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Résumé: L'étude de la déformation du noyau
composé jusqu'a la scission est fondamentale. Elle
permet en effet [|'évaluation des rendements
primaires en masse et en charge, ainsi que
I'établissement du bilan énergétique a la scission. A
l'aide de ces deux informations, il est possible de
décrire la décroissance des fragments primaires et de
prédire des observables telles que la multiplicité
neutronique, |'énergie gamma totale et les
rendements de produits de fission.

Lors de la déformation du noyau composé jusqu’a la
scission, deux types de phénomenes prévalent. En ef-
fet, lorsque le noyau composé se déforme dans son
ensemble (on parle de phénomeénes collectifs) des
excitations intrinseques apparaissent (on parle de
phénomenes dissipatifs). Cette distinction se re-
trouve dans la séparation qui s'opére entre les deux
grands types d'approches théoriques microsco-
piques visant a décrire la déformation du noyau com-
posé jusqu'a la scission. D'une part, les modéles de
type Time Dependent Hartree-Fock (TDHF) incluent
les phénomeénes dissipatifs, aboutissant a de bons bi-
lans énergétiques, mais leur manque de collectivité
conduit a des rendements peu fiables. A I'opposé, les
approches type Time Dependent Generator Coordi-
nate Method (TDGCM) ont été construites pour dé-
crire les phénomeénes collectifs, mais elles peinent a
inclure de la dissipation. Ces derniéres conduisent
donc a de bons rendements mais a des bilans éner-
gétiques irréalistes.

Sans surprise, de nombreuses tentatives ont été
proposées pour aboutir a un modéle microsco-
pique permettant I'obtention de bilans énergé-
tiques et de rendements fiables dans un cadre uni-
fié cohérent. Le Schrodinger Collective Intrinsic
Model (SCIM) compte parmi ces différentes tenta-
tives. Se présentant comme une méthode de type
TDGCM incluant des excitations intrinséques, il a
tout d'abord été proposé en 2011 par R. Bernard et
al. Toutefois, du fait de nombreux verrous a la fois
techniques et théoriques, aucune application
n‘avait été proposée a I'époque. L'objectif de ce
travail de thése a été la levée de ces différents ver-
rous de maniére a aboutir a une premiére applica-
tion réaliste du SCIM. Cette derniere a été réalisée
dans le cas du Plutonium-240, en considérant une
dimension en déformation.

La mise en ceuvre du SCIM a en particulier néces-
sité la création et I'implémentation numérique de
nouvelles méthodes appartenant au champ de la
théorie Hartree-Fock-Bogoliubov sous contraintes.
Ces méthodes sont toutes basées sur la méme idée
de contraindre les recouvrements entre différents
états. Deux d'entre elles “Link” et "Drop” permet-
tent d'aboutir a des surfaces d’énergies potentielles
(PES) 1D adiabatiques continues et régulieres, in-
cluant la scission ainsi que la relaxation des frag-
ments. La méthode “Continuous Deflation”, quant
a elle, rend possible la création de nouveaux états
excités variationnels, continus et réguliers, au-des-
sus d'une PES adiabatique.
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Abstract : The study of the deformation of the
compound nucleus up to scission is fundamental. It
leads both to the evaluation of the primary yields in
mass and charge and to the energy balance at
scission. Using these data, it is possible to describe
the decay of primary fragments and predict
observables such as neutron multiplicity, total
gamma energy and fission product yields.

During the deformation of the compound nucleus up
to scission, two types of phenomena prevail. When
the compound nucleus deforms as a whole (referred
to as collective phenomena), intrinsic excitations ap-
pear (referred to as dissipative phenomena). This dis-
tinction is reflected in the separation between the
two main types of microscopic theoretical approach
aimed at describing the deformation of the com-
pound nucleus up to scission. On the one hand, Time
Dependent Hartree-Fock (TDHF) models include dis-
sipative phenomena, resulting in good energy bal-
ances, but their lack of collectivity leads to unreliable
yields. On the other hand, Time Dependent Genera-
tor Coordinate Method (TDGCM) approaches were
designed to describe collective phenomena, but
struggle to include dissipation. They therefore lead to
good yields but unrealistic energy balances.

Unsurprisingly, numerous attempts have been
made to develop a microscopic model that can
provide both reliable energy balances and yields
within a coherent framework. The Schrédinger Col-
lective Intrinsic Model (SCIM) is one such attempt.
This TDGCM-type method including intrinsic exci-
tations was first proposed in 2011 by R. Bernard et
al. However, due to numerous technical and theo-
retical hurdles, no application was proposed at the
time. The aim of this thesis work was to overcome
these various obstacles and produce the first real-
istic application of the SCIM. This application has
been carried out in the case of the Plutonium 240
nucleus, considering one collective dimension.

The implementation of the SCIM required in partic-
ular the creation and numerical implementation of
new methods belonging to the field of constrained
Hartree-Fock-Bogoliubov theory. These methods
are all based on the same idea of constraining over-
laps between different states. Two of them, “Link”
and "Drop”, lead to continuous and regular 1D ad-
iabatic potential energy surfaces (PES), including
scission and fragment relaxation. The “Continuous
Deflation” method, on the other hand, enables the
creation of new variational, continuous and regular
excited states on top of an adiabatic PES.




Synthese

L'étude de la déformation du noyau composé jusqu‘a la scission est fondamentale.
Elle permet en effet I'évaluation des rendements primaires en masse et en charge,
ainsi que I'établissement du bilan énergétique a la scission. A I'aide de ces deux in-
formations, il est possible de décrire la décroissance des fragments primaires et de
prédire des observables telles que la multiplicité neutronique, I'énergie gamma to-
tale et les rendements de produits de fission.

Lors de la déformation du noyau composé jusqu‘a la scission, deux types de phéno-
menes prévalent. En effet, lorsque le noyau composé se déforme dans son ensemble
(on parle de phénomenes collectifs) des excitations intrinséques apparaissent (on
parle de phénomeénes dissipatifs). Cette distinction se retrouve dans la séparation qui
s'opere entre les deux grands types d'approches théoriques microscopiques visant a
décrire la déformation du noyau composé jusqu'a la scission. D'une part, les modeles
de type Time Dependent Hartree-Fock (TDHF) incluent les phénomenes dissipatifs,
aboutissant a de bons bilans énergétiques, mais leur manque de collectivité conduit
a des rendements peu fiables. A I'opposé, les approches type Time Dependent Ge-
nerator Coordinate Method (TDGCM) ont été construites pour décrire les phéno-
menes collectifs, mais elles peinent a inclure de la dissipation. Ces derniéres condui-
sent donc a de bons rendements mais a des bilans énergétiques irréalistes.

Sans surprise, de nombreuses tentatives ont été proposées pour aboutir a un modéle
microscopique permettant I'obtention de bilans énergétiques et de rendements
fiables dans un cadre unifié cohérent. Le Schrodinger Collective Intrinsic Model
(SCIM) compte parmi ces différentes tentatives. Se présentant comme une méthode
de type TDGCM incluant des excitations intrinseques, il a tout d'abord été proposé
en 2011 par R. Bernard et al. [ 33,34]. Toutefois, du fait de nombreux verrous a la fois
techniques et théoriques, aucune application n‘avait été proposée a I'époque. L'ob-
jectif de ce travail de these a été la levée de ces différents verrous de maniére a
aboutir a une premiéere application réaliste du SCIM. Cette derniére a été réalisée
dans le cas du Plutonium-240, en considérant une dimension en déformation.

De maniére générale, la plupart des méthodes TDGCM permettent I'obtention d'un
hamiltonien décrivant localement (en déformation) la physique relative a la minimi-
sation de I'énergie par rapport a une base d'états prédéfinis. Dans le cas du SCIM,
cette base d'états comporte a la fois des états minimisant I'énergie a une déforma-
tion donnée (on parle d'états adiabatiques), mais aussi des états correspondant a des
excitations intrinséques au-dessus de ces derniers.

Une fois que I'hamiltonien SCIM est obtenu, on peut I'utiliser dans une équation de
Schrodinger pour décrire la propagation d'un paquet d'onde dans le temps (cette
partie est appelée la "dynamique”).



En pratique, les méthodes utilisées dans le SCIM pour aboutir a I'hamiltonien SCIM
impliquent des hypothéses assez contraignantes. Ces derniéres peuvent étre résu-
mées par la nécessaire continuité et bonne régularité des états appartenant a une
méme strate d’excitation (la distance considérée étant la distance naturelle associée
aux recouvrements entre états).

Dans ce travail de thése, les états adiabatiques sont d'abord abordés, les états excités
sont ensuite considérés, et la dynamique SCIM est enfin mise en place et ses résultats
étudiés. Tous les calculs et résultats discutés ont été réalisés pour le Plutonium-240.

Au niveau adiabatique, conformément au travail réalisé en 2011, les états de type
Hartree-Fock-Bogoliubov (HFB) sous contraintes préservant la symétrie axiale et
étant pairs par renversement du sens du temps sont d'abord étudiées. Dans la pra-
tique, ces états sont générés en utilisant I'interaction effective D1S et le solver HFB3.
Des calculs sous contraintes (utilisant le moment multipolaire Q20) sont réalisés de
maniere a obtenir une surface d'énergie potentielle (PES) décrivant I'élongation du
noyau. Les états obtenus de la sorte peuvent parfois présenter des discontinuités. La
plupart de ces discontinuités peuvent étre facilement corrigées en contraignant da-
vantage de moments multipolaires, Q30 et Q40 par exemple. Toutefois, la disconti-
nuité présente a la scission est bien plus complexe : elle sépare des configurations
ou le noyau composé est encore entier de configurations ou apparaissent deux frag-
ments séparés et aplatis correspondant davantage a la physique de la fusion (la PES
constituée par les états de ce type est pour cela appelée “vallée de fusion”). Du reste,
méme dans les zones continues de la PES, les états adiabatiques ont tendance a étre
fortement irréguliers.

Pour résoudre ces problémes, deux nouvelles méthodes utilisant les contraintes sur
les recouvrements entre états sont proposées. La méthode “Link” est la premiere de
ces deux méthodes, elle permet de générer un chemin continu et régulier d'états
HFB entre un état HFB de départ et un état HFB d'arrivée. Cette méthode fonctionne
tres bien pour corriger les discontinuités autres que la discontinuité de la scission. En
effet, pour cette derniére, comme aucune configuration d'arrivée pertinente n'est
disponible, la méthode “Link” est inopérante. La seconde méthode “Drop” a été con-
que spécifiquement pour passer continliment la scission. Elle ne requiert qu'un état
HFB de départ a partir duquel elle génere un chemin continu et régulier d'états HFB
en suivant une descente de gradient d'énergie. A I'aide de ces deux méthodes, une
PES 1D (en déformation) complétement continue et présentant de bonnes propriétés
de régularité peut étre obtenue.

Les état adiabatiques générés par les méthodes “Link” et “Drop” sont ensuite analy-
sés. La zone de scission est tout d'abord déterminée par I'étude conjointe des po-
tentiels chimiques ainsi que du ratio local neutron/proton des états. La distribution
sur le nombre de particules des fragments est ensuite étudiée, faisant notamment
apparaitre un effet pair-impair proton. Le bilan énergétique statique est réalisé en
utilisant une version simplifiée de la méthode proposée par Younes et Gogny [35],
ce bilan permet la détermination de |'énergie de déformation a la scission ainsi que
de I'énergie cinétique de post-scission. Enfin, les potentiels et tenseurs d'inertie du



SCIM a la limite adiabatique sont comparés avec ceux obtenus dans le cas de I'ap-
proximation des recouvrements gaussiens (GOA). Cette comparaison révele que le
SCIM est d'une qualité comparable a la GOA exacte au niveau adiabatique.

En ce qui concerne les états excités, la formulation initiale du SCIM reposait sur I'uti-
lisation d'états excités de type 2-quasiparticules au-dessus des états adiabatiques.
Toutefois, ces états brisent le nombre moyen de particules et présentent également
de forts problémes de régularité. En pratique, ce sont ces derniers problémes qui se
montrent le plus handicapant allant jusqu’a rendre I'utilisation du SCIM impossible.
Cet état de fait conduit a la proposition de nouveaux états excités pour remplacer
les états excités de type 2-quasiparticules. Les nouveaux états excités proposés sont
des états excités variationnels créés en utilisant la nouvelle méthode “Continuous
Deflation”, également basée sur les contraintes sur les recouvrements. Cette mé-
thode permet la création d'états excités naturellement continus et possédant de
bonnes propriétés de régularité. Au total, dix excitations différentes ont été générées
dans ce travail de thése.

L'analyse de ces nouvelles excitations variationnelles montre que ces derniéres peu-
vent étre écrites la plupart du temps comme une somme d'états excités a 2 et 4-
quasiparticules au-dessus de leurs états adiabatiques de référence. Par ailleurs,
I'étude de la distribution sur le nombre de particules des fragments dans les états
excités montre qu'ils incluent en général des phénomenes de brisure de paires, dont
I'importance est connue dans la fission de basse énergie. Enfin, I'analyse des poten-
tiels et tenseurs d'inerties SCIM correspondant aux différentes excitations (a la limité
adiabatique-excitée) aménent a la formulation d'un scénario pour la dynamique dans
lequel six excitations sont conservées.

La partie “dynamique” du SCIM est réalisée en résolvant numériquement I'équation
de Schrodinger impliquant I'hamiltonien SCIM a l'aide de la méthode de Crank-Ni-
colson. Le paquet d'onde initial est construit a I'aide des états propres du puits de
potentiel de I'état fondamental extrapolé et un potentiel complexe est ajouté au ha-
miltonien apres la scission pour gérer I'absorption progressive du paquet d'onde.
Les flux de probabilité correspondant aux niveaux adiabatiques et excités sont alors
extraits, ces flux permettent d'avoir accés a la probabilité d’'obtenir tel ou tel état a la
scission. En particulier, la relativement faible probabilité d'obtenir un état adiabatique
a la scission (15.8%) confirme I'importance d'inclure des états excités dans la descrip-
tion de la scission.

La connaissance des probabilités associés aux différents états conduit naturellement
aux observables a la scission. Tout d'abord, les distributions en charge et en masse
qui pourraient étre obtenues en utilisant le SCIM a 2D sont discutées au regard de la
différence entre les distributions sur le nombre de particules des fragments dans le
cas adiabatique et en incluant les excitations. Cette étude prospective montre la pos-
sibilité que I'inclusion des excitations élargisse les rendements en masse tout en tem-
pérant les effets pair-impair associés a la distribution en charge. Enfin, un bilan éner-
gétique complet a la scission est proposé. L'énergie d'excitation totale des fragments



est évaluée autour de 34 MeV. En comparaison, les données expérimentales indi-
quent un TXE d’'environ 30 MeV, lequel correspond a I'émission de trois neutrons
ainsi que de quelques rayonnements gamma. L'énergie cinétique totale des frag-
ments évaluée est quant a elle proche de 178 MeV quand |'expérience prédit 181
MeV environ. Cette compatibilité entre évaluation et expérience souligne notam-
ment I'importance de la prise en compte de I'énergie totale d'interaction (et non pas
seulement de I'énergie coulombienne) dans I'évaluation de I'énergie cinétique de
post-scission.

En conclusion, ce travail de thése est parvenu a remplir son objectif premier : aboutir
a une application du SCIM dans le cas réaliste du Plutonium-240. Cette premiére
application a en particulier nécessité la création et I'implémentation numérique de
nouvelles méthodes appartenant au champ de la théorie Hartree-Fock-Bogoliubov
sous contraintes. Ces méthodes sont toutes basées sur la méme idée de contraindre
les recouvrements entre différents états. Deux d'entre elles “Link” et “Drop” permet-
tent d'aboutir a des surfaces d’'énergies potentielles (PES) 1D adiabatiques continues
et réguliéres, incluant la scission ainsi que la relaxation des fragments. La méthode
“Continuous Deflation”, quant a elle, rend possible la création de nouveaux états ex-
cités variationnels, continus et réguliers, au-dessus d'une PES adiabatique.

Ce travail ouvre également de nombreuses perspectives. Les méthodes existantes
utilisant des contraintes sur les recouvrements pourraient étre améliorées et de nou-
velles pourraient étre proposées, notamment dans I'objectif d'obtenir des PES con-
tinues a 2D, lesquelles rendraient possible la mise en place du SCIM a 2D. La mé-
thode Nuclear Paving (NP) est un premier pas en ce sens. Elle constitue une preuve
de principe qu'il est possible, au moins localement, d'utiliser les prédictions de la
GOA conjointement aux contraintes sur les recouvrements pour |'exploration des
PES. Du reste, 'utilisation de contraintes sur les moments multipolaires en combi-
naison avec la méthode “Drop” ("Guided Drop”) constitue également une direction
prometteuse.

Aussi, il serait souhaitable de comparer la maniére simplifiée avec laquelle le bilan
énergétique statique a été réalisé dans ce travail avec la méthode compleéte proposée
par Younes et Gogny [35].

Enfin, une étude plus étendue du SCIM a 1D serait du plus grand intérét. En premier
lieu, et parmi bien d'autres choses, la sensibilité des résultats au nombre d'excitations
prises en compte devrait étre étudiée.



A Thimothée,
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Introduction

While some modern theories, such as string theory [1] or loop quantum gravity [2], are des-
perately chasing the phenomena required to verify their hypotheses, nuclear physics is a very
pleasant playground for the theoretician. Indeed, the latter regularly deals with phenomena
still awaiting the theory that might reveal their innermost nature. This is particularly true
in the case of fission, which more than half a century has elucidated without exhausting all
its mysteries. In this respect, we can of course cite certain fission observables, such as neu-
tron multiplicity or fragment angular momenta, which theories struggle to reproduce with
precision.

The history of theoretical fission actually began in 1939, when L. Meitner and O. Frisch
proposed their interpretation [3] of the experiments carried out by O. Hahn and F. Strassmann
[4,5], based on the liquid drop model introduced by N. Bohr three years earlier [6]. A short
time after this first qualitative interpretation, N. Bohr, along with A. Wheeler, proposed the
first theoretical formulation of fission [7]. In this article, N. Bohr and A. Wheeler described
fission as the process by which a compound nucleus deforms until it splits into two fragments.
This phenomenon is explained by the balance between nuclear surface tension, which ensures
the cohesion of the compound nucleus, and Coulomb repulsion, which inclines it towards
separation. In addition, they put forward two fundamental concepts, still in use today. The
first is the concept of “saddle point”, the state of deformation at which the composite nucleus
is fated to scission, with no return possible. The second is the “fissility”, a concept based on
the ratio between Coulomb repulsion and surface tension, to enable a priori evaluation of the
propensity of nuclei to fission. Despite the indisputable qualities and pioneering nature of
the model proposed by N. Bohr and A. Wheeler, this first approach suffers from not taking
into account the fundamental degrees of freedom of the nucleus, ¢.e. the nucleons, and the
quantum phenomena associated with them.

Following this early work, a shell model interpretation of the nucleus, inspired by the elec-
tronic one, saw the light of day in 1955 [8]. The integration of this point of view into the
liquid drop model, known as the Strutinsky correction [9], significantly extended its quali-
ties, enabling the theoretical description of fission isomers, for example. This first conclusive
blend of shell model and theoretical fission signs the beginning of an increasingly important
consideration of the fundamental degrees of freedom of the nucleus in fission studies.

The difference between the classical treatment of the nucleus as a whole and the explicit
consideration of its components lies at the heart of the distinction usually made in theo-
retical nuclear physics between the so-called “macroscopic” and “microscopic” models. The
macroscopic model by excellence is, of course, the one proposed by N. Bohr and A. Wheeler
in 1939. On the other side of the spectrum, the most microscopic models used today in
fission explicitly consider interacting nucleons, coupled to mean-field theories known as En-
ergy Density Functional (EDF) [10]. The latter make it possible to significantly reduce the



complexity of the N-body quantum problem by considerably reducing the degrees of free-
dom explicitly taken into account, in particular in the case of heavy nuclei such as actinides.
The nucleon-nucleon interactions used in theoretical fission are phonomenological effective
interactions, i.e. their parameters have been obtained in such a way to reproduce some ex-
perimental data. These interactions form a large family whose best-known representatives
are the Skyrme interactions [11-14] and the Gogny interactions [15-19]. In this PhD thesis,
the latter ones that have been considered.

Within the various EDF-type theories applied to fission today, there is an important dis-
tinction. On the one hand, there are the dynamical models such as Time-Dependent Hartree
Fock (TDHF) [20-22] methods, and more recently Time-Dependent Hartree Fock Bogoliubov
(TDHFB) [23]. These models naturally take into account part of the dissipation during the
fission process, but struggle to describe the variety of possible fragmentations that character-
izes the fission phenomenon. As a result, they give predictions that are far from experiments
in terms of charge and mass yields.

On the other hand, the Time-Dependent Generator Coordinate Model (TDGCM) theories
[18,24-26], historically the oldest, were designed to take into account the collective degrees
of freedom in the fission phenomenon. These theories have shown their relevance in the
evaluation of charge and mass yields [27,28]. However, up to now, these theories neglect
the intrinsic excitation phenomena in their description of fission (the so-called “adiabatic
hypothesis”) whereas experimental data show the importance of these phenomena, even
in low-energy fission. In the work of F. Vives et al. [29], for instance, we observe very
clearly low-energy pair-breaking phenomena manifested by a kink in the fragment kinetic
energy. Similarly, the decrease of the odd-even effect visible in charge yields as a function
of the incident neutron energy [30] testifies to the importance of the intrinsic pair-breaking
phenomenon, even at low energy. Moreover, without the possibility of evaluating the energy
of fission fragments, TDGCM-type approaches are unable to provide consistent predictions
on fundamental observables such as neutron multiplicity.

Consequently, each of these two types of approach strives to fill the gaps. Within the frame-
work of TDHF-type theories, for example, some recent works [31] have demonstrated the
possibility of taking greater account of collective phenomena. With regard to the inclusion
of intrinsic excitations in TDGCM-type theories, we can cite the recent work of [32], but
also the work of R. Bernard et al. [33,34], which led to the formulation of the Schrédinger
Collective-Intrinsic Model (SCIM) in 2011. This model was conceived as an extension of the
TDGCM, explicitly taking into account intrinsic excitation phenomena. By 2011, however,
only the theoretical foundations of the model had been laid, and no applications had been
proposed. The primary goal of this PhD thesis is to put the model into practice and to
come up with a first application. As we will see in all the developments carried out, many
theoretical and numerical difficulties had to be overcome.

The chapter 1 of this PhD thesis is intended to introduce the SCIM formalism, while recalling
the fundamentals of the TDGCM-type formalisms from which it derives. Both the static and
the dynamics part of these approaches are detailed.

Chapter 2 discusses all the problems we faced in the first attempts to implement the SCIM.
Firstly, the difficulties associated with the two-quasiparticle excitations in the SCIM are
reviewed and illustrated in the case of 2°Pu, in particular the impact of the average particle
number breaking as well as the level repulsion issue. Secondly, we present the particle number
projection method we have implemented to solve part of the problems generated by the two-
quasiparticles excitations. We have discussed the improvements obtained and the remaining
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issues. Finally, we discuss the lack of continuity and regularity of standard Potential Energy
Surfaces (PES), both at the adiabatic level and with respect to intrinsic excitations.

In Chapter 3, we present the new methods based on overlap constraints that we have devel-
oped. They have proved to be very efficient in solving all the difficulties described in Chapter
2. The first method, known as the Link, enables the continuous connection of two Hartree
Fock Bogoliubov (HFB) states of a PES. The second method, named the Drop, has been
created to continuously cross the scission connecting to the Coulomb valley, which was not
previously possible within the TDGCM-type approaches. Finally, the Continuous Deflation,
which is the third method, has been designed to obtain continuous variational excitations
above the adiabatic paths. In particular, we present detailed analyses of these methods in
160 and ?%°Pu nuclei. In practice, we will see how this set of new methods allows to de-
termine both an adiabatic path and the associated continuous excited paths describing the
asymmetric fission of 24°Pu.

Chapter 4 is dedicated to the study of the new results extracted from these adiabatic and
excited continuous paths in the scission area. Firstly, we discuss in which extent the proton
and neutron chemical potentials of the compound nucleus indicate the advent of scission for
both the adiabatic and excited paths. Differences of the adiabatic results and excited ones
are discussed. Secondly, we present a study of the neutron/proton assymmetry in the neck of
the compound nucleus around the scission, for both the adiabatic and excited states. As we
will see, this study reveals marked neutron necking phenomena in both adiabatic and excited
states. Thirdly, we inspect the particle number distribution in the fragments, for both the
adiabatic and the excited states. In particular, we study the proton odd-even staggering in
adiabatic states, and evaluate the broadening of particle number distributions induced by
intrinsic excitations. Finally, we look at the static energy balance at scission. Using a novel
method called RC-separation, inspired by the pioneering work of [35], we study the respective
binding energies of the fragments, as well as their interaction energies. Then, we propose an
evaluation of the deformation and post-scission kinetic energies at the adiabatic level.

In chapter 5, we present the painstaking theoretical and numerical work required to calculate
the overlap and Hamiltonian kernels. In particular, we introduce new formulas to more easily
handle the case where different 2-center harmonic-oscillator representations are considered
when evaluating the kernels. We also present the developments linked to the particle number
projection formalism that has been useful in the search for the best intrinsic excitations for the
SCIM. Finally, we discuss two important points associated with a non-trivial phasis problem
linked to particle number breaking, and with the divergences observed in the Hamiltonian
kernel evaluation between orthogonal states.

Chapter 6, which concludes this PhD thesis, deals with the implementation of the SCIM
dynamics in the case of a 2*Pu asymmetric fission path. In particular, its implementa-
tion requires to obtain certain quantities, namely the SCIM potential, the dissipation tensor
and the inertia tensor. We explain how these quantites have been calculated in practice.
A detailed comparison is done with the equivalent quantities extracted from the Gaussian
Overlap Approximation (GOA) approximation. Then, we explain the numerical implementa-
tions associated with the solution of the collective-intrinsic Shrodinger equation of the SCIM.
Finally, we discuss the results obtained by realizing the dynamics. In particular, we evaluate
the impact of the intrinsic excitations at scission on the charge and mass yields as well as on
the energy balance.
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Chapter 1
From the TDGCM to the SCIM

The TDGCM or Time-Dependent Generator Coordinate Method is a fully quantum mechan-
ical method that consists in describing the time evolution of a TDGCM wave function built
as a linear mixing of states of a given set [18,24-26]. As far as we know, in the applications
of the TDGCM, the sets chosen to build the TDGCM wave function were always made of
deformed adiabatic states. This adiabatic approach demonstrated its relevance to describe
fission yields in a satisfactory way. However, as it neglects the intrinsic degrees of freedom
of the nucleus, the adiabatic TDGCM is unable to describe important observables such as
the total excitation energy of the fragments or the neutron multiplicity. To tackle this issue,
it has been proposed to enrich the TDGCM wave function with intrinsicly excited states.
Although the idea may appear simple, it requires new theoretical developments on top of the
TDGCM. The new theoretical framework we propose to use is called the SCIM or Schrodinger
Collective-Intrinsic Model [33,34].

In a first part, we describe the general concepts of the GCM and TDGCM approach. Then,
we explain how the SCIM is formulated.

1.1 The GCM and the TDGCM

To understand the general concept of the TDGCM, it is first important to consider the GCM
or Generator Coordinate Method, which is the static counterpart of the TDGCM. Indeed,
the GCM is meant to answer the question “How can we build a linear mizing of given states
relevant to describe a nucleus ?”, when the natural continutation of the latter is addressed
by the TDGCM: “How do we make such a linear mixing evolves over time ?”.

We moreover decided to present thoroughly here the GOA or Gaussian Overlap Approxima-
tion, as it is probably the most popular framework to solve the adiabatic TDGCM equations.

1.1.1 GCM

A GCM wave function is nothing but a linear mixing of the states of a given set, and can
thus be very general (see for example [36]). However, we will restrict this presentation to the
case of sets made of deformed time-reversal adiabatic HFB vacua, which are the ones that
have been mostly used in fission studies. In this case, the GCM wave function reads:

Do) = / daf (9)®(0)) (1.1)
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Here q is a collective coordinate that accounts for the deformation of the time-reversal HFB
state |®(q)) and the f(q) are the coefficients of the linear mixing. These latter are determined
through a variational principle applied to the total energy of the the system described by
Eq.(1.1):

§((®Paom|H — E|®aon)) =0 (1.2)

The Hamiltonian H we consider is made of a kinetic part 7" and a two-body nucleon-nucleon
interaction V:

H=T+V (1.3)

The Eq.(1.2) is then developed using Eq.(1.1):

&/&{/@F@N¢Wﬂﬁ—E@M»ﬂ®%=0 (1.4)

Performing the variations with respect to the f*(¢’), we get:

vy, t/@@@Nﬁ@@ﬁ@D:E/@@MNﬂwﬁ@) (1.5)

This equation is called the Hill-Wheeler equation [24], it can be rephrased as follows:

Hf = ENT] H(q',q) = (2(¢)[H|®(q)) (16)
N(d',q) = {(2(q)|2(q))
In Eq.(1.6), H and N are called respectively the Hamiltonian kernel and the overlap kernel.
The Hill-Wheeler equation is then transformed into an eigenvalue problem. To do so, different
analytic approximations exist among which the already mentioned GOA is probably the most
popular. It is also possible to do it exactly numerically.

For the time being, we will keep as much generality as possible and suppose that we know
the inverse of the square root of /. We can then write:

- Heot = NV2HN V2
ey a7

The problem to solve is now a hermitian eigenvalue problem, which is solvable. Although
the wave function obtained with the GCM is already useful for nuclear structure purposes as
it adds relevant correlations to the system, for fission, which is a dynamical process, we have
to go further and add a time dependance on top of the GCM: this is the TDGCM.
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1.1.2 TDGCM

The way the time is added on top of the GCM is pretty straightforward. Indeed, the TDGCM
wave function reads:

Brpoen (b)) = / daf (¢, D] ®(q)) (18)

The time dependence is fully absorbed into the f(q,t) coefficients of the linear mixing. We
don’t want anymore to find the eigenfunctions of the collective Hamiltonian of Eq.(1.7),
but we use it to make well-chosen initial coefficients evolve over time through the following
Schrodinger equation:

Heng () = ih () (19)

The Schrodinger equation is solved numerically and this part of the problem is called there-
after the “dynamics” (see Chapter. 4). Solving the “dynamics” gives access to some very
important fission observables such as mass/charge yields.

1.1.3 GOA

As said earlier, the GOA is a very popular framework of approximations that enables to
transform the Hill-Wheeler equation into an eigenvalue problem. As its name suggests, it
first assumes that the overlap kernel has a gaussian shape in the sense that:

N, q) = (8(¢)]|®(g)) = e “Fa=0)? (1.10)

Here the v function stands for the gaussian width. In practice, this « function is considered to
be constant in most of the calculations, which is a priori a strong approximation. However,
it is possible to approach more properly this desired constant width at first order rescaling
the collective coordinate g. To do so, we write:

a(q) = /q \/%dq’ (1.11)

Here, vy stands for the target width. At first order we find:

wla@) —a@)f = Ca SO -2 =1 e - 1)

The new « collective coordinate defined in Eq.(1.11) will be used in the rest of this part.
With it, it is possible to write:

N(d,a) = e~z (1.13)
This operator has a trivial square root:
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Nl/Q(a/, Z) _ (l)1/4e—70(0/—2)2 (1.14)
270

We'd like to express H as N'V2H 4 N? to simplify the problem. We can start writing

o a (1.15)
h(a/,a) = j\{fia 03

{7—[ o a) = [dzNY2(o ) 2)h(a!, ) N2 (2, )

We then perform a Taylor expansion of A up to the second order. This is the second major
approximation of the GOA:

ho/,a) = h(z,2) + (@ — 2)hO (2, 2) + (o — 2)hOV (2, 2) (1.16)
+(o = 2)(a — 2)hIV (2, 2) + %(a’ — 2220 (2, 2) + %(a —2)2h0 (2, 2)

We've used the shorthand notation A7) = %%h(w,y). Due to time-reversal invariance,
R0 and AV vanishes. We end up with:
h(a/,a) = h(z, 2) + (o — 2)(a — 2)h (2, 2) (1.17)

1 1
+§(a' — 2220 (2, 2) + 5(04 — 22002 (2, 2)

Inserting Eq.(1.17) in Eq.(1.15), we get:

Hd ) = /dz/\fl/z(a', 2)[h(z,2) + (o = 2)(a — 2)hIY (2, 2) (1.18)

1

1
50 = 2ROz, 2) + S (o — 2PROD (2, Nz, a)

In addition, using Eq.(1.13) we remark that:

(@ = NVl 2) = AN, (.19
( o )2/\/1/2(04 Z) (Qio + 472 a22)_/\/'1/2(06 Z) .
Using Eq.(1.19) and integration by parts, we obtain:
1
H(d o) = /dZNl/Q(O/, 2)[h(z, 2) + E(h(z’o)(% Z) + 00 (z, 2)) (1.20)
0
19y 0 1 9 0 (0,2) 1/2
e aZh Nz, 2 )8 + 8%(822h (z,2) + P9 (z, z) )]N (z, )

Here, we assumed that the various quantities and their derivatives are equal to zero at
infinity. Moreover, due to the symmetry of the kernels, h?9)(z, ) = h(®?)(z, z). Commuting
the derivative operators, we can write the collective Hamiltonian in its canonical form:
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1 1 9
(2,0) -~ (2,0
Hcol('z) h(Z, Z) + 270h (27'2) + 8’}/(2) 822[ (Z,Z)] (1 21)
1 0 0 '
2 (K20 (1,1) _
478 az(h <Z7Z> h (zJZ>)az

From Eq.(1.21), we extract the collective potential V' as well as the inertia tensor B and its
corresponding mass M:

V(z)=h(zz2)+ 2% h20) (2, 2) + ng—[h@ 0(z,2)]
B(z) = %(hw)( z) = hD(z, 2)) (1.22)
M(z) = 2B(z)

In practice, the inertia tensor and the collective potential used in the TDGCM+GOA are not
directly the ones derived in Eq.(1.22). Indeed, discontinuities between the generative states
of the TDGCM (see Chapter 2) induce serious difficulties in the evaluation of the derivatives
of h. To avoid these issues, the derivatives are handled using linear response theory and the
Cranking approximation [37-39]. With these approximations, the collective potential, the
inertia tensor, and the intertial mass read as:

V(2) = h(z,2) + TiMO1(2) M® () MO~ (2) B(2)]
B(z) = —ml(—z) (1.23)

M(z) = MO (MO (2)MO ()M (2) MD~1(2)

In Eq.(1.23), M® stands for :

3 (@|QuéFEF|) (D6, Q5| D)

M
o (€u + €

(1.24)

p<v

Note that o and 3 indices are related to the collective coordinates associated with the mul-
tipole moment operators (). The indices ;1 and v span the quasiparticle basis, and €, and €,
are the related quasiparticle energies.

To conclude, it is claimed that the latter quantities defined in Eq.(1.23) tremendously suffer
from the lack of time-odd components [37]. Because of that, ATDHFB collective potential,
inertia tensor, and inertial mass are often used instead of the TDGCM+GOA ones:

(2)
(2) = — =2~ (1.25)
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1.2 The SCIM

As for the TDGCM, the SCIM can be divided into two different parts. We first built a
collective-intrinsic Hamiltonian. Then we use it to make the SCIM collective-intrinsic wave
function evolves over time. These two parts are denoted respectively the “static part” and
the “dynamics” of the SCIM thereafter. Although the SCIM has been developed to include
any number of collective degrees of freedom, we’ve restricted the applications to the case of
one collective degree of freedom in this PhD thesis. We therefore first give an overview of the
static part of the SCIM in its full glory, then we thoroughly present the case when only one
collective degree of freedom is considered. Finally, we give some hints about the dynamics,
which is describe in great details in Chapter 6.

1.2.1 Static part
The SCIM wave function is a generalization of the GCM wave function Eq.(1.1):

Bscnn) =Y [ dafila)le(a) (1.26

Indeed, in addition to the deformed adiabatic HFB states |®o(q)), the SCIM wave function
expands on various intrinsicly excited states |®;(¢q)). Here, the collective coordinate ¢ € R"
spans n collective degrees of freedom and the f;(q) are the coefficients of the linear mixing
we’d like to find. To determine those coefficients, a variational principle is applied to the
total energy of the SCIM state. It reads:

0((®scrv|H — E|®sciu)) =0 (1.27)

ZZ/dq /def (@D ()| H — E|99(q)) fi(q) = 0 (1.28)

This expression is first transformed using the center of mass and relative coordinates:

7=""
{ oo (1.29)

S =

We introduced the relative coordinate s with a factor 2 compared with [33], in order to make
the derivations easier. We obtain:

1 — * (= i) (= & 1) (=~ =
s X [ da [ dssila—s)@ (- o)l ~ eV (q+ 9)fla+s) =0 (130
i
Using Taylor expansion to express the functions f; at the point ¢ leads to:

an aa1+-~~+an

81 e (= _ s% =
Hat9=. Zal B g @) = ¢ Aa) (1.31)

a1=0 Qp=

17



k

The quantities (Sa%) = (518%1 +...+ sn%)k are developed using the multinomial theorem:

9., K oo oo
(53g) = 2 (0417---7 )1&1 gy (1:32)

ol +...+an==k

We can thus write the inner part of the Eq.(1.30) as follows:

/dq/dsf (G — s)|H — E|®D (g4 s)) fi(g+ 5)) = /dqz (_kl!)
2 (a ) R @)@9 (@ - )~ E|eV g+ s))e’ ()

51 an
ar+...fan=~k aq aq

We transform this expression performing multiple integrations by parts and assuming that
the various quantities implied and their derivatives are equal to zeros at infinity. We finally
get:

2nZZ [ s [ das;@eh@0q - 1 - B0+ )ed@) =0 (13

Performing the variations with respect to the f;(g) we find:

va, Vi, Z/dse 5209 (q — 8)|H — E|®D (g + 5))e*H fi(q) = 0 (1.35)

We define the following shorthand notations for the kernels:

H;i(3,s) = (@Y7 — s)|H — E|2D(q + 5))
{Nji(q,S):@( (G — 8)| @D (7 + 5)) (1.36)

Now, we consider the effect of the exponentials on those kernels using the Symmetric Ordered
Products of Operators (SOPO), detailed in Appendix A:

s@ — s@ (o] —
{e 91 H,i(q, s)e”on ro 11 [ Hi(7 5)(s (1.37)
q,s

o)
S3q
SN, 5)eH = X175 LN, 5)(s2)| W

As the dependence in s is totally included in the SOPOs, we can integrate inside them and
write:

Doing so, we can rewrite Eq.(1.35) as
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vq, Vi, ZHW )fi(@ EZN]Z (1.39)

Or, in a more compact form:

Hf =ENFf (1.40)

As for the GCM, we assume that we can get an expression of the inverse of the square root of
N. This inversion process will be explicitly described in the case of one collective degree of
freedom. With this inverse square root, it is finally possible to write the collective-intrinsic
Hamiltonian:

Hscrmg = Eg
Hsorm :./\_/’71/27'—[./\_/’71/2 (1.41)
g=N'"2f

1.2.2 SCIM Static part with one collective degree of freedom

Up to Eq.(1.38), the derivations are quite general. Tt is then possible to rewrite more explicitly
the integrations inside the SOPOs, introducing the moments of order p of an operator:

1P (@) = [ dsHi(q, 5)s?
1.42
{N]Z ) = [ dsN;(q,s)s” (142

With these moments, we can rewrite Eq.(1.38) as follows:

}(k)
](k)

(s}

{fds w20 M@ 8) (s 2™ = 3205 MY (@) (1.43)

q
Jds S0000 INGi(@ ) (s 2)® = S LN (@)

Slo&le

_

We choose to keep the SOPOs only up to order 2. This approximation follows what is usually
done to tackle the Hill-Wheeler equation. As an example, h is expanded in Taylor series up
to order 2 in the GOA Eq.(1.16). Indeed, the second order is often a good starting point.
Note that this truncation implicitly implies a certain regularity of the functions f;. Using
the following shorthand notations:

7 2 17q k)2 01(k)
HailD) = 2o f [Hj{k)(q_) Bg](k) (1.44)
N;i(@) k=0 H[/vgz (Q)a_q]
The full equation in its compact form reads as
va,  H(@)f(q) =EN(@f() (1.45)
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The problem we are facing now is the inversion of the square root of the operator A/. This
inversion is not straightforward and we’ve followed what has been done in [33,34]. We start
writing N' more explicitly:

R(@) =NO(@) + WO (q) 1 + SN ) ) (1.46)

Note that the quantities N'?)(¢) are matrices whose coefficients are the Nji (®) (q):

Nb(@) . NP
N®(q) = P (1.47)
ND@) .. NE()
The definition of the moments implies that the matrices N'®(q) are symmetric for even

values of p and skew-symmetric for odd ones. As N(©(g) is a symmetric positive definite
matrix for all g, it is possible to define its square root:

Vg,  NOV@NO2(q) = NO(q) (1.48)

We factorize the full A/(g) operator with this square root. We also consider implicitly the g
dependence to make notations clearer:

9 1
a_q](l) NO1/2 4 N2

Using the product formula in Appendix A, we get:

2 0 1) \r-1/2) \rO1/2(7 49

N = NOV2([ 4 ArO=1/2[pr) -
q

N<o>—1/2w<1>aﬁ]<1> NO-172 _ \rO-1/207(1) (pr©)-1/2) (1.50)
q
_(N(O)—1/2)/N—(1)N(o)—1/2 + [./\/’(O)_I/QN(I)N(O)_UQg](l)
q
And:
1 o 0 _ 1 /2 -
5N—(O) 1/2[/\/—(2)8_(]](2)/\/—(0) 1/2 _ 5((1\/’(0) L2y @ A0 =172 (1.51)

+/\/ (0)— 1/2N(2)(N- 1/2) 2(]\/(0)_1/2)'/\/(2)(N(O)_I/Q)')
H[(N O NN O=1/2y (N(O)*W)’N(Q)N(O)*l/z)2](1)

dq

L0172 r@) ar-1/2 9 1)
+[N NN —]
2 dq

Using the following shorthand notations:

ap = N 1/2N(1)<N 1/2) (N 1/2)/N(1)N —-1/2 ;((N 1/2)//N N 1/2(1 52)
+N(O)—1/2N(2) (N(O)—l/Q)// . 2<N(O)—1/2)/N(2) (N(O)—1/2)/)
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And:

NI%) :N(o)—1/2N—(1)N(0)—1/2+N(0)—1/2N(2)(N(0)—1/2) (./\/(0 1/2)//\/ )N\ (0)—=1/2 (1.53)

ND = % N O-1/2 \r(2) Ar0)-1/2 (1.54)
Eq.(1.49) reads:
N = NOV2(T 1 g + R )0 4 V-0 g2 (1.55)
Ro aq Ry aq

Eq.(1.55) is the first iteration of an iterative process in which we assume that the Frobenius
norm ||agl|| is small and gets smaller as the factorization process is iterated. In practice, we
stop at the i-th iteration when ||a;|| < 1071%. At the end of the process, we end up with the
following expression:

K@) = Fa@)t + W @) 510 + W @) 501 ) F @) (1.56)
With:
F(@) = NOV@)(T 4 a0(@)*..(1 +a,1(2) (157)
Defining J(q) as
N M/~ 950 @ 92 _ _
7@ =1+ W@ 51 + W@ 51 = 1+ tia) (158)

We write the inverse of the square root of J as a series. The convergence of this series is
probably the strongest approximation of the model as it implies for the derivatives of the
overlap kernel’s moments to tend towards zero very fast as derivation order increases:

T (g —1+Z mULE 1/2_’” Dt (q) (1.59)

Keeping this series only up to the second order in SOPO, we deduce the following expres-
sion for the inverse square root of N-:

N~V = TV F1(q) (1.60)

Using Eq.(1.60), the collective-intrinsic Hamiltonian reads:

Hsonr(@) = NTAH(@QN )T (1.61)
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Developing this expression only up to the second order in SOPO, the collective-intrinsic Hamil-
tonian eventually reads:

Hser(@) = V(@) + [D(@)=-]"V] + [B(q)=-]? (1.62)

The zero-order V and second-order part B of the collective-intrinsic Hamiltonian are com-
parable to the ones obtained in TDGCM. The first-order part D is totally new. The skew-
symmetric matrix D called dissipation tensor accounts for dissipative dynamical correlations.
Explicit formulas for V', D and B are given in Appendix M.

1.2.3 Dynamics

Once the collective-intrinsic Hamiltonian Hgcrps is found, it is possible to use it in the
following Schrodinger equation to describe the “dynamics” of the nucleus including intrinsicly
excited states:

Hscrmg(t) = z’h%g(zﬁ) (1.63)

Solving this equation gives access to lifetimes and yields corrected by the excitation process,
but not only. Indeed, including these additional excitations, it is possible to give a more
accurate description of energy balance at scission and thus evaluate the total kinetic energy
and the neutron multiplicity, for example.
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Chapter 2

SCIM static states: issues and
challenges

The SCIM method relies on a set of static states {|®;(¢))}. For each i spanning a specific
intrinsic excitation (i = 0 standing for the adiabatic states), the set {|®;(¢))} is assumed to
be continuous in the collective variable q. Moreover, the Hamiltonian and overlap kernels
associated with this set are supposed to have a regular behaviour, i.e their derivatives tend
towards zero quickly when the derivation order increases.

These continuity and regularity requirements are unfortunately far from being easy to fulfill,
even for the adiabatic states. Indeed, performing HFB calculations with constraints on the
multipole moments, we may find adjacent states with a very small overlap kernel [40]. This
problem comes from the fact that the calculations with multipole moment constraints rely
on some well-chosen degrees of freedom, letting free the others that may be discontinuous.
Besides, even considering continous parts of the adiabatic set, we found that the Hamiltonian
and overlap kernels were most of the time not regular enough. This lack of regularity is related
to the choice of the collective coordinate which sometimes doesn’t account faithfully for the
evolution of the system.

When it comes to intrinsic excitations, the problems of the adiabatic states are still and get
even worse. The non-self-consistent 2-quasiparticle excited states proposed by Bernard et
al. [33,34] were based on assumptions that turned out to be too optimistic. Indeed, these
excited states break the average particle number in such a way that the regularity of the
Hamiltonian kernels is never good enough for the SCIM to work. It is the case even when
considering the “small” particle number variations (in the range | —1, 1[) assumed by Bernard
et al. Moreover, the overlap kernels of the 2-quasiparticle excited states also present severe
local irregularities when their quasiparticles are involved in level repulsions.

To tackle these issues we’ve tried different techniques. We have first implemented the particle
number projection after variations method in order to correct the excited Hamiltonian ker-
nels pathologies. The method worked well for this puprpose, but we unfortunately found out
that the kernels regularity was still not good enough to perform SCIM calculations. Besides,
the projected excited states were in general no more orthogonal to the projected adiabatic
states.
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2.1 HFB method for the adiabatic states

The HEFB or Hartree-Fock-Bogoliubov method [41-45] is a pillar of the SCIM approach as
it provides it with its static states. The HFB method consists in building a quasiparticle
product wave function to describe a nucleus. This wave function reads:

Pprp) =N]&l0)  with Vi, §|@ppp) =0 (2.1)

Here, |0) is the true vacuum of particle and the {&;} represent the quasiparticle annihilation
operators. Moreover, N is the norm factor of the HFB wave function (its expression is
explicitly given in Chapter 5). Eq.(2.1) clearly states that |®ypp) is a vacuum for those
quasiparticle operators. The {&;} operators are defined as follows using an orthonormal basis
associated with the creation and annihilation operators {c; } and {c;} respectively:

+ o+
s=Yviarvid = (&)= (0 pr) (2 22)
k

This transformation is the most general linear mixing of creation and annihilation operators.
The matrix built up with the matrices U and V' is called the Bogoliubov transformation
matrix:

5= (Ve po) (23

For this transformation to be canonical, i.e to be invertible and preserve fermions anticom-
mutation relations, the matrix B has to be unitary. This implies the following relations
between the matrices U and V:

+ Y =T T Ty —
{U U+VHV {v U+UTV =0 24)

UUr+vvlt =1 Uvt+v*UT =0
In Eq.(2.1), the unknown quantities to determine are the elements of the U and V matrices

under the conditions of Eq.(2.4). To do so, we use a variational principle on a functional that
accounts for the energy of the system:

<(I)HFBU:1|(I>HFB>

£ =
<(I)HFB’q)HFB>

(2.5)

There exist different methods to guarantee the conditions Eq.(2.4). In [46] for instance, the
one-body density p and the pairing tensor s are defined:

{paﬁ = (@prplccal®urs) = V'V )ag (2:6)

tap = (Purplcacs|Purs) = (VU )as

Then, a generalized density matrix R is built with these matrices:
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R= (_’;* ]fp*> = B* <8 ?) B (2.7)

The conditions stated in Eq.(2.4) are then equivalent to the simple condition R? = R, which
is imposed in the derivations. In this work however, we’ve chosen to present the derivations
based on the Thouless theorem [45]. They allow to present both the gradient and the diago-
nalization methods that will be useful in the following. The Thouless theorem (see Appendix
B) is used to find variational parameters for which the conditions of Eq.(2.4) naturally hold.
Indeed, let’s suppose we already have a state |®g) that verifies Eq.(2.4). If we consider an-
other state |®) verifying Eq.(2.4) which is not orthogonal to the latter, we can write using
the Thouless theorem:

[©(2)) = (Bo|B(2)) eZrew AwSi Sl ) (2.8)

Here, Z is a skew-symmetric matrix. Conversely, each state built this way verifies Eq.(2.4).
The matrix Z therefore gives a good parametrization of the functional £ as it directly includes
the conditions Eq.(2.4). We can write, considering any variation 67 of Z:

85 .
0Z;=0 NoZ (2.9)
” lz=0
Eq.(2.9) leads to:
o€ .
Vi, J, =5 o7 =0 Vi, j (2.10)
7] z=0

To be consistent with the calculations we have made with the Gogny interaction, we assume
that the Hamiltonian of the system contains an effective two-body nucleon-nucleon interaction
with a density-dependent term in such a way that H depends on Z:

Ztagc cg+ — Zvaﬁvé € Cj CsCy (2.11)
aﬂv&

Here v(@ is the antisymmetrized version of the nucleon-nucleon interaction v, i.e:

Vst = Vatns — Vagisy (2.12)

When we state that the interaction has a density dependence, it means that the operator
H(Z) depends on the state |®) we consider through its one-body density. H(Z) is thus a
pseudo-operator in our case. It is useful to write H(Z) in the quasiparticle representation [45]:

H(Z) = )+ Z Hyp(Z)E5 & + Z HR (Z2)&560 + .. (2.13)

kk' kk'
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We only keep the part of H (Z) that is relevant in the following. The different components
read:

H(Z) =Tr(tp+ i0(Z)p — sA(Z)k")
HY(Z)=U*WNZ)U = VTRY(Z)V + UTA(Z)V — VTAX(Z)U (2.14)

UTh(Z)V* — VHRT(Z)U* + U A(Z)U* — VEA*(Z)V*

(
HQO(Z)

In Eq.(2.14), I'(Z) is called the mean field and A(Z) the pairing field. They read as follows:

Tor(Z) = 3504 5(Z) pss
Nas(Z) = 15 50l 5(Z)krs (2.15)
)

The matrices p and k used in Eq.(2.14) are related to the state |®g), while the density p(Z)
used in the density-dependent term is the one of the state |®(2)):

pap = (Polcfcal o) # pap(Z) = (2(Z)|cjcal (Z)) (2.16)

Using Eq.(2.13) into Eq.(2.10), we write:

3 0 (®(2)|H(2)|®(2)) OH" a0
0= (= hy 2.1
05, 0zy  ((2)e(2)) 2-0 (azgj T o (2.17)
If we focus on the first term, we find:
OH" OH" 6pa5 OH°
o D( 2.1
M ey e, e

This result suggests that we could write the additional terms due to the density-dependent
part of H(Z) as a one-body operator and preserve the behaviour of the equations. Doing so
in quasiparticle representation, we get:

Kk’ kK’

This hamiltonian doesn’t depend anymore on the state |®(Z)), but is fully written with
respect to |Pg). Its components read:

H° =Tr(tp+ 3Tp — 3AK")
HY = UthU — VATV + UTAV — VTA*U (2.20)
H? = UthV* = VTRTU* + UTAU* — VTA*V*

The fields now read:
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F_F‘Z =0

A =Alz=o (2.21)
( )

h =tay+1lay+3 Zzgkl apm T L Zzykl ap ’ikm

The new definition of H given in Eq.(2.19) leads to:

H® =0 Yij (2.22)

The quasiparticles, and thus the U and V matrices, obtained from this equation are defined
up to a unitary transformation. We can therefore choose the representation that diagonalizes
H'Y. In this representation, the Hamiltonian reads under the HFB approximation:

H=H+> " Hy& (2.23)
k

Note that the HFB approximation consists in neglecting H*°, H3' and H*2. We then have:

I:I|(I)HFB> = H(0)|(I>HFB> = Eurp|Purp) (2.24)

HE | ypp) = (HO + HNE | @urn) = (Bprs + )| Purp) (2.25)

These equations clearly show why the quasiparticle representation that diagonalizes HY is
chosen: it is the one in which the one-quasiparticle excited states are eigenstates of the
Hamiltonian along with the HFB adiabatic state.

To conclude, we show how we obtain the usual formulation of the HFB equations. We
first define the HFB Hamiltonian matrix Hyrp:

71 A g1 H20
Hurp = (_A* _E*) =B" (_]f[20* _f_[ll*) B (226)

The matrix B clearly diagonalizes Hyrpg:

s (1) (1) -

Since Hypp and the generalized density matrix R defined in Eq.(2.7) are diagonal in the
same representation, we finally get:

(Hurs, R] =0 (2.28)

Eq.(2.22) is the starting point of the gradient descent method to solve the HFB problem
while Eq.(2.28) naturally leads to an iterative diagonalization method. Both methods are
presented later in this Chapter. We have derived the HFB equations in the most general
case. In the following sections, we emphasize on the specificities of this PhD thesis work.
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2.1.1 Symmetries

In the context of the methods based on the mean-field approximation, the more symmetries
we break then restore, the better the description of the system. In practice, breaking sym-
metries and restoring them implies a non negligible numerical cost. This is the reason why
breaking symmetries is a matter of compromise.

In the case of fission, the influence of pairing correlations is fundamental. A very convenient
way to include them at the mean-field level is precisely to use the HFB approach. From
Eq.(2.2), it is clear that the HFB wave function doesn’t contain a definite particle number.
By essence, it breaks the particle number symmetry. Even though we can impose the particle
number to be conserved in average (see section on constraints), the fluctuations are far from
being negligible.

Besides, on a good approximation, the fission process occurs along a symmetry axis (with
the exception of the first barrier). This fact leads to the conservation of axial symmetry. It
means that the states we consider have to be eigenstates of projection J, of the total angular
momentum operator, associated with the quantum number ).

In addition, the time-reversal symmetry (see Appendix O) is also preserved in our calcula-
tions. Even if it has the advantage to reduce a lot the complexity of the calculations, it also
imposes to consider only even-even nuclei with Q2 = 0.

Finally, the experimental data show that the fission of a nucleus can lead to either a symmetric
or an asymmetric fragmentation. In order to reflect this observation, the description has to
allow the parity symmetry breaking.

In coherence with the symmetries chosen, we build quasiparticles with a specific €2 as a mix
of creation and annihilation operators with the same 2. Moreover, the {¢;} are paired by
the time-reversal operator T, which means that the HFB wave function reads:

|Purp) = NH§z§7z|0> &="T&T ! (2.29)

These conditions imply that the {&} can be written as follows, U and V being real matrices:

&' =D req Uritr + Viicy,

Applying explicitly the time-reversal operator, we find the following conditions:

UZ' - U‘g .
S vk, i, (2.31)
—VE@' = Vi

Then the full HFB transformation reduces to the simpler one:

13 vt o0 o0 VT ¢

£ o U —vT o0 ¢ 3 ur vt (¢

g-i- = 0 VT UT 0 ct g g—&- = _vT U et (2'32)
&t N VA 0o U} \e+

Note that U and V have also the (2-block substructure:
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U= V= (2.33)
0 USn 0 Vi

Since we do neglect proton-neutron pairing, we don’t mix together the creation and annihila-
tion operators with a different isospin, we can thus write the HFB wave function as a tensor
product:

|(I)HFB> = |(D;7ILFB> ® |(I)7I-{pFB> (2-34>

Eq.(2.34) allows us to separate the U and V matrices with respect to the isospin. We can
finally write the fully reduced U and V:

( UTQO O
Ur =
57' B UTT _VTT cT . 0 UTQn
(g‘rJr - VTT UTT &t ) VTQO 0 (235)
VT = .
0 Vo

\

Finally, each of the U™ and V™ block matrices defined in Eq.(2.35) exhibits a special internal
structure described by the famous Bloch-Messiah theorem (see Appendix C):

UTQ _ DTQ,U/TQOTQ‘ ’VTQ _ DTQ,UTQCYTQ‘ (236)

Here, D™ and C™ are orthogonal matrices and 4™ and 7™ read as follows:

ae=|0 0 with 1> u; > 0 (2.37)
0 o0
0 0 wu,
U1 0 0
o= |V 0 with 1> 0 > —1 (2.38)
0 .0
0 0 wv,

2.1.2 The 2-center harmonic oscillator representation

As mentioned above, the HFB quasiparticles are a linear combination of the creation and
annihilation operators associated with an orthonormal particle basis. It is standard to use
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bases to build the quasiparticles that are either spherical, axial or triaxial harmonic oscillator
bases [47]. Those bases are orthonormal, and are really convenient to evaluate interaction
matrix elements and fields, in particular these associated with the Gogny interactions.

As they are all bases, there should be in principle no difference when using them. However,
numerical limitations require to truncate the basis we use. In that case, we would like our
truncated basis to fit at best the system it aims to describe. This is the reason why, for
instance, spherical bases are used to describe nuclei close to sphericity when axial ones are
more relevant when it comes to more deformed nuclei.

When trying to describe fission, we face heavily deformed nuclei that require to increase
a lot the number of states we use in the truncated axial harmonic oscillator basis. These
additional dimensions tend to significantly slow down the calculations. To avoid this drop in
performance, the 2-center harmonic oscillator representation has been developed historically
by J. F. Berger [47] and is still used in the new new HFB code employed for these PhD thesis
applications, known as the HFB3 solver. Before going through this 2-center representation,
we first start with the standard axial harmonic oscillator basis.

The functions of the axial basis are a product of two independent parts related to the z-axis
and its perpendicular direction:

V) (T brs 02) = Gimm ) (7L, br)on, (2, D2) (2.39)

The first part is a cylindrical harmonic oscillator wave function and is characterized by the
quantum numbers m and n; which account respectively for the angular momentum and
the number of energy quanta in the perprendicular direction. The second one is a simple
one-dimensional harmonic oscillator wave function and is labeled by the quantum number n,
which corresponds to the number of energy quanta in the z direction. Both wave functions
are furthermore characterized by two oscillator lengths b, and b,, each combination (b,,b,)
defining therefore a specific orthonormal basis. These functions explicitly read as follows:

1 1242 z
o (e,) = e L () (2.40)
_ 1 nL! ; T T _1lr1y2
. b,) = ime(_Ly|m| ImlrZLy21,-2(50) 241
¢( ) J.)(TJ—’ ) brﬁ (TlJ_—i- |m‘)|e (br) ng [( br> ]6 ( )

The H,,_ and Llﬁl are respectively the Hermite and the generalized Laguerre polynomials.
As n, is associated with the energy of ¢, _, it characterizes the number of nodes of the latter
function when b, defines its spatial spreading. In Figure (2.1), we represented in the left
side the effect of a variation of n,, and in the right side we’ve highlighted the effect of the
parameter b,:
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®n,(z, b;)

Figure 2.1: ¢(,.)(2,1) with different n, (left) and ¢(9)(z,b.) with different b, (right).

Concerning the 7, part, n, defines the number of nodes of ¢(,, ) and b, its spatial spreading.
The effect of m is more complex and operates in both the spatial spreading and the oscillation
frequency of the complex part of the wave function. In Figure (2.2), we represented the impact
of a variation of n, in the left panel and the impact of a variation of b, in the right panel:

0.10
n, =0 b,=1.0
-+-ny = -+ b;=2.0
— n, =4 — b,=3.0

o
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§ 4
L W‘M‘Q‘*m
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Figure 2.2: [¢ 2, (71, 1)|* with different n, (left) and ¢ 2) (71, b.)|* with different b, (right).

So far, we've only talked about the spatial parts of the orthonormal particle basis wave
functions. However, to fully describe a nucleon state both spin and isospin have to be added
in such a way that the underlying states of the orthonormal basis are written as:

W) = [W(ms, ni,,mz,)) ® |si) @ |7:) (2.42)

Eq.(2.42) corresponds to the tensor product of the spatial, spin and isospin parts. To conclude
this section, let’s remark that the squared norm of the total harmonic oscillator wave functions
often exhibit very aesthetic patterns. We show in Figure (2.3) the squared norm of the wave
function 92,1y (7, 1, 1.5):
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Figure 2.3: [¢)(2,2,1)(7, 1,1.5)%.

Here, y is one of the Cartesian coordinates that stand for the perpendicular direction. If
we consider a truncated harmonic oscillator basis {¢(mn n.)(br; b2)}mn, n.), the associated
2-center harmonic oscillator representation is the space generated by the set of functions
{Wamm, im0, b2y d) Y omny ) Y A% mn, ma) (Or, b2y —=d) }mm, n.). Note that we choose to keep
the same b, and b, for all the functions of the set. The new parameter d corresponds to a

translation along the z-axis:

¢(m7nJ_7nz) (F7 b?“7 bz, :l:d)

= (b(m,nl)(ﬁ-v br)pn. (2 £d,b,)

(2.43)

We illustrate it with the squared norm of the sum of two harmonic oscillator wave functions

spanned by different +d in Figure (2.4):

Figure 2.4: |1/J(07171) (F, 27 25, 5) + @Z)(17171)(F, 2, 25, —5>|2
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The representation defined by the wave functions of Eq.(2.43) is not orthogonal in general.
This is the reason why we talk about a 2-center representation and not a 2-center basis.
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To use this representation in the HFB theory, the wave functions set has to be orthonormal-
ized. In the HFB3 code, this is done by using the diagonalization technique. We first have
to evaluate the overlap matrix O;; between the wave functions of the set:

Oy = (Wilth;) = Bure b, / A7t (7Y (7) (2.44)

These quantities have an analytical expression which is derived in great details in Appendix
D. As O is a real symmetric matrix, it can be diagonalized with an orthogonal matrix @:

QTOQ = diag(\) (2.45)

If we isolate one matrix element explicitly, we get:

Z Z Q’LkO’LJQ]l - (Z w2|sz ZQ]l’w] - 5kl)\k (246)

If we consider only the eigenvalues A\, greater than a small value € > 0, we can write:

<Z<wz|czm f fZQJz|wJ = (2.47)

From Eq.(2.47), we can extract an orthonormal set of states {|px)} such that:

pr) = \/— Z Qjkl¥5) Z M) (2.48)

This equation defines the transition matrix M from the 2-center harmonic oscillator repre-
sentation to its associated orthonormal basis. There is still one subtlety to understand in
order to use correctly the 2-center representation. Let’s suppose we want to write a one-
body operator A in second quantization. Using the orthonormal basis {Ipk)}, we deduce the
following expression for A:

A= el Alp)pip (2.49)
kl

If we want to express the matrix elements of the operator A in the 2-center representation,
we end up with the following equation:

A= Z (i) Alp;) ;Mikp;XZ:Mjkpl (2.50)
ij

If we call the {c¢;} the creation operators and the {c;} the annihilation operators associated
with the 2-center representation, we have:

33



S Mapt # ¢ (251)
k

Indeed, M7 is not the inverse of M since M is not orthogonal, but M;:" = /\;Q;;. Thus,
Eq.(2.51) defines a new representation which is called the blorthogonal representation and
whose associated creation and annihilation operators are denoted {¢; } and {¢;} respectively
(and its wave functions {¢;}). The property standing for the biorthogonality reads:

(iley) Z Z MM, pk‘pl> = 0y (2.52)

The subtlety is therefore that an operator A whose matrix elements are evaluated in the
2-center representation comes with creation and annihilation operators in the biorthogonal
representation :

A=Y (il Algy)éte; (2.53)

In order to avoid really tedious notations and as it is clarified by the context, the differ-
ences between those three basis won’t be specified unless necessary. All the creation and
annihilation operators of those bases are thus denoted {c/} and {c;} in the following.

2.1.3 The effective interaction

In the work presented in this PhD thesis, we have used two variants of the Gogny interactions,
the D1S original one [15-18] and the D2 interaction [19]. These interactions are local effective
two-body nucleon-nucleon interactions. Some of the terms in these interactions are finite-
range terms and some are contact ones. Note that, in a recent work, the DG interaction
has been developed with only finite-range terms and includes a tensor term [48]. The D1S
interaction reads:

2

V=Y e NPV (W, + BiP, — H;P. — M;P,P,)
=1

L T,

+t3(1 + :L’OPU)(S(M — TQ)[p( 2 )] (254>
FiWisV 128(F — 7) A V10.(51 + )
57’ 7!
—1—62%
|7”1 - 7“2|

The operators P, and P, stand respectively for the spin and isospin exchange operators. From
the top to the bottom, the first term is called the central term, the second one the density-
dependent term, the third one the spin-orbit term and the fourth one is the Coulomb term.
Note that an additional term is often added which accounts for center of mass corrections

—mPQ Moreover, the Coulomb term contribution to the energy is sometimes evaluated
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using the Slater approximation [49] for the sake of numerical performances. In this PhD
thesis, we have added the exact treatment of the exchange and pairing part of the Coulomb
term in the HFB3 code. Thus, we have been able to perform calculations with and without
the Slater approximation.

The difference between D1S and D2 is that the contact density-dependent term in D1S has
been replaced by a finite-range one whose analytic expression is:

(Ws + B3Py — HyP; — MyP, Py)e R ([p(m)]* + [p(72)]%) (2.55)

-
2(p3y/7)?

Note that D1S and D2 parameters have been fitted considering the Slater approximation for
the Coulomb energy. It may be important to keep that in mind when interpreting calculations
done with the exact treatment of the Coulomb term.

2.1.4 Constraints on particle number and multipole moments

In the previous presentation of the HFB equations, done in the beginning of the section 2.1,
the constraints have been intentionally omitted. However, they are essential to perform HFB
calculations. Indeed, in all the calculations, the average particle numbers associated with
both isospins are constrained to the desired N or Z values. To do so, the particle number
operator is added with a Lagrange multiplier A\, into the Hamiltonian:

H, = H+ZA ZW T (2.56)

The Lagrange multipliers A, are adjusted throughout the gradient descent and the iterative
diagonalization process in a way explained in the dedicated sections (section 2.1.5 and section
2.1.6 respectively).

To describe the deformations of the nucleus, constraints on the multipole moments are also
imposed using the associated one-body operators Q(‘EO) [45]. The latter are simply added to
the Hamiltonian as in Eq.(2.56) such that the final Hamiltonian H, reads:

H, = H+Z>\ Z T+ T+ZA Z Q0 ¢tc (2.57)

Note that the mean value of Q(m) is always constrained to zero in our calculations in order to
avoid translations of the system. In the case of the gradient method, the one-body operators
are easily written in the quasiparticle basis and added to the Hamiltonian. Constraining the
different multipole moments allows to describe many shapes. In Figure (2.5), we represented
three typical shapes we may find in potential energy surfaces. From left to right, in the first
panel we recognize a spherical shape, in the second panel an axial quadrupole one, and in
the last panel we eventually observe an axial asymmetric shape:
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Figure 2.5: Local one-body density of ?*°Pu for (Qa, @30) = (0,0), (1642,0), (5784, —19000).

It is important to know that the multipole moment operators are not univoquely defined in
the literature. To help the reader find his way through these twists and turns, we've listed
below the different conventions used in four HFB codes. All the results of this PhD thesis
are displayed with respect to the HFB3 code definitions:

QU = 1 \/gz
HFB3 code: ?(20) N %\/5(222 —r) (2.58)
QB0 = %\/;(223 — 32r?)
\Q(40) = 151/ 2(82* — 24277 4 3r1)
O — ,
HFB2ct code: gig; : 252 _;j“i (2.59)
Q(40) = 24 ?2»227“3 + gr‘i)
Qo) = -
HFB axial code: giz; z zz : ?ji (2.60)
QU = 24 _ §22ri -+ %T‘i)

HFBTHO code:

(30) — i\/;(Qz?’ —322) (2.61)
QU0 = %\/E(Sz‘l —242%r% +3r?)

2.1.5 The gradient descent method

The philosophy of the gradient descent is really straightforward [45,50,51] and is based on
Eq.(2.22). We start from a state |®y) which verifies Eq.(2.4) and perform a little variation
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on it which is parametrized by a Thouless matrix Z. Since the time-reversal invariance is
preserved, Z is real and the new state reads:

[B(2)) = (o|@(Z))eockes A6 | @) (2.62)

The little variation is performed in the direction that minimizes the energy. To ensure that,
Z is chosen being parallel to the energy gradient:

0 (2(2)|H|2(2))

=t @ZR()

—nHY, (2.63)

The norm 7 of Z defines the length of the step made in the direction given by Z. If ) is small
the convergence will be more stable but slower too. Different techniques exist to determine
a “good” n (see [51] for a more complete disccusion).

Once Z is determined, the new U’ and V' matrices related to the state |®(Z)) are found
thanks to the following formula:

V= (VO U2\ I - 22)71? (2.64)

{U’ = (U —vOz)(] - 7z7)1?

The process is iterated until the condition ||[H?|| < € is fulfilled, ¢ being a small quantity.
Note that in the HFB3 code we chose € = 5.107%.

Constraints are treated throughout this process in a very simple way. Indeed we add the
gradient of each constraint to the energy gradient such that:

Lk = —Uagkk/ (dzé)Z(!;[&)\zbZ(i» |7=0 = —n(Hij + za: 2aC3) (2.65)

Here the {C?°} stand for the gradients of the general constraints C,. The Lagrange multi-
pliers A, are determined at each iteration in such a way that |®(Z)) verifies the associated
constraint to a linear order in Z. More explicitly, the following relation for each constraint
C is used:

Oy — C = 2T [ZC%] = —2n(Te[HPCY) + Z A Tr[C20C2)) (2.66)

Here Cp is the target value for the constraint éﬂ and C’g)) is the expected value. Taking into
account all the constraints, we end up with a linear system:

My = Tr[C2002)
MA =Ays  with A, = M, (2.67)
(Ac)s = £(Cs — CY) + Te[H?CY
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The convergence is achieved when [|[H?° + 3" A\,C2|| < e. At this point, a last step remains.
Indeed, we have to diagonalize H'! in order to be in the desired HFB quasiparticle represen-
tation. The final U and V matrices are then deduced from the ones of the last iteration Uj,e
and Vs

U= UlastQ

(2.68)
V= WastQ

QTHM(Q = diag(e) = {

We introduced this part stating that the gradient algorithm starts from an HFB vacuum |®y).
Practically, most of the time, we are performing calculations with different deformations.
Thus we can use the result of some previous calculations as a seed for the new ones. However,
sometimes no pre-defined initial state is available. In that case, a “random” state |®g) is
created. For the convergence to work properly, it is important that |®,) approaches the
good average particle numbers. Moreover, it has to verify the Bogoliubov equations Eq.(2.4).
The way these requirements are fulfilled in the HFB3 code is inspired by the Bloch-Messiah
theorem. Indeed, we first create two random matrices S¢ and Sp and we create two skew-
symmetric matrices out of them SC and S p such that:

{SC:SC—Sg (2.69)

Sp=258p—S%

We then take the exponential of those matrices in order to end up with the unitary matrices
C© and D©:

) — GSC
{D(O) _ (2.70)

At this step, only u(¥ and v(® still need to be defined. As a good average particle number

N is desired, we initialize the vector vg with N ones, the rest being set to zero. We then
add to this vector vy a random pertubation whose elements are in the range [—0.1,0]. This
defines the vector v;. Note that this random pertubation is added in order to start from a
state already including pairing. The vector v; is then rescaled to preserve the good average
particle number, the resulting vector being called vs:

N
zi(vl)?

The elements of v, can sometimes be slightly greater than 1. For this reason they are clamped.
The resulting vector is the desired v(®). Because of the clamping, v(® may not have exactly
the good average particle number but the difference is so small in practice that it doesn’t
cause any numerical issue. The elements of u(®) are then defined using the ones of v(%:

(2.71)

Vo = U1

W =/1-0 v (2.72)
We can eventually express the matrices U® and V() defining the starting state |®,) as:
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(2.73)

U0 — 0)4,0) po)
VO — 00,0 O

In this chapter we presented the plain theory of the gradient descent. It is however impor-
tant to know that this theory only serves as a backbone for more sophisticated numerical
approaches that enhance convergence speed and stability (see for example [50,51]. In the
HFB3 code, the so-called “heavy-ball” technique [52] is used and roughly consists in mixing
the matrix Z® of an i-th iteration with the matrix Z0=" of the previous (i-1)-th iteration.

2.1.6 The iterative diagonalization method

The iterative diagonalization method comes from the Eq.(2.28). Let’s assume we start with
an HFB vacuum |®,), with the associated U and V(? defined previously. The matrix

H;%B defined in Eq.(2.26) is computed and diagonalized. The eigenvectors of H(HO};B then
stand for the new UM and V:

(1) (1)

Hirs (%(1)) =€ (%(1)) (2.74)
The process is iterated until the i-th iteration for which the condition ||p® — pt=V|| < ¢ is
fulfilled, ¢’ being a small quantity. This measure of the convergence is of course not the same
as the one in the gradient descent, € is therefore different from e. Note that, in the HFB3
code, we chose ¢ = 1075.
In the diagonalization method, the constraints are handled in a way slightly different to the
one presented in the gradient method. The Lagrange multipliers are corrected pertubatively
at first order at each iteration and p and x are corrected accordingly (for more details see [47]).
It is important to know that the iterative diagonalization method can jump from a state
|®g) to another very different state |®;), whereas the gradient implies to stay close to the
starting point at each iteration. Because of that, the gradient tends to be more stable but
also slower when the diagonalization method is faster but sometimes struggles to converge.

In practice with the plain iterative diagonalization method it is most of the time not possible

to converge without appropriate numerical techniques such as the Broyden mixing used in
the HFB3 code.

2.1.7 The HFB3 and CHICON solvers

We conclude the presentation of the HFB method telling a few words about the HFB3 code
we used during this PhD thesis [53]. This code is an HFB solver that can work with both
one-center and two-center harmonic oscillator sets. For this reason, it is particularly well
suited for fission.

Another peculiarity of the HFB3 code is that it is able to combine the advantages of both
gradient and iterative diagonalization solvers in a new mixed solver. The gradient solver is
indeed useful to perform the first iterations in a convergence process in order to reach a state
close enough to the final solution for the iterative diagonalization solver to work properly. In
that way, the convergences are both stable and fast.
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Moreover, a particular attention has been paid during this PhD thesis to the implementation
of the fields, which are most of the time the bottleneck in the numerical calculations. Thanks
to the work done in the context of this PhD thesis, the HFB3 code demonstrates now very
good performances using D1 type and D2 Gogny interactions. In Figure (2.6), we have plotted
the convergence of the HFB wave function with respect to the time for different interactions
and starting from random U and V matrices. These calculations have been done in the case
of 22%Pu with a 2-center representation (2x11 shells). We clearly recognize the part associated
with the gradient method and the one associated with the iterative diagonalization method.
The curve associated with the interaction D1S with the Slater approximation shows a fast
convergence (less than 80s). When an exact treatment of the Coulomb fields is added, only a
factor 3 is added. Finally, we only observe a factor 2 between D1S and D2 calculations with
the Slater approximation, which is an outstanding performance:
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102 --- DI1S (Exact)
---- D2 (Slater)
K . --- D2 (Exact)
1 b """"-o-\.
g 107 ". ™~ \
S “ S LR
9 Y L '\::\:..-.-."
G>J 10_2' \ = ...‘q .oo
[} 'Q
g t .\ \Q'Q N\
V] L Y \ )
1 \ R
-4 «
10 |’ .* \.. \‘
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Figure 2.6: HFB3 performances on 24°Pu.

All the PES produced during this PhD thesis have been calculated using the combo HFB34+CHICON,

in which CHICON is a driver of the HFB3 code adapted for HPC calculations on supercal-
culators. This driver contains a retro-propagation mechanism, avoiding at maximum local
minima. Thanks to that combo, 1D and 2D PES are relatively easy and fast to produce on
supercalculators. A 2D PES of 2*°Pu is shown in Figure 2.7 as an exemple:
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Figure 2.7: 2D potential energy surface of the ?*°Pu made with the combo HFB3+CHICON.

2.2 The 2-quasiparticle excited states

In the first derivations of the SCIM [33], the excited states considered were non-self-consistent
2-quasiparticle excitations over the HFB adiabatic states. Indeed, the quasiparticle excita-
tions are the elementary excitations of the system in the HFB theory and are convenient to
use. Moreover, they allow us to describe the pair breaking phenomenon which is known to
play a role in low-energy fission.

First, we recall how these excited states were to be constructed. Then, we discuss their major
shortcomings.

2.2.1 Construction of time-even 2-quasiparticle excited states

To be consistent with the adiabatic approach, the time-even 2-quasiparticle excited states
read as follows:

i , , 1 1
D) = (676 +&7EDIP) with  ay; = E(l + 515(% —1)) (2.75)

The time-reversal invariance property can be easily checked:

T|®;) = oy (—&T 6T — £76D)|@) = |Dy;) (2.76)

Moreover, those states are properly normalized:

(@i |Di;) = af (PI(E;& + E&)(ETE + &7 ENIP) = 205(R|E;661 N + 667 61P) (2.77)
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(@ij|@iy) = 203,(1 +6) = 1 (2.78)

In order to preserve the time-reversal symmetry, the quasiparticles are chosen in the same
()-blocks. In addition, we don’t mix different isospins.

2.2.2 2-quasiparticle excited states along a deformation path

As quasiparticles are not unequivocally defined by their quantum numbers 2 and 7, it is
not straightforward to tell them apart. However, the SCIM formalism requires to clearly
identify an excitation all along a deformation path. To do so, we define an excited state
|®;;(q + 0q)) at the deformation g + d¢ thanks to its neighbouring state |®;;(¢)) with the
following requirement:

[(@i(q)|Pij(q + )| = maxy s |(Pij(q)|Pirj (g + 5g))] (2.79)

The method to evaluate these overlaps is explained in great details in Chapter 5.

2.2.3 Average particle number of the 2-quasiparticle excited states

Unfortunately, a first drawback of the non-self-consistent 2-quasiparticle excited states is that
they do not have a good average particle number. Moreover, this average particle number
may strongly change with respect to the deformation, implying sudden discontinuities in the
energy of the excited states:

(a) . — Adiabatic energy
1 —=—=- Adiabatic energy + 2 ¢;
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Figure 2.8: Tllustration of the particle number issue in a 2-quasiparticle excited state with
respect to the quadrupole deformation. Panel (a): comparison of the adiabatic PES with
both 2-quasiparticle excited PES and with the HFB approximation of this excited energy.
Panel (b): particle number difference between the adiabatic and the 2-quasiparticle excited
state.
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In panel (a) of Figure (2.8), we compare the 1D adiabatic PES of the ?°Pu with the PES of
one of its 2-quasiparticle excited states (neutron with = 1/2 and of the type &"&|®)). We
also represented in dashed blue the energy deduced from the HFB approximation. In panel
(b) of Figure 2.8, we show the particle number difference AN between the excited state and
the adiabatic state with respect to the deformation.

The effect of the particle number variation on the energy is stricking. The purple curve may
indeed differ a lot from the blue one. When AN is close to zero, we find an energy close
to the one deduced from the HFB approximation. In [33], this problem has been discussed
and the solution pointed out was to choose 2-quasiparticle excited states that break particle
number as less as possible. As shown in Figure (2.8), it is far from being possible all allong
the deformation path. Moreover, even in the areas where AN belongs to | — 1, 1], the
spurious variations of the Hamiltonian kernel induced by the particle number variations may
dramatically spoil the SCIM as it requires a high regularity of the kernels.

2.3 The projection after variation method applied to
the particle number

Discovering the importance of the average particle number breaking in the 2-quasiparticle
excited states, we immediately looked for a method to alleviate this issue. The most natural
and straight way to proceed is the projection on particle number. Note that this possibility
had already been discussed in the work of Bernard et al, but they didn’t follow it up.

Both the Projection After Variations (PAV) and the Variations After Projection (VAP) [54]
do exist. In the PAV case, an already existing HFB state is projected onto its subspace
corresponding to the desired particle number. On the other hand, in the VAP method, the
projection is already included in the HFB equations and therefore in the convergence process.
The VAP is of course an ideal choice as it is self-consistent, but it also requires more numer-
ical efforts. Therefore, to start with projections and evaluate the viability of our approach,
we implemented the PAV method.

To understand how the PAV works, it is important to recall some properties of the time-even
HFB wave functions. In the canonical basis (see Appendix C), the HFB wave functions read:

)

Here, the {a}} are the particle creation operators in the canonical basis. In Eq.(2.80), we
clearly see that the HFB wave function can be separated into components with only even
particle numbers:

Prrs) = conlPam) (2.81)

The ¢y, are normalization coefficients such that each |®,,,) is properly normalized. To evaluate
the average particle number of a state, we first express the particle number operator V:

N=> cfe (2.82)
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Note that the creation and annihilation operators used in Eq.(2.82) have of course to be the
ones of the orthonormal basis. Using the ones of the 2-center representation, for instance,
may lead to some unpleasant surprises.

Thanks to the particle number operator N , we define the projector PNO. It is the projector
on the subspace corresponding to the particle number Ny:

1 2w

Py, = /. dgpe‘i‘p(N_NO) (2.83)

The effect of pNO on the HFB wave functions is straightforward:

2m 2m
o Con —ip(N— C2n —ip(2n—
Prn,y|®urp) = Zg/ﬁ dpe PN Py, ) = Zg/o dpe™ =Nl |p 1) (2.84)
Using, the following well-known result:

1 2

dpe'* = 510, Vk e N (2.85)

27 Jo

Inserting Eq.(2.85) in Eq.(2.84), we finally find:

Py |®nrs) = Z 2Ny C2n| P (2n)) = Ny | P () (2.86)

In practice, the integral is discretized in order to be evaluated numerically:

~ 1 _i2me (N—
Py, = — 3 e e ) (2.87)

n
P =0

The convergence speed of this sum is really good. In this PhD thesis, we never had to use
a value n,, greater than 11. Besides, as the isospins are separated in the wave functions we
consider, projections have to be performed on both isospin simultaneously:

Py, = ﬁjggn P;;T,, (2.88)

Note that the final projected states |<i> grp) have to be renormalized after projection. They
read as follows:

Pry
V (@ur| Py | @)

|q~3HFB> = |PrrB) (2.89)

In Chapter 5, we discuss in great details how the different observables and kernels are eval-
uated with projected states.
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2.3.1 Projected adiabatic states

The effect of the particle number projection on the HFB adiabatic states has been already
widely discussed in literature [54]. Generally speaking, as long as the particle numbers of the
HFB states are not exact, it increases their binding energy adding correlations to them. The
more the particle number is spread, the more energy is added. Besides, as the pairing energy
is directly related to the particle number spreading, the difference between the projected HFB
energy and the HFB energy varies accordingly with the pairing energy. In Figure (2.9), we
illustrated these general effects of the projection with respect to the quadrupole deformation
in the 2°Pu. In panel (a), the difference between the projected adiabatic HFB energy and
the adiabatic HFB energy is plotted. In panel (b), we’ve represented the evolution of the
pairing energy. Finally, in panel (c), the standard deviation of the total particle number is
displayed:
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Figure 2.9: Illustration of the effects of particle number projection on ?*°Pu with respect to
the quadrupole deformation. Panel (a): difference between the projected HFB energy and
the HFB energy. Panel (b): pairing energy of the adiabatic HFB states. Panel (c): standard
deviation of the total particle number of the adiabatic HFB states.

Moreover, when an already continuous and regular set of HFB states (see section 3) is pro-
jected, the resulting set of projected states is still continuous and regular. In Figure (2.10),
we represented this phenomenon in the ?°Pu with respect to the quadrupole deformation.
The black curve represents the value of the overlap kernel between an adiabatic state and its
neighbour on the right. The grey curve represents the same quantity for projected states.
Even if the grey curve shows variations of high amplitude compared to the black curve, these
fluctuations are in fact of the order of 1073. The projected states can therefore be considered
fairly regular:
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Figure 2.10: Overlap kernel of the adiabatic HFB states with their neighbour on the right
compared to the overlap kernel of the projected adiabatic HFB states with their neighbour
on the right with respect to quadrupole deformation.

This result is not surprising since a high continuity of the total wave function does imply the
continuity of all of its components.

2.3.2 Projected 2-quasiparticle excited states

By analogy with the Eq.(2.89), the projected 2-quasiparticle excited states |<i>z]) read as
follows:

B,) = S (678 + €18 (290)
\/(‘I)HFBK&@ +&6) P (676 + 67D |1 Purp)

As expected, the energy of the 2-quasiparticle excited states behaves way better when they
are projected onto the good particle number subspace.

In Figure (2.11), we represented the projected adiabatic PES (grey curve) along with the PES
of a projected 2-quasiparticle excited state (neutron with 2 = 1/2 and of the type & |®))
in the 2*°Pu with respect to the quadrupole deformation. We observe that the energy of the
projected 2-quasiparticle excited state behaves in line with the HFB approximation of the
excited energy (blue dashed curve in Figure (2.8)):
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Figure 2.11: Projected adiabatic PES and projected 2-quasiparticle excited state PES in the
240Py with respect to quadrupole deformation.

Despite its success in correcting energies, the PAV method sill has some important short-
comings. The most straightforward one is the fact that the projected excited states are no
more orthogonal to the projected adiabatic states. In Figure (2.12), we plotted the value
of the overlap kernel between the projected adiabatic states and their associated projected
2-quasiparticle states with respect to quadrupole deformation in the 2*°Pu. We observe sig-
nificant variations with a maximum absolute overlap kernel value of 0.30 for Q99 ~ 3000
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Figure 2.12: Overlap kernel between the projected adiabatic states and one of its projected
2-quasiparticle excited states with respect to quadrupole deformation in the 24°Pu.
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For such non-orthogonal excitations, the physical interpretation of the SCIM results would
be very ambiguous. Indeed, the high overlap kernel values show that the physics of the
excitations is mixed with that of the adiabatic states.

Another drawback of the projected 2-quasiparticle excited states is a rather technical but
important concern. Indeed, when the pairing energy drops to zero, the adiabatic HFB states
have an exact particle number Ny. In that case, the 2-quasiparticle excited states also have
an exact particle number, which can be equal to either Ny or Ny + 2. Unfortunately, if the
exact particle number of an excited state equals Ny £ 2, it is no longer possible to project it
onto the subspace associated with the particle number Ny as this subspace simply does not
exist.

2.4 Continuity and regularity

As stated in Chapter 1, both the continuity and the regularity of the kernels are important
in the SCIM formalism. To specify these two concepts rigorously, we first need to define a
distance in the HFB vacua Hilbert space. This assignement is rather straightforward as the
customary overlap between states is the canonical Hermitian inner product of the HFB vacua
Hilbert space. Because of that, the canonical norm simply reads:

@) = V[{®[®)] (2.91)

Once a norm is defined, it is easy to build a distance out of it:

do(|®a), [®)) = [| [Pa) — [®3)]] (2.92)

As the HFB vacua are properly normalized, Eq.(2.92) can be rewritten as:

do(|®a), [®5)) = V21/T — Re((®y|Dy)) (2.93)

We rescale the distance dy into the final distance d:

d(|Pa), [®1)) = /1 — Re({Pa|Py)) (2.94)

The distance d goes from zero to /2, but two orthogonal states are characterized by d= 1
when the distance between a state and its negative counterpart reaches the maximum. In
order to avoid this phases ambiguity, we could use the function d* defined as follows:

d(|19a), [®)) = V1 = [{@a|Ds))] (2.95)

However, d* is not a distance anymore. Indeed, |®) # —|®) but d*(|®), —|P)) = 0. We
therefore keep the distance d for the formal definitions in the following. In practice, the
way we usually figure out the “distance” bewteen states is the plain absolute value of the
overlap. It goes from 1 (when both states are equal up to a phase) to 0 (when both states
are orthogonal). It is not a distance, but it is rather simple and convenient and avoid the
phases issues. For these reasons, most of the figures in this section are displayed with respect
to this absolute overlap value.
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Besides, other ways exist in the literature to give a hint on the “distance” between states.
For instance, the “Density distance” reads as follows [40]:

4,(|Bo). |@1)) = / d7po(7) — pa(7) (2.96)

From Eq.(2.96), it is clear that d, does not define a true distance. It’s a rather classical
way to evaluate the differences bewteen quantum states measuring a nucleon difference. It
neglects both non-local effects and pairing effects. However, in practice, we found most of the
time that the distance calculated with the overlap of Eq.(2.94) and the “Density distance”
were in a good agreement. In Figure (2.13), we compared d, (panel (a)) and d (panel (b))
evaluating them for each HFB state and its neighbour on the right with respect to the
quadrupole deformation in a 2*°Pu 1D adiabatic PES. We considered a PES made with the
combo HFB3+4-CHICON in order to underline the behaviour of d, and d with respect to
discontinuities:
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Figure 2.13: Comparison of d and d, with respect to the quadrupole deformation in the
20Pu. Panel (a): the “Density distance” d, between each state and its neighbour on the
right. Panel (b): the distance d between each state and its neighbour on the right.

Even if the behaviours of d, and d are very similar, we observe two important phenomena.
Firstly, they do not scale the same way. For this reason, d, may be good to spot disconti-
nuities but not to qualify their relative importance. Besides, we observe that in the fusion
valley (Qa0 > 9500 fm?) the overlap distance d reveals discontinuities not raised by d,. These
discontinuities can be due to a number of factors, such as pairing or non-local effects. How-
ever, we didn’t investigate further, as we were not interested in the physics of this part of
the PES in this PhD work.

Definition of the continuity:

With the distance d, we have everything we need to define the continuity. If we consider
a set of HFB states {|®(q))}, ¢ being a collective coordinate, the set {|®(q))} is said to be
continuous in ¢, if the following property holds:
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dim d(|®(q +dq)), |2(q))) =0 (2.97)

The explicit definition of the limit in Eq.(2.97) is more suitable for a numerical understanding
of continuity:

Ve>0, In>0; |0q] <n = d(|P(q+dq)),|P(q))) <€ (2.98)

Indeed, from a practical point of view and in the context of this PhD thesis work, we always
identify a set of HFB vacua with a given procedure. For instance, we consider the following
procedure:

Pag: “HFB calculations constraining only the quadrupole moment Qg € | gio), Q%)].”

Pa defines an infinite continuous set of HFB states {|®(Q2))}. As we are not working
numerically with infinite sets, we therefore have to give a discretized equivalent of Eq.(2.98).
We first define a model for the discretized sets associated with {|®(Qy)) }:

{19 (Qao)) Fa = Ui, {|@(QS)))} (2.99)

Here, the ng)) stand for different values of Qg9. We assume in the following that the Qgé) are
listed in ascending order. Moreover, we always impose Q%) = Qgg and Q%) = Q%). With
these notations, we can give a discretized version of Eq.(2.98) for a full set:

Ve > 0, 3{|®(Quo)) }a ; VIP(QE)) € {|2(Quo)) }as A(R(QYT)), 1B(QS)) < (2.100)

In Eq.(2.100), the boundaries 1 < k+ 1 < n are implicitly considered. Thanks to that
definition, it is easy to characterize numerically the continuity of a set defined by a specific
procedure. Note that it is straightforward to extend Eq.(2.100) in a case with more collective
degrees of freedom.

Definition of the regularity:

In the context of this PhD thesis work, we only considered real bounded functions. Thus, we
focus on the latter in the following. Let f be a real bounded function of the variable q. We
define its infinity norm as follows:

[|flloe = sup[f(q)] (2.101)

In the literature, the concept of regularity can have several meanings. Most often, it’s linked
to the property of being differentiable up to a certain order. In the SCIM, this requirement
is not sufficient though. Indeed, the SCIM requires that the derivatives of the functions
considered tend towards zero when the derivation order increases. The concept of regularity
needed is therefore defined as follows:
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a’l’b
Ve >0, AN €N ; Vn> N, Ha—qnf||00<5 (2.102)

The quality of the regularity of a function f is thus given by the pairs (g, N.), where N. is
the smallest integer such that the condition in Eq.(2.102) holds. Besides, we can extend the
latter definition to any operator A such that we end up with the concept of A—regularity:

Ve>0,dNeN ; Yn> N, ||[A"(f)]|e < € (2.103)

This concept of A-regularity will be especially useful in Chapter 6. Indeed, the functions
appearing in the SCIM formalism are in general not regular enough with respect to the
customary discretized derivative operators. Because of that, special derivative operators
have to be defined.

It is easy to consider Eq.(2.101), Eq.(2.102) and Eq.(2.103) from a numerical point of view.
Indeed, the function f: R — R is just replaced by the function f : D 7 — R where Dy is the

discrete domain of f. Of course, Vq € Dy, f (q9) = f(q). With these definitions, it is clear
that the concept of A-regularity extends to the discrete case (which includes the customary
discrete derivative operators).

2.4.1 Continuity issues

In practice, many procedures involving the usual constraints on multipole moments are as-
sociated with discontinuous sets of states. In Figure (2.14), we represented (panel (a)) the
energy of two HFB adiabatic sets obtained with different procedures and three coloured cir-
cles highlighting discontinuities on the red PES. In panel (b), we displayed the overlap of
these states with their neighbour on the right. All curves are presented with respect to the
quadrupole deformation in the 2*°Pu. The red dashed-dotted curve is obtained from the
Pso prodecure and numerically evaluated using the CHICON code as a driver for the HFB3
code. The black curve corresponds to a more sophisticated procedure Py and is numerically
evaluated with the Link+Drop combo on top of the HFB3 code. Both the Py procedure
and the Link+Drop combo are detailed in the section 3 of this Chapter. We displayed both
curves for the reader to have a reference point for comparing what is continuous and what it
is not:
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Figure 2.14: Illustration of the continuity of two different HFB adiabatic sets with respect
to quadrupole deformation in the ?*°Pu. Panel (a): PES associated with both sets with
coloured circles highlighting discontinuities. Panel (b): Overlap between each state of the
sets and their neighbour on the right.
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The most obvious comment is that it is possible to be continuous in energy and discontinuous
in overlap at the same time (red curve). Indeed, the procedure Pyy guarantees that the energy
of the states is continuous, as they are all built through an energy minimization process. On
the other hand, as the only degree of freedom constrained is the quadrupole deformation,
the nucleus is free to use the other unconstrained dimensions to minimize its energy. This
process can introduce discontinuities.

Such a discontinuous rearrangement of the unconstrained degrees of freedom is more likely
to happen in areas where a symmetry of the nucleus is broken. For instance, the green circle
highlights the parity symmetry breaking and is related to the multipole moment Q)s3.

The discontinuity identified by the golden circle is clearly associated with the multipole
moment (4. Besides, we have good reasons to assume that it is related to the fact that the
nucleus breaks the axial symmetry around this area if we let it free to do so. Indeed, we can
guess that this peculiar spontaneous symmetry breaking may correlate with topological issues
in the axial subspace. We've tested this hypothesis by performing triaxial calculations. In
panel (a) of Figure (2.15), we’ve represented the HFB energy with respect to 82 (accounting
for the quadrupole moment (Qy0) and v (accounting for the triaxiality). In panel (b), we've
displayed the quantity 8, (accounting for the hexadecapole moment Q)49) with respect to /35
and v:
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Figure 2.15: Study of the triaxility in the ?*°Pu. Panel (a): HFB energy with respect to (3,
and . Panel (b): 84 with respect to 32 and 7.

In both panels, the discontinuity spotted by the golden circle corresponds to v = 0 and
Po =~ 0.5. In panel (b), along the axial path (7 = 0), we clearly observe the bump of (4
between s = 0.4 and (35 = 0.5, which is associated with the Q)40 discontinuity (see also Figure
(2.16)). Besides, we remark that the triaxial path that minimizes the HFB energy also avoid
this Q4 bump, displaying a way smoother behaviour with respect to (4. Unfortunately,
we were unable to measure the continuity of this triaxial path. If this path were found
continuous, it would prove definitely that the usual discontinuity of the first barrier in the
axial calculations and the spontaneous breaking of axial symmetry at the first barrier are
one and the same phenomenon.

Back in Figure (2.14), the discontinuity circled in blue accounts for all the sudden changes
encountered by the nucleus through the scission process and cannot be accurately described
with just a few multipole moments. Finally, the remaining discontinuities testify to the com-
plex structure of the fusion valley obtained with the Pyy procedure.

In Figure (2.16), panel (a), we represented the evolution of the hexadecapole deformation
with respect to the quadrupole deformation in the area of the golden cirlce in the 2*°Pu for
both the sets obtained with the P and the Py procedure. In panel (b), we represented
the evolution of the octupole deformation with respect to the quadrupole deformation in the
area of the green circle for the same sets. Moreover, two local densities have been added in
panel (a) and two others in panel (b) in order to highlight the modification in the shape of
the nucleus:
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Figure 2.16: Illustration of the evolution of the hexadecapole and octupole moments in rele-
vant areas in the 290Pu sets obtained with Py and Psy. Panel (a): hexadecapole deformation
with respect to the quadrupole deformation. Panel (b): octupole deformation with respect
to the quadrupole deformation.

We observe that the black stars connect continuously the gap between the red dots. The
reader may legitimately assume that smooting out discontinuities is just a matter of multipole
moment interpolation, and he would be right. At least for these two specific cases

Indeed, before ending up with the Py, procedure, we tried the most simple 7320 one. If we
consider a discontinuity in the set of the procedure Py related to a multipole moment (),

with (Qy (d Y ngé 1)) and ( d+1 Q(d+1 ) labehng the moments before and after the discon-

tinuity respectively, the assoc1ated procedure 7720 reads as follows:

Péé): “Pao procedure for Qo € [Qé@,@%‘”] U [ g‘éﬂ), gé_l)] and HFB calculations
constraining both the quadrupole moment Qg € [Q;é_l) gé“)] and
QU -1

d—1 d—1) ”
Quy = Q(xo ) + (Q20 — ng )W

732(6) is nothing but a linear interpolation on the constraint related to the discontinuity. In
practice, we have found it to be both efficient and convenient to use. However, as the linear
interpolation is a rather naive interpolation scheme, one may argue that it probably doesn’t
provides us with the good adiabatic path. For this reason, a more sophisticated procedure
has been proposed by W. Lau et al. [55], including explicitly the concern for the adiabaticity
in the interpolation algorithm.

In the light of the last paragraphs, discontinuities appear to be rather simple problems to
solve. Nevertheless, the situation is totally different when it comes to describe the scission
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phenomenon. In Figure (2.17), we zoomed in on the blue circled discontinuity of Figure
(2.14) and we illustrated it with different local densities:
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Figure 2.17: Tlustration of the situation at scission zooming in on the blue circled disconti-
nuity of Figure (2.14), in addition to relevant local densities.

The most stricking feature we observe in Figure (2.17) around Qo = 11300 fm? is the
fact that the local density associated with the black curve corresponds to a single highly-
deformed nucleus, while the local density related to the red curve describes two already
separated fragments with an oblate shape. This last case corresponds to the behaviour of
two distant nuclei simply subjected to their Coulomb potential. This is the reason why
the valley described by the red curve is usually called the “fusion valley”. In a word, the
customary procedure Py is far from providing us with the expected physics at very large
quadrupole deformations.

Besides, the geometry of this transition seems too complex to be described with few multipole
moments. To circumvent this issue, a new geometric operator called (), has been proposed
by W. Younes and D. Gogny [56]. This operator is used to constrain the number of nucleons
in an area between the two pre-fragments (the “neck”). The procedures involving (.., have
shown some success in extending PES made originally with the procedure Py [35,57].

That being said, these procedures also suffer from certain limitations. First, they require at
least to constrain both (Y99 and Q.. at the same time. As there is no easy way to guess
how @, should behave with respect to (099, two-dimensional calculations have to be made
in order to extract an adiabatic one-dimensional set. Moreover, the numerical instabilities
occuring around the scission area often impose to add some other multipole constraints for
the convergences to work. Extracting an adiabatic path under these conditions can quickly
become a tedious numerical challenge. Nor it is clear whether these procedures can achieve
a reliable continuity of the order of that obtained in naturally continuous areas (with a stan-
dard step in (g, the overlap between adjacent states are in general greater than 0.99). To
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conclude on this topic, the Qe operator is by definition restricted to the description of
pre-fragments connected by a neck. As a result, it is dubious that it can describe properly
the entire fragment separation process.

In this section, we have only discussed adiabatic results. The reason is quite simple: disconti-
nuities at the adiabatic level always propagate to the 2-quasiparticle excited states. Dealing
with these discontinuities is therefore of the utmost importance to make the SCIM work.

2.4.2 Regularity issues

The tests of the SCIM we were able to carry out on continuous areas showed us a need for
more than just continuity. In fact, we have realized the vital importance of kernels regularity.
First of all, we want to empasize a very important property of the kernels: the Hamiltonian
kernel varies accordingly with the overlap kernel according to the following relation:

/

q+q

(®(q)|H|®(q)) = (®(q)|®(¢)) E( 5

) (2.104)

Indeed, in Figure (2.18) we studied the absolute error on the hamiltonian kernel AH (G —
s,q + s) with respect to ¢ and s:

AB(G— 5.+ s) =100 x |\ 200= $)| H|®(q + 5)) — (D(7 — 5)|®(q + 5)) E(q)

| (2.105)

(B(q— 5)|H|®(G+ s))
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Figure 2.18: Absolute error on the Hamiltonian kernel with respect to ¢ and s.

The quantities ¢ and s used in Eq.(2.105) and Figure (2.18) are expressed in terms of the
new collective coordinate cy, the construction of which is one the objectives of this section.
To give an hint on this new collective coordinate, cyx = 0 is associated with Qg = 28 fm?
and cy = 600 is associated with Qg9 = 18885 fm?. The results presented stand therefore for
the entire adiabatic PES.

The closer we are from s = 0, the better the approximation. Indeed in the range s € [—10, 10],
the absolute error peaks at 0.46% when in [—5, 5] the maximum of the absolute error is 0.15%.
Moreover, as the value of the Hamiltonian kernel decreases quickly with respect to s, the part
of the Hamiltonian kernel that the approximation describes the best is also the most relevant
part for applications. For our purposes, this result is important because it shows that we can
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focus on the regularity of the overlap kernel to get the regularity of both the Hamiltonian and
the overlap kernels. Besides, this result fully justifies the well-known local approximation
used, for example, in the GOA formalism [45].

We have also verified the relation displayed in Eq.(2.104) in the case of the PAV (with
respect to particle nun}bAer). In Figure (2.19), we’ve plotted the absolute error on the PAV
Hamiltonian kernel APH (G — s, + s) with respect to ¢ and s:
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Figure 2.19: Absolute error on the projected Hamiltonian kernel with respect to ¢ and s.

Here, we have limited ourselves to the values of s in the interval [-10,10] due to the numerical
cost of the projected Hamiltonian kernels. Looking at Figure (2.19), it is clear that both the
relation displayed in Eq.(2.104) and the local approximation still hold in the case of the PAV
(with respect to particle number).

In the light of these results, we will only discuss the regularity of the overlap kernel in
the following. This regularity depends on two different factors. The first one is extrinsic,
as it is related to the choice of the collective coordinate. The second one is intrinsic and
accounts for the inner regularity of the quantities described.

Extrinsic regularity:

A more detailed inspection of the overlap of a continuous zone of the PES obtained with
the Pyy procedure reveals a relatively high variability. In Figure (2.20), we considered the
two usual adiabatic HFB sets obtained with the Ps and Psg procedures in the 24°Pu. In
panel (a), for each of these sets, we displayed the overlap between each state and its neigh-
bour on the right with respect to the quadrupole deformation. In panel (b), we zoomed in
on a continuous area of the red curve:
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Figure 2.20: Illustration of the regularity issues in two adiabatic HFB sets obtained with
the Py and Pag procedures with respect to quadrupole deformation in the 24°Pu. Panel (a):
overlap between each state of the sets and its neighbour on the right. Panel (b): zoom of a
continuous part of the curves.

In the red curve, each state is separated from its neighbors by a fixed step in (Jo9. What
Figure (2.20) remarkably shows is that this fixed step in Q99 doesn’t necessarily imply a fixed
overlap distance between the states. In contrast, the states of the black curve constructed
with the Py procedure are all naturally separated by the same overlap distance. It is clear
that the overlap kernel of the states belonging to the black curve and simply labeled by their
position within their set will have a way better regularity than the overlap kernel evaluated
for the states of the red curve labeled by Q9. For this reason, the position of the states in
the black set is a much better collective coordinate within the SCIM framework. As it is
simply derived from the sequence of the states within their set, this new collective coordinate
is denoted c4 thereafter.

It is interesting to compare both collective coordinates to characterize better the limitations
of the collective coordinate Q9. In Figure (2.21), we’ve represented the way Q9 scales with
respect to cy in the adiabatic set obtained with the Psg procedure in the 240Pu:
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Figure 2.21: Scaling of the multipole moment )5y with respect to the collective coordinate
cy in the 19Pu.

If Qo9 were an accurate collective coordinate, we would have expected linear behaviour with
respect to cx. Figure (2.21) demonstrates that ()9 is not well-suited to describe the evolution
of the nucleus globally.

It is important to understand that each of the Figures (2.20) and (2.21) highlights a different
problem of the collective coordinate Q9. Figure (2.20) shows that variability can be locally
added to the kernels because of local mismatches between the overlap distance and a fixed
step in Q0. On the other hand, Figure (2.21) underlines that a spurious trend will appear
in the evaluation of the kernels using the collective coordinate (Qo9. Indeed, the behaviour
described by the black curve in Figure (2.21) clearly implies that the kernels related to a
high ()59 will be relatively overvalued compared to those with a lower (o.

The trend shown in Figure (2.21) is even more obvious comparing the same PES, but with
respect to Qoo and cg. In panel (a) of Figure (2.22), we displayed the PES asscociated with
the adiabatic set of states obtained with Py in the 2*°Pu with respect to the quadrupole
deformation. In panel (b), we displayed these same PES, but with respect to the new
collective coordinate cx. In both cases, black circles have been displayed every five calculated
state:
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Figure 2.22: Comparison of the collective coordinates ()2 and cy in a PES obtained from
an adiabatic set related to the procedure Py in the °Pu. Panel (a): PES with respect to
the quadrupole deformation. Panel (b): PES with respect to cy.

We observe that the non-linear scaling of Qo9 with respect to cx implies significant differences
in the topologies of the two PES. In particular, the width of the first barrier is greatly
increased and the descent from the saddle point to scission is shorter and steeper in the
c4 representation compared with the Qo one. These two important changes surely imply
important consequences in the dynamics that have been neglected until now.

The results of this section do not condemn the use of ()59 in absolute, but emphasize that if it
is used, it must be done with an appropriate metric accounting for the phenomena described
above. This is not a new statement at all. In fact, it’s clearly linked to the change of variable
made in the GOA to reduce to a constant the Gaussian width of the overlap kernel at first
order.

In practice, using a metric in a set built with a fixed step in Qo9 can often be tedious and
even mismatch the formalism we want to use. In the SCIM for instance, the center of mass
and relative coordinates we use in order to reduce the Hill-Wheeler equation clearly does not
encourage us to use a metric. Indeed, in that case, all the kernels we have to evaluate are
of the type (®(g — s)|®(7+ s)) and (®(§ — s)|H|®(G + s)). In a numerical set built for the
SCIM with a fixed Qq, all the states |®(g — s)) are therefore paired with their |®(G+ s))
counterpart, but if the collective coordinate changes due to a metric, the states are not paired
anymore and the kernels cannot be calculated. Therefore, the numerical evaluation of a set
for the SCIM must already include the concern for the metric. The most obvious way to do it
with the customary Poy procedure is to determine the states sequentially. At each step, start-
ing from a state with a quadrupole moment ng), the next state is found with a quadrupole
moment Qg;rl) such that the overlap between the two states equals a fixed constant value x.
This approach has however two clear drawbacks. Firstly, it includes sequential calculations
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that cannot be parallelized. Then, finding the good )9y at each step implies a rather time-
consuming dichotomy.

After this discussion on the regularity of the adiabatic states, we can investigate how the
2-quasiparticle excited states behave in this respect. Especially, if we consider the most fa-
vorable case of a set constructed with the Py procedure, where the states are evenly spaced
with respect to the overlap distance, we legitimately expect the same regularity for the 2-
quasiparticle excited states built on top of it. In Figure (2.23), we’ve considered an adiabatic
set built with the Py procedure in the 22°Pu along with one of its 2-quasiparticle excited
states (neutron with = 1/2 and of the type &&"|®)). Panel (a) shows the overlap between
each state of both sets with its neighbour on the right and panels (b) and (c¢) zoom in on
specific areas of interest:
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Figure 2.23: Illustration of the regularity of a 2-quasiparticle excited set built on top of an
adiabatic set created thanks to the Py procedure in the 2*°Pu. Panel (a): overlap between
each state of the sets and its neighbour on the right. Panel (b-c): zoom of relevant areas of
the panel (a).

The peaks observed in Figure (2.23) are not discontinuities, but irregularities. Indeed, if we
look at panels (b) and (c), we can see that the overlaps do not match with the scenario of
two zones, each continuous, separated by a sudden and unique discontinituity. Instead, we
are dealing with areas of “turbulence”. These local turbulences are in fact related to level
repulsions between quasiparticles. In Figure (2.24), we’ve highlighted the level repulsion that
occurs in the first bump of the panel (c) of Figure (2.23). In panel (a), we've displayed the
local projected PES associated with the two 2-quasiparticle excited states implied in the level
repulsion. In panel (b), we’ve plotted the overlap kernel between the two excited states along
with the overlap kernels between these excited states and the adiabatic ones:
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Figure 2.24: Tlustration of different effects of level repulsions. Panel (a): projected PES of
the 2-quasiparticle excited states involved in the level repulsion. Panel (b): overlap kernel
between the two excited states and overlap kernels of these excited states with the adiabatic
ones.

In panel (a), we clearly see that the trends of the curves suddenly change when the level
repulsion occurs. It feels like these trends are exchanged through the level repulsion process.
In panel (b), the overlap kernels tend to confirm this assumption of property exchange.
Indeed, the red curve shows a larger amplitude than the two other ones. This feature implies
that the two 2-quasiparticle excited states do have a lot in common with respect to a non-
locality in (Qo9. In fact, the phenomenon comes from the fact that the quasiparticles involved
share common components at the particle level that repel each other according to the Pauli
principle.

Due to these level repulsions, the 2-quasiparticle excited states sometimes vary at their own
pace, which can be much faster than that of the adiabatic states. To take this phenomenon
into account, we’d have to use a different collective coordinate for the adiabatic set and for
each excited set. Unfortunately, the SCIM formalism requires to label all the sets with the
same collective coordinate. So it seems that this type of 2-quasiparticle excited states are a

dead end.

Intrinsic regularity:

Once we’ve done everything possible to deal with extrinsic irregularities, we face the intrinsic
regularity of the kernels. We only consider here the intrinsic regularity of the adiabatic set ob-
tained with the Py procedure, as the extrinsic and intrinsic regularity of the 2-quasiparticle
excited states cannot be disentangled for the moment (see Figure (2.23)).

62



A good way to measure the intrinsic regularity of the adiabatic set is simply to consider the

zero-order moment of the overlap kernel Nég) which naturally appears in the SCIM formalism:

NO(q) = / 05(®y(q — )| Bo(q + 5)) (2.106)

In a perfect world, we would expect Nég) to be constant with respect to ¢q. For instance,
under the GOA approximation, the fact that each of the adjacent states are evenly separated
by an overlap of a given x directly implies:

(0) o In(z0)(2s)2 __ 1 T
Ngoho = / dsel"(0 @) = o ) (2.107)

In practice though, variations may occur. In panel (a) of Figure (2.25), we displayed Nég)(c#)
and compared it with the constant value we would have obtained using the GOA (for zy =
0.995). In panels (b-c), we've shown respectively the kernels (®(201 — s)|®(201 + s)) and
(®(330 — 5)|P(330 + s)) with respect to s and compared it with the associated GOA curves:
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Figure 2.25: Illustration of the exact moment Nég), compared with the GOA approximation
with two zooms of the kernels in relevant areas in the ?*°Pu, with respect to cy. Panel (a):
exact and GOA moment Nég) with respect to c4. Panel (b): exact kernels (®(g — s)|®(q + s))
for § = 201, compared with the GOA kernels. Panel (¢): exact kernels (®(g — s)|®(7+ s))
for ¢ = 330, compared with the GOA kernels.

We see that in these conditions the GOA is overall a rather good approximation. Indeed,
looking at the differences in the curves displayed in panel (b) and panel (c), we see how
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close the kernels are from the GOA approximation, even in the worst case. In addition, it
seems that the GOA tends to systematically underestimate the kernels.

Concerning the intrinsic regularity measured by the black curve, we observe first that the
amplitude of the peaks seems reasonable. However, the oscillation frequency of the curve is
worrying. It’s not possible to say more at the moment. This topic will be discussed in great
details in Chapter 5, which is dedicated to the dynamics.

Finally, in Figure (2.26), we have plotted the moments Nég) for both the adiabatic and
projected adiabatic states. We observe that even if the grey curve is a little less regular than
the black curve overall, the GOA still seems to be a reasonable approximation:
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Figure 2.26: Illustration of the exact moment Nég) of the Py adiabatic set along with the

moment Nég) of the associated PAV set, compared with the GOA approximation in the 2*°Pu
with respect to cy.
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Chapter 3

SCIM static states: new overlap
constraints

In our first attempt to use the SCIM, we considered an adiabatic set of HFB states obtained
through the 772%) procedure defined in section 2.4.1. Linear corrections for the discontinuities
were made so that the overlap between adjacent states was greater than 0.95. This first
set stopped before the intersection between the fission and the fusion valley and the excited
states considered were 2-quasiparticle excited states built on top of the adiabatic HF B states.
Besides, all the kernels were evaluated projecting the states onto their good particle number
subspaces.

We first tried to perform the dynamics on the adiabatic set only. We encountered great
difficulties due to regularity problems discussed previously, which we were only able to solve
by means of very strong approximations on the kernels. Indeed, we focused on the simplest
case neglecting all the derivatives in the SCIM formalism. Doing so, we ended up with the
following approximated collective potential and inertia tensor V™ and B

2) /- 2)/— 0)/—

L Bl LHR (@) 1Ng (@ H (@)
), an o (@D=5"0, 3 02,
Noo' () Noo' () Noo' (@)

V" (@) = (3.1)

We observed that Vi) was very close to the GOA potential defined in Chapter 1, but B
was much smaller than the GOA intertia tensor defined in Chapter 1. We attributed the
good agreement between VO((? ?) and the GOA potential to the fact that the irregularities were
smoothed out in the ratios of Eq.(3.1). Concerning the approximated intertia tensor, the
result we found is easily explained by the approximation we discussed in Eq.(2.104). Indeed,
under this approximation the second equation in Eq.(3.1) reads:

2) / — 2)/ — 0),/— _ 2) / — 2) / _ 0),—
LH (@) _ 1N @ Hig'@) _ B@) Nt (@) _ Vot (@) Noo (@)
0)/— 0)2 /- 0),— 0)2,_

2N @ 2 NY*Q) 2 NO(@) N2 (q)

) =0 (3.2)

We deduced that the physics contained in the true inertia tensor Byy must come from the
previously neglected derivatives. Note that it’s probably the reason why the inertia tensor is
such an unstable quantity in practice in the GOA formalism. Thus, we naturally decided to
include higher order derivatives. However, we didn’t want them to spoil the approximated
V% and B{® defined in Eq.(3.1). It may seem strange that we desired to preserve both B{)
and vo(gp ). but we considered that the fact that By vanishes at the zero-order in derivatives
(letting room for higher orders to express their physics) was as important as the fact that Vg
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is already well approximated at the zero-order in derivatives. Therefore, we fitted Nég) with a
second-degree polynomial and called the resulting quantity f (Nég)). Then, we approximated

the other moments implied in the adiabatic SCIM in order to preserve V™ and B\

;

FHD) (@) = B0@ r(NO) (g)

FH) (@) = 252 F(NQ ) q) (33)

2) /=
FIN@)@) = 282 (VD) a)
\ 00" (@)
With the approximated quantities defined in Eq.(3.3), we found both potential and inertia
tensor in line with the ones of the GOA and were able to run an adiabatic SCIM dynamics.
Unfortunately, when we tried to extend this method to the excited states, we faced a wall.
Indeed, the excited counterparts of V%" and B called V" and B no longer had any
good properties. The VZ.E‘”’ ) were oscillating at a high frequency with peaks more than 300
MeV away from the excited PES. Moreover, when we applied to the excited moments the
approximations given in Eq.(3.3) in order to determine the final excited potential and excited
inertia tensor, we ended up with an intertia tensor whose sign changed with respect to q.
This feature leading directly to very non-physical locally infinite masses. In addition to that,
we didn’t have any idea to handle the mixed moments of the type Ni(f ) and HZ-(JP ) that were
also behaving very irregularly. Of course, the closer we were to a level repulsion area, the
worse the problems.

In our search for solutions to improve the regularity of the excited states, we finally came
across the work of Y. Beaujeault-Taudiere and D. Lacroix [58]. In this work, they use a
method from quantum chemistry called the “Deflation” [59] to create variational excited
states they use for quantum computing purposes.

At first, the idea of variational excited states seemed a good one, as we thought it might
improve the regularity in the level repulsion areas. Then, while implementing the “Deflation”
within the HFB formalism, we realized that the overlap constraints at the heart of the method
had a far greater potential than that. Indeed, by imposing an overlap constraint of zero with
respect to a given state |®s) during an HFB convergence, we find a state orthogonal to |®g),
which can often be interpreted as one of its excited states, but it is also possible to impose
any overlap value between zero and one. That being said, it is possible to envisage plenty of
new methods to deal with both the continuity and the regularity issues. In this PhD thesis
work, we’ve created three new methods called the “Link”, the “Drop” and the “Continuous
Deflation”. The first two are designed to precisely control the continuity and regularity of
the adiabatic sets and the third one is devoted to the same goal but for variational excited
states [60].

The way overlap constraints are included in the HFB formalism is rather simple. We add pro-
jectors onto the reference states associated with new Lagrange multipliers in the constrained
Hamiltonian defined in Eq.(2.56) (section 2.1.4):

Ho=H+> XaQa+ Y 75®s) (Pl (3.4)
o B
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Looking at Eq.(3.4), it is straightforward that the gradient method is perfectly suited to
tackle these new constraints. Indeed, thanks to the Thouless theorem and in the case of
time-reversal invariance, the gradient of those constraints simply reads as follows:

) , -
57 112 2)| sl = 2 Zﬁ:vﬁ@ﬁlé“jfﬂ@)(@mq» (3.5)

The way to handle the quantities ($5]&"E;"|®) that appear in Eq.(3.5) is explained in Chapter
5. Using Eq.(3.5), the overlap constraints are then treated as the other customary constraints.

In the following, we detail the new methods based on the overlap constraints developed
during this PhD thesis.

3.1 The Link method

The “Link” method aims to connect two different HEB states |A) and |B) through a set of
HFB states {|C;)}, such that the overlap between two adjacent states always equals a fixed
value zy (with the exception of the overlap between |B) and the last state |Cyy) for which we
require to be greater than zy). In Figure (3.1), we displayed a schematic view of the “Link”
method:

Figure 3.1: Schematic view of the Link method.

In practice, the “Link” method works as follows:
e We choose the value of the parameter x.

e We search for the state |C}), such that its overlap with |A) is zo, its overlap with |B)
is maximum, and which minimizes the HFB energy.

e We iterate the previous process. At each iteration i, we search for the state |C;), such
that its overlap with |C;_;) is o, its overlap with | B) is maximum, and which minimizes
the HFB energy.

e We stop the iterative process as soon as we find a state |C)s) whose overlap with |B)
is greater than z.
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In the whole “Link” method described above, there is no other constraints than those on
the overlaps, with the exception of the constraint on the average value of Q(w) that avoids
translations of the system, and the customary particle number constraints. Besides, it is way
easier to impose an exact value for a constraint than to maximize it. Because of that, the
requirements for maximizing the overlap with the state |B) are treated by dichotomy.

This method enables to cross continuously discontinuities. It is also very efficient to build
a regular PES in terms of overlap. Indeed, using the “Link” method, we naturally switch
from the customary collective coordinates associated with the multipole moments to the new
collective coordinate c4 defined in section 2.4.

The “Link” method guarantees the perfect continuity of the path from the state |A) to the
state | B). As the HFB energy is minimized at each step, we moreover assume that the paths
created with the “Link” shouldn’t be too far from the true adiabatic paths. It would be
interesting to consider the latter statement in the light of an interpretation of the “Link”
as the minimization of an action. However, we didn’t have the time to do so during this
PhD thesis work. Consequently, we evaluated the adiabaticity of the paths obtained by the
“Link” method pragmatically by testing it.

3.1.1 Study in the '°O

In Figure (3.2), we've displayed the results of calculations performed with the “Link” method
in the 0. These calculations serve several purposes. Firstly, we can evaluate how close the
paths obtained by the “Link” method are to the adiabatic one in a case where the latter is
known. Then, we can study the impact of the parameter xy. Finally, we investigate how
paths built from |A) to |B) differ from the ones built from |B) to |A). In panel (a), we've
represented different PES obtained with the “Link” for different values of x( along with the
adiabatic PES of the %O with respect to the quadrupole deformation. The notation “—”
means that the paths are created starting from the adiabatic state associated with QY99 = —8
fm? with the adiabatic goal state labeled by Qs = 8 fm?. The notation “<” stands for
the inverse procedure. In panel (b), we’ve plotted the energy difference between the PES
associated with the “Link” method and the adiabatic one (interpolated when necessary):
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Figure 3.2: Illustration of the “Link” method in the °O. Panel (a): PES associated with
paths obtained with the “Link” method using different parameters xy and different directions
compared with the adiabatic PES with respect to the quadrupole deformation. Panel (b):
energy differences between the different “Link” PES and the adiabatic PES with respect to
the quadrupole deformation.

The most striking feature observed in Figure (3.2) is the fact that the closer zq is to one,
the closer the “Link” PES are to the adiabatic one. With zy = 0.9999, the maximum energy
difference between the “Link” PES and the adiabatic one is found to be 130 keV with respect
to the direction — and 75 keV with respect to the direction <—. We believe that this level of
precision is really satisfactory, as it represents less than 1 %o of the total binding energy of
the nucleus.

When xg is closer to one, the “Link” method can explore more complex trajectories in the
deformed 'O HFB Hilbert space. We assume it is the reason why it minimizes better the
energy overall. Concerning the directions, it would be tempting to state that the <— direction
leads to better results as the starting state has a lower energy. In practice, we found some
counter-examples. Therefore, we think that the differences between the directions account
for subtle topological properties of the deformed O HFB Hilbert space, which are beyond
the scope of this study.

Another interesting evidence that the “Link” method provides us with reliable states lies
in the distance between the states created. As already discussed in section 2.4, the GOA
is a rather good approximation to estimate the distance between states. More precisely, we
assume that we know the overlap between the two states |A) and |B). If we consider a state
|C;) between |A) and | B), such as (C;|A) =y, the value of the overlap (C;|B) is given by the
GOA approximation:
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(Cy|BY = (B a- R (3.6)

In Figure (3.3), we've plotted the states obtained with the “Link” method with zy = 0.99 in
the direction —, the states obtained with the “Link” method with x¢y = 0.9999 in the direction
«, and the adiabatic states with respect to their overlap with the state |B) (adiabatic state
labeled by Q9 = 8 fm?) along the z-axis , and their overlap with the state |A) (adiabatic
state labeled by Qa9 = —8 fm?) along the y-axis. Moreover, we represented with the black
curve the results given by the GOA approximation:
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Figure 3.3: Comparison of the distance between the states obtained with the “Link” method,
the adiabatic states, and the GOA approximation in the 0.

We observe that the states created with the “Link” method match very well with the GOA
approximation. It reinforces the credibility of the states obtained with the “Link” method
insofar as their mutual spacing approaches that found in customary adiabatic paths. Besides,
it means that the requirement within the “Link” method, which imposes to maximize the
overlap with the goal state at each step is relevant, and fits rather well the natural behaviour
of the adiabatic states.

It is interesting to remark that the adiabatic states are slightly less close to the GOA approx-
imation than the states obtained with the “Link”. This provides an avenue of improvement
for the “Link”, which somehow “overfits” the GOA. Indeed, we could consider at each step
of the “Link” a set of states whose overlap with | B) is close to the maximum and choose to
keep only the state that minimizes the energy (or a ratio between the distance lost and the
energy won).

3.1.2 Study in the **'Pu

We now study the “Link” behavior in a case including a discontinuity. More precisely, we
considered the discontinituity signed by the multipole moment )49 which is found on the
first barrier of the 2°Pu. This is the realistic case we treated in this PhD thesis to obtain
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the Py PES used for the dynamics. In Figure (3.4), we’ve represented in panel (a) the
PES obtained with the “Link” method using different parameters xq and with respect to the
direction —, along with the PES associated with the adiabatic states obtained with CHICON
(we separated this PES in two parts with respect to the discontinuity) with respect to the
quadrupole deformation. In panel (b), we've displayed the related hexadecapole moments
(40 with respect to the quadrupole deformation:
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Figure 3.4: Tllustration of the “Link” method at the ()4 discontinuity in the first barrier of the
240Py. Panel (a): PES associated with paths obtained with the “Link” method using different
parameters xy compared with the adiabatic PES, with respect to the quadrupole deformation.
Panel (b): hexadecapole deformation with respect to the quadrupole deformation.

First, we see in Figure (3.4) that the smoothing of the discontinuity doesn’t make any hidden
barrier appear. The energy difference between the existing adiabatic PES and the “Link” PES
is never greater than 250 keV at a same (J9y. Besides, we observe that the path assosciated
with xo = 0.999 follows a slightly different trajectory in both energy and Q4 compared to
the other ones made with zy = 0.995 and xy = 0.95. In addition, the fact that the dark blue
curve first goes backward with respect to ()9 indicates that it probably would have been
beneficial to start the “Link” from a state associated with a lower (Qog.

It seems strange to observe in panel (a) that the dark blue PES not only displays a rather
original behavior but is also above the other ones nearby Q4 = 1500 fm*, while it is associated
with a xy parameter closer to one. It looks like the dark blue “Link” misused the greater
freedom it had to choose its trajectory. In reality, it is only a false impression due to the
()20 representation. In Figure (3.5) panel (a), we represented the same PES as in Figure
(3.4), but with respect to the overlap with the state |B) (which is the adiabatic goal state of
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the “Link” paths) instead of the quadrupole deformation. In panel (b), we represented the
hexadecapole moment (4, also with respect to the overlap with the state | B):
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Figure 3.5: Illustration of the “Link” method at the Q4 discontinuity in the first barrier of
the 2°Pu. Panel (a): PES associated with paths obtained with the “Link” method using
different parameters xy compared with the adiabatic PES with respect to the overlap with
|B). Panel (b): hexadecapole deformation with respect to the overlap with |B).

The choice of the overlap representation used in Figure (3.5) is very natural as it is the one
related to the new collective coordinate cy, which is the relevant one within the dynamics. In
this representation, we clearly see that the closer x is to one, the lower the PES. In addition,
the evolution of Q49 is way smoother.

To conclude, we investigated whether the good agreement between the “Link” and the GOA
approximation observed in the 90 were still valid in the case of the 24°Pu first barrier, which
include a discontinuity. In Figure (3.6), we've plotted the states obtained with the “Link”
method with zo = 0.999, with zo = 0.95, and the adiabatic states with respect to both their
overlap with the state |B) (adiabatic state labeled by Q29 = 1580 fm?) along the x-axis, and
their overlap with the state |A) (adiabatic state labeled by Q29 = 1500 fm?) along the y-axis.
In addition, we represented by the black curve the results given by the GOA approximation:
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Figure 3.6: Comparison of the distance between the states obtained with the “Link” method,
the adiabatic states, and the GOA approximation in the 2*°Pu.

Looking at Figure (3.6), it is clear that the good agreement of the “Link” with respect to the
GOA approximation still holds when a discontinuity is crossed. These results support the
assumption that the paths obtained via the “Link” method are close to the adiabatic ones,
even in the case of discontinuity smoothing.

3.1.3 The “Link” method within the Py procedure

We conclude this section by explaining how the “Link” method takes place into the Pay
procedure. The first step in the Py, procedure is to obtain an adiabatic set via the Py
procedure (using CHICON for instance). We truncate this first set, keeping only the states
whose Qo is lower than the Q9 of the saddle point plus 1000 fm?2. Doing so, we end up with
a set of states {|®;)} ordered by increasing (Q29. Then, we consider the state |®() and search
for the first state |®;,) such that (®o|P;,) < 0.5. We iterate the process searching for the
first state |®;,) (with iy < i1) such that (®;,|®;,) < 0.5. At the end of this process, we end
up with a set {|®; )} which is called the set of the attractors.

Then, we perform a first “Link” starting from the state |®g) with the goal state |®;,), and
with a fixed parameter z (we chose g = 0.995 in this PhD thesis work). We stop the “Link”
process when the overlap between the last state generated and |®;,) is greater than 0.9. This
operation provides us with a set of states {|Lo), ..., |L;,)}, with |®o) = |Lg). We iterate this
process starting from the last state |L;, ,) obtained at iteration n, and using the attractor
|®; ) as the goal state. At the end of the whole process, we end up with a continuous set
of states {|Lo), .., |Lj,), -+, | Lj;)}. This continuous set is the first part of the set associated
with the Py procedure. The way the second part is built is described just below in section
3.2, which is dedicated to the “Drop” method.

It took approximately a full day to perform the whole process described above in the case of
the 24°Pu using 2x11 harmonic oscillator representations, with one processor.
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3.2 The Drop method

Even if the “Link” method works well to connect two HFB vacua, the requirement for having
both a starting and a target vacuum is no longer fulfilled when it comes to describe situations
where final configurations are not known a priori, as in the scission process. The “Drop”
method has been developed to partly tackle this issue. It creates an adiabatic and continuous
set of states {|C;)} from a starting state |A), only following an energy descent. The overlap
between two adjacent states of the resulting set always equals a fixed parameter zy. As this
method is “goal-free”, it enables us to describe efficiently processes such as the scission one.
In Figure (3.7), we give a schematic view of the “Drop” method:

v

Figure 3.7: Schematic view of the Drop method.
In practice, the “Drop” method is very simple and can be described as follows:

e We define the overlap parameter x.

e We search for the state |C1), such that its overlap with |A) is xy, and which minimizes
the HFB energy.

e We iterate the previous process. At each iteration i, we search for the state |C;), such
that its overlap with |C;_1) is xo, and which minimizes the HFB energy.

e The process stops after a given number of iterations or whenever the energy of a given
point |Cy) is found to be greater than the one of the previous state |Cy_y).

As in the case of the “Link” method, the average value of Q9 and the average number of
particles are constrained throughout the whole process. The other multipole moments can
be left free, in which case we talk about a “free Drop”, but they can also be constrained, in
which case we talk about a “guided Drop”.
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3.2.1 The “free Drop”

As already stated, the “Drop” method works very well on the descent to scission. Indeed, the
“Drop” not only allows to get closer to the scission (which other approaches using constrained
multipole moments are already struggling to do) but provides us with a continuous description
of the whole scission process including the relaxation of the fragments. This makes it possible
to extract very interesting properties of the nucleus at scission, which were inaccessible before.
In Figure (3.8), we've plotted the PES associated with the procedure Py from the saddle
point. In addition, local densities have been added to illustrate the different shapes taken by
the nucleus on its way to scission, with respect to c4:
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Figure 3.8: PES associated with the procedure Py in the 24°Pu starting from the saddle
point in addition to relevant local densities with respect to cy.

The prolate shapes observed close to the scission area are characteristic of the physics of the
scission. Besides, we clearly see the fragments gradually relaxing into their ground states.
An important property of the “Drop” method is that the parameter xy doesn’t change its
trajectory. It is a big difference between the “Link” and the “Drop” methods. In figure (3.9),
we’ve displayed the results of different drops from the saddle point of the 24°Pu for different
o values. The black curve is the PES obtained with the Py procedure, which implies a drop
from the saddle point with the parameter zy = 0.995. The red circles, the green triangles
and the blue diamonds stand respectively for drops with the parameters xo = 0.95, xo = 0.9
and xy = 0.8, respectively:
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Figure 3.9: Illustration of the impact of the value of the parameter xy in the “Drop” method
applied from the saddle point of the 2*°Pu with respect to the quadrupole deformation.

This feature is very valuable, as it allows the “Drop” to be used in two different ways. First,
it can be used in an exploratory way with a relatively small zy. Doing so, it is possible to
figure out the exact topology of a PES with just a few calculations. To give an idea, there
are 51 blue diamonds, 74 green triangles and 107 red circles counting from the saddle point.
In the case of the black curve, the same path is covered by 343 points. The second way
of using the “Drop” is to make refined PES useful for both the precise extraction of static
properties and to perform dynamics on them. The last-mentioned way of using the “Drop”
is, of course, more time-consuming. With a proper basis optimization and 2x11 harmonic-
oscillator representations, it took around 10 hours to create the set of states corresponding
to the black curve starting from the saddle point.

3.2.2 The “guided Drop”

When we observe the “Drop” efficiency in generating a one-dimensional adiabatic path, we
immediately wonder whether it could be extended to create multi-dimensional PES. The
“guided Drop” has been designed to address this question.

In this PhD thesis work, we didn’t have the time to use the “guided Drop” to build a full
multi-dimensional PES. However, we have made an example of the “guided Drop” for a fixed
given (3¢ which stands as a proof of concept. More precisely, in Figure (3.10), we displayed
the drop obtained starting from the state of the Py PES labeled by Q0 = 9870 fm? and
Q30 = —38000 fm* (cy = 420), along with the customary “free Drop”. In panel (a), we
have shown the resulting PES along with a relevant part of the Psy PES with respect to the
quadrupole deformation. In panel (b), we’ve represented the associated (30 with respect to
the quadrupole deformation:
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Figure 3.10: “Free Drop” and “guided Drop” with Q39 = —38000 fm? starting from the state
cy = 420 of the Py set. Panel (a): PES associated with the two drops with respect to the
quadrupole deformation. Panel (b): octupole moments associated with the two drops with
respect to the quadrupole deformation.

The “guided Drop” has been performed without encountering any particular difficulty. In
the case of the green curve associated with the “guided Drop”, we’'ve found an average
fragmentation (Z,=43.2,Z,=>50.8) with respect to the charge and (A;=107.7,A;,=132.3) with
respect to the mass. Besides, we've found an average fragmentation (Z,=42.4,7,=>51.6) with
respect to the charge and (A;=106.1,A,=133.9) with respect to the mass for the Py PES.
The fragmentations are all evaluated at the chemical potential peaks, (see section 4.1). To
give a reference, the most probable fragmentation observed in the experiments at low-energy
is characterized by Z, = 40 and N; = 60 [61].

The attentive reader will undoubtedly have noticed that the green PES is most of the time
below the black PES in Figure (3.10). At first, it seems odd, as the black PES is supposed
to be the 1D adiabatic path. In fact, this feature is once again a matter of representation.
In Figure (3.11), we represented the same PES as in the Figure (3.10) panel (a), but with
respect to their collective coordinate cy:
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Figure 3.11: PES of the “free Drop” and the “guided Drop” with Q39 = —38000 fm? in the
cy representation.

The Figure (3.11) highlights the fact that the adiabatic path we consider is no more the
continous path which is the lowest in energy with respect to ()29, but the one which is the
lowest in energy in terms of the collective coordinate ¢y (which is the relevant one regarding
the dynamics).

3.2.3 The “Drop” method with different interactions

We tried the “Drop” method with the D1S and D2 Gogny interactions including or not the
exact treatment of the Coulomb exchange and pairing terms. In Figure (3.12), we displayed
three different curves obtained from drops with different interactions in addition to the black
PES related to the Py procedure which is associated to the interaction D1S (Slater):
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Figure 3.12: Comparison of the PES obtained using the “Drop” method with the D1S and
D2 interactions considering both the exact and Slater treatments of the Coulomb exchange

and pairing terms, with respect to the quadrupole deformation in the 2°Pu.
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In Figure (3.12), we mainly observe that the PES are divided into two groups with respect
to the treatment of the Coulomb term. Indeed, the red and blue curves are approximately 15
MeV above the black and green curves at Qo9 = 17000 fm?. To complement this observation,
we represented in Figure (3.13) the multipole moments associated with the PES displayed
in Figure (3.12). In panel (a), we’ve plotted the hexadecapole deformation with respect to
the quadrupole deformation. In panel (b), we’ve displayed the octupole deformation with
respect to the quadrupole deformation:
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Figure 3.13: Comparison of the multipole moments of the sets obtained from drops with
different interactions in the 2*°Pu with respect to the quadrupole deformation. Panel (a):
hexadecapole deformation with respect to the quadrupole deformation. Panel (b): octupole
deformation with respect to the quadrupole deformation.

The results displayed in Figure (3.13) show that the treatment of the Coulomb term not only
changes the energy of the adiabatic states but also their shape. The exact treatment tends
to increase both (Y30 and Q49 at high values of ()59 which correspond to the scission area.
Regarding the differences between D1S and D2, we observe a global shift in energy in addition
to a slight change in the shape of the PES nearby the scission area. More subtle differences
are discussed in detail in the following (see Chapter 4).

3.2.4 The “Drop” method within the Py, procedure

We conclude this section by explaining how the “Drop” method takes place into the Pay
procedure. We already discussed in the section concerning the “Link” method the first steps
of the Py procedure. After using the “Link” method on the adiabatic set obtained with
the Py procedure, we ended up with the continuous set {|Lo), ..., |L;,), ..., |L;;)}. This set
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has been built such as the state |L;;) is located after the saddle point (with respect to Qa0).
Therefore, we simply perform a “free Drop” starting from the state |L;,) and imposing a x
value equals to the one used in the “Link” part of the Pao procedure. Doing so, we end up
with the final set {|Lo), ..., |Lj,), ..., |Lj,), |D1), ..., |Dy)} which is associated with the full Py
procedure.

3.3 The Deflation method

As previously discussed in the introduction of this section, the goal of the “Deflation” method
is to create variational excited states imposing orthogonality conditions at the HFB level.
Besides, the method can be iterated to explore the excitation spectrum of a nucleus. In
Figure (3.14), we represented a schematic view of the iterated “Deflation” method:
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Figure 3.14: Schematic view of the iterated “Deflation” method.
In practice, orthogonality can be imposed in several ways. If we consider a reference HFB
state |®3), the state |®) can be forced to be orthogonal to the proton part of |®g):
(®7[07) =0 (37)

In this case, the neutron part rearranges itself freely. At the same time, we could also impose
a fixed value d,, for the neutron overlap:

O |P) =0

o 39
(@ |@™) = d,

As we preserve the quantum number  in our calculations, we can also impose overlap

conditions with respect to a specific §2. For instance, we could create an excited state imposing
the following conditions to |®):
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<®;PQ5/2|¢TPQS/2> =05 (39)
=1

<®;n93/2 |¢TnQ3/2>

Of course, it would also be possible to add some constraints on multipole moments on top of
it. In short, the “Deflation” method is very versatile. As an illustration, in the “Continuous
Deflation” method we discuss in section 3.4, we’ve used this versatility to our advantage in
order to follow variational excitations all along a deformation path.

That being said, the general principle of the iterated “Deflation” method can be described
as follows:

e We define the way we want to impose orthogonality as well as any other constraints.

e We search for the state |D;), orthogonal to |A) and respecting the various other con-
straints imposed. Moreover, | D;) minimizes the HFB energy.

e We search for the state |D,), orthogonal to |A) and to |D;) simultaneously and re-
specting the various other constraints imposed. Here again, |Ds) minimizes the HFB
energy.

e We iterate the previous process. At each iteration i, we search for the state |D;),
orthogonal to |A) and to all the |D;) with 1 < j < ¢ simultaneously and respecting the
various other constraints imposed, with |D;) minimizing the HFB energy.

Note that the average value of QU0 as well as the particle numbers are always constrained.
In Figure (3.15), we displayed an example of the iterated “Deflation” method in the 24°Pu.
We have plotted the total binding energy of the 24°Pu ground state along with the energy of
four variational excited states we built with the iterated “Deflation” method. For this study,
we only imposed the orthogonality with respect to the neutron part of the states, letting
everything else free:
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Figure 3.15: Energy of four variational excited states of the ?*°Pu obtained with the iterated
“Deflation” method, along with the ?*°Pu ground state energy.
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In addition, we give in Table (3.1) the values of the overlaps between the different states. |A)
stands for the ground state, and |D;), |Ds), |D3) and |Dy) stand respectively for the first,
second, third and fourth excited states:

|A) |D1) |Dy) |D3) |Dy)
(Al | 1 141 x107*[27x 10728 [80 x 10721 | 2.5 x 107°
(Dq] | - 1 3.5 x 1073 [ 7.7 x 1072 | 1.6 x 107°
(Dy] | - - 1 1.4 x 107° | 7.9 x 1077
(Ds] | - - - 1 9.4 x 1071
(D4 | - - - - 1

Table 3.1: Overlaps between the states created with the iterated “Deflation” method in the
240Pu.

The results shown in Figure (3.15) and Table (3.1) correspond to a specific type of excitations
and cannot be interpreted as representative of the full low-lying spectrum in 24°Pu. However,
they demonstrate the potential of the method for spectroscopy in a realistic case, as it is
done in quantum chemistry.

It is now legitimate to question the nature of these variational excitations. First, we ob-
served in the context of fission that they often include pair-breaking phenomena (see section
4.3), which are related to the physics of the 2-quasiparticle excited states. To introduce the
other aspects of this concern, it is particularly interesting to study the deflation in the case
of 160.

3.3.1 Study in the %O

It is well-known that in its ground state, the 160 is spherical and doesn’t manifest pairing
phenomenon. In an HFB context, it implies that in the canonical representation, the occupa-
tion numbers v? are either zero or one. More precisely, we find three neutrons with Q = 1/2,
one neutron with Q = 3/2, three protons with 2 = 1/2 and one proton with Q = 3/2 (each
of these particles being of course associated with its time-reversal counterpart).

We first performed a “Deflation” on the 'O ground state, imposing orthogonality with
respect to the neutron isospin only. In the canonical representation, the occupation numbers
associated with the protons were practically the same, as for the canonical neutron particle
states associated with 2 = 1/2. On the contrary, the occupation numbers corresponding to
the canonical neutron particle states with @ = 3/2 were changed. Indeed, we found only
two non-zero vZ, both approximately equal to 0.5. Then, we did the same calculations with
respect to protons, and found symmetric results, as expected. In both cases, the excitation
energy of the states obtained with the “Deflation” approximately equals 15 MeV.

We have gone further in the analysis by considering the overlap with respect to both isospins
and . In the following, we call |¥) the °0O ground state, |U*) the state obtained through
the neutron “Deflation” and [W7) the state resulting from the proton “Deflation”. We found:

*Tngl/Q

<\I/Tn91/2 |\1;n >
*TnQ3/2

Neutron “Deflation”: (\I/Tn93/2|\1;n )
<\I[Tp|\:[j;‘rp> ~ 1

Q

1
0 (3.10)

Q
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<\I/T"|\I/;T”> ~1
Proton “Deflation”: <\1;Tp91/2|\1,;Tp91/2>

(U2 002

Q

(3.11)

Q

1
0
From Eq.(3.10) and Eq.(3.11), it is clear that we can restrict the analysis to the subspace
(75, £€23/2) in the case of the neutron “Deflation” and to the subspace (7,, £{23/)in the case

of the proton one (the values in Eq.(3.10) and Eq.(3.11) are correct up to 1072). Besides, we
can easily give the expression of |U7*%/2) and |U™*%/2) in the canonical representation:

\Ianiﬂg/g — + =4+
{| ) = afa;|0) (31

(@ E72) = afaf|0)

Here @} is the neutron particle creation operator in the canonical representation associated
with v2 = 1 and Q = 3/2, and a;“ is the proton particle creation operator in the canonical

representation associated with 11; =1 and © = 3/2. Then, we search for the expressions of
*Tpn £ *Tp 02 . . .

|W, " %) and |, " *?) in the canonical representation of [¥). We call D™ the transfor-

mation matrices from the harmonic oscillator representation to the canonical representation

%7, () *Tn Q *7,Q2 *7, ) . . *Tp £Q
and U, "2, Vi, " and U, "™, V, "/* the Bogoliubov matrices of |¥, "~ “*) and

|\I/;Tp =/ ?) respectively. It is clear that the expressions of these Bogoliubov matrices in the

canonical representation of |U) simply read as follows:

U*TnQB/Q _ DTnQ3/2TU*T”Q3/2

n - n

~ 3.13

Vn*TnQ3/2 _ DTnQ3/2TVn*TnQ3/2 ( )
U;TPQ3/2 _ DTPQ3/2TU:TPQ3/2
- 3.14
VZ:TPQ3/2 — DTpQS/zTVJTPQWZ ( )

Using Eq.(3.13) and Eq.(3.14), we have extracted from the excited states the following struc-
ture (exact up to 1073):

*Tp 0 = a a a
T 93/2> = 3(=1+ahal +atar, +ahatatal)|o) (3.15)
*Tpt e a a a .
(W, ") = 3(—1+ aha) +afa), + ala)ala))|o)

Here, the creation operators in the canonical particle basis a,, and a,, are associated with

holes of the states |[U™%/2) and |[U™%/2)  respectively. To make Eq.(3.15) easier to under-
stand, we can make |¥™%/2) and |W»%%/2) appear:

(ntin + 0ty + @t + af,at, ) [U%2)

X Nk

(3.16)
(aplyp + apea, + @, + a;*a;*)m%%/?}

{\\DZT"i“?’@ =

‘\D;Tpiﬂ3/2> _

N[= o=

Both expressions in Eq(3.16) can be written with respect to the quasiparticles creation op-
erators {n} of the canonical representation, indeed:
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+_ = +_ =
nn _an n —ap
and p 3.17
{ni* =a,, {77;!* =ay, (&:17)

p*

Inserting Eq.(3.17) in Eq.(3.16), we get:

(3.18)

{ ‘\Il:;‘l’niﬂ3/2>

S OLL T — Tt — i, + ) (92
‘\D;Tpﬁ:g3/2> _ l
2

(it —nhat —ninh + bk ) [wrdz)

Finally, we can use the matrices C™ standing for the transition from the canonical quasi-
particle representation to the original Bogoliubov quasiparticle representation:

*Tn (23 /9 1 T3 /9 ~Tn3 /2 T3 /9 ~Tn 3 /9
|\I]n />:§§ (Cnl /an / _On*z /an /

ij (3.19)

TnQ3/2 Tnﬂg/z TTLQS/2 TTLQ3/2 + *_,’_ nQ
OO L O O W 2)

ni

*Tpigs/z o 1 7'1795'3/2 TpQ3/2 Tp93/2 TpQg/z
0, Y=Y (CranE — o

ni p*t
2 ij (3.20)

nQ3/2 TpQ3/2 7';793/2 TpQ3/2 + I
_Cl Op*.] + Cp*i Cp*j )61 5‘7 |\IJ p 3/2>

p

We demonstrated that both the variational excited states can be written in that case as a sum
of 2-quasiparticle excitations on top of their associated ground state. As we approximated
values in the whole development, the conclusion is not totally exact though. However, it is
easy to check the veracity of our statement evaluating numerically the following quantities:

(3.21)

0wl = 3y (& D) 2
2 * -
CT]()*) = Zij |<\ij|§:'£]""\11>|2

The two quantities defined in Eq.(3.21) measure the norm of the parts of the variational
excited states that correspond to a sum of 2-quasiparticle excitations on top of |¥). In
practice, we found o'? = 0.993 and UI(JZ) = 0.993. This precision is in line with the order
of magnitude of the approximations we've done throughout the development. It means that
more than 99% of the variational excited states we built can be described as a sum of 2-

quasiparticle excitations on top of the ground state | ).

3.3.2 Study in the ?*’Pu

To check whether or not these results have any general significance, we evaluated the o
quantity associated with the variational excited states we've created with respect to the 24°Pu
ground state (see Figure (3.15)). We obtained:
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0% 4 %1073
0p, =3 X 10752 (3.22)
o5 =8 x 107

)

The results displayed in Eq.(3.22) are very different from the ones obtained in the 0. But
they are not surprising. To interpret them, we propose to introduce three quantities. The
first is called O". It represents the ratio of the full overlap between an excited state and its
ground state and the lowest sub-overlap with respect to 7 and 2:

o= I (@ (3.23)

(T Q)#A(7*,2%)

It is clear that O" qualifies the purity of an excitation. Or in other words, O" describes the
intensity of the global rearrangement implied by the orthogonality constraint imposed on a
specific (7,€2) subspace.

Besides, we can deduce from Eq.(3.21) a very important relation linking O” to the quantity
o® . We start by writting the quantity ¢® more explicitly:

0(2) _ (OT)2 Z ’<@*T*Q*

ij

TY. Do HeTgTg e

(T QAT Q*) 1j

(P’T*Q*>

g 2 (3.24)

+| <q)*7-*§2* (I)T*Q*>

In Eq.(3.24), we used the superscript r to refer to all the subspaces which are not related to
(7*,0). As (7%,Q*) characterizes the orthogonal subspace, [(®*7 |7 %)|> ~ 0. In addi-
tion, Z(T,Q);ﬁ(r*,ﬂ*) Zij ’<q>*r’gg+£;ﬂ+|q)r>|2 <1land Zij (@ g +€; o2 <1
Inserting these three properties in Eq.(3.24) leads to the desired relation, which defines the
boundary b®):

c@ < (0" =p? (3.25)

This relation means that more than 2-quasiparticle excitations are required to describe an
excited state when the variational excitation is not pure (O is not close to 1).

To characterize the variational excitations, another interesting quantity is the customary
excitation energy AE* = E* — E. As the 2-quasiparticle excitations are the elementary
excitations of the HFB states when the time-reversal invariance is preserved, we assume that
a lower AE* favors greater values of ¢®. We evaluated the previously defined quantities O
and AE* associated with the states |Dy) to |Dy):

by =9 x107* AE}, = 2.67 MeV

be) =5 x 1074 AEp, =5.01 MeV (3.26)
b =4 x 1073 AE}, =5.37 MeV '
by = 0.314 AE}, = 6.84 MeV
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The results displayed in Eq.(3.26) are in line with our assumptions. The states |D;), |Dy) and
|D3) illustrate the relation given in Eq.(3.25), stating that a very small O" directly implies
a very small 0(®. Besides, the variational excitation |D,) is the purest, but has a relatively
high AE* in comparison with the other excited states. We assume that it is the reason why
its associated o? is relatively small. We know why the variational excited states |D;) to
|D,) almost do not include 2-quasiparticle excitations, but we don’t know yet what they are
made of.

To try to answer this question, we first introduce the new quantity ¢® that measures the
norm of the parts of the variational excited states that can be described as a sum of 4-
quasiparticle excitations on top of their reference states. The quantity o(® reads as follows:

RS DD DR Mt )G

aB if, (Qap,Tap)#(Qij,7ij)

HY Y wlegegiar

046 ijv (QaﬁvTaﬁ):(QijvTij)

(3.27)

Note that a special care must be taken when considering ¢* as it may be numerically
sensitive (see Chapter 5). By analogy with Eq.(3.25), we search for a relation linking O",
o® and 0. We start by writing explicitly the sum ¢ + ¢@:

1 * ()%

0_(2) + 0_(4) _ (OT)2(Z ZZ |<CI)*T Q
af  ij

+Z |<(D*7—*Q*

]

O (3.28)

FT*Q* FHTEQF - TFQF FHTEQF
faT fﬁT §Z T g] T

(DT*Q*> 2)

FTEQF FHTFQ*
51' T 6] T

P T [(@*[¢1E4 1972
QoGO Y o)
5] aﬁu(QaﬁvTaﬁ)i(Q*ﬂ_*)
It is clear that Eq.(3.28) implies the following relation:
r 1— Q(OT)z r
o@ < (07)? + 0(2)(W) <1-(0")? (3.29)

The way ¢® is bounded in Eq.(3.29) is often not precise enough to accurately interpret the
results. Therefore, we have to consider more explicitly the (£2,7) subspaces. Doing so, we
obtain a new inequality, which defines the boundary b®:

1— |<(I)*TQ|(I)TQ>|2
D <(O)P+s2( > —1) =@ 3.30
g —( ) +o ( |<<D*TQ|(I)TQ>|2 ) ( )
(Q,m)A(Q*,7%)

In fact, the inequality in Eq.(3.30) is always better than the one in Eq.(3.29). Indeed, we
can write:

1+ (n—1)(0") — > *Ssozir)inz
G S (@722 @nf@e o TR g g
(OT)Q ‘<¢*TQ‘¢TQ>‘2 (OT‘)Q

(Q,m)#(Q*,7*)
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Here, n is the number of non-orthogonal (£2,7) subspaces. To go further, we need to study
the function f defined below:

)01 =R
f {x = (21, 20) = (0= D) [Tz = 3 Tl wi (3.32)

We can evaluate the partial derivatives of f:

st =@=D][e=3 [[ w0 va (8.28)

iFo JFa i#EjFo

From Eq.(3.33), it is clear that the function f reaches its minimum at z = (1, ..., 1). Therefore:

flz) > —1 Vo € [0,1]" (3.34)

We now rewrite the numerator at the right hand side of Eq.(3.31) using the function f:

(o)

—_—_— 1 .

L+ (n—10)7- >

()£, 7)
f<|<q)*(r,ﬂ)1 |(I)(T,Q)1> |27 - |<®*(T,Q)n‘®(TQ)n>|2)

Using Eq.(3.35), we finally find:

1— (Or)z 1— |<(I)*TQ|(I)TQ>|2
> ¥ (3.36)
or 2 - @*TQ (I)TQ 2
We evaluated the quantities ¢ and b associated with the states |D;) to |Dy):

o) = 0.026 b5 = 0.033
o) =4 x 1074 b5 =7 x 10743

() _ —35 4) _ -31 (3.37)
oW —2x 10 b =5 x 10
o) =0.277 b5 =0.314

The small values of ¢(¥ found for the states |D;) to |Ds) are directly explained by the related

small values of ¥, On the other hand, the quantity O'gj is not negligible. We assume that
the fact that b(D4z ~ bgi while 0%2 >> a(gz
relatively high.

We might want to try to explain a larger part of these variational excited states by calculating
the other ¢(®?) quantities. However, the higher the order, the more complex is to calculate
these quantities, and the lower their numerical stability. In addition, the very low values of
Op, and Of,, suggest that a much larger p would have to be considered to achieve satisfactory

results in this kind of excited states.

is mostly explained by the fact that AFET,, is
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In order to study states whose structure can be explained by the lowest orders of p, we’ve
decided to create other variational excitations on top of the 24°Pu ground state, but imposing
conditions on O". We first created |D}), imposing orthogonality with respect to the neutron
2 = 1/2 subspace and constraining the whole proton subspace to be the same as the one
of the reference ground state. Then, we built |D)), imposing orthogonality with respect to
the neutron 0 = 1/2 subspace, and such that O" = 1 (all the non-orthogonal subspaces
are constrained to be the same as the ones of the ground state). Numerically speaking, the
convergence leading to the state | D)) has been achieved without particular difficulties, but
the condition O" = 1 have been harder to impose in practice. Still, the results obtained with
both states are really interesting:

o2 = 0.795 o) = 0.187
@ @ (3.38)
o) = 0.484 oy = 0.460
b2 = 0.819 bl = 0.189 AE}, = 3.59 MeV (3.3
b2 — 0.998 b — 0514 AE}, = 6.55 MeV '
2 2 2

(2)
Dj

(4)
Dy

(2

Concerning the state |D}), o, and o, are found relatively close to their boundaries b D,) and
1

b(4)

Dy while the excitation energy AEE,l is relatively low. On the other hand, O'g,s is far from

(4)
Dy
These observations suggest that the lower the excitation energy, the closer the quantities
0@ and ¢® to their boundaries. Besides, the total norm explained by both the 2-and the

4-quasiparticle excitations equals 0.982 in the case of |D]) and 0.944 in the case of |Dj).
In the case of | D)), the difference between O'g,l) and one is explained by b, which is related to

the purity of the excitation. In the case of | Dj), the difference between agg and one seems to

be related to the excitation energy AE*é. Because of that, it is legitimate to think that the

4-quasiparticle excitations contributing to JS,) are of different nature to the one contributing
1

4)
D}~
into two different contributions % and &®:

its boundary bgg , 0., is close from its boundary bgg , while AE’B2 is much higher than AEI":‘),1 :

to o To clarify this assumption, we can separate the quantity ¥ defined in Eq.(3.27)

=YY egEgg P (3.0

O‘ﬁ ij: (QQB’Taﬁ):(QijvTij)

S DD DR At )G (3.41)

aB if, (Rap,Tap)F(Qij,Tij)

The quantity * represents the part of ¢® which is related to 4-quasiparticle diagonal in
both spin and  when & describes the off-diagonal part of oW, Thanks to Eq.(3.28) and
Eq.(3.30), it easy to find the boundaries b® and b¥) standing respectively for 4 and ®:

0 < p@ _ ;@ _ @ (3.42)
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Looking at Eq.(3.42), we observe that the quantity & can possibly be high when ¢(® is far
from its boundary, which we assume to be the case when AE* is high. On the other hand,
Eq.(3.43) highlights as expected that less pure excitations are beneficial for the quantity (.
Moreover, it is clear that O" ~ 1 = b4 ~ 0.

We evaluated these four different quantities in the states |D}) and |D5j):

5\ = 0.024 5\ = 0.163
(1) _ 0.459 (1) _ 0.001 (344)
D/ D’
b — 0.024 b —0.165
{b% 0.513 {b% = 0.001 (3.45)
D/ — Dl — .
2

The results presented in Eq.(3.44) and Eq.(3.45) are rather explicit. The 4-quasiparticle
excitations structure of |D}) is related to simultaneously orthogonal subspaces of |D}) with
respect to the ground state (we call this phenomenon “coupled 4-quasiparticle excitations”).
On the contrary, the 4-quasiparticle excitations of |Dj) seems to simply account for a higher
excitation energy (we call these excitations “uncoupled 4-quasiparticle excitations”).

In a nutshell, two factors appear to be decisive in understanding the structure of the varia-
tional excited states. The first factor is the purity of the variational excitations. It charac-
terizes how the non-constrained (€2,7) subspaces of the variational excitations are impacted
by the orthogonality constraints. The purity namely fixes the boundaries of the quantities
0® and 0. The second important factor observed is the excitation energy AE*. We re-
marked that the higher the excitation energy, the closer the quantities 0(® and ¢® are to
their boundaries.

We are aware that the data presented are still too limited for the moment to fully confirm the
veracity of our hypotheses. In the following section, ¢, ¢® b b® and AE* are studied
for numerous continuous variational excitations with respect to the collective coordinate cy.

3.3.3 Orthogonality and intrinsic excitations

To conclude this section on the “Deflation” method, it is important to remark that a state |®)
orthogonal to another state |®4) is not necessarily an intrinsically excited state of the latter.
For instance, in the case of discontinuities associated with multipole moments, two states are
found orthogonal but they are both adiabatic. Aslong as we perform “Deflation” with respect
to the ground state, we can reasonably think that we avoid this problem. Indeed, starting
from the ground state, we expect that the “Deflation” method won’t investigate adiabatic
deformed states nearby as the ratio between the binding energy lost and the decrease in
overlap is clearly unfavorable in that case. On the contrary, if we perform a “Deflation”
on an adiabatic state at the top of the first barrier, it is favorable both energetically and in
terms of orthogonality to drop back towards the adiabatic ground state. These thoughts have
led to the new “Continuous Deflation” method we’ve created in order to follow a variational
excitation along a deformation path.
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3.4 The Continuous Deflation method

The “Continuous Deflation” method aims to build a set of excited states {|D;)} with respect
to a continuous adiabatic set {|A4;)}, such that Vi, (D;|D;11) = x¢ and (A4;|D;) = 0. The
parameter g is the value of the overlap between two adjacent states of the given continuous
adiabatic set {|4;)}. In Figure (3.16), we present a schematic view of the “Continuous
Deflation” method:

Figure 3.16: Schematic view of the “Continuous Deflation” method.

The first thing which is important to discuss, is the fact that this method has a starting
point (or a seed). In Figure (3.16), this seed is the state |Dy) built on top of the adiabatic
state |Ap). The seed can be chosen to be the variatonal excitation with the lowest energy
on top of a given adiabatic state. However, to make this variational excited state evolve
continuously in deformation, a continuity constraint is added. Because of this additional
constraint, the new variational excited states obtained are not guaranteed to be the lowest
in energy with respect to their associated adiabatic states. This feature is really essential,
insofar as it implies that the seeds have to be chosen in the area where it matters to catch
the physics of the low-lying excited states. In our case, we have experimental evidence of the
importance of the low-lying excited states from the saddle point towards scission. Thus, we
decided to build the excited seeds on top of the saddle point.

The second important topic concerns how we ensure that the orthogonal states we produce
are indeed intrinsic excitations on top of their reference state. The most obvious way to
do this is to impose to the excited states to have the same multipole moments as those
of their related reference states. This method didn’t work in practice in the calculations
we have done. Imposing continuity, orthogonality and multipole moment constraints at the
same time, the calculations are often “over-constrained”. By “over-constrained” we mean
that the constraints are not mutually compatible. To tackle this issue, we designed another
way to constrain our calculations. Instead of the multipole moments, we decided to impose
orthogonality with respect to a specific isospin while the overlap with respect to the other
isospin is constrained to be one. The underlying assumption is that, doing so, we also
constrain the shape of the variational state (but more softly), as the local neutron over
proton ratio is found to be rather homogeneous in the nuclei. In practice, this method
works very well and the multipole moments of the resulting variational states are found to
evolve accordingly with the ones of the adiabatic states. In Figure (3.17), we displayed the
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multipole moments of the adiabatic states obtained with the Py procedure in the 24Py
along with the multipole moments of a continuous neutron excitation built on top of them
with the method described just above. In panel (a), panel (b) and panel (c¢) we plotted the
quadrupole, octupole and hexadecapole moments respectively with respect to cy:
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Figure 3.17: Comparison of the multipole moments of an adiabatic set obtained with the 2
procedure in the 2*°Pu and the multipole moments of one of its continuous neutron variational
excitation. Panel (a): quadrupole moment with respect to cx. Panel (b): octupole moment
with respect to cg. Panel (c): hexadecapole moment with respect to cy.

An interesting by-product of this method is that a neutron variational excitation will natu-
rally be orthogonal to a proton one. This is a very appealing feature, as it enables us to create
several variational excitations without having to impose additional orthogonality constraints,
as is the case with the customary iterated “Deflation”.

In the light of this observation, we have tried to go one step further imposing the orthogonality
in only one (£2,7) subspace, while everything else was constrained to one. Unfortunately, this
approach proved disappointing. For the smaller €2 values, numerical convergences were much
more difficult (leading to less precise orthogonality), and were sometimes impossible for larger
Q) values. This phenomenon can be understood easily with the following example: suppose
we have an adiabatic state |®) with a subspace |®™*) in which no particles are present. If we
perform a convergence imposing (®*7}®7?) = 0, there is necessarily particles in the |®7%)
subspace. As we also constrain the average particle number, the increase in the average
particle number due to |®*™?) has to be offset elsewhere. Because of that, it is not possible
to impose both (®*7®7?) = 0 and O" = 1 at the same time. All the cases are of course not
that extreme, but this example clearly underlines the kind of interplays that may appear in
practice.

The trade-off we’ve finally chosen in order to avoid these issues consists in imposing the
orthogonality in only one subspace labeled by €2* and 7* and to impose the overlap with
respect to the whole subspace related to the other isospin 7* to be equal to one. If we call
the reference state |®) and its variational excited state |®*), these constraints read:
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<(I)*T*Q* @T*Q*> =0

Strictly speaking, the constraints displayed in Eq.(3.46) do not fully guarantee that two
variational excited states associated with different €2 values but with the same isospin are
orthogonal. However, in practice, among the ten variational excitations we’ve created we
found that the maxium overlap between two variational excitations on top of the same adi-
abatic state was 0.033 (neutron excitations with Q = 1/2 and Q = 3/2). We assume that
this good behaviour is due to the fact that a case of spontaneous orthogonality with respect
to two subspaces when only one subspace is constrained is not energetically favored at all.
Indeed, the configuration that minimizes the energy is the adiabatic one. If we constrain a
subspace to be orthogonal, the mean field changes causing the other subspaces to rearrange
themselves. This global rearrangement phenomenon can be important in some cases leading
to small values of O". However, in these cases, the impact of the rearrangement is spread
out, and does not concern only one other specific subspace. Therefore, at low energy, it is
highly improbable to find two subspaces such that imposing orthogonality with respect to
one of them necessarily implies the orthogonality with respect to the other and conversely.
That being said, the “Continuous Deflation” method can be summarized as follows:

e We choose the isospin 7* (the other isospin being 7*) and the projection of the total
angular momentum Q* characterizing the excitation.

e We search for the state |Dy), such that (A7 |D7™¥) = 0 and (A5 |D]") = 1. More-
over, |Dy) minimizes the HFB energy. This state |Dy) is the seed of the excited set.

e We search for the state |D;), such that (A7 |D7) = 0, (AT
(Do|D1) = xo. Moreover | D) minimizes the HFB energy.

D7) = 1 and

e We iterate the previous process. At each iteration i, we search for the state |D;), such
that (A7 |DI"Y) =0, (AT|D7") =1 and (D;_1|D;) = xy. Moreover, |D;) minimizes
the HFB energy.

An excited state |D;) is always built using the orthonormal particle basis of the state |A;).
Doing so, there is no basis optimization in the “Continuous Deflation” method. Note that,
when the bases of two adjacent states |A;_1) and |A;) are different, numerical complications
are added. Regarding the performances of the method, around 10 hours were required to
build one excited set of more than 700 states in the 2*°Pu, using 2x11 harmonic oscillator
representations. In the following, we refer to the procedure described above as the 7550, when
it is performed on top of an adiabatic set obtained with the Py, procedure.

During this PhD thesis work, we created up to ten variational excited sets using both isospins
and imposing values of € ranging from 1/2 to 9/2. As already mentioned, the seeds of these
excitations have been created on top of the saddle point (Qz9 = 4230 fm?). In Figure (3.18),
we’ve displayed the PES of these ten excited sets along with the PES of their associated adi-
abatic set built with the Py procedure in the 2%0Pu with respect to quadrupole deformation

(Q20:
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Figure 3.18: PES of ten variational excited sets built with the 755‘0 procedure along with the
PES of their associated adiabatic set built with the Psy procedure in the ?4°Pu, with respect
to quadrupole deformation.

Perhaps the most striking feature of Figure (3.18) is the fact that the colored curves get
noticeably closer nearby the scission area (Q2 ~ 13000 fm?) and separate again afterwards.
This phenomenon could be the signature of a greater low-energy level-density close to the
scission area.

In Figure (3.19), we've provided the reader with the equivalent of Figure (3.18) in the cyg
representation (in this representation, the saddle point is found at cyx = 267). It is important
to keep in mind that the PES topologies which are relevant for the dynamics are the one
obtained in the representation defined by cy:
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Figure 3.19: PES of ten excited sets built with the 7550 procedure along with the PES of their
associated adiabatic set built with the Py procedure in the ?*°Pu with respect to the new
coordinate cy.
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There are two main differences between Figures (3.18) and (3.19). First, in Figure (3.19),
the first barrier of the PES are wider. Then, we observe a shorter and steeper descent from
the saddle to scission in the case of Figure (3.19).

3.4.1 Study of the variational excitation content

The first thing we analyze is the content of the variational excitations we’ve created with
the 755‘0 procedure. We expect this study to allow to test the hypotheses formulated in the
previous section 3.3. Namely, we want to characterize more precisely the impact of both the
purity and the excitation energy of the variational excitations on their structure. In Figures
(3.20-3.29), we've displayed the quantities O, AE*, 0@ 6@ % and ¢™® introduced in
section 3.3 in addition to o' = ¢® + ¢ with respect to the collective coordinate cy for all
our variational excitations. For each Figure, we displayed in panel (a) the quantities o@ @,
7@, ¢@® and o' with respect to cy ; in panel (b), we displayed O" with respect to ¢4 ; in
panel (c), we displayed AE* with respect to cx:
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Figure 3.20: Behavior of the quantities AE*, O", 6@ .6, 5® @ and o' with respect to
c4 in the neutron variational excitation associated with Q = 1/2. Panel (a): ¢® 6@ 5@
o@® and ot with respect to cy. Panel (b): O" with respect to cy. Panel (c): AE* with
respect to cu.
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Figure 3.21: Behavior of the quantities AE*, O", 6@ ,6®, 54 @ and o' with respect to
c4 in the proton variational excitation associated with = 1/2. Panel (a): 0® @ @
o™ and ot with respect to cy. Panel (b): O" with respect to cy. Panel (c): AE* with
respect to cu.
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Figure 3.22: Behavior of the quantities AE*, O", 6@ .6, ¥ @ and o' with respect to
c4 in the neutron variational excitation associated with Q = 3/2. Panel (a): ¢® 6@ 5@
o@® and ot with respect to cy. Panel (b): O" with respect to cy. Panel (c): AE* with
respect to cu.
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Figure 3.23: Behavior of the quantities AE*, O", 6@ .6®, 54 @ and o' with respect to
c4 in the proton variational excitation associated with = 3/2. Panel (a): 0® @ @
o™ and ot with respect to cy. Panel (b): O" with respect to cy. Panel (c): AE* with
respect to cu.
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Figure 3.24: Behavior of the quantities AE*, O", 6@ .6, 5* @ and o' with respect to
c4 in the neutron variational excitation associated with Q = 5/2. Panel (a): ¢®,6®W 5@
o@® and ot with respect to cy. Panel (b): O" with respect to cy. Panel (c): AE* with
respect to cu.
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Figure 3.25: Behavior of the quantities AE*, O, 6@ .6, 54 @ and o' with respect to
cy4 in the proton variational excitation associated with = 5/2. Panel (a): 0® @ @
o™ and ot with respect to cy. Panel (b): O" with respect to cy. Panel (c): AE* with
respect to cu.
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Figure 3.26: Behavior of the quantities AE*, O", 6@ .6, ¥ @ and o' with respect to
c4 in the neutron variational excitation associated with Q = 7/2. Panel (a): ¢® 6@ 5@
o@® and ot with respect to cy. Panel (b): O" with respect to cy. Panel (c): AE* with
respect to cu.
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Figure 3.27: Behavior of the quantities AE*, O", 6@ .6®, 4 @ and o' with respect to
c4 in the proton variational excitation associated with = 7/2. Panel (a): 0@ @ @
o™ and ot with respect to cy. Panel (b): O" with respect to cy. Panel (c): AE* with
respect to cu.
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Figure 3.28: Behavior of the quantities AE*, O", 6@ .6, 5 @ and o' with respect to
c4 in the neutron variational excitation associated with Q = 9/2. Panel (a): ¢® 6@ 5@
o@® and ot with respect to cy. Panel (b): O" with respect to cy. Panel (c): AE* with
respect to cu.
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Figure 3.29: Behavior of the quantities AE*, O", ¢® .6, 54 @ and o' with respect to
c4 in the proton variational excitation associated with Q = 9/2. Panel (a): 0® @ @
o™ and ot with respect to cy. Panel (b): O" with respect to cy. Panel (c): AE* with
respect to cu.
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The first thing we notice in these figures is that the 2 and 4-quasiparticle decomposition
is usually more than sufficient to describe a relatively large proportion of the variational
excitations considered. Moreover, we can see that some excitations behave very stably as
they pass through the scission (around cy = 495), as in Figures (3.24),(3.26),(3.27) and (3.29)
while the composition of others are much less stable, as in Figures (3.20),(3.21),(3.22),(3.23)
and (3.28).

This observation led us to formulate an hypothesis on the nature of variational excitations.
We think that some of them tend to couple the two pre-fragments while others act almost
independently on each pre-fragment. If this were the case, the structure of the excitations
coupling the pre-fragments would be strongly linked to that of the compound nucleus. We
therefore easily understand why the scission would lead to particularly violent structural
changes for these variational excitations. In contrast, the variational excitations acting inde-
pendently in each pre-fragment would naturally be less subject to structural changes upon
scission. This hypothesis is discussed in more details in the following.

Regarding the other analyzes that can be made with the data presented in Figures (3.20-
3.29), we judged that it is preferable to gather all the data in such a way as to underline
more clearly the links between the various quantities studied. In panel (a) of Figure (3.30),
we’ve represented the quantity o(® as a function of O" for all the data collected. In panel
(b), we've displayed the curve illustrating the relation linking these two quantities presented
in Eq.(3.25):
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Figure 3.30: Panel (a): study of the relation between the quantities ¢(® and O". Panel (b):
illustration of an important property linking these two quantities.
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In panel (a), we clearly see that the larger O" is, the larger 0(® tends to be as well. Further-
more, we observe in panel (b) that the inequality given in Eq. (3.25) is perfectly verified.
In section 3.3 we hypothesized that the differences between ¢ and its boundary b® could
be explained by the excitation energy AE*. To check this assumption, we introduce the
quantity 6, defined as follows:

O

2 _
0 = b(2)

(3.47)

This quantity measures the relative difference between ¢ and its boundary 4. In Figure
(3.31), we plotted the excitation energy AE* as a function of the quantity §® for all the
data collected:
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Figure 3.31: Evolution of the quantity AE* with respect to §(2.
We clearly observe a correlation between the two quantities. In particular, we observe that

larger values of 6, associated with ¢ values relatively far from their boundaries, are
obtained only from a certain excitation energy threshold.
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Besides, we could improve the quality of the description by working on the renormalization
of the excitation energy. In Figure (3.31), we implicitly consider that the excitations energies
are comparable at different deformations and for different €2, which is not necessarily the
case. Indeed, the excitation energy for which we consider that an excitation is a low-energy
one is not the same at the scission and at the saddle point for example. The same goes for
the different values of €.

In panel (a), Figure (3.32), we studied the link between the values of o and their bound-
aries b™®. Besides, we have illustrated the inequality given in Eq.(3.30). In panel (b), we
displayed the excitation energy with respect to the relative difference 6® between ¢® and
b®. This relative difference reads as follows:

b _ @

4_2 —97
0 = b(4)

(3.48)
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Figure 3.32: Panel (a): evolution of ¢ with respect to b*). Panel (b): evolution of the
excitation energy AE* with respect to the relative difference 6§(4) between o) and b
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In panel (a), we clearly see that the values of ¢(¥ tend to be overall closer to their boundaries
than the values of 0(® were. We attribute this phenomenon to the fact that the excitation
energy is probably often above the excitation energy threshold relevant for the 2-quasiparticle
excitation but much less often above the 4-quasiparticle excitation energy threshold. For the
rest, finer behaviors are observed in the study of % and ¥, which is carried out below.
In panel (b), we observe as expected a correlation between the relative difference between
o@ and b® and the excitation energy AE*. Overall, the higher the excitation energy, the
bigger the relative difference (4.

Figure (3.33) is dedicated to the study of ). This plot is perculiar insofar as we first
study o with respect to 6 in panel (a), then ) with respect to 6 in panel (b) and
finally the sum ¢® + % in panel (c). The reason of this choice is connected to the form of
the different 7™ values, which stand for the fully diagonal 2n-quasiparticle content of the
variational excitations. Indeed, 7™ reads:

O (3.49)

HTRQF FATEQF HTRQF FATEQ*
’il jl ’in ]n

5" = (07 Y [(@r

iljl 7f'njn

Here, the coefficient ¢,, account for the double counting of the 2n-quasiparticle excitations.
As a direct consequence of Eq.(3.49), the following relation holds:

D et < (07 = (3.50)

n=1

Here, of course, #? = o). In the light of Eq.(3.50), we thought that it could be interesting
to see how close we can get from the boundary (O")?, adding progressively new terms in the
sum:
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Figure 3.33: Study of the complementarity of 02 and ). Panel (a): ¢(® with respect to
b2, Panel (b): ¥ with respect to b®. Panel (c): ¢® + &™) with respect to b2,

The results obtained in Figure (3.33) are striking. Indeed, as the full sum of the 5" is
bounded by b, the vicinity of the colored points with the black curve in panel (c) directly
means that most of the “diagonal” part of the variational excitation is accurately described
by the 2- and 4-quasiparticle excitations. It signifies that the differences between o and 1
have mostly to be attributed to the “off-diagonal” part of the variational excitations, which
is directly related to the purity of the latter. Thus, we can legitimately think that the 2n-
quasiparticle structure of our variational excitations with n > 2 does not account for a too
high excitation energy, but for their lack of purity. Consequently, these results suggest that
the variational excitations created have most of the time an excitation energy which ranges
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between the typical excitation energies of the 2-quasiparticle and 4-quasiparticle excitations.
It reinforces the assumption that our variational excitations are relevant to describe the
low-lying intrinsicly excited states of the nucleus.

Then, we wanted to quantify the excitation energy dependence of the quantities ¢, &
and of the sum ¢® +&®. To do so, we defined the relative differences 6®* and §°* as follows:

2) 7@

s _ b —a® ot WP = (0 +5)

b(2) b2

(3.51)

In Figure (3.34), we've studied the complementarity of ¢® and #* with respect to the
excitation energy AE*. In panel (a), we have plotted the excitation energy AE* with respect
to the relative difference 6®. In panel (b), we have displayed the excitation energy AE* with
respect to the relative difference ®*. Finally, in panel (c), we have represented the excitation
energy AE* with respect to the relative difference 5.
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Figure 3.34: Study of the complementarity of ¢ and o*) with respect to the excitation
energy AE*. Panel (a): 5@ with respect to AE*. Panel (b): 6 with respect to AE*. Panel
(c): %! with respect to AE*.

The results displayed in Figure (3.34) tend to confirm the hypotheses made on the influence
of the excitation energy on the content of the variational excitations. Indeed, we observe in
panel (a) that a lower excitation energy tends to reduce the difference between o® and b2,
On the contrary, in panel (b), we see the inverse situation where higher excitation energies
favor a smaller difference between & and b?). To conclude, the results displayed in panel
(c) show that the situations when the 2 and 4-quasiparticle excitations are not enough to
describe the “diagonal” structure of the variational excitations are related to higher excita-
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tions energies. In particular, we observe that the “diagonal” part of the variational excited
states whose excitation energy is smaller than 10 MeV are composed of 2 and 4-quasiparticle
excitations at 80% or more.

In the panel (a) of Figure (3.35), we've displayed the values of ¢*) with respect to their
boundaries b®, and we've illustrated the inequality given in Eq.(3.42). In panel (b), we've
studied the relation between AE* and the relative difference 6 defined as follows:

i@ _ 5@

s = O
b4)

(3.52)
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Figure 3.35: Panel (a): evolution of 6( with respect to 5. Panel (b): evolution of the
excitation energy AE* with respect to the relative difference 6(4) between 4 and b
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We observe in panel (a) that the values of &% are most of the time very close to their
boundaries b®. This result suggests that the quantities b2 are probably very useful to
estimate the additional content of the “non-diagonal” part of the variational excitations we
could describe increasing the quasiparticles excitation order.

In panel (b), we globally remark that the values of 7 depend slightly less on the excitation
energy than the ones of ¢(® (Figure (3.31)) and much more less than the ones of ™ (Figure
(3.34)). These observations are in line with the assumptions we made. Indeed, we assumed
that the values of @ are mostly explained by the excitation energy AE*, while the ones of
™ account mostly for the variational excitation purity.

To check the latter statement on the purity dependence of the values of the values %, we
displayed in Figure (3.36) the values of 6 with respect to O
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n3p : P72
P32 © Nop
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©0.2F
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0.0F &_.... coe
0.0 0.2

Figure 3.36: Illusation of the relation between #* and O.

As expected, 5 tends to zero as the variational excitations get purer. Moreover, it is
interesting to note that the larger values of 6™ are found especially for values of O" ranging
between 0.5 and 0.9. The maxium value of &® corresponds to O" = 0.575.

This phenomenon is not difficult to explain. Indeed, * describes the orthogonality cou-
plings between the constrained (2*,7*) subspace and exactly one other unconstrained (£2,7)
subspace. On the one hand, when O" is close to one, these couplings do not exist. On the
other hand, if O" is too small, it means that probably more than one unconstrained (Q*,7*)
subspaces are simultaneously strongly coupled. In that case, higher quasiparticles excitation
orders would be more relevant to describe the “non-diagonal” part of the variational excita-
tions.

In Figure (3.37), we've studied the quantity ¢'* while presenting a synthesis of certain of the
most relevant observations made previously. In panel (a), we've displayed the values of ¢
with respect to both the quantity O" and the excitation energy AE*. In panel (b), we’ve
represented the values of ¢ with respect to both the quantity O” and the excitation energy
AFE*. Finally, in panel (c), we've shown the values of o' with respect to both the quantity
O" and the excitation energy AE*:
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Figure 3.37: Study of o' and synthesis of relevant properties concerning the variational
excitations content. Panel (a): values of ¢® with respect to both O and the excitation
energy AE*. Panel (b): values of ¢ with respect to both O” and the excitation energy
AFE*. Panel (¢): values of o' with respect to both O" and the excitation energy AE*.

In panel (a), we observe that the higher values of ¢(? are found at relatively low excitation
energies and for values of O" close to one. It means that the 2-quasiparticle decomposition
is particularly relevant when the variational excitations considered are very pure with a
relatively low excitation energy.

In panel (b), we remark that the higher values of ¢(¥) are found at excitation energies greater
than the ones relevant for ¢(®. In addition, the values of 0¥ are higher when O” ranges
between 0.5 and 0.9 approximately. It means that the 4-quasiparticle decomposition is par-
ticularly relevant for variational excitations with both a rather mid-range excitation energy
and purity.

In panel (c), we see the complementarity of ¢ and ¢¥. Indeed, the quantity o*) completes
efficiently the relatively lower values of o(® found for both mid-range excitation energies and
O" values. In particular, we observe that for excitation energies up to 12.5 MeV and for
values of O ranging between 0.7 and 1, the 2- and 4-quasiparticle excitations decomposition
is very accurate to describe the variational excitations (o' is globally greater than 0.8 in
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this zone).

Finally, we investigated the link between the quantities o® and ¢®. In figure (3.38), panel
(a), we have displayed ¥ as a function of ¢®. In panel (b), we've illustrated some relevant
relations observed:
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Figure 3.38: Illustration of the correlations between the quantities o*) and ¢®. Panel (a):
the quantity ¢ with respect to the quantity ¢(®). Panel (b): two interesting relations linking
both quantities.

While the first relation 0 < (1 —o¢®) is trivial, the second o® > Vo @ (1 — ) is far less
so, and we don’t yet know how to explain it exactly. This second relation emphasizes that a
certain proportion of 2-quasiparticle excitations necessarily implies a certain proportion of 4-
quasiparticle excitations. This could be due to the interplay between the energy minimization
and the level density structure of the low-energy quasiparticles excitations. But it could also
reflect a requirement for the conservation of the HFB structure when summing quasiparticles
excitations.

3.4.2 Regularity of the variational excitations overlap kernels

In order to make the SCIM work, the most important concern about these variational excited
states is undoubtedly their regularity properties. In figure (3.39), we’ve plotted the diagonal
overlap kernel moments of order zero of all the variational excitations along with the one of
their associated adiabatic set with respect to cx. In addition, we've given the related GOA
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approximation of these moments. In panel (a), we focused on the neutron isospin. In panel
(b), the proton isospin is considered:
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Figure 3.39: Diagonal overlap kernel moments of order zero of all the variational excitations
along with the one of their associated adiabatic set and the related GOA approximation with
respect to cy in the ?*°Pu. Panel (a): focus on the neutron isospin. Panel (b): focus on the
proton isospin.

In Figure (3.39), we clearly observe that the regularity of the overlap kernels of the variational
excitations is globally as good as the one of the adiabatic set. The question of whether this
regularity is sufficient or not for the SCIM formalism is discussed in Chapter 6.

When it comes to the non-diagonal kernels, we have no reference to say whether their reg-
ularity is satisfactory or not. However, the moments of order 0 and 2 of the non-diagonal
overlap kernels are in general from 1 to 4 order of magnitudes smaller than the diagonal ones.
We therefore assume that their regularity is relatively less important. In practice, we never
encountered problems in the dynamics associated with the non-diagonal quantities.

3.4.3 Regularity of the variational excitations Hamiltonian kernels

We have shown that the regularity of the overlap kernels of the variational excitations are as
good as the one of the adiabatic set. However, we still have to prove that the same properties
hold for the Hamiltonian ones. To do this, we investigated whether the approximation linking
the Hamiltonian and overlap kernels at the adiabatic level displayed in Eq.(2.104) is still true
for the variational excitations. Therefore, we considered the following quantities:
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- (Di(q — )| H|Pi(q + 5)) — (2:(q + 5)|Ps(q + 5)) Ei(q)

In Figure (3.40) we plotted AH;; for all the neutron variational excitations with respect to g
and s:
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Figure 3.40: AH;; for all the neutron variational excitations with respect to ¢ and s.

The overall behaviour is the same as in the adiabatic case. There is however one exception
for the neutron variational excitation with {2 = 5/2. Indeed, in that case, close to § = 270
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and for values of s such that |s| > 13, we found relatively huge differences of up to 77%.
Given the large values taken by s, this phenomenon does not call into question the good
regularity of the Hamiltonian kernels associated with this excitation. Nevertheless, we will
see in Chapter 6 that this feature leads to consequences in the dynamics. In Figure (3.41)
we plotted AH;; for all the proton variational excitations with respect to ¢ and s:
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Figure 3.41: AH,; for all the proton variational excitations with respect to ¢ and s.

The behaviour of AHj; is very satisfactory for the proton case. Moreover, in constrast to the
neutron case, there is no exceptions.
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The situation with the off-diagonal Hamiltonian kernels is the same as with the off-diagonal
overlap ones. Indeed, we have no references to evaluate their regularity. Nevertheless, their
relatively small order of magnitude compared to the diagonal Hamiltonian kernels suggests
that their regularity doesn’t matter that much. In practice, performing the dynamics we
didn’t find any problems coming from this side.

Besides, the numerical evaluation of the off-diagonal Hamiltonian kernels may be challenging
when s equals zero. This question is discussed in great details in Chapter 5.

3.4.4 Orthogonality quality

We’ve already had occasion to discuss the orthogonality of variational excitations with re-
spect to each other, but we haven’t yet tackled the orthogonality of these same variational
excitations with respect to their adiabatic set.

For the variational excitations associated with © = 1/2, 3/2 and 5/2, we have managed
to always maintain an overlap smaller than 1072, For the rest, the maximum overlap is 0.03
and the average overlap is approximately 5 x 107, In Figure (3.42), we displayed the overlap
between each variational excited state and its related adiabatic state with respect to cx. In
panel (a), we focused on the neutron variational excitations. In panel (b), we considered the
proton variational excitations:
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Figure 3.42: Overlap between each variational excited state and its related adiabatic state
with respect to the collective variable cy. Panel (a): focus on the neutron variational exci-
tations. Panel (b): focus on the proton variational excitations.

A priori, it’s hard to say whether the orthogonality quality is satisfactory or not. Neverthe-
less, if such an overlap were to be found between two neighboring states in an adiabatic PES,
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we wouldn’t hestitate to call it a major discontinuity. Consequently, we believe it is legit-
imate to consider the overlaps obtained to be sufficiently close to zero to clearly dissociate
the adiabatic set from the variational excitations and avoid double counting.

As for the reasons that prevented us from achieving greater orthogonality, we assume that
they are of two kinds. On the one hand, there may sometimes be intrinsic incompatibilities
between the various constraints we impose, aggravated by their complex interplay with the
symmetries we preserve. On the other hand, the simultaneous consideration of numerous
different constraints represent a numerical challenge. Thus, improvements can undoubtedly
be made on the technical front.
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Chapter 4

Static characterization of ?*'Pu
scission properties

Although the methods based on the overlap constraints have been initially developed for the
SCIM, they have some really interesting by-products. For instance, as the “Drop” method
allows to cross continuously the scission, it is now possible to extract fine properties of the
static states in the scission area. We’ve notably observed proton odd-even staggering, a
neutron excess in the neck at scission and striking chemical potential peaks.

To conclude, efforts have been made in order to determine the distribution of the energy
between the fragments at scission. We have separated both fragments in the canonical basis
and evaluated the different components of their energies.

4.1 Chemical potentials

As the chemical potentials of the compound nucleus give a qualitative hint on the separation
energy of the nucleons, their study can provide us with a better understanding of the scission
phenomenon. Besides, understanding neutron emission at scission is a key issue in predictive
decay models such as FIFRELIN [62]. This is the reason that initially motivated this study.
The chemical potentials characterize the energy variation implied by a particle number vari-
ation. For instance, if it is favorable for a neutron to separate from the two pre-fragments at
scission, we assume that this must correlate with a relatively low neutron chemical potential
nearby this area (reflecting a lower separation energy).

In the constrained HFB theory, we easily have access to the chemical potentials. They are the
Lagrange multipliers associated with the constraints on the particle numbers. To understand
this statement, we can explicitly write at first order the energy variation associated with a
particle number variation. This particle number variation is expressed as a change from a
density p to a density p':

E() = E0) + Yy = ) 5y E0) (4.1

As the density p is a self-consistent solution of an HFB convergence process associated with
the state |®), we can write in addition:

2.

- 3/%7'

Za (®|H|D) = ZMTZE) (®|N,|D) = Zﬂ725w (4.2)
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Here, the p, stand for Lagrange multipliers associated with the particle number constraints.
Inserting Eq.(4.2) into Eq.(4.1) leads to:

E(p) = E(p) = >  pTe(p = p") (4.3)

Calling AE = E(p') — E(p), we finally get:

AE = —p., Tr(p"™ — p™) — pi, Tr(p"™ — p™) (4.4)

In Eq.(4.4), the term Tr(p'™ — p”) corresponds to the particle number variation associated
with the isospin 7. Therefore, it is clear that p, is a chemical potential.

4.1.1 Adiabatic states chemical potentials

In Figure (4.1), we displayed both the chemical potentials associated with the neutrons and
the protons in the adiabatic set obtained with the Py procedure in the 2*°Pu with respect
to the quadrupole deformation:
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Figure 4.1: Chemical potentials associated with the neutrons and the protons in the adiabatic
set obtained with the Py procedure in the 2*°Pu with respect to the quadrupole deformation.

In Figure (4.1), we clearly observe a decreasing trend in the red curve related to the proton
chemical potentials. It signifies that the protons are more bound overall as the quadrupole
deformation increases. In fact, this feature is due to the charge distribution inside the com-
pound nucleus. The closer the protons are to each other, the stronger they repel because
of the Coulomb interaction. Therefore, greater quadrupole deformation leads to a more
spread-out charge distribution, which tends to stabilize the protons.

Some of the patterns observed in the curves can be directly linked to the PES topology at
small deformations. The well around @y = 1500 fm? are related to the nucleus ground
state whose stronger binding energy also implies a greater stability of the nucleons. On the
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other hand, the barriers in the PES are associated with a relatively lower binding energy
of the nucleus, which should imply smaller absolute values of the chemical potentials. This
phenomenon is really clear for the neutron chemical potentials around Q9 = 2300 fm? (first
barrier) and Qg9 = 4000 fm? (second barrier). However, the proton curve is more difficult
to interpret. We assume that it is due to the complex interplay between both the nuclear
interaction (described by the effective Gogny interaction) and the Coulomb interaction when
the deformation changes. In addition, even some neutron patterns cannot be explained by
the PES topology. We suppose that they are associated with specific deformed shell effects
related to the formation of the pre-fragments.

Finally, the most interesting phenomenon is that peaks appear around Qs = 13000 fm?
(c4 = 495) in the chemical potentials associated with both isospins. These peaks signify that
the related nucleons are locally relatively less bound. Moreover, the low nucleon density in
the neck between the pre-fragments (Qnect = 0.38 nucleons at ¢, = 495) and the suddenness
of the peaks indicate that they probably sign the scission phenomenon. In the following, we
simply call these peaks the “chemical potential peaks”.

With regard to neutron emission, this study shows that there are indeed relatively favorable
conditions at scission. This study gives only a qualitative analysis of the neutron emission
during the scission process, and a more quantitative study would be of great interest.

4.1.2 Variational excitations chemical potentials

Following on from our first study carried out at the adiabatic level, we wanted to know
the influence of the variational excitations on chemical potentials. In Figure (4.2), we’ve
displayed the chemical potentials associated with the five neutron variational excitations
created in addition to the adiabatic ones. In panel (a), we've represented the neutron chemical
potentials. In panel (b), we’ve plotted the proton ones:
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Figure 4.2: Chemical potentials associated with five neutron variational excitations built
with the 755‘0 procedure on top of an adiabatic set built with the Py procedure in the 24Py
with respect to quadrupole deformation. Panel (a): neutron chemical potentials. Panel (b):
proton chemical potentials.

In panel (a), we observe first that each neutron variational excitation involves a specific
behaviour of the neutron chemical potentials. In the curves associated with Q = 5/2 and
() = 7/2, the chemical potential peaks still exist but are wider. On the contrary, in the other
curves, the chemical potential peaks have almost disappeared. We attribute this phenomenon
to the different ways variational excitations operate on the compound nucleus. Indeed, we
think that the orders of magnitude of the intrinsic effects on the neutron chemical potentials
are sometimes much greater than the one of the purely collective phenomenon observed at
the adiabatic level. We believe that the neutron chemical potential peaks are washed out
precisely because of these differences of magnitude.

In panel (b), we clearly see that the proton chemical potentials of the variational excita-
tions are almost the same as the adiabatic ones until the scission area. We assume that the
spreading of the curves through the scission process and after accounts for both intrinsic and
collective phenomena (we show in section 4.3 that the intrinsic excitations do change the
particle number distributions of the pre-fragments) .

In Figure (4.3), we’ve displayed the chemical potentials associated with the five proton vari-

ational excitations created in addition to the adiabatic ones. In panel (a), we’ve represented
the neutron chemical potentials. In panel (b), we've plotted the proton chemical potentials:
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Figure 4.3: Chemical potentials associated with five proton variational excitations built with
the Pj, procedure on top of an adiabatic set built with the Py procedure in the 240Pu
with respect to quadrupole deformation. Panel (a): neutron chemical potentials. Panel (b):
proton chemical potentials.

In panel (a), we observe that the different curves separate earlier than in panel (b) of Figure
(4.2). This feature may stand for the fact that variations of the same order of magnitude
in the nucleus structure are relatively more impactful on the proton side, as there are fewer
protons than neutrons. Here also, we suppose that the spreading of the curves accounts for
both intrinsic and collective phenomena. Besides, the fact that the purple (2 = 7/2) and the
black curves are superimposed while their proton particle number distributions are not the
same at all underlines the importance of intrinsic phenomena.

In panel (b), we observe a situation similar to the one described in panel (a) of Figure (4.2).
Indeed, the proton chemical potentials associated with each variational excitation have their
own behaviour. Moreover, the proton chemical potential peaks appear in the curves associ-
ated with 2 = 3/2, Q =5/2, Q@ =7/2 and Q = 9/2, but not in the one related to 2 = 1/2.
Unlike the results obtained in panel (a) og Figure (4.2), where the excited chemical potential
peaks were all comparable in magnitude with the adiabatic one, we find here that some of
the peaks have a greater magnitude than the adiabatic one. Here again, we assume that all
these differences originate form different orders of magnitude between the collective and the
intrinsic effects.
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4.1.3 Chemical potentials associated with different Gogny inter-
actions

We conclude this study of the chemical potentials by showing the impact of using different
interactions (D1S and D2) with or without exact treatment of the Coulomb term. We consider
the sets obtained with the drop method, starting from the saddle point already presented
in section 3.2. In Figure (4.4), panel (a), we show the evolution of the neutron chemical
potentials for the different sets considered, with respect to the quadrupole deformation. In
panel (b), we displayed the evolution of the proton chemical potentials, with respect to the
quadrupole deformation:

—6.75F __ Di1s(Slater) —— D2 (Slater) D1S (Exact) —--- D2 (Exact)

D1S (Slater) — D2 (Slater) D1S (Exact) -== D2 (Exact)

2000 6000 5000 10000 12000 14000 16000
Q20 [fm?]

Figure 4.4: Evolution of the chemical potentials from the saddle point to scission for the
D1S and D2 interactions with and without the exact treatment of the Coulomb term of
the interaction, with respect to the quadrupole deformation. Panel (a): neutron chemical
potentials. Panel (b): proton chemical potentials.

The Figure (4.4) confirms the observations previously made about the interactions stating
that the exact treatment of the Coulomb term of the interaction has a predominant effect.
It makes the neutron peaks disappear and strongly smoothes the proton peaks. It therefore
seems that the sets obtained with the Coulomb interaction exact treatment miss some of the
physics expected at scission. Insofar as the D1S and D2 parameters were obtained considering
the Slater approximation, significant differences could be expected using the exact Coulomb
treatment. Usually, however, mostly a global shift in binding energy is observed. The results
presented here show a new important difference, which underlines the need to use the exact
treatment of the Coulomb term with interactions fitted in coherence. It would be interesting
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to repeat the same calculations with the DG interaction [48], whose parameters were obtained
considering the exact treatment of the Coulomb interaction.

Finally, with regard to the differences between D1S and D2, we can see that the neutron
chemical potentials are smaller in absolute value for D1S, whereas the opposite is true for the
proton ones. We also note that the neutron peak occurs at a lower Qo for the D2 interaction
(Qa0 = 12943 fm? for D2 and Qy = 13110 fm? for D1S).

4.2 Neutron necking

Because of the repulsive Coulomb interaction, we expect the protons to be more inclined to
separate rapidly at scission, with neutrons acting as the last glue between both pre-fragments.
If this were the case, it’s clear that it would be favorable for neutron emission at scission. To
study this hypothesis, we defined the local neutron/proton ratio r, as follows:

an(F) 3 -3
r,(7) = 2P (7) . if p(7) > 5 x 10
0 if p(7) <5 x 1073

4.2.1 Adiabatic states neutron necking properties

In panel (a) of Figure (4.5), we've displayed the neutron and proton chemical potentials
associated with the adiabatic set obtained with the Py procedure. We added three black
crosses to identify the three states for which the ratio 7, is represented in panels (b-d).
Panel (b) is related to the leftmost state, whose Qg equals 12782 fm? (cy = 485). Panel
(c) corresponds to the middle cross and is associated with Qo9 = 13110 fm? (cy = 495).
Finally, the local neutron/proton ratio represented in panel (d) is associated with a state at
Q20 = 13454 fm? (cy = 505):
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Figure 4.5: Study of the local neutron/proton ratio r, in three states of the adiabatic set

obtained with the Py, procedure in the >*°Pu. Panel (a): neutron and proton chemical

potentials associated with the states of the adiabatic states with respect to the quadrupole

moment. Panel (b): local neutron/proton ratio r, for the adiabatic state labeled by Q2 =

12782 fm?. Panel (c¢): local neutron/proton ratio 7, for the adiabatic state labeled by Qa9 =

13110 fm?. Panel (d): local neutron/proton ratio r, for the adiabatic state labeled by Q29 =
13454 fm?.

In panel (c), we clearly see an abnormally high local neutron/proton ratio between the
pre-fragments. More precisely, this ratio reaches the value 4.505, when the average neu-
tron/proton ratio in the ?*°Pu equals 1.553. Moreover, this behaviour is not observe in panel
(b) and panel (d), which suggests that this phenomenon is really sudden and brief within the
whole scission process.

This results are fully in line with our hypothesis stating that it is the neutrons that hold the
pre-fragments together in the final moments of the scission process in the 24°Pu.

4.2.2 Variational excitations neutron necking properties

In the previous section 4.1, we’ve seen how the chemical potentials associated with the varia-
tional excitations could differ greatly from those observed at the adiabatic level. This raises
the legitimate question of whether the neutron necking observed at the adiabatic level is also
present in the variational excitations.

In Figure (4.6), we've displayed the local ratios r, associated with our five neutron vari-

ational excitations at three different deformations, corresponding to the three black crosses
in Figure (4.5):
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Figure 4.6: Illustration of the local neutron/proton ratio r, for different neutron variational

excited states whose ) ranges from 1/2 to 9/2 and labeled by cx = 485, c¢x = 495 and
cy = 505.

The phenomena observed for the neutron variational excited states are very different from
the adiabatic level. Firstly, the local ratios r, between the two pre-fragments, which were
already abnormally high in the adiabatic case, are even higher this time. Moreover, there are
important differences from one excited state to the other. Because of these differences and
to preserve contrasts, the maxium values of r, has been set to 13 in Figure (4.6). In Table
(4.1), we've displayed the true local maximum values of r, for each state considered:
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Ny/2 Ng/2 N5/ | N7/ | Ng/2
cy = 485 | 5.56 8.62 5.65 | 4.66 | 7.65
cy =495 | 10.40 | 12.38 | 11.30 | 8.73 | 14.22
cy = 505 | 20.21 | 9.23 | 20.48 | 9.41 | 29.13

Table 4.1: Maximum values of the local ratio r, for the states considered in Figure (4.6).

In addition, observing the states labeled by cx = 505 in Figure (4.6), we clearly see that
some excited states are separated in two fragments, when others are not (with respect to
the criteria p(7) > 5 x 1073). Furthermore, comparing Figure (4.6) and Table (4.1) we
observe that these differences in separation are correlated with the maximum value of r,.
The greater the maximum of the 7, ratio, the later the separation. We will see in section
4.4 that the way in which the neutron variational excitations slow down the scission process
implies significant consequences related to the TKE evaluation. It underlines the importance
of including intrinsic excitations in the “dynamics”.

These observations bring us back to the assumptions made earlier about the variational
excitations nature and how they couple the pre-fragments. Indeed, it seems reasonable
to assume that the more or less early separation of the fragments is a good indicator of
the couplings intensity brought about by the variational excitations. It turns out that the
excited state with the earliest separation 2 = 7/2 also corresponds to the states whose
neutron chemical potentials were closest to the adiabatic ones (Figure (4.2)). In addition,
the quantities 0(® and o associated with this excited state were also the most stable ones.
On the contrary, the states 2 = 1/2 and 2 = 9/2 with later separations are associated with
more exotic neutron chemical potential behaviors and less stable ¢® and ¢®.

Finally, on the subject of neutron emission at scission, it can be broadly stated that tak-
ing neutron intrinsic excitations into account seems to be necessary to bring the description
closer to the physics of the phenomenon. Indeed, in the case of neutron emission between
the fragments, the ratio r, should tend towards infinity, which is maybe what we begin to
see in the case of the neutron variational excitations.

To address the above phenomena in a more quantitative way, we’ve studied the behaviour
of Qnecr With respect to the collective coordinate cy. In panel (a) of Figure (4.7), we've
plotted the evolution of the neutron (),.. associated with our five neutron variational ex-
citations in addition to the evolution of the adiabatic one with respect to cx. In panel (b),
we’ve displayed the evolution of the total ),..x associated with our five neutron variational
excitations in addition to the evolution of the adiabatic one, with respect to cx. The red
line in panel (b) corresponds to the value of Q¥ found for the adiabatic set at the neutron
chemical potential peak (cyu = 495):
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Figure 4.7: Study of the evolution of (). for our five neutron variational excitations and
for their related adiabatic states. Panel (a): evolution of the neutron Q.. with respect to
cu. Panel (b): evolution of the total @Qex with respect to cy.

In panel (a) of Figure (4.7), we observe that the purple curve is the closest to the adiabatic
one when the dark green curve is most of the time the farthest to it. These two observations
match the ones made from Figure (4.6). Surprisingly, the dark blue curve is overall slightly
above the light blue and light green ones, while we see in Figure (4.6) that the excited states
associated with the dark blue curve are separated in two fragments earlier. As the operator
Qneck has a Gaussian range, these differences could testify of a peculiar geometry of the
neutrons inside the fragments of the 2 = 3/2 excited states. In addition, we remark a kink in
the dark blue curve, which is absent from the others. These two features point to the limits
of our hypotheses. A more specific study would be of great interest.

The points of intersection between the red line and the different curves are very different.
More precisely the neutron variational excitations Q@ = 1/2, Q@ =3/2, Q =5/2, Q = 7/2 and
Q) = 9/2 are associated respectively with cyx = 501, cx = 502, cx = 501, cx = 499, cx = 504.
These results suggest that intrinsic excitations may contribute to holding the pre-fragments
tohether in the scission area.

We’ve done the same study for the proton variational excitations. In Figure (4.8), we've

displayed the local ratios r, associated with our five proton variational excitations at three
different deformations, corresponding to the three black crosses in Figure (4.5):
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Figure 4.8: Illustration of the local neutron/proton ratio r, for different proton variational
excited states whose ) ranges from 1/2 to 9/2 and labeled by cx = 485, c¢x = 495 and
cy = 505.

In contrast to the neutron case, the local r, ratios are quite similar overall to those obtained
in the adiabatic case (we have not clamped any values). That said, we observe that the local
neutron/proton ratio r, is smaller between the pre-fragments than in the adiabatic case. We
can still clearly identify a neutron neck in the {2 = 9/2 variational excitation, and less clearly
in the 2 = 7/2 one, but we don’t see any in the other variational excitations. Besides, in the
variational excitation labeled by {2 = 1/2, we see a slightly abnormally low 7, ratio between
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the pre-fragments.

These results are in line with the ones found through the study of the chemical potentials
(Figure (4.3)). Indeed, the variational excitation with the clearer neutron neck (2 = 9/2)
is also the one whose proton chemical potentials are the closest to the adiabatic ones. The
variational excitation labeled by € = 7/2 still have a neutron neck and its proton chemical
potentials are not that far from the adiabatic ones. The variational excitations labeled by 2 =
5/2 and Q = 3/2 do not show any neutron neck and they display proton chemical potential
peaks with an amplitude much greater than the adiabatic one. Finally, the variational
excitation 2 = 1/2, which is associated with a slightly abnormally low r, between the
pre-fragments, is the one whose proton chemical potentials show the strangest behaviour.
Now want to find the cause of this attenuation or disappearance of the neutron neck. There
are two possibilities. Either there are fewer neutrons in the neck, either there are more
protons. As the neutron part of the proton variational excitations has been constrained to be
the same as the adiabatic one, the answer is quite straightforward. There are more protons
in the neck.

In panel (a) of Figure (4.9), we quantified these additional protons in the neck, displaying the
proton @,..x for the proton variational excited states along with the proton @),... associated
with the adiabatic states, with respect to cx. In panel (b), we've displayed the evolution
of the total Qe associated with our five proton variational excitations in addition to the
evolution of the adiabatic one, with respect to cg. The blue line in panel (b) corresponds
to the value of Q! , found for the adiabatic set at the neutron chemical potential peak
(C# = 495)
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Figure 4.9: Study of the evolution of @), for our five proton variational excitations and for
their related adiabatic states. Panel (a): evolution of the proton Qe with respect to cy.
Panel (b): evolution of the total Qe with respect to cy.

This time, in Figure (4.9), there doesn’t seem to be any particular behaviour unmatching our
assumptions. Indeed, the greater the (),cck, the smaller the neutron necking phenomenon.
Besides, these results also cofirm the assumptions about the variational excitations pre-
fragments couplings. We observe that the earlier the separation, the closer the proton
chemical potentials to the adiabatic ones and the more regular the associated ¢® and ¢®
quantities.

Here also, we provide the reader with the different values of cy4 corresponding to the intersec-
tion between the blue line and the curves. We found that the protons excitations labeled by
N=1/2,02=3/2,Q=5/2,Q="7/2and 2 =9/2 are associated respectively with ¢y = 498,
cu = 497, cy = 497, cp = 496 and cy = 495. These values are closer to cx = 495 than in
the neutron case. It signifies that the proton variational excitations probably contribute less
to holding the pre-fragments together than the neutron ones.

4.2.3 Neutron necking properties using different Gogny interac-
tions

To conclude this section, we investigate the impact of using different interactions (D1S and
D2 with or without exact treatment of the Coulomb term of the interaction) on the neutron
necking phenomenon. In Figure (4.10), we've displayed the local neutron/proton ratio r, for
two states associated with D1S (with the exact and Slater treatment of the Coulomb term
of the interaction), and two states associated with D2 (with the exact and Slater treatment
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of the Coulomb term of the interaction). We considered the states related to the chemical
potential peaks displayed in Figure (4.4):

cx =495, D1S (Slater) cx =496 , D2 (Slater)

1
cx =501, D1S (Exact) cy =497 , D2 (Exact)

1 1
-10 0 10 -10 0 10
z [fm] z [fm]

Figure 4.10: Study of the neutron necking at scission for the D1S and D2 interactions with
and without the exact treatment of the Coulomb term.

Once again, we see that the D1S and D2 interactions give similar results, the main differences
bewteen the plots being explained by the treatment of the Coulomb interaction.

Besides, we observe that neutron necks are almost non-existent when the exact treatment
of the Coulomb term is used. The nucleus seems to be more spread in space with the
exact treatment of the Coulomb interaction, which is consistent with the neutron chemical
potentials observed in Figure (4.4), panel (a). Neutron are less and less bound as Q9
increases. Concerning the results obtained with the Slater approximation, the maximum
value of the local ratio r,, 4.82, is found for the state related to the D2 interaction, while the
maximum value of r, associated with the D1S state is 4.51.

4.3 Fragment particle numbers

Charge and mass yields are undoubtedly among the most important fission observables. To
obtain these yields within TDGCM type approaches, we start by defining certain HFB states
of the GCM basis as corresponding to possible events of the fission process. The “dynamics”
then gives access to the probability associated with each of these events. We then multiply
the probability of each event by the fragmentation of the associated state to get the fission
yields. This section discuss how to access the fragmentation associated with a given HFB
state.

In practice, it is common to determine the fragmentation associated with an HFB state from
the local density p(r), which is integrated with respect to the subspaces corresponding to
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each fragment. While this method gives an account of the average fragmentation, it does
away with many phenomena associated with the exact particle number distribution of the
fragments, such as proton odd-even staggering observed in charge yields. For this reason,
we have chosen in this work to focus on another method that gives access to the exact total
particle number distribution of the fragments.

As well as enabling a better evaluation of the fission yields, the total particle number distri-
bution of the fragments also allows a better understanding of the nature of the variational
excitations.

4.3.1 The z-separation method

The method we’ve chosen to use comes from [63,64]. We call it the z-separation method
because it relies on separating in space the orthonormal particle basis wave functions {py}.
To operate this separation, we first define a z,.. abscissa that divides the space into two
parts. In practice, there exist various methods for defining z,... For instance, we can choose
the abscissa 2z that minimizes the local density p(7) along the z-axis between both fragments.
In this work, we’ve used the definition already implemented in the HFB3 code, which consists
in choosing the z abscissa that minimizes Q-

Once zpeqr is defined, we can rewrite the ¢, wave functions as follows:

pr(T) = ¢k(ﬁ5(z<zneck) + Pk (7_")5(22;:”%16) (46)

We search for the squared norms of the functions appearing on the right hand side of Eq.(4.6):

2= [dr. [ on(F)ew(P)

L e, . (4.7)
2= [dFL [ n(Pew()

l
(C](ﬂ))2 = ngkd(z<zneck)
() = llPrdiezzear

In practice, we evaluate both (c{”)2? and (c{")2 numerically. Thanks to Eq.(4.7), we can define

the left and right normalized wave functions (pg) and gpl(:) associated with @y:

l >
o (7) = k(e e

o 5 (4.8)
0 (1) = k(M
Using Eq.(4.8) in Eq.(4.6) leads to:
ou(7) = e (1) + e () (49)

The left and right sets {gp,(f)} and {gog)} associated with the left and right normalized wave
functions are unfortunately not orthonormal. We orthonormalize these sets using the same
method as for the 2-center representations presented in section 2.1.2.

After this orthonormalization process, we end up with two orthonormal bases {952(»[)} and
{gbgr)}. The total orthonormal basis {B4"}, which is the direct sum of {3} and {géy)},
allows to represent all the wave functions of the initial set {¢y}. We call @), ©() and @)
the transformation matrices between these latter bases:
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O = [ dipi(ME (7) (410)
oy = [ drigi(M@) (7)
And:
-~ ol o
ol = ( A (4.11)

As the bases considered are orthonormal, we can associate to them particle creation and
annihilation operators {a\"*},{a{"}, {a§-r$+}, {ay)}, {a{""} and {a}. Our goal is to
rewrite the HFB wave functions using these creation and annihilation operators.

In the code, we've chosen to use the canonical particle basis as the starting point of the
method. We made this choice not only because it is more convenient to work with, but also
because we can eliminate certain quasiparticle states associated with small v;. In practice
we keep only the quasiparticle annihilation operators 7, associated with |vgx| > 107%. These
operators read:

M = UpG + VEa, (4.12)

We transform Eq.(4.12) using the matrices defined in Eq.(4.10):

e =w(Y_0pa +3 0la) +u > elalt + > ef)al") (4.13)

Using Eq.(4.11), we can put Eq.(4.13) into a more compact form:

n\ [u v\ /0¥ o a(")
(77—0—) - (—U u) < 0 @(lr) a(lr)+ (414)

We would like the transformation displayed in Eq.(4.14) to be an HFB transformation. How-
ever, in general, it is not the case as the matrix ©U") is rectangular. Therefore, we complete
00" into a square matrix adding a basis of its null space to it. Calling &’ the index spaning
the additional space, we extend the diagonal matrices u and v setting up = 1 and v = 0.
Doing so, we've created a new set of “ghost” quasiparticle annihilation operators {n} that
do not change the content of the HFB wave function but enable us to consider Eq.(4.14) as
an HFB transformation. In the following, we assume that this operation has been made, and
we still call @) v, and v the completed matrices.

Now, we can project a given HFB wave function |®) onto a specific fragmentation. As
both isospins are treated independently, we neglect them in the following to Asimplify the
derivations. We start by defining the left and right particle number operators N® et N():

N0 — 5 0+ 0
{ i% (4.15)

7 (r r)+ (r
N():Zjay a§-)

132



Thanks to the operators N® and N (") we can define the left and right particle number
projectors P and P(")

A o _ H_no
P(zl) 1 oﬁe ip(N N )dcp
H(r) 1 2 —ip(N(M - N

PNé”) ole i ( )dyp

(4.16)

The projector p(lgw projects the left part of the HFB wave function onto its subspace as-

sociated with the partlcle number N , and P T) projects the right part of the HFB wave

function onto its subspace associated with the partlcle number NéT .
In the following, we assume that the true total particle number of the nucleus is Ny. We
want to find the probabilities Y(Nél), Nér)) associated with all the fragmentations such as

Nél) + Nér) = Ny. Calling PNO the customary particle number projector, we can write:

AU pH(r
o . (@I, PO )
Y (Ng' s Ny ') = ( o )2 (4.17)
(P[P, |®)

After discretization, the numerator in Eq.(4.17) reads as follows:

A )

N l l N(l) (npr—¢r) (r)
(@ PY), P") @) _——§ Yo e TR T (4.18)

N ) (T>

" =1 g=1

(noy —21) vty (npr—er) 5
—2i—-L g N _9; er =®r) o Ny (r)
(Qle — = e e D)

It’s clear that the difficult part in evaluating Eq.(4.18) is to treat the following quantities
(factors in the exponentials have been intentionally omitted for simplification purposes):
(Bl (g1, r) = (Ble 0NN |p) (4.19)

Using Eq.(4.13), we can describe how the exponentials operate on the quasiparticle annihi-
lation operators 7;:

—ioNO i N(T) ior NO 50 N(T)
(o1, o) = e PN gmier Ny, plel NI gior N (4.20)

(o1, pr) = Z@ e#ia!! +Z@(’“ e al")

rl3" 00 +Z@ e

(4.21)

A detailed proof of Eq.(4.21) is given in Chapter 5. We can define the matrix ©") as follows:
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Here, O and ©(") stand for the vectors introduced to complete ©") into a square ma-
trix. Thanks to Eq.(4.22), we can write the HFB transformation between the quasiparticle

operators {n; (¢1, ¢r)} and {nk(¢1, )} and the particle operators {az(m} and {agr)}:

(o) = D O i) ()| a2

Using the formulas demonstrated in Chapter 5, we can finally write:

(@]D( 1, pr)) = det(u0 (O (1, 7)) u(© (1, 01))"
J’_

+00(©1) (1, 0,)) (0 (1, 1)) (4.24)

With Eq.(4.24), it is straightforward to calculate the fragmentation probabilities Y(Nél), Nér))
defined in Eq.(4.17).

4.3.2 Fragment particle numbers of the adiabatic and variational
excited states

We’ve used the z-separation method to obtain the fragment particle number distributions
associated with the adiabatic states and with all the variational excitations created.

In Figure (4.11), we've displayed the neutron particle number distributions associated with
the light (which is also the left one) fragment of the adiabatic states and of the neutron
variational excited states with respect to the collective coordinate cy:
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Figure 4.11: Study of the light fragment neutron particle number distributions of the adia-
batic states and of the neutron variational excited states with respect to cy.

While the distribution related to the adiabatic states clearly peaks at N;= 64 after cy = 495,
the distributions associated with the neutron variational excited states are much broader. In
addition, we remark non negligible odd components in the variational excited states distri-
butions. The relative importance of these odd components is highlighted in Figure (4.12),
where the total odd components squared norm ¢2,, is displayed with respect to cy:
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Figure 4.12: Study of the importance of the odd components in the light fragment neutron
particle number distributions of the adiabatic states and of the neutron variational excited
states with respect to cy.

First of all, it is clear that the variational excited states present more odd components than
the adiabatic ones. In terms of couplings between the pre-fragments, we understand that
if a variational excitation changes the particle number distribution in one of the two pre-
fragments, it also necesarily changes the distribution related to the other. Because of that,
we think that the curve displayed in Figure (2.1.5) provide us with a good hint on the intensity
of the pre-fragments couplings.

That being said, the results shown in both Figure (4.11) and Figure (4.12) should be treated
with caution. Both the particle number distributions and the average particle numbers of the
fragments may vary with respect to c4, even after scission. Indeed, as the average particle
number is only imposed globally, a system of communicating vessels can take place between
both fragments. For this reason, the more relevant for the analysis is to consider the particle
number near scission and not too far after.

In Figure (4.13), we've represented the neutron particle number distributions associated with
the light fragment of the adiabatic state at scission and of the neutron variational excited
states at scission (cy = 495):
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Figure 4.13: Light fragment neutron particle number distributions of the adiabatic state and
of the neutron variational excited states at scission.

Figure (4.13) confirms the observations already made. The adiabatic distribution clearly
peaks at N=64 when the other excited distributions are broader. As a comparison, the
experimental neutron yields slightly peak at N = 60 for the light fragment [61]. Besides,
the odd components are far from being negligible. For instance, the Q = 3/2 distribution
associated with the dark blue curve has more odd components than even ones.

These results underlines two important things. The first one is that the neutron varia-
tional excitations created do include pair breaking phenomena, as they strongly increase the
odd/even component ratio. Secondly, it’s good to see that the particle number distributions
associated with the variational neutron excited states are wider. Indeed, yields obtained with
the adiabatic TDGCM are often criticized for being too narrow. Looking at Figure (4.13), we
can see that the inclusion of neutron variational excited states will help address this problem.

In Figure (4.14), we've displayed the proton particle number distributions associated with

the light fragment of the adiabatic states and of the proton variational excited states with
respect to the collective coordinate cy:
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Figure 4.14: Study of the light fragment proton particle number distributions of the adiabatic
states and of the proton variational excited states with respect to cy4.

At the adiabatic level near scission, we observe not only a peak, but two main contributions
for the even components Z; = 42 and Z; = 44. As a comparison, the experimental charge
yields slightly peak at Z; = 40 with a secondary peak at Z; = 42 for the light fragment. In
addition, the odd components are negligible. This phenomenon is called proton odd-even
staggering and appears in the experimental results. It reflects the greater intensity of the
proton pairing compared with the neutron pairing one. As far as we know, it is the first time
that this phenomenon is observed for HFB states at scission in a realistic PES. Trials had
already been made in the past [65], but they had not been conclusive as they could not get
close enough to the scission with their method.

As far as proton variational excitations are concerned, we can see that most of them do not
exhibit the odd-even staggering. This is of course linked to the fact that pairs are broken in the
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excitation process. However, the proton variational excitation labeled by Q = 9/2 is different
as its related distribution is very similar to the adiabatic one. This is not a coincidence, as
this is also the variational excitation that has shown the most regular behaviour with respect
to the quantities 0 and o™ (62 +0® = 1 near and after scission). In addition, its chemical
potentials were the closest to the adiabatic ones and its neutron necking properties were also
very close to the adiabatic ones. We therefore assume that this proton variational excitation
is a typical example of a variational excitation that does not couple the pre-fragments. This
statement is discussed in greater detail in the next section 4.4.

As in the neutron case, we've displayed in Figure (4.15) the evolution of ¢2,, for both the
adiabatic states and the proton variational excited states, with respect to cy;
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Figure 4.15: Study of the importance of the odd components in the light fragment proton
particle number distributions of the adiabatic states and of the proton variational excited
states with respect to cy.

Here also, we assume that the different ¢2,, values provide us with a good hint on the intesity
of the pre-fragments couplings.

As in the case of neutrons, we’ve isolated the proton particle number distributions at scission.
In Figure (4.16), we've represented the proton particle number distributions associated with
the light fragment of the adiabatic state and of the proton variational excited states at scission
(C# = 495)
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Figure 4.16: Light fragment proton particle number distributions of the adiabatic state and
of the proton variational excited states at scission.

The Figure (4.16) shows more clearly the phenomena described above. We clearly see the
proton odd-even staggering related to the adiabatic state along with the wider distributions
associated with the variational excitations (with the exception of the @ = 9/2 one). In
addition, we observe how close the adiabatic distribution and the 2 = 9/2 distribution are.
If all the states corresponding to a fission event showed proton odd-even staggering compa-
rable to that of the adiabatic state displayed in Figure (4.16), then the sawtooth that would
be obtained in the charge yields would be far greater than that observed in experiments.
This again underlines the importance of including intrinsic excitations in the fission “dynam-
ics”. Not only will they broaden the yields, but they will also unable us to achieve a better
description of the sawtooth in the charge yields by attenuating the strong proton odd-even
staggering at the adiabatic level. This statement is illustrated in Chapter 6.

4.3.3 Fragment particle numbers using different Gogny interac-
tions

We conclude this section by studying the impact of both the D1S and D2 interactions (with
or without exact treatment of the Coulomb term of the interaction) on the fragment particle
number distributions.

In Figure (4.17), we've displayed the neutron particle number distributions associated with
the light fragment of the adiabatic states obtained with both D1S and D2 (with and without
exact treatment of the Coulomb term of the interaction), with respect to the collective
coordinate cy. In Figure (4.18), we’ve done the same work on the proton side:
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Figure 4.17: Study of the light fragment neutron particle number distributions of the adi-
abatic states obtained with both D1S and D2 (with and without exact treatment of the
Coulomb term of the interaction), with respect to cy.
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Figure 4.18: Study of the light fragment proton particle number distributions of the adiabatic
states obtained with both D1S and D2 (with and without exact treatment of the Coulomb
term of the interaction), with respect to cy.

The results presented in Figure (4.17) and Figure (4.18) show two important things. The
first is that the D1S and D2 interactions have similar properties concerning the particle
number distributions of the fragments. Secondly, it’s clear that the pairing intensity is far
from the desired physics when the exact treatment of the Coulomb term is used. Indeed, we
observe neutron odd-even staggering instead of the proton one, and the major fragmentation
is strongly modified, with a number of protons changed by four units.

4.4 Static energy balance at scission

In this section, we focus on the static state energy balance at scission. More specifically, we
propose a method for separating the HFB states into left end right sub-states, and calculating
the left and right binding energies, as well as the interaction energy between the left and
right sub-states. This method is inspired by what has been proposed in [35], but we have
adapted it, in particular using the canonical basis. For this reason, we call this variant the
RC-separation method.

At the adiabatic level, this method gives access to the part of the TKE that comes from
the Coulomb interaction potential at scission. It also makes it possible to determine the
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deformation energy of the sub-states by looking at the evolution of their respective binding
energies. As a by-product of the method, it is also interesting to observe how the various
components of the interaction energy behave as the fragments move apart.

Applying this method to variational excited states is more difficult, and sometimes even
impossible. The reasons are quite subtle and will be detailed further in this section. In some
cases, however, the method is applicable. It is used, for example, to decide definitively on the
nature of the proton variational excitation labeled by {2 = 9/2. To conclude on variational
excitations, the method enables us to give an interesting particle state interpretation of the
neutron necking properties observed in the neutron 2 = 9/2 variational excitation in section
4.2.

Finally, it is possible to couple this method to the particle number projection formalism
to obtain the Projection Onto Fragmentation (POF) method. The POF method allows
to evaluate fragmentation-projected energies. We didn’t have the time to fully explore the
possibilities offered by this method, but we propose an application in the determination of the
standard-deviation of the Coulomb interaction energy associated with the particle number
fluctuations.

4.4.1 The RC-separation method

Before developing the RC-method, we’d like to say a few words about the reason why the
z-separation method is not used here. In fact, the latter is very efficient for obtaining reliable
fragment particle number distributions, because it enables odd components to be evaluated.
However, we don’t have the means to calculate the energy associated with this type of state.
Unlike the z-separation, the way HFB states are separated by the RC-separation allows only
time-even sub-states. This is not a problem when the fragments particle number components
of a state are naturally even, as is the case at the adiabatic level (see section 4.3). On the
other hand, it implies serious problems in the case of the variational excited states, whose
fragments particle number odd components are far from being negligible. We will come back
to this issue later on in this section.

We start by presenting the separation method proposed in [35]. It aims to separate the
quasiparticle annihilation operators of a given HFB state into left and right subsets noted
{&,,} and {¢,, }. Indeed, doing so, it is possible to separate the matrices p and x accordingly:

pas = (VV')ag = Zu VoV = Zm Vou Vo + Z Vo Vou, = %()% * f()r) (4.25)
K;Oéﬂ - <VUT) - Z'u VCX,LLUﬁ# ZNZ Val"lUﬁ#l + Z VQ#TUBuT — ff( + KO{B

To determine which quasiparticle subset a given annihilation operator §, belongs to, we
consider its contribution to the local density p(7). Indeed, the latter reads (isospins are
voluntarily omitted for simplicity purposes):

Z 55(185¢ wﬁ F)pﬁa Z Z 5sas/3w wﬁ f‘)pﬁa Z P (426)

In Eq.(4.26), we naturally set ViV, = pls,, and p*(7) = 35 505,05 (7)105(7) ply5. Then, we

introduce the two quantities (v{’)? and (v\)%:
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(U(T))Q _ deJ_ +00 p“(fj (427)
K Zneck
Here, the z,.. abscissa is the same as for the z-separation method. The quantities (vff ))2 and
(v,(f))2 evaluate the left and right contributions to the quasiparticle §, to the local density.
Therefore, we consider that if (v%)2 > (v0)2, €, € {£,,}, while (172 > (b2, €, € {€,,}.
Then, it is natural to define the separation index s as follows:

s=2> min((v?)?, (0])) = s, (4.28)

m

Here, the factor 2 stands for the time-reversal contributions. The separation index s cor-
responds to the total particle number spatially localized in one subspace while it has been
attributed to the other by the method.

If we were to apply the method as it stands, we’d probably be disappointed with the re-
sults though. Indeed, the quasiparticle operators {{,} are defined up to a rotation, and
there is no particular reason why they should spontaneously be found in the respresentation
that minimizes s. In [35], this issue is tackled by performing rotations on relevant pairs of
quasiparticles. A similar feature is also included in the RC-separation method and will be
discussed later on.

We assume that the rotation that minimizes s has been found. We end up with the ma-
trices p®, p) k¥ and k). Thanks to them, we can rewrite the HFB energy:

E=EY +E 4+ E,, (4.29)

With:

() 0 @ O O coss @ ()0
EQ =3 5tapPas + 3 2ams VasrsProPss T 1 2oagys(— 1) Vag shashns

EM — Zaﬁ taﬂpgﬁ) + % Zaﬁw vggwpggpg;) + }L Zaﬁw(—1)33*351;5275/{&%)/12? (4.30)

o (@) (@) (r) sg—ss,, @) (O (r)
kEint - Eag'yg Uaﬁyép’yapdﬁ + % Zaﬂyé(_1> b §va675"€a6’%'y5

In Eq.(4.29), E® is the binding energy associated with the left sub-state, £(") is the one as-
sociated with the right sub-state, and Fj,; is the interaction energy between both sub-states.
To evaluate the contribution of the density-dependent term to £, E™ and Ej,;, we have
used the prescription given in [35]. This prescritpion involves using the one-body densities
p¥ and p to evaluate the binding energies E®) and E() respectively. The interaction en-
ergy F;,; is then deduced from the difference between the total binding energy E and the
left and right binding energies E® and E).

The RC-separation differs from the method presented previously, as it assumes that the C
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matrix of the Bloch-Messiah theorem (see Appendix C) is a relevant rotation for separating
the quasiparticle operators. In other words, the RC-separation method consists in separat-
ing the quasiparticle operators {n;} associated with the so-called “canonical representation”.
The original intuition comes from the fact it simplifies naturally the quasiparticle operator
structures. Therefore, we expect this representation to provide us with rather small values
of the separation index s. In the following, we observe that the choice of the “canonical
representation”is an ansatz really efficient in practice. Moreover, in the “canonical repre-
sentation”, the quasiparticle annihilation operators and the particle creation operators are
labeled by the same index. Thanks to that, it is possible to give an interpretation of the
RC-separation results in terms of single particle orbitals, which we find very interesting. Be-
sides, it is this special feature that allows to couple the RC-separation with the projection
formalism.

In the canonical representation, the sub-matrices p* and x* labeled by the quasiparticle index
read as follows:

e = DarDprvy
o0 (4.31)
"{aﬁ = DakDﬁkvkuk

To tell if a quasiparticle operator 7, belongs to the left subset {ny,} or to the right one {n, },
we still use their contribution p*(r) to the local density. The latter reads:

PE(7) = 08> Bsss Dok Doty (F) s (7) = 7)o (7)) (4.32)
of

In Eq.(4.32), the wave functions ¢, are the wave functions associated with the canonical
particle orthonormal basis. Using the notations introduced in Eq.(4.7) to characterize the
squared norm of the left and right parts of the wave functions ¢, leads to:

Oy2 _ 2¢0.(Dy2
{@,(J) = v} (c}) (433

Thanks to Eq.(4.33), we can define the s index standing fot the RC-separation method:

s=2 vimin((c)2 ()| =D si (4.34)

In Figure (4.19), we've displayed the values of the s indexes associated with both isospins
along with the values of the total s; index found performing the method previously described
in the adiabatic set, with respect to cy:
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Figure 4.19: Study of the indexes s,, s, and s; standing respectively for the neutron, proton
and total separation indexes in the adiabatic set, with respect to cy.

The results in Figure (4.19) are really frustrating. Indeed, decreasing trends clearly appear,
which corresponds to our expectations. However, some specific anomalies are spoiling these
good trends. We searched for the cause of these anomalies by comparing two neighbouring
states labeled by cy = 486 and cy = 487. The first one follows the trends, while the second
one exhibits an abnormal behaviour. We found out that all the s, values associated with both
states were comparable, except for two specific ones, both associated with proton Q = 1/2
particle states (the realted s, values were 0.307 and 0.306). In addition, the v quantities
associated with these two particle states were very close (we found an absolute difference of
2 x 1079).

This latter observation guided us towards the caus