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Résumé français 

Les HDL, ou lipoprotéines de haute densité, sont souvent appelées "bon cholestérol" en 

jouant un rôle vital dans la réduction du risque de maladie cardiovasculaire athéroscléreuse 

(ASCVD). Les HDL exercent plusieurs effets athéropotecteurs, y compris au travers de leur 

capacité d’efflux du cholestérol (CEC) des macrophages artériels, de leurs activités anti-

inflammatoires (AIA) et de leurs activités anti-oxydantes (AOX). Parmi les composants des 

HDL, les phospholipides sont considérés comme des composants majeurs de leurs 

fonctionnalités. Nous avons cherché à identifier de nouvelles espèces de phospholipides 

impliquées dans la détermination des fonctions athéropotectives des HDL. Des taux 

plasmatiques élevés d’espèces de phosphatidyléthanolamines (PE) sont fortement liés à un 

risque accru d’ASCVD, mais les mécanismes sous-jacents restent flous. Parmi les espèces de 

PE, le PE (36:5) semble être une signature lipidique prédictive des événements d’ASCVD. Dans 

le plasma, le PE (36:5) existe sous forme eicosapentaénoïque (EPA, C20:5)-PE et acide 

arachidonique (ARA, C20:4)-PE. Dans cette thèse de doctorat, nous avons établi une 

association positive forte entre les teneurs totales en PE et en PE (36:5) associées aux HDL et 

l’athérosclérose chez les femmes atteintes de syndrome métabolique. En outre, notre étude a 

ajouté de nouvelles informations à cette association in vivo, en utilisant ARA-PE, la forme 

prédominante de PE (36:5) dans les maladies cardiométaboliques (CMD) et l’ASCVD. En 

injectant des HDL reconstituées (rHDL) dans un modèle animal d’athérosclérose, nous avons 

montré une diminution de la capacité de l’ARA-PE rHDL à réduire l’athérosclérose par rapport 

au rHDL contrôles, indiquant une altération des capacités athéroprotectrices de ces rHDL. Nos 

expériences in vitro ont révélé que le PE, et de manière plus prononcée l’ARA-PE, atténuait les 

fonctions des rHDL et les convertissait en particules pro-inflammatoires. À l’inverse, nos 

résultats in vitro ont mis en évidence l’impact bénéfique significatif de l’EPA-PE sur les 

fonctions des rHDL. L’EPA-PE a non seulement amélioré la CEC des rHDL, mais a également 

préservé et amélioré leur AOX et leur AIA, respectivement. En outre, nos résultats révèlent que 

l’EPA-PE rHDL atténue l’inflammation en réduisant la production d’eicosanoïdes pro-

inflammatoires, suggérant un mécanisme nouveau pour les effets cardioprotecteurs de l’EPA. 

En conclusion, ce travail de recherche fait progresser notre compréhension du rôle des 

espèces de PE dans l’athérosclérose en les identifiant comme de nouveaux biomarqueurs pour 

les fonctions des HDL. Ces résultats pourraient avoir un impact significatif sur la gestion de 

l’ASCVD, améliorant l’évaluation des risques et le traitement. 
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English abstract 

HDL, or High-Density Lipoproteins, are often called "good cholesterol" by playing a 

vital role in reducing the risk of atherosclerotic cardiovascular diseases (ASCVD). HDL exert 

several atheroprotective effects, including their capacity to promote cholesterol efflux (CEC) 

from arterial macrophages, anti-inflammatory activities (AIA), and anti-oxidative activities 

(AOX). Among HDL components, phospholipids are considered the major determinants of 

HDL functions. Here, we aimed to identify new phospholipid species implicated in determining 

the atheroprotective functions of HDL. Higher plasma levels of phosphatidylethanolamine (PE) 

species are strongly linked to an increased risk of ASCVD, however, the underlying 

mechanisms remain unclear. Among PE species, PE (36:5) is recognized as a predictive lipid 

signature for ASCVD events. In human plasma, PE (36:5) exist as eicosapentaenoic (EPA, 

C20:5)-PE and arachidonic acid (ARA, C20:4)-PE. In this doctoral dissertation, we established 

a strong positive association between total PE and PE (36:5) contents in HDL and 

atherosclerosis in women with metabolic syndrome. Furthermore, our study added new 

information to this association in vivo, using ARA-PE, the predominant form of PE (36:5) in 

cardiometabolic diseases (CMD) and ASCVD. By infusing reconstituted HDL (rHDL) in an 

animal model with atherosclerosis, we revealed the inability of ARA-PE rHDL to reduce 

atherosclerosis compared to control rHDL, indicating an impaired rHDL-mediated 

atheroprotection. Our in vitro experiments revealed that PE, and more profoundly ARA-PE, 

attenuated the functions of rHDL and converted them into pro-inflammatory particles. 

Conversely, our in vitro findings highlighted the significant beneficial impact of EPA-PE on 

rHDL functions. EPA-PE not only enhanced the CEC of rHDL, but also preserved and 

improved its AOX and AIA, respectively. Furthermore, our findings revealed that EPA-PE 

rHDL attenuated inflammation by reducing pro-inflammatory eicosanoid production, 

suggesting a novel mechanism for the cardioprotective effects of EPA.  

In conclusion, this research work advances our understanding regarding the role of PE 

species in atherosclerosis by identifying them as novel biomarkers for HDL functions. These 

findings could significantly impact risk assessment and therapeutic management in the context 

of ASCVD.  
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 Preface 

Preface 

In this preface, I welcome you to my doctoral dissertation, which aims to contribute to 

the growing body of knowledge in the field of cardiovascular research and lipidomics, focusing 

on the critical interplay between phosphatidylethanolamine (PE) lipid species, and high-density 

lipoprotein (HDL) in the context of atherosclerotic cardiovascular diseases (ASCVD). 

ASCVD are the major cause of mortality worldwide. The hallmark of ASCVD is the 

formation of atherosclerotic plaques within the arterial wall, with a progressive narrowing of 

the arterial lumen over time. The process of atherosclerosis, which is characterized by chronic 

inflammation, starts with the deposition and oxidation of atherogenic lipids in the arterial wall. 

This, in turn, triggers a cascade of inflammatory pathways, fostering the accumulation of lipids, 

as well as cellular components, and proteins, thereby leading to the formation of atherosclerotic 

plaques. Chronic exposure to several atherogenic risk factors perpetuates plaque growth, 

ultimately obstructing the arterial lumen and precipitating ASCVD complications such as 

myocardial infarction (MI) and ischemic stroke. 

Plasma lipids, particularly cholesterol, constitute pivotal factors in the pathogenesis of 

ASCVD and are transported in the blood by lipoproteins. Among these, low-density lipoprotein 

(LDL) is the major carrier of plasma cholesterol and it is a pro-atherogenic lipoprotein that is 

often labeled as "bad cholesterol". Several studies have shown that elevated levels of LDL-

cholesterol (LDL-C) are strongly associated with increased risk of CVD and related mortality 

(1). Conversely, the HDL plays an antiatherogenic roles, earning its well-known description as 

a "good cholesterol.”  It was in 1976 that the first ground-breaking inverse association was 

found between plasma levels of HDL-Cholesterol (HDL-C) and the presence of ASCVD (2). 

Several epidemiological studies further solidified this association, highlighting that diminished 

HDL-C levels are associated with an increased incidence of ASCVD (3–5). This association is 

believed to be deeply rooted in the key biological function of HDL, namely facilitating the 

cholesterol efflux from the cholesterol-overloaded macrophages within the arterial wall. This 

key function of HDL was found to be adversely linked to the progression of atherosclerosis 

development (6), MI (7), and ASCVD events (8). 

In addition to their pivotal role in promoting cellular cholesterol efflux, HDL particles 

exhibit several atheroprotective functions. These include anti-inflammatory, anti-oxidative, 
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antiapoptotic, vasodilatory, and anti-thrombotic effects. Nonetheless, despite these promising 

protective effects of HDL against ASCVD, therapeutic efforts aimed at raising HDL-C levels 

have failed to yield a reduction in the risk of major cardiovascular events. Intriguingly, a "U-

shaped" relationship has recently emerged between HDL-C levels and ASCVD, with both low 

and extremely high plasma levels of HDL-C being linked to an elevated risk of cardiovascular 

mortality (9). Furthermore, several studies have demonstrated the notion that HDL-C levels 

"quantity" do not always predict accurately the full spectrum of HDL’s atheroprotective 

functions. Conversely, an emerging body of evidence is pointing toward the pivotal role of 

HDL composition and structure "quality" as the primary determinants of the atheroprotective 

functions of HDL. 

Plasma HDL is a group of particles that exhibit remarkable heterogeneity in their protein 

and lipid composition, a diversity that significantly impacts their structural and functional 

aspects. Previous proteomic and lipidomic studies have reported hundreds of individual 

proteins and lipids in HDL particles. Notably, within the HDL lipidome, phospholipids emerge 

as prominent constituents, accounting for 35-50% of the total HDL lipidome. Among the major 

phospholipid classes found in HDL are phosphatidylcholine, phosphatidylethanolamine, and 

phosphatidylinositol. In this regard, several structural-functional analytical studies have 

demonstrated that HDL phospholipids play a significant role in determining HDL functionality, 

based on their quantity, chemical, and physical properties (10,11). 

Previous studies have shed light on the dynamic nature of both HDL’s structure and 

composition, revealing their susceptibility to alterations during pathological conditions. Such 

alterations often attenuate or lead to a complete loss of the atheroprotective nature of HDL. 

Indeed, several pathological conditions marked by chronic oxidative stress and inflammation 

such as ASCVD, obesity, dyslipidemia, diabetes mellitus type 2 (T2D), and metabolic 

syndrome are often associated with the transformation of physiologically functional HDL into 

a dysfunctional state. This altered form of HDL exhibits marked structural and compositional 

changes that have been linked with the conversion of HDL into proatherogenic lipoprotein (12).  

In this regard, several studies have highlighted the altered abundance of specific 

phospholipid and sphingolipid molecular species as a key contributor to HDL dysfunctionality 

(13,14). Advances in lipidomic research have enabled the identification and quantification of 

several phospholipid molecular species to be implicated in the pathogenesis of ASCVD, with 

special attention directed toward the phosphatidylethanolamine (PE) species. Noteworthy, in a 
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previous lipidomic analysis comparing plasma from patients with stable coronary heart disease 

(CHD) to that of healthy individuals, 16 PE species out of 20 exhibited a positive association 

with stable CHD (15). Subsequently, the population-based Bruneck study validated these 

results, highlighting the significant positive association of 9 PE species out of 18 with the 

incidents of CVD. Most notably, PE (36:5) molecular species has emerged as a potent predictor 

for ASCVD by improving risk prediction and classification when was added to traditional risk 

factors (16). However, the precise molecular mechanisms by which plasma PE species, and 

especially PE (36:5), promote the development of ASCVD remain largely unknown.  

Based on the total number of carbon atoms and double bonds in PE (36:5), six molecular 

species could exist in human plasma. Among these, two major molecular subspecies of PE 

(36:5) including PE (C16:1/20:4), and PE (C16:0/20:5) have been consistently detected in 

human plasma (17). In this regard, arachidonic acid (ARA, C20:4) claims attention, as it is 

classified as an omega-6 polyunsaturated fatty acid (PUFA) that is largely known to play a 

deleterious role in ASCVD. Conversely, eicosapentaenoic acid (EPA, C20:5) is an omega-3 

PUFA with pleiotropic beneficial effects against ASCVD. The significance of ARA and EPA 

in ASCVD positions both PE (C16:1/20:4) and PE (C16:0/20:5) subspecies of PE (36:5) at the 

forefront, raising questions about the roles of their PUFA constituents, namely ARA and EPA, 

respectively, in determining the established strong association between PE (36:5) and ASCVD.  

In blood circulation, about 60% of plasma PE species are carried by HDL, thus 

constituting a major phospholipid class within the HDL phospholipidome. Previous studies 

have illuminated the capacity of the total PE content of HDL particles to influence their 

structural characteristics (18), suggesting that PE play a role in shaping the physical properties 

of HDL. In addition, total PE content of HDL has been inversely correlated with relative 

fractional cholesterol efflux to human serum (19), suggesting a potential negative impact of PE 

on HDL functionality.  

My research work is focused on studying the impact of the presence of PE, especially 

PE (36:5) species, in HDL particles on their atheroprotective functions and atherosclerosis 

development. Moreover, my work extends to explore the roles undertaken by PUFA, including 

omega-6 ARA and omega-3 EPA, in determining the impact of PE on HDL functionality. This 

comprehensive investigation aims to identify the molecular mechanisms by which plasma PE 

species, specifically PE (36:5), might promote the development of ASCVD. 
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 Chapter 1. Introduction to literature 

Chapter 1. Introduction to literature  

1.1 Atherosclerotic cardiovascular diseases 

Atherosclerotic cardiovascular diseases, abbreviated as ASCVD, include a broad 

spectrum of conditions characterized by the narrowing or obstruction of arterial blood vessels 

as a result of plaque buildup within their walls. This buildup progressively diminishes or 

completely blocks the blood supply (and thus oxygen) to the heart or other organs, leading to 

ischemia and potentially tissue infarction in the affected region. 

1.1.1. Epidemiological context  

Cardiovascular diseases (CVD) remain the leading cause of mortality and morbidity 

worldwide (20). According to the World Health Organization (WHO), 17.9 million people died 

from CVD in 2019, accounting for 32% of all global deaths. Of these deaths, 8.9 million were 

due to coronary heart disease (CHD), and 6.2 million were due to stroke (WHO, 2021). In 

Europe, CVD contribute to 45% of all deaths, and they cost the European Union about €210 

Billion annually (21,22). The number of CVD-related deaths is expected to reach about 32,3 

million in 2050 (WHO, 2018), which is largely linked to the global pandemic of metabolic 

diseases, such as  T2D, obesity, and metabolic syndrome (23). Despite advances in ASCVD 

prevention and early detection using traditional risk factors, the high incidence rates indicate a 

huge challenge and burden on the current risk factors scores. Therefore, efforts are required to 

understand the underlying pathological mechanisms that drive the onset and progression of 

ASCVD, which could lead to better prevention and treatment options. 

1.1.2. Clinical context 

The term ASCVD includes (i) CHD, the most prevalent form, and it affects the coronary 

arteries that nourish the heart; (ii) cerebrovascular disease or stroke, which affects the arteries 

in the brain; (iii) peripheral vascular disease; and (iv) aortic atherosclerotic disease, which both 

affect arteries rather than the one that supply the heart or the brain; (24,25). The common 

clinical symptoms of CHD are chest pain, shortness of breath, and general fatigue. Symptoms 

can be stable (i.e. angina pectoris) which increases with physical activity, or unstable, 

manifesting as sudden attacks at rest and ranging from unstable angina to MI, or sudden cardiac 
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death (26). The main pathological process underlies the development of ASCVD known as 

atherosclerosis (27). The development of atherosclerotic plaque can be seen as a continuum 

with a normal artery at one end and a restricted or occluded artery at the other. Persistent 

exposure to one or more atherogenic stimuli has been proposed to be the key factor that ensures 

the initiation and progression of the atherosclerosis process over time. ASCVD are considered 

as multifactorial diseases with a well-known cluster of risk factors that have been largely linked 

to CVD (28,29). Traditional ASCVD risk factors include advanced age, male gender, 

hypertension, T2D, obesity, dyslipidemias, metabolic syndrome, smoking, family history of 

premature CHD, and elevated markers of inflammation. Other risk factors include physical 

inactivity, unhealthy diet, stress, and low socio-economic status (30,31). 

1.1.3. Atherosclerosis-pathogenesis  

Atherosclerosis is a progressive chronic inflammatory process that affects the arterial 

blood vessels and is considered the primary cause of ASCVD. Atherosclerosis is defined as the 

formation of atherosclerotic plaque within the inner layer of the arterial wall due to the 

deposition of lipids, cells, calcium, and extracellular matrix components, accompanied by 

asymmetrical wall thickening and lumen narrowing (32). Over time, the growing plaque causes 

partial or total arterial occlusion, which manifests clinically as angina, MI, stroke, or sudden 

cardiac death (33). As shown in Figure 1.1, the evolution of atherosclerosis is envisaged in 

three stages including initiation, progression, and complications (34).  



 

7 | P a g e  

  

 Chapter 1. Introduction to literature 

 

As illustrated in Figure 1.2, the process of atherosclerosis is thought to begin in the 

arterial wall when plasma LDL particles extravasate through leaky and dysfunctional 

endothelial cells (characterized mainly by impaired nitric oxide production) into arterial intima, 

where they undergo oxidation and become cytotoxic, proinflammatory, chemotactic and pro-

atherogenic (35,36). Oxidized LDL (ox-LDL) initiates a cascade of events by activating 

endothelial cells. Consequently, the activated endothelial cells enhance the expression of 

adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular 

adhesion molecule-1 (ICAM-1), E-selectin, and P-selectin. This response aims to facilitate the 

recruitment of blood-borne cells, predominantly monocytes, into the arterial intima. The 

ultimate goal of this process is to facilitate the uptake of ox-LDL through endocytosis by these 

recruited cells (37,38). Activated endothelial cells also up-regulate the expression of monocyte 

Figure 1.1: Evolution of atherosclerosis. The artery wall comprises three layers including 

intima, the innermost layer; media, the intermediate layer; and adventitia, the outermost layer. 

Atherosclerosis initiates within the arterial intima as a result of vascular endothelial injury 

induced by several atherogenic factors. The plaque starts as fatty streaks and grows overtime 

causing progressive arterial lumen narrowing. The growing plaque eventually ruptures and 

causes blood clot formation, which reduces or obstructs the blood vessel resulting in a vascular 

accident. [Adapted from Jebari - Benslaiman et.al 2022 (34)]    
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chemotactic protein-1 (MCP-1) chemokine to promote the transendothelial migration of 

monocytes into the arterial intima after their adhesion to the endothelium (35). Within the 

arterial intima, the monocytes differentiate into macrophages and internalize the pro-

atherogenic ox-LDL particles through specific receptors referred to as scavenger receptors (SR) 

(e.g. SR-A and CD36). The phagocytosis of ox-LDL results in the formation of lipid-loaded 

macrophages, filled with massive amounts of cholesteryl esters (CE), referred to as foam cells, 

and the hallmark of both early and late atherosclerotic lesions.  

The development of foam cells initiates the formation of small yellowish atherosclerotic 

lesions called fatty streaks (39). In addition, foam cells induce inflammation by releasing pro-

inflammatory cytokines, and reactive oxygen species (ROS), to recruit more monocytes, 

resulting in a sustained inflammatory response within the arterial intima (40). In addition, 

oxidized phospholipids from ox-LDL can be transferred into cellular membranes, serving as 

seeding molecules for promoting further oxidative stress (41). Continuous retention of 

atherogenic ox-LDL and its subsequent phagocytosis by macrophages results eventually in 

macrophage death, mainly by apoptosis, as a result of cellular cholesterol accumulation. This 

contributes to the formation of a white stable plaque with a lipid-rich-cell free necrotic core 

covered by a fibrous cap made of smooth muscle cells (SMC) to stabilize the plaque (33,35). 

Among the special features of atherosclerotic plaques is focal calcification, which is an active 

process of calcium deposition within the arterial intima. Plaque calcification is to some extent 

an active process that is mainly mediated by continuous lipid oxidation and related 

inflammation (35,42). The persistent exposure to atherogenic factors increases the size of the 

necrotic core, while softening the fibrous cap, making the plaque more vulnerable and prone to 

rupture. Eventually, the plaque either ruptures and initiates blood thrombus formation, causing 

an artery occlusion or thromboembolism, or expands sufficiently to cause arterial stenosis, 

thereby diminishing the arterial blood flow, and resulting in a wide range of clinical 

complications depending on the site and the level of arterial obstruction (43).  
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Figure 1.2: Pathogenesis of atherosclerosis. Atherosclerosis starts by: 1. Infiltration and 

oxidation of low-density lipoprotein (LDL) in the arterial intima. 2. Oxidized LDL (Ox-LDL) 

activates the endothelial cells, which respond by increasing the expression of adhesion 

molecules such as vascular cell adhesion molecule-1(VCAM-1). 3. VCAM-1 and other 

adhesion molecules facilitate the recruitment and migration of monocytes. 4. Monocytes 

differentiate into macrophages. 5 and 6. Macrophages take up the Ox-LDL and become foam 

cells, which also secrete inflammatory mediators to maintain an immune-inflammatory 

response. 7 and 8. The foam cells die and their lipid content and cellular debris form the 

necrotic and lipid cores of the atherosclerotic plaque. 9. Foam cells also promote the 

proliferation and recruitment of smooth muscle cells to stabilize the plaque. The growing 

plaque progressively expands the arterial wall, causing the arterial lumen to narrow overtime. 

[Adapted from Minelli et.al. 2020 (36)].  
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1.1.4. Dyslipidemias  

Currently, traditional ASCVD risk factors are largely used to predict the future risk of 

developing CHD. The identification of these risk factors led to the development of multivariable 

risk assessment tools such as framingham risk score (FRS), which is widely used to assess the 

risk of developing ASCVD and to identify candidates for risk factors modifications (44). The 

FRS considers six risk factors, including age, gender, total cholesterol (TC), high density 

lipoprotein (HDL)-cholesterol (HDL-C), systolic blood pressure (SBP), and smoking habits to 

calculate the risk of developing a CHD within 10 years (45). In this regard, FRS is proportional 

to age, male gender, higher TC levels, higher SBP, lower HDL-cholesterol and smoking. A 10-

year risk for CHD is considered low if the FRS is less than 10%, moderate if it is between 10% 

to 19%, and high if it is 20% or higher (46). Given to the importance of plasma lipids (i.e. TC 

and HDL-C levels) in defining the risk of developing a CHD, the focus will be directed toward 

them.   

Dyslipidemias are among the most common findings in patients with ASCVD and they 

are key components of the metabolic syndrome (MetS), which include a group of metabolic 

conditions including abdominal obesity, dyslipidemia, hypertension, insulin resistance, and 

hyperglycaemia (45,47). Dyslipidemias include hypercholesterolemia (i.e. elevated LDL-C) 

and/or hypertriglyceridemia, and/or low plasma levels of HDL-C, with hypercholesterolemia 

being the most prevalent. Several studies have identified dyslipidemias as major risk factors for 

ASCVD. According to WHO, more than one-third of CHD and stroke-related deaths are related 

to hypercholesterolemia (48). Thus, dyslipidemia-related research is growing with the purpose 

of providing new insights into therapeutic interventions that could prevent or treat ASCVD 

(49).   

Plasma lipids such as cholesterol and triglycerides (TG) are carried by apolipoprotein-

containing particles called lipoproteins, and are closely related to ASCVD. Plasma lipoproteins 

include mainly chylomicrons (CM), very low-density lipoprotein (VLDL), LDL, Lipoprotein 

(a), and HDL particles. CM and VLDL are TG-rich particles and they mainly deliver TG to 

liver and peripheral tissues, respectively. LDL and Lipoprotein (a) are cholesterol-rich particles, 

and they mainly deliver cholesterol to peripheral tissues. HDL are protein and phospholipid-

rich particles and they mainly deliver cholesterol from peripheral tissues to the liver for 

excretion (50). CM, VLDL, LDL, and Lipoprotein (a) are all apolipoprotein (Apo) B - 

containing lipoproteins and they contribute to ASCVD development, whilst HDL is the only 
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anti-atherogenic lipoprotein that protects against ASCVD and it is an ApoA-I containing 

lipoproteins (49).  

1.1.4.1. Total cholesterol and LDL-Cholesterol 

The majority of the plasma cholesterol is carried by LDL particles. Multiple large-scale 

epidemiological studies have established a strong association between both elevated plasma 

levels of TC as well as LDL-C and the risk of ASCVD (51). According to the Framingham 

Heart Study (FHS), TC levels ≥200 mg/dL or LDL-C levels >130 mg/dL were linked to an 

increased risk of CHD (52). In line with this data, the atherosclerosis Risk in Communities 

(ARIC) study indicated that every 38.8 mg/dL increase in LDL-C levels above the median 

values of 88 mg/dl (in men) and 95 mg/dl (in women), was associated with about 40% increase in 

the relative risk of CHD (53). The opposite is also true, LDL-C lowering has been associated with 

a dose dependent reduction in CVD risk and mortality as revealed by several clinical trials, in which 

reducing LDL-C by 38.6 mg/dL was associated with a 20-25% reduction in CVD mortality (54). 

Therefore, LDL-C is largely known as the "bad cholesterol". 

1.1.4.2. Lipoprotein (a) 

Lipoprotein (a) is a cholesterol-rich particle, with similar structural but distinct 

metabolic, and pathogenic properties compared to LDL. Several studies have found that 

lipoprotein (a) plays a causal role in the development of ASCVD. Recent large population based 

studies such as Copenhagen City Heart Study have reported that increasing plasma levels of 

lipoprotein (a) are associated with marked, independent, stepwise increase in CHD risk, with 

plasma concentrations ≥ 42mg/dL being considered high (55). Mechanistic studies have 

revealed the involvement of lipoprotein (a) in the main steps of atherosclerosis process 

including foam cell formation, inflammation, SMC proliferation, and plaque instability. 

Therefore, measurement of lipoprotein (a) are recommended in individuals at high risk for 

ASCVD (49,55).  

1.1.4.3. Triglycerides  

The majority of plasma TG is carried by CM and VLDL particles, both known as TG 

rich lipoproteins (TGRL). The TG content of CM and VLDL is subjected to hydrolysis by 

lipoprotein lipase (LPL), which reduce their TG content by releasing free fatty acids and 

glycerol, converting them into smaller remnant particles (56–58). Several studies have 
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demonstrated that extremely elevated TG levels (>1000 mg/dL) typically do not develop 

ASCVD, whilst mild-moderately elevated TG levels potentially lead to ASCVD (59–63). This 

was explained by the inability of large CM and VLDL to penetrate the arterial wall at extremely 

high TG levels, while mild to moderately elevated TG levels feature the remnants of CM and 

VLDL (59–61,64,65), which are small enough to infiltrate the arterial wall and provoke the 

formation of atherosclerotic lesions (56–58). Multiple epidemiological studies including 

Copenhagen City Heart Study, Women’s Health Study, and Emerging Risk Factors Collaboration 

study have revealed that elevated plasma levels of non-fasting TG ( from 89 to 443 mg/dL) were 

consistently associated with increased risks of MI, CHD, stroke and all-cause mortality (66–69).   

1.1.4.4. HDL-Cholesterol 

In the early 1950s, it was demonstrated that patients with CHD frequently exhibit 

reduced plasma levels of HDL-C as compared to healthy individuals (70,71). Thereafter, low 

HDL-C levels were linked to insufficient clearance of excess plasma cholesterol, and were 

proposed to accelerate the development of CHD (72,73). In 1977, it was originally 

demonstrated that plasma HDL-C levels were inversely related to CVD risk (74). Data from 

epidemiological studies including FHS and ARIC study have revealed that subjects with 

subnormal HDL-C levels displayed the highest frequency of cardiovascular event (53,75). 

Moreover, low HDL-C levels were linked with an accelerated progression of angiographically 

defined CHD, and plasma HDL-C levels <40 mg/dL in men and <45 mg/dL women have 

become widely accepted as markers of elevated ASCVD risk, independent of LDL-C levels, as 

illustrated in Figure 1.3 (76–78). In line with this data, multiple perspective studies have 

revealed that 1 mg/dL increase in HDL-C levels was associated with a 2% - 3% reduction of 

CVD risk, and 3.7% - 4.7%  reduction of CVD mortality (79–81). Therefore, HDL-C is largely 

known as the “good cholesterol”.   

 

 

 

 

 Figure 1.3: Framingham Heart Study (FHS)-10-Year Risk for CHD event. Low HDL-C 

levels predict CHD independent of LDL levels. [Adapted from Castelli W. 1988 (78)]. 
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1.1.5. Diagnostic and management  

Diagnosis of ASCVD is defined as the detection of any vascular accident caused by 

plaque build-up within the coronary, cerebral, or peripheral arteries. Along with clinical 

presentation, several tests are currently used to diagnose ASCVD, including blood tests 

measuring plasma cholesterol, plasma TG, inflammatory markers such as C-reactive protein 

(CRP), biomarkers of cardiac tissue injury such as troponins, as well as electrocardiogram 

(ECG), and imaging tests such as cardiac catheterization, and echocardiogram (Mayoclonic, 

2022). Since subclinical atherosclerosis is considered a precursor for a clinically evident 

ASCVD, several guidelines recommend the measurement of coronary artery calcification and 

carotid wall thickness as non-invasive tests to evaluate early atherosclerosis development (82).  

Coronary artery calcium (CAC) score has emerged as a highly accurate surrogate 

marker of CHD. CAC score indicates the presence of calcium deposits in the coronary arteries. 

Computed tomographic (CT) scanning is currently used for the detection, localization, and 

quantification of CAC score. A positive (non-zero) CAC score demonstrates the presence of 

atherosclerotic plaque within coronary arteries, and higher values indicate an increased CHD 

risk (83). According to several population-based observational studies, CAC scoring is 

considered among the most consistent, and reproducible tools to predict the risk for major 

cardiovascular events, especially in asymptomatic individuals, and can be utilized for periodic 

assessment of ASCVD  (84,85). Carotid intima-media thickness (cIMT) and the presence of 

atherosclerotic plaque in carotid arteries are also well-known surrogate markers of CHD and 

stroke. cIMT testing is an ultrasound imaging technique used to measure the area between the 

intimal and medial layers of the carotid artery (86). The common carotid artery (CCA), which 

is the first segment of the carotid artery, is the most common and accurate site to measure the 

cIMT with values of ≥ 0.9 mm considered high (82,87). The cIMT assessment includes either 

measuring cIMT alone in a plaque-free region or the cIMT with plaque assessment included, 

the latter being a more powerful predictor of cardiovascular risk. Current guidelines recommend 

the evaluation of the CAC score, cIMT, and the presence of carotid plaque in asymptomatic 

adults at intermediate risk of ASCVD, along with the assessment of the traditional risk factors 

(30,86).  

As mentioned before, numerous studies have established dyslipidemia as a major 

contributor to ASCVD. As a matter of fact, the management of plasma lipid disturbances has 



 

14 | P a g e  

  

 Chapter 1. Introduction to literature 

become a central objective in the primary and secondary prevention of ASCVD events. The 

cornerstone in the management of ASCVD is adopting a heart-healthy lifestyle, which should 

be recommended for all patient. Besides that, a personalized therapeutic approach is tailored 

according to the patient’s individual risk profile, clinical characteristics, and convenience to 

pharmacotherapy in terms of efficacy, safety, and cost effectiveness (88).  

1.1.5.1. Non-pharmacological management 

Healthy lifestyle includes maintaining normal weight, regular physical activity, and 

healthy diet, which all help to improve plasma lipid disturbances and can significantly reduce 

the increased risk for CHD (89,90). Guidelines from American College of Cardiology, and 

American Heart Association recommend healthy diet patterns such as Mediterranean diet, and 

the Dietary Approaches to Stop Hypertension (DASH) diet, which include reducing the intake 

of sodium, refined sugar, and saturated fats, and replacing them with complex sugar, vegetables, 

fruits, whole grains, legumes, and polyunsaturated fats (91,92). Evidence from randomized 

clinical trials demonstrated that replacing saturated fats such as butter, lard, cheese, and red 

meat, with polyunsaturated fats such as nuts, olive oil, flaxseed oil, soybean oil and fish 

significantly reduced total ASCVD events by 31%, which is nearly equivalent to the reduction 

caused by statins, the first-line lipid-targeting medications (91).  

1.1.5.2. Pharmacological management 

ASCVD correlate with elevated levels of LDL, lipoprotein (a), TGRL, and decreased 

HDL levels. In the last decade, several lipid therapies have emerged for preventing or reducing 

the progression of ASCVD, mainly by lowering atherogenic lipoprotein particles such as LDL, 

lipoprotein (a), and TG-rich VLDL and their remnants.  

LDL lowering agents  

Niacin, bile acid sequestrants, and fibrates are among the first established LDL-C 

lowering agents before statins, however, they are not routinely prescribed (93). Although niacin 

was shown to reduce hepatic TG and VLDL synthesis, and eventually LDL-C levels (94), 

clinical trials showed that niacin was not effective in reducing ASCVD events (95,96).  Bile 

acid sequestrants work by inhibiting the reabsorption of bile acids (i.e. cholesterol derivatives) 

in small intestines. Although bile acid sequestrants showed a small reduction in ASCVD risk 

in clinical trials by reducing LDL-C levels, their use is limited due to their side effects, 



 

15 | P a g e  

  

 Chapter 1. Introduction to literature 

particularly constipation (97–99). Fibrates are peroxisome proliferator-activated receptors-

alpha (PPAR-α) agonists and they work by increasing cellular uptake and catabolism of fatty 

acids, thereby reducing the available fatty acids for TG synthesis, and thus VLDL synthesis. 

While fibrates have been demonstrated to mildly reduce LDL-C and increase HDL-C levels, 

they have failed to demonstrate ASCVD benefits in population studies (96,100,101). Statins 

were the first lipid-lowering agents to consistently reduce the risk of ASCVD (102) by 

inhibiting the rate-limiting step of cholesterol synthesis in the liver (103). Clinical trials have 

shown that statins are effective for both primary and secondary prevention of ASCVD events, 

with a 22% risk reduction for each 38.7mg/dl decrease in LDL-C levels (104–107). However, 

using statins for primary prevention remains controversial due to their safety profile (108). 

Other therapeutic approaches to lowering LDL-C levels include ezetimibe, and proprotein 

convertase subtilisin-kexin type 9 inhibitors (PCSK9i). Ezetimibe inhibits the intestinal 

absorption of cholesterol and its addition to statins was shown to provide an additional 18% to 

22% reduction in LDL-C levels and to reduce the risk of major events in adults with established 

CHD (109,110). PCSK9i inhibit the degradation of LDL receptor (LDLR) in the liver and thus 

enhance the clearance of LDL-C from circulation. Several clinical trials demonstrated an 

effective lowering of LDL-C with PCSK9i up to 47% alone, and up to 59% when combined 

with statins (111–113). Both ezetimibe and PCSK9i are well tolerated and both are 

recommended for patients intolerant to statins or with severely elevated LDL-C levels. Due to 

cost, PCSK9i are considered third line add-on agents after statins and ezetimibe (114,115). Next 

to statins, ezetimibe and PCSK9i antibodies, several novel LDL-C lowering therapies are 

currently emerging. Table 1.1 summarizes the available LDL lowering agents, including their 

pharmacolocial, clinical, and side effects while Figure 1.4 illustrates their working mechanisms 

(88,96,116).  

A mounting evidence suggests that a significant residual ASCVD risk persists after 

controlling the LDL-C levels, especially in high risk patients with elevated TG, and low HDL-

C levels (117–119). On the other hand, the safety issues of the available lipid therapies such as 

statins intolerance remain a barrier for an optimal management of ASCVD (49). Thus, 

additional lipid related therapies with good safety profile are still required.   
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Table 1.1: LDL lowering agents. ApoB100: apolipoprotein B100; ANGPTL3: Angiopoetin-

like 3 protein, BAS: bile acid sequestrants; CM: chylomicrons; DM: Diabetes mellitus; GI: 

gastrointestinal; LDL-C: low-density lipoprotein-cholesterol, VLDL: very-low-density 

lipoprotein, LDLr: LDL receptor; LPL: lipoprotein lipase; PCSK9: proprotein convertase 

subtilisin-kexin type 9; TG: triglyceride. [Adapted from (88,96)].  

Agents 
Pharmacological 

effects 
Clinical effects Side effects 

Niacin 
Reduce hepatic TG and 

VLDL synthesis 

Reduce LDL-C levels 

 

Skin rash, GI 

symptoms 

BAS 

Cholestyramine, 

Colesevalam, 

Colestipol 

Reduce hepatic bile acid 

pool, enhance LDLr 

expression, and LDL 

clearance 

Reduce LDL-C levels 

 

Constipation 

Fibrates 

Bezafibrate, 

Gemfibrozil, 

Fenofibrate 

Increase cellular uptake 

and catabolism of fatty 

acids, and thus reduce 

hepatic TG and VLDL 

synthesis 

Mildly reduce LDL-C 

levels 

Reduce TG levels 

Increase HDL-C levels 

Muscle pain, GI 

symptoms, 

elevated liver 

enzymes, 

elevated 

creatinine levels 

Statins 

Atorvastatin 

Fluvastatin, 

Lovastatin, 

Rosuvastatin, 

Simvastatin 

Inhibit cholesterol 

synthesis, enhance 

hepatic LDLr expression, 

and thus LDL clearance 

Reduce LDL-C around 

20% to 50% 

Reduce TG levels 

around 9% to 31% 

Myopathy, DM, 

Memory 

disturbances, 

confusion, 

sexual 

dysfunction 

Ezetimibe 
Reduces the intestinal 

absorption of cholesterol 

Reduces LDL-C levels 

by 18% to 22% when 

combined to statins 

Injection site 

reactions 

PCSK9 

inhibitors 

Alirocumab, 

Evolocumab 

Inhibit degradation of 

hepatic LDLr, thus 

increase the number of 

LDLr and enhance the 

clearance of LDL-C from 

circulation 

Reduce LDL-C levels 

up to 47% alone 

Reduce LDL-C levels 

up to 59% when 

combined with statins 

Reduce lipoprotein (a) 

levels by 25% to 30% 

Mipomersen 

Inhibits production of 

apoB100 protein, and 

thus reduces VLDL 

production 

Reduces LDL-C levels 

by mean of 26% 

liver toxicity, 

injection site 

reactions, and 

flu-like 

symptoms 

Lomitapide 
Inhibits CM, and VLDL 

production 

Reduces LDL-C levels 

up to 50% 

liver toxicity, 

and GI 

symptoms 
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Bempedoic 

acid 

Inhibits the hepatic 

synthesis of cholesterol 

by reducing the 

production of acetyl-CoA 

Reduces LDL-C levels 

up to 21% 

Increase uric 

acid levels, and 

risk for gout 

Inclisiran 
Inhibits the degradation 

of hepatic LDLr 

Reduces LDL-C levels 

up to 50% 

Injection site 

reactions 

ANGPTL3 

inhibitor 

Evinacumab 

Enhance the hydrolysis 

of TG by LPL and thus 

the conversion of VLDL 

to LDL 

increases the hepatic 

clearance of LDL 

Reduces LDL-C levels 

up to 49% 

Elevated liver 

enzymes 
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Figure 1.4: LDL lowering therapies. The mechanism by which statins reduce the hepatic 

synthesis of cholesterol is based on the inhibition of 3-hydroxy-3-methylglutaryl coenzyme 

reductase (HMGCR), the rate-limiting enzyme in the synthesis pathway of cholesterol. 

Ezetimibe reduces the intestinal absorption of dietary cholesterol and reduces its subsequent 

transmission to the liver by inhibiting the Niemann-Pick-like protein 1C1 (NPC1L1), the key 

factor in intestinal absorption of cholesterol. The proprotein convertase subtilisin–kexin type 9 

(PCSK9) inhibiting monoclonal antibodies (PCSK9 mab) inhibit the binding of PCSK9 with 

low-density lipoprotein receptor (LDLR), and prevent the degradation of LDLR. Bempedoic 

acid inhibits the hepatic synthesis of cholesterol by reducing the production of acetyl-CoA 

through blocking the ATP citrate lyase (ACL) enzyme. Lomitapide interferes with the 

production of chylomicrons (CM), and very low-density lipoprotein (VLDL) by inhibiting the 

microsomal triglyceride transfer protein (MTP). Mipomersen, is an antisense oligonucleotide 

that inhibits the translation of apolipoprotein B100 (apoB100) mRNA. Inclisiran, is a small 

interfering RNA that inhibits the translation of proprotein convertase subtilisin-kexin type 9 

(PCSK9) mRNA. Bile acid sequestrants bind to bile acids in the small intestine and prevent 

their reabsorption. Angiopoetin-like 3 protein inhibitors (ANGPTL3i) enhance the activity of 

lipoprotein lipase (LPL) function, which in turn reduces VLDL secretion and increases the 

hepatic clearance of LDL particles. Statins includes atorvastatin, simvastatin, rosuvastatin, and 

others, PCSK9 mab include evolocumab and alirocumab, ANGPTL3i include Evinacumab. 

[Adapted from Nurmohamed et.al 2021 (96)]. 
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Lipoprotein (a) lowering agents  

Despite the direct association between lipoprotein (a) levels and the risk of ASCVD, 

there is still no clinically effective therapy that reduces CVD risk by specifically reducing 

lipoprotein (a) levels up to date. Among the LDL lowering agents, the PCSK9i reduce the 

lipoprotein (a) levels by 25% - 30%, with evidence to improve the prognosis in CHD patients 

as a result of this effect (120,121). In addition, Mipomersen, an antisense oligonucleotide 

(ASO) designed to bind apoB100 mRNA, was reported to reduce lipoprotein (a) levels by 75% 

in mice (122). Another promising agent is IONIS-APO (a)-LRx, an ASO designed to bind apo 

(a) mRNA, forming a stable ASO/mRNA duplex, thus preventing the protein translation. This 

innovative approach has led to a mean reduction in lipoprotein (a) levels, up to 92%, and is 

currently in phase 3 trials (123,124). In addition, Muvalaplin, an oral small molecule inhibitor 

of lipoprotein (a) formation by interacting with apo (a), and preventing it’s binding to apoB100. 

Recently, Muvalaplin was shown to lower lipoprotein (a) levels up to 65% in a randomized 

controlled trial (125). 

Triglyceride lowering agents   

Mild to moderate increase of TG levels is consistently associated with increased 

ASCVD risk in several epidemiological, and clinical studies (126–128). Fibrates are commonly 

known for their TG-lowering effects. Fibrates reduce TG levels by enhancing their LPL-

mediated lipolysis. Such effect is achieved by inhibiting the synthesis of apolipoprotein-CIII 

(apo-CIII), an inhibitor of LPL, while stimulating the gene expression of LPL (129). Although 

old fibrates can lower TG levels and increase HDL-C levels, they are not recommended for 

clinical use due to their inconsistent results in ASCVD outcome studies, and their side effects 

such as elevated levels of liver enzymes, and creatinine levels, as well as myopathy (129,130). 

Currently under investigations, a highly selective PPARα agonist called pemafibrate showed 

higher TG reduction up to 50% from baseline at very low doses and less frequent side effects 

when compared to old fibrate (i.e. fenofibrate) (131,132). Other approaches to lower TG levels 

include angiopoetin-like 3 protein (ANGPTL3) and apo-CIII inhibitors. ANGPTL3 and Apo-

CIII inhibit the hydrolysis of TG by LPL and thus the conversion of VLDL to LDL (121). 

Evinacumab, is a monoclonal antibody directed against ANGPTL3, which was shown to reduce 

plasma TG and surprisingly LDL-C levels in clinical studies (133). In addition, vupanorsen is 

an ASO targeting the ANGPTL3 mRNA, which is currently under clinical evaluation (134). 

Furthermore, targeting the mRNA of Apo-CIII by volanesorsen, an ASO, has dramatically 
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decreased the levels of apo-CIII up to 74.83%, TG levels by 67.9%, and VLDL-C by 72.9%, 

without significant impact on LDL-C, in patients with familial chylomicronemia syndrome 

(135–137).  

The most recent breakthrough in the treatment of hypertriglyceridemia has been the 

unexpected cardiovascular effectiveness of omega-3 fatty acids. Omega-3 PUFA preparations 

such as EPA alone or with docosahexaenoic acid (DHA) are well known to reduce VLDL 

production and enhance VLDL clearance from plasma (138). The REDUCE IT trial (Reduction 

of Cardiovascular Events with Icosapent Ethyl Intervention Trial) has reported 25% reduction 

of major ASCVD events in high risk patients with controlled LDL levels (75mg/dl) by statins 

and elevated TG levels who received 4g daily of Icosapent Ethyl (highly purified form of EPA) 

compared to placebo (139). However, analyses of REDUCE-IT and meta-analyses have 

suggested that the reduction in cardiovascular risk with Icosapent Ethyl is greater than what can 

be achieved by triglyceride reduction alone, suggesting additional pleiotropic effects of EPA, 

such as anti-inflammatory and antithrombotic effects. In a recent EVAPORATE trial which 

involved 80 patients with CHD given a similar dose of Icosapent Ethyl as in the REDUCE IT 

trial, coronary CT scans showed that treatment with Icosapent Ethyl reduced the volume of 

atherosclerotic plaque by 17% compared to placebo (140). These data indicate that EPA holds 

promise in future recommendations for managing ASCVD, particularly in patients with residual 

risk despite controlled LDL levels (88). 

Therapeutic targeting of HDL-C levels  

Epidemiological studies have shown that plasma HDL-C levels have an inverse 

relationship with the occurrence of ASCVD, making HDL-C a strong predictor of ASCVD 

(5,141,142). Thus, therapeutic raising HDL-C levels (i.e. HDL-C quantity) might provide a 

novel treatment option for ASCVD. The main HDL-C raising therapies that have been tested 

in large scale clinical trials include cholesteryl ester transfer protein (CETP) inhibitors, niacin, 

and fibrates. Other HDL-targeting approaches are discussed in details in section 1.5.  

CETP is a plasma enzyme produced by the liver, mainly bound to HDL, and plays a key 

role in mediating the transfer of cholesterol esters from HDL to CM, VLDL, and LDL in 

exchange for TG (143). Large scale observational studies have demonstrated that genetic CETP 

deficiency (i.e. total mass, and activity) increases HDL-C levels while mildly reduce LDL-C, 

and is associated with lower incidence of CVD (144,145). The first CETP inhibitor was 
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torcetrapib, which showed a substantial rise in HDL-C up to 70%, and reduced LDL-C by 25% 

in phase 3 clinical trials. However, the ILLUMINATE trial was terminated as a result of 

increased cardiovascular and all-cause mortality for patients in the torcetrapib treatment group, 

mostly resulted from increases in blood pressure, aldosterone, and cortisol levels (146–148). 

Other CETP inhibitors, such as dalcetrapib and evacetrapib were shown to increase the HDL-

C levels by 30% and 133%, respectively, without affecting the blood pressure. However, the 

dal-OUTCOMES trial for dalcetrapib, and the ACCELERATE trial for evacetrapib were 

terminated due to lack of efficacy on cardiovascular outcome (149,150). The most recent CETP 

inhibitor, anacetrapib, showed 104% increase in HDL-C levels, while reduced the LDL-C by 

17% and apoB by 18%. In the REVEAL study, 9% reduction in ASCVD events was reported 

with anacetrapib, largely due to reducing the Apo B - containing lipoproteins levels rather than 

increasing the HDL-C (151,152). Obicetrapib, is another CETP inhibiter that is currently under 

investigations for its LDL-C lowering effects. In a very recent double-blind, randomized, phase 

2 clinical trial, obicetrapib was shown to lower LDL-C levels up to 50% and increase HDL-C 

levels up to 165% in dyslipidaemic patients with acceptable safety profile (153). All mentioned 

clinical trials involved ASCVD patients who were receiving a standard medical therapy, 

including statins, with or without CETP inhibitors.  

Niacin generally increases the HDL-C levels up to 40% (154), by inhibiting the hepatic 

uptake and catabolism of ApoA-I, the major protein constituent of HDL (155). Although two 

meta-analysis of clinical trials have demonstrated a reduction in the incidence of CHD events 

with niacin (156,157), two clinical studies including AIM-HIGH trail and HPS2-THRIVE, in 

which patients with established ASCVD with controlled LDL-C levels (by statin ± ezetimibe) 

assigned to receive niacin or placebo, were terminated after 3-4 years, once it became evident 

that there was no incremental clinical benefit from the addition of niacin to statin therapy 

(158,159). Furthermore, in the HPS2-THRIVE study, the main reason of stopping the trial was 

the excess of myopathy in the niacin treated group. Therefore, the value of niacin in CHD 

remains unclear, with limited clinical use due to its side effects (160).  

Fibrates affect the lipoprotein metabolism in different ways such as increasing the 

activity of LPL and the synthesis of ApoA-I and ApoA-II (the second major protein constituent 

of HDL), resulting in reducing plasma TG and raising HDL-C, respectively (148). In 

HELSINKI heart, and VA-HIT studies, gemfibrozil treatment reduced the incidence of CHD 

by 34% and 22%, respectively (161,162). Similar effects were reported with Bezafibrate in BIP 
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trial, with 39.5% reduction in the cumulative probability of incidence CVD events (163). 

Although those trials reported an increased HDL-C levels, none of them tested the effect of 

raising the HDL-C in particular, since the TG levels were concomitantly reduced. On the other 

hand, the ACCORD and FIELD trials reported that the addition of fenofibrate to statin in 

diabetic patients with low TG levels did not reduce the incidence rate of CVD events, as 

compared to statin alone (164,165), while in a general population with high TG levels 

≥150mg/dl, the combination of fenofibrate with statin for at least one year reduced the incidence 

rate (IR) of all-cause death and CVD death, compared to non-fenofibrate users (IR: 4.81 vs 5.35 

for all cause death and 6.28 vs 6.42 for CVD per 1000 person-years) (166). These studies 

suggest that the beneficial effects of fibrates on CVD is related more to TG reduction rather 

than raising the HDL-C levels. In addition, the common side effects of fibrates including 

gastrointestinal, hepatic, renal, and muscle toxicity limit their clinical use and efficacy.  

Beside the failure of the majority of HDL-C raising therapies to reduce the ASCVD risk, 

several epidemiological studies have demonstrated an increased mortality with elevated HDL-

C levels (167). In the CANHEART study which involved 631,762 individuals without pre-

existing CVD, low and very high levels of HDL-C were linked to a higher risk of CV and non-

CV mortalities (168). This last observation was confirmed by two prospective population-based 

studies, the CCHS and the CGPS, which found that extremely high levels of HDL-C levels are 

paradoxically associated with elevated mortality, and the association between HDL-C levels 

and all-cause mortality was U-shaped for both men and women (169). In the same time, several 

studies found that HDL-C levels are influenced by several factors such as unhealthy diet, 

smoking, alcohol consumption, obesity, diabetes, gender, and low-income (168,170,171). Thus, 

the effectiveness of targeting the HDL-C levels to improve the ASCVD outcomes has raised 

doubts (172). Such doubts led to suggestion of reconsidering the evaluation of HDL 

functionality (i.e. quality) rather than just HDL-C levels (i.e. quantity) to better determine the 

risk of ASCVD and to improve therapeutic targeting of HDL to treat or prevent CVD.  

Conclusion 

While LDL-C, TG and HDL-C levels have been extensively studied and targeted in 

ASCVD management, HDL functionality is emerging as a promising target for more effective 

prevention and treatment. In this regard, HDL exhibits several atheroprotective functions as 

illustrated in Figure 1.5, with cholesterol efflux capacity (CEC) from arterial macrophages 

serving as the main function (173). The CEC of HDL has been inversely associated with 
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atherosclerosis development and ASCVD events (6–8), and thus it was proposed as a better 

predictor for ASCVD risk compared to HDL-C levels (6). Therefore, evaluating HDL 

functionality could better identify individuals at high risk of ASCVD despite unremarkable 

lipid disturbances (174–176). The concept of HDL dysfunctionality (resulting from structural 

and compositional changes under certain pathological conditions) reinforces the importance of 

focusing on HDL functionality (i.e. quality) beyond HDL-C levels (177–180). While HDL-C 

levels do not predict HDL functionality or composition (181), understanding the role of HDL 

components in determining its functional state offers insights for enhancing its atheroprotective 

functions beyond increasing its cholesterol cargo (176,182).  

1.1.6. Bridging a gap of knowledge in the ASCVD 

ASCVD remain the leading cause of mortality worldwide and they are considered as 

multifactorial diseases with a well-known cluster of risk factors. The identification of 

individuals at increased risk for ASCVD could help to reduce incidence ASCVD and related 

mortality. While the FRS has been established as an independent and reproducible model for 

identifying individuals at an elevated risk of ASCVD, there are still notable challenges to 

accurately predicting the disease's occurrence. Notably, several studies have shown that 10-

15% of patients presented with CHD events were lacking the major traditional risk factors, 

pointing to the limitations of the existing risk assessment tools (183,184). In addition, Akosah 

et al. found that about 70% of young adults diagnosed with MI were initially classified as low-

risk individuals (185). Furthermore, several studies have found that FRS score has limitations 

in estimating the risk among young people and women (144).  

To bridge these gaps in risk assessment, attention has been devoted toward investigating 

additional markers that could enhance the prediction of CVD risk. In this context, the emerging 

field of plasma lipidomics has gained significant attention for its potential to identify the 

implication of specific molecular lipid species in ASCVD. Aligned with this evolving research 

landscape, the central focus of this doctoral dissertation will be on plasma lipoproteins, with a 

specific emphasis on HDL. The major objective of this work is investigating the potential of 

specific molecular lipid species to serve as novel biomarkers for HDL atheroprotective 

functions and their implications in the context of ASCVD. 

For that, the next sections of this chapter will delve extensively into the lipoproteins 

composition, metabolism, and biological functions, with a particular focus on HDL. This 
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literature review aims to establish a deeper understanding of how the composition of HDL 

particles influences their functionality, shedding the light on mechanisms by which such 

interrelationship is implicated in the context of ASCVD pathogenesis.  

 

 

 

 

 

 

  

 

 

 

 

Figure 1.5: HDL vascular protective functions. HDL: High Density lipoprotein, ApoA-I: 

apolipoprotein A-I, microRNA: micro Ribonucleic Acid. [Adapted from Linton MRF et al. 

2019- https://www.ncbi.nlm.nih.gov/books/NBK343489/figure/lipid_athero.F10/] 
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1.2 Lipoproteins structure, composition and metabolism 

Lipids serve as crucial building blocks for living cells and they are essential nutrients 

alongside with carbohydrates and proteins (186). Major lipid classes are fatty acids, TG, 

phospholipids, cholesterol, and fat-soluble vitamins. Lipids are hydrophobic, rendering them 

insoluble in water (187). Given that blood is a water-based media, lipids are transported in the 

blood complexed to special proteins called apolipoproteins, which are amphiphilic and can 

accommodate lipids while effectively interact with water-based media. Such lipid-protein 

complexes are referred to as lipoproteins (188,189).  

1.2.1. Lipoproteins structure and classification  

Lipoproteins are macromolecular complexes encompassing a diverse protein and lipid 

composition, responsible mainly for the transportation of lipids throughout the body. In a 

general context, Lipoproteins adopt a spherical structure as illustrated in Figure 1.6 with a 

central core rich in hydrophobic neutral lipids, basically CE and TG, encircled by amphiphilic 

shell comprising PL, free cholesterol (FC), and one or more apolipoproteins. The latter serve a 

dual purpose, stabilizing the structure of lipoprotein particles and facilitating their metabolism 

(190,191).   

Figure 1.6: Lipoprotein structure. Lipoprotein is composed of. A) Central core made of 

hydrophobic lipids including cholesteryl esters and triglycerides. B) Amphipathic shell made 

of phospholipids, free unesterified cholesterol and apolipoproteins. The amphipathic nature (i.e. 

having both a hydrophobic and hydrophilic properties) of the outer shell allows the lipoproteins 

to function in the aqueous environment of blood. [Adapted from Lampasas et.al 2023 (191)].  



 

26 | P a g e  

  

 Chapter 1. Introduction to literature 

Plasma lipoproteins are divided into seven classes based on their size, lipid composition, 

and apolipoprotein content, and they include CM, CM remnants (CM-R), VLDL, VLDL 

remnants (VLDL-R) (or intermediate-density lipoprotein (IDL)), LDL, Lipoprotein (a), and 

HDL (50,192). Based on the utilized separation techniques (e.g. gradient ultracentrifugation, 

electrophoresis, and immunoprecipitation), each lipoprotein class constitutes a continuum of 

particles that differs slightly in their density, and size, as a result of their continuous remodeling 

in the circulation as illustrated in Figure1.7. The main structural and compositional features of 

each lipoprotein class as well as their major sources and functions are listed in Table 1.2.  

 

 

 

 

 

 

 

 

 

 

 

 

As illustrated in Figure 1.7, CM represent large lipoprotein complexes that originate 

from dietary lipids within the intestinal cells as a means to transfer dietary lipids (referred to as 

exogenous lipids) to the rest of the body. These particles are primarily composed of TG with a 

lesser quantity of cholesterol. The size of CM varies depending on the amount of TG ingested. 

The major apolipoprotein found in CM is ApoB-48, along with additional apolipoproteins such 

Figure 1.7: Classes of Lipoproteins. Plasma lipoproteins are divided into seven classes based 

on size, lipid composition, and apolipoprotein. Including chylomicrons (CM), chylomicron 

remnants (CM-R), VLDL, VLDL remnants (VLDL-R), IDL, LDL, Lp (a), and HDL. CM, 

VLDL, LDL, and Lipoprotein (a) are all apolipoprotein (Apo) B - containing lipoproteins and 

they are considered proatherogenic, thus contribute to ASCVD development, whilst HDL is the 

only anti-atherogenic lipoprotein that protects against ASCVD. [Adapted from Feingold, KR. 

et al. 2021: https://www.ncbi.nlm.nih.gov/books/NBK305896/] 

https://www.ncbi.nlm.nih.gov/books/NBK305896/
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as ApoAs, ApoCs, and ApoE (192). Within the circulation, the hydrolysis of TG from CM leads 

to the formation CM-R. The CM-R are smaller in size compared to CM, with their primary 

components being the cholesterol, and less TG. The major apolipoproteins components found 

in CM-R are ApoB-48, and ApoE (192–194).  

VLDL are large lipoprotein complexes that originate in the liver and are mainly involved 

in the transport of liver-derived lipids (endogenous lipids) to extrahepatic tissues. In addition 

to TG as the primary lipid component, VLDL also contain some cholesterol. The major 

apolipoproteins found in VLDL are ApoB-100, ApoC, and ApoE. VLDL are similar to CM in 

the fact of being enriched in TG, however, they are smaller in size compared to CM. The 

hydrolysis of TG in VLDL gives rise to VLDL-R (or IDL). These remnants are primarily 

composed of cholesterol, along with ApoB-100 and ApoE (50,192). LDL particles are 

generated by the gradual removal of TG from IDL, and they are even further enriched in 

cholesterol, with minor amount of TG. As a result, LDL is considered the major carrier of 

plasma cholesterol (192). According to “Davidson LDL proteomic watch”, few proteomic 

studies up to date have showed that LDL contains 22 proteins, including mainly ApoB-100, 

ApoC, and ApoE, with ApoB-100 being the major one and is fundamental for the uptake of 

LDL by the liver and peripheral tissues (195,196). LDL is smaller in size compared to VLDL 

and CM, and it consists of a spectrum of particles range from large to small LDL. Very close 

to LDL, lipoprotein (a) is an LDL particle that has apolipoprotein (a) glycoprotein tail that is 

covalently attached to ApoB-100 (197–199). The size of lipoprotein (a) varies according to the 

size of Apo (a), which is largely vary and is determined genetically. Like LDL, lipoprotein (a) 

is enriched in cholesterol, and is a major carrier of oxidized PL (49,50).  

Plasma HDL is a group of relatively small lipoprotein complexes compared to other 

lipoproteins. HDL particles are enriched in cholesterol, and phospholipids, and composed of 

ApoA-I as the core structural apolipoprotein (200,201). HDL particles are synthesized in the 

liver and small intestines, as protein-rich disc shaped pre-beta particles, which are nearly empty 

of cholesterol and TG. These particles circulate through the bloodstream and mainly mediate 

the export and transport of cholesterol from peripheral tissues to the liver for excretion (50,192). 

Plasma HDL particles are very heterogeneous and can be categorized according to their density, 

size, charge, or apolipoprotein composition into several subparticles. HDL subpopulations, and 

their heterogeneity are discussed in the following section.  
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Table 1.2: The main features of each lipoprotein classes and their major functions. CH: 

cholesterol; CM: chylomicrons; CM-r: CM remnants; HDL: high-density lipoprotein; IDL: 

intermediate-density lipoprotein; LDL: low-density lipoprotein; LP: lipoprotein; LP (a): 

lipoprotein (a); PL: phospholipids; TG: triglycerides; VLDL: very-low-density lipoprotein;  

VLDL-r: VLDL remnants [Adapted from (50,192,195,202,203)]. 

 

1.2.2. Protein and lipid components of Lipoproteins  

Plasma lipoproteins contain large number of proteins (e.g. VLDL~90 protein; LDL~22 

proteins; and HDL~285 proteins) that are crucial for their biological functions (195,204). 

Apolipoproteins, in particular, are pivotal for lipoproteins, influencing their metabolism, 

structure, and functions. Generally, apolipoproteins serve four major roles: 1) guiding 

lipoprotein synthesis and assembly, 2) stabilizing the micellar structure of lipoproteins by 

interacting with the phospholipid monolayer to maintain the hydrophilic surface of lipoproteins, 

3) facilitating lipid transport and distribution among various tissues through specific 

interactions with lipoprotein receptors, and 4) modulating enzymatic processes involved in 

Lp 

class 

Structure 
Composition 

(%) by weight Major 

Apolipoproteins 

(Apo) 

Major 

lipid 
Source Function 

Density 

(g/ml) 

Size 

(nm) 
Protein Lipids 

CM <0.930 
75-

1200 
1-2 98-99 

A-I, A-II, A-IV, 

B-48, C-I, C-II, 

C-III, E 

TG Intestine Transport 

dietary 

fat 
CM-r 

0.930-

1.006 

30-

80 
6-8 92-94 B-48, E 

TG, 

CH 
CM 

VLDL 
0.930-

1.006 

30-

80 
7-10 90-93 

B-100,  C-I, C-II, 

C-III, E 
TG Liver 

Transport 

hepatic 

fat 

IDL 

VLDL-

r 

1.006-

1.019 

25-

35 
11 89 B-100, E   

TG, 

CH 
VLDL 

LDL 
1.019-

1.063 

18-

25 
21 79 

B-100, A-I, C-II, 

C-III, E 
CH VLDL Transport 

CH to 

periphery LP(a) 
1.055-

1.085 
~30 34 66 B-100, (a) CH Liver 

HDL2 
1.063-

1.125 

10-

20 
33 67 

A-I, A-II, A-IV, 

C-I, C-II, C-III, 

D, E 

PL, 

CH 

Liver, 

intestine 

Reverse 

Transport 

of CH 

from 

periphery 

to liver 

HDL3 
1.125-

1.210 
5-10 57 43 
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lipoprotein metabolism (205,206). Table 1.3 outlines the key apolipoproteins found in various 

lipoprotein categories, along with their major metabolic functions.  

Table 1.3: Major Apolipoproteins and their metabolic roles. Apo: Apolipoprotein; CM: 

chylomicrons; CM-r: CM remnants; IDL: intermediate-density lipoprotein; LDL: low-density 

lipoprotein; LP: lipoprotein; LP (a): lipoprotein (a); HDL: high-density lipoprotein; MW: 

Molecular weight; VLDL: very-low-density lipoprotein [Adapted from (50,192,207)].  

Apo 
Lipoprotein 

association 
Metabolic functions MW (Da) Synthesis 

ApoA-I CM, HDL 

Major structural and functional 

protein for HDL, Activates 

lecithin: cholesterol 

acyltransferase (LCAT) enzyme 

28,000 
Liver, 

intestine 

ApoA-II CM, HDL 
Enhances hepatic lipase (HL) 

activity 
17,400 Liver 

ApoA-IV CM, HDL CM assembly and secretion 46,000 Intestine 

ApoA-V 
CM, VLDL, 

HDL 

Promotes intravascular hydrolysis 

of TG mediated by lipoprotein 

lipase (LPL) 

39,000 Liver 

ApoB-48 CM, CM-r CM assembly and secretion 264,000 Intestine 

ApoB-100 
VLDL, IDL, 

LDL, Lp(a) 

Assembly and secretion of VLDL, 

Ligand for LDL receptor 
512,000 Liver 

ApoC-I 
CM, VLDL, 

HDL 
Activates LCAT 6600 Liver 

ApoC-II 
CM, VLDL, 

HDL 
Activates LPL 8900 Liver 

ApoC-III 
CM, VLDL, 

HDL 

Inhibits LPL, Inhibits hepatic 

uptake and catabolism of apoB-

containing lipoproteins, enhances 

the catabolism of HDL, activates 

inflammatory pathways 

8800 Liver 

ApoD HDL Closely associated with LCAT 33,000 Liver 

ApoE 

CM, CM-r, 

VLDL, IDL, 

HDL 

ligand for LDL receptor, ligand for 

LDL-related protein (LRP) 

receptor, Role in reverse 

cholesterol transport 

34,000 Liver 

apo(a) Lp(a) 
delivering cholesterol to sites of 

vascular injury 

300,000-

800,000 
Liver 
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Similar to apolipoproteins, lipids are also fundamental to lipoproteins. The major lipid 

classes found in plasma lipoproteins are phospholipids, sphingolipids, TG, and cholesterol 

(11,208). Figure 1.8 illustrates the approximate lipid and apolipoprotein composition of the 

major plasma lipoproteins. In the context of plasma lipids, CM and VLDL serve as the primary 

carriers of plasma TG, while LDL and HDL are the main carriers of plasma cholesterol, and 

phospholipids, respectively. However, it's important to note that circulating lipoproteins are in 

a dynamic state, continually exchanging components among one another, and thus changing in 

their size. 

 

 

 

 

 

 

 

 

Phospholipids or glycerophospholipids (GPL) play a critical role in maintaining the 

structural integrity and functionality of cellular membranes and plasma lipoproteins. As 

illustrated in Figure 1.9A, phospholipids consist of fatty acids linked to a glycerol backbone 

with a phosphate group. Each phospholipid molecule has two fatty acids, termed lipid tails, and 

linked to the first (sn-1) and second (sn-2) carbon atoms of the glycerol via ester linkage 

(C¯COO¯CR`), except for ether GPL (plasmalogens), where the sn-1 fatty acid is linked via 

ether (C¯O¯C¯CR`) or vinyl-ether linkage (C¯O¯C=CR`). In lysophospholipids (e.g. Lyso-

phosphatidylcholine (LPC), and Lyso-phosphatidylethanolamine (LPE)), only one hydroxyl 

group of the glycerol backbone is acylated with a fatty acid chain. The third carbon atom (sn-

3) of the glycerol in phospholipids is occupied by a phosphate group linked to an alcoholic 

group, known as the head group (209). Phospholipids exhibit amphipathic properties, featuring 

polar, hydrophilic head groups and nonpolar, hydrophobic lipid tails (210,211). In aqueous 

Figure 1.8: Estimated lipid and protein composition of the major plasma lipoproteins. 

Although the composition in each class is similar, the composition within the particles of each 

class is heterogeneous, so the percentages given are approximate. In the case of HDL, the figure 

is shown for HDL3, while HDL2 particles contain less proteins and more lipids. [Adapted from 

https://basicmedicalkey.com/lipids-lipoproteins-and-cardiovascular-disease/] 

https://basicmedicalkey.com/lipids-lipoproteins-and-cardiovascular-disease/
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Figure 1.9: Major lipid classes. A) Glycerophospholipids are composed of phosphate head 

group and lipid tails made of two fatty acids (saturated or unsaturated) linked together through 

a glycerol molecule. Examples of phospholipid’ head groups include choline, ethanolamine, 

serine, and inositol. B) Saturated and unsaturated fatty acids. C) Sphingolipids are composed 

of sphingosine, N-fatty acid, and a head group which determines the sphingolipid class. D) 

Triglycerides are composed of glycerol molecule linked to 3 fatty acids. E) Free cholesterol. 

F) Cholesteryl ester. [Adapted from LibreTexts BIOLOGY, Harayama and Riezman, et al. 2018 

(209), Li et al. 2015 (211), Aktas et al. 2014 (214)]  
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environments, phospholipids assemble as monolayers in lipoproteins or bilayers in cellular 

membranes, with their head groups facing the aqueous phase and lipid tails oriented towards 

the inner aspect of the cell membrane or the lipid core of lipoproteins (209–211). The 

arrangement of phospholipid’s head groups and lipid tails, based on their physicochemical 

properties, significantly affects the lipoproteins’ surface and core fluidities, thereby impacting 

their ability to transport, exchange and store different lipids (212,213). Major GPL classes are 

phosphatidylcholine (PC), LPC, phosphatidylethanolamine (PE), LPE, phosphatidylinositol 

(PI), phosphatidylserine (PS), PE-plasmalogens, phosphatidylglycerol (PG), phosphatidic acid, 

and cardiolipin (214). While the head group defines the GPL’s class, the fatty acid composition 

(i.e. length and the unsaturation level, Figure 1.9B) of the lipid tails determine the molecular 

species of each phospholipid class.  

Sphingolipids is another major class of plasma lipids, and they consist of sphingoid base 

(which is both the backbone and hydrophobic tail) with an N-acyl fatty acid chain and a head 

group (Figure 1.9C). The degree of unsaturation and hydroxylation defines the sphingoid base 

type (i.e. sphinganine or hydroxyl-sphinganine, or sphingosine), while the head groups (i.e. 

hydroxyl, phosphocholine, phosphoethanolamine, glucose, galactose, oligosaccharide, and 

phosphate) defines the sphingolipids class. Major classes of sphingolipids include ceramides, 

sphingomyelin (SM), ceramide-phosphoethanolamine, cerebrosides (i.e. galactocerebrosides, 

glucocerebrosides), ceramide-1-phosphate, lysosphingolipids, and complex glycosphingolipids 

(i.e. gangliosides) (209,211,215).  

In plasma, phospholipids and sphingolipids are unevenly distributed across plasma 

lipoproteins. GPL such as PC, LPC, PE, and PE-plasmalogens are mainly found in HDL, while 

SM and ceramides are mainly found in LDL as shown in Table 1.4 (208).  

Other major classes of plasma lipids are TG and cholesterol. TG consist of a glycerol 

molecule esterified with three fatty acids (Figure 1.9D), while cholesterol is a steroid lipid, 

consists of a central sterol nucleus made of four hydrocarbon rings, a hydrocarbon tail, and a 

hydroxyl group. Cholesterol presents as free cholesterol (unesterified, Figure 1.9E) or CE 

(esterified, Figure 1.9F), the latter form is reserved for cellular storage and transport in plasma 

(209).  
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Table 1.4: Distribution of major classes of phospholipids among lipoproteins. HDL: high-

density lipoprotein; LDL: low-density lipoprotein; PE: phosphatidylethanolamine; VLDL: 

very-low-density lipoprotein [Adapted from (208)].  

Lipid 

Total-serum 

Concentration 

(µM) 

Distribution among lipoprotein 

classes in percent 

VLDL (%) LDL (%) HDL (%) 

Phosphatidylcholine 1986 ± 727 8.1 ± 6.4 29.9 ± 6.6 62 ± 10.3 

Sphingomyelin 415 ± 141 7.2 ± 6.8 50.4 ± 7.5 42.6 ± 10.7 

Lysophosphatidylcholine 330 ± 168 1.7 ± 1.5 11 ± 4.5 87.3 ± 5.4 

Phosphatidylethanolamine 35.6 ± 20.8 18.6 ± 9.4 21.3 ± 5.6 60.1 ± 11.4 

PE-plasmalogens 31.9 ± 13.9 11.6 ± 5.3 28.5 ± 6.5 59.9 ± 8.8 

Ceramide 8.1 ± 3.4 15.6 ± 99 60.3 ± 6.7 24.1 ± 7.4 
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1.2.3. Lipoprotein metabolism 

The Metabolism of plasma lipoproteins is divided into two distinct pathways: exogenous 

and endogenous pathways. The exogenous pathway involves the transportation of dietary lipids 

from small intestines to peripheral tissues and liver. In this pathway, CM and CM-remnants 

lipoproteins act as carriers for dietary lipids. The endogenous pathway involves the synthesis 

and subsequent distribution of lipids originating from liver to peripheral tissues through VLDL, 

IDL, and LDL lipoproteins. These pathways are crucial to ensure the balance between dietary 

lipid intake, liver lipid synthesis, and the essential distribution of lipids throughout the body 

(188,216,217).  

1.2.3.1 Exogenous pathway  

The exogenous pathway (as illustrated in Figure 1.10A) of lipid metabolism initiates 

within the small intestines, where the dietary lipids such as TG are digested into fatty acids and 

monoacylglycerol (MAG), which are then emulsified with bile acids, and dietary cholesterol to 

form micelles. The absorption of cholesterol by the enterocytes is facilitated by NPC1L1 

transporter, while fatty acids and MAG are likely absorbed through fatty acid transporters and 

passive diffusion (50). Within the enterocytes, both fatty acids, and cholesterol are re-esterified 

into TG and CE, respectively, which are then combined with phospholipids, and ApoB-48 to 

form CM particles. The assembly process of CM is facilitated by microsomal TG transfer 

protein (MTP). After their assembly, CM particles access the systemic circulation via the 

lymphatic system, where they acquire ApoC-II and ApoE from HDL particles, resulting in the 

maturation of CM (188).  

In the circulation, ApoC-II serves as a co-factor for the activation of LPL enzyme, which 

is responsible for breaking down the TG within CM into fatty acids and glycerol. The released 

fatty acids are then taken up by muscles for energy usage and adipose tissues for storage in 

form of TG, while glycerol is transported to liver. The removal of TG from CM leads to the 

formation of CM-remnants, which still retain both ApoB-48 and ApoE. These CM-remnants 

are rapidly endocytosed by the hepatocytes via LDLR or LDL receptor-related protein (LRP), 

a process that requires ApoE recognition. Inside the hepatocytes, CM-remnants undergo 

breakdown into components such as TG, CE, PL, fat soluble vitamins, and amino acids derived 

from apolipoproteins (189,218–220).  On the other hand, CM can also be modified within the 
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circulation through their interaction with other plasma lipoproteins. In this interaction, some 

TG from CM are transferred to HDL and LDL through the action of CETP in exchange for CE. 

1.2.3.2 Endogenous pathway  

The endogenous pathway (illustrated in Figure 1.10B) of lipoprotein metabolism 

initiates within the liver. In this pathway, TG, CE, phospholipids, vitamin E, and apoB-100 are 

assembled together, under the action of MTP, to form VLDL. The hepatic secretion and the 

size of VLDL is regulated by both the activity of MTP and the availability of TG from various 

sources. The amount of TG present in the secreted VLDL depends on the fatty acids availability. 

Major sources of fatty acids in liver include de novo synthesis, hepatic uptake of triglyceride-

rich lipoproteins (TGRL), and fatty acids derived from adipose tissues (50,221,222). In the 

context of cholesterol content in VLDL, about 10-20% is derived from diet and about 75% is 

derived from do novo biosynthesis, via a pathway whose key enzyme is HMGCR enzyme (223). 

As VLDL particles enter the circulation, they acquire ApoC-II and ApoE from the HDL before 

reaching all body tissues where LPL facilitates the hydrolysis of their TG into fatty acids and 

glycerol (194,224). During this process, VLDL loses the ApoC-II (which returns back to HDL) 

and transforms into VLDL-remnants (also referred to as IDL). About 50% of VLDL-remnants 

are cleared from circulation by the liver via LDLR or LRP, in a manner similar to the CM-

remnants removal. The remaining VLDL-remnants is converted to cholesterol-rich LDL 

particles, through the hydrolysis of their residual TG via the hepatic lipase on the surface of 

liver cells. Due to its high cholesterol content, LDL predominantly deliver cholesterol to the 

liver and peripheral tissues via LDLR. The main functions of cholesterol is to maintain the 

integrity and fluidity of cellular membranes and to serve as a precursor for the synthesis of 

several vital substances such as steroid hormones, bile acids, and vitamin D (50,225).  

To maintain lipid homeostasis, mechanisms like reverse cholesterol transport (RCT) and 

reverse remnant-cholesterol transport (RRT) pathways control lipid distribution, particularly 

cholesterol, to peripheral tissues, mainly via HDL particles. Such pathways involve the removal 

of cholesterol from peripheral tissues (i.e. RCT), and from circulating lipoproteins-remnants 

(i.e. RRT) by HDL, followed by cholesterol transport to liver for excretion (50,217,226). These 

pathways prevent excessive cholesterol accumulation in peripheral tissues including arterial 

wall. Intravascular HDL metabolism, as well as the RCT and RRT pathways, are detailed in the 

following section. 
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Figure 1.10: Exogenous and Endogenous lipoprotein metabolic pathways. A) Exogenous 

Lipoprotein Pathway. 1. Digested lipids enter the intestinal enterocytes where they are re-

assembled into chylomicron particles and subsequently secreted into lymphatic vessels and 

released to circulation. 2. In the capillary beds of the adipose tissue and muscles, TG in 

chylomicrons are hydrolysed by lipoprotein lipase (LPL) into free fatty acids (FFA), which  are 

then used to produce energy in muscle or for the storage of TG in adipose tissue. Such de-

lipidation process produces cholesterol-rich chylomicron remnants. 3. Chylomicron remnants 

are rapidly endocytosed by hepatocytes via LDL receptor (LDLR) or LDL receptor-related 

protein (LRP). B) Endogenous Lipoprotein Pathway. 4. Hepatic VLDL secretion is controlled 

by the activity by the availability of hepatic lipids from varying sources. Under fasting 

conditions, FFA are released from adipocytes. 5. Then FFA are delivered to the liver for re-

esterification and secretion as VLDL. 6. In circulation, VLDL lose TG due to LPL-catalysed 

hydrolysis and thus become intermediate-density lipoproteins (IDL). 7. In a second step, IDL 

are further hydrolysed by hepatic lipase (HL) to produce cholesterol enriched LDL particles. 

These LDL particles deliver cholesterol to the liver as well as peripheral tissues primarily via 

the LDLR, where cholesterol serve as substrate for membrane or steroid hormone synthesis in 

distant cells. 8. When LDL (particularly small LDL) undergo oxidation, they can be retained 

in the peripheral tissues and taken up by peripheral cells like macrophages resulting in the 

formation of foam cells. 9. High density lipoprotein (HDL) removes excess LDL cholesterol 

from peripheral cells such as arterial macrophages, for hepatic clearance, preventing excessive 

cholesterol accumulation in macrophage foam cells. [Adapted from Stemmer. et al. 2020 

(217)]. The RCT pathway part shown in the original graph was modified accordingly to present 

this pathway separately in the context of HDL metabolism.  
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1.2.3.3 Intravascular metabolism of HDL  

The intravascular metabolism of HDL (Figure 1.11) initiates with the de novo 

generation of lipid free/lipid poor ApoA-I particles, from the liver or small intestines (227–

230). These small precursors of mature HDL are unstable and readily acquire FC and 

phospholipids from peripheral cells via ATP-binding cassette transporter A1 (ABCA1) lipid 

transporter. This process leads to the formation of small, discoidal pre-β HDL particles. These 

particles, in turn, acquire FC and phospholipids from peripheral tissues via ABCA1. 

Concomitantly, the acquired FC is converted to CE by lecithin-cholesterol acyltransferase 

(LCAT) enzyme, by transferring a fatty acid from the sn-2 position of PC to the hydroxyl group 

of free cholesterol, thereby forming CE and  LPC (refer to Figure 1.9E and F for structure) 

(231). Phospholipids for LCAT activation are mainly provided via the phospholipid transfer 

protein (PLTP), by mediating transfer of phospholipids from VLDL into HDL (232). As they 

form, CE sequester into the core of discoidal HDL particles due to their extreme hydrophobic 

nature. This effect gradually converts the discoidal HDL into less dense, and larger spherical 

particles, including small HDL3 and large HDL2 particles. These particles can undergo 

additional remodeling via particle fusion and surface remnant transfer mediated by PLTP (232). 

Small HDL3 particles continue to acquire FC from peripheral cells mainly via ABCA1, while 

large HDL2 particles acquire FC mainly via ATP binding cassette G1 (ABCG1) and scavenger 

receptor class B Type I (SR-BI) transporters. Large HDL2 can be converted into small HDL3 

upon CETP-mediated CE transfer from HDL to VLDL and LDL, selective CE uptake by the 

liver and steroidogenic organs mediated via SR-BI, and hydrolysis of the core TG by hepatic 

lipase (HL) as well as of TG and phospholipids by endothelial lipase (EL) (233). These 

processes promote reduction in HDL size, resulting in the formation of lipid-poor apoA-I or 

pre-β HDL, which can be recycled for the next lipidation cycle (234,235).  

The intravascular metabolism of HDL is intimately linked to that of TGRL (i.e. CM and 

VLDL). Among the pathways linking HDL and TGRL are the CETP-mediated heteroexchange 

of CE and TG, and the transfer to HDL of surface TGRL remnants produced during TGRL 

lipolysis by LPL (236,237). The LPL- mediated hydrolysis of TG within the TGRL result in 

the shrinkage of their hydrophobic core, leading to the formation of smaller, denser remnant 

TGRLs, also referred to as core remnants (238–240). Consequently, the redundant molecules 

of the surface monolayer surrounding the hydrophobic core are shed from the particles in  form 

of surface remnants, which include apolipoproteins, phospholipids, and FC (241). Following 
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Figure 1.11: Intravascular HDL metabolism. Apolipoprotein A-I (apoA-I) generated by 

the liver and intestine acquire free cholesterol (FC) and phospholipids (PL) from cells lipids 

via the ATP binding cassette AI (ABCA1) transporter  to form small, discoid pre-beta HDL. 

Lipoprotein lipase (LPL)-mediated lipolysis of VLDL is another important source for the 

formation of pre-beta HDL from the redundant surface components of VLDL following 

triglycerides (TG) hydrolysis. Acting on pre-beta discoid HDL, lecithin: cholesterol 

acyltransferase (LCAT) esterifies the FC into cholesteryl esters (CE), and subsequently 

generates a group of small HDL (referred to as HDL3) and large spherical HDL (referred to 

as HDL2) particles. The HDL2 particles undergo further remodelling via particle fusion and 

surface remnant transfer mediated by phospholipids transfer protein (PLTP). Small HDL3 

particles further combine with FC effluxed via ABCA1, ATP binding cassette G1 (ABCG1) 

transporters and scavenger receptor class B Type I (SR-BI), while large HDL2 particles 

acquire FC via ABCG1 and SR-BI. Under the action of cholesteryl ester transfer protein 

(CETP), the CE in small and large HDL particles is exchanged for TG from apoB-containing 

lipoproteins (VLDL and LDL), resulting in the formation of TG-rich HDL. Plasma lipases 

including hepatic lipase (HL) and endothelial lipase (EL, not shown) hydrolyse HDL 

phospholipids and TG, promoting the reduction in HDL size, formation of lipid-poor HDL 

particles and shedding from HDL of lipid-free apoA-I, which can interact with ABCA1 in the 

next lipidation cycle. HDL lipids are catabolized primarily in the liver, either separately from 

HDL proteins by selective uptake via SR-BI, or via CETP-mediated transfer to apoB-

containing lipoproteins, or as holoparticles together with HDL proteins primarily in the liver 

via uptake through receptors for HDL holoparticles (HDLR). [Adapted from Camont et al. 

2011 (173) and Rached et al. 2015 (231)] 
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their production, the surface TGRL remnants predominantly fuse with HDL, adding material 

to plasma HDL pool. HDL can efficiently acquire both polar (FC, phospholipid) and non-polar 

(CE, TG) lipids (226). In this regard, small, dense lipid-poor HDL3 particles represent 

preferential acceptors for surface lipids released during TGRL lipolysis (242). The transfer of 

phospholipid and FC to HDL3 enhances LCAT-mediated formation of CE, facilitating 

conversion of HDL3 into HDL2 (243). Remnant-derived cholesterol can then be transferred 

from HDL to the liver, either directly via SR-BI or through VLDL and LDL and their hepatic 

receptors (244,245). HDL's removal of excess surface remnants also facilitate the hepatic 

uptake of the core remnants (246). This accelerates the removal of surface and core remnants 

from circulation, which can otherwise influx and accumulate within the extrahepatic tissues, 

including the arterial wall (241).  

HDL lipids are catabolized primarily in the liver. To do so, HDL either selectively 

delivers its cholesterol to the liver through SR-B1, or to VLDL and LDL through CETP with 

subsequent uptake through LDLR. HDL particles can also be endocytosed via holoparticle HDL 

receptors (i.e. cubulin and ectopic β-chain of ATP synthase), and LDLR (for apoE-containing 

HDL), where they are degraded and their cholesterol is excreted in form of bile acids, or 

assembled into lipoprotein particles that are secreted back into the circulation. Lipid free ApoA-

I particles are primarily eliminated and catabolized in the kidneys (50,188,231,232).  

HDL actively participates in lipid metabolic pathways, including RCT and RRT as 

shown in Figure 1.12, to maintain lipid balance and prevent excess cholesterol accumulation 

in peripheral tissues, by facilitating its transport to the liver for excretion. In RRT, HDL acquires 

FC from surface TGRL remnants, produced through LPL-mediated TGRL lipolysis, while in 

RCT, HDL takes up FC effluxed from peripheral tissues. In both RRT and RCT, after accepting 

FC, HDL undergoes LCAT-mediated FC esterification, resulting in gradual enlargement of 

HDL, and ultimately, hepatic uptake of cholesterol from HDL for excretion (226,247). 

Throughout these processes, HDL particles continuously remodel as they interact with 

peripheral cells, cell receptors, lipoproteins and enzymes. Such interactions lead to the 

formation of a heterogeneous group of small discoid and spherical HDL particles that differ in 

size, density, and composition (i.e. proteins and lipids) (173,231). The next section discusses in 

details the structural and compositional heterogeneity of HDL particles. 
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Figure 1.12: RRT and RCT pathways. Following triglyceride (TG) lipolysis by 

lipoprotein lipase (LPL), triglyceride-rich lipoproteins (TGRL) are converted into core and 

surface remnants. The core remnants are effectively cleared by hepatic low-density 

lipoprotein (LDL) receptors (LDL-R). Surface remnants contain free cholesterol (FC), 

phospholipid (PL), and apolipoproteins (apos). These components combine with the plasma 

high-density lipoprotein (HDL) pool, leading to the esterification of FC by LCAT and the 

subsequent enlargement of HDL particles. Both bound FC and cholesteryl esters (CE) are 

transported to the liver directly via SR-BI (in green) or indirectly via apoB-containing 

lipoproteins. The traditional reverse cholesterol transport (RCT) pathway from the arterial 

wall is shown as broken lines. Lipoprotein components are in orange, and enzymes and lipid 

transfer proteins are in blue. CETP: cholesteryl ester transfer protein; LCAT: lecithin: 

cholesterol acyltransferase; LPL: lipoprotein lipase; SR-BI: scavenger receptor BI; TG: 

triglycerides. [Adapted from Kontush A. 2020 (226)]. 
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1.2.4. HDL structural and compositional heterogeneity  

Plasma HDL comprises a diverse group of protein rich, small, dense particles, with an 

average size of 7-12nm and density of 1.063-1.21 g/ml (248). HDL particles are complex 

structures, primarily composed of polar lipids complexed with apolipoproteins, forming 

plurimolecular, quasi-spherical or discoid pseudomicellar complexes. Due to high diversity in 

their protein and lipid composition, HDL particles exhibit significant heterogeneity in both their 

structural, and functional properties (248,249).  

1.2.4.1.  Structural heterogeneity 

HDL particles are characterized by the elevated degree of heterogeneity in their 

physicochemical, and biological properties (250–253). This heterogeneity is primarily due to 

ApoA-I's dynamic structure and unique flexible phospholipid-scavenging capacity, which 

allow ApoA-I to adapt distinct conformations based on the amount of bound lipids, and particle 

size (254,255). ApoA-I-phospholipid interactions drive specific motions of ApoA-I molecules 

such as sliding around their axis, rotation of the protein chains, and out of plane deformation 

around proline residues. These rules control the formation of HDL particles with different size 

and conformation according to their phospholipids content (248,256). In addition, the capacity 

to HDL to carry various proteins, allow the formation of specific protein-protein complexes, 

contributing markedly to their heterogeneity (257).  

The most characteristic structural heterogeneity between HDL particles is in their 

physical properties. Based on shape, HDL particles are typically discoidal or spherical (Figure 

1.13A), with discoidal HDL being small (≤8 nm) and lipid-poor (minor amounts of 

phospholipids and FC), while spherical HDL being larger (>8 nm) and have a hydrophobic core 

of CE and TG (11,248). Based on density, HDL can be fractionated by sequential flotational 

ultracentrifugation into large, light, lipid-rich HDL2 (1.063-1.125 g/ml) and small, dense, 

protein-rich HDL3 (1.125-1.21 g/ml) (258,259). Using density gradient ultracentrifugation, 

HDL2 and HDL3 are further subdivided into five subpopulations of decreasing size: large, light 

HDL2b (9.7-12.9nm), and HDL2a (8.8-9.7nm) and small, dense HDL3a (8.2-8.8nm), HDL3b (7.8-

8.2nm), and HDL3c (7.2-7.8nm) (Figure 1.13B) (249,260). Another electrophoretic approach 

involves two-dimensional electrophoresis which separate based on the particle charge and size 

(Figure 1.13C). HDL particles are first separated in agarose gel by charge into pre-beta (β), 

alpha (α), and pre-α particles, which are then separated in polyacrylamide gel by size into very 
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small discoidal pre-β1 HDL (~5.6 nm), very small discoid α4 HDL (~7.4 nm), small spherical 

α3 HDL (~8 nm), medium spherical α2 HDL (~9.2 nm), large spherical α1 HDL (~10 nm). 

Minor HDL subpopulations observed by two-dimensional electrophoresis include pre-α HDL 

particles (pre-α1, pre-α2, pre-α3), large pre-β2 HDL, and very large pre-β3 HDL (261). Using 

selected-affinity immunosorption in series, with antibodies against apo A-I and apo A-II, HDL 

can be also classified into LpA-I which contains only ApoA-I, and LpA-I: A-II which contains 

both ApoA-I, and ApoA-II (Figure 1.13D) (173).   

 

 

 

 

 

Figure 1.13: Heterogeneity of HDL particles. [Adapted from Schaefer EJ et al. 2010 (262) 

and Rye KA et al. 2009 (263)]. 
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1.2.4.2.  Compositional heterogeneity 

HDL particles comprise two major constituents: proteins and lipids. Such components 

vary in their relative abundance among different HDL subfractions, contributing significantly 

to the structural and functional characteristics of HDL particles. 

Proteins composition and heterogeneity in HDL  

Starting with HDL proteome, the heterogeneity of HDL-associated proteins was first 

established in 1968-1969 (264–266). Besides ApoA-I and ApoA-II, current proteomic studies 

have identified 285 individual proteins in HDL particles (204), which can be classified into six 

subgroups, including apolipoproteins, enzymes, acute-phase proteins, complement regulation 

components, proteinase inhibitors, and minor proteins such as  minerals and hormones-binding 

proteins (249). This diverse proteome enables HDL particles to play multiple roles in 

lipoprotein metabolism, host defense, blood coagulation, inflammation, and mineral/vitamin 

transport (267). Of note some of the proteins associated to HDL are glycosylated (248,268). 

Major proteins in HDL and their main functions are listed in Table 1.5. Furthermore, it has 

been shown that micro-RNAs, which contribute to their biological activities, are also 

transported by HDLs (248,268). Since they constitute about 90-95% of total HDL proteins, 

ApoA-I and A-II will be discussed in detailed.  

ApoA-I is an essential protein component of HDL particles accounting for about 70% 

of total HDL proteins and is found in all HDL particles (269). About 80% of plasma ApoA-I 

are synthesized and secreted by the liver while the remaining 20% are produced by the intestines 

(248,270). Mature ApoA-I is a single polypeptide composed of 243 amino acids (AA) (MW: 

28 kDa) comprising eleven amphipathic α-helical domains accounting for 90% of its structure 

(Figure 1.14A and B), with no glycosylation and disulfide linkages and is encoded by ApoA-

I gene located on the 11th chromosome (271,272). The elevated amphipacity of ApoA-I 

facilitates HDL biogenesis, and underlies its capacity to form stable micellar structures with 

lipids aiding in their solubilization, and to move between HDL and other lipoproteins such as 

CM and VLDL (249). The main roles of ApoA-I in HDL include acting as a structural scaffold 

for the activation of LCAT enzyme, interaction with a range of cellular receptors, and endowing 

HDL with several atheroprotective functions (refer to Figure 1.5) (270,273).  
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ApoA-II (MW: 17kDa) is the second major apolipoprotein of HDL accounting for about 

15-20% of total HDL proteins, and is found in about 50% of HDL particles (274). ApoA-II is 

primarily synthesized in the liver, but it has also been detected in the intestines (275). Mature, 

circulating ApoA-II is composed of two identical polypeptide chains (Figure 1.14C), each 

contains 77 amino acids and bound together by a disulfide bridge (276) and is encoded by 

ApoA-II gene located on the 1st chromosome (277–279). As compared to ApoA-I biophysical 

properties, ApoA-II protein is less amphipathic, and considered more hydrophobic (275). 

ApoA-II contributes to HDL maturation into large spherical particles, which increase the 

quantity of HDL-C “good cholesterol”, but not necessarily the capacity of HDL to promote 

cholesterol efflux in the RCT pathway as ApoA-I (280).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14: Model structures of ApoA-I and ApoA-II. A) Structural regions of ApoA-I 

protein and their major functions. B) Eleven α-helices (each shown in different color) make up 

ApoA-I molecule with proline residues at the junctions between the helices result in the curved 

appearance of ApoA-I molecule. C) Two polypeptide chains linked by disulfide linkage, make 

up each ApoA-II molecule. [Adapted from Bhale et al. 2022 (270)] 
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Table 1.5: The major proteins of HDL and their main functions. GSPx-3: Glutathione 

Selenium Peroxidase-3; Hrp: handle region peptide; LDL-R: LDL-receptor; LRP: LDL 

receptor-related protein. PAF-AH: platelet-activating factor-acetylhydrolase; PLTP: 

Phospholipid Transfer Protein; [Adapted from (248,249)].    

Protein Major function 

Apolipoproteins (Apo) 

ApoA-I (28 KDa) 
Major structural and functional apolipoprotein, lecithin-

cholesterol acyltransferase (LCAT) activator 

ApoA-II (17 kDa) structural and functional apolipoprotein 

ApoA-IV (46 kDa) 
Structural and functional apolipoprotein, most hydrophilic 

apolipoprotein 

ApoA-V (39 kDa) 
Activator of lipoprotein lipase (LPL), inhibitor of hepatic 

production and secretion of triglyceride (TG) 

ApoC-I (6.6 KDa) 
Inhibitor of Cholesteryl ester transfer protein (CETP), 

LCAT activator  

ApoC-II (8.8 kDa) Activator of LPL  

ApoC-III (8.8 kDa) 
Inhibitor of LPL, decreases the hepatic uptake of 

Chylomicrons 

ApoC-IV (11 kDa) Regulates TG metabolism  

ApoD (19 kDa) 
Binding of small hydrophobic molecules, high affinity for 

arachidonic acid 

ApoE (34 kDa) 
structural and functional apolipoprotein similar to ApoA-I 

and ApoA-II, LDL-R and LRP ligand 

ApoF (29 kDa) Inhibitor of CETP 

ApoH (38 kDa) 
Binding of negatively charged molecules such as heparin 

and dextran sulfate, prevent intrinsic coagulation cascade 

ApoJ (70 kDa) 
Binding of hydrophobic molecules, interaction with cell 

receptors 

ApoL-I (44-46 kDa) 
Trypanolytic factor of human serum, lipid binding protein 

with high affinity to Phosphatidic acid and Cardiolipin 

ApoM (25 kDa) Binding of small hydrophobic molecules 

Enzymes 

LCAT Esterification of cholesterol to cholesteryl esters  

Paraoxonase 1 Calcium-dependent lactonase 

PAF-AH (LpPLA2) Hydrolysis of short-chain phospholipids 

GSPx-3 Reduction of hydroperoxides by glutathione 
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PLTP 
Conversion of HDL into larger and smaller particles, 

transport of lipopolysaccharide 

CETP 

Heteroexchange of cholesteryl ester (CE) and TG, and 

homoexhange of phospholipids (PL) between HDL and 

ApoB-lipoproteins   

Acute-phase proteins 

Serum amyloid A1 Acute-phase reactant  

Serum amyloid A4 Acute-phase reactant  

Alpha-2-HS-glycoprotein Negative acute-phase reactant 

Fibrinogen alpha chain Precursor of fibrin, cofactor in platelet aggregation 

Complement components  

Complement 3 Complement activation 

Proteinase inhibitors 

Alpha-1-antitrypsin Inhibitor of serine proteinases 

Hrp Decoy substrate to prevent proteolysis  

Other proteins   

Transthyretin Thyroid hormone binding and transport 

Serotransferrin Iron binding and transport  

Vitamin-D-binding protein Vitamin D binding and transport 

Hemopexin  Heme binding and transport 

The dynamic exchange of the HDL’s molecular components as they travel in the 

circulation results in significant compositional diversity among HDL subpopulations (11,248).  

In the context of HDL proteins, all HDL subpopulations contain ApoA-I (259,281), with LpA-

I and LpA-I: A-II contain approximately 35% and 65% of plasma ApoA-I, respectively (282). 

On the other hand, about half of HDL subpopulations contain ApoA-II, which all presents in 

LpA-I: A-II particles (283). The number of ApoA-I molecules in LpA-I particles increases from 

two to four with increasing the particle size (284). On the other hand, all the LpA-I: A-II 

particles contain two ApoA-I molecules, while the number of ApoA-II molecules increases 

from one to three with increasing the particle size (248). The distribution patterns of ApoA-I 

and ApoA-II across five HDL subpopulations are shown in Table 1.7. HDL subpopulations 

may also vary in the content of other proteins. For instance, ApoJ, ApoL-I, ApoF, PON1/3, 

PLTP and PAF-AH predominate in small, dense HDL3C particles (285). In line with these data, 

ApoJ, ApoL-I, ApoF, PON1, CETP, Apo-VI, ApoM, ApoD, and SAA1/2 preferentially co-

isolate with small-dense HDL3 particles (248). In contrast, ApoE, ApoC-I, ApoC-II, and ApoC-

III preferentially occur in large HDL2 particles (240,257,286,287).  
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Lipid composition and heterogeneity in HDL 

Lipids are essential components of HDL particles, constituting about 35-65% of their 

total mass (11,281). Major classes of HDL’s lipids include free cholesterol, CE, phospholipids, 

and TG (refer to Figure 1.9). Among these classes, phospholipids predominate in terms of 

quantity, along with SM, accounting for about 40-60 wt% of total HDL lipid content (11). 

Phospholipids form the surface lipid monolayer of HDL, whereas TG and CE form the 

hydrophobic lipid core, with unesterified cholesterol found mostly in the surface monolayer, 

and partially penetrating the core (11,248). Recent advances in mass spectrometry (MS) 

techniques have allowed lipidomic studies to unravel the complexity of HDL lipidome through 

the identification and quantification of more than 200 individual molecular species of lipids 

within HDL particles (11,208,288). Consequently, a novel perspective in research has emerged, 

focusing on exploring the impact of individual lipid species rather than major lipid classes on 

HDL functionality. In line with the subject of this work, HDL lipids will be explored in details.  

Glycerophospholipids (GPL) constitute the main lipid class of HDL, accounting for 

about 37.4-49.3% of total HDL lipids (refer to Table 1.6). Phospholipids build up the surface 

lipid monolayer of HDL, ensuring specific HDL structural conformation and regulating its 

fluidity (248). Major GPL subclasses in HDL include PC, PI, LPC, PE, PC- and PE-derived 

plasmalogens  (refer to Table 1.4) (208,289,290). HDL also contain minor amounts of PS, PG, 

phosphatidic acid and cardiolipin (288,291,292). PC is the key structural phospholipid of cell 

membranes and lipoproteins (11). PC accounts for about 32-35 % mol of total HDL lipids, and 

about 70% of total HDL phospholipids (208,248). Among PC species in HDL, PC (16:0/18:2), 

(18:0/18:2), (16:0/20:4), and (16:0/18:1) account for about 63 mol % of total PC in HDL 

(208,249,289). As compared to other lipoproteins, HDL is enriched in PC containing 

polyunsaturated fatty acids (PUFA) moieties in their lipid tails (208). LPC is an important 

phospholipid in HDL, constituting about 1.4-8.1 mol % of total HDL lipids, and is derived from 

the hydrolysis of sn-2 acyl chain of PC by LCAT (289). Major molecular species of LPC in 

HDL are LPC 16:0 and LPC 18:0, representing about 75 mol % of total LPC in HDL (208,249). 

PC-plasmalogens accounts for about 2.2-3.5 mol % of total HDL lipids, about 43% of which 

being PC (38:5), (36:2) and (36:4) species (293).  

PE which account for 0.7-0.9 mol % of total HDL lipids is a moderately abundant 

phospholipid in HDL. About 47 mol % of total PE in HDL are PE (34:2), PE (36:2), and PE 

(38:4) species (208). PE-plasmalogens also account for 0.6-0.9 mol % of total HDL lipids and 
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noticeably their main species include those that contain arachidonic acid (20:4) such as 

(18:0/20:4) and (16:0/20:4) species, which account for about 35 mol % of total PE-

plasmalogens in HDL (208). Similar to PE, PI is also moderately abundant in HDL (0.5-0.8 

mol % of total HDL lipids) with 55 % represented by PI (18:0/20:3), and PI (18:0/20:4) species 

(292). Minor phospholipids in HDL particles include cardiolipin (0.08-0.2 mol %), PS (0.016-

0.03 mol %), PG (0.004-0.006 mol %), and phosphatidic acid (0.006-0.009 mol %) (249,260).   

Unesterified sterols account for 8.7-13.5 mol % of total HDL lipid, primarily residing 

in the surface lipid monolayer of HDL, where they partly penetrate the lipid core. This 

positioning highlights their crucial function in regulating the surface fluidity of HDL. FC is the 

predominant sterol in HDL, indicating the key role of HDL in cholesterol transport (248). 

Additionally, HDL contains minor amounts of other sterols, such as oxysterols, estrogens, and 

phytosterols (294,295). 

Neutral lipids including CE, and TG, account for 46.7-54.0 mol % of total HDL lipids 

(refer to Table 1.6). CE are highly hydrophobic lipids that contribute to 35-37 mol % of total 

HDL lipids. Up to 80% of CE content of HDL are formed in plasma HDL as a result of the 

trans-esterification between phospholipids and cholesterol catalyzed by LCAT. Most of the CE 

in HDL is present in the form of cholesteryl linoleate (C18:2) (11). TG accounts for 2.8-3.2 mol 

% of total HDL lipids with species containing oleic (18:1), palmitic (16:0), and linoleic (18:2) 

acid moieties represent the majority of TG in HDL (208). Similar to CE, TG are hydrophobic 

and thus are located in the lipid core of HDL.  

The major sphingolipids found in HDL include SM, ceramides, and sphingosine-1-

phosphate (S1P) (refer to Table 1.6). SM (5.6-6.6 mol % of total HDL lipids) is a structural 

lipid known to increase HDL surface rigidity (296,297). SM content of HDL largely originates 

from TGRL, with (d18:1/16:0) and (d18:2/24:0) species forming about 42 mol % of total SM 

in HDL (208,249). Ceramide is poorly transported by HDL constituting for about 0.022-0.097 

mol % total HDL lipids (249). Major molecular species, representing about 65 mol % of total 

ceramides in HDL, include ceramide (16:0), (24:0) and (24:1) species (208,293). S1P is a 

phosphorylated sphingoid base and is most known for its role in vascular biology. Although 

HDL is the major carrier of S1P in plasma (11), the abundance of S1P in HDL is low (~0.05 

mol % total HDL lipids) with a majority of S1P (d18:1) and (d18:0) species (249,257). Other 

lysosphingolipids carried by HDL include lysosphingomyelin and lysosulfatide (249). HDL 

also contains minor amounts of diacylglycerides, monoacylglycerides, free fatty acids, oxidized 



 

49 | P a g e  

  

 Chapter 1. Introduction to literature 

lipids, lipid-soluble vitamins, and antioxidants such as tocopherols (vitamin E), carotenes, and 

coenzyme Q10 (11).  

HDL subpopulations are heterogeneous in their lipid composition (refer to Table 1.7). 

So, taking the example of the content of phospholipids, as percentage of total HDL mass, 

decreases about 2-fold from HDL2b to HDL3c particles (289). The same tendency is observed 

with the content of major phospholipid subclasses including PC, PE, PI, LPC, and total fatty 

acids between HDL2b and HDL3c particles. Similarly, the SM content of HDL decreases 

gradually from HDL2b to HDL3c in a more pronounced manner than phospholipids, in parallel 

with a progressive elevation in the PC/SM ratio (289). Lipidomic differences between HDL 

subpopulations extend also to minor sphingolipids such as S1P, which predominates in HDL3 

compared to HDL2 (289,298,299). The content of free cholesterol, CE, and TG progressively 

decrease with increase in HDL density (11). 

In conclusion, proteomic and lipidomic studies have revealed the complexity of HDL 

composition and its potential to provide valuable insights into HDL functionality (11). Hence, 

HDL's compositional heterogeneity represents a major challenge in the field of CVD, with HDL 

phospholipidome attracting special attention. Notably, our lab has found strong correlations 

between multiple phospholipid components of HDL and its atheroprotective functions (10), 

hinting at the potential for new molecular markers of HDL functionality (i.e. quality) in the 

context of ASCVD. The next section will explore HDL functionality, its heterogeneity, and the 

functional relevance of HDL components. 
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Table 1.6: Major lipid classes of HDL lipidome and their major molecular species. 

[Adapted from (11,208,249,281,288,289,291,292,294,300)].  

Lipid class 

mol % of 

total HDL 

lipids 

Major subspecies based on their 

mol % in relative to total content 

of their lipid class 

Glycerophospholipids 37.4-49.3  

Phosphatidylcholine (PC) 32-25 
16:0/18:2, 18:0/18:2, 16:0/20:4, 

16:0/18:1 

PC-plasmalogens 2.2-3.5 18:1/20:4, 18:0/18:2 

Lysophosphatidylcholine 1.4-8.1 16:0, 18:0, 18:1, 18:2 

Phosphatidylethanolamine 0.7-0.9 18:2/16:0, 18:2/18:0, 18:0/20:4 

PE-plasmalogens 0.6-0.9 18:0/20:4, 16:0/20:4 

Phosphatidylinositol 0.5-0.8 18:0/20:3, 18:0/20:4 

Cardiolipin 0.07-0.2  

Phosphatidylserine 0.016-0.03 16:0/18:0 

Phosphatidylglycerol 0.004-0.006 18:1/20:2 

Phosphatidic acid 0.006-0.009 20:4/20:0, 20:4/20:2, 18:2/20:1 

Neutral lipids 46.7-54.0  

Cholesteryl ester 35-37 Cholesteryl linoleate 

Unesterified Sterols 8.7-13.5 Cholesterol 

Triacylglycerides 2.8-3.2 18:1/16:0/18:1, 18:2/16:0/18:1 

Diacylglycerides 0.17-0.28 16:0/18:1, 18:1 /18:1 

Sphingolipids 5.7-6.9  

Sphingomyelin 5.6-6.6 
18:1/16:0, 18:2/24:0, 18:1/24:1, 

18:2/22:0, 18:1/22:1 

Ceramide 0.022-0.097 24:0, 24:1, 23:0, 22:0, 16:0 

glycosphingolipids 0.112-0.183 Hexosyl Ceramide, Lactosyl Ceramide 

Sphingosine-1-phosphate 0.015-0.046 d18:1 

Sphingosine-1-phosphate 0.007 d18:0 

Sphingosylphosphorylcholine 0.001 d18:1 

Minor lipids   

Free fatty acids 
Not 

determined 
16:0, 18:1, 18:1 

Isoprostanes-containing 

Phosphatidylcholines 

Very low, 

nanomolar 
36:3, 36:4, 38:4 
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Table 1.7: Compositional heterogeneity of HDL subfractions. (175, 281, 289,301).  

 

 

 

 

 

 

 

 

 

 

Composition (mol/mol HDL) HDL2b HDL2a HDL3a HDL3b HDL3c 

               Major proteins 

ApoA-I 4-5 4 3-4 3 2-3 

ApoA-II 0.8 1.0 1.4 1.0 0.4 

Phospholipids 130 140 120 45 25 

Phosphatidylcholine 85 100 85 30 20 

Phosphatidylinositol 10 10 10 5 2 

Phosphatidylethanolamine 2 2 2 1.0 0.5 

Lysophosphatidylcholine 1 1 1 0.5 0.5 

Sphingomyelin 30 25 20 8 3 

Free cholesterol 70 40 25 15 8 

Cholesteryl ester 180 160 140 70 40 

Triglycerides 30 20 15 10 5 
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Figure 1.15: HDL functions. Schematic illustration shows the major HDL biological functions 

including 1) Cholesterol and phospholipid efflux capacity from macrophages. 2) Anti-

inflammatory activity characterized mainly by the inhibition of ox-LDL induced VCAM-1 

expression in endothelial cells and cytokine release from macrophages. 3) Anti-oxidative 

activity characterized by the Inhibition of LDL oxidation by one- or two-electron oxidants, as 

well as the removal and subsequent inactivation of oxidized lipids (PLOOH) from oxidized 

LDL. 4) Cytoprotective activity characterized by the inhibition of oxidized LDL induced 

endothelial apoptosis. 5) Vasodilatory activity characterized by inducing the production of NO 

and inhibiting the release of superoxide from endothelial cells. 6) Anti-infectious activity 

characterized by binding to LPS. 7) Anti-thrombotic activity characterized by inhibiting of 

platelet aggregation. 1e oxidants, one-electron oxidants; FC, free cholesterol; PL, phospholipid; 

PLOOH, phospholipid hydroperoxide; PLOH, phospholipid hydroxides; VCAM-1, vascular 

cell adhesion molecule-1;  HDL, high-density lipoprotein; LDL, low-density lipoprotein; NO, 

nitric oxide; O2-., superoxide; LPS, lipopolysaccharide. [Adapted from Kontush and chapman. 

2012 (248)]. 

1.3 HDL atheroprotective functions   

Currently, it is accepted that HDL functionality (quality) is more important in defining 

the net atheroprotective capacity of HDL than HDL-C levels (quantity). HDL particles exert 

multiple atheroprotective activities including their capacity to promote cellular cholesterol 

efflux, together with anti-inflammatory, antioxidative, cytoprotective, vasodilatory, anti-

infectious, and anti-thrombotic activities  (illustrated in Figure 1.15) (248). Interestingly, our 

laboratory has revealed recently a new atheroprotective function of HDL, namely, the capacity 

of HDL to acquire free cholesterol upon TGRL lipolysis (242). Such complex pattern of the 

biological activities of HDL particles is directly related to their composition and structure 

(10,11,173). In this section, the most relevant functions of HDL to the pathophysiology of 

ASCVD will be discussed in details, and the relevance of HDL components to these functions.  
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1.3.1 Cholesterol Efflux Capacity  

The capacity of HDL to transport cholesterol from arterial wall macrophages to the liver 

for excretion through RCT pathway has been considered the classical atheroprotective function 

of HDL (250,302). Indeed, clinical studies consistently show that the cholesterol efflux capacity 

(CEC) of HDL is a stronger predictor of CVD than HDL-C levels (303). HDL mediates the 

critical initial step in RCT by promoting cholesterol efflux from lipid-loaded macrophages 

which represents the very early step in atherosclerosis process (8). The CEC of HDL is the most 

well-known and best studied biological activity of HDL (304).  

1.3.1.1 CEC-Mechanisms 

The process of cellular cholesterol efflux to HDL is mediated via several mechanisms 

including unidirectional ATP-dependent cholesterol efflux mediated by ABCA1 and ABCG1 

transporters; bidirectional ATP-independent pathway mediated by SR-BI; and receptor-

independent passive diffusion through cell membrane (233,304–307). The rate limiting step of 

this process is the cholesterol desorption from cell membrane, then subsequent collision and 

incorporation into HDL (213). ABCA1 mediates cholesterol efflux predominantly to lipid-free 

ApoA-I or lipid-poor pre-beta discoidal HDL (231,308,309), and accounts for about 80% of 

efflux stimulated by cellular cholesterol loading (310) and regulates more than 50% of total 

macrophage cholesterol efflux (311). The gene expression of ABCA1 is mainly regulated by 

nuclear liver X receptors (LXR) - alpha and beta and by retinoid X receptor (RXR) (312). The 

activity of LXRs is up-regulated by both cellular cholesterol overload and PPARγ nuclear 

receptor (231,313). Cellular cholesterol overload increases the production of oxysterols, which 

activate LXRs to induce cholesterol efflux by increasing the ABCA1 transcription (231). 

PPARγ promotes cholesterol efflux by up-regulating LXRs, and it is now well documented that 

PPARγ-LXRα-ABCA1 pathway is critical in regulating cellular cholesterol efflux (314,315). 

ABCG1 is another member of ABC transporters, which was found to promote cholesterol efflux 

from macrophages to mature spherical HDL2 and HDL3 particles (316–318). However, some 

studies demonstrated that LXR-stimulated cholesterol efflux to HDL from cholesterol-loaded 

human macrophages involves ABCA1 but not ABCG1 (319). SR-BI mediates bidirectional 

cellular cholesterol flux between plasma membranes and mature HDL under non-stimulated 

basal conditions (305). Finally, passive diffusion of cholesterol from plasma membranes to 

HDL is involved in effluxing cholesterol under non-stimulated basal conditions. However, the 
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role of SR-BI and passive diffusion is minor upon cholesterol loading of cells as they can’t be 

up-regulated by cellular cholesterol overload (304,310).   

1.3.1.2 CEC-functional relevance of HDL proteome 

As they predominate on the surface, proteins provide a major contribution to the CEC 

of HDL particles by mediating their interactions with cellular receptors (320). Among HDL 

proteins, ApoA-I plays a predominant role in lipid efflux (321). As a result of its unique 

structure and elevated amphipacity (322), ApoA-I solubilizes and transports cholesterol and 

phospholipids by adopting a conformation with high affinity for cell membrane receptors in 

small, cholesterol-poor HDL, which facilitate cellular cholesterol efflux (323). Subsequently, 

ApoA-I undergoes a conformational change due to cholesterol enrichment, decreasing its 

affinity for cell membrane receptors, and allowing the dissociation of HDL particles. Other 

apolipoproteins such as ApoA-II, ApoA-IV, ApoC-I, ApoE, and ApoM are also considered as 

efficient acceptors of cellular cholesterol (233,324–326). HDL enzymes are also of major 

relevance for cholesterol efflux and RCT. PON1 is implicated in the CEC of HDL by enhancing 

the interaction with macrophages through ABCA1 transporter (327) while LCAT also plays a 

key role in the net transfer of cholesterol from periphery to the liver (231).  

1.3.1.3 CEC-functional relevance of HDL lipidome 

HDL lipids play an equally crucial role in facilitating HDL-mediated cellular cholesterol 

efflux, by providing an environment for the acquisition of exogenous lipids, mainly cholesterol. 

Thus, the properties of HDL surface lipids have a significant influence on the efficiency of lipid 

efflux to HDL. Among these lipids, phospholipids provide a major contribution to the CEC of 

HDL. In terms of quantity, increasing phospholipid content of HDL in term of wt%, is 

associated with a dose-dependent increase in the CEC of HDL via SR-BI (328). Qualitatively, 

the physical state of phospholipids represents a major structural determinant of the CEC of 

HDL, with HDL particles enriched by fluid-phase unsaturated phospholipids being more 

efficient cholesterol acceptors as compared to particles with gel-phase saturated phospholipids 

(213). This difference is due to the more fluid nature of unsaturated phospholipids, which 

facilitates the incorporation of exogenous cholesterol into HDL (11). Furthermore, 

compositional changes during HDL remodeling such as reduced chain length and/or increased 

level of unsaturation in the surface phospholipids increase the structural flexibility of HDL, a 

prerequisite for cholesterol efflux (329,330). Conversely, high SM content in HDL reduces both 
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HDL fluidity of the surrounding liquid-phase lipids and cellular cholesterol efflux (331). 

Nonetheless, the high affinity of SM for FC can reduce the cholesterol influx from HDL to cells 

(328), thereby counteracting the impact of reduced HDL fluidity by SM on cellular cholesterol 

efflux (332).  

In the context of HDL’s role in preventing cholesterol accumulation within the arterial 

wall, our laboratory recently demonstrated a new function for HDL that complements its CEC 

in mediating atheroprotection. We have shown that HDL can acquire FC from TGRL after their 

lipolysis by LPL in vitro (242), which is then transported to the liver, either directly via SR-BI 

or through apoB-containing lipoproteins and their hepatic receptors (244,245). According to 

the reverse remnant-cholesterol transport (RRT) hypothesis, proposed by Dr. Anatol Kontush, 

the removal of cholesterol from TGRL remnants represents a major function of HDL that can 

reduce cholesterol influx into the arterial wall macrophages by accelerating the clearance of 

atherogenic TGRL remnants from the circulation (226), which would otherwise accumulate in 

the arterial wall and promote atherosclerosis (241). Although the relevance of HDL components 

in this function is still being explored, the number of acceptor HDL particles, and the activities 

of CETP and LCAT enzymes, along with the content of FC within HDL particles, appear to 

influence their ability to acquire free cholesterol from TGRL (242,333,334).  

1.3.2 Antioxidative activity  

            The antioxidative activity (AOX) of HDL is mainly expressed as the capacity to inhibit 

LDL oxidation (335), which represents a key factor in the early development of atherosclerosis 

(35,37,38). However, HDL protection against oxidation extends to inhibit intracellular 

oxidative stress in both endothelial cells and macrophages (336–340). The antioxidative activity 

of HDL is particularly relevant in metabolic conditions that are marked with chronic oxidative 

stress such as obesity, T2D, and MetS.  

1.3.2.1 AOX-Mechanisms 

HDL particles potently protect LDL from oxidation induced by one-electron oxidants 

(free radicals) and two-electron oxidants (hypochlorite). HDL-mediated protection of LDL 

against free radicals induced oxidation includes the removal of oxidized lipids such 

phospholipid hydroperoxides (PLOOHs), and CE hydroperoxides (CEOOHs) from LDL, 

followed by their subsequent inactivation within HDL particles (285). The transfer of oxidized 
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lipids from LDL to HDL occurs either spontaneously or facilitated by lipid transfer proteins, 

such as CETP, which accelerates the transfer of both PLOOHs and CEOOHs (341,342). Of 

note, the capacity of HDL to remove oxidized lipids from LDL is governed by the fluidity of 

HDL surface monolayer, with less rigid surface efficiently acquires more oxidized lipids (343). 

Furthermore, multiple studies have indicated that HDL may protect LDL from oxidation in part 

by serving as a sacrificial target for oxidants (344). This capacity of HDL to scavenge oxidants 

is influenced by the degree of unsaturation in its phospholipids, with high level of unsaturation 

offering more sites prone to oxidation (344,345). Importantly, HDL has also been shown to 

protect macrophages from ox-LDL-induced apoptosis by facilitating the efflux of oxidized 

sterols, such as 7-ketocholesterol, through ABCG1 (346). Furthermore, HDL reduces cellular 

oxidative stress by inhibiting the production of reactive oxygen species (ROS), through the 

interaction with SR-BI in endothelial cells, and both SR-BI and ABCG1 in macrophages 

(299,340). Following their transfer to HDL, oxidized lipids are inactivated based on their 

structure via either reduction mainly by the redox-active methionine residues of ApoA-I, or 

hydrolysis by HDL-hydrolytic enzymes (304).  

1.3.2.2 AOX-Functional relevance of HDL proteome 

ApoA-I is central to the AOX of HDL, as its methionine (Met) residues 112 and 148 

inactivate lipid hydroperoxides (LOOHs) by reducing them into redox-inactive lipid hydroxides 

(343,347,348). In addition, Histidine residues of ApoA-I may also inhibit the oxidation of LDL 

as a result of their metal chelating properties (349). Furthermore, ApoA-I facilitates the removal 

of oxidized lipids from ox-LDL (350). Other apolipoproteins components of HDL including 

ApoA-II, ApoA-IV, ApoA-V, ApoE, ApoJ, and ApoM are also known to protect LDL from 

oxidation in vitro (257,351,352). Enzymatic components of HDL including PON1, PAF-AH, 

and LCAT also contribute to the AOX of HDL by promoting hydrolysis of short-chain oxidized 

phospholipids (250,251). Finally, trypanosome lytic factor (Apolipoprotein L-I, haptoglobin-

related protein, and ApoA-I), which is found exclusively in dense HDL have been suggested to 

provide minor contribution to their LOOHs-inactivating capacity (353,354).  

1.3.2.3 AOX-Functional relevance of HDL lipidome 

HDL lipids strongly influence the antioxidative activity of HDL mainly via modulating 

the physical properties of the HDL surface lipids. Indeed, the efficiency of PLOOH transfer 

from LDL to HDL is mainly determined by the rigidity of the phospholipid monolayer of HDL 
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(343). Elevated surface fluidity of reconstituted HDL particles was shown to enhance both their 

antioxidative activity and the transfer rate of PLOOH from oxidized LDL (343). In this context, 

the fluidity of the phospholipid monolayer of HDL is inversely related with the relative content 

of SM and free cholesterol to PC, and the relative content of saturated and monounsaturated 

fatty acids to polyunsaturated ones (343). In addition, the ratio of CE to TG in HDL lipid core 

impacts the conformation of ApoA-I, thereby modifying the accessibility of Met residues to 

LOOHs (235,355). Furthermore, the capacity of HDL to scavenge oxidants is influenced by the 

degree of unsaturation in its phospholipids, with high level of unsaturation offering more sites 

prone to oxidation (344,345). 

1.3.3 Anti-inflammatory activity 

HDL particles exert several anti-inflammatory activities (AIA) that may collectively 

attenuate the chronic inflammatory process of atherosclerosis (356–359). HDL potently inhibits 

cytokine-induced adhesion molecule expression on endothelial cells, which thereby inhibits the 

adhesion of monocytes to endothelial cells (360,361). Furthermore, HDL is known to reduce 

the proliferation of myeloid cells into monocytes, hematopoietic stem cells proliferation, and 

neutrophil activation (362–364). Indeed, the anti-inflammatory activity of HDL is among the 

most well-known biological activities that contributes to HDL-mediated atheroprotection (304). 

1.3.3.1 AIA-Mechanisms 

The multiple effects of HDL against inflammation suggest several mechanisms that may 

underlie these effects. Among those, cellular lipid efflux appears to provide a mechanistic basis 

for the capacity of HDL to reduce the expression of endothelial adhesion molecules including 

VCAM-I, ICAM-I, and E-selectin, to inhibit monocytes and neutrophils activation (362,365), 

and to reduce myeloid cell proliferation and monocytes production (366). Indeed, the  of cellular 

cholesterol down-regulates macrophage inflammation through attenuating the inflammatory 

signaling via toll-like receptors (TLRs) (367). Recently, HDL was demonstrated to exhibit early 

AIA in macrophages via reducing LPS-induced activation of nuclear factor kappa B (NF-κB), 

p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK) and 

extracellular-signal-regulated kinase (ERK) signaling, which reflected a TLR-4 downregulation 

(368). In this study, HDL also exhibited late AIA via reducing LPS-induced phosphorylation 

of signal transducer and activator of transcription 1 (STAT1) and type 1 interferon (IRF1) 

signaling. Both the early and late AIA of HDL were dependent on cellular cholesterol efflux to 
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HDL (368), with ABCA1 appears to be critical for these effects as it diminishes TLR4 

trafficking to lipid rafts by reducing membrane cholesterol content (369). In addition, HDL was 

shown to mediate its AIA in macrophages via inducing the activating transcription factor 3 

(ATF3), which in turn downregulates the expression of TLR-induced proinflammatory 

cytokines (370). In addition, the removal of cholesterol via ABCA1, ABCG1, and SR-B1 

equally contribute to the anti-inflammatory effects of HDL in adipocytes (371). ApoA-I 

interaction with ABCA1 induces also anti-inflammatory effects independently of cholesterol 

efflux through the activation of Janus kinase 2 (JAK2) and Signal transducer and activator of 

transcription 3 (STAT3) genes, which reduce cytokine expression in macrophage cells (372). 

Furthermore, HDL-induced inhibition of endothelial adhesion molecules expression involve 

inhibition of ox-LDL and TNFα-induced activation of NF-κB, with subsequent reduction of 

inflammatory signaling (338,373). Moreover, the capacity of HDL particles to remove and 

inactivate oxidized lipids from ox-LDL, and/or cells is closely linked to their anti-inflammatory 

potential, by preventing the local inflammatory response induced by pro-inflammatory oxidized 

lipids (374,375). It is worth mentioning that some studies have reported pro-inflammatory 

effects of HDL in macrophages through inducing both TLR-induced protein kinase C (PKC)-

NF-κB/STAT1-IRF1 Signaling (376), and endoplasmic reticulum stress response, mediated by 

IRE1a (inositol-requiring enzyme 1a)/ASK1 (apoptosis signal-regulating kinase 1)/p38 MAPK 

signaling (368). Such pro-inflammatory effects were linked to HDL-medicated passive cellular 

cholesterol depletion.  

1.3.3.2 AIA-Functional relevance of HDL proteome 

Within HDL proteome, ApoA-I appears to have a major contribution to the anti-

inflammatory activity of HDL. Acting through ABCA1, ApoA-I appears to play a central role 

in mediating cholesterol efflux from membrane lipid rafts, as well as reducing neutrophils and 

monocytes activation (362,365,377). In addition, ApoA-I is pivotal for the capacity of HDL to 

inactivate pro-inflammatory oxidized lipids through its reducing actions (343,347,348). Other 

protein components of HDL particles can also contribute to their AIA. Hence, HDL-associated 

PAF-AH was shown to resolve inflammation in atherosclerotic plaques through restoring the 

emigratory process of monocytes derived dendritic cells (378). In addition, PON1 ensures the 

capacity of HDL to inactivate pro-inflammatory oxidized lipids through its hydrolytic actions 

(335,379,380). Furthermore, previous shotgun proteomics has identified several complement-

regulatory proteins (e.g. C3, C4A, C4B, and C9), and serpins with endopeptidase inhibitor 
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activity (e.g. serpin peptidase inhibitor, inter-α-trypsin inhibitor H4), to be implicated in the 

AIA of HDL (351).  

1.3.3.3 AIA-Functional relevance of HDL lipidome 

HDL phospholipids appear to be the major lipid components that impact the AIA of 

HDL. For instance, 1-palmitoyl-2-linoleoyl PC (PLPC) containing reconstituted HDL was 

shown to inhibit pro-inflammatory signaling via NF-κB, and may contribute to HDL-mediated 

inhibition of inflammation in cultured endothelial cells (373,381). The impact of phospholipids 

on the AIA of HDL is determined by both the phospholipid class (i.e. determined by the head 

group) as well as the phospholipid species within each class (i.e. determined by the fatty acid 

composition). In terms of phospholipid class, reconstituted HDL particles containing PC and 

PS demonstrated an enhanced AIA when interacting with activated macrophages compared to 

particles composed only of PC (382). Expanding on the phospholipid species within the same 

class, reconstituted HDL particles with different molecular species of PC exhibit distinct 

abilities to inhibit the expression of VCAM-I in activated endothelial cells. Notably, particles 

containing species with unsaturated fatty acids exhibit more potent anti-inflammatory effects 

(383). These differences may be linked to differences in the phase fluidity among different PC 

species (384). This is in line with the role of reconstituted HDL particles in facilitating cellular 

lipid efflux, a process that is significantly impacted by lipid phase fluidity. Noticeably, it has 

been shown that  lysosphingolipid content in HDL particles was shown to contribute to their 

AIA through reducing the aortic expression of MCP-1 (385).  

1.3.4 Other biological properties of HDL 

HDL protects cells from apoptosis by several mechanisms including promoting cellular 

efflux of cytotoxic oxidized sterols via ABCG1, decreasing the production of intracellular free 

radicals, reducing the activation of proapoptotic caspases, maintaining mitochondrial functional 

integrity (386), and inhibiting the degradation of vascular extracellular matrix by elastases 

(387). Furthermore, HDL-mediated protection of endothelial cells from apoptosis involves up-

regulating the phosphatidyl-inositol-3-kinase (PI3K), Protein kinase B (Akt), and B-cell 

lymphoma-extra-large (Bcl-xL) pathways (388). HDL-associated proteins including ApoA-I, 

ApoE, ApoJ, alpha-1-antitrypsin as well as HDL-associated lysosphingolipids, including S1P, 

sphingosylphosphorylcholine, and lysosulfatide play an important role in mediating the HDL 

cytoprotective actions (388–391).  
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Furthermore, HDL maintains normal function of vascular endothelium via increasing 

the production of nitric oxide (NO) and prostacyclin (PGI2) (392,393). NO and PGI2 are potent 

vasodilators regulating the inflammatory response in endothelial cells, and they inhibit both 

platelet activation and proliferation of vascular smooth muscle cells (250,394). Multiple studies 

have demonstrated that HDL increases the production of NO through increasing the expression 

and the activity of endothelial nitric oxide synthase (eNOS) (395–398), through SR-BI and S1P 

receptors, which trigger PI3K/Akt signaling pathways and the phosphorylation of eNOS 

(395,396). In addition, HDL2 specifically reduce the production endothelial thromboxane A2, 

a potent vasoconstrictor and prothrombotic mediator (390). HDL associated lipids play a key 

role in mediating the vasodilatory effects of HDL particles. Among these, S1P, estradiol, 

androsterone, and dehydroepiandrosterone appear to mediate vasodilation via stimulation of 

eNOS enzyme (392,399–402).  

Strikingly, HDL also maintain balance in blood coagulation, through exerting potent 

antithrombotic activity, observed as inhibitory effects on platelets activation and on coagulation 

factors including tissue factor, factors X, Va, and VIIIa (393,396,403). Moreover, stimulated 

NO production in endothelial cells and enhanced cholesterol efflux from platelets can 

contribute to the inhibitory effects of HDL on platelet aggregation (397). HDL-associated 

phospholipids appear to play a major role in the antithrombotic activity of HDL. Among these, 

cardiolipin, and the negatively charged PS and PI, may contribute to HDL-mediated effects on 

coagulation and platelet functions, respectively (291,404).  

Many other biological effects have been described with HDL. For instance, HDL has 

demonstrated anti-infectious activities through binding to lipopolysaccharide (LPS) and 

facilitating its hepatic clearance, thereby preventing its endotoxic effects (405,406). 

Furthermore, HDL has emerged as a key player in improving glucose metabolism by enhancing 

the secretion of insulin, and improving its sensitivity (407). Intriguingly, HDL has also been 

identified to transport multiple non-coding microRNAs that play a pivotal role in regulating 

cholesterol homeostasis, including cellular cholesterol efflux (408,409). Among these, miRNA-

33 was shown to increase the plasma HDL-C levels, improve RCT and cholesterol efflux from 

macrophages, and prevent the progression of atherosclerosis in vivo (410,411). Interestingly, 

HDL-mediated transfer of miRNA-223 to endothelial cells was shown to suppress ICAM-I 

expression, thereby attributing to the AIA of HDL in endothelial cells (412).  
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In summary, the proteins and lipids components of HDL are the primary determinant of 

multiple biological functions. The compositional heterogeneity of HDL subpopulations implies 

a high degree of functional diversity among them (257,413,414). Notably, smaller, denser, 

protein-rich HDL subpopulations exhibit enhanced biological activities compared to larger, 

lighter, lipid-rich HDL. For a detailed overview of the functional diversity of HDL subfractions, 

please refer to Table 1.8. In light of this, emerging evidence is demonstrating that alterations 

in HDL composition are common in cardiometabolic diseases (CMD) and ASCVD. Such 

changes may result in functional insufficiency or complete dysfunction of HDL, potentially 

accelerating or contributing to the progression of atherosclerosis. Thus, our focus in the next 

sections will shift toward understanding how HDL composition and functionality are modified 

in pathological conditions like CMD and ASCVD, building upon our knowledge of their roles 

in normal physiological conditions. 
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Table 1.8: Functional heterogeneity of HDL subfractions. eNOS: endothelial nitric oxide 

synthase; FC: free cholesterol; PC: phosphatidylcholine; PL: phospholipids; S1P: sphingosine-

1-phosphate; SM: sphingomyelin; TFPI: tissue factor pathway inhibitor [adapted from 

(173,242,415)]. 

Biologic function Particles Feature 
Related 

properties  

cholesterol 

efflux  

Small 

dense HDL 

Potent efflux from lipid-loaded 

macrophages 

Low lipid content, 

high surface 

fluidity, distinct 

ApoA-I 

conformation 

Enhanced efflux via ABCA1 

Enhanced LCAT activity 

Large 

dense HDL 

Enhanced efflux via ABCG1 and 

SR-BI 

Elevated PL 

content 

antioxidative  
Small 

dense HDL 

Potent protection of LDL from 

oxidation 

Low SM/PC ratio. 

Increased surface 

fluidity. Enriched in 

ApoA-I and 

hydrolytic enzymes  

Potent inactivation of oxidized 

lipids  

Anti-

inflammatory  

Small 

dense HDL 

Inhibition of endothelial cell 

adhesion molecules expression 

Distinct ApoA-I 

conformation and 

composition of PL 

Immunomodulatory capacities 

towards neutrophils 

Factor H-related 

proteins 

Cytoprotective  
Small 

dense HDL 

Potent protection of endothelial 

cells from ox-LDL induced 

apoptosis  

Enriched in ApoA-I 

and S1P  

vascular dilatory  

Small 

dense HDL 

Potent activation of eNOS and 

nitric oxide production  
Enriched in S1P 

Large 

dense HDL 

Enhanced production of prostacyclin and attenuated 

production of thromboxane A2  

antithrombotic  

Small 

dense HDL 
Potent anticoagulant activity 

Enriched in TFPI 

and S1P 

Large 

dense HDL 

Inhibition of platelet 

aggregation 
Enriched in ApoE  

FC acquirement 

from TGRL 

Small 

dense HDL 

Potent capacity to acquire FC 

upon TGRL lipolysis  
Low content of FC 
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1.4 Altered HDL functionality and dysfunction  

In 1975, low plasma HDL-C levels were linked with impaired cholesterol clearance 

from arterial wall and accelerated atherosclerosis (73), which was interpreted as a reduced 

cholesterol efflux to HDL as a result of diminished quantity of HDL-C levels. However, both 

the minimized inverse association between HDL-C levels and cardiovascular risk in patients 

with CVD and the failure of therapeutic raising of HDL-C levels to improve cardiovascular 

outcomes (416), have suggested the concept of altered HDL functionality (i.e. diminished HDL 

quality) in ASCVD. Such concept is supported by the observed reduction in the anti-

inflammatory activities of HDL from CAD patient despite high HDL-C levels (417). Emerging 

evidence is demonstrating that HDL can lose its anti-atherogenic functions under several 

metabolic conditions and might gain pro-atherogenic properties, thereby contributing to the 

progression of ASCVD (418).  

In CMD such as dyslipidemia, Type 2 diabetes, obesity, and metabolic syndrome, 

dramatic changes can occur in the composition, metabolism and structure of HDL particles, 

resulting in reduced atheroprotective function/s (functionally deficient HDL) or completely 

absent function/s (dysfunctional HDL) with or without gain of dysfunction such as pro-

inflammatory properties (251,419). The degree of loss of normal HDL function and gain of 

dysfunction might differ according to HDL functions. Several studies showed a complete loss 

of function and gain of dysfunction in the context of HDL anti-inflammatory, vasodilatory and 

antiapoptotic activities, but a reduction rather than complete loss with the antioxidative activity 

and cholesterol efflux capacity (418).  

1.4.1 Altered HDL composition in cardiometabolic diseases 

Altered protein cargo of HDL in CMD is well established (420). For instance, HDL 

particles from hypercholesterolemic patients showed diminished relative content of apoA-I, 

while they were enriched with apoE, apoC-I and apoC-II, and importantly Serum amyloid A 

(SAA), an acute phase inflammatory protein with pro-atherogenic properties (421). Hence, 

under inflammatory conditions, HDL content of apoA-I can be reduced and replaced by SAA 

(422,423). As a consequence, SAA can promote the retention of HDL particles within the 

arterial wall by increasing their binding to extracellular matrix proteoglycans (424). When 

blocked within the arterial wall, apoA-I in HDL can undergo atherogenic modifications such as 

myeloperoxidase-induced oxidation, and proteases-induced degradation in patients with CAD 
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(425,426), and glycosylation in T2D (427). Interestingly, elevated levels of apoC-III were 

reported in both HDL2 and HDL3 from patients with MetS and CAD (428,429), while HDL3 

particles from CAD patients were enriched in apoE and depleted of apoF, PLTP and apoJ (428). 

In conditions with chronic inflammation and oxidative stress such as T2D, metabolic syndrome, 

and premature CAD, HDL-associated enzymes such as PON1, PAF-AH, and LCAT can be 

reduced in quantity and/or become dysfunctional (175,301,417,429,430).   

Alterations in HDL lipidome are also common in CMD. For instance, elevated levels of 

TG were observed in HDL isolated from patients with low HDL-C levels-hypertriglyceridemic 

status such as in T2D, and MetS, and from patients with MI (288,431,432), whereas such HDL 

particles were depleted in CE and SM (288,431). Strikingly, LPC levels were depleted in HDL 

from patients with T2D, MetS, and CHD (288,431,433), whilst elevated in HDL from patients 

with hypertension (434) and under acute inflammatory conditions (435). In addition, 

enrichment of HDL in free fatty acids, and isoprostanes, while depletion in PI, and PE, was also 

observed under acute inflammation (435). Inversely, elevated levels of PE were observed in 

HDL from patients with hypertension (434). Higher levels of PE were also observed in HDL2 

from patients with T2D and CHD, whilst the levels of PI, PC, LPC, and SM were significantly 

diminished compared to HDL2 from healthy individuals (433). Noticeably, diminished PUFA 

content of HDL from patients with CAD was also reported (436). Similarly, diminished levels 

of S1P levels are frequently observed in HDL from patients with type 1 diabetes (T1D), and 

T2D , and are commonly associated with impairment of multiple HDL functions (419).   

1.4.2 Altered HDL metabolism in cardiometabolic diseases 

Alterations of HDL proteome and lipidome in CMD mostly originate from altered HDL 

metabolism, which involve defective HDL formation and/or remodeling. Beside a reduced 

hepatic production, a deficient lipidation of apoA-I upon interaction with ABCA1, which can 

reflect apoA-I and/or ABCA1 deficiency, can result in a diminished formation of large HDL, 

or accelerated catabolism of apoA-I, thereby leading to subnormal HDL-C levels (248). In 

addition, HDL maturation into large particles can also be altered upon LCAT deficiency, 

leading to diminished esterification of FC. TG enrichment of HDL can arise from both an 

increased hepatic production of VLDL, and an increased CETP activity, the latter accelerate 

CE transfer from HDL to VLDL in exchange for TG, leading to subnormal HDL-C levels 

(234,437,438). Hence, the presence of TG-enriched HDL is associated with an accelerated 

lipolysis of its TG content, which in turn enhance the dissociation and renal clearance of apoA-



 

65 | P a g e  

  

 Chapter 1. Introduction to literature 

I, resulting in subnormal levels of ApoA-I, HDL particles, and HDL-C levels (431). Reduced 

cholesterol levels of HDL can result from defective intravascular hydrolysis of TGRL by LPL, 

which by diminishing the formation of TGRL surface remnants lead to impaired transfer of FC 

from TGRL remnants to HDL and subnormal HDL-C levels (248,431). Finally, altered 

phospholipid content of HDL can result from accelerated remodeling of HDL due to elevated 

activities of PLTP, endothelial lipase and secretory phospholipase A2 in CMD (248).  

In summary, compositional alterations of HDL are common and diverse in CMD. These 

alterations may contribute to ASCVD progression by impairing the atheroprotective functions 

of HDL (251). HDL dysfunction primarily involves reduced capacities to prevent LDL 

oxidation, inflammation and cholesterol accumulation in arterial walls (175). For a detailed 

overview of the major compositional alterations in CMD and their consequences on HDL 

functions, please refer to Figure 1.16 and Table 1.9 (416,418). Understanding the link between 

altered HDL composition and function is vital for advancing our understanding of ASCVD and 

developing therapies to enhance HDL functionality (i.e. quality). The next section will explore 

therapeutic targeting of defective HDL functionality, with special focus on the reconstituted 

HDL-based therapeutic approaches.  
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Table 1.9: Altered composition and functions of HDL in cardiometabolic diseases. Data 

are summarized and reviewed from chapter 10 in (248), except for free cholesterol acquirement 

from TGRL (226).  

Compositional alterations Functional consequences 

CHOLESTEROL EFFLUX CAPACITY 

Low HDL levels with (apoA-I 

mutations or TG-enriched and PL-

depleted HDL) 

1. Impaired interaction of HDL with ABCA1 

and SR-BI 

2. Reduced ability to activate LCAT 

Homozygous CETP deficiency (CE-

enriched HDL2) 

1. Reduced capacity to accept cellular 

cholesterol 

ApoA-I glycation and oxidation 

1. Reduced LCAT activation 

2. Impaired lipid binding 

3. Defective ABCA1 mediated-cholesterol 

efflux  

Replacement of apoA-I by SAA 

1. Increased HDL binding to, and CE uptake 

by, macrophages 

2. Diminished cholesterol efflux and 

ABCA1expression in macrophages  

Enrichment of HDL in apoE 

1. Increased HDL catabolism through 

apoB/apoE receptors 

Reduced LCAT activity 

1. Reduced cholesterol efflux from, and 

increased cholesterol influx to, 

macrophages 

Elevated SM/PC ratio and decreased 

content of PUFAs 

1. Increase HDL surface rigidity 

2. Reduced LCAT activity 

ANTI-OXIDATIVE ACTIVITY 

Reduced content and altered 

conformation of apoA-I 

ApoA-I oxidation, and glycation 

Reduced activity of PON1, PAF-AH, 

and LCAT 

          Enrichment of HDL in SAA 

1. Reduced capacity to inactivate oxidized 

phospholipids 

2. Altered accessibility of Met residues of 

apoA-I to oxidized phospholipids 

3. impaired hydrolysis of short chain oxidized 

phospholipids 
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TG-enriched and CE-depleted HDL  

Increased MUF/PUFA ratio in HDL 

increased SM and saturated fatty acids 

contents  

Reduced transfer of oxidized phospholipids 

from LDL to HDL due to reduced HDL surface 

fluidity 

ANTI-INFLAMMATORY ACTIVITY 

Reduced apoA-I content, TG 

enrichment, PL-depletion  
Reduced inhibition of VCAM-1 and ICAM-1 

ApoA-I glycation and oxidation  

1. Reduced binding to SR-BI 

2. Defective capacity to inhibit NFκB 

activation, ROS production, and the 

expression of VCAM-1 and ICAM-1 

Enrichment of HDL in apoC-III  

1. Reduced ability to prevent monocytes 

adhesion to endothelial cells 

2. Increased capacity to activate ERK and 

NFκB pro-inflammatory pathways 

Reduced activity of PON1, PAF-AH, 

and LCAT and their replacement 

by SAA  

Impaired capacity to inactivate the pro-

inflammatory oxidized phospholipids 

CYTOPROTECTIVE ACTIVITY 

Reduced apoA-I content 

ApoA-I oxidation and glycation  

 

1. Reduced binding to SR-BI 

2. Increased binding to scavenger receptors 

(CD36 and SR-A) 

VASODILATORY ACTIVITY 

Reduced content and altered 

conformation of apoA-I, Increased 

TG/CE ratio  

1. Reduced HDL binding to cells 

2. Reduced efflux of oxidized lipids that 

promote vasoconstriction 

Reduced PON1 activity  
Reduced ability to stimulate eNOS activation, 

and endothelial NO production 

ANTITHROMBOTIC ACTIVITIES 

oxidative modification of HDL 

components  

Increased expression of P-selectin in platelet, 

and enhanced platelet aggregation via binding 

to CD36 

FREE CHOLESTEROL ACQUIREMENT FROM TGRL 

Reduced content of apoA-I, free 

cholesterol-enriched HDL, and 

enhanced CETP activity  

Reduced capacity to accept free cholesterol 

from, and enhanced re-transfer of free 

cholesterol to, TGRL 
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1.5 Therapeutic targeting of defective HDL functionality 

Therapeutic strategies for improving HDL functionality aim to raise HDL-C and apoA-

I levels while normalizing altered HDL composition and metabolism. Major HDL functions-

targeting approaches include apoA-I mimetic peptides, and reconstituted HDL (rHDL) 

formulations, with the goal of reducing atherogenesis and cardiovascular risk. 

1.5.1 ApoA-I mimetic peptides  

ApoA-I mimetics are amphipathic peptides that structurally resemble native apoA-I in 

a way that they contain structured analogs of the α-helical domains found in apoA-I. As a result, 

they display similar biological effects even though their amino-acid sequences are frequently 

different (248). Examples of ApoA-I mimetics include ATI-5261, 5A, and D-4F peptides which 

are short-chain peptides, easy to produce compared to full length apoA-I. Although apoA-I 

mimetics were effective in displaying atheroprotective effects in animal models, recent review 

of various studies have revealed inconsistencies in the functional properties of these peptides 

between in vitro and in vivo settings (439).  

1.5.2 Reconstituted HDL 

The rHDL is a synthetic discoidal or spherical HDL prepared from purified human or 

recombinant apoA-I and phospholipids as the essential components, but other proteins and/or 

lipids can also be used (440,441). Such innovative rHDL that resemble native HDL has 

experimental, diagnostic and therapeutic application (442,443). The capacity of incorporating 

specific components into rHDL make it a useful tool for investigating the impact of individual 

protein or lipid component on the structural and functional aspects of native HDL. In addition, 

rHDL has also potential therapeutic uses for the management of ASCVD as HDL-replacement 

therapy (442). Furthermore, rHDL is used in nano-biotechnology as a platform for the delivery 

of drugs and contrast imaging agents (443).  

1.5.2.1 Composition and functional effectiveness of reconstituted HDL  

The rHDL particles are usually generated in vitro by incubating phospholipid micelles 

(refer to Figure 1.17 A&B) with free apoA-I, which provide the essential amphipathic α-helices 

that are necessary to initiate the assembly of rHDL (440,443). Given to the fact that PC accounts 

for about 70% of total phospholipids in native HDL, PC species such as 1-palmitoyl-2-oleoyl 
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phosphatidylcholine (POPC), 1-palmitoyl-2-arachidonyl phosphatidylcholine (PAPC), or 

PLPC are usually used as principle phospholipid to generate rHDL (444). Other phospholipids 

such as PS, and PE as well as cholesterol can also be incorporated with variable proportions in 

the presence of PC (445). The conformation of rHDL is largely dependent on its composition, 

as well as the preparation method (including the incubation time) and it includes discoidal rHDL 

particles with a size range of 7-17nm, similar to native HDL (446) and spherical rHDL (refer 

to Figure 1.17 C&D) (447). Consistent with its pivotal roles in native HDL, ApoA-I plays a 

central role in the anti-atherogenic effects of rHDL. While the phospholipid component (i.e. 

PC) in rHDL appears to have a regulatory role (248), the presence of bioactive phospholipids 

like S1P and PS has been found to significantly influence the atheroprotective properties of 

rHDL. This suggests that the ability of rHDL to convey atheroprotection is, to some extent, 

influenced by the phospholipid composition of the particle (382,448,449). Interestingly, rHDL 

formulations have been shown to effectively exert all major atheroprotective functions 

attributed to native HDL (248).   

1.5.2.2 Therapeutic applications of reconstituted HDL  

The rHDL holds promise for ASCVD management, due to its surprisingly acute and 

rapid effects in elevating plasma HDL levels and in reducing the size of the atherosclerotic 

plaque following intravenous infusion (450). Weekly infusions of ETC-216, the first rHDL to 

reach clinical trials and composed of PC and apoA-I Milano (apoA-I variant with potent anti-

atherogenic properties),  for 5 weeks in patients with a history ACS reduced the atherosclerotic 

plaque volume in relative to baseline (451). However, ETC-216 was associated with dose-

dependent increase in neutrophils. Seeking for more safe and cost-effective formulations, CSL-

111, which consists of human apoA-I complexed with soybean PC was developed. In 

individuals with CAD, weekly infusions of CSL-111 for 4 weeks reduced the atherosclerotic 

plaque volume and improved the plaque characterization index and coronary score (452). 

However, CSL-111 infusions were mildly hepatotoxic, possibly due to the residual cholate 

utilized for rHDL production (442). As a result, CSL-111 was reformulated as CSL-112, which 

lacked the hepatotoxic cholate. CSL-112 was able to raise plasma apoA-I levels immediately 

after infusion, enhance capacity of plasma to efflux cellular cholesterol and it displayed good 

safety profile (453). Another rHDL formulation, CER-001, contains human recombinant apoA-

I with SM and PG. While CER-001 didn't impact coronary atherosclerotic burden in statin-
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Figure 1.17: reconstituted HDL. Schematic illustration shows different phospholipid micelles 

used to generate rHDL particles in the presence of apolipoprotein A-I. A) Simple micelle 

contains only  PC, the principle phospholipid moiety that is usually used to generate rHDL, B) 

Mixed micelles composed of more than one class of phospholipid, with PC as the principle and 

predominant phospholipid, which usually used to study the impact of bioactive phospholipids 

such as PE, PS, and PI on HDL structural and functional properties, C) Discoidal rHDL particle 

generated from mixing phospholipid micelles with apolipoprotein A-I with or without 

unesterified cholesterol. D) Spherical rHDL particles generated by mixing discoidal rHDL 

particles contain unesterified cholesterol with LCAT enzyme that promotes the formation of 

cholesteryl ester formation, which in turn migrates into the lipid core of the particle. PC, 

phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; PI, 

phosphatidylinositol; rHDL, reconstituted HDL. [Adapted from Ryan RO. Et al 2010 (443)]. 
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treated ACS patients (454,455), it effectively reduced carotid wall area in patients with 

homozygous familial hypercholesterolemia (456).  

The rapid regression of atherosclerotic plaque volume induced by rHDL (i.e. ETC-216) 

is most likely related to the accelerated cholesterol efflux from arterial wall macrophages (451). 

Other anti-atherogenic activities of rHDL, notably potent anti-inflammatory and antioxidative 

properties may also contributes to plaque regression in humans. Furthermore, potent 

vasodilatory and anti-thrombotic effects of rHDL (i.e. CSL-111) have been demonstrated in 

hypercholesterolemic and type 2 diabetes patients, respectively (397,457). In animal models, 

studies have consistently shown that various rHDL formulations inhibited the expression of 

endothelial cell adhesion molecules (i.e. VCAM-1 and ICAM-1), as well as the LPS-induced 

release of pro-inflammatory cytokines, and ROS production, along with atherosclerotic plaque 

stabilization (458–462). Furthermore, rHDL (i.e. apoA-I plus POPC) was shown to display 

cytoprotective and anti-infectious effects in animal models (463,464).  

1.5.2.3 Experimental applications of reconstituted HDL  

In parallel with its therapeutic applications, rHDL serves as a valuable tool to decipher 

the role of individual HDL components on its structural and functional properties. For instance, 

rHDL enables the study of lipids like PE, PS, and SM and their impact on the kinetic, 

thermodynamic, and physical (i.e. size, fluidity, and stability) properties of rHDL (445,465). 

rHDL can also be used to characterize the underlying mechanisms of the atheroprotective 

functions of native HDL such as their anti-inflammatory effects in various cellular and animal 

models (368). Finally, using rHDL help to identify potential lipid biomarkers, such as PS, EPA-

PC, and specific fatty acids, related to HDL functionality (466,467). Given the prevalence of 

PC in native HDL and the established effectiveness of rHDL formulations consisting only of 

PC and apoA-1, PC-only rHDL is typically used as a standard control in these research studies. 

By using both the new knowledge offered by the lipidomic studies of ASCVD patients 

(15,16), and the possibility offered by rHDL reconstitution, it is now possible to elucidate the 

role of new biomarkers and therapeutic targets. Thus, the next section explores the implications 

of plasma lipidomics in ASCVD, with a particular focus on PE species.     
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1.6 Molecular lipid biomarkers in ASCVD  

[This section will be formulated and published as a review article] 

Lipids play a key role in the formation and subsequent disruption of atherosclerotic 

plaques (15). While plasma levels of major lipids such as total cholesterol, LDL-C, TG, and 

oxidized phospholipids, help in predicting the CVD risk, the bulk of CVD cannot be fully 

explained by traditional lipid-related risk factors alone (468). In addition, it is increasingly 

becoming evident that many other lipid types play a significant role in atherogenesis (15). 

Progress in mass spectrometry-based analytical techniques have identified a large variety of 

lipid molecular species directly associated to the development of obesity, diabetes mellitus, 

hypertension, and ASCVD (469–471). Given that the composition of lipid species profoundly 

influences their biological effects, identifying the detailed composition-including individual 

fatty acids - of the lipid species associated to CVD could provide mechanistic insights into their 

potential implication in disease pathogenesis (472). Thus, an in-depth knowledge about the lipid 

molecular species that hold potential mechanistic links to ASCVD may help to identify better 

biomarkers and novel therapeutic potentials (472,473). 

 The primary application of lipidomic techniques was to identify specific molecular lipid 

species that potentially predict the risk for CVD events. Among the various lipid classes 

investigated, plasma phospholipids have emerged as a source of several novel CVD biomarkers. 

The detailed findings of the lipidomic studies reviewed in this study are outlined in Table 1.10. 

In the context of plasma PC and related lipids, Meikle et al. revealed that plasma levels of 

twenty PC and LPC molecular species were negatively associated with unstable CAD compared 

to stable CAD, which in turn was negatively associated to plasma levels of twenty-two species 

of PC, PC-plasmalogens, alkyl-PC and LPC species compared to healthy individuals (15). This 

effect was confirmed by Sigruener et al. who has identified four polyunsaturated PC and LPC 

species that appeared to confer protective effects against cardiovascular and total mortality in 

patients with CAD (474). While Paapstel et al. found that low serum levels of six species of 

PC, alkyl-PC, and LPC were associated with atherosclerosis (475). Altogether, these findings 

collectively underscore the potential protective roles of several PC, alkyl-PC, PC-plasmalogens, 

and LPC species in ASCVD. However, it's important to note that several other PC, alkyl-PC 

and LPC species have been associated with increased ASCVD risk. For instance, Meikle et al. 

reported positive associations between four PC species including PC (32:1), PC (35:2), PC 

(38:3), and PC (38:4) and two LPC species including LPC (20:3) and LPC (22:1) and stable 
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CAD (15). Similarly, Stegemann et al. found that elevated plasma levels of PC (32:1), PC 

(38:2), and PC (38:3) species were significantly linked to CVD risk in a large population-based 

study (16). Moreover, Sigruener et al. and Ganna et al. reported positive associations between 

numerous PC, alkyl-PC, and LPC species [particularly LPC (18:1), LPC (18:2) species] and 

both total and CAD mortality, as well as incident CVD (474,476). In another study conducted 

by Alshehry et al. on patients with T2D, seventeen species of PC, alkyl-PC, PC-plasmalogens, 

and LPC, with the exception of PC (O) (36:5), were significantly associated with future 

cardiovascular events and death (refer to Table 1.10). In addition, PC (O) (36:1), PC (28:0), 

LPC (18:2), LPC (20:0), and PC (35:4) species were reported to improve CVD risk prediction 

(477), while eight PC and LPC species were reported to be enriched in atherosclerotic plaque 

(478). Ménégaut et al. reported a specific enrichment of 2-arachidonoyl-LPC species in carotid 

atheroma plaques from diabetic patients compared to non-diabetic patients (479). Strikingly, 

such enrichment of 2-arachidonoyl-LPC species in carotid plaques was confirmed in a recent 

MASCADI (Arachidonic Acid Metabolism in Carotid Stenosis Plaque in Diabetic Patients) 

clinical study of T2D elderly patients with advanced carotid atherosclerosis, and it was 

correlated with plaque inflammation, suggesting the potential role of this specific LPC species 

in diabetic atherosclerosis (480). Collectively, this body of evidence suggests that plasma PC 

and related lipids (alkyl-PC, PC-plasmalogens, and LPC) may play dual roles in both protection 

and progression of ASCVD, pointing out the importance of specific molecular species.  

PE has gained prominence as a crucial phospholipid class in the context of CVD. Up to 

date, several plasma lipidomic studies have consistently demonstrated a positive association 

between the majority of plasma PE species and CVD risk and mortality. Meikle et al. reported 

the majority of detected plasma PE (i.e. 16 species out of 20), and four species of PE-

plasmalogens, and LPE to be positively associated with stable CAD (refer to Table 1.10) (15). 

Notably, the positive association observed with PE (34:1), PE (34:2), PE (36:2), PE (36:4), PE 

(36:5), and PE (38:4) by Meikle et al. was further confirmed by larger population-based studies 

such as the Bruneck and LURIC studies. In these large-scale lipidomic studies, these specific 

PE species maintained significant association with incident CVD, even when controlling for 

multiple comparison (16), and they were found to be associated with CAD and/or overall 

mortality, underscoring the significance of these specific PE species as valuable biomarkers for 

ASCVD (474). This was confirmed by Alshehry et al. who identified the potential of plasma 

alkyl-PE (O) (36:5) in improving the prediction of CVD events in individuals with T2D (477). 

Additionally, Stegemann et al. reported the enrichment of PE (38:3) species in atherosclerotic 
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plaques (478), shedding light on the potential role of PE species in the pathogenesis of 

atherosclerosis. In contrast, it's noteworthy that several alkyl-PE species (ten species), PE-

plasmalogens (seven species), and LPE (18:1) exhibited a negative association with unstable 

CAD (versus stable CAD), hinting at their potential role in stabilizing atherosclerotic plaques 

(15). In conclusion, plasma PE species and related lipids have emerged as novel biomarkers in 

the context of ASCVD, with certain species showing consistent positive associations with 

incident CVD risk, CAD, and overall mortality, hence, warranting further research.  

The implication of other phospholipid classes including PI, PS, and PG in ASCVD was 

also demonstrated by lipidomic studies. For instance, Meikle et al. reported negative association 

between the plasma levels of eight PI species and unstable CAD, while the plasma levels of 

five PI species, four of them contain ARA, including PI (36:4), PI (38:4), PI (40:4), PI (40:5), 

were positively associated with stable CAD compared to control individuals (15). In this study, 

the plasma levels of PG (16:0/18:1) showed positive associations with stable CAD. In the 

context of PS, Stegemann et al., reported the enrichment of PS (38:5) and PS (38:2) in 

atherosclerotic plaques (478). In summary, despite the limited number of lipidomic studies, this 

existing data enhance our understanding about the implication of individual phospholipid 

species in ASCVD, underscoring the importance of the precise composition of these species in 

influencing their association with ASCVD. 

Beside phospholipids, lipidomic studies have revealed interesting insights into the 

involvement of several sphingolipid species such as SM and Ceramides in ASCVD. Hence, 

three SM species including SM (18:0), SM (18:1), and SM (18:2) were positively associated 

with the unstable CAD (15). SM (18:2) was also negatively associated with stable CAD (15), 

suggesting a potential role for this sphingolipid species in increasing plaque vulnerability. 5 SM 

species including SM (34:2), SM (42:2), SM (16:0), SM (16:1), and SM (24:1) have also been 

associated with both incident CVD, and increased CAD and/or all mortality (16,474), or, for 4 

other SM species (d32:2/ d33:1/ d33:2/ d38:2) with only CAD incidence by Ganna et al. (476). 

Among these species, SM (d33:1) was specifically detected in atherosclerotic plaques (478). 

Such existing data point out the potential deleterious involvement of several SM species, 

particularly SM (18:2) and SM (d33:1) in ASCVD. However, some SM species including SM 

(22:0), SM (22:1), SM (23:0), SM (23:1), and SM (24:0) were reported to have protective 

effects against CAD and/or total mortality (474). In the context of plasma ceramides (Cer), 

Meikle et al. reported 5 species of Cer including Cer (16:0), Cer (18:0), Cer (20:0), Cer (22:0), 
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and Cer (24:0) to be positively associated with stable CAD, as well as 2 species of di-

Hexosylceramide (Hex2cer), a glycated ceramides, including Hex2cer (22:0) and Hex2cer 

(24:0) (15). Strikingly, the plasma levels these two of Hex2cer species were also reported in 

another study to be associated with both future CV events and death in individuals with T2D, 

while several other glycated ceramides including 6 species of HexCer, 4 species of Hex2Cer, 

and 3 species of Hex3Cer (refer to Table 1.10), were positively associated with future CV 

events and death (477). Collectively, such lipidomic studies strongly support the notion that 

specific sphingolipid species in plasma could serve as biomarkers for ASCVD pathogenesis, 

progression, and associated mortality.  

Given the well-established role of plasma cholesterol and TG in the development of 

ASCVD, advancements in plasma lipidomics have brought to light specific molecular species 

within these lipid classes that hold significant importance. To delve into these findings further, 

Meikle et al. study has identified seven species of esterified cholesterol, known as cholesteryl 

ester (CE), that displayed a positive association with stable CAD (refer to Table 1.10) (15). Of 

these, CE (14:0), and CE (16:1) were also significantly associated with increased CVD risk, 

with CE (16:1) being consistently linked to incident CVD, and improved prediction and 

classification of CVD risk (16). Furthermore, these two species were identified alongside with 

seven other CE species to be enriched in atherosclerotic plaques, shedding light on their 

involvement in the pathogenesis and progression of ASCVD (478). In particular, 

polyunsaturated CE with long-chain fatty acids including CE (22:3), CE (22:4), CE (22:5), and 

CE (22:6) showed the greatest relative enrichment in plaques and formed part of a lipid 

signature for vulnerable and stable plaque. In addition, Alshehry et al. reported the significant 

association of plasma CE (16:0) and CE (18:0) in patients with T2D, with future CV events and 

death (477). Notably, CE (18:0) was found to significantly enhance the prediction of CVD risk. 

Together, these lipidomic studies underscore the critical roles of specific CE molecular species 

in ASCVD development, highlighting the potential significance of short CE molecular species 

with saturated fatty acids such as Myristic acid (C14:0), Palmitic acid (C16:0), and Stearic acid 

(C18:0).  

Plasma TG showed to have “dual” effects on ASCVD depending on their molecular 

species. Twenty-one species of TG being negatively associated with unstable CAD, while 

sixteen species were positively linked to stable CAD (refer to Table 1.10) (15). In this study, 

the majority of TG species were predominantly composed of Myristic acid (C14:0), Palmitic 
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acid (C16:0), Palmitoleic acid (C16:1), Stearic acid (C18:0), Oleic acid (C18:1), and Linoleic 

acid (C18:2) fatty acids. The positive association of 10 species of TG, and particularly TG 

(54:2) with increased CVD risk was confirmed by Stegemann et al. in the population based-

Bruneck study (16). While in patients with T2D, TG (56:6) showed positive association with 

future CV events and death (477). Beyond TG species, the significance of several mono-, and 

di-, acyl glycerides (MG, and DG) species in CVD was also reported. Meikle et al. reported the 

positive association of 10 DG species, mostly contain Palmitic acid (C16:0), Oleic acid (C18:1), 

and Arachidonic acid (C20:4), with stable CAD (15). MG (18:2), in turn, was reported to be 

consistently associated with CAD incidence, independently of the main cardiovascular risk 

factors, with causal involvement in the development of CAD (476). 

In conclusion, these studies highlight that specific molecular lipid species could hold 

diagnostic and prognostic significance in identifying individuals at increased risk of CAD 

events and mortality. Table 1.11 summarizes the most promising molecular lipid species as 

potential biomarkers for CVD. Notably, within the various lipid species, the majority of PE 

species consistently demonstrated a positive and replicated association with ASCVD risk and 

related mortality. Thus, the next section will focus on this particular class of phospholipids in 

the context of ASCVD.  
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Table 1.10: A summary of major findings of lipidomics in CVD.  ARA: arachidonic acid; 

CE: cholesteryl ester; DG: diglyceride; HexCer: Hexosylceramide; MG: monoglyceride; LPE: 

Lyso-PE; LPI: Lyso-PI; LPC: Lyso-PC; PC (O): alkyl-PC; PC: phosphatidylcholine; PE: 

phosphatidylethanolamine; PC (P): plasmalogen-PC; PE (O): alkyl-PE PI: 

Phosphatidylinositol; PS: phosphatidylserine; SM: sphingomyelin; TG: triglyceride. 

Disease/

sample/

N° 

Plasma lipid species  Reference 

    CAD/ 

plasma/ 

220 

1. CE : (14:0), (16:1), (16:2), (17:1), (18:3) 

2. DG : (14:0/16:0), DG (14:0/18:0), DG (14:0/18:2)  

3. TG : 21 species, predominantly composed of different 

combinations of (14:0),  (14:1), (16:0), (16:1), (17:0), 

(18:0), (18:1), (18:2) 

4. SM : (14:1) 

5. PC : (28:0), (30:0), (34:3), (34:4), (34:5), (36:4), (36:6), 

(38:6), (38:7) 

6. Odd-PC : (33:3), (35:5) 

7. Alkyl-PC : (32:2), (34:2), (34:4), (35:4) 

8. Plasmalogen-PC: (34:3) 

9. LPC : (14:0), (16:1), (17:1), (18:0), (18:1), (18:2), (18:3), 

(20:2), (20:3), (20:5), (22:0), (22:1) 

10. PI : (36:0), (36:1), (36:3), (36:4), (38:2), (38:3), (38:4), 

(40:4) 

11. alkyl-PE (O): (34:1), (34:2), (36:2), (36:3), (36:4), (36:5), 

(36:6), (38:4), (38:5), (40:5) 

12. PE-p: (16:0/18:2), (16:0/20:4), (16:0/22:5), (17:0/20:4), 

(18:0/18:1), (18:0/18:2), (18:0/22:5) 

13. LPE : (18:1) 

were negatively associated with unstable CAD 

1. Cer: (18:0)  

2. Dihexosylceramide: (16:0) 

3. SM : (18:0), (18:1), (18:2) 

were positively associated with unstable CAD 

 

1. SM : (18:2) 

2. PC 32:3, 34:2, 36:2, 36:4 

3. Odd-PC: (33:2), (35:2) 

4. Alkyl-PC: (34:2), (36:0), (36:3) 

5. LPC:  14:0, 15:0, 16:0, 17:0, 17:1, 18:0, 18:2, 22:1 

6. Plasmalogen-PC: (32:0), (34:1), (34:3), (36:1), (36:2), 

(40:5) 

7. PE-P: (18:0/18:2) 

Were negatively associated with stable CAD 

1. Cer: (16:0), (18:0), (20:0), (22:0), (24:1) 

2. Dihexosylceramide: (22:0), (24:0) 

Meikle et 

al. 

(15) 
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3. CE: (14:0), (16:1), (18:1), (20:3), (20:4), (22:4), (24:6) 

4. DG: (16:0/20:3), (16:0/20:4), (16:0/22:5), (16:1/18:1), 

(18:0/18:1), (18:1/18:1), (18:1/18:2), (18:1/18:3), 

(18:1/20:3), (18:1/20:4) 

5. TG: 16 species  

6. PC: (32:1), (38:3), (38:4) 

7. LPC: (20:3), (22:1)  

8. PI: (36:4), (38:3), (38:4), (40:4), PI (40:5)  

9. PE: (32:1), (34:1), (34:2), (34:3), (35:1), (36:1), (36:4), 

(36:5), (38:3), (38:4), (38:5), (38:6), (40:4), (40:5), 

(40:6), (40:7) 

10. PE-p: (16:0/20:4), (20:0/20:4) 

11. PG: (16:0/18:1) 

12. LPE: (20:4), (22:6) 

were positively associated with stable CAD 

Incident 

CVD/ 

plasma/ 

685 

1. TAG (50:1), TAG (50:2), TAG (50:3), TAG (52:2), TAG 

(52:3), TAG (52:5), TAG (54:2), TAG (56:1), TAG (56:5), 

TAG (56:6), PE(34:1), PE(34:2), PE(36:2), PE(36:4), 

PE(36:5), PE(38:3), PE(38:4), PE(38:5), PE (O) (38:6), SM 

(34:2), SM (42:2), PC (32:1), PC (38:2), PC (38:3), 

CE(14:0), CE(16:0), CE(16:1), CE(22:2) were significantly 

associated with CVD risk after multiple comparison  

2. TAG(54:2) and CE(16:1), and PE(36:5) were consistently 

linked to incident CVD, and improved risk classification and 

CVD prediction 

Bruneck 

study 

Stegeman

n et al. 

(16) 

CAD and 

total 

mortality/ 

plasma/ 

3316 

1. PC (32:0), PC (38:0), PC (30:1), PC (34:1), PC (36:1), PC 

(O) (32:0), PC (O) (34:0), PC (O) (32:1), PC (O) (34:1), PC 

(O) (38:5), PE (30:1), PE (32:1), PE (34:1), PE (36:1), PE 

(40:1), PE (34:2), PE (36:2), PE (38:2), PE (36:3), PE 

(36:4), SM (16:0), SM (16:1), SM (24:1) were positively 

associated with total and/or CAD mortality 

2. PE (36:5), PE (38:4), PE (38:7), PE (O) (32:0), PE (O) 

(34:1), and PE (O) (36:2) were positively associated with 

total mortality 
3. PC (36:4), PC (36:5), PC (40:6), PC (40:7), LPC (16:0), LPC 

(18:0), LPC (18:2), SM (22:0), SM (23:0), SM (24:0), SM 

(22:1), and SM (23:1) were associated with protective 

effects.  

LURIC 

study 

Sigruener 

et al. 

(474) 
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Incident 

CAD 

events 

/plasma/1

028 

1. MG (18:2), LPC (18:1), LPC (18:2), LPC (20:0), LPC (22:5), 

PC (34:1), LPC (18:3), LPC (20:4), PC (O-36:5), PC (31:1), 

PC (36:1), PC (32:2), PC (32:1), PE (35:2), PE (34:1), PE 

(39:1), PE (35:1), SM (d18:2/14:0), SM (d38:2), SM 

(d18:2/15:0), SM (d33:1) were associated with CAD 

incidence  

2. MG (18:2), LPC (18:1), LPC (18:2), and SM (28:1) were 

consistently associated with CAD  

Ganna et 

al. 

(476) 

Incident 

CAD 

events in 

T2D 

/plasma/3

779 

1. Cer: HexCer (d18:1/16:0), (d18:1/18:0), (d18:1/20:0), 

(d18:1/22:0),  (d18:1/24:0),  (d18:1/24:1)/ Hex2Cer 

(d18:1/16:0), (d18:1/22:0), (d18:1/24:0), (d18:1/24:1)/ 

Hex3Cer (d18:1/20:0), (d18:1/22:0), (d18:1/24:0), 

(d18:1/24:1) 

2. PC: (34:5), (35:4), (40:6) ; PC (P):  (32:1), (34:1) ; Alkyl-

PC (O): (32:0), (32:1), (34:1), (36:1), (36:2), ; LPC (O): 

(18:0), (18:1), (22:0), (22:1), (24:0), (24:1), (24:2) 

3.  CE(16:0), CE(24:1), SM(34:1), TG(56:6)  

were significantly associated with both future CV events 

and death 

4. PC (O) (36:1), CE(18:0), PE(O) (36:4), PC(28:0), 

LPC(20:0), and PC(35:4), LPC(18:2) improved the 

prediction of cardiovascular events 

Alshehry 

et al. 

(477) 

Atheroscl

erosis/pla

que/26 

1. LPS (20:0), PS(38:5), PS(38:2), LPC (14:0), LPC (O) 

(16:0), LPC (O) (18:0), LPC (18:2), LPC (22:5), LPC (22:4), 

PC(O)(16:0/22:5),PC(18:0/20:3), CE(10:0), CE(14:0), 

CE(16:1), CE(18:1), CE(18:3), CE(22:6), CE(22:5), 

CE(22:4), CE(22:3), PE (38:3), SM(d18:1/14:0), 

SM(d18:1/15:0), SM(d18:0/15:0) were enriched in 

atherosclerotic plaque 

Stegema-

nn et al. 

(478) 

Atheroscl

erosis/ser

um/124 

1. Low serum levels of PC (28:1), PC (30:0), PC (32:2), PC (O) 

(30:0), PC (O) (34:2) and LPC (18:2) were observed in 

patients with atherosclerosis compared to healthy control  

Paapstel et 

al. 

(475) 
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Table 1.11: The implication of specific molecular lipid species in CVD.  

Lipid species  Implication in CVD  Reference 

PC (32:1), 

and PC (38:3) 

Positive association with the presence of stable CAD and 

incident CVD  
(15, 16)  

PC (28:0), 

and PC (35:4)  
Improve CVD risk prediction  (477)  

LPC (18:2)  
Positive association with CVD incidents and CVD 

mortality. Improves CVD risk prediction 

(474, 476, 

477)  

2-

arachidonoyl-

LPC 

Positive association with atherosclerotic plaque 

inflammation in diabetic patients  
(479, 480) 

PE (36:5)  

Consistent positive association with stable CAD and 

incident CVD. Improves the prediction and classification of 

CVD risk  

(15, 16)  

SM (18:2)  

Positively associated with unstable CAD while negatively 

associated with stable CAD. Potential role in increasing 

plaque vulnerability  

(15) 

SM (d33:1)  
Positive association with CAD incidence, and increased 

abundance in atherosclerotic plaque  
(476, 478)  

Hex2cer 

(22:0), 

Hex2cer 

(24:0) 

Positive association with the presence of stable CAD,  

future CVD events and death in diabetic patients  
(15, 477)  

CE (16:1)  
Positive association with stable CAD, and incident CVD. 

Increased abundance in atherosclerotic plaque 

(15, 16, 

478)  

TG (54:2) Positive association with stable CAD, and incident CVD (15, 16) 
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1.7 Phosphatidylethanolamines  

PE are the second most abundant glycerophospholipids in eukaryotic cells, comprising 

15-25% of total phospholipids in mammalian cells. PE are functionally associated with a wide 

range of cellular processes, and disturbances in their metabolism have been implicated in the 

development of several chronic diseases (481).  

1.7.1 Phosphatidylethanolamine-Structure, synthesis, and Functions 

PE is a cone-shaped phospholipid containing a small polar head group in proportion to 

its fatty-acid chains as shown in Figure 1.18B (481,482). Typically, PE is composed of a 

glycerol backbone containing two fatty acid chains linked via ester linkage (at the sn-1 and sn-

2 positions (di-acyl form) and an ethanolamine (HOCH2CH 2NH2)-linked phosphate head group 

at the sn-3 position as shown in Figure 1.18A and C. As for all phospholipids, PE subspecies 

arise from differences in their fatty acid composition. Saturated fatty acids are predominantly 

found at the sn-1 position, while the sn-2 position is characterized by an abundance of 

unsaturated fatty acyl chains (481). In addition to the diacyl form (constitutes the vast majority 

of PE, about 95-100%) (483), PE tends to exist in another two forms, namely alkyl-acyl or PE-

plasmanyl (PE (O)), wherein the fatty acid at the sn-1 is linked via an ether linkage (illustrated 

in Figure 1.14.d) and alkenyl-acyl form, in which the fatty acid at the sn-1 is linked via a vinyl-

ether linkage (illustrated in Figure 1.14.e), the latter known as PE-plasmalogen (PE (P)). Lyso-

PE is a well-known metabolite of PE and it is formed mainly by phospholipase A2 - mediated 

hydrolysis of the fatty acid at sn-2 position of PE (illustrated in Figure 1.14.e) (484).  

In mammalian cells, PE are generated by four independent pathways: 1) Cytidine 

diphosphate (CDP)-ethanolamine pathway or Kennedy pathway (485); 2) Acylation of Lyso-

PE; 3) Head group base-exchange reactions, with the three of them occur in the endoplasmic 

reticulum (ER) membrane and 4) phosphatidylserine decarboxylase (PSD) pathway which 

occurs in the mitochondria (481,484). The four biosynthetic pathways of PE are outlined in 

Figure 1.19. PSD and CDP-ethanolamine pathways are the two predominant pathways utilized 

for the PE biosynthesis (486), while the acylation of LPE and head group base exchange have 

minor contribution to the overall cellular production of PE (487,488). In mammalian cells (i.e. 

macrophages and chinese hamster ovary (CHO) cells), it was reported that the CDP-

ethanolamine pathway preferentially produces a species of PE with mono- or di-unsaturated 

fatty acids on the sn-2 position (e.g. PE (16:0/18:2) and PE (18:1-18:2)), whereas the 
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Figure 1.18: The structure of phosphatidylethanolamine and related lipids. A. General 

Phosphatidylethanolamine (PE) structure. In general, unsaturated fatty acids are mostly found 

in position sn-2 while saturated fatty acids most abundant in position sn-1. B. Diagram of PE 

structure shows the small polar head group of PE in proportion to its fatty-acid chains resulting 

in a cone-shaped structure, tan spheres: carbon atoms; red: oxygen; orange: phosphate; and 

blue: nitrogen while the hydrogen atoms are not presented. In animal tissues, PE tend to exist 

in C. diacyl (PE), D. alkyl-acyl (PE (O)), and E. alkenyl-acyl (PE-plasmalogen) forms F. 

General structure of Lyso-PE, formed mainly by hydrolysis of phosphatidylethanolamine by 

the enzyme phospholipase A2. [Adapted from Calzada et al. 2016 (481) and Otoki Y, et al. 

2021 (482)]. 
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mitochondrial PSD pathway generates species with mainly PUFA on the sn-2 position (e.g. PE 

(18:0/20:4), PE (18:0-20:5), and PE (18:0/22:6)). Importantly, it should be noted that ether PE 

(i.e. PE (O) and PE (P)) are generated via acyl-dihydroxyacetone (DHAP) pathway which starts 

in the peroxisome organelles and complete in the ER (489), (this pathway is not covered here, 

as it falls beyond the scope of this thesis).  

Once made, PE influences all cell membrane functions such as membrane protein 

topology, membranes fusion, cell division, glucose metabolism, oxidative phosphorylation, 

mitochondrial protein biogenesis, and lysosomal autophagy (481). In addition, PE is used as a 

precursor for the production of PC via methylation reactions catalyzed by PE methyltransferase 

(PEMT) enzyme (Figure 1.19) (490,491), maintaining an appropriate PC/PE molar ratio, which 

is particularly important for liver cells to maintain normal liver functioning, regeneration, and 

production of bile acids (492,493). Importantly, it was shown that PE play an important role in 

lipoproteins metabolism, namely in the assembly and secretion of VLDL particles (494). PE 

was reported to be efficiently removed from VLDL, after its secretion, in circulation (300,495) 

possibly via PLTP-mediated transfer to other lipoproteins like HDL and LDL.  

Disturbances in PE metabolism have been implicated in several chronic diseases. 

Several studies have demonstrated that PE can contribute to pathogenesis of Alzheimer’s and 

Parkinson’s diseases by being either increased or decreased, respectively (481,496,497). In 

addition, altered relative abundance of PE in the liver (i.e. increased PE production by Kennedy 

pathway or reduced biosynthesis of PC or reduced PC/PE ratio) was observed in patients with 

nonalcoholic fatty liver disease (NAFLD) (498,499), a condition that is often associated with 

obesity, insulin resistance, metabolic syndrome and ASCVD  (500,501). Our understanding of 

the role of PE in CMD is just in its early stages and there is a growing interest of defining the 

mechanistic role of PE in these disease conditions. Thus, in the following section, the 

implication of plasma PE in the context of ASCVD will be discussed.  
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Figure 1.19: Phosphatidylethanolamine biosynthesis pathways. There are three distinct 

PE biosynthetic pathways in the endoplasmic reticulum (ER). 1. Base Exchange pathway. 

In this pathway, the serine residue of phosphatidylserine (PS) is exchanged for ethanolamine 

under the action of phosphatidylserine synthase-2 (PSS2), resulting in the formation of PE. 

2. Acylation of Lyso-PE. In this pathway, dietary Lyso-PE is first translocated across the 

plasma membrane and then acylated into PE by the acyl-CoA-dependent acyltransferase 

(Ale1p) in the ER. 3. CDP-ethanolamine pathway involves first the production of 

phosphoethanolamine (Etn-P) by the phosphorylation of ethanolamine by ethanolamine 

kinase (EK) or through degradation of sphingosine-1-phosphate by dihydro- sphingosine-1-

lyase (Dpl1p). The produced Etn-P is then converted to CDP-ethanolamine (CDP-Etn) under 

the action of CTP: phosphoethanolamine cytidylyltransferase (ET) enzyme, which is 

produced by PCYT2 gene. Finally, CDP-Etn undergoes a condensation reaction with 

diacylglycerol (DAG) under the action of 1, 2-diacylglycerol ethanolamine 

phosphotransferase (ETP) to form the final product, PE. In contrast to the three previously 

mentioned pathways, 4. Phosphatidylserine decarboxylase (PSD) pathway, which is the 

second major route for PE production, resides in mitochondria. In this pathway, PS 

decarboxylation to PE is performed by Phosphatidylserine decarboxylase (Psd), which is 

embedded in the inner mitochondrial membrane. Biosynthesis of PE by PSD pathway 

necessitates lipid trafficking steps within organelles to transport PS from the ER (site of PS 

synthesis) to mitochondria (site of PE synthesis). PE generated by any of these pathways can 

be converted to phosphatidylcholine (PC) through the action of PE methyltransferase 

(PEMT).  [Adapted from Calzada et al. 2016 (481) and van der Veen et al. 2017 (484)]. OM: 

outer membrane; IMS: inter-membrane space; IM: inner-membrane.  
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1.7.2 Plasma Phosphatidylethanolamines-In the context of CVD 

To date, several lipidomic studies have reported the implication of PE in the context of 

ASCVD. Meikle et al. (15) reported that lower plasma levels of total PE (O) and total PE (P) 

were significantly (p<0.05) associated with unstable CAD, while higher levels of total PE, and 

total Lyso-PE were significantly (p<0.05) associated with stable CAD (versus healthy 

individuals). At the level of individual lipid species, 10 out of 12 species of alkyl-PE (PE (O)), 

and 3 out of 12 species of PE-plasmalogens (PE (P)) were negatively (p<0.01) associated with 

unstable CAD, while 16 out of 20 species of PE, and 2 out of 6 species of Lyso-PE were 

positively (p<0.01) associated with stable CAD as shown in Figure 1.20. In addition, among 

PE (P) species, only 2 individual species of PE (P) containing ARA (C20:4) were associated 

with stable CAD. The negative associations of PE (O) and PE (P) with unstable CAD appear to 

relate to the atherosclerotic plaque stability rather than plaque burden, whilst the positive 

associations of PE and LPE with stable CAD suggest their potential implication in the onset 

and pathogenesis of the disease. Furthermore, in a prospective population-based Bruneck 

Study, Stegemann and her colleagues identified several molecular PE species as a promising 

biomarkers to predict CVD risk (16). In this study, the sum of plasma PE was significantly 

(p<0.01) associated with incident CVD (end point: MI, Stroke, and sudden cardiac death). 

Among  individual species, 8 out of 15 species of PE including PE (34:1), PE (34:2), PE (36:2), 

PE (36:4), PE (36:5), PE (38:3), PE (38:4), PE (38:5) and 1 out of 3 species of PE (O) (i.e. PE 

(O) (38:5)) maintained significant association (p<0.01) with incident CVD after adjustment for 

age, sex, and statin therapy. Interestingly, using 3 different selection algorithms, PE (36:5) was 

identified as one of only three lipid species, alongside TG (54:2) and CE (16:1), consistently 

linked to incident CVD. In a standard Cox regression model with progressive adjustment, PE 

(36:5) maintained significant association with incident CVD as illustrated in Figure 1.21. 

Furthermore, adding the plasma levels of PE (36:5) on top of the traditional CVD risk factors 

resulted in improved prediction and classification for CVD risk (16). PE (36:5), among 13 PE 

species, was also positively associated with total and/or CAD mortality (474). These studies 

strongly question the potential implication of plasma PE species, particularly PE (36:5), in the 

pathogenesis and progression of ASCVD.  

Notably, plasma PE species are not equally distributed within plasma lipoproteins with 

60% in HDL, 19% in VLDL, and 21% in LDL (208). While HDL is well-recognized for its 

anti-atherogenic functions, and PE (36:5) has consistently shown a deleterious association with 
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ASCVD, there is currently only circumstantial evidence establishing a link between PE (36:5) 

and HDL functions. Given the pivotal role of the fatty acid composition in determining the 

biological roles of phospholipids, the next section will discuss the potential biological forms of 

PE (36:5) and their respective fatty acid compositions.  

 

 

 

 

 

 

 

 

 

Figure 1.20: Logistic regression analysis of PE and Lyso-PE species against unstable CAD 

(vs stable CAD) and stable CAD (vs control). Logistic regression was performed for each 

lipid species against unstable CAD relative to stable CAD (dark bars), adjusting for age, sex, 

body mass index (BMI), systolic blood pressure (SBP), and statin use, and against stable CAD 

relative to control (light bars), adjusting for age, sex, BMI, SBP, and fasting blood glucose. 

Shown are the IQR odds ratios and 95% confidence intervals for the individual lipid species 

[from Meikle et al. 2011 (15)].  
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Figure 1.21: Association of PE (36:5) with incident CVD. Multivariable effect estimates and 

confidence intervals (CIs) for PE (36:5). The composite CVD end point considers myocardial 

infarction, stroke, and sudden cardiac death (Bruneck Study, n=90). HR and 95% CI were 

derived from standard Cox regression models with progressive adjustment and calculated for 

a 1-SD-higher lipid level. CE: cholesteryl ester; DM: diabetes mellitus; HDL-C: high-density 

lipoprotein cholesterol; HR: hazard ratio; PE: phosphatidylethanolamine; RR (sy): systolic 

blood pressure; and TAG: triacylglycerol [Adapted from Stegemann et al. 2014 (16)]. 
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1.7.3 Phosphatidylethanolamine (36:5)-Biological forms 

While plasma PE (36:5) has been identified as a lipid signature to predict CVD risk (16),  

no study determined the precise component composition (e.g. fatty acid molecular species) that 

comprise PE (36:5) (473). PE (36:5) is a GPL consisting of ethanolamine head group and 2 

fatty acids, together contain 36 carbons and 5 double bonds; thus it represents a composite of 

numerous combinatorial molecular species (17). Based on the total number of carbon atoms 

and double bonds in the PE (36:5), six molecular species could possibly exist in human plasma 

including PE (14:1/22:4), PE (16:0/20:5), PE (16:1/20:4), PE (18:1/18:4), and two species of 

PE (18:2/18:3) with either α-linolenic acid (C18:3n3) or γ- linolenic acid (C18:3n6) (illustrated 

in Figure 1.22). Based on the blood concentrations of various PE (36:5) species  quantified in 

normolipidemic healthy individuals (17), PE (16:0/20:5), and PE (16:1/20:4) are considered the 

major molecular species of PE (36:5). PE (16:0/20:5) consists of palmitic acid (C16:0) chain at 

the sn-1 position and EPA (C20:5n3) at the sn-2 position, referred to latter as EPA-PE, while 

PE (16:1/20:4) consists of palmitoleic acid (C16:1) chain at the sn-1 position and ARA 

(C20:4n6) at the sn-2 position, referred to latter as ARA-PE. In this regard, PE is well-known 

as a reservoir of PUFA (481,484).  

EPA is a key anti-inflammatory/anti-aggregatory, whilst ARA acts as a precursor for 

several pro-inflammatory/pro-aggregatory mediators. Thus, low plasma EPA:ARA ratio is 

considered a marker of chronic inflammation, which is central to the development of ASCVD 

(502). Kondo et al. showed that patients with stable CAD have a significantly lower EPA:ARA 

ratio than healthy volunteers (503). Indeed, a low EPA: ARA ratio was linked to a higher risk 

of AS plaque progression and rupture (504–506), and was suggested as a predictive marker for 

early onset of ACS (507,508). Taken together, these findings collectively suggest a higher 

prevalence of plasma ARA over EPA in ASCVD, and implies the potential involvement of 

ARA as a component of PE (36:5) in CVD. Given that PE is a reservoir of PUFA (481,484), 

thus we speculate the predominance of ARA-PE molecular species of PE (36:5) over the EPA-

PE species in these pathological conditions. The following section will discuss briefly the 

effects of ARA and EPA in ASCVD.  
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Figure 1.22: Putative molecular species of PE (36:5) and their fatty acids composition. 

Average molecular weight of PE (36:5) is 737.986 (Dalton). According to the total number of 

carbon atoms double bonds in PE (36:5), six molecular species are possible. A. PE (14:1/22:4) 

(1-Myristoleoyl-2-adrenoyl-sn-glycero-3-phosphoethanolamine). B. PE (16:0/20:5) (1-

Palmitoyl-2-eicosapentaenoyl-sn-glycero-3-phosphoethanolamine). C. PE (16:1/20:4) (1-

Palmitoleoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine). D. PE (18:1/18:4) 1-

oleoyl-2-stearidonoyl-Sn-glycero-3- phosphoethanolamine). E. PE (18:2/18:3) (1-Linoleoyl-

2-a-linolenoyl-sn-glycero-3-phosphoethanolamine). F. PE (18:2/18:3) (1-linoleoyl-2-gamma-

linolenoyl-sn-glycero-3-phosphoethanolamine). DUFA: di-unsaturated fatty acid; Etn: 

ethanolamine; MUFA: monounsaturated fatty acid; PE: phosphatidylethanolamine; SFA: 

saturated fatty acid; PUFA: polyunsaturated fatty acid. Z indicate Cis double bond, while the 

number indicate the position of the double bond. The ω indicates omega. G indicate gamma. 

A indicates alpha. [Adapted from Wishart et al. 2022 (17)].   
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1.7.4 Arachidonic acid and Eicosapentaenoic acid in ASCVD 

Both omega-3 PUFAs (i.e. α-linolenic acid (ALA), EPA, DHA, and docosapentaenoic 

acid (DPA)), and omega-6 PUFA (i.e. linoleic acid (LA) and ARA) are closely linked to 

inflammation, thus holding a pivotal role in the emergence, progression, and management of 

ASCVD (509,510). The key link between PUFA and inflammation is their role of serving as 

precursors for bioactive lipid mediators including prostanoids (i.e. prostaglandins (PGs) 

thromboxanes (TXs)), leukotrienes (LTs), and resolvins which are collectively involved in 

modulating the intensity, duration, and resolution of inflammation (511–514). Omega-6-

derived mediators predominantly exert pro-inflammatory effects, whereas omega-3-derivatives 

mostly have anti-inflammatory effects. The metabolic pathways for production of prostanoids, 

LTs, and resolvins from PUFA are illustrated in Figure 1.23. Given their relevance to the 

objectives of this thesis, only ARA and EPA will be discussed in details.  

1.7.4.1 Arachidonic acid in atherosclerosis  

In atherosclerosis, ARA-derivatives are mainly implicated in inflammation, platelet 

aggregation, vascular tone and permeability (515). Following various cellular signals such as 

inflammation and TLR4 activation, the cytosolic Ca2+ dependent phospholipase A2 (cPLA2) 

enzyme mediate the generation of ARA from cell membrane phospholipids to control the 

inflammatory response (509,516). The released free ARA is metabolized mainly by the 

lipoxygenases (LOXs), and cyclooxygenases (COXs) enzymes into bioactive lipid metabolites 

(figure 1.19) (514). COXs induce the production of TXA2, PGI2 and PGs (i.e. PGD2, PGE2, 

PGF2α, and PGJ2), while the LOXs promote the production of hydroxyicosatetraenoic acids   

(HETEs), LTs, and lipoxins (LXs) (511,514). ARA derived lipid metabolites are predominantly 

pro-inflammatory mediators, except for the LXs, which have pro-resolving, anti-inflammatory 

properties (509). In atherosclerosis, continuous recruitment and activation of monocytes, as 

well as generation and accumulation of foam cells are striking features of progressive 

atherogenesis as they contribute to chronic local inflammation (38,39). In this regard, ARA 

metabolites (i.e. PGs, TXs, LTs, and HETEs) are implicated in the inflammatory process of 

atherosclerosis as they contribute to monocytes recruitment and maintain the inflammatory state 

(509,514). Indeed, ARA was shown to enhance monocytes binding to endothelial cells, and  

increase the expression of adhesion molecules like VCAM-1, ICAM-1, E-selection, and pro-

inflammatory cytokines including IL-6, and TNFα (517). Among the most important ARA-
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Figure 1.23: Metabolism and metabolic products of PUFA. Phospholipase A2 (PLA2) 

mediates the release of fatty acids from membrane phospholipids (PL), including omega-6 

PUFA (i.e. linoleic acid (LA, C18:2), and arachidonic acid (ARA, C20:4)), and omega-3 

PUFA (i.e. alpha linolenic acid (ALA, C18:3), eicosapentaenoic acid (EPA, C20:5), 

docosahexaenoic acid (DHA, C22:6), docosapentaenoic acid (DPA, C22:5)). These fatty 

acids can be metabolized further by lipoxygenase (LOX), or cyclooxygenase (COX) 

enzymes resulting in the production of a wide range of pro- and anti- inflammatory 

metabolites. Pro-inflammatory metabolites are marked by red box while anti-inflammatory 

ones are marked in blue. HETrE: hydroxyeicosatrienoic acid; HETE: 

hydroxyeicosatetraenoic acid; HPETE: hydroperoxyeicosatetraenoic acid; HEPE: 

hydroxyeicosapentaenoic acid; HPEPE: hydroperoxyeicosapentaenoic acid; HDHA: 

hydroxydocosahexaenoic acid; HDPA: hydroxydocosapentaenoic acid; HODE: 

hydroxyoctadecadienoic acid; PG: prostaglandin; TX: Thromboxane; LT: leukotriene; RV: 

resolvin. [Adapted from (Coras et al. 2020 (511), Larsson et al. 2004 (512), Ahluwalia et al. 

2022 (513), and Calder, 2003 (514)].  
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derived pro inflammatory/pro-aggregatory mediators are PGE2, LTB4, TXA2 (514,518). PGE2 

was shown to increase the production of interleukin 6 (IL-6), while LTB4 was shown also to 

increase IL-1β, and to act as a chemotactic agent for monocytes (502,514).  

It is noteworthy that ARA is not entirely pro-inflammatory, and it can contribute to 

inflammation resolution under certain conditions such as late-phase inflammation, through the 

production of LXs, following a switch in enzymatic ARA processing from 5-LOX to15-LOX 

enzyme (509). Notably, ARA-derived LXA4 was shown to impair the production of various 

pro-inflammatory cytokines, stop neutrophil chemotaxis, attenuate pro-inflammatory M1 

macrophages, and foster anti-inflammatory M2 macrophages (519,520). However, when the 

atherogenic inflammatory stimuli such as the accumulation of oxidized LDL persist within the 

vascular wall, inflammation resolution by lipoxins may fail, leading to unresolved persistent 

inflammation established by the ARA-derived PGs, LTs, and TXs (509).  

1.7.4.2 Eicosapentaenoic acid in atherosclerosis 

EPA has been shown to slow the development and progression of atherosclerosis by 

exerting pleiotropic beneficial effects at multiple steps in the atherogenic process as illustrated 

in Figure 1.24 (521–523). EPA was reported to reverse endothelial dysfunction in cultured 

human umbilical vein endothelial cells (HUVECs), via increasing the production of NO, 

synergistically with statins, while attenuating both oxidized LDL-induced ROS production 

(524) and palmitic acid-induced expression of adhesion molecules and cytokines, as well as 

apoptosis (525). Thus, EPA was shown to inhibit monocytes rolling and adhesion to 

lipopolysaccharide (LPS)-and TNFα-activated endothelial cells (517), and to reduce LPS-

induced VCAM-1 expression (526). Moreover, the incorporation of EPA in the plasma 

membrane of THP-1 macrophages increased ABCA1-mediated cellular cholesterol efflux to 

ApoA-I, suggesting a beneficial effect of EPA in reducing cellular cholesterol accumulation 

and thereby foam cell formation (527). Finally, EPA was also shown to attenuate both copper-

induced LDL oxidation, and glucose-induced lipid peroxidation in multilamellar lipid vesicles 

(528). The actions of EPA could be explained by its role as a precursor for 3-series prostanoids 

(e.g. PGI3, PGE3, TXB3), and 5-series leukotrienes (e.g. LTB5), which exhibit anti-

inflammatory and/or anti- aggregatory effects, as shown in Figure 1.23 (511,512,514,521). In 

addition, EPA serves a precursor for several pro-resolving mediators (i.e. LXs, resolvins, and 

protectins), which reduce monocytes recruitment, and cytokines production, thereby helping to 

correct and resolve the impaired resolution of inflammation seen in atherosclerosis (521,529). 



 

94 | P a g e  

  

 Chapter 1. Introduction to literature 

Furthermore, EPA can compete with ARA to form less inflammatory mediators via competing 

to incorporate into membrane phospholipids as well as via direct inhibition of COX-2 and 5-

LOX, resulting in a switch to produce EPA-derived prostanoids and leukotrienes (529). 

Interestingly, several clinical studies confirmed the potential beneficial effects of EPA 

in atherosclerosis. Hence, EPA was suggested to reduce the macrophage infiltration in 

atherosclerotic plaques of patients who received omega-3 fish oil for a median of 42 days before 

undergoing carotid endarterectomy (530). In addition, when patients with very high TG levels 

received Icosapent ethyl, a pure ethyl ester of EPA, the plasma levels of ox-LDL levels were 

significantly reduced, which might result in better clearance of LDL and contribute to less foam 

cell formation (531).  

At the level of AS plaques, EPA was shown to help stabilizing atherosclerotic plaques 

and thereby prevent their rupture. In ACS patients, EPA supplementation (1.8 g/day for 8 

months) significantly increased fibrous cap thickness compared with baseline and untreated 

controls (532). The addition of highly purified EPA to statin therapy also increased fibrous-cap 

thickness, while decreased plaque lipid content in ACS patients, suggesting better plaque 

stabilizing effects than the statin alone (533). Furthermore, in patients with T2D (534) and 

hypertriglyceridemia (535), EPA was also shown to decrease the cIMT. Interestingly, the EPA 

content of carotid plaque phospholipids was inversely correlated with the median score of seven 

plaque features including lipid core, foam cells, haemorrhage, overall inflammation, fibrous 

cap inflammation, macrophages in plaque, macrophages in cap (536). Altogether, these studies 

provide evidence that EPA have a range of overlapping benefits across the spectrum of ASCVD 

disease, resulting in improved vascular and coronary health. 
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Figure 1.24: The cellular and molecular beneficial effects of EPA on atherosclerosis. 

Atherosclerosis is a multistep process starting from endothelial dysfunction and advancing to 

plaque development, progression, and rupture. EPA has been reported to have beneficial effects 

on multiple atherosclerosis processes including endothelial function, oxidative stress, foam-

cell formation, inflammation/ cytokines, plaque formation/progression, platelet aggregation, 

thrombus formation, and plaque rupture. CCR: C-C chemokine receptor; CS: connecting 

segment; CE: Cholesteryl ester; EPA: eicosapentaenoic acid; EPA/AA: eicosapentaenoic 

acid/arachidonic acid ratio; HDL: high-density lipoprotein; HsCRP: high-sensitivity C-

reactive protein; ICAM: intercellular adhesion molecule; IFN: interferon; IL: interleukin; 

LDL: low-density lipoprotein; Lp-PLA2: lipoprotein-associated phospholipase A2; MCP: 

monocyte chemotactic protein; MMP: matrix metalloproteinase; oxLDL: oxidized LDL; SMC: 

smooth muscle cell; Th: T helper; VCAM: vascular cell adhesion molecule. [Adapted from 

borrow et al. 2015 (521), Nelson et.al. 2021 (522), and Budoff et al. 2018 (523)]. 
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"The greatest discoveries have come from people who have looked at a standard 

situation and seen it differently." - Albert Szent-György  

HYPOTHESIS AND 
OBJECTIVES 

2.1 HYPOTHESIS 

2.2 OBJECTIVES AND EXPERIMENTAL APPROACH   
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Chapter 2. Working hypothesis and objectives 

2.1   Hypothesis 

It has been widely accepted that low HDL-C is a strong and independent risk factor for 

ASCVD. However, the failure of HDL-C raising therapies to reduce the ASCVD risk have 

illuminated a crucial insight: the "quantity” of HDL-C may not be the key therapeutic target. 

Instead, the spotlight turns to the concept of HDL functionality "quality" as a more accurate 

predictor of ASCVD risk. HDL particles are highly heterogeneous in their structure (i.e. size 

and shape) and composition (i.e. mainly lipids and proteins), with such heterogeneity closely 

linked to their atheroprotective functions. Within HDL lipidome, phospholipids have emerged 

in several studies as pivotal determinants of HDL functions. In CMD and ASCVD, the HDL 

phospholipidome often undergoes alterations, accompanied by a reduction or complete loss of 

HDL's anti-atherogenic function/s. This suggests a profound link between specific phospholipid 

species within HDL, its altered functionality, and an elevated risk of ASCVD. Consequently, 

understanding the impact of such phospholipid species on HDL functionality could help to 

identify novel biomarkers for evaluating and enhancing HDL function as a therapeutic strategy 

to ameliorate ASCVD outcomes. 

Available plasma lipidomic data reveals a significant positive correlation between most 

PE species and the initiation and progression of ASCVD. Among these, PE (36:5) emerges as 

a signature lipid species, displaying the strongest predictive value for ASCVD. These 

observations highlighted the strong interest to unravel the mechanistic implications of these 

lipid species in ASCVD pathogenesis, and to define the precise molecular species that drive the 

strong association of PE (36:5) with incident CVD. Of the six putative molecular species of PE 

(36:5), two species including PE (16:0/20:5) or EPA-containing PE (36:5), and PE (16:1/20:4) 

or ARA-containing PE (36:5) are considered the major species of PE (36:5) exists in human 

plasma, with ARA-PE (36:5) dominating conditions linked to chronic inflammation, such as 

CMD and atherosclerosis. 

With the majority of plasma PE cargo is carried by HDL, and previous indications that 

total PE content in HDL potentially influences both the structural properties of HDL, and the 

capacity of human serum to promote cellular cholesterol efflux, a pivotal hypothesis arises. 
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Although plasma HDL is well-recognized for its anti-atherogenic functions, and the plasma PE, 

notably PE (36:5), have consistently shown a deleterious association with ASCVD in lipidomic 

studies, there is currently no direct evidence establishing a link between PE, and PE (36:5) in 

particular, and HDL functions. Here we directly tested the hypothesis of that the positive 

deleterious association between plasma PE and PE (36:5) and CVD reflects deleterious link 

between PE and HDL functionality "i.e. quality". In specific, we propose that the presence of 

PE and PE (36:5) within HDL particles might affect their anti-atherogenic functions, and their 

role in atheroprotection and potentially accelerating atherogenesis, and elevating ASCVD risk 

(Figure 2.1, H-1). In light of the well-known deleterious effects of ARA in ASCVD, our 

hypothesis suggests that the presence of ARA in PE within HDL could add more deleterious 

effects on HDL functions (Figure 2.1, H-2), whilst the incorporation of EPA in PE in HDL is 

expected to promote beneficial effects, building upon the well-known protective effects of EPA 

in ASCVD (Figure 2.1, H-3).  

  

 

 

 

 

 

 

 

 

Figure 2.1: Proposed mechanistic insights into how plasma PE and PE (36:5) may promote 

atherosclerosis. ARA: arachidonic acid; CDP: Cytidine diphosphate; EPA: eicosapentaenoic 

acid; H: hypothesis; HDL: high density lipoprotein; VLDL: very low density lipoprotein; PE: 

phosphatidylethanolamine; PLTP: phospholipid transfer protein; PSD: Phosphatidylserine 

decarboxylase; Ox-LDL: oxidized low density lipoprotein.  
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2.2  Objectives and experimental Approaches 

In the pursuit of a deeper understanding of the potential mechanisms that underlie the 

strong positive association of plasma PE species with ASCVD, this doctoral dissertation sets 

forth a series of objectives that could collectively contribute to unraveling this association. The 

overall objective of this study is to elucidate the impact of PE, and particularly the PE (36:5) 

molecular species, on the atheroprotective functions of HDL. To address these objectives, a 

multifaceted experimental approach encompassing both clinical and preclinical methodologies 

has been employed. 

Objectives and approaches 

Objective one: Association between PE and Atherosclerosis: The first objective of this study 

is to explore the potential association between both total PE and PE (36:5) contents within HDL 

particles and the development of atherosclerosis. By investigating the relationships of these 

lipid components of HDL with established clinical markers of atherosclerosis, a comprehensive 

assessment of their potential role in atherosclerosis development will be accomplished. 

Approach: Human study: this clinical approach (Figure 2.2A) involves the isolation 

of HDL2 particles from women diagnosed with metabolic syndrome, followed by quantifying 

the content of total PE and PE (36:5) within these isolated particles. Then, the associations 

between the content of these lipid species in HDL and atherosclerosis markers such as cIMT, 

the presence of AS plaque in carotid arteries, and CAC scores will be evaluated.  

Objective two: HDL's Efficacy to reverse atherosclerosis and ARA-PE (36:5): The second 

objective seeks to evaluate whether HDL's capacity to mitigate the development of 

atherosclerosis is adversely affected by the presence of ARA-PE (36:5) molecular species. 

Through the employment of a relevant murine model, the influence of this specific molecular 

species on the development of atherosclerotic plaque will be elucidated. 

Approach: In vivo atherostudy: this approach (Figure 2.2B) involves employing 

TgCETP x Ldlr-/- female mice model subjected to a high-cholesterol diet to induce 

atherosclerosis. Then, mice will be treated with ARA-PE (36:5)-containing rHDL, and the 

impact of these particles on the size of aortic AS plaque will be evaluated.  
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Objective three: Structural and Functional Modifications of HDL: The third objective aims 

to delve into the potential modifications induced by the presence of PE and particularly ARA-

PE (36:5) and EPA-PE (36:5), on the structural and functional properties of HDL. By assessing 

the impact of these lipid species on rHDL particles, a deep understanding of their impact on 

HDL's quality (i.e. structure and function) will be achieved. 

Approach: In vitro study: This approach (Figure 2.2C) involves generation of rHDL 

particles containing various PE species, including Soy-PE, ARA-PE, and EPA-PE, and then 

evaluating the main structural and functional properties of these particles.  

By achieving these approaches, this dissertation strives to establish a direct link between 

PE, particularly PE (36:5), and HDL functions. These efforts aim to provide mechanistic 

insights to explain the positive association of PE species and ASCVD and to decipher novel 

biomarkers of HDL functionality (i.e. quality), which could have promising implications for 

the development of future therapeutic approaches in the context of ASCVD.  
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Figure 2.2: Experimental strategies. Our study involved three methodological approaches. 

A. Human study. B. In vivo atherostudy and C. In vitro study. AIA: anti-inflammatory 

activities; AOX: anti-oxidative activities; AS: Atherosclerotic; ARA: arachidonic acid; CAC 

score: coronary artery calcium score; CETP: Cholesteryl ester transfer protein; cIMT: carotid 

intima-media thickness; CEC: cholesterol efflux capacity; HUVECs: human umbilical vein 

endothelial cells; MetS: Metabolic syndrome; SUC: sequential ultracentrifugation; 

LC/MS/MS: Liquid chromatography-tandem mass spectrometry; Ox-LDL: oxidized low 

density lipoprotein; LDLr: LDL receptor; PC: phosphatidylcholine; PE: 

phosphatidylethanolamine. In both in vivo and in vitro studies, SOY-PC rHDL which contains 

only Soy-PC was used as a control rHDL.   
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Abstract.  

Aims. Low plasma high-density lipoprotein (HDL)-cholesterol levels are associated with elevated risk 

of atherosclerotic cardiovascular disease (ASCVD), an effect potentially reflecting the antiatherogenic 

functions of HDL. These functions, including cholesterol efflux capacity (CEC), anti-inflammatory (AIA) 

and anti-oxidative (AOX) activities, are largely influenced by the HDL phospholipidome. Patients with 

cardiovascular diseases frequently exhibit alterations of phospholipidome and functions of HDL. 

Several studies reported positive associations of plasma levels of phosphatidylethanolamines (PE) 

species, notably PE (36:5), with ASCVD although the mechanisms are unknown. Plasma PE (36:5) exists 

as eicosapentaenoic (EPA)-PE and arachidonic acid (ARA)-PE, with the latter predominating in ASCVD. 

The objective of this study was to determine whether the association of PE (36:5) with ASCVD might 

result from an impairment of the antiatherogenic functions of HDL. 

Methods and Results. We observed that total PE and PE (36:5) contents of large HDL isolated from 86 

women with metabolic syndrome were positively associated with carotid intima-media thickness in 

multivariate regression analysis adjusted for traditional risk factors. Retro-orbital injection of 

reconstituted HDL (rHDL) containing ARA-PE led to an increase of the size of atherosclerotic plaques in 

TgCETP x Ldlr-/- mice fed a high-cholesterol diet in comparison to the injection of control rHDL 

containing phosphatidylcholine (PC) alone. In vitro studies showed that PE rHDL exhibited a reduced 

CEC and an impaired AIA in human THP-1 macrophages, and a diminished AOX against copper-induced 

LDL oxidation compared to control rHDL. Strikingly, ARA-PE rHDL exhibited more profound alterations 

of the HDL function, while EPA-PE rHDL counteracted the dysfunction of PE and ARA-PE rHDL and could 

potentiate the functionality of rHDL.  

Conclusion. Our findings uncover a causal link between PE species, especially, ARA-PE, with HDL 

dysfunction and atherosclerosis, which can be potentially reversed by EPA. This study supports the 

therapeutic usefulness of EPA in the restoration of the HDL functions and the reduction of ASCVD. 

Keywords 

High-density lipoproteins, phosphatidylethanolamine, arachidonic acid, eicosapentaenoic acid, 

atherosclerosis 

Running title 

Modulation of HDL functions by phosphatidylethanolamine 
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Translational Perspective.  

This study provides new and potentially important information on ongoing therapies actually in 

development in patients with a high risk of cardiovascular diseases whose therapeutic efficacy is highly 

debated.  By bringing to light the role of polyunsaturated fatty acid in phosphatidylethanolamine 

species for HDL functions, this study proposes that omega-3 eicosapentaenoic acid (EPA) might 

counteract the dysfunctionality of HDL observed in patients with atherosclerotic cardiovascular 

diseases and provides potential clues on the cardioprotective effect of EPA reported in the REDUCE-IT 

clinical trial.  Those findings support the usefulness of the consumption of pure EPA, and possibly 

infusion of EPA-PE containing reconstituted HDL, in patients with atherosclerotic cardiovascular 

diseases.  
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Abbreviations. 

 Apo: apolipoprotein 

ARA: arachidonic acid 

ASCVD: atherosclerotic cardiovascular disease 

CAD: coronary artery disease 

CETP: cholesteryl ester transfer protein 

cIMT: carotid intima-media thickness 

CMD: cardiometabolic diseases 

DPH: diphenylhexatriene 

EDTA: ethylenediaminetetraacetic acid 

EPA: eicosapentaenoic acid 

ER: endoplasmic reticulum 

FPLC: fast protein liquid chromatography 

HDL-C: high-density lipoprotein 

IL-1β: interleukin-1 beta 

LA: linoleic acid 

LPC: lysophosphatidylcholine 

LPDP: lipoprotein-deficient plasma 

LPS: lipopolysaccharide 

Met: methionine 

MetS: metabolic syndrome 

PBS: phosphate buffer saline 

PC: phosphatidylcholine 

PE: phosphatidylethanolamine 

PI: phosphatidylinositol 

PLOOH: phospholipid hydroperoxide 

PUFA: polyunsaturated fatty acid 

rHDL: reconstituted HDL 

Soy-PC: L-α phosphatidylcholine 

Soy-PE: L-α phosphatidylethanolamine 

TMA-DPH: trimethylamine-diphenylhexatriene 
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Introduction. 

Atherosclerotic cardiovascular diseases (ASCVD) are the leading cause of morbidity and 

mortality in Western countries. It is well established that low circulating concentrations of cholesterol 

associated with high-density lipoproteins (HDL-C) are predictive of ASCVD incidence1, making HDL a 

promising target to reduce ASCVD2. However, therapeutic strategies raising HDL-C have failed to 

reduce ASCVD mortality3. Multiple biological activities are displayed by HDL, including macrophage 

cholesterol efflux, anti-oxidative, anti-inflammatory, and cytoprotective activities2. Among them, HDL 

capacity to promote cholesterol efflux from macrophages is proposed to underlie the association 

between HDL-C and ASCVD. Indeed, the capacity of HDL to promote macrophage cholesterol efflux is 

inversely associated with atherosclerosis development4, incident CV events5, and mortality in patients 

with myocardial infarction6 independently of HDL-C levels. Those studies paved the way to the notion 

that HDL functionality could represent a better indicator of ASCVD risk than HDL-C levels7. 

Structure (size and shape) and composition (lipid and protein content) of HDL particles are 

highly heterogeneous, with such a heterogeneity being intimately linked to their biological functions2,8. 

Besides apolipoprotein (apo) A-I which constitutes around 70% of total proteins, proteomic and 

lipidomic studies identified hundreds of individual protein and lipid species in HDL9,10. Phospholipids 

account for 35-50% of total HDL lipidome, with phosphatidylcholines (PC, 33–45wt%) being the major 

phospholipid class10,11 followed by moderately abundant classes such as lysophosphatidylcholine (LPC, 

0.5–5wt%), phosphatidylethanolamine (PE, 0.5–1.5wt%), and phosphatidylinositol (PI, 0.5–1.5wt%)10. 

Phospholipids were reported previously to modulate HDL functionality based on their class, 

abundance, and biophysical properties12–14. Alterations of both phospholipidome and biological 

functions of HDL are detected in ASCVD patients, suggesting that the presence and/or the abundance 

of specific phospholipid species within HDL can be associated with altered HDL functionality and 

increased CVD risk15–17.  

Lipidomic studies have revealed a positive association between the plasma levels of several PE 

species and ASCVD16,18. Among them, PE (36:5) displayed the strongest association with ASCVD18, with 
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earlier lipidomic analyses of plasma from control individuals and patients with CVD highlighting the 

deleterious role of PE (36:5). Thus, plasma concentrations of PE (36:5) were significantly higher in 

patients with stable coronary artery disease (CAD)16. Even more strikingly, the prospective population-

based Bruneck Study identified PE (36:5) among only three lipid species displaying the strongest 

predictive value for CVD18. Moreover, inclusion of PE (36:5) on top of traditional risk factors resulted 

in improved risk prediction and classification in this cohort18. However, the molecular mechanisms 

through which PE (36:5) and total PE promote ASCVD are unknown19.  

In plasma, about 60% of total PE cargo is carried by HDL particles11. In this regard, PE was 

reported to influence structural properties of HDL20, and its content in HDL was negatively correlated 

with the capacity of human serum to promote cellular cholesterol efflux21. Two major PE (36:5) 

subspecies are found in human plasma22, namely PE (16:0/20:5), and PE (16:1/20:4), with the latter 

being speculated to predominate in cardiometabolic diseases based on the reduced eicosapentaenoic 

acid (EPA, 20:5) to arachidonic acid (ARA, 20:4) ratio observed in patients with ASCVD and in obese 

women with metabolic dysfunction23,24. EPA is an omega (ω)-3 polyunsaturated fatty acid (PUFA) that 

exerts several beneficial effects against ASCVD23. In this context, the cardiovascular risk was reported 

to be lower in patients receiving a highly purified EPA ethyl ester than in those on placebo25. 

Conversely, ARA, an ω-6 PUFA, is widely known for its deleterious pro-inflammatory roles in ASCVD26. 

Several studies reported the capacity of PUFA to modulate HDL functionality. Hence, ω-3 fatty acids, 

such as EPA and linolenic acid, improve, while ω-6 fatty acids, such as linoleic acid (LA), attenuate the 

atheroprotective functions of reconstituted HDL27–29. However, knowledge about the effects of EPA- 

and ARA-containing PE (36:5) on HDL functionality remains unknown.  

In this study, we addressed the hypothesis that PE, and particularly ARA-containing PE (36:5), 

can promote ASCVD by altering the atheroprotective functions of HDL. We demonstrated that total PE 

and PE (36:5) contents in HDL are associated with atherosclerosis development in women with 

metabolic syndrome (MetS). Injection of reconstituted HDL (rHDL) in TgCETP x Ldlr-/- mice confirmed 
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the proatherogenic role of ARA containing-PE (36:5). Finally, our in vitro studies uncovered that both 

total PE and ARA-containing PE (36:5) attenuated the functions of rHDL, which were restored, or even 

improved, with EPA-containing PE (36:5). Taken together, our study suggests that the presence of PE 

and PE (16:1/C20:4) in HDL may represent novel biomarkers for HDL dysfunctionality and may underlie 

the deleterious role of total PE and PE (36:5) in ASCVD. By contrast, the presence of PE (16:0/C20:5) in 

HDL reverses this deleterious effect, providing new mechanistic clues in the understanding of the 

protective role of EPA in ASCVD. 
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Materials and Methods.  

Patients with metabolic syndrome. 

Assessment of the impact of the PE and PE (36:5) content of large HDL (HDL2) on the development of 

atherosclerosis was performed in a group of 86 women with metabolic syndrome (MetS) for whom 

carotid intima-media thickness (cIMT) was measured using ultrasound as previously described30. Mean 

cIMT was defined for each individual as the average of the right and the left common cIMT. Major 

clinical and biochemical parameters of women with MetS are presented in Supplemental Table 1. 

Patients were classified as displaying MetS on the basis of modified Adult Treatment Panel III criteria 

as described in our early cohort30. The study was performed in accordance with ethical principles 

outlined in the declaration of Helsinki. Written informed consent was obtained from all patients. 

Isolation and characterization of plasma HDL. 

HDL2 were isolated from human plasma by sequential ultracentrifugation. Briefly, the density of 

plasma or medium was increased to 1.063 g/ml by addition of dry solid potassium bromide. 

Apolipoprotein (apo) B-containing lipoproteins (d < 1.063 g/ml) were removed after a first 

ultracentrifugation at 45,000 rpm for 24 h at 15°C using a Beckman 50.4 rotor in a Beckman XL70 

ultracentrifuge. Then, the density of plasma was increased to 1.21 g/ml and HDL fractions (d < 1.21 

g/ml) were isolated after a second ultracentrifugation under the same settings of the first one. Purified 

HDL fractions were dialyzed using Spectrapor membrane tubing against phosphate buffer saline (PBS) 

at pH 7.4 before analysis for their lipid and protein content and used in functional assays.  

Preparation of reconstituted HDL. 

Isolation of human ApoA-I. Human ApoA-I was isolated from human plasma and purified by fast protein 

liquid chromatography (FPLC). Total HDL was isolated by sequential ultracentrifugation. The first 

ultracentrifugation step in Beckman 70 Ti rotor at 45,000 rpm for 24 hours at 15°C at a density of 1.063 

g/ml allowed to remove all apo B-containing lipoproteins. Then total HDL was recovered after the 

second ultracentrifugation step at a density of 1.21 g/ml under the same conditions. Total HDL were 
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extensively dialyzed against ammonium buffer (5 mM, pH 7.4) and lyophilized, resuspended, and 

delipidated completely with methanol/ether (1:4) at -20°C. Precipitated proteins were dried under 

speed vacuum and ApoA-I was purified by ion-exchange chromatography. After protein solubilization 

in buffer A (20 mM Tris/6 M urea, pH 8.5) at a concentration > 12mg/ml, ApoA-I was loaded on XK26-

40 chromatography column and separated at a flow rate of 3 ml/min in Tris-urea buffer by biologic 

DuoFlow systems (BioRad, France). The purity of individual ApoA-I-containing fractions detected at 

280 nm was assessed on 20% denaturing acrylamide gel revealed with Coomassie blue. Pure fractions 

were pooled and dialyzed against ammonium buffer (20 mM, pH 7.4) and lyophilized. 

Preparation of reconstituted HDL. Reconstituted HDL (rHDL) particles were prepared by sodium cholate 

dialysis as previously described31. Briefly, human ApoA-I was mixed with L-α phosphatidylcholine (Soy-

PC) without or with either L-α phosphatidylethanolamine (Soy-PE; Avanti Polar Lipids, AL, USA), PE 

(16:1/20:4), or PE (16:0/20:5; synthesized by ICBMS, Lyon, France), at a molar ratio of 1:90 (ApoA-I: 

Soy-PC) for Soy-PC rHDL and 1:70:20 (ApoA-I:Soy-PC:PE) for either Soy-PE, PE (16:1/20:4), or PE 

(16:0/20:5) rHDLs (Supplemental Table 2). The required amounts of phospholipids in chloroform were 

mixed and dried under nitrogen gas. To form micelles, sodium cholate (30 mg/ml) was added to the 

dried lipids at a molar ratio of 1:1 (sodium cholate: phospholipid) in Tris-buffered saline (TBS, pH 7.4) 

and vortexed every 15 minutes until the solution became clear. Then ApoA-I was added to the mixture 

and incubated for 2h at 4C°. Finally, rHDL particles were dialyzed against TBS for 5 days and against 

PBS for 3 days and stored at -80°C. All the rHDL concentrations were based on their ApoA-I content, 

which was measured using Indiko™ Plus clinical chemistry analyzer (Thermo Scientific, US) according 

to the manufacturer’s instructions. Quality control of rHDL and ApoA-I was performed using non-

denaturing TBE 4–20% gradient polyacrylamide gel electrophoresis and staining with Coomassie 

Brilliant Blue (Supplemental Figure 1A and B)27.  

Lipidomic analysis.  
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LC/MS/MS was used to characterize the phospholipidome of rHDL particles as previously described32. 

All internal standards were purchased from Avanti Polar Lipids (Alabaster, USA). LC/MS grade or UPLC 

grade solvents were obtained from Sigma-Aldrich (St Louis, USA) and used without further purification. 

Plasma lipids were extracted using a modified Folch method12,33. Briefly, HDL samples containing 2 µg 

phospholipid supplemented with a mixture of internal standards were mixed with 1600 μL acidified 

methanol: 0.1N HCl (1:1 v/v) and 800 μL chloroform. The lower organic phase was dried, lipids were 

reconstituted into 40 µL of LC/MS-compatible solvent and injected into LC/MS/MS system. Lipids were 

quantified by LC-ESI/MS/MS using a Prominence UFLC (Shimadzu, Tokyo, Japan) and QTrap 4000 mass 

spectrometer (AB Sciex, Framingham, USA) equipped with a turbo spray ion source (450°C) combined 

with an LC20AD HPLC system, a SIL-20AC autosampler (Shimadzu, Kyoto, Japan) and the Analyst 1.5 

data acquisition system (AB Sciex, Framingham, MA, USA). Quantification of phospholipids, 

sphingolipids and neutral lipids was performed in positive ion mode. Sample (4 µl) was injected onto a 

Kinetex HILIC 2.6 µm (2.1x150 mm) column (Phenomenex, USA). Mobile phases consisted of water and 

acetonitrile containing ammonium acetate and acetic acid. Lipid species were detected using 

scheduled multiple reaction monitoring (sMRM). N2 was used as a nebulization and collision gas. Lipids 

were quantified using 37 calibration curves specific for 9 lipid subclasses [phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidylserine 

(PS), sphingomyelin (SM), triglycerides (TG), ceramides (Cer) and phosphatidylglycerol (PG)] and up to 

12 fatty acid moieties. Highly abundant lipid species which displayed non-linear responses in non-

diluted extracts were quantified using a 20-fold diluted sample. An in-house developed R script was 

employed to correct for isotopic contribution to MRM signals as adapted from34.  

Atherosclerosis development and injection of reconstituted HDL in mice. 

Human transgenic cholesteryl ester transfer protein (CETP) and Ldlr-/- mice (TgCETP x Ldlr-/-) were 

generated by breeding human CETP transgenic mice [Tg (CETP) 5203Tall/J; Jackson Laboratory] with 

Ldlr-/- (Ldlrtm1Her/J; Jackson Laboratories) mice. Generated TgCETP x Ldlr-/- mice were always 
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hemizygous for the human CETP transgene. Mice were housed in a conventional animal facility and 

fed ad libitum a normal chow diet. For the study of atherosclerosis, female TgCETP x Ldlr-/- mice who 

were 9-10 weeks of age (average weight of 22 g) were fed a high-cholesterol diet (HCD) (1.25% 

cholesterol and 16% cocoa butter, SAFE diet N°CD002510, France) for 8 weeks before the injection of 

rHDL. Mice under isoflurane anesthesia (2% isoflurane/0.2 L O2/min) were next retro-orbitally injected 

with either ARA-PE rHDL (6 mice) or control Soy-PC rHDL (5 mice) at a dose of 15 mg ApoA-I/kg of body 

weight three times per week for a period of two weeks upon a normal chow diet.  

Injection of rHDL was validated through the quantification of plasma levels of human ApoA-I at various 

time points after a single injection of Soy-PC rHDL (15 mg ApoA-I/kg of body weight) or buffered saline 

in female TgCETP x Ldlr-/-mice (Supplemental Figure 2A), while the HCD was validated through the 

quantification of plasma cholesterol levels after 8 weeks of HCD (Supplemental Figure 2B). The 

effectiveness of control Soy-PC rHDL toward atherosclerosis regression was validated in an 

independent study by injecting female TgCETP x Ldlr-/-mice with either 15 mg ApoA-I/kg of Soy-PC rHDL 

or buffered saline three times per week for a period of 4 weeks upon a normal chow diet (Supplemental 

Figure 2C and 2D). Quantification of plasma protein and lipid levels was performed as previously 

described12, in blood samples collected in ethylenediaminetetraacetic acid (EDTA)-coated tubes 

(Microvette, Sarstedt) by retro-orbital bleeding under isoflurane anaesthesia (2% isoflurane/0.2 L 

O2/min). Plasma samples were stored frozen at -80°C prior use. Mice were sacrificed by cervical 

dislocation and tissues were collected, snap-frozen and stored at -80°C or fixed in 10% formalin for 

further analysis. All procedures were approved and accredited (No. 02458.02) by the French Ministry 

of Agriculture and were in accordance with the guidelines of the Charles Darwin Ethics Committee on 

animal experimentation 

Quantification of atherosclerotic plaques. 

The animals were sacrificed under isoflurane anesthesia and perfused through the heart with sterile 

PBS. The hearts were collected and fixed in 10% formalin solution as previously described35 for 24 
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hours at 4°C prior to be incubated in 20% sucrose-PBS solution for additional 24 hours. Hearts were 

then dissected at the level of the aortic root, embedded in Tissue-Tek optimum cutting temperature 

(OCT) medium (Sakura Finetek Europe, The Netherlands) and snap frozen in liquid nitrogen. A total of 

60 cryosections (10 µm thickness) were cut through the proximal aorta using Leica CM1900 Cryostat 

(Leica Biosystems). Sections were fixed in 10% formalin for 5 minutes and stained with filtered Oil red-

O for 10 minutes. The extent of the atherosclerotic lipid lesions in the aortic root was quantified using 

ImageJ software (National Institutes of Health) on the images captured by a Zeiss AxioImager M2 

microscope and plaque area measured with the AxioVision Zeiss software. 

Human macrophages.  

Human macrophages. Human THP-1 monocytes obtained from American Type Culture Collection were 

maintained at 37°C in 5% CO2 in RPMI 1640 media containing 10% heat-inactivated fetal bovine serum 

(FBS), 2 mmol/L glutamine, and 100 U/ml penicillin/streptomycin. Cells were differentiated into 

macrophage-like cells with 50 ng/mL phorbol 12-myristate 13-acetate (PMA) for 48-72h.  

Cholesterol efflux capacity of reconstituted HDL.  

Analysis of the capacity of reconstituted HDL to promote cholesterol efflux from human THP-1 

macrophages was performed as previously described36. Cellular cholesterol efflux to Soy-PC, Soy-PE, 

ARA-PE, and EPA-PE rHDL (at 5, 10, 20, and 50 μg ApoA-I/ml) was assayed in a serum-free medium for 

a 4-hour chase period. 

Measurement of the antioxidative activity of reconstituted HDL.  

The antioxidative activity of rHDL (final concentration of 50µg ApoA-I/ml) was evaluated towards 

reference LDL (final concentration of 0.2 mg cholesterol/ml) isolated from a pool of plasma 

obtained from healthy subjects from the Etablissement Français du Sang (EFS). Human LDL was 

isolated from normolipidemic human plasma by isopycnic nondenaturing density gradient 

ultracentrifugation in a Beckman SW41 Ti rotor at 40,000 rpm for 44 hours at 15°C in optima Beckman 
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XPN-100 ultracentrifuge as described earlier17. After ultracentrifugation, the gradient was fractionated 

in predefined volumes, and five LDL subfractions (LDL1-LDL5) were isolated and pooled together. 

Isolated LDL was dialyzed against phosphate-buffered saline (PBS, pH 7.4) in the dark at 4°C, stored at 

4°C and utilized within one week for functional assays. The chemical composition of isolated LDL was 

determined by enzymatic colorimetric tests using commercially available assays (Diasys, Germany)17. 

The rHDL particles were added to LDL directly before oxidation. LDL oxidation was induced by 

copper sulfate (CuSO4, final concentration of 0.05 µM). The extent of LDL oxidation in the presence or 

absence of rHDLs was assessed using 2′, 7′-dichlorofluorescein diacetate (DCFH) fluorescent probe by 

Fluorescence Microplate Reader (Gemini, Molecular Devices, USA) as previously described37. The 

oxidability of rHDL particles alone was also measured, in the absence of LDL, in the incubations 

containing DCFH, CuSO4 and rHDL at the concentrations indicated above.    

Anti-inflammatory activity of reconstituted HDL in THP-1 macrophages.  

Human THP-1 macrophages plated at a density of 1.0 × 106 cells/well into 24-well plates were treated 

with different rHDLs (20 µg ApoA-I/ml) in a serum-free RPMI media for a 4-hour (early) or a 16-hour 

(late) period. Subsequently, rHDL-containing media were removed and cells were washed twice with 

PBS before the induction of inflammation with lipopolysaccharide (LPS; 100 ng/ml) for additional 4 

hours when indicated. At the end of the LPS treatment, the supernatants were collected and the levels 

of secreted Interleukin-1 beta (IL-1β) in the culture media were measured by a MILLIPLEX Magnetic 

Bead Panel (Millipore) and the MAGPIX device (Luminex) system according to the manufacturer’s 

instructions. The mRNA levels of chemokines and cytokines were quantified by qPCR analysis as 

described below. 

RNA extraction, retrotranscription and real-time quantitative PCR. 

Total RNAs from cell cultures were extracted using the NucleoSpin RNA II kit (Macherey-Nagel) 

according to the manufacturer's instructions. Reverse transcription and real-time qPCR using a 

LightCycler LC480 (Roche) were performed as previously described36. Human mRNA levels were 
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normalized to the mean expression of three housekeeping genes, including human non-POU domain-

containing octamer-binding housekeeping gene (NONO), human α-tubulin (TUBA) and human heat 

shock protein 90kDa alpha (cytosolic), class B member 1 (HSP90AB1). Data were expressed as a fold 

change in mRNA expression relative to control values. The primers used in this study are listed in 

Supplemental Table 3.  

Phospholipid transfer assay from LDL to HDL.  

The transfer of phospholipids from LDL to rHDL was evaluated using human LDL labeled with Dil 

(1, 1’-dioctadecyl-3, 3, 3’, 3’-tetramethylindocarbocyanine perchlorate) fluorescent probe as 

described previously38 with slight modifications. Briefly, LDL was labeled with Dil probe (5 µM) at 

a DiI: LDL-phospholipid mass ratio of 1:13 via gentle stirring overnight at 37C° in the presence of 

lipoprotein- deficient plasma (LPDP) as a source of lipid transfer proteins at a LPDP: LDL volume 

ratio of 1:100. The Dil-Labelled LDL was separated from unbound DiI by filtration through PD-10 

Sephadex G-25 desalting column (GE HealthCare, US) and Dil-LDL filtrate was collected. Dil-LDL 

(7.5 mg phospholipid/dL) was mixed with rHDL (4 mg ApoA-I/dL), or reference ApoB-deficient 

plasma (1:30 v/v) obtained from a healthy normolipidemic donor, 50µl of Tris buffer (0.4 M, PH 8) 

and PBS to a final volume of 200 µl, and the mixtures were incubated at 37C° for 1 hour to achieve 

phospholipid transfer. The reaction was terminated by placing the mixture on ice, and Dil-rHDL-

containing supernatants were isolated from each sample using ApoB-depleting precipitant (i.e. 

phosphotungstic acid, MgCl2, NAOH; pH 6.2)    as previously described38. The fluorescence intensity 

of Dil-HDL was measured at an excitation wavelength of 550 nm and emission wavelength of 564 

nm using Fluorescence Microplate Reader (Gemini, Molecular Devices, USA). The phospholipid 

transfer from LDL to rHDL was calculated via normalizing the fluorescence intensity in rHDL-

containing supernatant to that of a reference normolipidemic HDL (employed as ApoB-deficient 

plasma) and presented as a percentage. 
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Lipid surface and core rigidity of reconstituted HDL.  

The rigidity of the lipid surface and core of rHDLs was evaluated using trimethylamine-

diphenylhexatriene (TMA-DPH), and diphenylhexatriene (DPH; Cayman Chemical, USA) 

fluorescent probes, respectively39. Reconstituted HDL particles (3.3 mg ApoA-I/dL) were incubated 

with DPH (final concentration of 0.80 µM, dissolved in tetrahydrofuran) or TMA-DPH (final 

concentration of 0.32 µM, dissolved in dimethylformamide) at 37C° for 1 hour to achieve the 

incorporation of the fluorescent probes into the lipoproteins. Anisotropy of the probe 

fluorescence was measured by FlexStation 3 Multi-Mode Microplate Reader (Molecular Devices, 

USA) using a standard polarizer set as previously described39. 

Quantification of cell surface expression of TLR4. 

Cell surface expression of TLR-4 was investigated using R-Phycoerythrin (PE) fluorescent labeled-

mouse anti-human TLR-4 (CD284) antibody (Clone TF901, 564215; BD Biosciences, US). THP-1 

macrophages treated with 20 µg ApoA-I/ml of rHDL for a period of 4 hours were detached with EDTA-

trypsin and stained with 100 µl of eFluor™ 520 Fixable Viability dye (Invitrogen, US) diluted in PBS-FBS 

5% (1:1000 v/v) for 30 minutes. After 5 minutes of centrifugation at 400 g, supernatant was removed 

and cells were stained with 100 µl of PE fluorescent- labeled mouse anti-human TLR-4 (CD284) 

antibody diluted in PBS-FBS 5% (1:50 v/v) with FcR blocking reagent (Miltenyi Biotec) for 30 minutes. 

Cells were fixed using FOXP3 fixation diluent (Invitrogen, Thermo Fisher Scientific, US) before flow 

cytometry analysis on a LSR II FORTESSA SORP (BD Biosciences).  

Western blotting analysis.  

Total protein from THP-1 macrophages plated at a density of 4.0 × 106 cells/well into 6-well plates 

treated with different rHDLs (20 µg ApoA-I/ml) for a period of 4 hours, followed by 30 minutes 

stimulation with LPS, was extracted and analyzed by Western blotting as previously described14. 

Twenty micrograms of protein were separated by electrophoresis (2.5 hours, 120 Volt) on a 10% bis-
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Tris polyacrylamide gel and transferred onto a nitrocellulose membrane (overnight at 40 Volt; Cytiva 

Life Sciences, USA). Subsequently, the membrane was blocked, incubated with primary antibodies at 

1:1000 overnight and revealed with IR dye 680RD and 800CW secondary antibodies at 1:10000 for 3 

hours (Li-COR, USA). Quantification of Western blots was performed using Li-Cor scanner (Odyssey 

system, Li-COR Biosciences, Germany). Phospho-SAPK/ JNK (Thr183/Tyr185) antibody (#9251), 

SAPK/JNK antibody (#9252), phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit 

mAb (#4370), p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb (#4695), phospho-p38 MAPK 

(Thr180/Tyr182) (D3F9) XP® Rabbit mAb (#4511), and p38 mitogen-activated protein kinase (MAPK) 

antibody (#9212), were purchased from Cell Signaling Technology (Massachusetts, USA).  

Quantification of eicosanoid production by LC/MS-MS. 

The impact of rHDLs on the long-term eicosanoids production was investigated in THP-1 macrophages 

plated at a density of 4.0 × 106 cells/well into 6-well plates and treated with different rHDLs (20 µg 

ApoA-I/ml) for a period of 16 hours. At the end of the treatment, cells were detached with EDTA-

trypsin and centrifuged, supernatant was aspirated and cell pellets were stored at -80C°.  

Cell pellets (100 µL) were spiked with an internal standard mixture (5µl) containing 0.5, 0.5, 2, 2 and 

0.5 ng of TxB2-d4, PgE2-d4, 13(S)HODE-d4, 9(S) HODE-d4 and 15(S)HETE-d8, respectively. Lipids were 

extracted with 400 µl of cold methanol containing Butylated Hydroxytoluene (BHT; 50 mg/L) for 10 

min at 0°C. After a centrifugation for 5 min at 4°C, and 15 000g, supernatants were collected and the 

pellets were reextracted as previously described. Pooled supernatants were evaporated to dryness 

under vacuum. Dried extracts were finally solubilized with 50 µL of methanol/water (50/50 v/v).  

High performance liquid chromatography (HPLC) was performed on Vanquish UPLC System equipped 

with an autosampler, a binary pump and a column oven (ThermoScientific, France). Lipids were 

separated on a Luna C18 3µm – 250 x 2 mm column (Phenomenex, France) maintained at 45°C. Mobile 

phases consisted of acetic acid 0.1 % in water; A) and acetonitrile (B). The flow rate was maintained 

constant at 0.3 ml/min. Before each new injection, the column was equilibrated with 25 % of the phase 
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B for 5 min. For lipid species separation, the gradient was then ramped to 45 % B in 3 min, maintained 

at 45% B for 2 min, ramped to 60 % B in 5 min, then to 98 % B over the subsequent 6 min and finally 

maintained at 98 % B for the next 4 min. The LC system was coupled to an Altis Plus triple quadrupole 

(ThermoScientific, France) equipped with an H-ESI electrospray ionization source. Source vaporizer and 

ion transfer tube temperatures were set at 350°C and 325°C respectively. The sheath gas, auxiliary gas 

and sweep gas nitrogen pressures were set at 50, 10 and 1, respectively (arbitrary units). 

Analysis was conducted in negative selected reaction monitoring mode (SRM) using the following 

transitions: PgE2 351.1 → 271.1 / PgE2-d4 355.1 → 275.1 (Collision energy (Coll) 16 V); TxB2 369.4 → 

169.0 / TxB2-d4 373.3 → 173.1 (Coll 5 V); 13(S)HODE 295.3 → 195.0 / 13(S)HODE-d4 299.3 → 195.0 / 

9(S)HODE 295.3 → 171.1 / 9(S)HODE-d4 299.3 → 172.0  (Coll 18 V); 15(S)HETE 319.2 → 219.0 / 

15(S)HETE-d8 327.3 → 226.1 (Coll 12V);  11(S)HETE 319.2 → 167.2 (Coll 15V); 5(S)HETE 319.2 → 115.2 

(Coll 14V). 

Calibration curves were obtained using authentic standards, with the exception of 11(S) HETE and 15(S) 

HETE for which 5(S) HETE curve with 15(S) HETE-d8 as an internal standard was used. All standards 

were extracted using the same method as the samples. Linear regression was applied for the 

calculations. 

Statistical analyses.  

Data are presented as mean ± S.E.M or median [range]. Experiments were performed in triplicate and 

values shown represent at least three independent experiments. The normal distribution of the data 

was evaluated using Shapiro-Wilk and Kolmogorov-Smirnov tests. For normally distributed data, 

comparisons were performed by a unpaired two-tailed Student’s t-test without assuming same 

standard deviation (SD) for both populations, unless indicated in the graph legends. For not normally 

distributed data, Mann Whitney test was used. Statistical analyses were performed by Prism software 

from GraphPad (San Diego, CA, USA). Association between the abundance of PE (36:5) in large HDL2 
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with cIMT was evaluated by univariate and multivariate linear regression using the R statistical 

software-version 3.3.2 (R Foundation for Statistical Computing). 
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Results. 

Total PE and PE (36:5) contents of large HDL were associated with atherosclerosis in women with 

MetS.   

Earlier lipidomic studies have reported that plasma levels of PE species, especially PE (36:5), 

are strongly and positively associated with ASCVD16,18. To test if these effects result from the presence 

of PE and PE (36:5) in HDL, the association of their contents in large HDL2 particles, the primary 

contributors to PE cargo among plasma HDL subparticles40, with carotid intima-media thickness (cIMT) 

was investigated in a cohort of 86 women with MetS. Unadjusted linear regression analysis showed 

that both total PE and PE (36:5) contents of large HDL were positively associated with cIMT (β=0.285, 

p=0.0087, Figure 1A; β=0.359, p=0.0008, Figure 1B, respectively). This association remained significant 

with total PE (β=0.308, p=0.0053, Figure 1A) and PE (36:5) (β=0.268, p=0.0078, Figure 1B) after 

adjustment for ASCVD risk factors including age, diabetes mellitus, hypertension, smoking, plasma 

total cholesterol and triglycerides levels. This result indicates that total PE and PE (36:5) contents of 

large HDL were intimately associated with atherosclerosis in women with MetS, suggesting a 

potentially deleterious role of PE in the atheroprotective function of HDL. 

Lipidomic characterization and fatty acid profiling of reconstituted HDL.   

In order to investigate the impact of PE in general and PE (36:5) in particular on the functions 

of HDL, we generated four types of rHDL: Soy-PC rHDL (as a control), Soy-PE rHDL, ARA-PE rHDL, and 

EPA-PE rHDL. Soy-PC and Soy-PE were used as natural mixtures of several PC and PE species, while 

ARA-PE (16:1/20:4) and EPA-PE (16:0/20:5) were used as the two major subspecies of PE (36:5) 

detected in human plasma22. Soy-PC and Soy-PE displayed similar fatty acid composition, with linoleic 

acid (C18:2) and palmitic acid (C16:0) representing about 65wt% and 15wt% of total fatty acids, 

respectively (Supplemental Figure 3A), but differed in their head groups (choline vs ethanolamine) 

which allowed us to study the biological effects of the PE head group. Soy-PE, ARA-PE and EPA-PE had 
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the same head group but different fatty acid composition, which allowed us to study the biological 

effects of their fatty acid moieties (Supplemental Figure 3A). 

To determine the precise phospholipid composition of the rHDLs, lipidomic analysis was 

performed. We observed that Soy-PC rHDL was composed mostly by 99.98% of PC alone, while Soy-PE 

rHDL was composed of PC and PE at the PC: PE molar ratio of 7.4:2.6. The phospholipidome of ARA-PE 

rHDL and EPA-PE rHDL was composed of PC with either ARA-PE at the PC: ARA-PE molar ratio of 7.2:2.8 

or EPA-PE at the PC: EPA-PE molar ratio of 7.0:3.0, respectively (Supplemental Figure 3B). Such 

phospholipid composition is typical for rHDL prepared in vitro31 while the used ApoA-I: Phospholipids 

of 1:90 (Supplemental Table 2) is close to that measured in human plasma HDL14,40. 

ARA-PE impaired the capacity of HDL to reverse atherosclerosis in mice. 

Although PE (36:5) exists in human plasma mainly as ARA-PE and EPA-PE, previous studies 

revealed a higher prevalence of ARA-PE in obese women with metabolic dysfunction and in patients 

with ASCVD23,24, suggesting that ARA-PE predominates in HDL from these patients. In order to test the 

impact of ARA-PE HDL on atherosclerosis in mice, female TgCETP x Ldlr-/-mice fed a high cholesterol 

diet were injected with either control (Soy-PC rHDL) or ARA-PE rHDL as described in Figure 2A. Analysis 

of the atherosclerotic plaques in the aortic root (Figure 2B) revealed an accelerated atherosclerosis in 

mice injected with ARA-PE rHDL than in those injected with control Soy-PC rHDL (51.2% vs 41.0% of 

total aortic area, p=0.0005, respectively). This data indicates that the presence of ARA-PE in HDL not 

only abolished the capacity of rHDLs to reduce atherosclerosis in mice but rather rendered them 

proatherogenic. 

ARA-PE impaired the capacity of HDL to promote macrophage cholesterol efflux while EPA-PE 

increases it.  

To test if the effects observed in both humans and mice resulted from alterations of the 

biological activities of HDL by ARA-PE, we conducted in vitro studies investigating the impact of PE and 

PE (36:5), in the both ARA and EPA forms, on the major cardioprotective functions of HDL. First, we 
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explored the impact of the composition of rHDL particles (Figure 3A) on their macrophage cholesterol 

efflux capacity (CEC), which is the function of HDL proposed to underlie the association between low 

HDL-C levels and ASCVD2,41. As shown in Figure 3, control Soy-PC rHDL exhibited a dose-dependent 

increase in CEC from human THP-1 macrophages, confirming the robust biological activity of our rHDL 

preparation. The CEC of Soy-PE rHDL was only reduced relative to Soy-PC rHDL at the highest 

concentration of rHDL at 50 µg/mL (-16%, p=0.002). Moreover, we observed a marked reduction of 

the CEC of ARA-PE rHDL in comparison to the both control Soy-PC and Soy-PE rHDLs at concentration 

of 20 µg/mL (-15% and -32%, respectively, p<0.05) and 50 µg/mL (-19% and -19%, respectively, p<0.05). 

Interestingly, such alterations of the CEC were not detected in EPA-PE rHDL; this latter being even 

greatly enhanced by an average of 87% (p<0.05) as compared to the other rHDL particles. The 

quantification of mRNA levels by qPCR as well as of the ABCA1 surface expression by flow cytometry 

in human THP-1 macrophages following incubation with the rHDLs (Supplemental Figure 4A-G) 

suggested that the opposite effects of ARA-PE and EPA-PE on the CEC of rHDL were not due to a 

modification of the expression of the major lipid transporters involved in cholesterol efflux pathways. 

Taken together, these findings indicate that the presence of ARA-PE impaired the CEC of rHDL in human 

macrophages while that of EPA-PE improved it.  

EPA and ARA counteract the abolishment of the AOX of rHDL mediated by PE.  

We next investigated the capacity of the PE-containing rHDLs to prevent LDL oxidation, which 

is a characteristic feature in the pathogenesis of atherosclerosis2. The antioxidative activity (AOX) of 

rHDLs was evaluated as their capacity to prevent copper-induced LDL oxidation using a DCFH 

fluorescent probe. The extent of LDL oxidation was evaluated using a biphasic oxidation kinetics 

(Supplemental Figure 5), including the amount of oxidized DCFH formed at the end of the experiment 

and the oxidation rate in the propagation phase which are proportional to the level of LDL oxidation, 

and the duration of the lag phase which is inversely related to LDL oxidation. In accordance with 

oxidation kinetics in Figure 4A, we observed that control Soy-PC rHDL efficiently reduced both the 
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amount of oxidized DCFH (-33%, p=0.002, Figure 4B), and the oxidation rate in the propagation phase 

(-58%, p<0.0001, Figure 4C), and prolonged the lag phase 2.7-fold (p<0.0001, Figure 4D), indicating an 

efficient AOX of control Soy-PC rHDL. Strikingly, this AOX was lacking with Soy-PE rHDL but conserved 

when either ARA-PE or EPA-PE rHDLs were used (Figure 4B-D), suggesting that ARA and EPA may 

restore the AOX of PE-rHDL.  

Several studies reported that HDL may protect LDL from oxidation in part by acting as a 

sacrificial target for oxidation42. Thus, we investigated the oxidability of rHDLs by copper ions in the 

absence of LDL. Both ARA-PE and EPA-PE rHDLs were more susceptible to oxidation than Soy-PC or 

Soy-PE rHDLs (+72%, p=0.015 and 200%, p=0.011, respectively, Figure 4E). Overall, our findings 

demonstrate that PE abolished the AOX of rHDL but this effect could be reversed by EPA and ARA, 

likely by increasing scavenging capacity of rHDL for oxidants. 

EPA and ARA restored the PE-mediated alteration of the phospholipid transfer from LDL to rHDL by 

decreasing its lipid rigidity.  

Because the first step in the AOX of HDL is thought to involve the transfer of oxidized 

phospholipids from LDL to HDL, a process controlled by the rigidity of lipids at the surface of HDL43, we 

investigated the capacity of rHDLs to acquire phospholipids from LDL labelled with a Dil fluorescent 

probe. As shown in Figure 5A, the transfer of the fluorescent phospholipids from DiI-labelled LDL to 

control Soy-PC rHDL was similar to that to a reference normolipidemic HDL (employed as ApoB-

depleted plasma), highlighting the efficient capacity of rHDL to accept phospholipids. However, the 

transfer of fluorescent phospholipids from DiI-labelled LDL to Soy-PE rHDL was significantly reduced (-

26%, p<0.05). By contrast, the transfer was increased to EPA-PE and ARA-PE rHDLs when compared to 

both control Soy-PC rHDL and Soy-PE rHDL (EPA-PE: +42%, p<0.05 and +91%, p<0.0001; ARA-PE: +27%, 

p<0.001 and +72%, p=0.0002, respectively). In an attempt to obtain mechanistic clues regarding the 

impact of PE and PE(36:5) on the rigidity of HDL, we next explored the surface and core fluidity of rHDL, 

using TMA-DPH and DPH fluorescent probes39, respectively. Fluorescence anisotropy values for Soy-PE 
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rHDL with TMA-DPH (Figure 5B) and DPH (Figure 5C) probes were not different from those for control 

Soy-PC rHDL. By contrast, the anisotropy values with the TMA-DPH probe were decreased for both 

EPA-PE (-46%, p<0.05) and ARA-PE (-43%, p<0.05) rHDL consistent with a decreased lipid surface 

rigidity. A drop of the anisotropy value with the DPH probe was only detected for the EPA-PE rHDL (-

96%, p<0.05), indicative of a decreased lipid core rigidity.  

Taken together, these findings led us to propose that the loss of the AOX in PE-containing rHDL 

could result from an alteration of the phospholipid transfer from LDL. On the contrary, such a transfer 

of oxidized phospholipids was enhanced when PE were enriched in EPA and ARA through a mechanism 

involving an increase of the fluidity of rHDL. It was noteworthy that EPA exhibited the strongest 

fluidizing effect by enhancing both surface and core fluidity of rHDL. 

EPA but not ARA rescued the anti-inflammatory activity of PE-containing rHDL in macrophages upon 

LPS treatment.  

Because HDL exert potent anti-inflammatory activities (AIA) allowing a reduction of 

inflammatory activation of arterial macrophages2, we investigated the influence of a short (ST, 4h) and 

long term (LT, 16h) treatment with rHDLs on the production of pro-inflammatory IL-1β cytokine whose 

inhibition was reported to reduce cardiovascular events in patients with CVD44. In human THP-1 

macrophages, the expression and secretion of IL-1β triggered by LPS were significantly reduced 

following both ST (-37%, p<0.0001 and -27%, p=0.014; Figure 6A) and LT (-30%, p=0.004 and -50%, 

p=0.02; Figure 6B) pre-incubation with control Soy-PC rHDL. The inhibitory effect of the ST and LT pre-

incubation with rHDL was no longer observed with either Soy-PE or ARA-PE rHDLs, whereas it was 

preserved with EPA-PE rHDL. A more pronounced inhibitory effect on IL-1β secretion was even 

detected following the ST pre-incubation with EPA-PE rHDL (−63%, p<0.01; Figure 6A). It is of note that 

rHDLs were without effect on the cell surface expression of the LPS binding receptor TLR4 

(Supplemental Figure 4H). 
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To test if the anti-inflammatory effect of rHDLs involved modulation of intracellular 

inflammatory signaling pathways in macrophages, we investigated their impact on the LPS-induced 

activation of ERK, p38 MAPK and JNK signaling pathways which were previously reported to be 

downregulated in macrophages by HDL45. Control Soy-PC rHDL significantly reduced the LPS-induced 

phosphorylation of ERK, p38 MAPK and JNK in human THP-1 macrophages (-19%, p<0.05; -30%, 

p<0.001 and -36%, p<0.001, respectively, Figure 6C-E). Such inhibitory effects were abolished with Soy-

PE rHDL and ARA-PE rHDL, with the exception of JNK phosphorylation which was reduced with ARA-PE 

rHDL to the same extent as with control Soy-PC rHDL. By contrast, the reduction of the LPS-induced 

phosphorylation of ERK, p38 and JNK was retained in EPA-PE rHDL (-32%, p<0.01; -34%, p<0.01 and 

32%, p<0.01, respectively). 

 These findings demonstrate that PE and ARA-PE abrogated the anti-inflammatory property of 

rHDL in LPS-treated human macrophages by acting on inflammatory signaling pathways and that the 

presence of EPA was able to restore it. 

Composition of PE-containing rHDL in ARA and EPA played an important role in eicosanoid 

production and IL-1 β secretion in human macrophages. 

We finally addressed the hypothesis that ARA carried by HDL could promote inflammation in 

macrophages by providing a source of ARA which could be oxidized to produce pro-inflammatory 

eicosanoids. As shown in Figure 7A, 16h-treatment of human THP-1 macrophages with ARA-PE rHDL 

was accompanied by a marked increase of the production of eicosanoids, including 

hydroxyeicosatetraenoic acids (5S-, 11S-, and 15S-HETEs), prostaglandin (PGE2) and thromboxane 

(TXB2), in comparison to control Soy-PC and Soy-PE rHDLs. Substitution of ARA by EPA in PE-rHDL 

abolished this effect and led to a marked decrease of 5S-HETE compared to both control Soy-PC and 

Soy-PE rHDLs. Interestingly, the impact of PUFAs (ARA and EPA) in PE-rHDLs on eicosanoids production 

was associated with a concomitant effect on the secretion of pro-inflammatory IL-1β cytokine by 

human THP-1 macrophages (Figure 7B-C). Strikingly, whereas treatment with ARA-PE rHDL led to a 5-
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fold increase of IL-1β secretion in comparison to control Soy-PC and Soy-PE rHDLs, the secretion of IL-

1β was almost undetectable in macrophages incubated with EPA-PE rHDL. 

 These results provide evidences that the ARA content in PE-containing rHDLs contributed to 

the production of eicosanoids and the secretion of the pro-inflammatory IL-1β cytokine by human 

macrophages. By contrast, the EPA content in PE-containing rHDL exhibited a potent inhibitory action 

toward IL-1 β secretion from human macrophages. 
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Discussion.  

Plasma lipidomic studies showed a robust positive association between several PE species, 

notably PE (36:5), with ASCVD16,18 although the underlying mechanisms are unknown. In this study, we 

demonstrated that the contents of total PE and PE (36:5) in large HDL are linked to atherosclerosis 

development in women with MetS. This atherogenic effect was confirmed in mice injected with  rHDL 

containing ARA-PE, the predominant PE (36:5) form in patients with cardiometabolic diseases23,24. Our 

in vitro investigations revealed that the presence of PE in rHDL impaired their biological activities, an 

effect worsened with ARA-PE, suggesting a deleterious effects of both PE head group and lipid chain 

in anti-atherogenic functions of HDL with potential implications in ASCVD pathogenesis. On the 

contrary, EPA-PE counteracted the PE-mediated HDL dysfunctionality and enhanced the anti-

atherogenic functions of HDL, providing mechanistic insights in the protective role of EPA in patients 

with ASCVD.   

In agreement with our findings in MetS patients, Giraud et al. reported increased levels of ARA-

containing PE species in HDL from patients with rheumatoid arthritis; their abundance was associated 

with  inflammation and CVD risk46.  Taken together with the present study, these data suggest that the 

association of plasma PE (36:5) with ASCVD may result in part from the presence of ARA-PE, i.e. PE 

(16:1/20:4), in HDL, rather than EPA-PE, i.e. PE (16:0/20:5), the other form of PE (36:5) detected in 

human plasma22. This hypothesis is reinforced by the numerous studies reporting the positive link of 

ARA (C20:4), a key omega-6 PUFA, with ASCVD23, in contrast to the multiple anti-atherogenic 

properties of EPA (C20:5), an omega-3 PUFA47. Although our findings undoubtfully warrant further 

validation in larger cohorts of patients with ASCVD composed of both women and men, the 

atherogenic property of ARA-PE HDL was validated in our in vivo experiments in a mice model of 

atherosclerosis injected with rHDL. Indeed, we found that ARA-PE HDL lacked a capacity to reduce 

atherosclerosis compared to control rHDL, underlying the deleterious role of ARA-PE on HDL-mediated 

atheroprotection. 
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The present study demonstrated that PE and ARA-PE impaired several biological activities of 

HDL particles proposed to contribute to their atheroprotective action. Thus, the presence of Soy-PE (a 

mixture of PE species) led to an attenuation of the CEC of HDL from human macrophages in comparison 

to Soy-PC HDL with a similar fatty acid composition. This results is coherent with a previous study 

showing an inverse correlation between the total PE content of HDL and the capacity of human serum 

to promote cellular cholesterol efflux21. Because mRNA levels of transporters and receptors controlling 

cholesterol efflux from macrophages, such as ABCA1, the major cholesterol transporter in human 

macrophages36,40, were not altered by PE-containing HDL, these data support an extracellular rather 

than an intracellular influence of PE on the CEC of HDL. This hypothesis is supported by the work of 

Demel et al. who described a lower affinity of PE compared to PC toward cholesterol48, suggesting a 

reduced membrane cholesterol transfer into PE HDL. Moreover, PE can alter the dynamic structure 

and interaction of HDL with cell membrane receptors like ABCA120,49. Taken together, these 

mechanisms may contribute to the capacity of PE to impair CEC of HDL. Interestingly, a more 

pronounced impairment in the CEC of PE-containing HDL was observed in the presence of ARA-PE, 

suggesting additional deleterious effects mediated by ARA. Although the mechanism underlying such 

a role for ARA was not identified in our study, it is noteworthy that the enrichment of HDL with another 

omega-6 fatty acid, i.e. linoleic acid, led to a reduced CEC of HDL29. 

In addition to CEC, our work demonstrated that the addition of Soy-PE diminished the AOX of 

HDL. Seeking for mechanistic insights, we observed that PE-containing HDL exhibited a reduced 

capacity to acquire phospholipids from LDL compared to control HDL which could explain its 

diminished AOX. Indeed AOX requires the transfer of oxidized phospholipids, including lipid 

hydroperoxides, from LDL to HDL, which is proportional to HDL’s surface fluidity, followed by their 

reduction via redox-active methionine (Met) residues of apoA-I43,50. PC- and PE-containing HDL used in 

our in vitro experiments only differed in their head groups (choline vs ethanolamine). Ethanolamine 

head groups are considered to be more rigid than choline51, due to their capacity to form non-covalent 

bonds with neighboring lipids, restricting their movement51,52. This rigidity could limit the incorporation 
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of exogenous phospholipids into PE HDL by increasing interactions with adjacent lipids on the HDL 

surface as observed in our experiments. Several reports indicated that PE has limited interactions with 

ApoA-I and can alter both the content and conformation of ApoA-I in rHDL20,49. This could contribute 

to the diminished AOX of our PE rHDL by affecting the availability of apoA-I Met residues and HDL 

interactions with other lipoproteins, like LDL20. In contrast, replacing Soy-PE with ARA-PE preserved 

the AOX of HDL, suggesting that ARA may restore the impaired AOX of PE-HDL. In this regard, we 

observed an enhanced transfer of phospholipids from LDL to ARA-PE HDL, likely reflecting its increased 

surface fluidity which could potentially account for its conserved AOX.  

Finally, our data on the influence of PE and ARA-PE on the AIA of HDL in pro-inflammatory 

human macrophages treated with LPS demonstrated that the presence of PE abolished the capacity of 

HDL to decrease the expression and secretion of IL-1β. Previous studies have established a strong link 

between CEC and AIA of HDL2,45, suggesting that the impaired AIA of PE-containing HDL could result 

from its impaired CEC. In this regard, Sun et al. linked cholesterol accumulation in plasma membrane 

of macrophages with enhanced TLR-4 signaling and p38 MAPK activation53. Although cell surface 

expression of TLR4 in human macrophages was not altered in the present study by the presence of PE 

in HDL, the phosphorylation of p38 MAPK and activation of other inflammatory signaling pathways 

(ERK, JNK) known to be modulated by HDL45 was no longer attenuated by PE-containing HDL, providing 

mechanistic clues on the negative impact of PE on the AIA of HDL.  

In human macrophages non-treated with LPS, the presence of PE converted HDL into pro-

inflammatory particles, which are recognized as contributors of inflammation in atherosclerosis54. 

Interestingly, although the enrichment of PE with ARA was without additional effect on the pro-

inflammatory effects of PE-HDL in LPS-treated human macrophages, a potent increase in the 

expression and secretion of IL-1β was detected in non-treated cells following the long-term incubation 

with ARA-PE HDL. We propose that the proinflammatory effect of ARA-PE HDL mainly resulted from 

an increased production of eicosanoids, including HETEs (5S, 11S, and 15S), PGE2, and TXB2, which 
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were found elevated in the present study when macrophages were incubated with ARA-PE HDL in 

comparison to others HDL particles. Indeed, ARA is the primary precursor for the pro-inflammatory 

eicosanoids which are potent lipid mediators implicated in the inflammatory process of ASCVD23,26. 

Eicosanoid generation mainly involves ARA release from cell membrane phospholipids by 

phospholipase A2 followed by enzymatic metabolism of ARA by cyclooxygenases (COXs) generating 

PGs and TXs, and by lipoxygenases (LOXs) generating HETEs and leukotrienes26. Our findings uncovered 

that HDL, primarily PE-containing HDL, can be a source of ARA in macrophages for inducing 

inflammation through eicosanoid production. Such a mechanism could play a major role in cellular IL-

1 β secretion and the development of ASCVD. 

Although omega-3 PUFAs, including the mixtures of EPA and DHA, were without effects on 

cardiovascular events 55–57, the use of a highly purified EPA ethyl ester was reported to reduce the CV 

risk25, suggesting a specific cardioprotective effect of EPA that would not be exerted by other omega-

3 PUFAs. Our findings, thereby provide new mechanistic insights regarding the potential impact of EPA 

on ASCVD. Indeed, our data demonstrated that EPA was able to counteract the deleterious effects of 

PE, especially those of ARA-PE, on HDL functions. Thus, EPA-PE restored the altered AOX of PE-

containing HDL to a higher degree than did ARA-PE. The positive influence of omega-3 PUFA, including 

EPA, on the AOX of both rHDL and plasma HDL has been well-documented28,29. This effect can be 

attributed to the EPA structure composed of an additional double bond compared to ARA, rendering 

rHDL more fluid and improving their capacity to acquire lipids. Moreover, we observed that EPA-PE 

enhanced both surface and core fluidity of rHDL, this latter parameter being only increased by EPA-PE 

HDL in our experimental conditions.  

Our study also demonstrated that EPA-PE restored the anti-inflammatory activity of rHDL in 

LPS-treated macrophages which was abolished in PE-containing HDL. Strikingly, such an effect of EPA-

PE HDL on the inhibition of IL-1 β secretion was also observed in the absence of LPS when control HDL 

was without effect on inflammatory processes in macrophages. The well-established anti-
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inflammatory effects of EPA23,47,58, especially its capacity to attenuate LPS-induced IL-1β secretion by 

macrophages59, could contribute to the strong AIA of EPA-PE HDL. Tian et al. reported that dietary EPA-

PC and EPA-PE attenuated the inflammatory phenotype of macrophages by reducing IL-1β expression 

and stimulating M2 anti-inflammatory macrophage polarization60 through a role of EPA in eicosanoid 

production61. In agreement with this study, we found that EPA-PE rHDL not only abolished the 

increased production of eicosanoids observed with ARA-PE rHDL, but also markedly reduced 5S-HETE 

levels in human macrophages compared to both PC- and PE-containing rHDL, further supporting the 

importance of PUFA composition in PE HDL for the production of eicosanoids in macrophages. 

Finally, the presence of EPA-PE improved the CEC of HDL from macrophages, a metric of HDL 

function inversely associated with ASCVD4–6. A similar observation was reported by Tanaka et al. with 

EPA-PC enhancing the CEC of HDL compared to PC HDL27, suggesting that the effect of EPA on the CEC 

of HDL can be independent of the nature of PL classes. In this context, the elevation of both the surface 

and core fluidity of HDL by EPA-PE compared to PC-containing HDL could potentially account for the 

enhanced CEC by facilitating cholesterol insertion at the particle surface. This hypothesis is consistent 

with the established role of HDL surface fluidity as a key determinant of this process10,62. Moreover, 

the increased core fluidity of EPA-PE HDL could further facilitate cholesterol incorporation into HDL. 

Such profound fluidizing effects of EPA-PE are likely due to the high unsaturation level of EPA, 

conferring a better structural flexibility for adopting highly kinked conformations in the phospholipid 

monolayer of HDL63.  

Conclusion.  

In conclusion, our study provides evidence that PE species, particularly ARA-PE, participate in 

the formation of dysfunctional HDL, consistent with the deleterious role of PE (36:5) in ASCVD reported 

by epidemiological studies. Circulating levels of PE (36:5) species, i.e. ARA-PE and EPA-PE, might 

therefore serve as novel biomarkers of HDL functionality and provide new approaches to the 

formulation of reconstituted HDL for therapeutic use in ASCVD3. Importantly, our data provide 
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mechanistic insights on the cardioprotective role of EPA in ASCVD by counteracting the PE-mediated 

dysfunctionality of HDL. Such a role might contribute to the reduction of cardiovascular events 

observed in patients consuming highly purified EPA ethyl ester in the REDUCE IT clinical trial25, 

supporting the use of EPA-rich diets as a therapeutic strategy to enhance HDL-mediated cardiovascular 

protection.  
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Legends to Figures. 

Figure 1. Total PE and PE (36:5) contents of HDL2 were associated with atherosclerosis in women 

with Metabolic Syndrome. Human HDL2 particles were isolated from plasma of 86 women with 

Metabolic Syndrome by sequential ultracentrifugation for 48 hours. Total PE and PE (36:5) contents in 

HDL2 were quantified by LC-ESI/MS/MS. Carotid Intima media thickness (cIMT) was evaluated by 

ultrasonography and correlated with total PE and PE (36:5) contents in HDL2. A. Unadjusted and 

adjusted linear regression analysis for the mean cIMT (in millimeter, mm) according to total PE content 

of HDL2 B. Unadjusted and adjusted linear regression analysis for the mean cIMT (mm) according to 

PE (36:5) content of HDL2. The analysis was adjusted for traditional risk factors, including age, diabetes 

mellitus, hypertension, smoking, plasma total cholesterol and triglycerides levels. HDL: high density 

lipoprotein; PE: Phosphatidylethanolamine.   

Figure 2. Injection of ARA-PE rHDL did not reduce the size of aortic atherosclerotic plaque as 

compared to Soy-PC rHDL in CETP transgenic-LDLr KO female mice. A. CETP transgenic/ LDL receptor 

KO female mice were fed high cholesterol diet for 8 weeks before injection with 15mg/kg of Soy-PC 

rHDL (n=5) or ARA-PE rHDL (n=6), retro-orbitally, every second day. The mice received 10 injections of 

either treatment, and were maintained on a chow diet during rHDL treatment. The hearts were 

carefully dissected at the level of the aortic root, and embedded in OCT, then cut every 10µm from the 

aortic root at the level of the three valves. B. Sections were labeled with Oil red-O to quantify the 

atherosclerotic plaque size. The extent of the atherosclerotic plaque was quantified using ImageJ 

software.*p<0.001 vs. Soy-PC rHDL. CETP: cholesteryl ester transfer protein; HC: high cholesterol; 

rHDL: reconstituted high density lipoprotein; PC: phosphatidylcholine; ARE-PE: arachidonic acid-

phosphatidylethanolamine. 

Figure 3. Soy-PE reduced the CEC of Soy-PC rHDL, and ARA-PE exacerbated this effect while EPA-PE 

reversed it and even improved the CEC. THP-1 macrophages loaded with radiolabeled [3H] cholesterol 

were incubated with 5, 10, 20, or 50 µg ApoA-1/ml of Soy-PC, Soy-PE, ARA-PE, and EPA-PE rHDLs for 4 

hours. At the end of incubation, cellular lipids were extracted, the radioactivity content in both cells 
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and media was measured, and the percentage of free [3H] cholesterol efflux to different rHDLs was 

calculated. A. Phospholipidome composition of the rHDLs. B. The CEC of rHDLs. For cholesterol efflux 

data, statistical analysis done using multiple t-test, and significance determined by Holm-Sidak 

method, without assuming consistent SD. #vs. Soy-PC rHDL,
 φvs. Soy-PE rHDL,

 δvs. ARA-PE rHDL, with 

p values less than 0.05 (exact p values are indicated in the text). Values are shown from at least 3 

independent experiments that were performed in triplicate for each condition.  

Figure 4. Soy-PE impaired the AOX of rHDL compared to Soy-PC rHDL, while ARA-PE and EPA-PE 

reversed this effect. LDL was isolated from healthy individuals, and DCFH fluorescent probe was used 

to assess the oxidation of LDL induced by copper sulfate (CuSO4). DCFH solution (0.2mg/ml) was dried 

and mixed with LDL (0.2 mg/ml of total cholesterol). Soy-PC, Soy-PE, ARA-PE, or EPA-PE rHDLs were 

added to the mixture (50µg ApoA-I/ml), then CuSO4 solution was added (0.05µM), and the mixture 

volume was completed to 100µl with PBS. Different mixtures were transferred to 96 well black 

microplates (100µl/well), and the oxidation was assessed for 24 hours at 37C° using Spectromax 

Gemini thermometer. A. Oxidation kinetics for different rHDLs. B. Amount of oxidized DCFH formed 

after 24 hours. C. Typical oxidation rate during the propagation phase. D. Lag phase duration, E. 

Oxidability of rHDL expressed as relative fluorescence units (RFU) for different rHDLs (50µg ApoA-I/ml), 

treated with CuSO4, and DCFH solution (0.2mg/ml) in the absence of LDL. *vs. LDL+Cu+2, with p values 

<0.05 (exact p values being indicated in the text). Values are shown as mean±SEM from at least 3 

independent experiments that were performed in triplicate for each condition.  

Figure 5. Soy-PE diminished the capacity of rHDL to accept phospholipids from LDL, while ARA-PE 

and EPA-PE reversed this effect, potentially by enhancing the fluidity of HDL. To evaluate the capacity 

of rHDLs to acquire phospholipids (PL), LDL was labeled with Dil fluorescent probe (5 µM). Then, Dil-

Labelled LDL (7.5 mg phospholipid/dL) was mixed with rHDL (4 mg ApoA-I/dL), or reference ApoB 

deficient plasma (1:30 v/v), and incubated for 1 hour to achieve PL transfer. After that, mixtures were 

incubated with ApoB-depleting precipitant for 10 minutes, followed by centrifugation and aspiration 
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of the rHDL- containing supernatant, and the fluorescence intensity of Dil-rHDL was measured. For the 

fluidity assay, rHDL particles (3.3 mg ApoA-I/dL) and DPH (0.80 µM) or TMA-DPH (0.32 µM) were 

incubated at 37C° for 1 hour to achieve probe incorporation into the lipoproteins, and the anisotropy 

of the probe fluorescence was measured. A. The percentage of Dil-labelled PL transferred from LDL to 

rHDLs. B. Fluorescence anisotropy of TMA-DPH probe, which is inversely related to surface fluidity of 

rHDL. C. Fluorescence anisotropy of DPH probe, which is inversely related to core fluidity of rHDL. D. 

Scheme illustrates the influence of Soy-PE, ARA-PE and EPA-PE on the arrangement of the phospholipid 

monolayer of rHDLs, according to their head group and the unsaturation level in their fatty acid 

moieties. These data indicate that Soy-PE reduced the capacity of rHDL to accept phospholipids from 

LDL, while the fatty acid moieties of ARA-PE and EPA-PE enhanced it, which could result from their 

fluidizing effects. In addition, these data point out that EPA-PE rHDL represented the most fluid 

particles of all the rHDLs studied. *vs. ADP, #vs. Soy-PC rHDL, φvs. Soy-PE rHDL, δvs. ARA-PE rHDL, with 

p values <0.05 (exact p values being indicated in the text). Values are shown as mean±SEM from at 

least 3 independent experiments that were performed in triplicate for each condition. TMA-DPH: 

trimethylamine-diphenylhexatriene; DPH: diphenylhexatriene.  

Figure 6. Soy-PE reduced the AIA of rHDL, and ARA-PE exacerbated this effect while EPA-PE reversed 

it and even improved the AIA of rHDL. AIA of rHDLs was evaluated in LPS-stimulated THP-1 

macrophages. A. Relative mRNA and protein levels of IL-1β after short term (4 hours), and B. long term 

(16 hours) treatments of THP-1 cells with 20 µg ApoA-I/mL of different rHDL followed by 4 hour 

stimulation with 100 ng/mL of LPS. C-E. Western blot analysis for the phosphorylated and non-

phosphorylated ERK, p38, and JNK MAPKs in THP-1 cells treated with 20 µg ApoA-I/mL of rHDLs for 4 

hours, followed  by 0.5 hour stimulation with 100 ng/mL of LPS.*vs. LPS alone, #vs. Soy-PC rHDL, φvs. 

Soy-PE rHDL, δvs. ARA-PE rHDL, with p values less than 0.05 (exact p values being indicated in the text). 

Values shown are from at least 3 independent experiments that were performed in triplicate for each 

condition. IL-1β: Interleukin-1 beta; LPS: lipopolysaccharide; JNK: Jun kinase; ERK: Extracellular signal-

regulated kinase; MAPK: mitogen-activated protein kinase.  
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Figure 7. Soy-PE converted rHDL into pro-inflammatory particles and ARA-PE exacerbated this effect 

while EPA-PE reversed it and even improved the basal AIA of rHDL. A. Pro-inflammatory eicosanoid 

production after 16 hours treatment of THP-1 cells with 20µg/mL of rHDLs. The pro-inflammatory 

effects of rHDLs were evaluated in THP-1 macrophages in the absence of LPS stimulation. B. Relative 

mRNA and protein levels of IL-1β after short term (4 hours) and C. long term (16 hours) treatment of 

THP-1 cells with 20 µg ApoA-I/mL of rHDL.*vs. None, #vs. Soy-PC rHDL, φvs. Soy-PE rHDL, δvs. ARA-PE 

rHDL, with p values less than 0.05 (exact p values being indicated in the text). Values are from at least 

3 independent experiments that were performed in triplicate for each condition. HETE: 

hydroxyeicosatetraenoic acids; PGE2: prostaglandin E2, TXB2: thromboxane B2, LOX: lipoxygenase, 

and COX: cyclooxygenase enzymes.  
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Figure 1 (figure 3.1 in the index of figures) 

 

 

 

 

 

 

 

 

 

Figure 3.1. Total PE and PE (36:5) contents of HDL2 were associated with atherosclerosis 

in women with Metabolic Syndrome. 
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Figure 2 (figure 3.2 in the index of figures) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Injection of ARA-PE rHDL did not reduce the size of aortic atherosclerotic 

plaque as compared to Soy-PC rHDL in CETP transgenic-LDLr KO female mice. 
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Figure 3 (figure 3.3 in the index of figures) 

 

 

 

 

 

 

 

 

 

Figure 3.3. Soy-PE reduced the CEC of Soy-PC rHDL, and ARA-PE exacerbated this 

effect while EPA-PE reversed it and even improved the CEC. 
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Figure 4 (figure 3.4 in the index of figures) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Soy-PE impaired the AOX of rHDL compared to Soy-PC rHDL, while ARA-

PE and EPA-PE reversed this effect. 
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Figure 5 (figure 3.5 in the index of figures) 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Soy-PE diminished the capacity of rHDL to accept phospholipids from LDL, 

while ARA-PE and EPA-PE reversed this effect, potentially by enhancing the fluidity of 

HDL. 
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Figure 6 (figure 3.6 in the index of figures) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Soy-PE reduced the AIA of rHDL, and ARA-PE exacerbated this effect while 

EPA-PE reversed it and even improves the AIA of rHDL. 
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Figure 7 (figure 3.7 in the index of figures) 

  

  

 

 

 

 

 

 

 

 

Figure 3.7. Soy-PE converted rHDL into pro-inflammatory particles and ARA-PE 

exacerbated this effect while EPA-PE reversed it and even improved the basal AIA of 

rHDL. 
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Supplemental data. 

Table and Figure Legends.  

Supplemental Table 1. Clinical data of female patients with metabolic syndrome. 

Supplemental Table 2. Phospholipid: protein ratio in rHDL and their double bond content. 

The rHDL particles were prepared by mixing human ApoA-I and SOY-PC without or with either 

SOY-PE, ARA-PE (16:1/20:4) or EPA-PE (16:0/20:5). A. Theoretical ApoA-I and phospholipid 

amounts used to prepare rHDL particles. B. Actual ApoA-I and phospholipid composition of 

the rHDL particles. ApoA-I: apolipoprotein A-I; DB: double bond; EPA: eicosapentaenoic acid; 

ARA: arachidonic acid; rHDL: reconstituted HDL; PC: phosphatidylcholine; PE: 

phosphatidylethanolamine.  

Supplemental Table 3. List of primers used in this study. The mRNA levels of all the genes 

tested were normalized to the mean expression of three housekeeping genes, including 

NONO, TUBA and HSP90AB1.    

Supplemental Table 4. Subspecies of PE (36:5) in human plasma. A. Blood concentrations of 

the six putative molecular subspecies of PE (36:5) predicted from the quantified individual 

fatty acid chains that construct these phospholipids in normolipidemic adults (both male + 

females). B. Chemical structure of PE (36:5) subspecies and the fatty acid moieties that 

constitute the six PE (36:5) subspecies. PE: phosphatidylethanolamine. *gamma-Linolenic 

(omega-6) vs alpha-Linolenic (omega-3) acid moiety.  

Supplemental Figure 1. Quality control of ApoA-I and rHDL particles. A. Denaturing sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis to control the purity 

of ApoA-I containing fractions performed using 20% denaturing polyacrylamide gel revealed 
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with Coomassie blue. B. Nondenaturing PAGE analysis to control the size of rHDLs performed 

using 4–20% gradient polyacrylamide gel revealed with Coomassie blue. Standard proteins of 

known diameters were used for the calibration. ApoA-I: apolipoprotein A-I; ApoA-II: 

apolipoprotein A-II; EPA: eicosapentaenoic acid; ARA: arachidonic acid; rHDL: reconstituted 

HDL; PC: phosphatidylcholine; PE: phosphatidylethanolamine; Std: standard.  

Supplemental Figure 2. Injection of Soy-PC rHDL reduced the size of aortic atherosclerotic 

plaque in CETP transgenic-LDLr -/- female mice. A. Plasma levels of human ApoA-I at various 

time points after one injection of Soy-PC rHDL (n=3) or PBS (n=3) to validate the effectiveness 

of RO injection  B. Plasma cholesterol levels after 8 weeks of HCD diet to validate the 

effectiveness of HCD. C. CETP transgenic/ LDL receptor KO female mice were fed high 

cholesterol diet (HCD) for 8 weeks before injection with 15 mg/kg of Soy-PC rHDL (n=2) or PBS 

(n=2), retro- orbitally (RO), every second day. The mice received 12 injections of either 

treatment, and were maintained on chow diet during rHDL treatment. The hearts were 

carefully dissected at the level of the aortic root, and embedded in tissue-tek optimum cutting 

temperature (OCT) medium, then cut every 10 µm from the aortic root at the level of 3 valves. 

D. Sections were labeled with Oil red-O to quantify the atherosclerotic plaque size. The extent 

of the atherosclerotic plaque was quantified using ImageJ software. *p<0.05 vs Soy-PC rHDL. 

CETP: cholesteryl ester transfer protein; HC: high cholesterol; rHDL: reconstituted high density 

lipoprotein; PC: phosphatidylcholine; PBS: Phosphate buffered saline.  

Supplemental Figure 3. Compositional analysis of rHDL formulations used in this study. A. 

Fatty acid composition of Soy-PC, and Soy-PE (Avanti Polar Lipids) that were used to produce 

rHDLs. Two forms of PE (36:5) including ARA-PE (PE (16:1/20:4)), and EPA-PE (PE (16:0/20:5)), 

produced by UMR5246 Institute, were also used to produce rHDLs. B. LC/MS/MS Lipidomic 

analysis of the rHDL formulations including Soy-PC rHDL, Soy-PE rHDL, ARA-PE rHDL, and EPA-



 

156 | P a g e  

  

 Chapter 3. Research work 

PE rHDL. Data are shown for a representative preparation of rHDL. ARA: arachidonic acid; EPA: 

eicosapentaenoic; FA: fatty acid; PC: phosphatidylcholine; PE: phosphatidylethanolamine.  

Supplemental Figure 4. The impact of rHDLs on the gene expression of the major lipid 

transporters involved in cholesterol efflux pathways as well as on the ABCA1 and TLR-4 

surface expression. A-C. To evalute the impact of rHDLs on the expression of the major genes 

involved in cholesterol efflux pathways, THP-1 cells were treated with 20 µg ApoA-1/ml of 

different rHDLs for 4 hours and the mRNA levels of ABCA1, ABCG1, and SRB1 were evaluated. 

D. To evaluate the impact of rHDLs on the surface expression of ABCA1 in THP-1 macrophages, 

cells treated with 20 µg ApoA-I/ml of rHDL for 4hours were collected and incubated with 100 

µl of the ABCA1 rabbit primary antibody diluted in FcR blocking reagent containing PBS-FBS 

5% (1:50 v/v) for 30 minutes. Then cells were stained with 100 µl of a secondary fluorescent 

antibody (Alexa-fluor 594 gout anti-rabbit IgG; 1:250 v/v) for additional 30 minutes. At the end 

of the incubation, cells were fixed using FOXP3 fixation diluent before they were subjected to 

flow cytometry analysis. E. TLR-4 cell surface expression. *vs. None (no rHDL was added), 
#
vs. 

Soy-PC rHDL, 
φ
vs. Soy-PE rHDL, 

δ
vs. ARA-PE rHDL, with p values less than 0.05 (exact p values 

being indicated in the text). Values are shown from at least 3 independent experiments that 

were performed in triplicate for each condition.  

Supplemental Figure 5. Oxidation parameters calculated from biphasic oxidation kinetics to 

evaluate the extent of copper-induced LDL oxidation. The extent of LDL oxidation induced by 

copper ions was evaluated from the kinetic curve of the fluorescence of oxidized 

dichlorofluorescin diacetate (DCFH) registrated during 24 hours, and expressed as relative 

fluorescence units (RFU). The kinetics displayed two characteristic phases, known as the lag 

and propagation phases. A. The lag phase represents a period of slow oxidation; its duration 

determined by extrapolating two lines: one originating from the curve’s beginning (green line), 
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and the other aligning the rapid increase in the oxidation (orange line). B. The propagation 

phase signifies a period of rapid oxidation that starts after the lag phase and continues either 

the end of the experiment. The slope observed during this phase reflects the oxidation rate. 

C. The final measurement of RFU indicates the accumulated amount of oxidized DCFH during 

the entire duration of the experiment. Shorter lag phase, higher oxidation rate in propagation 

phase and higher amount of oxidized DCFH at the end of the experiment all indicate a higher 

level of LDL oxidation.  
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Supplemental table 1.  (Table 3.1 in the index of tables) 

 

 

  

 

 

 

 

 

 

 

 

 

 

Table 3.1. Clinical data of female patients with metabolic syndrome. 
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Supplemental table 2.  (Table 3.2 in the index of tables) 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Table 3.2. Phospholipid: protein ratio in rHDL and their double bond content. 
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Supplemental table 3.  (Table 3.3 in the index of tables) 

 

 

 

 

 

 

 

 

 

 

Table 3.3. List of primers used in this study. 
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Supplemental table 4.  (Table 3.4 in the index of tables) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4. Subspecies of PE (36:5) in human plasma. 
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Supplemental Figure 1. (Figure 3.8 in the index of figures) 

 

 

 

Figure 3.8. Quality control of ApoA-I and rHDL particles. 
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Supplemental Figure 2. (Figure 3.9 in the index of figures) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Injection of Soy-PC rHDL reduced the size of aortic atherosclerotic plaque in 

CETP transgenic-LDLr -/- female mice. 
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Supplemental Figure 3. (Figure 3.10 in the index of figures) 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Compositional analysis of rHDL formulations used in this study. 
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Supplemental Figure 4. (Figure 3.11 in the index of figures) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. The impact of rHDLs on the expression of the major genes involved in 

cholesterol efflux pathways as well as on the ABCA1 and TLR-4 surface expression. 
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Supplemental Figure 5. (Figure 3.12 in the index of figures) 

 

 

 

Figure 3.12. Oxidation parameters calculated from biphasic oxidation kinetics to evaluate 

the extent of copper-induced LDL oxidation. 
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"Discovery consists of seeing what everybody has seen and thinking what nobody has 

thought." - Albert Szent-Györgyi 
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Chapter 4. General discussion and Perspectives  

In general, my research work provided valuable insights into the relationship between 

various PE species and HDL functionality, shedding light on their implications in ASCVD. 

PE in HDL: Current Insights, Associations with ASCVD, and potential Implications for 

HDL Functionality 

Atherosclerosis, a chronic inflammatory disease of arteries, is the primary driver of 

ASCVD. Among the key features of atherosclerotic plaque are LDL retention and oxidation, 

intravascular inflammation, and the formation of foam macrophages within the arterial wall 

(32). Among plasma lipoproteins, HDL is the only one that counteracts atherosclerosis via its 

capacity to facilitate cholesterol efflux from arterial foam macrophages (i.e. RCT pathway) or 

to prevent its influx into arterial macrophages (i.e. RRT pathway). In addition, HDL is well-

known for its protective anti-inflammatory, and anti-oxidative effects (49,173). A growing 

body of evidence emphasizes the pivotal role of HDL’s composition (mainly proteins and 

lipids) in determining its functions. Notably, phospholipids (± 35-50% of HDL lipidome), such 

as PC, PE, PS, and PI, largely influence HDL functionality based on their physicochemical 

properties and quantity. Under pathological conditions, both composition and functions of HDL 

particles are susceptible to alterations, rendering HDL with attenuated functions or even 

becoming proatherogenic (251). In this regard, studies highlighted that altered abundance of 

specific phospholipid species could contribute to HDL’s dysfunctionality. While several 

lipidomic studies demonstrated a positive association between plasma PE, notably PE (36:5), 

and ASCVD, the underlying mechanisms remain unknown (15,16). Plasma PE (36:5) exists as 

EPA-PE and ARA-PE, with the latter predominating in CMD and ASCVD.  

During my research work, I addressed the hypothesis that PE species, especially PE 

(36:5), within HDL particles might attenuate their anti-atherogenic functions. The objectives of 

my research were threefold; first, to establish potential associations between PE species content 

in HDL and atherosclerosis in patients with MetS; second, to assess the influence of ARA-PE 

(36:5) on the capacity of HDL to reduce atherosclerosis in mice model; third, to investigate in 

vitro how PE species, including ARA-PE and EPA-PE might alter the structural and functional 

properties of HDL. My research work revealed positive links between total PE and PE (36:5) 

contents in HDL with atherosclerosis, and identified PE species, notably PE (36:5), as novel 
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biomarkers of HDL functionality. In addition, I shed light on potential novel pathways by which 

PUFA associated to PE (i.e. ARA-PE and EPA-PE) could impact ASCVD, enhancing our 

comprehension of their potential roles in disease development and treatment (refer to Figure 

2.1).  

Total PE and PE (36:5) and atherosclerosis: Bridging the knowledge gap 

In our clinical cohort, we established for the first time a strong link between the content 

of PE species in HDL and their implication in ASCVD. Earlier lipidomic studies have identified 

a positive association between plasma levels of PE species and ASCVD with PE (36:5) species 

emerged as a lipid signature to predict ASCVD events, and mortality (refer to Section 1.7) (15, 

16). In this study, we revealed a strong positive correlation between total PE and PE (36:5) 

contents in HDL from women with MetS and cIMT, a surrogate marker for atherosclerosis 

(307), reinforcing the notion of the potential proatherogenic roles of PE species in ASCVD. 

Interestingly, our study found that the positive association between total PE and PE (36:5) 

contents in HDL and atherosclerosis remained significant after adjusting for various risk factors 

including age, T2D, hypertension, smoking, and plasma levels of total cholesterol and 

triglycerides. This imply that total PE and PE (36:5) contents in HDL could serve as 

independent markers for assessing ASCVD risk. Compared to early studies, our findings 

provide novel insights via linking the association of plasma PE and PE (36:5) with ASCVD to 

their contents in HDL, hinting a mechanistic link for such association.  

The work of Khere et al., demonstrated a strong inverse correlation between the CEC 

of HDL from macrophages and cIMT, independently of the HDL-C levels, signifying that 

higher CEC of HDL aligns with lower cIMT measurements (6). Our findings propose a novel 

perspective: the content of PE, notably PE (36:5), within HDL might exert negative influence 

on the CEC of HDL, which could potentially contribute to atherosclerosis development, as 

evidenced by the positively correlated cIMT measurements. Thus, we propose that measuring 

HDL-PE together with HDL-C and their ratio (i.e. HDL-PE to HDL-C ratio) rather than only 

HDL-C levels could help to assess the quality of HDL and could serve as novel marker to detect 

HDL dysfunctionality. These insights suggest that modulation of HDL functionality by PE 

species could participate to their positive association with ASCVD.  

Moreover, our study revealed a positive correlation between total PE and PE (36:5) 

contents in HDL from women with MetS and both the CAC score >100 and the presence of 
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atherosclerotic plaque in carotid arteries as illustrated in Annex 1. However, after adjusting for 

age, the correlation was no longer significant, likely due to the strong impact of age on 

atherosclerosis development and the limited size of our cohort, indicating the importance of 

validating our findings in larger cohorts. 

These observations suggest that total PE and PE (36:5) contents in HDL may contribute 

to atherosclerosis development, hinting the potential clinical relevance of PE composition of 

HDL in ASCVD risk assessment.  

PE (36:5) in HDL and atherosclerosis: In vivo mechanistic insights  

As we established the positive association of PE (36:5) with atherosclerosis in human, 

we further validated this association in mice model. While prior research hinted at the 

significance of PE (36:5)’s fatty acid composition in driving its association with ASCVD, the 

precise molecular subspecies remained undetermined (537). In this context, two subspecies of 

PE (36:5) including EPA-PE and ARA-PE, exist in human plasma. Collectively, the deleterious 

role of ARA in ASCVD, the higher prevalence of ARA-associated phospholipids in obese 

women with metabolic dysfunction and in patients with ASCVD (538,539), and the increased 

levels of ARA-containing PE species in HDL from rheumatoid arthritis patients that were 

linked to inflammation and increased CVD risk (540), suggest a likely prevalence of ARA-PE 

subspecies in HDL from women with MetS.  

Thus, we investigated the impact of ARA-PE presence in HDL on atherosclerosis 

development. Using rHDL approach in a pertinent mouse model of atherosclerosis, we 

observed a diminished capacity of ARA-PE rHDL to reduce atherosclerosis when compared to 

the control Soy-PC rHDL. Previous studies employing rHDLs, such as CSL-111 and CSL-112, 

have demonstrated their capacity to induce rapid regression of atherosclerotic plaque via 

enhancing cholesterol removal from arterial wall macrophages (451). Additionally, these 

rHDLs have demonstrated potent anti-inflammatory and antioxidant properties in both animal 

models and human subjects (458–462). Given the similar composition of our control Soy-PC 

rHDL to CSL-111, and CSL-112 rHDLs, the effectiveness of our control in reducing 

atherosclerosis reflects its efficient anti-atherogenic functions. In contrast, the diminished 

capacity of ARA-PE rHDL to reduce atherosclerosis suggests a potential impairment in its 

functions.  
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The association between the total PE content in HDL and atherosclerosis suggests 

deleterious effects from the ethanolamine (Etn) head group, while the association between PE 

(36:5) in HDL and atherosclerosis suggest additional deleterious effects from its lipid part (i.e. 

ARA). Thus, we explored independently the influence of Etn head group and of the lipid part 

of PE on the functions of rHDL. To study the impact of Etn head group, we used Soy-PC and 

Soy-PE. These molecules differ solely in their head groups (Choline versus Etn). On the other 

hand, to focus on the lipid part, we employed ARA-PE and EPA-PE. These molecules are 

distinct from Soy-PE only in their fatty acid composition, namely ARA, and EPA, respectively.  

PE and ARA-PE (36:5) in HDL: Attenuating HDL-Functions 

Our in vitro investigations identified PE in general (i.e. Soy-PE), and ARA-PE in 

specific, as novel biomarkers for main dysfunctions of HDL particles including their cholesterol 

efflux capacity (CEC), antioxidant activity (AOX), and anti-inflammatory activity (AIA), 

further emphasizing the critical role of HDL phospholipidome in determining its functions (10).  

Beginning with the impact of PE’s head group, our study revealed that the presence of 

PE in rHDL particles reduced their CEC from human macrophages compared to PC rHDL, 

without affecting the expression of the lipid transporters involved in this process. Thus, we 

proposed that the negative influence of PE on the CEC of rHDL may be attributed to the lower 

affinity of its Etn head group toward cholesterol compared to the Choline head group of PC 

(541), implying reduced cholesterol insertion into PE rHDL. Moreover, PE was shown to alter 

the dynamic structure and interactions of rHDL particles with cell membrane receptors like 

ABCA1(18,445). In line with our findings, Fournier et al., reported an inverse correlation 

between total PE content of HDL and cellular cholesterol efflux to human serum (19). In 

addition, PE also impaired the AOX of rHDL, likely by diminishing its capacity to acquire 

phospholipids from LDL (343,542). This effect may be due to the rigidity of the Etn head group 

(543,544), which could limit the incorporation of phospholipids into PE rHDL by increasing 

interactions with adjacent lipids on rHDL surface. Furthermore, PE also attenuated the AIA of 

rHDL by impairing its capacity to inhibit both the LPS-induced IL-1β expression and secretion 

and the LPS-induced ERK, JNK, and p38 MAPK activation in macrophages. Even more, we 

also noticed short term pro-inflammatory effects of PE rHDL in non-activated human 

macrophages with LPS, manifesting as increased IL-1β expression and secretion. Our data also 

revealed similar pro-inflammatory effects with PE rHDL at the protein levels of MCP-1, IL-6, 

IL-8, and IL-12 cytokines in activated and resting macrophages as illustrated in Annexes 3 and 
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5. In addition, we observed an impaired capacity of PE rHDL to reduce the mRNA levels of 

VCAM-1, ICAM-1, MCP-1, and IL-6 in TNFα-activated HUVECs compared to PC rHDL as 

illustrated in Annex 2. Together, our findings indicate that the presence of PE, independently 

of its lipid part, deleteriously impacts the CEC, AOX, and AIA of HDL particles, and render 

them pro-inflammatory.  

Moving to the impact of PE’s lipid part, our study revealed that the replacement of Soy-

PE with ARA-PE further impaired the CEC of rHDL. Up to date, only one study reported a 

reduced CEC of rHDL due to free linoleic acid (an omega-6 fatty acids) (545), with no data 

available on the impact of ARA. Unlike Soy-PE, our study highlighted the capacity of ARA-

PE to effectively preserve the AOX of PE-containing rHDL, potentially by enhancing its 

capacity to acquire phospholipids from LDL, likely via increasing the surface fluidity of rHDL. 

Moreover, our findings revealed higher susceptibility of ARA-PE rHDL to oxidation as 

illustrated in Annex 7, which potentially enhance its oxidants-scavenging capacity and overall 

antioxidant potential. While ARA-PE impaired the AIA of rHDL similarly as Soy-PE in LPS-

activated macrophages (except for the inhibition of JNK activation), we noticed that ARA-PE 

rHDL increased the production of pro-inflammatory eicosanoids, and induced long term IL-1β 

expression and secretion in non-activated macrophages. This long term pro-inflammatory effect 

was also confirmed at the protein levels of TNFα, MCP-1, IL-6, and IL-12 as illustrated in 

Annexes 6. Given that ARA is the primary precursor for pro-inflammatory lipid mediators 

(538,546), the increased production of eicosanoids suggest that macrophages used ARA-PE 

derived from rHDL as a source of ARA. Finally, we observed that ARA-PE rHDL failed to 

reduce the mRNA levels of VCAM-1, ICAM-1, MCP-1, and IL-6 in TNF-activated HUVECs, 

while increased the mRNA levels of VCAM-1 in non-activated HUVECs compared to Soy-PC 

HDL as illustrated in Annex 2. Our findings indicate that the presence of ARA in the lipid part 

of PE, exacerbates its deleterious effects on the CEC and AIA of HDL particles, and render 

them more pro-inflammatory, whilst preserve their AOX.  

In conclusion, our findings highlighted the capacity of PE to impair the anti-atherogenic 

functions of HDL, and the fact that ARA-PE (36:5) exacerbates this deleterious effect, and 

convert rHDL into pro-atherogenic particles, providing mechanistic insights into how the 

contents of total PE and PE (36:5) in HDL are linked to ASCVD.  
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EPA-PE (36:5) in HDL: Novel mechanisms for EPA-mediated atheroprotection. 

Remarkably, our in vitro investigations allowed also to identify EPA-PE, the other 

major subspecies of PE (36:5), as an enhancer of HDL's anti-atherogenic functions, potentially 

counteracting the negative effects of PE and ARA-PE and providing valuable mechanistic 

insights into the EPA-mediated atheroprotection.  

Our study revealed that the replacement of Soy-PE with EPA-PE completely abolished 

the deleterious effects of PE on all HDL functions, while concomitantly enhanced the functions 

of HDL compared to Soy-PC rHDL. First, we observed that EPA-PE robustly enhanced the 

CEC of rHDL compared to Soy-PC rHDL. Such effect of EPA has been reported with EPA-PC 

compared to PC rHDL (547). We showed also the capacity of EPA-PE to improve both the 

surface and core fluidity of rHDL. Such profound fluidizing effects of EPA-PE are likely due 

to EPA's high unsaturation level, conferring higher structural flexibility for adopting highly 

kinked conformations in the phospholipid monolayer of rHDL (548). This could facilitates 

cholesterol insertion and provides more space for cholesterol incorporation into rHDL, 

confirming the established role of HDL’s surface fluidity as a key determinant of this process 

(212,213). We revealed also the capacity of EPA-PE to preserve the AOX of PE-containing 

rHDL, likely via enhancing both the capacity of rHDL to acquire phospholipids from LDL, and 

its susceptibility to oxidation as illustrated in Annex 7, thereby enhancing its oxidant-

scavenging capacity. In line with our findings, the positive influence of free omega-3 PUFA 

(i.e. EPA, docosahexaenoic acid (DHA), and α-linolenic acid) on the AOX of both plasma HDL 

and rHDL and has been well-documented (545,549). The presence of EPA-PE enhanced also 

the capacity of rHDL to inhibit LPS-induced IL-1β expression and secretion, while exhibited 

similar inhibitory effects on LPS-induced ERK, JNK, and p38 MAPK activation compared to 

Soy-PC rHDL in human macrophages. In parallel, EPA-PE rHDL reduced both the production 

of pro-inflammatory eicosanoid (i.e. 5S-HETE) and the secretion of IL-1β in resting human 

macrophages. To strengthen these AIA properties, EPA-PE rHDL reduced the mRNA levels of 

VCAM-1, ICAM-1, and IL-6 in resting HUVECs compared to Soy-PC rHDL as illustrated in 

Annex 2. Such effect was reported with EPA-PC rHDL in activated endothelial cells compared 

to PC rHDL (547). Worth mentioning is that earlier studies have demonstrated similar 

effectiveness of EPA-PC and EPA-PE in promoting anti-inflammatory effects in macrophages 

(550), suggesting that the beneficial effects of EPA are independent of the associated 
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phospholipid. Our data indicate that the presence of EPA in PE abolished its deleterious effects 

on HDL functions, and potentially improved them.  

In conclusion, our finding suggested the cardioprotective potential of EPA-PE (36:5) 

via reversing the deleterious effects of PE on HDL functions and potentially improving them. 

Such findings reinforce the therapeutic significance of EPA in managing ASCVD, potentially 

via enhancing HDL-mediated atheroprotection.  

Study limitations  

As with any research, our study raises new questions warranting further exploration. 

First, the relatively small sample size in our cohort may affect the data robustness and their 

generalizability, warranting validation in larger, diverse cohorts including both genders. 

Second, understanding the precise mechanisms underlying the impact of PE, ARA-PE, and 

EPA-PE on HDL functions requires more investigations. Third, differences between the in 

vitro, in vivo models and human biology necessitate clinical validation. Finally, the structural 

complexity of plasma HDL may influence its functionality, emphasizing the need to explore 

how PE, ARA-PE, and EPA-PE affect the structural and functional properties of plasma HDL 

isolated from individuals with CMD.  

Future perspectives  

   

In our study, we uncovered a new mechanism linking plasma PE, especially PE (36:5), to 

atherosclerosis. We found that PE has deleterious effects on the anti-atherogenic functions of 

HDL, and these effects are worsened in the presence of ARA in PE. In contrast, we identified 

the presence of EPA in PE as a rescue for HDL functions, reversing the PE's negative effects 

and potentially enhancing them. Our research highlights the significance of PE, and notably PE 

(36:5), in influencing HDL functions, providing novel insights for ASCVD management. Our 

findings also pave the way for future research to deepen our understanding of how PE, ARA-

PE, and EPA-PE affect HDL functions in ASCVD. 

Our in vitro data emphasize the need to validate the effects of PE-containing rHDLs on 

HUVECs, particularly regarding VCAM-1 and ICAM-1 protein levels and cell surface 

expression using flow cytometry analysis. We are also interested in assessing how these rHDLs 

impact HUVECs' ability to bind THP-1 monocytes through cell adhesion assays. Additionally, 

it is interesting to investigate the influence of PE-containing rHDLs on the ER stress response 
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via IRE1a /ASK1/p38 MAPK signaling pathway, known to mediate pro-inflammatory effects 

by rHDL (368). Furthermore, it is essential to determine whether rHDLs serve as a source of 

EPA and ARA for cells by assessing their incorporation into the cell membrane of 

macrophages. Beyond our in vitro focus on HDL functions such as CEC, AOX, and AIA, HDL 

particles exhibit several other beneficial effects, including anti-apoptotic, anti-thrombotic, and 

vasodilatory properties, all contributing to cardiovascular protection. Therefore, it is valuable 

to explore how PE species influence these functions using endothelial cell lines and platelets, 

the main cellular targets of HDL to exert these effects. Given the crucial role of HDL in 

accepting cholesterol from TGRL during their lipolysis (i.e. RRT) for atheroprotection, it's vital 

to assess how PE, ARA-PE, and EPA-PE influence this function. This could offer valuable 

insights if the presence of PE in HDL contributes to the observed U-shaped relationship 

between HDL-C levels and CVD risk, which our lab previously linked to this function. 

To deepen our understanding of how ARA-PE rHDL impacts the atherosclerosis in vivo, 

we plan to investigate its effect on cholesterol removal from peripheral cells by assessing the 

CEC of mice plasma from cholesterol-loaded macrophages. Additionally, we will evaluate its 

impact on atherosclerotic plaque’s inflammation by examining macrophage infiltration and 

endothelial VCAM-1 expression in aortic sections using immunostaining. We will also measure 

systemic inflammatory markers like plasma IL-6 and IL-1β levels. Furthermore, it is important 

to explore the effects of PE and EPA-PE on the ability of rHDL to reduce atherosclerosis and 

inflammation in mice model, to validate their in vitro effects.  

Furthermore, to validate the positive associations between total PE and PE (36:5) 

contents in HDL and atherosclerosis, we have access to a cohort of patients with familial 

hypercholesterolemia (n=300) with controlled LDL-C levels by statin treatment. In this cohort, 

we have complete cardiac phenotyping, including cIMT, CAC score and also a CT scan of the 

coronary arteries (coroscanner). The latter provides information on the volume of the plaque, 

the degree of cellular infiltration, and the level of calcification of the arteries. Additionally, it 

is equally important to analyze the correlations between total PE and PE (36:5) contents and 

the functions of isolated HDL particles from those patients. This could potentially enhance our 

understanding of the impaired HDL functionality observed in familial hypercholesterolemia 

patients in earlier studies (551,552). 

The most significant aspect of our research lies in its clinical translation. The contrasting 

effects of ARA-PE and EPA-PE on HDL functions, propose valuable insights into the clinical 
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relevance of plasma EPA/ARA ratio in ASCVD. Although a lower EPA/ARA ratio is a marker 

of inflammation and increased ASCVD risk (538), no available data regarding this ratio in the 

context of plasma lipoproteins, and the phospholipids to which EPA and ARA are associated. 

Our data propose a link between EPA/ARA ratio, plasma PE, and HDL functions, suggesting a 

potential mechanism by which this ratio may influence ASCVD. Building upon this, future 

clinical studies are essential to investigate the impact of increasing plasma EPA/ARA ratio on 

HDL functions. In addition, investigating the impact of different EPA-PE/ARA-PE ratios on 

rHDL functions is equally important.  

Given the significance of plasma EPA/ARA ratio in ASCVD (538), several therapeutic 

interventions have been made to raise this ratio aiming to reduce CVD risk and CAD events. 

Among these, the REDUCE IT and EVAPORATE trials have demonstrated high effectiveness 

of Icosapent Ethyl (a highly purified EPA ethyl ester)  in reducing major ASCVD events, and 

atherosclerotic plaque volume (refer to Section 1.1.5.2) (139,523). The high effectiveness of 

Icosapent Ethyl in REDUCE IT trial, led some to suggest that a portion of the observed effects 

might be due to the theoretical deleterious effects of the mineral oil placebo rather than the 

beneficial effects of EPA (544,545). However, recent review demonstrated that the mineral oil 

is biologically inert at the quantities used in REDUCE-IT trial (553). Furthermore, the JELIS 

trial further supported the effectiveness of highly purified EPA in reducing CVD events without 

using mineral oil as placebo (554). Thus, omega-3 fatty acids (i.e. EPA) emerged as another 

option for reducing the burden of ASCVD. However, combining EPA with DHA, an another 

omega-3 fatty acid, in clinical trials such as STRENGTH trial failed to show any reduction in 

major CVD events in statin-treated patients received a 1g/day of a mixed carboxylic acid 

formulation of EPA plus DHA, compared with corn oil placebo (555). In another study, low-

dose EPA-DHA (400 mg/day) failed also to reduce the major CVD events in patients with a 

history of MI (556). These conflicting results raised questions about the effectiveness of EPA 

alone but not with DHA in reducing CVD events. Indeed, several studies reported distinct 

effects of EPA and DHA on lipoproteins profile, inflammation, lipid oxidation, and cholesterol 

metabolism, supporting the notion that EPA has unique benefits in CVD, based on its unique 

physicochemical properties (557–559). 

Strikingly, our findings led us to propose novel perspectives into the ongoing debate 

regarding the effectiveness of omega-3 PUFA (i.e. EPA & DHA), in reducing CVD. The 

beneficial effects of EPA-PE on HDL functions pave the way to a research area of significant 
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importance. Despite the importance of HDL in cardiovascular health, no prior research has 

delved deeply into the potential distinct effects of EPA and DHA on HDL functions, leaving a 

significant gap of knowledge. Thus, we plan to expand our future research to address this gap 

comprehensively. Our approach will involve producing various types of rHDL, including EPA-

PE rHDL, DHA-PE rHDL, and EPA-PE/DHA-PE rHDL, and investigating their anti-

atherogenic functions. In addition, we will conduct dose-dependent functional assays for these 

particles to elucidate the impact of low versus high doses of omega-3 fatty acids on HDL 

functions. Furthermore, we plan to assess the ability of these particles to reduce atherosclerosis 

in animal model, thereby solidifying their potential clinical relevance. 
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Chapter 5. Conclusion  

In summary, our study establishes a strong link between HDL's PE content, particularly 

PE (36:5), and atherosclerosis, independent of traditional ASCVD risk factors. This highlights 

the potential use of the content of PE species, particularly PE (36:5), in HDL as novel markers 

for ASCVD risk assessment, with implications for improved risk prediction and prevention. 

Furthermore, our study added novel information to this association. Using rHDL containing 

ARA-PE, the predominant form of PE (36:5) in CMD and ASCVD, we showed that ARA-PE 

diminished the ability of rHDL to reduce atherosclerosis, shedding light on how ARA-PE (36:5) 

may contribute to atherosclerosis development, via impairing HDL-mediated atheroprotection. 

Our in vitro experiments reveal that the presence of PE, attenuate the functions of HDL, and 

the presence of ARA in PE worsened these effects and converted HDL into pro-inflammatory 

particles. These findings provide mechanistic insights into the positive associations between 

total PE and PE (36:5) contents in HDL and atherosclerosis, and potentially explain the strong 

link between PE (36:5) and ASCVD. Conversely, our in vitro findings highlight the significant 

beneficial impact of EPA-PE (36:5) on rHDL functions. EPA-PE not only enhances the CEC 

of rHDL, but also preserves/improves its AOX and AIA, respectively. Furthermore, EPA-PE 

(36:5) rHDL attenuate inflammation by reducing pro-inflammatory eicosanoids production, 

suggesting a novel mechanism for the cardioprotective effects of EPA. The contrasting effects 

of EPA-PE and ARA-PE on HDL functions propose that increasing plasma EPA/ARA ratio 

could enhance HDL functions, and protect against atherosclerosis. Our findings also have 

clinical implications, as they align with the remarkable effectiveness observed with Icosapent 

Ethyl in reducing cardiovascular events, as evidenced in the REDUCE IT clinical trial. In 

conclusion, our study advances our understanding of the role of PE species in atherosclerosis 

pathogenesis and ASCVD, by identifying them as novel biomarkers for HDL dysfunctionality. 

These findings may have significant implications for ASCVD risk assessment, and therapeutic 

management. Further research is needed to validate our findings and to explore their clinical 

application in practical healthcare settings.  
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Legends 

Annex 1. Total PE and PE (36:5) contents of HDL2 are positively correlated with 

atherosclerosis in women with metabolic syndrome in unadjusted analysis. Human HDL2 

particles were isolated from plasma of 86 women with metabolic syndrome by sequential 

ultracentrifugation. Total PE and PE (36:5) contents in HDL2 were quantified by LC-

ESI/MS/MS and then correlated with coronary artery calcium (CAC) score, and the presence 

of atherosclerotic (AS) plaque in carotid arteries. A. Odds Ratios for CAC score > 100 

according to total PE (left chart) and PE (36:5) (right chart) contents of HDL2. B. Odds Ratios 

for the presence of atherosclerotic (AS) plaques in carotid arteries according to total PE (left 

chart) and PE (36:5) (right chart) contents in HDL2. Statistical analysis was performed using R 

statistical software-version 3.3.2. HDL: high density lipoprotein; PE: 

Phosphatidylethanolamine.  

 

Annex 2. The impact of PE-containing rHDLs on the gene expression of adhesion 

molecules and MCP-1 chemokine and IL-6 cytokine in both non-activated and activated 

HUVECs with TNFα. A-D. Relative mRNA levels of VCAM-1, ICAM-1, MCP-1, and IL-6, 

respectively, after 2 hours treatment of HUVECs with different rHDL followed by three hours 

of stimulation with 20 ng/mL of TNFα. E-H. Relative mRNA levels of VCAM-1, ICAM-1, 

MCP-1, and IL-6, respectively, after 2 hours treatment of HUVECs with different rHDL. 

Statistical analysis done using unpaired t-test with Welch's correction, without assuming 

consistent SD.*vs. TNFα only or none (no rHDL), #vs. Soy-PC rHDL, φvs. Soy-PE rHDL, δvs. 

ARA-PE rHDL, with p values<0.05. Values are shown as from at least 3 independent 

experiments that were performed in triplicate for each condition. TNFα: tumor necrosis factor 

alpha; VCAM-1: vascular cell adhesion molecule 1; ICAM-1: intercellular Adhesion Molecule 

1; IL-6: interlukin 6; MCP-1: Monocyte Chemoattractant Protein-1.  

  

Annex 3. The impact of PE-containing rHDLs on the gene expression and protein 

secretion of different pro-inflammatory cytokines and chemokines in LPS-activated 

macrophages after short term treatment. AIA of rHDLs was evaluated in LPS-stimulated 

THP-1 macrophages. A-E. Relative mRNA and protein levels of TNFα, MCP-1, IL-6, IL-8, 

and IL-12, after short term (4 hours) treatment of THP-1 cells with 20µg/mL of different rHDL 
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followed by 4 hour stimulation with 100 ng/mL of LPS. F. Summary for the effects of each 

rHDL treatment on the protein levels of different cytokines in LPS-stimulated THP-1 cells. 

Statistical analysis done using unpaired t-test with Welch's correction, without assuming 

consistent SD.*vs. LPS, #vs. Soy-PC rHDL, φvs. Soy-PE rHDL, δvs. ARA-PE rHDL, with p 

values <0.05. Values are shown as from at least 3 independent experiments that were performed 

in triplicate for each condition. LPS: lipopolysaccharide; TNFα: tumor necrosis factor alpha; 

MCP-1: Monocyte Chemoattractant Protein-1; IL: interlukin.  

 

Annex 4. The impact of PE-containing rHDLs on the gene expression and protein 

secretion of different pro-inflammatory cytokines and chemokines in LPS-activated 

macrophages after long term treatment. AIA of rHDLs was evaluated in LPS-stimulated 

THP-1 macrophages. A-E. Relative mRNA and protein levels of TNFα, MCP-1, IL-6, IL-8, 

and IL-12, after long term (16 hours) treatment of THP-1 cells with 20µg/mL of different rHDL 

followed by 4 hour stimulation with 100 ng/mL of LPS. F. Summary for the effects of each 

rHDL treatment on the protein levels of different cytokines in LPS-activated THP-1 cells. 

Statistical analysis done using unpaired t-test with Welch's correction, without assuming 

consistent SD.*vs. LPS, #vs. Soy-PC rHDL, φvs. Soy-PE rHDL, δvs. ARA-PE rHDL, with p 

values <0.05. Values are shown as from at least 3 independent experiments that were performed 

in triplicate for each condition. LPS: lipopolysaccharide; TNFα: tumor necrosis factor alpha; 

MCP-1: Monocyte Chemoattractant Protein-1; IL: interlukin.  

 

Annex 5. The impact of PE-containing rHDLs on the gene expression and protein 

secretion of different pro-inflammatory cytokines and chemokines in non-activated 

macrophages after short term treatment. A-E. Relative mRNA and protein levels of TNFα, 

MCP-1, IL-6, IL-8, and IL-12, after short term (4 hours) treatment of THP-1 cells with 20µg/mL 

of different rHDL. F. Summary for the effects of each rHDL treatment on the protein levels of 

different cytokines in non-activated THP-1 cells with LPS. Statistical analysis done using 

unpaired t-test with Welch's correction, without assuming consistent SD.*vs. none (no rHDL), 

#vs. Soy-PC rHDL, φvs. Soy-PE rHDL, δvs. ARA-PE rHDL, with p values <0.05. Values are 

shown as from at least 3 independent experiments that were performed in triplicate for each 

condition. LPS: lipopolysaccharide; TNFα: tumor necrosis factor alpha; MCP-1: Monocyte 

Chemoattractant Protein-1; IL: interlukin.  
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Annex 6. The impact of PE-containing rHDLs on the gene expression and protein 

secretion of different pro-inflammatory cytokines and chemokines in non-activated 

macrophages after long term treatment. AIA of rHDLs was evaluated in resting THP-1 

macrophages. A-E. Relative mRNA and protein levels of TNFα, MCP-1, IL-6, IL-8, and IL-

12, after short term (16 hours) treatment of THP-1 cells with 20µg/mL of different rHDL. F. 

Summary for the effects of each rHDL treatment on the protein levels of different cytokines in 

non-activated THP-1 cells with LPS. Statistical analysis done using unpaired t-test with Welch's 

correction, without assuming consistent SD.*vs. none (no rHDL), #vs. Soy-PC rHDL, φvs. Soy-

PE rHDL, δvs. ARA-PE rHDL, with p values <0.05. Values are shown as from at least 3 

independent experiments that were performed in triplicate for each condition. LPS: 

lipopolysaccharide; TNFα: tumor necrosis factor alpha; MCP-1: Monocyte Chemoattractant 

Protein-1; IL-interlukin.  

 

Annex 7. Oxidation parameters calculated from biphasic oxidation kinetics to evaluate 

oxidability of rHDLs. To evaluate the oxidability of rHDLs, different rHDLs (50µg ApoA-

I/ml), treated with/without CuSO4 (0.05µM), and DCFH solution (0.2mg/ml) in the absence of 

LDL. Different mixtures were transferred to 96 wells black plate (100µl/well), then the 

oxidation was assessed for 24 hours at 37C° using Spectromax Gemini device. A. Time-

Oxidation curve for different conditions. B. Amount of oxidized DCFH formed after 24 hours. 

C. The oxidation rate during the propagation phase. D. Lag phase duration. Statistical analysis 

done using unpaired t-test with Welch's correction, without assuming consistent SD. Values are 

shown as mean±SEM from at least 3 independent experiments that were performed in triplicate 

for each condition.  
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Annex 3. 
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Abstract 

HDL, or High-Density Lipoproteins, are often called "good cholesterol" by playing a 

vital role in reducing the risk of atherosclerotic cardiovascular diseases (ASCVD). HDL exert 

several atheroprotective effects, including their capacity to promote cholesterol efflux (CEC) 

from arterial macrophages, anti-inflammatory activities (AIA), and anti-oxidative activities 

(AOX). Among HDL components, phospholipids are considered the major determinants of 

HDL functions. Here, we aimed to identify new phospholipid species implicated in determining 

the atheroprotective functions of HDL. Higher plasma levels of phosphatidylethanolamine (PE) 

species are strongly linked to an increased risk of ASCVD, however, the underlying 

mechanisms remain unclear. Among PE species, PE (36:5) is recognized as a predictive lipid 

signature for ASCVD events. In human plasma, PE (36:5) exist as eicosapentaenoic (EPA, 

C20:5)-PE and arachidonic acid (ARA, C20:4)-PE. In this doctoral dissertation, we established 

a strong positive association between total PE and PE (36:5) contents in HDL and 

atherosclerosis in women with metabolic syndrome. Furthermore, our study added new 

information to this association in vivo, using ARA-PE, the predominant form of PE (36:5) in 

cardiometabolic diseases (CMD) and ASCVD. By infusing reconstituted HDL (rHDL) in an 

animal model with atherosclerosis, we revealed the inability of ARA-PE rHDL to reduce 

atherosclerosis compared to control rHDL, indicating an impaired rHDL-mediated 

atheroprotection. Our in vitro experiments revealed that PE, and more profoundly ARA-PE, 

attenuated the functions of rHDL and converted them into pro-inflammatory particles. 

Conversely, our in vitro findings highlighted the significant beneficial impact of EPA-PE on 

rHDL functions. EPA-PE not only enhanced the CEC of rHDL, but also preserved and 

improved its AOX and AIA, respectively. Furthermore, our findings revealed that EPA-PE 

rHDL attenuated inflammation by reducing pro-inflammatory eicosanoid production, 

suggesting a novel mechanism for the cardioprotective effects of EPA.  

In conclusion, this research work advances our understanding regarding the role of PE 

species in atherosclerosis by identifying them as novel biomarkers for HDL functions. These 

findings could significantly impact risk assessment and therapeutic management in the context 

of ASCVD.  


