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Titre: Etude du modèle des amas de galaxies dans un contexte cosmologique
Mots clés: Cosmologie - Structures à grande échelle - Amas de galaxies - Méthodes statistiques

Résumé: Les amas de galaxies sont les ob-
jets gravitationnellement liés les plus mas-
sifs de l’Univers. Ils se forment à partir des
pics les plus élevés des champs de densité
primordiaux et sont situés aux noeuds d’un
réseau filamentaire complexe appelé "toile cos-
mique". Le nombre d’amas en fonction de
la masse et du redshift est une sonde puis-
sante pour contraindre les paramètres du
modèle cosmologique. La comparaison en-
tre l’observation des amas et les prédictions
théoriques nécessite une modélisation pré-
cise de la population d’amas, qui doit tenir
compte des caractéristiques observables des
amas, ainsi que de leurs relations physiques
avec des quantités cachées telles que la masse
totale. L’utilisation d’un modèle imprécis
peut entraîner des contraintes biaisées sur
les paramètres cosmologiques. Avec la nou-
velle génération de grands relevés d’amas,
qui réduira considérablement les incertitudes
statistiques des analyses cosmologiques, il de-
vient crucial d’identifier et de réduire toutes
les sources possibles de biais associés à une
modélisation inexacte. Il est donc important
d’améliorer notre compréhension des proces-
sus physiques ayant un impact sur les amas
de galaxies, et de tester les impacts des hy-
pothèses de modélisation sur les analyses cos-
mologiques. Dans cette thèse, j’ai abordé
ces questions en me concentrant sur deux as-
pects: la caractérisation de la distribution de
la matière dans les environnements d’amas,
au-delà de l’hypothèse commune de symétrie
sphérique; et l’impact de l’hypothèse d’un mod-
èle d’amas inexact dans le processus de dé-
tection, et son influence sur l’analyse cos-
mologique. Au sujet de la distribution de la
matière dans et autour des amas, j’ai réalisé
trois études, en me concentrant en particulier
sur la composante gazeuse. Tout d’abord, j’ai
étudié statistiquement la distribution azimu-
tale de la matière dans un ensemble d’amas
simulés, en quantifiant l’écart par rapport à la
symétrie sphérique. J’ai montré que les carac-

téristiques azimutales du gaz sont fortement
corrélées avec celles de la matière noire et
avec les propriétés structurelles et physiques
de l’amas, ainsi qu’avec le nombre de fila-
ments connectés à l’amas. Deuxièmement,
j’ai analysé la détectabilité des structures fil-
amentaires dans la périphérie des amas de
galaxies en utilisant des méthodes statistiques,
basées sur des observations de rayons X et
de galaxies de l’amas Abell 2744. Pour la
première fois dans une analyse aveugle des
seuls rayons X, j’ai identifié trois filaments con-
nectées à l’amas. À partir de la distribu-
tion tridimensionnelle des galaxies, j’ai identi-
fié deux structures filamentaires supplémen-
taires le long de la ligne de visée, à l’avant et à
l’arrière de l’amas. Troisièmement, j’ai entraîné
un modèle génératif pour produire des images
d’amas de galaxies avec des morphologies réal-
istes, en évitant les coûts de calcul élevés des
simulations cosmologiques. J’ai montré que
les images produites par ce modèle présen-
tent des morphologies anisotropes à grande
échelle, offrant un réalisme amélioré par rap-
port aux images à symétrie sphérique générées
de manière analytique. À petite échelle, les im-
ages générées par le modèle sont plus lisses,
plus sphériques et légèrement moins con-
centrées que les images d’entraînement, en
moyenne. Cela peut empêcher leur utilisation à
la place de simulations à haute résolution, mais
elles peuvent être utiles pour améliorer le réal-
isme dans des applications à faible résolution.
Dans la seconde approche, j’ai étudié l’effet du
modèle d’amas dans la détection d’amas de
galaxies avec la méthode du matched multi-
filter dans le contexte de la mission Planck , en
étudiant le cas où la population réelle d’amas
diffère du modèle supposé dans le template
de détection. J’ai montré que la forme du pro-
fil de l’amas a un fort impact sur la fonction
de complétude, alors que l’effet des morpholo-
gies d’amas non sphériques est modéré, et
que ces impacts affectent les contraintes cos-
mologiques, les déplaçant jusqu’à ∼ 1σ.



Title: On galaxy cluster modelling in the context of cosmological analyses
Keywords: Cosmology - Large scale structures - Galaxy Clusters - Statistical methods

Abstract: Galaxy clusters are the most mas-
sive gravitationally bound objects in the Uni-
verse. They form from the highest peaks in
the primordial density fields, and are located
at the nodes of a complex filamentary network
called the cosmic web. The number of clus-
ters as a function of mass and redshift, known
as cluster number counts, has emerged as a
powerful probe to constrain the parameters of
the cosmological model. Comparing cluster ob-
servation with theoretical predictions requires
accurate modelling of the cluster population,
which needs to account for the clusters’ ob-
servable characteristics, as well as their physi-
cal relationships with hidden quantities like the
total mass. The use of an inaccurate cluster
model can result in biased constraints on the
cosmological parameters. With the new gen-
eration of large cluster surveys, which will sig-
nificantly reduce the statistical uncertainties of
cosmological analyses with galaxy clusters, it
becomes crucial to identify and reduce all pos-
sible sources of biases associated with inaccu-
rate modelling. It is therefore important to im-
prove our understanding of the physical pro-
cesses impacting galaxy clusters, and to test the
possible impacts of simplifying modelling as-
sumptions on the cosmological analyses. In this
Thesis, I approached these issues focusing on
two aspects: the characterisation of the matter
distribution in cluster environments, beyond
the common spherical symmetry assumption;
and the impact of assuming an inaccurate clus-
ter model in the cluster detection process, and
its influence on the cosmological analysis.

Concerning the matter distribution in and
around clusters, I performed three studies, fo-
cusing in particular on the gas component.
First, I investigated statistically the azimuthal
distribution of matter in a set of simulated clus-
ters, quantifying the departure from spherical
symmetry. I showed that the gas azimuthal fea-
tures are strongly correlated with the dark mat-

ter ones and with the cluster’s structural and
physical properties, as well as the number of
filaments connected to the cluster. Second, I
conducted a case study on the detectability of
filamentary structures in the outskirts of galaxy
clusters using statistical methods, based on X-
ray and galaxy observations of the cluster Abell
2744. I combined the results of two techniques:
the aperture multipole decomposition and the
T-REx filament finder. For the first time in a
blind analysis of X-rays alone, I identified three
filamentary structures connected to the clus-
ter. From the three-dimensional distribution of
galaxies, I identified two additional filamentary
structures along the line of sight, in the front
and in the back of the cluster. Third, I trained a
generative model to produce images of galaxy
clusters with realistic morphologies avoiding
the high computational costs of cosmological
simulations. I showed that the images pro-
duced by this model exhibit anisotropic large-
scale morphologies, offering improved realism
over spherically symmetric analytic generated
images. At small scales, the model-generated
images appear smoother, more spherical and
slightly less concentrated than training images,
on average. This may prevent the use of model-
generated images in place of high-resolution
simulations, but they may be useful to improve
realism in low-resolution applications.

In the second approach, I studied the effect
of the cluster model in the detection of galaxy
clusters with the matched multi-filter method
in the context of the Planck mission, study-
ing the case in which the real cluster popu-
lation differs from the model assumed in the
detection template. I showed that the shape
of the cluster profile has a strong impact on
the completeness function, while the effect of
non-spherical cluster morphologies is moder-
ate, and that these impacts affect the cosmo-
logical constraints, potentially shifting them by
up to ∼ 1σ.
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Résumé en français

Les amas de galaxies sont les structures gravitationnellement liés les plus massives de l’Univers.
Ils se forment à partir des plus hauts sommets du champ de densité primordial, aux noeuds d’un
réseau filamentaire complexe appelé la toile cosmique (Bond et al. 1996). Ils se développent hiérar-
chiquement sous l’effet de la gravité, en accrétant la matière de leur environnement et des filaments
qui leur sont connectés, et en fusionnant avec d’autres groupes et amas de galaxies. L’une des prin-
cipales prédictions des théories de la formation des structures est le nombre de structures liées en
fonction de la masse et du décalage vers le rouge (redshift), connu sous le nom de fonction de masse

(halo mass function, par exemple Press & Schechter 1974; Tinker et al. 2008; Despali et al. 2016). Cette
fonction dépend des paramètres cosmologiques, auxquels elle est particulièrement sensible dans sa
queue de masse élevée, qui correspond à la gamme de masse typique des amas de galaxies. C’est
pourquoi, en comparant le nombre observé d’amas de galaxies avec celui prédit par la fonction de
masse, il est possible d’imposer des contraintes sur les valeurs des paramètres cosmologiques. Les
amas de galaxies constituent donc une puissante sonde cosmologique (par exemple Rozo et al. 2010;
Planck Collaboration et al. 2014d, 2016f; Bocquet et al. 2019; Costanzi et al. 2019; Ghirardini et al. 2024).

Comparer l’observation des amas avec les prédictions théoriques est une tâche difficile, qui néces-
site une modélisation précise de la population des amas. Un tel modèle d’amas doit rendre compte
avec précision des caractéristiques observées des amas de galaxies à différentes longueurs d’onde, et
il doit modéliser les relations physiques sous-jacentes entre les observables et les quantités cachées,
telles que la masse totale. Cela se fait généralement à l’aide d’hypothèses simplificatrices sur les pro-
priétés des amas, telles que la symétrie sphérique et l’équilibre hydrostatique. Comme l’utilisation
d’un modèle d’amas inexact peut conduire à des contraintes biaisées sur les paramètres cosmologiques
(e.g. Salvati et al. 2020), la validité des modèles d’amas actuels et leurs impacts possibles sur les anal-
yses cosmologiques avec les amas de galaxies doivent être évalués. En même temps, une meilleure
compréhension des processus physiques complexes ayant un impact sur les amas de galaxies (tels
que l’accrétion, les chocs, la turbulence, les processus de rétroaction astrophysique, pour n’en citer
que quelques-uns) est importante pour améliorer la modélisation des amas. Ces aspects sont par-
ticulièrement pertinents à la lumière de la nouvelle génération de grands relevés d’amas (e.g. Ade
et al. 2019; Euclid Collaboration et al. 2019), qui permettront d’augmenter d’un ordre de grandeur la
taille des échantillons d’amas, réduisant ainsi de manière significative les incertitudes statistiques des
analyses cosmologiques.

Dans cette thèse, j’ai abordé ces questions en me concentrant sur deux aspects : d’une part, j’ai
travaillé sur la caractérisation de la distribution de la matière dans les environnements des amas de
galaxies, au-delà de l’hypothèse commune de symétrie sphérique ; d’autre part, j’ai étudié l’impact
de l’hypothèse d’un modèle d’amas inexact dans le processus de détection des amas de galaxies, et
l’influence que cela peut avoir sur les contraintes cosmologiques.

Pour la plupart des applications cosmologiques, les amas de galaxies sont approximés comme
des objets isolés à symétrie sphérique. En réalité, les amas sont en général non sphériques (Limousin
et al. 2013), et sont connectés à des filaments cosmiques, qui déterminent une accrétion de matière
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de manière anisotrope (e.g. Gouin et al. 2021; Rost et al. 2021). J’ai réalisé trois études, présentées dans
la partie II de cette thèse, dans lesquelles j’ai étudié la distribution de la matière à l’intérieur et autour
des amas, en me concentrant en particulier sur la distribution de la composante gazeuse.

Premièrement, j’ai étudié statistiquement la distribution de la matière dans les régions d’amas,
en relation avec les propriétés structurelles et physiques des amas, en utilisant un ensemble d’amas
simulés extraits de la simulation IllustrisTNG (Nelson et al. 2019a). J’ai étudié la distribution azimutale
du gaz et de la matière noire dans et autour des amas et quantifié leur écart à la symétrie sphérique.
Pour cela, j’ai utilisé la technique de décomposition multipolaire dans une ouverture (Schneider &
Bartelmann 1997; Gouin et al. 2017, 2020), en particulier les rapports multipolaires βm (Buote & Tsai
1995; Gouin et al. 2022), qui quantifient l’importance relative de l’ordre multipolaire m par rapport à
l’ordre 0, qui représente la symétrie circulaire. J’ai d’abord comparé les caractéristiques azimutales des
distributions de gaz et de matière noire (tracées par les rapports multipolaires) à l’intérieur des amas
avec les propriétés structurelles des amas (décalage du centre, fraction de masse de la sous-structure
et ellipticité), trouvant de fortes corrélations entre les deux ensembles de paramètres. Cela confirme
la capacité de la décomposition multipolaire à retracer différentes propriétés structurelles dans un
cadre cohérent, et montre la capacité du gaz à retracer efficacement la distribution de la matière
noire. Ensuite, j’ai établi des corrélations entre le niveau global d’asymétrie des amas de galaxies,
tracé par le paramètre β, et les propriétés physiques non observables des amas, telles que la masse
totale de l’amas, l’état dynamique, le taux d’accrétion et le redshift de formation. Dans les périphéries
des amas, j’ai montré que l’asymétrie des distributions de gaz et de matière noire retrace la présence
de filaments cosmiques connectés à l’amas. De ces résultats, je conclus que la distribution de la
matière dans et autour des amas de galaxies est influencée par les différentes propriétés des amas,
et qu’elle porte donc des informations statistiques sur l’état des amas et leur histoire d’accrétion.

Deuxièmement, je me suis concentré sur les observations d’un seul amas, Abell 2744 (A2744),
comme étude de cas pour la détectabilité des structures filamentaires dans les périphéries des amas
de galaxies avec des méthodes statistiques. La détection de filaments dans la périphérie des amas
représente un défi considérable, bien qu’il s’agisse d’un aspect crucial de l’étude des propriétés de la
matière entrante et de ses interactions complexes avec l’amas. Pour identifier des structures filamen-
taires dans la périphérie de A2744, j’ai analysé l’émission de rayons X et la distribution des galaxies,
en combinant deux techniques : la décomposition multipolaire et le détecteur de filaments T-REx
(que j’ai optimisé pour l’utilisation sur des données de rayons X Bonnaire et al. 2020, 2022). Pour la
première fois dans une analyse aveugle des seuls rayons X, j’ai identifié trois structures filamentaires
connectées à l’amas, dans les directions nord-ouest, est et sud. Les deux premières structures ont
également été identifiées dans l’analyse de la distribution des galaxies, avec les deux méthodes, alors
que la troisième n’a été clairement identifiée que par T-REx . En appliquant l’algorithme T-REx à la
distribution tridimensionnelle des galaxies spectroscopiques, j’ai identifié deux structures filamen-
taires supplémentaires le long de la ligne de visée, à l’avant et à l’arrière de l’amas. J’ai donc prouvé
qu’il était possible de détecter les filaments cosmiques liés aux amas de galaxies d’une manière qui
pourrait être automatisée en vue d’une utilisation dans les grands relevés de rayons X. (e.g. XRISM
Science Team 2020; CHEX-MATE Collaboration et al. 2021, eROSITA Bulbul et al. 2024).

Troisièmement, j’ai développé un modèle génératif pour produire des images réalistes d’amas de
galaxies d’une masse donnée. L’intérêt d’un tel modèle réside dans sa capacité à générer de grands
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échantillons d’images d’amas sans avoir à recourir à des simulations cosmologiques coûteuses en
temps de calcul. Comme architecture du modèle, j’ai utilisé un autoencodeur variationnel condition-
nel basé sur des réseaux de neurones convolutifs (Kingma & Welling 2013; Sohn et al. 2015). Je l’ai
entraîné sur des images du paramètre Compton-y d’amas de galaxies, créées à partir de la distribu-
tion de gaz des amas de galaxies simulée dans IllustrisTNG. J’ai montré que les images produites par
ce modèle présentent des morphologies anisotropes à grande échelle, offrant un réalisme amélioré
par rapport aux images analytiques à symétrie sphérique. À petite échelle, les images générées par
le modèle semblent plus lisses, plus sphériques et légèrement moins concentrées que les images
d’apprentissage, en moyenne. Ceci est confirmé par l’analyse de deux estimateurs morphologiques:
le paramètre β, qui décrit le niveau d’anisotropie des images, et le paramètre de concentration, qui
évalue la distribution radiale du signal. Ces estimateurs ont également montré que la morphologie
des images générées par le modèle est corrélée à la masse de l’amas d’une manière légèrement dif-
férente par rapport aux images d’apprentissage. La relation entre la masse de l’amas et le total du
signal y intégré dans les images d’entraînement est bien reproduite par les images générées pour les
masses faibles et intermédiaires, mais montre des déviations pour les masses élevées. J’ai conclu que
la qualité actuelle des images générées par le modèle empêche leur utilisation à la place des simu-
lations à haute résolution, mais elles présentent néanmoins un meilleur réalisme dans leurs carac-
téristiques morphologiques par rapport aux images à symétrie sphérique générées analytiquement,
de sorte qu’elles peuvent être utiles dans les applications à basse résolution.

Dans la partie III de la thèse, je me suis concentré sur l’étude de l’impact des hypothèses de mod-
élisation sur les analyses cosmologiques avec les amas de galaxies. En particulier, j’ai étudié l’effet du
modèle d’amas dans la détection des amas de galaxies avec la méthode du matched multi-filter (dans
son application spécifique sur les données Planck ), et son impact sur l’analyse cosmologique à travers
la fonction de sélection. J’ai calculé la fonction de complétude des amas de galaxies dans Planck en
utilisant une approche Monte Carlo, en étudiant le cas où la population réelle d’amas a des propriétés
qui diffèrent du modèle supposé dans le template de détection. J’ai créé des images de l’effet Sunyeav-
Zel’dovich (SZ Sunyaev & Zeldovich 1970) des amas de galaxie, en utilisant à la fois des amas simulés à
partir de la simulation IllustrisTNG, et générés analytiquement à partir de différents profils de pression
observés. J’ai injecté ces images dans les cartes Planck réelles, et j’ai exécuté l’algorithme de détection
avec un modèle des amas fixe pour évaluer les changements de performance, mesurés par la fonction
de complétude. J’ai montré que la forme du profil des amas a un impact important sur la complétude:
les amas dont le profil est plus abrupt que celui du modèle produisent des fonctions de complétude
plus élevées, alors que les profils plus plats conduisent à une complétude plus faible. En étudiant
l’impact de la morphologie des amas, j’ai constaté que l’écart par rapport à la symétrie sphérique a
un impact modéré sur la complétude, qui tend à augmenter avec la taille de l’amas. J’ai ensuite étudié
l’impact sur l’analyse cosmologique Planck avec amas de galaxies, du changement de la fonction de
complétude, obtenue à partir des amas de profils différents. J’ai trouvé que les contraintes sur les
paramètres cosmologiques sont affectées par ce changement, étant décalées d’environ 1σ dans mes
tests. Cette étude m’a permis de conclure que la fonction de complétude des amas de galaxies est
affectée par un modèle de détection imprécis, et que les incertitudes sur la complétude peuvent, à
leur tour, avoir un impact sur les résultats cosmologiques. Par conséquent, ces incertitudes doivent
être correctement propagées dans la modélisation du nombre d’amas pour effectuer des analyses
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cosmologiques robustes avec les amas de galaxies.

En conclusion, dans cette thèse, j’ai souligné l’importance d’une modélisation précise et réaliste
des amas de galaxies dans le contexte des analyses cosmologiques. J’ai montré l’importance et la
valeur de considérer les amas de galaxies et leurs périphéries au-delà de la symétrie sphérique, pour
découvrir leur dépendance vis-à-vis de leur environnement et améliorer la compréhension des pro-
cessus physiques importants de l’accrétion de matière. En outre, j’ai montré que les imprécisions
dans la modélisation du modèle utilisé pour détecter les amas de galaxies peuvent conduire à des bi-
ais dans les contraintes des paramètres cosmologiques, et donc que les incertitudes liées à l’efficacité
du processus de détection doivent être incluses dans le pipeline des analyses cosmologiques.
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1 - Introduction

Modern cosmology is a fairly young science, whose starting point can be
traced back to the first discovery of other galaxies outside our own (Hubble
1925, 1926), and the observation that these galaxies appear to be moving away
from us, with velocities proportional to their distances (Hubble 1929). The
theoretical explanation for this observation was provided, in the framework
of General Relativity (Einstein 1916) by the Friedmann-Lemaitre-Robertson-
Walker metric (FLRW Friedmann 1922; Lemaître 1931; Robertson 1935; Walker
1937), which describes a homogeneous, isotropic and expanding Universe.
In the following century, many more observations have been performed to
probe the Universe’s content, structure and history, along with theoretical ad-
vancements that incorporated the new observations in a coherent framework
(see for example Coles & Lucchin 2002).

The current standard model of cosmology is the so-called ΛCDM model,
named after the two main components in the model’s energy density budget
today: dark energy (modelled as a cosmological constantΛ), which constitutes
about 68% of the energy density in the Universe today, and dark matter (in its
“cold” version, hence the acronym CDM: cold dark matter), the main matter
component in the Universe, making up roughly 27% of the energy density
budget (Planck Collaboration et al. 2020a). The remaining ∼ 5% is made of
ordinary matter, called baryons in cosmology1, which is the only component
that can be directly observed. The standard cosmological model, in its sim-
plest form, is fully characterised by six parameters (Planck Collaboration et al.
2014e): two of them represent the density of baryons and dark matter (Ωbh

2

and ΩCDMh2)2, two describe the power spectrum of the primordial density
fluctuations (As and ns, see Sect. 2.1.1), one refers to the scale of the acoustic
oscillations in the early Universe (θ∗) and the last is related to the reionisation
of the Universe after the formation of the first stars (τ ). All other quantities in
the model can be derived from these parameters. The ΛCDM model is able
to describe with remarkable accuracy a multitude of processes observed at
different scales and different epochs across the Universe’s history, from the
cosmic microwave background (CMB) to the present-time large scale struc-
tures.

One of the main goals of observational cosmology is to use different ob-
servations as probes to test the cosmological model and to provide indepen-

1With a certain abuse of terminology compared to the particle physics definition.
2The density parameters Ωi represent the fraction of the density of the com-

ponent i over the critical density of the Universe. The reduced Hubble constant
h = H0/(100 km s−1Mpc−1) represents the rate of the expansion of the Universe
today.
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dent constraints on its parameters. Currently, the tightest constraints on the
ΛCDM parameters are obtained from observations of the CMB anisotropies
(Planck Collaboration et al. 2014e, 2016e, 2020a), but many other probes pro-
vide competitive constraints on the cosmological parameters, and offer com-
plementary views that can help break degeneracies between parameters when
analysed together. Such probes include, for example, the observation of galax-
ies, via the two-point correlation function or the weak lensing signal (e.g. Eisen-
stein et al. 2005; Parkinson et al. 2012; Hildebrandt et al. 2017; Hikage et al.
2019; Hamana et al. 2020; Alam et al. 2021; Abbott et al. 2022), expansion rate
measurements (e.g. Abbott et al. 2017; Freedman et al. 2019; Birrer et al. 2020;
Riess et al. 2021), and galaxy clusters (e.g. Rozo et al. 2010; Mantz et al. 2010;
Pierre et al. 2011; Mantz et al. 2015b; Planck Collaboration et al. 2014d, 2016f;
de Haan et al. 2016; Böhringer et al. 2017; Pacaud et al. 2018; Costanzi et al.
2019, 2021; Bocquet et al. 2019; Abbott et al. 2020; Bocquet et al. 2024; Ghi-
rardini et al. 2024). For each of these probes, the extraction of cosmological
information from the observations requires a detailed modelling of the data,
from the physical processes involved in their generation to the instrumental
effects during the observations, which often involves several simplifying as-
sumptions. These assumptions need to be validated by extensive testing, and
the potential biases and uncertainties that can propagate to the cosmological
constraints need to be carefully assessed.

In this Thesis, I focused on galaxy clusters as a probe for cosmology. Galaxy
clusters, the most massive gravitationally bound objects in the Universe, have
emerged in the last decade as a powerful cosmological probe. Their formation
and evolution from the highest peaks in the primordial density fluctuations is
tightly related to the overall formation of the Universe’s large-scale structures,
and depends on the details of the cosmological model (see Chapter 2). Galaxy
clusters are complex astrophysical objects, whose observed properties are in-
fluenced by several physical processes related to matter accretion, heat trans-
fer and feedback processes, turbulence, shocks, and many others. Therefore,
in cosmological contexts, galaxy clusters are modelled starting from some
simplifying assumptions, such as spherical symmetry and hydrostatic equi-
librium. In light of the new and upcoming cluster surveys (e.g. Euclid Collabo-
ration et al. 2019; Ade et al. 2019; Bulbul et al. 2024), which will provide cluster
catalogues with much higher statistical power, the validity of these assump-
tions and their potential impact on cosmological analyses needs to be verified
(e.g. Salvati et al. 2020). At the same time, a deeper understanding of the phys-
ical processes impacting galaxy clusters is needed to improve the modelling
of the cluster population.

The work presented in this Thesis is inscribed in the efforts to improve the
galaxy cluster modelling for cosmology. In particular, I worked on two main
aspects, which constitute Part II and Part III of this Thesis. The first focuses
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on the study of the matter distribution inside and around galaxy clusters, go-
ing beyond spherical symmetry. Indeed, galaxy clusters are not spherically
symmetric in general (Limousin et al. 2013), and their position at the nodes
of the cosmic web leads to anisotropic accretion from cosmic filaments (e.g.
Gouin et al. 2021; Rost et al. 2021). Therefore, in my work, I investigated in
particular the distribution of gas in galaxy clusters’ environments: i) analysing
statistically its departure from spherical symmetry, and how this can be re-
lated to the clusters’ physical and structural properties (using simulations);
ii) applying statistical methods to identify filamentary structures in observed
cluster outskirts, with the perspective of studying the impact of these con-
nected structures on the cluster properties, and the physical processes of
matter accretion; iii) constructing a generative model of realistic cluster im-
ages, that aims to facilitate the production of large samples of clusters with
realistic morphologies, without the use of computationally expensive cosmo-
logical simulations. The second main aspect of this Thesis is centred on the
investigation of the impact of modelling assumptions on cosmological analy-
ses with galaxy clusters. In particular, I studied how the assumption of a clus-
ter model in the matched multi-filter detection method impacts the detection
probability of clusters that differ from this model, and how this impact prop-
agates into the cosmological analysis down to the cosmological parameter
constraints (Chapter 11).

The Thesis is organised as follows: Part I is dedicated to introducing galaxy
clusters as cosmological probes: their formation as part of the Universe’s
large scale structures (Chapter 2), their observations (Chapter 3), and their
use in cosmological analyses (Chapter 4). Chapter 5 expands on the role of
approximations in cluster modelling, and presents the themes of the subse-
quent parts of the thesis in greater detail. In Part II, Chapter 6 presents an
overview of the matter asymmetry estimation in and around galaxy cluster,
along with the two methods I used: aperture multipole moments and T-REx
filament finder. Chapters 7-9 present the three projects on matter distribu-
tion in cluster environments mentioned above. In Part III, Chapter 10 explains
galaxy cluster detection with the Planck satellite, while Chapter 11 contains the
work I did on the completeness function, in the case in which the real cluster
population differs from the cluster model used in the detection.
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2 - The large scale structures of the Universe

The distribution of matter observed in the Universe today is highly inho-
mogeneous on scales up to hundreds of Mpc. It consists of a hierarchy of ob-
jects spanning tens of orders of magnitude in mass, from stars to clusters of
galaxies, organised on large scales in a complex network of filaments, nodes,
sheets, and voids known as the cosmic web (Bond et al. 1996).

The formation of the large scale structures of the Universe is a fundamen-
tal process in cosmology, which originates from the density fluctuations in the
primordial Universe and continues to this day, therefore tracing the whole his-
tory of the Universe. Galaxy clusters, being the most massive gravitationally
bound objects in the Universe, with masses of the order of ∼ 1014 − 1015M⊙,
lie at the endpoint of this process. Their probability of formation depends on
the details of the whole structure formation history, and thus ultimately on
the cosmological parameters.

In this Chapter, I describe the theory of structure formation, from the pri-
mordial density fluctuations to the formation of bound objects in the cosmic
web. For more details, see the following reviews (Coles & Lucchin 2002; Allen
et al. 2011; Kravtsov & Borgani 2012; Planelles et al. 2015; Huterer 2023), on
which this Chapter is based.

2.1 . The density field and its fluctuations

In the current standard scenario of structure formation, objects in the Uni-
verse form hierarchically via gravitational collapse around the peaks in the
fluctuations of the primordial density field. These perturbations in the density
field are generated during inflation, as quantum fluctuations are stretched to
macroscopic scales by the rapid expansion, and form the seeds of all the struc-
tures in the Universe today. The density perturbations are usually described
by the density contrast field:

δ(x) =
ρ(x)− ρ

ρ
, (2.1)

where ρ(x) is the matter density field at position x, and ρ is the mean
density of the Universe. Regions with positive δ are called overdensities, and
those with negative δ underdensities.

In the following, we describe the initial properties of the field δ and sketch
the theory of its evolution in the linear regime, that is, when δ ≪ 1.
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2.1.1 . Statistical description of primordial fluctuations

As we said, the properties of the primordial density perturbation field are
set during inflation, and thus depend on the details of the inflationary model.
Most models predict δ(x) to be very close to a homogeneous and isotropic
Gaussian random field (e.g. Guth & Pi 1982), so it is customary to take this as
an assumption in the description of structure formation. This picture is also
confirmed by the observations of the cosmic microwave background (CMB),
which shows small perturbations (of the order of 10−5, Planck Collaboration
et al. 2014a) consistent with a realisation of a Gaussian random field (Planck
Collaboration et al. 2020b).

The statistical properties of a uniform, isotropic Gaussian random field
can be fully described by specifying its power spectrum, P (k), which quantifies
the power of fluctuations at wavenumber k. The power spectrum is defined
as the Fourier transform of the two-point correlation function:

⟨δkδ∗k′⟩ = (2π)3 δ(3)(k− k′)P (k) , (2.2)

where δk ∝
∫

δ(x) exp(−ik · x)d3x is the Fourier-space density contrast, the
angular brackets signify ensemble average, and δ(3) is the Dirac delta function.
It is usually assumed to be in the form of a power law,

P (k) = As

(

k

k∗

)ns

, (2.3)

with two parameters (k∗ is a pivot scale): the normalisation As, and the spec-
tral index ns, which is expected to be close to unity. These two parameters
are sufficient to describe the properties of the perturbations field, and are
thus part of the parameters that define the cosmological model. The best
constraints on their values are currently given by Planck CMB measurements
(Planck Collaboration et al. 2020a).

A related quantity is the variance of the density contrast, smoothed at a
certain scale R:

σ2(R) =
1

2π2

∫

P (k) |W̃ (kR)|2 k2 dk (2.4)

where W̃ (kR) is the Fourier transform of a spherical top-hat window func-
tion1. Evaluating this σ(R) at scale R = 8h−1Mpc gives the often-quoted σ8,
which is used as an alternative quantity for the normalisation of the matter
power spectrum in cosmological studies with large scale structures. Consid-
ering that, on average, we can associate a mass scale, M = 4π

3 ρR3, to the
spatial scale R, we can use the two interchangeably. In this way, we can con-
sider the variance of fluctuation σ as a function of the mass scale M , which is
used to compute the halo mass function, as we describe in Sect. 2.3.

1The analytic expression of W̃ is: W̃ (y) = 3(sin y−y cos y)
y3 .
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2.1.2 . Linear evolution

The primordial density fluctuations are not static, but evolve under the ef-
fect of gravity. Overdense regions tend to attract matter from their surround-
ings, thus becoming denser, while at the same time the underdense regions
become less dense. In this process, the initially small density fluctuations tend
to grow, eventually forming gravitationally bound structures. This process is
known as gravitational instability, and was first studied by Jeans (1902).

In the linear regime (i.e. when δ ≪ 1) the evolution of the perturbation
field can be followed analytically. Considering the matter content of the Uni-
verse as a non-relativistic fluid, we can describe it with the continuity, Euler,
and Poisson equations. By expressing these equations in terms of the density
perturbations, δ, and keeping only the linear terms, we obtain:

∂δ

∂t
+

1

a
∇ · δ = 0

∂v

∂t
+Hv = −1

a
∇ϕ− 1

a
c2s ∇δ

∇2ϕ = 4πGρa2δ

(2.5)

where a = (1 + z)−1 is the scale factor, which describes cosmic expansion, v
and cs are the fluid’s peculiar velocity and sound speed, respectively, ϕ(x) is
the gravitational potential, and H = ȧ/a is the Hubble parameter. Combin-
ing the equations 2.5, and expressing the result in Fourier space, we get an
equation describing the evolution of the density perturbations in the linear
regime:

δ̈k + 2Hδ̇k +

[

c2sk
2

a2
− 4πGρ

]

δk = 0 . (2.6)

We see from this equation that, for scales larger than the Jeans scale, k ≪
kJ =

√
4πGρ(a/cs), the “gravity” term in the square bracket (right) dominates

over the “pressure” term (left). We can therefore neglect the latter term, which
is the only one depending on the wavenumber k, so that the δ evolution is
independent of the Fourier mode. Finally, in this regime, the solution for the
density contrast can be written as:

δ(x, a) = δ+(x, ai)D+(a) + δ−(x, ai)D−(a) (2.7)

where D±(a) are the growing and decaying modes of the perturbation field
δ(x, a), and δ±(x, ai) the corresponding initial spatial distribution. We only
consider the growing modes and call the function D+(a) the linear growth
factor. The growth factor depends on the cosmology, so studying the evo-
lution of cosmic perturbations can give information on the cosmological pa-
rameters; in a ΛCDM cosmology, for example, it is given by (Heath 1977):
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Figure 2.1: Linear matter power spectrum at different redshifts.

D+(a) =
5Ωm

2
E(a)

∫ a

0

da′

(a′E(a′))3
, (2.8)

where E(a) is the normalised expansion rate,

E(a) ≡ H(a)

H0
=
√

Ωr a−4 +Ωm a−3 +Ωk a−2 +ΩΛ . (2.9)

Because δ(a) ∝ D+(a) it is easy to see that the matter power spectrum
evolves with the scale factor as P (k, a) ∝ D2

+(a). However, the matter power
spectrum is also influenced by different processes in the early Universe (be-
fore recombination, z ∼ 1100), such as the growth suppression during the
epoch of radiation domination and the interactions between baryons and
photons. These processes influence the shape of the primordial power spec-
trum, Pprim(k), and are collectively described by the transfer function T (k).
The full matter power spectrum at late times can thus be written as:

P (k, a) = D2
+(a)T

2(k)Pprim(k) . (2.10)

In Fig. 2.1 we see the linear matter power spectrum evolved at different
redshifts. We see that the main effect of the transfer function is to suppress
the fluctuations at small scales, as well as imprint acoustic oscillations on the
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power spectrum. We also see that the growth function increases the ampli-
tude of fluctuations on all scales, independently of k.

While of great importance, these results are only valid in the linear regime,
when δ ≪ 1. When the fluctuations grow and reach δ ∼ 1, the linear theory
breaks down and cannot be used to study the subsequent growth of struc-
tures, such as galaxy clusters, which are typically observed with overdensities
δ ≳ 100. In this highly non-linear regime, approximate solutions or numerical
simulations are needed to follow the structure formation.

2.2 . Non-linear evolution

To study the formation and growth of the cosmic structures that we ob-
serve in the Universe we need to go beyond the linear regime, and tackle the
full non-linear evolution of density perturbations.

It is possible to solve exactly the non-linear collapse only in the simplest
case of an isolated, spherical perturbation with uniform density (the so-called
spherical “top hat”). For more realistic cases, one can get some insights using
the Zel’dovich approximation (Zel’dovich 1970) or its extensions (e.g. higher
orders in Lagrangian perturbation theory, see Buchert 1994), which follows
the perturbations in the mildly non-linear regime. Otherwise, the problem
can be solved numerically, by performing cosmological simulations.

2.2.1 . Spherical “Top hat” collapse

We start by discussing the case of a single, uniform, spherical overdensity
in an expanding background Universe. In its extreme simplicity, this model
is nonetheless able to offer important insights into the gravitational collapse
process.

We call the initial radius of the perturbation Ri, and the initial overdensity
δi, so that the total mass of the overdense region is M = 4π

3 (1 + δi)ρR
3
i . We

also assume, for simplicity, a background Universe dominated by matter and
a zero initial peculiar velocity at the edge of the perturbation (so that Ri is
expanding with the background). In this context, we can treat the perturba-
tion as a separate Universe, which evolves following the Friedmann equations.
Solving the equations, one finds that the radius of the overdensity, in the first
period, increases slower than the background, decelerating until it reaches its
maximum extension, Rta. At this moment, called turn-around, the perturba-
tion stops expanding and begins the collapse. During the collapse, some of
the kinetic energy is converted into heat (i.e. random motion), either by the
pressure or by slight departures from spherical symmetry. Because of this,
the collapse eventually stops, and the perturbation reaches an equilibrium
state when the virial theorem holds, that is, when 2Ekin +Egrav = 0 (Ekin and
Egrav are the kinetic and gravitational energies, respectively).
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At virialisation, one finds that the density is eight times the density at turn-
around, ρvir = 8ρta. Comparing it with the background density, we get that
the density contrast of the collapsed structure is:

∆vir ≃ 178 . (2.11)

Even though this value depends on the chosen background cosmology (in
the case where Ωm = 0.3 and ΩΛ = 0.7 it is δvir ∼ 100), the idea of choosing
a specific spherical overdensity to define the boundary and mass of virialised
objects has become quite popular. Indeed, a commonly used prescription
to define the radius of a galaxy cluster is to find the sphere centred on the
cluster within which the average density is ∆ times a reference density (of-
ten the critical density, ρcrit(z), or the mean density, ρmean(z)). Two common
choices are ∆ = 200, 500, which define the radii R200,500(c,m) and the masses
M200,500(c,m) (where the subscript c or m refer to the chosen reference den-
sity). The first choice (∆ = 200) is mostly used in the context of cosmological
simulations, while ∆ = 500 is more common in observations, in particular in
X-rays. Throughout this Thesis, I used both values of ∆, but always took the
critical density as reference (the subscript c is thus omitted in the rest of the
Thesis).

One can also extrapolate the linear theory prediction and compute the
linear overdensity at the time of virialisation:

δc ≡ δ(tvir) ≃ 1.69 . (2.12)

The value of δc can be thought of as the threshold in the linearly evolved
overdensity field above which a fluctuation is considered virialised. This is the
basic concept at the heart of the halo mass function calculations (see Sect.
2.3).

2.2.2 . The Zel’dovich approximation

Another way to go beyond the range of validity of the linear theory pre-
sented in Sect. 2.1.2 is by using the Zel’dovich approximation (Zel’dovich 1970).
This approach is essentially a first-order Lagrangian perturbation theory (as
opposed to the first-order Eulerian theory of Sect. 2.1.2), and allows one to fol-
low the evolution of density fluctuations to higher values of δ, up to the mildly
non-linear regime (δ ∼ 1).

The idea of the Zel’dovich approximation is to consider the displacement
of matter “particles” from their initial Lagrangian coordinate q:

x(q, t) = q− D+(t)

4πGρa3
∇ϕi(q) , (2.13)

where ϕi is the initial gravitational potential and follows the Poisson equa-
tion ∇2ϕ = 4πGρa2δi. Using this displacement field to compute the density
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contrast, one finds:

1 + δ(x, t) =
1

[1− λ1(q)D+(t)][1− λ2(q)D+(t)][1− λ3(q)D+(t)]

≃ (λ1 + λ2 + λ3)D+(t)

(2.14)

where λ1 > λ2 > λ3 are the local eigenvalues of the deformation tensor of
the displacement field. The different dependence of the perturbation growth
on the local structure of the matter field in this description offers great in-
sights into the formation of cosmic large-scale structures (≳ 10 Mpc). Indeed,
the perturbations tend to contract in the direction of the positive eigenval-
ues. So, if all eigenvalues are positive, the collapse happens in all directions,
forming (generally) a triaxial object. If two eigenvalues are positive, we have a
two-dimensional contraction that leads to a filament-like structure, extended
along the direction of the non-positive eigenvalue. Instead, with only one pos-
itive eigenvalue, we end up with a two-dimensional sheet-like structure, called
a wall. Finally, if all three eigenvalues are negative, the matter in the region
tends to escape from it, forming an underdensity called a void. All these struc-
tures are not isolated, but related to each other, so that walls tend to form
around voids, filaments at the intersection of walls, and nodes at the ends of
filaments. Matter in the Universe flows continuously through this hierarchy
of structures, the cosmic web (Bond et al. 1996), reaching higher and higher
densities and eventually accreting into the nodes.It is precisely in the nodes of
the cosmic web that galaxy clusters, the largest gravitationally bound objects
in the Universe, form and grow, reaching masses up to a few 1015M⊙.

Naturally, with the Zel’dovich approximation one can only follow the be-
ginning of this process. Indeed, this approach fails once the particles come
too close to each other and the close-range gravitational forces deviate their
paths from the one dictated by the initial gravitational potential. For the full
non-linear description of structure formation, one must resort to numerical
simulations.

2.2.3 . Cosmological simulations

Cosmological numerical simulations are of utmost importance in the study
of the Universe’s structure formation, because they are the only reliable way
to follow the density perturbations in the fully non-linear regime, and thus
get predictions that can be compared with observations (for a review, see e.g.
Borgani & Kravtsov 2011; Vogelsberger et al. 2020). For this reason, a consid-
erable amount of work and resources is dedicated to continuously improving
our simulations, in terms of accuracy and computational cost (e.g. White 1976;
Aarseth et al. 1979; Efstathiou 1979; Evrard 1988; Katz & White 1993; Springel
et al. 2005; Schaye et al. 2010, 2015; Dubois et al. 2014; Dolag et al. 2016; Mc-
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Carthy et al. 2017; Cui et al. 2018; Nelson et al. 2019a; Villaescusa-Navarro et al.
2021; Schaye et al. 2023).

One main discriminant between cosmological simulations is whether they
include or not the treatment of baryonic physics. Those without baryons
are known as dark matter only, or N-body simulations, while those including
baryons are called hydrodynamical simulations. In N-body simulations (which
were the first to be performed historically), a set of N particles is evolved un-
der the sole effect of gravity from some high-redshift initial conditions com-
puted using linear theory. These simulations, being comparatively less ex-
pensive than their hydrodynamical counterparts, allow for large volumes to
be probed, and are thus used to study the matter distribution and its statis-
tical properties on a large range of scales. Some examples are the study of
the matter power spectrum in the full non-linear regime (e.g. Boylan-Kolchin
et al. 2009; Springel et al. 2018a; Villaescusa-Navarro et al. 2020), the study
of the number of collapsed objects as a function of mass and redshift (i.e.
the mass function, discussed in Sect. 2.3), and, on smaller scales, the inter-
nal structure of dark matter halos, which led to the observation of a nearly
universal density profile, usually described with a Navarro-Frenk-White (NFW,
Navarro et al. 1997) or an Einasto (Einasto 1965) profile.

In hydrodynamical simulations, the baryonic matter component is included,
and the hydrodynamical interactions are implemented on top of the gravita-
tional forces. The crucial advantage of hydrodynamical simulations is that
they provide predictions on the gas and galaxy distributions and properties,
that can be tested against observations. Hydrodynamics in cosmological sim-
ulations treats baryons as an ideal gas, following Euler equations. But, bary-
onic physics includes a wealth of processes beyond the simple hydrodynam-
ics that are crucial for the formation of cosmic structures, such as star and
black hole formation, and their feedback effects on the gas (like supernova
explosions or accretion in supermassive black holes, which can impact), or
the radiative cooling of the gas itself, just to name a few (for more details, see
Vogelsberger et al. 2020). These processes have characteristic scales that are
too small to be simulated explicitly, so they are modelled through effective
relations, so-called sub-resolution or sub-grid models, which are calibrated
on observations. Different simulation codes have different implementations
of these sub-grid models, and different numerical treatment of hydrodynam-
ics (some examples of popular codes are: RAMSES, Teyssier 2002; GADGET,
Springel 2005; AREPO Springel 2010). Hydrodynamical simulations have there-
fore a much higher computational cost compared to N-body ones, but are
fundamental for understanding the complex interplay between many differ-
ent physical phenomena affecting the scales below ∼ 10 Mpc, that is, all the
scales concerning collapsed objects.
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2.3 . The mass function

A crucial prediction of the theories of structure formation is the halo mass
function, that is, the number density of collapsed objects (“halos”) as a function
of mass and redshift.

The first analytical approach to compute the mass function was performed
by Press & Schechter (1974). The main idea of this approach is to consider that
any region with linearly evolved overdensity exceeding the threshold δc = 1.69

(set by the spherical collapse model) will collapse into a bound object. To es-
timate the mass of the resulting collapsed object, we can use the density con-
trast smoothed on the mass scale M , δM . Assuming a Gaussian distribution
for the initial density fluctuations, the probability that a particular region col-
lapses into a structure of mass M is:

p(M, z) =
1√

2πσ(M, z)

∫ ∞

δc

exp

(

− δ2M
2σ2(M, z)

)

dδM (2.15)

where σ(M, z) is the variance of fluctuation computed in Sect. 2.1.1, as a func-
tion of mass, evolved at redshift z with the linear theory. We obtain the mass
function by differentiating this probability with respect to the mass and mul-
tiplying by ρ/M :

dn(M, z)

dM
=

√

2

π

ρ

M2

δc
σ(M, z)

∣

∣

∣

∣

d log σ(M, z)

d logM

∣

∣

∣

∣

exp

(

− δ2c
2σ2(M, z)

)

. (2.16)

Despite its simplicity, the Press-Schechter (PS) mass function, shown in
Fig. 2.2, is a pretty good first-order description of halo abundance. From it,
we can see that, at low mass, the number of halos evolves as a power law.
Higher-mass objects, though, are much less likely to collapse; thus the mass
function exhibits an exponential drop above ∼ 1014M⊙, which is the typical
mass range of galaxy clusters. This sharp drop in the mass function means
that the expected number of massive objects depends strongly on the cos-
mological parameters, especially on the density of matter and the amplitude
of matter fluctuations. Therefore, galaxy clusters can be a powerful probe of
cosmology (as further discussed in Chapter 4).

However, for cosmological analyses with galaxy clusters, the PS mass func-
tion is not accurate enough. Instead, different studies proposed mass func-
tions calibrated on numerical simulations, using a functional form inspired by
the PS approach (e.g. Tinker et al. 2008; Despali et al. 2016; Murray et al. 2013;
Asgari et al. 2023).

Finally, to compare the observed cluster number counts with the theory,
we need the predicted number of objects within a given survey area, ∆Ω, in
given bins of mass and redshift (identified as m and l, respectively):
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Figure 2.2: Halo mass function from Press & Schechter (1974).

N(Mm, zl) =
∆Ω

4π

∫ zl+1

zl

dz
dV

dzdΩ

∫ Mm+1

Mm

dM
dn

dM
, (2.17)

which depends on cosmology through the mass function and the volume el-
ement dV/dzdΩ. This is a key prediction for studying cosmology with galaxy
clusters.
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3 - Observations of galaxy clusters

In the previous Chapter, I described the formation of the large-scale struc-
tures of the Universe, from the small primordial density fluctuations to the
present time collapsed halos in the cosmic web. The most massive of these
gravitationally bound objects are galaxy clusters, laying at the nodes of the
cosmic web. Galaxy clusters are multi-component objects, composed mainly
of dark matter (DM) for approximately 80% of their mass. The rest of the
cluster mass is in the form of baryons. Of these baryons, only a relatively
small fraction is in galaxies (about 4 − 5% of the total), while the majority
is in the form of diffuse gas. For the most part, this gas is in a hot plasma
phase, with temperatures of the order of 107 − 108K, called the Intra-Cluster
Medium (ICM) (see e.g. Allen et al. 2011; Kravtsov & Borgani 2012, and refer-
ences therein).

Due to their multi-component nature, galaxy clusters are observable at
different wavelengths across the electromagnetic spectrum. In optical and
near-infrared, galaxies are visible through their stars’ light. Therefore, they
were historically the first observable used to construct galaxy cluster cata-
logues, observed as galaxy overdensities (e.g. Abell 1958; Zwicky & Kowal 1968).
Galaxies in clusters are predominantly concentrated in a narrow region in
colour-magnitude diagrams, known as the red sequence (e.g. Bower et al.
1992). This property has been used to detect clusters in photometric sur-
veys, identifying up to tens of thousands of clusters (e.g. Koester et al. 2007;
Rykoff et al. 2014; Costanzi et al. 2019; Ansarinejad et al. 2024). Spectroscopic
observations of galaxies in clusters are also of primary importance for ob-
taining precise redshift estimates (e.g. Clerc et al. 2016; Zaznobin et al. 2023).
Large galaxy surveys can also be used to observe galaxy clusters indirectly, via
gravitational lensing effect. Indeed, when the light from background galaxies
passes through a cluster’s gravitational field, the galaxy images will appear
distorted around the cluster (weak lensing), and, in particular cases, multiple
images of the same galaxy will be produced (strong lensing). Gravitational
lensing is sensitive to the cluster’s total matter distribution, and thus can be
used to infer the total cluster mass (for a review, see e.g. Bartelmann 2010;
Umetsu 2020). Studying the weak lensing effect over extended portions of the
sky, it is also possible to detect galaxy clusters as peaks in the weak lensing
maps (Schneider 1996; Maturi et al. 2010; Shan et al. 2012; Oguri et al. 2021).

At X-ray wavelengths, the hot ICM emits thermal bremsstrahlung, due to
the free-free interactions of electrons and ions in the plasma, and atomic
emission lines. This emission, which scales with the square of the density
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Figure 3.1: Left: Schematic representation of the thermal Sunyaev-Zel’dovich
effect. Right: Distorted CMB spectrum due to thermal SZ effect (solid line),
compared to the undistorted one (dashed line). For illustration purposes, the
SZ effect shown here is about 1000 times stronger than that of a typical mas-
sive galaxy cluster. Figure taken from Carlstrom et al. (2002).

∼ n2
e , makes galaxy clusters appear as bright, extended sources in X-ray ob-

servations (Clerc & Finoguenov 2023), allowing the construction of large, X-
ray-selected cluster catalogues (e.g. Piffaretti et al. 2011; Pierre et al. 2011, 2016;
Finoguenov et al. 2020; Bulbul et al. 2024). Complementary to large surveys,
deep pointed observations (e.g. Eckert et al. 2017; CHEX-MATE Collaboration
et al. 2021) and spectral analyses of X-rays reveal the gas distribution and
its thermodynamical properties in galaxy clusters (like density, temperature,
pressure and entropy), which can be used to reconstruct the cluster total mass
(e.g. Ghirardini et al. 2019).

At mm wavelengths, the cluster gas is visible through the Sunyaev-Zel’dovich
effect (SZ, Sunyaev & Zeldovich 1970, 1972). The SZ effect consists of the in-
verse Compton scattering of CMB photons off of energetic electrons in the
ICM, which produces a local distortion of the CMB spectrum with a character-
istic spectral shape (a representation of the SZ effect is shown in Fig. 3.1). For a
thermal population of electrons, the SZ effect is proportional to the Compton-
y parameter, proportional to the integral along the line of sight of the electron
pressure:

y =
kBσT
mec2

∫

ne Te dl ∝
∫

Pe dl , (3.1)

where ne, Te, and Pe are the electron number density, temperature, and pres-
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sure, respectively, mec
2 is the electron rest mass energy, kB is the Boltzmann

constant and σT is the Thomson cross-section (for more details, see Itoh et al.
1998; Birkinshaw 1999). Due to its characteristic spectral shape, the SZ effect
from galaxy clusters can be detected in CMB observations (Planck Collabora-
tion et al. 2011, 2014c, 2016d; Bleem et al. 2015; Hilton et al. 2021; Bleem et al.
2024, see also Chapter 10).

3.1 . The cluster mass problem

The total mass of galaxy clusters is a fundamental quantity for their use
as cosmological probes, as shown in Sect. 2.3. However, the total mass is
not directly accessible, and most observations do not probe the total matter
distribution, with the exception of gravitational lensing.

Nevertheless, different methods can be used to obtain cluster mass esti-
mates, given some simplifying assumptions, most notably spherical symme-
try and hydrostatic and dynamical equilibrium. For example, from observa-
tions of galaxies moving in the cluster’s gravitational potential, the cluster total
mass (within a sphere of radius R) can be computed from the galaxy density
and velocity dispersion profiles (Binney & Tremaine 1987):

Mopt(< R) = −
rσ2

v,rad(R)

G

(

d ln ρgal(R)

d ln r
+

d lnσ2
v,rad(R)

d ln r
− 2

σ2
v,tang(R)

σ2
v,rad(R)

+ 2

)

,

(3.2)
where σ2

v,rad and σ2
v,tang are, respectively, the radial and tangential compo-

nents of the galaxy velocity dispersion, and ρgal is the galaxy density.
In X-rays, the total mass can be estimated from the gas density profile,

ρgas(R) (obtained from the surface brightness), and temperature profile, T (r)
(from X-ray spectroscopy), using the hydrostatic equilibrium equation (Sarazin
1988):

MX−ray(< R) = −rkBT (R)

Gµmp

(

d ln ρgas(R)

d ln r
+

d lnT (R)

d ln r

)

, (3.3)

where kB is Boltzmann’s constant, mp is the proton mass, and µ is the mean
molecular weight.

Alternatively, the use of X-ray spectroscopic data can be avoided combin-
ing the X-ray-derived density profile with the gas pressure profile from SZ ob-
servations, Pgas(R), again using the hydrostatic equilibrium equation:

MSZ(< R) = − r2

Gρgas(R)

d lnP (R)

d ln r
. (3.4)

Finally, in weak lensing studies, the distortion of background galaxies (rep-
resented by the complex shear, γ(θ), at the angular position θ on the sky), is
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related to the convergence, κ(θ), in turn proportional to the projected mass
density, via (Pratt et al. 2019):

γ(θ) =
1

π

∫

d2θ′D(θ − θ′)κ(θ′) , where D(θ) =
θ22 − θ21 − 2iθ1θ2

|θ|4
, (3.5)

and the cluster mass is then estimated fitting a model of the three-dimensional
mass distribution to the two-dimensional data.

Each of these methods is based on a set of underlying assumptions, and
a significant amount of effort is being dedicated to explore the possible bi-
ases of these assumptions on the total mass estimation (see Pratt et al. 2019,
for a review). Furthermore, these methods require deep, high-resolution ob-
servations in order to obtain precise measurements of the distribution of the
various quantities needed. This is not always possible, and typically in cluster
samples for cosmology only a few cluster have their total mass estimated in
this way.

Therefore, to obtain mass estimates for large numbers of clusters, it is
usual to rely on observational proxies correlated with the cluster mass. These
correlations are expressed as statistical scaling relations, which model the av-
erage relationship between the mass and the observable, and the scatter
around this average. The theoretical motivation for the existence of such
scaling relations is provided by the self-similar model (Kaiser 1986). In its sim-
plest version, this model assumes that clusters of different masses are simply
scaled versions of each other (thus self-similar), and are spherically symmetric
and in hydrostatic equilibrium. With these assumptions, the cluster thermo-
dynamical properties are directly proportional to its total mass (and a function
of redshift) to a given power, of the form:

O ∝ Mα
∆f(z)

β (3.6)

where f(z) is usually f(z) ≡ E(z) for gas-related observables, and f(z) ≡ 1+z

for galaxy-related observables. One example of observational proxy, typical
for X-ray and SZ observations (e.g. Kravtsov et al. 2006; Vikhlinin et al. 2009;
Arnaud et al. 2010), is the Y parameter, Y ∝ MgasT , for which the self-similar

relation is Y ∝ E(z)2/3M
5/3
∆ (for a more detailed review, see Kravtsov & Bor-

gani 2012). These self-similar scalings, derived from a rather simple model,
provide a fairly good first-order description of the scaling relations, and are
used as a starting point for more accurate calibrations.

Indeed, for cosmological studies, it is common practice to calibrate the
scaling relations using a limited number of clusters with reliable mass esti-
mates to fit the relation with the observable, eventually allowing for variations
in the exponents to account for departures from self-similarity (e.g. Kravtsov
et al. 2006; Vikhlinin et al. 2009; Andreon 2015; Planck Collaboration et al.
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2014d, 2016f; Doubrawa et al. 2023; Ghirardini et al. 2024). This is a fundamen-
tal step for cosmological analyses, as shown in Chapter 4, so accurate mass
estimates for the calibration sample are crucial, along with precise knowledge
of the statistical properties of the sample (i.e. the selection function, see Chap-
ter 10) to ensure that it is representative of the general cluster population.
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4 - Cosmology with galaxy clusters

Galaxy clusters, as described in previous chapters, are the most massive
bound objects in the Universe, and carry information about the history of
structure formation. As such, they are powerful cosmological probes, and
many of their properties can be used to constrain the cosmological model.
The most common way to probe cosmology with galaxy cluster is by studying
their abundance as a function of mass and redshift, as mentioned in Chapter
2, namely their number counts (e.g. Rozo et al. 2010; Mantz et al. 2010; Pierre
et al. 2011; Mantz et al. 2015b; Planck Collaboration et al. 2014d, 2016f; de Haan
et al. 2016; Böhringer et al. 2017; Pacaud et al. 2018; Costanzi et al. 2019, 2021;
Bocquet et al. 2019; Abbott et al. 2020; Bocquet et al. 2024; Ghirardini et al.
2024). This is also the method used in this Thesis (see Chapter 11), and it is
described in more detail in the rest of this Chapter.

Besides number counts, other properties of galaxy clusters can be used
as cosmological probes. For example, their spatial position provide a mea-
sure of their clustering properties by studying their 2-point correlation func-
tion (e.g. Borgani et al. 1999; Marulli et al. 2018; Fumagalli et al. 2024). Similar
to this is the study of the SZ power spectrum, which includes the contribution
from unresolved clusters (e.g. Komatsu & Seljak 2002; Planck Collaboration
et al. 2016g; Ruppin et al. 2019). Another example is the combination of clus-
ter observations in SZ and X-rays, due to their different dependence on the
angular diameter distance dA, and therefore on cosmology (e.g. Silk & White
1978; Uzan et al. 2004; Wan et al. 2021). The properties of matter inside galaxy
cluster also provide interesting windows to probe the cosmological model.
One example is the gas mass fraction, defined as fgas = Mgas/Mtot, which
can be related to the cosmic baryon fraction, Ωb/Ωm (e.g. White et al. 1993;
Evrard 1997; Allen et al. 2008; Mantz et al. 2022; Wicker et al. 2023). The cluster
mass distribution is yet another property that bears cosmological dependen-
cies, since the way matter accumulates depends on the accretion history, and
thus on the broader structure formation history. This relation can be probed
via the sparsity, a non-parametric way to quantify the cluster mass concen-
tration (Balmès et al. 2014; Corasaniti et al. 2018, 2021).

4.1 . Cosmology with cluster number counts

Constraining cosmology with galaxy cluster number counts means essen-
tially finding the set of parameters θ, defining a cosmological model, whose
predicted number of halos (Eq. 2.17) matches best with the number of ob-
served clusters. This is usually done in a Bayesian framework, which enables
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the calculation of the probability of the model parameters given the observa-
tions p(θ|O). This probability, called the posterior, is given by Bayes’ theorem
(Bayes & Price 1763):

p(θ|O) =
p(O|θ) p(θ)

p(O)
(4.1)

where p(O|θ), called the likelihood, is the probability of the data given the pa-
rameters, and must incorporate in a statistical description all the ingredients
needed to link the model parameters with the observations. A more detailed
description of the likelihood function for cosmological analyses with cluster
number counts is given in the next section.

The term p(θ) is called prior, and represents the initial knowledge on the
model parameters θ, before looking at the data. Such prior knowledge, com-
ing either from previous measurements or theoretical considerations, places
constraints on the parameter space and effectively restricts the possible val-
ues of some parameters. This is helpful when the data is less sensitive to
some of the model parameters. In the case of galaxy clusters, this is true
for example for the reduced Hubble constant, h, the baryon density, Ωbh

2,
and the spectral index of primordial fluctuations, ns, so it is common to apply
Gaussian priors on these parameters, coming from observations with other
probes (see e.g. Planck Collaboration et al. 2014d, 2016f; Bocquet et al. 2024).
In the absence of prior knowledge, it is usual to use so-called uninformative
priors, such as uniform priors, Jeffreys (1946) priors, or Jaynes (1968) priors.

The denominator of Eq. 4.1, p(O), is called the evidence and, being inde-
pendent of the model parameters, it acts as a normalisation factor.

Likelihood

The likelihood function must be carefully constructed to model as closely
as possible the observed number counts, in order to avoid biasing the cos-
mological results with inaccurate modelling. Although the details of the like-
lihood implementation may vary between different studies (for example in
the treatment of multi-wavelength observations, or using a binned or an un-
binned likelihood, Rozo et al. 2010; Mantz et al. 2010, 2015b; Planck Collabora-
tion et al. 2014d, 2016f; Bocquet et al. 2019, 2023, 2024; Zubeldia & Bolliet 2024),
the essence of the likelihood and its main ingredients remain the same. In this
Section, I present these common ingredients, following an approach based on
the analysis of Planck Collaboration et al. (2016f), which I used in Chapter 11.

The observed numbers of galaxy clusters in bins of redshift and signal-
to-noise ratio (S/N), Ni,j , are modelled as independent Poisson random vari-
ables, so that the log-likelihood takes the form:

lnL =
∑

i,j

[

Ni,j lnN i,j −N i,j − lnNi,j !
]

, (4.2)
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where N i,j is the expected number of clusters in bin (i, j), as a function of the
parameters θ. This function encapsulates all the modelling from theory to
observations and can be decomposed into three main ingredients: the mass
function, the mass-observable scaling relations, and the selection function.
The mass function, as we discussed in Sect. 2.3, gives the theoretical expecta-
tion of the number of clusters as a function of cluster mass and redshift (Eq.
2.17),

dN

dMdzdΩ
=

dN

dV dM

dV

dzdΩ
, (4.3)

which depends on the cosmological parameters.

The second element is the scaling relations (see Sect. 3.1), which relate the
total cluster mass with the chosen observable mass proxy. These are statis-
tical relations, usually modelled as a log-normal distribution where the mean
is given by a relation of the type of Eq. 3.6, and the variance represents the
intrinsic scatter of the scaling relations:

p(O|M, z,θ) = N
(

lnO(M, z,θ), σlnO

)

. (4.4)

Finally, the selection function relates the “true” cluster observables to the
actual quantity measured, thus it takes into account the observational details
of the survey and detection strategy that produced the cluster catalogue. It
also incorporates the effect of the selection threshold, usually on the S/N, that
defines the catalogue. In this sense, the selection function connects the “true”
population of clusters with the objects detected by the survey and included
in the considered cluster catalogue. It can be divided into two separate func-
tions: the purity, which is the probability that a given detection corresponds to
a real cluster; and the completeness, the probability that a cluster with given
“true” observables, at location x on the sky, is detected by the survey and gets
included in the cluster catalogue. The purity can be accounted for by adding
a term estimating the number of false detections as a function of the S/N to
the N i,j . The completeness function can be expressed as:

χ(O,x) =

∫ ∞

q
dξ p(ξ|O,x) , (4.5)

where ξ is the variable describing the S/N and q is the threshold above which
a cluster detection is included in the catalogue. If we assume pure Gaussian
noise in the measurement of O, p(ξ|O,x) ∝ exp

[

−(ξ − ξ(O,x))2/2
]

, then the
completeness becomes

χ(O,x) =
1

2

[

1 + erf

(

ξ(O,x)− q√
2

)]

. (4.6)
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I will present a discussion of the completeness function beyond the Gaus-
sian noise assumption in Chapter 11, in the special case of the Planck SZ cluster
survey (Planck Collaboration et al. 2016d).

Putting everything together, we can write the expected number of clusters
N i,j as:

N i,j =

∫ zi+1

zi

dz

∫ ξj+1

ξj

dξ

[

dN

dzdξ
+

dNfalse

dξ

]

,

dN

dzdξ
=

∫

∆Ωsurvey

dΩ

∫

dM
dN

dMdzdΩ
p(O|M, z,θ) p(ξ|O,x) .

(4.7)

Inserting these expressions in Eq. 4.2 we get the complete form of the likeli-
hood function.
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5 - Galaxy clusters beyond first approximations

Up to now, I outlined the theoretical framework of cosmic structure for-
mation, and how it predicts the number of collapsed objects as a function
of mass and redshift. I then showed how comparing this prediction with the
observed number of galaxy clusters we can place constraints on the value of
some cosmological parameters, and I highlighted the three main ingredients
of such cosmological analyses, namely: a theoretical mass function, a set of
scaling relations, and a selection function.

Each of these parts needs to be precisely and accurately determined, and
the underlying assumptions need to be tested if we want to obtain tight and
unbiased constraints on cosmology. This is particularly relevant in light of the
current and upcoming surveys, such as eROSITA (Bulbul et al. 2024) in X-rays,
Euclid (Euclid Collaboration et al. 2024) in optical, and CMB-S4 (Abazajian et al.
2022) at mm wavelengths. These surveys will provide improvements of almost
an order of magnitude in the total number of detected clusters and extend
the redshift range of the detections, thus reducing significantly the statistical
errors.

It is then apparent the need for an in-depth investigation of all the possi-
ble sources of systematic errors or bias. This is an ongoing effort in the com-
munity, with a considerable amount of work aimed at improving each step
of the analysis. On the side of the mass function, different studies in recent
years tackled the question of its universality, including redshift or cosmology
dependencies in the parameters of the mass function or in the halo identi-
fication (e.g. Tinker et al. 2008; Bhattacharya et al. 2011; Despali et al. 2016;
Del Popolo et al. 2017). In recent years, some studies used machine learning
methods to emulate the mass function (McClintock et al. 2019; Bocquet et al.
2020). These models are trained on suites of cosmological N-body simulations
with varying cosmology, and should therefore automatically account for cos-
mology and redshift dependence, while improving the accuracy compared to
analytical fits.

On the other hand, the scaling relations and the selection function de-
pend on how accurately galaxy clusters are modelled, and how justified are
the simplifying assumptions made in the model. One of the main sources of
uncertainties is for example the calibration of the scaling relations. The de-
parture of real clusters from simple assumptions such as spherical symmetry
and hydrostatic equilibrium not only introduces scatter in the scaling rela-
tion, but may also bias the mean mass-observable relation if the observable
depends on other cluster properties other than mass and reshift. The calibra-
tion result might also depend on the sample of clusters used, as shown for
example in Planck Collaboration et al. (2016f). A cluster model is also assumed
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in many detection techniques, as we will detail below, and this can in princi-
ple influence the detection efficiency for clusters that differ from the model,
thus producing catalogues that are not completely representative of the true
population.

Many physical processes can introduce deviations from simple assump-
tions about clusters. For example, the shape of clusters is in general not
spherical (e.g. Binggeli 1982; Limousin et al. 2013; Bonnet et al. 2022), due to
the mergers and anisotropic matter accretion that characterise their forma-
tion history (e.g. Reiprich et al. 2013; Walker et al. 2019; Walker & Lau 2022;
Rost et al. 2021; Gouin et al. 2021, 2022). A cluster’s formation history also in-
fluences its dynamical state, with more disturbed clusters being further away
from hydrostatic equilibrium (e.g. Markevitch et al. 2002; Clowe et al. 2006;
Biffi et al. 2016; Campitiello et al. 2022; Cerini et al. 2023). Other sources of de-
viations from hydrostatic equilibrium include non-thermal pressure, coming
for example from turbulence (Rasia et al. 2004; Pearce et al. 2020; Gianfagna
et al. 2022, e.g.), magnetic fields (e.g. Dolag & Schindler 2000) and cosmic rays
(e.g. Brunetti & Jones 2014; Böss et al. 2023).

From these and other examples stems the interest in studying the proper-
ties of clusters as complex astrophysical objects, to improve their models, and
at the same time in quantifying the impact of each modelling choice on the
cosmological analysis pipeline. This Thesis is part of this process. I focused
in particular on two aspects: on the study of cluster properties, I worked on
the characterisation of the departure from spherical symmetry, with a special
eye for gas distribution in cluster outskirts; on the other side, I studied the
impact of the cluster model on the detection process, and in particular on the
selection function, which directly enters the cosmological analysis.

5.1 . The shape of clusters and the cosmic web

As mentioned in previous Chapters, galaxy clusters are not isolated ob-
jects, but are formed at the nodes of the cosmic web, the end-point of cosmic
filaments. They form from the collapse of the highest peaks in the primor-
dial density field, and grow hierarchically through the continuous accretion
of matter funnelled by filaments and successive mergers with other galaxy
groups and clusters. All these processes are inherently anisotropic and shape
the morphology of galaxy clusters away from spherical symmetry. Further-
more, in the hierarchical formation scenario, massive structures are formed
more recently, and thus have less time to relax and are in general more dis-
turbed. Putting everything together, it is clear why galaxy clusters are found
to be non-spherical in general, both in simulation and observations (Limousin
et al. 2013, and references therein). The shape of clusters is related to their
mass (e.g. Allgood et al. 2006; Despali et al. 2014; Vega-Ferrero et al. 2017;
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Gouin et al. 2020, 2021), and it can be used to test the cosmological model
(Sereno et al. 2018). Despite this evidence, spherical symmetry is still a com-
mon assumption in galaxy cluster studies for cosmology. The impact of depar-
ture from spherical symmetry needs therefore to be assessed at each stage of
the pipeline. For example, it has been shown that the asphericity of clusters
can impact their mass estimation (e.g. Lee et al. 2018; Lebeau et al. 2024).

The outskirts of galaxy clusters are even more impacted by the anisotropic
infall from filaments, and are the places where most physical processes re-
lated to matter accretion take place. These include shocks, turbulence, bulk
motions, galaxy preprocessing, inhomogeneous gas distribution and the ap-
pearance of non-equilibrium electrons (see, for a review Reiprich et al. 2013;
Walker et al. 2019; Walker & Lau 2022). Understanding these processes and
their impact on the whole cluster is crucial for the interpretation of high-
resolution observations, and to avoid biases on the mass estimation.

In this Thesis, I focus on the distribution of gas in galaxy clusters, in partic-
ular in their outskirts. In Chapter 7, I studied the azimuthal symmetries of gas
distribution, from a sample of simulated clusters, at different distances from
the cluster centre, and related them to different cluster properties (published
in Gouin et al. 2022). In Gallo et al. (2024a), I used two different statistical tech-
niques to characterise the distribution of gas in the outskirts of the cluster
Abell 2744, observed in X-rays, and detect the signatures of connected fila-
ments. This work is presented in Chapter 8. Finally, I worked on a generative
machine learning model to produce realistic synthetic images of the SZ signal
from galaxy clusters, using simulated clusters as training data. This work is
shown in Chapter 9.

5.2 . Detection of galaxy clusters

Detecting a galaxy cluster means recognising in the data a specific signa-
ture, that can be unequivocally associated with the presence of a cluster at
that position. Choosing such a signature is the first step in building a detec-
tion technique, and depends on the kind of data one is planning to analyse,
as well as the prior knowledge of the properties of clusters and, by extension,
on the cluster model one is assuming. Such a signature, combined with the
detection strategy, must be specific enough to clusters so that other astro-
physical signals or noise fluctuations are not misidentified as clusters (i.e. the
method must have high purity). At the same time, it must be flexible enough to
account for cluster-to-cluster variations, so that all clusters with a given signal
are detected with equal probability (i.e. the completeness is a function only of
the signal-to-noise ratio). These requirements on the detection method en-
sure that the resulting cluster sample is pure and representative of the full
cluster population.
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Many different approaches have been developed for the detection of galaxy
clusters, for observations at different wavelengths. All of these rely, to some
extent, on assumptions about the cluster population.

In optical surveys, some examples include the use of the cluster red se-
quence (i.e. the observation that galaxy clusters tend to have a population of
passive, elliptical, red galaxies Gladders & Yee 2000; Rykoff et al. 2014), per-
colation algorithms (e.g. Dalton et al. 1997), wavelet filtering (Eisenhardt et al.
2008; Gonzalez 2014), and matched filtering techniques (Postman et al. 1996;
Bellagamba et al. 2018). In X-ray surveys, the detection of clusters is more
complex. For example, in eROSITA (Brunner et al. 2022; Bulbul et al. 2024),
the detection proceeds in several steps, first identifying all sources brighter
than the background with a sliding-cell algorithm, and then fitting them with
a source model to characterise their properties and select only the extended
sources.

At mm-wavelengths, the characteristic spectral shape of the SZ effect pro-
vides a clear signature of the presence of hot ionised gas, heated in the deep
gravitational potential well of clusters. Combining this well-described spec-
tral shape with a model of the spatial distribution of SZ signal in clusters, the
matched multi-filter technique (MMF, Herranz et al. 2002; Melin et al. 2006)
has been used to detect galaxy clusters from Planck (Planck Collaboration
et al. 2011, 2014c, 2016d), the South Pole Telescope (SPT, Williamson et al. 2011;
Bleem et al. 2015, 2024), and the Atacama Cosmology Telescope (ACT, Hilton
et al. 2021) data.

In this Thesis, I focus on this last method, and in particular its application
to the Planck data. I studied the case where the cluster population present in
the data differs from the model assumed in the detection template, and what
are its effects on the completeness function. This work is detailed in Chapter
11, based on Gallo et al. (2024b).
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Part II

Galaxy clusters beyond

spherical symmetry
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6 - Probing the anisotropies in matter distri-

bution: overview and methods

The theme of this second Part of the Thesis is to probe the shape and
distribution of matter in and around galaxy clusters, with a special focus on
the gas component.

Inside clusters, better statistical knowledge of their shape and departure
from spherical symmetry is crucial in order to improve our modelling of clus-
ters and avoid biases in their mass estimation. Furthermore, anisotropies in
the gas distribution are expected to be associated with disturbed dynamical
states, and thus a departure from hydrostatic equilibrium. For this reason,
gas anisotropies can be used to estimate the clusters’ dynamical state.

Several techniques have been developed to assess the different ways the
gas distribution in galaxy clusters departs from spherical symmetry. These in-
clude: the asymmetry parameter (Schade et al. 1995), the centroid shift (Mohr
et al. 1993; O’Hara et al. 2006), the axial ratio (Mohr et al. 1995), the light con-
centration (Santos et al. 2008), the Gaussian fit parameter (Cialone et al. 2018),
the Zernike polynomials decomposition (Capalbo et al. 2021), the azimuthal
scatter (Vazza et al. 2011), wavelet analysis (Pierre & Starck 1998), minkowski
functionals (Beisbart et al. 2001). In order to enhance the effectiveness of the
classification process and minimise the potential biases, many studies used
combinations of these and other estimators (e.g. Rasia et al. 2013; Mantz et al.
2015a; Lovisari et al. 2017; Andrade-Santos et al. 2017; De Luca et al. 2021; Ghi-
rardini et al. 2022; Campitiello et al. 2022).

In this Thesis, I focus on the aperture multipole moments decomposition
(Schneider & Bartelmann 1997) and the associated multipolar ratios (Buote &
Tsai 1995; Gouin et al. 2022) to study the azimuthal distribution of gas inside
clusters. This technique has been used before to characterise the shape of
galaxy clusters and their outskirts in both observations and simulation, from
weak lensing maps (Schneider & Bartelmann 1997; Dietrich et al. 2005; Mead
et al. 2010; Gouin et al. 2017) and galaxy distribution (Gouin et al. 2020). The
details of the method are presented in Sect. 6.1.

In cluster outskirts, the gas distribution is even more anisotropic due to
the presence of cosmic filaments that connect to the cluster. Quantifying the
impact of filaments on the cluster gas distribution and properties is partic-
ularly interesting to investigate the effects of the various accretion physics
processes (e.g. shocks, turbulence, etc.; see e.g. Walker et al. 2019) on the
cluster.

To study the transition between filaments and clusters, it is first funda-
mental to detect the filamentary structures connected to the cluster outskirts.
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Figure 6.1: Illustration of the different angular symmetries associated to the
different multipole orders m.

Nonetheless, this is a difficult task, especially for the gas component. This is
due to the lower density and temperature of gas in filaments compared to
clusters, which makes their signal fainter both in X-rays and Sunyaev-Zel’dovich
(SZ) effect, and thus requires high sensitivity and low, stable noise.

Observations of gas in filaments are so far limited to stacked observations
(e.g. de Graaff et al. 2019; Tanimura et al. 2019, 2020, 2022), or in very particular
cases, between cluster pairs or around single clusters (e.g. Werner et al. 2008;
Planck Collaboration et al. 2013b; Eckert et al. 2015; Bulbul et al. 2016; Bonjean
et al. 2018; Veronica et al. 2024).

On the other hand, many different algorithms have been developed to au-
tomatically identify cosmic filaments, mostly based on dark matter or galaxy
distributions, using many different approaches (see Libeskind et al. 2018, for
a detailed review), for example topology-based methods (Aragón-Calvo et al.
2010a; Sousbie 2011), hessian-based methods (Hahn et al. 2007; Cautun et al.
2013), geometry-based methods (Tempel et al. 2016; Pereyra et al. 2020). Among
the latter group is the T-REx filament finder (Bonnaire et al. 2020, 2022), which
I used in my thesis work. This algorithm identifies filamentary structures in a
discrete set of data points, using a graph structure to trace the ridges of the
point distribution. T-REx has already been applied successfully on simulations
to trace the cosmic web (Bonnaire et al. 2020; Gouin et al. 2021; Rowntree et al.
2024) and on 2D and 3D observed galaxy distributions (Aghanim et al. 2024).
In the work presented in Chapter 8, I applied T-REx for the first time on an
X-ray image, to identify filaments in the outskirts of a galaxy cluster. A brief
presentation of the T-REx algorithm and its most relevant free parameters is
given in Sect. 6.2.

6.1 . Aperture multipole moments

The aperture multipole decomposition is a method of analysing the az-
imuthal behaviour of a two-dimensional field within an aperture defined by
the annulus ∆R = [Rmin, Rmax], where Rmin and Rmax are concentric radii.
The field is decomposed into harmonic orders, each of which is associated
with a particular symmetry, as shown in Fig. 6.1 (as a rule of thumb, each order
m is associated with m regions of “high signal”). This technique is well suited
to the task of distinguishing the contribution of the different angular scales to
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the field considered. By focusing on the lower (larger) multipoles, one obtains
information on the large-scale (small-scale) behaviour of the field.

For a generic 2D field Σ(R,ϕ) (where ϕ is the azimuth angle), the multipole
of order m in the aperture ∆R can be computed as:

Qm(∆R) =

∫

∆R
Σ(R,ϕ) eimϕ RdR dϕ . (6.1)

Given the integration in the radial aperture in Eq. 6.1, this decomposition is
sensitive only to azimuthal patterns of the 2D field inside the aperture. There-
fore, it is particularly adapted for fields that exhibit little radial dependence.

The advantage of using such a decomposition is that different multipolar
orders are related to specific features of the field. For example, the dipole,
m = 1, is a tracer of the asymmetry along an axis, the quadrupole, m = 2,
traces the elongation, and can be related to the ellipticity (see e.g. Gouin et al.
2020, as well as Chap. 7), the octapole, m = 3, has been related to bimodal dis-
tributions (e.g. Buote & Tsai 1995; Rasia et al. 2013; Campitiello et al. 2022), and
so on. With this method, all these pieces of information are obtained in the
same framework, and their different contributions can be easily compared.
Another method with similar characteristics is the Zernike polynomials de-
composition, which uses a different basis and includes a radial dependence,
thus each order is defined by two parameters.

In order to compare the results of the multipole decomposition among dif-
ferent apertures or different fields, the values ofQm are not the most adapted
quantities, as they depend on the normalization of the field. In fact, it is the
relative power between different orders that gives information about the field
structure. Therefore, we consider the multipolar ratios βm (Buote & Tsai 1995;
Gouin et al. 2022), defined as the ratio between the modulus of the multipole
of order m and that of order zero:

βm =
|Qm|
|Q0|

(6.2)

where Q0 is the total amount of signal in the aperture, Q0 =
∫

∆R Σ dA.
These ratios have two advantages over the use of Qm: they are normalised,
making them comparable among different apertures; at the same time, they
quantify the relative amount of power of the multipole m with respect to the
circular symmetry, thus probing the level of asymmetry of the considered dis-
tribution. For these reasons, they have been used in the study of the morphol-
ogy of galaxy clusters (e.g. Buote & Tsai 1995; Rasia et al. 2013; Campitiello et al.
2022).

The multipole momentsQm are complex numbers, and thus contain infor-
mation not only on the power of the multipole of order m in the aperture, but
also on its phase. Therefore, by re-summing the harmonic signatures of the
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multipole orders according to their power and phase, it is possible to recon-
struct the azimuthal structure of the original field up to a chosen order, that
is, down to a chosen angular scale. In this way, it is possible to discriminate
the large-scale contributions to the field from the small-scale ones, in partic-
ular keeping the former and neglecting the latter. Writing the multipoles as
Qm = |Qm|eiφm , the reconstructed map up to order mmax,rec is given by:

Σreconst(θ) =

mmax,rec
∑

m=0

|Qm| cos (mθ − φm) . (6.3)

The choice of the maximum multipolar order to use in the reconstruction,
mmax,rec, is particularly relevant for the reconstructed map, as it determines
the smallest angular scale included in the map.

6.2 . T-REx filament finder

The Tree-based Ridge Extractor (T-REx , Bonnaire et al. 2020, 2022, to
which we refer the readers for details) is an algorithm developed to identify
one-dimensional filamentary structures in a discrete set of points embedded
in higher dimension (both in 2- and 3-dimensions). This method has a natural
application for detecting cosmic filaments from a galaxy distribution.

The T-REx algorithm assumes a tree topology connecting the centroids of
a Gaussian Mixture Model (GMM), initially centred on the data points. The
model is then regularised to approximate the probability density function
from which the data points are drawn. In this way, the links between the
centroids trace the ridges of the filaments in the data distribution.

The main steps of the algorithm are the following. The first step is to build
the minimum spanning tree (MST) over the data. The MST is a graph with a
tree topology that connects all the points in the dataset, while minimising the
total length of its branches. Then, a pruning step is performed on the MST by
removing iteratively all end-point branches. This step is crucial to denoise the
tree, removing all the small-scale branches at the extremities of the graph
while retaining the relevant structures formed by long chains of connected
centroids. The amount of pruning can be adjusted, according to the specifics
of the dataset, via the free parameter l, which sets the number of pruning
iterations. Then, the resulting pruned tree is used as prior for the GMM. This
means that the nodes of the tree become the centroids of the Gaussians of the
GMM. Finally, the GMM is regularised over the full dataset using an adapted
version of the expectation-maximisation (EM) algorithm, where the tree con-
nections between the centroids are enforced by an additional constrain in
the optimisation, which at the end offers a smoothed representation of the
tree that approximates the underlying distribution of the data. This topolog-
ical constrain is regulated by the free parameter λ, which sets the strength
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Figure 6.2: Visualisation of T-REx algorithm. Left: Result of T-REx algorithm
over data points of a toy dataset. Black dots are data points, dashed blue line
is the MST computed over the data, and red solid lines are edges of the reg-
ularised tree. Right: Probability map of the filamentary structures of the toy
dataset. This was obtained by repeating 200 times the optimisation proce-
dure on randomly selected subsets of the data. Figures taken from Bonnaire
et al. (2020).

of the optimisation term that tries to reduce the length of the tree branches.
Tuning the model parameters permits to adapt the method to vastly differ-
ent data characteristics, as explained in Sect. 8.2.2, where I applied T-REx to
an X-ray image for the first time. Nonetheless, the model proves to be pretty
robust to small changes in the parameter values, which facilitates its applica-
tion, avoiding costly fine-tuning. A more detailed discussion of the role of the
parameters can be found in Bonnaire et al. (2020).

To obtain a robust representation of the filament detection together with
a measure of its uncertainty, the procedure described above is repeated sev-
eral times using a bootstrap approach. Each time, a subset of the data is cho-
sen randomly, the MST is computed on the new subset and pruned. Then, the
resulting GMM is optimised on the subset. This produces a set of regularised
graphs, one for each random subset. From these, we can build a probability
map of the filamentary structures, in which each pixel contains the fraction of
times that position is crossed by a tree branch.

There are two tunable parameters in the bootstrap procedure: the num-
ber of iterations, B, and the size of the data subsample NB . Out of the two
parameters, NB is the most relevant (as reported by Bonnaire et al. 2020).
Generally, a low number of points with respect to the complete dataset pro-
duces a greater variability in the possible tree structures, while using subsets
of similar size to the original data constrains the results more. On the other
hand, the number of iterations B ceases to impact the results after a mini-
mum level that depends on NB . Therefore, it is sufficient to choose a high
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enough number to ensure the stability of the probability map.
A visualisation of the various steps of the algorithm is shown in Fig. 6.2,

where T-REx is applied on a toy dataset. In the left panel, we see the minimum
spanning tree built on the dataset, and the regularised GMM tracing the ridge
of the filamentary structure. In the right panel, the T-REx probability map is
shown. Notice that in this map the filament is identified with high probability,
while in the “cluster” regions at the edges no clear structure is identified.
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7 - Gas distribution from clusters to filaments

in IllustrisTNG

The content of this Chapter is mostly based on Gouin et al. (2022).

In this Chapter, I analysed the azimuthal distribution of gas inside and
around galaxy clusters, to investigate the relation between the matter distri-
bution and different structural and physical properties of clusters.

To do this, I used a sample of simulated clusters from the IllustrisTNG
simulation suite (Nelson et al. 2019a). First, I probed the ability of the multi-
pole decomposition to distinguish the features of different cluster structures,
and their contributions to the total distribution; in particular, I tested the re-
lation between different azimuthal orders and clusters’ structural properties,
such as the halo elliptical shape, the miscentering of the matter distribution,
and the amount of substructures. In cluster outskirts, I also studied how the
gas component traces cosmic filaments connected to clusters. Finally, I in-
vestigated whether the cluster dynamics and its accretion history impact the
departure from spherical symmetry.

Based on the work of Martizzi et al. (2019), which showed that different cos-
mic web environments are populated by different gas phases, and Galárraga-
Espinosa et al. (2021), I separate the gas in different phases to highlight their
different distribution in cluster environments, thus distinguishing which phase
traces which structure preferentially, in particular the cluster shape and the
large-scale filamentary structures.

7.1 . Simulated cluster sample

For this work, I used a sample of galaxy clusters and their environments
within 5×R200

1, extracted from the IllustrisTNG simulation.
IllustrisTNG (Nelson et al. 2019b; Pillepich et al. 2018; Springel et al. 2018b;

Nelson et al. 2018a; Naiman et al. 2018; Marinacci et al. 2018) is a suite of large
cosmological magneto-hydrodynamical simulations, run with the moving-mesh
code AREPO Springel (2010); Weinberger et al. (2020). These simulations fol-
low the coupled evolution of dark matter (DM), gas, stars, and black holes
from redshift z = 127 to z = 0; using the cosmological parameters from the
Planck 2015 results Planck Collaboration et al. (2016e). Of these simulations,
we used the one with the largest volume, TNG300, at redshift z = 0. This

1R∆ is the radius of a sphere centred on the halo within which the average density
is ∆ times the critical density ρcrit(z); M∆ is the mass contained inside R∆, M∆ =
(4π/3)∆ρcritR

3
∆.
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Figure 7.1: Stacked temperature-density diagrams for all gas cells around
galaxy clusters and groups in IllustrisTNG, considering different radial aper-
tures from cluster central regions R[R200] < 1 up to 4 < R[R200] < 5.

simulation has a cubic box of length ∼ 300 Mpc and mass resolution of about
7.6×106M⊙/h and 4.0×107M⊙/h for gas and dark matter (DM), respectively.
The large simulation box and high resolution make it ideal for accurately de-
scribing matter distribution around galaxy clusters up to their large-scale en-
vironments at z = 0.

The sample of clusters is selected from the catalogue of halos provided
with the simulation, which are identified using a Friends-of-Friends (FoF) al-
gorithm (Davis et al. 1985) on the DM particles. From this catalogue, we se-
lected all halos with masses M200 > 5× 1013M⊙/h that are more distant than
5R200 from the simulation box edges. This results in a total of 415 halos, that
constitute the cluster sample. Starting from the cluster centres listed in the
catalogue, we extracted from the simulation box all the DM and gas particles
within a sphere of radius 5×R200, on which I performed the analysis.

7.1.1 . Gas phases

Gas in the Universe can exhibit remarkably different thermodynamical
properties, depending on the region and on the processes it is subject to.
For this reason, it is common to divide the gas into different phases, based
on its distribution in the temperature-density diagram. This plane is usually
divided into five regions, each identifying a phase, related to different envi-
ronments and physical processes. These are: the halo gas, the diffuse inter-
galactic medium (Diffuse IGM), the warm-hot intergalactic medium (WHIM),
the warm circumgalactic medium (WCGM), and the hot gas (the details on the
definitions of each phase can be found in Martizzi et al. 2019).

Figure 7.1 shows the stacked gas distribution in temperature-density di-
agrams of the 415 galaxy cluster environments in five bins of cluster-centric
distances from 0 to 5 R200, illustrating how the gas is distributed among the
different phases as a function of the distance from the cluster. Inside clus-
ters (R < 1R200), gas is predominantly in the form of hot plasma, with high
temperatures above 107K. As the distance from the cluster centres increases
from 1 to 3R200, we can see that the majority of the gas is found at lower tem-
peratures (in the range 105 < T [K] < 107) and lower densities (in the range
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nH < 104cm−3). At these distances, the hot gas that characterises the cen-
tre of clusters gives way to a more diffuse warm phase: the warm-hot inter-
galactic medium (WHIM). At distances greater than 3R200 from cluster centres,
the gas is distributed across a range of phases, as indicated by temperature-
density diagrams. These include cold diffuse (IGM), cold dense (halo gas),
warm diffuse (WHIM), warm dense (WCGM), and hot gas. This temperature-
density distribution is comparable to the overall distribution of cosmic gas in
the universe at z = 0 (see Figure 2 of Galárraga-Espinosa et al. 2021, which
considered all gas cells in the simulation box). Therefore, it suggests that be-
yond radial distances larger than 3R200 the influence of cluster environments
is no longer significant. An actual quantification of the radial distribution of
gas around clusters, based on mass fraction profile and different cluster mass
bins, is discussed in Gouin et al. (2022).

Given the different distribution of gas phases depending on the distance
from the clusters, in this work I used the hot gas as tracer of the gas distribu-
tion inside clusters, and the WHIM to probe the gas filamentary structures in
cluster outskirts.

7.1.2 . Multipolar ratios as proxies for the azimuthal distribution

To probe the distribution of matter in and around galaxy clusters, I de-
cided to use the multipolar ratios βm described in Sect. 6.1. These ratios
represent the relative importance of the different multipolar orders in a 2-
dimensional distribution compared to the circular symmetry, and together
they trace the total amount of asymmetry of the distribution. The use of a 2-
dimensional proxy instead of a 3-dimensional one has the advantage of being
more readily applicable to observations; on the other hand, its use on simu-
lated data, for which the full 3D information is available, is useful to assess its
sensitivity to projection effects, in particular when compared to the 3D-based
structural properties described in Sect. 7.1.3.

As explained in the previous Section, I analysed the distribution of two gas
phases, hot gas and WHIM, and compared them to the DM distribution, used
as reference for the total matter distribution. To compute the βm ratios, I first
projected the gas and DM selected around each cluster (within 5R200 from
the cluster centre) along the three axes (x, y and z) of the simulation box. In
this way, I obtained 1245 projected cluster maps for each component (DM, hot
gas, WHIM). From these maps, I computed the βm using Eqs. 6.1 and 6.2, in
different apertures (inside and outside R200), for the multipolar orders from
m = 1 to m = 9. This range of multipoles (and, consequently, angular scales)
has been shown by Gouin et al. (2020) to capture well the relevant anisotropies
in the matter field around galaxy clusters.

In Fig. 7.2, I show the mean βm values for DM, in different radial apertures
of size 0.5 × R200, up to 4R200. In the top panel, we see that the average im-
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Figure 7.2: Top panel: Mean evolution of βm parameter for m = 1 to m = 9
as a function of the cluster radial distance. Bottom panel: Mean evolution of
βm parameter normalised by the sum of all order contributions

∑9
i=1 βi from

m = 1 to m = 9, as a function of the cluster radial distance.

portance of all the multipole orders compared to the circular symmetry grows
with the distance from the cluster, which indicates that the matter distribution
in cluster outskirts is in general less isotropic than in their cores (in agreement
with previous observations and simulations, see e.g. Eckert et al. 2012; Gouin
et al. 2020). In the bottom panel, the βm normalised by the sum of all orders
shows the relative contribution of each order to the total asphericity of the
distribution. We see that the dominant order at all radii is the quadrupole
(consistent with Vallés-Pérez et al. 2020), although its relative contribution to
the decomposition gets lower with increasing radii. After the quadrupole, the
most significant orders are the m = 1, 3, 4, whose contributions are always
higher than 10%. Finally, the higher orders, m > 4, contribute less than 10%

at all radii. Therefore, we see that structures with large angular scales, iden-
tified by the low multipolar orders, dominate the non-spherical part of the
matter distribution. I thus focused primarily on the first 4 multipoles in the
rest of the analysis.
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7.1.3 . Physical and structural properties

For each cluster in the sample, several physical and structural properties
were computed. More details of their computation can be found in Gouin
et al. (2021). Here, I summarise the definitions and computation procedures
of the different parameters.

Cluster structural properties

In order to probe the ability of the multipolar ratios to trace the anisotropic
matter distribution in galaxy clusters, I compared them to three structural pa-
rameters: the centre offset Roff, the subhalo fraction fsub and the halo ellip-
ticity ϵ.

The centre offset measures the distance between the centre of mass of
the cluster, computed using all the particles in the cluster FoF halo, and the
position of the density peak, identified as the particle with the lowest potential
energy, normalised by the cluster radius: Roff = |rcm − rc|/Rvir.

The subhalo mass fraction quantifies the amount of mass of the cluster
that is contained in clumpy subgroups. It is defined as the ratio between
the mass contained in the subhalos and the total mass of the cluster, fsub =
∑

Msub/Mtot. The subhalos are identified using the Subfind algorithm Springel
et al. (2001) and listed, together with their masses, in a catalogue provided with
the simulation.

Finally, the ellipticity of the DM distribution was used as a proxy for the
cluster shape. The ellipticity was computed for both the 3D and the projected
2D distributions. Following Suto et al. (2016), the DM distribution was fitted
with an ellipsoid, optimised using the eigenvalues of the mass tensor and fix-
ing the mass enclosed by the ellipsoid to be equal to M200. From the axes of
the ellipsoid, the ellipticity is computed as:

ϵ2D =
c− a

2(a+ c)
,

ϵ3D =
c− a

2(a+ b+ c)
,

(7.1)

where a and c are the major and minor axes, respectively, and in the 3D case
b is the intermediate axis.

Mass assembly history

To explore the mass assembly history of clusters, the time evolution of
cluster mass M200(z) has been computed utilizing the merger tree of subha-
los generated with the SubLink algorithm (Rodriguez-Gomez et al. 2015). Two
distinct metrics have been estimated to characterise the mass assembly his-
tory of clusters: the formation redshift zform and the mass accretion rate Γ.
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These parameters offer complementary insights into cluster mass assembly
history, by capturing both the accretion phase and the formation period of an
object based on its mass growth.

The accretion rate is defined as the ratio of the halo mass at z = 0 to the
mass of its main progenitor at a specific redshift z (as defined by Diemer et al.
2013):

Γ ≡ ∆ log(M200m)

∆ log(a)
. (7.2)

This parameter quantifies the accretion phase of a halo over two time in-
tervals, specifically chosen to be z = 0 and z = 0.5 (which aligns with the ex-
pected relaxation timescales of halos, according to Power et al. 2012; Diemer
& Kravtsov 2014; More et al. 2015).

The formation redshift, on the other hand, is the redshift at which the
mass of the main progenitor halo is exactly half of its present-day mass:

M200(zform)

M200(z = 0)
=

1

2
, (7.3)

as defined by Cole & Lacey (1996).

Dynamical state

Different parameters have been shown to be, at least partially, indicators
of the dynamical state of galaxy clusters. In this study, the clusters’ dynamical
state is represented by the relaxedness parameter χDS, as defined in Haggar
et al. (2020). It is computed by combining three parameters: two aforemen-
tioned structural properties, Roff and fsub, and the virial ratio, η = 2T/|W |,
which quantifies the departure from virial equilibrium (T and W are the ki-
netic and the gravitational potential energy, respectively). The relaxedness is
thus defined as:

χDS =

√

√

√

√

3
(

Roff

0.07

)2
+
(

fsub
0.1

)2
+
(

η−1
0.15

)2 . (7.4)

Clusters with χDS ≥ 1 are considered dynamically relaxed, while clusters
where χDS < 1 are considered disturbed (Kuchner et al. 2020).

Connectivity

A parameter of fundamental interest in the study of the outskirts of a
galaxy cluster is the number of cosmic filaments connected to it. This is called
connectivity, and it is defined as the number of filaments intersecting a sphere
of radius 1.5 ×R200 around the cluster (Darragh Ford et al. 2019; Sarron et al.
2019; Kraljic et al. 2020).
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In this study, the filamentary structures of the cosmic web are extracted
from the galaxy distribution in the whole simulation box, using the T-REx al-
gorithm (presented in Sect. 6.2). The galaxies were selected from the subhalo
catalogue, applying a lower limit on the stellar mass of M∗ ≥ 109M⊙ (follow-
ing Galárraga-Espinosa et al. 2020). The T-REx algorithm was then run on these
galaxies, setting the values of the free parameters to λ = 1 and l = 5 (close to
the ones suggested in Bonnaire et al. 2020, the first controls the smoothness
of the graph, the second the denoising procedure). Finally, each cluster was
associated with the closest node of the T-REx graph, and the connectivity was
computed by counting the filaments at a distance of 1.5R200 from the node.

7.2 . Azimuthal gas distribution in relation to cluster properties

In this Section, I present the results of the comparison between the az-
imuthal behaviour of the gas and DM distributions in and around galaxy clus-
ters, traced by the multipolar ratios βm, and the structural and physical clus-
ter properties defined in Sect. 7.1.3. In this way, I explore the ability of the
gas distribution to, on the one hand, trace the shape and structure of clusters
and, on the other hand, encode information about their dynamical state and
accretion history.

Most of the cluster properties considered are difficult or even impossi-
ble to measure observationally, thus finding correlations between these and
structural properties of the observable gas distribution can inform us of the
hidden features of observed clusters.

In this section, a general colour and style code is used in the plots: (i) Hot
gas, WHIM, and dark matter are respectively in red, orange and blue/black
colors, (ii) the mean profiles are shown by solid lines, and the errorbars are
the errors on the mean computed by bootstrap re-sampling, (iii) the number
of objects used to compute the average in each bin (of x-axis) is written on
the top of the figures in gray, (iv) the Spearman’s Rank correlation coefficient
ρsp(X,βm) is written on the figure, with X the cluster property and βm the
multipolar ratio at the multipole order m as defined below. The p-value of the
correlation coefficient remains lower than 10−3 for each plots.

7.2.1 . Azimuthal symmetries as proxies of cluster structural prop-

erties

I focus here on the azimuthal distribution of hot gas and DM inside clus-
ters, and compare them to the structural properties defined in Sect. 7.1.3.

In particular, I stress the fact that different multipolar ratios, βm, trace the
contribution of different azimuthal structures to the total distribution of the
matter component considered, as exemplified in Fig. 6.1. Therefore, I consid-
ered different multipolar orders in relation to different structural properties.
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Figure 7.3: Distribution of different multipolar ratios βm, for different compo-
nents and different apertures, as a function of the different structural prop-
erties of clusters. Top left panel: β1 (dipole contribution) as a function of the
center of mass offset, Roff . Top right panel: β2 (quadrupole contribution) as
a function of the 2D ellipticity of DM, ϵ2D. Bottom left panel: β2 (quadrupole
contribution) as a function of the 3D ellipticity of DM, ϵ3D. Bottom right panel:
sum of high order multipoles βm contribution (summing contributions from
m = 3, 4, 5, 6, 7, 8, 9) as a function of the mass fraction of substructures.
The βm values for the DM distribution with apertures R < 0.5 × R200,R <
1 × R200 and R < 2 × R200, are plotted in light, medium, and dark blue, re-
spectively. The βm values for hot gas distribution within R200 is plotted in red.
The mean profiles of β are shown by solid lines, and the errorbars are the
errors on the mean computing by bootstrap re-sampling. On each panel, the
number of objects used to compute the average in each bin of x-axis (shown
in gray dotted lines) is written on the top of the figures in gray.
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These are shown in Fig. 7.3. The multipolar ratios have been computed for
both dark matter (DM) at various radial apertures (R < [0.5, 1, 2]R200) and hot
gas within a radial aperture of R < R200, depicted in blue and red, respec-
tively.

The top left panel illustrates the potential correlation between the center
offset and the dipolar symmetry traced by β1. The focus is on m = 1 be-
cause, as mentioned in Sect. 6.1, the dipolar symmetry is expected to reflect
the mis-centering of the mass distribution, while the offset center parameter
directly quantifies the distance between the peak of the mass distribution and
the center of mass. The findings indicate that the dipolar symmetries of DM
and hot gas within R200 effectively trace the center offset of clusters, with a
correlation coefficient between β1 and Roff greater than ρSP > 0.5. We also
see that the correlation of the DM dipole asymmetry with Roff grows when
considering larger apertures, together with the slope of the mean relation.

The top right panel of Fig. 7.3 shows the distribution of the clusters’ quadrupole
order, β2, as a function of the two-dimensional ellipticity of projected DM ha-
los. We see that, for DM, the power of the quadrupolar order is strongly cor-
related with the projected elliptical shape of the halo (consistently with, for
example, Clampitt & Jain 2016; Shin et al. 2018), and that increasing the radial
aperture beyond R200 does not significantly enhance the correlation coeffi-
cient, suggesting that most halo shape information is contained within R200.
Indeed, enlarging the aperture from 1 to 2 R200 increases the overall mean
value of β2, but does not alter significantly the slope nor the correlation. Re-
garding the hot gas, the quadrupolar order still correlates strongly with the
DM ellipticity, although the mean values of β2 are generally lower than those
computed on the DM distribution. This indicates that hot gas inside clusters
tends to be more spherically distributed than DM, due to dissipative baryonic
processes (as found in Velliscig et al. 2015; Okabe et al. 2018).

The comparison of the β2 parameter to the 3-dimensional ellipticity of ha-
los reveals the impact of the projection effects on the 2D shape of clusters.
In fact, if the main axis of elongation is roughly aligned with the line of sight,
even clusters with large 3D ellipticities may appear only mildly elliptical in 2D.
This effect of projection has the result of reducing the correlation between
the quadrupole β2 and ϵ3D, as shown in the bottom left panel of Fig. 7.3,
especially for the highest ellipticities. This effect appears less strong when
considering larger radial apertures; indeed, we see that for the largest aper-
ture, R < 2R200, the quadrupolar ratio and 3D ellipticity are quite strongly
correlated, with a Spearman coefficient ρSP ∼ 0.5.

The bottom right panel of Fig. 7.3 explores the amount of mass within
sub-halos via the fraction of substructures. To quantify this structural prop-
erty, it is best to consider higher harmonic orders, which trace signatures at
smaller angular scales. The multipolar ratios βm from m = 3 to 9 are summed
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to obtain the overall level of asymmetry for small angular scales, and this is
compared to the fraction of substructures. The sum of high-order multipolar
ratios and fsub exhibit a correlation for both hot gas and DM, with correlation
coefficients around ρSP ∼ 0.35, although we see that the mean relation tends
to flatten for high fsub. This allows for distinguishing between low (fsub < 0.1)
and high substructure fractions (fsub > 0.1), which is an important criterion
for separating dynamically relaxed and non-relaxed clusters, as proposed by
Cui et al. (2017). We can see again that the mean values of βm from the hot gas
are lower than those from DM, a sign that the latter tends to clump more effi-
ciently in substructures due to its collisionless nature. Finally, we notice that,
similarly to the 3D ellipticity, considering large radial apertures (R < 2R200)
significantly increases the correlation between the fraction of substructures
and the level of azimuthal symmetries, reaching ρSP ∼ 0.6.

Summarising the results so far, I have shown that the multipolar ratios at
different orders are a measure of the relevance of different angular features,
and as such are powerful tracers of distinct structural properties of galaxy
clusters. In particular, the dipole order, β1, reflects the miscentering of the
cluster mass distribution. Conversely, the quadrupole, β2, correlates with the
elliptical shape of clusters, as also discussed in Gouin et al. (2017, 2020). Higher
multipole orders trace angular scales that decrease with increasing m, thus
allowing the characterisation of small-scale structures. Therefore, the com-
bined contribution of multipoles from m = 3 to 9 is a probe of the substruc-
ture fraction. Focusing on the DM results, I showed that the two-dimensional
azimuthal matter distribution is strongly correlated with its three-dimensional
structural properties, and the correlation increases considering larger radii,
beyond R200. Furthermore, the azimuthal distribution of hot plasma appears
to follow closely the azimuthal distribution of dark matter, as evidenced by
the significant correlation with halo properties. The hot gas plasma distribu-
tion remains smoother and more circular than the DM distribution, with lower
values of the multipolar ratio βm for almost all orders.

7.2.2 . Azimuthal distribution related to cluster physical proper-

ties

In order to evaluate the correlations between the matter distribution in
cluster regions and the cluster physical properties, I decided to focus on a
single estimator that traces the overall departure from circular symmetry, in
order to combine all the possible sources of asymmetry and have a more
comprehensive estimator that might be better correlated with general cluster
physical properties. This departure is estimated by the β parameter, defined
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as the sum of all the multipolar ratios βm up to order N ,

β =
N
∑

m=1

βm . (7.5)

This parameter estimates the total amount of azimuthal symmetries com-
pared to the circular one. The maximum order considered in the sum was
N = 4. This choice was made after verifying that adding higher orders does
not alter the results.

I focus here on two radial apertures: inside clusters (R < R200) and in their
outskirts (between 1 and 2R200), where the correlations between the cluster
asymmetries and their properties are stronger. Indeed, when investigating
more distant apertures, only weak correlations were found between 2 and
3R200, and no clear correlations beyond 3R200.

Based on the discussion on the gas phases in Sect. 7.1.1, I decided to use
just the hot medium as a probe of the gas asymmetry in the inner aperture,
and the WHIM phase in the outer aperture.

Mass and connectivity

I start investigating the relation between the cluster mass and its depar-
ture from spherical symmetry. This is shown in Fig. 7.4, in the top panel for
the inner cluster aperture, and in the bottom panel for the cluster outskirts.

Looking at the dark matter distribution inside halos (R < R200), we see
that the β parameter slowly increases with the cluster mass, on average. As
shown in Fig. 7.2, the main contribution to the asphericity inside clusters
comes from the quadrupole, which is related to the cluster ellipticity (as shown
in the Sect. 7.2.1). Therefore, we would expect a larger dependence of β on
the cluster mass, as found for the ellipticity in previous studies (e.g. Despali
et al. 2014). Instead, we see that the correlation between β and mass is low,
with ρSP ∼ 0.1.

Focusing on the hot gas, we see that, contrary to the DM, the β parameter
decreases at low masses (below ∼ 1014M⊙/h), and then increases again for
higher masses (with a trend similar to the DM one). On average, hot gas in
galaxy groups (M200 < 1014M⊙/h) appears more asymmetric than in massive
clusters. An explanation of this result can be found in the radial distribution of
the hot gas, as shown in detail in Gouin et al. (2022). In fact, while on average
the hot gas phase is dominant within ∼ R200, this is not completely true for
low-mass halos, where the hot gas is found to be concentrated in the inner
cores (up to ∼ 0.6R200). Between ∼ 0.6 and ∼ 1R200, the main fraction of
gas is in a colder, dense phase called warm circumgalactic medium (WCGM).
Indeed, if we consider the distribution of the whole gas, instead of just the hot
phase, we see a positive correlation similar to that of DM. This means that only
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Figure 7.4: Distribution of the azimuthal symmetric excess β (as defined in
Eq. 7.5) as a function of the halo mass, inside clusters (R < R200) in the top
panel, and at cluster peripheries in (1 < R[R200] < 2) in the bottom panel.
The mean profiles of β and their errors are shown in solid lines. The color of
points and lines represent different matter component: dark matter (black),
hot gas (red), WHIM (orange), and all gas (light brown). On each panel, the
number of objects used to compute the average in each bin of x-axis (shown
in gray dotted lines) is written on the top of the figures in gray.

the hot gas is strongly anisotropic inside low-mass halos. One interpretation
of this result is that hot gas inside massive clusters is mostly gravitationally
heated, whereas in smaller halos the hot gas distribution might be governed
by anisotropic accretion processes, thus becoming more asymmetric.

Moving to the bottom panel of Fig. 7.4, we see that, in cluster outskirts
(between 1 and 2R200), the anisotropy of both DM and WHIM distributions
is overall higher than inside clusters, and increases with cluster mass. The
anisotropy in these regions is expected to be due to the presence of filamen-
tary structures connected to the clusters, and indeed the number of filaments
has been found to be positively correlated with the cluster mass (Aragón-
Calvo et al. 2010b; Codis et al. 2018; Kraljic et al. 2020; Gouin et al. 2021). Focus-
ing on the WHIM gas, we see a stronger dependence on mass compared to the
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Figure 7.5: Distribution of the azimuthal symmetric excess β (as defined in
Eq. 7.5) computed at cluster peripheries in (1 < R[R200] < 2) as a function of
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DM: in general, the WHIM is significantly more asymmetric around massive
clusters than low-mass halos. This is consistent with the picture of filaments
acting as funnels for the infalling gas, which thus preferentially enters clusters
anisotropically through filaments (Rost et al. 2021). Therefore, the more con-
nected massive clusters have less isotropic gas distributions. Furthermore,
gas around low-mass groups tends to accumulate more at clusters’ periph-
eries, leading to a more spherical distribution.

To confirm the link between the anisotropies in cluster outskirts and the
amount of filamentary structures connected to them, I probed the correlation
between β and the connectivity, shown in Fig. 7.5. Here, we see a correlation
between the number of filaments and the departure from spherical symmetry
of both DM and WHIM gas, with roughly similar slopes and correlation coef-
ficients for the two components. It is important to note that the connectivity
shown here accounts for all filaments in 3D, so it is expected that the corre-
lation with the 2D asymmetry is impacted by projection effects, as some fila-
ments might extend along the line of sight. We can nonetheless conclude that
the azimuthal distribution of WHIM tends to follow DM in tracing cosmic fila-
mentary structures connected to clusters at their peripheries (in agreement
with Galárraga-Espinosa et al. 2021, who found the WHIM to be the dominant
phase in cosmic filaments).
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Figure 7.6: Distribution of the azimuthal symmetric excess β (as defined in Eq.
7.5) computed inside clusters (R < R200) in top panels, and at cluster periph-
eries in (1 < R[R200] < 2) in bottom panels, as a function of different halo
properties: level of relaxation on the left, mass accretion rate in the middle,
and formation redshift in the right. The mean profiles of β and their errors
are shown in solid lines. The number of objects used to compute the average
in each bin of x-axis (shown in gray dotted lines) is written on the top of the
figures in gray.

Accretion and dynamical state

So far, I have shown how hot gas is a good tracer of the structural proper-
ties of clusters, and that the WHIM azimuthal distribution is correlated with fil-
amentary structures connected to cluster outskirts. Here, I investigate whether
these two components, inside and around clusters, also carry information
about the cluster dynamical state and its mass assembly history. These prop-
erties are represented by three parameters: the relaxedness χDS, the mass
accretion rate Γ, and the formation redshift zform, defined in Sect. 7.1.3.

The relations between these three parameters and the β asymmetry pa-
rameter are shown in Fig. 7.6, where the value of β is computed on hot
gas and DM inside R200 (top row), and on WHIM and DM in cluster outskirts
(1 < R[R200] < 2, bottom row).

The departure from circular symmetry as a function of the relaxation level
of clusters is shown in the left column. We see that, the more circular the mat-
ter distribution (low values of β), the more dynamically relaxed the cluster
(χDS > 1). Inside clusters, halo relaxedness and asymmetry are strongly cor-
related for both DM and hot gas, with ρSP ∼ 0.5, showing that the azimuthal
distribution of hot plasma is a powerful tracer of cluster dynamics. At cluster
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peripheries, the azimuthal distribution of WHIM and DM also traces well the
cluster relaxation level. This can be explained by the fact that the cluster dy-
namical state must be affected by the number of cosmic filaments connected
to clusters, as shown in Gouin et al. (2021).

The influence of the cluster mass-assembly history on the azimuthal mat-
ter distribution is investigated in the middle and right panels, for the mass
accretion rate and the formation redshift of clusters, respectively. Both ac-
cretion history proxies are correlated with gas and DM azimuthal asymme-
try, in particular inside cluster halos, with ρSP ∼ 0.6. We find that clusters
with faster accretion of matter and of recent formation have larger depar-
tures from spherical symmetry in their hot gas distribution. This is coherent
with the result of Chen et al. (2020) which showed the ellipticity of cluster gas
to be an imprint of the mass assembly history of clusters. In cluster outskirts,
we see similar trends, although the correlations are less strong, suggesting
that the mass distribution in the inner regions is more sensitive to the clus-
ter past accretion history. Nonetheless, we can deduce that cosmic filaments
connected to clusters, traced by the WHIM, have an impact on the cluster as-
sembly history (consistently with the results of Gouin et al. 2021).

7.3 . Discussion and conclusions

In this Chapter, I have shown the application of the aperture multipole
decomposition technique to the projected spatial distribution of different gas
phases and DM in simulated clusters. For this, I used 3×415 projections of the
matter distribution of galaxy cluster environments (out to 5R200), extracted
from the IllustrisTNG simulation. The gas phases were defined by applying
cuts in the temperature-density plane, following Martizzi et al. (2019).

The multipolar decomposition was previously used for the study of dark
matter (Gouin et al. 2017) and galaxy (Gouin et al. 2020) azimuthal distributions
in cluster environments, revealing its ability to probe statistically the shape of
clusters and their connections to the cosmic filaments. Here, I focused on the
gas distribution, and in particular on its relation to different structural and
physical properties of clusters.

The results of this analysis show that:

— The azimuthal features of gas and DM distributions are strongly cor-
related with the structural properties of the cluster halos. In partic-
ular, the strength of the dipolar order reflects the centre offset, the
quadrupole describes the halo ellipticity, and larger harmonic decom-
position orders trace the amount of halo substructures. The azimuthal
distribution of hot plasma appears to follow that of dark matter, reflect-
ing the structural characteristics of the cluster halo. However, the hot
gas tends to exhibit a smoother and more circular morphology than the
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dark matter distribution (as expected from the ellipsoidal shape of DM
and hot gas found in Okabe et al. 2018).

— Studying the relation with the cluster mass, the analysis revealed that
the hot gas within low-mass halos exhibits greater asymmetry than that
within massive clusters. This is attributed to the fact that the hot gas
does not represent the overall gas distribution inside small groups, but
is rather concentrated in their cores and must be subject to distortion
by anisotropic accretion processes. In contrast, the gas component of
massive clusters inside R200 is almost exclusively composed of gravita-
tionally heated gas (93% of the total), which explains its more isotropic
shape.

— Focusing on cluster outskirts, I showed that the asymmetries of both
WHIM and DM increase with cluster mass, in line with the expected in-
crease in the harmonic-space signature of cosmic filaments connected
to clusters reported by Gouin et al. (2020). Notice that for low-mass
groups, the asymmetries in the WHIM distribution decrease faster than
the DM ones. This can be explained with a dynamical analysis of the
WHIM gas (Rost et al. 2021; Gouin et al. 2022), which shows that the gas
around low-mass halos is both slowly infalling in filaments and outflow-
ing from groups, thus smoothing the filament signatures.

— Probing more directly the relation of asymmetry in cluster outskirts
with the connectivity, I found that the asymmetric signatures of WHIM
and DM distributions increase with the number of connected filaments,
showing that the presence of filaments imprints measurable signatures
in the matter azimuthal distribution. Therefore, the WHIM gas phase,
as it follows the DM distribution, appears to trace well connections to
the cosmic filaments.

— I found that the gas azimuthal distribution is affected by the past assem-
bly history of clusters and that it is a good tracer of its current dynamical
state, as good as the reference DM distribution. In detail, it is apparent
that dynamically unrelaxed, fast-accreting, and late-formed galaxy clus-
ters exhibit strong departures from spherical symmetry in their hot gas
distributions (in agreement with, e.g. Vazza et al. 2011). Furthermore, I
showed that clusters’ dynamical and accretion-history-related proper-
ties are correlated to the gas distribution also in cluster outskirts.

In summary, by using the aperture multipole decomposition technique, I
statistically probed the azimuthal distribution of gas in and around clusters,
up to the connection to the cosmic filaments in their outskirts. I found that
cluster environments strongly affect the gas distribution up to 2R200 from the
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cluster centres, while beyond ∼ 4R200, the gas distribution is no longer im-
pacted by clusters.

The multipole decomposition has been therefore proven to be a reliable
and effective technique to analyse structures traced by gas in and around
galaxy clusters. The application of this technique to real observations of clus-
ters is thus the next logical step. In the next Chapter 8, I show how the multi-
pole analysis can be used to describe the gas distribution in the outskirts of a
galaxy cluster through its X-ray emission, in the case study of the Abell 2744
cluster.
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8 - Tracing gaseous filaments connected to galaxy

clusters: the case study of Abell 2744

The content of this Chapter is based on Gallo et al. (2024a).

As mentioned in Chapter 6, the outskirts of galaxy clusters are the re-
gions where the infalling matter starts interacting with the cluster, and thus
where the complex physical processes associated with matter accretion, such
as mergers, shocks, and turbulence take place (see e.g., Reiprich et al. 2013;
Walker et al. 2019; Walker & Lau 2022). In general, matter does not accrete
isotropically, but it is funnelled by cosmic filaments, that act as “cosmic high-
ways” towards clusters (Rost et al. 2021; Gouin et al. 2021). Therefore, the
matter distribution in cluster outskirts is complex, and characterised by the
presence of filamentary structures connected to the clusters. For these rea-
sons, studying these regions is especially interesting: understanding the clus-
ter mass distribution out to large radii is particularly important to estimate
more precisely their total mass, and by improving the understanding of the
accretion processes one can study their impact on the hydrostatic equilibrium
assumption.

Therefore, understanding the distribution and properties of matter falling
in clusters through filaments has been the goal of many studies, using hydro-
dynamical simulations (e.g. Rost et al. 2021; Tuominen et al. 2021; Gouin et al.
2021, 2022, 2023; Galárraga-Espinosa et al. 2021, 2023), stacked observations
(e.g. de Graaff et al. 2019; Tanimura et al. 2019, 2020, 2022), between cluster
pairs or around single clusters (e.g. Werner et al. 2008; Planck Collaboration
et al. 2013b; Eckert et al. 2015; Bulbul et al. 2016; Bonjean et al. 2018; Veronica
et al. 2024).

Nevertheless, the detection of these large-scale filaments remains a chal-
lenging task, particularly for the gas component, due to their lower density
and temperature compared to clusters. This results in fainter signal in both
X-rays and the Sunyaev-Zel’dovich (SZ) effect. Therefore, high sensitivity and
low noise are required to detect them.

A particular case in which extended emission of X-rays from filaments was
observed is in the outskirts of the galaxy cluster Abell 2744 (A2744). Eck-
ert et al. (2015) identified extended structures connected to A2744 from the
adaptively-smoothed X-ray surface brightness map, and confirmed the de-
tection using a sample of spectroscopic galaxies, as well as weak lensing ob-
servations.

Abell 2744 (z = 0.306 Owers et al. 2011) is a particularly massive clus-
ter (M200c ∼ 2 × 1015M⊙ Medezinski et al. 2016) and exhibits a highly dis-
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turbed dynamical state, with many different massive interacting substruc-
tures (Kempner & David 2004; Merten et al. 2011; Owers et al. 2011; Jauzac et al.
2016; Medezinski et al. 2016). It has been extensively observed in X-rays, opti-
cal, and radio wavelengths (Eckert et al. 2015; Owers et al. 2011; Merten et al.
2011; Ibaraki et al. 2014; Jauzac et al. 2015, 2016; Boschin et al. 2006; Kempner
& David 2004; Rajpurohit et al. 2021; Harvey & Massey 2024; Eckert et al. 2016;
Govoni et al. 2001; Hattori et al. 2017; Medezinski et al. 2016; Braglia et al. 2007).
In the X-rays, in addition to two main peaks that constitute the main cluster
emission, up to four additional cores have been detected (Jauzac et al. 2016);
moreover, the presence of density and temperature discontinuities suggests
the presence of shocks (Eckert et al. 2016; Hattori et al. 2017). Such a mas-
sive and unrelaxed cluster is thus the perfect candidate for being connected
to many cosmic filaments, as predicted from simulations (e.g. Darragh Ford
et al. 2019; Gouin et al. 2021).

In this Chapter, I present an analysis of the matter distribution in the out-
skirts of A2744, using as probes the X-ray emission observed by XMM-Newton
(the same data as Eckert et al. 2015), and a catalogue of spectroscopic galax-
ies from Owers et al. (2011). These data have been analysed using the two
statistical methods presented in Chapter 6, namely the aperture multipole
decomposition and the T-REx filament finder, to obtain a blind detection of
cosmic filaments connected to a galaxy cluster.

Following Eckert et al. (2015), I considered as cluster radiusRvir = 2.1h−1
70 Mpc,

whereh70 = H0/(70 km s−1Mpc−1) andH0 = 67.4 km s−1Mpc−1 (from Planck
Collaboration et al. 2020a).

8.1 . Abell 2744: observational data

8.1.1 . X-ray data

The cluster A2744 was observed by XMM-Newton X-ray Observatory for 110
ks in 2014 (see Eckert et al. 2015; Jauzac et al. 2016, for a detailed descrip-
tion). The data were re-analysed using the X-COP analysis pipeline, as de-
scribed in Ghirardini et al. (2019). The raw images were extracted in two en-
ergy bands, namely [0.4 − 1.2] keV and [2 − 7] keV, along with the respective
background and exposure maps. From these, surface brightness maps were
computed (the surface brightness image for the soft band is shown in Fig. 8.1,
left panel). Point sources were then identified in each band using the XMMSAS
task ewavelet and the results cross-matched between the two energy bands.
This process yielded a preliminary list of high-reliability point sources. This
first list was found to be too limited for the purposes of this study, as it does
not include several point-like sources visible in the soft-band image. This is
likely due to the differing depths in the soft and hard-band images. Therefore,
I decided to add to the list all the point-like sources present in the soft-band
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Figure 8.1: X-ray maps of the area around A2744. Left panel: point-source-
filtered surface brightness map in the soft energy band, [0.4− 1.2] keV. Right
panel: “hit map”, obtained from the soft-band surface brightness image set-
ting to 1 all pixels with values > 0.

image. The final source list was employed as a conservative mask to remove
any potential signal that was not associated with diffuse emission from the
cluster and its outskirts. In practice, the areas covered by the identified point
sources were masked and the corresponding pixels were refilled using Pois-
son realizations of the neighbouring surface brightness, as implemented in
the dmfilth tool of the pyproffit package(Eckert et al. 2020).

For the purpose of this study, I decided to focus only on the structural
properties of the X-ray emission. Therefore, I created a binary map obtained
setting to 1 every pixel in the (point-source filtered, soft-band) surface bright-
ness map whose value is above 0 (i.e., lit pixels). I call this a “hit map”, and it
is shown in Fig. 8.1, right panel. Disregarding all information about the signal
amplitude, the extended structures are highlighted as spatially concentrated
collections of lit pixels, which boosts the low signal structures with respect to
higher-signal ones.

In the remainder of this Chapter, this hit map will serve as the data product
upon which our analysis will be based. It will be referred to as the X-ray map
or X-ray data.

8.1.2 . Spectroscopic galaxies

In addition to the X-ray data, I considered the spectroscopic galaxy cata-
logue compiled by Owers et al. (2011). It gathers observation of A2744 with the
AAOmega multi-object spectrograph on the Anglo-Australian Telescope, and
catalogues from the literature (Boschin et al. 2006; Braglia et al. 2009; Couch
& Sharples 1987; Couch et al. 1998). This compilation includes the redshifts of
1250 galaxies within 15 arcmin (∼ 4 Mpc) from the cluster centre.
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Figure 8.2: Selection of galaxies in the region of A2744. Left panel: redshift
histogram of the full catalogue of Owers et al. (2011). The cluster galaxy over-
density is clearly identifiable as the peak around z ∼ 0.3. The red dashed lines
show the redshift selection operated in this work. Right panel: projected 2D
radius and redshift distribution of galaxies around A2744. The red points are
the galaxies selected to probe the environment of A2744, the blue ones are
the other galaxies in the catalogue.

The goal of this analysis is to focus on the cluster outskirts, probing the
structures also along the line of sight. Therefore, I select all the galaxies in
a rather large volume around the cluster by considering the redshift range
czcluster ± 5600 km/s (with zcluster = 0.306, Boschin et al. 2006). This redshift
selection is shown in Fig. 8.2. For the detection of the filamentary pattern,
it is important to ensure spatial uniformity of the completeness so that the
excess (lack) of galaxies in a particular region due to selection effects is not
mistaken for a real local over(under)density. The spectroscopic completeness
(within ∼ 11 arcmin from the brightest cluster galaxy) was computed by Ow-
ers et al. (2011) for different magnitude cuts, and it is shown in their Fig. 9.
Based on this result, I chose for the analysis the galaxies with magnitudes
rF < 20.5, in order to have the most uniform completeness possible. While
there are still some differences in the completeness across regions, in par-
ticular towards the west of the cluster, most of the field is complete (with an
overall completeness above 90%). The combination of the redshift and mag-
nitude selection provides us with a catalogue of 305 galaxies, which I used to
identify the filamentary structures connected to A2744.

In order to study the 3-dimensional structure of the galaxy distribution, I
have corrected for the effect of peculiar velocities of galaxies within the cluster
on the observed redshifts, in particular the Finger of God (FoG) effect Jackson
(1972). To correct for this redshift distortion, I relied on the assumption that
a galaxy cluster has a galaxy distribution that is symmetrical along the line
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of sight and on the plane of the sky (following Tegmark et al. 2004; Tempel
et al. 2012; Hwang et al. 2016). The method we used proceeds in two steps,
as in Aghanim et al. (2024). The first step is to identify the affected galaxies
thanks to a Friends-of-Friends (FoF) algorithm, using a linking length along the
line of sight (LoS) equal to five times the one in the plane of the sky. In our
case, I found that this method identifies all the galaxies previously selected as
part of the same FoF group1. Then in the second step, the LoS distances of
the galaxies were compressed according to the group’s elongation to remove
the FoG distortion. The compression factor is computed as the ratio between
the rms of the galaxy positions (w.r.t. the cluster centre) long the LoS and
perpendicular to it.

8.2 . The analysis of cluster outskirts

To analyse the distributions of gas and galaxies in the outskirts of A2744
and identify connected filaments, I used the two techniques presented in
Chap. 6, namely the aperture multipole decomposition and the T-REx fila-
ment finder. In this section I describe how the two methods were applied
to the task of analysing galaxy cluster outskirts, and the choice of their free
parameters.

8.2.1 . Multipole moments decomposition in cluster outskirts

Galaxy cluster outskirts are characterised by the presence of filamentary
structures, which connect to the clusters and funnel the infalling matter (e.g.
Reiprich et al. 2013; Walker et al. 2019; Walker & Lau 2022; Rost et al. 2021; Gouin
et al. 2021). In these regions, we can expect that matter in the cosmic filaments
falls into the gravitational potential well of the cluster in an approximately
radial manner. This approximation is expected to be valid within some radial
range around the cluster. Therefore, the azimuthal distribution of matter is
expected to reveal and identify filamentary structures connected to galaxy
clusters.

To study the distribution of gas and galaxies in the outskirts of A2744, I
used here the multipolar ratios defined by Eq. 6.2, and the reconstructed
map obtained combining the large scales multipoles (Eq. 6.3), both obtained
from the aperture multipole moments. When computing the aperture mul-
tipole moment decomposition, the two main parameters to consider are the
position of the centre and the extent of the aperture ∆R = [Rmin, Rmax]. It is
therefore important to choose them so that the assumption of radial symme-

1I also tested the FoF algorithm on a sample of galaxies with a wider range of veloc-
ities around A2744 (|cz| ≲ 20000 km/s), and found that the galaxies in our selection
were in the same group, while the other galaxies were put in different groups in front
or behind.
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try of the field holds.

Regarding the choice of the aperture centre, in the perfect case of a spheri-
cal matter distribution the natural choice would be the minimum of its gravita-
tional potential. However, galaxy clusters are not perfectly spherical and the
matter inside them is not homogeneously distributed. Indeed, anisotropic
accretion from filaments and merger events disturb their shape and create
different offsets between the various matter components and the minimum
of the potential. A2744 is a typical example of a significantly disturbed cluster,
with many different substructures in the central region and at least two X-ray
peaks (e.g. Owers et al. 2011; Jauzac et al. 2016; Medezinski et al. 2016; Harvey
& Massey 2024). It is therefore difficult to identify a clear and reliable centre
for the azimuthal analysis.

Given that the focus of this work is on the cluster outskirts, I decided to
circumvent this issue by examining the isocontours of the X-ray surface bright-
ness map (smoothed with a Gaussian filter of size 7.5 arcsec). I observed that,
progressively lowering the signal threshold resulted in the contours evolving
from highly disturbed in the cluster innermost region to more regular, and be-
coming roughly circular at about 1.6×10−6 counts pixel−1 s−1 (with a radius of
about 0.6Rvir ≈ R500). Lowering the threshold further, the contours started
getting more irregular due to the filament emission. Therefore, I decided to
centre the aperture ∆R in the middle of this circular contour.

I then chose 0.6Rvir as the aperture lower radius, Rmin, in order to exclude
the emission from the cluster itself from the analysis, and focus just on the
outskirts. The choice of the aperture’s upper radius, Rmax, is restricted by
the extent of the data: for the X-ray data, Rmax ≤ 1.5Rvir; for the galaxies,
Rmax ≤ 2.1Rvir. Therefore, for the X-ray case, I chose Rmax = 1.4Rvir, to
be symmetric around Rvir. For the sparser galaxy data, instead, the need for
more statistics motivated the choice of a larger aperture that includes all the
available data, Rmax = 2.1Rvir.

A further important parameter to consider in this analysis is the maxi-
mum multipolar order included in the computation of the reconstructed map,
mmax,rec, as it selects the smallest angular scale included in the map. The main
interest of this analysis is to identify the signature of large-scale cosmic fila-
ments connected to A2744. It is reasonable to assume that these structures
produce an extended signal spanning large angular scales, captured by low
multipolar orders. On the other hand, high multipolar orders (that is, small
scales) are expected to be dominated by signals from either residual point-
like sources (in the case of X-rays) or small concentrations of galaxies. For this
reason, I chose mmax,rec = 7, which allows me to include all the relevant large-
scale contributions in the reconstructed map, omitting the smallest-scale fluc-
tuations (see also Gouin et al. 2020, for details on the choice of multipole order
limit).
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8.2.2 . Filament detection in cluster outskirts with T-REx

As mentioned above, cosmic filaments connected to clusters are expected
to be the most relevant structures in the matter distribution in cluster out-
skirts. Therefore, the second method I used to characterise the distribution
of gas and galaxies around A2744 consists of tracing the ridges of these fila-
mentary structures using the T-REx filament finder (Bonnaire et al. 2020, 2022).
One advantage of this method is that T-REx is designed to work with either 2-
and 3-dimensional datasets, and thus it can be used to explore the 3D dis-
tribution of spectroscopic galaxies and also to trace filamentary structures in
the 2D X-ray emission data.

T-REx has already been applied on 2D and 3D galaxy distributions to trace
filaments around the Shapley supercluster in Aghanim et al. (2024). There-
fore, when applying T-REx to the spectroscopic galaxy distribution around
A2744, I used parameter values close to previous studies (Bonnaire et al. 2020;
Aghanim et al. 2024): l = 2 for the denoising parameter, slightly reduced to
account for the lower number of galaxies, and λ = 1, as suggested in Bon-
naire et al. (2020). To compute the probability map, I performed B = 50 boot-
strap iterations, each time sampling 90% of the dataset, which corresponds
to NB = 275.

On the other hand, in this work I employed the T-REx algorithm for the
first time to analyse X-ray data, so I needed to adapt the algorithm param-
eters to the different regime. The X-ray data, as explained in Sect. 8.1, are
in the form of a “hit map”, where pixels are either 1 or 0 valued. Given that
T-REx is designed to work with a discrete set of points, I considered as in-
put for the algorithm the centres of the lit pixels (i.e. equal to 1) in the hit
map, whose spatial distribution traces cosmic structures. This results in an
input dataset of N ∼ 144 000 points. In the central region of the cluster (in-
side ∼ 0.6Rvir), however, the vast majority of pixels in the hit map are lit,
resulting in the complete loss of information regarding the inner structure.
Therefore, I decided to mask this area and to focus only on the cluster out-
skirts (beyond 0.6Rvir). In these regions outside 0.6Rvir, the density of data
points is very high, and there is a high noise contamination. Therefore, in
order to identify the real signal from filaments, I adapted the values of the al-
gorithm parameters. To reduce the effect of the noise contamination, I used
a high value for the denoising parameter, l = 200. Then, to encourage the
algorithm to focus on the large-scale structures, I imposed a high strength of
the topological constraint, λ = 100, which tends to reduce the total length
of the tree and produce smoother branches. For the probability map com-
putation, I used B = 30 bootstrap iterations sampling 70% of the data each
time, NB ∼ 101 000 points, to allow for more variability between the various
realisations and ensure better convergence to the relevant structures.
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Figure 8.3: Multipolar analysis of the X-ray data. Left panel: Distribution of
the multipolar ratio βm as a function of multipole order m, computed in one
radial aperture (∆R)x−ray = [0.6, 1.4]. The maximum order used in the recon-
structed map (right panel), mmax,rec = 7, is shown as a dashed vertical line.
Right panel: The reconstructed map in the aperture (∆R)x−ray. The white
contours represent the threshold of 60% of the map maximum, and identify
the relevant filamentary structures, as described in the text. For reference,
the X-ray hit-map is shown in the background.

8.3 . The outskirts of Abell 2744

In this Section, I present the results on the outskirts of A2744, from the
X-ray and galaxy data, analysed with the aperture multipole moments and
T-REx filament finder techniques.

8.3.1 . Azimuthal distribution of matter

I start from the analysis of the azimuthal structures in A2744’s outskirts,
identified with the use of the aperture multipole moments.

Multipole decomposition of X-ray data

The analysis of the azimuthal distribution of the X-ray data proceeded in
two steps. First, I perform the multipolar decomposition in a single large aper-
ture (∆R)x−ray = [0.6, 1.4]Rvir, in order to exhibit the large-scale azimuthal
behaviour of the X-ray emission in the cluster outskirts. Then, I refine the
analysis by splitting the aperture in two smaller apertures inside and outside
the virial radius, (∆R)in = [0.6, 1.0]Rvir and (∆R)out = [1.0, 1.4]Rvir, in order
to probe the radial dependence of the filamentary structures.

Starting from the analysis of the single aperture, we show in the left panel
of Fig. 8.3 the multipolar ratios βm for all orders up tom = 20. We can see that
the distribution of βm is not uniform, on the contrary, some orders dominate
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Figure 8.4: Multipolar analysis of the X-ray data. Same as Fig. 8.3 but consid-
ering two radial apertures, (∆R)in = [0.6, 1.0]Rvir (in green) and (∆R)out =
[1.0, 1.4]Rvir (in orange).

the decomposition, highlighting the angular symmetries of the X-ray field. The
most important is the octupolar symmetry (at the order m = 3), followed by
the dipole (m = 1), and then the even orders m = 2, 4. These angular symme-
tries represent structures at large angular scales, as expected for extended
emission from cosmic filaments. Indeed, the symmetry at m = 3 highlights
the presence of three main structures in the outskirts of A2744. In contrast,
the dipolar signature shows an asymmetric signal between two halves of the
aperture (∆R)x−ray (as illustrated in Fig. 6.1). The combination of these two
orders suggests that the X-ray data is mostly distributed into three structures,
two of which are more prominent than the third (inducing the asymmetry). Fi-
nally, the quadrupole order (at m = 2) represents an elongated structure. It
is often associated with the outer part of the halo elliptical shape (e.g. Gouin
et al. 2017, 2020, 2022).

The reconstructed map of the X-ray emission in the aperture (∆R)x−ray

(obtained by summing the first seven orders of the multipole decomposition)
is shown in the right panel of Fig. 8.3. In the map, I identify the relevant struc-
tures as the areas where the values are above 60% of the map maximum.
These regions are delimited by white contours in the figure. We recognise
three structures, which lie approximately in the northwest (NW), south (S) and
east (E) of the cluster. We see that, consistently with the expectations from
the βm distribution, the NW and S structures are larger and stronger than the
E structure. Additionally, a slight alignment between the E and NW structures
can be observed, attributable to the contribution of the even multipole orders
m = 2, 4.

By considering a large aperture (∆R)x−ray = [0.6, 1.4]Rvir, I successfully
captured the broad distribution of structures in the outskirts of A2744. How-
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ever, inside the aperture the radial information is lost. To recover the radial
evolution of the structures, I splitted the aperture in two annuli, (∆R)in =

[0.6, 1.0]Rvir and (∆R)out = [1.0, 1.4]Rvir. The results of the multipole de-
composition in the two sub-apertures are shown in Fig. 8.4.

Focusing on the inner aperture, (∆R)in, we see that the βm distribution is
dominated by the dipole, with the octupole as second-highest peak (Fig. 8.4,
left panel). This inversion of the dominant order (compared to the single-
aperture case) suggests a strong difference between two branches of the
octupole and the third, which is confirmed by the reconstructed map (right
panel). There, we see that only two structures are identified: one in the south
(Sin), and one in the west-northwest (NWin) direction. Conversely, no struc-
ture is identified in the east of the aperture, where the third branch of the
octupolar distribution would be expected. The reason why we cannot iden-
tify a structure in the east is that the X-ray signal in that area is weaker and
extends over a larger angle compared to the other two regions. This may be
related to a shock detected in the northeast region of the cluster (Eckert et al.
2016; Hattori et al. 2017; Rajpurohit et al. 2021).

Looking at the outer aperture, (∆R)out, we find that βm is maximum at
the order 3 (Fig. 8.4, left panel). All the other orders up to m = 6 are weakly
contributing to the decomposition, with similar values of βm. An examination
of the reconstructed map of the outer aperture (Fig. 8.4, right panel) reveals
the presence of three structures associated with the octupolar order in the
northwest (NWout), south (Sout), and east (Eout) directions. We note that the
NWout and Sout structures are both shifted counterclockwise with respect to
their counterparts in the inner aperture, which highlights a radial dependence
of these filaments across the cluster’s virial radius. Furthermore, in addition
to the angular shift, the NWout structure exhibits a larger angular size than
the NWin structure. Conversely, the Sin and Sout are comparable in size.

Multipole decomposition of galaxy distribution

The low statistics of the galaxy sample (comprising 305 galaxies in total, of
which 150 located in the inner cluster region within 0.6Rvir) limits the ability
of the aperture multipole decomposition, making the results noisy and more
sensitive to small galaxy concentrations. Therefore, I consider only one single
large aperture, (∆R)gal = [0.6, 2.1]Rvir, to analyse the galaxy distribution. It
comprises all 155 galaxies beyond 0.6Rvir from the cluster centre.

The left panel of Fig. 8.5 shows the βm of the galaxy distribution. The
most significant order of the decomposition is the octupole (m = 3), identi-
cally to the X-ray data. We can notice that the quadrupole moment (m = 2)
is almost as strong as the octupole (m = 3). This indicates the presence of
three underlying structures, with two aligned on the same axis. Indeed, the
reconstructed map (Fig. 8.5, right panel), shows two main structures, identi-
fied in the east and west-northwest directions, almost opposite of each other.
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Figure 8.5: Multipolar analysis of the galaxy data. Same as Fig. 8.3, but
considering the 2D projected galaxy distribution inside one radial aperture
(∆R)gal = [0.6, 2.1]Rvir.

A third, less significant structure is hardly visible in the south, consistently with
the octupolar symmetry, but it does not cross the threshold of reliable iden-
tification.

Another feature visible in the βm distribution is a high peak at m = 14.
This order traces very small angular scale structures, incompatible with large-
scale cosmic filaments. As discussed in Chapter 7, high multipole orders are
correlated with the fraction of substructures. Indeed, by including this order
into the reconstructed map, I found that it is driven by small concentrations
of galaxies (about 3− 4 galaxies with small angular separation). Notice that a
similar excess of multipolar power at m = 13−14 is also weakly significant for
X-ray data (in Figs. 8.3 and 8.4). This small-scale feature is not associated with
cosmic filaments, but should rather trace sub-clumps of matter, and therefore
is not considered further in this analysis.

Comparing the results of the multipolar analysis of galaxies and X-ray sig-
nal, there is a very good agreement between the structures identified from
the galaxy distribution in the east and northwest of the cluster (Fig. 8.5) and
those identified from the X-ray data in the same directions. Conversely, in the
south of the cluster the X-ray data reveals a third structure that has no reliable
correspondence in the galaxy reconstructed map. A potential explanation for
this lack of identification is the non-uniform completeness of the galaxy cat-
alogue. As reported by Owers et al. (2011) (Fig. 9, left panel), in the southern
region of the cluster the catalogue is not complete, which might be the reason
for the missing S structure in the multipole analysis.

8.3.2 . Filamentary structure around A2744
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Figure 8.6: Probability map of the filamentary structures from X-ray data, ob-
tained with T-REx . Only pixels with probability larger than 0.1 are shown. For
reference, the X-ray hit-map is shown in the background.

A complementary view on the outskirts of A2744 is given by the filamen-
tary structures detected with the filament-finding method T-REx .

Filaments from X-ray data

The result of the T-REx algorithm on the X-ray data is shown in Fig. 8.6,
where we see the T-REx probability map (only values above 0.1 are shown),
superimposed to the X-ray “hit map”. From this map, we can see four large-
scale regions of connected, higher-probability pixels, which are identified as
filaments. The most prominent of these structures is the filament in the S-
SW. From the centre to the periphery, we see it connected to the cluster in
the south of the masked area, then it extends to the south-west before ex-
hibiting a bend to the south at RA∼ 3.5◦. The final section of the structure
exhibits a reduction in width and an overall probability, which makes it less
reliable as a filament detection. Another structure that can be clearly iden-
tified as a filament is the NW one: connected to the cluster in the W-NW,
it extends to the NW before spreading and branching out in multiple direc-
tions between north and west. When considering the northeast quadrant of
the map, the identification of filaments becomes less straightforward. Never-
theless, two structures can be identified due to their higher probability. One
extends to the north and splits into two branches of lower reliability. The
other extends to the east with relatively high probability, even though its point
of connection with the cluster is less clear. Finally, three more sectors show
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Figure 8.7: Three-dimensional distribution of galaxies (red points) in A2744,
superimposed to the 3D probability map of the filamentary structures ob-
tained with T-REx on the galaxy data. Only voxels with probability larger than
0.1 are shown. Left: projection along the line of sight. Middle and right: projec-
tions perpendicular to the line of sight, the viewer is on the left in both panels.

loosely-connected regions where the probability is above the threshold of 0.1:
west-southwest, southeast, and northeast. While I believe that these regions
do not host real filaments, it might be interesting to investigate why some
realisations of the T-REx algorithm identify some structures there. It is first
necessary to recall that this method was designed to work on much cleaner
and sparser data, and that one of its main objectives is to connect overdense
regions in a coherent tree structure. This implies that, in a specific bootstrap
iteration, if the optimisation identifies a localised overdensity in the noise, it
will tend to connect it with the overall tree structure. However, these spu-
rious connections will not be stable across realisations, and will not tend to
accumulate into a coherent structure in the probability map. Looking at the
surface brightness map, we can notice that in all three regions, there appear
to be small overdensities of signal in the vicinity to the cluster, outside the
masked region. I am led to believe that these emissions drive the algorithm
to link noise structures along those directions, thus generating these broad,
noisy probability distributions.

In summary, from the analysis of the T-REx results on X-ray data, four
main structures are identified as filaments, extending to the south, northwest,
north, and east directions.

Filaments from galaxy distribution

The spectroscopic galaxies allow us to gain access to the full three-dimensional
information on the cluster and its environment. This allows the detection of
structures along the line of sight, providing a more accurate estimate of the

85



cluster connectivity. To do that, I applied T-REx to trace the filamentary struc-
tures in the 3D distribution of galaxies in and around A2744.

The panels in Fig. 8.7 depict the T-REx probability map thresholded at 0.1
(i.e. regions where the probability is higher than 0.1), superimposed to the
galaxy distribution, in three projections. The left panel shows the projection
along the line of sight (with axes Right Ascension and Declination), I call this
the face-on view. The central panel has the distance along the line of sight as
x axis and Declination as y axis, which I call the side view. The right panel has
again distance on the x axis but Right Ascension on the y axis, I refer to it as
the top view.

Starting from the face-on view, we can see that the T-REx algorithm iden-
tifies three filaments connected to the cluster (in the north-west, east, and
south directions), consistent with our previous results based on the X-ray data
and with the results of Eckert et al. (2015). We notice how the southern fila-
ment is considerably shorter than the other two, This is consistent with the
results of the multipole analysis, which indicted that in the south region the
overdensity of galaxies is less significant than in the other structures. Another
noteworthy feature is the rather sharp bend in the NW filament at RA ∼ 3.5◦,
connecting a concentration of galaxies in the far west of the field. This may be
attributed to a selection effect, being so close to the edge of the observations.

From the side view, we can observe the cluster and its surrounding struc-
tures along the line of sight (on the x axis). The first thing we notice is the pres-
ence of an elongated structure in the line-of-sight direction (horizontal in the
picture), which extends both in front and behind the centre of the galaxy distri-
bution, at relatively the same Declination. I will refer to it as the central struc-
ture. Moreover, we observe that T-REx identifies a structure at the rear of the
cluster, slightly separated from the main branch in the line of sight. The pro-
jected position of this structure along the line of sight (at roughly RA ∼ 3.6◦,
Dec ∼ −30.4◦) corresponds to the southern concentration of galaxies visi-
ble in the central region of the cluster. Furthermore, the southern filament
is visible from an alternative perspective. We can see that it exhibits mini-
mal extension in the line of sight direction, and that it connects to the central
structure a little in front of the centre of the galaxy distribution.

Finally, from the top view we can extract some additional information
about the E and NW filaments (in the upper and lower parts of the figure,
respectively). Indeed, it can be observed that the E filament connects to the
central structure in approximately the same position as the S filament. In con-
trast, the NW filament is connected further back, in a location that, projected
on the plane of the sky, can be associated approximately with an X-ray peak
in the northwest of the cluster centre. Moreover, we observe that both these
filaments (actually all three considering also the S one) do not extend much
in the line-of-sight direction, but rather appear to be roughly perpendicular
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Figure 8.8: Comparison of the T-REx probability map from X-ray data (Fig. 8.6)
and the face-on projection of the T-REx probability map from galaxy data (Fig.
8.7, left panel). For reference, both the X-ray hit-map and the galaxy distribu-
tion are shown in the background.

to the line of sight. Lastly, we see that the central structure is not exactly par-
allel to the line of sight, but tends to extend from east to west as the distance
increases, with the exception of the front-most part.

From these results, we obtain a picture of the three-dimensional struc-
ture of the A2744 cluster environment, as traced by the galaxy distribution.
The detected structures are: three filaments almost perpendicular to the line
of sight; a long, extended filamentary structure along the line of sight, and a
disconnected structure at the back of the cluster (slightly southeast of the cen-
tre). Two of the filaments (E and S) are observed connect in the same position
in the front-eastern part of the cluster, while the NW filament is connected in
the back of the cluster, towards the west. Along the line of sight, the central
structure extends beyond the virial radius both in front and behind the clus-
ter. The front branch extends, almost parallel to the line of sight, from the
cluster centre. In the back of the cluster, the other branch extends towards
the west from the connecting point of the NW filament. Also in the back of the
cluster, T-REx identifies another structure not directly connected to the main
one, but crossing the virial sphere of the cluster. Located in the southwest
of the cluster centre, this back structure can be associated with the southern
peak in the X-ray surface brightness map.

A comparison of the probability map derived from the X-ray data with
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Figure 8.9: Results of the multipole decomposition and T-REx analyses, using
the X-ray data with just the high-reliability point sources masked (see text).
Left and middle: multipole analysis, same as Fig. 8.3. Right: T-REx probability
map, same as Fig. 8.6.

that obtained from the 3D galaxy distribution (Fig. 8.8) reveals a good level
of agreement between the filaments identified from the two datasets. The
east and south filaments have an excellent overlap, while in the NW the two
structures extend in the same broad direction, but present different shapes
and cross at larger distance from the cluster centre. The two probability maps
reveal also other notable discrepancies. The first one is the absence of a coun-
terpart in the galaxy data for the X-ray-detected N structure. This confirms the
results of Eckert et al. (2015), which also identified a northern structure in the
X-ray map, but discarded it due to the lack of galaxies in the region, despite
the good completeness. Instead, the X-ray emission was attributed to a back-
ground galaxy concentration. Another interesting difference is the length of
the southern filament. In the X-ray probability map, this filament extends to
a considerable length in the SW region, while in the galaxy case only the part
close to the cluster is traced, out to ∼ 1Rvir. A possible explanation for this
difference is again the lack of galaxies in the southwestern region due to the
lower completeness (Owers et al. 2011) (Fig. 9). The non-uniform spectroscopic
completeness might also explain the different shape of the NW filament in the
two T-REx probability maps, since the western region around Rvir is also re-
ported to have lower completeness by Owers et al. (2011).

8.4 . Robustness of results

To assess the robustness of the results presented in Sect. 8.3 I performed
several tests to investigate the impact of different choices both in the data
preprocessing and the methods parameters.

8.4.1 . Robustness to data preprocessing choices

I tested the impact of some of the choices described in Sect. 8.1. For the
baseline analysis of the X-ray data, we used a conservative point-source mask,
that included all the point-like sources in the soft band image. I tested the im-
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pact of this choice by repeating both the multipole analysis and the T-REx fil-
ament detection masking only the high-reliability point sources; that is, those
obtained by cross-matching the point sources lists detected in the soft and
hard energy bands. The results obtained from this set-up (Fig. 8.9) are very
similar to those of the baseline set-up (Figs. 8.3 and 8.6). We can notice some
small differences in the βm distribution (Fig. 8.9, left panel), but the recon-
structed map (middle panel) does not change appreciably. The T-REx proba-
bility map (Fig. 8.9, right panel) highlights the same four filaments as the one
obtained using the conservative point-source mask, and it looks somewhat
less noisy, probably due to the alignment of some compact emissions with
the filament signal, which helps the T-REx algorithm orient in those directions.

Moving on to the 3D galaxy distribution, one assumption in the baseline
analysis is the magnitude cut at rF < 20.5, which is based on the spectroscopic
completeness. I tested the impact of this choice, by relaxing the magnitude
constraint to rF < 21, and repeated the analysis. This updated threshold
yields a catalogue of 412 galaxies (35% more than the baseline). As for the
X-ray data, the results are consistent with the baseline analysis.

8.4.2 . Robustness to method parameters

I tested the robustness of the analysis techniques, by varying the meth-
ods’ free parameters. For what concerns the multipole analysis, I focused on
the impact of the size of the aperture (i.e., the choice of the radial bound-
aries of the annulus). The choice of the aperture boundaries, Rmin and Rmax,
clearly influences the results, as demonstrated in Sect. 8.3.1 in the difference
between using one or two apertures on the X-ray data (Figs. 8.3-8.4). Never-
theless, I observed that the qualitative results for the X-ray data in the single
aperture case are mostly consistent across a wide range of radial limits. In-
deed, when I fix the upper boundary to the baseline value, Rmax = 1.4Rvir

and vary the lower one, Rmin, from 0 to 1.2Rvir, I find that the most impor-
tant order is always the octupole, and the structures identified in the recon-
structed map are always three, with only minor differences in position. On
the other hand, fixing Rmin = 0.6Rvir and varying Rmax, I find that between
0.8 and 1.3Rvir the dipole dominates over the octupole in the βm distribution,
and in the reconstructed maps only the S and NW structures can be identi-
fied. This is consistent with the results of the inner aperture in Fig. 8.4, and
with the fact that the eastern structure is harder to detect in the vicinity of
the cluster. Varying Rmax to values higher than 1.3Rvir, the octupolar order
becomes dominant in the decomposition, and I find back the three filaments
of the main analysis. These remain mostly unchanged with larger apertures,
up to Rmax = 1.5Rvir, which is the maximum distance allowed by the data.

The impact of the aperture size on the analysis of the galaxy data is more
relevant, due to the small number of galaxies in the dataset. In fact, in the
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Figure 8.10: Onion decomposition of the minimum spanning tree constructed
from the X-ray data. The vertical dashed line represents the denoising level l
chosen in the analysis.

sparse data regime, the multipole decomposition becomes particularly noisy,
and the inclusion or exclusion of just a few galaxies can have a significant
impact on the results. Therefore, it is necessary to use a large enough aper-
ture to accumulate sufficient statistics. In the baseline analysis, I made the
conservative decision to include in the aperture all galaxies located beyond
0.6Rvir from the cluster’s centre. To test the robustness of the results ob-
tained with this setup, I fixed Rmin = 0.6Rvir and progressively increased the
aperture size ∆R. Using small apertures, up to Rmax ∼ 1.5Rvir, I identify
two structures in the reconstructed map, in the south and northwest direc-
tions respectively (as for the X-ray data). Moving the upper boundary further,
I find that the southern structure disappears, and later the eastern structure
appears (around 1.7Rvir) and becomes more prominent as we expand the
aperture to larger radii. The identification of a southern structure in the vicin-
ity of the cluster confirms the results obtained from T-REx on the galaxy dis-
tribution (Sect. 8.3.2), which found a filament in the south of the cluster, but
with shorter length than the ones in the east and northwest.

Regarding the T-REx algorithm, as explained in Sect. 8.2.2, the application
on equivalent galaxy data had been already performed (Aghanim et al. 2024),
so I needed only small adjustments to the algorithm parameters to obtain the
results on the galaxy distribution around A2744, notably reducing the denois-
ing parameter l to account for the lower number of galaxies.

On the other hand, for the X-ray data, I performed several tests to adapt
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the parameters to this previously unexplored regime, characterised by a large
density of points and high noise level. This was done in order to minimise the
noise of the probability maps and ensure the best convergence of the trees.
I found that a combination of high denoising, represented by the parame-
ter l, and a high strength of the topological constraint, represented by the
parameter λ, helps to reduce the noise in the T-REx probability map. In the
tests, iteratively pruning the tree a large number of times proved useful in re-
moving spurious detection. To find a suitable number of pruning iterations,
and avoid deleting relevant tree branches, I used the onion decomposition of
the initial minimum spanning tree (Hébert-Dufresne et al. 2016), as suggested
by Bonnaire et al. (2020). This method identifies the number of nodes in the
tree which gets removed by each successive pruning iteration. The resulting
onion spectrum for the X-ray data is shown in Fig. 8.10. The decaying number
of discarded nodes in the first pruning iterations (small l) is interpreted as the
removal of short branches, while when this number becomes almost constant
means that the resulting tree is stable in terms of umber of branches. We see
that the choice of l = 200 used in the analysis is still rather conservative, as it
allows for a large number of nodes to survive, thus allowing for more flexibility
in the optimisation step of the algorithm. For the choice of λ, I found that high
values (of the order of 102), help reducing spurious connections and border
effects, producing smoother branches and reducing overfitting. Therefore re-
ducing the noise in the probability map.

Nevertheless, I find that the results of T-REx are consistent across a wide
range of parameter values, and that the regions identified as filaments tend
to have higher probabilities even in very noisy realisations of the probability
map. This reduces the need to find the optimal free parameters.

8.5 . Discussion

The outskirts of the galaxy cluster A2744 have been the target of various
studies, that probed them with spectroscopic galaxy and X-rays observations
(Braglia et al. 2007; Owers et al. 2011; Ibaraki et al. 2014; Eckert et al. 2015; Hat-
tori et al. 2017). Braglia et al. (2007) used a sample of 194 spectroscopic galax-
ies observed with the VIsible MultiObject Spectrograph at ESO’s Very Large
Telescope (VLT-VIMOS, all of which were also part of the sample used in this
work), while Owers et al. (2011) used the same sample of galaxies I used in this
work. Both studies combined position and velocity information, finding two
overdense regions in the south and northwest of A2744 which were identified
as large-scale filaments. Owers et al. (2011) also highlighted an overdensity of
galaxies in the east of the cluster. However, they found that the local velocity
distribution does not differ significantly from the overall cluster distribution,
so it was not identified as a relevant structure by the authors.
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Figure 8.11: Results of the multipole and T-REx analyses, on X-ray data (left) and
on galaxy data (right). The reconstructed map from the multipole decomposi-
tion is superimposed on the T-REx probability map. The white ellipses corre-
spond to the regions identified in Eckert et al. (2015). For reference, the X-ray
hit-map is shown in the background.

Eckert et al. (2015) (E15) analysed the adaptively-smoothed X-ray surface
brightness map (in the soft energy band) observed by XMM-Newton, and iden-
tified six regions of extended emission in the cluster outskirts. Four of these
filamentary structures were found to coincide with galaxy concentrations: one
in the northwest (NWE15), two in the south and southwest (S+SWE15), and one
in the east (EE15). The first two regions correspond to the findings of Braglia
et al. (2007) and Owers et al. (2011), while the east one corresponds to the over-
density identified Owers et al. (2011). The other two X-ray emission regions (in
the southeast, SEE15, and north, NE15) were associated with concentrations
of galaxies in the background and foreground of A2744, not connected to it.
Analysing the X-ray spectra in the detected regions, Eckert et al. (2015) and
Hattori et al. (2017) found evidence that the gas originating the X-ray emission
is in the form of Warm-Hot Intergalactic Medium (WHIM). This is consistent
with the results of Gouin et al. (2023), which showed that, in hydrodynami-
cal simulations, the dominant source of soft X-rays beyond the virial radius is
the warm gas in the WHIM and warm circumgalactic medium (WCGM). These
pieces of information support the identification of the regions detected from
the soft-band X-ray image as cosmic filaments, as several studies showed that,
in simulations, the WHIM is the most important gas phase in cosmic filaments,
and can be reliably used to trace them (e.g. Martizzi et al. 2019; Galárraga-
Espinosa et al. 2021; Tuominen et al. 2021; Gouin et al. 2022, see also Chapter
7).

In this work, I performed the blind detection of filamentary structures
connected to A2744, applying two statistical techniques (reconstructed maps
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from multipole decomposition, and T-REx filament finder) to the X-ray and
spectroscopic galaxy data.

In Fig. 8.11, I compare the structures identified with the two aforemen-
tioned methods, for X-ray (left panel) and galaxy (right panel) data, with the
X-ray-identified structures (white ellipses) from Eckert et al. (2015) (and thus,
implicitly, with the other works mentioned above). From the X-ray data, we
see that for the NW, S, and E structures there is a remarkably close corre-
spondence between the results of our two methods. The detected filaments
from T-REx match well the region identified in the reconstructed maps, both
in terms of position and radial dependence, including the gap between the
cluster and the E filament. Furthermore, these structures are well in agree-
ment with the NWE15, (S+SW)E15 and EE15 regions from Eckert et al. (2015). The
fact that these regions (the ones with confirmed galaxy counterparts in Eckert
et al. (2015)) are the ones where our methods agree highlights the complemen-
tarity of the two methods, and the robustness of their combined detections.
We also note that the N filament, detected by T-REx , has no significant match
in the multipole analysis, but it does match with a structure (NE15) initially
identified and then discarded by Eckert et al. (2015). Finally, the SEE15 ellipse
has no detected counterpart in either of our two methods.

For the galaxy data, it should be noted that the T-REx algorithm is run
on the 3D distribution of galaxies, while the multipole analysis is performed
on the projected 2D distribution. Comparing the results of the two methods
along the line of sight (Fig. 8.11, right panel), we see that: in the east, the T-REx
-detected filament overlaps well with the E structure in the reconstructed map
and with the EE15 ellipse. In the northwest, the overlap between the different
detections is only partial, but they all agree on the presence of a structure in
this area. The reasons for these differences might be selection effects (due
to the non-spatially-uniform completeness of the galaxy sample) or border
effects. In the south, as mentioned in Sect. 8.3, the detection of a filamen-
tary structure is more difficult: the T-REx algorithm detects a filament, but it
only extends to ∼ Rvir, while in the same region the reconstructed map has
its third-highest structure, but it falls below the detection threshold (more-
over, a structure is detected in this area when using a smaller aperture, e.g.
[0.6− 1.4]Rvir). This is likely to be attributed to the lower completeness in the
southern area beyond ∼ 1Rvir (see Owers et al. 2011, Fig. 9).

By combining the findings from X-ray and galaxy data, I can construct a
comprehensive representation of the surrounding environment of the clus-
ter A2744. From the analysis of A2744 on the plane of the sky, I identify three
filaments connected to the cluster (NW, S, and E). These three are consistent
across almost all the combinations of probe (X-rays or galaxies) and detec-
tion method (T-REx or azimuthal analysis), with larger uncertainty for the S
filament in galaxy data, and also consistent with previous works. All three
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extend out to ∼ 1.5Rvir. Furthermore, the application of T-REx to the three-
dimensional distribution of galaxies revealed the existence of two additional
filamentary structures connected to it, one in front of and one behind the
cluster. However, the precise extent of these structures may depend on the
specific FoG correction we have applied to the galaxy sample. In total, I thus
identify five filamentary structures connected to the core of A2744.

Such a large number of connected structures can help explain the par-
ticularly complex internal structure of the cluster. A2744 is known for its ex-
ceptional number of massive substructures, which make it a very dynamically
disturbed cluster (Merten et al. 2011; Owers et al. 2011; Jauzac et al. 2015, 2016;
Medezinski et al. 2016; Bergamini et al. 2023; Harvey & Massey 2024). As men-
tioned before several times, cosmic filaments act as highways along which
gas and galaxies preferentially fall into clusters (Rost et al. 2021), and thus can
point to the origin and direction of some substructures. For example, Jauzac
et al. (2016) reported the alignment of three substructures in the direction
of the NW filament. Another substructure in the north of the central cluster
area shows evidence of a northward movement (Owers et al. 2011; Jauzac et al.
2016), suggesting a possible origin in the direction of the S filament. In a sim-
ilar way, a shock front detected in the southeast of the cluster centre (Owers
et al. 2011) suggests motion of substructures coming from the northwest.

These results on the connected filaments of A2744 can be compared with
those obtained from statistical studies of larger cluster populations. To do
so, I define the cluster connectivity κ as the number of filaments connected
to the cluster that cross a sphere of 1.5Rvir radius (following Darragh Ford
et al. 2019; Gouin et al. 2021). With the aforementioned uncertainties on the
filaments in mind, I estimate the connectivity of A2744 to be in the range
κ ∼ 3−5. It has been shown from both simulations and observations (Aragón-
Calvo et al. 2010b; Codis et al. 2018; Darragh Ford et al. 2019; Sarron et al.
2019; Kraljic et al. 2020; Lee et al. 2021; Gouin et al. 2021; Galárraga-Espinosa
et al. 2023) that higher mass clusters tend to have higher connectivity. More-
over, Gouin et al. (2021) showed that, for a given mass, dynamically unre-
laxed clusters are typically more connected than relaxed ones. Therefore, a
value of κ ∼ 5 for the connectivity of A2744 would be well in agreement with
trends from hydrodynamical simulations (Gouin et al. 2021). Comparing to
other observations of individual clusters, the connectivity of the Coma clus-
ter (M200 = 5.3 × 1014M⊙, Gavazzi et al. 2009) has been determined to be
κ = 3 (Malavasi et al. 2020, 2023), which seems to be more in line with that
of relaxed clusters from simulations (Gouin et al. 2021). On the other hand,
Einasto et al. (2020, 2021) studied the connectivity of clusters in superclusters,
thus in dense regions with many clusters and groups gathered together. In
these environments, massive clusters were found to be highly connected. For
example, A2142 (M200 = 1.2×1015M⊙, Munari et al. 2014) has κ = 6−7 (Einasto
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et al. 2020), and A2065 (M200 = 2.3×1015M⊙, Pearson et al. 2014) is even more
connected, with κ = 9.

8.6 . Conclusion

In this Chapter, I presented an analysis of the matter distribution around
the galaxy cluster A2744, traced by the X-ray emission and galaxy positions.
Using two statistical methods, the aperture multipole decomposition and the
filament-finding method T-REx , I identified filamentary structures connected
to the cluster. In summary, I presented the following results:

— I reported for the first time the blind detection of filaments connected to
a cluster from X-ray data. Both methods applied showed the presence
of three filamentary structures in the S, NW and E of the cluster. These
findings are consistent with previous visual detection by Eckert et al.
(2015).

— Three filaments are also detected from the distribution of galaxies at ap-
proximately the same (projected) positions as their X-ray counterparts,
although the S filament is only clearly detected by the T-REx method
close to the cluster.

— The X-ray-based T-REx probability map showed an additional structure
in the north, coincident to one identified by Eckert et al. (2015). However,
this result was not confirmed by the multipole analysis nor by galaxy
data.

— Through the galaxy distribution, I studied the 3-dimensional filamentary
structure extracted with the T-REx method: I found that the three fila-
ments identified in 2D are all almost perpendicular to the line of sight.
However, while the S and E filaments lie almost on the same plane, the
NW one is found further in the back and connects to a different part of
the cluster. The central region of the cluster is strongly elongated in the
radial direction, and extends beyond Rvir in both the front and back.
Furthermore, a loosely connected structure is identified in the back of
the cluster, which seems to be aligned with the southern X-ray peak.

— The number and positions of the detected filaments can improve the
interpretation of the highly disturbed cluster centre, in particular con-
cerning the origin and direction of motion of its many substructures.

— I estimated the connectivity of A2744 to be in the range κ ∼ 3 − 5,
which is in agreement with trends from hydrodynamical simulations for
a massive, disturbed cluster.
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On the methodology side, I successfully applied T-REx for the first time
on X-ray data. By adapting the model’s parameters. I proved its applicability
to a previously unexplored data configuration and demonstrated its inherent
flexibility.

With the combination of different methods for identifying filamentary struc-
tures, applied to different probes, I proved the possibility of blind detection of
filaments in the outskirts of galaxy clusters. This result could open the way to
a systematic search for cosmic filaments connected to clusters, in particular
for what concerns the gas component, thanks to large X-ray programs such
as eROSITA (Bulbul et al. 2024), CHEX-MATE (CHEX-MATE Collaboration et al.
2021), and XRISM (XRISM Science Team 2020).
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9 - A generative model for realistic galaxy clus-

ter images

In order to perform statistical studies on clusters, particularly to test new
techniques for cluster detection and analysis, or to explore features that are
not easily accessible through observations (like I did in Chapter 7), it is of-
ten necessary to obtain large, representative samples of simulated objects
that accurately reflect the full variability and range of the cluster population.
Therefore, there is the need for cosmological hydrodynamical simulations
that are both high-resolution (to capture the cluster physics down to small
scales) and encompassing large volumes (to allow for enough high-mass sys-
tems to form). But, performing such simulations is extremely computationally
expensive (requiring several millions of CPU hours to compute, e.g. Nelson
et al. 2018b), and thus the choices of simulated volume and resolution are
limited by the available resources. A further complication arises if one wants
to study the impact of cosmology on galaxy cluster properties. In that case,
not just one simulation is needed, but a series of simulations with varying
cosmological parameters (e.g. Villaescusa-Navarro et al. 2021).

One way to obtain samples of simulated galaxy clusters with reduced com-
putational cost is to perform so-called “zoom-in” simulations. In this approach,
the starting point is a large dark-matter-only simulation, which is much less
computationally intensive than a hydrodynamical one. From this, the regions
around clusters are selected and re-simulated adding baryonic physics. This
allows the construction of samples of up to a few hundreds of massive clus-
ters with high resolution, without the need to run the hydrodynamical code
on the full simulation volume. A comparison of recent hydrodynamical sim-
ulations, both full-box and zoom-in, is shown in Fig. 9.1, placed according to
their number of massive clusters and baryonic mass resolution.

Another possibility is the use of machine learning methods, trained on
simulations, to produce accurate synthetic data that complement or expand
existing simulations. The use of machine learning methods in cosmology and
astrophysics has grown very rapidly in recent years, with applications in many
different aspects, from classification and detection of objects to field-level cos-
mological analysis. In the specific case of assisting cosmological simulations,
some of the main applications concern, for example: the inclusion of baryons
in dark-matter-only simulations, either by predicting observational properties
from DM halos (Xu et al. 2013; Kamdar et al. 2016; Jo & Kim 2019; de Andres et al.
2023) or directly the baryon distribution (Agarwal et al. 2018; Tröster et al. 2019;
Dai & Seljak 2021; Lovell et al. 2022; Delgado et al. 2022); the production of a
high-resolution matter distribution starting from a low-resolution one (Kodi
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Figure 9.1: Comparison of the resolutions (baryonic particle mass or target cell
mass) versus the number of simulated massive halos with M200 ≤ 1015M⊙,
for different cosmological, hydrodynamical simulations from the literature.
Full boxes are shown as circles, and zoom-in suites as diamonds. The grey
diagonal lines indicate the number of baryonic resolution elements. The sim-
ulations shown are IllustrisTNG (Nelson et al. 2019a), MillenniumTNG (Pak-
mor et al. 2023), SLOW (Dolag et al. 2023) BAHAMAS (McCarthy et al. 2017),
cosmo-OWLS (Le Brun et al. 2014), Magneticum (Dolag et al. 2016), FLAMINGO
(Schaye et al. 2023), TNG-Cluster (Nelson et al. 2024), MACSIS (Barnes et al.
2017b), Hydrangea/C-EAGLE (Bahé et al. 2017; Barnes et al. 2017a), Rhapsody-
G/C (Hahn et al. 2017; Pellissier et al. 2023), FABLE (Henden et al. 2018), The
Three Hundred Project (Cui et al. 2018), DIANOGA (Bassini et al. 2020), and
MUSIC (Sembolini et al. 2013) . Figure taken from Nelson et al. (2024).

Ramanah et al. 2020; Li et al. 2021; Rouhiainen et al. 2023; Schanz et al. 2023);
or even the direct generation of new synthetic data, bypassing any simulation
step (Rodríguez et al. 2018; Mustafa et al. 2019; Ullmo et al. 2021; Han et al. 2021;
Jamieson et al. 2023; Boruah et al. 2024; Andrianomena et al. 2024; Ullmo et al.
2024).

Similar to the generation of large-scale structure fields is another approach,
which consists of generating images of single objects, instead of full simula-
tions. This was done for galaxy images in the context of Euclid by Euclid Col-
laboration et al. (2022), and for images of the SZ effect from galaxy clusters by
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Rothschild et al. (2022). In the context of galaxy cluster, the ability to generate
realistic images of cluster observables is particularly interesting in light of the
current and upcoming surveys (for example, eROSITA (Bulbul et al. 2024) in
X-rays, Euclid (Euclid Collaboration et al. 2024) in optical, and CMB-S4 (Abaza-
jian et al. 2022) at mm wavelengths) to test the effect of cluster morphology on
the data analysis pipeline, from the cluster detection and selection function
(see also Part III of this Thesis), to the mass estimation and scaling relations,
just to cite some examples. Moreover, when generating images of clusters,
it is also interesting to have control over some of the physical properties of
the clusters, in order to produce different populations of cluster for different
purposes Both Euclid Collaboration et al. (2022) and Rothschild et al. (2022)
use different techniques to condition their generative ML models to produce
images according to some given input parameter.

Inspired by these works, I trained a conditional variational autoencoder
(CVAE Sohn et al. 2015) with the goal of generating large samples of realistic
high resolution images of the Compton-y parameter of galaxy clusters (pro-
portional to the integrated electron pressure, see Sect. 3), given the cluster
mass as input. Such a generative model of cluster images could be a valuable
improvement over generation from analytical models (most of which assume
spherical symmetry), for example in applications like validation of detection
algorithms and selection function characterisation.

9.1 . Generative models

Generative models are a class of machine learning methods, whose goal
is to generate new data with similar properties to a target dataset, so that,
in the best case scenario, the generated data are indistinguishable from the
original one.

This problem is framed in a probabilistic setting, in the following way (Lamb
2021): instances from the considered dataset, x, are treated as samples from
a probability distribution, x ∼ p(x). On the other hand, we can describe a gen-
erative model as an estimating distribution, qθ(x), which depends on a set of
parameters θ. Therefore, the aim of a generative model is to find the set of
parameters θ∗, so that qθ∗(x) approximates as well as possible p(x). In this
way, sampling from qθ∗(x) gives results with statistical properties similar to
the original data.

One common approach to model a generative process is to use neural
networks to map a simple probability distribution (for example a Gaussian)
into a more complex one. In this way, the parameters of the neural network
are the ones defining qθ(x), which can be very complex, and at the same time
it is easy to generate samples in the space of the simple pdf and feed them to
the neural network, which transforms them in samples from qθ(x).
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While there are many different kinds of generative models, the three main
and most popular classes are diffusion models, generative adversarial net-
works and variational autoencoders:

Diffusion models

Also known as denoising diffusion models (Sohl-Dickstein et al. 2015; Ho
et al. 2020), these models learn the mapping between data points (e.g. images)
and a random Gaussian field of the same size via a two-step process. The
first step consists of adding iteratively small amounts of Gaussian noise to the
training data until the noise dominates over the data, while the second step
tries to reverse the destructive diffusion process to reconstruct the original
data. New data can then be generated by running the reverse process on
randomly sampled fields. These methods have proven to produce very high
quality generation and good variety of samples, which motivated their recent
popularity (e.g. Dhariwal & Nichol 2021; Peebles & Xie 2022), but are quite slow
to train and to sample.

Generative Adversarial Networks

Generative Adversarial Network (GANs Goodfellow et al. 2014) are com-
posed of two modules competing against each other. One is the generator,
which tries to produce new synthetic data from random noise, and the other
is the discriminator, which has to distinguish the generated data from the real
training data. The two modules are trained together, to progressively incre-
ment their performances. GANs allow fast sampling and high quality gener-
ated data (e.g., for cosmic web generation, Rodríguez et al. 2018; Feder et al.
2020; Ullmo et al. 2021), but have proven to be rather difficult to train and
prone to overfitting (i.e. learning too precisely the specific training set and
reproducing data points that are too similar to the training data, thus lacking
the ability to generalise, see e.g. Arora & Zhang 2017; Grover et al. 2017).

In my work, I used a variational autoencoder model to generate images
of galaxy clusters. In the next Section, I present these models more in detail,
with a focus on their use for image generation.

9.2 . Variational Autoencoders for image generation

Variational autoencoders (VAEs Kingma & Welling 2013) are generative mod-
els based on autoencoders, which are composed of two parts, an encoder and
a decoder. The goal of the encoder is to compress each input image x into a
low-dimensional space, called the latent space, so that the relevant informa-
tion of the input data is stored in a compact form in this latent space, and
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similar images are mapped close to each other. This latent representation is
then used by the decoder to reconstruct the original data. During training,
encoder and decoder are used together to produce reconstructed data that
matches as closely as possible with the training data. In this way, they learn to
efficiently compress the data information in the latent representation. After
training, it is then sufficient to sample points from the latent space and feed
them to the decoder to generate new samples. VAEs are good at capturing
the full variability of the training data, and are in general faster to train and
sample than other methods, but often their outputs are less detailed than
those of GANs and diffusion models (Kingma & Welling 2019).

More in detail, the encoder can be represented as a non linear function
Eθ, where θ are its trainable parameters. The main feature of a VAE, that dis-
tinguishes it from a standard autoencoder, is that while the latter compresses
an input image into a single point, z, in the latent space, a VAE encoder out-
puts a probability distribution for z conditioned on the input x, qθ(z|x). This
probability is set to be a multivariate Gaussian, so that:

µ,σ = Eθ(x)

qθ(z|x) = N (z;µ, diag(σ)) .
(9.1)

This approach allows the VAE to learn a continuous latent space represen-
tation, that better approximates the underlying distribution of the data and
allows meaningful sampling in the regions between the data points, which is
crucial for a generative model whose aim is to produce novel images.

The second part of the VAE is the decoder, Dϕ. It takes as input a sample
from qθ(z|x), z ∼ qθ(z|x), and tries to reverse the encoding process, producing
a new image x′ = Dϕ(z) (and therefore typically has an architecture symmet-
ric to that of the encoder). The goal of the decoder is thus to approximate
the true probability of the data conditioned on the latent code, p(x|z), with a
learnable parametrised version, pϕ(x|z). For this reason, during training, the
input images are passed through encoder and decoder, and the two are op-
timised so that the reconstructed output images are as similar as possible to
the original ones. A schematic representation of the VAE used for this work is
shown in Fig. 9.2.

The amount of information lost in the compression–decompression (i.e.
the difference between input and output images) is the first term of the model
loss function, L. The loss function is a central aspect of any machine learn-
ing model. It represents the performance of the model and is used to adapt
its parameters through a gradient descent optimisation. The similarity be-
tween a reconstructed image, x′, and the original, x, is quantified statistically
by the expectation value of the log-likelihood, Eqθ(z|x)[log pϕ(x|z)], which is

usually approximated with the mean square error, ⟨∥x′ − x∥2⟩, and is called
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Figure 9.2: Schematic representation of the conditional variational autoen-
coder used in this work. During training, a cluster image from the simulation
is given as input to the encoder (in orange in the picture), which compresses
its information into a multivariate Gaussian distribution in the latent space,
N (z;µ, diag(σ)), taking into account the mass of the cluster (concatenated to
the last layer of the encoder). A sample from this distribution, together with
the cluster mass, is taken as input by the decoder, which produces another
cluster image, trying to make it look as similar as possible to the input one.
Once the training is completed, only the decoder is used to generate new im-
ages, by inputting samples from the unit Gaussian, N (0, 1), and the desired
cluster mass.

the reconstruction loss. On top of that, another term is added to the loss
function in order to regularise the latent space encoding. This term mea-
sures the difference between the learned probability distribution in the latent
space, qθ, and a prior distribution (usually a standard Gaussian, N (0, 1)), and
takes the form of a Kullback-Leibler divergence (KL Kullback & Leibler 1951),
DKL(qθ(z|x)||N (0, 1)). This penalises the encoder if it produces latent space
distributions that vary too much from the prior, and it is done so that the la-
tent space has a known and meaningful structure that is easy to sample. It
also helps in preventing overfitting.

The final loss function for the VAE is1:

L(x, θ, ϕ) = Eqθ(z|x)[log pϕ(x|z)]− βKLDKL(qθ(z|x)||N (0, 1)) , (9.2)

where βKL is a hyperparameter of the model (i.e. not trainable), and sets the
relative strength of the KL divergence with respect to the reconstruction term
in the loss. In standard VAEs, βKL = 1 and the two terms are weighted equally.
However, in some applications, the latent space can become too constrained

1A more detailed analytical derivation of the VAE loss function can be found in
Kingma & Welling (2019).
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by the KL loss term, therefore making the model less expressive and incapable
of learning more complex features of the data. Tuning the βKL permits a
better control over the latent space representation, making it more or less
flexible according to the needs (Higgins et al. 2017).

With this loss, we can find the optimal parameters for the encoder and
decoder solving the optimisation problem:

θ∗, ϕ∗ = argmaxθ,ϕ

N
∑

i=1

L(xi, θ, ϕ) , (9.3)

where the index i runs over the training dataset. This optimisation is usually
performed with a gradient descent approach; in my work I used the Adam
optimiser Kingma & Ba (2014).

Up to now, I treated the two modules of the VAE (encoder and decoder)
in full generality, as non-linear parametric functions. In practice, the imple-
mentation of these functions depends on the specific application, as some
are more adapted to treat specific kinds of data. When dealing with images,
for example, it is common to use a convolutional neural network (CNN, for
an introduction, see e.g. O’Shea & Nash 2015). Convolution with a filter (also
called kernel) is a well known classical technique that has proven very valuable
for extracting information from spatially structured data such as images (see
for example the discussion of the matched multi-filter technique in Chapt. 10).
Given a 2D image X ∈ R

n×n, the convolution with a kernel K ∈ R
m×m (where

m < n) returns a new image C ∈ R
n×n whose elements are:

Ci,j =
m
∑

k=0

m
∑

l=0

Xi−k,j−l Kk,l . (9.4)

This process can be visualised as a sliding window over the input image,
which at each step selects an area of the size of the kernel and computes the
inner product between the two. The convolution process therefore extracts
spatially localised information, since its receptive field is limited by the size
of the kernel. Furthermore, it is invariant to translation, in the sense that
the response of the kernel to a given structure in the receptive field is the
same independently of the position of the field in the original image. Different
kernels can highlight different features in the receptive field, such as edges,
straight or curved lines, and so on.

The basic idea of a CNN is that the image is analysed with a number of
convolutional kernels which are not known a priori. Instead, their weights,
Kk,l, are adapted during training, so that the model learns to recognise the
relevant features of the dataset directly from the data. To add non-linearities
in the network, thus increasing its expressiveness, the output of each con-
volution is passed through a non-linear transformation, called the activation
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function2.
To be able to learn more complex information, convolutional layers (each

composed of many kernels) are stacked one after the other, so that the output
of a layer becomes the input of the next one. On top of that, convolutional
layers are alternated with information-compressing layers, that reduce the
size of the convolved images (for example, via a max-pooling operation). In
this way, convolutional kernels in the next layer will be able to access in their
receptive field pixels that carry information about larger areas in the original
image, thus allowing the network to learn features at different scales, captur-
ing the full complexity of the image.

This progressive compression of the image information, typical of CNNs, is
particularly adapted to the purpose of the VAE encoder, whose aim is exactly
to learn the relevant information about the images, and compress it in the
latent space. For the decoder, instead, a symmetric architecture is usually
applied: convolutional layers are still used to process the information, that
in this case goes from a low-dimensional space to a high-dimensional one.
Therefore, convolutions are alternated with upsampling operations, in place
of the downsampling of the encoder.

9.3 . Generating galaxy cluster images with a conditional VAE

9.3.1 . Training data

The training dataset for the generative conditional VAE consists of im-
ages of the Compton-y parameter of galaxy clusters, produced from data
taken from the IllustrisTNG simulation (Nelson et al. 2019a, described in Sect.
7.1). The Compton-y parameter is a measure of the strength of the Sunyaev-
Zel’dovich (SZ) effect in galaxy clusters (see Chapter 3 for more details).

Similarly to Sect. 7.1, I selected clusters at redshift z = 0, with masses
larger than 1014M⊙, and more than 3 Mpc away from the edge of the sim-
ulation box, for a total of 267 clusters. For each of the selected clusters, I
extracted all the gas cells associated with the cluster halos. Starting from the
gas quantities for each cell provided by the simulation, namely the density,
electron abundance and internal energy, I computed the electron number
density, ne, and temperature, Te. From these, I computed the electron pres-
sure in each cell as Pe = kbneTe.

I then used the gas pressure information to compute images of the Compton-
y signal for the clusters. I took the minimum of the potential energy as the
centre of the clusters, and computed for each cluster three projected images
(along the axis of the simulation box), of size 4 Mpc and resolution of 128×128

2Some common choices include the hyperbolic tangent function, the sigmoid func-
tion, and the Rectified Linear Unit (ReLU). For more information, see e.g. Szandała
(2020).
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pixels. In each pixel, the Compton-y signal was computed as:

y =
σT
mec2

∫

Pedl ≈
σT
mec2

∑

i Pe,iVi

Apix
, (9.5)

where Pe,i and Vi are the electron pressure and the volume of the ith gas cell,
respectively, and the index i in the sum runs over all gas cells whose centre
(provided by the simulation) falls inside the pixel area Apix. This approxima-
tion of the line of sight integral is only applicable when the typical size of the
gas cells is smaller than the size of the pixels. In principle, this is true only in
the centre of the clusters, where density is higher (along with the tempera-
ture and therefore pressure). However, in the outer parts of clusters, the cell
sizes are larger, but at the same time, the pressure is low, making the error
introduced by this approximation negligible. With this procedure, I produced
a dataset of 801 different cluster images.

To increase the size of the dataset, and to encourage the neural networks
to learn the properties of the images independently of their orientation, I also
performed a data augmentation step, which consists of adding to the dataset
three copies of each image, obtained rotating the image in 2D by 90◦, 180◦

and 270◦, as well as four other copies, obtained flipping the original image
vertically, horizontally, and along the two diagonals, for a total of eight copies
for each original image. The final dataset consists then of 6408 images.

Following Rothschild et al. (2022), I also performed a log transformation of
the images, in order to compress the range of the image signal and therefore
add emphasis on the cluster outskirts, which are otherwise neglected by the
neural network. The transformation is of the form:

a′ = log1/ϵ

(

a+ ϵ

ϵ

)

(9.6)

where a is the original pixel value, a′ is transformed one, and ϵ is chosen to
be the value of the 10th percentile of the overall pixel distribution of all the
images, in this case ϵ ≃ 10−9. With this transformation, the range of the pixel
distribution changes from roughly [10−11, 10−4] to roughly [0, 0.6].

9.3.2 . Model Architecture and training strategy

The goal of this work, as mentioned in the introduction of this Chapter,
is to generate realistic images of galaxy clusters with given input properties,
in this case the cluster total mass. For this reason, following Rothschild et al.
(2022), I used as architecture for the generative model a modified version of
the VAE, called the conditional variational autoencoder (CVAE Sohn et al. 2015).
This architecture, represented schematically in Fig. 9.2, is very similar to that
of a standard VAE (Kingma & Welling 2013), described in Sect. 9.2. The main dif-
ference is that, in the CVAE, the value of the cluster mass is introduced in the
network in two places: at the end of the encoder, just before the compressed
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image information is placed in the latent space; and at the beginning of the de-
coder, concatenated to the latent space sample. This encourages both parts
of the model to take into account this additional information about the cluster
when encoding/decoding the latent space distribution. Therefore, when us-
ing the decoder as a generator, the cluster mass can be passed directly as an
additional parameter together with the random sample from the latent space,
instructing the decoder to produce an image with properties compatible with
a that of a cluster of the chosen mass.

As for the specific architecture of the encoder and decoder CNNs, I tested
many different configurations in order to improve the results. In this section,
I present the parameters of the model that provided the best results, while in
the next section I discuss the various tests I performed to improve the quality
of the results.

The layer structures of the encoder and decoder are summarised in Table
9.1. The dimension of the latent space is 16. For all convolutional layers, I used
kernels of size 3 × 3 with stride3 of (1, 1), and the rectified linear unit (ReLU)
activation function, defined as f(x) = max(0, x). Each convolutional layer in
the encoder is followed by a max pooling layer of size 2 × 2, which divides
the input images in squares of size 2 × 2, and takes the maximum value of
each square, thus dividing the image size by two. On the other hand, each
convolutional layer in the decoder is followed by an upsampling layer of size
2 × 2, which multiplies the image size by two, simply repeating four times
the value of each input pixel. The last layer of the encoder and the first of
the decoder are fully connected layers, in which each neuron ni is connected
to all the neurons of the previous layer, mj , and the output of ni is given by
ni =

∑

j wjmj + bi, where wj and bi are trainable parameters.

To train the model, I used the loss function of Eq. 9.2, which combines a
pixel-level mean square error as reconstruction loss and the Kullback-Leibler
divergence loss, weighted by the βKL parameter. The training was performed
using the Adam optimiser (Kingma & Ba 2014), with an initial learning rate of
5 × 10−4 and an exponential decay with a decay rate of 0.9 over 104 steps. I
also used a batch size of 8.

The value of βKL has been the subject of extensive testing, in order to find
the best balance between the two terms of the loss function (see Sect. 9.3.3).
Furthermore, to improve the results, I adopted a strategy called β-annealing
(Bowman et al. 2015), which consists of progressively increasing the value of
βKL during training, starting from 0 and increasing it up to a maximum value,
which I set to βKL = 10−3. This strategy has been proposed to mitigate the

3The stride is an hyperparameter of convolutional layers which refers to how much
the kernel slides over the input image. When the stride is (1, 1), the convolution hap-
pens as in Eq. 9.4; using different values of the stride, (a, b), equates to multiplying
the summation indices, k′ = k × a and l′ = l × b, in Eq. 9.4.
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Table 9.1: Architecture of the encoder and decoder of the CVAE used
in this work. Each row represents a layer (or group of layers) in the
network, and the information flows from top to bottom. The output di-
mensions in parenthesis are the dimensions of the convolved images
(one for each convolutional kernel), while the numbers without paren-
thesis represent the full output of the layer. The output of the last layer
of the encoder represents the means and standard deviations of the
latent space distribution, N (z;µ, diag(σ)).

Kind of layer # of kernels/ Output
neurons dimension

Encoder

Convolution + max-pooling 64 (64× 64)
Convolution + max-pooling 64 (32× 32)
Convolution + max-pooling 128 (16× 16)
Convolution + max-pooling 128 (8× 8)
Convolution + max-pooling 256 (4× 4)
Convolution + max-pooling 256 (2× 2)
Flatten + Concatenate mass 0 1025

Fully connected 32 16 + 16

Decoder

Sampling + Concatenate mass 0 17
Fully connected 1024 1024

Reshape 0 (2× 2)
Convolution + upsampling 256 (4× 4)
Convolution + upsampling 256 (8× 8)
Convolution + upsampling 128 (16× 16)
Convolution + upsampling 128 (32× 32)
Convolution + upsampling 64 (64× 64)
Convolution + upsampling 64 (128× 128)

Convolution 1 (128× 128)

known problem of VAE optimisation related to undesirable local minima in the
loss function, in which the KL divergence goes quickly to 0 and prevents the
model from learning to reconstruct the images. Thus, by starting the training
with low βKL encourages the model to first learn the relevant features of the
training data, and only later to organise the latent space according to the prior.
In this model, I used an exponential increase of βKL over 104 training steps
(corresponding to roughly 13 epochs).

9.3.3 . Results

In order to assess the effectiveness of the model training and thus the
quality of the generated images, the first level of evaluation is a visual in-
spection. In the best case scenario, it should be almost impossible to tell if
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Figure 9.3: Examples of cluster images from the training set (left), and gener-
ated images from the CVAE, with roughly similar masses (right). All images are
in logarithmic scale, transformed according to Eq. 9.6.
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a given image was taken from the simulation set or if it has been generated
by the model. On top of that, the population of the generated images should
also have the same statistical properties as the original simulated population.
Therefore, I compared statistically the simulation images with a set of gener-
ated images with a similar mass distribution, testing the relation of the inte-
grated Compton-y signal with mass, and the morphological properties of the
two sets, represented by two estimators: the β parameter (introduced in Sect.
7.1.3), and the concentration parameter.

Visual inspection

In Fig. 9.3, we see some examples of images generated with the CVAE de-
scribed in the previous Section (on the right), compared with training images
of similar mass (on the left). We see clearly that the two sets of images are
different. At large scales, we see that the model is able to reproduce some of
the anisotropic structures on large scales, and thus go beyond the spherical
and even the triaxial approximations. Nonetheless, we notice how the gener-
ated images are much smoother than the simulated ones, showing a certain
lack of structures at small scales, especially in the outskirts, but also near the
cluster cores.

This “blurriness” effect in the generated images is a well-known problem of
VAEs (Kingma & Welling 2019), and it is, to some extent, unavoidable. However,
similar works (like Rothschild et al. 2022) have been able to obtain results that
seem to suffer less from this issue. This points to the general difficulty and
lack of robustness in training deep machine learning models, as they can be
very sensitive to the details of the training, and often require a high amount
of trial and error.

It has been suggested by Kingma & Welling (2019) that a way to counter the
“blurriness” issue is to improve the flexibility of the model in order to improve
its expressivity. I tested many different possible solutions to this problem,
but I was unable to improve the appearance of the generated images beyond
what shown in Fig. 9.3.

A first set of tests were focused on the relative strength of the two terms
of the loss function (the reconstruction loss ad the KL divergence), controlled
by the βKL parameter. As discussed in the previous Section, a possible issue
in training a VAE is the so-called vanishing KL problem, that happens when
the optimisation of the KL divergence dominates over the reconstruction loss.
Since the two terms of the loss function are in competition, a dominating KL
divergence makes it less advantageous for the model to improve the quality
of the images, favouring the regularisation of the latent space distribution. I
found this to be a problem for βKL = 1, leading to mostly circular images,
so I lowered the value of βKL while testing the performance of the model at
each step. I found that βKL = 10−3 produces the best results. For higher
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values the KL divergence ended up dominating the loss, producing smooth
and elliptical images, while for lower values the reconstruction improved, but
at the expense of the “goodness” of the latent space distribution, which was
not suitable for generation anymore.

Another path of exploration was directed to the dimension of the latent
space. It is known that a low-dimensional latent space might limit the ex-
pressivity of the model, since the image information has to be compressed
into a smaller set of numbers. On the other hand, a too large number of di-
mensions might be an obstacle for the generation, since the training images
will be sparser, preventing the model from learning to interpolate between
then, and consequently generate new samples. I tested different numbers
of dimensions, ranging from 2 to 128, finding the values of 16 and 32 to be
approximately equal in terms of performance. I chose 16 for the final model.

I also explored modifications in the CNN architectures, in particular re-
garding the number of convolutional kernels. I modified the number of ker-
nels in each layer, dividing and multiplying it by two, without finding apprecia-
ble differences in the results. I also tested a network architecture in which two
convolutional layers were stacked before each pooling layer, in the attempt
to encourage the model to learn more complex features at each stage, but
this test also proved ineffective in achieving sharper images.

Population comparison

In order to test whether the generated images reproduce well the original
data at the population level, I generated a sample of images of the same size
and with similar mass distribution as the simulated set, and compared the
distributions of physical and morphological parameters of the cluster images
for both sets.

To obtain a generated population with roughly the same mass distribution
as the simulated set, I created a random sample of 800 masses, selected with
replacement from the simulation set. Then, to avoid inputting in the genera-
tor the same mass values on which the model has been trained on, I added
Gaussian noise to the logarithm of the masses (with σ = 0.05), following (Roth-
schild et al. 2022).

To test whether the model has been able to learn the physical properties
of clusters from the training images, I used the integrated Compton-y param-
eter:

Y =

∫

y dA ∝
∫

neT dV , (9.7)

which is proportional to MgasT and used as a proxy for the total cluster mass
(see e.g. Kravtsov & Borgani 2012). Here, I computed the integrated y param-
eter inside a circle of radius R200, Y200, for both sets of images. By comparing
the dependence of Y200 on the cluster mass, M200, between the “true” and
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Figure 9.4: Integrated Compton-y parameter, Y200, as a function of cluster
mass, M200, for the simulated cluster images (in blue), and the generated clus-
ter images (in orange).

generated sets, we can see whether the model was able to learn this depen-
dence correctly, and thus if the images produced with a given input mass re-
ally reproduce clusters with that mass.

The Y200 − M200 relations for the training and generated datasets are
shown in Fig. 9.4. From this Figure, we see that at low mass the Y200 dis-
tribution of the generated images follows pretty well that of the simulated
clusters. Conversely, for masses higher than ∼ 5 × 1014M⊙ the two distri-
butions diverge, and the Y200 of the generated images tend to be underes-
timated compared to the simulated ones. This is probably due to the low
number of clusters in this mass range in the training population, which do
not constitute a sufficiently large sample for the network to learn to model
efficiently this mass range. Indeed, this is a rather common issue in machine
learning applications, where samples that are at the edges of the learned dis-
tribution tend to be biased towards the bulk values (see e.g. Green et al. 2019;
Ntampaka & Vikhlinin 2022).

Beyond reproducing the integrated y signal, one of the main goals of this
work is to be able to generate cluster images with realistic morphologies. To
test the morphology of generated images compared to the simulated set I
used the multipolar ratios presented in Sect. 6.1, in particular the sum of the
first 4 orders, β, as an estimator of the overall departure from circular sym-
metry of the images (as in Sect. 7.2.2). I computed the β parameter from the
images selecting the pixels inside R200. In addition, to evaluate the signal dis-

111



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

5
pd

f
True clusters
Generated clusters

0.05 0.10 0.15 0.20
Concentration

0

2

4

6

8

10

12

14

16

pd
f

True clusters
Generated clusters

1014 1015

M200 [M ]

0.0

0.1

0.2

0.3

0.4

0.5
True clusters
Generated clusters

1014 1015

M200 [M ]

0.05

0.10

0.15

0.20

Co
nc

en
tra

tio
n

True clusters
Generated clusters

Figure 9.5: Distribution of morphological parameters of cluster images, for
the full population (top panels), and as a function of the cluster mass (bottom
panels). Left panels: distribution of the β parameter, quantifying the overall
level of anisotropy of the images inside R200. Right panels: distribution of
the concentration parameter, see definition in the text. In all panels: in blue,
simulated images; in orange, generated images.

tribution in the radial direction, I compute the concentration parameter (sim-
ilar to Rasia et al. 2013; Rothschild et al. 2022), defined as the ratio between
the total signal inside 0.1R200 and inside 1R200,

C =

∑

I(r ≤ 0.1R200)
∑

I(r ≤ R200)
(9.8)

where I is the image, and the sum is over the pixel values.
In Fig. 9.5, I show the comparison of the morphological estimators, β and

the concentration parameters, between the generated and simulated sets of
images. In the top panels, the histograms of the distributions, and in the bot-
tom panels the mass dependence, with the average parameter value in three
mass bins.

Starting from the β parameter distribution (top left panel), we see that, al-
though the generated and simulated distributions have similar distributions
around the peak, the generated images have in general lower values of β,
which means that they are more spherical than the simulated images. This is
even more apparent when focusing on the high β values: we see that the sim-
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ulated images have a large tail, extending to β ∼ 1 and even beyond, which
represents a sizeable population of highly anisotropic images. This is much
less present in the generated population, whose β distribution shows a less
important high-β tail, with a maximum value around β ∼ 0.7. This is con-
sistent with the visual appearance of the generated images (Fig. 9.3), which
are not only smoother and lack small-scale structures, but also appear more
spherical than their simulated counterparts. This again points to a failure of
the model to learn the more complex structures of the training set, not only
at small scales but also at the large angular scales probed by the first 4 orders
of the multipolar decomposition. Looking at the dependence of β on the clus-
ter mass (bottom left panel), we see again that the generated and simulated
images present distinctive differences. At first, we see that the generated im-
ages are on average more spherical (lower β) than the simulated ones at all
masses, confirming the overall difficulty of the model to produce complex
morphologies. Observing the trend of the average β with mass, we see for
the simulated images a mildly increasing trend, consistent with the results of
Sect. 7.2.2. For the generated images, we still see an increasing trend, though
at low masses the model strongly favours more spherical morphologies com-
pared to higher masses. This shows that the bias in the average departure
from spherical symmetry for generated images is mass-dependent, which fur-
ther compromises their potential use as a representative sample of realistic
clusters.

Moving the attention to the concentration parameter (right panels of Fig.
9.5), we again see some differences between the simulated and generated
distributions. Looking at the concentration histograms (top right panel), it
can be noticed that the distribution of concentrations of the generated set is
wider than that of the simulated set, with a more important low-concentration
tail and lower average value, but also a high-concentration tail that extends
to higher values than the simulated distribution. Even more striking is the
correlation between concentration on cluster mass (bottom right panel). It
is evident that while there is an increase with mass in signal concentration
in the simulation set, this is much more pronounced in the generated set.
Generated images of low mass clusters exhibit lower concentrations than the
simulated ones, while generated images of high mass clusters demonstrate
higher concentrations.

In summary, by studying the distribution of the physical, Y200, and mor-
phological parameters, β and concentration, we see that the statistical prop-
erties of the generated images differ noticeably from those of the simulated
images. This means that the generative model has learnt only incomplete in-
formation about the cluster population and the intrinsic relations between
the cluster masses and their appearances, and is therefore unable to gener-
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ate realistic cluster images.

9.4 . Conclusions and perspectives

In this Chapter, I introduced generative models as a possible way to accel-
erate or bypass the computation of cosmological simulations.

I trained a conditional variational autoencoder with the goal of generat-
ing realistic images of the Compton-y parameter from galaxy clusters, condi-
tioned on the cluster mass. I compared the generated cluster images with the
ones used for training, and found the following results:

— Visual inspection of the generated images reveals that, at large scales,
these present anisotropic structures that visually resemble those of the
training set. In general, though, generated images are smoother and
present less complex structures at small scales, both in the cores and
in the outskirts.

— The model is able to reproduce the relation between the integrated y

signal, Y200, and the cluster mass, for masses below ∼ 5× 1014M⊙. For
higher masses, the model tends to underestimate the Y200 signal.

— Looking at the distribution of the morphological estimators, β and con-
centration, the generated and simulated populations differ significantly.
The average departure from spherical symmetry is lower for generated
images than for simulated ones, in particular at low masses. The highly-
anisotropic tail of the simulated distribution is underrepresented in the
generated set. The generated images have a wider concentration distri-
bution, which exhibits a stronger dependence on the cluster mass than
the simulated set.

In light of these findings, it can be concluded that although the generated
images are not of sufficient quality to be used in place of high-resolution cos-
mological simulations of galaxy clusters, they still exhibit more realistic mor-
phologies compared to analytically generated images of perfectly spherically
symmetric clusters. Therefore, they may be used in low-resolution cases, for
example where the smoothing effect due to the instrument’s beam is larger
than the inherent “blurriness” of the images.

For the future, it might be possible to obtain better results by complexi-
fying the general architecture of the network, which I have not attempted in
this work. Some possibilities include: modifying of the structure of the loss
function with the free-bits method (Kingma et al. 2016), which forces the net-
work to store a given amount of information in each dimension of the latent
space; introducing normalising flows to improve the flexibility of the latent

114



space representation, while at the same time keeping an easy-to-sample over-
all distribution (Jimenez Rezende & Mohamed 2015; Kingma et al. 2016; Euclid
Collaboration et al. 2022); or using multiple latent variables (Kingma & Welling
2019).
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Part III

Galaxy cluster detection:

The selection function
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10 - Galaxy cluster detection with the Planck

satellite

In this third part of the Thesis, I focus on the detection of galaxy cluster, in
particular on how the assumed cluster model affects the detection process.
As outlined in Chapter 5, detecting a galaxy cluster is essentially a process of
identification of specific signatures in the data associated with the presence
of a cluster. This implies the assumption of a cluster model, to be compared
with the data. This model should represent as well as possible the average
properties of the galaxy cluster population. If this is not the case, at least for
a sizeable sub-class of clusters, it could impact the efficiency of the detection
process for such objects, and thus lead to a biased catalogue. This is true, for
example, for X-ray surveys, which are known to detect preferentially clusters
that are dynamically relaxed, with a bright cooling core (see e.g. Eckert et al.
2011). These biases need to be accurately determined and modelled in the se-
lection function when using clusters for cosmological analyses, otherwise the
bias can be propagated from the cluster catalogue to the cosmological pa-
rameters.

In my work, I focused on the galaxy clusters detected via the Sunyaev-
Zel’dovich effect by the Planck satellite, in particular taking the Planck PSZ2
MMF3 cosmological catalogue1 (Planck Collaboration et al. 2016d) as reference.
Planck (Planck Collaboration et al. 2016a) was a space mission aimed at ob-
serving the full sky in nine frequency bands (from 25 to 1000GHz), primar-
ily to observe the CMB. It observed for approximately 50 months, from 2009
to 2013. In the frequency range covered by the High Frequency Instrument
(100 − 857GHz, Planck Collaboration et al. 2014f), Planck is able to recognise
the spectral distortion of the SZ effect produced by the hot gas in galaxy clus-
ters. The cluster detection in Planck is done using a matched multi-frequency
filter (MMF) algorithm (Herranz et al. 2002; Melin et al. 2006). This method, pre-
sented in Sect. 10.1, has been used to detect galaxy clusters not only by Planck
(Planck Collaboration et al. 2011, 2014c, 2016d), but also by other ground-based
experiments like the South Pole Telescope (SPT, Williamson et al. 2011; Bleem
et al. 2015, 2024), and the Atacama Cosmology Telescope (ACT, Hilton et al.
2021).

This method is designed to combine the knowledge of the SZ signal, namely
its spectral signature, with a model of the galaxy clusters’ spatial characteris-
tics, to produce an optimal filter that returns the maximal S/N in the presence
of a galaxy cluster. While the spectral shape of the SZ signal is well known

1This sample contains 439 clusters, with masses ∈ [0.8, 14.7] × 1014 M⊙ and red-
shifts ∈ [0.01, 0.97], detected in a survey area covering 65% of the sky.
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and universal (that is, for a thermal gas in the non-relativistic regime), some
approximations must be made for the spatial filter. The usual approach is
to assume spherical symmetry for clusters, and to model the radial pressure
profile according to the average profile of observed clusters. However, as I
discussed extensively in the second part of this Thesis, galaxy clusters are
generally not spherical, but present complex morphologies due to anisotropic
accretion, mergers, and astrophysical processes such as shocks and feedback
mechanisms. The variety of morphological features observed in galaxy clus-
ters often prevents a precise match between the cluster SZ signal and the
spatial template employed, which, in principle, affects the detection perfor-
mance. In practice, this effect is reduced by the smoothing induced by the
instrument’s beam, which tends to symmetrise the signal, especially for clus-
ters with scales comparable to or smaller than the beam size. On top of that,
it is clear that not all clusters have exactly the same pressure profile, but there
is a certain scatter around the average profile. Furthermore, different studies
using different cluster samples found slightly different average profiles (e.g.
Arnaud et al. 2010; Planck Collaboration et al. 2013a; Pointecouteau et al. 2021;
Tramonte et al. 2023; Melin & Pratt 2023). These aspects impact the efficiency
of the detection process, and quantifying their effect on the selection function
is the main goal of the analysis presented in Chapter. 11.

10.1 . The Matched Multi-frequency Filter detection algorithm

In this Section, I present briefly the main concepts of the MMF algorithm
(Melin et al. 2006), and explain its functioning on the Planck data. In particular,
I focus on an implementation of the algorithm that I used in my work, which
is very similar to the one used to construct the Planck cosmological cluster
catalogue, called MMF3 in Planck Collaboration et al. (2011, 2014c, 2016d).

We can model the maps of the cluster emission at each observed fre-
quency (ν = 100, 143, 217, 353, 545, 857GHz) as the vector m(x):

m(x) = y0 tθc(x) + n(x) , (10.1)

where y0 represents the SZ signal strength, and n(x) is the noise (which in-
cludes both instrumental noise and astrophysical contaminants). tθc(x) rep-
resents the distribution of the SZ signal from a cluster with characteristic an-
gular radius θc, and it is composed of a spatial template τθc , which is convolved
by the instrument’s beam at each frequency, bi(x) (Planck Collaboration et al.
2014g), and multiplied by the spectral dependence of the SZ signal, jν , to give
tθc(x)i = jν(νi)[bi ∗ τθc ].

The idea of the MMF method is to build a filter Ψθc(x) that, when con-
volved with the cluster signal, returns an estimate of y0:
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ŷ0 =

∫

dxΨT
θc(x) ·m(x) . (10.2)

By requiring this estimate to be unbiased ⟨ŷ0⟩ = y0, and the variance to
be minimised, one obtains that the filter must be of the form (expressed in
Fourier space):

Ψθc(k) = σ2
θc P

−1(k) · tθc(k) (10.3)

where P (k) is the noise power spectrum matrix, whose components in fre-
quency space are given by ⟨nνi(k)nνj (k

′)⟩ = Pi,j(k) δ(k − k′), and σθc is the
variance of the noise filtered at the scale θc,

σθc =

[
∫

dk tθc(k)
T · P−1 · tθc(k)

]−1/2

. (10.4)

In Planck , the noise power spectrum P (k) is approximated by computing
directly the power spectrum of the maps, considering the SZ signal negligible
with respect to the noise sources. In a recent approach, Zubeldia et al. (2022)
proposed to improve the noise estimation with an iterative approach.

The spatial cluster template, τθc , used in Planck is constructed from a spher-
ically symmetric cluster model, whose pressure distribution follows a gener-
alised Navarro-Frenk-White (gNFW) (Navarro et al. 1997; Nagai et al. 2007; Ar-
naud et al. 2010) profile. The shape of this pressure profile is defined by the
parametric form:

p(ρ) ∝ 1

(c500ρ)
γ [1 + (c500ρ)

α](β−γ)/α
(10.5)

where ρ = r/R500 is the radius in units of R500, and [c500, α, β, γ] are the pa-
rameters of the profile. The parameters used are those from Arnaud et al.
(2010), which combined a sample of 31 clusters observed in X-rays with three
sets of numerical simulations, and fitted the average pressure profile with a
gNFW model, finding [c500, γ, α, β] = [1.177, 0.308, 1.051, 5.491]. The cluster
template is then computed integrating the pressure profile along the line of
sight. The only free parameter of the template is the cluster radius, R500, or
more properly, its equivalent in angular coordinates, θ500. Therefore, from
this template, the MMF filters are constructed varying the cluster size on a
grid of 40 logarithmically spaced points from θ500 = 1.059 to 41.195arcmin.

To detect galaxy clusters, the MMF algorithm takes as input the six full-
sky Planck HFI frequency maps. These maps are divided into 546 overlapping
square patches with side length of 10◦. Then, each patch is convolved by the
filters, Ψ, at the different cluster scales. The peaks in these filtered maps with
a signal-to-noise ratio (S/N) above 3 represent the locations of the candidate
cluster detections. The size of a cluster is taken to be the scale of the filter
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that maximises the S/N at the detected cluster location. The integrated cluster
signal within 5 × R500, Y5R500, is extracted from the filtered map at the peak
position, and computed as:

Y5R500 =

∫

θ<5θ500

dθ τθ500(θ) . (10.6)

Finally, a single full-sky catalogue is constructed, by merging the single-
patch detections and discarding the ones with lower S/N that fall within the an-
gular radius, θ500, of another cluster. The final catalogue of detected sources
therefore contains the position of the clusters, their S/Ns, and the estimated
θ500 and Y5R500. In addition, the algorithm returns the noise estimate, σθ500
for each patch and filter size.

10.2 . The selection function

As explained in Chapter 4, one of the key ingredients for cosmological
analyses with galaxy cluster number counts is the survey’s selection function.
This function describes the relationship between the detected objects and
the complete underlying population in the survey area, and it thus depends
on the characteristics of the survey and of the detection strategy. It can be
divided into two separate functions: the purity, which is the probability that
a given detection corresponds to a real cluster; and the completeness, the
probability of a real cluster to be detected by the survey.

In the context of cosmological analyses with cluster counts, the selection
function provides an estimate of the fraction of detected clusters relative to
the total number of clusters present in the sky, as a function of the cluster ob-
servables. This is crucial information when comparing the observed number
of clusters with the predicted number from theoretical models. It is therefore
essential to provide an accurate characterisation of this function in order to
avoid any potential biases in the constraints placed on cosmological parame-
ters.

The selection function of the Planck SZ cluster survey has been investi-
gated by the Planck Collaboration, and the results have been detailed in the
various catalogue releases (Planck Collaboration et al. 2011, 2014c, 2016d). In
particular, it has been shown that the purity of the cosmology catalogue is
very high, exceeding 99.8%. For this reason, in this Thesis I focus exclusively
on the on the completeness function.

As mentioned, the completeness is the probability that a cluster with given
“true” observables (in this case Y5R500 and θ500), at position x in the sky, gets
detected, given the survey and detection method (Planck and MMF, respec-
tively). To estimate this function, a first approximation consists of assuming
Gaussian noise on the Compton-y measurements. In this case, the complete-
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ness can be determined analytically in each patch i, and takes the form of an
error function:

χ(Y5R500, σθ500,i) =
1

2

[

1 + erf

(

Y5R500 − q σθ500,i√
2σθ500,i

)]

. (10.7)

However, the non-Gaussian nature of the noise (due to astrophysical con-
taminations), combined with the differences between the real clusters and
the detection template, can make the true completeness deviate from this
approximation.

To include these effects into the completeness estimation, a more direct
Monte Carlo approach is used. This method consists of injecting synthetic SZ
signal from clusters directly in the sky maps, and running the MMF algorithm
to compare how many of these clusters are detected (Melin et al. 2005; Planck
Collaboration et al. 2014c, 2016d). With full knowledge of the true (injected)
cluster population, it becomes possible to evaluate the performance of the
detection algorithm run on these mock maps. The objective of this strategy is
to replicate the conditions of the actual detection task as closely as possible in
order to obtain an accurate estimate of completeness, including all possible
contaminant effects that may be challenging to model analytically (e.g. algo-
rithmic effects, non-Gaussian noise, cluster morphology, etc.). This method
enables the estimation of the completeness by simply taking the ratio of the
detected clusters over the injected ones, in bins of Y5R500 and θ500.

This approach was used in Planck (Planck Collaboration et al. 2016d) to es-
timate the completeness of the cluster catalogues. For the injection, the clus-
ters were assumed to be spherically symmetric, with a pressure profile similar
to the gNFW profile used in the detection template (Arnaud et al. 2010). To ac-
count for individual differences in the pressure distribution, the injected clus-
ters’ profiles were taken from simulated clusters from the Cosmo-OWLS simu-
lation (Le Brun et al. 2014). The completeness obtained from this method was
then compared with the ERF estimate, finding substantial agreement between
the two, for the cosmological sample. Therefore, the ERF completeness was
incorporated in the baseline cosmological analysis of cluster number counts
with the Planck SZ catalogue (Planck Collaboration et al. 2014d, 2016f).
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11 - Characterising the completeness function

of Planck clusters

The content of this Chapter is based on Gallo et al. (2024b).

As discussed in the previous Chapter, an accurate characterisation of the
selection function, and in particular the completeness, of a galaxy cluster sam-
ple is essential to perform a cosmological analysis.

For the Planck cluster catalogue, as mentioned above, the completeness
was estimated via Monte Carlo injection and compared with the ERF estimate.
The two were found to be in agreement with each other (Planck Collabora-
tion et al. 2014c, 2016d), so the latter was used for the cosmological analyses
(Planck Collaboration et al. 2014d, 2016f).

In my work, I took these results as a starting point, and analysed the com-
pleteness focusing on the case in which the cluster model assumed in the
detection algorithm is different from the true cluster signals. This situation is
to be expected, to some extent, given that a template is by necessity a sim-
plification constructed to match the ‘average’ features of a selected cluster
sample as closely as possible.

A first clear difference between real clusters and the detection template
is cluster morphology. Departure from spherical symmetry can indeed bias
cluster detection, and therefore the effect of realistic morphology needs to
be tested while characterising the completeness. A second difference may be
attributed to the pressure profile. First, not all clusters have exactly the same
profile. Profile variations are observed, due for example to the clusters’ dy-
namical state, and these induce a scatter around the average profile of the
population. Moreover, the average profile may also differ from the one as-
sumed in the template. This may occur, for instance, if the profile assumed in
the detection was derived from a biased sample of clusters.

Some tests were conducted to investigate these aspects, as detailed in
Planck Collaboration et al. (2016d). To investigate the effect of cluster mor-
phology, a modest sample of hydrodynamically simulated clusters was used,
with a fixed angular scale larger than the Planck beam, where the effect of
cluster morphology is supposed to be most relevant. No significant difference
was found in the completeness when either realistic or spherical morpholo-
gies were used. With regard to the profile scatter, the results presented in
Planck Collaboration et al. (2016d) demonstrate that the completeness com-
puted from cluster images with pressure profiles scattered around the as-
sumed detection profile is generally consistent with the analytical complete-
ness estimate, with a widening effect in the completeness drop-off.
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In this work I studied these effects in a comprehensive way, analysing the
impact of having an imperfect cluster model as template for the matched filter
detection technique. To do this, I extracted a sample of clusters from the Illus-
trisTNG hydrodynamical simulation (Sect. 7.1) in a somewhat agnostic man-
ner. I extracted galaxy clusters from the simulation at different redshifts, and
produced images of their SZ signal, based on each cluster’s redshift and gas
distribution. In this manner, when computing the completeness via Monte
Carlo injection, any potential redshift dependence of the cluster properties
and dynamical states, in addition to the impact of cluster morphologies, were
automatically incorporated to increase the realism of the completeness esti-
mation.

11.1 . Cleaned frequency maps

To construct the sky maps into which the cluster images were injected, I
started from the six Planck HFI frequency maps from the second data release
Planck Collaboration et al. (2016b). These maps are given in HEALPix pixelisa-
tion scheme (Górski et al. 2005), with Nside = 2048. I chose to use real Planck
maps (following Planck Collaboration et al. 2014c, 2016d) to ensure the most
realistic setting possible for the completeness analysis, including all sources
of noise and contaminations present during the real detection process.

Given the fact that the MMF algorithm estimates the noise directly from
the input maps, the injection of simulated cluster signals in addition to the real
ones already present could potentially alter the properties of the noise, thus
affecting the detection. For this reason, I subjected the maps to a cleaning
process with the purpose of removing the SZ signal from the real clusters. The
process of removing a given cluster from the maps is the following: starting
from the cluster’s integrated SZ flux and angular scale, (Y5R500, θ500), a circular
image of the cluster SZ emission at the frequencies of the different maps is
computed using the pressure profile from Arnaud et al. (2010) (in the same
way as in Section 11.2.2). This cluster emission is then subtracted from the
maps at the position of the original detected cluster. The differences between
the circular template and the real cluster signal leave a residual contribution,
but its impact on the noise estimation is certainly smaller than that of the
original cluster and is therefore considered negligible.

The cleaning process is conducted in two steps: the first step consists in
removing all the clusters from the PSZ2 catalogue, obtaining a first cleaned
version of the maps. In the second step, the MMF detection is run on the
new maps to check for additional signals identified as clusters beyond those
contained in the PSZ2 catalogue, with a lower limit of 4.25 in signal-to-noise
ratio (S/N). All new detections obtained in this way are then also removed
from the frequency maps, which are now, in principle, free from any relevant
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SZ source down to S/N ∼ 4.5. These are the final cleaned maps we use for the
completeness analysis.

Associated with the clean frequency maps, I create a mask that covers
the emission from the Galaxy and the Magellanic Cloud, as well as an area of
five times the beam size around point sources (from PCCS2 catalogue Planck
Collaboration et al. 2016c) and regions of CO emission Planck Collaboration
et al. (2014b). The final unmasked sky fraction is about 78%.

11.2 . Cluster SZ images

In this Section, I describe the creation of the galaxy cluster images used to
estimate the completeness function. One set of realistic cluster images was
computed from the simulated clusters from the IllustrisTNG simulation, de-
scribed in Sect. 7.1, in a similar way to what described in Sect. 9.3.1. Other sets
of images were constructed from spherically-symmetric model with a gNFW
pressure profile, where each set is built from a different set of parameters for
the profile.

11.2.1 . Simulation images

To create a set of realistic images of the SZ effect from galaxy clusters, as
it would be seen by Planck , I used the galaxy clusters of the hydrodynami-
cal cosmological simulation TNG300, part of the IllustrisTNG simulation suite
(Nelson et al. 2019a, see Sect. 7.1). Snapshots of the simulation are available
at different redshifts, each accompanied by a halo catalogue, built with a FoF
algorithm (Davis et al. 1985). These catalogues list the positions of the halos
(identified by the particle with the minimum gravitational potential energy),
their masses M500, and radii R500, among other quantities.

Since the goal of this study is to determine the detection performance of
the MMF algorithm, as represented by the completeness function, the sets
of clusters used to estimate it need to probe the region in mass and redshift
where the detection becomes increasingly more difficult, and the complete-
ness goes from 1 to 0. To get an idea of where is this region, I observed that,
for the Planck PSZ2 cluster sample (Planck Collaboration et al. 2016d, Fig. 26),
the lowest detected cluster mass increases with redshift, from ∼ 1014M⊙ at
z ∼ 0.05 to ∼ 4 × 1014M⊙ at z ∼ 0.4, and then remains almost constant.
Therefore, the cluster sets for this study must extend to masses sufficiently
below the limit of the Planck detections to be able to study the completeness
down to 0. At the same time, it is not advisable to include too many clusters
with almost zero probability of being detected, as those would not add any
information to the completeness.

Consequently, I selected halos from the simulation with a redshift-dependent
lower mass limit of M500 ≥ Mmin = 6

5

(

4z + 7
15

)

× 1014M⊙ within the redshift
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Figure 11.1: Distribution of the galaxy clusters selected from the TNG300 simu-
lation. Top panel: Mass and redshift distribution of the galaxy clusters colour
coded according to their Y5R500. The violet line shows the lower mass limit
imposed in the selection and described in the text. Bottom panel: Cluster dis-
tribution in integrated y signal, Y5R500, and angular scale, θ500, colour coded
according to cluster mass M500.

range 0.05 ≤ z ≤ 0.3 (which corresponds to 18 snapshots of the simulation).
This selection yields a total of 1487 clusters, whose distribution in mass and
redshift is shown in Fig. 11.1.

The redshift range used in this work, which is smaller than that of the
Planck catalogue (0.01 < z < 0.97, Planck Collaboration et al. 2016d), is con-
strained by the limits of the simulation. Outside of this range, the cluster dis-
tribution in radius and SZ flux does not allow the sampling the completeness
function properly. In particular, at redshifts greater than 0.3, there is an insuf-
ficient number of high-mass halos, while at low redshifts, the spacing between
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snapshots results in the presence of empty regions in the domain of the com-
pleteness function. A more detailed discussion of this limit can be found in
Sect. 11.6. Nevertheless, I verified that about 65% of the Planck cosmological
sample falls within the mass and redshift range covered by our simulation
sample.

Having selected the sample of galaxy clusters, I proceeded by computing
the projected images of the SZ effect, which were used for the completeness
estimation.

The first part of the procedure is analogous to the one presented in Sect.
9.3.1, where I computed images of the Compton-y parameter from galaxy clus-
ters. Starting from the simulated gas cells associated with each cluster, I com-
puted the electron pressure Pe for all cells. Then, I computed the Compton-y
parameter using Eq. 9.5, projecting the pressure distribution along six direc-
tion: three along the axes (x, y, z) of the simulation box, and three along the
axis rotated by Euler angles (α, β, γ) = (45◦, 45◦, 45◦). The resulting images,
centred on the clusters, are 4Mpc wide with a resolution of 256× 256 pixels1.
For each of these images, I computed the integrated y signal within 5×R500,
Y5R500.

Prior to the injection of these images into the Planck frequency maps, they
must first be converted into angular coordinates, as they would be observed
on the sky. The images are then rescaled according to their redshift, z, using
the following relations:

θimg =
4Mpc

dA(z)
, θ500 =

R500

dA(z)
, (11.1)

where dA(z) is the angular diameter distance, θimg is the angular size of the
image, and θ500 is the equivalent of R500 in angular coordinates. The size of
the pixels of the rescaled images 0.5 arcmin. This resolution is thus smaller
than that of the Planck maps, of about 1.7 arcmin. This is done to avoid hav-
ing excessively coarse images before convolving them with the Planck beams.
When the images are injected into the frequency maps, their resolution is ad-
justed to align with to that of the maps.

To be injected in the frequency maps, the Compton-y images were mul-
tiplied by the spectral dependence of the SZ effect at the six frequencies of
Planck HFI (100, 143, 217, 353, 545, 857GHz), neglecting relativistic corrections:

∆T

TCMB
= y · g(ν), (11.2)

where TCMB is the CMB temperature, and g(ν) is the spectral signature of the
tSZ effect integrated over Planck frequency bandpasses, taken from Planck

1Different pixel resolutions were tested, and no appreciable difference in the av-
erage cluster y profile and integrated y signal were found.
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Table 11.1: Generalised NFW pressure profile parameters of the differ-
ent sets of spherical images. In order: Arnaud et al. (2010) profile (Stan-
dard), Planck Collaboration et al. (2013a) profile (Planck), Pointecouteau
et al. (2021) profile (PACT), Tramonte et al. (2023) profile (Tramonte+23),
profile obtained changing the c500 of Arnaud et al. (2010) (Peaked), and
profile obtained fitting the average profile from the simulation images
(SimFit).

Name c500 α β γ

Standard 1.177 1.051 5.4905 0.3081

Planck 1.81 1.33 4.13 0.31

PACT 1.18 1.08 4.30 0.31

Tramonte+23 2.1 2.2 5.3 0.31

Peaked 1.5 1.051 5.4905 0.3081

SimFit 5.1× 10−3 0.71 1.33 500

Collaboration et al. (2016h). To make the images consistent with Planck obser-
vations, at each frequency they were convolved by the corresponding beam,
assumed to be circular Gaussian with FWHM taken from Planck Collaboration
et al. (2016d, 2014g).

In this way, I obtained a set of 8922 cluster images for each of the Planck

frequencies, with their angular scale, θ500, and integrated SZ signal, Y5R500.

11.2.2 . Circular images

In addition to the set of images extracted from the simulation, I also con-
structed different sets of images of spherically symmetric clusters with differ-
ent profiles, to test the consistency of the results obtained with the simulation
set and explore their implications.

In order to obtain a meaningful comparison between the completeness
obtained from these sets of images and that obtained from the simulation,
their distribution in (Y5R500, θ500) needs to be similar. Therefore, I constructed
a catalogue of (Y5R500, θ500), obtained applying a random offset to the (Y5R500, θ500)

pairs from the simulation set. The offset was sampled from a Gaussian distri-
bution with standard deviation equals to 5% of the original values. This was
done to sample the same region but not exactly the same values. The circular
images were constructed based on this new catalogue.

The images in the different sets were all constructed starting from a spher-
ical pressure distribution with a gNFW radial profile. I used six different sets
of parameters to build the images, which are detailed in Table 11.1: four come
from observational studies (Arnaud et al. 2010; Planck Collaboration et al. 2013a;
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Figure 11.2: Compton-y profiles obtained from the gNFW profiles of Table 11.1,
in units of Y500/R2

500, as a function of normalized radius, R/R500. In orange:
Profile from Arnaud et al. (2010). In green: Profile from Planck Collaboration
et al. (2013a); in pink: profile from Pointecouteau et al. (2021). In red: Profile
from Tramonte et al. (2023). In purple: ‘Peaked’ profile. In light blue: ‘SimFit’
profile.

Pointecouteau et al. 2021; Tramonte et al. 2023), and two are artificially con-
structed to approximate the average profile of the simulation images.

To obtain the SZ images for each of the different sets, I first integrated the
pressure profile along one direction and transformed into a template y map. I
then rescaled this map to match the various (Y5R500, θ500) of the catalogue de-
scribed above. Hereafter, the y images obtained were treated with the same
steps as the simulation images; namely convolution with the Planck beams
and transformation into frequency images using Eq. 11.2. The Compton-y pro-
files obtained from the pressure profiles of Table 11.1 are shown in Fig. 11.2.

11.3 . Completeness from Monte Carlo injection

To compute the completeness from the different sets of images, I used the
Monte Carlo injection method, presented in Sect. 10.2. The method consists
of injecting the synthetic cluster signals into the Planck frequency maps, and
then running the MMF detection algorithm to determine how well the injected
population can be retrieved. The details of the method and the completeness
estimation are the following.
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In order to obtain a sufficient number of detections to properly sample the
completeness in the (Y5R500, θ500) plane, without altering the noise properties
of the Planck maps, several realisations of injected sky maps were created,
each containing 2000 cluster images. Consequently, the average noise of the
injected maps differs from that of the cleaned maps by less than 5%.

A total of 50 mock sky maps were created for the Simulation set and for
the Standard set, while 10 maps were created for each of the other sets with
different gNFW profiles. For each mock map, a total of 2000 cluster images
were randomly selected, along with their associated Y5R500 and θ500. The im-
ages were injected into randomly selected locations within the cleaned Planck

maps, distributed uniformly, avoiding the Galactic and point-source masks,
as well as overlaps with other injected clusters. This results in an average
of approximately four clusters per patch (10◦ × 10◦). The MMF detection al-
gorithm was then applied to the maps, resulting in a catalogue of candidate
detections for each, including candidate positions, S/Ns, θ500, and Y5R500. A
selection threshold of S/N > 4.5 is imposed on the catalogues. This thresh-
old was selected for all the completeness tests because of the relatively large
number of detected clusters, which allows for more robust statistics for the
completeness calculation. Selecting a higher S/N threshold (e.g., S/N > 6, as
for the Planck cosmology sample) yields equivalent results for the complete-
ness, thereby providing a posteriori justification for our initial choice.

11.4 . Completeness results

In this Section, I present the completeness function estimated with the
Monte Carlo injection method using the set of cluster images from the Illus-
trisTNG simulation, and discuss its departure from the analytical ERF com-
pleteness with the help of the other sets of circular cluster images with varying
profiles.

The completeness function obtained from the simulation images set is
shown in Fig. 11.3, as a function of Y5R500, in six θ500 bins. The results are com-
pared with the analytical ERF completeness, and with the completeness ob-
tained with the “Standard” image set, which is constructed from the Arnaud
et al. (2010) profile (the same profile used to build the detection template).
This set of circular images is meant to serve as a benchmark for the injection
method and as a test for the ideal case in which all the cluster images match
the detection template almost perfectly. In this ideal case, the matched filter is
supposed to yield the maximum possible response, and, therefore, the max-
imum completeness. Consequently, we could expect the simulation images,
which exhibit a diverse range of profiles and complex morphologies that devi-
ate from spherical symmetry, will prove more challenging to detect, resulting
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Figure 11.3: Completeness as a function of Y5R500 in six θ500 bins, computed
with Monte Carlo injection for the simulation and circular sets of clusters (in
blue and orange, respectively), and estimated with the ERF approximation, in
green. The shaded areas represent the uncertainty on the completeness in
each bin, computed via bootstrap resampling.

in a lower completeness.

This prediction is not reflected in the results of Fig. 11.3. While the com-
pleteness of the Standard images is in good agreement with the analytical
ERF (consistent with the results of Planck Collaboration et al. 2014c, 2016d), the
simulation images produce a completeness that is almost always higher than
both other estimates, with differences of up to 0.4 in some bins. This implies
that the simulation cluster images, despite their imperfect match with the de-
tection template, have a higher detection probability than those for which the
match is near perfect, for the same (Y5R500, θ500).

In order to gain insight into this result, it is helpful to consider separately
the contributions of the simulation images to the completeness: on the one
hand, the average y profile, and on the other hand the non-spherical mor-
phology. The following sections investigate the impact of these two aspects
on the completeness function.

11.4.1 . Impact of cluster profile

To understand the impact of the cluster y profile on the completeness,
I first compared the average profile of the simulation images with the inte-
grated Arnaud et al. (2010) profile, shown in Fig. 11.4. We can see how the
average simulation profile tends to be overall steeper than that from Arnaud
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Figure 11.4: Average Compton-y profile of simulation images (in blue, shaded
area corresponds to standard deviation of profile sample), compared with the
y profile obtained from the Arnaud et al. (2010) pressure profile (in orange)
and the ‘peaked’ profile described in the text (in purple), in units of R500 and
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500.

et al. (2010), especially in the outer part from ∼ 0.7R500. Additionally, we see
that the simulation profiles are generally more concentrated than the Stan-
dard one. This trend may be the cause of the higher completeness of the
simulation images compared to the Standard set. That is because the MMF
algorithm, in the attempt to find the optimal parameter to fit its flatter pro-
file template to the cluster signal, might favour a smaller radius than the real
one. This underestimation of the radius leads to an increase in S/N, given
that the MMF noise estimate increases with filter radius. This hypothesis is
confirmed by comparing the distribution of the detected cluster radii of the
Simulation set over the true injected ones, shown in the bottom left panel of
Fig. 11.5. From it, we see that the detected θ500 are clearly biased low com-
pared to the true ones, with a median ratio between detected and injected
θ500 of the order of ∼ 0.8. This bias disappears when analysing the detected
θ500 of the Standard set (bottom right panel) with only about 1% median ratio.
This indicates that the performance of the detection process depends on the
assumed cluster profile in the template. Comparing the distribution of the de-
tected SZ signal Y5R500 with the injected one for the two sets of cluster images
(Fig. 11.5, top row) reveals that both tend to be overestimated with respect to
the injected quantities. I find a median overestimation of about 9% for the
Standard set (which is consistent with the result of Planck Collaboration et al.
2014c). In contrast, the Simulation set has a median overestimation of ∼ 25%,
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Figure 11.5: Comparison of real cluster properties vs detected ones. The top
row shows the total integrated SZ flux, Y5R500, while the bottom row shows the
cluster radius, θ500. The columns show two different sets of cluster images:
simulation images and circular images with the Arnaud et al. (2010) profile.

which leads to an increased S/N that, in turn, contributes to the increase in
the completeness.

To confirm the impact of a different mean profile on the completeness, I
used the Peaked set, which is built from a gNFW pressure profile that main-
tains the same parameters as the Standard profile (Arnaud et al. 2010), except
for the concentration parameter, c500 = 1.5. This higher parameter deter-
mines a y profile that is higher in the centre and lower around R500 compared
to the Standard profile, and roughly reproduces the average profile of the
simulated clusters at large radii, as it can be seen in Fig. 11.4. The complete-
ness obtained from this set of images is shown in Fig. 11.6 for two θ500 bins
as an example. The completeness of the Peaked set appears to agree well
with the one obtained with the simulation images, particularly at larger clus-
ter scales. At low θ500, however, the two functions present some differences,
and the completeness of the Peaked set appears to be rather in between the
simulation and the ERF completeness. This result provides further evidence
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Figure 11.6: Same as in Fig. 11.3, comparing the completeness obtained from
the simulation images (blue) with that from the Peaked profile images (purple)
and the ERF completeness (green).

that a change in the shape of the profile can lead to an increased detection
probability, despite the imperfect match with the filter template.

To probe the dependence of the completeness function on the shape
of the cluster profile, I compared the completeness of three sets of circular
images, constructed from three different gNFW profiles, obtained fitting the
pressure profile of observed cluster samples. The chosen profiles are taken
from the following studies: Planck Collaboration et al. (2013a), where the pro-
file was fitted on 62 SZ-selected clusters using Compton-y data from Planck

and x-ray observations from XMM-Newton; Pointecouteau et al. (2021), where
the SZ signal from the combined map of Planck and ACT (Aghanim et al. 2019)
of 31 clusters was used to constrain the gNFW parameters; and finally, Tra-
monte et al. (2023), where the authors fitted the y profile obtained by stacking
the Planck SZ signal of a large number of clusters from different surveys, in dif-
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Figure 11.8: Same as in Fig. 11.3, comparing the completeness from images
with three different observed profiles. Green: Planck set (profile from Planck
Collaboration et al. 2013a). Pink: PACT set (profile from Pointecouteau et al.
2021). Red: Tramonte+23 set (profile from Tramonte et al. 2023).

137



ferent redshift bins. From this latter study, we take the parameters obtained
from the set of 4421 clusters in the z < 0.35 redshift bin, which overlaps with
our simulation sample. The Compton-y profiles so obtained, shown in Fig 11.7,
are named Planck, PACT and Tramonte+23, respectively. The first two profiles
are flatter than the Standard profile, with the second showing a greater differ-
ence. The third profile is flatter in the inner cluster region (up to ∼ 0.2R500)
and then becomes steeper than all the other profiles. With these profiles, I
was able to probe the effect on the completeness of having clusters that have
either flatter or steeper profiles compared to the detection template.

The completeness functions obtained from these three sets of images, for
six cluster scales, are shown in Fig. 11.8, together with the completeness ob-
tained from the simulation set, and the ERF completeness. We see that the
shape of the profile has an important effect on the completeness. In particu-
lar, we see how clusters with steeper profiles produce higher completeness at
all scales compared to the ERF, while flatter profiles result in lower complete-
ness. More specifically, it can be observed that the Planck image set, whose
profile most closely resembles the detection template, provides a complete-
ness that is comparable with the ERF estimate, although it tends to be slightly
lower at high Y5R500. The PACT set, whose profile is the flattest among the
ones considered, produces a completeness that is significantly lower than the
ERF curve. On the other hand, the Tramonte+23 set gives a completeness that
is overall higher than the ERF, the same effect observed with the simulation
set. In all cases, the differences with the ERF completeness seem to increase
with the cluster scale.

11.4.2 . Impact of cluster asymmetry

The second aspect of the simulation cluster images that was investigated
for its possible impact on the completeness is the cluster morphology, in par-
ticular its departure from spherical symmetry. This was quantified using the
multipolar ratios introduced in Sect. 6.1. In particular, I focused on the β2
multipolar ratio (i.e. the ratio between the power of the quadrupolar order
and the 0th order mutipole). As discussed in Chapter 7, this ratio is the lead-
ing non-spherical order inside clusters, and it is correlated with the cluster
ellipticity. Therefore, it was chosen as a proxy for the cluster morphology.

I computed the β2 parameter of the Compton-y images in the Simulation
set (before the convolution with the Planck beams), in the aperture ∆R =

[0, θ500]. I then selected the images with the top and bottom 25% β2 values,
consisting of 2231 images per group. These two subgroups of images were
named the “more elliptical” and “more spherical” subsets, respectively, and
represent the two extremes in cluster morphology in the simulation set. I
computed the completeness from the two subsets separately, and the results
are shown in Fig. 11.9.
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Figure 11.9: Same as in Fig. 11.3, comparing the completeness of two subsets
of the simulation images. Images with the 25% highest β2 (more elliptical) are
shown in red, while images with the 25% lowest β2 (more spherical) are shown
in blue.

Comparing the completeness of the more and less spherical images, we
see no appreciable difference between the two curves for cluster sizes be-
low ∼ 6 arcmin. From Fig. 11.9, we can see that the completeness functions
of the two subsets exhibit little differences for small cluster scales (below
∼ 6arcmin). This is to be expected, given that the Planck beam size is indeed
about 6arcmin on average (and reaches 10arcmin for the 100GHz channel), ef-
fectively erasing most smaller-scale morphological differences and symmetris-
ing the images. For larger scales, however, a small difference emerges be-
tween the two subsets. On average, the more elliptical images exhibit lower
completeness than the more spherical ones. This difference appears to be-
come more pronounced with larger cluster radii. This trend can be more
clearly visualised in Fig. 11.10, which shows difference between the complete-
ness of the “more spherical” and “more elliptical” subsets, in bins of θ500 and
Y5R500. From this figure, we indeed see that, for θ500 ≳ 6arcmin, the complete-
ness of the “more spherical” subset is overall higher than the “more elliptical”
subset completeness, and the difference between the two tends to grow for
larger cluster scales. This result indicates that the morphology of resolved
clusters has an impact on the detection probability (i.e. the completeness).
However, this impact remains relatively modest, at least within the range of
scales probed by the simulation cluster sample.

After investigating the completeness of the most and least spherical im-
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Figure 11.10: Difference in completeness between the ‘more spherical’ and
‘more elliptical’ subsets of the simulation images, in bins of (θ500, Y5R500). The
bins in blue are the ones in which the completeness from the ‘more spherical’
subset is higher, while those in red are those in which the completeness of
the ‘more elliptical’ subset dominates.

ages separately, I tested the impact of the full range of cluster morphologies
in the Simulation set on the completeness estimation. To this end, I compared
the completeness of the Simulation set with the completeness obtained from
a set of circular images whose profile was fitted to the average simulation
profile (i.e. the SimFit profile in Table 11.1)2. The two completeness functions
are shown in Fig. 11.11. We can see how the two curves show remarkable
agreement for most cluster scales, with small differences visible at high θ500,
where the completeness of the Simulation set is slightly smaller. Thus, we see
that the effect of cluster morphology is small when considering the full clus-
ter population. Consequently, we may conclude that, in the context of Planck
and within the range of scales probed by the Simulation set, the departure
of clusters from spherical symmetry does not induce a significant bias in the
completeness function.

Nevertheless, I demonstrated that the departure from spherical symme-
try of the cluster images does produce an effect on the completeness. It is
probable that this effect may be more pronounced in a survey where the
beam size is smaller.

2I also checked for mass and redshift dependence of the y profiles of the Simula-
tion set, and found only minor deviations, much smaller than the scatter of the full
sample.
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Figure 11.11: Same as in Fig. 11.3, comparing the completeness obtained from
the simulation images (in blue) with that from spherical images with the SimFit
profile (light blue).

11.5 . Impact on cluster count cosmology

In the previous Section, I analysed the effect on the completeness func-
tion of a mismatch between the cluster template assumed in the detection
and the “real” clusters to be detected. In this Section, I tested the impact of
changing the completeness function in the cosmological analysis. I chose two
completeness from the different sets we obtained, one above and one below
the ERF estimate: the simulation completeness and the PACT completeness.
By modifying the completeness function without altering other elements of
the analysis, such as the scaling relations, we are effectively testing a rather
extreme scenario in which the true clusters differ from the assumed model in
all the steps of the analysis. Consequently, the results presented here should
be regarded as indicative of a potential trend rather than as providing defini-
tive results.

As mentioned in the previous Section, the completeness functions shown
so far are computed with a selection in S/N equals to S/N > 4.5. In order
to perform the cosmological analysis with the Planck cosmological sample, I
recomputed the completeness with a threshold of S/N > 6.

To simplify the analysis, I chose to approximate the completeness ob-
tained from Monte Carlo injection with an adapted version of the ERF com-
pleteness. A simple prescription was employed to approximate the complete-
ness. The functional form of the ERF completeness in Eq. 10.7 was modified
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Figure 11.12: Comparison of the three completeness functions used in the cos-
mological analyses with the functions computed via Monte Carlo injection
of simulation images and spherical images with the Arnaud et al. (2010) and
Pointecouteau et al. (2021) profiles.

by the addition of a free multiplicative parameter in front of the per-patch
noise of the original Planck maps, namely σnew

Y i (θ500) = afit σY i(θ500). This
parameter was then optimised to fit the modified ERF completeness to the
completeness obtained from Monte Carlo injection. The fitted value of afit for
the simulation completeness is asimfit = 1.27, while for the PACT completeness
is aPACT

fit = 0.65. The fitted ERF completeness, compared to those obtained
with Monte Carlo is shown in Fig. 11.12, for one θ500 as an example.

I performed a cosmological analysis of cluster number counts, following
Planck Collaboration et al. (2016f). I used the Planck PSZ2 MMF3 cosmological
cluster sample (Planck Collaboration et al. 2016d), adding observational con-
straints from Big Bang nucleosynthesis (BBN Steigman 2008), Ωbh

2 = 0.022±
0.002, baryon acoustic oscillation (BAO) measurements from SDSS-III DR12
(Alam et al. 2017), and a prior on ns = 0.9624 ± 0.014 from Planck Collabo-
ration et al. (2014e). For the mass-observable scaling relations and mass-bias
parameters, I used the same priors as the baseline analysis in Planck Col-
laboration et al. (2016f). The constraints on the cosmological parameters are
obtained with a Markov-Chain Monte Carlo (MCMC) implemented in the code
CosmoMC (Lewis & Bridle 2002). I performed the analysis using the original ERF
completeness and the approximated Simulation and PACT completeness de-
scribed above. The results of the three analyses are compared in Fig. 11.13,
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filled contours represent 68% and 95% confidence regions.

for two cosmological parameters: the matter density parameter, Ωm, and the
amplitude of the matter power spectrum, σ8. The values of the constraints
are listed in Table 11.2.

From these results, we note how the change in the completeness shifts
the constraints on Ωm and σ8. In particular, a higher completeness with re-
spect to the ERF (in this case, the Simulation completeness) favours lower val-
ues of the two cosmological parameters. Conversely, a lower completeness
(the PACT completeness) favours higher values. For Ωm, the shift amounts
to about 0.6σ for the Simulation completeness, and about 1.1σ for that of
PACT. For σ8, the two shifts are 0.9σ and 1.8σ, respectively. The relation be-
tween the completeness function and these two cosmological parameters can
be understood in the following terms: as the completeness function informs
us about the fraction of detected clusters over the total, keeping the num-
ber of detected objects fixed with a higher (respectively, lower) completeness
means that the total number of ‘true’ clusters gets lower (higher). This, in turn,
favours a lower (higher) value for both Ωm and σ8. It is interesting to note how
the direction of the shift in the (Ωm, σ8) plane is the same as moving the prior
on the hydrostatic mass bias, as shown in Fig. 7 of Planck Collaboration et al.
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Table 11.2: Constraints on cosmological parameters obtained from the
analysis of Planck PSZ2 cluster number counts and BAO, using three
different completeness functions, as described in the text.

Simulation ERF PACT

Completeness Completeness Completeness

Ωm 0.301+0.019
−0.023 0.314+0.020

−0.024 0.337± 0.024

σ8 0.742+0.025
−0.033 0.770+0.027

−0.036 0.823+0.030
−0.039

(2016f).

11.6 . Discussion

One limit of this analysis comes from the restricted range of scales of the
Simulation set, approximately [3 − 14] arcmin, in comparison to the extent
of the Planck catalogue, which is approximately [1 − 30] arcmin. This is due
to the limitations of the simulation. First, the restricted volume of the sim-
ulation does not permit the formation of a significant number of high-mass
clusters. This becomes a limiting factor at high redshift, as there are insuffi-
cient high-mass clusters to sample the high-Y5R500 part of the completeness.
This translates to a lower limit in θ500. The second limitation is associated with
the difference in redshift between two successive snapshots, which is approx-
imately 0.01 at low redshifts. When translating the cluster distribution from
the mass–redshift plane to the (θ500, Y5R500) plane (as in Fig. 11.1), it becomes
evident that including snapshots with z < 0.05 produces large empty areas
at high θ500. These regions prevent a comprehensive coverage of the com-
pleteness in that region and effectively impose a higher limit on the cluster
scale.

The limited cluster scale range of the Simulation set precludes the inves-
tigation of the impact of realistic cluster shapes in the extremes of the Planck
scale range, in particular at large θ500, for which the effect of cluster morphol-
ogy is expected to be larger. However, this limit does not affect the results
concerning the impact of the cluster profile on the completeness. To con-
firm this, I computed the completeness using images of spherical cluster with
different pressure profiles (as in Sect. 11.2.2), but extending the sample to
reproduce the extent of the Planck catalogue. The results of this test are in
agreement with those presented in Sect. 11.4, and show the same differences
in the completeness functions obtained from images with different profiles,
both at higher and lower θ500.

An aspect of this analysis that could be perceived as overly simplistic is
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the use of an identical pressure profile across all circular images within each
set. This approach results in the injected cluster signals being merely scaled
versions of one another, which is clearly an unrealistic representation, given
the scatter around the mean profile observed in the data. The main reason
is that a realistic treatment of the detection process is already implemented
with the use of the Simulation set. Therefore, I treat the sets of spherically
symmetric images as idealised test cases, using them to understand the re-
sponse of the detection algorithm to different profile shapes. Moreover, the
impact of profile scatter among a set of spherical clusters has already been
detailed in Planck Collaboration et al. (2014c) and Planck Collaboration et al.
(2016d). These works observed that profile variations between clusters create
a widening effect in the completeness drop-off region. This effect is qualita-
tively different from the shift observed when using different mean profiles.
Therefore, including a scatter in the profile would not significantly impact the
conclusions of this work.

Another potential criticism of the work presented here is the use of a
single simulation. Indeed, the specific shape and values of the complete-
ness function identified for the Simulation set are undoubtedly simulation-
dependent to some extent. Nonetheless, it can be argued that the chosen
simulation is sufficiently realistic in terms of the pressure profile of the cluster
gas, as evidenced by the fact that the mean profile of the simulation clusters is
not significantly different from that observed in Planck and ACT by Tramonte
et al. (2023). Moreover, the primary result of this study is the evidence that
the completeness function depends not only on the cluster size, θ500, and to-
tal integrated signal, Y5R500, as assumed in the ERF estimate, but on additional
cluster characteristics. Notably, as demonstrated in Sect. 11.4, the steepness
of the Compton-y profile has a significant impact on the completeness.

11.7 . Conclusions

In this work, I analysed the completeness function for galaxy clusters de-
tected in SZ by Planck with the MMF algorithm, focusing on the case where the
‘true’ clusters differ from the model assumed in the detection method, both in
terms of shape and pressure profile. To this end, I performed a Monte Carlo
injection of SZ signal from synthetic clusters into cleaned Planck sky maps.
Comparing the injected sources with those detected by the MMF algorithm,
we computed the completeness in bins of injected (Y5R500, θ500) (i.e. total SZ
signal and radius of clusters). I used a set of realistic cluster images from the
IllustrisTNG simulation, as well as images of spherically symmetric clusters
generated from different pressure profiles.

The main result of the analysis presented in this Chapter is the apparent
correlation between the completeness function and the shape of the clusters’
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pressure profiles compared to the assumed cluster model on the complete-
ness. This effect is observed with both simulation images and circular images.
In particular, clusters with pressure profiles steeper than the template one
(like for the Simulation set and the Tramonte+23 set) produce completeness
functions that are higher than those obtained using clusters with the same
profile as in the detection template (the Standard set). Conversely, cluster
sets with flatter profiles (e.g., the PACT set) produce lower completeness than
the Standard set. The completeness of the Standard set is consistent with the
theoretical ERF estimate (based on the assumption of Gaussian noise in the
SZ signal), in agreement with Planck Collaboration et al. (2014c, 2016d). A pos-
sible explanation for this effect is found observing the estimated properties
of detected clusters, compared to their real values. I found that the estimated
cluster radius, θ500, is biased on average when the cluster profile differs from
the template. In particular, when the cluster profile is steeper (respectively,
flatter) than the template, the MMF algorithm tends to underestimate (over-
estimate) its θ500, which in turn leads to an increase (decrease) in its S/N, given
the noise dependence on the scale.

Furthermore, the impact of the cluster morphology on the completeness
was also tested. A comparison of the most and least spherical images of the
Simulation set revealed that the impact of asphericity is generally small, par-
ticularly below the Planck beam size. However, there is a tendency for the
“more elliptical subset to be less complete than the “more spherical” sub-
set. This effect becomes increasingly significant as the value of θ500 increases,
above the beam scale.

Finally, I investigated the effect of modifying the completeness function
in the cosmological analysis performed with the Planck cosmological cluster
sample (Planck Collaboration et al. 2016f). To test this effect, I chose two com-
pleteness functions from the ones computed in Sect. 11.4 that deviate sub-
stantially from the ERF estimate used in the baseline analysis. I found that
the constraints on the cosmological parameters Ωm and σ8 are affected by
the completeness, exhibiting a shift of approximately one σ. This shift was
observed to favour lower values of the cosmological parameters when the
completeness was higher, and vice versa. It should be noted that the scenario
tested here represents an extreme case in which the true clusters differ from
the assumed cluster model in all the steps of the analysis. It is noteworthy that
the shift due to changes in the completeness aligns with the shift due to the
hydrostatic mass bias reported in Planck Collaboration et al. (2016f). There-
fore, I suggest that, in future works, both effects be considered together.

This work demonstrates the necessity of propagating any bias and uncer-
tainty on the completeness into the galaxy cluster number count likelihood
for the conduct of robust and accurate cosmological analyses.
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Part IV

Conclusions
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12 - Conclusions

Galaxy clusters are important cosmological probes. They carry informa-
tion about the processes of structure formation and the Universe’s evolution
at low redshift (z ≲ 2), offering a complementary perspective to other probes,
such as CMB (e.g. Planck Collaboration et al. 2020a), galaxy clustering (e.g.
Elvin-Poole et al. 2018; Abbott et al. 2022), or weak lensing (e.g. Hildebrandt
et al. 2017; Hikage et al. 2019; Abbott et al. 2022). In particular, the number
of galaxy clusters as a function of mass proxy and redshift has been success-
fully used to constrain cosmological parameters (e.g. Rozo et al. 2010; Planck
Collaboration et al. 2016f; Bocquet et al. 2019; Costanzi et al. 2021; Ghirardini
et al. 2024). These successes have also showed that, in order to compare clus-
ter observations with theoretical predictions, it is essential to develop a com-
prehensive and accurate cluster model that accurately reflects the observed
characteristics and the underlying physical relationships between the observ-
able and the hidden quantities, such as the total mass. Indeed, the use of
an incorrect cluster model can lead to biased constraints on the cosmological
parameters (e.g. Salvati et al. 2020). Therefore, a large effort of the commu-
nity (e.g. Eckert et al. 2019; Clavico et al. 2019; Campitiello et al. 2022; Wicker
et al. 2023; Lebeau et al. 2024; Dupourqué et al. 2024) is put in improving the
understanding of the physical processes impacting galaxy clusters (for exam-
ple accretion, astrophysical feedback processes, and so on), and at the same
time ensuring that the simplifying assumptions made in cluster modelling do
not affect the cosmological results. In this Thesis, I pursued this line of work,
focusing on two main aspects: the characterisation of the matter distribu-
tion in cluster environments beyond spherical symmetry, and the impact of
assuming an inaccurate cluster model in cluster detection.

For most cosmological purposes, galaxy clusters are approximated as spher-
ically symmetric, isolated objects. In reality, clusters are in general non-spherical
(Limousin et al. 2013), and are connected to cosmic filaments, which deter-
mine an anisotropic matter accretion (e.g. Gouin et al. 2021; Rost et al. 2021).
Therefore, in Part II of this Thesis, I studied the distribution of matter inside
and around clusters, in particular focusing on the distribution of the gas com-
ponent. I performed three studies, which were presented in Chapters 7-9.

In Chapter 7, I investigated statistically the matter distribution in cluster
regions, in relation to clusters’ structural and physical properties. In particu-
lar, I studied the azimuthal distribution of matter in a set of simulated clus-
ters, quantifying their departure from spherical symmetry using the aperture
multipole decomposition. I first showed strong correlations between the az-
imuthal features of gas and DM inside clusters, and the structural properties

149



of clusters, confirming the ability of the multipole decomposition to trace dif-
ferent structural properties in a comprehensive framework. Then, I estab-
lished correlations between the level of asymmetry, traced by the β parame-
ter, and not-observable physical cluster properties, such as the cluster’s total
mass, dynamical state, accretion rate and formation redshift. In cluster out-
skirts, I showed that the matter asymmetry traces the presence of cosmic
filaments connected to the cluster. From these results, I could conclude that
matter distribution in and around galaxy clusters is influenced by different
cluster properties, and therefore it carries statistical information about the
clusters’ state and accretion history.

In Chapter 8, I focused on observations of a single cluster, Abell 2744, as
a case study for the detectability of filamentary structures in galaxy cluster
outskirts with statistical methods. Detecting filaments in cluster outskirts is a
challenging task, but a crucial one to study the properties of infalling matter
and its complex interactions with the cluster. I analysed the X-ray emission in
the outskirts of A2744, combining the analysis of the azimuthal distribution via
multipole decomposition with the results of the T-REx filament finder (which
I optimised to the use on X-ray data). For the first time in a blind analysis of
X-rays alone, I identified three filamentary structures connected to the clus-
ter. I also analysed the distribution of spectroscopic galaxies around A2744,
projected in 2D for the multipole analysis, and in 3D with T-REx . Of the three
filaments identified in X-rays, two were detected with both methods also from
the galaxy catalogue, while the third was less apparent, and it was clearly iden-
tified only by T-REx . In addition, T-REx identified two filamentary structures
along the line of sight, in the front and in the back of the cluster. In this work, I
proved the possibility of detecting cosmic filaments connected to galaxy clus-
ters, in agreement with (Eckert et al. 2015), in a way that could be automated
for the use in large X-ray surveys (e.g. XRISM Science Team 2020; CHEX-MATE
Collaboration et al. 2021, eROSITA Bulbul et al. 2024).

In Chapter 9, I presented a model to generate realistic galaxy cluster im-
ages given the cluster mass. The interest for such a model lies in its ability
to generate large samples of cluster images without the need to resort to
computationally expensive cosmological simulations. I trained a conditional
variational autoencoder based on convolutional neural networks, to gener-
ate images of the Compton-y parameter from clusters. The generated im-
ages present large-scale anisotropic features, but appear smoother and less
complex at small scales compared to the training images. The analysis of the
morphological estimators of the generated images reveals that these tend to
be, on average, more spherical and less concentrated than training images,
with differences also in the correlation with the cluster mass. The relation be-
tween cluster mass and integrated y signal is reproduced for the bulk of the
sample, but shows deviations at high mass. I concluded that, while the cur-
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rent results lack the sufficient quality to be used in place of high-resolution
cosmological simulations of galaxy clusters, the model-generated images still
exhibit improved realism in their morphological features compared to ana-
lytically generated images of perfectly spherically symmetric clusters. Nev-
ertheless, the generative model can be improved in future works, possibly
introducing more complex features in the neural network architecture.

In Part III, I focused on studying the impact of modelling assumptions on
the cosmological analyses with galaxy clusters. In particular, I investigated
the effect of the cluster template in the detection of galaxy clusters with the
matched multi-filter method (in its specific application on Planck data), and
its impact on the cosmological analysis through the selection function. In
Chapter 11, I computed the completeness function of galaxy clusters in Planck,
studying the case in which the real cluster population has properties that dif-
fer from the model assumed in the detection template. I showed that the
shape of the cluster profile has a strong impact on the completeness: clusters
with steeper profiles than the template produce higher completeness func-
tions, while flatter profiles leads to lower completeness. Studying the impact
of cluster morphology, I found that the departure from spherical symmetry
of the clusters has a moderate impact on the completeness, which tends to
increase with the cluster size. I then studied the impact of changing the com-
pleteness function obtained with different profiles in the Planck cosmological
analysis with clusters, and found that the constraints on the cosmological pa-
rameters are affected by the change, being shifted by approximately 1σ in my
tests. From this study I concluded that the galaxy cluster completeness func-
tion is affected by an inaccurate detection template, and that the uncertainties
on the completeness can, in turn, impact the cosmological results. Therefore,
these uncertainties must be correctly propagated in the cluster number count
likelihood to perform robust cosmological analyses with galaxy clusters.

The new generation of large cluster surveys (e.g. Ade et al. 2019; Euclid Col-
laboration et al. 2019), will provide cluster samples about one order of magni-
tude larger than current catalogues, which will significantly reduce the statis-
tical uncertainty of cosmological analysis with galaxy clusters. It is therefore
becoming increasingly important to account for and reduce the systematic
uncertainties associated with inaccurate modelling. This Thesis has its place
in this line of work.

151



152



List of Figures

2.1 Linear matter power spectrum at different redshifts. . . . . . . 26

2.2 Halo mass function from Press & Schechter (1974). . . . . . . . 32

3.1 Left: Schematic representation of the thermal Sunyaev-Zel’dovich
effect. Right: Distorted CMB spectrum due to thermal SZ effect
(solid line), compared to the undistorted one (dashed line). For
illustration purposes, the SZ effect shown here is about 1000
times stronger than that of a typical massive galaxy cluster. Fig-
ure taken from Carlstrom et al. (2002). . . . . . . . . . . . . . . 34

6.1 Illustration of the different angular symmetries associated to
the different multipole orders m. . . . . . . . . . . . . . . . . . 50

6.2 Visualisation of T-REx algorithm. Left: Result of T-REx algorithm
over data points of a toy dataset. Black dots are data points,
dashed blue line is the MST computed over the data, and red
solid lines are edges of the regularised tree. Right: Probability
map of the filamentary structures of the toy dataset. This was
obtained by repeating 200 times the optimisation procedure on
randomly selected subsets of the data. Figures taken from Bon-
naire et al. (2020). . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1 Stacked temperature-density diagrams for all gas cells around
galaxy clusters and groups in IllustrisTNG, considering different
radial apertures from cluster central regions R[R200] < 1 up to
4 < R[R200] < 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Top panel: Mean evolution of βm parameter for m = 1 to m = 9

as a function of the cluster radial distance. Bottom panel: Mean
evolution of βm parameter normalised by the sum of all order
contributions

∑9
i=1 βi from m = 1 to m = 9, as a function of the

cluster radial distance. . . . . . . . . . . . . . . . . . . . . . . . 58

153



7.3 Distribution of different multipolar ratios βm, for different com-
ponents and different apertures, as a function of the different
structural properties of clusters. Top left panel: β1 (dipole con-
tribution) as a function of the center of mass offset, Roff . Top
right panel: β2 (quadrupole contribution) as a function of the
2D ellipticity of DM, ϵ2D. Bottom left panel: β2 (quadrupole con-
tribution) as a function of the 3D ellipticity of DM, ϵ3D. Bottom
right panel: sum of high order multipoles βm contribution (sum-
ming contributions from m = 3, 4, 5, 6, 7, 8, 9) as a function of
the mass fraction of substructures. The βm values for the DM
distribution with apertures R < 0.5 × R200,R < 1 × R200 and
R < 2 × R200, are plotted in light, medium, and dark blue, re-
spectively. The βm values for hot gas distribution within R200

is plotted in red. The mean profiles of β are shown by solid
lines, and the errorbars are the errors on the mean computing
by bootstrap re-sampling. On each panel, the number of ob-
jects used to compute the average in each bin of x-axis (shown
in gray dotted lines) is written on the top of the figures in gray. 62

7.4 Distribution of the azimuthal symmetric excess β (as defined in
Eq. 7.5) as a function of the halo mass, inside clusters (R < R200)
in the top panel, and at cluster peripheries in (1 < R[R200] < 2)
in the bottom panel. The mean profiles of β and their errors
are shown in solid lines. The color of points and lines represent
different matter component: dark matter (black), hot gas (red),
WHIM (orange), and all gas (light brown). On each panel, the
number of objects used to compute the average in each bin of
x-axis (shown in gray dotted lines) is written on the top of the
figures in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.5 Distribution of the azimuthal symmetric excess β (as defined in
Eq. 7.5) computed at cluster peripheries in (1 < R[R200] < 2)
as a function of the halo connectivity, for DM (black) and WHIM
(orange). The mean profiles of β and their errors are shown in
solid lines. The number of objects used to compute the average
in each bin of x-axis (shown in gray dotted lines) is written on
the top of the figures in gray. . . . . . . . . . . . . . . . . . . . . 67

154



7.6 Distribution of the azimuthal symmetric excess β (as defined in
Eq. 7.5) computed inside clusters (R < R200) in top panels, and
at cluster peripheries in (1 < R[R200] < 2) in bottom panels, as
a function of different halo properties: level of relaxation on the
left, mass accretion rate in the middle, and formation redshift in
the right. The mean profiles of β and their errors are shown in
solid lines. The number of objects used to compute the average
in each bin of x-axis (shown in gray dotted lines) is written on
the top of the figures in gray. . . . . . . . . . . . . . . . . . . . 68

8.1 X-ray maps of the area around A2744. Left panel: point-source-
filtered surface brightness map in the soft energy band, [0.4 −
1.2] keV. Right panel: “hit map”, obtained from the soft-band
surface brightness image setting to 1 all pixels with values > 0. 75

8.2 Selection of galaxies in the region of A2744. Left panel: redshift
histogram of the full catalogue of Owers et al. (2011). The clus-
ter galaxy overdensity is clearly identifiable as the peak around
z ∼ 0.3. The red dashed lines show the redshift selection oper-
ated in this work. Right panel: projected 2D radius and redshift
distribution of galaxies around A2744. The red points are the
galaxies selected to probe the environment of A2744, the blue
ones are the other galaxies in the catalogue. . . . . . . . . . . . 76

8.3 Multipolar analysis of the X-ray data. Left panel: Distribution
of the multipolar ratio βm as a function of multipole order m,
computed in one radial aperture (∆R)x−ray = [0.6, 1.4]. The
maximum order used in the reconstructed map (right panel),
mmax,rec = 7, is shown as a dashed vertical line. Right panel:
The reconstructed map in the aperture (∆R)x−ray. The white
contours represent the threshold of 60% of the map maximum,
and identify the relevant filamentary structures, as described in
the text. For reference, the X-ray hit-map is shown in the back-
ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.4 Multipolar analysis of the X-ray data. Same as Fig. 8.3 but con-
sidering two radial apertures, (∆R)in = [0.6, 1.0]Rvir (in green)
and (∆R)out = [1.0, 1.4]Rvir (in orange). . . . . . . . . . . . . . 81

8.5 Multipolar analysis of the galaxy data. Same as Fig. 8.3, but con-
sidering the 2D projected galaxy distribution inside one radial
aperture (∆R)gal = [0.6, 2.1]Rvir. . . . . . . . . . . . . . . . . . 83

8.6 Probability map of the filamentary structures from X-ray data,
obtained with T-REx . Only pixels with probability larger than
0.1 are shown. For reference, the X-ray hit-map is shown in the
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

155



8.7 Three-dimensional distribution of galaxies (red points) in A2744,
superimposed to the 3D probability map of the filamentary struc-
tures obtained with T-REx on the galaxy data. Only voxels with
probability larger than 0.1 are shown. Left: projection along the
line of sight. Middle and right: projections perpendicular to the
line of sight, the viewer is on the left in both panels. . . . . . . . 85

8.8 Comparison of the T-REx probability map from X-ray data (Fig.
8.6) and the face-on projection of the T-REx probability map from
galaxy data (Fig. 8.7, left panel). For reference, both the X-ray
hit-map and the galaxy distribution are shown in the background. 87

8.9 Results of the multipole decomposition and T-REx analyses, us-
ing the X-ray data with just the high-reliability point sources masked
(see text). Left and middle: multipole analysis, same as Fig. 8.3.
Right: T-REx probability map, same as Fig. 8.6. . . . . . . . . . . 88

8.10 Onion decomposition of the minimum spanning tree constructed
from the X-ray data. The vertical dashed line represents the de-
noising level l chosen in the analysis. . . . . . . . . . . . . . . . 90

8.11 Results of the multipole and T-REx analyses, on X-ray data (left)
and on galaxy data (right). The reconstructed map from the mul-
tipole decomposition is superimposed on the T-REx probability
map. The white ellipses correspond to the regions identified in
Eckert et al. (2015). For reference, the X-ray hit-map is shown in
the background. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.1 Comparison of the resolutions (baryonic particle mass or tar-
get cell mass) versus the number of simulated massive halos
with M200 ≤ 1015M⊙, for different cosmological, hydrodynami-
cal simulations from the literature. Full boxes are shown as cir-
cles, and zoom-in suites as diamonds. The grey diagonal lines
indicate the number of baryonic resolution elements. The sim-
ulations shown are IllustrisTNG (Nelson et al. 2019a), Millenni-
umTNG (Pakmor et al. 2023), SLOW (Dolag et al. 2023) BAHAMAS
(McCarthy et al. 2017), cosmo-OWLS (Le Brun et al. 2014), Mag-
neticum (Dolag et al. 2016), FLAMINGO (Schaye et al. 2023), TNG-
Cluster (Nelson et al. 2024), MACSIS (Barnes et al. 2017b), Hydrangea/C-
EAGLE (Bahé et al. 2017; Barnes et al. 2017a), Rhapsody-G/C (Hahn
et al. 2017; Pellissier et al. 2023), FABLE (Henden et al. 2018), The
Three Hundred Project (Cui et al. 2018), DIANOGA (Bassini et al.
2020), and MUSIC (Sembolini et al. 2013) . Figure taken from Nel-
son et al. (2024). . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

156



9.2 Schematic representation of the conditional variational autoen-
coder used in this work. During training, a cluster image from
the simulation is given as input to the encoder (in orange in the
picture), which compresses its information into a multivariate
Gaussian distribution in the latent space, N (z;µ, diag(σ)), tak-
ing into account the mass of the cluster (concatenated to the last
layer of the encoder). A sample from this distribution, together
with the cluster mass, is taken as input by the decoder, which
produces another cluster image, trying to make it look as simi-
lar as possible to the input one. Once the training is completed,
only the decoder is used to generate new images, by inputting
samples from the unit Gaussian, N (0, 1), and the desired clus-
ter mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.3 Examples of cluster images from the training set (left), and gen-
erated images from the CVAE, with roughly similar masses (right).
All images are in logarithmic scale, transformed according to Eq.
9.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.4 Integrated Compton-y parameter, Y200, as a function of cluster
mass, M200, for the simulated cluster images (in blue), and the
generated cluster images (in orange). . . . . . . . . . . . . . . . 111

9.5 Distribution of morphological parameters of cluster images, for
the full population (top panels), and as a function of the cluster
mass (bottom panels). Left panels: distribution of the β param-
eter, quantifying the overall level of anisotropy of the images
inside R200. Right panels: distribution of the concentration pa-
rameter, see definition in the text. In all panels: in blue, simu-
lated images; in orange, generated images. . . . . . . . . . . . 112

11.1 Distribution of the galaxy clusters selected from the TNG300
simulation. Top panel: Mass and redshift distribution of the
galaxy clusters colour coded according to their Y5R500. The vi-
olet line shows the lower mass limit imposed in the selection
and described in the text. Bottom panel: Cluster distribution in
integrated y signal, Y5R500, and angular scale, θ500, colour coded
according to cluster mass M500. . . . . . . . . . . . . . . . . . . 128

11.2 Compton-y profiles obtained from the gNFW profiles of Table
11.1, in units of Y500/R

2
500, as a function of normalized radius,

R/R500. In orange: Profile from Arnaud et al. (2010). In green:
Profile from Planck Collaboration et al. (2013a); in pink: profile
from Pointecouteau et al. (2021). In red: Profile from Tramonte
et al. (2023). In purple: ‘Peaked’ profile. In light blue: ‘SimFit’ pro-
file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

157



11.3 Completeness as a function of Y5R500 in six θ500 bins, computed
with Monte Carlo injection for the simulation and circular sets of
clusters (in blue and orange, respectively), and estimated with
the ERF approximation, in green. The shaded areas represent
the uncertainty on the completeness in each bin, computed via
bootstrap resampling. . . . . . . . . . . . . . . . . . . . . . . . . 133

11.4 Average Compton-y profile of simulation images (in blue, shaded
area corresponds to standard deviation of profile sample), com-
pared with the y profile obtained from the Arnaud et al. (2010)
pressure profile (in orange) and the ‘peaked’ profile described
in the text (in purple), in units of R500 and Y500/R

2
500. . . . . . . 134

11.5 Comparison of real cluster properties vs detected ones. The top
row shows the total integrated SZ flux, Y5R500, while the bot-
tom row shows the cluster radius, θ500. The columns show two
different sets of cluster images: simulation images and circular
images with the Arnaud et al. (2010) profile. . . . . . . . . . . . 135

11.6 Same as in Fig. 11.3, comparing the completeness obtained from
the simulation images (blue) with that from the Peaked profile
images (purple) and the ERF completeness (green). . . . . . . . 136

11.7 Compton-y profiles in units of Y500/R2
500 as a function of nor-

malized radius, R/R500. Blue: Mean y profile of the simulation
images. Orange: Profile from Arnaud et al. (2010). Green: Pro-
file from Planck Collaboration et al. (2013a). Pink: Profile from
Pointecouteau et al. (2021). Red: Profile from Tramonte et al.
(2023). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

11.8 Same as in Fig. 11.3, comparing the completeness from images
with three different observed profiles. Green: Planck set (profile
from Planck Collaboration et al. 2013a). Pink: PACT set (profile
from Pointecouteau et al. 2021). Red: Tramonte+23 set (profile
from Tramonte et al. 2023). . . . . . . . . . . . . . . . . . . . . . 137

11.9 Same as in Fig. 11.3, comparing the completeness of two subsets
of the simulation images. Images with the 25% highest β2 (more
elliptical) are shown in red, while images with the 25% lowest β2
(more spherical) are shown in blue. . . . . . . . . . . . . . . . . 139

11.10 Difference in completeness between the ‘more spherical’ and
‘more elliptical’ subsets of the simulation images, in bins of (θ500,
Y5R500). The bins in blue are the ones in which the completeness
from the ‘more spherical’ subset is higher, while those in red are
those in which the completeness of the ‘more elliptical’ subset
dominates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

158



11.11 Same as in Fig. 11.3, comparing the completeness obtained from
the simulation images (in blue) with that from spherical images
with the SimFit profile (light blue). . . . . . . . . . . . . . . . . . 141

11.12 Comparison of the three completeness functions used in the
cosmological analyses with the functions computed via Monte
Carlo injection of simulation images and spherical images with
the Arnaud et al. (2010) and Pointecouteau et al. (2021) profiles. 142

11.13 Constraints on cosmological parameters (Ωm, σ8) from the Planck
PSZ2 cluster number counts and BAO data, with three differ-
ent completeness functions: the ‘standard’ ERF completeness
(same as in Planck Collaboration et al. 2016f), and two ‘fitted’ ver-
sions obtained by rescaling the noise per patch by a constant in
order to reproduce the completeness derived from the simu-
lation clusters and the PACT (Pointecouteau et al. 2021) profile
clusters. The filled contours represent 68% and 95% confidence
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

159



160



List of Tables

9.1 Architecture of the encoder and decoder of the CVAE used in
this work. Each row represents a layer (or group of layers) in
the network, and the information flows from top to bottom.
The output dimensions in parenthesis are the dimensions of the
convolved images (one for each convolutional kernel), while the
numbers without parenthesis represent the full output of the
layer. The output of the last layer of the encoder represents the
means and standard deviations of the latent space distribution,
N (z;µ, diag(σ)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.1 Generalised NFW pressure profile parameters of the different
sets of spherical images. In order: Arnaud et al. (2010) profile
(Standard), Planck Collaboration et al. (2013a) profile (Planck),
Pointecouteau et al. (2021) profile (PACT), Tramonte et al. (2023)
profile (Tramonte+23), profile obtained changing the c500 of Ar-
naud et al. (2010) (Peaked), and profile obtained fitting the aver-
age profile from the simulation images (SimFit). . . . . . . . . . 130

11.2 Constraints on cosmological parameters obtained from the anal-
ysis of Planck PSZ2 cluster number counts and BAO, using three
different completeness functions, as described in the text. . . . 144

161



162



Bibliography

Aarseth, S. J., Gott, J. R., I., & Turner, E. L. 1979, ApJ, 228, 664

Abazajian, K., Abdulghafour, A., Addison, G. E., et al. 2022, arXiv e-prints,
arXiv:2203.08024

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, Nature, 551, 85

Abbott, T. M. C., Aguena, M., Alarcon, A., et al. 2020, Phys. Rev. D, 102, 023509

Abbott, T. M. C., Aguena, M., Alarcon, A., et al. 2022, Phys. Rev. D, 105, 023520

Abell, G. O. 1958, ApJS, 3, 211

Ade, P., Aguirre, J., Ahmed, Z., et al. 2019, J. Cosmology Astropart. Phys., 2019,
056

Agarwal, S., Davé, R., & Bassett, B. A. 2018, MNRAS, 478, 3410

Aghanim, N., Douspis, M., Hurier, G., et al. 2019, A&A, 632, A47

Aghanim, N., Tuominen, T., Bonjean, V., et al. 2024, arXiv e-prints,
arXiv:2402.18455

Alam, S., Ata, M., Bailey, S., et al. 2017, MNRAS, 470, 2617

Alam, S., Aubert, M., Avila, S., et al. 2021, Phys. Rev. D, 103, 083533

Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARA&A, 49, 409

Allen, S. W., Rapetti, D. A., Schmidt, R. W., et al. 2008, MNRAS, 383, 879

Allgood, B., Flores, R. A., Primack, J. R., et al. 2006, MNRAS, 367, 1781

Andrade-Santos, F., Jones, C., Forman, W. R., et al. 2017, ApJ, 843, 76

Andreon, S. 2015, A&A, 582, A100

Andrianomena, S., Hassan, S., & Villaescusa-Navarro, F. 2024, arXiv e-prints,
arXiv:2402.10997

Ansarinejad, B., Raghunathan, S., Abbott, T. M. C., et al. 2024, J. Cosmology
Astropart. Phys., 2024, 024

Aragón-Calvo, M. A., Platen, E., van de Weygaert, R., & Szalay, A. S. 2010a, ApJ,
723, 364

163



Aragón-Calvo, M. A., van de Weygaert, R., & Jones, B. J. T. 2010b, MNRAS, 408,
2163

Arnaud, M., Pratt, G. W., Piffaretti, R., et al. 2010, A&A, 517, A92

Arora, S. & Zhang, Y. 2017, arXiv e-prints, arXiv:1706.08224

Asgari, M., Mead, A. J., & Heymans, C. 2023, The Open Journal of Astrophysics,
6, 39

Bahé, Y. M., Barnes, D. J., Dalla Vecchia, C., et al. 2017, MNRAS, 470, 4186

Balmès, I., Rasera, Y., Corasaniti, P. S., & Alimi, J. M. 2014, MNRAS, 437, 2328

Barnes, D. J., Kay, S. T., Bahé, Y. M., et al. 2017a, MNRAS, 471, 1088

Barnes, D. J., Kay, S. T., Henson, M. A., et al. 2017b, MNRAS, 465, 213

Bartelmann, M. 2010, Classical and Quantum Gravity, 27, 233001

Bassini, L., Rasia, E., Borgani, S., et al. 2020, A&A, 642, A37

Bayes, M. & Price, M. 1763, Philosophical Transactions of the Royal Society of
London Series I, 53, 370

Beisbart, C., Valdarnini, R., & Buchert, T. 2001, A&A, 379, 412

Bellagamba, F., Roncarelli, M., Maturi, M., & Moscardini, L. 2018, MNRAS, 473,
5221

Bergamini, P., Acebron, A., Grillo, C., et al. 2023, ApJ, 952, 84

Bhattacharya, S., Heitmann, K., White, M., et al. 2011, ApJ, 732, 122

Biffi, V., Borgani, S., Murante, G., et al. 2016, ApJ, 827, 112

Binggeli, B. 1982, A&A, 107, 338

Binney, J. & Tremaine, S. 1987, Galactic dynamics

Birkinshaw, M. 1999, Phys. Rep., 310, 97

Birrer, S., Shajib, A. J., Galan, A., et al. 2020, A&A, 643, A165

Bleem, L. E., Klein, M., Abbot, T. M. C., et al. 2024, The Open Journal of Astro-
physics, 7, 13

Bleem, L. E., Stalder, B., de Haan, T., et al. 2015, ApJS, 216, 27

Bocquet, S., Dietrich, J. P., Schrabback, T., et al. 2019, ApJ, 878, 55

164



Bocquet, S., Grandis, S., Bleem, L. E., et al. 2023, arXiv e-prints, arXiv:2310.12213

Bocquet, S., Grandis, S., Bleem, L. E., et al. 2024, arXiv e-prints, arXiv:2401.02075

Bocquet, S., Heitmann, K., Habib, S., et al. 2020, ApJ, 901, 5

Böhringer, H., Chon, G., & Fukugita, M. 2017, A&A, 608, A65

Bond, J. R., Kofman, L., & Pogosyan, D. 1996, Nature, 380, 603

Bonjean, V., Aghanim, N., Salomé, P., Douspis, M., & Beelen, A. 2018, A&A, 609,
A49

Bonnaire, T., Aghanim, N., Decelle, A., & Douspis, M. 2020, A&A, 637, A18

Bonnaire, T., Decelle, A., & Aghanim, N. 2022, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44, 9119

Bonnet, G., Nezri, E., Kraljic, K., & Schimd, C. 2022, MNRAS, 513, 4929

Borgani, S. & Kravtsov, A. 2011, Advanced Science Letters, 4, 204

Borgani, S., Plionis, M., & Kolokotronis, V. 1999, MNRAS, 305, 866

Boruah, S. S., Fiedorowicz, P., Garcia, R., et al. 2024, arXiv e-prints,
arXiv:2406.05867

Boschin, W., Girardi, M., Spolaor, M., & Barrena, R. 2006, A&A, 449, 461

Böss, L. M., Steinwandel, U. P., Dolag, K., & Lesch, H. 2023, MNRAS, 519, 548

Bower, R. G., Lucey, J. R., & Ellis, R. S. 1992, MNRAS, 254, 601

Bowman, S. R., Vilnis, L., Vinyals, O., et al. 2015, arXiv e-prints, arXiv:1511.06349

Boylan-Kolchin, M., Springel, V., White, S. D. M., Jenkins, A., & Lemson, G. 2009,
MNRAS, 398, 1150

Braglia, F., Pierini, D., & Böhringer, H. 2007, A&A, 470, 425

Braglia, F. G., Pierini, D., Biviano, A., & Böhringer, H. 2009, A&A, 500, 947

Brunetti, G. & Jones, T. W. 2014, International Journal of Modern Physics D, 23,
1430007

Brunner, H., Liu, T., Lamer, G., et al. 2022, A&A, 661, A1

Buchert, T. 1994, MNRAS, 267, 811

Bulbul, E., Liu, A., Kluge, M., et al. 2024, arXiv e-prints, arXiv:2402.08452

165



Bulbul, E., Randall, S. W., Bayliss, M., et al. 2016, ApJ, 818, 131

Buote, D. A. & Tsai, J. C. 1995, ApJ, 452, 522

Campitiello, M. G., Ettori, S., Lovisari, L., et al. 2022, A&A, 665, A117

Capalbo, V., De Petris, M., De Luca, F., et al. 2021, MNRAS, 503, 6155

Carlstrom, J. E., Holder, G. P., & Reese, E. D. 2002, ARA&A, 40, 643

Cautun, M., van de Weygaert, R., & Jones, B. J. T. 2013, MNRAS, 429, 1286

Cerini, G., Cappelluti, N., & Natarajan, P. 2023, ApJ, 945, 152

Chen, Y., Mo, H. J., Li, C., et al. 2020, ApJ, 899, 81

CHEX-MATE Collaboration, Arnaud, M., Ettori, S., et al. 2021, A&A, 650, A104

Cialone, G., De Petris, M., Sembolini, F., et al. 2018, MNRAS, 477, 139

Clampitt, J. & Jain, B. 2016, MNRAS, 457, 4135

Clavico, S., De Grandi, S., Ghizzardi, S., et al. 2019, A&A, 632, A27

Clerc, N. & Finoguenov, A. 2023, in Handbook of X-ray and Gamma-ray Astro-
physics. Edited by Cosimo Bambi and Andrea Santangelo, 123

Clerc, N., Merloni, A., Zhang, Y. Y., et al. 2016, MNRAS, 463, 4490

Clowe, D., Bradač, M., Gonzalez, A. H., et al. 2006, ApJ, 648, L109

Codis, S., Pogosyan, D., & Pichon, C. 2018, MNRAS, 479, 973

Cole, S. & Lacey, C. 1996, MNRAS, 281, 716

Coles, P. & Lucchin, F. 2002, Cosmology: The Origin and Evolution of Cosmic
Structure, Second Edition

Corasaniti, P. S., Ettori, S., Rasera, Y., et al. 2018, ApJ, 862, 40

Corasaniti, P.-S., Sereno, M., & Ettori, S. 2021, ApJ, 911, 82

Costanzi, M., Rozo, E., Simet, M., et al. 2019, MNRAS, 488, 4779

Costanzi, M., Saro, A., Bocquet, S., et al. 2021, Phys. Rev. D, 103, 043522

Couch, W. J., Barger, A. J., Smail, I., Ellis, R. S., & Sharples, R. M. 1998, ApJ, 497,
188

Couch, W. J. & Sharples, R. M. 1987, MNRAS, 229, 423

166



Cui, W., Knebe, A., Yepes, G., et al. 2018, MNRAS, 480, 2898

Cui, W., Power, C., Borgani, S., et al. 2017, MNRAS, 464, 2502

Dai, B. & Seljak, U. 2021, Proceedings of the National Academy of Science, 118,
e2020324118

Dalton, G. B., Maddox, S. J., Sutherland, W. J., & Efstathiou, G. 1997, MNRAS,
289, 263

Darragh Ford, E., Laigle, C., Gozaliasl, G., et al. 2019, MNRAS, 489, 5695

Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ, 292, 371

de Andres, D., Yepes, G., Sembolini, F., et al. 2023, MNRAS, 518, 111

de Graaff, A., Cai, Y.-C., Heymans, C., & Peacock, J. A. 2019, A&A, 624, A48

de Haan, T., Benson, B. A., Bleem, L. E., et al. 2016, ApJ, 832, 95

De Luca, F., De Petris, M., Yepes, G., et al. 2021, MNRAS, 504, 5383

Del Popolo, A., Pace, F., & Le Delliou, M. 2017, J. Cosmology Astropart. Phys.,
2017, 032

Delgado, A. M., Wadekar, D., Hadzhiyska, B., et al. 2022, MNRAS, 515, 2733

Despali, G., Giocoli, C., Angulo, R. E., et al. 2016, MNRAS, 456, 2486

Despali, G., Giocoli, C., & Tormen, G. 2014, MNRAS, 443, 3208

Dhariwal, P. & Nichol, A. 2021, arXiv e-prints, arXiv:2105.05233

Diemer, B. & Kravtsov, A. V. 2014, ApJ, 789, 1

Diemer, B., More, S., & Kravtsov, A. V. 2013, ApJ, 766, 25

Dietrich, J. P., Schneider, P., Clowe, D., Romano-Díaz, E., & Kerp, J. 2005, A&A,
440, 453

Dolag, K., Komatsu, E., & Sunyaev, R. 2016, MNRAS, 463, 1797

Dolag, K. & Schindler, S. 2000, A&A, 364, 491

Dolag, K., Sorce, J. G., Pilipenko, S., et al. 2023, A&A, 677, A169

Doubrawa, L., Cypriano, E. S., Finoguenov, A., et al. 2023, MNRAS, 526, 4285

Dubois, Y., Pichon, C., Welker, C., et al. 2014, MNRAS, 444, 1453

167



Dupourqué, S., Clerc, N., Pointecouteau, E., et al. 2024, A&A, 687, A58

Eckert, D., Ettori, S., Pointecouteau, E., et al. 2017, Astronomische Nachrichten,
338, 293

Eckert, D., Finoguenov, A., Ghirardini, V., et al. 2020, The Open Journal of As-
trophysics, 3, 12

Eckert, D., Ghirardini, V., Ettori, S., et al. 2019, A&A, 621, A40

Eckert, D., Jauzac, M., Shan, H., et al. 2015, Nature, 528, 105

Eckert, D., Jauzac, M., Vazza, F., et al. 2016, MNRAS, 461, 1302

Eckert, D., Molendi, S., & Paltani, S. 2011, A&A, 526, A79

Eckert, D., Vazza, F., Ettori, S., et al. 2012, A&A, 541, A57

Efstathiou, G. 1979, MNRAS, 187, 117

Einasto, J. 1965, Trudy Astrofizicheskogo Instituta Alma-Ata, 5, 87

Einasto, M., Deshev, B., Tenjes, P., et al. 2020, A&A, 641, A172

Einasto, M., Kipper, R., Tenjes, P., et al. 2021, A&A, 649, A51

Einstein, A. 1916, Annalen der Physik, 354, 769

Eisenhardt, P. R. M., Brodwin, M., Gonzalez, A. H., et al. 2008, ApJ, 684, 905

Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, ApJ, 633, 560

Elvin-Poole, J., Crocce, M., Ross, A. J., et al. 2018, Phys. Rev. D, 98, 042006

Euclid Collaboration, Adam, R., Vannier, M., et al. 2019, A&A, 627, A23

Euclid Collaboration, Bretonnière, H., Huertas-Company, M., et al. 2022, A&A,
657, A90

Euclid Collaboration, Mellier, Y., Abdurro’uf, et al. 2024, arXiv e-prints,
arXiv:2405.13491

Evrard, A. E. 1988, MNRAS, 235, 911

Evrard, A. E. 1997, MNRAS, 292, 289

Feder, R. M., Berger, P., & Stein, G. 2020, Phys. Rev. D, 102, 103504

Finoguenov, A., Rykoff, E., Clerc, N., et al. 2020, A&A, 638, A114

168



Freedman, W. L., Madore, B. F., Hatt, D., et al. 2019, ApJ, 882, 34

Friedmann, A. 1922, Zeitschrift fur Physik, 10, 377

Fumagalli, A., Costanzi, M., Saro, A., Castro, T., & Borgani, S. 2024, A&A, 682,
A148

Galárraga-Espinosa, D., Aghanim, N., Langer, M., Gouin, C., & Malavasi, N.
2020, A&A, 641, A173

Galárraga-Espinosa, D., Aghanim, N., Langer, M., & Tanimura, H. 2021, A&A,
649, A117

Galárraga-Espinosa, D., Cadiou, C., Gouin, C., et al. 2023, arXiv e-prints,
arXiv:2309.08659

Gallo, S., Aghanim, N., Gouin, C., et al. 2024a, arXiv e-prints, arXiv:2407.10518

Gallo, S., Douspis, M., Soubrié, E., & Salvati, L. 2024b, A&A, 686, A15

Gavazzi, R., Adami, C., Durret, F., et al. 2009, A&A, 498, L33

Ghirardini, V., Bahar, Y. E., Bulbul, E., et al. 2022, A&A, 661, A12

Ghirardini, V., Bulbul, E., Artis, E., et al. 2024, arXiv e-prints, arXiv:2402.08458

Ghirardini, V., Eckert, D., Ettori, S., et al. 2019, A&A, 621, A41

Gianfagna, G., Rasia, E., Cui, W., De Petris, M., & Yepes, G. 2022, in European
Physical Journal Web of Conferences, Vol. 257, mm Universe @ NIKA2 - Ob-
serving the mm Universe with the NIKA2 Camera, 00020

Gladders, M. D. & Yee, H. K. C. 2000, AJ, 120, 2148

Gonzalez, A. 2014, in Building the Euclid Cluster Survey - Scientific Program, 7

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., et al. 2014, arXiv e-prints,
arXiv:1406.2661

Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759

Gouin, C., Aghanim, N., Bonjean, V., & Douspis, M. 2020, A&A, 635, A195

Gouin, C., Bonamente, M., Galárraga-Espinosa, D., Walker, S., & Mirakhor, M.
2023, A&A, 680, A94

Gouin, C., Bonnaire, T., & Aghanim, N. 2021, A&A, 651, A56

Gouin, C., Gallo, S., & Aghanim, N. 2022, A&A, 664, A198

169



Gouin, C., Gavazzi, R., Codis, S., et al. 2017, A&A, 605, A27

Govoni, F., Enßlin, T. A., Feretti, L., & Giovannini, G. 2001, A&A, 369, 441

Green, S. B., Ntampaka, M., Nagai, D., et al. 2019, ApJ, 884, 33

Grover, A., Dhar, M., & Ermon, S. 2017, arXiv e-prints, arXiv:1705.08868

Guth, A. H. & Pi, S. Y. 1982, Phys. Rev. Lett., 49, 1110

Haggar, R., Gray, M. E., Pearce, F. R., et al. 2020, MNRAS, 492, 6074

Hahn, O., Martizzi, D., Wu, H.-Y., et al. 2017, MNRAS, 470, 166

Hahn, O., Porciani, C., Carollo, C. M., & Dekel, A. 2007, MNRAS, 375, 489

Hamana, T., Shirasaki, M., Miyazaki, S., et al. 2020, PASJ, 72, 16

Han, D., Sehgal, N., & Villaescusa-Navarro, F. 2021, Phys. Rev. D, 104, 123521

Harvey, D. R. & Massey, R. 2024, MNRAS, 529, 802

Hattori, S., Ota, N., Zhang, Y.-Y., Akamatsu, H., & Finoguenov, A. 2017, PASJ, 69,
39

Heath, D. J. 1977, MNRAS, 179, 351

Hébert-Dufresne, L., Grochow, J. A., & Allard, A. 2016, Scientific Reports, 6,
31708

Henden, N. A., Puchwein, E., Shen, S., & Sijacki, D. 2018, MNRAS, 479, 5385

Herranz, D., Sanz, J. L., Barreiro, R. B., & Martínez-González, E. 2002, ApJ, 580,
610

Higgins, I., Matthey, L., Pal, A., et al. 2017, in International Conference on Learn-
ing Representations

Hikage, C., Oguri, M., Hamana, T., et al. 2019, PASJ, 71, 43

Hildebrandt, H., Viola, M., Heymans, C., et al. 2017, MNRAS, 465, 1454

Hilton, M., Sifón, C., Naess, S., et al. 2021, ApJS, 253, 3

Ho, J., Jain, A., & Abbeel, P. 2020, arXiv e-prints, arXiv:2006.11239

Hubble, E. 1929, Proceedings of the National Academy of Science, 15, 168

Hubble, E. P. 1925, ApJ, 62, 409

170



Hubble, E. P. 1926, ApJ, 64, 321

Huterer, D. 2023, A&A Rev., 31, 2

Hwang, H. S., Geller, M. J., Park, C., et al. 2016, ApJ, 818, 173

Ibaraki, Y., Ota, N., Akamatsu, H., Zhang, Y. Y., & Finoguenov, A. 2014, A&A, 562,
A11

Itoh, N., Kohyama, Y., & Nozawa, S. 1998, ApJ, 502, 7

Jackson, J. C. 1972, MNRAS, 156, 1P

Jamieson, D., Li, Y., de Oliveira, R. A., et al. 2023, ApJ, 952, 145

Jauzac, M., Eckert, D., Schwinn, J., et al. 2016, MNRAS, 463, 3876

Jauzac, M., Richard, J., Jullo, E., et al. 2015, MNRAS, 452, 1437

Jaynes, E. T. 1968, IEEE Transactions on Systems Science and Cybernetics, 4,
227

Jeans, J. H. 1902, Philosophical Transactions of the Royal Society of London
Series A, 199, 1

Jeffreys, H. 1946, Proceedings of the Royal Society of London Series A, 186, 453

Jimenez Rezende, D. & Mohamed, S. 2015, arXiv e-prints, arXiv:1505.05770

Jo, Y. & Kim, J.-h. 2019, MNRAS, 489, 3565

Kaiser, N. 1986, MNRAS, 222, 323

Kamdar, H. M., Turk, M. J., & Brunner, R. J. 2016, MNRAS, 457, 1162

Katz, N. & White, S. D. M. 1993, ApJ, 412, 455

Kempner, J. C. & David, L. P. 2004, MNRAS, 349, 385

Kingma, D. P. & Ba, J. 2014, arXiv e-prints, arXiv:1412.6980

Kingma, D. P., Salimans, T., Jozefowicz, R., et al. 2016, arXiv e-prints,
arXiv:1606.04934

Kingma, D. P. & Welling, M. 2013, arXiv e-prints, arXiv:1312.6114

Kingma, D. P. & Welling, M. 2019, arXiv e-prints, arXiv:1906.02691

Kodi Ramanah, D., Charnock, T., Villaescusa-Navarro, F., & Wandelt, B. D. 2020,
MNRAS, 495, 4227

171



Koester, B. P., McKay, T. A., Annis, J., et al. 2007, ApJ, 660, 221

Komatsu, E. & Seljak, U. 2002, MNRAS, 336, 1256

Kraljic, K., Pichon, C., Codis, S., et al. 2020, MNRAS, 491, 4294

Kravtsov, A. V. & Borgani, S. 2012, ARA&A, 50, 353

Kravtsov, A. V., Vikhlinin, A., & Nagai, D. 2006, ApJ, 650, 128

Kuchner, U., Aragón-Salamanca, A., Pearce, F. R., et al. 2020, MNRAS, 494, 5473

Kullback, S. & Leibler, R. A. 1951, The Annals of Mathematical Statistics, 22, 79

Lamb, A. 2021, arXiv e-prints, arXiv:2103.00265

Le Brun, A. M. C., McCarthy, I. G., Schaye, J., & Ponman, T. J. 2014, MNRAS, 441,
1270

Lebeau, T., Sorce, J. G., Aghanim, N., Hernández-Martínez, E., & Dolag, K. 2024,
A&A, 682, A157

Lee, B. E., Le Brun, A. M. C., Haq, M. E., et al. 2018, MNRAS, 479, 890

Lee, J., Shin, J., Snaith, O. N., et al. 2021, ApJ, 908, 11

Lemaître, G. 1931, MNRAS, 91, 483

Lewis, A. & Bridle, S. 2002, Phys. Rev. D, 66, 103511

Li, Y., Ni, Y., Croft, R. A. C., et al. 2021, Proceedings of the National Academy of
Science, 118, e2022038118

Libeskind, N. I., van de Weygaert, R., Cautun, M., et al. 2018, MNRAS, 473, 1195

Limousin, M., Morandi, A., Sereno, M., et al. 2013, Space Sci. Rev., 177, 155

Lovell, C. C., Wilkins, S. M., Thomas, P. A., et al. 2022, MNRAS, 509, 5046

Lovisari, L., Forman, W. R., Jones, C., et al. 2017, ApJ, 846, 51

Malavasi, N., Aghanim, N., Tanimura, H., Bonjean, V., & Douspis, M. 2020, A&A,
634, A30

Malavasi, N., Sorce, J. G., Dolag, K., & Aghanim, N. 2023, A&A, 675, A76

Mantz, A., Allen, S. W., Rapetti, D., & Ebeling, H. 2010, MNRAS, 406, 1759

Mantz, A. B., Allen, S. W., Morris, R. G., et al. 2015a, MNRAS, 449, 199

172



Mantz, A. B., Morris, R. G., Allen, S. W., et al. 2022, MNRAS, 510, 131

Mantz, A. B., von der Linden, A., Allen, S. W., et al. 2015b, MNRAS, 446, 2205

Marinacci, F., Vogelsberger, M., Pakmor, R., et al. 2018, MNRAS, 480, 5113

Markevitch, M., Gonzalez, A. H., David, L., et al. 2002, ApJ, 567, L27

Martizzi, D., Vogelsberger, M., Artale, M. C., et al. 2019, MNRAS, 486, 3766

Marulli, F., Veropalumbo, A., Sereno, M., et al. 2018, A&A, 620, A1

Maturi, M., Angrick, C., Pace, F., & Bartelmann, M. 2010, A&A, 519, A23

McCarthy, I. G., Schaye, J., Bird, S., & Le Brun, A. M. C. 2017, MNRAS, 465, 2936

McClintock, T., Rozo, E., Becker, M. R., et al. 2019, ApJ, 872, 53

Mead, J. M. G., King, L. J., & McCarthy, I. G. 2010, MNRAS, 401, 2257

Medezinski, E., Umetsu, K., Okabe, N., et al. 2016, ApJ, 817, 24

Melin, J. B., Bartlett, J. G., & Delabrouille, J. 2005, A&A, 429, 417

Melin, J. B., Bartlett, J. G., & Delabrouille, J. 2006, A&A, 459, 341

Melin, J. B. & Pratt, G. W. 2023, A&A, 678, A197

Merten, J., Coe, D., Dupke, R., et al. 2011, MNRAS, 417, 333

Mohr, J. J., Evrard, A. E., Fabricant, D. G., & Geller, M. J. 1995, ApJ, 447, 8

Mohr, J. J., Fabricant, D. G., & Geller, M. J. 1993, ApJ, 413, 492

More, S., Diemer, B., & Kravtsov, A. V. 2015, ApJ, 810, 36

Munari, E., Biviano, A., & Mamon, G. A. 2014, A&A, 566, A68

Murray, S. G., Power, C., & Robotham, A. S. G. 2013, Astronomy and Computing,
3, 23

Mustafa, M., Bard, D., Bhimji, W., et al. 2019, Computational Astrophysics and
Cosmology, 6, 1

Nagai, D., Kravtsov, A. V., & Vikhlinin, A. 2007, ApJ, 668, 1

Naiman, J. P., Pillepich, A., Springel, V., et al. 2018, MNRAS, 477, 1206

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493

173



Nelson, D., Pillepich, A., Ayromlou, M., et al. 2024, A&A, 686, A157

Nelson, D., Pillepich, A., Springel, V., et al. 2018a, MNRAS, 475, 624

Nelson, D., Pillepich, A., Springel, V., et al. 2018b, MNRAS, 475, 624

Nelson, D., Springel, V., Pillepich, A., et al. 2019a, Computational Astrophysics
and Cosmology, 6, 2

Nelson, D., Springel, V., Pillepich, A., et al. 2019b, Computational Astrophysics
and Cosmology, 6, 2

Ntampaka, M. & Vikhlinin, A. 2022, ApJ, 926, 45

Oguri, M., Miyazaki, S., Li, X., et al. 2021, PASJ, 73, 817

O’Hara, T. B., Mohr, J. J., Bialek, J. J., & Evrard, A. E. 2006, ApJ, 639, 64

Okabe, T., Nishimichi, T., Oguri, M., et al. 2018, MNRAS, 478, 1141

O’Shea, K. & Nash, R. 2015, arXiv e-prints, arXiv:1511.08458

Owers, M. S., Randall, S. W., Nulsen, P. E. J., et al. 2011, ApJ, 728, 27

Pacaud, F., Pierre, M., Melin, J. B., et al. 2018, A&A, 620, A10

Pakmor, R., Springel, V., Coles, J. P., et al. 2023, MNRAS, 524, 2539

Parkinson, D., Riemer-Sørensen, S., Blake, C., et al. 2012, Phys. Rev. D, 86,
103518

Pearce, F. A., Kay, S. T., Barnes, D. J., Bower, R. G., & Schaller, M. 2020, MNRAS,
491, 1622

Pearson, D. W., Batiste, M., & Batuski, D. J. 2014, MNRAS, 441, 1601

Peebles, W. & Xie, S. 2022, arXiv e-prints, arXiv:2212.09748

Pellissier, A., Hahn, O., & Ferrari, C. 2023, MNRAS, 522, 721

Pereyra, L. A., Sgró, M. A., Merchán, M. E., Stasyszyn, F. A., & Paz, D. J. 2020,
MNRAS, 499, 4876

Pierre, M., Pacaud, F., Adami, C., et al. 2016, A&A, 592, A1

Pierre, M., Pacaud, F., Juin, J. B., et al. 2011, MNRAS, 414, 1732

Pierre, M. & Starck, J. L. 1998, A&A, 330, 801

174



Piffaretti, R., Arnaud, M., Pratt, G. W., Pointecouteau, E., & Melin, J. B. 2011,
A&A, 534, A109

Pillepich, A., Nelson, D., Hernquist, L., et al. 2018, MNRAS, 475, 648

Planck Collaboration, Adam, R., Ade, P. A. R., et al. 2016a, A&A, 594, A1

Planck Collaboration, Adam, R., Ade, P. A. R., et al. 2016b, A&A, 594, A8

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014a, A&A, 571, A1

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014b, A&A, 571, A13

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016c, A&A, 594, A26

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014c, A&A, 571, A29

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014d, A&A, 571, A20

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014e, A&A, 571, A16

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014f, A&A, 571, A6

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014g, A&A, 571, A7

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2013a, A&A, 550, A131

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2013b, A&A, 550, A134

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011, A&A, 536, A8

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016d, A&A, 594, A27

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016e, A&A, 594, A13

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016f, A&A, 594, A24

Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2020a, A&A, 641, A6

Planck Collaboration, Aghanim, N., Arnaud, M., et al. 2016g, A&A, 594, A22

Planck Collaboration, Aghanim, N., Arnaud, M., et al. 2016h, A&A, 594, A22

Planck Collaboration, Akrami, Y., Arroja, F., et al. 2020b, A&A, 641, A9

Planelles, S., Schleicher, D. R. G., & Bykov, A. M. 2015, Space Sci. Rev., 188, 93

Pointecouteau, E., Santiago-Bautista, I., Douspis, M., et al. 2021, A&A, 651, A73

Postman, M., Lubin, L. M., Gunn, J. E., et al. 1996, AJ, 111, 615

175



Power, C., Knebe, A., & Knollmann, S. R. 2012, MNRAS, 419, 1576

Pratt, G. W., Arnaud, M., Biviano, A., et al. 2019, Space Sci. Rev., 215, 25

Press, W. H. & Schechter, P. 1974, ApJ, 187, 425

Rajpurohit, K., Vazza, F., van Weeren, R. J., et al. 2021, A&A, 654, A41

Rasia, E., Meneghetti, M., & Ettori, S. 2013, The Astronomical Review, 8, 40

Rasia, E., Tormen, G., & Moscardini, L. 2004, MNRAS, 351, 237

Reiprich, T. H., Basu, K., Ettori, S., et al. 2013, Space Sci. Rev., 177, 195

Riess, A. G., Casertano, S., Yuan, W., et al. 2021, ApJ, 908, L6

Robertson, H. P. 1935, ApJ, 82, 284

Rodríguez, A. C., Kacprzak, T., Lucchi, A., et al. 2018, Computational Astro-
physics and Cosmology, 5, 4

Rodriguez-Gomez, V., Genel, S., Vogelsberger, M., et al. 2015, MNRAS, 449, 49

Rost, A., Kuchner, U., Welker, C., et al. 2021, MNRAS, 502, 714

Rothschild, T., Nagai, D., Aung, H., et al. 2022, MNRAS, 513, 333

Rouhiainen, A., Gira, M., Münchmeyer, M., Lee, K., & Shiu, G. 2023, arXiv e-
prints, arXiv:2311.05217

Rowntree, A. R., Singh, A., Vincenzo, F., et al. 2024, MNRAS, 531, 3858

Rozo, E., Wechsler, R. H., Rykoff, E. S., et al. 2010, ApJ, 708, 645

Ruppin, F., Mayet, F., Macías-Pérez, J. F., & Perotto, L. 2019, MNRAS, 490, 784

Rykoff, E. S., Rozo, E., Busha, M. T., et al. 2014, ApJ, 785, 104

Salvati, L., Douspis, M., & Aghanim, N. 2020, A&A, 643, A20

Santos, J. S., Rosati, P., Tozzi, P., et al. 2008, A&A, 483, 35

Sarazin, C. L. 1988, X-ray emission from clusters of galaxies

Sarron, F., Adami, C., Durret, F., & Laigle, C. 2019, A&A, 632, A49

Schade, D., Lilly, S. J., Crampton, D., et al. 1995, ApJ, 451, L1

Schanz, A., List, F., & Hahn, O. 2023, arXiv e-prints, arXiv:2310.06929

176



Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521

Schaye, J., Dalla Vecchia, C., Booth, C. M., et al. 2010, MNRAS, 402, 1536

Schaye, J., Kugel, R., Schaller, M., et al. 2023, MNRAS, 526, 4978

Schneider, P. 1996, MNRAS, 283, 837

Schneider, P. & Bartelmann, M. 1997, MNRAS, 286, 696

Sembolini, F., Yepes, G., De Petris, M., et al. 2013, MNRAS, 429, 323

Sereno, M., Umetsu, K., Ettori, S., et al. 2018, ApJ, 860, L4

Shan, H., Kneib, J.-P., Tao, C., et al. 2012, ApJ, 748, 56

Shin, T.-h., Clampitt, J., Jain, B., et al. 2018, MNRAS, 475, 2421

Silk, J. & White, S. D. M. 1978, ApJ, 226, L103

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., & Ganguli, S. 2015, arXiv
e-prints, arXiv:1503.03585

Sohn, K., Lee, H., & Yan, X. 2015, in Advances in Neural Information Processing
Systems, ed. C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett,
Vol. 28 (Curran Associates, Inc.)

Sousbie, T. 2011, MNRAS, 414, 350

Springel, V. 2005, MNRAS, 364, 1105

Springel, V. 2010, MNRAS, 401, 791

Springel, V., Pakmor, R., Pillepich, A., et al. 2018a, MNRAS, 475, 676

Springel, V., Pakmor, R., Pillepich, A., et al. 2018b, MNRAS, 475, 676

Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 629

Springel, V., White, S. D. M., Tormen, G., & Kauffmann, G. 2001, MNRAS, 328,
726

Steigman, G. 2008, arXiv e-prints, arXiv:0807.3004

Sunyaev, R. A. & Zeldovich, Y. B. 1970, Ap&SS, 7, 3

Sunyaev, R. A. & Zeldovich, Y. B. 1972, Comments on Astrophysics and Space
Physics, 4, 173

Suto, D., Kitayama, T., Nishimichi, T., Sasaki, S., & Suto, Y. 2016, PASJ, 68, 97

177



Szandała, T. 2020, arXiv e-prints, arXiv:2010.09458

Tanimura, H., Aghanim, N., Douspis, M., & Malavasi, N. 2022, A&A, 667, A161

Tanimura, H., Aghanim, N., Kolodzig, A., Douspis, M., & Malavasi, N. 2020, A&A,
643, L2

Tanimura, H., Hinshaw, G., McCarthy, I. G., et al. 2019, MNRAS, 483, 223

Tegmark, M., Blanton, M. R., Strauss, M. A., et al. 2004, ApJ, 606, 702

Tempel, E., Stoica, R. S., Kipper, R., & Saar, E. 2016, Astronomy and Computing,
16, 17

Tempel, E., Tago, E., & Liivamägi, L. J. 2012, A&A, 540, A106

Teyssier, R. 2002, A&A, 385, 337

Tinker, J., Kravtsov, A. V., Klypin, A., et al. 2008, ApJ, 688, 709

Tramonte, D., Ma, Y.-Z., Yan, Z., et al. 2023, arXiv e-prints, arXiv:2302.06266

Tröster, T., Ferguson, C., Harnois-Déraps, J., & McCarthy, I. G. 2019, MNRAS,
487, L24

Tuominen, T., Nevalainen, J., Tempel, E., et al. 2021, A&A, 646, A156

Ullmo, M., Aghnim, N., Decelle, A., & Aragon-Calvo, M. 2024, arXiv e-prints,
arXiv:2403.02171

Ullmo, M., Decelle, A., & Aghanim, N. 2021, A&A, 651, A46

Umetsu, K. 2020, A&A Rev., 28, 7

Uzan, J.-P., Aghanim, N., & Mellier, Y. 2004, Phys. Rev. D, 70, 083533

Vallés-Pérez, D., Planelles, S., & Quilis, V. 2020, MNRAS, 499, 2303

Vazza, F., Roncarelli, M., Ettori, S., & Dolag, K. 2011, MNRAS, 413, 2305

Vega-Ferrero, J., Yepes, G., & Gottlöber, S. 2017, MNRAS, 467, 3226

Velliscig, M., Cacciato, M., Schaye, J., et al. 2015, MNRAS, 453, 721

Veronica, A., Reiprich, T. H., Pacaud, F., et al. 2024, A&A, 681, A108

Vikhlinin, A., Burenin, R. A., Ebeling, H., et al. 2009, ApJ, 692, 1033

Villaescusa-Navarro, F., Anglés-Alcázar, D., Genel, S., et al. 2021, ApJ, 915, 71

178



Villaescusa-Navarro, F., Hahn, C., Massara, E., et al. 2020, ApJS, 250, 2

Vogelsberger, M., Marinacci, F., Torrey, P., & Puchwein, E. 2020, Nature Re-
views Physics, 2, 42

Walker, A. G. 1937, Proceedings of the London Mathematical Society, 42, 90

Walker, S. & Lau, E. 2022, in Handbook of X-ray and Gamma-ray Astrophysics,
13

Walker, S., Simionescu, A., Nagai, D., et al. 2019, Space Sci. Rev., 215, 7

Wan, J. T., Mantz, A. B., Sayers, J., et al. 2021, MNRAS, 504, 1062

Weinberger, R., Springel, V., & Pakmor, R. 2020, ApJS, 248, 32

Werner, N., Finoguenov, A., Kaastra, J. S., et al. 2008, A&A, 482, L29

White, S. D. M. 1976, MNRAS, 177, 717

White, S. D. M., Navarro, J. F., Evrard, A. E., & Frenk, C. S. 1993, Nature, 366, 429

Wicker, R., Douspis, M., Salvati, L., & Aghanim, N. 2023, A&A, 674, A48

Williamson, R., Benson, B. A., High, F. W., et al. 2011, ApJ, 738, 139

XRISM Science Team. 2020, arXiv e-prints, arXiv:2003.04962

Xu, X., Ho, S., Trac, H., et al. 2013, ApJ, 772, 147

Zaznobin, I. A., Burenin, R. A., Belinski, A. A., et al. 2023, Astronomy Letters, 49,
599

Zel’dovich, Y. B. 1970, A&A, 5, 84

Zubeldia, Í. & Bolliet, B. 2024, arXiv e-prints, arXiv:2403.09589

Zubeldia, Í., Rotti, A., Chluba, J., & Battye, R. 2022, arXiv e-prints,
arXiv:2204.13780

Zwicky, F. & Kowal, C. T. 1968, “Catalogue of Galaxies and of Clusters of Galax-
ies”, Volume VI

179


	I Introduction
	Introduction
	The large scale structures of the Universe
	The density field and its fluctuations
	Statistical description of primordial fluctuations
	Linear evolution

	Non-linear evolution
	Spherical ``Top hat'' collapse
	The Zel'dovich approximation
	Cosmological simulations

	The mass function

	Observations of galaxy clusters
	The cluster mass problem

	Cosmology with galaxy clusters
	Cosmology with cluster number counts

	Galaxy clusters beyond first approximations
	The shape of clusters and the cosmic web
	Detection of galaxy clusters


	II Galaxy clusters beyond spherical symmetry
	Probing the anisotropies in matter distribution: overview and methods
	Aperture multipole moments
	T-REx filament finder

	Gas distribution from clusters to filaments in IllustrisTNG
	Simulated cluster sample
	Gas phases
	Multipolar ratios as proxies for the azimuthal distribution
	Physical and structural properties

	Azimuthal gas distribution in relation to cluster properties
	Azimuthal symmetries as proxies of cluster structural properties
	Azimuthal distribution related to cluster physical properties

	Discussion and conclusions

	Tracing gaseous filaments connected to galaxy clusters: the case study of Abell 2744
	Abell 2744: observational data
	X-ray data
	Spectroscopic galaxies

	The analysis of cluster outskirts
	Multipole moments decomposition in cluster outskirts
	Filament detection in cluster outskirts with T-REx 

	The outskirts of Abell 2744
	Azimuthal distribution of matter
	Filamentary structure around A2744

	Robustness of results
	Robustness to data preprocessing choices
	Robustness to method parameters

	Discussion
	Conclusion

	A generative model for realistic galaxy cluster images
	Generative models
	Variational Autoencoders for image generation
	Generating galaxy cluster images with a conditional VAE
	Training data
	Model Architecture and training strategy
	Results

	Conclusions and perspectives


	III Galaxy cluster detection: The selection function
	Galaxy cluster detection with the Planck satellite
	The Matched Multi-frequency Filter detection algorithm
	The selection function

	Characterising the completeness function of Planck clusters
	Cleaned frequency maps
	Cluster SZ images
	Simulation images
	Circular images

	Completeness from Monte Carlo injection
	Completeness results
	Impact of cluster profile
	Impact of cluster asymmetry

	Impact on cluster count cosmology
	Discussion
	Conclusions


	IV Conclusions
	Conclusions
	List of Figures
	List of Tables
	Bibliography


