ,𝑌 1
[𝑌 1

|𝑋 = 𝑥])
)

⟹ ℙ𝑋,𝑇 ,𝑌 ≠ ℙ̃𝑋,𝑇 ,𝑌

In the Neyman-Rubin potential outcomes framework, the Conditional Ex-
changeability, Positivity, and SUTVAassumptions ensure that one can com-
pute the average value of 𝑌 𝑡 given 𝑋 = 𝑥 (referred to as outcome function
or surface of contact), denoted 𝜇𝑡 ∶  ↦ ℝ:
∀𝑡 ∈ {0, 1}, 𝔼[𝑌 𝑡|𝑋 = 𝑥] = 𝔼[𝑌 𝑡 |𝑋 = 𝑥, 𝑇 = 𝑡] (conditional exchangeability)

= 𝔼[𝑌 𝑇 |𝑋 = 𝑥, 𝑇 = 𝑡]
= 𝔼[𝑌 |𝑋 = 𝑥, 𝑇 = 𝑡] (SUTVA) (II.5)

The positivity assumption then ensures that the last expression can be esti-
mated using Machine Learning methods for 𝑡 ∈ {0, 1}. Under the same as-
sumptions, one has:

𝔼[𝑌 1 − 𝑌 0
|𝑋 = 𝑥] = 𝔼[𝑌 |𝑋 = 𝑥, 𝑇 = 1] − 𝔼[𝑌 |𝑋 = 𝑥, 𝑇 = 0]

𝔼[𝑌 1 − 𝑌 0] = 𝔼
[

𝔼[𝑌 |𝑋 = 𝑥, 𝑇 = 1] − 𝔼[𝑌 |𝑋 = 𝑥, 𝑇 = 0]
]

8Consider for instance the potential outcomes distributions:

ℙ𝑋,𝑇 ,𝑌 0,𝑌 1 induced by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋 ∼ Ber(.5)
𝑇 ∼ Ber(.5)
𝑌 0 ∼ 𝑋 + 𝑇
𝑌 1 ∼ 𝑋

ℙ̃𝑋,𝑇 ,𝑌 0,𝑌 1 induced by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋 ∼ Ber(.5)
𝑇 ∼ Ber(.5)
𝑌 0 ∼ 𝑋
𝑌 1 ∼ 𝑋

Then the observational distributions entailed by ℙ𝑋,𝑇 ,𝑌 and ℙ̃𝑋,𝑇 ,𝑌 are identical, i.e,
(𝑋, 𝑇 , 𝑌 ) has the same law under both distributions. However,

𝔼ℙ𝑋,𝑇 ,𝑌 0 ,𝑌 1
[𝑦0|𝑋 = 𝑥] = 𝑥 + .5 ≠ 𝑥 = 𝔼ℙ̃𝑋,𝑇 ,𝑌 0 ,𝑌 1

[𝑦0|𝑋 = 𝑥]

and as such, in that setting causal effects identifiability does not hold. Note also thatconditional exchangeability holds in the distribution entailed by ℙ̃𝑋,𝑇 ,𝑌 0,𝑌 1 , but not inthat entailed by ℙ𝑋,𝑇 ,𝑌 0,𝑌 1
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This remark will be of utmost importance in the following since it provides
sufficient conditions to estimate CATE and ATE (Section II.2).

The reader is referred to White and Chalak (2013) for a more comprehen-
sive discussion of the necessary and sufficient conditions supporting the fea-
sibility of causal identification.

II.5 . Performance indicators

This section presents some indicators, measuring the performance of es-
timates for the quantities of interest.

Let 𝜏 ∶  → ℝ be an estimate of the true causal effect 𝜏 , with 𝜇̂0, 𝜇̂1 ∶  →

ℝ estimates of the potential outcomes. For the sake of simplicity and when
clear from the context, we shall use the same notation for the distributional
and empirical measures of the performance indicators. As (𝜇̂0, 𝜇̂1) induces a
causal effect estimate 𝜏 = 𝜇̂1 − 𝜇̂0, the performance indicators defined for 𝜏
also apply to pairs (𝜇̂0, 𝜇̂1).

II.5.1 . Usual metrics
The absolute error in Average Treatment Effect estimation (𝜖ATE)measures the error in expectation w.r.t. the true ATE.

𝜖ATE(𝜏) = |ATE − 𝔼[𝜏(𝑋)]|
= |𝔼[𝜏(𝑋) − 𝜏(𝑋)]|

By design, as it involves counter-factual quantities, this indicator cannot be
evaluated without additional assumptions.
The Precision in Estimation of Heterogeneous Effect (PEHE) intro-
duced by Hill (2011) measures the error in expectation of 𝜏 w.r.t. the true CATE:

PEHE(𝜏) = 𝔼
[

(𝜏(𝑋) − 𝜏(𝑋))2
]

In general, causal inference benchmarks do not report the PEHE directly, but
its root square9 √PEHE.
Themean squared error in ITE estimation (𝜖ITE) is similar to the PEHE
except that it measures the error in expectation w.r.t the ITE rather than the
CATE:

𝜖ITE(𝜏) = 𝔼
[

(𝜏(𝑋) − (𝑌 1 − 𝑌 0))2
] (II.6)

In the common setting where 𝑌 𝑡 is assumed to be sampled according to 𝑌 𝑡 =
𝜇𝑡(𝑋) + 𝜀𝑡 with 𝜀𝑡 is a noise term such that 𝔼[𝜀𝑡] = 0, 𝜀𝑡 ⟂⟂ 𝑋 and 𝜀0 ⟂⟂ 𝜀1, 𝜖ITE

9often misleadingly denotes as PEHE
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may be expressed as:
𝜖ITE(𝜏) = 𝔼

[(

𝜏(𝑋) − 𝜏(𝑋) + (𝜇1(𝑋) − 𝜇0(𝑋)) − (𝑌 1 − 𝑌 0)
)2]

= 𝔼
[(

𝜏(𝑋) − 𝜏(𝑋)
)2] + 2𝔼

[(

𝜏(𝑋) − 𝜏(𝑋)
)(

(𝜇1(𝑋) − 𝜇0(𝑋)) − (𝑌 1 − 𝑌 0)
)]

+ 𝔼
[(

(𝜇1(𝑋) − 𝜇0(𝑋)) − (𝑌 1 − 𝑌 0)
)2]

= PEHE(𝜏) + 2𝔼
[(

𝜏(𝑋) − 𝜏(𝑋)
)(

𝜀0 − 𝜀1
)]

+ 𝔼
[(

𝜀0 − 𝜀1
)2]

= PEHE(𝜏) + (𝜎0)2 + (𝜎1)2

where 𝜎2𝑡 is the variance of 𝜀𝑡. Up to an additive constant, the two notions
coincide.
The policy risk (Rpol) is inspired by reinforcement learning (Sutton
and Barto, 2018) and more specifically the multi-armed bandits framework
(Bubeck and Cesa-Bianchi, 2012). In all generality, it measures the outcome of
a binary policy determining the treatment of an individual: 𝜋 ∶  → {0, 1}:

Rpol(𝜋) = 1 − ℙ(𝜋(𝑋) = 1)𝔼[𝑌 1
|𝜋(𝑋) = 1]

− ℙ(𝜋(𝑋) = 0)𝔼[𝑌 0
|𝜋(𝑋) = 0]

Indeed a causal effect estimate 𝜏 is naturally associated with a binary policy
𝑥 ∈  ↦ 𝟙[𝜏(𝑥)>0]. Policy risk eventually assesses the ability of causal effect
estimates to predict the sign of the causal effects, with larger penalization for
errors made in regions where the gap between the two surfaces of contact
𝜇0, 𝜇1 is wide.

For any couple of binary policies (𝜋, 𝜋′), it comes:
Rpol(𝜋) = 1 − 𝔼[𝑌 0𝟙[𝜋(𝑋)=0] + 𝑌 1𝟙[𝜋(𝑋)=1]|𝜋(𝑋) = 1]ℙ(𝜋(𝑋) = 1)

−𝔼[𝑌 0𝟙[𝜋(𝑋)=0] + 𝑌 1𝟙[𝜋(𝑋)=1]|𝜋(𝑋) = 0]ℙ(𝜋(𝑋) = 0)
= 1 − 𝔼[𝑌 0𝟙[𝜋(𝑋)=0] + 𝑌 1𝟙[𝜋(𝑋)=1]] (law of total expectation)
= 1 − 𝔼[𝔼[𝑌 0𝟙[𝜋(𝑋)=0] + 𝑌 1𝟙[𝜋(𝑋)=1]|𝑋]] (law of total expectation)
= 1 − 𝔼[𝜇0(𝑋)𝟙[𝜋(𝑋)=0] + 𝜇1(𝑋)𝟙[𝜋(𝑋)=1]] (𝟙[𝜋(𝑋)=𝑡] is 𝜎(𝑋)-measurable)

Rpol(𝜋) − Rpol(𝜋′) = 𝔼[𝜇0(𝑋)(𝟙[𝜋(𝑋)=1]𝟙[𝜋′(𝑋)=0] − 𝟙[𝜋(𝑋)=0]𝟙[𝜋′(𝑋)=1])
+𝜇1(𝑋)(𝟙[𝜋(𝑋)=0]𝟙[𝜋′(𝑋)=1] − 𝟙[𝜋(𝑋)=1]𝟙[𝜋′(𝑋)=0])]

= 𝔼[𝜏(𝑋)(𝟙[𝜋(𝑋)=0]𝟙[𝜋′(𝑋)=1] − 𝟙[𝜋(𝑋)=1]𝟙[𝜋′(𝑋)=0])]

In particular, 𝜋𝜏 = 𝟙[𝜏(⋅)≥0] is a binary policy, with special property that
{

𝜏(𝑋)𝟙[𝜋𝜏 (𝑋)=1] ≥ 0 a.s.
𝜏(𝑋)𝟙[𝜋𝜏 (𝑋)=0] ≤ 0 a.s.

implying
Rpol(𝜋) − Rpol(𝜋𝜏) ≥ 0
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with equality iff 𝜋(𝑋) = 𝜋𝜏(𝑋) almost surely over 𝜏−1(ℝ∗). The optimal
decision thus boils down to estimating for each individual 𝑥 whether its
treated outcome is greater than its control one.

Let also oRpol denote the Observational Policy Risk, defined by
oRpol(𝜋) = 1 − ℙ(𝜋(𝑋) = 1)𝔼[𝑌 |𝜋(𝑋) = 1, 𝑇 = 1]

− ℙ(𝜋(𝑋) = 0)𝔼[𝑌 |𝜋(𝑋) = 0, 𝑇 = 0]

Contrarily to Rpol, the expression of oRpol depends only on observational quan-tities. Under appropriate assumptions (namely, 𝑌 𝑡 ⟂⟂ 𝑇 |𝜋(𝑋),∀𝑡 ∈ {0, 1}), the
values of Rpol and oRpol are equal (more detail in Eq. V.1).

II.5.2 . Evaluation of the metrics
The Monte-Carlo estimates of multiple of the above-mentioned metrics

are not feasible. For instance, 𝑌 0 and 𝑌 1 are never observed simultaneously,
preventing the computation of the 𝜖ITE estimate of a candidate model 𝜏:
𝜖ITE(𝜏) =

|

|

|

1
𝑛
∑𝑛
𝑖=1 𝜏(𝑥𝑖) − (𝑦1𝑖 − 𝑦

0
𝑖 )
|

|

|

. The same point holds for notably PEHE and
𝜖ATE.

This issue is alleviated in some causal inference benchmarks. For instance,
the IHDP dataset relies on real-world covariate and treatment assignment, but
the outcome is simulated; this makes it possible to access the CATE (more in
Section V.1.1.1).

𝜖ITE and Rpol necessitate to know both potential outcomes. As there exist
datasets where 𝑌 0 and 𝑌 1 are both known, simulating treatment assignment
(e.g. sampling 𝑇 |𝑋 according to some fixed probability distribution) makes it
possible to hide outcome 𝑌 0 or 𝑌 1 in a non-random way, and build a causal
inference dataset (see dataset Twins in Yao et al. (2018)).

Note that the counter-factual outcome, however, will never be part of
the data that may be leveraged so as to build the causal effect estimates.
A fundamental difficulty in comparing estimates is thus to define appropri-
ate experimental settings. Special care will be devoted to selecting hyper-
parameters and benchmarking models (more in Chapter VI).

II.6 . Auxiliary statistics

The state-of-the-art approaches in causal inference involve mainly three
auxiliary quantities: the propensity score (and its derivatives), the balancing
scores, and the prognostic scores.
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The propensity score denoted 𝜂(𝑥) is defined (Rosenbaum and Rubin,
1983) as the conditional probability of treatment given 𝑋 = 𝑥:

𝜂 ∶ 𝑥 ∈  ↦ ℙ(𝑇 = 1|𝑋 = 𝑥) (II.7)
Since treatment assignment is always observed in the Neyman-Rubin causal
model, the estimation of 𝜂 boils down to a mainstream supervised learning
problem. The estimator most commonly used in the literature is the logis-
tic regression, modeling 𝜂 by the function 𝑥 ∈  ↦

(

1 + exp(−(𝑎†𝑥 + 𝑏))
)−1

parameterized by (𝑎, 𝑏) ∈ (ℝ𝑑 ×ℝ).
The propensity score is typically used through propensity weights and

inverse propensity weights attached with each 𝑖-th sample, respectively
defined as 𝜂(𝑥𝑖) and 1

𝜂(𝑥𝑖)
.

The Inverse Probability of Treatment Weight (IPTW)10 derives from
the propensity score:

𝜚𝑡 ∶ 𝑥 ∈  ↦ ℙ(𝑇 = 𝑡|𝑋 = 𝑥)−1 (II.8)
Note that from this definition, it follows that:

𝜚𝑡 = 1
𝑡𝜂 + (1 − 𝑡)(1 − 𝜂)

= 𝑡
𝜂
+ 1 − 𝑡

1 − 𝜂

A common quantity in causal inference is the augmented inverse probabil-
ity weight11 (AIPW) defined as:

(2𝑡 − 1)𝜚𝑡 = 𝑡
𝜂
− 1 − 𝑡

1 − 𝜂

Usually, a propensity estimate 𝜂̂ is first built, then 𝜚̂ is defined as
𝜚̂𝑡 = 𝑡

clip(𝜂̂, 𝛼, 1 − 𝛼)
+ 1 − 𝑡

1 − clip(𝜂̂, 𝛼, 1 − 𝛼)

where the clipping parameter 𝛼 is typically set to .01or .05. Despite its bias, this
form has a reduced variance in extreme (close to 0 or 1) estimated propensity
regions.
A balancing score 𝑏(𝑋) is a function of the covariate vector X that makes
the covariates independent from the treatment assignment:

𝑋 ⟂⟂ 𝑇 |𝑏(𝑋)

10sometimes misleadingly referred to as inverse propensity weight11also referred to as augmented inverse propensity weight
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After Rosenbaumand Rubin (1983), the propensity score 𝜂 is a balancing score.
It is notably the coarser one, in the sense that 𝑏 is a balancing score if and only
if there exists some function 𝑓 such that 𝜂 = 𝑓◦𝑏. In particular, the identity
function over is a balancing score. Note that strong ignorability is preserved
by conditioning upon a balancing score:

If
{

(𝑌 0, 𝑌 1) ⟂⟂ 𝑇 | 𝑋
∀ Ω 𝑠.𝑡.ℙ(𝑋 ∈ Ω) > 0,ℙ(𝑇 = 0|𝑋),ℙ(𝑇 = 1|𝑋) > 0

then
{

(𝑌 0, 𝑌 1) ⟂⟂ 𝑇 | 𝑏(𝑋)
∀ Ω 𝑠.𝑡.ℙ(𝑏(𝑋) ∈ Ω) > 0,ℙ(𝑇 = 0|𝑏(𝑋) ∈ Ω),ℙ(𝑇 = 1|𝑏(𝑋) ∈ Ω) > 0

A prognostic score after Hansen (2008) is a random variable 𝜙(𝑋) such
that

𝑌 0 ⟂⟂ 𝑋 | 𝜙(𝑋)

i.e. 𝜙(𝑋) encapsulates the sufficient statistics to predict 𝑌 0 (in short, is suffi-
cient for 𝑌 0). In the casewhere the prognostic score is not sufficient for 𝑌 1, the
random variable 𝑚(𝑋) is called an effect modifier if {𝜙(𝑋), 𝑚(𝑋)} is sufficient
for 𝑌 1.

Prognostic scores preserve conditional exchangeability: assuming that
conditional exchangeability holds w.r.t X, it comes 𝑌 0 ⟂⟂ 𝑍 | 𝜙(𝑋).12 Notably,
if 𝜙 is injective, 𝜙(𝑋) is sufficient for 𝑌 0.

12The reader is referred to Hansen (2006) for more detail; see proposition 3 and itsproof.
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This chapter introduces three goals pertaining to causal learning, distin-
guishing causal discovery and causal inference. Causal discovery (Section III.1)
is concerned with determining the causal relations among a set of variables
from observational data  = {(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)}𝑖∈J1,𝑛K. More related to the presented
work are methods aimed to measure the impact of a binary treatment over a
whole population, that is, the Average Treatment Effect (Section III.2), contrast-
ing the treated and control populations (respectively formed of the samples
with 𝑡𝑖 = 1 and with 𝑡𝑖 = 0). The chapter last details the approaches concerned
with heterogeneous estimates of the treatment effect, where the estimated
effect depends on the covariate, that is, the Conditional Average Treatment
Effect (Section III.3).

III.1 . Causal discovery

Causal discovery aims to recover the causal graph among a set of variables
𝑋 given observations (Spirtes et al., 1993; Peters et al., 2017). We first introduce
themain framework used in the causal discovery literature (Section III.1.1), i.e.,
the model space. How to identify the sought model and recover the causal
graph is described in Section III.1.2.

III.1.1 . Functional causal model framework
Let us present the Functional Causal Model (FCM) framework 1. Let 𝑉 𝑋 =

(𝑣𝑋1 ,… , 𝑣𝑋𝐷) and 𝑉 𝑁 = (𝑣𝑁1 ,… , 𝑣𝑁𝐷 ) be two sets of 𝐷 vertices and  be a Di-
rected Acyclic Graph over vertices 𝑉 𝑋 ∪ 𝑉 𝑁 . For simplicity and by abuse of
notations, the vertex is also noted as the variable it refers to, with 𝑣𝑋𝑖 corre-
sponding to the endogenous, observed variable𝑋𝑖, and 𝑣𝑁𝑗 corresponding to
an exogenous, noise variable 𝑁𝑗 . Graph  satisfies the following two condi-
tions:

1. each endogenous vortex 𝑣𝑋𝑑 admits exactly one vortex (𝑣𝑋𝑑 ) as an ex-
ogenous parent (and an arbitrary number of endogenous vertices as
parents too): ∀𝑑 ∈ J1, 𝐷K, Pa(𝑣𝑋𝑑 ) ∩ 𝑉

𝑁 = {𝑣𝑁𝑑 }

2. no each exogenous vortex admits a parent: ∀𝑑 ∈ J1, 𝐷K, Pa(𝑣𝑁𝑑 ) = ∅

Let  = (𝑓1,… , 𝑓𝐷) be a set of 𝐷 causal mechanisms (𝑓𝑑 ∶ ℝ|Pa(𝑣𝑋𝑑 )| → ℝ).
The couple (, ) then defines a Functional Causal Model: Each of the𝐷 en-

1functional causal models suit a presentation of the scope of causal discovery, butother frameworks exist. For a presentation of Structural Equation Models or CausalBayesian Networks, we refer the reader to Pearl (2009)
29
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𝑋1 = 𝑓1(𝑁1)
𝑋2 = 𝑓2(𝑋1, 𝑁2)
𝑋3 = 𝑓3(𝑋1, 𝑁3)
𝑋4 = 𝑓4(𝑋3, 𝑁4)
𝑋5 = 𝑓5(𝑋3, 𝑋4, 𝑁5)

Figure III.1: A Functional Causal Model (taken from Kalainathan et al. (2022)).The graph is directed and acyclic. All endogenous vertices admit exactly onevertex as an exogenous parent; no exogenous vertex admits a parent.

dogenous variables 𝑋𝑑 is described as a function (𝑓𝑑 , the causal mechanism)
of their endogenous parents (their causes) and the (exogenous) noise𝑁𝑑 :

𝑋𝑑 = 𝑓𝑑(𝑋
(Pa(𝑣𝑋𝑑 )∩𝑉

𝑋 ), 𝑁𝑑), 𝑑 ∈ J1, 𝐷K

By construction, the joint distribution over the endogenous variables
𝑋1,…𝑋𝐷 follows from the product distribution of the independent 𝐷 noise
variables

ℙ𝑁1,…,𝑁𝐷 = Π𝐷𝑑=1ℙ𝑁𝑑

through Section III.1.1, as depicted on Fig. III.1.
The direct problem consists of sampling the distribution ℙ𝑋1,…,𝑋𝐷 based

on the joint distribution ℙ𝑁1,…,𝑁𝐷 and knowing the FCM structure. Causal dis-
covery tackles the (much more difficult) inverse problem: inferring the func-
tional causal model based on observations sampled after ℙ𝑋1,…,𝑋𝐷 .Many FCM settings are defined in the literature, in order to match real-
life data generation processes and/or to facilitate causal discovery. A most
common FCM setting, referred to as Additive Noise Model (Hoyer et al., 2008;
Peters et al., 2014; Chicharro et al., 2019; Montagna et al., 2023), assumes that
the functional mechanisms 𝑓𝑑 are of the form:

𝑓𝑑(𝑋
(Pa(𝑣𝑋𝑑 )∩𝑋), 𝑁𝑑) = 𝑔𝑑(𝑋

(Pa(𝑣𝑋𝑑 )∩𝑋)) +𝑁𝑑 , 𝑑 ∈ J1, 𝐷K

III.1.2 . Main strategies
The many strategies designed to identify the underlying causal graph can

be structured along four categories; the reader is referred to Zanga and Stella
(2022) for a comprehensive survey. These categories include: i) score-based
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methods; ii) constraints-based methods; iii) hybrid methods; and iv) methods
relying on asymmetries or causal footprints.

III.1.2.1 . Score-based methods
Score-basedmethods use a global score to assess the quality of any given

graph w.r.t. the observational data, and they tackle the combinatorial opti-
mization problem of finding the candidate graph maximizing the score. The
celebrated Greedy Equivalent Search algorithm starts from an empty graph
(Chickering, 2002). During the forward search, Greedy Equivalent Search suc-
cessively adds the edge that most increases the score until no increase is pos-
sible. In the backward search, it inversely removes edges that minimally de-
crease the score. The efficiency and scalability of score-basedmethodsmainly
depend on the score and its computational complexity. Adequate caching of
intermediate results, avoiding to re-evaluate partial solutions, makes it possi-
ble to accelerate Greedy Equivalent Search into Fast Greedy Equivalent Search
(Ramsey et al., 2017).

III.1.2.2 . Constraint-based methods
Constraint-based methods use dependence and conditional indepen-

dence statements, based on statistical tests, to identify the edges and
the so-called 𝑉 structures in the graph. Dependences and conditional
independences are exploited to identify the skeleton of the sought causal
graph, referred to as partially completed directed acyclic graph (CPDAG). The
Peter-Clark algorithm (Spirtes and Glymour, 1991; Spirtes et al., 1993) is among
the earliest and best-known constraint-based methods. The Fast Causal
Inference (Cooper and Glymour, 1999) algorithm extends Peter-Clark and re-
laxes its assumptions, notably concerning the absence of latent confounders
and selection bias. The main weakness of constraint-based methods is
the number of conditional independence tests required to find a CPDAG,
because of the computational complexity on the one hand, and because of
the multiple hypothesis testing issue on the other hand. It is desirable to
use sophisticated statistical tests (as opposed to a mere correlation among
variables), such as the Hilbert-Schmidt Independence Criterion (Gretton et al.,
2007) or the Kernel Conditional Independence test (Zhang et al., 2011).

While the consistency in the large sample limit of score- and constraint-
based methods is thoroughly studied, they suffer from a lack of guarantees
in real-life situations, especially when the total number of features increases.

III.1.2.3 . Hybrid methods
Hybrid methods leverage constraints to obtain a reduced search space,

enabling the running of score-based methods with reduced computational
cost. The Max-Min Hill Climbing algorithm (Tsamardinos et al., 2006) first
builds a constraint-based graph skeleton and thereafter orients its edges us-
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ing a score-based method. Adaptively Restricted Greedy Equivalent Search
(Nandy et al., 2018) handles causal discovery of up to thousands of features
under sparsity assumptions. Ogarrio et al. (2016) proposes the best of both
worlds, addressing the limitations of score-based methods w.r.t. unobserved
confounders and that of constraint-basedmethods in small samples regimes,
through hybridizing Fast Greedy Equivalent Search (that provides an initial
skeleton) and Fast Causal Inference (to orient the skeleton edges efficiently).

III.1.2.4 . Methods relying on asymmetries or causal footprints

These methods improve on the abovementioned ones by making strong
− though unlikely to hold in practice − assumptions to be able to orient
all their edges. The Linear Non-Gaussian Acyclic Model (LinGAM) handles
continuously-valued data using independent component analysis, under
the assumption that noise variables are non-Gaussian (Shimizu et al., 2006).
Non-combinatorial Optimization via Trace Exponential and Augmented
lagRangian for Structure learning (NoTEARS) exploits a continuous charac-
terization of DAG matrices (Zheng et al., 2018); formally, matrix 𝐵 is a DAG if
and only if the trace of its exponential matrix 𝑒𝐵 is the number 𝑑 of variables.
This shift from combinatorial to continuous optimization paves the way for
neural networks-based approaches. Notably, Gradient-based Neural DAG
(Lachapelle et al., 2019) uses Auto-Encoders to model dependencies among
variables while maintaining the acyclicity of the underlying graph. Structural
Agnostic Modelling (Kalainathan et al., 2022) uses Generative Adversarial
Networks to model each variable from all other variables plus a noise
variable, akin to a Markov kernel, and uses the dependency relations with
DAG-enforcing constraints to infer the graph structure. Reinforcement Learn-
ing has also been leveraged by Zhu et al. (2020) to achieve causal discovery,
where the agent actions consist of adding, removing, and reversing an edge.
The state space is formed of all graphs involving the considered observed
variables.

III.2 . Average Treatment Effect estimation

ATE models aim to answer questions at the population level: how much
would a given policy improve school enrolment of teenage girls (Beaman et al.,
2012)? how much do deworming policies improve general health (Miguel and
Kremer, 2004)?

ATE methods are heavily investigated and used in econometrics. Indeed,
answering questions at the population level avoids the pitfalls of finer-grained
analysis, thanks to a higher statistical power, and a reduced uncertainty; such
answers are more clear and convincing for e.g. policymakers. Most gener-
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ally, ATE is appropriate when dealing with scarce observational data, due to
experiment cost or practical feasibility.

Note that CATE estimators entail ATE estimators. From the equality ATE =
𝔼[𝜏(𝑋)] it follows that a CATE estimate 𝜏 induces estimate 𝔼[𝜏(𝑋)] (we come
back to the CATE estimation task in Section III.3).

We first examine methods where external variables (instrumental vari-
ables) are leveraged to avoid confounding bias (Section III.2.1). Othermethods
aim at bringing the treated and the control population closer to each other in
order to shed light on the actual impact of the treatment, the two distributions
remaining the same (Section III.2.2.1) or using a change of representation (Sec-
tion III.2.2.2). Statistical properties of suchmethods have been investigated to
assess their asymptotic behavior and guarantees (Section III.2.3).

III.2.1 . Instrumental variables
Instrumental Variable-based (IV) estimation aims at measuring the impact

of covariates 𝑋 on a quantity of interest, a.k.a. outcome 𝑌 in settings where
a direct regression (estimating 𝑌 as a function of 𝑋) would lead to biased
estimates. Such biases might be due to confounders (a third hidden variable
causes both 𝑋 and 𝑌 ), reverse causation (𝑌 is a cause of 𝑋), or correlated
measurement errors (acting as a confounder on the measured values of 𝑋
and 𝑌 ).

Figure III.2: Causal graph with instrumental variables 𝑍.

In such cases, a third variable 𝑍 influencing 𝑌 through 𝑋 only (Fig. III.2),
referred to instrumental variable, can be leveraged to estimate ATE. For
instance, the price of tobacco affects the population of smokers and is
likely to decrease the consumption of tobacco, but it has no direct effect on
tobacco-related diseases, ceteris paribus. Therefore, if a rise in tobacco prices
is associated with some general health improvement, a negative causal effect
of smoking on individual health may be inferred.
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The identification of a suitable instrumental variable 𝑍 relies on domain
knowledge. Following Lousdal (2018), instrumental variables 𝑍 must be:

1. relevant, i.e. with causal influence on 𝑋;
2. exclusive, i.e. such that their only influence on 𝑌 is through their influ-

ence on 𝑋 (𝑌 ⟂⟂ 𝑍|𝑋);
3. exchangeable2, i.e., such that there are no common causes for 𝑍 and 𝑌 .
The instrumental variable method, long used by econometrists, is con-

sistent with the Neyman-Rubin potential outcome framework (Angrist et al.,
1996); note that it also applies in more general settings, e.g., involving contin-
uously valued treatments.

Suppose that the true data generation process is of the form 𝑌 = 𝑋𝛽 +𝑈 ,
where 𝑈 is a residual term that stands for all influences other than 𝑋. Let us
further assume that there exists a 𝑍 variable, linearly related to 𝑋:

𝑋 = 𝑍𝛾 + 𝑈

with dim(𝑍) > dim(𝑋). The IV method proceeds by:

1. Regressing 𝑋 on 𝑍 , leading to an estimate 𝑋̂ independent from U:
Let 𝑋̂ = 𝑃𝑍𝑋 with 𝑃𝑍 = 𝑍(𝑍𝑇𝑍)−1𝑍𝑇 the projection matrix on 𝑍. By
construction, 𝑋̂ is independent of 𝑈 .

2. Regressing 𝑌 on 𝑋̂, with coefficient vector
𝛽IV = (𝑋̂𝑇 𝑋̂)−1𝑋̂𝑇 𝑌

= (𝑋𝑇𝑃𝑍𝑋)−1𝑋𝑇𝑃𝑍𝑌

3. Assuming that 1
𝑛
𝑍𝑇𝑈 converges to 0 in probability, 𝛽IV is provably a con-sistent estimate for 𝛽.

Note that the above procedure is a particular, linear, case of the Generalized
Method of Moments (see below).

On the one hand, the IV method is efficient and theoretically grounded.
On the other hand, the choice of instrumental variables requires strong ex-
pertise in the application domain, and it governs the overall performance of
the approach. Bound et al. (1995) show that weak instrumental variables (i.e.,
poorly correlated with the outcome) may lead to biased or inconsistent esti-
mates. Their selection can be achieved using specific statistical tests (Stock
et al., 2002).

Various approaches have been considered in the linear setting, stressing
themodel space expressivity. The GeneralizedMethod ofMoments estimator

2"exchangeability" is also referred to as "independence", "ignorable treatment as-signment," or "no confounding".
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(Hansen, 1982; Hansen et al., 1996) relaxes the assumptions on the residual
term 𝑈 and proposes a criterion defining a single optimum, enjoying strong
consistency, asymptotic normality and efficiency.

In the nonlinear setting, the model reads
𝑌 = 𝑓 (𝑍, 𝛽) + 𝑈

where 𝑍 and 𝑈 are independent, and non-linearities occur in the variables
(Kelejian, 1971) and/or in the model parameters (Zellner et al., 1965). Amemiya
(1974) proposes a nonlinear two-stage least-squares estimator of 𝑓 and
𝛽. Newey and Powell (2003); Ai and Chen (2003) extend this work to the
nonparametric setting. Hartford et al. (2017) has investigated the use of IV
methods in larger-dimensional settings, modeling the relations between
𝑋, 𝑌 ,𝑍 through neural networks, while Singh et al. (2019) use reproducing
kernel Hilbert spaces (Support Vector Machines).

III.2.2 . Balancing methods
As methods that enforce balance in a latent space3 typically aim at esti-

mating the CATE rather than the ATE, they will be detailed in Section III.3. In
the following are considered methods that associate subsets of the control
and treated distributions (Section III.2.2.1), andmethods that affect weights to
the samples (Section III.2.2.2).

III.2.2.1 . Matching methods
As shown in the Simpson Paradox example (Section I.2), comparing

the raw average success rates of percutaneous nephrolithotomy and open
surgery leads to a biased conclusion since exchangeability does not hold.
However, comparing two patients with similar kidney stone sizes but differ-
ent treatment assignments still makes sense: informally, this is the intuition
behind the matching methods.

More formally, matching methods constitute a heterogeneous en-
semble of pre-processing algorithms that aim at bringing the treated
and control distributions close to one another (Cochran, 1953; Billewicz,
1965). The core justification of such approaches is that they weaken the
statistical dependence between covariates 𝑋 and treatment 𝑇 (Ho et al.,
2007). Multiple characterizations of balance exist in the literature. Fine
balance (Rosenbaum et al., 2007) is when the marginals of the treated and
control distributions are identical. This property is however neither necessary
nor sufficient to support causal inference (see, e.g., Yang et al. (2012) for a
discussion about the trade-off between fine matching and minimizing the
distance between treated and control samples). Diverse methods consider

3𝑋 ⟂⟂ 𝑇 |𝜙(𝑋),with 𝜙 ∶  → ℝ𝑑 , 𝑑 ≥ 2
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different balance criteria (measuring the similarity between the control and
the treated distributions through e.g. first-order or higher-order moments,
high-order statistical dependencies, and functions of the covariates). In
practice, matching methods often involve multiple hyper-parameters and
can be iterated until reaching a satisfactory level of balance (Austin, 2008;
Stuart, 2010; Li and Greene, 2013).

Following Stuart (2010) we distinguish two main classes of matching ap-
proaches:

1. Nearest neighbor matchings typically tackle ATT or ATC estimation
problems, for they are asymmetrical in their approach. In the follow-
ing and without loss of generality, the case of ATT estimation will be
considered (the case of ATC follows by symmetry).
Nearest neighbor matchings rely on a (pseudo-)distance over the co-
variate space. In Exact Matching, 𝑑(𝑥𝑖, 𝑥𝑗) = 0 if 𝑥𝑖 = 𝑥𝑗 , +∞ otherwise.
Although this may be relevant in settings where the features are cate-
gorical and in a low total number, in high dimensional settings exact
matching is prone to failure for all samples are likely infinitely distant
from each other. Coarsened Exact Matching (Iacus et al., 2012) turns
each feature of𝑋 first into coarse categorical data 𝑐(𝑋) (e.g. by binning
continuous variables, or grouping categorical variables), forming strata
defined as unique combinations of the coarsened features (i.e., voxels
in the coarsened space). Mahalanobis Distance Matching relies on
the Mahalanobis distance: 𝑑(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 − 𝑥𝑗)†Σ−1(𝑥𝑖 − 𝑥𝑗) (where
Σ is the covariance matrix for ATE estimation, or that of the control
population when estimating ATT ). Propensity Score Matching builds
on a pseudo-distance based on conditional probability of treatment as-
signment: defining by 𝜂̂ a propensity estimate, 𝑑(𝑥𝑖, 𝑥𝑗) = |𝜂̂(𝑥𝑖) − 𝜂̂(𝑥𝑗)|or 𝑑(𝑥𝑖, 𝑥𝑗) = |logit(𝜂̂(𝑥𝑖)) − logit(𝜂̂(𝑥𝑗))| (Rosenbaum and Rubin, 1985).
Once a distance is chosen, all treated samples are iteratively matched
with their closest control neighbor ("1:1" matching), or to their 𝑘 nearest
control neighbors ("k:1" matching) (Rubin, 1973). Depending on the
considered method, multiple treated samples may be matched to the
same control one ("without replacement") or not ("with replacement").
This protocol is however naive, and several issues may arise. First,
when matching without replacement, the order in which the treated
samples are considered affects the procedure output. Optimal match-
ing (Rosenbaum, 2002) procedures aim at minimizing the total distance
between treated samples and their matched counterparts, optimiza-
tion being carried through network flow approaches (Rosenbaum,
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1989) or mixed integer programming (Zubizarreta, 2012). However,
when a treated sample is far away from all remaining unmatched
control ones, comparing it with its closest neighbor makes little sense.
Caliper approaches (Cochran and Rubin, 1973) discard treated samples
if no unmatched control sample remains within a fixed distance.
Note how delicate is the choice of the hyper-parameter 𝑘 in "k:1"
matching: larger values may reduce estimation variance at the price
of an increased bias (samples further away are of lower relevance).
Finally, matching on a one-dimensional score (e.g., projection over a
feature axis or propensity score) may match highly unrelated samples
in large-dimensional settings. Neural Score Matching (Clivio et al., 2022)
leverages neural networks to learn multi-dimensional balancing scores
that avoid this drawback.
Once all treated samples are matched, standard treatment effect eval-
uation methods may be used. For instance, denoting by𝑀𝑇 the subsetof matched samples and𝑀𝐶 the subset of control ones, ATT might be
estimated as 1

|𝑀𝑇 |

∑

(𝑥,𝑡,𝑦)∈𝑀𝑇
𝑦 − 1

|𝑀𝐶 |

∑

(𝑥,𝑡,𝑦)∈𝑀𝐶
𝑦.

2. Subclassification machings are more versatile and may tackle ATE
as well as ATT and ATC estimation problems. They consist in building
groups of samples that are homogeneous with respect to a given
criterion: the samples in each group are thus matched. The entailed
partition may typically be based on the quantiles of a feature axis
(Cochran, 1968), or the estimated propensities (Rosenbaum and Rubin,
1985).
If subclassification is based on propensity score quantiles, all samples
within the same group have close probabilities of treatment assign-
ment. Such a property is especially relevant since the propensity score
is known to be a balancing score (Section III.2.2.2): 𝑋 ⟂⟂ 𝑇 |𝜂(𝑋). In
other words, propensity matching approximately enforces balance
within each group.
Let 𝐺 = (𝑔1,… , 𝑔

|𝐺|) denote the resulting groups, and ÂTE(𝑔) be an esti-mate of the Average Treatment Effect based on samples in 𝑔4. The ATE
of the global population may be estimated as the average of all group
estimates: ÂTE = 1

|𝐺|
∑

𝑔∈𝐺 ÂTE(𝑔). The importance of the groups may
also be adapted to account for different sizes (ÂTE = 1

|𝐺|
∑

𝑔∈𝐺
|𝑔|
|𝐺|
ÂTE(𝑔))

or to compute other metrics (ÂTT = 1
|𝐺|

∑

𝑔∈𝐺
|{(𝑥,𝑡=1,𝑦)∈𝑔}|
|{(𝑥,𝑡=1,𝑦)∈}| ÂTE(𝑔)).

4as a rough approximation, one may estimate it as
ÂTE(𝑔) = 1

|{(𝑥, 𝑡 = 1, 𝑦) ∈ 𝑔}|
∑

(𝑥,𝑡=1,𝑦)∈𝑔
𝑦 − 1

|{(𝑥, 𝑡 = 1, 𝑦) ∈ 𝑔}|
∑

(𝑥,𝑡=0,𝑦)∈𝑔
𝑦



38 CHAPTER III. STATE OF THE ART

Multiple desirable matching properties have been identified. Rubin (1976)
pinpoints methods that are Equal Percent Bias Reducing; they focus on
the first-order moments of the distributions, and provably reduce the dis-
crepancy between the mean of the treated and matched control population
along each feature axis. Notably, Mahalanobis matching (based on the Ma-
halanobis distance) and propensity score matching (based on the absolute
difference of estimated propensities) are equal percent bias reducing. Iacus
et al. (2011) presentMultivariate Imbalance Boundingmethods, that involve
higher-order statistics. Coarsened Exact Matching is for instance multivariate
imbalance bounding.

Matching methods face multiple pitfalls. It is emphasized that matching
criteria should consider neither the outcome variable 𝑌 nor any consequence
of 𝑌 . Moreover, most methods require a minimum overlap of the treated
and control distribution. Identifying the regions that should be pruned raises
critical difficulties in high dimensional covariate spaces; for instance King and
Zeng (2007) recommenddiscarding control samples outside of the convex hull
of the treated samples.

Following LaLonde (1986)’s warning, the discussion between Dehejia and
Wahba (1999, 2002); Dehejia (2005) and Smith and Todd (2001, 2005a,b) sheds
light on the pros and cons of matching methods. The main critiques against
propensity score matching after King and Nielsen (2019) are related to "in-
creasing imbalance, inefficiency, model dependence, research discretion and
bias". Specifically, propensity score matching is sensitive w.r.t. the choice of
the model; causal estimates based on different models that fit the data ap-
proximately equally well, may be different.

III.2.2.2 . Reweighting methods
Numerous methods exist in the literature to estimate population-level ef-

fects, without resorting to matching. Reweighting methods do not discard
data or create subgroups; each sample is simply associated with a weight.
Again, this change of representation is often viewed as a preprocessing step.
Inverse Probability of Treatment Weighting (IPTW), as many other
reweighting methods, is viewed as a Balance Method. In the Neyman-Rubin
framework, given a propensity estimate 𝜂̂ (entailing estimate of the inverse
probability of treatment weights 𝜚̂⋅, Eq. II.8), the Average Treatment Effect
over an observational dataset is estimated by one of the following formulae
(Lunceford and Davidian, 2004):
ÂTE1 =

1
||

∑

(𝑥,𝑡,𝑦)∈

𝑡
𝜂̂(𝑥)

𝑦 − 1
||

∑

(𝑥,𝑡,𝑦)∈

1 − 𝑡
1 − 𝜂̂(𝑥)

𝑦 = 1
||

∑

(𝑥,𝑡,𝑦)∈
(2𝑡 − 1)𝜚̂𝑡(𝑥)𝑦

ÂTE2 =
(

∑

(𝑥,𝑡=1,𝑦)∈
𝜚̂1(𝑥)

)−1 ∑

(𝑥,𝑡=1,𝑦)∈
𝜚̂1(𝑥)𝑦 −

(

∑

(𝑥,𝑡=0,𝑦)
𝜚̂0(𝑥)

)−1 ∑

(𝑥,𝑡=0,𝑦)
𝜚̂0(𝑥)𝑦



III.2. AVERAGE TREATMENT EFFECT ESTIMATION 39
ÂTE3 =

(

∑

(𝑥,𝑡=1,𝑦)∈
𝜚̂1(𝑥)

(

1 − 𝜚̂1(𝑥)𝐶1
)

)−1 ∑

(𝑥,𝑡=1,𝑦)∈
𝜚̂1(𝑥)

(

1 − 𝜚̂1(𝑥)𝐶1
)

𝑦

−
(

∑

(𝑥,𝑡=0,𝑦)
𝜚̂0(𝑥)

(

1 − 𝜚̂0(𝑥)𝐶0
)

)−1 ∑

(𝑥,𝑡=0,𝑦)
𝜚̂0(𝑥)

(

1 − 𝜚̂0(𝑥)𝐶0
)

𝑦

where 𝐶1 =
∑

(𝑥,𝑡,𝑦)∈ 𝑡𝜚̂
1(𝑥) − 1

∑

(𝑥,𝑡,𝑦)∈
(

𝑡𝜚̂1(𝑥) − 1
)2
, 𝐶0 =

∑

(𝑥,𝑡,𝑦)∈(1 − 𝑡)𝜚̂
0(𝑥) − 1

∑

(𝑥,𝑡,𝑦)∈
(

(1 − 𝑡)𝜚̂0(𝑥) − 1
)2

and assuming potential outcome estimates 𝜇̂0, 𝜇̂1 are available,
ÂTEDR =

1
||

∑

(𝑥,𝑡,𝑦)∈
(𝜇̂1 − 𝜇̂0)(𝑥) + (2𝑡 − 1)𝜚̂𝑡(𝑥)

(

𝑦 − 𝜇̂𝑡(𝑥)
)

The merits of ÂTE2 and ÂTE3 are to extend ÂTE1 with smaller variance (Liao
and Rohde, 2022). ÂTEDR, also called Augmented Inverse Propensity Weighting
(AIPW) ATE estimate, is doubly robust in the sense that it is provably consistent
even in the case where either the propensity or the outcome model (but not
both) is misspecified.

ÂTEDR however might suffer from an unbounded variance in cases (fre-
quent in practice) where the propensity estimates take values close to 0 or
1. Several methods have been proposed to address this drawback. Crump
et al. (2009) suggest excluding samples with estimated propensity outside
of [𝛼, 1 − 𝛼], with 𝛼 set to 0.1 as a rule of thumb, while Stürmer et al. (2010)
prefer lower and upper bounds defined by 𝑞−quantiles: [quantile𝑞(𝜂̂𝑖 |𝑡𝑖 =
1), quantile1−𝑞(𝜂̂𝑖 |𝑡𝑖 = 0)]. Trimming weights consists in capping the propen-
sity values with 𝛼 for 𝜂 < 𝛼 and symmetrically with 1 − 𝛼 for 𝜂 > 1 − 𝛼 (Potter,
1990).
Generalization Li et al. (2018) notices that ATE = 𝔼[𝜏(𝑋) × 1], ATT =
𝔼[𝜏(𝑋) × 𝜂(𝑋)], ATC = 𝔼[𝜏(𝑋) × (1 − 𝜂)(𝑋)] and by generalization defines the
Weighted Average Treatment Effect as:

𝜗∶ { → ℝ∗
+} ⟶ ℝ
ℎ⟼ 𝔼[𝜏(𝑋) × ℎ(𝑋)]

As an immediate consequence, ATE = 𝜗(1), ATT = 𝜗(𝜂), ATC = 𝜗(1 − 𝜂).
Li et al. (2018) also shows that, (𝑤0

ℎ, 𝑤
1
ℎ) and 𝜏ℎ being defined in accordancewith Table III.1, the latter is a consistent estimate of 𝜗(ℎ):

𝜏ℎ =
∑

𝑖𝑤
1
ℎ(𝑥𝑖)𝑡𝑖𝑦𝑖

∑

𝑖𝑤
1
ℎ(𝑥𝑖)𝑡𝑖

−
∑

𝑖𝑤
0
ℎ(𝑥𝑖)(1 − 𝑡𝑖)𝑦𝑖

∑

𝑖𝑤
0
ℎ(𝑥𝑖)(1 − 𝑡𝑖)

(III.1)
Such a versatile notation makes it possible to define easily other esti-
mands, such as the Average Treatment effect on the Overlap region
ATO = 𝔼[𝜏(𝑋)𝜂(𝑋)(1 − 𝜂)(𝑋)].
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Estimand ℎ (𝑤0
ℎ, 𝑤

1
ℎ)

ATE 1 ( 1
𝜂
, 1
1−𝜂

)

ATT 𝜂 (1, 𝜂
1−𝜂

)

ATC 1 − 𝜂 (1−𝜂
𝜂
, 1)

ATO 𝜂(1 − 𝜂) (1 − 𝜂, 𝜂)

𝟙[𝛼<𝜂<1−𝛼], 𝛼 ∈ ℝ (𝟙[𝛼<𝜂<1−𝛼]
𝜂

, 𝟙[𝛼<𝜂<1−𝛼]
1−𝜂

)

min(𝜂, 1 − 𝜂) (min(𝜂,1−𝜂)
𝜂

, min(𝜂,1−𝜂)
1−𝜂

)

Table III.1: Estimand-weights correspondence.
III.2.3 . Doubly Robust Machine Learning

Chernozhukov et al. (2018) observes that ML-based approaches used in
causal inference are subject to large biases. Overfitting the 𝑛 samples in
the observational data, the increasing use of regularization to compensate
for a large parameter space, correlated errors in two-stages protocols
(Section III.3.1.2): all these factors prevent the learned models from achieving
√

𝑛-consistency.
Relying on Neyman-orthogonal (Neyman, 1979) scores and cross-fitting,

such convergence rate can be provably achieved using the famed Doubly Ro-
bust (DR) Machine Learning. DR machine learning is robust to the misspeci-
fication of one of its two core components, either the estimated propensity
score or outcome function. With an appropriate training protocol relying on
cross-training, Chernozhukov et al. (2018) extends this framework into Double
Machine Learning, and provably obtains√𝑁-consistent estimates.

Similarly, Shi et al. (2019) presents the Dragonnet neural architecture,
where double robustness is enforced using a feed-forward neural network
trained with a simple protocol, with an adequate regularization term inspired
by target maximum likelihood estimation (Laan and Rose, 2011).

Note that doubly robust Machine Learning does not restrict to population-
level estimation. See Section III.3.1.7 for further development regarding CATE
estimation.

III.3 . Conditional Average Treatment Effect estima-
tion

As said, measuring the impact of a given treatment at the whole popula-
tion scale offers clear and comparatively less uncertain answers. Still, in appli-
cation domains (such as health and advertising to name a few) grows the need



III.3. CONDITIONAL AVERAGE TREATMENT EFFECT ESTIMATION 41
for heterogeneous estimates, approximating the causal effects conditionally
to the covariates and thus providing sample-dependent information.

As large datasets become increasingly available, they support the estima-
tion of causal effects at group levels (instead of, on the whole population).
Machine Learning is thus leveraged to predict the potential outcomes as func-
tions of the covariates 𝑋, while counter-factuals remain unavailable by con-
struction.

The Conditional Average Treatment Effect (CATE) is meant to estimate the
expected benefit of the treatment at the subpopulation/individual level5, for-
mally defined (Eq. IV.2) as

𝜏(𝑥) = 𝐸[𝑌 1 − 𝑌 0
|𝑋 = 𝑥]

Let us first examine the different types of CATE approaches, referred to
as "meta-learners" (Section III.3.1). Section III.3.2 is devoted to the case where
conditional exchangeability does not hold, hindering the identifiability of dis-
tributional approaches. The chapter last discusses the main challenges of
CATE estimation (Section III.3.3).

III.3.1 . Meta-learners
After Künzel et al. (2019); Nie and Wager (2021); Kennedy (2023), CATE algo-

rithms can be divided into seven categories, or meta-learners: the most com-
mon two are S-learners (Section III.3.1.1) and T-learners (Section III.3.1.2), while
the remaining X-,R-,F-,U,DR-learners (Sections III.3.1.3 to III.3.1.7) aremainly con-
sidered for their theoretical properties.

III.3.1.1 . S-learners
S(ingle)-learners handle the treatment assignment as any other co-

variate of the sample. The problem of estimating both outcome functions
from the covariate and assignment variables is tackled as a mainstream su-
pervised learning problem, using ordinary machine learning approaches to
estimate 𝜇𝑡(𝑥):

𝜇̂(𝑥, 𝑡) ≈ 𝜇𝑡(𝑥) = 𝔼[𝑌 |𝑋 = 𝑥, 𝑇 = 𝑡]

The treatment effect is thereafter estimated as:
𝜏𝑆(𝑥) = 𝜇̂(𝑥, 1) − 𝜇̂(𝑥, 0)

Building upon domain adaptation principles (Ben-David et al., 2006),
Johansson et al. (2016) introduce the Balancing Neural Network (BNN) ap-
proach. A first neural network6 𝜙 is used to map both treated and control

5Indeed, ATE can be estimated by averaging CATE: ATE = 𝔼[𝜏(𝑋)] and ATE estima-tion may thus be seen as a secondary objective of CATE estimators.6Mapping 𝜙 is not noted with a circumflex diacritic for it is no estimate of a groundtruth statistical quantity. The same remark holds for many objects to be introducedlater on.
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samples onto a single latent representation space. After concatenation of
the treatment assignment, the enriched representation (𝜙(𝑥), 𝑡) is processed
through a second neural network 𝜓 , yielding 𝜇̂(𝑥, 𝑡) = 𝜓(𝜙(𝑥), 𝑡). The balance
between the treated and control populations in the latent space is ensured
by a sparse reweighting of the feature axis. Since the treatment assignment
variable is given no particular role, its importance tends to be underestimated
by S-learners, possibly biasing the CATE toward 0 after Künzel et al. (2019).

Hill (2011) considers Bayesian Additive Regression Trees (BART), and Athey
and Imbens (2016) proposes an extension thereof using causal trees to build
confidence intervals. Another related approach is introduced by Wager and
Athey (2018), using Causal Forests (CF) where the last split of the forest trees
corresponds to the treatment assignment.

III.3.1.2 . T-learners
T(wo)-learners rely on two separate estimates 𝜇̂0 and 𝜇̂1 to model each

outcome function (also referred to as surface of contact), with:
𝜇̂0(𝑥) ≈ 𝜇0(𝑥) = 𝔼[𝑌 |𝑋 = 𝑥, 𝑇 = 0]
𝜇̂1(𝑥) ≈ 𝜇1(𝑥) = 𝔼[𝑌 |𝑋 = 𝑥, 𝑇 = 1]

and the individual treatment effect is estimated as
𝜏𝑇 (𝑥) = 𝜇̂1(𝑥) − 𝜇̂0(𝑥)

Let us present a few related approaches, referring the reader to Caron et al.
(2022) for a more comprehensive presentation.

Shalit et al. (2017) extend BNN, the S-learner approach introduced by
Johansson et al. (2016). A representation network 𝜙 maps both control and
treated samples on the same latent space, which supports two heads ℎ0
and ℎ1, trained such that 𝜇̂𝑡 = ℎ𝑡◦𝜙. Representations in the latent space
may be balanced using statistical distances such as the Wasserstein distance
(Cuturi, 2013) or the Maximum Mean Discrepancy (Gretton et al., 2012) for
CFR, or left unconstrained for TARNet. In Yao et al. (2018), SITE is based on
the observation that useful information can be lost through balancing the
control and treated distributions in the latent space. SITE accordingly aims at
preserving local similarity information while balancing the representations.
It is completed by Yao et al. (2019)’s ACE which preserves finer-grained
information. Several approaches resort to reweighting the samples in the
latent space, providing more flexibility to population balancing. Hassanpour
and Greiner (2019a)’s CFR-ISW involves context-aware weights, built using a
latent space analog of propensity scores. Assaad et al. (2021) explores the
generalization of weighting schemes outside the scope of inverse probability
of treatment weights through the BWCFR approach. MitNet (Guo et al., 2023)
resorts to the same architecture as CFR, but controls the discrepancy in the
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latent space using mutual information. Contrarily to other approaches, such
a design generalizes well to non-binary treatment settings. Wu et al. (2023a)
bridges the gap between T-learners and matching methods, leveraging
nearest-neighbors approaches in the latent space so as to upsample un-
derrepresented subpopulations and refine themodeling of their causal effect.

Balance in the latent space may also be achieved through adversarial
learning, taking inspiration from domain adaptation (Ganin et al., 2016).
Informally, training an adversarial model to distinguish between control and
treated latent samples limits the discrepancy between the two spaces.The
relationship between domain adaptation and causal inference is explored
by Johansson et al. (2022). Du et al. (2021)’s ABCEI leverages the mutual
information between the observed and the latent representation to limit the
loss of information. Similarly, Zhou et al. (2021)’s CBRE considers an auto-
encoder architecture with a specific cycle structure: the loss of information
from the observed to the latent representation is prevented by enforcing the
reconstruction of the samples from their latent representation.

Generative models have also been considered in the hope that their
distributional nature may better capture the uncertainty in the counter-
factual distribution in a slightly different setting (we shall return to generative
models for causal inference in Section III.3.2). Louizos et al. (2017)’s CEVAE
combines the approach in Shalit et al. (2017) with a Variational Auto-Encoder
(VAE) (Kingma and Welling, 2014; Rezende et al., 2014) architecture, while Yoon
et al. (2018)’s GANITE is based on Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014). Alaa and Schaar (2018)’s NSGP bases its approach
on Gaussian processes, an idea that Zhang et al. (2020) extends with DKLITE.
With a method based on a deep kernel regression algorithm, it tackles the
key issue of counter-factual variance minimization and provides uncertainty
intervals.

Kuang et al. (2017)’s D2VD initiates a specific stream of work, splitting with
the covariates into confounding features (causes of both 𝑌 and 𝑇 ), and ad-
justment features (causes of 𝑌 only). While D2VD is linear, N-D2VD (Kuang
et al., 2022) replaces the linear models with neural networks, for a greater
expressivity. DR-CFR (Hassanpour and Greiner, 2019b) pushes the division
further by introducing three latent representations: one for instrumental fac-
tors (causes of 𝑇 only), one for confounding factors, and one for adjustment
factors. This distinction is enforced in latent space, as opposed to D2VD and
N-D2VD, allowing for much more flexibility. Notably, the discrepancy (mea-
sured by MMD) between adjustment factors of control and treated samples
is minimized. TEDVAE (Zhang et al., 2021) relies on a variational approach,
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bridging the gap between variational models for CATE estimation (Louizos
et al., 2017) and instrument/confounder/adjustment division (Hassanpour and
Greiner, 2019b). In order to ensure proper disentanglement of the three latent
spaces,MIM-DRCFR (Cheng et al., 2022b) leverages Contrastive Log-Ratio Up-
per Bound (Cheng et al., 2020), amutual information approximation. Pursuing
the same objective, Wu et al. (2023b)’s DeR-CFR resorts to a deep orthogo-
nal regularizer, ensuring that the input covariates used to build the three la-
tent representations involve distinct features. Curth and Schaar (2021)’s SNet
pushes the distinction further by distinguishing adjustment factors causing
𝑌 0 only, 𝑌 1 only, and both of them. Finally Chauhan et al. (2023), taking in-
spiration from domain adaptation, resort to adversarial training to enforce
better DR-CFR’s and SNet’s disentanglement.

III.3.1.3 . X-learners
X-learners are introduced by Künzel et al. (2019), where the letter ’X’ refers

to the computation flow shape. A two-step process is defined: In the first
step, response functions 𝜇𝑡 and propensity 𝜂(𝑥) = 𝐸[𝑇 |𝑋 = 𝑥] are estimated
using any learner, yielding 𝜇̂𝑡 and 𝜂̂(𝑥). In a second step, two CATE estimates
are trained: 𝜏1(𝑥𝑖) ≈ 𝑦1𝑖 −𝜇

0(𝑥𝑖) is optimized on treated samples, while 𝜏0(𝑥𝑖) ≈
𝜇1(𝑥𝑖)−𝑦0𝑖 is optimized on control ones. Finally, the CATE estimate for any given
sample is obtained as

𝜏𝑋(𝑥) = (1 − 𝜂̂(𝑥))𝜏0(𝑥) + 𝜂̂(𝑥)𝜏1(𝑥)

In the case where estimates 𝜇̂0, 𝜇̂1, 𝜏0, 𝜏1 are implemented and trained as
neural networks, it appears that joint optimization of the first stage (𝜇̂0, 𝜇̂1)
and second-stage (𝜏0, 𝜏1) models might be beneficial to the final CATE estima-
tion accuracy. For further development, see Stadie et al. (2018)’s Y-learner and
Curth and Schaar (2021)’s RA-learner.

III.3.1.4 . R-learners
R(obinson)-learners are introduced byNie andWager (2021), extending the

CATE typology defined by Künzel et al. (2019). R-learners build upon the poten-
tial outcome formalization due to Robinson (1988) and occasionally referred
to as "Robinson’s transformation":

𝑌 − 𝔼[𝑌 |𝑋] = (𝑇 − 𝔼(𝑇 |𝑋))𝜏(𝑋) + 𝜀

with 𝜀 a centered noise variable. Like X-learners, R-learners proceed along a
two-stages approach: In the first stage, estimates 𝑚̂(𝑥) ≈ 𝔼[𝑌 |𝑋 = 𝑥] and
𝜂̂(𝑥) ≈ 𝔼[𝑇 |𝑋 = 𝑥] are learned. In a second stage, a CATE estimate is sought
as a minimizer of

∑

𝑖

(

𝑦𝑖 − 𝑚̂(𝑥𝑖) − (𝑡𝑖 − 𝜂̂(𝑥𝑖))𝜏𝑅(𝑥𝑖)
)2
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Using cross-fitting training procedures, this method provably reaches an
oracle-efficient convergence rate, i.e., the same as if the ground truth
functions 𝜂 and 𝑚 were known.

III.3.1.5 . F-learners
Künzel et al. (2019) define F-learners as follows. Denoting 𝜚 the inverse

probability of treatment weights 𝜚𝑡 = 𝑡∕𝜂 + 1−𝑡∕1−𝜂 (with 𝜂 the propensity
(Eq. II.8)), it is seen that (2𝑇 − 1)𝜚𝑇 (𝑋)𝑌 has an expected value of 𝜏(𝑥)
conditionally to 𝑋 = 𝑥:

𝔼
[

(2𝑇 − 1)𝜚𝑇 (𝑋)𝑌 |𝑋 = 𝑥
]

= 𝜏(𝑥)

Using the same two-stages approach as R-learners, a propensity estimate is
first built, then 𝜚̂ is derived from 𝜂̂ (Eq. II.8) and 𝜏 is sought as a minimizer of

∑

𝑖

(

𝜏𝐹 (𝑥𝑖) − (2𝑡𝑖 − 1)𝜚𝑡𝑖(𝑥𝑖)𝑦𝑖
)2

III.3.1.6 . U-learners
Similarly to F-learners, U-learners derive from the fact that 𝑌−𝔼[𝑌 |𝑋]

𝑇−𝔼[𝑇=1|𝑋] hasan expected value of 𝜏(𝑥) conditionally to (𝑋 = 𝑥) (Signorovitch, 2007; Athey
and Imbens, 2016; Curth and Schaar, 2021)7 :

𝔼
[ 𝑌 − 𝔼[𝑌 |𝑋]
𝑇 − 𝔼[𝑇 = 1|𝑋]

|𝑋 = 𝑥
]

= 𝜏(𝑥)

Using the same two-stage approach as R-learners and F-learners, estimates
𝜂̂(𝑥) ≈ 𝔼[𝑇 = 1|𝑋 = 𝑥] and 𝑚̂(𝑥) ≈ 𝔼[𝑌 |𝑋 = 𝑥] are first built, then 𝜏 is sought
as a minimizer of

∑

𝑖

(

𝜏𝑈 (𝑥𝑖) −
𝑦𝑖 − 𝑚̂(𝑥𝑖)
𝑡𝑖 − 𝜂̂(𝑥𝑖)

)2
=
∑

𝑖

(

𝜏𝑈 (𝑥𝑖) − (2𝑡𝑖 − 1)𝜚1−𝑡𝑖(𝑥𝑖)
(

𝑦𝑖 − 𝑚̂(𝑥𝑖)
)

)2

After Nie and Wager (2021), U-learners suffer from high instability due to their
denominator 𝑇−𝜂̂(𝑥), and they are thusmostly investigated froma theoretical
perspective only.

III.3.1.7 . DR-learners
DR-learners, built on the Augmented Inverse Probability Weighting es-

timator of Robins et al. (1995), are introduced by Foster and Syrgkanis (2023);
Kennedy (2023) with the goal to enforce double robustness properties (Sec-
tion III.2.3) in CATE estimation. The first steps consist in training outcome func-
tions and propensity estimates (𝜇̂0, 𝜇̂1, 𝜂̂) on one half of the training data. The

7Curth and Schaar (2021) refers to U-learners as PW-learners
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expected value of quantity 𝜇1(𝑋) − 𝜇0(𝑋) + (2𝑇 − 1)𝜚𝑇 (𝑋)(𝑌 − 𝜇𝑇 (𝑋)) condi-
tionally to (𝑋 = 𝑥) is equal to 𝜏(𝑥):

𝔼
[

𝜇1(𝑋) − 𝜇0(𝑋) + (2𝑇 − 1)𝜚𝑇 (𝑋)(𝑌 − 𝜇𝑇 (𝑋))|𝑋 = 𝑥
]

= 𝜏(𝑥)

Estimate 𝜏 is thus sought as theminimizer over the second half of the training
data of:

∑

𝑖

(

𝜏DR(𝑥𝑖) −
(

𝜇̂1(𝑥𝑖) − 𝜇̂
0(𝑥𝑖) + (2𝑡𝑖 − 1)𝜚̂𝑡𝑖(𝑥𝑖)(𝑦𝑖 − 𝜇̂

𝑇 (𝑥𝑖))
)

)2

Swapping the two data halves, it is possible to train a second CATE estimate
𝜏DR′ , and define the final estimate as the average value of 𝜏DR and 𝜏DR′ . Follow-ing an adequate training procedure and under mild assumptions about the
convergence of the estimators, 𝜏DR is provably Oracle efficient (see Proposi-
tion 1. and Thm 2. in Kennedy (2023) for details).

III.3.1.8 . Other architectures

The state-of-the-art mentions other alternative structures. The most re-
lated ones are the B-learner (Oprescu et al., 2023), that generalizes the DR-
learner in settings where a limited amount of unobserved confounding ex-
ists, bounding on the CATE estimation error with respect to said level. The IF-
learner (Curth et al., 2021a) builds a general framework to learn doubly-robust
models by leveraging efficient influence functions (Hampel et al., 1986).

III.3.2 . Identifiability of latent variable causal models

Following Louizos et al. (2017), quite a few authors have investigated
causal inference estimates involving deep latent-variable models. The
distributional nature of these models (mostly VAEs) has led to optimistic
expectations regarding their ability to deal with potentially unobserved
confounders. Relaxing the conditional exchangeability hypothesis, one may
consider a setting where an unobserved multidimensional variable 𝑍 is the
common cause of the observed 𝑋, 𝑌 , 𝑇 (Fig. III.3).

Identifying the true joint distribution over observed covariates, hidden
confounders, treatment assignment, and outcome would make it possible
to get accurate causal effects estimates. Assume that the true distribution
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Figure III.3: Causal graph variant.
ℙ𝑋,𝑍,𝑇 ,𝑌 is recovered. Then, using the formula of total probability:

ℙ[𝑌 𝑡|𝑋 = 𝑥] = ∫
ℙ[𝑌 𝑡|𝑋 = 𝑥,𝑍 = 𝑧]ℙ(𝑍 = 𝑧|𝑋 = 𝑥)dz

= ∫
ℙ[𝑌 𝑡|𝑍 = 𝑧]ℙ(𝑍 = 𝑧|𝑋 = 𝑥)dz

= ∫
ℙ[𝑌 𝑡|𝑍 = 𝑧, 𝑇 = 𝑡]ℙ(𝑍 = 𝑧|𝑋 = 𝑥)dz

= ∫
ℙ[𝑌 |𝑋 = 𝑥, 𝑇 = 𝑡]ℙ(𝑍 = 𝑧|𝑋 = 𝑥)dz

and the last expression may be computed since ℙ𝑋,𝑍,𝑇 ,𝑌 is known.
As shown by Rissanen and Marttinen (2022) however, without additional

hypotheses, there is no guarantee for the latent representation of the learned
models to converge towards the true hidden latent distribution 𝑍 , adversely
affecting the causal estimates. A variational model may learn a distribution
that perfectly fits the observational distribution ℙ𝑋,𝑇 ,𝑌 , without matching
the underlying ℙ𝑋,𝑍,𝑇 ,𝑌 , leading to erroneous causal effects estimates. If the
model is misspecified (typically if the sought number of features in the latent
space is underestimated or overestimated), it is likely to fail at modeling the
observational distribution.

This raises the question of the requirements on the observational data
that must be satisfied for the latent space 𝑍 to be identifiable8. The notion
of "identifiable" latent space is itself open to interpretation, e.g., two models
that only differ by a permutation of their latent space features are equivalent,

8noting that this notion of identifiability differs from that of causal identifiability(Section II.4)
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but more complex transformations of the latent space might also preserve
the model.

The development of Nonlinear Independent Component Analysis (NICA)
(Hyvarinen andMorioka, 2016; Hyvarinen et al., 2019) makes it possible to char-
acterize when and how the latent variable model identification is possible.
Khemakhem et al. (2020) first bridge the gap between NICA and VAE, requir-
ing the true latent distribution to admit a factorization conditioned on an ex-
tra observed variable. This setting is later on extended by Hyvärinen et al.
(2023). Wu and Fukumizu (2021)’s 𝛽-Intact-VAE model leverages this property
to guarantee accurate causal estimates even when facing limited breaches of
overlap.

III.3.3 . Discussion
A fundamental difficulty for CATE estimation is that the counter-factual out-

come is unknown by construction, preventing any trained model from being
validated using standard ML protocols. Overall, building datasets to bench-
mark causal inference models is an arduous task.

The semi-synthetic IHDP benchmark (Hill, 2011) is extensively used to val-
idate current CATE approaches since (Johansson et al., 2016), where the out-
comes are simulated using known functions (we shall return to IHDP in Sec-
tion V.1.1.1). Curth et al. (2021b) has criticized this dataset as CATE estimators
benchmark in several respects. Notably, simulating outcome functions with a
mechanism of the "surfaces of contact" form

𝑌 = (1 − 𝑇 ) × 𝜇0(𝑋) + 𝑇 × 𝜇1(𝑋) + 𝜀

favors both T-learner and S-learner approaches, as opposed to mechanisms
obtained through the "Robinson’s transformation" (Robinson, 1988; Nie and
Wager, 2021), where

𝑌 = 𝑚(𝑋) + (𝑇 − 𝜂(𝑋)) × 𝜏(𝑋) + 𝜀

that favors R-learners, F-learners, U-learners, DR-learners.
The literature in the causal inference domain has elected IHDP as its stan-

dard meter for the evaluation of CATE models. It is suggested that this choice
has biased the research toward T-learners at the detriment of R-learners. A
larger variety of benchmarks might help to increase the robustness of CATE
estimators and facilitate their usage in real-life situations (see also Curth et al.
(2021b)). We shall return to causal inference benchmarks in Section V.3.

A toy problem is explored in Appendix D to illustrate the impact of the
data generation process on the ability of different meta-learners to model
the causal effects.
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III.4 . Partial conclusion

This chapter, primarily focused on CATE, describes the main approaches
of the state of the art. The essential aspects regard: i) whether a change of
representation is needed, and when it is the case, what are the properties
the latent representation should satisfy; ii) the (im)possibility to evaluate CATE
models; iii) how the existing benchmarks might bias the experimental valida-
tion of the CATE approaches.

Chapter IV will analyze and discuss in more detail the first two aspects,
that motivate the proposed ALRITE approach. We shall return to the third
aspect in Chapter VI.
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IV - Asymmetrical Latent Regularization for
Individual Treatment Effect Modeling

This chapter describes the core contribution of the manuscript. We first
discuss themain issues related to the state of the art (Section IV.1), and deduce
the very principles of ALRITE (Section IV.2). Its overview, meant to address
some of these issues, is given in Section IV.3, together with ensemble-based
variants thereof (Section IV.4). The theoretical analysis of the approach, up-
per bounding the estimation error under mild assumptions, is described (Sec-
tion IV.5), and its scope is discussed.

IV.1 . Motivations

IV.1.1 . Revisiting the state of the art
As said (Section III.3.1.2), the 𝑇 -learner model proposed by Shalit et al.

(2017) has established the merits of changing representations to accurately
estimate counter-factual outcomes for both the control and treated distribu-
tions. The change of representation is meant to flexibly and reliably accom-
modate these two distinct estimation objectives, and the neural network-
based latent representation aims to find a trade-off between both.

In contrast, X-learners (Section III.3.1.3) face no such trade-off among the
two modeling tasks, but lack the increased flexibility that latent spaces of-
fer. They proceed by independently learning two causal effects estimates 𝜏0and 𝜏1, and define the overall 𝜏 as a weighted combination thereof using the
estimated propensity 𝜂̂:

𝜏𝑋 = (1 − 𝜂̂) × 𝜏0 + 𝜂̂ × 𝜏1

Related to the change of representation is the effort to balance the
control and treated distributions. To our best knowledge, no consensus has
yet arisen concerning the most appropriate way to do so.

From the early works on neural-network enforced CATE estimators
(namely, Johansson et al. (2016)’s BNN), balance is enforced through a pe-
nalization term in the learning loss. Shalit et al. (2017) resorts to Integral
Probability Metrics such as CFR-MMD’s Maximum Mean Discrepancy (Gretton
et al., 2012) or CFR-Wass’s Sinkhorn distance (Cuturi, 2013). Yao et al. (2018)’s
SITE aims at preserving local similarity while mapping samples towards the
latent space, and Du et al. (2021)’s CBRE leverages advances of adversarial
learning to make latent distributions indistinguishable.

51
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(a) 𝑇 -learner architecture.

(b) 𝑋-learner architecture.
Figure IV.1: Contrasting the T- and X-learner architectures.

Notably, Zhang et al. (2020) provides strong theoretical groundings to its
DKLITE-specific focus on counter-factual variance. This approach can eval-
uate model uncertainty by resorting to deep neural kernels while comput-
ing counter-factual predictions. High uncertainty, i.e., high variance on the
counter-factual posterior distribution, attests that there is insufficient infor-
mation regarding the counter-factual distribution in the neighborhood of a
given sample. As such, when encouraged to learn a mapping 𝜙 associated
with low counter-factual variance, DKLITE ensures that no multiple models
may be learned with similar factual predictions but divergent counter-factual
ones. Evaluation of counter-factual variance, however, is a delicate task, and
the proposed solution imposes specific choices of architecture. In particular,
there is no clear insight on how such an approach could be extended out-
side the scope of Bayesian models.

IV.1.2 . Proposed requirements for CATE estimator latent
representations

Neural networks are celebrated for their generality and flexibility, and
the fact that the statistical properties of the trained models can be shaped
or enforced through the specifics of the neural architecture. In the following,
the proposed standpoint on CATE inference is that of learning two models
with missing data. The desired change of representation thus is tailored to
the specifics of this goal.

Let 𝜙map the input space  to latent space . Consider (𝑧𝑖 = 𝜙(𝑥𝑖), 𝑡𝑖, 𝑦𝑖),the image of a sample taken from the observational distribution. With no
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loss of generality, let us assume that 𝑡𝑖 = 1 (the same reasoning follows by
symmetry for 𝑡𝑖 = 0).

Measuring the causal effect conditionally to 𝑋 = 𝑥𝑖 means estimating
𝔼[𝑌 1 − 𝑌 0

|𝑋 = 𝑥𝑖]. The goal can intuitively be reformulated as estimating
𝔼[𝑌 1

|𝜙(𝑋) = 𝜙(𝑥𝑖)] and 𝔼[𝑌 0
|𝜙(𝑋) = 𝜙(𝑥𝑖)] for 𝜙 "sufficiently" injective (see

IV.5.3.2 for a formal characterization).

Figure IV.2: Picturing a representation space, with treated and control sam-ples. For the leftmost treated samples, the estimation of 𝑦0𝑖 is likely unreliablesince no information about 𝑌 0 is available in that region of space. Note thatthe overlap is not symmetrical: the lack of neighbors with opposite treatmentassignment only concerns the treated samples.
The difficulty arises when the treated sample (𝑧𝑖, 𝑡𝑖 = 1, 𝑦𝑖) is far from

any control sample (𝑧𝑗 = 𝜙(𝑥𝑗), 𝑡𝑗 = 0, 𝑦𝑗) in the sense of the representationdistance (see e.g., the leftmost point in Fig. IV.2). Although 𝑦𝑖 and the outcome
value of close treated samples provide information about the local behavior
of 𝑧 ↦ 𝔼[𝑌 1

|𝜙(𝑥) = 𝑧], there exists no guarantee regarding the estimation of
the counter-factual 𝔼[𝑌 0

|𝜙(𝑋) = 𝑧]. The obtained estimate can be arbitrarily
inaccurate − unless strong assumptions (e.g., linearity or high smoothness)
are made on the potential outcomes. With a specific focus on the control
distribution, this issue can be reframed as an out-of-distribution estimation
problem.

This discussion suggests that the latent space supporting the counter-
factual estimation of 𝑌 1 (respectively 𝑌 0) must be such that no sample be
isolated from the samples in the other distribution.

Remark: Themain difficulty of CATE estimation is in the low-sample regime,
when the observational dataset contains few samples relatively to the dimen-
sion of the covariate space. In particular, the accuracy of the factual outcome
estimates increases as the total number of samples tends to infinity, and the
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CATE estimate likewise reaches similar accuracy under the positivity assump-
tion (Eq. II.4 and Alaa and Schaar (2018)).

IV.2 . Principle of ALRITE

IV.2.1 . Notations
Let 𝜙 be a mapping from covariates space  ⊂ ℝ𝑑 to a latent space

 = 𝜙() ⊂ ℝ𝑑′ , with || ⋅ ||2 the Euclidean distance among real-valued vectors.
The quantities introduced in the following depend on the pseudo-distance
𝑑𝜙 defined on 2 as 𝑑𝜙(𝑥, 𝑥′) = ||𝜙(𝑥) − 𝜙(𝑥′)||2. All samples belong to an
observational dataset  = {(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)}𝑖∈J1,𝑛K.

Let themirror twin of a sample be defined as the closest neighborw.r.t 𝑑𝜙with opposite treatment assignment1 (Fig. IV.3a). Supercharging the notation,
let us then denote the mirror twin of sample 𝑖 by 𝜙(𝑖):

𝜙(𝑖) = argmin
𝑗∈J1,𝑛K s.t. 𝑡𝑗=1−𝑡𝑖

{𝑑𝜙(𝑥𝑖, 𝑥𝑗)} (IV.1)

The insulation of a sample is defined as its distance to itsmirror twin w.r.t
𝜙, with the following notation:

insulation𝜙(𝑖) = 𝑑𝜙(𝑥𝑖, 𝑥𝜙(𝑖))

Let the exemplarity of a sample be defined as the number of samples
admitting it as their mirror twin:

exemplarity𝜙(𝑖) = |{𝑗 ∈ J1, 𝑛K 𝑠.𝑡. 𝜙(𝑗) = 𝑖}|

As shown in Fig. IV.3b, the 𝑖-th sample might be the mirror twin of several
𝑗-th samples (with 𝑡𝑗 = 1 − 𝑡𝑖) thus with high insulation.The purpose of these definitions is the following. Informally, if the insu-
lation for every control sample (𝑥, 𝑡 = 0) is low (i.e., if its mirror twin is close)
and if an accurate model ℎ1 is trained from the treated samples on this same
control latent space, then ℎ1(𝑥) also is a potentially accurate estimate of 𝜇1(𝑥).

1Ties are unlikely if  is continuous but may arise if it is discrete. If multiple sam-pleswith opposite treatment assignmentminimize the 𝑑𝜙-distance to (𝑥𝑖, 𝑡𝑖), that withminimal index is defined as its mirror twin.The influence of the nearest sample with opposite treatment assignment in covari-ates spaces has been considered in the literature (Johansson et al., 2016; Wu et al.,2023a). A fundamental difference lies in the fact that the mirror twin of ALRITE isdefined with respect to the representational distance, and may as such be leveragedto constrain the representational space.Note also that the mirror twin operator is no involution in general.
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(a) The mirror twin of 𝑖 is its closestneighbor from the control distributionThe insulation of 𝑖 is high.
(b) 𝑗 is the mirror twin of 3 samples; its
exemplarity is 3.

Figure IV.3: Illustration of the notions of insulation and exemplarity in thelatent space, with control samples and treated ones

In the case where the sought 𝜇1 is 𝐿-lipschitzian, for any sample control
sample 𝑖 with mirror twin 𝜙(𝑖), the counter-factual error of 𝑖 can be bounded
as:

|𝜇1(𝑥𝑖) − 𝜇1(𝑥𝜙(𝑖))| ≤ 𝐿||𝑥𝑖 − 𝑥𝜙(𝑖)||

This remark will be adapted and formalized in Section IV.5.1, yielding an upper
bound on the estimation error under mild assumptions.

Simple calculations show that:
{

∑

𝑡𝑖=0
exemplarity𝜙(𝑖) = |{𝑗 ∈ J1, 𝑛K s.t. 𝑡𝑗 = 1}|

∑

𝑡𝑖=1
exemplarity𝜙(𝑖) = |{𝑗 ∈ J1, 𝑛K s.t. 𝑡𝑗 = 0}|

Remark: In the large sample regime, assuming 𝜙 fixed and under the posi-
tivity assumption, the insulation goes to 0 (Footnote 7). To our understanding,
the asymptotical behavior of exemplarity remains an open question, even in
low-dimensional settings (Ferenc and Néda, 2007).

Overall, let a pipeline be defined as the triplet formed by a representa-
tion network 𝜙 ∶  → , and two functions ℎ0, ℎ1 ∶  → ℝ entailing a control
and a treatment outcome estimate ℎ0◦𝜙, ℎ1◦𝜙. By definition, pipeline  , de-
noted  = (𝜙, ℎ0, ℎ1), can be seen as a 𝑇 -learner and yields a candidate CATE
estimate as:

𝑥 ∶  ↦ ℎ1◦𝜙(𝑥) − ℎ0◦𝜙(𝑥)

In the following, the mapping, control outcome function and treated out-
come function of pipeline  will be respectively denoted as 𝜙 , ℎ0 , ℎ

1
 . Theentailed mirror twin, insulation and exemplarity functions will accordingly be

denoted as 𝜙 , insulation ,exemplarity .
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IV.2.2 . Model architecture
The CATE estimation problem and requirements are revisited using the

notions ofmirror twin and insulation. As discussed in Section IV.1.1, the sought
solution involves an embedding, inducing a latent representation of the ob-
served samples and enforcing two properties (Section IV.1.2): i) insulation of
treated samples should be small and ii) insulation of control samples should
be small.

Interestingly, the state-of-the-art approaches achieve balance through
symmetrical regularisation constraints. However, while balance is a proxy
goal for both above properties, it does not efficiently enforce either one, as
graphically shown on Fig. IV.4:

Figure IV.4: The properties associated with latent spaces. Left: low insulationfor treated samples. Middle: balance of treatment and control distributions.Right: low insulation for control samples.
It thus comes to define two latent spaces, respectively enforcing a low

insulation for the treated and the control samples. Specifically, the so-called
treatment-driven pipeline aims to causal inference for treated samples, by en-
forcing a low insulation for treated samples (task i); symmetrically, the control-
driven pipeline aims to causal inference for control samples and enforces a
low insulation for control samples (task ii).

Let us respectively denote 𝜏0
and 𝜏1

the causal estimates provided by
pipeline 0 and 1. These are combined using propensity score estimate 𝜂̂,
yielding:

𝜏 ∶ 𝑥 ∈  ↦ (1 − 𝜂̂(𝑥))𝜏0
(𝑥) + 𝜂̂(𝑥)𝜏1

(𝑥) (IV.2)
Overall, the proposed ALRITE (Asymmetrical Latent Representation for Indi-
vidual Treatment Effect) bridges the gap between 𝑇 -learners and 𝑋-learners:
each one of pipelines 0 and 1 defines a 𝑇 -learner, and their causal estimate
𝜏0

and 𝜏1
are combined in Eq. IV.2 and Table IV.1 as in X-learners. As such,

ALRITE instantiates a new class of meta-learners.
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Figure IV.5: ALRITE architecture, consisting of the control-driven pipeline 0(top), the propensity estimate (middle) and the treatment-driven pipeline 1(bottom).
Treatment assignment

𝑇 = 0 𝑇 = 1 T unknown

pr
ed

ic
te
d

ou
tc
om

e 𝑌 0 ℎ00
◦ 𝜙0

ℎ01
◦ 𝜙1

(1 − 𝜂̂) × ℎ00
◦𝜙0

+ 𝜂̂ × ℎ01
◦𝜙1

𝑌 1 ℎ10
◦ 𝜙0

ℎ11
◦ 𝜙1

(1 − 𝜂̂) × ℎ10
◦𝜙0

+ 𝜂̂ × ℎ11
◦𝜙1

Table IV.1: Potential outcomes estimates.
IV.3 . Algorithm

This section details the three branches in theALRITE architecture (Fig. IV.5):
the pipelines (top and bottom branches); the propensity score (middle); and
how the estimates built in all three branches are combined to form a CATE
estimate.

IV.3.1 . Pipelines training
With no loss of generality, let us focus on learning pipeline 0; learning 1follows by symmetry, replacing subscripts⬚0

with⬚1
.

As said, pipeline0 = (𝜙0
, ℎ00

, ℎ10
) induces a 𝑇 -learner focused on causal

inference for control samples. Specifically, embedding 𝜙0
must i) enable the

learning of accurate outcome models ℎ00
and ℎ10

trained from control and
treated samples; ii) yield a low insulation on average for the control samples.

The training loss depends on the nature of the outcome variable 𝑌 :
1. In the continuous case ( is an interval), ℎ00

and ℎ10
are trained to solve

a regression problem, and the mean square error is used to compute
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𝜎 ∶ 𝑟 ∈ ℝ ↦
1

1 + exp(−𝑟)

Figure IV.6: Logistic activation function.

the error of 0:

error0
(𝑥𝑖, 𝑡𝑖, 𝑦𝑖) = (ℎ𝑡𝑖0

◦𝜙0
(𝑥𝑖) − 𝑦𝑖)2

2. In the binary case ( = {0, 1}), the potential outcomes are trained
using the cross-entropy loss2. Formally, for 𝜎 denoting the logistic
function (Fig. IV.6), the model returns an outcome estimate set to 0 if
𝜎
(

ℎ𝑡𝑖0
◦𝜙0

(𝑥𝑖)
)

< .5 and 1 otherwise, with:

error0
(𝑥, 𝑡, 𝑦) = −𝑦 log

(

𝜎(ℎ𝑡0
◦𝜙0

(𝑥))
)

− (1-𝑦) log (1-𝜎(ℎ𝑡0
◦𝜙0

(𝑥))
)

Overall, pipeline 0 = (𝜙0
, ℎ00

, ℎ10
) (Table IV.1) is trained end-to-end to

2The function 𝑓 ∶ 𝑥 ∈ ℝ ↦ −𝛼 log
(

𝜎(𝑥)
)

− (1 − 𝛼) log
(

1 − 𝜎(𝑥)
) has derivative

𝑓 ′ = 𝜎 − 𝛼 and curvature 𝑓 ′′ = (1 − 𝜎)𝜎, thus admits a global minimum at 𝜎−1(𝛼).Using the formula of total expectation on T then X, it comes
𝔼[error0

(𝑋, 𝑇 , 𝑌 )] =𝔼𝑋|𝑇=1[𝔼[error0
(𝑋, 𝑇 , 𝑌 )|𝑋, 𝑇 = 1]|𝑇 = 1]ℙ(𝑇 = 1)

+𝔼𝑋|𝑇=0[𝔼[error0
(𝑋, 𝑇 , 𝑌 )|𝑋, 𝑇 = 0]|𝑇 = 0]ℙ(𝑇 = 0)

= −𝔼𝑋|𝑇=1
[

𝜇1(𝑋) log
(

𝜎
(

ℎ10
◦𝜙0

(𝑋)
))

+ (1 − 𝜇1(𝑋)) log
(

1 − 𝜎
(

ℎ10
◦𝜙0

(𝑋)
))]

−𝔼𝑋|𝑇=0
[

𝜇0(𝑋) log
(

𝜎
(

ℎ00
◦𝜙0

(𝑋)
))

+ (1 − 𝜇0(𝑋)) log
(

1 − 𝜎
(

ℎ00
◦𝜙0

(𝑋)
))]

and this term is thus minimized by (𝜎◦ℎ00
◦𝜙0

, 𝜎◦ℎ10
◦𝜙0

) = (𝜇0, 𝜇1). Cross-entropy
is a relevant choice of prediction loss.
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minimize the compound loss:

0
= 1
𝑛0

∑

𝑡𝑖=0
error0

(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)

+
𝛼0

𝑛0

∑

𝑡𝑖=0
insulation0

(𝑖)2

+ 1
𝑛1 + 𝛽0

𝑛0

∑

𝑡𝑖=1
(1 + 𝛽0

exemplarity0
(𝑖)) × error0

(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)

+𝛾0
Ω(0)

(IV.3)

where:
1. the first term is the factual prediction loss over control samples, to
be minimized; as said, the error function depends on the domain  of
the outcome;

2. the second term is themean squared insulation of control samples in
the representation space entailed by𝜙0

, weighted by hyper-parameter
𝛼0

. Its minimization ensures that any control sample gets close to its
mirror twin in terms of latent distance;

3. the third term is the factual error of treated samples, to be mini-
mized. Note that samples with high exemplarity have an extra error
weight (controlled from hyper-parameter 𝛽0

) to account for the fact
that any error on such a treated sample might adversely affect the
counter-factual estimate for all control samples in its neighborhood.
Inversely, a treated sample with null exemplarity has a lesser impact
on the counter-factual estimate of the control samples;

4. the last term Ω(0) is a regularization term, computing the sum of the
square of all weights matrices in the neural networks defining ℎ00

, ℎ10and (optionally) in 𝜙0
, to be minimized. This term, controlled by hyper-

parameter 𝛾0
, is meant to avoid overfitting.

The first, second and third terms are normalized to ensure their same
impact on the overall loss (the average prediction error of ℎ00

and ℎ10
), with

𝑛0 and 𝑛1 respectively denoting the number of control and treated samples.
IV.3.2 . Propensity estimation

Contrarily to the estimation of causal effects, propensity score estima-
tion is tackled as a mainstream binary supervised learning problem. The
propensity estimate 𝜂̂, meant to approximate the propensity score 𝜂 ∶ 𝑥 ∈
 ↦ 𝔼[𝑇 |𝑋 = 𝑥], is trained using binary cross-entropy loss, possibly aug-
mentedwith a regularization term to prevent over-fitting (independently from
the training of pipelines 0 and 1). Denoting by 𝑝 the proportion of treated



60 CHAPTER IV. ALRITE

samples in the training set:
𝜂̂ = −1

𝑛

𝑛
∑

𝑖=1

𝑡𝑖
𝑝
log

(

𝜂̂(𝑥𝑖)
)

+
1 − 𝑡𝑖
1 − 𝑝

log
(

1 − 𝜂̂(𝑥𝑖)
)

+ Ωreg(𝜂̂) (IV.4)

As said, 𝜂̂ is trained as a binary classifier. It is desirable that 𝜂̂ be calibrated
(Zadrozny and Elkan, 2002), i.e. such that

∀𝑠 ∈ [0, 1],𝔼[𝑇 = 1|𝜂̂(𝑋) = 𝑠] = 𝑠

However, perfect calibration is not required to obtain satisfying CATE estima-
tion results (see below, Eq. IV.5).

Note that reweighting terms ( ⋅
𝑝
, ⋅
1−𝑝

) are of particular importance here. In
many real-life settings, as treatment is expectedly complex and expensive,
control samples usually outnumber treated ones. Furthermore, if e.g., demo-
graphic or medical conditions dictate the treatment assignment, the support
of the treatment distribution is typically included in that of the control distri-
bution. In such cases, the regularization of 1 matters more than that of 0(we shall return to this Section V.1.2). The reweighting contributes toward the
greater importance of pipeline 1 in the final estimate 𝜏 = (1 − 𝜂̂)𝜏0

+ 𝜂̂𝜏1
.

IV.3.3 . Definition of 𝜏
ALRITE last aggregates the estimates learned in all three branches

(Fig. IV.5), i.e., the trained control-driven and treatment-driven pipelines, and
the propensity estimate to deliver a CATE.

Each pipeline, being a 𝑇 -learner by itself, induces an estimate of 𝜏:
𝜏0

= ℎ10
◦ 𝜙0

− ℎ00
◦ 𝜙0

𝜏1
= ℎ11

◦ 𝜙1
− ℎ01

◦ 𝜙1

These are combined (Eq. IV.2) using the propensity score estimate 𝜂̂(𝑥) to de-
fine an overall estimate of 𝜏:

𝜏(𝑥) = (1 − 𝜂̂(𝑥)) × 𝜏0
(𝑥) + 𝜂̂(𝑥) × 𝜏1

(𝑥)

This combination accounts for the fact that estimate 𝜏0
(respectively, 𝜏1

)
has been obtained through 0 (resp. 1), focused on providing accurate
causal effect estimates for control (resp. treated) samples. When inferring
causal effects on new data, Eq. IV.2 thus relies more on 𝜏0

for samples that
are likely to get treatment assignment 0, more on 𝜏1

for samples that are
likely to get treatment assignment 1.
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The sensitivity of 𝜏 to propensity misspecification is analyzed as follows.

Let us denote ||.|| the 𝐿2 distance over (𝐗,ℙ). Let 𝜏𝜂(𝑥) denote the estimate
combining 𝜏0

and 𝜏1
with the (true) propensity 𝜂:

𝜏𝜂(𝑥) = 𝜂(𝑥)𝜏1
(𝑥) + (1 − 𝜂(𝑥))𝜏0

(𝑥)

The sensitivity of 𝜏 w.r.t. 𝜂̂, that is, the difference between 𝜏 and 𝜏𝜂 can be
bounded as:

||𝜏 − 𝜏𝜂|| = ||(𝜂̂ − 𝜂)(𝜏1
− 𝜏0

)||
= ||

(

𝜂̂ − 𝜂
)(

(𝜏1
− 𝜏) − (𝜏0

− 𝜏)
)

||

(IV.5)
This error thus is of order 2: the performance of ALRITE is the product of i) the
error on the propensity; ii) the difference between the errors on 𝜏0

and 𝜏1
.

In other words, the misspecifications on the propensity are mostly harmful in
regions where 𝜏0

and 𝜏1
are also misspecified.

IV.4 . Ensemble ALRITE

As ensemble methods are renowned for their high accuracy in supervised
machine learning (Dietterich, 2000; Ganaie et al., 2022), it comes naturally to
see how ensembles can be built on the top of the ALRITE architecture, where
each ALRITE model consists of control-driven and treatment-driven pipelines,
and propensity estimate 𝜂̂.

Let us consider a set of𝐶 ALRITE pipelines, e.g., built using different hyper-
parameters (more on hyper-parameter selection in Chapter VI). Letting  =
{(𝑥, 𝑡, 𝑦)} denote an observational validation dataset, the factual, empirical er-
ror of the 𝑐-th pipeline (𝜙(𝑐), ℎ(𝑐),0, ℎ(𝑐),1) is approximated as3:

𝐸𝑟𝑟(𝑐) = 1
| |

∑

(𝑥,𝑡,𝑦) ∈

(

ℎ(𝑐),𝑡(𝑥) − 𝑦
)2 (IV.6)

Two ensemble ALRITE models are defined as follows:
IV.4.1 . top-K ensemble

An extra hyper-parameter is involved, the number 𝐾 of models consid-
ered in the ensemble (𝐾 ∈ J1, 𝐶K). 𝐾 control-driven pipelines are selected
based on their factual error (Eq. IV.6), and the ensemble control estimate
𝜏 top-K0

is defined as the average of the estimates 𝜏0
associated to the selected

pipelines.
Likewise, the 𝐾 treatment-driven pipelines are selected based on their fac-

tual error (noting that the selection of control-driven and treatment-driven
3in Chapter VI this quantity will be introduced as the simple estimate of the 𝜇-risk

of (ℎ(𝑐),0, ℎ(𝑐),1), and denoted as 𝜇-risk
(ℎ(𝑐))
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pipelines are independent), and the average of the associated estimates 𝜏1defines the ensemble treatment estimate 𝜏 top-K1
.

The ensemble control and treatment estimate are combined as usual
(Eq. IV.2), with 𝜂̂ a propensity score (learned once for all; as shown in Eq. IV.5
the approach is less sensitive to errors on 𝜂̂):

𝜏 top-K ∶ 𝑥 ∈  ↦ (1 − 𝜂̂(𝑥))𝜏 top-K0
(𝑥) + 𝜂̂(𝑥)𝜏 top-K1

(𝑥)

IV.4.2 . softmax𝜆 ensemble
While the top-K ensemble involves a boolean selection of the control and

treatment estimates, the softmax𝜆 ensemble achieves a weighted combina-
tion thereof which, depending on the temperature hyper-parameter 𝜆 ∈ ℝ∗

+,ranges from the equi-weighted one (𝜆 → 0+) to the selection of the only best
one (𝜆→ +∞). Let us recall the softmax𝜆 function:

softmax𝜆 ∶ (𝑥1,… , 𝑥𝐶 ) ∈ ℝ𝐶 ↦

(

exp{−𝜆𝑥1}
∑

𝑐 exp{−𝜆𝑥𝑐}
,… ,

exp{−𝜆𝑥𝐶}
∑

𝑐 exp{−𝜆𝑥𝑐}

)

It then comes naturally to define the softmax𝜆 control estimate as the
weighted average of the {𝜏𝑐0

}𝑐∈J1,𝐶K, where the weight of the 𝑐′-th estimate is
given as the softmax of the error of the associated outcome models Err(𝑐′):

exp{−𝜆Err(𝑐′)}
∑

𝑐 exp{−𝜆Err(𝑐)}

The softmax𝜆 treatment estimate is defined in the same way, and the overall
softmax𝜆 estimate is defined as usual (Eq. IV.2):

𝜏softmax𝜆(𝑥) = (1 − 𝜂̂(𝑥))𝜏softmax𝜆0
(𝑥) + 𝜂̂(𝑥)𝜏softmax𝜆1

(𝑥)

IV.5 . Analysis

This section presents the analysis of the proposed approach. The PEHE
associated with a T-learner and with the whole ALRITE model are provably
bounded in Section IV.5.1. These results and the underlying assumptions are
discussed in comparison with Shalit et al. (2017) (Section IV.5.2), focusing in
particular on the ability of the practitioner to appreciate the assumptions (Sec-
tion IV.5.3). The limitations of the approach are discussed in Section IV.5.4.

IV.5.1 . Upper bounding the PEHE of ALRITE

Let us first consider the accuracy of the CATE estimate induced by a single
pipeline (the 𝑇 -learner setting). We show that it is upper bounded depend-
ing on the factual error on the potential outcome estimates, augmented with
the cumulative insulation of the samples. Note that this result holds for the
empirical quantities of interest, as opposed to, asymptotically.
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Theorem 1. Let 𝜙 ∶  →  be a mapping from the observable feature space to a
latent space. Assume there exist two functions 𝜈0, 𝜈1 with Lipschitz constant𝐿 such
that 𝜇0 = 𝜈0◦𝜙 and 𝜇1 = 𝜈1◦𝜙. Let 𝜈̂0, 𝜈̂1 ∶  → ℝ be two hypothesis functions
with Lipschitz constant 𝐿̂. Then the empirical PEHE = 1

𝑛
∑𝑛
𝑖=1

(

(𝜈̂1 − 𝜈̂0)(𝜙(𝑥𝑖)) −

(𝜇1 − 𝜇0)(𝑥𝑖)
)2 is upper bounded by𝑀1, with

𝑀1 =
4
𝑛

𝑛
∑

𝑖=1

(

1 + exemplarity𝜙(𝑖)
)

(

𝜈̂𝑡𝑖◦𝜙(𝑥𝑖)-𝜇𝑡𝑖(𝑥𝑖)
)2

+4
𝑛
(𝐿2 + 𝐿̂2)

𝑛
∑

𝑖=1
insulation𝜙(𝑖)2

Proof. Let (𝑥, 𝑡, 𝑦) be a sample inwith 𝑧 = 𝜙(𝑥), and let (𝑥′, 𝑡′ = 1− 𝑡, 𝑦′) be its
mirror twin w.r.t 𝜙 (𝜙(𝑥′) = 𝑧′). Assuming with no loss of generality that 𝑡 = 1,
it comes:

|(𝜈̂1-𝜈̂0)(𝑧) − (𝜈1-𝜈0)(𝑧)|2
= |[𝜈̂1(𝑧)-𝜈1(𝑧)] − [𝜈̂0(𝑧)-𝜈̂0(𝑧′)] − [𝜈̂0(𝑧′)-𝜈0(𝑧′)] − [𝜈0(𝑧′)-𝜈0(𝑧)]|2
≤ 4|𝜈̂1(𝑧)-𝜈1(𝑧)|2 + 4|𝜈̂0(𝑧)-𝜈̂0(𝑧′)|2 + 4|𝜈̂0(𝑧′)-𝜈0(𝑧′)|2 + 4|𝜈0(𝑧′)-𝜈0(𝑧)|2
≤ 4|𝜈̂1(𝑧)-𝜈1(𝑧)|2 + 4|𝜈̂0(𝑧′)-𝜈0(𝑧′)|2 + 4(𝐿̂2 + 𝐿2)||𝑧′-𝑧||2

Averaging over (𝑥, 𝑡, 𝑦) in  yields the result.
Note that the empirical PEHE upper bound and the training loss involve

similar terms: the mean squared error on predictions, reweighted in accor-
dance with the exemplarity, and averaged insulation. The latter involves two
terms:

4(𝐿2 + 𝐿̂2)
𝑛

𝑛
∑

𝑖=1
insulation𝜙(𝑖)2 = 4

𝑛0
𝑛
(𝐿2 + 𝐿̂2) × 1

𝑛0

∑

𝑡𝑖=0
insulation𝜙(𝑖)2

+4
𝑛1
𝑛
(𝐿2 + 𝐿̂2) × 1

𝑛1

∑

𝑡𝑖=1
insulation𝜙(𝑖)2

Each of these terms is minimized as part of the training loss for either the
control or the treatment pipeline.

Building upon Thm. 1 (bounding the error of a single pipeline), the PEHE of
the whole ALRITE is bounded as follows in the within-sample setting4:
Theorem 2. Let 0 = (𝜙0

, ℎ00
, ℎ10

) and 1 = (𝜙1
, ℎ01

, ℎ11
) be two pipelines

with same notations as above. Assume there exist functions 𝜈00
, 𝜈10

, 𝜈01
, 𝜈11

with

4Remind that the within-sample error is not trivial− contrarily to the training errorin supervised learning − as counter-factuals are not observed.
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Lipschitz constant 𝐿 such that 𝜇0 = 𝜈00
◦𝜙0

= 𝜈01
◦𝜙1

and 𝜇1 = 𝜈10
◦𝜙0

=
𝜈11

◦𝜙1
. Suppose that ℎ00

, ℎ10
, ℎ01

, ℎ11
have Lipschitz constant 𝐿̂. Given an ob-

served dataset , let 𝜏 be a vector of estimated causal effects defined by 𝜏𝑖 =
(1 − 𝑡𝑖)(ℎ10

◦𝜙0
(𝑥𝑖) − 𝑦𝑖) + 𝑡𝑖(𝑦𝑖 − ℎ01

◦𝜙1
(𝑥𝑖)) for 𝑖 ∈ J1, 𝑛K. Then, the within-

sample PEHE defined by 1
𝑛
∑𝑛
𝑖=1

(

𝜏𝑖 − 𝜏(𝑥𝑖)
)2 is upper bounded by𝑀2, with

𝑀2 =
5
𝑛

𝑛
∑

𝑖=1

(

exemplarity1−𝑡𝑖
(𝑖)
(

ℎ𝑡𝑖1−𝑡𝑖
◦𝜙1−𝑡𝑖

(𝑥𝑖) − 𝑦𝑖
)2

+ (𝐿2 + 𝐿̂2)insulation𝑡𝑖 (𝑖)
2
)

+5𝜅𝑌

where 𝜅𝑌 = 1
𝑛
∑𝑛
𝑖=1

(

1 + exemplarity1−𝑡𝑖
(𝑖)
)(

𝑦𝑖 − 𝜇𝑡𝑖(𝑥𝑖)
)2.

Proof. Let (𝑥𝑖, 𝑡𝑖) be a sample in . Without loss of generality, assume 𝑡𝑖 = 1.
Let (𝑥𝑗 , 𝑡𝑗 = 0) be itsmirror twin (𝜙(𝑖) = 𝑗). Denote by 𝑧𝑖 and 𝑧𝑗 their respectiverepresentations: 𝜙1

(𝑥𝑖) = 𝑧𝑖, 𝜙1
(𝑥𝑗) = 𝑧𝑗 . Using Cauchy-Schwarz applied on

ℝ5, for any vector 𝑢 ∈ ℝ5, (∑ 𝑢𝑖)2 =< 𝟙|𝑢 >2 ≤ ||𝟙||2 × ||𝑢||2 = 5
∑

𝑢2𝑖 . It thencomes:
(

𝜏𝑖 − 𝜏(𝑥𝑖)
)2 =

(

(𝑦𝑖-ℎ01
(𝑧𝑖)) − (𝜈11

-𝜈01
)(𝑧𝑖)

)2

=
(

[𝑦𝑖-𝜈11
(𝑧𝑖)] + [𝜈01

(𝑧𝑖)-𝜈01
(𝑧𝑗)] + [𝜈01

(𝑧𝑗)-𝑦𝑗]
+ [𝑦𝑗-ℎ01

(𝑧𝑗)] + [ℎ01
(𝑧𝑗)-ℎ01

(𝑧𝑖)]
)2

≤5(𝑦𝑖-𝜈11
(𝑧𝑖))2 + 5(𝜈01

(𝑧𝑖)-𝜈01
(𝑧𝑗))2 + 5(𝜈01

(𝑧𝑗)-𝑦𝑗)2
+ 5(𝑦𝑗-ℎ01

(𝑧𝑗))2 + 5(ℎ01
(𝑧𝑗)-ℎ01

(𝑧𝑖))2

≤5(𝑦𝑖-𝜇1(𝑥𝑖))2 + 5(𝑦𝑗-𝜇0(𝑦𝑗))2 + 5(𝑦𝑗-ℎ01
(𝑧𝑗))2

+ 5(𝐿̂2 + 𝐿2)||𝑧𝑗-𝑧𝑖||2
Averaging over (𝑥𝑖, 𝑡𝑖 = 1) in , it comes:

1
𝑛
∑

𝑡𝑖=1

(

𝜏𝑖 − 𝜏(𝑥𝑖)
)2

≤ 5
𝑛
∑

𝑡𝑖=1

(

(𝐿2 + 𝐿̂2)insulation𝑡𝑖 (𝑖) +
(

𝜇𝑡𝑖(𝑥𝑖) − 𝑦𝑖
)2
)

+5
𝑛
∑

𝑡𝑗=0

(

exemplarity1−𝑡𝑖
(𝑗)

[(

ℎ𝑡𝑗1−𝑡𝑗◦𝜙1−𝑡𝑗 (𝑥𝑗) − 𝑦𝑗
)2 +

(

𝜇𝑡𝑗 (𝑥𝑗) − 𝑦𝑗
)2]

)

Adding the control samples sum yields𝑀2.
Note that Thm. 2 holds in the within-sample setting, as it requires knowl-

edge of the treatment assignment 𝑇 . As such, it does not generalize directly
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to the out-of-sample setting, where the (unknown) 𝑡𝑖 and 𝑦𝑖 are respectively
estimated using the propensity and the outcome models.

Furthermore, the upper-bound established in Thm. 2 can be directly re-
latedwith terms0

and1
, establishing thewell-foundedness of theALRITE

loss, as follows:
Theorem 3. Denote by 𝑝1 and 𝑝0 respectively the proportions of treated and con-
trol samples in the training set: 𝑝1 = 1

𝑛
∑

𝑡𝑖 = 1−𝑝0. Then with adequate choice of
hyper-parameters (𝛼0

, 𝛼1
, 𝛽0

, 𝛽1
), the within-sample empirical PEHE is upper

bounded by𝑀3 defined as

𝑀3 =5
(

0
+ 1

)

− 5
(

𝛾0
Ω(0) + 𝛾1

Ω(1)
)

+ 5𝜅𝑌

− 5
𝑛

𝑛
∑

𝑖=1

1
𝑝𝑡𝑖

(ℎ𝑡𝑖𝑡𝑖
◦𝜙𝑡𝑖

(𝑥𝑖) − 𝑦𝑖)2 −
5
𝑛

𝑛
∑

𝑖=1
(ℎ𝑡𝑖1−𝑡𝑖

◦𝜙1−𝑡𝑖
(𝑥𝑖) − 𝑦𝑖)2

Proof. Set the loss hyper-parameters values 𝛼0
, 𝛼1

, 𝛽0
, 𝛽1

to
(

𝛼0
, 𝛼1

, 𝛽0
, 𝛽1

)

=
(

(1 − 𝑝)(𝐿2 + 𝐿̂2), 𝑝(𝐿2 + 𝐿̂2), 1, 1
)

entailing
(
𝛼0

𝑛0
,
𝛼1

𝑛1
,

𝛽0

𝑛1 + 𝛽0
𝑛0
,

𝛽1

𝑛0 + 𝛽1
𝑛1

)

=
(𝐿2 + 𝐿̂2

𝑛
, 𝐿

2 + 𝐿̂2

𝑛
, 1
𝑛
, 1
𝑛
)

Then, the total loss over both pipelines total loss writes
0

+1
=

(

𝐿2 + 𝐿̂2

𝑛
∑

𝑡𝑖=0
insulation0

(𝑖)2 + 1
𝑛
∑

𝑡𝑖=1
exemplarity0

(𝑖)(ℎ10
◦𝜙0

(𝑥𝑖)-𝑦𝑖)2
)

+

(

1
𝑛(1-𝑝)

∑

𝑡𝑖=0
(ℎ00

◦𝜙0
(𝑥𝑖)-𝑦𝑖)2 + 1

𝑛
∑

𝑡𝑖=1
(ℎ10

◦𝜙0
(𝑥𝑖)-𝑦𝑖)2 + 𝛾0

Ω(0)

)

+

(

𝐿2 + 𝐿̂2

𝑛
∑

𝑡𝑖=1
insulation1

(𝑖)2 + 1
𝑛
∑

𝑡𝑖=0
exemplarity1

(𝑖)(ℎ01
◦𝜙1

(𝑥𝑖)-𝑦𝑖)2
)

+

(

1
𝑛𝑝

∑

𝑡𝑖=1
(ℎ11

◦𝜙1
(𝑥𝑖)-𝑦𝑖)2 + 1

𝑛
∑

𝑡𝑖=0
(ℎ01

◦𝜙1
(𝑥𝑖)-𝑦𝑖)2 + 𝛾1

Ω(1)

)

=1
𝑛

𝑛
∑

𝑖=1

(

exemplarity1−𝑡𝑖
(𝑖)
(

ℎ𝑡𝑖1−𝑡𝑖
◦𝜙1−𝑡𝑖

(𝑥𝑖)-𝑦𝑖)2 + (𝐿2 + 𝐿̂2)insulation𝑡𝑖 (𝑖)
2
)

+ 1
𝑛

𝑛
∑

𝑖=1
(ℎ𝑡𝑖1−𝑡𝑖

◦𝜙1−𝑡𝑖
(𝑥𝑖)-𝑦𝑖)2 + 1

𝑛

𝑛
∑

𝑖=1

(ℎ𝑡𝑖𝑡𝑖
◦𝜙𝑡𝑖

(𝑥𝑖)-𝑦𝑖)2
𝑡𝑖𝑝 + (1-𝑡𝑖)(1-𝑝) + 𝛾0

Ω(0) + 𝛾1
Ω(1)

=1
5
𝑀2 − 𝜅𝑌 + 𝛾0

Ω(0) + 𝛾1
Ω(1)
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+ 1
𝑛

𝑛
∑

𝑖=1
(ℎ𝑡𝑖1−𝑡𝑖

◦𝜙1−𝑡𝑖
(𝑥𝑖)-𝑦𝑖)2 + 1

𝑛

𝑛
∑

𝑖=1

(ℎ𝑡𝑖𝑡𝑖
◦𝜙𝑡𝑖

(𝑥𝑖)-𝑦𝑖)2
𝑡𝑖𝑝 + (1-𝑡𝑖)(1-𝑝)

implying an upper bound on the within-sample empirical PEHE:
1
𝑛

𝑛
∑

𝑖=1

(

𝜏𝑖 − 𝜏(𝑥𝑖)
)2 ≤ 5

(

0
+ 1

)

− 5
(

𝛾0
Ω(0) + 𝛾1

Ω(1)
)

+ 5𝜅𝑌

− 5
𝑛

𝑛
∑

𝑖=1

1
𝑝𝑡𝑖

(ℎ𝑡𝑖𝑡𝑖
◦𝜙𝑡𝑖

(𝑥𝑖) − 𝑦𝑖)2 −
5
𝑛

𝑛
∑

𝑖=1
(ℎ𝑡𝑖1−𝑡𝑖

◦𝜙1−𝑡𝑖
(𝑥𝑖) − 𝑦𝑖)2

While Thm. 3 shows the well-foundedness of the terms in the ALRITE loss,
this does not imply that the choice of their weight is optimal. It also requires
knowledge of both Lipschitz constants 𝐿 and 𝐿̂. While 𝐿̂may be measured or
even bounded using appropriate constraints5, 𝐿 only depends on the prob-
lem.

IV.5.2 . Positioning w.r.t. Shalit et al. (2017)
Thms. 1 to 3, establishing upper bounds on the empirical PEHE, are dis-

cussed and compared with the main result of Shalit et al. (2017), reminded
below:
Theorem (Shalit et al. (2017)). Let (𝜙, ℎ0, ℎ1) be a pipeline such that 𝜙 ∶  → 
is invertible. Define the point-wise loss function 𝓁ℎ,𝜙 and expected factual loss 𝜖𝑡
conditionally to treatment assignment 𝑇 = 𝑡, 𝑡 ∈ {0, 1} by

{

𝓁ℎ,𝜙 ∶ (𝑥, 𝑡) ∈  × {0, 1} ↦ 𝔼[
(

𝑌 𝑡 − ℎ◦𝜙(𝑥)
)2
|𝑋 = 𝑥]

𝜖𝑡 ∶ ℎ ∈ ( → ) ↦ 𝔼[𝓁ℎ,𝜙(𝑋, 𝑇 )|𝑇 = 𝑡]
(IV.7)

Denote by 𝜎2𝑌 𝑡 = 𝔼
[

(𝑌 𝑡 − 𝔼[𝑌 𝑡|𝑋])2|𝑇 = 𝑡
]

ℙ(𝑇 = 𝑡) the expected variance of 𝑌 𝑡,
𝑡 ∈ {0, 1}. Let G be a family of functions  →  . Assume that there exists a
constant 𝐵𝜙 > 0 such that 𝑧 ∈  ↦ 1

𝐵𝜙
𝓁ℎ𝑡,𝜙(𝜙−1(𝑧), 𝑡) ∈ 𝐺, 𝑡 ∈ {0, 1}. Denote

the integral probability metric between the control and treated latent distributions
induced by 𝜙 as

IPM = sup
𝑔∈𝐺

|

|

|

𝔼
[(

ℙ
(

𝜙(𝑋)|𝑇 =1
)

− ℙ
(

𝜙(𝑋)|𝑇 =0
))

𝑔
(

𝜙(𝑋)
)]

|

|

|

Then, the PEHE is upper bounded:

PEHE(𝜙, ℎ0, ℎ1) ≤ 2
(

𝜖0(ℎ0) + 𝜖1(ℎ1) + 𝐵𝜙 × IPM − 2min(𝜎2𝑌 0 , 𝜎2𝑌 1)
)

5In the case where ℎ00
,ℎ10

,ℎ01
,ℎ11

are linear, their Lipschitz constants can be de-
rived straightforwardly. In the general case of neural networks, additional care isrequired (see e.g., Virmaux and Scaman (2018); Gouk et al. (2021)).
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The difference between Shalit et al. (2017)’s results and ours is twofold.
Firstly, Shalit et al. (2017) assumes embedding𝜙 to be invertible, while the

presented result only assumes the existence of two functions 𝜈0, 𝜈1 ∶  → 
s.t. (𝜇0, 𝜇1) = (𝜈0◦𝜙, 𝜈1◦𝜙). The impact of this difference, and of relaxing
the invertibility assumption on 𝜙, is to be able to fully take advantage of the
change of representation 𝜙. As widely acknowledged in Machine Learning,
data tend to live in a manifold of the description space (Cayton, 2008; Bengio
et al., 2013); the ability to achieve feature selection and dimensionality
reduction by means of 𝜙, to the extent compatible with the prediction goal,
thus is most useful.

Secondly, the bound in Shalit et al. (2017) involves integral probability
metrics, while the proposed result considers two specifics of the sample dis-
tributions in the latent space: the insulation and the exemplarity. On the one
hand, integral probability metrics are defined in terms of distribution (the
large sample limit case); on the other hand, the insulation and exemplarity
typically are empirical quantities better suited to the situation faced by a prac-
titioner. Note that Yao et al. (2018) also advocates against the use of distribu-
tional distances, for the discrepancy theymeasure is at best a proxy objective.

The constants in the bound depend on the considered embedding 𝜙 in
both cases. In (Shalit et al., 2017), the bound involves a constant 𝐵𝜙. When
G is chosen as the space of 1-Lipschitz functions, the constraint involving 𝐵𝜙rewrites as
∀(𝑡, 𝑧, 𝑧′) ∈ {0, 1} × ×, ||𝓁ℎ𝑡,𝜙(𝜙−1(𝑧), 𝑡) − 𝓁ℎ𝑡,𝜙(𝜙−1(𝑧′), 𝑡)|| ≤ 𝐵𝜙||𝑧 − 𝑧′||

and consequently ∀𝑡 ∈ {0, 1}, 𝑧 ↦ 𝓁ℎ𝑡,𝜙(𝜙−1(𝑧), 𝑡) should be 𝐵𝜙-Lipschitzian.The ground-truth functions 𝜇0, 𝜇1 being unknown however, one cannot check
if this assumption holds.

IV.5.3 . Discussion of the assumptions
Thms. 1 to 3 spark three questions. Firstly, when do their assumptions

hold? Secondly, how can the practitioner assess whether they hold? Thirdly
and most importantly, when are outcome functions ℎ0, ℎ1 learned on top of
such a latent space accurate predictors of the true outcome functions?

In the following and for the sake of simplicity, the discussion focuses on
the control outcome estimation. The case of the treatment outcome estima-
tion follows, replacing the superscripts⬚0 by⬚1.

To structure the discussion, a synoptic diagram of the evoked results is
proposed in Fig. IV.7.
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Figure IV.7: Synoptic diagram of the discussion. Black arrows represent impli-cation. Red arrows represent the absence of implication.

IV.5.3.1 . Existence and lipschitzianity of 𝜈0, 𝜈1

The existence of L-Lipschitz outcome functions 𝜈0, 𝜈1 in Thms. 1 to 3 might
appear as a leap of faith. Their existence can however be guaranteed if the
true 𝜇0, 𝜇1 are Lipschitz:
Lemma 4. Assume that  is compact6, 𝜙 is a 𝐶1-diffeormorphism and 𝜇0 is 𝐿-
Lipschitz for a given parameter 𝐿 ∈ ℝ. Then, 𝜈0 verifying hypotheses of Thm. 1
exists, and 𝜙(𝑋) is a sufficient statistic for 𝑌 0.

Proof. Let 𝜙 be such a function. Then 𝜙() is closed as the direct image of
a closed set, and the Jacobian of 𝜙−1 ∶ 𝜙() →  is upper bounded as a
continuous function over a compact set. Denote by 𝐿𝜙−1 this upper bound.Set 𝜈0 = 𝜇0◦𝜙−1. 𝜈0 is 𝐿 × 𝐿𝜙−1-Lipschitz, and 𝜇0 = 𝜈0◦𝜙.

An appropriate search space for learning 𝐶1-diffeormorphism 𝜙 is that
of (bi-Lipschitz) Normalizing Flows (Kobyzev et al., 2020; Verine et al., 2021).
Most generally, quite a few authors (Shalit et al., 2017; Du et al., 2021) base
their theoretical analysis on the invertibility property, though the associated
algorithms do not seek to enforce this property. Note that invertible 𝜙 have
other merits, e.g., the fact they define balancing scores (Zhang et al., 2020).

6This only requires  to be bounded, since it is of finite dimension.
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Invertibility of representation 𝜙 is however no panacea. Lemma 4 sets an

upper bound on the Lipschitz constant of functions 𝜈0, 𝜈1. However, a rele-
vant representation network is typically expected to bring samples far away
in the covariates space close in the latent space. Let (𝑥, 𝑥′) be a couple of
such samples: ||𝑥 − 𝑥′|| is large while ||𝜙(𝑥) − 𝜙(𝑥′)|| is small. It follows that

||𝑥−𝑥′||
||𝜙(𝑥)−𝜙(𝑥′)|| =

||𝜙−1(𝜙(𝑥))−𝜙−1(𝜙(𝑥′))||
||𝜙(𝑥)−𝜙(𝑥′)|| is large, making the Lipschitz constant𝐿𝜙−1 of

𝜙−1 large, too, and thus weakening the upper-bound strength.
Moreover, as said a non-invertible 𝜙 can also contribute positively to the

model performance. Typically, if the potential outcomes only depend on a
subset of the covariates, a (non-injective) projection 𝜙 on these covariates can
greatly facilitate the learning task and support the accuracy of the models. In
any case, 𝐿̂ can be experimentally assessed; further work will investigate how
to constrain it (Virmaux and Scaman, 2018; Gouk et al., 2021).

In both (Shalit et al., 2017) and our setting, the Lipschitz constant 𝐿 of the
ground truth functions 𝜈0, 𝜈1 remains however inaccessible.

IV.5.3.2 . Properties of 𝜈̂0, 𝜈̂1

Assume now that the representation network 𝜙 is fixed, and that it sup-
ports a function 𝜈0 verifying 𝜇0 = 𝜈0◦𝜙. Let 𝜈̂0 ∶  → ℝ be a candidate
hypothesis function. In accordance with the notation introduced in Eq. IV.7,
denote by 𝜖0(𝜈̂0) the expectedmean squared prediction error conditionally to
𝑇 = 0 of the function 𝜈̂0:

𝜖0(𝜈̂0) = 𝔼𝑋,𝑌 |𝑇=0
[(

𝜈̂0◦𝜙(𝑋) − 𝑌 0)2
|𝑇 = 0

]

= 𝔼𝑍=𝜙(𝑋),𝑌 |𝑇=0
[(

𝜈̂0(𝑍) − 𝑌
)2
|𝑇 = 0

]

𝜖0 admits a minimum in 𝜈0∗ ∶ 𝑧 ∈  ↦ 𝔼[𝑌 0
|𝑇 = 0, 𝜙(𝑋) = 𝑧]. As an immedi-

ate consequence, 𝜈0∗◦𝜙 ∶ 𝑥 ∈  ↦ 𝔼[𝑌 0
|𝑇 = 0, 𝜙(𝑋) = 𝜙(𝑥)]. However, our

primary goal consists in finding a function 𝜈̂0 such that 𝜈̂0◦𝜙 approximates as
accurately as possible 𝜇0. This raises the question of when does the equality
of 𝔼[𝑌 0

|𝑇 = 0, 𝜙(𝑋) = 𝜙(⋅)] and 𝜇0(⋅) hold.
This issue is split into two questions. Assuming the existence of 𝜈0,

1. first question: does Property 1 [𝜇0(⋅) equal to 𝔼[𝑌 0
|𝜙(𝑋) = 𝜙(⋅)]

] hold?
2. second question: does Property 2 [𝔼[𝑌 0

|𝜙(𝑋) = 𝜙(⋅)] equal to𝔼[𝑌 0
|𝑇 =

0, 𝜙(𝑋) = 𝜙(⋅)]
] also hold?

The first question is answered positively. Let us assume that 𝜈0 ∶  → ℝ
is such that 𝜈0◦𝜙 = 𝜇0. Let then 𝑥 be an element of  . The formula of total
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probability writes
𝔼[𝑌 0

|𝜙(𝑋) = 𝜙(𝑥)] = ∫𝜙−1({𝜙(𝑥)})
𝔼[𝑌 0

|𝜙(𝑋) = 𝜙(𝑥), 𝑋 = 𝑢]ℙ(𝑋 = 𝑢|𝜙(𝑋) = 𝜙(𝑥))du

= ∫𝜙−1({𝜙(𝑥)})
𝔼[𝑌 0

|𝑋 = 𝑢]ℙ(𝑋 = 𝑢|𝜙(𝑋) = 𝜙(𝑥))du

= ∫𝜙−1({𝜙(𝑥)})
𝜇0(𝑢)ℙ(𝑋 = 𝑢|𝜙(𝑋) = 𝜙(𝑥))du

= ∫𝜙−1({𝜙(𝑥)})
𝜈0◦𝜙(𝑢)ℙ(𝑋 = 𝑢|𝜙(𝑋) = 𝜙(𝑥))du

= ∫𝜙−1({𝜙(𝑥)})
𝜈0◦𝜙(𝑥)ℙ(𝑋 = 𝑢|𝜙(𝑋) = 𝜙(𝑥))du

= 𝜈0◦𝜙(𝑥)∫𝜙−1({𝜙(𝑥)})
ℙ(𝑋 = 𝑢|𝜙(𝑋) = 𝜙(𝑥))du

= 𝜇0(𝑥)
= 𝔼[𝑌 0

|𝑋 = 𝑥]

The average value of the control outcome 𝑌 0 conditionally on 𝑋 equals the
average value conditionally on 𝜙(𝑋).

The second question (does the existence of 𝜈0 implies that 𝔼[𝑌 0
|𝜙(𝑋) =

𝜙(⋅)] equal 𝔼[𝑌 0
|𝑇 = 0, 𝜙(𝑋) = 𝜙(⋅)]) is also answered positively. Denote by 𝑈

the set of events (𝜙(𝑋), 𝑇 )−1({(𝜙(𝑥), 0)}). Then,
𝔼[𝑌 0

|𝜙(𝑋) = 𝜙(𝑥), 𝑇 = 0]

= ∫𝑢∈𝑈
𝔼[𝑌 0

|𝜙(𝑋) = 𝜙(𝑥), 𝑇 = 0, 𝑋 = 𝑢]ℙ(𝑋 = 𝑢|𝜙(𝑋) = 𝜙(𝑥), 𝑇 = 0)du

= ∫𝑢∈𝑈
𝔼[𝑌 0

|𝑇 = 0, 𝑋 = 𝑢]ℙ(𝑋 = 𝑢|𝜙(𝑋) = 𝜙(𝑥), 𝑇 = 0)du

= ∫𝑢∈𝑈
𝔼[𝑌 0

|𝑋 = 𝑢]ℙ(𝑋 = 𝑢|𝜙(𝑋) = 𝜙(𝑥), 𝑇 = 0)du

= ∫𝑢∈𝑈
𝔼[𝑌 0

|𝜙(𝑋) = 𝜙(𝑥)]ℙ(𝑋 = 𝑢|𝜙(𝑋) = 𝜙(𝑥), 𝑇 = 0)du (first question)

= 𝔼[𝑌 0
|𝜙(𝑋) = 𝜙(𝑥)]∫𝑢∈𝑈

ℙ(𝑋 = 𝑢|𝜙(𝑋) = 𝜙(𝑥), 𝑇 = 0)du

= 𝔼[𝑌 0
|𝜙(𝑋) = 𝜙(𝑥)]

Therefore, if 𝜈0 s.t. 𝜈0◦𝜙 = 𝜇0 does exist, Property 2 (𝔼[𝑌 0
|𝜙(𝑋) = 𝜙(⋅)] =

𝔼[𝑌 0
|𝜙(𝑋) = 𝜙(⋅), 𝑇 = 0]) holds. Overall, the minimizer 𝜈0∗ of 𝜖0 is such that

𝜈0∗◦𝜙 = 𝜇0, establishing the relevance of the approach.
Besides, note (further discussion in Appendix E) that:
1. the sufficiency of 𝜙(𝑋)with respect to 𝑌 0 alone implies the existence of
𝜈0 ∶  ↦ ℝ such that 𝜇0 = 𝜈0◦𝜙 (Appendix E.1);
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2. the sufficiency of 𝜙(𝑋) implies conditional exchangeability w.r.t. 𝜙(𝑋)

(Appendix E.2);
3. conditional exchangeability w.r.t. 𝜙(𝑋) implies that Property 2 holds;

but
1. existence of 𝜈0 s.t. 𝜇0 = 𝜈0◦𝜙 does not imply the sufficiency of 𝜙(𝑋)
(Appendix E.3);

2. existence of 𝜈0 s.t. 𝜇0 = 𝜈0◦𝜙 does not even imply the conditional
exchangeability w.r.t. 𝜙(𝑋) (Appendix E.4).

Remark: The sufficiency of 𝜙(𝑋) with respect to 𝑌 0 guarantees both the
existence of 𝜈0 and the relevance of the approach: 𝜖0 admits a minimum in
𝜈0∗ ∶ 𝑧 ∈  ↦ 𝔼[𝑌 0

|𝜙(𝑋) = 𝑧], and 𝜈0∗◦𝜙 = 𝜇0. Sufficiency of 𝜙(𝑋) with
respect to 𝑌 0 is indeed a very favorable case.

However, from the practitioner’s viewpoint, it is impossible to prove that
a given statistic is sufficient based only on observational data. As a matter of
course if 𝜙 is injective then 𝑌 0 ⟂⟂ 𝑋|𝜙(𝑋), but this result relies on mapping 𝜙,
and not on the observational data itself. Even in the large sample limit and
using adequate conditional independence statistical tests, one may prove at
most independence of 𝑌 0 and 𝑋 conditionally to (𝜙(𝑋) = 𝑧, 𝑇 = 0), but not
conditionally to (𝜙(𝑋) = 𝑧) alone. This concern echoes the ones raised by
the assumption of conditional exchangeability: assuming sufficiency based
on observational data is a similar leap of faith.

IV.5.4 . Limitations
The well-foundedness of the ALRITE loss has been established, relating

the loss terms with the upper bound on the error of the causal estimate. This
subsection thus discusses the limitations and robustness of the proposed ap-
proachwith respect to: i) its asymptotical behavior; its robustness to positivity
violation; and iii) potential learning instability.

IV.5.4.1 . Asymptotical behavior
In the large sample limit, the insulation of any sample goes to 0 in prob-

ability.7 The approach’s asymptotical behavior remains an open question at
the moment. While the regularization term in (Shalit et al., 2017) is known
to converge toward the integral formulation of statistical distances (although
the rate of convergencemay be extremely slow in low-density regions of high-

7 Let us assume for simplicity that  ⊂ ℝ𝑑 . Let (𝑥𝑖, 𝑡𝑖 = 0, 𝑦𝑖) be a control samplefrom the training dataset, with 𝜖 > 0. Function𝜙0
, being implementedwith a finite-weights neural network, is continuous. As such, the inverse image of the latent spaceopen ball B(𝜙0

(𝑥𝑖), 𝜖) centered on 𝜙0
(𝑥𝑖) with radius 𝜖 is also an open. (𝑥𝑖, 𝑡𝑖 = 0, 𝑦𝑖)has been sampled from ℙ𝑋,𝑇 ,𝑌 and belongs to 𝜙−1

0
(B(𝜙0

(𝑥𝑖), 𝜖)) so there also exists
an open 𝐴 ⊂ 𝜙−1

0
(B(𝜙0

(𝑥𝑖), 𝜖)) of ℝ𝑑 such that ℙ(𝑇 = 0, 𝑋 ∈ 𝐵) > 0. Since positivity
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dimensional settings), the asymptotic convergence of the term based on insu-
lation remains to be studied.

IV.5.4.2 . Robustness to positivity violation
The robustness w.r.t. the lack of overlap of the control and treatment dis-

tribution (positivity violation) is all the more important than positivity is both
less likely to hold and harder to assess as the dimensionality of the covariate
space increases.

Unfortunately, as a synthetic example below shows, ALRITE is sensitive
to positivity violations. Note that this issue is not specific to our approach:
the same reasoning holds for models enforcing balance in the latent
space through distributional distance (Shalit et al., 2017; Du et al., 2021), or
counter-factual variance (Zhang et al., 2020) minimization. Moreover, neither
latent space disentanglement nor double-robustness does address this issue.

The illustrative synthetic example involves a 2-dimensional covariate
space (Fig. IV.8a) with two clusters. The positivity assumption is challenged
since the rightmost samples of the bottom cluster are overwhelmingly
treated, and the leftmost samples of the top one are mainly control.

As shown on Fig. IV.8, taking 𝜙(𝑥 = (𝑥1, 𝑥2)) = 𝑥1 (projection on the first
axis) yields low insulation values (Fig. IV.8, right) compared to 𝜙 = Id (Fig. IV.8,
left). For a high value of the penalization weight 𝛼, the projection on the first
axis is likely to correspond to a local minimum of the training loss.

As ALRITE might trade factual prediction accuracy to improve insulation,
this might harm the model’s ability to learn the factual and the counter-
factual distributions.

IV.5.4.3 . Potential learning instability
As discussed in Section IV.5, a low value of the training loss of ALRITE

hints at a low within-sample PEHE. The potential weakness is that the greedy
optimization of the exemplarity term can distort the model (see Appendix F
for an (admittedly pathological) illustration).
holds, ℙ(𝑇 = 1, 𝑋 ∈ 𝐴) > 0. Finally,

ℙ
(

insulation𝜙0
(𝑖) > 𝜖

)

= ℙ
(

∀𝑗 ∈ J1, 𝑛K, 𝑡𝑗 = 1 ⟹ 𝜙0
(𝑥𝑗) ∉ B(𝜙0

(𝑥𝑖), 𝜖)
)

≤ ℙ
(

∀𝑖 ∈ J1, 𝑛K, 𝑡𝑗 = 1 ⟹ 𝑥𝑗 ∉ 𝜙−1
0
(B(𝜙0

(𝑥𝑖), 𝜖))
)

≤ ℙ
(

∀𝑗 ∈ J1, 𝑛K, 𝑡𝑗 = 1 ⟹ 𝑥𝑗 ∉ 𝐴
)

≤
(

1 − ℙ(𝑇 = 1, 𝑋 ∈ 𝐴)
)𝑛

𝑛→+∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0
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(a) Treated and control samples in covariate space: the distributions include low over-lap regions.

(b) insulation values, 𝜙 is the identityover ℝ2
(c) insulation values, 𝜙 is the projectionover the x-axis.

Figure IV.8: Distribution of the control and treated samples. Top: covariatesspace. Bottom: histograms of insulation values. Note the difference in theranges.
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The rationale behind over-weighting the prediction error of samples
(𝑥, 𝑡, 𝑦) with high exemplarity is that a high associated prediction error
‖ℎ𝑡(𝑥) − 𝑦‖2 entails a high risk of error for the counter-factual estimation of
their neighbors (𝑥′, 𝑡′ = 1 − 𝑡, 𝑦′).

The risk of fragility comes from the fact that the exemplarity itself depends
on mapping 𝜙, which is optimized simultaneously with ℎ1 and ℎ0. The overall
optimization might thus select 𝜙 such that samples with little factual error
have high exemplarity − instead of selecting ℎ𝑡 such that it makes low errors
on samples with high exemplarity.

As the gradient does not flow back through the mirror twin operator dur-
ing the back-propagation phase, there should be no incentive for the 𝜙 net-
work to optimize in such a pathological way. However, this phenomenon is
prone to create instabilities during the training, all themore so as exemplarity
is defined in terms of 1-nearest neighbor, and is thus sensitive to infinitesimal
modifications of the network parameters. Further research will investigate
how to alleviate this drawback, e.g., by considering a smoothed estimate of
exemplarity.

IV.6 . Partial conclusion

In this chapter ismotivated, built, described and analyzedALRITE, as a new
architecture suited to CATE estimation. The saidmodel relies on asymmetrical
regularization, providing finer counter-factual modeling for both the control
and the treated distribution.

The merits of ALRITE will be validated through experiments and the com-
parison with baseline models in Chapter V. We shall discuss in detail the se-
lection of its hyper-parameters in Chapter VI.



V - Experimental validation

This chapter introduces the benchmark datasets for CATE models evalua-
tion (Section V.1). The experimental setting is detailed, delving into the con-
crete implementation of ALRITE (Section V.2). The results are finally reported
and compared with baseline models, validating the approach (Section V.3).

V.1 . Benchmarks

Two datasets are considered: IHDP which has been used to validate most
CATE estimation approaches, and Jobs.

V.1.1 . IHDP
V.1.1.1 . Description

The IHDP dataset, introduced by Hill (2011), is based on a real-life ran-
domized experiment dataset, the Infant Health and Development Program
(Brooks-Gunn et al., 1992), aimed at measuring the impact of quality child-
care and home visits on the health and development of preterm, low birth
weight children. The treatment consists of receiving this monitoring. Success
(outcome) is quantified through the results obtained from cognitive tests of
the children, taken at 12, 24, and 36 months.

The observational data include 25 covariate features describing the infant
(e.g., birth weight, birth gender, neonatal health status, pregnancy birth week)
and their mother (education status, ethnic group, age, engagement in prena-
tal care, risky behavior during pregnancy, etc.). 6 of these features are contin-
uous, 19 of them are binary.

Hill (2011) has processed the survey results to obtain a dataset suitable for
causal inference research. Notably, although treatment assignment is ran-
domized in the collected data, treatment imbalance is enforced by remov-
ing a subpopulation from the dataset: treated group children with nonwhite
mothers. The authors justify this choice arguing that said feature maximizes
the imbalance between the induced control and treated groups. The result-
ing dataset contains 747 individuals, 139 of whom are treated, all described
by the original 25 continuous and binary features.

The major difference between the original survey results and Hill (2011)’s
IHDP dataset lies in the replacement of the initial quantity of interest (cognitive
test scores) with simulated outcomes. Contrarily to real-life data, simulated
outcomes make it possible to access the counter-factual quantities, and thus
assess the performance of causal estimation models. Knowledge of the data
generation process ensures that conditional exchangeability holds. The

75
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selected simulation method consists in defining two response surfaces 𝜇𝑡 ∶
𝑥 ∈  ↦ 𝔼[𝑌 𝑡|𝑋 = 𝑥], 𝑡 ∈ {0, 1}, to which Gaussian noise is added.

V.1.1.2 . Outcomes simulation
Let 𝑍 ∼ Categorical

(

(𝑎, 𝑝𝑎), (𝑏, 𝑝𝑏)
) denotes a distribution such that ℙ(𝑍 =

𝑎) = 𝑝𝑎, ℙ(𝑍 = 𝑏) = 𝑝𝑏.Then, an IHDP dataset is generated as:
𝛽𝑖 ∼ Categorical

(

(0, 6∕10), (.1, 1∕10), (.2, 1∕10), (.3, 1∕10), (.4, 1∕10)
)

,∀𝑖 ∈ J1, 25K
𝑌 0 ∼ exp{(𝑋 + 0.5)†𝛽} + (0, 1)
𝑌 1 ∼ 𝑋†𝛽 + 𝜔 + (0, 1), with 𝜔 s.t. ATT = 4

Drawing multiple replicas of 𝛽, Hill (2011) generates multiple datasets. Overall,
"IHDP" comes in two modes noted IHDP-100 and IHDP-1000, respectively in-
cluding 100 and 1,000 generated datasets. Each dataset is split into a training
(90% of samples) and a testing (10%) subset, the split being fixed to support
a fair comparison among the algorithms. Researchers are then free to hold
out part of the data for validation purposes, the common rule consisting in a
70% − 30% split.

Following the state-of-the-art (Shalit et al., 2017; Du et al., 2021; Zhou et al.,
2021), the results presented in the following are averaged over the considered
datasets. We restrict ourselves to IHDP-100 for the sake of computational time.

V.1.1.3 . Performance indicators
On the IHDP benchmark, the primary performance indicator is the PEHE

that is the empirical error of the final estimate 𝜏 , defined as the mixture of
two estimates 𝜏0

, 𝜏1
(Eq. IV.2).

Two PEHEs are reported, referred to as within-sample and out-of-sample.
Thewithin-sample PEHE is computed on the training samples, where the fac-
tual outcome is known. As said, the within-sample error still is challenging
in causal modeling (in contrast with mainstream supervised learning) as the
counter-factual outcome is unknown.
The out-of-sample PEHE is computed on the test samples, where factual and
counter-factual outcomes are unknown. As could be expected, out-of-sample
estimation remains harder than within-sample one: representation network
𝜙0

, 𝜙1
and outcome functions ℎ00

, ℎ10
, ℎ11

, ℎ01
have been specifically fitted

to the training samples. Finally, some models may even explicitly rely on fac-
tual outcomes in the inference phase when available: (2𝑡𝑖−1)×

(

𝑦𝑖−ℎ1−𝑡𝑖(𝑥𝑖)
)

is a relevant way to estimate CATE(𝑥𝑖) and several methods (Künzel et al., 2019)
rely on it.

A secondary performance indicator on the IHDP benchmark is themean
absolute error on the average treatment effect estimation (Section II.5.1),
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with empirical estimate

𝜖ATE = |

1
𝑛

𝑛
∑

𝑖=1
𝜏(𝑥𝑖) − 𝜏(𝑥𝑖)|

While writing 𝜖ATE as a function of 𝜏 might suggest a high correlation with
the PEHE, practical experiments show otherwise. Systemic estimation bias
affects ATE much more than CATE. Specifically, methods focusing on ATE
estimation (in particular, doubly robust methods) usually demonstrate better
performances w.r.t. ATE (Fig. V.1). Overall, while PEHE favors low-variance
models, 𝜖ATE favors low-bias ones, no matter their variance.

Figure V.1: Impact of the performance indicators. The left model is better interms of PEHE, worse in terms of 𝜖ATE, compared to the right model.

V.1.1.4 . Discussion
While IHDP is de facto the baseline dataset for benchmarking causal infer-

ence models, it raises some criticisms (Curth et al., 2021b).
As said, IHDP is a collection of datasets (referred to as problem instance,

or simply instance when no confusion is to fear). However, the ranges of out-
comes and the causal effects are not commensurate among instances. As
shown in Fig. V.2a, the average values of 𝜇0, 𝜇1 vary greatly from one instance
of IHDP-100 to another. Note also that the standard deviation of 𝜇0 takes high
values in some instances (Fig. V.2b) while 𝜇1 varies much less in all instances
(Fig. V.2c). Therefore, 𝜏 varies a lot fromone instance to another, both in terms
of average (Fig. V.2d) and variance (Fig. V.2e).

On a given instance, a high standard deviation 𝜎𝜏 of the causal effects
makes CATE estimation more difficult. Indeed, when 𝜎𝜏 goes to 0, the causal
effect is uniform and the CATE estimation problem boils down to the (much
simpler) ATE estimation problem. Quite the contrary, for high values of 𝜎𝜏 , the
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(a) Averages of 𝜇0 and 𝜇1 (b) 𝜎𝜇0(𝑋), standard devia-tions of 𝜇0
(c) 𝜎𝜇1(𝑋), standard devia-tions of 𝜇1

(d) Average treatment ef-fects. (e) Standard deviationsof the treatment effects. (f) PEHE(𝜏) vs 𝜎𝜏
Figure V.2: Histograms and scatter plot of different measures, over the 100instances of IHDP-100.

large variance makes large errors more likely. This claim is visually confirmed
in Fig. V.2f, plotting the standard deviations of 𝜏 vs the PEHE of 𝜏 the best AL-
RITE estimate, for all instances in IHDP-100. Interestingly, instances with large
𝜎𝜏 account for a large fraction of the overall PEHE error. Accordingly, IHDP per-formance indicators are strongly biased depending on the algorithmbehavior
on the few toughest instances − they do not actually reflect the average be-
havior of the algorithm.

V.1.2 . Jobs
V.1.2.1 . Description

Jobs is initially introduced by LaLonde (1986) to illustrate the limitations of
mainstreameconometricsmethods in treatment effect estimation. It concate-
nates the data of a randomized study and a survey (Fig. V.3). Part of the data
comes from the so-called National Supported Work Demonstration (NSWD) ran-
domized experiment. In a study conducted in the mid-70s by the Manpower
Demonstration Research Corporation, randomly selected women from the
Aid to Families with Dependent Children social security program, high-school
dropouts, and ex-criminal offenders have been offered guaranteed jobs for a
duration comprised between 9 and 18 months. After this period, the earnings
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Figure V.3: Schematic structure of the Jobs dataset, with treated and controlsamples. Note the limited overlap (more in Fig. V.4b).

of participants have been collected every year from 1975 to 1979. The other
part of the data comes from the Panel Study of IncomeDynamics (PSID), a purely
observational survey.

The outcome 𝑌 considered in (Dehejia andWahba, 2002) and further work
is the employment status of individuals. Overall, the outcome is binary; 8 bi-
nary and continuous covariates are considered (e.g., age, education, previous
earnings).

Like IHDP, Jobs is actually a collection of datasets, made of 10 fixed
train/test splits of the same original data. The randomized subgroup con-
tains 297 treated and 425 control individuals, while the comparison group
contains only control ones.

V.1.2.2 . Performance indicators
Since Jobs is a real-life dataset and no counter-factual information is avail-

able, the primary performance indicator is the policy risk (Section II.5.1) as-
sociated with the binary policy built from the causal effects estimate, with
𝜋𝜏 (𝑥) = 1 iff 𝜏(𝑥) > 0.

In principle, treatment assignment is uniform on the NSWD subset, enforc-
ing conditional exchangeability (𝑌 𝑡 ⟂⟂ 𝑇 |𝑋,∀𝑡 ∈ {0, 1}) as well as exchange-
ability (𝑌 𝑡 ⟂⟂ 𝑇 ,∀𝑡 ∈ {0, 1}). Under this assumption, the policy risk Rpol andobservational policy risk oRpol (Section II.5.1) coincide.

𝔼[𝑌 𝑡|𝜋(𝑋) = 𝑡] =𝔼[𝑌 𝑡|𝜋(𝑋) = 𝑡, 𝑇 = 𝑡] (𝑌 𝑡 ⟂⟂ 𝑇 |𝜋(𝑋))
=𝔼[𝑌 𝑇 |𝜋(𝑋) = 𝑡, 𝑇 = 𝑡]
=𝔼[𝑌 |𝜋(𝑋) = 𝑡, 𝑇 = 𝑡] (SUTVA)

implying
Rpol(𝜋) =1 − ℙ(𝜋(𝑋) = 1)𝔼[𝑌 1

|𝜋(𝑋) = 1]
− ℙ(𝜋(𝑋) = 0)𝔼[𝑌 0

|𝜋(𝑋) = 0]



80 CHAPTER V. EXPERIMENTAL VALIDATION

=1 − ℙ(𝜋(𝑋) = 1)𝔼[𝑌 |𝜋(𝑋) = 1, 𝑇 = 1]
− ℙ(𝜋(𝑋) = 0)𝔼[𝑌 |𝜋(𝑋) = 0, 𝑇 = 0]

=oRpol(𝜋) (V.1)
and the final expression only involves the observational distribution. For
the sake of readability, the notations in the following do not explicit that the
probabilities, expectations and independence are taken with respect to the
distribution of NSWD.

A secondary performance indicator is the error on the Average Treat-
ment effect on the Treated 𝜖ATT(𝜏) = |𝔼[𝜏(𝑋) − 𝜏(𝑋)|𝑇 = 1]|. Here again,
the randomness in the treatment assignment makes it possible to obtain a
reliable ATT estimate by computing averages over the NSWD data. By taking
all expectations and probabilities on the NSWD distribution, it comes:

ATT = 𝔼[𝑌 1 − 𝑌 0
|𝑇 = 1]

= 𝔼[𝑌 1
|𝑇 = 1] − 𝔼[𝑌 0

|𝑇 = 0] (𝑌 0 ⟂⟂ 𝑇 )
= 𝔼[𝑌 𝑇 |𝑇 = 1] − 𝔼[𝑌 𝑇 |𝑇 = 0]
= 𝔼[𝑌 |𝑇 = 1] − 𝔼[𝑌 |𝑇 = 0] (SUTVA)

and the final expression only involves the observational distribution.
Remark. Although the within-sample version of the policy risk has been

widely used in the literature to assess the quality of causal inference models,
it only relies on available factual data: it might provide questionable results,
as illustrated in the following synthetic case study.
Let us set 𝜋(𝑥𝑖) = 𝑦𝑖𝑡𝑖 + (1 − 𝑦𝑖)(1 − 𝑡𝑖) (assuming that all 𝑥𝑖 are distinct). Since
𝜋(𝑥𝑖) = 𝑡𝑖 if 𝑦𝑖 = 1 and 𝜋(𝑥𝑖) ≠ 𝑡𝑖 otherwise, one has

𝑦𝑖𝟙[𝜋(𝑥𝑖)=𝑡]𝟙[𝑡𝑖=𝑡] = 𝟙[𝜋(𝑥𝑖)=𝑡]𝟙[𝑡𝑖=𝑡]

The Monte-Carlo estimates of 𝔼[𝑌 |𝜋(𝑋) = 1, 𝑇 = 1] and 𝔼[𝑌 |𝜋(𝑋) = 0, 𝑇 = 0]
then respectively write:

∑

𝑦𝑖𝟙[𝜋(𝑥𝑖)=1]𝟙[𝑡𝑖=1]
∑

𝟙[𝜋(𝑥𝑖)=1]𝟙[𝑡𝑖=1]
= 1,

∑

𝑦𝑖𝟙[𝜋(𝑥𝑖)=0]𝟙[𝑡𝑖=0]
∑

𝟙[𝜋(𝑥𝑖)=0]𝟙[𝑡𝑖=0]
= 1 (V.2)

and thus the empirical estimate of Rpol(𝜋) is equal to 0. In other words, know-ing both 𝑇 and 𝑌 𝑇 in the within-sample settings yields a trivial solution: When
𝑦𝑡𝑖𝑖 = 0, one can discard sample 𝑖 by simply setting 𝜋𝑖 = 1 − 𝑡𝑖. Sample 𝑖 will
not be taken into account into either of the terms 𝔼[𝑌 |𝜋(𝑋) = 0, 𝑇 = 0] and
𝔼[𝑌 |𝜋(𝑋) = 1, 𝑇 = 1]. In some sense, this solution amounts to refusing to
play unless success is already acquired1.

1This remark also holds regarding the within-sample estimation of the AverageTreatment effect on the Treated.
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Overall, the estimation of within-sample performance indicators must in-

volve quantities that are unavailable at training time (i.e., counter-factuals),
such as PEHE.

V.1.2.3 . Discussion
Despite being broadly used, the Jobs benchmark is poorly suited to assess-

ing causal inference models in general, particularly so for models built on a
latent space.

1. Firstly, Jobs violates the positivity assumption (Eq. II.4). The supports
of the covariates in NSWD and PSID are almost distinct. By design, all
treated samples belong to the NSWD part of the data; the probability of
treatment assignment is thus equal to 0 outside of its covariates sup-
port. This is evidenced by the Area Under the ROC Curve (AUC) of a
simple 10-Nearest Neighbors classifier (Fig. V.4a), aimed to distinguish
samples from NSWD or PSID on one instance of Jobs. The excellent dis-
crimination of the two classes (AUC = .973) is confirmed through a 2D
visualization of the data using UMAP (McInnes et al., 2018) in Fig. V.4b.

(a) ROC curve of a 10-Nearest Neigh-borsmodel classifying Jobs samples asbelonging to NSWD or PSID.
(b) UMAP representation of the covari-ates of one Jobs dataset, differentiat-ing NSWD and PSID.

Figure V.4: The Jobs dataset: visualizing the poor overlap of the covariatessupports.
However, the specific PSID data might still be relevant to the training of
causal models, if the information used to discriminate NSWD and PSID
is irrelevant to predicting the potential outcomes 𝑌 0, 𝑌 1. In such a case,
there might exist an embedding 𝜓 such that 𝜓(𝑋) contains all relevant
information to predict the outcomes while the latent spaces of NSWD
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Figure V.5: Policy risk of CFR-Wassmodels versus the weight 𝛼 of the balanceenforcing term (discrepancy).

and PSID are confounded:
{

𝑌 𝑡 ⟂⟂ 𝑋|𝜓(𝑋), ∀𝑡 ∈ {0, 1}
0 < ℙ(𝑋 ∈ NSWD |𝜓(𝑋) ∈ Ω) < 1, ∀Ω 𝑠.𝑡.ℙ(𝜓(𝑋) ∈ Ω) > 0

2. Secondly, the use of randomized treatment subsets is poorly suited
tomost CATE estimators. As said, the key challenge for CATEmodels is
to handle imbalanced data. While Jobs is imbalanced, the performance
of the models is assessed on a randomized, hence balanced, subset of
the data (𝑇 ⟂⟂ 𝑋 | 𝑋 ∈ NSWD), making it possible to approximate Rpol.
In the general case, balance in the latent space is sought to achieve
a better counter-factual predictive accuracy, at the expense of the fac-
tual predictive accuracy. Formally, the training loss of a CATE estimator
based on a latent space may typically be rewritten under the form

 = prediction + 𝛼discrepancy + 𝛾Ωregularization

where 𝛼 and 𝛾 respectively control the strength of the discrepancy pe-
nalization and that of regularization. The optimal value of 𝛼 is expected
to be 0, for no discrepancy mitigation is required.
The following experiment supports this claim, training 100 CFR-Wass
models on each of Jobs 10 instances, for 𝛼 in {0, 10−3,…10−1}, all other
hyper-parameters being fixed. The policy risks on the test set (Fig. V.5)
are minimized for 𝛼 = 0, as expected.
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ELU ∶ 𝑥 ∈ ℝ ↦

{

𝑒𝑥 − 1 , 𝑥 < 0
𝑥 , 𝑥 ≥ 0

Figure V.6: the Exponential Linear Unit activation function.

V.2 . Experimental setting

The baselinemodels considered to comparatively assess the performance
of ALRITE are listed in Table V.1. The associated results are those reported in
the cited papers due to the lack of details regarding the implementation and
hyper-parameter adjustment.

The details of the implementation of ALRITE are presented below. The
adjustment of the hyper-parameters is detailed in Chapter VI.

Neural architectures Pipelines 0 and 1 are trained independently.
The architecture and learning protocol are illustrated on 0 for simplicity.

As said, all modules of 0 (𝜙0
, ℎ00

, ℎ10
) are implemented as neural net-

works, with Exponential Linear Units (ELU; (Clevert et al., 2015)) activation func-
tion (Fig. V.6), following Shalit et al. (2017). ELU activation functions are immune
to the dying ReLU issue2, are differentiable at zero, and let mean activation val-
ues get closer to zero.

The neural architecture of mapping 𝜙 is described from its number 𝐿 of
layers and the layer width 𝑊 (same for all layers) with activation function
ELU. The last layer is normalized (𝑟(𝐿) ↦ 𝑟(𝐿)

||𝑟(𝐿)||
) to prevent learning the

trivial embedding 𝑥 ↦ 0, that achieves a null discrepancy penalization
𝛼
∑

𝑡𝑖=0
insulation𝑥↦0(𝑖)2 and a null regularization 𝛾0

Ω(0).The potential outcome models ℎ0, ℎ1 also are neural networks; they in-
volve the same number of layers and layer widths (that can differ from that
of the 𝜙 network).

2The Rectified Linear Unit function maps 𝑥 ∈ ℝ to 0 if 𝑥 is negative, to 𝑥 otherwise:
ReLU ∶ 𝑥 ↦ 𝑥+. "Dying ReLU" refers to a situation where a neuron from the networkcan no longer be optimized. Suppose that there exist weight matrices 𝑎(𝓁), 𝑏(𝓁) suchthat for any input 𝑟(𝓁−1) of layer 𝓁, the 𝑖-th neuron input (𝑎(𝓁)𝑟(𝓁−1) + 𝑏(𝓁)

)

𝑖 is nega-tive. Then for any input of layer 𝓁, 𝑟(𝓁)𝑖 = ReLU(𝑎(𝓁)𝑟(𝓁−1) + 𝑏(𝓁)) is null. No gradientmay be propagated back through neuron 𝑖 of layer 𝓁, preventing further optimiza-tion of (𝑎(𝓁), 𝑏(𝓁))𝑖. If this phenomenon affects too many neurons, the neural networkexpressivity is severely harmed.
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Model Metalearner
class

Based on

BNN S-learner Neural networks, single head
CFR-Wass T-learner Neural networks, two heads,Wasserstein balancing
OLS/LR-2 T-learner Naive linear/logistic estimation of

𝜇0, 𝜇1

CEVAE T-learner Variational Autoencoder
CF S-learner Trees, last leaf split correspondingto treatment assignment
SITE T-learner CFR’s architecture, specific latentspace constraints
GANITE T-learner Generative Adversarial Networks
NSGP T-learner Gaussian Processes
ACE T-learner Similar to SITE, finer-grained
DR-CFR T-learner Decomposition of therepresentation into adjustment,confounding, instrumental ([A,C,I])factors
DKLITE T-learner Gaussian processes, specific focuson counter-factual variancelimitation
BWCFR T-learner CFR’s architecture, specific careregarding sample weights
ABCEI T-learner Adversarial learning, enforcinglatent balance
CBRE T-learner Adversarial learning, andpreservation of information in therepresentation space
MIM-DRCFR T-learner [A,C,I] decomposition, mutualinformation disentanglement
DeR-CFR T-learner [A,C,I] decomposition, orthogonaldisentanglement
DRCFR+ T-learner [(A0, A, A1), C, I] decomposition,orthogonal+adversarialdisentanglement

Table V.1: Baseline benchmark models.
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Training protocol Optimization of the neural modules is (𝜙 and outcome
models) is conducted using Adam (Kingma and Ba, 2014). Exponential weight
decay is used: the initial learning rate is set to 10−3, and it is multiplied by
0.97 after every 100 mini-batches (the size of which is a hyper-parameter of
the approach, Chapter VI). 𝐿2 regularization is applied on the weights of the
outcome models to avoid overfitting.

Overfitting is prevented using a validation set  including 30% of the
training data. When the primary performance metric is PEHE, it is impossi-
ble to resort to early stopping based on the metric of interest since counter-
factual values are unavailable. Therefore the factual prediction error on  :
1

| |

∑

(𝑥,𝑡,𝑦)∈
(

ℎ𝑡◦𝜙(𝑥) − 𝑦
)2 is used as a proxy metric3, the relevance of which

is shown by Thm. 1. In practice, a total number of epochs is fixed and the
returned model is the one with optimal factual prediction error.4

When the primary performance indicator is policy risk, Rpol is computed
on the validation dataset, and the returned model is the one minimizing Rpol;as inmainstream supervisedmachine learning, it is considered that the epoch
minimizing Rpol on the validation set also yields a good performance on the
test dataset.
Propensity estimate Propensity estimation is achieved using main-
stream supervised learning algorithms, as covariates 𝑋 and treatment
assignment variables 𝑇 are known on the training set. Several models are
considered: logistic regression, k-nearest neighbors, and decision trees.
Grid-search on the model and associated hyper-parameter space, using a
cross-validation scheme, is used to train and select the best option for each
considered dataset.
Software and infrastructure The practical implementation builds on
the code released by Shalit et al. (2017) 5, and released by Johansson (2023).
As such, it relies entirely on Python code, using mainly Tensorflow (Abadi et al.,
2016) as a framework for the training of neural models. Auxiliary machine
learning models resort to Scikit-Learn (Pedregosa et al., 2011).

The computationally intensive operations (especially the training of large
numbers of models for grid-search purposes) have been conducted on Ti-
tanic, the cluster of Inria team TAU. The main results on IHDP (as reported
in Table V.2) have been obtained after random selection of 70 sets of hyper-

3This quantity, referred to as the estimated 𝜇-risk of themodel on , will be usedto achieve hyper-parameter selection Section VI.2.4In practice, the factual error is only computed every 10 epochs, for the sake ofcomputational andmemory resources, given the large number ofmodels consideredfor hyper-parameter adjustment, see Chapter VI.5as done before by notably Yao et al. (2018); Du et al. (2021); Zhou et al. (2021)
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parameters for each pipeline, hence totaling the training of 14000models. The
main results on Jobs (as reported in Table V.3) have been obtained after ran-
dom selection of 540 sets of hyper-parameters for each pipeline, hence total-
ing the training of 10800models. In the IHDP setting the training of eachmodel
requires 4 CPUs, 1.5GB of RAM on average and a total training (wall) time of 81s.
In the Jobs setting the training of each model requires 4 CPUs, 800MB of RAM
on average, and a total training (wall) time of 20s. The energy expenditures are
respectively estimated as 17kWh (8.9𝑒2g CO2𝑒) and 3kWh (1.7𝑒2g CO2𝑒) (Lanne-longue et al., 2021).

V.3 . Experimental results

Tables V.2 and V.3 report the performance indicators for all considered
baselines and ALRITE on the IHDP and Jobs benchmarks. As said, the reported
metric values are averaged over all instances of each dataset, and the perfor-
mances of the baselines are taken from the cited papers. The bias affecting
the average effects estimation is analyzed in Section V.3.3. Finally, the repro-
ducibility of the baselines is discussed in Section V.3.4.

V.3.1 . IHDP

Overall, the merits of ALRITE are demonstrated on IHDP as it ranks first
on within-sample PEHE and second on out-of-sample PEHE. Indeed, ALRITE is
designed to optimize the PEHE performance indicator, as motivated by Thm. 1.
The comparatively lesser performance regarding within-sample and out-of-
sample 𝜖ATE is blamed on the𝐿2 regularization (more in Section V.3.3), tending
to bias the estimates toward 0, as noted by Laan and Rose (2011).

The ensemble variants of ALRITE introduced in Section IV.4 are also ap-
plied on IHDP. The associated PEHE and factual errors are depicted in Fig. V.7
for the considered ranges of their proper hyper-parameters (number 𝐾 of
models in the top-K ensemble, temperature 𝜆 in the softmax𝜆 ensemble). As
shown, the factual error can reliably be used to select the hyper-parameter
value with nearly optimal PEHE, set to 𝐾 = 4 and 𝜆 = 100 for respectively the
top-K and the softmax𝜆 ensembles. With their tuned hyper-parameters, the
top-K version significantly outperforms ALRITE (with p-value= 1.3𝑒 − 3 on a
one-sided paired t-test) but the softmax𝜆 version does not (p-value= .24).

V.3.2 . Jobs

On Jobs, ALRITE does not perform well; it is outperformed by most



V.3. EXPERIMENTAL RESULTS 87

IHDP
within-sample out-of-sample

√

PEHE 𝜖ATE
√

PEHE 𝜖ATE
OLS/LR-2 2.4 ± .1 .14 ± .01 2.5 ± .1 .31 ± .02
BNN 2.2 ± .1 .37 ± .03 2.1 ± .1 .42 ± .03
CF 3.8 ± .2 .18 ± .01 3.8 ± .2 .40 ± .03

CFR-Wass .71 ± .0 .25 ± .01 .76 ± .0 .27 ± .01
CEVAE 2.7 ± .1 .34 ± .01 2.6 ± .1 .46 ± .02
SITE .60 ± .09 / .66 ± .11 /

GANITE 1.9 ± .4 .43 ± .05 2.4 ± .4 .49 ± .05
NSGP .51 ± .01 / .64 ± .03 /
ACE .49 ± .005 / .54 ± .06 /

DKLITE .52 ± .02 / .65 ± .03 /
DR-CFR / / .65 ± .03 .03 ± .04
BWCFR / / .63 ± .01 .19 ± .01
ABCEI .71 ± .0 .09 ± .01 .73 ± .0 .09 ± .01
CBRE .52 ± .0 .10 ± .01 .60 ± .1 .13 ± .02

MIM-DRCFR / / .38 ± .009 .09 ± .001
DeR-CFR .44 ± .02 .13 ± .02 .53 ± .07 .15 ± .02
DRCFR+ .86 ± .01 / 1.19 ± .01 /
ALRITE .42 ± .03 .12 ± .009 .43 ± .02 .13 ± .01

K-top ALRITE .40 ± .02 .10 ± .008 .41 ± .02 .11 ± .009
softmax𝜆 ALRITE .40 ± .023 .095 ± .008 .42 ± .02 .11 ± .008

Table V.2: Comparative performances of ALRITE (ours) on IHDP (loweris better).



88 CHAPTER V. EXPERIMENTAL VALIDATION

(a) 𝜏 top-K, within-sample setting. (b) 𝜏 top-K, out-of-sample setting.

(c) softmax𝜆, within-sample setting. (d) softmax𝜆, out-of-sample setting.
Figure V.7: Ensemble models: PEHE vs factual error on the validation set sen-sitivity, depending on the hyper-parameter. Top: Top-K ensemble, with 𝐾 in
J1, 50K. Bottom: softmax-𝜆 ensemble, with 𝜆 in {10𝑘∕2}16𝑘=2.
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Jobs
within-sample out-of-sample
Rpol 𝜖ATT Rpol 𝜖ATT

OLS/LR-2 .21 ± .0 .01 ± .01 .24 ± .0 .08 ± .03
BNN .20 ± .0 .04 ± .01 .24 ± .0 .09 ± .04
CF .19 ± .0 .03 ± .01 .20 ± .0 .07 ± .03

CFR-Wass .17 ± .0 .04 ± .01 .21 ± .0 .09 ± .03
CEVAE .15 ± .0 .02 ± .01 .26 ± .0 .03 ± .01
SITE .22 ± .00 / .22 ± .01 /

GANITE .13 ± .01 .01 ± .01 .14 ± .01 .06 ± .03
NSGP / / / /
ACE 0.22 ± .01 / 0.22 ± 0.01

DKLITE .13 ± .01 / .14 ± .01 /
DR-CFR / / / /
BWCFR / / / /
ABCEI .13 ± .0 .02 ± .01 .17 ± .0 .03 ± .01
CBRE .13 ± .0 / .28 ± .0 /

MIM-DRCFR / / / /
DeR-CFR .19 ± .04 .05 ± .09 .21 ± .01 .09 ± .0
DRCFR+ / / / /
ALRITE .22 ± .01 .07 ± .02 .23 ± .02 .06 ± .02

Table V.3: Comparative performances of ALRITE and baselines on Jobs(lower is better; the relevance of the within-sample performance is dis-cussed in Section V.1.2).
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Figure V.8: Influence of the regularization strength 𝛼 on the policy risks ofpipelines 0 and 1. The results are averaged over all 10 Jobs instances (100runs per instance) for each 𝛼 value.

baselines. Indeed, the training set contains data from both NSWD and PSID6.
0 aims at getting insulation low for control samples, and in particular
for PSID samples. In other words, it ensures that each PSID sample gets
neighbored by NSWD ones in the latent space. As discussed in Section V.1.2.3,
this objective is inappropriate as the supports of NSWD and PSID are almost
disjoint; furthermore, the evaluation metric does not take PSID samples into
account. ALRITE thus sacrifices the factual predictive accuracy of treated
samples while failing to improve the counter-factual predictive accuracy
of PSID samples. As measured by the Rpol indicator, this results in a net
performance loss.

The impact of the discrepancy regularization term on pipelines 0 and
1 is investigated by varying hyper-parameters 𝛼 (controlling the strength
of insulation) and 𝛽 (controlling the impact of exemplarity) ranging in
{0, 10−3,…10−1}, all other hyper-parameters being fixed. Fig. V.8 displays the
results, confirming that lower 𝛼 values are associated with smaller Rpol scores,implying better performance. As expected, any amount of discrepancy
regularization severely harms the averaged performance of pipeline 0,while small amounts of regularization do not affect pipeline 1.

V.3.3 . Estimation bias
Let us investigate the ATE performance of ALRITE. The reason why it is

less good than the PEHE one is that, as noted in Section III.2.3, the larger the
parameter space of models, the more likely they are to suffer from large bi-
ases. An identified source of bias lies in model regularization, embodied by

6Note that if the available data were restricted toNSWD, the control and treatmentdistribution would be the same and a two-pipeline architecture would be meaning-less.
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the fourth term of the training loss:

𝑡 =
1
𝑛𝑡

∑

𝑡𝑖=𝑡
error𝑡(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)

+
𝛼𝑡
𝑛𝑡

∑

𝑡𝑖=𝑡
insulation𝑡(𝑖)

2

+ 1
𝑛1−𝑡 + 𝛽𝑡𝑛𝑡

∑

𝑡𝑖=1−𝑡
(1 + 𝛽𝑡exemplarity𝑡(𝑖)) × error𝑡(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)

+𝛾𝑡 Ω(𝑡)

(V.3)

While the 𝐿2 regularization limits the over-fitting in neural networks, it
does so at the price of an increased bias. Complementary experiments are
conducted on ALRITE to provide evidence for the role of regularization in
model bias, and measure its impact as follows.

V.3.3.1 . Evidence
ALRITE is launchedon the 100 datasets in IHDP-100, setting the 𝛾 parameter

to 10−4. Consider the control and treated estimate 𝜇̂0 and 𝜇̂1,
𝜇̂0 ∶ 𝑥 ∈  ↦ 𝜂̂(𝑥)ℎ10

◦𝜙1
(𝑥) + (1 − 𝜂̂(𝑥))ℎ00

◦𝜙0
(𝑥)

𝜇̂1 ∶ 𝑥 ∈  ↦ 𝜂̂(𝑥)ℎ11
◦𝜙1

(𝑥) + (1 − 𝜂̂(𝑥))ℎ10
◦𝜙0

(𝑥)

Taking advantage of the fact that the (simulated) counterfactuals are available
on IHDP, the associated error may be computed:

𝜖0𝑖 = 𝜇̂0(𝑥𝑖) − 𝜇0(𝑥𝑖)
𝜖1𝑖 = 𝜇̂1(𝑥𝑖) − 𝜇1(𝑥𝑖)

These errors are then regressed against 𝜇𝑡(𝑥𝑖), with 𝑟𝑡 × 𝜇𝑡(𝑥𝑖) being the "lin-early explained" fraction of the error 𝜖𝑡𝑖 , and 𝛿𝑡𝑖 the residual:
𝜖0𝑖 = 𝑟0 × 𝜇0(𝑥𝑖) + 𝛿0𝑖
𝜖1𝑖 = 𝑟1 × 𝜇1(𝑥𝑖) + 𝛿1𝑖

With these notations, the empirical approximation of the error in ATE estima-
tion writes

𝜖ATE = |

1
𝑛

𝑛
∑

𝑖=1

(

𝜇̂1(𝑥𝑖) − 𝜇̂
0(𝑥𝑖)

)

−
(

𝜇1(𝑥𝑖) − 𝜇0(𝑥𝑖)
)

|

= |

1
𝑛

𝑛
∑

𝑖=1
(𝜖1𝑖 − 𝜖

0
𝑖 )|
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= |

𝑟1

𝑛

𝑛
∑

𝑖=1
𝜇1(𝑥𝑖) −

𝑟0

𝑛

𝑛
∑

𝑖=1
𝜇0(𝑥𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
"linearly explained"

+ 1
𝑛

𝑛
∑

𝑖=1
(𝛿1𝑖 − 𝛿

0
𝑖 )

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
residual

|

Here, 𝑟1
𝑛
∑𝑛
𝑖=1 𝜇

1(𝑥𝑖) −
𝑟0

𝑛
∑𝑛
𝑖=1 𝜇

0(𝑥𝑖) represents the "linearly explained" part of
the ATE estimation error, while 1

𝑛
∑𝑛
𝑖=1(𝛿

1
𝑖 − 𝛿

0
𝑖 ) is the residual.

In Fig. V.9, error 𝜖𝑡𝑖 is plotted against the ground truth 𝜇𝑡(𝑥𝑖) for each sam-
ple and each dataset. Both regression coefficients 𝑟0 and 𝑟1 are found to be
negative, with 𝑟1 < 𝑟0 < 0.

In other words, the greater the outcomes 𝑦0 and 𝑦1, the worse the under-
estimation: factual predictions tend to be biased towards 0. Moreover, it ap-
pears on the IHDP benchmark that the outcome 𝑌 takes on average higher val-
ues for treated individuals than for control ones (Fig. V.9c): 0 < 1

𝑛
∑𝑛
𝑖=1 𝜇

0(𝑥𝑖) <
1
𝑛
∑𝑛
𝑖=1 𝜇

1(𝑥𝑖). The numerical evaluation of the "linearly explained" part of the
ATE estimation error appears to be negative. The prediction biases for the
control and treated outcomes do not compensate for each other, adversely
affecting ATE estimation.

V.3.3.2 . Impact of the bias

In a second experiment, the 𝐿2 penalization weight parameter 𝛾 (Eq. IV.3)
is varied in (𝛾1,… , 𝛾𝑀 ), yielding a range of trained models 𝜏(1),… , 𝜏(𝑀), while
all other hyper-parameters are kept the same. For each 𝜏(𝑚), the associated
regression coefficient 𝑟𝛾𝑚 is computed as in the previous experiment. Fig. V.10
displays 𝑟𝛾 versus 𝛾 (in log scale), showing that after a plateau, 𝑟𝛾 decreases
as 𝛾 increases. Accordingly, larger values of 𝛾 are associated with a stronger
model bias towards zero and, consequently, larger errors in ATE and ATT esti-
mation.

Further work will investigate the solutions proposed to address this draw-
back. Kennedy (2023)’s DR-learner (Section III.3.1.7) adapts double machine
learning (Chernozhukov et al., 2018) to the CATE estimation setting, The train-
ing of pipeline0 might be completed with a second stage: instead of defining
𝜏0

as the difference ℎ10
◦𝜙0

− ℎ00
◦𝜙0

, it would be sought as a minimizer of
∑

𝑖

(

𝜏(𝑥𝑖) −
(

𝜇̂10
(𝑥𝑖) − 𝜇̂

0
0
(𝑥𝑖) + (2𝑡𝑖 − 1)𝜚̂𝑡𝑖(𝑥𝑖)(𝑦𝑖 − 𝜇̂

𝑡𝑖(𝑥𝑖))
)

)2.
V.3.4 . Baseline reproducibility

After (Pineau et al., 2021), the overall field of Machine Learning faces re-
producibility challenges. The comparison of the performance of ALRITE with
that of baseline models also faces quite some difficulties. Besides the usual
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(a) Prediction error on control sam-ples. (b) Prediction error on treated sam-ples.

(c) Distribution of 𝑌 0 and 𝑌 1 on IHDP-100.
Figure V.9: Prediction error on control and treated samples, and the associ-ated outcome distributions.

issues7, the main trouble comes from the lack of details about the selected
hyper-parameters, and about the hyper-parameter selection strategy (Chap-
ter VI).

Another issue is related to the IHDP benchmark itself. While most authors
consider the versions of IHDP-100 and IHDP-1000 released by Johansson et al.
(2016) and based on (Dorie, 2023), some authors (Zhang et al., 2021; Cheng
et al., 2022b) have generated their own versions of IHDP-100 and IHDP-1000
with different random seeds and train/valid/test split proportions, reporting
the results on IHDP-1000, or IHDP-100. As the final PEHE value essentially de-

7Including the usage of long-deprecated packages (Shalit et al., 2017), or the lackof comments in the code, or the lack of precision regarding the IHDP setting (Chenget al., 2022b).
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Figure V.10: Relationship between 𝐿2 regularization strength coefficient 𝛾 andregression coefficient 𝑟𝛾 .

pends on the difficult IHDP instances (with large CATE variance), the diversity
of these experimental settings also makes it difficult and/or computationally
expensive to conduct a fair comparison.

V.4 . Partial conclusion

This chapter has demonstrated the relevance of ALRITE on the main
causal estimation benchmark, IHDP. Some conjectures explaining the difficul-
ties faced byALRITE on the Jobs dataset have been proposed; complementary
experiments supporting these explanations have been conducted and dis-
cussed. The next chapter will tackle the issue of hyper-parameter selection,
of key importance in efficient causal estimation.



VI - Hyper-parameter selection in causal infer-
ence

Hyper-parameter selection, referred to as AutoML in the context of
supervised learning (Hutter et al., 2019), is known to be a tedious and
time-consuming task, though an essential one to reach good performances.
Its difficulty is significantly increased in the context of causal inference, due
to the fact that the counterfactual information is per se unknown.

This chapter focuses onhyper-parameter selection in the context of causal
inference, referring the reader to Cheng et al. (2022a) for a comprehensive in-
troduction to causal learning evaluation methods. After discussing the posi-
tion of the problem (Section VI.1), noting thatmost performance indicators are
infeasible, i.e. cannot be computed, we present proxies thereof (Section VI.2).
Their comparative assessment is detailed in Section VI.3. Eventually, the pro-
cedure used to selectALRITE hyper-parameters is detailed in Section VI.4, and
experiments on synthetic data are used to a posteriori support this procedure
(Section VI.5).

Validation set. All proxies for performance indicators are assessed on a
subset of held-out samples, referred to as validation dataset. Note that the
assessment can be averaged using a cross-validation procedure, as in super-
vised learning.

VI.1 . Position of the problem

Let us consider a finite observational dataset  = {(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)}𝑖∈J1,𝑛K in the
Neyman-Rubin potential outcomes framework, with  = {(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)}𝑖∈ a
randomly drawn subset used as validation set. Given several CATE estimates,
noted 𝜏(𝑖), for 𝑖 = 1…𝐶 , trained on ∖ , the question is to select the best
estimate.

Thedifficulty is that the key performance indicators PEHE(𝜏), 𝜖ATE(𝜏), Rpol(𝜏), 𝜖ATT(𝜏)1are infeasible.
1Let us remind the definitions:

 ↦
1

| |

∑

(𝑥,𝑡,𝑦)∈

(

𝜏(𝑥) − 𝜏(𝑥)
)2

 ↦
|

|

|

|

1
| |

∑

(𝑥,𝑡,𝑦)∈

𝜏(𝑥) − 𝜏(𝑥)
|

|

|

|
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The state of the art investigates two directions to address this difficulty.
The first direction is based on integrating model selection depending on

the class of models retained to learn 𝜇̂𝑡, as exemplified by Athey and Imbens
(2016) for causal trees, or Powers et al. (2018) for causal boosting and bagged
causal multivariate adaptive regression splines. Along a different line, Alaa
and Van Der Schaar (2018) rely on an information-theoretic criterion, match-
ing the expressivity of the outcome function estimators and the regularity of
the true outcome functions 𝜇0, 𝜇1 in the context of Gaussian processes. This
direction will not be considered further in this chapter for the sake of gener-
ality.

The second direction considers proxy metrics, required to be feasible and
such that the performance of the model optimizing the chosen proxy metric
is close enough to the best one w.r.t. the infeasible target metrics. Quite a few
work (Schuler et al., 2018; Doutreligne and Varoquaux, 2023; Curth and Schaar,
2023) aims at identifying conditions under which the model selected after the
proxy metrics is a satisfying choice.2

VI.2 . Proxy metrics

 ↦
1

| |

∑

(𝑥,𝑡,𝑦)∈

1 − 𝜇̂0(𝑥)𝟙[𝜏(𝑥)≤0] − 𝜇̂1(𝑥)𝟙[𝜏(𝑥)>0]

 ↦
|

|

|

|

1
∑

(𝑥,𝑡,𝑦)∈
𝑡

∑

(𝑥,𝑡,𝑦)∈

𝑡
(

𝜏(𝑥) − 𝜏(𝑥)
)|

|

|

|

2Meaning that the ranks of the model according to the target and the proxy met-rics are close, or that their value are close.As an illustration, while the straightforward PEHE(𝜏) estimator of a given candidatecausal model 𝜏 is not feasible, the observed policy risk oRpol, however, admits a fea-
sible estimator ôRpol∙(𝜏):

oRpol ∶ 𝜏 ↦ 1 − 𝔼[𝑌 |𝜏(𝑥) > 0, 𝑇 = 1]ℙ(𝜏(𝑥) > 0)

− 𝔼[𝑌 |𝜏(𝑥) ≤ 0, 𝑇 = 0]ℙ(𝜏(𝑥) ≤ 0)

ôRpol∙(𝜏) ∶  ↦ 1 −

∑

(𝑥,𝑡,𝑦)∈
𝟙[𝜏(𝑥)>0]

| |

∑

(𝑥,𝑡,𝑦)∈
𝑦𝑡𝟙[𝜏(𝑥)>0]

∑

(𝑥,𝑡,𝑦)∈
𝑡𝟙[𝜏(𝑥)>0]

−

∑

(𝑥,𝑡,𝑦)∈
𝟙[𝜏(𝑥)≤0]

| |

∑

(𝑥,𝑡,𝑦)∈
𝑦(1 − 𝑡)𝟙[𝜏(𝑥)≤0]

∑

(𝑥,𝑡,𝑦)∈
(1 − 𝑡)𝟙[𝜏(𝑥)≤0]

The selected candidate will then be argmin𝜏∈𝐶 ôRpol
(𝜏). Indeed oRpol is probablynot the best proxy metric to select the lowest PEHE model: if an estimate 𝜏 satisfies

𝜏 × 𝜏 > 0 almost surely, then it achieves minimal oRpol value. Notably, oRpol(𝜏) =
oRpol(2𝜏), but PEHE(𝜏) = 0 while PEHE(2𝜏) = 𝔼[𝜏(𝑋)2].
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This section presents the most common proxy metrics, without pretend-

ing to exhaustivity. Schuler et al. (2018) distinguish fourmain classes of scores.
VI.2.1 . 𝜇-risks

Suppose that 𝜏 is obtained through a S-learner or a T-learner and let 𝜇̂0, 𝜇̂1
be the two underlying potential outcomes estimates: 𝜏 = 𝜇̂1 − 𝜇̂0. The 𝜇-risk
of estimate 𝜏 = 𝜇̂1 − 𝜇̂0 is defined as:

𝜇-risk(𝜇̂0, 𝜇̂1) = 𝔼[(𝜇̂𝑇 (𝑋) − 𝑌 )2]

and admits as a feasible estimator
𝜇-risk(𝜇̂0, 𝜇̂1) ∶  ↦

1
| |

∑

(𝑥,𝑡,𝑦)∈

(

𝜇̂𝑡(𝑥) − 𝑦
)2

We have so far referred to 𝜇-risk as the factual validation prediction error.
A variation on 𝜇-risk (Laan and Robins, 2011) denoted as 𝜇-riskIPTW resorts

to Inverse Probability of Treatment Weighting (IPTW):
𝜇-riskIPTW(𝜇̂0, 𝜇̂1) = 𝔼

[

𝜚𝑇 (𝑋)
(

𝜇̂𝑇 (𝑋) − 𝑌
)2]

Note that the true inverse probability of treatment 𝜚 (Eq. II.8) is unknown, so
the estimator

 ↦
1

| |

∑

(𝑥,𝑡,𝑦)∈

𝜚𝑡(𝑥)
(

𝜇̂𝑡(𝑥) − 𝑦
)2

is not feasible. It is, however, possible to build an estimate 𝜚̂ of 𝜚 and plug it
into the estimator formula:

𝜇-riskIPTW(𝜇̂0, 𝜇̂1) ∶  ↦
1

| |

∑

(𝑥,𝑡,𝑦)∈

𝜚̂𝑡(𝑥)
(

𝜇̂𝑡(𝑥) − 𝑦
)2

Note also that if the propensity score model is misspecified, 𝜇-riskIPTW(𝜇̂0, 𝜇̂1)is a biased (and inconsistent) estimator of 𝜇-riskIPTW. Nevertheless, providedthe approximation 𝜂̂ is accurate enough it may remain a valuable proxy met-
ric.

VI.2.2 . 𝜋-risk
Let us slightly adapt the definitions (in e.g. Schuler et al. (2018)) to present

a unified framework for the Policy Risk Rpol (the lower, the better).As introduced in Section II.5.1, Rpol evaluates 𝜏 based on the return of policy
𝜋𝜏 ∶ 𝑥↦ 𝟙[𝜏(𝑥)>0], with:

𝜋-risk(𝜏) = Rpol(𝜏) = 1 − 𝔼[𝑌 0
|𝜋𝜏 (𝑥) = 0, 𝑇 = 0]ℙ(𝜋𝜏 (𝑥) = 0)

− 𝔼[𝑌 1
|𝜋𝜏 (𝑥) = 1, 𝑇 = 1]ℙ(𝜋𝜏 (𝑥) = 1)
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Let us now introduce an estimator of Rpol(𝜏):
𝜋-riskIPTW(𝜏) ∶ ↦

1
| |

∑

(𝑥,𝑡,𝑦)∈

1 − 𝜚̂𝑡(𝑥)𝟙[𝑡=𝜋𝜏 (𝑥)]𝑦

Zhao et al. (2017) show that 1 − 𝜚̂𝑇 (𝑋)𝟙[𝑇=𝜋𝜏 (𝑋)]𝑌 is an unbiased estimate
of Rpol if 𝜚̂ is correctly specified (𝜚̂ = 𝜚) and if the treatment assignment is in-
dependent from𝑋, 𝑌 0 and 𝑌 1 (as in randomized control trials), while Schuler
et al. (2018) do not consider its bias. Let us show that it is an unbiased estima-
tor of Rpol as long as 𝜚̂ = 𝜚 and conditional exchangeability holds.
Proof. Assume that conditional exchangeability holds: 𝑌 𝑡 ⟂⟂ 𝑇 |𝑋, ∀𝑡 ∈ {0, 1}

𝔼[𝑌 𝟙[𝑇=𝜋𝜏 (𝑋)]𝜚𝑇 (𝑋)] =𝔼𝑋
[

𝔼[𝑌 𝟙[𝑇=𝜋𝜏 (𝑋)]𝜚𝑇 (𝑋)|𝑋]
]

(total probabilities on 𝑋)
=𝔼𝑋

[

𝔼[𝑌 𝜚𝑇 (𝑋)|𝑋, 𝑇 = 𝜋𝜏 (𝑋)]ℙ(𝑇 = 𝜋𝜏 (𝑋)|𝑋)
]

(total probabilities on 𝑇 )
=𝔼𝑋

[

𝔼[𝑌 |𝑋, 𝑇 = 𝜋𝜏 (𝑋)]
]

=𝔼𝑋
[

𝔼[𝑌 𝜋𝜏 (𝑋)
|𝑋, 𝑇 = 𝜋𝜏 (𝑋)]

]

(SUTVA)

=𝔼𝑋
[

𝔼[𝑌 𝜋𝜏 (𝑋)
|𝑋]

]

(𝑌 𝑡 ⟂⟂ 𝑇 |𝑋)

=𝔼[𝑌 𝜋𝜏 (𝑋)]

=𝔼[𝑌 𝜋𝜏 (𝑋)
|𝜋𝜏 (𝑋) = 1]ℙ(𝜋𝜏 (𝑋) = 1)

+ 𝔼[𝑌 𝜋𝜏 (𝑋)
|𝜋𝜏 (𝑋) = 0]ℙ(𝜋𝜏 (𝑋) = 0)

=𝔼[𝑌 1
|𝜋𝜏 (𝑋) = 1]ℙ(𝜋𝜏 (𝑋) = 1)

+ 𝔼[𝑌 0
|𝜋𝜏 (𝑋) = 0]ℙ(𝜋𝜏 (𝑋) = 0)

The 𝜋-risk also admits as feasible estimator (Cassel et al., 1976; Dudík et al.,
2011):
𝜋-riskDR(𝜏) ∶ ↦

1
| |

∑

(𝑥,𝑡,𝑦)∈

1 − 𝜇̂𝜋𝜏 (𝑥)(𝑥) − 𝜚̂𝑡(𝑥)𝟙[𝑡=𝜋𝜏 (𝑥)]
(

𝑦 − 𝜇̂𝑡(𝑥)
)

Here 1 − 𝜇̂𝜋𝜏 (𝑋)(𝑋) − 𝜚̂𝑇 (𝑋)𝟙[𝑇=𝜋𝜏 (𝑋)]
(

𝑌 − 𝜇̂𝑇 (𝑋)
) is doubly robust3 , i.e, unbi-

ased assuming that 𝜚̂ = 𝜚 or 𝜇̂ = 𝜇.
3Denote by 𝑅 the random variable 1− 𝜇̂𝜋𝜏 (𝑋)(𝑋) − 𝜚̂𝑇 (𝑋)𝟙[𝑇=𝜋𝜏 (𝑋)]

(

𝑌 − 𝜇̂𝑇 (𝑋)
).Let us first compute the expectation of 𝑅 conditionally to 𝑋 = 𝑥, where 𝑥 ∈  :

𝔼[𝑅|𝑋 = 𝑥] =𝔼
[

1 − 𝜇̂𝜋𝜏 (𝑋)(𝑋) − 𝜚̂𝑇 (𝑋)𝟙[𝑇=𝜋𝜏 (𝑋)]
(

𝑌 − 𝜇̂𝑇 (𝑋)
)

|𝑋 = 𝑥
]

=1 − 𝜇̂𝜋𝜏 (𝑥)(𝑥) − 𝔼
[

𝜚̂𝑇 (𝑥)
(

𝑌 − 𝜇̂𝑇 (𝑥)
)

|𝑋 = 𝑥, 𝑇 = 𝜋𝜏 (𝑥)
]

ℙ(𝑇 = 𝜋𝜏 (𝑥)|𝑋 = 𝑥)

=1 − 𝜇̂𝜋𝜏 (𝑥)(𝑥) −
(

𝜇𝜋𝜏 (𝑥)(𝑥) − 𝜇̂𝜋𝜏 (𝑥)(𝑥)
)𝜋𝜏 (𝑥)𝜂(𝑥) + (1 − 𝜋𝜏 (𝑥))(1 − 𝜂(𝑥))
𝜋𝜏 (𝑥)𝜂̂(𝑥) + (1 − 𝜋𝜏 (𝑥))(1 − 𝜂̂(𝑥))
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VI.2.3 . R-risk

The R-risk is defined as R-risk ∶ 𝜏 ↦ 𝔼
[(

𝑌 − 𝑚(𝑋) − (𝑇 − 𝜂(𝑋))𝜏(𝑋)
)2].

According to Robinson’s decomposition (Section III.3.1.4), it is minimized by
the true conditional average treatment effect function 𝜏. R-risk is as such a
relevant score to measure the performance of CATE estimates, and admits as
a feasible estimator

R̂-risk(𝜏) ∶  ↦
1

| |

∑

(𝑥,𝑡,𝑦)∈

(

(

𝑦 − 𝑚̂(𝑥)
)

−
(

𝑡 − 𝜂̂(𝑥)
)

𝜏(𝑥)
)2

VI.2.4 . 𝜏-risks
With the same notations as above, the 𝜏-risk of 𝜏 is defined as:

𝜏-risk(𝜏) = 𝔼[(𝜏(𝑋) − 𝜏(𝑋))2]

As said, the straightforward estimator  ↦ 1
| |

∑

(𝑥,𝑡,𝑦)∈
(𝜏(𝑥) − 𝜏(𝑥))2 is

infeasible. A solution consists in replacing 𝜏 with a plug-in estimate τ̃. The
options are plentiful: any 𝜏 estimate is a potential match for the plug-in term,
though not all estimates are relevant. Let 𝜇̂0, 𝜇̂1 be estimates of the outcome
functions 𝜇0, 𝜇1. The naive 𝜏-risk estimator

𝜏-risknaive(𝜏) ∶  ↦
1

| |

∑

(𝑥,𝑡,𝑦)∈

(

𝜏(𝑥) − (𝜇̂1(𝑥) − 𝜇̂0(𝑥))
)2

is highly sensitive to misspecifications of the outcome functions estimates,
and alternatives are explored in the following.

The most popular plug-in estimate (Shalit et al., 2017; Du et al., 2021; Zhou
et al., 2021) is based on One Nearest-Neighbor Imputation (1NNI). The

1. Case 1. Assume 𝜂 is correctly specified, i.e, 𝜂̂ = 𝜂. Then, the equation simplifies
in 𝔼[𝑅|𝑋 = 𝑥] = 1 − 𝜇𝜋𝜏 (𝑥)(𝑥), and the expected value of 𝑅 is

𝔼[𝑅] =𝔼𝑋
[

𝔼[𝑅|𝑋]]

=𝔼𝑋
[

1 − 𝜇𝜋𝜏 (𝑋)(𝑋)]

=1 − 𝔼𝑋
[

𝔼𝑌 |𝑋[𝑌
𝜋𝜏 (𝑋)]

]

=1 − 𝔼𝑋
[

𝑌 𝜋𝜏 (𝑋)]

=1 − 𝔼𝑋
[

𝑌 1(𝑋)|𝜋𝜏 (𝑋) = 1]ℙ(𝜋𝜏 (𝑋) = 1)

− 𝔼𝑋
[

𝑌 0(𝑋)|𝜋𝜏 (𝑋) = 0]ℙ(𝜋𝜏 (𝑋) = 0)

2. Case 2. Assume 𝜇̂ is correctly specified, i.e, (𝜇̂0, 𝜇̂1) = (𝜇0, 𝜇1). Then the equa-
tion also simplifies in 𝔼[𝑅|𝑋 = 𝑥] = 1 − 𝜇𝜋𝜏 (𝑋)(𝑥) and we may concludelikewise.

As such, 𝜋-riskDR is robust to misspecification of either 𝜂 or 𝜇.



100 CHAPTER VI. HYPER-PARAMETER SELECTION IN CAUSAL INFERENCE

counter-factual outcome of sample (𝑥𝑖, 𝑡𝑖, 𝑦𝑖) is approximated by the factual
outcome of its closest sample with the opposite treatment assignment in the
validation set. Formally,

τ̃𝑖 = (2𝑡𝑖 − 1)(𝑦𝑖 − (𝑥𝑖, 𝑡𝑖, 𝑦𝑖))

(𝑥𝑖, 𝑡𝑖, 𝑦𝑖) = 𝑦𝑗∗ , 𝑗
∗ = argmin

𝑗∈ 𝑠.𝑡. 𝑡𝑗≠𝑡𝑖

{

||𝑥𝑖 − 𝑥𝑗||2
}

This evokes the notion of mirror twin as introduced in Eq. IV.1, where the iden-
tity function on  replaces mapping 𝜙, and the search for nearest neighbors
is restricted to  (i.e., the held-out samples). Rolling and Yang (2014) advo-
cates for a slight variation, resorting to the Mahalanobis distance instead of
the Euclidean one. In both cases, the estimator entailed estimator writes

𝜏-risk1NNI(𝜏) ∶  ↦
1

| |

∑

(𝑥,𝑡,𝑦)∈

(

𝜏(𝑥) − (2𝑡 − 1)(𝑦 − (𝑥, 𝑡, 𝑦))
)2

Another plug-in estimate relies on the remark initiating the F-learner (Sec-
tion III.3.1.5 and Gutierrez and Gérardy (2017)). The expected value of (2𝑇 −
1)𝜚𝑇 (𝑋)𝑌 is equal to 𝜏(𝑋). The induces estimator is:

𝜏-riskIPTW(𝜏) ∶  ↦
1

| |

∑

(𝑥,𝑡,𝑦)∈

(

𝜏(𝑥) − (2𝑡 − 1)𝜚̂𝑡(𝑥)𝑦
)2

In a similar fashion, the observation 𝜏(𝑋) = 𝔼
[

(2𝑇 −1)𝜚1−𝑇 (𝑋)
(

𝑌 −𝑚(𝑋)
)]

at the origin of the U-learner (Doutreligne and Varoquaux (2023) and Sec-
tion III.3.1.6) induces:

𝜏-riskU(𝜏) ∶  ↦
1

| |

∑

(𝑥,𝑡,𝑦)∈

(

𝜏(𝑥) − (2𝑡 − 1)𝜚̂1−𝑡(𝑥)(𝑦 − 𝑚̂(𝑥))
)2

Finally, based on the Augmented Inverse Probability Estimator and follow-
ing the reasoning underlying DR-learners, 𝜏(𝑥) = 𝔼

[

𝜇1(𝑋) − 𝜇0(𝑋) + (2𝑇 −
1)𝜚𝑇 (𝑋)(𝑌 − 𝜇𝑇 (𝑋))|𝑋 = 𝑥] induces the estimator:
𝜏-riskDR(𝜏) ∶  ↦

1
| |

∑

(𝑥,𝑡,𝑦)∈

(

𝜏(𝑥)−
(

𝜇̂1(𝑥)−𝜇̂0(𝑥)+(2𝑡−1)𝜚̂𝑡(𝑥)
(

𝑦−𝜇̂𝑡(𝑥)
))

)2

As said in Section III.3.1.7, this estimator relies on a doubly robust estimate
of 𝜏. Saito and Yasui (2020) push it a step further by refining the estima-
tion of 𝜇with the specific focus that it shouldminimize the estimator variance.

Alternative strategies exist. Hassanpour and Greiner (2019a) consider the
opportunity to use strong baseline models (for instance, CFR Section III.3.1.2)
as plug-in estimates. However, the choice of an appropriate baseline among
all possibilities may itself be seen as a hyper-parameter.
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Alaa and Schaar (2019) interprets the shift from the true 𝜏-risk to plug-in ap-

proximations as a shift over distributions. Informally and to build an intuition
of the underlying principle,

PEHE𝜂,𝜇 ≈ PEHE𝜂̂,𝜇̂ +
𝜕PEHE𝜂̃,𝜇̃
𝜕(𝜂̃, 𝜇̃)

]

(𝜂̂,𝜇̂)
×
(

(𝜂̂, 𝜇̂) − (𝜂, 𝜇)
)

Influence functions make it possible to estimate the "partial derivative" term,
and the approximation error (𝜂̂, 𝜇̂) − (𝜂, 𝜇) depends only on factual quantities.
As such, this approach corrects for part of the error that the shift has entailed.

Estimator Motivation Expression: 1
| |

∑

(𝑥,𝑡,𝑦)∈
∙

𝜇-risk factual error (

𝑦 − 𝜇̂𝑡(𝑥)
)2

𝜇-riskIPTW same + IPTW 𝜚̂𝑡(𝑥)
(

𝑦 − 𝜇̂𝑡(𝑥)
)2

𝜋-riskIPTW IPTW 1 − 𝟙[𝑡=𝜋𝜏 (𝑥)]𝜚̂
𝑡(𝑥)𝑦

𝜋-riskDR DR 1 − 𝜇̂𝜋𝜏 (𝑥)(𝑥) − 𝟙[𝑡=𝜋𝜏 (𝑥)]𝜚̂
𝑡(𝑥)

(

𝑦 − 𝜇̂𝑡(𝑥)
)

R̂-risk R-learners
(

𝜏(𝑥)
(

𝑡 − 𝜂̂(𝑥)
)

−
(

𝑦 − 𝑚̂(𝑥)
)

)2

𝜏-risknaive simplicity (

𝜏(𝑥) − (𝜇̂1(𝑥) − 𝜇̂0(𝑥))
)2

𝜏-risk1NNI 1NNI
(

𝜏(𝑥) − (2𝑡 − 1)(𝑦 − (𝑥, 𝑡, 𝑦))
)2

𝜏-riskIPTW F-learners
(

𝜏(𝑥) − (2𝑡 − 1)𝜚̂𝑡(𝑥)𝑦
)2

𝜏-riskU U-learners
(

𝜏(𝑥) − (2𝑡 − 1)𝜚̂1−𝑡(𝑥)
(

𝑦 − 𝑚̂(𝑥)
))2

𝜏-riskDR DR-learners
(

𝜏(𝑥) −
(

(𝜇̂1-𝜇̂0)(𝑥) + (2𝑡− 1)𝜚̂𝑡(𝑥)
(

𝑦− 𝜇̂𝑡(𝑥)
))

)2

Table VI.1: Feasible estimators.

VI.2.5 . Analysis

Consider a 𝜏-risk based on a plug-in estimate τ̃ that takes bounded values
over  : ∀(𝑥, 𝑡, 𝑦) ∈  , τ̃(𝑥) ∈ [−𝑀,𝑀]. Denote by 𝜏-riskτ̃(𝜏) the estimator

𝜏-riskτ̃(𝜏) ∶  ↦
1

| |

∑

(𝑥,𝑡,𝑦)∈

(

𝜏(𝑥) − τ̃(𝑥)
)2
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Then the Cauchy-Schwarz inequality implies4:
|𝜏-riskτ̃(𝜏) − P̂EHE

(𝜏)|

=
|

|

|

|

1
| |

∑

(𝑥,𝑡,𝑦)∈

(

𝜏(𝑥) − τ̃(𝑥)
)2 −

(

𝜏(𝑥) − 𝜏(𝑥)
)2|
|

|

|

=
|

|

|

|

1
| |

∑

(𝑥,𝑡,𝑦)∈

(

2𝜏(𝑥) − τ̃(𝑥) − 𝜏(𝑥)
)(

𝜏(𝑥) − τ̃(𝑥)
)|

|

|

|

≤
√

1
| |

∑

(𝑥,𝑡,𝑦)∈

(

2𝜏(𝑥) − τ̃(𝑥) − 𝜏(𝑥)
)2
√

1
| |

∑

(𝑥,𝑡,𝑦)∈

(

𝜏(𝑥) − τ̃(𝑥)
)2

≤
√

P̂EHE
(2𝜏 − τ̃)

√

P̂EHE
(τ̃)

≤ (3𝑀 + ||𝜏||∞)
√

P̂EHE
(τ̃)

Provided that τ̃ is a good estimate of 𝜏 , then 𝜏-riskτ̃ is a good estimate
of P̂EHE

(𝜏). When  grows large, P̂EHE
(𝜏) converges to PEHE(𝜏), and

indeed τ̃ being a good estimate of 𝜏 implies that 𝜏-riskτ̃(𝜏) is a good estimate
of PEHE(𝜏).

It is emphasized that the presented scores involve different limitations
(Curth and Schaar, 2023). 𝜇-risks and 𝜋-risks are restricted to CATE estimation
approaches that model the potential outcomes 𝜇0, 𝜇1. Moreover, they assign
the same score to two estimates as long as their factual predictions are the
same, no matter how reasonable their counterfactual ones are.

R-risks and 𝜋-risks are more flexible since they accept any CATE estimate.
Nevertheless, they are likely to favormodels that are congruent with the struc-
ture of the risk: R-risks is prone to assigning lower scores to R-learners, 𝜋-risks
to S- or T-learners. Besides, plug-in scores select the models that resemble
the plugged-in term the most, even though the performance of said term is
known to be poor.

Experimental validation is thus necessary to identify the most suited
scores.

VI.3 . Proxy metric performance

Given an infeasible performance metric , the question is to assess its
proxymetric . This section focuses on assessing the quality of a proxymetric
w.r.t. a set of 𝐶 candidate models.

4Because the difference between the PEHE and its empirical evaluation matters
here, the notation is not supercharged. P̂EHE

(𝜏) = 1


∑

(𝑥,𝑡,𝑦)∈

(

𝜏(𝑥) − 𝜏(𝑥)
)2
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VI.3.1 . Spearman correlation

Define the rank function of 𝑢 ∈ ℝ𝐶 by the bijection of J1, 𝐶K verifying
𝑟𝑢(𝑖) < 𝑟𝑢(𝑗) ⇔ 𝑢𝑖 < 𝑢𝑗 (assuming there are no ties, see adequate conven-
tions in Dodge (2008) otherwise). The Spearman correlation coefficient
𝜌𝑠(𝑢, 𝑣) between two vectors 𝑢, 𝑣 of ℝ𝐶 is then defined5 as the Pearson
correlation coefficient between the rank vectors 𝑟(𝑢) = (𝑟𝑢(1),… , 𝑟𝑢(𝐶)) and
𝑟(𝑣) = (𝑟𝑣(1),… , 𝑟𝑣(𝐶)):

𝜌𝑠(𝑢, 𝑣) =
Cov

(

𝑟(𝑢), 𝑟(𝑣)
)

𝜎
(

𝑟(𝑢)
)

𝜎
(

𝑟(𝑣)
) (VI.1)

(a) Ordered points, "S"shape. (b) Ordered points, loga-rithmic y-axis scaling. (c) Opposite coefficientsigns.
Figure VI.1: Different Spearman(𝜌𝑠)/Pearson(𝜌𝑝) correlation coefficients.
As such, the Spearman correlation coefficient takes values in [−1, 1], value

1 meaning that 𝑢 is monotonously increasing with 𝑣, values −1 meaning that
𝑢 is monotonously decreasing with 𝑣.

VI.3.2 . Kendall rank correlation
The Kendall rank correlation coefficient (Kendall, 1938) (also referred to

as Kendall’s 𝜏 coefficient) is also a measure of the ordinal correlation of two
vectors. For a couple of indices 𝑖 < 𝑗, the pairs (𝑢𝑖, 𝑢𝑗) and (𝑣𝑖, 𝑣𝑗) are said to
be concordant if either (𝑢𝑖 < 𝑢𝑗 and 𝑣𝑖 < 𝑣𝑗) or (𝑢𝑖 > 𝑢𝑗 and 𝑣𝑖 > 𝑣𝑗) holds(equivalently, if (𝑢𝑖 − 𝑢𝑗)(𝑣𝑖 − 𝑣𝑗) > 0), and discordant otherwise (Fig. VI.2). The
Kendall rank correlation coefficient6 is then defined as

𝜌k =
(number of concordant pairs) − (number of discordant pairs)

(number of pairs)

Similarly to the Spearman correlation coefficient, 𝜌k takes values in from −1
(𝑢 is monotonously decreasing with 𝑣) to 1 (monotonously increasing).

5Still assuming that there are no ties, the expression simplifies into
𝜌𝑠(𝑢, 𝑣) = 1 − 6

𝐶(𝐶2 − 1)

𝐶
∑

𝑖=1

(

𝑟𝑢(𝑖) − 𝑟𝑣(𝑖)
)2

6Denoted as 𝜌k instead of 𝜏 , to avoid confusion with CATE
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Figure VI.2: concordant and discordant pairs w.r.t (𝑢𝑖, 𝑣𝑖).

VI.3.3 . Discounted Cumulative Gain
The Discounted Cumulative Gain (DCG) originates in query ranking

(Järvelin and Kekäläinen, 2002). An algorithm is provided with a query, and
from a list of options returns an ordered subset, ranked by decreasing
relevance w.r.t. the query.

Consider an array of 𝐶 items and a query whose possible answers are
𝑝-uples with distinct elements taken from this array. With respect to said
query, each item 𝑖 is associated with a relevance value 𝑢𝑖 - the greater the
more relevant. Let𝑚 be amechanismwhich, provided with the query, returns
the 𝑝-uple (𝑚(1),… , 𝑚(𝑝)) ∈ J1, 𝐶K𝑝, 𝑚(𝑖) all distinct.

1. the Cumulative Gain (CG) is defined as the sum of the relevance of the
returned elements:

CG𝑚 =
𝑝
∑

𝑖=1
𝑢𝑚(𝑖)

2. the Discounted Cumulative Gain (DCG) discounts elements based on
their selection position:

DCG𝑚 =
𝑝
∑

𝑖=1

𝑢𝑚(𝑖)
log(𝑖 + 1)

DCG thus is relevant to measure how the candidate model ranking based
on the performancemetricmatches the ranking based on the proxymetric
𝑆

.
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VI.3.4 . Discussion

As the goal is to select the best hyper-parameter setting, the correct rank-
ing of non-optimal candidates does not matter much. As Spearman correla-
tion and Kendall rank correlation attribute as much importance to the correct
ranking of high-scored and low-scored models, the DCG-based metric (that
specifically targets the top elements) is more relevant in this context.

In Fig. VI.3, two settings are displayed. Although they achieve the same
Spearman and Kendall correlation coefficients, they differ in their DCG-based
metric. Setting (𝑏) (right) is preferable, for there the proxy metric (vector 𝑣)
successfully identifies the sample with maximal relevance (vector 𝑢).

(a) Discounted Cumulative Gain: 8.40 (b) Discounted Cumulative Gain: 11.5
Figure VI.3: Two settings with same Spearman (.835), Pearson (.908), Kendall(.701) correlation coefficients, but different Discounted Cumulative Gains (𝑝 =
5) metrics.

VI.4 . Hyper-parameter adjustment

This section focuses on theALRITE hyper-parameter selection, noting that
pipelines 𝑃0 and 𝑃1 might require different hyper-parameter settings for the
same reason as they involve different latent spaces.

The ALRITE hyper-parameters and their domain of variation are listed in
Table VI.2, including the neural architecture of embeddings 𝜙0

and 𝜙1
, the

batch size and the regularization weights. oRpol being an observational quan-tity, the selection is straightforward for Jobs. Quite the contrary, IHDP consti-
tutes a challenging issue.

The hyper-parameter selection procedure proceeds as follows:
• Two sets of respectively 𝓁0

and 𝓁1
hyper-parameter settings are ran-

domly sampled, defining a total of 𝓁0
× 𝓁1

candidate estimates
𝜏(𝓁,𝓁

′) = (1 − 𝜂̂)𝜏(𝓁)0
+ 𝜂̂ 𝜏(𝓁

′)
1
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IHDP Jobs

regularization strength 𝛼 {10𝑘∕2}4𝑘=0 {10𝑘∕2}1𝑘=−5
0: 100 1: 103∕2 0: 101∕2 1: 100

reweighting importance 𝛽 {0} ∪ {10𝑘∕2}1𝑘=−4 {0} ∪ {10𝑘∕2}1𝑘=−4
0: 10−3∕2 1: 100 0: 101∕2 1: 10−1∕2

embedding model layers [1, 2, 3, 4] [1, 2, 3, 4]
0: 4 1: 4 0: 1 1: 1

outcome model layers [1, 2, 3, 4] [1, 2, 3, 4]
0: 3 1: 4 0: 2 1: 3

embedding model width [20, 50, 100] [20, 50, 100, 200]
0: 20 1: 20 0: 50 1: 200

outcome model width [20, 50, 100] [20, 50, 100, 200]
0: 50 1: 100 0: 20 1: 200

batch size [50, 100, 200] [50, 100, 200]
0: 200 1: 200 0: 200 1: 50

Table VI.2: Hyper-parameters ranges and selected values.
• The best candidate model according to the 𝜇-risk proxy metric is re-
tained.

Indeed the common practice since (Shalit et al., 2017) relies on using
𝜏-risk1NNI as proxy metrics, though the 1-nearest neighbor estimator is well
known for its poor performance in middle to high-dimensional settings.
Furthermore, there exists evidence for 1NNI failure on synthetic problems
Schuler et al. (2018).

Eventually, our choice of the 𝜇-risk proxy metric is based on the follow-
ing: i) it is the simplest option, as it doesn’t rely on complex auxiliary func-
tions 𝜂̂, 𝜇̂0, 𝜇̂1, 𝑚̂ (their definition and optimization are themselves a selection
problem); ii) its relevance is experimentally confirmed (Schuler et al., 2018;
Doutreligne and Varoquaux, 2023; Mahajan et al., 2023). Eventually, the se-
lected hyper-parameters are listed in Table VI.2.

VI.5 . Scores comparison

While our selection is not basedon counterfactual data (whichwould be an
utmost badpractice), the actual values of the selectedmodels according to the
different proxy metrics can be computed on the IHDP dataset (Section VI.5.1),
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score 𝜖ATE

√

PEHE Spearman DCG Kendall

𝜇-risk 0.131 0.431 0.969 -2.016 0.846
𝜇-riskIPTW 0.131 0.431 0.942 -2.014 0.798
𝜋-riskIPTW 0.139 0.672 0.366 -2.751 0.253
𝜋-riskDR 0.136 0.490 0.796 -2.239 0.598
R-risk 0.146 0.723 -0.064 -3.304 -0.049
𝜏-risknaive 0.125 0.496 0.858 -2.196 0.668
𝜏-risk1NNI 0.125 0.462 0.903 -2.070 0.729
𝜏-riskIPTW 0.141 0.581 0.282 -3.281 0.199
𝜏-riskU 0.183 1.320 -0.357 -5.924 -0.252
𝜏-riskDR 0.131 0.431 0.960 -1.985 0.825

Table VI.3: For each score on IHDP, selected models test set perfor-mancemetrics of the selectedmodel (the lower the better), and scorescorrelation metrics (the higher the better).
then we delve into the comparison of base models for 𝜏-risks (Section VI.5.2).

VI.5.1 . A posteriori scores comparison
We compare the multiple scores in the same context as that of Sec-

tion VI.4. Here base learners 𝜇̂0, 𝜇̂1, 𝑚̂ are enforced by Nu-Support Vector
Regressors (NuSVR) models (Platt, 2000), since they achieve low high cross-
validation factual prediction loss. Propensity estimators are either logistic
regressions, k-nearest neighbors, or decision tree regressors. The estimators
and their hyper-parameters are chosen through a cross-validation procedure.

All the candidate models in 𝐶 =
(

𝜏(𝓁,𝓁
′))

(𝓁,𝓁′)∈J1,𝓁0
K×J1,𝓁1

K are evaluatedthrough the 10 scores. The resulting values are compared with the test
set PEHE, and displayed in Fig. VI.4. Table VI.3 reports the test set PEHE
and 𝜖ATE of the selected model argmin𝜏∈𝐶 𝑆

(𝜏) for all scores 𝑆
. It also

reports the Spearman correlation coefficient 𝜌𝑠((𝐶), 𝑆
(𝐶)

), Kendall rank
correlation coefficient 𝜌𝑘((𝐶), 𝑆

(𝐶)
) and discounted cumulative gains7

𝜌−(𝐶)∶5
(

− 𝑆
(𝐶)

) relative to each score.
These experiments validate a posteriori the relevance of 𝜇-risk as a selec-

tion score, for it achieves the lowest PEHE and lowest ATE. The quality of the
score is also confirmed by its high Spearman correlation coefficient, Kendall

7here the minus sign accounts for the fact that the lower, the more relevant
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(a) 𝜇-risk (b) 𝜇-riskIPTW (c) R-risk

(d) 𝜋-riskIPTW (e) 𝜋-riskDR (f) 𝜏-risk1NNI

(g) 𝜏-risknaive (h) 𝜏-riskIPTW (i) 𝜏-riskU

(j) 𝜏-riskDR
Figure VI.4: IHDP PEHE on the test set vs score on validation set.
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rank correlation coefficient, and discounted cumulative gain.

Most interestingly (and unexpectedly), 𝜏-risk1NNI appears to be a reliable
proxy with excellent selection performances. While 𝜇-riskIPTW, 𝜋-riskDR,
𝜏-risknaive and 𝜏-riskDR seem worthy in retrospect, R-risk, 𝜋-riskIPTW, 𝜏-riskIPTWand 𝜏-riskU achieve poor selection performance.

The same experiments are run with the ensemble approaches based on
ALRITE, and their results are summarized in Table VI.4.

VI.5.2 . 𝜏-risks based models
Among the most influential hyper-parameters is the choice of the model

space. As detailed in Section VI.1, the scores based on 𝜏-risk, 𝜋-riskDR and R-riskestimates all rely on the auxiliary functions 𝜇̂0, 𝜇̂1, 𝑚̂, which may be learned
using various regressors.

An experiment is conducted to evaluate the impact of the auxiliary func-
tionmodel definition on the performance of the scores. A range of estimators
are trained to approximate the functions 𝜇0 ∶ 𝑥 ↦ 𝔼[𝑌 |𝑋 = 𝑥, 𝑇 = 0], 𝜇1 ∶
𝑥 ↦ 𝔼[𝑌 |𝑋 = 𝑥, 𝑇 = 1], 𝑚 ∶ 𝑥 ↦ 𝔼[𝑌 |𝑋 = 𝑥]. Since the factual outcomes
are available, these estimation problems belong to the supervised learning
setting. The auxiliary functions hyper-parameter may be optimized through
usual cross-validation procedures using mean squared prediction error.

The candidate models are all available in Scikit-Learn (Pedregosa et al.,
2011), with default choice for all hyper-parameters, except for those detailed
in Table VI.5. Considered architectures are multi-layer perception (MLP)
(Rosenblatt, 1962), Gaussian process regressors (GPR) (Rasmussen and
Williams, 2005), ridge regressors (RR) (Hoerl and Kennard, 1970), decision tree
regressors (DTR) (Breiman, 1984), light gradient-boosting machines (LightGBM)
(Ke et al., 2017), random forests (RF) (Breiman, 2001) and nu support vector
regressors (NuSVR) (Platt, 2000).

The results of the experiments are displayed in Fig. VI.5 as scatter plots,
with selected model performances (ATE,PEHE) and scores (Spearman, DCG,
Kendall) listed in Table VI.6. In concordance with Schuler et al. (2018); Doutre-
ligne and Varoquaux (2023), it appears that the score choice mainly drives the
performance of the selection procedure. 𝜏-riskDR almost uniformly outper-
forms the other scores, followed by 𝜋-riskDR. Indeed, doubly robust models
are by design less sensitive to misspecification of the auxiliary functions, and
as such less dependant on the choice of estimator. The estimator choice is of
much lesser impact, albeit NuSVR performs well when plugged into 𝜏-risknaive.
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within-sample out-of-sample

score model √

PEHE 𝜖ATE
√

PEHE 𝜖ATE

𝜇-risksimple
𝜏softmax102 .400 .095 .422 .106
𝜏 top-4 .403 .100 .412 .110

𝜇-riskIPTW
𝜏softmax102 .400 .096 .424 .108
𝜏 top-4 .403 .100 .412 .110

𝜋-risksimple
𝜏softmax8 .468 .122 .460 .129
𝜏 top-1 .425 .122 .429 .136

𝜋-riskDR
𝜏softmax103.5 .418 .103 .421 .116
𝜏 top-3 .414 .105 .413 .114

R-risk
𝜏softmax103 .607 .113 .719 .145
𝜏 top-50 .430 .090 .497 .108

𝜏-risksimple
𝜏softmax102 .420 .098 .440 .106
𝜏 top-3 .414 .105 .413 .114

𝜏-risk1NNI
𝜏softmax102.5 .409 .100 .416 .109
𝜏 top-10 .398 .093 .426 .104

𝜏-riskIPTW
𝜏softmax108 .616 .119 .653 .135
𝜏 top-3 .414 .105 .413 .114

𝜏-riskU
𝜏softmax102 .806 .118 .902 .162
𝜏 top-50 .430 .090 .497 .108

𝜏-riskDR
𝜏softmax102.5 .418 .116 .412 .133
𝜏 top-4 .403 .100 .412 .110

Table VI.4: IHDPperformance of the ensemblemodelswith the selected
𝐾 and temperature 𝜆, using various scores for hyper-parameter selec-tion.
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(a) Auxiliary functions estimators: Gaussian process regressors.

(b) Auxiliary functions estimators: multi-layer perceptrons.

(c) Auxiliary functions estimators: ridge regressors.

(d) Auxiliary functions estimators: decision tree regressors.

(e) Auxiliary functions estimators: light gradient-boosting machines.

(f) Auxiliary functions estimators: random forests.

(g) Auxiliary functions estimators: nu support vector regressors.
Figure VI.5: PEHE on the test set vs score on the validation set, for score rang-ing in (from left to right): 𝜋-riskDR, R-risk, 𝜏-risknaive, 𝜏-riskU, 𝜏-riskDR
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Model Parameter grid

MLP ’hidden_layer_sizes’ ∈ {[20, 20], [50, 50], [20, 20, 20], [50, 50, 50]},
’max_iter’ ∈ {100}

GPR n.a

RR ’alpha’ ∈ {10𝑘∕2}4𝑘=−4

DTR ’score’ ∈ {’squared_error’, ’friedman_mse’, ’absolute_error’,
’poisson’}, ’max_depth’ ∈ {None, 2, 3, 4}, ’min_samples_split’ ∈ {2, 4}

LightGBM ’num_leaves’ ∈ {5, 10, 20}, ’max_depth’ ∈ {−1, 2, 3, 4}

RF ’score’ ∈ {’squared_error’, ’friedman_mse’, ’absolute_error’},
’max_depth’ ∈ {None, 4}

NuSVR ’C’ ∈ {10𝑘∕2}4𝑘=−4, ’kernel’ ∈ {’linear’, ’poly’, ’rbf’, ’sigmoid’}
’nu’ ∈ {.25, .5, .75}

Table VI.5: Auxiliary functions candidate architectures and associatedparameter grids, IHDP.
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Model 𝜋-riskDR R-risk 𝜏-risknaive 𝜏-riskU 𝜏-riskDR

GPR

𝜖ATE: .139
√

PEHE: .672
𝜌𝑠: .368

DCG:-2.999
𝜌𝑘: .257

𝜖ATE: .137
√

PEHE: .535
𝜌𝑠: .695

DCG:-2.574
𝜌𝑘: .503

𝜖ATE: .183
√

PEHE: 1.320
𝜌𝑠: -.370

DCG:-5.949
𝜌𝑘: -.262

𝜖ATE: .145
√

PEHE: .716
𝜌𝑠: .358

DCG:-3.249
𝜌𝑘: .220

𝜖ATE: .141
√

PEHE: .581
𝜌𝑠: .345

DCG:-2.895
𝜌𝑘: .240

MLP

𝜖ATE: .133
√

PEHE: .656
𝜌𝑠: .393

DCG:-3.127
𝜌𝑘: .286

𝜖ATE: .145
√

PEHE: .710
𝜌𝑠: .278

DCG:-3.344
𝜌𝑘: .178

𝜖ATE: .165
√

PEHE: .982
𝜌𝑠: .183

DCG:-3.951
𝜌𝑘: .110

𝜖ATE: .183
√

PEHE: 1.320
𝜌𝑠: -.149

DCG:-5.884
𝜌𝑘: -.110

𝜖ATE: .126
√

PEHE: .464
𝜌𝑠: .880

DCG:-2.119
𝜌𝑘: .695

RR

𝜖ATE: .133
√

PEHE: .619
𝜌𝑠: .602

DCG:-2.646
𝜌𝑘: .434

𝜖ATE: .145
√

PEHE: .710
𝜌𝑠: .526

DCG:-3.202
𝜌𝑘: .345

𝜖ATE: .134
√

PEHE: .828
𝜌𝑠: .382

DCG:-3.351
𝜌𝑘: .277

𝜖ATE: .183
√

PEHE: 1.320
𝜌𝑠: -.058

DCG:-5.895
𝜌𝑘: -.045

𝜖ATE: .146
√

PEHE: .429
𝜌𝑠: .871

DCG:-2.029
𝜌𝑘: .695

DTR

𝜖ATE: .127
√

PEHE: .733
𝜌𝑠: .499

DCG:-3.202
𝜌𝑘: .357

𝜖ATE: .125
√

PEHE: .620
𝜌𝑠: .640

DCG:-2.718
𝜌𝑘: .453

𝜖ATE: .154
√

PEHE: .910
𝜌𝑠: .014

DCG:-4.114
𝜌𝑘: .008

𝜖ATE: .145
√

PEHE: .710
𝜌𝑠: .346

DCG:-3.209
𝜌𝑘: .217

𝜖ATE: .146
√

PEHE: .429
𝜌𝑠: .885

DCG:-2.009
𝜌𝑘: .703

LightGBM

𝜖ATE: .137
√

PEHE: .488
𝜌𝑠: .760

DCG:-2.198
𝜌𝑘: .563

𝜖ATE: .143
√

PEHE: .690
𝜌𝑠: .653

DCG:-3.145
𝜌𝑘: .450

𝜖ATE: .145
√

PEHE: .750
𝜌𝑠: .219

DCG:-3.419
𝜌𝑘: .141

𝜖ATE: .167
√

PEHE: .919
𝜌𝑠: .034

DCG:-4.095
𝜌𝑘: .020

𝜖ATE: .146
√

PEHE: .429
𝜌𝑠: .918

DCG:-1.981
𝜌𝑘: .755

RF

𝜖ATE: .137
√

PEHE: .488
𝜌𝑠: .562

DCG:-2.349
𝜌𝑘: .404

𝜖ATE: .138
√

PEHE: .643
𝜌𝑠: .719

DCG:-2.973
𝜌𝑘: .516

𝜖ATE: .145
√

PEHE: .750
𝜌𝑠: .067

DCG:-3.372
𝜌𝑘: .041

𝜖ATE: .146
√

PEHE: .723
𝜌𝑠: .258

DCG:-3.225
𝜌𝑘: .161

𝜖ATE: .146
√

PEHE: .429
𝜌𝑠: .894

DCG:-1.977
𝜌𝑘: .719

NuSVR

𝜖ATE: .136
√

PEHE: .490
𝜌𝑠: .796

DCG:-2.239
𝜌𝑘: .598

𝜖ATE: .146
√

PEHE: .723
𝜌𝑠: -.064

DCG:-3.304
𝜌𝑘: -.049

𝜖ATE: .125
√

PEHE: .496
𝜌𝑠: .858

DCG:-2.196
𝜌𝑘: .668

𝜖ATE: .183
√

PEHE: 1.320
𝜌𝑠: -.357

DCG:-5.924
𝜌𝑘: -.252

𝜖ATE: .131
√

PEHE: .431
𝜌𝑠: .960

DCG:-1.985
𝜌𝑘: .825

Table VI.6: Performance of themodels selected through various scores
using various auxiliary function estimators (𝜖ATE, √PEHE), and relatedscores (Spearman, DCG, Kendall). Top value, column-wise. Top value,row-wise.
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VII - Conclusion and Perspectives

VII.1 . Conclusion

The state of the art in CATE estimation, building upon representation learn-
ing and domain adaptation, has been seeking for a single latent space, enforc-
ing a good positioning of the control and treatment distributions with respect
to each other through symmetrical regularizations.

Themain idea, at the core of theALRITE approach, is that the sought prop-
erties can hardly be obtained with a single latent space: ensuring that control
samples are close to treated ones, and that treated samples are close to con-
trol ones, actually defines two distinct goals.

This paradigm shift, from symmetrical to asymmetrical regularizations, is
embodied in a newmeta-learner hybridizing T-learners and X-learners, instanti-
atedwithALRITE. The relevance of this approach has been grounded in theory
as well as in practice. A notable merit is that the theoretical analysis relates to
the practitioner’s intuition: the underlying assumptions can be inspected and
assessed on the observational data.

Before discussing the research perspectives, and investigating how this
paradigm shift can irrigate the current causal approaches, let us discuss its
limitations.

Firstly, the approach is ill-suited in the gold standard case where the con-
trol and the treatment distributions are identical − and/or when the method
is assessed on a training set with same control and treatment distributions.
As illustrated on the Jobs dataset, in this setting, ALRITE sacrifices its factual
accuracy to no avail.

Secondly, a possible case of failure is if the optimization process mistakes
the means and the ends, and specifically, finds a latent space such that sam-
ples that are well predicted have high exemplarity, as opposed to, such that
samples have low insulation and all samples are well predicted. Complemen-
tary experiments, varying the hyper-parameters of the model, are needed to
ensure that this failure case is not met in practice. The next step is indeed to
run ALRITE on a wide range of real-life datasets, to better identify the limita-
tions of the approach.

It is emphasized that another key contribution of the manuscript is the
attention paid to the hyper-parameter selection, and the comprehensive
methodology proposed to achieve it. As said, the AutoML problem, pervasive
in supervised learning, is all the more acute in CATE estimation as the ground
truth counterfactuals are missing in all but simulated problems.

115
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VII.2 . Perspectives

The proposed architecture, hybridizing 𝑇 -learners and 𝑋-learners, is
highly versatile and opens quite a few perspectives regarding latent rep-
resentations for causal inference. The first one consists in taking better
advantage of the coupling of the pipelines and specializing them accordingly
(Section VII.2.1). The second one aims at generalizing the key notion of mirror
twin to multiple neighbors (Section VII.2.2). The third one swaps propensity
for uncertainty in the combination of 𝜏0

and 𝜏1
(Section VII.2.3). The fourth

one shows that the proposed architecture can be seamlessly extended to
multi-valued treatment settings (Section VII.2.4). The last one considers
potential synergies with disentangling approaches (Section VII.2.5).

VII.2.1 . Pipeline co-training
As shown in Stadie et al. (2018); Curth and Schaar (2021), the co-training

of the X-learners (Künzel et al., 2019) is key to improving the accuracy of the
trained models, taking full advantage of the components specialization.

Along this line, the accuracy of the causal effect estimate in ALRITE, de-
fined as 𝜏(𝑥) = (1 − 𝜂̂(𝑥))𝜏0

(𝑥) + 𝜂̂(𝑥)𝜏1
(𝑥), can be reconsidered to account

for the fact that, e.g. for a high propensity sample (𝑥, 𝑡, 𝑦), the accuracy of this
estimatemainly depends on the accuracy of pipeline1. Still, inALRITE (𝑥, 𝑡, 𝑦)
is given similar importance in the training of pipelines 0 and 1, yielding thepotential outcome models (Table IV.1) defined as:

𝜇̂0 = (1 − 𝜂̂)ℎ00
◦𝜙0

+ 𝜂̂ℎ01
◦𝜙1

𝜇̂1 = (1 − 𝜂̂)ℎ10
◦𝜙0

+ 𝜂̂ℎ11
◦𝜙1

It thus comes to jointly minimize the factual prediction error of the model,
co-training pipelines 0 and 1:
ℎ10

,ℎ11
,ℎ00

,ℎ01
,𝜙0

,𝜙1

= 1
||

∑

(𝑥,𝑡,𝑦)∈
||𝜇̂𝑡(𝑥) − 𝑦||2

= 1
||

∑

(𝑥,𝑡,𝑦)∈
||(1 − 𝜂̂(𝑥))ℎ𝑡0

◦𝜙0
(𝑥) + 𝜂̂(𝑥)ℎ𝑡1

◦𝜙1
(𝑥) − 𝑦||2

This compound training will expectedly result in a better specialization of the
pipelines.

VII.2.2 . Generalization from 1-nearest neighbor to K-
nearest neighbors

Although insulation has been defined with respect to the one mirror twin,
counter-factual estimation might benefit from more abundant neighbors
with the opposite treatment assignment in latent space.
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Consider a control sample (𝑥, 𝑡 = 0, 𝑦). The training protocol of pipeline 0is such that the distance 𝑑0

to the nearest treated sample is minimized. How-
ever, there is no guarantee that the distance to the second nearest treated
sample is also small. Indeed, by definition the insulation of a sample (𝑥, 𝑡 =
0, 𝑦) is defined as the distance to its one nearest treated neighbor. More
treated samples in the neighborhood of (𝑥, 𝑡 = 0, 𝑦) could improve its counter-
factual estimation.Following this intuition, insulation could be upgraded to take into account𝐾neighbors1:

⎧

⎪

⎨

⎪

⎩

𝜙(𝑖) = argsort𝑡𝑗=1−𝑡𝑖{𝑑𝜙(𝑥𝑖, 𝑥𝑗)}
insulation𝜙(𝑖) = 1

𝐾
∑𝐾
𝑘=1 𝑑𝜙(𝑥𝑖, 𝑥𝜙(𝑖)𝑘)

exemplarity𝜙(𝑖) = 1
𝐾
|{𝑗 ∈ J1, 𝑛K s.t. 𝜙(𝑗)𝑘 = 𝑖, 1 ≤ 𝑘 ≤ 𝐾 }|

As such ALRITE is a special case where 𝐾 is set to 1. The issue is that as 𝐾grows large, the 𝐾-th nearest neighbor with the opposite treatment assign-ment is less likely to provide a reasonable estimate of the counter-factual in-come. A potential solution could consist in using fixed weights 𝑤1 ≥ ⋯ ≥ 𝑤𝐾summing to 1:
⎧

⎪

⎨

⎪

⎩

𝜙(𝑖) = argsort𝑡𝑗=1−𝑡𝑖{𝑑𝜙(𝑥𝑖, 𝑥𝑗)}
insulation𝜙(𝑖) =

∑𝐾
𝑘=1𝑤𝑘𝑑𝜙(𝑥𝑖, 𝑥𝜙(𝑖)𝑘)

exemplarity𝜙(𝑖) =
∑

𝑡𝑗=1−𝑡𝑖
∑𝐾
𝑘=1𝑤𝑘𝟙[𝜙(𝑗)𝑘=𝑖]

VII.2.3 . Ensemble ALRITE: accounting for uncertainty
As emphasized by Zhang et al. (2020) (Section IV.2.1), minimizing the uncer-tainty in the estimation of counter-factual outcomes is of utmost importance.The mainstream combination of 𝜏0

and 𝜏1
:

𝜏 = (1 − 𝜂̂)𝜏0
+ 𝜂̂𝜏1

with 𝜂̂ the estimated propensity accounts for the fact that 𝜏0
is assumed to bemore precise for control samples (resp. 𝜏1

for treated samples). Along thisline, Zhang et al. (2020) proposes to learn potential outcomes implementedas Gaussian processes, thus coming with an estimate of their confidence.This remark opens two research perspectives. One relies on the estima-tion of the neural networks uncertainty in ALRITE, e.g. following Gawlikowskiet al. (2023).Another, more straightforward estimation of the potential outcomeuncer-tainty is based on the ensemble variant of ALRITE. Formally, the weights inthe 𝜆-softmax ensemble (Section IV.4), currently based on the factual error ofthe models, can be replaced with the variance of the counter-factual modelsw.r.t. the model barycenter.
1here argsort is the operator that returns the arguments in the order that wouldsort the array. For instance, argsort𝑥∈[−1,0,2](𝑥2) = (0,−1, 2)
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VII.2.4 . Extension to the multi-level treatment setting
Theproposed approach canbe extended to themulti-level treatment case,

with 𝑇 varying in {0, 1, ...…𝑈} where 𝑇 = 0 corresponds again to the control
group. In this multi-valued treatment setting Acharki et al. (2023), the quanti-
ties of interest are (𝜏𝑢)𝑢∈ , with performance indicatormPEHE, defined by

𝜏𝑢 ∶ 𝑥 ∈  ↦ 𝔼[𝑌 𝑢 − 𝑌 0
|𝑋 = 𝑥]

mPEHE ∶ (𝜏𝑢)𝑢∈ ↦

√

1
| |

∑

𝑢∈
𝔼
[(

𝜏𝑢(𝑋) − 𝜏𝑢(𝑋)
)2]

The approach is extended by considering 𝑈 +1 pipelines 0,1,… ,𝑈 . Sincetreatment level 0 has a special role, pipeline 0 will be considered separately.Let (𝑥, 𝑡 = 𝑢, 𝑦) be a treated sample from the training set (𝑢 ≠ 0). Following
the same reasoning as in the binary treatment case, the correct estimation
of the counter-factual outcome 𝑦0 implies that (𝜙𝑢(𝑥), 𝑡 = 𝑢, 𝑦) has neighbors
with treatment assignment 0. The quantities of insulation and exemplarity
(Section IV.2.1) are naturally extended as:

⎧

⎪

⎨

⎪

⎩

𝜙𝑡(𝑖) = argmin𝑗∈J1,𝑛K s.t. 𝑡𝑗=𝑡{𝑑𝜙(𝑥𝑖, 𝑥𝑗)}
insulation𝜙𝑡(𝑖) = 𝑑𝜙(𝑥𝑖, 𝜙𝑡(𝑖))
exemplarity𝑡𝜙(𝑖) = |{𝑗 ∈ J1, 𝑛K s.t. 𝑡𝑗 = 𝑡, 𝜙𝑡𝑖(𝑗) = 𝑖}|

And the training losses of the pipelines read:
0

= 1
𝑛0

∑

𝑡𝑖

error0
(𝑥𝑖, 0, 𝑦𝑖) +

𝛼0

𝑛0

∑

𝑡𝑖=0

𝑈
∑

𝑢=1
insulation𝜙𝑢0

(𝑖)2 + 𝛾0
Ω(0)

+ 1
(𝑛 − 𝑛0) + 𝛽0

𝑛0

∑

𝑡𝑖≠0

(

1 + 𝛽0
exemplarity0𝜙0

(𝑖))
)

× error0
(𝑥𝑖, 𝑡𝑖, 𝑦𝑖)

and for 𝑢 ≠ 0,
𝑢 =

1
𝑛𝑢

∑

𝑡𝑖=𝑢
error𝑢(𝑥𝑖, 𝑢, 𝑦𝑖) +

𝛼𝑢
𝑛𝑢

∑

𝑡𝑖=𝑢
insulation𝜙0

𝑢
(𝑥𝑖)2

+ 1
𝑛0 + 𝛽𝑢𝑛𝑢

∑

𝑡𝑖=0

(

1 + 𝛽𝑢exemplarity
𝑢
𝜙𝑢

(𝑖)
)

× error𝑢(𝑥𝑖, 0, 𝑦𝑖)

+𝛾𝑢 Ω(𝑢)

Letting 𝜂𝑢, 𝑢 ∈  ∪ {0} be the generalized propensity 𝜂𝑢(𝑥) = ℙ(𝑇 = 𝑢|𝑋 = 𝑥),
with 𝜂̂ an estimate of 𝜂, estimate 𝜏𝑢 can finally2 be defined as

𝜏𝑢 ∶ 𝑥 ∈  ↦
𝜂̂0(𝑥)

𝜂̂0(𝑥) + 𝜂̂𝑢(𝑥)
𝜏𝑢0

(𝑥) +
𝜂̂𝑢(𝑥)

𝜂̂0(𝑥) + 𝜂̂𝑢(𝑥)
𝜏𝑢𝑢(𝑥)

2Noting that ℙ(𝑇 = 0|𝑇 ∈ {0, 𝑢}, 𝑋 = 𝑥) = ℙ(𝑇=0|𝑋=𝑥)
ℙ(𝑇=0|𝑋=𝑥)+ℙ(𝑇=𝑢|𝑋=𝑥)
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A potential pitfall of this approach is that the task of pipeline 0 is much
harder than that of the treated pipelines3.

VII.2.5 . Latent space disentanglement
In the wake of Kuang et al. (2017)’s D2VD and Cheng et al. (2022b)’s MIM-

DRCFR, splitting the latent space between instrumental (I, causes of 𝑇 only),
confounding (C, causes of both 𝑇 and 𝑌 ) and adjustment (A, causes of 𝑌 only)
variables. This innovation has driven the recent progress of CATE estimation
and constitutes as such a promising direction for future research.

ALRITE would easily merge with this design: by dividing the adjustment la-
tent space into two subspaces𝐴0

and𝐴1
, both approachesmight synergize,

and provide more accurate predictions.

3Assuming that the total number of control and treated samples are roughly equal,ensuring the proximity of samples with each treatment assignment 𝑢 ≠ 0 in the neigh-boring of (𝜙0
(𝑥), 0, 𝑦) is strenuous. To account for the likely lower accuracy of 𝜏0

,onemay also consider to introduce an extra hyper-parameter 𝜆 ∈ [0, .5], defining theupdated 𝜏𝑢 estimate by
𝜏𝑢 ∶ 𝑥 ∈  ↦

𝜆𝜂̂0(𝑥)
𝜆𝜂̂0(𝑥) + (1 − 𝜆)𝜂̂𝑢(𝑥)

𝜏𝑢0
(𝑥) +

(1 − 𝜆)𝜂̂𝑢(𝑥)
𝜆𝜂̂0(𝑥) + (1 − 𝜆)𝜂̂𝑢(𝑥)

𝜏𝑢𝑢 (𝑥)
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A - Résumé étendu en français

Quelques éloignées puissent-elles paraitre, les notions de prise de déci-
sion algorithmique, d’évaluation des politiques publiques ou de personnali-
sation des soins médicaux reposent sur une même question fondamentale :
que se serait-il passé, que se passerait-il si la décision était autre ? Parce que
l’apprentissage causal fonde par essence des raisonnements contrefactuels
sur les données disponibles, il constitue le cadre théorique et pratique idoine
de ces problématiques.

Depuis l’introduction de méthodes fondées sur des réseaux de neurones,
les progrès en inférence causale ont été portés principalement par le raffine-
ment de l’équilibrage entre les représentations apprises des individus con-
trôles, et traités. Prenant constat des limites de cette approche, nous opérons
un changement de paradigme. Des contraintes asymétriques dans l’espace
des représentations permettent, au prix de la dégradation de la modélisation
factuelle d’une population, l’amélioration de la modélisation contrefactuelle
de l’autre. La combinaison d’un modèle favorable à la population traitée avec
son pendant relatif à la population contrôle cumule leurs avantages, sans
leurs inconvénients.

Nous débutons ici notre exposé par une introduction qui pose le contexte
de l’inférence causale et en illustre le besoin. Nous détaillons alors le
cadre théorique du champ d’étude : le modèle caussal de Neyman-Rubin,
ou modèle à résultats potentiels. Il est nécessaire d’en préciser les quan-
tités d’intérêts, les principales hypothèses et leurs limites, un résultat clé
d’identifiabilité, ainsi que des métriques qui jugent de la performance d’un
modèle.

Nous poursuivons l’exposé par un état de l’art de l’apprentissage causal.
Après avoir rappelé pour mémoire les principaux résultats concernant la
découverte causale, nous précisons les méthodes et résulats spécifiques
à l’inférence causale. Nous justifions de notre intérêt pour l’estimation de
l’effet conditionnel moyen des traitements, plutôt que du seul effet moyen
des traitements. C’est l’occasion de présenter la galerie des architectures
existantes, à laquelle notre proposition s’ajoutera.

Notre nouvelle architecture est incarnée par ALRITE, un modèle que nous
motivons. Les approches actuelles sont fondées sur desméthodes de régular-
isation qui ne traitent pas directement l’objectif poursuivi. En pratique, nous
avançons qu’il est nécessaire à l’estimation des résultats contrefactuels que
chaque point du groupe contrôle dans l’espace latent soit proche d’un point
du groupe traité, et que chaque point du groupe traité soit proche d’un point
du groupe contrôle. De ces observation nous déduisons les principes sous-
jacents de ALRITE. En premier lieu, une pipeline sera destinée à l’estimation
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de représentations contrefactuelles précises pour le groupe contrôle, et une
autre sera destinée à l’estimation de réprésentations contrefactuelles pré-
cises pour le groupe traité. Les estimations de chacune de ces pipelines seront
combinées selon le score de propensité, c’est à dire la probabilité inférée
qu’un point appartienne au groupe traité. De ces principes il est alors pos-
sible de dégager l’architecture de ALRITE, qui s’inscrit alors dans la galerie
évoquée lors de la description de l’état de l’art. Nous proposons également
deux variantes de cette architecture, légèrement plus complexes, mais dont
la performance seramise en valeur par la suite. Nous démontrons également
la pertinence de l’approche sur un plan théorique, portant un soin tout parti-
culier à l’étude des limites de validité de ses hypothèses.

Nous montrons ensuite la pertinence de l’approche en la soumettant
à des expériences pratiques, sur des bases de données de référence dans
l’importance causale. Issues d’expériences réelles, IHDP et Jobs tiennent
lieu de références en la matière, et permettent la comparaison avec les
approches concurrentes telles que relevées dans la présentation de l’état de
l’art. Les paramètres expérimentaux sont précisés dans leur détail, de façon
à s’assurer de la reproducibilité de l’exercice. Les métrique de performance
mettent en lumière la pertinence de l’approche de ALRITE, et en valident les
principes sous-jacents.

Un soin tout particulier est porté à la sélection rigoureuse des hyper-
paramètres dumodèle, tâche réputée délicate dans le domaine de l’inférence
causale. Nous motivons un choix de métrique proxy, qui permet la sélec-
tion des hyper-paramètres les plus adéquats dans l’espace exploré. Une
vérification rétrospective des résultats confirme ici encore le bien-fondé de
l’approche.

Nous proposons enfin une conclusion à notre exposé, présentant
quelques perspectives à même de prolonger nos travaux. Si nous avons
détaillé dans ce manuscrit deux variantes à notre proposition, l’approche
proposée est suffisamment versatile pour s’adapter à différents cas de figure,
au-delà du cadre théorique tel que nous l’avions posé.



B - Acronyms

Generalities

AIPW : Augmented Inverse Propensity Weights (II.6)
DAG : Directed Acyclic Graph (III.1.2.4)
IPTW : Inverse Probability of Treatment Weighting (III.2.2.2)
ML : Machine Learning (I)
ROC : Receiver Operating Characteristic curve (V.1.2.3)

Functions

ELU : Exponential Linear Unit (V.6)
ReLU : Rectified Linear Unit (V.2)
UMAP : Uniform Manifold Approximation and Projection (V.1.2.3)
MMD : Maximum Mean Discrepancy (II.3.2)

Regressors

1NNI : One Nearest Neighbor Imputation (VI.2.4)
DTR : Decision Tree Regressor (VI.5.2)
GPR : Gaussian Process Regressor (VI.5.2)

LightGBM : Light Gradient Boosting Machine (VI.5.2)
MLP : Multi-Layer Perceptron (VI.5.2)
RF : Random Forest (VI.5.2)

DTR : Ridge Regressor (VI.5.2)

Learning frameworks

DML : Double Machine Learning (III.2.3)
DR : Doubly Robust (III.2.3)

FCM : Functional Causal Model (III.1.1)
GAN : Generative Adversarial Networks (III.3.1.2)

IV : Instrumental Variables (III.2.1)
NICA : Non-linear Independent Component Analysis (III.3.2)
VAE : Variational AutoEncoder (III.3.2)
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Datasets

IHDP : Infant Health and Development Program (III.3.3)
NSWD : National Supported Work Demonstration (V.1.2)
PSID : Panel Study of Income Dynamics (V.1.2)

Metrics, assumptions

ATC : Average Treatment Effect on the Control (III.2.2.2)
AUC : Area Under the receiver operating characteristic (ROC) Curve (V.1.2.3)
ATE : Average Treatment Effect (II.1)
ATO : Average Treatment Effect on Overlap (III.2.2.2)
ATT : Average Treatment Effect on the Treated (II.3)

CATE : Conditional Average Treatment Effect (II.2)
CATT : Conditional Average Treatment Effect on the Treated (II.2)
CG : Cumulative Gain (VI.3)

DCG : Discounted Cumulative Gain (VI.3)
ITE : Individual Treatment Effect (II.2)

PEHE : Precision in Estimation of Heterogeneous Effect (II.5.1)
SATE : Sample Average Treatment Effect (II.2)
SATT : Sample Average Treatment Effect on the Treated (II.2)

SUTVA : Stable Unit Treatment Value Assumption (II.3.3)
𝜖ATE : absolute error in Average Treatment Effect estimation (II.5.1)

CATE estimation methods

ABCEI : Adversarial Balancing-based representation learning for Causal Effect
Inference (III.3.1.2)

Alrite : Asymmetrical Latent Regularization for Individual Treatment Effect
modeling (IV)

BNN : Balancing Neural Network (III.3.1.1)
BWCFR : Balancing Weights for CounterFactual Regression (III.3.1.2)
CBRE : Cycle-Balanced REpresentation learning for the counterfactual infer-

ence (III.3.1.2)
CEVAE : Causal Effects Variational Auto-Encoder (III.3.1.2)

CF : Causal Forests (III.3.1.1)
CFR : CounterFactual Regression (III.3.1.2)

CFR-ISW : CounterFactual Regression Importance Sampling Weights (III.3.1.2)
DeR-CFR : Decomposed Representations for CounterFactual Regression (III.3.1.2)
DKLITE : Deep Kernel Learning for ITE (III.3.1.2)
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DR-CFR : Disentangled Representations for CounterFactual Regression (III.3.1.2)
D2VD : Data-Driven Variable Decomposition (III.3.1.2)

GANITE : Generative Adversarial Networks for inference of Individual Treatment
Effects (III.3.1.2)

MIM-DRCFR : Disentangled Representations for Counterfactual Regression via Mu-
tual Information Minimization (III.3.1.2)

MitNet : Mutual Information Treatment Network (III.3.1.2)
N-D2VD : Data-Driven Variable Decomposition (III.3.1.2)
NSGP : Non-Stationary Gaussian Process (III.3.1.2)
SITE : Similarity-preserved Individual Treatment Effect (III.3.1.2)
SNet : Sharing information NETwork (III.3.1.2)

TARNet : Treatment-Agnostic Representation Network (III.3.1.2)
TEDVAE : Treatment Effect by Disentangled Variational Auto-Encoder (III.3.1.2)
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C - Illustration: extension of the Simpson
paradox

Consider the extension of the Simpson paradox data (Table C.1, already
discussed in Chapter I), where the treated group is assigned to percutaneous
nephrolithotomy (𝑇 = 1) while the control group undergoes open surgery
(𝑇 = 0). For convenience, we refer to smaller stones as 𝑠, larger ones as 𝑆 ,
small hospitals by ℎ, and big ones by𝐻 .

opensurgery percutaneousnephrolithotomy

Smaller stones (s)
Small hospital (h) 80%(8/10) 83%(173/208)
Big hospital (H) 95%(73/77) 98%(61/62)

Larger stones (S)
Small hospital (h) 57%(44/77) 63%(41/65)
Big hospital (H) 80%(148/186) 93%(14/15)

Table C.1: Imaginary extension of the Simpson paradox data.

Assume now that medical experts guarantee that the stone and hospital
size ensure conditional exchangeability. All combinations of stone and hos-
pital sizes include control and treated patients, ensuring that positivity holds.
Finally, wemay suppose that the success of a givenmedical intervention does
not interfere with that of other interventions, verifying SUTVA.

The sample CATE given that the stone is big and the hospital small is then
equal to CATE(𝑆, ℎ) = 41

65
− 44

77
≈ 6%. The law of total probability lets us compute
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the sample ATE
ATE = 𝔼[CATE(𝑋)]

=
∑

𝑥1∈{𝑠,𝑆},𝑥2∈{ℎ,𝐻}
𝔼[𝑌 1 − 𝑌 0

|(𝑥1, 𝑥2)]ℙ(𝑥1, 𝑥2)

=
∑

𝑥1∈{𝑠,𝑆},𝑥2∈{ℎ,𝐻}
CATE(𝑥1, 𝑥2)ℙ(𝑥1, 𝑥2)

=
(173
208

− 8
10

)

× 208 + 10
700

+
(61
62

− 73
77

)

× 62 + 77
700

+
(41
65

− 44
77

)

× 65 + 77
700

+
(14
15

− 148
186

)

× 15 + 148
700

≈ 7%

For the reasonswehave detailed, this quantity differs from the first erroneous
guess 𝔼[𝑌 |𝑇 = 1] − 𝔼[𝑌 |𝑇 = 0] = 289

350 − 273
350 ≈ 5% and the second erroneous

guess
∑

𝑥1∈{𝑠,𝑆}

(

𝔼[𝑌 |𝑇 = 1, 𝑥1] − 𝔼[𝑌 |𝑇 = 0, 𝑥1]
)

ℙ(𝑥1)

=
(234
270

− 81
87

)

× 270 + 87
700

+
(55
80

− 192
263

)

× 80 + 263
700

≈ −5%

Finally, the sample ATT is equal to
ATT = 𝔼[CATE(𝑋)|𝑇 = 1]

=
∑

𝑥1∈{𝑠,𝑆},𝑥2∈{ℎ,𝐻}
𝔼[𝑌 1 − 𝑌 0

|𝑇 = 1, (𝑥1, 𝑥2)]ℙ(𝑥1, 𝑥2|𝑇 = 1)

=
∑

𝑥1∈{𝑠,𝑆},𝑥2∈{ℎ,𝐻}
CATE(𝑥1, 𝑥2)ℙ(𝑥1, 𝑥2)

=
(173
208

− 8
10

)

× 208
350

+
(61
62

− 73
77

)

× 62
350

+
(41
65

− 44
77

)

× 65
350

+
(14
15

− 148
186

)

× 15
350

≈ 4%

meaning that the treatment is, on average, less successful for the treated
population than for the control one.



D - Influence of the data generation process

In order to illustrate how different meta-learners suit different data
generation processes, let us consider a synthetic problem with two different
settings.

For the sake of simplicity, 𝑇 is randomly assigned as in randomized control
studies, and no noise is added to the outcome 𝑌 . For each setting, 100 training
data points are sampled from:

Setting A.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜇0 ∶ 𝑥 ↦ sin (2𝜋𝑥
.7 )

1∕3

𝜇1 ∶ 𝑥 ↦ sin (2𝜋𝑥
.9 )

1∕3

𝑋 ∼ Unif([−6, 6])
𝑇 ∼ Ber(1∕2)
𝑌 ∼ (1 − 𝑇 )𝜇0(𝑋) + 𝑇𝜇1(𝑋)

Setting B.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜇0 ∶ 𝑥 ↦ sin (2𝜋𝑥
.9 )

1∕3
− sin (2𝜋𝑥

.7 )
1∕3

𝜇1 ∶ 𝑥 ↦ sin (2𝜋𝑥
.9 )

1∕3
+ sin (2𝜋𝑥

.7 )
1∕3

𝑋 ∼ Unif([−6, 6])
𝑇 ∼ Ber(1∕2)
𝑌 ∼ (1 − 𝑇 )𝜇0(𝑋) + 𝑇𝜇1(𝑋)

In Setting A., the complexity of 𝜏 is higher than that of the outcome func-
tions 𝜇0, 𝜇1. In Setting B., the situation is the opposite. Let us define 𝑚
(Section III.3.1.4) as 𝑚 ∶ 𝑥 ∈  ↦ 𝔼[𝑌 |𝑋 = 𝑥]. It comes (Figs. D.1a and D.1b):

Setting A.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇0 ∶ 𝑥 ↦ sin (2𝜋𝑥
.7 )

1∕3

𝜇1 ∶ 𝑥 ↦ sin (2𝜋𝑥
.9 )

1∕3

𝑚 ∶ 𝑥 ↦ 1∕2(sin (2𝜋𝑥
.7 )

1∕3
+ sin (2𝜋𝑥

.9 )
1∕3
)

𝜏 ∶ 𝑥 ↦ sin (2𝜋𝑥
.9
)
1∕3

− sin (2𝜋𝑥
.7
)
1∕3

Setting B.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇0 ∶ 𝑥 ↦ sin (2𝜋𝑥
.9
)
1∕3

− sin (2𝜋𝑥
.7
)
1∕3

𝜇1 ∶ 𝑥 ↦ sin (2𝜋𝑥
.9 )

1∕3
+ sin (2𝜋𝑥

.7 )
1∕3

𝑚 ∶ 𝑥 ↦ sin (2𝜋𝑥
.9 )

1∕3

𝜏 ∶ 𝑥 ↦ 2 sin ( 2𝜋𝑥
.7 )

1∕3

The experiments are conducted as follows. The learners are informed that
𝑇 is uniformly selected at random and that the features are periodic. In that
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(a) Setting A.

(b) Setting B.
Figure D.1: Distributions of the ground truth functions 𝜇0, 𝜇1, 𝑚 and 𝜏 that un-derlie the observed distributions.
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case, the choice of Gaussian Processes with periodic kernels as base learners
is adequate. The kernel expression modeling similarity of samples 𝑥 and 𝑥′ is
given by

𝑘(𝑥, 𝑥′) = exp
(

− 2
𝑑2

sin2
(𝜋|𝑥 − 𝑥′|

𝑝

))

The model admits the kernel length scale 𝑑 and the periodicity 𝑝 as hyper-
parameters; they are set by uniformly sampling the hyper-parameter space,
and retaining the hyper-parameter setting with the lowest prediction error.
The T-learner learns estimates 𝜇̂0, 𝜇̂1, inducing a causal estimate 𝜏𝑇 . The R-
learner first learns the estimate 𝑚̂, then learns the second-stage model 𝜏𝑅 by
solving

argmin
𝜏

𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝑚̂(𝑥𝑖) −
(

𝑡𝑖 − 1∕2
)

𝜏(𝑥𝑖)
)2

The final results are reported in Figs. D.2a and D.2b.
As expected, the T-learner is better suited to Setting A. than B. Outcome

functions 𝜇0, 𝜇1 are simple and easy to approximate, and estimates 𝜇̂0, 𝜇̂1 ac-curately approximate the ground truth (Fig. D.2a). Inversely,𝑚 and 𝜏 aremore
complex to model, and the R-learner is outperformed by the T-learner.

In Setting B, the outcome functions 𝜇0, 𝜇1 are more complex, and due to
the low number of training data points, the T-learner provides poor estimates.
𝑚 and 𝜏 have much simpler expressions here, benefiting the R-learner.

Setting A.
{

PEHE(𝜏𝑇 ) = 5.1e-2
PEHE(𝜏𝑅) = 7.5e-1

Setting B.
{

PEHE(𝜏𝑇 ) = 2.3e0
PEHE(𝜏𝑅) = 8.6e-2

Although these problems are toy ones, they illustrate the importance of
the data generation process on the performance of different types of meta-
learners.
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(a) Setting A.

(b) Setting B.
Figure D.2: Color code: T-learner, R-learner, ground truth.



E - Theoretical analysis: auxiliary results

Let us detail some of the claims of Section IV.5.3.2, in the same setting,
and under the same assumptions.

E.1 . Existence of 𝜈0 follows the sufficiency of 𝜙

Assume that 𝜙(𝑋) is sufficient with respect to 𝑌 0: 𝑌 0 ⟂⟂ 𝑋|𝜙(𝑋) (or equiv-
alently 𝜙(𝑋) is a prognostic score). Then there exists 𝜈0 ∶  ↦ ℝ, such that
𝜇0 = 𝜈0◦𝜙

Proof.

𝜇0(𝑥) = 𝔼[𝑌 0
|𝑋 = 𝑥]

= 𝔼[𝑌 0
|𝜙(𝑋) = 𝜙(𝑥), 𝑋 = 𝑥]

= 𝔼[𝑌 0
|𝜙(𝑋) = 𝜙(𝑥)]

And as such, 𝜇0(𝑥) is entirely determined by 𝜙(𝑥); the existence of 𝜈0 is guar-
anteed.

E.2 . Heritageof conditional exchangeability through
sufficiency

Assume that 𝜙(𝑋) is sufficient with respect to 𝑌 0. Then conditional ex-
changeability w.r.t. 𝜙(𝑋) holds: 𝑌 0 ⟂⟂ 𝑇 |𝜙(𝑋)

This result has beenmentioned in Section II.6 and can be established from
direct computation on the density functions as follows:
Proof.

𝑓𝑌 0,𝑇 |𝜙(𝑋)(𝑦, 0|𝜙(𝑥))

=∫𝜙−1({𝜙(𝑥)})
𝑓𝑌 0,𝑇 |𝜙(𝑋),𝑋(𝑦, 0|𝜙(𝑥), 𝑢)𝑓𝑋|𝜙(𝑋)(𝑢|𝜙(𝑥))du (total probabilities)

=∫𝜙−1({𝜙(𝑥)})
𝑓𝑌 0,𝑇 |𝑋(𝑦, 0|𝑢)𝑓𝑋|𝜙(𝑋)(𝑢|𝜙(𝑥))du (same 𝜎-algebra)

=∫𝜙−1({𝜙(𝑥)})
𝑓𝑌 0

|𝑋(𝑦|𝑢)𝑓𝑇 |𝑋(0|𝑢)𝑓𝑋|𝜙(𝑋)(𝑢|𝜙(𝑥))du (𝑌 0 ⟂⟂ 𝑇 |𝑋)

=∫𝜙−1({𝜙(𝑥)})
𝑓𝑌 0

|𝜙(𝑋)(𝑦|𝜙(𝑢))𝑓𝑇 |𝑋(0|𝑢)𝑓𝑋|𝜙(𝑋)(𝑢|𝜙(𝑥))du (𝜙(𝑋) sufficient)

=𝑓𝑌 0
|𝜙(𝑋)(𝑦|𝜙(𝑥))∫𝜙−1({𝜙(𝑥)})

𝑓𝑇 |𝑋(0|𝑢)𝑓𝑋|𝜙(𝑋)(𝑢|𝜙(𝑥))du
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=𝑓𝑌 0
|𝜙(𝑋)(𝑦|𝜙(𝑥))𝑓𝑇 |𝜙(𝑋)(0|𝜙(𝑥))

E.3 . 𝜙(𝑋) is not sufficient in general

A counter-example proves that the existence of 𝜈0 s.t. 𝜇0 = 𝜈0◦𝜙 does not
imply the sufficiency of 𝜙(𝑋) (𝑌 0 ⟂⟂ 𝑋|𝜙(𝑋)).
Proof. Let us consider the following setting:  = [0, 1] × [0, 1], with samples
being drawn uniformly in  , and 𝑌 0 ∼  (𝑋1, 𝑋2

2 ). Let 𝜙 ∶ (𝑥1, 𝑥2) ↦ 𝑥1 bethe projection on the first feature axis.
Since 𝔼[𝑌 0

|𝑋 = 𝑥] = 𝜙(𝑥), 𝜈0 = Id verifies the condition. However, 𝜙(𝑋)
being fixed, the variance of 𝑌 0 depends on 𝑋2; 𝑌 0 ⟂̸⟂ 𝑋|𝜙(𝑋) and 𝜙(𝑋) is no
sufficient statistic for 𝑌 0.

E.4 . Conditional exchangeability w.r.t. 𝜙(𝑋) does
not hold in general

Similarly to the previous section, the existence of 𝜈0 s.t. 𝜇0 = 𝜈0◦𝜙does not
even imply that 𝑌 0 ⟂⟂ 𝑋|𝜙(𝑋). A counter-example also proves this negative
result.
Proof. Consider the following setting:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋 ∼ (Ber(1∕2),Ber(1∕2))
𝜙(𝑋) = 𝑋1

𝑇 = 𝑋2 × (2𝑛𝑇 − 1) + 1 − 𝑛𝑇 , 𝑛𝑇 ∼ Ber(.9)
𝑌 0 = (𝑋1 − 1∕2) + (𝑋2 + 1∕2) × 𝑛𝑌 , 𝑛𝑌 ∼  (0, .1)

(E.1)

Set now 𝜈0 ∶ 𝑧 ↦ 𝑧 − 1∕2. Then, 𝔼[𝑌 0
|𝑋 = 𝑥] = 𝑥1 − 1∕2 = 𝜈0◦𝜙(𝑥).

Conditional exchangeability w.r.t. 𝑋, positivity and SUTVA hold.
However, conditional exchangeability w.r.t. 𝜙(𝑋) does not hold. 𝑋1 beingfixed, the variance of 𝑌 0 is larger when 𝑇 takes value 1 thanwhen it takes value

0: 𝑌 0 ⟂̸⟂ 𝑇 |𝜙(𝑋). See Fig. E.1 for an illustration.
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(a) Conditioning on X: 𝑌 0 ⟂⟂ 𝑇 |𝑋

(b) Conditioning on 𝜙(𝑋): 𝑌 0 ⟂̸⟂ 𝑇 |𝜙(𝑋)

Figure E.1: Histogram of 𝑌 0 in the setting of Eq. E.1, 10,000 samples.
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F - Potential learning instability

Consider the training of pipeline 0 and a given treated sample
(𝑥𝑖, 𝑡𝑖 = 1, 𝑦𝑖) that happens to be the mirror twin of numerous control
samples {(𝑥𝑘, 𝑡𝑘 = 0, 𝑦𝑘)}𝑘∈𝐾 . The minimization of the prediction er-
ror ||ℎ10

◦𝜙0
(𝑥𝑖) − 𝑦𝑖|| impacts the learned ℎ10

in the neighborhood of
𝜙0

(𝑥), and as such impacts the counterfactual estimation of all samples
{(𝑥𝑘, 𝑡𝑘 = 0, 𝑦𝑘)}𝑘∈𝐾 . The greater the factual prediction error on 𝑥, the
likely larger the counterfactual prediction error of samples index by 𝐾 . The
solution we propose consists in providing to 𝑥 an importance that increases
linearly with the cardinality of 𝐾 .

Nonetheless one has to keep in mind that at training time, the represen-
tational network 𝜙0

is not fixed. Increasing the importance of samples with
high exemplarity in the training loss may lead to an undesired effect. Back to
the previous example, consider now two treated samples (𝑥𝑖, 𝑡𝑖 = 1, 𝑦𝑖) and
(𝑥𝑗 , 𝑡𝑗 = 1, 𝑦𝑗). Assume that (𝑥𝑖, 𝑡𝑖 = 1, 𝑦𝑖) is still the mirror twin w.r.t 𝜙0

of
numerous control samples {(𝑥𝑘, 𝑡𝑘 = 0, 𝑦𝑘)}𝑘∈𝐾 , whereas (𝑥𝑗 , 𝑡𝑗 = 1, 𝑦𝑗) is themirror twin of no control sample. Assume finally that the prediction error of
(𝑥𝑖, 𝑡𝑖 = 1, 𝑦𝑖) is much higher than that of (𝑥𝑗 , 𝑡𝑗 = 1, 𝑦𝑗):

exemplarity0
(𝑖) = |𝐾| is big

exemplarity0
(𝑗) = 0

||ℎ10
◦𝜙0

(𝑥𝑗) − 𝑦𝑗||≪ ||ℎ10
◦𝜙0

(𝑥𝑖) − 𝑦𝑖||

As said, updating ℎ10
into ℎ′1

0
to reduce the prediction error contributes to-

wards the minimization of the loss:
||ℎ

′1
0
◦𝜙0

(𝑥𝑖) − 𝑦𝑖|| ≤ ||ℎ10
◦𝜙0

(𝑥𝑖) − 𝑦𝑖||

⟹ (1 + 𝛽0
exemplarity0

(𝑖)) × ||ℎ
′1
0
◦𝜙0

(𝑥𝑖) − 𝑦𝑖||

≤ (1 + 𝛽0
exemplarity0

(𝑖)) × ||ℎ10
◦𝜙0

(𝑥𝑖) − 𝑦𝑖||

However, suppose that there exists a mapping change from 𝜙0
to 𝜙′

0
that

swaps the representations of (𝑥𝑖, 𝑡𝑖 = 1, 𝑦𝑖) and (𝑥𝑗 , 𝑡𝑗 = 1, 𝑦𝑗)while preservingthe representations of all other training samples:
⎧

⎪

⎨

⎪

⎩

𝜙0
(𝑥𝑖) = 𝜙′

0
(𝑥𝑗)

𝜙0
(𝑥𝑗) = 𝜙′

0
(𝑥𝑖)

𝑙 ∉ {𝑖, 𝑗} ⟹ 𝜙0
(𝑥𝑙) = 𝜙′

0
(𝑥𝑙)

Now (𝑥𝑗 , 𝑡𝑗 = 1, 𝑦𝑗) is the mirror twin w.r.t 𝜙′
0
of samples {(𝑥𝑘, 𝑡𝑘 = 0, 𝑦𝑘)}𝑘∈𝐾 ,while (𝑥𝑖, 𝑡𝑖 = 1, 𝑦𝑖) is the mirror twin of no control sample. The resulting
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diminution of the training loss value is likely even larger than the previous
one:

(1 + 𝛽0
exemplarity0

(𝑖)) × ||ℎ10
◦𝜙′

0
(𝑥𝑖) − 𝑦𝑖||

≤ (1 + 𝛽0
exemplarity0

(𝑖)) × ||ℎ10
◦𝜙0

(𝑥𝑖) − 𝑦𝑖||

Hopefully, the gradient does not flow back through the mirror twin operator
during the back-propagation phase, entailing no incentive for the represen-
tational network to optimize in such a pathological way. However, this phe-
nomenon is prone to create instabilities during the training. The impacts of
insulation and exemplarity depend on the one nearest neighbor of the con-
sidered samples, a strategy that is sensitive to infinitesimal modifications of
the network parameters. In that sense, the regularization terms as they are
formalized in IV.2.1 lack robustness.



G - AI-assisted writing

The comprehensive list of Large LanguageModel requests in the redaction
of this manuscript follows:

G.1 . ChatGPT 3.5

Search for alternatives to "mirror twin"
https://chat.openai.com/share/ceed0e70-1a2b-4214-a7d6-11dcc31c6080

Explanation of the Generalized Method of moments
https://chat.openai.com/share/f1e4e4b2-8613-48d4-9065-3dd199d4bc7c

Suggestions of articles related to the variance of IPTW approaches
https://chat.openai.com/share/3d9c655a-c882-4a0d-8ae7-6cbb3694ff23
Interestingly the returned article does not seem to exist.
Search for recent CATE articles
https://chat.openai.com/share/a0223671-2f00-4522-8a1b-678abf89ef66
No returned article.
Variants of "to induce a question"
https://chat.openai.com/share/52da4dd6-afce-432c-9dfa-5862f48c37cd

Heritage of conditional exchangeability through sufficiency
https://chat.openai.com/share/e20bc3e3-5bc6-4c70-a66a-be2377374a0f
This request is interesting. Assuming conditional exchangeability w.r.t 𝑋

(𝑌 0 ⟂⟂ 𝑇 |𝑋) and sufficiency of 𝜙(𝑋)w.r.t 𝑌 0 (𝑌 0 ⟂⟂ 𝑋|𝜙(𝑋)), the agent is asked
to prove that conditional exchangeability still holds w.r.t 𝜙(𝑋) (𝑌 0 ⟂⟂ 𝑇 |𝜙(𝑋)).
It answers that additional assumptions are required. The result is, however,
proved in Appendix E.2.

LATEX formatting, warning management
https://chat.openai.com/share/a14cc2b2-7052-41bf-8865-d4757e8c9c65

LATEX formatting, regular expression
https://chat.openai.com/share/8da262bb-3836-4d0f-82a0-cc528ae9365d
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G.2 . Other

The redaction of this manuscript has made extensive use of search en-
gines and automated proofreading assistants (Overleaf, Grammarly), which
technicaly qualifies as AI-assisted writing.
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