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Over the last decades, the prevalence of chronic liver diseases and their associated 

morbidity and mortality markedly increased, especially with the rise of metabolic dysfunction-

associated steatotic liver disease (MASLD). A substantial proportion of patients will indeed 

ultimately develop liver fibrosis and eventually progress towards cirrhosis. Cirrhosis is a clinical 

dead-end with life-threatening complications (e.g., liver failure, portal hypertension, 

hepatocellular carcinoma…), which accounts for approximately 1.8% of deaths each year (WHO 

mortality database). When chronic liver injuries progress, decompensation of the disease (e.g., 

ascites, jaundice, variceal bleeding or hepatic encephalopathy) may occur, resulting in a 

dramatic decrease in the overall survival rate. Currently, the clinical predictors of the risk of 

decompensation have a limited impact on the patient’s management and we are unable to 

accurately characterise the liver parenchyma and monitor its changes or pejorative evolution on 

imaging alone (e.g., using CT, MRI, ultrasound). The characterisation of chronic liver disease 

relies on invasive methods such as liver biopsy, to assess fibrosis, steatosis and “activity” (i.e., 

inflammation) of chronic liver diseases, and trans-jugular catheterization for portal hypertension 

(measure of the hepatic venous pressure gradient). Such invasive and expensive gold standards 

are inappropriate for screening and sequential monitoring for obvious reasons. Additionally, liver 

biopsy is also prone to risks of under-sampling and/or inter-reader variability and does not allow 

risk stratification of disease progression including hepatocarcinogenesis for instance. All this 

leads to a necessary and ongoing transition towards non-invasive assessment of chronic liver 

disease progression and prognostication.  

Hepatocellular carcinoma, a life-threatening condition, arises in more than 85% of cases 

in advanced fibrosis. Over the past decades, the incidence rate of liver cancers has been 

increasing and the severity of this challenge is amplified by projections that anticipate a 55% 

increase in new cases of liver cancer by 2040, which would result in 1.3 million deaths worldwide 

– a 56% increase compared to 20201. The alarming prevalence of hepatocellular carcinoma, 

combined with a growing understanding of the pathological precursor mechanisms, makes this 

disease a public health priority for screening programs. Furthermore, there is a significant impact 
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of early diagnosis on patient prognosis: median survival exceeds five years when hepatocellular 

carcinoma is diagnosed at an early stage (eligible to curative-intent treatment including liver 

transplantation, surgical resection, and percutaneous ablation), whereas in advanced 

hepatocellular carcinoma, survival drops to 3 months. Early-stage hepatocellular carcinoma is 

defined by the recently updated Barcelona Clinic Liver Cancer (BCLC) classification2, a guide for 

management of hepatocellular carcinoma. Incorporating liver function and performance status, 

the BCLC classification defines 5 stages based on imaging: very early stage (0) with a single ≤ 2 

cm nodule, early stage (A) with a single nodule regardless of the size or ≤ 3 nodules each ≤ 3 cm, 

intermediate stage (B) with multinodular hepatocellular carcinoma, advanced stage (C) with 

portal invasion and/or extrahepatic spread, and terminal stage (D) corresponding to end-stage 

liver function or poor performance status regardless of tumour stage. The BCLC 0 and A stages 

mostly encompass the historical Milan criteria defining the eligibility for liver transplantation by 

(1) one nodule ≤ 5 cm, (2) ≤ 3 nodules each ≤ 3 cm, (3) no macrovascular invasion, and (4) no 

extrahepatic spread3.   

In this context, healthcare systems in Europe and North America have included patients 

with advanced chronic liver disease in screening programs with biannual ultrasound. Screening 

programs rely on the cost-effectiveness ratio at the collective scale of the population which is 

determined by the incidence of hepatocellular carcinoma, the cost of the screening program and 

its benefits including the percentage of patients receiving a curative treatment and the overall 

survival in at-risk patients. It has been determined that this approach is justified in a given 

population if the annual incidence of developing hepatocellular carcinoma reaches at least 

1.5%4, with an incremental cost-effective ratio (ICER) within the threshold of willingness-to-pay 

for a surveillance test, usually accepted as $50,000/quality-adjusted life years5. However, the 

incidence of hepatocellular carcinoma is heterogeneous at the individual level and the 

epidemiology of chronic liver disease is changing with the eradication of hepatitis C virus, the 

better control of hepatitis B virus and the rise of MASLD6. Although the overall incidence of 

hepatocellular carcinoma has been currently estimated ranging from 1.5 to 2.5%7-9, the 
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proportion of patients with a higher risk of hepatocellular carcinoma remains unknown. 

Furthermore, ultrasound has significant shortcomings in reproducibility and sensitivity, 

particularly for detecting early-stage hepatocellular carcinoma with a reported sensitivity of 47% 

(meta-analysis including 13367 patients10) and even more for hepatocellular carcinoma < 2 cm, 

where sensitivity drops to 22%11. Indeed, 80% of patients are diagnosed with advanced 

hepatocellular carcinoma and only 20% of patients diagnosed with hepatocellular carcinoma are 

eligible for a first-line curative-intent treatment. This is why the median survival for all stages of 

hepatocellular carcinoma is only 12 months12. Reasons are multiple including heterogeneity of 

the liver parenchyma in cirrhosis, increased echogenicity with ultrasound attenuation in case of 

steatosis and obesity, etc.13-15. Furthermore, the time interval for screening and its modalities are 

not personalised. If studies exist on the time interval of screening, they have reported negative 

results. For instance, Trinchet et al. did not show any survival benefit in performing this screening 

every 3 months in the overall screening population16. In addition, this lack of personalisation 

results in poor patient compliance.  

Thus, surveillance by MRI has been proposed to improve screening as it significantly 

outperforms ultrasound with a detection rate of 5 times that of ultrasound for very early-stage 

hepatocellular carcinoma17. Considering the higher cost and lower availability of MRI, 

abbreviated MRI (aMRI) without intravenous contrast (state-of-the-art MRI with fewer acquisition 

series) was recently introduced as it offers a considerable time-saving advantage, limited to 4.5 

to 6 minutes, compared to the conventional MRI protocol, which takes 25 to 40 minutes18-22. 

Various combinations of MRI sequences (without contrast injection, diffusion-weighted imaging 

(DWI), dynamic sequence with contrast or hepatobiliary phase) have been proposed and all offer 

higher performance than ultrasound while minimising acquisition time compared to a 

conventional MRI protocol (30 minutes). The reported sensitivity and specificity of the different 

protocols (NC-aMRI, DCE-MRI and HB-MRI) ranged from 84.6 to 96% and from 81.6 to 100%18,21-

26. When results were stratified according to lesion size, the diagnostic sensitivity decreased but 

remained acceptable for very early-stage hepatocellular carcinoma (< 2 cm) with pooled 
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sensitivity ranging from 69 to 77.1%, However, although the diagnostic performance of aMRI is 

superior to that of ultrasound, MRI is an expensive and not easily accessible examination. 

Recent analyses of prospective European cohorts including a model-based evaluation of 

very early-stage hepatocellular carcinoma detection confirmed that MRI surveillance is cost-

effective for a baseline yearly incidence of 3% in patients with cirrhosis without active viral 

replication17. Therefore, screening with aMRI can only be considered for a sub-population with a 

very high risk of hepatocarcinogenesis, which would be selected from the population currently 

undergoing standard ultrasound screening. Identifying this subset of high-risk patients is crucial 

as this strategy would detect 5 times more very early-stage hepatocellular carcinoma than 

ultrasound, with an ICER below 30,000€/life-years gained27. Refining and personalising costly 

hepatocellular carcinoma screening programs based on the individual risk of hepatocellular 

carcinoma is a timely challenge to provide better care and fairly allocate limited medical 

resources. 

Defining such a population involves developing tools for stratifying the risk of 

hepatocarcinogenesis28. Preliminary models have been developed, either aetiology-specific29-31 

or multi-aetiology17, incorporating clinical parameters (e.g., age, sex, body mass index, or 

diabetes) and biological parameters (e.g., GGT, AST/ALT, platelets, or albumin)30,32,33. These 

models demonstrated good discriminative performances and have the advantages of being easy 

to use and inexpensive. For instance, Nahon et al. developed a multi-aetiology score based on 

age, sex, platelet count, total bilirubin, GGT, and α-foetoprotein (AFP) that achieved a Harrell’s c-

index up to 0.76 to identify patients with an annual risk of hepatocellular carcinoma over 3% after 

3 years of follow-up17. Another example is the aMAP score, developed in chronic hepatitis (age, 

sex, albumin, bilirubin and platelet count), that also achieved excellent discrimination (Harrell’s 

c-index up to 0.87) and calibration in assessing the 5-year hepatocellular carcinoma risk (up to 

19.9% in patients predicted at high-risk)34. In addition to these clinical and biochemical 

parameters, liver stiffness has been shown to be an independent factor associated with 

hepatocarcinogenesis. Alonso Lopez et al. developed a hepatocellular carcinoma risk model 
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based on liver stiffness measurements and albumin, achieving a Harrell’s c-index of 0.7835. 

Serum protein-based and genetic approaches have also been investigated. An 8-protein serum-

based prognostic liver secretome signature (PLSec) recapitulated transcriptome-based hepatic 

hepatocellular carcinoma risk status with an adjusted hazard ratio of 2.35 and its association 

with AFP outperformed AFP alone36-38. Finally, a 7 single nucleotide polymorphisms genetic risk 

score, including 6 single nucleotide polymorphisms (PNPLA3, TM6SF2, HSD17B13, APOE, and 

MBOAT7) affecting lipid turnover and 1 variant involved in the Wnt–b-catenin pathway (WNT3A-

WNT9A rs708113), assessed in patients with alcohol-related and/or HCV-cured cirrhosis, 

achieved good discrimination with a Harrell’s c-index up to 0.64 at 5 years but failed to outperform 

simpler and cheaper clinical risk score such as aMAP score (Harrell’s c-index of 0.77) and only 

showed fair clinical net benefit  when associated with the latter score39.  

An alternative approach is to develop prediction models based on the direct analysis of 

the liver parenchyma. Indeed, these abovementioned models do not consider the analysis of the 

liver's micro and macrostructure, which reflects the pathophysiological mechanisms 

responsible for hepatocarcinogenesis. Information regarding the liver morphology is already 

available by imaging. For example, applying a subjective qualitative ultrasound analysis by the 

radiologist allows the identification of a population at 20 times greater risk of developing 

hepatocellular carcinoma when its structure appears heterogeneous and macronodular40-42. 

Despite this data, hepatic morphological and architectural analysis on imaging has never been 

used to stratify the risk of hepatocarcinogenesis in clinical practice or personalised screening. 

These models could prove to be complementary to clinical, biochemical, or genetic models.  

Quantitative image analysis, which can be achieved with an artificial intelligence (AI) 

approach, could provide an accurate and reproducible characterisation of liver micro and 

macrostructure, leading to stratification of the risk of hepatocarcinogenesis, providing aid to the 

detection of early hepatocellular carcinoma and thus personalising hepatocellular carcinoma 

screening. Indeed, machine learning can achieve tasks of classification, prediction, 

segmentation, detection, or image optimization (e.g., faster image acquisition, increased signal-
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to-noise ratio, etc.). AI-based imaging models, or the machine learning process, seek to identify 

and combine new imaging biomarkers, inaccessible to the human eye, in a mathematical 

model43. It aims to provide predictive and/or prognostic information about patients and their 

pathologies, based on sophisticated statistical analysis44. In Dana et al (refer to the section 

Additional publications related to the thesis), we provided a precise overview of quantitative 

imaging techniques of diffuse liver diseases, together with an explanation of the different 

concepts of Artificial Intelligence, with short and long-term potential clinical applications for risk 

stratification and early diagnosis45. 
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Despite the remarkable rise of quantitative imaging biomarkers for the prediction of 

pathological features (liver elastography, ultrasound-guided attenuation parameter, or MRI 

Proton Density Fat Fraction), some decisive clinical needs remain unmet. The assessment of the 

short- and long-term risk of progression of chronic liver disease towards a pejorative outcome 

(e.g., liver failure, portal hypertension decompensation or hepatocellular carcinoma) still 

requires the development of reliable non-invasive tools. This absence can be explained by the 

difficulty of implementing studies that would need to be exhaustive and prospective over a long 

period to collect a large number of pejorative events. If fibrosis and steatosis appear as decisive 

markers for the characterisation of chronic liver disease, they fail to accurately predict the 

progression of early-stage chronic liver disease to cirrhosis-related complications, such as 

hepatocellular carcinoma. Furthermore, current hepatocellular carcinoma screening programs 

based on biannual ultrasound are suboptimal. Refining risk stratification and characterisation of 

progressive disease would majorly impact screening, monitoring and therapeutic management.  

 

To address the current challenges, this thesis, based on a multidisciplinary approach between 

hepatology, radiology, and computer science, intends to:  

- Objective 1: Risk stratify hepatocarcinogenesis in high-risk patients with a deep learning 

approach using ultrasound and MRI modalities.  

- Objective 2: Improve detection of early-stage hepatocellular carcinoma in high-risk 

patients with a deep learning approach using ultrasound and MRI modalities.  

- Objective 3: Investigate innovative techniques to characterise chronic liver disease. 
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RISK STRATIFICATION OF HEPATOCARCINOGENESIS IN HIGH-RISK PATIENTS WITH A DEEP 

LEARNING APPROACH USING ULTRASOUND AND MRI IMAGES 

 

The high prevalence of hepatocellular carcinoma, the identification and understanding of 

risk factors and precursor pathological processes, make hepatocellular carcinoma an optimal 

disease for screening programs. Another reason is the marked improvement in prognosis when 

diagnosed early (median survival > 5 years for early hepatocellular carcinoma – BCLC 0 or A - 

versus 2.5 years, and 3 months for more advanced hepatocellular carcinoma such as in BLCL B 

and D, respectively), allowing curative treatment (liver resection, percutaneous ablation and liver 

transplantation)2,46,47.  

As explained in the Introduction, biannual ultrasound screening programs are suboptimal 

with significant shortcomings in sensitivity. To overcome the weaknesses of ultrasound, the use 

of aMRI has been proposed to improve hepatocellular carcinoma screening as it can detect 5 

times more very early-stage hepatocellular carcinomas than ultrasound, with an ICER below 

30,000€/life-years gained27. Different protocols have been proposed with specific advantages, 

challenges and limitations: non-contrast (NC; T2-WI with fat suppression and/or DWI and/or T1-

WI in/out), dynamic contrast-enhanced (DCE) and hepatobiliary phase (HB)27. Abbreviated non-

contrast MRI has the advantages of the absence of contrast agent injection, simpler workflow, 

limited cost and the possibility to repeat poor quality acquisitions27. In addition, the inter-reader 

agreement could be lower with a non-contrast protocol24. The challenges and limitations of DCE 

and HB-MRI are multiple: detection of inconclusive enhancing observations (need for recall 

examinations), injection of contrast, complex workflow with the need for intravenous access, and 

higher cost. On the other hand, the reported sensitivity and specificity of the different protocols 

(NC-aMRI, DCE-MRI and HB-MRI) ranged from 84.6 to 96% and from 81.6 to 100%18,21-26. 

Considering the similar screening performances of the different protocols and their pros and 

cons, we believe that NC-aMRI is a promising protocol for screening programs. In the coming 

years, hepatocellular carcinoma screening programs will most likely rely on screening ultrasound 
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and NC-aMRI for the most at-risk patients (annual incidence > 3%17), which motivates the urge to 

stratify the risk of hepatocarcinogenesis and personalise screening strategies.  

Preliminary models have been developed, either aetiology-specific29-31 or multi-

aetiology17, incorporating clinical parameters (e.g., age, sex, body mass index, or diabetes) and 

biological parameters (e.g., GGT, AST/ALT, platelets, or albumin)30,32,33, serum proteins36-38 or 

single nucleotide polymorphisms39. These models demonstrated good discriminative 

performances and have the advantages of being easy to use and inexpensive. However, these 

models do not take into consideration the structural analysis of the liver parenchyma, which 

reflects the pathophysiological mechanisms responsible for hepatocarcinogenesis. In the 1990s, 

ultrasound studies examined the incidence of hepatocellular carcinoma according to the liver 

echostructure40-42. Results showed that a nodular heterogeneous echostructure resulted in an 

adjusted rate ratio estimate of up to 20. However, these findings have not led to a personalisation 

of the screening strategy. If ultrasound is the modality of choice in clinical practice (availability, 

less expensive,…) and perfectly suited for a hepatocellular carcinoma-risk stratification Deep 

Learning model, it may not be contributory in all patients due to different reasons: ultrasound 

attenuation in the case of steatosis or significant subcutaneous fat in obese patients, etc.13-15. 

Therefore, developing equivalent models on ultrasound and MRI is advisable to address the 

applicability limitations of ultrasound. In addition, if preliminary risk stratification based on 

ultrasound echotexture pattern has not led to a personalised screening strategy, it may also be 

due to significant inter-operator and reader variability. MRI can offer standardised image 

acquisition, increased reader consistency and superior liver parenchyma characterisation. 

Therefore, we hypothesised that non-tumour cirrhotic liver parenchyma is rich in 

structural information reflecting the severity of liver disease, its carcinogenic risk as well as the 

process of hepatocarcinogenesis. Its analysis will allow to define a very high-risk population, 

especially in the context of HCV eradication and HBV control. 

The primary objective was to design an imaging-based risk stratification deep learning 

model for hepatocarcinogenesis on ultrasound to identify a population at very high risk of 
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developing hepatocellular carcinoma. Developing such a model on non-contrast aMRI is also of 

importance, for instance to compensate for potential failure of ultrasound in specific patient 

subgroups, and another study was initiated.  
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RISK STRATIFICATION OF HEPATOCARCINOGENESIS IN HIGH-RISK PATIENTS WITH A DEEP 

LEARNING APPROACH USING ULTRASOUND (STARHE CLINICAL TRIAL) 

 

Objective 

The primary objective was to design an imaging-based risk stratification deep learning 

model for hepatocarcinogenesis on ultrasound cine clips of the non-tumoral parenchyma, to 

identify a population at very high risk of developing hepatocellular carcinoma.  

 

Material and methods 

 

Ethics 

This prospective project was approved by the Research Ethics Board (Comité de protection des 

personnes Sud-Est VI 21.03054.001701-MS03; ClinicalTrial NCT04802954) and followed the 

ethical principles of the Declaration of Helsinki. All patients provided written informed consent. 

 

Study design 

This prospective multicentric study was conducted in 6 centres (Hôpital Beaujon, Hôpital 

Avicennes, CHU Angers, CHU Montpellier, Hôpital Croix Rousse, Hôpital Edouard Herriot). Table 

1 summarises the study design. 

 

Actions 
Hepatology 

visit 
D-30 to D-7 

Inclusion 
D0 

Liver 
ultrasound 

D0 

Follow-up 
visit 

1 year 

Patient information X    

Collection of informed consent  X   

Verification of inclusion criteria X X   

Collection of demographics information, 
medical history, biochemical workup and liver 
pathologic report (if available) 

 X   
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Liver ultrasound with elastography   X  

Ultrasound video and elastography acquisition   X  

Collection of the ultrasound report   X X(B) 

Adverse Event monitoring  X X X(B) 

End of study   X(A) X(B) 

Table 1 - Study design. (A) for patients in low-risk group (A), without hepatocellular carcinoma on 

ultrasound on day 0. (B) for patients in high-risk group (B), with hepatocellular carcinoma on 

ultrasound on day 0 

 

Population 

The inclusion criteria were as follows:  

• Patients over 18 years of age. 

• Enrolled in a screening programme for at least 6 months, defined by Child-Pugh A or B 

histologically proven F3/F4 liver or cirrhosis unequivocally suggested by non-invasive 

tests of non-viral or controlled/healed B/C viral cause (HBV PCR negative under anti-

viral B treatment for more than 12 weeks / HCV PCR negative at least 12 weeks after 

stopping anti-viral C treatment) 

• Patients referred by hepatologist for ultrasound screening. 

• No history of treated hepatocellular carcinoma. 

 

Non-inclusion criteria were as follows: 

• History of hepatocellular carcinoma. 

• Non-cirrhotic viral hepatitis B or uncontrolled HBV cirrhosis (HBV) or uncured HCV 

cirrhosis (< 3 months). 

• Patient under judicial protection, guardianship or curatorship. 

• Patient in a situation of social fragility. 
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• Patients who are subject to a legal protection measure or who are unable to express 

their consent. 

 

The exclusion criteria were as follows:  

• Imaging data (ultrasound videos) not recorded 

• Patients in the low-risk group lost on follow-up (refer to reference standard). 

 

Index test 

We aimed to develop a deep learning classification model based on ultrasound cine clips 

of the non-tumoral liver to stratify the risk of hepatocarcinogenesis.  

 

Reference standard 

Two groups of patients were defined:  

• High-risk group: Patients with early-stage hepatocellular carcinoma. To achieve a 

balanced distribution of patients between both groups, we used a method of 

reinforcement of pathological cases. All patients from an ultrasound screening 

programme who had been diagnosed with a BCLC 0 or A hepatocellular carcinoma as 

per the reference diagnostic standards (radiological – LIRADS v2018 or EASL – or 

pathologic) were included. 

• Low-risk group: Patients without hepatocellular carcinoma. These patients were 

included in the framework of the usual screening. A 1-year interval ultrasound, or 

dedicated liver CT or MRI if clinically warranted, was performed to confirm the 

absence of new lesions in the year following the inclusion. The proportion of new 

hepatocellular carcinoma was expected not to exceed 3-5%. In the case of new 

hepatocellular carcinoma, these patients were reassigned to the high-risk group. 
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Outcome 

The main outcome of the study was the diagnostic (classification) performances of the AI model 

for risk stratification of hepatocarcinogenesis.  

 

Collected data 

All data were collected at inclusion: 

- Clinical: demographics (age and sex), Body Mass Index, liver disease history (aetiology, 

viral hepatitis status, alcohol consumption), medical history (diabetes, HIV co-

infection). 

- Biology: liver disease scores (FASTRAK – a multi-aetiology score based on age, sex, 

platelet count, total bilirubin, GGT, and α-foetoprotein that achieved a Harrell’s c-index 

up to 0.76 to identify patients with an annual hepatocellular carcinoma risk over 3% 

after 3 years of follow-up – MELD, Child-Pugh, FIB-4), tumour markers (α-foetoprotein), 

liver function tests (bilirubin, AST, ALT, GGT), haemostasis (platelets, INR, PT), albumin.  

- Imaging: ultrasound cine clips (non-tumoral liver parenchyma and hepatocellular 

carcinoma using B mode ultrasound), liver stiffness using 2D US-guided Shear Wave 

elastography (kPa). 

- Pathology: pathology report of the non-tumoral liver parenchyma: steatosis, 

activity/inflammation, fibrosis), pathology report of hepatocellular carcinoma if 

available (focality, prognostic grade, vascular invasion, perineural invasion, capsule). 

 

Ultrasound examination 

Ultrasound examinations were performed using two models from two manufacturers: 

Aplio (Canon Medical Systems, Otawara, Japan) and Aixplorer/MACH 30 (Hologic, Marlborough, 

Massachusetts, USA; former SuperSonic Imagine, Aix-en-Provence, France). Conventional liver 

ultrasound was performed using B-mode and colour Doppler.  Data acquisition was standardised 

according to a mandatory protocol implemented in each ultrasound scanner using a low-



20 
 
frequency abdominal convex transducer (C6-1X for Hologic SuperSonic Image and i8Cx1 for 

Canon Medical Systems): one B-mode cine clip of 10 seconds in free breathing recorded in an 

intercostal section of the non-tumoral right liver without passing through the hepatocellular 

carcinoma (entitled non-tumoral liver); one B-mode cine clip of 10 seconds in free breathing of 

the hepatocellular carcinoma, any approach allowed (entitled B-mode tumour; refer to Objective 

2 of the thesis). Default abdominal preset was used. Depth was initially set at 12 cm with a focal 

at 7.68 cm on Canon Medical Systems and 7-8 cm on Hologic SuperSonic Image, but ultimately 

left to the operator’s discretion. The cine clips were exported in DICOM format.  

2D ShearWave elastography was performed with low-frequency abdominal convex 

probes (C6-1X for Hologic SuperSonic Image and i8Cx1 for Canon Medical Systems). Liver 

stiffness measurements were acquired in an intercostal section in the right liver lobe using a 

fixed-size stiffness colour mapping. 3 reliable measurements were performed in the right liver 

according to the reference quality standards. 

 

AI methodology 

 

We aimed to develop a deep learning classification model based on ultrasound cine clips 

of the non-tumoral liver to stratify the risk of hepatocarcinogenesis.  

 

• Database: The training/validation and testing sets were stratified according to 

potential confounders: aetiology of liver disease, FASTRAK score (binary cut-off of 9 

points), ultrasound manufacturer, hepatocellular carcinoma size (binary cut-off of 2 

cm) and echogenicity (isoechoic or not – refer to Objective 2 of the thesis). To 

compensate for the imbalance between the two groups, we applied oversampling with 

data augmentation and weighted loss to penalise model errors for data from the 

minority group.  
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• Labelling of the database: ultrasound cine clips were labelled by a radiologist 

subspecialised in liver imaging. 

• Pre-processing of ultrasound images. ultrasound images were embedded in video 

layouts influenced by factors such as ultrasound machine brand and display settings. 

To standardise these images and minimise bias, we developed an automated method 

to extract the echo region-of-interest from the layout. Our method detected pixels with 

minimal intensity changes across video timestamps, classifying them as background. 

This classification allowed to create a binary mask. We then refined this mask using 

morphological operations to remove artifacts and cropped around the ultrasound 

region-of-interest. 

• Stratification of the risk of hepatocarcinogenesis based on the non-tumoral liver 

parenchyma. We framed the task as a video classification challenge to identify 

patients at high risk of developing a hepatocellular carcinoma based on a short video 

clip of non-tumoral liver parenchyma. The video was divided into 10 clips with 16-frame 

sub-clips sampled from each. We designed a voting system between the predictions 

of the model for each sub-clip to determine the final classification of the video. Our 

implementation was based on the MMAction2 library. The training/validation set was 

split into 5 folds, and we performed cross-validation for model selection and 

hyperparameters tuning (Table 2)48.  We selected three state-of-the-art algorithms with 

different sets of parameters for this purpose: MViT, C3D, and I3D. Each model was 

pretrained on the Kinetics-400 dataset to facilitate transfer learning. First, for each 

session of CV, all 3 models were trained with different sets of parameters, and their 

performances were measured on the validation folds. We selected the model or 

hyperparameter set with the best average performance across all folds as the final 

model. This final model was retrained using all the training/validation data.  
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 Model and hyperparameters Final model 
Batch sizes 2, 4, 8, 16, 32 4 
Learning rate 0.000005, 0.00001, 0.000015, 0.00002, 0.000025, 

0.00003, 0.0000375, 0.00005, 0.0001, 0.0016 

45 epochs with learning rate 
of 0.00002 (divided by 10 at 20 

and 40 epochs) 
Optimizer SGD, AdamW SGD 
Input/output size 128x128, 256x256 128x128 
Transfer learning All except prediction head All except prediction head 
Models MViT, C3D, I3D C3D 

Table 2 - Model and hyperparameters selection using a cross-validation approach 

 

• Independent testing and sample size calculation: To ensure the robustness and 

generalisability of our AI models, we planned to test them in an independent dataset 

as mentioned above. Approaching this question from a statistical perspective, we 

planned to include 50 patients in the external independent testing dataset 

(significance level α of 5%, statistical power of 80%, control-to-case ratio of 1:1, 

annual incidence of hepatocellular carcinoma of 3% in the low-risk group and a relative 

risk of 11). This estimate is based on previous studies showing that a macronodular 

heterogeneous echostructure on ultrasound is associated with an adjusted rate ratio 

up to 2040-42.  Therefore, considering the requirements of AI model developments, we 

intended to include 400 patients to allow an approximate balance of 80%-20% 

between the training/validation and testing sets and to compensate with excluded 

patients (expected rate of 10%). 

 

Statistical analysis 

Estimates of performance metrics of the classification model were computed for 

sensitivity, specificity, balanced accuracy, positive and negative predictive values, area under the 

receiver operating characteristics curve, c-index and odds ratio. Calibration curves were 

computed.  
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Results 

 

Population 

This study enrolled 403 patients between September 2021 and December 2023 (Figure 

1). A total of 81 patients were excluded: 44 did not match the inclusion criteria, 19 were lost on 

follow-up, and 18 had no ultrasound cine clips recorded. In the training/validation dataset, 272 

patients were analysed including 145 patients in the low-risk group and 127 in the high-risk group. 

In the independent testing dataset, 50 patients were analysed including 25 patients in the low-

risk group and 25 in the high-risk group. 

 

 

Figure 1 – Flow chart of the study 
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The demographics description of the dataset is reported in Table 3. There was a majority 

of male patients in the low-risk group (120/170 - 71%) and the high-risk group (137/152 – 81%) 

with a median age of 63 and 69, respectively. The distribution of aetiologies of chronic liver 

disease was overall adequately balanced between the low-risk and high-risk groups with a 

majority of patients with alcohol-related liver disease: 76/170 (45%) in the low-risk group and 

63/152 (41%) in the high-risk group. The FASTRAK score was, as expected, higher in the high-risk 

(median of 11 points versus 7 points). Finally, most patients in the high-risk group were classified 

as BCLC A (99/140 – 71%). 

 

 



25 
 

 Training/validation Testing Total 
 Low-risk 

(n = 145) 
High-risk 
(n = 127) 

Low-risk  
(n = 25) 

High-risk  
(n = 25) 

Low-risk  
(n = 170) 

High-risk  
(n = 152) 

Centres 
1 
2 
3 
4 
5 
6 

 
28 (19%) 
31 (21%) 
27 (19%) 

1 (1%) 
50 (34%) 

8 (6%) 

 
42 (33%) 
17 (52%) 
21 (17%) 
36 (28%) 

8 (6%) 
3 (2%) 

 
3 (12%) 
5 (20%) 
2 (8%) 

0 
10 (40%) 
5 (20%) 

 
6 (24%) 
6 (24%) 
3 (12%) 
7 (28%) 
2 (8%) 
1 (4%) 

 
31 (18%) 
36 (21%) 
29 (17%) 

1 (1%) 
60 (35%) 
13 (8%) 

 
48 (32%) 
23 (15%) 
24 (16%) 
43 (28%) 
10 (7%) 
4 (3%) 

Ultrasound manufacturer 
Canon 

Supersonic (Hologic) 

 
51 (35%) 
94 (65%) 

 
93 (73%) 
34 (27%) 

 
9 (36%) 

16 (64%) 

 
18 (72%) 
7 (28%) 

 
60 (35%) 

110 (65%) 

 
111 (73%) 
41 (27%) 

Age 63 [57-68] 69 [63-75] 61 [56-70] 68 [61-74] 63 [56-69] 69 [62-75] 
Sex 

Male 
Female 

 
102 (70%) 
43 (30%) 

 
113 (89%) 
14 (11%) 

 
18 (72%) 
7 (28%) 

 
24 (96%) 

1 (4%) 

 
120 (71%) 
50 (29%) 

 
137 (81%) 
15 (19%) 

Chronic Liver Disease 
Aetiology of liver disease 

ALD 
MASLD 

MetALD 
HBV 
HCV 

ALD + HBV 
ALD + HCV 

MASLD + HBV 
MASLD + HCV 

HBV + HCV 
Other 

 
63 (44%) 
27 (19%) 
23 (16%) 

6 (4%) 
15 (10%) 

0 (0%) 
3 (2%) 
1 (1%) 
1 (1%) 
0 (0%) 
6 (4%) 

 
47 (37%) 
15 (16%) 
31 (12%) 

3 (2%) 
14 (11%) 

1 (1%) 
4 (3%) 
1 (1%) 
0 (0%) 
1 (1%) 

10 (8%) 

 
11 (44%) 
5 (20%) 
3 (12%) 
1 (4%) 

3 (12%) 
0 (0%) 
1 (4%) 
0 (0%) 
0 (0%) 
0 (0%) 
1 (4%) 

 
8 (32%) 
6 (24%) 
3 (12%) 
1 (4%) 
2 (8%) 
0 (0%) 

5 (20%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 

 
74 (44%) 
32 (19%) 
26 (15%) 

7 (4%) 
18 (11%) 

0 (0%) 
4 (2%) 
1 (1%) 
1 (1%) 
0 (0%) 
 7 (4%) 

 
55 (36%) 
21 (14%) 
34 (22%) 

4 (3%) 
16 (11%) 

1 (1%) 
9 (6%) 
1 (1%) 
0 (1%) 
1 (1%) 

10 (6%) 
FASTRAK score 7 [4-11] 10 [9-13] 8 [5-11] 11 [9-13] 7 [5-11] 10 [9-13] 
Child-Pugh 

A5 
A6 
B7 
B8 
B9 

Missing data 

 
88 (59%) 
24 (19%) 
12 (8%) 
3 (21%) 
0 (0%) 

18 (12%) 

 
70 (55%) 
27 (21%) 
10 (8%) 
1 (1%) 
2 (2%) 

17 (13%) 

 
15 (60%) 
3 (12%) 
1 (4%) 
0 (0%) 
0 (0%) 

6 (24%) 

 
13 (52%) 
3 (12%) 
2 (8%) 
2 (8%) 
0 (0%) 

5 (20%) 

 
103 (61%) 
27 (16%) 
13 (8%) 
3 (2%) 
0 (0%) 

24 (14%) 

 
83 (55%) 
30 (20%) 
12 (8%) 
3 (2%) 
2 (1%) 

22 (14%) 
Type 2 diabetes 61 (42%) 52 (41%) 7 (28%) 10 (40%) 68 (40%) 62 (41%) 
BMI ≥ 25 104 (72%) 87 (69%) 18 (72%) 19 (76%) 122 (72%) 106 (70%) 
Biology 
Alpha-foetoprotein 
(ng/mL) 4.1 [2.6-5.2] 5.7 [3.0-10.5] 3.2 [2.4-5.5] 5.7 [3.6-7.0] 4.1 [2.6-5.2] 5.7 [3.0-10.5] 

GGT (UI/L) 87 [39-161] 131 [64-270] 83 [36-124] 118 [58-267] 87 [39-161] 131 [64-270] 
Total Bilirubin (µmol/L) 14 [9-19] 15 [9-23] 14 [11-24] 14 [10-28] 14 [9-19] 15 [9-23] 
Platelet (G/L) 158 [107-200] 126 [95-172] 158 [99-190] 115 [82-201] 158 [107-201] 126 [95-172] 
INR 1.2 [1.1-1.3] 1.1 [1.1-1.3] 1.1 [1.0-1.2] 1.1 [1.0-1.2] 1.2 [1.1-1.3] 1.1 [1.1-1.3] 
Albumin (g/L) 41 [36-44] 40 [36-43] 42 [40-44] 39 [32-43] 41 [36-44] 40 [36-42] 
ShearWave Elastography (kPa) 
 14.4  

[10.1-21.9] 
12.8  

[9.9-18.9] 
13.1  

[10.3-20.9] 
11.3  

[9.0-16.0] 
14.1  

[10.1-21.9] 
12.5  

[9.8-19.0] 
Hepatocellular carcinoma (at inclusion) 
Number of nodules 

1 
2 
3 

NA 

 
87 (69%) 
22 (17%) 

6 (5%) 

NA 

 
18 (72%) 
7 (28%) 

0 

NA 

 
105 (75%) 
29 (21%) 

6 (4%) 
Largest nodule size (mm) NA 25 [20-31] NA 22 [20-30] NA 25 [20-31] 
Nodule echogenicity NA  NA  NA  
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Homogeneous  
Hypoechoic 

Isoechoic 
Hyperechoic 

Heterogeneous 
Iso and hypoechoic 

Iso and hyperechoic 
Hypo and hyperechoic 

 
33 (37%) 
24 (27%) 
19 (21%) 

 
6 (7%) 
4 (4%) 
4 (4%) 

 
8 (28%) 
8 (28%) 
5 (20%) 

 
2 (8%) 
1 (4%) 
1 (4%) 

 
41 (36%) 
32 (28%) 
24 (21%) 

 
8 (7%) 
5 (4%) 
5 (4%) 

BCLC stage 
0 
A 

NA 
 

31 (24%) 
84 (76%) 

NA 
 

10 (40%) 
15 (60%) 

NA 
 

41 (29%) 
99 (71%) 

Ultrasound cine clips (B mode) 
Data 

Non-tumour liver 
parenchyma 

Hepatocellular 
carcinoma 

 
145 (100%) 

 
NA 

 
122 (96%) 

 
122 (96%) 

 
25 (100%) 

 
NA 

 
25 (100%) 

 
25 (100%) 

 
170 (100%) 

 
NA 

 
147 (97%) 

 
147 (97%) 

Table 3 - Demographics description of the population. Notes: ALD = Alcohol-related liver disease; 

MASLD; Metabolic Dysfunction-Associated Steatotic Liver Disease; MetALD = MASLD and ALD; 

HBV = Hepatitis B virus; HCV = Hepatitis C virus; AI = auto-immune; Other (auto-immune, primary 

biliary cholangitis, granulomatosis, hemochromatosis, Wilson disease, iatrogenic,  

 

Risk stratification of hepatocarcinogenesis 

The trained C3D classification model achieved good diagnostic performances in the 

testing set with an accuracy of 0.72 (95% CI 0.57-0.84), a sensitivity of 0.72 (95% CI 0.51-0.88), a 

specificity of 0.72 (95% CI 0.51-0.88), a positive predictive value of 0.72 (95% CI 0.57-0.83), a 

negative predictive value of 0.72 (95% CI 0.57-0.83), and an AUC of 0.75 (95% CI 0.61-0.86). A 

patient predicted at high-risk by the model had an odds ratio of 6.6 (95% CI 1.9-22.7; p=0.003). 

The c-index was 0.75. On the other hand, the model achieved moderate calibration (Figure 2). 

Figure 3 illustrates two examples of a patient predicted at low risk and a patient predicted at high 

risk. In comparison, the classification model achieved an accuracy of 0.81 and a c-index of 0.92 

in the training set. 

 Considering the study design, we cannot exclude that these results may be 

underestimated. Indeed, although we intended to mitigate this potential bias with a follow-up at 

1 year, a few patients at high risk of hepatocarcinogenesis might have been included in the low-

risk group and may have developed an HCC in the next months following the 1-year follow-up.  
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Figure 2 – Confusion matrix, calibration curve and ROC curve of the C3D classification model to 

stratify the risk of hepatocarcinogenesis in the testing set 

 

 

Figure 3 – Increased homogeneous echostructure in a 75 years-old man with alcohol-related 

cirrhosis correctly predicted at low-risk (A) compared to a macronodular echostructure in a 58 

years-old man with alcohol-related cirrhosis and BCLC A hepatocellular carcinoma correctly 

predicted at high-risk on this view of the non-tumoral liver parenchyma (B). 
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Conclusion 

The developed classification model achieved good diagnostic performances with an odds-ratio 

of 6.6 and an accuracy of 0.72 to predict patients at high risk of hepatocarcinogenesis based 

on the analysis of the non-tumoral parenchyma. This new imaging biomarker could help stratify 

the risk of hepatocarcinogenesis alongside clinical or biochemical biomarkers and allow risk-

based personalised screening strategies.  
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RISK STRATIFICATION OF HEPATOCARCINOGENESIS IN HIGH-RISK PATIENTS WITH A DEEP 

LEARNING APPROACH USING MRI 

 

Ultrasound will remain the cornerstone of chronic liver disease characterisation, including liver 

elastography and steatosis quantification, and hepatocellular carcinoma surveillance. It is 

therefore logical to maintain ultrasound-based tools as a first-line screening strategy alongside 

blood biomarkers. However, MRI biomarkers can be used to refine the screening strategy. In 

addition, quality control of ultrasound (LI-RADS visualisation score) should also be taken into 

consideration. In a retrospective cohort study, about 20% of patients with cirrhosis had 

moderately to severely limited ultrasound visualisation for hepatocellular carcinoma nodules, 

particularly those with obesity, ALD or MASLD cirrhosis49. This the reason why developing a risk 

stratification deep learning model on NC-aMRI clinically matters.  

 

Material and methods 

 

Ethics 

This retrospective project was approved by the Research Ethics Board (McGill University Health 

Centre REB F20-113490) and followed the ethical principles of the Declaration of Helsinki. 

Written consent was waived. 

 

Study design 

This retrospective multicentre IRB-approved study (2023-9568) was coordinated at the Research 

Institute of McGill University Health Centre (MUHC). It included patients from November 2011 to 

September 2023 at the Royal Victoria Hospital, Montreal General Hospital, and Lachine Hospital. 

 

Population 

The inclusion criteria were as follows:  
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• Patients over 18 years of age. 

• Adult patients enrolled in a screening programme for at least 6 months, defined by 

Child-Pugh A or B histologically proven F3/F4 liver or cirrhosis unequivocally suggested 

by non-invasive tests, of non-viral or controlled/healed B/C viral cause (HBV PCR 

negative under anti-viral B treatment for more than 12 weeks / HCV PCR negative at 

least 12 weeks after stopping anti-viral C treatment). 

• Liver MRI with complete characterisation protocol, including post-contrast 

sequences, to determine reference standard, performed in the screening setting (liver 

disease or nodule characterisation).  

• No history of treated hepatocellular carcinoma  

• Composite reference gold standard 

▪ No or benign (LR-1 or 2) liver observations on baseline MRI (low-risk group) 

with a 1-year follow-up by dedicated ultrasound, CT, or MRI. 

▪ LR-3 or LR-4 liver observations on baseline MRI with pathological proof 

(low or high-risk group) or stability/regression over a two-year follow-up 

(low-risk group) 

▪ LR-5 liver observations, i.e. hepatocellular carcinoma (high-risk group) 

 

The exclusion criteria were as follows: 

• Poor quality of the imaging data 

• No acute hepatic event at the time of the MRI 

 

Index test 

We aimed to develop a classification deep learning model based on non-contrast aMRI 

(T1-weighted in/out-of-phase images, T2-weighted with fat suppression images, diffusion-

weighted imaging, using the same acquisition parameters as a state-of-the-art MRI to maintain 
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the same contrast, spatial resolution, and signal-to-noise ratio) to risk stratify 

hepatocarcinogenesis. 

 

Reference standard 

Two groups of patients were defined:  

• High-risk group: Patients with BCLC 0 or A hepatocellular carcinoma as per the 

reference diagnostic standards (radiological – LIRADS v201850 or EASL – or 

pathologic) were included. 

• Low-risk group: Patients without hepatocellular carcinoma on baseline MRI. A 1-year 

interval follow-up by ultrasound, dedicated liver CT or MRI, was required to confirm 

the absence of new lesions in the year following the baseline MRI.  

 

Outcome 

The main outcome of the study was the diagnostic performances of the AI models for risk 

stratification of hepatocarcinogenesis. 

 

Collected data 

All data were collected at inclusion: 

- Clinical: demographics (age and sex), Body Mass Index, liver disease history (aetiology, 

viral hepatitis status, alcohol consumption), medical history (diabetes, HIV co-

infection). 

- Biology: liver disease scores (FASTRAK – a multi-aetiology score based on age, sex, 

platelet count, total bilirubin, GGT, and α-foetoprotein that achieved a Harrell’s c-index 

up to 0.76 to identify patients with an annual hepatocellular carcinoma risk over 3% 

after 3 years of follow-up – MELD, Child-Pugh, FIB-4), tumour markers (α-foetoprotein), 

liver function tests (bilirubin, AST, ALT, GGT), haemostasis (platelets, INR, PT), albumin 

(g/L).  
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- Imaging: MRI dicoms. 

- Pathology: pathology report of the non-tumoral liver parenchyma: steatosis, 

activity/inflammation, fibrosis), pathology report of hepatocellular carcinoma if 

available (focality, prognostic grade, vascular invasion, perineural invasion, capsule). 

 

AI methodology 

The database was randomly divided into training, validation and test sets stratified 

according to potential confounders including aetiology of liver disease, FASTRAK score, MRI 

manufacturer and model, hepatocellular carcinoma number and size of the largest nodule. To 

compensate for the imbalance between the two groups, we applied oversampling with data 

augmentation and weighted loss to penalise model errors for data from the minority group. To 

build reproducible, high-performance models, we followed best practices in developing and 

evaluating machine learning models, including independent testing 

 

The AI system was developed in the following stages: 

• Pseudonymization of data per Canadian and Quebec legislations. 

• Annotation and labelling of databases. MRIs were annotated and labelled by a 

radiologist subspecialized in liver imaging: (1) presence of hepatocellular carcinoma; (2) 

localisation and segmentation of hepatocellular carcinoma (3D Slicer).  

• Liver segmentation. The liver was automatically segmented on T2-weighted images 

using a deep learning model provided by Guerbet® from which the tumour volume was 

cropped by a fellowship-trained radiologist. Based on the annotation and the automated 

segmentation of the liver, the nontumoral liver parenchyma was segmented and 

extracted to develop the risk stratification model.  

• Pre-processing of MRI images. The non-uniformity of the intensities of the 3D MRI 

imaging volumes will be corrected using the N4 Bias Field Correction algorithm51, then 
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normalised according to the z-score. Any misalignment of images from the different MRI 

sequences used, most often due to breathing inconsistency, was corrected.  

• Stratification of the risk of hepatocarcinogenesis based on the non-tumoral liver 

parenchyma. The development of the classification is under progress and will rely on an 

advanced approach centred around training a 3D Res-Net on a multiple-input including 

T2-weighted images with fat suppression, Diffusion-weighted images with ADC map, and 

T1-weighted images in/out. This neural network will be specifically designed to analyse 

the non-tumoral liver parenchyma, with the aim of detecting patients at high risk of 

developing hepatocellular carcinoma. This approach leverages the detailed spatial and 

structural information provided by 3D imaging, enhancing the model's ability to discern 

complex patterns that might not be evident in two-dimensional analyses or less 

sophisticated models. The training/validation set will be split into 5 folds, and we will 

perform cross-validation for model selection and hyperparameters tuning48. Considering 

the presence of bounding boxes to exclude hepatocellular carcinoma areas from the liver 

images, different approaches will be investigated to prevent any bias in the training: (1) 

cropping of random bounding boxes during data augmentation in patients in the low-risk 

group; (2) patch-based approach; (3) inpainting approach; (4) if none of the first 3 

approaches is successful, we will train a 2D CNN model only on liver images without 

bounding boxes and design a voting system between the predictions of the model for each 

image to determine the final classification of the MRI. 

• Performance analysis by profile. Machine learning models can sometimes predict poor 

performance in specific subgroups of patients with different profiles despite high overall 

performance in the test dataset. To anticipate these failures, we aim to develop a 

measure of prediction confidence for the model by forming a second-layer model called 

conditional accuracy that aims to identify prediction errors specific to certain patients or 

groups of patients. This approach identifies patient profiles with higher prediction errors 

than the initial classification model.  
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• External independent testing: To ensure the robustness and generalisability of our AI 

model, we will first test it in an independent internal dataset. Then, we will test it on two 

external independent databases, each with different prevalence of hepatocellular 

carcinoma, as the AI model performance may be affected by the prevalence of the 

disease:  

o CHUM [Centre Hospitalier de l’Université de Montréal]: retrospective cohort with 

identical inclusion criteria and similar high and low-risk patients’ distribution than 

the training dataset. Approaching this question from a statistical perspective52, 

we plan to include at least 58 patients balanced in the two groups in this external 

independent testing dataset (significance level α of 5%, statistical power of 80%, 

control-to-case ratio of 1:1, annual incidence of hepatocellular carcinoma of 3% 

in the low-risk group and relative risk of 10). This estimate is based on previous 

studies showing that a macronodular heterogeneous echostructure on 

ultrasound is associated with an adjusted rate ratio up to 2040-42.  

o FASTRAK [FAST-IRM for hepatocellular carcinoma suRveillance in pAtients with 

high risK of liver cancer (NCT05095714)53]: prospective multicentre cohort 

including 950 patients with advanced chronic liver disease of non-viral or viral B/C 

controlled/healed disease (HBV PCR negative on anti-viral B therapy for more than 

12 weeks / HCV PCR negative at least 12 weeks after stopping anti-viral C 

therapy), absence of hepatocellular carcinoma on imaging less than 3 months 

old, or history of treated hepatocellular carcinoma, and estimated annual risk of 

hepatocellular carcinoma > 3% based on a clinical-biochemical score. This study 

will be completed in December 2027.  

 

 

 

 

https://clinicaltrials.gov/study/NCT05095714
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Statistical analysis 

Estimates of performance metrics will be computed for sensitivity, specificity, balanced 

accuracy, positive and negative predictive values, area under the receiver operating 

characteristics curve, odds ratio and c-index. Calibration curves will be computed. 

 

Results 

 

Population 

This study enrolled 368 patients between November 2011 and September 2023 (Figure 4). 

A total of 35 patients were excluded: 25 had extensive artifacts on the MRI and 10 had the MRI at 

the time of an acute liver event (e.g., acute portal vein thrombosis). An additional total of 41 

patients were excluded from the analysis of hepatocellular carcinoma risk stratification: 2 had 

non-controlled HBV, 38 had non-cured HCV and 1 had no information regarding the aetiology of 

the liver disease.  

 

 

Figure 4 – Flow chart of the study 
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The demographics description of the dataset is reported in Table 4. There was a majority 

of male patients in the training/validation (209/263 – 79%) and testing (48/59 – 81%) datasets with 

a median age comprised between 62 and 69.  The distribution of aetiologies of chronic liver 

disease was overall adequately balanced between the low-risk and high-risk groups in both 

training/validation and testing datasets. Although there were more patients with viral 

cured/controlled HBV or HCV in the testing dataset than in the training dataset, patients with ALD 

(12/59 – 20%), MASLD (12/59 – 20%), and MetALD (6/59 – 10%) were adequately represented in 

the testing datasets.  
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 Low-risk (n =214) High-risk (n = 78) 
Centres 

1 (Royal Victoria Hospital) 
2 (Montreal General Hospital) 

3 (Lachine Hospital) 

 
122 (57%) 
76 (36%) 
16 (7%) 

 
49 (63%) 
17 (22%) 
12 (15%) 

MRI manufacturer 
General Electrics Optima MR450w (1.5T) 

General Electrics SIGNA Excite (1.5T) 
General Electrics SIGNA Artist (1.5T) 

Siemens AERA (1.5T)  
Siemens SKYRA (3.0T) 

 
59 (28%) 

104 (49%) 
31 (14%) 
16 (7%) 
4 (2%) 

 
24 (31%) 
18 (23%) 
18 (23%) 
12 (15%) 

6 (8%) 
Age 62 [52-70] 65 [59-74] 
Sex 

Male 
Female 

 
127 (59%) 
87 (41%) 

 
60 (77%) 
18 (23%) 

Chronic Liver Disease   
Aetiology of liver disease 

ALD 
MASLD 

MetALD 
HBV 
HCV 

ALD + HBV 
ALD + HCV 

MASLD + HBV 
HBV + HCV 

PSC 
Auto-immune and overlap syndrome 

Indeterminate 
Other 

 
30 (14%) 
53 (25%) 

9 (4%) 
26 (12%) 
15 (7%) 
4 (2%) 
2 (1%) 
2 (1%) 
2 (1%) 

18 (8%) 
16 (7%) 
10 (5%) 

27 (13%) 

 
12 (15%) 
24 (31%) 

6 (8%) 
9 (12%) 

21 (27%) 
1 (1%) 
1 (1%) 
1 (1%) 

0 
0 

3 (4%) 
0 
0 

FASTRAK score 7 [6-10] 10 [8-12] 
Child-Pugh 

A5 
A6 
B7 
B8 
B9 

C10 
Missing data 

 
131 (61%) 
32 (15%) 
25 (12%) 

8 (4%) 
2 (1%) 

0 
16 (7%) 

 
36 (46%) 
18 (23%) 
13 (17%) 
8 (10%) 
1 (1%) 
1 (1%) 
1 (1%) 

Type 2 diabetes 70 (33%) 41 (53%) 
Biology   
Alpha-foetoprotein (ng/mL) 4.0 [2.7-6.0] 5.6 [3.1-8.6] 
GGT (UI/L) 65.5 [33.3-140.8] 84.5 [46.8-149.3] 
Total Bilirubin (µmol/L) 16.8 [12.2-24.3] 18.8 [11.4-31.0] 
Platelet (G/L) 134 [91-177] 108 [77-150] 
INR 1.1 [1.0-1.2] 1.1 [1.0-1.3] 
Albumin (g/L) 39 [36-42] 38 [33-43] 
Hepatocellular carcinoma (at inclusion)   
Number of nodules 

1 
2 
3 

NA 

 
58 (74%) 
14 (18%) 

6 (8%) 
Size (mm) NA 23.0 [15.0-28.0] 
BCLC stage 

0 
A 

NA 
 

31 (40%) 
47 (60%) 

Table 4 - Demographics 
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Risk stratification of hepatocarcinogenesis 

The development is in progress and the results are not available yet.  

 

The retrospective database of 333 patients is already available and fully annotated. We 

have started to work on the development of the deep learning model but are facing 

methodological challenges. Indeed, we intend to develop a fully automated model and this is why 

we planned to use the liver mask automatically segmented using a deep learning model provided 

by Guerbet®. Because, the model requires to be trained on the non-tumoral parenchyma, we then 

manually cropped the tumour volume, which resulted in holes in the mask. 

As a first step, we performed random cropping of bounding boxes (1-3 boxes with a 

random size between 20 and 30 mm) during data augmentation in patients in the low-risk group 

to mimic the non-tumoral liver mask in patients in the high-risk group. Using a validation set of 8 

patients, we trained a 3D ResNet10 implemented in Pytorch (Gaussian Error Linear Unit 

activation function, learning rate of 0.01, ADAM optimizer, batch size of 8, binary cross-

entropy loss and loss scaled to class imbalance x3.4 for patients in the high-risk group) on T2-

weighted images with fat suppression. In addition to the random cropping of bounding boxes, 

data augmentation included random rotation, flips, and intensity shifts. Using an early stopping 

approach, the model achieved an accuracy of 1.0 after only 11 epochs without data 

augmentation and 0.93 after 15 epochs with data augmentation. These perfect results made us 

suspect a bias in the training related to the random boxes. This is why we are exploring other 

alternatives with patch-based and inpainting approaches. Random standardised cropping in the 

non-tumoral liver could also be used as input. In parallel, we are working on the co-registration of 

the MRI sequences (T2-weigthed imaged with fat suppression, diffusion weighted-images and 

ADC map, and T1-weighted images in/out-of-phase) to use the whole as a multiple input.  
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DETECTION OF EARLY-STAGE HEPATOCELLULAR CARCINOMA IN HIGH-RISK PATIENTS 

WITH A DEEP LEARNING APPROACH USING ULTRASOUND AND MRI IMAGES 

 

Currently in France, screening for hepatocellular carcinoma remains uniform for all 

patients and is based solely on abdominal ultrasound every 6 months. Although abdominal 

ultrasound is an inexpensive and radiation-free examination, it has significant shortcomings in 

sensitivity and inter-observer reproducibility in the detection of early-stage hepatocellular 

carcinoma. Tzartzeva reported a sensitivity of 47% in the detection of early-stage hepatocellular 

carcinoma (1 nodule < 5 cm or ≤ 3 nodules, each < 3 cm in diameter, without gross vascular 

invasion or extrahepatic metastases) in a meta-analysis including 13367 patients10 while Park 

reported a sensitivity of 22.5% in the detection of very early-stage (< 2 cm) hepatocellular 

carcinoma11. Reasons are multiple: heterogeneity of the liver parenchyma in advanced cirrhosis, 

increased echogenicity with ultrasound attenuation in case of steatosis and obesity, etc.13-15.  

Thus, surveillance by MRI has been proposed to improve screening as it significantly 

outperforms ultrasound with a detection rate of 5 times that of ultrasound for very early-stage 

hepatocellular carcinoma17. Considering the higher cost and lower availability of MRI, 

abbreviated MRI (aMRI) (state-of-the-art MRI with fewer acquisition series) was recently 

introduced as it offers a considerable time-saving advantage, limited to 10 minutes at most, 

compared to the conventional MRI protocol, which takes 25 to 40 minutes18-22. Different protocols 

have been proposed with specific advantages, challenges and limitations: non-contrast (NC; T2-

WI with fat suppression and/or DWI and/or T1-WI in/out), dynamic contrast-enhanced (DCE) and 

hepatobiliary phase (HB)27. Abbreviated non-contrast MRI has the advantages of the absence of 

contrast agent injection, simpler workflow, limited cost and the possibility to repeat poor quality 

acquisitions27. In addition, the inter-reader agreement could be lower with a non-contrast 

protocol24. The challenges and limitations of dynamic contrast-enhanced and hepatobiliary MRI 

are multiple: detection of inconclusive enhancing observations (need for recall examinations), 

injection of contrast, complex workflow with the need for intravenous access, and higher cost.  
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In NC-aMRI, the pooled per-patient sensitivity for hepatocellular carcinoma detection has 

been reported to range from 85 to 86.8% and specificity from 90.3 to 96% in three meta-

analyses18,23,24. When results were stratified according to lesion size, the diagnostic sensitivity 

remained acceptable for very early-stage hepatocellular carcinoma (< 2 cm) with pooled 

sensitivity ranging from 69 to 77.1%, although it was lower than for larger hepatocellular 

carcinoma. This range of sensitivity for very early-stage hepatocellular carcinoma compared well 

with the pooled sensitivity of 70% for detecting 1-2 cm hepatocellular carcinomas on CE-MRI 

reported in another meta-analysis54. In DCE-aMRI, the reported per-patient sensitivity and 

specificity were also high, 84.6-92.1% and 81.6-100%, respectively21,22,25,26. In HB-aMRI, two 

meta-analyses reported a pooled sensitivity of 86-88.7% and 93-94%18,24. Considering the similar 

detection performances of the different protocols and their pros and cons, we believe that NC-

aMRI is a promising protocol for screening programs. In the coming years, hepatocellular 

carcinoma screening programs will most likely rely on screening ultrasound and NC-aMRI, which 

motivates the urge to improve their detection performances.  

The primary objective of the research was to develop an object detection model to 

improve detection of early-stage hepatocellular carcinoma on screening ultrasound and NC-

aMRI.  

The secondary objective was to develop an on-the-fly method for live ultrasound video 

annotations. 
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DETECTION OF EARLY-STAGE HEPATOCELLULAR CARCINOMA IN HIGH-RISK PATIENTS 

WITH A DEEP LEARNING APPROACH USING ULTRASOUND (STARHE CLINICAL TRIAL) 

 

Material and methods 

 

The methodology of the clinical study STARHE has been detailed in the previous section and only 

relevant specific methodological information is provided in this section.  

 

Index test 

We aimed to develop an object detection deep learning model based on ultrasound cine clips 

passing through the hepatocellular carcinoma to improve early-stage hepatocellular carcinoma 

detection. 

 

Outcome 

The main outcome of the study was the diagnostic performances of the AI model for the detection 

of early-stage hepatocellular carcinoma (1 nodule of any size or ≤ 3 nodules, each < 3 cm in 

diameter).  

 

AI methodology 

• Database: as mentioned above, the training, validation and testing sets were stratified 

according to potential confounders: aetiology of liver disease, FASTRAK score (binary 

cut-off of 9 points), ultrasound manufacturer, hepatocellular carcinoma size (binary 

cut-off of 2 cm) and echogenicity (isoechoic or not).  
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• Annotation and labelling of databases: ultrasound videos 

were annotated and labelled by a radiologist subspecialised in 

liver imaging using the MOSaiC Annotation Platform co-

developed by the IHU Strasbourg and Université de 

Strasbourg55. Hepatocellular carcinomas were annotated 

using a standardised annotation pipeline with keyframe 

interpolation, as follows (Figure 5): (i) clicking on the two 

corners of a tight box around the object ① ②, (ii) navigating 

the video with play/forward/backward ③, (iii) pause on the 

next keyframe, (iv) go back to step (i). 

• Pre-processing of ultrasound images (identical). 

• Early hepatocellular carcinoma detection. The goal was to detect and localize 

hepatocellular carcinoma as the video is played, highlighting the hepatocellular 

carcinoma with a bounding box. We selected three state-of-the-art models for this 

purpose: Faster-RCNN, DINO-DETR, and RTMDet. Each model was pretrained on the 

COCO dataset to facilitate transfer learning. Our implementation was based on the 

MMDetection library. We used a stratified validation set of 15 patients to select the 

model architecture and tune the hyperparameters (Table 5). 

• Independent testing: To ensure the robustness and generalisability of our AI models, 

we planned to test them in an independent dataset (same 25 patients in the high-risk 

group included in the classification testing set). First, we tested the detection model 

on the ultrasound cine clips of the hepatocellular carcinoma of the same 25 patients 

included in the classification testing set from the high-risk group and computed the 

detection metrics (refer to statistical analysis section). Then, we intended to simulate 

a testing dataset as representative as possible to real life practice with homogeneous 

liver, heterogeneous liver, and focal liver lesions. Therefore, we ran the detection 

model on the ultrasound cine clips of the non-tumoral parenchyma of the same 50 

Figure 5 – Annotation process 
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patients included in the testing dataset designed for the classification task (risk 

stratification of hepatocarcinogenesis), resulting in 50 additional ultrasound cine 

clips: 25 from the low-risk group, i.e. hypothesised to represent more homogeneous 

liver, and 25 from the high-risk group, i.e. more heterogeneous liver. The objective was 

to evaluate the rate of false positives.  

 

 Model and hyperparameters Final model 
Batch sizes 2, 4, 8, 16 8 
Learning rate 0.0008, 0.0006, 0.0004, 0.0002, 0.0001, 0.001, 

0.002, 0.005 

45 epochs with learning rate 
of 0.0002 (divided by 10 at 20 

and 40 epochs) 
Frozen stages -1, 0, 1 -1 (none) 
Batch requires grads True, False True 
Transfer learning All except prediction head All except prediction head 
Models Faster-RCNN, DINO-DETR, RTMDet RTMDet 

Table 5 - Model and hyperparameters selection using a stratified validation set (15 patients) 

 

Statistical analysis 

The estimate of performance metrics of the detection model was computed for mean 

average precision (mAP; area under the precision-recall curve) with a predefined intersection 

over union (IoU) of 10, 50, and 75% (these arbitrary thresholds were chosen because they are 

commonly reported in the literature). Confusion matrices were computed for each patient at 

different confidence levels for an intersection over the union of 10% to assess the rate of true 

positive and false positive. A 10% threshold was chosen because of the screening strategy where 

detecting a lesion is more important than correctly delineating it.  

 

Results 

 

Detection of early-stage (BCLC 0 and A) hepatocellular carcinoma 

RTMDet achieved good to excellent performances in the testing dataset with a mAP10 of 

0.67 and a mAP50 of 0.50 (Figure 6).   
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Figure 6 - Mean Average Precision (Intersection over Union of 10%, 50%, 75%) with precision-

recall curve obtained by plotting the model's precision and recall values as a function of the 

model's confidence score threshold. 

 

Table 6 demonstrates the rate of detected lesions and false positives with its median 

(predicted boxes in normal liver) when the intersection over the union between the predicted box 

and the annotated box was set to 10%. The confidence level of 70% appeared clinically interesting 

as 68% of lesions were correctly detected with false positives in only 20% of patients (median of 

false positives per video of 1 [IQR = 1-2]). Figure 6 illustrates prediction examples in patients with 

small hepatocellular carcinomas.  
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 Rate of detected 
lesions 

Rate of false positives 
Median number of false 

positives 
Confidence of 30% 96% 96% 62 [19-113] 
Confidence of 40% 96% 88% 24 [5-51] 
Confidence of 50% 84% 72% 8 [3-22] 
Confidence of 60% 76% 52% 4 [1-8] 
Confidence of 70% 68% 20% 1 [1-2] 
Confidence of 80% 40% 0% NA 

Table 6 – Rate of detected lesions and false positives on ultrasound cine clips of 10 seconds (total 

number of frames between 200-250) in patients with early-stage hepatocellular carcinoma 

(intersection over union between the predicted box and the annotated box set to 10%) 

 

At a confidence level of 70% and an intersection over the union of 10% (Table 7), the rate of 

detected lesions was excellent for small hepatocellular carcinomas (67%) and larger 

hepatocellular carcinomas (80%). On the other hand, although the rate of detected hypoechoic 

and hyperechoic lesions was excellent (75% and 100%, respectively), it was only moderate for 

isoechoic and heterogeneous lesions (50% for both).  

 Rate of detected 
lesions Rate of false positives Median number of false 

positives 
Nodule size 

≤ 20 mm (n = 12) 67% 33% 2 [1-4] 
20-30 mm (n = 8) 63% 13% 1 [1-1] 

> 30 mm (n = 5) 80% 0% NA 
Nodule echogenicity 

Hypoechoic (n = 8) 75% 13% 1 [1-1] 
Isoechoic (n = 8) 50% 25% 5 [3-6] 

Hyperechoic (n = 5) 100% 20% 1 [1-1] 
Heterogeneous (n = 4) 50% 25% 2 [2-2] 

Table 7 – Subgroup analysis with a confidence level of 70% and an intersection over the union of 

10%. 

 

Table 8 shows the rate of false positives on ultrasound cine clips of 10 seconds (total number of 

frames between 200-250) of early-stage hepatocellular carcinoma and non-tumoral parenchyma 

with a confidence level of 70% and an intersection over the union of 10% were similar.  
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 Rate of detected 
lesions 

Rate of false positives 
Median number of false 

positives 
Ultrasound cine clips of 

early-stage HCC (n = 
25) 

68% 20% 1 [1-2] 

Ultrasound cine clips of 
high-risk non-tumoral 
parenchyma (n = 25) 

NA 8% 2 [2-2] 

Ultrasound cine clips of 
low-risk non-tumoral 
parenchyma (n = 25) 

NA 25% 1 [1-22] 

Non-tumoral 
parenchyma (n = 50) 

NA 18% 2 [1-14] 

All 68% 19% 2 [1-8] 

Table 8 – Rate of detected lesions and false positives on ultrasound cine clips of 10 seconds (total 

number of frames between 200-250) of early-stage hepatocellular carcinoma (HCC) and non-

tumoral parenchyma with a confidence level of 70% and an intersection over the union of 10%. 

 

Figures 6, 7 and 8 shows illustrative examples of true positive and false positive of 

hepatocellular carcinomas of different sizes and echogenicities.  
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Figure 6 – True positive (A) and false positive (B) in a 74-year-old patient with metabolic-

dysfunction associated steatotic liver disease and 17 mm isoechoic hepatocellular carcinoma.  

Figure 6A shows the deep hepatocellular carcinoma correctly detected with a confidence level of 

79%. Figure 6B shows a false positive prediction in the non-tumoral parenchyma with a high 

confidence level (75%). On Figure 6B, the partially obscured lesion was detected with a lower 

confidence level (42%). 
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Figure 7 – Large mildly hyperechoic hepatocellular carcinoma in a 74-year-old patient with 

alcohol-related cirrhosis. Multiple boxes were predicted in the tumour area, mostly of smaller 

size. However, only one reached the confidence level of 60% and none reached the confidence 

level of 70%. This might be explained by the underrepresentation of such large lesions in the 

training dataset.  
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Figure 8 – False negative in a 61-year-old patient with alcohol related cirrhosis and 10 mm 

hypoechoic hepatocellular carcinoma.  

 

Conclusion 

The developed object detection model achieved excellent performances in detecting very-

early stage (< 2 cm) and early-stage hepatocellular carcinomas (overall rate of detected lesions 

= 68% and mAP10 = 0.67) on ultrasound cine clips. A threshold of 10% was chosen for the 

intersection over the union between the ground truth annotation and the predicted boxes. 

Indeed, in a screening strategy, detecting a lesion is more important than correctly delineating 

it.  Furthermore, the confidence level in the predicted box of 70%, to be considered a positive 

prediction, was chosen based on a clinically relevant balance between the rate of detected 

lesions and that of false positives, a potential time-consuming hurdle. This threshold should 

be tested in prospective longitudinal studies alongside radiologists’ reading. 
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ON-THE-FLY POINT ANNOTATION FOR FAST MEDICAL VIDEO LABELLING 

 
As outlined in the prior sections, we aim to improve the detection of early-stage 

hepatocellular carcinoma in high-risk patients with a deep-learning approach using ultrasound. 

This medical challenge is considered an object detection task in the field of computer science. 

Object detection is increasingly recognized as a critical tool in medical video analysis, with 

applications ranging from identifying landmarks, organs and lesions to tracking surgical 

instruments in real-time procedures to assess safety. Yet, while modern deep learning-based 

object detectors have shown notable success, their effectiveness is largely dependent on the 

availability of extensive annotated data. This becomes particularly challenging in the medical 

domain, given the labour-intensive nature of annotation and the constraints on experts’ time, 

especially given their primary clinical duties. Currently, the process of video object annotation is 

frame-based, which is suboptimal and highly time-consuming, even with the use of interpolation 

tools. As a result, most studies rarely annotate more than one or two hundred videos. This 

methodological constraint hampers the democratization and scalability of deep learning in 

medical procedures, as there is a compelling requirement for the collection and annotation of 

diverse, multicentre, and multi-operator data.  

To address these challenges in domains where the opportunity cost of expert time is high, 

we proposed a new annotation paradigm focused on live video annotation, which corresponds to 

the challenges of ultrasound. Our proposal is a shift from the conventional frame-based 

approach to a more dynamic video-based point annotation strategy. We introduced an on-the-fly 

point annotation pipeline, developed and tested on the STARHE dataset (NCT04802954), 

enabling live video annotation to mitigate the tedious efforts specifically associated with video 

annotation. Every frame in the video was weakly-annotated, ensuring expert guidance throughout 

the process. Our method proved to allow precise tracking of structures, which can enable useful 

pseudo-labels generation compatible with weakly semi-supervised object detection pipelines, 

outperforming conventional annotation method at equivalent annotation budgets. A notable 

https://clinicaltrials.gov/study/NCT04802954
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reduction in annotation costs was observed through the utilization of this strategy. The findings 

of this study underscored the need for optimization of video annotation processes, enabling the 

development of high-quality datasets. This approach fostered a more efficient utilization of expert 

resources, optimizing the balance between annotation accuracy and cost-effectiveness in 

medical imaging studies. 

 

This work was published in the International Journal of Computer Assisted Radiology and 

Surgery and was awarded the CASCINATION & Zeiss Machine Learning in CAI Award: Runner-up 

at the International Conference on Information Processing in Computer-Assisted Interventions 

(IPCAI) 2024. 
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Abstract
Purpose: In medical research, deep learning models rely on high-quality annotated data, a process often laborious and time-
consuming. This is particularly true for detection tasks where bounding box annotations are required. The need to adjust
two corners makes the process inherently frame-by-frame. Given the scarcity of experts’ time, efficient annotation methods
suitable for clinicians are needed.
Methods: We propose an on-the-fly method for live video annotation to enhance the annotation efficiency. In this approach,
a continuous single-point annotation is maintained by keeping the cursor on the object in a live video, mitigating the need for
tedious pausing and repetitive navigation inherent in traditional annotation methods. This novel annotation paradigm inherits
the point annotation’s ability to generate pseudo-labels using a point-to-box teacher model. We empirically evaluate this
approach by developing a dataset and comparing on-the-fly annotation time against traditional annotation method.
Results: Using our method, annotation speed was 3.2× faster than the traditional annotation technique. We achieved a mean
improvement of 6.51± 0.98 AP@50 over conventional method at equivalent annotation budgets on the developed dataset.
Conclusion: Without bells and whistles, our approach offers a significant speed-up in annotation tasks. It can be easily
implemented on any annotation platform to accelerate the integration of deep learning in video-based medical research.

Keywords Live video annotation · Deep learning · Object detection ·WSSOD

Introduction

Object detection is increasingly recognized as a critical tool
in medical video analysis, with applications ranging from
identifying landmarks, organs and lesions to tracking surgi-
cal instruments in real-time procedures to assess safety [1,
2]. Yet, while modern deep learning-based object detectors
have shown notable success, their effectiveness is largely
dependent on the availability of extensive annotated data
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[3–5]. This becomes particularly challenging in the medical
domain, given the labor-intensive nature of annotation and
the constraints on experts’ time, especially given their pri-
mary clinical duties. Currently, the process of video object
annotation is frame-based, which is suboptimal and highly
time-consuming, even with the use of interpolation tools. As
a result, most studies rarely annotate more than one or two
hundred videos [6, 7]. This methodological constraint ham-
pers the democratization and scalability of deep learning in
medical procedures, as there is a compelling requirement
for the collection and annotation of diverse, multicentre, and
multi-operator data.

To address these challenges in domains where the oppor-
tunity cost of expert time is high, methods to accelerate
the annotation process generally fall into one of two non-
exclusive categories:

1. Methods to scale the pool of available annotators by low-
ering the expertise barrier. For instance, experts could
annotate keyframes that non-experts, possibly crowd-
sourced contributors, use as references to expand the
dataset [8]. However, it requires sufficient resources for
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managing human capital at scale. The gains in annotation
production must outweigh the overheads of annotators
training, follow-upof annotation quality andprojectman-
agement.

2. Methods to lessen the annotation burden per annotator
through the use of weaker localization labels, such as
absence/presence, gaze, scribbles, or points [9, 10]. The
weak labels are used in a (Weakly) Semi-Supervised
Object Detection ((W)SSOD) pipeline, which uses a
small set of box-level labeled images as well as a larger
set of weakly labeled images to train detectors. In Point-
DETR [10] and Group R-CNN [11], the authors propose
to learn a point-to-box teacher model to generate pseudo-
box labels.

We position ourwork on the later categories.We propose a
new annotation paradigm focused on live video annotation.
Our proposal is a shift from the conventional frame-based
approach to a more dynamic video-based point annotation
strategy. Unlike bounding boxes, point annotations have only
two degrees of freedom (x and y coordinates) and can be
adjusted with a single drag of a pointer (i.e., mousepad, pen-
cil on tactile screen or eye gaze). Leveraging this inherent
property, we introduce on-the-fly annotation, where a 2D cur-
sor enables continuous tracking on live video, producing a
point annotation similar to a temporal scribble (see Fig. 1b).
This eliminates frame-by-frame annotation, speeding up the
process while maintaining the advantages of point-based
WSSOD. We leverage point-to-box teacher models [10, 11]
for the generationof pseudo-box labels derived from thepoint
annotations to train detectors.

To validate our annotation method, we constructed a liver
ultrasound video dataset and compare the efficiency of stan-
dard bounding box and on-the-fly point annotation (OTF)
methods. Given the high level of expertise required in the
ultrasound domain, enhancing the annotation efficiency of
experts is crucial. With varying annotation budgets, we train
two type of teacher models: one using point-to-box models
in a WSSOD paradigm with OTF and the other as a tradi-
tional object detector. These teachers generate pseudo-labels
for training student models. Unlike methods utilizing inter-
polation or crowdsourcing, our approach ensures that every
frame in the video is weakly-annotated by the experts.

Our contributions are twofold: (1) We introduce the novel
task of live video annotation, and (2) we present an on-the-
fly point annotation method optimized for this task within a
WSSOD framework.

Related work

Crowdsourcing annotations

Crowdsourcing aims tomatch expert annotation performance
in tasks like image annotation. In healthcare domains, the
study by [12] on hepatic steatosis reveals that crowdworker
annotation reliability is not guaranteed by annotator certainty
or agreement, yet a larger crowd slightly outperformed a few
experts. The study by [13] suggests that crowds can refine
automatic 3D segmentation of liver CT scans to a level com-
parable to experts, although at a slower pace. Crowdsourcing
can offer scalability in annotations but requires substantial
setup that becomes cost-effective only at large project scales.
Its suitability varies by project and modality and may under-
perform in tasks demanding high expertise.

Semi-supervised/weakly supervised object
detection

Semi-Supervised Object Detection (SSOD) and Weakly-
Supervised Object Detection (WSOD) aim to mitigate the
high cost of data annotation. SSODmethods leverage amixof
a fewbox-level labeled images andmany unlabeled oneswith
twomain approaches; consistency regularization techniques,
to stabilize the detector’s predictions across variably aug-
mented images [14], and pseudo-labeling, where a teacher
model trains on labeled data to generate pseudo-labels for
unlabeled data. A student model then trains on both datasets
for improved performance [15, 16]. WSOD methods use
abundant butweakly annotateddata, such as image labels [17,
18]. The studies by [19] and [20] utilize class activationmaps
in WSOD methods to enable both detection and localization
of surgical tools in endoscopic videos and breast cancer in
ultrasound images respectively, without spatial annotations.

Combining these approaches, Weakly Semi-Supervised
Object Detection (WSSOD) methods use both box-level and
weakly labeled images to train detectors, aiming to propose
a favorable trade-off between annotations cost and perfor-
mances. [21] detect lung consolidations in ultrasound videos,
using video-level labels (presence in at least one frame) and
a teacher-student training strategy.
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Methodology

In this section,wefirst introduce the task of live video annota-
tion and discuss why bounding box annotation is suboptimal
from a video annotation point of view. Next, in order to
address it, we illustrate our novel on-the-fly point annota-
tion as an efficient alternative.

Live video annotation

We introduce Live Video Annotation as a new approach to
streamline the process of object annotation in videos. The key
goal of live video annotation is to reduce or completely elim-
inate the need to frequently pause the video, thereby making
the annotation process more fluid and efficient. This raises
a critical question: How can a dataset be densely annotated
with spatial instance information (Fig. 1a) without substan-
tial pausing?

Considering the standard annotation pipeline as per-
formed on a dedicated video annotation software with
keyframes interpolation (Fig. 1a), the annotation process
is as follows: (i) clicking on the two corners of a tight
box around the object ! ", (ii) navigating the video with
play/forward/backward #, (iii) pause on the next keyframe,
(iv) go back to step (i). These convoluted steps are the result
of the multi-click nature of boundary annotation, which is
not compatible with a continuous annotation on a streamed
video. In this paper, the aforementioned method will be
referred to as the ’BBox method’ for ease of discussion
and simplicity. From those observations, we propose to use
a weaker localisation label such as the point, which only
requires one click/drag to adjust its position over a continu-
ous video playback.

On-the-fly point annotation

We propose a novel on-the-fly point annotation (OTF) strat-
egy for video streaming. In this scenario (Fig. 1b), the user
is asked to continuously point at the targeted structure dur-
ing the video playback !, reducing the tedious pausing and
back-and-forth video navigation associatedwith the standard
annotation method (Fig. 1a). In practice, the annotator still
needed to pause occasionally for video understanding, tak-
ing breaks, or stopping the live annotation when the object
disappeared from view. In videos where objects frequently
appear and disappear, continuously stopping OTF annota-
tions can be inefficient as it interrupts the live annotation
process to precisely find the frames where the object is not
visible.A smoother, less conservative approach could involve
performing annotations purely on-the-fly, without pausing
the video, thereby enhancing workflow fluidity and reducing
annotation time. However, to maintain the quality of anno-
tations and mitigate the risk of introducing false positives,

it might be prudent to exclude annotations at the tempo-
ral edges corresponding to the annotation stoppages. In our
experiment, we adopt the more conservative approach of
stopping the video and precisely stopping the annotation
when the object disappears. In the annotation process for
our study, we utilized a reduced playback speed of 0.2×.
This slower speed was essential to accurately track rapid
changes in the videos,which are difficult to observe at the nor-
mal speed (1×). This adjustment helped minimize potential
errors in annotation. However, we recognize that this method
may not be universally applicable, particularly in scenar-
ios involving faster movements, and the choice of playback
speed might need to be tailored to the specific dataset being
annotated. The resulting annotationmaintains the advantages
of point-based WSSOD, i.e. Point-DETR [10] and Group
R-CNN [11].

We adopt the self-training pipeline of [10]. Given a
small number of supervised images and a large number
of weakly supervised images: (i) Train a teacher model
on available labeled images, (ii) Generate pseudo-labels of
weakly OTF annotated images using the trained teacher
model and (iii) Train a student model with fully labeled
images and pseudo-labeled images. It’s important to note
that the box-level pseudo-labels produced by these teacher
models are neither verified nor corrected during the training
of the student models, in order to keep the annotation budget
manageable.

To verify the benefit of the proposed OTF, we used
a dataset named STARHE of liver ultrasound videos, as
described below, with annotated lesions with both bounding
box annotation and OTF. We timed both annotation methods
on subsets of the annotated videos to compare the annota-
tion speed. Next, we studied whether the points annotated
using OTF accurately lie within the corresponding bounding
boxes. This assessment allowed us to determine the consis-
tency of the OTF points and whether they accurately tracked
and moved in alignment with the objects being annotated.
Finally, we conducted comparative studies between two self-
training scenario SOT F and SBBox . The first leveraged OTF
while the latter did not. This comparison aimed to assess the
compatibility and effectiveness of OTF-based pseudo-labels
within a WSSOD pipeline.

We employ DETR [22] and Faster R-CNN [23] as our
student models. DETR uses the transformer architecture to
simplify object detection, removing hand-crafted elements
like non-maximumsuppression and anchor generation,while
maintaining performance on par with Faster RCNN [23].
We employ Point-DETR and Group R-CNN as a teacher
models in SOT F . Point-DETR extends DETR by incorporat-
ing both images and point annotations as inputs. It employs
a point encoder to map these point annotations to object
queries, enhancing detection performance through strong
prior localization and class. Group R-CNN [11], building on
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classic R-CNN architecture, introduces instance-level pro-
posal grouping and assignment, coupled with instance-aware
representation learning, to effectively translate point annota-
tions into precise box proposals. Those models are trained
on a box-level annotated video set Box(SOT F ), and subse-
quently used to create pseudo- labels on the weakly labeled
videos OT F(SOT F ). Therefore, the corresponding annota-
tion budget BOT F can be expressed as

BOT F = TBox × |Box(SOT F )| + TOT F × |OT F(SOT F )|
(1)

where TBBox and TOT F represent the average annotation
times required to annotate a video using the bounding box or
OTFmethod, respectively. |Box(SOT F )| and |OT F(SOT F )|
are the number of annotated videos with BBox or OTF
method for the scenario SOT F , respectively. For SBBox ,
which utilizes the classicDETR as a teachermodel, the anno-
tation budget BBBox is calculated as

BBBox = TBBox × |Box(SBBox )| (2)

Since no annotation is required during inference, this
model budget solely depends on the BBoxmethod. To ensure
a fair comparison between the two models, we increase
the number of annotated videos |Box(SBBox )| such that
BBBox = BOT F . In this way, the time spent on weak
annotations is effectively converted into additional box-level
annotated videos.

Experimental setup

STARHE dataset

We developed and tested our OTF method using a newly
created dataset, STARHE (Risk Stratification of Hepa-
tocarcinogenesis), registered at ClinicalTrials.gov (Identi-
fier: NCT04802954). This dataset gathered liver ultrasound
videos acquired using a standardized protocol. The cur-
rent hepatocellular carcinoma (HCC) screening program in
France relies on biannual liver ultrasound. However, the per-
formance of this screening program is poor which can be
explained by poor liver visualization using ultrasound in
some patients (e.g., obesity, steatosis,...), operator depen-
dency, or limited patient compliance. Given the anticipated
surge in HCC-related mortalities by 2030, a more effective
screening strategy is needed. Our aim is to develop an auto-
mated method for detecting HCC lesions during ultrasound
screenings, thereby minimizing missed lesions and delays in
diagnosis.

In our study, an experienced clinician (radiologist) anno-
tated a set of 125 ultrasound videos with dedicated video
annotation software with interpolation tools, employing both
OTF and BBox annotation methods for each video, as shown
in Fig. 1. The annotations were performed using amouse cur-
sor. Aminimumone-month interval wasmaintained between
each annotation type to ensure no recall bias, with previ-
ous annotations being hidden during the subsequent session.
For a subset of 27 videos, the annotation process was timed
to compare the efficiency of both methods. Specifically, in

Fig. 1 a Conventional bounding
box annotation approach on
static frames. ! " adjust the
two corners, # video navigation;
b Our proposed on-the-fly point
annotation method on live
video. ! pointing of the targeted
structure. Box cyan—lesion;
solid lines—ground truth;
dashed lines—predictive
pseudo-labels

123



International Journal of Computer Assisted Radiology and Surgery

Fig. 2 a Box plot comparing annotation times between OTF and BBox method. b Pairwise comparison of annotation times for each timed video,
with a fitted line illustrating the relationship between TBBox and TOT F

SOT F , annotations were made on live videos played at 0.2×
speed, ensuring a comprehensive understanding of the video
content throughout the annotation process. The videos in our
dataset had a duration of 10 s. We partitioned our dataset as
follows: 20% for testing (25 videos), 10% for validation (13
videos), and 70% for training (87 videos). Within the train-
ing set, we further divided the data into a box-level annotated
set and a weakly annotated set to conduct experiments with
varying annotation budgets. Initially, the division was set at
20% box-level annotated and 80% weakly annotated. We
then incrementally transferred 5% from the weakly anno-
tated set to the box-level annotated set, until the distribution
reached60%box-level annotated and40%weakly annotated.
We report the average precision at an intersection over union
threshold of 0.5 (AP@50), averaged over 3 runs with random
data splitting.

Teacher models training

In SOT F , we use Point-DETR and Group R-CNN as our
teacher models. We pretrain the models on 20% of the
COCO dataset [24], limited by computational budget con-
straints, preventing the use of the full dataset. 70k iterations
of AdamW training with mini-batch 4 on 2× Nvidia V100
are performed for fine-tuning on our STARHE dataset, using
an initial learning rate of 1e−4. We divide the learning rate
by 10 at 50k iterations. We use random flipping, resizing and
random cropping as data augmentation. In our experiments,
we train the teacher models with noise on the point up to
25% of its respective box dimension. Note that point noising

Fig. 3 Spatial density of OTF annotation locations across all videos
with respect to corresponding boxes. The x-axis represents the hor-
izontal position, and the y-axis represents the vertical position of the
OTFwithin the box. Yellow areas indicate regions with a higher density
of annotations, while dark blues indicate a lower density

serve as a data augmentation and is not used during inference.
To reduce frame redundancy, we trained the models using
every eighth frame from the annotated videos, approximately
equating to 2.5 frames per second. Our implementation is
based on the MMDetection library [25]. Similarly, in SBBox ,
we employ DETR as our baseline teacher model. In both
SOT F and SBBox , we use DETR and Faster R-CNN as
our student models. The student models utilizes pretrained
weights from the entirety of the COCO dataset.
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Fig. 4 AP@50of Studentmodels under similar annotation budgets, uti-
lizing a blend of box-level and pseudo-labels. Results, along with the
standard deviation, are computed based on three individual runs. SOT F

pseudo-labels are from point-to-box models using OTF annotation,
whereas SBBox uses Faster R-CNN or DETR-derived pseudo-labels
without prior

Fig. 5 Qualitative results of
SOT F are presented. The left
column displays the ground
truth, featuring both point and
corresponding bounding box
annotations for lesions. The
middle column depicts the
predicted pseudo-labels with
SOT F , and the right column the
prediction from the fully
supervised model

Results

In our initial experiment, we examined the annotation speed
between theOTFandBBoxmethods.As illustrated inFig. 2a,
we observed a statistically significant acceleration, with the
OTFmethod being on average 3.2 times faster than the BBox
method (p = 1.33e−13). We present a pairwise comparison
of annotation times for each video in Fig. 2b, illustrating a
distinct relationship between TBBox and TOT F . This visu-
alization highlights a consistent pattern: the longer a video
takes to annotate using onemethod, the longer it tends to take
using the other method as well (see the fitted line). This sug-
gests a consistent difficulty level in video annotations, such

as lesion visualization due to poor conspicuity, irrespective of
the method used. Still, the OTF method consistently proves
to be significantly faster than the BBox method in our anno-
tation scenarios.

To better understand the distribution and localization of
annotated points with respect to corresponding BBox, we
employ akernel density estimationplot as illustrated inFig. 3.
This allows us to present the data as a heatmap. The axes,
ranging from 0 to 1, represent the relative dimensions of the
boxes, with values indicating the normalized position of cor-
responding OTF annotation within them. Areas with a higher
color intensity signify regions with a denser concentration of
annotations. Two key observations are made regarding the
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OTF annotations. First, all OTF annotations systematically
fall within their respective boxes, confirming the precision
of this annotation method. Secondly, a significant concentra-
tion of OTF annotations is observed around the near-center
regions of the boxes, despite the annotator not being explic-
itly instructed to target the center of the structures. This
denotes that the OTF method effectively facilitates accu-
rate tracking of the anatomical structures in question. This
tendency toward centre-annotation could potentially be an
instinctive approach adopted when tracking oval-like struc-
tures, such as lesions, enabling a more intuitive annotation
process.

Finally we investigated the integration of OTF labels into
a WSSOD pipeline. A comparative study was conducted
between the two self-training scenarios, SOT F and SBBox ,
to evaluate the effectiveness of our method in generating
pseudo-labels for downstream applications. We report the
AP@50 and standard deviation, calculated over three runs,
with equivalent annotation budget in Fig. 4. SOT F achieves a
mean improvement of 6.51±0.98AP@50over SBBox . Using
Group R-CNN, we achieved better results than Point-DETR,
especially in scenarioswith smaller annotation budgets.With
a 238-minute annotation budget, Group R-CNN combined
with DETR achieved an AP@50 of 35.7%, and 35.6% when
paired with Faster-RCNN. This success is due to Group
R-CNN’s multi-scale approach and CNNs’ efficiency with
limited data. Interestingly, SOT F even surpasses the perfor-
mance of the fully supervised scenario, which we infer to be
a consequence of a label smoothing effect induced during the
pseudo-label generation process which aligns more closely
with the expectations of the student model, facilitating more
effective learning and acting as a regularization mechanism.
While SOT F exceeds the fully supervised model’s perfor-
mance for annotations budget over 427min, it remainswithin
the errormargin of the supervisedmodel. Overall, we achieve
the same performance as the fully supervised baseline with
68% of its annotation budget. Examining the performance
of teacher models, Group R-CNN achieves an AP@50 of
65.2% with 20% of the data strongly labeled and 73.4%
with 60%, while Point-DETR reaches 58.2% and 73.9%,
respectively, under the same conditions. The teacher mod-
els achieve a notably high AP@50, and the student models,
trained using the pseudo-labels derived from these teachers,
attain results comparable to their fully supervised counter-
parts. This underscores the scalability and effectiveness of
the proposed method. As a comparison, we employ WSOD
methods[17, 18] to leverage image-level labels (indicating
the presence or absence of lesions, without spatial locali-
sation) which are faster to annotate than point annotations.
Both PCL and WS-DETR demonstrated significantly lower
performance compared to our proposed WSSOD pipeline.
Specifically, the average precision at 50% (AP@50) was less
than 1% for PCL and 6% for WS-DETR with an annota-

tion budget corresponding to the entire training set labeled
at the image level (195min). We find that, due to the unclear
boundaries of lesion areas, the region proposals are inaccu-
rate, which results in low AP.

In Fig. 5, we showcase qualitative results of our study. The
left column displays the ground truth, featuring both point
and corresponding bounding box annotations for lesions.
The middle column depicts the predicted pseudo-labels with
SOT F . The right column displays predictions from the fully-
supervisedmodel. The first two rows display instances where
accurate pseudo-labelswere generated.However, the last row
reveals a case where the model failed, incorrectly interpret-
ing the ultrasound artifact, known as acoustic shadowing, as
the periphery of the lesion. As mentioned, the OTF point is
consistently localized on the near-center of the lesions.

Our method primarily focuses on annotation, making it
inherently adaptable and compatible with various optimiza-
tion strategies, such as self-supervised learning and active
learning. Active learning streamlines the training of models
by strategically selecting a subset of unlabeled data. This
method focuses on choosing samples that, once annotated,
contribute most effectively to the model’s performance. This
iterative process of model improvement aims to achieve high
accuracy with fewer labeled instances, which is valuable
when data annotation is expensive or time-consuming. [26,
27] focus on identifying and annotating the most uncertain
or challenging samples, thereby optimizing the learning pro-
cess and efficiently utilizing the annotation budget. Those
approaches, which emphasizes learning from complex cases,
can be integrated with on-the-fly annotation strategies to
allows for effective decision-making about which videos to
annotate in-depth (box-annotation) and which to annotate
weakly, ensuring a targeted and resource-efficient learning
process.

Another interesting application of our approach is to lever-
age a strong pretrained foundation model such as Segment
Anything (SAM)[9], which acts as a class-agnostic seg-
mentation model and exploits prompts such as points for
improved accuracy. Our on-the-fly annotation can be used
to prompt these models without the need to train a separate
teacher model. However, at this time, the capacity of SAM
is limited on ultrasound data due to the domain gap with
its training database, yielding noncompetitive results on the
STARHE dataset.

Conclusion

In this paper, we introduce an on-the-fly point annota-
tion pipeline, enabling live video annotation to mitigate the
tedious efforts specifically associated with video annota-
tion. Every frame in the video is weakly-annotated, ensuring
expert guidance throughout the process. Our method proves
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to allow precise tracking of structures, which can enable
useful pseudo-labels generation compatible with weakly
semi-supervised object detection pipelines, outperforming
conventional annotation method at equivalent annotation
budgets. A notable reduction in annotation costs is observed
through the utilization of this strategy. The findings of this
study underscore the need for optimization of video anno-
tation processes, enabling the development of high-quality
datasets. This approach fosters a more efficient utilization of
expert resources, optimizing the balance between annotation
accuracy and cost-effectiveness in medical imaging studies.

Acknowledgements This research was conducted within the frame-
work of the APEUS and TheraHCC 2.0 projects, which are supported
by the ARC Foundation (www.fondation-arc.org). This work was
also partially supported by French state funds managed within the
’Plan Investissements d’Avenir’, funded by the ANR (reference ANR-
10-IAHU-02 and ANR-21-RHUS-0001 DELIVER). This work was
performed using HPC resources from GENCI-IDRIS (Grant 2023-
AD011013698R1).

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval All procedures performed in studies involving human
participants were in accordance with the ethical standards of the insti-
tutional and/or national research committee and with the 1964 Helsinki
Declaration and its later amendments or comparable ethical standards
(ID-RCB 2020-A02949-30; NCT04802954).

Informed consent Informed consent was obtained from all individual
participants included in the study.

References

1. Buch VH, Ahmed I, Maruthappu M (2018) Artificial intelligence
in medicine: current trends and future possibilities. Br J Gen Pract
68(668):143–144

2. Mascagni P, Alapatt D, Sestini L, Altieri MS, Madani A, Watan-
abe Y, Alseidi A, Redan JA, Alfieri S, Costamagna G et al (2022)
Computer vision in surgery: from potential to clinical value. npj
Digital Med 5(1):163

3. Zhang H, Li F, Liu S, Zhang L, Su H, Zhu J, Ni L, Shum H (2022)
Dino: Detr with improved denoising anchor boxes for end-to-end
object detection. arxiv 2022. arXiv preprint arXiv:2203.03605

4. Lyu C, ZhangW, Huang H, Zhou Y,Wang Y, Liu Y, Zhang S, Chen
K (2022)RTMDet: an empirical study of designing real-time object
detectors

5. Barua I, Vinsard DG, Jodal HC, Løberg M, Kalager M, Holme Ø,
Misawa M, Bretthauer M, Mori Y (2020) Artificial intelligence
for polyp detection during colonoscopy: a systematic review and
meta-analysis. Endoscopy 53(03):277–284

6. Twinanda AP, Shehata S, Mutter D, Marescaux J, De Mathelin M,
Padoy N (2016) Endonet: a deep architecture for recognition tasks
on laparoscopic videos. IEEE Trans Med Imaging 36(1):86–97

7. Srivastav V, Issenhuth T, Kadkhodamohammadi A, Mathelin M,
Gangi A, Padoy N (2018) Mvor: a multi-view rgb-d operating
room dataset for 2d and 3d human pose estimation. arXiv preprint
arXiv:1808.08180

8. Krenzer A, Makowski K, Hekalo A, Fitting D, Troya J, Zoller
WG, Hann A, Puppe F (2022) Fast machine learning annotation in
the medical domain: a semi-automated video annotation tool for
gastroenterologists. Biomed Eng Online 21(1):1–23

9. Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L,
Xiao T, Whitehead S, Berg AC, Lo W-Y, et al (2023) Segment
anything. arXiv preprint arXiv:2304.02643

10. Chen L,Yang T, ZhangX, ZhangW, Sun J (2021) Points as queries:
weakly semi-supervised object detection by points. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition, pp 8823–8832

11. Zhang S, Yu Z, Liu L, Wang X, Zhou A, Chen K (2022) Group
r-cnn for weakly semi-supervised object detection with points. In:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp 9417–9426

12. Rother A, Niemann U, Hielscher T, Völzke H, Ittermann T,
SpiliopoulouM (2021) Assessing the difficulty of annotating med-
ical data in crowd working with help of experiments. PLoS ONE
16(7):0254764

13. Heim E, Roß T, Seitel A, März K, Stieltjes B, Eisenmann M,
Lebert J, Metzger J, Sommer G, Sauter AW et al (2018) Large-
scale medical image annotation with crowd-powered algorithms. J
Med Imaging 5(3):034002–034002

14. Jeong J, Lee S, Kim J, Kwak N (2019) Consistency-based semi-
supervised learning for object detection. Adv Neural Inf Process
Syst, 32

15. Liu Y-C, Ma C-Y, He Z, Kuo C-W, Chen K, Zhang P, Wu B, Kira
Z, Vajda P (2021) Unbiased teacher for semi-supervised object
detection. arXiv preprint arXiv:2102.09480

16. Wang Z, Li Y, Guo Y, Fang L, Wang S (2021) Data-uncertainty
guided multi-phase learning for semi-supervised object detection.
In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp 4568–4577

17. LaBonteT, SongY,WangX,VineetV, JoshiN (2023) Scaling novel
object detectionwithweakly supervised detection transformers. In:
Proceedings of the IEEE/CVF winter conference on applications
of computer vision, pp 85–96

18. TangP,WangX,Bai S, ShenW,BaiX, LiuW,YuilleA (2018) PCL:
proposal cluster learning for weakly supervised object detection.
IEEE Trans Pattern Anal Mach Intell 42(1):176–191

19. Vardazaryan A, Mutter D, Marescaux J, Padoy N (2018) Weakly-
supervised learning for tool localization in laparoscopic videos. In:
Intravascular imaging and computer assisted stenting and large-
scale annotation of biomedical data and expert label synthesis: 7th
joint international workshop, CVII-STENT 2018 and third interna-
tionalworkshop, LABELS2018, held in conjunctionwithMICCAI
2018,Granada, Spain, September 16, 2018, Proceedings 3, pp 169–
179. Springer

20. Kim J, Kim HJ, Kim C, Lee JH, Kim KW, Park YM, Kim HW, Ki
SY, Kim YM, Kim WH (2021) Weakly-supervised deep learning
for ultrasound diagnosis of breast cancer. Sci Rep 11(1):24382

21. Ouyang J, ChenL, LiGY,BalarajuN, Patil S,MehanianC,Kulhare
S, Millin R, Gregory KW, Gregory CR et al (2023) Weakly semi-
supervised detection in lung ultrasound videos. In: International
conference on information processing inmedical imaging, pp 195–
207. Springer

22. Carion N,Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko
S (2020) End-to-end object detection with transformers. In: Euro-
pean conference on computer vision, pp 213–229. Springer

23. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-
time object detection with region proposal networks. Adv Neural
Inf Process Syst 28

24. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D,
Dollár P, Zitnick CL (2014) Microsoft coco: common objects in
context. In: Computer vision–ECCV 2014: 13th European Con-

123

http://arxiv.org/abs/2203.03605
http://arxiv.org/abs/1808.08180
http://arxiv.org/abs/2304.02643
http://arxiv.org/abs/2102.09480


International Journal of Computer Assisted Radiology and Surgery

ference, Zurich, Switzerland, September 6–12, 2014, Proceedings,
Part V 13, pp 740–755. Springer

25. Chen K,Wang J, Pang J, Cao Y, Xiong Y, Li X, Sun S, FengW, Liu
Z, Xu J et al (2019) Mmdetection: Open mmlab detection toolbox
and benchmark. arXiv preprint arXiv:1906.07155

26. Kim DD, Chandra RS, Peng J, Wu J, Feng X, Atalay M, Bette-
gowda C, Jones C, Sair H, Liao W-h et al (2023) Active learning
in brain tumor segmentation with uncertainty sampling, annota-
tion redundancy restriction, and data initialization. arXiv preprint
arXiv:2302.10185

27. Wang K, Zhang D, Li Y, Zhang R, Lin L (2016) Cost-effective
active learning for deep image classification. IEEE Trans Circuits
Syst Video Technol 27(12):2591–2600

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://arxiv.org/abs/1906.07155
http://arxiv.org/abs/2302.10185


53 
 
DETECTION OF EARLY-STAGE HEPATOCELLULAR CARCINOMA IN HIGH-RISK PATIENTS 

WITH A DEEP LEARNING APPROACH USING MRI 

 

Material and methods 

 

The methodology of the MRI study has been detailed in the previous section and only relevant 

specific methodological information are provided in this section.  

 

Population 

To maximise the number of cases to train the detection model, patients with early-stage 

hepatocellular carcinoma developed on non-controlled or non-healed B/C viral F3/F4 hepatitis 

were included for the detection task.  

 

Index test 

We aimed to develop an object detection deep learning model based on non-contrast 

aMRI (T1-weighted in/out-of-phase images, T2-weighted with fat suppression images, diffusion-

weighted imaging, using the same acquisition parameters as a state-of-the-art MRI to maintain 

the same contrast, spatial resolution, and signal-to-noise ratio) to improve early-stage 

hepatocellular carcinoma detection.  

 

Outcome 

The main outcome of the study was the diagnostic performances of the AI model for the detection 

of early-stage hepatocellular carcinoma (1 nodule of any size or ≤ 3 nodules, each < 3 cm in 

diameter, without gross vascular invasion or extrahepatic metastases).  
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AI methodology 

 

The AI system will follow the same stages detailed in the Objective 1 section (risk stratification): 

• Annotation and labelling of databases (identical). 

• Liver segmentation (identical). 

• Pre-processing of MRI images (identical). 

• Early hepatocellular carcinoma detection. A 3D U-Net model, a convolutional neural 

network architecture renowned for its proficiency in medical image segmentation tasks, 

will be trained for the detection task in the clinical perspective that in a screening setting, 

it values more to detect a lesion than accurately delineate its contour. We will use the 

same liver volumes, liver segmentation mask and hepatocellular carcinoma bounding 

boxes. This task requires the network to effectively capture both the global context and 

fine-grained details of the liver's anatomical structure.  

• External independent testing: To ensure the robustness and generalisability of our AI 

models, we will test the model on the same independent internal dataset used for the 

classification model (risk stratification of hepatocarcinogenesis) and then, on the same 

two external datasets (CHUM and FASTRAK).  

 

Statistical analysis 

The estimate of performance metrics of the detection model was computed for mean 

average precision (area under the precision-recall curve) with a predefined intersection over 

union (IoU) of 10, 50 and 75%. Confusion matrices were computed for each patient at different 

confidence levels for an intersection over the union of 10% to assess the rate of true positive and 

false positive. A 10% threshold was chosen because of the screening strategy where detecting a 

lesion is more important than correctly delineating it. 
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Results 

 

Population 

This study enrolled 368 patients between November 2011 and September 2023 (Figure 9). 

A total of 35 patients were excluded: 25 had extensive artifacts on the MRI and 10 had the MRI at 

the time of an acute liver event (e.g., acute portal vein thrombosis). An additional total of 41 

patients were excluded from the analysis of hepatocellular carcinoma risk stratification: 2 had 

non-controlled HBV, 38 had non-cured HCV and 1 had no information regarding the aetiology of 

the liver disease. The demographics description of the dataset is reported in Table 9.  

 

 

Figure 9 – Flow chart of the study 
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 No HCC (n =214) Early-stage HCC (n = 103) 
Centres 

1 (Royal Victoria Hospital) 
2 (Montreal General Hospital) 

3 (Lachine Hospital) 

 
122 (57%) 
76 (36%) 
16 (7%) 

 
68 (66%) 
22 (21%) 
13 (13%) 

MRI manufacturer 
General Electrics Optima MR450w (1.5T) 

General Electrics SIGNA Excite (1.5T) 
General Electrics SIGNA Artist (1.5T) 

Siemens AERA (1.5T)  
Siemens SKYRA (3.0T) 

 
59 (28%) 

104 (49%) 
31 (14%) 
16 (7%) 
4 (2%) 

 
28 (27%) 
36 (35%) 
18 (17%) 
13 (13%) 

8 (8%) 
Age 62 [52-70] 65 [58-74] 
Sex 

Male 
Female 

 
127 (59%) 
87 (41%) 

 
77 (75%) 
36 (25%) 

Chronic Liver Disease   
Aetiology of liver disease 

ALD 
MASLD 

MetALD 
HBV 
HCV 

ALD + HBV 
ALD + HCV 

MASLD + HBV 
HBV + HCV 

PSC 
Auto-immune and overlap syndrome 

Indeterminate 
Other 

 
30 (14%) 
53 (25%) 

9 (4%) 
26 (12%) 
15 (7%) 
4 (2%) 
2 (1%) 
2 (1%) 
2 (1%) 

18 (8%) 
16 (7%) 
10 (5%) 

27 (13%) 

 
12 (12%) 
24 (23%) 

9 (9%) 
10 (10%) 
40 (39%) 

1 (1%) 
5 (5%) 

0 
1 (1%) 

0 
0 

1 (1%) 
0 

FASTRAK score 7 [6-10] 10 [8-12] 
Child-Pugh 

A5 
A6 
B7 
B8 
B9 

C10 
Missing data 

 
131 (61%) 
32 (15%) 
25 (12%) 

8 (4%) 
2 (1%) 

0 
16 (7%) 

 
42 (41%) 
28 (27%) 
18 (17%) 

8 (8%) 
2 (2%) 
1 (1%) 
4 (4%) 

Type 2 diabetes 70 (33%) 50 (49%) 
Biology   
Alpha-foetoprotein (ng/mL) 4.0 [2.7-6.0] 5.9 [3.3-15.1] 
GGT (UI/L) 65.5 [33.3-140.8] 78 [44-133] 
Total Bilirubin (µmol/L) 16.8 [12.2-24.3] 20.8 [12.6-31.4] 
Platelet (G/L) 134 [91-177] 105 [72-139] 
INR 1.1 [1.0-1.2] 1.1 [1.0-1.3] 
Albumin (g/L) 39 [36-42] 37 [33-42] 
Hepatocellular carcinoma (at inclusion)   
Number of nodules 

1 
2 
3 

NA 

 
74 (72%) 
21 (20%) 

8 (8%) 
Size (mm) NA 18.0 [12.8-25.3] 
BCLC stage 

0 
A 

NA 
 

40 (39%) 
63 (61%) 

Table 9 – Demographics 



57 
 
 

Detection of early-stage (BCLC 0 and A) hepatocellular carcinoma 

The development is in progress and the results are not available yet. We are currently working on 

the risk stratification model and then we’ll work on the detection model  
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Investigate innovative techniques to characterise 

chronic liver disease 
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HIGH-RESOLUTION 7T MRI FOR A PATHOLOGY-LIKE EXAMINATION OF LIVER FIBROSIS 

 

Accurate prediction of the progression of early-stage chronic liver disease to cirrhosis-

related complications is a critical unmet need. Although several imaging-based quantitative 

biomarkers have emerged, characterisation of chronic liver disease is still limited and 

histopathology remains the gold standard. Fibrosis can be non-invasively assessed by 

ultrasound- or MRI-based elastography techniques. Approaches have been developed to 

estimate steatosis, exploiting the attenuation of ultrasonic waves or employing advanced MRI 

acquisition techniques (e.g., multi-echo DIXON, spectroscopy). Several bio-clinical scoring 

systems based on routine parameters and liver elastography have proven valuable in predicting 

the first liver-related event and overall survival in patients with cirrhosis. Yet, major improvements 

in the field of image acquisition and management/analysis of imaging data are required to be able 

to accurately characterise liver parenchyma, monitor its changes and predict any pejorative 

evolution. As previously mentioned, the structural analysis of the liver parenchyma has been 

shown to reflect the pathophysiological mechanisms responsible for hepatocarcinogenesis. In 

the 1990s, ultrasound studies examined the incidence of hepatocellular carcinoma according to 

the liver echostructure40-42. Results showed that a nodular heterogeneous echostructure resulted 

in a relative risk estimate of up to 20. Therefore, if the liver parenchyma can be more accurately 

characterised with higher spatial resolution at a microscopic level, the liver architecture could be 

better appreciated which could lead to a shift in paradigm in the monitoring and therapeutic 

management of patients with chronic liver disease.  

With recent improvements in micro-imaging techniques, high-resolution Magnetic 

Resonance Imaging (MRI) (high-field MR imaging) recently emerged as a promising tool to image 

fresh ex vivo tissue and provide histopathology-like examination, with a spatial resolution 

approximating that of histology (i.e., < 100 µm, compared to ~1 mm for clinical MRI). High-

resolution MRI appears as a promising “missing link” between conventional imaging and 

histology. Additionally, unlike histology, which is limited to 2D images, MRI provides images of 
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the entire tissue sample as a volume. This volumetric analysis is also an advantage over 

traditional histology, particularly relevant for the study of fibrosis-related structural distortions in 

tissues. Liver fibrosis appeared as an appropriate model, because of the existence of widely 

validated histological classifications of liver fibrosis, allowing both qualitative and quantitative 

analysis, to demonstrate that MRI could be disruptively used to provide a histopathology-like 

examination. Furthermore, in chronic liver disease, liver fibrosis is easily recognized on high-

resolution MR images as T2 hyperintense tracts and is associated with micro- and macro-

architectural changes in the liver parenchyma. Characterized by the deposition of extracellular 

matrix proteins, including collagen, liver fibrosis progresses from fibrous portal expansion to 

bridging fibrosis, and finally to cirrhosis.  

We aimed to investigate the capabilities of high-resolution MRI to provide a 

histopathology-like examination of ex vivo liver tissues. This would be the first step to pave the 

way for future research developments to bridge the gap with in-vivo MRI to impact clinical 

practice and provide true non-invasive microscopic histologic examination.   

 

Material and methods 

 

This prospective project was approved by the Research Ethics Board (Protocol RIPH2, 

LivMod N°IDRCB 2019-A00738-49 ClinicalTrial NCT04690972) and followed ethical principles of 

the Declaration of Helsinki. All patients provided written informed consent. 

 

Population 

Twenty patients aged > 18 years old, who underwent surgical liver resection between 

November 2021 and April 2023, were prospectively included. We used ex-vivo fresh liver tissue (~ 

1 cm3) from surgically resected livers. Each fragment was sectioned in half, and the sections 

were identified, so that the MRI acquisition plane was as close as possible to the histological one. 

We imaged the first half, placed in Fluorinert™ Electronic Liquid FC40 (Sigma-Aldrich), using a 7T 
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MRI with a cryoprobe (Bruker BioSpin; Fat-Suppressed Turbo Spin Echo (Rapid Imaging with 

Refocused Echoes, RARE) T2-weighted sequence; echo time = 30 ms; repetition time = 3000 ms; 

averages = 25; Rare Factor = 2; matrix = 266x200x42, yielding a slice thickness of 200 µm; field-

of-view = 20x15x6mm), allowing a spatial resolution of 75 x 75 x 200 µm, in a 2-hour acquisition 

time. The second half was fixed in formalin, embedded in paraffin, cut at a 4 µm thickness in the 

same plane as the MRI acquisition, and then stained using Masson’s Trichrome and Perls. The 

minimum processing time for pathology samples was around ~ 48h. 

 

Assessment of MRI and pathology images 

Three subspecialty-trained abdominal radiologists (Benoit Gallix with 27 years of 

experience, Valérie Vilgrain with 35 years of experience, and Aïna Venkatasamy with 7 years of 

experience) and three subspecialty-trained abdominal pathologists (Antonin Fattori with 5 years 

of experience, Valérie Paradis with 30 years of experience, and Aurélie Beaufrère with 10 years of 

experience) reviewed, independently and blinded to medical records, MR, and pathology images. 

The readings were carried out in 2 separate sessions, over a month apart.  

 

Pathology images 

In the first session, the 3 pathologists independently staged fibrosis on histological slides in 

accordance with the METAVIR score. The consensus fibrosis stage for pathology was based on 

the agreement of at least 2 of the 3 pathologists. 

 

MR images 

The second session consisted of the reading of MR images, the cases being presented in 

a different random order, by all 3 radiologists and 3 pathologists, given that this new field of 

application is halfway between the two specialities. First, all readers (radiologists and 

pathologists) received training on the METAVIR classification of fibrosis and the semiology of the 

fibrosis on high-resolution MRI (MR-derived METAVIR score as described below), using two 
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previously published cases [2] and schematic illustrations of high-resolution MRI for each stage 

(F0 to F4, Figure 10). Then, all reviewers were asked to review the MR images (6 images per 

patient) and stage fibrosis, according to the MR-derived METAVIR score. The consensus fibrosis 

stage for MRI was based on the agreement of at least 2 of the 3 radiologists. To create the MR-

derived METAVIR score, one subspecialty-trained abdominal radiologist (JD, who did not 

participate in the reading), reviewed all MR images and analysed the MRI features of fibrosis in 

correlation with their corresponding histological section. The MR-derived METAVIR score has 

been developed in analogy with the histological staging criteria, based on the presence and 

distribution of fibrosis [2].  
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Figure 10 – Schematic illustrations of the MR-derived METAVIR score with High-resolution liver 

MRI and histopathology correlation (Masson’s Trichrome) in a normal liver (A and D), F3 liver (B 

and E), and F4 (cirrhosis) liver (C and F). 
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Statistical analysis 

The inter-reader agreement was calculated using Fleiss Kappa56. The agreement between 

the pathologic gold standard and the MRI consensus was calculated using weighted Kappa (linear 

weights). The agreement was interpreted according to Kappa value as follows: < 0 (poor); 0–0.2 

(slight); 0.21–0.40 (fair); 0.41–0.60 (moderate); 0.61–0.80 (substantial); 0.81–1.00 (almost 

perfect)57. All statistical analysis was performed using IBM SPSS Statistics (Version 29). 

 

Results 

 

Population 

A total of 20 patients scheduled for liver surgery were included in the study. Three patients 

were excluded due to poor specimen quality, not allowing MRI or pathology examination (n = 1) 

and cancellation of the surgery (n = 2). In addition, 2 of the 20 included patients, previously 

published [2] were used for reader training, and not included in the final dataset. The final dataset 

consisted of 15 patients (median age 68 [60-73], 12 men and 3 women) who underwent liver 

surgery for primary liver lesions (n=10) or colorectal cancer liver metastases (n=5). Chronic liver 

disease of several aetiologies was present in 10/15 patients of the final cohort (67%) (Table 10).  

The pathologists' consensus results for fibrosis staging on Masson’s Trichrome stained 

slides, which served as the gold standard, were as follows: 2/15 patients (13%) had a METAVIR 

score of F0, 5 (33%) had a score of F1, 5/15 (33%) had a score of F3, and 3/15 (20%) had a score 

of F4 (Table S1). In all cases, no consensus review was necessary and the agreement between 

the pathologists regarding the review of histopathology images was very good (κ = 0.77 [95 CI 0.61-

0.93). 
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Age Sex Chronic Liver Disease Surgical indication Pathological 
Fibrosis stage 

MRI 
Fibrosis stage 

59 M Hepatitis B and C viruses Hepatocellular 
carcinoma F2 Training 

49 F None Metastases F0 Training 

73 M 
Metabolic Dysfunction 

Associated Steatotic Liver 
Disease (MASLD) 

Hepatocellular 
carcinoma F1 F0 

57 M Indeterminate aetiology Metastases F3 F2 

73 M None Metastases F0 F0 

64 M MetALD (MASLD and 
increased alcohol intake) 

Hepatocellular 
carcinoma F3 F3 

58 M None Biliary 
cystadenoma F1 F1 

65 M Alcohol Associated Liver 
Disease 

Hepatocellular 
carcinoma F4 F4 

73 M MetALD (MASLD and 
increased alcohol intake) 

Hepatocellular 
carcinoma F1 F1 

72 F Alcohol Associated Liver 
Disease 

Hepatocellular 
carcinoma F3 F4 

71 M None Metastases F1 F0 

62 M Alcohol Associated Liver 
Disease 

Hepatocellular 
carcinoma F4 F4 

56 F None Metastases F0 F0 

68 M Indeterminate aetiology Hepatocellular 
carcinoma F3 F3 

60 F None Metastases F1 F1 

68 M Alcohol Associated Liver 
Disease 

Hepatocellular 
carcinoma F3 F4 

80 M 
Metabolic Dysfunction 

Associated Steatotic Liver 
Disease (MASLD) 

Hepatocellular 
carcinoma F4 F4 

Table 10 – Demographics, clinical characteristics, surgical indications, and results of consensus 

review of pathology slides and 7T MRI fibrosis staging. 

 

Accuracy of 7T MRI 

The accuracy of MRI for a histopathology-like diagnosis of the absence (F0) or very early 

(F1) fibrosis, and the presence of advanced fibrosis (F3-F4), was excellent (0.93 95CI [68-100] – 
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Table 11). MR imaging correctly classified almost all patients with advanced fibrosis on pathology 

(n = 7/8, one patient was F3 on histologic examination and staged F2 on MRI). Conversely, MRI 

correctly excluded fibrosis (i.e., F0 or F1 stages) in all cases (n = 7) compared to histology. The 

concordance of MR image analysis compared to histopathology was excellent (κ = 0.81 95CI 

[0.67-0.95]) for all fibrosis stages, with an accuracy of 93%.  

 

 
Inter-reader 
agreement 

Agreement with pathologic gold standard 
n Accuracy Weighted Kappa 

Radiologists 
No or very-early fibrosis (F0-F1) κ = 0.46 [0.17-0.76] n = 7/7 

93% [68-100] κ = 0.81 [0.67-0.95] 
Advanced fibrosis (F3-F4) κ = 0.42 [0.29-0.55] n = 7/8 

Pathologists 
No or very-early fibrosis (F0-F1) κ = 0.64 [0.35-0.93] n = 6/7 

87% [60-98] κ = 0.50 [0.26-0.73] 
Advanced fibrosis (F3-F4) κ =0.82 [0.53-1.0] n = 7/8 

Table 11 – Accuracy of MRI to identify and stage hepatic fibrosis and inter-reader agreement 

(Inter-reader agreement was calculated using Fleiss Kappa; [95% CI are in squared brackets]) 

 

Conclusion 

High-resolution 7T MRI provides an assessment similar to low-magnification histology and its 

accuracy was excellent to grade liver fibrosis (93%). Beyond fibrosis staging of liver tissue, MRI 

enables a cross-sectional volumetric exploration of the entire specimen, without cutting or 

destroying the sample. With short-time image acquisition and immediate image reading, high-

resolution MRI could become a new modality for extemporaneous tissue analysis, especially 

in oncologic surgery. Future research developments should focus on bridging the gap with in-

vivo MRI to impact clinical practice and provide true non-invasive microscopic histologic 

examination. 

 

The preliminary aspect of this work was published in Radiology58. The larger study is under 

submission. 
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Two di#erent liver samples from patients who underwent 
surgical resection were imaged with a 7-T MRI scanner by 

using fat-suppressed fast spin-echo T2-weighted sequence, 
reaching spatial resolution of 75 × 75 × 200 μm in 2 hours.

An MRI scan clearly demonstrated the homogeneous 
architecture of the normal liver (Figure) and identi%ed the 
primary liver lobule, with its centrilobular vein and periph-
eral portal tracts (Figure, B and C) within the interlobular 

delineations (Figure, B). In stage 2 %brotic liver (Fig E1 
[online]), an MRI scan of the liver sample demonstrated 
correlation with pathologic %ndings, easily identifying the 
same %brous portal bridges (Fig E1A and E1B [online]) 
and enlarged %brous portal tracts (Fig E1A and E1B [on-
line]), thus enabling a similar grading of %brosis. With a 
spatial resolution close to that of the pathologic examina-
tion, MRI enabled an easier depiction of the liver lobule 

Images show radiologic-pathologic correlation of normal liver. (A) Fat-suppressed T2-weighted MRI scan, with a spatial 
resolution of 75 × 75 × 200 μm, shows the homogeneous architecture of normal liver. (B) MRI scan (magnified image) 
depicts the anatomy of the primary liver lobule with its centrilobular vein (arrowhead) and peripheral portal venous tracts 
(arrow) within the interlobular delineations (star). (C) Mirrored pathologic slide, with Masson trichrome staining at four times 
magnification, identifies the liver lobule with the centrilobular vein (arrowhead) and peripheral portal tracts (arrow) within 
the interlobular delineations (black lines). (D) Schematic representation of the primary liver lobule with the centrilobular vein 
(central blue dot) and peripheral portal venous tracts (arrow).
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boundaries, allowing early detection of !brosis-related architec-
tural distortion. Additionally, the specimen remained intact, as 
no speci!c preparation was required for the MRI scan, and could 
undergo standard pathologic processing after image acquisition.
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Discussion and Perspectives 
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Chronic liver diseases, resulting from chronic injuries of various causes, lead to cirrhosis 

with life-threatening complications including liver failure, portal hypertension, and 

hepatocellular carcinoma. A key unmet medical need is robust non-invasive biomarkers to 

predict patient outcomes, stratify patients for risk of disease progression and monitor response 

to emerging therapies45. Furthermore, the identification of patients more prone to a pejorative 

outcome (e.g., liver failure, portal hypertension or hepatocellular carcinoma) is crucial to allow 

the early onset of regular monitoring and chemoprevention. If no approved therapy exists to treat 

liver fibrosis and prevent the progression of early-stage chronic liver disease, the discovery of 

Claudin-1, a tight junction protein expressed in hepatocytes, as a therapeutic target for liver 

fibrosis and hepatocellular carcinoma may revolutionise therapeutic management. Novel 

specific drugs including the claudin-1-specific monoclonal antibody will require a stratification 

of patients, i.e. companion biomarker, to achieve the best clinical outcome/cost ratio.  

The transition towards non-invasive characterisation and longitudinal follow-up of 

chronic liver diseases is ongoing. To date, reproducible quantitative imaging biomarkers are 

available to assess liver fibrosis with liver stiffness measured by elastography or steatosis with 

Proton Density Fat Fraction on Magnetic Resonance Imaging. Nevertheless, if fibrosis and 

steatosis appear as decisive markers for the histopathologic characterization of chronic liver 

disease, they fail to accurately predict the progression of early-stage chronic liver disease to 

cirrhosis-related complications. Major improvements, in the field of image acquisition and 

analysis, are still required to be able to accurately characterise the liver parenchyma, monitor its 

changes and predict any pejorative evolution across disease progression. Artificial Intelligence 

has the potential to augment the exploitation of massive multi-parametric data to extract 

valuable information and achieve precision medicine44. Machine learning algorithms have been 

developed to assess non-invasively certain histological characteristics of chronic liver diseases, 

including fibrosis and steatosis59-64. Although still at an early stage of development, AI-based 

imaging biomarkers provide novel opportunities to predict the risk of progression from early-stage 

chronic liver disease towards cirrhosis-related complications, with the ultimate perspective of 
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precision medicine. AI could also help maximise diagnostic performances of ultrasound and 

automatise time-consuming tasks such as measurement of the liver volume using deep CNN65,66, 

a simple prognostic biomarker of the pejorative outcome of acute liver failure67. These 

quantitative imaging techniques, either based on conventional imaging or using artificial 

intelligence approaches, can provide reproducible and reliable quantitative information. They are 

not exclusive from each other and can be complementary to biochemical biomarkers. But to 

become clinical tools, AI models should be developed following a high standard process to 

achieve generalizability and transferability including training on large datasets representing the 

wide spectrum of the disease expression to avoid selection biases, and independent and 

prospective testing to avoid overfitting68. Such databases also come with multiple challenges 

such as the important resources that they require in terms of annotation/labelling time by 

experts. In this thesis, we have investigated a new innovative approach to shorten the annotation 

time of imaging videos69.  

The absence of personalisation of hepatocellular carcinoma screening programs is an 

undeniable example of the lack of prediction biomarkers in clinical practice.  Currently, in France, 

screening programs still rely on biannual ultrasound with poor performances for early-stage 

hepatocellular carcinoma detection. To overcome the weaknesses of ultrasound, the use of aMRI 

has been proposed to improve hepatocellular carcinoma screening because it offers higher 

performance than ultrasound while minimising acquisition time compared to a conventional MRI 

protocol. The reported sensitivity and specificity of the different protocols (NC-aMRI, DCE-MRI 

and HB-MRI) ranged from 84.6 to 96% and from 81.6 to 100%18,21-26. Although the diagnostic 

performance of MRI is superior to that of ultrasound, MRI is an expensive and not easily 

accessible examination. Recent analyses of prospective European cohorts including a model-

based evaluation of very early-stage hepatocellular carcinoma detection confirmed that MRI 

surveillance is cost-effective for a baseline yearly incidence of 3% in patients with cirrhosis 

without active viral replication17. Therefore, screening with aMRI can only be considered for a sub-

population with a very high risk of hepatocarcinogenesis, which would be selected from the 
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population currently undergoing standard ultrasound screening. Identifying this subset of high-

risk patients is crucial as this strategy would detect 5 times more very early-stage hepatocellular 

carcinoma than ultrasound, with an ICER below 30,000€/life-years gained27. 

Risk stratification of hepatocarcinogenesis is therefore needed, for patients to benefit 

from a personalised screening strategy. Defining such a population involves developing tools for 

stratifying the risk of hepatocarcinogenesis28. Preliminary models have been developed, either 

aetiology-specific29-31 or multi-aetiology17, incorporating clinical parameters (e.g., age, sex, body 

mass index, or diabetes) and biological parameters (e.g., GGT, AST/ALT, platelets, or 

albumin)30,32,33. These models demonstrated good discriminative performances and have the 

advantages of being easy to use and inexpensive. Serum protein-based36-38 and genetic 

approaches39 have also been investigated. However, these models do not take into consideration 

the structural analysis of the liver parenchyma, which reflects the pathophysiological 

mechanisms responsible for hepatocarcinogenesis. In the 1990s, ultrasound studies examined 

the incidence of hepatocellular carcinoma according to the liver echostructure40-42. Results 

showed that a nodular heterogeneous echostructure resulted in a relative risk estimate of up to 

20.  

In the STARHE study, a prospective multicentric study, we have developed an AI-based 

risk stratification model of hepatocarcinogenesis on ultrasound. This model could predict 

patients at high risk of developing a hepatocellular carcinoma with an odds ratio of 6.6. Although 

comparison with longitudinal studies is limited, an odds ratio of 6.6 is extremely promising for 

future risk-based personalised screening strategies. This study demonstrated that risk 

stratification of hepatocarcinogenesis can be achieved based on the deep learning analysis of 

ultrasound images of the liver parenchyma. This supports our hypothesis that non-tumour 

cirrhotic liver parenchyma is rich in structural information reflecting the severity of liver disease, 

its carcinogenic risk as well as the process of hepatocarcinogenesis. This study paves the way for 

a personalised screening program based on the risk of hepatocarcinogenesis predicted from liver 

imaging.  
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Furthermore, in the STARHE study, we have also developed an AI-based detection model 

for early-stage hepatocellular carcinoma. The developed object detection model achieved 

excellent performances in detecting very-early stage (< 2 cm) and early-stage hepatocellular 

carcinomas (overall rate of detected lesions = 68% and mAP10 = 0.67) on ultrasound cine clips. 

The confidence level in the predicted box of 70% should be tested in prospective longitudinal 

studies alongside radiologists’ reading of the ultrasound images with two imaging outcomes: 

rates of detected early-stage stage hepatocellular carcinomas and rates of false positives, which 

could be a potential time hurdle for radiologists. This model could become a critical tool for 

radiologists and sonographers to improve the screening performance of ultrasound for early-

stage hepatocellular carcinoma.   

These results are reinforced by the strong methodology of the STARHE study. This is the 

first prospective multicentric study aiming to develop such models on ultrasound. Furthermore, 

the inclusion of patients eligible for hepatocellular carcinoma screening programs, the 

representation of the most common aetiologies of chronic liver disease (ALD, MASLD, controlled 

HBV and cured HVC) and the use of ultrasound cine clips mimic real-life practice of screening 

ultrasound, making the developed models applicable in clinical practice. On the other hand, the 

risk stratification and detection models have been developed following state-of-the-art AI 

methodology with a large training set and independent testing set, both stratified according to 

potential confounders (aetiology of liver disease, FASTRAK score, ultrasound manufacturer, 

hepatocellular carcinoma size and echogenicity). In addition, the testing set was designed to be 

representative of the targeted population with upstream sample size calculation based on 

previous reports40-42. The main limitation is the potential inclusion of patients at high risk of 

developing hepatocellular carcinoma in the low-risk group. Indeed, this limitation was only 

partially addressed by the follow-up at 1 year after the inclusion (e.g., hepatocellular carcinoma 

occurrence at 2 years after the inclusion). However, this would result in the underestimation of 

the performance of the risk stratification model. An alternative approach would have been to 

follow longitudinally only patients without hepatocellular carcinoma at baseline but this 
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approach would have been extremely challenging and expensive to implement. Also, to simplify 

the study design, there was no matched pair case-control, and this did not result in demographics 

groups imbalance.  Finally, the risk stratification AI model was solely trained on the non-tumoral 

liver parenchyma preventing its training from any bias. In addition, only patients with early-stage 

hepatocellular carcinoma were included, none with more advanced stages, to prevent the 

inclusion of patients with infiltrative hepatocellular carcinoma. 

The results of the MRI companion study will soon follow. If ultrasound is the modality of 

choice in clinical practice (availability, less expensive,…) and perfectly suited for an 

hepatocellular carcinoma-risk stratification deep learning model, it may not be contributory in all 

patients where visualisation of the liver is limited13-15. Therefore, developing equivalent models on 

ultrasound and MRI was advisable to address the applicability limitations of ultrasound. The MRI-

based risk stratification model could also prove to be complementary to other risk stratification 

scores and further refine personalised prediction of hepatocarcinogenesis. The MRI-based 

detection model will definitely prove to be critical in assisting radiologists in the reading of aMRI. 

The choice of non-contrast aMRI could be criticised as it remains challenging to detect early-

stage hepatocellular carcinoma on such a protocol and because the inter-reader agreement 

could be lower with a non-contrast protocol24. However, non-contrast aMRI has the advantages 

of the absence of contrast agent injection, simpler workflow, limited cost and the possibility to 

repeat poor quality acquisitions27. On the other hand, the challenges and limitations of dynamic 

contrast-enhanced and hepatobiliary aMRI are multiple: detection of inconclusive enhancing 

observations (need for recall examinations), injection of contrast, complex workflow with the 

need for intravenous access, and higher cost. Finally, the reported pooled sensitivity and 

specificity of these protocols are similar.  

Alongside blood biomarkers such as FASTRAK score, these AI-based imaging models 

could provide the necessary tools to achieve personalised hepatocellular carcinoma screening 

and to significantly increase the number of patients who will benefit from the detection of 

hepatocellular carcinoma at an early stage, making them eligible for curative treatment with a 
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prognosis close to that of cancer-free liver disease. The next step will be to design a risk 

stratification-based personalised screening strategy integrating clinical, biochemical, and 

imaging risk stratification scores. In Figure 11, we propose a personalised screening strategy 

based on blood and imaging risk stratification, including ultrasound and abbreviated non-

contrast MRI, defining 3 groups of different levels of risk with different screening modalities. Given 

the diagnostic performances of aMRI, this approach could significantly increase the number of 

patients who will benefit from the detection of hepatocellular carcinoma at an early stage. To 

date, the sensitivity of ultrasound is only 53% (and drops to 27.9% in early-stage hepatocellular 

carcinoma11), whereas the sensitivity of screening MRI is over 80%. This paradigm shift would 

have a considerable positive impact on the quality of patient care. This proposed strategy should 

be tested in a prospective clinical trial with hepatocellular carcinoma-related mortality as the 

main outcome and with cost-effectiveness analysis. This strategy could be refined over time with 

the discovery of new blood biomarkers. In addition, the AI-based imaging tools are also intended 

to be improved over the coming years with the inclusion of new patients in longitudinal follow-up 

cohorts.  

 

 

Figure 11 – Proposed risk-based personalised screening strategy. 
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Artificial intelligence is certainly not the only solution and innovative imaging can provide 

better understanding of chronic liver disease and help in their characterisation. In this thesis, we 

have studied the diagnostic capabilities of high-resolution 7T MRI in ex-vivo liver samples and 

developed an MR-derived METAVIR score in analogy with the histological staging criteria based 

on the presence and distribution of fibrosis. 7T high-resolution imaging demonstrated excellent 

performances (accuracy of 0.93) in accurately staging liver fibrosis compared to histopathology, 

highlighting its potential as an innovative surrogate tool for low-magnification histology. We 

showed that the physical capabilities of MRI can provide sufficient contrast between tissues to 

enable histopathology-like examination without the need for staining58,70. In addition, MRI has the 

undeniable advantage over histology of being able to acquire images in a relatively short time with 

immediate image interpretation (as with any routine MRI). The specimen, which remains intact, 

can still be processed for pathologic examination afterwards58,70.  

Reaching very high spatial resolution (~75µm), close to that of low-magnification 

histology, MRI provided a completely new insight into the imaging of the liver architecture, which 

would not have been visible with the spatial resolution of a clinical standard MRI (~ 1mm)71,72. 

Fibrotic changes to the liver parenchyma observed on Masson’s trichrome stained histology 

slides were readily depictable on high-resolution MRI, appearing as hyperintense T2-weighted 

septa58,71,72 together with fibrosis-related micro-architectural distortions at early stages73. 

Additionally, unlike histology, which is limited to 2D images, MRI provides images of the entire 

tissue sample as a volume. This volumetric analysis is also an advantage over traditional 

histology, particularly relevant for the study of fibrosis-related structural distortions in tissues.  

Although the acquisition time is not yet suitable for extemporaneous examination, it is 

likely that, with rapid technological changes, the acquisition time can be further reduced, while 

maintaining sufficient spatial resolution and signal-to-noise ratio. Our study paved the way for 

further applications of the technique in the liver but also in other organs. Surgeries requiring 

extemporaneous analysis of tissues could benefit from this non-destructive imaging analysis to 

assess tumour margins. Similarly, the volumetric images of the entire specimen could also help 
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reduce sampling errors on macroscopic evaluation of the specimens, by providing more relevant 

mappings than macroscopic "naked eye" analysis, to select areas to be sectioned for further 

histological analysis.  

Further research with a larger patient cohort and various aetiologies of liver disease is 

required to refine our understanding of 7T MRI liver semiology. Beyond fibrosis staging of liver 

tissue, MRI enables a cross-sectional volumetric exploration of the entire specimen, without 

cutting or destroying the sample. With short-time image acquisition and immediate image 

reading, high-resolution MRI could become a new modality for extemporaneous tissue analysis, 

especially in oncologic surgery. Future research developments should focus on bridging the gap 

with in-vivo MRI to impact clinical practice and provide true non-invasive microscopic histologic 

examination. 

 

Perspectives 

Multiple challenges remain. The personalised screening strategy based on blood and 

imaging risk stratification, including ultrasound and abbreviated non-contrast MRI, should be 

tested in a prospective clinical trial with hepatocellular carcinoma-related mortality as the main 

outcome and with cost-effectiveness analysis. Ultrasound will remain the cornerstone of chronic 

liver disease characterisation, including liver elastography and steatosis quantification, and 

hepatocellular carcinoma surveillance. It is therefore logical to maintain ultrasound-based tools 

as a first-line screening strategy alongside blood biomarkers. However, MRI biomarkers can be 

used to refine the screening strategy. In addition, quality control of ultrasound (LI-RADS 

visualisation score) should also be taken into consideration. In a retrospective cohort study, 

about 20% of patients with cirrhosis had moderately to severely limited ultrasound visualisation 

for hepatocellular carcinoma nodules, particularly those with obesity, ALD or MASLD cirrhosis49. 

Ultrasound quality was also shown to change between exams, including improvement in many 

patients with limited visualisation, encouraging longitudinal reassessment. The proposed risk-

based personalised screening strategy could be refined over time with the discovery of new blood 
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biomarkers. In addition, the AI-based imaging tools are also intended to be improved over the 

coming years with the inclusion of new patients in longitudinal follow-up cohorts. Additional 

questions should be answered with longitudinal prospective screening studies: is this 

personalised screening strategy applicable to community centres? Is it universal and applicable 

to populations with different epidemiology? Is it acceptable for patients in terms of adherence 

and harm? What is the optimal frequency of abbreviated screening MRI? 

 

The impact of this thesis in clinical practice could be major in the next years and 

contribute to improving patient care. The innovative AI-based imaging biomarkers developed in 

this study through a multidisciplinary collaboration could provide the necessary tools to achieve 

personalised hepatocellular carcinoma screening alongside blood biomarkers, allowing better 

detection of hepatocellular carcinoma at an early stage in a cost-effective approach. The 

proposed strategy based on blood, ultrasound, and MRI biomarkers should be tested in a 

prospective clinical trial. Imaging-based detection models are also likely to improve the 

diagnostic performance of screening modalities by assisting radiologists. The tools developed in 

this thesis are not theoretical constructs but are intended to integrate patient care in the short 

term. 
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CONVENTIONAL AND ARTIFICIAL INTELLIGENCE-BASED IMAGING FOR BIOMARKER 

DISCOVERY IN CHRONIC LIVER DISEASE 

 
Chronic liver diseases, resulting from chronic injuries of various causes, lead to cirrhosis 

with life-threatening complications including liver failure, portal hypertension, and 

hepatocellular carcinoma. A key unmet medical need is robust non-invasive biomarkers to 

predict patient outcomes, stratify patients for risk of disease progression and monitor response 

to emerging therapies. Quantitative imaging biomarkers have already been developed, for 

instance, liver elastography for staging fibrosis or Proton Density Fat Fraction on Magnetic 

Resonance Imaging for liver steatosis. Yet, major improvements, in the field of image acquisition 

and analysis, are still required to be able to accurately characterise the liver parenchyma, 

monitor its changes and predict any pejorative evolution across disease progression. Artificial 

Intelligence has the potential to augment the exploitation of massive multi-parametric data to 

extract valuable information and achieve precision medicine. Machine learning algorithms have 

been developed to assess non-invasively certain histological characteristics of chronic liver 

diseases, including fibrosis and steatosis. Although still at an early stage of development, 

Artificial Intelligence-based imaging biomarkers provide novel opportunities to predict the risk of 

progression from early-stage chronic liver diseases towards cirrhosis-related complications, with 

the ultimate perspective of precision medicine.  

Before developing new biomarkers in chronic liver diseases with a disruptive approach 

using artificial intelligence, we needed to establish a precise overview of already existing or 

emerging quantitative imaging techniques of diffuse liver diseases and provide an explanation of 

the different concepts of Artificial Intelligence. This work was published in Hepatology 

International.  
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Abstract
Chronic liver diseases, resulting from chronic injuries of various causes, lead to cirrhosis with life-threatening complications 
including liver failure, portal hypertension, hepatocellular carcinoma. A key unmet medical need is robust non-invasive 
biomarkers to predict patient outcome, stratify patients for risk of disease progression and monitor response to emerging 
therapies. Quantitative imaging biomarkers have already been developed, for instance, liver elastography for staging fibro-
sis or proton density fat fraction on magnetic resonance imaging for liver steatosis. Yet, major improvements, in the field 
of image acquisition and analysis, are still required to be able to accurately characterize the liver parenchyma, monitor its 
changes and predict any pejorative evolution across disease progression. Artificial intelligence has the potential to augment 
the exploitation of massive multi-parametric data to extract valuable information and achieve precision medicine. Machine 
learning algorithms have been developed to assess non-invasively certain histological characteristics of chronic liver diseases, 
including fibrosis and steatosis. Although still at an early stage of development, artificial intelligence-based imaging biomark-
ers provide novel opportunities to predict the risk of progression from early-stage chronic liver diseases toward cirrhosis-
related complications, with the ultimate perspective of precision medicine. This review provides an overview of emerging 
quantitative imaging techniques and the application of artificial intelligence for biomarker discovery in chronic liver disease.

Keywords Chronic liver disease · Histo-pathological features · Pejorative evolution · Quantitative biomarkers · 
Elastography · Machine learning · Radiomics · Deep learning
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Introduction

Over the last decades, the prevalence of chronic liver dis-
eases (CLD) and their associated morbidity and mortality 
markedly increased, especially with the rise of non-alco-
holic fatty liver disease (NAFLD). A substantial propor-
tion of patients will indeed ultimately develop liver fibrosis 
and eventually progress toward cirrhosis. Cirrhosis is the 
end-stage of disease with life-threatening complications 
(e.g., liver failure, portal hypertension, hepatocellular car-
cinoma), which accounts for approximately 1.8% of deaths 
[1]. When chronic liver injuries progress, decompensa-
tion of the disease (e.g., ascites, jaundice, gastrointestinal 
bleeding or hepatic encephalopathy) may occur, resulting 
in a dramatic decrease in the overall survival rate [2]. Cur-
rently, the clinical predictors of the risk of decompensation 
have a limited impact on the patients’ management and we 
are unable to accurately monitor the changes or any pejora-
tive evolution of liver parenchyma on imaging alone (e.g., 
using CT, MRI, ultrasound) [3–5]. The characterization of 
reference of CLD relies on invasive methods such as liver 
biopsy, to assess fibrosis, steatosis, and “activity” (i.e., 
inflammation) or trans-jugular catheterization for portal 
hypertension (i.e., measure of the hepatic venous pressure 
gradient). Such invasive and expensive gold standards are 
obviously inappropriate for screening and sequential moni-
toring. Additionally, liver biopsy is also prone to risks of 
under-sampling [6] and/or inter-reader variability [7]. All 
this leads to a necessary and ongoing transition toward 
non-invasive assessment of CLD progression and prog-
nosis. Image-based biomarkers can provide a quantitative 
and reproducible representation of the liver parenchyma 
including pathogenesis, molecular and genetic pathways 
and, particularly, of its evolution [8, 9]. Indeed, they can 
be used at initial diagnosis or at any time during the evo-
lution of the disease, creating the opportunity to impact 
clinical management.

Several image-based quantitative biomarkers have 
already emerged. For instance, fibrosis can be non-inva-
sively assessed by ultrasound- or MRI-based elastography 
techniques. Approaches have been developed to estimate 
steatosis, exploiting the attenuation of ultrasonic waves or 
employing advanced MRI acquisitions techniques (e.g., 
multi-echo DIXON, spectroscopy). Several bio-clinical 
scoring systems based on routine parameters and liver 
elastography have proven valuable to predict the first liver-
related event and overall survival in patients with cirrhosis 
[10–12].

Recently, artificial intelligence (AI) has gained spec-
tacular popularity in the scientific community, suggesting 
that we are at the dawn of a revolution in patients’ care 
and management. The major strength of AI is its potential 

to augment the exploitation of massive multi-parametric 
data, often non-structured and unexploited, to extract valu-
able information and achieve personalized clinical deci-
sions for patients [9, 13]. AI has the potential to go beyond 
the human eye and previously cited tools, to finally make 
biopsy outdated. This review article aims to provide a pre-
cise overview of quantitative imaging techniques of diffuse 
liver diseases, together with an explanation of the different 
concepts of artificial intelligence, with short- and long-
term potential clinical applications for risk stratification 
and early diagnosis.

Arti!cial intelligence in imaging

Artificial intelligence (AI), a subfield of computer science, 
is a “fancy” term gathering different concepts including 
among others radiomics and machine learning. More pre-
cisely, machine learning is the umbrella term referring to 
the approaches seeking to learn from data without explicit 
programming. Machine learning can achieve tasks of clas-
sification, prediction, segmentation, detection, or images 
optimization (e.g., faster image acquisition, increased signal-
to-noise ratio, etc.). The tasks of segmentation, detection and 
optimization of images will not be discussed in this article as 
not directly related to the characterization of CLD.

To achieve classification or prediction of clinical out-
comes, different approaches exist, according to the available 
data and the objectives. The machine can learn from labeled 
data (e.g., tumor types) to pursue a defined objective (e.g., 
tumor type classification) or from unlabeled data to reveal 
unknown structural patterns across data. These approaches 
are respectively called supervised and unsupervised.

Therefore, AI-based imaging models, or the machine 
learning process, will seek to identify and combine new 
imaging biomarkers, inaccessible to the human eye, in a 
mathematical model [14]. It aims to provide predictive and/
or prognostic information about patients and their patholo-
gies, based on sophisticated statistical analysis [8]. Such 
imaging biomarkers are called radiomics. They are image 
descriptors reflecting the tissue heterogeneity and indi-
rectly its molecular and genetic substrate [15]. They are 
reproducible, quantitative, human-engineered (so-called 
“traditional”) or free (so-called “deep” and automatically 
calculated). “Traditional” radiomics should be extracted, 
selected, and combined using a classifier (support vector 
machine, random forest, etc.) through a high-quality pipeline 
to ensure its robustness. These key steps should always be 
detailed to ensure the repeatability of the work. To provide 
reproducible and standardized processing workflow, but also 
consistency between studies, the image biomarker standardi-
zation initiative (IBSI) proposed biomarkers definitions and 
reporting guidelines for radiomics studies, including among 
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other data description, image processing or image biomarker 
computation [16]. Compared to “traditional” radiomics, 
“deep” radiomics are free of human design, inaccessible to 
our understanding, and may highlight the most informative 
imaging markers to solve research hypotheses.

Deep learning (DL) [13, 17], a subclass of machine learn-
ing, refers to the deep convolutional neural network (CNN), 
named by analogy with human neurons (Fig. 1). Input data 
are weighted based on their importance and undergo a non-
linear transformation, called activation function, to result in 
an output. During the training process, these input weights, 
or parameters, are computed and optimized, to allow the 
model to reach the highest diagnostic performances by mini-
mizing the loss error function through a process called back-
propagation. Upstream of the adjustment of the weights, 
designing a DL model requires the right choices regarding 
the most appropriate CNN architecture and hyper-parame-
ters (number of hidden layers and units, weights initializa-
tion, type of activation function, learning rate, regularization 
technique to prevent overfitting, etc.) for the specific task 
to be achieved [13, 18]. The more hidden layers there are, 

the deeper a convolutional neural network is and the more 
complex the network is. Complexifying a neural network 
allows the identification and pooling of images features of a 
higher level of abstraction, thus increasing its performances. 
However, convolutional neural networks can be so powerful 
that they can perfectly adjust to a specific dataset, so-called 
overfitting, resulting in very high diagnostic performances 
on the training dataset, but preventing its external validation.

It is therefore evident that the quality of data has a major 
impact on the performance and reliability of AI-based mod-
els. First, training datasets should represent the wide spec-
trum of disease expression. As training datasets are usually 
built from retrospective data, selection bias should be of 
critical concern. Because available data in medicine are lim-
ited and positive cases of the disease are usually the minority 
class, techniques of data augmentation (i.e., simple geomet-
ric transformations of images or artificial creation of fake 
data from the original dataset using DL techniques—e.g., 
generative adversarial network) or transfer learning (i.e., 
pre-training on larger—not necessarily medical-related—
datasets leading to pre-trained model parameters and, faster 

Fig. 1  Concepts of deep learning. By analogy to human neurons, 
deep learning generally refers to neural networks. Input data are 
weighted based on their importance and undergo a non-linear trans-
formation, called activation function, to result in an output. These 

input weights, or parameters, are computed and optimized to allow 
the model to reach the highest diagnostic performances by minimiz-
ing the loss error function through a process called back-propagation
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and more effective training) have been developed. However, 
techniques of data augmentation should be used with great 
caution in the field of medical research and only to optimize 
model training, not to test it. They should be applied by con-
sidering disease prevalence and heterogeneity. Furthermore, 
creating fake images can result in impaired model training. 
Therefore, samples of such images should be checked by 
experts. Secondly, testing a model, preferably prospectively, 
on an independent dataset, as a safety check, is crucial to 
evaluate its true performance and ensure that there is no 
overfitting. Moreover, a special focus should be made on 
the exhaustivity of the representation of the disease spec-
trum in the testing dataset. These quality steps are of criti-
cal importance because machine learning algorithms can be 
difficult, if not impossible, to understand. To facilitate the 
quality assessment of AI-related studies, quality scores have 
been proposed (e.g., radiomics quality score [19], simpli-
fied and reproducible AI quality score [20]). Unfortunately, 
a significant number of research studies does not respect 
these quality pre-requisites. This explains the limited num-
ber of studies cited in this review. However, this cannot fully 
explain the discrepancy between the considerable number 
of publications, increasingly following standardized report-
ing guidelines (e.g., IBSI, CLAIM [16, 21]), and their poor 
implementation in clinical routine. Multiple obstacles arise. 
As previously explained, neural networks rely on complex 
non-linear interactions using hidden factors, making the con-
cepts of transparency, explainability, intelligibility and prov-
ability inaccessible, although critical for their acceptability 
by physicians and patients [22]. The presence of different 
manufacturers (i.e., vendors), the heterogeneity of imaging 
acquisition protocols (e.g., different times of contrast injec-
tion between centers; use of conventional CT or on dual-
energy reconstruction; different T2-weighted MR images 
depending on the center-specific and non-consensual choice 
of echo time and repetition time; etc.), and the absence of 
large and free databases are a direct limitation to the robust-
ness and safety of AI-based models that are even more 
crucial in medicine. Furthermore, AI-based models should 

be time-efficient to reach the clinical routine. For instance, 
manual segmentation cannot be seriously considered and 
implies developing robust and reproducible automatic seg-
mentation algorithms. Besides these technical limitations, 
ethical and legal considerations are at stake: how should the 
patient be informed that medical decisions are enhanced by 
AI-based algorithms? How can patient privacy be preserved 
once data are shared with AI developer partners? Who owns 
the intellectual property of the AI model, computer scientists 
or data owners? Who will be accountable and responsible 
for decision-making with AI including potential errors and 
harm? [23]

Imaging biomarkers for liver "brosis

Over the past years, significant efforts have been made to 
develop new quantitative imaging biomarkers, aiming to 
replace liver biopsy to assess fibrosis, steatosis, iron over-
load and inflammation (Table 1).

Fibrosis is the inevitable consequence of all progressive 
CLD. It is mainly caused by sustained liver insults, resulting 
in pathological deposition of collagen extracellular matrix 
and, ultimately, parenchyma and vascular distortion with 
regenerative nodules [24]. Currently, conventional imaging 
modalities fail to properly characterize liver fibrosis. Accu-
rate detection of early-stage fibrosis is necessary because 
appropriate therapeutic management could stop the evolu-
tion of fibrosis to cirrhosis. Morphological changes, irregu-
lar contours and coarse texture have limited sensitivity to 
predict significant fibrosis (≥ METAVIR F2) and poorly 
correlate with fibrosis stages [25]. Quantitative measure-
ment of the liver surface nodularity may improve consist-
ency for the imaging diagnosis of cirrhosis (i.e., METAVIR 
F4 stage) [26]. This biomarker has also been associated with 
the detection of portal hypertension and has proven relevant 
for preoperative assessment of operative risks in patients 
with resectable hepatocellular carcinoma (HCC) [27, 28]. 
Gadoxetic acid-enhanced MRI could also be used to estimate 

Table 1  Non-invasive conventional quantitative imaging methods for assessing liver histo-pathological features

Histo-pathological features Methods

Fibrosis Elastography: transient elastography, point and 2D shearwave elastography, magnetic resonance elastography
Liver surface nodularity
Enhancement of liver parenchyma on MR hepatobiliary phase

Steatosis Controlled attenuation parameter (CAP) on transient elastography
Ultrasound-based: attenuation coefficient, hepato-renal B-mode ratio, sound speed
MRI-based: DIXON method (in/out phase), multi-echo DIXON method (proton density fat fraction), spectroscopy

Iron MRI-based: multi-echo DIXON method
Activity Ultrasound-based: shear wave dispersion

MRI-based: damping ratio (complex shear modulus), enhancement of liver parenchyma on hepatobiliary phase, 
T1 relaxation time, proton-decoupled phosphorus 31 MR spectroscopy
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fibrosis stages, as relative enhancement on the hepato-biliary 
phase (at 20 min) negatively correlated with fibrosis [29].

Non-invasive assessment of liver fibrosis has undergone 
a breakthrough with the rise of elastography techniques 
(quantitative methods). Liver stiffness, based on the elastic 
properties of liver tissue, is the non-invasive biomarker of 
choice for the diagnosis of liver fibrosis, even at an early 
stage. Elastography techniques demonstrated higher staging 
performance than serum fibrosis indexes [30], such as the 
aspartate aminotransferase to platelet index (APRI) or the 
Fibrosis-4 index (FIB-4), even if their association may be 
beneficial and complementary [31–33]. Different modalities 
are available, including vibration-controlled transient elas-
tography (Fibroscan, Echosens, Paris, France), ultrasound-
guided elastography [such as point shear wave elastography 
(pSWE) and 2D shear wave elastography (2D SWE)] and 
magnetic resonance elastography (MRE) [34, 35]. Transient 
elastography (TE) estimates the liver stiffness by measur-
ing the speed of a shear wave propagating through the liver 
parenchyma using pulsed echo ultrasound acquisition. It has 
been exhaustively evaluated and shown to be effective in 
predicting advanced fibrosis stages (AUC > 0.72 for ≥ F2 
stages and AUC > 0.90 for F4 stage) [36–43]. As it is not 
associated with any imaging modality, this technique will 
not be further discussed in this review. However, the same 
technology has been applied to ultrasound, allowing tar-
geted measurements guided by the imaging abnormalities 
of the liver parenchyma, with at least equivalent diagnostic 
performances [44–51]. Unlike pSWE, which only enables 
a focal measurement of liver stiffness, 2D SWE provides a 
real-time 2D color mapping of liver stiffness. Unfortunately, 
each manufacturer providing ultrasound-guided elastogra-
phy has its specificities, preventing cross-comparison and 
complexifying the use of cut-off values. In addition, the 
reproducibility of measurements is affected by the experi-
ence of the operator [52]. If 2D SWE is perfectly suited for 
clinical practice, as it is performed during a conventional 
ultrasound, its diagnostic performances have been outper-
formed by MRE, which quickly became the surrogate bio-
marker of liver fibrosis [53]. This technology is based on 
shear waves emitted by an external acoustic driver. Indeed, 
the wave propagation speed and the damping of shear waves 
are impacted by the frequency vibration due to the disper-
sion of elastic waves in soft tissues [54]. 3D MRE should 
be based on multi-frequency excitations because it increases 
the consistency and reproducibility of the measurements. 
MRE demonstrated higher accuracy than 2D SWE or TE, 
especially for early-stage liver fibrosis, with strong reliability 
for longitudinal follow-up and without inter-observer vari-
ability [53, 55–63]. Furthermore, it can be performed in the 
presence of ascites and measurements are not affected by 
steatosis [64]. However, MRE is not recommended in rou-
tine clinical practice given its cost and limited availability 

[33]. In addition, 2D SWE also demonstrated high accuracy 
in predicting first liver-related event, all-cause mortality and 
infection requiring hospitalization [11].

If the association of conventional imaging and non-inva-
sive assessment of liver stiffness is powerful for grading 
fibrosis, artificial intelligence can maximize the diagnostic 
performances of these techniques, by identifying new fea-
tures (Table 2). In patients at risk of advanced CLD, liver 
ultrasound is the first imaging modality performed, because 
of its advantages (i.e., available, non-invasive, radiation-free, 
less expensive) compared to other techniques (CT or MRI) 
and the possibility of performing shear wave elastography 
during the same examination. The same reasons should 
provide strong relevance for ultrasound-based AI models 
in clinical routine. A recent study demonstrated high accu-
racy for the prediction of fibrosis stages using a Deep Con-
volutional Neural Network trained on B-mode gray-scale 
ultrasonography images [65]. In an external testing dataset, 
consistent with acceptable generalizability, the accuracy of 
the model to predict significant fibrosis (≥ F2) or cirrho-
sis (F4) was 0.87 and 0.86 respectively. Moreover, apply-
ing radiomics analysis to the images of the 2D SWE color 
mapping could further improve its diagnostic performances. 
Wang et al. reported increased diagnostic performances of a 
deep learning model using 2D shear wave elastography (2D 
SWE) images in predicting liver fibrosis stages [66]. The 
diagnostic performances of this AI model in predicting sig-
nificant fibrosis (≥ F2) were higher (AUC = 0.85) than that 
of 2D SWE alone (AUC = 0.77) or biomarkers, such as APRI 
(AUC = 0.60) or FIB-4 (AUC = 0.62). Finally, B-mode and 
2D SWE images could prove complementary in the training 
of DL models as suggested by Xue et al. [67].

MRI is the most performant, exhaustive and reproducible 
imaging modality. This explains the predominance of this 
modality in the AI literature on this problematic. Differ-
ent studies demonstrated strong diagnostic performances of 
radiomics [68] and deep learning models [69, 70], either on 
T2-weighted or on post-contrast sequences. Hectors et al. 
developed a deep learning model on hepatobiliary phase 
images, with similar performances to MRE (AUC = 0.91 
for predicting significant fibrosis) [69]. However, these 
encouraging results should be tempered by the constraints of 
clinical practice. MRI remains a time-consuming and costly 
technique, especially when compared to the existing efficient 
ultrasound-based AI models.

Finally, it is interesting to note that the deep learn-
ing approach can also be extremely performant using CT 
images, whereas CT-scan is not the modality of choice in 
liver imaging. A deep learning algorithm trained on 7461 
portal venous phase CT scans with pathologically confirmed 
liver fibrosis largely outperformed radiologists’ reading and 
fibrosis biomarkers (APRI and FIB-4) [71]. This model 
achieved high diagnostic performances, regardless of the 
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etiology of liver disease, with an AUC value of 0.96 for 
predicting significant fibrosis (≥ F2) in a large testing dataset 
of 891 patients.

Imaging biomarkers for liver overload

In the context of the increasing prevalence of overweight 
and type 2 diabetes mellitus, the prevalence of NAFLD is 
expanding [72]. It covers a wide spectrum of diseases, rang-
ing from isolated liver steatosis to nonalcoholic steatohepa-
titis, resulting in severe complications including cirrhosis, 
liver failure, portal hypertension and hepatocellular carci-
noma [73–75]. Liver steatosis can be easily assessed. Indeed, 
steatosis can be evaluated either by TE using the controlled 
attenuation parameter, ultrasound (e.g., hepato-renal 
B-mode ratio, attenuation coefficient [76], sound speed [77, 
78]) or MRI (e.g., Dixon method with in- and out-of-phases, 
spectroscopy, proton density fat fraction—PDFF [79]). If 
the quantification of steatosis on a non-enhanced CT-scan 

appears easy, as there is a linear correlation between liver 
attenuation and steatosis, enabling quantitative CT liver fat 
measurements, CT scan is not a suitable modality for stea-
tosis assessment, due to its poorer diagnostic performance 
and its ionizing aspect [80]. The controlled attenuation 
parameter (CAP) and the attenuation coefficient (AC) are 
the most routinely performed biomarkers with the hepato-
renal B-mode ratio. They are based on the same principle 
of ultrasonic attenuation of the echo wave by the steatotic 
liver. Measurement of this attenuation allows the estimation 
of steatosis. The diagnostic performance of CAP and AC 
in predicting any grade of steatosis, or moderate to severe 
steatosis (grade 2 and 3), is good, with AUC values of 0.93 
versus 0.81 and 0.76 versus 0.89, respectively [77, 81]. The 
hepato-renal B-mode ratio is defined as the ratio of the echo-
genicity of the liver parenchyma to the renal cortex. Moret 
et al. demonstrated that the diagnostic performances of the 
B-mode ratio and the CAP were not significantly different in 
the same population [81]. Lastly, ultrasonic adaptive sound 
speed estimation, decreased in the presence of steatosis, has 

Table 2  Artificial intelligence-based biomarkers for grading fibrosis

For comparative purposes, AUROC values of transient elastography, shear wave elastography and magnetic resonance elastography for detecting 
advanced fibrosis (≥ stage 3) were 0.88, 0.95 and 0.96 in a meta-analysis published by Xiao et al. [21]

Article Model type Imaging technique Reference standards Sample size (n) Performance 
metrics on testing 
datasetTraining Validation Testing

Internal External

Lee
European Radiology
2020

Deep learning B-mode US METAVIR stages 
(biopsy or tran-
sient elastogra-
phy)

3446 263 266 572 AUC 
= F4: 0.86

Wang
Gut
2019

Deep learning 2D shear wave 
elastography

METAVIR stages 
(liver biopsy)

266 132 AUC 
= F4: 0.97
≥ F3: 0.98
≥ F2: 0.85

Xue
European Radiology
2020

Deep learning B-mode US and 
2D shear wave 
elastography

Scheuer scoring 
system (hepatec-
tomy)

364 102 AUC 
= F4: 0.95
≥ F3: 0.93
≥ F2: 0.93

He
American Journal of 

Roentgenology
2019

“Traditional”
Radiomics

T2 FSE weighted 
MRI

Clinical factors

MR elastography
Two-class clas-

sification (cut-
off = 3 kPa)

225 84 AUC 
0.80

Hectors
European Radiology
2020

Deep learning Gadoxetic acid-
enhanced hepato-
biliary phase MRI

METAVIR stages 
(liver biopsy)

178 123 54 AUC 
= F4: 0.85
≥ F3: 0.90
≥ F2: 0.91

Yasaka
Radiology
2018

Deep learning Gadoxetic acid-
enhanced hepato-
biliary phase MRI

METAVIR stages 
(liver biopsy)

534 100 AUC 
= F4: 0.84
= F3: 0.84
= F2: 0.85

Choi
Radiology
2018

Deep learning Portal venous phase 
CT

METAVIR stages 
(liver biopsy)

7461 421 470 AUC 
= F4: 0.95
≥ F3: 0.97
≥ F2: 0.96
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been proposed but is still at a preliminary stage of evaluation 
[77, 78]. Alternatively to the CAP and the AC, MRI offers 
multiple techniques to estimate steatosis, with unequal diag-
nostic performances. The Dixon method (1984) is a chem-
ical-shift imaging method using the in-phase/out-of-phase 
cycling of fat and water, due to different rates of precession. 
In the presence of steatosis, the signal intensity of the liver 
drops on the out-of-phase sequence. However, this method is 
highly subject to inter-reader variability and does not allow 
quantification of the steatosis. Quantification of steatosis has 
been achieved by the application of multi-echo Dixon, which 
compensates for multiple confounders including the T2* 
relaxation effects and the spectral complexity of fat [82]. 
This method is named proton density fat fraction (PDFF), 
defined as the fraction of mobile protons (H1) linked to 
the triglyceride relative to those of water [e.g., IDEAL IQ 
(General Electrics), mDixon-Quant (Philips) and Multi-
echo VIBE Dixon (Siemens)]. Finally, steatosis can also be 
assessed by MR spectroscopy, which directly measures the 
relative proton quantity from water and triglycerides sig-
nals. However, this method is limited by the delicate spectral 
analysis of data and its sampling volume. PDFF-MRI is con-
sidered the method of reference, as it allows quantification of 
steatosis in the entire liver and because it is easy to perform 
and analyze [82]. It should also be noted that thresholds for 
grading steatosis differ between PDFF-MRI (6.4%, 17.4%, 
and 22.1%) and histological analysis (5%, 33%, and 66%). 
Indeed, the methods of evaluation of steatosis are different 
[82]. PDFF-MRI considers the proportion of mobile protons 
within fat molecules in a three-dimensional voxel, whereas 
histological analysis evaluates the fractions of hepatocytes 
with fat vacuoles in a two-dimensional plane.

However, if MRI-PDFF is the non-invasive gold stand-
ard to assess steatosis, it gathers the limitations of MRI in 
routine clinical practice (time-consuming and costly tech-
nique). The most original and interesting AI-based approach 
has been published by Han et al. [83]. They developed a 
one-dimensional deep learning model using raw radiofre-
quency ultrasound data to diagnose NAFLD and quantify 
the hepatic fat fraction. If inaccessible to the medical frame-
work, raw radiofrequency ultrasound signals are richer in 
information than gray-scale B-mode images. It allowed a 
strong correlation between the ultrasound-based predicted 
fat fraction and MRI-PDFF (Pearson r = 0.85; p < 0.001), 
with excellent accuracy (96%) for NAFLD diagnosis in the 
test cohort. However, the diagnostic performances of the 
model decreased when MRI-PDFF was greater than 18%.

Besides steatosis, MRI is also the non-invasive gold 
standard to detect and quantify liver iron concentration 
[84, 85]. It is a reliable method based on multi-echo gra-
dient-echo sequences, available on every device, either 1.5 
or 3-Tesla MRI. Liver iron overload results in lower liver 
intensity due to T2 and T2* relaxation time shortening. 

Quantification can be obtained by the computation of T2* 
(or R2*), by measuring the liver to muscle signal intensity 
ratio (SIR) or by combining both methods. It can be coupled 
with that of liver steatosis by the DIXON method. As iron 
deposition in the liver is responsible for toxicity, monitoring 
liver iron overload could become a prognostic factor of pro-
gression of CLD [86, 87]. Neither ultrasound nor CT scan, 
whether or not enhanced by AI, has proven valuable for the 
detection or quantification of iron overload.

Pejorative evolution of chronic liver diseases

The prediction of the risk of progression of CLD is in 
the spotlight. It is particularly true with the increasing 
prevalence of NAFLD as its progression to steatohepa-
titis (NASH) predisposes to cirrhosis and HCC. NASH 
is characterized by the presence of steatosis with lobular 
inflammation and hepatocyte ballooning, leading to necro-
sis, apoptosis, increased collagen extracellular matrix and 
ultimately, fibrosis. In this field, the development of non-
invasive markers is at its preliminary stages. Recently, 2D 
SWE demonstrated greater capabilities in liver characteri-
zation than solely stiffness assessment using shear waves 
speed. Indeed, shear waves disperse as they pass through the 
liver. Such dispersion can be estimated using a mathemati-
cal parameter called the dispersion slope. Sugimoto et al. 
suggested that this parameter was indirectly impacted by 
lobular inflammation, which could be helpful to detect and 
grade inflammation [88, 89], gold standard but could also be 
biased as it correlates with liver fibrosis [90, 91]. The com-
bination of this parameter with the assessment of steatosis 
(using the attenuation coefficient) and fibrosis (using shear 
wave elasticity) could become an acceptable substitute to the 
pathology gold standard in NASH. These concepts have also 
been explored using MR elastography. The damping ratio, 
derived from the complex shear modulus, could discriminate 
NASH, even without advanced fibrosis, raising the possibil-
ity of reflecting inflammation [92]. Besides fibrosis as men-
tioned above, Bastati et al. also showed that gadoxetic acid-
enhanced MRI could be used to distinguish NAFLD from 
NASH, as the relative enhancement on the hepato-biliary 
phase (at 20 min) negatively correlated with the degree of 
lobular inflammation and ballooning, but not with steatosis 
[29]. Other MRI-derived parameters, such as the T1 relaxa-
tion time, have also proven valuable in identifying NASH 
when combined with fat fraction and liver stiffness [93, 94]. 
Proton-decoupled phosphorus 31 MR spectroscopy may also 
help because of the changes in metabolites concentrations 
in NASH including NADPH (reduced form of nicotinamide 
adenine dinucleotide phosphate), a marker of inflammation 
and fibrinogenic activity in the liver [95]. The relative failure 
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of accurately assessing non-invasively liver inflammation 
may be overcome by AI-based techniques in future.

In compensated advanced CLD, as the problem is no 
longer to predict the risk of progression of fibrosis, it is 
relevant to focus on the patient survival cliff which is char-
acterized by the occurrence of HCC, portal hypertension 
decompensation or liver failure.

If HCC risk stratification models based on clinical-biolog-
ical (age, sex, diabetes, AST/ALT, albumin, platelets, etc.) 
parameters exist [96–102], they cannot consider the direct 
analysis of the liver parenchyma, which is the pathophysi-
ological substrate of hepato-carcinogenesis. In the 1990s, 
several authors studied the incidence of HCC according to 
the liver echostructure [103–105]. They concurred on the 
excess risk of a nodular heterogeneous echostructure with 
an estimated relative risk of up to 20 [103]. Unfortunately, 
this did not lead to the development of reliable imaging risk 
stratification models.

Clinically significant portal hypertension (CSPH), defined 
by a hepatic venous pressure gradient (HVPG) ≥ 10 mmHg, 
is critical for CLD prognosis. If the definition relies on the 
invasive measurement of the HPVG, different non-invasive 
liver-based approaches have been developed. As previ-
ously discussed, liver stiffness is a robust biomarker of liver 
fibrosis. It was therefore expected to observe a correlation 
between liver stiffness and HPVG and a capability to dis-
criminate patients with CSPH [106–110]. Furthermore, 
liver stiffness was also proven to have a prognostic value 
for portal hypertension-related complications including 
clinical decompensation and variceal bleeding [111–113]. 
As liver surface nodularity is also a biomarker of cirrhosis, 
it has been shown to have a similar performance to liver 
stiffness for the detection of CSPH [114]. However, such 
diagnostic performances are only true in portal hyperten-
sion secondary to cirrhosis, not in pre- or post-sinusoidal 
portal hypertension. In contrast, spleen stiffness could prove 
to be a promising technique for monitoring HPVG [115]. 
On the other hand, an innovative approach consisted of the 
development of a computational model for estimating HVPG 
based on CT angiographic images [116]. Recently, AI-based 
models, either traditional radiomics or deep learning, have 
been developed for CT and/or MRI, with very high diag-
nostic performances [117–120]. More precisely, Liu et al. 
developed two DL CNN models (CT- and MRI-based) on 
liver and spleen images that achieved strong diagnostic 
performances for identifying patients with CSPH with an 
AUC value of 0.93 (CT) and 0.94 (MRI) on an independent 
testing dataset. These models outperformed liver stiffness 
(AUC = 0.73) [118].

Predicting liver failure is also crucial for patient manage-
ment, either during the natural course of CLD or preop-
eratively before major hepatectomy. To this date, the deci-
sion of portal vein embolization before major hepatectomy 

still relies on the simple measurement of the liver volume. 
Accurate prediction of postoperative liver failure is still not 
implemented in the clinical routine. This could beneficiate 
from the development of AI-based models. Indeed, several 
studies reported performant predictive radiomics models for 
identifying patients at risk of liver failure after major hepa-
tectomy [121–123].

Future perspectives

To date, reproducible quantitative imaging biomarkers are 
available to assess liver fibrosis, steatosis, and iron overload. 
If MR imaging with elastography is the most exhaustive 
modality to assess CLD, as these biomarkers can be evalu-
ated during a single examination, without the need of con-
trast agents (Fig. 2), liver ultrasound with the concomitant 
performance of US-guided elastography during the same 
examination seems the most relevant and time-efficient first-
line technique for clinical routine. Artificial intelligence has 
already proven valuable to create new biomarkers [124] and/
or increase the diagnostic performances of the existing ones 
[66], but has not integrated routine clinical practice yet. As 
MRI cannot be extensively recommended in routine clini-
cal practice given its cost and limited availability, AI could 
help maximize diagnostic performances of ultrasound. AI 
may also help in automatizing time-consuming tasks such 
as measurement of the liver volume using deep CNN [125, 
126], a simple prognostic biomarker of the pejorative out-
come of acute liver failure [127]. But to become clinical 
tools, AI models should be developed following a high-
standard process to achieve generalizability and transfer-
ability including training on datasets representing the wide 
spectrum of the disease expression to avoid selection biases, 
and independent and prospective testing to avoid overfitting 
[20].

Furthermore, despite the remarkable rise of quantita-
tive imaging biomarkers for the prediction of pathological 
features, some decisive clinical needs remain unmet. The 
assessment of the short- and long-term risk of progression 
of CLD toward a pejorative outcome (e.g., liver failure, por-
tal hypertension decompensation or HCC [96–102]) still 
requires the development of reliable non-invasive tools. This 
absence can be explained by the difficulty of implementing 
studies that would need to be exhaustive and prospective 
over a long period to collect a large number of pejorative 
events. If fibrosis and steatosis appear as decisive markers 
for the characterization of CLD, they fail to accurately pre-
dict the progression of early-stage CLD to cirrhosis-related 
complications. Assessing the disease activity, or inflamma-
tion, would better reflect the risk of progressive fibrosis and 
thus its complications. Refining risk stratification of pro-
gressive disease from initial diagnosis would majorly impact 
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therapeutic management. Unfortunately, at the date of this 
review article, only preliminary research tools exist, without 
currently clinical transfer and applicability, and none was 
based on AI techniques. Stratification of the disease pro-
gression is crucial for the accurate selection of patients who 
will most benefit from treatment, therefore avoiding side 
effects if no benefit is expected, to achieve the best clinical 
outcome/cost ratio.

Conclusion

As varied as they are, image-based biomarkers can provide a 
comprehensive representation of the liver parenchyma at the 
time of initial diagnosis, or at any time during the disease, 
creating the opportunity to outdate invasive gold standards 
and impact on clinical management. Artificial intelligence 
provides opportunities to revolutionize liver imaging, by 

creating novel reproducible and quantitative imaging bio-
markers and augmenting human intelligence to improve 
decision-making and operational processes. It aims to be 
part of personalized care, from diagnosis to treatment, as it 
learns without explicit programming. To achieve this goal, 
certain limitations need to be overcome. Extensive work 
is still required to substantiate AI by pathology, molecular 
and genetic substrate. Precision medicine may ultimately 
be achieved by integrating clinical, biological (such as sin-
gle-cell RNA-seq, exome sequencing), serological (such as 
blood-based biomarkers) and imaging data.

A future challenge for meeting the clinical needs of 
CLD is the stratification of the risk of disease progression 
to pejorative outcomes, aiming at identifying patients who 
will most benefit from treatments. In this regard, it is of 
paramount importance that AI models will be developed 
with the concept of a future integration as part of the clinical 
routine enabling their widespread application.

Fig. 2  Magnetic resonance imaging-based quantitative biomarkers for steatosis (fat fraction), iron overload (R2*) and fibrosis (MR elastography)
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MULTIMODALITY IMAGING AND ARTIFICIAL INTELLIGENCE FOR TUMOUR 

CHARACTERIZATION: CURRENT STATUS AND FUTURE PERSPECTIVE 

 

Further explanations of the different concepts of Artificial Intelligence along with the 

requirements to develop clinically relevant and safe models were discussed in “Multimodality 

Imaging and Artificial Intelligence for Tumour Characterization: Current Status and Future 

Perspective” published in Seminars in Nuclear Medicine. We also introduced the potential 

applications in oncology. Indeed, Research in medical imaging has yet to achieve precision 

oncology. Over the past 30 years, only the simplest imaging biomarkers (RECIST, SUV,…) have 

become widespread clinical tools. This may be due to our inability to accurately characterise 

tumours and monitor intra-tumoral changes in imaging. Artificial intelligence, through machine 

learning and deep learning, opens a new path in medical research because it can bring together 

a large amount of heterogeneous data into the same analysis to reach a single outcome. 

Supervised or unsupervised learning may lead to new paradigms by identifying unrevealed 

structural patterns across data. Deep learning will provide human-free, undefined upstream, 

reproducible, and automated quantitative imaging biomarkers. Since tumour phenotype is driven 

by its genotype and thus indirectly defines tumoral progression, tumour characterisation using 

machine learning and deep learning algorithms will allow us to monitor molecular expression 

noninvasively, anticipate therapeutic failure, and lead therapeutic management. To follow this 

path, quality standards have to be set: standardization of imaging acquisition as it has been done 

in the field of biology, transparency of the model development as it should be reproducible by 

different institutions, validation, and testing through a high-quality process using large and 

complex open databases and better interpretability of these algorithms.  
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Research in medical imaging has yet to do to achieve precision oncology. Over the past
30 years, only the simplest imaging biomarkers (RECIST, SUV,. . .) have become widespread
clinical tools. This may be due to our inability to accurately characterize tumors and monitor
intratumoral changes in imaging. Artificial intelligence, through machine learning and deep
learning, opens a new path in medical research because it can bring together a large amount
of heterogeneous data into the same analysis to reach a single outcome. Supervised or
unsupervised learning may lead to new paradigms by identifying unrevealed structural pat-
terns across data. Deep learning will provide human-free, undefined upstream, reproducible,
and automated quantitative imaging biomarkers. Since tumor phenotype is driven by its
genotype and thus indirectly defines tumoral progression, tumor characterization using
machine learning and deep learning algorithms will allow us to monitor molecular expression
noninvasively, anticipate therapeutic failure, and lead therapeutic management. To follow
this path, quality standards have to be set: standardization of imaging acquisition as it has
been done in the field of biology, transparency of the model development as it should be
reproducible by different institutions, validation, and testing through a high-quality process
using large and complex open databases and better interpretability of these algorithms.
Semin Nucl Med 50:541-548 © 2020 Elsevier Inc. All rights reserved.

Introduction

Artificial intelligence (AI) is a widely spread term referring
to different fields and leading to different objectives. Medi-

cine and patient care are at the dawn of a revolution. Future is
personalized medicine, from diagnosis to treatment, and
machine learning (ML) will be part of it because it can learn
without explicit programming.1 Because of the obvious rela-
tively large amount of images and its impact in oncology,
research in medical imaging has been one of the first to explore
this new tool. Indeed, it is known that tumor phenotype is

driven by its genotype and can be assessed by the multiple
imaging modalities, morphologic and functional. ML will help
medical imaging analysis for tumor detection, segmentation,
characterization, treatment, and follow-up. Certainly, human
assessment is precious and can evaluate different tumor, qualita-
tive, and semiquantitative features (size, shape, calcifications,
necrosis, etc.). These features are part of the medical lexicon
and are called “semantic.” However, semantic features are time-
consuming and tend to be subjective and poorly reproducible.
Therefore, their use remains limited. As opposed to semantic
features, ML-based imaging biomarkers are quantitative, repro-
ducible, and automatically measurable. With the emergence of
molecular targeting therapeutics, we urgently need accurate
tools to propose the most suited treatments. Furthermore,
molecular expression in tumor can change under treatment.
Multimodal imaging may help in monitoring molecular expres-
sion noninvasively, anticipating therapeutic failure, and leading
therapeutic management.

To reach this objective, AI algorithms will help in identifying
new image biomarkers, inaccessible to human eyes. These new
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image biomarkers will reflect imaging tumor phenotype and
indirectly its genotype. We aim to expose in this paper the
state-of-the-art and future perspectives of AI driven by multimo-
dality imaging.

Complex and Reproducible
Imaging Biomarkers Beyond
Visible
In the era of personalized treatments (molecular-targeted
therapies, immunotherapy, locoregional therapy, etc.), the
international consensus in oncology still advocates monitor-
ing solid neoplasia, as varied as they are, according to the
Response Evaluation Criteria in Solid Tumors (RECIST) cri-
teria. These criteria are based on the sum of measurements of
the longest axis of tumor lesions, chosen arbitrarily, without
considering volume, shape, morphology, vascularity, and
even less the internal structure reflecting cellular metabolism.
If nuclear medicine may be an added value in the follow-up
of solid neoplasia (Standardize Uptake Value), its use remains
limited. This may be due to our inability to accurately charac-
terize tumors and monitor intratumoral changes in imaging.
We need new parameters, human-engineered or free, to go

beyond the visible image and more sophisticated statistical
analysis to choose the most impacting features. ML meets all
these requirements. This approach consists of extracting pat-
terns from a set of data in order to make predictions based
on statistics (Fig. 1). In the case of medical image analysis,
these patterns are called imaging biomarkers.2 This extrac-
tion can be performed based on hand-crafted descriptive
mathematical models or directly learned from the images
without any human intervention. These imaging biomarkers
can be used in two types of ML algorithms, the supervised
and the nonsupervised.

Supervised learning consists in building a predictive model
thanks to outputs already known and labeled by the physi-
cian. One of the main applications lies in classification issues,
which in oncology and tumor characterization can include
the prediction of tumor grade (or tumor differentiation),
molecular expression, risk of recurrence, or even survival.
Specific molecular expressions are impacting prognosis and
treatment by inducing resistance profile or allowing targeted
treatments (HER, KRAS, IDH,. . .). Different classifiers exist
and can be more or less efficient according to the hypothesis-
driven research. The most popular classifiers are random for-
ests, support vector machines, and convolutional neural
networks (CNN). On the contrary, unsupervised learning
will apply to unlabeled data. The purpose of unsupervised

Figure 1 Artificial intelligence (machine learning and deep learning) processing according to quality standards. Clinical,
biological, and imaging data should be divided into two strictly distinct sets: training/validation and test. Training/vali-
dation dataset should be used to design the model. Only then will the performance metrics of this AI model be evalu-
ated on the test dataset. AUC: Area Under the Curve
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learning will be to reveal new medical paradigms by identify-
ing new structures in the data. A common application lies in
clustering data and/or estimates its probability density. Unsu-
pervised learning may help to group patients with different
expressions of a same disease which can lead to a better
understanding of it. There is a wide variety of algorithms,
from the most classical K-means, through self-organizing
maps to neural networks (auto-encoder).

Radiomics
Radiomics are noninvasive, reproducible, and automatically
calculated quantitative features that are supposed to reflect
the heterogeneity of the tumor phenotype and thus indi-
rectly its genotype. Radiomics correspond to human-
engineered and mathematically defined image descriptors
either simple, such as size or shape, to more complex: first-
order features based on intensity voxel histogram statistics,
second-order or texture features (gray-level co-occurrence
matrix, gray-level run-length matrix,. . .) reflecting the
spatial relationship between voxel values or higher order
statistics (fractals, wavelets,. . .) representing more complex
patterns.
Recently, a new approach allowed us to extract new

human-free image biomarkers, mathematically undefined
upstream, and sometimes inaccessible to our understand-
ing.3 Some authors have even used the term “deep radio-
mics” by analogy to deep learning and the use of complex
neural networks.4 On the contrary of “traditional” hand-
crafted radiomics, they are free of human intervention and
can identify new representations and the most informative
properties of the image to solve research hypotheses. Deep
learning is one of the aspects of ML using nonlinear trans-
formations based on CNN imagined from the human neu-
rons. Hidden layers are used to complexify the CNN
model in order to extract and pool neural features with dif-
ferent levels of data abstraction. As the human brain, neu-
ral network can adjust its parameters to optimize its
predictions by reducing the loss function (or error). This
process is called back-propagation. The explainability of
deep learning-based features is very limited for the
moment.

How to Meet the Need of a Large Amount of
Data?
Paradoxically, ML may be limited in medical imaging by the
lack of data. Indeed, simple models such as linear models or
support vector machines can be built with few parameters.
They are therefore easier to learn and require less data. On
the other hand, these models are often too simple to describe
class distributions. This complexity can be learned with neu-
ral networks which contain millions of parameters. Their
learning requires a large amount of data. These millions of
parameters can exactly record the complete dataset, which is
called overfitting (Fig. 2). It is therefore necessary during the
training to make sure that there are enough data to avoid this
phenomenon.

Several techniques exist to overcome the data limitation.
First, a widespread computer science technique called “Data
Augmentation” can be applied. This corresponds to the artifi-
cial creation of new data from the original dataset. The diffi-
culty lies in respecting the original data. Especially in oncology
and medical imaging, it can be particularly hazardous to create
new data. Therefore, only simple geometric transformations of
the image should be recommended. These can be rotated, mir-
rored, or translated. A second technique lies in the existence of
common images features. A second type of data augmentation
is the generation of synthetic data using neural networks
known as Generative Adversarial Network.

Because deep learning requires large databases, it can be
smart to pretrain a learning model. It is not necessary to use
medical imaging databases and large databases of nature or
animal images can be used. As an example, ImageNet, a pub-
licly accessible database, is commonly used to pretrain deep
neural networks. The re-use of this pretrained model is called
transfer learning. The first learning layers will come from the
pretraining, mimicking the visual primitive system, and this
pretrained model will be re-trained, or fine-tuned, on the
study database.

Validation and Testing
Two essential steps in the development of diagnostic and
characterization algorithms are validation and testing (or
external validation). The objective of these steps is to

Figure 2 Illustration of different two-dimensional decision boundaries: from (A) too simple or underfitting through (B)
well-balanced complexity to (C) too complex or overfitting.
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optimize the training of a model, not to obtain the best diag-
nostic performance on the training dataset, but to allow a
generalization of the model to patient populations different
from the training population.
The validation step allows the parameters of the training

model to be adjusted to avoid overfitting the training data. It
is obvious that reaching high diagnostic performances on the
training set alone is quite simple. At best, these performances
will be overestimated. At worst, it will simply be wrong. In
order not to sacrifice part of the training data at the validation
step, it is common to use a technique called cross-validation.
This technique consists in dividing the training set into k
groups (usually 5 or 10), selecting one of these groups, train-
ing the model on the other k-1 groups and then validating
on the selected group. This operation can be repeated k time.
Especially in medicine, when creating these subgroups, it is
necessary to ensure that percentages of classes are the same
as that of the overall population.
The test step allows to evaluate the performances of the

selected parameters. To do this, the dataset allocated to the
test must be independent of the first dataset, ideally from an
external database. It should never be used to train the model
and it is therefore imperative to keep a strict separation
between the training and test datasets. In a practical way, the
model has to be locked before being tested on the external
base without the possibility of a new learning iteration.

Tumor Characterization by
Multimodality Imaging
Medical imaging is rich in its diversity (X-ray, CT scan, ultra-
sound, MRI, metabolic imaging) and each technique produ-
ces multiple and complementary image dataset. If the
diversity and complementarity of its modalities have proven
their importance in patient care, they are different informa-
tion for human but also for ML. The analysis, during the
same diagnostic or therapeutic process, of multiple imag-
ing modalities repeated over time, is a difficult objective to
achieve. To do so, harmonization between the imaging
techniques must be reached.

Tumor progression over time and response to treatment
by automated methods should provide valuable information.
This unstructured temporal integration of data is a new
dimension for ML.

Figure 3 illustrates the potential impacts of AI on patient
management.

Malignancy Risk Assessment
First objective in oncology is usually to determine the
benignity or malignancy of a lesion. It may be a very chal-
lenging task with sometimes limited answers and unneces-
sary follow-ups. As already mentioned, semantic features

Figure 3 Tumor characterization by AI impacts oncology patient management. Compared to human-based manage-
ment, AI can predict the tumor progression profile by stratifying its prognosis, optimize treatment modalities for better
performance and allows early detection of bad and good responders to treatment.
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are subjective and poorly reproducible leading to imper-
fect “Reporting and Data Systems” for assessing the risk of
malignancy. Using “data augmentation,” transfer learning
and neural features extraction techniques from ultrasound
images, Chi et al5 proposed an algorithm based on a ran-
dom forest classifier with higher performance than
TI-RADS, a US-based widespread malignancy risk stratifi-
cation system, in distinguishing benign from malignant
thyroid nodules. Thoracic oncology has also been a major
field of interest. Indeed, diagnostic issues are encountered
for infra-centimetric pulmonary nodules while nonen-
hanced CT lung contrast offers interesting possibilities for
ML. These diagnostic issues are encountered since meta-
bolic imaging techniques such as PET scan are noncontrib-
utory and growth over time is the only diagnostic tool
available. However, follow-up modalities and screening pro-
grams are still debated in terms of reduction of mortality.6 In
this context, Lui et al7 proposed a semantic (density and mar-
gins) and radiomics features-based nomogram to assess the risk
of malignancy of small lung nodules. Semantic features slightly
improved the diagnostic performance of the radiomics signa-
ture. Finally, it can be noted that interest has also been shown
in pancreatic intraductal papillary mucinous neoplasms8 or in
liver masses9 to achieve the same objective of assessing the risk
of malignancy.
It is interesting to highlight that, so far, many ML studies

have focused on this objective without achieving sufficient
clinical impact to be used in practice.

Tumor Characterization for Precision
Oncology
Accurate noninvasive tumor characterization is the key for
stratifying prognosis, predicting treatment response and opti-
mizing patient management. It is supported by the proven
assumption that imaging tumor phenotype is driven by its
genotype and indirectly determines its evolution and our
management.
It starts by defining the histologic subtype. This task was

evaluated by Yasaka et al9 between hepatocellular carcinoma
and other liver malignancies using CT scan. As it is the case
from the physician’s point of view, MRI should be superior to
CT scan to accomplish this task using ML. Hamm et al10 devel-
oped a deep learning model based on multiphasic contrast-
enhanced T1-weighted imaging to discriminate hepatocellular
carcinoma, intrahepatic cholangiocarcinoma, colorectal metasta-
sis, focal nodular hyperplasia, hemangioma, and cyst achieving
an accuracy of 0.92. The diagnostic performance of this model
outperformed two radiologists’ review (respective accuracy of
0.80 and 0.85). Hepatocellular carcinoma was diagnosed by the
model with a sensitivity of 0.94 and a specificity of 0.98.
Patient management can also start by the discovery of met-

astatic lesions without the knowledge of the primary neopla-
sia. If it is sometimes possible to guide the diagnostic
investigations of the primary lesion, they are usually exhaus-
tive due to the absence of diagnostic orientation leading to a
delayed therapeutic management. In a retrospective study
including patients with brain metastases secondary to breast,

lung, gastrointestinal cancers, and melanoma, Kniep et al11

designed a multiparametric MRI-based (T1-weighted con-
trast material-enhanced, T1-weighted nonenhanced, and
fluid-attenuated inversion recovery) model to discriminate
the tumor type of the brain metastases and guide the diag-
nostic investigations of the primary lesion. Using radiomics
features and a random forest classifier, they achieved higher
diagnostic performance than radiologist but still relatively
modest with an Area Under the Curve (AUC) value of
0.64 for non!small-cell lung cancer. The highest diagnostic
performance was observed for melanoma with an AUC value
of 0.82 with a statistically significant difference compared to
radiologist. The explication of such results for melanoma
may lie in the presence of increased T1 signal areas (melanin)
insufficiently identified by the radiologist. Nonenhanced T1
weighted imaging first order maximum was in the top 10
most important radiomics features for melanoma. This could
reflect the superiority of automated and reproducible quanti-
tative radiomics features over semantic features.

Second, it is known that prognosis is well correlated with
tumor grade. Thus, rapidity of treatment initiation should
take tumor grade into account. When biopsy is not yet avail-
able, anticipating tumor grade with noninvasive imaging
could impact therapeutic management and, for example,
indicate neoadjuvant therapy. It is also important to note
that tissue sample biopsy may not appreciate certain higher
grade focal areas within the tumor. ML may supplement this
limitation. For example, if tumor grade of neuroendocrine
pancreatic tumor is still defined according to ki-67 index, it
can be well predicted by a ML nomogram.12

Whether treatment in oncology relies more and more on
targeted therapies, pathology of tissue sample is still
required to evaluate the expression of these targets within
the tumor. Yet, tumor may be heterogeneous with different
areas with distinct molecular characteristics. Knowing the
genetic status of the tumor through a virtual biopsy could
aid pretreatment decision-making. Genetic characteriza-
tion of tumor by radiomics is called radiogenomics. Aerts
et al were among the first to identify CT-based radiomics
features in lung and head-and-neck carcinoma associated
with the underlying gene-expression patterns by reflecting
tumoral heterogeneity.13 These radiogenomics features
outperformed TNM classification for predicting survival
and may impact therapeutic management. Similar results
have been reported in non!small-cell lung cancer using a
CT-based deep learning model in comparison with stan-
dard methods such as TNM classification.14 In thoracic
oncology, several molecular-targeted therapies exist such
as tyrosine kinase inhibitor (TKI)-sensitive mutations of
the epidermal growth factor receptor (EGFR), ALK, ROS1,
or MET genes. Presence of TKI-sensitive mutations of
EGFR has already been the focus of studies which have
shown that it can be predicted with high accuracy by ML
algorithms.15 In Jia et al’s study,15 predicting TKI-sensitive
mutations of EGFR using CT-based ML algorithms had
benefited from clinical and biological data. When clinical
features (sex and smoking history) were added to the
model, diagnostic performance was slightly improved.
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Thoracic oncology has not been the only field of interest.
In Neuro-oncology, glioma can present with different
molecular profiles impacting prognosis and driving patient
management and treatments. Predicting tumor grade and
mutational status of 1p19q, IDH1, MGMT, and ATRX may
be achieved with 18F-FET PET/MRI-based ML algorithms.16

Finally, from tumor characterization results a prognosis
and a probability of response to treatment. In addition to
prognosis, risk of local recurrence can also be appreciated by
ML models such as in patients with hepatocellular carcinoma
on cirrhosis after local treatment.17

Obviously, therapeutic choices also depend on the extension
of the tumor, from local invasion to lymph node status. Bladder
cancer prognosis clearly correlates with bladder muscle invasion
requiring a radical cystectomy instead of a transurethral resec-
tion. Preoperative accurate assessment of muscular invasion
would prevent under or overtreatment. Combining clinical
with radiomics features from T2-weighted MRI, Zheng et al18

developed a highly performant nomogram for the preoperative
assessment of muscular invasiveness with an Area Under the
Curve (AUC) value of 0.88. On another note, some authors
demonstrated that noninvasive imaging can also accurately
predict deep myometrial invasive and lympho-vascular space
invasion of endometrial carcinoma using MRI-based ML algo-
rithms.19 The same is true for microvascular invasion in hepato-
cellular carcinoma, a difficult preoperative assessment, using
contrast-enhanced US20 or MRI-based21,22 algorithms.
The preoperative prediction of lymph nodes status has also

been a major field of interest as much in breast cancer using
ultrasound23 as in colorectal carcinoma with CT-scan.24

While lymph node metastasis and extranodal extension may
change operative planification or indicate adjuvant treat-
ments in locally advanced cancer, preoperative assessment of
extranodal extension remains poor. In response to this issue,
Kann et al25 developed and validated across different insti-
tutions, a deep radiomics CT-based algorithm achieving
high performance in predicting extranodal extension in
head-and-neck squamous cell carcinoma with an AUC of 0.84.

Response to Treatment
Prediction of response is another challenging objective. As in
breast cancer, pathologic complete response to neoadjuvant
chemotherapy is a major prognostic factor in oncology. Prether-
apeutic prediction would be a significant added value for patient
management. This task was performed by Li et al26 focusing on
tumor volume in a retrospective study of breast cancer patients
prior to neoadjuvant chemotherapy. Peritumoral environment
should also provide relevant prognostic information as it is illus-
trated by different immune score quantification developed in
nonsquamous non!small-cell lung,27 colon,28 or gastric can-
cer.29 Jiang et al designed a radiomics CT-based model predic-
tor of the immuno-score of gastric cancer that was significantly
associated with disease-free and overall survival.30 Peritumoral
T-cell immune environment targeting specific antigens at the
surface of the tumor cells is also the key of the efficacity of
immunotherapy. Sun et al designed a radiomics model to pre-
dict CD8 T-cell infiltration as an image biomarker for good

response to immunotherapy.31 A high baseline radiomics score
was associated with improved overall survival. These results are
consistent with other radiomics model developed in patients
with metastatic melanoma and non!small-cell lung cancer
treated by PD-L1 immunotherapy for predicting response.32,33

As explained above, RECIST criteria are still advocated
despite its limitation. ML should help to detect treatment fail-
ure at an early stage by monitoring intratumoral changes
reflecting genotypic modifications. In patients with unresect-
able hepatic metastases of colorectal cancer treated with FOL-
FIRI and bevacizumab, Dohan et al34 developed a radiomics
score for early prediction of good responders. It supple-
mented standard evaluation as it was able to predict a poor
outcome at 2 months with the same performance as RECIST
1.1 at 6 months. Other authors reported interesting results
for the prediction of complete pathologic response in tri-
ple-negative breast cancer at pretreatment MRI based on
Kurtosis, a traditional radiomics feature.35

Furthermore, response evaluation of solid tumor under
immunotherapy is particularly challenging in imaging with
the concept of pseudo-progression that we are unable to differ-
entiate from real progression, resulting in a delay in therapeu-
tic management and the continuation of ineffective treatment.
Tumor characterization for identifying pseudo-progression
still needs to be studied.

Like the concept of pseudo-progression under immuno-
therapy, glioblastoma under Temozolomide, an alkylating
agent, in association with radiotherapy may demonstrate
pseudo-progression up to several weeks after the end of treat-
ment. This pseudo-progression mimics true progression and
diagnosis is usually made on spontaneous improvement or
stabilization of imaging findings over several months. Thera-
peutic consequences can be important. According to Akbari
et al, pseudo-progression has distinctive MRI-based radio-
mics features that could help for patient management.36

Radiation therapy may also cause radiation injury regardless
of the underlying tumor type resulting in new contrast
enhancement. Thus, differential diagnosis with tumor recur-
rence may be challenging and impacts patient management.
Subject to the small number of patients (52) and the lack of
external testing, Lohmann et al37 support the contribution of
radiomics features in distinguishing radiation injury from
recurrent brain metastasis. The radiomics model using com-
bined contrast-enhanced MRI and O-(2-[18F]fluoroethyl)-L-
tyrosine PET-based features outperformed single-modality
models (PET or MRI) reinforcing the interest of associating
morphologic and functional imaging modalities.

Perspectives
To be an integral part of medical imaging and patient man-
agement, several challenges remain. As explained, medical
imaging data remain rare for deep learning requirements.38

As long as large and complex databases from different institu-
tions are not available, “Data augmentation/generation” and
“Transfer Learning” will serve as powerful tools but hardly
compensate for the lack of data. Thus, it seems obvious that
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the quality of a ML model depends on the training database.
It is therefore essential to use high-quality images39 and stan-
dardize imaging acquisition protocols which is even more
necessary for multimodal algorithms. Also, training and vali-
dation databases must represent the full spectrum of the dis-
ease in order to make the algorithms generalizable and
robust. The evaluation of the diagnostic performance of the
model must therefore be carried out in an external and inde-
pendent population to ensure this generalizability. However,
an external and independent test of the model is frequently
missing. Second, ML algorithms should be reproducible.
Authors should use open source code packages (eg, Pyradio-
mics) to standardize the extraction of data from medical
images. Other research institutions should be able to repro-
duce any of the published ML models. The trained network
or a network of identical architecture with the same training
database and the same initialization parameters should be
shared. Unfortunately, deep learning algorithms are not eas-
ily reproducible. Unlike traditional radiomics features, math-
ematically defined, deep radiomics features are usually
represented by the concept of “black box.” They result from
nonlinear transformations and the deeper the convolutional
neural network, the more difficult it becomes to interpret the
deep radiomics from a physio-pathologic point of view. A
final condition for bringing ML into tomorrow's medicine is
to reliably automate the segmentation of lesions. Segmenta-
tion using CNN (as U-net or cascaded architecture) are
already proposed.40 Most published studies rely on manual
segmentation, implicating interobserver variability or, at
best, semiautomatic segmentation.
To meet reference quality standards, Lambin et al41 pro-

posed a radiomics quality score. In a recent review of radio-
mics in hepatocellular carcinoma using this score, all studies
but one were scored below 18/36 (50%). Main reasons were
the retrospective design, the lack of validation, and open-
access scientific data resources. To guide authors, a Checklist
for Artificial Intelligence in Medical Imaging (CLAIM) has
also been proposed.42

On another note, ML would benefit from an exhaustive
exploitation of multimodal imaging techniques. Indeed, ultra-
sound remains the least studied imaging technique. A few
reasons can be advanced. The main limitation lies in the com-
plete absence of standardized acquisition. However, ultra-
sound brings real-time kinetics, elastography, or Doppler data.
Regarding the published MRI-based algorithms, they usually
do not associate different sequences losing multiple informa-
tion on tissue characterization. Combining metabolic and
molecular imaging modalities (such as 18FET PET scanner)
with conventional CT scan or MRI will also contribute to
tumor characterization and better understanding of underlying
molecular mechanisms. As an example, comparison of meta-
bolic imaging with diffusion-weighted MRI is already useful
for assessing cell density and proliferation. Furthermore, ML
will learn from the different metabolic radiotracers reflecting
intratumoral metabolism and heterogeneity.
At the difference of physicians who benefit from the inter-

pretation of previous examinations, no studies have included
temporality in the ML algorithms. However, changes in size,

shape, limitation, enhancement, and heterogeneity are crucial
information for tumor characterization.

In our opinion, ML will mostly prove helpful in the
assessment of tumor response. Early detection of nonre-
sponse is crucial to rapidly adapt therapeutic management
and propose new treatments. The tumor phenotype, driven
by the tumor genome, and molecular expression define the
indications for targeted treatments and immunotherapy. As
these tumor characteristics can change under treatment, ML
can be used to monitor the expression of tumor targets,
detect phenotypic changes, and thus adapt treatments early.
The contribution of medical imaging to personalized medi-
cine will rely largely on the automation of image analysis
through ML methods.

Conclusion
For nearly 30 years, multimodal cross-sectional imaging has
been attempting to design reproducible and high-perfor-
mance biomarkers. Only the simplest imaging biomarkers
(RECIST criteria, SUV,. . .) have become widespread clinical
tools. The advent of AI brings new paradigms by identifying
structural patterns across large and heterogeneous data.
However, automated image analysis using these new bio-
markers will only become part of the clinical practice under
several conditions: standardization of imaging acquisition as
it has been done in the field of biology, transparency of the
model development as it should be reproducible by different
institutions, validation and testing through a high-quality
process using large and complex open databases, and better
interpretability of these algorithms.

This work was supported by the French Government
research program « Investissements d’avenir » managed by
“Agence Nationale de la Recherche” [ANR-10-IAHU-02 ]
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PROGNOSTIC STRATIFICATION IN EARLY-STAGE HEPATOCELLULAR CARCINOMA: 

IMAGING BIOMARKERS ARE NEEDED 

 

In this editorial published in Liver International, I discussed the crucial importance of developing 

prognosis stratification biomarkers that could be used to optimize the curative treatment 

approach in hepatocellular carcinoma and to identify patients with early-stage hepatocellular 

carcinoma that might benefit from adjuvant therapies after tumour ablation. The main challenge 

of preliminary studies developing such tools is obviously clinical transferability. To be 

implemented in the clinical routine, the computation and use of imaging-based biomarkers must 

be as simple as possible. It is unrealistic to think that, with the increasing number of imaging 

studies, radiologists will have the time to make manual annotations on images. Imaging-based 

biomarkers should be just a click away. This requires certain technical issues to be resolved, such 

as the misregistration of sequences mainly due to inconsistent breathing, or automated 

segmentation of the tumour. 
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E D I T O R I A L

Prognostic stratification in early- stage hepatocellular 
carcinoma: Imaging biomarkers are needed

Early- stage hepatocellular carcinoma (HCC), defined as a single tu-
mour (stage 0 if ≤2 cm; stage A if >2 cm) or ≤3 tumours ≤3 cm (stage 
A) as per the Barcelona Clinic Liver Cancer (BCLC) classification,1 
is eligible for curative treatment including liver transplantation, sur-
gical resection, and percutaneous ablation. Although percutaneous 
ablation has been shown to offer overall survival rates comparable 
to those of surgical resection for small lesions, the latter remains the 
standard therapeutic option for larger lesions (>3 cm) provided that 
the patient is a good surgical candidate.2,3 When both surgical resec-
tion and percutaneous ablation are feasible, the choice between the 
two possibilities mainly relies on liver function, portal pressure, age, 
comorbidities, and local expertise and, except for alpha- fetoprotein 
level, no factors related to the tumour aggressiveness are routinely 
taken into account. For obvious reasons, the presence of microvas-
cular invasion cannot be currently assessed in tumours treated by 
ablation. However, tumour differentiation is accessible by percuta-
neous biopsy, which should reinforce its systematic performance. It 
is therefore urgent to develop pretherapeutic biomarkers to capture 
the heterogeneity of early- stage HCC, risk stratify their prognosis to 
personalize the treatment and identify those that could potentially 
benefit from adjuvant treatment. In this issue of Liver International, 
Wang et al. aimed to develop a state- of- the- art deep learning model 
to predict microvascular invasion (MVI) using pre- treatment mag-
netic resonance imaging (MRI) in patients with solitary tumours 
≤3 cm.4 The originality of this work was to use a cohort of patients 
with surgically resected HCC to train the deep learning model to 
predict the presence of MVI before testing the model in a cohort of 
patients with ablated HCC with recurrence- free survival and overall 
survival as the primary outcomes.

With a very large dataset of 696 patients and a limited imbal-
ance between positive (28.5%) and negative cases of MVI to train 
the model, the latter achieved high performance in the validation 
cohort of surgically resected HCC (AUC of .901 and .816 in BCLC 
A and 0 HCC, respectively). Interestingly, when tested in the abla-
tion cohort, the imbalance between cases at high risk of MVI and 
those at low risk was similar (30.6%) with no significant difference 
in size between HCCs with high risk of MVI and those without. In 
the ablation cohort, the recurrence- free survival rates of patients 
with high MVI risk were 57.1% at 1 year, 30.7% at 2 years, 13.1% 
at 3 years, and 2.6% at 5 years, which were significantly lower than 
those of patients predicted without MVI (87.8% at 1 year, 80.4% at 

2 years, 71.3% at 3 years, and 56.0% at 5 years, p < .001). The 1- , 3- , 
and 5- year overall survival rates were 90.9%, 68.2%, and 49.1% for 
patients with high MVI risk, which were also significantly lower than 
98.4%, 92.2%, and 81.5% for patients predicted without MVI, re-
spectively (p < .001). Using a stepwise multivariate Cox regression 
analysis, this MVI biomarker was shown to be an independent risk 
factor for a lower recurrence- free survival rate, in addition to alpha- 
fetoprotein >20 ng/mL and unfavourable tumour location. The latter 
is most likely explained by technical difficulties and the heat- sink 
effect as it was the only independent risk factor for local tumour 
progression. Interestingly, the MVI biomarker was significantly as-
sociated with intrahepatic distance recurrence (32.3% vs. 9.6% at 
1 year, 57.3% vs. 13.0% at 2 years, 71.0% vs. 20.1% at 3 years, 76.3% 
vs. 32.8% at 5 years), which could reinforce its clinical relevance as 
a companion biomarker of adjuvant therapies. If no significant risk 
factor was found for extrahepatic metastasis, this can be explained 
by the extremely limited number of positive cases (5/180). The over-
all C- index of the multivariate Cox regression model for evaluating 
recurrence- free survival was .73.

In addition to the large size of the datasets and the robustness 
of the deep learning methodology, another strength reinforcing the 
generalisability of the model is the relative heterogeneity of the in-
cluded MR images. Although all MR scanners in the training centre 
were from the same vendor, the acquisition parameters of the dif-
ferent MRI sequences were heterogeneous enough to ensure the 
generalisability of the model to another dataset of MR images from a 
different vendor. Furthermore, this study reinforces the importance 
of exploiting the full potential of MRI to capture all the tumour spec-
ificities. In the same way, radiologists analyse HCCs from all MRI se-
quences, the deep learning model developed in this study performed 
better when integrating a multiphase approach than a single- phase 
approach (AUC of .883 vs. .685–.763 in the validation cohort).

Clinical transferability is the main future challenge of this study, 
which can also be stated for most of the artificial intelligence studies. 
To be implemented in the clinical routine, the computation and use 
of imaging- based biomarkers must be as simple as possible. It is un-
realistic to think that, with the increasing number of imaging studies, 
radiologists will have the time to make manual annotations on all the 
MRI phases. Imaging- based biomarkers should be just a click away. This 
requires certain technical issues to be resolved, such as the misregistra-
tion of sequences mainly due to inconsistent breathing, or automated 
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segmentation of the tumour. It should also be remembered that one 
objective of developing this type of biomarker is to provide prognosis 
stratification for the accurate selection of patients with early- stage HCC 
who will most benefit from adjuvant therapies, therefore avoiding side 
effects if no benefit is expected, to achieve the best clinical outcome/
cost ratio. Therefore, although relevant from a computational perspec-
tive, the best clinical threshold of stratification biomarkers may not be 
found by maximizing sensitivity and specificity as it is done in this study. 
Finally, a classic limitation to the applicability of such deep learning mod-
els to populations with different epidemiology is the high prevalence of 
patients with chronic hepatitis B virus (93.0%–96.1%) and the absence 
of cirrhosis in almost half of the patients in the training cohort. It can be 
noted that a major clinical difference between the ablation cohort and 
the surgical training cohort was the higher prevalence of cirrhosis in the 
ablation cohort (72.2% vs. 44.8%). Nevertheless, it is usual to find such 
differences as there is a systematic selection bias in patients treated 
with ablation (older age, higher total bilirubin, lower albumin, etc.).

To return to everyday clinical challenges, the stratification of 
patients' prognosis at the initial diagnosis of their tumour remains 
an unmet need. For instance, the deep learning model proposed 
here, based on imaging features of tumour aggressiveness, has 
the potential to assist physicians in choosing the most appropriate 
treatment based on the predicted MVI risk. Indeed, surgery may 
be a more appropriate treatment for small HCCs (<3 cm) in surgical 
candidates than ablation if MVI is likely to be present around the 
tumour. Additionally, for nonsurgical candidates or unresectable tu-
mours, detecting features of MVI on pre- therapeutic imaging could 
lead to more aggressive interventional radiology treatments (such as 
multipolar ablation or combined ablation + transarterial chemoem-
bolization) to ensure wider ablation margins and reduce the risk of 
loco- regional recurrence (Figure 1).

However, both curative- intent treatments are associated with a 
high risk of intrahepatic or distant recurrence, reported up to 70% 
overall at 5 years.2,5 In this context, multiple clinical trials have been 
conducted to evaluate the impact of local (i.e., transarterial chemo-
embolization) and systemic (i.e., sorafenib or more recently immu-
notherapies) adjuvant therapies on progression- free survival and 
overall survival.6 Recently, an interim analysis of the randomized 
phase III clinical trial (IMbrave050) of adjuvant atezolizumab + beva-
cizumab for patients at high risk of recurrence following resection or 
ablation has demonstrated a significant improvement in recurrence- 
free survival.7 The high risk of recurrence was well defined in a 
surgical cohort based on the size, number of resected tumours, the 
poor differentiation of the tumour and the presence of micro-  or 
macrovascular invasion on the surgical specimen. Interestingly, in 
the subgroup of patients treated by ablation, the benefit of the ad-
juvant treatment was less clear, and the criteria to define the high 
risk of recurrence were different, relying solely on tumour size and 
number. Pending the results of other ongoing phase II/III trials, no in-
ternational recommendation currently endorses the use of (neo)ad-
juvant treatment in the setting of percutaneous ablation especially 
for single small tumours which is the specific population studied in 
the Wang et al. study. Hence, these approaches based on imaging 
biomarkers are relevant and can help identify a target population 
for future studies where adjuvant therapies would be tested in the 
context of percutaneous ablation.

In conclusion, this study is a promising step forward in develop-
ing prognosis stratification biomarkers that could be used to opti-
mize the curative treatment approach and to identify patients with 
early- stage HCC that might benefit from adjuvant therapies after 
tumour ablation. Prospective clinical trials are needed to refine and 
test this imaging- based biomarker before it can be implemented in 
clinical practice.
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R2* IMPACT ON HEPATIC STEATOSIS QUANTIFICATION WITH A COMMERCIAL SINGLE 

VOXEL TECHNIQUE AT 1.5 AND 3T 

 

Over the last decades, the prevalence of chronic liver diseases and their associated 

morbidity and mortality markedly increased, especially with the rise of metabolic associated 

steatotic liver disease (MASLD). Steatotic liver disease is a liver condition characterised by 

abnormal fat accumulation in more than 5% of hepatocytes. It is presumed to represent the most 

prevalent liver disease worldwide due to its association the metabolic syndrome, obesity and 

type 2 diabetes. However, as highlighted in the most recent multi-society consensus statement 

on new fatty liver disease nomenclature74, SLD does not only refer to MASLD but encompasses 

the whole spectrum of causes of hepatic steatosis from alcohol-associated liver disease to 

cryptogenic causes. Therefore, it is critical to accurately quantify hepatic steatosis in a non-

invasive approach. Multiple non-invasive methods have been developed to evaluate SLD such as 

transient elastography and ultrasound. The current non-invasive gold standard is magnetic 

resonance (MR)-based multi-echo Dixon. This technique measures the proton density fat fraction 

(PDFF), corresponding to the ratio of the fat protons signal to the signal of water and fat protons. 

PDFF has shown an excellent correlation with fat content from biopsies. However, Dixon-based 

techniques are limited by fat-water swaps, where the fat signal is incorrectly assigned to the 

water signal and vice versa, leading to inaccurate quantification. A previous study investigated 

the prevalence of fat-water swaps and showed that 8% of cases suffered from fat-water swaps at 

3.0 T. 

MR spectroscopy measures the chemical composition of fat and is an alternative method 

to multi-echo Dixon PDFF. However, MR spectroscopy techniques offer limited spatial coverage 

and are sensitive to T2-signal decay, leading to inaccurate quantification. Nonetheless, MR 

spectroscopy is useful for fat quantification as it does not suffer from fat-water swaps.  

In this study published in the Canadian Association of Radiology Journal (impact factor in 

2002 of 3.1), we aimed to validate the commercial HISTO fat quantification accuracy at 3.0 T using 

multi-echo Dixon as the reference method, to establish its robustness to R2* variations, and to 

compare the results to measurements performed at 1.5 T. 
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R2* Impact on Hepatic Fat Quantification 
With a Commercial Single Voxel 
Technique at 1.5 and 3.0 T

Véronique Fortier1,2,3,4 , Ahmed Mohamed5, Evan McNabb1, 
Jérémy Dana1 , Rita Zakarian6, Ives R. Levesque3,4,6, and 
Caroline Reinhold1,2,6,7

Abstract
Rationale and Objectives: Fat quantification accuracy using a commercial single-voxel high speed T2-corrected multi-
echo (HISTO) technique and its robustness to R2* variations at 3.0 T, such as those introduced by iron in liver, has not 
been fully established. This study evaluated HISTO at 3.0 T and sought to reproduce results at 1.5 T. Methods: Phantoms 
were prepared with a range of fat content and R2*. Data were acquired at 1.5 T and 3.0 T, using HISTO and a Dixon 
technique. Fat quantification accuracy was evaluated as a function of R2*. The patient study included 239 consecutive 
patients. Data were acquired at 1.5 T or 3.0 T, using HISTO and Dixon techniques. The techniques were compared 
using Bland-Altman plots. Bias significance was evaluated using a one-sample t-test. Results: In phantoms, HISTO was 
accurate within 10% up to a R2* of 100 s−1 at both field strengths, while Dixon was accurate within 10% where R2* was 
accurately quantified (up to 350 s−1 at 1.5 T, and 550 s−1 at 3.0 T). In patients, where R2* was <100 s−1, fat quantification 
from both techniques agreed at 1.5 T (P = .71), but not at 3.0 T (P = .007), with a bias <1%. Conclusion: Results suggest 
that HISTO is reliable when R2* is <100 s−1, corresponding to patients with at most mild liver iron overload, and that 
it should be used with caution when R2* is >100 s−1. Dixon should be preferred for hepatic fat quantification due to its 
robustness to R2* variations.

Résumé

Justificatif et objectifs : La précision de la mesure de tissu adipeux au moyen d’une technique multiécho à haute vitesse 
et à correction t2 pour un seul voxel (HISTO) et sa robustesse aux variations R2* à 3,0 T, telles que celles causées par le 
fer intrahépatique, n’a pas été établie. Cette étude a évalué HISTO à 3,0 T et a cherché à reproduire les résultats à 1,5 T. 
Méthodes : Des fantômes ont été préparés avec un large éventail de contenu en graisse et R2*. Les données ont été acquises 
à 1,5 T et à 3,0 T en utilisant HISTO et une technique Dixon. La précision de la quantification de graisse a été évaluée sous 
forme de fonction de R2*. L’étude sur les patients a inclus 239 patients consécutifs. Les données ont été acquises à 1,5 T et 
à 3,0 T au moyen des techniques HISTO et Dixon. Les techniques ont été comparées au moyen des graphiques de Bland-
Altman. La signification d’un biais a été évaluée en utilisant un test t à un échantillon. Résultats : Dans les fantômes, HISTO a 
été exact dans une limite de 10 % et jusqu’à un R2* de 100 s-1 pour les deux forces de champ, tandis que la technique Dixon 
a été exacte dans une limite de 10 % où R2* était précisément quantifié (jusqu’à 350 s-1 à 1,5 T et 550 s-1 à 3,0 T). Chez les 
patients, quand R2* était < 100 s-1, la mesure de graisse avec les deux techniques concordait à 1,5 T (P = 0,71), mais pas 
à 3,0 T (P = 0,007), et il y avait présence d’un biais < 1 %. Conclusion : Les résultats semblent indiquer que la technique 
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HISTO est fiable quand R2* est < 100 s-1, correspondant à des patients ayant tout au plus une surcharge modérée en fer et 
elle ne doit être utilisée qu’avec prudence quand R2* est > 100 s-1. La technique Dixon doit être préférée pour la mesure de 
la graisse hépatique en raison de sa robustesse envers les variations de R2*.

Keywords
liver, fat quantification, HISTO, iron, R2

Introduction
Steatotic liver disease (SLD)1 is a liver condition character-
ized by abnormal fat accumulation in more than 5% of hepa-
tocytes.2,3 Histopathological analysis of tissue samples 
obtained by percutaneous biopsy is the historical gold stan-
dard to quantify hepatic fat. However, it is subject to sam-
pling error in heterogeneous hepatic fat.

Multiple non-invasive methods have been developed to 
evaluate SLD such as transient elastography and ultrasound.4 
The current non-invasive gold-standard is magnetic reso-
nance (MR)-based multi-echo Dixon. This technique mea-
sures the proton density fat fraction (PDFF), corresponding to 
the ratio of the fat protons signal to the signal of water and fat 
protons.5 PDFF has shown excellent correlation with fat con-
tent from biopsies.2,3 However, Dixon-based techniques are 
limited by fat-water swaps, where the fat signal is incorrectly 
assigned to the water signal and vice versa, leading to inac-
curate quantification.6 A previous study investigated the prev-
alence of fat-water swaps and showed that 8% of cases 
suffered from fat-water swaps at 3.0 T.7

MR spectroscopy (MRS) measures the chemical composi-
tion of fat and is an alternative method to multi-echo Dixon 
PDFF.2 However, MRS techniques offer limited spatial cov-
erage and are sensitive to T2-signal decay, leading to inaccu-
rate quantification.8 Nonetheless, MRS is useful for fat 
quantification as it does not suffer from fat-water swaps.

The high speed T2-corrected multi-echo (HISTO) tech-
nique has been proposed to address some of the limitations of 
MRS approaches.9 HISTO is an MRS technique that enables 
fat quantification from a single breath-hold and includes a 
correction for T2-signal decay.8 HISTO is commercially avail-
able, and studies have demonstrated its accuracy for hepatic 
fat quantification at 1.5 T.8-10

HISTO fat quantification accuracy has also been demon-
strated at 3.0 T in fat-water phantoms.11 Its accuracy at 3.0 T 
has also been investigated in a few clinical indications. Fat 
fractions estimated with HISTO and Dixon were notably con-
sistent with a strong positive correlation in thigh muscles.12 A 
study performed in liver also demonstrated consistent results 
between HISTO and Dixon for hepatic fat quantification.13

Hepatic fat quantification from HISTO, however, requires 
further investigation since iron accumulation can decrease its 
accuracy. Different conditions can lead to iron accumulation 
in liver, such as hereditary haemochromatosis and repeated 
blood transfusions.14 Fat and iron can also simultaneously 

accumulate in the liver. Notably, previous studies have shown 
that up to a third of patients with non-alcoholic fatty liver 
disease also had elevated iron content, which has been related 
to adverse outcomes.15,16 Iron accumulation increases both R2 
and R2* relaxation rates, which can bias the fat quantifica-
tion.8 R2 and R2* increase with field strength, thus leading to 
a higher potential for bias at 3.0 T. While a previous study 
performed at 1.5 T has shown accurate fat quantification with 
HISTO in the presence of an iron-based agent in phantoms,8 
this has not been demonstrated at 3.0 T. Therefore, the objec-
tives of this work were to validate the commercial HISTO fat 
quantification accuracy at 3.0 T using multi-echo Dixon as 
the reference method, to establish its robustness to R2* varia-
tions, and to compare the results to measurements performed 
at 1.5 T.

Methods

Phantom
Fat-water phantoms were designed to mimic a range of liver 
fat and iron content, using a diluted fat-water emulsion with 
an R2* modulator.17-19 The phantoms were based on a com-
mercial safflower oil emulsion (Microlipid, Nestle Inc.) with 
50% fat mass by volume. This emulsion is stable in its liquid 
form at room temperature, has a controlled fat content, and its 
fat resonances are consistent with those measured in vivo in 
the liver.20 Additionally, it has shown good correlation 
between fat mass fractions and PDFF estimates in a previous 
study.21 The phantom design is described in Supplemental 
Materials and is illustrated in Figure 1.

Phantoms were scanned using 2 MRI scanners, 1.5 T 
(Siemens Aera, software VE11C) and 3.0 T (Siemens Skyra, 
software VE11C). The standard 20-channel head coil pro-
vided by the vendor was used. Phantoms were stored in the 
scanner room for 24 hours before imaging and temperature 
was measured in the large water compartment before and 
after imaging.

Phantoms were scanned with 3 different commercial 
sequences: 2 HISTO sequences performed for each vial, and 
1 multi-echo Dixon sequence (qDixon). The HISTO 
sequences used different echo times (TEs). The first sequence 
was performed with the default TEs,8 while the second used 
shorter TEs, specifically designed to measure fat content in 
the presence of iron. This technique, known as HISTO Iron 
Overload, is provided by the vendor as an alternative in 
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instances where iron overload is suspected. Table 1 details the 
parameters of these sequences.

Quantitative measurements were obtained using the ven-
dor’s automatic post-processing tools (Liver Lab, Siemens 
Healthineers). PDFF and R2* maps were automatically gener-
ated for qDixon using a signal model that includes a single 

R2* and a multi-resonances fat spectrum. PDFF estimates 
were obtained automatically for HISTO, along with water and 
fat R2.

The PDFF accuracy for HISTO and qDixon was evaluated 
at both field strengths. Circular regions of interest (ROI) with 
an area of 2.5 cm2 were drawn in each vial using RadiAnt 

Figure 1. Example images and maps obtained with qDixon at 3.0 T for the phantom with one of the 4 fat fractions (fat mass 
fraction = 12.67%) used in this work. The schematic of the phantom is shown on the lower right panel, where each vial corresponds to a 
different [MnCl2]. Note the variations in fat signal and PDFF with increasing [MnCl2] (increasing R2*). The red circle in the top left panel 
shows an example of the ROI that was used in all phantom vials for qDixon PDFF and R2* measurements. The green square in the same 
panel illustrates typical placement of the HISTO voxel for data acquisition in phantom vials. The signal distortions visible around the vials 
are caused by the ink used to identify the graduations on the centrifuge tubes and were avoided in ROI placement.
Note. ROI = regions of interest; PDFF = proton density fat fraction; HISTO = high speed T2-corrected multi-echo.

Table 1. MRI and MRS Pulse Sequence Parameters at 1.5 T and 3.0 T.

Parameters HISTO (1.5 T, 3.0 T)
HISTO Iron Overload 

(1.5 T, 3.0 T) qDixon (1.5 T) qDixon (3.0 T)

Voxel size (mm3) Phantoms 15 × 15 × 15 15 × 15 × 15 1.25 × 1.59 × 7 1.25 × 1.59 × 7
Patients 30 × 30 × 30 — 2.80 × 3.13 × 7 2.80 × 3.13 × 7

Matrix size Single voxel Single voxel 160 × 126 × 64 160 × 126 × 64
TE (ms) 12, 24, 36, 48, 72 12, 15, 18, 21, 24 2.38, 4.76, 7.14, 

9.52, 11.90, 14.28
1.41, 2.72, 4.03, 
5.34, 6.65, 7.96

Bandwidth (Hz/px) 1200 1200 1080 1080
TR (ms) 3000 3000 15.8 9.76
Parallel imaging (CAIPIRINHA) — — 2 × 2 2 × 2
Flip angle (°) 90 90 4 4
Mixing time (ms) 10 10 — —
Scan time (s) Phantoms 15 15 24 14

Patients 15 15 15-20 12-18
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(Medixant, Poznan, Poland, https://www.radiantviewer.com) 
on the middle slice of qDixon datasets. The mean and stan-
dard deviation of the PDFF and R2* were measured within all 
ROIs. R2* variations were examined as a function of [MnCl2] 
adjusted for the water volume ([MnCl2]water), which assumes 
that MnCl2 is only dissolved in the water phase of the emul-
sion.22 A robust linear regression using bi-square weight23 
(Matlab function “robustfit” with the option “bisquare”) was 
performed between R2* and [MnCl2]water using software 
implemented in MATLAB (R2019a, The MathWorks, Natick, 
MA). The PDFF accuracy was investigated as a function of 
R2*. Variations of HISTO water R2 were also evaluated as a 
function of [MnCl2]water, as detailed in Supplemental 
Materials.

Patient Study
A retrospective review of consecutive abdominal MRI exami-
nations was performed under the approval of the local 
Research Ethics Board (REB). Written informed consent for 
participants was waived. Inclusion criteria were defined as 
any abdominal MRI exams performed in adults (age ≥18 years 
old), for which HISTO and qDixon were acquired. Exams 
were performed between July and September 2020 at 1.5 T, 
and between May and August 2020 at 3.0 T, using the same 2 
scanners as for the phantoms. All exams with qDixon fat-
water swaps were excluded.

A combination of a vendor-provided 18-channel phased 
array coil and a 32-channel spine coil was used. HISTO and 
qDixon were each acquired during a single inspiration breath 
hold. Sequences’ parameters are described in Table 1. The 
HISTO single voxel was positioned in the liver tissue, avoid-
ing blood vessels.

Quantitative measurements were obtained using the ven-
dor-provided automatic post-processing, as for the phantom. 
HISTO PDFF was compared to the mean qDixon PDFF esti-
mated over the whole liver,13 obtained using the vendor-pro-
vided automated liver segmentation tool. The whole liver 
mean R2* from qDixon and the fat and water R2 from HISTO 
were also recorded.

Statistical analysis was performed using Matlab. Bland-
Altman plots were generated to compare PDFF measure-
ments from both techniques at both field strengths. Bias was 
tested using a one sample, two-tailed t-test. P-values <.05 
were considered statistically significant.

Results

Phantom
R2* was linear with [MnCl2]water for vials with low fat frac-
tions and/or low [MnCl2]. In vials with large fat fraction and 
large [MnCl2], the mean R2* deviated from the expected lin-
ear behaviour as a function of [MnCl2]water at both field 
strengths (Figure 2). This suggested a failure of qDixon for 
very large R2*. These vials were excluded from further data 
analysis. Six vials were excluded at both field strengths, cor-
responding to the 3 largest [MnCl2] for a fat fraction of 
38.81%, the 2 largest [MnCl2] for a fat fraction of 25.60%, 
and the largest [MnCl2] for a fat fraction of 12.67%. After 
exclusion, a range of R2* from 5 to 350 s−1 was measured at 
1.5 T, and from 5 to 550 s−1 at 3.0 T. An R2* relaxivity for 
MnCl2 of 66 s−1/mM was measured at 1.5 T, and of 103 s−1/
mM at 3.0 T (R2 = 0.87 for both regressions).

The difference between qDixon PDFF and fat mass frac-
tion increased as a function of the fat content and of the 

Figure 2. R2* in phantoms from qDixon as a function of the [MnCl2]water for all fat mass fractions, at 1.5 T (left) and 3.0 T (right), 
showing the mean ± standard deviation measured in circular regions of interest. The variation is linear in vials with lower fat content 
and/or lower [MnCl2]water, but deviates from this trend for high fat content and [MnCl2]water because of the inaccurate estimate of R2*. 
Vials shown with a star marker (*) were excluded from the data analysis. The same 6 vials were excluded at both field strengths.
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[MnCl2]. At 1.5 T, qDixon showed a PDFF error larger than 
10% only for the highest fat fraction (38.81%) for 3 of the 
[MnCl2] (5, 3.5, and 0.5 mM) (Figure 3). At 3.0 T, qDixon 
showed PDFF errors smaller than 10% for all vials except for 
the highest [MnCl2] combined with a fat fraction of 12.67%, 
25.60%, and 38.81%, and for the highest fat fraction com-
bined with a [MnCl2] of 3.5 mM (Figure 3).

HISTO sequences demonstrated large PDFF inaccuracies 
(Figure 3). At 1.5 T, HISTO PDFF was accurate within 10% 
for all fat fractions only for [MnCl2] of 0.2 and 0.5 mM, while 
at 3.0 T, this was observed for a [MnCl2] of 0.2 mM. With 
HISTO Iron Overload, the PDFF accuracy was slightly 
improved at 1.5 T, where the PDFF error was smaller than 
10% for a [MnCl2] between 0.2 and 0.8 mM for all fat 

Figure 3. Relative difference (%) between the proton density fat fraction (PDFF) estimated with qDixon (left), HISTO (middle), and 
HISTO Iron Overload (right) in phantoms and the fat mass fraction, at 1.5 T (top) and 3.0 T (bottom), shown as a function of the 
concentration of manganese chloride in total solution ([MnCl2]) and of the fat mass fraction. For HISTO and HISTO Iron overload, the 
PDFF inaccuracy increases significantly as the [MnCl2] increases, with an error larger than 10% for [MnCl2] larger or equal to 2 mM. Both 
HISTO sequences were also inaccurate in the absence of MnCl2. qDixon was much more accurate over the range of [MnCl2] studied.
Note. HISTO = high speed T2-corrected multi-echo.

Figure 4. Proton density fat fraction (PDFF) error with HISTO and qDixon in phantoms, at 1.5 T (left) and 3.0 T (right), as a function 
of the mean R2* measured based on qDixon measurements. The PDFF error is defined as the difference between the PDFF estimate and 
the fat mass fraction. Very large PDFF errors were obtained with both HISTO sequences for R2* larger than 100 s−1. qDixon accuracy 
was much more stable across the range of R2* studied, with a PDFF error always under 10%.
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fractions. This slight improvement in the PDFF accuracy with 
HISTO Iron Overload was also observed at 3.0 T, but only for 
[MnCl2] of 0.2 and 0.5 mM. Both HISTO sequences showed 
PDFF errors larger than 10% at both field strengths in the 
absence of MnCl2 ([MnCl2] = 0 mM). Vials without MnCl2 
were excluded from further data analysis.

HISTO PDFF accuracy was strongly dependant on R2* 
(Figure 4). HISTO was accurate to 10% up to a maximum R2* 
of 100 s−1 (water R2 ~75 s−1). HISTO Iron Overload was 
slightly more accurate as a function of R2*, where a maxi-
mum R2* of 170 s−1 (water R2 ~120 s−1) was associated with a 
PDFF error smaller than 10%. qDixon was more robust to 
R2* variations, resulting in less than 10% PDFF error over the 
entire range of R2* that was properly quantified.

Patient Study
Two hundred thirty nine abdominal MRI exams were 
retrieved, including 110 exams performed at 1.5 T and 129 at 
3.0 T. Twelve datasets (10.9%) imaged at 1.5 T were excluded 
due to qDixon fat-water swaps, resulting in 98 patients (66 
women and 32 men, mean age of 61 years old ± 14, median 
64 years old). At 3.0 T, 7 datasets (5.4%) were excluded due 
qDixon fat-water swaps, resulting in 122 exams (59 women 
and 63 men, mean age of 62 ± 15 years old, median 66 years 
old).

PDFF, R2, and R2* distributions were skewed toward low 
values. Supporting Figure S2 illustrates the qDixon PDFF 
and R2* distributions that were measured at both field 
strengths, while Supporting Figure S3 shows the HISTO 
PDFF and R2 distributions. At 1.5 T, the qDixon PDFF range 
was between 1.5% and 31.0% (median = 6.0%). At 3.0 T, it 

was from 1.9% to 37.9% (median = 5.8%). The range of the 
mean R2* measured over the whole liver with qDixon was 
from 20 to 155 s−1 (median = 35 s−1) at 1.5 T, while it was 
between 33 and 160 s−1 (median = 54 s−1) at 3.0 T. The vast 
majority of R2* measurements were below 100 s−1 (99% at 
1.5 T and 94% at 3.0 T).

HISTO PDFF was comparable to qDixon PDFF (Figure 5). 
Both techniques demonstrated an absolute bias smaller than 
1% at both field strengths. The bias was not significant  
at 1.5 T (P-value = .71), whereas at 3.0 T, HISTO signifi-
cantly underestimated the PDFF on average by 0.89% 
(P-value = .007).

Discussion
HISTO PDFF results obtained in this work were accurate up 
to 10% for R2* smaller than 100 s−1 in phantoms. HISTO 
results at 1.5 T disagree with a previous study8 performed in 
phantoms doped with an iron-based contrast agent, where a 
maximum PDFF error of 4.4% was measured for a water R2 
up to 140 s−1. Phantom results also showed a much larger 
PDFF error than previous studies that were performed in vivo 
outside of the liver,12 or in phantoms without R2* modula-
tions.11 This discrepancy may be explained by the larger range 
of R2* studied in this work. PDFF inaccuracies might also be 
due to a bias in water R1 introduced by MnCl2. The r1/r2 is 
larger for MnCl2 compared to ferritin,24,25 resulting in a larger 
R1 for a given concentration. Based on previous work,8 it 
appears that HISTO may neglect R1 contributions, which 
could lead to PDFF inaccuracies.

HISTO and qDixon provided comparable PDFF with a bias 
smaller than 1% in patients at 1.5 and 3.0 T, where low R2* 

Figure 5. Comparison between the hepatic fat quantification in patients with HISTO and qDixon (mean over whole liver) at 1.5 T 
(left) and 3.0 T (right). The bias between the 2 techniques is very small (under 1%) at both field strengths. The bias was significant (P-
value <.05) at 3.0 T only.
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were measured (generally <100 s−1), consistent with previous 
studies.13,14 Observations in patients were also consistent with 
phantom experiments for R2* smaller than 100 s−1. The bias 
measured in patients was statistically significant at 3.0 T. 
However, such a small bias is clinically not significant. The 
agreement observed between HISTO and qDixon is also con-
sistent with a previous phantom study performed with no R2* 
modulator at 1.5 and 3.0 T11.

R2* in phantoms was representative of values that can be 
measured in liver. R2* between 24 and 74 s−1 have been 
reported for healthy liver at 1.5 T.26-28 At 1.5 T, a threshold 
between 67 and 88 s−1 has been reported to distinguish 
between healthy liver and mild iron overload.28 Severe iron 
overload can produce R2* larger than 900 s−1 at 1.5 T.27,29 
Fewer studies have investigated R2* in liver at 3.0 T, but one 
study reported a threshold of 117 s−1 for the presence of mild 
iron overload.30

qDixon provided unreliable R2* measurements in phan-
toms with large [MnCl2] and/or fat content at both 1.5 and 3.0 
T. These inaccuracies were likely due to a TE selection that 
was too long, as the signal at longer TEs fell below the noise 
floor. Acquisitions with shorter TEs or custom data post-pro-
cessing with compensation for longer TEs might address this 
issue. This was not investigated here in order to rely on com-
mercial packages only.

qDixon PDFF quantification was robust to R2* modula-
tion. The PDFF error over the range of R2* that could be stud-
ied was consistent with a previous phantom study performed 
with no R2* modulations.11 This suggests that qDixon PDFF 
accuracy might be independent of the presence of iron in the 
liver for an R2* up to approximately 350 s−1 at 1.5 T and 
550 s−1 at 3.0 T. The qDixon PDFF accuracy observed in this 
work is also consistent with a previous study performed in 
liver.3 The qDixon post-processing algorithm assumes a liver 
fat spectrum at body temperature, which differs from the 
phantom fat spectrum at 20°C. However, given the PDFF 
accuracy observed in this work, the difference in the water 
chemical shift caused by the temperature difference,31 as well 
as the differences between the phantom material and liver,20 
were considered negligible. The phantom’s temperature was 
stable and consistent within a range of 0.3°C across scan 
sessions.

HISTO provided unreliable results in vials without MnCl2. 
This was likely due to the large water T1 (>3 s).32 The TR 
used was not long enough to enable the complete longitudinal 
relaxation of water in the absence of MnCl2. The HISTO TR 
was not increased to keep the scan time within a manageable 
breathhold duration. As previously suggested,3 a correction 
based on the measured water T1 would be required to remove 
T1-weighting. Such correction was not implemented since no 
T1 measurement was performed. This would not be a problem 
in vivo since human tissues have much shorter T1.

The phantom experiments have certain limitations. The 
emulsion was liquid, while this is not the case for liver. Liquid 
solutions have longer T1 and T2 values. A gel-based phantom 

could be used in future work to address this limitation. In 
addition, the R2* modulator used was not iron-based, while 
iron is the agent responsible for R2* variations in liver. MnCl2 
has been used to mimic liver R2* modulation in multiple stud-
ies,17-19 but it is an imperfect surrogate.33 However, iron is 
stored in liver in proteins called ferritin,34 and MnCl2 has been 
shown to have similar relaxation properties as aqueous ferri-
tin solutions,17 thus supporting its use in the context of this 
work. Future work should be performed in the presence of 
iron to confirm these findings.

The in vivo study also has some limitations. First, the 
HISTO PDFF was compared to the qDixon whole liver mean 
PDFF. Liver has an inhomogeneous fat spatial distribution.2 
This can lead to a significant difference between a single 
voxel measurement and the whole liver measurement. 
Second, only the HISTO sequence with the default TEs was 
used for data acquisition. The phantom experiments demon-
strated that HISTO Iron Overload should be preferred because 
of its slightly higher PDFF accuracy. The use of the HISTO 
sequence with default TEs might explain the significant dif-
ference that was observed at 3.0 T between HISTO and 
qDixon. Third, low R2* values were measured, a regime in 
which HISTO showed consistent results with qDixon in 
phantoms. Larger R2* values remain to be tested. Most 
patients also had low fat content, with a median under 6%, 
which also contributed to low R2*. Future in vivo validation 
should be performed through a prospective study that includes 
patients with moderate to severe liver iron overload. Fourth, 
no biopsy samples were available for the patient cohort. As a 
result, no independent ground truth was available. However, 
previous studies have demonstrated high correlation between 
Dixon PDFF and biopsy,2,3 thus supporting the use of Dixon 
as a ground truth.

Conclusion
In conclusion, this study demonstrated that Dixon is more 
accurate than HISTO for PDFF quantification as R2* 
increases. Dixon should therefore be preferred for hepatic fat 
quantification. The phantoms results suggest that HISTO 
should only be used when R2* is below 100 s−1, which corre-
spond to patients without or with mild liver iron overload. 
The iron content cannot be known prior to the examination, 
which suggests a limited applicability of HISTO clinically, 
although it can be an alternative in the case of a fat-water 
swap with Dixon. The retrospective patient study confirmed 
that HISTO and Dixon provide consistent results in vivo in 
the absence of liver iron overload.
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Introduction 

Au cours des dernières décennies, la prévalence et la morbi-mortalité des maladies 

hépatiques chroniques ont considérablement augmenté, en particulier avec la progression de la 

maladie hépatique stéatosique associées aux dysfonctions du métabolisme. Une proportion 

importante de ces patients développera une fibrose hépatique et éventuellement une cirrhose. 

La cirrhose est une impasse clinique avec des complications potentiellement mortelles 

(insuffisance hépatique, hypertension portale, carcinome hépatocellulaire (CHC), etc.), qui est 

responsable d'environ 1,8 % des décès chaque année (OMS). Lorsque les lésions hépatiques 

chroniques progressent, une décompensation de la maladie (ascite, ictère, saignement digestif 

ou encéphalopathie hépatique) peut se produire, entraînant une diminution dramatique du taux 

de survie global. Actuellement, nous sommes dans l’incapacité d’évaluer séquentiellement la 

progression des maladies hépatiques sur la seule base de l'imagerie. La caractérisation des 

maladies hépatiques chroniques repose sur des méthodes invasives telles que la biopsie, pour 

évaluer la fibrose, la stéatose et l'"activité" (c'est-à-dire l'inflammation), et le cathétérisme trans-

jugulaire pour l'hypertension portale (mesure du gradient de pression veineuse hépatique). Pour 

des raisons évidentes, ces examens invasifs et coûteux ne sont pas adaptés au dépistage et à la 

surveillance séquentielle. En outre, la biopsie hépatique est également sujette à des risques de 

sous-échantillonnage et/ou de variabilité entre les lecteurs, et ne permet pas de stratifier le 

risque de progression de la maladie, y compris l'hépatocarcinogenèse et les complications liées 

à l'hypertension portale. Ceci doit mener à une transition vers une évaluation non invasive de la 

progression des maladies hépatiques chroniques et de leur pronostic. Les biomarqueurs basés 

sur l'imagerie peuvent fournir une représentation quantitative et reproductible du parenchyme 

hépatique. Ils peuvent être utilisés lors du diagnostic initial ou à tout moment au cours de 

l'évolution de la maladie, ce qui permet d'influer sur la prise en charge clinique. 

 

Objectif 1 : Stratification du risque d'hépatocarcinogenèse chez les patients à haut risque 

grâce à une approche par apprentissage profond utilisant l'échographie et l'IRM. 
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Le dépistage du CHC chez des patients atteints d’une maladie hépatique chronique 

avancée repose sur une échographie semestrielle. Cependant, la sensibilité de l’échographie est 

insuffisante, en particulier pour la détection des CHC de moins de 2 cm, où la sensibilité chute à 

22 %. La surveillance par IRM a donc été proposée pour améliorer le dépistage, car nettement 

plus performante que l'échographie, avec un taux de détection cinq fois supérieur à celui de 

l'échographie pour un CHC à un stade très précoce. Compte tenu du coût élevé et de la 

disponibilité réduite de l'IRM, l'IRM abrégée (IRMa) sans contraste intraveineux a été récemment 

proposée car elle offre un gain de temps considérable, limité à moins de 10 minutes, par rapport 

au protocole d'IRM conventionnel, qui dure de 25 à 40 minutes. Des analyses récentes de 

cohortes européennes prospectives, associées à une évaluation modélisée de la détection du 

CHC à un stade très précoce, ont confirmé que la surveillance par IRM est rentable pour une 

incidence annuelle de base de 3 % chez les patients atteints de cirrhose et ne présentant pas de 

réplication virale active. Par conséquent, le dépistage par IRMa ne peut être envisagé que pour 

une sous-population présentant un risque très élevé d'hépatocarcinogenèse, qui serait 

sélectionnée dans la population faisant actuellement l'objet d'un dépistage échographique 

standard. L’identification d'une telle population implique le développement d'outils de 

stratification du risque d'hépatocarcinogenèse. Des modèles préliminaires ont été développés, 

intégrant des paramètres cliniques (âge, sexe, indice de masse corporelle et diabète) et 

biologiques (AST/ALT, plaquettes, albumine). Cependant, ces modèles ne prennent pas en 

compte l'analyse de la micro et macrostructure du foie pourtant accessible par imagerie, qui 

reflète les mécanismes physiopathologiques responsables de l'hépatocarcinogenèse et qui a le 

potentiel d'améliorer de manière significative la stratification du risque.  

Nous avons émis l'hypothèse que le parenchyme hépatique cirrhotique non tumoral est 

riche en informations structurelles reflétant la sévérité de la maladie hépatique, son risque 

carcinogène ainsi que le processus d'hépatocarcinogenèse. L’objectif principal de l’étude était 

de développer un modèle par apprentissage profond de stratification du risque 
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d’hépatocarcinogenèse basé sur l'imagerie, distinctement sur l'échographie et l’IRM, afin de 

proposer différentes modalités de dépistage aux patients les plus à risque.  

Pour développer un modèle de stratification du risque basé sur l'échographie, nous avons 

mené une étude prospective multicentrique qui a inclus 402 patients atteints d'une maladie 

hépatique chronique avancée. En utilisant un résultat à deux classes (faible risque défini par 

l'absence de CHC avec 209 patients ; haut risque défini par la présence d'un CHC à un stade 

précoce avec 193 patients), nous avons développé un modèle de classification (C3D) qui a atteint 

une précision de 0,72 avec un rapport de cotes de 6,6 pour des patients prédits à haut risque 

dans un ensemble de test de 50 patients équilibrés entre les deux classes.  

Quant au modèle de stratification du risque basé sur l'IRM, nous avons réalisé une étude 

rétrospective monocentrique avec une méthodologie similaire qui a inclus 333 patients avec une 

IRM sans contraste abrégée simulée (230 patients à faible risque et 103 patients à haut risque). 

Le développement d’un modèle par apprentissage machine de type 3D ResNet à partir d’un 

protocole d’IRM abrégée sans contraste est en cours.  

 

Objectif 2 : Détection du CHC au stade précoce chez les patients à haut risque grâce à une 

approche par apprentissage profond utilisant l'échographie et l'IRM. 

Dans la même étude STARHE, nous avons également développé un modèle de détection 

basé sur l’apprentissage profond pour le carcinome hépatocellulaire au stade précoce. Le 

modèle de détection d'objets mis au point a obtenu d'excellentes performances dans la 

détection des carcinomes hépatocellulaires très précoces (< 2 cm) et précoces (taux global de 

lésions détectées = 68 % et mAP10 = 0,67) sur les vidéos échographiques. Le niveau de confiance 

de 70% dans la boîte de prédiction devrait être testé dans des études longitudinales 

prospectives, en aide à la lecture des images échographiques par les radiologues. Ce modèle 

pourrait devenir un outil essentiel pour les radiologues et les échographistes afin d'améliorer les 

performances de l'échographie pour le dépistage du carcinome hépatocellulaire au stade 

précoce.  Le développement d’un modèle similaire en IRM abrégée sans contraste est en cours. 
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Objectif 3 : Étudier des techniques innovantes pour caractériser les maladies hépatiques 

L'intelligence artificielle n'est pas la seule solution pour améliorer la caractérisation des 

maladies hépatiques chroniques. Dans cette thèse, nous avons étudié les capacités 

diagnostiques de l'IRM 7T à haute résolution sur des échantillons de foie ex-vivo et développé un 

score METAVIR-IRM en analogie avec les critères histologiques de stadification basés sur la 

présence et la distribution de la fibrose. L'imagerie haute résolution 7T a montré d'excellentes 

performances (précision de 0,93) dans la stadification précise de la fibrose hépatique par rapport 

à l'histopathologie, soulignant son potentiel en tant qu'outil de substitution innovant pour 

l'histologie à faible grossissement. Nous avons montré que les capacités physiques de l'IRM 

peuvent fournir un contraste suffisant entre les tissus pour permettre un examen de type 

histopathologique sans qu'il soit nécessaire de procéder à une coloration. Atteignant une très 

haute résolution spatiale (~75µm), proche de celle de l'histologie à faible grossissement, 

l'architecture du foie a été visualisée pour la première fois par IRM, ce qui n'aurait pas été 

possible avec la résolution spatiale d'une IRM clinique standard (~ 1mm). Les modifications 

fibreuses du parenchyme hépatique observées sur les lames d'histologie colorées au trichrome 

de Masson étaient facilement décelables sur l'IRM à haute résolution, apparaissant comme des 

septa hyperintenses en pondération T2 avec des distorsions micro-architecturales liées à la 

fibrose à des stades précoces. En outre, contrairement à l'histologie, qui est limitée aux images 

2D, l'IRM fournit des images de l'ensemble de l'échantillon de tissu sous forme de volume. Cette 

analyse volumétrique est également un avantage par rapport à l'histologie traditionnelle, 

particulièrement pertinente pour l'étude des distorsions structurelles liées à la fibrose dans les 

tissus. En outre, l'IRM présente l'avantage indéniable par rapport à l'histologie de pouvoir 

acquérir des images en un temps relativement court avec une interprétation immédiate de 

l'image (comme pour toute IRM de routine). L'échantillon, qui reste intact, peut encore être traité 

pour un examen pathologique ultérieur. 
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Résumé 
La cirrhose est une impasse clinique avec des complications potentiellement mortelles (insuffisance 
hépatique, hypertension portale, carcinome hépatocellulaire), responsable d'environ 1,8 % des décès 
chaque année. Lorsque les lésions hépatiques chroniques progressent, une décompensation de la 
maladie peut se produire, entraînant une diminution dramatique du taux de survie global. Une 
transition vers une évaluation non invasive de la progression des maladies hépatiques chroniques et 
de leur pronostic est crucial. Nous avons développé un modèle par apprentissage profond de 
stratification du risque de développer un carcinome hépatocellulaire à partir d’images échographiques 
du parenchyme hépatique non-tumoral. Le modèle de classification développé a atteint de bonnes 
performances diagnostiques avec un odds-ratio de 6,6 et une précision de 0,72 pour prédire les 
patients à haut risque d'hépatocarcinogenèse. Ce nouveau biomarqueur d'imagerie pourrait aider à 
stratifier le risque d'hépatocarcinogenèse parallèlement aux biomarqueurs cliniques ou biochimiques 
et permettre des stratégies de dépistage personnalisées basées sur le risque. 

Mots clés : carcinome hépatocellulaire, apprentissage profond, échographie 

 

Résumé en anglais 
Cirrhosis is a clinical dead end with potentially fatal complications (liver failure, portal hypertension, 
hepatocellular carcinoma), responsible for around 1.8% of deaths each year. As chronic liver damage 
progresses, decompensation of the disease can occur, leading to a dramatic reduction in overall survival. A 
transition to non-invasive assessment of chronic liver disease progression and prognosis is crucial. We have 
developed a deep learning model for stratifying the risk of developing hepatocellular carcinoma based on 
ultrasound images of non-tumoral liver parenchyma. The classification model developed achieved good 
diagnostic performance with an odds ratio of 6.6 and an accuracy of 0.72 for predicting patients at high risk of 
hepatocarcinogenesis. This new imaging biomarker could help to stratify the risk of hepatocarcinogenesis 
alongside clinical or biochemical biomarkers and enable personalised risk-based screening strategies. 

Keywords: hepatocellular carcinoma, deep learning, ultrasound 
 


